

Distributed By

The ATARI Program Exchange
PO Box 3705

Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call tOil-free:

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number. 4081727-5603

Trademarks of Atari

The following are trademarks of Atari. Inc.

ATARI®
ATARI 400'" Home Computer
ATARI 800™ Home Computer
ATARI 410'" Program Recorder
ATARI 810'" Disk Drive
ATARI 820™ 40-Column Printer
ATARI 822'" Thermal Printer
ATARI 825'" 80-Column Printer
ATARI 830'" Acoustic Modem
ATARI 850™ Interface Module

Prtnted in U.S.A .

© 1982 Atari, Inc.

PREFACE

1

2

3

4

5

6

CONTENTS

SYSTEM OVERVIEW

ANTIC AND THE DISPLAY LIST

Television Displays
Computers and Te levisions
ANTIC, a Video Microprocessor
Building Displa y Lists
Writing to a Custom Display List Screen
Applications of Display Lists

GRAPHICS INDIRECTION (COLOR REGISTERS AND CHARACTER SETS)

Color Registers
Character Sets
Applications of Character Sets

PLAYER-MISSILE GRAPHICS

Difficulties with High-Speed Animation
Player-Missile Fundamentals
Vertical Motion
Horizontal Motion
Other Player-Missile Features
Missiles
Player and Playfield Priorities
Hardwar e Collision Detection
Applications of Player-Missile Graphics
Special Characters

DISPLAY LIST INTERRUPTS

Theory of Operation
DLI Timing
DLI Example
Attract Mode
Detailed Timing Cons iderations
Multiple DLIs
Kernels
Applications of Display List Interrupts

SCROLLING

Horizontal Scrolling
Fine Scrolling
Applications of scrolling

2-1
2-2
2-3
2-6
2-8
2-9

3-1
3-4
3-5

4-1
4-3
4-3
4-4
4-4
4-5
4-6
4-6
4-9
4-11

5-1
5-2
5-3
5-4
5-4
5-6
5-7
5-8

6-2
6-5
6-8

7

8

9

SOUND

Definition of Terms and Conventions
Sound Hardware
AUDF1-4
AUDC1-4
Volume
Distortion
AUDCTL

16-Bit Frequency Options
High-Pass filt ers
9-Bit Polynomial Conve rsion

SOUND GENERATION SOFTWARE TECHNIQUES

Static Sound
Dynamic Sound
BASIC Sound
60-Hz Interrupt
Machine-Code Sound Generation
Volume Only Sound

OPERATING SYSTEM

Introduction
The Monitor
Memory Management
Interrupt Processing Structure
System Ve ctors
The Centralized Input/Output Subs yst em
Real-Time Programming
Floating Point Pa ckage

THE DISK OPERATING SYSTEM

Th e Re s id e nt Disk Ha ndl e r
Fil e Ma nage me nt Sys t em
Disk Utilit y Pack age
Random Acc e ss
FMS Disk Utilizati on
AUTORUN. SYS File

7-1
7-2
7-2
7-3
7-3
7-3
7-9
7-10
7-12
7-13

7-14

7-14
7-16
7-16
7-18
7-19
7-21

8-1
8-3
8-8
8-12
8-20
8-22
8-38
8-45

9-1
9-3
9-6
9-11
9-13
9-17

10

APPENDICES

A

B

C

D

E

GLOSSARY

ATARI BASIC OVERVIEW

What Is ATARI BASIC?
How ATARI BASIC Works
The Tokenizing Process
The Token File Structure
The Program Execution Process
System Interaction
Improving Program Performance
Advanced Programming Techniques

MEMORY UTILIZATION

HUMAN ENGINEERING

ATARI CASSETTE OVERVIEW

TELEVISION ARTIFACTS

GTIA

10-1
10-2
10-3
10-8
10-11
10-13
10-15
10-18

1-1

1-2

2-1

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

4-4

5-1

6-1

6-2

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

ILLUSTRATIONS

Coarse Memory Map for ATARI 400/800

ATARI 400/800 Hardware Layout

ANTIC Mode Line Requirements

Color Register Labels and Addresses

Character Encoding

Color Register Selection for Characters

TM
ENERGY CZAR Bar Charts

Terrain Map With Character Set Graphics

Non contiguous RAM Images

Player-Missile RAM Area Layout

Masking a Player for More Resolution

Using a Player as a Special Character

Examples of Vertical Screen Architecture

Arranging Screen RAM

Linking the Scroll to Coarse Scroll

Diagram of Bit flow of a Shift Register

Divide by Four Diagram

AUDCl-4 Bit Assignment

Five-Bit Poly-Counter

Selection Type Function Used to Mix in Distortion

Available Poly-Counter Combinations

AUDCI-4 Block Diagram

Sounds Produc e d by Distortion Combinations at Several
Frequencies

7-9 AUDCTL Bit Assignment

Illustration (Cont')

7-10 The Effect of a High-Pass Filter Inserted In Channell
and Clocked by Channe l 3

7-11

7-12

7-13

7-14

7-15

8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

8-16

8-17

8-18

8-19

Two Sine Waves at Different Frequencies and Their Sum

Music Notes Played on a Standard Music Routine

Graphed Table of Frequencies That Possible Duplicate a
Piano Key

Example of the Three Notes of Fig. 10-10 Played With
a Piano Envelope

Graphed Sine Wave Data for Volume Only Program

I/O Subsystem

OS and BASIC Pointers (DOS Present)

RESET MEMLO

Protecting Programs from User Input Error

Vertical Blank Interrupt Execution

ROM Jump Vectors

RAM Vectors

I/O Subsystem

Input/Output Control Block (IOCB)

Device Control Block (DCB)

CIO Routine

Handler Address Table (HATABS)

Printer Handler Entry Point Table

Null Handler

SIO Call to Dump Line to Printer

BASIC Direct CIO Call

Real-Time Clock

BASIC Language Metronome Cl ock

Assembly Langua ge Metronome Routine

Illustration (Cont')

8-20 Floating Point Routines

9-1 Auxiliary Byte Layout for the OPEN Command

9-2 Note and Point Values

9-3 Note and Point Example

10-1 Example Line of Tokenized Input

10-2 OS and BASIC Pointers (No DOS Present)

C-1 Daisychained Peripheral Equipment

C-2

E-1 Bit Pattern In PRIOR Selects GTIA

E-2 Background Color Register ORed With Pixel Data to
Give Data Color

E-3 Background Color REgister ORed With Pixel To Give
Final Color

E-4 Color Register Numbers and Location and COLOR
Command Reference

PREFACE

This manual is about the ATARI Home Computer. It covers both the ATARI
400'" and the ATARI 800'" Computers. These two computers are electrically
i dent i ca I, d i Her i ng on I yin mechan i ca I features such as the keyboards and
cartridge slots. The purpose of this manual is to explain in detail how to
use a I I the features of the ATAR I Computer. Because th i sis a comp I ex and
powerful machine, the explanations are accordingly rather long. Furthermore,
they demand some expert i se on the part of the reader. Th i s book is not
intended for the beg i nn i ng programmer. The reader shou I d be thorough I y
fami I iar with the BASIC Reference Manual, which is provided with the
computer. Familiarity with assembly language is also essential. A glossary
in the back def i nes and exp I a ins some of the I ess common I y encountered
jargon. However, th i s glossary does not inc I ude terms that every ser i ous
personal computer programmer should already know.

vir i tten as a tra in i ng manua I for profess i ona I programmers who use the
ATARI Home Computer, this book may be modified for general use at some later
date. It does not supplant the technical reference manual (ATARI part number
C016555), wh i ch is a re ference for programmers who a I ready understand the
system. This book is intended to be a tutorial that explains ideas and
possibi I ities rather than defining registers and control codes.

The title, DE RE ATARI, is pronounced "Day Ray Atari". It is an obscure
I iterary reference. Some Latin manuscripts in Roman and medieval times were
ent i tied "De Re Th i s" or "De Re That". Thus, "De Re Rust i ca" was a poem on
farming and "De Re Metal I ica" described metallurgy. Loosely translated, "De
Re" means "A II About".

Most of the word process i ng for the book was carr i ed out with Atar i
computers. A source fi Ie editor was used for text editing, and a modified
version of FORMS (available from the Atari Program Exchange) was used to
format and print the text. A letter-quality printer was used for output.
Some sections were developed with a conventional word processor.

The Software Deve lopment Support Group wrote th i s book. Chr is Crawford
wrote Sections 1 through 6 and Appendices A and B. Lane Winner wrote Section
10 and Appendix D with assistance from Jim Cox. Amy Chen wrote Appendix C.
Jim Dunion wrote Sections 8 and 9. Kathleen Pitta wrote Appendix E. Bob
Fraser wrote Section 7. Gus Makreas prepared the Glossary. The final result
has many flaws, but we are proud of it.

1
SYSTEM OVERVIEW

The ATARI Home Computer is a second-generation personal computer. First
and foremost, it is a consumer computer. The thrust of the design is to make
the consumer comfortable with the computer. This consumer orientation
manifests itself in many ways. First, the machine is proofed against
consumer mistakes by such things as polarized connectors that wi II not go in
the wrong way, a power interlock on the I id to the internal electronics, and
a pair of plastic shields protecting the SYSTEt,1 RESET key. Second, the
machine has a great deal of graphics power; people respond to pictures much
more readi Iy than to text. Third, the machine has strong sound capabi I ities.
Again, people respond to direct sensory input better than to indirect textual
messages. Finally, the computer has joysticks and paddles for more direct
tact i lei nput than is poss i b lew i th keyboards. The po i nt here is not that
the computer has lots of features but rather that the features are all part
of a consistent design philosophy aimed directly at the consumer. The
designer who does not appreciate this fundamental fact wi II find himself
working against the grain of the system.

The i nterna I I ayout of the ATAR I 400/800'K Computer is very d if ferent
from other systems. It of course has a microprocessor (a 6502), RA~1, Ror~,
and a (PIA). However, it also has three special-purpose (LSI) chips known as
ANTIC, CTIA, and POKEY. These chips were designed by Atari engineers
pr i mar i I Y to take much of the burden of housekeep i ng of f of the 6502, thereby
freeing the 6502 to concentrate on computations. Whi Ie they were at it, they
des i gned a great dea I of power into these ch ips. Each of these ch ips is
almost as big (in terms of si I icon area) as a 6502, so the three of them
together prov i de a tremendous amount of power. Master i ng the ATAR I 400/800
Computers is primari Iy a matter of mastering th ese three chips.

ANTIC is a microprocessor dedicated to the television display. It is a
true microprocessor; it has an instruction set, a program (cal led the display
list), and data. The display I ist and the display data are written into RAM
by the 6502. ANTIC retrieves this information from RAtvl using direct memory
access (m·1A). It processes the higher level instructions in the display list
and translates these instructions into a real-time stream of simple
instructions to CTIA.

CTIA is a television interface chip. MHIC directly controls most of
CT I A's operat ions, but the 6502 can be programmed to intercede and contro I
some or all of CTIA's functions. CTIA converts the digital commands from
ANTIC (or the 6502) into the signal that goes to the television. CTIA also
adds some factors of its own, such as color values, player-missi Ie graphics,
and col I ision detection.

POKEY is a digital input/output (I/O) chip. It handles such disparate
tasks as the ser i a I I/O bus, aud i 0 generat ion, keyboard scan, and random
number generation. It also digitizes the resistive paddle inputs and
controls maskable interrupt (IRQ) requests from peripherals.

AI I four of these LSI chips function simultaneously. Careful separation
of their functions in the design phase has minimized confl icts between the

1-1

SYSTEM OVERVIEW

ch i ps. The on I y hardware I eve I con f I i ct between any two ch ips in the system
occurs when ANT I C needs to use the address and data buses to fetch its
d i sp I ay i n format i on. To do th is, it ha I ts the 6502 and t akes co nt r o I of the
buses.

As with al I 6502 systems, the I/O is memory-mapped. Figure 1-1 presents
the coarse memory map for the computer. Figure 1-2 shows the hardware
arrangement.

With no DOS With DOS 2.0S

operating System RAM
0000

operating System RAM

1000
DOS 2.0S

2000

3000

Free 4000 Free

RAM RAM

Space 5000 Space

6000

7000

8000

9000

AOOO

BASIC or other BOOO BASIC or other
8K cartridge 8K cartridge

COOO

unallocated unallocated
0000

hardware I/O hardware I/O
EOOO

operating System
FOOO

operating System
ROM ROM

FFFF

1-2

SJ9110JlUOO
pJeoq,(9)1

pJeoq,(9)1

>
W
x:
o
Q.

u
i=
z
e(

N
o
II)
U)

SYSTEM OVERVIEW

...
o
III
III
CD
U e
Q.

snq
rep9 S

1-3

.-....:
u..a:
We(
...JU

(/):E
00 a:

o
o
CO -o
o
"'"
a::
~
<

2
ANTIC AND THE DISPLAY LIST

TELEVISION DISPLAYS

To understand the graphics capabi I ities of the ATARI Home Computer, one
must first understand the rudiments of how a television set works.
Television sets use what is cal led a raster scan display system. An electron
beam is generated at the rear of the te I ev is i on tube and shot toward the
te I ev i s i on screen. A long the way, I t passes between sets of hor I zonta I and
vertical col Is which, If energized, can deflect the beam. In this way the
beam can be made to strike any point on the screen. The electronics Inside
the television set cause the beam to sweep across the television screen in a
regular fashion. The beam's Intensity can also be controlled. If you make
the beam more intense, the spot in the screen that it str I kes wi I I g low
brightly; if you make it less intense, the spot will glow dimly or not at
all.

The beam starts at the top-I eft corner of the screen and traces
hor i zonta I I Y across the screen. As I t sweeps across the screen, I ts changes
in intensity paint an image on the screen. When it reaches the right edge of
the screen, it is turned off and brought back to the left side of the screen.
At the same time it I s moved down just a notch . I t then turns back on and
sweeps across the screen again. This process Is repeated for a total of 262
sweeps across the screen. (There are actua I I Y 525 sweeps across the screen
in an alternating system known as "interlace." We wi II ignore interlace and
act as if the te I ev is i on has on I y 262 lines.) These 262 I I nes f II I the
screen from top to bottom. At the bottom of the screen (after the 262nd line
I s drawn), the electron beam is turned off and returned to the upper I eft
corner of the screen. Then It starts the cycle al lover again. This entire
cycle happens 60 times every second.

Now for some jargon: a sing I e trace of the beam across the screen is
called a "horizontal scan I ine." A horizontal scan I ine Is the fundamental
unit of measurement of vertical distance on the screen. You state the height
of an i mage by spec I fy I ng the number of hor I zonta I scan I I nes I t spans. The
period during which the beam returns from the right edge to the left edge Is
called the "horizontal blank." The period during which the beam returns to
the top of the screen is ca I I ed the "vert i ca I blank." The ent I re process of
drawing a screen takes 16,684 microseconds. The vertical blank period Is
about 1400 microseconds. The horizontal blank takes 14 microseconds. A
sing I e hor i zonta I I I ne takes 64 microseconds.

Most television sets are designed with "overscan"; that means they
spread the Image out so the picture edges are off the edge of the television
tube. This guarantees that you have no unsightly borders In your television
picture. It Is very bad for computers, though, because screen information
that is off the edge of the picture does you no good. For th i s reason the
picture that the computer puts out must be somewhat smaller than the
te I ev i s Ion can theoret i ca I I Y d i sp I ay. Therefore, on I y 192 hor I zonta I scan
I ines are normally used by the ATARI display. Thus, the normal limit of
resolution of a television set used with this computer Is 192 pixels
vert I ca I I Y •

2-1

ANTIC AND THE DISPLAY LIST

The standard unit of horizontal distance is the "color clock." You
specify the width of an image by stating how many color clocks wide it is.
There are 228 color clocks in a single horizontal scan I ine, of which a
maximum of 176 are actually visible. Thus, the ultimate I imit for full-color
horizontal resolution with a standard color television is 176 pi xe ls. It Is
possible with the ATARI Home Computer System to go even finer and control
individual half-clocks. This gives a horizonta l resolution of 352 pixels.
However, use of this feature will produce interesting color effects known as
color artifacts. Color artifacts can be a nuisance if they are not desired;
they can be a boon to the programmer who desires additional color and is not
fazed by their restrictions.

COMPUTERS AND TELEVISIONS

The fundamenta I prob I em any microcomputer has in us i ng a raster scan
television for display purposes is that the television display is a dynamic
process; because of this, the television does not remember the image.
Consequently, the computer must remember the screen image and constantly send
a signal to the television tell ing it what to display. This process of
sending information to the television is a continuous process and it requires
ful I-time attention. For this reason most microcomputers have special
hardware circuits that handle the television. The basic arrangement is the
same on virtually al I systems:

microprocessor--- >sc reen RAM--->video hardware--- >TV screen

The microprocessor writes information to the screen RAM area that holds the
screen data. The video hardware is constant I y d i pp i ng into th is RAM area,
gett i ng screen data that it converts into te I ev is ion signa Is. These signa Is
go to the te I ev i s ion wh i ch then d i sp I ays the in format ion . The screen memory
is mapped onto the screen in the same order that it fol lows in RAM. That is,
the first byte in the screen memory maps to the top-I eft corner of the
screen, the second byte maps one position to the right, then the third, the
fourth, and so on to the last byte which is mapped to the lower right corner
of the screen.

The qual ity of the image that gets to the screen depends on two factors:
the qual ity of the video hardware, and the quantity of screen RAM used for
the d i sp I ay. The s imp I est arrangement is that used by TRS-80 and PET.
(IRS-80 is a trademark of Rad i 0 Shack Co; PET is a trademark of Commodore
Business Machines.) Both of these machines allocate a specific 1K of RAM as
screen memory. The video hardware circuits simply pull data out of this
area, interpret it as characters (us i ng a character set in ROM), and put the
resu It i ng characters onto the screen. Each byte represents one character,
al lowing a choice of 256 different characters in the character set. With 1K
of screen RAM, one thousand characters can be displayed on the screen. There
isn't much that can be done with this arrangement. The Apple uses more
advanced video hardware. (App lei s a trademark of App I e Computers.) Three
graph i cs modes are prov i ded: tex t, I o-reso I ut i on graph i cs, and hi -reso I ut i on
graphics. The text graphics mode operates in much the same way that the PET
and TRS-80 displays operate. In the low-resolution graphics mode, the video

2-2

ANTIC AND THE DISPLAY LIST

hardvlare reaches into screen memory and interprets it d i f ferent I y. Instead
of interpreting eac h byte as a character, each byte is interpreted as a pair
of color nybbles. The value o f each nybble specifies the color of a single
pixel. In the high-resolution graphics mode eac h bit in screen memory is
mapped to a single pi xe l. If the bit is on, the pixel gets color in it; if
the bit is off, the pixel stays dark. The situation is complicated by a
variety of design nuances in the Apple, but that is the basic idea. The
important idea is that the Apple has three display modes; three completely
different ways of interpreting the data in screen memory. The Apple video
hardware is smart enough to interpret a screen memory byte as either an 8-bit
character (text mode), two 4-bit co lor nybbles (Io-reso lution mod e), or 7
individual bits for a bit map (hi-resolution mode).

ANTIC, A VIDEO MICROPROCESSOR

The ATARI 400/800 display I ist system r epresen ts a general ization of
these systems. Where PET and TRS-80 have one mod e and Apple has three modes,
the ATARI 400/800 has 14 modes. The second important difference is that
display modes can be mixed on the screen. That is, the user is not
restricted to a choice between a screenful of text or a screenful of
graph ics. Any co I I ect i on of the 14 graph i cs modes can be d i sp I ayed on the
sc reen. The third important difference is that the screen RAM can be located
any~l here in the address space of the comp uter and moved around wh i I e the
program is running, whi Ie th e other machines use fixed-screen RAM areas.

All of this general ity is made possible by a video microprocessor called
ANTIC. Where the earli er systems used rather simple video circuitry, Atari
designed a full-scale microprocessor just to handle the intricacies of the
television display. ANTIC is a true microprocessor; it has an instruction
set, a program, and data. The program for ANTI Cis ca I I ed the d i sp I ay list.
Th e display list specifies three things: where the screen data may be found,
what display modes to use to interpret the screen data, and what special
disp lay options (if any) should be implemented. When using the display list,
it is i mportcnt to shed the 0 I d v i ew of a screen as a homogeneous image ina
single mode and see it instead as a stack of "mode I ines ." A mode I ine is a
co I I ec t i on of hor i zonta I scan lines. It strech es hor i zonta I I y a I I the way
across the screen. A Graph i cs 2 mode line is 16 hor i zonta I scan lines high,
wh i I e a Graph i cs 7 mode line is on I y two scan lines high. Many graph i cs
modes avai lable from BAS IC are homogeneous; an entire screen of a single mode
is set up. Do not limit your imag i nation to thi s pattern; with the display
li st you can create any sequence of mode l ines down the sc reen. The d i sp I ay
I ist is a collection o f code bytes that spec ify that sequence.

ANTIC'S in struc tion set is r ather simple. There are four classes of
instructions: map mode, character mode, blank line, and jump. Map mode
in structi ons cause ANTIC to display a mode I ine with s imple colored pi xe ls
(no characters). Character mode in str uct i ons cause ANTI C to d i sp I oy a mode
I ine with characters in it. Blank I ine instructions cause ANTIC to display a
number of hor i zonta I scan lines ~I i th so lid background co I or. Jump
instructions are anal ogous to a 6502 JMP instruction; they reload ANTIC's
program counter.

2-3

ANTIC AND THE DISPLAY liST

There are also four special options that can sometimes be specified by
setting a designated bit in the ANTIC Instruction. These options are:
display list interrupt <Dll), load memory scan (lMS), vertical scroll, and
horizontal scrol I.

Map mode instruct Ions cause ANTI C to d I sp I ay a mode line conta in i ng
pixels with solid color in them. The color displayed comes from a color
register. The choice of color register is specified by the value of the
screen data. In four-color map modes (BASIC modes 3, 5, and 7, and ANTIC
modes 8, A, D, and E), a pair of bits Is required to specify a color :

Value of Bit Pair Color Register Used

00 0 COlBAK
01 1 COlPFO
10 2 COlPF1
11 3 COlPF2

Since only two bits are needed to specify one pi xe l, 4 pi xe ls are encoded in
each screen data byte. For example, a byte of sc reen data containing the
value $lB would display 4 pi xe ls; the first would be the background, the
second wou I d be co lor reg i ster 0, the th i rd wou I d be co I or reg i ster 1, and
the fourth would be color register 2:

$1 B = 00011 011 = 00 01 1 0 11

In two-color map modes (BASIC modes 4, 6, and 8, and ANTIC modes 9, B, C, and
F) each bit specifies one of two color registers . A bit value of 0 selects
background color for the pixel and a bit value of 1 selects color register 0
for the pixel. Eight pixels can be stored In one screen data byte.

There are eight different map display modes . They differ in the numb er
of colors they display (2 vs 4), ~he vertical size one mode I ine occupies (1
scan line, 2, 4, or 8), and the number of pi xe ls that fit horizontally into
one mode line (40, 80, 160, or 320). Thus, some map modes give better
resolution; these will of course require more screen RAM. Figure 2- 1
presents this information for al I modes.

2-4

ANTIC AND THE DISPLAY LIST

ANTIC BASIC No. Scan Lines/ Pixels/ Bytes/ Bytes/
Mode Mode Colors ~~ode Line ~~ode Line Line Screen

2 0 2 8 40 40 960
3 none 2 10 40 40 760
4 none 4 8 40 40 960
5 none 4 16 40 40 480
6 1 5 8 20 20 480
7 2 5 16 20 20 240
8 3 4 8 40 10 240
9 4 2 4 80 10 480
A 5 4 4 80 20 960
B 6 2 2 160 20 1920
C none 2 1 160 20 3840
D 7 4 2 160 40 3840
E none 4 1 160 40 7680
F 8 2 320 40 7680

Figure 2-1 ANTIC Mode Line Requirements

Character mode instructions cause ANTIC to display a mode I ine with
characters In it. Each byte in screen RAM specifIes one character. There
are six character display modes. Character dIsplays are dIscussed in Section
3.

Blank I ine instructions produce blank I ines with sol id background color.
There are eight blank line Instructions; they specify skipping one through
eight blank lines.

There are two jump instructIons. The first (JMP) is a direct jump; It
re loads ANTI C' s program counter with a new address that fo I lows the J~1P

instruction as an operand. Its only function is to provide a solution to a
tricky problem: ANTIC's program counter has only 10 bits of counter and six
bits of latch and so the display list cannot cross a 1K boundary. If the
display I ist must cross a 1K boundary then it must use a JMP instruction to
hop over the boundary. Note that th is means that d i sp I ay lists are not fu I I Y
relocatable.

The second jump instruction (JVB) is more commonly used. It reloads the
program counter with the value in the operand and waits for the television to
perform a vert i ca I blank. Th i s instruct i on is norma I I Y used to term i nate a
display list by jumping back up to the top of the disp lay list. Jumping up
to the top of the display I ist turns it into an infinite loop; waiting for
vertical blank ensures that the infinite loop is synchronized to the display
cycle of the television. Both JMP and JVB are 3-byte instructions; the first
byte is the opcode, the second and th i rd bytes are the address to jump to
(low then high).

The four spec i a I opt ions ment i oned prev i ous I Y wi I I be discussed in

2-5

ANTIC AND THE DISPLAY LI ST

Sections 5 and 6. The load memory scan (LMS) option must have a prel iminary
explanation. This option is selected by setting bit 6 of a map mode or a
character mode instruction byte. When ANTIC encounters such an instruction,
It wi I I load Its memory scan counter with the fol lowing 2 bytes. This memory
scan counter tells ANTIC where the screen RAM is. It wi II begin fetching
display data from this area. The LMS instruction is a 3-byte instruction: 1
byte opcode fol lowed by 2 bytes of operand. In simple display I ists the LMS
instruction is used only once, at the beginning of the d i splay I ist. It may
sometimes be necessary to use a second LMS instruction. The need arises when
the screen RAM area crosses a 4K boundary. The memory scan counter has only
12 bits of counter and 4 bits of latch; thus, the display data cannot cross a
4K boundary. In this case an LMS instruction must be used to jump the memory
scan counter over the boundary. Note that this means that display data is
not fully relocatable. LMS instructions have wider uses which will be
discussed later.

BUILDING DISPLAY LISTS

Every display list should start off with three "blank 8 lines"
instructions. This is to defeat vertical overscan by bringing the beginning
of the display 24 scan I ines down. After this is done, the first display
line shou I d be spec i f i ed. S i mu I taneous I y, the LMS shou I d be used to te I I
ANTIC where it wi II find the screen RAM. Then follows the display list
proper, which lists the display bytes for the mode I ines on the screen. The
tota I number of hor i zonta I scan II nes produced by the d i sp I ay list shou I d
always be 192 or less; ANTIC does not maintain the screen timing requirements
of the television. If you give ANTIC too many scan I ines to display it wi II
do so, but the television screen will probably roll. Displaying fewer than
192 scan lines wi I I cause no prob I ems; indeed, it wi I I decrease 6502
execution time by reducing the number of cyc les sto l en by ANTIC. The
programmer must ca I cu I ate the sum of the hor I zonta I scan lines produced by
the display list and verify it. The display I ist terminates with a JVB
instruction. Here is a typical display I ist for a standard BASIC Graphics
mode 0 d I sp I ay (a I I va I ues are in hex adec I ma I) :

2-6

ANTIC AND THE DISPLAY LIST

70 Blank 8 lines
70 Blank 8 lines
70 Blank 8 lines
42 Display ANTIC mode 2 (BASIC mode 0)
20 Also, screen memory starts at 7C20
7C
02 Display ANTIC mode 2
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
41 Jump and wait for vertical blank
EO to display I ist which starts at
7B $7BEO

As you can see, th is d i sp I ay list is short---on I y 32 bytes. ~10st

display I ists are less than 100 bytes long. Furthermore, they are quite
simple in structure and easy to set up.

To implement your own display list, you must first design the display
f ormat. Th is is best done on paper. Layout the screen i mage and trans I ate
it into a sequence of mode I ines. Keep track of the scan I ine count of your
display by looking up the scan I ine requirements of the various modes in
Figure 2-1. Translate the sequ enc e of mode I ines into a sequence of ANTIC
mode bytes. Put three "b lank 8 lines " bytes ($70) at the top of the list.
Set bit 6 of the first display byte (that is, make the upper nybble a 4).
This makes a load memory scan command. Follow with 2 bytes which specify
the address of the screen RAfvl (low then high). Then follow with the rest of
the display bytes. At the end of your display list put in the JVB
instruct ion ($41) and the address o f the top of the d i sp I ay list. Now store
a l I of these bytes into RAM. They can be anywhere you want; just make sure
th ey don't overlay something e l se and your JVB points to the top of the

2-7

ANTIC AND THE DISPLAY LIST

d i sp I ay list. The d i sp I ay list must not cross a 1 K address boundary. If
you absolutely must have it cross such a boundary, insert a JMP instruction
just in front of the boundary. The JMP instruction's operand is the address
of the first byte on the other side of the boundary. Next you must turn off
ANTIC for a fraction of a second whi Ie you rewrite its display I ist pointer.
Do this by writing a 0 into SDMCTL at location $22F. Then store the address
of the new display list into $230 and $231 (low then high). Lastly, turn
ANTIC back on with a $22 into SDMCTL. During the vertical blank, while
ANTIC is quiet, the operating system (oS) wi II reload ANTIC's program
counter with these values.

viR I T I NG TO A CUSTOt~ 0 I SPLAY LIST SCRE EN

Screen memory can be p I aced anywhere in the address sp ace of the
computer. Norma II y the d i sp I ay list spec if i es the beg i nn i ng of the screen
memory with the first display instruction---the initial LMS instruction.
However, ANTIC can execute a new LMS instruction with each display I ine of
the display I ist if this is desired. In this way information from al lover
the address space of the computer can be displayed on a single screen. This
can be of value in setting up indep end ent t ext windows.

There are several restrictions in your placement of the screen memory.
First, screen memory cannot cross a 4K address boundary. I f you cannot
avoid crossing a 4K boundary (as would be the case in BASIC mode 8, which
uses 8K of RArvl) you must reload the memory scan counter with a new LMS
instruct i on. Second, if you wish to use any of the operat i ng system screen
routines you must abide by the conventions the OS uses. This can be
particularly difficult when using a modified display I ist in a BASIC
program. If you alter a standard display I ist from a BASIC program and th en
attempt to PR I NT or PLOT to th e sc reen , the OS wi I I do so under the
assumption that the display I ist is unchanged. This wi II probably result in
a garbled display.

There are three ways the d i sp I ay can fa i I when you attempt th is.
First, BASIC may refuse to carry out a screen operation because it is
impossible to do in the graphics mode that the OS thinks it is in. The OS
stores the va I ue of the graph i cs mode that it th inks is on the screen in
address $57. You can foo I the OS into cooperat i ng by pok i ng a different
value there. Poke the BASIC mode number, not the ANTIC mode number.

The second fai lure you might get arises when you mix mode I ines with
different screen memory byte requirements. Some mode I ines require 40 bytes
per I ine, some require 20 bytes per I ine, and some require only 10 bytes per
line. Let's say that you insert one 20-byte mode line into a d i sp I ay list
with 40 byte mode lines . Then you PR I NT tex t to the d i sp I ay. Everyth i ng
above the interlop er line is fine, but below it the characters are shifted
20 spaces to the right. This is beca use the OS assumed that each I ine would
require 40 bytes and positioned the characters accordingly. But ANTIC, when
it encou ntered the inter l oper line, took on I y 20 bytes of I'lhat the OS
thought shou I d be a 40-byte line. ANTI C interpreted the other 20 bytes as
belonging to the next I ine, and displayed th em there. This resulted in the

2-8

ANTIC AND THE DISPLAY LIST

next line and a I I I ater lines be i ng sh i fted 20 spaces to the right.

The only absolute way around this problem is to refrain from using
BAS I C PR I NTs and PLOTs to output to a custom d i sp I ay list screen. The
quick-and-dirty solution is to organize the screen into I ine groups that
contain integer multiples of the standard byte requirement. That is, do not
insert a 20-byte mode line into a 40-byte display; instead insert two
20-byte lines or one 20-byte line and two 10-byte lines . So long as you
retain the proper integer multiples, the horizontal shift wi I I be avoided.

Th i s so I ut i on accentuates the th i rd prob I em with mixed d i sp I ay lists
and BASIC: vertical shifts. The OS positions screen material vertically by
calculating the number of bytes to skip down from the top of the screen. In
a standard 40-byte line display, BASIC would position the characters onto
the tenth line by skipping 360 bytes from the beginning. If you have
inserted four 10-byte I ines, BASIC wi II end up three I ines further down the
screen than you wou I d otherw i se expect. Furthermore, d i f ferent mode lines
consume d i f ferent numbers of scan lines, so the pos it i on on the screen wi I I
not be qu i te what you expected if you do not take scan line costs into
account.

As you can see, mixed mode displays can be difficult to use in
conjunction with the OS. Often you must fool the OS to make such displays
work. To PRINT or PLOT to a mode window, POKE the BASIC mode number of that
\'I i ndow to address $57, then POKE the address of the top I eft pi xe I of the
mode window into locations $58 and $59 (low then high). In character modes,
execute a POSITION 0,0 to home the cursor to the top-left corner of the mode
window. In map modes, all PLOTs and DRAWTOs wi II be made using the top-left
corner of the mode window as the origin of the coordinate system.

The d i sp I ay list system can be used to produce appea ling screen
displays. Its most obvious use is for mi x ing text and graphics. For
example, you could prepare a screen with a bold BASIC mode 2 title, a medium
size BASIC mode 1 subtitle, and small BASIC mode 0 fine print. You could
t hen throw in a BASIC mode 8 picture in the middle with some more tex t at
the bottom. A good example of this technique is provided by the display in
the ATARI States and Capitals program.

The aforementioned problems wil I discourage the extensive use of such
techniques from BASIC. With assembly language routines, modified display
I ists are best used by organizing the screen into a series of windows, each
window having its own LMS instruction and its ow n independent RAM area.

APPLICATIONS OF DI SPLAY LI STS

One simple application
space I ines on the screen by
vertical spacing which wi II
readabi I ity o f some displays.

of display I ist modifications is to vertically
insert i ng blank line bytes. Th is wi I I add some
highl ight critical messages and enhance the

Another importan t use of display list manipulations is in providing

2-9

ANTIC AND THE DISPLAY LIST

access to features not available from BASIC. There are three text modes
supported by ANTIC that BASIC does not support. Only display list
man i pu I at ions ga in the user access to these modes. There are a I so d i sp I ay
I ist interrupt and fine scroll ing capabi I ities that are only avai lable after
the display I ist is modified. These features are the subjects of Sections 5
and 6.

Manipulations with the LMS instruction and its operand offer many
possibi I ities to the creative programmer. For example, by changing the LMS
during vertical blank, the programmer can alternate screen images. This can
be done at slow speed to change between predrawn displays without having to
redraw each one. Each display would continue to reside in (and consume) RAM
even whi Ie it is not in use, but it would be avai lable almost instantly.
This technique can also be used for animation. By fl ipping through a
sequence of displays, cycl ic animation can be achieved. The program to do
this would manipulate only 2 address bytes to display many thousands of
bytes of RAM.

It is also possible to superimpose images by fl ipping screens at high
speed. The human eye has a time resolution of about 1/16 of a second, so a
program can cyc I e between four images, one every 1/60 of a second, so that
each repeats every 1/15 of a second. In th i sway, up to fou r i mages can
appear to res ide s i mu I taneous I y on the screen. Of cou rse, there are some
drawbacks to this method. First, four separate displays may wei I cost a lot
of RAM. Second, each d i sp I ay i mage I'.' i I I be washed out because it on I y shows
up one quarter of the time. This means that the background of al I displays
must be black, and each i mage must be br i ght. Furthermore, there I'.' i I I be
some unpleasant screen fl icker when this technique is used. A conservative
programmer might consider cycl ing between only three or even only two
images. This technique can also be used to extend the color and luminosity
resolution of the computer. By cycl ing between four versions of the same
image, each version stressing one color or luminosity range, a wider range
of colors and luminosities is available. For ex ample, suppose you wish to
display a bar of many different luminances. First set your four color
registers to the values:

Background: 00
Play fie I d 1: 02
Playfield 2: OA
Playfield 3: OC

2-10

ANTIC AND THE DISPLAY LIST

Now put the fo l l owing images into each of the screen RAM areas:

Pixel Contents (b Y Pl ayfie l d Color Register)

Fi r st frame 2 3 2 3 2 3 2 3

Second frame B B B 2 3 2 3 2 3

Third frame B B B B B B 2 3 2 3

Fourth frame B B B E. B B B B B 2 3

Effective l uminance x4 2 4 6 8 10 12 20 24 30 36 40 48

Perceived I um i nance

In this way, much f i ner luminance resolution is possib l e.

A fina l suggestion concerns a subject that is laden with opportunit i es
but I ittle understood as yet: the dynamic display I i st. This is a displ ay
list which the 6502 changes during vertical b l ank periods. I t shou l d be
possible to produce interesting effects with such lists. For examp l e, a
tex t ed it i ng program dynam i ca I I Y inserts blank lines above and be I ow the
screen line be i ng ed i ted set it apart from the other l ines of text. As the
curso r is moved vert i cally, the disp l ay I ist is changed. The techniq ue i s
odd but very effective.

2-11

3
GRAPHICS INDIRECTION

(COLOR REGISTERS ANO CHARACTER SETS)

Indirection is a powerful concept in programming. In 6502 assembly
language, there are three levels of indirection in referring to numbers. The
first and most direct level is the immediate addressing mode in which the
number itself is directly stated:

LOA #$F4

The second I eve I of i nd i rect i on is re ached when the program refers to a
memory location that holds the number:

LOA $0602

The third and highest level of indirection with the 6502 is attained when the
program refers to a pa i r of memory I ocat ions wh i ch together conta in the
address of the memory location that holds the number. In the 6502, this
indirection is compl icated by the addition of an index :

LOA ($00), Y

Indirection provides a greater degree of gen eral ity (and hence power) to the
programmer. Instead of trucking out the same old numbers every time you want
to get someth i ng done, you can simp I y po i nt to them. By chang i ng the
pointer, you can change the behavior of the program . Indirection is
obviously an important capabi I ity.

COLOR REGISTERS

Graphics indirection is bui It into the ATARI Home Computer in two ways:
with color registers and with character sets. Programmers first approaching
this computer after programming other systems often think in terms of direct
colors. A color register is a more compl ex beast than a color. A color
specifies a permanent value . A color register is indirect; it holds any
co I or va I ue. The d if ference between the two is ana logous to the d i f ference
between a box -end wrench and a socket wrench . The box -end wrench comes in
on e size only but a socket wrench can hold almost any size socket. A socket
wrench is more flex ible but takes a I ittle more ski I I to use properly.
Similarly, a color register is more flex ibl e than a color but takes more
sk i I I to use effect i ve I y.

There are nine color registers in th e ATARI 400/800 Computer; four are
for player-missi Ie graphics and wi II be discu ssed in Section 4. The
r ema in i ng five are not a I ways used; depend i ng on the graph i cs mode used, as
f ew as two reg i sters or as many as five wi I I show up on the screen. I n BAS I C
mod e 0, only two and one-half registers are used because the hu e value of the
characters is ignored; characters tak e the same hue as playfi e ld r egister 2
but take their luminance from register 1 . The co lor registers are in CTIA at
addres ses $0016 through $001A . The y are " s hadowed" from OS RAtvl location s
into CTIA during vertical blank. Figure 3-1 g iv es color register shadow and
hardware addresses.

3-1

GRAPHICS INOIRECTION

I mage Hardware OS Shadow
Contro II ed Label Address Label Address

Player 0 COLP~10 0012 PCOLRO 2CO
Player 1 COLPMl 0013 PCOLRl 2Cl
Player 2 COLPM2 0014 PCOLR2 2C2
Player 3 COLPtv13 0015 PCOLR3 2C3

Playfield 0 COLPFO 0016 COLORO 2C4
Playfield 1 COLPFl 0017 COLORl 2C5
Play fie I d 2 COLPF2 0018 COLOR2 2C6
Play fie I d 3 COLPF3 0019 COLOR3 2C7
Background COLBK 001A COLOR4 2C8

Figure 3-1 Color Register Labels and Addresses

For most purposes, the user controls the color registers by writing to
the shadow locations. There are only two cases in which the programmer
would write directly to the CTIA addresses. The first and most common is
the d i sp I ay list interrupt wh i ch wi I I be discussed inSect i on 5. The second
arises when the user disables the OS vertical blank interrupt routines that
move the shadow values into CTIA. Vertical blank interrupts are discussed
in Section 8.

Colors are encoded in a color register by a simple formula. The upper
nybble gives the hue value, which is identical to the second parameter of
the BASIC SETCOLOR command. Table 9-3 of the BASIC Reference Manual lists
hue va lues. The lower nybb lei n the co I or reg i ster gives the I urn i nance
va I ue of the co I or. It is the same as the th i rd parameter in the BAS I C
SETCOLOR command. The lowest order bit of th is nybb lei s not sign i f i cant.
Thus, there are eight luminances for each hue. There are a total of 128
colors from which to choose (8 luminances times 16 hues). In this book, the
term 'color' denotes a hue-luminance combination.

Once a co I or is encoded into a co I or reg i ster, it is mapped onto the
screen by referring to the color register that holds it. In map display
modes wh i ch support four co I or reg i sters the screen data spec if i es wh i ch
co I or reg i ster is to be mapped onto the screen. Since there are four co I or
registers it takes only two bits to encode one pixel. Thus, each screen
data byte holds data for four pixels. The value in each pair of bits
specifies which color register provides the color for that pixel.

In text display modes (BASIC's GRAPHICS modes 1 and 2) the selection of
color registers is made by the top two bits of the character code. This
leaves only six bits for defining the character, which is why these two
modes have only 64 character avai lab Ie.

Color register indirection gives you four special capabi I ities. First,
you can choose frorn 128 different colors for your displays. This allows you
to choose the color that most nearly meets your needs.

3-2

GRAPHICS INDIRECTION

Second, you can manipulate the color registers in real time to produce
pretty effects. The simplest version of this is demonstrated by the
fol lowing BASIC line:

FOR 1=0 TO 254 STEP 2:POKE 712,1 :NEXTI

This I ine simply cycles the border color through all possible colors. The
effect is quite pleasing and certainly grabs attention. The fundamental
technique can be extended in a variety of ways. A special variation of this
is to create simple cycl ic animation by drawing a figure in four colors and
then cyc I the co lors through the co I or reg i sters rather than redraw i ng the
figure. The fol lowing program illustrates the idea:

10 GRAPHICS 23
20 FOR X=O TO 39
30 FOR 1=0 TO 3
40 COLOR I
50 PLOT 4*X+I,0
60 DRAWTO 4*X+ 1,95
70 NEXT I
SO NEXT X
90 A=PEEK (712)
100 POKE 712,PEEK(710)
110 POKE 710,PEEK(709)
120 POKE 709,PEEK(70S)
130 POKE 70S,A
140 GOTO 90

The third appl ication of color registers is to logically key colors to
situations. For example, a paged menu system can be made more
understandable by changing the background color or the border color for each
page in the menu. Perhaps the screen cou I d f I ash red when an i I I ega I key is
pressed. The use of the color characters avai lable in BASIC Graphics modes
1 and 2 can great I y extend the impact of textua I mater i a I. An account sum
cou I d be shown in red if the account is in the red, or black if the account
is in the black. Important words or phrases can be shown in special colors
to make them stand out. The use of colors in map modes (no text) can also
improve the uti I ity of such graphics. A single graphics image (a monster, a
boat, or whatever) could be presented in several different colors to
represent several different versions of the same thing. It costs a great
deal of RN1 to store an image, but it costs very I ittle to change the color
of an existing image. For example, it would be much easier to show three
different boats by presenting one boat shape in three different colors than
three different boat shapes.

The fourth and most important appl ication of color registers is used
with display I ist interrupts. A single color register can be used to put up
to 12S colors onto a single screen. This very important capabil ity wil I be
discussed in Section 5.

3-3

GRAPHICS INDIRECTION

CHARACTER SETS

Graphics indirection is also provided through the use of redefinable
character set. A standard character set is provided in ROM, but there is no
reason why this particular character set must be used. The user can create
and d i sp I ay any character set des ired. There are three steps necessary to
use a redef i ned character set. First, the programmer must def i ne the
character set. This is the most time-consuming step. Each character is
d i sp I ayed on the screen on an 8x8 gr i d; it is encoded in memory as an 8-byte
table. Figure 3-2 depicts the encoding arrangement.

Character Image Binary Representation Hex Representation

00000000
00011000
00111100
01100110
01100110
01111110
01100110
00000000

Figure 3-2 Character Encoding

00
18
3C
66
66
7E
66
00

A fu I I character set has 128 characters in it, each with a norma I and
an inverse video i ncarnat i on. Such a character set needs 1024 bytes of
space and must start on a lK boundary. Character sets for BASIC modes 1 and
2 have only 64 distinct characters, and so require only 512 bytes and must
start on a 1/2K boundary. The first 8 bytes def i ne the zeroth character,
the next 8 bytes define the first character, and so on. Obviously, defining
a new character set is a big job. Fortunately, there are software packages
on the market to make this job easier.

Once the character set is def i ned and p I aced into RAM, you must te II
ANTIC where it can find the character set. This is done by poking the page
number of the beginning of the character table into location $0409 (decimal
54281). The OS shadow location, which is the location you would normally
use, is called CHBAS and resides at $2F4 (decimal 756). The third step in
us i ng character sets is to pr i nt the character you want onto the screen.
Th i s can be done direct I y from BAS I C with simp I e PR I NT statements or by
writing numbers directly into the screen memory.

A special capabi I ity of the system not supported in BASIC Is the
four-color character set option. BASIC Graphics modes 1 and 2 support five
co lors, but each character in these modes is really a two-color character;
each one has a foreground co I or and a background co I or. The foreground
color can be any of four single colors, but only one color at a time can be
shown within a single character. This can be a serious hindrance when using

3-4

GRAPHICS INDIRECTION

character graphics.

There are two other text modes des i gned espec i a I I Y for character
graph i cs. They are ANTI C modes 4 and 5. Each character in these modes is
only four pixels wide, but each pi xe l can have four colors (counting
background) The characters are def i ned just like BAS I C Graph i cs mode 0
characters, except that each pixel is twice as vlide and has two bits
assigned to it to specify the color register used . Unl ike ANTIC modes 6 and
7 (BASIC modes 1 and 2), color register selection is not made by the
character name byte but instead by the defined character set. Each byte in
the character table is broken into four bit pairs, each of which selects the
color for a pixel. (This is why there are only four horizontal pixels per
character.) The highest bit (07) of the character name byte modifies the
color register used. Color register selection is made according to Figure
3-3:

bit pair in D7 = 0 D7
character defn

00 COLBAK COLBAK
01 PFO PFO
10 PF1 PF1
11 PF2 PF3

Figure 3-3 Color Register Selection for Characters

Using these text modes, multicolored graphics characters can be put
onto the screen.

Another interest i ng ANTI C character mode is the lowercase descenders
mode (ANTIC mode 3). This mode displays 10 scan I ines per mode I ine, but
since characters use only eight bytes vertically, the lower two scan lines
are normally left empty. If a character in the last quarter of the
character set is d i sp I ayed, the top two scan lines of the character wi I I be
I eft empty; the data that shou I d have been d i sp I ayed there wi I I instead be
shown on the bottom two lines. Th i s a I lows the user to create lowercase
characters with descenders.

APPLICATIONS OF CHARACTER SETS

~1any interesting and useful appl ication possibi I ities spring from
character set indirection. The obvious appl ication is the modified font. A
different font can give a program a unique appearance. It is possible to
have Greek, Cyri II ic, or other special character sets. Going one step
further, you can create graph i cs fonts. The ENERGY CZAR'" computer program
uses a redefined character set for bar graphs. A character occupies eight
pixels; this means that bar charts implemented with standard characters have
a reso I ut of eight pi xe Is, a rather poor reso I ut ion. ENERGY CZAR uses a

3-5

GRAPHICS INDIRECTION

special character set in which some of the less popular text symbols
(ampersands, pound signs, and the like) have been replaced with special bar
chart characters. One character is a one-pixel bar, another Is a two-pixel
bar, and so on to the fu II e I ght-p Ixe I bar. The program can thus draw
detai led bar charts with resolution of a single pixel. Figure 3-4 shows a
typical display from this program. The mix of text with map graphics Is
only apparent; the entire display is constructed with characters.

PRICES

COAL T ,
.1.. 4-
OIL T ,
.15
NLGA'S T ,
.1.6-
URANH T ,
.1..4
HVDRO T
.1..2:
:;iOLAR T
.1..4-
.,.,.XND T ,
.1.8
BMASS T ,
.1.5
FREEZE CO
TH~H

Figure 3-4 ENERGY CZAR m Bar Charts

In many appl ications, character sets can be created that show special
images. For example, by defining a terrain graphics character set with
river characters, forest characters, mounta in characters, and so forth, it
is possible to make a terrain map of any country. Indeed, with imagination
a map of terrain on a different planet can be done just as easily. When
doing this, it is best to define five to eight characters for each terrain
type . Each variation of a single type should be positioned sl ightly
d i f ferent I yin the character pi xe I • By mix I ng the d I f ferent characters
together, it is possible to avoid the monotonous look that is characteristic
of primitive character graphics. Most people won't real ize that the
resu It i ng map uses character graph i cs unt i I they study the map close I y.
Figure 3-5 shows a d i sp I ay of a terra in map created with character set
graphics. The reproduction in black and white does not do justice to the
original display, which has up to 18 colors.

3-6

GRAPHICS INDIRECTION

Figure 3-5 Terrain Map With Character Set Graphics

You could create an electronics character set with transistor
characters, diode characters, wire characters, and so forth to produce an
electronics schematics program. Or you cou ld create an architectural
character set with doorway characters, wall characters, corner characters,
and so on to make an architectural blueprint program. The graphics
poss i b iii ties opened up by character graph i cs with persona I computers have
not been fu I I Y exp I ored.

Characters can be turned upside down by pokeing a 4 into location 755.
One possible application of this feature might be for displaying playing
cards (as in a Blackjack game). The upper half of the card can be shown
right side up; with a d i sp I ay list interrupt the characters can be turned
upside down for the lower half of the card. This feature might also be of
some use in displaying images with mirror ref lection s (reflection pools,
lakes, etc

Even more exciting possibi I ities spring to mind when you real ize that
it is quite practical to change character sets whi Ie the program is running.
A character set costs either 512 bytes or 1024 bytes; in either case it is
quite inexpensive to keep multiple character sets i n memory and fl i p between
them during program execution. Th ere are three time regimes for such
character set mu ltipl exing: human s l ow (more than 1 second); human fast
(1/60 second to 1 second); and machine fast (faster than 1/60 sec).

3-7

GRAPHICS INDIRECTION

Human-s I ow character set mu It i P I ex i ng is usefu I for "change of scenery"
work. For examp I e, a space trave I program might use one graph i cs character
set for one planet, another set for space, and a th i rd set for another
planet. As the travel er changes l ocations, the program ohanges the
character set to give exotic new scenery. An adventure program might change
character sets as the player changes locales.

Human-fast character set multiplexing is primarily of value for
animat ion. This can be done in two ways: changing characters within a
single character set, and changing whole character sets. The SPACE INVADERS
(trademark of Ta ito Amer i ca Corp.) program on the ATAR I Home Computer uses
the former techn i que. The invaders are actua I I Y characters. By rap i d I Y
changing the characters, the programmer was able to animate them. This was
easy because there are only six different monsters; each has four different
incarnations.

High-speed cyclic animation of an entire screen is possible by setting
up a number of character sets, drawing the screen image, and then simply
cyc ling through the character sets. I f each character has a s light I Y
d i f ferent i ncarnat ion in each of the character sets, that character wi I I go
through an animated sequence as the character sets are changed. In this way
a screen full of objects could be made to cyc l icly move with a very simple
loop. Once the character set data is in p I ace and the screen has been
drawn, the code to animate the screen would be this simple:

1000 FOR 1=1 TO 10
1010 POKE 756,CHARBASE(I)
1020 NEXT I
1030 GOTO 1000

Computer-fast character set animation is used to put multiple character
sets onto a sing I e screen. Th i s makes use of the d i sp I ay list interrupt
capab iii ty of the computer. D i sp I ay list interrupts are discussed in
Section 5.

The use of character sets for graph i cs and an i mat i on has many
advantages and some lim i tat ions. The biggest advantage is that it costs
very little RN1 to produce detai l ed displays. A graphics display using
BASIC mode 2 characters (such as the one shown in Figure 3-5) can give as
much deta i I and one more co I or than a BAS I C mode 7 d i sp I ay. Yet the
character image wi I I cost 200 bytes wh i I e the map image wi I I cost 4000
bytes. The RAM cost for multiple character sets is only 512 bytes per set,
so it is inexpensive to have multiple character sets. Screen manipulations
'tIith character graphics are much fast er because you have l ess data to
manipulate. However, character graphics are not as flexible as map
graph i cs. You cannot put cnyth i ng you want anywhere on the screen. Th i s
lim i tat i on wou I d prec I ude the use of character graph i cs in some
appl ications. However, there remain many graphics appl ications for which
the program need display only a I imited number of predefined shapes in fixed
l ocations. In these cases, character graphics provide great uti I ity.

3-8

4

PLAYER-MISSILE GRAPHICS

DIFFICULTIES WITH HIGH-SPEED ANIMATION

Animation is an important capabi I ity of any home computer system.
Activity on the screen can greatly add to the excitement and real ism of any
program. Certa in I y an i mat ion is cruc I a I to the appea I of many computer
games. More Important, an an I mated i mage can convey in format i on v; i th more
impact and clarity than a static Image. It can draw attention to an item or
event of Importance. It can directly show a dynamic process rather than
i nd I rect I y ta I k about It. An i mat i on must accord I ng I y be regarded as an
Important element of the graphics capabl I ities of any computer system.

The conventional way to effect animation with home computers is to move
the image data through the screen RAM area. This requires a two-step
process. First, the program must erase the old image by writing background
values to the RAM containing the current image. Then the program must write
the Image data to the RAM corresponding to the new position of the image. By
repeat i ng th is process over and over, the image wi I I appear to move on the
screen.

There are two problems with this technique. First, if the animation is
being done In a graphics mode with large pixels, the motion wi II not be
smooth; the image wil I jerk across the screen. With other computers the only
solution is to use a graphics mode with smaller pixels (higher resolution).
The second problem Is much worse. The screen is a two-dimensional image but
the screen RAM I s organ i zed one-d i mens I ona I I y. Th i s means that an image
which is contiguous on the screen wi II not be contiguous in the RAM. The
discrepancy is I I lustrated In Figure 4-1.

