

IN CASe SQME IDIOT SPIL.l-ED CLAM PIP ON TII~ COVER, THIS IS.··

5RoUGHT TO i'ou BY
DAVID HELLER,
JOHN F. JOHNSON

AND f\OBERT KURC.I
_---__ ~w!

This book is in the
Addison-Wesley Microcomputer Books
Popular Series

Cover and Book Design -Teapot Graphics/ John Johnson

Atari is a registered trademark of Atari , Inc.

Many thanks to Atari, Inc. for the art used in Appendix A, ATASCII
Codes. Used with permission of Atari , Inc .

Library of Congress Cataloging in Publication Oata

Heller, David L.
Dr . C. Wacko's miracle guide to des igning and

programming your own Atari computer arcade games.

Includes index.
1. Computer games . 2 . Atari computer--Programming .

3 . Bas ic (Computer program language) I . Johnson,
John, 1944- II. Kurcina, Robert. III. Title.
IV . Title: Doctor C. Wacko's guide to designing and
programming your own Atari computer arcade games.
GV1469.2 .H43 1983 794.8'2 83-17257
ISBN 0-201-11488-7

Copyright © 1983 by Addison -Wesley Publishing Company , Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical , photocopying, recording , or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

ISBN 0-201-11488-7
ISBN 0-201-11490-9 (book/disk package)

ABCDEFGHIJ-SE-876S43
First printing, September 1983

Table of Contents

A Welcome Message from Dr. C. Wacko,
Professor of Computer Wacko Science 1

1. Elementary, My Dear Wacko!: Game Design Elements 6

2. Graphics Modes, COLOR and PLOT
Graphics, and Lots of Other Great Stuff 16

3. Character Graphics 46

4. Flip-Flop Animation 71

5. Movement 90

6. Taking Control with Your Joystick 99

7. The Big Frame-Up: Joystick-
Controlled Animated Characters 108

8. Adversaries and Things that Bounce in the Night 119

9. Zounds 134

10. The Bogus Balonous Bonus Section:
Player-Missile Graphics Made Simple 162

Appendix A: ATASCII Codes 189

Appendix B: Utility Programs 198

Appendix C: Myrtle the Turtle 216

Appendix D: Smokey Peek's Pokes & Peeks 228

Index 231

DR. C. WACKO'S MIRACLE GUIDE

ACKNOWLEDGMENTS

This book wouldn't be a "book" if it weren't for three very
special people :

Randy Biggs, for getting the project pOinted in the right direction.

David Miller, editor par-excellance, for keeping it on track and
seeing the project through with me.

and

Dorothy Heller, for putting up with the real Dr. C. Wacko.

Mentioning Randy and La Rae West, Sherry Hagen , Gay
Fairweather, and Draino won't hurt either.-

Thank you,

Dave Heller, John Johnson , & Robert Kurcina

A WELCOME MESSAGE

A Welcome Message from
Dr. C. Wacko Professor of Computer

Wacko Science
Holy Zanzibar! Are you going to be glad that you bought this
book! It will reveal all. All the inside tricks I've learned after years
of research, tedious experimentation and conceptualizing in my
Jacuzzi.

Your Atari computer is so talented, you'll soon be astounding
your friends and neighbors with your own action-packed arcade
games! (If you're a speedy reader.)

And here's the amazing part! Rocket ships will whiz across your
brilliantly colored screen, chartreuse creatures of your own design
will squirm obnoxiously under the control of your joystick, or the
Atari Symphony will play in perfect harmony to your original
composition-and it's all done in BASIC! The internationally
famous Dr. C. Wacko shows you how . Trust me!

This highly edifying, educational, instructive, and informative
book is filled with arcade game action elements: ZAP! POW! and

rt}~~ BRZZK!

1

DR. C. WACKO'S MIRACLE GUIDE

This book is filled with short BASIC routines, machine language
subroutines, and entire games to show you how to design and
program your own Atari arcade games .

This book is filled with fun!

E-Z Book Operating Instructions

1. Know a little BASIC.

2. Open book.

3 . Place book next to Atari computer.

4 . Turn on your Atari computer.

5. Turn on your fingers .

6 . Place your fingers on keyboard .

2

I ONCE tcNEWA ~lill!::
5ASIC- BVT 1HEN I
FWNKeDOUfDFTHE

~::::::--:-1 ARMY.

A WELCOME MESSAGE

7. Enjoy your voyage through Dr. C. Wacko's action-packed
universe of arcade game programming!

3

DR. C. WACKO'S MIRACLE GUIDE

DKWACKO
£;VICT6D F~ IOWA
IN 193b, INVEmED
FIRST WIND-UP
COMPl.JTCR IN 1947.
INVENfE[) MIRACLE
AR[/JJ)E S~6M
&SCAUSE PE.1UNIA
WOUWNT GIIE \4lM
ENO\JGH QUAFi'TERS,
AND 1)l1~SHl\V/;
e£€N ~N6 BRZZK
eVti-': Sl~.

MRS. PETUNIA
WACto
WPCmsCHARMIN6 ~~
AND ATTAACTIVE
WifE. ~ ADJANCEI>
MAINfRAM~ Q)MP1JT£R
~WIA€RAND
OKWACKOS MCSf
VOCALCRI1lC.5HE IS
A~SJ"THE ON()i o~
IN 'THE GIDOP WffiI
MJ,{~
KOOWU;D6E·

JUNIOR
LOJINEa O\LLED
CEMENTHEADB'f
HI$MtlNY FRIENDS,
HES~H6~D
TOTAJlz:OIeR 1HE
6JSJNESSWHEN HIS
FQ..KS RETIRE: 10
a£VElAND. HE
wves WATCHING
TEST f'AT1ERMS.

CAPTAIN
ACTION
I<CSIDENT fl)(IT &
SWASH8\JCKUNG
HERO OF GANe
FREAKS, He LeFT
REN..l1Y '(EARS
fU) 10 VJCJRK W fTH
DR. W.f(;KO AND
CANT FIND HI'5IJJAY
BACK.

REMEDIAL-5mmN6

I...----..J

MS.PfEKY
MIDWesrERN
IiOMAmIC LCO,Q/l6
FoR. A GCOD R:EK.
SHElL loom
VWlDfLM50F
]1E~
!UK'S IN l)W~.
91£ WXW RMHER
BE I~ A GOll1k:::,
RO~t\t£ ~.

SNIDLEY
SEERSOCKER
5PECIALlZE~ IN
MSfARDLY PlOTS.
HE WII.{..bl)IDE'r'OU
lliROOGHW
WORLD OF PLOT
6f?AFHICS IN IISCMW
MEJODR-WATIC
WAY.

GROVER
AN 1~LUAl-ALJeN
WI1:J GOT £,a;f
ON 1llt wAVTO
UPHA C£NTA(JRI
Bf£:AUSE OF BE.NT
WARP ~I'JE.HI5
39 CADDY spJl(£
SHIP CAN'T FL-"
oveR ZfX) ff:~T
BECAUSE CAPTAIN
ACTION FI)('ED IT.

SMOKEY
PEEK
AR~
INDIVIDUA(,IST
Wml-lAVE
~!NbTODO
WmI MS. PE£K'{.
I·KXW~lRE'{ ~
IS HIS HEfP·

4

\J9~

A WELCOME MESSAGE

5WWfOKE
RIVAL-S JUNIOR
FOR NA1WE'
I NTSU-l f£f\.tE,
BUT H 10 BfCOME
A PEeK eXPeRT
Af'ftR THI~
YEARS OF
CDRR.~fONt'f;WE
s::rCOl-.

SUBTERFANEAN
SUBROUTINE
MAKE~
LlVI~ [UPWrTHIN
YroR Plt6rAM.
THIS DENllEN OF
1146 DISK WIl.I­
St)W VOOS%lE
)ROl..'{ AMAZl~
8J8ROUTINES. If

CUCURACHA
&NIJ;OCES
"THE WORM
NI6BU5 WI~C SHOw
voo -me WOO-DOF
8IlS AND Bl{TES .
QCURJO-V\ CAN

..--... . I C'AOS& BIG ~
IF 'r'OORE NOT
CARt.RJl- . A WTIE
131..GCAN MIJ Kf A f).b

'-----___ ---' MESS. -

FIDO
CAME tx.XAJN WITH
6ROJE R B<JT FEELS
~ AT /i:lME wmt
JVNIOR,WHOS HIS
ImEU£QU,lIJ. E(J.lA.L
H£S WlAL.CM.Y
TOA~OVl/
BV~RlToS.

:=~=:::;;=~~::::: yotSRE Nt:e.
Mf(l{IN£ 1HEWACKO

CATS
K[;~S,PADDLe5
& J)YSnCK lOV~
lD WA~KON1~
CDMP\J1tR AND

~Mt
AW)NSTFOOS
tNlRVEL Of /HE
MACH IIJE ftGt., PC
MUNCHES NUM~
A~D QJITSntM 0tJf

\@~~~~~N1IIITOs\)~fASf
MtCHINBLA~

L-----~..c;..<:--~ 1\Ci.J1lNf.S.I)'5J)ALLY.

~ MO~H CON1ml.S
I WHEN ~OOP{ \5

'. tmt:I/olS.17rtiLY
'I UJJPtX5CBROKEN.

aARENCE .-------.."..-.~-., ThE INVISIBLE
COMPACTOR MAN
SQlJASHE.S LON6 00 ,--. 'TENDS ,0 SHOW
~RAMS IMIO UPIN UNEXPECTED
Nft,hlAGABLf SIZE. PlACES AT SOME
oo1L-1 B'1' WN:I(O VERI{ ODP
001 Cf A ItH9 rvoMENTS.
NA'SH AIRR..'<T£.

5

DR. C. WACKO'S MIRACLE GUIDE

1
Elementary, My Dear Wacko:

Game Design Elements
I'll bet you have a great imagination. Every time you play an ar­
cade game, you probably think of ways to make it better and
more fun to play.

I'm fortunate. I have a whole gang of weird cartoon characters liv­
ing at my house who help me turn my imaginative ideas into
great arcade games.

Now this strange gang is here between the pages of this book!

These weirdos can't replace your imagination, but they can give
you lots of encouragement , concepts, and the tools you'll need to
become a truly creative arcade game designer.

With their help, I'll show you:

• How to draw large images on the screen; including
Vibrantly colored playing fields

• How to build complex and colorful images called
characters

• How to move these characters

6

ELEMENTARY MY DEAR WACKO

• How to control their movement
• How to combine animation with movement
• How to generate characters that are completely out of the

player's control
• How to use the special capabilities of your Atari-especial­

ly Player-Missile graphics-to make professional-looking
arcade games

• How to work sound into your games to really top things
off

Developing Themes

Programming is an art as well as a science. Writing a game pro­
gram is almost like writing a novel. All the basic story elements
must be present in your game to make it successful, believable,
and fun to play, again, and again, and

After you've outlined your "game story," it's just a simple matter
of selecting the right programming techniques to make it come
alive. (Simple once you've read this book, that is.)

The first step in designing a winning computer game is to concep­
tualize a theme. The game theme is a short scenario that
challenges the main character(s) to overcome obstacles to reach a
definite goal. But to qualify as a true arcade game, your scenario
must be loaded with action!

Junior does a great job of inventing action-packed game themes.
He barged into my study last week and yelled, "Wow, dad! What
do you think of these themes?":

1. Winning a duel against a Jedi-Knight
2. Abandoning ship and saving the children
3. Finding your way out of a complex maze
4. Rescuing your mate from Godzilla
5. Overcoming adversity to get to school on time

I thought they were great! They all contain action elements and
most important, a definite goal. And each of Junior's themes can
be graphically displayed on the computer's screen. Let's look at
one of Junior's brilliant themes in more detail.

Junior's futuristic duel against a Jedi-Knight is loaded with great
possibilities. The playing field could be the stylized interior of a
spaceship or a rugged moonscape; just use your imagination!

7

DR. C. WACKO'S MIRACLE GUIDE

This game could be a two-player game , or you might want to in­
clude an option that lets the player duel against the computer. Of
course, you'll want to control your Jedi-Knights with a joystick.

Combining Themes

You can combine a number of themes to make your game more
exciting and challenging. I decided to combine some of Junior's
ideas by inventing a game called Dueling Hobos. In Dueling
Hobos, the hero must survive a duel against an attacking Jedi­
Knight as he searches for a way out of a complex maze after res­
cuing his girlfriend from Godzilla .

Another game variation using Junior's theme elements might be :
"The ship is sinking. Your hero is lost in a maze of staterooms and
must find his way to the deck. But his every move is blocked by a
crazed Jedi-Knight." (Where did he come from again?)

Draw From Your Own Experience

Drawing from your experiences is one of the best ways to con­
ceptualize game themes. Quite often, games that are adapted
from real-life situations are very successful because other people
have shared the same experiences and can easily relate to your
game. For example, a simple game molded around the theme of
a student struggling to get to school on time (or get out of school
early!) could be a smashing success .

8

ELEMENTARY MY DEAR WACKO

Sports Themes, Etc .

Sports and the arts always make popular computer game
themes . This type of game can be a simulation of the real thing
(baseball , soccer, ballet , mountain climbing) or you can let your
imagination run amuck and create situations in which your
character tries to achieve a bizarre goal off the playing field .

Wacko Runs Amuck!

My imagination often runs amuck , and during one of my muckier
days I created two game themes that Captain Action said are
destined to become gold medal winners:

• A berserk karate instructor attempts to chop watermelons
as they menacingly roll toward him from different parts of
the screen.

• A slim ballerina twirls as fast as possible, sinking lower into
the ground with each turn , in an attempt to strike oil.

Don't Be Afraid to Experiment

Experiment with many ideas to arrive at the theme you finally
develop into your full-fledged game . Don't be afraid to follow my
example and go wacko . Computer games can have any type of
theme : surrealistic , realistic , futuristic , the past. But the game's
theme must be challenging and believable-something that will
hold the interest of any game player.

Analyze Your Favorite Arcade Games

Think about some of your favorite arcade games . What's the
theme? What's the goal? Pac-Man™ is a good example. Pac­
Man's theme requires that the little muncher eat up all the
little dots around the screen while avoiding wandering
ghosts-obstacles. In this game the action never stops as Pac­
Man fights to survive . His goal is to move on to the next highest
level of play and accumulate the highest score possible .

Salmon ™ is an example of an arcade game that uses a real-life
situation . Salmon's theme requires that a salmon fight its way
upstream while avoiding bears , predatory birds, and fishermen .
The salmon's goal is to mate at the end of its arduous journey.
Just remember : A good theme , like a good story, requires that

9

DR. C. WACKO'S MIRACLE GUIDE

your main character overcome obstacles to reach a definite goal.
As an arcade game, it must be loaded with action.

Thematically Thpeaking

To help Junior graduate from themophyte to themophyle , (one
who createth great themeth) , I had to pull the plug on his com­
puter and bribe him to sit at the kitchen table , pick up a pencil
("What's that, Dad?"), and put his thoughts down on paper. But
as usual , Junior pleasantly suprised me by creating a list of simple,
combined, and dowright complex themes .

If you can drag yourself away from your computer for a few
minutes, you can have fun by developing themes around your
imaginary characters . Let's work through one of Junior's to give
you the idea then ; after that , you're on your own .

Junior's Theme Example

The Character: A Blue Kangaroo

The Theme: A hopping Blue Kangaroo tries to catch colored
circles that appear at random positions on the screen . Each circle
recharges his "life battery."

The Goal : Survival. The more circles he touches, the longer he
lives and the higher the score .

The Obstacle: A ravenous DingoDog races around the screen try­
ing to "eat" each colored circle before the Blue Kangaroo can
reach it. The DingoDog becomes more ferocious as the game
moves to higher levels. During the final levels he starts chaSing the
Blue Kangaroo-lots of action!

Experiment on your own until you have a good feel for theme
development. Then move on to the next step : developing your
characters.

Character Development

Now that you've developed your game theme and have a general
idea what type of characters will act in your scenario , it's time to
don your thinking cap and define each character in detail. In
other words, give each of your characters some character!

10

roes IT ~w(.. '?
5HCIJLO IT BARK?
/SIT VIO\.ENl?

CAlli! WHI.l.lE: ~ 7
IS 11 Im~u.IGEm .
MAl/BEllS

JNVISJBL.f; .. .

ELEMENTARY MY DEAR WACKO

Movin' and Groovin'

Take the time now to consider how your characters will move
through your game scenario.

If you took one of Junior's suggestions and decided to design a
game in which your main character must find his way out of a
complex maze , he's certainly got to come equipped with movable
legs . If your hero must duel against a Jedi-Knight, then he's got to
have movable legs , flexible arms , and a sword . All this is fairly
elementary , but, if you forge ahead without putting some thought
into the basics , you may end up with a game similar to the
disaster that Junior developed last week: A Pac-Man look-alike
without a mouth!

Talk to Yourself

I talk to myself a lot. I ask myself questions about a character's at­
tributes and write down my thoughts . Mrs . Wacko often wonders
why I'm saying things like:

• How will it move? (Walk, jump, hop, skip etc.)
• Does it need a mouth? Eyes?
• Does it have to be able to turn its head?
• Does it have to fire a weapon?
• Use a sword? A gun and sword?
• Must it be able to pick up objects?
• Boy , am I hungry .

11

DR. C. WACKO'S MIRACLE GUIDE

The Elephant of Time, Or, Time is Running Out,
Or Is It?

There never seems to be enough time in my day to get everything
done-so , when I design arcade games I vent my frustrations on
the poor unsuspecting game player. Why should I be the only
one who is limited by time?

Actually, the elephant of time Ooophs! Ahem , the element
of time is an integral part of many popular arcade games .

Visible Time: Readouts

In some popular arcade games , the passage of time is visually
displayed by either a receding colored bar or a numerical readout
that counts down toward zero. This "clock" forces the player to
perform a task in an ever-decreasing amount of time . Atari's
Lunar LanderTM for example, displays a numerical readout of fuel
consumption. When fuel equals zero, time has run out and the
game is over. Air Strike ™ also uses fuel as a measure of time but,
in this game it is displayed as a receding colored bar at the top of
the screen. In FroggerTM , the frog must arrive safely at its
"breeding pond" within a specified amount of time , again
displayed by a receding colored bar.

Invisible Time: No Readout

When Ms . Pac-Man ™ munches a Power Pill she is awarded the
temporary power to gobble the gobblins. After a short period of
time her superpowers fade and Ms . Pac-Man must return to the
defensive . When the hard-hat worker in Donkey Kong™ picks up

12

ELEMENTARY MY DEAR WACKO

a Magic Mallet he is given the temporary power to crush the
onrushing barrels . This superpower also fades after a short period
of time.

Life Gets Harder Every Day

I've found that including levels of increasing difficulty in all my
games serves two purposes:

• It lets the player begin at an easy level and become
familiar with my game without becoming hopelessly
frustrated.

• It offers an increasing challenge that will hold the player's
interest and motivate him or her to master the game's
higher levels .

In Chop Lifter™, more and deadlier adversaries are introduced
into the action after each reconnaissance mission is completed. In
Salmon , added obstacles are introduced to block the salmon's
way after each successful upstream migration .

...------"7' FOR JONIOR.,AGOOli' Other games increase in difficulty after the main character gains a
U:VEL OF DlFFlcul.:r'(certain number of points . But no matter what mechanism you
IS DI5TI N<SUIS H IN b
~16HT FROM ~eFT. use to increase your game's level of difficulty . . .

Bonus Points and Awards

= Bonus points should be awarded for achieving a goal or passing a
game benchmark. I like to reward players by giving them addi­
tional character lives after they've accumulated a certain number
of points . This lets them continue to play . It also makes me feel
like Super-Wacko!

If an arcade game player "can't get no satisfaction ," he or she
won't continue to play . Reward your players by giving them addi­
tional character lives , or simply award extra points . Positive rein­
forcement gives your players satisfaction .

13

DR. C. WACKO'S MIRACLE GUIDE

High Score

Try to include both "high score" and "game score" readouts on
your display. The high score gives the player a target to beat, and
will encourage him or her to play your game again.

Movin' On

Now, for the moment you've been waiting for. After you flip this
page you'll enter the exciting world of arcade game programming!
Keep all the elements we've just discussed in the back of your
mind as I reveal all my game design secrets.

14

ELEMENTARY MY DEAR WACKO

Stop Before You Flip

STOP! Before you move onto the next exciting chapter , type this
short program into your computer and RUN it:

10 GRAPHICS 18:POKE 712,128:POKE 755,5
20 POSITION 5,3:PRINT #6;"WELCOME TO"
30 POSITION 2,5:PRINT #6;"THE TOPSY-TURVY"

:POSITION 6,7:PRINT #6;"WORLD OF"
:POSITION 6,9

35 PRINT #6;"dr";CHR$(14);"wacko"
40 IF PEEK(53279) = 5 THEN POKE 755,5:POKE 712,128
50 IF PEEK(53279) = 6 THEN POKE 755,1:POKE 712,99
60 GOTO 40

Press the START and SELECT buttons to see the results . Now
that I've gotten that out of my system ...

15

DR. C. WACKO'S MIRACLE GUIDE

2
Graphics Modes, COLOR and

PLOT Graphics, and Lots of Other
Great Stuff

This chapter is the most important , bar none, in this entire fan­
tastic book! Using the elements that you'll learn here will send you
on your way toward developing the arcade game of your
demented dreams .

Since your fingertips are warmed up , and you're still mesmerized
by my superturnemupsidedown program , I'd like you to ex­
perience more programming elegance . But, this time there is a
method to my madness .

The programming used in these three arcade game screens will
seem like child's play, once you 've finished this chapter.

SUPER BREAKOUTTM

5 . SUPER BREAKOUT
10 GRAPHICS 23
20 COLOR 2
30 FOR A=O TO 5
40 PLOT 29 + A,80
50 DRAWTO 29+A,1 +A
60 DRAWTO 130 - A,1 + A
70 DRAWTO 130-A,80
80 NEXT A

16

GRAPHICS MODES AND LOTS OF OTHER STUFF

90 FOR A=O TO 1
100 COLOR A-2,1
110 FOR 8=0 TO 10
120 PLOT 36,15-A + 15 + 8
130 DRAWTO 124,15-A + 15 + 8
140 NEXT 8
150 NEXT A
160 COLOR 0
170 FOR A = 35 TO 124 STEP 10
180 FOR 8=0 TO 1
190 PLOT A,15-8 + 15
200 DRAWTO A,27 -8 + 27
210 NEXT 8
220 NEXT A
230 FOR A = 14 TO 25 STEP 3
240 FOR 8=0 TO 1
250 PLOT 35,A + 8 -15
260 DRAWTO 124,A + 8-15
270 NEXT 8
280 NEXT A

1000 GOTO 1000

5. TRON
10 GRAPHICS 21
20 COLOR 3
30 FOR A=O TO 10
40 FOR 8=0 TO 7
50 FOR C=O TO 5

TRONTM

60 PLOT A-7 + C + 2,8-6
70 DRAWTO A-7 +C+2,8-6+4
80 NEXT C
90 NEXT 8

100 NEXT A
110 COLOR 2
120 PLOT 2,0
130 DRAWTO 77,0
140 DRAWTO 77,46
150 DRAWTO 2,46
160 DRAWTO 2,0
170 POKE 712,128

1000 GOTO 1000

17

DR. C. WACKO'S MIRACLE GUIDE

MAZECRAZETM

5 . MAZECRAZE
10 GRAPHICS 19
20 COLOR 1
30 FOR A=O TO 4
40 PLOT A*2,A*2
50 DRAWTO 39-A*2,A*2
60 DRAWTO 39-A*2,23-A*2
70 DRAWTO A*2,23-A*2
80 DRAWTO A*2,A*2
90 NEXT A

100 COLOR 0
110 PLOT 19,2:DRAWTO 19,21
120 PLOT 20,2:DRAWTO 20,21
130 PLOT 2,11:DRAWTO 37,11
140 PLOT 2,12:DRAWTO 37,12
150 COLOR 2
160 PLOT 10,10
170 DRAWTO 29,10
180 DRAWTO 29,13
190 DRAWTO 10,13
200 DRAWTO 10,10
210 COLOR 3
220 PLOT 11,11
230 DRAWTO 28,11
240 PLOT 11,12
250 DRAWTO 28,12

1000 GOTO 1000

Now that you've been "blown away" by these three familiar ar­
cade screens, it's time to show you how you can blow them away!

18

GRAPHICS MODES AND LOTS OF OTHER STUFF

A Thespians Life for Me?

Af\HI. ITS ExcITING TO BCOtJ 1}'E sr.AG6 .I¥AJ/JJ
MI(RE.ALID&s ARE ILLUSIONS,lLLliSlONS ARe
REALITieS, AND I GEl THE CHANC.E TO
FtRfORM, B6 APP~AUDED,&:>of5D,HISSED,

A"'D GeT DOWIJLD.AD&D!

During my illustrious career as thespian (what?), director , and
playwright, I have starred in , directed, and written arcade games
that have appeared on computer stages in some of the world's
most cosmopolitan centers, like Peoria and Baffin Island . Some
of my finest arcade games have even appeared on the silver
screen. My sing-along with the bouncing ball to the words of
"Moon, Spoon on the Lagoon" was a smashing hit in nineteen­
ought-two.

I know that you're anxious to put all your wonderfully imaginative
arcade game ideas on the stage so you can bask in the sunshine
of sucess and fame, like me-so stay weird, buckle your seat
belts , and here we go!

Your Atari's Screen

Your Atari's screen , not the local Bijou, is the stage setting and
backdrop for all your arcade games. But before you can astound
the peanut gallery with your genius you'll have to select the pro­
per scenery , then do some set design and construction.

I always get a kick out of writing games that play on the Atari. This
great computer offers so many different stage settings (called
graphics modes) that I can always find the right one for any ar­
cade game I've conceived-the weirder, the better!

19

DR. C. WACKO'S MIRACLE GUIDE

Setting The Stage: Atari's Graphics Modes

Constructing a stage set and backdrop for your arcade game
takes a lot of backbreaking work , so to make things easier, you
first need to get acquainted with the Atari computer's world­
famous graphics modes.

The first pearl of knowledge I'm going to impart is this : To select a
particular graphics mode , use the BASIC command:
GRAPHICS (or its abbreviated form: GR.). For example , this
short, direct command selects and displays graphics mode 1:

GRAPHICS 1 <RETURN>
Since a picture is worth a megabyte of words, check out your
screen after you type in and RUN the following program. It shows
you all the "stage settings" your Atari computer offers. (Wacko
note : Your Atari computer may have as many as twelve graphics
modes . To keep things simple , let's only discuss and use graphics
modes 0 through 8 . Not that I'm lazy . It's just that most BASIC ar­
cade games don't use modes 8 through 11 because each of these
modes consumes 7900 bytes of memory-which is a lot of
valuable memory that can be used for making game players such
as bouncing fuzzballs stick to walls .)

Dr. Wacko's World Renowned Selecting the
Stage Program

10 FOR X=O TO 8
20 IF X = 0 THEN GRAPHICS X:POKE 752,1:POSITION

13,11:PRINT "GRAPHICS ";X:X = 1
30 FOR A = 1 TO 100:NEXT A
40 IF PEEK(53279)<>6 THEN GOTO 40
50 GRAPHICS X:POKE 752,1:PRINT :PRINT

CHR$(127);CHR$(127);"GRAPHICS ";X:POSITION
5,5:PRINT #6;"GRAPHICS ";X

60 FOR A = 1 TO 100:NEXT A
70 IF PEEK(53279)<>6 THEN GOTO 70
80 NEXT X:GOTO 10

After you RUN this program, just press START to view each of
the graphics modes . (SAVE this terrific program to disk or
cassette .)

20

GRAPHICS MODES AND LOTS OF OTHER STUFF

Vive la Difference

As you flip through each of the nine graphics modes presented in
this program you 'll notice a few important differences in each
screen .

Text modes: The first three screens (graphics modes 0, 1, and 2)
are known as the text modes and are normally used (you guessed
it!) to display text.

Pixel modes : The remammg six screens (graphics modes 3
through 8) display strips of colored squares in place of text. Each
colored square is called a pixel.

As you progress through this astounding book, you'll learn how
to use both text and pixel modes to design your arcade game's
stage.

The Thin Blue Strip

A thin blue strip runs mysteriously across the bottom of graphics
modes 1 through 8 . (In graphics mode 8 the blue strip is hard to
see because I'm nearsighted , and the entire screen is the same
blue color as the strip-but it's there. Trust me.)

This blue strip is called the text window . It's used to display stan­
dard letters, numbers and symbols .

You can use this area to display information such as rate of des­
cent in a Lunar Lander game , bearing to target in a battleship
gunnery game , or "Earth calling Dr. Wacko" in a Come Back to
Reality game.

You enter text into this window with the PRINT command. Here's
an example :

10 GRAPHICS 2:POKE 752,1
20 PRINT "Earth calling Dr. Wacko . .. "

21

DR. C. WACKO'S MIRACLE GUIDE

If your game doesn't use the text window, you can destroy
it-ZAP-and create a full screen display by adding 16 to the
graphics designation number. Here's how to get rid of that thin
blue strip : To change graphics mode 1 from a split-screen to a full
screen display, use the command GRAPHICS 17 (1 + 16 = 17).
Try this two-line program:

10 GR. 17
20 GOTO 20

You've eliminated that pesky blue strip , and the screen's grown!
Do you remember the Selecting-the-Stage program you just
SAVEd? (How soon we forget.) Well , bring it back! Cleverly
modify the program by deleting line 50 and replacing it with :

50 GRAPHICS X + 16:POKE 712,X + 10· INT(RND(0)·15)

Now press the START key and flip through each graphics mode
without having to watch that obnoxious thin blue strip run across
the bottom of your screen . I've identified each full-screen graphics
mode by taking its fingerprints and assigning it a different random
color. Because I'm really not too good at this sort of thing,
sometimes this color will be black. Don't panic! The next time
through, it will have another color-I hope.

The Wacko Unified Hole Theory: Columns,
Rows, and Coordinates

Take a magnifying glass (or squint a lot) and look at the color
cover of this book.

Right , Ms. Peeky . And graphics are displayed on your computer's
screen in the exactly the same way-each graphics mode con­
tains hundreds of "holes" (pixels) waiting to be filled in with color.

22

GRAPHICS MODES AND LOTS OF OTHER STUFF

Resolution

Take a look at the Screen Size column of Table 2.1. The screen
size for graphics mode 0 is 40 columns by 24 rows (40X24). The
screen size for full screen graphics mode 3 + 16 is also 40X24.
Even though one mode displays text and the other displays pix­
els, both of these graphics screens have the same resolution
(number of holes per screen).

Low-resolution graphics modes 0 and 3 + 16 each have a total of
960 (40X24) empty holes waiting to be filled. High-resolution
mode 8 has 69120 (360XI92) teeny-weeny holes waiting to be
filled in with color.

Coordinates

How do you keep track of all those holes? It's simple! Each hole
(or pixel) is assigned its own two-number location called a coor­
dinate . Here's how this nifty system works:

The numbers across the top of the illustration assign a value to
each column; these are called X locations. The numbers down
the illustration's side assign a value to each row; these are called Y
locations. Each pixel is identified by its two-number location coor­
dinate . The pixel's column location is always stated first, followed
by a comma , then the pixel's row location, like this: X,v.

Snidely's filled in the holes at locations 15,10 (X,Y) and 24,15
(X,Y) to show you this simple concept.

23

DR. C. WACKO'S MIRACLE GUIDE

Loads of Modes: The COLOR Statement,
Color Register POKES, PLOT, POSITION,
DRAWTO, and LOCATE

Selecting the right graphics mode for an arcade game requires
some artistic pizzazz (or lots of pizza!) . I hold my thumb up in front
of the screen , like Van Gogh appraising his canvas, and make
comments like: "Ahh, ooh, ugh, and wow , what a nice
thumb!" - until I've choosen the right graphics mode.

This method works great for artistic types like me . But will it work
for you? Even if you are an accomplished computer artist with a
"great" thumb, you will enjoy this fascinating section . It's loaded
with some real "artistic" tricks of the trade.

Table 2 .1 summarizes all you'll need to know about graphics
modes, and if that's not enough , I'll give you the complete run­
down on each graphics mode plus some very exciting graphics
tricks .

If) ~ color f?Eb151ER /JUflleu.(S)
~ ~ co 2 ~~ ~~

0

I « .. ~l1d ~ "
a~ ~ ~ n.~ w =0 Q!() CLCL

~o ~~~ ~ ~ l!r?: 'i'" '" \9~ «\.I uo .2

STAIllDARD
1 color- &

.:IO x 24
l(VARIABl-E ?. 4 III 0 .,p.RIABl.c LVMIIJ.AI\lcE Cews) (l\U'CK) lU

T6)(1 CflARA<:'TER ON l..'1)
n wMINA/IlCE

0 DOvBl..E - 20~20 (SPLIT)
4 ~ 1 WIDTH iE.XT 5 2.m2"! (FUl-l..)

0,1,2,3 4
~
x. ~U6,E-WIDTH ~o 110 (SPLIT) UJ 2. [IOUBtt-HEI6HT 5 0 , ' ,2,3 4 4
t-- TEXT 2.0 ~ 12 (FuLL)

3 4 4O~ZO (speir) 0,',1- 4 4 -10'24 (FU LL) r-- FOJR
'ilO ,40 (SPL IT), 5 CoWR 4 0, 1 , 2- 4 4

7 ~PHICS
'80 ,4~ (FULL)

IJ) 4 1,"0' '1\0 (SP['I~) 0, ',1- 4 4 IGoD i 90 (FULL
lU

',10'-40 (sPl.rr) a 4 2 0 4 4
0 lWO 'gox4'il (FULL)

- COLOR
~ 6 GTGIlPHICS 2 IW;<'i30C5~\T)

4 4 1100 ~% (FULL-) 0
.J
III
X 1 color & 1(VAR 1A6Le

HIGH ~"(H I roD (sPt /l) Q 8 itESOWTION VAR.IABLE WMIJJA/Ilc:.E 2 4 CHARAC.,e:R 3w J 192.(FULL) AIJD PHA<;;.E
<;RAPHIC.s

WM I/JAI¥-C ~H I r-1 color)

~B!-.E2·1

24

- ot:<i III >- ,-... ~ WLU\t'

9 ~<I)t£ ~o~ o~~~ ~~1S U 2""

-- qq3

(SE:E TABlA:; 2.2) 5 /3

(stE TABL£ n) 20 1

COLOR O,~Tf"4
Fb~ 112,0 213

coc.oR I IIMol'5TE R 0 -fbf::E 7O'i ,040
1017

~:?/.;%r~:i -
~,;~~e:« 3945
COLOR 0
RE01'O>TE1<.4 537

Pl:>t::E 11~,O

COLOr<. I zoze; R661STCR 0
Pot::E 1 01>,40

COWRO
f<E61STto'1Z 2-
1\:>1:10 110,14'> 7900

, cow/'.. I I \1EGIST€'~ I
fbl::E 7cA, toZ-

GRAPHICS MODES AND LOTS OF OTHER STUFF

Pixel Modes 3 through 8: Using the COLOR and
PLOT Statements

Take a look at Table 2.1 and you'll see that the pixel modes are
separated into three groups:

• Four-color graphics
• Two-color graphics
• High-resolution graphics

Using the COLOR statement in these modes is real easy. I'll use it
in graphics mode 3 to give you the idea.

Graphics mode 3 or 19 (3+ 16) is a four-color graphics mode.
This simply means that you have one background color and three
pixel colors to work with. The COLOR and PLOT statements go
together like R2-D2 and 3-CPO-they're inseparable. In graphics
mode 3 , you use COLOR 0 to "paint" the background of your
playfield and COLOR's 1,2, and 3 to "draw" your playfield in
vibrant hues!

The PLOT command fills a pixel on your screen with the color of
your choice, at the coordinates of your choice. COLOR and
PLOT are used together like this :

COLOR 1:PLOT 5,10
c.ocATIONS

Ii ~

Here's a short program that PLOTs an orange pixel (COLOR 1)
on your screen in graphics mode 3:

25

DR. C. WACKO'S MIRACLE GUIDE

10 GRAPHICS 3
20 COLOR1
30 PLOT 0,0

COLOR and PLOT

Ooops-replace line 20 first with COLOR 2 , then with COLOR
3. COLOR 2 appears as light green and COLOR 3 as a small
blue box-amazing! You guessed it , the four colors are preset:

COLOR O-Black (background)
COLOR I-Orange
COLOR 2-Light Green
COLOR 3-Blue

~---Y)VljJ6 f'X) ~ARI WAcroSHERE.-..----..,
W~ fOKJ m"THE RESCUE!

Have no fear, Dr . Wacko's here with POKE to the rescue!

A POKE statement's got two numbers . Study the illustration to
the right.

You use the POKE statement to stuff information directly into a
special location inside your Atari computer's memory. This loca­
tion is called a register. The first number in the POKE statement
tells the computer what register you want to stuff information into.
The second number is the stuff that you're POKEing.

Listed to the right are the POKEs used to control each of the
COLORs available .

By adding a number between 0 and 255 you can change the col­
or of each PLOTed COLOR pixel. The added POKE color
number changes both the pixel's color and its luminance . To get
different shades of color, you simply add or subtract 2 from the
color number.

26

POKE 710,8E
t ,

<:alor color and
Y'e9ister luminance

Ft:KE USC
f(EbI~E~ CDI.O~
~IIISE

GRAPHICS "3,5,1 10~ 1
(foorcblor) 709 2

710 .3
712 .q

G~PH ICS 4, (0

(two color) 708 1
712 0

&RAPHICS <6
Cone c::olor,W- 109 1
luvniVlanCe<2.) liZ. -

710 0

GRAPHICS MODES AND LOTS OF OTHER STUFF

Now, while you are still dazzled by all those vibrant colors let's do
some more programming . Clear your screen by typing in NEW
then type in the COLOR and PLOT program again and change
line 10 to read:

10 GR. 3:POKE 708,99

Now , when you RUN your new COLOR and PLOT program
you'll see that the little dot has change to pugnacious purple!

Go wacko with this short program. By POKEing 708 with any
number between 0 and 255 you can change the color of the pixel
that you 've PLOTed using COLOR 1. Experiment with other
COLOR statements and registers. Replace the COLOR statement
in line 20. Make it COLOR 2, and change line 10 to read:

10 GR. 3:POKE 709,195

Play with these concepts and refer to the table opposite until
you've got a good grasp of how the different color POKEs control
each PLOTed COLOR.

DRAW TO the Stage

Now that you 're all wacked-out on color, I'll show you how to use
the DRAWTO command to draw lines on the screen . But before
you use DRAWTO you'll have to PLOT a beginning coordinate .
DRAWTO is always used with PLOT like this :

PLOT X,Y:DRAWTO X,Y

Put the COLOR and PLOT program back together again and
add this line:

40 DRAWTO 39,19

27

DR. C. WACKO'S MIRACLE GUIDE

Again, fool around with this new program, then we'll mess it up
some more.

O.K.?

Now , using the same program , add this line 15:

15 POKE 708,99

And change line 40 to read:

40 DRAWTO 0,19:DRAWTO 39,19:DRAWTO
39,0:DRAWTO 1,0

Now , when you RUN your modified program, a strip of purple
borders the edge of the screen. It's pugnacious purple again
because we've POKEd 708, COLOR l's register, with 99.
Remember?

Line 40 shows that you can "chain" DRAWTO commands one
after another. You can draw any arcade playing field imaginable
by combining these PLOT, DRAWTO, and COLOR techniques!

Steppin' through Mazecraze

Now, armed with your knowledge of graphics modes and com­
mands , flip back to the Mazecraze program and we'll step through
it.

In line 10, I've selected "windowless" graphics mode 19 (3 + 16).

To speed up the drawing process I often use the handy
FOR/ NEXT loop. Lines 20 through 90 of the Mazecraze pro­
gram qUickly draw five COLOR 1 lines of decreasing lengths from
the top to the bottom of the screen.

Here are lines 10 through 90 of the Mazecraze program. I've
slowed down the drawing process by adding a pause
FOR/ NEXT loop in line 85 so you can watch the screen being
drawn. RUN this short program and you'll get the picture-or a
headache!

28

IF WE HAVE" TC WA Ii FOR ~IG!.tO\J7'H
TO ST~ Thl.K/MG,
HE WO~T~ AtJ'(
PATIE.hlTS.

GRAPHICS MODES AND LOTS OF OTHER STUFF

Mazecraze FOR/NEXT loop Demo

10 GRAPHICS 19
20 COLOR 1
30 FOR A=O TO 4
40 PLOT A · 2,A· 2
50 DRAWTO 39 -A·2,A · 2
60 DRAWTO 39-A· 2,23 - A . 2
70 DRAWTO A · 2,23-A. 2
80 DRAWTO A · 2,A· 2
85 FOR PAUSE = 0 TO 200:NEXT PAUSE
90 NEXT A

100 GOTO 100

The balance of the program , lines 100 through 250, is broken in­
to sections headed by a COLOR statement and followed by a
bunch of PLOT and DRAWTO statements. COLOR 0 , the
background color, is used to "cut away" sections of the lines that
were first drawn . COLORs 2 and 3 are used to draw the design in
the center of the screen.

Now that you know what you are doing (I wish I could say the
same for me), use your new skills to modify the three professional
arcade game playing field examples . Change their colors ; put
them in different graphics modes; change their design . Go com­
pletly wacko-really mess 'em up'

Action in the Text Modes!

Graphics Mode 0

Graphics mode 0 is usually used to display text , but stick with Dr .
Wacko , kid , and I'll show you how to design arcade games in this
mode (if you'll be a little patient) .

Just so you'll recognize it when you see it , graphics mode ° is that
blue display with a black background that you see when you turn
on your computer.

Here's some basic information about graphics 0:

29

• Normally used to display text
• Screen size: 40 characters across and 24 characters down

(38 X 24)

DR. C. WACKO'S MIRACLE GUIDE

• Colors: 1 color; 2 degrees of brightness . (POKE 710,XX
to change the screen's color. POKE 712,XX to change the
screen's border. POKE 708,XX to change the text
character's brightness .)

• Command: GRAPHICS 0

Graphics Modes 1 and 2: E1 Biggo Texteroonio

Graphics modes 1 and 2 are also normally used to display text.
But not after the famous Dr. C. Wacko gets his hands on them.
Once you've finished this book you'll know how to use these
valuable modes in some pretty subnormal ways. To display entire
arcade games, for instance!

Trip between graphics modes 0 , 1, and 2 in my Selecting-the­
Stage program and once you get back up you'll see that letters
and symbols printed in graphics mode 1 are twice the width of
those printed in graphics 0, but are the same height .

Letters and symbols printed in graphics mode 2 are the same
width as graphics mode 1 characters , but are two times greater in
height.

