COMPUTE! Books Publication ‘ $12.95

"COMPUTE"s

SECOND BOOK
OF

From The Editors of COMPUTE! Magazine

COMPUTE"'s
SECOND BOOK
OF
ATARI

Published by COMPUTE! Books,
A Division of Small System Services, Inc.,
Greensboro, North Carolina

A
Small System
Services, Inc.
Publication

ATARIis a registered trademark of Atari, Inc.

Copyright © 1982, Small System Services, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner is
unlawful.

Printed in the United States of America

ISBN 0-942386-06-X
109 8 76 5 4 3 21

iv Introduction Robert Lock
1 Chapter One. Utilities.

2 Atari BASIC Joystick Routine Kirk Gregg
5 Joystick Tester Robert Rochon
7 Keyboard Input Or Controlled Escape Brian Van Cleve
9 POKETABInBASIC i . ivciasncuin-nea Lawrence R. Stark
11 The 49 Second Screen Dump David Newcorn
15 Memory Testo v Ed Stewart
21 Chapter Two. Programming Techniques.
23 Atari BASIC String Manipulation Tricks David E. Carew
26 Using The Atari Forced Read Mode Frank C. Jones
33 A Simple Screen Editor For Atari Data Files Lawrence R. Stark
36 PlottingMade Easy John Scarborough
41 Graphics Generator Matthias M. Giwer
44 Analyze Your Program — An Atari BASIC Utility Fred Pinho
51 Inside Atari Microsoft BASIC: A First Look Jim Butterfield
53 Chapter Three. Advanced Graphics And Games
Utilities.
55 Player-Missile Drawing Editor E. H. Foerster
67 Point Set Graphics Douglas Winsand
76 Page Flipping Rick Williams
78 An Introduction To Display List Interrupts Alan Watson
85 Extending Atari High Resolution Graphics Phil Dunn

85 Part 1: The Polygon Fill Subroutine
92 Part 2: Textured Graphics
114 Part 3: Multi-colored Graphics In Mode 8

160 Textplot Makes A Game David Plotkin
169 Fun With Scrolling David Plotkin
183 Chapter Four. Applications.

185 A Simple Text Editor Osvaldo Ramirez
194 The Atari Keyboard Speaks OQut Walter M. Lee
198 Atari Screen As Strip Chart Recorder Helmut Schmidt
209 Fast Banner Sol Guber
213 Perfect Pitch Fred Coffey

219 Chapter Five. Beyond BASIC.

221 Put Your USR Code Into A BASIC Program Automatically . . F. T. Meiere
225 Back Up Your Machine Language Programs With BASIC . . Ed Stewart
229 Loading Binary DOS Files From BASIC Robert E. Alleger
249 The Resident Disk Handler Frank Kastenholz

248 Listing Conventions
249 Index

INTRODUCTION

Robert Lock, Editor/Publisher, COMPUTE! Magazine

Welcome to COMPUTE!'s Second Book of Atari. This book was a
direct result of the overwhelming success of our first book in this
series, which is now in its second printing. Unlike our First Book of
Atari, the Second Book is comprised entirely of previously unpublished
material. Even if you've followed all of the Atari personal computer
information in COMPUTE! Magazine since our beginning in the fall of
1979, you'll discover exciting, interesting applications and uses in the
pages of this book. And, as always with COMPUTE! Publications,
you'll find a range of material, from beginner to advanced, ready to
type right into your computer — programs and helpful hints designed
to teach and entice you, applications and utilities designed to help
you better use this fascinating world of personal computing.

We've organized the material and designed the book for ease of use.
We welcome your suggestions and comments on this and future titles

from COMPUTE! Books.

Special thanks to Charles Brannon, Richard Mansfield, and Kathleen
Martinek of our editorial staff; Kate Taylor, De Potter, Terry Cash,
and Margret Jackson of our typesetting and production staff; Georgia
Papadopoulos, Art Director; and Harry Blair, our illustrator.

COMPUTE! Books is a division of Small System Services, Inc.,
publishers of COMPUTE! Magazine.
Editorial offices are located at 625 Fulton Street, P.O. Box 5406,
Greensboro, NC 27403 USA. (919)275-9809.

iv

CHAPTER ONE

UTILITIES

OH BOY.

Chapter One. Utilities.

ATARI BASIC ©
Joystick Routine

Kirk Gregg

Complete with many techniques for conserving space and speeding program
execution, this handy routine, entirely in BASIC, provides you with a fairly
fast, non-assembler dependent, joystick reading routine.

Two excellent Atari joystick reading routines have been published in
COMPUTE! (July and August 1981, #14 and #15). So, is there really
any need for another Atari joystick routine?

Glad you asked! Both of the published routines work, and both
are fast. However, both routines use calls to assembler routines via the
USR function call. This method requires that the machine language
routine be included in the program encoded as DATA statements to
be READ and POKE'd into memory. The code required to initialize
the routines and the DATA statements take up space in memory.

There are still many of the original 8K 400s around. If you have
one of them, and your program memory requirements begin to approach
or exceed your machine’s RAM limit, the initialization code and
associated DATA statements, used only once in the program, become
prime candidates for removal.

Also, since these routines both use calls to USR assembler
routines, you have to know Atari/6502 assembler to modify them if
necessary for certain applications. I suspect that many of us are on
fairly good terms with Atari BASIC, but have not really gotten a
handle on assembler just yet.

Therefore, what would be useful is a simple Atari BASIC joystick
routine. It should be as compact as possible, for machines with limited
memory. Also, it should operate as fast as possible so as not to unduly
degrade program speed when used in game applications. So, branches
within the routine itself should be avoided, since each transfer of
program control to any line number except the next sequential line
requires a line number search beginning at the top of program memory,
comparing every line number in numerical order until the target line
number is located.

Here, then, is my Atari BASIC joystick routine:

Chapter One. Utilities.

20 S=STICK(S)

F0 DX=(5=3 OR S=6 OR §=7)-(5=9 0OR S=10 0OR S=
U 1)

40 DY=(5=5 OR §=9 OR S§=13)-(S5=6 OR S§=10 OR S
=14)

30 RETURN

This routine, as written in the listing above, uses less than 200
bytes of RAM, including variables. It can be combined into one
program line, requiring only 188 bytes.

To use this routine, set variable S equal to the number of the
joystick you want to read (0-3). Then, call the subroutine, in this case
GOSUB 20. The delta-X and delta-Y values are returned in variables
DX and DY, respectively. Note that the value input to the routine in
variable S is lost. If the input value needs to be retained for use by the
calling routine, change the input joystick index parameter variable to
any other available variable. For example, if your calling routine
needs to read the joystick for each of the four players in a game
control loop, it could contain the following sequence:

FOR I=0 TO 3
GOSUB 20

(Code to handle DX and DY for player 1)
NEXT I

Then, the joystick routine entry point, line 20, would be changed to:
S=STICEK (I)

In some applications, you may want to get joystick readings for
only the four cardinal directions, that is, N-S-E-W/, but ignore the
diagonal stick readings. In that case, modify lines 30 and 40 of the
routine as follows:

30 DX=(5=7)—-(5=11)
40 DY=(5=13)—-(5=14)

To try out this routine, type in the routine and the following
short demonstration program:
10 GOTO 100
100 S=0:60SURB 20
110 IF NOT (DX OR DY) THEN 100
120 2 ;"dX = “";DX;"dY = "3DY:260T7T0 100

Plug a joystick into the player #1 slot, then run the program.
Observe the DX and DY values for each stick position.

Now, try the short demo program below. Study this program to
see how the joystick routine can be used in your programs.

Chapter One. Utilities.

PROGRAM. Atari BASIC Joystick Routine.

1 R
10

20

2]

40

50

100
110
120
130
140
150
160
170
180
190

EM SCRIBELE DEMO FROGRAM
GRAFHICS 23:X=79:Y=47:COLOR 1:G0TC 160
S=STICK(S) .
DX=(5=5 OR S=6 OR S5=7)-(5=9 OR S=10 OR S=
11)
DY=(S=5 OR S=9 OR S=13)-(S=6 OR S=10 OR S
=14)
RETURN

S=0:G60SUE 20

IF NOT (DX OR DY) THEN 100

X=X+DX:IF X>159 THEN X=0

IF X<0 THEN X=159

Y=Y+DY:IF Y>95 THEN Y=0

IF Y<0 THEN Y=95

PLOT X,Y

N=255-INT((X/159+Y/95) %125}

SOUND O,N,10,8

GOTO 100

Chapter One. Utilities.

X

Joystick Tester

Robert Rochon

This short routine permits you to easily test your joysticks and pinpoint
potential problems.

The Atari joysticks are mass-produced and tend to malfunction. |
have seven joysticks and only three are working properly. The problems
are in the contacts which are held together with tape which loosens
much too easily. What a pity; the general design of the joysticks is
very good.

This program quickly reveals any flaws in a joystick. You should
be able to make the screen red when the fire button is pressed. You
should also be able to make nine blue dots for the nine different joystick
positions. To clear the screen, press any key.

You can also find out how sensitive a joystick is by controlling it
with one finger only. With this test a sticky joystick will show up like
a sore thumb. For easy identification, number your best joystick. I
always use my most sensitive joystick for Star Raiders. Hint: Jamming
a 74 inch plastic, T-shaped pipe connector onto the stick of the joystick
will make it twice as sensitive.

Program Design

2 turns on GR.3, turns off cursor (POKE 752).
5-15 recordsjoystick position.
200 erasesold line and draws new line.
230 plots center and outside dot.
300 colors the screen red when fire button is pressed.

500-520 writes the value of STICK(0) AND STRIG(0);
PEEKs 656 & 657 keeps the writing in one place.

540 Keep the screen when any key is pressed.

999 C & D last joystick position
(C & Dare used to minimize blinking on the screen.)
A & B new joystick position creates continuous loop.

Chapter One. Utilities.

PROGRAM. Joystick Tester.

GRAPHICS 3:POKE 752,1:G0T0 999

A=24:B=14:6G0T0 200

A=24:B=6:60T0 200

A=25:B=10:6G0T0 200

A=16:B=14:60T0 200

10 A=16:B=6:60T0 200

11 A=15:B=10:60T0 200

13 A=20:B=15:60T0 200

14 A=20:B=5:60T0 200

15 A=20:B=10

200 IF C<>A OR D<>B THEN COLOR 4:DRAWTO 20,1
0:COLOR 2:DRAWTO A,BRB

230 COLOR 3:PLOT 20,10:PLOT A,B

300 POKE 712,66-STRIG(O) X666

500 POKE 656,1:POKE 637,95

510 ? " ENEENEEEE"; STICK (0),

520 7 "EEEZEEREE"; STRIG (0)

540 IF PEEK(764)<>2535 THEN POKE 764,255:RUN

999 C=A:D=B:6G0TO0 STICK(0)

NN

Chapter One. Utilities.

Keyboard Input
Or
Controlied Escape

Brian Van Cleve

The BASIC INPUT statement is prone to user error. What is needed is
controlled input, where each key is checked for validity. The following
program even checks for the START key to permit an “‘escape’’ function.

Here is a short subroutine that [use in all my menu driven programs.
[t allows the user to enter data as usual while checking for the start
key being pressed. If it discovers use of the start key, the subroutine
provides a controlled escape.

To use this, DIM IN$ to the maximum expected input and open
the keyboard for input using OPEN #1,4,0, “K:”. Set the variable KEY
to the first line number in the subroutine and the variable ESC to the
line to return to if the user presses the START key (like the main menu,
for example). Then use a GOSUB KEY for any input. The user input
will be returned in IN$.

Now for the program.

Chapter One. Utilities.

PROGRAM. Keyboard Input

1000 REM KEYEBOARD
INPUT

1005 IN$=""

1010 POKE 764,255

1020 POKE 756,224

1030 POKE 694,0

1050
THEN POP

1060
THEN 1050

1070 GET #1,K

1080 IF K=155 THEN
RETURN

1090 IN$ (LEN(INS$)+1)
=CHR#$ (K)

1100 ? CHR$ (K) ;

1110 GOTO 1050

oo

IF PEEK(53279)=6
:6GO0TO0 ESC
IF PEEK (764)=235

[use REM as the first statement in
my subroutines, casy to move

Set IN$ to null

Clear keyboard buffer out

Force uppercase letters

NO inverse video

START key is pressed

Pop the return off stack and esc

No key pressed yet

Key pressed, get it
Pressed return key

Put key in string

Print it on screen
Loop til done

Chapter One. Utilities.

POKE TAB
in BASIC

Lawrence R. Stark

A common problem, the lack of a TAB statement in Atari BASIC, is
solved with a single POKE.

Perhaps my first experience with the Atari was similar to yours. Looking
at the machine on display and generally feeling favorable, I finally
pushed aside a few space war players and sat down to try it out. Having
found the BASIC ROM cartridge, I tried to construct a short test
program. The only program that came to mind in this stage was to do
a few loops and GOSUBs with the phrase: “THIS IS A TEST.” To
vary it a bit, [fooled around with print positions.

But do this in Atari BASIC and you discover that the TAB
command is not there. So you make do with spaces and the like to
design printed output. This does not work well. A few subroutines,
including some published in COMPUTE!, can be of help, but can also
be awkward.

It's In The Maps

So finally I started looking at memory map listings. And there it was.
The map is full of TABs. They are at locations 82,85,91, and 657. All
one has to do is POKE in new values and most of these work — on the
TV screen. Not much happens on the printer.

But what is this at location 2017 PTABW is the name. It even
looks like a shortened name of Print-Tab-Width. And it is! It is the
missing TAB command, and in this case it works for both printer and
TV screen.

Experiment with it a bit and you learn its rules. First, its formula
is POKE 201, nn, followed by PRINT, avar or svar. Remember the
comma; after all, it is the tabulator that you are modifying.

But there are two hitches. One is that if you try it with nn at O,
awful things happen. A loop is entered and even the BREAK key
doesn’t interrupt. The second limitation is that the default setting is
not restored except on powering down the computer. Even RESET
does not return the value at 201 to 10.

Chapter One. Utilities.

When using the Atari “TAB” in a program, you will have to
provide error messages or traps and also reset the default setting. The
demonstration program shows an example. The value of nn is tested
for “less than one” and a “bypass” is executed if it is. This could just as
easily work like an ordinary error message if you have the program
STOP or END on less than one. The value at 201 is restored before
the program shuts off at line 800. The demonstration program is what
might be called the “page centering algorithm.” It is used here because
it is illustrative of several features of the pseudo-TAB in Atari

BASIC.

PROGRAM. POKE TAB In BASIC.

10 DIM A$(38):7? CHR$%(1235)
15 TRAP 800:REM Trap end of data
20 READ A%
50 X=17—-(LEN(A%$)/2):REM Center at 17 on 38 c
ol TV screen
60 IF X<1 THEN 20:REM Bypass a potential cra
sh
100 POKE 201,X
120 ? ;A%
150 GOTO 20
800 POKE 84,20:P0KE 201,10:END :REM for a ne
ater screen AND to reset default tabs
899 REM Commas in DATA statements for blank
lines
200 DATA A TALE OF TWO CITIES,,A Novel,,,.by
ssCharles Dickens,;,;.;45:354+1832

10

Chapter One. Utilities.

The 49 Second
Screen Dump

David Newcorn

A machine language routine and a BASIC loader you can append to any
graphics program to dump the contents of your screen to an Epson MX-80
printer (with Graftrax) ... in only 49 seconds.

If you have an Epson MX-80 printer with Graftrax and an Atari 800
with a beautiful Graphics 8 picture on your screen, then what do you
do? Dump it to the printer, of course! How? At first [dumped my
pictures to the printer through BASIC by scanning each dot separately
with the LOCATE statement. It took about thirty minutes to do one
picture. Realizing that this was crazy, I redid the program so it would
PEEK into display memory and grab eight pixels (one byte of display
memory) at a time instead of only one pixel at a time. This reduced
printing time to about four and a half minutes, which is still quite
slow. So then I turned to machine language. The routine that follows
dumps your Graphics 8 picture to your printer in only 49 seconds!
Sure beats tying up your computer for half an hour and waiting around
for your picture to be printed.

How It Works

Before I explain how it works, let me refresh your memory on how
display memory is organized in Graphics 8. Every eight pixels forms
one byte of display memory. So, positions 0,0 through 7,0 would be
one byte, and positions 8,0 through 15,0 would be another byte, and
so on for 38 more bytes across the screen. The BASIC routine sets up
a loop which scans the X axis of display memory, starting with the left
byte, and finishing with the 40th byte on the right of the screen (0 to
39 is 40). During each row, control is passed to the machine language
subroutine along with the address of the string where the result is to
be stored and the base address of the column of display memory to be
dumped

The machine language program starts at the bottom of the screen
and scans eight bits at a time all the way to the top. After it looks at
the current display memory byte, it stores it in the current string

11

Chapter One. Utilities.

address. It then increments the string address and decrements the
display memory address by subtracting 40 to move up to the next line.
(The display memory is one-dimensional, and the display screen is
two-dimensional. That's why it subtracts 40 to move up to the next
line. It goes back 40 bytes in memory.) When it finishes at the top of
the screen, control is passed back to BASIC. BASIC then prints the
string to the printer where each character represents a byte of screen
memory. The bit pattern of the character is mapped directly to the
printhead. After the string is printed, the current column is
incremented in BASIC to pass along to the USeR function for the
next go-around. Simple, right? Right. Just append Program 1 to your
program which draws the picture, and after it finishes, use a GOTO or
GOSUB to this routine. That’s all you have to do. Just sit back and
enjoy your 49-second picture.

12

Chapter One. Utilities.

PROGRAM 1. The 49 Second Screen Dump.

S00 DIM A$(192):FOR E=1 TO 61:READ N:POKE 15
35+B,N:NEXT E:DM=PEEK (88)+PEEK (89) £256:D
M=DM+40%191

505 REM FOKE IN M/L PROGRAM AND SET UFP DISFL
AY MEMORY FOINTER

510 LPRINT CHR$(27);"A";CHR$(8):FOR X=DM TO
DM+39

515 REM SET LINE SPACING AND MAKE LOOP

520 A$=CHR$(0):A%$(192)=CHR$(0) :A$(2) =A%

5S40 W=USR(1536,X,ADR(A%)):LPRINT CHR$(27);"K
";CHR$(192) ; CHR$ (0) ; A%

545 REM PASS BOTH VALUES TO M/L PROGRAM, AND

FRINT STRING

550 NEXT X

560 DATA 104,104,141,21,6,104,141,20,6,104,1
41,27,6,104,141,26,6,160,193,173,255, 255
,136,240,35,141,255, 255,238

S70 DATA 26,6,240,21,173,20,6,56,233,40,141,
20,6,144,4,24,76,19,6,206,21,6,76,19,6,2
38,27,6,76,33,6,96

PROGRAM 2. The 49 Second Screen Dump.

10 ;ATARI 800 SCREEN DUMP UTILITY FOR DUMPIN
G GRAPHICS 8 PICTURES

20 ;7O EPSON MX-B0 PRINTERS WITH GRAFTRAX.

30 ;BY DAVID NEWCORN 2/28/82

40 ;ASSEMBLY LANGUAGE LISTING

0100 ADR = $FFFF ;s DUMMY ADDRESS (S
CREEN MEM ADDR)

0110 STR = $FFFF ;s DUMMY ADDRESS (S
TRING ADDR)

0120 x= $600

0130 PLA sPULL OFF AUX BYT
E FROM BASIC

0140 PLA sPULL HI BYTE OF
STRING STORAGE

0150 STA LOA+2 sSTORE HI BYTE

0160 FPLA sPULL LO BYTE OF
STRING STORAGE v

0170 STA LOA+1 sSTORE LO BYTE

0180 PLA sPULL HI BYTE OF
BEGINNING OF SCREEN MEM

0190 STA STO+2 :STORE HI BYTE

0200 PLA ;PULL LO BYTE OF
SCREEN MEM

0210 STA STO+1 :STORE LO BYTE

0220 LDY #193 sLOAD Y AXIS COUN

13

Chapter One. Utilities.

TER

0230 LOA

0240 LDA ADR

0250 DEY
R

0260 BE@ RET
URN TO BASIC

0270 STO

0280 STA STR
E IN A%

0290 INC STO+1
D OF STRING

0300 BE@ BIG1

LOWS, THEN INC HI END
0310 CONT

0320 LDA LOA+1
LOW SCREEN ADDRESS
0330 SEC
R SUBTRACT W/0 BORROW
0340 SBC #40
BYTES PER SCAN LINE)
0350 STA LOA+1
0360 BCC BIG
C HI BYTE OF SCRN MEM
0370 cLC
0380 JMP LOA
0390 BIG
0400 DEC LOA+2
E OF SCREEN MEM
0410 JMP LOA
0420 BIG1
0430 INC ST0+2
E OF STRING STORAGE
0440 JMP CONT
0450 RET
04460 RTS

14

s LOAD SCREEN BYTE
s DECREMENT COUNTE

s IF DONE THEN RET

s STORE SCREEN BYT

s INCREMENT LOW EN

IF LOW END OVERF

sLOAD ACCUM WITH
:SET CARRY BIT FO
: SUBTRACT 40 (40

s STORE RESULT
s IF UNDERFLOW, DE

; CLEAR CARRY
; LOAD NEXT BYTE

s DECREMENT HI BYT

;LOAD NEXT BYTE
: INCREMENT HI BYT
;s CONTINUE

sRETURN TO BASIC

Chapter One. Utilities.

Memory Test

Ed Stewart

All machines sometimes break and must then be fixed. My Atari
computer is no exception to this rule. The difficulty lies in determining
what went wrong. As you probably know, it's sometimes difficult to
ascertain the cause of an error. The first question that should be asked
is this:

Is The Problem Hardware Or Software?

This is sometimes very difficult to answer, but should be done before
you shell out fifty bucks for someone to look at your Atari. In this
article I will provide you with one helpful tool that you can use to
help answer this question if your Atari goes off the deep end some day.

One of the most critical resources in any computer system is the
dynamic memory known as RAM. This memory, unlike disk or tape
memory, is operated upon directly by your Atari CPU, the 6502.
Information on disk or tape memory devices must be first placed into
RAM memory before it can be used either as a program or by a program.
If an error were to occur at any RAM location where you have a
program or data stored, the program would probably not function
correctly. The error encountered could result in “lock up” or practically
any other conceivable symptom. It could even make you think that
the program is at fault if other programs appear to function normally.
The reason some programs may function o.k. is that they do not
reference the particular RAM location that is in error. Only one
faulty bit in one byte may be bad, but this would be enough to do the
trick. Computers are generally not tolerant of data errors, especially in
their RAMs. Most large scale computers have error checking circuitry
built into RAM memory, but this has not been done for our Atari
friend. The new IBM personal computer has such RAM checking
circuitry, so it is probably only a matter of time until this becomes
commonplace for all our microcomputers. For now, though, the
question must be:

How Can | Check My RAM?

I'm glad you asked that question, because it just so happens that I
have a program to do just that. Of course, if you wish to buy a RAM
test program you may still do that, but you should find this program as
helpful as any available for most of your needs.

15

Chapter One. Utilities.

About The Program

This program consists of a BASIC program that has the assistance of a
little machine language program. The BASIC program determines the
amount of free RAM that can be used for testing-purposes and asks
you how much of that RAM you wish to actually test. It then proceeds
to test that memory range you specify by repetitively invoking the
Machine Language Program (MLP). The MLP tests every bit in every
byte of the requested range by testing every number capable of being
represented in the RAM area. After the area is tested, and if there are
no errors, return is made to the BASIC program, with a successful
completion indicated. If an error is encountered in RAM by the MLP,
then return is made to the BASIC program, indicating the particular
problem found. The BASIC program will stop execution if an error is
found and will display error information on the display screen. To
continue execution after an error is found, you must depress any key
on the keyboard. The testing will then continue with all subsequent
bytes in the RAM area found to be defective.

During normal execution of this program the display screen will
appear blank. This is done to speed the testing process. The program
will provide an audio signal after each testing pass is completed, but
the screen will still remain blank. If you wish to see what pass the test
is on, just depress any key and the program will pause with a good
display turned on after the current pass is completed. Depressing a key
again will cause the program to continue. If you wish to test a different
RAM area, you can press BREAK or SYSTEM RESET at any time,
followed by RUN. To improve the speed of this program requires that
the amount of memory to test must be at least 256 bytes.

The BASIC program is fairly easy to follow and is documented
with REM statements. You may remove all REM statements to get
back a little more RAM. The MLP is included as DATA statements
in the BASIC program.

No Errors Found

If the program finds no errors in the RAM you are testing, this does
not mean that RAM is necessarily free of all errors, as some RAM will
not be tested. RAM in locations HEX 0-6FF cannot be tested, and
neither can display list RAM or the RAM occupied by this program,
because this testing program only tests “unused” RAM. If your machine
is 8K or 16K, or if you have a 400, then you cannot do what I am
about to recommend, although you can rest assured that you have
been able to test most of your RAM memory. For all you lucky 800
owners with more than one memory board, it is now time to rearrange

16

Chapter One. Utilities.

your RAM boards if you have that ability. By changing the position of
your RAM boards you will be able to test a greater portion of RAM
memory. If, for instance, you have three 16K boards, you can be
assured that the entire 16K will be tested for the middle board,
although the first and third boards will contain some RAM that can’t
be tested until it is placed in the middle slot. If you still find no errors
after testing all of RAM, then your problem is not with the RAM.
Great, huh?

An Error Found

If the program stops with an error encountered in RAM, then you
have probably found the source of the error. Usually through
rearranging the RAM boards the characteristics of the problem will
change, but the RAM will still be faulty. You now have a decision to
make. You can either remove the faulty board and fix it yourself, or
you can have someone do it for you. If someone does it for you, give
them the results of your RAM test. The repair should be much easier
for them and, possibly, somewhat less costly. You may even luck out
and catch a RAM board still on warranty.

17

Chapter One. Utilities.

PRO

S1 R
52 R
53 R
5S4 R
99 R
100
200

299
300
399

400

499
500

600
700
800

?00

999
1000
1100

1200
1299
1300
1399
1400
1499
1500

1600
1699
1700

1800
1200
1999
2000
2099
2100
2199
2200

18

GRAM. Memory Test.

