

Eas\I Programming
J\lari Micros

ErirDeeson
Blrmlnghom

OShiWPubltshing Limited

SHIVA PUBLISHING LIMITED
64Welsh Row, Nantwich, Cheshire CW5 5ES, England

© Eric Deeson, 1984

ISBN 1850140227

Figures 2.5,5.1 and 18.1 courtesy of Atari International (U.K.) Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price given by
the Publishers in their current price list.

Typeset and printed by Devon Print Group, Exeter

Contenls

Foreword

Introduction
Acknowledgements

1 Open the box! 5
(Setting up, Getting on with it)

2 Starring Atari 10
(A program, What is a computer?, The parts of a computer,
Efficient chips)

3 In and out 16
(Taking command, Light program, Mind your language,
Input-process-output, Atari input-process-output, Processing,
Summary, Do it yourself)

4 Printing press 37
(Looping the loop, A lamode, Today's text, Printed matter, Tab,
All under control, Your own thing, Modus Operandi, Summary,
Do it yourself)

5 World record 62
(The Atari cassette recorder, Saving your gem, LOAD off your
mind, Mergency, Your tape library, Staking your claim,
Summary, Do it yourself)

6 The master plan 72
(Planning)

7 Full of sound and fury 74
(Theory, Atari sound, Into practice, Summary, Do it yourself)

8 Just a plot 83
(Mode 3, Modes 5 and 7, Modes 4 and 6, Mode 8, Summary,
Do it yourself)

9 Taking command 93
(Commanding height. The Editor's chair, Squashing programs,
Structure", Oddments, Summary)

10 Valley of decision 102
(Implied decisions, IF ... THEN, More IFs and buts, Let's be
logical, Conclusion, Summary, Do it yourself)

11 Get the picture 110
(Planning, Program pictures, Top-down development, Ideas to
modules, Modules to flowchart boxes, Coding the program,
Do it yourself)

12 Yellow subroutine 121
(GOSUB... RETURN, Summary, Do it yourself)

13 Numbering our days 128
(Arithmetic, Number-crunching, Functions, Summary, Do it
yourself)

14 Heart strings 137
(What is a string", String operations, Substrings,
String functions, Summary, Do it yourself)

15 Bug in a rug 144
(A bugged program, Tracing, Some closing tips, Moral)

16 Graphic description 150
(Modes, Graph plotting, Get your fill, Modes 9-11, Summary,
Do it yourself)

17 Graphics descriptions 159
(Spritely work, DIY characters)

18 Ragbag 167
(Timing, Interfacing, The special function keys)

19 Hip hip array! 174
(A simple array, Search and sort, Complex arrays)

20 Onward! 179
Appendix 1: Comments on questions 180
Appendix 2: Some more programs 183
Appendix 3: BASIC survey 188
Appendix 4: PEEK-a-boo 194
Appendix 5: The Atari character set 198
Appendix 6: To err is human 204
Appendix 7: Tipples 209
Appendix 8: Resources 215
Index 217

Foreword

When the founders of Atari created their first games back in 1972they started to bridge
the gap between the public and computer technology. Up until then, development of
computers had been something shrouded in mystery. But since the arrival of those
pioneering games, people everywhere have become fascinated by the capabilities of this
new technology.
In the spirit of those individuals who started the ball rolling, Eric Deeson has written a

friendly and informative guide to help you harness the power at your fingertips, by
learning to program your Atari Home Computer.
I hope you find it useful and informative, and that it will help you enjoy your Atari

computer to the full.

Andrew Swanston
Marketing Director

Atari Interoational (UK) Inc

2

Inlrodurlion

Atari have welcomed you to your micro, and it may well be that you've had a good play
with it. Perhaps you've even got a cassette or cartridge with a program on that guides the
machine to let you enjoy some smashing game, or get your accounts together.
Computers like the Ataris can do all kinds of things like that and of course, that's what

most users-there are millions of us now-spend their keyboard or joystick time on.
Yet each program you try out, whether it's on cassette or cartridge (or even on disc if

you can use discs), is the result of someone's work. Someone sat down at a keyboard for
tens or hundreds of hours and made up the instructions that tell the machine what to do.
Doing that is called programming. It takes a lot oftime; it takes effort to pick up; it can be
huge fun; it can increase your income; it can lead you to new friends and a new way of
life. Yes, programming can be a hobby like going to the races, painting in water colour,
or playing squash.
To me there are few things more satisfying than spending a few evenings with a micro

and ending up with a program that makes the machine do something I want in the way I
want it. Well, perhaps getting a cheque for a few pounds from a computer magazine for
the program is even more satisfying.
Having a micro at home, school or work and not being able to tell it to do even simple

things seems a real shame in my view. All that fun you're missing!So in this book I try to
give you the main ideas of making yourmicro your servant. Give it a go and you may gain
an absorbing hobby that you'll enjoy the rest of your life. And if it makes you rich, well
and good-if riches are what you want. Send my 10% to charity
This book is only the start, of course. I hope it appeals to you as a way of learning how

to program your Atari (any model), and to do so with great enjoyment. Take as long as
you like over it-this isn't a school book to be got through in a week. And when you've
finished with it, I hope you'll find itworth keeping forreference in the future. There are a
number of appendices just for the purpose, and a long index to help you get round the
pages.
Two warnings, though. Itmay be that you don't after all find programming magic fun.

OK, then-it doesn't matter. Not everyone is turned on by TV, collecting ferns or
reading Dostoyevsky in Russian. But give it a try, and even if you don't click with
program-writing as a hobby, you'll still be able to control your machine better.
On the other hand you may become hooked. You may lose family and friends, sell the

car to buy a disc drive, get arthritis in your finger-joints from too much keyboard work.
Micros can be highly addictive. Maybe the charity you send the 10%s to should be one
that helps the micro-junkies.

There are lots of programs in this book. I've written most of them with one purpose-
to show you some technique or other. That fact, plus the restriction on space, means that
not all are super-duper products that you'll want to use time and again. But this is not a
book of listings. I find such books boring as they imply you're a personwho doesn't care
about why this is done and not that, or how a certain effect comes about. Of course you
should look at such books, and at program listings in magazines-but do so with a basic
knowledge and then you'll be able to improve them your own way.
That's why there are also lots of things for you to try yourself in this book aswell-as

you explore, your knowledge will deepen and the fun will increase. Enough of intro-
ducing. Let's get on with the book. Enjoy it.

Harbome, February 1984 Eric Deeson

Note: A box 0 is used to represent a space when one is not
otherwise obviously needed. Italic text in printouts denotes the
use of inverse.

3

4

Jlrknowledgemenl5

I'm not quite a computer junkie, but I daren't find out if! could manage more than a few
days way from my micros. So I must start by sending guilty thanks to the family and
friends who had less of my company than they should while I was working on this tome.
In fact, I'll go further, and dedicate this book to all my friends (which includes the
family).
The work on the tome is not quite all mine (even if the responsibility is). I couldn't

have done so much without the kind help of folk at Atari (particularly Jon. Dean who did
a great deal) and at the Birmingham branch of Lasky's. Atari supplied the high quality
photos (blame me for the rest) and helped with the technical queries as well as my
BASIC uncertainties.
Indeed I guess Atari deserves acknowledgement for making this book possible. It's

not just that without Atari micros I wouldn't be writing about Atari micros. If Atari
hadn't brought us the concept of home micro-based video games (their Pong, which I
remember well, in fact started in pubs) perhaps there wouldn't now be many million
micro-users.
I would also like to thank Dave Mackin of Hodder Educational for an important

contact, the staff ofMicro General of Reading who sorted out the interface between my
Atari computer and my non-Atari printer and all the cheerful friendly folk at Shiva
Publishing. The typing-no, I don't much word-process-was carried out with speed
and efficiency by Lynne Nicholls. She claimed it was an adventure. I trust she meant it.
Thanks, everyone. And thank you too, dearreader, for buying the book. Well, I hope

you bought it. I am to blame for errors and such, so do send in your comments.
P.S. Can I have a second dedication? The weekend I worked on the final proofs of this

book, my brother's family were stayingwith us. Turns out they bought an Atari micro, so
I'd like to dedicate the book to them-Pat, Allan, Stuart and Katie. Then they'll tell all
their friends to buy

I Hoxl

No, this isn't a perfect world. If it were a perfect world, you would now be on the verge of
a quite painless entry into computing, a marvellous hobby that has already trapped
millions of folk around the globe. Well, you are on the verge of the hobby, and it is a
marveliious one, but I fear that the entrywon't be quite painless. I'll do my best to smooth
the path, of course.
So you have just got your new micro together with a copy of this book, and you have

read this far without even unpacking the box!
Let's pretend that that is the case. You have in front of you this book, open at this

page, and the great big exciting box that contains (you hope) your new Atari micro-
computer. We'll unpack the box together, because I have just got my Atari too. It
happens to be a 600 XL, but there's little difference here or on any other page between
this and any of the company's other machines-the older 400 and 800, the 800XL (same
as mine but able to store more information) or the 1450XLD, not yet available as I write
this. (Most of this book is about Atari BASIC, you will need the BASIC cartridge if you
are using a 400 or 800 micro.)
We'll start, then, by opening the box together, stopping for a moment to admire the

pretty colours on it and perhaps to read the posh-sounding but rather incomprehensible
descriptions. Inside my box is another box, white foam this time, a colour booklet telling
us briefly what we've bought or been given and less briefly how we can spend thousands

Figure].] Atari600XL.

5

6

of pounds more on feeding the machine with bits and bobs. Put that booklet aside for
now, perhaps on a nearby table to impress family and friends.
Also in my box is a white envelope. Contents: a sheet of ratherworrying notes on using

your micro with a TV set (which you are going to have to do); guarantee card; a booklet
detailing service centres (hmm, that's a bit worrying too!). Put the sheet aside-this
chapter replaces it; put the service booklet aside as well, hoping you'll never need it.
Deal NOW with the guarantee card just in case; I permit you to open the white box to
find your micro's serial number-it's on a label on the base of the machine. Now we can
officially open the white box....

Contents check list

I beautiful keyboard in plastic bag (dispose of safely, please)-that's your micro.
I long black lead with TV-type plugs at each end.
I incredibly heavy power supply unit with, phew, mains plug-top.
I rather small booklet of notes in ten million languages: this chapter replaces that,
too.
I even smaller booklet on using the micro with your TV set; again this chapter should
help.
I more booklet-ATARI BASIC reference guide with (if mine's anything to go by) a
fair number of errors: see the rest of this book.
I sheet of "Important Software Information": I'll cover that as well.

And that leaves an empty box and a room scattered with objects and papers.
I suggest that for the time being you use the boxes to keep your equipment in when it

isn't in use (you must sleep sometimes). And of course, if you don't keep your precious
micro packed away when you have to go out, you are bound to find bits getting lost,
damaged or chewed by the dog. Anyway, it's a nice box and you may need it one day to
send your micro back in forrepair. So, for a start, put all the paperwork in the base ofthe
white box, put on the lid-and mark the lid clearly TOP, scratching it with a pencil in
great big letters. That'll save accidents sooner or later!

SETTING UP
Action check list

this book, this page
the micro (the keyboard thing)
the power supply unit (jargon-ready folk call this the PSU)
the black TV lead
a TV set-colour or black-white, 625 line model
(alternative to the last two is a video monitor, for which you'll need a special lead)
a table
a chair

Step 1 Get yourself together

The best arrangement for starters is to have a table to yourself near a mains power point
and to sit at it with the micro and TV set on the top laid out in easy comfortable reach. To
do that you need a forgiving family and a lot of room. Maybe for now you'll have to send
the others out to take the dog for a walk and spread yourself in front of the telly in the
living room. A low table and a cushion on the floor will do. You can use a mains adaptor
safely if your power point cannot manage TV set and micro PSU. Please take care with
leads trailing over the floor. You won't like it if your aged grandma trips over one and
brings all the costly gear tumbling down. She might even hurt herself as well.
Ifyou are more methodical than anyone I know and want to set your computer comer

up now-do so, of course. I deal with all this in Chapter 5, so feel free to check through
there when you wish. Otherwise you'll just have to train those you live with in the new

Figure l.2 Starting at home.

priority: COMPUTING IS BETTER FOR YOUR BRAIN THAN SLUMPING IN
FRONTOFTHE TVWATCHINGBROADCASTS! Ifyou get to like programming-
and I hope you will-be prepared for many hours sweating over a hot keyboard.
Comfort is crucial.

Step 2 Give the micro energy

This is about the hardest thing in the whole book, ifmy experience is anything to go by.
You need to spend a good few minutes untangling the mains cord of the power supply
unit. Plug that into the mains (without switching on if you have the choice). Next unravel
the thin wire the other side of the hefty transformer unit. At the end of this wire is (for
some reason) a 7-pin DIN plug, that fits into the DIN socket with seven holes marked
PWR IN at the back of the keyboard. (Itwon't fit into the 5-pin DIN socket thoughtfully
placed next to it-but don't try or you'll cause damage!)
Switch on the mains and switch on at the back ofthe micro. The (very useful) POWER

lamp at the bottom right of the keyboard will shine brightly to show you're on the right
track. Ifyou are.

Step 3 Prove it on screen

Connect the black video lead now. This has a 'co-ax' plug at each end. Push the one with
the longer central spike firmly into the TV socket at the back of the computer; push the
other plug firmly-but very gently-into the aerial socket of your telly. Of course you'll
need to take out the existing aerial plug first.
WARNING If the TV set is often used for broadcast programs and computing, the
aerial socket will start falling to bits. Collect a few bob from the family for a special
adaptor that lets two inputs-aerial and micro-feed into the one socket. You can get
adaptors like this from most TV and electronic shops.
Switch on the TV set. Unless it's 3 o'clock in the morning, you'll get on screen the TV

program your family was watching before you turfed them out. Not a very good picture
because you're not using the proper aerial. Select a spare channel on the set and tune it to
BBC 2 (re-use the proper aerial lead if this helps). Now tune the channel (with the
computer video plug in again) away from BBC 2 and the other broadcast channels.
Within a few moments you should find the micro telling you on screen that it's there.
You'll see something like Figure 1.3. Gently tune your Atari channel to get the best

7

-- -- READY

<. - •reys --
............

me-.... r---
.....

black fra

Slowly
flashing
colours/g

Figure 1.3

possible screen display-the clearest colours (grey shades if you're using black and
white), the sharpest edges and lettering. Adjust all your TV controls now to improve
matters further-brightness, colour, contrast, horizontal/vertical positions. Keep sound
low if there's any annoying buzz at the best screen picture setting-but don't turn the
sound off, as you'll be needing it.

Step 4 Test

Switch off the micro (get used to using the switch at the back of the box) and switch on
again. You'll get a blank screen for a moment, then an ugly burping sound from the TV
speaker, and finally Figure 1.3 again.
Now say 'goodbye' to the machine! What? Don't ask me why. Anyway, type BYE on

the keyboard (getting a Space Invader beep from the speaker with each letter) and press
the RETURN key on the right hand side of the board. The RETURN key tells the

SELF TEST
MEMORY
AUDIO-VISUAL
KEYBOARD
ALL TESTS

ISELECTI, ISTARTIOR IRESETI

Figure 1.4

8

computer you have finished your message. At the moment the message is BYE, not
BYE-BYE or BYELAW, so press RETURN after those three characters. Figure 1.4
shows what you should get now-it's the Atari self-test 'menu'. Press the SELECT key
at the right hand side ofthe board three times, so that the message 'ALL TESTS' flashes
on the screen, and press START to tell Atari to get testing. Taking its time, the machine
laboriously tests memory, sound and keyboard. You can follow what's happening on
Page 4 of the Owner's Guide, but I guess it is unlikely you'll find problems now or in the
future. Store the testing routine in the back of your mind for the day you really feel
something has gone wrong. I hope that day never comes for you!

GETTING ON WITH IT

Let's be a bit more ambitious. Try this set of 'commands' as your own self-test; the (R) at
the end of each command is short for 'Press the RETURN key'.

SETCOLOR 1, 0, 0 (R)
SETCOLOR 2,2, 10 (R)
SETCOLOR 4,3,0 (R)
PRINT CHR$(125) (R)
POSITION 10, 10 (R)
PRINT "Testing-s l , 2, 3!" (R)

Self-test? Yeah, well, if you managed all that perfectly, without a slip, you're either a
genius or well used to typing commands to computers. Maybe I'd better say something
about the keyboard now? More detail later.
The Atari keyboard's not too different from that of an ordinary typewriter, numbers at
the top, letters in the middle, symbols at the right, and the long 'space' bar at the bottom.
When pressed, either of the SHIFT keys (there's one on each side at the bottom) gives
the characters on the top half of the number and punctuation keys. Thus to get" or "
(they're the same to the computer), press SHIFT and key 2; I'll call that SHIFT and2.ln
the same way you can get the $ from key 3. SHIFT does not work as on a typewriter for
capital and small letters however. Normally you get CAPITALS; to get small letters
('lower case') press the CAPS key. Logical? Now SHIFT and a letter key will give you
the capital ('upper case') form. Get back to standard upper case output by having
another go at CAPS.
After RETURN, if your typing's anything like mine, the most important key is called

DELETE BACK SPACE. There it is on the top row. If you make a mistake, pressing
that key will wipe out the last character typed and move the 'cursor' (the solid square)
back one place. Pressing this key with SHIFT down is even more drastic-it wipes the
whole line out of your life for ever.
What else? Oh yes-be careful to distinguish between 0 (the number zero on the top

row) and 0 (the capital letter oh, just below it), and between 1 (the number one, top
row) and I (capital eye, nextto 0) and I (lower case ell, below 0). You maybe able to tell
which is which in any context, but the micro isn't so bright-give it the wrong one and it
will get very upset. 2 and Z and 5 and Smay cause problems of the same kind sometimes.
Did you get your Atari telling you off with ERROR? Tut, tut.
Well, that is all rather complex. You'll soon get to know your way round the Atari

keyboard though! Practice will make perfect.
This book is mainly a guide as to how to program your Atari microcomputer-how to

tell it to do (roughly) what you want. As you go through the pages, you'll find out more
and more about that. Meanwhile, if you are impatient, look through the Owner's Guide
and try a few things. Or, if you are lucky enough to have a cartridge, pop it in the slot
above the keyboard (not to be used for fingers!) with the label facing you, press the
RESET key top right, and relax with someone else's program.

9

HI t"
I I I'
I I I'
t fU

10

'2 Slurring Jlluri

I finished off the last chapter with some instructions for you to type at your Atari, to give
you some feeling of superiority. And I'll start this chapter the same way-with a little
weedy program that will practise your typing, and, just a bit maybe, impress any
remaining on-lookers. 'Starring Atari' is in fact truly a 'program', the first in the book,
you'll feel pleased about that!
A program is an ordered set of instructions the computer can follow. The instructions

of 'Starring Atari' are written in a 'programming language' called BASIC. At this stage
you need to know only one thing about that-if you make mistakes, the computer may
not understand and will respond in a rather unfriendly way. No, I don't mean to put you
off-no mistake you can make can do any harm at all to the machine. It's just that if you
want the micro to follow your instructions, you have to phrase them just so. The notes
that follow the 'listing' of the program give some important points. I think you had best
read through these before you start typing.

Program 1: Starring Atari

10 GRAPHICS 0
20 PRINT '******1111**1*1***'111111*1*1*1*1*11"
30 PRINT
40 PRINT
50 PRINT" I I III * 1* *1 I I *11"
60 PRINT' I 1 Itt t I II *t I'
70 PRINT" I * f II ttl tit I *11"
80 PRINT" I Itt t I I I I t I'
90 PRINT' I * ttt *t* II II * t *1*'
100 PRINT
110 PRINT
130 PRINT"
140 PRINT "
150 PRINT "
160 PRINT "
170 PRINT
180 PRINT
190 GRAPHICS 18
200 PRINT t6;' ATAR I "
210 PRINT t6;" ATAR I "
220 PRINT t6;' ATAR I •
230 PRINT t6;' ATAR I'
240 PRINT 16;' ATAR I"
250 PRINT t6;' ATAR I"
260 PRINT 16;" a tar i"
270 PRINT 16;' a tar i"
280 PRINT 16;' a tar i"
290 PRINT t6;" a tar i"
300 SOUND 0,126 10 10
310 SOUND 1,91,10,10

320 SOUND 2.72,10,10
330 SOUND 3;63;10,10
340 GOrO 340 .

Notes

Before you start entering this program, clear the micro's memory of any instructions no
longer needed, by typing NEW (R). Then increase the contrast on screen, to make life a
little easier for you, with SETCOLOR 1, 0, 14 (R). The italic text in the program
printouts denotes the use of inverse, got with or'" , and 0 means space.
Enter each line exactly as given. When you have got it right by judicious use of the

keyboard, and of the DELETE key to remove horrid slips, press RETURN. The
cursor-the white blob, remember-should jump to the start of the next line. If it
doesn't, you have made some slip that causes the micro to be rather unfriendly. After all,
I warned you about that! The display will tell you off with an ERROR message. Ignore
the details of any message like this you get, and just retype the offending line again, with
a bit more care perhaps.
If the screen is getting too messy for you at any time press SHIFf and < to empty it,

and type LIST (R) to get a cleaned-up copy of the lines entered so far. When you have
finished, try the ultimate test-tell the computer to carry out the program instructions.
You do this by typing RUN (R). Lo and behold, the program runs and you get screen
and speaker output to tell you so. In fact, this program runs without end (that's the effect
of the last instruction, line 340, if you want to know). You can stop it with the RESET
key over on the right hand side of the board. LIST and RUN to your heart's content.
I only put the program in so that you could actually see one, and, if brave enough, try

typing one in. I don't really believe in throwing folk into deep ends like this-in this
chapter I really want to give you some background theory. So leave the program now,
and the details of how it works-and let's do a bit of digging.

WHAT IS A COMPUTER?
Okay, I can hear you muttering the question-"what's the point of background
theory"? After all, if you get a book on stamp-collecting, the author doesn't try to waste
your time with lots of details of printing processes through the ages. Please don't reject
the material in the rest ofthis chapter, however. For a start, I put a lot of work into it, and
then-I think it's important. Computing is not like stamp-collecting: here you are trying
to control a complex electronic machine and it helps to know a little bit about it.
So-what is a computer?
The first thing you need to know is that there are lots of kinds of computers. I wouldn't

be at all surprised if you have some around your house already-inside things like digital
watches, electronic calculators, video games (perhaps even an Atari one!), and sophisti-
cated features in a modern cooker, sewing machine, or video tape-recorder. All these
contain what folk call special-purpose computers, complex electronic chips dedicated to
a special task in each case. Your Atari computer, on the other hand, is general-
purpose-given suitable instructions and attachments, it can do the work of any dedi-
cated machine. Ifyou've been able to use your micro with a fewcartridges, you may have
found it used for timing, calculating, gaming and so on-suitable instructions within the
program of a general-purpose computer can handle all kinds of things.
In summary, then, a general-purpose computer such as the Atari can do many

different things when properly instructed. A special-purpose computer is dedicated to a
small range of functions and cannot (easily) have its instructions changed. When I am
cornered, here's what I tend to use as a full definition of a general-purpose computer like
ours:

A modem computer is a general-purpose, high-speed, digital electronic, stored program
data processor.

I've said what 'general-purpose' means, so what about all those other posh words?

11

12

High-speed Allied with its accuracy, the high speed of operation of a computer is a
crucial feature. Indeed, people have been looking for centuries for machines to offer
such facilities to help them in their work. Computers can in fact do things much faster
than people. They don't get tired, go on strike, have off-days, either; well, not usually.
I'll come back to this high-speed thing again in due course-but you ought to know that
modem micros can carry out thousands, or even millions, of actions each second. That
means that they can do very complex operations very quickly and also keep up with
fast-changing situations.

Stored program As I've already said, a program is an ordered set of instructions for a
computer to carry out. (Note that the spelling is not 'programme', by the way-the
American spelling is used here to distinguish the computing word from the broadcast
one.) Now, just think what it would be like to give the machine each instruction in tum,
when it is able to carry out millions in a second. Yes, that's right, the poormicro would be
sitting around for almost 100% of the time waiting for the human operator to tell it the
next thing to do. That would be a great waste of its potential, and, let's be honest, not
many people would feel like using computers if that had to be done.
So the computer must be able to store the program instructions somehow, so that it

can carry them out in a flash on demand. It needs some place to hold them, and that
place, strangely enough, we call the store. The fact that computers can remember
instructions for use on demand iswhat makes them so important.

Digital electronic I'll agree that that sounds a bit technical. But all it means is that this is
an electronic system like your TV set or bedside clock/radio, working on tiny electric
currents. (Actually those currents are really tiny, and really this is a microelectronic
device.) The 'digital' bit refers to the fact that these currents run around in pulses rather
than in a continuous stream. Pulses can be counted, which means they can act like
numbers. The word 'digits' means 'numbers', and the word 'computer' means something
for calculating.

Data processor And that's what computing's all about. Any computer processes data
(which represents information that people are interested in) to produce more data (more
interesting information). Stop and think for a moment how computers are used in the
wide world-think how we have already used the Atari in this book-and then you can
see why some people call computing 'data processing'. Really there is not much dif-
ference between a data processor and a food processor!

THE PARTS OF A COMPUTER
Don't worry-I'm not going to get any more technical. But I do think that it would help
you to understand that all digital computers have the same basic structure as I shall now
describe. It is true of your Atari, it is true ofthe massive multi-million pound machines
used by the Pentagon and the Inland Revenue for their seedy purposes, and it is true of
the massive machines of the 1940's. (I show one in Figure 2.1-it was a tremendous step
forward, but as I'm sure you can guess it was far more difficult and far less fun to use than
the Atari.)
The section of any computer that does the actual hard work is called the processor. Its

job is to process electronic data, as you know. I said above that the data is in the form of
'electrical numbers', and the part of the processor that deals with this is called the
arithmetic and logic unit (ALU to its friends); next to it in the central processor is the
control unit that conducts the whole operation.
What does the central processor process?-data. How does it know what to do?-

through programs. Data and programs must be stored, as we've discussed. So close to
the processor is the main store, or memory.
Ifyou tried typing in the program at the start ofthis chapter, you'll have realised that

keyboard entry is not the best way to give computers instructions. Bear inmind, after all,
that there are millions of different tasks that a general-purpose computer could be
expected to do, so that there are millions of possible programs. All but the very simplest

Figure 2.1 A 1940's computer

computers therefore have an extra memory, the so called back-up store. In the case of
the Atari this can be a cassette recorder and cassettes (see Chapter 5), or what's called a
disc system, or those costly cartridges.
All computers must also be in communication with their users. Each user wants to be

able to feed in commands, programs, and data. The input unit deals with that need-in
the case of the Atari that is, of course, the keyboard.
Also the computer has to be able to give the user messages and data-it needs an

output unit. The TV screen that we have been using is a standard output unit for
microcomputers. (A printer is another one.) In Figure 2.2 I show the way that all these
bits fit together. It's worth noting that people often call the input/output units and
back-up store the computer's peripherals (outside parts). There, that wasn't so hard was
it?

Back-up store/Main store

I
Input unit - Processor - Output unit

Figure2.2

EFFICIENT CHIPS.

As I have emphasized, Figure 2.2 applies to all computers in essence, whether large or
small. Figure 2.3 shows a typical modem 'main frame' (equals hefty) computer instal-
lation. All the boxes you can see there can be classed into one or other of those shown in
Figure 2.2. Who knows, by the time you've worked through this book, you may be able
to get a job running an installation like that. ...

13

14

Figure 2.3 Modern mainframe computer.

Figure 2.4 shows a typical Atari set-up. It's not quite on the same scale but perhaps it is
a little bit more friendly and easy to understand. The keyboard itself is of course the
input unit, the box it sits on contains the processor and main store. You should have no
problem in recognizing the output unit, nor the back-up stores used.
It's no particular task to undo the screws at the bottom of your Atari keyboard and

open the box. However, if you do that, you will lose the power of your Guarantee, and
anyway you may lose the screws and not be able to put the thing together again. So here's
a brief description. Inside the keyboard case is a 'printed circuit board' layout, protected
by a sheet of metal (to reduce any possibility of interference on your family's broadcast
TV set): so really you couldn't see much even if you did use your screwdriver.

Figure 2.4 Atari with peripherals.

The layout contains several 'chips'-amazingly complex microelectronic circuits
packed into a tiny slice of a substance"called silicon. There aren't many chips, because in
modem computers like your Atari those circuits are truly complex. Amongst them are
processor (ALU and control) chips and memory devices. There too are the famous
chipper trio charmingly called ANTIC, POKEY and GTIA. These have, respectively,
tasks associated with graphics/screen, sound production and display.
That's enough, I guess. Let's put the metaphorical lid back on, and get down to some

real program development.

15

16

J In andOul

I threw you in the deep end in the last two chapters by suggesting BASIC instructions for
you to try on your Atari. It was the deep end, but I know jolly well that if I didn't do
anything about instructing a micro till Chapter 3, you'd think this a rotten programming
guide. Maybe you still do-well, it gets better.
The first two chapters provided necessary setting-up practice and theory. Now we can

really get on to telling the idling beast what to do, and the rest of the book will be dealing
with that. By now you should have some practice in setting the thing up ready to work,
and some knowledge of using the keyboard. So-let's check.

TAKING COMMAND
Set up your Atari (with the BASIC cartridge in, if it's a 400 or 600model) and switch on.
Here's the set of instructions we looked at in Chapter 1. Enter each in tum. Can you do
so without ERROR shouted visually at you?

SETCOLOR 1,0,0
SETCOLOR 2, 2, 10
SETCOLOR 4,3,0

DON'T FORGET:

a It's SETCOLOR not SETCOLOUR: this is a US-designed machine, so needs (for
the nonce) US spelling-it won't understand if you make even a weeny spelling
error.

b The stuff after the SETCOLOR consists of numerals and commas. Again, if you
don't get them dead right, the computer will cut you right dead. Note, however,
that here (though not in all instructions), the Atari doesn't mind if you put in extra
spaces. I've put one in after the 'keyword' SETCOLOR, but this is to aid
readability for you, not for the machine.

c Ifyou don't press RETURN at the end ofthe instruction, the machine won't know
you have finished-so it'll politelywait (for ever if need be). RETURN (the key at
the right of the main block) tells the micro that the current input is at an end. In
fact, it truly means 'carriage return'-it signals the end of the line of typing on a
pre-micro keyboard, as on a typewriter. The RETURN key:

1. marks the end of the current input;
2. tells the 'print-head', in other words the cursor, to return to the start of the

line;
3. provides a 'line-feed', a shift down one line ready for the next.

All this harks from the days when computer users faced a roll of paper in a printer.
Things are different now, but the carriage retum/line feed bit is fairly convenient
even on a screen.

That's a lot of notes. Sorry. What does the instruction SETCOLOR 1,0,0 (R) do? It
changes the colour ofthe 'printing' (there I go again) on the screen from light blue to very
dark. We'll study SETCOLOR fully later-see Chapters 4 and 8-but meanwhile, in

SETCOLOR a, b, c

SETCOLOR is the Atari BASIC keyword for (surprise, surprise) setting a color, I mean
colour.

The parameter a decides what the colour is of:

1 Foreground ("ink" or text)
2 Background ("paper")
4 Border

The parameter b decides what the colour is:

0 grey 8 pale blue
1 pale orange 9 cyan (very pale blue)
2 orange 10 turquoise
3 red 11 pale green
4 pink 12 green
5 magenta 13 yellow-green
6 purple 14 orange-green
7 blue 15 gold

The parameter c decides the brightness of the colour, ranging from 0 (darkest) to 15
(brightest) .

Play with SETCOLOR a bit, though, as I say, we'll be going much deeper into the
subject later. Some notes are of value here. Firstly, there are restrictions in theory:

1. Ink colour has to be the same as paper colour, and the latter wins any conflict. So
in SETCOLOR 1, b, c, b can take any value you like as the micro in effect sets it
to be the same number as in SETCOLOR 2, b, c.

2. The brightness has in fact only eight possible settings, so really there is no point in
using values of the parameter c other than 0,2,4,6,8, 10, 12, and 14.

Secondly, there are restrictions in practice. You may not agree with the colour names
in the table under parameter b above (especially if you are using a black-and-white
telly!). For a start different colour TV receivers and monitors react differently to colour
signals. You'll know this if you've ever been faced with a bank of sets in a TV store. And
folk's eyes would also cause them not to agree which a given colour is. Me, I'm one of the
many with poor colour vision-it was a nightmare setting up the above table of colour
values. I have problems with traffic lights too....
That was more of a digression than I meant. Let's get back, with fewer notes, to the

series of instructions I am plagiarizing from Chapter 1. Carry on entering (and
RETURNing):

PRINT CHR$(125)
Don't forget: $ is SHIFT and 4 and the brackets come with SHIFT and the 9 and 0 keys.
This strange instruction (which we'll explore further, in Chapters 4 and 13) is the Atari's
tortuous way of getting the screen clear. You could also use SHIFT and < or
CONTROL and < for a similar effect. Most modem micros have the simpler instruc-
tions CLS (meaning CLear the Screen!).

17

POSITION 10, 10
This shifts the cursor down 10lines and across 10places. Well, it would do if things were
better organized. We'll organize them better in a moment.

PRINT "Testing-s l , 2, 3!"
(Don't forget-press the CAPS key to go into/come out of lower case-small letters-
mode. The system with the Atari computers 400 and 800 is slightly different. And of
course," and" are got with SHIff and 2. Computers don't distinguish between" and"
by the way, but most computer book printers, including Shiva's (hint, hint) have to use
66,99 rather than 11!)
What this instruction does is to print out the message inside the speech marks (without

showing the speech marks) on the next line (where the cursor would have gone if you'd
just pressed RETURN).
Here's that list of instructions again, with no comments at all. (I'm trying to be strict

with myself.)

SETCOLOR 1,0,0
SETCOLOR 2,2, 10
SETCOLOR 4,3,0
PRINT CHR$(125)
POSITION 10, 10
PRINT "Testing-I, 2, 3!"

(Figure 3.1 shows what you should have got if you hadn't digressed at all, and you'd
managed to keep the dreaded ERROR at bay.)

dark red (brown?) border black frame

18

r Ir-,
-, READY

POSITION 1(1, 1(1

READY
PRINT "Testing - 1,2, 3!"
Testing -1, 2,31
READY

,/' •-:
.....

fairly bright orange background
with dark orange foreground (text)

(only crudely to scale)
Figure3.1

The above six instructions are truly called commands-the micro carries each one out
as soon as you press (R). Folk sometimes say that the machine is here working in direct,
or immediate, mode.
Using commands with a micro is often useful-but really it treats the machine as no

more than a very posh calculator. In fact, that's the main use of working in direct
mode-calculating. (We'll meet other uses later.) Like this:

PRINT 36 + 65
Pressing (R) gives the answer at once-lOl.
You could (I hope) have worked that out in your head, so let's try something harder:
PRINT 36.75 * 0.321 (* is the computer's times sign, key next to CAPS)

Answer, in a flash: 11.79675. My calculator agreed and I shan't check on my fingers.
(That last sentence isn't really a joke: strange as it may seem, micros are not as good as
pocket calculators at doing some sums. They are not bad, but they can be less accurate.
That applies particularly to the older Atari models.)

PRINT 36.75 / .0'.321 (I means divide: key over the right hand end of the space
bar)

PRINT 36.75/\ .0'.321 (/\ means raise to the power if you know about such
things; key it with SHIFT and * and note that this time
the machine hesitates a fraction of a second before re-
vealing the answer.)

Practise with PRINT (some sum) if you like, as well as with PRINT "(some
message)". But I'll get on with my main theme, which is that of commands.
There are two reasons why commands are not always the best way to instruct a

computer. Firstly the machine doesn't remember them, so if you want to repeat one you
must type it in again. (There's a way round that in some cases; we'll meet itin Chapter 9.)
Secondly there is the reason I mentioned in Chapter 2-typing in a series of commands
to get to some end point is not an efficient use of a computer as it can work so much faster
than you can.
We can get over both problems in one fell swoop by putting the instructions in a

program. Previously I defined a program as an ordered set of instructions the computer
can carry out. Now let's recall the point about storage made in Chapter2-a program is a
stored, ordered, set of instructions thatthe computer can carry out. We met a program at
the start of the last chapter, but I am not going to repeat that with millions of notes. Let's
just tum our latest set of commands into a simple program.

LIGHT PROGRAM
The obvious difference (at least I hope it's obvious) between a set of direct commands as
on Page 9 and the program listed at the start of Chapter 2 is that each instruction line
starts with a number. By a brilliant piece of verbal footwork, the early users of the
BASIC programming language came up with the name 'line numbers' for these. So let's
just add numbers in front of each instruction in our set. No problem. Type this in with
me:

Program 2: A testing program

Ie SETCOLOR 1,0,0
20 SETCOLOR 2,2,10
30 SETCOLOR 4,3;0
40 PRINT CHR$(125)
50 POSITION 10,10
60 PRINT 'Testing - 1,2,3"

19

20

Notes

Before you start entering this program, clear the micro's memory of any instructions no
longer needed by typing NEW. Then, increase the contrast on the screen with SET-
COLOR 1,0, 14. Don't forget the DELETE key if, as just may happen, you note an
error before pressing RETURN. Ifyou realize a RETURNed line iswrong, re-type it. If
you get a line number wrong, type the number alone and then press RETURN. Don't
worry about spacing.
Use SHIFT and < to clear screen if it gets too messy, and type LIST whenever you

want a nice copy (with the 'right' numbers of spaces).

NEW and LIST are, of course, commands. Yes, you can use commands while pro-
gramming. The most important one is this-RUN. It tells the machine to carry out the
stored instructions in order.
Try RUN then, when you've done the entering. Hope it works. Hope you get what I

got-Figure 3.2:

Testing - 1,2,31

READY

•

Figure 3.2

Now that, unlike Program 1, is a program I want you to understand. Only when you
understand it, ought you to go through to the next round.... So I'll givemore notes,
some old and some new.

Instructions are set of characters that tell a micro to do something. They must follow
the rules laid down.

Commands are instructions entered in direct mode, in other words without line
numbers. The machine carries each command out immediately (after (R», but does not
store it in memory.

Statements are instructions entered in indirect mode, in otherwords with line numbers,
thus forming part of a stored program. The computer puts each statement in its memory
and does not carry it out until it gets told to RUN. RUN tells the machine to carry out the
instructions ('execute' the program statements) in number order.

Line numbers are BASIC's symbol for program statements. A line number must be a
whole number, from 0 to 32767 inclusive. We step line numbers up in jumps of ten
mostly, so that later we can add other lines in between if we need to.

Other commands

NEW:
LIST:

we've met are:

to clear the memory of program statements no longer needed.
to display on screen the lines of a program in number order.

Keywords are the opening words of instructions. You must enter them in capitals
(uppercase). As well as NEW, LIST, and RUN, we've met:

SETCOLOR:

POSITION:
PRINT:

to define the colour and brightness of foreground, background,
and border.
to move the cursor to a given site on screen.
to cause material such as messages to appear on screen; some-
times to control output, as in PRINT CHR$(125)-to clear the
screen.

All keywords can be used in commands or statements, but there may not always be much
point (LIST and NEWwithin programs have few benefits, for instance!).

MIND YOUR LANGUAGE
I think it's time for another theoretical break. Well, really I think it's time for some more
theory, but if I call it a break it soundsmore exciting. This break concernswhat are called
programming languages. I guess you know by now that you give your Atari micro
instructions in the BASIC language. Truly BASIC isn't a language-it's a programming
system used to communicate instructions to computers designed to understand it.
In fact no computer actually understands BASIC! Recall what I said in Chapter 2

about digital electronics? All a computer's circuits can work with are those tiny pulses of
electric current. To keep things simple, digital computers nowadays can work with only
two levels of current, on or off. If there is a pulse of current, the computer in effect
counts it as the number 1; if there is no current, the number is called 0.
So computers can act on instructions only if they appear as a string of current

pulses-a string of0s and Is. Here's an instruction written in that form:
0010110010100111

In the good old days of computing, the programmer had to enter all instructions like
that. Figure 3.3 shows what he or she had to do before pressing the 'RETURN' button.
Get all the switches in the row on the computer's 'front panel' in the right positions.

-h-
OFF

i ON FRONT PANEL

•

Figure 3.3

-, , , I ...
• -0- • -0- •

.... I -, ... I ,

All instructions (direct commands or those in programs) had to be entered in this way.
Each one had to be worked out as a set of0s and Is, checked a million times, entered, and

21

checked a second million times. Just think how easy it would have been to make mistakes
and how long getting even a simple program into store would have taken!
Programming like that is (was) incredibly tough on humans, though the computers of

the time (both of them) could 'understand' the instructions and carry them out without
problem. We say that programs with instructions like that are written in machine
code-a coded form that the machine could follow.
But computers are supposed to make life easy for humans! So along came the idea of

programming in so-called higher-level code systems. The systems folk nowadays call
machine code and assembly language are like this. They are easier for humans to work
with-easier to write, check, enter, and test-but of course the computer can't follow.
What the computer needs inside it now is a program-written in true machine code-to
translate the higher-level instructions into its baby 0sand Is. Tough on the machine, but
tending to make life easier for the programmer.
Even more recently, a couple of decades ago, systems that were even simpler (for

humans) came along. Baptised high-level languages, these were much more like plain
English (yes, English-speakers have a real advantage in this field!)-and even harder on
the machines.
Now there are hundreds of high-level program languages. You may have heard of

COBOL (common in commerce), and ForTran (super in science), and even ADA
(ADvantageous in Armaments), but there are lots and lots more. The most popular of
all is BASIC designed (in 1964) as an all-round system that's easy to start work in. It is
easy-after all, you'll be proficient in it after only a couple of dozen hours with this book.
I said that BASIC was the most popular high-level language. By that I mean that it's

the one the most programmers use. The reason for that is not just its ease for beginners,
but its almost universal use with microcomputers. Nearly all microcomputers have
BASIC as their standard high-level system.
With that doubtful honour comes a big, big problem-s-each new micro is likely to have

a different version of BASIC from its predecessors. Indeed micro marketing is often at
least partly based on new BASIC features-colour, sound, graphics (ability to draw lines
and shapes) and so on. Atari BASIC is not like any other (as far as I know), for instance,
but if you can follow this version, you'll have little problem understanding programs

1.0
20
30
4-0
60

:INK 0
PRPER 3
BORDER 6
CLS
PR:INT RT
Q,,3!"

1 ..

Testing

22
Figure 3.4a Program 2 in Sinclair BASIC, and its result.

written in BASIC for other machines (or, indeed, programs written in closely-related
languages like ForTran and COMAL).
Folk call programming systems like these 'languages' because they are used for

communication, and because it's convenient to think of their having a vocabulary (the
keywords) and a grammar (the rules for using the keywords). As a result, the various
versions of BASIC are 'dialects'. The dialects may differ from each other, but they have
many things in common-line numbers and the main keywords in particular. Figure 3.4
shows how Program 2would appear in two other major BASIC dialects.

;::! I'llUDE: ;::.;
:[ii) CUl.J:JI..JF:
:::;(j C;UL..UUF: i
,::Jill CI..5
6fi.l F'r;: I r··.IT "T f:iB (::::: :[::::;) II'r e t i n C! 'm 1., ::;:: , ::::: II

Figure 3.4b Program 2 in BBC BASIC, and its result.

The main reason you need to know about language levels and dialects is so that you
realize that you simply cannot copy programs printed in books and magazines unless they
are stated to apply to your machine. Perhaps you've discovered already that bookshops
are crammed to the eyeballs with volumes carrying such titles as Learn BASIC in 10
minutes (by Ivor Raquett, Rip-Off Press 1972, £19.99) and 500 programs for your micro
(by 0 P Timest, Con Publications SOp).The periodical shelves overflow too-loads of
glossy weekly, monthly and quarterly magazines with the word 'Computing' in their
titles. These give news, reviews, and program listings for many common home machines.
AVOID all these unless they contain material you really want that is stated to run on
Atari computers.
By the time you have finished this book, you'll know pretty well how to get different

effects from your micro's BASIC. You may then be able to transfer programs written for
other machines as long as you know the effect those programs and their instructions are
aiming for.
In particular note the great variation between dialects in dealing with colour, sound,

graphics (perhaps using keywords like MOVE, PLOT, DRAW, and CIRCLE) and
machine code (with *, [, 'l , PEEK, POKE, CALL, and USR). Programs with such
features will cause you great trouble in transfer. Figure 3.5 summarizes this section.

23

Sinclair

Assembly languages

So-called Machine codes

True Machine codes

High leyel

Low level

24

Figure 3.5 Language levels.

INPUT-PROCESS-OUTPUT

As I guess you've gathered by now, the work of any computer-large or small-divides
in essence into three types: Data input, data processing, and data output. Some
examples follow.
Surely the most obvious use of a computer involving input/process/output is the one

inside the simple electronic calculator. Data (numbers and operators) are input and the
results of processing them are output on the one-line display. As I've pointed out
already, such calculators are dedicated computers-dedicated to the single task of
calculating. Our concern in this book is of course general purpose computers like the
Ataris, as we've seen, these can act as calculators (with, for instance, PRINT 14/7(R)),
and do all sorts of other things too. Here are three brief case studies involving general
purpose computers programmed to carry out the task in question.

The cash dispenser

Figure 3.6 A Midland Bank AutoBank machine

One common form of automatic cash dispenser in banking works like this.

Input this is of (a) a secret code stored in some magnetic form on the user's card; (b) a
second secret code that the user must type in; (c) the details ofthe user's requirements,
also typed in at the time. These inputs are guided by messages output by the computer.

Processing This involves (a) relating the two input codes; (b) checking the user's
balance in the central computer record; (c) calculating how to dispense the right amount;
(d) calculating the new balance.

Output This involves (a) messages on the screen of the unit; (b) the cash itself; (c) a
printed slip giving the details; (d) a record in the central computer of what's happened
for the user's statement.

Systems like this are being developed to computerize all kinds of essential transactions,
such as in shopping, buying petrol, and getting goods on mail order with Prestel.

Holiday bookings

Figure 3.7 Holiday booking system (Courtesy ofHorizon Holidays).

Holiday bookings were one of the first large-scale uses of computers that the general
public could see to be of direct value.

Input Here the user gives information in response to the necessary questions, again
guided by messages on screen.

Processing This allows the questions to be answered, financial details to be worked
out, and hotel and flight records to be updated.

Output This provides (a) on screen, various messages and the answers to questions; (b)
the completed tickets from a printer; (c) summaries of the necessary details at company
headquarters, the agent's office, and perhaps the credit card company office as well.

It is very likely that voice input and output will soon replace some parts of systems like
this. Indeed in certain places you already can phone a computer and hold a kind of
conversation about forthcoming airline flights.

25

Test marking

THE ASSOCIATED EXAMINING BOARD

Centre No.

:::r::r:r"r::rI

::1:': :I I :f "!"" I
T ::r I ::r
I 'x: :l.- :::c I
I IT ::r :r'
-3. T
T"'!"TTII
TT:i:c

:r ·•. :T :I

1 I 1: Y
2 I I I.r
3 :X.I :E:::
4
5 ::x; I :r I Er
6III::tCI:
7III:JLI
8:I:Irr;II:
9:x:tIIII
10ItII:II

11
12

14 tL Fir I
1 5 :Ij Ij I L:lCLr
16 ::xc I I -yr- rr
17 'T':L I I:Ii
18 XT3JIT
19 :x I t:IE I
20 I 'ii- I ,,- =-L

21 ::x X ::t= I I:
22XITIX
23 'T' I ::c:: ::a:: :::E:::
24TIIII= CO":::r:::

EI: I ::r: I'
IIII
I:::r I:::L
IITI
ITrT
I -'i":' I:I::
III-r
rITI'

31 I ::1-: :r ::Jr: ::r
32 I I ::c:: I ::r
33:::X::'IIII
34 'A' T :r :IL I

36 ITIII
37 EX' EiJ tc:: I I
38 EXJ EiJEa ::E :u
39 EjJ I ::'r! I
40ILJJIII

41 :Ii Cjj 3::: r:Jl:: I
42 LA:1 ::c:; ::Jt: I
43
44cIII:II
45 :x: tc:: L:lC :I:
46
47 ::x: 'I :r I I
48 T :::IJ ::c:JEii: I
49
50 :x: CI:: :I: ::JL I

51 I EiJ :a :::u:; :::c
52 ::xJ EiJ=c: I =e
53 I iI ::c:: I I
54 I ::IJ ::c:: :JL I
55
56

26

Figure 3.8 A typical computerized answer sheet (Courtesy ofA.E.B.),

Input This consists of pencil marks on a specially printed sheet (see Figure 3.8); amark
sensor detects the variation in the brightness of reflected light as shown in Figure 3.9.

Processing This lets each pencil mark be related to a right or wrong answer; the
candidate's total score to be worked out; records for statistical purposes to be built up as
needed.

Output Output is of printed scores lists; the result of statistical analysis (perhaps in
graphical form); and candidates' certificates.

Surface being scanned

Figure 3.9 A mark sensor reading the answer sheet.

ATARI INPUT-PROCESS-OUTPUT
In each of the cases I described above, data reaches the computer through some kind of
input device; this may well be a long way from the processor. How the computer then
processes the data depends on the program that is stored in its memory. That program
will also guide the user to give the input data in the right form by putting suitable
messages on the screen, and produces suitable output. In just the same way your Atari
must be programmed to do each task. You must tell it to:

(a) guide the user to give acceptable inputs;
(b) do the necessary processing;
(c) format (layout) the output so that it makes sense and is easy to read.

We'll use these keywords in this program:

Input

Process
Output

INPUT
DIM
LET
PRINT
POSITION
SETCOLOR
PRINTCHR$(125)

(easyeh?)
(which we need togo with INPUT in some cases)

(puts material on screen)
(sets site for printing)
(sets colour)
(clears screen)

As you know the last four, I'll introduce two others which don't fall into the above three
classes:

Control

Remark

GO TO

REM

(which alters the normal order of flow through the
program statements-not for frequent use)
(which leaves a message in the Iisting to help
readers)

27

Notes appear after the listing-so, off you go, and type it in. This is a long program, by
the way-a couple of screens full. Note, therefore, that you can stop the scrolling
(upward movement) of the screen listing at any time by pressing CONTROL and 1. You
don't need to type in REMs if you want to save time-they are there for information;
similarly you can cut all spaces that aren't inside speech marks.

Program 3: Inprout

10 SETCOLOR 1,O,14
20 SETCOLOR 2;6,0
30 SETCOLOR
40 PRINT CHR$(ILSl
41 REM ff Above set up display
50 POSITION 4,4i is your nase?"
80 INPUT NAI1H
81 REI1 ff Input routine
90 POSITION 4,8
100 PRINT 'Think-you, ';NAI1E$;',"
110 POSITION 4,12
120 PRINT "In which vear were you born":
130 INPUT YEAR' . .
131 REM If NUlber input is simpler
140 LET A6E=1984-YEAR
141 REI1 If ProcessinQ at last'
150 POSITION 4,16 -
160 PRINT 'So you are about ";A6E;" years old.'
170 PRINT "That's about older than me,'
171 REM ff Bit lore processing Change data if need be
180 POSITION 4,22
190 PRINT 'Please press RETURN to go on •
200 0111 CONT$(ll
2Hl INPUT com
220 PRINT CHR$(12S1
230 PRINT NAI1H: "5 about ';A6E;" years old."
240 60 TO 230 .
241 REI1 ff See the control bit')

The whole of the next chapter is on the subject of output statements in Atari BASIC so in
these notes I'll not say much about them. Rather I'll concentrate on the other new
keywords and their use.

Using INPUT

Program 3 uses only one input instruction-it is, surprise, surprise, INPUT. See it in
lines 80, 130, and 210. There are others that we shall meet later. When the processor
meets INPUT, it carries out the following tasks:

(a) puts a 'prompt', a 'l , at the next print position to tell the user to type something;
(b) awaits a keyboard entry ending with (R);
(c) assigns the input data to the named variable.

Data items

As you know, a computer is a data processor. We need to now the vocabulary associated
with the various types of data the Atari can process.
Atari BASIC has two types of data-numeric and string. Numeric data consists of

pure numbers alone; examples are 0, 42, -7,2.34, and 2E4 (meaning 2 x 104) . A string
can be any combination at all of keyboard characters, for instance, "Shiva", "R2D2",
"PI = 3.142", "1984". Yes, strings can contain purely numeric data but if we show them
in speech marks (" ...") they are strings and not numbers.

28

Both types of data, numeric and string, come in various forms. I show these in the
table:

Table 3.1

Form

Constant
Variable
Variable name
Expression

Numeric

9.87
The user's age in days
YEAR
AGE-l

String

"The answer is "
The user's name
NAME$
(see later)

A constant is a value which is set and not expected to change for a time at least. Examples
are:

LET FACTOR = 2 * 3.142
LETMESSAGE$ = "Press RETURN."

A variable can be expected to take any value, as in:

INPUT RADIUS
INPUTNAME$

Here RADIUS is a numeric variable name and NAME$ is a string variable name.
An expression is a combination of constants and/or variables that the computer needs

to work out:

LET OUTSIDE = FACTOR * RADIUS
Numeric expressions can be very complex, but string expressions can use only addition
(and that with difficulty). I'll come back to this again later, but note once more the four
main arithmetic operators and their BASIC symbols: add (+), subtract (-), times (*),
divide (I). .
As I say, Program 3 uses three INPUT statements; in truth only two of them involve

real assignment.

Numeric input INPUT followed by a numeric variable, as in INPUTYEAR (line 130in
the program), tells the processor to display the prompt (the ?, you recall); to wait for a
numeric (number) input followed by (R); and to assign the value that was input to the
variable named, in this case to YEAR. The program can then process the input value, as
in line 140.
Micros differ in this, but in the case of the Ataris, a numeric variable name can be any

combination of capital letters and numbers as long as the first is a capital letter. The
maximum length in practice is about 100 characters, but I trust you will never try to use
names that long! If the first one isnot a capital letter you get an ERROR report thrown at
you.
Table 3.2 sets out what you can and cannot do as far as naming numeric variables is

concerned.

29

Table 3.2

Allowed

A
FIVE
R2D2
YEAROFBIRTH'

Not allowed

a
5
2R2D
YEAR OF BIRTH

30

Of course it will help you and other people reading the program lines later to see long
meaningful variable names like ANNUALOUTPUT and HISCORE. In particular you
will find that this is important when you come back at some time in the future to improve
a particular program. However, long names like this present obvious typing hazards to
the programmer and take up a lot of computer memory. On the whole therefore I shall
use very short variable names in the rest of this book. Indeed, to be honest, it is only
when you get to writing very long programs that you find you need names of more than a
single letter. After all you have 26 possible ones there.

String input INPUT followed by the name of a string variable (one ending with $), acts
just as before, except that any mixture of alphabetic, numeric, and other keyboard
characters can be accepted by the computer before the RETURN when the line is
carried out. (You have probably found out by now, and if you haven't you soon will, that
if you enter a non-numeric value in response to a numeric INPUT statement the
puter will complain with ERROR 8.)
Thus line 80 in Program 3 is INPUTNAME$. When the computer reaches this part of

the program, it displays the prompt, the ? Then it waits until it gets a keyboard input
followed by (R), and assigns that input value to the string variable NAME$. The
program may then use the value of the variable, whatever it may be-as in lines 100and
230.
The name of a string variable can be set up to follow exactly the same rules as for a

numeric variable, except that the final character must be a $ (say it 'string').
As you have already learned, a string INPUT stajement must be preceded (some-

where in the program) by a DIM statement. What DIM does is to tell the micro to
reserve the stated number of spaces in memory for the string. Thus DIM NAME$(12)
reserves 12 spaces in memory for the string to be called NAME$. If the string input turns
out to have fewer characters than twelve in this case, the micro doesn't mind. On the
other hand, if it has more, then the extra ones are chopped off and lost for ever. I guess
that not many people would enter a string of more than twelve characters in response to
the question "What is your name?", but if they do, their name is chopped off for life.

Wait Lines 190-210 in Program 3 form a little routine which you will find useful very
often. What the routine does is simply to stop anything happening until the user is ready
to go on. Then any input followed by (R), including (R) byitseIf, will let the program go
on to clear the screen and deal with the final statements. This is of course really a special
case of the use of string inputs-but this time the program willnot use the assigned value.
In practice it is of course not possible to separate input and output functions. I am

thinking in particular of the need for a clear message to go before each INPUT
statement, so that the user has no doubt at all what he or she should enter. This is an
aspect of what we call 'user-friendliness', the need for every program to be designed to
make the user feel unthreatened and at ease. If you check back through Program 3, you
will see what I mean-each INPUT follows a message telling the user what to enter. I
think I should warn you now, user-friendliness is one of my (many) hobby-horses. I shall
return again and again to this theme....

Processing

At last we come to the central part of any computer operation. Look at line 140 of
Program 3. We call this an assignment statement. Its structure is

LET (variable name) = (expression)
The variable can be numeric or string; the expression can be a constant, the value of
another variable, or some combination of these as complex as you wish-first the micro
evaluates it. Here are some examples of expressions; I put them in LET statements so
that you can get used to this important keyword.

LETFACfOR = 12
LET YEARS = AGE
LETMONTHS = YEARS * FACfOR
LET OUTSIDE = 2 * 3.142 * RADIUS
LET VOLUME = 4 * 3.142 * RADIUS" 3/3

(a constant)
(a variable)
(an expression)

(1\ means raise to the power)

By the time we need to use complex expressions like that last one, we need to know the
order in which the micro is going to work out a given numeric expression. I'll come back
to this in more detail later, but here is the priority table we need to know at the moment.

Table 3.3

Priority

highest

1
lowest

Operation

(...)
SQR, SIN, etc
/\
*, /
+,-

Meaning

brackets
functions
raise to power
times, divide
add, take away

If in doubt-put in brackets!
We have already met another important method of assignment-the INPUT state-

ment, as in INPUTAGE, or INPUT NAME$. (There is yet another-READ-that we
shall meet soon enough.) The rules for assignment by LET are just the same as for
assignment with INPUT. That applies to the naming of variables and to the use of DIM
in the case of string assignments. In the latter case, for instance, we could do this:

DIM RESPONSE$ (10)
LET RESPONSE$ = "Processing"

One final point needs a mention here. It is that the keyword LET is in fact optional. So
you could have SCORE = 15or TITLE$ = "Invaders". However, I personally prefer to
use LET all the time, and shall do so throughout this book. The reason is that it makes
the statement clearer, and, in any case, the keyword LET is essential in some dialects of
BASIC.
A fairly common use of LET is to keep score-to count some repeated event during a

program. We would first set the counting variable to the necessary initial value, often 0,
using LETCOUNT = 0, or LET SCORE = 0. Then when the need arises we increment
(step up) the value ofthe variable by 1, with, for instance, LETCOUNT = COUNT + 1.
Then when required, a PRINT COUNT statement will let the current value appear on
screen.

31

32

Program 4 shows this in action. Like Program 3 this is fairly trivial, its main function
being to show the points I am making at the moment. Perhaps later you will feel that you
wish to come back and improve it. ...

Program 4: Out for the count

10 LET 60=0
20 Nl=!NTIRNDI0}tI0)
30 LET N2=!NTIRND(0)t10)

DIM Oii$(13)
50 LET OKS='That'§ riaht.·
be DIM NO$1141 .
70 LET NO$='Sorry - wrona"
80 DIM CONTSll) . .
81 REM t. All above is settinQ up
90 PRINT CHR$(125) -
100 POSITION 4,10
110 LET 60=60+1
120 PRINT "Go ';60;':'
130 POSITION 4.14
140 PRINT 'What is ";Nl;' times ";N2;
150 INPUT ANS .
160 POSITION 4,18
170 IF ANS<>NlfN2 THEN PRINT No$
180 IF ANS=NlfN2 THEN PRINT OKS
190 POSITION 4,22
200 PRINT 'Please Dress RETURN to 00 on •
210 INPUT CONTS -
220 IF ANS<>NlfN2 THEN 60 TO 90
221 REM tt Return if wrona
229 REM tf 60 on if rinht'
230 PRINT CHRS(125) . -, ..
240 POSITION 4,10
250 PRINT done - YDU got it in ";GO;""
260 POSITION 4,22
270 PRINT RETURN for another one .•.• •
280 INPUT corm
290 RUN
291 REM t. Have another go

This program introduces a number of new ideas, as well as giving you plenty of chance to
work with LET. A major point is that it keeps on going, round and round, so that the
only way you can escape from it is to use the BREAK key (at any stage). I'll go through
the other points as they appear in the program.

Lines 20-30 What each of these lines does is to select at random a whole number
between 0 and 9 inclusive. I can't expect you to understand exactly what's happening at
this stage (though I trust you will soon enough)-but just remember the structure
INT(RND(0) * N) for getting the program to choose a random whole number between
zero and one less than N.

Lines 40-70 This program does not really need any string assignment, for reasons that
may become clear later, but I put these lines in to show you how it can be done.
Remember always to 'dimension' any string you are going to need, to a size as large as it
may ever be, before you assign it with LET or·INPUT. The assignment does not need to
be just before the string first appears, however. That's why I dimension CONT$ in line
80, but don't use it until quite a lot later in the program. Note, by the way, that once a
string is DIMed in a program, you can't reDIM it. That's a good reason for putting all
DIMs at the head of the program.

Lines 140-150 I repeat here a trick used in Program 3-putting a semi-colon at the end
of the message preceding an input statement forces the INPUT's? to appear at the end of
the message rather than on the next line. I'll deal fully with the semi-colon in the next
chapter.