Here's the scoop on graphics modes 1 and 2:

• Screen size : Graphics Mode 1
Split Screen: 20 characters across by 20 characters down
(20X20)
Full Screen: 20 characters across by 24 characters down
(20X24)

• Screen size: Graphics Mode 2
Split Screen: 20 characters across by 10 characters down
(20XlO)
Full Screen : 20 characters across by 12 characters down
(20X12)

• COLORS: 5 (4 character colors and 1 background color)

Plotting in the Text Modes

Many of my most spectacular games are presented in the text
modes . I often use either graphics mode 1 or 2 because each of­
fers five colors. I've even used graphics mode 0 a few times.

30

GRAPHICS MODES AND LOTS OF OTHER STUFF

In the next chapter you 'll learn how to change the letters and
symbols that normally appear in the text modes to any shape you
can imagine. When you do you'll be able to develop text mode
arcade games that are loaded with color and pizzazz!

Now I'll show you how to PLOT in these text modes so you 'll be
ready to design game screens with the weird shapes I'm sure
you'll soon be creating .

Here's a short, but brilliant example:

10 GRAPHICS 1
20 GOTO 40

Text Mode Plotting

30 POKE 752,1:COLOR 32:PLOT 2,0
40 COLOR 87
50 PLOT 0,0
60 COLOR 97
70 PLOT 1,1
80 COLOR 227
90 PLOT 2,2

100 COLOR 203
110 PLOT 3,3
120 COLOR 111
130 PLOT 4,4

First RUN this program as is and you'll see "WACKO" printed in
brilliant colors .

Now change line 10 to: 10 GRAPHICS 2 , and RUN it
again-BIGGER letters!

31

DR. C. WACKO'S MIRACLE GUIDE

Now try it in graphics mode 0 by deleting line 20 , then changing
line 10 to : 10 GRAPHICS O.

IN ["INE 30, POKE 752.1 6tTS
RI [) OF TI-lE CURSOR., AN 1) ~y PLcmI N6
COLOR 32 (A BLANK. SPACe:) AT 2.,0

I'VE MM\JAGED TO 6[; T R ID
OF ,ALL 11-\6 ANAlDI{I /16
Wf.\Il'C GURSoI'C> WAT

WOllL-D PiAGU,s ME" IN
WPHICS MODE 0

What's happening here? The number you put behind the COL­
OR statement, like COLOR 87, is the ATASCll va lue of the letter
or symbol that will be printed at the PLOT coordinates! In line 40
of my brilliant program , COLOR 87 will print the first letter of my
name , W, at coordinates 0,0

Refer to the ATASCll Chart on page 189 to modify this program
and put your name on the silver screen l

Using POSITION

O h, before I forget (and I never do that!), you can also use PRINT
(in GR.O) or PRINT #6; (in GR. 1 or 2) with the POSITION state­
ment to place characters on the screen. Try this one-liner:

10 GRAPHICS l:POSITION 5,5: PRINT #6;CHR$(87);
CHR$(97); CHR$(227); CHR$(203); CHR$(I11)

Using PRINT #6 to Display EI Biggo Texteroonio

In both graphics modes 1 and 2, uppercase, lowercase , and in ­
verse video letters, numbers, and symbols normally appear on
your screen as upper-case text. But , here's the exciting part. Each
has its own distinct color!

32

UH ... rr Se.2 ~
POKe.70e~
To CHAt-lGE l);ECOt..OR,OF
-me ~1-6!~

GRAPHICS MODES AND LOTS OF OTHER STUFF

Type in and RUN this short program , and you'll get the picture.
(Underlined letters indicate inverse text. Press the key with the
Atari symbol to enter these characters. Press it again to return to
normal text.)

Colorful Letters

10 GR.2
20 POSITION 3,5
30 PRINT #6;"EI QIggO tE~t"

Isn't that shocking! Now let's have some fun .

First , change line 10 to read GRAPHICS 1 and RUN it again.
Neato!

O. K., now we come to the devious part. I'm going to show you
how to mess up all those colors f

Let your fingers do the walking to Table 2.2. There yet?

Let's give it a try. Type: POKE 708,99 < RETURN>. All the let ­
ters that were entered as standard uppercase letters-the E in
"EL" , the I in "BIGGO" , and the E in "TEXT" have all
miraculo usly changed color. They're all putrid purple! Eeeyuk!

POKE other numbers into location 708 by changing the number
after 708. Try combina tions like 708,23; 708 ,185; and so on, so
forth ; and to wit.

Figure out that chart yet? You did! Then you realize that you can
change the other letter's colors in the same manner.

Here's the explanation Slow Poke gave to me:

POKE 70S,XX changes the color of standard uppercase letters.
POKE 709.XX changes the color of standard lowercase letters.
POKE 710 ,XX changes the color of inverse uppercase letters.
POKE 711 ,XX changes the color of inverse lowercase letters.

One add itional thought. You can a lso change the background
color from black to any color your heart desires by POKEing 712
with any number between 1 and 255 (0 is black so don 't waste
your time entering it) . POKE 712,185 turns the background to
my favorite color, swampwater green.

33

DR. C. WACKO'S MIRACLE GUIDE

TABLE 2.2 Color in Graphics Modes 1 and 2

ATASCII Value Char- ATASCII Value Char-
for Color Register acter for Color Register acter
0 1 2 3 0 1 2 3

32 - 0 160 128 D 50 18 178 146 [gJ

33 1 161 129 [[] 51 19 179 147 [}]

34 2 162 130 D 52 20 180 148 [IJ

35 3 163 131 [kJ 53 21 181 149 ~
36 4 164 132 [I] 54 22 182 150 ~
37 5 165 133 [ill 55 23 183 151 [I]

38 6 166 134 [KJ 56 24 184 152 [[]

39 7 167 135 D 57 25 185 153 @J

40 8 168 136 [I] 58 26 186 154 D
41 9 169 137 QJ 59 27 187 None[J

42 10 170 138 8 60 28 188 156 ~
43 11 171 139 EJ 61 29 189 157 [3

44 12 172 140 D 62 30 190 158 [?J

45 13 173 141 D 63 31 191 159 [JJ

46 14 174 142 D 64 96 192 224 [@]

47 15 175 143 [2] 65 97 193 225 [K]

48 16 176 144 [QJ 66 98 194 226 lliJ
49 17 177 145 []] 67 99 195 227 [QJ

34

GRAPHICS MODES AND LOTS OF OTHER STUFF

ATASCII Value Char- ATASCII Value Char-
for Color Register acter for Color Register acter
0 1 2 3 0 1 2 3

68 100 196 228 [Q] 82 114 210 242 lliJ
69 101 197 229 ffiJ 83 115 211 243 lliJ
70 102 198 230 [f] 84 116 212 244 IT]

71 103 199 231 [§] 85 117 213 245 [QJ

72 104 200 232 [EJ 86 118 214 246 [YJ

73 105 201 233 IT] 87 119 215 247 ~
74 106 202 234 QJ 88 120 216 248 0
75 107 203 235 [RJ 89 121 217 249 [Y]

76 108 204 236 lIJ 90 122 218 250 ~
77 109 205 237 [&1] 91 123 219 251 rn
78 110 206 238 [ill 92 124 220 252 [SJ

79 111 207 239 [QJ 93 None 221 253 OJ
80 112 208 240 [EJ 94 126 222 254 0
81 113 209 241 [Q] 95 127 223 255 Q

• 155 selects the same character and color register as value 32.

POKE 708,X FOR COLOR REGISTER 0 (uppercase)
POKE 709,X FOR COLOR REGISTER 1 (lowercase)
POKE 710 ,X FOR COLOR REGISTER 2 (inverse uppercase)
POKE 711,X FOR COLOR REGISTER 3 (inverse lowercase)

35

DR. C. WACKO'S MIRACLE GUIDE

Well, that was real intersting, but what , you may ask (I might not
answer) is so important about all this colorful nonsense?

How dare you l This is really , really, ad infinitum, important stuff!

In the next chapter, Character Graphics , I'm going to show you
how to change these letters into shapes of all kinds: monsters,
lollipops , kangaroos , rocket ships, Albert Einstein (?).

After you learn how to transform, the letter A , for example , into a
reasonable facsimile of a lollipop , for example , you 'll know how
to change the lollypop 's color. Just think of it, any flavor your
heart deSires , even swampmuck green. (Double EEeeyuk!)

That's why this stuff is really important!

LOCATE and Collisions

Chances are , you 're going to want lots of action in your games.
When a missile strikes its target you 'll want to see a flash and hear
an ear-splitting explosion-BAAROOOOOMf When a ball hits
the side of a wall, you want to know it-PING! One way to let the
other elements in your program know that a collision has occur­
red is to use the LOCATE statement. LOCATE is used in this for­
mat: LOCATE X,Y,Z

36

GRAPHICS MODES AND LOTS OF OTHER STUFF

X is the column location of the collision , Y is the row location ,
and 2 is value that's encountered at location X,v. (You don't
have to use 2-any variable other than X or Y will work just fine.)

In graphics modes 3 through 8 the value returned in 2 is the
number that follows the COLOR statement: either 0, 1, 2 , or 3.

In graphics modes a through 2 the value returned in 2 will be the
ATASCII value of the character encountered. For example, if the
letter A is located at coordinates 5,5 in graphics mode a
(LOCATE 5 ,5 ,2) , the value returned in 2 will be 65. (Now's a
good time to look over the ATASCII Codes, Characters and
Keystrokes chart on page 189.) Here's a short program that
shows the basic LOCATE concept. There's a surprise program at
the end of this chapter that uses LOCATE in an action arcade
situation'

10 GRAPHICS 3
20 COLOR 1
30 PLOT 0,0
40 COLOR 2
50 PLOT 1,1
60 COLOR 3
70 PLOT 2,2
80 LOCATE O,O,A
90 LOCATE 1,1,B

100 LOCATE 2,2,C
110 LOCATE 3,3,D
120 PRINT A,B,C,D

LOCATE Demo

After you RUN this program three colored squares will be
displayed at the upper left of the screen. The corresponding
COLOR statement numbers (1, 2, 3, and 0) are LOCATEd , then
printed in the text window.

37

COLOR 1 (register a-orange) is plotted at 0,0.
COLOR 2 (register I-green) is plotted at 1,1.
COLOR 3 (register 2-blue) is plotted at 2,2.
COLOR 0 (register 4-black) is the background color.

DR. C. WACKO'S MIRACLE GUIDE

What's This? Wacko's Secret Formula?:
SC = PEEK(88) + 256 * PEEK(89)

Not at all! I'm going to show you a super fast way to POKE stuff to
and from the screen.

I'll first show you how to use this method in graphics mode 19
(3 + 16) , then how to apply it to other graphics modes.

POKEing Stuff to GRAPHICS 19

In graphics mode 19, in the statement SC = PEEK (88) +
256· PEEK (89), SC is the location of the first four pixel locations
at the upper left corner of the screen-coordinates 0,0; 1,0; 2,0;
and 3,0.

This program will place color-fill ed pixels (blue, green , orange,
blue) at the top left of the screen.

10 GRAPHICS 19
20 SC = PEEK(88) + 256· PEEK(89)
30 POKE SC,231
40 GOTO 40

Here's how this little gem works.

Line 20: The variable SC is assigned the value of the upper left
corner of the screen .

Line 30: POKE color code 231 to the screen at the upper left cor­
ner.

Line 40: The GOTO 40 is used to prevent the screen from retur­
ning to graphics mode O.

38

KOS SECRET FORMULA
P\-ICOE.I(SMOKEYS BsEl\l
BA6Bllf.i; A1?OVT \1 FOI<1.. I

IAEEK5 AND E.Vr::/J .j(}NIORS
N.Jv.D5T (£A~NW IT

GRAPHICS MODES AND LOTS OF OTHER STUFF

What's COLOR Code 2317

Here's a handy-dandy chart that explains all!

REG-IST!:R fbKE ~~~T :l. 2. 3 4

0 712. BLACK 0 0 0 0

1 70S OMN6e <D4 \10 4 I

2- 709 bR~£N IZS '32 S '2.

3 7/0 BW~ Iq2 4l? 12- 3

192 -t 4~ + 12 + 3 :=. Z5S

The number 231 is simply the addition of 192+32+4+3.

To change the color of all four pixels to blue , for example, you'd
just replace code 231 with 255 (192 + 48 + 12 + 3) .

Experiment with different color combinations; then I'll show you
how to position these four pixels anywhere on the screen.

The screen size of graphics mode 19 is 40X24. That's 960 holes
waiting to be filled with color!

In this graphics mode, four color-filled pixels are placed on the
screen at a time. The coordinate (X,V) system doesn't apply to
this method. The first pixel is placed at screen position 0, the
fourth pixel is placed at screen postion 4 moving from left to right
across the screen.

Since four pixels are placed on the screen at a time (beginning at
position 0) and the screen contains 960 holes, position 239 is the
last position in which you can place a set of four colored pixels
(960/ 4-1 = 239).

39

DR. C. WACKO'S MIRACLE GUIDE

Replace line 30 with: 30 POKE SC + 239,231.

When you RUN the program again, the four colored pixels will
magically appear at the bottom right corner of the screen'

Use these form ulas to p lace pixels at the left bottom in any
graphics mode:

Graphics Modes 3, 5 & 7: SC + (Number of holes/ 4) - 1
Graphics Modes 4, 6 & 8: SC + (Number of holes/ 8) - 1
Graphics Modes 0, 1 & 2 : SC+ (Number of holes)-l

Positioning your pixels is really easy . Here's a short program
that'll place pixels in each corner of the screen, and in the middle .

10 GRAPHICS 19
20 SC = PEEK(88) + 256· PEEK(89)
30 POKE SC,231:. Upper Left
40 POKE SC + 9,231:. Upper Right
50 POKE SC + 230,231:. Lower Left
60 POKE SC + 239,231:. Lower Right
70 POKE SC+114,231:. Middle
80 GOTO 80

Or, fill the entire screen with color!

10 GRAPHICS 19
20 SC = PEEK(88) + 256·PEEK(89)
30 FOR X=O TO 239
40 POKE SC + X,231
50 NEXT X
60 GOTO 60

To p lace pixels random ly, cha nge lin e 40 to: 40
Y = INT(RND(O) · 240) :POKE SC + Y,231 .

Now you can design arcade game playing fields without using
PLOT and DRAWTO. This method is much , much. much faster!

Using SC to Retrieve Values, or, Who
Needs LOCATE?

You can use this fabulous method in place of the LOCATE state­
ment . It works super in graphics modes 0, 1, and 2 because it
returns the AT ASCII value of the letter on the screen. It's a little

40

GRAPHICS MODES AND LOTS OF OTHER STUFF

difficult to use in the pixel modes because it will return the com­
bined value of all the pixels at any location.

Here's how to use SC in graphics mode 0:

10 GRAPHICS 0
15 SC = PEEK(88) + 256· PEEK(89)
20 COLOR 65
30 PLOT 0,0
40 COLOR 66
50 PLOT 1,0
51 COLOR 67
52 PLOT 2,0
60 A = PEEK(SC)
70 B = PEEK(SC + 1)
72 C = PEEK(SC + 2)
80 PRINT :PRINT A,B,C

Don't go away yet! Here's a BIG surprise ...

41

DR. C. WACKO'S MIRACLE GUIDE

Wacko's Bong Program

And now, here's the grand finale bonus program I promised
earlier. I've titled it Bong . It's a version of my famous "sing along
with the bouncing ball" program that wowed 'em in Peoria . This
superprogram uses many of the elements that you have learned
in this chapter. It's also a great example of LOCATE's use in an ar­
cade game, so without any further padew . .. here's Bong:

Bong

10 GRAPHICS 19:POKE 710,15
20 X = I:Y = I:DX = I:DY = I:XB = X:YB = Y
30 SC = PEEK(88) + 256· PEEK(89)
40 FOR A=O TO 3
50 POKE SC + 113 + A,85:NEXT A
60 COLOR I:PLOT O,O:DRAWTO 38,0
70 PLOT 0,23:DRAWTO 39,23
80 COLOR 2:PLOT O,I:DRAWTO 0,23
90 PLOT 39,0:DRAWTO 39,22

100 COLOR 0
110 PLOT XB,YB
120 XB=X:YB=Y
130 X=X+DX
140 Y=Y+DY
150 LOCATE X,Y,Z
160 IF Z<>O THEN GOTO 210
170 COLOR 3
180 PLOT X,Y
190 POKE 77,0
200 GOTO 100
210 SOUND 0,100,10,10
220 IF Z= 1 THEN DY= -DY
230 IF Z=2 THEN DX= -DX
240 X=XB:Y=YB
250 POKE 707 + Z,PEEK(20)
260 SOUND 0,0,0,0
270 GOTO 130

CONGRATULATIONS! Pat yourself on the back , have a wild
and crazy party! You understand and can now almost design pro­
grams like this one .

42

GRAPHICS MODES AND LOTS OF OTHER STUFF

I said "almost" because I will be introducing the animation
elements used in Bong in chapters 3 and 4. But you've come a
long way!

You now know how to select the proper graphics mode for a
game like Bong, and how to use the COLOR, PLOT and
DRAWTO statements to draw the playfield . You understand the
infamous SC and how to use LOCATE .

Bong Explained

Here's an explanation of the portions of Bong that you should
have a good handle on now.

Line 10: This line first selects graphics mode 3 + 16, then POKE's
COLOR 3 with the number 15. This command (POKE 710,15)
paints the bouncing ball white.

Line 20: These commands assign the ball's movement
parameters , (More on movement in upcoming chapters!)

Line 30 assigns the value of the top of the screen to "SC".

Lines 40 and 50 are used to draw the horizontal bar at the center
of the screen . I've used a FOR/ NEXT loop to speed up the draw­
ing process , and I've selected 85 as the color to draw with. Look
at the SC chart and you'll see that 85 is the total of
64 + 16 + 4 + 1 and draws an organic orange (COLOR 1) line .

Lines 60 and 70 draw lines across the top and bottom of the
screen using COLOR 1.

Lines 80 and 90 draw lines down the left and right sides of the
screen using COLOR 2.

Here's the exciting part of this program!

Lines 150 and 160 make the Bong "action. " The Z in the
LOCATE statement in line 150 senses which "wall" COLOR the
ball has hit. In Line 160 IF the value of Z is not 0 , the ball has col­
lided with one of the walls (COLOR 1 or 2) and the program
jumps to line 21O.Bong!

43

DR. C. WACKO'S MIRACLE GUIDE

Line 210 lets the player know that the ball has hit one of the walls
by SOUNDing off.

Line 220: The ball bounces away from a COLOR 1 wall (a
horizonal wall) .

Line 230: The ball bounces away from a COLOR 2 wall (a ver­
tical wall).

Line 250: When the ball hits a COLOR 1 wall , POKE 707 + Z
equals 708 (707 + 1), the color register for COLOR 2. When the
ball hits a COLOR 2 wall , POKE 707 + Z equals 709 (707 + 2) ,
the color register for COLOR 2.

Now, let's take a closer look at another wacko thing that's hap­
pening in line 250: POKE 707 + Z,PEEK(20)

The PEEK(20) command looks into the contents of register 20
which generates a constant stream of ever-changing numbers bet­
ween 0 and 255. By continually changing the number that
follows POKE 707 + Z the wall changes to a different color each
time it's hit by the ball .

Here's a short demo program that shows how PEEK(20) works:

10 PRINT PEEK(20):GOTO 10

Here's another example:

10 GRAPHICS 3
20 POKE 712,PEEK(20):GOTO 20

Line 260 turns off the sound. Line 270 returns the program to
Line 130 to begin the cycle again .

44

GRAPHICS MODES AND LOTS OF OTHER STUFF

Are you ready to create a few monsters? Flip the page and enter
the dank environ of my secret laboratory.

45

DR. C. WACKO'S MIRACLE GUIDE

3
Character Graphics

Some people thought I had gone stark, raving mad when I an­
nounced to the world that out of tiny bytes and miniscule bits, I,
the great Dr . C. Wacko, would create the perfect arcade monster!

After saying farewell to my students, I retreated to the dank con­
fines of my laboratory and set down to work.

My plan was simple and direct. Learn how the "Big C" creates its
characters, then use this awesome power to produce LIFE
ITSELF! (Well, almost, anyway .)

I gently placed my Atari on the operating table and with scalpel in
hand began my dissection . My probing took me deep into the

mysterious realm of ROM. Step by step, as my investigations con­
tinued, I unraveled all of Big C's hidden secrets. Now, at last, I
can reveal these secrets to you.

The Character Set

The letters A through Z, in upper and lower case , the numbers 0
through 9, and all the other characters printed on the Atari
keyboard are all members of the character set. A complete list of
characters, along with lots of helpful information about them , ap­
pears on page 189.

Your Atari prints characters to the screen after first "asking" ROM
what each character looks like. I'm going to show you how to

46

2

3

0
0

0

0

0

0

0
0

D 0

0 0

0 I

I I

I I

I I
I I

0 0

-
0 0

I I

I r
0 0

0 0
I I

0 0

D 0

o 0

D 0

I 0

I I
I I
I I
I I

0 0

0 -0

0 -24
o -W

102

-102-

o -
0

0 -11-'"
0 -101-

0 -0

CHARACTER GRAPHICS

confound your Atari by defining your own custom characters.
Then we'll make your Atari point to your character set and
display your weird creations on the screen .

To do all of this weird stuff you'll have to understand how
characters are defined in ROM and how the Atari knows what to
print. Here's what I had to go through.

Armed with my own Atari computer, I began to experiment. I first
needed to understand how each character was presented. I
printed the letter A on the computer's screen, then looked at it
closely through a magnifying glass. Here is what I saw:

I leaned closer. Ahaaa! The letter "A" was made up of rows of
squares, forming an 8X8 grid . Each of the squares that make up
the letter is actually one binary bit of information. Each row across
contains one byte of information. I was getting closer to my
answer. Now, all I had to do was convert this binary information
into decimal numbers. The type of numbers that we humans use
and understand.

The computer remembers the letter A as binary numbers, just a
bunch of a's and l 's. Shade in all the l's and you'll begin to get
the picture:

Each column of this 8X8 box has a value assigned to it. I placed
these values at the top of each column to help me analyze the let­
ter A.

Going across from left to right, starting with the first row, I added
up the values of all the l's. There are only a's in the first row, so I
placed a a to the right of the row .

Going across the second row there is a 1 under the number 16
and another 1 under the 8, so I calculated 16 + 8 = 24 and placed
the number 24 to the right of this row.

The third row has 1's under the numbers 32, 16,8, and 4. I add­
ed these together and placed the total -60- to the right of this
row.

47

DR. C. WACKO'S MIRACLE GUIDE

Continuing this process for a ll eight rows, I arrived at these totals
for each row :

ROW 1-0
ROW 2-24
ROW 3-60
ROW 4 - 102
ROW 5-102
ROW 6-126
ROW 7-102
ROW 8 - 0

was begining to to get the hang of it! Converting comp uter
binary numbers into human decimal numbers was pretty easy . I
was getting closer to total understanding . Soon I would be able to
create the perfect arcade monster l

I've drawn the letter B, just like your Atari displays it. See if you
can fill in the blanks next to each row with th e correct decimal
number.

Now is a good time to flip to page 200 and type in and SAVE the
ATASCII Code program listing. If you follow the simple operating
instructions, your computer will show you the decimal numbers
that make up everyone of Atari 's characters.

I now understood how my Atari displays characters. I also knew
about the list of eight decimal numbers that make up each
character.

Now I had to learn where and how my Atari stores each
character.

Location 57344

Digging deeper into the hidden recesses of ROM, I discovered
that this cast of characters lives in a small , 1024-byte corner of
Atari's memory begining at memory location 57344 and ending
at location 58367.

This information didn 't mean much to me until I analyzed this
mome ntous discovery .

48

J
]

J
J
]
J
J
J

49

CHARACTER GRAPHICS

[decided that [would take a PEEK at the contents of each loca­
tion to see if [could increase my understanding.

To do this [developed this simple program . Type it in and RUN it
to experience Dr. C. Wacko's great revelation :

PEEKER

10 GRAPHICS O:POKE 752,I:POKE 710,0:? :? :?
CHR$(127);CHR$(127);"OFFSET: O":? :? :? :?
:FOR X = 0 TO 1023

20 ?CHR$(127);CHR$(127);57344 + X;CHR$(127)
;PEEK(57344 + X)

30 IF INT((X + 1)/8) = (X + 1)/8 THEN POSITION
4,18:? "PRESS START TO FLIP THROUGH
MEMORY":GOSUB 100

40 IF X + 1> = 1024 THEN X = O:GOTO 10
50 NEXT X
60 STOP

100 IF PEEK(53279)<>6 THEN GOTO 100
110 GRAPHICS O:POKE 77,0:POKE 710,0

:POKE 752,1
120 ? :? :? CHR$(127);CHR$(127);"OFFSET: "

;X + I:? :? :? :?
130 RETURN

[methodically typed the program in , carefully checking my en­
tries every step of the way. [was ready!

[held my breath , typed RUN and hit RETURN and there it was!
My screen had filled with sets of eight numbers.

EACH SET OF E[GHT LOCATIONS AND VALUES [S ONE
CHARACTER'

[anxiously pressed the START key and flipped through all of the
character set locations (57344 to 58367). The second time
through , [paused to examine OFFSET: 264.

[FOUND THE LETTER A!

--- -

DR. C. WACKO'S MIRACLE GUIDE

And if the ATASCII decimal code is 96 to 127, MULTIPLY THE
DECIMAL CODE BY 8 TO ARRIVE AT THE OFFSET
NUMBER.

I took out my pocket calculator and checked my conversion table.
Of course, I used the letter A as my example. Here's how it work­
ed out:

• The Decimal code for the letter A is 65.
• Since 65 is between 32 and 95, I first subtracted 32 from

65 (65-32=33).
• Next , following my ingenious formula, I multiplied 33 by 8

to arrive at A's offset number (33X 8 = 264).

264! (Thank goodness.)

MY FORMULA WORKED!

If you'd like to experiment with these conversions, here are a few
examples .

What is the Offset number for the following characters?

1.B
2. R
3. r
4. %
5.)

I had discovered:

• THAT THE COMPUTER DISPLAYS EACH
CHARACTER AS A BUNCH OF SQUARES

• THAT EACH SQUARE IS A BIT IN MEMORY AND A
ROW OF THESE SQUARES IS A BYTE

• THAT THE COMPUTER REMEMBERS EACH LEITERS
AS A BUNCH OF O's and l's (BINARY NUMBERS)
(I ALSO LEARNED HOW TO CONVERT BINARY
NUMBERS TO DECIMAL NUMBERS.)

• THAT THE COMPUTER STORES EACH CHARACTER
IN GROUPS OF 8, WITHIN LOCATIONS 57344
TO 58367

52

iC;!7=5(o~ol7

'716=~ 'GO\7=?' ZLZ=]:
'---~

---:;;.m\IN".

CHARACTER GRAPHICS

• THAT EACH CHARACTER IS MADE UP OF 8
DECIMAL NUMBERS

• THAT WHEN YOU ADD THE OFFSET NUMBER TO
57344 YOU ARRIVE AT THE LOCATION WHERE A
CHARACTER'S DEFINITION BEGINS

• HOW TO CONVERT A CHARACTER'S DECIMAL
CODE TO AN OFFSET NUMBER

I was ready to create my own creatures!

The Act of Creation

Bright fingers of energy danced from the small probe set next to
my computer. The storm was at peak force as I began work on
my first creation.

Fade to classroom .. .

Character Graphics Programming Techniques

~ Now that you're here in my classroom , I can finally reveal how on
that fateful day I created my first character. Actually, it didn't turn
out exactly as planned. I had created a MONSTER-a veritable
Wackenstein l

You see before you a short program listing entitled Building Block
#1. This program lays the foundation for all your future work in
character graphics. It also incorporates many of the concepts
you 've learned in the previous chapter. Best of a ll , when you
RUN this program , part of the fabulous monster I created so
many years ago will appear on your TV's monitor. (The whole,
living , snorting monster will cavort for you in chapter 4.)

53

DR. C. WACKO'S MIRACLE GUIDE

During the balance of this chapter I will add to and improve
Building Block #1. You will continuously learn new and exciting
techniques , so lets get started!

Building Block #1

10 .• • • BUILDING BLOCK #1: CHARACTER
REDEFINITION •• •

20 CHARACTERS = 1
22.
24.
30 START = (PEEK(742) - 2)·256
32 .
40 POKE 559,0
42.
50 FOR X=O TO 511
60 POKE START + X,PEEK(57344 + X)
70 NEXT X
72 .
80 FOR LOCATION = 0 TO CHARACTERS - 1
90 FOR BYTE =0 TO 7

100 READ SHAPE
110 POKE START + (LOCATION) ' 8

+ BYTE + 264,SHAPE
120 NEXT BYTE
130 NEXT LOCATION
132 .
140 POKE 559,34
142 .
150 GRAPHICS 2:POKE 756,START /256
152 .
160 FOR LOCATION = 0 TO CHARACTERS - 1
170 PRINT #6;CHR$(LOCATION + 65);
180 NEXT LOCATION
182 .
184 .

1000 DATA 60,126,129,153,255,36,66,129

54

~<OO

o 12.C'd

=IZq
-153
:Z55
: 3r..
:&c"

~ 11't

CHARACTER GRAPHICS

Building Block #1 Explained

I'll wait wh ile you enter Building Block #1 into your Atari 's
memory.

Finished? Great! Now RUN it. A MONSTER, right in the upper
left hand corner of your screen!

Before doing any programming, I first drew the monster on 8X8
gridded paper. Here 's how Wackenstein first looked:

I've listed the decimal value of each row to the right of my draw­
ing. These numbers are now placed , in DATA form , in line 1000
of the program. I've used line 1000 so we can expand the pro­
gram later.

20 CHARACTERS = 1

The variable CHARACTERS is used to keep track of the number
of characters we are redefining . This program only makes one
Wackenstein. Thank goodness! If we redefine one character ,
CHARACTERS = 1 ; if we redefine two characters,
CHARACTERS = 2; if we redefine three characters,
CHARACTERS = 3, and so on into insanity. (Or until your com­
puter runs out of memory.)

30 START = (PEEK(742) - 2)· 256

PEEKing location 742 and multiplying by 256 shows us where
the top of user-available memory is. We come down from the top
of memory by 512 bytes (2, 256) to make room for our new
character set. START represents the beginning of this new
location .

An importaint point. This example is displayed in graphics mode
2. Graphics modes 1 and 2 use only the uppercase letters of the
alphabet and some symbols (64 characters in all), so you only
have to reserve 512 bytes to accommodate them .

Graphics mode 0 uses the entire character set (128 characters).
Achtung! You must reserve 1024 bytes to make room for all these
characters. Just substitue a 4 for the 2 in line 30 to do this .

55

DR. C. WACKO'S MIRACLE GUIDE

40 POKE 559,0

POKEing 559 with 0 disables the ANTIC microprocessor,
speeding up the computer's calulating time by up to 30 percent.
The screen will go blank while the computer is calculating. Don't
panic! We'll turn the screen back on later in the program .

50 FOR X=O TO 511
60 POKE START + X,PEEK(57344 + X)
70 NEXT X

This is the sneaky part of the program . Line 60 transfers a copy of
the character information , stored in ROM locations 57344 + X, to
the area we've set aside , RAM locations START + X.

Now that we have our cast of characters in RAM where we want
them , we can reshape and modify them-and really mess them
up!

SO FOR LOCATION = 0 TO CHARACTERS - 1
90 FOR BYTE=O TO 7

100 READ SHAPE
110 POKE START + (LOCATION) · S + BYTE + 264,SHAPE
120 NEXT BYTE
130 NEXT LOCATION

Here's where the actual character redefinition occurs. (Bubble,
bubble , toil and trouble .) Since this is the heart of this great pro­
gram, let's work it through step by step :

SO FOR LOCATION = 0 TO CHARACTERS - 1

This line assigns a LOCATION to each character. We're only
redefining one character in this program , so it will be assigned to
LOCATION O. If we were redefining more than one character , the
next character would be assigned to LOCATION 1.

I've subracted 1 from CHARACTERS (CHARACTERS - I)
because computers don 't count like we do. Your Atari thinks that
LOCATION 0 is the FIRST location , LOCATION 1 is the SE­
COND location , etc . Who says that computers are smart? When
they count to 4 , they start with O. So , in a FOR/ NEXT loop like
FOR X = 0 TO 4, the computer will count FIVE cycles- cheeez!

90 FOR BYTE=O TO 7

56

CHARACTER GRAPHICS

Now we make room for each 8-byte character.

100 READ SHAPE

line 100 reads the DATA "SHAPE" of each character and places it
in the variable SHAPE in line 110.

110 POKE START + (LOCATION)·8 + BYTE + 264,SHAPE

line 110 is the BIGGIE' Follow closely as I get tongue-tied trying
to work my way out of this one .

Here goes-the world's most complicated sentence:

In this stupendous line we POKE memory location START +
(LOCATION) * 8 + BYTE + 264 with SHAPE.

POKE START +(L 0 CAT I DN)* 8'" BYTE +264. START.
!Ak?VJ, MdoI\J - FAAAA ~

aV"(. \.11;'e: WHA"(t:IT
MEAl\), W6C.\<o?

OK then, let's try the world's longest sentence:

What we're doing here , in plain, but lengthy English, is POKEing
the alternate character set, START, plus room for each character,
(LOCATION) • 8, plus the 8 bytes that make up each character,
plus the offset of letter you'd like to begin with, with the SHAPE
of the character you're redefining.

Think about it!

You don't really have to understand why this line works to pro­
gram arcade games! Just use it as shown. (l feel better already.)

In this example I've used 264 as the offset to redefine the letter A.
If you'd like make your Wackenstein out of the letter B, for exam­
pie, just change the offset to 272.

57

DR. C. WACKO'S MIRACLE GUIDE

140 POKE 559,34

Our speedy little computer has completed its calculations. Now,
POKEing 559 with 34 turns the ANTIC processor (and the
screen) back on .

150 GRAPHICS 2:POKE 756, START /256

Line 150 first turns on graphics mode 2. Then it POKEs 756 with
the location we've set aside (START / 256) . This clues in your
computer about the redefined character set. From now on , your
computer ignores its standard character set and goes directly to
your cast of characters . You've got it eating out of your hands!

160 LOCATION = 0 TO CHARACTERS - 1
170 PRINT#6;CHR$(LOCATION + 65);
180 NEXT LOCATION

The moment of truth has finally arrived as we PRINT our newly
redefined character on the screen .

The statement CHR$(LOCATION + 65) ; is loaded with
subtleties. Since I decided to begin the redefined character set
with the letter A, and since LOCATION = 0 , LOCATION + 65
equals 65-the ATASCII code of the letter A! Wackenstein ap­
pears on the screen when we print the letter A . If you decide to
start with the letter B, as I mentioned before , you'll have to
replace 65, with 66, B's ATASCII code .

The semicolon at the end of line 170 serves a very important pur­
pose . When we add more characters, they'll be displayed next to
each other across the screen .

Have Some Fun!

Now it's time for a little experimentation . Here are some ideas :

1. Add POKE 708,99 to Line 170. (170 POKE
708,99 :PRINT#6; CHR$(LOCATION +65) ;) Wackens­
tein's color changes to pugnactious purple!

2. Redefine a different character by modifying the offset
number in line 110 and its ATASCII code in line 170.

58

\liE ARE 001'
GOIN6lO ACLEPT
PUGNACIOUS
PORPLE fV;1i:£
IN TOPEKA!

=tt.o

CHARACTER GRAPHICS

Steinenwack

Now that you understand how a character is redefined , it's time to
prepare to move into the flip-flop world of animation .

~ It& To help you get set , I've drawn Wackentein's alter ego , Steinen-
= IS?> wack :
.,/2Q

:l55 Steinenwack has his legs closed , and his eyes are glazed! Just half
.3(.. a monster. But later , when he alternates places with Wackenstein ,
., w.,. they'll come to life. One horrible , eeyukeee MONSTER!
:~~

I'll show you what Steinenwack looks like on your computer's
screen. It's easy to do!

First change line 20 to read : 20 CHARACTERS = 2 .

Now add this line of data to the Building Block program:

1010 DATA 60,126,153,129,255,36,66,36

That's all there is to it! RUN the program, then run out of the
room before he comes alive!

Multicolored Playfields

As horrible and disgusting as Wackenstein and his alter ego
Steinenwack are , they still enjoy romping about on a colorful, in­
teresting , and informative playfield .

59

S«>RE

SPACE DUCK icc
JUNIOR 2.

TIME III

DR. C. WACKO'S MIRACLE GUIDE

Your characters should have a nice place to play in , too! You
already know how to design a playfield using COLOR , PLOT,
and DRAWTO statements. Now , with Captain Action's help , I'll
show you how to liven up your screen with five brilliant colors and
contorted shapes , all using character graphics!

The Captain spent hours drawing these four simple shapes .

The numbers listed to the right of each shape are used in the
DATA statements of this modified Building Block #1 program .

=0 :0
: t;,O <=2A
~12.h -=2A
'255 = (pO

=2.S5 ~IZCo
~lS5 =12"
~IU .. =255
:"0 =2.55

"2.4 ::fsLJ
:2.4 .255
.2A =).55
=2.4 =255
=24 =)55
=2.~ ::.z.s5
72~ ;2.31
=(.,0 =: /q5

Enter this brilliant program , RUN it , then return to the classroom
and I'll entertain you with one of my shorter lectures .

Colorful Playfield

10 . BUILDING BLOCK #1 MODIFIED-PLAYFIELD
DESIGN

12.
20 CHARACTERS = 4
22.
30 START = (PEEK(742) - 4) • 256
40 POKE 559,0
42.
50 FOR X=O TO 1023
60 POKE START + X,PEEK(57344 + X)

60

CHARACTER GRAPHICS

70 NEXT X
72.
SO FOR LOCATION = 0 TO CHARACTERS - 1
90 FOR BYTE=O TO 7

100 READ SHAPE
110 POKE LOCATION-S+ BYTE + START +

264,SHAPE:. - - - Start at ATASCII 65 - The
letter 'A'- - -

120 NEXT BYTE
130 NEXT LOCATION
132.
140 POKE 559,34
150 GRAPHICS 2:POKE 70S,76:POKE 712,99:POKE

756,START /256
152.
160 COLOR 65:PLOT 9,3: .-Standard upper case letter.

POKE 70S to change character's color.-
170 COLOR 66 + 32:PLOT 9,4: .-Standard lower case

letter. POKE 709 to change character's color.­
ISO COLOR 67 + 12S:PLOT 9,5: . - Inverse upper case

letter. POKE 710 to change character's color.-
190 COLOR 6S + 160:PLOT 9,6: . -Inverse lower case

letter. POKE 711 to change character's color.-
192.
200 COLOR 65:PLOT O,O:DRAWTO 19,0:DRAWTO

19,9:DRAWTO 0,9:DRAWTO 0,1
202.

1000 DATA 0, 60, 126, 255, 255, 255, 126, 60
1010 DATA 0, 24, 24, 60, 126, 126, 255, 255
1020 DATA 24, 24, 24, 24, 24, 24, 24, 60
1030 DATA 60, 255, 255, 255, 255, 255, 231, 195

BRILLIANT, isn't it? Now, that's my idea of a spiffy screen.

The programming to accomplish this spectacular result is simple
and straightforward.

After adding the DATA statements, lines 1000 through 1030, I
changed line 20 to read : CHARACTERS = 4; 4 characters are
redefined!

Line 110: I began my character set with the letter A by inserting
its offset number, 264, in line 110.

61

DR. C. WACKO'S MIRACLE GUIDE

Line 150: Next I POKEd the standard uppercase color register
with a nifty color (POKE 708,76) and painted the background
color purple with a simple POKE 712,99.

Lines 160 TO 190: Here's where the PLOT thickens . I PLOTed
each of the four characters one on top of the other and centered
them on the screen .

The four characters are actually the redefined standard uppercase
letters A, B, C , and D. By adding 32, 128, and 160 to B, C and
o respectively, Ive changed them to standard lowercase , inverse
uppercase, and inverse lowercase letters respectfully-Ahem .

Mess with the Color

When the word READY appears in the blue text window, it's
your turn to mess up each color by POKEing its assigned color
register. Try entering my favorite, POKE 709,99 <RETURN>.
Pugnactious purple! When you get sick of that one (l am), be
adventurous and experiment with other color registers and com­
binations . Bet you can't do worse than I did!

Line 200: I've used the redefined COLOR 65 in line 200 to
PLOT, then DRAW the border around the screen.

Not bad, huh?

In addition to changing each character's color , you can reposition
any of the characters by changing the numbers that follow its
PLOT statement. And, of course, you can PLOT more of them
on the screen!

Your Foundation to Better Playfields

Use this simple and straightforward example as your foundation
as you design your game's playfield . Make JUMBO letters for use
in custom readouts . Draw complex scenery . Draw Albert Eins­
tein . Draw pronouns! It's all possible now that you know how sim­
ple it is to do.

62

CHARACTER GRAPHICS

Design Your Playfield on Paper First

The best way to design your screen playfield is with a piece of
gridded paper sized to the graphics mode you'll be using . First
draw your playfield to scale , then transfer your creation to the
screen.

Mix Techniques

The Atari character set includes many predefined graphics
characters . For instance, decimal code 20 is a circle . If you
haven 't redefined these graphic characters , they are still standing
by awaiting your command! Using these graphic characters with
the special characters you've designed will add pizzazz to your
playfield!

Time Well Spent

Spend time with this short program. Really get to know it well,
then use it to create the best playfields in the universe! like Cap­
tain Action did. . . ?

The Monster Maker

Are you tired of using pencil and paper to create your monsters
and playfields? Fed up with having to write flawless DATA
statements? Nobody's perfect; even I make misstakes!

Do you want instant monsters? Do you go into orbit playing with
a joystick? Would you like to mold your monsters on a screen
rather than on a piece of paper?

Well , the answer to your wildest fantasies is here! Dr . C. Wacko's
FABULOUS (and a little bit spectacular) Monster Maker!

The Monster Maker program is on page 201. It's lo-o-ng. But
don 't let that deter you. Be determined , take your time, enter this
program , and SAVE it. The Monster Maker will turn you into a
certified arcade-game-designing wacko!

I'm going on vacation for a few weeks while you type and enter
this program.

63

DR. C. WACKO'S MIRACLE GUIDE

Now that I'm tanned and relaxed , I'll explain all of Monster
Maker's superdeluxe features .

But first RUN Monster Maker so we can go through its operation
together.

=0
I-+-+-f-+-+-t-T-f : 0

=0
1--+--4--1--+-+-+-+-1 .0

1-4-~-l-+-+-+-t-l =
0

·0
t-+-+-+-+-+-+-T-1 = 0

'-'---'-'--'---'-......... .,J =0

I ... EDrr UXA"TION #1
2 -+ COP'< 1AlCA"T10N
3 ~ SAve FOI\TTL.1ST
4 - LOAD O<...D FILS
.5-'I..IST FNTJ:\LE'S

o =ORI6
H/V=FLIPS

U/D/L/R:: ROl.-L.S
P:PRINT

OPTION=RV5
SeL.ECT -::.CL~

STAR. :: eXIT
CTRL+M -= MENU

FOR LOCA\10N'll.