EM ATARI RAM TEST PROGRAM

EM BY ED STEWART 03/82

EM 11025 SAGEBRUSH AVE

EM UNIONTOWN OHIO 44685

EM SETUP SOME REQUIRED CONSTANTS
N1=1:N2=N1+N1:N255=255: N256=N255+N1

DIM S$(N2):S$(N1,N1)=CHR$(157) : 5% (N2,N2)
=CHR$ (159)

REM READ IN THE MACHINE LANGUAGE PROGRAM
GOSUB 2900

REM GET LOW AND HIGH MEMORY BOUNDS
L=PEEK (15) *N256: H=PEEK (742) ¥N256: IF PEEK
(14)<>NO THEN L=L+N256

REM DISPLAY BOUNDS AND GET REPLY

? CHR$(125);S%; "ATARI MEMORY TEST PROGRA
M";CHR$ (155) ; S$3; "MEMORY BOUNDS ARE"

? S$;"LOW=";L:? S$;“HIGH="3H

? S$;"GIVE TEST BOUNDS";CHR$ (155)

TRAP 800:7 S$;"LOW=";:INPUT LOW:IF LOW<L
OR LOW>H THEN 800

TRAP 900:7 S$%;"HIGH=";: INPUT HIGH:IF HIG

H>H OR HIGH<L OR HIGH-LOW<N236 THEN 900
REM SETUP BOUNDS FOR THE MLP
POKE 205,NO0:POKE 206, INT(HIGH/N2356)
TRAP 32767:POKE 203,NO0:POKE 204, INT(LOW
/N2356)
POKE 764,N255
REM INVOKE THE MLP TO DO THE TEST
POKE S5359,NO:POKE 764,N255: X=USR (1536)
REM CHECK RETURN FROM MLP
IF PEEK(208)=N0 THEN 2200
REM SHOW MEMORY ERROR ON SCREEN
? " ERROR AT "3 (PEEK(203)+PEEK (204) ¥N25
6)3;" EXP=";PEEK(207);" ACT=";PEEK(209)

SOUND NO,PASS,6,8:FOR I=N1 TO S:NEXT I:
SOUND NO, NO,NO,NO

REM SETUP NEXT BYTE TO TEST SO WE DONT
STOP WITH FIRST ERROR

IF PEEK(203)=N255 THEN POKE 204, (PEEK (2
04)+N1):POKE 203,N0:GO0TO 1900

POKE 203, (PEEK (203) +N1)

POKE 764,N255: POKE 559,34

REM CONTINUE ONLY IF KEY PRESSED

IF PEEK(764)=N255 THEN 2000

REM CONTINUE TESTING BAD RANGE

GOTO 1300

REM GOOD TEST PASS SO SAY SO
PASS=PASS+N1:? " GOOD PASS NUMBER ";PAS

Chapter One. Utilities.

2300
2399

2400
2499
2500
2600
2699
2700
2799
2800
2899
2900

3000

3100

S: SOUND NO,PASS, 10,8

FOR I=N1 TO S:NEXT I:SOUND NO,NO,NO,NO
REM STOP AND DISPLAY STUFF IF KEY IS PR
ESSED

IF PEEK(764)<>N255 THEN 2600

REM CONTINUE WITH NEXT PASS

GOTD 1100

POKE 764,N255

REM WAIT HERE UNTIL A KEY IS PRESSED

POKE 559,34:1F PEEK(764)=N255 THEN 2700

REM CONTINUE WITH NEXT PASS

GOTO 1100

REM READ IN MACHINE LANGUAGE PROGRAM
FOR L=1536 TO 1576:READ H:POKE L,H:NEXT
L:RETURN

DATA 104,169,0,160,0,24,145,203,209,203
,208,18,105,1,208,246,200,208,242,230,2

04,166,204,228,206

DATA 208,234,133,208,96,133,207,177,203
,133,209,169,1,133,208,96

19

CHAPTER TWO

PROGRAMMING
TECHNIQUES

BODY
ENGLISH.

X

© O

\
" / ‘
o —
<
-

e ’__,E At

T——

Chapter Two. Programming Techniques

Atari BASIC
String
Manipulation Tricks

David E. Carew

While the merits of Atari’s method of handling strings have been the subject
of some debate, David Carew suggests how to make Atari strings work
effectively. He provides some interesting techniques.

BASIC programming languages were influenced, naturally enough, by
the minicomputer BASIC languages which preceded microBASIC’s.
The most popular of these minicomputer BASICs was probably
Digital Equipment Corporation’s (DEC’s) PDP-11 family of BASICs:
BASIC-11, BASIC-Plus and BASIC-Plus2. These BASICs possessed
(and still possess) special substring manipulation functions such as
MID$, LEFT$ and RIGHTS, and implemented “arrays of strings”
which were referenced via subscripts exactly like a numeric array.
Microsoft BASIC is a child of such ancestry. Other large vendors,
including Data General Corporation, used the subscript syntax of
A$(X,Y) to handle substrings, which eliminated special syntax
(MID#$,et al) for substring functions while precluding a “nice”
implementation of string arrays. Atari’s BASIC is one of this type.
The DEC/Microsoft approach may be more popular than the DG/Atari
approach — so much so that it is sometimes necessary to remind
ourselves that simpler syntax does not necessarily mean inherently less
power. Indeed, a simpler BASIC syntax may well mean that the
BASIC interpreter uses fewer hardware resources, leaving more for
our programs. Some different coding techniques are definitely called
for, however.

[have a few tricks up my sleeve. I present some of these here in
order to open up the possibilities to you.

The idea is to play to the strengths of the tool you have. One
outstanding strength of Atari BASIC is its capability of addressing
very long strings. What can you do with very long strings? Well, who
says you can’t build a viable word processor or editor in BASIC when
you have the power to control and manipulate an edit buffer as a

23

Chapter Two. Programming Techniques

single huge string of characters!? One can initialize a long string of an
inconvenient large size, without inconvenient large string literal
statements, and without a large number of iterations by concatenating
the string to itself:

1000 E$=" ":TRAP 1010:FOR J1=1 TO 135:E$(LEN(
E$)+1)=E%$
1010 NEXT J1

For data base applications, a generalized “screen forms” handler
might build and store desired screen input/display formats as a long
“string image.” One can precisely and flexibly embed particular string
information into a surrounding string image with just one statement:

1200 REC$(J+1-LEN(EXS$) ,J)=EX$

The above places the right edge of EX$ at position] in RECS$,
effectively right justifying variable-length information into REC$. To
accomplish a similar left justification, place the left edge of EX$ at
position | in REC$:

1300 REC$(J,J—-1+LEN(EX%))=EX%$

If we begin using long strings as the handy data structures that
they are, then it will be occasionally necessary to “pad” a piece of data
with blanks so that it precisely fits a “longstring” subfield. Adding the
correct number of blanks to short data can be accomplished in a single
line like this:

1400 LN=LEN(EX$):IF LN<25 THEN EX$(LN+1)=BLA
NK$ (1, 25-LN)

This code shows EX$ being padded with “trailing” blanks to a
length of 25 characters. EX$ must, of course, be shorter than 25
characters in the first place, and BLANKS$ must be initialized and left
as a string of blanks. Change the literal 25 to a variable, set it as
necessary, and the same single line in a subroutine will pad any string
to any required length.

Stripping the blanks from data taken out of a long string is also a
necessary housekeeping chore. The code to accomplish this is again
very compact, but it does involve iteration (a “loop”):

1500 LN=LEN(EX$):IF LN>1 AND EX$(LN,LN)=" "
THEN EX$=EX$(1,LN-1):60T0 1500

Line 1500 strips away “trailing” blanks on the right end of EX$.
Any “leading” blanks at the left end of EX$ are just as vulnerable to
an analogous technique:

1600 IF EX$(1,1)=" " THEN EX$=EX$(2,LEN(EX%))

24

Chapter Two. Programming Techniques

:IF LEN(EX$)>=2 THEN 1600

Substituting a variable equal to a blank for the literal blank in
the above code will speed up execution; the literal, of course, improves
readability. The choice in this tradeoff is yours to make.

Long strings have much inherent power, and the possibilities are
endless and exciting. The old micro trick of storing graphics and
machine language routines as BASIC strings and/or string literals is
made all the more attractive by this power. And the tantalizing prospect
of “programs that write programs” absolutely cries out for long strings
that turn out to be program code. The substring manipulation
techniques to be used are not as obvious without the special function
calls of other BASICs. However, having seen a few such techniques
in this article, you will not, [trust, now ignore Atari BASIC’s
“longstring” power, when this power could be of use to your
application.

25

Chapter Two. Programming Techniques

Using The Atari
Forced Read Mode

Frank C. Jones

Automatic data entry, line numbering, deletion, self-modifying programs —
this programming method opens up a new level of control over the computer’s

behavior during a RUN.

There are many occasions when it would be useful if one could cause
data and program lines to be entered into the computer’s memory
without having to push the RETURN key. Such a facility could be
used to enable a program to alter itself by adding or deleting program
lines or to automatically reenter data that had been temporarily stored
on the screen. In the article “Restoring and Updating Data on the
Atari” (COMPUTE! August, 1981, #15) Bruce Frumker has shown
that the Atari computer does indeed have this capability. In this
article we will explore this facet of the Atari a little further with an
eye to gaining a better understanding of how it works, and give a few
examples of how it can be put to good use.

To begin our exploration we must visit those often mentioned,
but little understood, objects — the [IOCB’s. IOCB stands for Input/
Output Control Block. There are eight of them, and each one is
nothing more than sixteen contiguous bytes of RAM. [OCB #0 runs
from $340 to $34F (Dec. 832 to 847), IOCB #1 runs from $350 to
$35F (Dec. 848 to 863), and so on.

Most input and output is handled by a portion of the Atari
Operating System called the CIO (Central Input/Output) facility.
When the CIO is called by the program that is ready to do some 1/O,
only one number is passed to it, the number of the [OCB that is to
control the actual I/O operation. All of the other information that
the CIO needs (to perform the required I/O operation for you purists)
is contained in the sixteen bytes of the IOCB in question. Of course,
all of the required information must have been placed in the proper
bytes of the IOCB prior to the jump to the CIO entry point. One of
the ways that such information is placed in the IOCB is with the
OPEN statement in BASIC. However, we are getting a bit ahead of
ourselves; we will return to the OPEN statement shortly.

A few examples of the sort of information that the CIO will find

26

Chapter Two. Programming Techniques

in the IOCB are: the first byte contains the ID number of the device
that is to exchange data with the computer, the third byte contains
the code that tells CIO what it is supposed to do (read data, write
data, etc.), the fifth and sixth bytes contain the address of the data to
be output or the location where incoming data is to be stored, and so
on until the eleventh byte (the auxiliary information byte or ICAX1).

Here is where we return to the OPEN statement of BASIC.
When a BASIC program executes a statement such as OPEN
#2,8,0,“P”, IOCB #?2 is set up to write data to the printer. The
number 8 in the command means “write data.” What many do not
know is that the OPEN command sends that number 8 to the eleventh
byte of [OCB #2 or, in other words, ICAX1. The number 8 is
represented by the 3 bit of ICAX1 being set. This tells CIO that the
channel has been set up for output. If the 2 bit were set, that sould
represent number 4 and would mean that the channel was set up for
input. If both bits are set (a number 12, output and input are both
enabled.

We can see now why the 2 and 3 bits of ICAX1 are called
“direction bits” — they control the direction of data flow. However,
this is not all that the bits of [CAX1 can do. Certain [/O devices can
be made to do special things by setting some of the other bits. The
Screen Editor is one of these certain devices. It supports a mode of
operation that Atari calls the force read mode. It would seem to me
that “forced enter mode” is a more descriptive name, but I suppose
that this sounds too much like “forced entry” and hence, a bit too
felonious. This mode is enabled by setting the zero bit of ICAXI in
any IOCB that is OPENed to the Screen Editor. Setting the zero bit
is, of course, accomplished by adding one to the number that the
OPEN command sends to ICAXT.

This means that a command such as OPEN #2,5,0,“E” or OPEN
#2,13,0,“E” would set up channel number 2 to the Screen Editor in
the forced read mode. Note that OPEN #2,9,0,“E” is not appropriate
since it doesn’t make much sense to invoke the forced read mode in a
channel that has been set up for output only.

The obvious question that now comes to mind is: What is the
forced read mode? The answer is simple. Whenever an INPUT
command is issued over a channel (IOCB) that has been set up for
forced read, the Operating System does not wait for the operator to
push the RETURN key, but immediately INPUTs the data from the
logical line in which the cursor is residing. All data that is under or to
the right of the cursor may be INPUT at this time. Note carefully this last
remark. This mode does not work precisely like the more usual one in

27

Chapter Two. Programming Technigues

which data to the left of the cursor may be INPUT.

As an example of the utility of this mode we will now write the
world’s simplest text screen dump. Early in the program the forced
read mode should be set up with a program line such as:

O OPEN #2,5,0,"E":DIM LINE$(120):SDUMP=32000

Since OPENing an IOCB to the screen editor clears the screen,
this line should be executed before anything is written to the screen
that you might want to dump to the printer. LINES$ is the string that
will hold a line of text from the screen and SDUMP is the line number
of the beginning of the dump routine. It can be called from anywhere
in your program or from the immediate mode by the command GOSUB
SDUMP. The dump routine is as follows:

32000 POSITION PEEK(82),0

32010 FOR I=1 TO 24

32020 INPUT #2,LINE$:LPRINT LINES$
32030 NEXT I:RETURN

What could be simpler? Of course, this won't format the text on
the printer exactly as it appears on the screen, and it might cause
some scrolling if you have some logical lines that are longer than one
physical line, but it will dump all of the text on the screen to the
printed page.

There are many other cases in which it is advantageous to be able
to read data from the screen automatically. One occurred to me as [
was trying to work around what seemed at the time to be an
insurmountable problem. I was working on a program that was to read
tape files and perform calculations on each file before going on to the
next one. A fairly large array was needed whose size depended on the
data in each file. I could DIMension the array to the largest size that |
would ever need, but that would be wasteful of memory. Besides, |
wasn’t sure that I could ever guess just how large that would be. An
alternative would be to use the CLR command and reDIMension the
array after reading each data file.

The trouble with that is that I wanted to maintain a running
total from one file to the next and the CLR command would clear all
variables. While pondering this dilemma, I decided that I could write
the current value of the running total on the screen, use the CLR
command, and then read it right back again using the forced read
mode. Of course, if you have a disk system all of this is unnecessary;
you can use a disk file as temporary storage. But if (like me) you have
only cassette storage, this kind of file manipulation is not possible. It
is nice that folks like us do have the alternative of the forced read mode.

This method is by no means limited to storing only one value;
you can print several numbers, separated by commas with a command

28

Chapter Two. Programming Techniques

like PRINT A;*":B;,":C; — etc. and then read them back in with a
multiple variable INPUT statement. If you have reasons for not
wanting all of this screen activity to be seen, you can make the
writing and background the same color, as Bruce Frumker did. Or you
can disable screen DMA with a POKE 559,0, then do your thing with
the screen. When you are done, clear it, and restore DMA with a
POKE 559,34. [am still thinking of variations on this technique, and
[am sure that you will think of many that have not occurred to me.

So far none of this allows a BASIC program to modify itself in
any way, although Bruce Frumker's mysterious POKE 842,13 should
be taking on a familiar look. A little calculation will show you that
location 842 is the ICAX1 byte of IOCB #0, the one IOCB that
BASIC won’t let you OPEN, CLOSE or otherwise modify. The
reason that BASIC won’t touch IOCB #0, is that it is reserved for the
Operating System to use in communicating with the screen editor.
Whenever a BASIC command such as PRINT, ?, LIST, or INPUT
that does not specify a particular IOCB is executed, the Operating
System uses [OCB #0 to do the job. In fact, any time you use the
screen editor to communicate with the Atari, such as entering
immediate mode commands, entering or deleting program lines or
anything, you do it through IOCB #0.

Even when it may look as if nothing at all is going on with your
Atari, the Operating System is actually issuing repeated INPUT (or
its equivalent) commands through IOCB #0 to the screen editor. It is
just waiting for you to print something on the screen and then press
RETURN. Of course, if IOCB #0 were in the forced read mode it
wouldn’t wait for you to press RETURN, would it? The idea is getting
closer (although I'll bet that a lot of you are already there).

Although the general rule exists that once ICAX1 has been set
by an OPEN command it shouldn’t be changed, it turns out that
turning the forced read mode on and off is an exception and the
statements POKE 842,13 and POKE 842,12 do just that. Once IOCB
#0 has been placed in the forced read mode and the BASIC program
relinquishes control to the Operating System (with a STOP or END
statement), the Operating System starts immediately scanning the
screen for program lines to add or delete or immediate mode commands
to carry out. This will continue until it comes across a command that
returns control to the BASIC program (CONT RUN, or GOTO
line#) or turns off the forced read mode (POKE 842,12).

Although this may sound very straightforward, it takes some
careful planning to position the cursor and the printed lines to make
sure that the desired lines are, in fact, read when the Operating System

29

Chapter Two. Programming Techniques

takes over. A few things need to be remembered:

® First, when a program line (including a blank line) is read, the
cursor jumps to the beginning of the next logical line to INPUT the
next line. So far, so good.

® When a BASIC program comes to a STOP statement, the
cursor skips a line, prints “STOPPED ON LINE line#,” and is ready
to read on the line following that. In other words, you must position
the cursor two lines above the line where you wish to start reading.
(Using END to stop the program does the same thing, only READY is
printed instead.)

® \X'hen an immediate mode command is read, the cursor skips a
line, prints READY and starts reading again on the line following
that; i.e., two lines are skipped.

If the lines to be read are not positioned with these facts in mind,
some of the lines may be missed and not read. This can be especially
annoying when the line that is missed is the one that turns control
back to the BASIC program or turns off the forced read mode. In this
case the cursor “runs away” and continues to look for lines to read
until something stops it. There is no need to panic, however. The
SYSTEM RESET key will bring everything back to normal.

A little practice is all that it takes to get the hang of setting up
the screen to be read. If you find that some of your lines are not being
read or the cursor is running away, look for something that is making
the cursor skip a line or two that you had not counted on.

Uses for this mode abound. Have you ever wondered how an
algebraic formula could be entered into a program at run time and
become incorporated in the program to be evaluated and plotted? The
forced read mode is the answer. In fact, Atari programmers have used
just this technique in the GRAPH IT programs. A program that
initially POKEs a long machine language subroutine into memory
when it is first RUN can eliminate this POKEing routine when it is
through with it. In this way, it can avoid this time consuming and
unnecessary process when it is reRUN.

The automatic generation of DATA statements as in Bruce
Frumker's program is a natural use of the forced read mode. However,
there is one case where it is almost a necessity to remove this function
from error prone human hands. Anyone that has used the Atari Editor/
Assembler cartridge to write a machine language subroutine has had
to face the rather tedious job of incorporating it into the BASIC
program that is to use it. This job is not only difficult, but is a very
likely source of errors as it is very hard to type a meaningless string of
numbers without making at least one mistake, and machine language

30

Chapter Two. Programming Techniques

is not at all forgiving of the smallest mistake.

Getting the program in memory in the first place is not too
difficult using the short BASIC program supplied with the Editor/
Assembler manual errata sheet. The real problem comes when one
wants to integrate it into the BASIC program. Program 1 should be a
help in this respect. [t reads the binary file generated by the Editor/
Assembler SAVE command and generates the appropriate DATA
statements for subsequent POKEing into memory.

In the program you will see a couple of words in curly brackets.
They represent screen control characters. They are printed by pressing
the ESC key and the appropriate control key. (CLEAR) is the screen
clear character, and (BACK) is the DELETE BACKSPACE key.
Now for the program description.

Line 5 — Get ready for the EOF record

Line 10 — This is written for cassette files; the generalization to
any kind of file is obvious

Lines 20-40 — The first six bytes of a binary file contain the
location in RAM of the program; it is assumed that the BASIC
program will POKE it into the correct location

Line 50 — The J's are the DATA statement line numbers; they
may be changed at your convenience (except »460). Be sure to have
enough.

Line 70 — The range of [has been chosen to put twenty-five
numbers in each DATA statement. This, too, can be changed, but
you must make sure not to exceed a logical line length

Line 95 — Erases the last comma

Line 100 — Prints the command to return control to the program

Line 110 — Positions the cursor, turns on the forced read r..ode,
and turns control over to the Operating System

Line 120 — Turns off the forced read mode

Line 300 — Checks the error number and if it is an EOF, lines
400-430 set up the last DATA statement and enter it into memory

Lines 440-450 — Clear the screen and LIST the data statements

When this program has finished its job, the DATA statements
can be listed to a file for later inclusion in a BASIC program. It should
be easy to modify this program to your own needs. The basic framework
is there, and now that you understand how it works, write one that
fits your programming style more closely.

[am sure that these uses of the forced read mode are only the first
hints of what will become an entirely new dimension in Atari
programming. | am eager to see what will come next.

31

Chapter Two. Programming Techniques

PROGRAM. Using The Atari Forced Read Mode.

ST

32

RAP 300

OPEN #1,4,0,"C"

FOR I=1 TO &

GET #1,A

NEXT I

FOR J=500 TO 5000 STEP 10
PRINT “{CLEAR3}"

POSITION PEEK(82) ,2:PRINT :PRINT J;"

]
FOR I=1 TO 25
GET #1,A:PRINT A;",";
NEXT I
PRINT " {BACK Si"
PRINT "“CONT"

POSITION PEEK(82) ,0: POKE 842,13:S5TO0OFP

POKE 842,12

NEXT J

IF PEEK(195)=136 THEN 400

PRINT “ ERROR — ";PEEK(195):END

PRINT "“{BACK S3"
PRINT "CONT"

POSITION PEEK(82),0:POKE 842,13:5T0P

POKE 842,12
PRINT "{CLEAR3}"
LIST S500,5000
END

DATA

Chapter Two. Programming Techniques

A Simple &
Screen Editor For
Atari Data Files

Lawrence R. Stark

Use this “‘BASIC Memo Pad’’ program to enter a screenful of text. The

computer will automatically place the screen into the pseudo string-array B$.

Screen editing is a very convenient means for entry of data and text in
computer files. Yet one of the ironies surrounding several models of
small computers is that, while they have this means to edit the source
code of the BASIC language programs which they all feature, the user
is often reduced to some form of serial prompting for the entry of data.

There are various solutions to this problem, but one of the nicer
is presented in the 400/800 Atari and its 8K BASIC. The key is the
ability to control the screen and to “dump” its contents quickly with
the “dynamic keyboard” technique.

The following short program is a routine which demonstrates the
principle. Extracted from a larger program which externally resembles
the data file manager carried in the November, 1981, issue of
COMPUTE!, the routine presented here does little other than
demonstrate a method that has been mentioned at various places in
the literature on the Atari computers. The demonstration is, in effect,
2 “BASIC Mema Pad.”

The routine is very simple. The margins of the screen are set,
making a sort of sub screen. In the example, the screen dimensions
are 16 lines vertically and 35 horizontally. The row of numbers that
appears on the left of the screen may be said to be outside the screen.
The programmer can make this left margin broader and put prompting
headers in it.

Once the screen is set, characters are taken from the keyboard
and displayed in the subscreen. Troublesome characters like ATASCII
125, clear screen, are bypassed. Then the routine checks to see if the
border of the subscreen is crossed, PEEKing locations 84 and 85.
Carriage return has no effect other than to print a carriage return that
becomes, in essence, a cursor control. A “home” key is provided in

33

Chapter Two. Programming Techniques

Control T. Within these confines — the loop from 150 to 220 — the
user can do almost anything.

Once the data is acceptable, the loop is exited. In the demo
program, Control J is used as the signal. The program prompts for a
confirmation at this stage, and if a “Y” is issued, passes to the dynamic
keyboard routine.

In the dynamic keyboard routine, the cursor is POSITIONed, an
INPUT from the editor is requested, and the dynamic keyboard is
activated and de-activated as it passes each of the 16 lines. The
necessary POKEs are illustrated in lines 260 and 270. The effect is to
read from the screen memory into the variable named A$.

At this point, the needs of the application program come into
play. In the larger programs in which [use this routine, A$ is written
to a disk file, sometimes with a second line concatenated. In the
demonstration program, I have merely put it into the pseudo-string
array called B$.

The demo program STOPs upon the transfer of the screen display
to B$ via A$. If CONT is issued at this stage the process will come
full cycle, placing B$ into display. While this is largely useless as
presented here, it is similar to the method of recalling data from a disk
file and displaying it on the screen. The programmer may then, once
again, invoke the editing routine for updating purposes, as in the
demo program. Of course, in an actual program, the revision would
have to result in something other than the endless loop in the
demonstration program!

In actual use many other features can be added. For instance, [
have included a “parser,” perhaps better called an auto-return, which
searches the end of a line when the cursor passes a designated position.
A subroutine then positions all characters past the right-most space
on the next line. This is done using the LOCATE command.
Incidentally, the LOCATE command can also be used to dump this
screen, but it is much slower than the dynamic keyboard approach.

[t seems a little surprising that it is possible to devise a form of
screen editor using the BASIC language, but here it is. Limited in
some ways, it is generally more user-friendly than the serial prompt
system which tells of BASIC's origins in the days of teletypewriter
terminals.

34

Chapter Two. Programming Techniques

PROGRAM. A Simple Screen Editor For Atari Data
Files.

O REM * %X Screen editor & dump %X %X X X %X ¥ X

100
110
120
130
140

150
160

170
180
190

200
210
220

230

240
230

260

270
280
290
300

310
315
320
330
340
350
360
300
600

610

¥ X X x ¥ X ¥ ¥ ¥ ¥ x ¥ ¥x ¥

DIM B$(600),A$(40)
? CHR$(125)
GOSUB 500

OPEN #1,4,0,"K:
REM % %X X ¥ % X b |
£ ¥ X ¥ X ¥ ¥ X X
POSITION 3,0:7 osuB 1000

GET #1,T:IF T=10 THEN 230:REM 10 = CTRL
" J "

IF T=20 THEN 150:REM 20 = CTRL "T"

IF PEEK(83)=36 THEN GOSUB 1000

IF PEEK(85) >38 THEN POKE 85,38:605UB 100
0:60TO 160

IF PEEK(84) >16 OR PEEK(84)<1 THEN 150

IF T=156 OR T=157 OR T=125 THEN 160

? CHR#$(T)3;:G0T0 160:REM main working loo
p (160-220)

POSITION 3,18:? "ARE YOU SURE?";:GET #1,
X:POSITION 3,18:7? "{14 SPACES»"

IF X<>ASC("Y") THEN 150

REM x ¥ ¥ % X %X ¥ %X X ¥ X X X X %X X % %
¥ X X X ¥ X ¥ X ¥ ¥ X ¥ ¥ X

FOR I=1 TO 16:POSITION 3,I:POKE 842,13:1
NPUT A%

POKE 842,12

B$(I%Xx35-34,1%35)=A%

NEXT I
REM x
X x X
STOP

? CHR$(1235)

FOR I=1 TO 16

? B$(I¥35-34,1%35)

NEXT I

GOSUB S500:60T0 150

STOP

B$(1)=" ":B$(600)=" ":B$(2)=B%$

POKE 82,0:POSITION 0,0:? :=:FOR I=1 TO 16:

? I=:=NEXT I:POKE 82,4

POSITION 3,0:7 " | [VEE[EMNIE L0 G (R SR
": RETURN

X X X ¥ X X X X ¥ ¥ X%
x X X ¥ X
: 6

X X X ¥ x X ¥ ¥x ¥x ¥ X ¥ ¥ ¥ ¥
L S X X x ¥x x x

®* %

X
X

1000 FOR I=1 TO S5:S0OUND 0,50,10,10:NEXT 1:S0

UND 0,0,0,0:RETURN

35

Chapter Two. Programming Techniques

Plotting Made Easyg

John Scarborough

This utility lets you draw a figure on any graphics screen with a joystick. It
will then convert it into a series of PLOT, DRAWTO statements which are
automatically entered into the program. A real time-saver — you may never
need graph paper again!

If you've ever tried to PLOT and DRAWTO your way through some
complex or even simple figure in one of the graphics modes, then you
know how time consuming it is. So why not have the computer do it
for you? This program allows you to first draw your figure on the
screen using a joystick, and then have the computer do the PLOTs
and DRAWTO:s for you.

Enter the program into your computer carefully. Don’t try to
shorten it, or you're sure to get confused. [“squeezed” the program to
get as much free RAM as [could. If you still need more, you can get
rid of some lines from 603 on up. You don’t want to go any higher
than 523. Just make sure that L=650 on the last one you leave in.
Before you use the program, it'll be useful to make a couple of back-up
copies.

The following steps show you how to make a box with an x in it
(at first glance it might look long and confusing, but once you get the
hang of it you'll be able to move quickly).