Lines 170-180 Here I use for the first time in this book the most important structure
IF ... THEN.... I think you'll have no trouble in understanding what's happening here, as
soon as I tell you that the symbol < > means 'is not equal to'. That symbol is made up of
the 'is less than' sign «) and the 'is greater than' sign (». Those two 'inequality'
symbols appear on the top row of keys after the zero.

Line 220 Here again is an IF ... THEN.... The line also uses GO TO, though I ought to
tell you that such a usage is frowned upon by many modern programmers. (The use of
GO TO shows a dependence on line numbers, which, though essential in BASIC, are
best avoided in what we call structured programs. Later on I'll show you how to get
round this problem.) The REMs that follow line 220 point out exactly what the IF...
THEN... does. We can translate line 220 as follows. 'IF the answer is not equal to Nl x
N2, THEN GO TO line 90;otherwise, go on.'

Line 290 It is quite in order to have RUN as a program statement. What it does, of
course, is to tell the program to strt again from scratch when it reaches this stage. You
will often find, I think, that it is worth ending your programs in this way rather than
letting them run out of steam entirely. I think this makes a program more useful, and
perhaps more friendly to the user, but the user must know that the BREAK key can stop
the program. The command CONT lets the program start again at the next line after it
stopped with BREAK.

set up
('initialize')

pose question

get answer

NO

reward message

Figure 3.10 Flowchart outlining Program 4. 33

Finally, I think I ought to say a little bit about the keyword REM. I used it in the last
program, as well as in Program 3. REM is short for 'remark'; REM statements stay in the
listing for later use by readers, but the micro ignores them during a run.
The use of IF ... THEN... in a program as in line 220 above means that the program

doesn't run straight through from start to end. I think it may help you, therefore, to see a
chart of this program to show more clearly what is going on.

SUMMARY
Here's a list of the keywords that I've used in this chapter. I agree that I'm going to go
into further detail on a number of them later, but all the same the ideas you've met will
let you make some sort of programs up of your own. That's the purpose of the next
section!

CHR$
CONT
DIM
GO TO
IF...THEN...
INPUT
INT
LET
LIST

NEW
POSITION
PRINT
REM
RND
RUN
SETCOLOR
THEN

You also know about the RETURN and BREAK keys (the latter stopping a program
from running, the keyword CONT letting it continue), and you've met some arithmetic
operators. The arithmetic operators are:

+ (plus) - (take away) * (times) / (divide) /\ (raise to power) (...) (brackets)
Then there are the things that posh folk call logical operators. Here's a full list of those

is equal to
< > is not equal to
< is less than
> is greater than
< = is less than or equal to
> = is greater than or equal to

We've also talked about the priority list of operations and numeric and string variables.
Actually, now I look at all that, it looks as if we've done nearly all the important things. I
can't think why the rest of this book is so long

DO IT YOURSELF
Here are some programming exercises for you to try on your own. Notes on some appear
on Page 180. I must tell you, however, that in programming there is never a single correct
answer to a problem.

1. Write a program like Program 1 (though don't use GRAPHICS)-Starring YOU
instead of Starring Atari.

2. Make up a poem about computing and get your computer to print it out neatly on
screen.

3. Using POSITION, SETCOLOR, and PRINT, devise a program to display a very
simple picture on screen. Try using all the strange symbols on your keyboard.

4. Combine the above ideas to get a program to display on screen a certificate like that
in Figure 3.11. Of course if you have a printer, certificates like this may be most
useful.

34

SAINT TRINIAN"S SCHOOL

CERTIFICATE ;;//=

Placed LAST in the •

**
*
*
*

Awarded to .

HEAD-MISTRESS

DATE
--------------------------***

** * * * * * * * *
Figure 3.11 A computerized certificate.

* * * * * * * * * *

5. Use the structure of Program 2 for one that suits your own needs.
6. Do the same with Program 3.
7. Study with care the listing of Program 5. Try to predict exactly what each line and

the whole program actually does. Then enter the program following the listing
exactly, run it, and see if you are right.

Program 5: Can you read BASIC?

10 SETCOLOR 4,8,12
20 PRINT' I·N PUT AND 0 UTPUT'
30 PRINT' ========= ==========='
40 POSITION 6,6
50 PRINT 'Give a number between 1 and 20,'
b0 INPUT A
70 POSITION 6.12
80 PRINT 'Now type any set of ten characters, .,.'
90 DIM SETWil)
100 INPUT sm
110 PRINT CHR$(125)
120 LET B=1
130 LET B=B+1
140 IF 8(10 THEN PRINT' ';
150 PRINT B" Hi-di-hi, ';SETS
160 IF BfA tHEN 60 TO 130m GO TU 170

Please don't read these notes until you've finished the question!
Lines 20-30 Note layout tricks here.
Lines 140-150 Same applies.
Again you'll need BREAK to stop this program. You'll also find, as I didn't have a
PRINT CHR$(125) statement at the start of the program, that it's best to press
RESET before you RUN.

35

8. Study Program 6. I trust that you will see at once that it contains errors! In fact
every line except one has at least two mistakes in it. Correct the errors, enter the
program, and run it. Make sure that it gives the results you would expect.

Program 6: Finding fault

20 PR !;What your name"!
30 INPUT $

PCSITOIN
5£ PRINT AN EMPTY LINE

PRINT 5Age1 N$?'·
t s: INPtn AGEl
80 THEN nWish ten'
90 E ;' 1S 2 nice aOE
100 il 2 :!

9. (For advanced programmers!) How did I get a print out of Program 6, ifthe Atari
complains so often about ERRORs?

10. Use Program 5 as the basis for one giving various pleasing patterns on screen. This
is your chance to explore the great potential of PRINTwith 'inverse' (the effect you
get with 'f"I' or ' m') and the special 'graphics blocks' obtained when you hold down
the CONTROL (or CTRL) key while pressing a letter key.

11. Practise the use of INPUT (string and numeric) in a program to ask the user various
questions, storing the results, and finally printing them out neatly.

12. Devise a BASIC program to accept a number (up to, say, 500) and to print out on
screen the multiplication table for that number, up to 12 times. See if you can lay
the screen out neatly whatever the input number (positive or negative, whole or
fraction). Base your answer on the technique shown in lines 110-170of Program 5.

13. Develop a neat 'calculator' program which accepts two input numbers and asks
how they are to be operated on (+, -, *, / .). The program should then print out the
expression it's got to work out, and give the answer. After that the program should
return to the beginning for another go.

14. Devise a program to model as closely as possible (perhaps, however, without the
money output!) the action of the cash dispenser system I described early in the
chapter.

Note It may well be that you will feel that at least a few of the programs you have
developed in this section are worth keeping for later use and polish. Chapter 5 tells you
how to save them on cassette.

36

4 Prinfing

Using the Atari's main output instruction, PRINT, which puts what follows on screen, is
not easy to come to grips with once you start digging much further than we've been so far.
If you typed in and played with Program 1 (Page 10) you will have got some inkling of
how complex PRINT can be.
The reason is that the micro has a large number of display modes. Each one is best for a

given purpose, and in each case the action of PRINT can differ. First, then, we need to
explore the mode thing a little bit. Then I can concentrate on those in which ordinary
printing-'text printing'-is of most interest. Before we do that, I think I'll tell you
about what's called looping.

LOOPING THE LOOP
I've already said that many modern programmers frown on the GO TO instruction
(though I know a book which says it's the most important!). GO TO does have some
good points, but I agree with people who say we should avoid it. We'll come back to this
point later in the book, but when I've dealt with the concept of loops I'll need to use GO
TO (or GOTO: you can leave the space out if you like) far less often. Look at this simple
counting program. It builds up the ten times table for any input number.

Program 7: Table d'hOte

10 PRINT CHR$(125;
20 POSITION 2.2
30 PRINT 'TIMES TABLE"
40 r'OSITION 2,20
50 PRINT "Please give the number you want'»
60 INPUT NUMB .
70 POSITION 2.20
80 PRINT"
90 PRINT »
100 POSITION 15.2
110 ;:'RINT »: ":NUMB
120 POSITION 2,8
130 LET T=1 '
140 PRINT T;" times ";NUMB;' is ';TtNUMB

LET T=T+I
160 IF T<ll THEN GO TO 140
170 POSITION 2.20
181 PRINT 'Plejse press RETURN to QO on•
190 DIM CONT$(!) .
200 INPUT com
2!0 RUN

37

Because this is a chapter on PRINT, I've included one or two snazzy PRINT tricks-
such as changing the title halfway through the program. But now my main concern is the
clumsiness of the table-printing routine, the bit in lines 130-160. Not only does this need
some thought to write and understand, it uses GO TO and that could make some
reviewers scream. Can't have that, can we! (You'll also find the screen layout looks
rather horrid, snazzy tricks or not-but we'll be able to overcome that kind of problem
soon enough.)
What do lines 130-160 do in Program 6? Here we have a loop: the program goes

through the central part (140-150) a certain number of times. Round and round and
round-hence the name. Maybe a picture would help-Figure 4.1 shows what's going
on.

start of program

PRINT
line of table

YES

end of program
Figure 4.1

First T takes the value 1. The program then puts a line of the table onto the screen and
adds 1 to the value ofT, making it 2. Next we come to the diamond-shaped box-'is T
less than II?' it means. 1fT is less than 11,which it is, we zoom round the side back to the
PRINT box: a second line oftable appears like magic on display. And T then gets a new
value again-3 this time. Tis still less than 11, so round we go again. And so on. Until at
last T reaches the value II-which is not less than II-so we fall out of the bottom of the
loop.
Okay? Clever, I agree. A pretty neat scheme, which lets the computer in effect do lots

of actions with only a small number of lines. But BASIC has a posher way, one that is
even simpler. This uses what we call a FOR. ..NEXT structure. Change Program 6 like
this:

38

130 FOR T = 1TO 10
150 NEXTT
160 (R)

(this wipes out the old line 130)
(this wipes out the old line 150)
(this wipes out line 160without a new version)

RUN-and you'll find the same action. So you can use FOR. ..NEXT loops to say how
many times you want a routine of the program to repeat. The structure is very simple
(and uses no GO TO!). The line

FOR COUNTER = STARTING-VALUE TO STOP-VALUE
asin

FORT= 1TO 10
tells the micro that the lines that follow need to be done a certain number of times, with
the value of the counter going up by one each time. The line

NEXT COUNTER
as in

NEXTT
shows the end of the routine within the loop.
Some BASICs have other structures which allow a set of lines to be cycled through

again and again. You can in fact mirror these with the Atari (see Appendix 7), but
FOR. ..TO... NEXT has fair power. In fact we can extend this a bit, but before I deal with
that I would like you to check that Figure 4.1 also showswhat happens in the loop section
of the new version of Program 6.
It does so exactly. Let me show you. RUN the new program. After the table appears

on screen, when the program asks you to press RETURN to go on, press BREAK
instead to stop it. (BREAK can always stop a program in action, unless the writer has
'disabled' it-see Appendix 7 again.) Now enter PRINT T (R) to get the value of the
counter T at the end ofthe loop--it is 11, not 10as you might expect. Bear that in mind if
you need to use a loop counter again later in a program.
Anyway, FOR. ..TO ...NEXT can be used with step (increment) values other than +1.

The keyword involved is-surprise, surprise-STEP, and this can take any value you
like. The STEP value can even be minus, and it needs to be that if the loop's STOP-
VALUE is less than its STARTVALUE. But if STEP isn't there, the micro assumes its
value to be 1. Here's the full structure then:

FOR COUNTER = STARTING-VALUE TO STOP-VALUE STEP
STEP-VALUE

(do such and such)
NEXT COUNTER

Here's how this works in full.

When the micro meets the FOR, it:

(a) puts the specified starting value into the loop counter 'box' in the store;
(b) puts the specified final value into another box;
(c) notes in a third box (a 'stack') where the loop starts.

When it meets NEXT, it:

(a) checks to see if the counter value has reached the final value and, if so, leaves the
loop;

(b) if not, adds one step value to the counter value; and
(c) goes back to where the stack tells it to.

The next routine, hardly worth calling a full program, shows an obvious use of a minus
STEP value. Study it and the notes that follow-there are as usual one or two more new
tricks for you.

39

10 PRINT "COUNT-DOWN"
20 FOR COUNT = 10TO 0 STEP -1
30 POSITION 15, 10
40 PRINT "**"; COUNT; "**"
50 FORWAIT = 1TO 450: NEXTWAIT
60 NEXTCOUNT
70 POSITION 10, 10
80 PRINT "WE HAVE LIFT-OFF!"

There are in fact three bonuses in line 50 alone!

Firstly, line 50, all by itself, is a FOR... TO ... NEXT loop. It lies entirely inside the
COUNT loop; we say the two loops are "nested".
We often need to nest loops like this, in even quite simple programs. Nothing to worry

about there. Except one thing-you must not end an outer loop before you end any ones
inside. Figure 4.2 shows what you can and cannot do. The trusty micro with its ERROR
feature will ofcourse soon tell you if you make a mistake like this (the error number is 13)

No problem

FORA =

- FORC=

NEXTC

,,

/-
Ouch!

Horror!

FORA =

(FORB =

lNEXTB

FORC =

FORD =

NEXT A

NEXT 0

40
Figure 4. L---NEXTA - NEXTC

but it's best not to make the mistake in the first place, isn't it?
Secondly I've fitted both the FOR statement and the NEXT statement on to a single line.
The colon (:) between them acts as a separator. This is what we call the Atari's
multi-statement feature. You can in fact have a dozen or more valid statements in one
numbered line if you like, as long as the total length does not exceed about 120characters
(3 screen lines). Separate each with a colon (:). Multi-statement lines need some care and
can make your program listings hard to follow. I tend to put a related block of
instructions on to one line for convenience-as in 50 above, where the WAIT... FOR
NEXT structure has a single function. Beware, however, when there are IFs around-
multi-statement lines can then seem to go wrong; I'll say more on that in a little while.
Thirdly is what line 50 actually tries to do. Its function is to bring a delay into the
program, in this case a delay of close to one second. That's why I called the loop counter
WAIT.
This use of FOR... NEXT, to cause the program to pause for a while, is most useful. I

use it a great deal, and you'll see it a lot further on in this book. I admit I haven't timed
line 50 exactly, but the delay there is indeed around one second, and I'll leave you to get
the exact figure should you so need. However, it's worth remembering for the future that
FORWAIT = 1TO 500: NEXTWAITwill give a delay of about one second. Ifyou bear
that in mind, you will have no problem in devising delays of any length of time.
Timing and loops combine in Program 7. It's a simple ope, I agree. but relates to the

so-called 'bench mark' programs people often use to compare the speeds of micros. And
I use it as such to indicate how you can time different Atari functions if you want to (Test
3).

Program 8: Hard times

11 DIM CONT$(ll:PRINT CHR$(125):60TO 100
20 PRINT CHRH125):POSITION 2J.10:PRINT "Press RETURN and start timing "
30 POSITION 2,15:INPUT CONT$:rRINT CHR$(2531:CHR$(125):RETURN
40 POSITION 2.10:PRINT CHR$(2531:'Please enter time &RETURN. ":POSITION 2,15:RETURN
99 REM ** Prograll start . .
100 GOSUB 20:REM tt Test
110 FOR A=l TO 2500
130 NEXT A
140 60SUB 40: INPUT T1
200 GOSUB 20:REM tt Test 2
210 FOR A=l TO 2500:NEXT A
240 60SUB 40: INPUT f2
300 60SUB 20:REM tt Test 3
310 FOR A=l TO 2500
320 PRINT CHR$(125)
330 NEXT A
340 GOSUB 40: INPUT T3
400 PRINT CHR$(125); "R E S ULTS'
410 POSITION 2,4:PRINT 'TEST l:':LIST 1101130:PRINT' TIME - ";T1
420 POSITION 2,10:PRINT 'TEST 2:':LIST 21w:PRINT' TIME - ';T2
430 POSITION 2,15:PRINT "TEST 3:":LIST 310,330:PRINT" TIME - ";T3
440 FOR WAIT=l TO 2 STEP 0:NEXT WAIT

Notes

This program has a number of separate sections; note how I have laid them out in the
listing to make them easy to follow. Separate program blocks start at lines 10,100,200,
300, and 400. Multi-statement lines are common to make the listing even more easy to
follow-see lines 420-440 for instance.
To save both of us a lot of trouble I have also used a couple of what's called 'closed

subroutines' here. One of them starts with line 20 and finishes at the end of line 30, while
the second is in line 40.Each time I need either of those 'closed subroutines' in the main
program (which starts at 100) I call it with GOSUB n, where n is the number of the line at
which the subroutine starts. I know that's naughty of me-we don't actually get to look
at closed subroutines until Chapter 12. All the same, they are of great value, and I don't
think it's too hard to follow.
I've used PRINT CHR$(253) twice in this program-lines 30 and 40. Like

CHR$(125), CHR$(253) gives a special effect; as you have no doubt worked out by now,
41

42

the special effect in this case is to beep the speaker as a signal to the user to do something.
The final nice thing here is the use of LIST as a program statement (instruction). See it

in lines 410, 420 and 430, where in each case I ask the computer to list a couple of
important lines for the user.
If you have the need to compare the speed of two different programming structures,

you will find this program quite useful. AIl you need to do is to insert each structure in
tum as line 320 in Program 7. RUN the program and obtain the timings. (AIl micros,
including the Atari, actuaIly have a microelectronic clock as part of the central pro-
cessor. Its function is to make sure that all the computer's operations keep in step. Alas,
in this case, we cannot access that clock when using theBASIC programming language.)
Next I'd like to give a program to show the use of STEP. Charles Babbage, a British

engineer whom people often count as the father of computing, spent much of his life a
century and a half ago trying to build a machine to do calculations like these. The effort,
which failed, cost him and the British Government huge sums of money. So say 'Poor old
Babbage' when you run this program....

Program 9: Cubism

10 PRINT CHR$(125):" CUB ETA BLE HAKER'
20 POSITION 2.5:PR1NT "What start value'::INPUT START
30 POSITION 2;10:PRINT "What final value';:INPUT END
40 POSITION 2,15:PRINT "What step value";:INPUT STEP
50 FOR WAIT=1 TO 1000:NEXT WAIT
69 PRINT CHR$(125):" NUHBER CUBE'
70 PRINT' ======. ===="
89 FOR NUHBER=START TO END STEP STEP
90 PRINT' "NijMBERj' ";NUHBERA3
190 NEXT NUmR

Notes

The strange symbol in line 90(1\) stands for what we caIl 'raise to the power' , or more
poshly 'exponentiation'. Here we are raising NUMBER (whatever it may be at the time)
to the power 3, which means cubing it. For instance, 23 , caIled two cubed, means 2 x 2 x
2. Ifyou haven't found it yet, the 1\ symbol is got with SHIFT and the * key.
This program works very nicely, but, as I hope you've found by now, the layout on the

screen is absolutely awful. We'I1 have to do something about that....
Finally, although this is a short program, you can get very long output. You may have

the urge, for instance, to obtain a table of cubes of numbers between 0 and 10 in steps of
0.0001. After all, that's the sort of thing (though not to the same accuracy) that people
had to put up with in school a decade or more ago. The key-press CONTROL and 1will
stop a scrolling screen output like this when you want, and the same combination of keys
will start it again. It's just the same as when you are looking in detail at a listing that takes
up more than one screen display.

ALAMODE
I have already said that the Atari micro has a large number of display modes. Each one is
best for a given purpose and in each case the action of PRINT (and other things) can
differ. The next little program is meant to let you explore these modes a little bit. Then I
shall look in detail at the 'text' modes, those in which ordinary printing is most useful.

Program 10: A Iamode

19 DIH CONT$(ll
29 FOR HODE=0 TO 8
21 REM II XL .icros can go to 15 here
30 GRAPHICS HODE
40 FOR WAIT=I TO 1110:NEXT WAIT
50 POSITION 5,5:PRINT Ibi"Mode 'jMODE
b0 FOR WAIT:! TO !000:NExT WAIT

70 PRINT 'Mode ";MODE
80 FOR IIAlT=! TO' !000:NEXT WAlT
90 NEXT MODE

Notes

The main loop of this program is FORMODE = 0TO 8 (line 20) to NEXTMODE (line
100). Nested inside this (lines 40,70, (0) are three delay loops.
What this program does, therefore, is to cycle through the different modes, 0 to 15,

and in each case carry out one or two simple PRINT operations. Amongst these is the
beep, produced by PRINT CHR$(253) in line 30, to announce that a new mode has
arrived. Study the output of this program with care.
Program 10 shows that the Atari display system has sixteen main modes of action.

They are quaintly numbered 0-15; GRAPHICS is the BASIC statement that sets each
one up. This is what GRAPHICS n does, n being a number from 0 to 15:

(a) clears the screen (but see below) using the standard switch-on colours;
(b) reserves the amount of memory needed by the mode in question (see Table 4.2);
(c) switches on the cursor (square block) if it was off;
(d) opens the data channels needed for the mode in question (see below).

Mode 0 is the so called 'pure text mode' you get on switch-on or after using the
(SYSTEM) RESET button in the array at the right. The others are display screens on to
which you can plot lines and such. Chapter 17 deals with that. However the bottom four
lines of screen in most of these modes stay in mode 0. That block of lines goes by the
name of the 'text window'.
Table 4.1 shows that there are other modes, however, related to the main ones 0-15.

These extra options allow you to avoid the text window of modes 1-15, or to avoid the
screen clear action of 0-15, or to avoid both in 1-15. The value of n after the
GRAPHICS keyword is, in these three cases, 16more, 32 more, and 48 more than the
usual.

Table 4.1 Main and other modes

Main No text Without Neither
mode window screen clear

0 doesn't apply 32 doesn't apply
1 17 33 49
2 18 34 50
3 19 35 51
4 20 36 52
5 21 37 53
6 22 38 54
7 23 39 55
8 24 40 56
9 25 41 57
10 26 42 58
11 27 43 59
12 28 44 60
13 29 45 61
14 30 46 62
15 31 47 63

43

In this chapter I'm sticking to text output, so I'll leave the graphics action until later
(Chapter 17, as I say). PRINTing in the text windows in modes 1-15 is by what's called
Channel 0. This is the channel that deals with the whole screen in mode 0. Thus text
window action is just like Mode 0 action and follows the same rules-except you have
only four lines on screen to play with instead of 24. Table 4.2 gives a summary of what
you need to know about Modes 0-15.

Table 4.2 Structure ofmain modes

Mode Action Memory Number of
demand screen sites

0 Text 992 24 x 40
1 Big text 672 20x20+4x40
2 Large text 480 10 x 20 + 4 x 40
3 Low resolution graphics 432 20 x 40 + 4 x 40
4 Higher resolution 696 40x80+4x40
5 Higher resolution 1176 40x80+4x40
6 Higher resolution 2184 80 x 160 + 4 x 40
7 Higher resolution 4200 80 x 160 + 4 x 40
8 Highest resolution 8138 160 x 320 + 4 x 40
9 Lower resolution 8138 192 x 80
10 Same 8138 192 x 80
11 Same 8138 192 x 80
12 As Mode 3 1152 20 x 40 + 4 x 40
13 Even lower 660 10 x 40 + 4 x 40
14 Medium 4296 160 x 160 + 4 x 40
15 Medium 8138 160 x 160 + 4 x 40

Colours

3
5
5
4
2
4
2
4
3
1
9
16
5
5
2
4

In the first column I list the mode numbers; and in the second the effect that can be
produced. In this chapter I shall explore the three text actions given by modes 0-2. All
I'll say now about the graphic modes (3-15) is what 'resolution' means. Resolution is a
measure of the closeness of points that can be plotted on screen. In the lowest resolution
mode, 3, the graphics area consists of only 800 (20 x 40) points. In the highest, Mode 8,
we can have 51200 points (160 x 320). Note that some earlier versions of the Atari
microcomputer range cannot support that last mode or the ones after it because they do
not have enough memory.
Memory is the subject of the third column, which sets out the number of units of

memory that the Atari needs to support each mode. This memory need is supplied by
RAM; I ought to say something about all this, so see the Jargon Store section below.
The fourth column of the table gives the number of screen sites into which material can

be placed. In each case the first figure gives the number of lines (or rows) while the
second shows the number of columns. For modes 1-8 and 12-15, there are two sets of
figures; the second, 4 x 40, is the number of lines and columns in the text window. Ifyou
do without the text window, using Modes 17-31 or 49-63 (see Table 4.1) then the
number of lines in the main screen goes up, to use the extra space.
The final column, called 'colours', gives the numbers of colours that can be on screen

at the same time.

JARGON STORE
A computer has to be able to store the program instruction and data it is working with at
any given time. Also it has to store the 'operating system' instructions, the details of how
to carry out all the tasks it can be given. As far as the computer is concerned all these

44

items are data-electronic representations of binary numbers (05and Is). The computer
circuits handle strings of binary numbers following certain rules. A binary number, one
which can take the value 00r 1, has the name 'bit' (= binary digit).
A byte is a set of eight bits. The value of a byte can range from 0 (f/1I1l1J f/1I1l1J) to 255

(11111111). In the case of most common micros including your Atari, the byte is the
same as a word, a set of bits of standard length. (You may also come across a nibble,
which is half a byte (4 bits). What a charming name!)
We measure the amount of data that a micro can carry in its store in bytes. In most

cases the maximum size is 65536. Computer folk call this 64K bytes, or 64K for short.
Here the symbol K stands for Kilo; one Kilobyte is 1024bytes. This strange figure (which
happens to be 2 multiplied by itself ten times) is close to 1000,which we call kilo; in the
case of computers we use the capital letter to remind us that the figure is a bit bigger than
1000.
A computer's main memory is commonly divided into two parts. The operating

systems (including the program that translates BASIC statements) must be permanently
fixed. They are fixed in chips called 'read only memory' (ROM). The Atari ROMs are
around 24K meaning that they contain 24000or so bytes of operating instructions which
can't be changed. The contents of ROM are truly fixed, even when the power is off.
With 24K of the Atari's 64K maximum taken up by ROM no more than 30K is left for

the user's programs and data. We must of course be able to change these, so ROM is no
good. Instead we have RAM. RAM is 'read and write memory'-the contents can be got
at (read) and also changed (written into). (Some people think that RAM stands for
'random access memory' but that is not so. Both RAM and ROM are random access
memory-we can reach any part of them at once without starting from the beginning.)
As RAM chips are fairly costly, micro manufacturers do not automatically provide

enough RAM in their boxes to make up the size to 64K. Thus the Ataris are sold in
various forms, with less or more chunks of RAM available. Please note, however, that
RAM size does not actually tell you how much memory you can use yourself-the
computer itself needs quite a few K of RAM for its own seedy purposes, as Table 4.2
reminds you.
After all that, it is time to get back to this chapter's main concern-putting text on

screen.

TODAV'S TEXT
Now I shall deal only with the use of PRINT, and the statements that relate to it, in the
text modes 0-2. First let me sum up, and in some cases extend, what we know so far of
work in Mode 0-the standard text mode. I shall also tell you the short forms of the
keywords used, so that you can enter these to save time and typing trouble. In fact most
Atari keywords have short forms, the first few characters and a full stop. Note that you
don't have to use a short form, and indeed the micro will change any short forms to the
full keywords, when LfS'Ting. Also note that you can use longer short forms than the
shortest, if you see what I mean. For instance, the short form of GRAPHICS isGR.. but
you can use GRA., GRAP., and so on, as you please.

POSITION (short form POS.) comes with two numbers after it, the column and the
row in which the next bit of printing is to appear. Thus

POS.17,l1: PRINT "TEST"
puts the word TEST at the centre of the Mode 0 screen.
You will recall that the screen contains 24 lines of 40 character sites. However, note

that the first line bears the number 0, and so does the first column-the extreme top left
is therefore 0, 0. Figure 4.3 shows this. You may observe my next two points for yourself
if you enter, RUN, and then LIST this little program.

10 FOR LINE = 0 TO 23: POSITION 0. LINE: PRINT LINE: NEXT LINE
20 FORWAIT = 1TO 2000: NEXTWAIT

45

position 39, 23

coloured border

/
black frame

J

"\ I /.

/ .
J \
/

display screen

position fJ fJ

Figure 4.3

Firstly, the first two columns in Mode 0 normally stay empty-but you can access them
with POSITION. (The reason for leaving these two columns blank seems to be that with
some early Ataris, the left hand side ofthe display could lie off the TV screen.)
Secondly, if you print down to the bottom line ofthe display screen the screen contents

can start to 'scroll' up to allow new material at the bottom. Thus, when the above
program reaches the end of line 10, the number at the top of the column becomes 1not0,
to allow room for the cursor. Then at the end of line 20 the display scrolls up two more
lines to get the usual blank line and READY report in.
You can use a grid like that in Figure 4.4 by all means, and plan your layout of Mode 0

text. Indeed, you are free to copy this one. Take great care when using the bottom line,
numero 23, not to wander by accident below it-if you do, you'll lose your top line and
later printing won't appear at the sites you expect.
POSITION X, Y, then, warns the micro that the next bit of printing to be done should

start (X - 1) places across the screen and on line (Y - 1). The values of X and Y should
be within the ranges 0-39 and 0-23 respectively. If you try other values, the micro will
shout ERROR at you.

01234567 8 9101112131415161718192021222324252627282930313233343536373839
o W-+--l-.+-W-I-.+--l-1-l--l-..j..-;H-+-+--l-1-l-+-1--W--++-+--i-+++---jH--++-H-+-H
1 1-I--I--l---1---J-l----I---1--W+-l--+--i-l-+-I---I---J--++-H-+++--I---J--++--l-1-++-1--H--+-+-I
2W-+--l-.+-W-I--J--l-1-l----I--+-H++-H-l-+-1--W--+++--i-+++---jH--++-H-l--H
3W-+--l-.+-W-I--J--l-1-l----I---HH++-H-l-+-1--W--++-+--i-+++---jH--++-H-l--H
4W-+-+.+-W-I--J--l-1-l-+..j..-;H-+-+-+--i-l-+-1--W--++-+--i-++-1--H-++-H-l--H
5 1-I--I--l--W--I----I----I---W+-l--.J...-l--l--I--I---I---J-+-+-H-l-+-I---I---J--++--l-1-++-1--H-l--+-I
61-1--I--l--W-I----I----I---W+-l--.J...-l--l--I--I---I---J-+-+-H-I-+-I---I---J--++--l-1-++-1--H-l--+-I
7W-l--l-.+-W-I---I----l-1-1--l---I---W-l-+-H--I-+-1--W--++-.J...-l-l-++-JH--++-H-+-H
8 W-I--I---I---W-I--l--.J...-l-l--I--J-W-I--l---I-W-I--1--W-l--+-+---jH.-I--I---I---J-l--+-+-H-+-1
9 W-I--l--WI-I--l---I---W-l--l.+--i----l--I--1--W-I--+--I-I----t-++--l-1--+-+-+--i-+++-H-+-+-I
10 W-I--l--W--I--l--1--W-+----I--+--i----l--I--I--+-I--+-+--I-I----t-++-+-I--+-+-+--i-+--++-H-+-+-I
11 W-I--l--W-I--l---I---W-l--l--+--i----l--I--I--+-I-I--+--I-I----t-++-+-I--+-+-+--i-+++-H-+-+-I
12 1-I--I--+-H-l--J---1--H--+-+-+---j-+++-H-+-+-+-I----t---++-H-+-+-+-IH-++-H-+-+-I
13 W-I--l--U-I--l-.+-W-+--l--+--i----l--I-+-+.-i -I--+--I-W++--l-1--+-+-+--i--+++-1-4
14 W+--l-HI-+---J---l-H-+--l-+--i-+++-+-J-+++-I-+++-+-J-++-HH++-H-+-+
15 W+-+-HH-I--1--H--+-+-+---j-+++-+-I--+++-I----t--++-H--+-+-+--iH-++-H-+-+-I
16 1-I--I--+-H-l----I---1--4+.-t-+--i-l-+-I---I---J-++-H-l-++-H-++-+--i-+++-H-+-+-I
17 1-I--I--l--H-l----I---1--W+-+-+--i-l--I--I---I---J--+-+-H-l-+-1--H-+-+-+--i-+++-H-+-+-I
18 1-I--I--l--H-I---1-.-I--i--++-+-+--i-l-+-I---I---J--+-+-H-l-+-1--H-+++--i-+++-H-+-+-I
19 H---J---l-W-l---l--l-l--++-l--HI-+++-j......f-+++-J-+++-j......f++-H-+++-H-++-1
20 W-I--+-H-l----I---1--H+-+-+--i-+++-H-++-+--l-++-H-+-+-+-I-+++-H-+-+-I
21 W---J---l-+--J-I----J---l-l--++-l--H-+++-j......f-+++--,H-++-H-++-H-+++-H-++-1
22 1-I--I--+-H-I----I---1--H+-+-+-+-+-++-H-++-+--l-++-H-+-+-+-I-+++-H-+-+-I
23 U_L...L.L.J.....l......L..LL..J.....L...L..J....J-L-L..l..-L..J......l.....L..l......JI-L.....I......l..-L..J.....L...l...J.....J......L.....I......l..-L---J.....L..J......I

Figure 4.4

SETCOLOR (SE. to its friends) needs 3 numbers after it-the first being 1, 2, or4 to
say whether it's to work on text (foreground), screen (background), or border (see
Figure 4.3). The second is the colour number (0-15, as in the list on Page 17). The third is
the brightness value (0-15 again but in steps of2, from dark to light).

46

Some people claim that the Atari offers 128 or 256 different colours. That's surely
stretching the truth a great deal. After all, even the 16colours listed do not differ hugely
and you can't get nice primaries unless there's something greatly wrong with your telly!
Anyway, that's what we have to play with, eight shades each of about 16 'colours'. And
in Mode 0, SETCOLOR's the tool with which we play with them.
You've had a fair bit of practice with SETCOLOR already, so I'll now make only two

points, one a repeat, and the other new. The former is that inMode 0, the ink colour has
to be the same as that of the screen area. All SETCOLOR 1... can do, therefore, is to
affect the brightness of text. Still, that does give us the chance of flashing on screen text
that was printed invisibly. Like this:

10 SETCOLOR 1,0,0:SETCOLOR 2,0,0:SETCOLOR 4,0,0: REM All black
20 POSITION 17,II:PRINT "TEST": REM Invisible printing
30 FORW = 1TO 1000:NEXTW: REM delay
40 SE.l,0,14: REM Let there be light

My second point is to introduce to you the concept of colour 'registers'. There are five
ofthese (you can guess what their numbers are), each a special site in the micro's store set
aside to carry colour and brightness data. The first number that follows a SETCOLOR
instruction is in fact the register concerned. So in Mode 0 the registers are as follows:

Table 4.3 Mode ecolour registers

Register

o
1
2
3
4

Usage

not used
text
screen
not used
border

Start up
value

pale blue
blue

black

Now I can repeat the first point in a newway. In Mode 0, register 1carries only brightness
data; the colour of register 1 (text) is the same as that of register 2 (screen).

PRINT (PR. for short) is the actual output instruction. It needs a section all to itself.

PRINTED MATTER
Please refer again to Program 3 on Page 28; this program includes all the features of
PRINT in the list that follows, except the first, the simplest. PRINT can be used as
follows:

1. On its own: PRINT (R). This cause a screen line to be left blank. Try it as a direct
command now! We can therefore skip several lines on a screen if we want by a
structure such as this PR.: PRo:PR. (in this case leaving 3 lines).

2. With a message (a string constant) as in line 60. This makes the message alone
appear on screen. After PRINT, the message must appear in speech marks (" ...").
once PRINTed, the speech marks do not appear.

3. With a numeric or string variable name, as inside lines 160and 100respectively. This
causes the micro to display the current value ofthat variable.

47

4. With some mixture of numeric and string variables and constants (as in line 1(0).
Each 'print item' needs to be separated from the others by a semi-colon (;) as here,
or in fact, by one or more commas(,). A semi-colon when between two print items
causes them to appear on screen without a space between; commas separate the
displayed items into zones (columns) across the screen-I'll come back to that again
in a moment. Note that commas and semi-colons can appear at the end of a PRINT
statement as well as in the middle-see line 120, for instance-and commas can even
appear straight after PRINT. (A semi-colon at the beginning of a PRINT statement,
is, however, meaningless, and may-cause an ERROR.)

5. After POSITION: the next PRINT item to appear will start at the line/column given
by POSITION. The example in Program 3 line 90 makes the 'T' of the message in
line 100 appear in the fifth place of line 9. (Recall that the first line and the first
column on screen each carry number 0.)

6. With CHR$(...) to cause some special effect. CHR$(125)-as in line 40-c1ears the
screen. We have also met PRINT CHR$(253) to buzz the speaker. Use the 'clear
screen' facility of PRINT CHR$(125) often to make room for more material, or to
hide earlier material-and to stop clutter. (I've also used PRINT to clear part of the
screen in one or two other programs-can you remember the system?)

The careful use of PRINT is an essential part of screen layout (formatting); I think that
all programs you write need very good screen design, to maximize communication and
therefore value to their users.
If you use PRINT... alone it will cause the print item(s) that follow to appear at the

next available screen position. Often that's okay-but by no means always. To layout
material displayed on the screen, in time and space, needs 'Various additions to the simple
PRINT statement.

The first part of the screen shows
some text or' other that the user has
to study.
Maybe it is a paragraph or two of

notes that the user must copy. .
Or it might be a block of materlal

that explains something to a learner.

Figure 4.5

Say that in a program you've got a screen looking like the one in Figure 4.5 and now
you want to display the message "Press RETURN to go on." If you just use PRINT
"Press... " as the next line in the program, the display that results will be like that in
Figure 4.6. For a start that's not very pretty. But much more important, the last message
is hard to see. Many users wouldn't even notice the extra line, and might sit there forever
thinking what to do. As I've already said, you could first use PRINT CHR$(125) to
empty the screen-but perhaps you want the original text to remain when new stuff is
added. What we need isa set of 'steps' within the 'frame' like those in Figures 4.7 and 4.8.

48

The first part of the screen shows
some text or other that the user has
to study.
Maybe it is a paragraph or two of

notes that the user must COPy.
Or it might be a block of

that explaIns something to a learner.
Press RETURN to go on.

Figure 4.6

The first part of the screen shows
some text or other that the user has
to study.

Maybe it is a paragraph or two of
notes that the user copy.
Or it might be a block of material

that something to a learner.

Figure 4.7

Firstly I've put a blank line between each of the first paragraphs, not (wastefully) by
using PRINT "(40 spaces)", or "PRINT (R)", but with PR.:PR."next paragraph".

Secondly I use POSITION to move the "Press RETURN... " message to the foot of the
'page'. What I did in fact was

POS.4,21: PRo "Press RETURN to go on."
This starts the message appearing 22 lines down from the top and 4 spaces across from
the left (bearing in mind that the top row is0and so on). This gives us the bottom line in
Figure 4.8.

49

The first part of the screen shows
some text or other that the user has
to study.
Maybe it is a paragraph or two of

notes that the user must copy.
, Or it might be a block of material

explains something to a learner.

Now you can. say. pose some question
on the text. extra material
below it. .

AFTER ANSWER, PRESS

Figure 4.8

After the user has pressed (R) to go on, he or she should no longer see that outdated
message. I used

POSITION 2,21: PRINTE$
POSITION 2,22: PRINT E$

To get rid of it and the old prompt. Here E$ is "(30 spaces)". Then I ruled off the old text
from the new with

POSITION 0,11: PRINT "(40 underlines)": POSITION 4,13:
PRINT "(next paragraph)".

Thirdly I have used a bit of inverse material in the print items. Inverse is a very simple
and neat way of picking material out on the screen. Use it too inside REM statements to
make those stand out dearly in a long listing.
It is easy enough to obtain inverse characters. Just before youwant them, press the key

at the bottom right of the keyboard, marked with the strange flag-like symbol (or the
2001 style Atari symbol on older micros). Press the same key again to revert to normal
style. Use inverse often (but not too often) to help catch the eye of the user.

TAB
I expect you'll guess that this relates to the 'tab' function of a posh typewriter-it is just
the same sort of thing, to set the next print position so many places across the page or
screen. I still can't work out whether it's a good thing or not, but the Atari computers in
fact have two quite separate tab systems.
The first is the simple one that we have already mentioned-the use of commas(,) in

PRINT statements. This is fairly simple, and on the whole I would suggest you use it
rather than the other. And what is the other? It is to involve the TAB key at the left hand
side of the keyboard.
If you press that key now a few times, you will see that the cursor skips across the

screen to pre-set positions. In just the same way a typewriter with the tab feature will let
its print-head skip across the paper to pre-set positions when you press the right key. To
cause the print position to skip to a 'TAB', use PRINT CHR$(127). Try it-try

50

PRINT CHR$(127); "something or other".
That's okay once in a while, but if you wish to use the TAB feature a lot that's going to
give you a great deal of typing to do. The Atari has a short way, one that uses the ESC
key at the top left hand corner of the keyboard. The short-hand system I am now going to
tell you about applies to all those CHR$ control codes we've mentioned. What you do is
first press the ESC key, then let it go, and then press whatever's next. This must be done
inside speech marks.
Let's try it. Enter PR.", press ESC (no effect on screen), press TAB, then type a key

or two then close the". The sequence ESC followed by TAB, which I'll write ESCjTAB,
make a sort of right-pointing arrow appear on screen. When you press RETURN, the
characters after that arrow appear to have shifted to the right of the usual position. Try
something a little more complex:

1 3" (R)
this makes a '1' appear in the sixth site of the line, '2' well over towards the right and '3' at
the start of the next line. Now try this:

PRINT ,1"2,,,3 (R)
Again the digits 1,2 and 3 are separated out over two lines, but differently.
What a comma does between two print items is to separate their starting point by ten

character positions. We say that the Mode 0 display screen, in full 40 sites wide, breaks
down into four zones. Each comma in a PRINT statement moves the print position to the
start of the next zone.
So the comma system is simpler than TAB (or its equivalent CHR$(127)). However

even using commas has a problem-and that arises from the fact we have already
discussed, that for historical reasons the Atari print lines start two spaces to the right of
the display area. That means, therefore, that the user of commas as print separators is
confused-the actual line length is not 40, but 38. The next program shows this and other
points I have made in this section.

Program 11: TAD confusion

III POKE 82.11
20 DIM MARKER$(38l
311 LET MARKER$=" ;.... :.... :.... :.... :.... :.... :"
411 PRINT "}"
41 REM ii That symbol IS ESC/CLEAR. an arrow pOinting up and left
511 PRINT MARKER$.
611 PRINT 112,314,5,6.7.8,9,10,11,12,13711 PRINT MARKEK$
80 PRINT' 1 2 3 4 5 6 7 8 9 10 11 12 13'
81 REM ii Before each number there is the riqht-pointinq arrow qat with ESCiTAB
90 PRINT MARKER$ _. - -
11lk'! POKE 82.2
110 PRINT .
1211 PRINT HARKER$
130 PRINT 1,2,3j4,5,6,7,8,9,10,11,12,13140 PRINT MARKEK$
150 PRINT" 1 2 3 4 5 6 7 B9 10 II 12 13"
151 REM *f Before each number there is the right-pointing arrow got with ESC/TAB
160 PRINT HARKER$
1711 PRINT
130 GOTO 2011

Notes

If you enter, RUN, and study the program and its output with care, you will learn a lot
about how the two Atari TAB systems work. As I have said before, I would suggest you
stick to the one using commas rather than the TAB key The latter is complex, and
therefore in advanced use can be of great value. (For instance, you can change, create,
and delete tab sites within a program as you wish.) The program also makes one or two
other points.

51

POKE 82,0 (line 10) tells the Atari to stop messing around with a left margin two
spaces from the edge of the screen, but rather to start printing right at the edge. In line
130 I use the same structure to go back to the normal system-POKE 82,2 to put the left
margin two spaces in. (You may also care to note that POKE 83... deals in the same kind
ofway with the right margin, the normal value being 39.) Try, for interest,

POKE 82,9; POKE 83,29: LIST(R)
this will give you a nice narrow listing down the centre of the screen. Press the
(SYSTEM) RESET key to get back to normal.
In line 40I use a second of those funny ESC functions. PRINT" f) " is an alternative

for PRINT CHR$(125)-in other words it will clear the screen. You get this symbol in
your listing, and therefore in the computer's memory by using (inside the speech marks,
of course) ESC followed by SHIFf and CLEAR. The CLEAR key is on the top row
near the right; in direct mode, as you may have found, SHIFT and CLEAR will empty
your screen very quickly. Finally, note that the vertical line I use inside MARKER$ is
got with SHIFf and the = key.
Let's summarize PRINT in Mode 0 again. Then we'll have some more programs.

PRINT WHAT?
The Atari print instruction can be used as direct command or as a program statement.
Used alone, it causes a line to be skipped; otherwise it must be foIlowed by one or more
print items:

1. A number (numeric constant), as in PRINT 5, causing the number to be displayed.
2. A string constant, as in PRINT "X"-causing the string to appear.
3. A numeric expression, as in PRINT 4 + SQR4, causing the result to be printed.
4. A string expression (for examples see later on), causing the result to appear.
5. A numeric variable, as in PRINT AGE-printing value of that variable, if it exists;

otherwise printing 0.
6. A string variable, as in PRINT ANS$, doing the same for a string (but in this case the

"otherwise" gives nothing).

Here numeric and string expressions can be as complex as you like, but each term must
be of the same type (in other words, numeric or string). So you can't have PRINT "the
total is" + 4. However, as we shaIl find out later, you can change a numeric expression to
a string, and you can change a string expression into a number, if that has any meaning.
Individual print items in a mixed set must be separated from each other using,

surprisingly, separators. These are:

1. Semi-colon (;) as in PRINT "answer"; ANS-giving no separation on screen.
2. Comma (,) as in PRINT X,Y-giving separation into zones.

Good format (screen layout) may also come using POSITION and/or "TAB":
POSITION 5,5; "Hello Dolly!"

Get the symbol in a string constant using ESC/TAB.

Program 12: Tom Tiddler's ground

SETCOLOR 2,13,2:SETCOLOR
PRINT CHR$(125i
FOR A=I TO
POSITION RND(0l t39 IRND(0i t23PRlNT CHR$(253i;K$;

60 NEXT A .'
70 POKE 755,I:POSI1ION 0,0
71 REM tt Makes cursor vanish

60TO 80
81 REM tt Stops READY message

52

My apologies to British readers-the Atari is a US micro, and does not readily offer the £
sign. Otherwise, there is nothing special of note in this program, other than the use of
POKE 755,1 (in line 70) to hide the otherwise intrusive cursor and RND(0) in line 40.
I've dealt with RND(0) already, and you should not find it too hard to follow what's
going on here.

Program 13: Simple Simon

10 PRINT CHR$(125)
280111 NA!lE$(15)
30 POSITION 2,2:PRINT 'Hallo! lIy name is Silon."
48 FOR W=1 TO 588:NEXT W
58 POSITION 16a8:PRINT' ':POSITION 2,8:PRINT "What is yours';:INPUT NAME$:IF
LEN(NAME$)<3 THEN SO TO 50
60 SETCOLOR 1,0114:SETCOLOR 2,B,0:SETCOLOR 4,B,2:PRINT CHR$(125)
70 FOR LINE=3 Tu 12
80 POSITION LINE+10-LEN(NAIIE$i/2,LINE*2-4:PRINT NAME$
90 NEXT LINE '
100 FOR W=1 TO 500:NEXT W
110 SETCOLOR 2,410:POSITION 2,22:POKE 752,I:PRINT 'Such a pretty nalle u
120 FOR HALT=0 Tu 1 STEP 8:NEXT HALT

While this is not exactly a world-shattering program, it is quite pleasant, and uses a few
nice tricks. You may particularly find it worth putting into some programs of your own.
The tricks include these:

Line 50

Line 120

Line 110

Lines 60& 110
Line 80

a 'mug-trap'. The program will not proceed past here unless the user
enters a string of three or more characters. The structure involves
LEN(NAME$), a 'string function' that gives the length of the string
given in the brackets. Can you work out what the first two statements
of the line are for?
SETCOLOR used for a change of scene within a program.
Very complex numeric expressions for the X,Yvalues of POSITION.
This line, with line 40 of the program before, shows that you can do
all kinds of things with POSITION.
POKE 72,1: much the same as POKE 755,I-for getting the cursor out
oftheway.
A variation of the use of FOR... NEXT to give a delay. In this case the
delay is forever. You'll need to press BREAK or RESET to get out of
this.

Program 14: Favourite colour

10 DIM M'ICOLOR:H4):LET M'iCOLOR$='BLUE'
20 DIM MESSAGE$(28i:LET MESSAGE$="What colour do you like best"
30 DIM ANSWER$(8)
40 PRINT CHR$(i25i:FOR 60=0 TO 1 STEP 0
50 PRINT MESSAGE$;:INPUT ANSWER$
60 IF ANSWER$=MYCOLOR$ THEN LET 60=2
71l NEXT GO
80 SET COLOR i,010:SETCOLOR 2,8,8:SETCOLOR 4,8,10
90 FOR W=1 TO W
i00 PRINT :PRINT :PRINT MYCOLOR$:"s my favourite too.":POKE 752,I:PRINT :PRINT
'Slad we aQree •
110 FOR H=0 TO ! STEP Il:NEXT H
Yet another use of the FOR... NEXT loop appears here-in this case to model the
important BASIC loop structure REPEAT... UNTIL that, alas, the Atari does not
offer. See it in lines 40-60. FOR GO=0 TO 1 STEP 0... NEXT GO makes the program
go round and round the GO loop forever (as we saw in the last line of the previous
program, and again in the last line of this one). This time, however, we can break out,
not just by leaving the program for good, but by giving the correct answer to the
question. That is done in line 60.: IF ... THEN LET GO=2. What I've done is to make

53

the value of GO greater than the end value of the loop (that being 1). So when the
computer sees NEXT GO again, it assumes that the loop is finished and gets on with the
rest of the program.

ALL UNDER CONTROL
You may have found out that pressing CONTROL and a letter key at the same time gives
a strange symbol. We call these symbols 'graphics blocks'.
If you want to build up pictures using the normal keyboard characters, you'll find it

fairly hard. It is not easy in most cases to use an alphabetic character as part of a picture
design. You may one day find out how to change characters to your own design, but in
the meantime let's look at the ones Atari gives us with use of the CONTROL key. First
enter Program 15.

Program 15: Pattern generator

10 PRINT CHR$(125)
20 POSITION 2,2:PRINl 'Enter a strlns of ten characters'"
30 DIM SUB$(10):DIM CONT$(I):DIM ES(08):LET E$=",
48 FOR RPT=0 TO 1 STEP 0
50 POSITION 2.8:PRINT ' ":POSITION 2,12:PRINT E$;ESjES;ESjE$.
68 POSITION 2,8:INPUT SUBS
78 POSITION 2,12:PRINT 'Press Y&RETURN if you are happy withthis. Otherwise p
ress RETURN and try aQain.'
88 POSITION 2,16:INPui CONT$
911 IF CONH="Y' OR CONT$="v' THEN LET RPT=2
1110 NEXT RPT '
110 POKE 755,II:POKE 82 0:RE" II Clears cursor &(hanQes left marQin
1211 SETCOLOR IjlltI4:SEtCOLOR 2.13,0:5ETCOLOR 4,13,0:PRINT CHR$(125)
130 FOR PRINT: 0 96:PRINT SUB$j:NEXT PRINT
140 POSITION II,II:PRINT SUB$(I,I);
150 FOR H=0 TO I STEP 0:NEXT H

Notes

I would like to draw your attention to the great effort I have made to layout the opening
screen really neatly. Material is well separated, and stuff no longer needed is erased.
The RPT loop between line 40 and 100is similar to the GO loop in the last program-

the program goes round and round the loop, forever, or until some condition is met. In
this case the condition is that the user is happy with the input string.
Note OR in line 90. I think that what this means is quite clear-anyway the structure

allows the user to be either in upper case mode or in lower case mode. After all, in a
program like this, one can get extra characters by using lower case.
The last two lines are a (not quite successful) attempt to stop any break up of the final

pattern by the ending of the program. We do in fact get 21 lines of pattern, but it's too
complex getting the full 24 allowed.
Again the program closes with a loop forever instruction; escape with BREAK or

RESET. The latter is better.
This program is quite simple to use. On running, it invites you to enter a string of ten

characters, and you get the chance to correct the entry after pressing RETURN aswell as
before. Note that if you entermore than ten characters the DIM statements at the start of
the program will make it ignore the excess. However, I should really have put in a
statement to check that the length of the input SUB$ is not less than 18. I'll leave that to
you-after all, the program doesn't work properly if SUB$ is shorter than it should be.
Many people would be quite happy to enter keyboard characters to make up SUB$.

After all there are quite a few nice ones for this purpose-the ones above the number
keys, and some of the other symbols in particular. A few of the numbers and some of the
letters (either upper or lower case) can also produce good patterns.
However, I really brought the program in here to let you explore the use of

54

CONTROL with other keyboard keys. Holding CONTROL down while pressing many
main keys produces those 'graphics blocks' I mentioned. Try it in the input section of the
above program, as often as you wish.
29 keys work with CONTROL in this way-all the letter keys and those giving

comma, full stop and semi-colon, as in Figure 4.9.
This shows you the different shapes you can get by using CONTROL with one of

the 29 keys concerned. 29 pretty shapes for you to get, then! But in fact there are 29
more-that's why I also show the 'inverse' key in the sketch. As I briefly noted before,
using this key is rather like using the CAPS key-press it to got the effect you want, do
your typing, and press again to get back to normal.

CONTROL
0'
CTAl

VI] IQ

Figure4.9
INVERSE

In the case of the INVERSE key, pressing it willmake what you type thereafter 'black
on white' instead of 'white on black' (the actual colours depend on the colours you're
using at the time, of course). And pressing it again will send you back to normal. This
inverse feature also applies to the graphics blocks got with CONTROL. It took me long
enough to draw Figure 4.9, so I'm not going to have a bash at doing the same thing for the
inverse graphics blocks-I leave it to you to explore this.

Table 4.4 Under control?

Key combination Effect Inside strings Effect

CONTROL and T blob CONTROL and T same
etc etc
(Figure 4.9)
CONTROL and 1 stop/start scroll ESC/CONTROL and 1 cuts out/in

keyboard
CONTROL and 2 buzz buzzer ESC/CONTROL and 2 same
CONTROL and 3 confusion! not accepted
CONTROL and < clear screen ESC/CONTROL and < same

Used in editing Used in advanced program strings

CONTROL and - cursor up ESC/CONTROL and -
CONTROL and = cursor down ESC/CONTROL and =
CONTROL and + cursor left ESC/CONTROL and +
CONTROL and * cursor right ESC/CONTROL and *
CONTROL and TAB clear TAB site ESC/CONTROL and TAB
(SHIFT and TAB set TAB site ESC/SHIFT and TAB
CONTROL and DELETE delete next ESC/CONTROL and

character DELETE
CONTROL and CAPS to graphics mode

(CAPS alone to get back)

same
same
same
same
same
same)
same

55

Sri

You'd be a rare genius if you could keep in mind which letter key each of those
graphics blocks is on. (If you're anything like me, you can't even find the J key!) Here's a
tip if you feel artistic. Get a bottle of white typing correction fluid and very neatly mark
on the keys the graphics blocks they give. Put them on the top left corners if you're right
handed and top right if not. The designs will wear off before you want to sell the
machine!
While I'm on the subject of the CONTROL key, it is worth giving you a list of all the

different things that this can do. Some of them we'll come back to in due course (those
concerned with what I call 'editing'), but the full list is in Table 4.4.

Note

Some of the above key combinations give interesting characters on screen-but you
cannot get at these for making patterns or pictures of your own.

YOUR OWN THING
So far we have learned how to PRINT any of the following types of character on screen:

(a) numbers
(b) upper case letters
(c) lower case letters
(d) keyboard symbols
(e) any of the above in inverse form
(f) graphics blocks

Any of those can be part of string constants (in other words, inside speech marks) or as
REMs. The instructions for printing each of them must of course be held in the micro's
memory. That is indeed the case, and it is why you can also print any ofthem by using a
structure of the form PRINT CHR$(...). What that instruction does is to tell the
computer to print the character whose 'code' is such and such. Thus PRINT CHR$(65)
will put A on screen, as 65 is the code for 'A'. If you look at Appendix 5, you will find
details of all the Atari characters and their codes.
In the notes on Page 45 I mentioned that computers like the Atari, which have a 'word'

of eight bits (binary digits), can have 256 different words. These range in value from 0 (in
binary, f/1IIIiIJ f/1IIIiIJ) to 255 (1111 1111). Some micros waste many of those 256 different
possibilities but the designers of Atari BASIC have not done that. In fact every single
one of the 256 character codes means something. Nearly all are so-called 'printing'
characters-PRINTCHR$(...) will make something appear on screen. However, a few
are non-printing-they produce some special effect. We have already met a couple of
those: CHR$(125) to clear the screen and CHR$(253) to 'ring the bell'.
But what if you aren't happy with that huge choice of shapes? It may well be that you

want to design something which cannot make use of those two hundred-plus designs. In
that case, Atari lets you design your own characters!
I had better say right away, that you'd best stick to the ones that Atari gives you in the

normal way. Getting your own characters is highly complex, and it's too advanced to
describe in detail here. All I'll do, therefore, is to leave you with Program 16, which at
least lets you dip your toe into this stormy water.
This program uses another assignment structure of Atari BASIC that we haven't yet

met. the statements READ and DATA. DATA lets a program hold various data items
in memory (line 10 of the next Program) for READ to pull out when required (line 40).
Well, I'll come back to READ... DATA in due course. And the program also uses
PEEK, which digs out the contents of a particular memory site, in this case site number
742.
Don't worry about all those details, but enter and run this program if you like. What it

does is to replace the 'space' symbol with a dot.

Program 16: Going dotty

10 DATA 8 0 8 24,24,8 8 0
20 LET
38 FOR B=A TO IAt7)
40 READ C
50 POKE B,C
60 NEXT B
70 POKE 756,INTIA/256)

Okay? Well, I said the system is complex. As you see every space on the screen has
become a dot, but all the other characters have disappeared because with the Atari, you
can't define one single character but must deal with a whole set of them. None of the
others have been redefined, so they do not appear here.
Truth is, Atari BASIC can't really handle such complex things as this. We need to

descend down towards machine code to be able to cope, and that is beyond the scope of
this book. The same applies to the handling of what we call 'sprites', the Atari's
well-known player/missile graphics.
To help you get over your disappointment, let me try a little bit of animation-

movement of objects on screen. Program 17will get you going.

Program 17: Fly-past

10 POKE
20 ;:OR 60=1'· TO 8
30 FOR 5ITE=0 TO 38
40 SEICOLOR 2,8,14:SETCOLOR l,e,GO:PRINT CHR$(175)
50 POSITION SITE.GOt2:PRINT ")';CHR$(2531
60 NEXT SIIE .
70 NEXT 60

The concept of animation is the only new thing in that program. And it's line 50 that does
that. Look at it with care. Each time through the SITE loop, the string '>' is printed one
place to the right of its previous one. The space that starts that string wipes out the
previous 'bird' and a new bird appears in the new place.
I admit that the bird flies rather slowly-it is in fact the 'cheep' sound that slows the

loop down just a bit too much. When we've studied how to program sound with the Atari
micros (see Chapter 7), you'll be able to come back and improve this if you wish.
Take a look now at the first program in Appendix 2 (at the end of the book). Flit-out is

a more sophisticated version ofFly-past but not so much harder that you won't be able to
see what's going on. When you've tried those two programs, you'll be able to do things of
your own with much more meaning.

MODUS OPERANDI
Although this chapter started with a look at non-zero modes in the Atari, I haven't
mentioned them for several pages. However most of what I've said of late applies to the
posher text Modes 1 and 2. Let's now look at those two modes in more detail.
Ifyou check back on Table 4.2 (Page 44) you'll see that I call these two modes the 'big

text' and 'large text' modes respectively. And then if you look in the fourth column of
that same table, you'll see why-Mode 1 offers 20 x 20 screen sites while Mode 2 has 10
x 20. In each case there is a 'text window' at the foot ofthe screen, four lines of the usual
Mode 0 forty screen sites. Program 18 collates various ideas about Modes 1 and 2 that
we've met in earlier ones.

Program 18: One, two and away!

10 DIM COmO)
20 FOR MOOE=1 TO 2:6RAPHICS MOOE:PRINT "Hade ";HODE
30 PRINT i6;'HODE ';HOOE
40 PRINT i6j"mode "jMOOE

57

50 PRINT fbi'HODE ";HODE
b0 PRINT fbj"lode ";HODE
70 PRINT fb'"XXXXX"jHODE
71 REH .t CtRL blocks used there:HODE •
80 PRINT Ib"XXXXX";HODE
81 REH *t CtRL blocks are HODE .
90 FOR W=l TO IHHH:NEXT W
180 PRINT IbtCHR$(253)iCHR$(1251;CHR$(35);CHR$(135)
110 FOR W=1 ,0 IH80:NExT W
120 PRINT CHR$(253)iCHR$(125);CHR$(35);CHR$(1351
130 PRINT "Ready to go on';
140 INPUT CONT$:NEXT HDDE
150 PRINT "That's all I"

What does this program show us? It shows that PRINT can access the screen through
either of two 'channels'. The normal PRINT statements, as in line 120, go to the text
window at the foot of the screen. To print in the main screen area we need to send the
instructions through Channel 6. This is done by using PRINT#6;... , as in most of the
lines of this program.
Printing through Channel 6 in Modes 1 and 2 differs in various ways from normal

printing (Mode 0). The most obvious is that the characters are larger in Mode 1 than
before, and larger still in Mode 2. In fact Mode 1 text characters are the same height as
before but twice as wide, while those in Mode 2 are twice as high and twice as wide.
Figures 4.10 and 4.11 will give you the printing grids for Modes 1 and 2 (compare with
Figure 4.4).

