

COMPUTE!'s
THIRD BOOK

OF

2QM~i~!~~:1:ublications,lnc,.
Greensboro, North Carolina
Atari is a registered trademark of Atari, Inc.

The following article was originally published in COMPUTE! Magazine, copyright 1981,
Small System Services, Inc.:
"Blinking Characters" (December)
The following articles were originally published in COMPUTE! Magazine, copyright 1982,
Small System Services, Inc.:
"Machine Language Sort" (March)
"Elementary Numbers" (October)
"The Atari Wedge" (November)
"Purge" (November)
"Atari PEEK and POKE Alternative" (December)
"CaICaJc" (December)
The following articles were originally published in COMPUTE! Magazine, copyright 1983,
Small System Services, Inc.:
"Atari Exponents" Oanuary)
"Automate Your Atari" Oanuary)
"The Atari Cruncher" (February)
"SuperFont Plus" (February)
"16-Bit Atari Music" (March)
"Scriptor" (April)
"Atari Starshots" (May)
The following articles were originally published in COMPUTE! Magazine, copyright 1983,
COMPUTE! Publications, Inc.:
"Using the Atari Timer" Oune)
"Laser Gunner II" Ouly)
"Circles" Ouly)
"Castle Quest" Ouly)
"Atari Sound Experimenter" Ouly)
"Atari Verify" (August)
"SpeIJing Quiz" (October)
"String Arrays In Atari BASIC" (November)

Copyright 1984, COMPUTE! Publications, Inc. AIJ rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner
is unlawful.

Printed in the United States of America

ISBN 0-942386-18-3

10 9 8 7 6 5 4 3 2

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-
9809, is a subsidiary of American Broadcasting Companies, Inc. , and is not associated
with any manufacturer of personal computers. Atari is a trademark of Atari, Inc.

ii

Contents

Foreword v

Chapter 1: Programming Hints . 1
Exponents

Matt Giwer . 3
Reading the Keyboard Codes

Orson Scott Card. 4
Using the Atari Timer

Stephen Levy .. 22
Blinking Characters

Frank C. jones. .. 27
String Arrays

Stephen Levy .. 31

Chapter 2: Sound 35
Sound Experimenter

Matt Giwer . 37
16-Bit Music

Fred Tedsen .. 45

Chapter 3: Applications and Education 53
Beginner's Keyboard

Marty A lbers .. 55
Spelling Quiz

Edward Perrin .. 57
Elementary Numbers

Stephen Levy .. 66
Standings

Dan and Philip Seyer. .. 74
CalCalc: Computerize Your Diet

Charles Brannon .. 87
Castle Quest

Timothy G. Baldwin. .. 94
Scriptor: An Atari Word Processor

Charles Brannon 102

Chapter 4: Graphics 125
SuperFont Plus

john Slaby and Charles Brannon 127
Super TextPlot

Donald L. Vossler 142
Circles

jeffrey S. McArthur 153

iii

Chapter 5: Utilities 161
Joystick Cursor Control

Jeff Brenner 163
Atari Verify

Michael J. Barkan 165
Automate Your Atari

Joseph J. Wrobel 167
The Wedge: Adding Commands To Atari BASIC

Charles Brannon 174
Renumber Plus

Manny Juan and Paul N. Havey 191
Purge

Al Casper . 195

Chapter 6: Advanced Techniques 199
Starshot

Matt Giwer 201
Laser Gunner II

Gary R. Lecompte 216
The Cruncher

Andrew Lieberman 225
PEEK and POKE Alternatives

Jerry White 228

Chapter 7: Beyond BASIC 231
1200 Memory Map: An Initial Examination

Ian Chadwick 233
Merging Machine Language into BASIC

Fred Pinho . 248
Machine Language Sort Utility

Ronald and Lynn Marcuse 258

Appendix A: A Complete Guide to the Atari
Character Set 275

Appendix B: A Beginner's Guide to Typing
In Programs 301

Appendix C: How to Type In Programs 305

Index 306

iv

Foreword

Like COMPUTE!'s other books devoted to the Atari horne
computer, COMPUTEt's Third Book of Atari is packed with articles
on programming techniques, ready-to-run software, computer
utilities, and reference information-all designed to make your
Atari computer even more useful than before.

Whether you are a beginner or an advanced programmer, you
will find numerous articles of interest, ready to type into your
computer, games and applications designed to help you get more
from your investment, and helpful hints and utilities to help you
better understand your Atari.

If you already have COMPUTE!'s First and Second Books of
Atari, you know just how valuable they are-how often you open
the books to look up the information you need to meet your own
programming challenges. However, if this is your first
COMPUTE! book, you're in for some pleasant surprises.

v

1
Exponents

Matt Giwer

The exponential operator, 1\, can be made accurate and useful. Here's how.

The exponential operator, 1\, performs a very standard mathemat­
ical function, although if you are not familiar with mathematics
you may not be aware of its potential. Also, there is another byte­
saving use that I will save for the end.

The key to making full use of 1\ is to realize that in mathemat­
ical notation the square root of four is the same as four to the one­
half power. In BASIC you can write either 5QR(4) or 41\(1/2). So
what good is that? Well, you might want to do a cube root, which
would be 81\(1/3). Get the idea? Not believing that this works, you
might have tried it by now and have noticed that the machine
insists that 41\(1/2) is not 2 but rather 1.998 ... something. It seems
strange to accept a wrong answer from a very slow function.

To correct for this inaccuracy, we simply write the instruction
!NT (41\(1/2) + 0.01), and this will return the number 2. In return
for this inaccuracy we get the ability to calculate very unusual
powers and roots. The above could have been written 41\0.5 and
the same answer returned. We could just as easily have written
41\0.4321 or 21\2.223 and have gotten an answer correct enough for
many calculations. Also, those complex problems such as two to
the five-thirds power 21\(5/3) can be calculated with ease. So not
only can we do the more common cube roots by using 1\(1/3), but
we can now also do an entire range of mathematical functions.

It is not only faster but more accurate to write 2*2 rather than
21\2. If we are not doing mathematics, how do we make use of
this? How about instead of writing a byte-consuming timing loop
for a beep, we simply write A = 11\1? If the beep should last longer,
then there is always A = 11\11\11\11\11\1, etc. It takes quite a while
before this simple statement equals the number of bytes
consumed by a timing loop. Thus the major drawback to more
frequent use of 1\ can be turned to our advantage.

3

1
____ Programming Hints

Reading the
Keyboard Codes
_ •• 111. Orson Scott Card

By reading the Atari keyboard directly, you can get almost any key to
perform like a function key-without changing any of the regular uses of
the keyboard.

Whenever you press a key on your Atari keyboard, a number is
stored at location 53769 in memory and, in most cases, in a
shadow register at location 764. That number is the keyboard code
for the key, or combination of keys, you pressed.

Unfortunately, that number has no relation at all either to
ATASCII character code or to the Atari's internal character code.
So most programmers ignore the keyboard code (KEY CODE) and
let the operating system translate the keyboard code into ATASCII
form.

You can use the KEYCODE, however, to get some interesting
results:

Speed. Picking up the keyboard code at 53769 or 764 can save
you time, especially when you're working in machine language.
For one thing, you completely short-circuit the "debounce"
routine that makes the computer wait for a while before repeating
a key that is being held down continuously. If the key is down, it's
down, and you can read the value at once. That can be a disad­
vantage if you have a touch-typing program, but it can be a great
help if you want instant repetition of a key.

Customization. You can set up your computer, with soft­
ware, to read the keys any way you like. This article, for instance,
includes a program to make your computer read the keyboard
according to the Dvorak pattern instead of the standard Qwerty
layout. Also, you can set up your own system for shift-locking the
keyboard. You don't have to follow the standard computer system
of locking and unlocking only the alphabetic characters when you
press SHIFT-CAPSILOWR, CONTROL-CAPSILOWR, or CAPS/
LOWR alone. You can make the entire keyboard lock and unlock,
or have the nonalphabetic characters lock independently of the

4

1
Programming Hints ___ _

alphabetic characters, by pressing SHIFT-ESCAPE or CONTROL­
ESCAPE, for instance.

Range. Perhaps the most exciting advantage of working with
the keyboard code is the great range of values it offers you. Every
key on the keyboard except SHIFT, CONTROL, BREAK, START,
SELECT, OPTION, and RESET produces its own unique
KEYCODE number. Holding down SHIFT while depressing
another key produces that same number plus 64. Holding down
CONTROL produces that number plus 128. And, except for 11
keys (16 for XL users), holding down both SHIFT and CONTROL
produces that number plus 192.

This means almost every key has four possible values-even
RETURN and ESC and SPACE, which the computer usually treats
the same regardless of whether SHIFT or CONTROL is pressed.
There are 52 keys on old Ataris and 57 keys on XL models that put
numbers in location 53769. That gives you 197 unique signals
from your keyboard (212 if you use an XL model).

Yet there are only 128 valid ATASCII codes (values 128-255
are merely inverse characters) . You are left with 68 (or 84) possible
key combinations that AT ASCII doesn't need to use. If you were
creating a word-processing program, you could print every single
character, including graphics characters, and still have 68
commands left over-without ever reaching for the console keys.

The Three Atari Character Codes
The Atari Operating System (OS) uses three different codes for
character values: ATASCII, Internal Code (ICODE), and Keyboard
Code (KEYCODE) . Each has a specific use, and most of the time,
the OS handles all the conversions from one to another so quickly
that you don't even notice it's going on.

In order to use KEYCODEs effectively, you need to have a
clear idea of the differences among the three codes and their rela­
tionship to each other. So let's review the function of each of the
character codes.

ATASCII. This is the code used by BASIC. All the alphanu­
meric characters (letters and numbers) and symbols follow the
standard ASCII code recognized by most computers. The rest of
the ATASCII codes are used for graphics characters . For instance,
in ATASCII, the letter A has the value 65.

The following commands and functions use the AT ASCII
number:

5

1
____ Programming Hints

CHR$(ATASCII)
OPEN #1,4,0,"I<:":GET #l,ATASCII
ATASCII=PEEI«763)
ATASCI I=ASC ("A")
GRAPHICS l:COLOR ATASCII:PLOT 1,1

(Special ATASCII code conversions are used in GRAPHICS 1 and
2, but for values 32-95, the regular AT ASCII values will PLOT in
Color I-color register 0.)

Internal code. This is the code used by the operating system
to put characters on the screen. The ICODE (internal code)
number represents the character's position within the ROM char­
acter set. The first character in the ROM character set is the blank
(space) character. It has the ICODE number O. The character A is
in position 33 in the character set, so its ICODE number is 33.

The ICODE number is used twice. First, when you type or
PRINT a character on the screen, the OS converts the ATASCII
value into the ICODE value and stores the ICODE value in screen
memory. Second, the ANTIC chip, which scans screen memory
60 times a second, reads the ICODE value stored there and uses it
to count a certain number of steps into the ROM character set.
Since it takes eight bytes to contain each character pattern in the
ROM set, ANTIC counts 8*ICODE bytes into the character set to
find the beginning of the pattern.

So when you type the letter A, the OS stores the number 33
in screen memory. ANTIC finds that 33 and multiplies it by 8,
which results in the number 264. ANTIC then goes to the char­
acter set and counts in until it finds byte 264. This is the first byte
of the pattern for the character A. ANTIC uses that byte, along
with the next seven bytes, to tell the TV screen what to display.

You will use ICODE values for the same purpose the OS uses
them-to POKE characters directly into screen memory and to
find a character's pattern within the character set.

Keyboard code. This is the number generated by the circuits
in your keyboard when you press a key (see Table 1). The combi­
nation of open and closed circuits from the keyboard causes a
KEYCODE (keyboard code) number to be stored in location
53769. This number is then read by the OS and stored at 764,
where it is picked up and converted into an AT ASCII value which
is stored in location 763.

The keyboard code is never used anywhere else, but there are
still several things you can do with it. By POKEing character
codes into location 764, you can fool the OS into thinking that a
particular key has been pressed. Then, when your program GETs

6

1
Programming Hints ___ ��i

Table 1. Keyboard Codes

Unshifted Keyboard Values
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
28 31 30 26 24 29 27 51 53 48 50 54 55 52

TAB Q W E R T Y U I 0 P RETURN
44 47 46 42 40 45 43 11 13 8 10 14 15 12

A S D F C H J K L + CAPSfLOWR
63 62 58 56 61 57 1 5 0 2 6 7 60

Z X C V B N M , / Atari logo
23 22 18 16 21 35 37 32 34 38 39

SPACEBAR F1 F2 F3 F4 HELP
33 3 4 19 20 17

Keyboard Values with SHIFf*
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
92 95 94 90 88 93 91 115 117 112 114 118 119 116

ThBQ W E R T Y U lOP
108 111 110 106 104 109 107 75 77 72 74 78 79

RETURN
76

AS DF CHJ KL, +
127 126 122 120 125 121 65 69 64 66 70 71

CAPSfLOWR
124

Z X C V B N M, / Atari logo
87 86 82 80 85 99 101 96 98 102 103

SPACE BAR F1 F2 F3 F4 HELP
97 67 68 83 84 81

Keyboard Values with CONTROL *
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
156 159 158 154 152 157 155 179 181 176 178 182 183 180

TAB Q W E R T Y U lOP RETURN
172 175 174 170 168 173 171 139 141 136 138 142 143 140

A S D F C H J K L ; + CAPSfLOWR
191 190 186 184 189 185 129 133 128 130 134 135 188

Z X C V B N M , . / Atari logo
151 150 146 144 149 163 165 160 162 166 167

SPACE BAR F1 F2 F3 F4 HELP
161 131 132 147 148 145

Keyboard Values with SHIFf and CONTROL
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
220 223 222 218 216 221 219 243 245 240 242 246 247 244

TAB Q W E R T Y U lOP RETURN
236 239 238 234 232 237 235 203 205 200 202 206 207 204

A S D F C H J K L + CAPSfLOWR
255 254 250 248 253 249 252

Z X C V B N M , . / Atari logo
227 229 224 226 230 231

SPACE BAR F1 F2 F3 F4 HELP
225

'Eleven keys cannot be read with SHIFT and CONTROL pressed: J, K, L, ;, +,', Z, X, C,
V, and B (and F1, F2, F3, F4, and HELP on XL models).

7

1
____ Programming Hints

the latest key pressed or executes an INPUT statement, it will
think the key you specified was pressed.

You can also change the way the computer thinks the keys
are laid out. For instance, you might want to try the Dvorak
keyboard. The Qwerty keyboard (the one your computer comes
with) was deliberately designed to be inconvenient and slow. Back
when mechanical typewriters were first used, quick typists kept
jamming the keys. So the Qwerty keyboard puts the most
commonly used letters off the home keys or on the left side, where
most typists will have a harder time getting to them. Computer­
ized keyboards are faster now, and the Dvorak keyboard is
designed to take advantage of that. The most commonly used
characters are on the home keys . And you can learn the Dvorak
system by making your Atari read the keyboard in the Dvorak
pattern, just by reconfiguring the relationship between
KEYCODE and AT ASCII.

You can also use the keyboard codes to get input from the
keyboard directly, bypassing the OS's formulas for conversion.
That's the use we'll pursue in the rest of this article.

Exceptions to the Rules
SHIff-lock. It is important to remember that the number

stored at 53769 and shadowed at 764 is the value of the key combi­
nation actually pressed. It is not affected at all by whether the
keyboard is SHIFT-locked or CONTROL-locked.

When the Atari powers up, the keyboard is locked into the
alphabetic shift mode-when you press any letter key, with or
without pressing SHIFT at the same time, the shifted value
appears on the screen. But as far as locations 53769 and 764 are
concerned, if you don't press SHIFT, the unshifted value is all it
gets.

The way the operating system handles SHIFT-lock and
CONTROL-lock is simple-you can imitate this in your own
programs. When the CAPS/LOWR key is pressed, the operating
system changes the SHIFT-lock flag at location 702. If the CAPSI
LOWR key is pressed by itself, 0 is stored at 702; if SHIFT and
CAPS/LOWR are pressed together, 64 is stored there; and if
CONTROL and CAPS/LOWR are pressed together, 128 is stored
there. From then on, if the key pressed calls for an alphabetic
(letter, rather than number or symbol) character, the operating
system checks location 702 and adds the number stored there to
the offset into the Key Definition Table. Programs 1 and 2 both

8

1
Programming Hints ___ i

perform a customized version of this function, by-passing the
operating system entirely.

XL models. XL models (Atari 600XL, 800XL, 1200XL, 1400XL,
and 1450XL) allow you to layout your own Keycode Definitions
Table (essentially what the programs in this article do with the
array AC (11)), and inform the operating system by POKEing the
address of the table, low byte first, into locations 121 and 122 ($79
and $7 A). The table is set up exactly like the ATASCII array-you
could use the DATA statements, converting them from ICODE to
ATASCII order, to set up the table for the XL redefinition.

The XL models also allow you to redefine the FI1 and SHIFT­
FI1 keys separately, without redefining the entire keyboard, by
setting up an eight-byte table and POKEing its address, low byte
first, into locations 96 and 97 ($60 and $61).

However, this system of keyboard redefinition still leaves you
with the OS's system of interpretation, which ignores all SHIFT­
CONTROL and all CONTROL-number key combinations. To really
take advantage of the power of the keyboard code, you need to set
up your own interpretation system as well.

Missing SHIFf-CONTROL combinations. Eleven keys-16
on XL models-return no value to location 57369 if both SHIFT
and CONTROL are pressed at the same time: J, K, L,;, +, *, Z, X,
C, V, and B on all Ataris, and F1, F2, F3, F4, and HELP on XL
models. It is as if those key combinations did not exist.

Interrupts. Most of the time, whatever number is stored in
location 53769 is also stored at 764. There are exceptions when the
key combination is acted on during an interrupt. The CONTROL-
1 combination, for instance, is read during an interrupt and can't
be read from 764-but the value still occurs at location 53769 and
can be read there. On XL models, CONTROL-Fl, CONTROL-F2,
CONTROL-F4, and HELP, SHIFT-HELp, and CONTROL-HELP
also generate codes that are not transferred from 53769 to 764.

What difference does this make? If you want to be able to
read that code in spite of the interrupt, you can-by reading 53679
instead of 764. The interrupt will still take place, but your program
will also "know" that the key combination was pressed. Or if you
want your program to ignore keys used by the interrupts, read the
values at 764 instead of 53769.

Here is a short program that reads the hardware register and
POKEs the raw KEY CODE number into screen memory. First,
you will see that the KEYCODE number has no relation to the

9

1 ____ Programming Hints

ICODE number that normally is POKEd into screen memory.
Second, since the PRINT command isn't being used, the

CONTROL-l key has no effect at all-and its KEYCODE number
is POKEd into screen memory, where it appears as an inverse
question mark. If you have an XL model, you will see that
pressing CONTROL-F4 still toggles between the standard and
international character sets----but it also causes an inverse 4 to
appear on the screen.
10 POKE PEEK(88)+256*PEEK(89)+N,PEEK(53769)
20 N=N+I-960*(N) 958):GOTO 10

Buill-in delay. There is a slight but measurable time lag
between the keypress causing a number to be stored at 53769,
and the echo getting stored in 764. Here is a very short
example program that will show you these codes:
10 PRINT PEEK(764);" ";PEEK(53769)
20 FOR 1=0 TO 40:NEXT I: GOTO 10

This program PRINTs the value at 764 on the left and the value at
53769 on the right. If you RUN this program and then type very
quickly, you will sometimes see a number appear on the right that
has not yet appeared on the left-you have caught the OS
between receiving the KEYCODE at 53769 and echoing it at 764. If
your program needs speed (particularly if it is a machine language
routine), you'll definitely want to read the keyboard code at 53769.

ATASCII-ICODE Conversions
Actually, since ATASCII and ICODE have a regular relationship,
conversions back and forth are quite simple. Subroutine 1
converts the ATASCII number AC(N) to ICODE and assigns the
value to IC(N):

Subroutine 1. ATASCII to ICODE
800 VERS=0:IF AC) 127 THEN VERS=I:AC=AC-128
810 IF AC(32 THEN IC=AC+64+128*VERS:RETURN
820 IF AC(96 THEN IC=AC-32+128*VERS:RETURN
830 IC=AC+128*IV:RETURN

When you jump to this subroutine, the variable AC must contain
the AT ASCII value of the character you want converted to ICODE.
When you return from the subroutine, the variable IC will contain
the ICODE value. You can POKE it to screen memory: POKE
PEEK (88) + 256*PEEK(89) + OFFSET,IC.

Subroutine 2 converts from ICODE to ATASCII:

10

1
Programming Hints ___ _

Subroutine 2. ICODE to ATASCn
200 IV=0:IF IC)127 THEN IV=I:IC=IC-128
210 IF IC(64 THEN AC=IC+32+128*IV:RETURN
220 IF IC(96 THEN AC=IC-64+128*IV:RETURN
230 AC=IC+128*IV:RETURN

When you GOSUB to this routine, the variable IC contains the
ICODE value of the character you want converted. When you
return from the subroutine, the variable AC will contain the value
that, when PRINTed, will cause the character to be displayed.

In both subroutines, the variable IV is used to keep track of
whether the character was inverse or not. Note that you cannot
change the order of these lines. If 220 is executed before 210, or
120 before 110, the results will be wrong.

The Keyboard Code Array
Since KEY CODE doesn't have a systematic relationship with the
other codes, a simple program wouldn't convert to and from
KEYCODE. A much better solution is to set up a table of AT ASCII
or ICODE values in KEYCODE order, and then use the
KEYCODE number as a pointer into the table to find the right
ATASCII or ICODE value. In BASIC, the simplest way of doing
this is to use the KEYCODE number as the subscript in an array
containing either ICODE or ATASCII values. (For a complete
listing of keyboard codes and their relationship to internal code
and ATASCII, see Appendix A, "A Complete Guide to the Atari
Character Set:')

During your program's setup phase, you need to DIMension
one or both of these arrays:

DIM IC(255),AC(255)

The elements of this array will be assigned either ATASCII or
ICODE values, arranged in KEYCODE order. For instance,
KEYCODE 0 is produced by pressing I (lowercase L). Therefore,
the value of C(O) will be 108.

Once the array has been set up, the keyboard can be read
almost instantly. For instance, to PRINT the last key pressed,
regardless of what it was or how long ago it was pressed, this
statement would do:
PRINT AC(PEEK(764»

We'll go into much more detail about effective use of the keyboard
codes later on.

11

1
_ e Programming Hints

Assigning values. The way you assign values to this array
depends on how you want to use the keyboard data.

KEYCODE 94 is produced by pressing SHIFT-2 (the quota­
tion mark). If the array has been set up in AT ASCII order, the
value of C(94) will be 34. This is the method you will use if you
want to PRINT CHR$ (C(KEYCODE)) or create strings.

If the array has been set up in ICODE order, the value of
C(94) will be 2. This is the method you will use if you want to
POKE keyboard input directly into screen memory, to create
displays without using PRINT or strings.

The KEYCODE DATA Statements
Program 1 is the heart of this system. It consists of DATA state­
ments that contain ICODE values in KEYCODE order.

Extra key combinations. Zero is used for every KEYCODE
value that has not been assigned an ATASCII or ICODE value.
There are many zeros in the DATA statements, even though only
the space bar should produce a blank, because there are many
KEYCODE values that have no corresponding ICODE or
ATASCII values. For instance, SHIFT-RETURN has no special
ICODE or ATASCII value. If you wanted SHIFT-RETURN to have
the same value as RETURN, you would assign it the same value
as RETURN.

Inverse ATASCII characters. Some ATASCII values are really
inverse characters. AT ASCII 156-159 (usually produced by
pressing SHIFT-DELETE, SHIFT-INSERT, CONTROL-TAB, and
SHIFT-TAB) PRINT as nothing more than the inverse of ATASCII
28-31. ATASCII 253, 254, and 255 (CONTROL-2, CONTROL­
DELETE, and CONTROL-INSERT) are inverses of ATASCII 125-
127 (SHIFT-CLEAR, DELETE, and TAB). ATASCII 155 (RETURN),
if it could be PRINTed as a character, would be the inverse of
ATASCII 27(ESC). Since all these characters can be obtained by
PRINTing an inverse of another key combination, they have been
left as zeros in the DATA statements. (If you want a keyboard code
to clear the screen or ring the CONTROL-2 buzzer, that can be
done independently, as will be shown below.)

Impossible codes. Many of the zeros in the DATA statements
are there because certain KEY CODE values cannot exist-no
combination of keys will result in that particular number. The
impossible codes on non-XL Ataris are 3,4,9,17, 19,20,25,36,
41,49, and 59-and those numbers plus 64, 128, and 192. Since
the DATA statements are arranged in KEYCODE order, the

12

1
Programming Hints ___ _

impossible codes are represented by zeros just to keep the array in
order. If your computer is an XL model, 3, 4, 17, 19, and 20 repre­
sent Fl, F2, HELP, F3, and F4, and can be read in any combination
except SHIFT-CONTROL.

Assigning Values to the Array
Program 1 includes all the DATA statements needed to set up
arrays AC(n) and IC(n). By removing the word REM in front of the
subroutine calls, you can create a disk file containing the array, or
load the data from the disk file into the array Or you can simply
add these DATA statements to a program.

Using the Keyboard Code in a Program
Once the array is set up, reading the keyboard code is very
simple. You can use it directly, of course, by putting it in a func­
tion:
PRINT CHR$(PEEK(53769»

However, this does not begin to use the freedom the keyboard
code gives you.

Is a key pressed? First, if your keyboard read routine is
complicated at all, you will want to avoid going through it when
there is nothing to read. In the main loop of your program, the
test can be as simple as this:
ON PEEK(753)<>3 GOSUB 500

Location 753 is set to 3 every time a key is pressed. If a key is not
pressed, it decrements (decreases in value by 1) every 1/60 second
until it reaches zero. If a key is pressed and held down, 753 will
continue to equal 3. So your program will GOSUB to your
keyboard read routine only when a key is pressed.

Locking character sets. The CAPS-LOWR key usually affects
only the alphabetic character keys. To get the % character, you
have to press SHIFT-5, regardless of whether the alphabetic keys
are locked in SHIFT or CONTROL mode. The subroutine below,
however, will automatically lock all the keys in one mode or
another.
2500 N=PEEK(537691:S=INT(N/64):KEY=N-S*64
2510 IF KEY=60 THEN SHIFT=St64:RETURN
2530 IC=IC(KEY+SHIFT):AC=AC(KEY+SHIFT)
2540 POKE W.IC:W=W+I-960*(W=959):RETURN

Line 2500 sets up three useful variables. N holds whatever value

13

1
____ Programming Hints

was in 53769. S tells us, in effect whether SHIFT, CONTROL, or
both were also pressed. If S = 0, then neither was depressed; if
S = 1, then SHIFT; if S = 2, then CONTROL; if S = 3, then both.
KEY tells us which actual key was depressed, regardless of
whether SHIFT or CONTROL was depressed.

In line 2510 the program determines whether KEY was the
CAPS-LOWR key, whose code is 60. If it was, then the variable
SHIFT is set at 0, 64, 128, or 192, depending on whether SHIFT or
CONTROL was depressed. Since CAPS-LOWR is not a printing
character, the subroutine returns at this point.

In line 2530, IC and AC are set at the ICODE and AT ASCII
equivalent, not of KEY, but of KEY + SHIFT. Whatever value
SHIFT was last given by line 2510 is automatically added to the
absolute value of whatever key was depressed. Now if the
program should print AC or POKE IC onto the screen, it would
give either its shifted, control, or unshifted value, depending on
the value of SHIFT, regardless of whether SHIFT or CONTROL
was pressed when the key was entered.

In line 2540, IC is POKEd into location SC + W, which repre­
sents a position in screen memory. (SC = lowest address of screen
memory; W = current location above SC.) Then W is incremented
(increased by 1). If W is at 959, so that incrementing it would take
us off the bottom of the screen, the program subtracts 960 and
starts us at the upper left-hand comer again.

Inverse mode. Right now there's no way to print inverse
characters. So let's add a line to take care of that.

2505 IF KEY=39 AND 5 >0 AND 5 (3 THEN IV=128*(5=2):
RETURN

We also need to change line 2530:

2530 IC=ICCKEY+5HIFT+IV):AC=ACCKEY+5HIFT+IV)

Now when you press the Atari logo key at the same time you
press CONTROL, the entire keyboard shifts into inverse mode.
Press SHIFT and the Atari logo key and the keyboard shifts back
into regular mode. But when you press the Atari logo key by itself
or with both CONTROL and SHIFT, there is no effect on inverse
mode at all.

Multiple meanings. When you pre('s the arrow keys when
the keyboard is locked into the control mode, you'll notice that the
arrows appear on the screen, and the cursor does not move. This
is because the program is POKEing the ICODE values into screen

14

1
Programming Hints ___ iii

memory If the program were PRINTing the ATASCII values, the
cursor would have moved.

But you can still use the cursor keys, just as you always have,
along with the SHIFT-CLEAR key, by adding these lines:

2520 ON S GOTO 2800,2850,2900
2800 IF N=125 THEN PRINT CHR$(AC(N»
281!Z1 RETUF:N
2850 H=(KEY=7)- (KEY=8):V=40*«KEY=14) - (KEY=15»:
W=W+H+V
2860 IF W<0 THEN W=W+960 :RETURN
2870 IF W>959 THEN W=W-960
2881!! RETURN
2900 REM This command line is e x ecuted if
SHIFT-CONTROL are pressed
291!Z1 RETURN

Notice that in line 2520 the program uses a GOTO instead of a
GOSUB. This means that the RETURN at the end of each of these
subroutines will take us back, not to the statement immediately
following the branch in line 2520, but to the main loop of the
program. If we did not do this, every command would also result
in a blank being displayed on the screen.

More Commands Than You Can Use
Remember when I said that we would have 68 command charac­
ters? Now you can see that we could just as easily have 140
command characters. That is because, by using the CAPS-LOWR
key the way we do, all the printable values of each key can be
displayed on the screen without pressing SHIFT or CONTROL
each time. Then if the user does press SHIFT or CONTROL or both
with a character, we can interpret that separately as a command.

Naturally, few programs would ever need 140 command
characters. And a word processing program would do much
better to interpret keys pressed with SHIFT as characters rather
than commands-typists would hate having to use CAPS-LOWR
every time they wanted a capital letter or a shifted symbol.

But using the keyboard codes, you have the freedom to
design your own keyboard system, to respond to the exact needs
of your own program. You could design a word processor that
used a keyboard layout different from the standard Qwerty, or
you could simply speed up the key repeat. You could also use a
section of the keyboard as a game controller with continuous
commands-as long as a key was held down, it would continue
to repeat its function. You could read the keyboard as an organ,

15

1
____ Programming Hints

shifting back and forth between different banks of keys with
different stops set.

The Dvorak Keyboard
One thing you might want to try is the Dvorak keyboard
(Program 2). In this program, the DATA sets up the arrays so the
keyboard is interpreted according to the Dvorak keyboard instead
of the Qwerty keyboard (see Table 2). By using this table with
your own keyboard reading program, you could train yourself to
type with the much faster Dvorak keyboard arrangement.

Table ~. Dvorak Keyboard Codes

Unshifted Keyboard Values
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
28 31 30 26 24 29 27 51 53 48 50 54 55 52

TAB / , P Y F G C R L RETURN
44 47 46 42 40 45 43 11 l3 8 10 14 15 12

A 0 E U I D H T N S + CAPSILOWR
63 62 58 56 61 57 1 5 0 2 6 7 60

, Q J K X B M W V Z Atari logo
23 22 18 16 21 35 37 32 34 38 39

SPACEBAR Fl F2 F3 F4 HELP
33 3 4 19 20 17

Keyboard Values with SHIFT
ESC 1 2 3 4 5 6 7 8 9 0 < > DEL
28 31 30 26 24 29 27 51 53 48 50 54 55 52

TAB? [1 p y F G C R L RETURN
44 47 46 42 40 45 43 11 l3 8 10 14 15 12

A 0 E U I D H T N S + CAPSILOWR
63 62 58 56 61 57 1 5 0 2 6 7 60

: Q J K X B M W V Z Atari logo
23 22 18 16 21 35 37 32 34 38 39

SPACEBAR Fl F2 F3 F4 HELP
33 3 4 19 20 17

Keyboard Values with CONTROL
See Table 1.

Keyboard Values with SHIFT and CONTROL
See Table 1.

Note: The Dvorak keyboard calls for the single and double quotation marks to be just to
the right of the L key and the hyphen and underline characters to be just to the right of the
S key. The preceding table does not show this because those keys are used for arithmetic
functions on the Atari keyboard, and most users would probably prefer to leave those
keys as they are.

16

1
Programming Hints ___ _

Debounce routine. Line 100 contains a homemade debounce
routine. When you type, your finger remains on the key for a frac­
tion of a second. If the program reads the keyboard again before
you lift your finger, the key will repeat--€ven though you might
not want it to. The debounce routine checks to see if the value it
just got from the keyboard is the same as the last one it got. If not,
a new key has been pressed and the program goes on. But if the
keys are the same, the counter X is incremented by one. If X is less
than 4, the key will be ignored; if it is greater than 4, it is assumed
that the typist meant the key to repeat.

By changing the 4 to some other number, you can change the
time lag between holding down a key and getting it to repeat on
the screen. Or you could write a routine that would cause the
cursor control keys to repeat without a much shorter debounce
delay than the other keys .

Because this routine is written in BASIC, it has another
problem-it's possible for you to type so quickly that you press
one key and then go on and press another key before the program
ever reads the first key's value. You can solve the problem by
writing in machine language. Or you could write just your
keyboard reading routine in machine language and run it in an
interrupt, have that routine store the characters typed into a
buffer, and let your BASIC program read the keyboard input from
the buffer at its own speed. Or you could compile your BASIC
program so it ran faster than people could type. But the more
commands you have to check for with each letter typed, the
slower your BASIC program will run, and the more keystrokes
you'll lose because of slow program execution.

SHIFTing. This program improves on the way Program 1
handles the SHIFf key. Instead of simply ignoring the SHIFT and
CONTROL keys except when CAPSILOWR is pressed, Program
2 pays attention to SHIFT. If the keyboard is locked into SHIFf or
CONTROL, pressing the SHIFf key has no effect. If the keyboard
is locked into lowercase (that is, if you pressed CAPSILOWR by
itself), then pressing the SHIFT key with another key will cause
that letter, and only that letter, to be shifted-just like the standard
typewriter keyboard.

This is handled in line 105, when S is set to equal INT(K/64).
In effect, this makes S equal 1 if SHIFT is pressed, 2 if CONTROL
is pressed, 3 if both are pressed, and a if neither is pressed. Then,
in line 120, N is set back to the value of K, the original keystroke

17

1 ____ Programming Hints

combination, if SHIFT was pressed. This by-passes the locked
value of the variable SHIFT for one keystroke only.

It would be a simple matter to adapt this program so that if
the keyboard is locked into SHIFTed condition, pressing the
SHIFT key and another key would cause the program to display
the lowercase, unshifted value of that key. Or you could write a
routine that would allow you to lock and unlock the number keys
into shifted and unshifted condition separately from the rest of
the keyboard.

POKEing to the screen. This program pretends to be a
typing program, since lines 200 and 205 POKE the letters directly
into screen memory. Each time a character is POKEd into
memory, the pointer variable E is incremented by one so that the
next character will be placed just to the right of the character
before.

An alternative would be to replace ICODE screen POKEing
with ATASCII PRINT statements. Delete lines 200 and 205 and
replace them with

200 PRINT CHR$(AC(N»+VERS

Now the editing functions will work and the screen will scroll
when you reach the bottom.

These programs, while not especially useful in themselves,
should give you a pretty good idea of some of the possibilities that
are opened up to you if your programs read the keyboard directly.
Whenever you write a program that relies heavily on keyboard
input, you should give serious consideration to having your
program read the keyboard independently-it might allow you to
add refinements to your program that make it more powerful or
useful to the user.

Program 1. Standard Array

5 DIM IC(255),AC(255):SC=PEEK(BB)+256*PEEK(B
9):SHIFT=64:VERS=~

1~ 60SUB 5~~:REM THIS HILL CREATE ARRAYS FR
M DATA STATEMENTS

15 REM 60SUB 6~~:REM us E THIS TO CREATE "D:
EVCODE.DAT"

2~ REM GOSUB 7~~:REM USE THIS TO CREATE ARR
V5 FROM DISKFILE liD: KEVCOD·E. DAT"

1~~ POKE 694,~:ON PEEK(753)< >3 GOTO 10~:K=PE

EK(764)

18

1
Programming Hints ___ _

11215 N=K:IF N>63 THEN N=N-64:IF N>63 THEN N=N
-64:IF N>63 THEN N=N-64
I FI N=6121 THEN SH I FT=4+K-64
IF N=39 THEN VERS=128*(VERS<>128)
PRINT N,CHR$(AC(N+SHIFT)+VERS)
POKE SC+959,IC(N+SHIFT)+VERS
GO TO 1121121

11121
115
2121121
21215
21121
5121121 RESTORE

=N:NEXT
51121 FOR 1=121
52121 IF N<64
53121 IF N)63
54121 IF N)95
55121 NEXT I

1121121121:FOR 1=121 TO 191:READ N:IC(I)
I:FOR 1=192 TO 255:IC(I)=I2I:NEXT I
TO 255:N=IC(I)

56121 RETURN

THEN AC(I)=N+32
AND N<96 THEN AC(I)=N-64
THEN AC(I)=N

6121121 OPEN #4,8,121, "D:KEYCODE.DAT"
61215 RESTORE 1121121121:FOR 1=121 TO 191:READ N:PUT #

4,N:NEXT I
61121 FOR 1=192 TO 255:PUT #4,I2I:NEXT I
615 CLOSE #4:RETURN
7121121 OPEN #4,4,121, "D:KEYCODE.DAT"
71215 FOR 1=121 TO 255:GET #4,N:IC(I)=N
71121 IF N<64 THEN AC(I)=N+32
715 IF N>63 AND N<96 THEN AC(I)=N-64
72121 IF N)95 THEN AC(I)=N
725 NEXT I:RETURN
11211210 DATA 11218,11216,27,0,121,11217,11,1£11,111,121,112

,117,0,11215,13,29
1£1116 DATA 118,121,99,121,121,98,12121,122,2121,121,19,22

,91,21,18,17
112132 DATA 12,121,14,11121,£11,11219,15,121,114,121,11211,1

21,127,116,119,113
112148 DATA 25,121,16,23,126,24,28,3121,11212,11214,1121

121,121,121,11213,115,97
112164 DATA 44,42,26,0,0,43,60,62,47,121,48,53,121

,41,63,124
112180 DATA 54,0,35,121,121,34,56,58,4,121,3,6,121,5,2

, 1
112196 DATA 59,121,61,46,121,45,31,121,5121,121,37,57,121,

52,55,49
1112 DATA 8,£11,9,7,121,32,125,121,38,4121,36,121,121,39

,51,33
1128 DATA 76,74,123,121,121,75,94,95,79,121,8121,85,

0,73,92,93
1144 DATA 86,121,67,121,121,66,88,9121,121,121,£11,121,121,121,121

,121
116121 DATA 64,121,96,78,0,77,121,£11,82,121,69,89,121,8

4,87,81
1176 DATA 0,£11,121,121,121,121,121,121,7121,72,68,£11,£11,71,83

,65

19

1
_. __ Programming Hints

Program 2. Dvorak Array
5 DIM IC(255) ,AC(255):SHIFT=64:VERS=0:SC=PEE

K(88)+256*PEEK(89):E=0
1 0 GO SUB 500: REM .~.""';""""'Iio"";W-:"''':;-;:II'''''''_-''''ijr.:'''i ;;;r~:)j~.;r.* ... r.:lr.:;Ti : ... r':"':\i.,. ... "' __ '""--=iiiII;r.:~ta:

M DATA STATEMENTS
15 REM GOSUB 600:REM

(OI.]:I:1:" .':)j "iii
USE THIS TO CREATE "D:

20 REM GOSUB 700: REM (I;;:'1I;e.a".i._ij:p(:u*:1:m:
VS FROM DISKFILE "D:DVORAK.DAT"

100 POKE 694,0:0N PEEK(753)< >3 GOTO 100:P=PE
EK(53769):IF P=K THEN X=X+l:IF X<4 THEN
100

105 X=0:K=P:S=INT(K/64):N=K-64*S
110 IF N=60 THEN SHIFT=64*S
115 IF N=39 THEN VERS=128*(VERS<>128)
120 N=N+SHIFT:IF S=1 THEN N=K
200 POKE SC+E,IC(N)+VERS
205 E=E+I-960*(E>958)
210 GOTO 100
500 RESTORE 1000:FOR 1=0 TO 191:READ N:IC(I)

=N:NEXT I:FOR 1=192 TO 255:IC(I)=0:NEXT
I

510 FOR 1=0 TO 255:N=IC(I)
520 IF N<64 THEN AC(I)=N+32
530 IF N) 63 AND N< 96 THEN AC(I)=N-64
540 IF N)95 THEN AC(I)=N
550 NEXT I
560 RETURN
600 OPEN #4,8,0, "D: I<EYCODE. DAT"
605 RESTORE 1000:FOR 1=0 TO 191:READ N:PUT #

4,N:NEXT I
610 FOR 1=192 TO 255:PUT #4,0:NEXT I
615 CLOSE #4:RETURN
700 OPEN #4,4,0,"D:KEYCODE.DAT"
705 FOR 1=0 TO 255:GET #4,N:IC(I)=N
710 IF N<64 THEN AC(I)=N+32
715 IF N)63 AND N< 96 THEN ACII)=N-64
720 IF N) 95 THEN AC(I)=N
725 NEXT I:RETURN
1000 DATA 110,104,115,0,0,116,11,10
1008 DATA 114,0,108,103,0,99,13,29
1016 DATA 107,0,106,0,0,120,113,27
1024 DATA 20,0,19,22,91,21,18,17
1032 DATA 119,0,118,98,0,109,122,0
1040 DATA 112,0,14,102,127,121,12,15
1048 DATA 25,0,16,23,126,24,28,30
1056 DATA 117,100,101,0,0,105,111,97
1064 DATA 46,40,51,0,0,52,60,62

20

1
Programming Hints ___ _

1072 DATA 5O.0,44.39.O,35,63,124
1080 DATA 43,0.42,0,0,56,49,26
1088 DATA 4,0~3~6.,0.,5~2!11
1096 DATA 55,0,54,34,0,45.58,0
1104 DATA 48,0.61,38.0,57,59,31
1112 DATA 8.0.9,7.0.32,125,0
1120 DATA 53,36,37.0,0,41,47,33
1128 DATA 76,74,123.0.0.75.94.95
1136 DATA 79,0.80,85.0,73,92,93
1144 DATA 86.0,67.0.0.66.88,90
1152 DATA 0.0,0,0.0.0,0,0
1160 DATA 64.0,96.78,0,77.0,0
1168 DATA 82,0,69,89,0.84,87.81
1176 DATA 0.0,0,0,0,0,0,0
1184 DATA 70,72,68,0,0.71,83.65

21

1
____ Programming Hints

Using the Atari
Timer
----- Stephen Levy

Because FOR/NEXT loops are not accurate timers, the solution is to
incorporate Atari's internal counters into programs where you want
something delayed or timed reliably.

Have you ever written a program and wanted a specific time
delay? What did you do? Some of us figured a FOR/NEXT loop
was the answer, so we set to work with our stopwatches until we
found that the following takes about three seconds to write
"STOP":

1111 PRINT "BEGIN"
20 FOR X=l TO 1000
30 NEXT X
4~:1 PRINT "STOP"

Then we went along and wrote our programs and found that
our three-second delay had become five, six, or even ten seconds.
Why? Because the Atari FORINEXT loops take longer as you add
lines of code to the program.

There is a better way. Yes, machine language routines are
great for timing on the Atari, especially if you know how to use
locations 536 to 558 ($218 to $22E). But it can be most discon­
certing if you allow some of those registers to drop to zero
unchecked.

Accurate Delays
BASIC programmers, there is a way. Use memory locations 18, 19,
and 20.

These timers work like the mileage gauge on a car's speedom­
eter: one counter counts up and then sets the one next to it which,
in tum, sets the next one. Each counter on the speedometer goes
up when the one to its right hits ten. In the computer, they count
up to 255 before going back to zero.

Register number 20 counts at the rate of 60 numbers per
second up to number 255, then increments register 19 by one and

22

1
Programming Hints ___ iii

starts over. When register 19 reaches 255, it increments register 18
by one. If you POKE zero into all three registers, it will take about
1092 seconds before a one appears in register 18 (more than 18
minutes). The table gives some times (it assumes all three regis­
ters began with zero). Notice that it would take more than 77
hours for memory location 18 to reach 255.

Well, how does all this help? Let's look at our short program
again. We can rewrite it this way:

10 PRINT "BEGIN": POKE 2121, 121

20 IF PEEK(20) { 180 THEN 20
30 PRINT "STOP "

This routine will continue to take three seconds no matter
how long your program. Well, not exactly; since it is written in
BASIC, the longer the program, the longer the routine will take.
But the influence of the program length will usually be negligible.

Included here are three programs which demonstrate a much
more functional use of this timer. Type in Program 1, leaving out
the REM statements. This program tells the user the time interval
between the pressing of RETURN after typing RUN and the
pressing of RETURN a second time. Notice that if you press
another key the computer goes back to line 140.

This short program demonstrates several useful concepts .
First, the computer is looking for a particular input, in this case the
RETURN key (AT ASCII 155). Second, line 160 PEEKs at registers
18, 19, and 20. Notice we POKEd location 20 last on line 130 and
PEEKed at it first on line 160. Third, line 170 contains the impor­
tant formula for converting the information in locations 18, 19,
and 20 to seconds. Why 4.267? Because 256 divided by 60
numbers per second equals 4.267. Fourth, lines 180 to 200 convert
the total number of seconds to minutes and seconds.

Program 2 is a bit more useful. It is a timed math quiz in
which the user is allowed eight and one-half seconds to answer.
Line 140 is used to check if a key has been pressed. If no key has
been pressed, then the program goes back to check how much
time has elapsed. Once a key is pressed, the computer GETs the
ATASCII code and calls it AI. At lines 160 and 170, Al is
converted to its CHR$ and placed in its proper place in ANS$. If
Al equals 155 (AT ASCII code for the RETURN key), the program
moves to line 220, where the value of ANS$ is put into variable
ANS.

The final illustration, Program 3, is also a math quiz. In this

23

1
____ Programming Hints

case the user is given unlimited time. This program combines
elements of both Programs 1 and 2.

This Atari timing device should be beneficial whether you
wish to impose a time limit, simply time answers, or have users
compete against each other or themselves. The timer has applica­
tions for both educational programming and games. With some
experimentation you should be able to adapt this timing device
for use with your own programs.

Sample Times

LOC20 LOC19

60 0
60 1
0 2
100 2
0 3
100 4
21 14
42 28
84 56
176 112
0 255
0 60
0 0
0 0
0 0
0 0

Program 1. Atari Timer
10 REM ATARI TIMER
2i~! F: El'l

TIME
LOC18 MIN:SEC
0 0:01
0 0:05
0 0:08
0 0:10
0 0:12
0 0:18
0 1:00
0 2:00
0 4:00
0 8:00
0 18:08
2 40:40
16 291:17
100 1820:35
150 2730:52
255 4642:29

30 REM THIS PROGRAM DEMONSTR ATES HOW
40 REM TO USE ATARI TIMER:
50 REM ADDRESS 18,19,20
60 REM IT FIGURE S HOW LONG IT TAKES
70 REM YOU TO PRESS THE <RETURN> KEY .
80 REM RUN THE PROGRAM THEN PRESS
9!Z! REM <: RETURN ;-
100 REM PROGRAM RUNS BETTER WITHOUT
110 REM REMARK STATEMENTS OR GOTO 120
1212! OPEN #1,4, k'!, "K: "
130 FOR Z=18 TO 20:POKE Z, 0: NE XT Z
14Q! GET #1,D:IF D=155 THEN 1612!

24

1
Programming Hints _

15QI GoTo 140
160 A=PEEK (20) :B=PEEK(19):C=PEEKCI81
170 SEC=INT((4.267*256*C'+(B*4.267'+(A!60))
180 MIN=INTISEC / 6 0)
19QI M=MIN*61Z,
2Qg3 SEC=SEC-t1
210 PRINT MIN;" MINUTES ";SEC;" SECONDS"

Program 2. Timed Math Quiz

10 REM TIMED MATH QUIZ
2!~1 REM
30 REM THIS IS A TIMED MATH QUIZ
40 REM CHANGE LINE 130 TO A=1
50 REM ALLOWS 4 1 / 4 SECOND
60 REM A=2 ALLOWS 8 1 / 2 SECONDS
70 REM A=3 ALLOWS 12 3/4 SECONDS, ETC.
BIZ) OPEN #1,4, !21, "1< :": DIM ANS$ (IQI)
90 PRINT :Q l =INT(RND(0 1* 20) :Q2=INTCRNDC0'*20

) : X = 1
U2H!1 PF;INT Ql;" + "; Q2; "=";
110 PO KE 18,0:POKE 19,0:PoKE 20.O
120 A=PEEK(19) :B=PEE K(20)
130 IF A=2 THEN 180:REM 8 1/2 SECONDS
140 IF PEEK (764) =255 THEN 120
150 GET #l,Al:I F Al=155 THEN 220
160 ANS$CX,X)=CHR$(Al)
170 PF:INT ANS$ CX,X,;: X=X + l:GOTo 1211,
18Qj PRINT :PRIN T " T It1E ' S UP"
1910'1 PRINT "THE AN SltJEF: I S "; Ql+Q2
200 FOR W=l TO 400 :N EX T W
21f!J A~~S$=" ": GoTo 9 iZi
220 ANS= VAL CANS$) : PRINT
230 IF ANS= O I +0 2 THEN PRI NT :PRINT "CORRECT"

: GO T O 2 ,:0)0
24Qi F' r:;' I NT : PR I ~-n "SO RRY": PR I NT : GoTo 1911,

Program 3. Revised Math Quiz

1 0 REM REVI S ED MA1 H QU I Z
2~j REt"1
30 REM TH IS P ROG RA M CO MB I NES ELE MENTS
40 REM OF PR OGRA MS 1 AND 2.
50 REM IT GI VE S MATH QU IZ AND TELL HOW
60 REM LON G IT T OOK YOU TO DO EACH
7(2, REi'! F' ROBLEt1.
8i21 OPEN #1,4,0 , "K: " : D II'1 ANS$ (11Z1)
90 P R INT :Q l = IN T(RND(0'*20 ' :D2=INTCRND(0J*20

) : X = 1

25

1
____ Programming Hints

1i2,0 PRINT Ql; 0; + "; Q2; "=";
110 POKE 18,0:POKE 19,0:POKE 20,0
120 IF PEE K(76 4 1 =255 THEN 120
13121 GET #1, AI: IF Al=155 THEN 19iZ,
140 ANS$(X,X)=CHR$ (Al)
1512> PRINT ANS$(X,X);: X= X+l: GOTO 12 k"
160 PRINT "THE ANSWER I S ";Q1.+ Q2
170 FOR W=1 TO 1000:NEXT W
18121 ANS$=" ": GOTO 9121
190 A=PEEK(20) :B=PEEK(1 9): C=PEEK(18)
200 ANS=VAL(ANS$):PRINT
210 IF ANS=Q 1 +Q2 THEN PF: I NT : PR I NT "CORRECT"

: GOTO 23111
220 PRINT :PRINT "SORRY"
230 SEC=INT«4.25*256*C)+(B*4.25)+ (A/ 60»
240 MIN=INT(SEC / 60)
250 M=M I N*61!1
260 SEC=SEC-M
270 IF MIN <>0 THEN 290
2813 PRINT "THAT TOOK YOU ";SEC;" SECONDS":GO

TO 300
290 PRINT "THAT TOOK YOU ";MIN;" MINUTES":PR

INT "AND ";SEC;" SECONDS"
3013 GOTO 1713

26

1
Programming Hints 11-__ _

Blinking Characters
_____ Frank C. Jones

Make your messages stand out by having them blink. The technique is
easy and simple to add to your programs. Once the machine language
routine is POKEd into memory, the BASIC program can be removed­
leaving the machine language there to do the work necessary for "Blinking
Characters ."

The inverse video key on the Atari computer allows messages to
be displayed in inverse video for special emphasis or eye-catching
effects. Another, sometimes even more dramatic, method of
catching the viewer's eye is to have the message flash on and off,
or blink. There is no simple command in Atari BASIC to produce
this effect, but the key to producing it lies in the register, main­
tained by the operating system, called CHACT, decimal address
755 ($2F3). If bit one in this register is set to one, inverse video
characters are displayed in inverse video; if it is set to zero, they
are displayed normally. However, if bit zero is set to one, these
characters are displayed as blank spaces (inverse video or normal
blanks depending on bit one).

Look for a Faster Solution
With this information we can immediately write a program that
will produce blinking characters on the screen, as Program 1 does.
The trouble with this approach is that our BASIC program is
completely preoccupied with timing loops and toggling bit zero of
CHACT. If we try to incorporate this routine in a program that
does anything else, the timing gets very difficult if not downright
impossible. What we really want is a routine that will sit in the
background and toggle bit zero of CHACT on a regular basis
without interfering with any BASIC program that might be
running at the time. Fortunately, the Atari has in it the resources
we need to do just this.

The Atari operating system maintains five separate timers
that are incremented or decremented during every vertical blank
period (the period between successive TV picture frames during
which the screen is dark). Actually, most of them are updated
only during "second stage" vertical blank; more about this in a

27

1
____ Programming Hints

moment. One of these, called CD1MV2 ($21A), is a two-byte
down counter that can be set to any value between 1 and 65535.
Every sixtieth of a second, during vertical blank, the operating
system reduces this number by one, and when it counts to zero it
performs a subroutine jump to the address that it finds in the two­
byte vector called CDTMA2 ($228) and returns to the operating
system, waiting for the next time the counter counts down to
zero.

Program 2 achieves this result by POKEing a machine
language program into memory starting at the middle of page 6,
location 1664 ($680), and transferring control to it via the USR
function. We use the upper half of page 6 because the lower half
can be overwritten if an INPUT command receives 128 or more
bytes at one time.

Analysis of the Program
Program 3 is the machine language version of the program that
does all the work. After setting up the equates that identify the
various registers in lines 20-40 and starting the assembly at loca­
tion $680 in line 50, we get down to setting ourselves up in busi­
ness. Lines 80 to 170 pull the three parameters passed by the USR
function off the stack and store them in the spaces we reserved for
them in lines 260,270, and 280. We will discuss these parameters
further when we reach the points where they are used.

Lines 190 to 220 store the address of our routine that does the
actual blinking in the two-byte vector CDRMA2 in the usual low­
byte, high-byte order. Lines 230 and 240 take the value of the
parameter we have called PERIOD and store it in the actual timer
location CDTMV2. Since this is the value that is decremented
each sixtieth of a second, it is clear that the parameter PERIOD is
just what its name suggests: the period, in sixtieths of a second, of
the blink. With this final act the USR function has completed its
work, so it returns to BASIC with the RTS at line 250.

Lines 260 to 280 are the storage locations of the three parame­
ters PERIOD, MASK, and FLIP; we already have seen the signifi­
cance of PERIOD. The actual blink routine is simplicity itself.
CHACT is loaded into the A register (line 300), the value is
ANDed with the bits in MASK (line 310) to eliminate any bits that
we do not want, and the remaining bits are exclusively ORed with
the bits in FLIP (line 320) and restored in CHACT (line 330). We
can now see the significance of the parameters MASK and FLIP:
they define the bits of CHACT that we wish to use and toggle.

28

1
Programming Hints ___ iii

The routine ends by resetting the timer for the next period
(lines 350,360) and returning to the operating system vertical
blank routines. After this, it is ready to wait for PERIOD more
vertical blanks and then do it all over again.

The BASIC program that POKEs the machine language into
place does not have to remain in memory once it has done its
work. It may be removed with a NEW statement, and a different
program that uses the blinking characters can be loaded. In fact,
the call to the USR function in line 30 of the BASIC program may
be eliminated, and a different program may tum on the blinking.
Pressing < SYSTEM RESET > will stop the blinking, but another
call to USR (1664, PERIOD, MASK, FLIP) will restore it.

You may experiment with the effect of toggling the various
bits of CHACT by using different values of MASK and FLIP
Changing MASK to 23 and leaving FLIP at 1 causes the inverse
video to remain on during the blanking. If both MASK and FLIP
are changed to 3, inverse video is on while the characters are
displayed, but the blanks are normal blanks. Setting both parame­
ters to 2 produces an alternation between regular and inverse
video that is quite eye-catching. Finally, setting MASK and FLIP
to 4 causes an effect that you will just have to see for yourself; I
still haven't figured out what this is used for, but it is spectacular.
Of course, PERIOD may be set to any value between 1 and 255
that you wish to vary the rate with which the characters change.

Since "second stage" vertical blank routines are suspended
whenever 10 is in progress, you will see that the blinking stops
during any disk or cassette activity (or anything that uses the
serial 10 bus for that matter). You can achieve some unique effects
with this short program, and I am sure that many novel programs
will use this in ways that I have never thought of.

Program 1. Blinking Characters
10 CHACT=755
20 DELAY=20/Z1
3/Z1 PR 1 NT .. I:" : ..
40 FOR 1=1 TO DELAY:NEXT 1
50 POKE CHACT.0
60 FOR 1=1 TO DELAY:NEXT 1
70 POKE CHACT.1
8121 GOTO 40
90 END

Program 2. Character Blink Routine
10 FOR 1=1664 TO 1718

29

1
____ Programming Hints

2~ READ B:POKE I,B:NEXT I
3~ A=USR(1664,3~,1,1)

4~ END
5~ DATA 1~4,1~4,1~4,141,161,6,1~4,1~4.141,16

2, 6, 1~4, 1~4, 141,163,6,169,164,141, 4~, 2,16
9,6,141,41

6~ DATA 2,173,161,6,141,26,2,96,~,~,~
7~ DATA 173,243,2,45,162,6,77,163,6,141,243,

2, 173, 161 ,6, 141,26,2,96

Program 3. Machine Language Version
~~11!l ; CHARACTER BLINK ROUTINE
010210 CHACT $2F3
1010310 CDTMV2 = $21A
010410 CDTMA2 = $228
1010510 *=$106810
01060 ; PULL PARAMETERS FROM STACK
1010710 ;AND STORE THEM
1010810 PLA
00910 PLA
10100 PLA
101110 STA PERIOD
101210 PLA
101310 PLA
101410 STA MASK
101510 PLA
101610 PLA
10170 STA FLIP
131810 ; STORE VECTOR TO BLINK ROUTINE
101910 LDA #BL I NKl!,$I!lIOFF
1021010 STA CDTMA2
102110 LDA #BLINK/256
102210 STA CDTMA2+1
02310 LDA PERIOD
102410 STA CDTMV2
102510 RTS
102610 PERIOD *=*+1
102710 MASI< *=*+1
102810 FLIP *=*+1
1!129 10 ; HERE IS THE BLINI< ROUTINE
103010 BLINK LDA CHACT
0310 AND MASt<
103210 EOR FLIP
103310 STA CHACT
103413 ; RESET TIMER AND RETURN
03510 LDA PERIOD
103610 STA CDTMV2
103710 RTS

30

1
Programming Hints ___ _

String Arrays
Stephen Levy

It is possible to simulate string arrays in Atari BASIC. The illustrations
here show how.

I/If you want string arrays on your Atari computer, you'll just have
to purchase Atari's Microsoft BASIC disk:' A common belief, but
not entirely true. You can create a string array using Atari BASIC.
Microsoft BASIC does make the handling of arrays much easier,
but it is possible to create a string array in Atari BASIC.

Creating the Array
What you will actually be creating is a long string which will hold
all the elements of the array. In order that the array not have
garbage in it, we must clean it out before using it.

There are two ways to clean out the string. The program
below simply DIMensions a string to 1000 and then fills the string
with 1/*1/ using a FOR/NEXT loop. Then it prints the string.

lQ)(2l DIl'-l 8$ (1 !2H2lf:l)

11 0 FOR A=l TO 1 0 0 0
1 2y-1 B$(A,A) ="*"
13 >::; NEXT A
14 Q! PF: I N T B$

The next program does the same thing a little differently and
much more efficiently.

l y-l QI DIM 8$ (1 (!0Ql)

11 QI B$=":t:": B$ (1 !2IQiQ!) = " *" : 8$ (2) = B $
12y-1 PRINT B$

A lot faster, isn't it? You can use this method anytime you want to
fill a large string with the same character. That is exactly what we
must do to begin creating our string array. But this time we need
to fill the string with blanks.

Enter and RUN the program below. When the program asks
for names, enter the names of ten friends, pressing RETURN after
each. The program as written will allow names with up to ten
letters.

31

1
____ Programming Hints

100 DIM ARRAY$(100),ELEMENT$(10):PRINT CHR$(
125)

110 ARRAY$=" ":ARRAY$(100)=" ":ARRAY$(2)=ARR
AY$

120 FOR A=1 TO 10
130 PRINT "NAME FOR ARRAY$(";A;") PLEASE";:I

NPUT ELEMENT$
140 ARRAY$(A*10-9,A*10)=ELEMENT$
150 ELEMENT$=" ":NEXT A
160 PRINT
200 FOR A=1 TO 10
210 PRINT "ARRAY$(";A;") IS ";ARRAY$(A*10-9,

A*10):NEXT A
300 TRAP 340
310 PRINT :PRINT "GIVE THE NUMBER (1 TO 10)"
320 PRINT "OF THE ARRAY YOU WISH TO SEE";:IN

PUT A
330 PRINT ARRAY$(A*10-9,A*10):GOTO 310
340 PRINT CHR$(253):GOTO 300

Notice that the program sets up an array with ten elements and
allows you to pick from any of the ten. Let's look more closely at
how it is done .

Line 100 DIMensions the array and clears the screen. Line
110 fills the array with blanks. Line 120 tells the computer to do it
ten times. Line 130 gets your input.

Line 140 is the heart of the creation of the array. Within the
parentheses the computer is told what part of the string should
hold your input string ELEMENT$. The first time through A = 1;
therefore, ARRAY$(A *10 - 9,A *10) will mean ARRAY$(l, 10), or
the first 10 positions in the string. When A = 2, we place
ELEMENT$ in the positions 11 to 20 (2*10 - 9 = 11 and 2*10 = 20).
We will continue to do this until the string is full.

Line 210 does the same thing, but in reverse order: it reads
ARRAY$ and prints the proper part to the screen. Line 330 also
does the same thing, but only for the part of the string you
request.

Try this: RUN the program and enter any ten names. Then
press BREAK. Type PRINT ARRAY$ without a line number, press
RETURN, and see what happens .

Now RUN the program again, but simply press RETURN
without entering anything for the names. Notice that there
appears to be nothing in ARRAY$. That is not really true-it is
filled with blanks. Type PRINT ARRAY$ again and see what
happens.

32

1
Programming Hints ___ i

You might wonder what function lines 300 and 340 serve.
Those two lines prevent the program from crashing when an
incorrect INPUT is entered. TRAP 340 sends the program to line
340 instead of printing "ERROR 8 Line 320" when you enter a Q
(or whatever) but the program requires a number between 1 and
10. PRINT CHR$(253) rings the buzzer, just as PRINT CHR$(125)
in line 100 clears the screen.

Armed with this little bit of information, you now should be
able to use string arrays in your own programs.

33

-

Sou d Experimenter
•••••• MattGiwer

If you've wanted more control over your Atari's sound, here's a solution.
You can use this program to experiment, to add sound to other programs
(via the SOUND or POKE instructions), and to govern all four voices
and all aspects of special effects.

Sound is one of the most important capabilities of the Atari
computer. Not only does it permit four-part harmony if you are so
inclined, but sound is an essential ingredient in games. It trans­
ports you into the world of the game, filling your ears with the
sound of a laser cannon, letting you hear force shields as they
collapse around you.

Unfortunately, the sound commands are among the most
difficult to experiment with. The SOUND instruction can some­
times be clumsy and inconvenient; for one thing, the sounds stay
on until you tum them off with another SOUND instruction.
Also, you can't achieve the full range of sound with the BASIC
instruction, since using it changes any settings in AUDCTL (the
register which controls sound effects).

Sound control is a complicated matter, and simple programs
cannot offer you complete control over the sounds. Joysticks
couldn't govern four channels with nine registers.

This program takes a little practice to get used to, but it
permits total control over all sound registers plus AUDCTL, turns
the channels on individually, and shuts them all off at once when
you need silence. When you are satisfied with the sounds, you
can display the appropriate BASIC statements in either the POKE
or the SOUND format.

An Overview
Lets first briefly summarize the Atari sound system. (For
complete details, see the Atari Personal Computer System Hardware
Manual, pages III. 12 through III. 14.) There are four independent
sound channels whose distortion, frequency, and volume can be
independently controlled. These are addressed by the SOUND
instruction with the numbers 0 through 3. The Hardware Manual

37

iii ___ Sound

refers to them as 1 through 4. The sound data can be independ­
ently POKEd into registers 53760 through 53767. The odd
numbers control volume and distortion, and the even numbers
control the frequency. Register 53768 is AUDCTL, which controls
all of the sound channels in one way or another. If you use the
BASIC SOUND instruction, any changes you may have made to
AUDCTL are reset-AUDCTL is set to zero. Thus you do not
have full control of the sounds with the SOUND instruction.

This program attempts to give you easy control over all of
these Farameters. Compromises to reduce complexity have been
made in favor of the notation and numbers used in the SOUND
instruction. See the BASIC Reference Manual for further informa­
tion.

The figure shows the display that you will see upon
RUNning and entering the commands. The first eight lines,
numbered B7 through BO, are the bits in the AUDCTL Register. To
change bit seven to I, type B7 and RETURN. To change it back to
zero, type B7 and RETURN again. These are technical changes
that give no indication of what the new sound will be like. Experi­
mentation is best. Suffice it to say that using Bl through B4 turns
on both of the sound channels associated with bit seven.

To discuss the next five lines of the figure, we have to jump
down to the lines labeled D: and X:. There are two types of entries
to make this program, those which are purely commands and
those which require numbers. If you need to enter a number,
enter the number first and press RETURN. If it is a pure
command, simply enter the command and RETURN. If you wish
to work with sound channel zero, type the following sequence: 0,
RETURN, REG, RETURN. A 0 will appear after SOUND
(REG)ISTER on the display. For a pure tone, type 10, RETURN,
DIS, RETURN, and a 10 will appear after (DIS)TORTION:. Simi­
larly, 100, RETURN, FRE, RETURN, and 8, RETURN, VOL,
RETURN, will complete this part of the display.

To hear this sound, type 0, RETURN, CH, RETURN, and to
tum it off, type OFF, RETURN. To see the POKE values for this
sound, type PDIS, RETURN, and the list of nine POKEs will
appear on the screen. Copy these POKEs into your program, and
you will duplicate the sound that you hear. The top right POKE is
AUDCTL. The next four rows are channels 0 through 3- the left
column is the distortion and volume, and the right is the
frequency for each channel.

If AUDCTL is O-which is the same as bits BO through B7

38

2 Sound ___ iii

being all O-then the SOUND instruction may be used. To see the
SOUND instructions, type SDIS, RETURN, and the POKEs will
be replaced with SOUNDs.

The "force" output is in the odd-numbered POKE registers
and produces a click from the TV It is turned off and on by use of
FRC, RETURN. If you have set any of the AUDCTL bits, you must
use the POKEs to duplicate the sounds. The sound channels must
be turned on individually by the CH command. OFF turns off all
channels. If you make a change and want to hear it, type the
channel number and CH again. This may seem cumbersome, but
otherwise the sounds would always be on.

Screen Display

AUDCTL (REG)ISTER 4
9 BIT POLY: (B7): 0

clock Ch.O w/1. 79 MHz: (B6): 0
clock Ch.2 w/1. 79 MHz: (B5): 0

clock Ch.1 w/Ch.O: (B4): 0
clock Ch.3 w/Ch.2: (B3): 0

clock Ch.O w/Ch.2 HiP: (B2): 0
clock Ch.1 w/Ch.3 HiP: (B1): 0

15 kHz: (BO): 0
SOUND (REG)ISTER 0

(DIS)TORTION: 10
(FRE)QUENCY: 100

FORCE OUTPUT: 0
(VOL)UME: 8

X:
D: 1.
REG DIS FRE FRC VOL
OFFCH
PDIS SDIS POKE 53768, 0
POKE 53761,168 POKE 53760, 100
POKE 53763, 0 POKE 53762, 0
POKE 53765, 0 POKE 53764, 0
POKE 53767, 0 POKE 53766, 0

Sound Experimenter
B~ DIM S(5,B),IN$(5~)
9~ FOR I=~ TO B:FOR J=~ TO 5:S(J,I)=~:NEXT J

:NEXT I
1~~ REG=5~~~:DI5=51~~:FRE=52~~:FRC=53~~:OFF=

54~~

39

2 iii ___ Sound

102 CLD=5900:CLX=6000:VOL=6100:POKAUD=6200:C
H=6300:START=6400:REGDIS=6500:BUIZ=6600

104 PDIS=6700:SDIS=6800:EDIS=6900
1000 REM DISPLAY
1002 GRAPHICS 0:POKE 752,1
1008 POSITION 2,0:7 "AUDCTL (REG)ISTER 4"
1010 POSITION 2,1:7 "{II SPACES}9 BIT POLY: (B

7) : "

1020 POSITION 2,2:7 "clock Ch.0 w/l.79 MHz: (
B6) : "

1030 POSITION 2,3:7 "clock Ch.2 w/l.79 MHz: (
B5) : "

1040 POSITION 2,4:7 "{4 SPACES}clock Ch.l wI
Ch.0:(B4):"

1050 POSITION 2,5:7 "{4 SPACES}clock Ch.3 wI
Ch.2:(B3):"

1060 POSITION 2,6:7 "clock Ch.0 w/Ch.2 HiP: (
B2) : "

1070 POSITION 2,7:7 "clock Ch.l w/Ch.3 HiP: (
B 1) : "

1080 POSITION 2,8:7 "{15 SPACES}15 kHz: (B0):"
1090 POSITION 2,9:7 "{5 SPACES}SOUND (REG)IS

TER"
1100 POSITION 2,10:7 "{6 SPACES}(DIS)TORTION

: ..
1110 POSITION 2,11:7 "{7 SPACES} (FRE)QUENCY:

1120 POSITION 2,12:7 "{6 SPACES}FORCE OUTPUT
: If

1126 POSITION 2,13:7 "{10 SPACES}(VOL)UME:"
1128 POSITION 2,14:7 "X:"
1130 POSITION 2,15:7 "0:"
1140 POSITION 2,16:7 "REG DIS FRE FRC VOL"
1150 POSITION 2,17:7 "OFF CH"
1160 POSITION 2,18:7 "PDIS SDIS"
1500 GOSUB START
2000 REM JUMP TABLE
2008 FOR IIZ=1 TO 2 STEP 0
2010 POSITION 5,15:POKE 752,0:INPUT IN$:POKE

752,1
2020 TRAP 2040:A=VAL(IN$):TRAP 40000
2030 POSITION 5,14:7 A:GOSUB CLD
2040 IF IN$= REG" THEN GOSUB REG
2042 IF IN$= DIS" THEN GOSUB DIS
2044 IF IN$= FRE" THEN GOSUB FRE
2046 IF IN$= FRC" THEN GOSUB FRC
2048 IF IN$= OFF" THEN GOSUB OFF
2049 IF IN$= CH" THEN GDSUB CH
2058 IF IN$= VOL" THEN GOSUB VOL

40

Sound ._mi

2060 IF IN$="B7" THEN S(4,7)= NOT (S(4,7»:P
OSITION 30,1:? S(4,7):GOSUB CLD

2061 IF IN$="B6" THEN S(4,6)= NOT (S(4,6»:P
OSITION 30,2:? S(4,6):GOSUB CLD

2062 IF IN$="B5" THEN S(4,5)= NOT (S(4,5»:P
OSITION 30,3:? S(4,5):GOSUB CLD

2063 IF IN$="B4" THEN S(4,4)= NOT (S(4,4»:P
OSITION 30,4:? S(4,4):GOSUB CLD

2064 IF IN$="B3" THEN S(4,3)= NOT (S(4,3»:P
OSITION 30,5:? S(4,3):GOSUB CLD

2065 IF IN$="B2" THEN S(4,2)= NOT (S(4,2»:P
OSITION 30,6:? S(4,2):GOSUB CLD

2066 IF IN$="B1" THEN S(4,1)= NOT (S(4,1»:P
OSITION 30,7:? S(4,1):GOSUB CLD

2067 IF IN$="B0" THEN S(4,0)= NOT (S(4,0»:P
OSITION 30,8:? S(4,0):GOSUB CLD

2070 IF IN$="PDIS" THEN GOSUS PDIS
2072 IF IN$="SDIS" THEN GOSUB SDIS
2980 IF FAIL=1 THEN GOSUB BUZZ
2989 FAIL=0
2990 NEXT ZZZ
5000 REM REG REGISTER SET
5010 IF A<0 OR A)3 THEN FAIL=1
5020 IF A)0 OR A<4 THEN POSITION 24,9:? A

C=A:REM S(C,B)
GOSUB REGDIS
GOSUB CLD:GOSUB CLX
RETURN
REM DIS DISTORTION LEVEL
IF A<0 OR A)14 THEN FAIL=1:GOTO 5180

5030
5040
5088
5090
5100
5110
5112 IF INT(A/2)-A/2<)0 THEN FAIL=1:GOTO 518

5120
5121
5122

o
IF A=0
IF A=2
IF A=4

5123 IF A=6
5124 IF A=8

THEN
THEN
THEN
THEN
THEN

Dl=0
D1=32
D1=64
Dl=96
Dl=128

5125 IF A=10 THEN D1=160
5126 IF A=12 THEN D1=192
5127 IF A=14 THEN D1=224
5130 POSITION 21,10:? A
5140 S(C,I)=D1:S(C,5)=A
5170 S(C,8)=A
5180 GOSUB CLD:GOSUB CLX
5190 RETURN
5200 REM FRE FREQUENCY STORE
5210 IF A<0 OR A)255 THEN FAIL=1
5218 POSITION 21,11:? "{8 SPACES}"
5220 POSITION 21,11:? A

41

____ Sound

S(C,2)=A
BOSUB CLD:BOSUB CLX
RETURN
REM FRC SET FORCE BIT
IF A=.:iJ THEN S(.:iJ,3)= NOT
IF A=1 THEN 5(1,3)= NOT
IF A=2 THEN 5(2 , 3)= NOT
IF A=3 THEN 5(3,3)= NOT
POSITION 21,12:7 S(C,3)
BOSUB CLD
RETURN
REM OFF TURN OFF SOUND

S(~,3)

5(1,3)
5(2,3)
5(3,3)

523.:iJ
528.:iJ
529.:iJ
53.:iJ.:iJ
531.:iJ
532.:iJ
533.:iJ
534.:iJ
535.:iJ
538.:iJ
539.:iJ
54.:iJ.:iJ
541.:iJ POKE 53761,~:POKE 53763,~:POKE 53765,~:

POKE 53767 , ~

548.:iJ BOSUB CLD
549.:iJ RETURN
59~.:iJ REM CLD CLEAR D POS.
591.:iJ POSITION 5,15:7 "{2~ SPACES}"
599.:iJ RETURN
6~~.:iJ REM CLX CLEAR X POS .
6~1.:iJ POSITION 5,14:7 "{21 SPACES}":A=.:iJ
6~9.:iJ RETURN
61~.:iJ REM VOL VOLUME SET
611.:iJ IF A<~ OR A)15 THEN FAIL=1:BOTO 618~
612.:iJ POSITION 21,13:7 "{12 SPACES}"
6122 POSITION 21,13:7 A
613.:iJ S(C,4)=A
618.:iJ BOSUB CLD:BOSUB CLX
619.:iJ RETURN
62~.:iJ REM POKAUD POKE AUDCTL VALUE
62~8 SUM=~

621~ IF S(4,~)=1 THEN SUM=SUM+1
6211 IF 5(4,1>=1 THEN
6212 IF 5(4,2)=1 THEN
6213 IF 5(4,3)=1 THEN
6214 IF 5(4,4)=1 THEN
6215 IF 5(4,5)=1 THEN
6216 IF 5(4,6)=1 THEN
6217 IF 5(4,7)=1 THEN
622.:iJ POKE 53768,SUM
629~ RETURN

SUM=SUM+2
SUM=SUM+4
SUM=SUM+8
SUM=SUM+16
SUM=SUM+32
SUM=SUM+64
SUM=SUM+128

63~.:iJ REM CH TURN ON SOUND CHANNELS
631~ BOSUB POKAUD
632~ IF A=~ THEN POKE 53761.S(~,1)+S(0,4):PO

KE 5376~,S(~,2)

6322 IF A=1 THEN POKE 53763,S(1,1)+S(1,4):PO
KE 53762,5(1,2)

6324 IF A=2 THEN POKE 53765,S(2,1)+S(2,4):PO
KE 53764,5(2,2)

42

2 Sound __ lIiii

6326 IF A=3 THEN POKE 53767,S(3,1)+S(3,4):PO
KE 53766,5(3.2)

6380 GOSUB CLX:GOSUB CLD:GOSUB REGDIS
6390 RETURN
6400 REM START SET UP
6410 FOR 1=1 TO 8:POSITION 30,I:? "0":NEXT I
6490 RETURN

6500 REM REGDIS DISPLAY OF REGISTER
6505 POSITION 21,12:? "{3 SPACES}"
6506 POSITION 21,12:? S(C,3)
6510 POSITION 21,11:? "{6 SPACES}"
6511 POSITION 21,11:? 5 (C, 2)
6520 POSITION 21,10:? "{6 SPACES}"
6521 POSITION 21,10
6522 IF S(C,I)=224 THEN? "14"
6523 IF S(C,I)=192 THEN? "12"
6524 IF S(C,I)=160 THEN? "10"
6525 IF S(C,I)=128 THEN? "8"
6526 IF S(C,I)=96 THEN? "6"
6527 IF S(C,I)=64 THEN? "4"
6528 IF S(C,I)=32 THEN? "2"
6529 IF S(C,I)=0 THEN? "0"
6530 POSITION 21,13:? "{6 SPACES}"
6531 POSITION 21,13:? S(C,4)
6590 RETURN

6600 REM BUZZ
6610 ? "{BELL}"
6690 RETURN
6700 REM PDIS DISPLAY OF POKE DATA
6705 GOSUB EDIS
6710 POSITION 20,18:? "POKE 53768, ";SUM
6720 POSITION 2,19:? "POKE 53761, ";5(0,1)+5

(0,4):POSITION 20,19:? "POKE 53760, ";5
(0,2)

6730 POSITION 2,20:? "POKE 53763, ";5(1,1)+5
(1,4):POSITION 20,20:? "POKE 53762, ";5
(1,2)

6740 POSITION 2,21:? "POKE 53765, ";5(2,1)+5
(2,4):POSITION 20,21:? "POKE 53764, ";5
(2,2)

6750 POSITION 2,22:? "POKE 53767, ";5(3,1)+5
(3,4):POSITION 20,22:? "POKE 53766, ";5
(3,2)

6780 GOSUB CLD
6790 RETURN
6800 REM SDIS DISPLAY OF SOUND DATA
6810 POSITION 2,19:? "SOUND 0, ";5(0,2);",

;5(0,8);", ";5(0.4)

43

ii ___ Sound

682~ POSITION 2,2~:? "SOUND I, ";5(1 ,2);",
;5(1,8);", ";5(1,4)

683~ POSITION 2,21:? "SOUND 2, ";5(2,2);",
;5(2,8);". ";5(2,4)

684~ POSITION 2,22:? "SOUND 3, ";5(3,2);",
;5(3,8);", ";5(3,4)

688~ GOSUB CLD
689~ RETURN
69~~ REM EDIS ERASE PDIS &SDIS
691~ POSITION 2~,18:? "{18 SPACES}"
692~ POSITION 2,19:? "{35 SPACES}"
693~ POSITION 2,2~:? "{35 SPACES}"
694~ POSITION 2,21:? "{35 SPACES}"
695~ POSITION 2,22:? "{35 SPACES}"
699~ RETURN
7~~~ END

44

2 Sound ___ ii

16-Bit Music
_____ Fred Tedsen

Did you know thilt you can improve the tuning of your Atari's notes and
extend its range dramatically? Normally you can only choose among 256
notes with the ordinary SOUND command. These subroutines let you
hilve more thiln 65,000 frequencies to make music thilt's more precise and
more pleasant to hear.