1. Choose the graphics mode you want (I suggest you practice on
mode 3 until you get the feel of what you're doing).

2. Choose the cursor color.

3. Choose the cursor luminance (7 will give a nice shade).

4. Choose the background color.

5. Move the cursor to a starting point and draw the box (press
the joystick button to draw).

6. Position the cursor in one of the corners (corner 1), and then
hit “P” (you are PLOTting your first line).

7. Move to the next corner (it doesn’t matter how you get there),
and hit “D.” You just had the computer PLOT and DRAWTO for
you.

8. For the second line: Stay in corner 2, and hit “P.” Move to
the third corner and hit “D.”

9. Follow the same procedure until you get back to the first corner.

36

Chapter Two. Programming Techniques

10. After you end your fourth line, start another one (by pressing
“P”). Move to the diagonal corner (line not needed), and end the
line.

11. Do the same with the other two corners.

12. Hit the ESCape key.

13. You'll briefly see some program statements being entered into
the program; then you'll be in the graphics mode.

14. You should have your box with the X in it.

Lines 700-898 are saved for your PLOT-DRAWTO statements.
You can LIST them at any time, but don’t run it to get back to the
drawing. Enter “G.4000” instead. You will find that the cursor moves
very slowly in mode 8. If you can’t handle the slowness then hit “F.”
You'll have to slow it back down (by pressing “S”) when you want to
PLOT. If you want to start a new figure or drawing you'll have to take
out lines 700-898. Just make sure line 700 reads: 700 RETURN. A
faster way to take out the lines would be to have the computer print
out the line numbers for you. Then you press RETURN after each
line. Example: 5000 FOR X =701 TO 721:?X:NEXT X. If your figure
consumed a lot of lines it might be faster just to CLOAD your fresh
program from tape.

37

Chapter Two. Programming Techniques

PROGRAM. Plotting Made Easy.

b &
2
3

7
8
9
11
14

17

20

30

10

REM PLOTTING MADE EASY
REM BY JOHN SCARBOROUGH
DIM AN$(1):LI=699: GRAPHICS O:SETCOLOR 2,0,
Q:? =7 :? "GRAPHICS MODE(3 TO 8)";:INPUT M
ODE: IF MODE=8 THEN 35

? :? "CURSOR COLOR(O TO 14)";:INPUT CC:7?

? "CURSOR LUMINENCE(O TO 14)";:INPUT CL

? :7?7 "BACKGROUND COLOR(YES OR NO) "j;:INPUT
AN$: IF AN$="N" THEN 7

? :? "BACKGROUND COLOR(O TO 14)";:INFPUT BC

:? :? "BACKGROUND LUMINENCE(O TO 14)";:INP
uUT BL
IF MODE=8 THEN HRNG=319:VRNG=191

IF MODE=6 OR MODE=7 THEN HRNG=15%: VRNG=95
IF MODE=4 OR MODE=S5 THEN HRNG=79: VRNG=47
IF MODE=3 THEN HRNG=38:VRNG=23

GRAPHICS MODE:SETCOLOR 2,BC,BL:SETCOLOR O

,CC,CL:SETCOLOR 4,BC,BL:COLOR 1:POKE 752,
1:L=500:60SUEB 700
? "HORIZONTAL-":7? "“VERTICAL-"
GOSUBR 100:IF STRIG(0)=0 THEN PLOT H,V:GOT
0 20
PLOT H,V:FOR X=1 TO S:NEXT X:POSITION H,V
:? #63;" ":G60TO 20

0 S=STICK(0):IF S=11 THEN H=H-1

105 IF S=5 THEN H=H+1:V=V+1

11
11
12
13
13
14
14
14
14
15
x5

0 IF S5=7 THEN H=H+1

5 IF S=6 THEN H=H+1:V=V-1
0 IF 5=14 THEN V=V-1

0 IF S5=13 THEN V=V+1

5 IF S5=9 THEN H=H-1:V=V+1
0 IF §=10 THEN H=H-1:V=V-1
1 IF H<O THEN H=0

2 IF H>HRNG THEN H=HRNG

Z IF V>VRNG THEN V=VRNG

0 IF V<O THEN V=0

5 IF MM=0 THEN POKE 656,0:PO0OKE 657,19:7? "F
REE MEMORY-"3;FRE(0) :MM=1

160 1IF PEEK (764)=56 THEN GOSUR 2000:POKE 636

2:7 "FAST(SLOW DOWN TO PLOT OR DRAWTO)
":FT=1:G0SUR 440

165 IF PEEK (764)=62 0OR 0K=0 THEN GOSUEB 2000:

POKE 656,2:72 " Xxxx¥x PLOTTING MADE EASY
Xxx Xk {3 SPACES}Y":FT=0:605UF 440:0K=1

170 IF FT=1 THEN RETURN
180 IF PEEK(764)=10 THEN GOSUR 2000:POKE 636

38

,1:POKE 657,19:7 "PLOT "3H;",";V;"
{3 SPACES:":G0SUER L:GOSUB 440

Chapter Two. Programming Techniques

185
190

210
230
300
440
500
503
510
513
520
523
530
533
540
543
550
553
560
563
570
573
580
583
590
593
600
603
650
700
899
950

951

1010
1015
1020

1030

1040

1100

IF PEEK(764)=28 THEN 1010

IF PEEK(764)=58 THEN GOSUB 2000:POKE 656

,1:POKE 657,19:? "DRAWTO
(3 SPACES}":GOSUB L:GOSUB 440
POKE 656,0:POKE 657,13:7 H;"

FOKE 657,11:7? V3" *
RETURN

FOKE 764,255: RETURN

L=503: A=H: B=V: RETURN
L=510:C=H: D=V: RETURN
L=513:E=H: F=V: RETURN
L=520:6=H: I=V: RETURN
L=523:J=H:K=V: RETURN
L=530:M=H: N=V: RETURN

L=533:0=H:P=V: RETURN
L=540:R=H: R=V: RETURN
L=543:58=H: T=V: RETURN
L=550:U=H: W=V: RETURN
L=5533:Y=H:Z=V: RETURN
L=360: AA=H: AR=V: RETURN

L=563:AC=H: AD=V: RETURN
L=570: AE=H: AF=V: RETURN
L=573: A6=H: AH=V: RETURN
L=5380:AI=H: AJ=V: RETURN
L=5383: AK=H: AL=V: RETURN
L=3590: AM=H: AN=V: RETURN
L=593: A0=H: AP=V: RETURN
L=600: AB=H: AR=V: RETURN
L=603: AS=H: AT=V: RETURN
L=650: AU=H: AV=V: RETURN
G60TO 1010

RETURN

RETURN

IF DD=0 AND EE=0 AND FF=0

RETURN

LI=LI+1:? LI:" PL.";DD;",";EE;":DR.";FF

" 5 n ; GG: RETURN
GRAPHICS Q:? :7 :7

";H;",";V;"

AND GG=0

DD=A: EE=B: FF=C:G6G=D: GOSUR 930: DD=E: EE=F
:FF=6:66=1:6G0SUR 950:DD=J:EE=K:FF=M:GG=
N: GOSUER 950

DD=0:EE=P:FF=Q: G6=R: GOSUR 950:DD=SS:EE=
T:FF=U:66=W: 605UB 950:DD=Y:EE=Z:FF=AA:G6
6=ABR: GOSUE 950

DD=AC:EE=AD: FF=AE:G6G6=AF: GOSUR 950: DD=A6G
tEE=AH:FF=AI:66=AJ: GOSUBR 950:DD=AK:EE=A
L:FF=AM: GG=AN: GOSUR 9250

DD=A0: EE=AP: FF=A0: 66=AR: GOSUBR 950: DD=AS
:EE=AT:FF=AU: G6=AV: GOSUB 950:7? "G.4000"

POSITION 0,0:POKE 842,13:END

39

Chapter Two. Programming Techniques

2000

4000

40

SOUND 0,17,10,10:FOR X=1 TO 7:NEXT X:S50
UND ©,0,0,0:RETURN
A=0:B=0:C=0:D=0:E=0:F=0:6=0: I1=0:J=0: K=0
tM=0:N=0:0=0:P=0:0=0:R=0:88=0:T=0:U=0: W
=0

Y=0:Z=0:AA=0: AB=0: AC=0: AD=0: AE=0: AF=0:
6G=0: AH=0: AI=0: AJ=0: AK=0: AL=0: AM=0: AN=0
AODO=0: AFP=0: POKE B8B42,12

AR=0: AR=0: AS=0: AT= 0 AU=0: AV=0:LI=LI+1:M
M=0:0K=0:6G0T0O 14

A

le)

Chapter Two. Programming Techniques

Graphics Generator

Matthias M. Giwer

Create graphics characters, SAVE them to disk, and use them in other
programs.

Recently my son has shown a distinct interest in learning to program a
computer. Although I do not expect much to come of this interest at
six years of age, I began working up some simple illustrative programs
on programming concepts. The first was a race track for a number to
go around to demonstrate a loop. The second was a Y-shaped branch
for a number to go through. After the second tedious construction of
the branch using line numbers, POSITION statements, and PRINT
statements, it was apparent that there had to be a better way. Here is
my approach to that better way.

This program permits graphics characters — or any characters —
on a Graphics 0 screen. The finished screen is written to a disk file of
line numbers which can then be merged with a master program by
means of the ENTER command.

After running the program and giving a filename to save the
results, you must not do anything to scroll the screen. This means
that what you draw must be done with the cursor and you must never
hit RETURN. It is recommended that the first thing you do is erase
the STOPPED AT message. Do not erase or move the CONT on line
22. You may use the cursor keys and any other screen editing functions
of the Atari. When finished, move the cursor down to the line
containing the CONT and hit RETURN. The program will execute.
When the disk drive stops, the program has finished.

There are many options available within the program. The one
option you do not have is to move CONT to the last line, for if you
do, the screen will scroll when you hit RETURN. Otherwise, it is
rather flexible. If you wish to compose several graphics screens, run
the program once for each screen. You will use a different file
specification and change the value of 30000 in line 2020. Since exactly
40 lines are required to save a screen, increase 30000 in blocks of 50
so you will have free lines for RETURN statements and so forth.
When putting together your finished program graphics, simply ENTER
all of the file specifications you have used and LIST them under one
new file specification.

41

Chapter Two. Programming Techniques

The program itself simply constructs R$ to look like a line of
BASIC. It concatenates (adds together) a line number (30000 +1), a
print command in the form of a question mark, and then adds a
quotation mark in the form of CHR$(34). (Otherwise it would be
interpreted by the computer as a closing quotation mark.) Note that a
quotation mark is not permitted on your graphics screen. Using the
LOCATE instruction, each position of the screen is examined and
added to R$ by the CHR$(X) instruction. In line 2030] starts at 2 to
coincide with the default values of the screen. If you intend to use the
resulting lines with different screen widths, then this value should be
changed to coincide with them. R$ is completed with a closing
CHR$(34), asemicolon to prevent scrolling CHR$(59), and a carriage
return CHR$ (155).

Upon ENTERIng these lines you will need to do a bit of editing.
First you must remove the word CONT from the next to the last line
and the cursor from the last line. After this you may change blank
lines to simple PRINT or ? statements. Leaving the lines in this form
takes up only a few bytes and gives you what might be called relocatable
graphics.

To obtain fixed location graphics, make the changes in Program
2. These will result in absolute positioning of your graphics. The
POSITION statements generated by these lines will place the graphics
exactly where you drew them.

42

Chapter Two. Programming Techniques

PROGRAM 1. Graphics Generator.

100 GRAPHICS 0:DIM R$(BO) ,F$%$(17)

120 ? "ENTER DISK NAME TO SAVE UNDER
{10 SPACES}(Dn:filespec.ext)";:INPUT F$%

140 GRAPHICS O:POSITION 4,22:7 "CONT{S UPX":
STOP

1900 OPEN #1,8,0,F$:J=0

2010 FOR I=0 TO 23

2020 R$=STR$(30000+1)

2026 R&(LEN(R$%)+1)=" 2"

2028 R$(LEN(R%)+1)=CHR%$(34)

2030 FOR J=2 TO 39

2050 LOCATE J,I,X

2060 R$(LEN(R%)+1)=CHRS% (X)

2070 NEXT J

2080 R$S(LEN(R%) +1)=CHR%(34)

2082 R$(LEN(R%)+1)=CHR$(59%)

2090 R$(LEN(R%)+1)=CHR$(155)

2100 ? #1;R$%

2110 R$=""

2120 NEXT I

2190 CLOSE #1

2200 REM

2201 GOTO 2200

PROGRAM 2. Graphics Generator.
2022 R$(LEN(R$)+1)="POSITION 3,"

2023 R$(LEN(R%)+1)=STR$(I)
2024 R$(LEN(R$)+1)=":"

43

Chapter Two. Programming Techniques

Analyze Your
Program — An Atari
BASIC Utility

Fred Pinho

This program allows you to study the effects of space allocation in Atari
variable value and stringlarray tables. You'll discover the memory saving
effects of various methods of handling heavily edited programs. It’s also a
useful debugging tool for more advanced programmens.

This program was inspired by Art McGraw’s “Variable Name Utility”
(COMPUTE!, Oct. 1981, #17). To do advanced programming in
BASIC, one often needs information, not only on the variable name
table, but also on the variable value and the string/array tables. These
tables reside in memory as follows:

Variable Name Table Increasing
Variable Value Table Memory
BASIC Program Locations
String/Array Table

There are a set of zero-page pointers that point to these tables and
enable BASIC (and the programmer) to keep track of their location.

MEMORY LOCATION
OF POINTER MEMORY AREA POINTED TO
130,131 Start of Variable Name Table.
132,133 End of Variable Name Table.
Points to a zero dummy byte when there
are less than 128 variables.
Otherwise points to the last byte of the
last variable name.
134,135 Start of Variable Value Table.
140,141 Start of the String/Array Table.
142,143 Start of Run Time Stack. Also defines the

end of the String/Array Table.

As usual, these pointers point to the address in low-high format (low
byte of 16 bit address is stored first). To find the complete address:
Address = PEEK (Lo Byte) + 256°PEEK (Hi Byte)

In order to be able to read the information displayed by the

44

Chapter Two. Programming Techniques

program, ['ve included a description of each of these tables.

VARIABLE NAME TABLE

Lists all the variable names in the order entered by the program. Each element
of the name is stored as ATASCII characters. There are three types of
variables:

1. Scalar variables — These contain a numeric value. The most significant bit
is set on the last character of the name.

2. String variables — The last character stored is a $ with the most significant

bit set.

3. Array variables — The last character stored is a (with the most significant
bit set.

VARIABLE VALUE TABLE

This table reserves eight bytes for each variable in the program. The first byte
of each entry defines the type of variable: zero for a scalar variable, 65 for a
properly-dimensioned array variable and 129 for a properly-dimensioned
string variable. The second byte is the variable number (0-127). The remaining
6 bytes vary with the type of variable:

1. Scalar — The number stored in 6-byte BCD (Binary Coded Decimal)
format.

2. Array — Bytes 3 and 4 give the location of the array as an offset from the
beginning of the String/Array Table. Bytes 5 and 6 give the size of the first
dimension of the array plus one. Bytes 7 and 8 give the size of the second
array DIMension plus one. All these byte-pairs give the number in low-byte,
high-byte format. To get the desired value you must again calculate by: (value
in lo byte) +256* (value in hi byte).

3. String — Bytes 3 and 4 give the location of the string as an offset from the
beginning of the String/Array Table. Bytes 5 and 6 give the current length of
the string (i.e., the length of the string actually written to). Bytes 7 and 8 give
the DIMensioned length of the string.

STRING/ARRAY TABLE

This block of memory stores all the actual string and array data. Each string
character is stored as a one-byte ATASCII entry. Each element in an array is
stored as a six-byte BCD number. BASIC allocates memory space within this
table as dictated by the DIMension statements it encounters. As you can see,
it is much more costly in memory usage to store arrays than strings. (See
Program 1.) Ideally, this utility should be written with no declared variables
to give a ““pure’” analysis of the variable tables. However, this would give a
messy looking program and take a lot more coding. Therefore, I’ve used four
variables in this program. I’ve chosen names that are unlikely to be used in
normal programs. These are:

OPQ — FOR - NEXT counter
RST — Variable number

UVW — Location within Variable Value Table
XYZ — Location within Variable Name Table

If, for some reason, you are using these variables in your program, change the
variable names in the utility program. The utility variables will be printed last
and can be ignored.

A description of the program by line number is given.
18990 Vanity line

45

Chapter Two. Programming Techniques

46

19010 Opens a file to the printer. It is best to do this rather than use
LPRINT since LPRINT causes formatting difficulties.
19025-19040 Prints variable names. Note that since each name is
ended with a character whose most significant bit is set (i.e.,
aninverse character), this bit is stripped out before
printing. This would not be necessary if printing to the
screen.
19050-19070 Checks for type of variable by inspecting first bit of
entry in variable value table. Directs program to

proper subroutine

19080 Checks for error in value table

19090 Increments variables

19100 Checks for end of variable name table

19110 Prints number of variables found which equals the total
variables minus the four in the utility program.

19120 Prints memory size of string/array table.

19130 Closes printer file

19140 Error routine. Prints number found

19200-19240 Scalar variable subroutine. Converts six-byte BCD
number to a decimal number multiplied by a power of 100

19300-19350 Array variable subroutine. Calculates location of array
as an offset from the start of the string/array table. Also
gives the first and second DIMensions of the array. Note
that the Atari stores the chosen DIMension plus one.
Therefore, the program subtracts one before printing.
However, the actual DIMension is one higher than the
chosen and printed value since the computer starts
counting from zero rather than one.

19400-19450 String variable subroutine. Calculates the string
storage location as an offset from the start of the string/
array table. Also gives the DIMensioned length and the
current length of the string. Note that the current length
of the string is just the last location written to; there
need not be anything in the previous locations. To show
this, load the utility and type:
100DIM A$ (120),B$ (120)
110A$(103,103) =“F”:B$ = “FFFF”

Then RUN the utility program (i.e., let it analyze
itself). See Figure 1 for the output of this run. Also,
note that string position numbering starts from one, not
zero, as in arrays.

The abbreviations used in the printout are:

VAR.NO. — Variable Number

VAR.NAME — Variable Name

OFS —Offset

DIM1 —First DIMension of Array

DIM2 —Second DIMension of Array (zero if single-dimension
array)

CURLTH —Current Length of String

DIMLTH —DIMensioned Length of String

Note that the location of the start of each table for the analyzed

Chapter Two. Programming Techniques

program should not be found using this utility. This is because the
presence of the utility program will cause a shift of the string/array
table location. If you need to know these locations, PEEK the
appropriate locations before you load the utility program.

The utility program has been written with high line numbers so
that it won't interfere with most programs to be analyzed. To use this
utility, type it in and then save it to either disc or cassette using the
LIST command. Don’t use SAVE or CSAVE, as this will prevent you
from merging the utility with the program to be analyzed (the program
in the computer will be wiped out as you LOAD or CLOAD the
utility program). Now LOAD in your program to be analyzed. To
merge the two programs, LOAD in the utility using the ENTER
command. Now turn on the printer, type in GOTO 19000
(RETURN).

If you did the above, you will get some unexpected results. All
the variables will be listed, but they will have no entries for them. For
example, all scalar variables will be zero regardless of their value in
the program. Also, all strings will be unDIMensioned and will have
zero for their length. Apparently, when a program is SAVEd to disc,
the Atari saves the Variable Value Table with entries set to “zero”
condition. Therefore, to get the proper analysis, do the following:

1. LOAD your program.

2. RUN it!

3. ENTER the utility program.

4. Type GOTO 19000 (RETURN).

This will give you a proper analysis. Note that loop variables will not
always be caught at their initial value.

If your program has line numbers in the 18990-19450 area, it
could interfere with the utility. Therefore, RUN your program and
then delete the problem lines. This will not affect the Variable Name
and Variable Value tables. Then ENTER the utility and proceed as
before.

What can you use this program for? Well, first you can use it to
gain a better understanding of how BASIC works. For example,
analyze a heavily edited program which has had variables deleted. If
you've only SAVEA this program, you'll find that these variables are
still listed in the tables and continue to consume memory. LIST your
program to disc or cassette and then ENTER it back into the computer.
If you now re-analyze the program, you'll find that these “phantom”
variables will have been eliminated. If you check “free” memory
[FRE(0O)] before and after, you'll find a gain in useable memory.

47

Chapter Two. Programming Techniques

Many advanced programming techniques use string manipulations
to take advantage of the high speed, string handling routines in the
Atari. These often depend on changing the entries in the variable
value table to relocate strings under program control. This utility is
useful as a debugging tool for these applications.

One final note for those who do not have printers. If you wish to
output to the screen, change line 19010 to:

OPEN #3,8,0,“S:”

You can stop the screen output at any time and then resume it by
“Control-1.”

Figure 1.

VAR. NO.=0 VAR. NAME=A$
STRING DIMed

OFS=0:CUR LTH=103:DIM LTH=120
VAR. NO.=1 VAR. NAME =B$
STRING DIMed

OFS=120:CUR LTH=4:DIMLTH=120
VAR. NO.=2 VAR. NAME=XYZ
SCALAR—76.82000000° 100

VAR. NO.=3 VAR. NAME=UVW
SCALAR—77.17000000" 100

VAR. NO.=4 VAR. NAME=RST
SCALAR—04.00000000"0

VAR. NO. =5 VAR. NAME=0PQ
SCALAR—08.00000000°0

END OF VARIABLE NAME AND VALUE TABLES.
NUMBER OF VARIABLES FOUND =2
STRING/ARRAY AREA IS CURRENTLY 240 BYTES LONG.

48

Chapter Two. Programming Techniques

PROGRAM. Analyze Your Program — An Atari
BASIC Utility.

18990 REM VNT/VVT UTILITY BY F. PINHO 12/22/
81

19000 XYZ=PEEK(130)+256%PEEK (131) : UVW=PEEK (1
34) +256%PEEK (135) : RST=0

19010 OPEN #3,8,0,"P:"

19020 ? #3; "VAR. NO.="3;RST;" ";:7 #3; "VAR.
NAME=";

19025 IF PEEK(XYZ)<128 THEN 7?7 #3;CHR$(PEEK (X
YZY)s

19030 IF PEEK(XYZ)>127 THEN ? #3;CHR$ (PEEK (X
YZ)-128);

19040 IF PEEK(XYZ)><128 THEN XYZ=XYZ+1:GOTO 1
9025

19050 IF PEEK(UVW)=0 THEN GOSUB 19200

19060 IF PEEK(UVW)=64 OR PEEK(UVW)=65 THEN G
0SUB 19300

19070 IF PEEK(UVW)=128 OR PEEK (UVW)=129 THEN

GOSUB 19400

19080 IF PEEK(UVW)<>0 AND PEEK (UVW)<>64 AND
PEEK (UVW) < >65 AND PEEK(UVW)<>128 AND P
EEK(UVW)<>129 THEN GOTO 19140

19090 UVW=UVW+B: XYZ=XYZ+1:RST=RST+1

19100 IF XYZ<(PEEK(132)+256%PEEK(133)) THEN
19020

19110 ? #3; "END OF VARIABLE NAME AND VALUE T
ABLES.":? #3; "NUMBER OF VARIABLES FOUN
D=";RST-4

19120 ? #3;"STRING/ARRAY AREA IS CURRENTLY "
; ((PEEK(142) +256%PEEK (143))— (PEEK (140)
+256XPEEK(141)));" BYTES LONG."

19130 CLOSE #3:END

19140 ? #3:7 #3; "ERROR' VARIABLE TYPE NUMBER
="; PEEK (UVW) : END

19200 ? #3:7? #3; "SCALAR-—";:IF PEEK(UVW+2)=0

THEN ? #3;"ZERO":? #3:RETURN

19210 ? #3; INT(PEEK (UVW+3) /16); (PEEK (UVW+3) —
(INT(PEEK(UVW+3) /16))%x16);3%.";

19220 FOR OPQ@=4 TO 7:7? #3; INT(PEEK(UVW+OP®) /
16) 3 (PEEK(UVW+0OPR) - (INT (PEEK (UVW+0OP®) /
16))%16) ;

19230 NEXT OP@

19240 ? #3;"%";:7 #3; ((PEEK(UVW+2)-64)%100):
? #3:RETURN

19300 ? #3:7 #3; "ARRAY ";

19310 IF PEEK(UVW)=64 THEN ? #3;"unDIMed";:?

#3
19320 IF PEEK(UVW)=65 THEN 7?7 #3;"DIMed";:7? #3

49

Chapter Two. Programming Techniques

19330
19340

19350

19400
19410

19420
19430
19440

19450

50

? #3; "OFS="3; (PEEK (UVW+2) +256%PEEK (UVW+
I)rgmery

? #3; "DIMI="; ((PEEK(UVW+4) +256XPEEK (UV
W+3))—-1)53":="3;

? #3; "DIM2="; ((PEEK(UVW+6) +256%XPEEK (UV
W+7))—-1):?7 #3: RETURN

? #3:7? #3; "STRING "3

IF PEEK(UVW)=128 THEN ? #3;"unDIMed"3:
? #3

IF PEEK(UVW)=129 THEN ? #3;"DIMed";:7?
#3 |

? #3; "OFS="; (PEEK(UVW+2) +256%¥PEEK (UVW+
J))ghne s

? #3; "CUR LTH="; (PEEK (UVW+4) +256%PEEK (
UVW+5));":=";

? #3; "DIM LTH="; (PEEK(UVW+6) +256%PEEK (
UVW+7)):? #3: RETURN

Chapter Two. Programming Technigues

inside
Atari Microsoft
BASIC:
A First Look

Jim Butterfield

Atari’s long-awaited Microsoft BASIC is here at last. Jim Butterfield, an
expert on the 8K Microsoft BASIC used on other machines, begins the
documentation of the complex inner workings of Atari Microsoft BASIC.

It's a big BASIC. It occupies 18K of RAM, which means there’s a lot
of code in the interpreter. It also does some new things. Single versus
double precision arithmetic, for example, calls for a dramatic
rearrangement of the floating accumulators and of the way variables
are stored as compared to the better-known 8K Microsoft BASICs.
With the expanded features come new techniques to be mastered.

[wince when PRINT 10/4 yields an answer of 2 (to get 2.5, you must
force floating point with PRINT 10/4.0).

The Architecture

The following discussion assumes that users have had some exposure
to the mechanics of other Microsoft BASICs.

Your BASIC program will be stored right behind the interpreter
(Hex 6980 and up). It’s the usual format: two-byte forward chain to
the next BASIC line, two-byte BASIC line number, the line itself
(tokenized) and finally a zero byte to flag end-of-line. The end-of-
program is identified by zero-bytes in the forward chain location.

Variables come behind your program — check the address in hex
84 and 85, or PRINT PEEK(132) + PEEK(133)*256 — but storage is
fairly complex. The first two bytes are the first two characters of your
variable name, but with many bits stripped away and replaced with
“variable type” bits: don’t be surprised if your variable A ends up with
the name stored as value 1 rather than the ASCII 65 which corresponds
to A. The third byte is the length of this variable entry. Now we have

51

Chapter Two. Programming Techniques

a messy bit: if you have a long variable name such as PLUGH the
extra letters (UGH) are stored starting at the fourth byte. Finally, the
value itself.

The following memory map is a brief list of the locations I have
spotted while looking around. It’s far from complete; but those who
would like to rummage around will find it handy.