@©
CO(.D1t "'1'TITUDE'

"'OJu.T ADJUST

Neat screen, huh?

Lots of stuff is presented on the screen . That's because Monster
Maker can do lots of real neat stuff!

Let's start with

1. EDIT LOCATION

Just press the number 1 <RETURN> on your computer's console
and see what happens. In typical computer fashion it asks a ques­
tion: FOR LOCATION?

You might ask, "How am I supposed to know what to enter in
response to FOR LOCATION? I'm supposed to tell you!

Up to 64 Monsters

The Monster Maker can help you design up to sixty-four
monsters , gargoyles, or munchkins, or But if your goal is to
bring your fantasies to animated life it's best to draw your first
character in LOCATION 1. So, PRESS 1 <RETURN>.

64

CHARACTER GRAPHICS

A Winking, Blinking Cursor!

That's what you'll see on your electronic piece of paper! Plug your
joystick into port 1, and start moving the cursor around.

"Press De Button , Mon"

Having fun? Just press the joystick's red button to draw your pic­
ture . When the button is depressed (no pun intended) , the cursor
draws over blank areas and erases areas that have been drawn
on .

Draw Your First Monster

Using your creative talent (and lots of luck) , draw a replica of
Wackenstein.

Finished?

B.E.A.U.T.I.F .U.L. Looks GREAT!

Do you recognize those numbers to the right of Wackenstein?
Right! They're the numbers that make up the DATA statement in
Building Block #1, page 54.

You might ask , again : "But, what do I do now?"

Press START to Store It!

Now that you've finished your first creation , just press START to
store Wackenstein in LOCATION 1.

Now you can move on to LOCATION 2 and create Steinenwack!

2. COPY LOCATION

An easy way to draw Stein en wack is to copy Wackenstein into
LOCATION 2 , then modify him to suit your needs.

Let's go for it.

Press 2 <RETURN>. You'll be asked to supply two numbers,
FROM and TO , separated by a comma . To transfer an image of
Wackenstein from LOCATION 1 to LOCATION 2, just enter: 1,2
<RETURN>.

65

DR. C. WACKO'S MIRACLE GUIDE

AMAZING! Wackenstein 's twin appears in LOCATION 2.

Now just perform a little plastic surgery on Wackenstein, mold
him into Steinenwack, and press START to store him in
LOCATION 2.

Redefine Any Character

:0

"Z4
:.(.,0

=IOZ
:10.2.
= 12"
= 10.2.

.......... -'-'--'--'--''--'--' =- 0

I ~e.DIT /.CCATION ifl.
2. ~COp.(1..QCA"TIOt-l -~5 TO .1.
34SAV~ FONTL.15T
4~1..0AD O/...D FIt.E
5~L15T FNTFILES

o -=ORIG
H/V-=I=LIPS

u/ D/L/R= ROLLS
P:PRINT

OPTION=RV5
SEI...ECT=CLR
STAR, :EXIT

C.TRL+M "'MENU

The COPY LOCATION function also lets you redefine any letter
or character in your Atari's character set. Here 's how this won­
drous feature works .

After pressing 2 <RETURN> , enter the ATASCII code of the let­
ter or symbol you 'd like to see displayed , preceded by a minus
sign (-). Then enter a comma and the LOCATION number.

For example : If you'd like to redefine the capital letter A in
LOCATION 1, enter:

- 65,1 <RETURN>

The letter A will appear ready for modification. Refer to the
ATASCII chart on page 189 , and use this great feature to see
how your Atari makes its characters.

3. SAVE FONTLIST

You've just created a FONTLIST! Wakenstein and Steinenwack
are your FONTLIST. They are redefined characters. Now it's time
to SAVE them so you can use them later in a game or watch
them in action when I show you my next creation: Wacko's
Animation Tester.

66

CHARACTER GRAPHICS

So , let's SAVE'em. First-and this is very IMPORTANT!-if
you're working on disk, make sure you've got a formatted disk
with DOS and lots of free sectors in your disk drive . Wheew!
almost SAVEd your first font to NOTHING!

SAVE IT?

After you press 3 <RETURN> you'll be asked: SAVE IT? Just
reply with a resounding YES <RETURN>. (If you had pressed
the "3" key by mistake, you'd reply by typing in: NO
<RETURN> .)

How many CHARACTERS?

Next, the question CHARACTERS? will appear, asking how
many characters you want to SAVE. Since you've only created
two monsters, type in 2 <RETURN> .

D:NAME?

What do you want to call your new font? Make up a name. Just
make sure it's not more than eight characters long. I used
MONSTER , then answered this prompt by typing :

D:MONSTER <RETURN>

That's all there is to it! Your first redefined character set is now
safely SAVED on your disk.

Attention Cassette Owners

If you 're using a cassette just type:

C:MONSTER <RETURN>

4. LOAD OLD FILE

Now that you've got your first font neatly saved on your disk or
cassette, it's time to show you how to load it back into Monster
Maker.

Loading a font into Monster Maker is easy. Press 4 <RETURN>
and answer the prompts. The loading sequence is identical to the
saving sequence. Just follow the bouncing prompts!

67

DR. C. WACKO'S MIRACLE GUIDE

See Your Newly Loaded Font

Go to the EDIT LOCATION mode , by pressing 1 <RETURN>,
to see your newly loaded font.

5. LIST FNTFILES

If you want to see what fonts are stored on your disk, press 5
<RETURN> . All their names will be displayed on your screen.
AMAZING! To exit this mode , press START.

Other Options and Neat Things

All of Monster Maker's special editing features are displayed on
the right side of the screen . Here's how they work and what each
one does:

• 0 = ORIG: Press 0 to restore a shape you've been work­
ing on to its original configuration.

• H/ V = FLIPS: Press H to flip your character left to right or
right to left. This feature is real handy when you're design­
ing a character that must face left in one animation se­
quence and right in another. Press V to flip a character
upside down!

• U/ D/ L/ R = ROLLS: Press U to scroll your character up,
D to scroll down, L to scroll left , and R to scroll right .

• P = PRINT: Press P to print your character on your Atari
printer, complete with data numbers and LOCATION
number!

• OPTION = RVS : Press the OPTION key to reverse the im­
age of a character. Press OPTION again to restore it.

• SELECT = CLR: Press the SELECT key to clear the im­
age from the work area.

• START = EXIT: Press the START key when you've finish­
ed editing each character. The character will then be
stored in the LOCATION you've chosen.

• CTRL + M = MENU : This option is only included in the
book/ disk package of Dr. C . Wacko. Pressing the CTRL
key plus the M key returns you to the disk's main menu .

Put Your Font into Your Program

You've created MONSTER.FNT and saved it to your disk or
cassette . Now I'll show you how easy it is to see it displayed on
your screen.

68

CHARACTER GRAPHICS

Modify the Building Block "1 program. For all you disk drive
owners, add these three new lines to BUilding Block #1:

72 CLOSE #1:0PEN#1,4,0,"D:MONSTER.FNT'
74 GET #1, CHARACTERS

135 CLOSE #1

Next, change line 100 to read :

100 GET #1,SHAPE

That's all you have to do! Ensure that MONSTER.FNT is stored
on the disk that's in the drive , then RUN your modified program .

Eeeyuk! There they are again!

If you're using a cassette, simply modify line 72 like this :

72 CLOSE #1:0PEN #1,4,0,"C:"

Everything else remains the same, including the "Eeeyuk!"

Using Another Font

To see one of your other creations displayed, just change the
name of the of the font following 0 : in Line 72 to match the name
of any font that you've saved on disk.

Fool'n Around

Now's a good time to pause , reflect, relax, and go absolutely wild!
(Not necessarily in that order.)

Practice with Monster Maker. Make wild and crazy characters,
load them into your modified Building Block #1 program, and
watch them appear on your screen!

Try different graphics modes! What will your creatures look like in
graphics modes 0 or I?

69

DR. C. WACKO'S MIRACLE GUIDE

REMEMBER : If you use graphics mode 0 you 'll have to:

• Change Line 30 to read: START = (PEEK(742) - 4) · 256
• Change Line 50 to read : FOR X = 0 TO 1023
• Change Line 150 to read : GRAPHICS O:POKE

71O,0 :POKE 756,START / 256

Let's Get MOVING!

Wackenstein's a pretty neat-looking monster. But he's just not go­
ing anywhere!

Turn the page , if you dare , and we'll bring Wackenstein to LIFE!.
Uh-Oh!

70

FLIP-FLOP ANIMATION

4
Flip-Flop Animation

The time has finally arrived. Wackenstein's coming to life!

WACf(fIVSTfIIv'S/
eOMIA/6 TO UF!3_

Presenting: Wacko's Animation Tester

The Animation Tester , on page 71, represents years of research,
drinking margaritas, and suffering subsequent hangovers. 50
when you enter this program , puleeeze, do it quietly . 5hhhhhhh!

E-Z Operating Instructions

1. RUN the program! If you're scared, call in a large friend,
or simply run away .

2. To see what fonts are stored on your disk, enter Y. If you
don't care , or already know, enter N.

3. Indicate the font of your choice like this :

D:MONSTER <RETURN> (Disk)

C: <RETURN> (Cassette)

71

DR. C. WACKO'S MIRACLE GUIDE

You don't have to add the extension - . FNT. The program does
it for you!

4. Select the graphics mode in which you'd like to see
Wackenstein (or any other font) appear, by entering either
0, 1, or 2 and pressing RETURN.

5 . Enter the animation speed and press RETURN . 5 is ex­
tremely fast and 500 is v. . . e. . . r. . . y s. . . I. . . o. . . w.
100 is good for starters.

Wackenstein's Alive!

6. Press START to try another font or change the graphics
mode or speed settings .

It's neat to watch the fonts you've created flip-flop on your screen!
The Animation Maker is my gift to game designers: It's a great
tool that can help you review the animated characters you've
designed for your arcade games .

Now it's time to show you how to add basic animation to your
games.

So far, you've learned two ways to enter data into a character
redefinition program .

METHOD 1: Enter data from data statements in your
program.
METHOD 2: Enter data from a font file that has been stored
on a disk or cassette.

In the example I'm about to show you, I've used Method 1. You
can alter this program to read characters from a font file by mak­
ing the simple modifications I showed you on page 69.

LOCAifONZ LOCATlo~3

72

FLIP-FLOP ANIMATION

Here's a new set of three characters. When we flip through them,
the man will appear to be jogging. Actually he looks like he's on a
treadmill running to nowhere. (Sounds like someone I know.
Sigh! Woe is me! It isn't always easy being a wacko .)

The data that make up each character are listed in lines 1000
through 1020 of this program:

Flip-Flop Jogger

10 REM BUILDING BLOCK #1: CHARACTER
REDEFINITION WITH FLIP-FLOP ANIMATION
FROM DATA

20 CHARACTERS = 3
30 START = (PEEK(742) - 2)· 256
40 POKE 559,0
50 FOR X=O TO 511
60 POKE START + X,PEEK(57344 + X)
70 NEXT X
80 FOR LOCATION = 0 TO CHARACTERS - 1
90 FOR BYTE =0 TO 7

100 READ SHAPE
110 POKE (LOCATION). 8 + BYTE + START + 264,

SHAPE
120 NEXT BYTE
130 NEXT LOCATION
140 POKE 559,34
150 GRAPHICS 2:POKE 756,START /256
152.
154.
160 FOR LOCATION = 0 TO CHARACTERS-1
170 COLOR (LOCATION + 65)
180 PLOT 9,5
190 FOR PAUSE = 1 TO 100:NEXT PAUSE
200 NEXT LOCATION
210 GOTO 160
220.
230.

1000 DATA 24,56, 62, 10, 8, 56, 20, 2
1010 DATA 24, 56, 62, 10, 8, 24, 38, 32
1020 DATA 24, 24, 12, 28, 8, 8, 12, 8

73

DR. C. WACKO'S MIRACLE GUIDE

You're right! It's our old friend, Building Block #1 Only lines 170
through 210 (the lines used to display the characters) have been
changed . Whoops, I almost forgot! Since there are now three
characters, the value of CHARACTERS in line 20 is now 3
(CHARACTERS = 3) .

Lines 160 through 210 Explained

The first in this set of three characters is a redefined letter A
(ATASCII code 65).

During the FOR/ NEXT loop's first cycle (line 160) , the value of
LOCATION equals O. So in line 170, COLOR (0 + 65) = 65, A's
ATASCII value! COLOR 65 prints our first frame at coordinates
9,5.

During the next cycle , LOCATION will equal 1 and the redefined
letter B (COLOR 66) will appear on your screen

The last character to appear will be the redefined letter C (COL­
OR 67). Then this short routine goes to line 210, which loops
back to line 160 to begin the process over again.

That's all there is to it-simple flip-flop animation. The principle is
the same as for a movie. We just print a series of "frames" on top
of each other, one after the other.

Machine-Language Flip-Flop Jogger

Many years ago, when I was still in nursery school , I invented the
Machine-Language Machine. I thought it would help me make
my arcade games more efficent by creating hundreds of machine­
language routines. How wrong I was. It has only developed two

74

AT LAST!
NUMB€.~ 200
IS AccePTABl.£

IN lOPEKA

FLIP-FLOP ANIMATION

routines in all these years. One routine for MOVEMENT and
another for JOYSTICK CONTROL! It did learn how to speak in
San script and recite the Kama Sutra ... not a complete loss .

Using the USR Function

You can use USR to load a machine-language routine into your
games . When your program bumps into a USR function, it goes
berserk! It stops everything and starts looking for a machine­
language program to execute! (Off with his head!)

But first you 've got to put a machine-language routine into a
specific memory location in your computer and then remember
to specify it so the USR function can find it. After all , it's not nice
to frustrate a USR .

Those nice people at Atari put aside an area in your computer
that can be used to store machine-language routines and other
stuff. It's sometimes referred to as "Page 6" because it's the sixth
set of locations in RAM (trivia) .

Put It in Locations 1536 to 1791

Page 6 , also called Free RAM, begins at LOCATION 1536 and
ends at LOCATION 1791 . Put your machine-language routines ,
and other stuff, in these locations so they won't get in the way of
the other things that your Atari's trying to do , like RUN your pro­
grams and drink soda.

Now that you know where to put a machine-language routine I'll
show you my Movement Routine , how to put it into Page 6 , and
(amazingly enough) how it's used to animate the Jogger.

So, without further ado , here's the machine-language routine that
the Machine-Language Machine developed for me!

104, 104, 133, 204, 104, 133, 203, 104, 133, 207, 104,
133, 206, 160, 0, 177, 206, 145, 203, 200, 192, 8, 208,
247,96

Disappointed? I was , when the Machine-Language Machine first
spit these numbers out.

75

DR. C. WACKO'S MIRACLE GUIDE

But these numbers have a mystical quality. When put into the
computer's memory, then recalled and used by a USR function ,
they let you perform some very magical animation!

Some Magical Animation

By using this Machine-Language Movement Routine you'll be
able animate the Jogger, just like you did in the Flip-Flop Jogger
program. But you'1I only be redefining and animating one
character, not three!

What's He Talking About?

In the Flip-Flop Jogger program we redefined and animated the
letter A, then the letter B , and finally the letter C. By using
machine-language movement you'll be able to create the same
effect. And you'll only have to redefine and animate one
character- the letter A , for example .

You'll also be able to animate parts of the character. Just the top
of the letter A , if you want. You can use this feature to move the
eyes of a character, or make it stick out its tongue!

Using a USR

Coming up , down below (huh?), is a short program that uses a
USR function with our Machine-Language Movement Routine.

Here's what our USR function looks like:

76

FLIP-FLOP ANIMATION
=

A = USR(SL,START + 264,SLl + FR. 8)

I'll break this USR function into itsy-bitsy elements to show you
what each element does . Here's how it works:

A=USR

The letter A is called a dummy . You can use any letter you like.
(Just use something!) Its function is to activate the USR function .

SL

SL represents the Starting Location (in the computer's memory)
of the machine language routine . If you place the routine in Page
6 , SL will equal LOCATION 1536.

START + 264

START + 264 is the location (in the computer's memory) of the
first character you'd like to redefine and animate . In this example
we're going to redefine and animate the letter A-offset 264. If
you'd like to use another letter , just change the offset number.

SLl

SL 1 represents the starting location of the data used to redefine
the character.

FR · 8 is added to SL1 to call up each eight-byte frame for anima­
tion in this program.

Putting It All Together

This USR function and machine-language routine cause the
character you've selected , A , to be continuously redefined with
the Jogger's (or any other) data .

Type in and RUN this program , then I'll explain how it all fits
together.

77

DR. C. WACKO'S MIRACLE GUIDE

Machine-Language Flip-Flop Jogger

10 . MACHINE LANGUAGE MOVEMENT WITH DATA
STATEMENT LOADING

12.
14.
20 START = (PEEK(742) - 2) · 256
30 POKE 559,0
40 FOR X=O TO 511
50 POKE START + X,PEEK(57344 + X)
60 NEXT X
62.
64.
66 . PUT MACHINE LANGUAGE ROUTINE INTO
PAGE 68
70 FOR A = 1536 TO 1560
80 READ B
90 POKE A,B:NEXT A

100 SL= 1536
102.
104.
106 . PUT JOGGER'S DATA INTO FREE RAM
110 FOR A = 1561 TO 1584
120 READ B
130 POKE A,B:NEXT A
140 SLl = 1561
142.
144.
150 POKE 559,34
160 GRAPHICS 2:POKE 756,START / 256
162.
164.
166 . ANIMATION ROUTINE
170 FR=O
180 FR = FR + I:IF FR>2 THEN FR = 0
190 FOR PAUSE = 0 TO 25:NEXT PAUSE
200 A = USR(SL,START + 264,SLl + FR -8)
210 COLOR 65
220 PLOT 9,5
230 GOTO 180
232.
234.
240 . MACHINE LANGUAGE MOVEMENT DATA

78

FLIP-FLOP ANIMATION

250 DATA 104, 104, 133, 204, 104, 133, 203, 104, 133,
207, 104, 133, 206, 160, 0, 177, 206, 145, 203, 200,
192, 8, 208, 247, 96

252.
254.
260 . CHARACTER'S DATA (JOGGER)
270 DATA 24, 56, 62, 10, 8, 56, 20, 2
280 DATA 24, 56, 62, 10, 8, 24, 38, 32
290 DATA 24, 24, 12, 28, 8, 8, 12, 8

Lines 20 through 60: You know how these work already!

Lines 70 through 90: These lines READ the machine language
movement data numbers (line 250) and place them in locations
1536 to 1560.

Line 100: This line assigns the variable SLI (the starting location
of character data) the value 1561.

Lines 110 through 140: Place the character's data into Free RAM
locations 1561 to 1584.

Lines 150 and 160: These lines turn the screen back on , turn on
graphics mode 2, and activate the alternate character set.

Line 170: Sets FRAME counter to zero .

Line 180: Is designed to display three characters before resetting
to zero. FR has values of 0, 1, and 2, then resets to zero. The
Jogger is made of three shapes. The value used in the IF state­
ment will change depending on the number of shapes you're go­
ing to animate. If you're going to animate four shapes , for exam­
ple , just change it to read FR>3 .

Line 190: This FOR/ NEXT loop slows down the action so you
can see the animation . Remove this line to see how fast the Jog­
ger can run!

Line 200: This is where all the redefinition/ animation takes place.
The frame counter (FR , 8) points to the location of the data for
each eight-byte character one after another. The USR statement
then replaces the letter A with one eight-byte character each time
the Animation Routine cycles .

79

DR. C. WACKO'S MIRACLE GUIDE

Lines 210 and 220: These lines display the letter A's redefined
shapes at coordinates 9,5.

Line 230: Returns to 180, where the next frame is selected and
the whole process begins again.

An Important Number in Line 250!

Line 250 contains the Machine-Language Movement Routine .
The number 8 (fourth from the end) is extremely IMPORTANT!.

Because the Jogger program only redefines and animates one
8-byte letter(the letter A) the number 8 is used in the machine­
language routine . If you'd like to see two joggers run nowhere on
your screen , add these two new lines and change 8 to 16:

222 COLOR 66
224 PLOT 9,6

Each time you want to animate another character , add 8 to this
number!

Animate Half a Jogger!

To animate only a portion of the letter A replace the number 8
with any number between 1 and 7. If you'd like to see what
animating just the top half of the letter A looks like , just replace r-----~...,
the 8 with 4 . Now , in an arcade game , you'll be able to make any
portion of the character move independently of the rest of its
body! Experiment with this concept. Put on your thinking cap and
try plotting characters on top of one another, next to each other,
or in the dishwasher , while changing the value of this special
number.

Weird Harold

Junior's been coming home with some pretty strange friends
since he became a teenager. But the strangest of all is a gawky
fourteen-year-old called Weird Harold .

After meeting this young man , I was driven to bring him to life on
the computer screen and share his special weirdness with you .

80

FLIP-FLOP ANIMATION

Trying to replicate weird on a computer screen is no easy task. It
was difficult simulating Harold's effervescent fragrance. What I
now present , in all its prancing glory, is a mere caricature of this
strange fellow.

But it is weird! Trust me!

I first designed Harold using the Monster Maker. No mean feet.
Here's what I came up with:

f~E4

Frame 1 is Harold's head-one eye is closed. Frame 2 shows
Harold's feet. He's dancin' and prancin' just as I remember him .
Frames 3 through 6 follow this very important sequence. We'll
use the numbers to the right of each frame, in the order shown, in
the Amazing Feet program!

My ingenious plan was to flip-flop animate two frames at a time.
One positioned on top of the other! Junior thought I was getting a
little bit carried away. But , as you'll see , the actual programming
is very similar to the Flip-Flop Jogger program we just played
with . No problem!

Don't worryl Here's the program . Look it over, enter it, RUN it ,
then open the windows. Some of Harold's fragrance may slip
out.

81

DR. C. WACKO'S MIRACLE GUIDE

Amazing Feet

5 . Flip-Flop WEIRD HAROLD
10 . MACHINE LANGUAGE MOVEMENT WITH DATA

STATEMENT LOADING
12 .
20 START = (PEEK(742) - 2)-256
30 POKE 559,0
40 FOR X=O TO 511
50 POKE START + X,PEEK(57344 + X)
60 NEXT X
62.
64 . Put Machine-Language routine into Page 6 ..

Starting Location = 1536
66.
70 FOR A = 1536 TO 1560
80 READ B
90 POKE A,B:NEXT A

100 SL= 1536
102 .
104 . Put Weird Harold's Data into free RAM .. his Data

Starts at Location = 1561
106 .
110 FOR A = 1561 TO 1608
120 READ B
130 POKE A,B:NEXT A
140 SLl = 1561
142.
150 POKE 559,34
160 GRAPHICS 2:POKE 756,START /256
162 .
164 . Animation Routine - Note the number 16 in USR

routine!
166.
170 FR =0
180 FR = FR + 1 :IF FR>2 THEN FR = 0
190 FOR PAUSE=O TO 25:NEXT PAUSE
200 A = USR(SL,START + 264,SLl + FR.16)
202.
204 . PLOT Characters - one on top of the other
206.
210 COLOR 65:PLOT 9,5
220 COLOR 66:PLOT 9,6
222.
230 GOTO 180

82

FLIP-FLOP ANIMATION

232 .
240 . Machine-Language Movement Data
242.
250 DATA 104, 104, 133, 204, 104, 133, 203, 104, 133,

207, 104, 133, 206, 160, 0, 177, 206, 145, 203, 200,
192, 16, 208, 247, 96

252.
260 . Weird Harold's Data
262.

1000 DATA 255, 249, 249, 255, 231, 126, 129, 255
1010 DATA 195, 195, 227, 3, 3, 3, 3, 7
1020 DATA 255, 153, 153, 255, 231, 126, 129, 255
1030 DATA 195, 195, 195, 195, 195, 195, 195, 231
1040 DATA 255, 159, 159, 255, 231, 126, 129, 255
1050 DATA 195, 195, 199, 192, 192, 192, 192, 224

QUite a guy , isn't he? Weird Harold may be strange , but this pro­
gram should be very familiar to you . It's almost identical to the
Machine-Language Flip-Flop Jogger on Page 78.

Only a few things make Weird Harold unique (besides his
fragrance) .

The FRAME Counter Is a Bit Unique

Take a look at lines 180 through 200 . In line 180 the frame
counter counts from 0 to 3 because Harold's two parts (head and
dancin' feet) are displayed at the same time . Each set counts as
one frame .

The USR Statement Is a Trifle Unique

Harold 's two parts (two lines of DATA, 16 bytes) are flipped into
the USR routine as a set . That's why the last phrase of the USR
statement is FR -16 and not FR -8 as it was in the Jogger pro­
gram .

Two Characters Are PLOTed on Top of Each Other?

Line 210 PLOTs a redefined letter A , Harold's head . Line 220
PLOTs the redefined letter B, his amazing feet , exactly where
they belong , below his head! If you didn't enter the data numbers
in the order shown in the frame drawings, things might have got­
ten pretty confusing. Try messing up the order of the DATA lines .
You'll get some very strange results .

83

DR. C. WACKO'S MIRACLE GUIDE

But the Machine-Language Movement Routine
Is Really Weird!

One last detail. Remember that real important number in the
Machine-Language Movement routine? The fourth from the end.
Check it out! I've changed that number to 16 because the USR
routine is redefining two characters , the letters A and B.

Go with Gusto!

Don't limit yourself to animating two-part weirdos! Rush to your
friendly Monster Maker and design multi-multipart weirdos! Just
make the appropriate changes in the unique parts of the program
and you're on your way to weirdodom!

Using Strings to Enter DATA, Or, Don't String
Me Along

Using strings to enter data shortens your programs, saves data
loading time, and lets you forget about searching for free memory
loctions to store it all in!

CAUTION : Read carefully! Using strings is very easy to do , but
very hard to explain. No matter what happens , just do what I do ,
not what I say. (What?)

Repeat after me: "Simple Simon says, Strings save serendipitous
salamanders."

I warned you!

Here's How to Do It

Convert the data you're going to use in your program into
ATASCII code, then assign the whole mess to a string variable.

Look at the ATASCII code chart on page 189 while I show you
what I'm talking about. Suppose your data contained these three
numbers: 104, 75, and 47. Your string variable would look like
this:

A$ = "hK/"

Just consider each data number as a decimal code and replace it
with its associated ATASCII Character. I've named my string

FOR ll1L£S 1...1 KG THAT
WACK!) SHOUW 8E- STRUNG

FLIP-FLOP ANIMATION

variable A$. You can name yours anything you want ... within
the limits of decency! .

One Serious Limitation

If your data statement contains the numbers "34" or "ISS" you
can't use string loading . Your computer won't accept the
ATASCII codes for these two numbers, because 34 = " , which
ends the string, and 155 = EOL (end of line) , which does the
same. They are the ATASCII codes for invalid string data.

Another, Not-So-Serious Limitation

All data must be in in the form of positive numbers ranging from 0
to 255.

Convert The Movement Routine to A String

I'll show you how to convert the Machine-Language Movement
Routine to its string equivalent; then we'll use it in the Machine­
Language Flip-Flop Jogger program instead of the DATA state-
ment.

E.Z. MACHINE LANGUAGE MOVEMENT
TO STRING CONVERSION

VALUE BYTE KEYSTROKES
104 1 (LOWR) h
104 2 (LOWR) h
133 3 (RVS) CTRL-E
204 4 (RVS) L
104 5 (LOWR) h
133 6 (RVS) CTRL-E
203 7 (RVS) K
104 8 (LOWR) h
133 9 (RVS) CTRL-E
207 10 (RVS) 0
104 11 (LOWR h
133 12 (RVS) CTRL-E
206 16 (RVS) 1
206 17 (RVS) N
145 18 (RVS) CTRL-Q
203 19 (RVS) K
200 20 (RVS) H
192 21 (RVS) @
8 22 CTRL-H

208 23 (RVS) P
247 24 (RVS) n
96 25 CTRL-.

85

DR. C. WACKO'S MIRACLE GUIDE

Now, A$ contains the Machine-Language Movement Routine
converted into ATASCII characters.

Yes folks, here it is. The highly EDIFYING, DEATH-DEFYING ,
GRATIFYING AND, and AMAZING . . .

The "Don't String Me Along" Flip-Flop Jogger

10 . STRING LOADING OF MACHINE LANGUAGE
MOVEMENT ROUTINE

12.
14.
20 CLR :DIM A$(25)
30 A$ = "MOVEMENT ROUTINE DATA CONVERTED TO

ATASCII CHARACTERS"
40 SL = ADR(A$)
42.
44.
50 READ B
60 START = (PEEK(742) - 2) · 256
70 POKE 559,0
80 FOR X=O TO 511
90 POKE START + X,PEEK(57344 + X)
100 NEXT X
102.
104.
110 RESTORE 260
120 FOR A = 1536 TO 1559
130 READ B
140 POKE A,B:NEXT A
150 SLl = 1536
152.
154.
160 POKE 559,34
170 GRAPHICS 2:POKE 756,START / 256
172.
174.
180 FR=O
190 FR = FR + I:IF FR>2 THEN FR = 0
200 FOR PAUSE = 0 TO 25:NEXT PAUSE
210 A = USR(SL,START + 264,SLl + FR· 8)
220 COLOR 65
230 PLOT 9,5
240 GOTO 190

86

FLIP-FLOP ANIMATION

250.
252.
260 DATA 24, 56, 62, 10, 8, 56, 20, 2
270 DATA 24, 56, 62, 10, 8, 24, 38, 32
280 DATA 24, 24, 12, 28, 8, 8, 12, 8

By using the string loading technique in lines 30 through 40,
we've eliminated a line of data and the routine used to read it into
memory location 1536. See how easy it is to use!

The Final Refinement: No DATA Statments!

The next program is really streamlined. It uses string loading to
replace both sets of data' The Movement Routine and the
characters. It's what's known in the biz as a superrefined grade A
program.

Convert the Jogger's data to AT ASCII characters , then assign
them to string variable B$ in line 40. Don't forget that B$ must be
DIMensioned to the number of bytes your character(s) contains .
In this program B$ is DIMensioned to accept 24 bytes- DIM
B$(24).

The All-String Grade A Flip-Flop Jogger

10 REM MACHINE LANGUAGE MOVEMENT WITH
STRING LOADING

12 .
14 .
20 CLR :DIM A$(25),B$(24)
30 A$ = "MOVEMENT ROUTINE DATA

CONVERTED TO ATASCII CHARACTERS"
40 B$ = "CHARACTER'S DATA CONVERTED TO

ATASCII CHARACTERS"
50 SL = ADR(A$):SLl = ADR(B$)
52.
54.
60 START = (PEEK(742) - 2).256
70 POKE 559,0
80 FOR X=O TO 511
90 POKE START + X,PEEK(57344 + X)

100 NEXT X
102.
104.

87

DR. C. WACKO'S MIRACLE GUIDE

110 POKE 559,34
120 GRAPHICS 2:POKE 756,START / 256
122.
124.
130 FR=O
140 FR = FR + 1:IF FR>2 THEN FR = 0
150 FOR PAUSE = 0 TO 25:NEXT PAUSE
160 A = USR(SL,START + 264,SLl + FR · 8)
170 COLOR 65
180 PLOT 9,5
190 GOTO 140

Now you know three ways to enter data into your game pro­
grams:

1. Enter data from DATA statements.
2 . Enter data from a font file that's been stored on disk or

cassette .
3 . Enter data using a string .

What's so great about string loading?

LESS MEMORY: Strings use less memory than any other form
of array .

PROTECTION: Strings are automatically placed in a protected
area of the computer's memory.

FASTER THAN A SPEEDING BULLET: Strings load data into
your program faster than any other method .

STRING IS FUN! : The Wacko Cats like to play with string.

88

FLIP-FLOP ANIMATION

89

THIS SURE SEEMS
WE.IRD BUT pOp
ALWAYS IQJClWS
WHAT HES DOING

o
o

o

DR. C. WACKO'S MIRACLE GUIDE

5
Movement

When I first began my career as the world's foremost computer
aracade game designer, I soon got tired of simple flip-flop anima­
tion . I wished that I could get the Jogger off his treadmill and onto
the track, so to speak. I wanted to control the Jogger's destiny .

I knew that I had to find a way to make my arcade game
characters move. But how?

First [studied movement. I spent weeks observing how things
moved . I watched cars speed past my house, the Wacko cats run
in circles chasing their tails, and Junior slinking out of the house
every time I asked him to take out the garbage .

I became cross-eyed. Just look at this old photo :

Sad , isn't it?

A Revelation!

Out of desperation I called in my friend Captain Action , and both
of us became cross-eyed staring at my computer's monitor.

Then one day, when Captain Action accidentally spilled his can
of Bug Byte on the keyboard , it all came together. Just before the

90

MOVEMENT

computer gasped its final breath , the cursor whizzed diagonally
across the screen! REVELATION! And a broken computer. But
WE DID IT! We moved something across the screen!

That brief flash of movement was etched indelibly in my mind . I
spent nights dreaming about the implications of the cursor's
movement.

A Realization!

Then one night , I realized what it all meant! I realized that because
the screen is a two-dimensional surface, all references to position
can be defined in terms of X and Y coordinates!

To move an object-a cursor, for instance-all I needed to do
was add a change factor to the cursor's starting postion . I quickly
flipped open myoid high school math book and discovered that a
change factor is called delta.

Now, armed with this knowledge, my movement theory became
crystal-clear. All I had to do to move my cursor would be to con­
tin ually update its position on the screen .

I rushed down to my lab and wrote a few simple position up­
dating formulas using the letter "0" to represent delta .

X=X+DX

Translated into English , this means: The new position X equals
the old position X plus a change in the X direction (horizontal
movement, across the screen) .

Y=Y+DY

This equation means: The new position Y equals the old position
Y plus a change in the Y direction (vertical movement, up and
down the screen) .

Next I wrote a simple movement program using these two for­
mulas , and waited nervously for my computer to be repaired .

Well, that was a long, long time ago. My computer was repaired
and my movement theories worked perfectly . Here, I'll show
you . Enter this short program and we'll go over it together.

91

DR. C. WACKO'S MIRACLE GUIDE

10 GRAPHICS 3
12 .
16.

Simple Movement

20 X = 20:Y = 10:DX = 1:DY = 0
22.
30 FOR A = 1 TO 10
32.
40 X=X+DX:Y=Y+DY
42.
50 COLOR 1:PLOT X,Y
60 FOR PAUSE = 0 TO 250:NEXT PAUSE
70 NEXT A

RUN this Simple Movement program and watch what happens.
Ready?

An orange line (COLOR 1) moves toward the right from the
center of the screen! Cursor movement!

Line 20 first sets the cursor's starting position (X = 20 and Y = 10)
close to the center of the screen.

Next it defines the delta or change in each direction: OX = 1 and
OY = O. The cursor will move 1 space at a time in the X direction
with no movement at all in the Y direction .

Take a look at my TV screen. Enter new values for OX and OY
and make your cursor move in any direction you'd like!

Cursor movement is not limited to the eight directions you see on
my TV. Enter the values OX = 2 and OY = -1 , and see what
happens . These values move the cursor two spaces in the X
direction (right) and -1 space in the Y direction (up) every time
the program cycles . Get the picture?

Line 40 contains my famous update formulas! Every time the
program cycles, the cursor's position is updated by the values we
placed in OX and OY in line 20 . Line 50 then PLOTs the cursor
to the screen.

Line 60 slows down the movement so you can see it. Change
250 to a lower number to make the cursor move faster , or change
it to higher number to slow the movement down .

92

MOVEMENT

For the benefit of all you aspiring game programmers, I've slightly
modified my Simple Movement program by changing a couple of
lines and turning it into a utility!

Enter this program , RUN it, and start having some fun . It'll help
you see these fundamental concepts in action.

Simple Movement Utility

10 GRAPHICS 3
12 PRINT CHR$(125):PRINT "ENTER DX,DY";
16 TRAP 12:INPUT DXM,DYM
20 X = 20:Y = 10:DX = DXM:DY = DYM
30 FOR A = 1 TO 10
40 X=X+DX:Y=Y +DY
50 COLOR 1:PLOT X,Y
60 FOR PAUSE = 0 TO 250:NEXT PAUSE
70 NEXT A
80 GOTO 10

1l-I1~K.1-I€'
lA.OOW iHh"J::Mf It's Easy to Use!
fORSPIU/~~

S~&flE Just enter two values , one for DX and one for DY, separated by a
comma . Then press RETURN. Now watch the results!
I wish I had had a program like this when I first studied move­
ment. My eyes wouldn't have crossed and my computer wouldn't
have sizzled. (Sigh!)

The Cursor's Behind (Blush!)

Yes, this Simple Movement program demonstrates the fun­
'-------- damentals of movement. But the cursor leaves its image on the

screen after it moves .

To make it appear as if the cursor is moving without a behind,
you've got to add two more statements to the Simple Movement
program:

XB=X and YB=Y

Yep , you guessed it. Inthe next program XB tags along behind
the cursor as it moves in the X direction and erases the cursor's
previous image . YB does the same, but in the Y direction .

93

DR. C. WACKO'S MIRACLE GUIDE

This short program shows you what I mean:

10 GRAPHICS 3
12 .

The Erasing Behind

14 . 1. Set up X & Y's starting locations; X & Y's
movement direction; and set XB & YB to equal X & Y:

20 X = 20:Y = 10:DX = 1:DY = O:XB = X:YB = Y
22.
24 . 2. Begin movement cycle:
30 FOR A=O TO 10
32 .
34 . 3. Set next X, Y coordinates:
40 X=X+DX:Y=Y+DY
42.
44 . 4. Erase current X,Y coordinates:
50 COLOR 0
60 PLOT XB,YB
62.
64 . 5. Plot new X,Y coordinates:
70 COLOR 1
80 PLOT X,Y
82.
84 . 6. Set next erase coordinates:
90 XB=X:YB=Y
92.
94 . 7. Control cursor's movement speed:

100 FOR PAUSE = 0 TO 250:NEXT PAUSE
102 .
104 . 8. Recycle back to line 30:
110 NEXT A

94

MOVEMENT

Eight Easy Steps to A Firm Behind

First RUN this program . Then read these eight easy steps to get a
firm feeling for the cursor's behind .

Here's how this program works , step by step:

Step 1

NAW,1l-I6
CUROR'S J(JST

'51l./CK 6611 ~ D 1HCf.£
6(GMT F5A5'{ s7EP5,

Line 20: Three "setup" functions take place in this line:

1. X = 20: Y = 10: Sets up the starting coordinates of the
cursor.

2 . OX = 1: OY = 0: Sets up X and Y's movement directions.
3 . XB = X: YB = Y: Sets up XB and YB equal to X and Y.

Now the program is initialized.

Step 2

Line 30: The program's cycle begins with this FOR/ NEXT loop .

Step 3

Line 40: X = X + OX:Y = Y + OY This line calculates the next
coordinates to which the cursor will be plotted.

Step 4

Lines 50 and 60: The cursor's current X, Y coordinates are erased
by plotting the background color (COLOR 0) over it.

95

DR. C. WACKO'S MIRACLE GUIDE

Step 5

Lines 70 and 80: The cursor is ploted at new X,V coordinates .
These new coordinates were determined in line 40.

Step 6

Line 90: XB = X:YB = V: This line updates the values of XB and
VB to equal the cursors currently plotted position . These values
will be used in lines 50 and 60 to erase the cursor's tail during the
program's next cycle .

Step 7

Line 100: This FOR/ NEXT loop is used to control the cursor's
movement speed.

Step 8

Line 110: One cycle has been completed and the program goes
back to line 30 to begin again .

Work through this program until you really understand its logic ;
then modify its elements to see what will happen. Change the
cursor's movement speed in line 100; change its direction of
movement in line 10; change the cursor's starting location ; try
other graphics modes. Use your imagination. Make the cursor go
where you want it to go!

If you're a real fanatic like Captain Action , add these three weird­
looking lines to the program and let the computer show you
what's going on:

65 POKE 752,1:PRINT CHR$(127);CHR$(127);
"XB = ";XB;" X = ";X:PRINT CHR$(127);CHR$(127);
"YB = ";YB;" Y = ";Y

105 PRINT CHR$(125)
120 COLOR O:PLOT X,Y:GOTO 20

96

MOVEMENT

Making Tracks

The Erasing Behind program works so well that it erases
everything the cursor moves over. Sometimes it works too good!
There are times when you'd like your character(s) to move over
other images on the screen-like bUildings or other
obstacles-without erasing them!

To see how well the Erasing Behind program tracks across the
screen, just add these new lines to the program:

10 GRAPHICS 3:GOSUB 200
110 NEXT A:ENO
200 FOR X=20 TO 30
210 COLOR 2
220 PLOT X,10

...--------, 230 NEXT X
240 RETURN

This short modification draws a green line directly in the path of
the cursor's movement. When you RUN, this new program the
cursor erases the green line.

LOCATE to the Rescue!

Use our old friend LOCATE! It returns the value of the COLOR at
the specified X and Y coordinates. We'll use this valuable state­
ment to check the COLOR that's plotted on the screen; then, in­
stead of erasing it, we'll plot this COLOR behind the cursor as it
moves .

Here's the complete program :

The Drawing Behind

10 GRAPHICS 3:GOSUB 200
20 X = 20:Y = 10:DX = I:DY = O:XB = X:YB = Y
22.
25 LOCATE X,Y,Z:. FIRST LOCATE STATEMENT
27 .
30 FOR A=O TO 10
40 X = X + OX: Y = Y + OY
42.
50 COLOR Z

97

DR. C. WACKO'S MIRACLE GUIDE

60 PLOT XB, YB
62.
65 LOCATE X,Y,Z:. SECOND LOCATE STATEMENT
67 .
70 COLOR 1
80 PLOT X,Y
90 XB=X:YB=Y

100 FOR PAUSE = 0 TO 250: NEXT PAUSE
110 NEXT A:GOTO 10
200 FOR X=20 TO 30
210 COLOR 2
220 PLOT X, 10
230 NEXT X
240 RETURN

Run this spiffy program! Notice that the cursor does not erase the
green line.

That's because I've inserted two LOCATE statements into the
program. One in line 25, and one in line 65 .

The First LOCATE Statement

The first LOCATE statement, in line 25 , is used only once . It
returns the value of the COLOR at the cursor's starting position .
This value (Z) is used in line 50 during the program's first cycle to
plot background color at the start position. If you don't include
this LOCATE statement, the cursor will write over its starting
position .

Remove line 25 and RUN this program to see what I mean.

The Second LOCATE Statement

The second LOCATE statement is used during the balance of the
program to plot the background color behind the cursor (at the
cursor's previous position).