IMAGE Corresponding
Bytes in RAM

00 00 00
00 99 00
00 BD 00
00 FF 00
00 BD 00
00 99 00
00 00 00

Spacing of Bytes in RAM:

00 00 00 00 99 00 00 BD 00 00 FF 00 00 BD 00 00 99 00 00 00 00

Image Bytes Scattered Through RAM

Figure 4-1 Noncontiguous RAM Images

4-1

PLAYER-MISSILE GRAPHICS

The significance of this discrepancy does not become obvious until you
try to write a program to move such an image. Look how the bytes that make
up the i mage are scattered through the RAM. To erase them, your program
must calculate their addresses. This calculation is not always 'easy to do.
The assembly code just to access a single screen byte at screen location
(XPOS,YPOS) would look like this (this code assumes 40 bytes per screen
line) :

LOA SCRNRM
STA POINTR
LOA SCRNR~1+1
STA POINTR+l
LOA #$00
STA TEMPA+l
LOA YPOS
ASL A
ROL Ta~PA+l

ASL A
ROL TEr'.1PA+l
ASL A
ROL TE~1PA+1

LOX TEMPA+l
STX TE~1PB+ 1
STA TEMB
ASL A
ROL TE ~1PA+l

ASL A
ROL TEMPA+l
CLC
AOC TEMPB
STA TE~1PB

LOA TE ~1PA+1

AOC TE ~~PB+ 1
STA TE MPB +1
LOA TE tvlPB
CLC
AOC POINTR
STA POINTR
LOA TEMPB+l
AOC POINTR+l
STA POINTR+1
LOY XPOS
LOA (PO I NTR) , Y

Address of beginning of screen RAM
zero page poInter
high order byte of address
high order pointer

temporary register
vertical position
times 2
shift carry into TEMPA+l
times 4
shift carry again
times 8
shift agGin
save YPOS*8
i nto TE~1PB
low byte
times 16

times 32

add in YPOS*8 to get YPOS*40

now do hi gh order byte

TEMPB contains the offset from top of screen to pi xe l

Clearly, this code to access a screen location is too cumbersome. This
is certa in I y not the most e legant or fast est code to so I ve the prob I em.
Certainly a good programmer could take advantage of special circumstances to
make the code more compact. The point of this is that accessing pixels on a
screen takes a lot of comput i ng. The above rout i ne takes about 100 mach i ne
cyc I es to access a sing I e byte on the screen. To move an i mage that
occupies, say, 50 bytes, would r eq uire 100 accesses or about 10,000 machine
cycles or roughly 10 mi II isecond s . This may not sound I ike much but if you

4-2

PLAYER-MISSILE GRAPHICS

want to achieve smooth motion, you have to move the object every 17
mi Iliseconds. If there are other objects to move or any calculations to
carry out there isn't much processor time left to devote to them. What this
means is that this type of animation (called "playfield animation") is too
slow for many purposes. You can sti II get animation this way, but you are
I imited to few objects or small objects or slow motion or few calculations
between mot ion. The trade-ofts thai- a programmer must make in us i ng such
animation are too restrictive.

PLAYER-MISSILE FUNDAMENTALS

The ATAR I Home Computer so I ut i on to th is prob I em is pi ayer-m i ss i Ie
graphics. In order to understand player-missi Ie graphics, it is important
to understand the essence of the problem of playfield animation: the screen
image is two-dimensional whi Ie the RAM image is one-dimensional. The
solution was to create a graphics object that is one-dimensional on the
screen as well as one-dimensional in RAM. This object (called a player)
appears in RAM as a tab I e that is either 128 or 256 bytes long. The tab Ie
is mapped directly to the screen. It appears as a vertical band stretching
from the top of the screen to the bottom. Each byte in the table is mapped
into either one or two horizontal scan I ines, with the choice between the
two made by the programmer. The screen image is a simp I e bit-map of the
data in the table. If a bit is on, then the corresponding pixel in the
vertical column is lit; if the bit is oft, then the corresponding pixel is
off. Thus, the player image is not strictly one-dimensional; it is actually
eight bits wide.

Drawing a player image on the screen is quite simple. First you draw a
picture of the des ired i mage on graph paper. Th is i mage must be no more
than eight pixels wide. You then translate the image into binary code,
subst i tut i ng ones for i I I um i nated pi xe I s and zeros for empty ones. Then you
translate the resulting binary number into decimal or hexadecimal, depending
on wh i ch is more conven i ent. Then you store zeros into the player RAM to
clear the image. Next, store the image data into the player RAM, with the
byte at the top of the player image going first, fol lowed by the other image
bytes in top to bottom sequence. The further down in RAfvl you p I ace the
data, the lower the image wi I I appear on the screen.

VERTICAL MOTION

Animating this image Is very easy . Vertical motion is obtained by
moving the image data through the player RAM. This is, in prinCiple, the
same method used in playfield animation, but there is a big difference in
practice; the move routine for vertical motion is a one-dimensional move
instead of a two-dimensional move. The program does not need to multiply by
40 and it often does not need to use indirection. It could be as simple as:

4-3

PLAYER-MISSILE GRAPHICS

LOX #$01
LOOP LOA PLAYER,X

STA PLAYER-1,X
INX
BNE LOOP

Th i s rout i ne takes about 4 mil I i seconds to move the ent i re player, about
half as long as the playfield animation routine which actually moves only 50
bytes where th is one moves 256 bytes. If high speed is necessary, the loop
can be trimmed to move only the image bytes themselves rather than the whole
player; then the loop wou Ideas i I Y run in about 100-200 microseconds. The
po i nt here I s that vert i ca I mot i on VI i th P I ayers is both simp I er and faster
than motion with playfield objects.

HORIZONTAL MOTION

Hor i zonta I mot i on is even eas i er than vert i ca I mot i on. There is a
reg I ster for the player ca I I ed the hor i zonta I pos it i on reg i ster. The va I ue
in th i s reg i ster sets the hor i zonta I pos it i on of the player on the screen.
AI I you do is store a number into this register and the player jumps to that
hor i zonta I pos it i on. To move the player hor i zonta I I Y simp I y change the
number stored in the hor i zonta I pos it i on reg i ster. That's a I I there is to
it.

Horizontal and vertical motion are independent; you can combine them in
any fashion you choose.

The scale for the horizontal position register is one color clock per
un it. Thus, add i ng one to the hor i zonta I pos it i on reg i ster wi I I move the
player one color clock to the right. There are only 228 color clocks in a
sing I e scan I I ne; furthermore, some of these are not d i sp I ayed because of
overscan. The horizontal position register can hold 256 positions; some of
these are off the left or ri ght edge of the screen. Position 47 corresponds
to the left edge of the standard playfield; position 208 corresponds to the
right edge of the standard playfield. Thus, the visible region of the
player is in hor i zonta I pos it ions 47 through 208. Remember, however, that
this may vary from television to television due to differences in overscan.
A conservative range of values is from 60 to 200. This coordinate range can
sometimes be clumsy to use, but it does offer a nice feature: a simple way
to remove a player from the screen Is to set the player's horizontal
position to zero. With a single load and store in assembly (or a single
POKE in BASIC), the player will disappear.

OTHER PLAYER-MISSILE FEATURES

The system descr i bed so far makes it poss i b I e to produce high-speed
animation. There are a number o f embe I I i shments which greatly add to its
overall uti I ity. The first embell ishment is that there are four ind ependent
p I ayers to use. These p I ayers a I I have the i r own sets of contro I reg i sters

4-4

PLAYER-MISSILE GRAPHICS

and RAM area; thus their operation is completely independent. They are
labeled PO through P3. They can be used side by side to give up to 32 bits
of horizontal resolution, or they can be used independently to give four
movable objects.

Each player has its own color register; this color register is
completely independent of the playfield color registers. The player color
registers are called COLP(X) an are shadowed at PCOLR(X). This gives you
the capabil ity to put much more color onto the screen. However, each player
has only one color; multicolored players are not possible without display
I ist interrupts (display I ist interrupts are discussed in Section 5).

Each player has a contro II ab lew i dth; you can set it to have norma I
width, double width, or quadruple width with the SIZEP(X) registers. This
is usefu I for mak i ng p I ayers take on d i f ferent sizes. You a I so have the
opt i on of choos i ng the vert i ca I reso I ut i on of the p I ayers. You can use
single-I ine resolution, in which each byte in the player table occupies one
hor i zonta I scan line, or doub Ie-I i ne reso I ut i on, in wh i ch each byte occup i es
two horizontal scan I ines. With single-I ine resolution, each player bit-map
table is 256 bytes long; with double-I ine resolution each table is 128 bytes
long. This is the only case where plc.yer properties are not independent;
the selection of vertical resolution appl ies to all players. Player
vert i ca I reso I ut i on is contra I I ed by bit 04 of the OMACTL reg i ster. In
sing Ie-I i ne reso I ut i on, the first 32 bytes in the player tab I e area lie
above the standard playfield. The last 32 bytes I ie below the standard
playfield. In double-I ine resolution, 16 bytes I ie above and 16 bytes lie
below the standard playfield.

MISSILES

The next embe I I i shmen t is the prov I s Ion of miss i I es. These are 2-b it
wide graphics objects associated with the players. There is one missi Ie
assigned to each player; it takes its color from the player's color
reg i ster. Miss i I e shape data comes from the miss i Ie bit-map tab lei n RAM
just in front of the player tables. All four missi les are packed into the
same table (four missiles times 2 bits per missile gives 8 bits). Missiles
can move independent I y of P I ayers; they have the i r own hor i zonta I pos it i on
registers. Missiles have their own size register, SIZEM, which can set the
horizontal width just I ike the SIZEP(X) registers do for players. However,
miss i I es cannot be set to d i f f erent s izes; they are a I I set together.
Missi les are useful as bullets or for sk inny vertical I ines on the screen.
I f des ired, the mi ss i I es can be grouped together into a fifth player, in
which case they take the color of playfield color regi ster 3. This is done
by setting bit 04 of the priority control register (PRIOR). Note that
mi ss i I es can st i I I move independent I y when th is opt i on is in effect; the i r
horizontal positions are set by their horizonta l position registers. The
fifth player enable bit only affects th e color of the missi l es .

You move a missile vertically the same way that you move a player: by
mov i ng the miss i lei mage data through the rn iss i I e RN~ area. Th is can be
difficult to do because missiles ar e g rouped into the same RAM table. To

4-5

PLAYER-MISSILE GRAPHICS

access a single missi Ie, you must mask out the bits for the other missiles.

PLAYER AND PLAYFIELD PRIORITIES

An important feature of pi ayer-m iss i I e graph i cs is that p I ayers and
mlssi les are completely independent of the playfield. You can mix them with
any graphics mode, text or map. This raises a problem: what happens if a
player ends up on top of some playfield image? ~Jhich image has priority?
You have the option to define the priorities used In displaying players. If
you wish, al I players can have priority over al I playfield color registers.
Or you can set all playfield color registers (except background) to have
pr i or i ty over a I I P I ayers. Or you can set player 0 and player 1 (henceforth
referred to as PO and Pl) to have priority over al I playfield color
registers, with P2 and P3 having less priority than the playfield. Or you
can set playfield color registers 0 and 1 (PFO and PF1) to have priority
over al I players, which then have priority over PF2 and PF3. These
priorities are selected with the priority control register (PRIOR) which is
shadowed at GPRIOR. This capabil ity al lows a player to pass in front of of
one Image and behind another, al lowing three-dimensional effects.

HARDWARE COLLISION DETECTION

The final embell ishment is the provision for hardware coil ision
detection. This Is primari Iy of value for games. You can check if any
graphics object (player or missi Ie) has col I ided with anything else.
Specifically, you can check for missi Ie-player col I isions, missile-playfield
collisions, player-player collisions, and player-playfield collisions.
There are 54 possible col I isions, and each one has a bit assigned to it that
can be checked. If the bit is set, a coil ision has occurred. These bits
are mapped Into 15 registers in CTIA (only the lower 4 bits are used and
some are not meaningful). These are read-only registers; they cannot be
cleared by writing zeros to them. The registers can be cleared for further
col I ision detection by writing any value to register HITCLR. AI I col I ision
registers are cleared by this command.

In hardware terms, col I isions occur when a player image coincides with
another image; thus, the col I ision bit wil I not be set until the part of the
screen show i ng the co I I lsi on is drawn. Th i s means that co I lis i on detect ion
might not occur unti I as much as 16 mi II iseconds have elapsed since the
player was moved. The preferred solution is to execute player motion and
call ision detection during the vertical blank interrupt routine (see Section
8 for a discussion of vertical blank interrupts). In this case collision
detection should be checked first, then coil islons cleared, then players
moved. Another solution is to wait at least 16 mi I I iseconds after moving a
player before checking for a coil ision involving that player.

There are a number of steps necessary to use player-missile graphics.
First you must set aside a player-missi Ie RA~l area and tell the computer
where it is. If you use single-I ine resolution, this RAM area wil I be 1280
bytes long; if you use double-I ine resolution it wi II be 640 bytes long. A

4-6

PLAYER-MISSILE GRAPHICS

good practice is to use the RAM area just in front of the display area at
the top of RAM. The layout of the player-missile area is shown in Figure
4-2.

PM BASE

+384

+512

+640

+768

+896

+ 1024

double line

unused

M3 \ M2\ M1\ MO
Player 0
Player 1

Player 2

Player 3

single line

unused

M3/M21 M1/ MO

+ 768

+ 1024

Player 0
+ 1280

Player 1
+ 1536

Player 2
+1792

Player 3
+2048

Figure 4-2 Player-Missi Ie RAM Area Layout

The pointer to the beginning of the player-missile area is labeled
P~1BASE. Because of internal I imitations of ANTIC, P~IBASE must be on a 2K
address boundary for sing Ie-I i ne reso I ut i on, or a 1 K address boundary for
double-I ine resolution. If you elect not to use al I of the players or none
of the missi les, the areas of RAM set aside for the unused objects may be
used for other purposes. Once you have decided where your player-missile
RAM area will be, you inform ANTI C of th i s by stor i ng the page number of
Pt~BASE into the Pt,1BASE register in ANTIC. Note that the address boundary
restr i ct ions on PMBASE prec I ude vert i ca I mot i on of p I ayers by mod i fy i ng
Pt~BASE •

The next step is to clear the player and missile RAM by storing zeros
into all locations in the player-missile RAM area. Then draw the players
and missi les by storing image data into the appropriate locations in the
player-missi Ie RAM area.

Next, set the player parameters by setting the player color, horizontal
position, and width registers to thei r initial values. If necessary, set
the player/ployfield priorities. Inform ANTIC of the vertical resolution
you desire by setting bit 04 of register OMACTL (shadowed at SOMCTU for
sing Ie-I i ne reso I ut i on, and c I ear i ng the bit for doub Ie-I i ne reso I ut i on.
Finally, enable the players by setting the PM OMA enable bit in OMACTL. Be
careful not to disturb the other bits in DMACTL. A sample BASIC program for
setting up a player and moving it with the joystick is given below:

4-7

PLAYER-MISSILE GRAPHICS

1 PMBASE=54279:REM
2 RAMTOP=106:REM
3 SDMCTL=559:REM
4 GRACTL=53277:REM
5 HPOSPO=53248:REM
6 PCOLRO=704:REM

Player-missi Ie base pointer
OS top of RAM pointer
RAM shadow of DMACTL register
CTIA graphics control register
Horizontal position of PO
Shadow of player 0 color

10 GRAPHICS O:SETCOLOR 2,0,0:REM
20 X=100:RE~~

Set background color to black
BASIC's player horizontal position
BASIC's player vertical position
Get RAM 2K below top of RAM

30 Y=48:REM
40 A=PEEK (RMHOP) -8: RE~~
50 POKE PMBASE,A:RE~
60 MYPMBASE=256*A:REM
70 POKE SDMCTL,46:REM
80 POKE GRACTL,3:REM
90 POKE HPOSPO,100:REM
100 FOR I=MYPMBASE+512 TO
110 POKE 1,0
120 NEXT I

Tel I ANTIC where PM RAM is
Keep track of PM RAM address
Enable PM DMA with 2-1 ine res
Enable PM display
Declare horizontal position

MYPMBASE+640:REM this loop clears player

130 FOR I=MYPMBASE+512+Y TO MYPMBASE+518+Y
1 40 READ A: REfvl
150 POKE I,A
160 NEXT I
170 DATA 8,17,35,255,32,16,8
180 POKE PCOLRO,88:REM
190 A=STICK(O):REM
200 IF A=15 THEN GOTO 190:REM
210 IF A=11 THEN X=X-l :POKE HPOSPO,X
220 IF A=7 THEN X=X+l :POKE HPOSPO,X
230 IF A<>13 THEN GOTO 280
240 FOR 1=8 TO 0 STEP -1

This loop draws the player

Make the player pink
Read joystick
If inactive, try again

250 POKE MYPMBASE+512+Y+I,PEEK(MYPMBASE+511+Y+I)
260 NEXT I
270 Y=Y+l
280 IF A<>14 THEN GOTO 190
290 FOR 1=0 TO 8
300 POKE MYPMBASE+51 l+Y+1 ,PEEK(MYPMBASE+512+Y+I))
310 NEXT I
320 Y=Y-l
330 GOTO 190

Once p I ayers are d i sp I ayed, they can be d iff i cu I t to remove from the
screen. Th i sis because the procedu re by wh i ch they are d i sp I ayed i nvo I ves
several steps. First, ANTIC retrieves player-missi Ie data from RAM (if such
retrieval is enabled in DMACTU. Then ANTIC ships the player-missile data
to CTIA (if such action is enabled in GRACTL). CTIA displays whatever is in
its player and missi Ie graphics registers (GRAFPO through GRAFP3 and GRAFM).
Many programmers attempt to turn off player-missi Ie graphics by clearing the
control bits in DlvlACTL and GRACTL. This only prevents ANTIC from sending
new player-missi Ie data to CTIA; the old data in the GRAF(X) registers l'Ii II
still be displayed. To completely clear the players the GRAF(X) registers

4-8

PLAYER-MISSILE GRAPHICS

must be c I eared after the contro I bits in DMACTL and GRACTL have been
cleared. A simpler solution is to leave the player up but set its
horizontal position to zero. Of course, if this solution is used, ANTIC
wi II continue to use D~'1A to retrieve player-missi Ie data, wasting roughly
70,000 machine cycles per second.

APPLICATIONS OF PLAYER-MISSILE GRAPHICS

Player-missi Ie graphics allow a number of very special capabi I ities.
They are obviously of great value in animation. They do have I imitations:
there are only four players and each is only 8 bits wide. If you need more
bits of horizontal resolution you can always fal I back on playfield
animation. But for high-speed animation or quick and dirty animation,
player-missi Ie graphics work very wei I.

It is possible to bypass ANTIC and write player-missi Ie data directly
into the player-missile graphics registers (GRAFP(X)) in CTIA. This gives
the programmer more direct contro lover pi ayer-m iss i I e graph i cs. I t a I so
increases his responsibi I ities concomitantly. The programmer must maintain
a bit map of player-missile data and move it into the graphics registers at
the appropriate times. The 6502 must therefore be slaved to the screen
drawing cycle. (See the discussion of kernels in Chapter 5.) This is a
clumsy technique that offers minor performance improvements in return for
major programmi ng efforts. The programmer who bypasses the hardware power
offered by ANTIC must make up for it with his own effort.

Players can also be used to produce apparent 3-dimensional motion.
This is accompl ished with the player width option. Each player is drawn
with one of several bit maps. One bit map shows the player as 6 bits wide,
and another shows the player in 8 bits. When the 6 bit player is drawn at
normal resolution, it wi II be 6 color clocks wide. The next size step is
achieved by going to double I'lidth with the 6 bit image; this I'lill be 12
color clocks wide. The 8 bit image wi I I be 16 color clocks wide.
Simi larly, going to quadruple width wi II produce images 24 and 32 color
clocks wide. Thus, the image can grow in size from 6 color clocks to 32
color clocks. This technique is used very effectively in STAR RAIDERS'".
The Zylons there are two players with 16 bits, so the size transistions are
even smoother.

Player-missi Ie graphics offer many capabi I ities in addition to
an i mat ion. P I ayers are an exce I I ent way to increase the amount of co I or in
a display. The four additional color registers they provide al low four more
colors on each I ine of the display. Of course, the 8-bit resolution does
lim it the range of the i r app I i cat i on. There is a way around th is that can
sometimes be used. Take a player at quadruple width and put it onto the
screen. Then set the pr i or it i es so that the player has lower pr i or i ty than
a pleyfield color. Next reverse that playfi e ld color with background, so
that the apparent background co I or of the screen is rea I I yap I ayf i e I d
color. The player disappears behind this new false background. Now cut a
hole in the false background by drawing true background on it. The player
1'1 i I I show up in front of the true background co I or, but on I yin the area

4-9

PLAYER-MISSILE GRAPHICS

where true background has been drawn. In this way the plGyer can have more
than eight bits of horizontal resolution. A sample program for doing this
is:

1 RAMTOP=106:REM
2 PMBASE=54279:REM
3 SDMCTL=559:REM
4 GRACTL=53277:REM
5 HPOSPO=53248:REM
6 PCOLRO=704:REM
7 SIZEPO=53256:REM
8 GPRIOR=623:REM
10 GRAPHICS 7
20 SETCOLOR 4,8,4
30 SETCOLOR 2,0,0
40 COLOR 3
50 FOR Y=O TO 79:REM
60 PLOT O,Y
70 DRAWTO 159,Y
80 NEXT Y
90 A=PEEK(RAMTOP)-20:REM
100 POKE PMBASE,A
110 MYPMBASE=256*A
120 POKE SDMCTL,46
130 POKE GRACTL,3
140 POKE HPOSPO,100
150 FOR I =rviyp~mASE+512 TO ~1YP~1BASE+640

160 POKE 1,255:REM
170 NEXT I
180 POKE PCOLRO,88
190 POKE SIZEPO,3:REM
200 POKE GPRIOR,4:REM
210 COLOR 4
220 FOR Y=30 TO 40
230 PLOT Y+22,Y
240 DRAWTO Y+43,Y
250 NEXT Y

OS top of RAM pointer
ANTIC player-missi Ie RAM pointer
Shadow of DMACTL
CTIA graphics control register
Horizontal position register of PO
Shadow of player 0 color register
Player width control register
Priority control register

This loop fi lis the screen

Must back up further for GR. 7

Make player sol id color

Set player to quadruple width
Set priority

4-10

PLAYER-MISSILE GRAPHICS

This program produces the fol lowing display:

Figure 4-3 Masking a Player for More Resolution

SPECIAL CHARACTERS

Another appl ication of player-missi Ie graphics is for special
characters. There are many special types of characters that cross vertical
boundar i es in norma I character sets. One way to dea I with these is to
create special character sets that address this problem. Another way is to
us e a player. Subscripts, integral signs, and other special symbols can be
done this way. A sample program for doing this is:

1 RAtHOP= 106: REtvl
2 PMBASE=54279:REM
3 SDMCTL=559:REM
4 GRACTL=53277:REM
5 HPOSPO=53248:REM
6 PCOLRO=704:REM
10 GRAPHICS 0:A=PEEKCRAfvlTOP)-16:REM
20 POKE PMBASE,A
30 MYPMBASE=256*A
40 POKE SDMCTL,62
50 POKE GRACTL,3
60 POKE HPOSPO,102
70 FOR I=MYPt~BASE+l024 TO t~YPMBASE+1280
80 POKE 1,0
90 NEXT I
100 POKE PCOLRO,140
110 FOR 1=0 TO 15
120 READ X
130 POKE MYPMBASE+l100+I,X
140 NEXT I
150 DATA 14,29,24,24,24,24,24,24
160 DATA 24,24,24,24,24,24,184,112
170 ?" ":REM
180 POSITION 15,6
190 ?"xdx"

OS top of RAM pointer
ANTIC player-missi Ie RAM pointer
Shadow of DMACTL
CTIA's graphics control register
Horizonta l position register of PO
Shadow of player 0 color register
Must back up for 1-1 ine resolution

Clear screen

4-11

PLAYER-MISSILE GRAPHICS

This program produces the following display:

xdx

Figure 4-4 Using a Player as a Special Character

A particularly useful application of players is for cursors. With
th e i r ab iii ty to smooth I y move anywhere over the screen without disturb i ng
its contents they are ideally suited for such appl ications. The cursor can
change color as it moves over the screen to indicate what it has under it.

Player-missi Ie graphics provide many capabi I ities. Their uses for
action games as animated objects are obvious. They have many serious uses
as we I I • They can add co I or and reso I ut i on to any d i sp I ay. They can
present special characters. They can be used as cursors. Use them.

4-12

5
DISPLAY LIST INTERRUPTS

The d i sp I ay list interrupt (DL I) is one of the most powerfu I
capabi I ities bui It into the ATARI Home Computer. It Is also one of the least
accessible features of the system, requiring a firm understanding of assembly
I anguage as we I I as a I I of the other character I st I cs of the mach I ne. D I sp I ay
list Interrupts all by themselves provide no additional capabilities; they
must be used I n conjunct I on with the other features of the system such as
player-missi Ie graphics, character set indirection, or color register
Indirection. With display list Interrupts the full power of these features
can be deployed.

THEORY OF OPERATION

D I sp I ay list I nterrupts take advantage of the sequent I a I nature of the
raster scan television display. The television draws the screen image In a
time sequence. It draws images from the top of the screen to the bottom.
This drawing process takes about 17,000 microseconds, which looks
Instantaneous to the human eye, but is a long time In the time scale that the
computer works in. The computer has plenty of time to change the parameters
of the screen display while it Is being drawn. Of course, It must effect
each change each time the screen is drawn, which is 60 times per second.
Also (and this is the tricky part), it must change the parameter in question
at exactly the same time each time the screen is drawn. That is, the cycle
of chang i ng screen parameters must be synchron I zed to the screen draw I ng
cycle. One way to do this might be to lock the 6502 up Into a tight timing
loop whose execution frequency is exactly 60 Hertz. This would make It very
difficult to carry out any computations other than the screen display
computations. It would also be a tedious job. A much better way would be to
interrupt the 6502 just before the time has come to change the screen
parameters. The 6502 responds to the Interrupt, changes the screen
parameters, and returns to its normal business. The interrupt to do this
must be precisely timed to occur at exactly the same time during the screen
drawing process. This specially timed Interrupt is provided by the ANTIC
chip; It Is called a display list Interrupt (DLI).

The timing and execution of any interrupt process can be Intricate;
therefore we wi I I first narrate the sequence of events ina proper I y work I ng
DLI. The process begins when the ANTIC chip encounters a display list
instruction with its interrupt bit (bit D7) set. ANTIC waits unti I the last
scan line of the mode line It Is currently displaying. ANTIC then refers to
Its NMIEN register to see If display list Interrupts have been enabled. If
the enable bit Is clear, ANTIC Ignores the Interrupt and continues its
regular tasks. If the enable bit is set, ANTIC pulls down the NMI line on
the 6502. ANTI C then goes back to I ts norma I d I sp I ay act I v I ties. The 6502
vectors through the NM I vector to an Interrupt serv I ce rout I ne I n the OS.
This routine first determines the cause of the Interrupt. If the Interrupt
Is indeed a DLI, the routine vectors through addresses $0200, $0201 (low then
high) to a DL I serv I ce rout I ne. The DL I rout I ne changes one or more of the
graphics registers which control the display. Then the 6502 RTls to resume
Its mainline program.

5-1

DISPLAY LIST INTERRUPTS

There are a number of steps involved in setting up a DLI. The very
first thing you must do is write the DLI routine Itself. The routine must
push any 6502 reg i sters that wi I I be a I tered onto the stack, as the OS
interrupt pol I routine saves no registers. (The 6502 does automatically push
the Processor Status Reg i ster onto the stack.) The rout I ne shou I d be short
and fast; it should only change registers related to the display. It should
end by restor i ng any 6502 reg i sters pushed onto the stack. Next you must
place the DLI service routine somewhere in memory. Page 6 is an ideal place.
Set the vector at $0200, $0201 to po i nt to you r rout i ne. Determ i ne the
vertical point on the screen where you want the DLI to occur, then go to the
corresponding display list instruction and set bit D7 of the previous
instruction. Finally, enable the DLI by setting bit D7 of the NMIEN register
at $D40E. The DLI wi II immediately begin functioning.

DL I T I ~I) I NG

As with any interrupt service routine, timing considerations can be
critical. ANTIC does not send the interrupt to the 6502 immediately upon
encountering an interrupt instruction; it delays this unti I the last scan
I ine of the interrupting mode I ine. There are a number of processing delays
before the DLI reaches your service routine. Thus, your DLI service routine
wi I I beg i n execut i ng wh i I e the electron beam is partway across the screen in
the last scan I ine of the interrupting mode I ine. For example, if such a DLI
routine changes a color register, the old color wi II be displayed on the left
ha I f of the screen and the new co I or wi I I show up on the right ha I f of the
screen. Because of uncerta in tim i ng in the response of the 6502 to an
interrupt, the border between them wi I I not be sharp but wi I I j i gg I e back and
forth irritatingly.

There is a solution to this problem. It is provided In the form of the
WSYNC (wait for horizontal sync) register. Whenever this register is
addressed in any way, the ANTI C ch i P pu II s down the RDY line on the 6502.
This effectively freezes the 6502 unti I the register is reset by a horizontal
sync. The ef fect is that the 6502 freezes unt i I the electron beam reaches
the right edge of the standard playfield. If you insert a STA WSYNC
instruction just before the instruction which stores a value into a color
register, the color wi I I go into the color register while the beam is off the
screen. The color transition wi" occur one scan I ine lower, but wi" be
neat and clean.

The proper use of a DL I then is to set the DL I bit on the mode line
before the mode I ine for which you want the action to occur. The DLI service
rout i ne shou I d first save the 6502 reg i sters onto the stack, and then load
the 6502 registers with the new graphics values to be used. It should
execute a STA WSYNC, and then store the new values into the appropriate ANTIC
or CT I A reg i sters. F i na I I y, it shou I d restore the 6502 reg i sters and return
from the interrupt. This procedure will guarantee that the graphics
registers are changed at the beginning of the desired line whi Ie the electron
beam is off the screen.

5-2

DISPLAY LIST INTERRUPTS

DL I EXAt~PLE

A simple program demonstrating a DLI is given below:

10 DLIST=PEEK(560)+256*PEEK(561):REM
20 POKE DLIST+15,130:REM
30 FOR 1=0 TO 19:REM
40 READ A:POKE 1536+I,A:NEXT
50 DATA 72,138,72,169,80,162,88
60 DATA 141,10,212,141,23,208
70 DATA 141,24,208,104,170,104,64
80 POKE 512,0:POKE 513,6:REM
90 POKE 54286,192:REM

Find display list
Insert interrupt instruction
Loop for poking DLI service rout i ne

Poke in interrupt vector
Enable DLI

This routine uses the following assembly language DLI service routine:

PHA Save accumulator
TXA
PHA Save X-register
LDA #$50 Dark co lor for characters
LDX #$58 Pink
STA WSYNC Wait
STA COLPF1 Store color
STX COLPF2 Store color
PLA
TAX
PLA Restore registers
RTI Done

This is a very simple DLI routine. It changes the background color
from blue to pink. It also changes the color of the characters so that they
show up as dark against the pink background. You might wonder why the upper
half of the screen remains blue even though the DLI routine keeps stuffing
pink into the color register. The answer is that the OS vertical blank
interrupt routine keeps stuffing blue into the color register during the
vertical blank period. The blue color comes from the OS shadow register for
that color register. Every hardware color register is shadowed out to a RAM
location. You may already know about these shadow registers at locations
708 through 712. For most purposes you can change co lors by pok i ng va lues
into the shadow registers. If you poke directly into the hardware
registers, the OS shadow process wi II wipe out your poked color within a
60th of a second. For DLls, however, you must store your new color values
directly into the hardware registers. You can not use a DLI to set the
co I or of the first d i sp I ayed line of the screen; the OS takes care of that
I ine for you. Use DLls to change colors of I ines below the first line.

5-3

DISPLAY LIST INTERRUPTS

ATIRACT MODE

By stuffing colors directly into the hardware registers, you create a
new problem: you defeat the automatic attract mode. Attract'mode is a
feature provided by the operating system. After nine minutes without a
keypress, the co I ors on the screen beg into cyc I e through random hues at
lowered luminances. This ensures that a computer left unattended for
several hours does not burn an image into the television screen. It is easy
to bui Id attract mode into a display I ist interrupt. Only two I ines of
assembly code need be inserted into the DLI routine:

Old

LDA NEWCOL
STA WSYNC
STA COLPF2

New

LDA NElvCOL
EOR COLRSH
AND DRn~SK
STA WSYNC
STA COLPF2

DRKMSK and COLRSH are zero page I ocat ions ($4E and $4F) set up and updated
by the OS dur i ng vert i ca I blank interrupt. When attract mode is not in
force, COLRSH takes a va I ue of 00 and DRKMSK takes $FF. When attract mode
is in force, COLRSH is given a new random value every 4 seconds and DRK~~SK

holds a value of $F6. Thus, COLRSH scrambles the color and DRKtvlSK lops off
the highest luminance bit.

DETAILED TIMING CONSIDERATIONS

The implementation of attract mode in DLls exacerbates an already
difficult problem: the shortage of execution time during a DLI. A
descr i pt i on of DL I tim i ng wi I I make the prob I em more obv i ous. DL I executi on
is broken into three phases: - Phase One covers the per i od from the
beginning of the DLI to the STA WSYNC instruction. During Phase One the
electron beam is drawing the last scan I ine of the interrupting mode line.

Phase Two covers the period from the STA WSYNC instruction to the
appearance of the beam on the te I ev i s i on screen. Phase Two corresponds .to
horizontal blank; all graphics changes should be made during Phase Two.
Phase Three covers the period from the appearance of the beam on the screen
to the end of the DL I serv i ce rout i ne. The tim i ng of Phase Three is not
critical.

One horizontal scan I ine takes 114 processor clock cycles of real time.
A DL I reaches the 6502 on cyc I e number 8. The 6502 takes from 8 to 14
cycles to respond to the interrupt. The OS routine to service the interrupt
and vector it on to the DLI service routine takes 11 machine cycles. During
this time from 1 to 3 cycles wi II be stolen for memory refresh DMA. Thus,
th e DL I serv i ce rout i ne is not reached unt i I from 28 to 36 clock cyc I es have
el apsed. For planning purposes we must assume the worst case and program as
if th e DLI service routine is reach ed on cycle number 36. Furthermore, the

5-4

DISPLAY LIST INTERRUPTS

STA WSYNC instruction must be reached by cycle number 100; this reduces the
time avai lable in Phase One by 14 cycles. Finally, ANTIC's DMA wi II steal
some of the remaining clock cycles from the 6502. Nine cycles wi I I be lost
to memory refresh DMA. This leaves an absolute maximum of 55 cycles
avai lable for Phase One. This maximum is achieved only with blank I ine mode
lines. Character and map mode instruct ions wi I I resu It in the loss of one
cycle for each byte of display data. The worst case arises with BASIC modes
0,7, and 8, which require 40 bytes per line. Only 15 machine cycles are
ava i I ab I e to Phase One in such modes. Thus, a Phase One rout i ne wi I I have
from 15 to 55 machine cycles of execution time avai lable to it.

Phase Two, the critical phase, extends over 27 clock cycles of real
time. As with Phase One, some of these cycles are lost to cycle steal ing
DMA. Player-missile graphics will cost five cycles if they are used. The
d i sp I ay instruct i on wi I I cost one cyc I e; if the LMS opt i on is used, two more
cyc I es wi I I be sto I en. F i na I I y, one or two cyc I es may be lost to memory
refresh or display data retrieval. Thus, from 17 to 26 machine cycles are
avai lable to Phase Two.

The problems of DLI timing now become obvious. To load, attract and
store a single color wi II consume 14 cycles. Saving A, X, and Y onto the
stack and then loading, attracting, and saving three colors into A, X, and Y
wi I I cost 47 cycles, most if not al I of Phase One. Obviously, the
programmer who wishes to use DL I for extens i ve graph i cs changes wi I I expend
much effort on the timing of the DLI. Fortunately, the beginning programmer
need not be concerned with extensive timing calculations. If only single
color changes or simple graphics operations are to be performed, cycle
counting and speed optimization are unnecessary. These considerations are
only important for high-performance situations.

There are no simple options for the programmer who needs to change more
than three color registers in a single DLI. It might be possible to load,
attract, and store a fourth co I or ear I yin Phase Three if that co I or is not
displayed on the left edge of the screen. Simi larly, a color not showing up
on the right side of the screen could be changed during Phase One. Another
approach is to break one overactive DLI into two less ambitious DLls, each
doing half the work of the original. The second DLI could be provided by
inserting a single scan line blank instruction (with DLI bit set) into the
display I ist just below the main interrupting mode I ine. This wi II consume
some screen space.

Another partial solution is to perform the attract chores during
vertical blank periods. To do this, two tables of colors must be kept in
RAM. The first table contains color values intended to be displayed by the
DL I rout i nes. The second tab I e conta ins the attr acted va I ues of these
colors. During vertical blank, a user-suppl ied interrupt service routine
fetches each color from the first table, attracts it, and stores the
attracted co I or to the secon d tab Ie. The DL I rout i ne then retr i eves va lues
directly from the second table without paying the time penalty for attract.

5-5

DISPLAY LIST INTERRUPTS

MULTIPLE DLls

It is often desirable to have a number of DLls occurring at several
vertical positions on the screen. This is an important way to add color to
a display. Unfortunately, there is only one DLI vector; if multiple DLls
are to be implemented then the vectoring to the appropriate DLI must be
imp I emented, in the DL I rout i ne i tse If. There are severa I ways to do th is.
If the DLI routine does the same process with different values then it can
be table-driven. On each pass through the DLI routine, a counter is
incremented and used as an index to a table of values. A sample DLI routine
for doing this is as follows:

PHA
TXA
PHA
INC COUNTR
LDX COUNTR
LDA COLTAB,X
STA WSYNC
STA COLBAK

Use page two for color table
Wait

CPX #$4F
BNE ENDDLI
LDA #$00
STA COUNTR

Last line?
No, ex i t
Yes, reset counter

ENDDLI PLA
TAX
PLA
RTI

Restore accumulator

The BASIC program to cal I this routine

10 GRAPHICS 7
20 DLIST=PEEK(560)+256*PEEK(561):REM
30 FOR J=6 TO 84:REM
40 POKE DLIST+J,141:REM
50 NEXT J
60 FOR J=O TO 30
70 READ A:POKE 1536+J,A:NEXTJ:REM
80 DATA 72,138,72,238,32,6,175,32,6
90 DATA 189,0,240,141,10,212,141,26,208
100 DATA 224,79,208,5,169,0
110 DATA 141,32,6,104,170,104,64
120 POKE 512,0:POKE 513,6:REM
130 POKE 54286,192:REM

is :

Find d i sp I ay list
Give every mode I ine a DLI
BASIC mode 7 with DLI bit set

Poke in DLI service routine

Vector to DLI service routine
Enable DLI

This program wi II put 80 different colors onto the screen.

There are other ways to implement multiple DLls. One way is to use a
DLI counter as a test for branching through the DLI service routines to the

5-6

DISPLAY LIST INTERRUPTS

proper DL I serv i ce rout i ne. Th iss lows down the response of a I I the DL Is,
particularly the ones at the end of the test sequence. A better way is to
have each DLI service routine write the address of the next routine into the
DLI vector at $200, $201. This should be done during Phase Three. This is
the most genera I so I ut i on to the prob I em of mu I tip I e DL Is. I t has the
additional advantage that vectoring logic is performed after the time
critical portion of the DLI, not before.

The OS keyboard cl ick routine interferes with the function of the DLI.
Whenever a key is pressed and acknowledged, the onboard speaker is cl icked.
The timing for this cl ick is provided by several STA v/SYNC instructions.
This can throw off the timing of a DLI routine and cause the screen colors
to jump downward by one scan line for a fract i on of a second. There is no
easy solution to this problem. One possible solution involves the VCOUNT
register, a read-only register in ANTIC which tells what scan I ine ANTIC is
displaying. A DLI routine could ex amine this register to decide when to
change a co lor. Another so I ut i on is to d i sab I e the OS keyboard serv i ce
routine and provide your own keyboard routine. This would be a tedious job.
The final solution is to accept no inputs from the keyboard. If key presses
are not acknowledged, the screen jiggle does not occur.

KERNELS

The DLI was designed to replace a more primitive software/hardware
techn i que ca I I ed a kerne I • A kerne lis a 6502 program loop wh i ch is
precisely timed to the display cycle of the television set. By monitoring
the VCOUNT register and consulting a table of screen changes cataloged as a
function of VCOUNT values, the 6502 can arbitrari Iy control all graphics
values for the entire screen. A high price is paid for this power: the 6502
is not available for computations during the screen display time, which is
about 75 percent of the time. Furthermore, no computation may consume more
than the 4000 or so machine cycles available during vertical blank and
overscan periods. This restriction means that kernels can only be used with
programs requiring I ittle computation, such as certain ski II and action
games. For examp I e, the BASKETBALL program for the ATAR I 400/800 Computers
uses a kernel; the program requires little computation but much color. The
mu It i co I ored p I ayers in th i s game cou I d not be done with d i sp I ay list
interrupts, because DLls are keyed to playfield vertical positions, not
player positions.

It is possible to extend the kernel idea right into a single scan line
and change graphics registers on the fly. In this way a single color
reg I ster can present severa I co I ors on a sing I e scan line. The hor i zonta I
position of the color change is determined by the amount of time that
e I apses before the change goes In. Thus, by carefu I I Y count i ng mach i ne
cycles, the programmer can get more graphics onto the screen.
Unfortunately, this is extremely difficult to achieve in practice. With
ANTIC DMAing the 6502, it is very difficult to know exactly how many cycles
have rea I lye lapsed; a simp I e count of 6502 cyc I es is not adequate. If
ANTIC's DMA is turned off, the 6502 can assume full control of the display
but must then perform a I I the work that ANTI C norma I I Y does. For these

5-7

DISPLAY LIST INTERRUPTS

reasons hor i zonto I kerne I s are se I dom worth the ef fort. However, if the two
images to be displayed in different colors are widely separated, say by 20
color clocks or more, the separation should cover up the timing
uncertainties and render this technique feasible.

APPLICATIONS OF DISPLAY LIST INTERRUPTS

The tremendous value of graphics indirection and all those modifiable
reg i sters in the hardware now becomes obv i ous. With d i sp I ay list
interrupts, everyone of those registers can be changed on the fly. You can
put lots of color, graphics, and special effects onto the screen. The most
obv i ous app I i cat i on of DL lsi s to put more co I or onto the screen. Each
color register can be changed as many times as you have DLls. This appl ies
to both playfield color registers and plcyer color registers. Thus, you
have up to nine color registers, each of which can display up to 128
different colors. Is that enough color for you? Of course, a norlTlcl
program would not lend itself to effectively using all of those colors. Too
many DLls start slowing down the whole program. Sometimes the screen layout
cannot accommodate lots of DLls. In practice, a dozen colors is easy, two
dozen requ ires carefu I p I ann i ng, and more than that requ i res a contr i ved
situation.

Display list interrupts can give more than color; they can also be
used to extend the power of player-missi Ie graphics. The horizontal
position of a player can be changed by a DLI. In this way a player can be
repos it i oned partway down the screen. A sing Ie player can have severa I
i ncarnat ions on the screen. I f you i mag i ne a player as a vert i ca I co I umn
with images drawn on it, a DLI becomes a pair of scissors with which you can
snip the column and reposition sections of it on the screen. Of course, no
two sect ions of the player can be on the same hor i zonta I line, so two
i ncarnat ions of the player cannot be on the same hor i zonta I line. I f you r
d i sp I ay needs a I low graph i cs ob jects that wi I I never be on the same
horizontal I ine, a single player can do the job.

Another way to use DLls in conjunction with players is to change their
width or priority. This would most often be used along with the priority
masking trick described in Section 4.

The last app I i cat i on of DL lsi s the chang i ng of character sets partway
down the screen. Th is a I lows a program to use character graph i cs ina large
window and regular text in a text window. [Vlultiple character set changes
are poss i b I e; a program might use one graph i cs character set at the top of
the screen, another graph i cs character set in the m i dd I e of the screen, and
a regular text character set at the bottom. A 'Rosetta Stone' program would
also be possible, showing different text fonts on the same screen. The
vertical reflect bit can be changed with a DLI routine, allowing some text
to be rightside up and other text to be upside down.

The proper use of the DL I requ ires carefu I I ayout of the screen
display. The designer must give close consideration to the vertical
architecture of display. The rast er scan tel evisi on syst em i s not

5-8

DISPLAY LIST INTERRUPTS

two-dimensionally symmetric; it has far more vertical structure than
horizontal structure. This is because the pace for horizontal screen
drawing is 262 times faster than the pace for vertical screen drawing. The
ATARI Home Computer display system was designed specifically for raster scan
-re I ev i s ion, and it mirrors the an isotropy of the raster scan system. The
ATARI Home Computer display is not a flat, blank sheet of paper on which you
draw; it is a stack of thin strips, each of which can take different
parameters. The programmer who insists on designing an isotropic display
wastes many opportun it i es. You wi I I ach i eve opt i ma I resu I ts when you
organize the information you wish to display in a strong vertical
structure. This al lows the ful I power of the DLI to be brought -ro bear.

Figure 5-1 shows some screen displays from various programs and gives
estimates of the degree of vertical screen architecture used in each.

5-9

DISPLAY LIST INTERRUPTS

SPACE INVADERS
(Trademark of Taito America Corporation)

LOTS

24600
.14,648

..•....• \ .
...
~

•• + :.: '.'

, ,
,
, , , ,

I
.... };I·:e·.I;

MI SS I LE COMMAND 'H
SOME

ER~L RES.ERVE

OPE
36:.'.

!.r·'I:W"'·OBIr<£!

GRAPH I 1'H
***NONEH'*

DlV
• y.

":> IJR
.1 7%

SCRAr,,'H
(A Nuclear Reactor Simulation)

LITTLE

•
•

•

STAR RA I DERS IH
LITTLE

.'~.

• : .'~.

...

•
ASTERO IDS IH
NONE

•

•
.'"

Figure 5-1 Examples of Vertical Screen Architecture

5-10

6
SCROLLING

Qu i te frequent I y the amount of in format i on that a programmer wants to
d i sp I ay exceeds the amount of i nforrnat i on that can fit onto the screen. One
way of solving this problem is to scrol I the information across the display.
For example, I istings of BASIC programs scroll vert ically from the bottom to
the top of the screen. A I I persona I computers imp I ement th i s type of
scroll ing. However, the ATARI Home Computer has two add itional scroll ing
faci I ities that offer exciting possibi I ities. The first is "Load ~~emory

Scan" (U\1S) coarse scroll ing; the second is fine scro ll ing.

Conventional computers use coarse scroll ing; in this type of scroll ing,
the pixels that hold the characters are fixed in position on the screen and
text is scrolled by moving bytes through the screen RAM. The resolution of
the scroll ing is a single character pi xe l, which is very coarse. The
sc roll ing this produces is jerky and quite unpleasant. Furthermore, it is
achieved by moving up to a thousand bytes around in memory, a slow and clumsy
task. I n essence, the program must move data through the pi ayf i e I d to
scro II.

Some personal computers can produce a somewhat finer scrol I by drawing
images in a higher resolution graphics mode and then scroll ing these images.
A I though higher scro I ling reso I ut i on is ach i eved, more data must be moved to
attain the scrol I ing and the program is consequently s lowed. The fundamental
prob I em is that the scro I ling is imp I emented by mov i ng data through the
screen area .

There is a better way to achieve coarse scroll ing with the ATARI
400/800: move the screen area over the data. The d i sp I ay list opcodes
support the Load Memory scan feature. The LMS instruction was first
desc ribed in Section 2 and tells ANTIC where the screen memory is. A normal
disp lay I ist wi II have one LMS instruction at the beginning of the display
list; the RAM area it po i nts to prov i des the screen data for th e ent i re
screen in a I inear sequence. By manipulating the operand bytes of the LMS
instruction, a primitive scroll can be implemented. In effect, this moves
the playfield window over the screen data. Thu s, by manipulating just 2
address bytes, you can produce an effect identical to moving the entire
screen RAM. The fol lowing program does just that:

10 DLIST=PEEK(560)+256*PEEK(561):REM
20 LM SLOW=DLIST+4:REM
30 LMSHIGH=DLIST+5:REM
40 FOR 1=0 TO 255:REM
50 POKE LMSH IGH, I
60 FOR j=O TO 255:REM
70 POKE L~1S LO\'J, j
80 FOR Y=1 TO 50:NEXT Y:REM
90 NEXT j
100 NEXT I

Find display li st
Get low address of LMS operand
Get high address of LMS operand
Outer loop

Inner loop

Delay l oop

6-1

SCROLLING

This program sweeps the display over the entire address space of the
computer. The contents of the memory are a I I dumped onto the screen. The
scroll is a clumsy serial scroll combining horizontal scrolling with vertical
scroll ing. A pure vertical scroll can be achieved by adding or subtracting a
fixed amount (the I ine length in bytes) to the LMS operand. The following
program does that:

10 GRAPHICS 0
20 DLIST=PEEK(560)+256*PEEK(561)
30 LMSLOW=DLIST+4
40 LMSHIGH=DLIST+5
50 SCREENLOW=O
60 SCREENHIGH=O
70 SCREENLOW=SCREENLOW+40:REM
80 IF SCREENLO\'J<256 THEN GOTO 120:REM
90 SCREENLOW=SCREENLOW-256:REM
100 SCREENHIGH=SCREENHIGH+l
110 IF SCREENHIGH=256 THEN END
120 POKE LMSLOW,SCREENLOW
130 POKE LMSHIGH,SCREENHIGH
140 GOTO 70

HORIZONTAL SCROLLING

Next line
Overf low?
Yes, adjust pointer

A pure horizontal scroll is not so simple to do as a pure vertical
scro I I • The prob I em is that the screen RAM for a simp led i sp I ay list is
organ i zed ser i a I I y. The screen data bytes for the lines are strung in
sequence, with the bytes for one line i rnmed i ate I y fo I low i ng the bytes for the
previous I ine. You can horizontally scroll the I ines by shifting all the
bytes to the left; this is done by decrementing the LMS operand. However,
the I eftmost byte on each line wi I I then be scro I led into the rightmost
position in the next higher line. The first sample program above illustrated
this problem.

The solution is to expand the screen data area and break it up into a
series of independent horizontal I ine data areas. Figure 6-1 schematically
illustrates this idea:

6-2

~
..................... .

.......................

...

.............

..................

........................

.......................

........

normal data arrangement

Figure 6-1

SCROLLING

............... ~
.
.
. .. .

.
.
.
. , ..

arrangement for horizontal scrol I

Arranging Screen RAM

On the left is the normal arrangement. One-dimensional serial RAM is
stacked in I i near sequence to create the screen data area. On the right is
the arrangement we need for proper hor i zonta I scro I ling. The RAtel is of
course sti" one-dimensional and sti" serial, but now it is used
differently. The RAtv1 for each horizontal line extends much further than the
screen can show. This is no accident; the whole point of scroll ing is to
allow a program to display more information than the screen can hold. You
can't show all that extra information if you don't allocate the RAtvl to hold
it. With this arrangement you can implement true horizontal scroll ing. You
can move the screen window over the screen data without the undes i rab Ie
vertical roll of the earl ier approach.

The first step in imp I ement i ng pure hor i zonta I scro I lis to determ i ne
the tota I hor i zonta I line I ength and a I locate RAtv1 accord i ng I y • Nex t, you
must write a completely new display I ist with an LMS instruction on each mode
I ine. The display I ist wi II of course be longer than usual, but there is no
reason why you cannot write such a display I ist. What values do you use for
the LMS operands? It is most convenient to use the address of the first byte
of each hor i zonta I screen data line. There wi I I be one such address for each
mode line on the screen. Once the new d i sp I ay list is in p I ace, ANTI C must
be turned onto it and screen data must be written to populate the screen. To
execute a scro I I, each and every LMS operand in the d i sp I ay list must be
incremented for a rightward scro I I or decremented for a leftward scro I I.
Program logic must ensure that the image does not scroll beyond the I imits of
the allocated RAtv1 areas; otherwise, garbage displays wi II result. In setting
up such log i c, the programmer must remember that the LMS operand po i nts to
the first screen data byte in the displayed I ine. The max imum value of the
LMS operand is equa I to the address of the l2Jst byte in the long hor i zonta I
I ine minus the number of bytes in one displayed I ine. Remember also that the
LMS vclue should not come within one screen display line's length (in bytes)
of a 4K address boundary, or the wrong data VI i I I be d i sp I ayed due to L~1S

counter rollover.

As this process is rather intricate, let us work out an example. First,
we must se I ect our tota I hor i zonta I line l ength . lYe sha I I use a hor i zonta I
I ine length of 256 bytes, as this wi II simpl if y address ca lculations. Each
hor i zonta I line 'II i I I then requ ire one page of RAtvl. Since we wi I I use BAS I C

6-3

SCROLLING

mode 2, there wi I I be 12 mode lines on screen; thus, 12 pages or 3K of RN1
wi I I be requ ired. For simp I i city (and to guarantee that our screen RAM wi I I
be popu I ated with nonzero data), we wi I I use the bottom 3K of RAM. Th i s area
is used by the OS and DOS and so should be ful I of interesting data. To make
matters more interest i ng, we' I I put the d i sp I ay list onto page 6 so that we
can d i sp I ay the d i sp I ay list on the screen as we are scro I ling. The in it i a I
values of the L~1S operands will thus be particularly easy to calculate; the
low order bytes wi I I a I I be zeros and th e high order bytes wi I I be (i n order)
0, 1, 2, etc. The following program performs all these operations and
scrolls the screen horizontally :

1 0 RE~1 first set up the d i sp I ay list
20 POKE 1536,112:REM
30 POKE 1537,112:REM
40 POKE 1538,112:REM
50 FOR 1=1 TO 12:REM
60 POKE 1536+3*1,71 :REM
70 POKE 1536+3*I+l,0:REM
80 POKE 1536+3*1+2,I:REM
90 NEXT I
100 POKE 1575,65:REM
110 POKE 1576,0:REM
120 POKE 1577,6

8 blank lines
8 blank lines
8 blank lines
Loop to put in display list
BASIC mode 2 with LMS set
Low byte of LMS operand
High byte of LMS operand

ANTIC JVB instruction
Display I ist starts at $0600

130 REM tel I ANTIC where display I ist is
140 POKE 560,0
150 POKE 561,6
160 REM now scro I I hor i zonta I I Y
170 FOR 1=0 TO 235:REM
175 REM we use 235---not 255---because
180 FOR J=l TO 12:REM

Loop through LMS low bytes
screen width is 20 characters
for each mode line

190 POKE 1536+3*J+l,1 :REM
200 NEXT J

Put in new LMS low byte

210 NEXT I
220 GOTO 170:REM Endl ess loop

This program scrolls the data from right to left.
page is reached, it simply starts over at the beginning.
can be found on the sixth line down (it's on page 6).
sequence of double quotation marks.