0080-0081 128-129 Pointer: Start-of-Basic

0082-0083 130-131 Pointer

0084-0085 132-133 Pointer: Start-of-Variables
0086-0087 134-135 Pointer: Start-of-Arrays

008A-008B 138-139 Pointer: String storage (moving down)
0094-0095 148-149 Current data pointer

00AE-00C5 174-197 CHRGET subroutine

00B4 180 CHRGOT entry point

00B5-00B6 181-182 Basic pointer within subroutine
00C7-00C8 199-200 Variable pointer for FOR/NEXT

00CB 202 $98=READ, $40=GET,0=INPUT
00CD 204 Default DIM flag

00D1 209 Accum sign compare, #1 vs #2

00D2 210 Accum#1 Low order (rounding)
00D4 212 Variable name length

00D5-00D8 213-216 Utility Pointer area
00DC-00E4 220-228 Misc numeric work area

00E5 229 Accum#1 precision flag
00E6 230 Accum#1: Sign

00E7 231 Accum#1: Exponent
OOE8-OOEE 232-238 Accum# 1: Mantissa
00F0 240 Accum#2: Sign

00F1 241 Accum#2: Exponent

OO0F2-00F8 242-248 Accum#2: Mantissa
00F9-00FF 249-255 Product area for multiplication

0480- 1152- Variable name setup area

1F00-697F 7936-27007 Microsoft Basic Interpreter
6980- 27008- Basic program staging area

52

CHAPTER THREE

ADVANCED
GRAPHICS AND
GAME UTILITIES

CHECKMATE.

Chapter Three. Advanced Graphics And Game Utilities

Player-Missile
Drawing Editor

E. H. Foerster

You can toss out your graph paper and your binary to decimal conversion
tables. The P/M Drawing Editor lets you design players and missiles on-screen
with a joystick. Because of automatic program adjustments, you can easily
visualize players of any size, including double players or combining two players
into one. When you're done, you can view the player *‘in action,”” and even
automatically generate a BASIC routine for using the players and missiles in
your own programs. It will run in 16K.

Would you like to write a Player-Missile (P/M) program, but are
intimidated by the need to convert your drawn player on graph paper
to numerical image data? With the program in this article, you can
draw your P/M object using the joystick and then let your computer
do the work of converting the image to numerical data for your
favorite P/M movement routine.

This program will actually perform the task of writing the DATA
statements containing the P/M image using a program-writing program.
The complete capabilities along with explanations are included in the
instructions for the program. Only limited instructions and no REMark
statements are included in the program to permit its use in a 16K machine.
For those interested in the details, a program outline along with a listing
of variables is included.

Using The Editor

Let’s walk through a simple example of the use of the Editor. Set up a
player with double line resolution, size one, and eight lines long. Place
the cursor at the top right corner of the drawing easel, press “D” for
draw-to, move the cursor to bottom left and push the trigger button.
Bingo, you have drawn a player consisting of a diagonal line. Press “S”
for stop and, when the menu is displayed, press “L” for list.

The computer now displays your player as numerical data. Notice
that each number represents the bit value of the P/M pixel as you move
down the player, line-by-line. To see your player in P/M graphics mode:
press “V” for view and, in a few seconds, your player appears in P/M graphics.

55

Chapter Three. Advanced Graphics And Game Utilities

Would you like to see your object in single line resolution and at
size four? Follow the instructions in the text window and, with a few
keystrokes, the changes have been accomplished. Suppose you want
to make changes to the image. Just a few keystrokes and you are back
to the drawing easel. However, now the easel is different from the
original, in size and shape, reflecting the changes made. The program
allows complete freedom when going from one area to another. This
allows you to make as many changes as needed before you record your
final image data on tape. You can add or delete lines at the top or
bottom and a fill routine will fill in an area.

Experiment by combining up to four players, changing the
parameters of size and resolution, and you will soon have a better
understanding of the meaning and interrelations of these parameters.

One unique tool used in the program is the SGN function and
logical operators for converting the STICK(0) readings to X,Y
coordinates. The actual examples in the program may be a little
obscure. The routine is as follows:

10 S=STICK(0)

20 IF S<12 THEN X=X+SGN(8-S):X =X + (X<XMIN)-
(X>XMAX): S=S+(X<8)'4+4

30 IF S<15 THEN Y=Y +SGN(13.5-S):Y=Y + (Y<YMIN)-
(Y>YMAX)

You may not believe it, but these three lines read all nine joystick
positions, convert the reading to new X,Y coordinates, and adjust
these coordinates to the limits expressed by the X and Y MAX and
MIN values. For those not familiar with logical statements, the value
in parentheses of a comparison or equality evaluates to a one if true
and zero if not true. Such statements can frequently reduce two lines
of code using IF statements to a single line of code.

A note of caution if you are planning on using the “Player
Missile Graphics Made Easy,” by Sak and Meier in COMPUTE!,
February 1981, #21. The program is designed for use with single line
resolution. Addresses for players in P/M memory are indexed by page
number. However, in double line resolution, memory for players two
and four starts at half-page intervals and cannot be accessed. The P/M
drawing Editor program gets around this limitation by extending the
lengths of players one and three to include players two and four
respectively. This, however, works only when adjacent players are
moved together.

The LPRINT in line 1580 in the program writing subroutine
serves a similar purpose to the use of LPRINT before a CSAVE.

56

Chapter Three. Advanced Graphics And Game Ultilities

Before this statement was included, only one player could be recorded

on tape. Subsequent players would give error messages when they
were later entered.
Player-Missile Drawing Editor Instructions

A. INITIAL QUESTIONS

[. INPUT Resolution: See table for explanation. Resolution for
all players and missiles must be the same for any one program.

2. INPUT Player or Missile: A player is eight P/M pixels (bits)
wide; a missile is two P/M pixels wide.

3. INPUT number of players: There are four players available,
each eight P/M pixels wide. Any number of players may be
placed side by side and moved together. Thus, four players
combined will give 32 P/M pixels across.

4. INPUT Size: See table for explanation. This parameter can
be changed later in the program.

5. INPUT number of vertical lines. See table for explanation.
Lines can be added or deleted later in program.

B. DRAWING EASEL

The drawing easel will appear as a green area. The drawn player
appears as an orange area. The cursor is indicated by a lighter
colored green or orange area. To change color, press joystick
trigger. To move cursor, use joystick.

Keyboard Options

(0-9) Controls speed of cursor movement. 0 =fast, 9 =slow,

2 =initial speed.

(D)raw to: Draw line from current cursor position. Move cursor
to new position. Press trigger button to draw line between two
positions.

(F)ill: Used to fill an area. The area must be bounded by orange
on all four sides. Place cursor below highest green space and, if
possible, above lowest green space. Press F. For odd-shaped areas
the routine may have to be repeated.

(L)ines: Add or delete vertical lines at top or bottom of drawing
easel.

(S)top: Stop drawing. If the drawing is large, there may be a
considerable wait while the diagram is converted to numerical
data.

C. OPTION MENU

(V)iew: observe player(s) in P/M graphics. Move player using
joystick. During View you may press:

57

Chapter Three. Advanced Graphics And Game Utilities.

(S)ize to change size of player,
(C)olor to change color of player. Horizontal movement of
joystick changes color. Vertical movement of joystick changes
intensity. Color number and intensity arg displayed as
changes are made.
(R)esolution to change resolution.
(L)ist: Get listing of image data for player(s).
(E)dit: Return to drawing easel. If size or resolution was changed
during view, then drawing easel is modified accordingly. If size
limitations are exceeded, then size is reduced to two.
(S)ave: Save image numerical data on tape. Insert blank tape in
recorder. Press RECORD and PLAY. Answer question for player
number. If this is the first player, then answer zero. If previous
players were saved, enter next player number. For example: if
first drawing was two players wide, they were player zero and
one. You, therefore, enter two for this player number. Data will
be transferred to tape using print statements. The recorder will
start and stop during this procedure.
(D)raw new player: Used to erase current player and start new
player.

D. USE OF RECORDED DATA

58

Recorded data will be entered into the computer using the
ENTER command. This data may be merged with a resident
program. DATA statements will be written starting at line
31,000.

A. If the program is not going to be merged with a resident
program, then type NEW and press RETURN.

B. Place tape in recorder.

C. Press PLAY.

For each player or group of players:

D. Type ENTER“C” and press RETURN twice.

E. READY will appear twice on screen before playback is
complete.

F. Now LIST your entry.

Chapter Three. Advanced Graphics And Game Utilities.

Table 1.
TABLE OF GRAPHICS POINT SIZE FOR PM GRAPHICS

Resolution Size P/M Pixel Size*
Vertical Horizontal

Double Line (1) 1 2 2

’ ” 2 2 4

" " 4 2 8
Single Line (2) 1 1 2

T) y, 1 4

” " 4 1 8

*Measured in Graphics Mode 8 pixel size (the text mode cursor is eight pixels high and eight
pixels wide).

Table 2. Program Outline.

10-20 Initializes and defines constants.

30-120 Inputs parameters and draws initial easel.
130-160 Drawing loop.

170-190 Checks RE * NP * SI limit.

200-230 Calculates parameters for easel and draws easel.
250-290 Moves cursor.

290 Changes cursor to normal green or orange.
300-350 Loops for keyboard input during draw.
400-420 Gets keyboard entry.

450-560 Draw-to routine.

600-670 Fill routine.

700-730 Stops.

750-870 Adds or deletes lines.

900-980 Menu.

1000-1210 Views in P/M graphics.

1220 POKEs X position and size.

1230 Stops P/M View.

1240 POKEs Color.

1250-1280 Changes size.

1300-1390 Changes color.

1400-1450 Edits.

1450-1480 LISTs player data.

1500-1610 Programs writing program for tape.

59

Chapter Three. Advanced Graphics And Game Utilities.

Table 3. Constants Used In Program.
P/M = P/M page.

P/MB = P/M base address.

P(A) = Player A image data address.

PY(A) = Player A Y-position in player area.
PX(A) = Player A X-position.

PA = Pause for adjusting speed of cursor in drawing program.
LA = Line advance subroutine in program writing program.
CO = Color: 16" Color no. + intensity.

PLX = Player O horizontal position register.
PLY = Player O vertical position register.

PLL = Player length register.

RE = Resolution.

MI = Missile flag.

NP = No. of players

SI = Horizontal P/M size.

VL = No. of vertical lines for player.

G = Graphics determinant.

XD = X draw-to dimension for each P/M pixel.
H =Horizontal determinant.

X1, Y1 =Temporary X and Y coordinates.

S = STICK(0)

60

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. Player-Missile Drawing Editor.

10

15
20

30

40
S50

60
70

80

?0
100

120
130
140
150
160

170
180

190

200

210

220

230

250

DIM A$(1) ,P(3),PY(3),PX(3):PA=2:LA=1590:C
0=24:PLX=53248:PLY=1780:PLL=1784

IF PEEK(1336)<>162 THEN GOSUB 9000
PM=PEEK (106)—-16: PMB=PMXx256: POKE S54279,PM:
FOR A=0 TO 3:P(A)=PMB+AX24:NEXT A
GRAPHICS 0:7 :7? "INPUT VERTICAL RESOLUTIO
Nz*=z?2 " (1)=DOUBLE LINE RESOLUTION":=:7? "
(2)=SINGLE LINE RESOLUTION"
TRAP 30: INPUT RE:IF RE>2 OR RE<1 THEN 30
? :? "DO YOU WANT TO DRAW (P)LAYER OR

{7 SPACESY (M) ISSILE";:INPUT A%: IF A$<>"pP"
AND A$<>"M" THEN S5O0
IF A$="M" THEN MI=1:NP=1:60T0 80
? :? "HOW MANY PLAYERS DO YOU WANT TO COM
BINE TO FORM A PLAYER(1-4)":TRAP 70: INPUT
NP:IF NP<1 OR NP>4 THEN 70
NP=NP—-1:7? :7? "INPUT HORIZONTAL SIZE (1,2
OR 4)":TRAP 80: INPUT SI:IF SI<1 OR SI>4 O
R SI=3 THEN 80
GOSuUuB 170

? :? "HOW MANY LINES DO YOU WANT FOR YOU
R{3 SPACES>}PLAYER(1-24)":TRAP 100: INPUT
VL:IF VL<1 OR VL>24 THEN 100

GOSUB 200:SETCOLOR 2,12,6:COLOR 3: X=20%6
:Y=10%¥6-1:PLOT X,Y:DRAWTO X+XD,Y

IF STRIG(0)=0 THEN POKE 710,42+ (PEEK (710
)=42)%x156:PLOT X,Y:DRAWTO X+XD,YVY
S=STICK(0):IF S5<15 THEN GOSUB 250

IF PEEK (S3775)<2358 THEN 300

FOR A=1 TO 25%PA:NEXT A

G60TO 120

IF REX (NP+1)%xS1I<17 THEN RETURN

GRAPHICS 0:7? :7? "THIS PROGRAM CANNOT HAN
DLE 4 PLAYERS, SINGLE LINE RESOLUTION AN
D SIZE"™

? "GREATER THAN 2. THE SIZE WILL BE

{5 SPACES>CHANGED TO 2.":5I=2:7? :7? "PRES
S RETURN TO CONTINUE": INPUT A$: RETURN
XD1=REXSI: XD=XD1i-1:H=(NP+1)xXD1:=:IF MI TH
EN H=H/4

G=1+((H>5) OR (VL>20))+2x((H>10) OR (VL>
40)) : GRAPHICS 19+(G>1) *G

YMIN=INT (10%G-VL/2):YMAX=INT(10xG+VL/2-1
): XMIN=20%G—-4%xH: XMAX=20%G+4%xH—-1-XD
SETCOLOR 0,2,8:SETCOLOR 1,12,4:COLOR 2:F
OR Y=YMIN TO YMAX:PLOT XMIN,Y:DRAWTO XMA
X+XD, Y:NEXT Y:RETURN

GOSuUB 290

61

Chapter Three. Advanced Graphics And Game Utilities.

260

320

340
350
400
410
420
4350
460
470
480
490
500
210

330
540
950
560

370
600

620

630
640

650

660
670

680
700

62

IF S<12 THEN X=X+SGN(8-5) xXD1: X=X+ (X<{XMI
N)XXD1—-(X>XMAX) XxXD1:5=5+(5<{8) x4+4

IF §<15 THEN Y=Y+SG6N(13.5-5):Y=Y+(Y<{<YMIN
) —(Y>YMAX)

LOCATE X,Y,A:POKE 710,PEEK(707+A)+2:CO0OLO
R 3:PLOT X,Y:DRAWTO X+XD,Y:RETURN

COLOR 1+ (PEEK(710)=198):PLOT X,Y:DRAWTO
X+XD, Y: RETURN

GOSUB 400:1IF A=ASC("D") THEN 450

IF A=ASC("F") THEN 600

IF A=ASC("S5") THEN GOSUB 700:6G0T0O <900

IF A=ASC("L") THEN GOSURBR 700:G6G0TO0 730

IF A<38 AND A>47 THEN PA=A—-47

G6O0TO 120

OPEN #1,4,0,"K:":GET #1,A:CLOSE #1

IF PEEK(53775)<255 THEN 410

RETURN

Xi=X:Y1l=Y

S=STICK(0):IF S=13 THEN 46&0

GO0SUB 260

IF STRIG(0)=0 THEN 510

S=STICK(0):IF S<15 THEN GOSUB 250

GOTO 480

COLOR 1:X2=X:Y2=Y:Y3=Y1:A=XD1XS5GN{(X2-X1)
:B=SGN(Y2-Y1):C=X2-X1+A:D=Y2-Y1+B

IF C=0 OR D=0 THEN FOR A=0 TO XD:PLOT X1
+A,Y1:DRAWTO X2+A,Y2:NEXT A:60TO0 570

FOR X=X1 TO X2 STEP A:FOR Y=Y3 TO Y2 STE
P B:PLOT X,Y:DRAWTO X+XD,Y

IF (X-X1+A)/C=(Y-Y1+B)/D THEN Y=Y+B:GOTO
960

IF (X-X1+A)/C>(Y-Y1+B)/D THEN NEXT Y
Y3=Y:NEXT X:X=X-A:Y=Y-B

GOSuB 280:G0T0 120

X1=X:COLOR 2:PLOT X,Y:DRAWTO X+XD,Y:B=67
O

GOSUB B:LOCATE X,Y-1,A:IF A=2 THEN Y=Y-1
:GOTO 610

GOSUB B:LOCATE X-1,Y,A:IF A=2 THEN X=X-1
:6GOTO 620

G0SUB B:COLOR 1:PLOT X,Y

GOSUB B:LOCATE X+1,Y,A:IF A=2 THEN X=X+1
:PLOT X,Y:GOTO 640

X=X1:Y=Y+1:605UB B:LOCATE X,Y,A:IF A=2 T
HEN 620

GOsSuB 280:G0TO0 130

IF X=XMAX OR X=XMIN OR Y=YMAX OR Y=YMIN
THEN POP :G0SUB 280:G0T0 120

RETURN
GOSUB 290:FOR A=0 TO NP:B=0: X1=XMIN+8xAX

Chapter Three. Advanced Graphics And Game Utilities.

720
730

730

760
770

780
790

800

820

830
840

850

860

870

900

?20
930
?40
230
260
?70
7?80
1000
1010

1020
1030

XD1:FOR Y=YMIN TO YMIN+VL-1

C=128:D=0:FOR X=X1 70 X1+7%xXD1 STEP XD1:
IF MI THEN FOR X=XMIN TO XMIN+XD1 STEP X

D1

LOCATE X,Y,E:IF E=1 THEN D=D+C

C=C/2:NEXT X:B=B+1:POKE P(A)+B,D:NEXT Y:

NEXT A:RETURN

D=0:T=0:7? :? "{(A)DD OR (D)ELETE LINES":1I

NPUT A%$:1IF A$="D" THEN D=1:60TO0O 770

IF A$<>"A" THEN 7350

? 2?7 "AT (T)OP OR (B)OTTOM": INPUT A®:IF

A$="T" THEN T=1:60T0 790

IF A%<>"B" THEN 770

? 2?7 "HOW MANY LINES":TRAP 790: INPUT C:1I

F D THEN C=C—-(C-VL+1)%x(C>=VL):60T0 840
IF VL+C>24 THEN C=24-VL:7? :? "EXCEEDED L
IMIT":=? =27 "WILL ADD ONLY "3C;"™ LINES":?
:? "PRESS RETURN": INPUT A%

IF T THEN FOR A=0 TO NP:FOR B=VL TO 0 ST

EP —-1:POKE P(A)+B+C,PEEK(P(A)+B):NEXT B:

NEXT A:G05UB 860

VL=VL+C:1IF NOT D AND NOT T THEN GOSUB

870

GOTO 1400

IF T THEN FOR A=0 TO NP:FOR B=C TO VL:PO

KE P(AR)+B-C,PEEK (P (A)+B) :NEXT B:NEXT A

FOR A=0 TO NP:FOR B=VL-C+1 TO VL:POKE P(

A)+B, 0:NEXT B:NEXT A:VL=VL-C:60TO0 1400

FOR A=0 TO NP:FOR B=1 TO C:POKE P(AR)+B,0

:NEXT B:NEXT A:RETURN

FOR A=0 TO NP:FOR B=VL-C+1 TO VL:POKE P(

A)+B,0:NEXT B:NEXT A:RETURN

GRAPHICS 0:7 =7 "DO YOU WANT TO:":=:? =7 "

(V) IEW PLAYER IN PM GRAPHICS?":27? " (R
)ECORD DATA?":7? " (L)Y IST DATA?"
2 " {({E)DIT PLAYER?":72 " (B)EGIN WITH A
NEW PLAYER?":7? * (s)Top?2"

GOSUB 400:IF A=ASC("V") THEN 1000

IF A=ASC("R") THEN 13500

IF A=ASC("L") THEN 14530

IF A=ASC("E") THEN G60OSUB 170:G6G0TO0 1400
IF A=ASC("B") THEN RUN

IF A=ASC("S") THEN STOP
60TO <900

TRAP 40000:G0SUB 1240

GRAPHICS 7:GRAPHICS 3:POKE 559,46+16% (R
E=2) : POKE 53277,3:605UB 1220: Y=64%¥RE-VL
/2

FOR A=1774 TO 1787:POKE A,0:NEXT A
IF RE=1 AND NP>0 THEN FOR A=0 TO 1:POKE

63

Chapter Three. Advanced Graphics And Game Utilities.

1040
1050
1060
1070

1080
1090

1100

1110
1120

1130
1140

1150

1160
1170

1180
1190
1200
1210
1220
1230
1240
1250
1260

1270

1280
1300

1310

1320
1330

1340

64

PLL+A,VL+128:NEXT A:GOTO 1050

FOR A=0 TO NP:POKE PLL+A,VL:NEXT A

PXM=255-NP%8%SI

FOR A=0 TO 3:PY (A)=PMB+S5123%RE+128%REXA:

NEXT A

FOR A=0 TO NP:FOR B=1 TO VL:POKE PY(A)+

B,PEEK (P (A)+B): NEXT B:NEXT A

POKE 1788,PM+2%RE:Z=USR(1696)

? :? "*RETURN’ TO MAIN PROGRAM":? "“°C’

TO CHANGE COLOR":? "°S° TO CHANGE SIZE"

? "*R°’ TO CHANGE RESOLUTION FROM ";RE;"

TO ";3-RE;

S=STICK(0):X=0

IF S<12 THEN X=SGN(B-8):5=5+(5<8)%4+4:X

=X+ (PX (0) +X<0)—(PX (0) +X>PXM)

FOR A=0 TO NP:PX(A)=PX(A) +X:NEXT A

IF S<15 THEN Y=Y+SGN(13.5-5):Y=Y+(Y<0)~-

(Y>255-VL)

FOR A=0 TO NP:POKE PLY+A,Y:POKE PLX+A,P

X (A) :NEXT A

IF PEEK(53775)=255 THEN 1110

GOSUB 400:IF A=155 THEN GOSUB 1230:G0SU

B 170: 6G0TO 900

IF A=ASC("S") THEN 1250

IF A=ASC(“C") THEN 1300

IF A=ASC("R") THEN RE=3-RE:G0SUB 1230:6

0TO 1010

GOTO 1110

PX(0)=128-4% (NP+1)XSI:FOR A=0 TO NP:PX(

A)=PX(0)+BISIXA: POKE PLX+A,PX(A):POKE S

3256+A,SI-1:NEXT A:RETURN

FOR A=0 TO 3:POKE PLX+A,0:POKE PLY+A,O:

NEXT A:RETURN

FOR A=704 TO 707:POKE A,CO:NEXT A:RETUR

N

? "SIZE=";SI:? "PRESS 1,2 OR 4 TO CHANG

E SIZE":? "PRESS °RETURN’ TO GET OUT OF
SIZE(S SPACES)>SUBROUTINE";

GOSUB 400:IF A=155 THEN 1090

IF A=49 OR A=50 OR A=52 THEN SI=A-48:G60

SUB 1220

GOTO 1250

A=INT(CO/16):B=CO-A%X16:7 :7? "“COLOR=";A,

"INTENSITY=";B

? "MOVE JOYSTICK HORIZONTALLY TO CHANGE
COLOR; VERTICALLY TO CHANGE INTENSITY

? "PRESS RETURN TO EXIT SUBROUTINE";
S=8STICK(0): IF PEEK(53775)<255 THEN 1380

IF §=15 THEN 1330

Chapter Three. Advanced Graphics And Game Ultilities.

1360
1370
1380
1390
1400
1410

1420
1430

1440

14590

1460
1470

1480

1500

1510

1520

1530

1540

15350

1560

1570
1580

15990
1600

1610

1620

F000

iFf 5=7 OR S=11 THEN A=A+SGN(8-5):A=A-(A
>15) %16+ (A<0) X16

IF S=13 OR S=14 THEN B=B-2%¥56N(13.5-S):
B=B-(B>14) %16+ (B<0) %16

CO=16%A+B: GOSUB 1240:G0T0 1300

GOSUB 400:IF A=155 THEN 1090

GOTO 1300

GOSUB 200:COLOR 1:FOR A=0 TO NP: X=XMIN+
AXXD1x8:FOR Y=1 TO VL
B=PEEK(P(A)+Y):C=128:FOR X1=0 TO 7:IF M
I THEN FOR X1=0 TO 1

IF B>=C THEN B=B-C:G0SUB 1440
C=C/2:NEXT X1:NEXT Y:NEXT A:X=20%G:Y=10
X¥6-1: G0SUB 280:G0TO 120

PLOT X+X1XXD1,YMIN+Y—-1:DRAWTO X+X1%XXD1+
XD, YMIN+Y—1:RETURN

GRAPHICS 0:FOR A=0 TO NP:7? :IF MI THEN
? "MISSILE":GOTO 1470

? "PLAYER ";A

FOR B=1 TO VL:? PEEK(P(A)+B);",";:NEXT
B:? "{BACK S»}":NEXT A

? :? "PRESS RETURN TO RETURN TO PROGRAM
": G0SUB 400:G0TO 900

? :? "WHAT NO. IS THIS PLAYER,MISSILE O
R 1STPLAYER OF GROUP":TRAP 900: INPUT PN
? :? "PLACE BLANK TAPE IN RECORDER, PRE
SS PLAY,RECORD AND RETURN"

OPEN #1,8,0,"C:":FOR A=1 TO 64:7 %1;"R.
": :NEXT A

FOR A=0 TO NP:LI=31400+(PN+A)X100:7 #1:
IF MI THEN 1600

? #13;LI;"REMXXx PLAYER "3;PN; ":RESOLUTION
sPLAYER LENGTH,SIZE,COLOR. SUBSEQUENT L
INE IS IMAGE DATA":GOSUB LA

? #13;LI;"DATA ";RE;",";VL3;","35I;",";CO
:GOSUB LA

FOR B=1 TO VL:IF B=1 OR B=26 THEN ? #1:
? #1;LI;"DATA ";:G0SUB LA:GOTO 1580

? #13",";

? #13PEEK(P(A)+B);:NEXT B:NEXT A:CLOSE
#1: TRAP 900:LPRINT :60TO 900
LI=LI+10:RETURN

LI=3100+(PN+A)X100:? #13;LI;"REMX%Xx MISSI
LE ";PN;":RESOLUTION,MISSILE LENGTH,SIZ
Esx "3

? #1; "SUBSEQUENT LINE IS MISSILE DATA:G
0s5.LA"

? #1;LI; "DATA "3RE;","3VL;","5351I:605UB
LA:GOTO 1560

FOR I=1536 TO 1706:READ A:POKE I,A:NEXT

65

Chapter Three. Advanced Graphics And Game Utilities.

2010
?020
2030
040
050
2060
2070
2080
2090

2100

66

I:RETURN
DATA 162,3,189,244,6,240,89,56,221, 240,
6,240,83,141,254,6,106, 141
DATA 255,6,142,253,6,24,169,0,109,253,6
,24,109,252,6,133,204,133
DATA 206,189,240,6,133,203,173,254,6,13
3,205,189,248,6,170,232, 46,255
DATA 6,144,16,168,177,203,145,205,169,0
,145,203,136,202,208,244,76,87
DATA &6,160,0,177,203,145,205,169,0, 145,
203,200,202,208,244,174,253,6
DATA 173,254,6,157,240,6,189,236, 6,240,
48,133,203,24,138,141,253,6
pDATA 109,235,6,133,204,24,173,253,6,109
,252,6,133,206,189,240,6,133
DATA 205,189,248,6,170,160,0,177,203,14
5,205,200,202,208,248,174,253,6
DATA 169,0,157,236,6,202,48,3,76,2,6,76
,98,228,0,0,104,169
DATA 7,162,6,160,0,32,92,228,96

Chapter Three. Advanced Graphics And Game Utilities.