As I listened to my Atari playa new song that I had entered from
a magazine listing, I could hear that some of the notes were not
quite right. The music extended into the third octave above
middle C, and though the tune was recognizable, some of the
notes were off pitch enough to make listening to the tune
unpleasant. I decided that it was time for me to investigate l6-bit
music. What I discovered was not only that the accuracy of the
notes could be improved dramatically, but also that the effective
range could be more than doubled.

How SOUND Works
Before we discuss l6-bit music, let's take a look at what is
happening when we use the SOUND statement, or in other
words, eight-bit sound, in Atari BASIC. The following registers in
the POKEY chip are used for sound generation:

AUDFl (53760) - Audio Frequency Register 1
AUDCl (53761) - Audio Control Register 1
AUDF2 (53762) - Audio Frequency Register 2
AUDC2 (53763) - Audio Control Register 2
AUDF3 (53764) - Audio Frequency Register 3
AUDC3 (53765) - Audio Control Register 3
AUDF4 (53766) - Audio Frequency Register 4
AUDC4 (53767) - Audio Control Register 4
AUDCTL (53768) - Audio Mode Control Register

The audio control registers are used to set volume (low order four
bits) and sound content (high order bits). Thus there are 16
different volume settings and a variety of sounds available. For
this discussion we are concerned onlywith pure tones, corre­
sponding to SOUND x,x,lO,x.

45

iii ___ Sound

The audio frequency registers are used to control the divide
by N circuits. These circuits use the contents of the frequency
registers to divide a "clock" frequency to produce different output
frequencies. Since they are one-byte registers, they are referred to
as eight-bit dividers. The output frequency is determined by the
formula FO = F/(2 x (AUDF + I», where F is the clock frequency
and AUDF the value in the audio frequency register. With a
normal clock rate of 64 kilohertz (or more exactly 63,921 cycles per
second), the frequency range is about U5 hertz to 32 kilohertz.

The effective range for music is limited to about four octaves.
This is because the tuning accuracy of notes being reproduced
becomes progressively worse as the frequency gets higher. Figure
1 illustrates this very clearly. It shows how far out of tune, meas­
ured in "cents;' each note in the four octave range is. (A cent is
11100 of a half-step. A sound which is 50 cents sharp or flat is
exactly halfway between two notes.) Notes which are less than
ten cents out of tune are usually acceptable, though two notes
played together could sound bad if their combined inaccuracy is
too large. For example, if you playa note which is eight cents flat
followed by a higher note which is eight cents sharp, the second
note will probably sound out of tune .

Figure 1. lUning Inaccuracy of Musical Notes in Cents Using
8-Bit Dividers

40

~ 30 ~ I
~ 20 ~ IV : :: ::::~: :::::::::::::::::
~ 20

T 30

40L-~2~-=3-+~4-+~5~~6~~7~~8~~~9~
OCTAVES (a-BIT DIVIDER)

Tuning inaccuracy results from having a limited number of values
to use as dividers. With an eight-bit divider, only 256 unique
frequencies can be reproduced. The A note in the fourth octave
should be 440 cycles per second. To reproduce this note on the

46

Sound __ iii

Atari, the number 72 is used as a divider. The resulting frequency
is 437.8 hertz, which is 8.6 cents flat. If instead we use 71 as a
divider, the output frequency is 443.9 hertz. This note is 15.3 cents
sharp and is obviously a poorer choice than the note using 72.
The choices become more restricted as the notes get higher. For
the A note in the sixth octave, for example, 17 produces a note
which is 15.3 cents sharp, while 18 produces a note 78.4 cents flat
(closer to G# than A).

Fine-tuning: 16-Bit Dividers
Luckily, the Atari provides a solution to this problem: 16-bit
dividers. With a 16-bit divider 65,536 different output frequencies
are possible. For example, to reproduce the A in octave 6, we
could use either 502 (1.8 cents flat) or 501 (1.6 cents sharp) and not
be able to hear any difference. Figure 2 shows how dramatically
the range and accuracy are improved.

Figure 2. Tuning Inaccuracy of Musical Notes in Cents Using
16-Bit Dividers

40

~ 30

~ 2£1

p 1£1

e~----------~~~-P~

F 1£1

~ 20

T 30

40L-~2~~3-+~4-*~5~~6~~7~~~8-+~9~
OCTAVES (1S-BIT DIVIDER)

More accurate tuning does not come without a price. Sixteen­
bit dividers are obtained by combining frequency registers:
AUDFI with AUDF2, or AUDF3 with AUDF4. This gives us a
choice of one 16-bit and two eight-bit voices, or two 16-bit voices.
We also cannot use the SOUND statement, even for the eight-bit
voices, as it will confuse our settings for 16-bit sound. As it turns
out, this is not much of a problem since machine language
routines to play the music are simple and have the added advan­
tage of being faster than separate SOUND statements.

47

iii ___ Sound

Now let's look at how 16-bit sound is set up. The audio mode
control register has four bits for this purpose:

Bit 6-Clock channell with 1. 79 megahertz instead of 64 kilohertz
Bit 5-Clock channel 3 with 1.79 megahertz
Bit 4-Combine channels 1 and 2
Bit 3-Combine channels 3 and 4

The other bits in AUDCTL have no bearing on this discussion, so
we will ignore them. If you are curious, see Chapters 2 and 3 in
the Hardware Manual.

The 1.79 megahertz (1.78979 megahertz, to be exact) clock rate
is required to obtain the full range of output frequencies. The
fonnula for determining output frequency is a little different:
FO= F/(2 x (AUDF + 7)). In this case, AUDF is the two-byte
frequency register value. The second register of the pair is the low
order byte, either AUDF2 or AUDF4. For example, to use 1049 as a
divider with registers 1 and 2, we would POKE 4 in AUDF2 and
25 in AUDF1.

The audio control register of the low order frequency register
is not used and should be set to zero. Volume is controlled with
the second control register only (AUDC2 or AUDC4).

16-Bit Subroutines
Now take a look at the BASIC 16-bit sound subroutines. The first
plays one 16-bit and two eight-bit voices, and the second plays
two 16-bit voices. Notice the SOUND 0,0,0,0 at the beginning of
each routine. This statement must be included to initialize POKEY
for sound. The POKE 53768,X initializes AUDCTL for 16-bit
sound, either one or two voices. Remember that any SOUND
statement executed later will reset this register to zero.

To use these subroutines, simply copy one or the other into
your program and do a GOSUB 20100 once at the beginning of the
program. Then, to play music, do the appropriate machine
language call, X = USR(ADR(HFl$),Nl, Vl,N2, V2,N3, V3) or
X = USR(ADR(HF2$),Nl, Vl,N2, V2). Nx is the note to be played
and Vx is the volume. Nl is the 16-bit voice in the three-voice
routine. You don't need to pass parameters for unused voices. For
example, if you want only the 16-bit voice in the three-voice routine,
you can use X = USR(ADR(HFl$),Nl, VI), but to use only an eight­
bit voice you would have to use X = USR(ADR(HFl$),0,0,N2, V2).

The note tables give you the most accurate values for four
octaves of eight-bit and nine octaves of 16-bit notes. In a practical
sense, the first octave of 16-bit notes is not usable because there

48

Sound __ iii

are some loud harmonics which tend to mask the actual note
being played. You can get some good sounds if you hook up to a
stereo amplifier, however. Notice that the eight-bit value for F# in
the third octave is 172 rather than 173 as shown in the BASIC Refer-
ence Manual. 173 produces a note which is more than 12 cents flat,
while the note from 172 is only 2.4 cents flat.

16-Bit and a-Bit Note Table
NOTE 16-BIT 8-BIT NOTE 16-BIT 8-BIT

C 27357 OCTAVE 1 C 3414 121 OCTAVE4
C# 25821 C# 3222 114
0 24372 0 3040 108
0# 23003 0# 2869 102
E 21712 E 2708 96
F 20493 F 2555 91
F# 19342 F# 2412 85
G 18256 G 2276 81
G# 17231 G # 2148 76
A 16264 A 2027 72
A# 15351 A# 1913 68
B 14489 B 1805 64

C 13675 OCTAVE 2 C 1703 60 OCTAVES
C# 12907 C# 1607 57
0 12182 0 1517 53
0# 11498 0# 1431 50
E 10852 E 1350 47
F 10243 F 1274 45
F# 9668 F# 1202 42
G 9125 G 1134 40
G# 8612 G# 1070 37
A 8128 A 1010 35
A# 7672 A# 953 33
B 7241 B 899 31

C 6834 243 OCTAVE 3 C 848 30 OCTAVE 6
C# 6450 230 C# 800 28
0 6088 217 0 755 26
0# 5746 204 0# 712 25
E 5423 193 E 672 23
F 5118 182 F 634 22
F# 4830 172 F# 598 21
G 4559 162 G 564 19
G# 4303 153 G# 532 18
A 4061 144 A 501 17
A# 3832 136 A# 473 16
B 3617 128 B 446 15

49

iii ___ Sound

NOTE 16-BIT 8-BIT NOTE 16-BIT 8-BIT

C 421 14 OCTAVE 7 G 136
C# 397 G# 128
D 374 A 120
D# 353 A# 113

E 332 B 106

F 313
C 100 OCTAVE 9 F# 295

G 278 C# 94

G# 262 D 88

A 247 D # 83

A# 233 E 78

B 219 F 73
F# 69

C 207 OCTAVE 8 G 64
C# 195 G# 60
D 183 A 57
D# 173 A# 53
E 163 B 50
F 153
F# 144 C 46 OCTAVE 10

Finally, some thoughts on when to use 16-bit music. If you have a
piece of music which sounds fine using SOUND in BASIC, don't
bother changing it-you probably won't be able to hear much
improvement. I think you'll find that just about any music which
extends into the fifth octave will be worth converting, however,
especially if it is very complex. For three-part music, use the 16-bit
voice for the highest notes. Some chord combinations may still
sound slightly out of tune, in which case you might want to tune
the 16-bit voice for the highest notes. Some chord combinations
may still sound slightly out of tune, in which case you might want
to tune the 16-bit voice a little sharp or flat to match the eight-bit
voices. The large number of divider values available gives you
plenty of possibilities.

Program 1. 16-Bit Sound Routine
20000 REM 16-BIT SOUND ROUTINE 1
2010110 REM
2010210 REM 1 16-BIT & 2 8-BIT VOICES
2010310 REM
201040 REM X=USR(ADR (HF1$) , N1,V1,N2,V2,N3,V3)
2 C!l 10 5C!1 REM
2101010 SOUND 0,0,0,0:X=64+16:POKE 53768 , X
20110 DIM HF1$(56):RESTORE 20140

50

Sound __ iii

20120 FOR 1=1 TO 56:READ X:HFl$(I,I)=CHR$(X)
:NEXT I

20130 RETURN
2lZ1140 DATA 104,17lZl ,104,141,2,210,104,141,0,2

1 yJ, 1 lZ14, 104, 41 , 15, 9, 16lZ1, 141,3,210
2!Z115lZ1 DATA 224,2,24/Z1,32, 104, 104,141,4,210, 10

4, l1Z14, 41,15,9,160,141,5,210
21Z1160 DATA 224,4, 24lZ1, 14, liZl4, 104, 141,6,210,10

4, 1!Z14,41, 15,9, 160, 141,7,210,96

Program 2. 16-Bit Sound Routine 2
20000 REM 16-BIT SOUND ROUTINE 2
2QllZlI1Z1 REM
20020 REM 2 16-BIT VOICES
2/Z1/Z130 REl'l
20040 REM X=USRIADR(HF2$),Nl,Vl,N2,V2)
2!ZliE150 REM
20100 SOUND 0 , 0 ,0,0:X=(64+16)+(32+8):POKE 53

768,X
20110 DIM HF2$ (41):RESTORE 20140
2/Z1120 FOR 1=1 TO 41:READ X:HF2$(I, I)=CHR$(X)

:NEXT I
2/Z113/Z1 RETURN
2/Z1140 DATA 104, 17/Z1, 1 1214, 141,2,210, IlZ14, 141, /ZI, 2

10,11214,104,41,15,9, 16lZ1, 141,3,210
20150 DATA 224,2,240,17
2i21160 DATA 104, 141,6,21 /Z1, l1Z14, 141,4,210, 11214, 1

1214,41, 15 , 9, 16lZl , 141,7,210,96

51

.-

3
Beginners Keyboal\
_____ Marty Albers

Here is a short, simple program that gives very young computer users an
entertaining introduction to the keyboard.

Software for young children is hard to find. Most kids' games and
educational software are difficult for the preschooler to under­
stand. Relating screen movement to joystick control can be a hard
concept to grasp. I wrote the following program for my two-year­
old so he would not feel left out when the rest of the family used
the computer. It was designed to be easy to use (just push a key),
educational (learn letters and numbers), and entertaining (colors
and sound), and to provide a friendly start into the world of
computer literacy.

Beginning programmers will also find this program
rewarding, with some useful ideas to try on their own. An expla­
nation of some of the less obvious lines follows. On lines 10 and 35
you will see one method of keyboard input without selecting the
RETURN key (see "Reading the Atari Keyboard on the Fly;'
COMPUTEf's First Book of Atari) . Line 20 POKEs address 16 with
112 to disable the BREAK key. Line 45 allows larger characters in
Graphics modes 1 and 2 by using the PRINT #6; statement. Also
on line 45 is a conversion of the keyboard input from ATASCn
code to character format: CHR$ (I) .

Two sound registers are used (line 50), one with pure tones
and one with distortions. Don't forget to tum the sounds off (line
51). The "default colors" are used, a black screen and four others
for the characters. To find the other colors, use the Atari logo key
and shift between the upper- and lowercase. The RETURN key is
used in line 41 to start a new row of characters. When the screen is
full, you start again in line 42. Now begin!

Beginner's Keyboard
1 REM : I=INPUT, L=LINE, R=ROW, T=TIME
10 OPEN #1,4 , 0,"K:"
15 GRAPHICS 2+16:L=0
20 POKE 16,112
25 FOR R=0 TO 20:IF R=20 THEN R=0:L=L+1
30 POSITION R,L

55

3 iii ___ Applications and Education

35
4111
41
42
45
5111

GET *1,1
IF 1=155 AND 1=11 THEN GOTO 15
IF 1=155 THEN R=-1:L=L+1
IF R=18 AND L=11 THEN GOTO 15
PRINT *b;CHRS(I)
SOUND llI,2*I,1ll1,8:S0UND 1,2.5*1,8,1ll1:FOR T
=1 TO 75:NEXT T

51 SOUND llI,llI,llI,llI:SOUND 1,llI,llI,llI
55 NEXT R

56

3
Applications and Education ___ iii

Spelling Quiz
Edward Perrin

Here is an educational program that will help students learn their weekly
spelling words. Word lists can be SAVEd to disk or tape for practice later.
Requires 32K for disk and 16K for tape.

"Spelling Quiz" allows you or your child to enter weekly spelling
words into the computer and save them on tape or disk. All the
words for the year can be saved at once, or each week can be
saved separately (20 words at a time) as the school year
progresses.

The program allows you to enter up to 20 words at a time. I
have found that most weekly spelling assignments are no more
than 20 words, so this works out rather well. The program will
accept fewer than 20 words, but no more than 20.

The program prompts are self-explanatory, but it would be
good to read through the following instructions.

Load in the program with the BASIC cartridge inserted. The
loading time for tape is about four minutes.

Type in RUN. After the title page you will be asked if you
want to Create or Retrieve a list of words to work on. You will also
be asked if you are using a Disk or Tape.

Creating Word Lists
To create a list, simply type in up to 20 words, no more than 20
letters each and with no leading or trailing spaces, one at a time,
and hit the RETURN key. Be sure each word is spelled correctly
before hitting RETURN. If you enter fewer than 20 words, type in
an * following the last input. After the last word or the * you will
be asked to type in some sort of identifier for that particular list.
Use "Chapter 4" or "List 189;' etc. Use an identifier that your child
will understand. The identifier is used to make sure your child
has retrieved the correct list.

Disk users will be asked to enter a filename. Only the
filename is necessary; the program will supply the "01:': Be sure
to make the name unique and meaningful.

Tape users will need a blank tape or a tape which has been
used to SAVE other word lists. Be sure to note the tape counter

57

3 ____ Applications and Education

number on a sheet of paper and to store the paper with the word
tape.

If you already have words stored, just follow the prompts to
LOAD the words.

Check the list and the identifier to be sure that this is the list
you wanted to use. If not, you have the option to LOAD a new list
or create a new one as needed.

Once the words are LOADed in with the Create or Retrieve
option, your child is ready to use the program. You now choose
one of three options: spell a Certain number of words correctly,
spell an unlimited number of words correctly, or End.

If you choose the C option, you will be graded, and the
program will terminate when the number of words spelled
correctly equals the number you entered at the prompt. If you
choose the unlimited option (by pressing RETURN), you can spell
only 10,000 words before the program terminates. It is easy to
change the 10,000 to another upper limit. Change the number in
the last line of the program to stop the program automatically at a
preset number.

The Quiz Begins
When you have made all of the necessary choices, the game is
ready to play. The screen will show the number of the word being
scrambled, the score (the number of words spelled correctly), a
scrambled word, and the attempt number. At the bottom of the
screen is a GRAPHICS 0 window where you will type your
answers. The word number on top will help the child who cannot
figure out the scrambled word. The program checks spelling
competence rather than ability to unscramble words, so there is
no penalty for not unscrambling correctly. Use this option as you
wish.

Your child will then have three tries to spell the word
correctly. If the spelling is correct, the screen will respond with an
encouraging CORRECT and a happy sound. After three tries, the
program will give the correct spelling and set up a different screen
to allow the child to practice the misspelled word.

Practice Screen
The practice screen will not allow misspellings. It does allow the
child to press the * to exit when he or she wants to . After each
word in this mode, be sure to press the space bar, not RETURN.

58

3 Applications and Education ___ _

Pressing RETURN will cause the computer to register an error in
the spelling.

After the number of correct spellings equals the number put
in at the beginning, or if your child enters * instead of spelling a
word during the main run, the quiz ends and your child is graded
on his performance. If you think the grading is too strict, change
the limits in the grading subroutine in line 9000-9999.

After the grading, your child can go back and retrieve, or
create and save a new file, or use the words already in the
computer's memory. Your child has the option to end at this time.
If he or she continues, the whole cycle repeats.

Spelling Quiz
2 REM SPELLING QUIZ
1~ DIM A$(2~),B$(2~),C$(2~),D$(2~),E$(2~),F$

(2~), G$ (2~), H$ (2~), 1$ (2~), J$ (2~), K$ (2~), L
$(2~),M$(2~),N$(2~),0$(2~)

20 DIM P$(20),Q$(20),R$(20),S$(20),T$(2~),U$
(20),ARRAY(20),Z$(20),STANDINGS(20),ANS$(
1),WORD$(520),INWORD$(128)

30 DIM WEL$(38),DK$(15),ZZ$(1):TIME=0
40 GOSUB 3000
54 GOSUB 13000
55 PRINT "HOW MANY WORDS DO YOU WISH TO SPEL

L{3 SPACES}CORRECTLY BEFORE ENDING THIS D
RILL?{3 SPACES} ENTER 0 TO END PROGRAM

56 TRAP 56:INPUT RIGHT:IF RIGHT=0 THEN 4000
57 TRAP OFF:SCORE=0:ATT=0
58 GOSUB 5200:TRAP OFF
59 Wl=0:W2=0:W 3 =0:W4=0:W5=0:W6=0:W7=0:W8=0:W

9=0:W10=0:Wl1=0:W12=0:W13=0:W14=0:W15=0:W
16=0:W17=0:W18=0:W19=0:W20=0

60 IF SCORE=RIGHT THEN 1000
65 NUM=1:W=INT(20*RND(1)+1)
70 GOSUB 7000:IF A$="{20 SPACES}" THEN NUM=-l

:GOSUB 7000:GOTO 65
8~ GRAPHICS 2:POKE 708,0:FOR AR=l TO 20:ARRA

Y(AR)=-l:NEXT AR:PRINT "{BELL}";"INPUT '*
, TO END QUIZ"

90 POSITION 11,3:? #6;"SCORE";" ";SCORE:POSI
TION 2,0:? #6;"#";W;" ON YOUR LIST"

110 FOR L=l TO 20:IF A$(L,L)=" " THEN L=L-1:
A$=A$(l,L):GOTO 115

112 NEXT L:IF L=21 THEN L=20
115 FOR LTR=l TO L
120 ARR=INT(L*RND(0)+I):IF ARRAY(ARR)=1 THEN

120

59

3 iii ___ Applications and Education

125 P=ARR-l
130 POSITION P,7:? #6;A$(LTR,LTR):ARRAY(ARR)

=1:NEXT LTR:PoKE 708,200
135 TRY=0
137 TRY=TRY+l:ATT=ATT+l:PoSITIoN 0,9:? #6;"A

TTEMPT # ";ATT
140 INPUT Z$:IF Z$="*" THEN ATT=ATT-l:NUM=-1

:GoSUB 7000:GoTo 1000
141 IF Z$=A$ THEN SCoRE=SCoRE+l:FoR N=100 TO

10 STEP -1:SoUND 0,N.10,IIO:NEXT N:SoUND
0,0,0,0

142 IF Z$=A$ THEN POSITION 12,6:? #6;"tc~;Q4.
im":FoR N=1 TO 300:NEXT N:GoTo 60

143 IF TRY=3 THEN FOR N=1 TO 100:SoUND 0,20,
4,10:NEXT N:SoUND 0,0,0,0:GoTo 2000

144 POSITION 0.2:? #6; ",'!AQ-lo"G&2J":PoSITIoN 0,
3'? #6;" 't:r a ain ..

145 FOR N=1 TO 100:SoUND 0,11,4,10:NEXT N:So
UND 0,0,0,0

147 POSITION 0,2:? #6;"{8 SPACES}":PoSITIoN
0,3:? #6;"{11 SPACES}"

150 GoTo 137
1000 GRAPHICS 18:PRINT #6;" your score is

;SCoRE
101j/J PRINT #6:PRINT #6; "time to quit for now

1020 ? #6:? #6:? #6;"{3 SPACES}CoNGRATULATIo
NS"

1030 ? #6;" on a ·ob well done!! ":? #6:? #6;"
QUIZ WILL REPEAT!

1040 GoSUB 5000:SoUND 0,0.0,IO:SoUND 1,0,O,0:
GoTo 9000

2000 POSITION 0,5:? #6;A$:PoSITIoN 1O,4:? #6;
"f§hf..-:.'!N " : NUM=-l : GoSUB 7000

210110 FOR N=l TO 10100
21020 NEXT N:GoSUB 810010
2!!130 GoTo 60
3000 GRAPHICS 18:PoSITIoN i!1,4:? #6;"

{3 SPACES} j."'~?I •• II:t.. m!IE"
3005 GoSUB 5000:SoUND 1,0,0,0:SoUND 0,10,0,0:

RETURN
4000 GRAPHICS 18:PoSITIoN 10,2:7 #6;"VERY GOO

D WORK ... "
410110 POSITION 0,6:? #6;"see you again later"
4!!12i!1 PoS I T I ON 4, li!I:? #6;" ~X'"*it-]".t-/·,,,
4030 GoSUB 5000:GoTo 7030
51000 FOR N=1 TO 200
5010 SOUND 0,RND(0}*2100,10,2
5(!13!!1 NEX T N

60

3
Applications and Education ___ iii

51Z14!!1 RETURN
5100 FOR N=1 TO 100:S0UND 0,N,10,10:NEXT N:S

OUND 0,0,0,0:RETURN
5200 FOR N=255 TO 200 STEP -1:S0UND 0,N,10,1

0:NEXT N:FOR N=225 TO 150 STEP -1:S0UND
0, N, 10, 1!!1: NE X T N

5210 FOR N=175 TO 100 STEP -1:S0UND 0,N,10,1
0:NEXT N:FOR N=150 TO 50 STEP -1:S0UND
v), N, 1(,'1, 10: NEXT N: SOUND 0, 1Z1, !!I, 0: RETURN

7000 IF W=l THEN B$=WORD$(1,20':A$=B$:Wl=Wl+
NUM

7001 IF W=2 THEN C$=WORD$(21,40':A$=C$:W2=W2
+NUM

7002 IF W=3 THEN D$=WORD$(41,60':A$=D$:W3=W3
+NUM

7003 IF W=4 THEN E$=WORD$(61,80':A$=E$:W4=W4
+NUM

7004 IF W=5 THEN FS=WORD$(81,100':A$=F$:W5=W
5+NUM

7005 IF W=6 THEN G$=WORD$(101,121):A$=G$:W6=
W6+NUM

7006 IF W=7 THEN H$=WORD$(121,140):A$=H$:W7=
W7+NUM

7007 IF W=8 THEN I$=WORD$(141,160':AS=I$:W8=
W8+NUM

7~08 IF W=9 THEN J$=WORD$(161,180':A$=J$:W9=
W9+NUM

7009 IF W=10 THEN K$=WORD$(181,200):A$=K$:Wl
0=W10+NUM

7010 IF W=11 THEN L$=WORD$(201,220':A$=L$:Wl
I=Wl1+NUM

7011 IF W=12 THEN M$=WORD$(221,240':A$=M$:Wl
2=W12+NUM

7012 IF W=13 THEN N$=WORD$(241,260):A$=N$:Wl
3=WI3+NUM

7013 IF W=14 THEN O$=WORD$(261,280':A$=O$:Wl
4=WI4+NUM

7014 IF W=15 THEN P$=WORD$(281,300':A$=P$:Wl
5=W15+NUM

7015 IF W~16 THEN Q$=WORD$(301,320':A$=Q$:Wl
6=W16+NUM

7016 IF W=17 THEN R$=WORD$(321,340':A$=R$:Wl
7=W17+NUM

7017 IF W=18 THEN S$=WORD$(341,360':A$=S$:Wl
8=WI8+NUM

7018 IF W=19 THEN T$=WORD$(361,380':A$=T$:Wl
9=W19+NUM

7019 IF W=20 THEN U$=WORD$(381,400':A$=U$:W2
0=W20+NUM

61

3 iii ___ Applications and Education

702lZi RETURN
7030 END
8000 GRAPHICS 18: POKE 7!!18, 100:? #6; "r:JI=Et--"t:a.

JJjii:WilijX':"Z.ll1t#": POSITION (iI, 1:? #6; A$
8005 POS I T I ON 0,2:? #6;" f§l,"t_31iiMsp ac eb ar ... "
8007 POSITION 0,3:? #6;" UNTIL SCREEN rs FUL

8010 POSITION 0,4:? #6;"or type * to return"
:L=0:COUNTER=0

8100 OPEN #1,4,0,"K:"
8150 L=L+1
8200 GET #l,CHAR
8300 CLOSE #1
8350 IF CHR$(CHAR)="*" THEN GOTO 60

8355 IF CHR$(CHAR)=" " THEN L=0:GOSUB 8400
8360 IF CHR$(CHAR)<>A$(L,L) THEN GOSUB 12000

:GOTO 8000
8370 IF L=LEN(A$) THEN L=0
8400 COUNTER=COUNTER+1:PRINT #6;CHR$(CHAR);:

TRAP 4lZ1000
8450 IF COUNTER>139 THEN GOTO 60
8500 GOTO 8100
8600 RETURN
9000 POKE 752,1:PRINT "HERE IS A LIST OF HOW

MANY TIMES EACH WORD WAS SPELLED CORRE
CTLY THIS TIME."

9010 NUM=0:FOR W=l TO 20:GOSUB 7000:NEXT W

9050 FOR N=100 TO 240:S0UND 0,N,10,10:NEXT N
:SOUND 0,0,0,0

9100 ? W1;" ";B$:? W2;" ";C$:? W3;" ";D$:? W
4;" ";E$:? W5;" ";F$:? W6;" ";G$:? W7;"

";H$:? W8;" ";I$:? W9;" ";J$:? W10;" "
;K$

9150 ? Wl1; " ";L$:? W12; " ";M$:? W13; " ";N$:
? W14; " ";O$:? W15; " ";P$:? W16; " ";Q$:
? W17; " ";R$:? W18; " ";S$:? W19; " ";T$

9200? W20;" ";U$
9250 POKE 752,1:POSITION 25,3:PRINT "r:i •• ?I:jI:<i,

~":POSITION 28,5:PRINT ATT:FOR N=l TO 2
00:S0UND 0,255,10,8:NEXT N

9260 PO SIT ION 25, 7 : P R I NT" [II'l:~:~:(1:I ," : PO SIT ION
28,9:PRINT SCORE:FOR N=l TO 200:S0UND 0
,200,10,8:NEXT N

9270 TRAP 9400:PER=INT«SCORE/ATT)*100):POSI
T ION 25, 1 1 : P R I NT" l:l?l :l'i?l: i," : PO SIT ION 28,
13:PRINT PER;"!."

9280 FOR N=l TO 200:S0UND 0,100,10,6:NEXT N
9300 POS I T I ON 25, 15:? "[(1:J:l>l3R"

62

3
Applications and Education __ lIIIIIiiii

931 IZI I F PER >=95 THEN POS I T ION 27, 17:? "'::''':
PO SIT ION 25, 2 1 :? "r #f:{I;1;;;1 __ ;;;I a." '"

9320 IF PER>=88 AND PER(95 THEN POSITION 27,
1 7 :? "~": P 0 SIT ION 25, 2 1 :? " lIJ #4 ;.-,"UloJ>JOJ
III"

9330 IF PER>=78 AND PER{88 THEN POSITION 27,
17:? "~": POSITION 25,21:? "[Bnl]','"''

9340 IF PER)=70 AND PER{78 THEN POSITION 27,
17:? "~": POS I T I ON 25,21:? "r;r:;r:;r:;r:;III"

935f!1 IF PER { 70 THEN POS I T I ON 27, 17:? "~": P
OS I T I ON 25,21:? ";"-'liill'l"D&I"

9360 SOUND 0,0,0,0:PoKE 752,0:GOTo 54
9400 PER=0:PoSITIoN 28,13:PRINT PER:POSITIoN

25, 11 : PR I NT .. r:J#4:lij#4: : GOTO 9280
10000 WEL $= "r:r#4I1(I{I]:;r;eil_.;r;;e:[I]:~_'.I]_"":J#4_"":["

•• II)If,,": PR I NT .. {CLEAR}": FOR N= 1 TO 37: P
RINT WEL$(N,N);:NEXT N:TIME=TIME+1

1 liJ010 oFF=400f!10: P=!ZI:? :? "DO YOU WANT TO [!;RE
ATE OR [l}::TRIEVE THE FILE";

10011 O$="{20 SPACES}":FOR N=l TO 520 STEP 20
:WORD$(N,N+19)=0$:NEXT N

l!~!Z112 ? :? :? "ONCE YOU CREATE A FILE IT WIL
L BE{5 SPACES}STORED ON TAPE OR DISK S
o YOU CAN{5 SPACES}INPUT THE WORDS FRO
M"

11Z11Z113? "THE TAPE OR DISK INSTEAD OF TYPING
{3 SPACES}THE SAME WORDS IN EVERY TIME

YOU PLAY."
1 !Z10 1 4 ? :? :? .. T Y P E I N [!; 0 R II AND HIT r ** ill:;:

NOW'"
10015 TRAP 10014:INPUT ANS$
1!Z1f!117 TRAP lIZ11Z117:? "ARE YOU USING ~PE OR [EI

SK":INPUT ZZ$:IF ZZ$(l,l)<>"T" AND ZZ$
(l,l) <> "D" THEN 1!Z1017

10020 IF ANS$<>"C" THEN GoTO 11000
1!Z110!Z1 ? "TYPE IN WORDS NOW": N=l
101 !Z15 ? :? :? .. r;I.-s:ll:;;;e3":tij;-:[I];; _w."1;l#4--#4 ••

[0:11]:;;; "'1:11 ii ~ ;1 #4 iij[1];; .. "lnl_;l:; "'"~-w< E T URN
{ 1 4 ;""1 :1:tl;1 "'--j} "

10110 FOR N=l TO 400 STEP 20:INPUT INWoRD$
10120 IF N>399 THEN WORD$(4!Z11,520)=" ":GoTO

1021Z1Ql
1!Z1125 IF INWORD$="*" THEN WORD$(N,520)=" ":G

OTo llZl150
10130 WORD$(N,N+19)=INWORD$
10140 NEXT N
10150? "TYPE IN CHAPTER # OR LIST # ETC ... "
10160 INPUT INWoRD$:WORD$(401,420)=INWORD$

63

3 Iii ___ Applications and Education

10200 FOR N=1 TO 420 STEP 20:PRINT WORD$(N,N
+19):NEXT N

10202 IF Z Z$=" D" THEN GOSUB 1121500: TRAP 401ZJ00
:OPEN #2,8,0,DK$:GOTO 10209

10203 ? "POSITION THE TAPE AND TAI<E NOTE OF
{4 SPACES}THE COUNTER NUMBER.":? :? "P
RESS THE PLAY AND RECORD BUTTONS."

10204 ? :? "WHEN THE BUZZER SOUNDS, PRESS ~
~"

1021215 N=1
112121216 TRAP 1021217:LPRINT
1121207 OPEN #2,8,0,"C:"
10209 N=I:FOR X=1 TO 4
10210 PRINT #2;WORD$(N,N+119):N=N+120

1121220 NEXT X:CLOSE #2
1121300 GO TO 1312100
1121500 PRINT "YOU MUST NOW ENTER THE FILENAME

{7 SPACES} (WITHOUT 'D:') OF THE FILE T
o II. ,

10520 IF ANS$=" R" THEN PR I NT "LOAD ": GOTO HJ5
31ZJ

10525 PRINT "CREATE"
112153121 TRAP 1051210: INPUT DK$:DK$(4'=DI<$:DI<$(I,

3'="Dl:"
10540 RETURN
111210121 IF ZZ$="D" THEN GOSUB II'2J50IZJ:N=I:TRAP 4

121000:0PEN #2,4,0,DK$:GOTO 11025
11005 ? "TO LOAD WORDS THAT ARE STORED ON TA

PE BE SURE TO POSITION THE TAPE AT THE
{3 SPACES}CORRECT COUNTER # YOU NEED."

1112110 ? "WHEN BUZZER SOUNDS, PRESS 1;I*lilJ;;: AN
D WAIT FOR THE WORDS TO BE LOADED INT
o THE COMPUTER ... "

11020 N=I: OPEN #2,4,0, "C:"
1112125 FOR X=1 TO 4
1112130 TRAP 11040:INPUT #2,INWORD$
11035 WORD$(N,N+119'=INWORD$:N=N+120
1112140 NEXT X
11045 CLOSE #2
111216121 FOR N=1 TO 4121121 STEP 20:PRINT INT(N/20)

+1;" ";WORD$(N,N+19)
1112167 NEXT N
1112168 PRINT "{9 SPACES}";WORD$(41211,420)
111217121 ? " rs THrs THE GROUP OF HORDS THAT VO

{3 i#1I:l:to:.l41} .. ; : INPUT ANS$: IF
ANS$="N" THEN GOTO 1000121

1112175 GOTO 1312119
111218121 END

64

3 Applications and Education ___ _

12000 FOR N=1 TO 100:S0UND 0,20,4,10:NEXT N:
SOUND O,0,O,0

12005 GRAPH I CS 18:? #6;" L!'l.xl)~ "; CHR$ (CHA
R) ; II 1i~jj""L~"''''1I

12010 POSITION 0,1:? #6;"wrong ... TRY AGAIN"
12020 POSITION 4,3:? #6;"THE WORD IS "
12030 POSITION 0,4:? #6;A$
12040 POSITION 6,5:? #6; "READY???"
12050 L=0:FOR N=1 TO 400:NEXT N:RETURN
13000 WEL $=" I: (0 1:'-': al1.;;lIjO.--tiiM;r:13_:.=U".l*l l:

1aI)":FOR N=1 TO 35:PRINT WEL$(N,N);:NE
XT N:NUM=1

13005 TRAP 13010:? :? "H I T THE 1*.ilJ:~: KEY WH
EN READY";:INPUT A:IF A=0 THEN END

13010 PRINT "{CLEAR}{BELL}":TRAP OFF
13011 ? :? :? :? :? "DO YOU WANT TO USE THE

LIST OF WORDS ALREADY IN THE COMPUTER
OR DO YOU WANTTO LOAD IN A NEW LIST"

13012 ? :? :? "TYPE IN ~ FOR A NEW LIST OR H
I T I:H* iIJ:~: IOU SET H E 0 L D LIS T . " :? :? :
? "TYPE IN ~ TO END"

13013 ? :? :? "OF COURSE, IF THIS IS THE FIR
ST TIME THROUGH THE PROGRAM DURING TH
IS{7 SPACES}SESSION YOU MUST HIT ~!!!"

13014 INPUT ANS$:IF ANS$="N" THEN GOTO 10000
13015 IF ANS$="E" THEN GOTO 4000
13016 IF TIME=0 THEN? "{3 BELL~":GnTO 13018
13017 GOTO 13019
13018 ? :? :? "THIS IS YOUR THROU

GH THE{3 SPACES}PROGRAM. YOU MUST LOAD
IN OR CREATE A NEW LIST NOW!":GOTO 13

011
13019 PRINT "{CLEAR}"
13020 ? :? :? "IF YOU WANT TO PRACTICE FOR A

CERTAIN NUMBER OF TIMES TYPE IN ~ AND
HIT {5 SPACES} m#iilm:. "

13025 ? :? :? "IF YOU WANT TO PRACTICE UNTIL
YOU GET T I RED JUST HIT 1:~#iilH~:."

13030 ? :? :? "IF YOU WANT TO QUIT, TYPE IN
~. "

13050 INPUT ANS$:IF ANS$="C" THEN GOTO 55
13060 IF ANS$="E" THEN GOTO 4000
13070 RIGHT=10000:GOTO 57

65

3 ____ Applications and Education

Elementary Numbers
_____ Stephen Levy

This educatio1WI program for preschoolers requires children to use only the
three console keys to answer questions.

When you bought your computer, one reason you used to justify
the purchase was that the kids could use it for educational
purposes. Welt now the computer is horne, but the three-year-old
rarely uses it. "Too young;' you tell yourself, "maybe in a few
years:'

Children as young as two can and are using computers every
day. But the lack of good software is still the major reason pre­
schoolers don't make greater use of computers. To be used
successfully with preschoolers, educational software must be
truly educationat must have a difficulty level and subject matter
appropriate for the age group, and must hold the child's attention
and be fairly simple to use .

For the Very Young
Using computers to teach young children can be fun and chal­
lenging. The Atari's design makes it extremely easy for young
children to use. Although the Atari offers numerous ways to
input answers, this program, once LOADed, requires only the
use of the three function keys to input responses. The subject
matter, elementary numbers, is basic and is intended to teach the
numbers from one to ten and the addition of single digits.

There are four options for the child to pick from. When the
menu appears the youngster must use the function keys to select
the part of the program to use. Pressing the SELECT key moves a
small marker from one option to the next. When the child is satis­
fied with his or her selection, he or she presses the START key. It is
important that the child hold down the key until the computer
responds (this is true throughout the program).

The Options
The four options are Adding, Counting, Next Number, and Select
a Number.

Adding presents a simple addition problem and an equiva­
lent number of symbols for each number in the problem. By

66

3
Applications and Education __ liiiil

counting the symbols, the child can decide on the answer. The
child then presses the SELECT key until his or her answer (with
the appropriate number of symbols) appears on the screen. The
word for each number in the problem also appears .

5 ***** FIVE
+4 #### FOUR

9&&&&&&&&&

To find out if an answer is correct, the child holds down the
option key. If the answer is correct, the child hears a song and then
is given the option of another problem.

Counting involves very little participation on the part of the
child and is intended for the child who has had little experience
with the computer and is perhaps too young for the other options.

Next Number asks the child to find the next consecutive
number. The computer selects a number and then prints the digit,
the word for the number and the appropriate number of symbols.
The child must answer with the next consecutive number in the
same manner.

In the final option, Select a Number, the child must match the
word for a number with the correct number.

Using the Joysticks
It is hoped that this program will give parents and others new
ideas about how to design programs for very young children.

This program uses the console keys. Another method for
easy inputs is the joystick; AI Baker has two articles that explore
this topic in COMPUTEf's First Book of Atari. Consider also the
possibility of multiple-choice questions that format the answers on
the screen in such a way that a child could simply push the stick
in the direction of his or her response.

The computer is your tool; why not make it a learning tool for
your children?

Elementary Numbers
l~~ REM ELEMENTARY NUMBERS
ll~ REM
12~ REM COMPUTE! PUBLICATIONS
13~ DIM CLEAR$(1),NUMBER$(51),C$(1),NUM$(6)
14~ NUMBER$="ZERO ONE TWO THREEFOUR FIVE S

IX SEVENEIGHTNINE ":CLEAR$=CHR$(125):C$
=CHR$(94)

67

3 iii ___ Applications and Education

15/iJ
16/iJ

17/iJ
18/iJ

19/iJ

2/iJ/iJ
2UI

GRAPHICS 18:SETCOLOR 4,8,3
POSITION 5,3:PRINT #6;"ELEMENTARY":POSIT
ION 5,7:PRINT #6;" NUMBERS":GOSUB 36/iJ
AA=4
PRINT #6;CLEAR$:POSITION /iJ,/iJ:PRINT #6;"P
RESS start TO BEGIN":POSITION /iJ,1:PRINT
#6; "PRESS select TO PICK"
POSITION 3,4:PRINT #6;"adding":POSITION
3,6:PRINT #6;"counting":POSITION 3,8:PRI
NT #6;"next number"
POSITION 3,1/iJ:PRINT #6;"select a number"
IF PEEK(53279)=5 THEN AA=AA+2

22/iJ IF AA=12 THEN AA=4
23/iJ IF AA=4 THEN POSITION /iJ,l/iJ:PRINT #6;"
24/iJ IF PEEK(53279)=6 THEN GOTO 26/iJ
25/iJ POSITION /iJ,AA:PRINT #6;"»":POSITION /iJ,A

A-2:PRINT #6;" ":GOSUB 36/iJ:GOTO 21/iJ
26/iJ IF AA=4 THEN 5/iJ/iJ
27/iJ IF AA=6 THEN 96/iJ
28/iJ IF AA=8 THEN 126/iJ
29/iJ IF AA=1/iJ THEN 158/iJ
3/iJ/iJ FOR AA=1 TO NUM1:POSITION AA+5,4:PRINT #

6;C$:NEXT AA
31/iJ POSITION AA+6,4:PRINT #6;NUMBER$(NUM1+1+

(NUM1*4),NUM1+5+(NUM1*4»:RETURN
32/iJ FOR AA=l TO NUM2:POSITION AA+5,6:PRINT #

6;C$:NEXT AA
33/iJ POSITION AA+6,6:PRINT #6;NUMBER$(NUM2+1+

(NUM2*4) ,NUM2+5+(NUM2$4»:RETURN
34/iJ NUM1=INT(RND(/iJ)*1/iJ):RETURN
35/iJ NUM2=INT(RND(/iJ)*1/iJ):RETURN
36/iJ FOR WAIT=l TO 5/iJ/iJ:NEXT WAIT:RETURN
37/iJ IF AA=1/iJ THEN 137/iJ
38/iJ GOTO 4/iJ/iJ
39/iJ IF AA=19 THEN 52/iJ
4/iJ/iJ IF AA<11 THEN POSITION 5+AA,8:PRINT #6;C

$:POSITION 3,8:PRINT #6;AA
41/iJ SOUND 0,75,10,8
42/iJ IF AA=1/iJ THEN POSITION 2,8:PRINT #6;"1/iJ

43/iJ IF AA)10 THEN POSITION 5+(AA-1/iJ),9:PRINT
#6;C$:POSITION 2 , 8:PRINT #6;AA

44/iJ SOUND 0,0,/iJ,/iJ
450 RETURN
46/iJ NUM$=NUMBER$(COUNT+1+(COUNT*4),COUNT+5+(

COUNT*4»:RETURN
470 CHAR=INT(RND(/iJ)*8)+36:GOTO 49/iJ
48/iJ CHAR=INT(RND(/iJ)*5)+6/iJ
49/iJ C$=CHR$(CHAR):RETURN

68

3 Applications and Education ___ _

500 REM ADDING
510 GoSUB 340:GoSUB 350
520 GRAPHICS 18:SETCoLoR 4,14,12:SETCoLoR 0.

8,18
530 POSITION 3,4:PRINT #6;NUMl
540 IF NUM1=0 THEN POSITION 5,4:PRINT

£ir!:":GoTo 560
#6;"RE:

GoSUB 470:GoSUB 399
POSITION 3,6:PRINT #6;NUM2

550
560
570 IF NUM2=0 THEN POSITION 5,6:PRINT #6;"RE:

£ir!:":GoTo 590
580 GoSUB 489:GoSUB 329
599 POSITION 2,7:PRINT #6;"-":PoSITIoN 1,5

:PRINT #6;"+"
699 AA=9:PoSITIoN 3,8:PRINT #6;"0"
610 GoSUB 470
629 POSITION 0,0:PRINT #6;"press select to

{12 SPACES}change answer":GoSUB 360
639 IF PEEK(53279)=5 THEN AA=AA+l:GoSUB 399
649 POS I T I ON 0,0: PR I NT #6;" IUii4--i.. n .. ftoh.'fm=)I

650
669
670
689
699
700

ou l1ke our answe ":GoSUB 360
THEN AA=AA+l:GoSUB 390
THEN 680

IF PEEK(53279)=5
IF PEEK(53279)=3
GoTo 629
IF AA=NUM1+NUM2 THEN GoSUB 759
IF AA<>NUM1+NUM2 THEN GoSUB 770:GoTo 520
POSITION 9,9:PRINT #6;" ress 5ELECT 1'0

{4 SPACES}M¥hfoiilH=Ui IURoi*,Cg::{8 SPACES}": GO
SUB 369:GoSUB 369

719 IF PEEK(53279)=5 THEN 590
729 IF PEEK(53279)=6 THEN 150
730 PO SIT ION 0, 9 : P R I NT # 6; "p res s Bi¥i _. for m

enu{17 SPACES}":GoSUB 369
740 GoSUB 360:GoTo 790
759 REM CORRECT ANSWER
760 POSITION 2,11:PRINT #6;"correct":GoSUB 1

929:RETURN
779 REM WRONG ANSWER
780 POSITION 2,11:PRINT #6;"sorry, try again

799 FOR 5=1 TO 2
800 SOUND 9,120,2,8
819 GoSUB 950
820 SOUND 0,29,10,12
830 FOR WAIT=l TO 40:NEXT WAIT
840 GoSUB 940:NEXT 5
850 FOR 5=1 TO 3
860 SOUND 0,180,2,8
870 GoSUB 950:GoSUB 940

69

3 Iii ___ Applications and Education

880 NEXT 5
890 FOR 51=1 TO 2
900 SOUND 0,29,10,11
910 FOR WAIT=1 TO 40:NEXT WAIT
920 GOSUB 940:NEXT 51
930 RETURN
940 SOUND 0,0,0,0:FOR WAIT=1 TO 40:NEXT WAIT

:RETURN
950 FOR WAIT=1 TO 80:NEXT WAIT:RETURN
960 REM COUNTING
970 TIMES=1
980 l:iOSUB 2130
990 SETCOLOR 4,8,5:SETCOLOR 0,9,14
1000 POKE 87,2:POSITION 5,2:PRINT #6; "COUNTI

NG"
1010 FOR C=1 TO 15:SETCOLOR 4,C,8:FOR WAIT=1

TO 25:S0UND 0,C*15,10,8:NEXT WAIT
1020 SOUND 0,0,0,0:NEXT C
1030 SETCOLOR 4,8,5:SETCOLOR 0,9,14:SETCOLOR

1,12,10
1040 POKE 87,2:PRINT #6;CLEAR$:Q=1
1050 COLOR 2:POKE 87,5:FOR C1=6 TO 8:PLOT 0,

C1:DRAWTO 79,C1:NEXT C1
1060 FOR COUNT=1 TO 9
1070 REM
1080 GOSUB 460
1090 POKE 87,1:POSITION 0,3:PRINT #6;NUM$:PO

SITION 15,3:PRINT #6;NUM$:POSITION 9,3:
PRINT #6;COUNT

1100 POKE 87,2:FOR C1=5 TO 13 STEP 4:POSITIO
N C1,0:PRINT #6;COUNT:NEXT C1

1110 POKE 87,2:POSITION 2,2:PRINT #6;NUM$:PO
SITION 9,1:PRINT #6;COUNT:POSITION 13,2
:PRINT #6;NUM$

1120 SET COLOR 2,3,7
1130 COLOR 3
1140 SOUND 0,120,10,8
1150 POKE 87,5:PLOT Q+4,15:DRAWTO Q+4,11:DRA

WTO Q,11:POSITION Q,15:POKE 765,3:XIO 1
8, #6, 0, 0, "5:"

1160 SOUND 0,0,0,0
1170 Q=Q+8
1180 GOSUB 360
1190 COLOR 3
1200 POKE 87,5:PLOT Q+4,15:DRAWTO Q+4,11:DRA

WTO Q,11:POSITION Q,15:POKE 765,3:XIO 1
8, #6, 0, 0, "5:"

1210 NEXT COUNT
1220 TIMES=TIMES+l

70

3
Applications and Educatior. ___ iii

1230 IF TIMES=3 THEN 150
1240 GOTO 980
1250 END
1260 REM NEXT NUMBER
1270 GOSUB 2130
1280 SETCOLOR 4,5,10:SETCOLOR 0,6,3:SETCOLOR

1,11,6:SETCoLOR 2,3,3
1290 POKE 87,1:POSITION 5,4:PRINT #6;"NEXT N

UMBER"
1300 FOR Cl=2 TO 3
1310 COLOR Cl:C2=Cl'4
1320 POKE 87,5:PLoT 79,C2+2:DRAWTo 79,C2:DRA

WTO 0,C2:POSITION 0,C2+2:POKE 765,Cl:XI
o 18,#6,0,0,"5:"

1330 NEXT Cl
1340 GOSUB 340:IF NUM1=9 OR NUM1=0 THEN 1340
1350 GOSUB 360:GOSUB 360
1360 GOSUB 480
1370 GRAPHICS 17
1380 POSITION 2,13:PRINT #6;"PRESS THE selec

t":POSITION 2,15:PRINT #6;"KEY UNTIL YO
U"

1390 POSITION 2,17:PRINT #6;"FIND THE":POSIT
I ON 2, 19: PR I NT #6; "1:PfI:i.:LIJ;I;B!I;,"

1400 POSITION 3,4:PRINT #6;NUM1:GoSUB 300
1410 AA=0
14~0 IF PEEK(53279l=5 THEN AA=AA+l:GOSUB 370
1430 IF PEEK(53279l=3 THEN 1500
1440 POS I T I ON 0,0: PR I NT #6; .. 1£111t4-........ j!Sft.,..O:-Ht::

~ ":GOSUB 3~0
1450 GOSUB 470
1460 IF PEEK(53279l=5 THEN AA=AA+l:GOSUB 370
1470 POSITION 0,0:PRINT #6;"press select to

{12 SPACES}change answer":GOSUB 360
1480 IF PEEK(53279l=3 THEN 1500
1490 GOTO 1420
1500 IF AA=NUM1+l THEN GOSUB 750
1510 IF AA< >NUM1+l THEN GOSUB 770:GOTO 1370
1520 IF AA<>NUM1+1 THEN 1370
1530 POS I T I ON 0,0: PR I NT #6; .. 1£1014-..... --.-"'1 ... #(... #01;

{4 SPACES}-=Ht.i01ii4; 1£101.j:tI:::{8 SPACES}": G
OSUB 360:GOSUB 360

1540 IF PEEK(53279l=5 THEN 1340
1550 IF PEEK(53279l=6 THEN 150
1 560 PO SIT ION 0, 0 : P R I NT # 6; .. pre s s 31#1.. for

menu{17 SPACES}":GOSUB 360
1570 GOSUB 360:GOTo 1530
1580 REM SELECT A NUMBER
1590 COUNT=INT(RND(0l'9l:GOSUB 460

71

3 Iii ___ Applications and Education

1600 GRAPHICS 18:SETCOLOR 4,5,9:SETCOLOR 0,7
,5

MATCH UP TH 1610 POSITION 1,0:PRINT #6;" wor
d " : PO SIT ION 2, 1 : P R I NT # 6; "1:_ •• ; _.; 1 ;a n u m b
erll

1620 POSITION 0,8:PRINT #6;"PRESS start TO B
EGIN"

1630 AA=1
1640 GOSUB 360
1650 IF PEEK(53279)<>6 THEN 1650
1660 GRAPHICS 18:SETCOLOR 0,I,13:SETCOLOR 4,

5,9
1670 POSITION 8,7:PRINT #6;NUM$
1680 POSITION 2,3:PRINT #6;" selec"t: TO CHANG

": POSITION 1,4: PRINT #6; "m.,.ft"" ~
~"

1690 POS I T I ON 4,5: PR I NT #6;" ,"llllJ;_:l:id:I#I:."
1700 GOSUB 360
1710 POSITION 1,10:PRINT #6;"

~"

10 1. 234 5 6

1720 IF PEEK(53279)=5 THEN AA=AA+2:S0UND 0,7
5,10,8:FOR W=1 TO 10:NEXT W:SOUND 0,0,0
,0

1730 IF PEEK(53279)=3 THEN 1800
1740 IF AA >19 THEN AA=I:POSITION 19,9:PRINT

#6;"
1750 IF AA=1 THEN 1770
1760 POSITION AA-2,9:PRINT #6;"
1770 POSITION AA,9:PRINT #6;C$
1780 GOSUB 360
1790 GOTO 1720
1800 ANS=«AA+l)/2)-1
1810 IF ANS=COUNT THEN GOSUB 750
1820 IF ANS<>COUNT THEN GOSUB 770:GOTO 1660
1830 GOSUB 360
1840 GRAPHICS 18:SETCOLOR 4,8,12:SETCOLOR 0,

8,2
1850 POSITION 1,3:PRINT #6;"VERY GOOD":POSIT

ION 2,5:PRINT #6;NUM$;" IS ";COUNT
1860 GOSUB 360:GOSUB 360
1870 POS I T I ON 2,5: PR I NT #6;" OPT I o N_iilll;_:iPiiilal "
1880 POS I T I ON 1,3: PR I NT #6;" SELECT liijul;_:l:uu;

~{6 SPACES}_:.1:m.J.#I:i{7 SPACES}"
1890 IF PEEK(53279)=3 THEN 150
1900 IF PEEK(53279)=5 THEN 1590
1910 GOTO 1890
1920 REM INTRO MUSIC
1930 S3=2
1940 MUSIC=INT(RND(0)*2)+1

72

3 Applications and Education ___ _

1950 RESTORE 5300+(MUSIC*100)
1960 READ Sl,TIME
1970 IF 51=-1 THEN SETCOLOR 4,8,3:RETURN
1980 SOUND 0,Sl+3,10,7:S0UND 1,51,10,11
1990 SETCOLOR 4,53,8
2000 FOR WAIT=l TO TIME*7:NEXT WAIT
2010 SOUND 0,0,0,0:S0UND 1 , 0 , 0,0:FOR WAIT=1

TO 3:NEXT WAIT
2020 S3=S3+2:IF 53 >15 THEN 53=1
2030 GOTO 1960
2 1 3 0 REM r., ;""l"""o1nrlj "'II :-r.'.=-r:iiI""] ... ;. MOD E 2 3 ROW 5
2140 REM MODE 1 2 ROWS
2150 REM MODE 5 32 ROWS
2160 GRAPHICS 5
2170 BEGIN=PEEK(560)+PEEK(561)*256+4
2180 POKE BEGIN-1,71
2190 POKE BEGIN+2,7:POKE BEGIN+3,7
2200 POKE BEGIN+4,6:POKE BEGIN+5,6
2210 POKE BEGIN+38,65:POKE BEGIN+39,PEEK(560

):POKE BEGIN+40,PEEK(561)
2220 RETURN
5400 DATA 122,2,122,2,82,2,82,2,73,2,73,2,82

,4,92,2
5410 DATA 92,2,97,2,97,2,109,2,109,2,122,4
5420 DATA 82,2 , 82,2,92,2,92,2,97,2,97,2,109,

4
5430 DATA 82,2,82,2,92,2,92,2,97,2,97,2,109,

4
5440 DATA 122,2,122,2,82,2,82,2,73,2,73,2,82

,4
5450 DATA 92,2,92,2,97,2,97,2,109,2,109,2,12

2,4,-1,-1
5500 DATA 122,2,109,2,97,2,122,2,122,2,109,2

,97,2,122,2,97,2,92,2,82,4,97,2,92,2,82
,4

5510 DATA 82,1,73,1,82,1,92,1,97,2,122,2,82,
1,73,1,82,1,92,1

5520 DATA 97,2,122,2,122,2,82,2,122,4,122,2,
82,2,122,4, -1,-1

73

3
____ Applications and Education

Standings
_____ Dan and Philip Seyer

"Standings" is a program for sports fans who would like to create their
own standings statistics. It was written by a 12-year-old and his father.

This program will enable you to create professional-looking team
standings statistics. We developed the program with baseball in
mind, but you can use it for any sport. You might even adapt it for
other purposes. (For example, a manager or supervisor might use
it to keep track of employee performance.)

Input in Graphics Mode 2 + 16

Once you type in the program and get it working, you'll see a
colorful menu in Graphics mode 2. After you type A, you will be
prompted to enter the date, the name of the sport, the number of
teams, the team names, and win-loss records. A special routine at
lines 420 to 499 allows you to enter this data in Graphics mode 2.
Normally, you can't enter data in this mode without using a text
window and an INPUT statement.

Output Data
After you enter the data mentioned above, the program does the
rest. It calculates each team's percentage and GB statistic. (GB
stands for games behind the leader.) Then the program sorts the
teams into proper order according to winning percentages.

If you hold down the OPTION key when you select choice B,
the program will play some random sounds as it prints the sport
caption at the top of the screen. if you get tired of hearing the
sounds, just press B without holding down the OPTION key.
Then the program will skip over the random sound-generation
routine .

Updating Statistics

Statistics are easily updated. To do this, select option B from the
main menu. You can then change a team's win-loss record by
pressing W to add a win or L to add a loss. The team's percentage
changes instantly when you change the wins or losses . You can
also change the spelling of a team's name, delete an entire team

74

3
Applications and Education __ lIiill

record, or add a new team. The program prompts you step by
step for the appropriate entries and then modifies or deletes the
appropriate DATA statements. The program will automatically re­
sort the teams into proper order after you have updated all the
win-loss statistics.

Resaving the Program
After updating the statistics, be sure to end the program by
selecting the END option from the main menu. The program will
then ask you whether you have a program recorder or disk drive.
You can answer by typing P for program recorder or D for disk
drive.

Program recorder. If you have a program recorder, you will be
asked to position the tape for saving the program. When you
press RETURN, your program will be saved.

Disk drive. If you have a disk drive, the program and any new
data will automatically be resaved to disk when you type 0 and
press RETURN.

Printout
To get a printout of your favorite league's standings, just type C
for your menu choice. You will then be prompted to tum on your
printer. (You may also want to adjust your paper at this time.)
Then press RETURN to start the printing.

STATS ENTEF~ED 08-28-83

HOMETOWN LEAGUE STANDINGS

TEAr'lS w L F·CT. G8

TIGERS 17 !Zl 1. f!1Q1Qi

2 BEARS 9 8 .529 8
-~. PADRES 9 9 .50i-:l 8 1/2
4 A'S 9 1 !~5 .474 9
5 RAMS 8 11 .421 HI
6 LIONS 7 10 .412 HI
7 SENATOF~S 6 11 -:rC7 11 .. -"':'..J"':"

8 WHITE SOX 4 15 . 211 14

Sort Routine
The teams will be listed in order by percentage from highest to
lowest. A sort routine at line 900 to 972 does this for you automati­
cally. Also notice the GB statistics, games behind the leader. The

75

1-Applications and Education

GB statistic is the number of times, a team must beat the first place
team to move into a tie for first place.

Self-Modifying Code
An interesting feature of the program is that it is self-modifying.
When you enter information, the program creates DATA state­
ments for you and saves the information in those DATA state­
ments. (See lines 400 to 420.) This way, you don't need a separate
data file since the data is saved along with your program.

The program as printed here contains the data for the eight
teams listed in the sample printout. The sample data are included
only to get you started. It is suggested that you practice with this
data and experiment with the program. Then delete each of the
eight teams and enter your own information.

Standings
@ ? "INITIALIZING ...•.. "
1 READ Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q1@:SAV=Q1
2 READ Q12,Q13,Q14,Q15,Q17,Q18,Q2@,Q21,Q22,Q

24,Q26,Q27,Q3@,Q33,Q34,Q35,Q4@,Q64,Q65,Q68
,Q70

3 READ Q72,Q74,Q82,Q89,Q95,Q97,Q1@@,Q125,Q12
6,Q128,Q155,Q165,Q19@,Q246,Q255,Q260,Q261,
Q286,Q289,Q3@@,Q304,Q3@6

4 READ Q40@,Q425,Q43@,Q5@@,Q507,Q511,Q533,Q5
59,Q578,Q630,Q694,Q705,Q752,Q760,Q764,Q765
,Q77@,Q80@,Q842,Q871,Q895

5 READ Q898,Q9@@,Q975:GOTO 450
6 DATA 1,2,3,4,5,6,7,8,9,1@,12,13,14,15,17,1

8,2@,21,22,24,26,27,3@,33,34,35,40,64,65,6
8,70

7 DATA 72,74,82,89,95,97,1@0,125,126,128,155
,165,19@,246,255,26@,261,286,289,3@0,3@4,3
06

8 DATA 4@0,425,430,500,507,511,533,559,578,6
30,694,705,752,760,764,765,770,80@,842,871
,895,898,9@0,975

13 RESTORE Q3@0:READ L,TEMP$:RETURN :REM ~
j#W.-J :<tl):i _: [:]:;1 ..

14 TEMP1$="{14 SPACES}":RETURN
15 GOSUB Q22:POSITION X,Y:IF Y$="I.." THEN? "

... : GOTO Q 1 7: REM .,11:1:.111 ... -._,,* •• ;;1:., ... :0.1;;1.:
16 ? #6; "U"
17 POSITION X,Y:GOSUB Q21:GET #Q1,A:RETURN
18 TEMP$="{15 SPACES}":RETURN
19 ? "{38 SPACES}";:RETURN

76

Applications and Education -.l
21 POKE Q7 64, Q255: RETURN : REM [1iI.iiII:1:;' __ :<Ia;"::<J:~:.

j#S..--J :II •• :~ ;;(?!Iii-.,. • :II :.
22 CLOSE #Q1:0PEN #Q1,Q4,Q18,"K:":POKE Q752,

Q 1: RETURN : REM [.]::<J:II:.:<Ia;·iI;IoJ:1:~ •• iiii.]:_II:I:"'11
24 II=INT(RND(Q0)*Q24):FOR A=Q12 TO Q0 STEP

-Q1:S0UND Q0 , II , Q2 , A:NEXT A:RETURN :REM ~
[:1 :<14-- :f:1: 1.1.]:;."""1.111: I.:

25 IF START=Q0 THEN RETURN : REM 1.]:II *_IiI:t:1:.
• FROM TEM

26 POSITION X,Y:IF Y$="'l." THEN? " "
27 IF Y$< } "'l." THEN';> #6;" "
28 X=X-1:TRAP 31:TEMP$=TEMP$(Q1,START-Q1):ST

ART=START-Q1:RETURN
29 GOSUB Q22:GET #1 , A:RETURN
31 START=Q0:X=XX:GOSUB Q18:RETURN

LL=ORDER(OL):RETURN
33 FOR D=YY+Q6 TO YY+Q13:POSITION Q1,D:GOSUB

1 9 : N EXT D: POI< E Q 7 5 2 , Q 1 : RET URN : REM [iii. ;;(:1 :.
'STAT MEN

POKE 559,0:FOR LNO=START TO LL STEP STEP:
? CHR$ (125) : REM 1 .. 11:1:=_.]:11 (.]:

36 RESTORE LNO:READ Y$:IF Y$="{ESC}" THEN RE
TURN

37 ? "{DOWN}";LNO:? :? :? "CONT":POSITION Q0
,Q0:POKE Q842,Q13 : STOP

38 POKE Q842,Q12:';> CHR$(Q125):NEXT LNO:POKE
559,34:RETURN

39 GOSUB Q289:GOTO Q533
41 TEMP 1 $=" Y" : GOSUB Q705: GOSUB 32: REM U#(:1:; •• :

42 RESTORE LL:READ LNO,TEMP$:GOSUB Q33:POSIT
ION Q6,YY+Q8

43 ? "TYPE ~ TO DELETE ";TEMP$:POSITION Q6,Y
Y+Q 10:? "H I T !:~""J:~: TO GO BACI< TO MENU": G
OSUB Q22:GET #Q1,A

44 IF A< >89 THEN RETURN
45 GOSUB Q260:TEAMNO=TEAMNO-Q1:LNO=Q304:TEMP

1$=STR$(TEAMNO):GOSUB Q898:GOSUB Q400
46 START=LL:STEP=Q2:GOSUB Q35:IF TEAMNO=Q0 T

HEN GOTO Q507
47 GOSUB Q260:GOSUB Q975:GOSUB Q900:GOTO Q50

7
52 GRAPHICS Q18:GOSUB Q190:GOSUB Q24:POSITIO

N Q3,Q3:? #6;"turn on printer ":REM [alllbtl
__ :10111.11:1 ..

53 ? #Q6:? #Q6:? #Q6;"{3 SPACES}HIT ~ TO PRI
NT":GOSUB Q22:GOSUB Q97:? #Q6

54 ? #Q6;" HIT l:g.iIJ:~: FOR MENU": GOSUB Q22: GOT
o 755

77

3 ____ Applications and Education

55

56

57

58

59

60

61

62

GOSUB Q97:RESTORE Q895:READ LNO,TEMP$:TRA
P 750:LPRINT :LINE$(Q10,Q24)="STATS ENTER
ED":X=LEN(TEMP$)
LINE$(Q26,LEN(TEMP$)+Q26}=TEMP$:LPRINT LI
NE$:GOSUB Q97:RESTORE 300:READ L,TEMP$:X=
(40-(LEN(TEMP$}+10})/2
LINE$(X,X+LEN(TEMP$»=TEMP$:LINE$(X+LEN(T
EMP$},40)=" STANDINGS"
LPRINT :LPRINT :LPRINT :LPRINT LINE$:REST
ORE Q871:READ L,L
RESTORE L:READ L,TEMP$,W,L:LPRINT :LPRINT

"{3 SPACES}TEAMS{11 SPACES}W{3 SPACES}L
{3 SPACES}PCT. GB":Y=Q0:GOSUB Q260:LPRIN
T
GOSUB Q97:FOR I=Q1 TO TEAMNO:Y$=")":RESTO
RE ORDER(I):READ LNO,TEMP1$,LW,LL:LINE$(Q
1,LEN(STR$(I»)=STR$(I)
LINE$(Q4,Q18)=TEMP1$:LINE$(Q20,Q20+LEN(ST
R$(LW)})=STR$(LW}:LINE$(Q24,Q24+(LEN(STR$
(LL»» =STR$ (LL>
GOSUB Q261:LINE$(Q27,Q 33)=TEMP$ (Q1,Q5':LI
NE$(34,Q40)=TEMP1$:LPRINT LINE$:GOSUB Q97
:NEXT I:RETURN

70 GOSUB Q260:IF TEAMNO) =Q30 THEN GOTO Q760:
REM [:1.].14_ i #(:1:

71 GRAPHICS Q18:GOSUB Q190:POSITION Q1,Q2:?
#6;" ": Y$="'": GOSUB Q578
:LNO=Q306

72 RESTORE LNO:READ TEMP$:IF TEMP$ (> STR$(LNO
) THEN GOSUB Q898:GOSUB Q400:0RDER(TEAMNO
+Q1)=LNO:GOTO 74

73 LNO=LNO+Q2:GOTO Q72
74 TEAMNO=TEAMNO+Q1:TEMP1$=STR$(TEAMNO):LNO=

Q304:GOSUB Q400:GOSUB Q900:GOTO Q507
95 FOR 1=1 TO 500:NEXT I:RETURN
97 LINE$="{38 SPACES}":RETURN
99 FOR D=Q6 TO Q22:POSITION Q1,D:GOSUB 19:NE

XT D:RETURN
100 GRAPHICS Q18:GOSUB Q190:GOSUB Q22:POSITI

ON Q 0 , Q 4 :? # Q 6; "'i"ioll_:lIjO.-tii _ 3: u?l:_ i #(:1:i#'J ;]3 ii.:
I:~ _ljO.-Ji II are [ill! C II"

105 GOSUB Q95: GOTO Q507: REM [.... I(IJ""-__ :14-S--t:ti1:.
155 POKE Q82,Q2:POSITION Q2,YY+Q7:IF I(TEAMN

o THEN ? "[I 1.> ... -S~.: :I*j_i1:l.1IJ:_.]iiei#(:1:~1
{7 i#'J::Z:lo:.l41J": REM EJi':i_:13:lI

157 ? "~[:1.].a.]:a.-SI);.i;J:llt_: .. Ii:j#Wo):._.iO-S--S41
{ 4 i#'J :t:lo:.l41J " :? "t!: 1:1 ",ul):~: _ ,.-:13 :LI
{20 i#J:t;tija.1} II

1 60 ? "IE [1i.]:1=1 ?lit 1 0]: .1] iie. #(:1:_: [:1:1 :.{ 1 1 ~-·t:l:1o:.l41}":

? "~(3;E{ 31 i#'J:t:lo:.l41}"

78

3 Applications and Education ___ _

161 ? .. [ii 1.):ilIII*'IiI;;e 1;;(;]:; { 23 i#'I;t:t!f::ii--U"
165 POKE Q764,Q255:GOSUB Q22:GET #Q1,A:IF

Q64 OR A(Q72 THEN CLOSE #Q1:RETURN
170 GOTO Q165

A>

190 POSITION Q5,Q0:? #6;"~li'Dir::.JrS":GOSUB Q2
4:RETURN

1 9 9 REM 1,"".)or.:"'t:"'l:"'J#""W"'-"'i-:ZIi""lrlllllr=_=-or."""1""'0"":'
200? :POKE Q752,Q1:GOSUB Q13:L=LENCTEMP$):L

L=Q40-(STNO+L):LL=LL/Q2:POSITION LL,Q1:F
OR I=Q1 TO L+STNO

205? "{N}";:NEXT I:? "{DOWN}{LEFT}{B}":POSI
TION LL,Q2:? "{V}":POSITION LL,Q3:FOR 1=
Q1 TO L+STNO:? "{M}";:NEXT I:RETURN

210 ? ;: FOR J=Q1 TO LEN CTEMP$):? TEMP$ (J,
J);:GOSUB Q24:NEXT J:RETURN

215 POSITION LL+Q1,Q2:FOR J=Q1 TO LENCTEMP$)
:? TEMP$(J,J);:GOSUB Q24:NEXT J:RETURN

255 TEMP1$=TEMP$(Q1,START}:RETURN
260 RESTORE Q304:READ LNO,TEAMNO:RETURN :REM

PUTS NUMBER OF TEAMS INTO TEAMN
261 IF LW=Q0 AND LL=Q0 THEN PCT1=Q0:GOTO 263

:REM CALCULATES GB PCT PRINTS THE
262 GOSUB Q14:GOSUB Q18:PCT1=CLW/(LW+LL}}:PC

T1=CPCT1+5E-04)
263 TEMP$(Q1,Q5}=STR$(PCT1):IF LW=Q0 THEN TE

MP$=" . 000"
264 IF TEMP$(Q1,Q1)="0" THEN TEMP$(Ql,Ql)="

265 IF TEMP$(Q3,Q3)=" " THEN TEMP$(Q3,Q3)="0

266 IF TEMP$(Q4,Q4)=" " THEN TEMP$(Q4,Q4)="0
"

267 IF TEMP$CQ5,Q5)=" " THEN TEMP$(Q5,Q5)="0

268 IF TEMP$CQ2,Q2)=" " THEN TEMP$(Q2,Q2)=".

269 GB=C«W-L)/Q2)-CLW-LL)/Q2):IF L=Q0 THEN
GB=W/Q2-(LW-LL)/Q2

270 IF GB(=Q0 THEN TEMP1$="--":GOTO Q286
271 TEMP1$=STR$(GB):FOR J=Q1 TO LEN(STR$(GB)

):IF TEMP1$(J,J) (> "." THEN NEXT J:GOTO Q
286

272 TEMP1$(J,J)=" ":TEMP1$(Q3,Q6)=" 1/2"
273 IF TEMP1$(Q1,Q1)="0" THEN TEMP1$CQ1,Q1)=

286 IF Y$=")" THEN RETURN
287 POSITION Q26,Y+Q5:? TEMP$(Ql,Q5':IF Y$(>

.. < .. THEN POSITION Q33,Y+Q5:? TEMP1$
288 RETURN

79

3 Iii ___ Applications and Education

289
290

292

293
298

POSITION Q3,Q8:? #6;"{3 SPACES}":RETURN
GOSUB Q289:POSITION Q0,Q10:? #6;"
{3 SPACES}liI(oto_:FloiJiAi=E :"b~{4 SPACES}": GOTO

Q533
POS I T I ON Q0, Y:? #Q6;" I: LI):;1;33:;"-W"l:1Il"4A:J.::r:"i4'J
@" : IF Y=Q8 THEN GOSUB Q771Z1: GOTO 605
GOSUB Q765:GOTO 610
RESTORE ORDER(OL):READ LNO,TEMP1$,LW,LL:
RETURN

299 REM 1 :"'r:""1 ... :;r:P_~:"="I]r:"~OJ=-r":':.t:"-:I"'] :""11'"".
3 0 0 D AT A 300, 1;[I]:;I;j '"]~I: _ .::r:l.,.I) .. , 121
302 DATA "'"1iI.:1: 1.).:(.... 1
303 REM NO. OF TEAMS
304 DATA 304,8,4,312
31Z15 REM u::r:1:;_.I:u:w
306 DATA 306,LIONS{9 SPACES},7,10
308 DATA 308,A'S{11 SPACES},9,10
310 DATA 310,1;3::r:1:;"1{9 SPACES},9,8
314 DATA 314,RAMS{10 SPACES},8,11
316 DATA 316,TIGERS,17,0
318 DATA 318,PADRES{8 SPACES},9,9
320 DATA 320,WHITE SOX{5 SPACES},4,15
322 DATA 322,SENATORS,6~11
399 DATA {ESC},0 , 0
400 GRAPHICS Q0:POKE Q559,Q0:SETCOLOR Q1,Q9,

Q4:? CHR$ (Q 125) : REM [Ow::r: .. 4 __ .1:u: :1~1
410

415
420

? "{DOWN}";LNO;" DATA ";LNO; ", ";TEMP1$;"
,";LW;",";LL:?:?: ? "CONT"
POSITION Q0,Q0:POKE Q842,Q13:STOP
POKE Q842,Q12:SETCOLOR Q1,Q9,Q10:Y$="":R
ETURN
W=Q0:START=Q0:XX=X:GOSUB Q18:POKE Q752,Q
1: REM II.:I:o.Ilie.:_.,:iA:;(I].)"'U!(O!