When the end of a
The d i sp I ay list
I t appears as a

The nex t step is to mix vertical and horizontal scroll ing to get
d i agona l scroll ing . Horizonta l scro ll ing is achieved by adding 1 to or
subtrac t i ng 1 from the L~1 S operand. Vert i ca I scro I ling is ach i eved by add i ng
the line I ength to or subtract i ng the line I ength from th e LMS operand.
Diagonal scroll ing is achieved by exec uting both operations. There are four
possible diagonal scroll directions. If, for example, the line length is 256
bytes and we VI ish to scro I I down and to the right, we must add 256+(-1) =255
to each LMS operand in the display I i st. Thi s is a 2-byte add; the BASIC
program example given above avoids th e difficulties of 2-byte address
manipulations but most programs wi II not be so contrived. For truly fast

6-4

SCRO LLING

two-d i mens i ana I scro I ling, assemb I y l anguage wi I I be necessa r y.

All sorts of weird arrangements are possible if we differentially
man i pu late t he LrvlS bytes. Lines cou I d scro I I re I at i ve t o each other or hop
over each other. Of course, some of t h i s cou l d be done with a conventional
d i sp l ay but more dat a wou l d have to be moved t o do it. Th e real advantage of
LMS sc r o I ling is its speed. I nstead of ma n i pu I at i ng an ent i r e screen fu I o f
data, ma ny thousands of bytes i n s i ze, a program need on l y manipulate two or
perhaps a few dozen bytes.

FI NE SCRO LLI NG

The second i mportont scro I ling fac iii t y of the ATAR I Computer is the
fine scro ll ing capabi I ity. Fine scro ll ing i s the capabi I ity of scroll ing a
pixel in steps sma ll er than the p i xe l s i ze. (Throughout this secti on the
term p i xe I refers to an ent i re c haracter , not to th e sma I I er dots that make
up a character.) Coarse scro ll s proceed in st eps eq ual t o o ne pixel
dimension; fine scrol l s proceed in step s of one scan I i ne ver t i ca ll y and one
color clock horizontal l y. Fine sc roll ing ca n on l y carry so far; to get full
fine scro l I ing over l ong d i stances on th e screen you must coup l e fine
scro lling with coarse scrol ling.

There are an I y two steps to imp I ement fine scro I ling. Fir st, you set
the fine scro ll enable bits in the disp l ay li st instruct i on bytes f or the
mode lines in wh i ch you want fine sc r o I ling. (I n most cases you wan t t he
ent i r e screen to sc r o I I so you set a I I the sc ro I I enab I e bits ina I I the
disp l ay li st instruction bytes.) B i t 05 o f t he display li st in struction i s
the vert i cal scroll enab l e bit; b it 04 of th e disp l ay li st instructi on i s the
hor i zonta I scro I I enab I e bit. You then store the scro I ling va I ue you des ire
into the appropr i ate scro ll ing r eg i ster. Ther e ar e two sc r o ll ing r eg i st er s,
one for hor i zonta I scro I ling and one for vert i ca I scro I ling. The hor i zonta I
scro ll register (HSCROL) i s at $0404; the vert i ca l scro ll r eg i st er (V SCRO L)
is at $D405. For hor i zonta I scro I ling, you st ore into HSCROL the number of
color clocks by wh i ch you want the mode I ine scro ll ed. For verti cal
scro I ling, you store into VSCROL the number of scan l ines that you wan t the
mode I in e scro ll ed. Th ese scro ll va l ues wi II be app l i ed to every I ine for
wh i ch t he respective fine sc roll i s enabled.

Th ere are two camp i icating factors that you encou nter when you use fi ne
scro I l ing. Bot h ar i se from the fact th at a part i a I I Y scro I l ed d i sp I ay shows
more information than a norma l d i sp l ay. Cons ider for examp l e what happens
\vhen you horizonta ll y scro ll a I i ne by ha l f a character to th e l eft. There
are 40 characters i n th e I i ne. Half o f the first charac t er disappears off of
the I eft edge of the screen. The 40th character scro I I s to th e I ef t. What
takes its p I ace? Ha I f of a new c haracter shou I d scro I lin t o t ake the p I ace
of the now scra I I ed 40th character. Th i s charac t er wo u I d be the 41 st
charac t er . But there are on l y 40 characters in a norma l I ine. What happ ens?

I f you have imp I emen t ed coarse scro I li ng, then the 41 st cha r acter
sudden I y appears on t he sc r een after the f i rst character disappears of f of
the left edge. This sudd en appearance i s jerky and uns i ght l y. Th e solution

6-5

SCROLLING

to th i s prob I em has a I ready been bu i It into the hardware. There are three
display options for line widths: the narrow playfield (128 color clocks
wide), the normal playfield (160 color clocks wide) and the wide playfield
(192 co lor clocks wide). These options are set by setting appropriate bits
in the DMACTL register. When using horizontal fine scrol I ing, ANTIC
automatically retri eves more data from RAM than it displays. For example, if
DMACTL i s set for normal playfield, which in BASIC mode 0 has 40 bytes per
I ine, th en ANTIC wi II actually retrieve data at a rate appropriate to wide
playfield---48 bytes per I ine. This wi II throw I ines off horizontally if it
is not tak en into account. The prob I em does not man i fest i tse I f if the you
have a I ready organ i zed screen RAM into long hor i zonta I lines as in Figure
6-1.

The correspond i ng prob I em for vert i ca I scro I ling can be hand I ed in
e ither of two ways. The sloppy way is to ignore it. Then you wi II not get
half-images at both ends of the display. Instead, the images at the bottom
of th e display wi II not scroll in properly; they wi II suddenly pop into view.
The proper way tak es very I itt I e work. To get proper fine scro I ling into and
out of the d i sp lay reg ion you must dedicate one mode I ine to act as a buffer.
You do this by r efra ining from setting the vertical scrol I bit in the display
list in struct i on o f the I ast mode line of the vert i ca I I Y scro I I ed zone. The

IV i ndow wi I I now scro I I without the unp I easant jerk. The screen image wi I I be
shortened by one mode line. An advantage of scro I ling d i sp I ays now becomes
apparent. It is qu i te poss i b I e t o create screen i mages that have more than
192 scan lines in the d i sp I ay. Th i s cou I d be disastrous with a stat i c
disp l oy, but with a scroll ing display images which are above or below the
d i sp l ayed region can always be scrolled into view.

Fine scro ll ing wi II only scroll so far. The vertical I imit for fine
scroll ing is 16 scan I ine s; the horizontal I imit for fine scroll ing is 16
co l or clocks. If you attempt to scroll beyond these limits, ANTIC simply
ignores th e hi gher bits of the scroll registers. To get full fine scroll ing
(in wh i ch the ent i re screen smooth I y scro I I s as far as you wish) you must
coup l e fine scro ll ing with coarse scroll ing. To do this, first fine scroll
the image, keeping track of how far it has been scrol led. When the amount of
fine sc ro I ling eq ua I s the size of the pi xe I, reset the fine scro I I reg i ster
t o zero and execute a coarse scroll. Figure 6-2 illustrates the process.

6-6

SCROLLING

one step

r""---~""----'"

E
E E E E

start fine fine fine fine fine fine fine reset and
position scroll scroll scroll scroll scroll scroll scroll

once twice thrice four five six seven
times times times times

Figure 6-2 Lin king Fine Scrol l to Coarse Scrol l

The following program illustrates simple fine scro ll ing:

1 HSCROL=54276
2 VSCROL=54277
10 GRAPHICS O:LIST
20 DLIST=PEEK(560)+256*PEEK(561)
30 POKE DLIST+l0,50:REM
40 POKE DLIST+ll,50:REM
50 FOR Y=O TO 7
60 POKE VSCROL,Y:REM
70 GOSUB 200:REM
80 NEXT Y
90 FOR X=O TO 3
100 POKE HSCROL,X:REM
110 GOSUB 200:REM
120 NEXT X
130 GOTO 40
200 FOR J=l TO 200
210 NEXT J:RETURN

Enab I e both sero I Is
Do it for two mode lines

Vertical scro ll
Delay

Horizontal scroll
Delay

to coarse
start scroll

position

This program shows fine serol I ing taking place at very slow speed. It
demonstrates severa I prob I ems that ar i se when us i ng fine scro I ling. First,
the display I ines below the scro ll ed window are shifted to the right. This
is due to ANTIC's automatically retrieving 48 bytes per I ine instead of 40.
The problem arises only in unrealistic demonstration programs such as this
one. I n rea I scro I ling app I i cat ions, the arrangement of the screen data (as
shown in Figure 6-1) precludes this prob l em. The second, more serious

6-7

SCROLLING

problem arises when the scroll registers are modified whi Ie ANTIC is in the
middle of its display process. This confuses ANTIC and causes the screen to
jerk. The solution is to change the scroll registers only during vertical
blank periods. This can only be done with assembly language routines. Thus,
fine scrolling normally requires the use of assembly language.

APPLICATIONS OF SCROLLING

The app I i cat ions of fu I I fine scro I ling for graph i cs are numerous. The
obvious appl ication is for Icrge maps that are created with character
graph i cs. Us i ng BAS I C Graph i cs mode 2, I have created a very I arge map of
Russia which contains about 10 screenfuls of image. The screen becomes a
window to the map. The user can scrol I about the entire map with a joystick.
The system is very memory ef f i c i ent; the ent i re map program p I us data p I us
d i sp I ay list and character set def in it ions requ i res a tota I of about 4K of
RArvl.

There are many other app I i cat ions of th i s techn i que. Any very large
image that can be drawn with character graphics Is amenable to this system.
(Scro I ling does not requ ire character graph i cs. Map graph i cs are less
des i rab I e for scro I ling app I i cat ions because of the i r I arge memory
requ i rements.) Large electron i c schemat i cs cou I d be presented in th i sway.
The joystick could be used both to scroll around the schematic and to
indicate particular components that the user wishes to address. Large
blueprints or architectural diagrams could also be displayed with this
techn i que. Any big i mage that need not be seen in its ent i rety can be
presented with this system.

Large blocks of text are also usable here, although it might not be
practical to read continous blocks of text by scroll ing the image. This
system is more suited to presenting blocks of independent text. One
particularly exciting idea is to apply this system to menus. The program
starts by presenting a welcome sign on the screen with signs indicating
submenus pointing to other regions of the larger image. "This way to
addition" could point up while "this way to subtraction" might point down.
The user scrolls around the menu with the joystick, perusing his options.
When he wishes to make a choice, he places a cursor on the option and presses
the red button. Although this system could not be appl ied to all programs,
it could be of great value to certcin types of programs.

There are two "blue sky" appl ications of fine scroll ing which have not
yet been fully explored. The first is selective fine scroll ing, in which
different mode I ines of the display have different scroll bits enabled.
Norma I I Y you wou I d want the ent i re screen to scro I I, but it is not necessary
to do so. You cou I d se I ect one line for hor i zonta I scro I ling on I y, another
line for vert i ca I scro I ling on I y, and so forth. The second blue sky feature
is the prospect of us i ng d i sp I ay list interrupts to change the HSCROL or
VSCROL registers on the fly. However, changing VSCROL on the fly is a tricky
operation; it would probably confuse ANTIC and produce undesirable results.
Changing HSCROL is also tricky but might be easier.

6-8

7
SOUND

The ATARI 400/800'" Home Computers have extens ive hardware sound
capabi I ities. There are four independently controllable sound channels, all
able to play simultaneously. Each channel has a frequency register
determ in i ng the note, and a contro I reg i ster regu I at i ng the vo I ume and the
noise content. Several options al l ow you to insert high-pass fi Iters, choose
clock bases, set alternate modes of operation, and modify polynomial
counters.

DEFINITION OF TERMS AND CONVENTIONS

For the purposes of this discussion, a few terms and conventions need to
be clarified:

Hz (Hertz)
KHz (ki l o-Hertz)
MHz (mega-Hertz)

i s 1 pulse per second
is 1,000 pulses per second
is 1,000,000 pulses per second

A "pu I se" is a sudden vo I tage rise fo I l owed somewhat I ater by a sudden
voltage drop. If a pulse is sent to the television speaker, it wi II be
heard as a single pop.

A "wave" as used here is a cont i nuous ser i es of pu I ses. There are
different types of waves, distinguished by the shape of the individual
pu I ses. \'laves created by the ATAR I Computer are square waves (as in
Figure 7-2). Brass in struments typically produce triangle waves, and a
singer produces sine waves (depicted in Figure 7-15).

A shift register is I ike a memory location (in that it holds binary
data) that, when so instructed, sh ifts a ll its bits to the right one
position; i. e., bit 5 wi II get whatever was in bit 4, bit 4 wi II get
whatever was in bit 3, etc. Thus, the rightmost bit is pushed out, and
the leftmost bit assumes the value on its input wire (see Figure 7-1).

before shift 1 2 3 4 5

input

output

after shift 1 2 3 4 5

Figure 7-1 Diagram of Bit Flow of a Shift Reg i ster

7-1

AUOFl-4 is to be read, "any of the audio frequency registers, 1 through
4." The i r addresses are: $0200, $0202, $0204, $0206 (53760, 53762,
53764, 53766).

AUOCl-4 is to be read, "any of the aud i 0 contro I
4." Their addresses are: $0201, $0203, $0205,
53765, 53767).

registers, 1 through
$0207 (53761, 53763,

For the purposes of this discussion, frequency is a measure of the
number of pulses in a given amount of time; i.e., a note with a
frequency of 100 Hz means that in one second, exact I y 100 pu I ses wi I I
occur. The more frequent (hence the term . "frequency") the pu I ses of a
note, the higher the note. For example, a singer sings at a high
frequency (perhaps 5 KHz), and a cow moos at a low frequency (perhaps
100 Hz). The words "frequency," "note," "tone," and "pitch" are used
interchangeably.

"No i se" and "d i stort i on" are used i nterchangeab I y a I though the i r
mean i ngs are not the same. "No i se" is a more accu rate descr i pt i on of
the function performed by the ATARI Computer.

The 60-Hz interrupt referred to later in this section is also cal led the
vertical blank interrupt.

All examples are in BASIC unless otherwise stated. Type the examples
exactly as they appear. If there are no line numbers, don't use any;
and if several statements are on the same I ine, type them as such.

sourm HARO\~ARE

Sound is generated in the ATARI computer by the POKEY chip, which also
hand I es the ser i is I I/O bus and the keyboard. The POKEY ch i p must be
initial ized before it wi II work properly. Initial ization is required after
any serial bus operation (cassette, disk drive, printer, or RS-232
read/write). To initialize POKEY in BASIC, execute a null sound statement;
i.e., SOUND 0,0,0,0. In machine language, store a 0 at AUOCTL ($0208 =
53768), and a 3 at SKCTL ($020F = 53775, shadowed at $232 = 562).

AUOFl-4

Each audio channel has a corresponding frequency register that controls
the note played by the computer. The frequency register contains the number
"N" used in a divide-by-N circuit. This divide is not a division in the
mathematical sense, but rather something much simpler: for every N pulses
coming in, 1 pulse goes out. For example, Figure 7-2 shows a divide-by-4
function:

7-2

input
pulses

I I I

output Jl
pulses n n n

Figure 7-2 Divide-by-4 Operation

As N gets larger, output pulses wi II become less frequent, making a
lower frequency note.

AUDCl-4

Each channel also has a corresponding control register. These
registers al low the volume and distortion content of each channel to be set.
The bit ass i gnment for AUDCl-4 is as fo I lows:

AUDCl-4

bit number 7

Vo I ume

5

distortion

4

vol
only

3 o

vo I ume

Figure 7-3 AUDCl-4 Bit Assignment

The volume control for each audio channel is straightforward. The
lower 4 bits of the audio control register contain a 4-bit number that
specifies the volume of the sound. A zero in these bits means zero volume,
and a 15 means as loud as possible. The sum of the volumes of the four
channels should not exceed 32, since this forces overmodulation of the audio
output. The sound produced tends to actua I I Y lose vo I urne and assume a
buzzing qual ity.

Distortion

Figure 7-3 shows that each channe I a I so has three distort ion contro I
bits in its audio control register. Distortion is used to create special
sound effects any time a pure tone is undesirable.

The computer's use of distortion offers great versati I ity and
controllabi I ity. It is easy to synthesize of an almost endless variety of

7-3

sounds, from rumbles, rattles, and squawks to clicks, whispers, and mood
setting background tempos.

Distortion as used here is not equivalent to the standard
interpretation. For example, "intermodulation distortion" and "harmonic
distortion" are qual ity criteria specified for high-fidel ity stereo systems.
These types of distortion refer to waveform degeneration, where the shape of
the wave is slightly changed due to error in the electronic circuitry. The
computer's distortion does not alter waves (they are always square waves),
but rather deletes selected pulses from the waveform. This technique is not
adequately characterized by the word "distortion." A more descriptive and
appropriate term for these distortion methods is "noise".

Before you can fu I I Y grasp what we mean by distort ion, you must
un der stand po I ynom i a I counters (po I y-counters) . Po I y counters are emp loyed
in the ATARI Computer as a source of random pulses used in noise generation.
The ATAR I Computer's po I y-counters ut iii ze a sh i ft reg i ster work i ng at 1.79
HHz. The shift register's contents are shuffled and fed back into the
input; this produces a semi-random sequence of bits at the output of the
shift register.

For example, in the diagram below, the old value of bit 5 wi II be
pushed out of the shift register to become the next output pulse, and bit 1
wi II become a function of bits 3 and 5 :

input wire

shift register

random pulses

bit processor

Fi gu r e 7-4 5-Bit Poly-Counter

The bit processor gets va lu es from certain bits in the shift register
(bits 3 and 5 above), and processes them in a way irrelevant to this
discussion. It yields a va lue that becomes bit of the poly-counter's
shift register.

Th ese poly-counters are not truly random because they repeat their bit
seq uence after a certain span o f time. As you might suspect, their
r epetition rate depends upon the numb er of bits in the poly-counter; i.e.,

7-4

the longer ones requ ire many cyc I es before they repeat, wh i I e the shorter
ones repeat more often.

On the ATARI Computer, distorti on is achieved by using random pulses
from these poly-counters in a selection circuit. This circuit is actua ll y a
digita l comparator, but "selection circuit" is more descriptive. The only
pu I ses mak i ng it through the se I ec t i on c i rcu it to the output are those
coinciding with a random pulse. Various pulses from the input are thereby
e l iminated in a random fashion. Fi gure 7-5 illustrates this selection
method. A dotted I ine connects pulses that coincide.

poly-counter's
random pulses

tone pulses
from freq.
divider

pulses that
make it through

Figure 7-5 Selection Function Used To Mix In Distortion

The net effect is this: some pulses from the frequency div i der c ircu it
are deleted. Obviously, if some of th e pulses are deleted, the note wi II
sound different. This is how distortion is introduced into a sound channe l .

Because poly-counters repeat the ir bit sequences, their output pattern
of pulses is cyclic. And since the se l ecti on c ircuit uses this output
pattern to de I ete pu I ses from the or i g ina I note, th e d i storted note wi I I
contain the same repetitious pattern. This allows the hardware to create
noises such as drones, motors, and other sou nd s having repetitive patterns.

The ATAR I Computer is equ i pped with three po I y-counters of d if ferent
lengths, wh i ch can be comb i ned in many ways to produce interest i ng soun d
effects. The smaller poly-counters (4 and 5 bits l ong) repeat often enough
to create droning sounds that rise and fall quickly; whi I e the l arger
po I y-counter (17 bits long) takes so long to repeat that no pattern to the
distortion can be readi Iy discerned. This 17-bit poly-counter can be used
to generate explosions, steam, and any sound where random crackling and
popping is desired. It is even irregular enough to be used to generate
wh ite noise (an audio t erm meanin g a hissing sound).

Each audio c hanne l offer s six d i st inct combinat i ons of the three

7-5

poly-counters:

AUDC1-4

div clock by freq, select using 5 bit then 17 bit polys, div by 2
div clock by freq, select using 5-bit poly, then div by 2
div clock by freq, select using 5-bit then 4 bit polys, div by 2
div clock by freq, select using 17-bit poly, div by 2
div clock by freq, then div by 2 (no poly-counters)
ciiv clock by freq, select using 4 bit poly, div by 2

Notes: "Clock" means the input frequency.

An "X" means, "it doesn't matter if this bit is set or
not."

Figure 7-6 Avai lable Poly-Counter Combinations

These upper AUDC1-4 bits control three switches in the audio circuit as
shown be I ow. Th i s diagram wi I I he I p you understand why the tab I e of Figure
7-6 is structured as it is:

7-6

AUDCTL bit no. 6
I
I

7 5

14 bit poly 11-------..
17 bit poly

5 bit poly

input
from
div. by

selection
circuit

selection
circuit

Figure 7-7 AUDCl-4 Block Diagram

to TV
speaker

Each combination of the poly-counters offers a unique sound.
Furthermore, the distorted sounds can sound qu i te different at different
frequenc i es. For th is reason some tr i a I and error is necessary to find a
combination of distortion and frequency that produces the desired sound
effect. Below is a table of guides, just to get you started:

AUDCl-4

low frequencies middle frequencies high frequencies
geiger counter raging fire rushing air steam
machine gun auto at idle electric motor power transformer

0 calm fire laboring auto auto with a "miss"
0 b u i I ding crashing in radio interference waterfall

X 1 pure tones
1 0 air lane lawn mower electric razor

Figure 7-8
Sounds Produced by Distortion Combinations at Several Frequencies

7-7

Volume Only Sound

Bit 4 of AUDCl-4 specifies the volume only mode. When this bit is set,
the volume value in AUDCl-4 bits 0-3 is sent directly to the television
speaker; it is not modu I ated with the frequency spec if i ed in the AUDF 1-4
registers.

To fu I I Y understand the use of th is mode of operat ion, you must
understand how a speaker works and what happens to the television speaker
when it rece i ves a pu I se. Any speaker has a cone that moves in and out.
The cone's position at any time is directly proportional to the voltage it
is receiving from the computer at that time. If the voltage sent is zero,
then the speaker is in the rest i ng pos it i on. Whenever the cone changes
position, it moves air that is detected by your ear as sound.

From our definition of a pulse, you know that it consists of a rising
voltage followed by a fall ing voltage. I f you were to send the speaker a
pulse, it would push out with the rising voltage and pull back with the
fal I ing voltage, resulting in a wave of air that can be detected by your ear
as a pop. The fo I low i ng statements wi I I produce such a pop on the
television speaker by sending a single pulse:

POKE 53761 ,31:POKE 53761,16

A stream of pu I ses (or wave) wou I d set the speaker into constant
motion, and a continuous buzz or note would be heard. The faster the pulses
are sent, the higher the note. This is how the computer generates sound on
the television speaker.

It is essential to note that in the volume only mode the volume sent
does not drop back to zero automatically, but rather remains constant until
the program changes it. The program should modulate the volume often enough
to create a no i se. Now try the fo I low i ng statements, listen i ng carefu I I Y
after each:

POKE 53761 ,31
POKE 53761,31

The first time you heard a pop, which is as expected. The speaker
pushed out and moved air. But the second time you didn't. This is because
the speaker cone was a I ready in the ex t ended pos it i on j another extens ion
command did noth i ng to the speaker, mov i ng no air, so you heard noth i ng.
Now try this:

POKE 53761,16
POKE 53761,16

7-8

Just as before, you heard a pop the first time as the speaker moved
back to its resting position, and you heard nothing the second time because
the speaker was already in the resting position.

Thus, the volume only bit gives the program complete control over the
position of the speaker at any time. Although the examples given above are
only binary examples (either on or off), you are by no means I imited to this
type of speaker modulation. You may set the speaker to any of 16 distinct
positions.

For example, a simple triangle wave (similar to the waveform produced
by brass instruments) cou I d be generated by send i ng a vo I ume of 8 fo I l owed
by 9, 10, 11, 10, 9, 8, 7, 6, 5, 6, 7, and back to 8, and repeating this
sequence over and over very rapidly. By changing the volume quickly enough,
virtually any waveform can be created. It is feasible, for example, to
perform voice synthesis using this technique. It requires the use of
assembly language. There is more discussion of this bit in a later section.

AUDCTL

In addition to the independent channel contro l bytes (AUDCl-4), there
is an option byte (AUDCTL) affecting all four channels. Each bit in AUDCTL
is assigned a specific function:

AUDCTL ($D208 = 53768) i f set, th is bit •••

sw itches main clock base from 64 KHz to 15 KHz
inserts high-pass fi Iter into chan 2, clocked by chan 4

~--~inserts high-pass fi Iter into chan 1, clocked by chan 3
~----~joins channel 4 to channel 3 (16 bit resolution)

~-------+joins channel 2 to channell (16 bit resolution)
~--------""'-clocks channel 3 wi-t-h 1.79 MHz

~----------""'>\.Iocks channell with 1.79 ~1Hz
~------------+fflakes the 17 bit poly-counter into a 9 bit poly-counter

Figure 7-9 AUDCTL Bit Assignment

Cl ocking

Before proceed i ng with the exp I anat ions of the AUDCTL opt ions, a new
concept must be explained: clocking. In general, a clock is a train of
pu I ses used to synchron i ze the mil lion s of i nterna I operat ions occurr i ng
every second in any computer. The centra l clock pulses continuously, each
pulse tell ing the circuitry to perform another step in its operations. You
may remember that a d i vi de-by-N frequency d i vi der outputs one pu I se for
every Nth input pulse. You may have wondered where the input pulses corne
from. Th ere is one main input clock running at 1.79 MHZ; it can provide the

7-9

input pu I ses. There are a I so severa I secondary clocks that can be used as
input clocks. The AUDCTL register al lows you to select which clock is used
as the input to the divide-by-N circuit. If you select a different input
clock, the output from the frequency divider wi I I change drastically.

For example, imagine that you are using the 15 KHz clock, and the
frequency register is set to divide by 8. The rate of output pulses from
the d i v i de-by-N c i rcu it \'IOU I d be about 2 KHz. But if you changed the
selection of clocks to get the 64 KHz clock and did not change the frequency
reg ister, then what would happen? The divide-by-N would still be putting
out one pulse for every 8th input pulse, but the input rate would be 64 KHz.
The result is an output frequency (from the divide-by-N) of 8 KHz.

The formula for the output frequency (from the divide-by-N) is quite
simple:

clock
output frequency

N

Setting bit 1 of the AUDCTL register switches from the 64-KHz clock to
the 15 KHz clock. It is important to note that if th is bit is set, every
sound channe I clocked IV i th the 64 KHz clock wi I I instead use the 15 KHz
clock. S i mil ar I y, by sett i ng bits 5 or 6, you can clock channe I s 3 or 1,
respectively, with 1.79 MHz. This wi II produce a much higher note, as
demonstrated with the following example:

SOUND 0,255,10,8
POKE 53768,64

16-Bit Frequency Options

Turn on channel 1, low tone
Set AUDCTL bit 6

The eight bits of resolution in the frequency control registers seems
to provide more than adequate resolution for the task of selecting any
desired frequency. There are, however, situations in which eight bits are
inadequate. Consider for example what happens when we execute the following
statements:

FOR 1=255 TO 0 STEP -1:S0UND 0, 1,10,8:NEXT I

The sound initially rises smoothly, but as it approaches the end of its
range the frequency takes I arger and I arger steps wh i ch are not i ceab I y
clumsy. This is because we are dividing the clock by smaller and smaller
numbers. 15 KHz divided by 255 is almost the same as 15 KHz divided by 254;
but 15 KHz divided by 2 is very far from 15 KHz divided by 1. The only way
to so I ve th i s prob I em is to use a I arger number that a I lows us to spec i fy
our frequency with greater prec i s ion. The means to do th is is bu i It into

7-10

POKEY.

AUDCTL bits 3 and 4 al low two channels to be joined, creating a single
channel with an extended dynamic frequency range. Normally, each channel's
frequency d i vi der number can range from 0 to 255 (8 bits of d i vi de-by-N
capabi I ity). Joining two channels allows a frequency range of 0 to 65535
(16 bits of divide-by-N capability). In this mode, it is possible to reduce
the output frequency to less than one Hertz. The fol lowing program uses two
channels in the 16-bit mode, and two paddles as the frequency inputs.
Insert a set of paddles into port 1, type in and run the fol lowing program:

10 SOUND 0,0,0,0 Initial ize sound
20 POKE 53768,80 Clock ch1 w 1.79 MHz, clock ch2 w chi
30 POKE 53761,160:POKE 53763,168 Turn off chl, turn on ch2 (pure tones)
40 POKE 53760,PADDLE(0):POKE 53762,PADDLE(1)
50 GOTO 40 set paddles to put freqs in freq regs

The right paddle tunes the sound coarsely, and the left paddle finely
tunes the sound between the coarse increments.

This program first sets bits 4 and 6 of AUDCTL which means, "clock
channel 1 with 1.79 MHz, and join channel 2 to channelL" Once this
happens, the 8-bit frequency registers of both channels are assumed to
represent a single 16-bit number N, used to divide the input clock. Next,
channe I l' s vo I ume is set to zero. Since channe I 1 no longer has its own
direct output, its vo I ume sett i ng is mean i ng I ess to us and we zero it.
Channe I l' s frequency reg i ster is used as the fine or low byte in the sound
generation, and channel 2's frequency register is the coarse or high byte.
For example, pokeing a 1 into channell's frequency register makes the pair
divide by 1. Pokeing a 1 into channel 2's frequency register makes the pair
divide by 256. And pokeing a 1 into both frequency registers makes the pair
divide by 257.

Bit 3 of AUDCTL can be used to join channel 4 to channel 3 in precisely
the same way.

The following instructions demonstrate some interesting aspects of
16-bit sound.

7-11

SOUND 0,0,0,0
POKE 53768,24
POKE 53761,168
POKE 53763,168
POKE 53765,168
POKE 53767,168
POKE 53760,240:REM try pokeing other numbers into these next 4 locations
POKE 53764,252
POKE 53762,28
POKE 53766,49

High-Pass Fi Iters

AUDCTL bits 1 and 2 contro I high-pass f i I ters in channe I s 2 and 1
respectively. A high-pass filter allows only higher frequencies to pass
through. In the case of these high-pass fi Iters, high frequencies are
defined to be anything higher than the output of another channel selected by
the AUDCTL bit combination. For example, if channel 3 is playing a cow's
moo, and AUDCTL bit 2 is set, then only sounds with frequencies higher than
the moo wi I I be heard on channe I 1 (anyth i ng lower than the "moooo" wi I I be
f i I tered out):

f
r
e
q

time

cow's moo (played by channel 3)