Mode 1 screen
(channeI#6)

I
Text window
(Modell)
\\\\

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

o 4 6 7 8 10 11 12 13 14 15 16 17 18 19

58

Figure 4.10 Mode 1 screen layout.

The numbers round the edges of the two figures describe the columns and rows for
Channel 6 printing using POSmON-POSITlON in Modes 1 and 2 works on the main
screen and not on the text window. Now that you have a smaller number of screen sites to
play with, you must take even more care not to try to POSITION outside the edges.
As I've noted before, you can omit the Modes 1and 2 text window if you wish by using

Modes 17 and 18 instead. (Adding 16 to the normal Mode numbers gives the effect.)
Figures 4.12 and 4.13 shows the grids concerned. POSITION now works over the whole
display area, and all PRINT statements must lead through channel 6. Any attempt to use
Mode 0 printing will cause the computer to escape from a full-screen large-text Mode.
That means you mustn't use any PRINT statements without#6, nor must there be any
error in your program as ERROR reports appear in Mode 0. Try this, for instance-
enter as a direct command GR.17 (to give Mode 1 without text window) and press
RETURN. You will fail to enter Mode 17 this way-the READY message that the
computer must give has to be in Mode 0.

4

4

8

Figure 4.11 Mode 2 screen layout.

8 10 11 12 13 14 15 16 17 18 19

o 4 10 11 12 13 14 15 16 17 18 19

o f----+-,----+-+--+--+----1---+--+--+-+----+-+--+--+----1---+--+--+----l
1 f----+-+----+-+--+---+----1---+--+--+-+----+-+--+--+----1---+--+--+----l
2 1--+-+-----+--+----+-+----1--+-+--+-+-----+--+----+--+----1--+-+--+-134r--t--t--------t--+--+--t---t--t--I--+-t--------t--+--+--t----1--t--I----+----i

51--+--+-----+--+----+-+----1--+-+--+--+--+--+----+--+--1--+-+---+____167r--t--t--------t--+--+--t---t--t--I--+--t-----t---t----+--f----1--f--I----+----i

8 f----+--t----+-+--+--f----1--+---t---+-+----+-+--+--f----1--f--+--+----l
9
10 f----+-+----+-+--+--f----1--f--+---+--+----+-+--+--f----1--f--+--+----l

11 f----+-+------+-+--+--+----1--f--+---+--+----+-+--+--f----1---+--+--+--1
12 f----+-+------+-+--+--f----1--f--+---+--+----+-+----1--f----1--f--+--+----l
13 1--+-+-----+--+----+-+----1--+-+--+-+-----+-+----+--+----1--+-+---+____1
14 1--+-+-----+--+----+-+----1--+-+--+-+--+--+----+--+--1--+-+---+--1
15 1--+-+-----+--+----+--+----1--+-+--+-+--+--+----+--+----1--+-+---+--1
16 1--+-+-----+--+----+--+----1-+-+--+-+--+--+----+--+----1--+-+---+____1
17 1--+-+-----+--+----+-+----1-+-+--+-+--+--+----+--+--1,---+-+---+--1
18 1--+-+-----+--+----+--+--1-+-+--+-+--+--+----+--+--1-+-+---+--119
20 r--+-+----+-+----+--f----1--+--+----+--+----+-+----1--f----1--f--+--+--1

21
22 1--+-+--+--+----+--+--1-+-+--+-+--+--+----+--+--1--+-+---+____1
23

Figure 4.12 Mode 17 screen layout.

Maybe I should say a little about that strange symbol that we use for channel numbers
in Modes 1 and 2. The symbol # is called 'hash' (and is got using SHIff and 3). The
symbol is often used in North America to mean 'number'.
One final note on POSmON in Modes 1 and 2 before we leave that subject. It is that

there is no attempt by the micro to keep you away from the left hand edge of the screen
this time. You will recall that in Mode 0, printing of all kinds normally starts two sites in
from the edge. This does not happen in the other Modes.
Colour control in Modes 1 and 2 differs from that in Mode 0. Surprise, surprise! May I

remind you about the concept of 'registers' that I mentioned before? Look at Table 4.3
(Page 47), which showed the use of the five Atari colour registers in Mode 0. Table 4.5
now does the same for Modes 1 and 2; you'll be pleased to know that both Modes have
the same system!

59

o

3

4

8

9

10

11

o 4 6 8 9 10 11 12 13 14 15 16 17 18 19

Figure 4.13 Mode 18 screen layout.

Table 4.5 Modes 1 and 2 colour registers

Register Usage Start-up value

tiO

0 "upper case" orange
1 "lower case pale green

and window text"
2 "inverse upper case dark blue

and window paper"
3 "inverse lower case" red
4 screen and border black

SETCOLOR again is able to affect the contents of these colour registers. Recall that the
first of the three numbers after the SETCOLOR keyword is the register concerned. Thus
SETCOLOR 4,0,14 will give you a white screen (and white border) with the text window
sitting sadly near the bottom. SE.2,0,14 will now bring the text window white as well. I
put the usage of registers 0-3 in that table in speech marks to relate them to the effects
got with lines 30-60 of Program 17. In Channel 6 in Modes 1 and 2, the contents of string
constants (in other words, anything in between speech marks) appear in capitals in a
colour that depends on the character style. Capital letters come out in orange, lower case
letters in green, inverse capital letters are blue, and inverse small letters are red. Those
four colours are the start-up values ofthe colour registers 0-3, and of course you can use
SETCOLOR in the usual way to change the effects.
So you can't get lower case letters on screen in capitals Modes 1 and 2. Well you can,

hut the technique is too advanced for us now. The same applies to the graphics blocks we
met in Mode 0 using CONTROL. Lines 70 and 80 ofthe above program used normal and
inverse graphics blocks, but they didn't appear on screen as you would have expected-
other characters, not related to those used, came up instead.
And using CHR$(...) is fraught with problems too. Compare the effects of lines 100

and 200 in Program 18, for instance. You'll find that CHR$(253) gives us a buzz in Mode

0, but not through Channel 6. Enter this line 1000, for instance, and run it with GO .1000
in Mode 1 or 2.

1000 FOR A=0TO 255: PRINT#6; CHR$(A); "0": FOR B=l TO 100:
NEXT B: NEXT A

This shows you that there are no lower case or graphics characters in the Mode 1/2
character set. To get them you would have to redefine existing ones as mentioned
earlier. However, do peep at Question 5 in the last section of this chapter....
The best way to get on top of large-scale printing in Modes 1 and 2 is to try some of the

programs earlier in this chapter in those Modes. I'll make that part of the 'questions'
section at the end of this chapter.

SUMMARY
The keywords used or extended in this chapter are (with their short forms):

DATA (D.)
FOR (F.) ... TO STEP... NEXT
GOSUB (GOS.) RETURN
GRAPHICS (GR.)
LEN
NEXT (N.)
OR
PEEK

POKE
POSITION (pOS.)
PRINT (PR. or ?)
READ... DATA
RETURN (RET.)
SETCOLOR (SE.)
STEP
TO

We've glimpsed the many modes other than Mode 0, but in the main looked at getting
stuff nicely on screen in Modes 0-2. The 'stuff has included some inverse material and
graphics blocks, and I've perhaps whetted your appetite about ESC and CONTROL and
about the hidden depths ofDIY character design.
Apart from all that, by far the most important matter discussed is looping with

FOR. ..TO... STEP... NEXT. Uses ofthis range from getting delays and mug-trapping to
quite complex nestings.
A dozen programs came up en route to help (I hope). If you write a dozen more using

these ideas, I'll be well pleased and so, I trust, will you. The next section should give you
some ideas.

DO IT YOURSELF
1. Try at least a few of the programs from this chapter in Modes 1 and 2, and, where

appropriate, without text windows in Modes 17and 18.
2. Devise a program to print on screen a picture, map or design. Explore fully the good

and bad things about Modes 0-2, and get used to POSITION, SETCOLOR and the
graphics blocks. Try to keep as low as you can the number of keystrokes.

3. Extend Program 17 (Fly past) as far as you wish. How about random motion (as in
Flit-out) and a nice landscape below (graphics blocks)?

4. Try variations on Program 12 (Tom Tiddler's ground). Star-fields perhaps?
5. Try POKE 756,204 at the start ofa GR.0 program to printout the whole of the Atari

character set. Similarly try POKE 756,206 in GR.1 or 2, then the same with 226.
(Not all these POKES will work with older Ataris.) Someone has redefined char-
acter sets for you. Practise what you learn in text mode programs of your own. Did
you find the £ sign?!

61

62

5 \'\Iorld

Doesn't time pass quickly when you're happy? I just noticed that we've worked through
and made up loads of programs for your Atari, but haven't had all the details about how
to save them for wet evenings. This subject then is the main topic of the chapter-saving
your precious programs on cassette for use in the future.
I've mentioned the need before-if a micro could do everything it would need many

millions of programs (sets of stored instructions). Even the biggest computer in the
world hasn't got enough memory to store all the programs it could use. That failing's
even more obvious with a micro. Hence the concept of backing store-a system which
can put programs into a form able to be stored away from the machine for use as and
when needed.
As with most modem micros, the Ataris have as their basic back-up system magnetic

tape on normal audio cassettes. (No need to spend money on costly 'data cassettes' by
the way.) For rich folk planning really big things with their micro, there is also what's
called a disc system. Discs have a number of advantages, and are super to use-but they
are costly and are best left till later.
Unlike most modem micros, on the other hand, the Atari cannot make use of a

normal audio cassette recorder for its back-up system. (Well, it could, but you'd need to
be a magic master of the soldering iron to be able to set it up.) It's a pity, but you'll have
to spend more than a little sum on a special smart Atari tape recorder. There it is in
Figure 5.1. I said it was smart. Looks good around the room. (Indeed it looks a bit like a
disc drive, so you can impress your friends even more with it.)

THE ATARI CASSETTE RECORDER
To set this up brings you one step nearer having to buy a mains adaptor: as well-the
recorder has its own posh power plug. And a thick cable on the end of that, and a second
thick cable to join it to the micro. That's now five cables in use with your computer.
Organization needed. Fear not-I'll come to that later in this chapter.
Join the recorder to the computer using the thick cable with a 'D-plug' at each end. It

doesn't matter which end you use to make each connection. One end goes into the socket
marked PERIPHERAL at the back of the computer, and the other goes into one of the
two marked I/O CONNECfORS at the back of the tape recorder. (The other I/O
CONNECfOR at the back of the tape recorder is for use if you later wish to add some
other 'peripheral' device to your micro system.) Look after the cassette recorder:

Don't put cups of coffee on it.
Ifyou do, don't knock them over.
Ifyou do, Heaven help you.
Clean the heads occasionally, say every month or so (oftener if you use the system

more than a few times a week). Use a special head-cleaner cassette. Or, if you are feeling
truly loving, a cotton bud dipped in meths smoothed over the exposed parts when the
empty machine's in PLAY mode. Don't spill the meths.
Keep the lid closed except when you put a cassette in or take one out.
Treat the control keys with respect. They don't seem very robust to me (but I admit I

don't know they'll break).
Switch off the supply when the device is not in use.
Don't let the leads become too kinky or tangled.

In use the data recorder (for that's what they call it) has two tasks. Firstly you need it to
record (rsave') on cassette your masterpieces, or the programs you like from this book
and elsewhere, for the future. Secondly use it to reload the data back into the micro's
main store; this process is 'loading'. Spend thirty minutes or so practising with a short
unimportant program entered on the keyboard. Then if anything goes wrong-as it may
while you're learning-there's no harm done.

SAVING YOUR GEM
During any saving process, the micro sends a stream of data to the recorder. That stream
is a coded copy of the program data in the main store. If the system is set up in the right
way, the recorder will lay down on the surface of the tape a pattern of magnetization that
represents that coded data. Then, as long as you look after your cassettes with care, that
copy will be there forever. You can copy it back as often as you wish.
For good or ill the Atari system has three different commands and methods for saving

program data. The simplest is CSAVE-the simplest, and as it happens, the least
slow-but also the least useful. All you need to do is to type CSAVE (R) and the saving
process will start. (CSAVE stands for 'cassette save', of course.)
The second method uses SAVE "Cmame", where again the C stands for 'cassette' and

where 'name' is the (optional) name you give your program. Saving this way takes longer
than with CSAVE-so it's more of a bind-but on the other hand you now have the
valuable option of having the program's name in the tape record. Soon enough you'll
have dozens or hundreds of programs on cassette. Naming them like this will save you a
lot of trouble. So, to save this way, type SAVE "Cmame" (R) and off you go.
The third is a special version of the LIST command we've met before. The structure is

LIST "Cmame" (R)-easy too, but special purpose, so I'll come back to it in a while.
I suggest you use SAVE "Crname" (R) for getting copies of programs you want to

keep in your software library. CSAVE is best only for making temporary copies of a
program you're working on, while you get a cup of coffee or snatch a few hours' sleep.
You can use a 'rubbish' tape for this purpose.
So-step by step-s-here's how to save a program in your Atari's memory to cassette

tape for the greater good of mankind in future.
63

64

1. Connect the recorder to the micro; connect it to the power supply and switch on.
The lamp on the front should glow to tell you that the device has got electrons
coursing through its veins.

2. Press the EJECT (EJ) key to open the lid, and put in a cassette, tape side towards
you. Close the lid by hand.

3. If the cassette tape is not at its start, press the REWIND key to put it there. The
spools will tum until the cassette is ready. Press the STOP key. Press the counter
button to reset the counter to f/1/1/J.

4. Design a simple but meaningful name for the program. With a rare flash of genius I'll
call it TEST here. Type SAVE "C:TEST", check this on screen, then press the
RETURN key. The speaker will buzz twice and tell you to set up the recorder. So do
it.

5. Press the RECORD and PLAY keys down together on the recorder. They should
stay down (this takes a bit of strength-and a bit of practice if you are not used to
audio tape recorders). Tell the micro you've done all that by pressing RETURN.

6. The micro tells the recorder to start working, and the spools will tum. The speaker
gives out a dreary high-pitched whine, then a few bursts of sci-fi garble (that's the
data) then more whine. The screen says READY, to show you the process is over,
and the tape stops moving. Clever, that.

7. Make a second copy-repeat steps 4-6. Just possibly something was wrong. Note
the counter setting.

Except for the actual command used for saving, all the above applies for CSAYE, SAVE
"C:" and LIST "C:". But as I said, possibly something was wrong. What could the
problems be?

1. Recorder lamp not on and keys not working-no power to recorder. So check.
2. Recorder lamp not on, but keys working-lamp failure. Make a note to get it

replaced. The lamp is useful.
3. Counter sticks on a setting and clicks without turning. Press the reset button more

firmly.
4. Spools and counter don't move as they should. Check that the lid is fully down and

replace the cassette ifthe problem remains.
5. RECORD key won't go down: The record-protect tab ismissing from the cassette.

Cover the hole with a piece of sticky tape. (See Figure 5.2.)
6. ERROR 133-the micro can't find the cassette recorder. Check the link between

the two.
7. ERROR 138-the micro isn't happy with the recorder status. Check the link and

that RECORD and PLAY are both down.
8. ERROR 139-the micro isn't happy with the recorder action. Check that the lid is

fully down.
9. ERROR 163-the micro found something wrong but doesn't know what. Start

from scratch again.
10. ERROR 165-the micro doesn't accept your clever name for the program.

Program names must not be longer than about 120 characters. I guess you won't
find this ERROR!

That's a giant list of problems! Saving programs is nearly always quite trouble-free!
That's more than I can say for most micros .'
All the same you'll want to check that your save has met with success. Well-tough-

you can't. There's no way with the Ataris to carry out what folk call verifying-letting
the machine check that the copy on cassette is exactly the same as that in store. Saving is
trouble-free, but it is just possible there's a fault in the coating on the tape. 'Drop-out'
the jargon-ready users call it.
That's why I said you should make two copies. Indeed if it's really crucial that you have

a separate record you should make two saves on each of two new cassettes. But that's
only for masterpieces that took you many hours of work. Don't be put off, I say again.

tab missing: you can't record on under side

The only way to verify that a tape copy is OK is to load it into a second micro while
leaving the original program in the first one. Not many of us can afford that. So-take a
deep breath, recall my motto ('don't be put off), switch the Atari off and on again, and
try to load the cassette copy back. Well I did say practise all this with a little unimportant
program....

LOAD OFF YOUR MIND
Loading means putting a copy of a program recorded on cassette into the micro's main
store. We have three styles of saving, so guess how many loading systems there are!
Wrong: Four in fact.

CLOAD

LOAD
RUN

ENTER

(= load from cassette) is for use with a program put on tape wijh CSAVE
(fast, simple, nameless).
"Cmame" goes with SAVE "Cmarne".
"Cmame" does as well, but after the load is finished, the micro will start
the program off without you typing RUN.
"Cmarne" is the other half of LIST "Cmame". I'll return to it later.

I advised you to save with SAVE "Cmame", so you'll need to load with LOAD
"Cmame" or RUN "Ciname" as you wish. Both commands (as does CLOAD) include a
NEW, wiping out the contents of the main store first. Here are the steps (whatever
loading system you use):

1. Follow steps 1 and 2 in the saving procedure. Make sure that the cassette is the right
way up (the same side should be on top as was on top before).

2. Follow step 3 above.
3. Type LOAD "C:TEST", check on screen, then press RETURN. This time the

speaker will buzz once only.
4. Push the PLAY key down and press RETURN to tell the micro you've done so.
5. The Atari follows step 6 above and says READY when it's done.
6. Check that the program is in and correct with LIST, and then RUN.

65

66

There's no reason to expect it won't have worked, but I'll go through the fault-finding bit
again.
Faults 1-4, and 6-8 are as before (except don't press the RECORD key down in 7) on

top of those 8 we have:

9. All seemed well, but the tape runs through both copies without READY at the
end: the micro hasn't found a program with a name you told it to load. Check that
'name' in LOAD "Cmame" or just use LOAD "C:".

to. The same: you had RECORD pressed as well as PLAY. Tough-you've wiped out
the record you wanted.

11. READY after the first set of sci-fi garbled sounds, but LIST gives nothing: you
typed SAVB rather than LOAD (a common mistake!). Try again.

12. ERROR 2, the program being loaded needs more computer memory than your
computer can offer it. (That won't happen with our TEST but it could happen with
cassettes you buy, borrowor steal.) Ifyou are rich, get more memory. Ifnot, shrug.

13. ERROR 19: same applies.
14. ERROR 21: the program wasn't saved with SAVE "Cmame". Try CLOAD or

ENlER "C:".
15. ERROR 143: the micro found a fault in the cassette record. The magnetic surface

may be damaged or the plastic under it could be stretched, or the 'recording'
started on the clear leader part of the tape.

Sounds bad again, doesn't it? But fear not. These lists of possible LOAD/SAVB
problems are really for reference-I bet you don't ever meet many of them. On the other
hand of course, you may meet others (as when trying to run an Atari 600XL program on
an Atari 400micro). But I've done my best. ...

MERGENCY

The SAVE/LOAD systems using LIST "C:" and ENTER "C:" differ from the others in
being able to be used with parts of programs as well as whole ones. The main value of this
is that it lets you 'merge' two programs into one.
What do you know about the standard LIST command?

1. LIST (R) displays on screen in number order the lines of a program.
2. LIST n shows the line n alone (if it exists).
3. LIST 0,n gives a display of the program from the start-up line to line n if it exists.
4. LIST n,3E4 gives the statements from line n (if it exists) to the end (unless you

happen to have some with higher numbers than 30 000, in which case use LIST
n,32767).

5. LIST nl ,n2 gives the program from line nl to line n2 ifthey exist.

Now, that standard LIST instruction sends the output to the screen. Its full structure is
really LIST "S:" such and such, where "S:" sends the data specified to the screen. In the
same kind of way LIST "C:" sends the data specified to the cassette recorder, with a
name after the colon if you like. (And of value too is LIST "P:" such and such, to get a
paper copy from a printer, if attached.)
The value of saving with LIST "C:" then 'is that you can select which section of a

program to put on tape this way. You may find, for instance, that you've devised a really
super reward for success in a game. Then you can save the game in the normal way (in
other words with SAVB "Ciname") and save the reward alone, for later use with other
programs, using LIST....
By that method you will be able to build up a collection of program sections (we call

them subroutines). To use this subroutine library you need to be able to load back the
right ones into the store, merging them by name into a new program you are writing.
That's when ENlER. .. comes in. Unlike the other LOAD commands, this does not first
clear the memory (despite what the Atari Manual says). All you need to do is to make

sure that none of the mam program line numbers are the same as those of the
subroutine-otherwise the new ones will overlap and wipe out the old.
You will therefore need to keep good records of subroutine line numbers in your

paper files (,documentation'). Like this:

Name
SRI
SR7
SR82

Line numbers
5100-5199
5700-5799
14200-14299

Action
Slow screen clear with trills
Random colour-sound reward sequence
INPUT test-whole numbers from 1 to X only

And soon.
I'll say more about documentation later, but with a library like this you'll be able to

build up complex programs with complex effects very quickly. All you need to do to add
subroutines to the main program is to find the right cassette, use the tape counter
to get the right place (with REWIND and ADVANCE on the recorder), and type
commands like ENTER "C:SR42" (R). Perhaps Figure 5.3 will make this clear. Of
course you will need to find out how to get the main program to 'call' each subroutine
when required. Chapter 12 will tell you about that, but we have met the system in
Program 8; it uses GOSUB and RETURN.

I

ISR141
subroutines from library

I
I

ISR41Main program calling
subroutines 4, 6, 9 and 14

Figure 5.3 Buildtng a program.

YOUR TAPE LIBRARY
Whether you are using your Atari at home, at work, or in a busy and complex classroom,
you will need to keep important programs on audio cassettes (or discs). I would suggest
most sincerely that right from the start you get into the habit of storing and documenting
these cassettes in such a way that will keep you, and other people involved, completely
satisfied even when your library contains several hundred cassettes. Several hundred?
Wow! That's not at all unlikely if you really get into computing!
Major programs for the Atari 400 and 600XL may be stored on ClO or C12 cassettes;

you will likely need C15 or C20 cassettes for big programs for the micros with larger
memories. At first, when you are devising only very short programs, it iswise to have no
more than about four on one cassette, and as I have said, it is best to save each one twice.
This is because Atari programs on cassette are fairly long, and it is time-consuming to
find the right one out of a number on a tape, even if you use the tape counter properly.
Apart from anything else, there is nothing more satisfying than having a whole shelf full
of neatly arrayed and numbered cassettes!
From the start then, number your cassettes, including a code for type if you wish (G

for games, H for household, and so on). At the same time, record the main details of
each program, with the same number, in an exercise book, card index, or loose-leaf file.
Here are the details you need to include in this file documentation. The items marked
with two stars are, in my view, quite essential.

**
**

**
**
**

Cassette number and counter reading for each recorded copy of each version.
Program name (exactly the same as that recorded on the cassette, with special
attention paid to upper and lower case letters and special symbols if used).
Author name(s).
Date (of each version number if applicable).
Computer, memory, any special requirements such as disc, or printer.

67

**
**
*
*
*
*
*

Source of program.
Objective(s) of program-what it tries to do.
List of variables.
Types of input if not clear from the messages on screen or printer.
Unacceptable inputs and other limitations.
Line by line listing of the program.
Ideas for possible future development.

Typical data cards of this nature are shown in Figure 5.4. Should you record listings
typed in from magazines and books and/or purchase cassettes of commercially available
Atari programs, document and store these in the same way with any user material. The
same applies to cartridges.
Ifyou have to record a large number of programs on one side of a tape, make the first

one an index. Program 19a is suitable for this purpose.

TABLES Ml7

AVe Software May 1984£3.00 Atari 600 XL+ printer

Tables testing game; four levels

6 (level 1) to 10 (level 4) + Remedial

Tables 2-12

ATARIVADER G5 100-150X2

Abdul Smith Sep 83 (version 4) Atari 800XL+ joystick

Version of Space Invaders with 18levels of play 1/2 players

(Developed from listing in Daily Mirror)

IN..-., wJl... Ln...
"

Figure 5.4 Typical program record cards.

Program 19a: A very simple index

10 5ETCOLOR I,S,0:5ETCOLOR 2,S,14:SETCOLOR 4,S,14:PRINT CHR$(125);CHR$(253)
11 REM It Set up,; clear screen; buzz
20 PRINT :PRINT 't***********************************"
21 REM i* Even an index can be pretty
30 PRINT :PRINT :PRINT" This is Cassette 47, Side 2.•.. "

68

40 POSITION 14,9 PRINT "1 HDEX'
S0 POSITION 9,12 PRINT "Bank accounts"
60 POSITION 9,14 PRINT 'Bank statelents"
7i1 POSITION 9,16 PRINT "Honey invaders'
71 REM it etc
a0 POSITION 2,21:PRINT "iiiti.*i••••••••i*.t•••***i***.**i*i·
9i1 FOR W=iI TO I STEP iI:NEXT W

Let me repeat the comments made in one of the REMs in that listing-even index
programs should be nicely laid out! See how I have tried to follow that rule with this
program.
Ifyou are using disc rather than cassette, you have the possibility of very fast access to

a large number of programs. (Each 'floppy disc' can carry up to 64 separate programs.)
As we can use the various loading (and saving) commands within a program as state-
ments, we have the possibility of extending Program 19a as in 19b. This gives a neatly
automatic loading of named programs from disc.

Program 19b: Simple index with automatic loading

90 REH i* Delete this frol 19a
100 DIH PROS$(101:PRINT :PRINT 'Type nale of progral needed';:INPUT PROG$
110 SETCOLOR 2,S,0:SETCOLOR 415,9:PRINT CHR$(125)jCHR$(253)
120 POSITION 5,IL:PRINT 'SEARCHING for: ·jPROb$;· ••.• "
I3il LOAD PR06$

This process cannot be used with cassettes, and in any event would not be worthwhile as
it would be incredibly slow. However, there is another approach that I would like to
bring to your notice t,hat is very helpful if you have a large number of small programs to
deal with.
If you wish to make full use of your Atari's fairly large memory to store a number of

fairly short programs all together, you may adapt the index to let the user select the
individual one wanted as in Program 20. This approach is more professional (and causes
less uncertainty) than that which expects him or her to type GO TO 1000, GO TO 2000,
or whatever.

Program 20: Simple index with user-selection

II DIM CH$(I):SETCOLOR 1,9,14:SETCOLOR 2,9,4:SETCOLOR 4,9,0:PRINT CHR$(253);CHR$
(125)
21 PRINT :PRINT .<=><=><=><=>(=>(=><=><=><=><=)<=><=>.
30 PRINT :PRINT 'This is Cassette 7, Side I'
41 PRINT :PRINT '1. Donald Duck'

Mouse'
711 REM it etc
121 POSITION 2,IS:PRINT '>=<}=()=<>=(>=<>=(>=()=()=()=(>=<)=('
131 POSITION 2t211:PRINT 'Please press nUlber RETURN) ";:INPUT CH$:IF LEN
(CH$)(>I OR CH,<"I' OR CH$>'S" THEN GO TO 130
131 REM tt Mugtraps there
140 PRINT CHR$(12SJ:60SUB YAL(CH$)tI01111
IS11 RUN
11101 REM tt Progral 1 starts here
19911 RETURN
21111 REM t* Progral 2 starts here
29911 RETURN
3110 REM ti etc

An interesting feature appears in this program in lines 130-140. The former includes
'mug-traps' (programmed devices designed to prevent a user-error from passing on)-it
accepts a string only if it contains a whole number between 1 and 8 inclusive. Then the
next line, 140, converts the input string into a pure number using VAL. That number,
multiplied by 1000, forms the address to which the program is sent with GOSUB. (We
call this a 'computed address'.)

69

LOOKING AFTER YOUR EQUIPMENT
While I surely do not recommend it, dropping your Atari or otherwise treating it roughly
should not harm it or you. Unless you drop it on your toes. Rough treatment, may,
however, affect the plugs and/or the leads-there are lots of them!-and perhaps cause
an internal break or poor contact. See the next section for tips on a permanent arrange-
ment which should reduce this major problem.
Because of charge effects, TV (and monitor) screens become dusty very quickly. This

reduces the picture contrast and sparkle and it is made worse with fingerprints. I suggest
you avoid getting into the habit of touching the screen. (A particular hazard arises from
touching the screen and the computer at the same time-much easier to do than you
might think. This can transmit high voltage electric charge from the screen to the micro
and damage some chips.)
Clean the screen each week with a cloth dampened in warm, slightly soapy water.

Take the opportunity to give a quick wipe to the computer bodywork at the same time.
Do not, however, let the water enter the gaps in the keyboard or the socket. (Hot coffee
is even worse if spilled on the keyboard!)
Other than this, neither the computer nor the TV set will require any special care: both

should give you good service for years.
The cassette recorder and the cassettes do need a little more looking after, however.

This equipment has two main enemies-dust and magnetic fields. I recommend that you
take note of the following and make sure your friends do the same.

1. Do not leave the cassette recorder cover open.
2. At regular intervals clean the head and demagnetize the system as I described on

Page 63 (use a special head-cleaning cassette or a cotton bud soaked in methylated
spirits). This can be done when you clean the rest of the equipment.

3. Keep each cassette in its (correct) box when it is not in use-certainly do not leave it
in the cassette recorder.

4. Never put cassettes on top of the TV set or close behind it-video equipment
contains very strong magnatic fields.

5. Do not leave cassettes in a hot place, such as on a window sill or a shelf over a
radiator.

6. Once a year run through each cassette on fast forward and fast rewind.

Ifyour cassettes are going to be used by a number of people, it's a good idea not to let the
originals ('masters') into circulation. Instead make 'back-up' copies for daily use and
keep the masters in a safe place. You can make a copy by loading from the master into
the micro and saving on the new cassette. Alternatively use a good audio cassette
duplication system.
These precautions are widely reckoned not to break copyright; however it is quite

wrong to pass copies of purchased software outside your home/department, even if you
don't charge for it.

STAKING YOUR CLAIM
Using a computer can become a marvellous hobby, totally engrossing, totally detri-
mental to the use of legs and to your social life (that's a serious warning really). But as
with all hobbies, it needs a bit of effort to fix things up right. You can't hog the home TV
set forever. You can't work for long on a bean-bag. So once you're sure you're going to
enjoy computing (if you're not sure yet), organize. You'll need these items.

1. A table (at least 2 m x 1 m) and a comfortable upright chair in a quiet comer of a
quiet room, with power nearby and storage space at hand. Alternatively, if you want
to be really swish, why not look at some of the specially designed computer furniture
you can get now? I'm very happy to use, for instance, a combined workdesk/trolley
with shelf and TV stand from Selmor Engineering of London E1.

70

2. A TV set just for the purpose. A black and white portable is OK, but consider a
guaranteed second-hand colour set from a local shop. Good ones are available for
around £50, and you can secretly watch the midnight movie while you are thinking
about your precious program.

3. A permanent arrangement of everything on and around the table, allowing you to
work quickly and for a long time without strain. I've sketched a suitable layout for
your Atari comer (assuming you are right-handed) in Figure 5.5. Make sure it's
appealing to visitors when you proudly show off your work-but not too appealing
for stray infants poking around in your absence. Or parents. Or burglars.

- ----

Figure 5.5 Atari comer.

SUMMARY
In this chapter I've concentrated on how to get your precious programs from the micro
onto cassette for storage and how to get them back again. We've also looked at
organizing yourself, your work area, and your software library.
The keywords used in the chapter are as follows (with the smallest abbreviation, if

any, in brackets):

CLOAD
ENTER (E.)
RUN (with cassette program)
VAL

CSAVE(CS.)
LOAD (LO.)
SAVE (S.)

I couldn't think of anywhere else to put this advice. Ifyou have any load/save problems,
try the command CPRINT (R) before your load and save commands.

DO IT YOURSELF
Of course, a chapter like this cannot end with specific programming exercises. All the
same it includes some important material about organization. So I suggest you get
yourself together, in your comer, with your nice Atari computer set up, and a smart
software library.

71

72

li The III1asler Plan

This book is not a programming text, as you'll know if you are unusual enough to have
read the Introduction. After all, the last chapter was about much more than pro-
gramming itself, it dealt with the value of organization in general. In this chapter I shall
get a little closer to programming and discuss the planning of programs.
Now I'm not going to spend a lot of ink on telling you what good programming is (even

if I were immodest enough to claim to know). When you've finished the book, and
perhaps started to think seriously of programming for work, real fun or profit, then you
will have some idea of what makes a good program, but it willbe up to you to find out all
the details.
All the same, there are good habits and bad habits. And if you get into good habits

early on, you'll be glad later. And then your work, fun or profit-making programming
win be less work, more fun, and-who knows?-more profitable.

PLANNING

The essence of good habits in programming isplanning. I think I must go further and say
that good programmers plan their planning. The worst thing to do when you get a
program idea-trivial or world-shattering-is to sit down at the keyboard and start
typing. If you do that, YOU WILL GET INTO AN AWFUL MESS. And even if, by
some miracle, the result seems to work first time, it will not be very efficient; it may have
BUGS in it (dreaded hidden errors); and it will not impress the folk who are to look at it
and use it.
Efficiency in programming means having a product which works correctly in all

circumstances, works at the right speed, uses as little memory as possible, and looks
good to everyone involved. So your planning must aim for these criteria. It will still be a
miracle if the thing is perfect first time you try, but getting it close to perfection will be a
lot simpler.
The essence of program planning is an approach called top-down development. This

means breaking that initial idea down into smaller and smaller chunks until at last each
one is an easy-to-handle unit. Actually we use the wordsmodule or routine for those final
units.
It's a bit like having a bar of chocolate at a party. You've got to break it up (down?)

into the right number of pieces ofthe right size before it can be processed (eaten!). Here
the processing I'm thinking of is producing the idea in the form of a program the
computer can run, coding it as we say.
Coding is simple when you have the idea in fragments in front of you. Each frag-

ment-concept or module-can then transfer to a chunk ofthe program. We call such a
chunk a routine, or a subroutine, or a procedure. The sketch in Figure 6.1 shows what
top-down programming entails. Do you see what I mean? The original broad concept
breaks down into a lot of small chunks.

Idea

Figure6.1
etc. etc.

Of course, at the moment, the programs you are writing are pretty short ones. I
wouldn't dream of saying that you've got to work out a detailed set of modules for them.
Even now, however, it is surely important to view your program not as a whole but as a
number of separate parts. Each part has its own aim, each part is programmed (coded)
separately, and each part is tested separately. Then the whole thing made of those parts
added together is likely to be neat, efficient, and bug-free. If you get into the habit of
thinking like that now, by the time your masterpieces are lengthy (novels rather than
short stories), your work will be based on good habits and involve far fewer tears.
I think I've already mentioned that user-friendliness is a hobby horse of mine. Here

again I must say something about it. Yes, user-friendliness is a crucial part of program
planning. As well as working correctly and efficiently, the program must also appeal to
the user in other ways. I try to plan from the outset to make my work user-friendly-so
that that person, whoever he or she may be, is always at ease and never wonders what to
do. The most important thing here concerns planning the screen layout and the messages
on it. The messages should be short but clear, well laid out and not cramped-and
spelled and punctuated properly!
Get used to using large and small letters in your messages, as well as highlighting

methods such as inverse, special symbols, underlines, and framing tricks. Text on screen
is dreary if all it consists of is capital letters.
You may be sure that I shall come back in much more detail on all this later in the

book. In particular, Chapter 11 deals with the matter in much more depth.

73

1 Full of :Jound and Fur"

As you can guess from my title, the main topic we'll study in this chapter is making your
Atari sound forth. The 'fury' I also mention implies the feeling you'll get when you come
up against some of Atari's strange quirks of sound control. Indeed I should say that
sound with these micros is pretty complex. As it would take a book half as long as this one
to cover it fully, you can guess that I'm not going to go very far!
Early Ataris have their own speakers built in-small, but quite good ones. Those also,

and the more recent ones only, can send sound output direct to the TV speaker. This is a
very good idea, met with strangely few micros-TV speakers are better than the weedy
ones you can get in a micro case and volume control is of course easy and good. (On the
other hand, most video monitors don't offer sound, so if you use a monitor with your
machine, you've got a problem-or blessed silence.) To help you get on top of sound
coding, let me first set out a little background science.

THEORY
Think of a single pure note produced by vibration in some musical instrument or other
source. A guitar will do fine. We can describe the note in terms of five factors.

1. Loudness (volume)-is it strong or faint? What we call loudness relates to what
scientists term amplitude. The vibrations are more violent in the case of a loud sound
(high amplitude) than in that of a soft one (low amplitude).

2. Pitch-is it high or low? Sounds from the left-hand keys of a piano (or a man's
throat) are lower pitched than those from the right (or a female voice). Pitch relates
to what scientists call the frequency ofvibration: to obtain a low pitch there are fewer
vibrations in a second-the frequency is low.

3. Quality (or timbre)-is the sound pure or rough?-the difference between the
sounds of say a trumpet and a guitar playing the same note is a difference in quality.
(What's really happening in those cases is that there's a different set of tones, of
different amplitudes and frequencies, in each sound.)

4. Attack-how does the sound start, build up, continue, fade away, and stop? You
may have heard tapes played backwards of the sound of a piano playing-the result
does not sound like a piano at all because the attack has changed.

5. Duration-how long does the sound last?

ATARISOUND
As I said, the sound facility of the Atari micros is very complex. Almost uniquely among
home computers, they allow the user to program all but the fourth of the above factors of

74

a sound. (Most micros, if they have sound at all, allow control only of pitch (frequency)
and duration.)
Partly this is because the Atari has four-channel sound, allowing four separately

programmed notes to be 'played' together-giving chords as well as good control over
quality.
To control all these factors from instant to instant gives the Atari the potential of a

fairly feeble synthesizer. No, it is not a synthesizer, so you have to do a lot of work to get
anything like real music. Don't be ambitious, at first anyway, stick to simple beeps and
warbles, simple sequences of notes and sounds.
The keyword we use for coding the speaker output is SOUND. Follow the keyword

with four numeric values separated by commas:
SOUNDC,P,T,A

Here

C is Channel: 0,1,2, or 3
P is Pitch: 255 (low) to 0 (high)
T is Timbre (or something like it!): allowed values are 0-15
A is Amplitude: 0 (peaceful) to 15 (loud)

I use the symbols C, P, T, A in an attempt to make it a little bit less hard to recall what
each numerical value does. The mnemonic I use is 'chapter' for C,P,T,A.
If you check back to the list I have of the theoretical sound factors, you'll see that I

haven't mentioned either 'attack' or 'duration'. With your Atari micro there's nothing
you can do to work on attack-unless you're an extremely clever programmer, anyway.
Duration, on the other hand-the time for which a given note lasts-is not programmed
as part of the SOUND statement (which is a pity in many ways). As soon as you tell the
micro to send a note to the speaker using SOUND, it will do so-and the note will go on
and on and on forever. You have to stop it, in other words. The only ways you can stop
the speaker sounding after SOUND are:

(a) by sending a new SOUND command to the channel concerned;
(b) by sending SOUND C,0,0,0 (to switch the sound channel off without putting a

new sound in);
(c) using END (often the last statement in a program);
(d) by using RUN or (this being rather more drastic!) NEW;
(e) by pressing the (SYSTEM) RESET button.

Clearly only the first couple can be used within programs. Type in and run Program 21. I
designed it to get you moving with SOUND.

Program 21: Sound as a bell?

II PRINT CHR$(253IjCHR$(1251:REM ff Sound the old Nay!
21 PRINT :PRINT "C HAHHELS"
31 PRINT :PRINT 'Channel I"

W
61 PRINT :PRINT "Channel I'
71 SOUND 1,91,11,8
81 FOR W=I TD 25:NEXT N
91 PRINT :PRINT 'Channel 2"
III SOUND 2 72 II 8
III FOR N=I'TO'251NEXT W
121 PRINT :PRINT 'Channel 3"
131 SOUND 3 61 II 8
141 FOR N=I'TO'llil:NEXT N

171 FOR P=I TO 255
181 PRINT Pj' 'j
191 SOUND I,P,II,15:FOR N=I TO 25:NEXT N

75

211 SOUND 1,255-P,II,15:FOR W=I TO 25:NEXT W
211 NEXT P
221 FOR W=I TO IBII:NEXT W
231 PRINT :PRINT :PRINT "T I ft BRE"
248 FOR T=I TO 15 STEP 4
251 SOUND 8,III,T,8:FOR W=I TO 25:NEXT W:PRINT T
268 SOUND 1,III,T+I,8:FOR W=1 TO 25:NEXT W:PRINT T+I
271 SOUND 2,III,T+2,8:FOR W=1 TO 25:NEXT W:PRINT T+2
281 SOUND 3,118,T+3,8:FOR W=I TO 25:NEXT W:PRINT T+3
291 NEXT T
318 FOR W=1 TO 1118:NEXT W
311 PRINT :PRINT "A ft PLIT UDE"
328 FOR A=8 TO 15
331 PRINT A
348 SOUND B,II',IB,A:FOR W=I TO 25:NEXT W
351 NEXT A
36' FOR W=I TO Ilel:NEXT W

The best thing you can do now is to explore SOUND as much as you can. Use Program
21, and the comments that follow, as a basis for this work. Use plenty of direct SOUND
commands, writing points down as you go. Switch off the speaker at any stage if the noise
gets on your nerves, using END (R)-this is better than (SYSTEM) RESET, as you
don't lose the screen contents. Think of the neighbours-keep the TV volume control
low.

CHANNEL
The SOUND keyword takes four numbers after it-SOUND C,P,T,A, as I've said-
and the first of these tells the micro which of the four separate sound channels you wish
to use. Lines 20-130 of Program 21 build up a four-note chord, with each SOUND
statement sending details of a pure note along one sound channel to the TV speaker.
Atari advise that when using more than one channel you shouldn't let the sum of the
loudness values exceed 32. (The fourth number in SOUND controls loudness.) The
reason for this is the strange speaker vibrations that could appear. All the same, I've had
no problem going to the limit (which is (0), so I guess you can try it if you need.
Anyway, there's not much more I can say about channel control-oh, except that in a

program (when you can't use END unless it's truly the end of the program), switch a
channel off with SOUND C,0,0,0. This instruction is the only way to turn a single
channel off outside a program as well as in one of course-END turns off all sound.
Here's the quickest way to turn off three channels (or four likewise):

FOR C = 1 TO 3: SOUND C,0,0,0: NEXT C (turns off 1-3; leaves O)

PITCH
The second number after SOUND has the job of telling the micro which pitch (fre-
quency) to send down the channel; I call it P. The value of P can range from°to 255 in
whole number steps. There are two problems with it.

Firstly, how people perceive sound isvery complex; indeed much remains to be learned.
Secondly, how the cuddly Atari deals with pitch is very complex as well.

In lines 170-210 of Program 21, I set up a loop which uses two channels to trip lightly up
and down the P range. One up, one down. At the same time. Ifyou listen to that section

76

of the program you'll hear more than a rising and a falling scale. Sometimes the notes
combine to produce a third one. It's not the micro's fault, nor the fault of the speaker-
these so-called secondary tones are from the realms of physics and physiology. Try this:

SOUND 1,10,10,10
Then add

SOUND 2,11,10,10
Now you get, not two notes as you may expect, but three-and shifts in what you hear as
you move your head. This is all very interesting, I think, but I must leave you to explore
it.
I said that Atari pitch control is complex. In what ways? The first problem is that high

values of P give low notes, and vice versa. That makes it harder to deal with any kind of
music as you have to sort of compose upside-down. The second problem is that a given
number of steps between Atari P values does not give a constant pitch 'interval'. Thus,
for instance, you can't double (or halve) P to go up an octave. A pity. You can see both
points in Figure 7.1. (I hope you have enough idea of how to read music to be able to
handle this.)

II Uc, 9 10
0 11 00.. II

247 230 217 204 193 182 173 162 153 144 136 128 121 114 108 102

o 0 0 do II 0

n 0 10 0 e 0

96 91 85 81 76 72 68 64 60 57 53 50 47 45 42 40 37 35 33 31 29 28

Figure 7.1 Scaling the Atari mountain.

Look at that figure and I hope you see what I mean-P goes down as the note goes
higher, and the steps aren't even. Ifyou listen again to the 'pitch' section of Program 21,
you'll hear my point-jumps between high notes are very clear, while the lowones glide
gently into each other. As I say, these points mean that you are going to have quite a lot
of work to do when writing music for your Atari!

TIMBRE
Well-this is more complex still.... I'll try to set out what the values ofT in SOUND
C,P,T,Adoes.

(a) T can take any value from 0 to 15. Only whole numbers officially, but sometimes
decimals seem to make a difference.

(b) Use either 10 or 14 to give a pure tone. I prefer 10-it's not so hard to remember,
especially as I tend to use the same number for my standard value of A.

(c) Even (not odd) values ofT introduce some level of 'distortion' to the pure tone.
That's a gross over-simplification. Here's a table which tries to cover the effects;

77

Table 7.r

T

o
2
4
6
8
10
12
14

Effect

Mixof4 and 8
Same as6
Pulsing pitched white noise
Pulsing pitched grey noise
Pitched white noise
Pure tone
Buzzes
Pure tone

Interference

Sometimes
Sometimes
Sometimes
Sometimes
No
No
Very common
No

78

I use some code words and phrases in that table! 'White noise' truly means a mix of
all frequencies (pitches) at equal levels. It's rather like the sound you make called
Shhh! The so-called Shhhs here relate to some extent to the value of P, pitch, so I
call them pitched white noises. The P-effect is even more marked when T = 6,
hence my term 'grey noise'.
The third column of this table gives some indication of the chance of getting some
of those strange perception effects I mentioned before. Sometimes a single
distorted note will sound like two, or even three, separate notes (secondary tones
appear, in other words). In other cases, no sound at all comes out. Try SOUND
1,9,4,15 for instance-not a squeak!

(d) Odd values of T switch the channel off if it's on. But if the channel is off already,
you get a click. That can be useful.

To come to any kind of grip with Atari sound distortion-the T-factor-you'll have to
explore the thing yourself. Lines 230-300 in Program 21 aren't really much help now.
Try Program 22 instead. Enter it. RUN, BREAK to stop at any point of interest, play
with direct SOUND commands, then use CaNT. to get back to the program where you
left off.

Program 22: Time for T

II FOR P=I TO 255
21 FOR T=I TO 15
31 SOUND I P T,ll
41 PRINT "Pitch I.p "Ti.bre "jT
51 FOR N=I TO 51:NEiT N
61 NEXT T
71 NEXT P

AMPLITUDE
The control of sound amplitude (loudness or volume) in your Atari, is, by a strange
design fault, very easy. The last number after the SOUND keyword does the work now,
A I called it. A can have any value from 0-15, and the larger the value, the louder the
sound. Simple, n'est-ce pas? The last lines of Program 21 say it all!

INTO PRACTICE
Let's try some programs using SOUND ideas. They'll help you gain some more feel for
this complex but important aspect of Atari coding.

For a start we'll add a bit of sonic sparkle to Tom Tiddler's ground (Program 12)-and
at the same time POKE some colour into his cheeks. (As I'll explain in Appendix 4, there
are times when POKE can do better than SETCOLOR.) Program 23 is the result.

Program 23: Tiddler on the roof

2B PRINT CHR$(125l
3B FOR A=1 TO liB
35 POKE 71B1RND(I)f255:POKE 712,RND(I)f25536 REM ff Handol screen/border colour
41 POSITION RND(Blf39,RND(llf23
41 REM ff Randal site
45 SOUND I,RND(Blf255,IB,IB:FOR N=1 TO 25:NEXT N
46 REM ff Randal beep
51 POKE 75b 214:PRINT CHR$(BI'
51 REM ff Pound sign at last! XLs only••••
bB NEXT A
b5 SOUND 11247 11Btll:S0UND 1,121,IB,II:S0UND 2,bl,II,IB:SOUND 3,29,1',11
71 POKE l:rOS TION BB
BI FOR N=I to 1 STEP I:NEXT N

The next program takes these ideas a bit further (and also uses GET, which I'll come
back to later). Try pressing keys....

Program 24: Key in the door

IB PRINT CHR$(1251:0PEN 11,4,I,'K:':REM ff 'Opens' the keyboard for direct input
2B FOR GO=I TO 1 STEP I:REM ff Repeat for ever
31 GET II K:REM ff Makes Ktake the code of the key pressed
41 SOUND RNDIB)f31K11I,IB:REM ff Plays a note of pitch Kthrough randal channel
51 POKE 71I,K:POKt rl2 255-K:REM ff See last progral
bB POSITION RNDII)f39,RND(I)f23:PRINT CHR$(KI
71 NEXT GO

Audio-visual effects always make nice wallpaper. So the next program is another one of
the same kind of thing. It's also here to give you a taste of drawing lines in graphics mode.
I've put comments in REMs, but when you run this pleasant little program, you'll make
your own, I expect-'I bet colour control in graphics modes ain't easy.' You'd be right.

Program 25: Concrete eat's cradle

II GRAPHICS 11
II REM ff Use Mode 7 if no II
21 FOR GO=I TO 2 STEP I
21 REM ff Slight change for a change
31 SOUND RND(llf3,RND(B)f255,RND(I)fI5,RND(I)fI5
41 COLOR RND(llf4
41 REM ff Graphics color setter
51 PLOT RND(llf7B,RND(I)fI91
51 REM ff Chooses randal point on Graphics screen
bl DRANTO RND(llf7B,RND(B)fI9B
61 REM ff DraMS to randal point on Graphics screen
71 FOR N=1 TO 25:NEXT N
BI NEXT GO

The name, by the way, is meant to describe this smashing combo of concrete music and
the eat's cradle design of lines. Well, I had to call it something. I keep on using the
random number thing, you'll notice-RND. RND(0), recall, gives a random number
(truly a semi-random one) from 0 to 0.999999999. Multiply it by a number X and you get
a 'random' number between 0 and (almost) X. Where you need a random whole number
(integer) use INT (RND(0) * X). We don't in fact need INTs in the cases I'm using. so
I've left them out.
The next program is the obvious development of Number 24-a sort of Atari syn-

thesizer. Look, Atari sound is quite fun, but no way are you going to be able to get

79

decent music out of it without very great hard work. If computer music's your scene,
then this program (and the next) will give you a start, but I tell you now, you go it alone
from then on.
In Cynth, Program 26, the centre row of letter keys acts as a simple eight-note 'organ'.

A is C, Sis D, and so on (if you see what I mean), up to the K key which gives C again, an
octave higher. If you want a rest, musically speaking, press the space bar. Line 35, by the
way is optional-it gives you a piano rather than an organ. Roughly, anyway.

Program 26: Cynth

0
30 GET 11 K
35 REM : C=0 TO 3:S0UND C1011,0:NEXT C40 IF K=65 THEN SOUND
51 IF K=83 THEN SOUND 0,1081101860 IF K=68 THEN SOUND 1,96,
70 IF K=71 THEN SOUND 1,91,11,8
81 IF K=71 THEN SOUND 2,81,11,8
90 IF K=72 THEN SOUND 2 72 II 8
III IF K=74 THEN SOUND 3,64,li,8
III IF K=75 THEN SOUND 3,61,11 8
121 IF K=32 THEN FOR C=I TO 3:S0UND C,0,0,0:NEXT C
131 NEXT GO

Although Program 26, as it is-or as extended by you-is very good for letting you mess
about at the keyboard, it doesn't allow you to code tunes that you can record on tape for
the computer to play later. Even in a simple game program, after all, you may wish to
pop in the odd trill or fanfare, perhaps as a reward for beating the high score of sixty
thousand.
For this you need to write a series of SOUND statements. Something like that in the

next masterpiece (where again, begging your pardon, I use subroutines to make life
easier).

Program 27: Call the RSPCA

10 LET Q=IIII:LET C=IIII
II REM II Quaver crotchet routine addresses
20 FOR A=I TO 2
31 SOUND 1,96 II II:GOSUB C
40 SOUND 1,IIB,li,II:GOSUB C
51 SOUND 1,121,11111:GOSUB C60 SOUND 1,0,1 l:bOSUB C
61 REM II Rest for one crotchet
70 NEXT A
81 FOR B=I TO 3
90 SOUND I 81 II II:GOSUB C
III SOUND 1,6i,li,II:GOSUB C:SOUND 1,1,',1
III REM II HOM to separate repeated notes
110 SOUND 1,6I,II,II:GOSUB C
120 SOUND 1,64,II,ll:S0SUB Q
131 SOUND 1,72,II,II:GOSUB Q
141 SOUND 1,64,II,II:GOSUB Q
151 SOUND 1,61,11,II:GOSUB C
161 SOUND 1,8I,II,ll:GOSUB Q:SOUND 1,1,1,1
171 SOUND 1,81111,ll:GOSUB C181 SOUND I,I,',I:GOSUB C
191 NEXT B
211 SOUND 1,9I,II,II:GOSUB Q
211 SOUND 1,96 II II:GOSUB C
221 SOUND 1,IIB,li,II:GOSUB C
231 SOUND l,12I,ll,II:SOSUB C
991 END
11II FOR N=I TO 111:NEXT N
1111 REM II Gives quaver delay
1111 RETURN

80

11II FOR W=l TO 211:NEXT W
1111 RE".f 6ives crotchet delay
1111 RETURN

Writing programs to music like this is tedious, especially when you use more than one
channel to get chords. Here's how to go about it in essence.

1. Choose a short, easy tune that you know!
2. Play it out on a piano and write down the order of notes by name. You should be able

to remember the durations and rests.
3. Then program.... For each note enter SOUND C,P,10,A, where C, PandA stand

for Channel (0-3), Pitch from Figure 7.1, and Amplitude (5-15, say). Follow with a
subroutine call to give the time you want the note to play for: GOSUB C,Q, or
whatever, as in Program 27. For each rest, use SOUNDC,0,0,0 (or FOR C = 0 TO
3: SOUND C,0,0,0: NEXT C if you are into multi-channel work).

4. RUN to test-and then be prepared for many hours of polishing.

Your work in coding tunes as above is almost doubled by the fact that the Atari SOUND
statement includes no time control. A note once SOUNDed plays on till stopped (by any
of the methods I've listed before). Still, that does give us the means of getting screen
action while notes play forth. Not all micros can cope so well with this double task!
Program 28 shows what I mean. Try to catch it....

Program 28: Falling star

11 SETCOLOR 1Il!14:SETCOLOR 2,1,I:SETCOLOR 4,0,0:POKE 755,1
21 PRINT CHRf li5)
31 FOR A=I TO 22
41 POSITION 11+A1A:PRINT 'f'51 SOUND
61 FOR W=l TO 11:NEX W
71 POSITION II+A,A:PRINT ','
lIB NEXT A
III FOR A=111 TO 250 STEP 5
121 POKE 711 A:POKE 712,A
131 SOUND 1,A!8125-A/ll:S0UND 2,251-A,4,25-A/II141 FOR W=l Tu W
151 NEXT A
161 FOR W=I TO 1 STEP I:NEXT W

That program includes two styles of sound effect (and the one you are more used to on
vision, using POKE 710/2). First is the 'fall' of lines 30/50/fJIJ/I00, and second is the
'explosion' given by 110and 130-150. No doubt you'll be able to use versions of both for
your own needs. I'll close with a few more effects you may wish to explore.

Rocket-launch

FORA = 250TO 100STEP -1
SOUND I,A,8,A/10-10
SOUND 2,225,4,A/10-10
FORW = 1TO 25: NEXTW
NEXT A

Car crash

FOR A = 0TO 15STEP 0.1
SOUND 1,100,8,A
FORW = 1TO 5: NEXTW
NEXT A
FOR A = 15TO 0 STEP -0.2
SOUND l,(J0,8,A
NEXT A

81

Siren

FOR A = 0TO 1 STEP 0
FORB = 200 TO 75 STEP-1
SOUND 1,B,10,10
NEXTB
FOR B = 75 TO 200
SOUND 1,B,10,10
NEXTB
NEXT A

SUMMARY
I've spent time in this chapter on the following keywords (listed here, as usual, with any
useful short forms):

COLOR (C.)
DRAWTO (DR.)
END
GET

OPEN (0.)
PLOT (PL.)
RND
SOUND (SO.)

Of course I've spent most of my time on the use of SOUND to produce beautiful effects
from the TV speaker. The SOUND statement takes four numbers after it, these being
Channel (0-3), Pitch (255-0), Timbre (0-15) and Amplitude (0-15). In particular, I've
put before you methods of using sound to produce random 'tunes', some kind of 'music',
and special audio effects.

DO IT YOURSELF
The best way for you to explore the power of Atari sound is to try your own ideas on the
basis of the ones you've met in this chapter. Programs 23, 26, 27, and 28 are most useful
in this-regard. In each case there is plenty for you to try in order to extend what I've said.
With Cynth, for instance, you could add sharps and flats, explore the use of the keys at
left and right of the keyboard to change octaves, and try making keys on the top row act
as 'stops' to affect timbre perhaps. And then you can add pretty screen colour flash
routines as has been done in a couple of programs in this chapter.

82

H)U518 PlOI

Near the end of the last chapter I brought you face-to-face with COLOR and as you
guessed, its use is complex. It is complex, so get stuck straight into Program 29, and then
we'll take it from there. I'll also use the opportunity of going thoroughly into the RND
and looping tricks used-so I'll separate the notes not concerned with graphics colour
effects.

Program 29: Tour ofHanoi

11 6RAPHICS 3
21 FOR W=1 TO 51:NEXT W
31 SETCOLOR 4,4111:COLOR 3:PLOT 1,I:DRAWTO 1,21:S0UND 1,51,11,11
41 FOR W=1 TO 4wl:NEXT W
51 PLOT 2I,I:DRAWTO 21,21:S0UND 2,111,11,11
bl FOR W=l TO 411:NEXT W
71 PLOT 3B,I:DRAWTO 3B,28:S0UND 3,151,11,11
BI FOR W=1 TO 411:NEXT W
91 COLOR 2:PLOT 17

t8:DRAWTO
12,28

III PLOT IB,I:DRAW 0 13,21
111 PLOT 22,I:DRAWTO 27,21
121 PLOT 23,I:DRAWTO 28.21

W
151 FOR C=1 TO 3:S0UND C,I,I,I:NEXT C
Ibl FOR 60=1 TO 211
171 SETCOLOR 1 RNDII)115 RNDIIII15
IBI SOUND 11,11
IBI RE" II Sort this out, despite perils of upside-daMn SOUNDing! Very nice eff
ect, •..
191 NEXT 60
211 FOR 60=111 TO 251
211 SETCOLOR 4,RND1111151RND1111115-60/171221 SOUND' 60,1,25-60/11
231 SOUND 1:60+5,4,25-60/18
241 SOUND 2 60-5 B25-60/18
251 SOUND 3:255,',25-60/11
251 RE" If Nice sound effect here too
261 NEXT 60
278 FOR C=I TO 4:SETCOLOR C
281 FOR N=I TO 1 STEP I:NEX I

I use RND quite a lot there for special effects, so here's a thorough account.

RND(0) gives a number, roughly at random, between 0 and 0.999... The zero in the
brackets has no meaning, but one of the quirks of Atari BASIC is that there must be a
number in those brackets. Thus RND(57.839 .17.1) has just the same effect. A zero is
easiest! Test the effect of RND with this command:

FOR A = 1 TO IS:? RND(0): N.A. (1)
83

(Recall? is short for PRINT, and N. for NEXT.)
Then if you want, you can try different numbers in the brackets. Even A willwork here!
Of course, each time you use a RND command like that, you'll get a different set of

numbers. After all, the result is supposed to be random. (In fact, however, it isn't truly
random, but it is rare that one needs to worry about that.) Most uses of RND are to
produce a random whole number between zero, or one, and some limit. To display a
random whole number between zero and twelve, for instance, use

PRINT INT(RND(0) * 12)
The function INT chops off the decimal fraction part of the number it works on. Try it:

FOR A = 1TO 15: ? INT(RND(0) * 12): N.A. (2)
You get a series of numbers between zero and eleven inclusive. Not from 0-12, as the
highest value possible is INT (0.999 ... * 12), which iseleven. This will do the trick, then:

FOR A = 1 TO 15: ? INT(RND(0) * 13): N.A. (3)
Or this, if you want a number from one to twelve inclusive:

FOR A = 1 TO 15: ? INT(RND(0) * 12) + 1: N.A.
Here's a routine, on the same lines, that models fifteen throws of a die:

FORA = 1TO 15: ?INT(RND(0) * 6) + 1: N.A.

(4)

(5)
Now let's see what I've done in Program 29 with RND.
Lines 170 and 210: SE.C, RND(0) * 15, RND(0) * 15
The first number ofa SETCOLOR instruction refers to the colour register (and I'll come
back to that in the main text soon). It's the other two numbers that matter now. They set
the colour and brightness in tum (see Page 46); each needs to take a whole number value
between zero and fifteen inclusive. Really then I should have used INT(RND(0) *
16)-compare command (3) above. In fact you do not need to use INT here-if
SETCOLOR finds a non-whole number, it rounds it off to the nearest whole number. So
if (RND(0) * 15) gives the value 14.8, SETCOLORwill take the value to be 15.
Thus the use of RND within SETCOLOR statements has much more logic than usual

(except for that silly need to put in (0)!).
Line 180: SO.0,(250 - GO) - RND(0) * 50,10,10
What I wanted in this GO loop (lines 160-190) is a series of random beeps gradually
rising in pitch. In this case the first SOUND number and the last two are no problem.
(Recall SOUND C,P,T,A in the last ChaPTA!) I'm using channel 0, and looking for
pure fairly loud tones. So it's the second SOUND number we're concerned with now,
the one dealing with pitch. Straight away I remind you of a major problem with Atari
SOUND coding-the higher the pitch number the lower the pitch. (That's what I meant
about upside down SOUNDing in line 181!)
First, then, the RND(0) * 50 bit. This gives a random number in the range 0-49.999....