Point Set Graphics

Douglas Winsand

Explore an entire universe, move into it, starting from the simplicity of an
inmocuous mathematical expression. Best of all, you need not understand
the underlying mathematics to voyage into these equations, but the

explorations might well deepen your appreciation and knowledge of them.

The computer can allow you to see mathematical events, to visualize
the often delicate interactions of abstract, mathematical ideas. This
program lets you generate, examine, and save pictures of recursive
point sets.

These point sets create some very unusual computer graphics
when plotted on your screen. You'll see misshapen, reversing spirals,
abstract shapes, wisps of smoke, galaxies, and pointillist flowers — all
composed of myriads of points. Most of these point structures are very
hard to describe, some are quite beautiful. Many of them are also
infinitely detailed. This program will turn your computer into a
powerful microscope, allowing you to move closer into the detail of
the inner structures in some of the point sets you'll generate.

What are recursive point sets? There are an infinite variety of
ways to scatter points in a plane. At one extreme is the perfect straight
order of points in a line. At the opposite extreme is a totally random
scattering of points across the plane. Between these two extremes,
there are an infinite number of collections or sets of points in the
plane sets which are partially ordered and partially random. These are
the point sets you'll be able to create.

The algorithm for generating recursive point sets is really quite
simple. We begin with a seed point plotted in the x-y plane. We then
plug the x and y coordinates of the seed point into a recurrence formula
in order to generate the x and y coordinates of a new point. This new
point is then used as the seed point in the recurrence formula to
generate a third point and so on, ad infinitum.

A typical recurrence formula is:

X1 =Y - SIN(X)
YI=B'X2 + X-1
where

X1 is the x coordinate of the new point

67

Chapter Three. Advanced Graphics And Game Utilities.

Y1 is the y coordinate of the new point
X is the x coordinate of the seed point
Y is the y coordinate of the seed point

The recurrence formula is the heart of this process. By changing these
equations, you can begin to create new recursive point sets.

Running The Program

After you've entered the program (and made the appropriate changes
if you use tape), RUN it. First you'll be asked whether you want to
create a new point set, or view a point set which you have saved on
tape or disk. If you enter a two, and you're using a disk drive, type in
the name of the picture file you wish to see. If you are using tape, push
PLAY when the computer beeps.

Since you haven't created any point sets yet, enter 1. The
recurrence formula (lines 170-190) will be displayed. Type CONT
and you'll see the points created by the recurrence formula begin to
appear on the screen along with their x and y coordinates. The points
will continue to be plotted until you take one of the following actions.

Either type C on the keyboard in order to change the recurrence
formula, or type S to save a picture of a point structure which you've
generated. When you type S, you'll be asked to supply an eight-
character picture file name, if you're using a disk drive. (The computer
will beep twice for tape. Push PLAY-RECORD.) The recurrence
formula will be displayed in the text window so that you'll know how
to create the same set later.

Or, typing M will stop the point set generator and display a
flashing point which you can move around the screen with a joystick.
Push the trigger on the joystick to freeze the flashing cursor point
where it is. At whatever location you freeze the point, this will be the
center of the screen when you again begin generating points. Using
this feature, you can choose a point of interest and bring it to the
center of the screen. While you are moving the cursor, you'll see two
numbers displayed in the text window. These are the x and y
coordinates of the cursor point. You can use these two numbers as
references to specify areas within your point structures.

Magnifying Beyond 100,000 X

Once you've frozen the cursor, you'll be asked to specify a magnification
factor. If your point set is too large for the screen, enter a magnification
factor between zero and one. The field of view will shrink by the
specified amount. If you want to magnify the point set, enter a
magnification factor greater than one. A rectangle will appear on the

68

Chapter Three. Advanced Graphics And Game Utilities.

.

screen. The rectangle encloses an area which will occupy the entire
screen when you begin generating points again. | suggest that you
start with fairly low magnifications at first, and that you magnify in
series of small steps rather than one large magnification. This is simply
so that you won't lose sight of where you are in the point set. I've
magnified point structures up to 100,000 times with no problem.
Somewhere between a magnification of 100,000 and 1,000,000,
however, the limited precision of your computer will become evident,
and the computer will begin to randomize and destroy the order in
your point structure.

After you've selected your magnification factor, you'll be given a
choice of whether you wish to begin plotting points, starting with the
last point you plotted before you called the magnification routine. I've
included this last option to allow you to magnify point sets quickly. If
you attempt a high magnification and begin plotting points from the
original seed point, it may take a long time before the points begin to
appear on the screen. There is also an S option at this point to allow
you to save a point set with the magnification rectangle included.
That's basically it.

If you let Program 1 run for about five minutes, you'll see a fluid,
streamlined structure take shape. This point set is called the attractor
of Henon. It turns out that each of the lines of points in the attractor
of Henon is actually composed of several parallel lines of points, and
each of those several lines of points is composed of several more parallel
lines and so on, forever. For more information about attractors, let me
refer you to Douglas Hofstadter’s excellent article in the November
1981 issue of Scientific American.

To begin to see some of the detail in the attractor of Henon, type
M and move the cursor point to (-.55,0), and then push the joystick
trigger. Enter four for the magnification factor and then type B. Again,
after about five minutes, you'll see an exploded view of the attractor.
You'll also see the lines of points begin to resolve into separate parallel
lines.

Generally, the higher the magnification, the longer it will take
for a point set to develop a recognizable structure. I've frequently run
a point set program for several hours (and sometimes overnight) in
order to see more of the detail. Most of these point sets are composed
of an infinite number of points, so you'll always see only partially
completed sets. The more points in your set, the more it will look like
the actual infinite set.

If you're using a cassette recorder, simply make the following
changes:

69

Chapter Three. Advanced Graphics And Game Utilities.

. eliminate lines 420 and 1160

. change line 60 to: DIM B$(8):M =80:PRINT* & ”:PRINT:PRINT
. change line 410 to: TRAP 430:LPRINT

. change line 450 to: OPEN #2,8,0,“C:”

. change line 1170 to: OPEN #2,4,0,“C:”

. change line 1150 to: REM

Explorer’s Notes

N L B

Now that you know how to generate these point structures, you can
begin to explore this strange territory.

As you try different recurrence formula and seed points, you'll
find that, more often than not, the point structures your formula
generates are divergent sets whose points quickly exceed the screen
limits or the computer’s numerical limits. If a point set diverges, vary
the seed point, or change additive or multiplicative constants in the
recurrence formula. Watch to see if one of these changes slows or
quickens the divergence. Here is where a little perseverance will be
rewarded.

Once you've found a convergent point set, you can usually create
slightly different looking sets by making small variations in the same
parameters mentioned above. Some of the point structures I've found
will metamorphose into a totally different looking pattern when one
of the parameters in the recurrence formula is changed. Try every
kind of function that Atari BASIC offers. Using subroutines, I have
tried Bessel and Legendre functions in some of my recurrence
formulae.

The class of point sets which I've discovered most often are the
spirals. Most of them slowly converge toward a center point, but I
have found several spirals which slowy grow out from a center toward
a fixed boundary. I have also run across several spiral structures which
look like spiral galaxies.

Other types of point sets ['ve found are much harder to describe
in a few sentences. I've included a few of these in the recurrence
formulae in Figure 1. These will help to get you started, and give you
an idea of the variety of point sets I've found. I’'m sure there are many,
many others.

For those of you whose curiosity is piqued, there are many new
paths to explore. For example, with a few changes, each new point
can be calculated from several preceding points rather than just one,
immediately preceding, point. I've done a little experimenting using
two preceding points to calculate a third, and I have found some
convergent point structures.

70

Chapter Three. Advanced Graphics And Game Utilities.

For those of you with a printer or a movie camera, a striking
animation sequence can be created by changing one of the parameters
in the recurrence formula, then recording a picture, changing that
same parameter by a small amount, recording a picture, and so on
until you've built up about 20 or 30 of these pictures. Place these
pictures in order and flip through them rapidly to create an animation
effect. I've only had time to create one such sequence, but the effect is
worth it. Lines of points appear to twist and writhe, evaporate back to
points and later condense into lines again.

The concept underlying these point sets can be extended to three
dimensions and, with a short algorithm, you can display these sets on
your screen. You can even generate stereoscopic views of three-
dimensional point structures.

Figure 1

1. X=0:Y=1
X1=Y+1.4'X"2-1
Y1=X"2-3*X

2. X=0:Y=.58
X1=Y+14*'X"2-1
YI=X"2-Y"2+1

3. X=15Y¥Y=u5
X1=Y-(COS(X)"2)"1.25
Y1=.01*"X"2-X+1.125

4. X=1:Y=.5
X1=Y-(COS(X)"~2)"1.25
YI=.01"X"2-X+1.27

5. X=.01:Y=.001
X1=2*Y*SIN(X)-1
Y1=3*(COS(Y)-SIN(X))

6. X .01:Y=.001

=1.4"Y*SIN(Y)-X
Y1—1.4 COS(Y)-.3*SIN(X)

7. X=.75:¥Y=.5
X1=Y-(ABS(COS(X)-SIN(X))) ~1.25
Y1=.01*X"2-X+1.5

71

Chapter Three. Advanced Graphics And Game Ultilities.

PROGRAM. Point Set Graphics.

10 REM ¥ RECURSIVE POINT SET UTILITY X

20 REM % DOUGLAS WINSAND - 1982 x

30 REM

40 REM % INITIALIZATION % OPTIONS X

50 REM

60 DIM A$(15),B%(B):A%="D1: {8 SPACES}.DAT":M

=80:PRINT "{CLEAR}":PRINT :PRINT

70 PRINT "“DO YOU WISH TO:"®

80 PRINT "{7 SPACES}1) CREATE A POINT SET"

90 PRINT "{7 SPACES}2) VIEW A PREVIOUSLY STO

RED SET"

100 INPUT B

110 IF B=1 THEN 320

120 IF B=2 THEN 1150

130 F=0:6=0:FLAG=0

140 B$="(8 SPACES}"

150 GRAPHICS 8:SETCOLOR 2,0,0:COLOR 1:0PEN #
1,4,0,"K:"

160 REM * RECURRENCE FORMULAE x

170 X=0:Y=0:PLOT X,Y

180 X1=Y+1.4%xX~2-1

190 Y1=0.3%X

200 REM X% PLOT CALCULATED POINTS x

210 C=159+(X1-F)XM:D=79+(Y1-G) XM

220 IF C>0 AND D>0 AND C<319 AND D<159 THEN
PLOT C,D

230 PRINT X1,Y1

240 REM ¥ READ KEYBOARD &% BRANCH £

250 IF PEEK(764)<>255 THEN GET #1,J:B$(1,1)=
CHR$ (J)

260 IF B$(1,1)="S" THEN GOSUB 410

270 IF B${(1,1)="M" THEN GOSUB 570

280 IF B$(1,1)="C" THEN GOTO 320

290 X=X1:Y=Y1:G0TO 180

300 REM

310 REM % CHANGE RECURRENCE RELATION %

320 GRAPHICS 0

330 PRINT :PRINT :PRINT

340 PRINT “CHANGE THE RECURSION FORMULA, THE
N TYPE *CONT® TO PLOT YOUR NEW POINT SET "

350 LIST 170,190

360 STOP

370 CLOSE #1:G0TO 140

380 REM

390 REM * STORE SCREEN ROUTINE %

400 REM

410 PRINT "ENTER 8 CHARACTER NAME OF NEW PIC
TURE FILE.":INPUT B$:TRAP 410

72

Chapter Three. Advanced Graphics And Game Utilities.

420
430
440
430
460
470
480

490
300
76 e,
320

330
540
850
360
370
380
290
600
610
620
630
640
6350
(=Y-1¢]
670
680
690
700
710
720
730
740
750
760
770

780
790
800
810
820
830
840

850
860

FOR X=4 TO 11:A%$(X,X)=B$(X-3,X-3):NEXT X
LIST 170,190
PICMEM=PEEK (88) +256%PEEK (89)

OPEN #2,8,0,A%

FOR J=PICMEM TO PICMEM+6&6400

IF PEEK(J)=0 THEN GOTO 490

P=(J-PICMEM) /256:PUT #2,INT(P):PUT #2, (P
—~INT(P)) x256: PUT #2,PEEK (J)

NEXT J

PUT #2,0:PUT #2,0:PUT #2,0
TXTMEM=PEEK (660) +256%PEEK (661)

FOR J=TXTMEM TO TXTMEM+159:PUT #2,PEEK(J
) :NEXT J

CLOSE #2:B$(1,1)=" ":RETURN

REM

REM X MAGNIFICATION SUBROUTINE x
REM

X0=159:Y0=79

REM

REM ¥ FLASHING CURSOR ROUTINE x

REM

POSITION XO,YO0:PUT #6,1:H=STICK (0)
IF STRIG(Q)=0 THEN GOTO 790

IF H<>153 THEN GOSUB 710

IF X0>319 THEN X0=X0-1

IF X0<0 THEN X0=X0+1

IF YO>159 THEN YO=YO0-1

IF YO<O THEN YO=YO+1

POSITION XO0,YO:PUT #6,0

FOR L=0 TO 30:NEXT L

GOTO 610

POSITION XO0,YO:PUT #6,0

IF H=6 OR H=10 OR H=14 THEN YO=YO-1
IF H=5 OR H=13 OR H=9 THEN YO=YO+1
IF H=6 OR H=7 OR H=5 THEN X0=X0+1
IF H=9 OR H=10 0OR H=11 THEN X0=X0-1
PRINT " {CLEARZ"

PRINT INT((XO-159+M%F)) /M, (—-1)XINT((YO—-7
P+MxG)) /M

RETURN

F=(X0-157+MXF) /M

G=(YO-79+MxG) /M

REM

REM * MAGNIFICATION ROUTINE X

REM

PRINT "ENTER MAGNIFICATION FACTOR": INPUT
N

IF N<1 THEN GOTO 990

F1=X0-139/N: P2=X0+159/N: P3=Y0-79/N:P4=YO0
+79/N

73

Chapter Three. Advanced Graphics And Game Ultilities.

870
880
890
900

10

240
230

260
970
780
290
1000

1010
1029

1030
1040

1050
1060

1070
1080

1090
1100
1110
1120
1130
1140
1150

1160

1170
1180
11920

74

IF P2>319 AND P3<0 THEN PLOT P1,0:DRAWTO
P1,P4:DRAWTO 319,P4:G0TO0 990

IF P1<0 AND P3<0 THEN PLOT P2,0:DRAWTO P
2,P4: DRAWTO 0,P4:G0TO 990

IF P1<0 AND P4>159 THEN PLOT 0,P3:DRAWTO
P2,P3:DRAWTO P2,159:60T0 990

IF P2>319 AND P43>159 THEN PLOT 319,P3:DR

AWTO P1,.P3:DRAWTO P1,159:G0TQ 990

IF P1<0 THEN PLOT 0,P3:DRAWTO P2,P3:DRAW
TO P2,P4:DRAWTO 0,P4:G0TO 990

IF P3<0 THEN PLOT P1,0:DRAWTO P1,P4:DRAW
TO P2.P4:DRAWTO P2,0:60T0 990

IF P4>159 THEN PLOT P1,159:DRAWTO P1,P3:
DRAWTO P2,P3:DRAWTO P2,159:60T0 990

IF P2>319 THEN PLOT 319,P3:DRAWTD P1,P3:
DRAWTO P1,P4:DRAWTO 319,P4:60T0 990

PLOT P1,P3:DRAWTO P2,P3:DRAWTO P2,P4:DRA
WTO FP1,P4:DRAWTO P1,P3

REM

REM % OPTIONS x
REM

Bs(1,1)=" "

PRINT "IF YOU WISH TO RESUME THE RECURS
ION WHERE IT LEFT OFF PUSH °“R”."

FOR L=0 TO S00:NEXT L

PRINT "IF YOU WISH TO START THE RECURSI

ON FROM THE BEGINNING,PUSH °B”."

FOR L=0 TO SO00:NEXT L

PRINT "IF YOU WISH TO SAVYE THIS PICTURE
PUSH "5~ ."

FOR L=C TO S00:NEXT L

IF PEEK(768)<3>255 THEN GET #1,J:B$(1,1)
=CHR$ (J)

IF B$(1,1)="R" THEN M=M%N:GRAPHICS 8:SE
TCOLOR 2,0,0:RETURN

IF B$¢(1,1)="R" THEN M=Mi%N:POP :GRAPHICS
8: SETCOLOR 2,0,0:60T0 170

IF B$(1,1)="S" THEN FLAG=1:GOSUR 410

IF FLAG=1 THEN FLAG=0:G0TO 1000

GOTO 1060

REM

REM x RECALL STORED PICTURES x

REM

PRINT "ENTER 8 CHARACTER PICTURE FILE N
AME": INPUT B$%

FOR X=4 TO 11:A%$(X,X)=B$(X-3,X-3):NEXT
X

OPEN #2,4,0,A%

GRAPHICS 8:COLOR 1:SETCOLOR 2,0,0

PICMEM=PEEK (88) +256XPEEK (89)

Chapter Three. Advanced Graphics And Game Utilities.

1200 GET #2,J:GET #2,K:GET #2,L

1210 IF J=0 AND K=0 AND L=0 THEN 1230

1220 POKE J¥256+K+PICMEM,L:GOTO 1200

1230 TXTMEM=PEEK (660) +256XPEEK (661)

1240 FOR X=TXTMEM TO TXTMEM+159:GET #2,J:POK
E X,J:NEXT X

1250 CLOSE #2

1260 GOTO 1260

75

Chapter Three. Advanced Graphics And Game Ultilities.

Page Flipping

Rick Williams

By changing only two bytes in the display list, you can cause the screen to
display any portion of memory. This permits many interesting effects:
coarse scrolling, instant screen fill, and page flipping, or ‘‘screen switching.”’

Did you envy that article in COMPUTE!'s (November 1981, #18)
Apple Gazette about page flipping? Well, relax. Atari can do it, too.
Actually, there are two ways of doing it. The first way is a USR routine.
[will get to the second way later.

I have written a machine language routine to transfer RAM to
the screen. This routine (Program 1) will access BASIC through the
USR function. To access this function, command “A =USR(1536,X)”,
1536 being the start location of the machine program, and X being
the location to start reading from RAM that will later be transferred
to the screen. | have written the program only to work on graphics
zero. Without this, strange effects will be seen on your TV.

Now on to the second way. This is the better way because it uses
the horizontal scroll register. It scrolls into an entirely new frame. It
works just as the machine routine. Write the high and low byte to the
variables L and H. Here is the program:

76

Chapter Three. Advanced Graphics And Game Ultilities.

PROGRAM 1. Page Flipping.

1 GOTO S0
5 REM THIS REGQUIRES NO GRAPHICS O COMMAND

10

60

DLIST=PEEK (560) +256%PEEK (561) :POKE 82,0:R
EM SET LEFT MARGIN

L=DLIST+4

H=DLIST+5

A=ADR (A$) : B=EINT (A/256) :C=A—-(236%B)
D=ADR(B%) :E=INT(D/256) : F=D—-(256%E)

POKE L,C:POKE H,B:FOR I=1 TO S00:NEXT I
POKE L,F:POKE H,E:FOR I=1 TO S00:NEXT I:I
F PEEK(764)=255 THEN 32

GRAPHICS 0O:END

DIM A% (260) ,B$(9260)

AS=CHR$ (3) : A$ (9260)=CHR$(3): A% (2)=A%:REM F
ILL A%$ WITH CHR$ (3)

B$=CHR% (4) : B$ (960)=CHR% (4) :B% (2)=B%:REM F
ILL B$ WITH CHR$ (4)

GOTO 10

PROGRAM 2. Page Flipping.

10
11
12
15
20
21
22
23
24
25

26

REM %x%¥ PAGE FLIPPING BASIC xx%xx

REM x%%x By Rick Williams

REM

DIM A$(50),B%(50)

FOR I=15336 TO 15336+42: READ A:POKE I,A:NEX

T I:REM LOAD MACHINE CODE

GRAPHICS O0:FOR I=1 TO0 S50:A% (I, I)=CHR$ (RND
(1) %x235) :NEXT I:REM LOAD STRINGS

FOR I=1 T0 S50:B%(I,I)=CHR$(RND(1)Xx2355) :NE
XT 1

GRAPHICS 0: A=USR(15336,ADR(A%)):FOR I=1 TO
SO00:=:NEXT 1

GRAPHICS 0: A=USR(1336,ADR(B%)):FOR I=1 TO
SO0:NEXT 1I:607T0 23

REM xXx¥x YOU MUST HAVE THE GRAPHICS O COMM

AND TO RESET THE DISPLAY LIST

REM x%x%x DATA FOR MACHINE CODE %xx

1000 DATA 104,104,133,205,104,133,204,32,20,

6,32,20,6,32,20,6,32,20,6,96,160,0,162,
0,169,0,177,204,145,88, 200

1010 DATA 152,240,3,76,26,6,230,89,230,205,9

6,16

77

Chapter Three. Advanced Graphics And Game Utilities.

An Introduction To
Display List
Interrupts

Alan Watson

Many startling effects are possible with display list interrupts. This tutorial
will get you started.

Have you ever wondered how some commercial programs for your
Atari display more than the four colors you can get from BASIC? It’s
done by using display list interrupts. In fact, it is possible to get all of
Atari’s 128 colors on the screen at the same time! While few programs
ever call for all 128 colors, it is nice to see how it can be done.

Inside your Atari there is an integrated circuit which Atari calls
ANTIC. This circuit takes care of the television screen display so the
main processor can do other things in the program. ANTIC is a
microprocessor and has its own program which it follows to display
information on the screen. Its program is called the display list. The
display list is different for each Graphics mode since each Graphics
mode has different types and amounts of information which need to
be displayed.

When a program encounters a Graphics command, the starting
address for the display list is placed at decimal locations 560 (low byte
of the address) and 561 (high byte). ANTIC looks at this address to
find out what it needs to do. If no changes have been made in the
display list, the first three instructions cause ANTIC to blank the first
24 lines. Since televisions overscan, this insures all our data will be in
the visible area of the screen.

The next instruction (followed by an address) tells ANTIC
where to find the display memory. Then comes instruction register
(IR) mode bytes (see Table 1). The number of IR mode bytes depends
on the Graphics mode that has been selected. Finally there is an
instruction (followed by an address) to return to the start of the display
list and start all over again.

78

Chapter Three. Advanced Graphics And Game Utilities.

Table 1

BASICGRAPHICS IRMODEBYTE
MODE NUMBER (DECIMAL)

0 2
1 6
2 7
3 8
4 9
5 10
6 11
7 14
8 16

The Three Necessary Steps

Creating a display list interrupt involves three steps. First, we must
alter the IR mode byte for the line prior to the one we want to change.
We do this by adding 128 (decimal) to it. Second, we must write a
routine which tells the 6502 what we want to do during the interrupt.
The third step is to allow the interrupt to happen by “enabling NMI”
or POKEing decimal location 54286 with 192 (decimal).

When an interrupt occurs, the 6502 looks at decimal location
512 and 513 to find the address where interrupt instructions are located.
The address is stored low byte then high byte. The examples for this
article all use page six (starting at decimal location 1536) so each
example POKEs 512 with zero and 513 with six.

Since we will interrupt the main processor to perform these
instructions, we will have to save any registers we use and then restore
them just before we return from the interrupt.

Here is how the interrupt display list program flows.

v
Vv

IR MODE BYTE
IR MODE BYTE + 128 > INTERRUPT VECTOR ADDRESS
\%

IR MODE BYTE < INTERRUPT ROUTINE
IR MODE BYTE

\Y

\

Atari uses a number of registers (memory locations) to determine
what colors and luminances should be used for background, plotted
points, and characters. For each of these items there are a hardware
register and a corresponding shadow register. Hardware registers are
43 3 " . "

write only” and cannot be read. They are updated from their respective
shadow registers at the end of each frame (during the vertical blanking
interval).

79

Chapter Three. Advanced Graphics And Game Utilities.

POKEing the shadow register is a quick alternative to the BASIC
SETCOLOR command. You simply choose the color you want from
the 16 colors listed on page 50 of Atari 400/800 Basic Reference Manual,
multiply it by 16, and add the luminance value desired. Then POKE
the result into the appropriate shadow register. (See Table 2.)

Table 2
TOSET THE POKE DESIRED CORRESPONDING
COLOROF... VALUEINTO HARDWARE REGISTER
Plotted Points 709 53271
Using COLOR 1
Plotted Points 710 53272
Using COLOR 2
Plotted Points 711 53723
Using COLOR 3
Background 712 53274

Note: This table is for Graphics modes 1 through 7.

[f we place the change resulting from our display list interrupt in
the appropriate hardware register, the part of the screen below the
interrupt will change. The top of the screen remains as it was because
the hardware register is updated from its shadow register at the end of
the frame.

Now that you have the idea, type in Program 1 and RUN it.

Background Luminance, And More

All that changes is the background luminance. But you can do lots
more with this example!
Let’s examine the interrupt routine we used.

Memory Location Decimal Valuein Assembly ~ Comments
Used in Example Data Statement Language

(Line 150) Mnemonic
1536 72 PHA Save accumulator
1537 169 LDA Load accumulator
1538 6 #6 with new color
1539 141 STA Wait for horizontal
1540 10 $0A so change doesn’t
1541 212 $D4 occur in mid line
1542 141 STA Store new color
1543 26 $1A in hardware
1544 208 $DO register
1545 104 PLA Restore accumulator
1546 64 RTI Return from interrupt

You can choose any color you like for the bottom by determining
its value (the same way as I mentioned above) and using it as the third
number in the DATA statement (line 150). I’ve listed the memory

80

Chapter Three. Advanced Graphics And Game Utilities.

locations above and left of a text window. I did this so you can type in
POKE commands to make changes and watch to see what happens.
To change the bottom color, POKE 1538 with the new color value
you want.

You can choose any color you like for the top of the screen as
well by POKEing the value into shadow register 712.

What'’s more, you can change the top and/or bottom color of any
of the plotted rectangles. To change them in the direct mode (after
the program has run and the “READY” prompt appears), POKE the
appropriate shadow register with the desired color value for the top
and POKE the corresponding hardware register with your color choice
for the bottom.

See Table 2 to determine which registers to use for each of the
rectangles. The left rectangle is plotted using COLOR 1, the center
using COLOR 2, and the right using COLOR 3.

If you would rather make the changes in the program itself,
change the eighth number in the DATA statement (line 150) to the
low byte of the appropriate hardware register. For the rectangle using
COLOR 1 use 22, for COLOR 2 use 23, and for COLOR 3 use 24.

To select a different vertical position for the color change to
occur, add 128 to a different display list instruction. We've been using
the instruction as START + 24 (line 240) which places the interrupt
midway down the screen. Since there are 40 display blocks in BASIC
Graphics mode 5, you can experiment anywhere from START + 6 to
START + 44 without problems.

Once you understand how to create and use display list interrupts,
your programming capabilities are expanded. You can use them
together with player-missile graphics to change player color, width,
and/or horizontal position as the player passes through the interrupt
line. With a slightly more complicated interrupt routine, a player can
be drawn with the same or a different shape several times at different
vertical positions on the screen.