channel 1
...... ""'--"""-___ L...-___ wi I I on I y play

frequencies in
~~~---""T""--- th is shaded area 

Figure 7-10 
The Effect of a High-Pass Fi Iter 

Inserted in Channel 1 and Clocked by Channel 3 

The fi Iter is programmable in real time since the fi Itering channel can 
be changed on the fly. This opens a large field of possibilities to the 
programmer. The fi Iters are used mostly to create special effects. Try the 
fol lowing statements: 

7-12 



SOUND 0,0,0,0 
POKE 53768,4 
POKE 53761,168:POKE 53765,168 
POKE 53760,254:POKE 53764,127 

9-Bit Polynomial Conversion 

Bit 7 of AUDCTL turns the 17-bit poly-counter into a 9-bit 
po I y-counter. The shorter the po I y - counter, the more often its distort ion 
pattern repeats, or the more discern i b I e the pattern in the distort ion. 
Therefore, changing the 17-bit poly counter into a 9-bit poly counter wi II 
make the no i se pattern more repet i t i ous and more discern i b Ie. Try the 
fo I low i ng demonstrat i on of the 9-b it po I y counter opt ion, listen i ng 
carefully when the POKE is executed: 

SOUND 0,80,8,8 
POKE 53768,128 

7-13 

Use the 17-bit poly 
Change to the 9-bit poly 



SOUND GENERATION SOFTWARE TECHNIQUES 

There are two bas i c ways to use the ATAR I Computer sound system: 
static and dynamic. Static sound generation is the simpler of the two; the 
program sets a few sound generators, turns to other activities for a while, 
and then turns them off. Dynamic sound generation is more difficult; the 
computer must continuously update the sound generators during program 
execution. For example: 

Static Sound 

SOUND 0,120,8,8 

Static Sound 

Dynamic Sound 

FOR X=O TO 255 
SOUND 0,X,8,8 

NEXT X 

Static sound is normally I imited to beeps, cl icks, and buzzes. There 
are exceptions. Two examples are the programs given as special effects in 
the sections on high-pass fi Iters and 16 bit sound. Another way to obtain 
interesting effects is to use interference, as in this example: 

SOUND 0,255,10,8 
SOUND 1,254,10,8 

The strange ef fect is a resu I t of close I y phased peaks and va I I eys. 
Examine Figure 7-11. It shows two channels independently running sine waves 
at sl ightly different frequencies, and their sum. The sum curve shows the 
strange interference pattern created when these two channels are added. 

7-14 



+ 

ch.1 

+ 

ch.2 

+ 

ch.1 
+ 

ch.2 

pos. + neg. = 0 

'----------. neg. + neg. = double neg. 

'--___________ --. pos. + pos. = double pos. 

Figure 7-11 
Two Sine Waves at Different Frequ enc ies and Their Sum 

7-15 



Figure 7-11 shows that at some points In time the waves are assisting 
each other, and at other points, they interfere with each other. Adding the 
volumes of two waves whose peaks coincide wil I yield a wave with twice the 
strength or volume. Similarly adding the volumes of two waves while one Is 
at maximum and the other is at minimum wi I I result In a cancellation of both 
of them. On the graph of the sum curve, we can see this effect. Toward the 
ends of the graph, vo I ume increases since both channe Is' peaks and va I I eys 
are close together, almost doubl ing the sound. Toward the middle of the 
graph, the waves oppose each other and the resu I t I ng wave is f I at. An 
interesting project might be writing a program to plot interaction patterns 
of 2, 3, and 4 channels as in Figure 7-11. You might discover some unique 
sounds. 

The sl ighter the difference in frequency between the two channels, the 
longer the pattern of repet i t I on. To understand th Is, draw some graphs 
similar to Figure 7-11 and study the interaction. As an example, try the 
fol lowing statements: 

SOUND 0,255,10,8 
SOUND 1,254,10,8 
SOUND 1,253,10,8 
SOUND 1,252,10,8 

As the difference in frequency grows, the period of repitition 
decreases. 

Dynamic sound 

More complex sound effects normally require the use of dynamic sound 
techniques. Three methods of dynamic sound generation are avai lable to the 
ATARI 400/800 programmer: sound in BASIC, 60-Hz interrupt sound, and sound 
in machine code. 

BASIC Sound 

BASIC is somewhat I imited in its handl ing of sound generation. As you 
may have not iced, the SOUND statement k i I I s any spec i a I AUDCTL sett i ng. 
This problem can be avoided by poking values directly into the sound 
registers rather than using the SOUND statement. 

In addition, BASIC is I imited on account of its speed. If the program 
is not completely dedicated to sound generation, there is seldom enough 
processor time to do more than static sound or choppy dynamic sound. The 
only alternative is to temporarily halt all other processing while 
generating sound. 

7-16 



Another problem can occur when using the computer to play music on more 
than one channel. If all four channels are used, the time separation 
between the first sound statement and the fourth can be substant i a I enough 
to make a noticeable delay between the different channels. 

The fol lowing program presents a solution to this problem: 

10 SOUND O,O,O,O:DIM SIMUL$(16) 
20 RESTORE 9999:X=1 
25 READ Q: IF Q<>-l THEN SIMUL$(X)=CHR$(Q):X=X+l:GOTO 25 
27 RESTORE 100 
30 READ Fl,Cl,F2,C2,F3,C3,F4,C4 
40 IF Fl=-l THEN END 
50 X=USR(ADR(SIMUL$),Fl,Cl,F2,C2,F3,C3,F4,C4) 
55 FOR x=o TO 150:NEXT X 
60 GOTO 30 
100 DATA 182,168,0,0,0,0,0,0 
110 DATA 162,168,182,166,0,0,0,0 
120 DATA 144,168,162,166,35,166,0,0 
130 DATA 128,168,144,166,40,166,35 , 166 
140 DATA 121,168,128,166,45,166,40,166 
150 DATA 108,168,121,166,47,166,45,166 
160 DATA 96,168,108,166,53,166,47,166 
170 DATA 91,168,96,166,60,166,53,166 
999 DATA -1,0,0,0,0,0,0,0 
9000 REM 
9010 REM 
9020 REM this data contains the machine lang. program, 
9030 REM and Is read into SIMUL$ 
9999 DATA 104,133,203,162,0,104,104,157,0,210,232,228,203,208,246,96,-1 

In this program, SIMUL$ is a tiny machine language program that pokes 
all four sound channels very quickly. A BASIC program using SI~IUL$ can 
rapidly manipulate all four channels. Any program can call SI~1UL$ by 
putting the sound register values inside the USR function in line 50 of the 
demonstration program. The paramet ers should be ordered as shown, with the 
control register value following the frequency register value, and repeating 
this ordering one to four times, once for eac h sound channel to be set. 

As a speed consideration as wei I as a convenience, SIMUL$ al lows you to 
specify sound for less than four channels; i.e., 1,2, and 3 or 1 and 2, or 
just channe I 1. Simp I y don It put the unused parameters ins i de the USR 
function. 

S I MUL$ of fers another d i st i nct advantage to the BAS I C programmer. As 
mentioned earl ier, the AUDCTL register is reset upon execution of any SOUND 
statement in BASIC. However, using SIMUL$, no SOUND statements are 

7-17 



executed, and thus the AUDCTL setting is retained. 

There is another, but impractical, method of sound generation in BASIC. 
This method uses the volume-only bit of any of the four audio control 
registers. Type in and run the fol lowing program: 

SOUND 0,0,0,0 
10 POKE 53761 ,16:POKE 53761,31 : GOTO 10 

This program sets the volume-only bit in channell and modulates the 
volume from ° to 15 as fast as BASIC can. This program uses all of the 
processing time avai lable to BASIC, yet it produces only a low buzz. 

60-Hz Interrupt 

This technique is probably the most versatile and practical of all 
methods avai lable to the ATARI Computer programmer. 

Prec i se I y every 60th of a second, the computer hardware automat i ca I I Y 
generates an interrupt. vJhen th i s happens , the computer temporar i I Y I eaves 
the mainl ine program, (the program running on the system; i.e., BASIC, STAR 
RAIDERS'"). It then executes an interrupt service routine, which is a small 
routine designed specifically for ser vic ing these interrupts. When the 
interrupt serv i ce rout i ne fin i shes, it executes a spec i a I mach i ne language 
instruction that restores the computer to the interrupted program. This al I 
occurs in such a way (i f done proper I y) that the program execut i ng is not 
affected, and in fact has no idea that it ever s topped! 

The interrupt serv i ce rout i ne c urrent I y res i dent on the ATAR I 400/800 
Computer simply maintains timers, tran s lates controller information, and 
performs miscellaneous other chores requirin g regular attention. 

Before the interrupt service r ou tine r eturns to the mainl ine program, 
it can be made to execute any user r outine; i.e., your sound generation 
r ou tine. This is ideal for sound generation since the timing is precisely 
controlled, and especially s ince another program can be executing without 
paying heed to the sound generator. Even mor e impressive is its 
versat iii ty. Because it is a mac h i ne I anguag e program, the interrupt sound 
program wi II lend itself equally well to a mainl ine program written in any 
language - BASIC, assembler, FORTH, PASCAL. In fact, the sound generator 
vii II require few, if any, modifications t o work with another program or 
even another language. 

A table-driven r outine offers maximum flex ibi I ity and simpl icity for 
such a purpose. "Tab I e-dri ven" r e f ers to a type of program that accesses 
data tables in memory f o r its informcti on. In the case of the sound 
generator, the data tab I es wou I d conta in the frequency va I ues and poss i b I Y 
the aud i 0 contro I reg i ster va lues. Th e rout i ne wou Ids i rnp I y read the next 
en tri es in the data table, and put them into their r es pec t ive audio 

7-1 8 



reg I sters. Us i ng th is method, notes cou I d change as often as 60 times per 
second, fast enough for most appl ications. 

Once such a program has been wr i tten and p I aced in memory (say, at 
location $600), you need to install it as a part of the 60-Hz interrupt 
service routine. This Is accompl ished by a method known as vector steal ing. 

Memory I ocat ions $224, $225 conta in the address of a sma I I rout i ne 
called XITVBL (eXIT Vertical BLank Interrupt service routine). XITVBL is 
designed to be executed after all 60-Hz Interrupt processing is complete, 
restoring the computer to the mainl ine program as pre viously discussed. 

The procedure to install your sound routine is as follows: 

1. Place your program in memory. 
2. Verify that the last instruction executed is a JMP $E462 

($E462 is XITVBL, so this wi I I mak e the mainl ine program continue). 
3. Load the x register with the high byte of your routine's address 

(a 6 in this case). 
4. Load the y register with the low byte of your routine's address 

(a 0 In this case). 
5. Load the accumulator with a 7. 
6. Do a JSR $E45C (to set locations $224,$225). 

Steps 3-6 are all required to change the value of $224,$225 without 
error. The routine called Is SETVBV (SET Vertical Blank Vectors), which 
will simply put the address of your routine Into locations $224,$225. Once 
instal led, the system wi I I work as fol lows when an Interrupt occurs: 

1. The computer's Interrupt routine is executed. 
2. It jumps to the program whose address is in $224,$225, which is 

now your routine. 
3. Your routine executes. 
4. Your routine then jumps to XITVBL. 
5. XITVBL restores the computer and makes It resume normal operation. 

If you do not wish to implement such a program yourself, there is one 
avai lable from the Atari Program Exchange. The package is called INSOtvlNIA 
(Interrupt Sound Initial izer/Alterer). It allows creation and modification 
of sound data while you listen. It is accompanied by an interrupt sound 
generator that is table driven and compatible with any language. 

Machine-Code Sound Generation 

Direct control of sound registers with mainl ine machine language opens 
new doors in sound generation. The technique is as fol lows: write a program 

7-19 



similar to the 60-Hz interrupt routine in that it is table-driven, but now 
the mainline routine is dedicated to sound generation. By expending much 
more processor time on sound generat ion, you can produce higher qua Ii ty 
sounds. Consider, for example, the output of a typical 60 Hz music routine: 

f 
r 
e 
q 

I 
~note~ 

time 

Figure 7-12 
Example of 3 Music Notes Played With a 60 Hz Interrupt Music Routine 

Since much more processing time is available with mainline machine 
I anguage, we can change the frequency at very high speed duri ng the note's 
playing time so that it simulates an instrument. For example, suppose we 
discovered that whenever any piano key is struck it produces a 
characteristic sequence of frequencies, as shown in Figure 7-13. 

Figure 7-13 
Graph of Frequency Sequence for a Piano Note 

Let's call the cbove graph the "piano envelope". To simulate a piano, 
the idea would be to very quickly apply the piano envelope to the plain 
vanilla beep. The note is thus slightly modified during its playing time. 
For example, a piano simulation of the 3 notes in Figure 7-12 would look 
I ike this: 

7-20 



f 
r 
e 
q 

~ note-..J 

Figure 7-14 
Example of the 3 Notes of Figure 7.10 

Played With a Piano Envelope 

We have essent i a II y the same sound produced by the standard mus i c 
routine of Figure 7-12, only the notes now have a piano tone, and sound much 
prettier than just the flat beeps. Unfortunately, we had to sacrifice all 
other process I ng to get that plano tone. The sound channe I I s no longer 
updated only once every note, but perhaps 100 times within the note's 
duration. 

Volume only sound 

Earlier we experimented with the AUDCl-4 volume only bits, but 
discovered that they weren't of much use in BASIC. This was due entirely to 
the fact that BASIC Is too slow to effectively use them. This is not the 
case with machine language. 

As mentioned earlier, this bit offers a tremendous capacity for 
accurate sound reproduct i on. True waveform generat ion (to the time and 
volume resolution limits of the computer) is made possib Ie with this bit . 
Instead of just putting a piano flavor into the music, you can now make it 
closely repl icate a piano sound. Unfortunately, it can never precisely 
duplicate an instrument. 4 bits (16 values) is not enough volume resolution 
for tru I y high-qua I i ty work. Neverthe less, the techn i que does generate 
surprisingly good sounds. The fol lowing program demonstrates the use of one 
of the volume only bits. If you have an assembler, type it in and try it: 

7-21 



0100 
0110 VONLY 
0120 
0130 

Bob Fraser 7-23-81 

0140 volume-only AUOC1-4 bit test routine 
0150 

0208 
0200 
0201 
020F 

0160 
0170 
0180 ; 
0190 AUOCTL = 
0200 AUOF1 = 
0210 AUOC1 = 
0220 SKCTL = 
0230 ; 

$0208 
$0200 
$0201 
$020F 

0000 
OOBO 01 
00B1 00 

0240 ; 
0250 
0260 TEfv1PO 
0270 MSC 

*= $BO 
.BYTE 1 
.BYTE 0 

0280 
0290 
0300 

00B2 0310 
4000 A900 0320 
4002 800802 0330 
4005 A903 0340 
4007 800FD2 0350 
400A A200 0360 

0370 
400C A900 0380 
400E 800ED4 0390 
4011 8DOE020400 
4014 800004 0410 

0420 
0430 
0440 , 

4017 B05240 0450 LOO 
401A 85B1 0460 

0470 
401C B03640 0480 
401F A4BO 0490 LO 
4021 800102 0500 
4024 88 0510 L1 
4025 OOFD 0520 

; 

*= 
LOA 
STA 
LOA 
STA 
LOX 

LOA 
STA 
STA 
STA 

LOA 
STA 

LOA 
LOY 
STA 
OEY 
BNE 

$4000 
#0 
AUOCTL 
#3 
SKCTL 
#0 

#0 
$040E 
$020E 
$0400 

OTAB,X 
MSC 

VTAB,X 
TEMPO 
AUOC1 

Ll 
0530 
0540 

4027 C6B1 0550 
4029 00F4 0560 

; dec most sig ctr 
OEC MSC 
BNE LO 

0570 
0580 
0590 new note 
0600 

k I" vb I 's 
kill Irq's 
kill dma 

7-22 



402B E8 0610 I NX 
402C EC3540 0620 CPX NC 
402F 00E6 

4031 A200 
4033 FOE2 

4035 1C 

4036 18 
4037 19 
4038 lA 
4039 lB 
403A lC 
403B 10 
403C 1 E 
4030 1 F 
403E lE 
403F 10 
4040 lC 
4041 lB 
4042 1A 
4043 19 
4044 18 
4045 17 
4046 16 
4047 15 
4048 14 
4049 13 
404A 12 
404B 11 
404C 12 
4040 13 
404E 14 
404F 15 
4050 16 
4051 17 

4052 01 
4053 01 
4054 01 
4055 02 
4056 02 
4057 02 
4058 03 
4059 06 

0630 BNE LOO 
0640 
0650 wrap note pointer 
0660 LOX #0 
0670 BEQ LOO 
0680 
0690 ; 
0700 NC .BYTE 28 note count 
0710 
0720 ; table of volumes to be played In succession 
0730 VTAB 
0740 .BYTE 24,25,26,27,28,29,30,31 

0750 .BYTE 30,29,28,27,26,25,24 

0760 .BYTE 23,22,21,20,19,18,17 

0770 .BYTE 18,19,20,21,22,23 

0780 
0790 this table contains the duration of each entry above 
0800 OTAB 
0810 • BYTE 1, 1 , 1 ,2,2,2,3,6 

7-23 

"-



405A 03 0820 .BYTE 3,2,2,2,1,1,1 
405B 02 
405C 02 
4050 02 
405E 01 
405F 01 
4060 01 
4061 01 0830 .BYTE 1,1,2,2,2,3,6 
4062 01 
4063 02 
4064 02 
4065 02 
4066 03 
4067 06 
4068 03 0840 • BYTE 3,2,2,2, 1 , 1 
4069 02 
406A 02 
406B 02 
406C 01 
4060 01 

Supr i sing I y, speed is not rea I I Y a prob I em here. The wave has a I most 
60 steps, and the program can st i I I be made to play the wave at up to 10 
Khz. 

Remove lines 400-410, and try the program once more. It wi I I sound 
quite broken up. The cause is the 60 Hz interrupt discussed in the previous 
sect i on. You can actua I I Y hear the interrupts tak i ng p I ace since a I I sound 
stops during that time. 

Line 420 d i sab I es screen OMA. Th is is why the screen goes to so lid 
background co I or when the program is executed. I t serves two purposes: to 
speed up the processor, and to make the timing consistent, since OMA steals 
cycles at odd intervals. 

In this demonstration program, the sound created is a sine wave. The 
wave is remarkably pure, and does indeed sound like a sine wave. If 
g rap he d, the d a t a I 00 k s I ike t his: 

7-24 



15- ------
14-
13-
12-
11-
10-
9-
8= -------------------------.----------------------------------
7-
6-
5-
4-
3-
2-
1- - - ----

Fi gure 7-15 
Graph of Sine Wave Data for Volume Only Program 

This section has discussed th e technical aspects of sound generation 
with the ATARI Computer. The progr ammer must also understand the broader 
role of sound in the complete software package. 

~1ov i e makers have long under st ood the importance of mood sett i ng 
backgroud mus i c. The recent space adventure mov i es by George Lucas are 
exce I lent examp I es. I'lhen the v i I I i an enters the room you know i mmed i ate I y 
to fear and hate him from the menac i ng background rhythms accompany i ng his 
entry. You g I eefu I I Y clap your hands when the hero saves the pr i ncess wh i Ie 
gallant music plays in the background. Likewise, horror fi Ims can frighten 
you by merely playing eerie music, even though the action may be completely 
ordinary. 

SPACE INVADERS (trademark of Ta i to Amer i ca Corp) issues a persona I 
threat to its player and victim with its ec hoing stomp. As the tempo 
increases, knuckles whiten and teeth grind. When a Zylon from STAR RAIDERS~ 
fires a photon torpedo you push frantically on the control to avoid impact. 
As it bores straight for your forehead, time slows and you hear it hissing 
louder and louder as it approaches. Just before impact, you duck and 
dislodge yourself from your armchair. 

Impressionistic sounds affect our subconcious and our state of mind. 
This is due possibly to the fact that sounds, if pre sent, are continuously 
entering our mind whether or not we are actively listening. Visual inputs, 
on the other hand, require the user's attention. If we are distracted from 
the TV set, we cease to concentrate on the picture and the image leaves our 
mind. Sound therefore offers the programmer a direct path to the user's 
mind - bypassing his thought processes and zeroing in on his emotions. 

7-25 



8 
THE OPERATING SYSTEM 

INTRODUCTION 

With every ATAR I Home Computer System comes an ATAR I 10K Operat I ng 
System Cartr I dge. The I mportance of th I s cartr I dge I s often over looked. 
Without It, you have a lot of potent I a I, but abso I ute I y noth I ng else I Th Is 
situation Is not unique to the ATARI Home Computer System; It Is encountered 
with all computers. A computer Is, after all, merely a collection of 
hardware devices. A user must manage these resources to accompl Ish any task. 
If al I programmers had to start from scratch on each program, we would have 
an even I arger software shortage than we have today. The so I ut I on that has 
evo I ved over the years I s to b u I I din a program that manages the resou rces 
available to the system, and eases the programming burden required to control 
them. This program is known by various names: Operating System, Master 
Control Program, System Executive, System Monitor, etc. In the ATARI Home 
Computer System It Is known as the Operating System or OS. 

The first task facing the student of the Operating System, Is to take an 
Inventory of exactly what resources are available to the OS. These are: 

6502 Microprocessor 
RAM Memory (various amounts) 
ANTIC LSI Integrated Circuit 
CTIA LSI Integrated Circuit 
POKEY LSI Integrated Circuit 
PIA Peripheral Interface Adapter Integrated Circuit 

By us i ng these resou rces, the OS can interact with and contro I a w I de 
variety of external hardware devices, including a television 
rece i ver /mon i tor, keyboard, conso I e speaker, conso I e sw itches, joyst I cks, 
paddles, cassette recorder, disk drive, printers, RS-232 Interface and modem. 

The remainder of this subsection briefly I ists the main elements of the 
OS. These elements are described in detail In following subsections. 

MON I TOR. The OS mon i tor is the system rout I ne that I s executed when the 
computer is turned on or the [SYSTEM RESET] button is pressed. Through th I s 
rout i ne the OS takes contro I of the system; I t does not re I I nqu ish contro I 
unless control is taken away from It by the programmer. The Monitor sets up 
the memory management system, Initializes the I/O subsystem, sets up system 
vectors and selects the execution environment after initialization is 
complete. 

INTERRUPT PROCESSING STRUCTURE. The computer uti I Izes the standard interrupt 
processing structure of the 6502 microprocessor, with some external 
augmentation for enhanced flexlbi I Ity. Interrupts are generated by numerous 
events, Including keyboard keystrokes, the [BREAK] keystroke, some serial bus 
events, system timer timeouts, and the vertical blank Interval on the 
television. 

8-1 



OPERATING SYSTEM 

OS SYSTEM VECTORS. The system vectors provide a mechanism that allows users 
to access system routines, or customize the OS for special needs. The most 
frequent uses of the vectors are to call I/O system routines, set timers, and 
transfer control to different execution environments. System routines may be 
vectored to in one of two ways. ROM vectors are I ocat ions that conta In JMP 
Instructions to system routines and cannot be altered. RAM vectors are RAM 
locations that contain alterable addresses of system routines. The locations 
of both types of vectors are guaranteed to remain the same in future releases 
of the OS. 

INPUT/OUTPUT SUBSYSTEM. The OS gives an application programmer access to the 
full capabi Iities of the computer's peripherals. The Input/Output subsystem 
is a set of routines that I Ink high level I/O operations with device handlers 
that contro I the phys I ca I I/O hardware. 

REAL TIME PROGRAMMING. The ATARI Home Computer is wei I equipped to deal with 
problems In the "real time domain". To facillate this feature, the OS has 
two types of timers: hardware timers and system software timers. Hardware 
timers are countdown timers that can be used to time events with durations 
that range from ha I f a microsecond to severa I seconds. System timers are 
software timers that tick at 60 Hertz, and can be used for appl icatlons as 
diverse as serial bus timing and sound effect generation. 

ROM CHARACTER SET. The computer is equipped with what is known as a "soft 
character set", i.e., It can be changed. The ROM-based character set is used 
to provide a standard character set at power-up. 

FLOATING POINT PACKAGE. The floating point package is a set of mathematical 
routines that extend the arithmetic capabi I ity of the system. The routines 
use binary coded decimal (BCD) arithmetic to provide standard mathematical 
functions (+, -, *, /), exponential and logarithmic functions as well as 
conversion from ATASCI I to BCD and BCD to ATASCI I. 

8-2 



OPERATING SYSTEM 

THE MONITOR 

The OS mon i tor is that port i on of the OS ROM that hand I es both the 
power-up and SYSTEM RESET sequences. These sequences a I low the OS to ga In 
Initial control of the computer and ensure that everything Is properly 
initialized before releasing partial control to an application program. Both 
sequences are similar In function and In fact share much of the same code. 

The power-up routine (also known as Coldstart) Is Invoked either by 
turning on the computer or by jumping to COLDS V ($E477), a system routine 
vector. Important Items to remember about the power-up sequence are: 

1. ALL of RAM memory Is cleared except locations $OOOO-$OOOF. 

2. Both a cassette and disk boot are attempted. BOOT? ($0009) I s a 
flag that indicates the success or fal lure of the boots. Bit 0 = 1 
for a successful cassette boot; Bit 1 = 1 for a successful disk 
boot. 

3. COLDST ($0244) is a flag that te I I s the tvlon i tor that I tis In 
the mi dd I e of power-up. COLDST=O means the [SYSTEM RESET] key has 
been pressed, whereas COLDST<>O indicates initial power-up. The 
COLDST flag can be used to gain a certain amount of program 
security. If COLDST Is set to a non-zero value during program 
execution, then pressing [SYSTEM RESET] will Initiate the power-up 
sequence. This wi II prevent the user from gaining control of the 
computer while the program Is running. 

Press i ng the [SYSTEM RESET] key causes a SYSTEM RESET (a I so known as 
Warmstart). Some of the key facts to remember about the SYSTEM RESET 
sequence are: 

1. The OS RA~1 vectors are downloaded from ROM during both SYSTEM 
RESET and power-up sequences. I f you wish to "stea I" a vector, 
some provision must be made to handle SYSTEM RESET. See the MEMORY 
MANAGn1ENT subsection of this section for suggestions on how this 
Is done. 

2. MEMLO, MEMTOP, APPMHI, RAMSIZ and RAMTOP are reset during System 
Reset. I f you wish to a I ter these RAM po inters to reserve some 
space for assembler modules called by BASIC, you must make some 
provision for handl ing SYSTEM RESET. Figure 8-3 provides an 
example of how to do this. 

The next few pages present a deta I led flowchart for the power-up and 
SYSTEM RESET sequences. 

8-3 



(
RESET 

------..--

SEI 

COLDST = D 

YES 

WARMST= SFF 

NO (MIDDLE 
OF COLDSTART) 

OPERATING SYSTEM 

POWER-UP 

SEI 
WARMST= D 

DIAGNOSTIC 
CARTRIDGE 

NO 

YES 

FIND # OF 4K BLOCKS 
OF RAM (TRAMSZ) 

INITIALIZE POKEY, ANTIC , 
CTiA/GTIA 

I 

GOTO STANDALONE 
DIAGNOSTIC 
CARTRIDGE 

(JMP (SBFFE)) 

(RESET) NO ~ 
....... I-----------<~ 

CLEAR O.S. RAM YES (POWER-UP) 
(S2DD-3FF.S1 D-7F) 

CLEAR ALL RAM 
(SD8-TRAMSZ) 

SET DEFAULT CARTRIDGE TO 
BLACKBOARD (DOSVEC = BLKBDV) 

SET COLDST TO MIDDLE OF POWER-UP 
(COLDST = SFF) 

Figure 8-1.1 System Initialization 

8-4 

SET SCREEN MARGINS 
(LMARGN = 2 
RMARGN = 39) 

MOVE IRQ VECTOR TABLE 
FROM ROM TO RAM 
(VDSLST-VVBLKD) 

( PAGE 2 



OPERATING SYSTEM 

CLEAR BREAK KEY (BRKKEY = SFF) 
SET MEMORY SIZE 
RAMSIZ = TRAMSZ 

MEMTOP = TRAMSZ 
MELO = S700 

INITIALIZE DEVICE HANDLERS 
EDITOR (E:) 
SCREEN (S:) 

KEYBOARD (K :) 
PRINTER (P:) 

CASSETTE (C :) 

YES 

NO CASSETTE 
BOOT 

SET CASSETTE BOOT 
(CKEY51) 

(CKEY = 0) 

MOVE DEVICE HANDLER 
TABLE FROM ROM TO RAM 

(TBLENT HATABS) 

NO 

CLEAR B CART. 
FLAG(TSDAT = 0) 

YES 

INITIALIZE 
B CARTRIDGE 

(JSR(9FFF) 

SET B CARTRIDGE 
FLAG(TSDAT = 1) 

Figure 8-1.2 System Initialization 

8-5 



CLEAR A CARTRIDGE 
FLAG (TRAMSZ = 0) 

(JSR (SBFFEll 

OPEN EDITOR 
(E:) 

WAIT FOR 
VBLANK TO 

SET UP SCREEN 

YES 

YES 

INITIALIZE 
A CARTRIDGE 
(JSR (S BFFEll 

SET A CARTRIDGE 
FLAG 

(TRAMSZ = 1) 

OPERATING SYSTEM 

DO CASSETTE 
BOOT 

PRINT 
'BOOT ERROR ' 

ON SCREEN 

BOOT? = 1 

YES 

YES 

BOOT? = 2 

Fi gu re 8-1. 3 Syst em Initi a li zatio n 

8-6 

YES (RESET ) 

NO NO 

YES 

RU N PROGRAM 
BOOTED 

(JSR (CASINI )) 



OPERATING SYSTEM 

NO 

DO DISK BOOT 

G OOT 
A ERROR ? 

NO 

CLEAR POWER-UP 
FLAG (COLDST ~ 0) 

YES 

YES 

YES 

YES 

GO TO DOS OR 
CASSETTE PROGRAM OR 

BLACKBOARD 

PRINT 
' BOOT ERROR ' 

GOTO A 
CARTRIDGE 

(JMP (SBFFA)) 

GOTO B 
CARTRIDGE 

(JUM (S9FFA)) 

Figure 8-1.3 System Initialization 

8-7 

YES 



OPERATING SYSTEM 

~~EMORY MANAGEMENT 

The fact that the OS Is wr I tten for a 6502 m I crop rocessor dictates a 
number of overal I memory management decisions. In the 6502, there are three 
special regions in the memory address space. Page zero has crucial 
significance in that the use of data values on this page will result in 
tighter, faster executing code. Indeed, there are Instructions that 
absolutely require page zero locations to work. Page one is special because 
it is used for the 6502 stack. Addresses $FFFA - $FFFF are also special 
because they are reserved for hardware reset and Interrupt vectors. 

Thus, the first task of memory management is to assign the OS ROM to the 
highest part of memory address space. The OS res i des I n the address space 
from $D800 to $FFFF. Just under th is area I s the space reserved for the 
hardware registers In ANTIC, CTIA, and POKEY. These reside in the 
$DOOO-$DFFF range. 

At the other end of memory address space, the OS reserves half of page 
zero for its own use. Pages two, three, four and five are also reserved for 
OS usage. From a programm I ng vi ewpo i nt, the usab I e memory area runs from 
$0600 to $BFFF. 

When the system Is powered-up, one of the first actions taken by the OS 
is to determ i ne how much RAM memory I s present. Th i sis accomp I I shed by 
checking the first byte of each 4K block of memory starting at $1000. The 
contents of this byte are read, complemented and an attempt is made to store 
the complemented value back out. If this attempt Is successful, the 
temporary memory size counter Is Incremented by 4K. This process continues 
unt i I a I ocat ion is found that cannot be changed. Two var I ab I es, RAMTOP and 
RAMSIZ contain the number of RAM pages present. In addition to these 
locations, pointers MEMLO, MEMTOP, and APPMHI are maintained by the OS memory 
management rout i nes. The re I at I onsh I ps between these po inters are shown in 
Figure 8-2, a simple memory map. 

MEMLO is a 2-byte I ocat i on that the OS uses to I nd i cate where an 
application program may begin. You can modify MEMLO to create reserved areas 
for assembly language routines that may be cal led from BASIC. BASIC uses the 
value in MEMLO to determine the starting location of a program (see Section 
10 for a discussion of the structure of a BASIC program). If the value of 
MEMLO is changed to a higher address, It must be done before control is 
transferred to the BASIC cartridge. This is a tricky operation, because 
MEMLO Is reset by both power-up and SYSTEM RESET. 

If an application program is running In a disk drive environment, the 
AUTORUN.SYS facl I Ity can be used to change MEMLO to reserve space. However, 
DOS is also initialized during SYSTEM RESET via the DOSINI vector ($OOOC). 
This vector contains the address of the DOS Initial izatlon code called as 
part of the monitor system initialization. DOSINI is also the only point at 
wh I ch you can "trap" the SYSTEM RESET sequence. Since the DOS In it I a I i zat ion 
must occur regardless of what Is done to the MEMLO pointer, you must allow 
the normal initialization to occur before "stealing" the DOSINI vector. This 
may be done by mov I ng the contents of DOS I N I into the 2-byte address of a JSR 

8-8 



OPERATING SYSTEM 

informatIon on the AUTORUN . SYS feature). Just after the JSR InstructIon, 
place the code which sets MErv1LO to a new value. Follow this wIth aRTS 
instructIon. DOSINI must then be reset to the address of the JSR 
Instruction. When a SYSTEM RESET occurs, the new code sequence I~ cal led and 
the fIrst Insructlon, JSR OLODOSINI, InitIalIzes ~OS. The remaInIng code Is 
then executed which sets MEMLO to Its new value and then rejoIns the rest of 
the InitIal ization sequence. FIgure 8-3 presents an example showIng how to 
do this. 

The above technIque can also be used wIth MEMTOP, the user high memory 
pointer. This poInter indicates the hIghest RAM address accessible to an 
applIcation program. This RAM address dIffers from the hIghest physical RAM 
address because the OS a I locates some RAM at the very top of RAM for its 
d I sp I ay list and d I sp I ay data. Space for assemb I y language modu I es and data 
can be set as I de by lower I ng MEMTOP from the va I ues set by power-up and 
SYSTEM RESET. UsIng MEMTOP Instead of MEMLO to reserve space does create one 
problem. The value of MEMTOP depends on both the amount of RAM in the system 
and the graphIcs mode of the dIsplay. This makes It diffIcult to predIct its 
va I ue before actua I I Y exam In i ng the I ocat i on un I ess you make assumpt ions 
about the system confIguration. This uncertainty over the fInal location of 
the machIne code forces the programmer to use only relocatable code. 

APPMH lis a I ocat i on that conta I ns an address spec I fy i ng the lowest 
address to wh i ch the d I sp I ay RAM may ex tend. Correct I y sett I ng APPMH I 
ensures that the dIsplay handler wi II not clobber some of your program code 
or data. 

RAMS I Z, I Ike MEMTOP, can a I so be used to reserve space for user rout i nes 
or data. SInce RAMSIZ Is a sIngle byte value that contaIns the number of RAM 
pages present (I.e., groups of 256 bytes), lower I ng I ts va I ue by 1 wi I I 
reserve 256 I ocat ions. The advantage of us i ng RAMS I Z I nstead of MEMTOP Is 
that the space saved by mov I ng RAMS I Z down I s above the d I sp I ay memory, 
whereas space saved by movIng MEMTOP down remaIns below the dIsplay memory. 

8-9 



OPERATING SYSTEM 

os 

MEMLO 2E7,2E8 

APPMHI OE,OF 

MEMTOP 2E5,2E6 _____ _ 
SDLST 230,231 

SAVMSC 58,59 

TXTMSC 294,295 

RAMTOP 6A 
RAMSIZ 2E4 

MEMORY MAP 

RAM 

PAGE 
SIX 

DOS 

BASIC 
TOKEN 

PROGRAM 

FREE 
RAM 

DISPLAY 
LIST 

SCREEN 
RAM 

TEXT 
WINDOW 

BASIC 

___ 80,81 LOMEM 

90,91 MEMTOP 
--- OE,OF APHM 

I 
FRE(O) 

I 
_ __ 2E5,2E6 HIMEM 

Figure 8-2 OS and BASIC Pointers (DOS present) 

8-10 



0600 
OOOC 
02E7 
3000 

0000 

0600 200006 
0603 A900 
0605 8DE702 
0608 A930 
060A 8DE802 

0600 60 

060E A50C 
0610 800106 
0613 A50D 
0615 800206 
0618 A900 
061A 850C 
061C A906 
061E 8500 
0620 A500 
0622 8DE702 
0625 A930 
0627 8DE802 
062A 60 
062B 
02E2 OE06 
02E4 

0010 ; RESET THE 
0020 ; 
0030 START 
0040 DOSINI 
0050 MEMLO 

= 
= 
= 

OPERATING SYSTEM 

tvlE~1LO PO INTER 

0060 NEWMEM = 

$600 
$OC 
$2E7 
$3000 ; THIS IS THE NEW VALUE FOR MEMLO 

THIS ROUTINE RESERVES SPACE FOR ASSEMBLY ROUTINES 
BY RESETING THE MEMLO POINTER. IT RUNS AS 

0065 
0070 
0090 
0100 
0120 
0130 
0140 
0150 
0160 
0170 
0180 
0185 
0190 
0200 

AN AUTORUN.SYS FILE. IT ALSO RESETS MEMLO ON [RESET]. 
MEMLO IS SET TO THE VALUE OF NEWMEM. 

THIS PART IS PERMANENT, IE. NEEDS TO BE RESIDENT. 
THE SYSTEM DOSINI VECTOR HAS BEEN STOLEN 
AND STORED IN THE ADDRESS PORTION OF THE JSR TROJAN 
INSTRUCTION. SO WHEN [RESET] IS PRESSED, DOSINI VECTORS 

TO INITDOS, JSR TROJAN THEN CALLS THE DOS INITIALIZATION 
ROUTINES, MEMLO IS RESET TO NEW VALUE AND CONTROL 
RETURNS TO THE tvl0N I TOR. 

*= START 
0210 
0220 
0230 
0240 
0250 
0260 

IN ITDOS 
JSR 
LOA 
STA 
LOA 
STA 

0270 TROJAN 
0280 RTS 

TROJAN ; DO DOS 
#NEWMEM&255 
MEMLO 
#NEWMEM/256 
MEMLO+1 

INITIALIZATION 

0290 THIS PART IS EXECUTED AT POWER UP ONLY AND 
0300 CAN BE DELETED AFTER POWER-UP. 
0330 THIS ROUTINE STORES THE CONTENTS OF DOSINI INTO THE 
0350 TROJAN INSTRUCTION. IT THEN REPLACES DOSINI WITH 
0370 ; A NEW VALUE, LOCATION INITDOS. 
0390 GRABDOSI 
0400 LOA 
0410 STA 
0420 LOA 
0430 STA 
0440 LOA 
0450 STA 
0460 LOA 
0470 STA 
0480 LOA 
0490 STA 
0500 LOA 
0510 STA 
0520 RTS 

DOSINI 
INITDOS+1 
DOSINI+1 
INITDOS+2 
#INITDOS&255 
DOSINI 
#INITDOS/256 
DOSINI+l 
NEWMEM&255 
MEMLO 
#NEWMEM/256 
ME~1LO+l 

0530 *= $2E2 
0540 .WORD GRABDOSI 
0550 .END 

; SAVE DOSINI 

SET DOSINI 

SET ME1'vlLO 

SET RUN ADDRESS 

Figure 8-3 Reset MEMLO 

8-11 

JSR 



OPERATING SYSTEM 

INTERRUPT PROCESSING STRUCTURE 

The capab ill ty to se I ect I ve I y respond to spec I a I hardware and software 
events (I.e. Interrupts), provides enormous flexibility to any computer 
system. As In any 6502-based system, there are two types of Interrupt 
requests at the processor level, maskable (IRQ) and nonmaskable (NMI) 
Interrupts. A higher level of Interrupt control Is provided by ANTIC, POKEY 
and the PIA chip. Each of these chips Is responsible for mediating a number 
of events which could cause Interrupts. If a particular Interrupt is enabled 
at the I eve I of the three guard I an ch i ps, then they a I low the Interrupt 
request to pass on to the 6502. ANTI C hand I es NM I requests, and POKEY and 
the PIA handle IRQ requests. 

The fol lowing Interrupt functions are available: 

Name (vector) Type 

D I SPLAY LiST ............ (VDSLST) NM I 
SYSTEM RESET ••.••••••••••• (none) NMI 
VERTICAL BLANK ••• (VVBLKI,VVBLKD) NMI 
SERIAL INPUT READY •••••• (VSERIN) IRQ 
SERIAL OUTPUT READY ••••• (VSEROR) IRQ 
SERIAL OUTPUT COMPLETE •• (VSEROC) IRQ 
POKEY TIMER 1. .......... (VTIMR1) IRQ 
POKEY TIMER 2 •.•••••.••• (VTIMR2) IRQ 
*POKEY TIMER 4 •••••.•••• (VTIMR4) IRQ 
KEYBOARD •••••••••.•••.•• ( VKEYBD) IRQ 
*BREAK KEy ••••••••••••••• (BRKKY) IRQ 
SERIAL BUS PROCEED .•••.. (VPRCED) IRQ 
SER I AL BUS INTERRUPT ( •.•• V INTER) IRQ 

Function 

Graphics timing 
System Inlt. 
Graphics display 
Serial Input 
Serial output 
Serial output 
Hardware timer 
Hardware timer 
Hardware timer 
Key presssed 
[BREAK] key 
Device proceed 
Device Interrupt 

Used By 

User 
OS 
OS,user 
OS 
OS 
OS 
User 
User 
User 
OS 
OS 
Unused 
Unused 

* This IRQ is vectored only in the Rev. B version of the OS 

Section 6 of the OPERATING SYSTEM Manual contains more detal led 
I nformat I on on Interrupts. Extreme care needs to be taken in work i ng with 
Interrupts. For example, If you accidentally disable the keyboard IRQ 
interrupt, the computer w I I I I gnore a II the keys except the [BREAK] key. 
Although this may be useful sometimes, It may make debugging your program a 
bit difficult! 

The IRQ Interrupt Handler 

The OS has an I RQ I nterrupt hand I er that processes the var lous I RQs. 
Th I s hand I er has RAM vectors for a I I of the I RQs. (Note - the [BREAK] key 
IRQ Is not vectored In the original version of the OS.) The IRQ vectors are 
set to their Initial values during both power-up and SYSTEM RESET. The 
locations of the IRQ RAM vectors are described In the subsection on System 
Vectors. 

8-12 



OPERATING SYSTEM 

IRQ vector functions are: 

V I M I RQ - I mmed I ate I RQ vector. A I I I RQs vector 
through this location. VIMIRQ normally points to the 
system IRQ handler. You can steal this vector to do your 
own IRQ Interrupt processing. 

VSEROR - Pokey Ser I a I Output Needed I RQ vector. 
This normally points to the code to provide the next byte 
In a buffer to the serial output port. 

VSER I N - Pokey Ser I a I I nput Ready I RQ vector. Th i s 
po i nts to the code to p I ace a byte from the ser I a I Input 
port Into a buffer. 

VSEROC - Pokey Ser I a I Output Comp I ete I RQ vector. 
Norma II y th i s vector po I nts to code that sets a transm it 
done flag after the checksum byte goes out. 

VTIMR1 - Pokey Timer 1 IRQ vector. Initial ized to 
point to a PLA,RTI Instruction sequence. 

VT I MR2 - Pokey T I mer 2 I RQ vector. I nit I a I I zed to 
point to a PLA,RTI Instruction sequence. 

VTIMR4 - Pokey Timer 4 IRQ vector. Initialized to 
point to a PLA,RTI Instruction sequence. 

VKEYBD - Keyboard I RQ vector. Press i ng any key 
except [BREAK] causes th i s IRQ. VKEYBD can be used to 
pre-process the key code before It Is converted to 
ATASCII by the OS. VKEYBD norma II y po i nts to the OS 
keyboard IRQ routine. 

BRKKY - [BREAK] key vector. I n the Rev. B vers Ion 
of the OS, this IRQ has Its own vector. It is Initial zed 
to a PLA,RTI instruction sequence. 

VPRCED - Peripheral Proceed IRQ vector. The proceed 
I ine is available to peripherals on the serial bus. This 
IRQ is unused at present and normally points to a PLA,RTI 
instruction sequence. 

V INTER - Per i phera I I nterrupt I RQ vector. The 
Interrupt I ine Is also available on the serial bus. 
VINTER normally points to a PLA,RTI Instruction sequence. 

8-13 



OPERATING SYSTEM 

VBREAK - 6502 BRK instruction IRQ vector. Whenever 
a software break instruction is executed, this Interrupt 
occurs. VBREAK can be used to set break points for a 
deb ugger, though it norma I I Y po i nts to a PlA, RT I 
instruction sequence. 

The IRQs are enabled and disabled as a group by the 6502 Instructions 
Cli and SEI respectively. The IRQs also have Individual enable/disable bits 
In POKEY. The programmer's reference card provided with this book shows the 
IRQs and their enable/disable bits . 

The IRQEN register contains most of the IRQ enable/disable bits and Is a 
write-only register. The as keeps a shadow copy of IRQEN In POKMSK ($0010), 
but IRQEN is not updated from POKMSK during vertical blank. Each interrupt 
is enabled by setting the proper bit in IRQEN to a one. A zero Is placed In 
a bit in IRQEN to clear interrupt status from that corresponding bit In 
IRQST. You might note that bit 3 in IRQST (Serial data transmission is 
finished) Is not cleared by this process . This bit Is simply a status bit 
and reflects the current status of the serial transmission register. 

PACTl and PBCTl are used to enab I e and test the status of the I RQs 
handled by the PIA. Bit 0 of each of these registers Is the Interrupt enable 
for that port. Bit 7 represents the I nterrupt status. Th is bit Is c I eared 
whenever the PACTl or PBCTl registers are read. 

Using The IRQs 

The ava i lab i I I ty of the I RQ vectors means that you can ta I lor much of 
the system I/O to your liking. Currently, the as does not provide for 
over lapp i ng I/O with other process i ng . By red I rect I ng the three ser I a I I/O 
interrupt vectors however, It is poss I b I e to rewr I te port ions of the I/O 
subsystem to al low for true concurrent processing. 

The three timer interrupts can be put to use In any operation requiring 
precise timing control. These timers would normally be used when the 
60-Hertz software timers are too slow . Refer to the subsection on Real Time 
Programming for more Information on this topic. 

Many app I feat ions requ ire that programs be protected from user input 
error. A coup I e of the I RQ vectors can be used to pov I de extended input 
protection. The example In Figure 8-4 uses the VKEYBD IRQ vector to disable 
the contro I key. The rout i ne a I so masks the [BREAK] key by stea I I ng the 
VI~IIRQ vector and Ignoring the [BREAK] key Interrupt. Though written for the 
original version of the as, this routine wi I I stl I I work In Rev. B. 

Two of the IRQs are handled by the PIA , VPRCED and VINTER. These are 
unused by the as, and may be utilized to provide more control over external 
devi c es. 

8-14 



0010 10 POKMSK 
0209 20 KBCOOE 
0208 30 VKEYBO 
020E 40 IRQEN 
020E 45 IRQST 
0216 46 VMIRQ 
0000 60 
0600 78 80 START 
0601 A01602 90 
0604 804006 0100 
0607 A01702 0110 
060A 804E06 0120 
0600 A945 0130 
060F 801602 0140 
0612 A906 0150 
0614 801702 0160 
0617 A00802 0200 
0618 804306 0210 
061E A00902 0220 
0621 804406 0230 
0624 A939 0240 
0626 800802 0250 
0629 A906 0260 
062B 800902 0270 
062E 58 0170 
062F 60 0280 

0290 
0639 A00902 0300 REP 
063C 2980 0310 
063E F002 0320 
0640 68 0330 
0641 40 0340 
0642 4C4206 0360 JUMP 
0645 48 0375 IRQ 
0646 AOOED2 0380 
0649 1004 0390 
064B 68 0405 
064C 4C4C06 0410 NBRK 
064F A97F 0430 BREAK 
0651 800E02 0440 
0654 A510 0450 
0656 800ED2 0460 
0659 68 0462 
065A 40 0464 
0658 0470 
02E2 0006 0480 

OPERATING SYSTEM 

= $0010 
= $0209 
= $0208 
= $020E 

IRQEN 
= $0216 
*= $600 
SEI 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
CLI 
RTS 
*=$639 
LOA 
ANO 
BEQ 
PLA 
RTI 
JMP 
PHA 
LOA 
BPL 
PLA 
Jt'vlP 
LOA 
STA 
LOA 
STA 
PLA 
RTI 

Vfvll RQ 
NBRK+l 
Vt'vll RQ+l 
NBRK+2 
#IRQ&255 
VMIRQ 
#IRQ/256 
VMIRQ+l 
VKEYBO 
JUMP+l 
VKEYBO+l 
JUMP+2 
#REP&255 
VKEYBO 
#REP/256 
VKEYBO+l 

KBCOOE 
#$80 
JUMP 

JU~1P 

IRQST 
BREAK 

NBRK 
1/$7F 
IRQST 
POKMSK 
IRQEN 

*= $02E2 
.WORO START 

OISABLE IRQS 
REPLACE THE IRQ VECTOR 
WITH OUR OWN 
ALL IRQS WILL 
GO TO NBRK 

POINT KEY IRQ TO 
REP 

VECTOR KEY IRQ 
LOW BYTE OF VECTOR 

ENABLE IRQS 

ALL KEY IRQS COME HERE 
CHECK IF CONTROL HIT 
IF NOT HIT THEN GO 
ELSE IGNORE CONTROL KEY 

THIS CALLS THE OLO KEY IRQ 
ALL IRQSCOME HERE 
CHECK IF [BREAK] 
IF [BREAK] IRQ,BRANCH 
ELSE CALL OLO IRQ VECTOR 
CALL OLO IRQ VECTOR 
HERE IF [BREAK] 
SHOW NO [BREAK] 

RETURN AS IF NO [BREAK] 

Figure 8-4 Protecting Programs from User Input Error 

8-15 



OPERATING SYSTEM 

The NMI Handler 

The as has an NM I hand I er for hand II ng the nonmaskab lei nterrupts. 
Un I I ke the I RQs, the NM I s cannot be "masked" (d I sab led) at the 6502 I eve I. 
AI I the NMls except SYSTEM RESET can be disabled by ANTIC. 

Two of the NMls, the display list Interrupt (DLI) and the vertical blank 
(VBLANK) interrupt, have RAM vectors that can be used. In fact, VBLANK can 
be Intercepted in two p I aces, i mmed I ate or deferred VB LANK . The NM I vectors 
are: 

Name 

SYSTEM RESET 
DISPLAY LIST INTERRUPT 
VERTICAL BLANK 

IMMEDIATE 
DEFERRED 

Vector 

none 
VDSLST ($0200) 

VVBLK I ($0222) 
VVBLKD ($0224) 

The SYSTEM RESET NM I doesn't have a RAM vector. SYSTEM RESET a I ways 
results in a jump to the monitor warmstart routine. However, the DOSINI RAM 
vector is used during the Warmstart process, and thus can be used to trap the 
[SYSTEM RESET] (see subsection on the Monitor). 

The DL I vector is unused by the as. Refer to Sect I on 5, D I sp I ay List 
Interrupts, for detal Is on using this feature. 

Vertical Blank Interrupt Processing 

The vertical blank interrupt facility Is an extremely valuable resource 
to a programmer. These I nterrupts are non-maskab I e and occur at regu I ar 
intervals based on the television signal standard (every 60th of a second for 
NTSC, every 50th for PAL). Just as Importantly, these Interrupts occur 
during that period of time when the screen has been blanked, so that changes 
made during this period wi II not be Immediately seen on the display. This 
leads to a wide assortment of uses. 

After a vertical blank interrupt has been recognized by the as, the 
contents of the A, X, and Y registers are placed onto the stack. The system 
then vectors through the i mmed i ate vert i ca I blank vector (VVBLK I) located at 
$0222. Th I s vector norma I I Y po i nts to the as vert I ca I blank Interrupt 
serv I ce rout i ne at $E45F. The as uses th i s rout I ne to increment the rea I 
time clock, to decrement the system timers, to do color attracting, to copy 
shadow registers, and to update values from the input controllers. This 
routine terminates by jumping through the deferred vertical blank vector 
(VVBLKD) at $0224. This vector is Initialized to point to a simple Interrupt 
termination routine at $E462. Figure 8-5 I I lustrates this process. 

8-16 



user-deferred 
vertical blank 

interrupt routine 

I 
I 

OPERATING SYSTEM 

VERTICAL BLANK 
INTERRUPT 

~ 
OPERATING 

SYSTEM 
TEST 

+ 

< 
VVBLKI 
($0222) 

+ 
>-

user-immediate 
- - - ---.. vertical blank 

interrupt routine 
I 

------< 

SYSVBV 
($E45F) 

~ 
OS VBI 

SERVICE 
ROUTINE 

+ 
VVBLKD ) 
($0224) 

+ L _______ ~ XITVBV 
($E462) 

+ 
RTI 

Figure 8-5 Vertical Blank Interrupt Execution 

These two vectors were put into RAM to a I low programmers to trap the 
vertical blank service routine and use the 60-Hertz interrupt for their own 
purposes. The procedure to use them Is straightforward. First decide 
whether the vert I ca I blank Interrupt (VB I) rout I ne I s to be an I mmed i ate VB I 
or a deferred VBI. In many cases It makes little difference which is chosen. 
There are some I nstances where it does matter. The first case ar I ses when 
your VBI routine reads or writes to registers which are shadowed by the OS 
VBI routine. It might be necessary to write to the hardware registers after 
the OS VBI has written to them. He who writes last, writes best! 

8-17 



OPERATING SYSTEM 

The second case arises when your VBI routine consumes too much processor 
time. The OS VBI routine may then be delayed beyond the end of the vertical 
blank period. This In turn may cause some graphics registers to be changed 
wh II e the beam is trac I ng on the screen. The resu I t may be uns i ght I y. If 
this Is the case, your VBI routine should be placed as a deferred VBI 
routine. The time limit for immediate VBI Is about 2000 machine cycles; for 
deferred VB lit is about 20,000 cyc I es. However, many of these 20,000 
machine cycles are executed whi Ie the electron beam Is being drawn, so 
graphics operations should not be executed In extremely long deferred VBI 
rout I nes. Furthermore, d i sp I ay I 1st interrupt execut i on time comes out of 
the time avai lable for this processing. Remember, VBI processing wi II cut 
down on the time avai lable for mainline code execution. 

The third case arises when your own VBI must be mixed with time-critical 
I/O such as to the disk or cassette. The OS I mmed I ate VB I rout i ne has two 
stages, a critical and a non-critical stage. During time critical I/O, the 
OS i mmed i ate VB I rout! ne aborts after stage one process i ng Is comp I ete. If 
you want your VBI to be executed during every vertical blank period, It must 
be defined as an Immediate VBI. Be wary in this situaton, for this may 
result In interference problems with time-critical I/O. 

Once you have decided whether your VBI routine should be immediate or 
deferred, you must place the routine In memory (page six is a good place), 
I ink It to the proper VBI routine, and modify the appropriate OS RAM vector 
to point to it. Terminate an immediate VBI routine with a JMP to $E45F. 
Terminate a deferred VBI routine with a JMP to $E462. If you want to bypass 
the OS VB I rout I ne ent i re I y (and thereby ga I n process I ng time), term i nate 
your immediate VBI routine with a JMP to $E462. 

A common problem with interrupts on 8-bit micros arises when you try to 
change the vector to the interrupt. Vectors are 2-byte quantities; it takes 
two store Instruct ions to change them. There is a sma I I chance that an 
interrupt will occur after the first byte has been changed but before the 
second byte has been updated. This could crash the system. The solution to 
this problem has been provided by an OS routine cal led SETVBV at $E45C. Load 
the 6502 Y-reglster with the low byte of the address, the X-register with the 
high byte of the address, and the accumulator with a 6 for Immediate VBI or a 
7 for deferred VB I. Then JSR SETVBV and the interrupt wi I I be safe I y 
enab led. The new VB I rout i ne wi I I beg I n execut i ng with i n one 60th of a 
second. 

A wide variety of operations can be performed with 60-Hertz Interrupts. 
First, screen manipulations can be done during the vertical blank to ensure 
that transitions do not occur on the screen. Second, high speed regular 
screen manipulations can be performed. This can be very important in 
rhythmic animations where changes need to occur at a pace Independent from 
other processing. 

Another function of vertical blank 
effects. The sound registers In the 
frequency, volume, and distortion, but 

8-18 

interrupts Is for real-time sound 
ATARI 400/800 al low control of 
not duration. Duration can be 



OPERATING SYSTEM 

control led with a VBI by having a cal I ing routine set some duration parameter 
which the VBI then decrements down to zero. This technique can be used to 
contro I the vo I ume of the soun d and so give attack and decay enve lopes to 
sounds. Finer control of frequency and distortion Is possible with 
extensions of this technique. The result can be very Intricate sound 
effects. Since the VBI time resolution is only 1/60th of a second, VBls are 
not useful for the volume only mode of the audio channels. 

VBls are also useful for handl ing user inputs. Usually, these Inputs 
require I ittle processing, but constant attention. ft, VBI allows the program 
to check for user input every 60th of a second without burdening the program. 
It is an ideal solution to the problem of maintaining computational 
continuity without ignoring the user . 

Finally, VBls allow a crude form of multitasking to take place. A 
foreground program can run under the VB I wh i I e a background program runs in 
the mainline code. As with any Interrupt, careful separation of the 
databases for the two programs must be ma I nta I ned. The power der I ved from 
the vertical blank interrupt is, however, wei I worth the effort. 

8-19 



OPERATING SYSTEM 

THE SYSTEtvl VECTORS 

One measure of the power of any operating system is its adaptabi Iity. 
Just how easy is it for a user to take advantage of the OS routines or modify 
and customize system routines? 

In this regard, the OS for the ATARI Home Computer System would score 
we II. In pract i ca II y every I nstance where access to system rout I nes cou I d be 
benef I cia I, the OS has "hooks" where you can attach or rep I ace system 
routines with your own. 

This flexibility Is provided by a combination of several different 
mechanisms. The first of these Is a ROM table of JMP instructions to crucial 
OS routines. In future versions of the OS, the location of this Jump table 
will not change, although the values there probably will. Thus, if your 
software accesses the ma I n OS rout i nes v I a th is tab I e, It wi I I a I so work on 
future versions of the OS. If your software does not use these ROM vectors, 
but instead jumps direct I y into the OS ROM, then it w II I a I most certa I n I y 
crash on future versions of the OS . 

The second mechanism Is a series of address vectors in RA~l which I ink 
many of the interrupt processing routines together. To alter the handling of 
a particular interrupt, one need change only a single vector to point to the 
rep I acement code. The OS In it I a I i zes these vectors as part of the power-up 
sequence. Again, though the initial ized contents of these vectors may 
change, their location Is guaranteed not to . 

The th i rd mechan ism I s the dey I ce hand I er tab I e where vectors to 
specific device handlers (e.g. disk drive, printer, ... ) are stored. For a 
discussion of this faci I Ity, refer to the Central ized Input/Output subsection 
of this section. 

Name 

DISKIV 
DSKINV 
CIOV 
SIOV 
SETVBV 
SYSVBV 
XITVBV 
SIOINV 
SENDEV 
INTINV 
CIOINV 
BLKBDV 
WARMSV 
COLDSV 
RBLOKV 
CSOPIV 

Location 

$E450 
$E453 
$E456 
$E459 
$E45C 
$E45F 
$E462 
$E465 
$E468 
$E46B 
$E46E 
$E471 
$E474 
$E477 
$E47A 
$E47D 

Use 

Disk handler Intiallzatlon 
Disk handler vector 
Central I/O routine vector 
Serial I/O routine vector 
Set system timers routine vector 
System vertical blank processing 
Exit vertical blank processing 
Serial I/O Initial ization 
Serial bus send enable routine 
Interrupt handler routine 
Central I/O initial ization 
Blackboard mode (Memopad) vector 
Warm start entry point (SYSTEM RESET) 
Cold start entry point (power-up) 
Cassette read block routine vector 
Cassette open for Input vector 

Figure 8-6 ROM Jump Vectors 

8-20 



OPERATING SYSTEM 

Since this ROM table Is actually a table of three byte JUMP instructions, an 
example of using a ROM vector Is: 

JSR CIOV 

RAM VECTORS 

Name Location Value 

Page Two Locations 

VDSLST 
VPRCED 
VINTER 
VBREAK 
VKEYBD 
VSERIN 
VSEROR 
VSEROC 
VTIMR1 
VTIMR2 
VTIMR4 
VIMIRQ 
VVBLKI 
VVBLKD 
CDTMA1 
CDTMA2 
BRKKY· 

$0200 
$0202 
$0204 
$0206 
$0208 
$020A 
$020C 
$020E 
$0210 
$0212 
$0214 
$0216 
$0222 
$0224 
$0226 
$0228 
$0236 

$E7B3 
$E7B3 
$E7B3 
$E7B3 
$FFBE 
$EB11 
$EA90 
$EAD1 
$E7B3 
$E7B3 
$E7B3 
$E6F6 
$E7D1 
$E93E 
$xxxx 
$xxxx 
$E754 

-- Page Zero Locations 

CASINI 
DOSINI 
DOSVEC 
RUNVEC 
INIVEC 

$0002 
$OOOC 
$OOOA 
$02EO 
$02E2 

$xxxx 
$xxxx 
$xxxx 
$xxxx 
$xxxx 

Use 

Display List Interrupt NMI Vector 
Proceed Line IRQ Vector -- Unused at present 
Interrupt Line IRQ Vector -- Unused at Present 
Software Break Instruction IRQ Vector 
Keyboard IRQ Vector 
Ser I a I I nput Ready I RQ Vector 
Serial Output Ready IRQ Vector 
Serial Output Complete IRQ Vector 
POKEY Timer 1 IRQ Vector 
POKEY Timer 2 IRQ Vector 
POKEY Timer 4 IRQ Vector 
Vector to IRQ Handler 
Immediate Vertical Blank NMI Vector 
Deferred Vertical Blank Vector 
System Timer 1 JSR Address 
System Timer 2 JSR Address 
BREAK key Vector C** only Rev. B **) 

Vector for bootable cassete program Initialization 
Disk Initial izatlon Vector 
Disk Software Run Vector 
DUP File Load and GO Run Vector 
DUP FI Ie Load and Go Initialization Vector 

An x Indicates that the contents of this location may vary 

Figure 8-7 RAM Vectors 

Unl ike the ROM Jump tables, these vectors are true two byte address vectors. 
A typical cal ling sequence to use one of the RAM vectors might look I ike this: 

JSR CALL 
CALL JMP CDOSINI) 

8-21 



OPERATING SYSTEM 

THE CENTRALIZED INPUT/OUTPUT SUBSYSTEM 

One of the most taxing problems facing an operating system designer is 
how to handle Input/output to the wide variety of peripherals that might be 
hooked up to the system. A few general philosophical guidelines to efficient 
I/O handling are: 

- The transfer of data should be device-Independent. 
- The I/O structure should support single-byte, multiple-byte, 

and record-organized data transfers. 
- Multiple devices/files should be concurrently accessible. 
- Error handl ing should be device-transparent. 
- The addition of new device handlers should be possible 

without having to change the OS ROM. 

The ATARI 400/800 OPERATING SYSTEM (OS) was designed to provide exactly 
these capabilities. The ATARI 400/800 OS uses a table-driven centralized 
I nput/output subsystem. From the OS standpo i nt, I/O is organ i zed around the 