I take the value obtained away from (250 - GO), getting a number in the range 249 to
199.000000001 when GO = 1, and in the range 50 to 0.000000001 when GO gets to 200.
SOUND, like SETCOLOR, turns a number with a decimal part into the nearest whole
number, so I don't need an INT here.
Got it? Okay, it iscomplex, but this is the sort of effect you want to be able to put into

your programs, isn't it? After that I guess it's not too hard for you to follow what's going
on in lines 220-250 as GO in the second loop runs from 100-250. After all, these lines
have no RNDs to cause extra brain-hurting. We get a nice explosion effect. Some ofthis
mental gym work does hurt my brain. I like it! It took me about ten minutes to get line
180 right, for instance. Great fun!
The main part of Program 29 was to give you a chance to play with COLOR, PLOT,

and DRAWTO in Mode 3. PLOT plots a point in a graphics mode, DRAWTO draws a
line, and COLOR affects the colour ofthe point or the line. No problem? Well
First thing is that what you need to do in the different graphics modes (in other words,

Modes 3 to 15 and their derivatives) depends on the mode. Secondly the way COLOR

84

and SETCOLOR relate is not straight forward. Well, did you expect it to be? 'The last
shall be first', so I'll look at work in Mode 3 before going through the door to the upper
modes.

MODE 3
Using PLOT (PL.) and ORAWTO (DR.) to mark points and draw lines in the graphics
window (the main part of the screen) is dead easy. Fully clear your Atari by switchingoff
then on, and try these commands in turn.

GR.3

C.2
PL.10,15

OR.15,10
OR.25,10
OR.35,35

Screen goes all black except for the blue text window, in which
READY appears.
No effect seen.
Yellow square appears ten character positions across and fifteen lines
down.
'Line' of yellow squares goes from there to 15,10.
Horizontal yellow line.
Yet another line, and ERROR 141('gone off limits').

Try your own. But then, you really know all the ideas here, don't you? Program 25,
Concrete Cat's Cradle exposed them on Page 79.
To summarize-inMode 3, you can use PLOT x, y to make a square appear at point x,

y in the graphics window. The limiting values are 0,0 (top left); 39, 0 (top right); 0,19
(bottom left); 39, 19 (bottom right). ORAWTO x, ygivesa 'straight line' of squares from
the last point used to x, y. Ifyou use ORAWTO without having visited any graphics point
before, the starting point of the line is not fixed. Often it is 6, 3, but the actual site
depends on what has happened.
Figure 8.1 shows the Mode 3 screen. It's very much the same as that of Mode 1 in

practice, except that the bottom four lines only are for text now, the rest being the
graphics window.

01234567 8 9101112131415161718192021222324252627282930313233343536373839-o
1
2
3
4
5
6
7
8
9
10
l'
'2
13
14
15
16
17
18
19
20
21
22
23

Figure 8. J Mode 3 screen layout.

As a little aside, why don't you try the effect ofPRINT# 6 inMode 3? You recall that in
Modes 1 and 2, this lets us put coloured text above the Mode 0 window. Ah, no text
now-Mode 3 is pure graphics! Apart from the text window. Mode 19 (3 + 16) has no
text window at all, of course.

85

Still, the use in GR.3 of such commands as PR.#6; "Shiva for eva!" does show one
thing-that the squares that appear in the graphics window can have different colours.
Still, you guessed that from Program 29 (whose PLOT and DRAWTO statements
should now be clear).
What then of colour in Mode 3? Let's start with the new version of the table I did

showing the colour registers in the text modes. Table 8.1 deals with Mode 3's colour
registers, there are five as before.

Table 8.1: Mode 3 colour registers

Register Usage

fJ plotting
1 plotting
2 plotting
3 not used
4 background

Start-up value

orange
yellow
blue (as text window)

black

SETCOLOR, you recall, changes the values of the colour number held in these storage
boxes. SE.R,C,B puts colour number C, brightness B, into register R.
At the moment we should have a black 'paper' for the graphics window. That's

handled by register 4, so mess around with SEA... for a while. SEA,9,4, for instance,
will make all the screen the text window colour. (I like that effect-I'm not keen myself
on a text window that differs in colour from the main area, though it does have some
uses.)
It's not just hat-makers who regret the fact that few people wear hats in these modern

times. I do too. If! thought you'd be wearing a hat now, I could say 'hold on to your hat'.
That's because it's now time to bring the keyword COLOR on to the stage.
COLOR lets you choose which register controls the PLOT and DRAWTO squares

that follow its use. As Table 8.1 says, you can plot and draw in any of three colours.
Select from your palette with COLOR. Here's the bit where you need to hold on to your
hat. ...

To get the colour in Register 0 use COLOR 1.
To get the colour in Register 1 use COLOR 2.
To get the colour in Register 2 use COLOR 3.
To get the colour in Register 4 use COLOR 0. (Register 3's not used.)

No comment....
I'll go through all that again. Say you have the urge to draw a red line from top left to

bottom right of a purple Mode 3 graphics window. The steps are, right from switching
on, as follows:

1. GR.3-to enter the right mode
2. SEA,6,8-screen goes purple except for frame (still black) and text window (still

blue-true)
3. SE.0,3,6-put a darkish red colour value into Register 0
4. COL. I-say you're going to use Register 0
5. PL.0,0-plot the starting point of the line
6. DR.39,19-draw the rest of the staircase, I mean line

R6

Bonuses:

7. SE.2,6,8-makes text window match rest of screen
8. SE.0,13,10--changes Register 3, and therefore the line, from red to yellow
9. SE.l,0,0--darkens the text in the window
10. PRo"End of practice"-adds a sort oftitle in the text window

Got it now? You can have up to four colours on the screen, and I include that of the text
window. The values in the colour registers O-2 and 4 control these-and you control
those values with SETCOLOR Register, Colour, Brightness. Use COLOR 1, 2 or 3 in
advance of any PLOT and ORAWTO work. The statement tells the micro that you wish
to use the colour in Register 0, 1 or 2 respectively. Plot a point x columns along and y
rows down with PLOT x, y. Draw a line between the last point visited and x, y using
ORAWTO X, Y. Stay within the screen boundaries to avoid ERROR.
Some other points arise from what I've said in the last few paragraphs.

1. Once you have put a value into the colour register with SE. (or some other way), it
stays there until you change it, or until you switch off the micro. Colour effects in
Mode 3 therefore depend on what has been done before you enter the mode. In
practice it is thuswise to set your colour register values each time you changemodes.

2. I implied that you can PLOT and ORAWTO in background colour, telling the
micro you want to do so with COLOR°(= access colour register 4). What's the
point of that, you ask! Well, by plotting in background colour you erase what was
there before. Try this, for instance, as direct commands in GR.3:

C.l
PL.0,0
OR.39.19
C.0
OR.0,0

(C. = COLOR)

Okay, I've been lazy: you can do it better-but you get the idea. And my laziness
also makes the point that ORAWTO does not give a line starting with the starting
point, but starting from the starting point. See?

3. The lines drawn with ORAWTO in Mode 3 are hardly what one would call fine
straight lines. The word staircase does in fact describe them very well. How do we
get round that problem? The answer is to go to a different graphics mode, and thus
increase what we call the 'resolution' of graphics work. Resolution gives a measure of
how close points can be plotted and how fine the lines drawn are.

After you have played as much as you wish with the material in this section, we can go on
to extend my last point.

MODES5AND7
First the good news. Pretty well all I said in the last section about Mode 3 applies to
Modes 5 and 7 as well. The bad news isn't really bad-it follows from the fact that these
modes offer better and better resolution, so you can plot smaller and smaller points and
draw finer and finer lines. So the screen graphics area is no longer 20 x 40.
What I need, therefore, are layout grids of the two modes. Here they are, in Figures

8.2 (Mode 5) and 8.3 (Mode 7). As before, add 16 to the Mode number to get a
text-window-less version, with the bottom four lines replaced with, respectively, eight
rows of 80 points and sixteen of 160.
The best way to see the changes you need to make iswith Program 30. I have made the

program up out ofthe ten steps used above to explore Mode 3. Put as a program you can
go through as often as you like, and make what step-by-step changes you wish in any of
Modes 3,5, and 7. I've used GOSUB/RETURN again, you'll note-clearly better than
other methods.

87

o
o

j
40
rows

BOcolumns 79

Figure 8.2 Mode 5 screen layout.

o

j
80

160columns

rows

79

Figure 8.3 Mode 7 screen layout.
of Modes 3,5, and 7. I've used GOSUB/RETURN again, you'll note-clearly better
than other methods.

Program 30: Mode explore

10 DIH GOON$(I):LET GOON=IBBH
20 GRAPHICS 3
21 REH If Or 5 or 7
30 SETCOLOR 4,6 8
31 REM ff Purple screen
40 LIST 30!31:60SU8 GOON
50 SETCOLOK B3,6
51 REM If Put dark red in Reg.0
60 PRINT :LIST 50,51:GOSUB GOON
70 COLOR I
71 REH If Prepare Reg.0 for useas PRINT :LIST 70,71:GOSUB SOON

88

98 PLOT O,0
91 REM *f Plot line's starting point
180 PRINT :LIST 90,91:GOSUB GOON
110 DRAWTO 39,19
III REM ff Draw line
120 PRINT :LIST 110,III:GOSUB GOON
130 SETCOLOR 2 b,B
131 REM ff Match window to screen
148 PRINT :LIST 138,131:GOSUB SOON
150 SETCOLOR 8,13,10
151 REM ff Change ReQ.8 colour
Ib8 PRINT :LIST 158,151:S0SUB GOON
170 SETCOLOR 1,8,0
171 REM ff Darken text in window
IB0 PRINT :LIST 170,171:GOSUB GOON
190 PRINT :PRINT :PRINT,' That's it"
200 FOR W=0 TO I STEP 0:NEXT W
990 STOP
991 REM ff Protects sub-routine: good habit tho' not strictly needed in this ca
se!
999 REM ff Sub-routine here
1880 PRINT 111'More';
1010 INPUT tiuuN$
1828 RETURN

Really, I don't think I need to say more, do I? You can explore as you will. That was an
easy section. Will the othermain graphicsmodes be as simple to pick up? Well, yes....

MODES 4 AND 6
First the good news. There's nothing new to practise here. Mode 4 is set up like Mode 5
and 6 is like 7. And of course the corresponding higher siblings relate in the same ways.
They differ from the ones explored in the last section by allowing only two colours on the
screen at once rather than four.
Why use Mode 4 (or 6) rather than 5 (or 7) then? The reason is that, as the Table on

Page 44 shows, doubling the colour power leads to a near doubling of the memory taken
up by the micro for its own purposes. Sowe'll have to use the even modeswhen we're in a
long program and need to do some plotting without pushing storage needs too high. You
won't have to do that for a while unless you are using an Atari 400. Here are the colour
registers' data for Modes 4 and 6.
Table 8.2: Modes 4 and 6 colour registers

Register Usage Start-up value

0 plotting orange
1 text brightness
2 window colour blue
3 not used
4 background black

As before, use SETCOLOR to change the contents of a register, and COLOR 1 (to get
Register 0) orCOLOR0 (to get Register 4) to select your plotting colour. (Recall we plot
in background colour, COLOR 0, to unplot something.)
Really, then, Modes 4 and 6 are simpler than 5 and 7. Fair enough, they have lower

numbers.

89

MODES
Well, after all that, we'll be able to take Mode 8 in our strides. (Though, note that if your
Atari is a lot less than spanking new, you can't get Mode 8-not enough memory.)
As with the even number modes we've just looked at, 8 lets you have only two colours

on screen. For a change though, the colours are those of (a) the border (Register 4 as
you'll guess), and (b) the rest. 'The rest' includes the text window-so at last we have a
mode in which text window and plotting patch have to be the same colour. Register 2
therefore handles the colour of all this. (We're used to Register 2 for the text window
paper colour, after all.)

Table 8.3: Mode 8 colour registers

Register

f,f
1
2
3
4

Usage

not used
text and plotting brightness
screen colour
not used
border

Start-up value

blue

black

As before, SETCOLOR etc, etc. I'm sure you get the use of SETCOLOR by now. Alas,
I can't say the same about COLOR-in Mode 8 there's something a bit perverse.
As usual, you dig out and dust off Register 4 for use with plotting in background

colour. But this doesn't affect text printing as you might expect (which is good). A bigger
but is that you use COLOR 1 and not COLOR 2 to get back to normal after using
Register 4.
Perverse, OK, but no real problems there. All I need to say now about Mode 8 is its

resolution. I'm not going to drive Shiva's artist potty with all the little squares, so Figure
8.4 gives the data more simply. I suggest you get hold of some graph paper for your rough
work of plot plotting.

-- 320 columns- 319

11 192
160 rows
rows (Mode

241
1

159 f-----------------------,----------j
Usual text-window No text window

(Mode 241

9(J

L-- ----' 191

Figure 8.4 Mode 8 screen layout.

Mode 8, then, gives us the chance to plot tiny points, just big enough to see, and to
draw fine lines with the smallest staircase effect. What you lose is colour, but colour is
not needed in many Mode 8 uses. (There are, by the way, advanced methods of getting
more colours in a Mode 8 display, but they are beyond the range of us in this book. Still,
there'll be some more on graphics in Chapter 17 where I'll bring you the joys of Modes
9-15.}.Here's a nice Mode 8 program to finish off with.

Program 31: Leonardo

10 6RAPHICS 24:SETCOLOR 1,0,0:SETCOLOR 2,10,10:SETCOLOR 4,10,4:COLOR I:REM tt S
et up screen
20 OPEN 1114,01"K:":REM tt Prepare keyboard for RETURN-less inputs
30 LET Y=85:REM tt Start at screen centre
40 FOR 60=0 TO I STEP 0:REM tt Set up REPEAT/UNTIL loop
50 PLOT X,Y:SOUND I,Y,10,10
60 SET It Look for key press
70 IF AND X>5 THEN LET X=X-I
80 IF K=42 AND X<314 THEN LET X=X+I
90 IF K=45 AND Y>5 THEN LET Y=Y-l
100 IF K=61 AND Y<186 THEN LET Y=Y+I
101 REM *f All above fixes next plot point
110 IF K=83 THEN LET GO=2
III REM tt Detects S for STOP
120 NEXT GO
130 REM tt YOU can put what you like in here for the end routine: flashy sound

STEP 0:NEXT W
151 REM tt Keeps us in Mode 24

SUMMARY
In this chapter I've set out how to plot points (called pixels = picture cells by the elite)
and to draw lines in the graphics Modes 3-8. Here are the keywords used, with their
short forms:

COLOR (C.)
DRAWTO(DR.)
GRAPHICS (GR.)
PLOT (PL.)
POSITION (POS.)
SETCOLOR (SE.)

The point/line bit is not a problem as long as you recall the number of columns and rows
in the Mode you are in. See the table on Page 44.
A little more tricky is colour control. We use five registers, the colour and brightness

data in which we can change with SETCOLOR. Then you access the register you want
with COLOR, in most cases get at Register X with COLOR X + 1, unless X is 4 in which
case circle round back 'to COLOR 0.
Here's a table of the register functions in all the modes we've met. A dash means 'not

used'.

Table 8.4

Registers
Modes 0" 1 2 3 4

0/16 text ink text paper border
1/17 uppercase lowercase inverse inverse text screen

text text uppercase lower case
text text

91

Table 8.4 contd,

Registers
Modes 0 1 2 3 4

2/18 upper case lower case inverse inverse text screen
text text uppercase lowercase

text text
3/19 plotting plotting plotting plotting screen
4/20 plotting plotting screen
5/21 plotting plotting plotting plotting screen
6/22 plotting plotting screen
7/23 plotting plotting plotting plotting screen
8/24 (ink screen border

brightness)

DO IT YOURSELF
By far the best exercise you can give yourself with all the material covered in this chapter
is to write lots of BASIC programs to draw all kinds of pictures on screen. Start of course
with simple ones, and build up by letting your ambition match your ability. You may
prefer to avoid using a text window (though it's very nice for titles)-in that case make
the last line of your program the first one you write, for instance, 1000FORW = 0TO 1
STEP 0: NEXTW. This will prevent your super design from jumping back to Mode 0 as
soon as it stops.
Having done that as much as you wish, try to devise something of your own on the lines

of Program 29, or extend Program 31 (Leonardo) into, say, Mode 7, with features that
let the user change the colour of the 'ink' used and to add a title at the end.

92

9 Taking Command

In this chapter I'd like to discuss in some detail a rag bag of Atari features that should
make your 'program development' quicker and more splendid. I'll first revise and extend
the idea of commands.

COMMANDING HEIGHT
You'll recall, because you use them at your keyboard all the time, that commands are
instructions for the micro that you enter without a line number-the micro obeys at
once, but doesn't keep them in store for later use. We've used commands a lot in recent
chapters, not just for the obvious things like getting a program into the micro off tape
(LOAD...) or getting the machine to carry it out (RUN) but also to allow quick checks of
what happens if....
As far as I know, we can use all Atari keywords either as direct commands or as

program statements (instructions with line numbers in a stored program). (Don't you
think the use of LIST within Program 30 was neat? Not all micros can do that!) In this
section I'll look at the most useful commands other than the ones which involve the
cassette/disc interface. Chapter 5 deals with those.

BREAK
This is fairly drastic, but using the BREAK key is a command. It tells the micro to stop
whatever it's doing and let you take control again. I agree it isn't a command you type in
and follow with RETURN, but it would not really be of value if that were the case.
Drastic BREAKmay be, but it isn't as drastic as the BREAK feature on some micros.

Really the Atari BREAK key has the effect of ESCAPE in other machines-simply
causing the current instruction to 'abort'. There is no loss of screen display, nor are the
contents of the storage sites used at the time changed. When you press the BREAK key
you get a message on screen on the lines of "STOPPED... ". Really that is a good
message-the BREAK key simply stops what is gong on at the time. Ifyou use BREAK
within a program instruction, the keyword CONT(R) will allow work to resume pretty
well where it left off. Not quite where it left off, though-the micro will restart at the line
after the one it was on when stopped. In fact I find it hard to tell the difference between
the use of the BREAK by the person running the program and the effect of a STOP
statement within the program.
Rather more drastic than BREAK is using the (SYSTEM) RESET button. This has

the effect of BREAK plus GR.0-and with the latter of course comes a clear-screen
effect. Even so, the contents of memory are not disturbed. Again CaNT will let you
continue from the line after that in which the interrupt occurred.

93

94

I must say I like the Atari's 'soft' breaks given by BREAK and RESET. Their use is
very kind to programmers busily working on software development.

CLEAR SCREEN
Again some would query whether this is a command or not. All the same I think it useful
to put it here. You get the screen to clear when out of program mode by pressing SHIFf
and CLEAR or CONTROL and CLEAR. We have already looked at ways of getting
this effect within a program. Very useful. Very important.

LIST

LIST displays on screen, in line number order, the current program instructions. It does
so in Mode 0 only-therefore in the text-window in modes which offer that feature. (If
you think about it, you'll see that you cannot give commands to Atari when it is in a mode
without text window.) LIST has several forms, as you already know.

LIST displays the whole program.
LIST n displays only line number n (if it exists).
LIST n.m shows the program section between line n and line m (inclusive if they
exist).

To show the whole program up to, or from line n, you have to fiddle as I noted on Page
66. Thus to get the program listed from line n onward, use LIST n,3E4 or LIST n,32767 if
you have very large line numbers. In the same kind of way, get the first part of a program
using LIST 0,n.
All those last ideas are because when you have a program of more than a couple of

dozen lines LIST alone becomes rather cumbersome. It's not easy to find the bit you
need to look at nor is it easy to edit. (I'm coming to 'editing' in a minute.)
As you know, if your program has more than 21 lines it can't all fit on to the screen at

once. The list then 'scrolls' through until the last line appears. LIST such and such gets
over that. You may prefer instead to stop the scrolling action. That is done by pressing
CONTROL and 1. The same key combination lets the scrolling start again, but at any
stage, of course, you can use BREAK to halt the listing for good. (CONT does not allow
listing to resume.) Note that it's not wise to press BREAK or RESET during a scrolling
listing.

NEW

This is not new to us (ho, ho). Use it to remove the current program from memory and to
put all variable values to zero. Because of that last feature, NEW is really more drastic
than RESET. Even so, it does not return you to the Atari's switch-on state-the colour
registers used in graphics control, for instance, remain with any values you gave them
since you started. Use of BYE is the only way to lead to the virgin switch-on state apart
from really switching off and on again.
Don't get into the habit, by the way of switching the micro off and on again to clear the

store. This is the most drastic command of all. I admit that the practice shouldn't do any
harm if you have a standard model, but it could cause damage to equipment you may
later add on, and bad habits started now are hard to remove.
Some folk don't bother with NEW, but avoid their mistake! If you have an old

program and start entering a new one without using that command, and the new program
doesn't use exactly the same line numbers as the old one, you are going to get a crazy
mixed-up program-a combination of instructions from two programs in one. That
surely won't work the way you want it to!

PRINT
The user of PRINT as a direct command has a number of values. (The 'abbreviation'
"T", is most useful in this context, by the way.) I think there are three main uses of the
command PRINT-to do little sums, to be of help when 'tracing' bugs in your program,
and for trying the layout of PRINT statements.
I don't really think that any of those three uses need much further comment from me

here, but all the same, being a wordy person, I'll say a little about each.
Quite often when coding you'll have the need to do little sums. You may wish to work

out, for instance, the centre of the screen in a given mode so that you can use the right
values with PLOT. The command PRINT helps then, PRINT being followed by a
numeric expression ('the sum') and (R). Thus PRINT 2 + 2 (R) gives an answer 4 on
screen to save you working it out.
The second use of the PRINT command is for tracing bugs. I'll give you more on this

later, but for the moment let me just give you the basic tip. It is that if you find the
program not working properly, use BREAK and then PRINT to give the current value
of variables that seem to cause problems. For instance, if the program works fine up to
line 200, but has gone wrong by the time it gets to 250, put STOP after each line between
those two. Then when you run the program, each time it stops, use PRINT this, that and
the other in order to find the values of the variables concerned. Then CONTwill let the
program go on to the next STOP.
The third use of PRINTas a direct command is the most obvious one. Ifyouwish to lay

your program title neatly out in the centre ofthe screen, use POS.X,Y: PRINT "title" as
a direct command with different values of X and Y, until you find the ones that suit you.
Then you can put the posh version straight into the program.

RUN
As you know, this tells the micro to start carrying out the program currently in memory
from the statement with the lowest line number. It also sets all variable values to zero.
You may not want that; use GO TO n(first line number) instead if so. The commandGO
TO such and such is also useful in other cases:

1. When you want to start the program running from a different point than the first
line, to test how one part alone works, for instance.

2. When you have several separate programs in memory, and want to use any but the
first. Figure 9.1 shows what I mean.

Get Program I with GOTO 10(or RUN)
Program 2with GOTO 1000
etc.

Figure9.1

Some micros let you use RUN n in such cases. The Ataris do not. If for no other reason
than these, I hope that current distress about the use of GO TO in BASIC does not lead
to our losing it!

95

96

POKE
We use POKE... to place ('poke') a given numeric value into some site in the Atari's
store. We've met a number of uses of this already, and I'm not going to say much more
about it here. See Appendix 4 if you want more now. All the same it isworth pointing out
at this stage that POKE... , being often used to change the way the micro behaves, may
well be used quite often as a direct command.

SETCOLOR
Of all the other keywords we have so far met, I find I use SETCOLOR most as a
command. The form in which I use it tends to be SETCOLOR 1,0,0-to make the text
stand out better on the screen. But sometimes, when I get fed up with the usual weedy
blue background, I go for a change with SE.2, something else.

THE EDITOR'S CHAIR
Of late I've been feeling rather guilty at not having told you about how to 'edit' Atari
program statements. After all, I've faced you with thirty weedy programs of my own,
and all being well you've tried a good number of your own. 'Editing' is often a far simpler
and nicer way to correct errors in program lines than simply typing them out again.
Check through this section, therefore, best practising on a program in memory-and get
used to the techniques.
The full set of editing facilities-ways to change program lines directly-on the Atari

is fairly versatile. That makes it a bit clumsy if you are not careful.
The simplest form of editing concerns the complete removal of one or more lines of a

program. That's easy! You just enter each line number in question followed by (R). The
line now has nothing in it, so is nothing-and when next you LIST you'll see it's
vanished. But do be sure you want to remove the line before doing this! (If you're not
sure, and you want to see how a program works without a given line, insert REM after
the line number. REMember that REM keeps the material that follows in the listing, but
the computer ignores it. I'll tell you how to 'insert' in a moment.)
The same kind of technique allows you to replace an existing line with a new version.

Thus if line 510 is PRINT ANS$ and you want it to be INPUT ANS$ just enter 510
INPUT ANS$(R)-and this will now appear in future listings rather than the old form.
Fine so far-but it's a bit of a drag to go through all that if the old and new lines are

lengthy, or if small changes are needed to many lines. Then we can call on the Atari's full
range of 'screen editing' facilities. These use the four cursor-control keys-the set of four
left of RETURN with arrows in different directions marked on them. The cursor, as I
guess you know by now, is the solid square that tells you where the next print item will
appear on the screen.
Let's give ourselves something to edit. Enter a couple of fairly complex program lines.

Something like these:

10 PRINT "This line is wrong."
20 PRINT "This line needs copying:"

How can we correct line 10 to make it right? We may want it to read
10 PRINT: PRINT "Now this line is right."

We could do it by just entering the new version, but let's try screen editing. Keeping the
CONTROL key down, press the up-cursor key four times. The cursor dutifully moves
up screen to lie over the 1 of line 10. We can now edit line 10. Press the left-cursor key:
the cursor appears at the far end of the line. Press the right-cursor key: the cursor goes
back over the 1. These two last tricks show that you can edit any single displayed line,
whether it's a whole statement or not. That adds power to Atari editing.

It's not going to be easy for me to keep on saying hold the CONTROL key down and
press such and such. So during all the editing bit, please remember to hold CONTROL
down when using a cursor-control or editing key. (That habit comes quickly.) Now hold
the right-cursor key down for a second or two. The cursor skips along line 10 as long as
the key stays down. By this means, therefore, we can quickly move the cursor to any
point in the line.
Now I'll go through the steps required to change the first version of line 10 to the one

we want. Follow through this sequence of key-presses. I'm starting again.

Action (C is CONTROL and)
1. start
2. Citit
3.
4. C INSERT,x4
5. :PR.
6.
7. C INSERT,x4
8. Nowt
9.
10. right
11. (R)

Result (I show cursor site by =)
10PRINT "This line iswrong."
U' PRINT "This line iswrong."
10 PRINT This line iswrong."
10PRINT = "This line is wrong."
10PRINT :PR. This line is wrong."
10 PRINT :PR. "Ihis line is wrong."
10 PRINT :PR."= This line is wrong."
10 PRINT :PR. "Now t!!is line iswrong."
10 PRINT :PR. "Now this line iswrong."
10 PRINT :PR. "Now this line is
10 PRINT :PR. "Now this line is right:"

There! You've now used a sort of 'word-processor'. In fact, the way word-processors
work is rather like that, sometimes even simpler. Complex? Maybe. Easier to do than to
describe. Let me summarize.
The cursor controls can move the block cursor anywhere on the screen. When you

press CONTROL and INSERT a few times, that number of spaces feeds out from the
cursor in front of the next character. These spaces are what you need to insert new
characters typed in in the usual way. If you don't make space using CONTROL and
INSERT in this way, new characters typed will replace those in the original positions.
You can remove text in the same kind of way. Pressing CONTROL and DELETE a

few times makes the cursor appear to 'eat up' that number of characters after it, the rest
of the line moving to the left to make up. Try it-put the cursor back at the front of line
10, use the right-cursor key to put it in the correct place on the line, and use CONTROL
and DELETE to remove the ":PR." you just added.
Here are some other points about editing you can check through now if you wish, but

refer to later otherwise.

1. The BACKSPACE (BACK S) key, without CONTROL, moves the cursor to the
left. It wipes out characters over which it passes, leaving spaces instead. You'll rarely
need this, as the simple overwrite feature is quite enough.

2. You can use the TAB key while editing in the normal way to move the cursor a
number of positions right at a time.

3. SHIFT and DELETE wipes out the whole program line or command you are on.
4. Ifyou don't press RETURN after editing, but move the cursor elsewhere on screen,

the changes you made will not count. ALWAYS press RETURN after editing, even
if you are not at the end of the line-the whole program line, new version, will
replace the old one in the store.

5. Of course if you realise that your editing has gone wrong, don't press RETURN-
once RETURN is pressed, there's no way you can get the old version back without
re-editing.

6. I mentioned a few pages back the value of direct commands to explore the use of
keywords. Don't forget that you can edit direct commands in the same way as
program statements. All you need to do is to move the cursor on to the command
line, edit it as before, and press RETURN. The new version of the command will
work at once. This is very useful for finding out, for instance, how SOUND works as
you change the values of the numbers after it. Of course you can't do this if scrolling
has moved the command in question off screen.

97

7. When you press RETURN after editing a line the cursor will jump down to the next
program statement, command, or message on screen. Sometimes this leads to
strange effects. Don't worry in particular, if your cursor lands on the READY
message, and when you press RETURN you get ERROR number 6. This is just one
of the strange effects of Atari editing-it does no harm at all.

SQUASHING PROGRAMS
The Atari offers two main features for reducing programming time and memory. I've
mentioned both before: the first is that keywords can be used in short form; the second is
that more than one statement can appear on a single program line. The former saves
programming time and reduces typing errors; the second reduces memory take-up and
can make listings easier to follow.
The micro will accept abbreviated keywords when you are entering commands or

instructions. In each case, enter one or two letters plus a full stop instead ofthe full word.
Thus you can use PRo for PRINT, L. for LIST, and SE. for SETCOLOR. When lines
with abbreviated keywords are listed, those appear in the usual full form and take up the
usual amount of memory. The only exception to this iswhen you use the question mark,
? , for PRINT.
This is obviously a useful technique for the longer common keywords. However, it's

not worth the trouble of thinking about it in less common cases. Thinking is necessary,
as, with several dozen keywords on tap the abbreviation used cannot be just the first
letter.
Here's a list of the keywords we have so far met, and their abbreviated form. Those

marked with a dagger (t) are either not abbreviations or not worth using. You may think
the latter about some ofthe others too!

AND ANDt LIST L.
BYE B. t LOAD LO. t
CLOAD CLOA. t NEW NEWt
CHR$ CHR$t NEXT N.
COLOR C. OPEN O.
CONT CON.t OR ORt
CSAVE CS. PLOT PL.
DIM D. t POKE POK. t
DRAWTO DR. POSITION POS.
END ENDt PRINT PRo (or?)
ENTER E. REM . (true!)
FOR F. t RETURN RET.
GET GE.t RND RNDt
GOSUB GOS. RUN RN.t
GO TO GO. SAVE S.
GRAPHICS GR. SETCOLOR SE.
IF 1Ft SOUND SO.
INPUT I. STEP STEPt
INT INTt STOP STO. t
LEN LENt THEN THENt
LET (nothing!) TO TOt

To confuse the matter further (but to be complete) note also that you can use longer
abbreviations than those shown if you want-IN. or INP. (or even INPU.) for INPUT is
an example.
Multiple statements on a line is the posh term for structures like the following-I've

already often used this kind in fact:
100 FORWAIT = 1TO 1000:NEXTWAIT: REM delay

This contains three statements (FOR. .. , NEXT... , and REM...). There's nothingwrong
with putting them on three lines, but they can go on one, with a colon (:) to show the

98

boundary between them. And on one line, the micro needs less memory for storing
them, so can LOAD and SAVE them faster and carry them out more quickly. Also it's
easier for you to read the program.
It is logical to use this technique in cases where a small number of lines have one

specific task, as with the delay loop routine above. Do not overdo the approach, as it can
make a program less easy to read. However you can have up to about ten statements in
one line if you wish. It depends on their length. Here are more examples:

120 PRINT CHR$(125): FOR STAR = 1TO 912: PRINT "*";: NEXT STAR:
FORW = 1TO 1000: NEXTW: REM star-fill

240 FOR GO = °TO 1 STEP O: PRINT CHR$(125): POSITION 10,10:
PRINT "What is your name";: INPUT NAME$: IF LEN (NAME$) > 3
THEN LET GO = 2: PRINT CHR$(253)

(250 NEXT GO)

Did you really try that latter example? If you did, you will no doubt have come across a
major Atari problem for users ofIong lines. It is that the program line (or command) you
enter on screen must not be greater than three screen lines in length. If it is greater than
that, all kinds of problems can arise.
However, you can compress lengthy lines to make them fit by using these techniques:

(a) Avoid all spaces.
(b) Use abbreviated keywords as much as you can.
(c) Before entering your line use POKE 82,O. This changes the left-hand margin of

the screen display from column two to column zero-therefore giving you two
extra characters per line.

If you later list a line that you have cheated with in this way, you will find that it takes up
more than three screen lines-but that's no problem now. It's only in entry that that
length must not be passed. However never try to edit a program line that's longer than
three screen lines without reducing it to the limit.
The second example of complex multiple lines I gave above reminds me of another

useful space-saving trick. It is that more than one input at a time can be accepted. In
other words, with the Atari you can use structures like this:

40 PRINT "Please enter three numbers, with commas between them, and then
press RETURN."

50 INPUTNUMBER1, NUMBER2, NUMBER3

This is in effect yet another useful multiple-statements-on-a-line technique. Try it in
your programs, watch out for it in mine. (In fact I rarely use it!)
If things get really tight, and you are desperate to save every byte of memory to keep

your program running, you'll need to investigate the many other little magic tricks that
people use to keep storage needs down. Many such tricks depend on representing
numbers in strange ways that take up less storage space than the numbers themselves.
But I ought to close this section by reminding you that the higher the resolution of
graphics mode you use, the more memory the micro needs to support it. See the table on
Page 44.

STRUCTURE?
In some of the later chapters in this book I shall discuss methods of program design. If
you read around the subject of computing, you will often find the phrase 'structured
programming' in this context. Many people seem uncertain as to what structured

99

programming is, but this is not really the place to explain it. What structured pro-
gramming is not, however, is screaming if ever a GO TO appears in a listing. It's much
more than that, but it is true to say that a well-structured program uses very few such
statements, if any.
The essence of structured programming is, I think, preparing a block of code that is

easy for other people to follow as well as efficient for the micro. It is surely true to say
that if you program includes many GO TOs, then it is not going to be easy to follow-by
other people, by yourself a few months later, or by the micro. It may well work, and
appear to carry out the task set without problems-but it is not 'efficient'.
The programming language we use with the Atari, BASIC, is one in which line

numbers are essential. A very useful approach to structured programming is to prepare
your code as if no line numbers were required. Then you will have to do without GO
TOs, and therefore you will have a clearer, better set-out program. To summarize, then,
structured programming is not the avoidance of the GO TO statement. However, a
program in which GO TO appears more than a few times is not likely to be a well-
structured program.
I must make the comment, here, however, that the Atari's version of BASIC is not

one with which you can easily write structured programs. I've done my best throughout
the book, but sometimes, I admit, it's been a struggle.

ODDMENTS
I'm sure you know well two of the points I want to put in here-but here is a good place
to put them.

The DELETE/BACKSPACE key

Each time you press this, the last character in the material being entered or edited is
wiped out ('deleted'). Keep the key down to delete a lot of characters. Users of your
programs can use the same key to correct an input answer before pressing RETURN.
I wish I had a key like this on my typewriter; it's one of the nice things about text-editing
(word-processing)-easy to wipe out errors!

Repeat

If you hold any key down for more than about a second, you'll find its effect repeated as
long as the key stays down. This is particularly useful with cursor control and DELETE,
but works on all keys. Underlining, and printing patterns, become very easy.

FRE

I have been on about squashing program to save memory-FRE lets you find how much
you've got left. Like RND, it comes with the nuisance of having to have "(0)" after it.
Thus to find how many bytes of storage space are left empty, use PRINTFRE(0). FRE is
short for 'memory free', of course.

SUMMARY
We have now sorted out how commands differ from program statements, and seen in
detail how to use the main ones. I've taken the opportunity to tell you about editing and
to say something about program compression and program structure. The keywords
looked at are:

lOO

BREAK
BYE
CLEAR
CONT
CONTROL (CTRL)
DELETE/BACKSPACE
FRE
GO TO
INPUT

INSERT
LIST
NEW
POKE
PRINT
RESET (SYSTEM)
RUN
SETCOLOR
STOP

No DIY section this time-you just have to practise all the bits and pieces discussed as
you work on your own programs.

101

10 of Derision

Right at the start of this book (in Chapter 2), I went on about the fact that your Atari can
carry out millions of actions in a second. The point then was (mainly, anyway) that this
makes essential the 'stored program' concept.
Now it is time to think about decisions-the single most important aspect of any

programming system. Their importance lies at least partly in the fact that they let usweak
humans use the processing power of the micro with greatest effect.
There are two kinds of decision as far as we're concerned. Both make computers very

powerful and yet easy to program. Both allow the micro to carry out many actions
without too many instructions. I've called the two kinds 'implied' decisions and 'open'
decisions. (Note that I made the words up, but I'm not alone in thinking the idea crucial.)

IMPLIED DECISIONS
Without knowing it (I guess) you're very much used to implied decisions. They are
needed in the loop structures given by the Atari's FOR. ..NEXT statements. Look at the
program fragment that follows. Can you see that it expects (implies) that the micro can
make decisions?

FOR GO = 1TO 1000
(do something or other)
NEXT GO
(do something else)

You can see the structure in Figure 10.1 below; it's rather like Figure 4.1 on Page 38.
The decision part, in the diamond, is the crucial bit. Here's what the computer does:

1.
2.
3.
4.

Assign the starting value (1 in this case) to the variable 'GO'.
Do something or other.
Increase ('increment') the value (by 1 in this case).
Test whether GO has reached the final value (here 1000):
(a) if not (false) go back to step 2;
(b) if so (true) go on to do something else. Crucial bit

Each time round the loop, then, the computer carries out a test; it 'decides' what to do
next as a result of that test. The need for test then decision is implied in the loop structure
FOR. ..NEXT (and the REPEAT... UNTIL and WHILE... ENDWHILE you may meet
with other micros).
Here's a second program fragment that has just the same effect. This time the decision

is not implied-it is out in the open. That's why I call it an open decision. We have met
some examples of its main structure, IF ... THEN, already.

102

GO-1

do
such and such

GO-GO+1

Figure 10.1

110 LET GO = 1
120 (do something or other)
130 LET GO = GO + 1
140 IF A < 1000TIffiN GO TO 120
150 (do something else)

I hope you can see a couple of things here. First, do you agree that it is in effect just the
same as before? That, in other words, Figure 10.1 closely describes it? What this
approach does is simply bring the decision that was implied out into the open.
Something diferent may be slightly less obvious-I've had to use line numbers. This is

because of the GO TO statement-the micro has to know where to go. Programs
without GOTOs andthe need for line numbers are much 'nicer' than ones with. As I said
at the end of the last chapter, though, I do advise you to keep the use of GO TO as rare as
you can. That will help to make your programs better structured-easier to follow.

103

IF...THEN
We can use this open decision structure in many more cases than just for looping. (In
fact, why use it for looping anyway? FOR... NEXT ismuch better!) Decision-making is,
as I've said, very powerful, and one of BASIC's most valued structures. Here's how it
works:

IF (something is true) THEN (do this) otherwise don't.
As soon as the computer gets to the IF, it carries out the test 'is something (whatever it is)
true?'. IF it is true THEN it carries out the next instruction. IF not THEN it doesn't.
Two points increase the power of this concept in the case of the Atari (and some other

machines).

1. The THEN doesn't have to have GO TO after it: any keyword can do:
IF SCORE = 10THEN PRINT "Excellent!"

Indeed, after what I've said before, you'll know that I'd advise you not to use GO
TO after THEN!

2. The multi-statement approach works with THEN; use colons as usual:
IF SCORE = 10THEN PRINT "Excellent!":

LET BONUS = BONUS + 1:
GOSUB REWARD

We don't need all those spaces in that last example; I put them in to makewhat's going on
clearer. It is very easy to become confused in IF... lines. Figure 10.2 shows what that last
example does. Complex! Please take great care with IF Otherwise you'll spend ages
trying to find out why your precious program doesn't work properly. You have been
warned! To make matters worse, you don't actually need the GO TO before a line
number after THEN:

IF ANSWER < TARGET THEN 6f/1JJ
This is an "implied" GO TO, but it's just as bad as a real one!

TRUE

"ExcelIent"

FALSE

BONUS BONUS + 1

REWARD

Figure10.2

104

I'm really telling you all these last points so that you recognize them in program listings. I
strongly advise you that if you must use line numbers always put in GO TO rather than
implying it. Thus your programs become easier to read, less prone to error, and less hard
to check. And here's a final, very important warning ... This works:

100 IF ANS$="cat" THEN PRINT "Good!"
110 PRINT "Now try the next one."

Whatever the value of ANS$, the message "Now try ..." appears. This looks as if it
should do the same:

100 IF ANS$="cat"THEN PRINT "Good!": PRINT "Now try ..."
But the second message comes on screen only if ANS$ = "cat".
The colon multi-statement idea needs special care in IF lines. The reason is that in such

a line, this is what the computer does:

1. Carry out the test after IF.
2. (a) If the test gives a TRUE result, THEN carry out all the statements in the rest of

the line.
(b) If the test gives FALSE, ignore the rest ofthe line.

3. Go to next line.

Check that with my second "cat" example.
So-to repeat, yet again, it is very easy to become confused in IF... lines! I must say

that things get even tougher if you use IF... THEN IF...THEN.... See next section.
The program that follows should help you to understand the versatility-and dangers
-of IF. Enter it, try to predict the outcome of different values of A, and see if you are
right. If you are really keen, try to draw a diagram of it like those earlier in this section.
And if you are keener still, rewrite it so that it is much clearer.

Program 32: IF what?

1@ FOR 60=@ TO 1 STEP @
2@ LET A=INT(RND(@)*5)
3@ IF A=1 THEN PRINT 1
41 IF A=2 THEN 60TO 1@:REH *. OK, naughty'
51 IF A=2 THEN PRINT CHR$(125)
bl IF A(3 THEN PRINT A*I@@
7@ IF A=3 THEN PRINT "A=3"
81 IF A}2 THEN IF A(5 THEN FOR B=1 TO 1@0@:NEXT B
9@ IF A*A<21 THEN PRINT Aj" squared is ";A*Aj"."
11@ IF A=4 THEN SOUND 1,2,3,4:60TO 10
11@ IF A(3 THEN STOP
12@ IF A=5 THEN SETCOLOR 2,A,I@
121 REM *f Catch here.••.
130 IF A(}3 THEN PRINT Ai" less l "
14111 NEXT GO

MORE IFS ANDBUTS
Quite often we need an IF ... THEN IF ... structure, as I just wamedyou. We may need it,
but beware.... "IF it is raining THEN IF I have an umbrella THEN I'll use it." The
same is true of computing as ofreallife-"IF the score is ten THEN IF there've been ten
goes THEN congratulate and finish." Sometimes we may need even more complexity-
IF ... THEN IF ... THEN IF... THEN and so on. I shan't try to give an example; I'm sure
you take the point.

105

We can re-word the raining sentence like this. "IF it is raining AND I have an umbrella
THEN I'll use it." And we can do the same in BASIC: "IF the score is ten AND there've
been ten goes THEN congratulate... and so on."
The AND here is a useful keyword. Strictly its name is logical operator. Here's what

that last line would actually look like when coded:
IF SCORE = 10AND GOES = 10THEN PRINT "Full marks!": GOSUB STOP

Take a look at Program 31 (Page 91); this shows how this AND business works in a sort
of game. See what's going on?
Another logical operator of value in this context is OR. With care (again!) you can

compare it to the English 'or'-IF it is raining OR it is snowing AND I have an umbrella
THEN I'll use it." So-in BASIC:

IF SCORE = 10 OR SCORE = 9 AND GOES = 10 THEN PRINT "A good
score." ...

and so on.
But you can see the rocks of complexity again, can't you? Fortunately we can use

brackets to ensure the right priority for the computer if we wish:
IF (SCORE = 10OR SCORE = 9) AND GOES = 10THEN ...

or even (to be completely sure)
IF ((SCORE = 10OR SCORE = 9) AND GOES = 10)THEN ...

LET'S BE LOGICAL!
I just introduced you to the logical operators AND and OR-but I made no special
comment at the time because their use should have been clear enough. There are some
cases when one uses these and other logical operators where the use is not so clear. Let's
recap a little. You may have a line like this in a program, following an input:

LET FLAG = 0: IF A < 0 OR A < > INT(A) THEN LET FLAG = 1
This will, I hope you see, setthe 'flag' (make FLAG equal 1) ineither or both ofthe cases:

1. IfA is not positive.
2. IfA is not an integer (whole number).

There is another way we can arrange for the same thing to happen. Whatwewant is that
FLAG stays at zero only if the user supplies a positive whole number. In other words A
must be positive and A must be integral-ifnot, then the flag isset. That kind of thinking
gives the following version ofthe line.

LET FLAG = 0: IF NOT (A> 0 AND A = INT(A)) THEN LET FLAG = 1
Make sure you understand that this is just the same in effect as the original.
We gave AND, OR, and NOT the name 'logical operators' because they follow

certain rules defined in the science called logic. In general language we know that 'logic'
involves precise thinking. How we use these structures must be precise as well.
The examples we have met so far have not, I think, been too hard to follow. However

the crucial line in the next program is not so simple. Line 90 is the one to study.

Program 33: Fail safe

II DI" N$(5l:LET YES=I
21 FOR 60=8 TO I STEP I
31 SETCOLOR 2,YES,RND(8l fI2:SETCOLOR 4,15-YES,RND(8)fI5:SETCOLOR 1,1,15
3.1 RE" H 6ulded randol colours
48 PRINT CHR$(1251:FOR A=8 TO lYESf21+I:SOUND 1,258-RNDl8I fYESf5,18,18:NEXT A:SO
UND 1,1,8,1

106

41 REM II Guided randol sounds
511 POSITION Illllll: PRINT "Give Ie a nuaber !"
bll FOR 1=1 TO STEP Il:POSITION 2,II:PRINT " ":POSITION 2,II:INPUT N$:IF N$
}"ll" AND NW9999" THEN LET 1=2
71 NEXT I
811 LET N=VAL(N$):IF N<}INTiNl THEN GOTO bll
911 LET CASE=2:IF N=211 OR (N<=10 AND N}51 THEN LET CASE=I
110 PRINT CHR$(125):GOSUB CASEI101111:FOR W=I TO Illllll:NEXT W:PRINT CHR$iI25)
1111 NEXT GO
999 REM II Success laybe win'
Illllil LET YES=YES+I
1110 IF YES=5 THEN POSITION 15112:PRINT 'You win'":FOR R=0 TO I STEP 0:SETCOLOR
1 RNDillll15 RNDill)115:S0UND I,KNDi01 1255,lll,lll:NEXT R
1921 SETCOLOR 2,1215:SETCOLOR 4,412:FOR L=2 TO 22 STEP 2:POSITION 17,L:PRINT "Sa
fe!":NEXT L:FOR F= TO 911:SETCOLOK 1,Il,RND(Il)115:NEXT F .
1030 RETURN .
1999 REM II Failure
2110 IF YES}1l THEN LET YES=YES-I
21110 SETCOLOR 2!1l/0:SETCOLOR 4,1l11l:SETCOLOR 1111114:FOR A=1 TO 11111:POSITION RNDi0
)132,RND(Il)122:rR NT " FAIL! ":SuUND A
2020 SOUND 1,0,0,1l .
21130 RETURN

The aim of the 'game' is for the user to input non-negative integers (whole numbers)
until he or she wins having found enough acceptable ones. There are in fact seven such
here, and to win you must get five accepted ones in a row-you may like to extend the
program to punish the cheater who gives the same safe number each time!
There are a few fairly snazzy ideas around for livening up the display with colour and

sound-lines 1010, 1020, and 2010 in particular.
I introduce the program as an exercise in logical expressions-line 90. However such

expressions also appear elsewhere for various reasons, and I hope you'll look at those as
well.
With what input values would this program not 'fail'? I would like you to attempt to

work out the answer before you play the 'game' or let others have a go. The aim is to win
by finding out which numbers are safe to input. That means always being able to input
different, but valid numbers. However, as far as you are concerned, the aim is to help the
understanding of AND and OR. Try variations on line 90 for yourself.
That single line of tests can be set out graphically with this table:

Table 10.1

Input

N=20
5 ,;:;N,;:; 10
All other values of N

Result

SAFE
SAFE
FAIL

It could have been written in other ways with the same effect, and I am sure you can
adapt the program to make a much more exciting one yourselfwhen you have sorted out
the logic. I use it as an example to show two things-that we can combine logical
operators to cover various tests in a single statement, and secondly that we can combine
them to save quite a lot of memory.
Logical concepts, based on what is called Boolean algebra and the evaluation of

logical expressions, are of great importance in more advanced programming. This book
is not the place to go deeper into the ideas, but I would like to put before you one or two
that you may care to think about. Skip the next bit if you like!

107

Example 1

LETB=A=10
This is the same as LET B = (A = 10). What the computer has to do is to work out first
whether A = 10 or not. If it is, then the logical expression in brackets is TRUE, and the
Atari gives it the value 1. Otherwise the expression is FALSE and takes the value 0. So
now the assignment means the following:

IF A = 10THENLETB = 1
IF A < > 10THENLETB = 0

Or, more simply
LETB = 0: IF A = 10THENLETB = 1

Both are much less wieldy than the logical expression
LETB=A=10

Example 2

GO TO 100 + 100 * (A = 10)
This replaces

IF A = 10THEN GO TO 200
GO TO 100

Okay, I admit I shouldn't use GO TO-but you'll find such structures as this in other
people's programs even if you don't want to use them yourself. Again we use the fact that
the value of a logical expression is 1 if the expression is a TRUE statement, and 0 if it is
FALSE.

Example 3

100 INPUT ANS$: GOSUB TEST: IF FLAG THEN SOUND 1,255,0,10
Here "IF FLAG ..." means "IF FLAG = 1 ...". The subroutine TEST would set
FLAG = 1 if the test failed.

Example 4

IF this AND NOT that THEN PRINT the other.
This will print the value of 'the other' only if 'this' is non-zero and if the value of 'that' is
zero.
Note that the Atari can deal with such structures as PRINTX AND NOTY (I'll leave

you to work out what this does for various values of X and Y!). It can deal with ORNOT
too.
Everyone learning BASIC for the first time gets into some confusion because of the

new meaning of the '=' sign used in assignments, Thus the structure LET SCORE =
SCORE + 1 does not seem to make sense. By now, I hope, you have come to terms with
the assignment symbol, =, but I know that it is confusing. I suggest you always read it as
'becomes', or even 'takes the value of, rather than 'equals'. In the first example above
LETB = A = 10we have both uses of that symbol together.
All the same, hard or not, it really isworth your spending some time on trying to get on

top of logic.

108

CONCLUSION
IF is very important, and its use can be very flexible. However, that flexibility leads to all
kinds of possible dangers-TAKE GREAT CAREWITH IF!!
IF you are human, THEN by now you are probably getting a bit lazywith the projects

in these chapters. But please take some time over the ones that now follow, otherwise
you are likely to have many problems in future

SUMMARY
In this chapter we've explored these keywords:

AND
FOR
GO TO (GO.)
IF
LET

NEXT (N.)
NOT
OR
THEN
TO

Implied decisions, as in loops and logical statements, and open decisions have been my
main topic.

DO IT YOURSELF
1. Code the loop shown in Figure 10.3 in two different BASICways.
2. Write your own program like (but better thanl) Program 33.
3. Find out what 'truth tables' are. Now write a program which willdisplay truth tables

for logical expressions involving AND, OR, and NOT.

Value - 51

Value - Value - 1

PRINT
Value, Value t 2

Figure10.3
FALSE

109

II (jPI Ihp Pirlurp

I'm not going to tell you much in this chapter about how to program your Atari-as far as
using its BASIC is concerned anyway. But please don't skip these pages-truly this is
one of the more important chapters in the book. Here I shall attempt to give you at least a
few ideas about the concept of programming itself. Some of the ideas have appeared
before, in Chapter 6 especially, but that too is no reason to skip!
As you know, programming (or 'coding') means the design of a set of instructions, in a

form that the computer can follow, to carry out some given task. Most of the material in
this book concerned with the actual 'language' of programming is, in fact, to ensure that
the instructions in your programs are in a form that the computer can follow. All the
same, there are broader ideas that we need to bring in. If you skip this chapter-fair
enough, it's your book, yet I do think you'll be missing an essential ingredient in the
future successful growth ofyoiu hobby.

PLANNING

In Chapter 6, I discussed this in general. I said that the 'essence of good habits in
programming is planning'. Indeed I went further and said that 'good programmers plan
their planning'. I then introduced the idea of 'top-down development', and said that
program design aims at software that is efficient and friendly.
What top-down development entails, briefly, is to develop an idea, stage by stage, in a

logical kind ofway, so that by the time you need to do the coding itself, there is really no
problem. Well, not much anyway.... Here are the steps involved:

1. Have an idea for a program: suggest a problem that can be solved best with a
computer.

2. Work out, from the user's point of view, what the program should do-in other
words, define the problem.

3. Work out, from a programmer's point of view, how the software should do it-
define the solution. This stage involves producing what folk call an algorithm. An
algorithm is a solution to a problem, set out as an ordered set of logical steps. Itmay
appear as a series of plain-language sentences, or in graphical form (a "flowchart"),
or both.

4. Code the program section by section, with each section relating to a step in the
algorithm.

In a minute I'll go into this top-down development in detail, showing you how it works in
practice by designing a program from scratch. But first I think you ought to know about
those flowcharts.

110

PROGRAM PICTURES
Folk in computing use a special kind of diagram that shows graphically the action of
different parts of their programs. The diagram is called aflowchart. It is as important for
a programmer (a 'software engineer') to be able to develop and to read flowcharts, as it is
for an electrician (or an electrical engineer) to be able to handle circuit diagrams. Indeed
the concepts are very much the same. This is because in both cases:

1. The diagram can show anyone very quickly and efficiently what is going on.
2. A diagram is easier to check than the structure it represents.
3. A diagram is widely understood as a simplification of reality.

12V

Figure 11.1

Compare the circuit diagram in Figure 11.1with the actual circuit beside it. Which better
shows a reader who knows the rules what the circuit's about?
I also find it useful to compare the use of flowcharts with that of the well-known

London Underground (subway) map that appears in so many British diaries (even for
people who never go to London!). Such a map is far easier to use than a normal one
would be.
I must admit there are quite a number of different flowcharting standards. However

the variations appear mainly in advanced use. It is the concept that matters, and my
concept here is that you should be able to sketch out in picture form the structure of the
programs you develop. It's a useful skill, surely much simpler than writing/reading
algorithms set out aswordy sentences. I'll give you here the 'rules' and the corresponding
symbols. Not many rules, don't worry!

Figure 11.2

1. A flowchart should have only one start and (preferably no more than) one end. The
symbols we use are the START and STOP "boxes" shown in Figure 11.2.

2. The direction of flow is from START at the top to STOP at the bottom. The normal
direction of horizontal flow is towards the right. The symbols for flow are straight
lines joining the boxes concerned, with arrows at least where the normal directions

111

..

Bottom of sheet 1

B

A

Figure II.3

are not followed. Refer to figure 11.3; this also shows the 'connector boxes' that we
have to use if a chart covers more than one sheet of paper.

3. Each stage of the algorithm leads to a box in the flowchart. The symbols we use for
INPUT, OUTPUT, DECISION and any other kind of ACfION appear in Figure
11.4.

INPUT or OUTPUT

Figure 11.4

TRUE

DECISION ACTION

And that's it. Easy, eh? No? Now come on-look again at Figures 3.11 and 10.2 (for
instance). You see, I already used flowcharts in this book and you didn't have any
problem with them then, did you? The only difference now is that I want you to start
thinking about drawing them yourself.
When I teach science (which is officially my job ...) and get on to circuit diagrams, I

give practice in two ways. Firstly, given a circuit description, prepare the diagrams;
secondly, given a diagram describe or prepare the circuit. My pupils and students need to
be very familiar with circuit diagrams. And it's just as true of flowcharts. They are very
useful indeed-so there are projects on them at the end of this chapter. But in what ways
are they so very useful?
Not so long ago-a fewyears-programmers had to develop flowcharts in great detail

before starting to code any of the program itself. This was because computer keyboard
time was so costly. In those days there were at least two stages of flowchart development.
First one would write an outline flowchart, showing in not more than a couple of pages,
the very broad progress of the project. Then one or more detailed flowcharts would set
out almost line by line what the program would have to do.

112

I think that most programmers now feel there is no need for detailed flowcharts. The
program itself should be very well laid out (structured), and quite clear to the casual
glance. Indeed some people go further than that and suggest that the outline flowchart,
too, is less than essential, but if it has to be drawn, it should be done after the program is
finished. That's up to you. Some people find flowcharts very helpful indeed to give them
a good mental picture of what the program is to do. Lots of us need mental pictures, after
all. What you draw doesn't need to be neat, but it does need to be clear. Cross my heart,
the flowchart habit will save you a lot of blood, sweat, and tears in the long run

TOP-DOWN DEVELOPMENT

Now, at last, I can set out that approach in a fairly concise way. Using the words I have
used above, here are the stages of sensible development of a program:

Stage 1

Stage 2

Stage 3

Have a brilliant idea ...
THEN break it down into concepts (modules).
Sketch the outline flowchart ...
Each box relates to a module.
Write the program sectionby section ...
Each subroutine relates to a box in the flowchart.

Well, that doesn't look very difficult--but I agree there is a much simpler way:

Stage 1
Stage 2

Have an idea.
Write the program.

However, life is rarely that easy! Program coding is much more like writing a letter of
application for a job than writing a letter to a friend-what comes out must be very
precise in the way it deals with its task. You must plan it. Ifyou are writing to a friend you
can of course get away wit' : things like "Oh, by the way ..." and "Well, anyway" and
"PS"-but in a program y.,u can't! Well, you can, but the end-product is not likely to be
a good program; more likely it'll be what we call 'spaghetti code'-a real mess! I would
like to show the above points by developing a fairly simple program using these three
stages. I'm afraid it must be a simple program, because I'm fairly short of space-and
that makes it rather a trivial one. But then, if it's short, simple, and trivial, it should show
more easily what I am trying to put across.

IDEAS TO MODULES
This is Stage I-have an idea then break it down into its modules. Program specification
is the posh name. The idea is:

"I want a program to convert a length input in metres to inches."
Already you should be able to see some sub-ideas (concepts) in that simple statement.
Here they are:

1. Accept length in metres.
2. Convert to inches.
3. Give the result.

This set of instructions would be quite enough if we were telling a reasonably mature
person what to do. Unfortunately micros are not (yet?) as clever as people, so if we're
instructing them we must be more precise:

1. Ask for a length in metres.
2. Accept a number; reject any non-numeric input and restart.
3. Work out the number of inches.
4. Give the answer.

113

That's getting much more precise, though of course no computer in the world (as far as I
know) will accept instructions even in this form. Still, before we get down to BASIC,
there are other things we ought to introduce. For one, in practice we want our programs
to restart automatically until told to stop, rather than stopping at the end of one run.
After all, the user is fairly likely to want to convert more than one length into inches, he
or she would not bother with a program to do the task only once. Also, in practice, it is
important that a program helps the user asmuch as possible-you know I describe this as
being 'user-friendly'.
The best way to get a program to restart until told to stop involves using what folk call a

rogue value. We program the micro to recognize this and stop, but to keep on going if it
doesn't find that value. I willuse the capital S for this particular purpose. S for Stop, see?

FALSE

TRUE

Figure11.5
114

Introducing these two ideas into our list of concepts gives us a final list of what I think I
can now callmodules. This list of modules is our algorithm. Here it is.

1. Clear screen and say what the program does.
2. Politely ask for a length in metres. Get input.
3. If input is S, stop with polite message.
4. If input is non-numeric, politely reject and ask again.
5. Convert to inches.
6. Give the result with a suitable message.
7. Pause and then restart.

MODULES TO FLOWCHART BOXES
And now we reach Stage 2. This is very easy-all we have to do is to express the above list
of modules in diagrammatic form, in other words as a flowchart. This must clearly show
the exact lines of flow as the program progresses. See Figure 11.5.
Please check that the boxes in this flowchart correspond to the modules listed above in

the algorithm. (It is, by the way, worth pointing out at this stage that program design is
never quite as precise as I may make 'it sound. Quite often one finds at flowchart stage
and/or when actually coding, that changes must be made to the list of modules. The
reason is that each next stage of program design takes more account than the last of what
a computer can actually do, while the first stage, the specification, ismost like a dream!)

CODING THE PROGRAM
This phrase means turning the modules/flowchart boxes into lines of program instruc-
tions in a form acceptable to the computer-Stage 3 of the development. (The noun
'code' is often used to mean computer programming 'language") If all has gone well so
far, coding the program should pretty wellbe a doddle. Our only worries need be how to
tum each module into BASIC, for we should be fairly sure that the modules relate
correctly to each other.
Our approach is to write the program lines that carry out the function described in

each flowchart box. Those lines can either be part of the main.program (in which case
they form a so-called open subroutine) or they can go as a separate chunk, a closed
subroutine. I've used closed subroutines in this book before (recall the keywords
GOSUB and RETURN), but I don't need to use them here. We should be able to test
the program as we go along, RUNning each section when coded.
However, before we finally get going on the code, it is good practice to set out a

'memory map' of the program. This involves allocating blocks of line numbers in
advance to at least the major parts ofthe program. Such a memory map willbe extremely
complex where large fiddly programs are concerned, for these will have many separate
blocks of closed subroutines and many separate open subroutines in the main program.
Our program is simple, however, so the map is as well-see it in Figure 11.6.