430 GOSUB Q15:IF A=Q155 THEN GO TO 446
435 IF A=126 THEN GOSUB 25:GOTO Q430
440 IF START=PROP THEN GO TO Q430
441 IF W=Q1 THEN GOTO 445
442 IF LINE$="IN" AND A=Q 2 7 THEN W=Ql:POKE Q

694,Q128:GOTO Q430
443 IF LINE$ <> "LINE" THEN POKE Q694,Q0
444 IF Y$="'X." THEN? CHR$(A):X=X+Q1:POSITION

X,Y:START=START+Q1:TEMP$(START,START+Q1
)=CHR$(A):GOTo Q430

445 ? #Q6;CHR$(A):X=X+Q1:PoSITIoN X,Y:START=
START+Q1:TEMP$(START,START+Q1)=CHR$(A):G
OTO Q430

446 IF Y$ <)- "'X." THEN POSITION X, Y:? #6;" ": GO
TO 448

447 POSITION X,Y:? " "

80

3
Applications and Education ___ iii

448 IF START=Q0 THEN GoSUB Q18
449 POKE Q694,Q0:RETURN
450 DIM TEMP1$(Q14),TEMP$(Q15),Y$(Q1),oRDER(

Q30),LINE$(Q40),V$(1)
455 RESTORE Q800:READ Y$:IF Y$<)"{ESC}" THEN

GoSUB Q260:RESToRE Q800:FoR I=Q1 TO TEA
MNo:READ W,W,L,L:oRDER(I)=W:NEXT I

500 REM .;::;r:O:_:Bill:L1

507 V$="":XX=Q0:GRAPHICS Q18:GoSUB Q190:? #Q
6:? #Q6;"~ enter new teams":GoSUB Q24:?

508 START=l:GoSUB Q24:? #Q6;"C!: printout stan
dings";:GoSUB Q24

509 ? #Q6;" n: fFt'=t:-It¥J¥:;": GoSUB Q24:? #Q6;"@ en
d":GoSUB Q24:? #Q6

510 GoSUB Q260:? #Q6;" ";TE
AMNo: POSITION Q1, Q9:? #6; "1iIt¥J¥ :;t-..... "

511 POKE Q764,Q255:GoSUB Q22:GET #Q1,A:IF A<
Q64 OR A)Q70 THEN GoTo Q511

514 IF A=69 THEN GoSUB 1000:GoTo Q507
515 IF A=Q65 THEN GoTo 526
516 IF A=Q68 THEN GoTo Q70
517 RESTORE Q306:READ TEMP$:IF TEMP$(Q1,Q1)=

"{ESC}" THEN GoTo Q100
519 IF A=66 THEN SAV=Q1:GoSUB Q630:GoTo Q507
520 IF A=67 THEN GoSUB 52:GoTo Q507
522 GoTo Q511
523 REM ."11:"3:._#(;1;::;;;1
526 GoSUB 875:LL=Q0:LW=Q0:GRAPHICS Q18:GoSUB

Q190:PoSITIoN Q1,Q3:? #Q6;" en"'t:e..... naMe

527 LINE$="LINE":PoKE Q694,Q128:X=Q3:Y=Q4:PR
oP=Q14:GoSUB Q425:TRAP 527:TEMP1$=TEMP$(
Q1,START)

530 GoSUB Q255:PoSITIoN Q1,Q7:? #Q6;"enter n
o. of teams"

533 X=Q3:Y=Q8:PRoP=Q2:GoSUB Q425:TRAP 39:TEA
MNo=VAL(TEMP$):IF TEAMNo)Q30 OR TEAMNo<1

THEN GoSUB 289:GoTo 533
535 LNo=Q300:GOSUB Q400:TEMP1$=TEMP$(Ql,STAR

T)

536 LNO=Q304:GOSUB Q400:START=Q306:LL=398:ST
EP=Q2:GoSUB Q35:GoSUB Q14

575 LNo=Q304:FOR I=Q1 TO TEAMNo:LNo=LNO+Q2:G
RAPHICS Q18:PoKE 559,Q34:GOSUB 190:POSIT
ION Q1,Q2

576 ? #Q6;" 8";1
578 LINE$="IN":Y=Q3:X=Q3:PRoP=Q14:GoSUB Q425
580 TEMP1$=TEMP$:IF START=Q0 THEN GoTo Q578

81

3 Iii ___ Applications and Education

605 POSITION 00,05:? #06;" enter no. of wins
":GOSUB 024

606 X=03:Y=06:POSITION X,Y:PROP=03:GOSUB 042
5:Y=08:TRAP 0770:LW=VAL(TEMP$):IF LW(00
OR LW>999 THEN GOTO 0770

610 POSITION 00,08:? #06;" ENTER NO. OF LOSS
ES":GOSUB 024

613 X=03:Y=09:POSITION X,Y:GOSUB 0425:Y=010:
TRAP 0765:LL=VAL(TEMP$):IF LL(00 OR LL>9
99 THEN GO TO 0765

614 IF Y$="'" THEN RETURN
615 POKE 702,064:GOSUB 0400:NEXT I:GOSUB 089

8:GOSUB 0975:GOSUB 0900:GOTO 0507
629 REM PRINTS STANDINGS IN GR. MODE
630 Y$="":PCT1=00:RESTORE 0895:READ LNO,TEMP

$: POKE 82, (40- (LEN (TEMP$) +14» 12: GOSUB 7
90:? " ";TEMP$

631 STNO=012:IF PEEK(53279)(>03 OR V$="Y" TH
EN GOSUB 200:POSITION LL+Ol,02:? TEMP$;"
.. ..,..:1:1~>1I:£~1 .. : PCT 1 = 1

632 IF V$="Y" THEN Y$=" ("
635 IF PCT1=1 THEN GOSUB 024:GOTO 650
640 GOSUB 200:GOSUB 215:RESTORE 302:READ TEM

P$:GOSUB 210
650 RESTORE 0871:READ L,L:RESTORE L:READ LNO

, T E M P $, W , L : P 0 SIT ION 00, 05 :? "{ 4 i#t :t:t!J #i.1} ii
~{ 1 0 i#t :l:t!J *'i,-1} ~ {3 i#t :l:tOil #i.1} ~{ 3 i#t :t:t!J #i.1} Ul!i1I!II
~{ 5 i#t :l:t0il #i.1} "

654 IF V$<>"Y" THEN START=1
655 Y=00:GOSUB 0260:FOR I=START TO TEAMNO:RE

STORE ORDER(I):READ LNO
659 Y=Y+Ol:POSITION 01,Y+05:? I
660 POSITION 04,Y+05:READ TEMP$:? TEMP$:READ

LW:POSITION 19,Y+05:? LW:READ LL
661 POSITION 23,Y+05:? LL:GOSUB 0261
676 IF 1>24 THEN TEMP2=04:GOTO 680
677 IF 1>16 THEN TEMP2=03:GOTO 680
678 IF 1(09 THEN TEMP2=01:GOTO 680
679 TEMP2=02
680 IF 1<>08 AND 1(>16 AND 1<>024 THEN NEXT

I
681 YY=Y:IF V$="Y" THEN 705
682 GOSUB 0155
695 GOSUB 1000:IF A=66 THEN GO TO 0705
696 IF A=065 AND I<TEAMNO THEN GOSUB 99:Y=00

:NEXT I
697 IF A=67 THEN RETURN
698 IF A=070 THEN GOTO 41
699 IF A=068 THEN 727

82

3
Applications and Education ___ iii

700 GOSUB QI65:GOTO 695
705 GOSUB Q33:Y$= .. Y.. .. :POSITION Q6,YY+Q7:? "EN

TER TEAM NO. THEN HIT 1;~"'ilJ;J:": PROP=Q2: X
=QI7:Y=YY+Q8:POKE Q752,Ql

706 TRAP Q705:GoSUB Q425:GOSUB Q33:oL=VAL(TE
MP$):IF OL >TEAMNO THEN GOTO Q705

707 IF TEMP2=Q3 THEN IF oL<QI7 OR oL>Q24 THE
N GoTo Q705

708 IF TEMP2=Q2 THEN IF oL<Q9 OR oL)16 THEN
GoTo Q705

709 IF TEMP2=Ql THEN IF oL)Q8 OR oL<Ql THEN
GoTO Q7{!15

710 IF TEMP2=4 THEN IF oL>30 OR oL<25 THEN G
oTo Q705

711 IF TEMP1$="Y" THEN RETURN
712 POKE Q82,Q2:PoSITIoN Q2,YY+Q7:? "PRESS r::

TO ADD WIN":? "PRESS ~ TO ADD LOSS":? ..
PRE S S ~";: REM I~IIII: _1![1i--s.-Wil'B [:1:eM"

713 ? .. THEN r:: TO SUBTRACT WIN":? "PRESS ~ T
HEN ~ TO SUBTRACT LOSS":? .. PRESS l:: FOR M
ENU" : -, .. PRESS 1:~,*iIJ:~: TO ";

714 ? "CHANGE ANOTHER TEAMS{8 SPACES}STATS":
GoSUB 298:STEP=oL:FoR 1=1 TO YY:PoSITIoN
33,I+5:? "{6 SPACES}";:NEXT I

715 IF oL>Q8 THEN oL=OL-Q8:GOTo 715
716 GoSUB 29:IF A<> Q155 AND A<>83 AND A<>77

AND A< >76 AND A<>87 THEN 716
717
718
719
720
721

GOTo 985:GoSUB 29:GoTo 720
IF A=87 THEN LW=LW-Ql:GoTO
IF A=76 THEN LL=LL-Ql:GOTO
IF A=76 THEN LL=LL+Ql
IF A=87 THEN LW=LW+Ql

723
7-'~ L. -.J

722 IF A=77 THEN GOSUB Q33:PoSITION Q8,D-Q2:
GoSUB 19:GOSUB 997:oL=STEP:GOSUB Q400:GO
SUB Q898:GoSUB Q900:RETURN

723 IF LL<Q0 THEN LL=Q0
724 IF LW{Q0 THEN LW=Q0
725 POSITION 19,OL+Q5:? LW;" ":POSITIoN 23,0

L+Q5:? LL;" ":GoSUB Q21:y=oL:Y$="<":GoSU
B Q261:GOTO 716

726 REM [t:J :t;]: [M *_. ;;(:];_: [:];1 ..
727 TEMP1$="Y":GoSUB Q705:PoSITION Q6,YY+Q7:

-, .. EN T E R I: 13:- :£:];1.. FOR TEA M #"; 0 L: X = Q 1 3 : Y
=YY+Q8:PROP=QI4

728 LINE$= .. IN":Y$="Y.. .. :GOSUB Q425:TEMP1$=TEMP
$:RESTORE ORDERIOL):READ TEMP$,TEMP$,LW,
LL:LNo=oRDERIOL):GoSUB Q400

729 RETURN
730 IF A<>Q155 THEN Y=OL:GoSUB 272:GOTO 715

83

3 ____ Applications and Education

735 GOSUB Q33:POSITION Q0,VV+Q6:GOTO 681
750 TRAP 750:POSITION Q0,Q3:? #Q6;" turn an

printer~":? #Q6:? #Q6;"{4 SPACES}then h
it ~.":POSITION Q0,Q6

755 ? #6;"{18 SPACES}":GOSUB Q22:GET #Ql,A:IF
A<> 80 THEN RETURN

756 GOTO 55
760 POSITION Q0,Q8:? #6;"sorry, you have

{4 SPACES}already entered the maximum no
of teams":GOTO Q511

765 POSITION Q3,Q9:? #6; "{3 SPACES}":GOTO 61
3

767 GO TO 56
770 POSITION Q3,Q6:? #6;"{3 SPACES}":GOTO 60

6
775 ? :? II SEE ERROR - "; PEEI< (195) : POKE Q75

2, Qjll: END
790 GRAPHICS Q0:SETCOLOR Q2,Q12,Q4:SETCOLOR

Q4,Q3,Q6:RETURN
799 REM 1.]:\ .:_ ill]:M.: 1«1] :1.);;1 :al] ie. "I:l;i#1
800 DATA 800,316 , 4,860
802 DATA 802,310,4,860
804 DATA 804,318,4,860
806 DATA 806,308,4,860
808 DATA 808,314,4,860
810 DATA 810 , 306,4,860
812 DATA 812,322,4,860
814 DATA 814,320,4,860
871 DATA 871,316,4,860
875 GRAPHICS Q18:GOSUB Q190:POSITION Q0,Q2:?

#Q6;"{4 SPACES}enter date":? #6;" EXAMP
L E : F"'. '"--U*."

880 ? #Q6;"{14 SPACES}[!TI!":? #6;"{11 SPACES}~
~ ..

885 LINE$="LINE":POKE Q694,Q128
890 X=Q6:V=Q6:PROP=Q8:GOSUB Q425:LNO=Q895:TR

AP 885:GOSUB Q255:GOSUB Q400:RETURN
895 DATA 895, uX.WJ':ca*·, 9, 10
898 GRAPHICS Q18:? #Q6:? #Q6:? #Q6;" sartin

9 teams.":? *Q6
899 ? #6;"{5 SPACES}

RETURN
PLEASE I-oIAIT. ":GOSUB Q95:

900 RESTORE ORDER(Ql):READ L,TEMP$,START,PRO
P:TEAM=ORDER(Ql):START=START-PROP:GOSUB
Q260: REM "-"lI];I_;loll ••• :I:>

901 IF TEAMNO=Q0 THEN RETURN
902 FOR I =Q 1 TO TEAMNO-Q 1: REM jiiJI]:I_ :ull ••• :I:>
903 FOR J=I+Q1 TO TEAMNO
910 RESTORE ORDER(I):READ LNO,TEMP$,W,L

84

3
Applications and Education ___ iii

915 IF W=Q0 THEN PCT1=Q0:GOTO 925
920 PCT1=(W/(W+L»
925 RESTORE ORDER(J):READ LNO,TEMP$,LW.LL
927 IF LW=Q0 THEN PCT2=Q0:GOTO 940
930 PCT2=(LW/(LW+LL»
940 IF LW-LL>START THEN TEAM=ORDER(J):START=

LW-LL
945 IF PCT2=PCT1 AND W<LW THEN GOSUB 980:GOT

o 971
950 IF PCT2>PCT1 THEN GOSUB 980
971 NEXT J:NEXT I
972 STEP=Q2:START=Q800:LL=860:GOSUB Q35:GOSU

B Q260: LNO=798: REM ~""i'):~4 __ .w.]3:_.I:]ji:
973 FOR I=Q1 TO TEAMNO:LNO=LNO+Q2:TEMP1$=STR

$(ORDER(I»:GOSUB Q400:NEXT I:GOSUB Q260
:TEMP1$=STR$(TEAM)

974 LNO=871:GOSUB 400:RETURN
975 POKE Q559.Q0:RESTORE Q306:FOR I=Q1 TO TE

AMNO
976 READ LNO.TEMP1$.LW,LL:ORDER(I)=LNO:NEXT

I
977 RETURN
980 PROP=ORDER(I):ORDER(I)=ORDER(J):ORDER(J)

=PROP:RETURN
985 IF A=Q155 THEN 2000
990 IF A<>83 THEN 720
991 IF A=83 THEN POKE 764.255:GET #1,A:GOTO

718
995 GET #1,A:GOTO 717
997 POSITION Q6.YY+Q7:? "ENTER DATE THEN HIT

I:~ '* ill :~: " : PRO P = Q 8 : Y $ = " 'l. " : X = 1 6 : Y = Y Y + Q 8 : POI<
E Q752,Q1:LINE$="LINE"

998 POKE Q694.Q128:RESTORE ORDER(OL):READ LN
O.TEMP1$:GOSUB Q425:LNO=ORDER(OL):GOSUB
Q400:GOSUB Q255:LNO=Q895

999 RETURN
1000 POKE 82.2:IF A<>69 THEN RETURN
1005 GOSUB 790:? .. DO YOU HAVE A 1.)"""1 ••]:iII,,"J .. 0

R A 1~:I.r.,:r:l;.:~*('{o):~.]3:. ?":? :? ..
{ 8 SPA C E S} (H I T I:~ '* ill:~: FOR MEN U) ..

1010 POSITION 16 , 5:INPUT TEMP$:TRAP Q507
1015 IF TEMP$(Q1,Q1)="D" OR TEMP$(Q1,Q1)= .. ~ ..

THEN 1050
1020 ? :? .. { 7 SPA C E S } HIT 1 *i ill:~: TO S AV E ..
1025 CSAVE :END
1050? :? "{9 SPACES}HIT I:~,*ill:~: TO SAVE":GOS

UB Q22
1055 GET #Ql,A:IF A<>155 THEN 1055
1060 TRAP 775:SAVE "D : STANDING . SAV":POKE 752

,0:END

85

3 iii_._ Appl ications and Education

2000 oL=STEP:RESToRE oRDER(oL):READ LNo,TEMP
1$:LNo=oRDER(oL):GoSUB Q400:V$="Y"

2004 REM PICK TEAMS TO CHANGE STATS 0
2005 POKE 752,2: GRAPH I CS 0:? :? :?" l:Jol:_ra

ROUP OF TEAMS TO DISPLA .. :? :?
2006 ? "{8 SPACES}I) TEAMS(I-8)"
2007? "{8 SPACES}2) TEAMS(9-16)"
2008? "{8 SPACES}3) TEAMS(17-24)"
2009 ? "{8 SPACES}4) TEAl'lS (25-32) ":? :? :?
2010 TRAP 2010:? "{UP}{5 SPACES}yoUR CHOICE:

{4 SPACES}{3 LEFT}";:INPUT CHoICE:IF CH
oICE(1 OR CHoICE } 4 THEN 2010

2015 GoSUB CHoICE+3000:IF START } TEAMNO THEN
2010

2016 V$="Y":GoTO 630
3001 START=I:RETURN
3002 START=9:RETURN
3003 START=17:RETURN
3004 START=25:RETURN

86

3
Applications and Educat ion __ lIiiil

CalCalc:
Computerize Your
Diet
•••••• Charles Brannon

This program can help you lose weight by cutting calories . Be sure to
consult your doctor before using this program or any other weight-loss
technique.

Calorie counting is important in most diet plans. Unfortunately,
the process of looking up every item of food you eat is discourag­
ingly tedious . And even if you conscientiously keep track of calo­
ries, how do you know how much progress you're making?

Your body bums a certain number of calories per day. The
number depends on your sex, build, and activities. In order to
lose weight, you must eat fewer calories than your body needs,
forcing it to convert fat tissue into carbohydrates. On the other
hand, if you eat more calories than your body bums in one day,
the excess is converted into fat.

3500 Calories = 1 Pound
In order to lose one pound of fat, you have to miss 3500 calories.
In order to gain a pound, you have to have an excess of 3500 calo­
ries. This is not on a daily basis; calories accumulate. So, if you ate
1000 more calories each day than your body used, you would gain
one pound in about three and a half days.

Since any calculation is spread over many days, it can be
hard to see progress, or to forecast how long it will take to shed
excess weight. The computer is of great aid here .

"CaICalc" asks you a number of questions, such as your sex
and age, to determine how many calories you need each day. You
then enter everything you've eaten at the end of the day, selecting
foods and quantities from a list (a menu, appropriately enough).
Just press the letter corresponding to the food you ate. If you don't
see a certain food, press RETURN to see more items.

87

3 ____ Applications and Education

Adding to the Menu
What if you ate a food not on the list? This is not too hard, since
we've included only a sample selection of foods, found in the
DATA statements from lines 1140 and up. To customize this list to -~
your preferences and habits, just purchase a pocket-sized calorie
counter (available at most grocery-store checkout counters). Then
add to or change the DATA statements.

There is one DATA statement for each food . The first item on
the line (after the word DATA) is the name of the food. Make the
name less than 20 letters long. The next item, preceded with a
comma, is the number of calories in an average serving, followed
by a comma, and the description of the average serving, such as a
1 CUP or one 8/1 EAR. The last DATA statement (line 1500 here)
should be END,O,O which marks the end of the list.

After you've pressed the letter corresponding to the food
you've eaten, the computer will display the quantity (such as one
cup) and calories of an average serving. You enter the multiple or
fraction in decimal of the quantity given. For example, if you
drank two glasses of milk for breakfast, enter a 2, for two one-cup
portions. If you had half a medium orange, enter 0.5. Cal Calc
then displays the calories for the food consumed, and the cumula­
tive total of calories. You continue to enter foods for everything
you've eaten.

Guesstimating
You can also approximate calories. For example, if you ate a
chicken-filet sandwich, you could select T, chicken (one 4-ounce
serving), and K, two one-slice portions of white bread. Or, if you
can look on the wrapper of the product, you can enter the calories
directly. Just press the number sign, #, instead of a letter, and
enter the calories literally.

The Moment of Truth
After you've finished entering all the foods, the computer is ready
to forecast weight loss. It bases this forecast on the assumption
that you will eat about the same number of calories each day. Just
enter the number of days you want to "look ahead;' and Cal Calc
will tell you how much weight you will have lost. If you're eating
too much, it will, with equal placidity, show you how much you'll
have gained.

Cal Calc makes dieting much easier. It goes beyond mere

88

automation of a calorie counter by letting you see the effect of
changes. By cutting down on meals and checking your total calo­
ries with Cal Calc, you can see if you'll lose weight.

CalCalc
1~~ GRAPHICS ~IPOKE 752,1:POKE 82,0IGOSUB 1~

2~:DIM A$(1),FOOD$(19),AMOUNT$(1~)

1~5 OPEN *1,4,~,"K"
110 PR I NT "{ DOWN} "'1~rr.r:""'l:"'"~"':."".""'aP:::li": CONSUL T YOUR DoCTO

R BEFORE"
120 PRINT "{9 SPACES}USING THIS PROGRAM OR A

NY"
130 ? "{9 SPACES}oTHER WEIGHT-LOSS TECHNIQUE

140 ? "{DoWN}ARE YOU [;ALE OR ~MALE?"
150 GET #1,A:A$=CHR$(A):IF A$ <> "M" AND A$<>"

F" THEN 150
160 SX=0:IF A$="F" THEN SX=1
170 IF SX=0 THEN 200
180? "{DOWN}ARE YOU PREGNANT";:GOSUB 980:IF

YES THEN PREG=1
190? "{DOWN}ARE YOU NURSING";:GOSUB 980:IF

YES THEN NU=1
200 GOSUB 1020
210? "ENTER 0 IF NOT KNOWN:":?
220 TRAP 22~1:? "{ UP} {DEL LINE} NUMBER OF CALO

RIES CoNSUMED?0{2 LEFT}";:PoI<E 752,0:INP
UT CAL:PoKE 752,I:TRAP 40000

230 IF CAL < 0 THEN PRINT "{DOWN} {BELLH.;I=l.;.-s,-JI.
~":GoTo 200

240 IF CAL}=4500 THEN PRINT "{DOWN}";CAL;"CA
LORIES? ARE YOU SURE";:GoSUB 980:IF l-YE
S THEN 20~1

250 IF CAL THEN 730
260 PX=0:PY=10:GOSUB 1020
270 FOR 1=1 TO 26
280 READ FooD$,CL,AMoUNT$
290 IF FOOD$="END" THEN 330
300 POSITION PX,PY:? CHR$(I+192);":";FOOD$:P

Y=PY+l
310 IF 1=13 THEN PX=20:PY=10
320 NEXT I
330 REM
340 IF PEEK(20»60 AND PEEK(20) < 120 THEN POS

ITION 2,23:? "ENTER m OR 1 ;;4:, OF FOOD"

350 IF PEEK(20) } 120 AND PEEK(20) < 180 THEN PO
SIT I ON 2,23:? "PRESS I:J?UIJ:~: TO GO ON
{5 SPACES}";

89

3 Iii ___ Applications and Education

3610 IF PEEK(21O)}181O THEN POSITION 2,23:? "PR
ESS D WHEN DONE{4 SPACES}";:POI<E 210,10

365 IF PEEK(764)=255 THEN 3410
3710 GET #l,A:A$=CHR$(A):IF (A$ < "A" OR A$>"Z"

) AND A$<>CHR$(155) AND A$ <> "*" AND A$<>
"#" THEN 34{!1

3810 IF A$ < >CHR$(155) THEN 4110
3910 NX=NX+1: IF FOOD$="END" THEN RESTORE :NX=

10
41010 GOTO 2610
4110 RESTORE
4210 IF A$="#" THEN 61010
4310 IF A$="*" THEN 6610
4410 FOR 1=1 TO NX*26+ASC(A$)-64
4510 READ FOOD$,CL,AMOUNT$
4610 NEXT I
4710 GOSUB 110210
4810 PR I NT "FOOD: "; FOOD$
4910 PRINT "CALORIES PER ";AMOUNT$; ":";CL
51010 PRINT "{DOWN}ENTER QUANTITY OF ABOVE FOO

D"
5110 PRINT "CONSUMED, USING A MULTIPLE OR":?
5210 TRAP 521O:PRINT "{UP}{DEL LINE}A DECIMAL

FRACTION?IO{2 LEFT}";:POI<E 752,10: INPUT QU
:POKE 752,1:TRAP 410101010

5310 IF QU=IO THEN 5910
5410 IF QU<IO THEN PRINT" {DOWN} {BELLHI:I:t.~-so",,".;

~":FOR W=l TO 5101O:GOTO 4710
5510 PRINT "{DOWN}CALORIES OF ";FOOD$;":";CL*

QU
5610 PRINT "{DOWN}CALORIES CONSUMED SO FAR:";

:CAL=CAL+CL*QU:PRINT CAL
5710 ? "{ 2 DOW N } PRE S S I:~ '* ill:~: TO CON TIN U E ... "
5810 GET #l,A:A$=CHR$(A):IF A$ <> CHR$(155) THE

N 5810
5910 RESTORE :NX=IO:GOTO 2610
61010 GOSUB 11021O:? "{DOWN1ENTER ABSOLUTE QUANT

ITY"
6110 ? "{DOWN}OF CALORIES FOR FOOD NOT ON LIS

T: ": ?

6210 TRAP 621O:? "{UP}{DEL LINE}?1O{2 LEFT}";:P
OKE 752,IO:INPUT CL:POKE 752,1:TRAP 410101010

6310 IF CL=IO THEN NX=IO:GOTO 2610
6410 I F C L < 10 THE N ? "{ DOW N} {B ELL} ... :1 :j,"~-s-",,".J ... " :

FOR W=l TO 5101O:NEXT W:GOTO 61010
6510 QU=l:GOTO 5610
6610 GOSUB 110210
6710 PRINT "TOTAL CALORIES CONSUMED:";CAL

90

3 Applications and Education ___ _

680? "{2 DOWN}DOES THAT SOUND REASONABLE";:
GOSUB 980

690 IF YES THEN 730
700 ? "{DOWN}DO YOU WANT TO":? "RE-ENTER THE

CALORIES";:GOSUB 980
710 IF YES THEN CAL=0:GOTO 260
720 PRINT "{CLEAR}":END
730 GOSUB 1020:? :?
740 TRAP 740:PRINT "{UP}{DEL LINE}WHAT IS YO

UR AGE?21O{ 3 LEFT}";:POKE 752,0:INPUT AGE
:POKE 752,I:TRAP 410000

7510 IF AGE (21O OR AGE >71O THEN PRINT "{DOWN}ffi
(1.:;(1;....,. _.J '-.J iii _:1 *'I *'I: .-'1'_:1: 1-",,:"

760 IF AGE (20 OR AGE) 71O THEN FOR W=1 TO 3100:
NEXT W:GOTO 7 3 10

770 IF AGE>=21O OR AGE (3{!1 THEN CPD=3200:IF
THEN CPD=23101O

780 IF AGE >31O AND AGE < 41O THEN CPD=31104:IF
THEN CPD=22 3 1

790 IF AGE >41O AND AGE (61O THEN CPD=2768:IF
THEN CPD=1990

800 IF AGE >60 AND AGE <70 THEN CPD=2528:IF
THEN CPD=1587

810 CPD=CPD+II001O*NU+450tPREG
820 ? "{ DOWN} ON A SCALE OF n-H:"
830 ? "1=MODERATELY ACTIVE, 5=VERY ACTIVE"
840 ? "HOW ACTIVE ARE YOU?"

SX

SX

SX

SX

850 GET #1 , A:A$=CHR$(A):IF A$ < "l" OR A$ > "5"
THEN 8510

860 CPD=CPD+VAL(A$)t2101O
870 GOSUB 11021O:? "{DOWN}ESTIMATED ENERGY EXP

ENDITURE": ? "IN CALORIES IN ONE DAY:";CP
D

880 ? "{DOWN}TOTAL CALORIC INTA KE IN ONE DAY
:";CAL

890 DF=CAL-CPD
900 ? "{DOWN}NUMBER OF DAYS TO PROJECTED"
910 TRAP 911O:? "WEIGHT LOSS/GAIN?I{2 LEFT}";

:POKE 752,0:INPUT ND:POKE 752,1:TRAP 400
00

920 IF ND < l THEN 9110
930 ? "{DOWN}AT THE CURRENT CONSUMPTION, YOU

SHOULD"
940 IF DF (0 THEN PRINT "LOSE ";:GOTO 960
950 ? "GAIN ";
960 PRINT INT(ABS(DF*ND)/35100);" POUNDS."
970 END
980? "? (YIN):";

91

3 Ii ___ Applications and Education

990 GET #l,A:A$=CHR$(A):IF A$<>"Y" AND A$<>"
N" THEN 990

1000 YES=0:IF A$="N" THEN PRINT "rn":RETURN
1 0 1 0 YES = 1 :? " ~" : RET URN
1020 PRINT "{CLEAR}";
1030 ?" {3 N}{3 SPACES}{2 N}{3 SPACES}{N}

{5 SPACES}{3 N}{3 SPACES}{2 N}
{3 SPACES}{N}{4 SPACES}{3 N}"

1040 ? "{F}{G} {G} {F}{G} {G} {B}{2 G}
{3 SPACES}{F}{G} {G} {F}{G} {G} {B}
{2 G} {F}{G} {G}"

1050 ? "{B} {G} {H} {3 i#t:Z:lij41} {B} {G} {H}_{J}
{B}. {B} {G} {H} {3 ;:. :z:1ij4"1} {B} {G} {H}_
{J} {B} • {B} {G} {H} {3 i#t:Z:lij41}"

1060 ? "{B} .{3SPACES}{B} .{N}{V}.{B} •
{B} .{3 SPACES}{B} .{N}{V}.{B} • {B} ."

1070 ? "{B} .{3 SPACES}{B} • {Gi.{B}. {B}
.{3 SPACES}{B} • {G}.{B} • {B} ."

1 0 8 0 ? " { G } .{ 2 M} {G} {B} {4 ;:. :Z:Iij 41} {B} • { M }
{ G } { G } .{ 2 M} {G} {B} {4 i#t :z:tij 41} {B} • { M }
{ 2 G}.{ 2 M} {G} "

1090 ?" {~} {3 i#t:Z:lij41} {G}. {G}. {G}
{3 i#t:Z:lij41} {~- {3 i#t:Z:lij41} {G}. {G}.
{ G} {3 i#t :Z:Iij 41} {~{ 3 i#t :l:Iij 41} "

1110 ? : POKE 85, 11:? "[I{:l.'):Ji_«I{:l.IiIJ.:ii.):."
1120 PRINT "{40 R}"
1130 RETURN
1140 DATA CHEDDAR CHEESE,113,1" CUBE
1150 DATA COTTAGE CHEESE, 27, 1 OZ
1160 DATA WHOLE MILK,166,1 CUP
1170 DATA NONFAT MILK,87,1 CUP
1180 DATA GRAPEFRUIT,77,1 CUP
1190 DATA ORANGES,70,1 MED.
1200 DATA CANTALOUPES,37,1/2 MELON
1210 DATA APPLES,87,1 MED.
1220 DATA ORANGE JUICE,108,1 CUP
1230 DATA CORN FLAKES,96,1 CUP
1240 DATA WHITE BREAD,63,1 SLICE
1250 DATA WHOLE WHEAT BREAD, 55, 1 SLICE
1260 DATA HAMBURGER MEAT,316,3 oz.
1270 DATA STEAK,293,3 OZ.
1280 DATA LAMB CHOP,480,4 OZ.
1290 DATA BACON,48,1 SLICE
1300 DATA HAM,340,3 OZ.
1310 DATA FLOUNDER,78,4 OZ.
1320 DATA TUNA FISH,170,3 OZ.
1330 DATA CHICKEN,227,4 OZ.
1340 DATA EGGS,640,1 CUP
1350 DATA SUGAR.48,1 TBS.

92

3 Applications and Education ___ _

1360 DATA CARROTS,68,1 CUP
1370 DATA POTATOES,120,1 MED.
1380 DATA BEET GREENS,39,1 CUP
1390 DATA LETTUCE,7,4 SM. LEAVES
1400 DATA SPINACH,46,1 CUP
1410 DATA BAKED BEANS,295,1 CUP
1420 DATA LIMA BEANS,152,1 CUP
1430 DATA CORN,92,8" EAR
1440 DATA PEAS,74,.5 CUP
1450 DATA TOMATOES,30,1 MED.
146,,1 DATA 41. BEER,150,12 Oz.
147O DATA BLACK COFFEE,9,1 CUP
1480 DATA COLA BEVERAGES,83,6 oz.
1490 DATA POTATO CHIPS,108,10 2:- :- CHIPS
1500 DATA END,0,0

93

3 ____ Appl ications and Education

Castle Quest
- •••• Timothy G. Baldwin

This entrancing, well-designed game offers you the best of both worlds. It
has the drama, variety, and mystery of a good adventure game combined
with the fast-paced excitement of an arcade game. Your job is to rid the
kingdom of the three evil wizards . All this would be easy if the wizards
weren't so zealously guarded by servants whose names reflect their
personalities: bat-wingers, blinkers, chokers, crushers, and stompers.

You are in love with the Princess Dilayna and have asked her
father the King for her hand in marriage. Her father does not
particularly like you. He challenges you to demonstrate your
worthiness by capturing the three evil wizards that have been
ravaging the kingdom for years. They each live in their own castle
protected by their servants-the bat-wingers, the blinkers, the
chokers, the stompers, and the crushers. The castle rooms are
rumored to be deadly, the untouchable walls, fast-moving
enemies, and no exits. You reluctantly accept the King's challenge.

Fortunately, a friendly magician gives you a cloak that makes
its wearer invisible. But the cloak's power works only for a limited
time in each room. Once the time is up, you are instantly
destroyed. The magician also gives you a magic spell that tempo­
rarily freezes all servants in a room. But you must use this spell
with care: it will consume a portion of the cloak's power each time
it is used.

Armed with these aids, you leave on your quest. The King
wishes you good luck-or did he say good riddance?

The Three Wizards
The object of "Castle Quest" is to capture the three wizards. To
reach each wizard, you must pass through the ten rooms of his
castle. The rooms are inhabited by the wizard's servants, who
move about quickly in an unpredictable manner. The higher
numbered rooms in each castle have more servants (up to 32). The
servants move progressively faster as you complete more rooms.

You have three lives to capture the first wizard. Capturing a
wizard earns you three additional lives. Touching a servant or a
room wall or failing to exit a room within the allotted time will

94

3 Applications and Education ___ _

cause loss of a life. You cannot exit a room until you capture both
door keys in that room by touching them. One key is invisible
until the other key is touched.

Once both keys are captured, the room's exit appears­
unless you are in a castle's tenth room. In this case, the wizard
appears, and you must capture him before you can escape. Also,
once you capture the first key, your presence becomes known to
the wizard, and he causes room wall segments to move to block
your escape. You must move quickly to avoid destruction.

Secret Passages
A counter at the top of the screen signals the amount of "cloak
time" remaining. Pressing the joystick fire button will temporarily
freeze the action, permitting you to move safely past a tight
comer, but you lose 50 units of cloak time each time you use the
freeze option. The room number and the number of your
remaining lives are displayed at the top left of the screen. Your
score-a measure of your ability to elude the many dangers
involved-is displayed at the top right of the screen.

Room patterns, key locations, servant locations, and wizard
placement are randomly generated, so be prepared to touch keys
partially embedded in walls, move through weird mazes, etc.
Sometimes a secret passageway is created at the screen bottom or
in a room's right wall. You may use these passageways for a
quick, easy escape.

Castle Quest
H! RE M {5 i#t ::1:1ij "'1} 1;jJ;iI;jC.l : -"t:t!J#ij;.{ 14 i#t ::1:1ij"'1}
20 C0=0:Cl=1:C2=2:C3=3:C4=4:C5=5:C6=6:C7=7:C

8=8:C9=9:CI0=10:C15=15:CI6=16:C256=256:RA
MToP=PEEK(106) :MISSIoN=Cl

3~! REM ij: 11111 .1(:l.If :i. (.l: _ :tol l). it: I "'{ 7 jO.-'t ::1:1ij "'1}
4l~! GoSUB 1 Q!8 Q!: GoSUB 770: GRAPH I CS C 16: ') ..

{CLEAR } ": Pol<:E 752, C 1: SETCoLoR C2, C!:,!, C0: GO
SUB 311:'!

50 Tl=C8:GoSUB 1150:Tl=C16:GOSUB 1150:G=C0:L
=C3:Q=C0:C=C0: Xl=C0:SCoRE=C0

6Q) GOSUB 32Q!

70 REM {4 ~'f'¥n l:t.I.l;ja.-'t"iiIJ:.:t,llj.ij:l",

80 GoSUB 970:GoSUB 450:GOSUB 1340:GoSUB 1500
:PoKE 1568,Cl:POKE 77, 0:POKE 53248,60:PoK
E 53249,Wl

90 IF C=C10 THEN GOSUB 340

95

3 ____ Applications and Education

100 X=USR(1767) :FoR I=C0 TO 100:NEXT I:PoKE
1568,F

121!1 G=G-Cl: IF (PEE~: (1566) <)CI!,) OR (G <. C0) THE
N 41!10

130 IF PEEK(203»204 THEN 520
140 POSI T ION 23-(G) 999)-(G) 99) - (G)C9) ,C0:? C

HR$(B);G;CHRS(B):IF G< 100 THEN SETCOLoR
C2,C4,CQI

150 X=PEEK(53260):IF (X-Xl»=C2 THE N PO KE 53
250,W2:PoKE 53249,C0:IF PEEK(706) <) N THE
N GoSUB 380:PoKE 706,N

160 IF X-Xl)=C4 THEN POKE 53251,W3:POKE 5325
0, CQI

170 IF X)=C6 THEN GOSUB 260
180 IF STRIG(C0)=C0 THEN POKE 1568,Cl:G=G-50

:FOR 1=0 TO 250:NEXT I:POKE 1568,F
190 CHBASE=RAMTOP-C8-C8t(INTCG/2)=G/2) :PoKE

756,CHBASE
200 IF PEEK(706)=N THEN IF RND(C0»0.95 THEN

PLOT INT(RND(C0)*38) ,INT(RND(C0)*22):GO
SUB 240

210 IF STICK(C0) <> 15 THEN SOUND C2,100,C6,C8
:SoUND C2,C0,C0,C0

220 GoTo 12QI
23 Qi REM { 3 i#1~:Z"":""t""ij-=O*""';'!I} 1jIOi.-J; [Il.i III: [1' -flall): , •• ;11111 I .. : 1::1

{3 jO-J :Z:tij 4-U
240 FOR I=C0 TO 30:SoUND C0,I,C0,CI5:NEXT I:

SOUND C0,C0,C0,C0:RETURN
250 REM _:laIa];_* •• _.]~3:11":[";I.lIjl":I::I

{ 4 i#1 :l:tij 41}
260 IF C=CI0 THEN IF X<> 14 THEN RETURN
270 FOR I=C0 TO C5:PoKE SC+CI0*40+1*40-Cl,C0

:NEXT I:PoKE 53278,255:FOR I=CI5 TO C0 5
TEP -Cl:SoUND C0,CI0,CI0,1

280 SOUND Cl, 11,CI0, I+Cl:SD UND C2 ,12 ,CI 0, I+C
2:SoUND 3,13,10, I+3:NEXT I:FoR 1=0 TO 3:
SOUND I,C0,C0, C0:NEXT I

290 POKE 53251,C 0 :PoKE 53250,C0:PoKE 53278,2
55:RETURN

31!1111 REM 1;'-J3:_II:liii':']:I:a;lilo]:.;t.lIjlll:l~

{3 i#1:Z:Iij41}
311!1 POSITION Cll!l+Cl,Clk'I: ? "Wa i t for game set

up":RETURN
321!1 C=C+Cl:POSITION Cll1l,Cll!l:':" " Get t-eady fot­

Room ";C:C=C - Cl:RETURN
330 REM _:IIIt'"4:1:1 •• :J •• li.I .. :r .. :t.lljlll:I::I{6 "-J:z:tij41 }

96

3
Applications and Education __ lIIIIiiiii

340 PL=(RAMTOP-9)* 2 56:PL=PL+5 2+ INT (RND (C0)'1
51) :RESTORE 3 50:FOR I=C 0 TO 11:READ Z:PO
KE PL+I,Z:NEXT I

351~ DATA IlZ12, 36, 126, 9 ~1, 126, 126,66, 9lZl , 61Z1 , 6121, 3
6, H~12

360 W3=70+INT(RND(C0) * 130):POKE 707, P:RETURN

370 REM 'I' :~~_lollIij:IiIl:["!'-S:'lIJ:I'.:;;'llj.ij:l.
380 SOUND C2,20,CI0,CI0:S0UND Cl,80,CI0,CI0:

FOR 1=0 TO 30 :NEXT I:SOUND Cl,C0,C0,t0:S
OUND C2,C0,C0,C0:RETURN

390 REM 1;;:'-' #lI:. iii:)l4 ~ ___ I,. iiIt--"tI{:1:J _ ;IPlPJ;

{3 "-':Z:Iijiilt-1; {8 SPACES} ;t,llj.4:1 .. {21 i#!:Z:Iijiilt-1}
400 FOR I=C0 TO C3:POKE 53248+I,Cl:NEXT I:PO

KE 1568,Cl:? "{CLEAR}":SETCOLOR C2,C0,ClZl
:IF Q THEN RETURN

410 POKE DL+CI5,C7:POSITION C4,CI0:IF Q THEN
RETURN

420 POKE 756,224:? "TOUGH LUCI<!":FOR I=C0 TO
200:S0UND C0,C6,100 , C8:NEXT I:SOUND C0,

C0,C0,C0:T2=Cl
430 POKE DL+CI5,C2:L=L-Cl:? "{CLEAR}":C=C-l:

GOSUB 320:C=C+l:GOTO 80+500t(L<=C0)

440 REM I >lai#ll:;;u:n:.:I:+:i_:UIPl;U01{ 9 j#'Ht:tijiilt-1}
(8 SPACES) [ij:t:1:l:IlIi#ll;n:'..,. •• Ji. .. ;tPl1iTCT?

450 A=INT(C16*RND(C0"*CI6.C6:M=INT(CI6*RND(
C0')*CI6+C2:N=INT(CI6*RND (C0"*CI6+C4:P=
INTCCI6*RND(C0"*CI6+C8

46 0 B=33+C-C6*CC) 5':C=C+Cl:D=C2+C2*(C) Cl'+C4
(C>C3'+C8(C) C6'+C16*CC) C9'

470 E=INT(RNDC0>'5+7':POKE 1763,E
480 F=C2+(C) C9'+C2* (MISSION-Cl'
490 G=100+C*50:COLOR B:POKE 1578 ,3 1:POI<E 156

6,C0:POKE 7 56,RAMTOP-C8:POI<E 53278,255:X
I=C0

500 SETCOLOR 2,C7* (C=7) +C2*(C=8'+Cl*(C=9)+C3
*(C=10',C0:RETURN

51 fi! REM .1;;:.-,*.4""t!{:1:J4-Wiii;t'l;.:.;UlPl:j { 5 tEr:lln.!:L~:n
{B SPACES}_;ulijflmj{22 ~~}

520 Q=Cl:GOSUB 400:GOSUB 410:POKE 756,224:?
" {3 SPACES}Al T ABO Y ' '': C!=C iil

530 FOR I=C0 TO C5:S0UND C0,CI0,50,C8:POKE 7
05,CI0:POKE 706,CI0:POKE 710,CI0:POKE 71
2,CI0:FOR J=C0 TO 50:NEXT J

540 SOUND C0,CI0,100,C8:POKE 705,C0:POKE 706
,C0:POKE 710,C0:POKE 712,C0:FOR J=C0 TO
5121: NEXT J: NE XT I

97

3 Iii ___ Applications and Education

550 SOUND CIl!, C0, C0, C0: POKE DL+CI5, C2:? "
{CLEAR}":GOSUB 320:SCORE=SCORE+MISSION*I
NT «G*C) Icun

560 IF C=CI0 THEN GOTO 580+110*CMISSIDN=C3)
570 GOTO 81Z!
58 III REM {3 ~j.i1~:l~:t~'3~*~;'J~} 13: I >.:_Ul) 4-"ti _ :HlIj jll: I ..

{8 ,,':I:I'341}
59Q! ? "{CLEAR } ": POKE DL+C9, C6: POKE DL+ 11, C6:

POKE DL+13,C6:POKE DL+15,C6:POKE 707,C0:
IF L<=C0 THEN 660

6 IZ! Il! POS I T I ON C2, C4:? "t:!l!ill!IIFirnon'lo"t-"JJ": POS I
TION 26,C5:? "YOU HAVE":POSITION C3,C7:?

"COMPLETED YOUR"
610 POSITION 27,C8:? "QUEST":C=CQ!:L=L+C3
620 POSITION C5,15:? "Pr-ess .. -"til:': •• to contin

ue":POSITION C5,17:? "Pr-ess
• to quit"

Y'5 TEM RES E

63111 POS I T I ON C5, 19:? "SCORE: "; SCORE
640 POKE 53279,C8:IF PEEK(53279) <> C6 THEN 64

o
650 ? "{CLEAR}":POI<E DL+C9,C2:POKE DL+ll,C2:

POKE DL+13,C2:POKEDL+15,C2:MISSION=MISS
ION+(L}C0)*Cl:GOTO 60+620*CL (=C0)

66111 POS I T I ON C7, C4:? "SORRY I " : POS I T I ON 24, C5
:? "you blew it.":POSITION C2,C7: 7 "ques
ts completed ";MISSION-Cl

670 GOTO 6211!

680 RUN
691Z! REM [1;"3 •• :lIij:j#ei:I.i1:';:;I.:t.lIjjiil:l#4J

{ 3 j.i1 :I:t'3 41}
700 GRAPHICS 2:SETCOLOR C2,C0,CQI:POSITION C6

, C 4 :? # 6; "Y 0 U WON I " : 7 "P r- e 5 5 ;.;s'ii--"ti • 3;;_:l *' '"
ii and then 'RUN' to";

711l! POKE 752,1: 7 :7 "begin a new game."
720 POSITION Cl,C7: ? #6;"final scor-e ";SCORE
730 FOR 1=255 TO C0 STEP -Cl:S0UND C0,I, 10,1

0:POKE 712,I:POKE 71QI,I:NEXT I
740 GOTO 74lZ!
750 POI<E 1568,Cl:RUN
760 RE M !::llj_:&!J3:ijl("i:l.;I.:':I:Wij: "3:t:ll)=I,

{8 SPACE S} _:tIlljjij:l~ij :_:1:1., _;W.l_;;13;;ltl:i'=
770 RESTORE 790:FOR 1=1536 TO 1536+247:READ

A:POKE I,A:NEXT I
78111 RETURN
790 DATA 173,4,208,201,4,240,2,208,22,173,99

,228,141,36,2
8Q!IZ! DATA 173, 11l!1Z1,228, 141,37,2, 141,3QI,6, 141,3

0, 21l!8, 76, 98, 228

98

3
Applications and Education __ IIIi_

810 DATA 0,162,2,202,240,42,138,72,173,10,21
0,41,7,10,170

820 DATA 189,121,1,133,206,133,208,232,189,121,1
,133,207,133,209

850 DATA 32,148,6,165,21217,157,121,1,21212,165,2121
6,157,0,1,11214

840 DATA 17121,21218,211,162,5,173,12121,2,21212,24121
,197,24,106,176,249

850 DATA 72,224,2,240,8,224,1,208,13,230,203
,21218,2, 198, 203

860 DATA 165,203,141,0,208, 2Q18, 32,169,0,224,
4,24v),8, 168, 145

870 DATA 204,230,204,76,134,6,160,7,145,204,
198, 2G4, 160, 121,185

88G DATA 240,6,145,204,200,192,8,208,246,104
,76,83,6,16:21,121

89(1 DATA 152,145,21216,173, lQl, 21121, 41,1, 2i1l8, 15,
169,56,141,21211,6

90121 DATA 169,233,141,2(214,6,141,21121,6, 2Q18, 13,
169,24,141,2(211,6

910 DATA 169,11215, 141,212l4,6, 141,2H:l,6, L'3, H~I,
21121,41,1,2(18,2

92(1 DATA 169,4121, 141,2 (:15,6,2; 6,(1, 165,212:; 6,(:1,~~:;,

133,21216,165,2QI7, (1
93121 DATA 121, 133, 212!7, 17 7,206 ,24C,8, 16.5,21218, 133

,206,165,209,133,207
94121 DATA 169,11,145,21216,96,11214 , 168, 1 L. r-:' L

.t. w.a... !11 w ~ 169
!l7!176!192!1228!,6~~J

950 DATA 126, 9QI, 126, 91Zi , 1iZ;2, 126,6,3
9 M~! REM 1Ft '* ill =-- :4 .:W #I .;:1:;11 ~-s...,. ij iii .., mr::rn:-

{9 SPA C E S} H>i--W ;t.lIj. ij: I .,{ 18, :l:I., 3'-=n
970 POKE 559,62:POKE 54279,RAMTOP-C16:POKE 5

3248,C1:PoKE 53277,C3
980 PL=RAMToP-12:Y=PEEK(88) :Z=PEEK(89):POKE

88,C0:PoKE 89,PL:POKE 1 06,PL+C3:?
{CLEAR}": POKE 88, Y: POf<E 89, Z

990 POKE 106,PL + 12:PL=PL*C256+120: IF C=C0 OR
C=CI0 THEN Z=(RAMToP-C91*C256:FDR I=Z T

o Z+255:PoKE I,C0:NEXT I
1000 FOR I=C 0 TO C7:POKE PL+I,PEEKI 1 776+I):N

EXT 1
112110 POKE 2G3,60:POKE 204,PL-INT(PL/C2561*C2

56:POKE 205,INT(PL/C256)
1020 PL=(RAMTOP-l11*C256:PL=PL+52+INTIRND(C0

)*1511:RESToRE 1 030: FOR 1=00 TO C7:READ
Z:PoKE PL + I,Z:NE XT 1

1 (ZI312! DA1A 121,6,15,249,255, 166, 16j.~I,iZl
1040 Wl=7 0+I NT IRN D (C01* 130 1 :PL=IRAMTOP-C101*

C256:PL=PL+52+INTIRNDIC01*1511 :RESTORE
1030:FOR I=C0 TO C7

99

3 ____ Applications and Education

1 !~!5!!1

1 JiJ60
107111

READ Z: POKE PL + I,Z:NEXT I :W2=70+INTCRND
CC0)*130) :POKE 705, M: IF T2=Cl THEN C=C­
C I! T2=Ci2i
POKE 53249,C0:POKE 53250,C0:RETURN
REM {4 iO"1:l:It:!41} :l:1..,.:;{.1I •• 1I;1 ..

1080 GRAPHICS 18:SETCOLOR C~,C0,C0:POKE 708,
2!112: POS I T I ON C5 , C2:? #C6;" CASTLE" : POS IT
ION C9, C4:? #C6;" QUEST"

1090 DL=PEEK(560)+ C2 56*PEE KC56 1) :POKE DL+13,
C2

11!!!!Z! POSITION C3,C8 : 7 #C6;"How many rooms ca
n you survi v e ?"

1110 FOR I=C0 TO C3:POKE 70 8,C0:S0UND C0,60,
C10,C8:FOR J=C0 TO 100:NEXT J:SOUND C0,
160,C10,C8:POKE 708,202

1120 FOR J=C0 TO 100:NEXT J:NE XT
113~ SOUND C0,C0,C0,C0:RETURN
114QI REM j#'HUIJ: ,:J;;(IU:l •• W:l:t:II:j.#II:,iii ... 'W

{9 SPACES}!1l.1I •• II:I .. {22 i41:l:1ij41}
1150 RESTORE 1160:CL=CRAMTOP - Tl)*C256:FDR 1=

CL+C8 TO CL+95:READ A:FOKE I,A:NEXT 1
116QI DATA 2lZ14, 51, 21114, 51 , 2v.!4, 51,21214,51,. H12, 15

3,11212,153, l!2!2, 15 3, 102, 15 3
11 7 Qj DATA 1 3 6,34,136,34,136,34,13 6,34 , 68 ,1 7,

68,17,68,17,68,1 7
1180 DATA 36,146,73,36,146,73,36,146,255,255

,255,255,255,255, 2 55,255
1190 DATA 195,102,60,24,24,O,0,0
12!Z1121 DATA 255,255,195,195,195,1 9 5,255, 2 55
1210 DATA 255,255,O,O,0,0,255,255
1220 DATA 24,24,60 ,24,255,199, 199,255
1230 DATA 24,255,O,0,O,O,0,0
1240 FOR 1=128 TO 224 : POKE CL+I,PEE KC 57344+1

):NEXT I
1250 DL=PEEK(560)+C256*PEEKC561) :IF T1=C16 T

HEN RESTORE 1260:FOR I=CL+56 TO CL+95:R
EAD A:POKE I,A:NEXT I

1260 DATA 0,0,0 , 24,24,60,1 02,1 95
1270 DATA O,0,60,60,60,60,O,O
1280 DATA O,O,255,255,255,255,O,0
129 0 DATA 60,24,24,24,60,6 0 , 0,0
1300 DATA 24,24,24,24, 24,2 4,24,255
1310 IF Tl=CI 6 T HEN FOR I =C L T O CL+ C7: POKE I

,C !iJ:NEXT I
132QI RETURN
1 33!!J REI'1 ml:I'1.);:;_:IoIol;:;_;:;r:t ... _ .. p,.:13:f:lIi.) :.

C9 SPACES} _.loll •• ij: I .. C 2121 iO"1:l:I!:141}
134!!! ? "{CLEAR}": POKE 7 52, C l

100

3
Applications and Education ___ iii

1350 PLOT C0,C0:DRAWTo 3 9 ,C0:DRAWTO 39,23:DR
AWTO C0,23:DRAWTO C0,C0

1360 X=CI0:Y=C0:Z=C7:GOSUB 1400: X=C15:Y=C5:Z
=13:GOSUB 1400: X=CI0 :Y =CI6:Z=C7:GOSUB 1
4!2H11

1370 IF RND (C0) { 0.5 THEN PLOT RND(C01*31+C8 ,
11: DRAl>JTO RND (C ~l) *31+C8, 11

1380 POSITION C6,C0: ? C:Po KE 704,A:PoKE 705,
M

1390 POSITION C9,C0: 7 L:PoSITIoN 30,C0:? SCO
RE:RETURN

140111 ON INT (RND(G:!ZI) *C8+C1> GoSUB 14U21, 1 42(1), 1
43~1, 144iZl, 145IEI, 146 (1), 147 IEI, 1 480

1410 RETURN
1420 PLOT X,Y:DRAWTo X,Y+Z:RETURN
1430 X=X+CI0:GoSUB 1420:RETURN
1440 X=X+20:GoSUB 1420 : RETURN
1450 GOSUB 1420:GOSUB 1430:RETURN
1460 GOSUB 1430:GoSUB 1430:RETURN
1470 GOSUB 1420:GoSUB 1460:RETURN
1480 POP :GoTo 1360
1 49 l'il REM I: :) :~ .» "13 : ... 1:): Ij ... -W ~ luj. _II: era

{3 1-"1 :ol:t!:141} {9 SPA CE S} r:):I'_:)",';~*," __ I3":).:Oi'J.:
Ii- (0]: _:t.lIjl;{ 9 SPA CE S} .11:14= :).).):;*'""14 __ :<13 :I.

IN 'STACK
1500 SC=PEEK(88)+C256*PEEK(89):FOR I=C0 TO D

-Cl:IF INT(RND(C0)*C4»C2 THEN 1520
1510 H=SC+40+INT(RND(C0)*279}:GOTo 1530
1520 H=SC+680+INT(RND(C0)*239)
1530 HI=INT(H/C256}:LO=H-HI*C256:POKE C256+I

*C2,LO:POKE H , E
1540 POKE C256+I*C2+Cl,HI : NEXT I:IF D=32 THE

N RETURN
1550 FOR I=(D-Cl) TO 31 : POKE C256+I*C2+Cl,25

4:NEXT I:RETURN

101

3 ____ Applications and Education

Scriptor: An Atari
Word Processor
•••••• Charles Brannon

"Scriptor" is an easy-to-use, full-scrolling, character-oriented,
multifunction word processor, requiring an Atari 800XL or 400/
800 with a minimum of 32K of memory (40K recommended), an
Epson MX-80 or Atari 825 printer, and an Atari 810 disk drive. It
is programmed in both BASIC and machine language. For instruc­
tions on typing in the program, see the section under Typing It In.

Through the Ruby
Computers don't just calculate with numbers-they can also
work with text. Five-inch disks can replace stacks of files.
Computers can sort, search, select, and update any kind of infor­
mation. They can focus information. In this sense, the computer is
like the ruby crystal in a laser. Ordinary random light waves are
transformed and concentrated through the ruby into a tight,
powerful beam. Computers can do the same for information.

Word Processing
Electronic text is more "liquid;' easier to work with, than words
solidified on paper (hard copy). This is what makes word
processing special: the extrordinary editing power it gives you.
Distinctions between a rough draft and a final draft are meaning­
less; the work is typed, changed dynamically, and stored to disk.
It can then later be recalled, revised, and printed out. Very little
retyping is necessary. What a boon for anyone who writes.

Converts to word processing immediately notice an improve­
ment in their writing. The entire manuscript becomes "alive;' not
committed to paper. Changing a word or a sentence, inserting a
line or a paragraph are all accomplished with ease. For example,
take just one key, the backspace key (called RUBOUT on some
computers or terminals). When this key is struck, the last char­
acter typed is erased from the screen. Compare this to the
frequently elaborate typewriter correction schemes.

Besides the disk file, which has already been mentioned and

102

3 Appl ications and Education ___ _

which will be explained in greater detail later, an important
concept in word processing is the cursor. Named after the clear
plastic slide on a slide rule, the cursor shows you where the next
character you type is going to appear. It usually looks like an
underline, _, or a solid square. Users familiar with any computer
have already encountered the cursor. The computer itself doesn't
need a cursor; but since you can type anywhere on the screen, the
cursor is vital so that you can know where you are.

The cursor can be moved up, down, left, and right with
special keys, usually with arrows on them. To correct the
following line:
The quick brown dox JUMPed.

you would either press backspace ten times, erasing the text as
you go, or press cursor-left ten times. The cursor moves over the
characters without erasing them. It is then resting on the d:

The quick brown ~ox JUMped

You can correct the error by typingf, which overstrikes (replaces)
thed.
The quiCk brown fmX JUMped

The cursor can then be moved to the end of the line (ten cursor­
rights), and typing resumed.

This sounds harder than it really is. Cursor editing becomes
second nature after only hours of use. The cursor UPIDOWN keys
can reach lines of text above and below the current line. It is like
rolling a typewriter's platen up or down, but with one important
difference-the "paper" is one continuous, long sheet.

Getting Specific

Two very special functions are insert and delete. Insert lets you add
text in the middle of a line, by pressing INSERT to insert spaces in
the text, and then typing in the word. For example:

TO be or ~o be,~ha~ is ~he ques~ion .•

The cursor is placed on the second to, and INSERT is pressed four
times (three for n-o-t, and one for a space):

To be or. ~o be,~ha~ is ~he ques~ion.

The word not is then typed:

To be or no~.~o be,~ha~ is ~he ques~ion.

103

3 iii ___ Applications and Education

Delete is used to erase text. As distinguished from mere back­
spacing or spacing over a word, delete closes up the space after the
deleted word.

Take out a word.

Take mut a word
1. (cursor is moved to "0")

Take [!]t a word
2. (DELETE typed; "0" disappears, "ut a word" moves left.)

Take ~ word
(DELETE is typed four times.)

Insert and delete can also act on words, sentences, lines, or entire
paragraphs in a similar way.

Disk Files
A file is simply a permanent record of your text. When the
computer's power is turned off, it forgets everything except what
is ''burned'' (in ROM memory) into it permanently. Your text is
obviously not "burned in:' or you couldn't ever change it. If you
have a blackout, or a fuse blows, say good-bye to your text.

Catastrophes aside, you certainly don't want to leave your
computer on all the time, or keep the computer tied up with your
text forever. Fortunately, you can save your text on disk, ready for
any later revisions. You can type it one time, save your text, and
print it out when convenient.

Since a disk can store more than one document (unless it's
very long), you and the computer must have some way to distin­
guish and separate one file from another. This is usually done via
a directory, a list of filenames . You access a file by giving the
computer the file's name.

"Scriptor:' the word processor program at the end of this
article, has many features usually found only in professional
word processors, but it lacks a few features such as search and
replace, justification, data base merge, etc. Also, it is written in
BASIC, so it can be rather slow at times. It is, however, aided by
several machine language subroutines for time-critical situations
such as disk input/output and some editing features .

~ingltln

Program 1 is the Scriptor program itself. Type it carefully, since it
contains many critical machine language DATA statements. Extra

104

3
Applications and Education ___ ill

time spent in typing it in will reward you with a smoother, bug­
free word processor. Remember to use the Listing Conventions.
Use the Atari logo key to enter inverse video.

To give you more memory for text, Scriptor deletes a substan­
tial portion of itself after it initializes (sets up) . Don't worry-the
program is busy running while the screen flashes; it just takes
awhile. The setup lines from 5000-6999 are automatically erased.

If you quit the program and try to run it again, the program
will automatically try to re-RUN itself anew from disk. If you've
changed disks, you'll need to reload it yourself. You should SAVE
the program with the filename "D:SCRIPTOR" or change line 455
appropriately. Be sure to SAVE Scriptor after you've typed it,
before you run it, or you will find a sizeable chunk of your typing
erased when you exit. You can free up more memory for text by
deleting the "help" function. Take out all lines from 1570 to 1700
and remove line 775. If you'd rather keep this handy aid, leave
these lines alone.

If you get the message "Error in DATA statements" when you
run the program, you need to check your typing of the machine
language DATA statements at the end of the program. Also make
sure you haven't typed a letter 0 for a zero (the zero is thinner
than the 0).

If you have an Atari 825 printer, you will need to type in the
lines in Program 2. This will replace the lines used for the MX-80
with lines applicable to the 825 80-column printer. If you have
another printer, refrain from using special characters such as
underlining, and you will probably be able to get one of the sets of
lines to work.

Getting Started

Scriptor is a full-scrolling, character-oriented word processor. The
use of cursor control keys is similar to normal Atari editor func­
tions, with these exceptions.

I. < RETURN> is used only to force a carriage return, as at
the end of a paragraph, or to print a blank line. The computer will
format your line when you print it out, so just type continuously.
Do not press < RETURN> at the end of each line. Pressing
<RETURN> prints a back-arrow at the end of the line, and erases
all text to the end of that line.

II. Insert and Delete character (CTRL-INSERT/CTRL­
DELETE) work on whole "paragraphs:' A paragraph is a block of
lines from the cursor to a "back-arrow:' If there is no back-arrow,

105

3 ____ Applications and Education

one is assumed at the end of text. Therefore, Insert and Delete can
be quite slow if you don't have a back-arrow somewhere.

III. Insert and Delete line work on the entire document. The
screen will blank during this operation. This is normal and speeds
up the process, as it can be slow on long documents.

Iv. All TAB controls work normally, just a little slower.
<CTRL-K> will clear all tab settings.

V <CLEAR> will not clear the screen. It is used to erase all
or part of the text. Press <CLEAR> <A> to erase all text. Press
the Atari logo key to abort the erase function.

VI. The break key is disabled. Use <CTRL-Q> to exit the
program.

VII. The ESC key enters the "mini-DOS:' (See below.)
VIII. The console keys are "live"; see a description of their

functions later.
IX. The Atari logo key is disabled for normal typing. Within

prompts, it acts as an "abort" key.

Getting Control
Since the Atari is not a dedicated word processor (that means it's
not just a "word processing machine" like a Lanier, but is, rather, a
general-purpose computer), it does not have special keys to acti­
vate word processing functions. Instead, the <CTRL-key>
combination is used. For example, to quit the program, you
would hold down <CTRL> and press <Q>. The CTRL key
stands for "Control" -it is like a special shift key. The keys are
linked mnemonically (easy to remember) to the commands they
stand for, such as <P> for Print Text. To get a list of the
commands and what they stand for at any time, just press
<CTRL-?> (hold down CTRL and press the question mark) for a
HELP menu. See Table 1 for a quick-reference chart of the
commands.

Going Around the Block
An important feature in a word processor is block move and
delete. Scriptor lets you define a series of up to 23 lines. You can
then move these lines to another place in the text with Line Dupli­
cate, or delete the defined lines with <CLEARID> (Erase:
Defined lines). To define a block of lines, just place the cursor on
the first line and press < CTRL-D > . A flashing arrow will appear
to the left of the line. Press cursor-down, and another symbol will
appear underneath. Press cursor-down until all the desired lines

106

3
Applications and Education __ lIiiil

have an arrow to their left. Then press< RETURN>. If you make a
mistake, just try again, or press cursor-up while defining.

To copy these lines to another place, position the cursor at the
place you want the lines to appear, and press < CTRL-L> . If you
haven't defined any lines, this command will be ignored. Note
that you can press this key more than once to make many copies
of the lines. You may want to delete the defined lines after you
move them. Press < CLEAR> . You will see the prompt "ERASE:':
Press < D> . The lines will be deleted, just as if you used Delete
line multiple times.

AMini-DOS
The ESC key activates the mini-DOS. It lets you look at the direc­
tory and scratch, rename, lock, or unlock files. When you press
< ESC> , you will see:

~irec~or~l~ocklmnlocklffienaMe,~cra~ch?

Press the appropriate key. For all except the directory, you will
need to enter a filename. The cursor, a half box, will be at the top
of the screen. The only editing key you can use here is backspace.

Remember that you can abort any time before pressing
< RETURN> by pressing the logo key. While the directory is
listed, you can press < ESC> again to keep the directory on the
screen while you use one of the other functions. You can also
press [SELECT] (see later) to save or recall a file while looking at
the directory. If you get an error message at the top of the screen,
check the disk and your entry and try again.

For the Record • . •
To save or recall a document, press [SELECT]. The screen will
display:

~ave or ffiec a 11

Press the appropriate key, enter the filename, and the document
will either be stored or retrieved. If you Recall a document, it loads
starting at the line the cursor is on. This lets you add text to a
document. Press START twice to home the cursor to the start of
the text. If you get an error message, check to see you have the
right disk, consult the DOS Manual , and try again. Remember that
your filename must start with a capital letter and be followed by
up to seven capital letters or numbers. You can optionally put a
three-character extension on the file if you separate it with a

107

3 ____ Applicatioos and Educatioo

period, for example; EDITOR. DOC, DRAFT3.CGB, DUNGEON.
MAp, etc. You should not enter the /10:/1 prefix.

Printer a la Mode
Different printers offer special print densities and formats such as
boldface, underlining, super- and subscripts, double-width,
condensed, proportional spacing, etc. To underline a word or
phrase, enclose it in < CTRL-brackets > . In other words,
<CTRL-,> is underlining on, and <CTRL-. > is underlining off.
Underlining works only on the 825 printer. 1£ you have GRAF­
TRAX installed in your MX-80, underlining produces italics.

The following is an advanced technique. You can define up
to ten special characters and print them at any spot in your text.
To define a character, set up a format line (see the discussion of
format lines, below) with <CTRL-F> and enter your definitions
such as 1 = 123:2 = 125:3 = 27, etc. You can then output the CHR$
code of the defined characters by embedding a caret (/1 1\/1) in your
text, followed by the number (for example, 1\4).1£ you don't put a
number after it, a caret will print; otherwise, the character associ­
ated with the number (0-9) will be output. You can also output
ASCII characters from within a format line with the "as/l format
command. For example, /las27:as18/1 will activate proportional
spacing on the 825 printer. Use "as27:as69" for emphasized mode
on the MX-80.

Fonnatting Text
Since you are typing in the raw text, with no margins or line
breaks, how does the computer print a nice formatted page? The
computer assumes a left margin of 5, a right margin of 75, single
spacing, a page length of 66, and 50 lines to be printed per page.
You can change these default values with a format line.

A format line is like an embedded command line. The line
starts with a format character to prevent the line from being
printed out. To get the format character, press < CTRL-F > . You
should get a right-pointed wedge. Then type in your commands.
All commands are two lowercase letters, usually followed by a
number. You can put multiple commands on the same line if you
separate them with colons. For example, the following line:
.1 MJ.8: rM79 : sp2+

will set the left margin to ten, the right margin to 70, and line
spacing to two. Here is an explanation of each formatting
command. Also see Table 2 for quick reference.

108

3
Applications and Education __ lIIIiiil

Note that n represents a number, with no space between the
command and the number. No real error-checking is performed on the
number.
asn Sends byte n to printer.
em: Comment line. You can type one screen line of

comments. They will not be printed to the printer. They
are just for your convenience.

enn Centering. If n = I, then centering will be on, and all
following lines will be centered until reset by enO. If
n = a, then centering is turned off.

fp Forced paging. Normally, the printer will page, or go on
to the next page, when the number of lines printed
equals your lines per page (lp), which defaults to 50.
Forced paging pages to the next page, regardless.

Imn n = left margin, which should be less than the right
margin.

Inn Prints n blank lines.
Ipn Sets lines per page to n - n should be less than the page

length, to allow some blank space at the bottom of each
page.

nf: filename Will chain to next specified file, permitting a docu-
ment to be split up into many parts. The nf insures that
they will all print as one big file. The formatting
commands carry over to each file.

pIn Sets the page length, which is almost always (and
defaults to) 66.

nnn n = right margin, which should be less than the
maximum width and greater than the left margin.

spn n = I, single spacing; 11 = 2, double spacing; n = 3, triple
spacing; etc.

Start the Presses
To print your document, press < CTRL-P > . You should see:

PRINT: (CoiF)

To start printing, just press < RETURN> . The printer head
should be positioned at about the start of the page. The OF indi­
cates any selected option. C stands for Continuous Print. You
would use this option with pinfeed or roll paper. It will automati­
cally page to the start of each sheet. If you do not select contin­
uous print, the computer will beep at the end of each page and
pause. You should put in another sheet of paper and press
< RETURN> to continue printing.

109

3 ____ Applications and Education

Note that pressing a key any other time during printing will
abort the printout. The F option stands for Fast Printout. It will
blank the screen during the printing, increasing printing speed
better than 30 percent. Some people, however, find a blank screen
disconcerting. To select one of the options, press either C or E The
appropriate letter will light up and flash. To reset the option
(cancel it), press the key again. Press < RETURN> when you are
ready to print the text.

Customizing Scriptor
The program is fairly well-structured, with separate sections
for all functions. The control keys are executed via a branching
IFffHEN "bucket brigade:' Just patch in your own command
where desired. Some functions you may want to add are block
transfer (performs both block insert and block delete), Search and
Replace, Insert from Disk, and simple data merge. Machine
language programmers may want to try their hand at speeding
up certain aspects of the program, such as Insert Line, Delete
Line, and even Print Text.

Here are some other useful subroutines. COSUB 540 returns
the number of lines the user has typed (not necessarily the
maximum number of lines) in EOT. COSUB 600 clears the top line
of the screen and positions the cursor at the first character, ready
for a message. COSUB 460 performs error-checking and adjust­
ments on the X-Yposition of the cursor. COSUB 2650 returns an
adjusted (uppercase if AL = I, no cursor controls, etc.) character in
A. COSUB 2730 is a pseudo-INPUT routine that returns IN$. Vari­
able MX controls the maximum number of characters.

TRAP 2170 will vector errors to an I/O Error message. There
are two reentry points for the editor proper: COTO 650, which
clears and "refreshes" the screen, and COTO 680, which just
adjusts the cursor and continues keyboard entry (faster).

Primary variables are: CL-the pointer to the top line (from
O-#lines) of the screen; X-the horizontal position of the cursor
2-39; Y -the vertical position of the cursor on the screen, 1-23;
TX$-the string that contains all the text and is organized in 38
character substrings, one for each line; T$ and T -"temporary
variables"; A-usually a keystroke typed; SCR-the address of
the screen memory origin; NL-number of defined lines;
FRL-the starting line in text of the defined lines; RL-the
starting line in TX$ for reserved lines (the buffer). Several
constants are QO, Ql, Q23-which return 0, 1, or 23 (saves
memory); L2 = 38; L = 40; B$ is 38 null (CHR$(O)) characters.

110

3
Applications and Education ___ iI

Changes for the 800XL and 1200X
Scriptor as originally printed would not run on an XL model.
The modifications for the 1200XL are contained in Program 3
and for the 800XL in Program 4. Simply substitute and/or add
the lines to the main'listing, Program 1.

There is another problem which might result from running
Scriptor on an XL. Scriptor, as mentioned before, deletes part
of itself. The deletion of lines will sometimes cause Atari
BASIC to lock up. Be sure to include line 7000, even though it
is just a REM statement: line 7000 will help prevent the lock-up.

If Scriptor still locks up, you will have to experiment. Try
adding a REM statement to the end of one of the lines at the
end of the program (6000-6060). What you are trying to do is
change the length of the lines being deleted.