10CB, or Input/Output Control Block. An 10CB Is a standard table that 
specifies one complete Input or output operation. Any of eight standard I/O 
operat Ions can be executed through an I OCB. By chang I ng an entry I n the 
10CB, the user can change the nature of the Input/output operation, even the 
physical device which is the target of the I/O. Thus, a user can easily 
perform I/O to completely different devices such as the disk drive and the 
printer without having to worry about hardware details. Most I/O requires 
only that the user set up an 10CB with control data, and then pass control to 
the I/O subsystem. 

Two types of elements make up the I/O subsystem: I/O system routines and 
I/O system control blocks. The I/O system routines Include the central I/O 
routine (CIO), the device handlers (E:, K:, S:, P:, C:, D:, R:) and the 
serial I/O routine (SIO). The Handler Address Table (HATABS) plays a major 
role In I inking CIO with the Individual device handlers. The system I/O 
control blocks contain control data that is routed to the I/O subsystem. The 
user interface Is the same for all devices (e.g., the commands to output a 
line to the printer (P:) or to the display editor (E:) are very simi lar). 

Understanding the structure of the I/O subsystem will enhance your use 
of It. Figure 8-8 shows the relationship of the I/O system routines and the 
I/O system control blocks. 

8-22 



ALL PERIPHERALS 
EXCEPT RESIDENT 

DISK HANDLER 

CIO CALL: 

CALL TO DEVICE 
HANDLER : 

OPERATING SYSTEM 

USER 
PROGRAM 

JSR CIOV 

BMIERROR 

CENTRAL 
I/O ROUTINE 

(CIO) 

USE HANDLER ADDRESS 
TABLE (HATABS) TO 

FIND THE DEVICE 
HANDLER ENTRY POINT 

DEVICE 
HANDLER 

CALL SIO: 

SERIAL BUS 
PERIPHERALS ONLY 

JSR SIOV 

BMI ERROR 

SERIAL I/O 
ROUTINE 

(SIO) 

SERIAL DATA 
TRANSFER VIA 

SERIAL BUS 

I 
I 
I 
I 
I 

.----~~ I 

10CB 

I 
I 
I 

L-_._---l I 

ZIOCB 

DCB 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

) 

Figure 8-8 I/O Subsystem 

8-23 

RESIDENT 
DISK HANDLER 

USER PROGRAM 
(DOS or 

ASSEMBLER) 

DISK HANDLER CALL: 

JSR DSKIOV 

BMIERROR 

BPL SUCCESS 

RESIDENT 
DISK HANDLER 



OPERATING SYSTEM 

I/O System Control Blocks 

There are four types of control blocks: 

-Input/Output Control Block ( 10CB) 
(ZIOCB) 
(DCB) 
(CFB) 

-Zero-Page I/O Control Block 
-Device Control Block 
-Command Frame Buffer 

The I/O system control blocks are used to communicate information about 
the I/O function to be executed. The control blocks provide the I/O system 
routines with control Information to perform the I/O function. Refer to the 
OPERATING SYSTEM Manual for Information as to the detai led structure of the 
four types of control blocks. 

Eight 10CBs in the as are used to effect communication between user 
programs and cia. Figure 8-9 shows the content of an 10CB for some common 
I/O functions. The 10CBs are: 

Location, 
Name Length 

10CBO [$340,16J 
IOCB1 [$350,16J 
IOCB2 [$360,16J 
IOCB3 [$370,16J 
IOCB4 [$380,16J 
IOCB4 [$390,16J 
IOCB5 [$3AO,16J 
IOCB6 [$3BO,16J 
IOCB7 [$3CO,16J 

A second type of control block, the ZIOCB [$0020,16J, is used to 
communicate I/O control data between cia and the device handlers. When 
called, cia uses the value contained in the X-register as an index to which 
of the 10CBs (one of eight) is to be used. cia then moves the control data 
from the selected 10CB to the ZIOCB for use by the appropriate device 
handler. The ZIOCB Is of I ittle Interest unless you are writing a new device 
handler or are replacing a current one. 

Dev I ce hand I ers that requ ire I/O over the ser i a I bus w ill then load 
control Information into the DCB [$0300,12J. SIO will use the DCB 
information and return the status information in the DCB for subsequent use 
by the device handler. Figure 8-10 illustrates some common I/O functions and 
the contents of their associated DCBs. 

The resident disk handler does not conform to the regular user-CIO-

8-24 



OPERATING SYSTEM 

handler-SIO cal ling sequence. Instead, you use the DCB to communicate 
dIrectly with the resIdent disk handler. SectIon 9, the Disk OperatIng 
System, contaIns more InformatIon on the resIdent dIsk handler. 

The last type of control block encountered In the I/O subsystem Is the 
Command Frame Buffer (CFB). This 4-byte table located at $023A Is used by 
the SIO routine whi Ie performing the serial bus operations. The four bytes 
contain the device code, command code,and command auxllilary bytes 1 and 2. 
The data buffer that Is transmitted Is defined by two pointers BUFRLO 
[$0032,2J and BFENLO [$0034,2J. In general It Is not recommended that the OS 
be used at th I s I eve I • Other parameters have to be set, and extreme care 
must be taken in calling the proper sequence of subroutines. CIO and SIO 
were designed to be easily cal led by user programs. Use them---but stay away 
from the command frame bufferl 

8-25 



OPERATING SYSTEM 

IOCB CHART 

CALL ICHID I ICDNO ICCOM ICSTA I I CBAL I ICBAH I ICPTL ICPTH I ICBLL I ICBLH I ICAX1 I ICAX2 I 
I I I I I I I I I 

OPEN FILE-READ I X note 11 $80 I 06 I X I X I X I 4 I 0 I 
I I I I I I I I I 

OPEN FILE-WRITE I X I $80 I 06 I X I X I X 8 I note 21 
I I I I I I I I 

GET BYTES I X 7 I 00 I 06 I X I $80 I 00 I X I 
I I I I I I I I 

PUT BYTES X I X $B I 00 I 06 I X I $BO I 00 I X I 
I I I I I I I I 

GET RECORD I X I 00 I 06 I X I $80 I 00 I X I 
I I I I I I I I 

PUT RECORD I X 9 I 00 I 06 I X I $80 I OU I X I 
I I I I I I I I 

CLOSE FILE I X $C I X I X I X I X I X I X I 
I I I I I I I I 

STATUS I X $D I X I X I X I X I X I X I 
I I I I I I I I 

NOTE 1 = The status of the 1/ 0 command is stored here and In the Y REG. on return from CIO . 
NO TE 2 = The Auxilary bytes of the 10CB's are used by some handlers to indicate specIal modes. 

X = Indicates ignore but do not change the cu rrent va lue . 
GENERAL NOTE: The above 10CB definitions assume : 

*=$600 
10BUFF . RES 80 USER I/ O 8UFFER 
FILE . BYTE 'D:MYPROG.BAS' USER F ILENAt1E 

Figure 8-9 Input Output Control Block (IOCB) 

DCB CHART 

DISK 810781S PRINTER 8201 
FUNCTION NAt1E LOCATION READ SECTOR WRITE SEC TOR I PUT I FORMAT WRITE I 

810 I 81S 810 I 815 I I I 
I I I I I 

Serial Bus I.D. DDEVIC [$0300 ) $30 I $30 $30 I $30 I $30 I $30 $40 I 
I I I I I 

Device Number DUNI T [ $0301) 1-4 I 1-8 1-4 I 1-8 I 1-4 I 1-4 I 
I I I I 

Command Byte DCOMND [$0302) $52 I $52 $57 I $57 $50 I $21 $57 I 
I I I I 

Stat us DSTATS [$0303) $40 I $40 $80 I $80 $8D I $40 $80 I 
I I I I 

Bu ffer Address DBUFLO [$0304) U I U U I U U I U U I 
I I I I 

DVBUFHI [ $0305) U I U u I U U I u U I 
I I I I 

Device Timeout OTIMLO [$0 306 ) $30 I $30 $30 I $30 $3 1 I $130 I 
I I I I 

Buffer Lenqth DBYTLD [$0308) $80 I 00 $80 I 00 $80 / 00 I - $40 I 
I I I I 

DBYTHI [$0309) $00 I 01 $00 I 01 $00 / 0 1 I - $00 I 
I I I I 

DAUX1 [$030A) 2* I 2* 2* I 2* - 2* I - 1* I 
I I I I 

DAUX2 [$030B) 2' I 2" 2" I 2" - 2" I - 1" I 
I I I I 

1* = Thi s byte determines printer mode (see 820 manual. 
2* = DAUX1 + DAUX2 specify sector for READ, WRITE ( PUT ) , or WRITE verify. 
U Indicates user-set address 
- = indicates ignored. 

Figure 8-10 Device Control Block (DCB) 

8-26 



OPERATING SYSTEM 

Centra I I/O System Rout I ne 

The main function of CIO is to take control data from an 10CB and ensure 
that I tis routed to the spec I f I c dev I ce hand I er needed, and then to pass 
contro I to that hand I er. C lOa I so acts as a pipe I I ne for most I/O I n the 
system. Most of the OS I/O funct Ions use C I 0 as a common entry po i nt, and 
al I handlers exit via CIO. For example, BASIC wll I cal I CIO when performing 
an OPEN or a GRAPHICS statement. CIO supports the fol lowing functions: 

Is: 

OPEN 
CLOSE 
GET CHARS 
READ RECORD 
PUT CHARS 
WRITE RECORD 
STATUS 
SPECIAL 

Dev I ce/ f i I e open 
Devlce/fi Ie close 
Read N characters 
Read next record 
Write N characters 
Write next record 
Get device status 
Device handler specific (e.g., NOTE for FMS) 

You may wish to make your own CIO cal Is. The cal ling sequence for CIO 

LDX 
JSR 
BMI 

#IOCBNUM 
CIOV 
ERROR 

;rem user has already set up 10CB 
;set the 10CB index (IOCB * 16) 
;system routine vector to CIO 
; If branch taken then CIO returned 
;error code In Y-reglster 

As shown in the above ca I I, one of the 10CBs I s used to commun icate 
control data to CIO. You may use anyone of the eight 10CBs. CIO expects 
the 10CB I ndex to be I n the X-reg I ster. Note that th I s va I ue must be the 
10CB number multiplied by 16. The reason is that CIO uses this value as a 
true index into the various 10CBs, and each 10CB Is 16 bytes. Upon return, 
the sign bit of the 6502 Is set to indicate success or error in the I/O 
operation. If the N-bit Is clear (I.e., a zero) the I/O was done 
successfully, and the Y-reglster will contain a 1. If the N-bit Is set, the 
I/O request resu I ted I n an error; I n that case the Y-reg I ster wi I I conta In 
the error code number. A BMI Instruction to an error routine Is the usual 
way to test for operational success. The error/success value Is also 
returned In the 10CB byte ICSTA (see 10CB definition). Chapter 5 of the 
OPERATING SYSTEM Manual has a sample program segment that cal Is cia to OPEN 
a disk fl Ie, READ some records, then CLOSE the fi Ie. 

C 10 cop i es the contro I data from the se I ected 10CB to the page zero 
ZIOCB. CIO then determines the device handler entry point and vectors to the 
appropriate device handler routine. Figure 8-11 Is a flowchart of the CIO 
system routine. 

8-27 



CIOCHR = A REGISTER 
ICDNO = X REGISTER 

MOVE 10CB TO 
ZIOCB 

NO 

GET HANDLER 
ENTRY POINT 
VECTOR 

NO 

YES 

YES 

OPERATING SYSTEM 

YES 

OPEN 

YES 
'BAD 10CB' 

A,Y = $86 
RETURN CLOSE 

'INVALID COMMAND 
YES 

STATUSI 
SPECIAL 

YES 

A,Y= $84 
RETURN 

READ 

WRITE 

SET SPECIAL 
FLAG 

Figure 8-11.1 CIa Routine 

8-28 



OPEN 

IOCB NO 

CLOSED? 

YES 

GET DEVICE 
NAME (ICBALZ) 

GET ENTRY 
FROM HATABS 

NO <$.? 
YES 

ICHIDZ ~ HATABS INDEX 
ICNNOZ~ DEVICE NUMBER 

GET POINTER TO 
HATABS ENTRY 

GET VECTOR TO 
HANDLER ENTRY 

OPERATING SYSTEM 

-] ' IOCB ALREAD Y OPEN ' 
JSR (VECTOR) 

A ,Y~ $81 
RETURN 

FAKE PUTCHR TO 
SETUP ICPTL, 

ICPTH 

RESTORE USER 
IOCB FROM 

ZIOCB 

Y ~ ERROR 

I 'NON-EX ISTENT DEVICE ' 

( A,Y ~ S82 RETURN 
RETURN 

Figure 8 -11 .2 CIO Routine 

8-29 



OPERATING SYSTEM 

The Handler Address Table 

C I a ca I cu I ates the dev i ce hand I er entry po i nt in an I nd I rect manner. 
First of a I I, an OPEN ca I I must preceed any other I/O funct I on to a dev I ce. 
Whi Ie processing an OPEN command, cia retreives the device specification for 
the fi Ie being opened. The device specification Is an ATASCI I string pointed 
to by the buffer address portion of the 10CB. The first element In this 
string must be a one character device Identifier (e.g., '0' for disk drive, 
'P' for printer, ••• ). cia then searches for this character In a table of 
handler entry points called HATABS, which runs from $031A to $033B (Figure 
8-12 shows the layout of HATABS). cia begins the search at the bottom of 
HATABS and works upward unti I a match is found for the device identifier. 
The search is performed In th is direct Ion to fac iii tate the add it I on or 
modification of device handlers. During the Initial izatlon code, the HATABS 
tab lei s cop i ed from ROM down into RAM. Dev I ces that are then booted (e.g. 
the disk drive, or RS-232 module) then add their handler information to the 
bottom of the table. There is room in the table for a total of 14 entries, 5 
of which are set up during system initialization. If a new printer handler 
were added to the bottom of the table, cia would find it before the one 
transferred from ROM. This al lows new handlers to replace old ones. 

After the device Identifier has been located, cia knows that the next 
two bytes point to the devices' entry point table. This is a table of 
addresses for the routines that handle each of the cia functions. Figure 
8-13 gives the layout of a typical entry point table. 

To find which one of the handler entry points to vector through, cia 
then uses I CCOM, the IOCB command byte, as an I ndex I nto the entry tab Ie. 
The entry point tables for al I of the resident device handlers can be found 
In the as I isting. The relative position of each of the vectors In an entry 
table have the same meaning from table to table. For example, the first 
position in al I of the device handler entry point tables is the vector to the 
device handler OPEN routine. 

You can take advantage of the f I ex i b iii ty of HATABS to add some new 
features to the as. Figure 8-14 Is an example of how to add a nul I handler. 
A null handler does exactly what Its name implies: nothing. This can be 
useful In debugging programs. Instead of waiting around for 50,000 disk 
accesses to find a bug, output can be directed to the nu I I hand I er. With a 
nul I handler, trouble spots In programs can be identified more quickly. 

8-30 



OPERATING SYSTEM 

01 ; HANDLER ADDRESS TABLE 
E430 02 PRINTV $E430 
E440 03 CASETV = $E440 
E400 04 EDITRV = $E400 
E410 05 SCRENV = $E410 
E420 06 KEYBDV = $E420 

0000 

031A 50 
031B 30E4 
031D 43 
031E 40E4 
0320 45 
0321 00E4 
0323 53 
0324 10E4 
0326 4B 
0327 20E4 
0329 00 
032A 00 00 
032C 00 
032D 00 00 
032F 00 
0330 00 00 
0332 00 
0333 00 00 
0335 00 
0336 00 00 
0338 00 
0339 00 00 
033B 00 

07 ; 
08 
09 ; 
10 HATABS 
20 
30 
40 
50 
60 
70 
80 
90 
0100 
0110 
0120 
0130 
0140 
0150 
0160 
0170 
0180 
0190 
0200 
0210 
0220 
0230 
0240 

*= 

.BYTE 

.WORD 

.BYTE 

.WORD 

.BYTE 

.WORD 

.BYTE 

.WORD 

.BYTE 

.WORD 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

$031A 

'P' 
PRINTV 
'C' 
CASETV 
'E' 
EDITRV 
'S' 
SCRENV 
'K' 
KEYBDV 
o 
0,0 
o 
0,0 
o 
0,0 
o 
0,0 
o 
0,0 
o 
0,0 
o 

PRINTER 
ENTRY POINT TABLE 

CASSETTE 
ENTRY POINT TABLE 

DISPLAY EDITOR 
ENTRY POINT TABLE 

SCREEN HANDLER 
ENTRY POINT TABLE 

KEYBOARD 
ENTRY POINT TABLE 

FREE ENTRY 1 (DOS) 

FREE ENTRY 2 (850 MODULE) 

FREE ENTRY 3 

FREE ENTRY 4 

FREE ENTRY 5 

FREE ENTRY 6 

FREE ENTRY 7 

Figure 8-12 Handler Address Table (HATABS) 

*=$PRINTV 
E430 9E EE . WORD 
E432 DB EE . WORD 
E434 9D EE . WORD 
E436 A6 EE . WORD 
E438 80 EE • WORD 
E43A 90 EE . WORD 
E43C 4C 78 EE JMP 

PHOPEN-l 
PHCLOS-1 
BADST-1 
PH\'iR IT-1 
PHSTAT-1 
BADST-1 
PHINIT 

DEVICE OPEN 
DEVICE CLOSE 
DEVICE READ-NOT IMPLEMENTED 
DEV ICE ~VR I TE 
DEVICE STATUS 
SPECIAL-NOT IMPLEMENTED 
DEVICE INITIALIZATION 

Figure 8-13 Printer Handler Entry Point Table 

8-31 



OPERATING SYSTEM 

0000 10 * = $600 
031A 20 HATABS $031A 
0600 AOOO 40 START LDY #0 
0602 B91A03 60 LOOP LDA HATABS,Y 
0605 C900 70 C~1P #0 FREE ENTRY? 
0607 F009 80 BEQ FOUND 
0609 C8 90 I NY 
060A C8 0100 INY 
060B C8 0110 INY POINT TO NEXT HATABS ENTRY 
060C C022 0120 CPY #34 AT END OF HATABS? 
060E DOF2 0130 BNE LOOP NO .•. CONTINUE 
0610 38 0140 SEC YES. .. I ND I CA TE ERROR 
0611 60 0150 RTS 

0160 ; 
0612 A94E 0180 FOUND LDA #IN SET DEVICE NAME 
0614 991A03 0190 STA HATABS,Y 
0617 C8 0200 I NY 
0618 A924 0210 LDA #NULLTAB&255 
061A 991A03 0220 STA HATABS,Y HANDLER ADDRESS 
0610 C8 0230 INY 
061E A906 0240 LDA #NULLTAB/256 
0620 991A03 0250 STA HATABS,Y 
0623 60 0260 RTS 

0270 . , 
0624 3206 0290 NULL TAB .WORD RTHAND-l OPEN 
0626 3206 0300 .WORD RTHAND-l CLOSE 
0628 3406 0310 .WORD NOFUNC-l READ 
062A 3206 0320 .WORD RTHAND-l WRITE 
062C 3206 0330 .WORD RTHAND-l STATUS 
062E 3406 0340 .WORD NOFUNC-l SPECIAL 
0630 4C3306 0350 JMP RTHAND INITILIZATION 

0360 ; 
0633 AOOl 0380 RTHAND LDY #1 SUCCESSFUL I/O FUNCTION 
0635 60 0400 NOFUNC RTS FUNCTION NOT IMPLEMENTED 

Figure 8-14 Nul I Handler 

8-32 



OPERATING SYSTEM 

The Device Handlers 

The dev I ce hand I ers can be d i v I ded I nto res i dent and non res i dent 
hand I ers. The res i dent hand I ers are present in the OS ROM, and may be 
cal led through CIO whenever the handler has an entry In HATABS. The 
nonresident handlers must first be loaded into RN1 and have their entry 
placed into HATABS before they can be called from CIO. The resident device 
handlers are: 

(E:) Display Editor 
(S:) Screen 
(K:) Keyboard 
(P:) Printer 
(C:) Cassette 

Although the nonresident handlers are not present In the OS ROM, 
nonresident handlers may be added by the OS during power-up or SYSTEM RESET. 
You can even add your own device handler during program execution. Figure 
8-14 presents an example of adding a handler to the OS. 

The device handlers use I/O control data passed by CIO In the ZIOCB. 
Data in the ZIOCB is used to perform I/O functions such as OPEN, CLOSE, PUT, 
and GET. Not all of the device handlers support all the I/O commands (e.g., 
trying to PUT a character to the keyboard results In an Error 146, Function 
Not Implemented). Section 5 of the OPERATING SYSTEtvl Manual contains a list 
of the functions supported by each device handler, as well as complete 
operational detal Is of the handlers. 

Ser I a I I/O Rout i ne 

SIO handles serial bus communication between the serial device handlers 
In the computer and the serial bus devices. It communicates with its caller 
through the device control block (DCB). SIO uses the I/O control data in the 
DCB to send and receive commands and data over the serial bus. The call ing 
sequence Is: 

JSR SIOV 
BMI ERROR 

ical ler has set up the DCB to do function 
isystem vector to SIO 
iN-bit set indicates error In I/O execution 

The DCB contains I/O control information for SIO and must be setup 
before the call to SIO. Figure 8-10 shows the contents of the DCB for some 
common I/O operations. 

To send commands to SIO, you need to understand the structure of the 
DCB, which is described In Section 9 of the OPERATING SYSTEM Manual. Figure 
8-15 demonstrates a simple assembly language routine to output a line to the 
printer by setting up the DCB and call ing SIO . 

8-33 



OPERATING SYSTEM 

0000 05 *= $3000 ARBITRARY START 
10 ; TH IS 
20 SIOV 
30 CR 

ROUTINE PRINTS A LINE TO THE PRINTER BY CALLING SIO 
E459 
009B 
0040 
004E 
001C 
0300 
0301 
0302 
0303 
0304 
0305 
0306 
0307 
0308 
0309 
030A 
030B 

40 PRNTID 
45 MODE 
50 PTIMOT 
60 DDEVIC 
70 DUNIT 
80 DCOMND 
90 DSTATS 
0100 DBUFLO 
0110 DBUFHI 
0120 DTIMLO 
0130 DT I ~~H I 
0140 DBYTLO 
0150 DBYTHI 
0160 DAUXl 
0170 DAUX2 
0180 ; 

3000 455841 0190 MESS 
3001 4D504C 
3005 452031 
3009 329B 

300B A940 
300D 8D0003 
3010 A901 
3012 8D0103 
3015 A94E 
3017 8DOA03 
301A A901 
301C 8DOB03 
301F 8D0703 
3022 A51C 
3024 8D0603 
3027 A900 
3029 8D0403 
302C A930 
302E 8D0503 
3031 A980 
3033 8D0303 
3036 A957 
3038 800203 
303B 2059E4 
303E 3001 
3040 00 
3041 00 

0200 
0220 
0230 
0240 
0250 
0260 
0270 
0275 
0280 
0290 
0300 
0310 
0320 
0330 
0340 
0350 
0360 
0370 
0380 
0390 
0410 
0420 
0430 GOOD 
0440 ERROR 

= $E459 SIO VECTOR 
= $9B EOL 
= $40 PRINTER SERIAL BUS ID 
= $4E NORMAL MODE 
= $OOlC TIMEOUT LOCATION 
= $300 DEVICE SERIAL BUS ID 
= $301 SERIAL UNIT NUMBER 

= 
= 

= 
= 
= 
= 
= 
= 
= 

.BYTE 

LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 
BMI 
BRK 
BRK 

$302 SIO COMMAND 
$303 SIO DATA DIRECTION 
$304 BUFFER LOW ADDRESS 
$305 BUFFER HIGH ADDRESS 
$306 SIO TIMEOUT 
$307 
$308 
$309 
$30A 
$30B 

BUFFER LENGTH 

AUXILARY BYTE---PRINTER MODE 
AUXILARY BYTE---NOT USED 

"EXA~'PLE 12" ,CR 

#PRNTID 
DDEVIC 
#1 
DUNIT 
#MODE 
DAUXl 
#1 
DAUX2 
DTI ~1H I 
PTIMOT 
DTIMLO 
#MESS&255 
DBUFLO 
#MESS/256 
DBUFH: 
#$80 
DSTATS 
#'W 
ocm1NO 
SIOV 
ERROR 

SET BUS ID 

SET UNIT NUMBER 

PR I NTER ~~ODE NORMAL 

UNUSED 
TIMEOUT<256 SECS 
SET SIO TIMEOUT FOR PRINTER 

SET MESS AS BUFFER 

SET SIO DATA DIRECTION FOR 
PERIPHERAL TO RECEIVE 
SIO COMMAND WRITE 

CALL SIO 

Figure 8-15 SIO Cal I to Dump Line to Printer 

8-34 



OPERATING SYSTEM 

SIO Interrupts 

SIO uses three IRQ interrupts to control serial bus communications with 
serial bus devices: 

IRQ 

VSERIR 
VSEROR 
VSEROC 

Location, 
Length 

[$020A,2J 
[$020C,2J 
[$020E,2J 

Function 

SERIAL INPUT READY 
SERIAL OUTPUT NEEDED 
TRANSMISSION FINISHED 

All program execution is halted whi Ie SIO uses the serial bus for 
communication. Even though nothing else is happening during a serial bus 
transfer, the actual I/O itself is interrupt driven. The method of 
communicating between SIO and the interrupt handlers is known as the 
semaphore method. The mainl ine code walts in a loop unti I the interrupt 
handlers signal it that they are finished. For instance, during output, SIO 
places a byte to be transferred Into the serial output shift register located 
I n POKEY. I t then enters a loop and watches a flag wh i ch w II I be set when 
the requested I/O is comp I eted. Dur I ng th i s t I me POKEY is send I ng the bits 
out over the ser I a I line. When the byte has been sent, a Ser i a I Output 
Needed IRQ is generated. This IRQ then vectors to a routine which loads the 
next byte in the buffer into the serial output register. This process 
continues unti I the entire buffer has been sent. After taking care of 
checksum values, the interrupt handler then sets the transmit done flag. 
Meanwhl Ie, SIO has been patiently looping, watching for this flag to be set. 
When it sees that the flag has been set, S I 0 ex i ts back to the ca I ling 
routine. 

The SIO execution for input is simi lar. POKEY generates an IRQ (VSERIR) 
to inform SIO a byte has been received in the serial input shift register 
(SERIN). The Interrupt handler for VSERIR then stores the byte in a buffer 
and check s whether the end of the b u f fer has been reached. I f so, I t sets 
the transmit done flag. 

You may have not iced from the above ex p I anat i on that S I 0 wastes some 
time idling while waiting for POKEY to send or receive Information on the 
bus. Because the vectors for the three S 10 IRQ serv i ce rout i nes are RAtvl 
vectors, they can be used by your own handlers to improve system I/O 
performance. Indeed, th is is how the ATAR I 850 Interface Modu lei s ab I e to 
do concurrent I/O. That handler takes over the SIO IRQ vectors and points 
them to the module's own IRQ routines while in concurrent I/O. This allows 
the ca I I I ng program to cont i nue to execute wh i I e the Interface fvlodu I e sends 
commands and data over the ser i a I line. 

8-35 



OPERATING SYSTEM 

Using CIO from BASIC 

Most of the CIO functions (OPEN, CLOSE, etc.) are available through 
calls from BASIC using the OPEN, GET and PUT statements. However, BASIC 
lacks one set of the functions of CIO, the abi I ity to do non-record I/O more 
than a byte at a time (GETCHRS and PUTCHRS). 

The ab III ty to I nput or output a buffer of characters I s a powerfu I 
asset. An assembly language routine can be loaded directly into memory from 
a disk file for instance. Or a high resolution graphics image can be loaded 
directly Into the screen memory area. A common method of Improving a BASIC 
language program's performance Is to provide a machine language program to 
handle certain functions that BASIC executes slowly. Unfortunately, finding 
a place In RAM for such a routine can be a knotty problem. One solution is 
to p I ace the rout i ne into an area reserved for a str I ng, and ca I I I ng the 
routine with a USR cal I to ADR(strlng). Since the address of a BASIC string 
may shift during program editing, the assembly language routine must be 
relocatable. Therefore, unmodified memory reference instructions to 
addresses within the string wi I I not work. 

The subroutine In Figure 8-16 avoids the use of strings by loading a 
routine into Page 6 RAfvl. Thus the assembly language routine need not be 
relocatable. Control data Is POKEd Into an 10CB to read an assembly language 
routine directly into RAM at the address It was assembled. The BASIC 
subroutine in Figure 8-16 can also be used to output data directly from 
memory with the user specifying both the location and the length of the data 
buffer. 

8-36 



OPERATING SYSTEM 

30 REM THIS PROGRAM LOADS PAGE 6 FROM THE FILE D:TEST 
100 DIM FILE$(20),CI0$(7):CI0$="hhh*LVd" 
106 REM CIO$ IS PLA,PLA,PLA,TAX,JMP $E456 (CIOV) 
110 FILE$="D:TEST":REM _ *FILE NAME 
120 CMD=7:STADR=1536:GOSUB 30000 
130 IF ERROR=l THEN? "TRANSFER COMPLETE":STOP 
135 ? "ERROR # ";ERROR;" OCCURRED AT LINE # "jPEEK(186)+256*PEEK(187) 
200 END 
300 REM CIO SETUP SUBROUTINE 
31 0 Rn~ 

30000 REM 
30001 Rn~ 

30002 REM THIS ROUTINE LOADS OR SAVES MEMORY FILE FROM BASIC 
30003 REM BY SETTING UP AN 10CB AND CALLING CIO DIRECTLY 
30004 REM 
30006 REM ON 
30008 REM 
30009 REM 
30010 REM 
30011 REM 
30012 REM 
30013 REM _ 

ENTRY CMD=7 MEANS LOAD MEMORY 
CMD=ll MEANS SAVE MEMORY 
STADR= THE ADDRESS TO LOAD OR SAVE MEMORY 
BYTES= THE NUMBER OF BYTES TO SAVE OR LOAD 
10CB= THE 10CB TO USE 
FILE$= DESTINATION FILE NAME 

30014 REM ON EXIT ERROR=l MEANS SUCCESSFUL COMMAND 
30018 REM ERROR <>l THEN ITS AN ERROR STATUS 
30019 REM 
30020 REM 
30022 REM 

*** 10CB EQUATES *** 

30024 IOCBX=IOCB*16: ICCOM=834+IOCBX: ICSTA=835+IOCBX 
30026 ICBAL=836+IOCBX: ICBAH=837+IOCBX 
30028 ICBLL=840+IOCBX: ICBLH=841+IOCBX 
30029 REtvl 
30030 AUX1=4: IF CMD=11 THEN AUX1=8 
30035 TRAP 30900:0PEN #IOCB,AUX1,0,FILE$ 
30040 TEMP=STADR:GOSUB 30500 
30090 POKE ICBAL,LOW:POKE ICBAH,HIGH 
30100 TEMP=BYTES:GOSUB 30500 
30130 POKE ICBLL,LOW:POKE ICBLH,HIGH 
30140 POKE ICCOM,CMD:ERROR=USR(ADR(CIO$),IOCBX) 
30150 ERROR=PEEK( ICSTA):RETURN 
30200 REM 
30300 REM 
30400 REM 

***ROUTINE RETURNS HIGH,LOW BYTE OF 16 BIT NUMBER 

30500 HIGH=INT(TEMP/256):LOW=INT(TEMP-HIGH*256):RETURN 
30550 REM 
30600 REM ***TRAP HERE IF ERROR OCCURS DURING ROUTINE**** 
30900 ERROR=PEEK(195) 
30920 CLOSE #IOCB:RETURN 

Figure 8-16 BASIC Direct CIO Cal I 

8-37 



OPERATING SYSTEM 

REAL TIME PROGRAMMING 

Most of the time in programming we have the luxury of Ignoring time 
considerations. Usually we don't care how long a program takes to run, or 
don't bother to measure precise timing values on subroutine execution. 
Sometimes, however, timing considerations play an Important role in the 
performance of the program, and then we enter the world of Real Time 
Programm i ng. Such cases ar I se often with the ATAR I Home Computer System. 
Much more so than with most other sma I I computers, th is system thr i ves on 
real time control. The very time base upon which the internal circuitry 
operates was prec I se I y chosen so that the computer hardware wou I d be in 
complete synchrony with a specific signal - namely, the television signal. 

In order to get clean, crisp graphics and special effects, the hardware 
in the ATARI Home Computer System is slaved to the local television signal. 
Unfortunately, there are several "standard" television signals In use In 
various countries. In the United States, the standard Is the NTSC system: 60 
frames per second, 262 horizontal lines per frame , and 228 color clocks per 
line. The 262 lines comes about only because the ATARI Home Computer System 
generates a non-interlaced signal; the real standard cal Is for 525 lines with 
ha I f be I ng shown each frame. Some European countr i es use a standard ca I led 
PAL: 50 frames per second, 312 lines per frame . The result Is that timing 
considerations are different on NTSC vs. PAL systems. Refer to Section 2, 
ANTIC and the Display List, for a more detal led discussion of the television 
signal. The remarks In this subsection are based on NTSC systems. 

Synching to the Television Signal 

The 6502 processor is synchronized to the television signal in two ways, 
a coarse and a fine synchronization. Coarse synchronization is derived by 
having the same signal that synchronizes television receivers to the 
transmitted television signal cause a system interrupt. This signal Is 
called vertical blank, and In television sets it Is the cue to turn off the 
electron beam and begin retracing to the top of the screen in preparation for 
another frame. This same signal is presented to the computer as a 
non-maskable Interrupt. To the programmer, this provides a regularly 
occurring Interrupt that can be used for everyth ing from sound and timing 
Information to a crude multiprogramming method. For a detal led discussion of 
Vertical Blank processing, see the subsection on Interrupt Processing 
Structure. 

An even finer correlation between the 6502 processing and the television 
signal was achieved by setting the system clock rate to 1.79 MHz. This 
results in a direct relationship between the time it takes to execute a 
machine Instruction and the distance the electron beam travels on the screen. 
For instance, during the time It takes to ex ecute the shortest 6502 
Instruction (2 cycles), the beam moves four color clocks, or one OS mode 0 
character width across the screen. This precise correlation of timing al lows 
a ski Ilful programmer to produce graphic effects in the middle of a single 
scan line. A note of caution is in order , however. ANTIC's direct memory 
access makes that th i s intra I I ne tim I ng very uncerta In, and wi I I vary 
depending upon the mode selected and other factors . In actual usage, this 
means that each intra I I ne change must be dea I t with and tested as a spec I a I 

8-38 



OPERATING SYSTEM 

case. 

Hardware Timers 

There are four countdown timers bu II t I nto the POKEY ch I p. They 
funct I on as reusab I e "hardware sub rout I nes". The most common use of these 
timers Is in conjunction with the audio channels for producing sound effects 
(see Section 7, Sound). They may also be used as straight countdown timers, 
since they generate an IRQ interrupt (see subsect I on on I nterrupt Process I ng 
Structure). Each timer is associated with a frequency register which holds 
the initial value for the timer. When the hardware register STIMER is 
written to, this Initial value Is loaded and the countdown timer started. 
When the t I mer counts down to zero, an I RQ I nterrupt request I s generated. 
I tis I mportant to note that on I y timers 1, 2 and 4 have I nterrupt vectors 
for process i ng. The fo I low i ng steps must be taken to act I vate any of the 
timers. 

Step 1. Set AUOCTL [$0208J with proper value to select clocking 
frequency for the desired timer. 

Step 2. Set the volume output to 0 for the audio channel 
associated with the selected timer (AUOC1, AUOC2, AUOC4 [$0201, $0203, 
$0207J) . 

Step 3. Set AUOF1, AUOF2 or AUOF4 [$0200, $0202, $0206J with the 
desired number of clock Intervals to count. 

Step 4. 

Step 5. 
(VTIMR1, 

Set up routine to process timer interrupt. 

Change timer interrupt vector to point to processing code 
VTIMR2, VTIMR4 [$0210, $0212, $0214J). 
*** Note. Due to a bug In the source code, the original 
version of the operating system wi I I never vector through 
VTIMR4. This has been fixed in Rev. B. 

Step 6. Set bits 0, 1 or 2 in IRQEN and the OS shadow POKMSK 
[$020E and $0010J to enable Interrupts from timers 1, 2 or 4. 

Step 7. Wr I te any va I ue to reg I ster STI rvlER [$0209J to load and start 
the count down timers. 

One comp I I cat Ion of work i ng with these timers I s that the 6502' s 
response to them will be preempted and possibly delayed by ANTIC's direct 
memory access, display list Interrupts or vertical blank processing. 

8-39 



OPERATING SYSTEM 

Software Timers 

There are 6 system software timers: 

Name 

RTCLOK 
WTMV1 
CDTMV2 
WTMV3 
CDTMV4 
WTMV5 

Location 

[$0012,3J 
[$0218,2J 
[$021A,2J 
[$021C,2J 
[$021E,2J 
[$0220,2J 

Vector or flag 

none 
CDTMA1 [$0226,2J 
CDTMA2 [$0228,2J 
CDTMF3 [$022A,lJ 
CDTMF4 [$022C,lJ 
CDTMF5 [$022E,lJ 

AI I of the system tImers are decremented as part of the vertical blank 
( VB LANK ) process. I f the VBLANK process is d I sab I ed or intercepted, the 
timers wi I I not be updated. 

The real time clock (RTCLOK) and system timer 1 (CDTMV1) are updated 
during Immediate VBLANK, Stage 1. RTCLOK counts up from 0 and is a 
three-byte value. When RTCLOK reaches Its maximum value (16,777,216) it wi II 
be reset to zero. RTCLOK can be used as a real time clock as Figure 8-17 
shows. 

Because the system timers are updated as part of the VBLANK process, 
special care Is needed to set them correctly. A system routine cal led SETVBV 
[$E45CJ Is used to set them. The cal I to SET VB V is: 

REG X contains the timer value high byte 
Y contaIns the timer value low byte 
A contaIns the timer number 1-5 

Example: 
LOA #1 
LOY #0 
LOX #2 
JSR SETVBV 

iSet system timer 1 

ivalue Is $200 VBLANK perIods 
iCal I system routIne to set timer 

System tImers 1-5 are 2-byte counters. They may be set to a va I ue 
usIng the SETVBV routine. The OS then decrements them during VBLANK. TImer 
1 Is decremented durIng Immediate VBLANK, Stage 1. TImers 2-5 are 
decremented during ImmedIate VBLANK, Stage 2. DIfferent actions are taken by 
the OS when the dIfferent tImers are decremented to o. 

System tImers 1 and 2 have vectors assocIated with them. When tImer 1 
or 2 reaches 0, the OS simulates a JSR through the vector for the gIven 
timer. Figure 8-7 gIves the vectors for the two timers. 

System timers 3-5 have flags that are normally SET (I.e. non-zero). 
When eIther of the three tImers count to 0, the OS w I I I c I ear (zero) that 
tImer's flag. You may then test the flag and take approprIate action. 

8-40 



OPERATING SYSTEM 

Timers 1-5 are general purpose software timers that may be used for a 
variety of applications. For example, timer 1 is used by SIO to time serial 
bus operat ions. I f the t I mer counts to zero before an bus operat Ion is 
complete, a "timeout" error is returned. Timer 1 Is set to various values 
depending on the device being accessed. This ensures that, whi Ie a device 
has ample time to answer an I/O request, the computer wi I I not walt 
Indefinitely for a non-existent device to respond. The cassette handler uses 
timer 3 to set the length of time to read and write tape headers. Figure 
8-18 shows an example using timer 2 to time a sound acting as a metronome. 

The software timers are generally used when the time scale Involved Is 
greater than one VB LANK period. For time durations shorter than this, either 
the hardware timers or some other method must be employed. 

8-41 



1 F' (1 V F '? !::i ':.' . '1 
~:l ~) '" t "t I ;i~ I::: i:j .. C I ... E (:, F: ~: ; C F: E F~) (t :::: F ~:; C···· c 'r Fi: L. .... c: L. F: ) 
.'.:. 'i) "HClUF:"; i INF'U T H ()I..JF;: :'~ "r1I NUT E "; t ::c NF' I...IT t'j I i\1 ;:? " ~:; E CD i··) D" t i J NP UT ~:;E C 
~:j C i'j D ,,: 1 : C U f.; U [: l.:. ~:.:j 

.S ~) "t" ; HOI .. JI~:;" ; " ; tfU·I ;" ~ 1I f.r> EC ~? II lit? II 11 

"7 C ~'1 [) ~::? t [. 0 ~ ) I..J r::: l.} ,~:.:.j 

9 ~) "" t H n LI F: ; " t " ; rU i·..I ; " Z " ; bEe t " II ~: COlD :7 

1 0 l:i~Et'l THI~:; J~:; (.) DFt'iO DF THE: F:E tl L. TI~IE CLUCI< 
20 REM THIS RUUTINE ACCEF'TS AN INITIAL. TIME I N HOUR S, MINUTES, AND SE CDND S 
30 Fi:Et'j IT :::;ETn THE F:E(:',L TI~/iF CL.UCI< T D ;?EF:U 
40 REM THE ClJRRFNT VAL.UE UF RTCL.UC:K IS USED TO ADD TO THE INITIAL. TIME TD GET 
·<1· ? THE CUF'Fi:Ei'IT lIivlE HOUF· ;. r'lIr·l ; ~:;FC 

45 HIGH =1536:ME D= 1537:LDW=1538 
!::j 0 F:E~'j 

60 REM ******E NTR Y F'O I NT ****** 

7 0 ON CMD COlO 100 , 200 
C) ~:.:.i Fi: E t'l 
96 REM ****INITI AL.J ZE CL.OCK***** 
?:.? REn 
100 POKE ? O,O:F'UKF l?,O : F'OKE 18 , 0 
105 DIn CL.OCK$(50) 
1 0 () C L 0 C I·:: t :::: " " 
1 [I 7 C; Cl f.; I. J [: 3 0 0 
1 :I 0 IH () U F' :::: HOUF: : 1 r·j IN:::: j"j I i") i I ~:) F Co:: ~:;E c t F;: E T 1...1 I?r) 
:! 97 Fi;Er,j 
198 REM ***~***READ CL.UCK***** 
1?9 F:Et'j 
20 0 Fi:Ei'j 
2 01 A=USRCADRCCLOCKt» 
210 lIMF=««F'EEK(HIGH). 256)+F'EFk CMFD ».256)+ F'EEK(L.DW» / 5?.? 23334 
7 ~:':' 0 H 0 1 .. 1 I ~: :::: 1 hi T ( T I H E / ::l t. 0 0 ) : T I t'j E::'r T r·j F···· ( H 0 1...1 F:»~ :::: h () 0 ;. 
23 0 HIN =INT(TIME ! 60) : SEC=INT(TIHE-(HIN*60» 
735 SEC =SEC +lSFC :IF SFC >h O THEN SEC=S EC-hO : MIN =MTN01 
2](. ri TN::: i'ITr··I+Ti·'j Thl : IF i'/jIN)() (j ·fHFr.l (IJI'-)::::(1J (I .... . :<; () : HUUF:::HDUFi;+:I. 
737 HOUFi;=HOUR+IHDUR 
20 0 HClUR=HDUR-(INT(HClUR/ 24»*24 
? ~::; 0 PET!. .1 Fi: N 
300 FOR J= l TO 3S: READ Z:CL.OCK$CJ, J)=CHP$ (Z): NEXT J : RETURN 
3 10 DATA 104 , 165 , 18,101,O,6,lh5,19,141,1,h,165 
32 0 DATA 2 0,14:1 ,2,6, 165 , 18 ,2 05,0 , 6 ,20 8 ,234 
3] 0 DATA 165,19,205,1,6,208,227,165,70,205,2,6,208,220,96 

B .. ··..:'t? 



OPERATING SYSTEM 

REM THIS IS A BASIC PROGRAM TO CONTROL THE RATE OF A METRONOME 
2 RE~1 
3 REM 
5 PRINT "t":REM 
10 X=10:REM 
20 FOR J=l TO 10:NEXT J:REM 
50 IF STICK(0)=14 THEN X=X+1 :REM 
51 IF STICK(0)=13 THEN X=X-1 :RE~1 
52 IF X<l THEN X=l:REM 
53 IF X>255 THEN X=255:REM 
54 REM 
56 ? ""; INT(3600/X);" BEATS/MINUTES 
60 POKE O,X:REM 
70 NEXT I : RE~1 

CLEAR SCREEN 
INITIAL VALUE FOR RATE 
SOFTWARE DELAY LOOP 
STICK FORWARD MEANS SPEED UP RATE 
STICK BACK MEANS SLOW METRONOME RATE 
NEVER GO BELOW ONE 

OR ABOVE 255 
PRINT BEATS/MINUTE 

" 
LOCATION $0000 HOLDS THE RATE FOR 
THE FOLLOWING ASSEMBLY ROUTINE 

FIGURE 8-18 BASIC language Metronome Routine 

8-43 



OPERATING SYSTEM 

40 *=$600 
50 ;METRONOME ROUTINE ... USES $0000 TO PASS THE METRONOME RATE 
60 ; 
70 AUDF1 
80 AUDC1 
90 FREQ 
0100 VOLUME 
0110 OFF 
0120 SETVBV 
0130 XITVBV 
0140 WTMV2 
0150 CDTMA2 
0160 ZTIMER 
0170 ; 
0180 START 
0190 
0200 
0220 ; 
0230 INIT 
0240 
0250 
0260 
0270 
0280 
0290 
0300 
0310 
0320 
0340 
0380 
0390 ; 
0400 CNTINT 
0410 
0420 
0430 
0435 
0440 DELAY 
0442 
0450 
0460 
0480 
0490 
0500 , 
0520 SETIME 
0530 
0540 
0550 
0560 
0570 
0580 

= $D200 
= $D201 
= $08 
= $AF 
= $AO 
= $E45C 
= $E462 
= $021A 
= $0228 
= $0000 

AUDIO FREQUENCY REGISTER 
AUDIO CONTROL REGISTER 
AUDF1 VALUE 
AUDC1 VALUE 
TURN OFF VOLUME 
SET TIMER VALUE ROUTINE 

TIMER 2 
TIMER 2 VECTOR 
ZPAGE VBLANK TIMER VALUE 

LDA #10 
STA ZTIMER 

SET THE TIMER VECTOR 

LDA 
STA 
LDA 
STA 

#CNTI NT&255 
WTMA2 
#CNTINT/256 
WTMA2+1 

SET THE TIMER VALUE AFTER THE VECTOR 

LDY 
JSR 
RTS 

ZTIMER SET TIMER TWO TO COUNT 
SETIME 

METRONOME COUNT DmVN VECTORS TO HERE 
SET UP AUDIO CHANNEL FOR MET CLICK 

LDA #VOLUME 
STA AUDC1 
LDA #FREQ 
STA AUDF1 
LDY #$FF DELAY 
DEY 
BNE DELAY 
STY AUDC1 
JMP INIT 

SUBROUTINE TO SET TIMER 

LDX 
LDA 
JSR 
RTS 
*=$2E2 

#0 
#2 
SETVBV 

.WORD START 

.END 
FIGURE 8-19 Assembly 

NO TIME >256 VBLANKS 
SET TIMER 2 
SYSTEM ROUTI NE TO SET TI tvlER 

language Metronome Routine 

8-44 



OPERATING SYSTEM 

FLOATING POINT PACKAGE 

The F I oat i ng Po I nt Package (FPP) I s a set of I ntegrated rout i nes that 
prov I de an extended ar I thmet i c capab i I I ty for the OS. These rout i nes are 
comb I ned ina separate ROM ch i p that is prov I ded as part of the ATAR I 10K 
OPERATING SYSTEM. The FPP is located at hexadecimal addresses $D800 - $DFFF. 
I t has not been changed in the Rev lsi on B vers Ion of the OS. The fo I low i ng 
paragraphs detal I the Internal representation of numbers, the actual routines 
avai lable for use, and their proper calling sequence. An assembly language 
program example is included to Illustrate how to access the FPP from user 
programs. 

Internal Representation 

The FPP configures numbers Internally as 6-byte quantities. Each number 
consists of a 1-byte exponent and a 5-byte mantissa in Binary Coded Decimal 
(BCD) format. This representation was chosen to minimize rounding errors 
that might occur In some math routines. 

The sign bit of the exponent byte provides the sign of the mantissa, 0 
for positive, 1 for negative. The least significant 7 bits of the exponent 
byte prov I de the exponent as a power of 100 in "excess 64 notat Ion". In 
excess 64 notation, the value 64 Is added to the exponent value before it Is 
p I aced I n the exponent byte. Th I s a I lows the fu I I range of exponents, 
positive and negative, to be expressed without having to use the sign bit. 

The mantissa Is always normalized such that the most significant byte Is 
non-zero. However, since the mant i ssa I sin BCD format, and the exponent 
represents powers of 100 and not 10, either 9 or 10 digits of precision may 
result. There is an Impl led decimal point to the right of the first mantissa 
byte so that an exponent that I siess than 64 (40 hex) I nd i cates a number 
less than 1. 

EXAMPLES (Format va l ues are in hex) 

Number: 0.02 = 2 * 100**-1 
Format: 3F 02 00 00 00 00 (exponent= 40-1) 

Number: -0.02 -2 * 100**-1 
Format: BF 02 00 00 00 00 (exponent= 80+40-1) 

Number: 37.0 = 37 * 100**0 
Format: 40 37 00 00 00 00 (exponent= 40+0) 

Number: -460312 = -46.0312 * 100**2 
Format: C2 46 03 12 00 00 (exponent= 80+40+2) 

The number zero is handled as a special case, and Is represented as a 
zero exponent and zero mant i ssa. Either the exponent or the first mant I ssa 
byte may be tested for zero. 

8-45 



OPERATING SYSTEM 

The dynamic range of numbers that can be represented by this scheme is 
10**-98 to 10**+98. 

Memory Uti I ization 

Two areas of R~1 memory are used In implementing the FPP. They are: 
$0004 - $OOFF in Page zero 
$057E - $05FF in Page five 

These areas are used both for control parameter storage and 
several floating point registers. The two pseudo-registers 
interest are cal led FRO and FR1 (locations $0004-$0009 and 
respectively). Each of these pseudo-registers is six bytes In 
w II I ho I d a number in f I oat i ng po i nt representat i on. A two-byte 
used in pointing to a floating point number. This is called 
resides at $OOFC. 

to simulate 
of primary 
$00EO-$00E5 
i ength and 
po Inter is 
FLPTR and 

Buffer areas must be provided for text strings In converting between 
floating point numbers and ATASCII text strings. The output buffer is called 
LBUFF, a 128 byte block from $0580 to $05FF. The Input buffer is set by the 
two byte po inter I NBUFF at $OOF3. A I so, a one byte index C I X at $00F2 is 
used as an offset into the buffer pointed to by INBUFF. 

A typical sequence to use the floating point package from an assembly 
language routine would be as fol lows. First an ATASCI I string that 
represents one of the numbers to be used by a math routine would be stored In 
a buffer anywhere in memory. Next, pointer INBUFF would be set to point to 
the beginning of this string. Also, the index value, CIX, should be set to 
O. The number is then ready to be converted to a floating point 
representat ion, so rout i ne AFP wou I d be ca I led. Th i s wou I d resu I tin a 
floating point number being placed in FRO where It could be used in any of 
the FPP operations. After the conclusion of the mathematical operations, the 
floating result would be in FRO. Cal I ing the routine FASC would convert this 
number to an ATASCII string located In LBUFF. Refer to Figure 8-21 for an 
example of this process. 

To use 16-bit values with the FPP, piace the two bytes of the number 
into the lowest two bytes of FRO ($04 and $05) and JSR IFP, which converts 
the integer to its f I oat I ng po i nt representat ion, I eav i ng the resu It in FRO. 
Subroutine FPI performs the reverse operation. 

The chart on the next page lists the functions available, their ROM 
addresses, pseudo registers affected and approximate maximum computation 
time. 

8-46 



OPERATING SYSTEM 

FLOATING POINT ROUTINES 

NAME ADDRESS FUNCTION RESULT MAX. TIME 
em I crosec.) 

AFP 0800 ATASCI I to floating point FRO 3500 
FASC D8E6 Floating point to ATASCI I LBUFF 950 
I FP D9AA Integer to floating point FRO 1330 
FPI 0902 Floating point to Integer FRO 2400 
FSUB DA60 FRO-FR1 Subtraction FRO 740 
FADD DA66 FRO+FR1 Addition FRO 710 
FMUL DADB FRO*FR1 Mu It i P I I cat ion FRO 12000 
FD I V DB28 FRO/FRl Division FRO 10000 
FLOOR 0089 Floating Load using X,Y FRO 70 
FLDOP 0080 Floadlng Load using FLPTR FRO 60 
FLD1R 0098 Floating Load using X,Y FR1 70 
FLD1P DD9C Floating Load using FLPTR FR1 60 
FSTOR DDA7 Floating store using X,Y FRO 70 
FSTOP DDA8 Floating store with FLPTR FRO 70 
FMOVE DDB6 Move FRO FR1 60 

PLYEVL 0040 Polynomial eva luation FRO 88300 
EXP DDCO Exponentiation - e**FRO FRO 115900 
EXP10 DDCC Exponentiation - 10**FRO FRO 108800 
LOG DECO Natural logarithm FRO 136000 
LOG10 DEDl Base 10 logarithm FRO 125400 
ZFRO DA44 Set to zero FRO 80 
AF1 DA46 Set register In X to zero varies 80 

Figure 8-20 Floating Point Routines 

8-47 



0000 
00B6 
OA60 
0482 
ODA7 
08E6 
00F3 
0800 
00F2 
0580 
009B 
0009 
0005 
E456 
0342 
0344 
0348 

20 
30 
40 
50 
60 
70 
80 
85 
90 
100 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
215 
220 
225 
230 
240 

4000 205340 260 
4003 20B600 270 
4006 205340 280 
4009 20600A 290 
400C 900A 300 
400E A981 340 
4010 804403 350 
4013 A940 360 
4015 4C3940 370 
4018 A282 390 
401A A004 400 
401C 20A700 410 

401F 20E608 
4022 AOFF 
4024 C8 
4025 B1F3 
4027 10FB 
4029 297F 
402B 91F3 
4020 C8 
402E A99B 
4030 91F3 

420 
430 
440 
445 
450 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 

OPERATING SYSTEM 

*= $4000 ; ARBITRARY STARTING POINT 
FMOVE = $0086 
FSUB = $OA60 
FTEMP $0482 
FSTOR = $DOA7 
FASC = $D8E6 
INBUFF = $00F3 
AFP = $D800 
CIX = $00F2 
LBUFF = $0580 
CR = $9B 
PUTREC = $09 
GETREC = $05 
CIOV = $E456 
ICCOM = $0342 
ICBAL = $0344 
ICBLL = $0348 

FLOATING POINT DEMONSTRATION 
REAOS TWO NUMBERS FROM SCREEN EDITOR, 
CONVERTS THEM TO FLOATING POINT, 
SUBTRACTS THE FIRST FROM THE SECONO, 
STORES THE RESULT IN FTEMP, 
WHICH IS A USER DEFINED FP REGISTER, 

; AND DISPLAYS THE RESULT. 
START JSR GETNUM GET 1ST NUMBER FROM E: 

JSR FMOVE MOVE NUMBER FROM FRO TO FRl 
JSR GETNUM GET 2ND NUMBER FROM E: 
JSR FSUB FRO <-- FRO-FRl 
BCC NOERR SKIP IF NO ERROR 
LDA #ERRMSG&255 IF ERR., DISPLAY MESSAGE 
STA ICBAL 
LOA #ERRMSG/256 
JMP CONTIN 

NOERR LOX #FTEMP&255 STORE RESULT IN FTEMP 
LOY #FTEMP/256 
JSR FSTOR 

CONVERT NUMBER TO ATACSI I STRING. 
FIND END OF STRING, 
CHANGE NEGATIVE NUM. TO POSITIVE, 
AND ADD CARRIAGE RETURN. 

JSR FASC FP TO ATASCII, 
LDY #$FF 

MLOOP INY 
LOAO NEXT BYTE 

RESULT IN LBUFF 

LOA (INBUFF),Y 
BPL MLOOP 
ANO #$7F 

IF POSITIVE, CONTINUE 
IF NOT, MASK OFF MSBIT 

STA (I NBUFF) , Y 
INY 
LDA #CR 
STA (I NBUFF), Y 

8-48 

STORE CARRIAGE RETURN 



580 
4032 A5F3 600 
4034 8D4403 610 
4037 A5F4 620 
4039 8D4503 630 
403C A909 640 
403E 8D4203 650 
4041 A928 660 
4043 8D4803 670 
4046 A900 690 
4048 8D4903 700 
404B A200 710 
404D 2056E4 720 
4050 4C0040 730 

740 
750 
755 

4053 A905 780 
4055 8D4203 790 
4058 A980 800 
405A 8D4403 810 
405D A905 820 
405F 8D4503 830 
4062 A928 840 
4064 8D4803 850 
4067 A900 860 
4069 8D4903 870 
406C A200 880 
406E 2056E4 890 
4071 A980 900 
4073 85F3 910 
4075 A905 920 
4077 85F 4 930 
4079 A900 940 
407B 85F2 950 
407D 2000D8 960 
4080 60 970 
4081 45 980 
4082 52 
4083 52 
4084 4F 
4085 52 
4086 9B 

4087 
02EO 0040 
02E2 

1000 
1020 
1 030 
1040 

OPERATING SYSTEM 

DISPLAY RESULT 
LDA INBUFF 
STA ICBAL 
LDA INBUFF+1 

CONTIN STA ICBAL+l 
LDA IIPUTREC 
STA ICCOM 
LDA #40 
STA ICBLL 
LDA 110 
STA ICBLL+1 
LDX 110 
JSR CIOV 
JMP START 

GET BUFFER ADDRESS 

COMMAND FOR PUT RECORD 

SET BUFFER LENGTH = 40 

10CB II = 0 FOR SCREEN EDITOR 
CALL CIO 
DO IT AGA IN 

GET ATASCI I STRING FROM E: 
; CONVERT TO FP, RESULT 
GETNUM LDA #GETREC 

STA ICCOfvl 
LDA #LBUFF&255 
STA ICBAL 
LDA IILBUFF/256 
STA ICBAL+1 
LDA #40 
STA ICBLL 
LDA #0 
STA ICBLL+1 
LDX 110 
JSR CIOV 
LDA IILBUFF&255 
STA INBUFF 
LDA #LBUFF/256 
STA INBUFF+1 
LDA 110 
STA CIX 
JSR AFP 
RTS 

ERRMSG .BYTE "ERROR",CR 

ROUTINE START INFO 
* = $2EO 
.WORD START 
.END 

IN FRO 
GET RECORD (ENDS WITH CR) 

SET BUFFER ADDRESS = LBUFF 

SET BUFFER LENGTH =40 

10CB II = 0 FOR SCREEN EDITOR 
CALL CIO 
STORE BUFFER ADD. IN INBUFF 

SET BUFFER INDEX = 0 

CALL ATASCI I TO FP 

Figure 8-21 Floating Point Exampl e 

8-49 



9 
THE DISK OPERATING SYSTEM 

The Disk Operat i ng System (DOS) is an extens Ion of the OS that a I lows 
you to access the ATARI 810'" Disk Drive mass storage device as you would 
access any of the other input/out devices. DOS has three primary components, 
the res I dent disk hand I er, the F II e Management System (FMS), and the Disk 
Ut i I I ty Package (DUP). The res i dent disk hand I er I s the on I y part of DOS 
provided in the OS ROM. FMS and DUP both reside on diskette, with FMS being 
loaded ("booted") Into memory at power-up. DUP is not automatically loaded 
at power up, but requires an expl icit request from an application program. 
I f the BAS I C language cartr I dge is present, for instance, DUP I s not loaded 
unti I a DOS statement is Issued. The following subsections describe each of 
these components in more deta I I and present other re I ated top i cs necessary 
for effective uti I ization of DOS. You should note that the comments in this 
section refer to version 2.0S of the Disk Operating System, which is 
substantially different from earl ier versions of DOS. For complete technical 
detal Is regarding DOS, you should also refer to the OPERATING SYSTEM Manual, 
and the DISK OPERATING SYSTEM I I Manual. 

The Resident Disk Handler 

The resident disk handler Is the simplest part of DOS. The disk handler 
does not con form to the norma I C I 0 ca I ling sequence as observed by other 
Dev i ce Hand I ers (see sect i on 8, the Operat i ng System, for deta I I s on us I ng 
the Centralized Input/Output Subsystem). In DOS 2.0S, the resident disk 
handler is used only during the initial boot process. From then on, 
additional code in the FMS is used in accessing the disk drives. The 
relationship of the disk handler to the I/O subsystem is shown in Figure 8-8 
of this manual. 

The Device Control Block (DCB) Is used to communicate with the disk 
handler. Figure 8-10 illustrates the structure of the DCB. The call ing 
sequence for the disk handler Is: 

JSR DSKINV 
BPL OKAY 

;cal ler has already set up DCB 
;system routine Vector to the resident Disk Handler 
;Branch If success, Y Reg . = 1 
;Else y reg. = error status (DCBSTA also has error) 

The disk handler Is a subroutine that Is used to support the physical 
transfers of data between the 6502 inside the ATARI Home Computer System, and 
another processor located Inside the ATARI 810 Disk Drive. This data 
transfer occurs over the serial input/output bus. The OS resident disk 
handler supports four functions: 

FORMAT 
READ SECTOR 
WRITE/VERIFY SECTOR 
STATUS 

Issue a Format command to the disk controller 
Read a specified sector 
Write sector; check sector to see If written 
Ask the disk controller for its status 

9-1 



DISK OPERATING SYSTEM 

The FORMAT command c I ears a II the tracks on the diskette and wr i tes 
sector addresses onto the tracks. No f i I e structure I s put on the diskette 
by th i s command. The data port Ion of each sector is set to a I I zeros, and 
the initial Volume Table of Contents and the FI Ie Directory are established. 
For more information on the physical layout of data on a diskette, refer to 
the OPERATING SYSTEM Manual and the subsection on FMS Disk UtI Ilzation. 

You should note that all I/O from the disk handler is sector-oriented. 
The sector I/O commands can be used to read and wr i te any sector on the 
dIskette. You can use them to implement your own fl Ie structure. Section 10 
of the OPERATI NG SYSTEM Manua I has an ex amp I e of us i ng the disk hand I er to 
wrIte a boot fi Ie. 

The STATUS functIon is used to determine the status of the dIsk drIve. 
ThIs command causes the dIsk drive to transmIt four bytes that define its 
current status. These bytes are loaded into DVSTAT [$02EA, 4J. The first 
byte is a command status byte and contains the fol lowing status bits: 

Bit-O = I nd I cates an I nva lid command frame was received. 
Blt-l = Indicates an I nva II d data frame was received . 
Blt-2 = Indicates that a PUT operation was unsuccessful. 
Blt-3 I nd icates that the disk Is write protected. 
Blt-4 = indIcates actIve/standby. 

The second byte is a hardware status byte and contaIns a copy of the status 
regIster of the INSl771-1 Floppy DIsk Controller chip used In the dIsk 
controller. The thIrd byte Is a tImeout byte that contaIns a 
controller-provIded maxImum timeout value (In seconds) to be used by the 
hand I er. The fourth byte I s unused. You can use the STATUS command for 
several purposes. Since the device tImeout value for a STATUS command is 
I ess than that for the other commands, you can use it to see I f a spec if i c 
dIsk drive is connected. If the disk handler returns a devIce timeout error , 
you know the disk drive Is not connected . 

9-2 



DISK OPERATING SYSTEM 

Fi Ie Management System 

The Fi Ie Management System (FMS) is a nonresident device handler that 
uses the normal device handler-CIO Interface. FMS is not present In the OS 
ROM. It Is booted In at power-up if a diskette containing DOS Is present. 

FMS, I ike the other device handlers, gets I/O control data from CIO. 
FMS then uses its own disk handler to input and output to the diskette. The 
additional disk handler code was provided primarily to overcome an operating 
system bug. This bug is the result of an Incorrect 16-bit compare of buffer 
pointers that may occur during SIO transfers. Specifically, it occurs when a 
buffer ends on a page boundary. However, since the result of this patch is 
to place a disk handler in RArvl, It Is possible to customize DOS somewhat. 
The hardware in the disk dr i ve I tse I f is capab I e of another funct I on not 
supported by the resident disk handler. This function is a WRITE SECTOR 
WITHOUT VER I FY command. Even though some re I i ab i I I ty Is sacr if iced, disk 
writes occur faster. To perform this customlzation from BASIC, you need to 
type: 

POKE 1913,80 

for fast Write (Write without Read Verify). If you want to restore the Write 
with Read verify, type: 

POKE 1913,87 

FMS is cal led by setting up an 10CB and cal ling CIO. FMS supports some 
special CIO functions not avai lable to other handlers: 

FORMAT 

NOTE 
POINT 

FMS cal Is the disk handler to format the diskette. 
After a successful format, FMS writes some fi Ie structure 
data on the diskette. 
FMS returns the current value of the fl Ie pointer. 
FMS sets the fl Ie pointer to a specified value. 

The subsection on Random Access contains instructions on using NOTE and 
POINT . 

Disk I/O 

You can access all the standard file I/O calls through CIO. In BASIC 
this means using the I/O commands, such as OPEN, CLOSE, GET, PUT and XIO. In 
assembly language you have to set up the 10CB yourself and cal I CIO. 

To do any disk I/O, you must first OPEN a f i Ie. The BAS I C syntax for 
the OPEN command is: 

OPEN #IOCB, ICAX1 ,O,"D:MYPROG.BAS" 

The #IOCB selects one of the eight 10CBs available (see the CIO 

9-3 



DISK OPERATING SYSTEM 

subsect i on insect i on 8, the Operat i ng System, for 10CB setup). You shou I d 
avoid 10CBs #0, 6, and 7 since they are used by the OS and BASIC at various 
times. I CAX 1 is the OPEN type code. The bits for the type code are: 

BIT 7 6 5 4 3 2 1 0 
x x x x W R D A 

Where: A is Append 
D is Directory 
R is Read 
W is Write 
x is unused 

Figure 9-1 Auxi I iary Byte Layout fort he OPEN Command 

The various values for ICAX1 are discussed in Section 5 of the OPERATING 
SYSTEM Manual. Some of the key things to note about the various OPEN modes 
are: 

ICAX1=6 

ICAX1=4 
ICAX1=8 

ICAX1=9 

ICAX1=12 

ICAX1=13 

This is used to OPEN the diskette directory. Records READ 
are the diskette directory entries. 
READ mode. 
WRITE mode. Any existing fi Ie opened in this mode is 
first deleted. The first bytes written wi I I be at 
the start of the fi Ie. 
WRITE APPEND mode. The fi Ie is left intact. Bytes written 
to this fi Ie are put at the end of the fi Ie. 
UPDATE mode. This mode al lows both READ and WRITE to the 
fi Ie. Bytes read and written start at the first byte in the 
f i Ie. 
Not supported. 

There are two types of I/O you can use to transfer data between your 
program and the disk, record or character. 

Character I/O means that the data in a fi Ie is a sequential string of 
bytes. DOS interprets this list of bytes as data, with none of the values 
be i ng interpreted as contro I characters. An examp I e of character data (a II 
values are in Hex): 

00 23 4F 55 FF 34 21. 

Record I/O means that data in a fi Ie is made up of a set of records. A 
record is a group of bytes fo I lowed by an End of Li ne (EOL) character with 
the value $9B. An example of two records is: 

00 23 4F 55 FF 34 9B 21 34 44 9B 
I record 1 I record 2 I 

Record and character I/O to f il es can be done in any arb i trary order. 

9-4 



DISK OPERATING SYSTEM 

Indeed, data created as records can be read as characters, and f II e data 
created as characters can be read as records. The on I y d I f ference between 
character and record I/O I s that records must end with a $9B va I ue. $9B Is 
treated as ordinary data when using character I/O. 

BASIC supports record I/O quite wei I. The commands PRINT and INPUT can 
be used to write and read records from files. BASIC does not completely 
support character I/O. The commands GET and PUT al low you to read and write 
a single byte at a time. However, the as has the ability to read and write 
blocks of characters. This ability Is not used by BASIC. In using this 
feature In the as, you must specify the length and address of the data block 
to be transferred. To use the character block mode of the OS from BASIC, you 
can write an assembly language module to be called from BASIC by the USR 
function. Figure 8-16 has an example of a subroutine to do character block 
I/O. 

The XIO command In BASIC is a general Input/Output statement that al lows 
for direct communication with CIO from BASIC . It Is described in more detai I 
In the fol lowing subsection. 

9- 5 



DISK OPERATING SYSTEM 

Disk Uti I ity Package 

The Disk Utility Package (DUP) Is a set of utilities for diskette 
management, fam I I I ar I y seen as the DOS menu. DUP executes commands by 
cal ling FMS through CIO. The commands are: 

A. DIRECTORY 
B. RUN CARTRIDGE 
C. COPY FILES 
D. DELETE FILES 
E. RENAME FILES 
F. LOCK FILES 
G. UNLOCK FILES 
H. WRITE DOS FILES 
I. FORMATO I SK 
J. DUPLICATE DISK 
K. SAVE BINARY FILE 
L. LOAD BINARY FILE 
M. RUN AT ADDRESS 
N. WRITE MEM.SAV FILE 
O. DUPLICATE FILE 

The following subsections describe each of these functions. However, 
for complete information on these functions, refer to the DISK OPERATING 