010 100 990 1000

Setting
Z

t:: Main program 0. Sub-routines
a::

CtI up 0 :::>
+" +" (if any)IJl en wa::

Figure 11.6
115

Notice that the main program itself begins at line 100, after the various initialization
(start-up) lines we may have to include. And I'm planning any closed subroutines to go
from line 1000.OK, we shouldn't have any closed subroutines here, but in practice, you
may want to dig some out of your subroutine library (see Page 66) so I'll leave them on
the map.
Here's the starting skeleton for the program then, note the free use of REM

statements.

Program 34: Minches (under construction-enter and test each block)

9 REM II Initialisation
1& PRINT CHR$(2531
11 REM II Buzz user who loads with RUN·C: •.. •
12 REM II Useful to end REMs with 9 or 1
99 REM II Main progral
989 REM II End lain progral
998 STOP
991 REM II BlocK accidental entry to sub-routines
998 REM II Sub-routines
1998 RETURN
1991 REM II Lest we

Module 1: clear screen and say what program does.

20 PRINT CHR$(125l
21 REM II Clear screen
30 SETCOLOR 1"jI4:SETCOLOR 2,b,0:SETCOLOR 4,2,4
31 REM II Resttul and eretty.
188 POSITION 4,5:PRINT HETRES T0 1 NCHES':PRlNT' ==============
=================.
111 REM II NB layout
118 POSITION 4,18:PRINT 'Give a length in aetres, and I'll tell you how lany i
nches it is.'
128 FOR W=I TO 1008:NEXT W
121 REM II Tile to read!

RUN-still no problems? Good!

Module 2: politely ask for a length in metres. Get input.

48 DIM 11$(91
138 POSITION 4,13:PRINT 'How aany letres'
131 REM II No, I've not forgotten Iy grallar'
148 POSITION 4115:PRINT "Please type a nUlber':PRINT 'and press RETURN•••••
Ib0 POSITION 1'f,13:INPUT 11$

RUN again to test how we are so far. In truth, there's not much chance of error yet! No
point in doing anything special with the INPUT bit-that can come later. Just press
RETURN. However, you may ask why a string input to get a number-well, wait and
see! I hope you find the layout OK, by the way-in particular, the trick I used in lines 130
and 160.

Module 3: if input is'S', stop with polite message.

150 FOR W=I TO 281:NEXT W:POSITION 4tI8:PRINT ·Or press S/RETURN to STOP.'
170 FOR L=13 TO 19:POSITION 8,L:PRIN • ':N
EXT L
188 IF "$="5" THEN PRINT 'S pressed: progral stopped.·:PRINT "RESET, RUN, RETURN
to re-start.·:FOR N=8 TO I STEP 0:NEXT W

RUN to test this, now-the program should 'blank out' the keyboard with the stopped
routine if you press the'S' key, but otherwise go to the STOPPED message. See what I
mean about being able to test as you go along in the top-down approach?

116

Module 4: if input is non-numeric, politely reject and try again.

511 TRAP 2m
51 REM ff Implied 60 TO' - Sends control here on ERROR
1911 LET M=VAL(M$)
191 REM f* Convert to number if possible; else let TRAP, line 50, act.
1999 REM *t TRAP routine: Deals with non-nuleric inputs
2000 SETCOLOR 1,0,0:SETCOLOR 2.2,10:SETCOLOR 4,2,12
2010 POSITION 4.1o:PRINT 'Please enter numbers only"
2020 PRINT :PRINT 'Let's try again '
2030 FOR W=l TO 2000:NEXT W
2040 RUN

Sorry, but I couldn't avoid bringing VAL in here. (She's such a useful lass.) What VAL is
is a 'function' that acts on a string. If the string comprises the characters of a number,
VAL gives that number. Otherwise it leads to an ERROR. To handle the ERROR, I
used TRAP-see it in line 50. Line 50 sends the computer off to line 2(/1/1J if any ERROR
appears while the program is running. It clearly involves an implied GO TO!
RUN to test this feature. You should get the ERROR-trapping routine if you don't

enter a number at the input stage. Now do you see why I used a string INPUT earlier
rather than a simple numeric one?
That line 50, once tested, is going to be a hazard as the program develops. I mean that

any error that occurs will now be trapped by it. So use your editing facilities to insert a
REM after the line number. And don't forget to pull it out when your program is
finished. Now you can RUN and reRUN to your heart's content, checking that only
numeric inputs let the program proceed to the STOPPED message.

Module 5: convert to inches.

Easy-peasy, as my children say. Well, as long as you know that there are 39.37 inches in a
metre.

200 LET IN=39.37*M
201 ff Conversion at last

RUN to test if you like, but as this module/subroutine is pure processing, you won't see
anything new.

Module 6: print the result with a suitable message. Here we go:

220 POSITION 4,16:PRINT M;' metres is ';IN;' inches.'

Isn't this easy? RUN to test: reRUN to retest, again and again. Happy? Well, maybe
not. Here comes Deeson on his dashing white hobby-horse again: this time with yet
another digression.
Metrication arrived in Britain in a big way in the late 1960s. With it came all sorts of

problems. One problemwas what happened when uncertain sub-editors (so unlike those
at Shiva Publishing) tried to convert an author's 'feet' into 'metres'. Thus if the author
wrote "He was about six feet tall", the sub-editor would translate the sentence to give
"He was about 1.8288 m tall". True! Can you see the error? The result of a calculation
should not be much more precise than the data it used. 1.8 m would have been OK.
At this stage in our BASIC programming we'd find it too hard to advise how to restrict

the answer to say one more significant figure than the input (if you know what that means
anyway). So we'll just give the result to the nearest tenth of an inch and hope for the best.
We have to bring in another function-not such a pretty one as VAL, though. It is INT.

117

Recall we met !NT before, more than once in fact? We'll get to proper grips with this
function in Chapter 13 (if you can wait that long)-I'll just add the line we need:

210 LET IN=INT(10tIN+0.5)!10
211 REM II Round to one decimal place

That's a very useful trick for folk doing mathematical programs. Rounding to three
decimal places would have 1000 instead of each 10, and so on. Still, as I say, we'll deal
with that shortly.
Now RUN and test a few times to see how INT has improved the value of our

program.

Module 7: Pause and then restart.

The user-friendliest way uses the good old input-to-go-on idea:

60 DIM com (1)
230 FOR W=I TO 500:NEXT W:REM It Si.ple pause first
240 POSITION 2121:PRlNT "Ready to go on? Please press RETURN I "
250 INPUT CONh
260 RUN

We should be pretty well finished now-so remove the REM from line 50. Then RUN
and test again as fiendishly as you like. Nothing should go wrong-after all, top-downly
we coded and tested each part!
So now we have a fairly good implementation of the original idea (though I admit that

original idea wasn't particularly fantastic). The program as it ended up above can
certainly be improved on, and it can certainly be made more complex and useful. But
remember that I included it only as a demonstration of the top-down development of
programs!
Figure 11.7, if such things turn you on, is a detailed flowchart of this program.

Compare it with the outline flowchart given before. Try drawing such pictures of your
own programs occasionally as an exercise. It's quite fun. Honest!
Bearing in mind all I've said about user-friendliness, I thought I'd do a quick check on

how much ofProgram 34 comes under this heading. First I removed the REMs, for these
are programmer-friendly, rather than user-friendly; then I roughly separated the user-
friendly statements from those truly essential to the program. I did it only roughly, but
found that the essence of the program requires well under 200 bytes, but adding
user-friendliness meant putting in well over 1000more.
Someone said that about 90%of any decent program would concern user-friendliness

-clearly that's not far out. Let me make a couple more points about program design/
development before I get back to coding itself again.
Firstly, I hope I have shown the need to test and test again throughout the develop-

ment process. No program is ever perfect, but it comes closer to perfection the more you
test and polish it. Top-down development allows testing to be made much more simple,
but don't think you can avoid it!
The second thing concerns those REMs I so bravely wiped out a few lines back. When

you build up a program that is not trivial, in other words that is more than a few lines in
length, it is crucial to keep some kind of record about what you are doing, how, and why.
The simplest way to do that is to include lots of REM statements in the listing. Then
when you SAVE your program, you save all those details too. On coming back later to
finish, extend or polish the program, you will have no problem in understanding what's
going on. If, however, your program is very long, those REMs are going to take up a
significant part of memory. Then they are not as useful as having detailed notes on
paper. Those notes should form part ofthe file documentation that we discussed on Page
67.

118

Message

FALSE

TRUE

Figure 11.7

Restart
routine

119

DO IT YOURSELF
No, don't worry, I shan't give you many specific exercises on this particular material; all
the same I do urge you to develop your expertize in top-down programming as you
develop your Atari BASIC coding expertize itself. You may care to do simple flowcharts
for some of your existing programs, or for some of those we have looked at in this book.
But the important thing, I think, is that you get into the right frame of mind!

1. Study the flowchart in Figure 11.8 and then describe the idea in words.
2. . .. and then, if you are keen, write a program to express it.
3. Prepare a careful outline flowchart of one short program III this book.
4. A week or two later, try to write a program based on that flowchart. Compare the

result of the original and decide how good your flowcharting and coding are!

"Total now"
Total

"after" GO "goes"

Figure 1l.8
120

12

Now that our Atari programs can include open decision-making, they can gain a more
complex structure. Indeed that's why I took time off just now to look at flowcharts. As
you know, because I've used the feature a number of times before, Atari BASIC has a
facility for keeping things simple in the more advanced programs we may now be
working on. This feature is the subroutine. Subroutines are of great value and I'm
delighted to be able to use them in the rest of the programs in this book without having to
say 'sorry' to you first.
A subroutine is any section of a program ('routine') which has a clear single purpose. I

have just explored the background theory in some detail (in the last chapter), so let me
just give a summary now. .
The most efficient way of developing a program is to break the first concept down into

a number of chunks. Once the task is complete we have an 'algorithm', in verbal or
graphic form, that describes how to solve the problem faced. We can use the word
'module' to describe either a written algorithm stage or a flowchart box.
Each one of these modules has one single function; we should therefore be able to

code it into a subroutine to go in the program as a whole. Figure 12.1 overleaf shows the
sort of thing that can happen. You should be able to see that each box in this f1owchart-
each module in the program concerned-should form a logical block in the final whole
program (routine). Anyway I spent quite a lot of time on this in Chapter 11.

10 1000
s d c d c c c d s
t 0 a 0 a a a 0 t SUB SUB SUB
a I I I I etc. 0 etc.
r a I b I I I c A B C

P
t A A B Ar t f

Figure 12.2

The word subroutine applies to a chunk of a complete program with a given job to do
that relates to a module in an algorithm. What most folk mean by subroutines are chunks
that appear in the listing apart from the main program stream. Figure 12.2 shows this.
What the main program then does is to 'call' on a subroutine whenever it is needed. We
call such subroutines 'closed'.

121

do this

do that

do a

Figure 12.1 Algorithm for all seasons.

TRUE

dob

Open subroutines, on the other hand, are those which appearwithin a listingwithout any
clear beginning or end. They still have a single function to do, they still relate to a given
algorithm module, and we still code them one at a time. Open subroutines are blocks
with a given task in the main program, or indeed within closed subroutines. I think
Figure 12.2 shows this as well.

GOSUB...RETURN
The way Atari BASIC deals with closed subroutines is (as far as I know) common to all
BASIC dialects. (Having said that, I must note that some other versions of this pro-
gramming language have posher methods of dealing with closed subroutines as well.)
We use two new keywords here. To call up a subroutine, GOSUB n is at our service, n
being the number of the first line of the subroutine. To tell the micro that the subroutine
is finished with, use RETURN. Control then goes back to the statement after the one
calling with GOSUB.
The approach has two major advantages. The first must be obvious-in a program of
much length you are likely to find that the same module has to be used several times (an

122

example is SUB A in Figure 12.2). Then it need appear only once in the listing, yet you
can call it as often as you want. That can lead to massive savings in program storage.
The second advantage ofthe closed subroutine is less obvious. It is that the effects of

the program chunk are particularly easy to check and correct without involving the main
program. This can save a huge amount of time and trouble. (This second advantage also
applies to work with open subroutines if you are particularly careful with your top-down
development.) Figure 12.3 shows more clearly what I mean.

G G
0 0 RS S
U Do U Now S E

Next
B this B do T T

0 Carry out task U sub-
2 and 2 such routine
0 that 0 and p R

0 0 such N (2100)
0 0

1 1A. -- a.
(a.
r

Figure 12.3

When the computer meets GOSUB n it stores in memory its current position in the
program, and flashes off to line number n. When the computer later meets RETURN it
fishes round in memory to find where to return to, and back it comes. It's just like using a
book mark to keep your place while you are looking at the pictures in the middle.
The section of memory that stores the curent position when you dash off to deal with a

subroutine (we call it 'the stack') can get pretty busy. This is because you can 'nest'
subroutines almost as much as you like-one can call a second, which can call a third,
and so on. Just as with nested IF statements, though, things can get tricky in practice-
you need to take care.
The closed subroutine is a jolly useful structure. Get used to it, especially-but not

only-when your programs need the same task carried out time and time again, Program
35 will do for your first example. Study it!

Program 35: Screen-611

9 REM ff Initialisation
10 LET FILL=IIBB:LET WAIT=15BB
liRE" ff Sub-routine addresses
20 SETCOLOR 110114:SETCOLOR 2,4,2:SETCOLOR 4,4,4
31 PRINT CHR$ li5)
4B 01" F$(IB):OI" N$(IB)
511 POKE 82,11
51 RE" ff Set left largin at edge
bB POKE 755,I:RE" ff Hide cursor
99 REM ff Main program
IBB LET 0=1:60SUB WAIT
1111 RE" ff Set planned delay (0 in seconds) before calling sub-routine WAIT
110 POSITION 2 II1:PRINT 'Please enter one character &RETURN!'
120 FOR 60=1 TO 2 STEP 0:POSITION 3,13:PRINT ' ":POSITION 2,13:INP
UT F$:IF LEN(F$)=1 THEN LET 60=3
121 REM.f NB Mug-trap
1311 NEXT 60
140 60SUB FILL
ISB'LET D=I:60SUB WAIT
160 PRINT CHR$(12S):POSITION 2jI0:PRINT 'What's your nase"17B FOR 60=1 TO 2 STEP 0:POSIT ON 19,IB:PRINT ' ':POSITION 18,10:
INPUT N$:IF LEN(N$)}3 THEN LET 60=3
171 REM f. Sililar lug-trap

123

188 NEXT GO
198 LET Ff=Nf:GOSUB FILL:LET D=I:GOSUB WAIT
200 PRINT CHRf(125l
210 POSITION 0,10:PRINT "Now give any set of characters you like!"
220 POSITION 2,14:INPUT Ff:GOSUB FILL:LET D=I:GOSUB WAIT
230 FOR B=0 TO I STEP 0
240 SETCOLOR 1,0,RND(0l t8:S0UND 1,50 10,10:LET Ff="tThank-you":GOSUB FILL
250 SETCOLOR 2,RND(0l fI5,8+RND(0)t8:S0UND 1,40,10,10:LET D=I:60SUB WAIT
268 NEXT B
261 REK if Typical flashy ending; BREAK to escape
998 STOP
991 REK ff Used only in developlent
998 REM ff Sub-routines
999 REK If FILL
1000 PRINT CHRf(125);CHR$(253l
1018 FOR A=1 TO 960!(LEN(F$)+I):PRINT Ff;' ';:NEXT A
1020 LET D=2:60SUB WAIT
1021 REM ff Nested sub-routines
1030 POSITION 0,0
1040 RETURN
1499 REM ff WAIT
1500 FOR W=1 TO 500fD:NEXT W
1510 RETURN
1990 RETURN
1991 REM ff Used only in developlent

Here are some points about the GOSUB... RETURN business that you should note.

1. You can use structures like this in Atari BASIC (but not in all others!):

PRINT "Please type 1,2,3 or 4 and press RETURN."
INPUT CHOICE
GOSUB CHOICE * 1000

This would need suitable subroutines starting at lines 1000, 2000, 3000 and 4000.
Each ends, of course, with RETURN. This lets your program go darting off in any
one of the four directions, depending on what the user chooses.

2. The keyword ON can give the same effect. Here's the corresponding chunk of code:

PRINT "Please type 1,2,3 or 4 and press RETURN."
INPUT CHOICE
ON CHOICE GOSUB 1000,2000,3000,4000

This approach is of value only when you find the maths too tough to let you use the
one described in the previous paragraph. That really implies that you didn't
structure the program properly before (with a memory map ...)! Otherwise there's
little use for ON, for as you see it takes up more space. Let me note at this point,
however, that you can also use ON with GO TO in just the same kind of way.

3. Both the previous ideas use a kind of implied GO TO. I mean we have to use line
numbers. After all my comments about using line numbers within programs, you'll
be pleased to know that the Atari does have a way of getting round this, though I
admit it's cheating somewhat. You can 'name' your subroutines. Here's how we
could do it with the same chunk of code as before:

LET NORTH = 1000: LET EAST = 2000: LET SOUTH = 3f!1/1tJ:

LETWEST = 4000 ...
PRINT "Please type I(N), 2(E), 3(S), or4(W) and press RETURN."
INPUTCHOICE

124

ON CHOICE GOSUB NORTH, EAST, SOUTH, WEST
999 REM ** CHOICE: NORTH etc

Ifyou need to renumber your program later, it may be that your subroutine starting
addresses must change. It is now easier to change them in a line near the start of the
program than before. This approach thus lets us program in a more structured way.

4. You can enter a subroutine in the middle if you have the need. Follow this fragment
through.

20 PRINT "Give a number between 1& 4.": INPUT NUMBER
25 IF NUMBER < > INT(NUMBER) THEN GOSUB 100
30 IF NUMBER = INT(NUMBER) THEN GOSUB 140

100 PRINT HI can work only with whole numbers!"
120 LET NUMBER = INT(NUMBER + 0.5)
130 PRINT HIshall take it as "; NUMBER; H."
140 etc.

Did you follow? The subroutine really starts at 100, but the first lines deal specially
with cases where a user didn't enter a whole number. Ifhe or she does enter a whole
number we don't want to use those lines, so we can GOSUB straight to line 140. This
is a useful trick.

5. Another useful trick is to have several exits from (several RETURNs in) a sub-
routine. But don't jump out of a subroutine with GO TO-that will clog up the
memory. (If you do do this, which you shouldn't, you are lucky-Atari BASIC is
fairly unique in having the keyword POP to help you out of a mess. If you pop back
to somewhere in your program listing using GO TO, which you shouldn't, make
POP the first statement the program meets. What it does is to clear from the stack
the address the subroutine should have RETURNed to. But again I say, very
strongly, you should not use GO TO to escape from a subroutine.)

6. Keep your closed subroutines well away from the main program. The best plan is to
put them after line 5000 (for instance) with STOP at line 4990 to prevent accidental
entry. When you've finished writing your program you should be able to take that
STOP out of the listing. This is because a really user-friendly program should never
come to a real end. (See Program 30 for a better way!) Ifyou do find finally that your
program does need a barrier between the main stretch and the subroutines, replace
that STOP with END. END causes the program to stop working but does it more
pleasantly for the user.

7. The higher a subroutine's starting line number, the longer it takes for the routine to
be found. This is because when the micro's told to GOSUB n, it starts at the
beginning of the program in its search for the line with that number. If you want
highest speed, you can do this instead:

10 GO TO 1000
20-990 SUBROUTINES, most often used ones first
1000 STARTOFMAIN PROGRAM

Slightly more ugly ways of doing the same thing involve asking the user to start the
program going with GO TO 1000 (instead of RUN) or using the START function
key (Page 172).

8. Some folk suggest that the first line of a closed subroutine should always be REM.
This is because in some versions of top-down development it is common practice to
code the main program first without working out the details of the subroutines.

125

Then a REM after a line number will tell you that the line is the beginning of a
routine (especially if you put more details after that keyword). RETURN a few lines
later is still of course needed.
Myself I don't do that, partly because I don't top-down develop in the same kind

of way, and partly because I often remove REMs from final versions of my pro-
grams. (This is to make them load and run faster.) As the Atari gives you an
ERROR message if you use GOSUB n (or GO TO n) where n does not exist, this
use of REMs is unsafe. Personally I find it better to put the REM statement that
describes a given closed subroutine at a line just before it starts.

OK? Let me summarize what we've had so far.

1. A subroutine is a section of program with a single function.
2. A closed subroutine is one kept apart from the main program, called when needed

by GOSUB n and closed by RETURN.
3. The main use of a closed subroutine is to carry out repeated tasks without having to

repeat the program lines.
4. A major subsidiary benefit is that you can GOSUB n as a command in order to test

the subroutine's workings as a single unit.

I suggest you keep your eyes open for the use of GOSUB... RETURN in programs in this
book and elsewhere. Each time you come across the feature study why it is used, and
how. But I shall give you some development work to do of your own on the subject in a
moment!

SUMMARY
In this chapter we have looked at the Atari's handling of closed subroutines. These are
the keywords met:

END POP
GOSUB (GOS.) RETURN (RET.)
ON STOP

I've also made some points about the use of closed subroutines in top-down program
design and structured coding.

DO IT YOURSELF
1. Write a BASIC program using GOSUB... RETURN to fill the screen with the user's

name in the colour of his/her choice on a background of chosen colour. Program 35
will give you a start if you need.

2. Select one or more of the programs in this book which use closed subroutines. Make
sure you know how or why they are used (as always), and draw a memory map with
control flow lines (like Figure 12.3 on Page 123) for one of the simpler ones.

3. You can animate pictures like this.

Program 36: Robot

9 REM It Initialisation
10 LET X=0:LET Y=0:LET DRAW=1000:LET UNDRAW=2000
11 REM tt See nalinQ of sub-routines here
20 POKE 755 0 -
21 REM tt Stop cursing
30 SETCOLOR 1,010:SETCOLOR 2,12,14:SETCOLOR 4,11,12
40 PRINT CHR$(IL5)
99 REM tf MAiN PROGRAM
100 FOR X=0 TO 20
110 SOUND 11255,0,10120 GOSUB DKAW
130 SOUND 1,O,0,0

126

140 FOR 11=1 TO 25:NEXT II
150 60SUB UNDRAW
160 NEXT X
170 60SUB DRAW
180 SOUND 1,10,10,14
190 FOR W=I TO"500:NEXT II
200 FOR Y=0 TO 18
210 SOUND 11150,4,10220 60SUB DKAII
230 SOUND 1,01°,0240 FOR W=I"Tu 20:NEXT W
250 60SUB UNDRAW
260 NEXT Y
270 60SUB DRAW
280 SOUND 1,80,10 14
290 FOR 11=1 TO"509:NEXT W
300 FOR FLASH=0 TO 1 STEP 0
310 SOUND I,B0,10,14:POSITION X+2,Y:PRINT 'Hallo!'
320 FOR W=1 TO 100:NEXT W
330 SOUND 1,010 10:POSITION X+2,Y:PRINT 'Hallo"
340 FOR 1I=I"Tu 00:NEXT II
350 NEXT FLASH
990 STOP
991 REK tl Needed only in developlent
998 REK tl SUB-ROUTINES
999 REK II DRAW sub-routine
1000 POSITION X,Y:PRINT '0'
i010 POSITION X;Y+I:PRINT ':':REK I Shift =
1020 POSITION X,Y+2:PRINT 'I'
1030 POSITION X,Y+3:PRINT 'ft"
1040 RETURN
1999 REK It UNDRAW sub-routine
2000 POSITION X,Y:PRINT ' ,
2010 POSITION X;Y+l:PRINT ' H

2020 POSITION X,Y+2:PRINT ' ,
2030 POSITION X,Y+3:PRINT '
2040 RETURN

Try this simple example and make up more complex animated routines of your own
in the same way.

127

IJ Our DO\,5

If you think about it for a moment, you will realize that the word 'computer' implies
something for doing mathematical calculations. My dictionary says that 'compute'
means 'to calculate: to number: to estimate'. It says that a 'computer' is 'a calculator: a
machine or apparatus, mechanical, electric or electronic, for carrying out especially
complex calculations, dealing with numerical data or with stored items of other infor-
mation'. Perhaps the definition I gave you in Chapter 2 is a bit clearer?
The first computers in the sense we use the word were certainly just programmable

electronic calculators. (And they weren't as good at the job, in many ways, as the little
pocket machines we can now buy for a couple of pounds.)
When I defined the computer in Chapter 2, I spoke of it as a data processor. In fact

whatever kind of data the computer processes, it all has to be represented in number
form (what we call binary numbers in fact), and all the processing consists of arithmetical
processes. Indeed I called the central processor the Arithmetic and Logic Unit (ALU) in
that chapter.
OK-that's not very relevant to us as users or as new programmers. But is is time to

find out a bit more about arithmetic in Atari BASIC. We've met quite a lot already, and I
hope it didn't worry you. Anyway, let's look at this little program. Enter, use, consider.

Program 37: Four-function calculator

10 GRAPHICS 2:SETCOLOR 0,0,0:0IM CONT$(I)
II REM II Matie 2 for a change: lath's can be colourful'
20 FOR 60=0 TO I STEP 0:PRINT CHR$(253)
30 FOR L=0 TO 9:POSITION 0,L:PRlNT Ib" ':NEXT L
31 REM II Easiest way to clear Mode screen!
40 POSITION 2,I:PRINT Ibj'PLEASE ENTER TWO NUMBERS"
50 POSITION 2,4:PRINT 16; 'return AFTER EACH."
b0 PRINT :INPUT NI,N2
bl REM II Must be Mode 0 for INPUT l hence use of Mode 2 not 1870 FOR L=0 TO 9:POSITION 0,L:PRINT fb;' ":NEXT L
80 POSITION 0,0:PRINT Ibj' ';NI H HjN2
90 POSITION 0 I:PRINT Ib"sul' NI+N2
100 POSITION i,3:PRINT IbjHdifl. HNI-N2
110 POSITION 0,5:PRINT Ib;'product' NIIN2
128 POSITION 0,7:PRINT Ibk;HQUotientl,NI/N2
I3i PRINT :PRINT :PRINT ' ETURIi to go on "
131 REM.I Note care in forlatting text window too'
140 PRINT :PRINT : INPUT CONT$
158 PRINT CHR$(125):NEXT 60

Note here, apart from the use of text in Mode 2 (and text-window), two uses of INPUT
met before only a couple of times. One appears in line 140-the use of INPUT to handle
the 'Press RETURN to go on.' feature.

128

Then in line 60, we have a double input. The message asks the user for two numbers
with (R) after each. In fact, as you may recall, it would also accept two numbers with a
comma between them.

ARITHMETIC
Anyway-the arithmetic. Program 37 showed simply how BASICs deal with the four
main arithmetic functions ('operations'): add, take away, times, and divide. Note again
the special symbols: '*' for times, 'l' for divide.
The Atari can do arithmetic with numbers between about -1096 and + 1098 (±2325) .

The smallest numbers it can deal with are ± 10-97 • Numbers are handled with an accuracy
of at least nine significant figures. If all that means anything to you-you'l1 realize that
the Ataris can do pretty tough arithmetic in astronomy and nuclear physics, for instance.
Well, maybe one of those is your interest. All I real1ywant to note here is that you can do
fair value calculator work with your computer.
We have also met a fifth important arithmetic operator, whose symbol is /\. The posh

name for the process this controls is-wait for it-'exponentiation'. I cal1 it 'raise to a
power', but that's a mouthful too. 3 raised to the power 4 (written 34) is 3 x 3 x 3 x 3 (=
81). We get iton screen with PRINT3A 4. Add this to the above program to let it also use
the power of power-raising:

125 pas. 0,9: PR.# 6; "power", N11\N2
Again, try it.
I hope when you were running this program, you tested it fully. What happens when

you input decimal numbers, negative numbers, zero, and so on? How does the micro
react at line 120 if N2 is0? Computers can't divide by zero-do you know why not? (Can
you work out how to use TRAP to stop the machine crashing if N2 is zero?) And-what
would happen if we had more complex sums ('expressions') to work out than those in
Program37?
Think, for instance, about this simple little problem ...

Two people each have three ball-points and two felt-tips.
How many pens have they in total?

OK, I know you can work it out in your head. But how do you do it? And, more to the
point, how do you tell your Atari to do it? Does this give the right answer (try it!)?

PRINT 2 * 3 + 2
I hope you tried it. I hope you got the 'wrong' answer. But computers can't make
mistakes, can they? What happened to the missing two pens? Try this then:

PRINT 3 + 2 * 2
After all, that's how you'd do it in your head, and it's how you would do it on most hand
calculators. Wrong answer still! A differentwrong answer.
So, there's a problem. It's not the computer's fault. The thing is that the machine is

trained always to multiply before it adds. So it goes

2 * 3 + 2 = 6 + 2 = 8 in the first case
and
3+2*2=3+4=7 in the second.

The posh term for this is priority. Multiply has a higher priority than add. Ifyou want to
break priority, as in fact we do here, you have to use brackets (). (Note thatthe Atari has
square brackets too, but they're for something else, and don't work here. Find them, if
you want, on the comma and full-stop keys.) So, to solve the case of the missing pens,
enter

PRINT 2 * (3 + 2)

129

and the computer goes
2 * (3 + 2) = 2 * 5 = 10.

Or you can use
PRINT (3 + 2) * 2

to get the same result.

IF YOU DON'T PUT BRACKETS WHERE lHEY'RE NEEDED, YOU'LL GET
lHE WRONG ANSWER. ... On the other hand, if you use them where they're not
needed, you get the right answer. So-if in doubt, put the brackets in. Here is the Atari's
priority list as we need to know it so far.

Highest

Lowest

(...)
INT
A
*, /
+,-

brackets
and other functions
raise to a power
times, divide
add, subtract

There are others in the full list, but we needn't worry about them yet.
Now, if you are not what you'd call mathematically inclined, you are not likely to want

to do too much in the line of sophisticated number-crunching programming. You have
my permission to skip the rest of this chapter, then-but please glance through the
projects at the end. One day you'll want to come back, I hope. But first. ...

An important note

Computers can't always do arithmetic with perfect accuracy, any more than humans can.
There are many cases in real life where we have to round numbers off for our con-
venience, as when working out the cost per gram of some supermarket item priced at 32p
for 5% oz! Inaccuracies in computer arithmetic often surprise people because they don't
expect them, as when, for instance, one finds a calculator gives 9/3 as 2.9999. (Early
Ataris are as bad as this sometimes!)
The reason for the problem is our good old friend, binary arithmetic. Numbers that

are held exactly in decimal (human form) are not necessarily held exactly in binary (the
computer works in binary), so the machine has to approximate them. I'm not going to go
into this matter in depth here, but do not be surprised if you sometimes find apparently
strange errors in what seem to be simple calculations. The cause is not a bug in the
computer chip, but a problem of binary arithmetic.
Most people new to computing find this problem for themselves-and then spend a

great deal of time trying to explore and explain it. Many even write to the computer
press, or even (!) phone me up. So, to avoid all that hassle-read this important note
again!

NUMBER-CRUNCHING

Right-if you're still here let's go on. What I want to do in this section is to develop a
number of important 'number-crunching' ideas through a short series of (I hope) useful
programs. If you find it unnecessarily hard going at any point, do feel free to start
skipping through until you meet the section on 'functions'-then try to get with us again.
The first of these programs, Program 38, is designed to produce multiplication tables

on demand. It is not specially novel-indeed, I think that everyone tries to do something
like this fairly early on when learning BASIC programming! I use it here to show you
how the various BASIC structures we have already met can be applied to computation.

130

Program 38: Tables

11 6RAPHICS I:SETCOLOR I,I,I:SETCOLOR 4,9,4
20 FOR 60=0 TO 1 STEP I
31 FOR L=I TO 19:POSITION I,L:PRINT to;' ":NEXT L
31 REM II Clear screen as In 37
41 POSITION 3,2:PRINT 10;"MULTIPLICATION":PRINT to;" =============="
SI POSITION 2,II:PRINT tOi,'please enter table number RETURNl"
01 PRINT :PRINT :PRINT :INPUT T
71 FOR W=l TO SII:NEXT W
Ba FOR L=a TO 19:POSITION I,L:PRINT 10j" ":NEXT L
91 FOR L=1 TO 11
III POSITION I,Lf2:IF L(11 THEN PRINT tOtH ";
111 PRINT to'L" tiles "T" is H'Lfl1211 NEXT L ,., , , ,
131 FOR W=1 TO SIB:NEXT W
141 PRINT :PRINT :PRINT :PRINT 'Again (0:no, l:yes}';:INPUT CONT:IF CONT THEN NE
n 60
141 REM fl Logic!
ISO FOR L=0 TO 19:POSITION 0,L:PRINT to;' ":NEXT L
100 PRINT :PRINT :PRINT :PRINT
171 FOR B=0 TO 1 STEP °
IB0 POSITION o,II:PR1NT 10;"bye-byel':FOR W=1 TO 150:NEXT W
191 POSITION o,II:PRINT to;' ":FOR W=1 TO IS0:NEXT W
210 NEXT B

Note, as usual, a number of display lay-out tricks-such as in lines 40,60, 100, 110, and
140. That last line also contains a touch of the logics-see Page 109. And the same line
gives you a look at a fairly common yes/no response routine. It's of value if you are short
of memory, have a numeric input check subroutine you can already use (I didn't), and
like the logical condition that it involves.
The next program is a bit more like number-crunching! Again it isn't very novel-

being once more the sort of thing that many people take on fairly early in their
programming development. It is important particularly for its use of the numeric
function INT, one we have already used a number of times,

Program 39: Factor

11 DIM T6T$(II}:DIK CONT$(I):SETCOLOR 1,0,0:SETCOLOR 2,4,II:SETCOLOR 4,4,0
21 FOR 60=1 TO 2 STEP B
31 PRINT CHR$(12S}41 POSITION 'f FACT 0 R1 SAT 1 0 Hf':PRINT' _

1 STEP I:POSITION 21,12:PRINT ' ':POSITION 2,12:PRINT 'What
nUlber, please"i:INPUT T6T$:IF LEN(T6T$)}1 THEN LET 1=2
51 REM II Mug-trapped nUleric input this tile
00 NEXT I
71 LET TST=VAL(TST$):REM ff Recall VAL??
Ba PRINT CHR$ (125) :POSITION 212: PRINT 'The factors of '; TST;" are:'91 FOR F=1 TO TST/2:IF TST=FI NTtTST/F} THEN PRINT F,
111 NEXT F:PRINT TST
110 FOR W=1 TO 20BI:NEXT W:PRINT :PRINT "RETURN';:INPUT CONT$:NEXT SO

What this program does is to find the 'factors' of an input number. That means those
numbers which divide into the 'target' without leaving a remainder.
The crucial lines here are just the loop oflines 90/100 in which each number is tested in

turn to see if it's a factor ofTARGET. Do you understand how this test works? Can you
also explain the limit ofthe loop (TARGET/2)? Check too, as ever, the formatting tricks
used at various points of the listing, and the brief 'restart' routine in line 110. (It's brief
because it maywell be that a screen is full of numbers that the user wishes to write down.)
The third program in this little suite is even more formidable mathematically. But I

guess you may well have come across the concept at some stage or other. It deals with

131

things called quadratic equations. These are expressions like ax' + bx + c = O.Here a, b ,
and c are numbers (called 'coefficients') and x is a variable. For any set of values of a, b,
and c there can be no more than two values of x that fit the equation. Those two values
we call the 'roots' ofx. In algebra classes at school we find them like this:

Root 1
-b + V(b' - 4ac)

x, =
2a

Root 2
-b - V(b' - 4ac)

x, =
2a

Now there's a couple of nice numeric expressions to get our teeth into! And here is
Program 40 to attempt the task. It has to display the roots of x for any input set of a, b,
and c. That is, if those roots exist-they don't always!

Program 40: In the quad

11 PRINT CHR$(1251
21 POSITION 11 2:PRINT .g UADRAT I C":PRINT " ================="
31 POSITION 2,B:PRINT 'To find the roots of·:PRlNT :PRINT "a(x*x)+bx+c=l"
41 POSITION 2,14:PRINT 'PLEASE ENTER COEFFICIENTS•••••
51 PRINT :PRINT ,'a = 'i:INPUT A
61 PRINT :PRINT I'b = 'j:INPUT B
71 PRINT :PRINT 'c = ": INPUT C
81 FOR N=1 TO 510:NEXT N:PRINT CHR$(125)
!I PRINT :PRINT 'The expression is:':PRINT :PRINT IAi'(X*X) + "iB;'X + 'iCi· = I
111 POSITION 6,9:IF BA2(4*A*C THEN PRINT "No real roots":FOR W=1 TO 1101:NEXT W
:RUN
111 LET Xl=INT((-B+S9R(BA2-4fAfC)/(2fA»)fI1011+1.5)/11000
121 LET X2=INT«(-B-S9R(BA2-4fAfCI)/(2fA))*IIBIB+B.5)/IIBBI
138 PRINT 'The roots are:':PRINT :PRINT ,Xl,X2
141 FOR N=1 TO 2110:NEXT N:RUN

The important lines in this context are 110and 120 (which is nice to edit from it). If you
can follow them, you have a good grasp of the Atari priorities list. These lines also use
the function INT to round off to four decimal places (see Page 133and the next section),
and the function SQR, used to find the square root of the number after it.
The square root of a number is that number which when multiplied by itself brings us

back to the first number. The square root of 9 is 3, because 3 x 3 (3') = 9. The square
root of a negative number has no real meaning, so cannot be worked out by the micro.
Line 100has the function of trapping the possible error and ERROR message that result
in that case. Of course I could have used TRAP instead, but as I have said before, the
danger with TRAP is that any error leads to the special action you work out.
Two numeric functions in one line! It's really time we looked at functions with care.

FUNCTIONS
Your Atari offers various 'numeric functions', which I shall discuss briefly in this
Section. A function is something that operates on a number-a numeric constant, a
numeric variable, or a numeric expression-to produce a new numeric result. The
number (or whatever) that the function acts on is called its 'argument'. Comes from the
Latin.
BASIC also offers a number of functions which concern strings. I'll deal with those in

Chapter 14 rather than here.
So-let's get on with the list of numeric functions; it's in alpha order, and I shall treat

each one the same, whether we've met it before or not.

132

ABS This function gives the 'absolute value' of the argument. In other words, it
ignores any sign. Thus ABS (-4) gives 4, as does ABS (4) and ABS(+4). We use it, for
instance, to convert what might be a positive or negative number to one that is definitely
positive. Examples are:

LET ERROR = ABS (RESPONSE - ANSWER)
IF ABS (GUESS - TARGET) 5 THEN PRINT "Not bad!"

A TN This gives the value of the angle, with the unit called radian, whose tangent is the
argument. Thus PRINT ATN(5) gives an answer of 1.373.... This means that the angle
whose tangent is 5 is 1.373... radians. If, like me, you are more used to dealing with the
degree as the unit of angle rather than the radian, enter DEG as a direct command, or a
statement early in the program concerned. DEG tells the Atari to come down to our
level and work as if in degrees all the time. RAD gets you back to the radian approach, as
do RUN, NEW, and RESET.

CLOG This does not have the function ofmaking your micro act like a dancer from the
North of England as you might expect. In fact it returns a value which is the 'common
logarithm' of the argument. Not so long ago everyone had to learn in great detail about
how to use tables of 'logarithms', but it's a dying art now. All the same, logarithms are of
value sometimes in scientific work.

PRINT CLOG(2) gives 0.3010 ...
Common logarithms (sometimes called Brigg's logarithms) are to base 10. Take a look at
LOG if you are into 'natural logarithms' .

COS This gives the cosine of the argument, assuming it to be an angle in radians.
(Unless you've used DEG before.) Thus? COS(0.5) gives 0.8775... , unless you did the
DEG bit, in which case you get 0.9999

EXP EXP returns the value of the number 2.71828... (called 'e' for short), raised to the
power of the argument. Should you care about such things. You can have values of the
EXP argument within the range -225 to +225. That's a pretty big range!

[NT INT gives the whole number ('integer') to the left of its argument on the 'number
line'. Try the following direct commands to test what it does:

? INT(X) , where X is each one ofa set like 1.2, 1.25, 1.8,0.1,0, and similar negative
numbers.

I hope you can see that INT(X) does indeed give us the whole number left of X on the
number lines. See the sketch in Figure 13.1.

I r-,
N ..-
I I ..-0 ..-
II II cill..- II..-
X' X I Xci X ..-
i=1I i= II i= II i= II

Z XZX Z X

--- -. • • •
-3 -2 -1 0 1 2 3 4

Figure 13.1 [NT on the line.

133

We can often use INT just like that. Indeed I have done so a number of times in this
book. However there are two particularly usefullNT structures that you should get to
know. I've used them both, but here we'll summarize.

1. We can use INTto convert a mixed ('decimal') number to the nearest whole number
rather than to the one on the left of it. Thus 1.2 should give 1 and 1.8 should give 2.
Here's the structure:

LET X = INT (X + 0.5)
Try it on a set of numbers as above, then refer to the number line sketch so you can
see how it works. This feature is called 'rounding', rounding to the nearest whole
number.

2. We can also use INT to round a mixed number to a value correct to a given number
of decimal places. To two decimal places, for instance (as when dealing with decimal
money) we want 1.23 from anything between 1.225 and 1.234999.... Here's this
structure:

LET X = INT (X * 100 + 0.5)/100
Test it out fully as usual. Adapt it to give a different number of decimal places.

LOG Many micros use LN for this (as do many peoplel). LOG returns the 'natural
logarithm' (logarithm to base 'e') of the argument. The argument must be positive.

SGN The value this returns tells you whether the argument is positive (giving + 1),
negative (giving -1), or zero (giving 0). Thus SGN(- 3) gives -1; SGN (3) and SGN
(+3) give 1. A use ofthis is in:

IF SGN(SCORE) < 1THEN LET SCORE = 0

SIN This returns the sine of its argument, assuming that to be an angle in radians
(unless you used DEG before). In DEG-mode my Atari gives SIN (30) as 0.499999999
rather than 0.5. This is in fact a rounding error (see important note on Page 130). Older
Ataris have this problem more often.

SQR As you found out in the last section, SQR gives the square root of its argument-
the number which, when multiplied by itself, brings you back to the argument. (Thus 4 is
the square root of 16, as 16 = 4 x 4.) As I said hefore, the argument of SQR must not be
negative-or, if it is, you get an ERROR. Note that SQR (X) works more quickly than
XA0.5. (In the same kind of way, X *X *X is faster than X1\3, and the same applies to
squaring.)

And that's a full list of the Atari numeric functions-those keywords which, acting on
a numeric argument held in brackets after them, return a numeric value. I must be
honest and admit that this is a fairly basic list of functions-many micros now offer quite
a lot more. All the same, with this basic list you can obtain many others by combining
them in suitable ways. For instance, if you want the tangent of an angle X, use
SIN(X)/COS(X). That's an easy one-there are more complex ones in Appendix 7, if
this kind of thing is your scene.
Really I suppose I ought to have included FRE and RND in the above list. They're not

quite true numeric functions in that their arguments are 'dummy' ones-any value will
do, and you get the same result. Even so, this is a sensible place to note them again,
though of course I've discussed both in the past.
What I mean by a dummy argument is that both these functions need to have a number

in brackets after them, but it doesn't matter what it is. I suggest you always put zero as
the argument ofFRE and RND.

FRE This tells you the number of bytes so far unused by your program and data in the
computer. We'd normally use this function as a direct command: ? FRE(0), giving the

134

amount of memory available (free). However, you can use the line
IF FRE(0) < 100THEN PRINT "watch out-you're running out of memory!"

RND This gives a (pseudo-)random number in the range 0 to 0.999999999. I've used
RND quite often before, and there's a lot about it on Page 79.
I'll close this section with a little program to give you some practice with numeric

functions, in this case angular ones. Program 41, Angle, displays on screen a table of
values of angles (in degrees and in radians) and their sines, cosines, and tangents. At the
start of the program, the user has to give the value for the first angle in the list (assuming
degrees). The table gives twenty lines of data, starting with that value, and increasing the
angle by 1 (degree) each time.

Program 41: Angle

10 DEG :PRINT CHR$(125l;"AN6LES':POSITION 2,9:PRINT 'Please give starting value.,
20 INPUT S
30 PRINT CHR$ (125); "degAIiGLErad Sine'! 'Cosine", 'Tangent': PRINT ' _,

K=S+L-2
59 POSITION 2,L:PRINT K
60 POSITION 8,L:PRINT INT(KI3.14159/18011000+0.5)/1000:REM II Converts to radian
5 to 3 siQniflcant figures
70 POSITION 14,L:PRINT INT(SIN(K}f1000+0.5)/100i
80 POSITION 22,L:PRINT INT(COS(KlI1000+0.Sl/1ii0
90 POSITION 32,L:PRINT INT((SIN(K)/COS(K})f1000+0.5)/10i0
100 NEXT L
110 PRINT'
120 POKE

SUMMARY
In this chapter I have taken a fairly hard look at arithmetical (numerical) data processing
with the Atari. I hope you had a hard look too.
We have met the arithmetical operators (+, -, *, /,) and the order of precedence

(priority) in which the micro deals with them-and with material in brackets and with
functions. You now also have some notes on the Atari functions and their use.
The keywords discussed in this chapter are as follows:

ABS
AlN
CLOG
COS
DEG
EXP
FRE
!NT

DO IT YOURSELF

LOG
RAD
RND
SGN
SIN
SQR
VAL

1. Produce a program giving angles in degrees from input values of trigonometrical
ratios. (Use the inverse trigonometrical function AIN, and refer to Appendix 7 for
ASN, and ACS.)

2. Turn Program 38 (Tables) into a good game.
3. Follow a study of Program 39 (Factor) with one of your own to list the prime

numbers up to some value you set. Prime numbers are ones with no factors apart
from 1 and themselves. This program, if you succeed, will take a long time to run, so
make sure you have a kettle to hand.

135

4. If you ignore air friction, you can say that an object falling towards Earth moves
faster and faster. If it starts from rest, after T seconds its speed will be 10 x T metres
per second, it will have fallen 5 x TZ metres. Develop an Atari program to accept
time of fall (T) and to display speed and distance with suitable messages.

5. Develop a felt-tipped pen program to solve questions like the one we looked at on
Page 129.

6. If you did Program 40, this one should be simple! Write a program to find y from
ay = bx + c, with a given input set of coefficients a, b, c, and various input values
of x. (The output data could be of use for plotting graphs and work with co-
ordinates.)

7. Write a program to accept a set of numbers, display them in order and show the
average (mean). Ifyou know about such things and they are of interest in your work,
extend the program to output mean, standard deviation, median and mode.

8. Devise a BASIC program to ask for and accept daily rainfall data and to display the
highest, lowest, total and average values for a month.

9. To how many decimal places can you make your Atari calculate the value of 'pi'?

136

14 5lrings

I suppose it could be-though I hope it's not the case-that you may be feeling that what
I've done so far is all somewhat mathematical. I'm afraid that if you do think that, there's
not much anyone can do about it-computer programming is rather mathematical in
concept. By that I mean that is has to use numbers and relationships, and has to involve
fairly careful logical thinking.
The following direct command (direct so it doesn't need a 'mathematical' line

number!), I agree, may not appear to be mathematical:
PRINT"Ataris make starry eyes."

All the same, that really ismathematical in that:

1. The computermust change each character you enter at the keyboard into a number.
2. It groups the numbers that result following certain rules-mathematical ones if you

like.
3. Those numbers move around in the micro following more such rules.
4. Mathematics, in a sense, is the process involved when the command iscarried out, or

when it is rejected because of an error.

The Arithmetic and Logic Unit (Chapter 2) is a mass of arithmetical circuits as far as its
action is concerned.
All the same, we don't need to think about all that, and in this chapter I'm going to tell

you about strings-and we don't need to be too mathematical here. Logical, though,
yes.

WHAT IS A STRING?
As you picked up long ago, a string is any set of characters. The characters in it can be
alphabetical letters, numbers, punctuation marks, symbols-anything you can get from
the keyboard. Thus "Atarls give you starry eyes" is a string. So is "I have an elephantine
memory.", and so are "3 x 6 = 18", "the year is/was 1984.", "What is your name?", "+,
(- ./G6a*Z", "24", and "0". All these are what we call string constants-that means
they don't change. We enclose string constants in speech marks (" ...") in writing and
when dealing with the computer. There is an interesting exception to the last point-
string constantsmust not have quotes when held in DATA statements. I'll come back to
that later, when I deal with DATA statements. (Also, as you know, you don't need
quotes when entering a string as an input, but we could argue over whether this is a
constant or not.)
This speech mark rule means that strings cannot contain speech marks. Try this, for

instance:
PRINT "Ataris make "starry" eyes."

137

The micro rejects it with one of its sweet little ERROR messages. Do you see why?
If you need to use quotes in a string, the easiest thing to do is to use the apostrophe:
PRINT "Ataris make 'starry' eyes."

That's OK, isn't it? (There are in fact complex ways to get double speech marks into a
string constant, but why bother?)
As well as having numeric constants (like 4), we have numeric variables (like

NUMBER, where NUMBER could be any number). In the same way, again as you
already know, we can have string variables. Here's one-NAME$ (say it 'name string').
The dollar symbol after a variable name shows that it belongs to a string variable. We've
seen how to use this in earlier programs. It's like this:

10 DIM Nl$(10):DIH N2$(10)
100 FOR 60=0 TO 1 STEP 0:POSITION 0.2:PRINT "What is your nale, Player 1

':POSITION 27,2:INPUT Nl$:IF LENIN1$)3 THEN LET 60=2
110 POSITION 0,2:PRINT " ':NEXT 60
120 POSITION 0,2:PRINT "Thank-you, "Nl$"'"
130 FOR 60=0 TO 1 STEP "And who are you, Player 2
':POSITION 25.8:INPUT N2$:IF LEN(NL$)3 THEN LET 60=2
140 POSITION 0;8:PRINT " ':NEXT 60
150 POSITION 0,8:PRINT "Thank-you, ';N2$;'"
160 FOR W=1 TO 500:NEXT W
170 POSITION 0,18:PRINT "Right, ';Nl$;" and ·;N2$;" .•.• ·:PRINT 'Are you ready?'

Each time you run this program, the values of N1$ and N2$ are likely to change-that's
what we mean by variables.
Line 10 in the above fragment reminds you ofthe need to DIM (or COM, exactly

the same) to reserve space in memory for the strings set in your program. Perhaps this is
the place to say a little bit about DIM, or, as I say, COM.
A string variable can be DIMensioned to any length you like, up to the maximum

available (a few thousand bytes). Sometimes there is a need for such long strings in fact.
Think of using your Atari as a text-editor (word-processor): all the text would be within
one variable. Once you have used DIM for a given variable name, any attempt to use it
again for that name is doomed to ERROR. The keyword CLR will allow you to
re-DIMension a string variable-but it empties the values of all variables in memory as
well. Best avoid CLR until your coding is pretty advanced. Keep your DIMs at the start
of your program where they will cause least problem.
There's a little bit of space saving you can use with DIMs if there are more than one to

set. Thus the first line in the above fragment could be written like this:
10 DIM N1$(10), N2$(10)

Atari BASIC has the following rules for 'allowed' string variable names. A string
variable name can be one or more characters. The firstmust be a letter, the others can be
only letters and/or numbers. The length can pretty well be as much as you like-but as
usual long names need care and take up more memory. Note that the letter(s) in a
variable name must be upper case (capitals). Keywords are upper case too, so be
wamed-a variable name should not be the same as a keyword. (You must not give
variable names the names of keywords with early Ataris. Later models are no problem,
but you'd best avoid the practice as it can confuse.) As with numeric variable names,
then:

1. You need a different name for each variable, unless there's no chance of overlap.
2. It's nice for a name to tell the reader something of its meaning (for instance,

NAME$), but:
3. Long names take up a lot of memory and can too easily be mis-typed. They can slow

the program down as well.
4. Use upper case letters and numbers for your variable names, and avoid names the

same as keywords.

Atari BASIC also has the same rules for using string constants and variables in PRINT
statements as for numeric ones. All that pas., semi-colon, comma,#6 stuff applies in

138

other words. As usual, try to layout messages with variables nicely on screen. See how
I've structured the PRINT lines in that fragment above, for instance.

STRING OPERATIONS
We can do all sorts ofthingswith numeric constants and variables. We can add, subtract,
raise to a power, multiply and divide. And we can use functions like SQR and SIN. Well,
we can (just about) add strings too, but the other operations do not have much meaning
and can't be carried out as such.
The posh name for adding strings is concatenation. This means chaining together, and

to understand how to do it you need to know about sub-strings. We'll deal with
sub-strings in the next section.
The logical operators all work with strings in just the same way as with numeric

quantities. I mean we can use all these symbols in IF statements:
< > <> <= >=

Thus we can compare strings.
But what does that mean-how can one string be 'greater than' or 'less than or equal

to' a second? Well, basically computers have inside themselves something like our own
idea of alphabetical order. What they base their ordering on is the Atari version of the
widely-used ASCII codes. Each character has a code, and what the micro does is to
compare the strings character code by character code. (It has to do the same with strings
used in variable names and as that takes time it's also another reason for using a short
name.)
Here's a summary of the main Atari character codes.

Table 14.1

Codes

0-31
32
33-47
48-57
58-64
65-90
91-96
97-122
123-127
128-154
155
156-159
160-250
251-255

Characters (standard, Mode 0)

CONTROL graphics
space
keyboard symbols
0-9
more keyboard symbols
A-Z
more keyboard symbols
a-z
assorted symbols
inverse CONTROL graphics
RETURN
control characters
inverse of 33-122
keyboard and control characters

Appendix 5 goes into this in more detail, and also gives the character codes for the other
text modes and the 'alternate' character set. Using these codes the micro can order
strings in the same way as we humans can. (Most of us) put names in alphabetical order.
Thus:

"ASMITH"
"A SMITH"
"SMITH"

<
<
<

"BSMITH"
"ASMITH"
"SMITHSON"

139

"SMITH1"
"SMITH"
"12345"
"$MITH"
"1234"

<
<
<
<
<

"SMITH2"
"Smith"
"SMITH"
"SMITH"
"124"

And so on. Please check that you agree with the above, using the Atari code list!
So, we can compare strings. So we can use program lines like this:
IF A$ < B$ OR C$ > = "Money" THEN LET D$ = FINISH$

SUBSTRINGS

A string is a set of characters, right? Sets have subsets, right? So strings have substrings,
and that's what this section is about.
As with subsets, we can define substrings as we wish. Subsets of the set of mammals

could be: domesticated and otherwise; aquatic and terrestrial; tiny, small, medium,
large, ginormous; and so on.
Here's a string: S$ = "a line of characters". Substrings could be "in", "h", " ".

"acters", and so on. We refer to any substring we want by its first and last character
positions. Thus:

S$(1,3) = "a I"
S$(3,8) = "line 0"
S$(2*2, 2*2+4) = "ine 0"
S$(LEN(S$)-3, LEN(S$» = "ters"

These structures work with string constants as well as string variables:
"Shiva"(1,2) = "Sh"

and
PRINT "Shiva" (1,3); "for ever!" (6,8) gives "Shiver"

"Shiver"? Yes, you may tremble-but I think that word in Scots means someone who
slices, and remember that string slicing iswhat we are doing here.
If the ending position is the end of the string, you can leave its value out. Thus:

S$(7, LEN(S$)) = S$(7)
S$(l) = S$(l,LEN(S$» = S$

But beware of making the start value less than 1 or the end value greater than the length
of the string, and don't make the end value less than the start value. Any of these can
happen in a program, if you don't watch out, when the values are variables or ex-
pressions. Each leads to ERROR 5.
We can also assign new substrings. Enter a value S$ of your own, and then use
LET S$(3,8) = "change": PRINT S$

Note that this doesn't insert extra characters, but replaces old with new.
Finally, on this subject, note that you can take a single character from a string by

putting the character position twice in brackets after the string name. Thus if S$ is
"Shiva", then S$(3,3) is "i".
The nearest the Atari micros can offer for adding strings together (poshly called

'concatenation') is as follows.

10 DIM sum, ,52$(10)
20 PRINT 'Please pass Ie a string .•.• ·:INPUT 51$:LET 52$=' far
30 LET SI$(LENISl$)+!l=52$

140

40 FOR 60=1 TO 15
50 FOR STAR=! TO GO:F'RINT '*"; :NEXT STAR:PRINT 51$
6\1 NEXT GO

Of course, if you only want to print out "ATARI forever" fifteen times when the user
enters "ATARI" in that program, you don't need to go to all the trouble of line 30. The
concatenation trick in line 30 is only for when you need to use the new string later in the
program.
Substring handling also leads to the next nice trick. It is for when you want a long string

to contain all the same characters. (You may need this for making patterns in a screen
display, for instance.)
Say you want a string, P$, to consist of76 "hash" (iF) symbols. You could do it with

the instructions LET P$ = "#IF .. , ##", but that will use a lot of time and trouble
and memory in a program. Try this routine instead.

10 DIM PW6i
20 LET P$='#':REH i* First character of the 76
30 LET P$(76)='I':REH ii Last one no"
40 LET PWi=P$
50 PRINT P$
60 REM *i In practice - OIHP$(76):P$='I':P$(76}='I':P$(2)=P$

If you can follow what that's doing-you sure understand substrings and slicing! But it
doesn't matter if you don't really follow it-it's a very useful trick.

STRING FUNCTIONS
In the last chapter we looked at various numeric functions. Things like SQR and INT,
these act on a numeric argument (constant, variable, or expression) to produce a
number. Thus INT(3.6) gives 3 and SQR(NUMBER) gives 2 if NUMBER = 4.
BASIC also has various string functions. We've already met a couple-LEN, which

gives the number of characters in a string argument, and CHR$(N) which returns the
character whose code is N.

LEN("Good morning!") = 13
and

LEN(NAME$) = 5 ifNAME$ = "Atari".
LEN is a string function that produces a numeric result. Really it's a numeric function for
that reason. Some other functions produce a string result, and those are the ones with a
their name. They are the ones truly called string functions.
Here's a full list of the functions which involve strings. There aren't many!

ASC This gives the Atari character code for the first character of the string argument.
Thus if the string S$ is "Shiva", then ASC(S$) = 83, because CHR$(83) is "S". If the
string is empty (S$ = " ") the function returns the value 44. Don't ask me why.

CHR$ This gives the character whose code (see above) is its argument. The value of
the argument N in CHR$(N) should be between 0 and 255, but values outside this range
do not lead to ERROR but simply repeat those within it. Some Ns give useful effects
rather than characters, thus in Mode 0, ?CHR$(125) clears the screen and ?CHR$(253)
buzzes the buzzer. Also try this:

?"I am the" ;CHR$(34); "Atari"; CHR$(34); "computer."
That solves a problem I mentioned earlier.

STR$ This sounds strange, but is really very useful. It turns the number that follows it
(its argument) into a string. Then we can use this as a string instead of a number. So

141

Press R

STR$(1984) = "1984". If, for instance, you want to print a long variable number,
BIGNUM, at the centre of line 5 in Mode 2, use this:

POS.9 - LEN(STR$(BIGNUM)) /2,5: PR.# 6; BIGNUM
Can you work that out? A trick of great value. The opposite of STR$ is ...

VAL This turns a string into a number (if the string contents are numeric). Thus
VAL("1984") = 1984. ERROR number 18 is your prize for usingVAL on a string which
does not contain the characters of a number.

It's not really a string function, but I'd like to tell you about GET at thisstage. We've met
it before, and it is a keyword that takes in a keyboard character and turns it into a
number. The number is in fact the Atari code of the character concerned. GET is better
than INPUT when you hope for a single keyboard character (and even more than one if
the program is suitable), and don't mind not having the prompt "T" on screen or the
entered character displayed. You do not need to press RETURN after typing the
character.
The little routine that follows could be part of a program, its function being not to

allow the program to go on until the user presses "G".

OPEN# 1,4,@,"K:"
FORA =@TOlSTEP@:GET#I,G:IFG=71 THEN LET A = 2
NEXT A

The first line there 'opens' the keyboard ("K:") for GETting. The GET statement itself
is in the middle of the next line, GET#I,G: meaning accept one character from the
opened channel (number 1, the keyboard) and call its code G. The rest ofthe routine is
simple enough. The next program gives one use for this keyword.