Now that you know everthing about movement, it's time to take
control and move the cursor with a joystick!

98

TAKING CONTROL

6
Taking Control with Your Joystick

I'm impressed! You'll soon know how to control the cursor, and
then characters, with your joystick. After that, it's a short step to
developing entire arcade games!

You're at the brink of something big .. . riding the crest of the
wave ... and you're well equipped to continue.

Your bank of knowledge is immense . Your brain is loaded with
arcade game design information.

And this is the miraculous gadget that will bond all these elements
together , putting you in control.

Joystick Basics

There are either two or four joystick ports located on your Atari
computer. Each joystick is refered to in Atari BASIC as a STICK
numbered either 0, 1, 2, or 3.

99

STICK(O) is the joystick that's plugged into port 1.
STICK(l) is the joystick that's plugged into port 2.
STICK(2) is the joystick that's plugged into port 3.
STICK(3) is the joystick that's plugged into port 4 .

DR. C. WACKO'S MIRACLE GUIDE

The joystick generates a specific number depending on the direc­
tion it's pushed. You can use this number in your program to con­
trol what's happening. Here's how this phenomenon works .

10 PRINT STICK(O): GOTO 10

Enter and RUN this one-line program , plug a joystick into port 1,
move it around, and compare the results with this drawing .

e 6Y.HI~IT I04Z"B73'l?>3A"

They're the same! Change STICK (0) to STICK(I) in this pro­
gram, plug the joystick into port 2, and watch what happens!

The Little Red Button: STRIG

That little red button, sometimes called a trigger, is refered to in
Atari BASIC as STRIG .

STRIG (0) is the trigger of the joystick plugged into port 1.
STRIG(1) is the trigger of the joystick plugged into port 2 .
STRIG(2) is the trigger of the joystick plugged into port 3.
STRIG(2) is the trigger of the joystick plugged into port 4.

Enter and RUN this program, plug your joystick into port 1, press
and release the button, and watch the results .

110 PRINT STRIG(O):GOTO 10

A value of 0 is returned when the trigger is pressed . The number
1 is returned when the trigger is not pressed.

100

TAKING CONTROL

Play with De Stick and Push De Button

Here's a short program that illustrates joystick control. Enter and
RUN it, then play around with your joystick and trigger.

Joystick Control

5 GRAPHICS 18
10 A = STICK(O):B = STRIG(O)
20 POSITION 5,5
30 ? #6;"STICK(0) = ";A;" ";
40 POSITION 5,6
50 ? #6;"STRIG(0) = ";B;" ";
60 GOTO 10

Combining STICK and STRIG

As you'll see (when I show you "The Big Frame-Up" in the next
chapter), you can combine the STICK and STRIG values to
generate up to eighteen numerical outputs. This means that one
joystick is capable of controlling up to eighteen program
elements, calling up eighteen different characters, for example.

More on this later. For now let's take control of that cursor and
start pushing it around!

Here's a simple program that puts you in the driver's seat. You're
already familiar with most of the concepts shown-I'll explain the
new ones-so enter it, RUN it, and enjoy!

Total Control with Bouillabaisse Logic

5 . 1. Select Graphics Mode & set up cursor's start
locations & change factors

7.
10 GRAPHICS 3:X = 10:Y = 10:XB = X:YB = Y
12.
14 . 2. Assign 'A' to equal STICK(O)
16.
20 A = STICK(O)
22.
24 . 3. Bouillabaisse Logic - This tasty concept is

explained below.
26.

101

DR. C. WACKO'S MIRACLE GUIDE

30 DX=(A=6 OR A=7 OR A=5)-(A=11 OR A=9
OR A= 10)

40 DY=(A=9 OR A= 13 OR A=5)-(A= 10 OR A= 14
OR A=6)

42.
44 . 4. Cursor's next position.
46.
50 X=X+DX
60 Y=Y+DY
62.
64 . 5. Make sure that cursor stays within boundries of

the screen.
66.
70 IF X>39 OR X<O THEN X = X - DX
80 IF Y>23 OR Y<O THEN Y = Y - DY
82.
84 . 6. Erase cursor's current position.
86.
90 COLOR O:PLOT XB,YB
92.
94 . 7. Plot cursor's new position.
96.

100 COLOR 1:PLOT X,Y
102.
104 . 8. Set XB & YB to equal cursor's position.
106.
110 XB=X:YB=Y
112.
114 . 9. Return to beginning of program for next cycle.
116.
120 GOTO 20

Bouillabaisse Logic

When [was in Paris . . . that's Paris France, not Texas ... sojourn­
ing at the Sorbonne, [learned an exciting concept. [think it was
called either Boolean Logic or Bouillabaisse Logic. Bouillabaisse ~
sounds better to me. Anyway , here's what it's a ll about.

Bouillabaisse Logic is a fishy way of pointing the cursor in the
direction selected by joystick movement.

30 DX=(A=6 OR A=7 OR A=5)-(A=11 OR A=9 OR
A= 10)

102

TAKING CONTROL

40 DY = (A = 9 OR A = 13 OR A = 5) - (A = 10 OR A = 14
OR A=6)

These lines return a value of OX and OY that's either -1 ,0, or 1
depending on the direction the joystick is pushed. These values
are then used in lines 50 and 60 to determine the cursor's next
position.

I'll show you a few examples to give you the idea :

The Cursor Moves Up: OX = 0, DY = -1

If you push the joystick up to move the cursor up the screen,
A= 14. (Remember , A=STICK(O) .}

The number 14 is not present in line 30 , so OX = ° (OX = ° -O).
No movement in the X direction (across the screen).

The number 14 is present in the second statement of line 40 , so
OY = - 1 (OY = ° -I). Movement occurs in the - Y direction
(up the screen) .

The Cursor Moves to the Right: OX = 1, DY = 0

If you push the joystick to the right to move the cursor toward the
right of the screen , A = 7 .

The number 7 is present in the first statement of line 30, so , since
the values returned are 1 and 0, OX = 1. Movement occurs in the
X direction (toward the right of the screen).

The number "7" is not present in line 40, so OY = 0 , since
OY = ° -0. No movement occurs in the Y direction.

The Cursor Moves Diagonally Down and Right:
DX= 1 DY= 1 ,

If you push the joystick diagonally down toward the right to move
the cursor diagonally down toward the right of the screen , A = 5

The number 5 is present in the first statement of line 30 , so
OX = 1 (OX = 1 - o) . Movement occurs in the X direction
(toward the right of the screen).

103

DR. C. WACKO'S MIRACLE GUIDE

The number 5 is present in the first statement of line 40, so
DY = 1 (DY = 1 - 0). Movement occurs in the Y direction
(towards the bottom of the screen).

Use this piece of scratch paper to take care of a persistent itch , or
to work through the other six joystick/ cursor movement com­
binations.

Lines 70 and 80: These two lines are used to ensure that the cur­
sor doesn 't go past the boundaries of the screen. These expres­
sions are set for graphics mode 3, which has a screen size of
40X24. If you use a different graphics mode , change these
numbers to equal 1 less than the new screen size .

Here's How They Work . ..

IF the cursor bumps into the screen's boundary THEN movement
is stopped by making the cursor move one position away from
the boundary. The rest of the program is Old Hat

You know a ll the other elements that give you total control. If
you're unclear about anything, review the Movement section. If
you still need help, see me after class!

Mess 'Em Up

There's no reason why the cursor has to go to the right when you
push the joystick toward the right. You can make the cursor do all
sorts of weird things. Just to create mayhem , insert these two
lines in place of lines 30 and 40, RUN the program, and stand
back'

30 DX=(A=11 OR A=lO OR A=6)-(A=9 OR A=7
OR A= 10)

40 DY = (A = 13 OR A = 14 OR A = 5) - (A = 10 OR A = 11
OR A=7)

De Little Button

It's now time to get the little red button into the act. Just make
these two simple changes to the Total Control program.

104

l -

TAKING CONTROL

1. Get the trigger involved by replacing line 20 with:

20 A = STICK(O):B = STRIG(O)

2 . Add this line:

35 IF B = ° THEN DY = DX:DX = 1:GOTO 50

Now, when you RUN your program and press the button , the
cursor will whiz across the screen . AMAZING! TOTAL, TOTAL
CONTROL.

Faster Control: The Machine-Language
Machine's Joystick Movement Routine
The Machine-Language Machine developed this superroutine
that makes joystick interpretation easier and movement on the
screen up to 30 percent faster than standard BASIC movement :

104,104,104,170,104,189,120,2,140,176,2,74,74,
41,3,56,233,2,16,2,169,2,133,212,169,0,133,
213, 96

I know, just another bunch of numbers! But these 29 magical
numbers will vastly improve the look and speed of your arcade
games .

105

DR. C. WACKO'S MIRACLE GUIDE

No More Fishy Movement!

The Bouillabaisse Logic routines are replaced with USR routines
in the following program . Although the bouillabaisse routines
tasted great , they weren 't efficient eno ugh for the ever-hungry
Dr . C. Wacko! (Burp!)

Superfast Control: Featuring USR Routines!

10 GRAPHICS 3:GOSUB 130:X = 10:Y = lO:XB = X:
YB=Y

20.
24 .USR Joystick Movement Routines
26.
30 DX = USR(SL,O,O) - 1
40 DY = USR(SL,O,l) - 1
42.
44.
46.
50 X=X+DX
60 Y=Y+DY
70 IF X<O OR X>39 THEN X = X - DX
80 IF Y<O OR Y>23 THEN Y = Y - DY
90 COLOR O:PLOT XB,YB

100 COLOR l:PLOT X,Y
110 XB =X:YB =Y
120 GOTO 30
122.
124 .Load Joystick Machine Language routine into Page 6,

Free RAM
126.
130 RESTORE 1000
140 FOR A = 1536 TO 1564
150 READ B
160 POKE A,B
170 NEXT A
180 SL= 1536
190 RETURN
192.
194 .Joystick Machine Language routine.
196.

1000 DATA 104, 104, 104, 170, 104, 189, 120, 2, 40, 176,
2,74,74,41,3,56,233,2,16,2,169,2,133,212,
169, 0, 133, 213, 96

106

TAKING CONTROL

Lines 130 to 180: These lines READ the machine-language
DATA into memory locations 1536 to 1564 and make Starting
Location (SL) equal to 1536. This is the same stuff we did in the
Machine-Language Flip-Flop Jogger program on Page 73
. .. remember?

Lines 30 and 40: Here's were a ll the action takes place! SL is the
Starting Location (in memory) of the machine-language routine.
The Os in both lines call out the proper STICK. In this program
we're using STICK(O). If your game uses STICK(1), for example ,
change both Os to Is.

The number "0" in line 30 returns the DX value. The number "1"
in line 40 returns the DY value. Don't change these numbers!

If left a lone , these USR routines would assign one of three values
to DX and DY; 0, 1, or 2. These numbers don't work in the pro­
gram l I've tacked the - 1 to the end of each USR statement so it
returns - 1, 0 , or 1 , just what the program ordered!

That's all there is to it! Now that you know all about joystick con­
trol , you're ready to take the final step: The Big Frame Up,
joystick movement control of a multiframe character and Weird
Harold and Wackenstein's ignominious return! Eeeeeyech!

107

DR. C. WACKO'S MIRACLE GUIDE

7
The Big Frame-Up: Joystick­

Controlled Animated Characters
If you flipped over flip -flop animation and enjoyed pushing that
cursor around the screen , you'll go absolutely zonkers over what's
coming up next!

After reading and playing with this exciting chapter, you'll be able
to push a fully animated character around the screen with your
joystick!

The Jogger's finally going to get off his treadmill , and Wackens- --I
tein will race wildly across the screen, all under your control .

Let's give that Jogger some exercise first ; then we'll plug
Wackenstein into our program and turn him loose.

So load up your trusty Monster Maker and we'll get started .

Move That Jogger

We're going to design a program that'll move an animated jogger
about the screen in any direction .

When he runs to the left , he'll face left ; when he runs up and
down the screen , he'll face you ; and when he jogs to the right ,
he'll face right.

108

THE BIG FRAME-UP

The Jogger is a three-frame animated character . . . so three
animation frames are needed for each direction he'll move in, a
total of nine frames .

Because he'll be able to move in three directions-left, facing
you, and right-we'll design three sets of frames.

i71~ME 1- r:;.~ME.f

FR,tlME 5

F~Mt:GC,
FAAIIA~ S£TZ
FAcI~6

109

~/!o

oW
~12'1

=20

~~

='10
=2.'1
=$

=1(,

="1.0

=121

=io
=51(,

=40
:40

=40

'-:f--'-..L.......I-l

= 12-
='1
=10
=G.~

=40
=14

=2-0

=3,"

DR. C. WACKO'S MIRACLE GUIDE

Ft<l.t\MEIS

1---t-+-t--!-+--+-+-4 =0
'0

H-t---t-t-+-+--+--i~

,IIg
--r--r--t-1, I'"

FRoaME f'l

,'10

~"o
:40

Use the Monster Maker to create the Jogger's nine frames plus the
extras. Create frame 1 in LOCATION 1, frame 2 in LOCATION
2, and so on. It's very important to enter each frame in the order
I've shown above. Entering each frame in its correct sequence (1,
2, 3, 4, 5, 6, 7, 8, 9 ... 18) is critical to the program's operation .

Call It Jogger and SAVE It!

The Big Frame-Up program is designed to GET Jogger animation
data from a font file that you've saved to disk or cassette. When
you're finished creating the nine Jogger frames plus nine extras,
assign them the name JOGGER and SAVE them to disk or
cassette.

If you would like to enter the Jogger's frames from data
statements, modify lines 210 through 300 of the Big Frame-Up
and add eighteen lines of DATA to the program. (Review the
BUilding Block #1 program on page 54)

Enter The Big Frame-Up, plug in your joystick, RUN it, and go
absolutely zonkers!!

110

THE BIG FRAME-UP

Important Notice of Great Importance

SAVE this program before you RUN it! We'll be making a few
modifications to it later!

10 GOSUB 200
12 .

The Big Frame-Up

14 . 2. Turn on graphics mode 18 (2 + 16), POKE the
screen blue, and activate new character set.

16 .
20 GRAPHICS 18:POKE 712,148:POKE 756,START / 256
22.
24 . 3. Set X,Y start locations and set XB & XY equal to

X and Y.
26.
30 X=5:Y=5:XB=X:YB=Y
32.
34 . 4. Keep track of frames ... The JOGGER uses three

frames to move in each direction.
36.
40 FR = FR + I:IF FR>3 THEN FR = 1
42.
44 . 5. Let A equal STICK(O).
46.
50 A = STICK(O)
52.
54 . 6. Bouillabaisse Logic.
56 .
60 DX=(A=6 OR A=7 OR A=5)-(A=11 OR A=10

OR A=9)
70 DY=(A=9 OR A=13 OR A=5)-(A=14 OR A=10

OR A=6)
80 . • Caution. This line is RESERVED·
82 . 7. Character's next position.
84.
90 X=X+DX:Y=Y +DY
92.
94 . 8. Make sure that character stays within boundaries

of screen.
96.

100 IF X<O OR X>19 THEN X=X-DX
110 IF Y<O OR Y>11 THEN Y = Y - DY
112.

111

DR. C. WACKO'S MIRACLE GUIDE

114 . 9. Erase character's current position.
116.
120 COLOR 32:PLOT XB,YB:. ATASCII Code 32 is a

BLANK SPACE!
122.
124 . 10.···· This is the BIGGIE! I'll explain it below!· • • •
126.
130 COLOR 3 + FR + DX·3:PLOT X,Y
132.
134 . 11. Set XB & YB equal to the character's position
136.
140 XB=X:YB=Y
142.
144 . 12. Return for next cycle.
146.
150 GOTO 40
160 . ·These lines (160 -190) are RESERVED for some

big shot·
170.
180.
190.
194 . 1. Make room for character's frames and GET the

JOGGER font from disk and load it into program.
196.
200 GRAPHICS O:START = (PEEK(742) - 2).256
210 CLOSE #1
220 OPEN #1,4,0,"D:JOGGER.FNT'
230 GET #1,CHARACTERS
240 FOR LOCATION = 0 TO CHARACTERS - 1
250 FOR BYTE = 0 TO 7
260 GET #1,SHAPE
262 .
264 . Look at the BIG 8 ... See it?
266.
270 POKE START + LOCATION·8 + BYTE + 8,SHAPE
280 NEXT BYTE
290 NEXT LOCATION 300 CLOSE #1 310 RETURN

The Big 8!

I hope you've been paying attention. Look at line 270 again. In
the expression BYTE + 8, 8 is the offset for the ATASCII
character 33-my favorite-the exclamation point!!! Get the
point??? When you add 8 to this statement, the Joggger's first
frame (as he skedaddles to the left) will be a redefined "!" .

112

THE BIG FRAME-UP

If I hadn't added 8 to the expression, the Jogger's first frame
would have started at, mercy me, a blank space . No kidding.
look it up in the ATASCII chart. Starting out nowhere would
have been disastrous. Wheew, defied death once again. You can
leave out the 8 if you like to live dangerously.

The Biggie: COLOR 3 + FR + OX· 3:PLOT X, Y

Line 130 is molto, molto, molto importante! (Espresso,
anybody?)

Remember when I told you to enter each frame in its correct se­
quence? Now I'll tell you why.

This line selects and PLOTs the correct frame set (1, 2, or 3)
depending on the direction you move your joystick.

Here's how it works:

If you bend the joystick to the left, my Bouillabaisse Logic state­
ment on line 60 makes OX = - 1. Work through this simple for­
mula and you'll discover that COLOR 1 will be PLOTed at X,Y.

COLOR 1 is the first frame you entered when you designed the
Jogger.

All right already , I'll work through this "simple formula."

I'll replace the variables in this formula with numbers so you can
see the results.

Move Left

COLOR 3+ 1-1·3= 1

Remember, multiplication is performed first!

When the Jogger moves left, COLOR 1 is PLOTed at X,Y. Then
the frame counter in line 40 increases by 1 and COLOR 2 is
PLOTed at the next X,Y coordinates . The frame counter in­
creases once more and COLOR 3 is PLOTed at the next X,Y
coordinates. Finally the frame counter resets to 1 and the process
begins again. So we are cycling through our left-facing frames
whenever you move the joystick left!

113

DR. C. WACKO'S MIRACLE GUIDE

Facing You

COLOR 3 + 1 +0·3=4

COLOR 4 begins the next set of three frames (4,5 and 6). Again,
moving the joystick up or down cycles through the appropriate
frames.

Move Right

COLOR 3 + 1 + 1· 3 = 7

COLOR 7 begins the next set of three frames (7 , 8 and 9) .

If you entered the frames incorrectly when you first used the
Monster Maker to design the Jogger , he might have faced left
when he was running to the right, or stopped at the local pub for
a brew before finishing the marathon. How totally embarrassing!
REALLY'

Phase II

Now that you 've got the hang of superpro animation , let's glide
into Phase II: animating characters that don't look in the direction
they move.

Yes , I'm afraid we're going to experience Phase II , total pixel an­
nihilation, in a mere ten seconds'

114

THE BIG FRAME-UP

Make sure that you've designed and saved MONSTER .FNT us­
ing the Monster Maker. If you're not sure, just flip back to page
65 . When you 're ready, make these teeny-weeny changes to the
Big Frame-Up program, then RUN it!.

Some Teeny Weeny Changes

1. Change line 40 to read: 40 FR = FR + 1 :IF FR>2 rTHEN
FR= 1

2. Change line 130 to read: 130 COLOR FR:PLOT X,Y
3. Line 220 : Replace "O:JOGGER.FNT" with

"0 : MONSTER. FNT"

Wackenstein's a two-frame character (no insult intended) . Ergo
the change from 3 to 2 in line 40 . He's not sophisticated; he
dosn 't "look" where he's going. As a matter of fact, he bumps
into stuff a lot! That's why line 130 is so unsophisticated!

Now It's Weird Harold's Turn!

Weird Harold 's apt to get pretty upset if he isn't given the chance
to act goofy on the screen. And when Weird Harold gets upset ,
PEEEUUUU!

We'd better humor him. Turn back to page 81, refer to Weird
Harold's six frames and create and SAVE a HAROLD.FNT using
the Monster Maker. If you've modified The Big Frame-Up to load
Harold 's shape from OAT A statements, use the data listed in lines
1000 to 1050 of the Amazing Feet program on Page 81.

115

DR. C. WACKO'S MIRACLE GUIDE

Ready to modify The Big Frame-Up? O.K ., here goes

1. Add a new line 35: 35 FR = 1.
2. Change line 40 to read : 40 FR = FR + 2:IF FR>5 THEN

FR= 1.

Harold is animated in sets of two frames ... thats why FR = FR + 2.

3 . Change line 110 to read : 110 IF Y<O OR Y>10 THEN
Y=Y-DY.

Because Harold has amazing feet , he'd go off the screen if we
didn't change Y>l1 to Y>lO.

4 .Add lines 125 and 135 (below) and lines 120 to 135 will
look like this :

120 COLOR 32:PLOT XY,YB
125 COLOR 32:PLOT XB,YB + 1
130 CO~OR FR:PlOT X, Y
135 COLOR FR + I:PLOT X,Y + 1

First lines 120 and 125 erase Harold's head and feet. Then lines
130 and 135 draw them. (This sequence is critical. Try it another
way, and BARROOOOOM!)

5 . Last, but not least , change line 220 to read:
OPEN #1,4,O,"D:HAROLD.FNT".

Now stand back, hold your nose , close your eyes. and RUN the
program!

That was something, no?

I'm turning into a real computer wacko. I modified lines 35 and
45 and was truly mystified by the results! If you'd like to be
mystified ,do this :

1 . Change line 35 to: FR = O.
2. Change line 45 to : FR = FR + 2:IF FR = 6 THEN FR = 1.

Now , RUN the program!

116

llr"t"L€ RI'D
SUTTON

CAI'IE R. cAPT.
~1O~Fn.eD

I'r .)

THE BIG FRAME-UP

A Cautious Cautionary Caution: Beware!

Only make these changes if you are totally unafraid of the far­
reaching consequences that wackoness will have on your life­
style.

Now I'd like to show you some prestidigitation (magic) . Nothing
up my sleeves ... nothing hidden in my pockets-especially
money-nothing up here

Animate Eighteen Frames?

Yes , it is possible folks , with the help of this little RED BUTTON
(and a little programming).

If you were paying attention before , you'll have noticed that the
JOGGER font contains eighteen animation frames. If you
weren't, it doesn't (logical ... isn 't it?) .

Watch closely and I'll show you how to make all eighteen frames
sway to the joystick's gentle pressure .

First , LOAD the unadulterated Big Frame-Up program, the one
that you ran before Wackenstein went berserk and Weird Harold
demonstrated his weirdness all over it. Then change line 50 to
read: 50 A=STICK(O) :B=STRIG(O).

Now , fill up the blank lines I reserved in the program with this
sleight-of-hand:

80 IF B = 0 THEN GOTO 160
160 COLOR 32:PLOT XB,YB
170 COLOR 14+DY·3+DX:PLOTX,Y
180 XB =X:YB=Y
190 GOTO 40

O.K., now you 've done it!

RUN the program and press the trigger while moving the joystick
to see exactly what you've done . Then work through lines 160 to
180 to understand why!

117

DR. C. WACKO'S MIRACLE GUIDE

A Helpful Hint

Pssst, the same illogical logic I used to explain the Jogger's marathon
antics applies to these lines.

One last bit of nonsense . You don't have to begin the first animation
frame at OFFSET 1 (ATASCII Code 33) . You can begin your Big
Frame-Up at any letter's location . If, for example, you want to start
with the letter A, just change these three lines as I've done so
brilliantly below:

130 COLOR 65 + FR + OX·3 + 2
170 COLOR 76 + OY· 3 + OX + 2
270 POKE START + LOCATION· 8 + BYTE + 264,SHAPE

118

THINGS THAT GO BOUNCE IN THE NIGHT

8
Adversaries and Things That Bounce

in the Night
Watch out! They're going to get you! Do you get an anxious feel­
ing of urgency when playing games like Centipede TM, Missile
Command™, Star Raiders™ , Pac-Mam, or Atari Bastetba]]TM?
You should, because they've all got one thing in common: com­
puter generated opponents'

Computer opponents are heartless creatures whose mission is to
challenge your skills and raise your blood pressure while trying
their darndest to create confusion and wreak havoc!

A Compendium of Chasers and Scaredy Cats

Many computer opponents are schizophrenic. Their personalities
change as you are playing the game. In Pac-Man the ghosts are
real meanies , chasing the poor gobbler around the screen until he
gobbles up a power pill , then they turn into scaredy cats .

Atari's Basketball's version of Wilt the Stilt chases you when
you 've got the ball , then turns into a scaredy cat , trying his best to
avoid you, when he's got possession. FOUL!

A Colony of Low I.Q.'s

Other computer opponents aren't too bright. They act a little like
a school of uneducated fish , avoiding obstacles while swimming
mindlessly toward the bait. The centipede, flea , and scorpion in
Centipede all act fishy. The centipede , for example, avoids the
mushrooms as it winds its way blindly toward the bottom of the
screen. When it arrives at the bottom , it starts back up again. All
the player has to do is get out of its way, or destroy it.

The Chaser-Bouncer Combo

Centipede's spider is another kettle of fish altogether. This
dangerous insect chases the player about the screen with less than
honorable intentions. If you don't get him , he 'll get you! This in­
sect has another sinister trick up one of his eight sleeves; he's a
bouncer. If he misses his dinner (you), this creepy character

119

DR. C. WACKO'S MIRACLE GUIDE

bounces up and away from the edge of the screen to taunt and
confuse you. Frightening, isn't it?

Roving Robots

Star Raiders features what I call roving robots. When your ship is
stationary , the enemy vessels circle in front of you in a
preprogrammed pattern . They move forward and then change
from roving robots to scaredy cats, always keeping their distance .

And Finally, Vandals

These marauders are potentially the most dangerous foes you're
apt to face in an arcade game. They're not after you ; they're after
your possessions! It's your job to stop them before they reach their
goal.

In Missile Command , all the missles are "vandals" bent on
destroying your cities! Your mission is simple: STOP THEM!

Ever look at the Star Raider's Galactic Map? All those Zylons are
heading for your Star Base! Your job is to destroy them before
they destroy your bases.

If You Can't Take the Heat, Get Out of the
Arcade Game Business

Whew! Not a nice bunch of guys. But , they certainly make an ar­
cade game worth playing , if you can take the heat.

120

WAC.KO'?
C~EAM li'UFF?
<:OMMOO~?

'WY"._..... AW, C'MON ·

THINGS THAT GO BOUNCE IN THE NIGHT

You've mastered some very sophisticated programming techni­
ques during your visit with me, more than enough to design some
really action-packed arcade games. And now you know how
much excitement computer-generated opponents can add to
your games . Interested in learning some of the techniques used
by the pros to make them so nasty?

You are? Great! Just read on and venture forth into the cruel and
heartless world of C. G .0

Four Cruel and Heartless Programs

Computer-generated opponents may be heartless, but I'm not.
I'm a real cream puff . The following easy-to-use e.G .O . pro­
grams are guaranteed to have your players sitting on the edge of
their seats .

Most of these programs combine bits and pieces of know lege
you've already studiously acquired . I'm going to have to in­
troduce only a few new programming tricks . From now on it's
merely a matter of technique and common (programming)
sense .

The Chaser's Out To Get You!

In the Chaser program you'll learn how to develop my world­
unknown "Chasem" concept into an engrossing (large?) arcade
game .

Here's the listing. I've reserved lines 20, 130, 140, 210, and 220
for future excitment. You reserve them by typing in the line
numbers followed by either a period or a REM statement, and
we'll fill them in a little later.

121

DR. C. WACKO'S MIRACLE GUIDE

The Chaser

10 GRAPHICS O:POKE 752,1
20.
22.
24 . Set up the Chaser's starting locations; and set CXB

& CYB equal to CX & CY
26.
30 CX = O:CY = O:CXB = CX:CYB = CY
32.
34 . Set up the Player's starting locations; and set PXB &

PYB equal to PX & PY
36.
40 PX = 20:PY = 20:PXB = PX:PYB = PY
42.
50 A = STICK(O)
52.
54 . Good old Bouillabaisse Logic
56.
60 OXP=(A=6 OR A=7 OR A=5)-(A=11 OR A=9

ORA=10)
70 OYP=(A=9 OR A=13 OR A=5)-(A=10 OR A=14

OR A=6)
72.
74 . The Player's next position
76.
80 PX = PX + DXP:PY = PY + OYP
82.
84 . Lines 90 to 120 make the Player appear to leave one

side of the screen and reappear at the opposite side.
86.
90 IF PX<1 THEN PX=38

100 IF PX>38 THEN PX= 1
110 IF PY<1 THEN PY = 21
120 IF PY>21 THEN PY = 1
130.
140.
142.
144 . Erase Player's current position.
146.
150 COLOR 32:PLOT PXB,PYB
152.
154 . Plot Player's new position ... the player is ATASCII

Code 9 ... a plus sign (+)!
156 .

122

THINGS THAT GO BOUNCE IN THE NIGHT

160 COLOR 19:PLOT PX,PY
162 .
164 . Set PXB & PYB equal to the Player's current

position.
166 .
170 PXB = PX:PYB = PY
172 .
174 . Lines 180 to 240 . .. La Petite Bouillabaisse and the

Chaser! I'll tell you how these work below.
176 .
180 DXC = SGN(PX - CX):DYC = SGN(PY - CY)
190 CX = CX + DXC:CY = CY + DYC
200 COLOR 32:PLOT CXB,CYB
210.
220.
230 COLOR 42:PLOT CX,CY
240 CXB = CX:CYB = CY
242.
244 . Return to beginning of program for next cycle.
250 GOTO 50

The Chaser program has two characters, you (the Player) and the
computer-generated Chaser.

Who's Who?

To keep track of who's who in this example, I've ingeniously
assigned the letter P to all of the Player's movement statements
(like PX) and the letter C to the statements that move the Chaser
(like CX).

Familiarity Breeds Familiarity

With the exception of line 40, which sets up the Chaser's starting
locations , lines 10 through 170 let you move the Player about the
screen with your joystick. Sound familiar?

If you don't believe me, change line 172 to : GOTO 50. RUN the
program to see what I mean.

123

DR. C. WACKO'S MIRACLE GUIDE

Wrapping Around Lines 90 to 120

Look at lines 90 to 120. Instead of lines 90 to 120 limiting the
Player's movement within the screen's boundaries , they make the
Player appear to leave one side of the screen, only to reappear at
the opposite side . This illusion is called wraparound in the arcade
biz.

Line 180: La Petite Bouillabaisse

In lines 60 and 70 the Player's X,V joystick movement is con­
verted to either -1, 0, or 1. SGN in line 80 does the same for
the computer-generated Chaser!

Give Me a Little SGN

SGN is a little-known BASIC instruction that , thank goodness,
has nothing whatsoever to do with trigonometry. It is not
sine/ cosine stuff!

When you use SGN , as I have in line 180, it makes DXC equal
-1 , 0, or 1 depending on the results of the simple math within
the parentheses .

SGN In, Mystery Guest!

Here are a few examples that show how SGN works . Enter these
three examples in the "immediate mode" (no line numbers) and
hit RETURN to see the amazing results :

1. DXC = SGN(1 - 1) <RETURN>

The answer is O! the numbers are equal and the subtraction results
in O.

2. DXC = SGN(5 - 3) <RETURN>

The answer is positive 1 because 5 - 3 = 2 and 2 is a positive
number.

3. DXC = SGN(3 - 5) <RETURN>

The answer is - 1 because 3 - 5 = - 2 and - 2 is a negative
number.

124

THINGS THAT GO BOUNCE IN THE NIGHT

Try other combinations and mathematical expressions . You'll
discover that if the answer is negative, SGN returns - 1. If the
answer is positive , SGN returns 1. And, if the answer is zero ,
SGN returns o.
Total Understanding of the Chasem Concept!

The change in the Chaser's X and Y positions (DXC and DYC in
line 180) is determined by the Player's position minus the
Chaser's positon : PX - CX and PY - CY. These values of
change (-1,0, or 1) are used in lines 190 through 240 to make
the Chaser persistently do what it's best at-chase you!

A Full-Fledged Game, Almost

Now that you understand this concept completely , let's fill in
those reserved lines with a couple of LOCATE statements and
other stuff, and develop a full-fledged arcade game.

Olly, Olly, In Come Free!

The goal of this simple game is to reach your Star Base before the
enemy Chaser catches you. It's modeled after the game Tag .

Here's How to Program Your Game

1. First , add line 20 to plot the Star Base on the screen:

20 COLOR 32:PLOT 2,0:COLOR 16:PLOT 3,1

Color 32 (blank space) at locations 2,0 erases that white cursor in
the upper left corner of the screen. Color 16 (a "clubs" symbol)
plots the Star Base at locations 3 ,1.

2. Now, add lines 130 and 140:

130 LOCATE PX,PY,Z
140 IF Z = 16 THEN POKE 710,195:POSITION

13,1O:PRINT "YOU'RE A WINNER!":FOR A = 1 TO
1000:NEXT A:RUN

When the Player touches the Star Base the LOCATE statement
returns a value of 16 (its COLOR) , the screen turns green since
Z = 16, and YOU'RE A WINNER . Then, after a short pause, the
game begins again .

125

DR. C. WACKO'S MIRACLE GUIDE

3. Finally, add lines 210 and 220:

210 LOCATE CX,CY,Z
220 IF Z = 19 THEN POKE 710,53:POSITION

15,10:PRINT "GOTCHA!": FOR A = 0 TO 500:
NEXT A:RUN

If the Chaser catches you, LOCATE returns 19 (that's your COL­
OR-see line 160) the screen turns red and "GOTCHA!" ap­
pears. Then, after a brief pause, the game begins again.

Make Chaser into a Real Blockbuster, Buster

Build on this simple game. Use your imagination and arcade
game programming skills to make Chaser into a real blockbuster
smash hiteroo!

Six Brilliant Ideas!

1. Redesign Chaser in graphics mode 1 or 2 and use
character graphics to create an animated Chaser and
Player. To bring this game to life you might want to
model your Player on the Jogger. Your Chaser might be
Wackenstein or, heaven forbid, Weird Harold'

2. Add sound to the game (see chapter 9). when you are
caught-BAROOM! When you win-TAH! TAH'

3. Give your player the ability to shoot back at the Chaser.
ZAP!

4. Add scoring to the screen-points for the computer and
points for you!

5. Make this a two-player game . Chase each other around
the screen.

6. Go outside and play soccer or fly a kite instead'

This Is Your BIG Chance!

This may be your BIG chance to design a revolutionary new ar­
cade game. Don't pass up this great opportunity! Have fun , show
off, and put all your knowledge to work' (Before it's too late .)

126

THINGS THAT GO BOUNCE IN THE NIGHT

The Scaredy Cat, Starring the Three Wacko Cats

The Scaredy Cat program is very similar to the Chaser. I'll point
out the major differences after you type it in and RUN it.

Scaredy Cat

10 GRAPHICS O:POKE 752,1
20 COLOR 32:PLOT 2,0
30 CX = O:CY = O:CXB = CX:CYB = CY
40 PX = 20:PY = 20:PXB = PX:PYB = PY
50 A = STICK(O)
60 OXP = (A = 6 OR A = 7 OR A = 5) - (A = 11 OR A = 9

OR A= 10)
70 OYP=(A=9 OR A=13 OR A=5)-(A=10 OR A=14

OR A=6)
80 PX = PX + OXP:PY = PY + OYP
85.
90 IF PX<l OR PX>38 THEN PX=PX-OXP

100 IF PY<l OR PY>22 THEN PY = PY - OYP
105.
110 COLOR 32:PLOT PXB,PYB
120 COLOR 19:PLOT PX,PY
130 PXB = PX:PYB = PY
135 .
140 OXC = SGN(PX - CX):OYC = SGN(PY - CY)
150 CX = CX - DXC:CY = CY - OYC
155 .
160 REM IF CY = PY THEN CY = PXB
170 REM IF CX = CX THEN CX = PYB
175 .
180 IF CX<l OR CX>38 THEN CX=CX+4·0XC
190 IF CY<l OR CY>22 THEN CY=CY+4·0YC
195 .
200 COLOR 32:PLOT CXB,CYB
210 COLOR 42:PLOT CX,CY
220 CXB = CX:CYB = CY
230 GOTO 50

Why the Scaredy Cat's Scared

lines 90 and 100: These two lines set the boundaries for the
Player. In the Scaredy Cat program , the Player is limited by the
screen's borders; no illusions this time. Lines 140 and 150:

127

DR. C. WACKO'S MIRACLE GUIDE

Because this Cat runs away from the Player instead of chasing
after him, minus signs in line 150 replace the plus signs that were
used in line 190 of the Chaser program .

Lines 180 and 190: These two lines set the boundaries for the
Scaredy Cat. If I didn't put them in , he'd get so scared he'd run
off the edge of the screen. Every time the Scaredy Cat bumps
against the edge of the screen , the statements CX = CX + 4 -DXC
and CY = CY + 4 · DYC make him bounce off by four positions .
If I didn't add 4 - to this statement , the Scaredy Cat would stick in
the corner! Increase this number if you'd like to see the Cat
bounce further away from the wall , or remove 4 - altogether and
see what happens.

Lines 160 and 170: The REM statements in front of these two
lines are just waiting to be removed . I put them there to show you
that the Scaredy Cat can be caught. Remove REM, RUN the pro­
gram , and it becomes impossible to catch him!

Every time the Cat's position equals the Player's , the Cat's posi­
tion is changed to the Player's previous position. Clever , isn't it?

Schizoid!

Now that you know how the Chaser and Scaredy Cat work, you
can put either one, or both , into your arcade games .

Here's an Idea! Modify the Chaser game so that the Chaser's a
real schizoid . Make this cruel and heartless enemy turn into a real
pussy cat. For example , you might add another Star Base . IF the
Player touches it, the Chaser goes flippo, turns into a Scaredy Cat
for a specific number of cycles , then reverts back to its cruel and
heartless self. You're on your way to designing the next best­
seller!

128

IF"F"OR Elf(iR1.{ ACTION
-mERES AN EQJAL. A/JP
OPRJ5m= k.ll00~' HoW
COME '{OU II.'6VGRPt>1{ THE

WHCIJ DllE ~

THINGS THAT GO BOUNCE IN THE NIGHT

Things That Go BOUNCE in the Night

Before a screen object can bounce off something, your program's
got to know that it bumped into something. Stuff on the screen
isn 't "smart ," and the normal laws of physics ("for every action
there is an equal and opposite action") don't apply to screen im­
ages, you've got to supply the brains and physical laws . Don't
panic! The great Dr . Wacko will reveal all!

Colliding Collisions

You know two ways to "tell" the rest of your program that an ob­
ject has hit something:

1. The LOCATE statement: When the object (ball,
spaceship , umbrella) bumps into a screen barrier (wall,
closed door , potato chip) the COLOR number returned
in the LOCATE statement activates a routine in your pro­
gram that makes the object reverse its direction.

Remember the Bong program? It's on page 42. Look it over now
to refresh your memory . In Bong, when the ball slams into one of
the walls a LOCATE statement "tells" it to bounce away.

2. Predefined Boundaries: When the object reaches
predefined coordinates , an IF/ THEN statement is used to
reverse its direction. Lines 90 and 100 of the Scaredy Cat
program brilliantly illustrate the crystaline simplicity of this
technique.

Here's a simple program that uses a LOCATE statement to
"tell" the ball when to bounce away from a wall. Enter it, RUN
it , then I'll review it with you below.

Locate Bounceroo

10 GRAPHICS 5 + 16:GOSUB 100
20 X = 30:Y = 20:XB = X:YB = Y:DX = I:DY = 1
30 X=X+ DX:Y=Y + DY
32.
40 LOCATE X + DX,Y,Z:IF Z<>O THEN DX = - DX
50 LOCATE X,Y + DY,Z:IF Z<>O THEN DY = - DY
52.
60 COLOR O:PLOT XB,YB
70 COLOR I:PLOT X,Y

129

DR. C. WACKO'S MIRACLE GUIDE

80 XB=X:YB=Y
90 GOTO 30
92.

100 COLOR 2
110 PLOT 25,10
120 DRAWTO 45,10
130 DRAWTO 45,30
140 DRAWTO 25,30
150 DRAWTO 25,10
160 RETURN

What Makes Bounceroo Bounce?

First this program GOSUBs in line 100 after selecting the graphics
mode, draws a box, and RETURNs.

Next the starting X,Y coordinates of the "ball" are set within the
box.

Then, the two LOCATE statements appear.

1. The LOCATE statement in line 40 makes the "ball"
bounce away from either of the two vertical walls of the
box.

2. The LOCATE statement in line 50 makes the ball bounce
away from either of the two horizontal walls of the box.

The rest of this program is similar to the many simple movement
programs I showed you in chapter 5. Review it if you have any
questions, then move on to the second Bounceroo technique,
predefined boundaries .

Boundary Bounceroo

Ladies and gentlemint, by changing just two minuscule
lines-yes, that's all, just two lines-you, too, can transform the
Locate Bounceroo into a Boundary Bounceroo! Amazing? No,
just easy, and here's how to do it.

Replace lines 40 and 50 with these two new lines :

40 IF X+DX=45 OR X+DX=25 THEN DX= -DX
50 IF Y +DY= 10 OR Y +DY=30 THEN DY= -DY

130

THINGS THAT GO BOUNCE IN THE NIGHT

UMOs: Unidentified Movable Objects

Now RUN your modified program. The ball bounces away from
the boundaries of the box! The effect is the same as achieved in
the Locate Bounceroo program!

The Boundary Bounceroo program contains the same method I
<--____ -' use to keep players and other Unidentified Movable Objects

restricted within the boundaries of my playing field.

"I'm not ssscccaaarrrredd!"

Now that you know how to design a Chaser and a Bouncer, try
combining the two to create your own Super-Meany-like the
Centipede's bouncing spider. I'll be back after you've completed
this experiment. Not that I'm scared, but

Roving Robots

One way to design a Roving Robot is to "read" its programmed
positions from DATA statements. Here , I'll show you .. .

Roboteroonie

10 GRAPHICS 3:GOSUB 120
20 RX = 5:RY = 5:RXB = RX:RYB = RY:RC = 1
22.
24 . 2) DXR & DYR will both equal 0 when RX & RY

Robot Coordinates equal the two data statements.
26.
30 DXR=SGN(RX-A(RC))
40 DYR = SGN(RY - A(RC + 1))
42.
44 . 3) When both DXR & DYR equal 0 the next set of

data is selected.
46.
50 IF DXR=O AND DYR=O THEN RC=RC+2
52.
54 . 4) When last Robot coordinate is reached, begin

again at first Robot coordinate.
56.
60 IF RC>S THEN RC = 1
62.
70 RX = RX - DXR:RY = RY - DYR
SO COLOR O:PLOT RXB,RYB

131

DR. C. WACKO'S MIRACLE GUIDE

90 COLOR 1 : PLOT RX,RY
100 RXB = RX:RYB = RY
110 GOTO 30
112 .
114 . 1) Dimension Array, then set up Array read from

data.
116.
120 DIM A(8)
130 RESTORE 190
140 FOR A=l TO 8
150 READ B
160 A(A)=B
170 NEXT A
180 RETURN
190 DATA 10,10
200 DATA 20,5
210 DATA 0,12
220 DATA 5,5

The Roboteroonie program uses many elements you've .already
learned but in new and exciting ways.