Table 1. Editing Commands
Control Keys
A Advance one screen forward
B Back up one screen
D Define lines
F Print format character
G Go to specified line
K Clear all tab settings
L Duplicate defined lines
P Print document
Q Quit program

SHIFf-INSERT
SHIFf-DELETE
CTRL-INSERT
CTRL-DELETE
CLEAR

CAPS/LOWR
ESC
Cursor keys
[OPTION]
[SELECT]
[START]
[CTRL-,]
[CTRL-.]
x

Insert a line
Delete a line
Insert a space
Delete a character
Erase:
A = All R = Remainder
D = Defined lines
Upper-or lowercase
Mini-DOS
Moves cursor with two-way scrolling
Nondestructive carriage return
Save or Recall text
"Home" cursor
Underlining on
Underlining off
Print special character

111

3 Iii ___ Applications and Education

Table 2. Formatting Commands
Command Description
asn Send ASCII character n to printer
cm:xxxx Comment line
cnn Centering: 1 = on, 0 = off
fp Forced Paging
lrnn Set left margin to n
Inn Do n linefeeds
lpn Set lines per page to n
nf:file Link to Next File
pin Page length
rrnn Set right margin to n
spn Set line spacing

Program 1. Scriptor
1 00 REM .-Sij;1 it:.Ji In ;_:[1] ;I •• :OJ ;mM ~-s.-Sa] ;.
110 GOTO 5000
455 RUN "D:SCRIPTOR"
460 PF=Q0:IF X<2 THEN X=39:Y=Y-Ql
470 IF X>39 THEN X=2:Y=Y+Q1

Default

o Off

5

50

66
75

1 (single)

480 IF Y<Q1 THEN Y=Ql:CL=CL-Ql:PF=Ql
490 IF Y>Q23 THEN Y=Q23:CL=CL+Ql:PF=Ql
500 IF CL<Q0 THEN CL=Q0
510 IF CL)(MXL-Q23) THEN CL=MXL-Q23
520 IF PF=Q0 THEN RETURN
530 LOC=CL*L2+Ql:T=USR(SCRZAP,ADR(TX$(LOC»)

:RETURN
540 REM *** FIND END OF TEXT
550 P=ADR(TX$):T=P+RL*L2-Ql
560 A=USR(EDCOM,T,P,2):A=A-P
570 LC=A:EOT=INT(A/L2)
580 RETURN
590 REM *** ~RASE TOP LINE
600 COLOR 32:PLOT Q1,Q0:DRAWTO L2,Q0:PLOT Q1

,Q0:RETURN
610 REM *** START OF EDITOR
611 MXL=INT(FRE(Q0)/40)-25:RL=MXL+l
612 DIM TX$«MXL+Q23)*L2):? CHR$(125);
613 TX$=CHR$(Q0):TX$«MXL+Q23)*L2)=TX$:TX$(2

') =TX$
620 SCR=PEEK(88)+256*PEEK(89):POKE 559,46:PO

KE 842,12
630 X=2:Y=Ql:CL=Q0:POKE 702,Q0
640 REM *** ENTRY FOR EACH PAGE
650 POKE 54286,192

112

3
Appl ications and Education __ lIIIIiiiil

655 POSITION Q0,QQI:? "{7 SPACES}Scriptor Wor
d Processor";:CoLoR 32:DRAWTo L2,Q0:PLoT

32,Q0
660 LoC=CL*L2+Ql:T=USR(SCRZAP,ADR(TX$(LoC»)
670 IF TF THEN TF=Q0:GoTo 810
675 IF FIRST=Q0 THEN POSITION 31,QQI:? MXL;"

Free";:TF=Ql:FIRST=Ql
680 POKE 53248,X*4+44
690 IF y=oy THEN 740
710 ADJoy=oY*4+16:ADJY=Y*4+16
720 A=USR(CURSoR,PMB+ADJoY,Q0):A=USR(CURSoR,

PMB+ADJY,15):oy=y
740 K=PEEK(53279):IF K< 7 THEN 2570
770 T=PEEK(764):IF T=255 OR T=39 OR T=154 TH

EN 740
775 IF T=166 THEN POKE 764,255:GoTo 1570
790 POKE 694,Q0:A=USR(GCHAR)
800 IF TF THEN 650
810 IF A{32 OR A > 122 OR A=96 THEN 880
820 A=A-32*(A < 96)
830 POKE SCR+X+L*Y,A
840 LoC=(CL+Y-Ql)*L2+X-QI
850 TX$(LoC,LoC)=CHR$(A)
860 X=X+QI-BF:GoSUB 460
870 BF=Q0:GoTo 680
880 IF A< > 155 THEN 910
890 GoSUB 2640:PoKE SCR+X+L*Y,94:TX$(LoC,LoC

+L2-X+Ql)=B$:X=2:Y=Y+l
900 TX$(LoC,LoC'=CHR$(94):GoSUB 460:GoTo 650
910 IF A=6 THEN A=127:GoTo 830
920 IF A=28 THEN Y=Y-Ql:GoSUB 460:GoTo 680
930 IF A=29 THEN Y=Y+Ql:GoSUB 460:GoTo 680
940 IF A=30 THEN X=X-Ql:GoSUB 460:GoTo 680
950 IF A=96 THEN A=74:GoTo 830
960 IF A=31 THEN X=X+Ql:GoSUB 460:GoTo 680
970 IF A=Q0 THEN A=72:GoTo 830
980 IF A=126 THEN X=X-Ql:GoSUB 460:A=Q0:BF=Q

I:GoTo 830
1040 IF A<>255 THEN 1070
1050 A=USR(EDCoM,ADR(TX$«CL+Y-Ql)*L2+X-Ql»

,ADR (TX$ (MXL*L2+37)', Q0)
1060 GoTo 650
1070 IF A<> 254 THEN 1100
1080 A=USR(EDCoM,ADR(TX$«CL+Y-Ql)*L2+X-Ql»

,ADR(TX$(MXL*L2+37'),Ql)
1090 GoTo 650
1100 IF A<> 157 THEN 1160
1110 GoSUB 590:? "Insert Line";
1120 GoSUB 540:PoKE 559,Q0

113

3 Iii_ •• Applications and Education

1130 FOR I=EOT+(EOT (MXL) TO CL+Y STEP -Q1:T$
=TX$((I-QU *L2+Q1 , I.L2) :TX$(I*L2+Q1, I*L
2+L2)=T$:NEXT I

1140 T=(CL+Y-Q1)*L2:TX$(T+Ql,T+L2)=B$
1150 X=2:POKE 559,46:GOTO 65 0
1161Z1 IF A=159 THEN GOSUB 59!!I: 7 "Tab set at "

;X-Ql:TF=Ql:TB$(X - Ql,X-Ql)=".":GOTO 740
1171Z1 IF A=158 THEN GOSUB 59!!I: 7 "Tab cl eared

at ";X-Ql:TF=Ql:TB$(X-Ql,X-Ql)=CHR$(Q0)
:GOTO 740

1180 IF A<> 127 THEN 12 3 0
1191Z1 IF TB$=B$ THEN GOSUB 59 i!I : 7 "No tabs set

":TF=Ql:GOTO 740
1200 FOR I=X TO L2:IF TB$ (I,I)=CHR$(Q0) THEN

NEXT I:T=L2:X=2:Y=Y+Ql:GoSUB 460:GOTo
12!!I0

1210 T=I:I=L2:NEXT I
1220 X=T+Ql:GOTO 68 0
1230 IF A< > 156 THEN 1290
124121 GoSUB 590: 7 "Delete Line " ;
1250 GOSUB 540:POKE 559 , Q0
1260 FOR I=CL+Y - Ql TO EoT:T$=T X$«I+Ql) *L2+Q

1, (1+2) *L2) : T X$ (I * L2+Ql, I *L2 + L2) =T$: NEX
T I

1270 T=EOT*L2:TX$(T+Ql,T+L 2)=B$
1280 X=2:PoKE 559, 4 6:GOT O 6 5 0
129(11 IF A=11 THEN GoSUB 59 i!I:TF=Ql: ':' " Clear- a

11 tabs": TB$=B$: GOTo 7 4 121
1320 IF A< > 1 2 5 THEN 1450
133!!I GoSUB 59!!!: 7 "Er-ase:
134!!I GoSUB 265 !!!
1350 IF A=155 THEN 650

" . ,

1355 IF A<> 65 THEN 137 0
1360 7 "~ - ";: GoSUB 254!!S
1365 GoTO 613
1370 IF A<> S2 THEN 1380
1372 7 "Remai nder- - ";: GoSUB 254!!I: GoSUB 264i!I
1375 TX$CLoC) =CHR$CQ 0 ':T X$«MXL+Q23'*L 2)=CHR

$CQ0):TX$CLoC+Ql) = TX$CLoC) :GoTo 650
1380 IF A<> 68 OR NL=-Ql THEN 650
1400 7 "Defined Lines - " ;
1410 GOSUB 2540:Po KE 559,Q0:GoSUB 540
1420 FOR I=FRL - Ql TO EoT:T$=TX$(CI+NL+Ql)*L2

+Ql, (I+NL+2) * L2): TX$ (I *L2+Ql, I *L2+L2) =T
$:NEXT I

1430 FOR I=EoT-NL TO EoT:T X$ CI*L 2 +Ql,I*L2+L2
)=B$:NEXT I:NL=-Ql

1440 POKE 559,46:GOTo 650
1450 IF A< >4 THEN 1810

114

3
Applications and Education •• _iiI

1461Z1 GOSUB 591Z1:? "Define Lines";
1470 FL=CL:FR=Y:FRL=FL+FR:NL=Q0
1480 POKE SCR+l+L*(FR+NL),223
1490 LOC=CL*L2+(FR+NL-Ql)*L2:T=RL*L2+NL*L2:T

$=TX$(LOC+Ql,LOC+L2):TX$(T+Ql,T+L2)=T$
1501Z1 GOSUB 2650
1510 IF A=29 AND FR+NL (22 THEN NL=NL+Ql:GOTO

1481Z1
1520 IF A=28 AND FR+NL>FR THEN POKE SCR+l+L*

(FR+NL),Q0:NL=NL-Ql
1530 IF A=155 THEN 1550
154121 GOTO 150{21
1550 FOR I=Q0 TO NL:POKE SCR+l+L*(FR+I),Q0:N

EXT I:GOTO 650
1570 POKE 53248,Q0:PRINT CHR$(125):POSITION

13,QI2I:? " HELP Screen
1580? "{DOWN}{TAB}{3 SPACES}Control Keys:"
1590? "[;:=Advance Page (I=Page Back"
1595 ? "[D=Define L!nes ~Print format char.

1610 ? "~I<i 11 all tabs ~Line Duplicate"
1620 ? "[i;=Print te >: t{4 SPACES}[!;=Quit"
1630 ? "Atari Key=Cancel Command":?
1635 ? II·

X Print special character"
1640 ? "{DOWN} leO:1I11"':1.111 Erase: [;:11 G:efined Lin

e s " : POI< E 85, 1 6:? "lIe m a i n d e r "
1 65 QI ? "I ell:.i i (tl: III Non - des t r u c t i ve C R "
166121? n{DOWN}Iii."13111?lil:1iil Filer:lIecall or ~ve"
1670 ? "{DOWN}lii.,u:1.iil ' Home' cursor. Press

twice to go to start of text."
1 6 8 0 ? " { DOWN} 144-1 .. 1 Min i D OS "
1700 ? "{DOWN}Press 1.1'*'*):1:.": A=USR (GCHAR): GO

TO 650
1810 IF A<> 12 THEN 1910
1820 GOSUB 59!!; :? "Duplicate defined lines";
1830 IF NL (Q0 THEN 650
1840 FOR I=Q0 TO NL
1850 IF CL+Y+I-Ql) MXL THEN I=NL:GOTO 1900
1860 T=RL*L2+I*L2
1870 T2=CL*L2+(Y+I-Ql)*L2
1880 T$=TX$(T+Ql,T+L2)
1890 TX$(T2+Ql,T2+L2)=TS
1900 NEXT I:Y=Y+NL+Ql:GOSUB 460:GOTO 650
1910 IF A<> 27 THEN 2400
192(,:1 POSITION 2,Q I2I: ? "U:irectory,~ck,[!rllock,

lIe n am e , ~ rat c h '7 "

1930 GOSUB 2650:J=A
1940 IF J <>7 6 AND J <> 85 AND J <> 83 AND J <> 68

AND J <> 82 THEN 1930

115

3 Iii ___ Applications and Education

195fl
196fl

IF J < >ASC ("D") THEN 2QI2fl
? CHRS(125) :POKE 53248,Q 0

197!0 TRAP 217fl:OPEN # 2,6,QQI,"D :* .*"
198fh INPUT #2, T$:? TS: IF ~ EN (TS) -:: 17 THEN 2~.:lf!

o
199fl GOTO 1981!1
2 I~I Q! QI C LOS E # 2 : T RAP 4 0 i~liZ! 12! : GO 5 U B 5 9 f' :? "P res s

a key •• II" ; : OK= 1: GOSUB 265f! : IF A=27 THEN
192 f!

2f! 1 fl GOlD 65121
2020 GOSUB 590:J=A
2QI3QI iF J =7 6 THEN ? "_ •• 113:_>";: J =2'.5
2 fl4 iiI IF,] = 83 THE N ? "i4t13 :{:\ '13: > " ; : J = 3 3
2fl5QI IF J =85 THEN ? "a'J:I!!(.l!':lO:i> ";: J =36
212j6QI IF J=ASC("R"} THEN 213Q,
2i~17fl? "Enter Filename:";
2080 MX=12:AL=Ql:GOSUB 2720
2fl90 T$ (3) = I N$: T "$ (1 , 2) =" D: " : POS I T I ON 10, Q12I: ?

DEL S (1 , 15) ;
2100 TRAP 2170: IF J=33 THE N POSITION 24,Q0:G

OSUB 2540:COLOR 32:PLoT 24,Q0:DRAWTO 38
, Qfl

2110 TRAP 2170:XIo J,#2,Q0,Q0,T$:TRAP 40000
2120 TRAP 40000:GOTO 650
21312, GOSUB 59f!:? "I;~3:r:l:;I;, >CLl r r en t name? ";: 1"1 X

=12:GOSUB 272(I:T$(3)=IN$: T $(1,2)="D:"
214121 GOSUB 59!!, :? " l:l3:r:l;:;I;,>New name? ";: M X = 12:

GOSUB 272QI: TS (LEN (TS) +Q 1) =", " : TS (LEN (T$
)+Ql)=IN$

2150 TRAP 2170:X10 32,#2,Q0,Q0,TS:TRAP 40000
216121 GO TO 650
2170 TRAP 2170:POKE 559,46:CLOSE #2:CLOSE #3

:GoSUB 59v.1: ? CHR$(253}; "I /O Error #";PE
EK(195);:TF=Ql:GoTo 7 40

2 1 8 fl GO SUB 59 f! : ? "~ v e 0 r r:;::.e call" ;
219Q! 1CCOM=834+48:ICBAL=I CCOM+2:ICB LL=ICBAL+

4: ICSTAT=835+48:REM IoCB#3
2200 GoSUB 2650: IF A=155 THEN 1380
221fl IF A <> ASC("S") THEN 229 QI
222121 GOSUB 6QI!!I:? "SAVE: {3 SPACES}F i Ie name?

"; :t1X=12:Go S UB 272fl:T$(3)=IN$:T$(1,2)="
D: " : GOSUB 5512l

223fl POSITION 5,O:7 DELS(I,12);"ING";
2232 TRAP 2238:0PEN #3,4,Q0,T$:CLOSE #3:GOSU

" ; I N$;" - ";: GOSUB 2
54fl

2233 GOSUB 6fll2l:? .. HEPLAC I NG "; 1 N$: GOTo 224(21
2238 CLOSE #3:IF PEEK(195)< > 170 THEN 2170
2240 TRAP 2170:0PEN #3,8,Q0,T$

116

3 Applications and Education ___ _

2250 POKE ICCOM,11:P=ADR(TXS}:POKE ICBAL+Q1,
INT(P/256}:POKE ICBAL,P-CINT (P/256}*256
)

226Cil LN= (CL+EOT+Q1) *L2: POf(E ICBLL+Ql, INT (LNI
256) :POKE ICBLL,LN-CINT(LN/256}*256}

2270 A=USRCADRCCIOS),48}:ERR=PEEK(ICSTAT}:PO
KE 195,ERR:IF ERR) 1 THEN 2170

2280 CLOSE #3:TRAP 40000:POKE 53279,Q0:GOTO
650

229Cil IF A< }ASC C "R"} THEN 650
2300 LK=Q0
2310 GOSUB 590:? "RECALL: Filename? ";:MX=12

: GOSUB 272CiI: T$ (3) =IN$: T$ (1,2) ="D:"
2315 LOC=CCL+Y-Ql)*L2+Q1:TX$CLOC)=CHR$(Q0i:T

X$«MXL+Q23)*L2)=CHR$(Q0):TX$(LOC+Ql)=T
X$(LOC)

2320 TRAP 2170:POSITION 8,0:? DEL$(1,8);"ING
"; : OPEN #3,4, Q0, T$

2330 ICCOM=834+48:ICBAL=ICCOM+2:ICBLL=ICBAL+
4

2340 POKE ICCOM,5:P=ADRCTX$«CL+Y-Q1)*L2+Ql)
):POKE ICBAL+Ql,INT(P/256}:POKE ICBAL,P
-CINTCP/256}*256)

2350 LN=(MXL-(CL+Y-Q1)}*L2:POKE ICBLL+Ql,INT
CLN/256):POKE ICBLL,LN- CINTCLN/256}*256
}

2360 A=USRCADRCCIO$),48) :ERR=PEEKCICSTAT} :PO
KE 195,ERR: IF ERR } 1 AND ERR <> 136 THEN 2
17Cil

2370 CLOSE #3:POKE 53279,Q0:TRAP 40000:IF LK
=Ql'il THEN 650

2380 CL=Q0:Y=Ql:X=2:T=USRCSCRZAP,ADR(TX$}}
239121 GOTO 295Cil
2400 IF A<> 17 THEN 2410
241'i13 GOSUB 61'i11'i1: '? "~: ";: GOSUB 2541'i1
2405 POKE 53277,Q0:POKE 53248,Q0:POKE 53774,

192:POKE 16, 192:GRAPHICS Q0 :POKE 702,64
:END

2410 IF A=16 THEN 2840
2420 IF A=Ql THEN CL= CL+Q23 : Y=Ql: GOSUB 460:G

OTO 65 1'i1
243Cil IF A=2 THEN CL=CL - Q23:Y=Ql:GOSUB 460:GO

TO 65Cil
25~!I!21 GOTO 640
254CiI? "A...-e you su...-e?";:GOSUB 2651'i1:IF 1-(A=1

21 OR A=89) THEN POP :GOTO 650
2551'i1 RETURN
2570 REM *** Handle console keys
2580 POKE 764,130:A=USRCGCHAR):POKE 77,Q0

117

3 Iii ___ Applications and Education

259i!1 IF K=5 THEN 2 180
260QI IF K=3 THEN X=2:Y=Y+Ql:GOSUB 46QI: GOTO 6

80
2611Z1 IF K=6 AND Y=Ql AND X=2 THEN CL=Q0:X=2:

GOTO 65Ql
2620 IF K=6 THEN Y=Ql:X=2:GOTO 650
263QI GOTO 74Ql
2640 LOC=(CL+Y -Ql'*L2+X-Q l:RETURN
2650 T=Q0:REM GET A KEY
2660 IF PEEK(20»20 THEN T=QI-T:POKE 20,Q0:P

OKE 755,T*2
2665 IF OK THEN IF PEEK(53279)=5 THEN POKE 7

55,2:POKE 559,46:POP :POKE 764,130:A=US
R(GCHAR) :OK=0:GOTO 2180

2670 IF PEEK(764)=255 THEN 2660
2680 IF PEEK(764) = 154 THEN 2660
2690 IF PEEK(764) = 39 THEN POKE 764,255:S0UND

Q0,5,12,4:POP :FoR T=l TO 5:NEXT T:SOU
ND Q0,Q0,Q0,Q0:GoSUB 2710:GOTO 650

2700 TRAP 2700:A=USR(GCHAR):TRAP 40000:IF A)
96 AND A(12 3 THEN A=A-32*AL

2710 POKE 755,2:POKE 559,46:RETURN
2720 REM *** PSEUDO - INPUT
2731Z1 I N$=" "
2740 ? CHR$(21);CHR$ (30);:GOSUB 2650:? CHR$(

32); CHR$ (3QI);
2750 IF A=155 THEN 2820
2760 IF A=126 AND LEN(INS»1 THEN IN$=IN$(l,

LEN(INS)-Ql):7 CHRS(A);:GOTO 2740
2770 IF A=126 AND LEN (IN$)=Ql THEN 7 CHR$(A)

;:GOTO 2730
2780 IF LEN(IN$)=M X THEN 2740
2790 IF (A{32 DR A >90) AND A(96 OR A) 122 THE

N 2740
2800 7 CHR$(A);: I N$(LEN(IN$)+Ql)=CHR$(A)
281!Z1 GOTO 274Ql
2820 AL=Ql:IF IN $= "" THEN POP :GOTO 650
2831Z1 RETURN
2840 REM *** Printer Output
2850 GOSUB 59QI: 7 "PRINT: (C/F)"
2860 CON=Q0:F=Q0 : FOR I=Q0 TO 9:PC(I)=48+I:NE

XT I
2870 GOSUB 2650:IF A=155 THEN 2910
2880 IF A=67 THEN CoN=I-CON:POSITION 10,Q0:7

CHR$(67+128*CON);:GOTO 2870
2890 IF A=70 THEN F=l-F:POSITIoN 12,Q0:7 CHR

$(70+12B*F) : GOTO 2870
2901Z1 GOTO 2871Z1
2910 TRAP 2171Z1: OPEN #2,8, QIZI, "P: "

118

3
Applications and Education ___ iii

2920 GoSUB 59!!1: ':' .. Printing
2930 LM=5:RM=75:CN=Q0:NL=Q0
2940 SP=I:PL=66:LP=50:C=LM
2950 GoSUB 540:IF F=1 THEN POKE 559,Q0
2960 FOR P=Ql TO LC
2970 IF PEEK(764) (2 55 THEN GoSUB 2650:POP :G

oTo 3140
2980 Z=ASC(TX$ (P»
2990 IF CN=Ql AND Z<) 127 THEN 3460
3000 IF Z<62 OR (Z) 96 AND Z(123) THEN 3070
3010 IF Z=94 THEN GoSUB 3210:GoSUB 3150:GoTo

312~2)

3020 IF Z=72 THEN UL=Ql:PUT #2,27:PUT #2,52:
GoTo 3 1 2!Z1

3030 IF Z=74 THEN UL = Q0 : P UT #2,2 7 :PUT #2,53:
GoTo 31211i

3040 T=ASC(TX$(P+Ql»:IF Z= 62 AND T) 15 AND T
< 26 THEN PUT #2,PC(T-16) :P=P+l:GoTo 312
111

3060 IF Z=127 THEN 3230
3070 IF C=LM T HEN FOR I=Ql TO LM:PUT # 2,32 :N

EXT I
3iZI8 (~1 C=C+ 1
3090 PUT # 2,Z+32*(Z{6 4)
3100 T=Q0:IF RM-C)=10 THEN 31 10
3105 FOR 1=1 TO LEN (BRKS): IF Z+ 32() AS C(BRKS(

1,1» THEN NEXT I:GOTo 31Hl
3107 TT=ASC(TX $(P+Ql »: IF TT=Q 0 OR TT=94 OR

Z=Q0 OR Z= 13 THEN I=LEN(BR KS) :NEXT 1:60
SUB 3 1 5!Z1: T=Ql

3110 IF T=OI AND ASC(TX$(P+Ql))=00 TH EN P=P+
01: I F P (LC THEN 3 11 0

312 111 NEXT P
313!11 GoSUB 3 15 0
3140 PRINT #2:CLOSE #2:PoKE 559,46:TRAP 4000

l1i : GoTo 650
3150 FOR 1=01 TO SP:PRINT #2:NEXT I
3160 C=LM:NL=NL +S P:I F CN{Q0 THEN CN=Ql
317 0 IF NL { LP THEN RET URN
3180 IF CoN=00 THEN F OR I=Q0 TO 2 55 S TEP 17:

SOUND QQl ,255 -1, l!1i, 15-INT(I/17) : NEXT I:T
=USR (GCHARl :GOTo 3200

3190 FOR 1=01 TO PL - L P:PR INT #2:NE XT I
3200 NL=Q 0 : RET URN
3210 RE M *** SKIP TRAILING BLANKS
3220 T=INT(P / L 2) :P=(T+Ql-(P/L2=T)*L2:RETURN

3230 REM Ha n dl e special formatting
324iil P=P+Q 1

119

3 ____ Applications and Education

3250
3260
327y-J

328!E1
329(11
33(11(11

331i!1
332(11
333i!1
334i!1

CM$=TX$(P,P+Q1):T$=""
FOR I=P+2 TO LC
IF TX$(I, I) >=CHR$(16) AND TX$(I, I) (CHR$
(26) THEN T$(LEN(T$)+Q1)=CHR$ (ASC(TX$ (I
,l»+32):NEXT I
V=Q0:P=I:TRAP 3290:V=VAL(T$)
TRAP 217i!1: IF CM$="cn" THEN CN=V
IF CM$="ln" THEN FOR J=Q1 TO V:GOSUB 31
50:NEXT J
IF CM$="sp" THEN SP=V
IF CM$="pl" THEN PL=V
IF CM$="lp" THEN LP=V
IF CM$=" 1 m" AND V >i!1 THEN LM=V: C=V

3350 IF CM$=" r m" AND V >(11 THEN RM=V
3361Z1 IF CM$=" f p" THEN GOSUB 3181Z1: POKE 559,46

-46*F
3370 IF CM$="as" THEN PUT #2,V
338(11 IF CM$="cm" THEN FOR I=P TO P+79: IF TX$

(1,1)<>" ····· " THEN NEXT I:I=I-Q1
3390 IF CM$="cm" THEN P=I+Q1:GOTO 3450
3400 IF CM$< > " n f" THEN 343(11
3410 T$="D:":FOR I=Q0 TO 11:Z=ASC(TX$(P+I,P+

I»:IF Z <> 94 AND P+I < =LC THEN T$(3+I)=C
HR$(Z+32*(Z (63»:NEXT I

3415 TX$(Q1)=CHR$(Q0):TX$«MXL+Q23)*L2)=CHR$
(Q0) : TX$ (2) =TX$

3420 POKE 559,46:GOSUB 590:7 "Printing ";T$:
LK=Ql:CL=Q0:Y=Q1:GOTO 2320

3430 IF ASC(CM$»15 AND ASC(CM$) { 26 THEN PC(
ASC(CM$)-16)=V

344(11 IF TX$(P,P) (> " "-' '' AND P(LC THEN 324(11
3450 GOSUB 3220:P=P+Q1:GOTO 2970
3460 REM *** CENTER STRING
347/Z1 LN=Q(1I: FOR I=P TO P+79: IF TX$ (I, I) <:)" .' .. "

THEN LN=LN+Ql:NEXT I
3480 WIDTH=RM-LM:UL=Q0:IF TX$(P,P)=CHR$(72)

THEN UL=Ql
3490 FOR I=Q1 TO (WIDTH-LN)/2+LM:PUT #2,32:N

EXT I
3500 C=C+I:CN=-Q1:GOTO 2990
5i!10/Z1 REM _11:11 ... (:1 :1.0]:.
5010 GRAPHICS 17:SETCOLOR 4,1,10
5020 DL=PEEK(560)+256*PEEK(561)+4:POKE DL+5,

7:POKE DL+10,7:POKE DL+14,7
5i!13/Z! POS I T I ON 6,4: 'J #6;" ~:JL!t!liIi" : POS I T I ON 3

, 7 : 7 # 6; "I:[IJ ;l-_:J ;tllij 4o-"SO-tI] ;."
5/Z14i!! 7 #6: 7 #6; " " ; CHR$ (136); CHR$ (227); CHR$ (

137) ;" t!l!l ilO'IilI:«!IN.w" ; C H R $ (1 45) ; C H R $ (153) ;
CHR$(152) ;CHR$(147)

120

3
Applications and Education ___ iii

5(2145 ? #6: ';' #6;" {4 SFACES}compute{A } publ"; C
HRS(14) ;

5(215\11 ':' #6: ';' #6;" {3 SPACES}CHARLES BRANNON"
5070 Q0=0:Ql=1:Q23=23:RL=MXL+Ql:SCRZAP=1680:

CURSOR=1739:EDCOM=1536:AL=1:L2=38:GCHAR
=13i!13: SND=13 3 1

5080 DIM T$(79) ,IN$(20),B$(L2),TB$(L2),CM$(2
) ,BRK$(8) ,PC(9) ,DEL$(2i:!) ,CIO$(7)

5090 B$=CHR$(Q0 J :B$(L2)=B$:B$(2)=B$:DELS=CHR
S(254):DELS(20)=DELS:DELS(2)=DELS

5101i; TBS=BS:BRI<S=" ,.'7; :-":CIOS="hhh":CIOS(
4) =CHRS (171i1): CIOS (5) ="LV": CIOS (7) =CHRS (
228)

5110 OPEN #1,4,QIi!, " I<:"
5120 T=Q0:OY=Q0:CL=Q0:L=40:NL=-Ql
5130 PMB=PEEI«106)-8:POKE 559,46:POKE 53248,

Q\11
5140 POI<E 54279,PMB:POI<E 53277,3
5150 PMB=PMB*256+512:POKE 704,56
5160 FOR I=Q0 TO 255:POKE PMB+I,Q0:POKE 708+

3*RND(Q0J,PEE K (53770):NEXT I
5180 SET COLOR 4,8,2
5250 FOR 1=0 TO 70:READ A:POI<E 1280+I,A:CHEC

KSUM=CHECI<SUM+A:POI<E 708+3*RND (Q0),PEEK
(5377!!!): NEXT I

5290 FOR 1=0 TO 24 7 :READ A:POKE 1536+I,A:CHE
CKSUM=CHECI<SUM+A:POI<E 708+3*RND(Q0',PEE
K (53771i!): NEXT I

5300 IF CHECKSUM< >47765 THEN PRINT CHRS(253)
; "Er-r-or- in DATA statements ... ": END

53112: DATA 72,138,72, 1 69, 112! , 162,2,141,10,212,
141,24, 212!8, 141,26, 212J8, 142,23, 2!!J8, 104, 17
Ii!, l!!j4, 64

53212J DATA 112;4, 173,252,2,2!!Jl,255,2412!,249, 133,
124,162,255,142,252,2,32,51,5,32,254,24
6,133,212,169,0,133,213,96

533121 DATA 162,0,142,0,210,162,15,142,1,210,1
60,O,234,200,208,252,202,16,244,96

534!!J DATA 216, 112J4, 112J4, 133,213, 112!4
5350 DATA 133,212,104,133,204,104
5360 DATA 133,203,104,104,208,47
5370 DATA 32,109,6,165,205,76
5380 DATA 43,6,160, O ,177,205
5390 DATA ' 200,145,205,198,205,165
5400 DATA 205,201,255,208,2,198
5410 DATA 206,197,212,208,235,165
5420 DATA 206,197,213,208,229,160
5430 DATA O,177,205,200,145,205
5440 DATA 136,152,145,205,96,201

121

3 ____ Applications and Education

5450 DATA 1,240,3,76,221,6
5460 DATA 32,109,6,76,91,6
5470 DATA 160,1,177,212,136,145
5480 DATA 212,230,212,208,2,230
5490 DATA 213,165,213,197,206,208
5500 DATA 237,165,212,197,205,208
5510 DATA 231,169,0,168,145,212
552~1 DATA 96, 165,212, 133,205, 165
5530 DATA 213,133,206,160,0,177
5540 DATA 205,201,94,240,18,230

5550 DATA 205,208,2,230,206,165
5560 DATA 206,197,204,208,238,165
5570 DATA 205,197,203,208,232,96
558!Z1 DATA 165,88,133,21113,165.89
559iZl DATA 133,2(114, 1 iZ14, 1 Q14, 133,2(;',,::>
5600 DATA 104,133,205,162,24,76
56U:1 DATA 188,6, 16!Z1,Q!, 177,21215
5620 DATA 200,200,145,203,136,192
5630 DATA 38,208,245,24,169,38
5640 DATA 101,205,133,205,144,2
565!Z1 DATA 230, 2!Z16, 24, 169, 4QI, 1 iZll
5660 DATA 203,133,203,144,2,230
5670 DATA 204,202,208,218,96,104
568111 DATA lQ14, 133, 2Q14, 1l114, 133, 21113
5690 DATA 104,168,104,145,203,200
5700 DATA 192,4,208,249,96,160
571m DATA Q5, 177,212,2Y-18,2QI, 198
5720 DATA 212,165,212,201,255,208
573!!1 DATA 2,198,213, 197,2;z13,2y-18
5740 DATA 238,165,213, 197,204,2ma
5750 DATA 232,96
6000 GRAPHICS 0:POKE 559,Q0:POKE 16,64:POKE

53774,64
6010 FOR 1=5000 TO 5900 STEP 100: 7 CHRS(125)

:POSITION 2,3:FOR J=I+90 TO STEP -10:
7 J:NEXT J:7 l1k'1:';" "CONT"

6020 POKE 712,PEEK(53770) :POKE 842,13:POSITI
ON l11, i:l: STOP

6030 POKE 842,12:NEXT I
6040 SETCOLOR 2, 12,D0:SETCOLOR 4,8, 10:SETCOL

OR Ql,D0,12:POKE 752,Ql
6050 POKE PEEK(560)+256*PEEK(561)+3, 194:POKE

512,0:POKE 513,5
606m 7 CHRS(125): 7 :7 :FOR 1=6000 TO 6060 ST

EP 1(,1:7 I:NEX T 1: 7 "GOT061(,1":POSITION QI
,0:POKE 842,13:STOP

122

3
Applications and Education ___ _

Program 2. Scriptor Modification for 825 Printer
Change these lines in Program 1 if you have an 825 printer.

3020 IF Z=72 THEN UL=Ql:PUT #2,15:GOTO 3120
3030 IF Z=74 THEN UL=Q0:PUT #2,14:GOTO 3120
3070 IF C=LM THEN PUT #2,14:FOR I=Ql TO LM:P

UT #2,32:NEXT I:PUT #2,15tUL

Program 3. Scriptor for 1200XL
Change these lines in Program 1 if you have an Atari 1200XL.

750 IF PEEK (732) THEN POKE 732,0:GOTO 1570
5300 IF CHECKSUM < >47596 THEN PRINT CHRS(253)

;"E •• o. in DATA statements ... ":END
5320 DATA 104,173,252,2,201,255,240,249,133,

124~ 162, ::55, 142, 252~ 2, 32!l 51,5,32,89,242
,133,212, 169,QJ, 133.,213,96

6000 GRAPHICS 0:POKE 559,Q0:PO KE 16,64:POKE
53774,64 : POK E 7 31,255

7 i2hZH2; REM

Program 4. Scriptor for 800XL
Change these lines in Program 1 if you have an Atari 800XL.

5300 IF CHECKSUM<>47543 THEN PRINT CHR$(253)
;"Error in DATA statem.nt •.•. "IEND

5320 DATA 104,173,252,2,201,255,240,249,133,
124,162,255,142,252,2,32,51,5,32,35,243
,133,212,169, l1li,133,213,96

123

4
uperFont Plus

John Slaby and Charles Brannon

You can generate excellent game graphics by using ANTIC modes 4 and
5. This program provides an ANTIC version of SuperFont. Requires 16K
RAM.

After typing in "SuperFont" (COMPUTEt's First Book of Atari
Graphics), I was very pleased. I couldn't imagine needing any
additional functions or purchasing any font editor that could
possibly improve upon it. Then I bought De Re Atari, and every­
thing I had read previously in the Hardware Manual on ANTIC
modes 4 and 5 fell into place. At the same time I realized that it
was ANTIC mode 4 that allowed the great graphics in Caverns of
Mars. I realized I could make some useful additions to the original
program. Therefore, I offer SuperFont Plus.

Charles Brannon stated in his article on SuperFont that it
would be easy to expand the program, so I did. The additional
commands are the ANTIC, PRINT, DATA, and Color Change. Of
these, only the DATA and PRINT commands can be used along
with the original version of Graphics modes 0, 1, and 2. This
expanded version is about 65 percent longer and, if you have only
16K RAM, some manipulation will be required; but you can have
an ANTIC version of SuperFont. For those of you that already
have SuperFont, just add lines 10, 20, 105, 106, 115, 375, 475, 477,
1415, and 1601 through 1605. Also note the changes in lines 100,
120,190,270,320,340,380,470,480,590,650,1300,1320,1360,
1370, 1400, 1410, and 1420. If you obtained your SuperFont from
COMPUTEt's First Book of Atari Graphics, you will also have to
delete line numbers 5000 on up, as there is no room in the menu
for the printer command. Once you do this, you will have the
capability of designing your own ANTIC 4/5 character set.

For those of you with only 16K, there is a way out. You will
have to end up with two fonts: one font, the original, for the
BASIC-supported graphics modes, and one for the ANTIC 4/5
graphics modes. If you delete the following commands and
change lines 250 and 300 to say RAM-4 instead of RAM-8, you
will have a functional font. The deleted commands which have
limited use for ANTIC 4/5 are: RESTORE (920-930), OVERLAY

127

!.-Graphics

(870-910), GRAPHICS (1370-1390), WRITE DATA (U90-1360), and
QUIT (1130-1140). Also, please do not add the DATA command;
you will not have enough memory to use it. I've included a utility
that will read the saved character set from S command and put the
character set into DATA lines just as the full-fledged version of
SuperFont Plus does. Be sure to change 3500 to 520 in line 3000 so
you don't jump to the DATA command that doesn't exist.

Original SuperFont
Here's a quick review of the original SuperFont commands:

EDIT: The character you select by pressing the joystick trigger is
copied to the grid in the upper section of the screen. The cursor is
relocated to this grid, and you can instantly modify the character
by moving the joystick and pressing the trigger to either set or
remove a point, as desired.

RESTORE: This will copy the pattern from the first character set
to the second, located in the lower half of the screen.

COPY FROM: Selects a character which will be copied to the
current one you are working on.

COPY TO: The current character will be copied to the selected
place.

SWITCH: Exchanges the current character for the one selected.

OVERLAY: Adds the selected character's pattern to the current
one.

CLEAR: Clears the pattern of the current character. A must for
ANTIC 4/5.

INVERT: Turns current character upside down.

SAVE FONT: Saves character set to disk or tape . Answer
"Filename" with either C: or D:filespec. If you see an error
message, press any key to return to the menu.

LOAD FONT: Retrieves a character set that you saved. Answer
"Filename" here the same way as in SAVE FONT.

CURSOR-UP or SHIFT DELETE: The line of points the cursor is
on is deleted, and the following lines are pulled up to fill the gap.

CURSOR-DOWN or SHIFT INSERT: A blank line is inserted on
the line the cursor is in, and all lines below it move down one. The
bottom line is lost.
SCROLL LEFT: The bit pattern of the character is shifted left.

128

4 Graphics ___ ill

SCROLL RIGHT: The bit pattern of the character is shifted right.

WRITE DATA: The internal code (0-U7) of the character and the
eight bytes that make it up are displayed in the menu area. Press
any key to return to menu.

GRAPHICS: This toggles the TEXT/GRAPHICS option of
graphics modes 1 and 2 to let you see each half of the character set.

REVERSE: All blanks become points, and vice versa . Works the
same as pressing the Atari logo key and then typing.

QUIT: Exit program.

SuperFont Plus: Three New Commands
The ANTIC(A) command mode modifies the display list so that
the lower section of the screen now becomes ANTIC mode 4
except for the last line, which is ANTIC 5. Press A again to return
to the original GRAPHICS 0, I, and 2. Once you activate this
command, the character set will become mostly unrecognizable.
This is because the characters are now four pixels wide instead of
eight, but the overall displayed width remains the same. This loss
of resolution is the price you have to pay for the multicolor ability
of these ANTIC modes.

Use all other commands as before; they will work. Please
note that the grid now has double-wide pixels when compared to
the first display. This is because that binary number you place in
each pixel determines the color that will be displayed and you
need two bits per color. The binary number is related to the color
registers as follows: 00 = Background; 01 = Playfield 0; 10 = Play­
field 1; and 11 = Playfield 2. To use Playfield 3's color, you
also use binary 11, but the internal code must be U8-255. This is
accomplished by using reversed characters via the Atari logo key.
There is no way to use this key in any of the original commands,
so the PRINT command was created.

The PRINT mode (P) allows you to print any character in the
bottom window next to another one just as in normal typing. This
mode allows you to see that third playfield color via the logo key.
You can type as long as you like, but if you exceed 38 characters,
the first one will be lost and all the others will shift left. As noted
before, this command can be used with the original GRAPHICS 1
and 2.

Since the keyboard is used for typing, the START and
SELECT buttons will, respectively, return you to the menu and
clear the typing area. When you return to the menu, the typing

129

1.- Graphics

area isn't automatically cleared; this allows you to work on more
than one character at a time, that is, three characters together as a
car, etc. This mode is also useful to get a full screen effect for one
line of modified characters .

The next new command is the Color Change mode (K).
When I started working with the first two new commands, it
became obvious that the ability to change the color of the character
I was working on would be very useful. Thus I expanded the
Display List Interrupt to give me that ability and added a second
interrupt for the background color change.

When you activate this command, you will be able to change
only the colors for the ANTIC 415 character set. If you want to
change the colors for the original graphics modes, modify lines
170 and 300 as desired. The menu area will be cleared, and you
will be given the choice of the playfield or background color you
want to change. If you change the background, it will affect only
the typing window. I did this to keep the clarity of the character
set at its best, and you will probably want to see the change for
only one or two characters at a time.

After your register selection, you will be asked for the color
and luminosity value (0-14) you want. To help you, a list of colors
will be supplied in the menu area . If you give a bad input, you will
be asked to try again, starting with the color value. To get the
decimal value being used by that register, press R when being
offered the color registers and then select a register.

Using the Character Set
Once you have created the character set, you will need to save it to
disk or tape . There are a number of options open to you. The first
one was supplied in the original SuperFont, the S (SAVE) font
option. To use this, just press S and respond to the filename
prompt with either C: for cassette or 0: filename for disk.

There are two methods of using the character set saved with
the S option. Program 2 (Character Set Loader) simply loads the
set into memory and changes CHBASE(756) to point to it.

The second method is to use Program 3 (Character Set DATA­
maker) to create a module of lines that lets you add your character
set to any program. After saving your character set to tape or disk,
just RUN Program 3. It will ask you for the filename of the char­
acter set, the starting line number of the module, and a filename
for the module. (Just answer C: to the filename prompt for use
with a cassette.)

130

4 Graphics ___ iii

Program 3 writes a subroutine replete with the appropriate
PEEKs, loops, and DATA statements, to tape or disk. It optimizes
space by writing DATA statements only for those characters you
have changed. After it has finished, you can use the ENTER
command to merge the statements produced with any program.
You may need to make some minor adjustments to the DATA
statements it produces. Also, in your main program, remember to
use a POKE 756,CHSET/256 after every GRAPHICS statement,
since a GRAPHICS statement resets the character pointer.

The second method for saving your font is the D DATA STM
command. To use this command, just press D. You will first be
asked if you want to delete any character set line numbers. Once
the lines have been deleted, or if you do not wish to delete lines,
the save font prompts will begin.

To save the font, you must supply the starting line number
(no line number below 4000 will be accepted) and the beginning
and ending character. Once these inputs are completed, lines will
be added starting with whatever line number was entered, incre­
menting by ten for each character. You can now LIST the font
DATA to a printer, cassette, or disk. This file can now be merged
with a program.

The subroutine below can be used within a program to
POKE the new character set into memory from the DATA state­
ments. Remember to POKE 756,CHSET/256 after each
GRAPHICS statement.
3~~~ CHSET=PEEK(1~6)-8

3~1~ CHSET=CHSET*256
313213 FOR I=~ TO 1~23

3~3~ READ A:POKE CHSET+I,A
3134~ NEXT I
313513 RETURN

That covers everything; now you should be able to generate some
excellent graphics characters like those in Caverns of Mars and
Eastern Front.

Program 1. Superfont Plus
10 GOTO 1 !:'H!I

20 POKE 82,14:POSITION 14,0:FOR I=ST TO ED:?
"{25 SPACES}":NEXT I:RETURN

100 REM *** SUPER FONT + ***
105 REM Character Set Editor
141,'1 DIM I (7) , FN$ (14) , N$ (1 !!I)
150 IF PEEK(1536 '<>7 2 THEN GOSUB 1400

131

~GraPhiCS
160 GRAPHICS 0:POKE 752,1
170 SET COLOR 2,7,2 :SETCOLOR 4,7,2
180 DL=PEEK(56 0)+ 256*P EE K(56 1 1 +4
190 SD=PEEK(88J+2 56* PEEK(89'+1 2*40 :ASD=SD+5*

4(2)

200 Al=1630:FUNC=1 631 : A2=1632:L OGIC=1 628
210 RAM =P EEK(1 0 6) -8 : PM BA SE=RAM*256
220 CHRORG=5 73 44
230 POKE 559,46:POKE 5 4 279 , RAM
240 POKE 5327 7 ,3:POKE 53256,3
250 CHSET=(RAM-8'* 256
260 POKE DL+23,6:POKE DL+ 24,7
27121 POKE DL+1 7, 13 12): POKE DL+18, 1 12
280 POKE 512,0: POKE 513,6
290 PO KE 54286,192
300 POKE 1549,RAM - 8:POKE 16 7 2,RAM-8:P OkE 153

8,0
310 A=USR(1555,C HSE T)
320 P0=PMBASE+512+20:Pl=PMBASE +640+20 :P2= P MB

ASE+768+20:P=PMBASE+8 96 +2 0:T=85:GOS UB 33
121: GOTO 35QI

330 FOR 1=0 TO 7:FOR J=0 TO 3:T=255-T :P OK E P
0+I*4+J,0:POKE Pl+I*4+J,T: T=2 5 5-T

340 POKE P2+I*4+J,T:NEXT J:T=255-T:NE XT I: RE
TURN

350 POKE 5 32 48,64:POKE 53 249, 64:POKE 53250,6
4

360 POKE 704, 198:POKE 705,240:POKE 706,68
370 POKE 53 256,3 : POK E 53257,3:POKE 53258,3:P

eKE 623,1
375 GOSUB 380:GOSUB 3 90:GOTO 490
381Z1 POSITION 2,12):') " {Q}{8 R}{E}":FOR 1=1 TO

8·') " :{8 SPACES}:" :N E XT 1. 7 " { Z}{8 R}
{C}":RETURN

390 POKE 82, 1 4:PO S ITION 14, 0
412)0? "IE Edit{8 SPACES}[:; Restor-e"
41121 ? "~ Copy Fr-om {3 SPACES}E:; S witch"
420 ? "ij Copy To {5 SPAC E S}[!: C le ar
431Z1 ? "r!; Overla y{5 SPAC ES }~ In ver- t o>
440 ? "~ Save Font{3 SPACES}~ Load Font"
450 ? "{ESC}{DEL LIN E} De le te{6 SPACES}{ESC}

{INS LINE} Insert"
4612) ? "{ESC} {CLR TAB} Scr-oll Left {ESC}

{SET TAB} Scroll RT"
471Z) ? "{~}{ 8}{~} Reverse{ 3 SPA C ES}~ Gr-aphics

475 ? " [;; Print mode [i: ANTIC 4~(5"

477 ? "~ Color- change[E DATA STt1"
480 ? "r::: Write Data n: QUlt":RETURN

132

4 Graphics ___ _

490 FOR 1=0 TO 3:FOR J=0 TO 31:POKE SD+J+I*4
0+4, I*32+J:POKE ASD+J+I*40+4,I*32+J:NEXT

J:NEXT I:?
510 OPEN #2,4,!ZI,"k: "
520 P=PEEK(764):IF P=255 THEN 520
525 POKE 82,2:POSITION 0,0
530 IF P=60 THEN 520
540 IF P=39 THEN POKE 764,168
550 GET #2,K
560 IF 1« >ASC ("E") THEN 790
570 GOSUB 175QI
580 FOR 1=0 TO 7:A=PEEk(CHSET+C*8+I):FOR J=0

TO 3:POKE P0+I*4+J,A:NEXT J:NEXT I
590 POKE ASD+169+(ANTIC*10),C:POKE ASD+190+(

ANTIC*3QI) , C
6QIQI JX=QI: JY=QI
610 POSITION JX+4,JY+l
620 ? CHR$ (32+128*FF);" {LEFT}";: FF=I-FF
630 IF STRIG(0)=0 THEN 750
64QI IF PEEK(764) { 255 THEN?" ";:GOTo 52Ql
650 ST=STICI«0):IF ST=15 THEN 610
660 IF STRIG(0) THEN FOR 1=0 TO 100 STEP 20:

SOUND QI, lQIQ5- I, Uil, 8: NEXT I
67QI POSITION J X+4,JY+l:7 " ";
680 JX=JX+ (ST=7)-(ST=II)
690 JY=JY+(ST=13) - (ST=14)
700 IF JX<0 THEN JX=7
710 IF JX>7 THEN JX=0
720 IF JY < 0 THEN JY=7
730 IF JY >7 THEN JY= 0
74QI GoTO 61iil
750 POKE Al,PEEk CCHSET+C*8+JY):POKE A2,2 ~ (7-

JX):POKE FUNC ,7 3:A=USR(LOGIC)
760 POKE CHSET+C*8+JY,A:FOR J=0 TO 3:POkE P0

+JY*4+J,A:NEXT J
770 FOR 1=0 TO 10:S0UND 0 ,I*4,8,8:NEXT I:SOU

NO !ZI,tii ,!:I,Q!
78QI GOTO 65QI
79Qi IF K{ >ASC ("F") THEN 83;2!
800 S=C:GOSUB 1750
810 FOR 1=0 TO 7:A=PEEK(CHSET+C*8+I):POkE CH

SET+S*8+I,A:NEXT I
821Z1 C=S: GOTo 58Q!
830 IF I« > ASC(" T") THEN 8 7 Ql
840 S=C:GOSUB 1 7 50
850 FOR 1=0 TO 7 :A=P E EI«CHSET+S*8 + I) :POkE CH

SET+C*8+I,A:NEXT I
860 C=S:GOTo 600
870 IF K (>ASC ("0") THEN 92Ql

133

L.. GraPhiCS

880 S=C:GOSUB 1750
890 FOR 1=0 TO 7:POKE Al,PEEKICHSET+C*8+I):P

OKE A2,PEEKICHSET+S*8+I):POKE FUNC,9:A=U
SRILOGIC)

900 POKE CHSET+S*8+I,A:NEXT I
910 C=S:GOTO 580
920 IF K< >ASC I "R") THEN 94(21
930 FOR 1=0 TO 7:POKE CHSET+C*8+I,PEEKICHROR

G+C*8+I) :NEXT I:GOTO 580
940 IF K< >ASC 1 "C") THEN 96(:1
950 FOR 1=0 TO 7:POKE CHSET+C*8+I,0:NEXT I:G

uTO 580
960 IF K< >ASC I" {R}") THEN 98!il
970 FOR 1=0 TO 7:POKE CHSET+C*8+I,255-PEEKIC

HSET+C*8+1) :NEXT I:GOTO 580
980 IF K< >ASC I" X") THEN l!iili2!
990 S=C:GOSUB 1750
1000 FOR 1=0 TO 7:A=PEEKICHSET+S*8+I):POKE C

HSET+S*8+I,PEEKICHSET+C*8+I) :POKE CHSET
+C*8+I,A:NEXT I:GOTO 580

1 (21 IlZ1 IF K<>ASCI"I") THEN 1 (213QI
1020 FOR 1=0 TO 7: III)=PEEKICHSET+C*8+I) :NEX

T I:FOR 1=0 TO 7:POKE CHSET+C*8+I, 117-1
):NEXT I:GDTO 580

1!Z131'Z1 IF K< >ASC I" {UP}") AND K< >ASC I "
{DEL LINE}") THEN 105{,'1

1040 FOR I=JY TO 6:POKE CHSET+C*8+I,PEEKICHS
ET+C*8+I+l) :NEXT I:POKE CHSET+C*8+7,0:G
OTO 58{,'1

1 !Zl 5 (21 IF K< >ASC I" {DOWN}") AND 1« >ASC I"
{INS LINE}") THEN 107!Z1

1060 FOR 1=7 TO JY STEP - i:POKE CHSET+C*8+I,
PEEKICHSET+C*8+I - l):NEXT I:POKE CHSET+C
*8+JY, yJ: GOTO 580

107!il IF K< >ASC I" {LEFT}") THEN 1100
1080 FOR 1=0 TO 7:A=PEEKICHSET+C*8+I)*2:IF A

}255 THEN A=A-256
1090 POKE CHSET+C*8+I,A:NEXT I:GOTO 580
1100 IF K< >ASC I" {RIGHT}") THEN 113{,'1
1110 FOR 1=0 TO 7:A=INTIPEEKICHSET+C*8+I)/2)
1120 POKE CHSET+C*8+I,A:NEXT I:GOTO 580
113{,'1 IF K< >ASC I "Q") THEN 1150
1140 POKE 53248,0:POKE 53249,0:POKE 53250,0:

POKE 53277,0:GRAPHICS 0:END
1150 IF K< >ASC I "S") THEN 1211Z1
1160 GOSUB 1610:POKE 195,0
1170 TRAP 1190:0PEN #1,8,0,FN$
1180 A=USRI1589,CHSET)
1190 CLOSE #1:TRAP 40000:IF PEEK(195) THEN 1

260

134

4 Graphics ___ _

1200 POKE 54286, 192:GoSUB 390:GoTo 520
1210 IF K< > ASC("L") THEN 1290
1220 GoSUB 1610:PoKE 195,O
1230 TRAP 1250:oPEN #1,4,0,FN$
1240 A=USR (1619,CHSET)
1250 CLOSE #1:TRAP 40000:IF PEEK(195)=0 THEN

12!ZHZl
126 ~1 POSITION 14, ~1:':' "{BELL}*ERROR -";PEEK(1

95) ; It * 11

127i2l IF PEEK (764) <2 55 THEN POSITION 14,121: 7 "
{19 SPACES }" :GOTo 12 121121

128!21 GoTo 127 12-
129121 IF f':<)A SC (" W") THEN 137~3

130121 ST=i21: ED= 11: GO S UB 2Ql: N$=" {3 SPACES}": L=L
EN (STR$ (C)) : N$ (1, L) =STR$ (C) : L=LEN (N$) : P
OS I T I ON 14 , ~l

1310 FOR 1=1 TO L:7 CHR$(ASC(N$(I,I»+128);:
NEXT I:7 .. '. ";

1320 Z=0:FoR 1=0 TO 2:FoR J=0 TO 1+ (I)0):A=P
EEK(CHSET+C*8+Z) :Z=Z +1

133!21 SOUND 0, (I*3+J)*IQl+5Ql, 1~1,8
134Q1 7 A;",":NEXT J:NEXT I:SoUND f3,i21,0,!21
1350 IF PEEK(764)=255 THEN 1350
1360 GoSUB 20:GoSUB 390:GoTo 520
137 121 IF K < > ASC ("G") THEN 201110
1380 CF=I-CF:PoKE 1549,RAM-8+2*CF
139121 GoTo 52 !Zl
1400 GRAPHICS 2+16:SETCoLoR 4,1,4:POSITIoN 5

,3: 7 #6;"SUPER~ +"
141 121 POSITION 5,5:7 #6 ; "patience{3 N}":PoSIT

ION 2,7: 7 #6; "ORIGINAL ~"
1415 POSITION 2,8: 7 #6;"CHARLES BRANNON"
1420 FOR 1=1536 TO 1710 :RE AD A:POKE I,A:PoKE

709,A:SoUND 0,A,10,4:NEXT I
1430 SOUND 0,0,0,0:RETURN
144121 DATA 72,169, l i21 l1l , 141,1121,212
145121 DATA 141,24,208,141,26,21218
1460 DATA 169,6,141,9,212,11214
147121 DATA 64, lQ14, lQ14, 133,204, 1!Zl4
1480 DATA 133,203,169,0,133,205
1490 DATA 169,224,133,206,162,4
1500 DATA 160,0,177,205,145,203
1510 DATA 200,208,249,230 , 204,230
1520 DATA 206,202,208,240,96,104
153Ql DATA 162,16,169,9,157,66
1540 DATA 3,104,157,69,3,104
1550 DATA 157,68,3 , 169,O,157
1560 DATA 72,3,169,4,157,73
1570 DATA 3 ,32, 86,228 , 96,104

135

L.. GraPhiCS

1580 DATA 162,16,169,5,76,58
1590 DATA 6,9,104,169,0,9,0,133
1600 DATA 212,169,0,133,213,96
1601 DATA 72,138,72,152,72,169,0,162,0,160,0
1602 DATA 141,10,212,141,26,208
1603 DATA 142,24,208,140,25,208
1604 DATA 169,0,141,22,208,141,10,210,169,6,

141,9,212,169,0,141,23,208,169,156,141,
0,2

1605 DATA 104,168,104,170,104,64,72,169,0,14
1, lQI, 212,141,26, 2 Q18, 169, If'14, 141, lQI, 21QI,
141, QI, 2, 1 f'14, 64

161QI GOSUB 2;,!1:F'OSITION 14,111:7 "Filename ':' '';
162QI FN$="": K=QI
163!,!1 POKE 2QI, QI
1640 IF PEEK(764)(255 AND F'EEK(764)(>3 9 AND

PEEK(764) (> 60 THEN 16 70
1650 IF PEEK(20) (10 THEN 164 0
166QI ? CHR$(21+11*1<); "{LEFT}"; :K=i-I(:GOT O 16

30
167QI GET #2,A
168!Z1 IF A=155 THEN 7 " ";: FOR 1=1 TO LEN (FN$

)+IQI:':> "{BACK S}";:NEXT I:RETURN
1690 IF A=126 AND LEN (FN$'> 1 THEN FN$=FN$(I,

LEN(FN$'-I': 7 "{LEFT}";CHR$ (A);:GOTO 16
30

1695 IF A=126 AND LENCFN$'=1 THEN 7 CHR$(A);
: GOTO 162!,!1

1700 IF A=58 OR (A) 47 AND A(58' OR (A) 64 AND
A(=90) OR A=46 THEN 1720

171QI GO TO 1630
1720 IF LEN(FN$' (14 THEN FN$(LEN(FN$'+I'=CHR

$ (A) : 7 CHR$ (A' ;
173QI GOTO 163!,!1
1740 END
1750 REM GET CHOICE OF CHARACTER
1760 CY=INT(MRY/32):CX=MRY-32*CY
177Ql C=CX+CY*32
1780 POKE SD+CX+CY*40+4,C+128
1790 POKE ASD+CX+CY*40+4,C+128
1800 IF STRIG(0'=0 OR PEEI«764' (255 THEN MRY

=C:GOTO 1900
1810 ST=STICK(0):IF ST=15 THEN 1800
1820 POKE 53279,0
1830 GOSUB 1900
1840 CX=CX-(ST=11)+(ST=7):CY=CY-(ST=14)+(ST=

13)
1850 IF CX(0 THEN CX=31:CY=CY-l
1860 IF CX)31 THEN CX=0:CY=CY+l

136

4 Graphics ___ iii

1870 IF CY < 0 THEN CY= 3
1880 IF CY) 3 THEN CY=0
189~1 GOTO 1 77~:1
1900 POKE SD+CX+CY*40+4,C
1910 POKE ASD+C X+CY*4 0 +4,C
19 2 1Z1 RETURN
2i!I'HI IF K<) AS C ("A") THEN 22 ;2l!ZI
2005 POKE 54286, 0
2007 POKE ASD+169+(ANTIC* 1 01,0:POKE ASD+190+

(ANT I C * 3 iZI i , ~I

2010 IF ANTIC=1 THEN 2100
2020 POKE DL+24,5
2030 FOR 1=19 TO 23:POKE DL+I,4:NEXT I:POKE

DL+22,132
2040 POKE 512,104:ANTIC=1
2050 COLF0=2*16+6:COLFl=6*16+6
2060 COLF2=1 0 *16+8:COLF3=15*16+8
2070 POKE 1664,COLF0:POKE 1648,COLFI
2080 POKE 1650,COLF2 : POKE 1677,COLF3
209 0 POKE 54286, 192:T=51:GOTO 2 127
2100 ANTIC=0:POKE DL+ 2 3,6:POKE DL+24,7
2110 POKE 512,0:FOR 1=19 TO 2 2:POKE DL+I,2:N

EXT I
2120 POKE 54 2 86,192:T = 85
2127 GOSUB 330:POKE ASD+169+ (ANTIC*101 ,C:POK

E ASD+190+ (ANTIC* 3 01,C:GOTO 520
22~1~1 IF K{) ASC ("P") THEN 3 i..HI iZl
2205 ST=0:ED=1 0 :GOSUB 20
2210 POSITION 14,0:CT= 0
2 2 21Zl ? " { 5 SPACES } I:J:u:u ~"
223~1 ? :? " Pr ess i#JIi:l:lu tor et ur n"
224~1 ? "{5 S P ACES } to menu"
22 5 ~l ? :? " Pre 5 5 i413. ;;(1:111 toe 1 ear "
2261Z1? "{3 SPACES}typing area"
2270 KK=PEEK(5 3 279) :IF KK=6 THEN GOSUB 390:G

OTO 521Z1
2280 IF KK=5 THEN 2600
2290 P=PEEK(764):IF P=255 THEN 2270
230121 GET #2, K
2302 IF K) =0 AND K(32 OR K } =128 AND K(160 TH

EN K=K+64:GOTO 2306
2304 IF K) =32 AND K(96 OR K) =160 AND K(224 T

HEN K=K -3 2
2306 IF CT) (ANTIC+ll*17 THEN 2320
2310 POKE ASD+161+CT,K:POKE ASD+181+(ANTIC*2

0)+CT,K:CT=CT+l:GOTO 22 7 ~

23 2 0 FOR 1=0 TO 17* (ANTIC+ll:POKE ASD+161+I,
PEEK(ASD+162+1):POKE ASD+181+(ANTIC*20)
+I,PEEK(ASD+182+(ANTIC*201+II

137

1.-Graphics

2330 NEXT I:CT=17*(ANTIC+l):GOTO 2310
2600 FOR 1=0 TO 19*(ANTIC+l):POKE ASD+161+I,

0:POKE ASD+181+(ANTIC*20)+I,0:NEXT I:CT
=0: GOTO 227QI

300QI IF 1« >ASC ("K") THEN 35(2IQI
3010 ST=0:ED=10:GOSUB 20:DIS=0
302111 POKE 82,14: POSITION 14, QI:? "COLOR CHANG

E MODE"
? " PRESS K TO RETURN" 312130

3040 '7

3050
306QI

IIr-=
• .J

? ..
31117111 ? " ~

308111 ? " ~

SPACES}TO
PLAYFIELD
PLAYFIELD
PLAYFIELD
PLAYFIELD

MENU"
111 "
1 "
211

3 11

309111 ? " II BACKGROUND":? "[::; READ REG 1 STER"
310111 GET #2,!<: DIS=0: IF f<=ASC ("111") THEN DIS=18
3105 IF K=ASC ("R") THEN RDE=I: GOTO 3100
3110 IF I<=ASC (" 1") THEN DIS=31
3120 IF K=ASC("2") THEN DIS=2
313121 IF I<=ASC ("3") THEN DIS=4
3141Z1 IF I<=ASC ("B") THEN DIS=48
3150 IF t<=ASC ("1<") THEN GOSUB 39(1: GOTO 52!,!1
3155 IF RDE=1 THEN 3410
3160 IF DIS=0 THEN 3100
3170 ST=2:ED=10:GOSUB 20
318121 POKE 82,14: POSITION 14,!'!1
3190 ~ "~GREY ~ GOLD ~ ORANGE"
32(1QI '7 "~RED{3 SPACES}~ PINK ~ PURPLE"
321111 7 "~BLUE ~ BLUE ~ LT. BLUE"
322111 7 "[E: TURQUOISE ~ GREENBLUE"
323121 ':' "~ GREEN{5 SPACES } ~ YELLOWiGR"
3241Z1 '7 "g:] ORANGE/GR ffi LT. ORANGE"
3245 TRAP 341Z!1Z1
325",1 INPUT COL: ? "{3 SPACES}Luminosity"
326i!1?" input(!~1 - 14)";

327111 INPUT LUM
3280 CLCHG=COL*16+LUM
3290 POKE 1646+DIS,CLCHG
33Qji~1 GOTO 3iZii QI
34111111 TRAP 41Z101ZIQI:POSITION 14,6: 7 "TRY AGAIN":

FOR 1=1 TO 100:NEXT I:POSITION 14,6: 7 "

{9 SPACES}":POSITION 14 , 6:GOTO 3245
341 ~:I RDE=IZI: D-RE=PEEI< (1646+D IS) : POS I T I ON 14,9:

'7 "COLOR REGISTER "; CHR$ (1<) ; "="; ; "
{3 SPACES}"; "{3 LEFT}";DF:E:GOTO 3HIQI

35QII21 IF K< > ASC ("D") THEN 52QI
3510 POI<E 53248,0:POI<E 53249 , 0:POI<E 53250,O:

POI<E 82,0:ST=0:ED=10:GOSUB 3600
3515 GOSUB 3620:N$="

138

4 Graphics ___ iii

352~! POSITION 2,~!:? "First letter of FONT to
be made": ':' "into DATA statememts"; :INP

UT NS:A=ASC (NS) :GoSUB 3700
353(!! SST=A: ?" Last letter of FONT " ;: INPUT

NS:A=ASC (NS):GoSU B 37 00:LLT=A+l:?
3534 TRAP 361 ~l
353 5 ':' " DATA LINE START (:iit--'i_;X=tIHH,a.j .. :t.:

r:iE) ., : INPUT L: IF L < 4(~!~1!Z1 THEN 3 5 3 5
3536 DTASTART=L:ED=5:ST=0:GoSUB 3 600
.3 54 121 FOR J=S ST TO LLT - l:PoSITIoN 0,2:? "

{DoII-JN}";L; " D." ;:FoR A= ~! TO 7:? PEEK(CH
SET+.J *8+A) ; ", "; : NEXT A: ':' "{LEFT}";"

355(!! ':' : ':' "CoNT": POSITION Q!, ~I: POKE 842,13: STOP
3560 POKE 842, 1 2 :L =L+10:E D=10:ST=0:GOSUB 360

Q!: NE XT J
3 565 POSITION 0, ~j : ? " S AVE FONT";: INPUT NS: I

F NS(l,l)="Y" TH EN GoSUB 16 1!2! :LIST FNS,
DTAS T ART ,L :GoTo 3570

3 566 IF l\I'$ (1. 1) <: :> " N" THEN GOSUB 36011!: GoTo 3565
35712! ':' '' Finished";:INPUT NS:IF NS(l,I)="Y"

THEN 114 !21
3575 IF NS (1, 1) <: :> " N " THEN GoSUB 36!2IiZI: PoS I TID

N 0,!2I:GoTo 35712:
35 8 0 POKE 53248, 64 :PO KE 53249,64:POKE 53250,

64:ED=1 0:ST=0 :GoSUB 3600:PoKE 82,2:PoSI
TIoN 2,0:GoSUB 380

3 590 GoSUB 330:GoSUB 3 90:GoTo 5 20
360121 POSITION !Z!,!Z!:FoR I=ST TO ED:':' "

{39 SPACES }" :NEXT I:RETURN
3610 TRAP 400 00 :GoTo 3534
362fil POSITION 0, !Z!:? " DELETE ANY DATA LINES"

; : INPUT NS: IF NS (1 , 1) =" N" THEN ED= 10: ST
=0:GOSUB 3600:RETURN

363!2l IF NS (1,1) (> "Y" THEN 362((1
3 6 35 TRAP 369!2!
3 64121 ? " START LINE NUMBER";: INPUT L:? " END

LINE NUMBER";:INPUT LLT
3645 IF L(4000 OR LLT (L THEN ED=10:ST=0:GoSU

B 3600:PoSITIoN 0,0:GoTo 3640
3646 ED=10:ST=0:GoSUB 3600
3650 FOR J=L TO LLT STEP 10:PoSITIoN

"
"".'"J " , ... :

{DoWN}";J: ? :':' "CoNT":PoSITIoN 0,0:PoKE
842,13:SToP

3 660 POKE 842,12:NEXT J:ED=10:ST=0:GoSUB 360
0:RETURN

3690 TRAP 40000:GoSUB 3600:GoTo 3635
3 700 IF A) =32 AND A(96 THEN A=A - 32:RETURN
3710 IF A) =0 AND A(32 THEN A=A+64:RETURN
3720 IF A) 127 THEN A=A-128:GOTO 3700
3730 RETURN

139

1-. Graphics

Program 2. Character Set Loader
1000 REM CHLOAD-CHARACTER SET LOADER
lQI05 OPEN #1,4, QI, "D: FONT": REM YOUR FILENAME

HERE
1010 X=16:CHSET=(PEEK C106)-8)*256:PoKE 756,C

HSET/256
1020 ICCoM=834:ICBADR=836:ICBLEN=840
1030 POKE ICBADR+X+l,CHSET/256:PoKE ICBADR+X

,0
1040 POKE ICBLEN+ X+ l,4:PoKE ICBLEN+X,0
1 QI5(2! POKE I CCoM+X, 7: A=USR (ADR 0:" hhhDLV~") , X) :

REM CALL CIa
1 !~16Qj CLOSE # 1

Program 3. Character Set DATAmaker
100 REM CHSET DATAMAKER
102 GRAPHICS 1+16:CHSET=(PEEK(106)-8)*256
105 DIM F$(14),oF$(14)
110 POSITION 3,O:7 #6; "char-acter- set"
120 POSITION 5,2:7 #6;"datamaker"
130 ? #6:7 #6;"THIS UTILITY CREATES"
140 7 #6; "A SET OF DATA STATE-";
150 ? #6;"MENTS FROM A SAVED"
160 7 #6;"CHARACTER SET . IT"
17(21 7 #6; "OPTIMIZES BY ONLY"
180? #6; " LISTING CHARACTERS"
19(21 ? #6;" NOT PRESENT I N THE"
200 ? #6; "STANDARD CHARACTER"
210 ? #6;"SET."
220 ? #6:? #6;" PRESS t!l£iH.j,"
230 IF PEEK(53279) (> 3 THEN 230
240 GRAPHICS 1+16
25i!1 r:> #6;" THE DATA STATEMENTS"
260 ? #6;"WILL BE WRITTEN"
270 7 #6;"AS A list FILE . "
280 ? #6;"USE enter- TO MERGE"
290 ? #6;"THE DATA WITH YOUR"
3QI0 7 #6;" PROGRAM. " :? #6:? #6;" 13:ij?l:_iPlI.3:r:1;

@" : 7 # 6; "[.1_I:1:r:l:I:IO:1jj3 :"-"1;;JI"
305 POKE 82,0:PoKE 87,O
310? "{UP}{DEL LINE}";:INPUT F$:IF F$="" TH

EN 310
315 IF F$="C" OR F$="C:" THEN CASS=I:GoTo 33

5
32(21 7 "{ 6 UP} {6 DEL LIN E } 13:1i iI?I :_'lIU :J;lj I

{8 SPACES}liPlI.3:r:1;1 : 7 : 7
330? "{UP}{DEL LINE}";:INPUT oF$:IF OF$=" "

THEN 33(21

140

4 Graphics ___ _

335 ? "{3 UP} {3 DEL LINE}13:lIiI;;JJ •• ltll:p'_·.iial •.
{5 SPACES}I.I:u: :u3:13:lii01":? :?

340 INPUT SLINE
345 CLOSE #1
350 GRAPHICS 2+16:SETCOLOR 4,3,0
360 IF CASS THEN? #6:? #6;"POSITION CHARACT

ER":? #6; "SET TAPE, HIT 1.~?liiIJ;I:""

370 POSITION 5,6:? #6;"working{3 N}"
375 GOSUB 1000:REM LOAD CHARACTER SET
377 IF CASS THEN? #6;"{CLEAR}INSERT OUTPUT

TAPE, " :? #6;" PRESS 1.~?liiIJ.~:"

380 0 PEN # 2 , 8 , 111 ,OF $: PO SIT ION 5, 6 :? # 6; ".:ot.]; ty1

~{3 J:::J- II

381 ? #2;SLINE;"CHSET=(PEEI«106)-8)*256:FOR
1=0 TO 1023:POKE CHSET+I,PEEK(57344+I):N
EXT I"

382 ? #2;SLINE+l;"RESTORE ";SLINE+5
383 ? #2;SLINE+2;"READ A:IF A=-1 THEN RETURN

384 ? #2;SLINE+3;"FOR J=0 TO 7:READ B:POKE C
HSET+A*8+J.B:NEXT J"

385 ? #2;SLINE+4;"GOTO ";SLINE+2
387 LINE=SLINE+4
390 FOR 1=0 TO 127:F=0
41110 FOR J =0 TO 7
420 IF PEEK(CHSET+I*8+J)<>PEEK(57344+I*8+J)

THEN F=1
430 NEXT J
440 IF NOT F THEN 460
445 LINE=LINE+l
450 ? #2;LINE;" DATA ";:? #2;I;:FOR J=0 TO 7

:? #2; ", ";PEEK(CHSET+I*8+J); :NEXT J:? #2
460 NEXT I:? #2;LINE+l;"DATA -1"
470 POKE 82,2:? "All finished' Use ENTER ";

CHR$(34);OF$
480? "to merge the file."
490 NEW
1000 REM HIGH-SPEED LOAD OF CHARACTER SET
1005 OPEN #1,4,0,F$:REM OPEN FILE
1010 X=16:REM $10
1020 ICCOM=834:ICBADR=836:ICBLEN=840
1030 POKE ICBADR+X+l,CHSET/256:POKE ICBADR+X

, 0
1040 POKE ICBLEN+X+l,4:POKE ICBLEN+X,0
1050 POKE ICCOM+X,7:A=USR(ADR("hhhDLVr["),X):

REM CALL CIO
1060 CLOSE #1:RETURN

141

!..- Graphics

Super TextPlot
_ •••• Donald L. Vossler

This modified version of Charles Brannon's "TextPlot" runs more slowly,
but adds many features for fancy text displays.

"Super TextPlot" is a machine language utility that lets you plot
character images in any Atari graphics or text mode. The idea for
the program was inspired by Charles Brannon's "TextPlot" utility
(COMPUTE's First Book of Atari Graphics) . Super TextPlot provides
the following capabilities.

1. Plots the entire AT ASCII character set, including upper/lower­
case, graphics characters, special symbols, and the reverse video
version of each of these characters in any graphics or text mode.
Alternate character sets may be plotted by changing the CHBAS
vector (location 756) to point to the alternate character set.

2. Allows the user to specify a string of characters to plot. The
only length limitation for the string is that it must fit in the display
area when it is plotted.

3. Allows the user to specify the starting position of the string to
plot. This position can be any (X, Y) coordinate on the display.

4. Gives the user the option of overwriting the graphics already
on the screen or of merging the plotted characters with the
existing graphics.

5. Allows the user to select which color registers are to be used for
the foreground and background of the characters plotted.

6. Allows the user to scale each character string independently in
the horizontal and vertical directions by specifying the number of
rows and columns for each character. The actual size of each char­
acter varies with the pixel size of the graphics mode selected.
Many different-sized characters can be plotted on the same
graphics screen.

7. Allows the user to select one of four angular orientations to
plot each character string. The four available orientations are 90
degree increments from the horizontal.

142

4 Graphics ___ iI

All of these capabilities are available using one simple invoca­
tion of a machine language routine from the USR function in
BASIC.

Underlying Mathematical Concepts

The fundamental trigonometric relationships used by Super
TextPlot are illustrated in Figure 1. The angle THETA (9) is mea­
sured from the horizontal + X axis to the baseline of the character
string to be plotted; CHNUM is the index number of each char­
acter in the string; NROWS and NCOLS are the total number of
rows and columns, respectively, to be plotted for each character;
ROWand COL are the particular row and column of the pixel to

Figure 1. Super TextPlot Trigonometric Relationships

"

(XS, YS)

+Y

\\
co\" 1- '\ ,

NCOLS-l\ ... ~

143

1..-Graphics

be plotted; XS and YS are the coordinates of the lower-left comer
of the first character to be plotted (before the string is rotated).
Using these definitions, the appropriate formulas for the point to
be plotted (XP, YP) are the following:

XP = XS + cos(8)*(CHNVM*NCOLS-1-COL) - sin(8)*
(NROWS-I-ROW)

YP= YS- sin(8)*(CHNUM*NCOLS-I-COL) -cos(8)*
(NROWS-I-ROW)

The derivation of these formulas is shown in Figure 2.