SYSTEM I I Manual. 

Wi I d Cards 

Many of the DUP commands requ ire a f II ename spec I f I cat Ion. DOS 
recognizes two "wi Id cards" that you can substitute for characters In a 
fi lename. Wi Id cards are represented by the special characters, question 
mark (?) and asterisk (*). 

These characters are used In f I I ename descr I ptors where, for whatever 
reason, there ex I sts some uncerta I nty as to the exact f II ename. An examp I e 
of this would be when a filename extension is not known, for Instance. 
Another examp I e wou I d be when you want to copy on I y f I I es with a spec I f I c 
extension such as .OBJ. 

The quest i on mark (?) may be subst i tuted for a sing I e character. The 
asterisk (*) can stand for any valid combination of characters or number of 
characters. The fol lowing examples I I lustrate the use of these characters In 
a Directory command. 

*.BAS 
02:*.* 
PRO*.BAS 

TEST?? 

\'I I I I I I st a I I f I I es on a diskette I n Dr I ve 1 that end In 
wi II list all the program files on the Drive 2 diskette. 
I'll I I list all the program files on diskette In Drive 1 
that begin with PRO and have .BAS as the extender. 
wi II list all the program files on diskette In Drive 1 
that begin with TEST and have any combination of letters 
or numbers for the last two characters. 

9-6 

.BAS. 



DISK OPERATING SYSTEM 

Disk Directory (A) 

The Disk Directory contains a list of al I the files on a diskette. This 
command w I I I I I st the f II enames, the extender, and the number of sectors that 
the f II e occup i es on the diskette. A part I a I II st can be generated by 
entering specific filename parameters. Wild cards can be used in the 
parameters. 

RUN CARTRIDGE (B) 

The 'B' command, Run Cartridge, Is typed, DOS gives control of the 
system to whichever cartridge Is Inserted. The response from that point on 
Is dependent upon specific cartridges. BSSIC, for Instance, will respond by 
printing READY on the screen. 

I f the diskette in dr I ve has not been changed 5 i nce the DUP was 
loaded, and If a MEM.SAV file Is present on the diskette, then the contents 
of th i s f II e I s cop i ed back into RAM before contro lis re I eased to the 
cartridge. This fl Ie normally Is used to store the contents of the portion of 
RAM that DUP occup I es when it is loaded. However, th is f II e must a I ready 
ex I st on the diskette when a ca I lis I ssued to load DUP. Before DUP is 
loaded, the RAM contents are written out to the diskette for later retrieval. 
You can think of MEM.SAV and DUP as swapping places between the diskette and 
RAM. 

Copy F i Ie (C) 

The Copy File command (lC'), Is used to copy a file from a diskette in 
one disk drive to another diskette in a second disk drive. You wi II be 
prompted to give fi Ie specifications for the file to COPY-FROM, TO. The 
first fl Ie specification may contain wi Id cards, and can be used to Indicate 
a ser I es of f I I es to be cop i ed. The second parameter is a I so genera I I Y a 
fi Ie specification, but may also be a destination device such as E: (screen) 
or P: (printer). The second parameter may be followed with a 'lA' option, 
which indicates that the first named file should be appended to the second 
fl Ie. This option should not be used with tokenlzed Basic files. 

De I ete F i I e (D) 

This option allows you to delete one or more files from a diskette. 
Wi Idcards can be used In file specification names. You can avoid having to 
respond to the delete verification promt by appending a 'IN' option to the 
fl Ie specification. 

Rename F i Ie (E) 

Th is opt I on a I lows you to change the name of an ex I st I ng f I I e on a 
diskette. You must prov I de two parameters, OLD NAME and NEW. The first 

9- 7 



DISK OPERATING SYSTEM 

parameter must be a comp I ete f i I e spec I f I cat ion, but the second I s just the 
new f I I e name. Wi I d cards are perm I tted for both names. I f no dev I ce 
spec i f i cat ion is inc I uded, D1: I s assumed. An error w II I be generated I f the 
first f i I e name doesn't ex I st on the diskette, I f the f I I e I s locked, or if 
the diskette is write protected. 

Lock F i I e (F) 

This command is used to prevent a fi Ie from being inadvertently erased 
or modified. A locked file Is indicated by an asterisk (*) preceding its 
name in the directory. Note however, that the Format command pays no 
attention to the Lock status of any fl Ie on a diskette. 

Un lock F I I e (G) 

Th i s opt I on I s used to Un lock a f I I e that has been prev I ous I y -Locked. 
Both this and the Lock commands may use wi Id cards. 

Write DOS Fi Ie (H) 

Th i s opt i on must be used to create a copy of DOS on a formatted 
diskette, since they can't be copied with a Copy command. 

Format Diskette (I) 

This option is used to create the sector and track information on a 
blank diskette so that It may be used by DOS . If a bad sector is encountered 
during the formatting process, DOS will not continue. A diskette with a bad 
sector cannot be formatted, and Is useless. v.'ARNINGI Be very careful with 
this command, for It will wipe out any existing file on the diskette. 

Dupl icate Disk (J) 

Th i s menu opt i on is used to create an exact dup I I cate of any diskette 
that has been created and maintained by DOS. This option can be used with 
either single or multiple drive systems. Dupl icatlng on a single drive 
system does require repeated manual swapping of the source and the 
destination diskettes. 

The dupl ication process occurs on a sector-by-sector basis. However, 
only those sectors that are marked as In use by the Volume Table of Contents 
are copied. 

Care shou I d be taken in us i ng th is command, for it destroyes any f II es 
that may have resided on the destination diskette. A good pol Icy would be to 
place a write protect tab on the source diskette to preclude a catastrophic 
mistake by typing the source and destination values In reverse order. 

9-8 



DISK OPERATING SYSTEM 

Binary Save (K) 

Th I s command I s use to save the contents of memory I ocat Ions I n an 
object file (binary) format. This format Is also used by the ATARI Editor 
Assemb I er Cartr I dge. Th is format cons I sts of two header bytes of $FF, two 
bytes for the starting load address, and two bytes for the ending load 
address. The rem a I nder of the f II e Is actua I load data. You w II I be prompted 
to enter a f II ename and the start I ng and end I ng addresses for the load. 
There I s a I so two add It i ona I address va I ues that may opt i ona I I Y be entered. 
These are values that upon load will be placed in locations known as INIT 
[$02EO,2J and RUN [$02E2,2J. If these locations are updated during a load, 
then the code pointed to by the values In these locations wi I I be executed. 

Binary Load (U 

This command Is used to load a binary load fl Ie from the diskette into 
RAM memory. I f va I ues for I NIT and RUN va I ues have been appended to th i s 
file, then It wi I I function as a load-and-go routine. 

Run At Address (M) 

This command Is used to transfer control to a machIne language routine 
located I n memory. Th i sis norma II y used to start a program that has been 
loaded, but did not have INIT or RUN values appended to the fi Ie. 

Create MEM.SAV 

This menu option Is used to create a fl Ie cal led MEM.SAV. This fl Ie is 
used to save the contents of memory that wi I I be over I aid when the OUP Is 
loaded In. Effectively then, MEM.SAV and DUP swap places from RAM to disk. 
Note that MEM.SAV must be on the diskette in drive 1 to work. It also takes 
about 20 seconds to swap memory out and load DUP In if MEM.SAV is used. 

Duplicate File (0) 

This option is provided to copy a fl Ie from one diskette to another in a 
single drive system. Functionally, It Is very similar to the single drive 
Copy command. The primary difference Is that Duplicate file can be used to 
copy a file created under DOS I, whereas the Copy command cannot. 

Substituting the XIO Command for DUP Menu Options 

The XIO command In BASIC is a general I/O statement that issues a direct 
cal I to the Centralized Input/Output Subsystem. The format of the XIO 
command Is: 

9-9 



DISK OPERATING SYSTEM 

XIO command number, # locb, aux lal iary 1, aux lal iary 2, fl Ie specification 

The XIO command can be used to perform functions that would normally require 
DUP to be present. The command number for var lous DUP funct Ions are shown 
below . 

COMMAND NUMBER 
3 
5 
7 
9 
11 
12 
13 
32 
33 
35 
36 

FUNCTION 
OPEN 
GET Record 
GET Characters 
PUT Record 
PUT characters 
CLOSE 
STATUS request 
RENAME 
DELETE 
LOCK F i Ie 
UNLOCK F II e 

9-10 



DISK OPERATING SYSTEM 

Random Access 

One common use of the diskette Is to store records that may be accessed 
In an arbitrary order. This Is referred to as Random Access. Using the I/O 
commands I n conjunct I on with the spec I a I commands NOTE and PO I NT a I lows you 
to create and use random access files. 

DOS keeps a file pointer for each file currently OPEN which tells the 
DOS the location of the next byte to be accessed In the fl Ie. NOTE and POINT 
are used to find out the current va I ue of th is po Inter, or to set it to a 
spec I f I c va I ue. The f I I e po I nter has two parameters, a sector number and a 
byte number. The sector number Is a value from 1-719 that tells DOS what 
sector on the diskette the f II e po I nter I s po I nt I ng to. The byte number 
I nd I cates the spec I f I c byte I n the sector that w I I I be the next accessed. 
Figure 9-2 shows the value of the fl Ie pointer at different bytes within the 
file. All values are hex. The file pointer values for the bytes in this 
file are given below the bytes In the fl Ie. 

E E E 
0 0 0 

A B C L D E F L G H I J K L A B 
File 41 42 43 9B 44 45 46 9B 47 48 49 4A 4B 9B •.. 41 42 

F II e Po Inter 

Sector 
Number 50 50 50 50 50 50 50 50 50 50 50 50 50 50 ... 50 51 

Byte 
Count 0 2 3 4 5 6 7 8 9 A B C D ... 7C 0 

Figure 9-2 NOTE and POINT Values 

The above fl Ie was created In BASIC by the fol lowing program: 

10 OPEN #1,8,0,"D:FILE" 
20 ?#l;"ABC" 
30 ?#1 ; "DEF" 
40 ?#l;"GHIJK" 

:REM Fill the rest of the sector 

100 ?#l;"AB" :REM This wrItes a record that crosses end of sector 
150 CLOSE #1 

The sector number of 50 was arb I trar I I Y chosen for th i s examp Ie. The 
sector number changed to 51 because the file Is longer than a sIngle sector. 
FMS I I nked the f I I e to the next ava I I ab I e sector, 51. The record "AB" 
crosses the end of the first sector . 

9-11 



DISK OPERATING SYSTEM 

The byte count of the fl Ie pointer starts at 0 and is incremented unti I 
the end 0 f the sector, $70 (125 Dec i ma I ) . DOS reserves the last 3 bytes of 
every sector for overhead data for the file. The maximum byte number is 124 
(0-124 = 125 tota I bytes). When the f II e reaches the end of a sector, the 
byte number recycles to O. 

When the POINT command is used to set the fl Ie pointer, DOS checks that 
the sector po i nted to be longs to the f I I e that I s OPENed. I f a f II e number 
mismatch is found, the POINT operation Is not allowed. 

Figure 9-3 is a subroutine that may be used to save records, keep track 
of where they are, and retrieve them In random access fashion. 

1000 REM THIS ROUTINE CREATES AND ACCESSES RANDOM ACCESS FILES FOR FIXED 
1001 REM LENGTH RECORDS 
1002 REM 
1003 REM ..• Cm~MANDS ARE 
1004 REM CMD=l WRITE NTH RECORD 
1005 REM CMD=2 READ NTH RECORD 
1006 REM CMD=3 UPDATE NTH RECORD 
1007 REM 
1008 REM RECORD$ IS THE INPUT/OUTPUT RECORD 
1009 REM N IS THE RECORD NUMBER 
1010 REM INDEX IS A TWO DIMENSIONAL ARRAY DIM'ED INDEX(l,RECNUM) 
1015 REfvl INDEX HOLDS THE NOTE VALUES FOR ALL RECORDS 
1020 REM THIS ROUTINE ASSUMES LOGICAL FILE #1 HAS BEEN OPENED FOR I/O 
11 00 REt~ 

1120 REM ROUTINE BEGINS AT 1200 
1130 REM 
1200 ON CMD GOTO 2000,3000,4000 
2000 REM .............•........•..... 
2100 REM WRITE NTH RECORD 
2200 NOTE #l,X,Y 
2300 INDEX(SEC,N)=X: INDEX(BYTE,N)=Y 
2400 ? #l;RECORD$:RETURN 
3000 REM ......•............•........ 
3010 REM READ NTH RECORD 
3020 REM 
3030 X=INDEX(SEC,N):Y=INDEX(BYTE,N) 
3040 POINT #l,X,Y 
3050 INPUT #l;RECORD$ 
3060 RETURN 
4000 REM ••••••••••••••..••...•..•... 
4010 REM UPDATE NTH RECORD 
4020 REM 
4040 X=INDEX(SEC,N):Y=INDEX(BYTE,N) 
4050 POINT #l,X,Y 
4060 ? #l;RECORD$ 
4070 RETURN 

Figure 9-3 NOTE and POINT Example 

9-12 



DISK OPERATING SYSTEM 

FMS Disk Uti I izatlon 

The map be low shows the overa I I I ayout that DOS uses In manag I ng disk 
sector uti I ization for a standard 720 sector diskette. 

+---------------+ 
I BOOT record I 
+---------------+ 
I FMS BOOT I 
= f i Ie = 

'DOS.SYS' 
+---------------+ 
I Disk I 
= Uti I Ities = 

Package 
+-- -------------+ 
I User I 

f i Ie = 
Area 

+---------------+ 
I VOLUME TABLE I 
I of CONTENTS I 
+---------------+ 
I Fi Ie I 
= Directory = 

+---------------+ 
I User I 
= fl Ie = 

Area 
+---------------+ 
I Unused I 
+---------------+ 

FMS Boot Record 

Sector 

Sector 2 

Sector 40 ($28) 

Sector 41 ($29) 

Sector 83 ($53) 

Sector 84 ($54) 

Sector 360 ($168) 

Sector 361 ($169) 

Sector 368 ($170) 

Sector 369 ($171) 

Sector 719 ($2CF) 

Sector 720 ($200) 

The first sector on a diskette is reserved for FMS boot usage. Th Is 
record contains information concerning the FMS system configuratIon, as wei I 
as an I nd i cat i on of whether the DOS . SYS I s present on the dIskette or not. 
If the DOS fIles are present they usually begIn at sector 2 and extend for 81 
sectors. 

9-13 



DISK OPERATING SYSTEM 

Volume Table of Contents 

Sector 360 is reserved for the FMS Vo I ume Tab I e of Contents (VTOC). 
Th I s tab I e conta I ns a bit map that shows wh i ch sectors on the diskette are 
allocated and which are free. Since VTOC Is referred to before every disk 
write, sector 360 was chosen to hold VTOC. This sector is in the middle of 
the diskette and has the minimum average access time of any diskette sector. 
The bit map begins in byte 10 of VTOC and extends to byte 99. Each byte In 
this area contains allocation information for eight sectors. A 0 in a bit 
position indicates the corresponding sector is in use, and a 1 Indicates it 
Is avai lable. The volume bit map Is organized as shown below: 

7 o 
+-+-+-+-+-+-+-+-+ 
I 1 2 3 4 5 6 71 
+-+-+-+-+-+-+-+-+ 
18 9 • • • • • • I 

+-+-+-+-+-+-+-+-+ 

FI Ie Directory Format 

Byte 10 of VTOC 
11 

99 

Eight sectors (361-368) are reserved for a diskette fl Ie directory, with 
each sector able to store information for up to eight files. Thus, the 
max imum number of fi les that can be placed on a single diskette Is 64. 

Each f i led I rectory entry cons i sts of 16 bytes. The format of each 
entry Is shown on the next page. 

9-14 



DISK OPERATING SYSTEM 

+----------------+ 
I flag byte I Byte 0 
+----------------+ 
I sector ( 10) I 
+ + 
I count ( hi) I 2 
+----------------+ 
I starting ( 10) I 3 
+ sector + 
I number ( hi) I 4 
+----------------+ 
I (1) I 5 
+ + 
I ( 2) I 6 
+ + 
I (3 ) I 7 
+ + 
I f i Ie (4) I 8 
+ + 
I name ( 5) I 9 
+ + 

primary (6 ) I 10 
+ + 
I (7 ) I 11 
+ + 
I (8 ) I 12 
+----------------+ 
I f II e (1) I 13 
+ + 

name (2) I 14 
+ + 
I extension (3 ) 15 
+----------------+ 

The flag byte has the fol lowing bit assignments 
Blt-7 = 1 If the fi Ie has been deleted. 
B i t-6 = 1 I f the f I lei sin use. 
B I t-5 = 1 I f the f i I e I s locked. 
B i t-O = 1 I f OPEN for output. 

9-15 



DISK OPERATING SYSTEM 

FMS Fi Ie Sector Format 

The format of a sector in a diskette fi Ie Is shown below: 

7 o 
+-+-+-+-+-+-+-+-+ 
I I Byte 0 
= D A T A = 

124 
+-+-+-+-+-+-+-+-+ 
I f i Ie # I hi I 125 
+-+-+-+-+-+-+-+-+ 
Iforward pointerl 126 
+-+-+-+-+-+-+-+-+ 
lSI byte count I 127 
+-+-+-+-+-+-+-+-+ 

The file # Is Information that FMS uses to ensure fi Ie Integrity Is 
maintained. This field contains the value of the directory position for that 
file. If there is ever a mismatch between the file's position in the 
directory and the f II e number fie I din a sector, the FMS wi I I generate an 
error, and abort whichever operation was being performed. 

The forward pointer Is a 10-bit pointer that indicates the next sector 
in a file. This Is described as a forward linked list, with the forward 
pointer of the last sector equal to O. 

If the S bit is set (i.e., equal to 1), then the sector is a "short 
sector" and contains less than 125 data bytes. 

The byte count field contains the number of bytes in the sector. 

9-16 



DISK OPERATING SYSTEM 

THE AUTORUN.SYS FILE 

DOS contains a feature that allows a special file to be loaded Into 
memory each t I me the system I s powered-up. Th is can be data to custom i ze 
features of the system such as setting up different margin values, or 
chang I ng the defau I t co I ors. I f des ired th is can be a mach i ne language 
program to be executed before the normal DOS boot process occurs. 

This fi Ie must be a binary load fl Ie with the name AUTORUN.SYS. To make 
th is an executab Ie f I Ie, an address va I ue must be loaded I nto the I N IT 
[$02EO,2J or the RUN [$02E2,2J locations. The difference between these two 
parameters I s that the code po i nted to by I NIT w I I I be executed as soon as 
that location is loaded, whereas code pointed to by RUN wi I I only be executed 
after the load process Is complete. To return control to DOS after executing 
an AUTORUN.SYS file, terminate your code with an RTS. 

The AUTORUN.SYS file can be extremely useful in setting up "Ioad-and-go" 
assembly language routines. It also provides a method of reconfiguring the 
OS by "stea II ng" certa I n of the system vectors before DOS has a chance to be 
Initialized. Among other things, this feature can be used to provide a 
certain measure of diskette protection. Refer to Figure 8-3 for an example 
of setting up an AUTORUN.SYS fl Ie to reset the MEMLO pointer. 

9-17 



WHAT IS ATARI BASIC ? 

10 
AlARI BASIC 

ATARI BASIC is an interpreted language. This means programs can be 
run when they are entered without intermediate stages of compilation and 
linking. The ATARI BASIC interpreter resides in an 8K ROM cartridge in 
the left slot of the computer. It encompasses addresses AOOO through 
BFFF. At least 8K of RAM is required to run BASIC. 

To use ATARI BASIC effectively, you must know its strengths and 
weaknesses. With this information, programs can be written that make good 
use of the assets and features of ATARI BASIC. 

Strengths of ATARI BASIC 

o It supports the operating system graphics - Simple graphics 
calls can be made to display information on the screen. 

o It supports the hardware - Such calls as SOUND, STICK and PADDLE 
are simple interfaces to the hardware of the computer. 

o Simple assembly interface - The USR function allows easy user 
access to assembly language routines. 

o ROM based interpreter - The BASIC interpreter ~s ~n ROM, which 
prevents accidental modification by the user program. 

o DOS support - Specialized calls such as NOTE and POINT (DOS 
2.0S) allow the user to randomly access a disk through the disk 
operating system. 

o Peripheral support - Any peripheral recognized by the operating 
system can be accessed from a BASIC program. 

Weaknesses of ATARI BASIC 

o No support of integers - All numbers are stored as 6-byte BCD 
floating point numbers. 

o Slow math package - Since all numbers are s~x bytes long, math 
operations become rather slow. 

o No string arrays - Only one-dime nsional strings can be created. 

10-1 



ATARI BASIC 

HOW ATARI BASIC WORKS 

The workings of the BASIC interpreter are summarized as follows: 

o BASIC gets a line of input from the user and converts it into a 
tokenized form. 

o It then puts this line into a token program. 

o This program is then executed. 

The details of these operations are discussed ~n the following four sections. 

o The Tokenizing Process 

o The Token File Structure 

o The Program Execution Process 

o System Interaction 

10-2 



ATARI BASIC 

THE TOKENIZING PROCESS 

In simple terms, the tokenization of a line of code in BASIC looks 
like this: 

l. BASIC gets a line of input 
2. It then checks for legal syntax 
3. During syntax checking it is tokenized 
4. The tokenized line is moved into the token program 
5. If the line is in immediate mode it is executed 

To better understand the tokenizing process, some terms must first be 
defined: 

Token 

Statement 

Line 

Command 

Variable 

Constant 

Operator 

Function 

EOL 

BCD 

An 8-bit byte containing a particular interpretable code. 

A complete "sentence" 
some meaningful task. 
by colons. 

of tokens that causes BASIC to perform 
In LIST form, statements are separated 

One or more statements preceded either by a line number in 
the range of 0 to 32767 or an immediate mode line with no 
number. 

The first executable token of a statement that tells BASIC to 
interpret the tokens that follow in a particular way. 

A token that is an indirect pointer to its actual value; thus 
the value can be changed without changing the token. 

A 6-byte BCD value preceeded by a special token. This value 
remains unchanged throughout program execution. 

Anyone of 46 tokens that in some way move or modify the 
values that follow them. 

A token that when executed returns a value to the program. 

End of Line. A character with the value 9B hex. 

Binary code decimal. A number that uses the 6502 decimal mode. 

BASIC begins the tokenizing process by getting a line of input. This 
input will be obtained from one of the handlers of the operating system. 
Normally it is from the screen editor; however with the ENTER command, any 
device can be specified. The call BASIC issues is a GET RECORD command, 
and the data returned is ATASCII information terminated by an EOL. This 
data is stored by CIO into the BASIC Input Line Buffer from 580 to 5FF 
hex. 

10-3 



ATARI BASIC 

After the record is returned, the syntax checking and tokenizing 
processes begin. First BASIC looks for a line number. If one is found, 
it is converted into a 2-byte integer. If no line number is present, 
it is assumed to be in immediate mode and the line ·number 8000 hex is 
assigned to it. These will be the first two tokens of the tokenized line. 
This line is built In the token output buffer that is 256 bytes long and 
resides at the end of the reserved operating system RAM. 

The next token is a dummy byte reserved for the byte count (or 
offset) from the start of this line to the start of the next line. 
Following that is another dummy byte for the count of the start of this 
line to the start of the next statement. These values will be set when 
tokenization is complete for the line and the statement respectively. The 
use of these values is discussed in the program execution process section. 

BASIC now looks for the command of the first statement of the input 
line. A check is made to determine if this is a valid command by scanning 
a list of legal commands in ROM. If a match is found, then the next byte 
in the token line becomes the number of the entry in the ROM list that 
matched. If no match is found, a syntax error token is assigned to that 
byte and BASIC stops tokenizing, copies the rest of the input buffer in 
ATASCII format to the token output buffer, and prints the error line. 

Assuming a good line, one of seven items can follow the command: a 
variable, a constant, an operator, a function, a double quote, another 
statement, or an EOL. BASIC tests if the next input character is numeric. 
If not then it compares that character and those following against the 
entries of the variable name table. If this is the first line of code 
entered in the program then no match is found. The characters are then 
compared against the function and operator tables. If no match is found 
there then BASIC assumes that this is a new variable name. Since this is 
the first variable it is assigned the first entry in the variable name 
table. The characters are copied out of the input buffer and stored into 
the name table with the most significant bit (MSB) set on the last byte of 
the name. Eight bytes are then reserved in the variable value table for 
this entry. (See the variable value table discussion in the section, 
"Token File Structure".) 

The token that ends up In the tokenized line is the variable number 
minus one, with the MSB set. Thus the token of the first variable entered 
would be 80 Hex, the second would be 81, and so on up to FF for a total of 
128 unique variable numbers. 

If a function is found, then its entry number in the operator function 
table is assigned to the token. Functions require certain sequences of 
parameters; these are contained in syntax tables, and if they are not 
matched, a syntax error will result. 

If an operator is found, then a token is glven its table entry number. 
Operators can follow each other in a rather complex fashion (such as 
multiple parentheses), so the syntax checking of them is a bit complicated. 

10-4 



ATARI BASIC 

In the case of the double quotes, BASIC assumes that a character 
string is following and assigns a OF hex to the output token and reserves 
a dummy byte for the string length. The characters are moved from the 
input buffer into the output buffer until the second set of quotes is 
found. The length byte is then set to the character count. 

If the next characters in the input buffer are numeric, BASIC 
converts them into a 6-byte BCD constant. A OE hex token will be put ~n 

the output buffer, followed by the six byte constant. 

When a colon is encountered, a 14 hex token is inserted in the output 
buffer and the offset from the start of the line is stored in the dummy 
byte that was reserved for the count to the start of the next statement. 
At this point another dummy byte is reserved and the process goes back to 
get a command. 

When the EOL is found, a 16 hex token is stored and the offset from 
the start of the line is put in the dummy byte for the line offset. At 
this point, tokenization is complete and BASIC moves the token line 
into the token program. First it searched the program for that line 
number. If it is found it replaces the old line with the new one. If it 
is not found, then it inserts the new line in the correct numerical 
sequence. In both cases, the data following the line will be moved either 
up or down in memory to allow for an expanding and contracting program 
s~ze. 

BASIC now checks if the tokenized line is an immediate mode line. 
If so, that line is executed according to the methods described in the 
interpretive process; if not, BASIC goes back to get another line of 
input. 

If at any time during the tokenizing process the length of the token 
line exceeds 256 bytes, an ERROR 14 message (line too long) is sent to the 
screen and BASIC goes back to get the next line of input. 

An example line of input and its token form looks like this (all 
token values are hexadecimal): 

10 LET X=l : PRINT X 

OA 00 13 OF 06 80 2D DE 40 01 00 00 00 00 14 13 20 80 16 

L~I t 
1 

t 
, J 

Jrin~nd 
v 

I of Line 
Let 1 

X 
X 

Line Statement 
Offset Numeric Offset 

Constant 
End 

Statement Of 
Offset Statement 

Figure 10-1 Example Line of Tokenized Input 

10-5 



COMMANDS OPERATORS FUNCTIONS 

HEX DEC HEX DEC HEX DEC 
----------- --------- - --- - ------------------------------------------

00 0 REM OE 14 [NUM CONST] 3D 61 STR$ 
01 1 DATA OF 15 [STR CONST] 3E 62 CHR$ 
02 2 INPUT 10 16 [NOT USED] 3F 63 USR 
03 3 COLOR 11 17 [NOT USED] 40 64 ASC 
04 4 LIST 12 18 , 41 65 VAL 
05 5 ENTER 13 19 $ 42 66 LEN 
06 6 LET 14 20 [STMT END] 43 67 ADR 
07 7 IF 15 21 , 44 68 ATN 
08 8 FOR 16 22 [LINE END] 45 69 COS 
09 9 NEXT 17 23 GOTO 46 70 PEEK 
OA 10 GOTO 18 24 GOSUB 47 71 SIN 
OB 11 GO TO 19 25 TO 48 72 RND 
OC 12 GOSUB 1A 26 STEP 49 73 FRE 
OD 13 TRAP 1B 27 THEN 4A 74 EXP 
OE 14 BYE 1C 28 it 4B 75 LOG 
OF 15 CONT 1D 29 <= [NUMERICS] 4C 76 CLOG 
10 16 COM 1E 30 <> 4D 77 SQR 
11 17 CLOSE IF 31 )= 4E 78 SGN 
12 18 CLR 20 32 < 4F 79 ABS 
13 19 DEG 21 33 ) 50 80 INT 
14 20 DIM 22 34 51 81 PADDLE 
15 21 END 23 35 52 82 STICK 
16 22 NEW 24 36 * 53 83 PTRIG 
17 23 OPEN 25 37 + 54 84 STRIG 
18 24 LOAD 26 38 -
19 25 SAVE 27 39 / 
lA 26 STATUS 28 40 NOT 
IB 27 NOTE 29 41 OR 
lC 28 POINT 2A 42 AND 
ID 29 XI0 2B 43 ( 

1E 30 ON 2C 44 ) 

IF 31 POKE 2D 45 [ARITHM ASS IGN] 
20 32 PRINT 2E 46 [STRING ASSIGN] 
21 33 RAD 2F 47 <= [STRINGS] 
22 34 READ 30 48 <> 
23 35 RESTORE 31 49 )= 
24 36 RETURN 32 50 < 
25 37 RUN 33 51 ) 

26 38 STOP 34 52 
27 39 POP 35 53 + [UNARY] 
28 40 ? 36 54 -
29 41 GET 37 55 [STRING LEFT PAREN] 
2A 42 PUT 38 56 [ARRAY LEFT PAREN] 
2B 43 GRAPHICS 39 57 [DIM ARRAY LEFT PAREN] 
2C 44 PLOT 3A 58 [FUN LEFT PAREN] 
2D 45 POSITION 3B 59 [DIM STR LEFT PAREN] 
2E 46 DOS 3C 60 , [ARRAY COMMA] 
2F 47 DRAWTO 
30 48 SETCOLOR 
31 49 LOCATE 
32 50 SOUND 

10-6 



COMMANDS 

HEX DEC 

33 
34 
35 
36 
37 

51 
52 
53 
54 
55 

LPRINT 
CSAVE 
CLOAD 
[IMPLIED LET) 
ERROR - [SYNTAX) 

OPERATORS FUNCTIONS 

HEX DEC HEX DEC 

10-7 



ATARI BASIC 

THE TOKEN FILE STRUCTURE 

The token file contains two major segments: (1) a group of zero page 
pointers that point into the token file, and (2) the actual token file 
itself. The zero page pointers are 2-byte values that point to varlOUS 
sections of the token file. There are nine 2-byte pointers and they are 
in locations 80 to 91 hex. Following is a list of the pointers and the 
sections of the token file they reference. 

Pointer (hex) 

LOMEM 80,81 

VNTP 82,83 

VNTD 84.,85 

VVTP 86,87 

Token File Section (Contiguous Blocks) 

Token output buffer - This is the buffer BASIC uses 
to tokenize one line of code. It is 256 bytes long. 
This buffer resides at the end of the operating 
system's allocated RAM. 

Variable name table - A list of all the variable names 
that have been entered in the program. They are 
stored as ATASCII characters, each new name stored in 
the order it was entered. Three types of name entries 
exist: 
1. Scalar variables - MSB set on last character in name. 
2. String variables - last character is a "$" with the 

MSB set. 
3. Array variables - last character is a "(" with the 

MSB set. 

Variable name table dummy end - BASIC uses this 
pointer to indicate the end of the name table. This 
normally points to a dummy zero byte when there are 
less than 128 variables. When 128 variables are 
present, this points to the last byte of the last 
variable name. 

Variable value table - This table contains current 
information on each variable. For each variable in 
the name table, eigth bytes are reserved in the value 
table. The information for each variable type is: 

Byte Number 1 2 3 4 5 6 7 8 
Scalar 00 vadt 6-byte BCD constant 
Array (DIMed) 41 Vadt Offset from first second 

(unDIMed) 40 STARP(8C,8D) DIM + 1 DIM + 1 
String (DIMed) 81 vadt Offset from Length DIM 

(unDIMed) 80 STARP(8C,8D) 

A scalar variable contains a numerlC value. An example 
is X=l. The scalar is X and its value is 1, stored in 
6-byte BCD format. An array is composed of numeric 
elements stored in the string/array area and has one 
entry in the value table. A string, composed of 
character elements in the string/array area, also has 
one entry in the table. 

10-8 



Pointer (hex) 

STMTAB 88,89 

STMCUR 8A,8B 

STARP 8C,8D 

ATARI BASIC 

Token File Section (Contiguous Blocks) 

The first byte of each value entry indicates the type 
of variable: 00 for a scalar, 40 for an array, and 80 
for a string. If the array or string has ~een dimen­
sioned, then the LSB is set on the first byte. 

The second byte contains the variable number. The 
first variable entry is number zero, and if 128 variables 
were present, the last would be 7F. 

In the case of the scalar variable the third through 
eighth byte contain the6-byte BCD number that has 
currently been assigned to it. 

For arrays and strings, the third and fourth bytes 
contain an offset from the start of the string/array 
area (described below) to the beginning of the data. 

The fifth and sixth bytes of an array contain its 
first dimension. The quantity is a l6-bit integer 
and its value is 1 greater than the user entered. 
The seventh and eighth bytes are the second dimen­
sion, also a value of 1 greater. 

The fifth and sixth bytes of a string are a 16 bit 
integer that contains its current length. The seventh 
and eighth bytes are its dimension (up to 32767 bytes 
in size). 

Statement Table - This block of data includes all the 
lines of code that have been entered by the user and 
tokenized by BASIC, and it also includes the immediate 
mode line. The format of these lines is described ln 
the tokenized line example of the section on the 
tokenizing process. 

Current Statement - This pointer is used by BASIC to 
reference pdrticular tokens within a line of the 
statement table. When BASIC is waiting for input, 
this pointer is set to the beginning of the immediate 
mode line. 

String/Array area - This block contains all the 
string and array data. String characters are stored 
as one byte ATASCII entries, so a string of 20 characters 
will require 20 bytes. Arrays are stored with 6-byte 
BCD numbers for each element. A 10-element array would 
require 60 bytes. 

This area is allocated and subsequently enlarged 
by each dimension statement encountered, the amount 
being equal to the size of a string dimension or SlX 

times the size of an array dimension. 

10-9 



Pointer (hex) 

RUNSTK 8E,8F 

MEMTOP 90,91 

ATARI BASIC 

Token File Section (Contiguous Blocks) 

Run time stack - This software stack contains GOSUB 
and FOR/NEXT entries. The GOSUB entry consists of 
four bytes. The first is a 0 byte indicating GOSUB, 
followed by the 2-byte integer line number on which 
the call occured. This is followed by the offset 
into that line so the RETURN can come back and execute 
the next statement. 

The FOR/NEXT entry contains 16 bytes. The first is 
the limit the counter variable can reach. The second 
byte is the step or counter increment. Each of these 
quantities is in 6-byte BCD format. The thirteenth 
byte is the counter variable number with the MSB set. 
The fourteenth and fifteenth bytes are the line 
number, and the sixteenth is the line offset to the 
FOR statement. 

Top of application RAM - This is the end of the user 
program. Program expansion can occur from this point 
to the end of free RAM, which is defined by the start 
of the display list. The FRE function returns the 
amount of free RAM by subtracting MEMTOP from HIMEM 
(2ES,2E6). Note that the BASIC MEMTOP is not the same 
as the OS variable called MEMTOP. 

10-10 



ATARI BASIC 

THE PROGRAM EXECUTION PROCESS 

Executing a line of code is a process that involves reading the 
tokens that were created during the tokenization process. Each token has 
a particular meaning that causes BASIC to execute a specific series of 
operations. The method of doing this requires that BASIC get one token at 
a time from the token program and then process it. The token is an index 
into a jump table of routines, so a PRINT token will point indirectly to a 
PRINT processing routine. When that processing is complete, BASIC returns 
to get the next token. The pointer that is used to fetch each token is 
called STMCUR and is at SA and SB. 

The first line of code that is executed in a program is the immediate 
mode line. This is usually a RUN or GOTO. In the case of the RUN, BASIC 
gets the first line of tokens from the statement table (tokenized program) 
and processes it. If all the code is in-line, then BASIC merely executes 
consecutive lines. 

If a GOTO is encountered, then the line to go to must be found. The 
statement table contains a linked list of tokenized BASIC lines. These 
lines are stored in ascending nume rical order. To find a line somewhere in 
the middle of the table, BASIC starts by finding the first line of the program. 

The address of the first line is contained in the STMTAB pointer at 88 
and 89. This address is now stored in a temporary pointer. The first 2 
bytes of the first line are its line number which is compared against the 
requested line number. If the first number is less, then BASIC gets the 
next line by adding the third byte of the first line to the temporary 
pointer. The temporary pointer will now be pointing to the second line. 
Again the first 2 bytes of this new line are compared to he requested line, 
and if they are less, the third byte is added to the pointer. If a line 
number does match, the contents of the temporary pointer are moved into 
STMCUR and BASIC fetches the next token from the new line. Should the 
requested line number not be found, an ERROR 12 is generated. 

The GOSUB involves more processing than the GOTO. The line finding 
routine is the same, but before BASIC goes to that line it sets up an 
entry in the Run Time Stack. It allocates four bytes at the end of the 
stack and stores a 0 in the first byte to indicate a GOSUB stack entry. 
It then stores the line number it was on when the call was made into the 
next two bytes of the stack. The final byte contains the offset in bytes 
from the start of that line to where the GOSUB token was found. BASIC 
then executes the line it looked up. When the RETURN is found, the entry 
on the stack is pulled off, and BASIC returns to the calling line. 

The FOR command causes BASIC to allocate 16 bytes on the Run Time 
Stack. The first six bytes are the limit the variable can reach in 6-byte 
BCD format. The second six bytes are the step, in the same format. Following 
these, BASIC stores the variable number (MSB set) of the counting variable. 
It then stores the present line number (two bytes) and the offset into the line. 
The rest of th e line is then executed. 

10-11 



ATARI BAS IC 

When BASIC finds the NEXT command, it looks at the last entry on the 
stack. It makes sure the variable referenced by the NEXT is the same as 
the one on the stack and checks if the counter has reached or exceeded the 
limit. If not then BASIC returns to the line with the FOR statement and 
continues execution. If the limit was reached, then the FOR entry 1S 

pulled off the stack and execution continues from that point. 

When an expression is evaluated, the operators are put onto an 
operator stack and are pulled off one at a time and evaluated. The order 
in which the operators are put onto the stack can either be implied, in 
which case BASIC looks up the operator's precedence from a ROM table, or 
the order can be explicitly stated by the placement of parentheses. 

Pressing the BREAK key at any time causes the operating system to set 
a flag to indicate this occurrence. BASIC checks this flag after each 
token is processed. If it finds it has been set, it stores the line number 
at which this occurred, prints out a "STOPPED AT LINE XXXX" message, clears 
the BREAK flag and waits for user input. At this point the user could 
type CONT and program execution would continue at the next line. 

10-12 



ATARI BASIC 

SYSTEM INTERACTION 

BASIC communicates with th e Operating System primarily through the 
use of I/O calls to the Central I/O Utility (CIO). Following is a list of 
user BASIC calls and th e corresponding operating system IOCB (Input/Output 
Control Block) setups. 

BASIC 

OPEN itl, 12, ° , "E: " 

GET iF1,X 

PUT if 1, X 

INPUT il1,A$ 

PRINT if1,A$ 

XIO lS,#6,12,0,"S:" 

OS 

IOCB=1 
Command=3 (OPEN) 
Aux1=12 (Input/Output) 
Aux2=0 
Buffer Address=ADR(1'E:") 

IOCB=1 
Command=7 (Get Characters) 
Buffer Length=O 
Character returned in accumulator 

lOCB=1 
Command=11 (Put Characters) 
Buffer Length=O 
Character output through accumulator 

IOCB=l 
Command=5 (Get Record) 
Buffer Length=Length of A$ (not over 120) 
Buffer Address=Input Line Buffer 

IOCB=l 
BASIC uses a special put byte vector 
in the IOCB to talk directly to the 
handl er . 

IOCB=6 
Command=lS (Special - Fill) 
Aux1=12 
Aux2=0 

SAVE/LOAD: When a BASIC token program is saved to a device, two 
blocks of information are written. The first block consists of seven of 
the nine zero page pointers that BASIC uses to maintain the token file. 
These are LOMEM(SO,Sl) through STARP (SC,SD). There is one change made to 
these pointers when they are written out: The value of LOMEM is subtracted 
from each of the 2-byte pointers, and these new values are written to 
the device. Thus th e first 2-bytes written will be 0,0. 

The second block of information written consists of the following 
toke n file sections: (1) The variable name table, (2) the variahle value 
table, (3) the token program, and (4) th e immediate mode line. 

When this program is loaded into memory, BASIC look s at the OS 
variable MEMLO (2E7,2ES) and adds its value to each of the 2-byte zero 
page pointers as they are read from th e device. These pointers are placed 
back on page zero a nd then the va l ues of RUNSTK(SE,8F) and MEMTOP (90,91) 
are se t to the value in STARP. 

10-13 



ATARI BASIC 

Next, 256 bytes are reserved in memory above the value of MEMLO to 
allocate space for the token output buffer. Then the token file informa­
tion, consisting of the variable name table through the immediate mode 
line, is read in. This data is placed in memory immediately following the 
token output buffer. 

os 

MEMLO 2E7,2 E8 

APPMHI OE,OF 

MEMTOP 2E5, 
SDLST 230,23 

2E6 
1 

SAVMSC 58,5 9 

TXTMSC 294,2 95 

RAMTOP 6A 
RAMSIZ 2E4 

Figure 7-2 

RAM 

PAGE 
SIX 

~ 

BASIC 
TOKEN 

PROGRAM 

FREE 
RAM 

~ 

DISPLAY 
LIST 

SCREEN 
RAM 

.. 
TEXT 

WINDOW 

~ 

BASIC 

80,81 LOMEM 
82,83 VNTP 
84,85 VNTD 
86,87 VVTP 
88,89 STMT AB 
8A,8B STMCUR 
8C,8D STARP 

8E,8F RUNSTK 
90,91 MEMTOP 
OE,OF APHM 

• I 
FRE (0) 

I 
I , 

2E5,2E6 HIMEM 

OS and BASIC Point e rs (No DOS Pre s ent) 

10-14 



ATARI BASIC 

IMPROVING PROGRAM PERFORMANCE 

Program performance can be improved in two ways. First the execution 
time can be decreased (it will run faster) and second, the amount of space 
required can be decreased, allowing it to use less RAM. To attain these 
two goals, the following lists can be used as guidelines. The methods of 
improvement in each list are primarily arranged in order of decreasing 
effectiveness. Therefore the method at the top of a list will have more 
impact than one on the bottom. 

Speeding Up a BASIC Program 

1. Recode - Because BASIC ~s not a structured language, the code 
written in it tends to be inefficient. After many revisions 
it becomes even worse. Thus, the time spend to restructure the 
code is worthwhile. 

2. Check algorithm logic - Make sure that the code to execute a 
process is as efficient as possible. 

3. Put frequently called subroutines and FOR/NEXT loops at the 
start of the program - BASIC starts at the beginning of a 
program to look for a line number, so any line references near 
the end will take longer to reach. 

4. For frequently called operations within a loop use in-line code 
rather than subroutines - The program speed can be improved here 
since BASIC spends time adding and removing entries from the run 
time stack. 

5. Make the most frequently changing loop of a nested set the 
deepest - In this way, the run time stack will be altered the 
fewest number of times. 

6. Simplify floating point calculations within the loop - If a 
result is obtained by multiplying a constant by a counter, time 
could be saved by changing the operation to an add of a constant. 

7. Set up loops as multiple statements on one line - In this way 
the BASIC interpreter will not have to get the next line to 
continue the loop. 

8. Disable the screen display - If visual information ~s not 
important for a period of time, up to a 30 percent time savings 
can be made with a POKE 559,0. 

9. Use a faster graphics mode or a short display list - If a full 
screen display is n o t necessary then up to 25 percent time savings 
can be made. 

10. Use assembly code - Time savings can be made by encoding loops 
in assembler and using the USR function. 

10-15 



ATARI BASIC 

Saving Space In A BASIC Program 

1. Recode - As mentioned previously, restructuring the program will 
make it more efficient. It will also save space. 

2. Remove remarks - Remarks are stored as ATASCII data and merely 
take up space in the running program. 

1. Replace a constant used three times or more with a variable -
BASIC allocates seven bytes for a constant but only one for a 
variable reference, so six bytes can be saved each time a 
constant is replaced with a variable assigned to that constant's 
value. 

4. Initialize variables with a read statement - A data statement 
is stored in ATASCII code, one byte per character, whereas an 
assignment statement requires seven bytes for one constant. 

5. Try to convert numbers used once and twice to operations of 
predefined variables - An example is to define Zl to equal 1, Z2 
to equal 2, and if the number 3 is required, replace it with the 
expression Zl + Z2. 

6. Set frequently used line numbers (in COSUB and COTO) to predefined 
variables - If the line 100 is referenced 50 times, approximately 
300 bytes can be saved by equating Z100 to 100 and referencing 
Z100. 

7. Keep the number of variables to a min1mum - Each new variable 
entry requires 8 more bytes in th e variable value table plus a 
few bytes for its name . 

8. Clean up the value and name tables - Variable entries are not 
deleted from the value and name tables even after all references 
to them are removed from the progr am. To delete the entries 
LIST the program to disk or cass e tte, type NEW, then ENTER the 
program. 

9. Keep variable names as short as possible - Each variable name 1S 
stored in the name table as ATASCII information. The shorter 
the names, the shorter the table. 

10. Replace text used repeatedly with strings - On screens with a 
lot of text, space can be saved by ass1gn1ng a string to a 
commonly used set of characters. 

11. Initialize strings with assignment statements - An assignment of 
a string with data in quotes requires less space than a READ 
statement and a CHR$ function. 

12. Concatenate lines into multiple statements - Three bytes can be 
saved each time two lines are converted into two statements on 
one line. 

10-16 



ATARI BASIC 

13. Replace once used subroutines with in-line code - The GOSUB and 
RETURN statements waste bytes if used only once. 

14. Replace numeric arrays with strings if the data values do not 
exceed 255 - Numeric array entries require six bytes each, 
whereas string elements only need one. 

15. Replace SETCOLOR statements with POKE commands - This will save 
8 bytes. 

16. Use cursor control characters rather than POSITION statements -
The POSITION statement requires 15 bytes for the X,Y parameters 
whereas the cursor editing characters are one byte each. 

17. Delete lines of code via program control - See the advanced 
programming techniques section. 

18. Modify the string/array pointer to load predefined data - By 
changing the value in STARP, string and array information can be 
saved. 

19. Small assembly routines can be stored in USR calls - For example 
X=USR (ADR ("hhh I ~ I LV I ~I ") , 16) . 

20. Chain programs - An example would be an initialization routine 
that is run first and then loads and executes the main program. 

10-17 



ATARI BASIC 

ADVANCED PROGRAMMING TECHNIQUES 

An understanding of fundamentals of ATARI BASIC makes it possible to 
write some interesting applications. These can be strictly BASIC operations, 
or they can also involve features of the operating system. 

Example 1 - String Initialization - This program will set all the bytes of 
a string of any length to the same value. BASIC copies the first byte of 
the source string into the first byte of the destination string, then the 
second, third, and so on. By making the destination string the second 
byte of the source, the same character can be stored throughout the entire 
string. 

Example 2 - Delete Lines Of Code - By using a feature of the operating 
system, a program can delete or modify lines of code within itself. The 
screen editor can be set to accept data from the screen without user input. 
Thus by first setting up the screen, positioning the cursor to the top, and 
then stopping the program, BASIC will be getting the commands that have 
been printed on the screen. 

Example 3 - Player/Missile (P/M) Graphics With Strings - A fast way to move 
player/missile graphics data is shown in this example. A dimensioned 
string has its string/array area offset value changed to point to the P/M 
graphics area. Writing to this string with an assignment statement will 
now write data into the P/M area at assembly language rates. 

10-18 



10 REM STRING INITIALIZATION 
20 DIM A$ ( 1000) 
30 A$(1)="A":A$(1000)="A" 
40 A$(2)=A$ 

10 REM DELETE LINE EXAMPLE 
20 GRAPHICS O:POSITION 2,4 
30 ? 70:? 80:? 90:? "CONT" 
40 POSITION 2,0 
50 POKE 842,13:STOP 
60 POKE 842, 12 
70 REM THESE LINES 
80 REM WILL BE 
90 REM DELETED 

100 REM PLAYER/MISSILE EXAMPLE 
110 DIM A$(512),B$(20) 
120 X=X+l:READ A: IF A<>-l THEN B$(X,X)=CHR$(A):GOTO 120 
130 DATA 0,255,129,129,129,129,129,129,129,129,255,0,-1 
2000 POKE 559,62:POKE 704,88 
2020 I=PEEK(106)-16:POKE 54279,1 
2030 POKE 53277,3:POKE 710,224 
2040 VTAB=PEEK(134)+PEEK(135)*256 
2050 ATAB=PEEK(140)+PEEK(141 )*256 
2060 OFFS=I*256+1024-ATAB 
2070 HI=INT(OFFS/256) : LO=OFFS-HI*256 
2090 POKE VTAB+2,LO:POKE VTAB+3,HI 
3000 Y=60:Z=100:V=1:H=1 
4000 A$(Y,Y+ll )=B$:POKE 53248,Z 
4010 Y=Y+V:Z=Z+H 
4020 IF Y>213 OR Y<33 THEN V=-V 
4030 IF Z>206 OR Z<49 THEN H=-H 
4420 GOTO 4000 

10-19 



APPENDIX A 
MEMORY UTILIZATION 

Memory uti I ization with the Atari Home Computer can be difficult. Much 
of the memory is commandeered by the operating system, the resident 
cartridge, or the ~OS, leaving very I ittle under the direct control of the 
programmer. Th i s gives the programmer very I itt I e freedom in loy i ng out 
memory utilization for a program. With proper planning this need not be a 
serious problem. 

PAGE ZERO 

The most important RA~1 for any assemb I y I anguage programmer is page 
zero. Page zero is absolutely essential for pointers and is very useful for 
heav i I Y used var i ab I es, because code wr i tten for page zero var i ab I es is more 
compact and runs faster. Hence the assemb I y I anguage programmer wants to 
know how many I ocat ions on page zero can be sto I en for his own use. Th i s 
appendix will not cover the use of page zero locations as they are defined 
and used by firmware. Instead, it will address only their use when the 
firmware's function is disabled or ignored. 

The lower ha I f of page zero (addresses $00-$80) is reserved for use by 
the operat i ng system. The 128 bytes here are requ i red for the ent i re array 
of services that the operating system provides. Most programs viii I use only 
a portion of those services. Thus, many locations in this region will not be 
used by the operating system during the program's execution. In particular, 
the 43 bytes from $50 to $7A are used only by the screen editor and display 
handler. Many programs wi II use custom display I ists with their own display 
handlers. These 43 bytes would then become avai lable during program 
execution. Simi lar reasoning appl ied to other locations dedicated to special 
functions would free even more space. 

Unfortunately, there is a major flaw in this reasoning. The software 
department at Atari is constantly evaluating the performance of the operating 
system and making changes in the code. There are now two versions of the 
operat i ng system---Rev A and Rev B. They are funct i ona I I Y a I most i dent i ca I; 
software that runs under Rev A wi I I a I most certa in I y run under Rev B. More 
revIsions are contemplated and it is highly probable that the 
underutilization of those 43 bytes will be corrected in future revisions of 
the operating system. Thus, any software packages that steal those 43 bytes, 
or any other bytes from the lower half of page zero, will probably 
malfunction if run under a future operating system. Therefore, commercially 
offered software should not steal any bytes from the lower half of page zero. 

The programmer must look to the upper half of page zero for free bytes. 
These 128 bytes are reserved for use by the cartridge. If no cartridge is in 
place, they are free. If a cartridge is in place, some bytes will be 
reserved for the programmer. The BASIC cartridge leaves only 7 bytes for the 
use of the programmer---$CB through $01. The programmer I'lho must have more 
page zero bytes has only one option: the bytes used by the floating point 
pack age ($04 to $FF). These 44 bytes may be taken if the f I oat i ng po i nt 
package is not used by the programmer's routines and if those routines do not 

A-1 



themselves call the floating point package. The programmer does 
unl imited use of these b~tes; they must not be used by any 
routines, as such routines might strike during a floating point 
ca I I ed by BAS I C. There are no other bytes on the upper ha I f of 
usable by the programmer. 

not have 
interrupt 
operation 
page zero 

The programmer working in a BASIC environment is seldom interested In 
the high performance and compactness that page zero offers; after a II, if 
high speed and compactness were primary concerns, the programmer would not 
have chosen BASIC as a del ivery language. The programmer most interested in 
I arge amounts of page zero is the assemb I y I anguage programmer. A pure 
assemb I y I anguage program does not need any cartr i dge i nsta II ed to run; 
therefore it shou I d have access to a I I 128 bytes of the upper ha I f of page 
zero. In practice this is not quite so simple, for an assembly language 
program must be debugged, and the only convenient way to do this at present 
is with the debugger in the Atar i Assemb I er-Ed i tor cartr i dge. Assemb I y 
I anguage programmers wi I I note with chagr in that th i s cartr i dge on I y reserves 
32 bytes ($BO-$CF) for the i r own use. Wh i Ie th is is ent i re I y adequate for 
virtually any program it is not enough to sate the appetite of a 
high-performance program. There are 30 more bytes that are not used by the 
debugger portion of the cartridge. These are: $A4, $A5, $AD, $AE, $DB 
through $E5, $EA through $F1, $F5, $F6, $F9 through $FB, $FE, and $FF. If 
these bytes are used the programmer must not return to the Ed itor or the 
Assembler or bad things may happen. Furthermore, the mini-assembler inside 
the debugger must not be used. 

I f you use other cartr i dges or disk-based languages, you are on your 
own. Many of these systems use even more of page zero. 

ABSOLUTE RA~1 

Another prob I em the programmer faces is presented by the DOS. It is 
very desirable to write programs that run on either 16K cassette systems or 
48K diskette systems. Unfortunately, such systems have very I ittle free RAM 
in common, for the DOS and DUP would almost fi I I the RAM of the 16K system. 
There are several solutions to this problem. One is to produce two different 
versions of the code, a disk version and a cassette version. The two 
programs wou I d be orged to d i f ferent I ocat ions. Th i s means that customers 
who buy the cassette version wi II not be able to transport it to a diskette 
if they upgrade their systems. 

There is another "lay. Page six is common free RAM for all systems. 
Var i ab I es and vectors can be p I aced on page six and used by cassette-based 
software or diskette-based software. A directory of routine addresses can be 
computed and placed at run-time onto page six. Machine language routines can 
then jump through the page six directory to the rout i nes elsewhere in RAM. 
The technique can be difficult to execute; it is not recommended for large 
assemb I y I anguage projects. I ts greatest va I ue is with med i um-s i ze mach i ne 
language routines (about 1K-2K) embedded inside BASIC programs. 

A-2 



APPENDIX B 

HUMAN ENGINEERING 

The ATARI Home Computer is first and foremost a consumer computer. The 
hardware was designed to make this computer easy for consumers to use. Many 
of the hardware features protect the consumer from inadvertent errors. 
Software written for this computer should reflect an equal concern for the 
consumer. The average consumer is unfami I iar with the conventions and 
trad it ions of the computer wor I d. Once he understands a program he wi I I use 
it well most of the time. Occasionally he will be careless and make 
mistakes. It is the programmer's responsibi I ity to try to protect the 
consumer from his own mistakes. 

The current state of software human engineering in the personal computer 
industry is d i sma I • A great many programs are be i ng so I d that conta in very 
poor human engineering. The worst offenders are written by amateur 
programmers, but even software wr i tten at some of the largest firms shows 
occasional lapses in human engineering. 

Human engineering is an art, not a science. It demands great technical 
ski II but it also requires insight and feel. As such it is a highly 
subjective field devoid of absolutes. This appendix is the work of one hand, 
and so betrays the sub ject i vi ties of its author. A proper regard for the 
wide variety of opinions on the subject would have inflated this appendix 
beyond all reasonable I imits of length. Furthermore, a complete presentation 
of al I points of view would only confuse the reader with its many assertions, 
qua Ii f i cat ions, counterpo i nts, and contrad i ct ions. I therefore chose the 
simpler task of presenting only my own point of view, giving weak I ip service 
to the most serious objections. The result is contradictory enough to 
satisfy even the most academic of readers. 

THE COMPUTER AS SENTIENT BEING 

An instructive way of viewing the problem of human engineering is to 
cast the programmer as sorcerer, conjuring up an intell igent being, a 
homunculus, within the innards of the computer. This creature lacks physical 
embodiment, but possesses intellectual traits, specifically, the abi I ity to 