A good example of this can be found in John Palevich’s article
“Shoot” in the September, 1981, issue of COMPUTE! Magazine (page
86). When programming with text modes, you can change character
sets in mid screen. Atari’s “Space Invaders” uses many display list
interrupts. Many things are possible, and you'll discover more as you
experiment.

All 128 Colors At Once

Atari is capable of showing all 128 colors at the same time. There are
a number of ways this can be done. Program 2 shows one way. The

81

Chapter Three. Advanced Graphics And Game Utilities.

two biggest changes compared to Program 1 are the interrupt routine
and the custom display list.

The interrupt routine is written so that each time it’s used, the
color/luminance value is increased by two. By the end of the display,
128 colors appear.

A custom display list was created to get more than enough
vertically displayed lines for the 128 colors and to be able to plot a
design. BASIC Graphics 8 is essentially a one-color mode (one color/
luminance and one luminance are available). Changes in the
background show up in the plotted points as well. But, between BASIC
Graphics 7 and Graphics 8, there is an ANTIC instruction register
mode 14 (decimal) which has the same number of vertical positions as
BASIC Graphics 8. It has only half as many horizontal positions.
What you get instead is a four color mode. Program 2 uses only two of
the four registers available!

In addition to the references cited at the end of this article,
credit and thanks go to Judy Bogart at Atari, who explained how
hardware registers are updated and helped with the interrupt routine
in Program 1. It was my first attempt to use assembly language in a
program.

References:

Atari 400/800 Basic Reference Manual. Atari, Inc., copyright 1980.

Atari Personal Computer System Hardware Manual. Atari, Inc., copyright
1980.

82

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. An Introduction To Display List
Interrupts.

10

20
30
40
100
110
120
130
140
150

160
L70
200

210
220
230
240
300
310
320
330
340
350
360
370
380
390
400
410

REM XXX An Introduction To Display List I
nterrupts
REM x¥xx Listing #1
REM XxXx%x Alan Watson
REM XXX Nov. 9, 1981

REM xx%x POKE CODE INTO PAGE 6

FOR I=0 TO 10

READ C

POKE 1536+I,C

NEXT I

DATA 72,169,6,141,10,212,141,26,208,104,
64

REM %x%x%x POKE INTERRUPT VECTOR ADDRESS
POKE S512,0:POKE 513,6

REM *%x%x GRAPHICS CALL AND FIND DISPLAY L
IST

GRAPHICS S

START=PEEK (560) +256%¥PEEK (561)

REM x%xx MODIFY DISPLAY LIST IR MODE BYTE
POKE START+24,10+128

REM xXx%x PLOT SOMETHING ON THE SCREEN

FOR X=1 TO 3

COLOR X

PLOT 20%X+5,30:DRAWTO 20%xX+5,10

DRAWTO 20%xX-5,10:POSITION 20%xX-5,30
POKE 765, X

X109 18,#6,0,0,"5:"

NEXT X

REM XxXx%x SHORT DELAY BEFORE COLOR CHANGE
FOR D=1 TO 300:NEXT D

REM Xxx%x ENARBRLE NMI

POKE 54286,192

83

Chapter Three. Advanced Graphics And Game Ultilities.

PROGRAM 2. An Introduction To Display List
Interrupts.

10

20

30

40

100
110
120
130
140
150
160
200

210
220
230
240
250
260

270
280
290
300

310
320
330
340
350
360
370
380
390
400
410
800
810
820

830
840
850
860
870
880

84

REM %% An Introduction To Display List 1
nterrupts

REM %% Listing #2

REM XXX Alan Watson

REM X%xx Nov. 2, 1981

REM x%%x POKE CODE INTO PAGE 6

FOR I=0 TO 17

READ B

FPOKE 1536+I,B

NEXT I

REM %%%x POKE INTERRUPT VECTOR ADDRESS
POKE S512,0:POKE 513,6

REM X% GRAPHICS CALL AND FIND DISPLAY L
IST

GRAPHICS 8

START=PEEK (560) +256%PEEK (561)

COLOR 1

FOR I=1 TO S

READ X1,Y1,X2,Y2,X3,Y3,X4,Y4

PLOT X1,Y1:DRAWTO X2,Y2:DRAWTO X3,Y3:P0OS
ITION X4,Y4

POKE 765,1

XIO 18,#6,0,0,"5: "

NEXT I

REM %*%x CREATE CUSTOM DISPLAY LIST (IR M
ODE 14)

POKE START+3,78

FOR I=6 TO 33:POKE START+I,14:NEXT I

FOR I=34 TO 98:POKE START+I,14+128:NEXT I
POKE START+99,78+128

FOR I=102 TO 164: FOKE START+1,14+128: NEXT I
FOR I=165 TO 198:POKE START+I,14:NEXT I
FOKE START+199,&65

POKE START+200,80

POKE START+201,128

REM X%x%x ENABLE NMI

POKE 54286,192

REM %x%% CODE FOR INTERRUFT ROUTINE

DATA 72,173,198,2,24,105,2

DATA 141,10,212,141,198,2,141,24,208,104
, 64

REM %% PLOT POINTS

DATA 139,155,116,27,77,27,100,155

DATA 219,155,242,27,203,27,179,155

DATA 189,99,160,35,158,35,129,99

DATA 140,155,159,99,130,99,139,155

DATA 179,155,189,99,159,99,178, 155

Chapter Three. Advanced Graphics And Game Utilities.

Extending Atari
High Resolution
Graphics

Part 1:
The Polygon Fill
Subroutine

Phil Dunn

In this three-part series, Mr. Dunn introduces the reader to advanced
graphics techniques, from a flexible fill routine to realistic *“‘textured’
graphics, and concludes with a technique that allows more than 66 pseudo-
colors in Graphics Mode 8.

Polyfil is a versatile subroutine that permits filling in any shape, not
just boxes and trapezoids, as with the XIO Fill command.

This is the first of three essays which will develop some methods to aid
in creating more dramatic displays in the Atari high resolution graphics
modes. The intent is to show how we can use the hi-res modes more
effectively, and to set up techniques that enable us to do these *hings
in the easiest possible way.

One very useful function that is not in the Atari BASIC repertoire
is the polygon fill subroutine. The ease with which this function
enables us to create pictures with large complex shapes is so significant
that any graphics system lacking it should probably be considered
incomplete.

A type of color fill is available within the Atari BASIC function
options. However, its limitations are such that it provides very little
convenience for developing pictures with shapes and areas that have
many angles and irregular boundaries. Naturally, the most interesting
pictures usually have just this characteristic!

The example program shows the power of the polygon colorfill
subroutine, Polyfil. Let’s scan the program to get an overview of how
it works. Lines 200 to 240 establish Graphics mode 7 without the text

85

Chapter Three. Advanced Graphics And Game Utilities.

window and set the four color registers (that we are allowed) to the
colors that we choose. Lines 250 to 400 set up the numeric values and
transfer them to Polyfil, which starts at line 17000. The actual data
used by the Polyfil subroutine to create this particular picture are on
lines 420 to 730. You can use this program to create your own scene
by changing these lines.

Lines 800 to 959 have nothing to do with the polygon fill. They
set the images of two figures in the usual PLOT-DRAWTO way. You
may note that there is almost as much coding in lines 800 to 955 for
these two little figures as there is in lines 430 to 730 for the rest of the
entire picture done with Polyfil.

A Programming Trick

Incidentally, there is a little programming trick used here that you
might want to note. [was not sure of the exact screen locations that
would most effectively, aesthetically locate the figures. So I calculated
the X, Y pixel locations relative to a reference pixel at the head of
each figure. Then that number is added to the variable XX or YY for
the PLOT-DRAWTO commands. I just changed the XX and YY
values until the image looked appropriate. The same thing could have
been done in lines 350 and 360, to add bias numbers to the X, Y
values for the area vertex points if | weren't sure of the placement of
these large areas.

Lines 16000 to 16130 just describe the input and variable
requirements for the Polyfil subroutine. The actual subroutine itself
only consists of lines 17000 to 17190. This subroutine was “mashed”
for minimum memory usage, and then carefully “unmashed” for ease
in transcribing. If you want to type it in as a mashed version, all you
have to do is to chain all the lines that are not even multiples of ten
into the previous line that is. Thus, lines 17001, 17002, 17003,
17004, and 17005 can all be chained into line 17000. Similarly, lines
17020 and 17021 can be combined, and lines 17030, 17031, 17032,
17033, and 17034 can all be placed on the same line.

How To Set Up POLYFIL

Now let’s get into the input requirements for the Polyfil subroutine.
The first value it must have is the number of vertex points around the
perimeter of the polygon, entered in the variable NP. For a triangular
area, this number would be three, for a rectangle it would be four, etc.
Then it needs the X, Y values for each perimeter vertex point.

The user must have previously DIMensioned the array variables

X(), YO), R(), and S(). The DIMension size must be equal to or

86

Chapter Three. Advanced Graphics And Game Utilities.

greater than the number of vertex points. The vertex point values
must be loaded into the array elements, starting with X(1), Y(1).
Polyfil then proceeds to fill the area with the usual PLOT-DRAWTO
commands. It should be noted that Polyfil uses the variable names
Q1,Q2, 1,], YMAX, YMIN, YNOW, IM, IP, XA, and XB.

For those who want to understand how Polyfil works, an
explanation follows. For each line segment around the perimeter, the
slope and Y axis intercept are calculated in lines 17020 and 17021,
respectively. Then the maximum and minimum Y axis values of the
perimeter vertex points are determined in lines 17034 and 17040. The
initial starting point is established as the smallest Y axis value on line

17051.

The Y value is then increased by one on line 17130 and the
intercept points on the horizontally opposite sides are calculated as
XA and XB on lines 17090 and 17110. A horizontal line is then
drawn connecting the two points on line 17120. Y is then increased
again and this is repeated until Y is the maximum polygon value.
There is additional logic for vertical lines where the slope is not
calculable, and to switch intercept calculations from one line segment
to another as vertex points are passed over.

Now let’s go over the program in some detail so we can see exactly
what is done to use the Polyfil routine. First, an explanation of those
code numbers in the data. The first number in each DATA statement
assigns a color register to that shape. So, the mountain data on line
430 is assigned to color register 2. The second number specifies the
number of vertex points in the shape. The mountain has six vertex
points. The remainder of the data consists of the X, Y values for each
vertex point. So, the first specified vertex point for the mountain is
the X, Y values of 54,42, the second vertex point is 68,30, etc.

[t should be noted that, when establishing these areas for Polyfil,
the farthest background areas should be defined first and the nearest
foreground areas should be defined last. That’s how you get the visual
effect of distance, where the “near” object is drawn over the “far”

object.
There are only two limitations on how the vertex point data

must be specified for Polyfil. The first restriction is that the points
must be specified in a sequential order around the polygon perimeter.
The second restriction is that the polygon shape must not have any
indentations that require the fill technique to skip over empty spaces.
Since the fill method used here consists of a series of horizontal lines,
this means that “E” and “L"” type shapes are ok, but “U” and “H”
type shapes will not be filled properly. This is no major limitation,
since any unacceptable shape can always be split up into two or more

87

Chapter Three. Advanced Graphics And Game Utilities.

acceptable shapes, each of which can be filled separately.

Now, back to the essential program factors for using the Polyfil
subroutine. Line 250 DIMensions the variables X(), Y(), S(), T().

Line 320 READ:s the first two bytes of DATA and assigns them
to the variables COLR and NP, respectively. However, if it READs a
-1 value for COLR, that signifies the end of DATA, and the program
then jumps to line 800. Lines 330 to 370 then use that NP value to
READ the next NP amount of number-pairs and store them into the
X(), Y() arrays. Line 380 then applies the value in the COLR variable
to set the COLOR command. Finally, line 390 GOSUB:s to the
Polyfil subroutine which does the job.

By now you may have loaded the example program and seen the
picture. Within its limitations, it “works” the way | intended it to.
Not only is it a good example for using the Polyfil subroutine, but it
has aesthetic quality. Within the limitations of the graphics techniques
we are using here, the picture is ok.

However, because of these limitations of Graphics Mode 7, only
four colors, and slightly rough resolution relative to Mode 8, the
picture seems somewhat flat and blocky.

Of course, we could spruce it up a little. We could get more
colors by replacing the figures and the tree trunks with player-missile
images. We could use David Small’s Display List Interrupt driver
routine to assign different colors to our registers at different vertical
heights down the screen.

All these things could be used to improve the picture to a certain
extent. However, the picture would still have a somewhat blocky and
flat appearance.

The next essay on “Extending High Resolution Graphics” will
address some aspects of this problem.

88

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. The Polygon Fill Subroutine.

100
105

110
120
125
130
135
140

150
170
200
210
220
230
240
230
280
305
315
320
322
325

330
340
350
360
370
375
380
385
390
400
402
403

404
405

406
420
430

440
450

REM ={4 SPACES}POLYFIL Subroutine

{5 SPACES:=

REM = Demonstration Program{3 SPACES:=
REM ={11 SPACESX}by:{13 SPACES:=

REM ={8 SPACES*Phil Dunn{i10 SPACES}=

REM ={6 SPACES>12 Monroe Ave. {7 SPACES:=
REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES:=

REM =sm—rc=—s—marommemoiss s
REM

GRAFHICS 7+164

SETCOLOR 0,53,6:REM C.1 = MAROON
SETCOLOR 1,10,8:REM C.2 = GREEN

SETCOLOR 2,.2,10:REM C.3 = WHITE, WINDO
SETCOLOR 4,8,8:REM C.0 = BLUE, BACKG.
DIM X(12),Y(12),8¢12),T(12)
POLYFIL=17000

REM Read areas and i1l them in

REM First read the color & no. of points.
READ COLR,NP

IF COLR=—-1 THEN 800

REM Now read in all the vertex point coo
rdinates

FOR N=1 TO NP

READ XX,YY

XEN)=XX

Y{(N)=YY

NEXT N

REM Now set the color

COLOR COLR

REM Now let the subroutine fill it in
GOSUR POLYFIL

GOTO 320

REM =============================

REM ={4 SPACES}Scene from the book

{4 SPACES:=

REM = ’Stranger By The River? =

REM ={4 SPACESIby Paul Twitchell

{5 SPACES:}=

REM =============================

REM MOUNTAIN

DATA 2,6,54,42,68,30,85,22,110,35,118,45
s 94,45

REM MOUNTAIN TOP

DATA 3,6,85,22,98,29,95,30,88,32,78,29,7
4,27

89

Chapter Three. Advanced Graphics And Game Utilities.

470
480
520
330
540
350

630
650

660
670

690
700

720
730

750
800
805
810
820
825
830
835
840
845
850
855
860
865
870
880
900
205
?10
215
?20
925
930
935
?40
945
950
955

999

REM LOWLANDS

DATA 2,5,0,44,80,40,159,44,159,45,0,45
REM FOREGROUND

DATA 2,4,0,65,159,65,159,96,0,96

REM RIVER

DATA 3,12,0,44,159,44,159,466,140,68,125,
70,105,74,80,77,60,78,47,78,40,77,25,75,
0,69

REM LEFT TREE TOP

DATA 2,12,25,25,37,34,32,35,36,40,30,43,
33599, 18:59,59:;90,12,41,8,37,15,F82:,12,30
REM RIGHT TREE TOP

DATA 2,8,130,32,149,39,145,48,153,56,135
68,116, 61,120,53,115,47

REM LEFT TREE TRUNK

DATA 1,;64311,80,16,86;19,92,21,97,;17,81,1
4,83

REM RIGHT TREE TRUNEK

DATA 1,6,131,83,130,65,133,59,136,65,141
,82,136,85

DATA —-1,-1

REM Paul

COLOR ©

XX=55

YY=80

PLOT XX—-1,YY+3:DRAWTO XX-1,YY+8

PLOT XX,YY:DRAWTO XX,YY+8

PLOT XX+1,YY+3:DRAWTO XX+1,YY+8

PLOT XX+4,YY+4:DRAWTO XX+4,YY+8

PLOT XX+1,YY2PLOT XX+1,YY+1

PLOT XX+2,YY+4:PLOT XX+3,YY+4

PLOT XX+3,YY+5:PLOT XX+3,YY+4

PLOT XX+2,YY+46:PLOT XX+2,YY+7

PLOT XX+5,YY+8

PLOT XX+1,YY:PLOT XX+1,YY+1

PLOT XX+2,YY+4:PLOT XX+3,YY+4

REM Rebezar

COLOR 1

XX=65

YY=70

PLOT XX-1,YY+2:DRAWTO XX—-1,YY+13

PLOT XX,YY:DRAWTO XX,YY+10

PLOT XX+1,YY:DRAWTO XX+1,YY+10

PLOT XX+2,YY+2:DRAWTO XX+2,YY+13

PLOT XX+5S,YY+1:DRAWTO XX+5,YY+13

PLOT XX—-4,YY+1:PLOT XX-3,YY+2

PLOT XX=R2,¥YY+2:PLAT XX+3,YY+3

PLOT XX+4,YY+4

GO0TO 999

90

Chapter Three. Advanced Graphics And Game Utilities.

16005
16010
16020
16025
16030
16040
16030
16060
16070
16080
16090
16100
16110
17000
17001
17003
17004
17005
17010
17020
17021
17030
17031
17032
17033
17034
17040
17030
17051
17052
17053
17060
17061
17070
17080
17090
17100
17110
17120
17130
17131
17140
17150
17151
17152
17160

17170
17180
17181
17190

REM ={8 SPACESXPOLYFIL{10 SPACES:I}=

REM =A Polygon Fill Subroutine=

REM ={5 SPACESX by Phil Dunn{8 SFACES>=
REM ===============—============

REM Enter with the values...

REM NP = No. of vertex points.
REM X = DIM array of X values
REM' 'Y = DIM array of y values

REM S = DIM array used here
REM T = DIM array used here
REM Uses variables...

REM €1,02,I,J,.YMAX,YMIN, YNOW
REM IM,IP,XA,XB

Q1=1

22=1000

FOR I=Q1 TO NP

J=I+@1

IF J>NP THEN J=@1

IF X(I)=X{(J) THEN S(I)=Q2:G0T0 17030
S{I)=(Y(I)=Y(I))/(X(T)=-X(I))
T(I)=Y(I)-S(I)%xX(I)

NEXT I ’

YMAX=—0Q2

YMIN=@2

FOR I=Q1 TO NP

IF YMAX<Y(I) THEN YMAX=Y(I)
IF YMIN>Y(I) THEN YMIN=Y(I):Jd=1
NEXT I

YNOW=YMIN

IM=Jd-@1

IF IM<@1 THEN IM=NP

IP=Jd+Q1

IF IP>NP THEN IP=@1

GOTO 17130

IF S(J)=Q2 THEN XA=X(J):G0TO 17100
XA=(YNOW-T(J))/S(J)

IF S(IM)=2 THEN XB=X(IM):G6G0T0 17120
XB=(YNOW-T(IM))/S{(IM)

PLOT XA, YNOW: DRAWTO XB, YNOW
YNOW=YNOW+QR1

IF YNOW<Y(IP) THEN 17160

IF Y(IP)=YMAX THEN RETURN
J=IP

IP=IP+0Q1

IF IP>NP THEN IP=@1

IF YNOW<Y(IM) THEN 17080

IF Y(IM)=YMAX THEN RETURN
IM=IM-@1

IF IM<@1 THEN IM=NP

GOTO 17080

91

Chapter Three. Advanced Graphics And Game Utilities.

Part 2:
Textured Graphics

Phil Dunn

This article extends the techniques covered in Part 1, the Polyfil subroutine.
You'll be surprised at what “‘textured’’ graphics can do.

With the Polygon Fill subroutine, we showed how easy it was to
create a picture. However, the picture quality suffered because of the
limitations of the Atari Graphics Mode 7 in terms of variety of color.
Being limited to only four colors puts quite a constraint on our ability
to develop an interesting picture. Here we are going to use some
simple texture-creating effects.

Although we are restricting ourselves to the development of
static pictures, this is just the necessary initial work that we can later
build upon as we move into the creation of dynamically changing
scenes with action, movement, and sound.

Polygon Fill Becomes PolyPaint

The key tool that we had developed in Polygon Fill we will now
expand upon to do a much greater task. I call this new subroutine
PolyPaint because it provides so much variety of possible textures and
colors within any defined polygon shape.

First let’s get an overview of what is being presented here. Program
1 shows the PolyPaint subroutine which is going to do all this picture-
painting for us. It starts off with a long list of REM statements which
summarize its requirements and abilities. We will go over these in
detail in the following paragraphs.

With all REM statements deleted, these programs will run with
only a 16K memory system up to Graphics Mode 7.

Program 2 is the Picture program. Although the listing does not
show it, it must be understood that the PolyPaint subroutine is to be
attached to this program before it can be RUN. All that is needed in
order to use this program will be explained in the remainder of this
article.

Program 3, Palette, enables us to study the effects of various
command options, pattern characteristics, hue-luminance

92

Chapter Three. Advanced Graphics And Game Utilities.

assignments, and resolutions in the various graphics modes. Naturally,
this too requires the PolyPaint subroutine to be appended before it
will RUN.

Now let’s take a close look at Program 1, the.PolyPaint subroutine.
Starting at the top, there are the REM statements which summarize
the requirements and capabilities of PolyPaint. The first item
mentioned is the variable NP, which must have the value of the
number of vertex points around the perimeter of the polygon. The
actual values for the X,Y coordinates of these vertex points are stored
in the array variables X() and Y(). These variables are to be
DIMensioned by the program that GOSUBs to PolyPaint, and the
vertex points are to be stored in them with the first point being in

X(1), Y(1), the second point in X(2), Y(2), etc.

Vertex Data Point Restrictions

There are some restrictions upon how the vertex data point values
may be specified. First, they must be defined in a sequential order
around the polygon perimeter. Second, there can be no indentations
that require the fill technique to skip over empty spaces. The previous
Polygon Fill subroutine used a series of horizontally drawn lines to fill
in the polygon. That method prevents trouble filling in “L,” “E” or
“F” shapes, for example, but it cannot fill in a “U” shape properly.

The same restriction exists for this PolyPaint routine when the
option selected consists of either horizontal bars, or horizontal pixel
sweep. On the other hand, if PolyPaint is used with the vertical bars
or vertical pixel sweep options, it would have no trouble filling in the
“L" or “U” shapes, but it would not fill the “E” or “F” shapes properly.
Naturally, any indented shape can be divided into two or more non-
indented shapes, which can then be filled properly by any option.

We have jumped ahead of ourselves by referring to the options
before this point, but now we will cover the various options that are
available by assigning the appropriate value to the variable called
TYPE. When TYPE=1, the PolyPaint routine will allow us to “paint”
our polygon with bars, or lines. [prefer to use the word bar here, to
distinguish this option from the option available when TYPE=4.

When TYPE=1 the polygon is painted a whole bar at a time
with the PLOT-DRAWTO commands. When TYPE =2 the polygon
is painted a single pixel at a time using only the PLOT command.
When TYPE =3 the polygon is painted a single pixel at a time also,
but only with a specific checkerboard pattern.

The TYPE =4 option is a special feature that has nothing to do
with polygon filling at all, but is very useful for drawing pictures in

93

Chapter Three. Advanced Graphics And Game Utilities.

general. The TYPE =4 option allows us to draw a line a pixel at a
time, where the pixel can alternate between two colors.

If we set TYPE=1 for bar painting, then we must assign values to
four additional variables to specify how these bars will be used. The
first variable, DIR, specifies the direction of the bar orientation. A
value of DIR =0 provides horizontal bars, and a value of DIR =1
provides vertical bars. The variable SPA sets spaces between the bars.
When SPA =0 there are no spaces, when SPA =1 there is one space
between each bar, when SPA =2 there are two spaces between each
bar, etc. “FAC” is a variable space factor. When FAC =0, the spaces
between the bars (if any) are constant across the polygon. When
FAC=1 the spaces between the bars increase as they are placed
within the polygon. When FAC =1 the spaces between the bars
decrease as they are drawn.

The bars are always drawn from the low value of the screen
variable to the high value. Thus, the first horizontal bar will be drawn
at the lowest value of Y, the top of the polygon, and the last horizontal
bar will be drawn at the largest value of Y, at the bottom of the polygon.
Similarly, vertical bars will be drawn from left (the smallest X) to
right (to the largest X).

The last variable that must be assigned a value for bar painting is
CLO. This value is used to set the color register for the bars. All the
bars are drawn with the color of the CLO register.

When we set TYPE =2 for pixel painting, this too requires four
additional variables to be set. The DIR variable is used to determine
the pixel “sweep” direction. The pixels are drawn in a sweep of one
line at a time. When DIR =0 the sweep lines are horizontal, and
when DIR =1, the sweep lines are vertical, much like the bar painting
convention.

The FAC variable is used to specify the color — blending
characteristic for the two color registers that are specified in the
variables CLO and CHI. There are two different blending techniques
that may be used; the FAC variable is used to specify which of the two
techniques will be used and how the technique will be applied.

When FAC>0.0 and FAC«<1.0, the polygon will be filled evenly
with a proportional blend between the two colors of CLO and CHI,
where the color of each pixel is selected at random with a probability
determined by the value of FAC. The smaller the value of FAC the
more the CLO color will predominate, and the higher the value of
FAC the more the CHI color will be represented. FAC is the percentage
of the CHI color. When FAC=.2, there will be 80% of the CLO
color, and 20% of the CHI color. When FAC=.5, there will be a 50-

94

Chapter Three. Advanced Graphics And Game Ultilities.

50 mix between the two colors. When FAC=.9, there will be 10% of
CLO and 90% of CHI.

Creating Shading Effects And Multiple Overlays

When FAC is equal to or greater than 1.0, a completely different
color blending technique is used. With this technique, the CLO color
always predominates at the end of the polygon with the low value for
the screen variable, and the CHI color always predominates at the
high value end of the polygon. For horizontal sweep (DIR =0), the
CLO color will predominate at the top of the polygon and the CHI
color will predominate at the bottom of the polygon. For vertical
sweep (DIR=1), the CLO color will predominate at the left side of
the polygon and the CHI color will predominate at the right side.
(This is useful for shading effects.)

The rate at which the color ratio changes from CLO to CHI as
the polygon is filled is determined by the value of FAC. When FAC is
small (equal to or close to one), then the CLO color will dominate
the polygon until the very end, when some amount of CHI color will
appear. When FAC is large (ten or more), some amount of CLO color
will appear in the beginning, but the CHI color will rapidly take over
and will dominate the finished polygon. A value of FAC=5 will
provide a fairly even balance between CLO and CHI, with the center
of the polygon being about a 50-50 mixture.

This pixel painting technique allows the possibility of multiple
color overlays. If the color register number assigned to CLO or CHI is
-1, that color becomes the “transparent” color. In other words, that
pixel is passed over and its color remains unchanged. Thus, the same
polygon can be painted several different times; each time the
transparent color will allow the previously drawn pattern to show
through.

Polygon painting TYPE =3 provides a checkerboard pattern that
alternates between CLO and CHI. The checkerboard may be painted
by sweeping horizontally (DIR =0) or vertically (DIR=1). In the
high resolution mode of Graphics 7, the checkerboard pattern is
sufficiently small so that it can be used as a whole new color. Thus, by
blending the allowable four colors of Graphics 7 two at a time in the
checkerboard pattern, we can obtain six more colors. This gives us
ten colors in Graphics Mode 7! This color blending technique works
best when the two colors used have about the same luminance level.
When the luminance level is vastly different between the two colors,
the checkerboard characteristic becomes more visually obvious.