Program 42: GET behind me

9 REM ff This is a fori-filling progral
11 POKE 82,I:OPEN '1,4,1,'K:':LET 6ETIN=IIII:DIM K$(III),NAME$(3Il,ADRS$(SII,DOB
$(15)
11 REM ff Change left largin &Prepare for byte-sized keyboard ineuts
21 PRINT CHR$112S):PRINT 'P f RSON AL Df TAI LS FOR n :
31 DIM U$(41):LET U$II)='=':LET U$(4Il='=':LET U$(Z)=U$:PRINT U$.
31 REM ff Sub-string 'Iultiply' trick; see last Section
41 POSITION 1,18:PRINT U$'!' Type answers at white square,':PRINT '
fTURN at end of each,':PR NT U$
SI POSITION I S:PRINT 'NAME: ':POSITION 4 S:PRINT ':"SI REM ff line for rrrIiRg------------- , ,
bl LET X=S:LET Y=S:60SUB 6ETIN:LET NAME$=K$
bl REM ff Use 6ET sub-routinei note asignlents before and after
71 POSITION 1,II:PRINT ':POSITION 7,11:PRINT ':" -------------------
81 LET X=B:LET Y=II:60SUB 6ETIN:LET ADRS$=K$
91 POSITION I,IS:PRINT 'DATE OF BIRTH ':POSITION 13,IS:PRINT ':';
111 LET X=14:LET Y=IS:60SUB
III REM ff See pOMer of sub-routines: used again and again
111 PRINT CHR$112S):POSITION 13,2:PRINT 'S UWnA R Y':PRINT U$
121 PRINT :PRINT 'NAME: 'iNAMES:PRINT :PRINT 'ADDRESS: ';ADRSS:PRINT :PRINT 'DAT
EOF BIRTH: "DOB$
131 POSITION i 21:PRINT
141 FOR W=I TO'I STEP I:NEXT W
991 END
999 REM ff 6ETIN: Input sub-routine with 6ET
1111 LET KS=":FOR CHR=I TO 111:REM f Select lax length of input string
1111 6ET .11K:REM f Await key-press; put code into K
1121 IF THEN RETURN
1121 REM ff Detect RETURN key press'l Note sub-routine RETURN not always at end
1131 POSITION X-I+CHRIY:PRINT CHR$IK i
1141 LET K$ILENIKS)+1 =CHRfIK)
1141 REM ff Concatenation
IISI NEXT CHR

142

As well as showing you how to process the result of the GET statement (lines 1020, 1030
and 1040), I use the program to show you in practice a couple of points made in the last
section. They are the 'fill a long string with identical characters' trick (line30) and the
Atari form of concatenation (line 1040).
That program is well worth study, therefore, as a general routine using strings. It is

also quite important as an example if you intend to develop form-filling software.

SUMMARY
Here we have looked at strings-what they are, and how to handle them. I've told you
about substrings and string functions, and some uses of GET. The keywords met here
are as follows:

ASC
CHR$
-COM
DIM

DO IT YOURSELF

GET
LEN
STR$
VAL

1. Improve Program 15 by using suitable string functions so that once it has the input
string, it will produce screen after screen of variations on the pattern. Include a few
seconds' pause after each display. And include colour variations and sound as you
wish.

2. Write a program to print out on screen as much of the Atari's character set as you
can.

3. Devise a program rather like number 37 to utilize string functions.
4. Write a program which asks the user to enter his or her date of birth as a string of

digits, and then prints out the 12 times table for the number. The input should be as a
string, and fully mugtrapped.

5. Study Program A2 ... (at the end ofthe book) in the light of string-handling.
6. Convert the routine given on Page 142 for centring on the line into a closed sub-

routine. Then use that subroutine time and again within a program to print out a set
of titles etc. like the title page of a book.

7. Devise a version ofProgram42 of your own to use string operations and functions to

(a) accept items of personal data about the user;
(b) display the complete set of data neatly on screen.

8. Explore GET as a way of getting, checking, and using keyboard input. Add VAL if
you wish.

143

IS Dug in aRug

The story (myth?) goes that in the very early days of electronic computing, far less than
half a century ago, computer operation failures were often traced to the activities of
insects making their homes among the nice warm circuits. Alas, users of modem
computers no longer have that excuse for program failures. Coffee on the keyboard is
ourmain threat. Still, the use of the word 'bug', to mean an unknown cause of software
malfunction, remains. Here I would like to look very briefly at the process of 'de-
bugging', one of the last stages of program development.
In Chapter 11, and elsewhere, I have tried to describe a structured approach to

program development-the top-down modular approach. I have also noted that a
program written as a series of subroutines is much easier to test. That's because you can
test each subroutine on its own. In this chapter, I shall discuss debugging approaches
with a complete bugged program rather than a single subroutine.

A BUGGED PROGRAM
The program that follows, therefore, was not developed in a structured way. It contains
four major faults and a number ofminor ones. I'd like you to enter it-as you do this, by
all means look out for the faults. If you find any feel proud, but please do not correct
them!

Program 43a: BUGGED bugs

10 DIH BU61$(2):LET BU61$='t: u
20 DIH BU62$(2i:LET BUG2$=u>t"
30 DIH BUG3$!4i:LET BU63$=';==:"
40 DIH BUG4$(3):LET BUG4$='(O:"
50 GRAPHICS I:SETCOLOR 1,0,0:SETCOLOR 2,9,10:SETCOLGR 4,9,12
60 FOR BUG=I TO 50
70 POSITION RND(0l f20,RND(0i f20
B0 IF RND!0if4=1 THEN PRINT BUGI$:GOTO 120
90 IF RND(0)f4=2 THEN PRINT BU62$:GOTO 120
100 IF RND(0)f4=3 THEN PRINT BUG3$:GOTO 120
110 IF RND(0if4=4 THEN PRINT BU64$:GOTO 120
120 FOR T=I TO 120:POSITION T, T:PRINT U BUGS ":NEXT A
130 END

Entered? Don't RUN for a moment. First-can you see what this program is set up to
do?
Lines 10-40 define four bugs (small creature type) and 50 sets up a Mode 1 screen.

Then, from line fib, we print 50 random bugs at random screen sites. After that, we
display a diagonal title and stop.
Not a fantastic program-but does it work? Try it with RUN. And you get a bug-but

144

not an insect, rather one ERROR message-plus the title BUGS in the text window.
The ERROR report tells us of a fault in line 120. It's ERROR 13, and if you like you can
refer to Appendix 6 to find out what that means. But here's the line-can you see what's
wrong?

120 FOR T = 1TO 120: POS.T,T: PRo "BUGS"; N.A
I hope you can find, and correct the error yourself! (Maybe that's too hard a problem for
me to give you-there is more than one error in this line, we'll find....)
RUN again-to get a strange mix-up of "BUGS" in the text window, with not a sign of

a screen bug (insect) above. Still, there's no ERROR report this time-the program has
run happily to the end. But it hasn't worked as planned. (There's a useful lesson-a
program can work but not be correct!) For a start-no fifty insects. And why are the
BUGS titles in the text window?
Aha, we are working in Mode 1, and we need to use the Channel 6 instruction after

each PRINT statement. I'd forgotten that. All the PRINT statements designed to put
stuff on screen should have # 6 after them. Let's correct those. Thank Atari for the
editing routine.... Each oflines 80-120 needs this change.
The next time we RUN, we do seem to be getting somewhere. No insects appear, but

at least there's something of a diagonal line oftitles. But ERROR again-the same line,
but a different error number. Appendix 6 tells us that the message we get here means
that we've tried to print off the screen limits. Look again at line 120-ah, wait a
moment-that should be 20 not 120. A typing error, with a profound effect. 20 lines in
Mode 1, not 120! Line 120 thus becomes:

120 FOR T = 1TO 20: POS.T,T: PR.#6; "BUGS": N.T
But it still doesn't work-the title doesn't start at the top of the screen, and it isn't a

simple diagonal. And we still have that ERROR message. The former is one of the four
serious faults-can you explain it? Can you solve it? The other two are connected-they
show bad planning. There are twenty lines, but our title has six characters and there are
only 20 character spaces in a line. See what I mean?
To sort out all these faults, we need several changes to line 120still. Here is the final

version:
120 FOR T = 0TO 15: POS.T,T: PR.# 6; "BUGS": N.T

Did you think to get one ahead of me by using POKE 82'0? (Recall that this sets the left
hand margin to the edge of the screen.) Hard luck if you did-a good idea, but that
statement works only in Mode 0.
Anyway, we <10 at last have our diagonal title. It's a shame that the title appears at the

end of the program rather than at the start-because we still haven't got any sign of a bug
on screen. We know the last two lines work, so let's get them out of the way: insert 115
STOP. That will let just the first part ofthe programwork-the part that doesn't work, if
you see what I mean.
We want fifty 'insects' on screen-but can't get even one. Why is that? Maybe you've

spotted major error number two by now-the FOR in line 60 is not matched by a NEXT
anywhere. We do get an ERROR report if there's a NEXT without a FOR-but few
computers can spot the reverse problem. (Why not?) So we have to watch out for it all by
ourselves-and we've missed it so far.
Well, we need a NEXT BUG somewhere. And we need it before the closing credits

line (120)-so insert 112NEXT BUG. OK? Simple!
RUN. OK? Not simple! There's no change in the display. Unless you count the fact

that it now lasts much longer. What's wrong? Quite a lot! For a start each of lines 80-110
have GO TO 120, which is after the STOP statement, and certainly not the correct
address-112. We could change all of those GO TO addresses, but let's be c1ever-
delete 112, and put NEXT bug instead of GO TO 120 in each of the four lines. There's
nothing wrong with having several NEXTs in a loop, and you know my views about GO
TO. (Those views have been well borne out now, because the line number had to be
changed.)
Line 80 now looks like this:

80 IF RND(0)*4 = 1THEN PR.# 6; BUG1$: N.BUG
145

I can leave you to edit the next three lines in the same kind ofway.Uyou now try to RUN
yet again, you'll find no change. Well, still no insects-but the loop seems to go through
much more quickly.
In practice, either you see at once what's wrong or you spend ages trying to find it.

There's still another problemwith those four IF lines. (More than one, in fact, as I've just
said.) I'll be honest and tell you that the next errorwe'll correct is one that I did not make
on purpose. The Atari RND structure differs from that in most other micros, and I was
confused when I put those lines down.
Here's the correct version of line 80, getting over the RND problem that I'd forgotten,

putting in an INT and changing the possible values from 1-4 to 0-3. I hope you see why
we need these changes!

80 IF INT(RND(0)*4) = 0 THEN PR.#6; BUGl$: N.BUG
Change line 80, and the next three lines similarly, and RUN again.
Progress at last! Each time we RUN the program now, at least a couple of 'insects'

appear on screen. (I tried it about thirty times, and the record was six.) In most caseswe
get the text-window message STOPPED AT LINE 115; but still sometimes an ERROR
message appears.
For some reason, the loop does loop now, but never gets anywhere near its official two

score and ten goes. We can check that readily enough, using a valuable little debugging
trick. Add at the front end of line 70-PRINT BUG:. Now, each time you run, the text
window shows how far BUG gets-nowhere near 50, that's for sure. The printing out of
carefully chosen variable values is an extremely useful aid to finding bugs in programs.
(Don't forget to remove the statements concerned when they're finished with, though.)
Well, we are getting closer to the program as at first 'designed', even if there's a fair

way still to go. Perhaps it's time to remove line 115.

TRACING

Some versions of BASIC have another useful debugging tool, called TRACE. When you
use the feature the display includes a printout of each line numbermet. What happens in
practice is that you end up with a screen full of line numbers, rarely much help. The use
of TRACE needs fair care. Anyway, in the case ofthe Atari, you can't use it, because we
don't have it. What we really want with TRACE is to be able to trace the micro's path
through no more than a dozen or so lines. You can then check on paper that the path is
correct.
It is, therefore, often better to use your own 'trace' statements in a few lines of your

choice. Say your program should follow through lines 100, 110, 170, 180, 120. Put
PRINT 100 at the start of line 100, PRINT 110 at the start of 110, and so on-then you
can see exactly where the program goes. You will most likely need to slow the program
down a lot to see the line numbers appear. The best way to do that is to use lots of STOP
statements and CONT after each.
Try this kind of trace on our partly debugged program now, if you want. It will help

you to find out what the bug is that's still messing up our program And its cause is
tricky-but this is big fault number 4. Can you spot it? Figure 15.1 shows a flowchart of
what I aimed at. Figure 15.2 shows a flowchart of what we actually have. Of course if I
had drawn the flowchart before coding, the errors would have been fewer, surely. Can
you see the subtle problem? The computer isn't choosing a number from one to four at
random and then printing the corresponding insect, is it? It's choosing a random number
between 0 and 3. If it's 0 it prints insect I-ifnot it chooses again. And so on. So the loop
comes to an early end whenever the micro gets to line 110and chooses a number that isn't
3. Geddit?
How do we get over this problem? There are several ways. The one nearest the correct

flowchart involves adding LET INSECT = INT(RND(0)*4) at the end of line (i/J and
changing the left-hand side of the IF statement expression in each of lines 80-110 to
INSECT. Much better now-the value of BUG gets well on towards 50-perhaps 20or
30 or even more-before the program hits ERROR 141. You may recall that this

146

(FALSE not
possible)

INSECT I

INSECT 2

INSECT 3

INSECT 4

TITLES
TRUE

Figure 15.1 Theory.

147

INSECT 1

INSECT 2

INSECT 3

INSECT4

FALSE

TRUE
TITLES

Figure 15.2 Practice.

ERROR means that you've tried to PRINT outside the screen limits. Our last major
change, therefore, involves line 70. Can you make it?
Ifyou succeed, you've debugged the program! A nice display of random 'insects' (ugly

ones, I admit) and the diagonal bugs title. We've got the program working as scheduled.

148

We've cleared syntax and typing errors, reminded ourselves of correct RND and loop
structures and seen that a flowchart can help program development. I've also empha-
sized the need for careful screen layout.
There are still little problems left, and there are stillways we can structure the program

better too (like putting 115NEXT BUG back in, and clearing the NEXTs from the four
lines before it). Mainly the program's too fast-slow down the loop then. And it's a
shame the title splats some of the insects so quickly-a wait loop will solve that. And we
could restart after a while. All that (and more) gives us this polished version. Check
through with care ...

Program 43b: Bunny bugs

DIM BUGl$(2):LET BU61$='I:"
20 DIM 8UG2$(21:LET 8U62$=")I"
30 DIM BU63$(4) :lET BU63$=')==:"
40 DIM BU64$(31:LET BU64$="{0:'
50 GRAPHICS 17:SETCOlOR l10,0:SETCOLOR 2,9,10:SETCOlOR 4,9,12
60 FOR 8U6=1 TO S0:lET
70 POSITION RND(0)fI9,RND(0)t22:S0UND 1,10+S*INSECT,10,10:FOR W=1 TO 50:NEXT W
80 IF INSECT=0 THEN PRINT 16;BU61$
90 IF INSECT=1 THEN PRINT 16'BU62$
100 IF IN5ECT=2 THEN PRINT IbiBU63$
110 IF IN5ECT=3 THEN PRINT 16-BU64$
115 NEXT BU6:FOR W=1 TO 1000:NEXT W:SOUND 1,0,0,0
120 FOR T=0 TO 15:POSITION T,T+3:PRINT 16;" bugs ':NEXT T
130 OPEN 11,4,0,"K: u:6ET 11,K:RUN

I'm not going to comment about the 'and more' changes-most should be obvious at
once or after a little study. One thing worth noting, however-the last line trick-wait
for a key press to go on. Useful!

CLOSING TIPS
Here are some other debugging tricks worth bearing in mind.

1. Edit in a REM before a statement you don't want used for the time being. If you
delete a statement that offends you, you may need to put it back later-and will you
remember it then? But beware of REMs in multistatement lines-the REMwill tell
the computer to ignore everything that comes after it, more perhaps than you
expect.

2. Statements often worth REMoving in this way are ones with RND. It often helps to
have a fixed value rather than one that varies at random during testing. You may
have, for instance, LET X = RND(0)*10. Change this during testing to LETX = 5:
REM LET X = RND(0)*10.

3. It's very easy to forget where you've put in extra REMs like this. Use the 'inverse'
key for the messages after each REM that you plan to remove. Then, when you list,
these lines stand out very clearly.

4. In this chapter I've not tried to use TRAP. You will recall that this has the effect of
diverting program control to a closed subroutine of your choice if an ERROR
appears during a RUN. It-can be useful to use TRAP during your testing process-
then the command PRINT PEEK(195) will tell you the error that opened the
TRAP-but you can't find out the line in which the error occurred.

The best way to remove the trials of debugging is not to have bugs in the first place. Well,
none of us is perfect, we all make some programming mistakes! All the same, the
modular top-down flowchart-based approach I've discussed in Chapter 11 is a great help
to bug-prevention. And if your program's in modules, you'll find it far easier to sort out if
it does go wrong.

MORAL Use modules and bug off ...
149

16 Graphic 1Je5cripiion

And now we come to one of the last major untouched areas of Atari BASIC pro-
gramming-'graphics'. The word includes all aspects of 'drawing' and 'painting' as
applied to a colour micro computer-putting points, lines, and shapes on screen, and
blocking in areas solidly. The term also includes making up your own characters and
moving them about-but we'll leave this 'sprite' (player-missile) feature to the next
chapter.
The simple graph work I'm going to cover now is not very hard-after all, we've met

pretty well all the ideas before.

MODES
As you well know by now, your computer has a number of different 'modes' of
operation. When you switch it on, you get Mode 0, the 'pure text' mode. And you can
call on any of the others using the GRAPHICS (GR.) instruction. Here again is a list of
the nine main modes, repeated from Page 44.

Table 16.1: The main Atari modes

Mode Action

o Text
1 Big text
2 Large text
3 Low resolution graphics
4 Higher resolution
5 Higher resolution
6 Higher resolution
7 Higher resolution
8 Highest resolution

Memory
demand

992
672
480
432
696
1176
2184
4200
8138

Number of Colours
screen sites

24x40 3
20 x 20 + 4 x 40 5
10 x 20 + 4 x 40 5
20x40+4x40 4
40x80+4x40 2
40x80+4x40 4
80 x 160 + 4 x 40 2
80 x 160 + 4 x 40 4
160 x 320 + 4 x 40 3

What is of most interest in this context is the fourth column, the number of screen sites
available to you in each mode, and the number of colours you can have on screen at once
(fifth column). The table includes mention of the text window (the 4 x 40 in it)-you
know that if you wish to avoid having that feature you add 16 to the mode number
concerned. You also know that GR. such and such clears the screen. All the same, I

150

suggest you always use PR.CHR$(125) after it to remind you to think about layout. (Use
#6 of course for main screen in a graphic mode.) Anyway if you add 32 to the mode
number you get a version which does not clear the screen for you.
The normal clear-screen approach gives you a black background ('paper') for your

work, but you can use SETCOLOR to change that. Really the best way you can revise all
these ideas is to enter, RUN, and study the next program. There's nothing new here,
except the beautiful effect!

Program 44: SF skyline

10 GRAPHICS 5:LET DLY=1000:REM f Naled subroutine address
20 PRINT CHR$(125):SETCOLOR 2,4,4:SETCOLOR 4,4,4:REM f. Clear to uniforMly yakky
coloured screen
30 SETCOLOR 0,6 0:SETCOLOR I 12,0:REM I Change plotting colour registers
40 FOR X=0 TO 79 STEP I:PLOT X,0:S0UND 1,20+2IX,10,10:DRAWTO 79-X,47:GOS
UB DLY:NEXT X:REM * Register °
50 FOR Y=0 TO 47 STEP 4:COLOR 2:PLOT 0,Y:SOUND 1,200-3fY,10,10:DRAWTO 79,47-Y:LE
TX=Y:GOSUB DLY:NEXT Y:REM I Reg!
60 GOSUB DLY
70 PRINT 'SF skyline b. hied BloG's'

TO 1· 0tRND(0)115,RND(0)fI5:SETCOLOR I,RND(0)fI5,RND(0
F

1000 FOR W=I TO 10fX:NEXT W:RETURN :REM * SiMple'
Got it? Here are all our old friends of the graphic work days (Chapter 8): GRAPHICS,
SETCOLOR, COLOR, PLOT, DRAWTO, to which I could have added, but didn't,
POSITION. No problem there, I hope....

GRAPH-PLOTTING
The simplest form of graph is the bar-chart (histogram) you may have met at first school.
Program 45 provides a versatile example of plotting the former. Here I use an equals sign
for the plotting character, you may prefer the inverse space.
Note the DIM statement at the start of the program-clearly it does not refer to a

string as before. This use of DIM is to set up what's called a numeric array (see Chapter
19). Briefly, an array is a set of numbers we can pull out in any way we like, in the same
way as a string is truly a set of characters we can pull out in any way (by using substrings).
You may well find that you follow what's going on with this array: if not. don't
worry-just concentrate on the graph-plotting.

Program 45: Rain for a year

10 DIM M(12),DATA$(4),TITLE$(10):LET TEST=500:PRINT CHR$(125):POKE 752,0
21 FOR HONTH=I TO 12
31 FOR 6=1 TO 1 STEP 0:POSITION 51(HONTH-l)f2:PRINT "Data for month

':POSITION 22 (HONTH-llf2:INrUT DATA$
41 LET FLA6=1:60SU9 TEST:IF NOT FLAG THEN LET 6=2:REH If Input check; YOU chec
k'logic'!
50 NEXT 6:LET H010NTH)=VAUDATA$) :RE" H Valid data Into array' (list)
b0 NEXT I!ONTH
70 FOR W=1 TO 500:NEXT W:PRINT CHR$(125)
80 FOR LINE=l TO 20
90 FOR HONTH=1 TO 12
100 IF 1!(110NTHl/5(20-LINE THEN PRINT" 'j
110 IF H(I!DNTHI/5)=20-LINE THEN PRINT "==";
121 NEXT I!ONTH:PRINT .
130 NEXT LINE
141 PRINT' 1 2 3 4 5 b 7 8 9101112 nonth":REH: f Give x-axis
150 FOR LINE=2 TO 20:POSITION 0,LINE:PRINT 100-(5fLINE):NEXT LINE:REH f 6ive v-a
xis
Ibl POSITION 0,22:PRINT "Title (10 characters)";:INPUT TITLE$
170 POSITION 0,22:PRINT ' . u;
181 FOR F=I TO 1 STEP 0:POSITION 27,10:PRINT TITLE$:FOR W=l TO 500:NEXT W:POSITI
ON 27,10:PRINT ' ':FOR W=1 TO 250:NEXT W:NEXT F

151

490 END
499 REK II Input checks
500 IF NOT LEN(DATA$) THEN LET FLA6=I:RETURN :REH II Reject simple RETURN key p
ress
510 FOR CHR=1 TO LENIDATA$):IF ASCIDATA$(CHR,CHR))(46 OR ASC(DATA$(CHR,CHR)))57
THEN LET FLA6=I:REH I Check + care
520 NEXT CHR:RETURN

This program currently assumes input data no larger than 100(mm)-if your rainfall is
greater, you can either move, or change the 5 in lines 100 and 110 to a more apt divisor.
But of course this program isn't just for rainfall.
Should you wish to have more columns than twelve-up to 18, just change all the 12s;

up to 36, ditto, but also halve the strings in lines 100and 110. In both cases you may have
to change the TITLE routine. Various other polishes are possible, but I'll leave you to
work on those when you get to the last section of the chapter.
The step to a pictogram is a small one. Figure 16.1 shows a typical screen display with

such a program, where the little cars are user-defined as well. (Yes, it was made with a
different micro!) As I hope Program 45 has shown, it is not hard to instruct the Ataris to
'plot' histograms. (I put the word plot in speech marks, because the simplest approach is
quite good enough: using PRINT in Mode 0.)

I ••• M
Ie .,
MUI
Fa --- ----..=.. --- --- _..:=. • ...:::

MiA, *4

HI41

Figure 16.1 A pictogram.

These micros, like most others, are also able to plot proper line graphs. However, this
is quite a lot more tricky than dealing with histograms, and needs more understanding.
You can plot material on the screen in two ways-firstly, by using PRINT in some

clever fashion as with the histogram, and secondly by using the special PLOT and
DRAWTO statements. The former approach was shown in Program 12, Tom Tiddler's
Ground, if you can remember that far back. It shows how one can use pas....:PR. ... to
place a character at any given point on screen.
Using this approach brings us to Program 46. Here I have simply placed a full-stop at

the top of each bar of the histogram. As you may now see, a line graph is in fact no more
than a special form of histogram.

Program 46: Rain line

10 DIK H(12),DATA$(4) ,TITLE$(101,FLA6112):LET TEST=500:LET PRINT=b00:PRINT CHR$(
1251:POKE 752

10:60SUB
7ee

2& FOR KONTH= TO 12
3& FOR 6=0 TO 1 STEP 0:POSITION 5, (KONTH-l)12:PRINT 'Data for month 'jHONTHj'

152

":POSlTION 22 (MONTH-1l*2: INPUT DATA$
41 LET TEST: IF NOT FLAG THEN LET G=2:REM *1 Input check; YOU chec
k'iogic'!
51 NEXT G:LET M(MONTH)=VAL(DATA$l:REM *f Valid data into 'array' (list)
bl NEXT MONTH
71 FOR N=1 TO 511:NEXT N:PRINT CHR$(125l
BI FOR LINE=1 TO 21
91 FOR MONTH=1 TO 12
111 IF MIMONTHl/5<20-LINE THEN PRINT' ';
118 IF M(MONTH)/5)=20-LINE THEN GOSUB PRINT
121 NEXT MONTH:PRINT
131 NEXT LINE
141 PRINT • 1 2 3 4 5 b 7 B9111112 nonth':REM: f Give x-axis

FOR LINE=2 TO 21:POSITION I,LINE:PRINT 110-(5fLINE):NEXT LINE:REM I Give y-a
XIS
Ibl POSITION 1,22:PRINT 'Title «11 charactersl'j:INPUT TITLE$
171 POSITION 1,22:PRINT • ";
IB8 FOR F=I TO 1 STEP 8:POSITION 27,10:PRINT TITLE$:FOR N=1 TO 501:NEXT N:POSITI
ON 27,II:PRINT • ':FOR N=1 TO 251:NEXT N:NEXT F
mEND
499 REM ff Input checks
511 IF NOT LEN(DATA$) THEN LET FLAG=I:RETURN :REM ff Reject silple RETURN key p
ress
511 FOR CHR=1 TO LEN(DATA$):IF ASC(DATA$(CHR,CHR»(4b OR ASCIDATA$(CHR,CHRi»57
THEN LET FLAG=I:REM * Check + care
528 NEXT CHR:RETURN
599 REM 1* PRINT routine
bl8 IF FLAG(MONTHl THEN PRINT' '::RETURN
bll LET FLAG(MONTHl=I:PRINT ••. ·;:RETURN :REM fl CTRL+I,O is better
b99 REM If Initialise FLAG array
711 FOR A=1 TO 12:LET FLAGIA)=I:NEXT A:RETURN

Compare this with Program 45 (from which it is easily edited). Pretty much the same
comments apply.
Extra, however, is the new FLAG-array; I DIMensioned this in line 10, set the values

of its 'elements' to zero in line 700, and used it in the new subroutine, PRINT, starting at
line 6f/1IJ. Maybe you won't quite follow this Set as we haven't studied arrays fully. Ifyou
don't, don't worry-but check again after working through Chapter 19. There's a useful
trick here you may like to use yourselflater-putting a set of flags in an array. (A 'flag' is
a variable whose value is0 in one set of conditions and 1 in another-looking at the value
of the flag will then tell us what the conditions are.)
With this kind of approach it is not too hard to set up the display to show any

combination of symbols (standard, graphic, or even defined) to make any picture,
design, graph, or map you wish. The finished design may be stored on cassette or printed
out on the printer.
This use of PRINT to put designs on the screen, although fairly effective in the end,

has what I have always called only low resolution. The procedure is also pretty slow!
Using it we can place characters in only 960 different positions in Mode 0-so that the
detail is coarse in the best of cases.
Let's use the Atari plotting facilities in a proper graph program. 'Line graph', Program

47, asks the user to supply the x and y coordinates of a given number of points in order of
increasing values ofx. The screen is cleared and straight lines appear from point to point.
The program tests for invalid data, up to a point at least- A better approach to drawing
line graphs follows in a moment, so don't be concerned if you feel this is complex.

Program 47: Line graph

11 DIM A$(4):LET INPUT=411:LET TEST=510:0PEN 11,4,0,'K:"
21 PRINT CHR$(125)
31 POSITION 4,4:PRINT 'HOM lany points';:LET X=19:LET Y=4:GOSUB INPUT
40 IF A=0 THEN FOR N=I TO 1 STEP I:NEXT N
51 LET N=A:DIM XIN):DIM Y(N):REM If tMO nUleric arrays (lists) here
bl PRINT CHR$(125l;'Please enter values ..•• "NOTE 0<x<320 l<y<150',,' in
order of increasing x'
71 FOR V=I TO N
BI PRINT 'Point "V;": x="':LET X=14:LET Y=PEEKl84l:60SUB INPUT:LET XIVl=A
91 POSITION 21,PEEKiB4l-1:PRINT "y=';:LET X=22:LET Y=PEEK(84l:GOSUB INPUT:LET Y(

153

V)=A
III NEXT V:FOR W=I TO 1IBI:NEXT W
liB GRAPHICS B:SETCOLOR 1,B,I:SETCOLOR 2,3, 14:SETCOLOR 4,0,10:COLOR l:FOR V=l TO
N-1
121 LET M=(Y(V+1)-YlVl)!(X(V+1)-XlV»:REM f Gradient
131 LET C=Y(V)-MfX(V):REM f Intercept
141 FOR X=X(V) TO X(V+11:LET Y=MfX+C:LET Y=159-Y:PLOT X,Y:NEXT X:NEXT V
lSI FOR W=l TO 1111:NEXT W:GET tl,CONTINUE
101 RUN
391 STOP
391 REM ove when finished and tested
399 REM ff INPUT routine
411 FOR IN=O TO 1 STEP 0:POSITION X,Y:PRINT " ':POSITION X,Y:INPUT A$:G
OSUB TEST: IF NOT FLG THEN LET IN=2
411 REM ff Nested sub-routinesm NEXT IN
428 LET A=VAL(A$):RETURN
499 REM ff NUleric TEST routine
SIB LET FLG=B:IF NOT LEN(A$) THEN LET FLG=l:RETURN
511 FOR CHR=l TO LEN(A$I:IF ASC(A$(CHR,CHRll(4o OR ASC(A$(CHR,CHR»)57 THEN LET
FLG=l
521 NEXT CHR:RETURN

Apart from the line-drawing routine itself (which is a bit tough), there are some points
I'd like you to note. See, for instance, the way I have mixed GET and INPUT inputs.
Study the quite neat (in my opinion) input and input testing routines. (I must admit I
have had to put in PEEK (84) in line 90: what this function does is to give the value of the
screen line the micro is on at the moment. Ifit troubles you, ignore it. But do still use it!)
If at any time in the distant past you studied what teachers call 'coordinate geometry' ,

you may recognize the form of the second statement in line 140. If not, don't worry too
much about how this program works. All I'd like you to do is to come to grips with
PLOT.
The Atari has another important high-resolution graphics command, as you know. It

is ORAWTO. We use ORAWTO X,Y to put on screen a straight line from the last point
visited to the point X,Y. The next program, Program 48, uses this rather than y = mx + c
to draw the lines. As before (third statement in line 140above), I've had to allow for the
fact that the Atari graphics screens have the 'origin' (point x = O,y = 0) at the top left of
the 'paper', rather than, as is normal, the bottom left.

Program 48: Line graph 2

18 DIM A$(41:LET INPUT=48B:LET TEST=588:0PEN 41.4.0."K:'
2B GRAPHICS B: PRINT CHRW25) . . .
31 POSITION 4,4:PRINT 'How .any points";:LET X=19:LET Y=4:GOSUB INPUT
31 REM ff Input 8 to stop
41 IF A=I THEN FOR W=I TO 1 STEP 8:NEXT W
58 LET N=A:DIM X(NI:DIM Y(NI
61 PRINT CHR$(125);'Please enter values ',,·HOTE l<x<321 l(y(150",' in
order of increasing x"
71 FOR V=I TO N
BB PRINT 'Point "V;": x=":LET X=14:LET Y=PEEK(B4):GOSUB I"PUT:LET X(V)=A
91 POSITION 2I,PEEK(B4l-1:PRINT "y=";:LET X=22:LET Y=PEEKlB4l:GOSUB INPUT:LET Y(
V)=A
181 NEXT V:FOR W=I TO 11IB:NEXT W
III GRAPHICS B:SETCOLOR 1,1,I:SETCOLOR 2,3,14:SETCOLOR 4,0,11:COLOR l:PLOT X(l),
159-Y(1):FOR V=2 TO N
121 CRANTO X(V),159-Y(V)
141 NEXT V
lSI FOR W=l TO IBII:NEXT W:GET Il,CONTINUE
101 RUN
399 REM ff INPUT routine
418 FOR IN=O TO 1 STEP I:POSITION X,Y:PRINT ' ':POSITION X,Y:INPUT A$:G
OSUB TEST:IF NOT FLG THEN LET IN=2
418 NEXT IN
421 LET A=VALlA$):RETURN

154

499 RE" tt NUleric TEST routine
511 LET FL6=I:IF NOT LENIA$) THEN LET FL6=I:RETURN
511 FOR CHR=1 TO LENIA$):IF ASCIA$ICHR,CHR))(46 OR ASC1A$(CHR,CHR)))57 THEN LET
FL6=1
521 NEXT CHR:RETURN
You will not see much difference between this program and the last one, but it's simpler
and uses less memory. Indeed you can edit Program 48 from Program 47 in only a few
minutes. The result is shorter.

GET YOUR FILL
Atari BASIC offers one more graphics statement, one we haven't yet met. It is a version
of the 'general input/output statement', XIO. XIO has in fact over twenty forms, but the
one we'll use now is the only one of those that is of much value in a book like this. It is the
'fill' statement, and has the form XIO 18,6,0,0, "S:" (the final colon is not really needed).
What XIO 18... does is to fill a four-sided area of screen with the colour you state. It

needs some care to set it up--not only must you define the four comers of that area, but
you must do so ina certain order and also use a POKE to define the colour.
Program 49, Paper maze, is quite a: nice demonstration of this in practice. See the

statement itself in line 80. I suggest that you enter and RUN this, and then study the
notes that follow.
One point first, however-I've written this in graphics Mode 11. The early Ataris do

not support this Mode, hence the program won't run in any other without fairly major
changes. Ifyou can't enter it as it stands. study the notes first and then modify it as they
suggest.

Program 49: Paper maze

II GRAPHICS II:FOR B=21 TO 2 STEP -2:FOR A=I TO 15:COLOR 15-A
21 LET X=5+RND(01*52:LET Y=5+RND(I)*165
30 PLOT X+B,Y+B/2
40 DRAWTO X+RNDIII*B,Y
51 DRAWTO X,Y
61 POSITION XlY+RND(0)tB/271 POKE 765 IJ-A
SI XIO 18 Ib,1 I 'S:"
91 SOUND l,RNDlllt250,10,II:FOR 11=1 TO 110:NEXT W
III NEXT A:NEXT
III FOR W=0 TO 1 STEP I:SETCOLOR 4,RNDII)*15,RNDI0I tI5:S0UND I,RNDlllt25Ijll,ll:
NEXT II

Notes

Line 10
Line 20
Line 30
Line 40
Line 50
Line 60
Line 70

Line 80
Line 90
Line 100
Line 110

Select mode. set up loops, and choose colour of points and lines.
Select values of top left comer of each area.
Plot the bottom right-hand comer.
Draw the right-hand side.
Draw the top.
Use POSITION to select the bottom left comer.
POKE into register 765 the colour of the paint used in filling-normally this is
the same colour as the lines already drawn.
The fill statement.
Random beep and delay.
End of loops.
Flashy close.

The steps used to set up the XIO 18... statement are as follows. then:

1. PLOT the lower right -hand comer of the area.
2. Use DRAWTO to draw the line from there to the top right-hand comer.

155

3. In the same way draw the line at the top of the figure, from top right to top left.
4. Define the bottom left-hand corner with POSITION.
5. POKE 765 with the colour number to be used.
6. Use the XIO 18 statement.

The reason I used Mode 11 in the program is because it lets you have sixteen colours on
screen at once. Ifyou have to use other modes, or wish to explore them, you will need to
change the program as follows:

1. Select the right range of colours with the COLOR statement.
2. Select the right range of X and Yvalues to ensure you don't go off screen.

COLOR and SETCOLOR work in the usual ways. It's worth noting that with this
routine you can also fill triangles by making two adjacent corners very close on screen.
More advanced programmers develop routines allowing much more complex shapes to
be filled.

MODES 9-11
Like Mode 8, Modes 9-11 are not available on the older Ataris. Ifyou are lucky enough
to have them in your machine, you can extend your graphics programming quite a lot.
None of these Modes have a text window-they offer pure graphics-and Figure 16.2
shows the X Y layout.

o

1
192
rows

- 80 columns-.- 79

191'--- --'

Figure 16.2 Modes 9 to 11 screen layout.

How strange! Here we have Modes in which there are more horizontal rows than
vertical columns! This means that the shape of each screen site is very long and thin. I've
put the basic details of these modes in the table on Page 44.
In Mode 9 you have a choice of one colour only, but then you can use any of the sixteen

shades of that colour on the screen at one time.
In Mode 10 you can have eight colours on screen at once, with any brightness at any

time. You can also control the colour of the 'paper'.
In Mode 11 you are allowed sixteen colours on screen at once. This time, though, you

cannot control the brightness; all colours have the same brightness at the same time.
Program 50Drapery, willgive you some idea of the power ofMode 11.When you have

played with it it is easy to explore Mode 9, because all you need to do is to change the 11
156

to 9 in line 10, and add a SETCOLOR 4, X, 0 statement to let you select colour X. (You
may find you need to adjust your TV set with some care to get a good screen image in
Mode 9. Tum the colour control down at least.)

Program 50: Drapery

10 GRAPHICS II:LET DRAN=300
20 FOR BAND=0 TO II:S0UND 1,(BAND+l1*20!10,10
30 LET Yl=BAND*lb:LET Y2=BAND*lb:GOSUB uRAN
40 NEXT BAND
51 FOR BAND=0 TO 11:S0UND 2lBAND+l*20,10,10be LET Yl=BAND*lb:LET Y2=0:bOSUB DRAW
70 NEXT BAND
Be FOR BAND=0 TO 11:S0UND 3lBAND+l*20,le,1090 LET Yl=0:LET Y2=BAND*lb:bOSUB DRAW
101 NEXT BAND
110 FOR N=e TO 1 STEP 0:NEXT N
299 REM ** Sub-routine 'BAND'
308 FOR COLOR=0 TO 15
311 REM ** The newer Ataris that support thIs lode also let you name variables w
ith key-words
311 COLOR COLOR
320 PLOT 8lCOLOR+YI:DRAWTO 79,COLOR+Y2
330 NEXT CuLOR
348 RETURN

Mode 10 is not so easy to program, because you need to use POKE to get the colour
you want into store. There are eight colour registers involved here: 705-712. Each can
contain any number between 0 and 255, and that number stands for one of the 256
possible Atari colour numbers/brightnesses. You then use COLOR. .. , with a value
between 1 and 8 inclusive to access each of those registers. Magic mountain, Program 51,
shows this effect delightfully.

Program 51: Magic mountain

10 GRAPHICS 10
20 FOR GO=0 TO 1 STEP 0
31 FOR REG=705 TO 712:POKE REG,INT(255 tRND(0):NEXT RES
40 FOR RAD=1 TO 12:COLOR INT(7*RND(0»)+1:PLOT 39,0:DRANTO RAD*b,191:S0UND 1,RND(
0)*255 t10 l10:NEXT RAD
50 NEX Su

You can of course still use SETCOLOR in these modes. I'll leave you to explore what to
do. Just one note, however-inMode 10the five colour registers used with SETCOLOR
(0-4) are the same as the POKE registers we've just met, numbered 708-712.
The Atari micros that came out in 1983and 1984also offer Modes 12-15. The Table on

Page 44 gives you the basic data-there are no problems in dealing with any of these in
the standard ways.

SUMMARY
In this chapter I have been concerned with two main topics-the drawing of graphs by
PRINT and by PLOT methods, and the use of the graphics modes above number eight.
Here's the usual list of keywords explored:

COLOR (C.)
DIM
DRAWTO (DR.)
PLOT (PL.)
PEEK

POKE
PRINT (PR.)
SETCOLOR (SE.)
XIO

157

DO IT YOURSELF
1. Choose the programs in this chapter worth developing for your own use. Develop

them to include mugtraps, suitable messages, and so on.
2. Write a program to produce high-resolution graphics random patterns on screen.

Use PLOT and DRAWTO, and really explore COLOR and SETCOLOR. Make
sure you know, in particular, how to ensure that the micro never tries to work
outside the display window.

3. Devise a 'measles' program (one that produces dots at random in the display area),
in which the dots appear only within 15 blocks on the screen. There should be
three rows of five such blocks, the size depending on the mode you choose to use.
Add sound.

4. Devise a program to give relevant histogram displays for your own use.
5. Devise a program to give relevant pictogram displays like that in Figure 16.1.
6. Develop a 'computer-assisted design' type of program as follows. Decide the shape

of a room, and get the micro to draw it for you. Then call up from memory symbols
for doors and windows and insert them where you want in the plan. Similarly
furniture shapes can be used to plan the furniture layout of the room. If you are
really ambitious, try to get the furniture and aperture units available in different
sizes and colours. You will need to use the CONTROL graphics blocks in this
program. (An even more ambitious touch would be to allow any arrangement to be
analysed ergonomically, so that the 'best' layout can be found.)

7. Modify Program 44 to let the routine cycle through a large range of colour (using
SETCOLOR) and sound variations. Also try other modes.

8. Add a subroutine to allow the user to correct data entered in either of the line graph
programs. (You will note, perhaps, that the usual editing feature does not work with
this table of input values, even if it looks as if it does.)

9. Explore the XIO "fill" routine to your heart's content.
to. Use Mode 11 in an attempt to program your Atari to produce the display shown in

recent advertisements, of several pretty shaded 'cylinders' on screen.

158

11 liraphic Descriplions

The first thing I'd like to deal with in this chapter is what Atari call 'player-missile
graphics'. Charming name! We shall do no more than tip our toes into this water-fast-
action 'arcade game' programming needs you to work in machine code rather than in
BASIC, but at least I'll tell you some of the BASIC ideas to let you play. Even in BASIC,
we need to do quite a lot with PEEK and POKE, which are fairly close to machine code
instructions anyway.
I'll throw you in at the deep end with a simple game that uses these features. I shan't

use the words 'player' and 'missile' anymore-too belligerent for me! Instead I'll use the
word 'sprites', which is, in any case, the name used with most micros that have the
feature.

SPRITELY WORK
Here's a pretty simple game. Simple or not, it is pleasant to see and to use, and shows you
what this sprite thing is about. You are the Commander of a space ship which appears on
screen at the right-hand side of a star- field . Your home base is like a yellowGreek temple
at the left-hand side. Your mission is to guide your ship between the stars to come to rest
in the base.
The game is simple-no one will shout at you if you crash into a star (I'll let you keep

your own sort of score). No aliens will dart from hiding to attack you. Just admire the
visual effects, especially the way the rocket can move 'behind' stars (which in this game is
cheating). Steer the ship using the four cursor-control keys (you don't need to press
CONTROL), and tell the micro you've arrived in the base by pressing RETURN.

Program 52: Enterprise

18 GRAPHICS 2:POKE 7SS,8:SETCOlOR 2,9,8:SETCOlOR 4,9,8:PRINT CHR$(125):60SUB 108
8:lET X=218:lET Y=S8
28 lET R=PEEK(186l-8:lET B=2S6fR:POKE 54279,R
38 POKE 53277,3:POKE 559,46:POKE 53256,1:POKE 53248,X:FOR A=512 TO 640:POKE A+B,
8:NEXT A:POKE 784,58
48 FOR A=Y TO Y+4:READ l:POKE A+B+512,l:NEXT A:DATA 18,63,255,63,18
58 SOUND 8 250 8 18:0PEN 11 4 0 "K'
68 lET CT=B:FOR 60=8 TO 1 StEP B:6ET 11,C
78 IF C=43 THEN POKE 53248,X:lET X=X-l
88 IF C=42 THEN POKE 53248,X:lET X=X+l
98 IF C=45 THEN FOR A=8 TO"6:POKE A+B+Y+511 PEEK(A+B+Y+512):NEXT A:lET Y=Y-l
180 IF C=61 THEN FOR A=6 TO 8 STEP -1:POKE A+B+Y+SI2,PEEK(A+B+V+511l:NEXT A:lET
Y=Y+l
110 lET CT=CT+l:IF C=155 THEN lET 60=2
120 NEXT 60
130 FOR Nl=1 TO 50:POSITION RND(0)fl1,RND(0)fll:PRINT ibj"we!cole":50UND 1,2S0-R
ND(8)*2fN+2fN,10,10:NEXT Nl

159

140 PRINT 'You .ade it - in "jCT'" .oves .••. •
150 FOR W=0 TO 1 STEP 0:S0UND INT(RND(0I t4),RND(0)f255,RND(0l f15,RND(0)f15:SETCO
LOR 4 RND(0l*15,RND(0)f15:NEXT W
1000 FOR STAR=l TO 50:POSITION RND(0)*19,RND(0)*11:PRINT 16j'*":NEXT STAR:POSITI
ON 0,5:PRINT 16j"ii":RETURN

Sure, you've seen better games for the Atari. Still, they do cost several times as much as
the whole of this book, and don't teach you to program at the same time.
What the Atari 'player-missile' (sprite) system gives you is the chance to program up to

five special characters, the 'players', which can have their own colours and move
independently of each other under user or program control, around the screen. What the
system does is to put the design of the sprite into a block in memory which then copies
straight on to the screen, whatever's there already. To move the sprite around, the
pattern is moved around in memory and copied on to screen all the time.
Getting it into the memory, and moving it around in there, is not simple. And that is

where all those PEEKs and POKEs come in. Program 52 shows that clearly.
The effect is that there are really a number of separate screens on top of each other on

your TV set. You can program the order of these layers, so that one object can disappear
behind another but in front of a third, and so on. I didn't even try to do that in Program
52, but you got the idea. The spaceship moves behind the printed characters but over the
'paper'. And all this is independent of the Mode you are in, and the material you put on
screen using that mode. I use Mode 2, simply because I wanted to use PRINT# 6... to
get characters on there rather than making up more of my own. Now I shall go through
Program 52 pretty well line by line. I hope you can follow! There'll be a summary after
the notes.

Line 10

Line 20

Line 30

Line 40

Line 50
Line (fJ

Line 70
Line 80
Line 90
Line 100
Line 110
Line 120
Line 130

Line 140

160

Set up Mode 2 screen, remove cursor, select 'paper' colour, select 'border'
colour, clear screen. Use the subroutine starting at line 100, choose the
starting values ofX and Y, the coordinates for the sprite. The sprite screen is
about 240 pixels across and 120down.
Use PEEK to look into memory at site 106. This site gives the value of
RAMTOP, and thus measures the amount of memory available for use in the
machine on which the program runs. The other two statements on the line
use that value to reserve an area of memory for the sprite image (pattern).
POKE 53277,3 tells the micro that sprite graphics is to be used. Putting a zero
at that address has the reverse effect.
POKE 559,46 tells the micro that the sprites are to have 'double' resolution.
You can use 62 instead of 46 to get 'single' resolution.
POKE 53256,1 tells the micro to make the sprite in question double length. 0
gives normal length, and 3 gives quadruple length.
POKE 53248,X maps the starting X-position of the sprite into the sprite
block ofmemory.
The rest of line 30 clears out any 'garbage' from the block of memory
concerned.
This uses READ... DATA (see next section). The structure of each line of
pixels in the sprite is entered into memory at the current Y-position. Dif-
ferent numbers in the DATA statement lead to different defined characters
on screen. I'll come on to this in a moment.
'Spaceship' sound-prepare keyboard for direct RETURN-less entry.
Set the count of moves to zero, set up the main control loop, wait for a
key-press.
If the left-cursor key is pressed the X-position details change.
The same applies for the right-cursor key.
The same applies, but more complexly, for the up-cursor key.
And for the down-cursor key.
Add 1 to the value of the move count; check for RETURN key-press.
End ofmain loop.
Welcome loop, print "WELCOME" in yellow at random positions on screen
with a related sound effect.
Put final message into text window.

Line 150 Closing sound/flash routine.
Line 1000 Print asterisks at 50 random sites on the screen.

To be logical, I ought next to deal with the routine for defining your own shape to go into
the sprite system. However, please allow me to leave that to the next section, so that I
can close this one with a summary of the POKE addresses for use with the four main
sprites.

Table 17.1 Player/missile addresses

Addresses

704-707
53248-53251
53252-53255
53256-53259
53260

Contents

Colours of sprites 0-3
X-positions of main sprites ('players') 0-3
X-positions of minor sprites ('missiles') 0-3
horizontal length of sprites 0-3
horizontal length of all minor sprites

In conjunction with the notes above. POKE the values you want into these storage sites.

Before ending this section, I say again-sprite graphics with the Atari is incredibly slow
in BASIC. You found that out with Program 52.The effect isworse the more sprites you
try to control. Only machine code routines can give you real speed.

DIY CHARACTERS
The sprite we used in Program 52consisted of five rows of eight pixels. Recall, though,
that I used double length, making the thing appear sixteen pixels long on screen.
In certain circumstances you can define characters which consist of more than five

rows of eight pixels. In this section I'll tell you how to do the simple ones-just the same
idea applies in all cases. When we did this in Program 52, we had to use the READ...
DATA structure. I'd best go over that in more detail now.

READ...DATA
When the micro meets READ (in a program, or as a command), it looks for DATA
(stored in memory with a program line). It then assigns what it finds to the variable
named after READ. READ, therefore, is yet another 'assignment' statement (like LET
and INPUT).
So READ Y: PRINT Y will give output 3.14 if you already have it in memory a line

number followed by DATA 3.14.Try it. Try it again. This time it doesn't work. You get
an ERROR message, number 6, which means 'out of DATA'.
What happens is that when a DATA item has been used by a READ, it is sort of ticked

off in the data list. The next READ ignores it and looks for the next DATA item. If there
is no such item, then we get that warning message.
READ and DATA can be used with either numeric or string material, or a mixture of

both. Youmust, however, make sure that all data is listed in the right order in the DATA
line(s), so that the READ statements find the right data to work on. Enter and RUN the
little program that follows.

10 LET HI = 10
20 DlMD$(2)

161

30 DATA5,7,9
40 DATAHI
50 READ A,B,C,D$
60 PRINTA,B,C,D$

When you run this, no problem. On screen 5,7,9, HI appear, nicely spaced out. Try it
again, but this time don't type RUN, rather restart using GO TO 30.
At once we get ERROR 6 noted for line 50. This means that the computer has run out

of DATA to READ; all the DATA items have been ticked off. To untick those data
items, you could use RUN. There is another keyword which has the same sort of
effect-it is RESTORE. Try it:

RESTORE (R): GO TO 30
The data list appears nicely on screen again.
RESTORE can be used with a line number after it, telling the micro to untick only

from the start of that line. In this case, for instance, we could use RESTORE 40,
un ticking the DATA in line 40,but leaving that in line 30 alone. Ifwe do that and then
use GO TO 30 once more, a new ERROR message appears. ERROR 8 means that the
micro has tried to READ a number, but found that the first unticked DATA item
available is a string.
In this case, the micro tried to read the DATA in line 40. That is the characters HI.

This looks like a number, rather than a string, not just because we have no speech marks
round it, but also because of line 10. But HI is not a number-it is a string.
Indeed, if you put speech marks around string constants in DATA statements, you'll

find the Atari doesn't like it. Use the editing feature to put speech marks round the HI in
line 40in the above program. And RUN to see what happens. The print out on screen of
the value ofD$ is not HI, but "H . Because of line 20 the length of D$ is kept to two
characters-the first two characters found by the READ are the first speech mark and
H. (We get the same sort of interesting effect if you put speech marks around a string
entered in an INPUT statement. In both cases, the 'feature' can lead to problems when
you try to compare strings.)
You can put your DATA statements anywhere in the program listing you like, at the

start, after the corresponding READ statements, at the end, or even after an END
statement. All the micro wants is that they are there somewhere with a line number in
front. In the same way, in some programs you may find that you need to have several
READ statements at different points. No problem-as long as there's enough DATA
around, the READs will find and assign values.
There are two main uses of READ...DATA. The first is with non-interactive pro-

grams, in which there is no user to INPUT data in response to questions. The second is
for a recorded program which you want to carry its own data, and in which LET may be
too clumsy. In summary, then:

1. READ VARIABLE($) assigns the next free DATA item (if suitable) to the
variable and 'ticks off the one used. It can be a command or a statement.

2. DATA carries the stored DATA items, separated by commas if there's more than
one, and without quotes if they are strings. DATA statements must be entered with
program lines (even if the program is not run) and can appear just anywhere in the
listing without affecting its operation.

3. RESTORE unticks all the DATA items so the next READ will take the first one.
4. RESTORE n unticks all the DATA items starting at line n.

Earlier I gave the two main uses for the READ... DATA... RESTORE structure. A
non-main use, but the one that most people find first, is that used in Program 52-to
carry the DATA needed for forming your own characters.
To define your own shapes is a bit lengthy. Be warned! But it's worth it. It's only a pity

that, once defined, those shapes can't be used easily in programs.

162

1
263 1
842 6 8 4 2 1

1
263 1
842 684 2 1

1
263 1
842 6 842 1

1
263 1
8 4 2 6 842 1

-'--

1
263 1
842 6 8 4 2 1

I

1
263 1
842 6 8 4 2 1

1
263 1
842 6 8 4 2 1

1
263 1
842 6 842 1

1
263 1
842 6 8 4 2 1

1
263 1
8 4 2 6 8 4 2 1

1
263 1
8 4 2 6 8 4 2 1

1
263 1
842 6 842 1

1
263 1
842 6 8 4 2 1

Figure 17./

1 1
2 6 3 1 2 6 3 1
8 4 2 6 842 1 8 4 2 6 842 1

I
I
I
I
I

163

1. You need to sketch your shape on a 5 x 8 grid. (Or on a grid of more lines than 5 in
those cases where you need it.) Use old graph paper, or pages from a square ruled
exercise book, or make copies of the grids in Figure 17.1.

2. Sketch your design faintly on the 5 x 8 grid. Let's say we want a little fish-I give the
sketch in Figure 17.2.

1
263 1
8 4 2 6 842 1

Figure 17.2

\' t\
1\'\ /' <,
} IX 0 ,/

I / <, ./

V cV

3. Reproduce the shape as close to that sketch as you can by blacking in the right
squares of the grid. Figure 17.3 is my attempt.

1
2 6 3
842

1
6 8 4 2 1

Figure 17.3

4. Now-the tricky bit. Refer to Figure 17.4 to make it simpler.... For each ofthefive
lines of eight squares in turn-write down the total of the numbers at the tops of the
columns containing blacked-in squares. First line: black in 128 and 4, gives 132;
second line: black 64, 16,8,4, and 2-gives 94; and so on. I guess you'd best check
my adding up! Enter the five numbers you get into a DATA statement in your
program. If you've still got Program 52 around you can put these figures into it in
line 40instead of the rocket ship ones. The DATA line is DATA 132, 94, 125,94,
136.

1
263
842

1
6 8 4 2

164
Figure 17.4

128 + 4 132
64 + 16 + 8 + 4 + 2 94
64 + 32 + 16 + 8 + 4 + 1 125
64 + 16 + 8 + 4 + 2 84
128 + 8 136

Now the graphic design world is yours! Try your own shapes, putting the resulting five
numbers into a suitable DATA statement in a suitable program. The sketch in Figure
17.5, and the DATA line beside it, may be a space invader. Atari, watch out!

1
2 6 3
842

1
6 842 1

128 + 2
128 + 64 + 16 + 4 + 2
128 + 32 + 8 + 2
128 + 32 + 8 + 2
64 + 32 + 16 + 8 + 4_-!--...J

DATA 130,214,170,170,124
Figure 17.5

Advanced programmers are able to string designs together to make large and complex
defined shapes. First, I think, you should practise getting on top of this 5 x 8 system.
After all, don't forget you can have double or quadruple length sprites, so that gives you
a fair degree of flexibility.
To cheer you up, try the closing program. This will give you just a hint of what can be

done with defining characters (this time 8 x 8 ones). I shall give only very brief
notes-the idea is enough to start you off in this direction if you so wish.

Program 53: Face of the tiger

10 DIM CHR(2):6RAPHICS 2:POKE 755 10:SETCOLOR ll4,B:SETCOLOR 2,7,2:SETCOLOR 4,7,2
28 FOR FACE=1 TO 2:LET CHR(FACEl=\PEEK(742)-FALE*41*256
38 FOR L=CHR(FACE) TO CHR(FACEI+7:READ A:POKE L,A:NEXT L
48 NEXT FACE .
58 FOR 60=B TO 1 STEP B
68 FOR FACE=1 TO 2:POKE 756!INT(CHR(FACEI/256):SOUND l,4B0-FACE*188,18,18:FOR W=
1 TO 509:NEXT N:POSITION 7
7B POKE 756 22b:IF FACE=1 tHEN PRINT Ibj'FROWN"
B9 IF FACE=2 THEN PRINT" s • i 1 e':PRINT Ibj'SMILE'
99 FOR W=1 TO 5IB:NEXT W .
198 SOUND 1 B,B B
liB NEXT FACE:NEXT 60
19B9 DATA b9,12b,98,254,21B,182,bB18BIB18 DATA bl,12b,9B,254,23B,98,bl,IB

Line 10 Make space for the CHR-array, select Mode 2, delete cursor, arrange
colours.

Line 20 Arrange starting points in memory for the sets of data representing the
two characters.

Line 30 In each case, take the eight sets of data from the DATA statements and
POKE them into the correct part of memory.

Line fib POKE into storage site 756 (the character set select one) each face in
tum.

Line 70 POKE into the same storage site the 'alternate memory' in readiness
for the 'normal' printing.

Line 1000/1010 DATA statements, two sets of eight bytes for the two sets of eight lines
of the two characters. Note that these DATA statements appear after
the end ofthe program and are never involved in a RUN.

165

SUMMARY
In this chapter I've been able to do no more than give you a little taste of two more
advanced graphics techniques. These are the use of sprites ('player/missile' graphics)
and defining your own characters. The work needs a lot of POKEs, and quite a few
PEEKs, putting us on the fringe of machine coding. The chance was also taken to give
the details ofREAD... DATA... RESTORE.
No formal 'Do it yourself section this time; only you can decide how much to explore

these ideas.

166

18 Rogbog

In this chapter I would like to look at one or two matters not dealt with elsewhere. I shall
also note one important area for the advanced programmer that a basic book like this
cannot attempt to touch in depth. It is interfacing the computer with other equipment.

TIMING

In Chapter 2 I briefly described the internal structure of computers like the Ataris. One
part of the central processing unit that I did not mention is the 'clock'. The clock is in
practice very important indeed-the action of a CPU is complex, and it is essential that
all the different parts work in step. Thus data must be transferred at the right moment,
and the different sections of the system must act on it correctly.
The micro's internal clock ticks very fast-carrying out a cycleof processing in about a

millionth of a second. Using BASIC there's no way we can get at that clock. Anyway,
even if we could, it would not be easy to use. However, there is a little chunk of memory
that holds some kind of record of how many cycles the CPU has gone through since you
switched on. We can access those storage sites, and we can then use them to tell the time
in some kind of way.
The addresses ofthe three storage sites concerned are 18, 19, and 20. When you switch

the micro on, each takes a 0value. Each fiftieth of a second (sixtieth in North America)
after that, 1 is added to the value in site 20. When that reaches the value 255, the micro
adds 1 to the value in site 19and the value in site 20goes back to 0. This goes on until the
value in site 19 reaches 255, when the micro adds 1 to the contents of site 18and both 19
and 20 take 0 again. If you've ever seen a 'tally-counter', this is a bit like an electronic
one, 'incrementing' its tally each fiftieth of a second.
Program 54 consists mainly of two subroutines that you can use in all kinds of

programs. I've put them at the start of the program because, as explained on Page 125
when the program calls a subroutine the micro starts hunting for it at the first line.
Putting the subroutines that matter at the start of the program means that it won't take
the micro more than a few cycles to find what it wants-thus in timing it can be more
accurate.
The crucial lines of the two subroutines, lines 20 and 50, are just the same. What they

do in each case is to give to the corresponding T a value that represents the number of
seconds since switch-on. The value SEC then takes the difference, thus giving the time
elapsed between the two subroutine calls. Those two subroutine calls are in lines 110and
120 of the main part of the program. What you do when you RUN this program, is to
press RETURN when you want timing to start, and press it again when you want timing
to stop. The program closes by giving you the number of seconds between those two
RETURN-presses. The !NT structures in the two timing lines allow this result to be
correct to one decimal place.

167

Program 54: BASIC timer

10 GOTO 1110
11 REM *f Sub-routines at start to save micro time
19 REM ** Start timinQ -'TON'
20 LET T0=INT((PEEK(18)*65536+PEEK(19)*256+PEEKi20»)!5+0,5iil0
30 RETURN
49 REM ** Stop timinQ - 'TOFF'
50 LET Tl=INT((PEEK(18)*65536+PEEK(19)*256+PEEK(20iii5+0,5)!10
60 LET SEC=TI-T0
70 RETURN
99 REM 1* Main program starts
100 GRAPHICS 2:DIM G$(I):LET TON=20:LET TOFF=50
110 FOR 130=1 TO 5
120 INPUT Gf:GOSUB TON
130 INPUT G$:G05UB TOFF
140 PRINT #6;' Time elapsed was ';5EC;' seconds,'
150 NEXT GO
160 PRINT' RUN and RETURN to start again":END

You can use this program as a simple reaction timer if you wish, but in fact there's a
better one in Appendix 2. Ofcourse there are many ways in which you can use this useful
feature. You may wish to try to set up a little digital clock that runs in the top comer of
your screen throughout your program. That will need a routine for converting to minutes
and seconds, or even hours, minutes and seconds if your program runs a long time. It's
also easy enough to put timing into games or 'twenty questions' programs.
If you're sharp you'll have realized that the system can lead to error if, between TON

and TOFF, register 18 goes back to zero. Well, you are right, it could happen, but it's
going to be just over 93 hours after switch on. Not too much to worry about, is it?

INTERFACING
Here we really think of using the micro to capture information from outside devices
and/or to control outside devices. Examples of the two types are photocells, electronic
thermometers, and roof-top radar; and lamps, motors, and nuclear power stations.
If this kind ofwork is likely to become your scene, you'll have to search the magazine

adverts for suitable 'interfaces'-'black boxes' that plug into the Atari and in tum have
the other devices plugged into them. This is not something that we can discuss in this
book. But here's a list of possible uses that may whet your appetite....