First, the DATA in lines 190 to 220 is put into an array , A(RC) , in
line 160.

RC is my way of saying "Robot's Coordinate." In Line 20 ,
RC = 1, so the Robot first appears at the coordinates called out by
the first set of data (10,10) .

Lines 40 and 50: Here's another application of La Petite
Bouillabaisse! DXR and DYR will both equal 0 when the Robot's
coordinates equal the DATA. Substitute numbers for the symbols
in, these two formulas and do the simple math to see what I mean .

In line 50, when both DXR and DYR equal 0, the next set of data
is selected , and the Robot moves merrily on his preprogrammed
way. Line 60: When the last bit of data is reached (RC>8) , RC is
set equal to 1 and the cycle begins all over again .

Want to reprogram the Robot? Just add , subtract, or change the
coordinates in the DATA statements . Remember, if you change
the number of coordinates (delete or add to the DATA
statements) , you'll have to :

132

THINGS THAT GO BOUNCE IN THE NIGHT

1. Redimension the array in line 120
2 . Change the FOR/ NEXT loop in line 140 to equal the

number of DATA points . For example , if you added one
additional set of data , the FOR/ NEXT loop would read
"FOR A= 1 TO 10."

3 . Change the value that follows RC> in line 60 to equal
the total number of data points . In the example I've just
shown you , the statement would now read "RC>1O."

That's all there is to it.

Now You're a Know-it-all!

In addition to your other game design and programming
knowledge , you now know how to program a Chaser, Scaredy
Cat, Bouncer , and Robot! By combining these four techniques
you'll also be able to program Low I.Q.'s and Vandals, but watch
out!

With this great store of knowledge tucked neatly under your belt,
you can design and program the most sophisticated of arcade
games. You can now WOW your friends and neighbors , impress
your pets , and amaze yourself!

But to really get their attention, you've got to top your games with
wild and crazy sound!

My wife, Petunia, is a wild and crazy gal. I'll ask her if she'd like to
sound off.

133

DR. C. WACKO'S MIRACLE GUIDE

9
ZOUNDS

It's about time you heard from my gorgeous and talented wife ,
Petunia. I'll call her.

My Tale of a SOUNDless World

I became frustrated after spending most of my time programming \.(
games on really BIG computers . Main frames , supermain frames
and the EI Biggo Whopper-Doo Mark IV at C.W .!. (Computer
Wacko Institute).

I was able to program those biggos in every language known to
wackodom . I had them performing games in COBAl, FOR­
TRAN, LISP , even SANSCRIPT! But, none of those gigantic
computers could sing , make weird rumbling sounds , meow like a
cat, or explode! BAROOOOMMMM! And what , after all, is an ar­
cade game without sound?

I felt that my creativity was being stifled . I realized that I was work­
ing in a humdrum environment, a soundless world . I panicked!

My lovable and cute husband and his lovable and cute Atari com­
puter saved me . I now spend my off hours making beautiful ,
weird , and horrid sounds on his Atari. I love it. It relaxes me. It's
therapeutic! My life , and my games , are now full of SOUND!

I

Your Atari can sing, or meow, in as many as four voices . You can
use each voice solo , or you can be creative and combine a few , or
all four to achieve remarkable sound effects , and some beautiful
music.

134

ZOUNDS

But the most wonderful thing about the Atari SOUND statement
is that it's so easy to use .

A typical SOUND statement looks like this:

SOUND 0,100,10,15

Type this in and press RETURN. When you have heard enough,
type END <RETURN> .

Here 's what each number in the SOUND statement controls:

VOICE: SOUND °
Select the voice you'd like to use by assigning a value to the first
number following the SOUND command . SOUND 0, SOUND
1, SOUND 2 , and SOUND 3 are all available.

PITCH : SOUND 0 ,100

Select each voice's pitch by setting the second number to a value
between ° and 255. The pitch I've selected in my example is 100.

DISTORTION: SOUND 0,100,10

The third number in a SOUND statement varies distortion, from
pure tones to gobbledygook. Examples of pure tones are 10 and
14. Other even-numbered values (0, 2, 4, 6 , 8 , and 12) add dif­
ferent amounts of noise and distortion to your tone . But the
number controlling the distortion must be an even value between ° and 14.

VOLUME: SOUND 0 ,100,10,15

Vary the loudness of each voice by setting the fourth number to a
value between 1 and 15. The value 15 is the LOUDEST, while 1
is just a whisper.

Before I show you how to program BAROOOMs, BONGs, and
ZAPs , type in and play around with this short program . It will
help you become acquainted with the basic concepts you've just
learned.

135

DR. C. WACKO'S MIRACLE GUIDE

BASIC Sound

10 ?:? "ENTER Pitch, Distortion and Loudness. Press
RETURN after each entry."

20 TRAP 70:INPUT P,D,L
30 SOUND O,P,D,L
40 IF PEEK(53279)<>6 THEN GOTO 40
45 . •• CHECK OUT SMOKEY PEEKS'S LIST OF GREAT

PEEKS FOR MORE ON PEEK(53279)· •
50 SOUND 0,0,0,0
60 ?:?: "ZOUNDED GREAT!":GOTO 10
70? "YOU MADE A BOO-BOO. TRY AGAIN!":GOTO 10

A question mark appears on the screen when you RUN this
glamorous program . First enter the Pitch , then the Distortion , and
finally the Loudness . Hit RETURN after each entry.

Press START when you've heard enough.

I always enjoy playing with combinations of pitch and distortion.
Captain Action showed me these interesting combinations-try
them, and then create some of your own astounding sounds:

CAR: PITCH = 100, DISTORTION = 4
GENERATOR: PITCH = 100, DISTORTION = 6
ROCKET: PITCH = 100, DISTORTION = 8
AIRPLANE: PITCH = 250, DISTORTION = 12

A Cacophony of Multivoiceferous Zounds

Want to make a cacophony of multivoiceferous zounds? Just
replace lines 30 and 50 in the BASIC Sound program with :

30 SOUND O,P + 4,D,L:SOUND 1,P + 8,D,L:SOUND
2,P + 12,D,L:SOUND 3,P + 16,D,L

50 FOR OFF = ° TO 3:S0UND OFF,O,O,O: NEXT OFF

Line 50 is a neat routine that turns all four voices off.

See what happens when you use a whole bunch of voices? You
get a whole bunch of noise! Change the values that are added to
pitch in each SOUND statement. Wilder noise!

136

ZOUNDS

Now That You Understand ZOUND

Now that you understand how the SOUND Statement works, it's
time to ask Dr. Wacko to show you how to use SOUND in your
arcade games.

Uh-oh, he's still boogalooing to Junior's Purple Smut album.

Well , here are some extra special sound treats for you to enjoy.
Spend a little time working through each program while I go pry
the great Wacko loose. He shoud be here in a minute. I hope.

Junior's Birthday Present

10 . JUNIOR'S CHOO-CHOO TRAIN
20 GRAPHICS 17:POKE 712,148:POSITION 1,10:PRINT

#6;"JUNIOR'S CHOO-CHOO"
30 FOR X = 15 TO 0 STEP - 1- P:SOUND 1,0,0,X
40 R = INT(RND(O)· 300) + 1
50 IF R = 30 THEN SOUND 3,36,10,10:S0UND

2,48,10,1O:GOSUB 90:S0UND 3,0,0,0:SOUND
2,0,0,0

60 NEXT X:P = P + 0.03
70 IF P>=5 THEN P=5
80 GOTO 30
90 POKE 77,O:POSITION 8,12:PRINT #6;"toot":FOR

A = 1 TO 400:NEXT A:POSITION 8,12:PRINT
#6;" ":RETURN

A Captain Action Design

10 GRAPHICS 17
20 FOR X = 10 TO 100:S0UND 0,X,10,10:S0UND

1,X - 2,10,8:S0UND 2,X + 2,10,12:NEXT X
30 SOUND 1,0,0,0:SOUND 2,0,0,0
40 POSITION 4,11:PRINT #6;"BAROOOOMMM!"
50 FOR DECAY = 15 TO 0 STEP - 0.5:S0UND

0,100,8,DECAY:FOR B = 1 TO 20:POKE 712,B:NEXT
B:NEXT DECAY

60 GRAPHICS 1 + 32:POKE 712,148
70 POKE 752,I:PRINT "Captain Action designed this

one!"
80 PRINT :PRINT " Press START to blow up again!"
90 IF PEEK(53279)<>6 THEN GOTO 90

100 GOTO 10

137

DR. C. WACKO'S MIRACLE GUIDE

Origin Unknown

10 DIM WORDS$(20)
20 GRAPHICS 17:POKE 712,15
30 FOR X = 0 TO 2:READ WORDS$,PITCH,

DISTORT,WAIT,G
40 POSITION 1,10:PRINT #6;WORDS$
50 FOR DECAY = 15 TO 0 STEP - G
60 SOUND O,PITCH,DISTORT,DECAY
70 NEXT DECAY
80 POKE 540,WAIT
90 IF PEEK(540)<>0 THEN GOTO 90
95 . Dr. Wacko will explain PEEK(540) when he gets out

of Junior's room.
100 NEXT X:RESTORE :GOTO 20
110 DATA • • SOUND ADVICE··
120 DATA 64,10,60,.1
130 DATA • from mrs. wacko·
140 DATA 120,10,60,1
150 DATA •••• burma shave· • • •
160 DATA 150,8,120,.2

SOUND Advice from Dr. C. Wacko:
"Put SOUND in your arcade games!"

Hey-Yoh! Hey ... Yoh! Wacko's back! And , I'm going to show
you how to add wild and crazy sound to your arcade games!

Remember my great Bong program? Flip back to page 42 and
look at the listing. Right side up! Ah-hah! Something very familiar
on lines 210 and 260. SOUND Statements!

SOUND and the IF/ THEN Statement

The Bong listing shows a great example of the IF/ THEN state­
ment's use in introducing sound into an arcade game . It works
like this:

IF, something happens in your game-a ball hits a wall or a
rocket ship takes off-

THEN, the SOUND statement is activated .

And glorious sound accompanies and enhances the action!

138

ZOUNDS

In the Bong program (line 160) , IF the ball hits one of the walls
THEN the program jumps to line 210 and SOUND 0,100,10,10
is played. After the color of the walls is changed in line 250, the
sound is turned off in line 260 and the program returns back to
line 130.

Now that you're an expert sound maker , fool around with the
SOUND statment in line 210. Change it to your heart's desire .
Captain Action was able to make the computer burp when the
ball hit a wall , but you can do better than that! See if you can add
more SOUND statements, more than one Voice, to really make
the program come alive-PLUNK!

Don 't forget to turn off all the SOUND Statements in line 260! If
you use more than one voice, you might try this FOR/ NEXT
turns- 'em-off trick Mrs. Wacko showed you:

FOR OFF = 0 TO 3:S0UND OFF,O,O,O:NEXT OFF

Decay of the PING

A ping sound effect is often used in games to accompany a
screen change. For example, in Simulating a star cruiser's control
console, a ping might sound every time your player changes from
battle stations to standby status. A pinging effect is achieved by

139

DR. C. WACKO'S MIRACLE GUIDE

decaying the sound : that is , playing the sound a number of times
and reducing the volume each play.

PI 1.6 " PIAIG r1N6

o

Here's how to produce a decaying sound . You'll find many uses
for this effect in both games and music.

Ping!

10 FOR DECAY = 15 TO 0 STEP - .8:S0UND
O,60,1O,DECAY:NEXT DECAY

A decay decreases a note's volume while sustaining its pitch .

l
.-'

Vary the rate of volume decrease by changing the negative value
that follows the word STEP in the Ping! program. The smaller the
negative number , like - .05, the longer the decay.

Play around with this concept a little . You should be able to get
Ping! to sound like a note played on a piano! A decay's opposite
number is called an attack An attack increases a note's volume
while sustaining its pitch. Just change STEP - .8 in the Ping! pro­
gram to STEP .8 and you'll be attacked!

Although a decay can be used very effectively for music and
some special sound effects , it isn't practical to use a decay in the
Bong program . If you insert Ping! in place of line 210, the ball will
"freeze" against the wall untill the FOR/ NEXT loop completes its
cycle. Try it and see how the program slows down .

Let's Go to a Ping Subroutine.

In many games the same sound is called for throughout the pro­
gram. In one of my games the player presses the START key to
flip through a variety of screens and maps . A ping sound effect

140

ZOUNDS

accompanies each screen change. You should use a subroutine
to create the ping .

Type in and RUN this little gem to get the idea.

5 . • START key PEEK is on line 10!·
10 IF PEEK(53279) = 6 THEN GOSUB 100
20 GOTO 10
30. ·HERE COMES THE SUBROUTINE!·

100 FOR DECAY = 15 TO 0 STEP - .8:S0UND
0,60,1O,DECAY:NEXT DECAY

200 SOUND O,O,O,O:RETURN

Every time you press the START key, the program branches to
the subroutine in line 100. A ping sounds , then in line 200 the
sound is turned off and the program returns to line 10.

If you are using the same SOUND statement throughout your
program , it's easier to GOSUB to a SOUND subroutine. You'll
save yourself the effort and time of typing in the same SOUND
statements many times , and your program will be more efficient
and use less memory .

Changing SOUND with DATA

Complex and changing sounds can be made by reading values
into the SOUND statement(s). I'll soon show you how to write
some pretty fancy music using this DATA method . First , here's a
gruesome example . I've named this short program Mashed
Monster. Listen and you'll understand why .

Mashed Monster

o . ••• Read PITCH & DISTORTION values from
DATA into SOUND Statement •••

10 FOR X=O TO 3:READ P,D
20 SOUND 0,P,D,12
25 . ••• PAUSE •••
30 FOR PAUSE = 1 TO 200:NEXT PAUSE
40 NEXT X:RESTORE:GOTO 10
50 . ••• The DATA is in pairs: (PITCH,DISTORTION)

•••
100 DATA 60,2,85,10,150,6,100,8

141

DR. C. WACKO'S MIRACLE GUIDE

Even though Snidely's wild about my Mashed Monster program,
most of the people who play your arcade games will have a more
refined musical sense . (No offense to your sense intended,
Snidely.) They deserve to hear the real McCoy. Music with a
beat . Music they can relate to. Music that sounds like music!

See, even c.A. relates to my message 1

Your Game Comes Alive to the SOUND of Music

During the introduction , while the name of your great game is
flashing in brilliant lights on the silver screen , you may want to
add a touch of professionalism , a little music. You may also want
to add music to your game to reward the player when he or she
reaches a new level of play , or wins.

Before you can add music to your game, you'll need to take a
look at some real music first. Musical notation looks like this:

NQlE#- 16 17 I~ "",18 ~IS 2.fp 2/iJ2$ 3Olh1E '!£> Z5 :IS 2(0

MllSlCIoL NI1fE" D Dlf f c: E: clO C C D ECD EBDC

[L4 ~ -~,
~

/.. • ~ ...c:L- .- •
,

...0..- L ' .
I~ ~\4- l' 11 I 1 ,r I 7

V I J I [....- I v:lJ I I -
lr1\TS ~ ~ Yt. 1 ~ 11- 3 ~!i !21JZ-!2li 1 ;3

COORDS GMAJ". CMAJ. FI..\AJ . CMA.:T. GMAJ. C MAJ".

fIX7TE# 9 2 19
CR)Rqt)R~

20 2.1 14

But you really don 't have to know much about music to convert
this short bit of notation into melodious Atari computer music.
I've done most of the work for you!

I've listed the name of each note above its symbol, indicated the
note's duration below it , and shown the chord that accompanies
each group of notes .

Scribble on Your Sheet Music!

The first step in adapting music to your Atari is to take the sheet
music and mark it up like I've done. I didn't know enough about
music to do it on my own, so I had to ask Petunia to help me.
You might ask a friend or music instructor to help you mark up
your sheet music . Or , if you're familiar with music , or really
adventurous, you might want to go ahead and compose your
own music .

142

A NOIE IS A MU6iCA'... SOOND
A~D A C\-IORD I:::' A SCRles OF
"Jt)tJE5 6lENDI Nb "T1J(i:>6T/iE-R,
!WIlE Uf\llAt::£ F8UNIA5
K£TTII CHoRALE·

ZOUNDS

Now that you've scribbled all over the sheet music, you're ready
to play music on your Atari computer.

A Wacked-Out Musical Chart

Here's a handy chart to help you convert musical notes into
SOUND statements.

Listed in the PITCH column are the numbers that will produce
each MUSICAL NOTE when plugged into a SOUND statement.

Because music is played using pure tones, distortion value 10 is
always used in the SOUND statement. To playa middle C your
SOUND statement will look like this:

SOUND 0,60,10,15

To hear what a G note sounds like, for example , just substitute
the number 81 for 60.

MUSICAL
NOTE PITCH NOTE
1 255 B
2 243 C
3 230 C# or Db
4 217 D
5 204 D# or Eb
6 193 E
7 182 F
8 173 F# or Gb
9 162 G
10 153 G# or Ab
11 144 A
12 136 A# or Bb
13 128 B
14 121 C
15 114 C# or Db
16 108 D
17 102 D# or Eb
18 96 E
19 91 F
20 85 F# or Gb
21 81 G
22 76 G# or Ab
23 72 A

143

DR. C. WACKO'S MIRACLE GUIDE

24 68 A# or Bb
25 64 B
26 60 C
27 57 C# or Db
28 53 D
29 50 D# or Eb
30 47 E
31 45 F
32 42 F# or Gb
33 40 G
34 37 G# or Ab
35 35 A
36 33 A# or Bb
37 31 B
38 29 C
39 27 C# or Db
40 26 D
41 24 D# or Eb
42 23 E
43 22 F
44 21 F# or Gb
45 19 G
46 18 G# or Ab
47 17 A
48 16 A# or Bb
49 15 B
50 14 C

In this chart, note 1 is a low B, and note 50 is a high C. I've
assigned the numbers 1 through 50 to the pitch values of each
note so you'll be able to produce chords by using my patented
"Add-a-Chord" method . I'll demonstrate this soon .

Wacko's Musical Recipe

Creating beautiful music is like preparing a gourmet meal. A
pinch of this and a sprinkle of that, all combined in the correct
proportions and, voila, a masterpiece!

''The Sting," with Tofu Pasta and Sauce
(makes one serving)

You'll need :

1. Musical notes placed in a lightly oiled array

144

ZOUNDS

2. A routine to play individual notes
3 . A routine to play chords
4. A routine to time each note's duration

Combine all ingredients in your Atari computer, stir well, and
simmer a few minutes. That's all there is to it! Let's take it step-by­
step:

1. Place notes into an array.

First we'll convert my Wacked-Out Musical Chart into an array .
This will assign NOTES 1 through 50 to PITCHES 255 to 14.
Here's the short routine that'll do this . We'll add this to the other
ingredients as we cook up our tune , so use the line numbers I've
assigned.

Type in this short routine. Don't forget to stir well!

PITCH Array Routine

60 DIM N(50): .••• DIMENSION ARRAY •••
70 FOR NBR = 1 TO 50:READ

PITCH:N(NBR) = PITCH:NEXT NBR
80 . ••• PITCH ARRAY DATA • • • •
90 DATA 255, 243, 230, 217, 204, 193, 182, 173, 162,

153, 144, 136, 128, 121, 114, 108, 102, 96, 91, 85,
81, 76, 72, 68, 64

100 DATA 60, 57, 53, 50, 47, 45, 42, 40, 37, 35,33, 31,
29, 27, 26, 24, 23, 22, 21, 19, 18, 17, 16, 15, 14

If you'd like to see how this routine works, and what it does, just
add this line to the PITCH Array Routine, and RUN it!

75 FOR X = 1 TO 50:PRINT " N(";X;") = ";N(X):NEXT
X:STOP

Voila' You've just produced a copy of my Wacked-Out Musical
Chart on your computer!

So you won't have to retype this short routine, remove line 45,
then LIST it to your disk or cassette like this:

Disk owners: LIST'D:ARRAY" <RETURN>

Cassette owners: LIST"C:" <RETURN>

145

DR. C. WACKO'S MIRACLE GUIDE

2 . A routine to play individual notes

This one's really simple :

SOUND 0,N(P),l0,14

Each individual note will be played using voice 0 , have a PITCH
selected from the array you've just created (N (P)) , be a pure tone
(10) , and have a loudness of 14.

3 . A Routine to Play Chords

This is a two-line routine. Here's the first line:

10 PO = N(P):P1 = N(CRD):P2 = N(CRD + 4):
P3 = N(CRD + 7)

The first statement, PO = N (P) , is used to produce a single note in
SOUND O.

The second statement, PI = N (CRD), is used in SOUND 1, to
produce the beginning note of each chord.

In statements three and four harmony is achieved by adding 4
and 7 to the beginning chord note.

Here's the second line of this routine to show you how it all fits
together:

20 SOUND 0,PO,l0,6:S0UND 1,P1,l0,4:S0UND
2,P2,l0,4:S0UND 3,P3,10,4

Now we'll combine these two ingredients , add a few spices , and
I'll show you how chords are produced.

Chords!

5 GOTO 60
10 PO = N(P):P1 = N(CRD):P2 = N(CRD + 4)

:P3 = N(CRD + 7)
20 SOUND 0,PO,10,6:S0UND 1,P1,10,4:S0UND

2,P2,10,4:S0UND 3,P3,10,4
30 FOR PAUSE = 1 TO 500: NEXT PAUSE
40 IF CRD = 14 AND P = 26 THEN FOR PAUSE = 0 TO

500:NEXT PAUSE:FOR OFF = 0 TO 3:S0UND

146

r-------:'?'" I UJAtJlJA TRI(
I..O()D/oJEBS 34'-!

81G 6AAI6
cwe

ZOUNDS

OFF,O,O,O:NEXT OFF:RESTORE 200
50 GOTO 200
60 DIM N(50): .••• DIMENSION ARRAY •••
70 FOR NBR = 1 TO 50:READ

PITCH:N(NBR) = PITCH:NEXT NBR
80 . ••• PITCH ARRAY DATA ••••
90 DATA 255,243,230,217,204,193,182,173,162,

153, 144, 136, 128, 121, 114, 108, 102, 96, 91, 85,
81, 76, 72, 68, 64

100 DATA 60, 57, 53, 50, 47, 45, 42, 40, 37, 35, 33, 31,
29, 27, 26, 24, 23, 22, 21, 19, 18, 17, 16, 15, 14

190 . ••• CORD & NOTE DATA •••
200 READ CRD,P:GOTO 10
210 DATA 2, 14
220 DATA 4,16
230 DATA 6, 18
240 DATA 7,19
250 DATA 9,21
260 DATA 11, 23
270 DATA 13, 25
280 DATA 14, 26

RUN this Chords program; it continuously plays chords from low
to middle C.

I've added new lines 5 , 30 through 50, and most important the
Chord & Note Data in lines 200 through 280 so you'll be able to
hear chords played on your Atari computer.

We'll use all of these concepts in the final composition . Look at
my Wacked-Out Music Chart and I'll show you how the Chords
program works . Beginning in line 60, the program places notes
into an array . Then , in line 200, the first line of data-21O DATA
2 , 14-is read . The number 2 represents PITCH 243, the
musical note low C, the number 14 represents PITCH 121 ,
middle C .

After reading this line of data, the program goes to line 10 where
the variables CRD and P are replaced with the values just read in
line 210.

The chord is played in line 20 , pauses for a few seconds in line
30, then in line 50 goes back to line 200 for the next chord . Line
40 waits for the DATA values to reach 14 and 26 . When they do ,
the last note is held a little longer then the rest; all four voices are

147

DR. C. WACKO'S MIRACLE GUIDE

turned off; the DATA is restored; and the chords are played once
again, beginning with low C.

Changing the DATA in lines 210 through 280 can produce some
very laid-back effects!

4 . The final ingredient: a routine to time each note's
duration

Now that your kitchen is a mess, its time to add the final
ingredient.

Ms. Peeky and Slow Poke discovered PEEK(540) and POKE
540, the final ingredient. When you POKE a number into loca­
tion 540, your Atari will count down from that number in 1/ 6Oth­
second steps until it reaches O. These means that if you POKE
540 with 60 (POKE 540,60) , your Atari will count down to 0 in 1
second.

POKE 540 will become the main ingredient of a routine to time
each note's duration.

Here's a short example that illustrates this mystical
phenomena.

o REM ••• MYSTICAL TIMING ROUTINE •••
10 INPUT WAIT
20 IF WAIT>255 OR WAIT<O THEN WAIT = O:GOTO 10
30 SOUND 0,60,10,14
40 POKE 540, WAIT
50 IF PEEK(540)<>0 THEN GOTO 50
60 SOUND 0,0,0,0
70 GOTO 10

First RUN this routine . Next , enter a number between 1 and 255
when you see the prompt(?), then press RETURN. The higher
the value you enter, the longer the note's duration.

Lines 40 and 50 are the heart of this short routine . Line 40
counts down from the number you've entered, WAIT to O. Line
50 won't allow the program to go to line 60 , which turns off the
sound, until the value in location 540 equals O.

148

NOTE

0

o·
r
J
J

~~C-E DURATION

::: 'aD = 4 BeATS
::: GO = ~ SEAiS

= 40 = 2 BEA15

= 20 == I SCAT
10 = ~8EAT

MAI<e SURE. TOll-{fE Tll6 PeRIODS
IN ALL U ~es 1\-I.<!T wore LIKE THIS·

~O ••• " V.ariable5~/
OR (..IKe THIS;

'22..'
lH€ f'~100 WLU. BE fl.61'tACED \llTfH
we \.OOItt> REM WllaJ 'lXJ usr
~.

ZOUNDS

The Value of WAIT

In most cases, unless the music doesn't sound right to me, I use
these values in DATA statements to time the duration of each
note .

Combine All Ingredients and Simmer

Hold on to your chef's hat. This is the BIGGIE!

Here's the complete program listing , the one you've been waiting
for. This concoction includes the four ingredients we've
discussed:

1. Musical notes placed in a lightly oiled array.
2. One routine that plays individual notes .
3. One routine that plays chords.
4. One routine that times each note's duration .

Plus , a few spices and herbs .

Presenting! A Wacko Masterpiece:
"The Sting," with Tofu Pasta and Sauce

10 GRAPHICS I:POKE 712,148:POSITION 5,10:PRINT
#6;"THE STING"

20 . ••• Variables: P = Pitch - N = Note - CRD = Cord
-WAIT = Note's duration •••

22.
24.
30 DIM N(50): .••• DIMENSION ARRAY ••
32.
34.
40 . ••• 1. PLACE NOTES IN ARRAY •••

149

DR. C. WACKO'S MIRACLE GUIDE

50 FOR NBR = 1 TO 50:READ
PITCH:N(NBR) = PITCH:NEXT NBR:GOTO 180

52.
54.
60 .••• 2. ROUTINE THAT PLAYS INDMDUAL NOTES

•••
70 SOUND 0,N(P),1O,14:GOTO 120
72.
74.
80 . • •• 3. ROUTINE THAT PLAYS CORDS •••
90 PO = N(P):P1 = N(CRD):P2 = N(CRD + 4):P3 = N(CRD + 7)

100 SOUND 0,PO,IO,6:S0UND 1,P1,l0,4:S0UND
2,P2,l0,4:S0UND 3,P3,10,4

102.
104.
110 .••• 4. ROUTINE TO TIME EACH NOTE'S

DURATION •••
120 POKE 540, WAIT
130 IF PEEK(540)<>O THEN POKE 77,O:GOTO 130
140 SOUND O,O,O,O:RETURN
142.
144 .
150 . • •• END OF MUSIC - PRESS START

ROUTINE •••
160 FOR OFF = 0 TO 3:S0UND OFF,O,O,O:NEXT

OFF:POKE 752,l:PRINT CHR$(125):PRINT
" PRESS START TO REPLAY"

170 RESTORE 250:IF PEEK(53279)<>6 THEN GOTO 170
180 GOTO 240
182.
184 .
190 .••• INITIALIZING DATA ••• •
200 DATA 255, 243, 230, 217, 204,193,182,173,162,

153, 144, 136, 128, 121, 114, 108, 102, 96, 91, 85, 81,
76,72,68,64

210 DATA 60,57,53,50,47,45,42,40,37,35,33,31,
29, 27, 26, 24, 23, 22, 21, 19, 18, 17, 16, 15, 14212.

214.
220 . • •• READ & PLAY CORDS, PITCH AND WAIT

DATA·· •
230.
240 READ CRD, P,WAIT:GOSUB 90:READ

P,WAIT:GOSUB 70
250 DATA 9, 16, 10, 17, 10
260.

150

ZOUNDS

270 READ CRD,P,WAlT:GOSUB 90:FOR X= 1 TO
4:READ P,WAlT:GOSUB 70:NEXT X

280 DATA 2, 18, 10, 26, 23, 18, 10, 26, 31, 18, 20
290.
300 READ CRD,P,WAlT:GOSUB 90:FOR X = 1 TO

2:READ P,WAlT:GOSUB 70:NEXT X
310 DATA 19, 26, 60, 26, 10, 28, 10
320.
330 READ CRD,P,WAlT:GOSUB 90:FOR X = 1 TO

2:READ P,WAlT:GOSUB 70:NEXT X
340 DATA 26, 30, 10, 26, 20, 28, 10
350.
360 READ CRD,P,WAlT:GOSUB 90:FOR X = 1 TO

2:READ P,WAlT:GOSUB 70:NEXT X
370 DATA 21, 30, 10, 25, 10, 28, 20
380.
390 READ CRD,P,WAlT:GOSUB 90:FOR X = 1 TO

2:READ P,WAlT:GOSUB 70:NEXT X
400 DATA 14, 26, 20, 9, 20, 2, 40
410.
420 GOTO 160

Ready to add the next stanza of this great classic? Here's the
musical notation.

tvcf[ES DD1f E C e C I: c A 6 F1f A C E 10 D C A D.

(3EAl"'5 .Ii fI2 I 2- I 2. 1- 3 !2~ Yz.YzY;z.!2 ~~~~ 3

CHOI<PS 6 MA,:J.I C MA;:r. F MA:r. D MAJ. I SMAJ.

1(fTE*
FOII()lOIIP 9 2 J9 16 9

To add the first chord and two notes of the second stanza just add
new lines 420 , 430 and 440 as I've done below:

420 READ CRD,P,WAIT:GOSUB 90:READ
P,WAIT:GOSUB 70:GOTO 160

430 DATA 9, 16, 10, 17, 10

440 GOTO 160

151

DR. C. WACKO'S MIRACLE GUIDE

The chord and two notes represented in new lines 420 and 430
are the same notes that began the first stanza of "The Sting. "

The first statement in line 420 READs the first three numbers of
DATA in line 430: 9, 16, and 10. The number 9 is the note
number that makes up the G major chord (look at the Wacked­
Out Music Chart). The number 16 is the first note in the stanza ,
D. The number 10 is used to time the duration of the D note.

After READing these three values, the program GOSUBs to line
90, where the G major chord and single D note are played .
When PEEK(540) on line 130 reaches 0 , the sound is turned off
in line 140 and the program returns to the second statement in
line 420.

The second statement in line 420 READs the last two numbers of
DATA in line 430: 17 and 10. The number 17 is the second note
of the stanza, D#. The number 10 is used to time the duration of
this note.

After READing these two notes, the program GOSUBs to line 70
where the single D# note is played. After the SOUND statement
on line 70 is turned on, the program jumps to the timing routine
on line 120, and when PEEK(540) reaches 0, the sound is turned
off in line 140. The program returns to line 430 which sends it on
its way to the END OF MUSIC - PRESS START ROUTINE on
line 160. WHEEEW!

Cook Up a Tune of Your Own!

I've given you the basic ingredients used to cook up great music.
But before you cook up a tune of your own, study the way the
entire recipe goes together by stepping through the flow of this
program as I've done above.

Bon appetit!

A Bonus Balonous Section

And now, by special request from Captain Action, I've added a
Bonus Balonous Section to this glorious book. In it you'll learn all
the mysteries of Player-Missile graphics . Then you'll be treated to
the bonus arcade game Myrtle the Turtle!

152

HAS O,.r-,C,AU-'-f SAT T~Fboc;" AT
/...€ ST A PO~·TlOr..) aF O~ . W"'Ck::o's
t..6(."tV,q,E5, t..Of\I(jj, '6'6ec.Hes.~o TA.lf<So,
I..00I'£0 AT ~IJ IOClleOl6l.E NVMaQ,OF &A~

JO~es . AND M4~8E """N ceAIIllt1> .>014£.
ll4.llJ". 'too ~46e t:'"'n:"'N L.1k:eO IT, w,""CH

15 P01li''-ITIA'"'' 6AO Foil: '{oU. f,.OO~ AT
JIJ""Ojt, J 5£E. '!

ZOUNDS

These and more exciting adventures are awaiting you when you
turn the page and wander through my bogus Bonus Section.

STOP ... HALT ... ARRETEZ-VOUS!

Before you start wandering around aimlessly, I'd like to ask you
to STOP!

Did you stop? Thanks .

Here's the most EXCITING program that's been presented in this
book so far! It's called Shootout. Yep , you guessed it, it's a two­
player arcade game. Two players , each with his or her own
joystick, maneuver two animated characters. You fire at your op­
ponent by pointing the joystick in the other guy's direction while
pressing the trigger. The first player to hit the other fifteen times
wins the shootout!

To help refresh your memory about the wondrous elements that
make up this game I've added helpful REM statements
throughout the program. Plus drawings of the redefined
characters and a complete description of the shoot sequence! Flip
back to previous chapters as you work through this program and
review any material that might be a little fuzzy .

Preppie of Computer Wacko Science

Once you're unfuzzed, fill in this honorary certificate and award
yourself the "Preppie of Computer Wacko Science." It's time to
party! Congratulations!

153

DR. C. WACKO'S MIRACLE GUIDE

Delve into this program, improve it , make it worse , change the
sound, the colors, the characters. Design your own game! You
can do it! YOU'RE A PREPPIE OF COMPUTER WACKO
SCIENCE!

The H.D.C.W.S.

Want to get your Humongous Degree of Computer Wacko
Science? After you've mastered Shootout, move on to the Bonus
Section! Congratulations again!

10 OIM X(15),Y(15)
20 GOSUB 770

Shootout

25 GRAPHICS 18:POKE 712,45:GOTO 670
30 GRAPHICS 18:POKE 756,ST j256:POKE

708,30:POKE 709,92:POKE 711,158:POKE
710,205:POKE 712,128

40 GOSUB 690
50 Xl = 0:Y1 = 0:X2 = 19:Y2 = 5:Z1 = 32:Z2 = 32:

Sl =0:S2=0
60 XB1 =X1:YB1 =Y1:XB2=X2:YB2=Y2:A=0:

B = O:C = 0:0 = O:E = 0
70 COLOR 32:0 = 0 + l:IF 0>1 THEN 0 = 0
80 PLOT XB1,YB1:PLOT XB2,YB2
85 . Weird character 1
90 COLOR 166 + 0

100 PLOT X1,Y1
105 . Weird character 2
110 COLOR 136 + 0
120 PLOT X2, Y2
130 GOSUB 310
135 . If one of the two weirdos is hit, the program goes to

line 470 and explosion takes place.
140 IF AlSO = 1 THEN X3 = X1:Y3 = Y1:S2 = S2 + l:GOTO

470
150 IF BISO = 1 THEN X3 = X2:Y3 = Y2:S1 = Sl + l:GOTO

470
155.
160 XB1 = X1:YB1 = Y1:XB2 = X2:YB2 = Y2
170 A=STICK(O):B=STICK(l):IF A<>15 THEN POKE

77,0
180 F = F + l:IF F>3 THEN G = G + l:F = O:IF G>3 THEN

G=O

154

ZOUNDS

190 SOUND 0,G·5 - F + 60,1O,F + G:SOUNO
1,G·4 - F·4 + 0 + 55,10,0.4 + 1

200 Xl = Xl + X(A):X2 = X2 + X(B)
210 Y1 = Y1 + Y(A):Y2 = Y2 + Y(B)
220 IF X1<0 OR X1>19 THEN Xl = 19 -XB1
230 IF Y1<0 OR Y1>11 THEN Y1 = 11- YB1
240 IF X2<0 OR X2> 19 THEN X2 = 19 - XB2
250 IF Y2<0 OR Y2>11 THEN Y2 = 11- YB2
255 . Keep two weirdos within boundaries of maze.
260 LOCATE X1,Y1,Zl:LOCATE X2,Y2,Z2
270 IF Zl<>32 THEN Xl =XB1:Y1 =YB1
280 IF Z2<>32 THEN X2 = XB2:Y2 = YB2
285 .
290 SOUND O,O,O,O:SOUNO 1,0,0,0
300 GOTO 70
310 AlSO = O:BISO = O:A = STRIG(O):B = STRIG(l):IF A = 0

THEN GOSUB 370:IF BISO = 1 THEN RETURN
315 . Weirdo 2 shoots
320 IF B = 0 THEN GOSUB 420
325.
330 RETURN
340 AlSO = O:BISO = O:A = STRIG(O):B = STRIG(l):IF B = 0

THEN GOSUB 420:IF AlSO = 1 THEN RETURN
345 . Weirdo 1 shoots
350 IF A = 0 THEN GOSUB 370
355.
360 RETURN
365 . You've got to point in direction of fire or RETURN to

350
370 F = STICK(O):IF F = 15 THEN RETURN
375.
380 FOR A = 1 TO 4:X3 = Xl + X(F).A:Y3 = Y1 + Y(F)·A:IF

X3<0 OR Y3<0 OR X3>19 OR Y3>11 THEN 410
390 LOCATE X3, Y3,Z3:COLOR 37 :PLOT X3, Y3:S0UNO

0,X3 + Y3 + 20 + A.2,10,10:COLOR Z3:S0UNO
O,O,O,O:PLOT X3,Y3

400 IF Z3 = 136 + 0 THEN BISO = l:POP :RETURN
410 NEXT A:RETURN
415 . You've got to point in direction of fire or RETURN to

350
420 F = STICK(l):IF F = 15 THEN RETURN
425.
430 FOR A = 1 TO 4:X3 = X2 + X(F)· A: Y3 = Y2 + Y(F)· A:IF

X3<0 OR Y3<0 OR X3>19 OR Y3>11 THEN 410

155

DR. C. WACKO'S MIRACLE GUIDE

440 LOCATE X3,Y3,Z3:COLOR 37:PLOT X3,Y3:S0UNO
0,X3 + Y3 + 10 + A-3,10,10:COLOR Z3:S0UNO
O,O,O,O:PLOT X3,Y3

450 IF Z3 = 166 + 0 THEN AlSO = I:POP :RETURN
460 NEXT A:RETURN
465 . One of the weirdos has been hit! Explosion sequence.
470 FOR A= 1 TO 3:FOR B = 1 TO 2:FOR Z3=0 TO

I:S0UNO 0,Z3-10 + B-5 + A-20,
12,A-2 + B + Z3:COLOR 43 + Z3:PLOT X3,Y3

480 NEXT Z3:NEXT B:NEXT A:COLOR 32:PLOT
X3,Y3:S0UNO 0,0,0,0

490 COLOR 32:PLOT XBl,YBl:PLOT XB2,YB2:PLOT
Xl,Yl:PLOT X2,Y2

495 . Randomly position weirdo at a new screen location.
500 A = INT(RNO(0)-9 + 1):ON A GOSUB

520,530,540,550,560,570,580,590,600
510 GOTO 610
520 X3 = 0:Y3 = O:RETURN
530 X3 = 9:Y3 = O:RETURN
540 X3 = 19:Y3 = O:RETURN
550 X3 = 0:Y3 = 6:RETURN
560 X3 = 19:Y3 = 5:RETURN
570 X3 = 0:Y3 = l1:RETURN
580 X3 = 10:Y3 = l1:RETURN
590 X3 = 19:Y3 = l1:RETURN
600 X3 = 9: Y3 = 5:RETURN
605 .
610 IF AlSO = 1 THEN AlSO = O:Xl = X3:Yl = Y3
620 IF BISO = 1 THEN BISO = 0:X2 = X3:Y2 = Y3
625 . Print the score.
630 POSITION 4,0:PRINT #6;SI;:POSITION 14,0:PRINT

#6;S2;
635 . Winning sequence.
640 IF SI>14 OR S2>14 THEN FOR A=O TO 3:S0UNO

A,O,O,O:NEXT A:GOTO 670
645 . Color and sound accompany each score.
650 FOR A = 0 TO 6:FOR B = 0 TO 4:S0UNO

0,77 - A-I0 - B-4,10,10:POKE
712,77-A-I0-B-4:NEXT B:NEXT A

660 SOUND 0,100,10,15:POKE 712,15:FOR A = 0 TO
10:NEXT A:SOUNO O,O,O,O:POKE 712,128:GOTO 70

670 IF PEEK(53279)<>6 THEN POSITION 5,5:PRINT
#6;"PRESS START':POKE 709,PEEK(20):GOTO 670

675 . Begin game.
680 GOTO 30

156

ZOUNDS

685 . Draw the playing field.
690 COLOR 10:PLOT 2,0:DRAWTO 8,0:PLOT

11,0:DRAWTO 17,0:PLOT 2,11:DRAWTO 8,11:PLOT
11,11:DRAWTO 17,11

700 PLOT 2,2:DRAWTO 0,2:DRAWTO O,4:PLOT
0,7:DRAWTO 0,9:DRAWTO 2,9

710 PLOT 17,2:DRAWTO 19,2:DRAWTO 19,4:PLOT
19,7:DRAWTO 19,9:DRAWTO 17,9

720 PLOT 4,1:DRAWTO 4,1O:PLOT 15,1:DRAWTO
15,10:PLOT 5,4:DRAWTO 7,4:DRAWTO
7,7:DRAWTO 5,7

730 PLOT 14,4:DRAWTO 12,4:DRAWTO 12,7:DRAWTO
14,7:PLOT 2,4:DRAWTO 2,7:PLOT 17,4:DRAWTO
17,7

740 PLOT 7,2:DRAWTO 12,2:PLOT 7,9:DRAWTO
12,9:PLOT 9,3:PLOT 9,4:PLOT 10,7:PLOT 10,8

750 COLOR 32:PLOT 4,5:PLOT 7,6:PLOT 12,5:PLOT 15,6
60 RETURN
765.
770 GRAPHICS 18:POKE 712,148:POSITION 6,4:PRINT

#6;"shoot out"
775 POSITION 9,5:PRINT #6;"is":POSITION 7,6:PRINT

#6;"loading":ST = (PEEK(742) - 2)· 256
778 . Character redefinition
780 FOR A=O TO 511:POKE

A + ST,PEEK(57344 + A):NEXT A
790 FOR A = 1 TO 8:FOR B = 0 TO 7:READ C:POKE

ST + (A + 4)08 + B,C:NEXT B:NEXT A
795 . Data in to an array to control bullet's direction.
800 FOR A = 1 TO 15:READ B,C:X(A) = B:Y(A) = C:NEXT A
810 RETURN
815 . Character data.
820 DATA 0,0,52,28,56,44,0,0
830 DATA 60,102,36,24,255,24,90,126
840 DATA 0,0,0,60,102,36,90,126
850 DATA 24,0,24,31,24,24,152,248
860 DATA 24,0,24,248,24,24,25,31
870 DATA 255,129,129,153,153,129,129,255
880 DATA 154,109,91,180,75,148,91,165
890 DATA 101,146,164,75,180,107,164,90
895 . Bullet's direction of movement data.
900 DATA 0,0,0,0,0,0,0,0,1,1,1, -1,1,0,0,0, -1,

1, -1, -1, -1,0,0,0,0,1,0, -1,0,0

157

DR. C. WACKO'S MIRACLE GUIDE

Important programming note : Enter all Underlined words bet­
ween quotation marks as inverse characters. Press the Atari sym­
bol key to do this. One example of this usage is PRESS START in
line 670.