The final option found in this routine, TYPE =4, does not fill a

95

Chapter Three. Advanced Graphics And Game Utilities.

polygon at all, but simply draws a line. The starting point is specified
by variables X(0), Y(0) and the ending point by X(1), Y(1). However,
this option allows the pixel line elements to alternate between the
color of the CLO register and the color of the CHI register. Naturally,
the same register number can be used for both CLO and CHI to plot a
line of that one color.

If you plan to use this routine in a program of your own, you
should make note of the variable names that are used internally here.
These names are given in the REM statements in lines 17295 to
17305.

The structure of the PolyPaint routine is a direct expansion from
the structure of the Polygon Fill subroutine presented previously.
Many of the lines are identical. The routine uses the polygon perimeter
vertex points to calculate the slope and Y-axis intercepts of the polygon
perimeter line segments, and stores this information in the array
variables S() and T() in line 17335. The maximum and minimum
polygon values are calculated in lines 17345 to 17360. The intercept
points for horizontal bars or pixel-sweep are calculated in lines 17395
to 17410, and for vertical bars or pixel-sweep, in lines 17420 to
17435.

Bar painting is done in lines 17455 to 17470, checkerboard
painting is done in lines 17495 to 17515, and pixel painting is done in
lines 17520 to 17595. The sweep line, or bar, is incremented in line
17600. At lines 17615 to 17650 the incremented line is checked to
find if it passed over an adjacent vertex point. If it did, that point is
checked against the maximum point on the polygon. If it is not beyond
the maximum, the index pointer to the perimeter slope-intercept
array elements is incremented.

So much for the PolyPaint subroutine itself. Now let’s take a
look at how it may be used. The example program (Program 2) is
called the Picture program. This program has been written in a very
general and useful form. To use it to create your own pictures, just
redefine the Graphics mode and SETCOLOR assignments in lines
240 to 280, and the DATA and PLOT-DRAWTO commands after
line 1020. The rest of the program is designed to read the DATA
statements that are set up and let the PolyPaint subroutine do its job.
Error detecting logic has been coded into this program so that if a
mistake is made in setting up the DATA statements, the chances are
that the program will catch it and tell us what it is and where it is
located.

The PICTURE program sets up the necessary array variables in
line 300. No polygon used here has more than 15 vertex points. Line

96

Chapter Three. Advanced Graphics And Game Utilities.

310 establishes the first statement which can be executed in the
PolyPaint subroutine as being at line 17315. The polygon or area
counter variable, A, is set to zero at line 370 and then the first data
value is read in.

The DATA in lines 1080 to 1370 is arranged in a very specific
way to minimize the difficulty of reading and debugging it. The first
number in every DATA statement corresponds to the TYPE variable
for the PolyPaint subroutine. The number should only be from one to
four, depending upon the TYPE of painting that is desired. The only
exception to this is the very last DATA statement where the TYPE
value of 999 tells the PICTURE program that there is no more data.
The value for TYPE determines the interpretation of the remaining
numeric values on the remainder of each DATA statement.

When TYPE=1, the next four DATA numbers represent the
values for the PolyPaint subroutine variables DIR, SPA, FAC, and
CLO, respectively. When TYPE =2, the next four numbers represent
the variables DIR, FAC, CLO and CHI. When TYPE =3, the next
three values represent the variables DIR, CLO and CHI.

The following DATA value for TYPE=1, 2, or 3 is for the
variable NP, and the remaining “NP” pair of values are for the vertex
point array variables X(1), Y(1), X(2), Y(2), etc.

When TYPE =4, the remaining six DATA values correspond to
the variables CLO, CHI, X(0), Y(0), X(1), and Y(1), respectively.

How The Picture Is Painted

Now let's take a look at how this particular picture is being painted.
As you read this, you might want to RUN this program so you can see
cach area being painted as we mention it.

The first item painted is the mountain, in line 1080. It is first
established as a TYPE =3 checkerboard blend, using a DIR =1 vertical
sweep, and blending the two colors CLO=3 (white) and CHI=2
(green). This mountain is a polygon with NP =6 vertex points, the
first one being 54,42, the second 68,30, etc. Then, in line 1090, the
left half of the mountain is repainted with TYPE =2 pixel painting,
DIR =1 vertical sweep, FAC =9 for mostly CHI color, and the color
values CLO=2 (green) and CHI=-1 (transparent). This gives a
green shading effect at the left edge of the mountain. Line 1100
continues repainting the right side of the mountain with TYPE=2
pixel painting, DIR =1 vertical sweep, FAC =2 for mostly CLO
color, and CLO=-1 (transparent) and CHI =2 (green). This gives a
green shading effect to the right edge of the mountain.

On line 1120, the mountaintop is defined by a TYPE =2 pixel

97

Chapter Three. Advanced Graphics And Game Utilities.

painting form, with DIR =0 horizontal sweep, FAC=1 for mostly
CLO color, and CLO=3 (white), CHI=-1 (transparent). This gives
a mountaintop that is completely white at the top, but lets a variable
amount of the former color show through at the lower altitudes.

On line 1140 the lowlands around the mountain are painted first
with a TYPE =3 checkerboard blend and a DIR =0 horizontal sweep,
with the blended colors CLO=3 (white) and CHI =2 (green). Then
this same area is repainted in line 1150 with TYPE =2 pixel painting,
DIR =0 horizontal sweep, FAC=.5 for a 50-50 even mix of CLO and
CHI, where CLO=-1 (transparent) and CHI=2 (green).

The foreground scene is first painted on line 1190 with TYPE=3
checkerboard blending, with a DIR =0 horizontal sweep technique,
and the two blended colors CLO=2 (green) and CHI =0 (blue).
Then the foreground is repainted with TYPE =2 pixel painting with
DIR =0 horizontal sweep, FAC =3 color blending, with the CLO
color at the top predominating over the CHI color at the bottom. The
CLO=-1 transparent color will allow the previous blue-green blend
to show through, while the CHI =2 green color gives some texture
overlay effects.

The river is defined at line 1230, first asa TYPE =13 checkerboard
blend with a horizontal sweep DIR =0, and the two blended colors
CLO =0, the blue background, and CHI =3, white. Then the river is
repainted with TYPE =1 bar painting, using DIR =0 horizontal bars,
SPA =3 spaces between bars, FAC =1 for the spaces to increase
across the polygon, and CLO =3 for the white color.

The next two DATA statements define the tops of two trees
and, while the shapes and locations differ, they are both painted in
the same way. They use TYPE =2 pixel painting with a horizontal
sweep DIR=0and a FAC=.2 for an even mixture of 80% CLO and
20% CHI, where CLO=2 (green) and CHI =0 (blue).

The tree trunks are both painted in the TYPE =1 bar mode,
using DIR =0 horizontal bars with SPA =0 for no spaces between the
bars, and FAC =0 for no variability in the bar spacing across the
polygon. The color register CLO =1 gives a reddish maroon shade.

The remaining details of the picture consist of two human figures.
These figures are so small that the PolyPaint routine cannot be used
efficiently to display them. The high-resolution detail required by
figures like these must be achieved by specific PLOT and DRAWTO
commands. The PolyPaint routine is suitable for painting relatively
large screen areas.

At this point you can take this Picture program and change the

Graphics mode, SETCOLOR assignments, and DATA statements

98

Chapter Three. Advanced Graphics And Game Utilities.

and use it to paint your own picture. However, the key word here is
paint, not create. We don’t create our picture with this program, we
just manifest it.

The actual creation of the picture is done away from the computer,
with a pencil and a paper that has a grid pattern marked off
corresponding to the screen’s horizontal and vertical coordinate
numbers for the Graphics mode that we choose. We then sketch out
our picture on this grid paper, noting the various areas, their vertex
point values, the colors we would like to assign, and the painting and
overlay methods that we might want to use. We also must define
which high-resolution detail we must draw pixel-by-pixel or line-by-
line. Only after all this homework is done can we sit down at our
machine and paint our picture.

The Palette Utility

[found that, to use this PolyPaint subroutine effectively, | needed a
utility program which allowed me to study the effects available by
using the various painting command options, a variety of overlay
effects, different color and luminance values, and the different
resolutions available from the various Graphics modes. The utility
program that allows this study is Program 3, the Palette program.

A brief survey of this program will prove informative. The first
question asked by the program is for the Graphics mode. The program
presently allows the BASIC modes 3 through 8. Depending upon
the mode selected, two scale factor variables, E and F, are assigned
appropriate numeric values. As we scan through the remainder of this
program we see that every X, Y value in a PLOT or DRAWTO
statement is multiplied by these scale factors.

The initial color assignment to the four registers is done between
lines 370 and 430. The background is-white and the color registers 1,
2, and 3 are assigned the colors red, green, and blue.

If you RUN this program you will see that it proceeds to display
three rectangular areas showing the colors in registers in 1, 2, and 3;
the areas are numbered appropriately. Above each of these primary
colors is a checkerboard blend of the primary color with the background
color. Below the primary colors are three rectangular areas that show
checkerboard blends of each of the three primary colors against each
other. The connecting lines clarify which color is being blended with
which.

Then, on the right part of the picture, four areas are reserved for
us to try out various patterns. On line 1480 we are asked which area
we wish to use. We can answer this question with the value zero to

99

Chapter Three. Advanced Graphics And Game Ultilities.

four. If we answer with the value zero, then we are given the option of
redefining any of the hue or luminance values in the four color registers.
We are shown the hue and luminance numbers for each register, and
are then asked which register number we wish to change.

After we select a register number we then use joystick zero to
change the hue and luminance for that register. Moving the stick
sideways changes the hue and moving it forward or back changes the
luminance. When we are ready to “fix” that hue and luminance we
press the trigger button. We then return to the “Which COLOR”
question. At this point we can return to the “Which AREA” question
by RETURNIing with the value 99.

It should be noted that if, in response to any question, we return
with the value 99, then we will always be shifted back to the “Which
AREA” question in the program. Thus, if we change our minds while
specifying a certain type of painting technique, we can always abort
the sequence by typing the number 99.

Instead of giving suggestions on how this Palette program might
be used, I'll just let you explore it yourself. [t is self-explanatory anyway,
and fairly well error-protected.

[t should be understood that the area of textured graphics is
completely open-ended. The texturizing options in this version of
PolyPaint just scratch the surface, so to speak, of what is possible
within this category. Anyone who wants to can modify or expand this
program to incorporate a much greater variety of effects. If you develop
something in this area, [would certainly be happy to learn about it.

The Palette program also can be expanded. The present version
of this program only allows the BASIC graphics modes 3 to 8. As we
learn more about the Atari system, we should be able to modify this
program to include the additional ANTIC graphics modes and thus
expand our repertoire of picture-creating capabilities.

100

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. Textured Graphics.

17005 REM POLYPAINT Subroutine

17010 REM Polygon Color Painting

17013 REM cwanmsvwases s amms s oo s a of) &

17020 REM by Phil Dunn, Nlth The ECKx

17028 REM .owmess awmsss ome s o R e e

17030 REM Enter with the values...

17035 REM NP = No. of vertex points.

17040 REM X()= DIM array of X values

17045 REM Y()= DIM array of Y values

17050 REM S()= DIM array used here

17055 REM T()= DIM array used here

17060 REM TYPE= Type of painting

17065 REM "{3 SPACES}= 1 for bar painting
17070 REM "{3 SPACES}= 2 for pixel painting
17075 REM "{3 SPACES}= 3 for checkerboard
17080 REM "{3 SPACES}= 4 to draw a line
17085 REM sucnssmussueme s esms e e ees s e

17090 REM xxXxxXxxx Bar painting input:

17095 REM DIR= Bar Direction

17100 REM " = 0 for horizontal bars

17105 REM " 1 for vertical bars

17110 REM SPA= Spaces between bars

17115 REM " =
17120 REM " >=
17125 REM FAC=

O for no spaces

1 to skip spaces
Variable space factor
17130 REM " 1 for increasing spaces
17135 REM " 0O for constant spaces
17140 REM " =—-1 for decreasing spaces
17145 REM CLO= Colgr register number
17150 REM cimessswanemmmenesmnsmensnssis
17155 REM xxx%x% Pixel painting input:
17160 REM DIR= Sweep Direction

17165 REM " = 0 for horizontal sweep
17170 REM * = 1 for vertical sweep

17175 REM FAC= Blending factor from
17180 REM .{5 SPACES}low end to high end
17185 REM " =0—-.99 for an even mix
17190 REM " {5 SPACES}<.S5=more CLO color
17195 REM "{S5 SPACES}>.5=More CHI color

17200 REM " >= for uneven color mix
17205 REM " {5 SPACES}=1-3 for more low end
17210 REM " {5 SPACES3}>7 for more high end
17215 REM CLO= Low end color reg.

17220 REM CHI= High end color reg.

17225 REM Note: Setting CLO or CHI to

101

Chapter Three. Advanced Graphics And Game Utilities

17230
17235
17240
17245
17246
17247
17248
17250
17255
17260
17265
17270
17275
17280
17285
17290
17295
17300
17305
17310
17315
17320

1732
17330
17335

17340
17345

17350
17358
17360

17365
17375
17380
17385
17390
17395

17400
17405

17410
17415
17420
17425
17430
17435

102

REM -1 will hold the previous
REM color on those pixels.

REM ..ca-- S8 S B Sl B = &t a S
REM xx%x%x Checkerboard painting:
REM DIR= Sweep Direction

REM = 0 for horizontal sweep
REM " = 1 for vertical sweep

REM CLO= First color register

REM CHI= Second color register

REM wowsomssonsonenmsnsasonasn "o

REM XXXxXx¥xkx¥Xxxx TD Draw A Line:

REM X(0),Y(0)=Start point

REM X(1),Y(1)=End point

REM CLO=Start color

REM CHI=Alternate color

REM «w 5 aeis e O & EE B EE BEE e e e

REM Uses the variable names Q0,

REM @1,Q2,03,84,@5,C0L, IM,IP,DL

REM K,L,M,N,R,MAX,MIN,MXMN, NOW

REM .o oamiabcme smsme oma s e

Q0=0:R1=1:Q2=1000: IF TYPE=4 THEN 17660

FOR M=Q1 T0 NF:N=M+Q1:IF N>NP THEN N=0

1

IF X(M)=X(N) THEN S(M)=Q2:G0T0 17340

REM Slopes=5(), Intercepts=T()

S(M)=C(Y{(N)-Y(M))/(X(N)—X(M)):=:T(M)=Y (M)

—S (M) XX (M)

NEXT M:MAX=—Q2:MIN=Q2

FOR M=Q1 TO NP:@3=Y(M):IF DIR>R0O THEN

B3=X (M)

IF MAX<Q3 THEN MAX=Q3

IF MIN>B@3F THEN MIN=@23:N=M

NEXT M:MXMN=MAX-MIN: NOW=MIN: IM=N-Q1:IF
IM<@1 THEN IM=NP

IP=N+Q1:IF IP>NP THEN IP=Q1

M=17395: IF DIR>R0 THEN M=17420

IF TYPE=&1 THEN COLOR CLO

GOTO 17615

REM Horizontal....coveonsamunan

IF S(N)=R2 0OR S{(N)=0 THEN @3=X(N):60T

0 17405

23=(NOW-T(N)) /S5(N)

IF S(IM)=22 0OR S(IM)=R0 THEN Q4=X(IM):

GOTO 17445

24=(NOW-T(IM))/S(IM):60T0O 17445

REM Vertictal.: .ocacsusesreesonomssas

IF S(N)=22 THEN @3=Y(N):G0T0 17430

23=NOWXS (N)+T (N)

IF S(IM)=Q2 THEN 04=Y(IM):G0T0 17445

R4=NOWXS(IM)+T (IM)

Chapter Three. Advanced Graphics And Game Utilities.

17440
17445
17430
17435

174460

17465

17470
17475
17480

17485
17490
17495

17500
17505

17506

17510
17511
17512
17515
17520
17325
175330
17535
17540

17545
17350
17995

17360
17565
17370

17575
17580
17585

17590
17595
17600
17605

REM cisswmesnsusssans aneos s e e

IF TYPE>Q1 THEN 17480

REM BAR=FILL.:cuwxmus «mmss . .

IF DIR=R0O THEN PLOT Q3,NOW:DRAWTO Q4,N
ow

IF DIR>Q0 THEN PLOT NOW,Q@3:DRAWTO NOW,
Q4
@3=(NOW-MIN) /MXMN: @4=INT (SPAX (2XFACXQ3
+1-FAC))

NOW=NOW+Q1+R4: GOTO 17615

REM PIXEL—FILL (PFl.:sscasannsws
@5=INT(ABS(Q4—-Q3)) :DL=5GN(Q4-Q3) :L=03:
R=FACT (NOW-MIN) /MXMN

IF TYPE<>3 THEN 17520

REM CHECKERBOARDcceueuuueuna
Q3=CLO: @4=CHI:R=INT(L+NOW+0.5):1IF R=2%
INT(R/2) THEN @3=CHI:Q4=CLO
R=DL+DL+0.5

IF DIR=0 THEN FOR K=Q@1 TO Q5/2:COLOR @
3:PLOT L,NOW:COLOR @4:PLOT L+DL,NOW:L=
INT(L+R) : NEXT K

IF DIR=1 THEN FOR K=Q1 TO @5/2:COLOR &
I:PLOT NOW,L:COLOR Q4:PLOT NOW,L+DL:L=
INT(L+R) : NEXT K

IF @5=2%INT(QS/72) THEN 17600

IF DIR=0 THEN COLOR Q3:PLOT L,NOW

IF DIR=1 THEN COLOR @3:FPLOT NOW,L

GOTO 17600

IF FAC<E@1 AND DIR=Q0 THEN 17540

IF FAC<Q1 AND DIR>Q0 THEN 17555

IF FAC>=Q1 AND DIR=Q0 THEN 17570

IF FAC>=0Q1 AND DIR>R0 THEN 17585

FOR K=@0 TO @5:COL=CLO:IF RND(R0)<FAC
THEN COL=CHI

IF COL>=@0 THEN COLOR COL:PLOT L,NOW
L=L+DL:NEXT K:G60T0O 174600

FOR K=80 TO @5:COL=CLO:IF RND(R0)<FAC
THEN COL=CHI

IF COL>=Q0 THEN COLOR COL:PLOT NOW,L
L=L+DL:NEXT K:60T0 17600

FOR K=R20 TO @25:COL=CLO:IF RXRND(Q0) >0.
S5 THEN COL=CHI

IF COL>=0Q0 THEN COLOR COL:PLOT L,NOW
L=L+DL:NEXT K:G0TO 17600

FOR K=R0 TO @5:COL=CLO:IF RXRND(Q0) >Q.
5 THEN COL=CHI

IF COL>=Q0 THEN COLOR COL:PLOT NOW,L
L=L+DL:NEXT K:60T0O 17600

NOW=INT (NOW+Q1)

REM Check for vertex point

103

Chapter Three. Advanced Graphics And Game Ultilities

17610
17615

17620
17625
17630
17635
17640
17645
17650
176355
17660
17665
17670
17675
17680

17685

17690
17695

104

REM passover & end of polygon
@3=Y(IP):R4=Y(IM):IF DIR>R0 THEN @3=X(
IP):24=X(IM)

IF NOW<=R3 THEN 17635

IF @3=MAX THEN RETURN

N=IP: IP=IP+Q1: IF IP>NP THEN IP=Q1

IF NOW<=Q4 THEN GOTO M

IF @4=MAX THEN RETURN

IM=IM-Q1:IF IM<Q1 THEN IM=NP

GOTO ™M

REM Line Drawing....u..:-2aas222a2=
K=X(21)—-X(Q0) :RQ2=ABS (K)

L=Y(Q1)-Y(R0) :R@3=ABRS (L)

IF @2>=Q3 THEN N=Q2:Q24=S5SGN(K) :Q@5=L/Q2
IF @2<Q@3 THEN N=Q3:RQ5=S6GN{(L):RQ4=K/Q3
R2=X(20) :@3=Y(Q0) :S(R0)=CLO:5(@1)=CHI:
IP=Q0

FOR M=@1 TO N:COLOR S(IP):PLOT 2,083:@2
2=R2+RQ4:Q3=RQ3+05: IP=Q1-IP:NEXT M
RETURN

REM =================S==========

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 2. Textured Graphics.

100
105

107
110

120
1235
130
140
150

160
220
230
240
250
260
270
280
290
300
310
330
340
350
360

370
380
390
400
410
420

430
440
450
460

470
480
490
S00
910

920

REM =============================
REM ={5 SPACES>PICTURE Program

{7 SPACES:= -

REM ={8 SPACES}for the{12 SPACES:I=
REM ={3 SPACESYPOLYPAINT Subroutine
{4 SPACES>=

REM =============================
REM ={11 SPACES}Yby:{13 SPACES:=

REM ={8 SPACES>FPhil Dunn{l10 SPACES}=
REM ={&6 SPACES}12 Monroe Ave. {7 SPACESI=
REM ={3 SPACES}Hicksville, NY 11801
{4 SPACES:=

REM =============================
REM Set the graphics mode

REM and the color registers...
GRAPHICS 7+16

SETCOLOR ©0,5,6:REM C.1 = MAROON
SETCOLOR 1,10,8:REM C.2 = GREEN
SETCOLOR 2.5,10:REM C.3 = WHITE, WINDO
SETCOLOR 4,8,8:REM C.0 = BLUE, BACKG.
REM =========s====================

DIM %{15).Y¢19) ,S¢15),TL1LS)
POLYPAINT=17315

REM ============================

REM Read areas and fill them in

REM s csnsmes wme em e e s e m e s 6w

REM First read the TYPE of painting to b
e done for this area.

A=0

READ TYPE

A=A+1

REM Test for end of data

IF TYPE=999 THEN 1020

REM Now go to proper line to read the re
st of the data for this TYFE.

IF TYPE=4 THEN 820

IF TYPE=3 THEN 730

IF TYPE=2 THEN 620

IF TYPE<>1 THEN ? "TYPE=";TYPE,"for AREA
="3;A:5TOP

REM svasmssspssde s o0 & 6658 & 668 @ &6

REM Read data for TYPE 1

REM bar painting.

READ DIR

IF DIR<>0 AND DIR<>:f THEN ? "DIR=";DIR,"
for AREA=";A:S5TOP

READ SFPA

105

Chapter Three. Advanced Graphics And Game Utilities

530 IF SPA<O THEN ? "SPA=";SPA,"for AREA=";A
: STOP

540 READ FAC

550 IF FAC<—-1 OR FAC>1 THEN 7? "FAC="3;FAC,"fo
r AREA=";A:5TOF

560 READ CLO

570 IF CLO<-1 OR CLO>3 THEN 7? "CLO="3;CLO,"fo
r AREA="3;A:STOP

580 GOTO 920

S0 REM o= s o em mom s mim o siom o i m omsm o owos

600 REM Read data for TYPE 2

610 REM pixel painting.

620 READ DIR

F0 IF DIR<>0 AND DIR<>1 THEN ? "DIR=";DIR,"
for AREA=";A:STOF

640 READ FAC

6530 IF FAC<O THEN ? "FAC=";FAC,"for AREA=":;A
s 5TOF

660 READ CLO

670 IF CLO<-1 OR CLO>3 THEN ? "CLO=";CLO,"foO
r AREA=";A:STOP

680 READ CHI

6920 IF CHI<-1 OR CHI>3 THEN 7? "CHI="3;CHI,"fo
r AREA=";A:S5TOP

700 GOTO 920

710 REM sssemsessnsnmessn gemean s ue s on

720 REM Input for TYPE 3

723 REM checkerboard painting.

730 READ DIR

735 IF DIR<>0 AND DIR<>1 THEN ? "DIR="3;DIR,"
for AREA=";A:S5TOF

740 READ CLO

750 IF CLO<O OR CLO>3ZX THEN ? "CLO=";CLO,"foOr
AREA=";A:STOFP

760 READ CHI

770 IF CHI<0 OR CHI>3 THEN ? "CHI="3;CHI,"for
AREA=";A: STOF

780 GOTO 920

Z20 REM . csnr o smmomm momimom miom med o ooow 8@ & w

800 REM Input for TYPE 4,

810 REM to draw a line.

820 READ CLO

830 IF CLO<O OR CLO>3 THEN ? "CLO=";CLO,"for
AREA=";A:5TOP

840 READ CHI

850 IF CHI<0O OR CHI>3 THEN ? "CHI=";CHI, "for
AREA=";A:5TOP

860 READ X,Y:X(0)=X:Y(O)=Y

870 READ X,Y:X(1)=X:Y(1)=Y

880 GOSUB POLYPAINT

106

Chapter Three. Advanced Graphics And Game Utilities.

890
900
210
220
930

?40
250
60
Q70
280
990
1000
1010
1020
1030

1040
1050

1060
1070
1080

1090

1100

1110
1120

1130
1140
1150
1180
1190
1200

1210

1230

1260

1270
1280

1310
1320

GOTO 380
REM comasaeewsnns wme oasmsas TEELEET
REM Now read the polygon perimeter data

READ NP:REM Number of points

IF NP<3 THEN ? "NP=";NF,"for AREA="3;A:S5T
opP
FOR N=1 TO NP
READ X.,Y

X(N)=X
Y{(N)=Y
NEXT N
REM Now let the subroutine 111 it in
GOSUB POLYPAINT

GOTO 38O

REM ============================

REM ={3 SPACES>Scene from the book

{4 SPACES>=

REM = “Stranger By The River?’ =

REM ={4 SPACESX by Faul Twitchell

{5 SPACES:=

REM =sssoooooeeoeese mosmes oyasimeies sy ooy es i

REM MOUNTAIN

DATA 3,1,3,2,6,54,42,68,30,85,22,110,35
.118,45,54,45

DATA 2,1,9,2,-1,5,54,42,68,30,85,22,85,
45,.,54,45

DATA 2,1,2,-1,2,4,85,22,110,35,118,45,8
5,45 ’

REM MOUNTAIN TOP

DATA 2,0,1,3,-1,6,85,22,98,29,95,30,88,
32,78,29,74,2

REM LOWLANDS

DATA 3,0,3,2,3,0,45,.80,40,159,45

DATA 2,0,.5, 1.L,_,_,45 BO 40,1592,45
REM FOREGROUND

DATA 3,0,2,0,4,0,69,159,66,159,95,0,95
DATA 2,0,3,-1,2,4,0,80,159,80,159,95,0,
S

REM RIVER

DATA 3,0,0,3,12,0,50,159,50,1592,66,140,
68,125,70,105,74,80,77,60,78,47,78,40,7
74284 75,0, 69

DATA i, 0 3 1,3,6,0,45,159,45,159,60,90,
795,40, 75 O &0

REM LEFT TREE TOP

DATA 2,0,.2,2,0,12,25,25,37,34,33,36,36
s40,31,43,33,55,18,59,5,50,13,42,8,37,1
b,34,12,30

REM RIGHT TREE TOF
pATA 2,0,.2,2,0,8,130,32,149,39,145,46,

107

Chapter Three. Advanced Graphics And Game Utilities.