Figure 2. Derivation of Plotting Formulas
XP=XS+dXI- dX2
XP = XS + cos(THETA)*«CHNUM-I)*NCOLS + (NCOLS-I-COL) -sin

(THET A)*(NROWS-I-ROW)
XP = XS + cos(THETA)*CHNUM*NCOLS-I-COL) - sin(THETA)*(NROWS

-I-ROW)

YP=YS - dYI- dY2
YP=YS - sin(THETA)*«CHNUM-I)*NCOLS + (NCOLS-I-COL» -cos

(THET A)*(NROWS-I-ROW)
YP=YS - sin(THETA) *(CHNUM*NCOLS-I-COL) - cos(THETA)*(NROWS

-I-ROW)

Using Super TextPlot
With the appropriate formulas derived, the Super TextPlot routine
was developed. The USR function is used to invoke the utility.
The syntax for this function is:
A=USR(ADR(ASM$),ADR(S$),LEN(S$),XS,Y
S,DRIENT,NRDWS,NCDLS,FCR,BCR,PRIDR)

The parameters specified above have the following meanings:
ADR(ASM$) This parameter is the starting address of the Super

TextPlot routine. Since the loader for the routine
uses a character string (ASM$) to reserve space in
memory for the routine, the starting address is
merely the address of this string.

ADR(S$) This parameter is the address of the string to be
plotted. Usually it will be the value returned by the
ADR function for the string since this is the first
character in the string. However, any address is
valid. For example, the address could point to a
sub-string contained in a long string.

144

LEN(S$)

XS,YS

ORIENT

NROWS

4 Graphics ___ ill

This parameter specifies how many characters are
to be plotted. The LEN function provides the
appropriate value if the entire string is to be
plotted. Other values may be appropriate for plot­
ting sub-strings. If this parameter is zero, nothing
is plotted, and the USR function simply returns to
the BASIC program.
These two parameters specify the (X, Y) coordi­
nates of the starting position of the string to be
plotted (lower-left comer of the first character).
This point is also used as the pivot point when the
string is rotated (see ORIENT parameter) . (XS, YS)
must define a point within the limits of the current
graphics mode.
This parameter specifies the angular orientation of
the character string to be plotted. The string is
rotated counterclockwise from the horizontal + X
axis about the point (XS, YS). The parameter
ORIENT should be specified as an integer which is
interpreted as follows:

ORIENT = 0, 0 degree rotation
= 1,90 degree rotation
= 2,180 degree rotation
= 3,270 degree rotation

The value of ORIENT is interpreted MOD(3) so
that ORIENT = 4 is the same as ORIENT=O,
ORIENT = 5 is the same as ORIENT = I, etc. The
high byte of the two-byte integer passed by the
USR function to the machine language routine is
ignored. Figure 3 illustrates the orientation of
strings plotted at each of the four orientations.
The parameter specifies how many rows per char­
acter are to be plotted and therefore determines
the height of each character. Normally, NROWS is
greater than or equal to eight; however, positive
values less than eight are valid and will result in
characters plotted with "missing" rows. This may
be useful for crowding strings into a limited space,
or it may simply produce unreadable characters. If
NROWS is zero, nothing is plotted, and the USR

145

4 ____ Graphics

NCOLS

FCR

BCR

PRIOR

function returns to the BASIC program. The
maximum acceptable value for NROWS is 255 (the
high byte of the two-byte integer passed to the
machine language routine by the USR function is
ignored).
This parameter specifies how many columns per
character are to be plotted and therefore deter-
mines the width of each character. The restrictions
on the range of values for this parameter are the
same as those specified for the NROWS param­
eter.
This parameter specifies the foreground color
register to be used when plotting the string. This
indirectly specifies the color of the characters
plotted in the framework of the standard
SETCOLOR-COLOR concept embodied in the
Atari BASIC language. In text modes (GRAPHICS
0-2) this parameter should be specified as an
ATASCn code. Using Super TextPlot in this
manner allows block printing of character images
which are typically used as headers to identify
printed listings. For example, FCR = 160 would use
the reverse video space to plot large characters in
GRAPHICSO.
This parameter specifies the background color
register for each character. The comments
regarding the use of FCR in text modes also apply
for this parameter. If the value of the parameter
PRIOR (see below) is zero, then the BCR param-
eter has no effect on the characters plotted.
This parameter specifies the priority of the back­
ground of the character string plotted. If PRIOR is
zero, the background of the characters is not
plotted and existing graphics on the screen will
not be disturbed. If PRIOR is a positive value, the
color specified indirectly by BCR is plotted for the
background (this color may be black).

The following items should be noted in relation to specifying
these parameters:

1. The Super TextPlot routine does not check to make sure that

146

4 Graphics ___ iI

points plotted to form a string fall within the bounds of the
display area. The user must insure that all the points to be plotted
will fall within the display limits. Plotting points which are out of
range usually results in a system crash.

2. Reverse video characters may be plotted by two different
methods:

a. Specify reverse video characters in the string to be plotted; or
b. Specify normal characters in the string and reverse the values

for FCR and BCR.

3. If the parameters FCR and BCR are assigned the same value
(and PRIOR is positive), the string will be plotted but will appear
as contiguously colored blocks.

4. If an improper number of parameters is specified in the USR
function statement, Super TextPlot will return to the BASIC
program but take no other action.

S. The value A returned by the USR function has no significance.

Figure 3. Angular Orientations of Character Strings

,.....
II
I­
Z
u.J

c::::
o

Z=l.N3nIO + ORIENT=O

o
;::l

m
Z,
II

<.;J

Loading Super TextPlot
One of the problems associated with writing utility routines in
machine language is determining a safe range of memory loca­
tions which can be used to store the routine. This problem is
complicated by various available memory configurations,

147

L.GraPhiCS

memory used by custom display lists, player/missile graphics,
and other machine language routines.

Super TextPlot solves all of these problems by providing the
machine code in a relocatable format. All of the addresses in the
DATA statements are relative addresses offset from the beginning
of the routine. These addresses are flagged as minus numbers in
the DATA statements. When the loader routine is invoked, it
reserves a character string (ASM$) in which the machine code is
stored. As each instruction code is loaded into this string, the
addresses are modified to reflect the actual memory locations
utilized.

Applications for Super TextPlot
Since Super TextPlot is a utility program, it can be treated as an
extension to the BASIC programming language and therefore
becomes one of the tools available to a programmer. Obvious
examples for the use of this routine include labelling graphs and
bar charts, adding text to graphic game displays, and developing
colorful and attractive message displays. Super TextPlot can be an
effective marketing/sales tool. A variety of textual messages can
be displayed on a demonstration computer system in order to
attract customers and provide information in an eye-catching
format.

Super TextPlot Demonstration
1000 REM
1010 REM ------INITIALIZATION-------
1020 REM
1030 DIM S$(40):DEG :? "LOADING ASSEMBLY COD

E":? "45 SECOND DELAY .. • ":GOSUB 8000
1040 REM
1050 REM ---------DEMO #1-----------
1060 REM
1070 GRAPHICS 7+16
1080 S$="SUPER TEXTPLOT":XS=24:YS=24:0RIENT=

0:NROWS=24:NCOLS=8:FCR=3:BCR=0:PRIOR=0:
GOSUB 8000

1090 S$="FOR":XS=68:YS=44:0RIENT=0:NROWS=8:N
COLS=8:FCR=1:BCR=0:PRIOR=0:GOSUB 8000

1100 S$="ATARI":XS=0:YS=95:0RIENT=0:NROWS=32
:NCOLS=32:FCR=2:BCR=0:PRIOR=0:GOSUB 800
o

1110 S$="COMPUTE ! ":NROWS=8:NCOLS=8:FCR=3:BCR
=l:PRIOR=l

1120 XS=7:YS=64:0RIENT=1:PRIOR=1:GOSUB 8000

148

4 Graphics ___ _

1130 XS=151:YS=2:0RIENT=3:GOSUB 8000
1140 GOSUB 7000
1150 REM
1800 REM ---------DEMO #2-----------
1810 REM
1820 GRAPHICS 7+16
1830 COLOR 3
1840 PLOT 34,2:DRAWTO 126,2:DRAWTO 126,94:DR

AWTO 34,94:DRAWTO 34,2
1850 PLOT 51,19:DRAWTO 109,19:DRAWTO 109,77:

DRAWTO 51,77:DRAWTO 51,19
1860 PLOT 60,28:DRAWTO 100,28:DRAWTO 100,68:

DRAWTO 60,68:DRAWTO 60,28
1870 PLOT 34,2:DRAWTO 60,28
1880 PLOT 126,2:DRAWTO 100,28
1890 PLOT 126,94:DRAWTO 100,68
1900 PLOT 34,94:DRAWTO 60,68
1910 S$="ATARI":FCR=2:BCR=0:NROWS=8:NCOLS=8:

PRIOR=0
1920 XS=60:YS=27:0RIENT=0:GOSUB 8000
1930 XS=101:YS=28:0RIENT=3:GOSUB 8000
1940 XS=98:YS=69:0RIENT=2:GOSUB 8000
1950 XS=58:YS=67:0RIENT=1:GOSUB 8000
1960 NROWS=16:NCOLS=11:FCR=1
1970 XS=53:YS=18:0RIENT=0:GOSUB 8000
1980 XS=110:YS=21:0RIENT=3:GOSUB 8000
1990 XS=107:YS=78:0RIENT=2:GOSUB 8000
2000 XS=50:YS=75:0RIENT=1:GOSUB 8000
2010 XS=61:YS=67:0RIENT=0:FCR=3:BCR=2:NROWS=

39:NCOLS=39:PRIOR=1
2020 FOR 1=1 TO 8
2030 S$="COMPUTE!":S$=S$(I,I):GOSUB 8000
2040 NEXT I
2050 GOSUB 7000
2060 GOTO 2060
7000 REM
7010 REM ----COLOR FLASH ROUTINE----
7020 REM
7030 FOR 1=1 TO 50:FOR J=0 TO 2:SETCOLOR J,R

ND(0)*16,RND(0)*16:FOR W=1 TO 5:NEXT W:
NEXT J:NEXT I:RETURN

7997 REM
7998 REM -- SUPER TEXTPLOT ROUTINE --
7999 REM
8000 IF ASMLD=1 THEN A=USR(ADR(ASM$),ADR(S$)

,LEN(S$),XS,YS,ORIENT,NROWS,NCOLS,FCR,B
CR,PRIOR):RETURN

8010 ASMLD=1
8020 DIM ASM$(725)

149

L.GraPhiCS

8030 FOR I=ADR(ASM$) TO ADR(ASM$)+724
8040 READ A
8050 ON (SGN(A)+2) GOSUB 8080,8160,8220
8060 NEXT 1
8070 GOTO 8000
8080 READ B
8090 ADDR=ABS(A)+256*ABS(B)+ADR(ASM$)
8100 ADDRHI=INT(ADDR/256)
8110 ADDRLO=ADDR-256*ADDRHI
8120 POKE I,ADDR L O
8130 POKE l+l,ADDRHI
8140 1=1+1
8150 RETURN
8160 READ B
8170 IF B(0 THEN 8090
8180 POKE I,A
8190 POKE l+l,B
8200 1=1+1
8210 RETURN
8220 POKE I,A
8230 RETURN
8240 DATA 104,141,-255,0,10,170,240,8
8250 DATA 104,157,-255,0,202,76,-6,0
8260 DATA 173,-255,0,201,10,240,1,96
8270 DATA 173 , -16,-1,208,1,96,173,-8
8280 DATA -1,208,1,96,173,-6,-1 ,208,1
8290 DATA 96,173,-10,-1,41,3,141,-10
8300 DATA -1,173, -18, -1,133,203,173
8310 DATA -19,-1,133 ,204,1 69,0,141
8320 DATA -17,-1,238,-17 , -1,56 ,173
8330 DATA -16,-1,237 , -17,-1 ,16,3, 76
8340 DATA -254,O ,32,-3 2 ,-1,173, -6,-1
8350 DATA 141,-7 , -1,206,-7 ,-1,174,-7
8360 DATA -1 ,224,255,208,3,76,-251,O
8370 DATA 172,-6,-1 ,32, -138 , -1 ,140, -3
8380 DATA -1,173,-6,-1 ,174,-17,-1,1 72
8390 DATA -7 ,-1,32,-195,-1 ,140,-20 , -1
8400 DATA 142,-21,-1,169,255,141,-9
8410 DATA -1,238,-9,-1,174,-9 , -1,236
8420 DATA -8 , -1,208,3 ,76,-248 ,0,1 72
8430 DATA -8,-1,32,-138,-1 ,140, -5,-1
8440 DATA 172,-5,-1,177,205,172,-3,-1
8450 DATA 57,-24,-1,240 , 2 ,169,1, 141
8460 DATA -1 , -1 ,1 73,-135,-1,240,9,56
8470 DATA 169,1,237,-1,-1,141,-1,-1
8480 DATA 173,-1,-1,208,5,173,0,-1
8490 DATA 240,46,174,-2 , -1 ,1 73 , -1,-1
8500 DATA 240,3,174,-4,-1,142,-212,-2
8510 DATA 173,-8,-1,162,1,172,-9,-1

150

4 Graphics ___ _

8520 DATA 32,-195,-1,140,-22,-1,142
8530 DATA -23,-1,32,-16,-2,173,-184
8540 DATA -2,174,-183,-2,172,-185,-2
8550 DATA 32,-187,-2,76,-134,0,76,-89
8560 DATA 0,76,-65,0,96,0,0,0,0,0,0,0
8570 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
8580 DATA 0,0, 0, 0, 1 , 2, 4, 8, 16, 32,64
8590 DATA 128,169,0,141,-135,-1,172
8600 DATA -17,-1,136,177,203,141,-136
8610 DATA -1 , 16, 13, 169, 1 , 141 , -135, -1
8620 DATA 173,-136,-1,41,127,141,-136
8630 DATA -1,56,173, -136, -1,233,32,16
8640 DATA 12,24,173,-136,-1,105,64
8650 DATA 141,-137,-1,76,-107,-1,56
8660 DATA 173,-136,-1,233,96,16,12,56
8670 DATA 173,-136,-1,233,32,141,-137
8680 DATA -1,76,-107,-1,173,-136,-1
8690 DATA 141,-137,-1,169,0,133,206
8700 DATA 173,-137,-1,133,205,162,3
8710 DATA 24,38,205,38,206,202,208
8720 DATA 248,24,165,206,109,244,2
8730 DATA 133,206,96,0,0,0,142,-193
8740 DATA -1,140,-194,-1,142,-191,-1
8750 DATA 169,0,141,-192,-1,162,3,24
8760 DATA 46,-191,-1,46,-192,-1,202
8770 DATA 208,246,160,255,200,56,173
8780 DATA -191,-1,237,-194,-1,141
8790 DATA -191 ,-1,173,-192,-1,233,0
8800 DATA 141,-192,-1,16,235,142,-191
8810 DATA -1,96,0,0,0 ,0,141,-12,-2
8820 DATA 140,-13,-2,169,0,141,-14,-2
8830 DATA 141,-15,-2,24,173,-12,-2
8840 DATA 109,-14,-2,141,-14,-2,169,0
8850 DATA 109,-15,-2,141,-15,-2,202
8860 DATA 208,235,56,173,-14,-2,233,1
8870 DATA 141,-14,-2,173,-15,-2,233,0
8880 DATA 141,-15,-2,56,173,-14,-2
8890 DATA 237,-13,-2,141,-14,-2,168
8900 DATA 173,-15,-2,233,0,141,-15,-2
8910 DATA 170,96,0,0,0,0,174,-10,-1
8920 DATA 208,39,24,173.-14,-1,109
8930 DATA -20, -1,141, -183, -2,173, -15
8940 DATA -1,109 , -21, -1,141, -184,-2
8950 DATA 56,173,-12,-1,237,-22,-1
8960 DATA 141,-185,-2,173,-13,-1,237
8970 DATA -23,-1,141,-186,-2,96,202
8980 DATA 208,39,56,173,-14,-1,237
8990 DATA -22, -1 ,141, -183, -2,173,-15
9000 DATA -1,237,-23,-1,141,-184,-2

151

1.-Graphics

9010 DATA 56,173,-12,-1,237,-20,-1
9020 DATA 141,-185,-2,173,-13,-1,237
9030 DATA -21,-1,141,-186,-2,96,202
9040 DATA 208,39 , 56,173,-14,-1,237
9050 DATA -20, -1 , 141, -183, -2,173, -15
9060 DATA -1,237,-21,-1,141,-184,-2
9070 DATA 24,173,-12,-1,109,-22,-1
9080 DATA 141,-185,-2,173,-13,-1,109
9090 DATA -23,-1,141,-186,-2,96,24
9100 DATA 173, -14, -1, 109, -22, -1 , 141
9110 DATA -183,-2,173,-15,-1,109, - 23
9120 DATA -1,141 , -186,-2,24,173,-12
9130 DATA -1,109 , -20 , -1,141 , -185 , -2
9140 DATA 173, -13, -1 , 109, -21 , -1 , 141
9150 DATA -186,-2,96,0,0,0,0,134,85
9160 DATA 133,86 , 132,84,162,96,169,11
9170 DATA 157,66 , 3,169,0 , 157,72,3,173
9180 DATA -212 , -2,32,86,228,96,1

152

4 Graphics ___ ill

Circles
•••• - Jeffrey S. McArthur

Every Atari graphics programmer needs to draw circles. This tutorial will
show you how to draw a circle-and draw one fast-without jumping
through hoops. There are several drawing utilities here, from an elemen­
tary BASIC routine which takes 60 seconds to a machine language version
that finishes in a fraction of a second.

Program 1 draws circles, but takes more than a minute to draw a
circle, no matter how big or small it is.

Reflections
A circle is symmetrical, so why don't we take advantage of its
symmetry? If we know the value of one point, we can reflect it
across the X-axis or across the Y-axis. That is, if we know (X, Y) is a
point on the circle, then so is (X,-Y). The same is true for (-X,Y)
and (-X,-Y). So we have to do only a quarter of the work. Circles
are also symmetrical along the X = Y line. If we know (X, Y) is on
the circle, then so is (Y,X). Now we have to find only an eighth of
the points. Program 2 uses that method.

Unfortunately, even doing only one-eighth of the work, we
still need more than 10 seconds to draw the circle. Perhaps there is
a better way. Instead of using sines and cosines, use the equation:

X*X + y*y = R*R

That isn't very useful, but we can rearrange the equation and get:
Y=SQRT (R*R-X*X)

SO all we have to do is find Y for X = -R to R. However, since
the square root function returns only the positive square root, we
also have to plot the negative square root. Program 3 is an
example of how to do that. This method is faster than using sines
or cosines, but it still takes more than 16 seconds. So using
Program 4, we reflect it, like we did in Program 2.

Now we have a method that takes only five seconds on a
large circle and is a lot faster on the smaller ones. If you take a
close look at how Program 4 draws the circle, you see it draws
lines of different lengths. This method works fine on a screen, but
on a plotter the circle has flat spots.

153

1.-Graphics

A Faster Circle
The screen is made up of an array of points. Each point is
addressed by two coordinates (X, Y). However, X and Yare always
integers. In Atari BASIC you can PLOT 0.5,0.5, but the points are
rounded to integers. So if you are at one point on the circle and
are trying to figure where the next point is, you can go in eight
directions.

If you divide the circle into quarters, then only three of those
directions are valid. If you divide the circle into eight parts, you
can go in only two directions. For example, if you are on the circle
at (R,O), the next point is either (R-l,O) or (R-l,l). This method is
called a potential function . Since the screen cannot plot points
except with integers, there is a small error that is not always equal
to zero.

We want to keep the error as small as possible. We also reflect
it eight ways as before. That takes only three seconds, and we
never have to draw any long lines. Program 5 uses this method.

Notice also that you can achieve the entire result using only
addition and subtraction. Such programs can be easily converted
to machine language since we don't have to multiply or divide.
Program 7 is a machine language program to draw a circle.
Program 6 calls the machine language and takes less than 2110
second to draw a circle.

The machine language is called by a USR function. The
parameters that are passed to it are, in order: the address of the
code, the X coordinate of the center of the circle, the Y coordinate
of the center of the circle, the radius, and the mode of drawing.
The mode of drawing means

0: turn point off
1: turn point on
2: invert point

The only problem with the machine language program is that
it does no checking to see if the circle goes off the screen. And no
clipping is done. Therefore, if your circle goes off the screen, you
will write over other memory.

Program 1. Sines and Cosines
100 REM CIRCLE DEMONSTRATION
110 REM PROGRAM #1
120 REM
13QI REM
140 REM THIS METHOD TAKES APPROXIMATELY 61 S

ECONDS

154

200 DEG
210 GRAPHICS 8
220 COLOR 1
230 SETCOLOR 2,0,0
240 A=160
250 B=8QI
260 R=5QI
300 FOR ALPHA=0 TO 360
310 X1=INT(R*COS(ALPHA)+0.5)
320 Y1=INT(R*SIN(ALPHA)+0.5)
330 PLOT A+X1,B+Y1
340 NEXT ALPHA

Program i. Sines and Cosines Reflected
llZllZl
110
121Z1
13QI

REM
REM
REM
REM

CIRCLE DEMONSTRATION
PROGRAM #2

4 Graphics ___ _

141Z1 REM THIS METHOD TAKES APPROXIMATELY 11 S
ECONDS

2 iZl Q! DEG
210 GRAPHICS 8
220 COLOR 1
230 SETCOLOR 2,O,O
240 A= 16Q!

250 B=81Z!
260 R=51Z!
270 PLOT A+R,B
300 FOR ALPHA=0 TO 45
310 X1=INT(R*COS(ALPHA)+0.5)
320 Yl=INT(R*SIN(ALPHA)+0.5)
330 PLOT A+Xl,B+Yl
341Z!
351Z!
360
370
380
390
4C!!0
410

PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
NEXT

A-Xl,B+Yl
A+Xl,B-Yl
A-Xl,B-Yl
A+Yl,B+Xl
A-Yl,B+Xl
A+Y1,B-X1
A-Y1,B-Xl
ALPHA

Program 3. Square Root
100
110
120
13Q!

REM
REM
REM
REM

CIRCLE DEMONSTRATION
PROGRAM #3

140 REM THIS METHOD TAKES APPROXIMATELY 17 S
ECONDS

210 GRAPHICS 8

155

!-GraPhiCS

220 COLOR 1
230 SETCOLOR 2,O,O
240 A= 16QI
250 B=8(!1
260 R=50
270 X0=-R: Y"I=0
300 FOR Xl=-R TO R
310 Yl=INT(0.5+SQR(R*R-Xl*Xl»
330 PLOT A+X0,B+Y0:DRAWTO A+Xl,B+Yl
335 PLOT A+X0,B-Y0:DRAWTO A+Xl,B-YI
336 X0=Xl:Y0=Yl
340 NEXT Xl

Program 4. Square Root Reflected
UEI0
110
12"1
130
140

REM
REM
REt1
REM
REM

CIRCLE DEMONSTRATION
PROGRAM #4

THIS METHOD TAKES APPROXIMATELY 5 SE
CONDS

210 GRAPHICS 8
220 COLOR 1
230 SETCOLOR 2,0 , 0
240 A=160
250 B=80
260 R=5QI
270 X0=-R: YIZI=0
280 Xl=-R
290 Yl=INT(0.5+SQR(R*R-Xl*Xl»
300 PLOT A+X0,B+Y0:DRAWTO A+Xl,B+Yl
310 PLOT A-X0,B+Y0:DRAWTO A-Xl,B+Yl
320 PLOT A+X0,B-Y0:DRAWTO A+Xl,B-Yl
330 PLOT A-X0,B-Y0:DRAWTO A-Xl,B-Yl
340 PLOT A+Y0,B+X0:DRAWTO A+Yl,B+Xl
350 PLOT A-Y0,B+X0:DRAWTO A-Yl,B+Xl
360 PLOT A+Y0,B-X0:DRAWTO A+Yl,B-XI
370 PLOT A-Y0,B-X0:DRAWTO A-Yl,B-XI
380 X!EI=Xl:YQI=YI
390 IF -Xl)=Yl THEN Xl=Xl+l:GOTO 290

Program 5. Potential
10,,1
11 "I
120
130
140

REM
REM
REM
REM

CIRCLE DEMONSTRATION
PROGRAM #5

REM THIS METHOD TAKES APPROXIMATELY 3 SE
CONDS

210 GRAPHICS 8

156

4 Graphics ___ iii

220 COLOR 1
230 SETCOLOR 2,0,0
240 A= 16(21
250 B=8C!1
260 R=5Ql
270 PHI=0
28QI Y 1 =(21
29121 Xl =R
300 PHIY=PHI+Y1+Y1+1
310 PHIXY=PHIY-X1-X1+1
400 PLOT A+X1,B+Y1
410 PLOT A-X1,B+Y1
420 PLOT A+X1,B-Y1
430 PLOT A-X1,B-Y1
440 PLOT A+Y1,B+X1
450 PLOT A-Y1,B+X1
460 PLOT A+Y1,B-X1
470 PLOT A-Y1,B-X1
500 PHI=PHIY
510 Y1=Y1+1
520 IF ABS(PHIXY)(ABS(PHIY) THEN PHI=PHIXY:X

1=X1-1
530 IF X1) =Y1 THEN 300

Program 6. BASIC Call to Machine Language
100 REM CIRCLE DEMONSTRATION
110 REM PROGRAM #6
12Ql REt1
13~1 REM
140 REM THIS METHOD TAKES APPRO XIMATELY 0.18

33 SECONDS
21QI GRAPHICS 8
22(21 COLOR 1
230 SETCOLOR 2,0,0
24(21 A= 16iEl
25(21 B=8(21
260 R=5iEl
27Ql P=7*16~d6*16
300 I=USR(P,A,B,R,I)

Program 7. Machine Language Circle Drawing Subroutine
10 REM 28000- IS SUBROUTINE
2QI GOSUB 28QI00
3Ql END
28000 FOR 1=0 TO 758:READ A:POKE 28672+I,A:N

EXT I
28004 RESTORE 29500
28005 FOR 1=1577 TO 1584:READ A:POKE I,A:NEX

T I

157

!-GraPhiCS

28010 RETURN
28672 DATA 11£14,104,141,5,6,104
28678 DATA 141,4,6,104,141,7
28684 DATA 6,104,141,6,6,104
28690 DATA 141,9,6,141,12,6
28696 DATA 104,141,8,6,141,11
28702 DATA 6,104 , 104,141,10,6
28708 DATA 201,3,144,1,96,169
28714 DATA 1£1,141 , 13,6,141,14
28720 DATA 6,141 , 15,6,141,16
28726 DATA 6,24,173,4,6,109
28732 DATA 11,6,141,25,6,173
28738 DATA 5,6,109~12,6,141
28744 DATA 26,6,24,173,4,6
28750 DATA 109,13,6,141,29,6
28756 DATA 173,5,6,109,14,6
28762 DATA 141,30,6,56,173,4
28768 DATA 6,237,11,6,141,27
28774 DATA 6,173,5,6,237,12
28780 DATA 6,141 , 28,6,56,173
28786 DATA 4,6,237,13,6,141
28792 DATA 31,6, 1 73,5,6,141
28798 DATA 14,6, 1 41,32,6,24
28804 DATA 173,6,6,109,11,6
28810 DATA 141,33,6,173,7,6
28816 DATA 109,12,6,141,34,6
28822 DATA 24,173,6,6,109,13
28828 DATA 6~141,37,6,173,7
28834 DATA 6,109,14,6,141,38
28840 DATA 6,56,173,6,6,237
28846 DATA 11,6,141,35,6,173
28852 DATA 7,6,237,12,6,141
28858 DATA 36,6,56,173,6,6
28864 DATA 237,13,6,141,39,6
28870 DATA 173,7,6,237,14,6
28876 DATA 141,40,6,173,25,6
28882 DATA 141,0,6,173,26,6
28888 DATA 141,1,6,173,37,6
28894 DATA 141,2,6,173,38,6
28900 DATA 141,3,6,32,106,114
28906 DATA 173,27,6,141,O,6
28912 DATA 173,28,6,141,1,6
28918 DATA 32,106,114,173,25,6
28924 DATA 141,0,6,173,26,6
28930 DATA 141,1,6,173.39.6
28936 DATA 141,2,6,173,40,6
28942 DATA 141,3,6,32,106,114
28948 DATA 173,27,6,141,0,6
28954 DATA 173,28,6,141,1,6

158

4 Graphics ___ iii

28960 DATA 32,106,114,173,29,6
28966 DATA 141,0,6,173,30,6
28972 DATA 141,1,6,173,33,6
28978 DATA 141,2,6,173,34,6
28984 DATA 141,3,6,32,106,114
28990 DATA 173,31,6,141,0,6
28996 DATA 173,32,6,141,1,6
29002 DATA 32,106,114,173,29,6
29008 DATA 141,0,6,173,30,6
29014 DATA 141,1,6,173,35,6
29020 DATA 141,2,6,173,36,6
29026 DATA 141,3,6,32,106,114
29032 DATA 173,31,6,141,0,6
29038 DATA 173,32,6,141,1,6
29044 DATA 32,106,114,173,14,6
29050 DATA 205,12,6,240,3,144
29056 DATA 10,96,173,13,6,205
29062 DATA 11,6,144,1,96,173
29068 DATA 11,6, 133,4, 173, 12
29074 DATA 6,133,5,173,13,6
29080 DATA 133,205,173,14,6,133
29086 DATA 206,6,4,38,5,6
29092 DATA 205,38,206,56,165,205
29098 DATA 109,15,6,141,17,6
29104 DATA 165,206,109,16,6,141
29110 DATA 18,6,24,173,17,6
29116 DATA 229,4,141,19,6,173
29122 DATA 18,6,229,5,141,20
29128 DATA 6,173,18,6,16,27
29134 DATA 73,255,141,22,6,173
29140 DATA 17,6,73,255,24,105
29146 DATA 1,141,21,6,173,22
29152 DATA 6,105,0,141,22,6
29158 DATA 24,144,9,141,22,6
29164 DATA 173,17,6,141,21,6
29170 DATA 173,20,6,16,27,73
29176 DATA 255,141,24,6,173,19
29182 DATA 6,73,255,24,105,1
29188 DATA 141,23,6,173,24,6
29194 DATA 105,0,141,24,6,24
29200 DATA 144,9,141,24,6,173
29206 DATA 19,6,141,23,6,173
29212 DATA 17,6,141,15,6,173
29218 DATA 18,6,141,16,6,24
29224 DATA 173,13,6,105,1,141
29230 DATA 13,6,173,14,6,105
29236 DATA 0,141,14,6,173,22
29242 DATA 6,205,24,6,144,39
29248 DATA 208,8,173,21,6,205

159

1..-Graphics

29254 DATA 23,6,144,29,173,19
2926~ DATA 6, 141,15,6, 173,2~
29266 DATA 6,141,16,6,56,173
29272 DATA 11,6,233, 1, 141, 11
29278 DATA 6,173,12,6,233,~
29284 DATA 141 , 12,6, 76,55, 112
2929~ DATA 173,2,6,133,2~5,169

29296 DATA ~,133,2~6,6,2~5,38
293~2 DATA 2~6,6,2~5,38,2~6,6
293~8 DATA 2~5,38,2~6,165,2~5,133
29314 DATA 4,165,2~6,133,5,6
2932~ DATA 2~5,38,2~6,6,2~5,38
29326 DATA 2~6,24,165,2~5,1~1,4
29332 DATA 133,2~5,165,2~6,1~1,5

29338 DATA 133,2~6,173,~,6,133

29344 DATA 4,173,1,6,133,5
2935~ DATA 7~,5,1~2,4,7~,5
29356 DATA 1~2,4.7~,5,1~2,4
29362 DATA 24,165,2~5,1~1,4,133
29368 DATA 2~5,165,2~6,1~1,5,133
29374 DATA 2~6,24,165,2~5,1~1,88
2938~ DATA 133,2~5,165,2~6,1~1,89

29386 DATA 133,2~6,173,~,6,41

29392 DATA 7,17~,16~,~,173,1~
29398 DATA 6,2~8,1~,189,41,6
294~4 DATA 73,255,49,2~5,145,2~5
294 UI DATA 96,2~1,1,208,8,189
29416 DATA 41,6,17,205,145,205
29422 DATA 96,189,41,6,81,2~5
29428 DATA 145,205,96,0,0,0
29500 DATA 128,64,32,16,8,4,2,1

160

5
Joystick Cursor
Control
_____ Jeff Brenner

This article will show you how to gain even more control of the Atari
editing system. By using a joystick rather than the control-arrow keys,
you can have instant, accurate cursor control.

This BASIC program contains a small machine language routine
which will be stored in memory and executed during vertical
blank. The vertical blank is the period of time between the
drawing of the last line of the television screen and the movement
of the electron beam to the top of the screen to begin drawing the
first line. During this period, the machine language routine will be
at work. Since the vertical blank occurs 60 times per second, the
routine will be executed 60 times per second. The routine is
executed so fast that there is no noticeable delay in computer
operation.

The function of the routine is to change the joystick values
into the control-arrow key codes and then store this new value in
the register which the Atari uses to store keyboard data (764). Try
this:

POKE 764,0

Because zero is the keyboard code (not ASCII, but an internal
code) for the L character, the letter L will be displayed on the
screen. The keyboard codes for the four direction keys and the
corresponding joystick values follow:

CONTROL-Up = 142 Joystick Up = 14
CONTROL-Down = 143 Joystick Down = 13
CONTROL-Left= 134 Joystick Left = 11
CONTROL-Right= 135 Joystick Right = 7

Basically, here is how the program will work. Every 1J60th of
a second, the routine will check the joystick port. If the joystick
has been moved up, down, left, or right, then a direction code,
corresponding to the position of the joystick, is stored in location
764. The Atari will then automatically display its character for that

163

5
iii ••• Utilities

code. In addition, a counter will be used to determine when a
direction should be repeated. If the joystick is held to one position
for several seconds, that direction will repeat just the way it
would on a keyboard. If the joystick trigger is held down as well,
the direction will repeat extra fast. Thus the joystick merely
replaces the control and direction keys, and is best suited for use
as a programming aid.

Joystick Cursor Control
5 REM JOYSTICK/CURSOR CONTROL
10 DATA 104,162,6,160,147,169,7,32,92,228,16

9,0,133,204,133,205,133,206,96,173,120,2,
201,15,240,24

20 DATA 197,205,240,48,133 , 205,201,14,240,23
,201, 13,240,23,201, 11,240,23,201,7,240,23
,208,6,169,0

30 DATA 133,204,133,205,76,98,228,169,142,20
8,10,169,143,208,6,169,134,208,2,169,135,
141,252,2,208,234

40 DATA 166,204, 2 40,9,166,206,240,13,198,206
,76,98,228,169,40,133,206,133,204,208,213
,162,5,134,206 , 174

50 DATA 132,2,208,180,162,1,134,206,208,174,
0,-1

60 I=0:C=0:RESTORE 10
70 READ N:C=C+N:IF N=-1 THEN 90
80 POKE 1664+I,N : I=I+1:GOTO 70
90 IF C=15702 THEN A=USR(1664):STOP
100 PRINT "THERE IS AN ERROR IN THE DATA"

164

5 Utilities ___ ill

Atari Verify
Michael J. Barkan

Using less than lK of memory, this utility program for cassette can save
you a lot of time and frustration.

I recently made a CSAVE and a LIST "C:" (after about five hours of
typing) and neither of them saved the program. This sort of thing
is more than distressing. My solution is neither elaborate nor
entirely original, but it works .

Ed Stewart's article in COMPUTEt's Second Book of Atari on
backing up machine language tapes served as the inspiration for
my program. Stewart's program reads a block of data from the
cassette tape, puts it in a string, reads another block, adds it to the
string, and so on. The string eventually contains the entire
program. Of course, the string needs to be as big as the comput­
er's memory, so I couldn't use the method directly.

I know absolutely nothing about machine language except
that when I try to change something, the system crashes-so I
didn't change anything. The trick was to fool the machine
language program. Locations 203 and 204 (decimal) contain the
starting address of string A$. All I had to do (sounds easy, now)
was reset these locations so that the machine language subroutine
would "forget" that it had already put something into A$. This
means that A$ needs to hold a maximum of only 128 bytes, the
size of one cassette data block. Therefore, this program, once
running, takes up less than lK of memory; A$ just keeps reusing
the same 128 bytes.

To use this utility, type it in and save it with LIST "C:': Load
the program you want to save, or start typing in a new program.
Make sure your program starts at line 10 or higher. CSAVE it. Now
ENTER "C:" this utility and run it. It will ask you to start loading
the tape with your new program. If the tape runs all the way
through and ends with an end-of-file flag, you'll get a "GOOD
TAPE" message. If the tape is not readable, you'll get an error
message (my favorite is 143), but your program is still in the computer,
so you can try again . Delete lines 0 through 9 first, though.

If your tape is of the ENTER "C:" variety, just change the 255
in line 4 to 0, and the program will verify it, too.

165

5 ____ Utilities

That's all there is to it. Not quite like having a disk drive, but
at least now tape storage will be far less likely to cause you
distress.

Atari Verify
o REM ATARI CASSETTE VERIFY UTILITY

{9 SPACES}BY MICHAEL J. BARKAN
1 CLR :DIM A$(128):POKE 203,ADRCA$)-CINTCADR

CA$)/256)*256):POKE 204,INTCADRCA$)/256):R
EM POKE START LOCATION OF A$

2 FOR 1=1536 TO 1565:READ A:POKE I,A:NEXT I:
TRAP 7:REM POKE IN M.L. ROUTINE AND SET TR
AP FOR END OF FILE FLAG

3 ? CHR$(125);"INSERT TAPE TO TEST":? "PRESS
ANY KEY TO BEGIN"

4 CLOSE #1:0PEN #1,4,255,"C:":REM CHANGE 255
TO 0 FOR TAPES WITH LONG INTER-RECORD GAP

S
5 FOR 1=1 TO 100000:GET #1,B:X=USR(1536):REM

LOOP THROUGH THIS MORE TIMES THAN ANYONE
WILL EVER NEED

6 POKE 203,ADRCA$)-CINTCADRCA$)/256)*256):PO
KE 204,INTCADRCA$)/256):NEXT I:REM EUREKA~

RESET POINTER TO START OF A$
7 IF PEEK(195)=136 THEN CLOSE #1:? CHR$(125)

;"GOOD TAPE":END :REM LOOK FOR END OF FILE
FLAG

8 ? "ERROR - ";PEEK(195):END :REM TAPE IS NO
T READABLE

9 DATA 104,174,138,2,134,61,160,0,162,0,185,
0,4,129,203,200,230,203,208,2,230,204,196,
61,240,3,76,10,6,96

166

5 Utilities ___ iii

Automate Your ~ ari
JosephJ. Wrobel

Make your programs RUN automatically or PRINT a personalized
message when your disk drive boots up. This short program allows you to
create an AUTORUN. SYS file that will execute the commands you enter.
It's easy and simple to use.

The Atari Disk Operating System (DOS) supports the use of a file
named AUTORUN.5YS that has a very special characteristic. At
system start-up, the DOS loads and runs this file automatically if
it exists on the mounted diskette. This allows you to arrange for
your Atari to come up smart.

The Potential
The AUTORUN.SYS file could contain a machine language
program that loads and runs. It could also contain just a short
program to do some routine operations like setting the screen
margins or color before passing control to BASIC. However, the
major use I've seen for AUTORUN.SYS is to direct the system to
load and run a BASIC program. Not only does this type of opera­
tion save you some time and effort, but it also allows an unskilled
operator, like a student, to turn on the machine and interact with
an application program without getting into the details of LOAD
or RUN instructions.

The Problem
So far, so good. Why doesn't everyone use the AUTORUN.SYS
file? Apparently the major obstacle to its more widespread use is
the fact that it is a machine language routine. Thus, it requires
knowledge of 6502 machine language and, for complex opera­
tions, some knowledge of the intricacies of the Atari Operating
System to create a functional AUTORUN.SYS file. Unless
someone came up with a program to do it for you.

"Automate" (Program 1) is just such a program. If you key in
this program correctly and run it, Automate will help you create
your own personal AUTORUN.SYS file, and it won't hurt a bit.
The program starts by asking you to input the series of commands
you wish to be executed at start-up. You enter the commands

167

5 ____ Utilities

exactly as you would if the machine came up in its normal ready
state. The only limit on the number of commands is that the total
number of characters entered may not exceed 196 (including the
Atari end-of-line character added each time you hit RETURN).
The program keeps track of the number of characters entered and
will prevent you from exceeding this limit. After you've entered
the final command in the sequence, the program will create an
AUTORUN.5YS file on the mounted diskette. Note that any
previous AUTORUN.5YS file will be overwritten by this opera­
tion.

The next time you boot up from the diskette bearing the
AUTORUN.SYS file, the AUTORUN.5YS program will be run.
This will cause the commands you entered to be executed in the
order they were entered (although they will not be displayed),
then control will be returned to the system. The commands, of
course, must be compatible with the cartridge in use (BASIC,
Assembler Editor, etc.) or an error will result. If at any time you
wish to boot up from a diskette and circumvent the
AUTORUN.SYS file, just hold the OPTION key down until
system initialization is complete. The AUTORUN.SYS file created
by Automate checks that key and, if it finds it depressed, the
command list will not be executed.

A BASIC Example
To demonstrate the use of the program, a single command BASIC
example will be presented. Let us suppose there exists a BASIC
program entitled BEGIN which you would like to run automati­
cally at start-up. Using Automate, you enter (as Command #) the
statement:

GR.O:?"Autoboot in progress:':RUN"D:BEGIN"

then press RETURN. Assuming you entered the command
correctly, you respond to the question:

Is that correct (YIN)?

by pressing Y. When the program asks if there are:

More commands (YIN)?

respond by pressing N. The program then creates the
AUTORUN.SYS file and displays READY when it's done. If you
now tum off your computer and switch it on again, you will find
that it "comes up" running program BEGIN. How simple can you
get?

168

5 Utilities ___ iii

Description of Operation
This section is for those who are not satisfied with just running
the program, but are also interested in knowing how it works.
Let's first take another look at Program 1. Automate consists of
three major sections. The first section (lines 50 through 130) are for
documentation and initialization. The program employs two key
numeric variables: I, which counts the number of commands
entered, and L, which counts the total number of characters in the
command list. The second program section (lines 140 through 350)
INPUTs the commands one at a time. As each command is
entered, the program allows for error correction, checks
command list size, packs the command into B$ and tacks on an
ATARI end-of-line (EOL) character, namely CHR$(155). The third
section of the program (lines 360 through 600) actually creates the
AUTORUN.SYS file.

Before this third section is discussed, I direct your attention
to Program 2. This is the assembly listing for the core of the
AUTORUN.SYS program. What this machine language program
does, in a nutshell, is to temporarily take over the task of
supplying screen editor data by substituting a new device handler
table and "get character" routine for the default ones provided by
the operating system. At system start-up while the
AUTORUN.SYS program is active, it intercepts all the keyboard
entry requests and feeds out, one character at a time, the
commands which you have entered. When it has sent out the last
character of the last command in the list, it re-installs the default
screen editor handler table, and the system takes over from there.

Returning to the section of the BASIC program which creates
the AUTORUN.SYS file, you will find that it consists primarily of
three loops. Loop one (lines 490 through 510) PUTs the core
program and its associated 6-byte header into the file as READ
from the DATA statements in lines 430 through 480.

Note that in line 500 of Automate, two numbers are changed
from the values shown in the DATA statements before putting
them into the AUTORUN.SYS file. The first is a byte in the
AUTORUN.SYS file header which gives the end of the program
when loaded in memory. This is the sum of the core program
length and the number of bytes in the command list. Automate
also alters the value of the immediate argument of the CPY
instruction in line 370 of Program 2. This byte is set equal to the
total number of characters (including EOLs) in the command list.

169

5 iii ___ Utilities

Loop two (lines 530 through 550) PUTs in the command list which
resides in B$. Finally, loop three (lines 580 through 590) adds a
12-byte postscript to the file, which provides the system with the
initialization and run locations for the routine.

The BASIC program here provides an easy way to create a
useful AUTORUN.SYS file. There are dozens of ways this file can
be used. It doesn't necessarily have to be a serious application.
For example, it's sort of fun just to start up my machine, listen to it
go through its disk machinations, then see it automatically
display the personalized greeting:

READY WHEN YOU ARE, J. W.!

Program 1. Automate
50 I=0:L=0:MAX=196
60 DIM A$(MAX),B$(MAX),R$(l)
70 OPEN #1,4,0,"E:":OPEN #2,4,0,"K:"
80 ? "This program helps you to create"
90 ? " a personalized AUTORUN.SYS file"
100 ?" which, following the disk boot"
110 ? "{3 SPACES}process, automatically issu

es"
120 ? "{4 SPACES}a set of commands that I'l!rr"
130? "{5 SPACES}specify."
140 1=1+1
150? :? "Please enter command #";1;"."
160? :INPUT #1;A$
170 POKE 766,1:?:? "Command #";I;":";A$:POK

E 766,0
180? :? "Is that correct (YIN)? ";:GET #2,X

:? :R$=CHR$(X)
190 IF R$="Y" OR R$="y" THEN 220
200 IF R$="N" OR R$="n" THEN 150
210 GOTo 170
220 X=L+LEN(A$)+l-MAX
23i2J IF X<=0 THEN 260
240 ? : ? "Command #., ; I ; II is II ; X; .. character(

5) "

250? "too long.":I=I-l:GOTo 270
260 B$(L+1)=A$:L=LEN(B$):B$(L+l)=CHR$(155):L

=L+1
270? :? "Current command list:"
280 POKE 766,1:? :? B$:PoKE 766,0
290 IF L) =MAX-l THEN? "Command list is full

.":? :GoTo 370
300? "Command list can hold ";MAX-L-1;" mor

e"

170

5 Utilities ___ _

310? " character(s)."
320? :? "More commands (YIN)? ";:GET #2,X:R

$=CHR$(X)
330 IF R$="Y" OR R$="y" THEN 140
340 IF R$="N" OR R$="n" THEN 360
350 GoTo 300
360? CHR$(125);
370? "Mount diskette which is to bear"
380? " the AUToRUN.SYS file, then"
390?" press RETURN. ";:GET #2,X:CLoSE #1:

CLOSE #2
400? CHR$(125);:? "Writing AUToRUN.SYS file

410 OPEN #l,8,0,"D:AUToRUN.SYS"
420 REM PUT OUT THE HEADER AND THE CORE MACH

INE LANGUAGE PROGRAM
430 DATA 255,255,O,6,59,6
440 DATA 173,31,208,41,4,240,10,169,18,141,3

3,3
450 DATA 169,6,141,34,3,96,251,243,51,246,33

, 6
460 DATA 163,246,51,246,60,246,76,228,243,0,

238,33
470 DATA 6,172,33,6,192,0,208,10,169,0,141,3

3
480 DATA 3,169,228,141,34,3,185,59,6,1613,1,9

6
4913 FOR 1=1 TO 66:READ X
51313 IF 1=5 OR 1=48 THEN X=X+L
5113 PUT #l,X:NEXT I
5213 REM ADD THE COMMAND LIST
5313 FOR 1=1 TO L
5413 X=ASC(B$(I,I»
5513 PUT #l,X:NEXT I
5613 REM APPEND INITIALIZE AND RUN VECTORS
5713 DATA 226,2,227,2,13,6,224,2,225,2,17,6
5813 FOR 1=1 TO 12:READ X
5913 PUT #1,X:NEXT I
61313 CLOSE #1:? CHR$(125);:END

Program 2. Assembly Listing
D131F 131130 CoNSOL $D131F
133213 131113 DEVTAB $133213
E41313 131213 OLDDHT $E41313

131313
13131313 131413 *= $1361313
1361313 ADIFD!1J 131513 INIT LDA CONSOL

;Load the console switch register

171

~Utilities
0603 2904

;and
0605 F00A

0160 AND #$04
check for the OPTION key.

0170 BEQ RUN
;If it's pressed, branch to the RTS.

0607 A912 0180 LDA #NEWDHT&$00FF
;Otherwise,

0609 8D2103 0190
install the vector

STA DEVTAB+l
;to the new device

060C A906 0200
handler table
LDA #NEWDHT/256
place in the ;in the appropriate

060E 8D2203 0210 STA DEVTAB+2
;device

0611 60
table and
022~1 RUN RTS

;return.
023121 ;

0612 FBF3 024121 NEWDHT .WORD $F3FB
; Th is is the replacement

0614 33F6 025121 .WORD $F633
;screen editor handler

0616 2106 0260 .WORD GET-l
;vector table. All the

0618 A3F6 0270 .WORD $F6A3
;vectors have their default

061A 33F6 0280 .WORD $F633
;values except

061C 3CF6 029121
for the

.WORD $F63C
;GET routine, which

061E 4C 0300 .BYTE $4C
;points to the replacement

061F E4F3 031121 .WORD $F3E4
;routine below.

0320 ;
0621 00 0330 COUNTR .BYTE 0

;character counter
0340 ;

0622 EE2106 0350 GET INC COUNTR
;Increment the character

121625 AC2106 036121 LO Y COUN T R
;counter. Compare it with

121628 C12I0121 037121 CPY #ENOLST-BEGLST
;the comman d list length.

12162A 000A 038121 BNE CO NT
;If not equal, branch tc CONT .

12162C A9!!l!2! 039Q! LOA #OLOOHT&$0I21FF
;Otherwise, reinstate the

12162E 80211213 12141210 STA OEVTAB+l
;default screen editor handler

121631 A9E4 041121 LOA #OLDDHT/256
;table vector at the proper

172

5 Utilit ies ___ ..

0633 8D2203 0420 STA DEVTAB+2
;spot in the device table.

0636 B93B06 0430 CONT LDA BEGLST-l,Y
;Fetch the next character

0639 A001 0440 LDY #1
;from the command

0638 60 iZl451Z1
;return.

Q146!Z1
Q1471Z1 BEGLST

list and
RTS

0480 ;The command list goes here

063C 0490 ENDLST .END

173

5 ____ Utilit ies

The Wedge:
Adding Commands
To Atari BASIC
•••••• Charles Brannon

You can customize your Atari BASIC by adding new commands to the
language itself. To demonstrate how to do it, the program below adds five
DOS commands to BASIC-including a directory command. There are
two versions of the same program. Program 1 is a BASIC loader. Type it in
normally, and it creates a machine language program for you from the
information in the DATA statements. Program 2 is an assembly listing of
the same routine. It shows how the machine language works and is useful
to programmers who know machine language or want to learn more about
it. It's not necessary, however, to understand Program 2 in order to make
good use of Program 1.

A letter published some months ago in COMPUTEt's "Ask The
Readers" column regretted the need for "this POKE or that
POKE" to accomplish various tasks. The required solution is an
"expanded command set:' An enticing prospect, adding
commands to a language, and a seemingly impossible one, too.

Atari BASIC, like most microcomputer BASICs, is burned
into nonvolatile ROM memory. The machine language routines to
list, save, edit, and run your program cannot be altered or patched
in any way. (However, on a 48K Atari, you can copy the BASIC
cartridge to disk as a binary file, modify it with a machine
language monitor, and load it into the top of memory where it will
act almost as a ROM cartridge.)

The most common (and easiest to implement) extension of a
language is the addition of immediate mode commands. These
direct commands, which are not usually executed in a program,
but from the keyboard, include RUN, SAVE, LIST, NEW, DOS,
etc. Thanks to Atari's modular Operating System (OS), we can
easily add this type of command.

An Overview of Atari's Operating System
To understand how the wedge works, we'll have to delve into the

174

5 Utilit ies __ lIiill

mysterious 10K ROM. If you just want to use the program and
aren't concerned about the technical details, feel free to skip
ahead. The operating system (OS) of a computer is responsible for
all input and output to and from disk, cassette, printer, and
keyboard. It can also perform such chores as memory manage­
ment and screen display. On many microcomputers, the as does
not exist as a separate entity, but is incorporated into the BASIC
interpreter.

The Atari, on the other hand, is the first microcomputer with
a general-purpose, plug-in operating system. This goes hand in
hand with the use of program and game cartridges. All programs
running on an Atari use a common set of routines, from floating
point arithmetic to high-resolution graphics routines such as
PLOT, DRAWTO, and FILL.

A Mini-Language
So, instead of BASIC providing a marginal operating system
(which on many machines is a maze of machine language calls,
requiring incompatible register setup and initialization), we have
a BASIC cartridge which uses universal as routines . A good as
simulates a mini-language. It provides documented, unchanging
(between various revisions), unified subroutines with full param­
eter passing and error-checking.

Furthermore, a good as is extensible. All the major routines
and subroutines are accessed indirectly, through pointers. That is
why the Atari is so flexible . If you want to change the personality
of your computer, just change one of the vectors of a given routine
to point to your machine language routine . Your program can
then pass on control to the default program.

A Flexible Computer
This indirection is visible throughout the Atari. At the low end is
color indirection, where you can change the color of anything
drawn to another color merely by changing one color register: The
default character set pointer can be changed to point to a user­
designed character set. The system interrupt routines and display
list interrupts are all fully accessible via a table of pointers. The
BREAK key can be masked; the keyboard scan routine can be
modified or by-passed; exotic peripherals can be serviced. And all
input/output devices are user-definable, from the keyboard to the
disk drive .

A notable peculiarity of the Atari is that not just the disk

175

5 ____ Utilities

drive or printer, but also the TV screen and keyboard, are consid­
ered peripherals. You don't print a character to the screen on the
Atari; you send a character or buffer to the Editor device.

Chain of Command
Through the hierarchy of a subset of the as, the CIa (Central
Input/Output), BASIC politely requests a line of input from screen
and keyboard. After BASIC makes this request, control is passed
to CIa, wnich calls the Editor. The Editor lets the user enter a line
of text (which can be up to three screen lines long). The user can
use cursor controls to edit the line or to move the cursor anywhere
on the screen to edit another line.

When RETURN is pressed, the line the cursor is on is placed
into a buffer (block of memory). Next, CIa gives this information
to the calling routine via another buffer. The CIa is designed to be
easy to use from machine language. If you think it sounds compli­
cated, imagine performing all these tasks without an operating
system.

Driving a Wedge
We don't have to modify BASIC at all . We just "wedge" our way
into the Editor device E:. As intimated, even the "system" devices
such as E: or 0: (the disk driver) can be replaced. Usually,
however, you don't want to replace a vectored routine; you just
want to insert an additional task. In this case, you point the vector
to your routine, which performs the little extra task and then calls
the main routine. This by-pass explains the term wedge.

The Handler Table contains the names of all the devices . If
you wanted to, you could change the name of the cassette device
(C:) to another character, such as T: (for tape), by finding the C in
the table and changing it to a T. Along with each name, the
Handler Table includes an address that points to another table of
addresses that point to all the functions of that particular device.
This is multilevel indirection. There is even a vector that points to
a list of vectors!

We want to modify the Editor, so we change the first vector to
point to our list of vectors. All we really need to do is change one
of the vectors in the Editor's list of vectors, the "Get Character"
address . Since this list is in ROM, at $E400, we need to copy this
16-byte table to RAM, modify it, and rep oint the Handler Table to
our RAM version of the Editor Handler Table.

176

Wedging into a Vector

D
i
s
k

p C
r a
i s
n s
t e
e t
r t

e

Operating System

Handler Table

S
c
r
e
e
n

K R
b S
d 2 o

3
;--..11...----,2

A Monitor Monarchy

User

5 Utilities ___ II

up to
34
names

Now that we've got the operating system calling our routine
instead of the Editor in ROM, we've got total control of almost all
console input/output. The Get Character routine, instead of calling
E:, asks us for an ASCII character, presumably from the screen
and keyboard. We comply by calling the default routine in ROM.

This seems rather roundabout, doesn't it? But we reserve the
right to monitor all characters returned to the operating system,
and hence, BASIC. We get to examine every line of input before
that line is returned to BASIC, where any strange new commands
would be scorned with an error message.

So, we just catch the carriage return code and leisurely
examine the input buffer, located at $0580. All we have to do is
compare it against a table of commands, and, if we find a match,
execute the command. If not, we just return the line to CIO (and
CIO gives it back to BASIC) on the assumption that it's either a
blank line, a BASIC command, or a syntax error. Sounds simple,
but such a "parsing" routine is quite a headache to code and
understand.

177

L.. Utilities

A REMarkable Solution
After we've intercepted and executed the line, how do we prevent
a syntax error when we return the line to BASIC? (And since
we've "cut in;' we have to follow protocol and return something.)
One solution would be to erase the buffer by filling it with spaces.
An easier trick would be to change the first character of the line to
a period; for example, SCRATCH D:TEMP would become
.CRATCH D:TEMP. Since BASIC interprets a leading period as an
abbreviation for REM, BASIC conveniently ignores the command
and returns READY (which it wouldn't if we merely blanked out
the line).

The parser routine makes it easy for you to add commands.
Just place the name of each command, followed by a zero, and the
address where you want control to be transferred after the
command is recognized, in COMTBL (COMmand TaBLe, see
Program 2). The length of the line is found in LENGTH, and the
second character after the command is returned in PARMS (since
this is where any parameters would be).

command xxx, yyy,zzz

+ +
PARMS LENGTH

Note that the length is one character past the end of the string,
assuming you number from zero. Your command processor can
find the command string in LBUFF ($0580).

Theoretically, this technique can be used to add commands to
any language environment. You only have to find a way to make
the language processor ignore commands when you return the
line (such as blanking it out). Of course, the commands them­
selves are usually language-specific.

Copious Commands
Now the way is open to add a plethora of BASIC utility
commands. Of course, these will have to be written in machine
language and interfaced with the Wedge. I've included the resi­
dent DOS commands LOCK, UNLOCK, RENAME, and
SCRATCH, as well as DIR to print the directory.

You can study the assembly listing (Program 2). If you have
an assembler, try typing it in and modifying it. It contains a
wealth of techniques and information, such as pattern matching,

178

5 Utilities __ lIiiil

indirect subroutine calls, making a routine "RESET-proof' using
CIO for input/output from machine language, long branching,
modular programming, calling BASIC's ERROR routine, even
pressing SYSTEM RESET from within a program.

Using the Wedge
A machine language program can be hard to enter into the Atari
without an assembler. Program 1 will write the machine language
to disk in the form of an AUTORUN. SYS file. Save this program
so you can write copies to any disk. When you boot this disk the
AUTORUN file will automatically load and initialize the Wedge.
You can use the Wedge's console DOS directly, without waiting for
the disk utility package (DUP.SYS) to load in, and without losing
any programs in memory.

Commands provided are DIR (lists the directory of drive
one), LOCK, UNLOCK, SCRATCH (delete), and RENAME.
Remember to include the D: (or 02: for drive two, if you have one)
in the filename with all the commands except DIR. With
RENAME, use the convention RENAME D: oldname, newname.

The Wedge is "persistent"; in other words, it reinitializes
itself when you press SYSTEM RESET, so it's kind of hard to get
rid of it. An additional command, KILL, removes the Wedge. You
can bring back the Wedge with PRINT USR (7936).

These commands are just a start. Many others are possible:
RENUMBER, FIND, AUTO line number, UPDATE (removes
unused variables from the variable name table), and more.

Program 1. BASIC Wedgemaker
100 REM WEDGE BASIC LOADER
11i!1 GRAPHICS j:il:? "Inse..-t a DOS 2.i!IS diskette

120? "with DoS.SYS in d..-ive 1."
13~1? :? "P..-ess l:l;;jilJ:l: when you have done th

is. II

140 IF PEEK (7 64) <> 12 THEN 140
15~j POKE 764,255
16~j? :? "Now w..-iting the Wedge AUToRUN.SYS

file"
170 TRAP 19~j

180 OPEN #1,8,0, "D: AUToRUN. SYS " : TRAP 40l21i!j~l: G
oTo 2i!10

19~1 CLOSE #1:? :? "Can't open AUToRUN.SYS fa
..- w..-ite.":END

200 PUT #1,255:PUT #1,255:REM SFFFF HEADER

179

~UtilitieS
210 PUT #I,0:PUT #I,31:REM $IF00 START
220 PUT #1,74:PUT #i,33:REM $214A END
230 FOR 1=7936 TO 8522+6:REM INCLUDE 6-BYTE

AUTORUN
240 READ A:TRAP 310:PUT #I,A:TRAP 40000
250 CKSUM=CKSUM+A
260 NEXT I
270 IF CKSUM < >612l435 THEN? "{BELL}Bad number

in DATA statements.":ERR=l
280 CLOSE #1
290 IF NOT ERR THEN 7 :7 "DATA ok, write su

ccessful."
300 END
310 7 :7 "Error-";PEEK(195);" when attemptin

g disk write.":CLOSE #1:END
320 REM
330 REM Following is the decimal
340 REM equivalent of Wedge 1.0
350 REM Must be typed in perfectly
360 REM in order to function.
370 REM
7936 DATA 104,165,12,141,37,31
7942 DATA 165,13,141,38,31,169
7948 DATA 36,133,12,169,31,133
7954 DATA 13,32,43,31,32,92
7960 DATA 31,169,75,141,231,2
7966 DATA 169,33,141,232,2,96
7972 DATA 32,64,21,32,11,31
7978 DATA 96,169,80,141,68,3
7984 DATA 169,31,141,69,3,169
7990 DATA 0,141,73,3,169,12
7996 DATA 141,72,3,169,11,141
8002 DATA 66,3,162,0,32,86
8008 DATA 228,152,48,1,96,76
8014 DATA 55,33,65,116,97,114
8020 DATA 105,32,87,101,100,103
8026 DATA 101,155,160,0,185,26
8032 DATA 3,201,69,240,7,200
8038 DATA 200,192,34,208,243,96
8044 DATA 200,169,165,153,26,3
8050 DATA 200,169,31,153,26,3
8056 DATA 162,0,189,0,228,157
8062 DATA 165,31,232,224,16,208
8068 DATA 245,169,184,141,169,31
8074 DATA 169,31,141,170,31,24
8080 DATA 173,4,228,105,1,141
8086 DATA 186,31,173,5,228,105
8092 DATA 0,141,187,31,169,0
8098 DATA 133,203,96,251,243,51

180

5 Ut;lities ___ iii

8104 DATA 246,184,31,163,246,51
8110 DATA 246,60,246,76,228,243
8116 DATA 56, 1, 1, 125,32,32
8122 DATA 62,246,8,201,155,240
8128 DATA 4,230,203,40,96,140
8134 DATA 181,31,142,182,31,165
8140 DATA 203,240,86,169,51,133
8146 DATA 205,169,32,133,206,160
8152 DATA 0, 177,205,217, 128,5
8158 DATA 208,12,200,177,205,240
8164 DATA 40,196,203,208,240,76
8170 DATA 37,32,201,255,240,53
8176 DATA 160,0,177,205,240,9
8182 DATA 230,205,144,2,230,206
8188 DATA 76,242,31,24,165,205
8194 DATA 105,3,133,205,144,2
8200 DATA 230,206,76,215,31,200
8206 DATA 132,204,177,205,141,183
8212 DATA 31,200,177,205,141,184
8218 DATA 31,108,183,31,160,0
8224 DATA 169,46,153,128,5,169
8230 DATA 0,133,203,169,155,172
8236 DATA 181,31,174,182,31,40
8242 DATA 96,68,73,82,0,125
8248 DATA 32,83,67,82,65,84
8254 DATA 67,72,0,22,33,76
8260 DATA 79,67,75,0,27,33
8266 DATA 85,78,76,79,67,75
8272 DATA 0,32,33,82,69,78
8278 DATA 65,77,69,0,37,33
8284 DATA 75,73,76,76,0,42
8290 DATA 33~255, 155,50,54,32
8296 DATA 70,82,69,69,32,83
8302 DATA 69,67,84,79,82,83
8308 DATA 155,155,0,0,68,58
8314 DATA 42,46,42,162,80,169
8320 DATA 12,157,66,3,32,86
8326 DATA 228,162, 8iZl, 169,3,157
8332 DATA 66,3,169,6,157,74
8338 DATA 3,169,120,157,68,3
8344 DATA 169,32,157,69,3,32
8350 DATA 86,228,152,16,3,76
8356 DATA 55,33,162,80,169,5
8362 DATA 157,66,3,169,100,157
8368 DATA 68,3,141,68,3,169
8374 DATA 32,157,69,3,141,69
8380 DATA 3,169,20,157,72,3
8386 DATA 141,72,3,32,86,228
8392 DATA 152,48,13,169,9,141

181

i.-Utilities

8398 DATA 66,3,162,0, 32, 86
8404 DATA 228,76,166,32,162,80
8410 DATA 169,12,157,66,3,32
8416 DATA 86,228,76,30,32,162
8422 DATA 80,157 , 66,3,169,0
8428 DATA 157,73 ,3, 164,203,153
8434 DATA 128,5,56,152,229,204
8440 DATA 157,72,3,24,169,128
8446 DATA 101,204,157,68,3,169
8452 DATA 5,105,0,157,69,3
8458 DATA 32,86,228,152,16,3
8464 DATA 76,55,33,76,30,32
8470 DATA 169,33 , 76,229,32,169
8476 DATA 35,76,229,32,169,36
8482 DATA 76,229,32,169,32,76
8488 DATA 229,32,173,37,31,133
8494 DATA 12,173,38,31,133,13
8500 DATA 76,116,228,72,162,80
8506 DATA 169,12,157,66,3,32
8512 DATA 86,228,104,162,255,154
8518 DATA 133,185,76,64,185
9000 REM DATA FOR AUTORUN ADDRESS
9010 DATA 224,2,225,2,1,31
9020 REM END OF DATA STATEMENTS

Program 2. Wedge Assembly Source
010121 The Atari Wedge
QI 11 QI

iZl12Q! *=$1F00
013121 ICCOM =$0342
01412! ICBADR =$0344
015121 ICBLEN 0=$Q1348
iZl16!!l ICAUXl =$034A
Q! 1 7121 COPN =$ 03
018121 CPTXTR =$jlJ9
~319i!! CGTXTR =$ 05
02~:I!!! CPBINR =$!!IB
021121 CCLOSE =$ 0 C
022 121 CIO =$E456
023121 OPDIR =$06
024121 HATABS =$ 03 1A
025QI LBUFF =$058121
026121 LENGTH =$CB
~327QI 1"1EMLO =$!!12E7
028iZI PARMS =$CC
12129QI COM =$CD
030121 DOSINIT =$0C
031 jlJ ENTRY PLA ;For BASiC ini

tiali::ation

182

5 Utilit ies ___ iii

0321i1 Make wedge "RESET-proof"
033lZ1 INIl
0340
035lZ1

036QI

1037QI

n

IN IT

038lZ1 ;
(139QI I N I T2

nit
10 4 (2liZl
i!1411O
042(21
0431i1
044111

1045lZ1
046QI
1047QI

pointer
048111
04910
~35111lZ1

05110 REINIT

LDA DOSINIT ;Save DOS
STA REINIT+l ;initializatio

LDA DOSINIT+1 ; inside the RE

STA REINIT+2 ;JSR call

LDA #REINIT~,255 ;Replace DOS i

STA DOSINIT ;with Wedge
LDA #REINIT!256 ;init
STA DOSINIT+1
JSR MSG ;Print message
JSR ECHANGE hookup new E

LDA #ENDWEDGE&255 ;Bu mp up
STA I'lEMLO
LDA #ENDWEDGE/256 ; low memory

STA t'lEMLO+ 1
RTS

JSR XXXX ;XXXX is filled
in with DOSINIT

0520
iJ53lZ1 XXXX
0540

JSR INIT2
RTS

(2155111 Print "welcome" message
105610
Q)57i!l MSG LDA #WMSG~,255 ;Store address

of
058121 STA ICBADR ;message
059111 LDA #WMSG/256
0600 STA ICBADR+l
0610 LDA #111 ;Set length
0620 STA ICBLEN+l
(2163111 LDA #12
064(21 STA ICBLEN
(21651i1 LDA #CPBINR ;Ignore carriag

e-returns
066(21 STA ICCOM
067111 LDX #111 ;File 0. the ed

itor
0680 JSR CIO ;Call CIO to pr

int it
069111 TYA
0701i1 BMI ERR ; If no error. r

eturn

183

5 ____ Utilit ies

0710
072121 ERR
10730
0740 WMSG
0750

RTS
JMP ERROR

.BYTE "Atari Wedge 2.0".155

0760 Following replaces the old E:
077121
078121 ECHANGE
079121 ELOOP

Ie
0800
IZI810
0820
0831Z1
0840
~385 QI

QI86QI

0871Z1

LDY #121
LDA HATABS,Y

CMF' #'E
BEQ EFOUND
INY
INY
CPY #34
BNE ELOOP
RTS

;Search for E:
; in handler tab

;Found end?
; no, n e }: ten try

;end of table,;>

;return

088121
0891Z!

Store new handler table address

i219Q1 QI EFOUND
091QJ

INY
LDA #WEDGE T AB&255
STA HATAB S , Y i2192!!J

093QI
094QI
095121
0961ZJ
!!J971Z!
098111
IZ19912J
1 QI0 QI
l!211QI
1 I1J 2 !!J
1 QI3!2J
1 QJ4QJ
11215 QI
106QI
111J711J
1 IZJ 8 121
1 12J9 IZI

1100

111 Qj

112121

113121

114121

184

IN Y
LDA #WEDGETAB / 256
STA HATABS,Y

Transfer E ditor table to Wedge table
LD X #i21

XFEF: LDA $E4!!IIZJ, X

s

g

STA WEDGETAB,X
INX
CPX #16
BNE XFER

Patch in MY INPUT r outine
LD A #MYIN P UT-1 &255
ST A WEDGETAB+4

address

is +1

code'

LD A
ST A
CLC
LD A

ADe

STA
LDA

ADC

#M Y INPUT-1/ 2 56
WEDGETAB+5

$E4i214

#1

MY INF'UT+l
$E4 11J5

121

Get character

Actual addres

Egads'
Sel f- modifyin

(Accept any ca
rry)

STA MYINPUT+2

115121
116111

117QI
118{11

nitially

5 Utilities ___ iii

LOA #121
STA LENGTH ;Clear- length i

RTS

1190 Wedge handler- address table
1200 WEOGETAB *=*+16
1210 YSAVE *=*+1 ;Used to save Y

r-egister-
1220 XSAVE *=*+1
1230 JUMPAOR *=*+2

ect Jl"lP
1241Z1 MY INPUT

;Oitto for- X
;used for indir-

1250 The $F63E addr-ess is actually placed
her-e by above code

1260 to per-mit this r-outine to r-un on the
Revision B OS

1270 (wher-e it wouldn't necessar-ily be SF6
3E)

1280 ;Get a characte JSR SF63E

1291Zi
1300

1310

132!i1
1331Z1
134121

r fr-om E:
PHP
Ct-1P #155

CR)
BEQ ENOLINE

line r-eady
INC LENGTH
PLP
RTS

ve the char-acter­
ENOLINE

;End of line?

;Yes, complete

;No, let CIO ha

135121
1361!1 STY YSAVE ;Save Y for- CIO
1370 STX XSAVE
1381!1 LOA LENGTH
1390 BEQ RETURN. LINE
1400 LOOKUP
1410 LOA #COMTBL&255 ;Set up indir-e

ct pointer- for-
1420 STA COM
1430 LOA #COMTBL/256 ;command table
1440 STA COM+l
1450 NEXTCOM LOY #0
1461!1 COMF'LOOF'
147!i1 LOA (COM),Y

d against line buffer
1480 CMF' LBUFF,Y
1490 BNE NOT SAME
15{,'1!!1
15Hl

ter- null?

IN Y
LD A (COM) , Y

;Compar-e cornman

;Oka y so far-?
;no match

; is ne >: t char-ac

185

5 iii ___ Utilit ies

152i!1 BEQ COMFOUNO ;yes, command f
ound

1530 CPY LENGTH ; e >: c e e d e d 1 i mit
s?

154i21 BNE COt1PLO OP ;if not, contin
ue comparison

1 ==~, .J.J l!1 J MP RETUF: N. LItlE ;give line to
language

156!!! NOTSAME
157i!1

CMP #255 ;End of table?
BEQ RETURN.LINE

158{!1
command

159!!I F I NOENO
1600

1610

162121
163i21

et?

cter

164!!I NOINCl

LOY #I!i

LOA (COM),Y
BEQ ENDCDl1

INC COM

BCC NOINC1
INC COM+1
Jt-1F' FINDENO

null byte found
1650 ENOCOM CLC

ver null byte
1660 LOA COM
167i21
168QI
1691'21
17!!I0
171121 NOINC2
172QI COMFOUND
173i2J
174i21

ADC #3
STA COM
BCC NOINC2
INC COM+1
JMP NEXTCOl'l

I t4Y
STY PARMS

parameters
175{i1 LDA (COM),Y

ith command address
1760 STA JUMPADR
177121
1780
179121
181!HZI
1810 EXIT

n here
182i21

INY
LDA (CO M), Y
STA JUMPADR+1
Jt1P (JUMPADR)
LDY #!ZJ

LDA #'.
haracter to

1830
1840

STA LBUFF,Y

ignore line
1850 RETURN. LINE
1860 LDA #0

186

; No, skip o v er

;Hit the zero y

;No, ne >:t chara

;continue until

;Add _.co "C o skip 0

; and Jt1P address

;Check for carry

;Y is inde>: into

; Load J Ut1PADR w

;E>:ecute '
;Commands retur

;Change first c

; " or REM
Allows BASIC to

5 Utilities ___ iii

187Ql STA LENGTH
1880 NOAUTO
1 8 90 LDA #155 ; f;:etur n E OL t o

CIO
19i!10 LDY YSAVE ;Restore Y
1910 LDX XSAVE ;and X
1920 PLP ;and process o r

status
193i!1 RTS ;That's it
1941Zi COMTBL
1950
1960
1970
1980
1990
2000
201 Ql

Wedge commands and command table
Format is:
.BYTE "COMMAND".0
.WORD COMMAND. ADDRESS
End of table is
.BYTE 255

2Ql20
2Ql3Ql
21!141!1
2051!1
2Ql60
2070
21!18Ql
21!190
2101!1
2110
2120
2131!1
2140
2151!i DIRBUF
2161!1 DIRNAME

.BYTE "DIR".0

.WORD DIR

.BY~E "SCRATCH".0

.WORD SCRATCH

.BYTE "LOCK".0

.W ORD LOCK

.BYTE "UNLOCI<".0

.WORD UNLOCI<

.BYTE "RENAME".0

.WORD RENAME

.BYTE "KILL".0

.WORD KILL

.BYTE 255

=+21!1
.BYTE "D:*.*"

Start of c ommands:
2171Z!
2181!1
219Ql
22QlQl D I R
221Ql LDX #$51!1

LDA #CCLOSE
STA ICCOM.X
JSR CIO ;CLOSE#5

IOCB#5
222Ql
2230
224Q!
225f25
2261!1
227Ql
228Q!
229Ql

OPEN#5. 6. Ql. "D: *. *"
LDX #$51!1
LDA #COPN
STA I CCOl'l. X
LDA #OPDIR

;channel#5
;open co mma n d

;special "dir-ec
tory" command

2300 STA ICAUX1.X
2310 LDA #DIRNAME&255 ;filename (wi

Idcard)

187

5 Iii ___ Utilit ies

232~1 STA ICBADR,X
233~1 LDA #DIRNAME/256
2341Z1 STA ICBADR+1,X
235{!~ JSR CIO ;set it LIP'
2361Z1 TYA
237~1 BPL NOERR1
2381Z1 JMP ERROR
239~1 Print a line to the Editor
240~1 NOERRl
2410 NEXT LDX #$50 ;#5
242~1 LDA #CGTXTR ;Get a line
2430 STA ICCOM,X
2440 LDA #D I RBUF&:255 ;Put it into t

he buffer
2450 STA ICBADR,X
246~1 STA ICBADR
247~1 LDA #DIRBUF/256
248~1 STA ICBADR+l,X
249",1 STA ICBADR+1
250~1 LDA #2QI ; t1a}: i mum 1 eng

th is 20
2510 STA ICBLEN,X
252",1 STA ICBLEN
2530 JSR CIO
2540 TYA

of file
255i!j BMI ENDIR

ished directory
2560 NOERR2 LDA #CPTXTR

rd (print a line)
2570 STA ICCOM
2580 LDX #~I

open to the Editor
2590 JSR CIO
260~j

e
2610
2620 ENDIR
2630
2640
265~j

266~j

JMP NEXT

LDX #$5~1

LDA #CCLOSE
STA ICCOM,X
JSR CIO
JMP EXIT

2670 ;End of directory routine
;

(actually 17)

;Check for end

;On error, fin

; Put te;·:t reCD

; Channel IZI is

;Read ne}:t lin

;CLOSE#5

2680
2690
2700
2710
2720
2730

;Following routine is used by lock
;unlock, scratch, and rename
;Filename buffer is in LBUFF
;e.g. LOCK D:TEMP

this portion is used

188

5 Utilities ___ iii

2740 to tell CIO the filename.
275121 CALLC I 0
2761Z1

277121
2780
279121
280121
281QI
282121
283QI

2840

2850
2860
287QI

LOX #$5QI

n,#5,etc.)
STA ICCOM,X
LOA #121
STA ICBLEN+1,X
LOY LENGTH
STA LBUFF,Y
SEC
T YA
SBC PARMS

and name)
STA ICBLEN,X
CLC
LOA #LBUFF~-< 255

of parameters,
2880 AOC PARMS

UFF
289QI STA ICBADR,X

nd
LOA #LBUFF l 256
ADC #0
STA ICBADR+l,X

;Use file 5 (XIO

;Store command
;Clear MSB
;of length

;Get length
; of filename
; (s k ip over comm

;PARMS is start

;the space in LB

;after the comma

;Catch any carry
29121121
291Y.1
2920
293121
294121
2950
2960
297121
298121
2990
3QI0QI
3Ql1 QI

302121
3QI31Z1
3lZ14121
3QI51Z1
31Z16QI
3QI7QI

JSR CIO , 00 the job
TYA
BPL NOERR3
Jt1P ERROR

NOERR3 JMP EXIT

SCRATCH LOA # 33
JMP CALLCIO

LOCI< LOA #35
JMP CALLCIO

UNLOCr< LOA #36
JMP CALLCIO

RENAME LOA #32
J 1'1P CALLCIo

3080 ;Remove Wedge
309QI
31 QIQI

3110
3120
3130
314121

KILL

SET

LOA
STA
LOA
STA
JMP

REINIT+1
DOSINIT
REINIT+2
OOSINIT+1
$E474

;Restore
;vector

;"Pr-ess"

315121
3160 End of current wedge

old ODS

SYSTEt1 RE

189

5 iii ___ Utilities

317121

3181Z1
319121

(Although more commands can be added.