Shootout Explained

Here are the characters used in Shoot-Out. Their data is listed in
lines 820 through 890.

EXPl.OSION
=154
~IO'I

''II
'IU>

' 75
'IQ-g

~90

'IroS
CO~OR43

:101

' 14(..

,ItA
'15
'Igo

"07

,'1.4
,qo

COLO~"lq.

The two weirdos are animated in lines 70 through 130. Weird
character 1 is either COLOR 166 or 167. Weird character 2 is
printed as either COLOR 136 or 137 .

COLOR 10 is used in lines 690 through 750 to draw the maze.

COLOR 136 prints the bullet in lines 390 and 440.

The explosion occurs in line 470 flipping between COLOR 43
and 44.

158

ZOUNDS

To look at each redefined character , RUN Shootout, press
BREAK and enter this code in the immediate mode:

GRAPHICS 2:POKE 756,ST /256:POSITION 5,5:PRINT
CHR$(136) <RETURN>.

To see any character displayed , place its ATASCII value in the
parentheses after CHR$.

To speed things up , and flip through the entire character set, RUN
Shootout , then press break GOTO 1000, this one line program :

1000 GRAPHICS 2:POKE 756,ST /256:FOR A = 0 TO
255:POSITION 5,5:PRINT CHR$(A):FOR PAUSE = 1
TO 200:NEXT PAUSE:NEXT A:STOP

The Shoot' em Sequence

The data in Line 900, loaded into the X and Y arrays in the
FOR/ NEXT loops in line 800, is cleverly used to send the bullet
flying in the direction that the joystick is pointed. Here's how this
works:

First two arrays (X and Y) are loaded with data from line 900.
Here's what the arrays look like , and what they do:

X(O), Y(O) :
X(1) , Y(O):
X(2) , Y(O):
X(3), Y(O) :
X(4), Y(O):
XiS) = 1, Y(S) = 1:
X(6) = 1, Y(6) = -1:
X(7) = 1, Y(7) =0:
X(8), Y(8):
X(9) = -1 , Y(9) = 1:
X(10) = -1 , Y(lO) = -1:
X(ll) = -1 , Y(ll) = 0:
X(12), Y(12):
X(13) = 0 , Y(13) = 1:
X(14) = 0 , Y(14) = -1:
X(IS) , Y(IS) :

159

Not used
Not used
Not used
Not used
Not used
DOWN RIGHT
UP RIGHT
RIGHT
Not used
DOWN LEFT
UP LEFT

LEFT
Not used
DOWN
UP
Not used

DR. C. WACKO'S MIRACLE GUIDE

Turn back to Chapter 6 , page 100. It shows the numbers
generated when the joystick is pOinted in each of its eight possible
directions. Now look at lines 370 and 380 of Shootout . In line
370 F equals STICK(O) and in line 380 the bullet's direction of
movement , X3, is determined by the the numbers returned in
X(F) and Y(F) - the arrays we've just set up. Pretty sneaky!

Line 380 also determines how far the bu llet will travel. I have it set
for 4 spaces (A = 1 to 4). To see what happens when the bullet
trave ls further , change this statement to A = 1 to 7.

Now that you have a grasp of the fundamentals , here's a step by
step, qUicky tour of the shootem' up sequence:

Line 310: If weird character 1 fires a bullet the program goes to
line 370 .

Line 370: If the player is not pointing the joystick, the program
RETURNs back to line 310.

Line 380: The bullet travels in the direction that the joystick is
pointed.

Lines 390 and 400: A LOCATE statement is used to see if weird
character 2 has been hit by the bullet. Z3 is the bullet's location
and COLOR 136 + D is weird character 2 . In line 400 , IF
Z3 = 136 + 6 THEN BISD = 1. (BISD stands for "B" Is Dead.
AISD stands for "A" Is Dead) The POP makes the program skip
past the last RETURN at line 360 and move up to line 140.

In line 150, since BISD now equals 1, the bullet's position is made
equal to weird character 2's position and weird character 1's score
(SI) is updated. Then the program jumps to line 470 and the ex­
plosion sequence takes place.

You should now be familiar with a ll the elements that make up
this exciting game. Take your time and work through the
Shootout program to get a feeling for the game's structure , then
modify it to your heart's content. Captain Action thinks it's a real
winner!

160

ZOUNDS

DR. C. WACKO'S MIRACLE GUIDE

10
Player-Missile Graphics Made Simple

Your Atari computer is smarter than you think. It's really two
computers tucked cleverly into one sleek and trendy package .

One microprocessor chip does all the things that other computers
do . Dull stuff, like adding, subtracting , controlling sound , and
basic graphics , and just being a stick-in-the-mud regular "good ole
boy. " Ho-hum .

The Frantic ANTIC!

The other microprocessor, which we Atari wackos call ANTIC, is
Captain Action's favorite. It contains all the pizzazz, all the flash ,
dash, smash, and futuristic stuff that's lacking in most other com­
puters . The ANTIC microprocessor's primary job is controlling
your TV or monitor's display . But here's the exciting news-it also
contains what I like to call the Frantic ANTIC component , the
part of this superchip that you can program to generate Player­
Missile graphics!

162

PLAYER-MISSILE GRAPHICS

Four Players and Four Missiles

The Frantic ANTIC chip contains four Players and four Missiles.
You can shape each Player exactly as you would a redefined
character , assign a color to it, plop it on the screen, and move it
around! You can do the same with the four Missiles; each missile's
color is the same as its corresponding Player.

What This Means to You

Players and Missiles will :

• Add up to four additional colors to your screen.
• Add up to eight additional movable objects to your screen .
• Move characters faster, without slowing down your pro­

gram, than BASIC can.
• Add more excitement and pizazz to your game!

Players and Missiles can be displayed in any graphics mode, no
restrictions!. You design them in ANTIC's memory just as they'll
appear on your screen. ANTIC then flips them directly onto the
TV screen , regardless of what graphics mode is being displayed.

Things You Can Do with Players and Missiles

You can use Players and Missiles to draw shapes on the screen
(they don't always have to move around) and, by taking advan­
tage of the four extra colors, you can make your games come
vibrantly alive.

You can use Players and Missiles to add more movable characters
to your games , and Player-Missile characters will really zip and
zap across your screen!

Because Players and Missiles glide over your screen's display, you
can use them as movable cursors. Suppose you want to create a
"menu" that lets the user make his or her selection using a joystick
to maneuver the cursor over a numbered area. When the cursor
is positioned over the selection, the user presses the joystick's trig­
ger and voila-the choice is noted by the clever computer and
acted upon . Who says you have to communicate with the com­
puter via the keyboard?

163

DR. C. WACKO'S MIRACLE GUIDE

Wacko's Player-Missile Miracle Guide

You'll find my Player-Missile Miracle Guide on page 185. This
guide is a valuable and necessary tool that you' ll refer to often as
you learn all about Player-Missile graphics. Right now it might just
look like a scrambled set of number-filled charts . Have no fear.
Dr . Wacko will show you how to use these charts with complete
confidence as you are creating wondrous images on your TV's
screen.

To set up and use Player-Missile graphics , you follow a precise set
of instructions. I'll explain these instructions step by step, as I take
you on a tour of my Player-Missile Miracle Guide. Using Player­
Missiles in your arcade games is a snap for bona-fide wackos like
me and you!

And , after you learn how to place Players and Missiles on your
screen , draw with them , and make them zip around, you'll be
well on your way Toward your Humongous Degree of Computer
Wacko Science.

I could spend the next twenty pages talking about all the wonder­
ful things Player-Missiles can do for your games . But the best way
to appreciate their power is to watch them in action!

Everything you need to know about Player-Missile graphics is
cleverly included in my Know-It-All program below. Enter this
short demonstration program , RUN it , watch it , or call in your
friends and neighbors to watch it. Then , whenever you're ready,
I'll show you how this program works and we'll experiment with
some exciting new concepts .

Know-It-All

10 GRAPHICS 3 + 16
20 FOR X = 16 TO 24:FOR Y = 0 TO 23:COLOR 3:PLOT

X,Y:NEXT Y:NEXT X
25.
30 MEMTOP = PEEK(741) + 256-PEEK(742)-1
40 PMBASE = INT((MEMTOP -1024)/1024)-1024
50 ADJTOP = PMBASE + 384
60 POKE 742,INT(ADJTOP /256):POKE 741,

ADJTOP - 256- PEEK(742)
65.

164

PLAYER-MISSILE GRAPHICS

70 POKE 54279,PMBASEj 256
80 POKE 53277,2
90 POKE 559,34 + 8

100 PO = PMBASE + 512
110 FOR A = PO TO PO + 128:POKE A,O:NEXT A
120 FOR A = PO + 60 TO PO + 67:READ B:POKE

A,B:NEXTA
130 POKE 53256,3
140 POKE 623,1
150 POKE 704,108
160 POKE 53248,PEEK(20):GOTO 160
170 DATA 60,126,129,153,255,36,66,129

Right, Ms. Peeky, Wackenstein is back. But this time , although
he's still quite a character , he is not a redefined character.

That crazed and bleary-eyed monster is a Player-Missile shape!

See how effortlessly he glides across the screen in front of the blue
bar (drawn in line 20) at the center of the screen? Amazing , isn 't
it?

Using the ANTIC chip to create gliding Player-Missile monsters is
~--------' an exact science. But it's easy because all you've got to do is

follow the same specific set of instructions each time you want
ANTIC to become frantic!

Here's where my Player-Missile Miracle guide becomes in­
valuable. Refer to it as we glide through the Know-It-All program.

165

DR. C. WACKO'S MIRACLE GUIDE

Player-Missile Memory Allocation

PLAVER- MISSILE MEMORY ALliJCATION
HIGH
RESO/....UTION

+204'8 r PLAI{£R 3

F;MTot'
+\7 q2...

PLA '(cR z.
+ \ 53~

Lo W P~,A'{C:R 1

RESOL U110N +IZ'W
204'8

T
+1024

PLAVER 3 Pt.A'(ER.O B'fIES
+ -oQ0 +1020 PtAVt::R z.
+T0<3

P~I(E:~ I 1024 + ~o
fW1E'S + 512- +7"'3

1
+ 384

UNV5ED
UMJ'SED

PM BASE PMB~SE -

BIlSI<:' BASIc..
p'RCGRi\M P~R4/111

~--------'LoWMEIV\

RAMTOP, the top of your Atari's RAM memory , is at the top of
these charts, and PMBASE (Short for Player-Missile Base) is at
the bottom . So far so good.

I'm going to show you how to squeeze the data that defines your
Player-Missiles between RAMTOP and PMBASE . But first , a little
chartology .

Low-Resolution Players and Missiles

You can tell ANTIC to display either high- or low-resolution
Players and Missiles, depending on how you want them to look
and how much memory is available to you.

Using low-resolution Player-Missile shapes in your game pro­
grams is a great way to create spiffy screen images (rockets,
scenery , and big , big monsters like Wackenstein) without using

166

PLAYER-MISSILE GRAPHICS

lots of memory! However, you can't draw really fine, detailed pic­
tures . For those of you who really want to know, the low­
resolution option skips every other screen line as it draws each
shape on your television.

The Low-Resolution Player-Missile Memory Allocation chart
shows that you've got to set aside 1024 bytes (lK) of memory for
low-resolution Players and Missiles. The data that defines each
Player uses 128 bytes of memory . The data for each Missile uses
32 bytes. There is also a 384-byte area marked UNUSED at the
bottom of the chart. But I'll show you how to use this UNUSED
memory.

High-Resolution Players and Missiles

The high-resolution option packs twice the number of data-filled
lines in the same screen area as a low-resolution shape . These ad­
ditional screen lines let you draw intricately detailed designs and
characters. But because high-resolution offers twice the detail, it
costs twice as much memory as the low-resolution option.
Nothing's cheap these days!

The High-Resolution Player-Missile Memory Allocation Chart
shows that you've got to reserve 2048 bytes (2K) of memory for
high-resolution Players and Missiles. The data that defines each
Hi-Res Player uses 256 bytes of memory. The data for each
Missile uses 64 bytes. There is a 768-byte area marked UNUSED
at the bottom of this chart too.

Which Player Do You Want, Anyhow?

You add the numbers listed at the sides of these charts to
PM BASE to tell ANTIC which Player or Missile you want
displayed . If you want to display a low-resolution Player 0, just
yell "PO = PMBASE + 512!" . ANTIC will get the message! That's
what I did in line 100 of the Know-It-All program . Wackenstein is
a low-resolution (or low-life) Player 0 character!

167

DR. C. WACKO'S MIRACLE GUIDE

Step 1: Make Room for Player-Missiles

Now that you're an expert chartologist, I'll show you how to
make room in memory for your nifty players and Missiles.

HOW TO ALL-OCAlE PM PlAYER-MISSILE MeMORY
(I-OW !t6S0~U"'ON, 6RAPHICS MOPE: 19, ~og /<)

RAMTOP"- DISPI.,O.'1' LIST &-
Sc.REEIJ G/VIPHICS

40'i~O~ ------~--- "'* CL0SE-5T 1 K ADOR~S~
MEMTOP"- ~ MEMTOP "1052G:> 1024

~~f/RARE~ '(TES
'///'L~///, :6 ~ TOP OF PM MEA Y1'l3t;:,

PlA4€R 3

\ PLAYER z..
PLA,-{E I/. 1
PLA'1fR 0

Al3lMzltV1ljMO
I02"l Bl(TES

ADJTOP .. 1 (PII-IBA'Oi: 3'34)
"UN()SED"

... Pf\1Bt\S£ 3'b912

LOWMEM r:::1
Look carefully at the example. (You are getting sleepy . . .). It
shows the actual locations present when memory is set aside for
low-resolution Player-Missiles in Graphics Mode 3 + 16 using an
48K Atari 800.

Right below RAMTOP (the top of your computer's Random Ac­
cess Memory) is the Display List and Graphics Screen memory
allocation. Below this is a Buffer Area , followed by the Player­
Missile area , then the UNUSED area, and finally your BASIC
program.

Line 30: Find out where the Free Memory High Address is.

30 MEMTOP = PEEK(741) + 256·PEEK(742)-1

The code in line 30 finds out where the Free Memory High Ad­
dress is . This memory location, called MEMTOP, is right below
the Graphics Screen area you've selected. MEMTOP is location
40526 in the example .

Line 40: Make room for Missiles. When you set up low-resolution
Player-Missile graphics , the top of the Player-Missile area will be
1K (1024 bytes) below the closest memory location to MEMTOP
that is evenly divisible by 1024. Here's how this works out in the
example:

168

PLAYER-MISSILE GRAPHICS

MEMTOP is at memory location 40526. If you divide 40526 by
1024 you'll get 39.57617 . To find the closest location above
MEMTOP that is evenly divisible by 1024 multiply 40 times 1024.
It's 40960' Get it? This is important-you are really finding the
lowest location within screen memory divisible by 1024, then
subtracting 1024 to get out of screen memory .

Next, find the top of the Player-Missile area (location 39936) by
subtracting 1024 (lK) from 40960. This takes us out of screen
memory.

Finally, subtract 1K (1024 bytes) from location 39936 to arrive at
PMBASE.

In the example, PMBASE is at memory location 38912.

Line 40 does all the work:

40 PM BASE = INT((MEMTOP -1024)/1024)*1024

I wanted to show you what I'm doing, but don't worry if it's hard
to follow , the code in line 40 will do a ll this work for you!

To make room for high-resolution Player Missiles, replace all the
1024's with 2048 in this line . High-resolution Player-Missiles must
start 2K below the nearest location to MEMTOP that is evenly
divisible by 1024.

Lines 50 and 60: Use that UNUSED area

50 ADJTOP = PMBASE + 384
60 POKE 742,INT(ADJTOP /256):POKE 741,

ADJTOP - 256 * PEEK(742)

Two very important things are accomplished by making ADJTOP
equal to PMBASE + 384 in line 50, and telling your computer
that ADJTOP is now the new Free Memory High-Address in line
60:

1. You use the "UNUSED" area

You pick up an additional 384 bytes of usable memory by making
ADJTOP equal to PM BASE + 384. You are telling your Atari
that it can accept programs right up to the base of the Missiles.

169

DR. C. WACKO'S MIRACLE GUIDE

To make room for high-resolution Player-Missiles, change the
statement in line 50 to PM BASE + 768 and you'll pick up an ad­
ditional 768 bytes of usable memory! Such a deal!

2. You protect the Player-Missile area.

Your Player-Missile area is protected from encroachment by in­
vading BASIC programs because you've told your Atari that it
can't go past ADJTOP (the new Free Memory high Address you
set.)

To sum up . Lines 30 to 60:

• Automatically place the Player-Missile area below any
graphics mode you select.

• Protect the Player-Missile area from encroachment by your
BASIC programs .

• Increase the usable programming area by using the
UNUSED area.

Change the graphics mode in line 10 from 3 + 16 to any mode of
your choice to see how spectacular this program is .

Why, you may ask, is this so spectacular? Junior asked me the
same thing last week. I answered by showing him how other peo­
ple have been allocating Player-Missile memory. Every other
method known to peoplekind has two weak points :

• When you change graphics modes-from 3 to 7, for ex­
ample-the display goes haywire because there is no self­
adjustment built in.

• If that's not bad enough, those other methods don't pro­
tect the Player-Missile area from encroachment. When you
write a real long program, the darn thing can sneak into
the Player-Missile area and mess it up!

Making room for your Players and Missiles the Wacko Way puts
you one step ahead of all those other people. I wrote my
Humongous Thesis about it, and just look where it got me!

The best way to fully grasp Player-Missile memory allocation is to
draw a blank chart like that in the example , and fill in the memory
locations. You can examine memory locations as the computer
runs the program by doing the following :

170

DAtrHOW COME MV
I'-\EMoRI{ HIGH ADDRESS

CAMe l3AG1C"RBWRN
10 sE/lJDE.R'~· ?~ ___ _

PLAYER-MISSILE GRAPHICS

• RUN the Know-It-All program.
• Press BREAK after Wackenstein makes his appearance.
• In the immediate mode, find MEMTOP's location by typ­

ing in: PRINT MEMTOP <RETURN>. Then divide
MEMTOP by 1024 to see what number you'll multiply by
1024 to find the closest 1K address.

• Find the closest 1K address . Subtract 1024 from this ad­
dress to find out where the Player-Missile area begins.

• Subtract 1024 from the top of the Player-Missile area to
arrive at PMBASE.

• Confirm that you've done everything correctly by typing
in: PRINT PMBASE <RETURN>.

Now that you know how to make room for Players and Missiles,
let's move on to STEP 2.

Step 2: Tell ANTIC Where PMBASE Is

Simple , since POKEing register 54279 with PMBASE/256 in line
70 tells ANTIC where PMBASE is.

Step 3: Turn On Your Choice of Players Or Missiles,
Or Both

The Know-It-All program uses the low-resolution mode and one
Player. In Line 80, I've POKEd Register 53277 with 2. This turns
on PLAYERS ONLY.

In Line 90 , I've POKEd 559 with 34 plus 8. This turns on
PLAYERS ONLY. To use ANTIC's high-resolution mode just add
16 to the statement, giving POKE 559,34 + 8 + 16. Refer to the
"Turn On" chart for the other POKE vlues that control the
number of Players and Missiles.

Step 4: Pick A Player

In line 100, Player 0 (PO) begins at PM BASE + 512 . (Look back
at the Player-Missile Memory Allocation charts.) If you wanted to
use Player 1 instead, just change 512 to 640 in this statement.

Step 5: Clear Out the Player Locations

In line 110, I POKE all of Player O's 128 bytes with zeros. This
clears out all of its locations so we can start with a clean slate.

171

DR. C. WACKO'S MIRACLE GUIDE

Step 6: Draw the Player's Shape and Position
Him Vertically

Line 120 READs Wackenstein's data and POKEs it into Player O's
60th through 67th bytes.

A low-resolution Player can be up to 128 bytes tall, but Wackens­
tein is only 8 bytes tall! Unfortunately , if you fill up all 128 bytes,
some of the Player's shape will be off your monitor's screen. To
see what I mean, replace line 120 with :

120 FOR A = PO TO PO + 128:POKE A,255:NEXT

If you want to make a Wackenstein-size Player, rewrite line 120 to
read:

120 FOR A = PO + 60 TO PO + 67:POKE A,255:NEXT A

To move this 8-byte block vertically, just fill in the 8 bytes at a
higher or lower position. To move this solid shape down, for ex­
ample , change line 120 again to read:

120 FOR A=PO+40 TO PO + 47:POKE A,255:NEXT A

And, to move Wackenstein toward the top of your screen, enter
this line 120:

120 FOR A = PO + 80 TO PO + 87:READ B:POKE
A,B:NEXT A

Move Wackenstein up and down the screen , then experiment
with the vertical size and screen location of the solid block!

Step 7: Set the Player's Width

Take a look at the Player's Width chart.

In Line 130, I've POKEd Register 53256 with 3. This sets
Wackenstein's width to quadruple size . .. a real fatty! To slim him
down a little , just POKE 53256 with 1, and to make him conform
to the national average, POKE 53256 with either 0 or 2 . Each
Player's width is controlled by its own Size Register as shown on
the chart.

172

PLAYER-MISSILE GRAPHICS

All four Missiles are controlled by one Size Register-register
53260. The Missile Width chart includes an example of this
register's use.

Step 8: Set the Priority Register

Look at the Player vs Playfield Priority chart.

In line 140, I've POKEd register 623 with 1 to make the Player
have priority over the playfield. It glides in front of the playfield .
Change line 140 to read 140 POKE 623,4 , and the Player will
sneak behind the blue line!

Step 9: Set the Player's Color

Look at the Player-Missile Color chart.

~A~~'tJf~m ~ In line 150, I've POKEd 704 with 108 to make Wackenstein
Ci)VrTE FQS518L'i'NG bright pink. (Blush!) Each Player is assigned its own color register
~c~~~~F. as shown on the chart . POKE Register 70~ with any number bet­

ween 1 and 255 to change Wackenstein s color. How about a
Baby-Blue Wackenstein!

Each Missile's color is the same as that of its related Player. Missile
O's color will be the same as Player O's color ; Missile l's color will
be the same as Player l 's color; etc.

Each Missile's color is the same as that of its related Player. Missile O's
color will be the same as Player O's color; Missile 1's color will be the
same as Player 1's color; etc .

Step 10: Set the Player's Horizontal Position

Look at the Horizontal Position and Collisions chart.

In line 160, I've POKEd register 53248 with PEEK(20). POKEing
register 53248 with any number between 0 and 255 will change
Player O's horizontal position.

PEEK(20) counts from 0 to 255, resets , then counts again , to
continuously move Player O.

173

DR. C. WACKO'S MIRACLE GUIDE

Although a horizontal position register (like 53248) can accept
256 positions, some of these place the Player or Missile off the left
or right edge of the screen (ooops!). If you POKE a horizontal

off the right edge of the screen , clear out of sight! If you POKE a
Horizontal register with 0, its associated Player or Missile will be
out of bounds, way off the left side of the screen . To play it safe,

position register with 255, its associated Player or Missile will be ~

only POKE the Horizontal register(s) with values between 60 and r------i
200 . That way you'll be sure to see your Players and Missiles.

One trick you can use in your arcade games is to "tell" your
Players or Missiles to wait in the wings-off the side of the
screen-until you want them to join in the action. When you
want a Player to make its grand appearance , just POKE its
horizontal register with a number between 60 and 200.

The Ten Player-Missile Commandments

The 10 steps I've shown you must be followed every time you
use Player-Missile Graphics. Refer to this list each time you want
to make your ANTIC go frantic .

Practice Makes Perfect

The only way to become comfortable with Player-Missile graphics
is to practice, practice, and practice. Remember, games are
serious business for real wackos!

STEP I: MAq; ROOM FOR PLA,(€RS AND MISSILES
STepZ: TEL..L.. AN1IG 1Alt1e:RE. PM BASE IS

~"fE P3', 1\)~~ ON '(OUR. CHOICE of PLAlfER$,MISSI(..ES,
OR. BaTH

5TE-P 1; PICK A PLAl{cR..
STEP 5: CL£AR our 'THe P~AYERS UXATIOI\I5
STEP~: DRAW PLAlfeRS "SHAPE/VERTICAL ~ITION
SIEP7: '5CT l11E P(JI'(E.R.~ WIDTH
~TEpg: SET TH~ PR/DRli'1' RE;GiSTE.fC:.
5TE P q: SEI 'THE PLA '(E. R's COLOR.
STEP 10: SEi ll1E PLAVE:RS HORIZOmAL fbSITION

174

11 TOOK 'K>V
I~ 'tEARS TD

t.EARIJ HOUl1O
WALK- REMEMBER?

PLAYER-MISSILE GRAPHICS

The Know-It-All program is waiting to be messed with! Here are a
few ideas that will help you become truly comfortable with Player­
Missile Graphics and Make ANTIC go frantic:

• Make Wackenstein appear as a high-resolution character.
• Use the Monster Maker to create a monster of your own

design.
• Display more than one Player.
• Display a low-resolution Missile. Hint: Each Missile is 32

bytes long . POKE PMBASE + 384 to activate Missile 0;
PMBASE + 384 + 32 to activate Missile 1 , etc .

• Experiment with the width registers . Make your Players
and Missiles slim and trim or superhumongous.

• Draw a multicolored skyscraper using a few Players and
Missiles .

• Mix COLOR and PLOT drawings with Player-Missile
shapes to create multicolored displays .

• Impress yourself , then shock your friends and neighbors
with your profound computer wisdom and knowledge.

I've kept my Wackiness in check during this section . After all, you
are a graduate student! And Player-Missile graphics does require
a certain amount of decorum. But, just so you won't think that
I've changed .. . ZAP .. . POW . . . BZZZZRK . .. #$;1 * !# * + 7# =}.

Super-Snazzy Player-Missile Graphics

Now that you 've got a firm understanding of the workings of
Player-MisSile graphics , its time to get super-snazzy!

Below is an ultracomprehensive Player-MisSile program that con­
tains all the elements you need to charge-up your action packed
winners :

• Horizontal movement
• Vertical machine-language movement
• Joystick control
• Collision registers
• Brilliant color and vibrant sound
• Many clever programming techniques

175

DR. C. WACKO'S MIRACLE GUIDE

The program draws on many of the techniques you've already
learned and adds a few new Player-Missile concepts to your
repetoire .

Take your time . Type this program in very carefully - it's
fragile-one slip and-ooops!

After you've entered it , plug a joystick into port 1, RUN the pro­
gram , and take control of the flying saucer. Enjoy your flightl
When you return to earth , I'll review the program with you step
by step. Happy landings!!

Flying Saucer

10 . Make room for Players & Missiles
20 GRAPHICS 18
30 MEMTOP = PEEK(741) + 256.PEEK(742)-1
40 PMBASE = INT((MEMTOP - 2048)/2048).2048
50 ADJTOP = PM BASE + 768
60 POKE 742,INT(ADJTOP /256):POKE 741,

ADJTOP - 256· PEEK(742)
65.
70 SP = ADJTOP - 25:SP1 = ADJTOP - 57:GOSUB 450
75.
80 POKE 54279,PMBASE/256
90 POKE 53277,2

100 POKE 559,34 + 8 + 16
110 PO = PM BASE + 1024
115.
120 FOR A=O TO 16
130 B = USR(SP,PO + A.16,SP1 + 16)
140 NEXT A
145.
150 POKE 53256,1
160 POKE 623,1
165 .
170 REM Set up Playfield
180 COLOR ASC("-"):PLOT 0,10:DRAWTO 19,10:

POSITION 2,11:? #6;"PEEK(53252) =";
190 COLOR 35:PLOT 5,1:PLOT 6,4:PLOT 12,4:PLOT

5,8:PLOT 12,8
200 COLOR 3:PLOT 8,1:PLOT 5,4:PLOT 13,4:PLOT

6,7:PLOT 13,7

176

PLAYER-MISSILE GRAPHICS

210 COLOR 163:PLOT 1l,1:PLOT 6,3:PLOT 13,3:PLOT
6,8:PLOT 14,8

220 COLOR 131:PLOT 14,1:PLOT 7,4:PLOT 14,4:PLOT
7,8:PLOT 13,8

230 COLOR 49:PLOT 5,0:COLOR 18:PLOT 8,0:COLOR
180:PLOT 1l,0:COLOR 152:PLOT 14,0

235.
240 X = 116:Y = 185:YB = Y:REM Move Saucer
250 A = STICK(O)
260 DX= (A= 5 OR A=6 OR A= 7)- (A=9 OR A= 10

ORA=ll)
270 DY=(A=9 OR A=13 OR A=5)-(A=1O OR A=14

OR A=6)
280 X=X+ DX·4:Y=Y + DY·4
290.
300 IF X<48 OR X>192 OR Y<29 OR Y>185 THEN

X=X-DX·4:Y=Y -DY·4:GOTO 250
310 B = USR(SP,PO + YB,SP1 + 16)
320 POKE 53248,X
330 B = USR(SP,PO + Y,SP1)
340 YB=Y
345.
350 SOUND 0,180 + DY + DX,10,4:S0UND

1,181 + DY + DX,1O,4:POKE 704,PEEK(20)
360 B = PEEK(53252):IF B = 0 THEN POSITION 14,1l:?

#6;"0 ";:GOTO 380
370 POSITION 14,1l:? #6;B;" ";:POKE 53278,0
380 GOTO 250
385 .
390 . Machine Language Movement Routine
400 DATA 104, 104, 133, 204, 104, 133, 203, 104, 133,

207, 104, 133, 206, 160, 0, 177, 206, 145, 203, 200,
192, 16, 208, 247, 96

405.
410 . Data for Saucer
420 DATA 24, 24, 24, 24, 24, 60, 24, 255, 255, 24, 60,

24, 24, 24, 24, 24
430 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0
435.
440 . Read Machine Movement Data
450 RESTORE 400
460 FOR A= 1 TO 25
470 READ B
480 POKE SP + A -l,B
490 NEXT A

177

DR. C. WACKO'S MIRACLE GUIDE

495.
500 . Read Saucer Data
510 FOR A= 1 TO 32
520 READ B
530 POKE SP1 +A-1,B
540 NEXT A
550 RETURN

You are about to graduate and receive your Humongous
Emeritus Bolonous Diploma. You can leave the hallowed halls of
Wacko Institute with a sense of pride and accomplishment-and
relief!

Once you have mastered all the elements contained in this pro­
gram, you can hold your head up high , straighten your back, and
march proudly out of your computer room to the world out
there .

Armed with the great store of knowledge that you have absorbed
during your stay here , you can push forward to conquer even
greater challenges, make larger conquests, and, if you're really
lucky, get the opportunity to be surrounded by weird cartoon
characters, like me.

You'll also be able to design the best arcade games in the
universe!! I'll be looking for them at the next User's Group
meeting . I feel jealous already!

So, before I hand you your diploma , let's step through this final
example of programming brilliance.

Steppin' through Flying Saucer (Don't fall off!)

The flying saucer that you just flew around the screen is a high­
resolution Player O. That's why lines 30 through 60 look so
familiar. Also note all those 2048's in line 40, a sure give-away for
high-resolution action.

Line 70 was inserted by Snidely Seersucker when I wasn't look­
ing . It's really devious! SP is the location where the machine­
language movement data will be stored, and SPI is the location
where the Saucer's data will reside. Because Snidely knows
where ADJTOP is, he started the machine-language data table

178

PLAYER-MISSILE GRAPHICS

25 bytes below ADJTOP, and cleverly began the the Saucer's
data 32 bytes below the machine-language data . It's amazing
what a person can do with a little bit of knowledge!

Now that you know where the new top of Free Memory is, you
can locate all sorts of stuff below it. Snidely could have protected
his 57 bytes of data by redefining ADJTOP to be equal to AD­
JTOP - SPI. But since this is such a short program I guesss he
didn't feel it would be mashed. Don't forget to take this precaution
when you see that it's necessary .

The program pauses to do some work at the end of line 70 as it
GOSUBs to line 450.

At line 450, the Machine movement Data is read and POKEd in­
to the 25 locations starting with location SP. Once this is done ,
the saucer data is POKEd into the locations beginning with SPI .

After all of this POKEing around , the program bounces back to
line 80 .

In line 80, ANTIC is told where PM BASE is hiding. Then in lines
90 and 100, we turn on the high-resolution Players.

Line 100 selects Player 0 . So far , so good .

WHAT'S THIS!!! What weird thing is happening in lines 120 to
140? After I stared at it for over two hours, I finally realized what
was going on. I had missed dinner'

The Machine-Language Machine snuck in one of its stranger but
(now that I think about it) one of its more brilliant USR routines .
This ingenious USR routine clears out all of Player O's 256 bytes
by dumping batches of 16 zeros at a time into the Player's
memory locations.

This insidious USR routine grabs zeros from SPI + 16 and dumps
them , in batches of 16, into this innocent Player's memory loca­
tions-poor guy. Look, and count the data in lines 420 and 430,
and you'll get the picture.

Lines 150 and 160 are very straightforward-just your run-of­
the-mill Player-Missile stuff. Nothing esoteric here . Line 150 sets
Player O's size register to normal width. In line 160, register 623 is

179

DR. C. WACKO'S MIRACLE GWOE

set so that the Player has priority over the playfield. It's really neat
to watch the saucer scoot behind the playfield objects . Just POKE
623 with 3 to check this effect out.

Line 180 draws that dashed line across the bottom of the screen
and prints PEEK(53252) = below it. (PEEK(53252) is Player O's
Playfield collision register. You'll see it listed proudly on the Player
Missile Horizontal Position and Collision Register chart.

Lines 190 through 220 plot those colored pound signs all over
your screen. There is a method to the colors used. It may have
been a while since you 've looked at the graphics chapter, so hunt
through that section until you find a chart called Graphics Modes
1 & 2: Color Register Assignments." If you aren't a hunter, just
turn to page 34, look at the chart , and follow along.

All those orange #'s are PLOTted with color register O. The Light
Green #'s are color register 1. The Blue #'s are color register 2.
The Light Red #'s are color register 3.

Right now is as good a time as any to explain the method behind
those pound signs , why the numbers 1, 2 , 4 and, 8 appear above
them , and what relationship they have to collision register 53252.

When you hotrodded your flying saucer across the screen, I'm
sure you flew over one or more pound signs. You couldn 't help it ,
they're all over the place! When you flew over an orange #, the
number 1 appeared next to the collision register readout at the
bottom of the screen. When you collided with a Blue #, the
number 4 appeared. Here's a repeat of the information contained
in my Player-Missile Miracle Guide on page 185.

Color Register
Orange
Light Green
Blue
light Red

Value
Bumped Into

o
1
2
3

Returned
1
2
4
8

If you hover the saucer directly above a cluster of all four colors,
the number 15 will appear next to the collision register
readout-l + 2 + 4+ 8 = 15!

If you were unlucky enough to touch both a blue and red pound
sign at the same time the readout would display the number 12.

180

PLAYER-MISSILE GRAPHICS

When you RUN this program again , keep this handy chart in
front of you as you bump into all those pound signs.

Now that you know how the collision registers work , you can use
this great Player-Missile feature in your games in place of the
LOCATE statement!

Enough diversion. Time to continue our march down the pro­
gram listing.

Line 230 PLOTs the numbers above the pound signs at the top of
the screen.

The code contained in lines 240 through 380 allows you to con­
trol the saucer's movement with your joystick and adds a bit of
sound and some some flashing colors to the action . Then it reads
the collision register and clears itself so it's ready for the next
collision.

That was an overview of the "movement" section's major func­
tions. Here's a closer look.

The saucer's starting positions are set in line 240. Then , in lines
250 through 270 , it's Bouillabaisse logic to the rescue . If you need
a refresher , flip back to Chapter 6, Taking Control Your Joystick ,
for a second helping of this tasty routine .

The saucer's horizontal movement across the screen is set in line
280. The value of X returned here is POKEd into the horizontal
movement register (53248) in line 320 to move the saucer.

If you'd like to see the flying saucer really zip across your screen ,
replace the two 4's in this line with 10's . Try 20's if you really like
to live dangerously! These numbers set the number of pixels the
saucer moves horizontally during each movement cycle. But
you 'll also have to change the 4 's in line 300 to be consistent!

Line 300 is your standard "don 't go out-of-bounds" and off the
screen statement.

The USR routines in lines 310 and 330 are used to move the
saucer up and down (vertically). The USR routine in line 330
draws the saucer by dumping its shape from SPI into PO + Y, the

181

DR. C. WACKO'S MIRACLE GUIDE

Player's Y position. The USR routine in line 310 erases the
Player's old position by plopping zeros into the Player's YB
position.

Line 340, YB = Y, resets YB equal to Y to end the movement
loop.

Line 350 is loaded with weird sound and fl ashing color. ['II let you
ponder these strange SOUND statements. I didn 't put them into
the program! It looks like the Wacko Cat's handiwork.

POKEing 704 with that clever PEEK(20) turns the saucer into a
real flasher.

Line 360 takes a look at collision register 53252, and , if the value
returned is 0 , prints 0 in the readout area and returns, via line
380 , to the beginning of the movement routine.

In Line 370, if PEEK 53252 does not equal 0 the collision
register's value is printed out in the readout area. Then the
collsion register is cleared by POKEing 53278 with 0, and the
program loops back to the beginning of the movement routine via
the GOTO 250 statement in line 380.

Ba dah , ba dah , ba dah, ba dah. That's all folks!

With the exception of some interesting extracurricular activities
that follow this chapter, this semester is officially declared
complete.

You've earned your diploma. You've done a super job-4.0
average all the way! Turn the page , and award yourself the Dr. C.
Wacko Humongous degree of Computer Wacko Science.

182

BOT THIS
MEAIJS I GoTTA
MDW !.-AWNS ~

PLAYER-MISSILE GRAPHICS

o FIRSi CLASS OSECOND CLASS 0 THIRD CLASS DSTE:ERAGE'

183

DR. C. WACKO'S MIRACLE GUIDE

I hope you enjoyed learning all the tricks of the arcade game biz. I
certainly enjoyed presenting this exciting material to you .

Until we meet again, this is Dr. C. Wacko signing off from Earth ,
and (as I ride into the setting sun) saying ... RIBBIT!!

184

PLAYER-MISSILE GRAPHICS

WACKO'S PLAYER-MISSILE MIRACLE
GUIDE

STEP 1: Make Room For Players & Missiles

Low Resolution

1. MEMTOP = PEEK(741) + 256 - PEEK(742)-1
2 . PMBASE = INT((MEMTOP-1024) / 1024) - 1024
3 . ADJTOP = PMBASE + 384
4. POKE 742 , INT (ADJTOP/ 256): POKE 741 ,

ADJTOP-256 - PEEK(7 42)

* Double the numbers in Lines 2&3 for high resolution players &
missiles .

STEP 2: Tell Antic Where PMBASE Is

POKE 54279, PMBASE/ 256

STEP 3: Turn on Your Choice of Players/ Missiles
or Both

A. POKE 559, 34 + Value Added

VALUE ADDED

4
8
12

ADD 16

RESULTS
(Low Resolution)
Turn on Missiles only
Turn on Players only
Turn on Players & Missiles
High resolution Adder
(ADD 16 to the Above to Turn On High
Resolution Players & Missiles.

B. POKE 53277 , Value

VALUE
1
2
3

RESULTS
Turn on Missiles only
Turn on Players only
Turn on Players & Missiles

STEP 4 : Pick a Player

Refer to page 167.

185

DR. C. WACKO'S MIRACLE GUIDE

STEP 5: Clear Out the Player's Locations

Example: For A = P1 to P1 + 128: POKE A,O: NEXT A

This line of code clears out Low Resolution Player 1 by POKE­
ing O's into all its locations .

STEP 6: Draw the Player's Shape/ Vertical
position

See Page 172 for a complete explanation.

STEP 7: Set the Player's Width

POKE size register, width #

Player Width #

o or 2 = Normal width
1 = Double width
3 = Quadruple width

Player Size Register
0 53256
1 53257
2 53258
3 53259

Missile
0-3 53260

Use this chart to set each missile's width .

Missile
o
1
2
3

Examples:

Normal

° ° o

°

Width
Double

1
4

16
64

Quad.
3
12
48
192

1) POKE 53260, 48 to set missile 2's width to quadruple size.
2) POKE 53260, 64 to set missile 3's width to double size .

186

PLAYER-MISSILE GRAPHICS

STEP 8: Set the Priority Register

POKE 623, Value

Value Results
1 All players have priority over playfield.
2 Players 0 and 1 have priority over

playfield and over players 2 and 3.
3 Playfield has priority over all players.
8 Playfield colors 0 and 1 have priority over

all players and over playfield registers 2
and 3.