Controlling tape/slide equipment from an interactive program;
Burglar alarms and decoys;
Flashing light displays for your disco;
Central heating control with an array of sensors.

We are in fact closer to the first with the Atari than with most other micros. You may
know that your program tape has a spare track on it on which audio material can go.
With a great deal of effort, therefore, it is possible to have the cassette contain a recorded
program for loading into the computer, which when RUN, thereafter controls the
cassette machine to allow the playback of a soundtrack in time with the program action.
To do that is a lot of hard work, so you'll have to look for magazine articles that describe
it.
The main interfacing needs of Atari users, however, involve letting their micro

interact with disc units, printers, and on an even simpler level, joysticks and paddle
controls.
Ifyou are rich enough to be able to afford a disc drive, you have a fair choice of models

which will work with your micro. Each lets you have access to large amounts of
information at high speed. Not only can you find the programs or data that you require
very fast, but they can be got into the machine quickly too. Ifyou use the Atari a lot, orif
your use involves transfer, processing, changing, and storage oflarge amounts of data, a
disc drive is a good buy.

168

This is not, however, the place to give details of how to use a disc drive. Most likely by
the time you get round to getting one, your command of BASICwill allow you to pick up
the new features and structures very soon.
The same sort of comment applies to the use of a printer. Here too there are many

machines on the market, and the Atari micros can (on the whole) be used with a good
range of them.
Again it is not likely that you will need to use a printer soon after you have got your

Atari. The main uses are if you wish to produce lots of clear and unbugged program
listings-as is the case with this book-or when you are running software for data-
handling or text-editing purposes.
More needs to be said, however, about using the Atari with a joystick or paddle. This

is because you are perhaps more likely to get one or other of these with your new micro,
or soon after, and because you may well find there are few instructions for their use.
Figure 18.1 shows these devices with a micro. There are many kinds of joystick; I shall
describe the simplest type, the sort that the Atari is easy to program for.

Figure 18.1 Atari joysticks and paddles.

I guess you know what a joystick is. The name comes from the control lever of an
aircraft (and I'd love to know why airmen called it that). It consists of a lever in a box,
with a circuit that allows a signal to be output that depends on the way the stick is pushed.
There is also a trigger (,fire-button') that is simply off or on.
The micro checks the state of the joystick or joysticks that may be connected at the

time. It does so 50 times a second (in the United States the figure is 60 times a second).
The state of each of the four joysticks you can use shows as a code in the four storage
sites. You as a programmer can then access each of those storage sites by using a special
joystick function. The function is STICK(N) where N is 0-3 depending on which
joystick you want to read. (Early Ataris could live with four joysticks, modem ones are
for users with only two hands.)
Figure 18.2 shows the different ways you can push the joystick and the codes that go

into the corresponding storage site. I'll come back to the trigger in a moment. Thus if
joystick number one is not in use, or not even connected to the machine, the command
PRINT STICK(0) returns the value 15. If you connect the joystick and push it forward
the value becomes 14. And so on.
A similar function allows you to read the state of the trigger. The function is

STRIG(N) where again N stands for the joystick concerned. The resting (off) value for
STRIG is 1; when you press the button, the value becomes 0.

169

10-,

11.-

/
9

Figure 18.2

14t

•13

joystick

5

Program 55 shows how we can use these two functions. It should be enough to giveyou
an idea of how to program for joysticks. Once you've got that idea I suggest you look at
some of the programs in this book and convert them to joystick control rather than
keyboard control.

Program 55: Joy forever

II 01" A$IIII:6RAPHICS 2
21 FOR 60=1 TO 1 STEP 1
31 PRINT 161CHRSI125l:POSITION 2,5
41 RESTORE lll+RND11118
41 RE" II Note this useful trick; 'RandOl RESTORE', Appendix 6
51 READ AS,A
51 RE" II Put direction and corresponding STICK value into AS and A
61 PRINT 16;AS:PRINT 'Push stick ·;AS;· ••••
71 LET FLA6=I:FOR 6=1 TO 511:LET S=STICK(II
71 RE" II FLA6 becoles zero when stick loved or button pressed
81 IF S(15 THEN LET 6=1111:60SUB 1111
81 RE" II To sub-routine and out of loop when action taken
III NEXT 6
111 IF FLA6 THEN PRINT 'Too latl!'
III FOR W=l TO 511:NEXT N
121 NEXT 60
211 DATA North,14
212 DATA North-east,6
213 DATA East,7
214 DATA South-east,5
215 DATA South,13
216 DATA South-west,ll
217 DATA Nest,ll
218 DATA North-west II
1111 IF STRI6=1 THEN STOP

170

1110 LET FLA6=8:IF S=A THEN PRINT 'That's right.':RETURN
1121 PRINT ·Nope ••••·:RETURN
1821 RE" It Reached if wrong direction tried

This program is a simple test ofcompass directions. It tests whether you push the joystick
in the direction stated or not within a couple of seconds. It goes on forever, until you
press the trigger button. You can of course improve it in a number of ways in practice,
but it's here as a simple demonstration of how to use the joystick functions in a program.
On purpose 1didn't give as an example of joystick usage a games program. 1would like

to note here that the use of joysticks is important not just for gaming, but in many
'serious' areas too. A number of modem micros have what's called a 'mouse' or a
'golf-ball', by rolling which in different directions the user can control the screen display.
There are many applications of this kind of effect in office software. And the joystick
may be used in just the same kind ofway.
For instance, certain programs, called 'spread-sheets', contain a vast array of many

rows and columns of data for processing. The arrays are far too large to fit onto the
screen, so the user must access the different parts in some way. Mice and joysticks are as
good as each other in this context. One can also write a program with large 'menus'
(tables of option choices), and then allow the user to select his or her option with the
joystick. Perhaps it's a shame that Atari call the joystick and paddle 'game controllers'!
Paddle controls are a different kind of flexible input device. (The name comes from

the North American word for table tennis racquet, and refers to the fact that the first
video games-from Atari, of course!-were a version of ping-pong in which this kind of
control was used.) Again the device has many uses outside gaming.
Coding for the paddle is very much the same as dealing with joysticks. However while

a joystick gives eight separate readings (plus trigger output), the paddle has two hundred
and twenty eight (plus trigger). The main use of joysticks is to give one of eight choices (I
now ignore the trigger), but that does not mean that you use paddles for giving one of228
choices! Not as such, anyway. The best use of this device is to allow the user to control
something that can vary continuously from one extreme to the other.

228

1

Figure 18.3

Sound, for instance. Program 56 very simply shows how to use the two paddle
keywords: PADDLE{N) and PTRIG{N). Here again, N is the code for the paddle to be
looked at. 1don't think there's any problem here.

171

Program 56: Up the creek

11 FOR GO=I TO 1 STEP 0
21 LET P=PADDLEII):REM ff Read first paddle
31 SOUND I P II II
41 IF PTRIS(8)=1 THEN SOUND 2,Pr10,10:REM ff Read first paddle trigger
41 REM If Or you can use the TKIG to get out with •••.
51 NEXT GO

PADDLE(N) gives an output of 228 ifthe paddle approached isnot connected or has the
control turned all the way anti-clockwise. The paddle can go about three quarters ofthe
way round, but you will find that a third or so of that makes no difference to the
output-it is not used. See Figure 18.3. PTRIG(N) gives 1 if the trigger is left at peace,
but 0 if pressed. Isn't it a shame no one uses paddles any more?

THE SPECIAL FUNCTION KEYS
These are the set over the right of the keyboard, four or five in number depending on the
Atari you have. We've dealt with the (SYSTEM)RESET key already (Page 93 for
instance). Here I want us to look at the OPTION, SELECf, and START keys that all
Atari micros offer.
Every fiftieth of a second, your micro checks to see which, if any, of these keys are

pressed. Storage site number 53279 carries a value that depends on the keys used. The
table shows the readings in that storage site and you can access it at any time with
PEEK(53279).

Table 18.1 PEEKing 53279

Key(s) down

None
OPTION
SELECf
START
OPTION and SELECf
OPTION and START
SELECf and START
All three

Stored value

7
3
5
6
1
2
4
o

If you have an XL Atari, you may have tried the 'Help' routine you get by pressing BYE
or by switching on with the OPTION key down. My program 'You takes your choice', is
a pale imitation of that. Study it to get some idea of how to read these special keys and
how to use the results.

Program 57: You takes your choice

II GRAPHICS 2:FOR W=I TO 1 STEP 0
21 POSITION 5r5:PRINT 10j"START key'
31 IF PEEKI53l79)=0 THEN LET W=2
41 POSITION 5,5:PRINT 10;" "
51 NEXT W
51 REM ff All above is START routine
01 POSITION 0 I:PRINT 10;"K ENU"
70 PRINT 10:PRINT 10;'1. this·:PRINT 10:PRINT IOj"2. that":PRINT 10:PRINT 10;'
3. the other"

172

BI PRINT 'OPTION key to change line.":PRINT 'SELECT key to show choice.'
90 LET L=2
110 FOR W=0 TO 1 STEP I
110 POSITION 16,L:PRINT 16:"('
120 IF PEEK(53279)=3 THEN POSITION 16,L:PRINT 16i" ':FOR 0=1 TO 110:NEXT O:LET L
=L+2:IF L=B THEN LET L=2
130 IF PEEK(53279)=5 THEN LET W=2
140 NEXT II
150 GRAPHICS 2:60SUB LI501
151 REM i* All above is OPTION/SELECT routine
160 RUN
161 REM *f Re-start after chosen program
999 REM 1* First choice
1010 POSITION 7,5:PRINT 16;"THIS"
1010 FOR W=l TO 1100:NEXT II
1020 RETURN
1999 REM It Second choice
2000 POSITION 7,5:PRINT 16:'THAT"
2010 FOR 11=1 TO 1100:NEXT W
2020 RETURN
2999 REM *t Third choice
3000 POSITION 5.5:PRINT 16;'THE OTHER"
3010 FOR 11=1 TO 1000:NEXT W
3020 RETURN

I guess most uses of the special function keys involve your checking whether the user is
pressing anyone or other of those three (or none at all). You may have some uses for
combination key-presses, if so, good luck to you. That last program will showyou how to
use the results.
The newer Atari micros also have a special HELP key. Its use in programs ismuch the

same as the above-see Page 197.

173

19 Hip Hip J\rral'

Well, we can cheer. This is my last chapter in this book, it deals with the last remaining
aspect of BASIC. I've had to use its subject-arrays (the computer equivalent of lists
and tables) in a number of programs already. That's because they are so useful.
To computer buffs, an array is a list or table of data stored as a block in memory in such

a way as still to allow the individual members-called elements-to be accessed. Before
using an array, we must enter a DIM (= dimension) statement to tell the micro to reserve
the correct amount of storage space. As you know, COM will do instead of DIM.

A SIMPLE ARRAY

Let me build up a fairly simple data-handling program. It uses an array to store a number
of numbers and lets that list be used by the user. The first part of the program, Program
58a, sets up the array as the user wants it, and then allows the user to input the elements.
Let's have the (part)program before any more theory ...

Program 58a: Entering an array

10 LET TEST=1000:DIM T$(4)
20 PRINT CHR$(125):POSITION 5,10:PRINT 'How many nUlbers to store';
30 FOR 1=0 fO 1 STEP 0:INPUT T$:GOSUB fEST: IF FLAG=0 THEN LET 1=2
40 POSITION 30.10:PRINT ' ':POSITION 30 10:NEXT I
50 LET T=VAL(T$):IF T(5 OR T)100 THEN PRINT :PRINT 'Please try a more useful nUl
ber":FOR N=1 TO 750:NEXT N:RUN
60 DIM A(T):PRINT CHR$(125i
70 FOR B=1 TO T:PRINT 'Give nUlber ';8;': "
80 FOR 1=0 TO 1 STEP 0:INPUT T$:GOSUB lEST: IF FLAG=0 THEN LET 1=2
90 NEXT I:LET A(B)=VAL(T$):NEXT B
990 STOP
999 REM ff Sub-routine TEST
1000 LET FLAG=0:IF T$=" THEN LET FLAG=l:RETURN
1010 FOR A=1 TO LEN(T$):IF T$(A,A)('0' OR T$(A,A)'9' THEN LET FLAG=1
1020 NEXT A:RETURN

Do enter that program into your micro now, but don't run it yet-there isn't any point so
far!
Note that in this example-what we call a one-dimensional numeric array-I've

blocked lists outside the limits of 5-100 elements. That's only for convenience. For the
same reason too, the program accepts only whole number element values. You should
easily be able to remove the first restriction if you want. But can you find and remove the
second?
If you do run this program after you have entered it, the part of memory reserved for

the array by the DIM statement will contain the T numbers. Remember that we call
these the elements of the array-we write each in the form A(S) where we call S the

174

subscript of that element. Thus if the user inputs the value 7 to T, and the seven numbers
entered, in order, are 5,10,15,20,25,30, and 35, then A(l) = 5, A(2) = 10, A(3) = 15
... and A(7) = 35. Those numbers are the seven elements or members of array A, their
subscripts are 1 to 7.
In that part-program I used a loop to let the user input the array elements. This is the

normal approach-simple to set up, code and use. Please make sure you can understand
what's going on before you look at the next bit. As I've said, there's not much point in
having a micro set up an array and get the user to input the values of the elements, unless
the data can be used.

SEARCH AND SORT
One important usage of data held in this way is to let the micro 'search' to check if a given
value is held or not. Program 58b does this. Once you've entered it on top of 58a, you can
RUN the combined program and explore it!

Program 58b: Searching the array

200 PRINT CHR$(125):SETCOLOR l10,0:SETCOLOR 2,b,12:SETCOLOR 4,bI12210 POSITION b,4:PRINT CHR$(25J)j'S EAR CH R0 UTI NE':rRINT '
::=== =============1
220 POSITION b,10:PRINT 'What nUlber to seek"
230 FOR 1=0 TO 1 STEP 0:INPUT T$:60SU8 TEST: IF FLA6=0 THEN LET 1=2
240 POSITiON 25,10:PRINT ' ':POSITION 25,10:NEXT I
250 LET Y=YAL(T$):POSITION 0110:PRINT 'Searching for •.• 'jYj' .,'
2b0 LET A$=' in the list,':LtT FLA6=0:POSITION b,18
270 FOR B=1 TO T:IF A(B)=Y THEN PRINT Y;A$:LET FLA6=I:LET 8=T+l
280 NEXT B:IF NOT FLA6 THEN PRINT V;" not"jA$
290 FOR W=1 TO 1000:NEXT W:RUN

When you test this, don't forget that I've set the program up to accept only integer
(whole number) element values for the array. And to save you too much time in testing,
stick to small arrays of five or six elements only. Once we've got the full program, of
course, you can try it out with large arrays and see how fast the Atari is in that context.

The micro can also sort the array we have set up very easily. Well, I mean, no problem
for the micro. Coding isn't so simple.
What 'sorting' means is putting the array elements into a useful new order. The

routine that does that starts at line 300 in the final full version, Program 58c. This also
includes a menu (line 110)which uses the special function key routines I introduced to
you on Page 172. I think the program iswellworth entering, trying out, finishing off, and
keeping.

Program 5Se: Hip, Hip, Array

10 LET TEST=1000:DIM T$(4),A$(13l
20 PRINT CHR$(125):POSITION 5tI0:PRINT 'HoN many nUlbers to store';
30 FOR 1=0 TO 1 STEP 0:INPUT $:60SUB TEST: IF FLA6=0 THEN LET 1=2
40 POSITION 3B.10:PRINT " ':POSITION 30. 10: NEXT I
50 LET T=VAL(T$):IF T<5 OR T>100 THEN PRINT :PRINT "Please try a lore useful nUl
ber!':FOR W=1 TO 750:NEXT W:RUN
b0 DIM A(Tl:PRINT CHR$(125)
70 FOR 8=1 TO T:PRINT '6ive nUlber "B": ';
B0 FOR 1=0 TO 1 STEP 0:INPUT T$:60SU8 tEST:lr FLA6=0 THEN LET 1=2
90 NEXT I:LET A(B)=VAL(T$):NEXT B
100 FOR W=1 TO 500:NEXT W:FOR TO 1 STEP 0
110 SETCOLOR 1,0tI2:SETCOLOR 2,12,2:SETCOLOR 411210:PRINT CHR$(253)jCHR$(125l:PO
SITION 13 4:PR N "fl MEN UIf":POSITION "-------"
120 POKE 92,B:POSITION B,B:? 'Search":? :? 'Sort ascending":? :? "Sort descendin
g':? :? 'Enter neN data':? :? 'Start neN list'
121 REM ff ? for PRo to save space
122 REM If POKE B2•. to change largin
130 POKE 755,I:POKE B2,2:PRINT :PRINT :PRINT "Use SELECT and OPTION keys to choo
se.'

175

140 LET X=31:LET Y=8:REM f Set start point of cursor
150 FOR W=0 TO I STEP 0:POSITION X,Y:PRINT "(":IF PEEK1532791=3 THEN POSITION X,
Y:PRINT " ':LET ¥=Y+2: IF Y=18 THEN LET Y=8
160 IF PEEK1532791=5 THEN LET W=2
170 FOR D=I TO 100:NEXT D:NEXT W
180 GOSUB IY/2-2IiI00:NEXT M
199 REM ff Search
200 PRINT CHR$(1251:SETCOLOR 2,6,12:SETCOLOR
210 POSITION 6,4:PRINT EAR CH" R0 UTI NE :rRINT" ------

============='1
220 POSITION 6,10:PRINT 'What number to
230 FOR 1=0 TO I STEP 0:iNPUT T$:GOSUB TEST:IF FLAG=0 THEN LET 1=2
240 POSITION 25.10:PRINT • ":POSITION 25,10:NEIT I
250 LET V=VALITtl:PDSITIDN 6,10:PRINT for ... "jV;"
260 LET A$=" in the list.":LET FLA6=0:PDSITION 6,18
270 FOR B=I TO T:IF AIB)=V THEN PRINT ViA$:LET FLA6=I:LET B=T+I
280 NEXT B:!F NOT FLAG THEN PRINT Vj' not";A$
290 FOR W=I TO 1000:NEXT W:RETURN
291 REM if Changed fram last time
299 REM *f Upward sort
300 PRINT CHRf(12S):SETCDLOR 2,6,12:SETCOLOR 4,6.12
310 POSITION 6,4:PRIN! CHR$(25))j'U P WAR D SO RTIN G":PRINT '
----- =============
320 PRINT :PRINT 'The numbers in order are:"
330 FOR C=1 TO T-I:LET FL6=0
340 FOR E=I TO T-C:IF A(E+ll(=AIEi THEN LET F=AIE):LET A(EI=AIE+II:LET AIE+l)=F:
LET FLG=I
355 NEXT E
360 IF FLG THEN NEXT C
375 FOR G=I TO T:PRINT ,AIGI:NEXT S:FOR W=l TO 1000:NEXT W:RETURN
399 REM if Sorting downwards
400 REM ff I leave this to you ...
410 RETURN '
499 REM *f Enter new data
500 PRINT CHR$(125):POP :60TO 70
501 REM ff To be frowned on, but I wanted to meet POP before I died
599 REM tf Re-start
600 RUN
601 REM ff Again not the best way to use a sub-routine
999 REM tf Sub-routine TEST
1000 LET FLAG=0:IF TS=" THEN LET FLAG=l:RETURN
1010 FOR A=I TO LENIT$):IF T$(A,A)('0" OR T$(A,A)'9" THEN LET FLAG=I
1020 NEXT A:RETURN

Apart from the bit I asked you to try to do yourself (starting at line 400, and very much
the same as the subroutine starting 300-so use EDIT), this is a full numeric data-
handling program. As it stands, it allows you to enter between 5 and 100whole numbers,
and then to search and sort them. It's also an example of amenu-driven program. Here's
the structure first:

Line 10
Line 20
Lines 100-180
Lines 200-290
Lines 300-370
Lines 400
Line 500
Line fI/1.b
Lines 1000-1020

initialize
set up and enter data
menu and choice handling (using a fairly sophisticated routine)
search routine
upward sort routine
downward sort routine (your bit!)
return to start of data entry section
return to start of program
input check routine

Here is a brief explanation of the upward sort routine, if you are interested. But it is
complex!

Lines 300-320
Lines 330-360
Line 370

176

initialize
the sorting
print out sorted list

The sort has two nested loops C and E, causing the micro to pass time and again through
the array elements. On each pass, a pair of elements is compared (line 340). If the second
is not greater than the first, the elements are swopped (line 340-check it) and the flag is
set to show we are not yet done.

COMPLEX ARRAYS
Let's face it, one-dimensional numeric arrays (simple single-column lists of numbers like
the above) are not particularly valuable data structures. The strength of arrays becomes
really clear when they have more than one dimension, and/or when they store strings
instead of, or as well as, numbers.
Program 59 shows how to use a two-dimensional array. Just for a change it is a

program specially for secondary school science teachers-but you should not find it hard
to modify the concept, and then the program, for your own special needs if they differ!
The program is for an imaginary class of 15 groups, each finding the density of

different samples of some given substance. Each group of values for sample mass and
sample volume go into the program, and into the array. The micro finds the corres-
ponding density value in each case, and stores these in the array as well. Then all 45
values are printed out in the form of a table, and the class average is shown.

Program 59: A dense array

10 DIH A(IS f3} ,CONT$(II:LET T=0
II REH ft nitialise
19 REH ff Start data entry
20 FOR SP=I TO 15:PRINT CHR$(12Sl
30 PRINT "SROUP "·SP
40 POSITION 4,8:PRINT "Sample HASS m/g";:INPUT H:LET AISP,I)=H
41 REH ff Insert TEST routine as in 58; but anyway you can't have INPUT of an ar
ray elelent direct
S0 POSITION 4114:PRINT "Sample VOLUHE V/CI3"!':INPUT V:LET AISP,21=V
b0 LET A(SP t3 =INT(100fA(SP,I}/A(SP,2)+0.S)1 00:LET T=T+A(SP,31
70 FOR W=I 0 750:NEXT W:NEXT SP
71 REH ff End data entry
79 REH ff start display routine
80 SETCOLOR l I0,0:SETCOLOR 2,5,12:SETCOLOR 4,5,10:PRINT CHR$112S):POSITION 4,10:
PRINT "Ready tor display";:INPUT CONT$:PRINT CHR$112S)
90 PRINT "Group: I/g: VlcIJ: DensitylglcIJ":FOR D=I TO 37:PRINT "="::NEXT D
:PRINT
100 FOR SP=I TO lS:LET L=PEEKIB4)
101 REH ff 84 holds current line on screen
110 POSITION b-LENISTR$ISP»,L:PRINT SP;
III REH ff Note screen format trix'
120 POSITION 13-LENISTR$(A(SP,I})} ,L:PRINT A(SP,J);
130 POSITION 21-LEN(STR$IA(SP,2)) ,L:PRINT A(SP,21;
14B POSITION 34-LENISTR$(AISP,3»):L:PRINT AISP,3)
ISB NEXT SP:FOR D=I TO 37:PRINT "= ;:NEXT D
IbB PRINT :PRINT "Hean density value: ";INTIT/15tI0B+0.S)/IB0;"g/cI3"
170 FOR W=0 TO I STEP 0:NEXT W .

Did you note that I called this a two-dimensional array? You may perhaps have thought
that, because it consists offour lists, it should really be a four-dimensional array. Not so!
The dimensions of an array are just like dimensions in real life. Our first one was a simple
list (Program 58), extending on paper in one dimension only. Our second example,
Program 59, is two-dimensional because this is a table that extends on paper in two
dimensions. Look again at the D1Mstatements in each case-the first number, if there is
more than one, is the number of rows, while the second gives the number of columns.
On paper you can have books of tables. (You may perhaps remember logarithm tables

that are still sometimes used at school!) In computing terms, the data stored in such a
book would be held in a three-dimensional array, and you would need to set it up using a
three-dimensional DIM statement. For instance, if you wanted to hold twenty tables,
each of seven rows and three columns, you would use DIM(20,7,3).

177

In fact, in the case of the Atari micro you can't go so far-two-dimensional numeric
arrays are alI you can get. (Some people calI such an array a matrix.) Some other micros
offer more flexibility in their array structures, and indeed have similar multi-dimensional
systems for holding strings. Alas, the Ataris do not have string arrays.
You may ask, then, why DIM is used for strings as welI as for numeric arrays. Surely

that can't be a coincidence? You are right-it is not a coincidence. In fact Atari BASIC
views a string as a one-dimensional array of characters. Advanced programmers can
utilize that feature to mimic the presence of 'proper' string arrays, putting them as
substrings within a single string (character array). To do work like this requires a fair
knowledge of string functions as welI as of what string arrays can offer. I don't think I
ought to go that far here.
I'll close with another array program, offered to you without comment, that lets

SOUND statements access array element values. As we have four SOUND channels, I'll
use a two-dimensional array with four columns.
Here's where I add a little advanced point. When you use DIM A(5), for instance, the

micro in fact reserves six storage sites, rather than the five you might expect. The reason
is our good friend, the sudden zero. The elements of the array are numbered from 0t05.
Total is six. I'll just as welI use that point in this next program, as our SOUND channels
have the same numbers.

Program 60: A sound array

III DIM S(41l.3)
11 REM II 40x4 elelents, not 41lx3'
211 FOR N=1 TO 411 .
311 LET S(N 0)=N
411 LET S(N:ll=NI2
51l LET S(N;2)=Nf4
611 LET S(N,31=Nf6
71! NEXT N
71 REM fl All elelents given values now
79 REM ff Now let's use those values••.•
BI! FOR 60=1l TO 1 STEP Il:FOR N=41l TO 1 STEP -1
911 60SUB m
1110 NEXT N
1111 FOR N=1 TO 41!
121l 60SUB 2011
130 NEXT N:NEXT 60
199 REM ff SOUND sub-routine
2111 SOUND Il,S(N,II,II,11
211l SOUND I,S(N,I),10,11!
221 SOUND 2,S(N,21 ,11,11!
231l SOUND 3,S(N,3l,IIl,11l
240 RETURN

I've realIy just produced there a tune-playing program that works at random (though of
course it's not truly random). But I'd like you to think how easy it would be to use
READ... DATA with arrays to put the notes ofa tune into aform the micro can quickly
play.
Well, there are alI sorts of ideas in this chapter for you to explore and develop as you

please. And not a single new keyword to learn!

178

20 Onward

Well, it's got to happen sometime-you're on your own. In this book I have tried to
make you happy with basic Atari BASIC. There are a few keywords left untouched.
They all deal with more advanced coding work, or with such things as disc handling,
which most readers won't be into straight away. Appendix 3 gives a full list.
Ifyou've worked through the book with some care up to this point, your grasp of Atari

BASIC will be quite enough for you to develop fast on your own. We've had sixty
programs (and there are some more in Appendix 2)-check you understand how they
work, and then develop them for your own purposes. That'll give you a fair software
library!
You should now have no trouble in following programs listed in the better magazines

and the better books. (I say 'better', because you must always beware of problems with
printing errors....)
But I hope that this book is not due to be thrown away now. I have designed it not just

as a teaching guide, but as a source of reference for a long time in your future. So
although this is the last chapter, there are still a number of appendices you may find
useful in that context. And do use the index, when you want to check on something.
So-onward!

179

I: on

Many of the chapters in this book close with 'Do it yourself sections. Well, I mean that
charming name! You cannot learn how to program a micro by reading a book-youmust
start wearing your finger-tips away on the keyboard.
In this Appendix, then, don't think you're going to be able to find answers to the DIY

questions. All I put here are the occasional tips, notes, suggestions and further
comments.
There's another thing. Give a coding task to ten programmers and you'll get ten

programs. Each program will do the job as set out, but there are lots of ways to carry out
each module. (If you haven't got to Chapter 6 yet, a module is a sub-task to be handled
within a program.) So I'd be very wrong to give you 'answers' and imply that you are
wrong if your code differs from mine. Ifyour codeworks, you've done the job. Ofcourse
I have been coding for a good number of years, so maybe my programs are more
efficient, more structured and shorter than yours. Or maybe not-good programmers
are born not made and you may very well have more flair than I!

CHAPTER 3
2. I refuse to make up a poem for you. "This pretty young girl used Atari ..."? Once

you've made it up, use PRINT and POSITION to make it look good on screen,
clearing the display after each verse if it's an epic.

3. The best symbols are the ones on the upper half of the non-letter keys. But some
numbers and letters (small or capital) are useful too. Can I jump ahead and tell you
that you can display characters dark on light rather than light on dark?-use the
key with the space-age Atari symbol (old micros) or the one showing a sort of
semaphore flag (newer ones). Bottom right. And if you press letter keys with
CONTROL (CTRL) down you get some special shapes designed just for this
purpose.

9. I was a rotten cheat. I coded this on a micro that doesn't complain about errors
(more's the pity), but printed it out on the same printer. Rotten cheat indeed.
13. Program 37 on Page 128 is one answer.

CHAPTER 4
2. For complex shape printing as is needed here, do make copies of the screen grids in

this book-Figure 4.4,4.10 and 4.11 in this case. Sketch what you want with care
before going to the keyboard. Use pencil. ...

5. See Appendix 5.

180

CHAPTER 10

1. If you can't do this, better go back to the start of the chapter. ...
2. "Better than"-that's easy.

CHAPTER 11

4. The best test in the book!

CHAPTER 12

3. This book is not going to make you an expert arcade game programmer. You'd best
make sure you can animate objects this way before dreaming of your own Frog
Invaders program....

CHAPTER 13
1. In a loop of course, with lots of nice, neat, useful messages. Perhaps subroutines are

the best way to handle the different possible functions.
2. That means add question/answer reward/penalty routines. A nice task to program,

and it'll help you with your tables too!
3. What you want is for the program to ignore all even numbers for a start. (No even

number, except 2, is prime.) Then, on testing a new number, as soon as it finds a
factor, jump out ofthe loop (in the proper way) and try the next one.

4. The crucial lines will be something like:

LET SPEED = 10* T
LETDIST = 5 * T * T (faster than 5 * T /\ 2)

7. With each input number, enter a subroutine to put it in place and add to the sum
(total). A more efficient way is to use an array, but, alas, we don't get to arrays till
Chapter 19. Then you'll meet Program 58.

8. Same applies. Program 45 touches on this too (and also uses arrays before time).
9. This is for advanced mathematicians only. If you are one such, you'll know how to

approximate 'pi' to as much accuracy as you want. But, alas, the Atari can't go far
with you.

CHAPTER 14
3. You could try to pull out a substring of limits set by the user, for instance. Or change

all upper case characters to lower, and vice versa. Well, you can do quite a lot with
strings.

4. Maybe Program 42 will give you an idea for GETting input very poshly. Question 8
hints at this too.

CHAPTER 16
2. The big catch here is that screen lines and columns start with number 0. So you

mustn't go above 79 in an 80-column line, for instance.
4. Of course, if you're a student, teacher or market researcher, what an opportunity

you have!

lSI

6. And how about cursor-control with RETURN to fix the position of, for instance, a
chair?

Good Lord-is that all? Clearly I haven't asked you enough questions. Still with only
half of that you'll have a fair software library!

182

2: Programs

Just in case you feel you haven't had enough-here are some more! These arose as I was
playing around with some specific programming idea and got carried away, or I
developed a program round some aim and found it didn't make any special coding point.
Anyway I'll just give you the programs without any comments other than the odd

REMs. Enjoy them (the programs, I mean).

Program A2.1: FIitout

10 SETCOLOR 1 0 0:SETCOLOR 2 5 14:SETCOLOR 4,5,14
20 LET SPLAT=I'88:LET HI=0:POKE 752,I:FOR 6A"E=0 TO I STEP 0:PRINT CHR$(125)
21 RE" ff HI is high-score
30 POSITION 8,21:PRINT HI:POSITION B,2:PRINT '++++++++++++++++++++++++":POSITION
B,IB:PRINT '++++++++++++++++++++++++'
40 FOR L=2 TO IB:POSITION B,L:PRINT '+':POSITION 31,L:PRINT '+':NEXT L
58 LET X=28:LET Y=10
51 RE" If All above is initialisation
59 RE" ft "ain loop starts now
b8 FOR FLIT=I TO 5888
78 SOUND 1158 118,10:FOR DLY=I TO 50:NEXT DLY:SOUND 110 18 t8:POSITION X-I,Y-I:PRIN
T' ON X-I Y:PRINT ' t ':POSITION X-I,Y+I:rR N' ,
B0 POSITION °8:PRINt FLIT
98 LET R=RND(01:LET X=X+(-I*(R(8.3333»+(lt(R>8.bbb7»)
91 RE" ft logic trick there
188 LET R=RND(01:LET Y=Y+(-lt(R(8.3333))+(lt(R>8.6bb7))
110 IF FLIT>HI THEN LET HI=FLIT
III RE" tt Update high score
128 IF X(B OR X)31 OR Y(2 OR Y)IB THEN 60SUB SPLAT:LET FLIT=5000m NEXT FLIT
148 FOR D=I TO 258:NEXT D
158 NEXT 6A"E
999 RE" tt Sub-routine SPLAT
1888 SOUND 1,258 8,15
1810 POSITION X-l,Y-l:PRINT "1II':POSITION X-I,Y:PRINT 'III':POSITION X-I,Y+l:PR
INT 'III':POSITION Ib.10:PRINT 'SP'
1820 RETURN .

A pretty weedy game (you can't join in. I mean) that's fairly advanced in its animation
routine.

Program A2.2: Cat's cradle

10 SETCOLOR It0,12:SETCOLOR 2,4f2:SETCOLOR 4,4,0:POKE B2,8:0PEN 11,4,0,'K':POKE
75211:LET SBS RN6=500:LET OPEN=b00
20 VI" A$(20i,B$(20)

PRINT CHR$(125l:FOR 1=0 TO I STEP 0:POSITION B,18:PRINT 'Ready when you are..
48 FOR W=I TO 400:IF PEEK(lb4)=255 THEN NEXT W

41 REM II Waits a couple of seconds for a ket-press
50 IF PEEK(764)=255 THEN POSITION BlI2:PRINT Oh, DO hurry up!":NEXT I
60 PRINT CHR$(125):POSITION 10,10:PHINT "And about tille too,"
70 POKE 764),255
71 REM II input buffer
80 FOR W=I TO 250:NEXT W .
90 LET A$="cat's cradle":GOSUB SBSTRNG:GOSUB OPEN
100 FOR W=1 TO 400:IF PEEKI764}=255 THEN NEXT W
101 REM II Wait for key-press again
110 GRAPHICS 1B:SETCOLOR 4,12,6:POSITION 6,6:PRINT 16; "PHEW" II":FOR 1rI=1 TO 500:
NEXT W
120 GRAPHICS 0:POSITION 0,10:PRINT "What's your nalle, by the way";:INPUT A$:POSI
TION 10,14:PRINT "Oh":FOR W=1 TO 500:NEXT W
130 GOSUB SBSTRNS:GOSUB OPEN
140 FOR W=I TO 400:IF PEEK1764l=255 THEN NEXT W
150 GRAPHICS 0:POSITION 0,10:PRINT "Sillie your date of birth - like 05046B":INPU
TA$:POSITION 10114:PRINT "Ta":FOR W=1 TO 500:NEXT IrI
160 GOSUB SBSTRNb:GOSUB OPEN
170 GRAPHICS 17:PRINT 16:CHR$(125):LET V=VAL(A$l
171 REM II YOU should lug-trap that date entry
IB0 FOR A=1 TO 12:POSITION 0, (A-llI2:PRINT 16;A;" I ";V;" = ";AIV:NEXT W=I
TO 1000: NEXT IrI
190 RUN
499 REM II Sub-routine SuBSTRiNG
500 GRAPHICS 17:FOR A=0 TO 23:POSITION RND(0l 110,A:PRINT 46jA$II,RND(0)ILEN(A$11
tLENIA$)-I)l+I):NEXT A:FOR W=I TO 1000:NEXT W
J10 PRINT 16;CHR$(125)
520 FOR A=0 TO 23:LET X=INTIRND(0)IILENIA$)-2))+I:POSITION RND(0l110,A:PRINT 46;
A$(XJ,X+RNDI0l l(LENIA$l-X-I)+ll:NEXT A:FOR 1rI=1 TO 1000:NEXT IrI
530 rRINT 16;CHR$(125)
540 FOR A=0 TO 23:LET X=INTIRND(0)I(LENIA$)-2))+I:POSITION RND(0}110,A:PRINT 16;
A$(XJ,LEN(A$))i:NEXT A:FOR 1rI=1 TO 1000:NEXT IrI
550 rRINT
599 REM It Sub-routine OPEN
600 IF INT(LENIA$)/2)12=LENIA$) THEN LET A$ILENIA$)+I)="'"
601 REM II Hake A$ have odd nUlber of characters
610 FOR A=1 TO 20:POKE 712,RND(0)1255:POKE 708,RND(0)1255:POKE 709,RND(0)1255:S0
UND 0 250-AI10,10,10:PRINT 16jCHR$1125l
611 REM It Those POKEs deal with colour of 16 background, 16 capitals, and 16 slIall letters
620 FOR B=1 TO LENIA$) STEP 2:LET B$=A$(LENIA$)/2+I-BI0,5,LEN(A$)/2+Bf0,5):POSIT
ION 10-LEN(B$)/2 B:PRINT t6;B$:NEXT B
630 FOR W=1 TO 200:NEXT W:SOUND 1,50+AI10,10,10:NEXT A:SOUND 0,0,0,0:S0UND 1,O,O,0:REiURN

Maybe this could have gone near the end of Chapter 14-this is a string-handling effort.
"eat's cradle" is a string-handling effort, see? No? Oh, well.

Program Al.3: Circle

11 SRAPHICS B:SETCOLOR 1,0,15:SETCOLOR 2,3,I:SETCOLOR 4,3,0:COLOR I:DES :LET DRA
1rI=580:LET TEST=610
11 RE" ff Initialise! including setting angle work in degrees
21 LET CENX=159:lET CtNY=79:LET RAD=75
21 RE" ff Set centre-point and radius
30 SOSUB DRAW
40 FOR CCL=0 TO 1 STEP I:FOR GO=0 TO I STEP 0:PRINT "Centre (x,y)"j:INPUT CENX,C
ENY:PRINT "Radius"j:INPUT RAD:SOSUB TEST:IF FLG THEN NEXT GO
51 SOSUB DRAW:NEXT Cel
499 RE" ff Sub-routine DRAW
510 PRINT :PRINT :PRINT :PRINT "Centre: 'jCENXj","'CENY "Radius: "jRAD
518 PLOT CENX,CENY:FOR ANS=I TO 361 STEP 5:LET X=e£NX+RADISINIANS):LET Y=CENY+RADfCOSIANS)
511 RE" ff Change STEP value to change speed and resolution
520 DRAIrITO X,Y
538 NEXT ANG:RETURN
599 RE" ff TEST: can circle fit on screen?
608 LET FlS=I:IF CENX-RAD(0 OR CENX+RAD>319 OR CENY-RAD(I OR CENY+RAD>190 THEN L
ET FLS=1
611 RE" ff Srafix allowed within l<x<319 and l<y<191
618 RETURN

184

If you had your life again and got a Sinclair Spectrum micro, you'd have CIRCLE as a
standard command/statement. As it is, with the Atari we have to work harder to get a
round on screen. But you may need the idea in routines of your own.

Program Al.4: Railway Terrace Plate

5 I This is for Iy race-loving daughter Rebecca'
11 LET PLACE=511:LET WIN=611:POKE 755,I:SETCOLOR 1,1,I:SETCOLOR 2,12,12:SETCOLOR
4,12 12:PRINT CHR$1125l
21 FOR LINE=1 TO 21:POSITION 2,LINE:PRINT D:D:POSITION 36,LINE:PRINT D:';:NEXT L
INE
21 I DraM 'course'
31 LET Hl=3:LET H2=7:LET H3=11:LET H4=15:LET H5=19
31 I Horses' tracks
41 LET Xl=I:LET X2=I:LET X3=I:LET X4=I:LET X5=1
41 I Horses' starting places
51 LET H=Hl:60SU8 PLACE
61 LET H=H2:60SU8 PLACE
71 LET H=H3:60SU8 PLACE
BI LET H=H4:60SU8 PLACE
91 LET H=H5:60SU8 PLACE
180 POSITION 1123:PRINT "Place your bets and then press RETURN. Di111 OPEN 11,I:POSITION 1,23:PRINT 'They're OFF!'!

D,

121 FOR 60=1 TO 99
130 IF INT(60/2)=60/2 THEN POSITION 1,23:PRINT 'They're OfF!!!";
141 IF INT(GO/2)()GO/2 AND 60<11 THEN POSITION 1,23:PRINT DThey're OFF!! !";
141 RE" I Flashy flashing text effect
151 LET H=Hl:LET Xl=Xl+INT(RND(I)+1.5):60SUB PLACE: IF Xl>33 THEN LET WINNER=H:LE
T60=110:NEXT 60:60SU8 WIN:RUN
151 I Luvverly chance for editing there!
160 LET H=H2:LET X2=X2+INT(RNDIII+0.5f:60SU8 PLACE: IF X2>33 THEN LET WINNER=H:LE
T60=110:NEXT 60:60SUB WIN:RUN
170 LET H=H3:LET X3=X3+INT(RND(0)+1.5):60SUB PLACE:IF X3)33 THEN LET WINNER=H:LE
TGO=110:NEXT 60:60SUB WIN:RUN
IB0 LET H=H4:LET X4=X4+INTIRND(I)+1.5l:60SU8 PLACE: IF X4>33 THEN LET WINNER=H:LE
T60=101:NEXT 60:60SUB WIN:RUN
190 LET H=H5:LET X5=X5+INT(RND(0)+0.5):60SU8 PLACE: IF X5)33 THEN LET WINNER=H:LE
T60=III:NEXT 60:605U8 WIN:RUNm NEXT 60
499 I Sub-routine PLACE
510 SOUND 1,251-Hlll 10 B
518 POSITION Xll(H=H!)+X21(H=H2)+X31(H=H3)+X41(H=H4)+X51(H=H5),H:PRINT DI@":FOR
W=1 TO II:NEXT W
528 SOUND 11',0,I:RETURN599 I WIN
618 FOR A=1 TO 110:S0UND 1,251-RND(8)12IA,10,15:LET X=RND(0)115:SETCOLOR 1,0,X:S
ETCOLOR 2,12,15-X:NEXT A
681 I Typical Deeson flashy finish
618 POSITION 1,23:PRINT 'The Minner is horse nUlber '; (H+l)/4·"D.
628 FOR A=1 TO 188:S0UND 1,251-RND(I)12IA,II,15:LET X=RND(0)115:sETCOLOR 1,I,X:S
ETCOLOR 2,12 15-X:NEXT A
630 FOR W=1 to 501:NEXT W:RETURN

Horse-racing with the Atari. You can bet on which horse wins. And one day you maybe
able to define characters to make better horses.

Program Al.5: Ticker

11 DIH HESSA6E$(120),8ANNER$(150) ,80RDER$(20i:LET BORDER$=""""""""""'."
:POKE B2.1
21 PRINT'CHR$(125);CHR$(253)h"Please type in your lessage and RETURN."
31 POSITION 11ll:INPUT HESSAbE$
41 LET 8ANNERJ:' If "
51 LET 8ANNER$(LEN(BANNER$)+I)=HESSAGE$:LET BANNER$(LEN(BANNER$)+ll:' If

"51 REH f Concatenation: lakes the banner string = intro sYlbols+lessage+closing
sylbols
61 6RAPHICS 18:SETCOLOR 1,8,I:SETCOLOR 1,0,14:SETCOLOR 2,1,0:SETCOLOR 3,2,10:SET
COLOR 4,2,6

185

61 REM * 'Best' colour settings for all 16 print styles
76 POSITION 612:PRINT 16jBORDER$:POSITION 6,8:PRINT 16:BORDER$
81 FOR SO=!! Tu 1 STEP 0 '
90 FOR CHAR=1 TO LEN(BANNER$)-20:IF PEEK(764)(>255 THEN POKE 764,255:RUN
91 REM * Stop display with any key-press
110 PDSITiON 6,5:PRINT 16;BANNER$(CHAR,CHAR+19);:SOUND 1,200,16,14:FOR 11=1 TO 16
0:NEXT II:SOUND 1,6,0,6
110 NEXT CHAR
120 NEXT 60

As in ticker-tape rather than the old 'heart. Quite nice for a display when you're rich
enough to have a shop-window.

Program A2.6: Timer

10 LET RNDEL=580:LET TMEAS=660:LET SHOII=706:POKE 82,0:PRINT CHR$(125):SETCOLOR 1
16,14
L0 PRINT :PRINT 'R EFLEX T I WER':PRINT '======================='
36 PRINT :PRINT :PRINT 'Please press the number of your choice"
31 REM * Menu
40 PRINT :PRINT :PRINT 'I. Silple - screen only':PRINT :PRINT '2. Harder - sou
nd':PRINT :PRINT '3, Harder still - both:PR,:PR.:PR,'
41 REM * POSITION is not always silplest in practice
50 OPEN '1,4 6 'K'
60 FOR C=0 TO 1STEP 0:SET 11,I:LET 1=1-48:IF 1>0 AND 1(4 THEN LET C=2
70 NEXT C
71 REM f Mug-trap
80 LET BESTT=1000:LET SUM=0:6RAPHICS 18:60SUB 100*I:FOR 11=1 TO 1000:NEXT II
81 REM * NB COlputed sub-routine address
82 REM * NB too the silple maths tricks with BESTT and MEANT
90 RUN
91 REM f Re-start
99 REM f TEST sub-routines
100 FOR 60=1 TO 10:PRINT 16;CHR$(125):PRINT .6:PRINT 16;'T EST 1':PRINT 16:P
RINT 16"SO ':60;':"
110 POSiTION 2,8:PRINT Ib"PRESS return IIHEN THE SCREEN CLEARS"
120 60SUB RNDEL:PRINT .6iCHR$(125):LET T0=INT((65536*PEEK(18))+(256*PEEK(19))+PE
EK(20)):POKE 764,255:60SUB TMEAS
121 REM * POKE is to stop cheating
130 NEXT 60:RETURN
200 FOR 60=1 TO 10:PRINT 16jCHR$(125):PRINT 16:PRINT 16j'T EST 2":PRINT 16:
PRINT 16,IIS0 "'GO;":'
210 POSItION 2:8:PRINT 10"PRESS return WHEN THE BUZZER CLICKS"
226 60SUB RNDEL:SOUND Il250l0110:LET T0=INT((65536*PEEK(18))+(256*PEEK(19))+PEEK
(20)):POKE 764 l25S:S0UNU TMEAS
221 REM * ?CHK$(125) won't work in this Mode; that buzz is too long anyway
230 NEXT 60:RETURN
300 FOR 60=1 TO 10:PRINT 16jCHR$(125):PRINT 16:PRINT 10j'T EST 3':PRINT Ib:P
RINT 16; 'SO "i 60: ' : '
310 POSiTION 218:PRINT 16; 'PRESS return WHEN THE BUZZER CLICKS AFTER THE SCREEN CLEARS'
320 60SUB RNDEL:LET R=I:PRINT 16iCHR$(125}:GOSUB RNDEL:LET R=0:GOSUB RNDEL:SOUND
1 250 0 10 .
330 LEt to=INT((6553bfPEEK(IS})+(250fPEEKI19))+PEEKI20i):POKE 764,255:S0UND 1,O,0,0:60SU8 TMEAS
340 NEXT 60:RETURN
499 REM * Other sub-routines
500 FOR W=I TO (10*(]=I)+IB*R)+(RND(0)f75)f(I+(I=!})f(I+(10f(NOT R)))
501 REM * NB logical expression; can you follow it and then see why I use it?
510 NEXT II:RETURN
600 FOR W=0 TO ! STEP B:IF PEEK(764)(>255 THEN LET W=2
601 REM f Wait for key-gress technique
610 NEXT W:LET Tl=INT((6J536fPEEK(18})+(256*PEEK(19))+PEEK(20)):LET T=(TI-T0}/50
611 REM f In North America use 60 not 50
620 LET SUM=SUM+T:LET MEANT:SUM/GO:IF T(BESTT THEN LET BESTT=T
621 REM * Check arithletic techniques'
630 SOSUB SHOW:RETURN
700 PRINT 16;CHR$(125};'R ES ULTS':PRINT 16;"-------------'
710 POSITION 4,3:PRINT 16 'time ';T;'sec'
720 POSITION 4;5:PRINT 16 'best 'jBESTT:'sec'
730 POSITION 4,7:PRINT 16 'mean 'jINT(100*MEANT+0,5)/100;"sec"

186

740 FOR W=1 TO 1000:NEXT W:POSITION 0,9:PRINT fOj"RETURN to go on ... •
750 POKE 704,255:6ET II,J:RETURN
751 REM * Wait for key-press to go on

Has computing improved your reflexes? Likely not, though Missile Command (the Atari
game I most love to hate) may help. TIME is of course the essence.

Program A2.7: Wordguess

10 LET OOPS=500:DIM TAR6ET$(10l,6$(12):6RAPHICS 2:SETCOLOR 4,5,o:POKE 70B,14:POK
E709,24B.
11 REM f. POKEs handle 10 colours
20 DIM F$(20):LET F$=' ':FOR NORD=1 TO 5:READ TAR6ET$:LET T=L
ENnARSEH)
21 REM * Lilit depends on word-store
30 FOR SO=I TO 99:PRINT IOjCHR$(125)
41 POSITION 3,I:PRINT 10'"Quess the word"
50 LET P=9-T/2:FOR X=P Tb X,5:PRINT 10j'-":NEXT X
00 LET CHECK=0
70 FOR G=0 TO I STEP 0:POSITION 817:PRINT lo;"type guess + RETURN':POSITION P,O:
INPUT G$:IF LEN(6$l=T THEN LET G=L
B0 IF LEN(G$)<)T THEN GOSUB OOPS
90 NEXT S
180 FOR CHAR=I TO T:IF G$(CHAR,CHAR)(TARGET$(CHAR,CHAR) THEN POSITION P+CHAR-I,5
:PRINT 10;'('
101 REM * Now check each character in turn
110 IF S$(CHAR,CHARl)TARSET$(CHAR,CHARl THEN POSITION P+CHAR-I,5:PRINT 10j")"
128 IF 6$(CHAR1CHAR)=TARGET$(CHAR,CHAR) THEN POSITION P+CHAR-l,5:PRINT 10jS$(CHA
R,CHARl:LET CHtCK=CHECK+I
158 NEXT CHAR:FOR N=I TO 1008:NEXT N:IF CHECK=T THEN LET SC=GO:LET SO=180
108 NEXT 60:POSITION 0,7:PRINT 10jF$:POSITION 3,7:PRINT 'o;"got it in 'jSC;'!":F
OR N=1 TO 1000:NEXT W:NEXT NORD:RUN
101 REM f RUN includes RESTORE
288 DATA COMPUTER,ATARI,NORD,BUZZ,SUESS
499 REM * OOPS
588 PRINT lo;'wrong length'":FOR N=I TO W:POSITION 8,o:PRINT IOjF$:RETU
RN

Quite a nice word-game, using complex screen-handling. Each dash on screen is a letter
in the target word. Type your guess at the word (with RETURN). For each letter, the
display shows '<' if your letter is earlier in the alphabet than the correct one, or '>' ifitis
later. When you get the word right, along comes a new word to guess.

Program A2.8: Wallpaper

10 GRAPHICS 11:DEG
II REM f. MultiCOLOR lode' DEG cos I find RAD tuff
20 FOR GO=0 TO I STEP 0:SETCOLOR 4,0,B:FOR LOOP=0 TO 3
21 REM * SE.4 ..• handles brightness in this lode
30 LET CENX=20+RND(8l*40:LET CENY=20+RND(8l*150:LET ST=RND(0l*308
31 REM * Set centre and starting angle
40 FOR SPK=I TO 300 STEP 5:LET COL=RND(0l*15:PLOT CENX,CENY:COLOR COL:SOUND LOOP
LOOP+250-SPK/2,10 SPK/2S
41 REM * Check RND in the colour and sound bits
58 DRANTO CENX+SPK/28*SIN(SPK+STl,CENY+SPK/20*COS(SPK+Sll
51 REM * Uniforlly rising angle and radius
00 NEXT SPK:NEXT LOOP:FOR LUM=8 TO 15:S0UND INT(LUM/4),0,0,8:SETCOLOR 4,8,LUM:FO
RW=l TO 58:NEXT N:NEXT LUM:NEXT GO
01 REM * Can you follow the SOUND control there?

We all need a relax sometimes. Ifyou still need your micro to be working when you take
a break, try this so-called restful routine. IF you have an XL Atari ...

187

J: OJ.\SIC 5ulW"

I give here very brief notes on all Atari BASIC keywords. They're for you to refer to
rather than to learn from. After all, I want you to keep this book for a long time as a
useful work of reference!
I use these symbols to make the notes even more brief:

N numeric constant (e.g., 4), variable (e.g., TOTAL) or expression (e.g., L/2+1)
N$ string constant (HShiva"), variable (T$), expression (T$(4,7))
NC numeric constant
NC$ string constant
NV numeric variable
NV$ string variable

I'll also tell you about short forms if it's worth it.

ABS(N) Function: returns the absolute value of N, ignoring sign. LET B = ABS(A).

ADR(NV$) Function: returns the decimal address ofthe storage site at which the start
of the argument is or will be kept. ?ADR(ES$)

AND Logical operator: joins two conditions, and is TRUE (value 1) only if both are
true. IF AANDB THEN... (= IF A < >0ANDB < > 0THEN...)

ASC(N$) Function: gives the Atari code (similar to ASCII) ofthe first character ofthe
string argument, or 'code' 44 if the string is empty (LEN = 0). ?ASC(A$)

ATN(N) Function: returns the angle whose tangent is the argument, in radians unless
you've set DEG mode. ?ATN(-100)

BREAK Interrupt key: stops the micro in its tracks whatever it is doing (unless it's
LPRINTing), and restores command mode.

BYE (8.) Command/statement: causes the micro to leave BASIC, clearing all storage
sites (in new machines only), and enter the operating system (old versions) or the
memory test routine (new machines).

CHR$(N) Function: returns the character or control action with code N. Values ofN
outside the range 0-255 repeat those in it as long as you stay within the range 0-65535.
Early Ataris do not allow a CHR$ term on both sides of an inequality. ?CHR$(130)

CLOAD Command/statement: causes a NEW, then attempts to load from cassette
the next program found saved with CSAVE or SAVEHC: ... ".

188

CLOG(N) Function: returns the common (base 10) logarithm of the argument; this
must be positive. ?CLOG(DANCE)

CLOSE(CL.) 1* N Command/statement: closes an input/output channel from further
use. Ifa channel is open to one device, you must close it before you open it to a second. N
values from 1-7 only are allowed. CL. # X + 3

CLR Command/statement: clears the contents of all storage sites holding numeric and
string variables; uri-dimensions all arrays and strings; does a RESTORE.

COLOR(C.)N Command/statement: controls the format of PLOT and DRAWTO
work. In Mode 0 (GR.0) selects the character to plot/draw with. In Modes 1 and 2 the
same, but colour too. In Modes 3-7 the colour register to be used. In Mode 8 the
brightness. In other modes similarly. N may not be negative. C.3

COM NV($) (...) Command/statement: just the same as DIM. Why both? I dunno.
COMA(6,3)

CONT Command (ignored if a statement, and pointless then anyway): instructs the
micro to go on from next program line after an error crash or after BREAK, RESET,
STOP or END. It may fail in the second case.

COS(N) Function: returns the cosine of the argument, assumed to be an angle in
radians. ?COS(-1)

CSAVE(CS.) Command/statement: attempts to control the cassette machine, and to
copy the program in store onto tape in a form that only CLOAD can re-read.

DATA(D.)NC($)... Statement: signals the start ofa series of data items, separated by
commas. Data strings cannot therefore contain commas, though no other character is
blocked. DATA 4,Y, Listen!

DEG Command/statement: instructs the micro to work with degrees rather than
radians for angle unit.

DIM NV($) (. ..) Command/statement: reserves storage space for numeric arrays and
for strings (character arrays). Once you've dimensioned you cannot re-dimension except
after CLR. DIM PL$(15), ARRAY(14,10)

DOS Command: turns the micro over to the disc operating system. If you haven't a
disc, DOS BYEs you instead.

DRAWTO (DR.)Nl,N2 Command/statement: after a GR. instruction, draws a line,
as straight as can be, from the last point used by PLOT or DRAWTO (but not by POS.).
The colour is that of the background unless you first use a COLOR instruction. In Modes
0-2, the line drawn consists of characters (set by COLOR) rather than little squares.
DR. 15,3

END Command/statement: makes a running program halt as if it had reached its
normal end. Programs need not end with END, nor need END be the last statement.
END.

ENTER(E)"... " Command/statement: causes loading of a program saved with LIST
" ... " , from cassette ("C: ... ") or disc ("D: ... "). The new programwill 'merge' with one in
memory rather than NEWing that first, to produce a combination of the two. If both
programs have a line number the same, however, the new version will replace the old
one. ENTER "C:SUB27"

189

EXP(N) Function: returns the number 'e' (2.718....) raised to the power of the
argument. ?EXP(0) (though that may give a slightly wrong result!)

FOR(F.)NV... Command/statement: signals the start of a loop. FOR GO = 1TO 50

FRE(N) Function: returns the amount of unused storage in bytes. N can take any
value: 0 is best. ?FRE(N)

GET # N,NV Command/statement: read a byte from an open channel N and store its
value in NV. If the channel is the keyboard, NV stores the code of the character got.
GET #3,CHAR

GOSUB(GOS.)N Command/statement: sends control to a closed subroutine starting
at line N (ERROR if doesn't exist), storing in a stack the current position to allow later
return. GOSUB TEST

GO TO(GO.)N orGOTO N Command/statement: sends control to line N (if it exists)
without the possibility of return. Well-structured programs do not need GO TOs, even if
only implied. GO TO MAINPROG

GRAPHICS (GR.)N Command/statement: puts the display into Mode N, perhaps
clearing the screen. In this book I've looked at the full official range (0-56), but other
positive values ofN produce effects worth an explore. GRA + 16

HELP Key: when pressed, this puts a special value into storage that can be read and
acted upon. (New Ataris only.) See Page 197.

IF... Command/statement: expresses the condition(s) in which the statement that
follows is to be carried out. The condition or set of conditions must take the logical value
1 (= TRUE) for the rest of the line to be used. The logical value of a FALSE statement is
0. IF SCORE AND ANSWER$ = "Y"THEN...

INPUT (I.) NV($) Command/statement: waits for keyboard entry with RETURN and
assigns the data entered to NV($). (May also be used with other open channels in the
form I. # N,NV($).) INPUT A,B$

INT(N) Function: returns the argument rounded off to the whole number left of it on
the number line, unless it is already a whole number. ?INT(5,6)

LEN(N$) Function: counts the number of characters in N$ asassigned, including any
control characters. ?LEN(LION$)

LIST (L.) Command/statement: lists the program, or the lines specified, to the screen
(editor) or to the channel specified. Thus LIST "C: ... " sends the program to the cassette
recorder, saving it in the form loadable by ENTER. And LIST"P:" sends a listing to the
printer. LIST 200,2050.

LOAD (LO.) " ... " Command/statement: attempts to read into store a program on
cassette ("C: ... ") or disc ("D: ... ") saved with SAVE"... ". LOAD"C:PROG 6"

LOCATE (LOC.),N], N2, NV Command/statement: returns to NV the code for the
character printed or point plotted at screen site N1,N2. The code is that used by
COLOR. This is a graphics instruction, so you must use GR. before. LOC.5,@,CODE

LOG(N) Function: Returns the natural logarithm (base "e") of the argument. N must
be positive. ?LOG(JAM)

LPRINT(LP.) Command/statement: follows the rules of PRINT, but sends the items
to the printer rather than the screen. LPRINT "End of test "; TEST; "."

190

NEW Command/statement: clears the current program and most variables from
access in memory.

NEXT (N.)NV Command/statement: marks the end of the FOR. .. loop using NV as
loop counter. NEXT BOUNCE

NO T Unary logical operator: returns 1 if the expression that foIlows is FALSE, and·0 if
it is TRUE-inverts its logical value in other words. ?NOT FLAG

NOTE (NO.) # N,NVI,NV2 Command/statement: with newer disc operating sys-
tems, this reads the current disc file pointer and sets its sector and byte values to NV1 and
NV2. N is the channel open to the pointer. NOTE # 3,5,B

ON NV... Command/statement: sends control to one of several subroutines or pro-
gram lines depending on the value of NV. ON CHOICE Gas. TEST, REPEAT,
GAME

OPEN (0.) # NI,N2,N3, " ... " Command/statement: opens channell to the device in
speech marks (such as "K:" or "P:"); N2 and N3 select the details. OPEN # 6,4,
128,"C:"

OPTION Key: when pressed, this puts a value into store that can be checked and acted
upon.

OR Logical operator: gives TRUE if either or both the expressions next to it are
TRUE, and FALSE if both are FALSE. IF SCORE = 10OR BONUS > 5THEN...

PADDLE(N) Function: returns a value that depends on the current state of the
paddle control specified byN. ?PADDLE(l)

PEEK(N) Function: returns the value in storage site N, in decimal form. ?PEEK(87)

PLOT(PL.)NI,N2 Command/statement: puts a character (specified by COLOR) in
Modes 0-2, or a 'dot' in Modes 3 upwards, on screen at site N1 across and N2 down.
PLOT 10,14

POINT (P.) # NI,N2,N3 Command/statement: with newer disc operating systems,
resets the pointer for the opened channel to sector N2, byte N3. POINT # 3,17,110.