See future issues of COMPUTE'

321!112I ERROR PHA ;Save error code
321121
3220
323121
324121
325121

326121
327121
3281'21

3290

3300

3310
332121
3330
334121
335121
336121
337121
338121

190

LDX #$5121 ;close file 5
LDA #CCLOSE
STA ICCOM,X
JSR CIO
PLA ;retrieve error cod

e
LDX #$FF ;reset stack
TXS
STA $B9 ;tell BASIC the err

or code
JMP $B9413 ;call the ERROR rou

tine
; in the BASIC cartr
idge
;
END WEDGE

Autorun

*=$132E0
.WORD INIT

.END

Utilit ies ___ i

Renumbe Plus
-----Manny Juan and Paul N. Havey

A renumbering utility is an important tool for the BASIC programmer.
You will find "Renumber Plus" to be an invaluable aid.

When you type a BASIC statement and press RETURN, BASIC
converts your code into tokens. For example, all keywords and
variables become one-byte tokens. A string becomes a sequence
of tokens. The first byte of the sequence-always the decimal
number IS-tells BASIC that a string follows. The second byte
tells BASIC the length of the string in bytes. The string appears as
ASCII text following these first two bytes. When writing a
program that deals with BASIC's internal form, you need to
consider the format of strings to avoid problems or bugs.

The original "Renumber" by Manny Juan renumbers BASIC
statements in RAM, resolves most line number references, and
stays in memory for reuse.

"Renumber Plus" is a BASIC utility that enhances Manny
juan's Renumber. Renumber Plus does the following four opera­
tions the original Renumber does not:

• Resolves literal line number references after the LIST
command.

• By-passes strings embedded in a statement.
• Resolves literal references following symbolic ones in a list of

references.
• Allows you to choose where renumbering begins. These

features add much to an already effective and useful tool.

Using Renumber Plus
1. Type Renumber Plus into your Atari.
2. Save the program with the direct command LIST "C" or LIST

"D:REN': Using the LIST command allows you to merge
Renumber Plus with your program.

3. LOAD your program into the Atari. The highest line number
must be less than 32100. The last statement must be END,
STOP or RETURN. LOADing your program erases
Renumber Plus from memory.

191

5 ____ Utilities

4. Enter Renumber Plus into the Atari with the direct
command ENTER"C" or ENTER "D:REN':

5. Type GOTO 32100.
6. When the prompt BEGIN,FROM,BY appears, enter the

following:
a. Beginning line number,
b. New starting line number, and
c. Increment value.

7. Enjoy the musical interlude while your Atari works. Do not
press BREAK or RESET while the program renumbers. The
new line number followed by SR is displayed for each
symbolic reference in your program. The new line number
followed by NR is displayed for each reference to an old line
number that does not exist.

8. When Renumber Plus finishes renumbering, the number of
renumbered lines and the following message are displayed:
LIST "C':bbbb,eeee
bbbb = the first new line number
eeee = the last new line number

9. In order to save a copy of your renumbered program without
the Renumber Plus program appended to it, use the LIST
command (LIST "C': bbbb,eeee for cassette and LIST liD:
filename ': bbbb,eeee for disk) .

Renumber Plus
32100 REM RENUMBER PLUS
32110 T8=256:I=I:Z=32100
32120 WM=0:X=PEEK(138)+PEEK(139)*T8:Y=PEEK(1

34)+PEEK(135)*T8+8*(PEEK(X+5)-128)+2
32130? "BEGIN,FRDM,BY":INPUT ST,FR,BY:? CHR

$ (125)
32140 B=PEEK(136)+PEEK(137)*T8:X=B:M=FR
32142 LN=PEEK(X)+PEEK(X+I)*T8
32144 IF ST) FR AND LN-ST THEN ST=LN
32150 LN=PEEK(X)+PEEK(X+I)*T8:SDUND 0,LN,10,

8
32160 IF LN=Z THEN 32220
32170 PL=PEEK(X+2):C=X+ 3
32180 LL=PEEK(C):C=C+I
32190 GDSUB 32280
32200 IF LL<PL THEN C=X+LL:GDTD 32180
32210 X=X+PL:M=M+BY*(LN) =ST):GDTD 32150
32220 M=FR:X=B:SDUND 1,O,O,O
32230 LN=PEE K(X)+PEEK(X+I)*T8:SDUND 0,-LN+32

768,10,8

192

5
Utilit ies __ lIIIIiiiil

32240 IF LN=Z THEN 32550
32245 IF LN<ST THEN 32270
32250 MH=INT(M/T8):ML=M-MH*T8
32260 POKE X,ML:POKE X+I,MH
32270 M=M+BY*(LN >=ST):X=X+PEEK(X+2):GOTO 322

30
32280 TK=PEEI«C)
32290 IF TI<=10 OR TK=11 OR TI<=12 OR TI<=13 OR

TI<=35 THEN C=C+I:GOSUB 32450:RETURN
32300 IF T K<> 30 THEN 32345
32310 C=C+I:O=PEEK(C)
32320 IF 0=23 OR 0=24 THEN 32350
32330 IF 0=14 THEN C=C+6
32335 IF 0=15 THEN C=C+PEEK(C+I)+I
32340 GOTo 3 2310
32345 IF TI« >4 THEN 32380
32350 C=C+I:GOSUB 32450
32355 O=PEEI«C)
32360 IF 0=18 THEN 32350
32362 IF 0=14 THEN C=C+6
32364 IF 0=15 THEN C=C+PEEK(C+I)+I
32366 IF 0<>20 ANO 0<>22 THEN C=C+I:GO TO 32

355

32370 RETURN
32380 IF TI« >7 THEN RETURN
32390 C=C+I:O=PEE K (C)
32400 IF 0=27 THEN 32430
32410 IF 0=14 THEN C=C+6
32415 IF 0=15 THEN C=C+PEE K (C+I)+I
32420 GOTO 32390
32430 C=C+I:IF C« X+LL) THEN GOSUB 32450
32440 RETURN
32450 O=PEEK(C):IF 0=20 OR 0=22 THEN C=C+I:R

ETURN

32460 IF 0 < >14 THEN? M;" SR,";:C=C+I:RETURN

32465 00=PEEI«C+7):IF 00 < >18 ANO 00<>20 AND
00<>22 THEN? M;" SR,";:C=C+I:RETURN

32470 C=C+I:FOR J=0 TO 3:POKE Y+J,PEEK(C+J):
NEXT J

32480 IF WM (LN THEN WX=B:RN=FR:GOTO 32500
32490 WX=X:RN=M
32500 WN=PEEI«WX)+PEEK(WX+I)*T8:S0UNO 1,WN,1

0,8
32510 IF WN < Z ANO WN < WM THEN RN=RN+BY*(WN>=S

T):WX=WX+PEEK(WX+2):GOTO 32500
32520 IF WN <> WM THEN? M;" NF,";:GO TO 32540
32525 IF WN < ST THEN 32540

193

5 ____ Utilities

3253~ WM=RN:FOR J=~ TO 3:POKE C+J,PEEK(Y+J):
NEXT J

3254~ C=C+6:RETURN
3255~ ? :? (M-FR)/BY;" LINES"
3256~ ? "LIST";CHR$(34);"C:";CHR$(34);",";FR

; ", " ; M-BY
3257~ END

194

5
Utilities -

Purge
AI Casper

For the Atari 800 with 810 disk drive, this is a quicker and simpler method
of housecleaning diskettes.

One of my favorite chores used to be clearing files off my
diskettes, making room for new programs and files. Of course I'm
kidding; I dreaded purging diskettes. First you had to load DOS
and wait. Filenames had to be carefully entered, and finally the
DELETE D:SLOW ? Y or N had to be dealt with. You also had to
add one more step if the file was locked, or do it over from the
start if you made a mistake. Repeat the above steps for each file
you want deleted, and the entire process can easily take 20
minutes per diskette . "Purge" was written to make this job fast
and easy, freeing your valuable time for other things.

Free Directory
When Purge is finished clearing your diskette, a directory is
printed on the screen. The directory has two advantages over the
DOS directory. First, you do not need to load DOS to use it.
Second, the files are printed in two columns, allowing twice as
many files to be displayed before they start scrolling off the top of
the screen.

The program is written in two short sections, which makes it
easy to save the DIR (Section A) as a separate program. The
REMarks at the end of section A will explain this in more detail. I
keep a copy of DIR on each of my diskettes. It requires only three
sectors of disk space, well worth the time it can save you. I also
have a LISTed version of DIR on a file named EDIR. I simply
ENTER "D:EDIR" with any program I happen to have in memory.
The high line numbers will almost never cause a conflict. Just type
GOTO 32100 for a directory listing. DIR will now be a part of the
program.

To use Purge, simply load the program, insert the diskette to
be purged into disk drive one, and type RUN. One at a time the
files on that diskette will be displayed on the screen. Pressing
RETURN will display the next file. When an unwanted file is
displayed, press CONTROL <P> to purge it. This process continues

195

5 ____ Ut ilit ies

until all the files have been displayed. Don't panic if you make an
error along the way; just press BREAK and start over. The purging
takes place after all the files have been displayed and only if you
press P, as prompted on the screen. You'll hear a lot of action from
the disk drive as the purging is taking place. The length of this
operation varies with the number and length of files being
deleted .

XIO Examples
The following is a line by line description of my program. This
will be of most interest to programmers with limited experience
working with disk operations. The XIO feature is the key to
Purge. Writing this program in BASIC would have been very diffi­
cult without XIo. Note that the program listing does not have all
the lines in correct order.

Line 32100 This special OPEN will allow inputs from the disk
directory. The" *. *" in the filename is the same as a wildcard in DOS.
Line 32102 The TRAP is very useful. In this case it will detect the
EOF (end of file), treat it as an error, and end the inputs.
Line 32104-32106 These are the INPUT(s) from the directory. The
directory is printed in two columns.
Line 32110-32115 The file is CLOSEd, and the program goes into
an endless loop to prevent possible information from scrolling off
the screen.
Line 32000 Another TRAP for EOE The keyboard (K:) is OPENed
for input.
Line 32004 The OPEN is again to the directory.
Line 32006 One at a time each directory entry is INPUT and
tested for FREE SECTORS, which would be the last entry. The
entry is then printed on the screen.
Line 32008 The program waits for an input from the keyboard. A
chime sounds and slows things a bit.
Line 32010 If a purge was requested, the filename is created from
the directory information.
Line 32012 The filename is saved in a larger string for later
purging.
Line 32016-32017 Blank spaces have to be removed from the
filename before they can be unlocked and deleted.
Line 32018 The XIO's perform unlock and delete just as if you
were using DOS.
Line 32020 Files are CLOSEd, and the OIR routine will follow.

196

5 Utilities ___ iii

Program 1. Section A: DIR
32050 REM SECTION
32055 REM

(A) DIR

32060 REM WHEN FINISHED TYPING THIS SECTION
SAVE IT WITH THE FILE NAME 'D:DIR'.

32065 REM ALSO LIST IT TO THE DISKETTE WITH
THE FILE NAME{3 SPACES}'D:EDIR'.

32067 REM 'EDIR' CAN THEN BE ENTERED AT ANY
TIME TO ATTACH A 'DIR'

32068 REM TO YOUR PROGRAM TO BE CALLED WITH
A ' GOTO 32 UZIQI' .

32070 REM THEN CONTINUE ADDING SECTION (B)
TO SECTION (A)

32100 OPEN #5,6, Ql, "D: *. *"
32102 CLR :GRAPHICS 0:POKE B2,I:DIM ENT$(17}

: T RAP 32 1 1 0 :? :? "_""-,,,,),,-, __ >=..,~= _...,..)=-=II : ~ ii(~Ij .. i :.l]....,:.~·.

321Ql4 INPUT #5, ENT$:? ENT$;" {4 SPACES}";
32106 INPUT #5,ENT$:? ENT$:GOTO 32104
32 1 1 0 C L 0 S E # 5 :? :? "{ 4 ;'-"1 :1:IH ?t-1} I:3::TI::

{B ;'-"1:1:tH41} l::m4-S-___ '3:~0(:1=.{5 E'J:l:tH41} GCE
{3 E'J:1:tH41}";: POKE B2, 2

32115 GOTO 32115

Program i. Section B: Purge
31900 REM SECTION
31910 REM

(B) PURGE

32QllZlQl TRAP 321Z113:0PEN #4,4,0,"I<:":DIM E$(17}
, S $ (5 IZl Ql) , P G $ (1 4) : X = 1 : Y = 1 4

320!Z12 GRAPHICS IZI:? "{DOWN}TO PURGE":? "
{DOWN}AFTER EACH FILE DISPLAYED PRESS"
:? "CONTROL-P TO DELETE OR{3 SPACES}PR
ESS RETURN"

321Z104 ? "TO CONT I NUE" : OPEN #5,6, 1Z1, .. D: * . *-"
32(1Q16 INPUT #5, E$: POSITION 2,10: IF E$ (5, 16) <

>" FREE SECTORS" THEN ? E$:? :? "aHao":
@" ; : GOTO 32!ZIQ18

321211217 GO TO 321Z113
32008 GET #4,K:IF 1«>16 THEN POSITION 2,12:?

"CHOICE ": FOR Q=15 TO IZI STEP -Ql. 2: S
OUND 0,20,10,Q:NEXT Q:GOTO 32006

3201 IZI PG$ (1 , 2) =" D: " : PG$ (3, 10) =E$ (3, 1 Ql) : PG$ (1
1, II) =" . " : PG$ (12, 14) =E$ (11, 13)

32012 S$(X,Y)=PG$:X=X+14:Y=Y+14:FOR Q=15 TO
o STEP -0 . 2:S0UND 0,40,10,Q:NEXT Q:GOT
o 32!ZIQ16

197

5 iii ___ Utilities

32013 POS I T I ON 2 , 15:? "1~;g ... -s. __ :M' •• :<1IJ.I.,~ .. ;: FO
R Q=1 TO 120:POKE 764 , 255:NEXT Q:GET #
4,K:IF K=80 THEN 32015

32014 GOTO 32020
32015 X=1:Y=14:S=0
32016 TRAP 32020 : PG$=S$(X,Y}:FOR 0=1 TO 13:5

=S+1:IF PG$(S , S)=" .. THEN PG$(S,14}=FG
$(5+1,14) :5=5-1

32017 NEXT 0
32018 XIO 36,#3,0,0,PG$:XIO 33,#3,0,0,PG$:X=

X+14:Y=Y+14:S=0:GOTO 32016
32020 CLOSE #4:CLOSE #5

198

6
Starshot
----- Matt Giwer

As this game will demonstrate, Atari BASIC can be fast enough if you
know how to speed it up. Requires 24K and game paddles.

Atari graphics approach those available in dedicated graphics­
oriented computers. Atari BASIC allows very fast manipulation of
strings, Direct Memory Access for the PlayerlMissile Graphics,
and the direct call of machine language from BASIC. This game
combines all of these features and a few others.

Let's start the discussion of this program with the subroutine
at line 30000. The first thing to do is to enable the PlayerlMissile
Graphics.

Appendix A of the Atari Hardware Manual gives a detailed
example of how to do this. This method works only when there is
nothing on the screen; as soon as you write to the screen, the
method fails. The usual approach is to reserve enough pages for
the screen RAM, the PlayerlMissile graphics pages, etc. All in all,
to use PlayerlMissile Graphics with GRAPHICS 7, you wind up
reserving 32 pages and, in the process, taking care of the
computer rather than letting the operating system (OS) take care
of you. Here is how to do it right.

RAMTOP
Contained in register 106 is the number of pages of RAM available
to you for your use after everything needed for the system has
been accounted for. What we want to do is to change this number
so that RAM is protected for the PlayerlMissile Graphics pages.
This is accomplished by POKE 106, PEEK(106)-16. This puts a
number into that register that is 16 pages less than the number the
operating system determines upon powering up the computer or
upon system reset. But just POKEing a new number does nothing
until the computer makes use of it.

The second GRAPHICS 7 call causes the operating system to
make use of this new RAMTOP to relocate the screen RAM and
the display list below RAMTOP. If you do not make this graphics
call, you will find that the screen memory is above the new, lower
protected memory limit, and the system will crash at the first

201

6 ____ Advanced Techniques

attempt to scroll the screen. In other words, your system registers
that point to the first screen byte, and the display list will be above
RAMrOP. The operating system cannot handle this.

You proceed as normal but much more cleanly now that you
have lowered the effective top of your RAM and made the oper­
ating system reorganize itself around that new maximum RAM
with the second graphics call. Lines 30204 and 30206 are the
enabling POKEs for PlayerlMissile Graphics as described in many
articles and in De Re Atari. Line 30208 is the POKE to tell the oper­
ating system where to find the start of the PlayerlMissile data. The
start of this data is now simply RAMTOP.

With PlayerlMissile Graphics set up this way, you can forget
about what the rest of the system is doing and treat it just as
though PlayerlMissile Graphics were not in use. The operating
system will take care of you.

Player Definition
The next routine of interest is at line 30236. (This is the machine
language routine published in COMPUTEf's First Book of Atari
Graphics, page 164.) It provides relocation of the four players at
machine language speeds by means of two POKEs and, since the
routine is executed during the vertical blanking time, the motion
appears to be continuous. The rest of the 30000 lines define the
players. Note that the RESTORE in line 30310 makes Player 3 the
same as Player 2, although it is defined as a different color in line
30230.

Now let's jump to lines 100-120-we will get to the earlier
lines later. These lines are the definitions that will be used later for
named subroutines. The use of named subroutines is a desirable
feature that greatly aids program development.

Lines 1890-1930 are both the one-time calls and those such as
DISPLAY that are needed to set up the game at the start.

The subroutine at line 10000 draws the background in the
way that makes this illusion of motion possible. Note that each set
of lines is drawn with a different COLOR and that the COLOR
numbers rotate I, 2, 3, I, 2, 3, and so forth . I will get back to this in
a minute.

Color Rotation Simulates Motion
The START subroutine at line 5000 POKEs numbers into the color
registers so that you can see the screen and draws the eight
attackers. You will also note that COLOR J also rotates the

202

6
Advanced Techniques ___ ill

COLOR assigned to the attacker graphic although in a more
complex manner than in BACKGROUND.

The DISPLAY subroutine at line 6300 controls the scoring and
number of lives information that will be shown in the bottom
alphanumeric window.

ASELECT at line 6500 picks the order in which the attackers
will attack from among the predefined ATTACKl-4$ in lines 54
and 60.

Within the infinite loop at line 2100 you'll find the reason why
I used different COLORs to draw the background. The four state­
ments in line 2110 rotate the colors used in the background
through the registers in a bucket brigade manner; the colors seem
to be moving toward you. Given the drawn background, it
appears that you are moving forward through the trench. This
illusion of motion requires the use of three different colors as a
minimum. If there were only two colors, they would appear to
flicker back and forth rather than move. The instructions in this
line will be used in almost every subroutine so that this illusion of
motion is maintained.

This technique is useful in many applications-you can
simulate many kinds of motion. If you were to reverse the order of
the instructions, you would have the illusion of going backwards.
Line 2120 is simply a short delay.

Another line that you will find throughout the program is
first used at line 5017. A = 74 + PADDLE(0)/2. 92 is the equation
that limits the motion of Player 0 on the screen. The farthest left X
location that Player 0 can move to is 74. The range of values for the
PADDLE(O) is 0 to 228. Dividing this range of values by 2.92
converts the largest value of 228 to the rightmost location of Player
o and makes the fullleft-to-right motion of the Player a full tum of
the PADDLE. In order to simulate continuous motion, this equa­
tion is also put into every subroutine where the program execu­
tion takes a noticeable amount of time.

The subroutine MOVE at line 5100 is a loitering loop that
waits a random number of loops until the first attack begins.
When the number 50 is reached, program execution jumps to
SELECT at line 5200.

The SELECT subroutine picks the sequence of the attackers
from ATTACK1$ through ATTACK4$. ATTACK$ for the first wave
was initially called in line 1930. This routine randomly picks one of
the four attack sequences defined in lines 54 and 60. An attempt

203

L Advanced Techniques

to read the ninth element in this string is TRAPped to line 5211,
which redraws the attackers and starts over.

Note this use of the TRAP instruction. It is not meant simply
to avoid a program crash, but rather to perform an integral
program function. Rather than a RAM and time-consuming test
or loop, one simple statement is used.

Lines 5215-5240 erase the chosen attacker, position Player 1
over the erased attacker, and give some warning sounds. Line
5241 calls the subroutine JOIN at line 5800. This routine adds
together the strings which are used to define the X and Y posi­
tions of Player 1 as it moves from its initial position to its attack
position.

Special TRAPs
The strings are the AX1$ and AY1$ through AX8$ and AY8$ that
were defined back in the beginning of the program. These are the
X and Y coordinates to be POKEd into PLX + 1 and PLY + 1. They
are stored as groups of three numbers. These values are read in
lines 5260-5270. Note that by using TRAP here I do not have to
keep track of the number of elements in the string. And again
instead of some test or loop, a simple statement is used. These
strings are merely added together. No matter what the sequence
of the attack, the last pattern is always the same, and the last set of
numbers in the string is always the same.

The ATTACK subroutine at line 5300 is where the shooting
occurs. The first call is for the subroutine PATTERN at line 5600.
This subroutine chooses among five possible X position patterns
and five possible Y position patterns. These are the rest of the
strings defined in the beginning of the program. This inde­
pendent choice of X and Y patterns permits a total of 25 different
attack patterns.

In line 5315, the X and Yvalues for this attack motion are read
out in groups of three. In this case, the TRAP is used to jump back
to the PATTERN subroutine call to pick another pair of strings
when the end of the STRING is reached. This gives continuously
varying motion to the attacker.

Lines 5324 and 5325 change the size of the attacker as it comes
closer or goes farther away. F and G are flags that control the firing
and motion of the missiles. It is worth examining how these flags
function .

F controls the attacker's missile firing. Other than its house­
keeping function, the primary purpose of the IF F = 0 is to fix the

204

6
Advanced Techniques __ lIiiil

X and Y location at the moment of firing so that the motion is
calculated only from this point. After F is set to 1, these statements
are no longer executed. If they were, the missile would weave
back and forth in X and Y in unison with the attacker. Behind the
F = 1 flag are the calculations that determine whether the missile
passes to the left or to the right. The G flag performs a similar
program function.

Lines 5350 and 5352 check for missile-to-player collisions and
direct action to the appropriate subroutine. Line 5355 clears the
collision registers.

HITYOU, HITME, HITUS
The HITYOU, HITME, and HITUS subroutines introduce Players
2 and 3 as the explosions. In HITYOU and HITME, these two
players are sequentially put in the same location as the hit player.
This sequence is controlled by the TTvariable. Note that the two
explosion shapes are the same but of different colors. Also, when
they are called, they are placed one Yposition different. The
purpose is to give some illusion of a dynamic explosion.

Lines 5440 and 5540 move the hit player and explosions off
the screen. The logical truth statements determine whether the hit
player was to the left or right of center when hit and then move it
off the screen to the left or right as appropriate. Lines 5545 and
5547 cause the attacker and the explosions to grow larger as they
go by.

The significant difference in the two subroutines is that in
HITYOU there is an additional collision test in line 5560. This
requires you to get out of the way of the hit player as it rolls off the
screen. If you don't, you are also destroyed, and both players roll
off the screen. This is controlled by the HITUS subroutine. Being
hit by the attacker's missile and by the damaged attacker causes
you to lose one life.

Good Practice
This is a quick review of a fairly complex program. It exploits
many of the Atari's features. The method of reserving the Player/
Missile Graphics pages by moving RAMTOP lets the machine
take care of you and perhaps completes the official Atari version of
how to tum on the function.

205

L Advanced Techniques

Starshot
40 J=66:PX=5
50 DIM ATTACI<$(8).AX5$(J).AY5$(J).AX$(3*J).A

Y$(3*J),APX1$(J).APY1$(J) , APX$(J).APY$(J)
51 DIM AX4$(J),AY4$(J).APX2$(J) .APY2$(J).APX

3$(J) ,APY3$(J) ,APX4$(J) ,APY4$(J) ,APX5$(J)
,APY5$(J)

52 DIM AX3$(J),AY3$(J),AX2$ (J) .AY2$(J),AX6$(
J) ,AY6$(J) ,AX7$(J) ,AY7$(J) ,AY8$(J) ,AX8$(J
) ,AX1$(J) ,AY1$(J)

53 DIM PLAYER$(10),ATTACI<I$(8),ATTACK2$(8),A
TTACK3$(8),ATTACK4$(8)

54 ATTACK2$="37628415":ATTACf<3$="28647135":A
TTACK4$="47618325"

61Z1 ATTACK1$="54637281": PLAYER$=" 1 2 3 4 5"
61 AX5$="13613613513413313213113012912812712

6124122121121 1 22123124125126126"
62 AY5$=" 0380370350341213403403503703904104304

504 70491Z1520560591Z162Ql6506807107 4"
63 AX4$="11812012212412612813013213413413213

0128126126126 1 26126126126126126"
6 4 AY 4$=" 0360 34Ql 3 203002803QllZ1321Z1 34 iil37 Ql400431Z1 5

0Ql570630701Z17 60820801217807 6075Q174"
65 AX6$="156154152150148146144142140138136"
66 AY 6$=" 038036034QI331Z134036QI381Z140!!142QI40038"
6 7 A X 2$=" Q1780801Z1820840860881Z19iilQ192 Q194096098"
68 AY2$=" 0380420441Z1461Z14805Ql1Z152 Q149046042Q138"
69 A XI $=" 058Q1601Z1621Z164Q166068Q17 QlQl7 2Ql7 407 612;78"
71Z1 AY 1 $=" Ql38035Ql31 Ql35038Ql42Ql4 60480 46Q142038"
71 AX3$="0981QlQlI QI21QI41061Q,811QI112114116118"
72 AY3$=" 04QlQI44QI48QI46044042QI4fH;:138QI36j!l37QI38"
73 AX7$=" 17617417217016816616416216Q1158156"
7 4 AY7$=" 038036Q1 3 403203Q1033036039Q142Q140Q138"
75 AX8$="196194192190188186184182180178176"
7 6 AY8$=" 1Z14QIQ144Q148046044042Q140038036036038"
83 APX1$=" 126121Z111411C!111011412Q11261321381421

4213813212612011411011Q1114120126"
84 APY 1 $=" Ql74Ql7708209QIQl9510Ql 1041051 12171 12191121

141121091071 Q1510410Ql Q195090082077"
85 APX2$="1261281301341381421421361301241211

18110107104107110118120124126128"
86 APY2$="0740790840860880941001061101141101

QI8106100QI9 4087QI8Ql080QI8QIQl7807 6075"
87 APX3$="1261301341381421461421381341301261

26130134138142144142138134130126"
88 APY3$=" 07 4Ql7 407 41Z17 407 4Ql82086QI90Ql981061141

2011410 6Ql98Ql9 1i1086082Ql7 4QI7 41217 4Ql7 4"
89 APX4$=" 126J. 3414213412611811Q11101261341421

3412611811011012613414213212 6 126"

206

6 Advanced Techniques ___ _

9121 APY 4$=" 07 4078082121860921Z186QI82Q1781217 412178082121
86092096092088084080076072072074"

91 APX5$="1261321381441501561621561501441381
32126120116110104098104110116126"

92 APY5$=" 1217 41Z171Z1ii168Qi712107408121084!2191Z1Q1961021061
02096092086082078076074070072074"

100 BACKGROUND=10000:START=5000:MOVE=5100:SE
LECT=5200:ATTACK=5300 : HITME=5400:HITYOU=
551Z11Z1

110 PATTERN=5600:RESET=5700:JOIN=5800:HITUS=
59 iZl 121

120 XSCR=6000:YSCR=6100:LOSS=6200:DISPLAY=63
00:RESET2=6400:ASELECT=6500

189121 GOSUB 300121QI
1900 GOSUB BACKGROUND
191121 GOSUB START
1920 GOSUB DISPLAY
1930 GOSUB ASELECT
2000 REM CONTROL LOOP
2100 FOR IJK=1 TO 2 STEP 0
2110 TEMP=PEEK(710':POKE 710,PEEK(709':POKE

709,PEEK(708':POKE 708,TEMP
212121 Q=SIN(l)
2130 GOSUB MOVE
2900 NEXT IJK
500121 REM START
5005 POKE 708,10:POKE 709,0:POKE 710,56:POKE

PLY,150:POKE 53761,132:REM 709,152
5010 FOR 1=1 TO 8
5011 FOR J=0 TO 2
5016 TEMP=PEEK(710':POKE 710,PEEK(709):POKE

709,PEEK(708):POKE 708,TEMP
5017 A=74+PADDLE(0'/2.92:POKE PLX,A:POKE 537

60,A-33
5019 COLOR J*I:IF J*I=4 OR J*I=0 OR J*I=8 OR

J*I=12 OR J*I=16 THEN COLOR 1
5020 PLOT 20*I-10,J:DRAWTO 20*I-l1,J
5021 COLOR J*I:IF J*I=4 OR J*I=0 OR J*I=8 OR

J*I=12 OR J*I=16 THEN COLOR 2
5022 PLOT 20*I-8,J+3:DRAWTO 20*I-12,J+3
5025 TEMP=PEEK(710) :POKE 710,PEEK(709):POKE

709,PEEK(708):POKE 708,TEMP
5033 COLOR J*I: IF J*I=4 OR J*I=0 OR J*I=8 OR

J*I=12 OR J*I=16 THEN COLOR 3
5034 PLOT 20*I-8,J+6:DRAWTO 20*I-9,J+6:PLOT

20*I - 12,J+6:DRAWTO 20*I-l1,J+6
5036 NEXT J:NEXT I
5!o'19\i1 RETURN
510QI REM t10VE

207

6 iii ___ Advanced Techniques

5105
511lZ5

5 1 1 1

FOR IJK=l TO 2 STEP 0
TEMP=PEEK(710':POKE 7 1 0,PEEK(709) :POKE
709,PEEK(7 0 8) :POKE 7 08,TEM P
A=SIN(l)

5120 A=74+PADDLE(0)/ 2.92 :P OK E PL X,A:POKE 537
6~I,A-33

5130 RR=RR+l:IF RR=5 0 THEN GOSUB SELEC T:RR=I
NT(40*RND(0» :PO KE 53763,0:POKE 53761,1
32

5185 NEXT IJV
519~1 RETUF:N
520 (1) REI'1 SELECT
52~; 5 JJJ=JJJ+l
5210 TRAP 5211:R=V AL(A TTACK$(JJJ,JJJ) :CO LOR

0:GOTO 5215:TRAP 40000
5211 GOSUB START:JJJ=0:GOTO 5205
5215 FOR J=0 TO 2
5220 PLOT 20*R-1 0,J:DRA WTO 20*R - l1,J
5223 TEMP=PEEK(710) :POVE 710,PEEK(709) :POKE

709,PEEK(708):POKE 708,TEMP
5224 A=74+PADDLE(0)/2.92:POKE PLX,A:POVE 537

60, A-3 :':::
5225 PLOT 20*R-8,8-J:DRAWTO 20*R-9,8-J:PLOT

20*R-12,8-J:DRAWTO 20*R-ll,8-J
5231'21 NEXT J
5235 PLOT 20*R-8, 3:DRA WTO 20*R-12,3:PLOT 20*

R-8,5:DRAWTO 20* R-12,5
5236 POKE PLX+l,36+ 20*R: POKE PLY+l,38:PLOT 2

0*R-8,4:DRAWTO 20*R-12,4
5238 FOR Z=250 TO 50 STEP -50:FOR X=15 TO 0

STEP -5:S0UND 3,Z,8,X:N EX T X
5239 TEMP=PEEV(710) :POKE 710,PEEK(709) :POKE

70 9,PEE K(708) :POKE 708,TEMP
524 (21 NEXT Z
5241 GOSUB JOIN
5249 TEMP=PEEKC710':POKE 710,PEEK(709) :POKE

709,PEEK(708):POKE 708, TEMP:POKE 53763,
134

5250 A=86+PADDLE (0 ' /2.92:POK E PLX,A:POKE 537
61'2!, A-33

5255 FOR J=1 TO 200
5260 TRAP 5280:X=VALCAX$ (J*3-2,J*3'):Y=VAL(A

Y$(J*3-2,J*3)):POKE PLX+l,X:POKE PLY+l,
Y:TRAP 40000:POKE 53762,Y-20

5265 TEMP=PEEK(710):POKE 710,PEEK(709) :POKE
709,PEEK(708):POKE 70 8,TEMP

5266 A=74+PADDLE (0'/2.92:P OKE PLX,A:POKE 537
60,A-33

5271'21 NEXT J

208

6
Advanced Techniques ___ ii�

5280 60SUB ATTACK:60SUB RESET
529~1 RETURN
530~1 REM ATTACK
5305 60SUB PATTERN
5310 FOR J=1 TO 200
5315 TRAP 5305:X=VAL(APX$(J*3-2,J*3»:Y=VAL(

APY$(J*3-2,J*3»:TRAP 40000
5321 TEMP=PEEK(710):POKE 710,PEEK(709):POKE

709,PEEK(708':POKE 708,TEMP
5322 A=74+PADDLE(0)/2.92:POKE PLX,A:POKE 537

60,A-33
5324 IF Y >94 THEN POKE 53257,I:POKE 53258,1
5325 IF Y< 94 THEN POKE 53257,0:POKE 53258,0
5330 POKE PLX+l,X:POKE PLY+l,Y:POKE 53762,Y-

20
5333 IF F=0 THEN MIP=MYPMBASE+777+Y:POKE 532

53,X:POKE MIP,12:MIPO=MIP:T=MYPMBASE+90
7+Y:XT=X

5335 IF F=0 THEN F=I:POKE 53765,207:POKE 537
64,11210

5337 IF F=1 THEN MIP=MIP+7:XT=(-1.5+XT'.(XT <
128)+(1.5+XT'.(XT } 128):POKE 53253,XT:PO
KE MIP,12:POKE MIPO,0

5338 IF F=1 THEN MIPO=MIP:POKE 53765,160:IF
MIP)T-50 THEN F=0:POKE MIPO,0

5339 TEMP=PEEK(710':POKE 710,PEEK(709':POKE
709,PEEK(708) :POKE 708,TEMP

5340 IF 6=0 THEN IF PTRI6(0'=0 THEN M0P=MYPM
BASE+768+150:PT=80 + PADDLE(0)/2.29:POKE
M0P,3:6=I:POKE 53252,PT

5342 IF 6=1 THEN M0PO=M0P:T0=M0P - 70:6=2:POKE
53765,15:POKE 53764,50

5347 IF 6=2 THEN M0P=M0P-7:PT= (3.5+PTl*(PT(1
28)+(-3.5+PTl* (PT) 128':POKE M0P,3:POKE
MrZlPO,0

5349 IF G=2 THEN POKE 53252,PT:M0PO=M0P:POKE
53765,160:IF M0P (T0 THEN 6=0:POKE M0PO

5350 IF PEEK(5 32 56)=2 THEN 60SUB HITYOU
5352 IF PEEK (53257)=1 THEN 60SUB HITME:POKE

M0PO,0:POKE MIPO,0
5355 POKE 53278,0
5375 NEXT J
5380 POKE PLX,PADDLE (0 l:POKE PLY,148
5395 RETURN
54fil!1: REt1 HI Tt1E
5405 POKE 53761,15:POKE M0PO,0:POKE MIPO,0:R

R=lil
5410 FOR J=l TO 200

209

6 Iii_ •• _ Advanced Techniques

5412

5413

5415

5421

5424

IF TT=0 THEN POKE 53258,3:POKE PL Y+2,14
4+RR:POKE PLX+2,A:POKE PLX,A:POKE PLY,1
48+RR:TT=1
IF TT=1 THEN POKE 53259,3:POKE PLY+3,14
4+RR:POKE PLX+3,A:POKE PLX,A:POKE PLY, 1
48+RR:TT=0
TRAP 5410:X=VALCAPX$(J*3-2,J*3)):Y=VAL(
APY$(J*3-2,J*3» :TRAP 40000
TEMP=PEEK(710':POKE 710,PEEK (709):P OKE
709,PEEK(708) :POKE 708,TEMP
IF Y)94 THEN POKE 53257, I:POKE 53258,1

5425 IF Y{94 THEN POKE 53257,0:POKE 53258,0
5427 POKE PLX+l,X:POKE PL Y+l,Y:POKE 53762,Y+

20
5430 IF TT=0 THEN POKE 53258,3:POKE PLY+2,14

4+RR:POKE PLX+2,A:POKE PLX+3,0:TT=1
5431 IF TT=0 THEN POKE 53258,3:POKE PLY+2,14

4+RR:POKE PLX+2,A:POKE PLX,A:POKE PLY,1
48+RR:TT=1

5432 IF TT=1 THEN POKE 53259,3:POKE PLY+3,14
4+RR:POKE PLX+3,A:POKE PLX,A:P OKE PLY,1
48+RR: TT=Qj

5435 TEMP=PEEK(710):POKE 710,PEEK(709) :POKE
709,PEEK(708):POKE 708,TEMP

5440 RR=(RR+7):A=(A+7)*(A) 128)+(A-7)*(A { 127)
:IF A(0 THEN J=201

5441 POKE 53760,RR
5442 IF A(0 OR A)255 THEN J=201
5444 IF 144+RR >255 THEN J=201
5490 NEXT J:GOSUB YSCR
5495 POKE PLY+2,229:POKE PLY+3,229:POKE 5376

1 , 0
5497 RETURN
550QI REM HI TYOU
5505 POKE 53763,15:POKE M0PO,0:POKE MIPO,0:R

R=0:POKE M0P,0:POKE MIP,0
5510 FOR J=1 TO 200
5531 IF TT=0 THEN POKE PLY+2,Y-10:POKE PLX+2

,X:POKE PLY+l,Y:POKE PLX+l,X:POKE PLX+3
,0:TT=1

5532 IF TT=1 THEN POKE PLY+3,Y-9:POKE PLX+3,
X:POKE PLY+l,Y:POKE PLX+l,X:POKE PLX+2,
Qj: TT=0

5534 A=74+PADDLE(0)/2.92 :POKE PLX,A:POKE 537
62,Y:POKE 53760,41+PADDLE(0)/2.92

5540 Y=Y+7:X=(X+3.5)*(X) 128)+(X-3.5'*(X (128)
5545 IF Y>94 THEN POKE 53257,I:POKE 53258,1:

POKE 53259,1
5547 IF Y>130 THEN POKE 53257,3:POKE 53258,3

:POKE 53259,3

210

5550 TEMP=PEEK(710):PoKE 710,PEEK(709':PoKE
709,PEEK(708):PoKE 708,TEMP

5560 IF PEEK(53260)< >0 THEN GoS UB HITUS
5582 IF Y>255 THEN J=201
5584 IF X>255 OR X<0 THEN J=201
5590 NEXT J:GoSUB XSCR
5595 POKE PL2+2,0:POKE PLX+3,0:POKE 53763,0
5597 RETURN
5600 REM SELECT PATTERN
5610
5621
5622
5623
5624
5625

R=INT(5*RND(0)) + 1
IF R=1 THEN APX$=APX1$
IF R=2 THEN APX$=APX2$
IF R=3 THEN APX$=APX3$
IF R=4 THEN APX$=APX4$
IF R=5 THEN APX$=APX5$

5626 TEMP=PEEK(710):POKE 710,PEEK(709):PoKE
709,PEEK(708) :PoKE 708,TEMP

IF F'=~ THEN
IF R=3 THEN
IF R=4 THEN
IF R=5 THEN

4$
5822 IF R=3 TH~N AY$=AY3$:AY$(LEN(AY$)+1)=AY

4$
5825 IF R=4 THEN AX$=AX4$:AY$=AY4$
5830 IF R=5 THEN AX$=AX5$:AY$=AY5$
5835 IF R=6 THEN AX$=AX6$:AX$(LEN(AX6$)+ 1)=A

X5$
5837 IF R=6 THEN AY$=AY6$:AY$(LEN(AY6$)+1)=A

Y5$
5840 IF R=7 THEN AX$=AX7$:AX$(LEN(AX$)+1)=AX

6$:AX$(LEN(AX$)+1)=AX5$

211

6 Iii ___ Advanced Techniques

5842 IF R=7 THEN AY$=AY7$:AY$(LEN(AY$)+1)=AY
6$:AY$(LENIAY$)+1)=AY5$

5845 IF R=8 THEN AX$=AX8$:AX$(LEN(AX$)+1)=AX
7$:AX$(LENCAX$)+I)=AX6$:AX$(LENIAX$)+1)
=AX5$

5847 IF R=8 THEN AY$=AY8$:AY$(LEN(AY$)+1)=AY
7$:AY$(LEN(AY$)+1)=AY6$:AY$ILEN(AY$)+I)
=AY5$

5890 RETURN
590121 REM HI TUS
5905 POKE 53763, 15:PoKE M0Po,0:PoKE MIPo,0:R

R=0:PoKE M0P,0:PoKE MIP,0
5910 FOR J=1 TO 200
5931 POKE PLY+2,Y-10:PoKE PLX+2,X:POKE PLY+l

,Y:PoI<E PLX+l,X
5932 Pol<E PLY+3,Y-10:PoKE PLX+3,A:PoKE PLY,Y

:PoKE PLX,A
5940 Y=Y+7:X=(X+3.5)*(X>128)+(X-3.5)*(X (128)

: A= (A+3. 5) * (A>112) + (A-3. 5) * (A(112)
5950 TEMP=PEEI«710):PoKE 710,PEEK(709):PoKE

709,PEEK(708):POKE 708,TEMP
5982 IF Y>255 THEN J=201
5984 IF X>255 OR X<0 THEN J=201
5990 NEXT J:GOSUB YSCR
5995 POKE PL2+2,0:POI<E PLX+3,0:POKE 53763,0
5997 RETURN
6121121121 REM XSCR
6010 SCoRE=SCoRE+10
6080 GoSUB DISPLAY
612190 RETURN
610!i1 REM YSCR
612121 PLAYER$ (2*PX-l, 2*PX-l) ="
6125 PX=PX-l
6130 IF PX=0 THEN GoSUB LOSS
6180 GoSUB DISPLAY
61 ''1!Z1 RETURN
62121iEi REI'1 LOSS
6210 IF SCoRE) HSCR THEN HSCR=SCoRE
6220 GoSUB DISPLAY
6280 GoSUB RESET2
629121 RETURN
6300 REM DISPL AY
6305 PO KE 53258,0:POKE 53259,0
631 i~1 ? PLAYER$
632121 ? "SCORE: "; SCORE
633121 ? "HIGH SCORE: "; HSCR
634iEI IF PX=l2j THEN '7 .. PUSH TF: IGGER FOF: ANoTH

ER GAME";
6350 IF PX=0 THEN IF PTRIG(0'=1 THEN 6 3 50:GO

SUB RESET2:GOSUB ASELEC T

212

6
Advanced Techniques ___ iii

636~j '/ PLAYER$
6362 '/ "SCOF:E: ;0 ; S CORE
6364 ':-' .. HIGH SCORE: "; HSCR
639!il RETURN
640iii REM RESE T 2
641 IZi SCORE=~l: PLA YER$ = " 1 2 3 4 5 "
643 iil PX=5
6491Zi RETURN
65?~lj:!) REM ASELECT
6510 ZZ=INT I 4*RND (0 » + 1
6520 IF ZZ=1 THEN AT TACK$=ATTAC K 1$
6522 IF ZZ=2 THEN ATTACKS=ATTACK2$
6524 IF ZZ=3 THEN ATTACKS=ATTACK3$
6526 IF ZZ=4 THEN ATTACKS=ATTACK4$
6590 F: ETUF:N
10000 REM BACKGROUND
10005 FOR 1= 0 TO 3:POKE 708+I,0:NEXT 1
10007 COLOR 3 :PLOT 0,20:DRAWTO 70,20:DRAWTO

70,40:DRAWT O 9 0 ,40:DRAWTO 90,20:DRAWTO
1 59~ 2 Q}

10010 COLOR I:FOR 1 = 1 TO 2
10020 PLOT 0,20+I: DRAWTO 70-I, 20 +I:DRAWTO 70

-I,4 0+ I:DRAWTO 90+I,40+I:DRAWTO 9 0 +1,2
0+I:DRAWTO 159,20+I:NEXT I

10040 COLOR 2 : FOR 1=1 TO 2
10050 PLOT 0,22+I:DRAWTO 68-1,22+I:DRAWTO 68

-I,42+I:DRAWTO 92+I,42+I:DRAWTO 92+1,2
2+I:DRAWTO 15 9 ,22+I:NEXT 1

10060 COLOR 3:FOR 1=1 TO 3
10070 PLOT 0,24+I:DRAWTO 66-1,24 + I:DRAWTO 66

-I,44+I:DRAWTO 94+1,44+I:DRAWTO 94+1,2
4+I:DRAWTO 15 9 ,24+I:NEXT 1

10080 COLOR I:FOR 1=1 TO 3
10090 PLOT 0,27+I:DRAWTO 63-1,27+I:DRAWTO 63

-1,47+I:DRAWTO 97+I,47+I:DRAWTO 97+1,2
7+I:DRAWTO 159,27+I:NEXT 1

10100 COLOR 2:FOR 1=1 TO 5
10110 PLOT O,30+I:DRAWTO 60-1,30+I:DRAWTO 60

-1,50+I:DRAWTO 100+1,50+I:DRAWTO 100+1
,30+I:DRAWTO 159,30+I:NEXT 1

10120 COLOR 3:FOR 1=1 TO 5
10130 PLOT j:!l,35+I:DRAWTO 55-I,35+I:DRAWTO 55

-1,55+I:DRAWTO 105+I,55+I:DRAWTO 105+1
,35+I:DRAWTO 159,35+I:NEXT 1

10140 COLOR I:FOR 1=1 TO 7
10150 PLOT 0,40+I:DRAWTO 50-1,40+I:DRAWTO 50

-1,60+I:DRAWTO 110+I,60+I:DRAWTO 110+1
,40+I:DRAWTO 159,40+I:NEXT I

10160 COLOR 2:FOR 1=1 TO 7

213

6 Iii_ •• _ Advanced Techniques

10170 PLOT 0,47+I:DRAWTO 43-I,47+I:DRAWTO 43
-I,67+I:DRAWTO 117+I,67+I:DRAWTO 117+1
,47+I:DRAWTO 159,47+I:NEXT I

10180 COLOR 3:FOR 1=1 TO 9
10190 PLOT 0,54+I:DRAWTO 36-I,54+I:DRAWTO 36

-I,74+I:DRAWTO 124+I,74+I:DRAWTO 124+1
,54+I:DRAWTO 159,54+I:NEXT I

10200 COLOR I:FOR 1=1 TO 12
10210 PLOT 0,63+I:DRAWTO 27-I,63+I:DRAWTO 27

-I,83+I:DRAWTO 133+I,83+I:DRAWTO 133+1
,63+I:DRAWTO 159,63+I:NEXT 1

10220 COLOR 2:FOR 1=1 TO 20
10230 PLOT 0,75+I:DRAWTO 14,75+I:PLOT 159,75

+I:DRAWTO 145,75+I:NEXT I
1031150 RETURN
30000 REM *****PM SE T UP*****
30010 GRAPHICS 7:POKE 106,PEEK(1061-16:GRAPH

ICS 7:POKE 752,I:REM *****16 PAGE RESE
RVE*****

31Z5021Z:? :" :" "{9 SPACES}PREPAf;:E FOR COMBAT"
30204 POKE 53277,3:REM *****GRACTL PLAY&MISS

30206 POKE 559,62:REM *****DMACTL,lLINE,PLAY

,MIS,NORM FIELD*****
30208 POKE 54279,PEEK(106):REM *****PMBASE I

SNOW RAMTOP*****
30210 POKE 53256,3:POKE 53257,0:POKE 53258,0

:POKE 53259,0:REM *****PLAY SIZES**.**
30212 POKE 623,33:REM *****P R IORITY PL OVER

PF*****
30214 MYPMBASE=256*PEEK(106) :REM **.**NEW PM

BASE*****
30230 POKE 704, 134:POKE 705,24:POKE 706,46:P

OKE 7lZ57,54:POKE 1788, (F'EEK(llZi6)+4) :REt1
*****START OF PM DATA****.

30232 POKE 710,52:POKE 709,58:POKE 711,29:PO
KE 712,121

30236 REM *****VBLANK INTERUPT ROUTINE.****
30238 FOR 1=1536 TO 1706:READ A:POKE I,A:NEX

T I
30240 FOR 1=1774 TO 1787:POKE I,0:NEXT 1
30242 DATA 162,3,189,244,6,240,89,56,221,240

,6,24121,83,141,254,6,11216,141
30244 DATA 255,6,142,253,6,24,169,0,109,253,

6,24,109,252,6,133,204,133
30246 DATA 206,189,240,6,133,203,173,254,6,1

33,205,189,248,6,170,232,46,255
3111248 DATA 6,144,16,168, 177,2QI3, 145,205, 169,

0,145,203,136,202,208,244,76,87

214

6
Advanced Techniques ___ Iii.

31252512, DATA 6, 16~1 , !ZI, 177,203, 145,205, 169,~1, 145
,203,200,202,208,244,174,253,6

30252 DATA 173,254,6,157,240,6,189,236,6,240
,48, 133,21213,24, 138, 141,253,6

30254 DATA 109,235,6,133,204,24,173,253,6,10
9,252,6,133,206,189,240,6,133

30256 DATA 205,189,248,6,170,160,0,177,203,1
45,205,200,202,208,248,174,253,6

30258 DATA 169,0,157,236,6,202,48,3,76,2,6,7
6,98,228, i:'l, 121,104,169

30260 DATA 7,162,6,160,0,32,92,228,96
30262 S=USR(1696)
30276 PLX=53248:PLV=1780:PLL=1784
30278 POKE PLL,9:POKE PLL+l,8:POKE PLL+2,26:

POKE PLL+3,26
30282 FOR I=MVPMBASE+1024 TO MVPMBASE+1032:R

EAD A:POKE I,A:NEXT I:REM *****DEFENDE
R PLAVER 115*****

30283 DATA 24,24,60,60 , 126,255,126,36,36
30285 FOR 1=0 TO 7:READ A:POKE MVPMBASE+1280

+I,A:NEXT I:REM *****ATTACKER PLAVER 1

30287 DATA 204,204,204,252,252,48,48,48
30299 REM *****EXPLOSION PLAVER 2*****
30300 FOR I=MVPMBASE+1280+256 TO MVPMBASE+25

6+1305:READ A:POKE I,A:NEXT I
30305 DATA 24,36 , 80,52,90,52,105,93,170,237,

181,106,253,94,171,246,173,85,44,90,11
6,44,52,44,24,8

30309 REM *****EXPLOSION PLAVER 3*****
30310 RESTORE 30305:FOR I=MVPMBASE+1280+512

TO MVPMBASE+1305+512:READ A:POKE I,A:N
EXT I

30590 RETURN

215

L A"'anced Technique'

Laser Gunner II
_____ Gary R. Lecompte

Version for the Atari by Charles Brannon with revisions by
Thomas A. Marshall.

This revised version of "Laser Gunner" mixes machine language and
BASIC to make a very exciting game. The enhancements include having
two missiles on the screen simultaneously and smooth animation even as
the missiles are fired .

In your comer of the universe, a zone of high-pressure radioactive
plasma is contained by a platinum-iridium wall. Your ship,
immersed in the red zone, is charged with a vital duty: defend the
wall. The vengeful enemies of your civilization send wave after
wave of attack ships in an effort to breach the wall. These semi­
smart robot ships will concentrate their firepower on your weakest
spot and mercilessly try to fire their way into the wall.

Your only defense is your powerful particle beam which you
use to fend off the attacking drones. The enemy ships are wary of
your power, so if yeu move too close to an attack point, you can
spook the enemy ship into picking another target. Move to shoot
at the new position, and it will just cruise back to another vulner­
able spot. You must not let the enemy blast a hole in the wall
since, like a balloon stuck with a pin, the radioactive plasma will
explode, reducing your ship to an expanding shell of iridescent
particles.

As the laser gunner, you try to react quickly to your enemy's
shots. Follow the ship as well as you can, but do not stray too far
from a weak spot. When you destroy one ship, another will
appear at a random position, and will home in on a vulnerable
spot in the wall.

A Novel Player/Missile Technique
For a game written in BASIC, "Laser Gunner" is reasonably fast
and smooth. The smoothness of motion comes from player/
missile graphics, but the speed comes from an unusual technique
that lets you move player/missile graphics at machine language
speed.

216

6
Advanced Techniques __ lIiiil

A special graphics technique is used here. Instead of storing
the player/missile graphics at the top of memory, a large string is
dimensioned to hold the player/missile data. When a string is
dimensioned, a block of memory is reserved for it. The starting
address of the string can be determined by using the ADR func­
tion. The problem is that player/missile graphics must start on an
even 1K boundary (the address must be a multiple of 1024), or a 2K
boundary (divisible by 2048) for single-resolution player/missile
graphics. Strings are given the next available address when
dimensioned, which would only be on an even kilobyte address
by sheer coincidence.

So when the ADdRess of the string is determined, we must
find what offset to add to the address to reach the next boundary.
It can be shown that in worst case conditions (i.e., the address is
just one byte past a 1K or 2K boundary), we must allow for an
offset of at least 1023 bytes for double-resolution, or 2048 bytes for
single-resolution PIM graphics. So, although double-resolution
PIM graphics require only 1024 bytes, we must dimension the
holding string at least 2048 bytes. Then, a simple calculation (lines
150-160) will give us the starting address within the string of the
PIM base address, PMBASE. This value is then used to "set up"
PIM graphics as usual.

The advantage of using a string is twofold: one, we know
that BASIC is covetously protecting the string from the
"RAMTOP Dragon" (see COMPUTEt's Second Book of Atari
Graphics) and other nasties. Second, we can use BASIC's fast
string manipulation commands to move segments of strings
around, scroll a string, erase a string, copy one string to another,
and more. Since the memory being moved in the string is the PIM
memory, these manipulations directly modify the players and
missiles. And since these string operations internally proceed at
machine language speed, we get fast PIM animation using BASIC.
Although the code is not as straightforward as dedicated PIM
commands such as PMMOVE or PMGRAPHICS, it sure beats
cryptic USR statements. As a matter of fact, since BASIC permits
such flexibility with strings, it may be the best solution to using
PIM graphics from BASIC.

Using Vertical Blank for Smoother Motion
The original version of Laser Gunner required all other motion to
stop when missiles were fired. By using a vertical blank interrupt
routine, continuous and smooth motion can be achieved.

217

6 ____ Advanced Techniques

The vertical blank (VB) is the time during which the television's
electron beam is turned off while it returns from the lower-right
comer of the screen to the top-left. Depending on the graphics
mode and other interrupts, there are approximately 7980 machine
cycles available during a single VB. (A machine cycle is the smallest
measurement of time on your computer's internal clock.)

Bringing VB into the Picture
To utilize the VB, we first have to tell the operating system (OS)
where to go. We do this by performing a Vertical Blank Interrupt
(VBI) through the Set Vertical Blank Vector (SETVBV) routine.
Before jumping to the SETVBV, we have to load the least signifi­
cant byte (LSB) in the Y register and the most significant byte
(MSB) in the X register of our VB machine language routine.

Into the accumulator we can place either a 6 or a 7. Six is for
deferred mode; the as does its housekeeping operations before it
executes our code. Seven is for immediate mode; the as executes
our code first during the VB. Since we will be checking the colli­
sion registers, we will be loading a 6 into the accumulator. The
BASIC program initializes the SETVBV through the USR state­
ment on line 1460. To return control to the as, we jump back
through $E45F.

The BASIC and the machine language (ML) programs interact
through several PEEKs and POKEs. The ML program checks the
STRIG(O), location $0284, for the press of a button, and moves
both missiles horizontally. Since the player/missile graphics are
defined in strings, it is easier to have BASIC draw and erase the
missiles by PEEKing the flags that the ML program sets.

In the enhanced version, both missiles appear on the screen
at the same time. This requires the additional coding located at
$0607. The missiles are defined as:

BIT I 7 I 6 I 5 I 4 I 3 I 2 11 I 0 I
M3 M2 Ml MO

Since it is difficult for Atari BASIC to selectively tum bits off
and on, we will use ML to change the bits. The AND instruction is ~
used to set bits to zero (off). ANDing a bit with zero sets the bit to
zero. The ORA instruction is used to set bits to one (on). By
ORAing a bit with one, we set the bit to one. The flipping of the
missile bits is done in the subroutines at lines 1300-1330.

218

6
Advanced Techniques __ lIIIIIiiil

Further Enhancements
The programming technique of performing graphics movement
during the vertical blank enhances Laser Gunner almost to the
level of difficulty of professional arcade games. Further program
execution speed can be achieved by removing the REMs and
moving the part of the program that does most of the action to the
beginning. This shortens the memory that BASIC has to search to
find line number references. An additional enhancement would
be to add a sound routine during the VB each time the trigger is
pressed.

Laser Gunner II
o REM •• :"t#t #iI ;artl): I: Ii'" ;&'!h{ 1 7 O#t :t:til ",,-n
1 REM An enchanceMen~ o~ Laser Gunner
2 REM {9 O#t:t:tli"""1}
3 REM _. ii¥M:tIIf!j] i iI¥ :W¥'. c.:-;-__ -ti :1. ii¥l .14.11 b-

{ 3 O#t :t:tli 4"1}
4 REM MO~ion o~ ~he Missiles usin ~h

5 REM KiJ:::i aWl. I=- :w 1#1 li!M it¥) ... 1# II{ 1 0 j#J :l:t8 ~1}
6 REM •• 1:x.l:ji.,!iOO.iijjiM.5.!:t:J.. ... : 1!It¥14-itFIW.
7 REM _:11 #Ii '" i!I41ZH!I4 =: 1:;_01",# " •• { 1 1 O#t :t:tli 4"1}
10 GOSUB 1400
20 RESTORE
100 DIM PM$(2048):GRAPHICS 2+16
110 DIM ALIEN$(11),PLAYER$(11),NULL$(11),EXP

LODE$(12*9),TARGET(20)
120 FOR 1=1 TO 11:NULL$(I)=CHR$(0):NEXT I
130 LEVEL=15:CNT=15:REM DECREASE LEVEL FOR A

HARDER GAME
140 A=ADR(PM$):REM RAW ADDRESS
150 PMBASE=INT(A/1024)*1024:REM NEAREST 1 K

BOUNDARY
160 IF PMBASE<A THEN PMBASE=PMBASE+1024:REM

IF BELOW STRING. GO TO NEXT 1K BOUNDARY
170 S=PMBASE-A:REM START OF PMBASE IN STRING

(OFFSET)
180 POKE 559,46:REM SET DOUBLE-LINE RES.
190 POKE 54279,PMBASE/256:REM TELL ANTIC WHE

RE PMBASE IS
200 POKE 53277,3:REM TURN ON PLAYER/MISSILE

DIRECT MEMORY ACCESS(DMA)
210 PM$=CHR$(0):PM$(2048)=CHR$(0):PM$(2)=PM$

:REM CLEAR OUT ALL P/M MEMORY
220 POSITION 4,0:? #6;"laser gunner"
230 ? #6:FOR 1=1 TO 10:? #6; "!;I":NEXT I:POSIT

ION 0,0

219

6
Iii ••• Advanced Techniques

240 REM STRING POS OF PLAYER 0-3, AND MISSIL
ES IN STRING:

250 P0=S+512:Pl=P0+128:P2=Pl+128:P3=P2+128:M
5 = 5+384

260 PM$(P2+32)=CHR$(255):PM$(P2+127)=CHR$(25
5):PM$(P2+33 , P2+127)=PM$(P2+32):REM CREA
TE WALL

270 PM$(P3,P3+127)=PM$(P2,P2+127):REM CREATE
"ZONE"

280 POKE 53250,92:REM POSITION PLAYER 2, THE
WALL

290 POKE 53251 , 60:REM POSITION PLAYER 3, THE
ZONE

300 POKE 53258 , 0:POKE 53259,3:REM REM MAXIMU
M WIDTH

310 POKE 706,14:POKE 707,66:REM SET COLOR OF
PLAYERS 2 AND 3

320 DATA 0,8,28,62,255,62,255,62,28,8,0
330 FOR 1=1 TO 11:READ A:ALIEN$(I)=CHR$(A):N

EXT I:REM PLACE INTO STRING, HENCE INTO
P/M MEMORY

340 AY=32:REM ALIEN VERTICAL LOCATION
350 PM$(Pl+AY,Pl+AY+ll)=ALIEN$:REM PLACE INT

o STRING INTO P/M MEMORY
360 POKE 705,6*16+10:REM SET COLOR OF ALIEN

TO PURPLE
370 POKE 53249, 180:REM SET HORIZNONTAL POSIT

IN
380 POKE 53257,1:REM SET ALIEN TO DOUBLE-WID

TH
390 REM SET UP EXPLODE$, USE FOR EXPLOSION 0

FALlEN
400 FOR 1=1 TO 108:READ A:EXPLODE$(I)=CHR$(A

):NEXT I:REM EXPLODE DATA
410 DATA 8,28,62,255,54,255 , 62,28,8,8,28,62,

235,54,235,62,28,8,8,28,54,227,34,227,54
,28,8

420 DATA 8,24,34,227,34,227,18,24,8,8,24,34,
194,32,163,18,8,8

430 DATA 0,0,0,0,24 , 24,0,0,0,0,0,0,32,8,24,0
,4,0,0,0,0,36,0,16,0,36,0,0,128,10,128,0
,16,0,16,65

440 DATA 0,9,0,0,32,0,32,0,8,0,0,0,64,0,0,64
,0,4,0,0,0,0,0,0,0,128,0

450 RY=INT(78*RND(0)+32):MH=190+RY*2:REM ATT
RACT MODE:

455 POSITION 9,5:? #6;"PRESS":POSITION 9,6:?
#6;"START"

220

Advanced Techniques -.i
46~ FOR 1=32 TO 11~:PM$(P1+I.P1+I+11)=ALIEN$

:IF I=RY THEN PM$(MS+RY+1~,MS+RY+1~)=CHR
$ (12)

47~ IF I)RY THEN POKE 53253,MH-It2
4B~ IF PEEK(53279) >6 THEN NEXT I
49~ PM$(MS+RY+1~,MS+RY+1~)=CHR$(~)

5~~ FOR I=11~ TO 32 STEP -1:PM$(P1+I,P1+I+11
)=ALIEN$:IF PEEK(53279»6 THEN NEXT I

51~ IF PEEK(53279»=7 THEN 45~
515 POSITION 9,5:7 #6;"{5 SPACES}":POSITION

9,6:7 #6;"{5 SPACES}"
52~ IF PEEK(53279)=3 THEN FOR I=~ TO 4:POKE

5324B+I,~:NEXT I:GRAPHICS ~:END
53~ DATA ~,~,224,4B,12~,63,12~,4B,224,~,~
54~ FOR 1=1 TO 11:READ A:PLAYER$(I)=CHR$(A):

NEXT I
55~ PY=6~:REM SET PLAYER ' S VERITCAL LOCATION
56~ PM$(P~+PY,P~+PY+11)=PLAYER$

57~ PM$(P1,P1)=CHR$(~):PM$(P1+127,P1+127)=CH

R$(0):PM$(P1+2,P1+127)=PM$(P1)
5B~ AY=INT(7BtRND(~)+32):PM$(P1+AY,P1+AY+11)

=ALIEN$:REM RESET ALIEN
59~ POKE 53256,1:REM PLAYER ~ DOUBLE-WIDTH
6~~ POKE 5324B,64:REM HORIZONTAL POSITION OF

PLAYER ~

61~ POKE 7~4,26:REM COLOR OF PLAYER ~

62~ POKE 5326~,1:REM MISSILE ~ DOUBLE-WIDTH
63~ ST=STICK(~):IF ST< > 15 THEN DIR=ST:F=2:S0

UNO ~,1~~,~,B

635 IF PEEK(CMPFLG)=1 THEN PM$(TMS,TMS)=CHR$
(~):POKE CMPFLG,0:REM THE MISSILES HIT E
ACH OTHER

636 IF PEEK(COLFLG)=1 THEN POKE COLFLG,~:GOT
o 9~~:REM THE ALIEN MISSILE HIT THE WALL

OR ZONE
64~ PY=PY-(DIR=14)t(PY >3 2)tF+(DIR=13)*(PY<11

~)tF:F=1:REM UPDATE PLAYER
65~ PM$(P~+PY,P~+PY+11)=PLAYER$:SOUND ~,~,~,

~

66~ IF PEEK(M~FLG)=1 THEN GOSUB 1310:REM ERA
SE THE PLAYER'S MISSILE

67~ IF PEEK(TRIGFLG)=~ THEN GOSUB 131~:POKE

M~FLG,~:TMS=MS+PY+5:GOSUB 13~~:POKE TRIG
FLG,1:REM THE TRIGGER WAS PRESSED

72~ IF PEEK(HITFLG)<>~ THEN 79~:REM NO COLLI
SION

725 REM THE PLAYER'S MISSILE HIT THE ALIEN
73~ SCR=SCR+l~:POSITION ll-LEN(STR$(SCR»/2,

5:7 #6;SCR

221

6
�ii ___ Advanced Techniques

735

74~

75~

76~

77~

PM$(TMS,TMS)=CHR$(~):POKE M~FLG,1:POKE H
ITFLG,1:POKE 53278,~
AY=AY+1:P=PEEK(7~5):REM PRESERVE COLOR 0
FALlEN
FOR I=~ TO 11:Z=I*9:PM$(P1+AY,P1+AY+9)=E
XPLODE$(Z+1,Z+9)
POKE 7~5,PEEK(5377~):POKE 53279,~:SOUND
~,I*2,~,15-I:FOR W=1 TO 2:NEXT W:NEXT I
POSITION 5,5:PRINT #6;"{1~ SPACES}":REM E
RASE SCORE

78~ SOUND ~,~,~,~:POKE 7~5,P:GOTO 57~
79~ IF AY=PY THEN 87~:REM TOO CLOSE FOR COMF

ORT
8~~ IF TARGET=~ THEN GOSUB 95~:TARGET=TARGET

(INDEX):REM SELECT A TARGET
81~ IF AY<>TARGET THEN 84~

82~ CNT=CNT-1:IF CNT THEN 63~
83~ CNT=LEVEL:GOTO 87~
84~ AY=AY+SGN(TARGET-AY):REM MOVE TOWARDS TA

RGET
85~ PM$(P1+AY,P1+AY+11)=ALIEN$
86~ GOTO 63~

87~ IF ABS(AY-PY)<1~ THEN GOSUB 97~
875 IF PEEK(ALIEFLG)=~ THEN 63~
88~ POKE ALIEFLG,~:TM1S=MS+AY+5:GOSUB 132~:T

TAY=AY:GOTO 63~
9~~ P=ASC(PM$(P2+TTAY+5»*2-256:GOSUB 133~:P

OKE 53278,~:REM CUT HOLE IN WALL
91~ IF P<~ THEN 99~:REM WALL DESTROYED
92~ PM$(P2+TTAY+5,P2+TTAY+5)=CHR$(P)
93~ GOTO 63~

94~ REM PICK A TARGET
95~ INDEX=INDEX+1:TARGET(INDEX)=INT(78*RND(~

)+32):RETURN
97~ IF INDEX=1 THEN 95~
98~ TARGET=TARGET(INT(INDEX*RND(~)+1»:RETUR

N ~

99~ REM DESTRUCTION OF PLAYER
1~~~ FOR 1=1 TO 1~~:Zl=TTAY+5+I:Z2=TTAY+5-1

1~~5 PM$(TMS,TMS)=CHR$(~):POKE M~FLG,l:POKE

M~PFLG,72

1~1~ IF Zl<126 THEN PM$(P2+Z1,P2+Z1)=CHR$(~)
1~2~ IF Z2>3~ THEN PM$(P2+Z2,P2+Z2)=CHR$(~)
1~3~ IF Zl<126 OR Z2>3~ THEN NEXT I
1~4~ FOR I=3~ TO 1 STEP -l:FOR J=~ TO 2~ STE

P 3:S0UND ~,J+l,1~,8:POKE 7~7,PEEK(5377
~):NEXT J:NEXT I

1~5~ SOUND ~,~,~,~:SOUND 1,~,~,~:POKE 7~7,14
:FOR W=l TO 5~:NEXT W:POKE 7~7,~

222

6 Advanced Techniques ___ _

1060 FOR 1=0 TO 15 STEP 0.2:S0UND 0,1,8,I:PO
KE 704,16+I:NEXT I

1070 SOUND 0,0,0,0
1080 Zl=PV:Z2=PV:INCR=0
1090 Zl=Zl+INCR*(Zl<128):Z2=Z2-INCR*(Z2)=0):

POKE 704,PEEK(53770)
1100 PM$(P0+Z1,P0+Z1)=CHR$(255):PM$(P0+Z2,P0

+Z2)=CHR$(255):POKE 53279,0
1110 INCR=INCR+0.5:IF Zl<127 OR Z2>0 THEN 10

90
1120 FOR 1=1 TO 100:POKE 704,PEEK(53770):NEX

T I
1130 FOR 1=0 TO 7:POKE 53248+1,0:NEXT I:GRAP

HICS 18
1140 POS I T ION 4,0: PR I NT #6; ".w:y;:.-i4-·lihht4;" : PO

SITION 3,5:PRINT tt6;"your score was:";
1150 POSITION 10-LEN(STR$(SCR»/2,7:PRINT #6

;SCR
1160 FOR 1=15 TO 0 STEP -0.2:S0UND 0,10+10*R

NDUiJ) ,0, I:SOUND 1, 100+10*RND(0), 16, I
1170 SETCOLOR 4,3,14*RND(0):NEXT I
1280 RUN
1299 REM .:;ts ... ,;a.
1300 Q=USR(ANORA,ASC(PM$(TMS,TMS»,3,2):PM$(

TMS,TMS)=CHR$(Q):RETURN
1309 REM MO CLEAR
1310 Q=USR(ANORA,ASC(PM$(TMS,TMS»,12,1):PM$

(TMS,TMS)=CHR$(Q):RETURN
1319 REM .:; ... '#1.
1320 Q=USR(ANORA,ASC(PM$(TMlS,TMlS»,12,2):P

M$(TMlS,TMlS)=CHR$(Q):RETURN
1329 REM M~ CLEAR
1330 Q=USR(ANORA,ASC(PM$(TMlS,TMlS»,3,1):PM

$(TMlS,TMlS)=CHR$(Q):RETURN
1400 TRIGFLG=1546:HITFLG=1547:M0FLG=1548:TMS

=l:TMlS=l
1410 ALIEFLG=1550:COLFLG=1551
1420 ANORA=1753:CMPFLG=1553
1430 IF PEEK(1753)=104 THEN RETURN
1440 GRAPHICS 18:? tt6;"INITIALIZING"
1450 RESTORE 1500:GOSUB 1500
1460 A=USR(1536):RETURN
1500 FOR 1=1536 TO 1552:READ A:POKE I,A:NEXT

I
1509 REM INIT ~536 TO ~552
1510 DATA 104,169,6,170,160,22,32,92,228,96,

1,1,1,72,1,0,180
1520 FOR 1=1558 TO 1709:READ A:POKE I,A:NEXT

I

223

6 Iii_ •• _ Advanced Techniques

1530 REM MISSILE MOVING ROUTINE
1540 DATA 173,132,2,201,0,240,2,208,12,205,1

2,6,240,12,169,0,141,10,6,240
1550 DATA 58,205,12,6,240,53,238,13,6,238,13

,6,173,13,6,141,4,208,173,8
1560 DATA 208,41,2,208,9,173,13,6,201,190,14

4,27,176,15,173,13,6,201,170,144
1570 DATA 18,169,0,141,30,208,141,11,6,169,1

,141,12,6,169,72,141,13,6,173
1580 DATA 14,6,201,0,208,63,173,9,208,41,1,2

08,21,173,9,208,41,12,208,29
1590 DATA 206,16,6,206,16,6,173,16,6,141,5,2

08,208,35,169,1,141,17,6,141
1600 DATA 12,6,169,72,141,13,6,208,5,169,1,1

41,15,6,169,0,141,30,208,169
1610 DATA 1,141,14,6,169,180,141,16,6,76,95,

228
1620 FOR 1=1753 TO 1791:READ A:POKE I,A:NEXT

I
1630 REM ANP-OR ROUTINES
1640 DATA 104,104,104,141,215,6,104,104,141,

216,6,104,104,201,1,208,9,173,215,6
1650 DATA 45,216,6,76,249,6,173,215,6,13,216

,6,133,212,169,0,133,213,96
1660 RETURN

224

6
Advanced Techniques __ lIiill

The Cruncher
•••••• Andrew Lieberman

Many longer programs could benefit from this memory-saving technique,
which saved 7,000 bytes in the music DATA within the author's music
program.

Programs are written every day using DATA statements. Often
the numbers in these statements are for SOUND and PLOT
commands and happen to be in the range of 0 to 255. Frequently,
the program loads these numbers into a matrix. This method of
DATA storage is inefficient; it wastes lots of memory.

There is, however, a way to solve this problem, and an easy
way to change already existing programs to a more compact form.
Using the "Cruncher;' I knocked 7K - that's right, 7000 bytes­
off a music program. It took about 40 minutes, and that includes
debugging. Many programs can easily be done in half that time.

Each character on the Atari has an ATASCII value ranging
from 0 to 255. Look in your BASIC Reference Manual, Appendix C.
Take, for example, the letter A. Its corresponding number is 65. By
using this code, we can convert each number (using one to three
digits) to a single character using only one character. It would be a
very tedious process if we took each number, looked it up on the
chart, and then replaced the number in a program with a single
character.