STEP 9: Set the Player's Color

Player &
Missile

o
1
2
3

POKE
Color Resister
704
705
706
707

Example: POKE 704, 99-Player 0 will be purple

STEP 10: Set the Player's Horizontal
position (and Collisions)

WRITE TO READ
Horizontal Pos . Collision

Player Register with Playfield

0 53248 53252
1 53249 53253
2 53250 53254
3 53251 53255

Missile

0 53252 53248
1 53253 53249
2 53254 53250
3 53255 53251

187

READ
Collision

with Player

53260
53261
53262
53263

53256
53257
53258
53259

DR. C. WACKO'S MIRACLE GUIDE

Collision with Playfield

Color Register
Encountered
Orange 0
Light Green 1
Blue 2
Light Red 3

VALUE
Returned

1
2
4
8

Collision with Player or Missile

Player I Missile
Encountered
o
1
2
3

To Clear Collision Registers:

POKE 53278,0

Value
Returned

1
2
4
8

188

Appendix A: ATASCII Codes

ARE 1HE'SE THE

HOTSKI·rOTSK,
CODES,?

o ~ CTRL-,

1 [EJ CTRL-A

2 [] CTRL-B

3 [!] CTRL-C

4 [3] CTRL-O

5 ~ CTRL-E

6 [Z] CTRL-F

7 [SI CTRL-G

189

8 ~ CTRL-H

9 [i] CTRL-I

10 ~ CTRL-J

11 [!] CTRL-K

12 [!] CTRL-L

r-1
13 LJ CTRL-M

14 ~ CTRL-N

15 [i] CTRL-O

DR. C. WACKO'S MIRACLE GUIDE

~ ~ "Q,<' "rt- ~ ~ "Q,<' "Q,<'

".f' ?:;Q,
,,0 ~v ,,0 Q, ~v ",<$' ?:;Q, "O ~v ,,0 "Q, ~v
~~ ~§-S- ~ ~<. ril'" ~ -S-

<:)q;cP ~ v~ *-Q,.:f,v<.q; v~ <:)q; v O ~ v~ *-q; v<.q; v~

16 [fJ CTRL-P 31 ~ ESC/ CTRL- *

17 [B CTRL-Q 32 D SPACE BAR

18 El CTRL-R 33 ITJ SHIFf-1

19 ~ CTRL-S 34 G SHIFf-2

20 [j] CTRL-T 35 ~ SHIFf-3

21 ~ CTRL-U 36 [I] SHIFf-4

22 [] CTRL-V 37 ~ SHIFf-5

23 ~ CTRL-W 38 [!] SHIFf-6

24 ~ CTRL-X 39 D SHIFf-7

25 [[] CTRL-Y 40 IT] SHIFf-9

26 ~ CTRL-Z 41 ITJ SHIFf-O

27 ~ ESC/ESC 42 8 SHIFf- *

28 [t] ESC/CTRL-- 43 [±J +

29 [I] ESC/CTRL-= 44 D ,

30 ~ ESC/ CTRL-+ 45 [J -

190

APPENDIX A: ATASCII CODES

:<. Q,' ~ "q} "Q,' ~ &"Q, "OQ, ",'I ~
O~'I>Q, ~ :<.'1>'" "'.§ -r}'1l' c,"'~'I>Q,

~c; '1>C; ,,0 "Q, '1>C;

~'?' ",,'1> +Q,oS,CJII; (:~ '?' -r} ~'" '1> -r}
<::)11;(,0 ~c; <::)II;CP ~v~ +II;V,lI;v~

46 D 61 El =

47 [ZJ / 62 ~ >

48 [QJ 0 63 rn SHIFf-/

49 OJ 1 64 ~ SHIFf-8

50 ~ 2 65 ~ A

51 rn 3 66 [ID B

52 [}] 4 67 [fJ C

53 []] 5 68 [Q] 0

54 [§J 6 69 ffiJ E

55 m 7 70 [£J F

56 []] 8 71 [Q] G

57 ~ 9 72 [BJ H

58 D SHIFT-; 73 IT] I

59 [J , 74 QJ J

60 @ < 75 [KJ K

191

DR. C. WACKO'S MIRACLE GUIDE

~ ... q,<.

~
~ ... q,<.

~ <:::- ... q, ... 0 q, ~v 6' ... q, ... 0 q, ~v

""'~oq, ~G ~v ~"" ~><.; ~ ".$'"Olh '!5 ~v "" ~~ ~~ ~ +Q;CJQ;v~ ~~ ~~<. +1h.:s,V<.Q; v~ <;)Q; VO ~ v~ <;)Q; VO
~G

76 [g L 91 [J SHIFf- ,

77 ~ M 92 [SJ SHIFf- +

78 ill] N 93 OJ SHIFf-.

79 [Q] 0 94 [0] SHIFf- *

80 [E] P 95 B SHIFf- -

81 [Q] Q 96 ~ CTRL- .

82 [BJ R 97 ~ (LOWR) A

83 [§J S 98 ~ (LOWR) B

84 IT] T 99 0 (LOWR) C

85 [ill U 100 [ill (LOWR) D

86 [YJ V 101 0 (LOWR) E

87 ~ W 102 OJ (LOWR) F

88 [KJ X 103 [ill (LOWR) G

89 [YJ Y 104 [6J (LOWR) H

90 W Z 105 OJ (LOWR) I

192

APPENDIX A: ATASCII CODES

cJ ... q,<.
q,<' <. q,"

~ ... 0 q, 'O-v~ ~ cJ v ... q, ... 0 1o.q, 'O-v~
cl;~q, ~ 'O-V " 'O-~ <. o~~q, *-q,"'v,,1/; v~'O- ~~ "'O-q}

'VI/; VO '?" q} ~'?" ~q} *-q,"'v,,1/; V'(:' ~v'(:' 'VI/; VO
~c.;

106 OJ (LOWR) J 121 W (LOWR) Y

107 [!] (LOWR) K 122 0 (LOWR) Z

108 IT] (LOWR) L 123 [I] CTRL-;

109 §] (LOWR) M 124 rn SHIFf-=

110 ~ (LOWR) N 125 ~ ESC/ CTRL-<
or

@] ~
ESC/ SHIFf-<

111 (LOWR) 0 126 ESC/ BACK S

112 @] (LOWR) P 127 ~ ESC/ TAB

113 [9J (LOWR) Q 128 C (A-) CTRL- ,

114 CD (LOWR) R 129 G (A) CTRL-A

115 ~ (LOWR) S 130 ., (A) CTRL-B

116 OJ (LOWR) T 131 CI (A) CTRL-C

117 ~ (LOWR) U 132 a (A)CTRL-D

118 0 (LOWR) V 133 ~ (A-.) CTRL-E

119 ~ (LOWR) W 134 ~ (A)CTRL-F

120 0 (LOWR) X 135 ~ (A)CTRL-G

193

DR. C. WACKO'S MIRACLE GUIDE

136 ~ (A) CTRL-H

137 rI (A) CTRL-I

138 ~ (-".) CTRL-J

139 1;1 (A) CTRL-K

140 a (A) CTRL-L

141 ~ (A) CTRL-M

142 ~ (-".) CTRL-N

143 fI (A) CTRL-O

144 g ("'-l CTRL-P

145 1:1 (A.) CTRL-Q

146 = (A) CTRL-R

147 C (A) CTRL-S

148 C (A) CTRL-T

149 ~ (A) CTRL-U

150 (I (A) CTRL-V

151 ~ (A) CTRL-W

152 c:I (A) CTRL-X

153 (] (A) CTRL-Y

154 ~ (A) CTRL-Z

155 EOL (-".) RETURN

1560 ESC/ SHIFf­
BACK S

1570

158 = ESC/ SHIFf->

ESC/ CTRL­
TAB

159 = ESC/ SHIFf-
TAB

160 II (A) SPACE BAR

161 0 (A) SHIFf-1

162 • (A) SHIFf-2

163 0 (A) SHIFf-3

164 II (A) SHIFf-4

165 FA (A) SHIFf-5

194

APPENDIX A· ATASCII CODES

~
:<. Q,<" :<. Q,<" cY ,l ,-0 ",Q, 7>"~ ~

" ... ~~Q, ",,?-~,,<;,~1; +Q,t<..Q,~"<;'~
cY ,-Q, ,-0 Q, ,,~

".$I' ~Q, ~ 7>" ".§ ",1;

,lcP ,?-v -vq;cP "'~ ,,<;,7><" +Q,.:;,(;<..q; (;,,<;,7>
,?-v

166 D (A) SHIFT-6 181 II (A.) 5

167 • (A..) SHIFT-7 182 II (A) 6

168 n (.A-.) SHIFT-9 183 D (A.) 7

169 D (A) SHIFT-O 184 Ii] (A-.) 8

170 a (A) SHIFT-- 185 m (A) 9

171 II (A) + 186 • (A-.) SHIFT -;

172 • (A) 187 II (A) ; ,

173 • (A)_ 188 II (A) <

174 • (A) .
189 II (A) =

175 _ (A) / 190 B (A»

176 iii (A) 0 191 IJ (A) SHIFT -/

177 D (A) 1 192 ~ (A) SHIFT-8

178 II (A..) 2 193 m (A) A

179 m (A)3 194 m (A)B

180 II (A) 4 195 [I (A) C

195

DR. C. WACKO'S MIRACLE GUIDE

!.

~ G:' (}I/, ",I/,!.
~ ~ ",I/,' ",I/,'

" ... ~ol/, ,?,":3 -r}'1> '" ",0 ~I/, !.'1>" ,,~ol/, ~() '1>" ",0 ""I/, '1>"
.;:. c,~ I/,'i ,I/, ~'1> ~-r} ~"''1>'1>' <JQ;c,0 ~()() <JQ;c,0 .;:. c,~ +Q; c,'1/, c,~

196 m (A)D 211 [8 (A) S

197 lSI (A) E 212 D (A) T

198 iii (A-.) F 213 m (A) U

199 m (A)G 214 m (A) V

200 III (A) H 215 l'1J (A) W

201 o (A.) I 216 Et (A) X

202 II (A) J 217 i1 (A) Y

203 m (A-.) K 218 fA (A-.) Z

204 I!I (A) L 219 U (A) SHIFT-,

205 1m (A) M 220 II (A.) SHIFT -+

206 m (A) N 221 D (A) SHIFT- .

207 [+] (A) 0 222 ., (A) SHIFT- .

208 iii (A) P 223 !! (A) SHIFT--

209 [!I (A) Q 224 C (A) CTRL-.

210 m (A) R 225 II (A) (LOWR) A

196

APPENDIX A: ATASCII CODES

~ !. !. ~ !. !.
~ 0""Q, 0 ""Q, ~ 0""Q, 0 ""Q,

,-~'bQ, ,?,,"3 ~~ ",~ ~Q, ~~ <S''bQ, "3!.~ ",~ ~Q, !.~
~Q; (.,0 ~ (:~ *-Q,.:s,v,Q; v~ ~Q,"vo ~'?"v'<:-~ *"Q,.:s,v,Q;v'<:-~

226 II (A) (LOWR) B 241 iii (A) (LOWR) Q

227 II (A) (LOWR) C 242 a (A) (LOWR) R

228 II (A) (LOWR) D 243 II (A) (LOWR) S

229 II (A) (LOWR) E 244 D (A) (LOWR) T

230 D (A) (LOWR) F 245 m (A) (LOWR) U

231 m (A) (LOWR) G 246 II (A) (LOWR) v

232 m (A) (LOWR) H 247 m (A) (LOWR) W

233 II (A) (LOWR) I 248 EI (A) (LOWR) x

234 n (A) (LOWR) J 249 II (A) (LOWR) Y

235 13 (A) (LOWR) K 250 II (A) (LOWR) Z

236 D (A) (LOWR) L 251 D (A)CTRL-;

237 liD (A) (LOWR) M 252 II (A) SHIFT- =

238 iii (A..) (LOWR) N 253 [;J (A) ESC/CTRL-2

239 II (A) (LOWR) 0 254 If] (A) ESC/CTRL-
BACKS

240 iii (A) (LOWR) P 255 Il (A) ESC/CTRL->

197

DR. C. WACKO'S MIRACLE GmOE

Appendix B: Utility Programs

Color Register POKEs

"You'll be dumbfounded by the wild colors you 'll produce ."
Dr. C. Wacko

Used with a joystick plugged into port 1 , this program will show
you all the colors that your Atari can generate .

It is designed to operate in graphics mode 3 , and lets you vary
color registers 708, 709, 710, and 712 . You'll be amazed at the
many subtle colors you can create with just simple joystick move­
ment.

Here's how to operate this nifty and colorful utility :

1. Type in and RUN this program .
2. Plug a joystick into port 1.
3 . Tilt the joystick in anyone of four directions (left, right,

up , or down) to increase the value that's put into each
Color Register .

To decrease the value put into each color register , just point the
joystick in the desired direction while pressing the red trigger.

Once you've got this program up and RUNning you 'll see how
easy it is to operate and enjoy .

Color Register POKE Demo

10 REM :Wacko's COLOR REGISTER DEMO
20 POKE 764,255:GRAPHICS 3
30 FOR X = 3 TO 13:FOR Y = 10 TO 17 :COLOR 1 : PLOT

X,Y:DRAWTO X + 1,Y + l:NEXT Y:NEXT X
40 FOR X = 14 TO 23:FOR Y = 10 TO 17:COLOR 2

:PLOT X,Y:DRAWTO X+ 1,Y + l:NEXT Y:NEXT X
50 FOR X = 24 TO 33:FOR Y = 10 TO 17:COLOR 3

:PLOT X,Y:DRAWTO X + 1,Y + l :NEXT Y:NEXT X
60 X = 10:Y = 10:Z = 10:Q = 10
70 POKE 752,1:? "GRAPHICS 3: Use the Joystick &

Trigger to see COLOR register POKEs!"
80 FOR P = 1 TO 100:NEXT P

:T = PEEK(644):S = PEEK(632):POKE 752,1
90 IF X>255 OR X<l THEN X= l:GOTO 80

198

IMFORTANT NOTE ~
CORRECT SPACiNG IS CRITICAL!
I'VE; I NbICATED,ltV ~RAcKelS,
l1IE NUMBER OF SPACES TO
LEAVE BE"TWEEN O()arATION
I\AARKS LJKE -n·us: (:3]. THIS
MEANS 1"0 EN"]1:;R THREE
SPACeS Wf1E.~ 'IOU TIPE l'-l

111£ PR:)GRAM.

APPENDIX B: UTILITY CODES

100 IF Y>255 OR Y<1 THEN Y = I:GOTO 80
110 IF Z>255 OR Z<1 THEN Z = l:GOTO 80
120 IF Q>255 OR Q<1 THEN Q= I:GOTO 80
130 IF S = 13 AND T = 0 THEN Q = Q -1:POKE 712,Q:

? CHR$(125):? :? CHR$(127);"BACKGROUND
COLOR: POKE 712,";Q:GOTO 80

140 IF S = 11 AND T=O THEN X=X-l:POKE 708,X:
? CHR$(125);" 708,";X:GOTO 80

150 IF S = 14 AND T = 0 THEN Y = Y -1:POKE 709,Y:
? CHR$(125);CHR$(127);CHR$(127);"[2]709,"
;Y:GOTO 80

160 IF S = 7 AND T = 0 THEN Z = Z -1:POKE 710,Z:
? CHR$(125);CHR$(127);CHR$(127);CHR$(127);
"[3]710,";Z:GOTO 80

170 IF S = 11 THEN X = X + I:POKE 708,X:? CHR$(125);
" 708,";X:GOTO 80

180 IF S = 14 THEN Y = Y + I:POKE 709,Y:
? CHR$(125);CHR$(127);CHR$(127);"[2]709,"
;Y:GOTO 80

190 IF S = 7 THEN Z = Z + I:POKE 710,Z:
? CHR$(125);CHR$(127);CHR$(127);CHR$(127);
"[3]710,";Z:GOTO 80

200 IF S = 13 THEN Q = Q + I:POKE 712,Q:
? CHR$(125):? :? CHR$(127);"BACKGROUND
COLOR: POKE 712,";Q:GOTO 80

210 GOTO 80

ATASCII Code Program

Here it is . The program that shows you what's going on inside the
your computer. ATASCII Codes is easy to use , and will help you
understand how your Atari computer generates its cast of
characters .

Just type in the program, RUN it, and follow the simple instruc­
tions.

Simple Instructions

Refer to the ATASCII chart in Appendix A. Enter the decimal
number assigned to the character that you'd like to examine, and
press RETURN. For example , if you want to check out the letter
A, enter 65 <RETURN> .

199

DR. C. WACKO'S MIRACLE GUIDE

You'll be presented with the character's appearance , its offset
number, and the bytes that define it.

Press START to look at another character.

Important programming note : Enter all underlined words and
characters between quotation marks as inverse characters. To do
thiS, press the Atari symbol key before typing the character. An
example of inverse characters is found in line 50.

ATASCII Codes

10 REM THIS PROGRAM WILL CALCULATE OFFSET
FOR ANY ATASCII DECIMAL CODE

20 POKE 764,255:POKE 77,0
30 GRAPHICS O:POKE 752,I:POKE 710,128:POSITION

7,3:PRINT "ENTER ATASCII DECIMAL CODE";
40 TRAP 30:INPUT C
50 ? :? CHR$(127);CHR$(127);"CHARACTER:";CHR$(C)
60 IF C>255 THEN GOTO 30
70 IF C<32 THEN D = (C + 64)-8
80 IF C>127 AND C<160 THEN D = (C - 64) -8

:GOTO 160
90 IF C>31 AND C<96 THEN D = (C - 32) -8

100 IF C>159 AND C<224 THEN D = (C -160) -8
:GOTO 160

110 IF C>95 AND C<128 THEN D = C-8
120 IF C>223 AND C<256 THEN D = (C -128) -8

:GOTO 160
130 ? :? CHR$(127);CHR$(127);"[2]OFFSET = ";D
140 ?
150 ? :? CHR$(127);CHR$(127);"ROW[5]DATA":? :FOR

A = 0 TO 7:? CHR$(127);CHR$(127);
" ";A;"--------";PEEK(D + A + 57344)

155 NEXT A:GOTO 170
160 ? :? "[13]ROW[7]DATA":FOR A = 0 TO 7:?

"[I]";A;"--------";255 - PEEK(D + A + 57344):NEXT A
170 POSITION 7,21:? "[2]PRESS START TO CONTINUE"
180 IF PEEK(53279)<>6 THEN GOTO 170
190 GOTO 30

Monster Maker

Here is the listing for the greatest character-designing program in
the world . Instructions for Monster Maker can be found on page

200

APPENDIX B: UTILITY CODES

63. Important programming note: Enter all underlined words and
characters between quotation marks as inverse characters . To do
this , press the Atari symbol key before typing the character. An
example of underlined characters is found in line 20: PLEASE
WAIT.

Monster Maker

5 REM MONSTER MAKER - Written by David L.
Heller & Robert Kurcina, Copyright 1983, Addison­
Wesley Publishing

10 POKE 764,255
20 GRAPHICS O:POKE 752,I:POKE 710,128:

POSITION 13,11:? "PLEASE WAIT ";:POKE 712,134
30 DIM N$(15),NA$(15),M$(25),T$(18),CH$(12),

L$(10),D$(5)
35 CH$ = CHR$(156):L$ = CHR$(30):D$ = CHR$(29)
40 M$ = "Insert Machine Language Movemet Routine;

Chapter 4, Page 75. Note: 22nd Byte is 255 (CTRL,
»."

50 ST = (PEEK(742) - 4)* 256:FOR A = 0 TO
3:Z = USR(ADR(M$),ST + A*256,57344 + A*256)
:NEXT A

60 MAXLOCATIONS = 64:X= O:Y = O:C;::: 160
:CB = 32:L = O:DIM VALU(MAXLOCAllONS,8),
BITADD(8), VLOC(8),A$(I)

70 FOR A = 1 TO MAXLOCATIONS:FOR B = 1 TO 8
:VALU(A,B) = O:NEXT B:NEXT A

80 GOSUB 1420
90 FOR A = 0 TO 7:POKE ST + 80 + A,85:POKE

ST + 8 + A, 170:POKE ST + 40 + A,O:NEXT A
100 CLOSE #2:0PEN #2,4,0,"K:":GRAPHICS 0
110 ? CHR$(125);:POKE 752,I:POKE 756,ST 1256:POKE

709,10:POKE 712,128:POKE 710,0
120 POSITION 15,0:? "Dr. C WACKO'S":POSITION

14,1:? "MONSTER MAKER"
130 POKE 16,64:POKE 53774,64
140 ? CHR$(127);"!!!!!!!!!![15]0 = ORIG"
150 ? CHR$(127);"! ![2] = [1]0[8J!:Y~ = FLIPS"
160 ? CHR$(127);"! ![2] = [1]0[4]!U!U1/R = ROLLS"
170 ? CHR$(127);"! ![2] = [1]0[10]f = PRINT"
180 ? CHR$(127);"! ![2] = [1]0[5]OPTION = RVS"
190 ? CHR$(127);"! ![2] = [1]0[5]SELECT = CLR"

201

DR. C. WACKO'S MIRACLE GUIDE

200 ? CHR$(127);"! ![2] = [1]0[6]START = EXIT'
210 ? CHR$(127);"! !2][= [1]0[4]"
220 ? CHR$(127);"! ![2] = [1]0[4]"
230 ? CHR$(127);"!!!!!!!!!!"
240 POSITION 3,4:? "%";L$;L$;D$;D$;"% % %";L$;

L$;L$;D$;D$;"% % %";L$;L$;L$;D$;"% % %";:
POSITION 0,10

250 POSITION 5,14:? "1 --> EDIT LOCATION"
260 POSITION 5,15:? "2 --> COPY LOCATION"
270 POSITION 5,16:? "3 --> SAVE FONTLIST'
280 POSITION 5,17:? "4 --> LOAD OLD FILE"
290 POSITION 5,18:? "5 --> LIST FNTFILES"
300 TRAP 110:POSITION 13,21:? "[3]OPTION[5]";

:POSITION 22,21:INPUT A:IF A<l OR A>5THEN
300

310 IF A = 1 THEN POSITION 13,21:?
"FOR LOCATION";:POSITION 25,21:INPUT L

320 TRAP 110:TRAP 110:IF A = 2 THEN POSITION
8,21:? "FROM ----, TO ---- : ";
:POSITION 27,21:INPUT L,L5

330 IF A= 1 THEN POSITION 13,21:? "":POSITION
25,14:? " #";L;

340 ON A GOTO 740,660,440,360,540
350 STOP
360 POSITION 15,21:? CHR$(253);"[1]LOAD IT";:INPUT

A$:IF A$<>"Y" THEN 110
370 POSITION 15,22:? "C: OR D:NAME";
380 INPUT NA$:IF NA$ = "C:" THEN GOTO 400
385 IF NA$(LEN(NA$) - 3,LEN(NA$»<>".FNT' THEN

NA$(LEN(NA$) + 1,LEN(NA$) + 4) = ".FNT'
390 IF NA$(1,2)<>"D:" OR LEN(NA$»14 OR

LEN(NA$)<7 THEN N$ = NA$:GOTO 1380
400 TRAP 1390:POSITION 24,9:? "LOADING[l]":

POSITION 24,10:? NA$:CLOSE #1:0PEN
#1,4,0,NA$:GET #l,MAXLOCATIONS

410 FOR A = 1 TO MAXLOCATIONS:FOR B = 1 TO
8:GET #l,Z:VALU(A,B) = Z:POKE 712,Z:NEXT
B:NEXT A:CLOSE #1

420 POKE 712,70:IF MAXLOCATIONS<64 THEN FOR
A = MAXLOCATIONS + 1 TO 64:FOR B = 1 TO
8:VALU(A,B) = O:NEXT B:NEXT A

430 MAXLOCATIONS = 64:? CHR$(253):GOTO 110
440 POSITION 15,21:? CHR$(253);"[1]SAVE IT";:INPUT

A$:IF A$<>"Y" THEN 110

202

APPENDIX B: UTILITY CODES

450 POSITION 16,21:? "CHARACTERS[4],,;:TRAP
1400:POSITION 26,21:INPUT A:IF A<1 OR A>64
THEN 110

460 MAXLOCATIONS = A
470 POSITION 13,22:? "C: OR D:NAME";
480 INPUT N$
485 IF N$ = "C:" THEN GOTO 520
490 TRAP 1380:IF N$(LEN(N$) - 3,LEN(N$) - 3)<>"."

THEN N$(LEN(N$) + 1,LEN(N$) + 4) = ".FNT':
GOTO 510

500 IF N$(LEN(N$) - 3,LEN(N$))<>".FNT' THEN 1380
510 IF N$(1,2)<>"D:" OR LEN(N$»14 OR LEN(N$)<3

THEN GOTO 1380
520 POSITION 24,9:? "SAVING[1],,:POSITION 24,10:

? N$:CLOSE #1:0PEN #1,8,0,N$:PUT
#1,MAXLOCATIONS

530 FOR A = 1 TO MAXLOCATIONS:FOR B = 1 TO
8:PUT #1,VALU(A,B):NEXT B:NEXT A:CLOSE #1:
? CHR$(253):GOTO 110

540 CLOSE #1:0PEN #1,6,0,"D:·.FNT':POSITION
0,12:GOSUB 1500:A=0

550 TRAP 620:INPUT #1;NA$
560 IF LEN(NA$»4 AND NA$(4,4) = "[1]" THEN CLOSE

#1:GOTO 630
570 POSITION lO·(A - INT(A/4)·4),

12 + INT(A/4):PRINT NA$(1,10);
580 A = A + 1:IF A>31 THEN 600
590 GOTO 550
600 POSITION 10,22:?"PRESS START TO CONT";:IF

PEEK(53279)<>6 THEN 600
610 A = O:POSITION 0,12:GOSUB 1500:GOTO 550
620 CLOSE #1
630 POSITION 15,22:? "PRESS START';
640 IF PEEK(53279)<>6 THEN 640
650 GOTO 110
660 IF L5<1 OR L5>64 OR L>64 OR L< - 127

THEN 110
670 POSITION 0,21:? CHR$(156);CHR$(156);

CHR$(156);:POSITION 25,15:? L;"[1]to[1]";
L5:POSITION 25,14:? "[1]#";L5

675 POKE 16,64:POKE 53744,64:POKE 710,97:POKE
712,101:POKE 752,1

680 IF L>O THEN FOR Z = 0 TO
7:VLOC(Z + 1) = VALU(L,Z + 1):NEXT Z:L = L5:
GOTO 790

203

DR. C. WACKO'S MIRACLE GUIDE

690 L = ABS(L)
700 IF L>95 THEN 730
710 IF L>31 THEN L = L - 32:GOTO 730
720 L=L+64
730 A = L·8 + 57344:FOR Z = 0 TO

7:VLOqZ + 1) = PEEK(A + Z):NEXT Z:L = L5:
GOTO 790

740 IF L<1 OR L>64 THEN 110
750 FOR A = 0 TO 7:VLOqA + 1) = VALU(L,A + 1):NEXT

A:GOTO 790
760 IF L<1 OR L>MAXLOCATIONS THEN 110
770 FOR Z = 0 TO 7:A = 255 - VLOqZ + 1):

VLOqZ + 1) = A
780 POSITION 21,Z + 3:? A;"[2]";:GOTO 800
790 FOR Z = 0 TO 7:A = VLOqZ + 1):POSITION

21,Z + 3:? A;"[2]";
800 POKE ST + Z + 40,A:B = 0

810 IF A<1 THEN 840
820 IF A - BITADD(B + 1)<0 THEN B = B + I:GOTO 820
830 COLOR 42:PLOT 8 + B.Z + 3:A = A - BITADD(B + 1)

:B = B + I:GOTO 810
840 NEXT Z
850 POKE 77 ,O:LOCATE X + 8, Y + 3,C:IF C = 42 THEN

COLOR 147:PLOT X + 8,Y + 3
860 IF C=32 THEN COLOR 147:PLOT X+8,Y +3
870 FOR A = 1 TO 10:NEXT A
880 COLOR C:PLOT X + 8. Y + 3
890 A = STICK(O):B = STRIG(O)
900 IF B = 0 AND C = 42 THEN COLOR 32:PLOT

X + 8,Y + 3:VLOqY + 1) = VLOqy + 1) - BITADD
(X + 1):POKE ST + Y + 40,VLOqy + 1)

910 IF B = 0 AND C = 32 THEN COLOR 42:PLOT
X + 8,Y + 3:VLOqY + 1) = VLOqy + 1) + BITADD
(X + 1):POKE ST + Y + 40,VLOqy + 1)

920 IF B = 0 THEN SOUND 0.100,10,6:POSITION
21.Y + 3:? VLOqy + 1);"[2]";:SOUND 0,0,0,0

930 POSITION 27,9:PRINT "CTRL + M = MENU"
940 IF PEEK(764) = 165 THEN CLR :RUN "D:MENU"
950 IF A=7 THEN X=X+ 1
960 IF A = 11 THEN X = X-I
970 IF A = 13 THEN Y = Y + 1
980 IF A = 14 THEN Y = Y - 1
990 IF A= 10 THEN X=X-l:Y=Y-l

1000 IF A = 9 THEN X = X-I: Y = Y + 1
1010 IF A=6 THEN X=X+ I:Y=Y-l

204

APPENDIX B: UTILITY CODES

1020 IF A=5 THEN X=X+ l:Y=Y + 1
1030 IF X<O THEN X=7
1040 IF X>7 THEN X = 0
1050 IF Y<O THEN Y = 7
1060 IF Y>7 THEN Y=O
1070 POSITION 27,4
1080 IF PEEK(53279) = 3 THEN GOSUB 1220:GOTO 760
1090 IF PEEK(53279) = 5 THEN GOSUB 1220

:GOSUB 1210
1100 IF PEEK(53279) = 6 THEN FOR A = 0 TO

7:VALU(L,A + 1) = VLOC(A + l):NEXT A:SOUND
O,O,O,O:GOTO 110

1110 IF PEEK(764) = 255 THEN 1200
1120 GET #2,A:IF A = ASC("H") THEN POKE

764,255:GOTO 1230
1130 IF A = ASC("V') THEN POKE 764,255:GOTO 1260
1140 IF A = ASC("P") THEN POKE 764,255:GOSUB 1270
1150 IF A = ASC("L") THEN POKE 764,255:GOTO 1290
1160 IF A = ASC("R") THEN POKE 764,255:GOTO 1310
1170 IF A = ASC("U") THEN POKE 764,255:GOTO 1330
1180 IF A = ASC("D") THEN POKE 764,255:GOTO 1350
1190 IF A = ASC("O") THEN POKE 764,255:GOTO 1370
1200 GOTO 850
1210 FOR A = 0 TO 7:VLOC(A + 1) = O:POSITION

21,A + 3:? "0[2]";:NEXT A:RETURN
1220 FOR A = 0 TO 7:POSITION 8,3 + A:? "[8]";:POKE

ST + A + 40,0:NEXT A:RETURN
1230 FOR A = 0 TO 7:VLOC(A + 1) = O:FOR B = 0 TO

7:LOCATE B + 8,A + 3,C:IF C = 42 THEN
VLOC(A + 1) = VLOC(A + 1) + BITADD(8 - B)

1240 NEXT B:NEXT A:GOSUB 1220
1250 GOTO 790
1260 FOR A = 0 TO 7:VALU(0,A + 1) = VLOC(8 - A):NEXT

A:FOR A = 0 TO 7:VLOC(A + 1) = VALU(O,A + 1)
:NEXT A:GOSUB 1220:GOTO 790

1270 FOR A = 2 TO l1:FOR B = 7 TO 24:LOCATE
B,A,C:T$(B - 6) = CHR$(C):NEXT B:LPRINT
T$:NEXT A

1280 LPRINT "LOCATION[l],,;L:LPRINT :RETURN
1290 FOR A = 0 TO 7:VLOC(A + 1) = VLOC(A + 1)·2

:IF VLOC(A + 1»255 THEN
VLOC(A + 1) = VLOC(A + 1) - 255

1300 NEXT A:GOSUB 1220:GOTO 790
1310 FOR A = 0 TO 7:B = VLOC(A + 1)/2:IF B<>INT(B)

THEN B = INT(B) + 128

205

DR. C. WACKO'S MIRACLE GUIDE

1320 VLOC(A + 1) = B:NEXT A:GOSUB 1220:GOTO 790
1330 B = VLOC(I):FOR A = 0 TO

6:VLOC(A + 1) = VLOC(A + 2):NEXT A:VLOC(8) = B
1340 GOSUB 1220:GOTO 790
1350 B = VLOC(8):FOR A = 6 TO 0 STEP

-1:VLOC(A + 2) = VLOC(A + 1):NEXT A:VLOC(I) = B
1360 GOSUB 1220:GOTO 790
1370 FOR A=O TO 7:VLOC(A+ 1) = VALU(L,A + 1):NEXT

A:GOSUB 1220:GOTO 790
1380 POSITION 24,9:PRINT "BAD FILE NAME:"

:POSITION 24,10:? N$:FOR P = 0 TO 500:NEXT
P:GOTO 110

1390 CLOSE #1:MAXLOCATIONS = 64:POSITION 24,9:?
"I CAN'T FIND:":POSITION 24,10:? NA$

1400 FOR A = 1 TO 500:IF PEEK(53279) = 6 THEN POP
:GOTO 110

1410 NEXT A:GOTO 110
1420 A = O:B = O:C = 256:FOR A = 1 TO 8:B = C:FOR D = 1

TO A:B = B/2:NEXT D:BITADD(A) = B:VLOC(A) = 0
:NEXT A:RETURN

1500 FOR A = 1 TO 12:PRINT CH$;:NEXT A: RETURN

206

APPENDIX B: UTILITY CODES

Animation Tester

This program will allow you to see your demented creations
cavort in animated action on your screen . Complete operating in­
structions for Animation Tester can be found on page 71. Impor­
tant programming note: Enter all underlined words and
characters between quotation marks as inverse characters . To do
this , press the Atari symbol key before typing the characters. An
example of underlined characters is found in line 110.

Animation Tester

10 POKE 764,255
20 REM ANIMATION TESTER - Written by David L.

Heller & Robert Kurcina, Copyright 1983, Addison­
Wesley Publishing

30 CLR :DIM A$(25),B$(25),C$(14),NA$(25),U$(35)
35 U$ = CHR$(156)
40 A$ = "Insert Machine Language Movement Routine;

Chapter 4. Note: 22nd Byte is 255 (CTRL,>)"
50 SP = AOR(A$)
60 GOSUB 470:TRAP 640
70 ST = (PEEK(742) - 4) -256
80 FOR A=O TO 3
90 0 = USR(SP,ST + A -256,57344 + A -256)

100 NEXT A
110 IF C$ = "C:" THEN CLOSE #1 :GRAPHICS 17

:POSITION 3,3:? #6;"cassette users":POSITION
5,10:? #6;"PRESS PLAY"

120 IF C$ = "C:" THEN POSITION 8,12:
? #6;"THEN":POSITION 5,14:? #6;"HIT return"
:GOTO 140 --

130 CLOSE #1
140 OPEN #1,4,0,C$
150 GET #1,A
160 FOR B = 1 TO A
170 FOR C = 1 TO 8
180 GET #1,0
190 POKE ST + B-8+ C-1,0
200 NEXT C
210 NEXT B
220 CLOSE #1
230 GRAPHICS G:POKE 752,1:POKE 710,O:POSITION

3,0:? #6;C$;

207

DR. C. WACKO'S MIRACLE GUIDE

240 POKE 756,ST /256
250? :? "[5]PRESS START TO TRY ANOTHER"
260 ? "[5]PRESS SELECT FOR MENU"
270 FOR B=1 TO A
280 COLOR B + 32
290 PLOT 9,5
300 SOUND 0,0,10,10:FOR C = 1 TO S
310 NEXT C:IF PEEK(53279) = 6 THEN RUN
320 IF PEEK(53279) = 5 THEN CLR :RUN "D:MENU"
330 SOUND O,O,O,O:NEXT B
340 SOUND O,O,O,O:GOTO 270
350 CLOSE #1:0PEN #1,6,0,"D: ·.FNT':POSITION 0,12:

? U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;:A = 0
360 TRAP 430:INPUT #1 ;NA$
370 IF LEN(NA$»4 AND NA$(4,4) =

"[1]" THEN CLOSE #1:GOTO 440
380 POSITION 10 ·(A - INT(A/4) '4),12 + INT(A/4):

PRINT NA$(1,10);
390 A = A + I:IF A>31 THEN 410
400 GOTO 360
410 POSITION 10,22:? "PRESS START TO CONT';:

IF PEEK(53279)<>6 THEN 410
420 A = O:POSITION 0,12:

? U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;U$;:
GOTO 360

430 CLOSE #1
440 POSITION 15,22:? "PRESS START';
450 IF PEEK(53279)<>6 THEN 450
460 POSITION 15,22:? "[l1]":POKE 764,255:GOTO 520
470 GRAPHICS O:POKE 710,128:POKE 712,148:

POSITION 14,6:? "DR. C. WACKO'S":
POSITION 13,7:? "ANIMATION TESTER"

480 POKE 752,I:POSITION 5,10:PRINT
"WANT LIST OF FONTS? YES OR NO:"

490 IF PEEK(764) = 43 THEN POKE 764,255:GOTO 350
500 IF PEEK(764) = 35 THEN POKE 764,255:GOTO 520
510 IF PEEK(764)<>43 OR PEEK(764)<>35 THEN

GOTO 490
520 POSITION O,12:? U$;U$;U$;U$:POSITION 8,12:

?"C: OR D:FONT NAME";:INPUT C$:IF C$ = "C:"
THEN 550

530 IF LEN(C$)<2 THEN 520
540 TRAP 520:IF C$(LEN(C$) - 3,LEN(C$»<>".FNT'

THEN C$(LEN(C$) + I,LEN(C$) + 5) = ".FNT'

208

APPENDIX B: UTILITY CODES

550 POSITION 0,14:? U$;U$:POSITION 6,14:
? "GRAPHICS MODE: 0, 1, OR 2 ";

560 TRAP 540:INPUT G
570 IF G=O THEN V=O
580 IF G = 1 THEN V = 1
590 IF G = 2 THEN V = 2
600 IF G<O OR G>2 THEN GOTO 540
610 POSITION 0,16:? U$;U$;U$:POSITION 16,16:

?"Fast Slow":? "[6]SPEED: (5 TO 500): ";
620 TRAP 600:INPUT S
630 POKE 559,0:RETURN
640 POKE 559,34:PRINT CHR$(125):POKE 752,1:

POKE 710,53:POSITION 8,10:? "I CAN'T
FIND[l]";C$;:
FOR A = 1 TO 500

650 NEXT A:GOTO 60

209

DR. C. WACKO'S MIRACLE GUIDE

Sound Machine

After you RUN the Sound Machine a list of numbered options
will appear on your screen . Just type in a number and listen to the
amazing and weird sounds .

The Sound Machine program lets you place any of its sound ef­
fects into your program. For example , lines 9000 through 9090
(STAR RAIDERS) can be used as a subroutine in a space game of
your own design .

Creating Your Own Sounds

Enter number 13 and press RETURN and the Sound Machine
flips to Sound Dabbler MK.I-its creative mode . In this mode
you'll be able to astound your parrakeets with strange birdlike
chirps , or frighten your neighbors with wild screeches. Anything is
possible!

If you want to mix two voices you'll need two joysticks . One plug­
ged into port 1 and the other in port 2.

To change PITCH : Move joystick up or down.

To change DISTORTION: Move joystick left or right.

To vary the VOLUME : Press the red trigger button .

Press OPTION to reset voice a

Press SELECT to reset voice 1

Press START to exit the Sound Dabbler.

Important programming note : Enter all underlined words and
characters between quotation marks as inverse characters . To do
this , press the Atari symbol key before typing the characters. An
example of underlined characters is found in line 110: THE .