POKENI,N2 Command/statement: copies N2 into storage site N1, if that site exists in
RAM. POKE 83,37

POP Command/statement: clears the latest entry to the stack, so turns a GOSUB into
a GO TO in effect, or cancels the current FOR. ..NEXT loop. Best avoided!

POSITION (POS.)NI,N2 Command/statement: prepares to move the cursor to the
screen site specified ready for GET, INPUT, LOCATE, PRINT or PUT. POSITION
X,Y+3

PRINT (?,PR.)... Command/statement: displays the print items that foIlow on Modeoscreen or through the channel specified with j$, that channel being open. PRINT j$ 6;
"Something"

PTRIG(N) Function: returns 0 if you press the trigger of paddle N, 1 otherwise.
?PTRIG(0)

PUT # NI,N2 Command/statement: sends a byte, value N2, through channel N1 if
open. PUT 1$ 7,48

191

RAD Command/statement: instructs the micro to work with the radian as the unit of
angle rather than degree.

READ NV($) Command/statement: assigns the next free DATA item to NV($).
READ PI

REM (. or R.) Command/statement: tells the micro to ignore the rest of the line, it
being a message to the programmer. REM **Start subroutines

RESET Key: stops the micro in its tracks, with some loss of data and a return to Mode
0.

RESTORE (RES.) Command/statement: returns the DATA pointer to the start of
the DATA list(s), from line N if specified. RESTORE BLOCK2

RETURN Key: shows the end of the current data entry.

RETURN (RET.) Command/statement: causes control to go back to the statement
after the last GOSUB met. RETURN

RND(N) Function: returns a pseudo-random number from 0.f/1I1IJ ... to 0.999.... N can
take any value; 0 is best. ?RND(0)*10

RUN Command/statement: causes the current stored program, or that read from a
device, such as cassette "C:", to start execution. RUN "C:" can handle only programs
saved with SAVE "C: ... ". RUN "C: CHECKBOOK"

SAVE (S.) " ... " Command/statement: sends to cassette ("C:") or to disc ("D:") the
program in store, with an optional name in the former case. SAVE "CiMasterpiece"

SELECT Key: when pressed, puts a value into a storage site that can be used.

SETCOLOR (SE.) Nl,N2,N3 Command/statement: puts into register Nl (0-4),
numbers for colour (N2) and brightness (N3). If the command is valid, the micro carries
it out at once over the whole screen. SETCOLOR 4,6,8

SGN(N) Function: returns -1 if N is negative, 0 if 0, and 1 if it's positive.
?SGN(BORD)

SIN(N) Function: returns the sine of angle N, assumed to be radians unless you've put
in DEG. ?SIN(TAX)

SOUND (SO.) Nl,N2,N3,N4 Command/statement: turns channel Nl on or off. with
pitch related to N2, volume to N4, and 'distortion' to N3. SOUND CHA,P,T,A,

SQR(N) Function: returns the square root of N if not negative. ?SQR(UL)

STATUS (ST.) # N,NV Command/statement: puts into NY a report on what last
happened in channel N. STATUS # 7, ERROR

STEP N Command/statement: part of FOR. .. giving the increment by which the loop
counter should change each time round. FOR W = 0 TO 1 STEP 0

STICK(N) Function: gets output between 0 and 15depending on what's going on with
joystick N. ?STICK(INSECT)

STOP Statement: halts the running of a program under its own control, with a stopped
message.

192

STRIG(N) Function: returns 0 if the trigger of joystick N is pressed, otherwise l.
?STRIG(IL)

STR$(N) Function: returns a string whose characters are the digits ofN; older Ataris
can't have STR$ on both sides of a comparison. You do not need to DIM STR$ strings!
LETDATE$ = STR$(DATE)

SYSTEM RESET See RESET

THEN Command/statement: result part of IF ...
IF NOW = BEDTIME THEN PRINT "Night-night!"

TO Command/statement: closing part of FOR...
FOR WINK = 1TO 40: PRINT "Snore": NEXTWINK

TRAP(T.)N Command/statement: sends control to line N if an ERROR appears.
TRAP ERRORSUB

USR(N) Command/statement: calls a machine code subroutine starting from memory
site N. ?USR(50000)

VAL(N$) Function: returns a number whose digits are the (numeric) characters ofN$.
IfN$(l,1) is not a number, an ERROR appears. Otherwise VAL copes somehow.

LET V = VAL ("2-stroke")

XIO(X)NI, # N2,N3,N4, " ... " Command/statement: general input/output com-
mand, action beingN1, channel being N2 (defined in " ... "). and details from N3 and N4.
XIO 18, # 6,1,1,"S:"

193

4: PEEH-a-boo

BASIC is what we call a fairly high-level programming language. Programs written using
it are changed by the micro into machine code, which consists of no more than strings of
0sand Is.
As compared with machine code, a high-level language is (supposed to be) one which

consists of instructions and symbols which closely relate to human usage;
requires no knowledge of how the micro really works;
requires no knowledge of how and where data is held in store;
offers user-designed labels ('names') for statements, data items and constants;
lets one instruction represent many at machine code level.

A BASIC program line like "100 PRINT SQR(CAT*DOG)" is fairly high-level-it's
fairly easy for humans to follow, and converts to dozens of machine code instructions.
A really high-level programming language would allow instructions like "Put these

numbers in order, find their mean, and plot a graph" or "Correct all the spelling mistakes
in this chapter". Alas, we're still far from having software able to handle that sort of
thing.
Meanwhile we have BASIC, or rather the dozens (hundreds?) of forms of it. Dialects,

we call them of course. The forms range from the original, given to the world in 1964,
long before micros had appeared, to such creatures as Sinclair SuperBASIC and
COMAL, which really differ so much that they are new species. Modern BASICs handle
complex features like colour and sound and high-resolution screen graphics that
BASIC's founders never heard of.
Atari BASIC does all that too of course, but it does date back a few years, so is not

always as flexible as other dialects. To use Atari BASIC with flair often means that you
need to dip down into machine level work sometimes. PEEK, POKE and USR are the
BASIC keywords for that purpose. I've used PEEK and POKE quite a lot in this book.
USR lets you run a machine code subroutine (yours or one of Atari's in-built ones) if it
can do things better than a BASIC one. But I'm not going to delve into USR here.
In this appendix I want to list the more useful PEEK/POKE techniques. First a

reminder of what the keywords do. 'Peek' is old English/modern North American for
'peep', meaning 'take a little look'. PEEK(N) gives you a little look into storage site N in
the micro, so you can find out the value of the byte (decimal 0-225) held there at that
moment. And 'poke'-I guess you know what that means-lets you change the con-
tents: with POKE N, BYTE you replace the current value stored in N with your own
BYTE. Figure A4.1 outlines the uses for the various blocks of the 64K storage units
possible. You can PEEK anywhere you like. If the site at address N isn't used, you'll get
a value of0 back. You can POKE anywhere you like, but it won't get you anywhere ifthe
site poked is unused or in ROM. (ROM = Read Only Memory. Yes?)
Sometimes of course, there's a need for a value to be greater than a byte can hold. We

often use numbers greater than 255-so does the micro. Some storage sites are double
size (or even larger), with two (or more) addresses. Thus sites 88 and 89 hold the start

194

10240 10K

20480 2l3K

307213 30K

40960 4l3K

51200 5l3K

61440 60K

65536 64K
Figure A4 Outline Atari memory map.

RAM for computer
RAM
for

disc system
(if any)

RAM---------for
user

(programs
etc)

BASIC
ROM

I/O ROM
Arithmetic ROM

Operating
system---------
ROM

address of where the screen contents appear in memory. You'd have to PEEK out that
info with PRINT PEEK(88) + PEEK(89)*256. In general if Nl (lower) and N2 (higher)
are the two addresses concerned, PEEKwith

PRINT PEEK(NI) + PEEK(N2)*256
and POKE in a value V with

POKE NI,V-INT(V/256)*256: POKE N2, INT(V/256)*256

195

Here's my table of the main storage site addresses worth noting. The note (2) after an
address means double byte-the address quoted is N1 as above, with N2 straight after.

14(2)

17
18(3)
65
66

77

82

83
84
85(2)
87
88(2)
90
91(2)
93

94(2)
106

136(2)
140(2)
142(2)
144(2)

186(2)

195
201
251
559

564(2)
580

621

622

623
656
657
659

196

Holds the address just below the start of screen display-the highest one
usable for programs and program data.
128, unless BREAK has just been used, when the value becomes 0.
Time since switch-on, in fiftieths (US-sixtieths) of a second.
POKE 65, 0 turns off speaker sound during loading/saving.
POKE 66, 1 stops the micro keeping full keyboard watch, so gives an increase
in processing speed. Only a small increase, though. POKE 66,0 to return to
normal.
Deals with 'attract', the screen flash effect that starts after a few minutes to
stop the screen 'burning'. Attractive? POKE 77,255 to save you waiting those
few minutes. Pressing any main key puts the figure back to 0. (It then steps up
each five seconds or so back towards 255.)
Carries the left margin offset. This is 2 unless you POKE some other value in.
POKE 82,39 has a nice effect. More than 39 locks out the keyboard rather
than the screen....
The same for the right margin.
Carries the screen line on which the next action will take place.
The same for screen columns.
Lets you PEEK the current mode number. A POKE can be upsetting, though.
The address of the first byte of screen memory, the top left-hand comer.
As 84, but for DRAWTO and XIO 18 statements.
As 85 for DR. and XIO 18.
The code for the character at the cursor position. Not the standard Atari code,
though.
The address held here holds the cursor position.
'RAMTOP'-the address of the end ('top') of RAM. ?PEEK(I06)/4 gives the
number of K bytes of RAM you have in your Atari. You can POKE in a lower
value to fool the micro into thinking there's less RAM-thus giving you total
control over a block of storage sites for your own purposes. You must be able
to divide the value you poke in by 4.
Holds the address of the start of your program.
Holds the address of the end of the program.
Holds the address of the end of the program's strings and arrays.
Holds the address of the end of the storage space used by the program as a
whole.
The line number where your program was when you stopped with STOP or
BREAK, or where it stopped with ERROR.
Briefly carries the number of the last ERROR.
The number of columns per TAB (the comma kind). Standard value is 10.
Holds 0 if you're in RAD mode, and 6 for DEG.
Controls 'direct memory access' for use with sprites. If the value here is 0 you
can't use sprites. Other values effect the sprite style. POKE 559,0 in cutting
down screen output also lets the micro work rather faster; use the instruction
then when your program comes to a major chunk of complex processing.
Hold the position of the light pen, if used.
POKE 580,1 causes (SYSTEM)RESET to have the effect of switching off and
on again.
(XLs only) POKE 621,1 to lock out the keyboard; return to life with 621,0.
The former is a good trick to play on a mate-but for serious uses the
instructions need to come in a program. Otherwise RESET is the answer.
(XLs only) POKE 622,1 gives 'fine scrolling'-a slower and thus less jerky
scroll than you get normally, or after POKE 622,0.
Values here fix the priority of sprites-which goes in which screen 'layer'.
As 84 but for text window.
As 85 similarly.
POKEs give some interesting text window effects.

660(2)
665
675(15)
694

7m.
703

704(1)
729

730

731

732

740
741(2)
743(2)
752

755

756

763

764

765
767

The address of the start of the text window.
As 93 for the text window.
A 120-bit long map of the stops for TAB.
If 0--normal characters; other values give interesting codes. POKE 694,32
switches on lower case mode; use 64 for a CONTROL switch, and 128 for an
inverse display switch.
Values concern keyboard locks. 0 is normal, and 128 is CONTROL lock for
instance.
POKE this with 4 to prevent printing on screen. Useful for programs using
printer as well as video, or as part of TRAP routine.
Various colour registers, 708-712 being the SETCOLOR ones.
(XLs only) POKE 729,X to give a delay of X fiftieths of a second (sixtieths in
North America) before the key repeat action starts. The norm is40, so POKE
729,10 gives you a good value for speedy typing. POKE 729,0 cuts out the
effect entirely. This is worth doing for preventing repeating problems with
youngsters....
(XLs only) As for 729 but looking after the key repeat rate. The normal value
is5.
(XLs only) You can tum off the key click with POKE 731,1. I prefer it on
myself-get it back with POKE 731,0.
(XLs only) This storage site contains a value that relates to the use of the
HELP key. Read it with PEEK (732), then clear it with POKE 732,0. The
values are 17 if HELP has been pressed, 81 if it's SHIFT and HELP, and 145
for CONTROL and HELP. That means you can offer three levels of help by
IF PEEK(732) = 17THEN GOSUB HELPI and so on.
True RAMTOP (you can't POKE this to fool the micro, unlike 106).
'MEMTOP'-hold the address of the highest byte of free storage.
Do the same for the bottom.
POKE 1here to make the cursor invisible. Only takes effect when you next use
PRINT, though.
Normal value is 2-givinga visible but see-through cursor. 0 hides the cursor,
1 also makes non-see-through, 3 the same except the cursor is invisible. Add 4
to each of these for the same effects and upside-down characters! Neat!
Its values select character set. 204 in Mode 1 gives the international set for
instance, the one with £. Some nice effects follow POKEs here POKE
756,224 to get back to real life.
Contains the Atari ASCII code for the last character entered or copied, or the
value of the last point plotted.
Contains the code of the last key-press, or 255 if none. POKE 764,255 will
delete the last key-press. Sometimes useful before INPUT. PEEK(764) acts
rather like GET (but can be better).
To be poked with the colour value you want used with XIO 18... (FILL).
If the value here is 0, display can scroll. 1f255, not. Gives you scroll control in
program, rather than with CONTROL and 1.

197

s: Illari

Well, maybe I should say sets? It takes a lot of effort to get into using any but the Mode 0
characters (and even they aren't all simple!). By the time you explore Modes 1 and 2 and
the international set (newer Ataris only)-phew!
The table that follows gives the 256 CHR$(X) results in Mode 0, Modes 1 and 2

(standard and alternative versions), and when you try going international-which UK
readers will have to do to get the pound (£) into their programs. The work will POKE
you to death, even if the results are COLORful. Here are some notes to help you.

Notes

1. A dagger (t) shows a function/character duality-?CHR$(X) will cause the func-
tion to occur; ?"(ESCAPE)X-key" will do the same in a program; and ?CHR$(27);
CHR$(X) will give you the symbol described.

2. Standard Mode 1/2 characters appear with? ** 6;CHR$(X). Alternatively enter the
COLOR register you want-the number in brackets in column 3, and? $I 6; ... the
corresponding character from column 2.

3. Alternative Mode 1/2 characters come when you do all that with a POKE 756, 226
first (and POKE 756,224 after). The COLOR codes are as in column 3 still.

4. The 'international' character set, available only on new Ataris, comes with POKE
756,204 (Mode 0) and POKE 756,206 (Modes 1 and 2). Column 5 shows what you
get in Mode 0. In Modes 1 and 2 you get the main 64 characters in each of the four
colours. Again then the colour register numbers in column 3 apply.

Table AS.I: EtTectsofCHR$ codes

Code Mode 0 Mode 1/2 Mode 1/2 'International'
number standard alternative

0 heart space (1) heart a
1 ! (1) II
2 (1) N
3 .. (1) ... E
4 -I $ (1) -I S
5 ., % (1) ., 6
6 bold slash & (1) bold slash 6
7 bold back-slash (1) bold back-slash i
8 (1) £
9 .; (1) .; I
10 * (1) ii
11 + (1) ii.
12 • (1) • 6
13 (1) Ii
14 (1) 6

198

Code Mode 0 Mode 1/2 Mode 1/2 "International'
number standard alternative

15 • / (1) • 6
16 club 0 (1) club 0
17 r'" 1 (1) r'" ii
18 bold dash 2 (1) bold dash U
19 bold plus 3 (1) bold plus i
20 blob 4 (1) blob e
21 i 5 (1) i e
22 6 (1) n
23 I 7 (1) I e
24 8 (1) ii
25 t 9 (1) t a
26 (1) A
27 ESCAPE symbol t (1) ESCAPE symbol ESCAPEt
28 up-arrowr < (1) up-arrow up-arrow t
29 down-arrow t (1) down-arrow down-arrowr
30 left-arrowr > (1) left-arrow left-arrowr
31 right-arrow t ? (1) right-arrow right-arrowr
32 space space (0) heart space
33 ! ! (0) !
34 (0)
35 # # (0) ... #
36 $ $ (0) -I $
37 % % (0) , %
38 & & (0) bold slash &
39 (0) bold back-slash
40 (0) AlII
41 (0)
42 * (0) *
43 + + (0) +
44 (0) •
45 (0)
46 (0)
47 / / (0) • /
48 0 0 (0) club 0
49 1 1 (0) .. 1
50 2 2 (0) bold dash 2
51 3 3 (0) bold plus 3
52 4 4 (0) blob 4
53 5 5 (0) i 5
54 6 6 (0) 6
55 7 7 (0) I 7
56 8 8 (0) 8
57 9 9 (0) t 9
58 (0)
59 (0) ESCAPE symbol
60 < < (0) up-arrow <
61 (0) down-arrow
62 > > (0) left-arrow >
63 ? ? (0) right-arrow ?
64 @ 8 (0) diamond 8
65 A A (0) a A
66 B B (0) b B
67 C C (0) c C
68 D D (0) d D
69 E E (0) e E
70 F F (0) f F

199

Code Mode 0 Mode 1/2 Mode 1/2 'International'
number standard alternative

71 G G (0) g G
72 H H (0) h H
73 I I (0) I
74 J J (0) j J
75 K K (0) k K
76 L L (0) I L
77 M M (0) m M
78 N N (0) n N
79 a a (0) 0 a
80 p P (0) P P
81 Q Q (0) q Q
82 R R (0) r R
83 S S (0) s S
84 T T (0) t T
85 U U (0) u U
86 V V (0) v V
87 W W (0) w W
88 X X (0) x X
89 y y (0) y y
90 Z Z (0) z Z
91 r r (0) spade r
92 \ \ (0) vertical line \
93]] (0) left-bend arrow]
94 1\ 1\ (0) 1\
95 (0)
96 diamond @ (1) diamond @

97 a A (1) a a
98 b B (1) b b
99 c C (1) c c
100 d D (1) d d
101 e E (1) e e
102 f F (1) f f
103 g G (1) g g
104 h H (1) h h
105 I (1)
106 j J (1) j j
107 k K (1) k k
108 I L (1) I I
109 m M (1) m m
110 n N (1) n n
111 0 a (1) 0 0
112 P P (1) P P
113 q Q (1) q q
114 r R (1) r r
115 s S (1) s s
116 t T (1) t t
117 u U (1) u u
118 v V (1) v v
119 w W (1) w w
120 x X (1) x x
121 y y (1) y y
122 z Z (1) z z
123 spade r (1) spade A
124 vertical line (1) vertical line vertical line
125 bent arrow (CLS)t (CLS)t (not used) bent arrow

(CLS)t
126 (BS)t 1\ (1) (BS)t

200

Code Mode 0 Mode 1/2 Mode 1/2 "International'
number standard alternative

127 • (TAB)t (1) •128 inverse heart Space (3) heart inverse a
129 I: ! (3) .. inverse u
130 I (3)) inverse N
131 ** (3) inverse E
132 $ (3) -t inverse c;
133 % (3) ., inverse 6
134 inverse bold slash & (3) bold slash inverse 0
135 inverse bold back (3) bold back slash inverse i

slash
136 (3) .A inverse f
137 (3) inversei
138 * (3) inverse ii
139 + (3) inverse ii
140 (3) • inverse 6
141 I (3) inverse u
142 (3) inverse 6
143 .. / (3) • inverse 6
144 inverse club 0 (3) club inverse ii
145 r: 1 (3) r'" inverse 11
146 inverse bold dash 2 (3) bold dash inverse U
147 inverse bold plus 3 (3) bold plus inverse 1
148 inverse blob 4 (3) blob inverse e
149 5 (3) i inverse e
150 ! 6 (3) inverse ri
151 7 (3) I inverse e
152 8 (3) inverse a
153 9 (3) inverse a
154 (3) inverse A
155 end of line space (3) heart end of line
156 inverse < (3) up-arrow inverse

up-arrowr up-arrowt
157 inverse (3) down-arrow inverse

down-arrowt down-arrow t
158 inverse > (3) left-arrow inverse

left-arrow" left-arrow t
159 inverse ? (3) right-arrow inverse

right-arrow" right-arrowr
160 inverse space space (2) heart inverse space
161 inverse! ! (2) inverse!
162 inverse " (2) inverse "
163 inverse **

**
(2) ... inverse **

164 inverse $ $ (2) -t inverse $
165 inverse % % (2) ., inverse %
166 inverse & & (2) bold slash inverse &
167 inverse, (2) bold back slash inverse'
168 inverse ((2) AllllII inverse (
169 inverse) (2) inverse)
170 inverse * * (2) inverse *
171 inverse + + (2) inverse +
172 inverse, (2) • inverse.
173 inverse - (2) inverse -
174 inverse. (2) inverse.
175 inverse / / (2) • inverse /
176 inverse 0 0 (2) club inverse 0
177 inverse 1 1 (2) r'" inverse 1

201

Code Mode 0 Mode 1/2 Mode 1/2 "International'
number standard alternative
178 inverse 2 2 (2) bold dash inverse 2
179 inverse 3 3 (2) bold plus inverse 3
180 inverse 4 4 (2) blob inverse 4
181 inverse 5 5 (2) i inverse 5
182 inverse 6 6 (2) inverse 6
183 inverse 7 7 (2) T inverse 7
184 inverse 8 8 (2) .L inverse 8
185 inverse 9 9 (2) \. inverse 9
186 inverse: (2) inverse:
187 inverse: (2) ESCAPE symbol inverse:
188 inverse < < (2) up-arrow inverse <
189 inverse = (2) down-arrow inverse =
190 inverse> > (2) left-arrow inverse>
191 inverse? ? (2) right-arrow inverse?
192 inverse 8 @ (2) diamond inverse il
193 inverse A A (2) a inverse A
194 inverse B B (2) b inverse B
195 inverse C C (2) c inverse C
196 inverse 0 0 (2) d inverse 0
197 inverse E E (2) e inverse E
198 inverse F F (2) f inverse F
199 inverse G G (2) g inverse G
200 inverse H H (2) h inverse H
201 inverse I I (2) inverse I
202 inverse J J (2) j inverse J
203 inverse K K (2) k inverse K
204 inverse L L (2) I inverse L
205 inverse M M (2) m inverse M
206 inverse N N (2) n inverse N
207 inverse a a (2) 0 inverse a
208 inverse P P (2) P inverse P
209 inverse Q Q (2) q inverse Q
210 inverse R R (2) r inverse R
211 inverse S S (2) s inverse S
212 inverse T T (2) t inverse T
213 inverse U U (2) u inverse U
214 inverse V V (2) v inverse V
215 inverse W W (2) w inverse W
216 inverse X X (2) x inverse X
217 inverse Y Y (2) Y inverse Y
218 inverse Z Z (2) z inverse Z
219 inverse [[(2) spade inverse [
220 inverse \ \ (2) vertical line inverse \
221 inverse]] (2) bent arrow inverse J
222 inverse /\ /\ (2) inverse r:
223 inverse - (2) inverse -
224 inverse diamond 8 (3) diamond inverse @

225 inverse a A (3) a inverse a
226 inverse b B (3) b inverse b
227 inverse c C (3) c inverse c
228 inverse d 0 (3) d inverse d
229 inverse e E (3) e inverse e
230 inverse f F (3) f inverse f
231 inverse g G (3) g inverse g
232 inverse h H (3) h inverse h
233 inverse i I (3) inverse i

202

Code Mode 0 Mode 1/2 Mode 1/2 'International'
number standard alternative
234 inverse j J (3) j inverse j
235 inverse k K (3) k inverse k
236 inverse I L (3) I inverse I
237 inverse m M (3) m inverse m
238 inverse n N (3) n inverse n
239 inverse 0 a (3) 0 inverse 0
240 inverse p P (3) P inverse p
241 inverse q Q (3) q inverse q
242 inverse r R (3) r inverse r
243 inverse s S (3) s inverse s
244 inverse t T (3) t inverse t
245 inverse u U (3) u inverse u
246 inverse v V (3) v inverse v
247 inversew W (3) w inverse w
248 inverse x X (3) x inverse x
249 inverse y y (3) Y inverse y
250 inverse z Z (3) z inverse z
251 inverse spade [spade inverse A
252 inverse vertical \ (3) vertical line inverse vertical

line line
253 inverse bent arrow 1 bent arrow inverse bent

(beep)t arrow (beep) t
254 /\
255

203

Ii:To Err Is Human

Perfect programmers never make mistakes, and the programs they write never fail, no
matter what the user does. Perfect programmers don't exist. We mortals must do our
best, but
If you do do your best with your programs, you'll plan and code action for all user

actions there can be. At least, then, your programs' users will never cause failure and an
incomprehensible ERROR report.
But you will meet ERROR reports and gradually you'll get to know them, even if not

to love them. Well, you'll never get to know them all, unless your memory is inhumanly
superb-so here's a list of the reports, their meanings, and, perhaps, some action you
can take.
Error reports may appear when a command can't be carried out, or when the program

comes to a statement it can't carry out. STATUS (ST.) gives you the reports too, but it's
fiddly. You need to know what channel to use; I'll call it C-then enter ST. 1$ C,R:
?R(R). I guess you won't often need STATUS.
Note that syntax errors (such as PRONT for PRINT) don't arise here-the micro

kindly tells you off at once with an 'ERROR' display, and a cursor somewhere near
where it thinks you went off the rails. Error reports signal only so-called RUN time
failures. Anyway, here's the list. Number, meaning, comment....

Code 2: You've run out of storage space
As in the program 1GOSUB 2/2 GOSUB I-there's not enough room for your program
and its variables, or you've nested loops or closed subroutines too much.
ACTION-reduce messages; cut variable names; reduce the number of variable names;

remove spaces; use multi-statement lines; don't have so many nested loops/
routines. Or buy more RAM.

Code 3: An argument or such is oft'limits
As in ? SQR(-I)-many statements and functions may work with numbers only in
certain ranges.
ACTION-watch out for this if those numbers are variables-ensure that the values

stay within limits.

Code 4: You've run out of variables
You can't use more than 128.Well, who needs to?
ACTION-duplicate variable names (i.e, use the same names again later in the pro-

gram); keeping variable name lists helps (the micro has to); use arrays more.

Code 5: You've treated a string as longer than it is
As in ?A$(6,1) when A$'s DIM is only 5. Or you may have tried to pull out a character
sited before the start of a string. Or used a string before you dimensioned and/or
assigned a value to it. Or things like that.

204

ACTION-watch out when you're taking substrings using variable names for the
characters; just avoid the other faults.

Code 6: You ran out of DATA
You tried to READ when the DATA pointer had reached the end of the list. Or you
hadn't put the DATA in. Or you pressed RETURN when the cursor was on the
READYmessage-the sillymicro thought you meant READ Y!
ACTION-check your READ and DATA lists and loops. Don't forget RESTORE.

Code 7: You used a number bigger than 32767
You can't always. Line numbers, for instance, mustn't exceed that limit.
ACTION-Learn by experience when this barrier exists.

Code 8: You tried to assign a string value to a numeric variable
For instance READ X found the pointer at a non-number, or INPUT X was met with a
non-number (or (R) alone).
ACTION-check READ/DATA lines again (including looking for double commas in

the latter). And mugtrap numeric INPUT statements.

Code 9: Something wrong with DIM somewhere
Perhaps you actually forgot to DIM a string or array before using it? More likely your
program met a DIM so-and-so when so-and-so was already dimensioned. Some Code 5
errors appear under 9 too.
ACTION-Do all DIMs in initialization lines at the start of the program; if any depend

on user input, ensure the program doesn't loop back over that section.

Code If: You beat Atari with your argument
Functions can work on pretty complex arguments, but if they get too tough the micro
can't cope.
ACTION-Work the expression out in a couple of steps before making it an argument.

Code 11: You tried to use a number bigger than 109•
Unless you're an astronomer, this is probably because the micro had to divide by zero.
ACTION-don't force the poor thing to divide by zero, even if you can.

Code 12: The micro couldn't find the line number referred to
Ifyou use numbers with GOSUBs, or use GOTOs, even if only implied-well, I note in
this book it's bad practice. The Atari won't like it if the line number you sent itto doesn't
exist. (Strangely, you can use TRAP N, where N is not in the listing with newer
Ataris-the micro just ignores it.)
ACTION-Avoid GO TOs like whisky when you're coding late at night. Triple-check

ON... lines and if you renumber program lines change GO addresses
concerned too. Best name all such addresses then assign the names at the
start of the program.

Code 13: The micro found a NEXT, but couldn't find the FOR
Most likely you've nested loops badly (nested loops must be fully inside each other like
Russian dolls). But if you use POP inside a loop you may get ERROR 13. Unlucky for
some.
ACTION-Take care when nesting loops. And I reckon you shouldn't POP anyway.

Code 14: The command/program line is too long
Or too complex for the poor thing. Commands/program lines shouldn't exceed three
screen lines when entered.
ACTION-Don't overdo multi-statement lines; compress them; or POKE 82,0.

Code 15: The program's lost a GOSUB or FOR statement
Maybe you deleted it? Sometimes you get this when you use GOSUB N as a direct
command.

205

ACTION-check for the missing GOSUB or FOR.

Code 16: The program can't think where to RETURN to
This is the subroutine's equivalent of ERROR 13.Most likely you forgot to protect your
subroutine section with END (or STOP) before its start.
ACTION-Avoid entering subroutines except on purpose.

Code 17: The micro can't make head or tail of what it found
Either it came to a line starting ERROR (you forgot to correct a syntax slip on entry), or
it found a CONTROL character where there shouldn't be one. But if you've been
messing with POKEs or machine code subroutines-either can degrade the listing in
storage. If you can put hand on heart and deny all that, you've likely got a faulty RAM.
ACTION-try all else before putting hand on heart.

Code 18: VAL failed to carry out her task
As with ?VAL("LEN").
ACTION-Don't try to use VAL if the string argument could be non-numeric without

mugtrapping first.

Code 19: LOADing program is too long for your RAM
ACTION-Swap it for a smaller program or buy more RAM.

Code 2.: Use of an invalid channel number
Your program tried to access a channel outside the range 1-7.
ACTION-Don't let it.

Code 21: LOADing unacceptable material
Maybe you're trying to LOAD software saved with CSAVE or LIST? Or perhaps the
recording wasn't at the beginning.
ACTION-Keep good records of cassette-counter readings and SAVE methods.

Code 128: BREAK used
This report shows the use of BREAK while the program was trying to output or input
data.
ACTION-Well, these things happen.

Code 129: Program tried to open a channel open already
ACTION-Avoid this!

Code 13f: The program couldn't figure out what channel to use
You may have used LIST "B:" or DRAWTO in a non-graphics mode.
ACTION-If not, check peripherals as for ERROR 138.

Code 131: Attempt to read from a write-only channel
You tried to use GET, INPUT or LOCATE from a channel used only for output.

Code 132: ERROR in XIO statement
ACTION-Check.

Code 133: Attempt to use a closed channel
As in ? # 6; ... when you're not in program mode.
ACTION-Get into good habits at OPENing time.

Code 134: Use of an invalid channel number
Pretty much the same as ERROR 20.

Code 135: Attempt to write to a read-only channel
The converse of ERROR 131.

206

Code 136: The program tried to read data after getting end-of-tile
More likely you pressed CONTROL + 3 by mistake.

Code 137: The program met a data block longer than 256 bytes
It shouldn't happen, but it's advanced work anyway.

Code 138: The micro gave up waiting for a peripheral
Perhaps you tried to CSAVE when the cassette machine wasn't ready.
ACTION-Check you've got the right peripheral joined up, switched on and ready for

action. Rewind the cassette as well if that's in use. •

Code 139: The peripheral didn't respond in the proper way
Could be a version of 138, or the data transfer is failing somewhere.
ACTION-As for 138.

Code 1"': The micro can't understand the data
I'm afraid you have a dodgy record on cassette or disc.
ACTION-Always make back-up copies.

Code 141: You tried INPUT # 6; ...
ACTION-If not, refer to ERROR 3.

Code 142: Version of 1'"
Code 143: Ditto
Or you may have started the cassette at the wrong place, in which case ...
ACTION-Rewind

Code 144: The micro can't send data to or get data from the disc
Have you taped over the 'write-protect' hole? Otherwise, as for ERROR 140.

Code 145: The micro failed to verify the disc record
ACTION-Try SAVE again.

Code 146: The micro reckoned you've made a slip
The sort I mean is trying to send data to the keyboard, or get data from the printer.
ACTION-Don't.

Code 147: Your RAM is too small for your mode
ACTION-Use a less costly mode.

Code 1st: Similar to 133

Code 151: So's this

Leave this to the engine-driver. Rare, anyway.

Code 153: Too much input/output going on
But you're not likely to meet this.

Code 154: Much the same

Code 164f: You tried to use toomany disc drives
You can access only four disc drives.

Code 161: You tried to keep toomany data tiles open
The normal limit is three.

207

Code 162: You've filled the disc
ACTION-Obvious I guess.

Code 163: A catch-all for data errors the micro can't understand

Code 164: You tried to move the disc file pointer to a place you shouldn't

Code 165: Your pretty file name doesn't turn the micro on
ACfION-Follow the rules for file-names.

Code 166: Much the same as 164

Code 167: You tried to mess about with a locked file
But such disc software is heavily protected.

Code 168: XIO error
ACfION-Check your XIOing.

Code 169: You've run out of room in your disc directory
This can hold only 64 names.
ACfION-Minimize use of short files.

Code 17.: The micro can't find a file with the name you quoted
ACTION-Check the directory. Maybe you got the name wrong, or put the wrong

disc in.

Code 171: Version 01164

Code 172: You tried to append a DOS 1.• file using DOS 2••
(the 1.0 and 2.0 are versions of the Atari disc operating system).
ACTION-Copy the DOS 1.0 material onto a DOS 2.0 disc first.

Code 173: Media Fault
The disc operating system found surface problems when trying to format a disc.
ACfION-If this happens with several new discs, have your disc drive checked.

Code 218: Something wrong with your LOAD
ACfION-Act like Bruce's spider.

That's a huge list. If the force is with you, you'll meet very few of these-but you
wouldn't like me to have missed any out, would you? I hope I haven't.

208

J\pp@ndix J: Ilppl@!)

OK, the proper word for little tips is 'wrinkles' but who wants to show their age? Here's a
small collection of oddments you might find of use in your programs. No pattern to
them, but all worth an explore.

BREAK-AWAY
To make your software more 'robust' (stop-proof) take these final steps. I say 'final'
because until your program's finished, you will want to be able to stop it, won't you?
TRAP deals with action on error during a run. Don't add TRAP until you're certain

you've covered all possible errors in the coding. Then TRAP will pick up the user's
attempts to halt the program as well as genuine mistakes he or she may make. If the
TRAP subroutine closes with RUN, thus setting the trap again, you should be pretty
safe.
Making the BREAK key stop working needs a double POKE. Use POKE 16,64 and

POKE 53774,64 at the start and after each GRAPHICS statement.
In the same kind of way you can block use of the (SYSTEM) RESET button-POKE

580,1 causes this to produce a complete reset-just as if you switched the machine off
and on again.
If you want to give the user the option of stopping the program but still have all those

fences up to protect you, use a 'Press'S' to stop.' routine. Then IF S$ = "S" THEN
NEW.

ANTIPODES
POKE 755,6 makes all the characters on screen upside-down, while POKE 755,2 brings
you back to normal. Other values affect the cursor too-see Page 196.
I guess upside-down screen printing may have a value in certain games, but as the

effect covers the whole screen it's not that much use, surely. (The effect is the same in
other modes, so you can get large upside-down characters ifthat turns you on.)
The trouble is, the characters in a string are upside-down but not back to front. Using

PRINT $I 6; "ollah" does not say "hallo" when you stand on your head. So all POKE
755,6 gives you really is yet another set of sets of characters to make patterns from.

HIDDEN INPUT
When I see things on screen like 'Please type your name?' I really squirm. (I'm afraid I'm
a grammar pedant.) But it's a bind having the question-mark prompt each time you use

209

an INPUT statement. And sometimes you don't want to display what the user types
either. Open Channell to the keyboard is the answer. Like this:

OPEN 1,4,0; "K:"
Then when you want a hidden input, the trick is

PRINT "Please type your name!"
INPUT tl 1,1 (or 1$)

No prompt, no display of input data-you use the value of I, or 1$, when and where you
want.

NICE OLD BUFFER

RUN this command, and while the micro's chasing electrons around its insides, press a
few keys. No effect, of course, while the command's in action-but, when it stops, hey
presto, there on screen is the character ofthe last key you pressed. Here's the command:

FOR A = 1 TO 2000: NEXT A
The Atari has a one-byte 'input buffer', a tiny little special storage site that holds the last
key-press value. (A buffer is a store for holding data on the way between a peripheral
and the processor or vice versa.)
One byte of store isn't great. (A dozen would be better.) But it has some uses. Press

CfRL and 2 after you've RETURNed from a SAVE or LOAD command, for instance,
and when the data transfer is done, the buzzer buzzes.
Now I think of it, that's just about the only single key-press you can have on the Atari

that does anything worthwhile. A dozen or so input buffer bytes would be better.

NO JOY
Games listed in books or magazines often expect you to have a joystick to hand. If you
haven't, you'll have to use the keyboard instead. Choose a group of nine keys, such as
these:

, /
(if you're on the right)

Q W E
A S D
Z X C

(if you're left-handed) or

I
K

o
L

P

18)
42
58
23
47
63
22
46
255
33

38... (left-hand
10
2
32
13
5
34
8

255
33

Assign the eight round the central L (or S) to the eight STICK directions, and make a
space-bar give the trigger effect. Then re-write the printed code thus:
Add

LET I = PEEK(764): POKE 764,255
at the start of the main read-stick loop.
Replace

IF STICK(0) = 5... with IF I =
6
7
9
10
11
13
14
15

and IF STRIG(0) = 0
210

I'll leave you to use this method to convert paddle programs to use with the keyboard-
but it's not so likely to be of value of course.

RANDOM RESTORE
As described on Page 170, the statement RESTORE n puts the data pointer at the first
DATA item after line n. That leads us to the chance to pose the questions of a simple test
at random. The program fragment below shows this in essence. Of course you can
develop this into two or more DATA items (question/answer pairs) in each DATA line
and build up nice long tests if you want!

If you want to block questions from second coming, you'll need to use subroutines or
arrays to hold the data instead of DATA.

II DI" A$175l ,B$(31) ,R$(31)
51 FOR Q=I TO III:RE" tt If like long tests ...•bl RESTORE 199+INT(RND(I)t5+0.5)
71 PRINT CHR$(125l:READ A$,B$:PRINl 'QUESTION "jQ:PRINl :PRINT :PRINl :PRINT A$;
:INPUT R$:POSITION 5,11
81 IF R$=B$ THEN PRINT 'Correct"
91 IF R$(>B$ THEN PRINT 'Nope' Try ';B$
III FOR W=I TO IIII:NEXT W:NEXT Q
211 DATA What's Iy nale,Tara
211 DATA Why slile,End of book
212 DATA On "hat day did Suleilan the Tata first enter Istanbul,Dunno
213 DATA Why Why not?
214 DATA What is NaCllsalt
215 DATA What is 2+2,4

READING MUSIC
Here's a quick method of getting little tunes to beep out. All you need to do is to define
the pitch and time of each note to go to the DATA block. Express the data for each note
in order. Then READ and play them in order in a loop like this, the whole forming a
subroutine.

II LET TUNEI=IIII:REM etc
999 REM tt Tune I
1111 RESTORE TUNEI
1111 FOR N=I TO NUKBEROFNOTES
1121 READ PITCH,TIKE:SOUND I,PITCH,II,II:FOR L=1 TO TIMEt51:NEXT L:SOUND 1,1,1,1
:FOR W=I TO 51:NEXT W
1131 NEXT N:RETURN
1118 DATA PITCHI,TIKEI,PITCH2,TIME2,PITCH3,TIME3,etc

REPEAT ANDWHILE
Some micros offer REPEAT... UNTIL and WHILE DO... ENDWHILE loop struc-
tures in their BASICs as well as the simple FOR. .. TO NEXT the Atari has. However,
we can readily convert such structures into Atari BASIC.

1. REPEAT... UNTIL is used like this:

LET X = 1
REPEAT
LET X = X+ 1
(set of instructions)
UNTIL X = 100

or REPEAT
INPUT ANSWER
UNTIL ANSWER = RESULT

211

With the Atari we can use

FOR X = 1TO 100

(instructions)
NEXTX

or FOR A = 0 TO 1 STEP 0
INPUT ANSWER
IF ANSWER = RESULTTHENLETA = 2
NEXT A

2. WHILE... DO appears comme ca:

WHILEY>0DO
(set of instructions)

ENDWHILE

We can put it like this, to almost the same effect:

FORA = 0TO 1STEP 0
(instructions)
IFY>0THENNEXT A

'RIGHT' AND 'WRONG' MESSAGES
It's somewhat dreary for a user to keep on getting the same micro-reactions to correct or
incorrect answers. Randomize them a bit in a subroutine, like this:

LET YES = 1000

IF ANSWER = CORRECf THEN GOSUB YES

LET Y = RND(0)* 4
POSITION 10, 20
IF Y = 0 THEN PRINT "Yes,D"; NAME$; "!"
IFY = 1THEN PRINT "Well done"
IFY = 2 THEN PRINT "Right,D"; NAME$; "."
IF Y = 3 THEN PRINT "Correct!"
RETURN

TABULATION
We often need to be able to tabulate things neatly in a vertical line-decimal points or
equals signs, for instance. In the former, to put all the decimal points in column 25, use
this routine, where NUMBER is the number concerned:

POSITION 25-LEN (STR$(INT(NUMBER»), LINE: PRINTNUMBER

212

A rather similar, exceedingly useful, trick allows you to centre a string on the screen. If
the string is X$, use:

POSITION 19-LEN(X$)/2, LINE: PRINTX$
This won't work so well if LEN (X$) is greater than 38 of course, but you shouldn't use it
for that anyway!

WEEDY ARRAYS
Here's a useful use for DIM Y$(l) where Y$ is the YIN response to some query:

DIMY$(l)

FOR Y = 0TO 1 STEP 0
PRINT"Again (Y or N)";: INPUT Y$
IF Y$ = "N" THEN STOP
IF Y$ < > "Y" THEN NEXT Y
RUN

(mugtrap)

Suitably amended as a subroutine, this is a lot simpler than many published ways of
checking such responses.

FUNKING FUNCTIONS
The Atari follows traditional BASIC in offering only SIN. COS and ATN for its
trigonometrical functions. You may need more. and while you may know you can get
TANwith SIN/COS, others may need more research. I've done the research. so here are
some more common trig functions you can build up.

ACS(X) from ATN(X/SQR(-X*X+l)) + 1.5708
The angle in radians whose cosine is X; 'arccosine'.
X must lie between -1 and + 1.

ASN(X) from ATN(X/SQR(-X*X+l))
The angle in radians whose sine is X; 'arcsine'.
X must lie between + 1 and + 1.

COT(X) from COS(X)/SIN(X)
The reciprocal ofTAN(X); 'cotangent'.
X must not be zero.

CSC(X) from I/SIN(X)
The reciprocal of SIN(X); 'cosecant'.
X must not be zero.

213

SEC(X) from 1/COS(X)
The reciprocal of COS(X) ; 'secant'.
X must not be Tr/2 radians (180°).

TAN(X) from SIN(X)/COS(X)
The tangent of angle X.
X must not be zero.

214

8:

America seems to dominate Britain in the Atari field, but then it's the other way round
with other machines! You'll find that the vast majority of books, software and other
resources have their origins in the US of A. Me, I believe in free trade-but this does
mean that Brits find the extras rather pricy as well as fairly hard to find. The same is true
in all countries outside North America.
Wherever you live and plug in your Atari, you'll need to search if you want extra help.

In Britain, try Lasky's and W H Smith's in particular. Elsewhere scour the larger
bookshops and personal computer suppliers.

MAGAZINES
The main British Atari users' magazine is-Input/Output. This suffers from being in-
frequent and not independent-Atari bring it out quarterly. However its quality and
value are increasing rapidly. It gives details of user groups-great.
There have been attempts to get independent magazines going, but none have really

succeeded at the time ofwriting. Page Six, which appears each couple of months, is the
best so far. There is a big enough number of users in this country surely. Meanwhile keep
an eye on the main general home computing mags. Most nod on occasions in the Atari
direction; Your Computer, Personal Computer News and Personal ComputerWorld give
the best coverage.
The USA has several magazines specific to Atari micros. Antic and Analog (both

sounding more like science fiction!) have the best reputation, but are not easy to get hold
of in other countries. Take a look at Compute! too if you get the chance-it covers
several major US micros but gives a fair treatment of Atari.

BOOKS
I can recommend the following:

Albrecht, B. et al Atari BASIC (Wiley, 1979)-a fairly good teach-yourself guide.
Atari BASIC reference manual (Atari, 1983)-the sort of book other micro makers
include with the machine!
Atari De re Atari (Atari, 198.2)-advanced handbook.
Bunn, Paul Making the most of your Atari (Interface, 1983)-sometimes a bit super-
ficial, but with lots of tips and listings.
Carlson, Edward Kids and the Atari (Prentice/Hall, 1983)-a pot-boiler, but still pretty
good in being usable by youngsters learning Atari programming.
Carris, William Inside Atari BASIC (Prentice/Hall, 1983)-a very useful guide,
especially for younger programmers.

215

Compute! Second book ofAtari (Small System Services, 1982)-the best oftheir several
collations ofmaterial from the magazine.
Goode, Peter The Atari600XL program book (Pheonix, 1983)-loads of listings, games
and more serious programs.
James, M. et al The Atari book ofgames (Granada, 1983)-lots more listings.
Kohl, H. et al Atari games and recreations (Prentice/Hall, 1982)-a very good BASIC
guide.
Poole, L. et al Your Atari computer (McGraw-Hill), 1982)-generally excellent, but not
for the beginner.
Sinclair, Ian Get more from the Atari (Granada, 1983)-a rather hasty introduction to
BASIC.
Stanton, J. et alAtari software (Addison-Wesley, 1983)-a massive collection of reviews
of North American products-games, business, education, utilities (and hardware
add-ons).

Computer Bookshop (30 Lincoln Road Olton Warwickshire) is able to supply most, if
not all, of the publications mentioned here. They send books out of Britain too. In case
of difficulty in any aspect of Atari work, don't forget Atari themselves. Their customer
services department (Railway Terrace, Slough, Bucks) is doubtless busy-but always
friendly and helpful. The company has a number of duplicated handouts, on themes such
as file-handling.
So-when you've finished this book, there's plenty more to help you get the most

from your micro. But don't throw me away!

216

Note that some of the references here are to structures and concepts that appear inside
program listings. Note too that the cryptic code 'ff' means 'and the next page(s)'.

abbreviations. 98. 188ff
ABS. 133. 188
accuracy. 130. 134
ACS.213
ADA. 22
ADR.I88
algorithms. 115. 121
ALO. 12. 128. 137
amplitude. 75. 78
AND. 91. 98. 106. 188
animation. 57.126.183.185
ANTIC, 15
argument. 132.204.205
arithmetic. 19.34.42. 128ff. 186
arrays. 151. 153. 171. 174ff. 181.204. 211. 213
ASC. 141. 188
ASCII. 56.139.188.197. 198ff
ASN.213
assembly language. 22. 24
assignment. 29. 31. 161. 190
Atari Inc.. I. 4. 216
ATN. 133. 188
attract mode. 196

Babbage.42
BACKSPACE key-see DELETE
backing store. 13.62
back-up. 70
bar-chart. 151
BASIC. 5.10.21. 22. too, rsse, 194
BBC. 22. 24
beep. 41. 43. 55. 84
binary numbers. 21. 45.128.130
bits. 45
books. 23.179. 215ff
brackets. 31. 106. 129
BREAK key.32. 33. 34. 39. 93. 94.188.189.196.206.209
brightness. 17. 46
buffer. 210
bugs. 72. 95. 130. 144ff
BYE. 8. 94. 98.172.188
byte. 45

calculator. 11. 19.24.36.128
capitals. upper case
CAPS key. 9.18.55
care. 70
cartridge. 9. 13. 16
case. see upper or lower
case studies. 24ff
cassettes. 13. 62ff. 67ff. 70.168.196.206.207.210
channel. screen. 58. 60. 206
channel. sound. 75. 76
characters. 9. 56.137.160.161. 165.180.197. 198ff. 209
chips. 14.45
chords. 75. 76
CHRS. 17.21. 41. 48. 50. 56. 60. 98.141. 188. 198
circles. 184
cleaning. 63. 70
CLEAR. 51. 52

clearing screen. 11. 17.20.21.27.35.43.48.52.55.94. 128.
151

click. 78
CLOAD. 65ff. 98. 188
clock. 42. 167
CLOG. 133. 188
CLOSE. 189
CLR. 138. 189
COBOL. 22
COLOUR. 79. 83. 86. 89. 90. 98.156.157.189.191. 198
colour. 17.44. 46ff. 59. 79. 83. 86ff. 91. 107. 155ff. 184. 186.
197

COM. 138. 174. 189
COMAL. 23. 194
command. 19.20.93.97
computed address. 69. 108. 124. 186
concatenation. 139. 140ft. 142
constants. 29. 31. 137. 188
CONT. 33. 34. 78.93.94.95.98. 189
contrast. 20
CONTROL key. 17.28. 36. 42. 54ff.60. 94. 96.159.197.206.
207.210

control unit. 12
copyright. 70
COS. 133. 189
COT. 213
counting. 31. 37ff
CPRINT.71
CSC.213
cursor. 9. II. 16. 18.43.50.55.98. 196.197
cursor control. 96.182

DATA. 56.137. 161ff. 165. 189. 192.205.211
data processing. 12. 24ff. 28. 31. 128. 168. 169. 171. 174ff
debugging. 144ff
decisions. 102
DEG. 133. 135.189. 196
delay. 30. 41. 43. 53.123.197
deleting lines. 20. 38. 96
DELETE key. 9.11. 20. 55. 97. roo
design. 158
development. program. 72. 110ft. 144ff
dialect. 23.194
digital. 12.21
DIM. 27. 30.31. 32. 54.98. 138.151.174.178.189.193.204.
205

direct mode. 19
discs. 62. 69. 168. 191. 195.207ff
display. see TV
distortion. n
documentation. 67ff. 118
DOS. 189
DRAwro, 84ff. 87. 98. 154ff. 189. 196.206
duration. sound. 75
dust. 70

editing. 96ff. 99.117
effects. sound. 81. 187
efficiency. 72
electronics. 12.21

element. 174
English. 22
END. 75. 76. 98. 125. 189.206
ENTER. 65ft. 98.189.190
ERROR. 9. II. 16.29.30.40.58.64.66.85.98.117.145.
193. 196. 204ft

ESC key. 51, 52.198
execution, 20
EXp. 133. 190
exponentiation. 42. 128. 135
expressions. 29. 31, 129. 132.205

FALSE. lOS
filing. 216
filling. 155ft
flag. 106. 109. 151, 153. 154. 177
flowchart. 33. 38. 103. 110ft. 115. 119. 120. 121, 146
FOR. 38ft. 53. 98.102.190.205
form-filling. 141. 171
format. 27. 35. 38. 42. 47. 48. 52. 54. 69. 95.107.116.128.
131, 139. 142. 174. 187. 196. 212

FcrTran, 22. 23
FRE. 100. 135. 190
frequency. 74
front panel. 21
function keys. 171, 176
functions. 31, 53.130. 132ft. 141ft. 204. 213ft

general input/output. see XI0
GET. 79. 91, 98.141, 184. 186. 190. 197.206.210
GOSUB. 41, 67. 69. 98. 122ft. 190.205
GOTO. II, 27. 33. 37. 38. 61. 69. 95. 98. 100. 103. 104. lOS.
117.124.125.145.162.190.205

graphics. 22. 23. 34. 36. 43. 51. 55. 57. 60. 61. 79. 83ft. 126.
150ft. 159ft. 184. 187. 190. 198ft

GRAPHICS. 43. sse,98.150.190.209
GTIA.14
guarantee. 6. 14

HELP key 190. 197
high-level. 22. 24.194
histogram. 151
history. I, 4.12.21. 42

IF. 33. 34.41.98.102. 104ft. 190
immediate mode. 19
increment. 31. 39
indexing. 68ft
inequalities. 33
initialization. 116.205
input. 13. 25ft
INPUT. 27. 28. 29. 31. 32. 98. 99. 128ft. 137. 141. 177. 184.
190.205.206.207.209

INSERT. 92
interfacing. 168ft
INT. 32. 79. 84. 98.106.117.131. 132. 133ft. 190
interference. 14.78
interval. 77
inverse. II, 36. 50. 55. 60. 73.149. IBO. 197
italic. 11
item. print. 48

joystick. 169ft. 192.210

K.45
keyboard. 9.13.70.196.197.210
keyword. 21. 23. 45. 98
Kilobyte. 43

languages. 21. 24. 194
layout. screen, see format
layout. system. 70
LEN. 53. 98.140.141, 190.213
LET. 27. 31
library. 63. 66. 67. 98
light pen. 196
line length. 41, 99. 205
line numbers. 19.20.33.67.100.102. 115. 124. 137. 189.205
lists. 174
LIST. 11.20.21. 41. 42. 45. 63ft. 66ft. 94. 98.149.189.190.
206

LOAD. 65ft. 69. 98.190.206. 20S
LOCATE. 190.206
LOG. 134. 190
logarithms. 133. 134

logic. 34. 106ft. 131, 137. 183. 186. 190. 191
looping. 37ft. 53. 61, 102ft. 175. 190.211
loudness. 74
lower case. 9. 18.60
LPRINT. 188. 190

machine code. 22. 23. 24.159.194.206
magazines. 23.179.215
mag-fields. 70
mainframe. 12. 13
margin. 51, 52. 99. 196.205
mark sensing. 26ft
matrix. 178
memory and saving it. 30. 43. 44ft. 65. 69. 98ft. 107. 118. 123.
138. 196.204

memory map. 115. 124
menu. 176
merging. 66. 189
messages. 18. 19.30.47.204.212
microelectronics. 12
modes. 37. 42ft. 45ft. 57ft. 61, 87ft. 99.128.150. 155. 156ft.
189.190.191. 196. 198

module. 22. 113. 115. 121, 149. lBO
monitor. 74
mug-traps. 53. 69. 98.117.123.131, 186.204.205.213
multi-statements. 41, 98ft. 104. 149.204.205
music. 75. BO.211

names. 29ft. 63. 64.124.126.138.157.204.208
nesting. 40.123.204.205
NEW. 11, 20. 21, 65. 75.94.98. 133. 191. 209
NEXT. 38ft. 98.191
nibble. 45
noise. 78
NOT. 106. 109. 191
NOTE. 191
numbers. 129.205
numeric data. 28ft. 99

office. 171
ON. 124. 191, 205
OPEN. 79. 91, 98.141, 191, 206. 210
operators. 34. 106. 139
OPTION key. 171ft. 191
OR. 54. 98. 106. 140. 191
output. 13. 25ft

paddle. 171, 191,211
PADDLE. 171, 191
parameter. 17
pattern. 54.143.209
pause. see delay
PEEK. 56.149.153. 159ft. 171. 174. 191. 194ft
peripherals. 13.63.94.206.207
permanent set-up. 70
picture. 34. 54. 61. 158
pitch. 75. 76
pixel. 91
planning. 72. 110
player/missile graphics. 57. 159ft
PLOT. 84ft. 87. 95. 98.153.155.189.191
POINT. 191
POKE. 52. 53. 61. 79. 81. 96. 98. 99.123.155.157. 159ff. 184.
191, 194ft. 198.209

POKEY. 15
POP. 125. 126. 191, 205
POSITION. 9.18.21. 27. 45ft. 52. 53. 58. 59. 98. 155ft. 186.
191

power. 7. 94
powers. 19.42.129.135
PRINT. 9. 10. 17. 18. 19.21.24.31. 37ft. 47ft. 52ff. 95. 98.
146.191, 209

printer. 4.13.25.34.66.169.190.197
print item. 47
priority. 31, 34. 129ft
processor. 12
program. 10. 12. 19.20
programming. 2. 21, 34. 72. 110ft. 204
prompt. 28. 29. 30.141
PTRIG. 171, 191
PUT. 191

quality. 74
quote marks. see speech marks

RAD. 133. 192. 196
radian. 133
RAM. 45.195.196.197.206
random access. 45
random numbers. see RND
READ. 31. 56.160. 161ff. 178. 192.205
READY. 46. 58. 64. 98
registers. 47. 59. 86. 89.157
recording. seeLOAD and SAVE
records. see documentation
REM. 27. 34. 56. 96. 98.116.117.118.125.149.192
renumbering. 205
repeat. key. 100. 197
REPEAT. 211
RESET key. 9. II. 35. 43. 52. 75.93.94.133.189.192.196.
209

resolution. 44. 87. 153. 160
RESTORE. 161. 170. 187. 189. 192.211
RETURN. 41. 67. 98.116. 122ff. 192.206
RETURN key. 9. II. 16. 20. 21. 54. 97.141. 192
RND. 32. 53. 79. 83. 98.135.146.149.192.212
rogue value. 114
ROM. 45. 194ff
rounding. 118. 130. 133ff
routine. 72
RUN. II. 20. 33. 35. 65ff. 75.95.98.116.133.162. 192.209

SAYE. 63ff. 98. 192
screen. seemodes
screen clear. see clearing screen
scroll. 28. 42. 46.55.94.97.196.197
searching. 175
SEC. 214
secondary tones. 77
SELECT key. 9. 17I ff. 192
Selmor Engineering. 70
SETCOLOR.9. II. 16. 17.20.21. 27. 46ff. 53. 60. 79.84. 86.
89.96.98.157.192.197

SON. 134. 192
SHIFf keys. 9
SIN. 134. 192
Sinclair. 22. 24. 194
sound. 8. 42. 74ff. 196. 197.210.211
SOUND. 10.55. 74ff. 84. 98.178.187.192
sound effects. 81. 107
sound track. 168
sorting. 175ff
spaghetti. 113
specification. 113
speech marks. 18.28.47.51. 137. 162
speed. 12
spreadsheet. 171
sprites. 57. I59ff. 196
SOR. 132. 134. 192
stack. 39. 123
START key. 125. 171
statements. 20
STATUS. 192.204
STEP. 39. 42. 98
stop. 154
STOP. 93. 95. 98.116.123.125.145.189.192.196
storage. 12. 19.20. 44ff

STRS. 141. 193.212
STRIO. 169. 193.210
string data. 18. 19. 28ff. 52. 137ff. 162. 178. I83ff. 185ff. 187.
188.204.213

structure. 33. 99ff. 103. 113. 190
subroutines. 41. 66. 72. SO.115. 121ff. 142.206
subscript. 175
substrings. 139. 14Off.181. 204
switch. 94
syntax. 204
synthesizing. 75. 79
SYSTEM key. seeRESET

TAB and its key. 50, 52,55.97, 196.197,212
tables, 174, 177
TAN,214
testing, 9, 73, 93.104,115,118,125. 146ff
text modes, 43, 45ff, 57ff
THEN, 33. 98. 100ff, 193
timbre, 75. 77
timing, 41. 167ff. 186, 196
TO, 38ff, 98,193
top-down, 72. 110, 1I3ff, 123, 125
tracing. 95. 146
TRAP, 117, 129, 132, 149, 193, 197.205,209
triggers, 169, 171
TRUE, lOS
TV,6, 7,13,17,46.70,71. 74.157

uppercase, 9,18,21. 29. 54, 60, 73,138
user-friendliness. 30, 33. 48, 54, 73. 107, 114. 118, 128
USR. 193, 194

VAL. 69,117,131. 141. 151. 193,206
variables, 29. 31. 47, 94.138,204
verifying, 64, 207
voice. 25

WHILE. 211
windows, 43, 57. 60, 85, 90. 92, 196ff
word. 45, 56
word-processing, 97, 100. 138. 169
write protecting. 65

XIO, 155ff, 193. 196. 197.206. 20S

zero. 129
zones. 48. 51

£59
S 29. 30. 138
.19.29
.48.50.51. 52. 99.128.196
/19.29
:41
: 32. 48. 52
< 33
= 108. 109
'> 33
< > 33
A 19.31. 42.128

Other titles ofinterest

Easy Programming for the Commodore 64
Ian Stewart & Robin Jones
Easy Programming for the ZX Spectrum
Ian Stewart & Robin Jones
' ... will take you a long way into the mysteries of the Spectrum: is
written with a consistent and humorous hand: and shares the
affection the authors feel for the computer'-ZXComputing

Programming for REAL Beginners: Stage 1
Philip Crookall
Programming for REAL Beginners: Stage 2
Philip Crookall

Brainteasers for BASIC Computers
Gordon Lee
'Just the job for a wet afternoon with the computing c1ass'-
Education Equipment

Computing: A Bug's Eye View
Cosgrove
A collection of the humorous cartoons that have appeared in 'Shiva's
Friendly Micro Series'.

Easy Programming for the BBC Micro
Eric Deeson
'A beginners guide in the true sense'-Educational Computing

£6.95

£5.95

£3.95

£3.95

£4.95

£2.95

£5.95

£5.95

£5.95

£5.95Easy Programming for the Electron
Eric Deeson
Easy Programming for the Orlc-I
Ian Stewart & Robin Jones
Easy Programming for the Dragon 32
Ian Stewart & Robin Jones
Please write for our complete catalogue of computer publications
and software