That's where the Cruncher comes in. It won't do all of the
work, but it will do most of it. We can further save memory by
condensing all of these single characters into one large string
instead of a matrix. This is the big memory saver: each character in
a matrix takes about seven bytes, but in a string takes only one.
So, pull out a program with a lot of numbers and let's get to work.
(Note: This is not a standard procedure. Your program may
require modifications of the process of conversion. Read through
the procedure and think about what you are doing; otherwise,
you may find yourself hopelessly lost.)

First, type the following subroutine into your Atari, and LIST
it to cassette or disk. This way you can load it on top of the
program to be converted.

225

L Advanced Techniques

o A=PEEK(136)+PEEK(137)*256:? "WHAT
LINE";:INPUT X:TRAP 32003:GOTO 320
00

32000 LI=PEEK(A)+PEEK(A+1)*256:IF LI
<>X THEN A=A+PEEK(A+21:GOTO 32

32001 A=A+l: IF PEEK(A)=90 THEN READ
D:POKE A,D

32002 GOTO 32001
320QI3 END

Second, load the program to be converted. Put in a DIM
statement and DIMension a string, say A$, to the number of
numbers in the DATA statements. If your program READs the
DATA and then puts it in a matrix, get rid of the READ state­
ments. Otherwise, change a routine like this:
100 FOR 1=1 TO 100:READ A,B:PLOT A,B

:NEXT I

to this:
100 FOR 1=1 TO 100: A=ASC (A$ (I, I) I: B=

ASC(A$(I+l,I+1):PLOT A,B:NEXT I

or better yet:
100 FOR 1=1 TO 100:PLOT ASC(A$(I,I»

,ASC(A$(I+1,I+l»:NEXT I

If your program handles the DATA in a different way, then it's up
to you to figure out the rest of that part on your own.

Now we are almost ready to convert the DATA. Before we
can put the characters into A$, we must have an A$. It is already
DIMensioned, but we must add space for the characters in the
program. Get an idea as to approximately how many numbers
are to be converted, say 200. Then type something like this into
your program:
50 A$(1,50)="ZZZZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
52 A$(51,1001="ZZZZZZZZZZZZZZZZZZZZZ

ZIIZZZZIZZZZZZZZZZZZZZZZZZZZZ"
54 A$(101,150)="ZZZZZZZZZZZZZZZZZZZZ

ZIZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
56 A$(151,200)="ZZZZZZZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
58 A$(201,225)="ZZZZZZZZZZZZZZIZZZZZ

ZI"

It doesn't hurt to put in some extras; you can always take them

226

6
Advanced Techniques ___ ill

out later. To easily duplicate a line, just type it, press RETURN,
move the cursor back to the line number, change it, and press
RETURN. (Note: You must use capital Z's.) Once you have done
this, type RUN. Tell the computer what line your Z's start at (in
our sample, 50). Now, wait while the computer figures everything
out. When READY appears, LIST the program and see what
happens. Voila! The Z's now look like a lot of garbage!

Fourth, and last, get rid of any extra Z's and delete line 0,
lines 32000 to 32003, and all of the numerical DATA statements.
Now type RUN and watch your program run faster than ever. Sit
back and say to yourself, "Gee, that was easy. What program
should I fix next?"

1M Mystery Revealed
For those of you who would like to know how this program
works, I will explain it step by step. The first thing the computer
does is find out where the program is stored in RAM. By PEEKing
addresses 136 and 137, the Cruncher finds out the first address of
the program. The TRAP is so that when the computer is out of
DATA, it ENDs without an error.

Next, the computer finds line X. The first three bytes of each
line give very important information. The first two tell the line
number, and the third tells the length. To check if we are at line X,
we first find out at which line we are. If LI isn't equal to X, we
must advance the pointer to the next line. We do this by adding
the length of the line to our original number and trying again.

Now the conversion process begins. A loop begins that
checks each address to see if it is 90, or a Z. If it is, the program
READs a piece of DATA and POKEs it into the program. We then
loop back and continue the process. When we run out of DATA,
the TRAP is sounded and the program ENDs.

227

L Advanced Techniques

PEEK and POKE
Alternatives
_____ Jerry White

This tutorial shows a quick and easy way to select random numbers using
PEEK and POKE to increase speed. The technique is also demonstrated as
an alternative to the SOUND command.

When writing a BASIC program, it is often necessary to find the
fastest possible method to achieve a desired result. When speed is
important, a machine language subroutine is usually the best
alternative. In many cases, however, using PEEK and POKE
instructions instead of conventional routines can significantly
increase the speed.

In each of the four example routines below, RAM location 540
is used as a timer. The term jiffy is used to denote 1/60 second.
Location 540 counts backwards until it reaches zero. When the
number 255 is POKEd into this location, it will take 4% seconds to
coun t back to zero.

Each routine begins with a GRAPHICS 0 command to clear
the screen. You might want to try mode 2 later on to see how the
elapsed time of each routine is affected. Standard text mode was
chosen so the routines could be listed on the screen and the
elapsed time displayed.

Time tests 1 and 2 show two ways to select a random number
between 0 and 255. The first method is the conventional way. For
demonstration purposes, the random number was selected ten
times.

The second listing provides an alternative method which is
four times faster. Our number is selected with a PEEK at location
20. This is also a jiffy counter, but unlike location 540, this one
counts forward until it reaches 255. It is then reset to 0 and
continues counting normally. This method of selection is only
useful when a single random number is required. For example, to
return a decision on a 50 percent probability, check location 20 for
less than, or for equal to, 127. This method would not be effective
if more than one number is needed within a short period of time.

228

Advanced Techniques -..6
It is, however, an excellent alternative in most cases, and is much
faster than the conventional method because the multiplication is
eliminated.

To obtain a truly random integer between 0 and 255, PEEK
location 53770. Try the following one-line program to see the
random number generator in action:
10 ? PEEK(53770):GOTO 10

Time test routines 3 and 4 loop through the 256 pitches of
Atari's undistorted sound. Test 3 uses the conventional SOUND
command. The execution time was 123 jiffies, or just over two
seconds. Test 4 uses the POKE command. The difference was
17/60 second.

There are many situations where the PEEK and POKE
commands can be used to speed up your BASIC programs. There
are also things that could not be done at all in Atari BASIC were it
not for PEEK and POKE.

Atari BASIC Time Test 1
5 GRAPHICS 0:LIST
10 POKE 540,255:FOR TEST=1 TO 10:X=RND(0)t25

6:NEXT TEST:TIME=PEEK(540)
20 PRINT :PRINT "TIME=";255-TIME;" 60th of a

second."

TIME=16 60ths of a second

Atari BASIC Time Test 2
5 GRAPHICS 0:LIST
10 POKE 540.255:FOR TEST=1 TO 10:X=PEEK(20):

NEXT TEST:TIME=PEEK(540)
20 PRINT :PRINT "TIME=";255-TIME;" 60th of a

second."

TIME=4 60ths of a second

Atari BASIC Time Test 3
5 GRAPHICS 0:LIST
10 POKE 540.255:FOR TEST=0 TO 255:S0UND 0,TE

ST,10.2:NEXT TEST:TIME=PEEK(540)
20 PRINT :PRINT "TIME=";255-TIME;" 60th of a

second."

TIME=123 60ths of a second

229

L Advanced Techniques

Atari BASIC Time Test 4
5 GRAPHICS 0:LIST :SOUND 0.0,0.0:POKE 53761,

162
10 POKE 540,255:FOR TEST=0 TO 255:POKE 53760

,TEST:NEXT TEST:TIME=PEEK(540)
20 PRINT :PRINT "TIME=";255-TIME;" 60th of a

second."

TIME=106 60ths of a second

230

7
1200 Memory Map:
An Initial Examination ___ D. Ian Chadwick

Although a short-lived product on the commercial market, the
Atari 1200XL managed to make it into quite a few homes before
the line was dropped to make way for the new line. Not that the
1200 was a bad product; it simply lacked several competitive
features, such as expansion capability.

Compatibility with software written for 400 and 800
machines is possible only if the programs obeyed the rigid restric­
tions of the official operating system routines, laid out in the Atari
technical manuals. Much software makes direct jumps into the
OS that cause programs to crash when run on the 1200. BASIC
programs usually work, but there may be difficulty with PEEK,
POKE, and USR routines.

The following material is all taken from official Atari releases,
including the technical notes for the 1200XL. Memory locations
can be cross-referenced with the description in COMPUTEf's
Mapping the Atari when they are described as moved. This is the
location these routines or locations have been moved to in the
1200, but they still perform the same function as in the 400 or 800.
I have tried to provide all known ranges of values and proper
explanations, usually taken from the rare 1200XL technical
manual but not available in most outlets . I suggest that you try
POKEing different values in these locations to see the results.

The format attempts to follow that of Mapping the Atari as
closely as possible. References to 400/800 memory use relate
directly to the Revision B ROMS, not always earlier versions . I
trust it will prove a useful guideline for 1200 owners.

DECIMAL HEX
00 00

LABEL
LNFLG

Reserved for in-house debugging routines.
400/800 use: LINZBS; used in power-up sequence.
01 01 NGFLAG
Reserved for power-up self-testing routines.
400/800 use: see location 00.

233

7 ____ Beyond B.ASIC

28 lC ABUFPT
Reserved for OS use, most likely as a buffer pointer.
400/800 use: PTIMOT, moved to 788 ($314).
29 ID ABUFPT
Reserved for OS use.
400/800 use: PBPNT, moved to 734 ($2DE).
30 IE ABUFPT
Reserved for OS use.
400/800 use: PBUFSZ, moved to 735 ($2DF) .
31 1F ABUFPT
Reserved for OS use.
400/800 use: PTEMP, now deleted.

54 36 LTEMP
Temporary buffer for loader routine. The technical notes contain
extensive information about enhancements to the peripheral
handling in the 1200. One inclusion is a relocating loader, used to
upload peripheral handlers through the SIO Of particular impor­
tance are the two additional device inquiries (polls) to the 1200XL.
See the 1200XL Operating System Manual for more information.
400/800 use: CRETRY, moved to 668 ($29C).

55 37 LTEMP
Same as above.
400/800 use: DRETRY, moved to 701 ($2BD).
74 4A ZCHAIN
Temporary storage for handler loader.
400/800 use: CKEY, moved to 1001 ($3E9).
75 4B ZCHAIN
Same as above.
400/800 use: CASSBT, moved. Official sources put this, as well as
CKEY, above, at 1001. I suspect it is at 1002 ($3EA) instead.
96 60 FKDEF
Function key definition table pointer, low byte. You can redefine
the function keys alone, by setting up an eight-byte table for the
keys F1 to F4 and SHIFT F1 to SHIFT F4. You then assign each
byte a value (the internal code: see "Reading the Keyboard
Codes" and Appendix A) to correspond to the key. This way, you
can get the function keys to act as any other keys. You must,
however, make sure that you do not assign to the function keys
their own value (138 to 141, $8A to $8D). That is, you must not

234

7 Beyond BASIC ___ ill

make Fl perfonn Fl (138, $8A); otherwise you will generate an
endless loop in which the system goes to check what the key
should be, sees it is the same, returns, sees there is a table to
check, goes back, etc. See locations 121, 122, ($79, $7 A) for infor­
mation on redefining the keyboard.
400/800 use: NEWROW, moved to 757 ($2F5).
97 61 FKDEF
Same as above, high byte.
400/800 use: NEWCOL, moved to 758 ($2F5).
98 62 PALNTS
Flag for PAL or NTSC version display handler. This was previ­
ously at 53268 ($0014).
400/800 use: NEWCOL, second register, moved to 759 ($2F6).
121 79 KEYDEF
Pointer to key definition, low byte. You can redefine almost the
entire keyboard on the 1200XL by setting up a 192-byte table and
POKEing the address in these two bytes. When you press a key,
the system will respond with the new definition you have
given it.

The table consists of three 64-byte portions: lowercase keys,
SHIFT + key, CTRL + key. Each key corresponds to a byte as
below:

OEOHEX KEY OEOHEX KEY
00/00 L 17/11 HLP
01/01 J 18/12 C
02/02 19/13 F3
03/03 F1 20/14 F4
04/04 F2 21/15 B
05/05 K 22/16 X
06/06 + 23/17 Z
07/07 * 24/18 4
08/08 0 25/19
09/09 26/1A 3
10/0A P 27/1B 6
11/0B U 28/1C ESC
12/0C RET 29/10 5
13/00 I 30/1E 2
14/0E 31/1F 1
15/0F = 32/20 ,
16/10 V 33/21 SPACE

235

7
Beyond BASIC

OEOHEX KEY DEC/HEX KEY
34/22 49/31
35/23 N 50/32 0
36/24 51/33 7
37/25 M 52134 BACKS
38/26 / 53/35 8
39/27 logo key 54/36 <
40/28 R 55/37 >
41/29 56/38 F
4212A E 57/39 H
43/2B Y 58/3A 0
4412C TAB 59/3B
45/20 T 60/3C CAPS
46/2E W 61/30 G
47/2F Q 6213E S
48/30 9 63/3F A

Note that there are intentional blanks in the table where no key
correspondence exists. Using the table above, to redefine the A
key, you would change the 63rd byte in each of the three contig­
uous parts: the first to redefine the lowercase, the second for the
SHIFTed key, and the last for the CTRL and key.

You may place any value between 0 and 255 ($FF) in these
bytes; values between 0 and U7 ($7F), 146 and 255 ($92 to $FF) are
the AT ASCII codes. The following values have special meanings
to the UOOXL:
DEC/HEX
128/80
129/81

USE:
Ignored as invalid key combination.
Turns the keys to inverse output (normal becomes
black on colored screen) .

130182 Upperllowercase toggle .
131/83 Uppercase lock.
132/84 Control key lock.
133/85 End of file.
134/86 to 136/88 are AT ASCII code.
137/89 Toggles keyboard click on or off.
138/8A Function one; that use defined by the function key

description.
139/8B to 141/8D are functions two, three, and four, respectively.
142/8E Cursor to horne (upper-left comer of the screen).
143/8F Cursor to bottom left-hand comer of the screen.
144/90 Cursor to the left margin, beginning of the phys­

icalline.

236

7 Beyond BASIC ___ ill

145/91 Cursor to the right margin, end of the physical
line.

See locations 96,97 ($60, $61) for redefining the function keys
alone, without redefining the rest of the keyboard. You cannot
redefine the following keys, since they are either hardwired into
the system or operate as a special case:

BREAK, SHIFT, CTRL, OPTION, SELECT, START, RESET, HELP,
CTRL-1, CTRL-F1 to CTRL-F4.

400/800 use: ROWINC, moved to 760 ($2F8).
122 7A KEYDEF
Same as above, high byte.
400/800 use: COLINC, also called CLINe, moved to 761 ($2F9).
563 233 LCOUNT
Temporary counter for loader register. See section 5.0 in the
1200XL Operating System Manual for information concerning the
relocatable loader routine.
400/800 use: SPARE, not used.
568,569 238,239 RELADR
Relocatable loader routine address pointers.
400/800 use: same as above.
581 245 RECLEN
Loader routine variable register.
400/800 use: same as above.
583-618 247-26A
Reserved for future use.
400/800 use: LINBUF, now deleted from the OS.
619 26B CHSALT
Character set pointer, defines which character set is to be called
into use at the next toggle of the CTRL-F4 keys. Initialized to 204
($CC) to point to the international set.
400/800 use: see location 583 ($247).
620 26C VSFLAG
Fine scroll temporary register.
400/800 use: see location 583 ($247).
621 26D KEYDIS
Keyboard disable register. POKE with 0 to enable keyboard use,
255 to disable it. Remember that you can reenable keyboard use
from the keyboard by pressing CTRL + Fl. You may also disable

237

L.. Beyond BASIC

the keyboard with the same combination. LED 1 will be on when
the keyboard is disabled.
400/800 use: see location 583 ($247).
622 26E FINE
Flag for fine scroll enable in GR. 0 (text) mode. POKE with 255 for
fine scrolling, 0 for coarse scrolling. Follow this POKE with a GR.O
command or an OPEN command for device E:. The display list
created for fine scrolling will be one byte larger than the normal,
coarse scroll list. The OS also places the address of a DLI (display
list interrupt) at VDSLST (512,513; $200, $201). The color register at
53271 ($D017) is also altered for the last visible line on the screen.
400/800 use: see location 583 ($247).
648 288 HIBYfE
Register for loader routine.
400/800 use: CSTAT, deleted from OS use.
654 28E NEWADR
Loader routine register, same as above.
400/800 use: reserved (spare).

668 29C CRETRY
Moved from 54 ($36).
400/800 use: TMPX1, now deleted.
701 2BD DRETRY
Moved from 55 ($37).
400/800 use: HOLDS, now deleted.
713,714 2C9,2CA RUNADR
Register for loader routines.
400/800 use: spare.
715,716 2CB,2CC HIUSED
Same as above.
4OO/S00 use: spare.
717,718 2CD,2CE
Same as above.
400/800 use: spare.
719,720 2CF,2DO
Same as above.
400/800 use: spare.
721,722 2Dl,2D2
Same as above.
400/800 use: spare.

238

ZHIUSE

GBYfEA

LOADAD

723,724 203,204
Same as above.
400/800 use: spare.

ZLOAOA

725,726 205,206 OSCTLN

7 Beyond BASIC __ lIiil

Disk sector size register. The 1200XL establishes sector size at 128
($80) bytes at power-up or reset, but you can alter the size to any
length from 1 to 65536 ($FFFF) bytes. You can also write to the disk
without write-verify by using the command flp'~
400/800 use: spare
727,728 207,208 ACMISR
Reserved, purpose unknown
400/800 use: spare.
729 209 KRPOEL
Keyboard auto-key delay rate; the time lapsed before the auto-key
repeat begins. Default is 48. POKE with the number of VBLANK
intervals before the repeat begins; each VB LANK is 1/60 of a
second, so a value of 60 would equal a one-second delay.
400/800 use: spare.
730 20A KEYREP
Keyboard auto-key rate. Default is six, which gives a rate of ten
characters per second. POKE with the number of VBLANK inter­
vals before a keystroke is repeated; at one, you will get 60 charac­
ters per second repeat rate! See the 1200XL Operating System
Manual for information concerning the difference between NTSC
(North American) and PAL (English) system rates (NTSC has a
1160 rate, PAL 1/50).
400/800 use: spare.
731 20B NOCLIK
Key click disable; POKE with 255 to disable, 0 to enable. In the
older machines, the only way to properly disable the click was to
install an on/off switch. You may also use the CTRL-F3 keys to
toggle keyboard click on and off.
400/800 use: spare.
732 20C HELPFG
Flag for the HELP key enable. POKE with 0 to clear it. When
PEEKed, 17 = HELP key pressed, 81 = SHIFT + HELP pressed,
and 145 = CTRL + HELP pressed. HELPFG is not cleared after the
HELP key has been pressed once. You must clear it yourself under
program control.
400/800 use: spare.

239

~ Beyond BASIC

733 200 OMASAV
DMA state save register. This saves the screen graphics state
when you disable the screen (CTRL-F2) for faster calculations.
400/800 use: spare.
734 20E PBPNT
Moved from 29 ($lD).
400/800 use: spare.

735 20F PBUFSZ
Moved from 30 ($1E).
400/800 use: spare.
745 2E9 HNDLOD
Loader routine handler flag.
400/800 use: spare.
746-749 2EA-2EO DVSTAT
These four device status registers are also used by the 1200XL to
contain information sent back to the computer by the peripheral
after a type three or four poll (these are new poll types; see the
1200XL Operating System Manual) . The bytes will contain, in order:
746: Low byte of the handler size, in bytes (must be an even
number).
747: High byte of the handler size.
748: Device SIO (serial 110) address to be used for loading.
749: Peripheral revision number.

756 2F4 CHBAS
Character set select, as in the 400/800. Default is 224 ($EO) for
domestic set; POKE with 204 ($CC) for the international set.
When you press CTRL-F4, the value in CHBAS is swapped with
that in CHSALT (619; $26B). If you want to select the international
set for the next toggle, POKE 200 ($C8) here, rather than 204
($CC). According to the 1200XL Operating System Manual, the OS
tests CHBAS and if it finds 200 in that location, swaps the value
with that in CHSALT, usually 204. When the international char­
acter set is toggled, LED 2 is lit.
757 2F5 NEWROW
Moved from 96 ($60) .
400/800 use: spare.
758,759 2F6,2F7 NEWCOL
Moved from 97,98 ($61, $62).
400/800 use: spare.

240

7 Beyond BASIC __ _

760 2F8 ROWINC
Moved from 121 ($79).
400/800 use: spare.
761 2F9 COLINC
Moved from 122 ($7 A).
400/800 use: spare.
782 30E JMPERS
Option jumpers, designed to tell the as how the system is config­
ured. Only Jl (Bit 0) has been assigned. If Bit 0 equals zero (low),
then the self-test will run. Bits 1-3 are reserved for future use, bits
4-7 are unused.

400/800 use: ADDCOR, deleted.

788 314 PTIMOT
Moved from 28 ($IC).
400/800 use: TEMP2, moved to 787 ($313).
829 33D PUPBTl
Power-up and reset register one.
400/800 use: reserved (spare).
830 33E PUPBT2
Power-up and reset register two.
400/800 use: reserved (spare).
831 33F PUPBT3
As above, register three.
400/800 use: reserved (spare).
1000 3E8 SUPERF
Screen editor register.
400/800 use: reserved (spare).
1001 3E9 CKEY
Moved from 74 ($4A).
400/800 use: reserved (spare).
1002 3EA CASSBT
Moved from 75 ($4B).
400/800 use: reserved (spare).

1003 3EB CARTCK
Cartridge checksum. Likely the way the system ascertains the size
(8K or 16K) of a cartridge when in place.
400/800 use: reserved (spare).

241

7 ____ Beyond BASIC

1005-1016 3ED-3F8 ACMVAR
Reserved for OS variables. On power-up and coldstart, variables
from 1005 to 1023 ($3ED to $3FF) are set to zero. On warmstart or
reset, they are not changed.
400/800 use: reserved (spare).
1017 3F9 MINTLK
Same as above.
400/800 use: reserved (spare).
1018 3FA GINTLK
Cartridge interlock register.
400/800 use: reserved (spare).
1019,1020 3FB,3FC CHUNK
Handler chain.
400/800 use: reserved (spare) .
1792-7419 700-1CFB
Used by DOS when loaded, otherwise available as user RAM.
39967-40959 9C1F-9FFF
Display list and screen RAM. This will get moved to lower
addresses if the cartridge is 16K (using up the memory from 32768
to 49151; $8000 to $BFFF). The normal8K cartridge uses RAM
between 40960 and 49151 when installed ($AOOO to $BFFF). Two
control lines tell the system a cartridge is installed.
49152-52223 COOO-CBFF
OS ROM. In the 400/800, the block from 49152 to 53247 ($COOO­
$CFFF) was unused and unusable. Many of the interrupt handler
routines have been moved into this block now, the reason for the
incompatibility with 400/800 programs which jump to the old
locations rather than to official vectors in RAM.

The bytes between 49152 and 49163 ($COOO-$COOB) contain
identification and checksum data for the ROM between 49152 and
57343 ($DFFF) using the following format:
DEOHEX USE:
491521COOO Checksum low byte; sum of all of the bytes in

ROM except the checksum bytes themselves.
49153/C001 Checksum high byte.
491541C002 Revision date, using the form DDMMYY, where

each four bits is a BCD digit. The byte has two
four-bit numbers for D1 and D2 in the upper and
lower halves, respectively.

49155/C003 Revision date, month code, M1 and M2.

242

7 Beyond BASIC ___ ill

Revision date, year code, Y1 and Y2. 49156/C004
49157/C005
49158/C006

Option byte, reserved. Contains zero for the 12OOXL.
Part number, using the format AANNNNNN,
where A is an ASCII character and N is a four bit
BCD digit. This byte is AI.

49159/C007
49160/C008
49161/C009
491621COOA
49163/COOB

52224-53247

Part number, A2.
Part number, N1 and N2.
Part number, N3 and N4.
Part number, N5 and N6.
Revision number.
CCOO-CFFF CHARSET2

International character set, one of two in the 1200. The other is at
the same place as in the 400/800; 57344-58367 ($EOOO-$E3FF).
53248-53503 DOOO-DOFF GTIA
GTIA and graphics registers, as in the 400/800. The self-test code
is physically located between 53248 and 55295 ($DOOO to $D7FF)
but moved to 20400 to 22527 ($5000 to $57FF) when called up.
53504-53759 D100-D1FF
Unused in both 400/800 and 1200 versions.
53760-54015 D200-D2FF POKEY
POKEY registers, same as in the 400/800.
54016-54271 D300-D3FF PIA
PIA registers, same as in the 400/800.
54017 D301 PORTB
Used to control the LEDs and the memory management, enabling
you to disable the as ROM and enable the RAM. Bit 0 controls
location 49152-53247 ($COOO-$CFFF) and 55296-65535 ($D800-
$FFFF). When set to zero, the as is replaced by RAM. However,
unless another as has been provided, the system will crash at the
next interrupt. Bit 7 controls the RAM region 20480-22527 ($5000-
$57FF) and is normally enabled (set to one). If disabled (set to
zero), then the as ROM is enabled, the memory access remapped
and access provided to the self-test code physically present at
53248-55295 ($DOOO-$D7FF). If LED 1 is on, then the keyboard is
disabled. If LED 2 is on, then the international character set is
selected.
400/800 use: PIA PORTB. Since there are only two controller jacks
(PORTA), this is no longer used in the 1200, meaning only two
game controllers may be attached at once, rather than four.

243

7 ____ Beyond BASIC

54272-54527 D400-D4FF ANTIC
ANTIC registers, same as in 400/800.

54528-55295 D500-D7FF
Unused in both 400/800 and 1200 versions of the OS. Any access
read or write in the 54528 to 54783 ($0500 to $05FF) range enables
the cartridge control line CCNTL in the cartridge interface as in
the 400/800.

55296-57343 DBOO-DFFF FP
Floating point package as in the 400/800. The 1200XL corrects a
bug in the FP package which was in the REV B ROMs. You now
get an error status when you try to calculate the LOG or LOGlO of
zero.
57344-58367 EOOO-E3FF CHARSET1
Domestic character set, as in the 400/800. The international char­
acter set location is listed above. This is the default set. Register
756 ($2F4) defines which is in use (see above).
58368-65535 E400-FFFF OS
OS ROMS. There are many changes in the 1200 OS, making it
quite different from the 400/800 OS, but advertised entry points
and vectors have been left the same. There are five new fixed
entry point vectors which have been added to the 1200XL:
58496/E480 JMP PUPDIS: entry to power-on display.
58499/E483 JMP SLFfST: entry to the self-test code.
58502/E486 JMP PHENTR: entry to the handler, uploaded from
peripheral or disk.
58505/E489 JMP PHULNK: entry to uploaded handler unlink.
58508/E48C JMP PHINIS: entry to uploaded handler initializa­
tion.
58481 E471
The Atari 400/800 had a blackboard mode; the Memo Pad mode
you saw when typing BYE in BASIC. This no longer exists on the
1200XL; it has been replaced by the noninteractive Atari advertise­
ment logo.

Bytes from 65518 to 65529 ($FFEE to $FFF9) contain checksum
and identification for the ROM block 57344 to 65535 ($EOOO to
$FFFF) in a similar format to that at location 49152 ($COOO). The
bytes used are as follows:
DEC/HEX USE
65518IFFEE Revision date D1 and 02.
65519IFFEF Revision date M1 and M2.

244

7 Beyond BASIC ___ ill

65520IFFFO
65521IFFFI

Revision date Yl and Y2.
Option byte; hardware product identifier; for the
1200XL it should read one.

655221FFF2 to 65526IFFF6 Part number using the form
AANNNNNN.

65527IFFF7 Revision number.
65528IFFF8 Checksum byte, low byte.
65529IFFF9 Checksum byte, high byte.

Bytes from 65530 to 65535 ($FFFA to $FFFF) contain power-on,
RESET, NM, and IRQ vectors .
65521 FFF1
If you PEEK here, you should get one and then 65527 ($FFF7) will
have the revision number. If not one, then the product code will
be here and 65527 will contain the OS revision number. This iden­
tifies the OS as that of the 1200XL. Accordingly, if you PEEK 65527
and 65528 ($FFF7, $FFF8) and get 221 ($DD) and 87 ($57) respec­
tively, you have the 400/800 Revision A ROMS. If you get 243 ($F3)
and 230 ($E6), you have the Revision B ROMS. PAL versions will
read 214 ($D6) and 87 ($57), 34 ($22) and 88 ($58) respectively. If
location 64728 ($FCD8) is not 162 ($A2) then the product is a
1200XL or future computer.

New Graphics Modes
Four new graphics modes are available on the 1200 from BASIC:
GRAPHICS 12,13,14, and 15. These are the same as modes
described in the technical manuals but previously unavailable in
BASIC.

GRAPHICS 12 is ANTIC mode 4, a four-color mode (plus
background). Each character on the screen is the same size as a
GRAPHICS 0 character but only four pixels are displayed instead
of eight as in GRAPHICS O. It can be well used by a redefined
character set. The screen has 20 lines; to obtain the full 24 lines,
use GRAPHICS 12 + 16.

GRAPHICS 13 is ANTIC mode 5, another four-color mode
(plus background), this time with characters double the physical
space of the GRAPHICS 0 characters. As in GRAPHICS 12, only
four pixels are displayed; the system interprets definition in the
character sets by bit pairs, rather than single bits as in GRAPHICS
O. The screen has ten lines and can be expanded to 12 by
GRAPHICS 13 + 16. Both GRAPHICS 12 and GRAPHICS 13 use 40
bytes of screen RAM per line.

245

7 ____ Beyond BASIC

In both GRAPHICS 12 and GRAPHICS 13, the color of the
screen pixel depends on the bit pair in the byte addressed. Each
character can be built of eight bytes like the GRAPHICS 0 charac­
ters, but bits are paired for screen presentation. If the bits have the
value below, then the color shown appears on the screen:
VALUE/BINARY COLOR
0/00 BAK
1/01 PFO
2/10 PFl
3/11 If Bit 7 of the character = 0 (the color

modifier), then PF2 is used, else
if Bit 7 = 1, then PF3 is used.

GRAPHICS 14 is ANTIC mode 12 ($C), a two-color mode
with a resolution of 160 pixels wide by 192 pixels high . This is
sometimes called GRAPHICS "6W' because each line is one scan
line high where GRAPHICS 6 is two scan lines high. Colors used
are BAK and PFO. Only the first bit of a screen byte is used to
identify the color.

GRAPHICS 15 is ANTIC mode 14 ($E), known as GRAPHICS
"7V2" and used in many popular commercial programs such as
Datasoft's Micropainter. It is a four-color mode with a resolution of
160 across by 192 down, each mode line being one scan line high .
Colors used are BAK and PFO to PF2. Only the first two bits in a
screen byte are used to identify the color of the byte.

Data for New Screen Modes

Memory Used:

Mode Horizontal Vertical Colors Split Full
Line Line Screen Screen

12 40 20/24 5 1154 1152
13 40 10/12 5 664 660
14 160 160/192 2 4270 4296
15 160 160/192 4 8112 8138

Final Notes
If you have a copy of Mapping the Atari, you may find it useful to
make a note in the margins of the new locations of interrupt and
other routines as defined by the vectors. Most of these are located
between 512 and 1151 ($200 to $47F). These new pointers will show
you where routines have been moved in the 1200.

246

7 Beyond BASIC __ IIIIi.

A small one-pixel shift in the 1200's display may cause some
programs to show different colors (particularly artifact colors in
GRAPHICS 8) than they do on the 400/800. Colors (but not
graphics modes) now conform to those displayed by the earlier
CTIAchip.

Some Revision B enhancements which are also in the 1200XL
should be mentioned. First, the display handler will not clear
memory beyond that indicated by RAMTOP (location 106; $6A).
This means you can store data or machine language routines
above the graphic display and have them remain intact when
changing graphics modes. Second, you can assign a printer
number from PI up to P8. The printer handler inserts an EOL in
the printer buffer if none is there, before sending the buffer to the
printer on a CLOSE. This allows the printer to immediately print
the last line, rather than having to force it to do so. The CIa places
an EOL in the input buffer when a record longer than the buffer
size is being read. This allows you to still read a portion of a
record even if a large enough buffer was not provided. Finally, the
screen clear code will work no matter what the cursor coordinates
are.

If at all possible, try to obtain a copy of the 1200XL Operating
System Manual . Much of what is vague here is explained there.
There are many other, more subtle and technical differences
between 400/800 use and 1200XL use. These are best explained in
Atari's own manuals. The manual also contains instructions on
how to redefine the Atari keyboard as a Dvorak layout and define
GRAPHICS 12 and 13 characters, and it gives specific information
on the new peripheral poll types and their use.

247

7 ____ Beyond BASIC

Merging Machine
Language into BASIC
_____ Fred Pinho

Merging machine language subroutines can be a time-consuming task.
The program offered here will allow you to add machine language to a
BASIC program as a string or as DATA statements.

You've just bought your Assembler Editor cartridge, and you're
starting to get into machine language programming. Hold it,
before you go any further. If you.haven't already heard, your
assembler manual is chock full of errors. Run, don't walk, to the
Atari hot line to request their errata sheets. It will save you grief
and headaches, especially if you are cassette dependent.

After writing and debugging your first machine language
program with your Assembler Editor cartridge, you can now save
it to cassette or disk as a binary file . You can also load it back into
the computer and run the machine language program directly. But
what if you want to combine this routine with a BASIC program?
This is the objective of a majority of beginning machine language
programmers. If you look on pages 66-67 of the Assembler Editor
manual, you will find a merger program. However, the program is
clumsy and unwieldy, especially in its handling of problem code
values (such as the one which is the ATASCII equivalent of quota­
tion marks).

To overcome this problem, I've provided Program 1. This
program will take your machine language and automatically
convert it into a complete BASIC subroutine. This can then easily
be added to your BASIC program. The subroutine is complete
within itself. It requires only:

• That your program have line numbers no greater than
31000.

• That you call the subroutine as early as possible in your
program.

This will allow you to reuse the subroutine variables in your
program if you wish. Also the DIMension statements will be
declared at the start of the program.

248

7 Beyond BASIC ___ •

~urOptions

This utility program has a great deal of flexibility built-in. You can
choose to store your machine language in a variety of ways:

• As strings (probably the safest and most versatile method).
The program will automatically generate the strings plus the
DIMension statements to support them. It also will take
care of the troublesome codes of 34 (ATASCII for quotes)
and 155 (ATASCII for RETURN) .

• Storage at a specific location in memory. The location can be
the same as specified in your binary file or it can be
changed. The program will then generate a series of DATA
statements. It will also provide a short routine that will
READ the data and POKE it into memory .

• Any number and combination of string and location storage
can be used. The program will combine them into a single
subroutine to set them up all at once. Just merge with your
BASIC program and add a GOSUB to this subroutine.

• The program will check your keyboard input and prompt
you when you've made an error.

The program, as written, sits in slightly less than 5K bytes of
RAM after DIMensioning of arrays and strings. I've run it
through the "Masher" program from the Atari Program
Exchange. However, this saves only about 500 bytes. The program
also then becomes very difficult to follow. So I've kept it as is. Type
the program in and LIST it to disk or cassette. Don't SAVE it.

Using the Utility

To use the utility program, first store your machine language to
disk or cassette as a binary file. If your source program is in RAM,
this can be done through the assembler with this command:
ASM,,#D: < filename > for disk or ASM,,#C: for cassette.

Note that what you wrote was the source code, not the actual
object code which is the machine language program. Once you've
done the above, turn off the computer to wipe out the source
program. Then remove the Assembler cartridge, insert the BASIC
cartridge, and boot the DOS into memory.

If your program has already been assembled (converted to
machine language) and the final machine language resides in
RAM, then do the following:

249

7 ____ Beyond BASIC

For Disk
SAVE #Disk File <starting address<end of routine
address
Example: SAVE #D:PROGRAM.OB]<1400<17FF

For Cassette
SAVE #C: <start address<end address
Note that all addresses are in a hexadecimal.

Again, shut off the computer and replace the Assembler with the
BASIC cartridge.

To use this utility both the utility and the machine language
program must be in RAM. The utility program occupies about 5K
bytes of memory. Thus you must be careful to locate your machine
language program so that it does not interfere with the BASIC
program. You can locate the machine language either in page 6 or
high up in memory just below the display list. To help you with
the second method, the tables below define usable and safe living
space for your machine language program.

Table 1. Disk-Based System

Computer Suggested Safe Memory

RAM Decimal Hexadecimal
Installed From I To From I To

8K Not enough memory
16K 12750 15390 31CE 3C1E
24K 12750 23582 31CE 5ClE
32K 12750 31774 31CE 7C1E
40K 12750 39966 31CE 9C1E
48K 12750 39966 31CE 9C1E

Note: Assumes that you are in GRAPHICS 0, that the BASIC cartridge is installed,
and that the first part of DOS 2.0S (mini-DOS) is loaded. The mini-DOS occupies
5628 bytes.

250

7 Beyond BASIC ___ •

Table 2. Cassette-Based System

Computer Suggested Safe Memory

RAM Decimal Hexadecimal
Installed From I To From I To

8K 7100 7198 IBBC lClE
16K 7100 15390 lBBC 3CIE
24K 7100 23582 IBBC 5ClE
32K 7100 31774 IBBC 7CIE
40K 7100 39966 IBBC 9CIE
48K 7100 39966 IBBC 9CIE

Note: Assumes that you are in GRAPHICS 0 and that the BASIC cartridge is installed.

Machine Language to BASIC
To convert your machine language to BASIC, proceed as follows:

1. Load your machine language subroutine into its safe area. If
from disk, first load the second part of DOS and then use
option L (Binary Load). Then go back to BASIC. If you have a
cassette, be careful. Page 65 of the Assembler Editor manual
tells you to CLOAD your machine language. Trying that can
give you a headache. The errata sheets from Atari give you a
routine for cassette loading.

2. ENTER the utility program which has previously been
LISTed to disk or cassette (see step 6 if you are using
cassette).

3. RUN the program. The program will ask for the starting and
ending addresses of your machine language routine in RAM.
Answer in decimal only! All keyboard inputs for this program
must be in decimal form.

4. The program will then ask which method you desire for
storage of your machine language. If you wish string storage,
you will be prompted for the string name. You will also be
asked if you wish a printout of the data to be inserted into the
string. If so, you will be prompted to turn on the printer.

5. If you desire to store machine language at a specific location,
you will be asked if you wish storage at the same memory
location as specified in step 3. Alternatively, you can store it
at a different location .

251

7 ____ Beyond BASIC

6.

7.

Finally you'll be asked if you wish to make any additional
conversions. If yes, the program will loop back. If not, the
computer will CLOSE all files and END. Your BASIC subrou­
tine will be stored on disk as a file labelled MLR. LST. If you
are using a cassette, see Program 2 for required program
modifications.
After you're done, erase the utility program via NEW. Now
enter your BASIC program. Finally, merge your machine
language into your program by:

For Disk
ENTER "D:MLR. LST"

For Cassette:
See Program 2

8. Now that the two programs are merged, type in a GOSUB
statement to reference the first line number of MLR. LST (or
the equivalent cassette file).

And that's it; you're ready to go.

Storing Machine Language in Strings
I'd like to make some comments on storage of machine language
in a string format. First, to do it correctly, you must write routines
which are relocatable. That is, they must not contain any JMP or
JSR instructions to a specific memory location within the
program. Since the string can be located nearly anywhere in
memory, nomelocatable code will almost surely crash the
computer. It's best to store your subroutines and data tables in
page 6 of memory. These permanent addresses can then be safely
called from within your routine.

Another problem lies in proofreading your string. If you load
your data into a string and then PRINT it to the screen, you will
see many weird and wondrous things. What is happening is that
the screen editor is interpreting the function of the printed
graphics symbols and carrying out the function. For example, if
the graphics symbol in your string is that for a "delete character;'
the computer will slavishly do it. Thus the string symbols seen on
your screen are not correct (unless you're lucky). To check your
string, use the following routine in direct mode. (First RUN your
program to DIMension and initialize your string):

L=LEN(string name$):FOR X=l TO L:?AS
C(string name$(X,X»;",";:NEXT X

252

7 Beyond BASIC ___ ill

This routine prints the actual value of each byte stored in the
string.

Another serious problem with string storage of data is the
occurrence of values of 34 or 155. The value 34 is the ATASCII
representation of quotation marks . The value 155 is the AT ASCII
for RETURN. The presence of either will cause the screen editor to
prematurely truncate your string and give you an error message.
Thus the program does the following when it encounters either
value:

1. It inserts a space character in the string and notes the position
in the string.

2. It then writes the BASIC subroutine statements so that the
values are inserted into the string without going through the
screen editor. It uses the CHR$ function for this purpose.

3. As presently set up, the program can handle up to 15 values
of the quotes and of the RETURN characters. It checks for the
total occurrence of these and warns you if there are too many.

There you have it. I hope this program makes the difficult world
of machine language a little more enjoyable.

Table 3. Variables in Program 1
A$ Used to receive yes or no responses
BATOP Top memory location of utility program
00$ Holds name of string used to store machine language

F

I,S,T,X,Y
L
LS,LF
LN

LNO

LR
N
QT
QUOTE()
RT
RETRN()
S
SF,FF
SO,FO

(ML)
Flag. Zero if string storage requested. Set to one if

storage at a specific address is requested
Loop counters
Length of string required to store ML
Initial and final position in string to be filled with data
Line number of subroutine to be written for string

storage
Line number of DATA statements to be written for ML

storage at a specific address
Remaining length of string after subtracting 80
Input value for choice of ML storage
Total number of values of 34 in ML
Holds position in string of AT ASCII values of 34
Total number of values of 155 in ML
Holds position in string of AT ASCII values of 155
Temporary value for ML address
New starting and final address of ML
Initial starting and final address of ML

253

7 ____ Beyond BASIC

v

w
z

Counter to indicate number of routines to be stored at
specific addresses

Indicates cell in array RETRN()
Indicates cell in array QUOTE ()

Program 1. Merging ML into BASIC Disk Version
10 CLR :GRAPHICS 0:POKE 752,1:POKE 756,209:?

"{5 SPACES}I:;r:uw,iW" 1_:la.,l1:tr, .. (lI(al:LWol:u3:,": G
OSUB 600:POKE 756,224

20 DIM A$(U,D0$(3),QUOTE<14),RETRN(14)
30 D0$="{3 SPACES}":TRAP 580:GOSUB 740:V=0:0

PEN #3,8,0,"D:MLR.LST":LNO=32050:LN=31000
:F=0

40 ? :? :? "INPUT STARTING ADDRESS OF CODE":
POKE 752,0:GOSUB 590:INPUT S:SO=S:SF=S

50 ? "INPUT FINAL ADDRESS OF CODE":GOSUB 590
: INPUT S:FO=S:FF=S:GOSUB 640

60 ? "STORAGE METHOD FOR ROUTINE?":? ..
{3 SPACES} ":? ..
{3 SPACES} 2.HITHIN A STRING.

70 ? "{3 SPACES} 3.AT NEH ADDRESS .
80 GOSUB 590:? :? "PLEASE TYPE NUMBER PLUS R

ETURN~":INPUT N
90 IF (N<>1 AND N<>2 AND N<>3) THEN? ..

{BELL}WRONG RESPONSE~TRY AGAIN~":GOSUB 60
0:GOTO 60

100 IF N=3 THEN? :7 "NEW STARTING ADDRESS F
OR ROUTINE?":GOSUB 590:INPUT S:SF=S

110 IF N=3 THEN 7 "NEW FINAL ADDRESS FOR ROU
TINE~":GOSUB 590:INPUT S:FF=S

120 IF N=3 THEN IF FF-SF<>FO-SO THEN? ..
{BELL}INCORRECT FINAL ADDRESS~ TRY AGAIN
~":? :GOTO 110

130 IF N=1 OR N=3 THEN F=1:V=V+1:GOTO 180
140 L=FO-SO+1:GOSUB 680:GOSUB 610
150 ? .. DO YOU WISH AN [:"i#t PR I NTOUT" :? .. OF

YOUR STRING DATA~":GOSUB 590:INPUT A$
160 IF A$="Y" THEN N=4:? "HIT RETURN WHEN TH

E PRINTER IS ON!":GOSUB 590:INPUT A$:OPE
N #2,8.0,"P:"

170 GOTO 260
180 ? #3;LNO;" DATA .. ;SF; ;FF:LNO=LNO+10
190 ? #3;LNO;" DATA ";
200 FOR 1=0 TO 19
210 IF SO+I=Fo+1 THEN POP :IF I THEN? #3;",

";-1:? #3:LNO=LNO+10:GOTO 490
215 IF SO+I=FO+1 THEN IF 1=0 THEN? #3;-1:?

#3:LNO=LNO+10:GOTO 490

254

7 Beyond BASIC ___ ill

220 IF I THEN? #3;",";
230 ? #3;PEEK(SO+I);
240 NEXT I:? #3:LNO=LNO+10:S0=SO+20:GOTO 190
260 IF N=4 THEN? #2:7 #2;"ttDATA FOR ";D0$;

11**11
270 LS=1:Z=0:W=0:? #3;LN;" DIM ";D0$;"(";L;"

) : " ;
280 IF N=4 THEN FOR 1=0 TO L-1:? #2;PEEK(SO+

I);:IF I<L-1 THEN? #2;",";
290 IF N=4 THEN NEXT I
300 LR=L-80:IF LR<=0 THEN LF=LS+L-1
310 IF LR)0 THEN LF=LS+80-1:L=LR
320 ? #3; D0$; " (" ; LS; " , " ; LF; ..) =" ; : 7 #3; CHR$ (3

4);:FOR I=LS TO LF
330 IF PEEK(SO+I-1)=34 THEN? #3;" ";:QUOTE(

Z)=I:Z=Z+1:GOTO 360
340 IF PEEK(SO+I-1)=155 THEN? #3;" ";:RETRN

(W)=I:W=W+1:GOTO 360
350 ? #3;CHR$(PEEK(SO+I-1»;
360 NEXT I:IF LR)0 THEN LS=LS+80:? #3;CHR$(3

4):? #3:LN=LN+10:? #3;LN;" ";:GOTO 300
370 ? #3;CHR$(34):? #3:LN=LN+10
380 QT=0:RT=0:FOR X=0 TO 14:IF QUOTE(X) THEN

QT=QT+1
390 IF RETRN(X) THEN RT=RT+1
400 NEXT X:IF QT=0 AND RT=0 THEN 490
410 ? #3;LN;"RESTORE ";LN+20:LN=LN+10
420 IF QT THEN? #3;LN;" FOR X=1 TO ";QT;":R

EAD Z:";D0$;"(Z,Z)=CHR$(34):NEXT X":LN=L
N+10

430 IF QT THEN? #3;LN;" DATA ";:FOR Y=0 TO
QT-1:? #3;QUOTE(Y);:IF Y AND Y<QT-1 THEN

? #3;11,";
440 IF QT THEN NEXT V:? #3:LN=LN+10
450 IF RT THEN? #3;LN;" FOR X=1 TO ";RT;":R

EAD Z: ";D0$;" (Z,Z)=CHR$(155) :NEXT X":LN=
LN+10

460 IF RT THEN? #3;LN;" DATA ";:FOR Y=0 TO
RT-1:? #3;RETRN(Y);:IF Y AND Y<QT-1 THEN

? #3;11,11;
470 IF RT THEN NEXT V:? #3:LN=LN+10
490 GOSUB 740:? "ALL DONE":GOSUB 590:INPUT A

$

500 IF A$="N" THEN D0$="{3 SPACES}":CLOSE #2
:GOTO 40

510 IF F=0 THEN 570
520 ? #3;"32000 W=0:V=";V;":RESTORE 32050"
530 7 #3;"32010 READ X,Y:FOR I =X TO Y:READ Z

:POKE I,Z:NEXT I"

255

7 ____ Beyond B.A.SIC

540 ? #3;"32020 READ Z:IF Z<)-1 THEN ?";CHR$
(34);"ERROR IN CODE! CHECK DATA STATEMEN
TS!";CHR$(34);":END"

550 ? #3;"32030 W=W+1:IF W<V THEN 32010"
560 ? #3;"32040 RETURN"
570 CLOSE #2:CLOSE #3:END
580 CLOSE #2:CLOSE #3:TRAP 40000:? "{BELL}ER

ROR ";PEEK(195);" AT LINE ";PEEK(186)+25
6*PEEK (187);"!": END

590 FOR T=10 TO 6 STEP -1:FOR S=8 TO 0 STEP
-1:S0UND 0,15-S,10,T:NEXT S:NEXT T:SOUND

0,0,0,0:RETURN
600 FOR T=1 TO 400:NEXT T:RETURN
610 ? :? "INPUT TWO CHARACTER STRING NAME":?

"PLUS THE $":GOSUB 590:INPUT D0$
615 IF LEN(D0$) < 3 THEN GOSUB 750:GOTO 610
620 IF ASC(D0$(1,1»)90 OR ASC(D0$(1,1» (65

OR D0$(2,2)="$" OR D0$(3 , 3)<)"$" THEN GO
SUB 750:GOTO 610

630 RETURN
640 IF SO(1792 THEN RETURN
645 IF FO) (256*PEEK(106)-1000) THEN? "

{BELL} ":PO
P :GOTO 40

650 BATOP=PEE K (144)+256 * PEE K (145) : IF BATOP) S
0-100 THEN ? " { BELL }[1f:lI".'(Ol :U TH I S PROGRA
M MAY HAVE " : GOTO 6 7 0

660 RETURN
670 ? "OVERRUN YOUR CODE! CHEC K YOUR RESULTS

!":GOSUB 600 : RETURN
680 QT=0:RT=0:FOR 1=0 TO L-1: IF PEEK(SO+I)=3

4 THEN QT=QT+1
690 IF PEEK(SO+I)=155 THEN RT=RT+1
700 NEXT I:IF RT<16 AND QT (16 THEN RETURN
710 ? "{ BELL} 1~:r:l:1 :IIiI :f1 w ",ull):_!lI],'.!lll: .':lIi1: i#S" : ?

MORE THAN 15 ATRSCII VALUES FO ":? It J1)]I]

(1):1: all :_uIIaI. #i-..... "
720 ? " .. : lIAW _If:l: I a.:- _ ~ ;;1111:1 #i."SW • .a" :? " I ~. ;(:i='J"

1:;[:13_:1:ulm*_iWoI(0i*,,": GOSUB 600: GOSUB 60
o

730 POP :GOTO 60
740 FOR 1=0 TO 14:QUOTE(I)=0:RETRN(I)=0:NEXT

I:RETURN
750? "{BELL}WRONG RESPONSE! TRY AGAIN!":RET

URN

256

Program 2. Changes for Cassette Users
(see notes below)

7 Beyond BASIC ___ ill

30 D0$ = "{3 SPACES}":TRAP 580:GOSUB 740:V = 0:L
NO = 32050:LN=31000:F = 0

35 OPEN #3,8,0,"C:":? #3;"1 DATA ";:FOR I=0
TO 59:? #3;"0,";:NEXT I:? #3;"0";:? #3

Note: Line 35 writes a dummy line of DATA. This is needed because of a bug in
the operating system. After the cassette handler is OPENed, the cassette motor
will not stop running until a record is written to it . RUN the program and record
the subroutine on tape. Then , before you enter your BASIC program, ENTER the
subroutine from cassette. DELETE line 1. Then ENTER your BASIC program.
Now type in GOSUB to the utility subroutine and you're ready to go.

257

1.-Beyond BASIC

Machine Language
Sort Utility
•••••• Ronald and Lynn Marcuse

Machine language sorts are fast. With this sort utility you will be
ab le to sort fixed or variable length records. These programs will
not rUI1 011 the 800XL.

There have been occasional articles in the various personal
computer magazines concerning the sorting of data files. Some of
these have presented sort routines written in BASIC that can be
used in existing programs. The complex string handling required
by the sort logic is not really suitable for BASIC's rather slow
execution speed. Clearly, any type of repetitive string manipula­
tions as performed by sorting or searching functions would defi­
nitely benefit from machine language. If you continue reading you
will find out how much faster machine language really is.

Before we get into the programs themselves, it would prob­
ably be beneficial to include some background information. The
verb to sort is defined as: lito put in a certain place or rank
according to kind, class or nature; to arrange according to charac­
teristics:' This comes pretty close to what we sometimes want to
do with the data we store in our computers and files: put it in
some kind of order. Once we have arranged it we can search it
quicker (imagine a disorganized phone book), list it in a more
readable format, or even match it to other files that have been
sorted the same way.

The Main Questions

First we must decide where will we do the actual sorting. All of us
have arranged things on a desk or table. Our sort area is, there­
fore, the desk or table that we use. In a computer system we have
a choice of using the memory within the machine (internal) or our
disk drive (external). There are problems with both of these.
Computer memory is limited in size and this, in tum, limits the
number of records that can be read in. The disk drive may be able
to hold more data, but the speed of the device is snail-like when
compared to memory. We can also use both. Divide the file up

258

/

7 Beyond BASIC ___ ill

into smaller chunks which can be sorted in memory, store these
on disk as temporary files, and then merge all of them together.
This process is usually referred to as sub-listing or sort-merge.

The next question involves the type of sort logic (there are
many ways of putting things in order). The algorithm used here is
called a bubble sort. The file or list is examined two records at a
time. If the second has a lower sort key than the first, the two will
exchange places within the file. Why then, you ask, is it called a
bubble sort: because records appear to bubble upward in memory
(I didn't coin the phrase). Although this is not a very exotic meth­
odology, it does offer several advantages such as requiring no
other memory allocations for sorting and a rather quick speed if
the file is not too disorganized. It will also not disturb the relative
positioning of records that have equal sort keys.

There are numerous other types of sort algorithms. A selection
sort would go through a list of (n) items (n-1) times, pulling out the
next lowest record and adding it to the current end of a new list.
This would need double the memory though. A selection and
exchange sort would perform a similar function within the main
sort area, selecting the lowest element during each pass, moving
it upward in the list to be exchanged with the element occupying
its new position. This method tends to upset the existing relative
positioning. Other types involve binary tree searches and more
complex algorithms.

The difference between fixed and variable length records is
really just that. Fixed length records are all exactly the same size,
while variable implies that all or many of the records in the file
may vary in length. Record 1 may be 80 bytes long, record 2 may
be 120, etc.

Why Machine Language
The choice of language is, as stated above, rather clear. Unless you
have a lot of time to kill, it must be in machine language. When
you're doing several hundred thousand (or million) character
comparisons and swaps, you don't have time to pull out a BASIC!
machine language dictionary for each line in the program (this, in
essence, is what the BASIC interpreter does).

Here are some representative execution times, based on
some testing we did a while back. The speeds are approximate
and do not include disk input/output time. The test file consisted
of 200 records, each 75 characters in length. The sort key occupied
ten positions:

259

L- Beyond BASIC

BASIC selection/exchange sort (in memory) - 8 minutes
BASIC bubble sort (in memory) -12 minutes
BASIC selection sort (on disk) - 2 hours plus (hit BREAK key)
Machine language bubble (memory) - 3 seconds

The sort program was developed with flexibility in mind. It
will sort fixed length or variable length records from 2 through 250
bytes in length. The sort key itself may be located anywhere in the
record and can be any length (up to the size of the record). It will
sort in either ascending or descending order. The records them­
selves must be comprised of ATASCII characters. While in
memory; they need not be terminated by end-of-line ($9B) charac­
ters.

The nominal limit of 250 characters is imposed by a possible
bug in Atari's DOS II. The second half of page 5 (memory
addresses 0580-05FF hex, 1408-1535 decimal) appears to be utilized
as an internal 110 buffer. When more than 128 bytes are input, the
excess winds up on page 6. The sort program also resides in the
safe user area of page 6 (beginning at $0680 or 1664). There is a
physical law that states two things cannot occupy the same place
at the same time. This also holds true in computer memory. The
program has been pushed as far into page 6 as it can go.

Using the Sort
In order to use the sort, you must feed it certain parameters. The
record length must be POKEd into location 205 ($OOCD). The sort
type (O-Ascending, I-Descending) would be POKEd into 206
($OOCE). The starting and ending positions of the sort key will
also have to be POKEd into locations 203 ($OOCB) and 204
($OOCC). The program is expecting to see the offset of the sort key.
The offset is the number of positions in front of that byte. For
example, the first position of a record has a 0 offset, the second
has an offset of I, and the hundredth has an offset of 99. The
USeR function that calls the sort will also pass the address of the
string containing the file and the record count. For those who are
a little unsure of what this is all about, there are a few examples
coming up.

Now that you have a routine that will sort your data faster
than you can say Rumpelstiltskin, how do you use it? Here are
several suggestions. The easiest method is to link through our
sort/file loader in Program 1 (fixed length only). Your existing
program that is processing the data file is probably much, much

?£G

7 Beyond BASIC ___ ill

longer than the short loader. The main advantage of using a small
program is that you wind up with more free memory And, since
memory is our sort area, the more that is free, the larger the file . If
you don't type the REMark statements, you'll have an even larger
sort area. The disk file must be fixed length records terminated by
end-of-line characters. Your existing processing program must
contain the POKEs mentioned above. It may look something like
this:
POKE 203.SKEYA-l:POKE 204.SKEYB-l:PO
KE 205.RECLEN:POKE 206.0 (for Ascend
ing)

The call to the loader would be a RUN "D:SORTLOAD" (give the
loader this filename when you save it). The sort/file loader must
have your filename in the variable F$ and your program name in
P$. If your processing program handles several files, you can also
pass the filename by using the following statements. First, your
program:
FOR 1=0 TO 14:POKE 1640+1.32:NEXT I
FOR 1=0 TO LEN(F$):POKE 1640+I . ASC(F
$(I,I» : NEXT I
Note: F$ is your files name

The sort/file loader will require the following lines to be added:
70 FOR 1=0 TO 14:F$(I.I)=CHR$(PEEK(1

640+1»: NEXT I
80 IF F$ (1.2) <)"D:" THEN -:> "ERROR": E

ND

If your processing program or file is small, you may do all of the
above from within your program. Besides the same POKEs as
above (you wouldn't need the filename of course), you will need
the following line added to your program:

IF RC>1 THEN A=USR(1664.ADR(X$),RC)

where RC is the number of records stored in the string X$. Substi­
tute your names where applicable.

Programs 2,3,4, and 5 comprise a sort/merge utility that uses
the same sort routine. This will give you the ability to handle
much larger files and variable length records. With a 40 or 48K
machine you will be able to sort files that are 60,000 bytes long. (If
the record length is 60 characters, that will translate to 1,000
records.) This particular version divides the file into two manage­
able sub-files, sorts each, and then merges them. Be careful with

261

1.-Beyond BASIC

your disk space; the temporary file will need room also. If you
have more than one drive, you can modify the program to split it
three or more ways and sort even more records . For example, put
the temporaries on drive 2 and the new file on drive 3. Who said
micros can't handle larger files?

Your Options
The sort/merge utility is a stand-alone. Program 2 will load the
machine language and display a title screen. Program 3 is a menu
that wJl allow you to select either fixed or variable length record
types and other parameters. If you select fixed length, Program 4
will be called; variable length will select Program 5.

Because of the chaining between these programs, Program 3
must be saved with a filename of "D:SORTXX'~ Programs 4 and 5
must likewise be saved with filenames of "D:SORT.FIX" and
"D:SORT. YAR': respectively. Program 2 may be saved with any
filename, but "D:SORTMERG" is suggested to avoid confusion.

Now that you know how to feed the sort its required param­
eters and call it, you must still get it into memory. Once again, you
have several options. If you have the AssemblerlEditor cartridge
(or a similar assembler), the source appears in Program 6. Please
feel free to modify it. If you're limited to BASIC, Program 7 will
load the machine language when it is run. After doing either of
these, you should go directly to DOS (DOS II only) and do a
binary save (option K) with the following parameters:

Dl:AUTORUN.SYS,0680,06FD

Saving the machine language as AUTORUN.SYS will enable the
program to auto-boot when you power up with the disk (you must
power up with that disk) . Do not append an INIT or RUN address
to the file unless you want the machine to lockup every time you
tum it on. The stand-alone sort/merge utility will automatically
load the machine language when RUN "D:SORTMERG" is
executed by the Atari.

Program 1. Sort Program Load (Files)
10 REM CALLING PROGRAM MUST:
12 REM
14 REM * POKE RECORD LENGTH INTO LOCATION 2

O5
15 REM * POKE BEGINNING OF SORT KEY INTO LO

C 203
16 REM * POKE END OF SORT KEY INTO LOCATION

204

262

7 Beyond BASIC ___ ill

17 REM * POKE TYPE (ASCENDING - ~ OR DESCEN
DING - 1) INTO LoC 2~6

18 REM
19 REM THIS PROGRAM WILL LOAD FILE INTO MEMO

RY AND CALL MACHINE
2~ REM LANGUAGE ROUTINE. WHEN COMPLETED, YOU

R PROGRAM MAY BE
21 REM RE-CALLED BY EQUATING P$ TO YOUR PRoG

RAM NAME.
22 REM
50 DIM X$(FRE(~)-6~0) ,R$(130) ,F$(15) ,P$(15),

1$ (1)

59 REM REPLACE X'S WITH YOUR FILE & PROGRAM
NAMES

6~ P$="XXXXXX":F$="XXXXXX"
99 REM GET RECORD LENGTH
10~ RET=I~~:R=PEEK(2~5)

1~9 REM OPEN FILE AND INPUT RECORDS
11~ ? " LOADING ";F$:TRAP 60~:oPEN #2,4,~,F$

:L=1
120 TRAP 140:INPUT #2,R$:TRAP 4~~~~
13~ X$(L,L+R-l)=R$:L=L+R:GoTo 12~

14~ CLOSE #2:L=L-l:N=L/R:? " RECORDS LoADED=
n ; N

149 REM CALL MACHINE LANGUAGE SORT ROUTINE
15~ IF N>1 THEN? " BEGIN SoRT":A=USR(1664,A

DR(X$),N)
16~ RET=17~:? "COMPLETED SAVING ";F$
169 REM ERASE OLD FILE AND SAVE NEW ONE
17~ TRAP 6~0:XIo 36,#2,~,~,F$:oPEN #2,8,~,F$
18~ FOR 1=1 TO L STEP R:R$=X$(I,I+R-l):? #2;

R$:NEXT I
19~ CLOSE #2:XIo 35,#2,~,~,F$
199 REM RETURN TO YOUR PROGRAM?
20~ RET=2~~:TRAP 6~~:IF P$(3,4)<>"XX" THEN?

" LOADING ";P$:RUN P$
21~ END
6~~ ? " ERROR - ";PEEK(195):CLoSE #2
61~ ? " PRESS RETURN TO CoNTINUE";:INPUT 1$:

GoTo RET

Program 2. Sort/Merge Loader
o DIM M$(20):FOR 1=1 TO 13:READ A:M$(I)=CHR$

(A): NEXT 1: DATA 72,198, 2lZ18, 165,208,141,10,
212,141,24, 2ii18, 1lZ14, 64

1 GRAPHICS 21:POKE 752,1:PoKE 82,1
2 POKE 7~8,52:POKE 7~9,8:POKE 71~,148:POKE 7

11,66:PoKE 712,152:PoKE 559,~

263

L- Beyond BASIC

4 I=PEEK(560)+PEEK(561)*256:FOR J=1 TO 4:REA
D A,B:POKE I+A,B:NEXT J

5 A=INT(ADR(M$)/256):PO KE 513,A:POKE 512,ADR
(M$)-A*256

6 FOR J=14 TO 30:POKE I+J,138:NEXT J:POKE 54
286,192:POKE 559,34

8 DATA 3,70,6,6,7,6,8,6
10 POKE 87,2: POS 1 T ION 2,0:? #6;" * i#!.):I :;B":.
~ *":? #6;" {6 SPACES}(lj.II ... '· ...

12 POKE 87,5
20 FOR N=1 TO 6:READ C,Xl,Yl,X2,Y2,X3,Y3,X4,

Y4
24 COLOR C:PLOT Xl,Yl:DRAWTO X2,Y2:DRAWTO X3

,Y3:POSITI0N X4,Y4
26 POKE 765,C:XIO 18,#6,0,0,"S:":NEXT N
28 COLOR 2:FOR 1=12 TO 27 STEP 3:PLOT 59,I:N

EXT 1
30 FOR Y=34 TO 38 STEP 2:COLOR 3:FOR X=15-Y+

40 TO 62+Y-40 STEP 2:PLOT X,Y:NEXT X:COLO
R I:PLOT X+2,Y:NEXT Y

36 COLOR 4:PLOT 26,22:DRAWTO 26,14:DRAWTO 29
,14:PLOT 30,15:PLOT 31,16:PLOT 30,17:PLOT
29,18

37 DRAWTO 27,18:DRAWTO 31,22:PLOT 34,14:DRAW
TO 34,22:DRAWTO 39,22

38 PLOT 42,22:DRAWTO 42,14:DRAWTO 46,18:DRAW
TO 50,14:DRAWTO 50,22

40 DATA 2,70,40,62,32,16,32,8,40,1,62,31,62,
27,17,27,17,31,1,20,26,20,10,17,10,17,26

42 DATA 1,62,26,62,10,56,10,56,26,1,62,9,62,
6,17,6,17,9,3,55,26,55,10,21,10,21,26

100 FOR 1=0 TO 125:READ A:POKE 1664+1.A:NEXTI
102 POKE 54286,64:RUN "D:SORTXX"
105 DATA 104,104,133,217,104,133,216,104,133

, 209,104,133,208,169,0
110 DATA 133,218,133,207,162,1,165,216,133,2

14,165,217,133,215,24
120 DATA 165,214,133,212,101,205,133,214,165

,215,133,213,105,0,133
130 DATA 215,164,203,165,206,240,10,177,214,

209,212,144,44,240,12
140 DATA 176,19,177,214,209,212,144,13,240,2

,176,30,200,196,204
150 DATA 240,227,176,23,144,223,169,1,133,21

8,164,205,136,177,214
160 DATA 72,177,212,145,214,104,145,212,192,

0,208,241,232,224,0
170 DATA 208,2,230,207,228,208,208,172,165,2

09,197,207,208,166,165
180 DATA 218,201,0,208,144,96

264

7 Beyond BASIC __ lIiill

Program 3. Sort/Merge Menu
(SAVE as "D:SORTXX")

o REM SORT/MERGE MENU
1 0 PO K E 82, 1 : G RAP H I C S 0:? ," {D 0 W N} ;;Sll;i ;" .. :li1;a

............ :? "{DOWN}{TAB}"
20 DIM I$(I),T$(I):Q3=40000:? "{DOWN}FOR FIL

E TO BE SORTED, ENTER:"
30 ? "{DOWN}FIXED (F) Dr VARIABLE (V) LENGTH

";:INPUT 1$
40 R=0:IF I$="V" THEN 70
50 IF I${ > "F" THEN 30
60 ? "RECORD LENGTH ";:TRAP 40:INPUT R:TRAP

Q3:IF R{2 OR R >250 THEN 60
70 ? "SORT KEY (lst,2nd) ";:TRAP 70:INPUT SS

,SE:TRAP Q3
75 IF SS)=SE OR SS { 0 OR SE)250 THEN 70
80 ? "ASCENDING - 0 OR DESCENDING - 1 ";:TR

AP 80:INPUT T:TRAP Q3
85 IF T{0 OR T > 1 THEN 80
90 POKE 205 ,R:P OKE 203,SS:POKE 204,SE:POKE 2

06,T
100 TRAP 120:IF I$="V" THEN RUN "D:SORT.VAR"
110 RUN "D:SORT.FIX"
120 ? "INSERT DISKETTE WITH SORT PROGRAM":?

"PRESS RETURN ";:INPUT T$:GOTO 100

Program 4. Fixed Length Records
(SAVE as "D:SORT.FIX)

o REM SORT/MERGE - FIXED LENGTH RECORDS
20 R=PEEK(205):SS=PEEK(203)+I:SE=PEEK(204)+1

:T=PEEK(206)
30 XL=FRE(0)-600:DIM X$(XL),F$(15),R$(R),T$(

R),D$(7)
40 Ql = 210:Q2=600:Q3=40000:D$="Dl:TEMP"
50 ? "ENTER FILE NAME (Dn:name.ext)":INPUT F

$

60 TRAP 50:DO=VAL(F$(2,2»:IF Do{1 OR DO}4 T
HEN 50

80 ? "DRIVE NUMBER FOR SORTED FILE ";:TRAP B
0:INPUT DN

90 IF DN {1 OR DN) 4 THEN 80
95 D$(2,2)=STR$(DO):? "INSERT ";F$;" IN DRIV

E ";DO:IF DN { >DO THEN? "AND BLANK DISK I
N DRIVE ";DN

96 ? "PRESS RETURN ";:INPUT R$
100 ? "LOADING ";F$:TRAP Q2:0PEN #2,4,0,F$:M

=0

265

L.. Beyond BASIC

12~ L=1:? "PASS 1 - ";:GOSUB 5~~:IF M=~ THEN
16~

14~ ? "WRITING ";D$:OPEN #3,8,0,D$:GOSUB 56~
15~ ? "PASS 2 - ";:L=1:GOSUB 5~~
16~ CLOSE #2:TRAP Q2:IF DO=DN THEN? "DELETI

NG ";F$:XIO 36,#3,~,~,F$
17~ F$(2,2)=STR$(DN):OPEN #3.8,~,F$
18~ ? "WRITING ";F$:IF M=~ THEN GOSUB 56~:GO

TO 4~~

2~~ TRAP Q2:0PEN #2,4.~,D$:J=1:A=1:B=1:AE=1:
BE=1

210 IF A=1 THEN TRAP 3 30:INPUT #2,R$:TRAP Q3
22~ IF B=1 THEN TRAP 34~:T$=X$(J,J+R-l):J=J+

R:TRAP Q3
23~ IF AE=0 AND BE=0 THEN 39~
240 IF AE=l AND BE=0 THEN 300
245 IF AE=0 AND BE=1 THEN 310
250 IF T=1 THEN 280
260 IF R$(SS,SE»T$(SS , SE) THEN 310
270 GOTO 3~~

28~ IF R$(SS,SE) (T$(SS,SE) THEN 31~
3~~ ? #3;R$:A=1:B=~:IF AE=~ THEN A=~:B=BE
3~2 GOTO Q1
31~ ? #3;T$:A=~:B=1:IF BE=~ THEN B=~:A=AE
312 GOTO Q1
33~ AE=~:GOTO 22~

34~ BE=~:GOTO 230
39~ CLOSE #2:? "DELETING ";D$:XIO 33,#2,0,0,

D$
400 CLOSE #3:XIO 36,#3,~,0.F$
41~ END
500 TRAP 530:INPUT #2,R$:TRAP Q3
51~ X$(L)=R$:L=L+R:IF (L+R)(XL THEN 500
520 M=l
530 L=L-1:N=L/R:? "RECORDS LOADED = ";N
540 IF N) 1 THEN? "BEGIN SORT ";:A=USR(1664

,ADR(X$),N)
550 ? "END SORT":RETURN
56~ FOR 1=1 TO L STEP R:R$=X$(I,I+R-1):? #3;

R$:NEXT I:CLOSE #3:RETURN
60~ ? "ERROR - ";PEEK(195):END

Program 5. Variable Length Records
(SAVE as "D:SORT.VAR)

o REM SORT/MERGE - VARIABLE LENGTH RECORDS
10 SS=PEEK(2~3)+1:SE=PEEK(204)+1:T=PEEK(2~6)

:POKE 203,SS:POKE 2~4,SE
20 XL=FRE(0)-~00:DIM X$(XL),F$(15),R$(251),T

$(251),D$(7)

266

7 Beyond BASIC ___ ill

30 Ql = 210:Q2=600:Q3=40000:D$ = "Dl:TEMP " :T$(I)
= " ":T$(251)=" ":T$(2)=T$(I)

40 ? "ENTER FILE NAME (Dn:name.ext)":INPUT F
$

45 TRAP 40: DO=VAL (F$ (2, 2»: IF DO<1 OR DO>4 T
HEN 40

50 ? "DRIVE NUMBER FOR SORTED FILE " ; : TRAP 5
0:INPUT DN

55 IF DN<1 OR DN >4 THEN 50
57 ? "INSERT II; F$; II IN DRIVE ";DO:IF DN<>DO

THEN ? "AND BLANK DISK IN DRIVE ";DN
58 D$(2,2) =STR$(DO):? "PRESS RETURN ";:INPUT

R$
60 ? "FINDING LONGEST RECORD LENGTH":TRAP Q2

:OPEN #2,4,0,F$:R=0
70 TRAP 80:INPUT #2,R$:L=LEN(R$):IF L>R THEN

R=L
75 GOTO 70
80 CLO S E #2:? "LONGEST LENGTH IS ";R:IF R>25

o THEN? "TOO LONG":END
100 POKE 205,R+l:? "LOADING ";F$:TRAP Q2:0PE

N #2,4,0,F$:M = 0
120 L = I:? "PASS 1 - ";:GOS UB 500:IF M= 0 TH EN

160
140 ? "WRITING ";D$:OPEN #3,8,0,D$:GOSUB 560
150? "PASS 2 - ";:L=1:GOSUB 500
160 CLOSE #2:TRAP Q2:IF DO=DN THEN? "DELETI

NG ";F$:XIO 36,#3,0,0,F$
170 F$(2,2)=STR$(DN):OPEN #3,8,0,F$
180? "WRITING ";F$:IF M=0 THEN GOSUB 560:GO

T O 400
200 TRAP Q2:0PEN #2,4,0,D$~J = I:A= I:B=1:AE=I:

BE=1
210 IF A= 1 THEN TRAP 330:INPUT #2,R$:TRAP Q3
220 IF B=1 THEN TRAP 340:RL = ASC(X$(J,J » :T$ =

X$(J+1,J+RL):J=J+R+l:TRAP Q3
230 IF AE=0 AND BE = 0 THEN 390
240 IF AE=1 AND BE=0 THEN 300
245 IF AE=0 AND BE=1 THEN 310
250 IF T=1 THEN 280
260 IF R$(SS,SE}>T$(SS,SE) THEN 310
270 GOTO 300
2 8 0 IF R$(SS,SE} < T$(SS,SE} THEN 310
300 ? #3;R$:A=I:B=0:IF AE=0 THEN A=0:B = BE
302 GOTO Ql
310 ? #3;T$:A = 0:B=I:IF BE = 0 THEN B=0:A = AE
312 GOTO Ql
330 AE=0:GOTO 220
340 BE = 0:GOTO 230

267

L-Beyond BASIC

39~ CLOSE #2:? "DELETING ";DS:XIO 33.#2,~,~ ,
DS

4~~ CLOSE #3:XIO 36,#3,~,~,FS
41~ END
5~~ TRAP 53~:INPUT #2,R$:TRAP Q3:RL=LEN(RS) :

IF RL(R THEN RS(RL+1)=TS
51~ XS(L,L)=CHRS(RL):X$(L+l)=RS: L=L+R+1:IF

L+R+l)(XL THEN 5~~
52~ M=l
53~ L=L-1:N=L/(R+ 1):? "RECORDS LOADED = ";N
54~ IF N)l THE N? "BEGIN SORT "; : A=USR(1664

,ADR(X$) ,N)
55~ ? "END SORT":RETURN
56~ FOR 1=1 TO L STEP R+1:RL=ASC(X$(I,I»:R$

=X$ (1+1, I+RL)
57~ ? #3;R$:NEXT I:CLOSE #3:RETURN
6~~ ? "ERROR - ";PEEK(195):END

Program 6. Machine Language Bubble Sort
~1~~ .TITLE "MACHINE LANGUAGE BUBBLE SORT

~ 11~

~120

~13~

~14~

~15~

~16~

~17~

~18~

RLM MICRO SYSTEMS ~1/2~/82

CALLED FROM BASIC WITH:

A=USR(1664,ADR(X$),RC)

NOTE: X$ IS THE STRING THAT CONTAINS
THE FILE

~19~

~2~~

RC IS THE NUMBER OF RECORDS

~21~; THE FOLLOWING ARE POKED BY BASIC PRO
GRAM:

~22~ ;
~23~ ; SS - BEGINNING OF SORT KEY (DECI

MAL- 2~3)

~240 ; SE - END OF SORT KEY (DECIMAL -
2~4)

~25~ ;
5)

RL - RECORD LENGTH (DECIMAL - 20

~26~ ; TYPE - ASCENDING (~) OR DESCEND
I NG (1)

~270 (DECIMAL - 2~6)

~28~ ;
~290 ; THE ROUTINE WILL LOOP THROUGH "FILE"

SWAPPING UNSORTED
~3~0 ; ADJOINING MEMBERS UNTIL THE "SWAP" FL

AG HAS NOT BEEN SET

268

7 Beyond BASIC __ lIiill

0310 ; IN A GIVEN PASS. THE ZERO PAGE ADDRES
SES "FST" AND "SEC"

0320 ; POINT AT THE INDIVIDUAL MEMBERS BEING
COMPARED. THE Y

0330 ; REGISTER IS USED AS AN INDEX POINTER
FOR TESTING DR

0340 MOVING BYTES BETWEEN THE TWO RECORDS.
0350
0360
0370 FST

B,MSB)
0380 SEC

(LSB,MSB)
0390 BASE

(LSB , MSB)
0400 SS

RT KEY
0410 SE

T KEY
0420 RL
0430 SWAP
0440 RC

LSB,MSB)
0450 CNTH

$0680
$D4

$D6

$D8

$CB

$CC

$CD
$DA
$D0

$CF
X REG IS LSB)

0460 TYPE
DES

0470 ;
0480 ;
0490

ROM
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590 ;

PLA
STACK

PLA
STA
PLA
STA
PLA
STA
PLA
STA

0600 BEGIN LDA
UGH FILE

0610 STA
0620 STA
0630 LDX

(LOW COUNT)
0640 LDA

ASE

$CE

BASE+1

BASE

RC+l

RC

SWAP
CNTH
*$01

BASE

START ON PAGE 6
MEMBER n ADDRESS (LS

MEMBER (n+1) ADDRESS

BASE ADDRESS OF LIST

FIRST POSITION OF SO

LAST POSITION OF SOR

ELEMENT LENGTH
SWAP SWITCH
NUMBER OF ELEMENTS

RECORD COUNTER (MSB,

SORT TYPE, 0-ASC 1-

POP # OF ARGUMENTS F

SET BASE ADDRESS

SET ELEMENT COUNT

START EACH PASS THRO

SET SWAP TO 0
SET HIGH COUNT TO 0
SET X REGISTER TO 1

SET POINTER (n) TO B

269

L. Beyond BASIC

0650 STA SEC
0660 LDA BASE+1
0670 STA SEC+1
0680
0690 CONT CLC
0700 LDA SEC RESET P OINTERS -
0710 STA F ST (n) to (n+1)
0720 ADC RL
0730 STA SEC (n +1) to (n+2)
0740 LDA SEC+1
0750 STA FST+1
0760 ADC #$00
0770 STA SEC+1
0780 LDY SS ASCII STRING COMPARI

SON
0790 ;
0800 COMP LDA TYPE ASCENDING OR DESCEND

ING?
0810 BEQ ASC SORT IS ASCENDING
0820 LDA (SEC),Y TYPE = DESCENDING
0830 CMP (FST),Y COMPARE ADJOINING ME

MBERS
0840 BCC BACK (n»(n+1)
0850 BEQ INCR (n)=(n+1) TRY AGAIN
0860 BCS FLIP (n) « n+1)
087111
0880 ASC LDA (SEC) , Y TYPE = ASCENDING
0890 CMP (FST),Y COMPARE ADJOINING ME

MBERS
0900 BCC FLIP (n»(n+1)
0910 BEQ INCR (n)=(n+1) TRY AGAIN
0920 BCS BACK (n) « n+1)
0930
0940 INCR INY ADD 1 TO POINTER
0950 CPY SE END OF SORT KEY?
0960 BEQ COMP NO
0970 BCS BACK YES, NEXT ELEMENT
0980 BCC COMP NO
0990
1000 FLIP LDA #$01 SWAP ELEMENTS (n).(n

+1)
1010 STA SWAP SET SWAP SWITCH ON
1020 LDY RL LOAD LENGTH
1030 ;
1040 MOVE DEY SET DISPLACEMENT
1050 LDA (SEC),Y EXCHANGE BYTES
1060 PHA
1070 LDA (FST),Y
1080 STA (SEC),Y

270

7 Beyond BASIC ___ II

1090 PLA
1100 STA (FST>,Y
1110 CPY #$00 MORE BYTES TO SWAP?
1120 BNE MOVE YES
1130 ;
1140 BACK INX INCREMENT RECORD COU

NTER
1150 CPX #$00 CHECK FOR >255
1160 BNE TEST
1170 INC CNTH ADD 1 TO HIGH COUNT
1180 ;
1190 TEST CPX RC END OF FILE?
1200 BNE CONT NO
1210 LDA RC+1 CHECK HIGH EOF
1220 CMP CNTH
1230 BNE CONT NOT END OF FILE
1240 LDA SWAP TEST FOR END OF SORT
1250 CMP #$00 ANY SWAPS?
1260 BNE BEGIN YES, START OVER
1270 RTS NO, RETURN TO CALL1N

G PROGRAM
1280 .END

Program 7. Sort Load
98 FOR 1=0 TO 125:READ A:POKE 1664+1,A:NEXT

I
100 DATA 104,104,133,217,104,133,216,104,133

,209,104,133,208,169,0
110 DATA 133,218,133,207,162,1,165,216,133,2

14,165,217,133,215,24
120 DATA 165,214,133,212,101,205,133,214,165

,215,133,213,105,0,133
130 DATA 215,164,203,165,206,240,10,177,214,

209,212,144,44,240,12
140 DATA 176,19,177,214,209,212,144,13,240,2

,176,30,200,196,204
150 DATA 240,227,176,23,144,223,169,1,133,21

8,164,205,136,177,214
160 DATA 72,177 , 212,145,214,104,145,212,192,

0,208,241,232,224,0
170 DATA 208 , 2,230,207,228,208,208,172,165,2

09,197,207,208,166,165
180 DATA 218,201,0,208,144,96

271

A
A Complete Guide
to the Atari
Character Set
•••••• Orson Scott Card

Atari characters can be used to do many things besides speak
English to the user. Nearly infinite strings can hold fully relocat­
able machine language programs in character form, the most
economical way of storing machine language in BASIC programs.
Characters can be POKEd directly into screen memory. Programs
can read the keyboard directly, by-passing the Atari's keyboard
handling routines, so that you can effectively redefine almost
every key and key combination. And editing functions, like
CURSOR LEFT, DELETE, CLEAR, TAB, and even TAB SET and
TAB CLEAR, can all be executed during a program simply by
PRINTing them, either as part of a string or as a CHR$(n) func­
tion.