Sound Machine

10 REM SOUND MACHINE
20 REM CERTAIN ARRANGEMENTS OF SOUND

CAN BE MADE TO GENERATE INTERESTING
AND EVEN EXCITING PATIERNS

210

APPENDIX B: UTILITY CODES

30 REM USING PURE TONES; WE DEFINE A
SOUND AS ATTACKING/STABLE OR DECAYING

40 REM VARIATIONS OF ATTACK AND DECAY PLUS
A SMIDGEN OF STABLE SOUND MAKE

50 REM GOOD GAME EFFECTS
60 REM DEFINE ATTACK/STABLE AND DECAY

BOTH IN TERMS OF PITCH AND VOLUME
70 DIM U$(5)
80 U$ = CHR$(156)

100 GRAPHICS O:POKE 710,68:? CHR$(125);:POKE
712,128:POKE 752,1:COLOR 32:PLOT 2,0:POKE
709,15

110 POSITION 18,0:? ''THE'';:POSITION 15,1:
? "WONDERFUL";:POSITION 17,2:? "SOUND";:
POSITION 17,3:? "SOUND";

120 POSITION 16,4:? "MACHINE";
130 POSITION 2,7:? "1) VOLUME ATTACK":

? "2) VOLUME DECAY":? "3) TONE DECAY":
? "4) TONE ATTACK"

140 ? "5) VOLUME AND TONE ATTACK":
? "6) VOLUME AND TONE DECAY":? "7) VOLUME
ATTACK, TONE DECAY"

150 ? "8) VOLUME DECAY, TONE ATTACK":
? "9) STAR RAIDERS":? "10) SIREN":
? "11) WEIRD ZAP SOUND"

160 ? "12) POWER GENERATORS":
? "13) SOUND DABBLER MK.I"

165 ? "14) RETURN TO MENU"
170 TRAP 200:POSITION 0,22:? U$;U$;CHR$(127);

CHR$(127);"OPTION";:INPUT A:IF A<l OR A>14
OR A<>INT(A) THEN 170

175 IF A = 14 THEN POKE 764,255:RUN "D:MENU"
180 ON A GOSUB 1000,2000,3000,4000,5000,6000,

7000,8000,9000,10000,11000,12000,20000
190 GOTO 100
200 ? CHR$(253):GOTO 170
999 STOP

1000 REM VOLUME ATTACK
1010 FOR A=O TO 15
1020 SOUND O,50,10,A
1030 FOR B = 0 TO 15:NEXT B
1040 NEXT A
1050 SOUND 0,0,0,0
1060 RETURN
2000 REM VOLUME DECAY

211

DR. C. WACKO'S MIRACLE GUIDE

2010 FOR A=O TO 15
2020 SOUND 0,50,10,15 - A
2025 FOR B = 0 TO 15:NEXT B
2030 NEXT A
2040 SOUND 0,0,0,0
2050 RETURN
3000 REM PITCH DECAY
3010 FOR A = 1 TO 255 STEP 5
3020 SOUND 0,A,10,8
3025 FOR B = 1 TO 15:NEXT B
3030 NEXT A
3040 SOUND 0,0,0,0
3050 RETURN
4000 REM PITCH ATTACK
4010 FOR A = 1 TO 255 STEP 5
4020 SOUND 0,255 - A,10,8
4025 FOR B = 1 TO 15:NEXT B
4030 NEXT A
4040 SOUND 0,0,0,0
4050 RETURN
5000 REM ATTACK VOLUME AND PITCH
5010 FOR A=l TO 50
5020 FOR B=l TO 15
5030 SOUND 0,50 - A,10,B
5040 NEXT B
5050 NEXT A
5060 SOUND 0,0,0,0
5070 RETURN
6000 REM DECAY VOLUME AND PITCH
6010 FOR A= 1 TO 50
6020 FOR B =0 TO 15
6030 SOUND 0,A,1O,15 - B
6040 NEXT B
6050 NEXT A
6060 SOUND 0,0,0,0
6070 RETURN
7000 REM ATTACK VOLUME, DECAY PITCH
7010 FOR A = 1 TO 50
7020 FOR B =0 TO 15
7030 SOUND 0,50 + A,10,B
7040 NEXT B
7050 NEXT A
7055 SOUND 0,0,0,0
7060 RETURN
8000 REM DECAY VOLUME, ATTACK PITCH

212

APPENDIX B: UTILITY CODES

8010 FOR A= 1 TO 50
8020 FOR B=O TO 15
8030 SOUND 0,50 - A,l0,15 - B
8040 NEXT B:NEXT A
8050 SOUND 0,0,0,0
8060 RETURN
9000 REM STAR RAIDERS
9010 FOR A= 1 TO 10
9030 SOUND 0,50,10,8
9040 FOR B = 1 TO 50:NEXT B
9050 SOUND 0,100,10,8
9060 FOR B = 1 TO 50:NEXT B
9070 NEXT A
9080 SOUND 0,0,0,0
9090 RETURN

10000 REM SIREN
10010 A = l:B = 1
10015 FOR C = 1 TO 240
10020 B = B +A
10030 IF ABS(B»15 THEN A= -A
10040 SOUND 0,45 + B,1O,8
10050 NEXT C
10060 SOUND 0,0,0,0
10070 RETURN
11000 REM WEIRD ZAP SOUND
11010 FOR A = 1 TO 20
11020 FOR B=l TO 5
11030 FOR C=l TO 3
11040 SOUND 0,B·10 + C·2,10,B·C
11050 NEXT C
11060 NEXT B
11070 NEXT A
11080 SOUND 0,0,0,0
11090 RETURN
12000 REM S = TABLE DUAL PART = GENERATORS
12010 FOR A = 1 TO 500
12020 SOUND 0,70,12,8
12030 SOUND 1,71,12,8
12040 NEXT A
12050 SOUND 0,0,0,0
12060 SOUND 1,0,0,0
12070 RETURN
20000 REM DO YOUR OWN SOUND
20010 Al = 0:A2 = 0
20020 B1 = 0:B2 = 0

213

DR. C. WACKO'S MIRACLE GUIDE

20030 C1 = 0:C2 = 0
20040 GRAPHICS O:POKE 752,1:COLOR 32:PLOT

2,0:P<iKE 710,132:POKE 712,108:POKE 709,15
20050 POSITION 4,20:? "OPTION:ZERO VC 0

SELECT:ZERO VC l";:POSITION 4,20:
?"START = EXIT'

20060 POSITION 1,15:? "PATTERN: VOICE, PITCH,
DISTORTION, VOLUME"

20070 POSITION 1,17:? "DIRECTION:NjA,UPjDOWN,
LEFT jRIGHT,BUTTON"

20080 POSITION 10,3:? "JOYSTICK O";:POSITION
10,8:? "JOYSTICK I";

20090 SOUND 0,A1,B1,C1:S0UND 1,A2,B2,C2
20100 POSITION 10,5:PRINT "VOICE 0: 0,";

Al;",";Bl;",";Cl;" "
20110 POSITION 10,10:PRINT "VOICE 1: 1,";

A2;",";B2;",";C2;" "
20120 A = STICK(O):B = STICK(l):C = STRIG(O):

o =STRIG(l)
20130 Al = Al + (A = 13) - (A = 14):

A2 = A2 + (B = 13) - (8 = 14)
20140 B1 = B1 + 2·(A = 11) - 2.(A = 7):

B2 = B2 + 2· (B = 11) - 2 • (B = 7)
20150 C1 = C1 + (C = 0):C2 = C2 + (0 = 0)
20160 IF A1>255 THEN Al = 0
20170 IF Al <0 THEN Al = 255
20180 IF A2>255 THEN A2 = 0
20190 IF A2<0 THEN A2 = 255
20200 IF B1>14 THEN B1 = 0
20210 IF B2>14 THEN B2 = 0
20220 IF B1<0 THEN B1 = 14
20240 IF B2<0 THEN B2 = 14
20250 IF C1>15 THEN C1 = 0
20260 IF C2>15 THEN C2 = 0
20270 A = PEEK(53279)
20280 IF A = 3 THEN Al = 0:B1 = 0:C1 = 0
20290 IF A = 5 THEN A2 = 0:B2 = 0:C2 = 0
20300 IF A<>6 THEN 20090
20310 SOUND O,O,O,O:SOUND 1,0,0,0
20320 RETURN

214

APPENDIX B: UTILITY CODES

CUTAWAY OF GR:>VERS '59 CADD\(SP/tt=.ESHIP

AIJRA
SPEED

YANIC
MoDE

ASTRAL
PL-ANc
sHIFTeR.

C05M IG
&.ENDER

215

£MER6eNC'{
START

Appendix C: Myrtle the Turtle

Here it is gang! Dr . Wacko's special deluxe super duper bonus
game-Myrtle the Turtle!

I'll get into the workings of this original arcade game after you 've
had a chance to enjoy it.

Myrtle is a long program, the longest in this book. But because
I've used some very special tricks (soon to be revealed) it will
RUN on a 16K Atari.

So limber up your fingertips and start typing . I'll be back to watch
you play in a few weeks. Don't forget to SAVE Myrtle to disk or
cassette . I'm sure you'll want to play it again and again, and share
the excitement with your friends and relatives.

If you've got a disk drive and the software version of Dr. Wacko's
Miracle GUide, you're all set. Just press the right buttons and start
enjoying Myrtle the Turtle!

What's it all about, Wacko?

Myrtle's just a turtle . All she wants to do is lay and fertilize eggs in
the four "nests" located at each corner of the playfield-that's the
theme of this game . Her goal is to create as many baby turtles as
she can , and live to a ripe old age-level 20.

A Mean and Vicious Amoeba

But poor Myrtle is opposed (the obstacle) by a mean and viscious
amoeba. This slimy, pulsing ameoba eats everything it lays its filia
on, especially Myrtle and her eggs . And as the game progresses
this slimy character becomes faster and smarter until , in level 10,
it starts shooting reproductions of itself at Myrtle!

What's a Poor Turtle to Do?

Myrtle's got one trick up her webbed feet. Golden Time Holes ap­
pear in a pattern at different parts of the playfield. She can reach
a Time Hole , step into it , teleport to one of her nests , and instant­
ly escape from the hungry amoeba .

216

IMFORTANT N01E 1
CORRECT SPACING IS
C !ZITI C/4L! I'VE IIJDICAT£D) IN
B~KETS) THE NVMBER OF
L~r"'Lc.·J 'TO V6AV;; BE.'N€~N

AriON M(lR(s I..-IK£ rHiS·.

[31 nils ME'AIID To ~
SPlICES WI-I5tJ t.({JJ

f'E I N "THE ~06RA!Vl.

APPENDIX C: MYRTLE THE TURTLE

Movement

Control Myrtle with a joystick plugged into port 1.
Push the joystick up to move Myrtle up ; down, to move down ;
left , to move left; right , to move right. Diagonal movement is also
possible .

Getting Started

Now that you know how to control Myrtle, press the START but­
ton to begin play.

Teleportation

You've first got to reach a passing Time Hole to teleport to one of
the four nests . The Time Hole moves about the playfield in a fix­
ed pattern-it's up to you to figure this pattern out.

Once Myrtle is in the Time Hole , she's teleported to her nest by
pointing the joystick toward the nest you've chosen . Only use the
four diagonal joystick positions to teleport to a nest. This may take
a little practice, but Slow POKE figured it out, so it's not that
difficult!

Laying Eggs

Once Myrtle is safely at a nest , she'll lay an egg when you push
the red trigger.

Fertilizing an Egg

Eggs can only be fertilized after Myrtle has layed eggs in all four
nests . Just position Myrtle above an egg and press the trigger to
fertilize it.

Moving On to Higher Levels of Play

To move on to the next level, Myrtle must fertilize at least one egg
before the timer reaches zero .

When the eggs hatch , baby Myrtle's scramble from their nests into
a community nest beneath the score and time readouts. The
community nest can hold only nine baby turtles . If Myrtle creates
more than nine babies you are awarded extra points for each ad­
ditional baby hatched .

217

DR. C. WACKO'S MIRACLE GUIDE

Replay

Press START to replay .

Scoring

• 1 Point for each teleportation
• 25 points for each egg layed
• 25 points for each egg hatched

Try to reach level 20. Happy fertilization!

Important programming note : Enter all underlined words and
characters between quotation marks as inverse characters . To do
this, press the Atari symbol key before you type the characters .
An example of inverse characters is found in line 60: loadin' .

Myrtle the Turtle

10 CLR :GOTO 40
20 POSITION 4,7:? #6;VP;" ";:IF VP>HS THEN

HS=VP
30 POSITION 4,4:? #6;HS;" ";:RETURN
40 DIM X(15),Y(15),S(7),C(2,16),EX(4),EY(4),CX(5),

CY(5),E(4),L(15),MX(2)
50 GRAPHICS 2:POKE 752,I:POKE 712,148:

POSITION 7,3:PRINT #6;" myRtle":
POSITION 9,4:PRINT #6;"~"- -

60 POSITION 7 ,5:PRINT #6;"loadin":PRINT "[3]By
Robert Kurcina & David Heller"

70 PRINT "[3]Copyright 1983 Addison-Wesley Publishing"
80 N = O:Nl = I:C = 2:N8 = 8:NX = 10:GOSUB 1250
90 HT = 53278:SP = 1536:GO = 53248:Gl = 53249:

G2 = 53250:G3 = 53251:RO = 704:Rl = 705:
R2 = 706:R3 = 707:R4 = 708:R5 = 709

100 R6 = 710:R7 = 711:R8 = 712:PO = 512:Pl = 640:
P2 = 768:P3 = 896:PC = 53260:PF = 53261:FP = 53263

110 L = C:SX = NX:SY = N8:CX = N:CY = N:
MX = MX(Nl):MY = 80:YM = MY:YS = SY:
VP = N:TM = N:F = N:CP = N:LA = Nl:
CL = N:ZZ = N:SL = N:LV = Nl:T = N:CW = N

120 XX = N:YY = N:YB = N:MT = N:WC = N:SB = 4:
P4 = N:P5 = N:ML = N:FOR A = Nl TO
4:E(A) = N:NEXT A

218

APPENDIX C: MYRTLE THE TURTLE

130 POKE 756,ST 1256:POKE 559,34 + N8:POKE
R4,15:POKE R5,38:POKE R6,194:POKE
R7,196:POKE R8,132

140 POKE RO,78:POKE R1,127:POKE R2,127:POKE
R3,255

150 COLOR 154:PLOT N,N:DRAWTO 19,N:DRAWTO
19,11:DRAWTO N,l1:DRAWTO N,N

160 COLOR 186:FOR A = N1 TO C:PLOT A,A:DRAWTO
19-A,A:DRAWTO 19-A,11-A:DRAWTO
A,l1 - A:DRAWTO A,A:NEXT A

170 COLOR 154:PLOT 3,C:DRAWTO 16,C:DRAWTO
16,9:DRAWTO 3,9:DRAWTO 3,C:PLOT
9,3:DRAWTO 9,9:PLOT 11,3:DRAWTO 11,9

180 COLOR 186:PLOT NX,C:DRAWTO NX,9:COLOR
28:PLOT N1,N1:PLOT 18,N1:PLOT N1,NX:PLOT
18,NX

190 POSITION 4,3:? #6;" = >ABC";:POSITION 4,6:
? #6;"ABC";:POSITION 12,3:? #6;"DEF";:
POSITION 12,6:? #6;"?@";

200 IF HS = N THEN 1170
210 MT=112-LV·C:FOR A=N1 TO 5:FOR B=N TO

N1:FOR X = N1 TO NX:SOUND N,50 - A.X,NX,
NX - X: NEXT X:POSITION 12,4:? #6;"[4]";

220 IF B = N1 THEN POSITION 12,4:? #6;MT;
230 NEXT B:NEXT A:IF L = N1 THEN 260
240 B = N:COLOR 43:FOR A = N1 TO L - 1:IF A>5

THEN B=3
250 PLOT A + 3 + B,N8:NEXT A
260 POSITION 4,4:? #6;"[5],,;:POSITION 4,7:? #6;

"[5]";:POSITION 12,4:? #6;"[5],,;:POSITION 12,7:
? #6;"[5]";

270 GOSUB 20:POKE HT,N:POSITION 12,7:? #6;LV;:IF
LV>5 THEN SB = N8

280 A = STICK(N):SX = SX + X(A):SY = SY + Y(A):IF
SX<N OR SX>19 OR SY<N OR SY>l1 THEN
SX = SX - X(A):SY = SY - Y(A)

290 SOUND N1,N,N,N:TM =TM + N1:POKE
R8,132 - C·(TM>MT IC):POSITION 12,4:?
#6;MT - TM;"[1]";:IF TM = MT THEN POKE
R8,N:GOTO 820

300 LOCATE SX,SY,ZZ:F = F + 1 :IF F>C THEN F = N1
310 IF ZZ = N OR ZZ>31 AND ZZ<96 AND ZZ<>33

AND ZZ<>72 THEN SX = SX - X(A):
SY = SY - Y(A):SOUND N,SX. 5 + SY· 5 + NX,NX,6

219

DR. C. WACKO'S MIRACLE GUIDE

320 POKE HT,N:D = USR(SP,PM + PO + YS·N8 + 16,ST)
:POKE GO,SX·N8 + 48:D = USR(SP,
PM + PO + SY·N8 + 16,ST + C(F,A)):YS = SY

330 IF A<>15 THEN POKE 77,N:SOUND NAO + F·3,
N8,NX - F·3:S0UND N,N,N,N:GOTO 410

340 IF STRIG(N) = N1 THEN 410
350 LOCATE SX,SY,ZZ:FOR X = N1 TO 10:S0UND

N,120 - X·N8,NX,NX - X:NEXT X:IF ZZ = 33
THEN 500

360 IF ZZ<>28 THEN 410
370 SOUND N,80,NX,15:FOR X = N1 TO 5:NEXT

X:SOUND N,N,N,N:FOR X = N1 TO 4:IF SX = EX(X)
AND SY = EY(X) THEN 390

380 NEXT X
390 E(X) = N1:POP :COLOR 33:PLOT SX,SY:FOR

A=N1 TO 5:FOR B=N1 TO C:FOR X=N1 TO
C:SOUND N,X·B·5,12,A·C:NEXT X

400 D = USR(SP ,PM + PO + Sy· N8 + 16,
ST + C(B,14)):NEXT B:NEXT A:SOUND N,N,N,N:
VP = VP + 25:GOSUB 20:IF T = 5 THEN T = N

410 CP=PEEK(PC):IF CP=C OR CP=6 THEN 820
420 IF CP = N8 OR CP = 12 THEN 770
430 IF CP = 4 THEN 550
440 IF NC = 0 THEN NC = N1:LA = LA + N1:IF LA>5

THEN LA=N1
450 IF SX = CX(LA) AND SY = CY(LA) THEN

LA = LA + N1:IF LA>5 THEN LA = N1
460 IF NC = N1 THEN CX = CX(LA). N8 + 48:

CY = CY(LA)·N8 + 16:D = USR(SP,
PM + P2 + CY,ST + 120):POKE
G2,CX:NC = C:SOUND N1,255,NX,15

470 IF NC = C THEN CL = CL + N1:D = USR(SP,
PM + P2 + CY,ST + S(4 + F)):POKE R2,F. 32 - N1

480 IF CL>NX THEN CL=N:NC=N:POKE
G2,N:D = USR(SP,PM + P2 + CY,ST)

490 GOTO 600
500 FOR A = N1 TO 4:IF E(A) = N THEN POP :

GOTO 410
510 NEXT A:LOCATE SX,SY,ZZ:IF ZZ<>33 THEN FOR

X=N1 TO 4:S0UND N,200-X.5,N8,X/C:NEXT
X:SOUND N,N,N,N:GOTO 410

520 FOR X = N1 TO N8:S0UND
N,200 -X·5,N8,X/C:NEXT X:SOUND
N,N,N,N:COLOR 72:PLOT SX,SY

220

APPENDIX C: MYRTLE THE TURTLE

530 B = N:FOR X = Nl TO 4:LOCATE EX(X),EY(X),ZZ:IF
ZZ<>72 THEN POP :GOTO 410

540 NEXT X:GOTO S20
550 FOR A = Nl TO 5:FOR X = Nl TO 3:FOR B = Nl

TO C:SOUND N,A·X·B·C + 40,NX,6:POKE
RO,X·B·5:NEXT B:NEXT X:NEXT A:POKE RO,7S

560 SOUND N,N,N,N:NC = N:CL = N:POKE
G2,N:D = USR(SP,PM + P2 + CY,ST):POKE HT,N

570 VP = VP + Nl:GOSUB 20:FOR A = Nl TO
NX:SOUND N,NX - A,12,A + 5:NEXT
A:D = USR(SP,PM + PO + YS·NS + 16,ST):
SOUND N,N,N,N

5S0 A = L(STICK(N)):IF A<6 THEN
SX = CX(A):SY = CY(A):YS = SY:POKE
GO,SX· NS + 4S:D = USR(SP,
PM + PO + SY· NS + 16,ST + 40):GOTO 440

590 A = A - 5:SX = EX(A):SY = EY(A):YS = SY:POKE
GO,SX.NS + 4S:D = USR(SP,
PM + PO + SY· NS + 16,ST + 40):GOTO 440

600 IF T = N THEN T = INT(RND(N).4 + Nl):IF E(T) = N
THEN T=5

610 B = INT(RND(N)·4 + Nl):IF T = 5 AND E(B»N AND
RND(N)<O.1 THEN T = B

620 IF T<>5 AND ABS(SX·NS+4S-MX)<72 AND
ABS(SY·NS + 16 - MY)<72 THEN 1210

630 IF T<5 THEN X = SGN(EX(T). NS + 4S - MX). SB:
Y = SGN(EY(T)·NS + 16 - MY)·SB

640 IF T=5 THEN X=SGN(SX·NS+4S-MX)·SB:
Y = SGN(SY·NS + 16 - MY)·SB

650 MX = MX + X:LOCATE
(MX - 4S)/NS,(MY -16)/NS,ZZ:
IF ZZ = 33 OR ZZ = 72 THEN 790

660 IF ZZ>31 AND ZZ<96 THEN MX=MX-X
670 MY=MY+Y:LOCATE

(MX - 4S)/NS,(MY - 16)/NS,ZZ:
IF ZZ = 33 OR ZZ = 72 THEN 790

6S0 IF ZZ>31 AND ZZ<96 THEN MY = MY - Y
690 POKE HT,O:D = USR(SP,PM + PI + YM,ST):POKE

Gl,MX:D = USR(SP,PM + PI + MY,
ST + C(F,16)):YM = MY

700 IF PEEK(PF)=4 THEN POKE HT,N:CL=N:
NC = N:POKE G2,N:D = USR(SP,PM + P2 + CY,ST):
SOUND Nl,50,NX,15

710 IF SL = N THEN 2S0

221

DR. C. WACKO'S MIRACLE GUIDE

720 ML = ML + N1:IF ML>5 + SL OR T = 5 THEN
ML = N:XX = N:VY = N:P4 = N:P5 = N:POKE
G3,N:D = USR(SP,PM + P3 + YB,ST):YB = N:
SL = N :GOTO 280

730 IF SL=C AND F=C THEN
P4 = SGN(SX· N8 + 48 - XX)
·SB:P5 = SGN(SY·N8 + 16 - VY)·SB

740 POKE HT,N:D = USR(SP,PM + P3 + YB,ST):
XX = XX + P4:VY = VY + P5:YB = VY:POKE
G3,XX:D = USR(SP,PM + P3 + VY,ST + C(F,16))

750 SOUND N1,50 - F·C - SL·N8 - CL,NX,5:
IF INT((XX - 48)/N8) = SX AND
INT((VY -16)/N8) = SY THEN 770

760 GOTO 280
770 POKE HT,N:POKE R8,15:S0UND N,50,12,15:FOR

A = N1 TO 5:NEXT A:POKE R8,N:POKE G3,N
780 SOUND N,N,N,N:D = USR(SP,PM + P3 + YB,ST):

XX = N:VY = N:YB = N:P4 = N:P5 = N:SOUND
N1,N,N,N:GOTO 820

790 IF T = 5 THEN T = N:GOTO 690
800 E(T) = N:X = EX(T):Y = EY(T):T = N:FOR A = N1 TO

5:FOR B = N1 TO C:SOUND
N,B·NX+A·5 + NX,N8,5:
NEXT B:NEXT A:COLOR 28

810 SOUND N,150,NX,15:FOR A = N1 TO 5:NEXT A:
SOUND N,N,N,N:PLOT X,Y:GOTO 690

820 D = USR(SP,PM + PO + YS·N8 + 16,ST):
D = USR(SP ,PM + PO + SY· N8 + 16,ST + 40):
FOR A = MX TO N STEP - 4:POKE G1,A:
SOUND N,A + NX,NX,NX

830 NEXT A:FOR A = CX TO N STEP - N8:POKE
G2,A:SOUND N,A + 30,NX,NX:NEXT A:
D = USR(SP,PM + P3 + YB,ST):SL = PM + P2 + CY

840 D = USR(SP,PM + PI + MY,ST):D = USR(SP,
PM + P3 + YB,ST):D = USR(SP,SL,ST):FOR A = N1
TO 3:FOR B = N1 TO 3:FOR X = N TO N1

850 POKE R1,A·B·NX+X·15:S0UND
N,A·30 - B·5 + X,12,B + X·C + A*4:
D = USR(SP,PM + PO + SY * N8 + 16,
ST + S(A + X)): NEXT X:NEXT B:NEXT A

860 D = USR(SP,PM + PO + SY*N8 + 16,ST):
POKE HT,N:CP = N:WC = N:TM = N:NC = N:T = N:
CL = N:SL = N:CW = N:L = L - N1:ML = N

870 POKE R8,192:FOR A = N1 TO 4:LOCATE
EX(A),EY(A),ZZ:E(A) = N:IF ZZ = 28 THEN 1080

222

APPENDIX C: MYRTLE THE TURTLE

880 IF ZZ = 72 THEN 900
890 FOR B=N1 TO 5:S0UND N,100-B·20,NX,15:

NEXT B:SOUND N,N,N,N:COLOR 28:PLOT
EX(A),EY(A):GOTO 1080

900 FOR B = N1 TO 6:FOR X = N TO N1:FOR Y = N1
TO 6:NEXT Y:SOUND N,B·NX-X·NX,
NX,B· C + X:COLOR 72 + X • 128:PLOT EX(A),EY(A)

910 NEXT X:NEXT B:COLOR 28:PLOT EX(A),EY(A):
SX = EX(A):SY = EY(A):YS = SY:POKE
GO,N:D = USR(SP,PM + PO + SY· N8 + 16,ST + 40)

920 POKE RO,15:POKE GO,SX·N8+48:FOR B=N1 TO
6:S0UND N,NX - B,NX,9 + B:NEXT B:SOUND
N,N,N,N

930 FOR B = N1 TO 6:FOR X = N1 TO C:FOR Y = N1
TO 5:NEXT Y:D = USR(SP,PM + PO + SY·N8 + 16,
ST + C(X,14)):NEXT X:NEXT B

940 X = SGN(NX - SX): Y = SGN(9 - SY):SX = SX + X:
LOCATE SX,SY,ZZ:IF ZZ>31 AND ZZ<96 THEN
SX=SX-X

950 SY = SY + Y:LOCATE SX,SY,ZZ:IF ZZ>31 AND
ZZ<96 THEN SY = SY - Y

960 F = F + N1:IF F>C THEN F = N1
970 D = USR(SP,PM + PO + YS· N8 + 16,ST):POKE

GO,SX·N8 + 48:D = USR(SP,
PM + PO + SY· N8 + 16,ST + C(F,14)):YS = SY:
SOUND N,40+F·3,N8,NX-F·3

980 SOUND N,N,N,N:IF SX=NX AND SY=9
THEN 1000

990 GOTO 940
1000 CP = N1:FOR B = N1 TO 5:FOR X = N1 TO C:

FOR Y = N1 TO 6:NEXT Y:D = USR(SP,
PM + PO + SY·N8 + 16,ST + C(X,14)):NEXT X:
NEXTB

1010 VP = VP + 25:GOSUB 20:IF L + N1>9 THEN 1060
1020 L = L + N1:X = - N1:IF L>5 THEN X = N1
1030 D = USR(SP,PM + PO + SY·N8 + 16,ST):

SX = SX + X:SY = SY - N1 :POKE GO,SX. N8 + 48:
D = USR(SP,PM + PO + SY·N8 + 16,
ST + C(N1,14)):SOUND N,40,N8,NX

1040 FOR B = N1 TO 9:S0UND N,9 - B,NX,5:NEXT
B:D = USR(SP,PM + PO + SY· N8 + 16,ST):SOUND
N,100,NX,15:X=L+3:IF L>5 THEN X=L+6

1050 COLOR 43:PLOT X,N8:S0UND N,N,N,N:POKE
HT,N:GOTO 1080

223

DR. C. WACKO'S MIRACLE GUIDE

1060 FOR B = N1 TO 3:FOR X = N TO N1:FOR Y = N1
TO 6:NEXT Y:SOUND N,B·50 - X·30,12,15:
D = USR(SP,PM + PO + SY·N8 + 16,
ST + S(B + X)):NEXT X

1070 NEXT B:D = USR(SP,PM + PO + SY·N8 + 16,ST):
SOUND N,N,N,N:POKE HT,N

1080 NEXT A:IF L = N THEN 1170
1090 IF CP = N1 THEN CP = N:LV = LV + N1:IF LV>20

THEN 1140
1100 COLOR 32:PLOT 4,N8:DRAWTO N8,N8:PLOT

12,N8:DRAWTO 15,N8:POKE R8,N:FOR A = N1 TO
255:NEXT A:POKE RO,78

1110 SOUND N,100,NX,15:SX = NX:SY = N8:YS = SY:
POKE GO,SX. N8 + 48:S0UND
N,50,NX,15:D = USR(SP,PM + PO + SY·N8 + 16,
ST + C(N1,14))

1120 SOUND N,25,NX,15:FOR B = N1 TO 5:NEXT
B:SOUND N,N,N,N:MX = MX((LV IC = INT
(LV IC)) + N1):MY = 80:YM = MY:LA = N1:POKE
R8,132

1130 GOTO 210
1140 POKE 20,N:FOR A = N1 TO

NX:X = PEEK(R4):POKE R4,PEEK(R5):SOUND
N,PEEK(20),NX,N8

1150 POKE R5,PEEK(R6):POKE R6,PEEK(R7):SOUND
N ,PEEK(20),NX,N8:POKE R7,PEEK(R8)

1160 SOUND N,PEEK(20),NX,N8:POKE R8,X:NEXT
A:SOUND N,N,N,N

1170 FOR A = 250 TO N STEP -15:FOR X = N TO
3:S0UND X,A + X,NX, 15:NEXT X:NEXT A:FOR
X = N TO 3:S0UND X,N,N,N:NEXT X

1180 COLOR 32:PLOT 4,N8:DRAWTO N8,N8:PLOT
12,N8:DRAWTO 15,N8:GOSUB 20:IF HS = 0 THEN
HS= -N1

1190 IF PEEK(53279)<>6 THEN POKE
R4,PEEK(20):POKE R5,PEEK(20):GOTO 1190

1200 GOTO 110
1210 IF SL<>N OR LV<l1 THEN 630
1220 XX = MX:YY = MY:YB = YY:

P4 = SGN(SX· N8 + 48 - XX). SB:
P5 =SGN(SY.N8 + 16 - YY)*SB:SL= N1:IF LV>15
THEN SL=C

1230 GOTO 630
1240 GOTO 1240

224

APPENDIX C: MYRTLE THE TURTLE

1250 MEMTOP = PEEK(741) + 256-PEEK(742) - Nl
1260 PM = INT((MEMTOP -1024)/1024)-1024:

ADJTOP = PM + 384
1270 ST = PM + 1024:POKE 742,INT(ADJTOP /256):POKE

741,ADJTOP - 256- PEEK(742)
1280 FOR X = N TO 512
1290 POKE ST + X,PEEK(57344 + X): NEXT X:POKE

54279,PM/256:POKE 53277,C:FOR A=512 TO
1024:POKE PM + A,N:NEXT A

1300 RESTORE 1350:FOR A = ° TO 127:READ X:POKE
A + ST,X:NEXT A:FOR A = 208 TO 327:READ
X:POKE A+ST,X:NEXT A

1310 FOR A = 1536 TO 1560:READ X:POKE A,X:NEXT
A:FOR A=Nl TO 7:READ X:S(A) = X: NEXT A

1320 FOR A = Nl TO C:FOR B = Nl TO 15:READ
X:C(A,B) = X: NEXT B:NEXT A:FOR A = Nl TO
15:READ X:READ Y:X(A) = X:Y(A) = Y:NEXT A

1330 FOR A = Nl TO 4:READ X:READ
Y:EX(A) = X:EY(A) = Y:NEXT A:FOR A = Nl TO
5:READ X:READ Y:CX(A) = X:CY(A) = Y:NEXT A

1340 READ X:READ Y:C(Nl,16) = X:C(C,16) = Y:FOR
A = Nl TO 15:READ X:L(A) = X:NEXT
A:MX(Nl) = 184:MX(C) = 64:GRAPHICS 18:RETURN

1350 DATA 0,0,0,0,0,0,0,0,0,0,24,24,60,60,24,0,0,90,
126,126,126,255,60,0,0,24,255,126,126,126,126,195

1360 DATA 33,63,62,126,126,62,63,33,0,24,255,126,
126,255,60,0,132,252,124,126,126,124,252,132

1370 DATA 4,124,62,126,126,62,124,4,0,60,255,126,
126,126,90,0,195,126,126,126,126,255,24,0

1380 DATA 0,0,16,56,56,0,0,0,0,16,124,56,124,0,0,0,
32,62,124,126,126,124,62,32,36,60,239,98,70,
247,60,36

1390 DATA 0,60,118,70,98,110,60,0,0,0,0,24,24,0,0,0,
255,255,255,255,255,255,255,255,0,0,36,24,24,
36,0,0

1400 DATA 0,126,126,126,126,126,126,0,0,85,85,117,
85,85,0,0,0,212,20,92,84,212,0,0,0,0,69,69,69,
69,114,0

1410 DATA 0,0,64,68,64,68,112,0,0,119,68,116,20,
119,0,0,0,119,85,87,86,117,0,0,0,112,68,112,68,
112,0,0

1420 DATA 0,117,37,37,37,37,0,0,0,23,180,247,84,23,
0,0,0,0,64,0,64,0,0,0,0,66,24,60,60,24,66,0

1430 DATA 24,60,60,126,126,126,126,60

225

DR. C. WACKO'S MIRACLE GUIDE

1440 DATA 104,104,133,204,104,133,203,104,133,207,
104,133,206,160,0,177 ,206,145,203,200,192,8,2
08,247,96

1450 DATA 40,68,80,120,216,312,0,40,40,40,40,96,16,
96,40,64,56

1460 DATA 56,40,64,16,40,40,40,40,40,48,24,48,40,
72,32,32

1470 DATA 40,72,24,40,0,0,0,0,0,0,0,0,1,1,1, -1,1,
0,0,0, -1,1, -1, -1, -1,0,0,0,0,1,0, -1,0,0

1480 DATA 1,1,18,1,18,10,1,10,2,5,10,1,17,6,10,10,
10,5,104,112,0,0,0,0,8,7,3,0,9,6,1,0,4,2,5

Wheew! That was a real whopper! But it was worth it. I know that
you'll have hours of fun playing Myrtle.

Now, let's look a little closer at some of my demented program­
ming.

Crunching the Program

I was able to squeeze this gigantic program into less than 16K of
memory-with a little bit of help from trusting and well-oiled
Clarence Compactor. This means that you can enjoy Myrtle on
your Atari 400 or 600XL computer! Quite a feat , but not really
difficult if you know the tricks of the trade.

You can use the compacting tricks I'm going to show you to 't--~.If
squeeze really large programs into some pretty tight spots .

Compacting Trickeroos

• Remove all remark statements-REMs.
• Replace constants used more than three times with a

variable. You'll save six bytes of memory each time you
do this.

I've used this method to shrink Myrtle down to size. Take a look at
line 80. See it? The first statement expression is N = O. I've replac­
ed the constant 0 with the variable N. If you look at the rest of the
program you'll notice lots of Ns all over the place. These were all
once Os! I saved over 1000 bytes of memory by doing this.

• Be creative with your use of computer memory . Look at
line 1270. I've placed the character set (ST) above the
Player-Missile table . Not an orthodox thing to do , but it

226

APPENDIX C: MYRTLE THE TURTLE

worked , and made more room for the BASIC program.
• Concatenate lines into multiple statements. In other

words , put more than one statement on each line,
separated by colons . Line 110 is a great example of this
concatenatious method. (What?)

• Set line numbers that your program branches to a lot
through GOSUB and GOTO to predefined variables. For
example , if your program goes to line 100 a bunch of
times, make line 100 the variable L100 (L100 = 100) at
the beginning of your program. Then replace all
references to line 100 with L100. I didn't use this sneaky
method in the Myrtle program, but if I did, a typical line
would look like this: 1500 IF X = 5 THEN GOTO L100

• Keep your variable names as short as possible. The
longer they are, the more memory they use.

• If you use the same word or words throughout your pro­
gram such as START, replace it with a string variable.
First you 've got to dimension the string, then use the
string variable to replace the word everywhere it appears
in your program . Here's an example of this method :

10 DIM A$(5)
20 A$ = "START"
30 PRINT A$

Analyzing Myrtle

Get out your scalpel and surgical gloves and really dig into this
program. It uses all the elements that you've learned in this book.
It's challenging and educational to work through a program as
complex as Myrtle. And you'll get a great sense of accomplish­
ment once you've figured it all out. You'll also be weird and
strange-like me'

You don 't have to start your quest empty-handed, I've provided
you with one helpful tool . A short routine that shows you all the
characters used in this arcade game. Here it is :

o GRAPHICS 2:POKE 756,ST j256:FOR X = 110 TO
21O:PRINT #6;CHR$(X);:NEXT X:STOP

To use this little gem first RUN Myrtle by typing: GOTO 10
<RETURN>. After Myrtle starts, press the BREAK key, then
type GOTO 0 <RETURN> and you'll see all the weird shapes
and characters used in this great game .

227

DR. C. WACKO'S MIRACLE GUIDE

Appendix D: Smokey Peek's Pokes & Peeks

This appendix lists all the memory locations used in this book plus
many that you'll find useful as you design the greatest BASIC
aracade games in the universe.

The PEEK function lets "look" into a memory location and read
its contents . The POKE statement lets you stuff information
directly into a memory location .

16 & 53774

Used together after each Graphics statement disables BREAK
key. Program example:

5 POKE 16,64:POKE 53774,64:GOTO 10

20

PEEKing this location will give you a source of ever changing
numbers .. Used in the Flying Saucer Player-Missile program,
chapter 10.

88,89

Used in combination to find the first four screen pixel locations at
the upper left corner of the screen. See POKEing Stuff to
Graphics 19 in chapter 2.

540

Counts down to zero from a number you POKE into it. See the
Mystical Timing Routine and Sting programs in chapter 9.

559

DMA Control Register (SDMCTL) . Used to enable or disable
direct memory access. POKEing with a value of 0 disables DMA.
POKEing with a value of 1 turns DMA back on . Used to speed up
computing process by as much a 30' See Building Block #1 pro­
gram, chapter 3 . Also used in Player Missile Graphics. See Dr. C.
Wacko 's Player-Missile Miracle Guide , chapter 10.

228

APPENDIX D: SMOKEY PEEK'S POKES & PEEKS

580

Timer. POKEing 580 with 1 (POKE 580,1) at the beginning of
your program purges the existing program from memory when
the SYSTEM RESET key it pressed .

Color Registers

(See Color Register POKES, chapter 2.)

708

Controls Color Register 0

709

Controls Color Register 1

710

Controls Color Register 2

711

Controls Color Register 3

712

Controls Color Register 4

741,742

Free Memory High Address (MEMTOP) - See Dr . C. Wacko's
Player-Missile Miracle Guide.

752

POKEing 752 with 0 gets rid of the cursor , POKE 752 ,1 puts cur­
sor back on screen .

756

Character Address Base (CHBAS) . Used as a pointer to redefin­
ed character set. See the Building Block #1 program , chapter 3.

229

DR. C. WACKO'S MIRACLE GUIDE

1536 to 1791

Free RAM. See the Macine Language Flip-Flop Jogger program
in chapter 4.

53279

PEEK(53279) tells which special functon key has been pressed. A
good example of its use can be found in the Shoot-Out program,
chapter 9. This game begins when the player presses the START
key, and a value of 6 causes the program to go from line 670 to
line 675.

Values of PEEK(53279)

57344

VALUE
o
1
2
3
4
5
6

KEY PRESSED
OPTION, SELECT or START
OPTION or SELECT
OPTION or START
OPTION
SELECT or START
SELECT
START

Beginning location of Atari's character set. See BUilding Block #1
program , chapter 3.

Player-Missile Locations

Player-Missile locations can be found in Dr. C. Wacko 's Player­
Missile Graphics Miracle Guide , chapter 10.

230

Action
ADJTOP
Adversaries
Amazing Feet Program (Weird Harold)
Animation

18 Frames
flip-flop
half character
speed
tester

INDEX

7, 10
169-170
119-133

82-84

l17
59 , 71-89

80
72
71

2 frames
ANTIC processor

80-81
56, 58, 161-162,

165, 166, 171 , 175
ATASCII

codes, characters & keystrokes chart
Attack
Basic Sound Program
Big Frame-up Program
Binary Numbers , converting to decimal
Bong Program
Bouillabaise (Boolean) Logic

32 , 37
189
140
136

l11-l14
47-48
42-44

101-102,106,
l13, 124, 132, 181

Bounce 129-130
Boundary Bounceroo Program 130
Button , Red 65, 100-101 , 104-105, 117
Character 1O-l1, 13, 163
Character Graphics 46-69
Character Set 46-53
Chaser l19-120
Chaser Program 122-128
Chords 146-148
COLOR & PLOT 24-29
Colorful Letters Program 33
Colorful Playfield Program 60-62
Coordinates 23, 91
Cursor 65,91, 93-98, 163

direction 96 , 102-104
movement speed 96

DATA Entry 72 , 88
Decay 139-140
Difficulty Levels 13
Distortion 135
Drawing Behind Program 97 -98
DRAWTO 24, 27-28
Dummy 77
Erasing Behind Program 94-96
Flip-Flop Jogger Program 73-74

Machine Language Program 78-80
String Program 86-87
Grade A Program 87 -88

Flying Saucer Program 176-182

231

FNTFILES
FONTLlST
FOR/ NEXT Loop
FR (Frame)
Frame Set
Free Memory High Address
Free RAM
Full Screen Display
Goals
GRAPHICS
Graphics Modes

demonstration program
IF/ THEN
Joystick
Know-it-all Program
(Player-Missile Graphics)
LOCATE
Location 57344

68
66-67

29, 74, 139, 140
77 , 83

109-l10, l12-l14
168-169

75
22

7,9, 10
20, 22 , 29

20-25,29-36
20

138-139
65,75,99- 107,108- 117

Machine Language Machine
Mashed Monster Program
Mazecraze™ Program
MEMTOP

164-165
36-37,97-98, 129-130

48-50
74-77 , 84-86, 105

141-142
18

168-169,171
201-209 Monster Maker Program

Movement
Music
Music Program ('The Sting")
Musical Chart
Musical Note Duration
Obstacles
OFFSET
Opponents

chaser/ bouncer
chasers
10w IQs
roving robots
scaredy cats
vandals

OPTION=RVS
"Page 6"
Pitch
Pixel Modes

90-98
142-152
149-152
143-144
148-149
7, 9, 10

50-52, 77

119-120
119,121-126, 128

119
120, 131-133
119, 127-128

119
68
75

135, 145-146
21

Place Colors in Corners Program
Player-Missile Graphics

40
162-187
166-174
185-187

memory allocation
miracle guide
10 commandments

Playfield
PMBASE
POKE
POSITION
PRINT

174
59-63

166, 167, 169, 170, 171
24, 26-27

32
21

DR. C. WACKO'S MIRACLE GUIDE

PRINTII6
RAMTOP
REM Memory Demonstration Program
Resolution

32-33
166 , 168

49
23 , 166- 167

131-133
131-133

38-41
127-128

14
68

124-125

Roboteroonie Program
Roving Robots
SC
Scaredy Cat Program
Score
SELECT=CLR
SGN
Shoot Out Program
Simple Movement Program
SL
Sound
START = EXIT
Steinenwack
STRIG
Strings
Subroutine

154-160
92-93

77 , 107
134-161

68
59

100-102
84-88

140-141
16-17 Superbreakout™ Program

Superturnmeupsidedown Program
Text Modes

15
21,29-36

21-22
7-10

12-13
101-102

136
18

167 , 168-170
75 , 76-77 , 83, 106

135
135

53, 55, 57 , 59, 70,
71,72, 115, 165, 173

80-81, 115-116

Text Window
Theme
Time
Total Control Program
TRAP statement
Tron ™ Program
"UNUSED" Memory
USR Function
Voice
Volume
Wackenstein

Weird Harold

232

t- l-

- r-

I- r

1 +-,
-'-- J I J

r I -

r 1 1 I J (I 1 I

I I r u
-

-
r-

1 .L-

[I I I I , I I I (l I I I

r-

1-

r--- r

- r-

- 1-

'---

I
,

r--

-
-
- r

233

DR. C. WACKO'S MIRACLE GUIDE

234

I I I I I -

-
r--

-

.1 I .!-.J

I I \ I I
---, n \ II

-I

- - r-

I- -
- t-

r- -
r- r-

I--0 1 [t-
.!.---

I I \ I \ r---'
I I I I I 1 I

-,

r- l- --l

r- -
r- t-

r- -
r--

-
T r-

I

~

\ l I J

- r--

1- - r--t- t--

r- -
- - 1-

'---- ~

~

r-- I J -

I-

r- r- - r- I--

I-- -
r-

-

235

	Cover

	Contents

	E-X Book Instructions

	Game Design Elements

	Graphics Modes

	Character Graphics

	Flip-Flop Animation

	Movement

	Joystick Movement

	Joystick Conrolled Animated Characters

	Adversaries and Things that Bounce in the Night

	Zounds

	Player-Missle Graphics made Simple

	Appendix

	ATASCI Codes

	Utility Programs

	Myrtle the Turtle

	Smokey PEEKs and POKEs

	Index