process and organ i ze in format ion. The user of the program enters into a 
relationship with this homunculus. The two sentient beings think 
differently; the human's thought patterns are associative, integrated, and 
diffuse, while the program's thought processes are direct, analytical, and 
spec i f i c. These d if ferences are comp I ementary and product i ve because the 
homuncu I us can do we I I what the human cannot. Un fortunate I y, these 
differences also create a communications barrier between the human and the 
homuncu I us. They have so much to say to each other because they are so 
different, but because they are different they cannot commun icate we I I. The 
centra I prob I em in good programmi ng must therefore be to provi de for better 
communications between the user and the homunculus. Sad to say, many 
programmers expend the greater part of their efforts on expanding and 
improving the processing power of their programs. This only produces a more 
intel I igent being with no eyes to see and no mouth to speak. 

B-1 



HU~~N ENGINEERING 

The current crop of personal computers have attained throughputs which 
make them capab I e of susta I n I ng programs I nte I I I gent enough to meet many of 
the average consumer's needs. The primary limiting factor Is no longer clock 
speed or resident memory; the primary limiting factor Is the th,ln pipeline 
connecting our now-Intelligent homunculus with his human user. Each can 
process Information rapidly and efficiently; only the narrow pipeline between 
them slows down the Interaction. 

COMMUNICATION BETWEEN HUMAN AND MACHINE 

How can we widen the pipeline between the two thinkers? We must focus 
on the language with wh I ch they commun I cate. Like any language, a 
man-machine language Is restricted by the physical means of expression 
available to the speakers. Because the computer and the human are physically 
different, their modes of expression are physically different. This forces 
us to create a language wh I ch I s not bid I rect I ona I (as human I anguages are). 
Instead, a man-machine language will have two channels, an Input channel and 
an output channe I. Just as we study human I anguage by first study I ng the 
sounds that the human voca I tract can generate, we beg I n by exam I n I ng the 
physical components of the man-machine Interface. 

OUTPUT (FRO~1 COMPUTER TO HUMAN) 

There are two primary ouput channels from the computer to the user. The 
first Is the television screen; the second Is the television speaker. 
Fortunately, these are flexible devices which permit a broad range of 
expression. The main body of this book describes the features available from 
the computer's point of view. For the purposes of this appendix, It Is more 
usefu I to discuss these dev I ces I n terms of the human po i nt of v lew. Of the 
two devices (screen and speaker) the display screen Is easily the more 
expressive and powerful device. The human eye Is a more finely developed 
Information gathering device than the human ear. In electrical engineering 
terms, It has more bandwidth than the ear. The eye can process three major 
forms of visual Information: shapes, color, and animation. 

Shapes 

Shapes are an Ideal means for presenting Information to the human. The 
human ret I na Is espec I a I I Y adept at recog n I zing s ha pes. The most direct use 
of shapes Is for direct depiction of objects. If you want the program to 
tell the user about something, draw a picture of It. A picture Is direct, 
obvious, and Immediate. 

The second use of shapes I s for symbo Is. Some concepts I n the human 
lex icon defy direct depiction. Concepts like love, infinity, and direction 
cannot be shown with pictures. They must Instead be conveyed with symbols, 
such as a heart, a horizontal figure 8, or an arrow. These are a few of the 
many symbo I s that we a I I recogn i ze and use. Somet I mes you can create an ad 
hoc symbol for I imited use in your program. Most people can pick up such an 
ad hoc symbo I qu i te read i I y. Symbo I s are a compact way to express an idea 

8-2 



HUMAN ENGINEERING 

but they should not be used in place of pictures unless compactness is 
essential. A symbol is an Indirect ex pression; a picture is a direct 
express i on. The pi ctu re conveys the idea more forcefu I I y. 

The th i rd and most common use of shapes is for text. A letter is a 
symbo I; we put I etters together to form words. The I anguage we thereby 
produce is extremely rich in its ex pressive power. Truly is it said, "If you 
can't say it, you don't know it." This ex pressive power is gained at a 
price: extreme indirection. The word that ex presses an idea has no sensory 
or emotional connection with the idea. The human is forced to carry out 
ex tensive mental gymnastics to decipher the word. Of course, we do it so 
often that we have become quite fluent at translating strings of letters into 
Ideas. We do not notice the effort. The important point is that the 
indirection detracts from the immediacy and forcefulness of the 
communication. 

There is a school of thought that maintains that text is superior to 
graphics for communications purposes. The gist of the arguement is that text 
encourages freer use of the reader's rich imagination. The arguement does 
not satisfy me, for if the reader must use his imagination, he is supplying 
information that is not inherent in the communication itself. An equal 
exercise of imagination with graphics would provide even greater results. A 
more compel ling arguement for text is that its indirection al lows it to pack 
a considerable amount of information into a smal I space. The space 
constraints on any real communication make text's greater compactness 
valuable. Nevertheless, this does not make tex t superior to graphics; it 
makes text more economical. Graphics requires more space, time, memory, or 
money, but it also communicates better than text. To some extent, the choice 
between graphics and text Is a matter of taste, and the taste of the buying 
publ ic is beyond question. Compare the popularity of television with that of 
radio, or movies with books. Graphics beats tex t easi Iy. 

Color 

Color is another vehicle for conveying information. It is less powerful 
than shape, and so normally plays a secondary role to shape in visual 
presentations. Its most frequent use is to differentiate between otherwise 
indistinguishable shapes. It also plays an important role in providing cues 
to the user. Good color can salvage an otherwise ambiguous shape. For 
example, a tree represented as a character must fit inside an ax8 pixel grid. 
The gr i dis too sma I I to draw a recogn i zab I e tree; however, by co I or i ng the 
tree green, the image becomes much easier to recognize. Color is also useful 
for attracting attention or signal I ing important material. Hot colors 
attract attention. Color also provides aesthetic enhancement. Colored 
Images are more pleasing to look at than black and white images. 

Animation 

use the term "animation" here to designate any visual change. 
Animation includes changing colors, changing shapes, moving foreground 
objects, or moving the background. Animation's primary value is for showing 
dynamic processes. Indeed, graphic animation is the only way to successfully 

B-3 



HUtJIAN ENG I NEER I NG 

present highly active events. The value of animation is most forcefully 
demonstrated by a game I ike STAR RAIDERS'". Can you imagine what the game 
would be I ike without animation? For that matter, can you imagine what it 
wou I d be like in pure text? The va I ue of an i mat i on extends far beyond games. 
Animation al lows the designer to clearly show dynamic, changing events. 
Animation is one of the major advantages that computers have over paper as an 
information technology. Finally, animation is very powerful in sensory 
terms. The human eye is organ i zed to respond strong I y to changes in the 
visual field. Animation can attract the eye's attention and increase the 
user's involvement in the program. 

Sound 

Graph i cs i mages must be looked at to have effect. Sound can reach the 
user even when the user is not pay i ng direct attent i on to the sound. Sound 
therefore has great value as an annunciator or warning cue. A wide variety 
of beeps, tones, and grunts can be used to signal feedback to the user. 
Correct actions can be answered with a pleasant bel I tone. Incorrect actions 
can be answered with a raspberry. l'Iarn i ng cond i t ions can be noted with a 
honk. 

Sound has a second use: providing real istic sound effects. Qual ity 
sound effects can greatly add to the impact of a program because the sound 
provides a second channel of information flow that is effective even when the 
user is visually occupied. 

Sound is i II-suited for conveying straight factual information; most 
peop I e do not have the aura I acu i ty to d i st i ngu ish fine tone d i f ferences. 
Sou nd is much more effect i ve for convey i ng emot i ona I states or responses. 
Most people have a large array of assoc iations of sounds with emotional 
states. A descend i ng sequence of notes imp lies deter i orat i ng circumstances. 
An exp los ion sound denotes destruction. A fanfare announces an important 
arrival. Certain note sequences from widely recognized popular songs are 
immediately associated with particular f ee lings. For example, in ENERGY 
CZAR'", a funeral dirge tells th e user that his energy mismanagement had 
ruined America's energy situation, and a fragment of "Happy Days Are Here 
Again" indicates success. 

INPUT DEVICES (FROM HUMAN TO COMPUTER) 

There are three input dev ices most commonly use d with the ATARI Home 
Computer. These are the keyboard, joystick, and paddl es. 

Keyboa rd 

The keyboard is eas ily the most powerful input device available to the 
designer. It has over 50 direct keys trokes immediately avai lable. Use of 
the CONTROL and SH I FT keys mor e than doub I es the number of d i st i ngu i shab I e 
entri es the user can make. The CAPS/LOI'IR and ATARI keys extend the 
ex pressive ran ge of the keyboard even further. Thus, with a single keystroke 
the user can designate one of 125 commands. A pair of keystrokes can address 

8-4 



HUMAN ENGINEERING 

more than 15,000 selections. Obviously, this device is very expressive; it 
can eas i I y hand I e the commun i cat ions needs of any program. For th i s reason 
the keyboard is the input device of choice among programmers. 

While the strengths of the keyboard are undeniable, its weaknesses are 
seldom recognized. Its first weakness is that not many people know how to 
use it wei I. Programmers use keyboards heavi Iy in their dai Iy work; 
consequently, they are fast typists. The average consumer is not so 
comfortab lew i th a keyboard. He can eas i I Y press the wrong key. The very 
existence of al I those keys and the knowledge that one must press the correct 
key is itself intimidating to most people. 

A second weakness of the keyboard is its indirection. It is very hard 
to attach direct meaning to a keyboard. A keyboard has no obvious emotional 
or sensory significance. The new user has great difficulty I inking to it. 
All work with the keyboard is symbol ic, using buttons which are marked with 
symbols which are assigned meaning by the circumstances. The indirection of 
it all can be most confusing to the beginner. Keyboards also suffer from 
their natural association with tex t displays; have already discussed the 
weaknesses of text as a medium for information transfer. 

Another property of the keyboard that the designer must keep in mind is 
its digital nature. The keyboard is digital both in selection and in time. 
This provides some protection against errors. Because keystroke reading over 
time Is not continous but digital, the keyboard is not wei I-suited to 
real-time appl ications. Since humans are real-time creatures, this is a 
weakness. The designer must real ize that use of the keyboard wi II nudge him 
away from real-time Interaction with his target user. 

Paddles 

Paddles are the only truly analog input devices readily available for 
the system. As such they suffer from the standard problem all analog input 
devices share: the requirement that the user make precise settings to get a 
result. Their angular resolution is poor, and thermal e ffects produce some 
jitter in even an untouched paddle's output. 

Their primary value is twofold. First, they are well-suited for 
choosing values of a one-dimensional variable. People can immediately pick 
up the idea that the padd I e sweeps through a I I va lues, and press i ng the 
trigger makes the selection known. Second, the user can sweep from one end 
of the spectrum to the other with a twist of the dial. This makes the entire 
spectrum of values Immediately accessible to the user. 

An important factor in the use of padd I es is the creat i on of a closed 
Input/output loop. In most input processes, it is desirable to echo inputs 
to the screen so that the user can ver i fy the input he has entered. Th i s 
echoing process creates a closed input/output loop. Information travels from 
the user to the input dev I ce to the computer to the screen to the user. 
Because the paddle has no absolute positions, echoing is essential. 

Any set of inputs that can be mean i ngfu I I Y P I aced a long a I i near 

B-5 



HUf'.1AN ENG I NEER I NG 

sequence can be addressed with a paddl e. For example, menus can be addressed 
with a paddle. The sequence is from the top of the menu to the bottom. It 
is quite possible (but entirely unreasonable) oro substitute a paddle for a 
keyboard. The padd I e sweeps through the I etters of the a I phabet, with the 
current I etter be i ng addressed shown on the screen. Press i ng the padd I e 
trigger selects the letter. IVhi Ie the scheme would not produce any typing 
speed records, it is useful for children and the idea could be applied to 
other problems. 

Joysticks 

Joysticks are the simplest input devices available for the computer. 
They are very sturdy and so can be used in harsh env i romlents. They conta in 
only five switches. For this reason their expressive power is frequently 
underestimated. However, joysticks are surprisingly useful input devices. 
vJhen used with a cursor, a joystick can address any point on the screen, 
making a selection with the red button. With proper screen layout, the 
joystick can thus provide a wide variety of control functions. I have used a 
joyst i ck to contro I a nuc I ear reactor (SCRAW") and run a wargame (EASTERN 
FRONT 1941). 

The key to the proper use of the joyst i ck is the rea I i zat i on that the 
critical variable is not the selection of a switch, but the duration of time 
for wh i ch the sw itch is pressed. By contro I ling how long the sw itch is 
pressed, the user determ i nes how far the cursor moves. Th i s norma I I Y 
requires a constant velocity cursor. A constant velocity cursor introduces a 
difficult trade-off. If the cursor moves too fast, the user will have 
difficulty positioning it on the item of choice. If the cursor moves too 
slowly, the user wi II become impatient waiting for it to traverse long screen 
distances. One solution to this problem is the accelerating cursor. If the 
cu rsor starts rnov i ng s low I y and acce I erates, the user can have both fine 
positioning and high speed. 

The real value of the joystick is its high tacti I ity. The joystick 
involves the user in his inputs in a direct and sensory way. The tacti I ity 
of the keyboard is not emotionally significant. A joystick makes 
sense---push up to go up, down to go down. If the cursor reflects this on 
the screen, the entire input process makes much more sense to the user. 

Joysticks have their limitations. Although it is possible to press the 
joystick in a diagonal direction and get a correct reading of the direction, 
the directions are not distinct enough to al low diagonal entries as separate 
commands. Just as some words (e.g., "I ibrary," "February") are hard to 
enunciate clearly, so too are diagonal orders hard to enter distinctly. 
Thus, diagonal values should be avoided unl ess they are used in the pure 
geometrical sense: up on the joystick means up, right means right, and 
diagonally means diagonally. 

SUMMARY OF COMMUNICATIONS ELEMENTS 

We have di scussed a number of f eatures and devices which, tak en 

B-6 



HU~1AN ENG I ~~EER I NG 

together, const i tute the elements of a I anguage for interact i on between the 
computer and the user. They are: 

~_"GSER 
keyboard paddles joystick 

shapes color animation sound 

CONSTRUCTING A LANGUAGE 

How do we assemble al I of these elements into an effective language? To 
do so, we must first determine the major traits we expect of a good language: 

- Completeness 
- Directness 
- Closure 

Completeness 

The I anguage must comp I ete I y exp ress a I I of the ideas that need to be 
cornmun i cated between the computer and the user. I t need not express ideas 
internal to either thinker's thought processes. For example, the language 
used in STAR RAIDERS m must express al I concepts related to the control of the 
vesse l and the combat situation. It need not express the player's anxiety or 
the fl ight path intentions of the Zylons. These concepts, whi Ie very germane 
to the entire game function, need not be communicated between user and 
computer. 

Completeness is an obvious function of any language, one that all 
programmers recognize intuitively. Probl ems with completeness most often 
arise when the programmer must add functions to the program, functions which 
cannot be supported by the I anguage the programmer has created. Th i s can be 
quite exasperating, for in many cases the additional functions are easily 
impl emented in the program itself. The I imiting factor is always the 
difficulty of adding new expressions to the I/O language . 

Directness 

Any new language is hard to I ea rn. No user has time to waste in 
l ear ning an unnecessari Iy florid language . The language a programmer creates 
for a program must be direct and to the po i nt. I t must re I y as much as 
possible on communications conventions that the user already knows. It must 
be emot ionally direct and obvious. For examp l e, a CONTROL X keystroke is 
obscure. \vhat does it mean? Perhaps it means that something should be 
destroyed; X impl ies el iminati on or negati on. Perhaps it impl ies that 
something should be examined, expunged, exhumed, or something similar. If 
non e of these possibi I ities are ind eed the case, then the command is 

B-7 



unacceptab I Y i nd i rect. 
problem. 

Closure 

HUMAN ENGINEERING 

Keyboards are notorious for creating this kind of 

Closure is the aspect of communications design that causes the greatest 
prob I ems. The concept is best exp I a i ned with an ana logy. The user is at 
point A and wishes to use the program to get to point B. A poorly 
human-eng i neered program is like a tightrope stretched between po i nts A and 
B. The user who knows exactly what to do and performs perfectly wi II 
succeed. More I ikely, he or she wi II sl ip and fall. Some programs try to 
help by providing a manual or internal warnings that tel I the user what to do 
and what not to do. These are analogous to signs along the tightrope 
advising "BE CAREFUL" and "DON'T FALL." I have seen several programs that 
p I ace signs underneath the tightrope, so that the user can at I east see why 
he fai led as he plummets. A somewhat better class of programs provide masks 
against illegal entries. These are equivalent to guardrai Is alongside the 
tightrope. These are much nicer, but they must be very we I I constructed to 
ensure that the user does not thwart them. Some programs have nasty messages 
that bark at the errant user, warning against making certain entries. These 
are analogous to scovlling monitors in the school halls, and are useful only 
for making an adult feel like a child. The ideal program Is lIke a tunnel 
bored through so i I d rock. There Is but one path, the path lead i ng to 
success. The user has no optIons but to succeed. 

The essence of closure is the narrowIng of options, the el imlnation of 
poss i b iii ties, the placement of rock so II d wa II s around the user. Good 
design Is not an accumulative process of pi lIng lots of features onto a basic 
architecture; good design requires the programmer to strip away minor 
features, petty options, and general trIvIa. 

Th i s thes is c I ashes with the va I ues of many programmers. Programmers 
crave comp I ete freedom to exerc i se power over the computer. The I r most 
common complaInt against a program is that It somehow restricts theIr 
optIons. Thus, delIberate advocacy of closure Is met with shocked 
Incredulity. Why would anyone be so fool Ish as to restrIct the power of this 
wonderful tool? 

The answer I I es I n the d If ference between the consumer and the 
programmer. The programmer devotes hIs life to the computer; the consumer is 
a casua I aqua i ntance at best. The programmer uses the computer so heav i I Y 
that it Is cost-effective to take the time to learn to use a more powerful 
tool. The consumer does not have the tIme to lavIsh on the machine. He 
wants to get to po i nt B as qu I ck I y as poss i b Ie. He does not care for the 
fIne points that occupy a programmer's life. Bel Is and whIstles cherished by 
progr-ammers are on I y tr I v I a to hIm. You as a programmer may not share the 
consumer's values, but If you want to maIntaIn your I Ivel Ihood you had better 
cater to them. 

Closure is obtained by creating Inputs and outputs that do not admIt 
Illegal values. ThIs Is extremely dIffIcult to do with a keyboard, for a 
keyboard always allows more entries than any real program would need. This 

8-8 



HUMAN ENGINEERING 

is an excel lent argument against the use of the keyboard. A joystick Is much 
better, because you can do so Ii tt lew i th it. Because it can do so Ii tt I e, 
It is easier to conceptually exclude bad Inputs. The ideal Is achieved when 
al I necessary options are expressible with the joystick, and no further 
opt Ions wi I I fit. In th I s case the user cannot make a bad entry because It 
doesn't exist. More Important, I ike Newspeak In Orwell's "1984", the user 
cannot even conce i ve bad thoughts because no words (i nputs) for them even 
exist. 

Closure is much more than masking out bad Inputs. ~~asking makes bad 
Inputs conceivable and expressible, but not functional. For examle, a 
keyboard might be used with the "M" key d i sab I ed because it is mean i ng less. 
The user can stil I see the key, he can imagine pressing it, and he can wonder 
what would happen if he did press it---al I wasted effort. The user can waste 
even more time by pressing It and wondering why nothing happened. The waste 
is compounded by the programmer imagining the user doing all these wasteful 
th i ngs and putt i ng in code to stop the symptoms without e I 1m i nat i ng the 
disease. By contrast, a properly closed Input structure uses an Input device 
which can express only the entries necessary to run the program, and nothing 
more. The user can't waste time messing with something that Isn't there. 

The advantages that accrue when c I osu re I s proper I y app I I ed are 
man I fo I d. Code 1st I ghter and runs faster because there need be no Input 
error check i ng; such errors are obso I ete in the new program. The user 
requires less time to learn the program and has fewer problems with It. 

The primary problem with closure Is the design effort that must be 
expended to achieve good closure. The entire relationship between the user 
and the program must be carefully analyzed to determine the minimum 
vocabulary necessary for the two to communicate. Numerous schemes of 
communication must be examined and discarded before the true minimum scheme 
Is found. In the process, many bel Is and whistles that the programmer wanted 
to add wi II have to be eliminated. I f the programmer objectively looks 
beyond his own values, he wi I I often conclude that the bel Is and whistles are 
more clutter than chrome. 

CONCLUSIONS 

The des i gn of the I anguage of commun i cat I on between the user and the 
program wi II be the most difficult part of the design process In consumer 
software. The designer must carefully weigh the capabl I Itles of the machine 
and the needs of the user. He must precisely define the Information that 
must flow between the two sentient beings. He must then design his language 
to maximize the clarity (not the quantity) of Information flowing to the user 
while minimizing the effort the user must expend to communicate with the 
computer. His language must uti I Ize the machine's features and devices 
effectively whl Ie maintaining its own completeness, directness, and closure. 

8-9 



HUMAN ENGINEERING 

SOME COMMON PROBLEMS IN HUMAN ENGINEERING 

Having discussed the problems of human engineering In theoretical terms, 
we now turn to discuss specific application problems in human engineering. 
The I ist of problems Is not exhaustive; it merely covers some of the problems 
common to almost al I programs. 

DELAY TltvlES 

Many programs requ ire extens i ve computat Ions. Indeed, a Imost a I I 
programs execute at some time computations that take more than a few seconds 
to perform. What does the user exper I ence wh i I e these computat ions are 
executed? Too many programs simply stop the dialogue with the user for the 
duration of the computation . The user is left with an Inactive screen and no 
sign of life from the computer . The computer does not respond to the user's 
Inputs. If human engineering is created by the language of communication 
between the computer and the user, then th is comp I ete absence of 
communication can only be regarded as a total lack of human engineering. 
Leaving the user In the lurch I ike this is absolutely unforgiveable. 

Separate Processes 

The best way to deal with the problem of reconci ling computations with 
attentiveness is to separate the Input process from the computational 
process. The user should be able to make Inputs while the computations are 
proceeding. This is technically achievable; by using vertical blank 
interrupts the programmer can multltask input processing with mainl ine 
process i ng. The techn i que I s used in EASTERN FRONT 1941. The rea I prob I em 
with the techn i que is that many prob I ems are i ntr ins i ca II y sequent i a lin 
nature. It is essential that the user input a value or choice before the 
computation can proceed to the next step. This makes It difficult to 
separate Input processing from the mainline processing. However, It Is 
possible with clever design to perform anticipatory calculations that will 
determine intermediate values so that as soon as the critical data is 
entered, the resu It might be more qu I ck I y obta i ned. App II cat i on of such 
techniques can surely reduc e the delay times that the user experiences. 

Speed up the Program 

Another means qf dealing with this problem Is to speed up the program 
itself. Critical code can often be rewritten to decrease execution time. 
Proper nesting of loops (the loop with more Iterations should be Inside the 
loop with fewer iterations) can reduce execution time. Careful attention to 
the detal Is of execution can yield further time reductions. Major gains can 
be made by converting BASIC to assembly language. Assembly Is from 10 to 
1000 times faster than BAS I C. Assemb I y' s advantage I s greatest for memory 
move rout i nes and graph I cs and I east for f I oat I ng po i nt ca I cu I at Ions. By 
masking out vertical blank interrupts, more 6502 execution time can be freed 
for malnl ine processing. Other gains can be accompl ished by reducing the DMA 
overhead ANTIC imposes. This can be done by going to a simple graphics mode 
(BASIC mode 3 is best). Shortening the display I ist is another way to reduce 

B-10 



HUMAN ENGINEERING 

DMA costs. Turning off ANTIC altogether is a drastic route which only 
creates the additional problem of presenting the user with a blank screen. 

Entertain the User 

The third way to deal with delay times Is to occupy the user during the 
computat Ion. A countdown is one such method. The user sees a countdown on 
the screen. When the countdown reaches zero, the program Is back in 
business. Another way is to draw random graphics on the screen. The delay 
period should always start with a courteous message advising the user of the 
delay . It should also be terminated with a bell or other annunciator. You 
shou I d not expect the user to keep his eyes on the screen for an arb I trary 
period of time. Entertaining the user during delays Is a poor way to deal 
with delays that shouldn't have been there in the first place, but it's 
better than abandoning the user. 

DEALING WITH BAD USER INPUTS 

The most serious problem with present consumer software Is the 
inadequate way that bad user inputs are handled. Good designs preclude this 
problem by providing Input languages that do not make any bad entries 
avai lab Ie. As I pointed out earlier, this Is most easily accomplished with a 
joystick. However, there are applications (prlmari Iy text-Intensive ones) 
that requ ire a keyboard. Furthermore, even joyst i cks occas i ona I I Y introduce 
problems with user input. How are such bad Inputs to be dealt with when they 
cannot be expunged? Several suggestions follow. It is Imperative that any 
protection system be applied uniformly throughout the entire program. Once 
the user encounters protection, he wi II expect it In all cases. The lack of 
such protection creates a gap through which the user, thinking himself 
secure, wi I I surely plunge. 

Flag the Error and Suggest Solution 

The most desirable approach in this unpleasant situation is to flag the 
user's error on the screen in plain language and suggest a correct entry. 
Three things must be included in the computer's response. First, the user's 
entry must be echoed back so he knows what he did that caused the prob I em. 
Second, the offend i ng component of the entry must be c I ear I y marked and 
explained so that the user knows why It Is wrong . Third, an alternate legal 
entry must be suggested so that the user does not become frustrated by the 
feeling that he has encountered a brick wall . For example, an appropriate 
response to a bad keystroke entry might read thus Iy: "You pressed CONTROL-A, 
wh i ch I s an autopsy request. I cannot peform autops i es on I I vi ng peop Ie. I 
suggest you ki I I the subject first . " 

This method Is obviously very ex pensive in terms of program size and 
programming time. That is the price one pays for bad design. There are less 
expensive and less effective methods. 

B-11 



HUMAN ENGINEERING 

Masking out Bad Keys 

One common solution to keyboard Input problems is to mask out all bad 
entr i es. I f the user presses a bad key, noth i ng happens. No keyboard c I I ck 
is generated and no character appears on the screen. The program only hears 
what It wants to hear . This solution is secure in that it prevents program 
crashes, but It does not protect the user from confusion. The user would 
only press a key If he felt that it would do something for him. Masking out 
the key cannot correct the user's mistaken Impression. It can only lead him 
to the conc I us i on that someth i ng Is ser i ous I y wrong with his computer. We 
don't want to do this to our users. 

A var i ant on th i s scheme is to add a nasty buzzer or raspberry to 
chastise the user for his fool ishness. Indeed, some amateurish programs go 
so far as to heap textua I abuse on the user . Such techn i ques are high I Y 
questionable. There may indeed be cases requiring dangerous keystroke 
entries which are guarded by fierce and nasty messages; such cases are quite 
rare. Corrective messages should always conform to high standards of 
civility. 

Error Messages 

An even cheaper solution is to simply post an error message on the 
screen. The user is told only that he did something wrong. In many cases, 
the error message Is cryptic and does not help the user in the least. ATARI 
BASIC is an extreme example of this . Error messages are provided by number 
on I y. Th i s can be just i f i ed on I y when the program must operate under very 
tight memory constraints . 

In most cases, the designer chooses to sacrifice human engineering 
features such as meaningful error messages for some additional technical 
power. As pointed out in the beginning of this appendi x , we are reaching the 
stage in which additional technical power is no longer a I imltlng factor to 
consumers, but human engineering is a limiting factor. Thus, the trade-off 
is less justifiable. 

Protection/Power Trade-Offs 

One objection to many human engineering features Is that they slow down 
the user's Ineractlon with the computer . Programmers tire of Incessant "ARE 
YOU SURE?" requests and similar restrictions . One solution to this problem 
is to provide variable protection/power ratios . For example, a program can 
default to a highly protected state on initial izatlon. All entries are 
carefu I I Y checked and echoed to the user for con f i rmat i on . The user has an 
option to shed protection and work in high-speed mode. This option is not 
obvious from the screen---it is onl y desc ribed in the documentation. Thus, 
the i ntens ive user can work at a fast pace and the casua I user can have 
adequate protection. 

B-1 2 



HUMAN ENGINEERING 

MENUS AND SELECTION TECHNIQUES 

Menus are standard dev ices for mak i ng the user aware of the opt ions 
available. They are especially useful for beginning users. Command-oriented 
schemes preferred by programmers confuse beginners who cannot afford the time 
investment to learn the lexicon of commands used by a command-oriented 
program. We wi II discuss several common problems associated with the use of 
menus. 

Menu Size 

How many entries should be on a menu? The obvious upper limit is 
dictated by the size of the screen, but this I imit is too large, for a BASIC 
mode 0 screen cou I d ho I d up to 48 entr i es (24 lines with two cho ices per 
line). My guess is that seven entries is the desired upper I imit on menu 
size. This al lows plenty of screen space to separate the entries, provide a 
menu title, and some sort of prompt . 

Multiple Menus 

Frequent I Y a program wi I I requ ire severa I menus to fu I I Y cover a I I of 
the options it offers. It is very important that multiple menus be organized 
ina c I ear manner. The user can eas i I Y get lost wander i ng around through 
such menu mazes. One way is to have a main menu that is prominently marked 
as such, and provide each secondary menu with an option to return to the main 
menu. Another way is to nest menus in a hierarchical structure. When using 
such methods, the programmer must prov i de co I or and sound cues to he I p the 
user ascertain his position in the menu structure. Each menu or menu level 
should have a distinctive note or color assigned to it. The note frequency 
should be associated with the position in the hierarchy. 

Selection Methods 

Once the user has seen his options, how does he make his choice known to 
the computer? The most common way is to label each entry on the menu with a 
letter or number; the user makes his selection by pressing the corresponding 
key on the keyboard . This is a clumsy solution involving unnecessary 
i nd i rect i on. There are a number of better methods. Most of them use the 
same basic scheme: a movable pointer addresses an option, and a trigger 
selects it. One scheme highlights the option being addressed in inverse 
video. The SELECT button changes the pointer to address the next menu 
selection, with full wraparound from the end of the menu to the beginning. 
The START button engages a menu option. Another program automatically 
rotated the po inter through the menu opt ions; the user need on I y pus h a 
button at the correct moment when his des i red opt i on was be i ng addressed 
(not an Impressive method). Paddles and joysticks are very well suited fer 
menu selection. Either one can be used to sweep the pointer through the menu 
selections, with the red trigger button making the selection. My pet scheme 
for menu selection uses a cursor on a large scrolling menu. The user moves 
the cursor with a joystick. Signposts can direct her to different regions of 
the menu. The user makes a selection by placing the cursor directly on top 
of an option and pressing the trigg er button . 

8-13 



HUMAN ENGINEERING 

MANUALS VERSUS ON-BOARD TEXT 

A common problem with menus, error messages, prompts, and other messages 
I s that such mater i a I can eas I I Y consume a I arge amount of memory---memory 
that could wei I be used for other features. Such material could be placed In 
a reference document, but do i ng so wou I d detract from the qua II ty of the 
program's human engineering. The designer must decide how much material 
shou I d go I nto the program and how much shou I d be re I egated to the manua I. 
With disk-based programs It Is possible to store some of the material on the 
diskette; th i s I essens the harshness of the trade-off. When the prob I em Is 
approached on I y from the human eng I neer I ng po i nt of v I ew, I tis eas i I Y 
answered: all material should be Included In the program, or at least on a 
diskette. Economic and technical considerations argue against this. It Is 
my personal view that each technology should be used for the things It does 
best. Whi Ie the computer can handle static text, Its forte Is dynamic 
infor-matlon processing. Paper and Ink handle static Information more cheaply 
and often more clearly than a computer. I therefore prefer to put static 
information into a manual and let the program refer the user to the manual. 
I stili Include critical information within the program; my dividing line 
bends with local needs. 

MEASURES OF SUCCESS 

How can a designer determine the success of his human engineering? 
There are several Indicators that provide valuable feedback. The first is 
the minimum length of the manual. If you exclude background material and 
Isolate only the material in the manual that is absolutely necessary to 
describe how to use the program, then the length of this material Is a good 
measure of your human engineering. The more material, the worse you've done. 
A well-designed program should require very little explanation. This should 
not be construed as an arguement against proper documentation. Documentation 
should always describe the program in more detal I than Is absolutely 
necessary. A long, I av Ish manua I I s good; a program that demands such a 
manual is not. 

Another measure Is the amount of time that a first-time user expends to 
I earn to use the program sat i sfactor II y. Good programs can be used I n a 
matter of minutes. 

A th i rd measu re is the amount of th i nk i ng a user must do to use the 
program. A wei I-designed program should require no cognitive effort to use. 
Th I s does not mean that the user does not th i nk at a I I wh i I e us I ng such a 
program . Rather, he thinks about the content of the program rather than the 
mechanics of the program. He should concentrate on what he Is doing, not how 
he does it. 

The wei I-engineered program el imlnates mental distance between the user 
and the computer. The two th i nk I ng be I ngs ach i eve a menta I syntony, an 
intellectual communion. 

B-14 



APPENDIX C 

THE ATARI CASSETTE 

This discussion of the ATARI 410 m Program Recorder includes the following 
topics: 

o How the cassette works. Information on th e hardware and software 
used to operate the cassette. 

o Cassette applications. How to mix audio and digital information 
to produce a user-oriented program. 

C-l 



ATARI CASSETTE 

HOW THE CASSETTE WORKS 

RECORD STRUCTURE 

Byte Definition 

The OS writes files in fi xed-l e n g th blocks at 600 baud (physical 
bits/second). Asynchronous serial transmission is used to read and write 
data b e tween the ATARI 400 /8 00 Computers and the ATARI Program Recorder. 
POKEY recogniz es each data by t e in this order: 1 start bit (space), 8 data 
bits (O=space, 1=mark), then one stop bit (mark). A byte is sent/received 
least significant bit first. 

Th e frequ e ncy used to r epresent a mark ~s 5327 Hz. For a space, the 
frequency is 3995 Hz. The data byte format ~s as follows: 

o 2 4 6 
.. MARK 

.. SPACE 

A Start Bit (Space) 
0-7 Data Bits 
B Stop Bit (Mark) 

Record Definition 

Records are 132 bytes l o n g. A record is broken down in the following 
way: 2 marker characters for speed measurement, a control byte, 128 data 
bytes, and th e checksum by t e. Th e record format is shown below: 

... L.-

"',.. 

1st and 2nd MARKER 

01010101 

01010101 

CONTROL BYTE 

128 
DATA 

BYTES 

CHECKSUM 

...... 
..... 

1st MARKER 

2nd MARKER 

(For Speed 
Measurement) 

Each mark e r character is a 55 (hex). Including start and stop bits, 
each marke r is 10 bits l o n g. Id ea lly, there should be no blank tape 
between the mark e rs a nd th e s ubsequent data. 

C-2 



ATARI CASSETTE 

Speed Measurement: 

The purpose of the marker characters is to adjust the baud rate. 

The input baud rate is assumed to be a nominal 600 baud. This is 
adjusted, however, by the SIO routine to account for drive motor variations, 
stretched tape, etc. Once the true receive baud rate is calculated, the 
hardware is adjusted accordingly. Input baud rates ranging from 318 to 
1407 baud can theoretically be handled using this technique. 

The OS checks the tape speed in the following manner: The software 
looks at the POKEY Serial-In bit continuously. Looking for a start (0 
bit) which signifies the beginning of a record. When it finds one, the 
OS stores the current frame counter by saving the ANTIC VCOUNT (vertical 
screen counter). Continuing to look directly at the Serial-In bit, the 
OS counts the 20 bits (end of the 2 markers), then uses VCOUNT and the 
frame counter to determine the elapsed time. The baud rate to use is 
derived from the result. This is done for each record. 

Control Byte 

The control byte contains one of three values: 

o $FC indicates the record is a full data record (128 bytes). 

o $FA indicates the record is a partially full data r e cord; fewer 
than 128 bytes were supplied by the user. This case may occur only 
in the record prior to the end-of-file. The actual number of data 
bytes, 1 to 127, is stored in the last data byte prior to the 
checksum; i.e., the 128th data byte. 

o $FE indicates the record is an end-of-file record and is followed by 
128 zero bytes. 

Checksum 

The checksum is generated and checked by the S10 routine, but is not 
contained in the cassette handler's I/O buffer CASBUF [03FD]. 

The checksum is a single byte sum of all the other bytes in the 
record, including the two markers. The checksum is computed with end­
around carry. As each byte is added into the sum, the carry bit is also 
added in. 

[; 

Partial sum 
+ Data byte 
+ Carry 

Result 

C-3 



ATARI CASSETTE 

TIMI NG 

Int e r-Record Gap 

As mentioned ear lier, each r ecord consists of 132 data bytes 
in c luding th e checksum by t e. In order to distinguish one r ecord from 
a no ther , the cassette handl e r adds a Pre -Record Write Tone (PRWT) and 
Post-Record Gap (PRG). PRWT and PRG are both pure mark tone . Th e Inter­
Record Gap (IRG) between any two r eco rds thu s consists of the PRG of the 
first record followed by th e PRWT of th e second rec ord . Th e l ayout of 
th e records and gaps is as follows: 

PRWT IMARKERI DATA I PRG PRWT I MARKER I DATA PRG 

~ RECORD 1 ~ ~ RECORD 2 -----.. 

Nor ma l IRG Mode and Shor t IRG Mode 

The leng th of PRWT a nd PRG are dependent upon th e Write Open mode . 
Th e r e are two t ypes of IRG modes: Normal I RG mode a nd Sh ort IRG mod e . 

When a file is opened, th e mos t signifi cant bit of AUX2 specifies th e 
mode . On sub se que nt output or input, th e casse tte h andler execu tes the 
READ/WRITE in e ithe r mode based on th e MSB of the AU X2 by t e : 

7 o 
AUX2 C 

C 1 indi ca te s th a t th e casset t e lS to be read/written In Short 
IRG mode (continuous mode) . 

C 0 indi ca t es No rmal IRG mode. 

No rmal IRG Mod e 

This mode is used for a READ i nt er l eaved with processing; l.e., th e 
tape a lway s comes to a s t op after each r eco rd is read. If th e computer 
" STOPS " th e t a pe a nd ge t s its processing done fast enough, th e nex t READ 
may occur so quickly th at the casse tt e deck ma y see only a s li ght dip in 
the con trol line . 

Sho r t IRG Mode 

In this mode th e t ape is not s t opped between records, either wh e n 
being written or during r ea dback. 

On r eadback , th e program must issue a READ for each record befo re it 
passes th e r ead h ead . Th e onl y commo n use of this mode so far is storage 
of BASIC pr og r ams in int erna l (toke ni zed) form where, on r eadb a ck, BASIC 
has no thin g more to do with th e da t a than put it in RAM. The s pecia l 
BASIC commands " CSAVE " and " CLOAD " specify thi s mode. 

C-4 



ATARI CASSETTE 

There can be a potential problem with this. The software that writes 
the tape must allow long enough gaps, so the beginning of records are not 
missed on readback. 

Timing Structure 

The timings for each of the inter-record gaps are as follows: 

NORMAL IRG PRWT 
SHORT IRG PRWT 

NORMAL IRG PRG 
SHORT IRG PRG 

3 seconds of mark tone. 
0.25 second of mark tone. 

Up to 1 second of unknown tones. 
From 0 to N seconds of unknown tones, where N 
is dependent upon user program timing. 

Each record is written with the following timing: once the motor 
starts and the PRWT is written, the duration of the tone depends on the 
above format. The record follows, then the PRG is written. The motor is 
then stopped for Normal mode, but continues writing mark for Short IRG mode. 

Note that for the Normal IRG mode, the tape will contain a section of 
unknown data because of stopping and restarting the motor. (Up to 1 second 
of travel is possible, depending on the cassette machine.) This unknown 
data may be garbage data left previously on the tape. 

Noisy I/O Feature 

The Noisy I/O feature is useful for determining the success of 
reading the tape, particularly with CLOAD. Marks and spaces use different 
sound frequencies and you quickly learn the good and bad sounds the OS 
makes. 

FILE STRUCTURE 

A file consists of the following three elements: 

o A 20-second leader of the mark tone 
o Any number of data records 
o End-of-File 

When the file is opened (output), the OS starts by writing a mark 
leader of 20 seconds, the OS then returns to the caller, but leaves the 
tape running and writing marks. 

The WRITE/READ timeout counter is set for about 35 seconds as the OS 
returns. If the timeout occurs before the first record is written, the 
tape will stop, leaving a gap between the open leader and the first record 
leader. 

C-5 



ATARI CASSETTE 

TAPE STRUCTURE 

There are two sides to each tape. Each side has two tracks, one for 
audio and the other one for digital recording. This way the tape can be 
recorded in both directions. Following is a flat view of the tape: 

SIDE 
A 

SIDE 
B 

LEFT TRACK 

RIGHT TRACK 

RIGHT TRACK 

LEFT TRACK 

Tapes are recorded in 1/4 track stereo format at 1 7/8 inches per 
second (IPS). Note that the ATARI 800 computer utilizes a tape deck that 
has a stereo head configuration (not a single or mono type). 

CASSETTE BOOT 

The Cassette Boot program can be booted from the cassette at power-up 
time as part of the system initialization. System initialization performs 
functions such as zero1ng all of the hardware registers, clearing RAM, set­
ting flags and so on. 

After all the resident handlers are brought in, if the iSTARTi key 1S 
pressed, the Cassette Boot request flag CKEY [004Aj is set. If the 
Cassette Boot request flag is set, then a Cassette Boot operation is 
attempted. 

The following requirements must be met 1n order to boot from the 
cassette: 

1. The operator must press the ISTARTi key as power 1S applied to the 
system. 

2. A cassette tape with a proper boot format file must be installed 
in the cassette drive, and the iPLAYi button on the recorder must 
be pressed. 

C-6 



ATARI CASSETTE 

3. The cassette file must have been created in Short IRG mode. 

4. When the audio prompt occurs, the operator must press a key on the 
keyboard. 

If all of these conditions are met, the OS will READ the boot file 
from the cassette and then transfer control to the software that was read 
In. The Cassette Boot process is given in more detail below. 

1. READ the first cassette record to the cassette buffer. 

2. Extract information from the first 6 bytes. The first 6 bytes of 
a Cassette Boot file are formatted as shown below: 

IGNORED 1st BYTE 

# OF RECORDS 

MEMORY ADDRESS LO 

f---- -

TO START LOAD HI 

IN IT LO 

- -

ADDRESS HI 6th BYTE 

1ST BYTE lS not used by the Cassette Boot process. 

2ND BYTE contains the number of 128 byte cassette records to be 
read as part of the boot process (including the record containing 
this information). This number may range from 1 to 255, with 0 
meanlng 256. 

3RD and 4TH BYTES contain the address (LO,HI) at which to start 
loading the first byte of the file. 

5TH and 6TH BYTES contain the address (LO,HI) to which control 
is transferred after the boot process lS complete. Pressing the 
[S/RESET] key will also transfer control to this address assuming 
that the boot process is compl e te. 

When step 2 is complete, the Cassette Boot program will have: 

o Saved number of records to boot 
o Saved the load address 
o Saved the initialization address ln CASINI [02,03] 

C-7 



ATARI CASSETTE 

3. Move the record just read to the load address specified. 

4. READ the remaining records directly to the load area. 

5. JSR to the load address +6 where a multistage boot process may 
continue. The carry bit will indicate the success of th e operation 

(carry set = error, carry reset = success) on return. 

6. JSR indirectly through CASINI for ini tial iza tion of the application. 
The application should put its starting address into DOSVEC [OA,OB] 
during initialization, and then return. 

7. JMP indirectly through DOSVEC to transfer control to the application. 

Pressing the [S/RESET] key after the application is fully booted will 
cause steps 6 and 7 to repeat. 

C-8 



ATARI CASSETTE 

CASSETTE APPLICATIONS 

HOW TO CONFIGURE THE CASSETTE SYSTEM 

Most serial bus devices have two identical connectors: one is a 
serial bus input and the other a serial bus extender. Using these connec­
tors, peripherals may be "daisychained" simply be cabling them together in 
a sequentia l fashion like the following diagram: 

T.V. J 

1 
800 

I I I I 1 
DISK DISK 41 0 

DRIVE DRIVE 

Figure C-l Daisychained Peripheral Equipment 

SERIAL 
BUS 

CONNECTOR 

However, the cassette does not conform to the protocol of the other 
peripherals that use the serial bus. The cassette must be the last device 
on the serial bus because it does not have a serial bus extender connector 
as the other peripherals do. The lack of a bus extender assures that 
there is never more than one cassette drive connected to the sys t em. The 
system cannot sense the absence or presence of the cassette dr i ve, so it 
may be connected and disconnected at will. 

Whenever there is a need to open a ca s sette file for reading or 
writing, use the fo l lowing instructions: 

o Input (Data From 410 to 800) When the cassette is opened for input, 
a single audible tone is generated using the keyboard speaker. I f 
the cassette is ready (power on, serial bus cable connected, tape 
cued to start of file), the user must depress the I PLAY I button on 
the cassette and any ATARI 800 keyboard key (except--rBR"EAK ] ) to 
initiate tape reading. 

o OUTPUT (DATA FROM 800 to 410) When the cassette is opened for 
output, two separate audible ton e s are generated using the keyboard 
speaker. If the cass e tte is r e ady (as previously described), the 
user must simultaneously press the IPLAYI and IRECORDI buttons on the 
cassette, and then press any ke yboard key (except [ BREAK]) to initiate 
writing the tape. 

C-9 



ATARI CASSETTE 

SAVING AND LOADING DIGITAL PROGRAMS 

Concept 

The following technique saves the digital data directly from the 
computer through its I/O port of either th e ATARI 410 Program Recorder or 
the Atari Lab Machine which uses 1/4 inch tape r ecorded at 7 1/2 inches 
per second. 

FOR BASIC: 

Format: CSAVE 
100 CSAVE 

This command is usually used in direct mode to save a 
RAM-resident prog ram onto cassette tape. CSAVE writes 
the tokenized version of th e program to the 410. 

Format: CLOAD 
100 CLOAD 

This command can be us ed in e ither direct or deferred mode 
to read programs from cassette tape into RAM for execution. 

FOR ASSEMBLY LANGUAGE: 

Source Program 
Format: LIST#C: [, XX,YY ] 

This command is used to write assembly source code. The 
items in the optional brackets [,XX,YY] mean to transfer 
only lines XX to YY to cassette. If line numbers are not 
provided, the whole program is listed to cassette. 

Format: ENTERIc: 

This command r eads source code from the cassette. 

Object Program 
Format: SAVE#C:<XXXX,YYYY 

The cont e nts of a blo ck of memory, locations XXX X to YYYY, 
~s saved onto casse tt e . 

Format: LOAD#C: 

This command will load memory with the material that was 
previously saved . The range of memory locations that are 
filled will be the same as those given in the original SAVE 
command. 

C-10 



ATARI CASSETTE 

SAVING DIGITAL PROGRAMS WITH AUDIO AS BACKGROUND 

Concept 

This recording technique does not allow any program control over the 
audio. The audio plays purely as background to help time pass during the 
monotonous loading process. 

Step 1: 

Step 2: 

Follow the digital writing instructions indicated in 2.2 
for BASIC and assembly programs; except, this time ATARI 
standard cassette tape (1 7/8 inches per second) is not 
used. Because it is hard later for an individual to record 
audio onto the program recorder, we have to use the ATARI 
recording lab machine, which uses 7 1/2 inches per second 
master tape. The lab machine is a much more sophisticated 
recording machine able to record data onto a specified track. 

On the lab machine, the recording mode is switched to ON 
for the right track, so digital is saved onto the right 
track of the 7 1/2 inch tape . 

Use Step 1 for audio r eco rding, but first rewind the tape 
to the beginning of the program then switch the recording 
mode to ON for left track. This way the audio is recorded 
onto the left track of the 7 1/2 inch tape. 

DIGITAL PROGRAMS, AUDIO, SYNC MARK, AND SCREEN MANAGEMENT 

Sync Mark Concept 

There is no efficient way for the program to detect an audio segment 
when the cassette is playing. To solve the synchronization 
problem, Sync Mark is used to carry th e signal to inform the program that 
an audio segment has been play ed (an audio segment can be either a piece 
of mUSiC or an instruction, depending on the application). 

More precisely, since audio data has no record structure, Sync Mark 
recorded on the digital track is mor e or less like End-of-Record Mark for 
audio. For example, once the program senses the Sync Mark, the program 
can decide what to do nex t, like stop the cassette motor for lengthy 
processing or continue to play the next audio segment. 

Step 1: The programmer figur es out an audio script for FROG. The 
script is like this : 

(MUSIC) TODAY 1 AM GOING TO TELL YOU A FAIRY-TALE NAMED 
"THE PRINCESS AND THE fROG." IT IS A SWEET STORY SO DON'T 
GO AWAY. / 

(MUS IC) BEFORE I START MY STORY, 1 WOULD LIKE TO KNOW WHO 
I AM TALKING TO. ~~AT I S YOUR NAME? TYPE YOUR NAME AND 
PRESS CARRIAGE RETURN. (PAUSE) 

C-11 



ATARI CASSETTE 

Step 2: 

Step 3: 

(MUSIC) NOW, LET'S START THE STORY. ONCE UPON A TIME, 
THERE WAS THIS BEAUTIFUL PRINCESS LIVING IN A CASTLE AND 
HER NAME WAS YYYY. / 

(MUSIC) ON A CLEAR AND BEAUTIFUL DAY, THE PRINCESS WAS 
WALKING ALONG THE ., .. / 

REMARK: 
- "/" means the program is checking for a sync mark. 
It is best if the speaker pauses about 1/2 second here 
before continuing to the next segment of the audio 
script. 
- "PAUSE" is to indicate that the speaker pauses about 
1 second here to allow time for the stopping and 
starting of the cassette motor. Each audio segment 
should be at least 10 to 30 seconds long, because too 
many closely spaced Sync Marks can confuse the computer. 

It is suggested that before coding begins, the programmer 
draft a general plan for the program indicating the rela­
tionship between screen (CPU) and audio. 

Example: Figure C-2 illustrates how a programmer should 
create a cassette containing a program that control over 
an audio track. The example is called FROG: 

The programmer can start coding the program called 
FROG, and it will look something like this: 

10 REM PROGRAM "FROG" TO DEMONSTRATE SYNCHRONIZATION 
20 REM OF AUDIO WITH DIGITAL FOR THE CASSETTE SYSTEM 
30 REM 
40 DD1 IN$(20) 
50 POKE 54018,52:REM TURN ON MOTOR 
60 GRAPHICS 1 
70 PRINT it6;"THE PRINCESS AND THE FROG":PRINT it6; .... :REM 

SET UP THE SCREEN FOR EVENT 2. 
80 GOSUB 1000:REM CHECK SYNC MARK, MAKE SURE THE INTRODUCTION 

IS SAID. 
100 POSITION X,Y:PRINT #6;"YOUR NAME?":REM FOR EVENT 4 
105 GOSUB 1000:REM EVENT 5 
110 POKE 54018,60:REM STOP MOTOR FOR USER INPUT 
120 INPUT IN$:REM WAIT FOR THE USER'S NAME 
130 POKE 54018,52 
135 PRINT #6,CHR$(125):REM CLEAR THE SCREEN 
140 POSITION X,Y:PRINT #6;IN$:PRINT #6; .... :REM DISPLAY 

SCREEN FOR EVENT 10 
150 GODUB 1000:REM MAKE SURE SPEECH FOR EVENT 10 IS FINISHED 
160 PRINT #6; .... :REM READY FOR EVENT 12 

C-12 



ATARI CASSETTE 

"FROG" 

CHECK MOTOR 
EVENT AUDIO SCREEN SYNC MARK MODE 

1 

2 'TODAY I AM ' 
'GOING TO .. ' THE PRINCESS 

& THE FROG 

GRAPHIC 

3 YES 