The trouble is, to do all these things requires using several
different codes. And the different codes have all been kept in
different lists-often in different books-and as often as not
you've had to translate hexadecimal to decimal or multiply by 8 in
order to get the value you wanted.

Until now. Here is a complete listing of the Atari character
set, in ATASCII order, with every bit of information we could
think of a use for. For each of 128 characters, you will find :

• The pattern of on-off bits that produces the character on the
screen, including the value of each byte in the pattern .

• The AT ASCII values in decimal and hexadecimal for regular
and inverse characters.

• The internal code values in decimal and hexadecimal for
regular and inverse characters.

• The keyboard code values in decimal and hexadecimal,
including the value of the key combination and the value of
the unshifted key alone .

• The machine language instruction represented by the
regular and/or inverse character's ATASCII value.

275

A ____ Appendix

• The offset of the character's 8-byte pattern within character
set memory.

• The key combination required to PRINT the character (or
execute its screen editing function).

• The effect of PRINTing screen editing characters.

How to Use the Table
Each entry begins with a printout showing the pattern of on-off
bits in the character pattern. Beside each row is the value, in
decimal, of the byte that produces that row's on-off pattern. On
bits are 1, off bits are O. The operating system creates inverse char­
acters from the same patterns, except that 0 is interpreted as on
and 1 is interpreted as off.

AlASCIl VAWE
The first line gives the ATASCII code in decimal and hexadecimal
($) and the value of the inverse character. If the character is also an
editing command, the effect of PRINTing the character is given in
the third column of the first line.

Machine Language
The second line gives the 6502 machine language instruction
represented by the ATASCII value of the character, followed by
the instruction represented by the AT ASCII value of the inverse
character. If the inverse character is also an editing command, the
effect of PRINTing the inverse character is given in the third
column of the second line.

The following conventions are used with the machine
language mnemonics:

= immediate addressing
z = absolute zero page addressing
abs = absolute 2-byte addressing
(ind) = indirect addressing
,X or ,Y = indexed addressing
A = accumulator

Remember that the machine language mnemonic represents
the ATASCII value of the character, not the ICODE (internal code)
value. This information is provided so you can decode machine
language routines contained in strings, like:

C = USR(ADR("string"»

Also, keep in mind that after almost every instruction comes
a 1- or 2-byte argument. Any instruction that uses absolute

276

A
Appendix _1liii_iii

addressing will be followed by a 2-byte argument; instructions
that use indirect, zero page, and immediate addressing, as well as
branch instructions, will use I-byte arguments; and instructions
with implied addressing (DEY, INX, RTS, NOp, BRK, etc.) will
have no argument following them.

ICODE Values
The third line gives the ICODE (internal code) value of the char­
acter. This is the number that must be POKEd into screen memory
to display the character on the screen; the number also represents
the order of the character within character set memory. The
ICODE value is given in decimal and hexadecimal, followed by
the ICODE value of the inverse character in decimal and hexadec­
imal. Last comes the offset of the character in the character set­
the number of bytes to count into character set memory to find the
top line of that character's pattern.

(Occasionally the keyboard code is also called an internal
code, but for clarity we will use ICODE only for the number repre­
senting the character's order in character set memory, which is
also the number POKEd into screen memory.)

KEYCODE Values
The fourth line gives the KEYCODE (keyboard code) value of the
character-the number that is stored in location 764 when you
press the key combination that produces that character. The
number is given in decimal and hexadecimal, followed by the
decimal and hexadecimal ul1shifted KEYCODE-the code for the
individual key, regardless of whether SHIFT or CONTROL are
pressed. Last comes the key combination required to produce the
character. If the character is also an editing command, (ESC) will
come first to remind you to PRINT or type the ESC character first
or PRINTing the character will execute its editing function.

Indexes

To help you use this table, it is followed by several indexes:

ICODE index. Look up characters by their internal code
number.
Machine language index. Look up characters by the
machine language mnemonic (in alphabetical order).

KEYCODE index. Look up characters by their keyboard code
number.

277

A _1IiiII __ Appendix

Screen Editing Characters
The screen editing characters are paired, with the second char­
acter in each pair PRINTed as the inverse of the first character. To
be PRINTed-PRINT CHR$(nnn)-each character must be
preceded by the ESC character-PRINT CHR$(27);CHR$(nnn) .
The only exception is CHR$(155), the RETURN character. If you
could PRINT it, it would be the inverse ESCAPE character, which
is what appears when you POKE the ICODE equivalent, 219, into
screen memory. However, used with PRINT, CHR$(155) will
always cause the Operating System to execute a carriage return
and line feed. There is no way to defeat this without altering the
OS.
Normal Inverse

27 155
ESC RETURN

28 156
CURSOR UP DELETE LINE

29 157
CURSOR DOWN INSERT LINE

30 158
CURSORLEFf TAB CLEAR

31 159
CURSOR RIGHT TAB SET

125 253
CLEAR BUZZER [CONTROL-2]

126 254
DELETE BACK DELETE AHEAD

127 255
TAB INSERT CHARACTER

278

A Appendix ___ iii

Table 1. Atari Character Set

•
~I

•
m

54 111
127 111
127 248
62 248
28 24
8 24
111 24

ATASCII 0 $00 in v 128 $80 ATASC II 5 $05 inv 133 $85
ML BRK iny ML ORA z inv STA z
ICODE 64 $40 inv 192 SCO offset 512 ICODE 69 $45 inv 197 $C5 offset 552
KEYCODEI60 $AO uns 32 $20 CONTROL-, KEYCODEI70 $AA uns 42 $2A CONTROL-E

•
24

•
1 24

24 14
31 28
31 56
24 11:2
24 224
24 192

ATASCII I $01 inv 129 $80 ATASCII 6 $06 inv 134 $86
ML ORA (ind,X) inv STA (ind,X) ML ASL z inv STX z
ICODE 65 $41 inv 193 $CI offset 520 ICODE 70 $46 inv 198 $C6 offset 560
KEYCODEI91 $BF un s 63 $BF CONTROL-A KEYCODEI84 $B8 uns 56 $38 CONTROL-F

•
3

•
192

~ 224
112

¥.
56
28
14

3 7
3 3

ATASCII 2 $02 inv 130 $82 ATASCI I 7 $07 inv 135 $87
ML- inv - ML - in v
ICODE 66 $42 inv 194 $C2 offse t 520 ICODE 71 $47 inv 199 $C7 offset 568
KEYCODEI49 $95 uns 21 $15 CONTROL-B KEYCODEI89 $BD uns 61 $3D CONTROL-G

•
24 1 24 .,::.
24 7
248 15
248 t~ 111
'~J 127
Iii 255

ATASCII 3 $03 inv 131 $83 ATASCII 8 $08 inv 136 $88
ML - in v - ML PHP inv DEY
ICODE 67 $43 in v 195 $C3 offset 536 ICODE 72 $48 inv 200 $C8 offset 576
KEYCODE146 $92 uns 18 $12 CONTROL-C KEYCODE185 $B9 lIns 57 $39 CONTROL-H

•
24 121
24 iii
24 QI
248 121
248 15
24 15
24 15
24 15

ATASCII 4 $04 inv 132 $84 ATASCII 9 $09 inv 137 $89
ML- inv STY z ML ORA # inv
ICODE 68 $44 inv 196 $C4 offset 544 ICODE 73 $49 inv 201 $C9 offset 584
KEYCODE186 $BA uns 58 $3A CONTROL-D KEYCODE141 $8D uns 13 $OD CONTROL-I

279

A iillIIIii __ Appendix

Table 1. Atari Character Set (cootinued)

ATASCII 10
ML ASL A
ICODE 74
KEYCODE129

ATASCII 11
ML -
ICODE 75
KEYCODE133

ATASCII 12
ML-
ICODE 76
KEYCODE128

128
192
224
24!i1
248
252
254 ,,== k..J..J

$OA iny 138
iny TXA

$4A iny 202
$81 uns 1

15
15
15
15
QI
Iii
~J
QI

$OB iny 139
inv -

$4B iny 203
$85 lIns 5

240
24121
24121
24(21
~!1
m
QI
QI

$OC iny 140
iny STY

$4C iny 204
$80 uns 0

•
~~~ 
ill 
ill 
o 
QI 
ill 
QI 

$8A 

$CA offset 592 
$01 CONTROL-J 

$8B 

$CB offse t 600 
$05 CO NTROL-K 

$8C 
abs 
$CC offset 608 
$00 CONTROL-L 

ATASCII 13 $OD iny 141 $8D 
ML ORA abs iny STA abs 
ICODE 77 $4D iny 205 $CD offset 616 
KEYCODE165 $A5 uns 37 $25 CONTROL-M 

•
I~I 
ill 
121 
121 
ill 
121 
255 
255 

ATASCII 14 
ML ASL abs 
ICODE 78 
KEYCODE163 

280 

$OE iny 142 
iny STX 

$4E iny 206 
$A3 uns 35 

$8E 
abs 
$CE offset 624 
$23 CONTROL-N 

ATASCII 15 
ML -
ICODE 79 
KEYCODE136 

iiI 
121 
!!I 
121 
240 
240 
240 
240 

$OF iny 143 
inv 

$4F iny 207 
$88 lIns 8 

28 
"8 

•

QI 

119 
119 
8 
2 8 
III 

$8F 

$CF offset 632 
$08 CONTROL-O 

ATASCII 16 
ML BPL 

$10 in y 144 $90 
iny BCC 

ICO DE 80 550 iny 208 $DO offse t 640 
KEYCODE138 $8A uns 10 $OA CONTROL-P 

• 

ill 
o 
o 
31 
31 
24 
24 
24 

ATASCII 17 $11 iny 145 
ML ORA (ind),Y iny STA 
ICODE 81 $51 iny 209 
KEYCODE 175 $AF uns 47 

•
~: 
1,1 
255 
255 
QI 
ill 
QI 

$91 
(ind),Y 
$D1 offset 648 
$2F CONTROL-Q 

ATASCII 18 $12 iny 146 $92 
ML - inv 
ICODE 82 $52 iny 210 $D2 offset 656 
KEYCODE 168 $A8 uns 40 $28 CONTROL-R 

24 
"4 

•

24 

255 
255 
24 
24 
24 

ATASCII 19 
ML -
ICODE 83 
KEYCODE190 

$13 iny 147 
inv 

$53 iny 211 
$BE uns 62 

$93 

$D3 offset 664 
$3E CONTROL-S 



A Appendix ___ Ii 

Table 1. Atari Character Set (continued) 

ATASCII 20 
ML -
ICODE 84 
KEYCODE I73 

ATASCII 21 
ML ORAz,X 
ICODE 85 
KEYCODE139 

l!I 
o 
MI 
126 
126 
126 
6111 
o 

$14 in v 148 594 
inv STY z,X 

554 in v 212 $04 offset 672 
$AD uns 45 $20 CONTROL-T 

$15 in v 149 $95 
in v STA z,X 

$55 in v 213 $05 offset 680 
$BB lIns 11 SOB CONTROL-U 

•

1 92 
192. 
19:::' 
1 92 
1 92 
192 
192 
1 92 

ATASCII 22 $16 iny 150 596 
ML ASL z,X in y STX z, Y 
ICODE 86 $56 in y 214 $D6 offse t 688 
KEYCOOE144 $90 uns 16 $10 CONTROL-V 

• 
1,1 
r.1 
1,1 

~~~ 
"'-..J~

24
24
24

ATASCII 23 $17 inv 151 $97
ML - inv
ICODE 87 $57 inv 215 $07 offset 696
KEYCODE174 $AE uns 46 $2E CONTROL-W

•
24
24
24
255
255
r.1
IZl
r.1

ATASCII 24 $18 inv 152 $98
ML CLC inv TYA
ICOOE 88 $58 inv 216 $08 offset 704
KEYCODE150 $96 uns 22 $16 CONTROL-X

24~1
2 41'.1
24121
24~1
24Qi
2 4 121
24121
241,1

ATASCII 25 $19 inv 153 $99
ML ORA abs,Y inv STA abs,Y
ICODE 89 $59 inv 217 $09 offset 712
KEYCODE 171 $AB un, 43 $2B CONTROL-Y

•
~4
.~4
24
3 1
31
iii
1,1
1,1

ATASCII 26 $IA inv 154 $9A
ML - in v TXS
ICODE 90 $5A in v 218 $OA offset 720
KEYCODE151 $97 uns 23 $17 CONTROL-z

•
~~I'.I
1 21,1
96
1 26
24
31i1
1,1

ATASCli 27 $1 B in v 155 $9B ESCAPE
ML - inv END OF LIN E

(RETURN)'
ICOOE 91 $5 B in v 219 $OB offset 728
KEYCODE28 $l C uns 28 S1C {ESC} ESC

'CHR$ (155) cannot be PRINTed .

•
~I

~~
126
24
24
24
r.1

ATASCII 28
ML -
ICODE 92
KEYCOOE142

$1C iny 156
inv

$5C iny 220
$BE uns ·14

$9C CURSOR UP
DELETE LINE

$OC offset 736
$DE {ESC}

CONTROL­
{hyp hen]

281

A iIIlii •• Appendix

Table 1. Atari Character Set (continued)

•
~4
¥t
6121
24
121

ATASCII 29 $ID iny 157

ML ORA abs,X iny STA
ICOOE 93 $50 iny 221
KEYCOOE 143 $8F uns 15

•

"21
24

t~6
48
24
~Zl

_ iii

$90 CURSOR
DOWN

abs, X INSERT LINE
$00 offset 744
$OF {ESC}

CONTROL-=

•
-. _ ...

. .
. -

. . -

ATASCII 34
ML -
ICOOE 2
KEYCOOE94

ATASClI 35
ML -

121
11212
11212
1121 2
121
121
W
121

$22 in y 162 $A2
iny LOX #

$02 iny 130 $82 offset 16
SSE uns 30 $1 E SHIFT-2

$23 iny 163
inv

$A3

ATASCII 30 $IE iny 158 $9E CURSOR LEFT ICOOE 3 $03 inv 131
$5A uns 26

$83 offset 24
$lA SHIFT-3 ML ASL abs,X iny CLEAR TAB KEYCOOE90

ICOOE 94 $5E iny 222
KEYCOOE 134 $86 uns 6

•

121
- 24

12
126
12 . 24
121
i21

ATASCII 31 $IF iny 159

ML - iny
ICOOE 95 $5F iny 223
KEYCOOE 135 $87 uns 7

•
121
121
~I
121

~:
121
121

$OE offset 752
$06 {ESC}

CONTROL- +

$9F CURSOR
RIGHT
SET TAB

$OF offset 769
$07 {ESC}

CONTROL-'

ATASCII 32
ML jSR abs

$20 iny 160 $AO
iny LOY #

ICOOE 0 $00 iny 128 $80 offset 0
KEYCOOE33 $21 uns 33 $21 SPACE BAR

•

. 1;1
- - -- ~4

- 24
24
121
~4

ATASCII 33 $21 iny 161 $A1
ML AND (ind,X) iny LOA (ind ,X)
ICOOE 1 $01 iny 129 $81 offset 8
KEYCOOE95 $5F uns 31 $lF SHIFT-1

282

•

24
62

. 96

%1'.1
124

- 24
. 121

ATASCll 36 $24
ML BIT

in y 164 $A4
in y LOY z

ICOOE 4
KEYCOOE88

$04 iny 132 $84 offset 32
$58 uns 24 $18 SHIFT-4

11
121

- 1m2
1121fJ r - 24

. 48
11'.12
7121 - - - iii

ATASCII 37 $25 in y 165
ML AND z iny LOA
ICOOE 5 $05 iny 133
KEYCOOE93 $50 un s 29

B
l 28

- . -I ~~
. . - 56

- 111
. 11'.12

~ _ _._ ... _ ~9

$A5
z
$85 offsel40
$ID SHIFT-5

ATASCll 38 $26 iny 166 $A6
ML ROL z iny LOX z
ICOOE 6 $06 iny 134 $86 offset 48
KEYCOOE 91 $5B uns 27 $1 B SHIFT-6

A Appendix __ iii_

Table 1. Atari Character Set (continued)

•

-- ~H1 ~4
i+1 24 . . 24

. - _. _. QI

- - 1,1
- m

- - -~ ::. QI

ATASCII 39 $27 iny 167
ML - iny -
ICODE 7 $07 iny 135
KEYCODE115 $73 uns 51

•

- -1 iP4
28

- - 24
- 24

28
14
i,1

ATASCII 40 $28 iny 168
iny TAY

$08 iny 136
$70 un s 48

ML PLP
ICODE 8
KEYCODE112

•

. ·-1 --- 'i:t:2
· 56

- 24
· 24
· =6 . . T' 1 :2

I,i

ATASCII 41 $29 iny 169
ML AND # iny LDA
ICODE 9 $09 iny 137
KEYCODEl14 $72 uns 50

ATASCII 42
ML ROL A
ICODE 10
KEYCODE7

$2A iny 170
iny TAX

$OA in y 138
$07 uns 7

mTI T -- !2l _. - _.. 24

. - Hi>
24 -- - -- -- 24

~ - - - = g

$A7

$87 offset 56
$33 SHIFf-7

SA8

$88 offset 64
$30 SHIFf-9

$A9

$89 offset 72
$32 SHIFf-O

$AA

$8A offset 80
$07 •

ATASCII 43 $2B iny 171 $AB
ML - iny
ICODE 11 $OB iny 139 $8B offset 88
KEYCODE6 $06 uns 6 $06 +

•
- - J ~ . -. =

- - -

i,i
i,1
m
i,1
m
24
24
48

ATASCII 44
ML BIT abs
ICODE 12
KEYCODE32

$2C iny 172
iny LDY

$OC iny 140
$20 uns 32

QI

•
i,1
Qj
1:26

1,1
i,1

. - ~I
i,1

ATASCII 45 $2D iny 173
ML AND abs inv LDA
ICODE 13 $OD iny 141
KEYCODE14 $OE uns 14

•
riI

_. _ .. " _. 1,1
1,1 - - - Ql -' - -. (,I
24
24
i,1

ATASCII 46 $2E iny 174
ML ROL abs inv LDX
ICODE 14 $OE iny 142
KEYCODE34 $22 uns 34

•

-(,1
6

- 12
24 . 48

- .. 96
- 64

- - - ~I

ATASC II 47 $2F iny 175
ML - iny
ICODE 15 $OF iny 143
KEYCODE38 $26 uns 38

6Q1
11,12
1HI
118
1(,12
6(,1

•

. (,I

i,1

$30 inv
inv

$10 inv

176
BCS
144

ATASCII 48
ML BMI
ICODE 16
KEYCODE50 $32 uns 50

$AC
abs
$8C offset 96
$20 , [comma]

$AD
abs
$8D offset 104
$OE - [hyphen]

$AE
abs
$8E offset 112
$22

$AF

$8F offset 120
$26 /

$BO

$90 offset 128
$32 0

283

A illlIiI __ Appendix

Table 1. Atari Character Set (continued)

•

,:1 ., 1
5~J
24
24
24
126
o

ATASCII 49 $31
ML AND (ind), Y

inv 177
in v LOA
in v 145
uns 31

ICODE 17 $11
KEYCODE31 $ IF

• ATASCII 50
ML -
ICODE 18
KEYCODE30

• ATASCII 51
ML -
ICODE 19
KEYCODE26

• ATASCII 52
ML-
ICODE 20
KEYCO DE24

• ATASCII 53
ML AND z,X
ICODE 21
KEYCODE29

284

!il
M I
11212
12
24
,1.1-8
126
iii

$32 inv 178
inv

$12 inv 146
$lE uns 30

Ii!
126
12
2 4
12
11~12
hfZl
VI

$33 inv 179
inv

$13 inv 147
$l A uns 26

111
1 2
28
6111
11218
126
12
11!

$34 in v 180
inv

$14 inv 148
$18 uns 24

!,I
126
96
124
6
l!i12
6!,1
!,I

$35 inv 181
in v LDA

$15 inv 149
$10 uns 29

$51
(ind) ,Y
$91 offset 136
$lF 1

$82

$92
$lE

$83

$93
$l A

$84

$94
$18

$B5
z,X

offset 144
2

offset 152
3

offset 160
4

$95 offset 168
$10 5

II
ATASCII 54
ML ROL z,X
ICO DE 22
KEYCODE27

• - . -

ATASCII 55
ML-
ICODE 23
KEYCODE51

II
ATASCII 56
ML SEC
ICODE 24
KEYCODE53

• ATASCII 57
ML AND abs,Y
ICODE 25
KEYCODE48

• ATASCII 58
ML -
ICODE 26
KEYCODE66

$36 inv 182
inv LOX

$16 inv 150
$18 uns 27

Ql
126
6
12
24
48
4 8
i~l

$37 in v 183
inv

$17 inv 151
$33 uns 51

I,!
6111
HI2
6121
1 '~12
1!,!2
6Q!
m

$38 inv 184
inv CLV

$18 inv 152
$35 uns 53

~I
6Q!
1!i)2
6~
6
12
56
~I

$39 inv 185
in v LOA

$19 in v 153
$30 uns 48

0
iii

~4
QI
24
24
QI

$3A inv 186
inv TSX

51A inv 154
$42 uns 2

$56
z,Y
$96
$18

$87

$97
$33

$88

$98
$35

$B9
abs,Y
$99
$30

$5A

offset 176
6

offset 184
7

offset 192
8

offset 200
9

$9A offset 208
$02 SHIFT-;

A Appendix ___ Iii

Table 1. Atari Character Set (continued)

•
~:
24
24
(il
24
24
48

ATASCII 59 $3B inv 187 $BB
ML - in v -
ICODE 27 $IB inv 155 $9B offset 216
KEYCODE2 $02 uns 2 $02

B f2
24
48
24
12
6
(il

ATASCII 60
ML­
ICODE 28
KEYCODE54

• ATASCII 61
ML AND abs,X
[CODE 29
KEYCODE15

• ATASCII 62
ML ROL abs,X
ICODE 30
KEYCODE55

• ATASCII 63
ML-
ICODE 31
KEYCODE102

$3C inv 188 SBC
inv LOY abs,X

$IC inv 156 $9C offset 224
$36 uns 54 $36 <

(il
(il
126
(il
et
126
,ZI
Iii

$30 inv 189 $BD
inv LOA abs,X

$ID in v 157 $90 offse t 232
$OF uns 15 $OF =

96
48
24
12
24
48
96
(il

$3E inv 190 SBE
inv LOX abs,Y

$IE in v 158 $9E offset 240
$37 uns 55 $37 >

iii
MI
lY-12
12
24
iii
24
(il

$3F inv 191 $BF
inv

$IF inv 159 $9F offset 248
$66 uns 38 $26 SHIFf-/

•
~I
MI
lQI2
11121
11121
96
62
(il

ATASCII 64 $40 inv 192 $CO
ML RTI inv CPY #
ICODE 32 $20 inv 160 $AO offset 256
KEYCODE 117 $75 uns 53 $35 SHIFf-8

•~i:2
~i
1Q12
et

ATASCII 65 $41 inv 193 $CI
ML EOR (ind,X) inv CMP (ind,X)
ICODE 33 $21 inv 161 $A1 offset 264
KEYCODE 127 $7F uns 63 $3F SHIFf-A

•
(il
1 2 4
11212
124 I J2J" t!J2
124
QI

ATASCII 66 $42 inv 194 $C2
ML- inv
ICODE 34 $22 inv 162 $A2 offset 272
KEYCODE85 $55 uns 21 $15 SHIFf-B

•
(il
6QI
1Q12
96
96
lQI2
6 iii
Iii

ATASCII 67 $43 inv 195 $C3
ML- inv
ICODE 35 $23 inv 163 SA3 offset 280
KEYCODE82 $52 uns 18 $12 SHIFf-C

•
QI
120
1et8
l!212
1~'" 1 .18
120
QI

ATASCII 68 $44 inv 196 $C4
ML- inv CPY z
ICODE 36 $24 inv 164 $A4 offset 288
KEYCODE122 $7A uns 58 $3A SHIFf-D

285

A iIIlii •• Appendix

Table 1. Atari Character Set (continued)

•
~I

~~6
124
96
96
126
~I

ATASCII 69
MLEOR z
ICODE 37
KEYCODEI06

$45 iny 197 $C5
iny CMPz

$25 iny 165 $A5 offset 296
$6A uns 42 $2A SHIFf-E

•

QI
126
96
124
96
96
96
"I

ATASCII 70 $46 iny 198 $C6
ML LSR z iny DEC z
ICODE 38 $26 iny 166 $A6 offset 304
KEYCODE 120 $78 uns 56 $38 SHIFf-F

•
~' 62
96
96
1HI
H'2
62
QI

ATASCII 71
ML-
ICODE 39
KEYCODE125

$47 iny 199 $C7
inv

$27 iny 167 $A7 offset 312
$7D uns 61 $3D SH IFf-G

•

QI
1Y.12
lQI2
126
HI2
1,,12
1Y.12
QI

ATASCII 72
MLPHA
ICODE 40
KEYCODE121

$48 iny 200 $C8
iny INY

$28 iny 168 $A8 offset 320
$79 uns 57 $39 SHIFf-J-1

•

QI
126
24
24
24
24
126
QI

ATASCII 73
MLEOR #
ICODE 41
KEYCODE77

286

$49 iny 201 $C9
iny CMP#

$29 iny 169 $A9 offset 328
$4D uns 13 $OD SHIFf-I

•
i21
6
6
6
6
HI2
6,,1
QI

ATASCII 74 $4A iny 202 $CA
MLLSR A inv DEX
ICODE 42 $2A iny 170 $AA offset 336
KEYCODE65 $41 uns 1 $01 SHIFf-J

B
';I

f~:§
12QI
12m
11,18
11,12
"I

ATASCII 75
ML­
ICODE 43
KEYCODE69

$4B iny 203 $CB
inv

$2B iny 171 $AB offset 344
$45 uns 5 $05 SHIFf-K

B
QI
96
96
96
96
96
126
m

ATASCII 76
MLJMP abs
ICODE 44
KEYCODE64

$4C iny 204 $CC
iny CPY abs

$2C iny 172 $AC offset 352
$40 uns 0 $00 SHIFf-L

a QI
99
11 9
127
HI7
99
99
1,1

ATASCII 77
ML EOR abs
ICODE 45
KEYCODEI0J

$4D iny 205 $CD
iny CMPabs

$2D iny 173 $AD offset 360
$65 uns 37 $25 SHIFf-M

B
';I

t'i§
126
126
1IQI
11,12
QI

ATASC II 78
MLLSR abs
ICODE 46
KEYCODE99

$4E iny 206 $CE
iny DEC z,X

$2E inv 174 $AE offset 368
$63 uns 35 $23 SHIFf-N

A Appendix ___ Iii

Table 1. Atari Character Set (continued)

ATASCII 79
ML­
ICOO E 47
KEYCOOE72

$4F inv 207 SCF
in v -

$2F in v 175 $A F offset 376
$48 uns 8 $08 SHIFT-O

a (,1
124
lei 2
l QJ2
124
96
96
(,1

ATASCII 80
MLBVC
ICOOE 48
KEYCOOE74

550 in v 208 SOO
inv BNE

$30 inv 176 SBO offset 384
$4A uns 10 $OA SHIFT-P

B
lil
6111
11112
11112
11112
HI8
54
Ql

ATASCII 81 $51 inv 209 $01
MLEOR (ind),Y inv CMP (ind),Y
ICOOE 49 $31 in v 177 $Bl offset 392
KEYCOOE111 $6F uns 47 $2F SHIFT-Q

•
i21
124
HI2
102
124
11118
1 1112
121

ATASCl I 82 $52 inv 210 $02
ML- in v
ICODE 50 $32 inv 178 $B2 offset 400
KEYCOOEI04 $68 uns 40 528 SHIFT-R

•
iii
6121
96
6111
6
6
60
i11

ATASCII 83 $53 in v 211 S03
ML- in v
ICOOE 51 533 in v 179 563 offse t 408
KEYCOOE I26 S7E uns 62 S3E SH IFT-S

•
m
126
24
24
2 4
24
24
0

ATASC II 84 $54 inv 212 $04
ML- inv
ICOOE 52 $34 inv 180 $B4 offset 416
KEYCOOE109 $60 uns 45 $20 SHIFT-T

a !11
1 Ql2
llcl2
HI2
HI2
lel2
126
iii

ATASCII 85
MLEOR z,X
ICOOE 53
KEYCOOE75

$55 inv 213 $05
inv CMP z,X

$35 inv 181 $B5 offset 424
$4B uns 11 $OB SHIFT-U

•

Iii
i m2
11212
HI2
11212
6 iii
24
I~l

ATASC II 86 $56 inv 214 $06
MLLSR z,X inv DEC abs
ICOOE 54 $36 inv 182 $B6 offset 432
KEYCOOE80 $50 uns 16 $10 SHIFT-V

•
iii
99
99
HI7
127
119
99
111

ATASCII 87 $57 inv 215 $07
ML- inv
ICODE 55 $37 inv 183 $B7 offset 440
KEYCOOE110 $6E uns 46 $2E SHIFT-W

•
111
11212
11212
brcl
6ri1
HI2
HI2
iii

ATASCII 88 $58 inv 216 $08
MLCLI inv CLO
lCOOE 56 $38 inv 184 $B8 offset 448
KEYCOOE86 556 uns 22 $16 SH IFT-X

287

A ____ Appendix

Table 1. Atari Character Set (continued)

•
~I
11212
11212
6121
24
24
24
121

ATASCII 89 $59 inv 217 $D9
ML EOR abs,Y inv CMP abs,Y
ICODE 57 $39 inv 185 $B9 offset 456
KEYCODEI07 $66 uns 43 $2B SHIFf-Y

a 121
126
12
24
48

i~6
121

ATASCII 90
ML­
ICODE 58
KEYCODE87

$5A inv 218 $DA
inv

$3A inv 186 $BA offset 464
$57 uns 23 517 SHIFf·z

•

121
3121
24
24
24
24
3QI
121

ATASCII 91
ML­
ICODE 59
KEYCODE96

$5B inv 219 $DB
inv -

$3B inv 187 $BB offset 472
$60 uns 32 $20 SHiFf·,

•
~4
96
48
24
12
6
121

ATASCII 92
ML­
ICODE 60
KEYCODE70

$5C inv 220 $DC
inv

$3C inv 188 $BC offset 480
$46 uns 6 $06 SHiFf· +

•

T2QI
24
24
24
24
12121
121

ATASCII 93 $5D inv 221 $DD
ML EOR abs,X inv CMP abs,X
ICODE 61 $3D inv 189 $BD offset 488
KEYCODE98 $62 uns 34 $22 SHIFf-.

288

•
121
8
28
54
99
!!I
121
121

ATASCII 94 $5E inv 222 $DE
ML LSR abs,X inv DEC abs,X
ICODE 62 $3E inv 190 $BE offset 496
KEYCODE71 $47 uns 7 $07 SHIFf·-

ATASCII 95
ML­
ICODE 63
KEYCODE78

S5F inv 223
inv

53F inv 191
$4E uns 14

QI
24
MI
126
126
MI
24
(!I

$DF

SBF offset 504
$OE SHiFf··

Ihyphen]

ATASCII 96 $60 inv 224 $EO
ML RTS inv CI'X #
ICODE 96 $60 inv 224 $EO offset 768
KEYCODE 162 $A2 uns 34 $22 CONTROL·.

a 121
121
MI
6
6':>
102
62
121

ATASCII 97 $61 inv 225 $E1
ML ADC (ind,X) inv SBC (ind,X)
ICODE 97 $61 inv 225 $El offset 776
KEYCODE63 $3F uns 63 $3F A

•

121
96
96
124
11212
11212
124

'"
ATASCII 98 $62 inv 226 $E2
ML- in v
ICODE 98 $62 inv 226 $E2 offset 784
KEYCODE21 $15 uns 21 $15 B

A
Appendix ._"i

Table 1. Atari Character Set (continued)

•
111

•
111

Ql 96
6111 96
96 124
96 11112
96 11112
6111 11112
Ii! 111

ATASCII 99 $63 inv 227 $E3 ATASCII 104 $68 inv 232 $E8
ML- inv - MLPLA inv [NX
[CODE 99 $63 inv 227 $E3 offset 792 [CODE 104 $68 inv 232 $E8 offset 832
KEYCODE18 $12 un s 18 $12 C KEYCODE57 $39 uns 57 $39 H

•
111

•
111

6 24
6 iii
62 56
11112 24
11112 24
62 61ij
{il QI

ATASCII 100 $64 inv 228 $E4 ATASCII 105 $69 inv 233 $E9
ML- in\' CPX z MLADC # inv SBC #
[CODE 100 $64 inv 228 $E4 offset 800 [CODE 105 $69 inv 233 $E9 offset 840
KEYCODE58 $3A uns 58 $3A 0 KEYCODE13 $00 uns 13 $00 I

•
iii

•
!21

jil 6
6111 111
11112 6
126 6
96 6
6111 6
111 6111

ATASCII 101 $65 inv 229 $E5 ATASCII 106 $6A inv 234 $EA
MLADC z inv SBC z MLROR A inv NOP
[CODE 101 $65 inv 229 $E5 offset 808 [CODE 106 $6A inv 234 $EA offset 848
KEYCODE42 $2A uns 42 $2A E KEYCODE1 $01 uns 1 $01 J

•
111

•
111

14 96
24 96
62 11118
24 12Ql
24 HI8
24 11112
,il 111

ATASCII 102 $66 inv 230 $E6 ATASCII 107 $6B inv 235 $EB
MLROR z inv INC z ML- inv
ICODE 102 $66 inv 230 $E6 offset 816 [CODE 107 $6B inv 235 $EB offset 856
KEYCODE56 $38 uns 56 $38 F KEYCODE5 $05 uns 5 $05 K

•
111

•
(,1

111 56
62 24
11112 24
1m2 24
62 24
6 MI
124 0

ATASCII 103 $67 inv 231 $E7 ATASCII 108 $6C inv 236 $EC
ML- inv MLJMP (ind) inv CPX abs
[CODE 103 $67 inv 231 $E7 offset 824 [CODE 108 $6C inv 236 $EC offset 864
KEYCODE61 $30 un s 61 $30 G KEYCODEO $00 uns 0 $00 L

289

A illlIIiI __ Appendix

Table 1. Atari Character Set (continued)

•
111
111
19.12
127
127
HI7
99
111

ATASCII 109 $6D inv 237
MLADC abs inv SBC
ICODE 109 $6D inv 237
KEYCODE37 $25 uns 37

•
(,1
111
124
lQI2
11112
HI2
lQI2

111

ATASCII 110 $6E inv 238
MLROR abs inv INC
ICODE 110 $6E inv 238
KEYCODE35 $23 uns 35

II
111
QI
MI
11212
11112
11112
MI
111

ATASCII III $6F inv 239
ML- inv
ICODE 111 $6F inv 239
KEYCODE8 $08 lIns 8

•
111
111
124
11112
lQI2
124
96
96

ATASCII 112 $70 inv 240
MLBVS inv BEQ
ICODE 112 $70 inv 240
KEYCODEIO $OA uns 10

•~~2
102
62
6
6

$ED
abs
$ED offset 872
$25 M

$EE
abs
$EE offset 880
$23 N

$EF

$EF offse t 888
$08 0

$FO

$FO offset 896
$OA P

ATASCII 113 $71 inv 241 $FI
ML ADC (ind), Y inv SBC (ind), Y
lCODE 113 $71 inv 241 $FI offset 904
KEYCODE47 $2F uns 47 $2F Q

290

•
(21
9.1
124
11212
96
96
96
9.1

ATASCII 114 $72 inv 242 $F2
ML - inv
ICO DE 114 $72 inv 242 $F2
KEYCODE40 $28 lIns 40 $28

II
9.1
111
62
96
MI
6
12 4
(,1

ATASCII 11 5 $73 inv 243 $F3
ML - inv
ICODE 115 $73 inv 242 $F3
KEYCODE62 $3E uns 62 $3E

•
111
24
126
24
24
24
14
111

ATASCII 116 $74 in v 244 $F4
ML- inv
ICODE 116 $74 inv 244 $F4
KEYCODE45 $2D uns 45 $2D

•
111
111
11212
HI2
11112
11112
62
111

ATASCII 11 7 $75 inv 245 SF5
ML ADC z,X inv SBC z,X
ICODE 11 7 $75 inv 245 $F5
KEYCODEIl $OB uns 11 $OB

•
~:QI2
11112
11212
6111
24
I!J

in v 246 $F6
inv INC z,X

offset 912
R

offset 920
S

offset 928
T

offset 936
U

ATASCII 118 $76
MLROR z,X
ICODE 11 8
KEYCO DE16

$76 in v 246 $F6 offset 944
$10 uns 16 $10 V

A Appendix __ iIIi

Table 1. Atari Character Set (continued)

•
~I
m
99
1QI7
127
62
54
m

ATASCII 119 $77 inv 247
ML- inv -
ICODE 119 $77 inv 247
KEYCODE46 $2E uns 46

•
111
121
102
MI
24
MI
HI2
QI

ATASCII 120 $78 inv 248
MLSEI inv SED
ICODE 120 $78 inv 248
KEYCODE22 $16 uns 22

R tl2
lQI2
lQI2
62
12
12QI

SF7

SF7 offset 952
$2E W

$F8

$F8 offse t 960
$16 X

ATASCII 121 $79 inv 249 $F9
ML ADC abs, Y inv SBC abs, Y
ICODE 121 $79 inv 249 $F9 offset 968
KEYCODE43 $2B uns 43 $2B Y

•

QI
Ql
126
12
24
4t3
126
QI

ATASCII 122
ML-
ICODE 122
KEYCODE23

$7A inv 250
inv -

$7A inv 250
$17 uns 23

•

QI
24
MI
126
126
24
6111
m

ATASCII 123
ML-
ICODE 123
KEYCODE130

$7B inv 251
inv -

$7B inv 251
$82 uns 2

$FA

$FA offset 976
$17 z

$FB

$FB offset 984
$02 CONTROL-;

• ATASCII 124
ML-
ICODE 124
KEYCODE79

24
24
24
24
24
24
24
24

$7C inv 252
inv

$7C inv 252
$4F uns 15

•
'f~~
124
11121
11212
6
111

$FC

$FC offset 992
$OF SHIFT-=

ATASCII 125 $70 inv 253 $FD CLEAR
ML ADC abs,X inv SBC abs,X BUZZER

[CONTROL- 2]
ICODE 125 $70 inv 253 $FD offset 1000
KEYCODE 118 $76 uns 54 $36 {ESC) SHIFT- <

•

8
24
56
12121
56
24
8 "I

ATASCII 126 $7E inv 254

MLROR abs,X inv INC

ICODE 126 $7E inv 254
KEYCODE52 $34 uns 52

24
")8

•

16

3111
28
24
16
111

$FE DELETE
BACK

abs,X DELETE
RIGHT

$FE offset 1008
$34 {ESC)

DELETE

ATASCII 127 $7F inv 255 $FF TAB
ML- inv INSERT

CHARACTER
ICODE 127 $7F inv 255 $FF offset 1016
KEYCODE44 $2C uns 44 $2C {ESC) TAB

291

A
Appendix

Table 2. Internal Code Index, ICODE: ATASCII

0: 32 41: 73 82: 18 123: 123 164: 196
1: 33 42: 74 83: 19 124: 124 165: 197
2: 34 43: 75 84: 20 125: 125 166: 198
3: 35 44: 76 85: 21 126: 126 167: 199
4: 36 45: 77 86: 22 127: 127 168: 200
5: 37 46: 78 87: 23 128: 160 169: 201
6: 38 47: 79 88: 24 129: 161 170: 202
7: 39 48: 80 89: 25 130: 162 171: 203
8: 40 49: 81 90: 26 131: 163 172: 204
9: 41 50: 82 91: 27 132: 164 173: 205

10: 42 51: 83 92: 28 133: 165 174: 206
11: 43 52: 84 93: 29 134: 166 175: 207
12: 44 53: 85 94: 30 135: 167 176: 208
13: 45 54: 86 95: 31 136: 168 177: 209
14: 46 55: 87 96: 96 137: 169 178: 210
15: 47 56: 88 97: 97 138: 170 179: 211
16: 48 57: 89 98: 98 139: 171 180: 212
17: 49 58: 90 99: 99 140: 172 181: 213
18: 50 59: 91 100: 100 141: 173 182: 214
19: 51 60: 92 101: 101 142: 174 183: 215
20: 52 61: 93 102: 102 143: 175 184: 216
21: 53 62: 94 103: 103 144: 176 185: 217
22: 54 63: 95 104: 104 145: 177 186: 218
23: 55 64: 0 105: 105 146: 178 187: 219
24: 56 65: 1 106: 106 147: 179 188: 220
25: 57 66: 2 107: 107 148: 180 189: 221
26: 58 67: 3 108: 108 149: 181 190: 222
27: 59 68: 4 109: 109 150: 182 191: 223
28: 60 69: 5 110: 110 151: 183 192: 128
29: 61 70: 6 111: 111 152: 184 193: 129
30: 62 71: 7 112: 112 153: 185 194: 130
31: 63 72: 8 113: 113 154: 186 195: 131
32: 64 73: 9 114: 114 155: 187 196: 132
33: 65 74: 10 115: 115 156: 188 197: 133
34: 66 75: 11 116: 116 157: 189 198: 134
35: 67 76: 12 117: 117 158: 190 199: 135
36: 68 77: 13 118: 118 159: 191 200: 136
37: 69 78: 14 119: 119 160: 192 201: 137
38: 70 79: 15 120: 120 161: 193 202: 138
39: 71 80: 16 121: 121 162: 194 203: 139
40: 72 81: 17 122: 122 163: 195 204: 140

292

A
Appendix

205: 141 216: 152 227: 227 238: 238 249: 249
206: 142 217: 153 228: 228 239: 239 250: 250
207: 143 218: 154 229: 229 240: 240 251: 251
208: 144 219: 155 230: 230 241: 241 252: 252
209: 145 220: 156 231: 231 242: 242 253: 253
210: 146 221: 157 232: 232 243: 243 254: 254
211: 147 222: 158 233: 233 244: 244 255: 255
212: 148 223: 159 234: 234 245: 245
213: 149 224: 224 235: 235 246: 246
214: 150 225: 225 236: 236 247: 247
215: 151 226: 226 237: 237 248: 248

293

N

Ta
bl

e
3.

 M
ac

hi
ne

 L
an

gu
ag

e
In

de
x

r
\D

 ..,.

M
N

E
M

O
N

IC

A
T

A
SC

II

M
N

E
M

O
N

IC

A
T

A
SC

II

M
N

E
M

O
N

IC

A
T

A
SC

II

A
D

C
#

10

5
B

IT
 a

bs

44

C
P

Y
ab

s
20

4
A

D
C

ab
s

10
9

B
IT

z
36

C

P
Y

z
19

6
~

A
D

C
ab

s,
 X

12

5
B

M
I

48

D
E

C
 a

b
s

21
4

-0

~

:::
l

A
D

C
ab

s,
 Y

12

1
B

N
E

20

8
D

E
C

 a
bs

,X

22
2

Q
.

A
D

C
 (

in
d,

X
)

97

B
PL

16

D

E
C

z
19

8
x·

A
D

C
 (

in
d)

,Y

11
3

B
R

I<

0
D

E
C

z,
X

20

6
A

D
C

z
10

1
B

V
C

80

D

E
X

20

2
A

D
C

z,
X

11

7
B

V
S

11
2

D
E

Y

13
6

A
N

D
 #

41

C

L
C

24

E

O
R

#

73

A
N

D
ab

s
45

C

L
D

21

6
E

O
R

ab
s

77

A
N

D
ab

s,
X

61

C

L
I

88

E
O

R
ab

s,
X

93

A

N
D

ab
s,

Y

57

C
L

V

18
4

E
O

R
ab

s,
Y

89

A

N
D

 (
in

d,
X

)
33

C

M
P

#

20
1

E
O

R
 (

in
d,

X
)

65

A
N

D
 (

in
d)

,Y

49

C
M

P
ab

s
20

5
E

O
R

 (
in

d)
,Y

81

A

N
D

z
37

C

M
P

ab
s,

X

22
1

E
O

R
z

69

A
N

D
z,

X

53

C
M

P
ab

s,
Y

21

7
E

O
R

z,
X

85

A

S
L

A

10

C
M

P
(i

n
d

,X
)

19
3

IN
C

 a
bs

23

8
A

S
L

ab
s

14

C
M

P
(i

n
d

),
Y

20

9
IN

C
 a

bs
,X

25

4
A

S
L

ab
s,

X

30

C
M

P
z

19
7

IN
C

z

23
0

A
S

L
z

6
C

M
P

z,
X

21

3
IN

C
z,

X

24
6

A
S

L
z,

X

22

C
P

X
#

22

4
IN

X

23
2

B
C

C

14
4

C
P

X
ab

s
23

6
!N

Y

20
0

B
C

S
17

6
C

P
X

z
22

8
JM

P
ab

s
76

B

E
Q

24

0
C

P
Y

#

19
2

JM
P

 (
in

d)

10
8

JS
R

 a
bs

32

O

R
A

ab
s

13

SB
C

 a
bs

,Y

24
9

L
O

A
 #

16

9
O

R
A

ab
s,

X

29

SB
C

 (
in

d,
X

)
22

5
L

O
A

ab
s

17
3

O
R

A
ab

s,
Y

25

SB

C
 (

in
d)

,Y

24
1

L
O

A
ab

s,
X

18

9
O

R
A

 (
in

d,
X

)
1

S
B

C
z

22
9

L
O

A
ab

s,
Y

18

5
O

R
A

 (
in

d)
,Y

17

S

B
C

z,
X

24

5
L

O
A

 (
in

d,
X

)
16

1
O

R
A

z
5

SE
C

56

L

O
A

 (
in

d)
,Y

17

7
O

R
A

z,
X

21

S

E
D

24

8
L

O
A

z
16

5
P

H
A

72

SE

I
12

0
L

O
A

z,
X

18

1
P

H
P

8

ST
A

 a
bs

14

1
L

O
X

 #

16
2

P
L

A

10
4

S
T

A
ab

s,
X

15

7
L

O
X

ab
s

17
4

P
L

P

40

S
T

A
ab

s,
Y

15

3
L

O
X

ab
s,

Y

19
0

R
O

L
A

42

ST

A
 (

in
d,

X
)

12
9

L
O

X
z

16
6

R
O

L
ab

s
46

ST

A
 (

in
d)

,Y

14
5

L
O

X
z,

Y

18
2

R
O

L
ab

s,
X

62

S

T
A

z
13

3
L

O
Y

 #

16
0

R
O

L
z

38

S
T

A
z,

X

14
9

L
O

Y
ab

s
17

2
R

O
L

z,
X

54

ST

X
 a

bs

14
2

L
O

Y
ab

s,
X

18

8
R

O
R

A

10
6

S
T

X
z

13
4

L
O

Y
z

16
4

R
O

R
ab

s
11

0
S

T
X

z,
Y

15

0
L

O
Y

z,
X

18

0
R

O
R

ab
s,

X

12
6

ST
Y

 a
bs

14

0
L

S
R

A

74

R
O

R
z

10
2

S
T

Y
z

13
2

L
S

R
ab

s
78

R

O
R

z,
X

11

8
S

T
Y

z,
X

14

8
~

L
S

R
ab

s,
X

94

R

T
I

64

T
A

X

17
0

IJ

('
l

L
S

R
z

70

R
T

S
96

TA

Y

16
8

:::
J

Q
.

L
S

R
z,

X

86

S
B

C
#

23

3
T

SX

18
6

x
·

N
O

P

23
4

SB
C

 a
bs

23

7
T

X
A

13

8

~
O

R
A

 #

9
S

B
C

ab
s,

X

25
3

T
X

S
15

4

N

T
Y

A

15
2

'£
l

V
1

N

Ta
bl

e
4.

 K
ey

bo
ar

d
C

od
e

In
d

ex
, K

EY
C

O
D

E:
 A

TA
SC

II

r
\0

~

K
ey

S

in
gl

e
k

ey

SH
IF

T

C
O

N
T

R
O

L

SH
IF

T
 a

n
d

pr

es
s

an
d

 k
ey

an

d
 k

ey

C
O

N
T

R
O

L
 a

n
d

 k
ey

L
0:

10

8
64

:
76

12

8:

12

L
~

u
J

1:

10
6

65
:

74

12
9:

10

J

t<
l

::J

2:

59

66
:

58

13
0:

12

3
Q

.
,

,
x·

K

5:

10

7
69

:
75

13

3:

11

K

+

6:

43

70
:

92

13
4:

30

+

*

7:

42

71
:

94

13
5:

31

*

0
8:

11

1
72

:
79

13

6:

15

20
0:

 a

0
P

10
:

11
2

74
:

80

13
8:

16

20

2:
 a

P

U

11
:

11
7

75
:

85

13
9:

21

20

3:
 a

U

R

ET

12
: c

15

5
76

:c

15
5

14
0:

c
15

5
20

4:
 a

R

E
T

I

13
:

10
5

77
:

73

14
1:

9

20
5:

 a

I
14

:
45

78

:
95

14

2:

28

20
6:

 a

15
:

61

79
:

12
4

14
3:

29

20

7:
 a

V

16
:

11
8

80
:

86

14
4:

90

V

C

18

:
99

82

:
67

14

6:

3
C

B

21

:
98

85

:
66

14

9:

2
B

X

22

:
12

0
86

:
88

15

0:

24

X

Z

23
:

12
2

87
:

90

15
1:

26

Z

K
ey

S

in
gl

e
ke

y
S

H
IF

T

C
O

N
T

R
O

L

S
H

IF
T

 a
n

d

pr
es

s
an

d
 k

ey

an
d

 k
ey

C

O
N

T
R

O
L

 a
n

d
 k

ey

4
24

:
52

88

:
36

15

2:
 a

21

6:
 a

4

3
26

:
51

90

:
35

15

4:
 a

21

8:
 a

3

6
27

:
54

91

:
38

15

5:
a

21
9:

a
6

E
SC

28

:
27

92

:
27

15

6:

27

22
0:

 a

E
SC

5

29
:

53

93
:

37

15
7:

 a

22
1:

 a

5
2

30
:

50

94
:

34

15
8:

c
25

3
22

2:
 a

2

1
31

:
49

95

:
33

15

9:
b

22
3:

 a

1

,
32

:
44

96

:
91

16

0:

0
22

4:
 a

,

SP
C

33

:
32

97

:
32

16

1:

32

22
5:

 a

SP
C

N

35

:
11

0
99

:
78

16

3:

14

22
7:

 a

N

M

37
:

10
9

10
1:

77

16

5:

13

22
9:

 a

M

I
38

:
47

10

2:

63

16
6:

n
23

0:
 a

/

IN
V

39

:d

l0
3:

d
16

7:
d

23
1:

 a

IN
V

R

40
:

11
4

10
4:

82

16

8:

18

23
2:

 a

R

E

42
:

10
1

10
6:

69

17

0:

5
23

4:
 a

E

y

43
:

12
1

10
7:

89

17

1:

25

23
5:

 a

Y

TA
B

44

:
12

7
10

8:
c

15
9

17
2:

 c

15
8

23
6:

 a

TA
B

T

45

:
11

6
10

9:

84

17
3:

20

23

7:
 a

T

-6'

w

46
:

11
9

11
0:

87

17

4:

23

23
8:

 a

W

"0

(';
)

Q

47
:

11
3

11
1:

81

17

5:

17

23
9:

 a

Q

::J
 a.

x·

tv

I»
\D

'.

J

tv

K
ey

S

in
gl

e
k

ey

S
H

If
f

C
O

N
T

R
O

L

S
H

If
f

an
d

r
\0

ex

>
an

d
 k

ey

an
d

 k
ey

C

O
N

T
R

O
L

 a
n

d
 k

ey

pr
es

s

9
48

:
57

11

2:

40

17
6:

 a

24
0:

 a

9
0

50
:

48

11
4:

41

17

8:
 a

24

2:
 a

0

7
51

:
55

11

5:

39

17
9:

 a

24
3:

 a

7
~

D
E

L

52
:

12
6

11
6:

 c

15
6

18
0:

c
25

4
24

4:
 a

D

E
L

"0

(\

l

8
53

:
56

11

7:

64

18
1:

a
24

5:
 a

8

::J
 a.

<

54
:

60

11
8:

12

5
18

2:

12
5

24
6:

 a

<

x'

>

55
:

62

11
9:

 c

15
7

18
3:

c
25

5
24

7:
 a

>

F

56

:
lO

2
12

0:

70

18
4:

6

24
8:

 a

F

H

57
:

10
4

12
1:

72

18

5:

8
24

9:
 a

H

D

58

:
10

0
12

2:

68

18
6:

4

25
0:

 a

D

C
A

P

6O
:e

12

4:
 e

18

8:
e

25
2:

 a

C
A

P

G

61
:

10
3

12
5:

71

18

9:

7
25

3:
 a

G

S

62
:

11
5

12
6:

83

19

0:

19

25
4:

 a

S
A

63

:
97

12

7:

65

19
1:

1

25
5:

 a

A

a
N

o
A

SC
II

 v
al

ue
 a

ss
ig

ne
d.

b

C
O

N
T

R
O

L
-1

 in
te

rr
up

t;
 c

an
no

t b
e

re
ad

 a
t

76
4

c
E

di
ti

ng
 f

un
ct

io
n;

 i
nv

er
se

 A
T

A
SC

II
 o

nl
y

(s
ub

tr
ac

t 1
28

 t
o

fi
nd

 A
SC

II
 e

nt
ry

)
d

In
ve

rs
e

vi
de

o
ke

y
(A

ta
ri

 lo
go

 k
ey

)
e

C
A

PS
-L

O
W

E
R

 k
ey

N
ot

e:
 A

ll
m

is
si

ng
 n

um
be

rs
 a

re
 in

va
li

d
ke

yb
oa

rd
 c

od
es

,
w

hi
ch

 w
ill

 n
ev

er
 b

e
fo

un
d

in

lo
ca

ti
on

 7
64

.

B Appendix __ lIiiiil

A Beginner's
Guide to lYping
In Programs
What Is a Program?
A computer cannot perform any task by itself. Like a car without
gas, a computer has potential, but without a program, it isn't going
anywhere. Most of the programs published in this book are
written in a computer language called BASIC. Atari 8K BASIC is
easy to learn.

BASIC Programs
Computers can be picky. Unlike the English language, which is
full of ambiguities, BASIC usually has only one "right way" of
stating something. Every letter, character, or number is significant.
A common mistake is substituting a letter such as "0" for the
numeral "0': a lowercase "1" for the numeral ''1': or an uppercase
"B" for the numeral "8': Also, you must enter all punctuation such
as colons and commas just as they appear in the book. Spacing
can be important. To be safe, type in the listings exactly as they
appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces, such
as "{DOWN}': Anything within a set of braces is a special char­
acter or characters that cannot easily be listed on a printer. When
you come across such a special statement, refer to Appendix C,
"How to Type in Programs:'

About DATA Statements
Some programs contain a section or sections of DATA statements.
These lines provide information needed by the program. Some
DATA statements contain actual programs (called machine
language); others contain graphics codes. These lines are espe­
cially sensitive to errors.

301

B ____ Appendix

If a single number in anyone DATA statement is mistyped,
your machine could "lock up;' or "crash:' The keyboard, break
key, and RESET keys may all seem" dead;' and the screen may go
blank. Don't panic - no damage is done. To regain control, you
have to tum off your computer, then tum it back on. This will
erase whatever program was in memory, so always SAVE a copy
of your program before you RUN it. If your computer crashes, you
can LOAD the program and look for your mistake.

Sometimes a mistyped DATA statement will cause an error
message when the program is RUN. The error message may refer
to the program line that READs the data . This error is still in the
DATA statements, though.

Get to Know Your Machine

You should familiarize yourself with your computer before
attempting to type in a program. Learn the statements you use to
store and retrieve programs from tape or disk. You'll want to save
a copy of your program, so that you won't have to type it in every
time you want to use it. Learn to use the machine's editing func­
tions. How do you change a line if you made a mistake? You can
always retype the line, but you at least need to know how to back­
space. Do you know how to enter inverse video, lowercase, and
control characters? It's all explained in your computer's manuals.

A Quick Review
1. Type in the program a line at a time, in order. Press RETURN at
the end of each line. Use backspace or the back arrow to correct
mistakes.
2. Check the line you've typed against the line in the listing. You
can check the entire program again if you get an error when you
RUN the program.
3. Make sure you've entered statements in braces as the appro­
priate control key (see Appendix C).
4. Be sure to SAVE the program on tape or disk before RUNning
the program.

302

C Appendix ___ Iii

ow to l}tpe In
Programs
In order to make special characters, inverse video, and cursor
characters easy to type in, COMPUTE! Magazine's Atari listing
conventions are used in all the program listings in this book.

Please refer to the following tables and explanations if you
corne across an unusual symbol in a program listing.

Atari Conventions
Characters in inverse video will appear like: lIII:l'):!I:;''''''~h];O:
Enter these characters with the Atari logo key, (AI.

When you see Type See
{CLEAR} ESC SHIFT < '" Clear Screen

{UP} ESC CTRL - .,. Cursor Up

{DOWN } ESC CTRL "'"
Cursor Down

{LEFT} ESC CTRL + <- Cursor- Left

{RIGHT} ESC CTRL * ... Cursor Right

{BACK S } ESC DELETE Backspace

{DELETE} ESC CTRL DELETE U Delete Character

{INSERT } ESC CTRL INSERT I~ Insert Character

{DEL LINE } ESC SHIFT DELETE (~ Delete Line

{lNS LINE} ESC SHIFT INSERT e Insert Line

{TAB } ESC TAB ~ TAB key

{CLR TAB} ESC CTRL TAB G Clear TAB

{SET TAB } ESC SHIFT TAB 0 Set TAB stop

{BELL} ESC CTRL 2 r., Ring Buzzer

{ESC} ESC ESC Ii., ESCape key

Graphics characters, such as CTRL-T, the ball character. will
appear as the "normal" letter enclosed in braces, e.g., {T}.

A series of identical control characters, such as 10 spaces,
three cursor-lefts, or 20 CTRL-R's, will appear as {10 SPACES}, {3
LEFT}, {20 R}, etc. If the character in braces is in inverse video,
that character or characters should be entered with the Atari logo
key. For example, {,,} means to enter a reverse-field heart with
CTRL-comma, {5 [!]} means to enter five inverse-video CTRL-U's.

305

Index

ADR function 217
alternate character sets, in "Super

TextPlot" 142
angular orientations, in "Super TextPlot"

142
ANTIC (A) command, in "SuperFont

Plus" 129
ANTIC chip 6
ANTIC 4/5 character set, in "SuperFont

Plus" 127, 128
ANTIC 4 mode 127, 245
ANTIC 5 mode 127,245
Assembler Editor 248, 249
Assembler Editor manual 248
Atari 400233
Atari 800 233
Atari 1200XL 233-47

incompatibilities 233, 242
key definition 235-36
memory map 233-47
new graphics modes 245-46
OS 244

Atari 1200XL Operating System Manual 240,
247

Atari BASIC graphics capabilities 201
Atari BASIC Reference Manual 38, 225
Atari character set 275-98

tables 279-98
Atari Personal Computer System Hardware

Manual 37-38, 48, 201
"Atari Verify" utility 165-66
Atari XL models see XL models
ATASCII 5-6, 142, 225, 248-49, 275, 292
AUDCTL register 38-39, 45
audio control registers 45
audio frequency registers 45
"Automate" 167-73
automated system commands 167-73
AUTORUN.5YS file see "Automate"
back-arrow, as paragraph delimiter in

"Scriptor" 105-6
BASIC, extensions to 174
BASIC cartridge 249
"Beginner's Keyboard" 55-56
blinking characters 27-30
braces, in program listings 299
BREAK key 175
bubble sort 259
"Cal Calc" 87-93
CAPS I LOWR key 8, 13, 14, 15, 17
cartridge, advantage for OS 175
"Castle Quest" 94-101

306

CDRMA2 register 28
CDTMA2 register 28
CDTMV2 register 28
CHACT register and inverse video 27-28
CHBAS vector 142
CIO (Central Input/Output) 176, 179
circles 153-60

difficulties in drawing 153
potential method 156-57
sines and cosines method 154-55
square root method 155-56
techniques 154

code conversions 10-11
ATASCII-ICODE conversions 10-11
KEYCODE-ATASCII or ICODE 11

Color Change mode, in "SuperFont Plus"
130

color rotation in P/M graphics 202
COMPUTEt's First Book of Atari 67
COMPUTEt's First Book of Atari Graphics

127, 142, 202
COMPUTE!'s Mapping the Atari 233, 246
COMPUTEt's Second Book of Atari 165
COMPUTEt's Second Book of Atari Graphics

217
CONTROL-DELETE key 12
CONTROL-INSERT key 12
CONTROL-lock key 8
CONTROL-l key 10
CONTROL-2 key 12
CONTROL-TAB key 12
"The Cruncher" 225-27
CTRL key, in "Scriptor" 105, 106, 107
cursor 103

control with joystick 163-64
cursor codes 163
DATA statement 299
debounce 17
De Re Atari 202
DIMension statement 31-32
DIR command 179
disk files 104

naming rules 107-8
display list, relocating 201
Dvorak keyboard layout 4, 8, 16
8-bit note table 49-50
"Elementary Numbers" 66-73
exponential operator 3
exponents 3

correcting inaccuracy of 3
F1 key 9, 13

on 1200XL 234

F2 key 9, 13
F3 key 9,13
F4key9,13
Fn keys 9
FOR/NEXT loops, inaccurate for timing

22
GET 23
GRAPHICS 0 mode 58, 129, 228
GRAPHICS 1 mode 129
GRAPHICS 2 mode 74, 129
GRAPHICS 7 mode 201
GRAPHICS 12 mode 245-46
GRAPHICS 13 mode 245-46
GRAPHICS 14 mode 245-46
GRAPHICS 15 mode 245-46
HELP key 9, 13
ICODE 5,6, 10-11, 227, 292-93
internal code see ICODE
Internal Code Index 292-93
interrupts 9
INT function 3
jiffy 228
joystick 67

for cursor control 163-64
joystick codes 163
keyboard code see also KEYCODE
KEYCODE 4,5, 7, 8, 10-11, 277, 296-98

on XL models 9
keys, customization 4-5
"Laser Gunner II" 216-24
LOCK command 178, 179
machine language, merging with

BASIC
discussion 248-57
safe memory 250-51

Machine Language Index 294-95
matrix wastes memory 225
Mini-DOS, in "Scriptor" 107
music, 16-bit 45-51
Operating System, see OS
OS, defined 174-75
PEEK and POKE, sometimes faster than

conventional commands 228
peripherals 175-76
Player/Missile graphics 201

explosions 205
fast motion 216
player definition 202
POKE to RAMTOP 202
TRAPs 204-5

PLOT command 225
PRINT mode, in "SuperFont Plus" 129

purging diskettes 195-98
Qwerty keyboard layout 4, 8
RAMTOP

and strings 217
changing 201

RENAME command 178, 179
"Renumber Plus" utility 191-94
roots, exponential 3
RUB OUT key 102
SAVE, importance of 300
SAVE, important in "Scriptor" program

105
SCRATCH command 178, 179
screen editing characters 278
screen RAM, relocating 201
"Scriptor" 102-23

customizing 110
edit commands 111
formatting commands 112
Mini-DOS in 107
RETURN and 105
SAVE, important with 105
sheet feeding 109-10
text formatting 108-9

selection and exchange sort 259
selection sort 259
self-modifying code, in "Standings"

program 76
SHIFT-CONTROL combinations 9
SHIFT-DELETE key 12
SHIFT-INSERT key 12
SHIFT-lock key 8
SHIFT-RETURN key 12
SHIFT-TAB key 12
16-bit dividers 47
16-bit note table 49-50
16-bit sound 48, 50-51
6502 machine language 167, 276
sort, defined 258
sort routine, in "Standings" program

75
sort utility, machine language 258-71

faster than BASIC 260
instructions 261-62
options 262

sound 37-44
difficulties with 37

"Sound Experimenter" 39-44
SOUND instruction 37,50,225
"Spelling Quiz" 57-65
SQR function 3
"Standings" 74-86

307

"Starshot" 201-15
string arrays 31-33

fast initialization 31
strings

and renumbering 191
holding Player/Missile data 217
machine language in 252-53
take less space than m atrices 225

"SuperFont" 127
commands 128-29

"SuperFont Plus" 127-41
new commands 129

"Super TextPlot" 142-52
alternate character sets in 142
angular orientations in 142, 147
applications 148
cautions with 146-47
loading 147-48
mathematics of 143-44
parameters 144-46

308

text formatting, in "Scriptor" 108-9
"TextPlot" 142
timer 22-26
times, sample 24
time test programs 229-30
timing, accurate 23-26
tokens, BASIC 191
TRAP 32-33, 196,204-5,227
tu ning inaccuracy 46

reduced by 16-bit dividers 47
UNLOCK command 178, 179
USR function 144
Vertical Blank Interrupt 217-19
vertical blank p eriod 27, 29, 163
wedge 176-77
'The Wedge" 174-90
word processing concepts 102-3
XIO 196
XL models 7, 9, 13
young children , com puters and 66

COMPUTE! Books
p,O, Box 5406 Greensboro. NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!.

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In NC call 919-275-9809

Quantity Title

COMPUTE!'s First Book of Atari (00-0)
COMPUTE!'s Second Book of Atari (06-X)
COMPUTE!'s Third Book of Atari (18-3)
COMPUTE!'s First Book of Atari Graphics
(08-6)
COMPUTE!'s Second Book of Atari
Graphics (28-0)
Mapping the Atari (09-4)
COMPUTE!'s First Book of Atari Games
(14-0)
The Atari BASIC Source Book (15-9)
Inside Atari DOS (02-7)
COMPUTE!'s Atari Collection, Volume 1
(79-5)
Machine Language for Beginners (11-6)

__ Second Book of Machine Language
(53-1)

__ Computing Together: A Parent and
Teacher's Guide to Using Computers
with Young Children (51-5)
Personal Telecomputing (47-7)
Home Energy Applications on Your
Personal Computer (10-8)

Price Total

$12.95 __
$12.95 __
$12.95 __

$12.95 __

$12.95 __
$14.95 __

$12.95 __
$12.95 __
$19.95 __

$12.95 __
$14.95 __

$14.95 __

$12.95 __
$12.95 __

$14.95 __

Add $2,00 shipping and handling, Outside US add
$5,00 air mail or $2,00 surface mail.

Please add shipping Be handling for each
book ordered. __ _

Total enclosed or to be charged __ _
All orders must be prepaid (money order, check, or charge). All
payments must be in US funds. NC residents add 4V2% sales tax.
o Payment enclosed Please charge my: 0 Visa 0 MasterCard
o American Express

Acct. No. ______________ Exp. Date __
Name ____________________ _

Address ___________________ _

City ___________ _ State ____ Zip __
Country ___________________ _
• Allow 4-5 weeks for delivery,
Prices and availability subject to change without notice,

4541836

COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!,

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P,O, Box 5406,
Greensboro, NC 27403,

Quantity Title Price" Total

Machine Language for Beginners (11-6) $14.95
The Second Book of Machine Language (53-1) $14.95
COMPUTE!'s Guide to Adventure Games (67-1) $12.95 __
Computing Together: A Parents & Teachers
Guide to Computing with Young Children (51-5) $12.95
Personal Telecomputing (47-7) $12.95
BASIC Programs for Small Computers (38-8) $12.95
Programmer's Reference Guide to the
Color Computer (19-1) $12.95
Home Energy Applications (10-8) $14.95
The Home Computer Wars:
An Insider's Account of Commodore and Jack Tramiel

Hardback (75-2) $16.95

The Book of BASIC (61-2)

Paperback (78-7) $ 9.95 __
$12.95 __

Every Kid's First Book of Robots and Computers
(05-1)
The Beginner's Guide to Buying a
Personal Computer (22-1)

$ 4.95t __

$ 3.95t __
• Add $2.00 per book for shipping and handling.
t Add $1.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

Shipping a. handling: $2.00jbook
Total payment

All orders must be prepaid (check, charge, or money order),
All payments must be in US funds.
NC residents add 4.5% sales tax.
o Payment enclosed.
Charge 0 Visa 0 MasterCard 0 American Express

Acct. No. Exp. Date ___ _
Name ________________________ _

Address _______________________ __

City _____________ _
• Allow 4-5 weeks for delivery.
Prices and availability subject to change .
Current catalog available upon request .

State _____ Zip ___ _

4541838

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine, Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
PO Box 5406
Greensboro, NC 27403

My Computer Is:
o Commodore 64 0 TI-99/4A 0 TimeX/Sinclair 0 VIC-20 0 PET o Radio Shack Color Computer 0 Apple 0 Atari 0 Other __ _
o Don't yet have one ...

o $24 One Year US Subscription
0$45 Two Year US Subsc riptio n
o $65 Three Year US Subscription
Subscription rates outside the US:
0$30 Canada o $42 Europe, Australia, New Zealand/Air Delivery
o $52 Middle East, North Africa, Central America /Air Mail
o $72 Elsewhere/Air Mail o $30 Internationa l Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds d rawn on a US Bank; Internatio nal Money
Order, o r charge ca rd
o Payment Enc losed
o MasterCard
Acct. No.

754182

o VISA
o Ame ri can Express

Expires

	Cover

	Contents

	1: Programming Hints

	Exponents

	Reading keyboard Codes

	Using the Atari Timer

	Blinking Characters

	String Arrays

	2: Sound

	Sound Experimenter

	16-Bit Music

	3: Applications and Education

	Beginners Keyboard

	Speling Quiz

	Elementary Numbers

	Standings

	Computerize you Diet

	Castle Quest

	Scriptor

	4: Graphics
	SuperFont Plus
	Super TextPlot

	Circles

	5: Utilities
	Joystick Cursor Control

	Atari Verify

	Automate Your Atari

	The Wedge

	Renumber Plus

	Purge

	6: Advanced Techniqes

	Starshot

	Laser Gunner II

	The Cruncher

	PEEK and POKE alternatives

	7: Beyond BASIC

	1200 Memory Map

	Merging Machine Language into BASIC

	Machine Language Sort Utility

	Appendix

	A Complete Guide to the Atari character Set

	A Guide to Typing in Programs

	How to Type In Programs

	Index