4 'BEFORE I. ... 
, 

THE PRINCESS 
& THE FROG 

GRAPHIC 

YOUR NAME?XXXX 

5 YES 

6 STOP 

7 
WAIT TIL AN 

INPUT IS 
RECOGNIZED 

8 

9 CLEAR THE SCREEN START 

10 'NOW LET'S .... 
, 

XXXX 
GRAPHIC 

11 YES 

12 'ON A CLEAR .. ' 
GRAPHIC 

13 

C-13 



ATARI CASSETTE 

Step 4: 

Step 5: 

St ep 6: 

Step 7: 

Step 8: 

ROUTINE TO CHECK SYNC MARK: On th e tape, non-sync is 
represented by "MARK" and Sync Mark is represent e d by 
"SPACE." (Space is a "0" frequency; it is a lower pitch 
sound than a Mark which is a "1" fr equency. As mentioned 
before, Mark frequency is 5327 Hz, Space is 3995 Hz). The 
Check Sync Mark routine continuously watches for a "SPACE" 
from th e serial port. The routine looks like this: 

1000 IF INT(PEEK(53775)/32+0.5)=INT(PEEK(53775)/32} 
THEN RETURN: REM CHECK THE 5TH BIT OF EACH 

INCOMING BYTE. IF IT IS "O"THEN 
THE SYNC SPACE IS FOUND. 

1010 GOTO 1000 

ROUTINE TO CONTROL THE MOTOR: The program can turn the 
cassette motor on and off by poking location 54018 with the 
data given below: 

ON: POKE 54018,52 
OFF: POKE 54018,60 

After th e audio script has been roughly written, the 
programme r should estimate the time and the tape length 
required for th e designe d audio script (including pauses) 
and program. If the tape leng th required is too long for 
one cassette, then either the script or the program will 
have to b e modified to fit into one cassette. 

Save th e program to a mas ter tape, for example "MASTER I." 

With th e audio sc ript the voice is taped with pauses on 
another mas ter tape, "MASTER 2." 

After "MASTER I" and "MASTER 2" are produced, these two 
master tapes are merged to produce another master tape 
called "MASTER 3." "MASTER 3" has the program re co rded 
first, and the audio spliced on the e nd. Three recording 
lab ma chines are needed for this proc e dure. Make two copies 
of "MASTER 3." 

Load th e Sync Mark program into the Atari 800 Computer. The 
purpos e of this program is t o write con tinuous Sync Mark 
("0" fr eque ncy) onto th e digital tra ck. The Sync Mark 
informs the pr og ram that an audio segment has been played. 
Whenever there is a pause indicated on the audio script, 
a Sync Mark is nee ded a t that plac e. The finished tape 
with audio and sync wou ld b e as shown in Figure C-3. 

C-14 



ATARI CASSETTE 

SIDE 
A 

SIDE 
B 

TODAY I AM .. . BEFORE I. .. NOW LET'S .. . 

- ......... --- -~ __ --- TAPE MOTION 

Figure C-3 

The Sync Mark program looks like this: 

Step 9: 

10 REM PUSH "START" CONSOL KEY TO 
20 REM ADD THE SYNC MARK ONTO THE TAPE 
30 REM 
40 REM 
50 10=53760 : CONSOLE=53279 CASS=54018 

100 FOR 1=0 TO 8 
110 READ J : POKE IO+I,J 
120 NEXT I 
125 REM THE FOR LOOP SETS THE AUDIO FREQUENCY & CHANNEL 
130 DATA 5,160,7,160,5,160,7,160,0 
140 REM 
150 REM I/O IS SETUP; NOW START THE CASSETTE 
160 POKE CASS, 52 
200 POKE CONSOLE,8 
210 IF PEE K(CO NSOLE) 7 THEN 230:REM CONSOLE=7 MEANS WRITE 

MARK, 
220 POKE 10+15,11: GOTO 200: REM CONSOLER KEYS NOT PRESSED 
230 POKE 10+15,128+11: GOTO 200: REM If CONSOLE 7 WRITE 

"SPACE" 
Mount both MASTER 3 tap es in two independe nt recording 
machines and rewind both tapes to the splice of pro gram and 
audio. Configure one r ecord ing machine to one ATARI 800 
Computer with Sync Mark program loaded. This recording 
machine is prepared for recording Sync Mark on the digital 
track. The other recording ma chine will play back the audio 
recorded earlier. 

Step 10: Type RUN to start th e Sync Mark program. At the same 
time start the r ecord ing machines, one for recording, 
another one for playback. List e n to th e audio and press the 
ISTARTI key whenever it is indicated by a pau se in th e 
audio script. 

C-15 



ATARI CASSETTE 

Step 11: Now the tape is done, with the program recorded followed by 
the audio and Sync Mark recording. The finished tape is 
ready for mass production. 

DISABLING THE BREAK KEY 

We suggest that the programmer disable the BREAK key. This 
prevents the cassette program from failing when the user accidently hits 
IBREAKI. The OS will not recover a partial record, unless the user can 
rewind to the lost record. The disable BREAK key routine looks like 
th is: 

4000 X= PEEK(16): IF X 128 THEN 4020 
4010 POKE l6,X-128: POKE 53774,X-128 
4020 RETURN 

The disable routine should be called whenever there ~s a change of 
graphics mode or any screen open call. 

MASS PRODUCTION 

The programmer produces one or more MASTER TAPES according to the 
recording techniques discussed in the forgoing paragraph. All Atari 
Masters are recorded on open-reel 1/4 track, 1/4-inch tape recorded at 7 
1/2 inches per second. The MASTER TAPE is supplied to the duplicator 
as a SOURCE MASTER. 

The duplicator will take the SOURCE MASTER to make a WORK MASTER 
for the final cassette mass production. The released product will be 
third generation from the original. The following is a flow of the 
process: 

A 
T 
A 
R 
I 

__ ~ MASS PRODUCTION 
OF CASSETTES 

INTERIM MASTER is recommended for the duplicator, because the WORK 
MASTER may be destroyed or worn from excessive use. The SOURCE MASTER 
should be reserved only for emergency need. The INTERIM MASTER is the 
backup copy for the WORK MASTER. 

Mass Production OF Cassettes 

At present, ATARI prefers the BIN LOOP method for mass production: 
The WORK MASTER is copied to produce a LOOP MASTER. The LOOP MASTER 
may be on 1/4 inch, 1/2 inch, or any tape width. The BIN LOOP is spliced into a 
CONTINUOUS LOOP with a short clear leader at the splice. It is placed ~n 

a high-speed loop master machine which has one or more SLAVE machines. 
The configuration is shown in Figure C-4 

C-16 



ATARI CASSETTE 

MASTER MACHINE SLAVE MACHINES 

(+) 
(t) .... ----------- LOOP MASTER 

(--D~-----"" 

(+) 
(+) 

Figure C-4 

The LOOP MASTER is repeatedly read. If the duplicator wants to 
produce 100 cassettes, for example, th e length of the tape on the SLAVE 
MACHINE is measured to the length of th e program multiplied by 100. 
There is a counter on the MASTER machine and it is set to 100. 

As the LOOP MASTER is continuously read, the data Call four tracks) 
is copied onto the SLAVE MACHINE tape. 

As the clear section in the LOOP MASTER is sensed, the MASTER 
machine produces a CUTTING TONE which i s recorded on one or more tracks 
on the SLAVE MACHINE tapes. The counter will then increase by one. 

Each finished tape from the SLAVE MACHINE has 100 record ed programs 
with 100 CUTTING TONES recorded. It is fed into an automatic loading 
machine which winds the tape into C-Zero cassette shells. The configuration 
is like this: 

TAPE FROM 
SLAVE MACHINE 

LOADER 

~ r;;--;:';;L ------ CASSETTE TAPE HUBS 
~ .... ---------- CASSETTE SHELL 

Figure C-5 

C-17 



ATARI CASSETTE 

The cassette shells come with a small loop of leader which is bound 
to the cassette tape hubs. The loader pulls the leader from the shell, 
cuts it, and splices the end of the slave machine tape to the leader. The 
tape hub is used to wind the tape into the shell until the cutting tone is 
sensed. The slave machine tape is then cut and spliced to the leader on 
the other hub. 

The cassette shell is removed either manually or mechanically from 
the loader and the tape in the cassette shell is fully wound. The next 
cassette she ll is loaded by the same process. 

Quality Control Testing 

Any time that a production run is created, samples must be taken from 
it and verified before it is approved and released. 

The QC testing 
cassette produced. 
mass production for 

is done normally by taking the 
Atari must receive at least 10 
each master released. 

C-18 

first and the last 
samples from each 



APPENDIX D 

TELEVISION ARTIFACTS 

This section discusses how to get multiple cQlors out of a single 
color graphics mode through the use of television artifacts. 

The ANTIC modes with Which this can be accomplished are 2,3, and 15. 
ANTIC mode 2 corresponds to BASIC mode 0, ANTIC mode 15 is BASIC mode 8, 
and ANTIC mode 3 has no corresponding BASIC mode. Each of these modes has 
a pixel resolution of one half color clock by one scan line. They are 
generally considered to have one color and two luminances. With the use 
of artifacts, pixels of four different colors can be displayed on the 
screen in each of these modes. 

The term TV artifacts refers to a spot or "pixel" on the screen that 
displays a different color than the one assigned to it. 

A simple example of artifacts using the ATARI Computer is shown by 
entering the following lines: 

GRAPHICS 8 
COLOR 1 
POKE 710,0 
PLOT 60,60 
PLOT 63,60 

These statements will plot two points on a black background; however 
each pixel will have a different color. 

To understand the cause of these differing colors one must first 
understand that all the display information for the television display is 
contained in a modulated television signal. 

The two major components of this signal are the luminance, or bright­
ness, and the color, or tint. The luminance information is the primary 
signal, containing not only the brightness data but also the horizontal 
and vertical syncs and blanks. The color signal contains the color 
information and is combined or modulated into the luminance waveform. 

The luminance of a pixel on the screen is directly dependent on the 
amplitude of the luminance signal at that point. The higher the amplitude 
of the signal, the brighter the pixel. 

The color information, however, is a phase shifted signal. A phase­
shifted signal is a constantly oscillating waveform that has been delayed 
by some amount of time relative to a reference signal, and this time delay 
is translated into the color. 

The color signal oscillates at a constant rate of about 3.579 MHz, 
thus defining the highest horizontal color resolution of a television set. 
This appears on the screen in the form of 160 visible color cycles across 
one scan line. (There are actually 228 color cycles including the horizontal 
blank and sync, and any overscan.) 

D-l 



TELEVISION ARTIFACTS 

The term "color clock" refers to one color cycle and is the term 
generally used throughout the ATARI documentation to describe units of 
measurement across the screen. The graphics mode 7 is an example of one 
color clock resolution, Where each color clock pixel can be a different 
color. (There are microprocessor limitations though.) 

Atari also offers a "high resolution" mode (GRAPHICS 8) that displays 
320 pixels across one line. This is generated by varying the amplitude of 
the luminance signal at about 7.16 MHz, which is twice the color frequency. 

Since the two signals are theoretically independent, one should be 
able to assign a "background" color to be displayed and then merely vary 
the luminance on a pixel-by-pixel basis. This in fact is the way mode 8 
works, the "background" color coming from playfield register 2, and the 
luminances coming from both playfield registers 1 and 2. 

The problem is that in practice the color and luminance signals are 
not independent. They are part of a modulated signal that must be demodu­
lated to be used. Since the luminance is the primary signal, Whenever it 
changes, it also forces a change in the color phase shift. For one or 
more color clocks of constant luminance this is no problem, since the color 
phase shift will be unchanged in this area. However, if the luminance 
changes on a half color clock boundary it will force a fast color shift at 
that point. Moreover, that color cannot be altered from the transmitting 
end of the signal (the ATARI Computer). 

Since the luminance can change on half color clock boundaries, this 
implies that two false color, or artifact pixel types can be generated. 
This is basically true. However, these two pixels can be combined to form 
two types of full color clock pixels. This is illustrated below: 

TV Scan Line 

Luminance 
O=off 
l=on 

1 color 
clock 

Pi~etl 

0 1 0 
1 0 0 
1 1 0 
0 1 1 

Figure D-l 

0 
0 
0 
0 

1/2 cc pixel color A 
1/2 cc pixel color B 
1 cc pixel color C 
1 cc pixel color D 

Note that each of these pixels requires one color clock of distance 
and therefore has a horizontal resolution of 160. 

The colors A through D are differ e nt for each television set, usually 
because the tint knob settings vary. Thus they cannot be des,'~ibed as 
absolute colors, for example, red; but they are definitely distinct from 
each other, and programs have been written that utilize these colors. 

D-2 



TELEVISION ARTIFACTS 

To illustrate a simple application of artifacting, refer to the 
example below. This program draws lines in each of the four artifact 
colors and then fills in areas using three of the colors. (Note that 
displaying many pixels of either type C or D next to each other results in 
the same thing: a line or constant luminance with background color.) 

The POKE 87,7 command causes the OS to treat this mode as mode 7 and 
to use two-bit masks when setting bits in the display memory. To generate 
color A, use COLOR 1, color B uses COLOR 2, and color C uses COLOR 3. 
Color D is generated by displaying COLOR 1 to the left of COLOR 2. 

10 GRAPHICS 8:POKE 87,7:POKE 710,0:POKE 709,14 
20 COLOR 1:PLOT 10,5:DRAWTO 10,70 
30 PLOT 40,5:DRAWTO 40,70 
40 COLOR 2:PLOT 20,5:DRAWTO 20,70 
50 PLOT 41,5:DRAWTO 41,70 
60 COLOR 3:PLOT 30,5:DRAWTO 30,70 
70 FOR X=1 TO 3:COLOR X:POKE 765,X 
80 PLOT X*25+60,5:DRAWTO X*25+60,70 
90 DRAWTO X*25+40,70:POSITION X*25+40,5 
100 XIO 18,#6,12,0,"5:" 
110 NEXT X 

D-3 



APPENDIX E 

GTIA 

The GTIA is a new display chip that wi II someday replace CTIA. Actually 
it Is nothing more than a CTIA with a few more features. It simply provides 
three additional modes of Interpretation of Information coming fro'm the ANTIC 
chip. ANTIC does not require a new mode to talk to GTIAj Instead, It uses 
the high resolution mode $F. GTIA Is completely upward compatable with the 
CTIA. A brief summary of CTIA's features follows so that the differences 
between CTIA and GTIA can be presented. 

The CTIA Is designed to display data on the television screen. It 
displays the playfleld, players and missiles, and detects any overlaps or 
collisions between objects on the screen. CTIA will Interpret the data 
suppl led by ANTIC according to six text modes and eight graphics modes. In a 
static display, It wll I use the data from ANTIC to display hue and luminance 
as defined In one of four color registers. The GTIA expands this to use al I 
nine co I or reg I sters or 16 hues with one I um I nance or 16 I um I nances of one 
hue In a static display. 

The three graphics modes of GTIA are simply three new Interpretations of 
ANTIC mode $F, a hi-resolution mode. All three modes affect the playfleld 
on I y. P I ayers and miss II es can st I I I be added to I ntroduce new hues or 
luminances or to use the same colors and luminances In more than one way. 
All displays of hues and luminances can stili be changed on-the-fly with 
display list Interrupts. The GTIA uses four bits of data from ANTIC for each 
pixel, called the pixel data. Each pixel Is two color clocks wide and one 
scan line high. Thus, the pixels are roughly four times wider than their 
height. The display has a resolution of 80 pixels across by 192 down. Each 
line then requires 320 bits or 40 bytes of memory, the same number of bytes 
used In ANTIC mode $F. Therefore for a program to run the GTIA modes It must 
have at least 8K of free RAM for the display. 

The GTIA modes are selected by the priority register, PRIOR. PRIOR Is 
shadowed at location $26F hex by the OS and is located at 0018 hex In the 
ch I p. 8 I ts 06 and 07 are the contro I I I ng bits. When ne I ther I s set there 
are no GTIA modes and GTIA operates just I Ike CTIA. When 07 Is 0 and 06 Is 
1, Mode 9 Is specified which al lows 16 different luminances of the same hue. 
Remember the pixel data supplied by ANTIC is four bits wide which means 16 
d I f ferent va I ues can be represented. P I ayers and miss i I es can be used In 
this mode to Introduce additional hues. When 07 Is 1 and 06 Is 0, Mode 10 is 
specified. This mode gives nine colors In the display by using the four 
playfleld color registers plus the four player/missile color registers plus 
the one background co I or reg i ster. When p I ayers are used In th i s mode, the 
four player/missile color registers are used for them also. When 07 Is 1 and 
06 Is 1, Mode 11 Is specified. This mode gives 16 hues with the same 
luminance again because 16 different values can be represented by four bits. 
Players and missiles can be used In this mode to Introduce different 
luminances. 

E-1 



GTIA 

PRIOR 

07 06 

07 06 OPTION 

0 0 No GTIA modes ( ~10des 0-8) 
(CTIA operation) 

0 1 1 Hue, 16 Luminances (Mode 9) 
1 0 9 Hues/Luminances (Mode 10) 
1 1 16 Hues , 1 Luminances (Mode 11 ) 

Figure E- 1 
Bit Pattern In PRIOR select~ GTIA 

Setting up the new GTIA modes Is as simple as setting up the present 
modes used In CTIA. To Implement the modes from BASIC simply use the 
commands GRAPH I CS 9, GRAPH I CS 10, and GRAPH I CS 11 for Mode 9 , Mode 10, and 
Mode 11 respect I ve I y . In Assemb I y Language se I ect I ng one of these modes Is 
I dent I ca I to open I ng the screen for any of the other modes. I f you are 
building your own display list then PRIOR must be set to select the correct 
mode as In Figure E-1. 

Mode 9 produces up to 16 different luminances of the same hue . ANTIC 
provides the pixel data which selects one of 16 different luminances . The 
background color register provides the hue. In BASIC this Is done using the 
SETCOLOR command to set the hue value In the upper nybble of the background 
co I or reg I ster, and to set the I um I nance va I ue I n the lower nybb I e to a I I 
zeroes. The format of the command Is 

SETCOLOR 4,hue value,O 

where 4 specifies the background color register , "hue value" sets the hue and 
can be anyth I ng from 0 to 15, and 0 w II I set the I um I nance part of the 
register to zero. This has to be done because the pixel data from ANTIC wi I I 
then be logically ORled with the lower nybble of the background color 
register to set the luminance that appears on the screen . The COLOR command 
Is then used to select luminances for draw i ng on the screen by using values 
from 0 to 15 as Its parameter. So a BASIC program will Include at least the 
fol lowing statements to use Mode 9: 

GRAPHICS 9 
SETCOLOR 4,12,0 

FOR 1= 0 TO 15 
COLOR I 

to specify Mode 9 
to Initiali ze the background color 
register to some hue , In this case green. 
some method where the 
COLOR command Is used 

E- 2 



PLOT 4,1+10 
NEXT I 

GTIA 

to vary luminance. 

In Assembly Language use the OS shadow for the background color register $2C8 
to set the hue In the upper four bits with hex values from $0 to $F. If CIO 
cal Is are used, store the pixel data into the OS register ATACHR located at 
$2FB. Th i s se I ects the I um I nance with hex va I ues from $0 to $F. I f you are 
maintaining your own display data then the pixel data goes directly into the 
left or right half of the display RAM byte. 

o o o o BACKGROUND COLOR REGISTER 

I 

I I L4 L3 L2 L1 I 
PIXEL DATA 
(FOUR BITS FROM ANTIC) 

t 
I I I 

Y Y Y 

[ H4 I H31 H21 I I 
ORIED TOGETHER TO GIVE 

H1 L4 L3 L2 L1 FINAL COLOR ON DISPLAY 
~ )~ ) 

V' V" 

HUE LUMINANCE 
one constant hue 16 luminances 
set by background selected by 
color register pi xe l data 

Figure E-2 
Background Color Register ORled with pixel data to give final color. 

Mode 11 Is similar to ~lode 9 except that It provides 16 different hues 
all with the same luminance . Again ANTIC will provide the pixel data to 
select one of 16 different hues. In BASIC the SETCOLOR command Is used to 
set up the single luminance value In the lower nybble of the background color 
register, and In the upper nybble, the hue value will be set to a" zeroes. 
The format of the command Is 

SETCOLOR 4,0, luminance value 

where 4 specifies the background color register, a sets the upper nybble to 
zero and "luminance value" sets the value of the luminance and can range from 
a to 15. As with the other graphics modes (except Mode 9), the first bit of 
the luminance Is not used, so effectively only even numbers result In 
distinct luminances which gives eight different possible luminances In this 
mode. The COLOR command Is used In this mode to select the various hues by 
using values from a to 15 In Its parameter. The pixel data from ANTIC will 

E-3 



GTIA 

be logically OR'ed with the upper nybble of the background color register to 
set the hue part of the va I ue that u I t I mate I y generates the co I or on the 
screen. So a BAS I C program us i ng Mode 11 wi \I I nc I ude at I east the fo \I ow I ng 
statements: 

GRAPHICS 11 
SETCOLOR 4,0,12 

FOR 1= 0 TO 15 
COLOR I 
PLOT 4,1+10 
NEXT I 

to specify Mode 11 
to initialize the background 
color register to some luminance, 
In this case very bright 
some method where the 
COLOR command is used 
to vary the hue 

In Assembly Language use the OS shadow for the background color register 
$2C8 to set the luminance In the lower four bits with hex values from $0 to 
$F. If CIO cal Is are used, store the pixel data Into ATACHR located at $2FB. 
This selects the hue with hex values from $0 to $F. If you are maintaining 
your own d I sp I ay data then the pi xe I data goes direct I y I nto the I eft or 
right half of the display RAM byte. 

,--O_~_O_.....L-_O_L-_0----1_L---=3----1-_L---=-2 --L..-_L_1~r><J=-------=:..I BACK GRO UND COL OR RE G I STER 

PIXEL DATA 
(FOUR BITS FROM ANTIC) 

I I 

Y Y 

I I I I [Xl OR' ED TOGETHER TO GIVE 
,-_H_4-L.._

H--=:::...3 -L-_H--=2::........L._H---.:1---L_L---=3---L-_L----=-2 --L_L--=1~_=-----.::w FIN AL CO L OR ON DIS PL A Y 
l~ ________ ~ ~ _________ )l~______ __----~J 

V'" ....,. 

HUE 
16 hues selected 
by pixel data 

LUMINANCE 
one constant luminance 
set by background 
color register 

Figure E-3 
Background Color Register OR'ed with pi xel data to give final color. 

Mode 10 wi I I al low al I nine color registers to be used In the playfleld 
at one tIme. Each color regIster to be used must be set to some combinatIon 
of hue and lumInance. The pi xel data from ANTIC is used In this mode to 
select one of the color registers for dIsplay. In BASIC the SETCOLOR command 

E-4 



GTIA 

can be used as described in the BASIC Reference ~~anual to set the colors in 
the background and the four playfleld registers. These can also be set by 
using the POKE instruction to addresses 70B-712 where the four playfield 
registers and the background register are located. The POKE instruction must 
be used to set the four player/missile color registers at locations 704-707. 
The COLOR command I s used to se I ect the co lor reg I ster des I red. The on I y 
meaningful values for its arguement are 0 to B. A problem arises with this 
mode. ANTIC supplies four bits of data per pixel, as It does with t-10des 9 
and 11. This allows for the selection of 16 color registers. However, only 
nine color registers exist in the hardware. An i I legal data value between 9 
and 15 wi II select one of the lower value color registers. A BASIC program 
using mode 10 wi I I Include: 

1) a GRAPHICS 10 command to specify Mode 10; 
2) a set of POKE Instructions to put hues and luminances into the 

color registers, 
OR a combination of SETCOLOR commands and POKE instructions to do 

that; 
3) a COLOR command to select the desired color register. 

In Assembly Language, store the pixel data in ATACHR ($2FB) or directly into 
the display RAM byte as In Modes 9 and 11. In this mode the pixel data can 
range from 0 to 8 and selects one of the nine color registers. 

COLOR STATEMENT COLOR REGISTER OS SHADOW 
VALUE USED 

0 D012 2CO 
1 DOn 2Cl 
2 D014 2C2 
3 D015 2C3 
4 D016 2C4 
5 D017 2C5 
6 D018 2C6 
7 D019 2C7 
B D01A 2CB 

Figure E-4 
Color Register numbers and locations and COLOR command reference. 

An Important question arises In conjuctlon with GTIA concerning 
compatabl I ity. GTIA is fully upward compatible with the CTIA and al I 
software that runs on a CTI A system w I I I run the same way on a system with 
GTIA. This means you sti II have the full use of players and missiles, stili 
have collision and overlap detection and display list Interrupts. The GTIA 
graph I cs modes are fu I I Y supported by the OS and a I I graph i cs commands and 
uti I Itles that run In the CTIA modes can be used In GTIA modes. 

E-5 



GTIA 

More colors are available to display at one time on the screen. Sixteen 
color changes can occur on one line totally Independent of processor 
i ntervent i on. Th i sis actua I I Y better than what cou I d be done with d I sp I ay 
I 1st interrupts wh i ch cou I d give at most on I y 12 co I or changes per I I ne. 
Much finer contour and depth can be represented using the shading available 
In Mode 9. This means three dimensional graphics can be realistically 
displayed. 

On the other hand, there are some disadvantages. GT I A modes are map 
modes, there can be no text displayed In these modes. A custom display list 
must be used to switch to a mode that supports character displays. The GTIA 
pixel Is a long, skinny horizontal rectangle (4:1, width to height) and does 
not represent curved I I nes we II. Because each p Ixe I uses four bits of 
Information, GTIA requires nearly 8K of free RAM to operate. Although it is 
upward compatable, It Is NOT downward compatable. Thus programs which use 
GTIA modes wil I NOT produce correct displays on computers that have CTIA's. 
They may well be recognizable but will not be as colorful. There is no way 
current I y for a program to determ I ne whether or not a GTI A I s present ina 
system. Finally, color artifacts produced by a GTIA system will not be 
Identical to the color artifacts produced on the same television with a CTIA 
system. 

E-6 



GLOSSARY 

$ 

This symbol in front of a number indicates that the number should be 
interpreted as hexadec imal. 

ANTIC 

This is a separate microprocessor, contained within the ATP,RI 400/800 
Computers, which is dedicated to the television display. ANTIC is 
us er -programmab lew i th an instruct i on set, a program (the lid i sp I ay list"), 
and data (the "display memor y"). 

ATIRACT MOD E 

This is a f eatu re provided by 
minutes without a key being pressed, 
random hues at lowered luminances. 
unattended for severa I hours doesn't 
screen. 

BACKGROUND 

the operat i ng system wh i ch, after nine 
cycles the colors on the screen through 

This ensures that a computer left 
burn a stati c image into the television 

Th e area of the t e lev ision screen display upon which player-missile 
graphics objects or playfield objects and/or text are projected. Background 
has its own user-definable color. 

BCD 

Acronym for Binary Coded Dec i ma I • A number i ng system in wh i ch each 
numb er is broken into a sequence o f decimal digits. These decimal digits are 
then coded into binary, a task which requires four bits per digit, and stored 
in the resultant form. In the ATARI Computer, two such digits are stored in 
each 8-bit byte. 

BORDER 

In BASIC Mode 0, this is th e ar ea of the t e l ev ision screen display which 
is formed by the four edges of th e sc r een. The border tak es background 
color. 

BRKKEY 

A flag set when the OS senses that th e BREAK key is typed. BRKKEY I S 
normal va lue is $FF -- if it changes, th en th e BREAK key has been pressed. 

G- l 



GLOSSARY 

BYTE COUNT 

This is the fi Ie pointer's position within a sector on diskette. 

CASSETTE BOOT FILE 

A standard or user-created fi Ie which boots from cassette at power-up or 
SYSTEIv1 RESET. 

CHARACTER GRAPHICS 

Th e technique of redefining the individual characters of a character set 
to form graphics images instead of text characters. 

CHARACTER 1I',1AGE 

The unique 8 X 8 pixel grid I'/hich defines a particular character's 
shape. 

CHARACTER ~,10DE 

This is a specific type of ANTIC display mode which displays screen 
d i sp I ay memory data bytes as characters, us i ng a character set. There are 
six ANTIC character modes, three of which are access ible from BASIC. 

CHARACTER NAME BYTE 

A one-byte ANTIC display memory va lu e wh ich se lects a unique character 
within the current character set using the character's sequential positi on in 
that set. 

CHARACTER SET INDIRECTION 

Th e t ec hnique of specifying to ANTIC a particular character set to be 
used by placing that set's beginning page address into CHBAS. 

CHBAS 

The OS shadow I ocat ion wh i ch MHI C uses t o find the current character 
set which is to be used for character display modes. CHBAS is at decimal 
address 756. 

G-2 



GLOSSARY 

CHECKSUt;j 

This is a single byte sum of all the bytes in a record (either disk I/O 
or cassette I/O). For cassette I/O, this includes addition of the two marker 
characters, computed with end-around carry. 

CIO 

Acronym for Centra I I/O system rout i ne. C 10 routes I/O contro I data to 
the correct dev ice hand I er and then passes contro I to the hand I er. C 10 is 
also the common entry point for most of the OS I/O functions. 

COARSE SCROLLING 

The process of altering the display list LMS (Load Memory Scan) address 
bytes in order to vertically or horizontally scroll the screen image, one 
byte at a time. This is accompl ished by adding 1 to or subtracting 1 from 
the LMS address bytes. 

COLDSTART 

Synonym for the power-up process wh i ch performs a ser i es of system 
database initial izations when the computer power switch is turned on. lI.fter 
coldstart, the system surrenders control to the user. 

COLLISION 

This occurs when a player or missi Ie image coincides with another image. 
There are 60 possible coil isions and each one has a bit assigned to it that 
can be checked. These bits are mapped into 16 registers in CTIA (with only 
the lower 4 bits used). 

COLOR 

One of 128 values obtained from a hue-luminance combination I'lhich is 
stored in a color register. 

COLOR CLOCK 

The standard un it of hor i zonta I distance on the 
There are 228 co I or clock sin a hor i zonta I scan line, 
displayed in a normal width playfield. 

G-3 

television screen. 
but only 160 are 



GLOSSARY 

CO LOR REG ISTER 

A hardware reg ister (with correspond ing OS shadow locati on) used to 
define the color for va ri ous portions of the screen display. There a re nine 
co lor registers avai l ab le on the ATAR I Home Compu t er. 

COLOR REG ISTER IND IRECT ION 

The t ech ni que of specify in g a particular co lor by pointing t o its color 
reg ister r ather than directly s pec ifyin g it . 

CO LOR S I Gr~AL 

This contains t he color informat ion which i s combined with the primar y 
s igna l to fo rm the modu lat i ng tel evision signa l . The co lor signa l osc ill ates 
at 3.579 Mhz. 

CO LRSH 

A zero-p age locati on ($4F) . set up and updated by th e OS during ver ti ca l 
b lank interr upts for ATTRACT mode process ing. When ATTRACT mode is in force, 
COLRSH is g iven a new random va lu e every 4 seconds. 

In BAS IC, this is the first exec utab le t oken of a BASIC stat ement t hat 
t e l Is BAS IC to interpret th e t okens that fo l low in a parti cu lar way. 

CONSTANT 

In BASIC, thi s is a 6-byte BCD va lu e preceded by a specia l t oken. Thi s 
val ue rema ins unchang ed throughout th e prog ram execu tion. 

CONTROL BYTE 

In cassette I/O , thi s i s part o f every r ecord. It conta ins one of three 
poss ib le va lu es. 

CTI A 

A television interface chip wh ich is control led pr imari Iy by ANTI C. 
CTIA converts ANT IC's dig ita l commands into a s igna l t hat is sent to the 
te lev is ion. 

G-4 



GLOSSARY 

CURRENT STATEMENT 

In BASIC, this is the current token within a I ine of the Statement 
Table. 

CYCLE STEALING 

Th i s occurs when ANTI C ha I ts 6502 process i ng in order to perform DMA 
functions for memory refresh and screen display purposes. 

CYCLIC ANIMATION 

The technique of repetitively flipping through colors, graphics images, 
or character graphics sets to animate screen images. 

DCB 

Acronym for Device Control Block. The DCB is used by the I/O subsystem 
to communicate between the device handler and SIO. 

DEVICE HANDLERS 

Routines present in OS Rm~ which are called through CIO (as long as the 
handler has an entry in HATABS) to communicate with particular devices. 
Current I y supported are the d i sp I ay ed i tor, the screen, the keyboard, the 
printer, and the cassette. ~'1ore handlers can automatically boot in during 
power-up. 

DEVICE SPEC 

A special HATABS code which specifies a particular I/O device. 

DIAGONAL SCROLLING 

Th i s resu I ts from the comb i nat i on of hor i zonta I and vert i ca I scro I ling 
of the screen image. 

DISPLAY LIST 

A.NTIC's "program" defined by the user or provided automatically (through 
a GRAPH I CS command) by BAS I C. The d i sp I ay list spec if i es where the screen 
data may be found, what display modes to use to interpret screen data, and 
what special display options (if any) should be implemented. 

G-5 



GLOSSARY 

DISPLAY LIST INTERRUPT 

A special ANTIC display I ist instruction which interrupts the 6502 
microprocessor during the drawing of the screen image, allowing the 6502 to 
change the screen parameters. 

D I SPLAY ~,'ODE 

Either a BASIC or ANTIC methodology for interpreting text or map data 
bytes in screen memory and displaying them on the screen. ANTIC provides 15 
display modes; BASIC, through the OS, supports only 9 of these modes. 

DL I VECTOR 

This is a 2-byte vector (low byte, high byte) to the Display List 
Interrupt serv i ce rout i ne. Th is vector is set by the user and is located at 
[512,513J decimal. 

DMA 

Direct Memory Access. This occurs when ANTIC halts the 6502 and takes 
control of the system buses to fetch an instruction or data byte from memory. 

DMACTL 

The hardware register whose bit settings control the use of DMA by the 
ANTIC chip. This affects, among other things, player vertical resolution and 
player-missi Ie graphics enabl ing. 

DOS 

Acronym for Disk Operating System which is an extension of the OS that 
al lows the user to access disk drive mass storage as fi les. 

DOUBLE-LINE RESOLUTION 

A unit of vertical resolution for a player in player-missile graphics. 
Each player byte occup i es two hor i zonta I scan lines on the screen, and each 
player table is 128 bytes long. 

DRK~~SK 

A zero-page ($4E) location set up and updated by the OS during vertical 

G-6 



GLOSSARY 

blank interrupts for ATTRACT mode process color register's value. This 
ensures a low luminance for ATTRACT mode. 

DUP 

Acronym for Disk Uti I ity Package. DUP is a set of uti I ities for disk 
drive usage, fami I iarly seen as the DOS menu. OUP executes commands by 
call ing F~~S through CIO. 

DYNAMIC DISPLAY LIST 

This is an ANTIC display I ist which the 6502 changes during vertical 
blank periods, al lowing for even greater flexibi I ity in the screen display. 

EOL 

In BASIC, "End-of-Line", a character with the value $9B. 

FILE 

I n cassette I/O, th i s cons i sts of a 20-second I eader of the mark tone 
plus any number of data bytes, and end-of-file. In diskette I/O, this 
cons i sts of a number of sectors linked by po inters (125 data bytes per 
sector) . 

FILE POINTER 

For diskette I/O, this is a value which indicates the current position 
ina f i I e by spec i fy i ng the Sector Number and the Byte Count. DOS keeps a 
fi Ie pointer for every fi Ie currently open. 

FINE SCROLLING 

The process of horizontally or vertically scroll ing a screen image in 
co I or clock or scan line increments. The hor i zonta I scro I ling and vert i ca I 
scro I ling hardware reg i sters must be used to fine scro I I • 

Fi Ie Manager System. FMS is a nonresident device handler which supports 
some special CIO functions. 

G-7 



GLOSSARY 

FONT 

A collection of characters which constitutes a character set. These 
characters can be either text or graphics images. 

FOREGROUND 

Equivalent to playfield, the area of the screen which directly overlays 
the background of the screen. Foreground is formed by map d i sp I ays and/or 
text. 

FORMAT 

A resident disk handler command that clears al I the tracks on diskette. 

FUNCTION 

In BASIC, a token that when executed returns a value to the program. 

GRAPHICS INDIRECTION 

A special feature of the ATARI Computer which al lows color register and 
character set general ity by using indirect pointers to color and character 
set values. 

HATABS 

The device handler entry point table which is used by CIO. HATABS is 
located at $031A. 

HORIZONTAL BLANK 

This is the period during which the electron beam (as it draws the 
screen image) turns off and returns from the right edge of the screen to the 
I eft edge. 

HORIZONTAL POSITION REGISTER 

A special register which contains a user-definable 
horizontal position of a player in player-missile graphics. 
measured in units of color clocks. 

G-8 

va I ue for the 
This value is 



GLOSSARY 

HORIZONTAL SCAN LINE 

The fundamental unit of measurement of vertical distance on the screen. 
The scan line is formed by a sing I e trace of the electron beam across the 
screen. 

HORIZONTAL SCROLL ENABLE BIT 

This is bit 06 of the ANTIC display instruction which enables horizontal 
scrol I ing through the HSCROL register. 

HORIZONTAL SCROLLING 

This is the process of sl iding the screen window to the left or right 
over d i sp I ay memory in order to d i sp I ay more in format i on than cou I d be seen 
with a static screen. Both coarse and fine horizontal scrol I ing and 
avai lable. 

HSCROL 

Th i sis the hor i zonta I fine scro I ling reg i ster located at $0404, 
containing the number of color clocks by which a line is to be horizontally 
scrolled. 

HUE 

The upper nybble value of a color register's color. There are 16 
possible hues ($0 to $F) which in combination with a luminance value 
constitute distinct colors. Examples of hues are black, red, and gold. 

1~·1MEDIATE ~100E 

In BASIC, the mode where the input I ine is not preceded by a line 
number. BASIC immediately executes the line. 

INPUT BAUO RATE 

For cassette I/O, this is assumed to be a nominal 600 baud (physical 
bits per second). However, this rate is adjusted by SIO to account for drive 
motor variations, stretched tape, etc. 

G-9 



GLOSSARY 

INPUT LINE BUFFER 

In BASIC, from $580 to $5FF. 

INTER-RECORD GAP 

For cassette I/O records, th i s cons i sts of the Post-record Gap of a 
given record fol lowed by the Pre-record Write Tone of the next record. 

I/O 

Input/Output. 

10CB 

Acronym for Input/Output Control Block. There are eight of these whose 
function is to communicate between the user program and CIO. 

IRQ 

Maskable (can be enabled or disabled by the 6502) interrupts such as the 
Break Key IRQ. 

IRQEN 

The wr i te-on I y reg i ster that conta ins the IRQ enab I e/ d i sab I e bits. 
IRQEN is shadowed at POKMSK. 

KERNEL 

A primitive software/hardware technique which consists of a 6502 program 
loop which is precisely timed to the display cycle of the television set. The 
kerne I code mon i tors the VCOUNT reg i ster and consu I ts a tab I e of screen 
changes catalogued as a function of VCOUNT values so that the 6502 can 
arbitrari Iy control al I graphics values for the entire screen. 

LINE 

In BASIC, a line consists of one or more BASIC statements preceded 
either by a I ine number in the range of 0 to 32767, or an immediate mode line 
with no I ine number. 

G-10 



GLOSSARY 

LOt-'1EM 

In BASIC, this is the pointer ([80,81J decimal) to a buffer used to 
tokenize one I ine of code . The buffer is 256 bytes long, residing at the end 
of the operating system's al located RAM. 

LSI 

Acronym for Large Sca I e I nteg rat ion. Th i s refers to a techno logy for 
manufacturing silicon chips. LSI chips are the largest and most powerful 
chips in mass production; they contain many thousands of components. 

LUMINANCE 

The lower nybble of a color register's color. There are eight 
even-numbered values for luminance ($0 to $F, even values only) which in 
combination with hue values produce the 128 colors available on the ATARI 
400/800 Computer. 

~1AP MODE 

This is a specific t ype of ANTIC display mode using simple colored 
screen pixels instead of characters for the screen display. There are eight 
ANTIC map modes, with varying degrees of resolution. Six of these are 
callable from BASIC. 

~~ARK 

For cassette I/O, this is a 5327-Hz frequency. 

MARKER CHARACTER 

For cassette I/O, 
ad just i ng the baud rate. 
character is 10 bits long. 

this is a 55 (hex) value whose purpose is for 
I nc Iud i ng the start and stop bits, each marker 

In BASIC, a pointer ([90,91J decimal) to the top of appl ication RAM, the 
end of the user program. Program expansion can occur from this point to the 
end of free RAM, which is defined by the start of the display list. This 
MEMTOP is not the same as the OS variable cal led MEMTOP. 

G-11 



GLOSSARY 

MISSILE 

A one-dimensional Image in RAt~ used in player-m issil e graphics which is 
2 bits wide. There Is a maximum of four missiles, one for eac h player. 

MODE LINE 

A co I I ect i on of hor i zonta I scan lines for screen d i sp lays. Depend i ng 
upon the BASIC or ANTIC display mode in ef fect, a mode I ine wi I be composed 
of vary I ng numbers of scan I I nes. By the same token, depend i ng upon the 
display mode, a screen image will be composed of varying numb ers o f mode 
I I nes. 

MON ITOR 

A program in ROM that handles both the syst em power-up and SYSTEM RESET 
sequences. 

NARROW PLAYFIELD 

A screen display width option equal to a width o f 128 co lor c locks . 

NMI 

Non-Maskable Interrupt (I.e., cannot be disabled by th e 6502 ), The 
Display List Interrupt and the Vertical Blank Interr upt are both N~lls. These 
can be disabled with the ANTIC NMIEN regi st er. 

NMI EN 

The Non-~1askable Interrupt Enabl e r eg ist er which contro ls enabling of 
various NMI interrupts such as the Display Li st Inter rupt (DLI). 

NORMAL IRG MODE 

In cassette I/O, this Is a mode where the tape always comes to a stop 
after each record I s read. I f the comp uter s t ops the tap e and get s its 
processing done fast enough, then the next read may occ ur so quickly that the 
cassette deck may see only a slight dip In the cont ro l line. 

NORMAL PLAYFIELD 

A screen display width option equal to a width o f 160 color c locks. 

G- 12 



GLOSSARY 

OPERATOR 

In BASIC, anyone of the 46 tokens that in some way move or modify the 
values that fol low them. 

OPERATOR STACK 

In BASIC, a software stack where operators are placed when an arithmetic 
BASIC expression is being evaluated. 

OVERSCAN 

The "spreading out" of a television image by the raster scan method of 
display so that the edges of the picture are off the edge of the television 
tube. This guarantees no unsightly borders in the television picture. 

PIA 

Acronym for Peripheral Interface Adaptor. This Is an LSI chip which 
interfaces the 6502 with external devices. The joystick pins of the four 
user ports are connected to a PIA inside the computer. 

PIXEL 

The smallest screen graphics unit addressable in a particular display 
mode. It is a square whose size depends on the display mode. 

PLAYER 

A one-dimensional RAM image used in player-missile graphics which can be 
128 bytes (double-line resolution) or 256 bytes (single-I ine resolution) 
long. The player appears as a vertical band 8 pixels wide stretching from 
the top of the screen to the bottom. There is a maximum of four independent 
players. 

PLAYER COLOR 

The co I or of a player 
independent players has Its 
register. 

in player-missile graphics. 
own color stored in its 

G-13 

Each of the four 
associated color 



GLOSSARY 

PLAYER-MISSILE AREA 

A RAM area that contains the images of the four players and four 
missi les of player-missile graphics, as wei I as some extra RAM. The 
plcyer-rnissile area must be on a lK boundary for single-line resolution 
players or a 2K boundary for double-I ine resolution players. 

PLAYER-MISSILE GRAPHICS 

Atari's solution for simpl ifying animation by creating an image (a 
player or missile) which is one-dimensional in RAM but two-dimensional on the 
screen. 

PLAYFIELD 

The area of the screen which directly overlays the background of the 
screen. Map graphics and/or text form this playfield. 

PLAYFIELD ANIMATION 

The technique of animating an object by moving its image bytes to new 
locations in screen memory, and th en erasing the bytes of the old image 
before displaying the new image. 

PMBAS 

A register that points to the beginning of the player-missile area. 

POKEY 

A digital I/O chip that handles the serial I/O bus, audio generation, 
keyboard scan, and random number generation. POKEY also digitizes the 
resistive paddle inputs and controls maskable interrupt (IRQ) requests. 

These are hardware timers within POKEY. Unl ike System Timers, which are 
maintained by the OS software and are fixed, the POKEY chip timers are 
clocked by frequencies set by the user. 

POST-RECORD GAP 

A pu re mark tone frequency used as a post-record de lim iter in cassette 

G-14 



GLOSSARY 

I/O. 

PRE-RECORD WRITE TONE 

A pure mark tone frequency used as a pre-record del imiter in cassette 
I/O. 

PRIMARY SIGNAL 

This contains the luminance information -- brightness data, horizontal 
and vertical syncs and blanks -- of the modulated television signal. 

PRIORITY-CONTROL REGISTER 

Also known as PRIOR, and shadowed at GPRIOR. This register specifies 
vlhich playfield, player, or background images have priority in the case of 
image overlaps during the screen display process. 

RAM VECTOR 

Alterable system vector that contains 2-byte addresses to system 
routines, handler entry pointers, or to initial ization routines. RAM vectors 
are initial ized at power-up and SYSTEM RESET. 

RASTER SCM~ 

A television display system that uses an electron beam generated at the 
rear of the te I ev is i on tube. The beam sweeps across the screen ina regu I ar 
left-to-right, top-to-bottom fashion. 

RECORD 

For diskette I/O, a group of bytes delimited by EOLs ($98). For 
cassette I/O, th i sis a group of 132 bytes wh i ch is composed of two marker 
characters for cassette speed measurement, a control byte, 128 data bytes, 
and the checksum byte. 

RESIDENT DISK HANDLER 

The fundamenta I software in the OS ROM conta in i ng the abso I ute I y 
This software performs five important 
as FORrVlAT, READ SECTOR, WRITE SECTOR, 

essential disk handler routines. 
low-level disk I/O functions such 
\vRITE!VERIFY SECTOR, and STATUS. 

G-15 



GLOSSARY 

Rm~ VECTOR 

Una I terab I e system vector that conta ins JMP instruct ions to system 
routines. The ROM vector al lows a programmer to write software that uses the 
OS routines without running the risk of the routines being made unworkable by 
new releases of the OS ROM. 

RTCLOK 

One of the system timers wh i ch is 3 bytes in I ength and is updated 
during immediate VBLANK. RTCLOK can be used as a reference clock for an 
appl icatlon program. 

RUNSTK 

In BASIC, a pointer ([8E,8F] decimal) to the Run Time Stack. 

RUN TIME STACK 

In BASIC, a software stack that contains GOSUB and FOR/NEXT return 
address entries. 

SCREEN ~~E~10RY 

A RAM area used by the 6502 to store bytes of data that wil I be fetched 
(by Dt~A) by ANTIC to be interpreted and eventually displayed as images on the 
screen. 

SECTOR 

On a diskette, this Is a 128-byte physical area. The diskette contains 
40 tracks with 18 sectors per track. 

SECTOR NUfc-1BER 

A value from 1 to 719 that specifies the sector to which the fi Ie 
pointer is currently pointing. 

SETVBV 

A system rout I ne that sets the system timers and sets user-def i nab Ie 
I nterrupt vector addresses without danger of crashes due to interrupts in 
mid-process. 

G-16 



GLOSSARY 

SHADOWING 

A process in which values are moved between hardware locations and RAM 
locations, thereby al lowing the program to monitor the contents of write-only 
hardware registers or check the inputs form read-only hardware registers. 

SHORT I RG ~Jl0DE 

I n cassette I/O, th i s means the tape is not stopped between records. 
The BASIC commands "CSAVE" and "CLOAD" both specify this mode. 

SINGLE-LINE RESOLUTION 

A unit of vertical resolution for a player in player-missile graphics. 
Each player byte occup i es one hor i zonta I scan line on the screen, and each 
player table is 256 bytes long. 

SIO 

Serial I/O system routine which handles communication between the serial 
device handlers in the computer and devices on the serial bus (cassette, 
printer, disk drive, and RS-232). 

SIO INTERRUPTS 

These are three IRQ interrupts used by SIO to send and receive serial 
bus communications to serial bus devices. These three are VSERIR (Serial 
I nput Ready) , VSEROR (Ser i a I Output Needed) , and VSEROC (Transm iss ion 
Fin is hed) • 

SOUND REGISTER 

Aud i o-produc i ng hardware in the ATAR I Home Computer System wh i ch 
contains frequency, volume, and distortion information, but not duration. 

SPACE 

For cassette I/O, th is is a 3995-Hz frequency output to the cassette 
tape as a del irniter in conjunction with mark tones. 

STARP 

In BASIC, the pointer ([8C,8D] decimal) to the String Array Area. 

G-17 



GLOSSARY 

STATEMENT 

In BASIC, this is a complete "sentence" of tokens that causes BASIC to 
perform some mean i ngfu I task. In LIST form, statements are separated by 
colons. 

STATEMENT TABLE 

In BASIC, this is a block of data that includes al I the I ines of code 
that have been entered by the user and token i zed by BAS I C. Th i s tab I e a I so 
includes the immediate mode line. 

STMCUR 

In BASIC, the pointer ([SA,8BJ decimal) to the current BASIC statement. 

STt~TAB 

In BASIC, this is the pointer ([S8,S9J decimal) to the Statement Table. 

STRING ARRAY AREA 

In BASIC, this block contains al I the string and array data. 

SYNC MARK 

Th i sis a 3995-Hz space frequency used as a sort of "end-of-record" 
marker for aud i a tracks on the cassette. In app I i cat ions software it is 
useful for synchronizing the computer screen display with cassette audio. 

SYSTEM DATABASE 

Th i sis an area that occup i es RAr,1 Pages 0 through 4, conta in i ng many 
locations that store information of importance to the operating system. 

SY STD~ T I MER 

A timer prov i ded by the ATAR I 400/S00 Computers that runs at the 
frequency of the television frame which for North American televisions 
(NTSC) is 59.923334 Hz. European (PAL) televisions run at 50 Hz. There are 
six system timers, and they are clocked as part of the vertical blank 
process. 

G-18 



GLOSSARY 

TELEVISION ARTIFACT 

A pixel on an NTSC screen, one color clock wide, that contains color not 
assigned by the computer. This color is derived from internal oddities of 
color television displays. Artifacting is possible in ANTIC modes 2,3, and 
15 which correspond to BASIC modes 0, no mode, and 8. 

TEXT Iv I NOO\" 

On a screen display, this is a two-dimensional area set aside for 
character displays. 

TOKEN 

In BASIC, an 8-bit byte containing a particular execution code. 

TOKENIZING 

In BASIC, this is the process of getting a I ine of ATASCII character 
input and creating a series of 8-bit bytes which contain tokens, meaningful 
execution codes. 

VARIABLE 

In BASIC, a token that is an indirect pointer to an entries in variable 
tables that contain the variable name and the variable value. 

VARIABLE NAME TABLE 

In BASIC, this is the table containing a I ist of al I the variable names 
that have been entered in a program. 

VARIABLE VALUE TABLE 

In BASIC, this table contains th e numerical value of each variable. 

VBREAK 

This is the 6502 BRK instruction IRQ vector. 
software break instruct i on) is executed, th i s 
normally points to an RTI instruction . 

G-19 

Whenever a $00 opcode (the 
interrupt occurs. VBREAK 



GLOSSARY 

VCOUNT REGISTER 

The ANTIC register which keeps track of which horizontal scan I ine ANTIC 
is displaying. 

VDSLST 

This is the Display List Interrupt NMI vector located at [$0200,$0201J. 

VERTICAL BLANK 

The period during which the electron beam (as it draws the screen image) 
returns from the bottom of the screen to the top. This period is about 1400 
microseconds in duration. 

VERTICAL BLANK INTERRUPT 

A non-maskable interrupt which occurs every 60th of a second during the 
vertical blank time of the television display. In responding to this 
interrupt, the OS performs various housekeeping functions such as shadowing 
color registers. 

VERTICAL SCROLL ENABLE BIT 

This is bit 05 of the ANTIC display I ist instruction byte which enables 
vertical fine scroll ing through VSCROL ($0405), the vertical fine scroll 
register. 

VERTICAL SCROLLING 

The process of vertically "roll ing" the display screen "window" over a 
larger amount of screen data in display memory than can be displayed by a 
static screen window. Both coarse and fine vertical scrol I ing are avai lable 
on the ATARI 400/800 Computers. 

VIMIRQ 

This is the immediate IRQ vector. All IRQs vector through this 
location. VI~'IIRQ normally points to the IRQ handler. This vector can be 
"stolen" to do user IRQ processing. 

G-20 



GLOSSARY 

VINTER 

Th i sis the Per i phera I I nterrupt I RQ vector. The I nterrupt II ne I s a I so 
avai lable on the serial bus. VINTER normally points to an RTI Instruction. 

VKEYBD 

This is the keyboard IRQ vector which is activated by pressing any key 
except BREAK. Th i s vector norma I I Y po i nts to the OS's own keyboard IRQ 
routine. 

VNTD 

I n BAS I C, th i sis the po inter ([84, 85J dec I ma I) to the Var I ab I e Name 
Table Dummy end. BASIC uses this pointer to indicate the end of the name 
table. This pointer normally points to a dummy zero byte when there are less 
than 128 var i ab I es. When 128 var i ab I es are present, th i s po i nts to the last 
byte of the last variable name. 

VNTP 

In BASIC, the pointer ([82,83J decimal) to the Variable Name Table. 

VPRCED 

Th i sis the Per i phera I Proceed I RQ vector. 
avai lable to peripherals on the serial bus. This 
present and normally points to an RTI Instruction. 

VSCROL 

The proceed I ine Is 
IRQ is unused at the 

Th i sis the vert i ca I fine scro I I reg I ster located at $0405. Into VSCROL 
the user stu f fs the number of scan I I nes by wh i ch the screen line I s to be 
vert i ca I I Y scro I led. 

VSERIN 

This is the POKEY serial Input Ready IRQ vector. 

VSEROR 

This is the POKEY serial Output Ready IRQ vector. 

G-21 



GLOSSARY 

VTIMR1 

Th i sis the POKEY timer 1 I RQ vector. 

VTIMR2 

This is the POKEY timer 2 IRQ vector. 

VTIMR4 

This is the POKEY timer 4 IRQ vector. 

VVBLKD 

This is the Vertical Blank Deferred NMI interrupt vector located at 
[$0224,$0225J. 

VVBLKI 

This is the Vertical Blank Immediate NMI interrupt vector located at 
[$0222,$0223J. 

VVTP 

In BASIC, this is the pointer ([86,87J decimal) to the Variable Value 
Table. 

WARMSTART 

Another name for SYSTEtv1 RESET rout i ne. The warmstart in it i a I i zes most 
of the system vectors but does not check RAM size. 

\~IDE PLAYFIELD 

A screen display width option equal to a width of 192 color clocks. 

v/SYNC 

I'/ait for Horizontal Sync of the electron beam which is drawing the 
screen image. The WSYNC register, when written to in any way, pul Is down the 
RDY I ine on the 6502 microprocessor, freezing the 6502 unti I the electron 
beam drawing the screen image returns to the left edge of the screen. 

G-22 



GLOSSARY 

ZERO-PAGE 

In the ATARI Home Computer System, this is the stretch of memory which 
spans locations $0000 to $OOFF. 

ZIOCB 

Zero-page I/O Contro I Block is used to commun i cate I/O contro I data 
between CIO and the device handlers. 

G-23 



Notes 



Notes 



Notes 



Po. Box 3705 

ATARI " 
PROGRAM 
EXCHANGE 

Santo Claro, CA 95055 

We're interested in your experiences with APX programs 
and documentation, both favorable and unfavorable, 
Many of our authors are eager to improve their programs 
if they know what you want. And. of course, we want to 
know about any bugs that slipped by us. so that the 
author can fix them. We also want to know whether our 

1. Name and APX number of program. 

Review Form 

instructions are meeting your needs. You are our best 
source for suggesting improvements! Please help us by 
taking a moment to fill in this review sheet. Fold the sheet 
in thirds and seal it so that the address on the bottom of 
the back becomes the envelope front. Thank you for 
helping us! 

2. If you have problems using the program. please describe them here. 

3. What do you especially like about this program? 

4. What do you think the program 's weaknesses are? 

5. How can the catalog description be more accurate or comprehensive? 

6. On a scale of 1 to 10. 1 being "poor" and 10 being "excellent". please rate the following aspects of this program : 

Easy to use 
User-oriented (e.g .. menus. prompts , clear language) 
Enjoyable 

___ Self-instructive 
Useful (non-game programs) 

___ Imaginative graphics and sound 



From 

7. Oescribe any technical errors you found in the user instructions (please give page numbers) . 

8. What did you especially like about the user instructions? 

9. What revisions or additions would improve these instructions? 

10. On a scale of 1 to 10, 1 representing "poor" and 10 representing "excellent", how would you rate the user 
instructions and why? 

11 . Other comments about the program or user instructions: 

ATARI Program Exchange 
P.O. Box 3705 
Santa Clara, CA 95055 

[seal here) 

EJ 






	Cover

	Contents

	Preface

	System Overview

	Antic and the Display List

	Graphics Indirection

	Player MIssle Graphics

	Display List Interupts

	Scrolling

	Sound

	The Operating System

	Disk Operating System

	Atari BASIC

	Appendix

	Memory Utilization

	Human Engineering

	That Atari Cassette

	Television Artifacts

	GTIA


	Glossary