153,56,135,68,116,61,122,52,115,47
1340 REM LEFT TREE TRUNK
1350 DATA 1,0,0,0,1,6,11,80,16,56,19,52,21,5
7,17,81,14,83
1360 REM RIGHT TREE TRUNK
1370 DATA 1,0,0,0,1,6,131,83%,130,65,133,59,1
36,65,141,82,136,85
1380 REM END OF DATA
1390 DATA 999
1400 REM ============================
1410 REM Human figures...
1420 REM Paul
1430 COLOR 3=
1440 XX=55
1450 YY=80
1460 PLOT XX—-1,YY+3:DRAWTO XX-1,YY+8
1470 PLOT XX,YY:DRAWTO XX,YY+8
1480 PLOT XX+1,YY+3:DRAWTO XX+1,YY+8
1490 PLOT XX+4,YY+4:DRAWTO XX+4,YY+8
1500 PLOT XX+1,YY:PLOT XX+1,YY+1
1510 PLOT XX+2,YY+4:PLOT XX+3,YY+4
1520 PLOT XX+3,YY+S5:PLOT XX+3,YY+4
1530 PLOT XX+2,YY+6:PLOT XX+2,YY+7
1540 PLOT XX+5,YY+8
1550 PLOT XX+1,YY:PLOT XX+1,YY+1
1560 PLOT XX+2,YY+4:PLOT XX+3,YY+4
15370 REM Rebezar
1580 COLOR 1
1590 XX=65
1600 YY=70
1610 PLOT XX—-1,YY+2:DRAWTO XX—-1,YY+13
1620 PLOT XX,YY:DRAWTO XX,YY+10
1630 PLOT XX+1,YY:DRAWTO XX+1,YY+10
1640 PLOT XX+2,YY+2:DRAWTO XX+2,YY+13
1650 PLOT XX+5,YY+1:DRAWTO XX+5,YY+13
1660 PLOT XX—-4,YY+1:PLOT XX-3,YY+2
1670 PLOT XX-2,YY+2:PLOT XX+3,YY+3
1680 PLOT XX+4,YY+4
1620 GOTO 16920
1700 REM ============================

108

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 3. Textured Graphics.

100
105

110
120
130

140
145
150
160
170

180
240
245
2350
260
270
280
290
300
310
320
325
330
340
350
360

370
S72
374
376
378
380
390
400
410
420
430
440
450
460
470
480
490
500
510

REM =======s=s=s=s=s==s=s=sms=sSsSS=======

REM ={5 SPACES}PALETTE Program

{7 SPACES}=

REM =A Color—-Texture Development=

REM = Utility Program For The =

REM ={3 SPACESYPOLYPAINT Subroutine

{4 SPACES>=

REM =============================

REM ={11 SPACESX by:{13 SPACES:=

REM ={8 SPACESYPhil Dunn{i0 SPACES3}=
REM ={&6 SPACES}12 Monroe Ave. {7 SPACES}=
REM ={3 SPACESYHicksville, NY 11801

{4 SPACES:>=

REM ====================..:==z==:===

DIM A$(2) ,X(4),Y(4),5(4),7(4),U(50)
DIM HUCE) LUCSE)

POLYPAINT=17315

REM =============================

REM Input mode & scale palette
GRAPHICS O

? "Which Graphics MODE (3-8)";
TRAP 290: INPUT MODE

IF MODE<Z OR MODE>B THEN 290
GRAPHICS MODE

POKE 752,1:REM Blank Cursor
IF MODE=3 THEN E=0.25:F=0.25
IF MODE=4 OR MODE=5 THEN E=0.5:F=0.5
IF MODE=6 OR MODE=7 THEN E=1:F=1
IF MODE=8 THEN E=2:F=2

REM Initial ceclor assignment...
HU(O)=0:LU(0)=8:REM =WHITE
HU(1)=5:LU(1)=8: REM =RED
HU((2)=10:LU(2)=6:REM =GREEN
HU(3)=8:LU(3)=8:REM =BLUE

SETCOLOR O, HUCL) (L12C1)

SETEOLOR 1 .,HUC2) ,LULC2)

SETCOLOR 2,HU(3) ,LU(3) :REM WINDOW
SETCOLOR 4,HUCO) ,LU(O) :REM BACKGR
REM =============================
REM Primary colors numbers

COLOR 1

REM Number 1...

PLOT 3IXxE,22%xF

DRAWTO 3%xE,28xF

REM Number 2...

PLOT 19%E,22%F

DRAWTO 21%E,22%F

109

Chapter Three. Advanced Graphics And Game Utilities.

520 PLOT 22%E,23%F

530 DRAWTO 19%E,28x%F

540 DRAWTO 22%xE,28%F

550 REM Nunber 3...

560 PLOT 37%xE,22%F

570 DRAWTO 40x%xE,22%xF

580 DRAWTO 40xE, 28xF

590 DRAWTO 37%E,28xF

600 PLOT 38%E,25%F

610 DRAWTO 40x%xE,25%F

620 REM === msscoooosossaaam o a s areesimnnes
630 REM Display FPrimary Colors

640 NP=4:TYPE=1:DIR=0:5PA=0:FAC=0

&50 FOR I=1 T0O 3

660 CLO=I

670 FOR J=1 TO 4

680 READ X,Y:X(J)=XXE:Y(J)=YXF

690 NEXT J

700 GOSUB POLYPAINT

710 NEXT I

720 REM ===========s======cs===========
730 REM Display Secondary Colors

740 TYPE=3:REM Checkerboard

745 DIR=0

750 FOR I=1 TO 6

760 FOR J=1 TO 4

770 READ X,Y:X(J)=XXE:Y(J)=YXF

780 NEXT J

790 1IF I<=3 THEN CLO=0:CHI=I

800 IF I=4 THEN CLO=1:CHI=2

810 IF I=5 THEN CLO=1:CHI=3

820 1IF I=6 THEN CLO=2:CHI=3

830 GOSUB POLYPAINT

840 NEXT I

850 REM ================s=s=os==S=====
860 REM Areas for primary colors....
870 DATA 0,45,0,30,15,30,15,45

880 DATA 18,45,18,30,33,30,33,45

890 DATA 36,45,36,30,51,30,51,45

900 REM Areas for secondary colors..
210 DATA 0,20,0,5,15,5,15,20

920 DATA 18,20,18,5,33,5,33,20

930 DATA 36,20,36,5,51,5,351,20

240 DATA 0,70,0,55,15,55,15,70

9250 DATA 18,70,18,55,33,55,33,70

260 DATA 36,70,36,55,51,55,51,70

9270 REM Connect the colors

980 DATA 8,30,8,20,8,45,8,55,12,45,22,55
990 DATA 26,30,26,20,22,45,12,55,28,45,39,55
1000 DATA 44,30,44,20,44,45,44,55,40,45,29,55

110

Chapter Three. Advanced Graphics And Game Utilities.

1010 REM Palette Display Areas....a..a.
1020 DATA 60,35,60,0,105,0,105,35
1030 DATA 115,35,115,0,159,0,159,35
1040 DATA 6&0,75,60,40,105,40,105,75
1050 DATA 115,75,115,40,159,404159,75
1070 REM Connect the colors

1080 FOR I=1 T0O I

1090 COLOR I

1100 FOR J=1 TO 3

1110 READ X1,Y1,X2,Y2

1120 PLOT X1X¥E,Y1xXxF

1130 DRAWTO X2%E, Y2%F

1140 NEXT J:NEXT I

1150 REM === ssrssssssmemmosmmssansss
1160 COLOR 1

1170 REM Number the palette areas...
1180 REM Number 1

1190 PLOT S57%E, 15%F

1200 DRAWTO S7%xE, 25%F

1210 REM Number 2

1220 PLOT 109%E, 15%F

1230 DRAWTO 112%xE,15%F

1240 DRAWTO 113xE,17%F

1250 DRAWTO 109%E,25%F

1260 DRAWTO 113%xE,25%F

1270 REM Number 3

1280 PLOT S54x%xE,S55%F

1290 DRAWTO S8XE,SS5%F

1300 DRAWTO S8XE, 65%F

1310 DRAWTO S4%xE, 65%F

1320 PLOT S55%xE,60%xF

1330 DRAWTO S8XxE, 60%F

1340 REM Number 4

1350 PLOT 110X%XE,S7x%F

1360 DRAWTO 110%xE, 60%F

1370 DRAWTO 113X%xE, 60%F

1380 PLOT 113%E,SS5xF

1390 DRAWTO 113%xE, 65%F

1400 NP=4

1410 REM ================x===========x==
1420 REM = NOTE: TO RESTART THE{4 SPACES}=
1430 REM = INPUT SEQUENCE AT ANY{4 SPACES}=
1440 REM = TIME BACK TO THE *AREA~’ =
1450 REM = INPUT REQUEST, RETURN{4 SPACES}=
1460 REM = WITH THE VALUE 99.{(7 SPACES:=
1470 REM ============================
1480 ? "Which AREA to use (0-4)";
1490 TRAP 1480: INPUT A

1500 IF A<O OR A>4 THEN 1480

111

Chapter Three. Advanced Graphics And Game Ultilities.

1505 IF A=0 THEN 2140

1510 RESTORE 1010+AX10

1520 FOR I=1 7O 4

1530 READ X,Y:X(I)=INT{(XXE):Y(I)=INT(YXF)
1540 NEXT 1

1550 REM ==============s===oo=oS======
1560 ? "What painting TYPE (1, 2, or 3),"
1570 ? "Bar, pixel, or checkerboard";
1580 TRAP 13560: INPUT TYFE

15920 IF TYPE=99 THEN 1480

1600 IF TYPE<1 OR TYPE>3 THEN 1360

1610 IF TYPE=2 THEN 18350

1620 IF TYPE=3 THEN 2020

1630 REM ===============c============
1640 REM Bar painting input...

1650 ? "HORIZ. or VERTICAL Bars (0 or 1)"j;
1660 TRAP 1650: INPUT DIR

1670 IF DIR=99 THEN 1480

1680 IF DIR<>0 AND DIR<>1 THEN 14650

1620 ? "SPACES between bars, >=0 e

1700 TRAP 1690: INPUT SFPA

1710 IF SFA=99 THEN 1480

1720 IF S5PA<O THEN 1690

1730 ? "Space VARIABILITY (-1 to +1)";
1740 TRAP 1730: INPUT FAC

1750 IF FAC=99 THEN 1480

1760 IF FAC<—-1 OR FAC>1 THEN 1730

1770 ? "COLOR register (0-3)";

1780 TRAP 1770: INPUT CLO

1790 IF CLO=99 THEN 1480

1800 IF CLO<O OR CLO>3 THEN 1770

1810 GOSUE POLYPAINT

1820 GOTO 1480

1830 REM =============================
1840 REM PIXEL FPainting...

1850 ? "HORIZ. or VERTICAL Sweep (0 or 1)";
1860 TRAP 1850: INPUT DIR

1870 IF DIR=99 THEN 1480

1880 IF DIR<>0 AND DIR<>1 THEN 18350

1890 ? "BLENDING Factor, 0-0.99, or >=1"j;
1900 TRAP 18%90: INPUT FAC

1910 IF FAC=99 THEN 1480

1920 IF FAC<O THEN 1890

1930 ? "LOW €Color (-1 to 3)";
1940 TRAP 1930: INFPUT CLO

1950 IF CLO=99 THEN 1480

1960 ? "HIGH Color (-1 to 3)";
1970 TRAP 19460: INFUT CHI

1980 IF CHI=99 THEN 1480

19920 G0O0SUB POLYPAINT

112

Chapter Three. Advanced Graphics And Game Utilities.

2000
2010
2015
2020
2024
2026
2028
2030
2040
2050
2055
2060
2070
2080
2085
2090
2100
2110
2130
2140
2145

2150
2160
2170
2180
2190
2200
2210

2220
2230

2240
2250
2255
2260

2270

N
N
@

2290

2292
2293
2294
2295
2300

GOTO 1480

REM ====s=scs=m=c=s==c=cssnosares==
REM CHECKERBOARD Painting...

? "HORIZ. or VERTICAL Sweep (0 or 1)";
TRAP 2020: INPUT DIR

IF DIR=99 THEN 1480

IF DIR<>0 AND DIR<>1 THEN 2020

? "First Color (0 to 3)":

TRAP 2030: INPUT CLO

IF CLO=99 THEN 14890

IF CLO<KO OR CLO>3 THEN 2030

? "Alternate Color (O to 3)";
TRAP 2060: INPUT CHI

IF CHI=99 THEN 1480

IF CHI<O OR CHI>3 THEN 2060
GOSUB POLYPAINT

GOTO 1480

REM Redefine the colors...
? "Reg.No. = Hue, Luminance®”

? "O=";HU(O) 3", ";LUCO) ,"1="3HU(1);","5L
UCL1) ,"2="3;HU(2);",";LU(2),"3=";HU(3);",
"sLU(S)

? "Which COLOR Register (0-3) ";

TRAP 2140: INPUT I

IF I=99 THEN 1480

IF I<0 OR I>3 THEN 2140
K=HU(I):L=LU(I):GOTO 2230

IF STRIG(0)=0 THEN 2140

IF HUCI)=INT(K) AND LU(I)=2%XINT(L/2) TH

EN 2260
HUCI)=INT(K):LU(I)=2XINT(L/2)
? "Reg. "3I3;" = Hue ";HU(I);3;" , Luminan

ce "3lLUWCI)

J=I-1:1IF J<O THEN J=4

SETCOLOR J,HUC(I) ,LUCI)

HUCI)=INT(K) :LU(I)=2KkINT(L/2)

IF STICK(0)=7 THEN K=K+0.1:IF K>16 THEN
K=0

IF STICK(0)=11 THEN K=K-0.1:1IF K<0 THEN
K=15

IF STICK(0)=14 THEN L=L+0.2:1IF L>1& THE
N L=0

IF STICK(0)=13 THEN L=L-0.2:IF L<O THEN
L=14

REM Joystick O controls:

REM Left—-Right changes hue

REM Foward—-Back changes luminance

REM Press Trigger to fix selection

GOTO 2200

113

Chapter Three. Advanced Graphics And Game Utilities.

Part 3:
Multi-Colored Graphics
Iin Mode 8

Phil Dunn

Into the world of Graphics mode 8, with multi-colored displays. This
tutorial and commentary covers both the CTIA and the GTIA chips. You'll
find the explanations and utility programs invaluable. 32K RAM memory is
recommended, but, with judicious cutting, you can run this with 24K.

Graphics Mode 8 provides the highest resolution images that we can
generate with the Atari system, with a horizontal grid of 320 and a
vertical grid of 192 (or Y60 with a split screen). Therefore, a mastery
of the mysteries of Mode 8 will enable us to develop some of the
highest quality images that the Atari system can provide. This article
offers you that ability, with some user-friendly programs that make it
as easy as apple pie. If you want to, you can generate your own version
of the Atari Video Easel, or you can use the programs to make really
fine pictures.

These routines will require 32K of memory to work in Mode 8
graphics. With all REM statements removed, and a reduction in some
nonessential functions, these routines should work with only 24K of
memory.

There is a rumor that Mode 8 graphics allows only one color.
This rumor states that the SETCOLOR 2 command determines the
hue and luminance of the background, and the SETCOLOR 1
command determines just the luminance of a point or line drawn with
the PLOT-DRAWTO commands. The only other SETCOLOR
command that has any effect in Mode 8 is SETCOLOR 4, which only
controls the hue and luminance of the border.

This rumor has an impeccable source: the Atari BASIC Reference
Manual. Let’s check it out. We go over to our favorite machine and
flip on the power switches for our computer and TV monitor, and see
our friendly ‘READY’ message pop up at the top of the screen.

From past encounters of this kind we know that we are in Mode
0. So, we type in the direct command, GRAPHICS 8. The screen
flips and now we see the READY at the bottom of the screen. “Aha!”

114

Chapter Three. Advanced Graphics And Game Utilities

we think, “Mode 8 with our split-screen text window at the bottom.”

Let’s draw a line. We type in the command, COLOR 1:PLOT
5,80:DRAWTO 315,80 and a horizontal line appears. Now we can
play with SETCOLOR commands to our heart’s content, and we will
only conclude that the manual is telling the truth, the whole truth,
and nothing but the truth, so help them Atari!

Now let’s run a different experiment. As in any good experiment,
we must carefully set the conditions. With SETCOLOR 2,0,0 we set
a black background, and with SETCOLOR 1,0,12 we get set for high-
contrast lines. Now, with the command PLOT 160, 150:DRAWTO
160,5 we see a brown line if we have the CTIA chip, or we see a blue
line if we have the GTIA chip.

But you may not see brown or blue. The color you see, and all
the colors that are mentioned in the remainder of this article, are
dependent upon the condition and alignment of your system. While
the colors you see may be different than the ones described here, the
principles and techniques for obtaining the variety of colors remain
the same.

Now let’s enter the command PLOT 101,150: DRAWTO 101,5,
and we will see a blue vertical line if we have the CTIA chip, ora
brown line with the GTIA. Why are the two lines different colors?
[t’s just dependent upon whether the vertical line has an even or an
odd value for its X coordinate. All vertical lines with an even X value
will be one color, and all with an odd X value will be the other. This
is true for all PLOT points also. If we wish to draw a line at any angle
by PLOTting only those line points at the odd or even X coordinate
values, then we will obtain a blue or brown line.

Notice that [am saying that the color we obtain (as a function of
whether the X coordinate parity is odd or even) is reversed between
the CTIA and the GTIA chips. Both chips give us exactly the same
variety of colors and textures in Mode 8. It is just the effect of the X
coordinate parity that is reversed. As far as [know, this type of color
difference between the two chips does not exist in any mode other
than Graphics 8.

In the remainder of this article, when 1 refer to colors, [will first
indicate the color we obtain with the CTIA chip, and then, alongside
it and in parentheses, the color obtained with the GTIA chip.

If we draw another line with the command PLOT
160,80:DRAWTO 240,120 we see a green (red) line. Typing PLOT
101,80:DRAWTO 181,120 gives a red (green) line. The rule here is
that all sloping lines with an X/Y ratio slope of 2/1 will be either green
or red, depending upon the X coordinate of the start point.

115

Chapter Three. Advanced Graphics And Game Utilities.

The command PLOT 10,10:DRAWTO 150,150 gives us a grey
line. All lines drawn with an X/Y ratio slope of 1/1 will be grey.

These are what we will call the six primary colors of Mode 8
graphics. White (horizontal lines, or several lines adjacent to each
other), brown and blue (vertical lines), green and red (2/1 slope
lines), and grey (1/1) slope lines. All other sloping lines tend to give
peppermint-stripe mixtures of these primary colors.

Now, next to the blue (brown) vertical line at 101,150-101,5
let’'s PLOT-DRAWTO another line at 102,80-102,60. This gives us a
green (red) line, but one with a different texture than we saw in the
2/1 ratio version. If we PLOT-DRAWTO another line at 100,60-
100,40 we get a red (green) line, again with a different texture than
we saw previously.

If we enter the PLOT-DRAWTO command 159,80-199,100, it
merges with our green (red) sloping line to give a warm grey. The
command 201,100-241,120 converts our green (red) line to a cool grey.

The colors and textures that we obtain by drawing multiple lines
that interact with one another we can call the secondary colors and
textures of Mode 8 graphics. How many are there? I don’t know. Later
on in this article you will see over 60 that I have found. I only stopped
at that point to write this up so others could explore this also.

Well, what is going on here with that Atari Manual? Is Atari
trying to hide something from us about Mode 87 What's the story?

The Atari Manual is not lying. It is hiding something, though. It
is hiding something that might only be confusing to the programming
novice who is still struggling to grasp the implications of the various
commands in BASIC and the Atari graphics modes. Also, what value
is a color you can only get by drawing a line at some specific angle?
(Plenty of value! More about this later.)

The answer to what this is all about lies in the structure of our
video tubes and the way they generate colors. The face of these tubes
is covered with a series of horizontal ‘‘scan lines” that consist of a
repeating series of blue, green and red phosphor dots. These phosphor
dots only glow their color if the electron beam gun in the neck of the
tube shoots them. These dots are so small that we don’t see them as
dots, but only as the composite color of many dots. The variety of
colors that we see on TV, and with which Atari provides us in its hue-
luminance SETCOLOR command, is obtained by controlling the
electron beam intensity to each dot. It is the balancing of the brightness
between the blue, green, and red dots that provides us with the full
spectrum of colors.

This feature of Mode 8 graphics occurs because when we draw a

116

Chapter Three. Advanced Graphics And Game Utilities.

vertical line, that line is so thin that it cannot cover all three colors of
the screen. When the X coordinate of the vertical line is odd (even),
it hits mostly the blue dots, and we get a blue line. When the X
coordinate is even (odd), it hits both red and green dots, giving us a
brown line. The resolution of Atari Mode 8 graphics is almost as fine
as the resolution of the TV screen dot pattern! Since our lines may
not touch all three color dots, the line color cannot be adjusted
effectively by balancing the color-dot intensities as is done in the
lower resolution graphics modes. (Horizontal lines always cover all
three dot colors.)

Now we understand Mode 8, and we recognize that it has colors,
but how can we use them? Well, we can always draw blue and brown
lines, but that is not where the action is. The action is where the
possibility exists for a multitude of colors, patterns, and textures. The
action lies not in drawing lines, but in coloring areas. And what is our
simplest, most useful method for coloring areas? If you have read the
previous articles you know the answer. It is the polygon fill technique.

If we want to think of the PLOT-DRAW commands as being our
Atari colored pencils, then the polygon fill technique is our Atari
paintbrush.

At this point it is most appropriate to scan the programs presented
here. Program 1, the POLYS subroutine, is the essential tool that we
will use to harness the graphics power of Mode 8. The POLYS8
subroutine is supported by a secondary subroutine called LINEP, given
here as Program 2. LINEP is based upon a machine code program. For
those interested, the machine code assembly listing is presented as
Program 3. My appreciation to Bill Wilkinson for that fantastically
useful article on Atari I/O Graphics (COMPUTE!, February 1982,
#21), and to Judy Bogart of Atari for her advice and direction regarding
the CIO method.

Program 4 is the PALETTS program, which allows us to
investigate and discover the colors, patterns, and textures inherent in
Mode 8. Although it has been set up to work in Modes 6 and 7 also, it
was primarily designed to study Mode 8 graphics. Naturally, it
essentially depends upon the POLY8 subroutine which must be
appended to it.

Program 5 is the PICTURS program. This program allows us to
define a complete picture just by entering values in data statements.
This, too, is essentially dependent upon the POLYS subroutine.

These programs have been written with an abundance of REM
statements. Even with all the REM statements removed, they will
require more than 16K of memory to run in Graphics Mode 8. With
the REM statements removed they should run with 24K, or they can

117

Chapter Three. Advanced Graphics And Game Utilities.

be left in if you have more.

The Atari BASIC Reference Manual tells us that we can reduce
the memory requirements of our programs by defining constant numeric
values in variables, when the constants are used in more than two or
three places in our program. | have decided as a regular practice to set
up the beginning of all my programs and general purpose subroutines
with variables with names beginning with the letter “C” to represent
the most commonly used numeric constants. This procedure has been
implemented in these programs.

The key to the use of these programs is in the POLY8 subroutine,
so let’s take a look at Program 1. The initial REM statements summarize
its capabilities, so we'll review them. The first variable this subroutine
uses is TYPE, which can vary from 1 to 7, depending upon how this
routine will be used. For TYPE values of 1 to 6 this routine also requires
a value for the variable NP, and values for the DIMensioned array
variables X(i), Y(i), where i varies from 1 to NP.

When TYPE=1, for “Bar Painting,” a defined polygon area will
be filled with lines (or “bars™) in a way which we can specify. The
polygon is defined by its perimeter points, the X, Y values stored in
the X(), Y() DIMensioned array variables. NP specifies the number of
perimeter points around the polygon.

When TYPE =2, for “Pixel Painting,” the defined polygon will
be filled on a pixel-by-pixel basis, according to our specified
instructions. When TYPE =3 the defined polygon area will only be
outlined, by drawing a series of lines around its perimeter.

For values of TYPE that are greater than 3, we are no longer
dealing with a defined polygon area. Later on [will show how these
options enable us to specify a huge amount of picture detail with a
minimum amount of program coding.

When TYPE =4 we simply color in the pixels, connected or
disconnected, that are specified in the X(i), Y(i) array variables,
where i varies from [to NP.

When TYPE =5 we PLOT-DRAWTO a series of lines specified
in the array variables X (i), Y(i) and X(i+ 1), Y(i+ 1) where i varies
from 1 to NP. Note that NP always refers to the number of X, Y pairs
to be used. Therefore, for one line set NP =2, for two lines set NP =4,
for three line set NP =6, etc.

When TYPE =6 we DRAWTO from one point to another,
starting at the initial cursor position to X(1), Y(1), then to X(2),
Y(2), then to X(NP), Y(NP).

When TYPE =7 a color register is assigned by the COLOR

command using the value stored in the RA variable.

118

Chapter Three. Advanced Graphics And Game Utilities.

For cases where TYPE =1 or TYPE =2, additional information is
required. The slope at which the bars are to be drawn, or the pixels
are to be swept, is specified in the RA variable in terms of the X/Y
ratio. RA =0 for vertical lines, + 1 or -1 for lines at +45 degrees or
45 degrees, and RA =100 for horizontal lines.

As we have previously seen, the factors that determine the line
colors in Mode 8 are the line slope and the X-axis odd/even parity.
The zero element of the P() array is used to specify the parity option.
If P(0) =0 then the parity option is bypassed. If P(0) =1 then odd
parity is selected, and if P(0) =2 then the even parity option is
chosen.

The remaining elements in the P(i) array, for values of i greater
than zero, are used to specify the line spacing sequence, and determine
whether or not the parity option is to be applied to that line. The
parity option, if selected, always is applied to the first line drawn. All
succeeding lines can have the parity option applied or not, at our
specification. If the corresponding value of P(i) is negative, then the
parity option will be applied to that line. If P(i) has a positive value,
then the parity option will be bypassed for that line.

The magnitude of P(i) determines the increment to move to
draw the next line. If the magnitude of P(i) is equal to 1, then the
next line will be drawn immediately adjacent to the previous one. If
the magnitude is 2, then there will be one space between; if 3, then
two spaces between, etc. Therefore, a value of zero would mean that
the next line should be drawn directly over the previous one. Since
this would make no sense at all, the value of zero is used to indicate
the end of the P(i) sequence. '

Now here comes the neat part: If the polygon was not completely
filled and a value of P(i) =0 is obtained (signifying the end of the line
spacing sequence), then the line spacing sequence is set back to the
first element in the sequence, P(1), and the procedure continues until
the polygon is filled up.

Therefore, one of the simplest sequences for this array is P(0) =1,
P(1)=-2, P(2) =0. For this example sequence P(0) specifies odd
parity, P(1) specifies the application of the odd parity to that line and
to increment the line position by 2 (i.e., to skip one space), and P(2)
ends the sequence. This command sequence will fill the polygon with
a series of lines separated by one space, with each line drawn from an
odd X coordinate.

When TYPE =2 for Pixel Painting, additional information must
be specified. The variable PB specifies the random probability blend
of plotted and unchanged pixels. The plotted pixels are colored as per

119

Chapter Three. Advanced Graphics And Game Utilities.

the previously specified COLOR command. The unchanged pixels
may be spoken of as being plotted with the “transparent” color. This
gives us the possibility of doing a multiplicity of “overlay” effects on
the same area. If PB is less than 1, then PB specifies the probability or
proportion of plotted pixels. When PB=.1 then ten percent of the
pixels will be plotted. When PB=.5 then 50 percent will be plotted,
etc.

If PB=1 then another form of blending will be used, and another
variable, PC, must be used to control this technique. When PC>0
then the first line drawn will be entirely unchanged pixels and the last
line drawn to fill the polygon will be entirely plotted pixels. The lines
in between will have a higher proportion of plotted pixels as they are
drawn closer to the end of the polygon. When PC<0 then the
unchanged-plotted pixel effect is reversed: the first line will be entirely
plotted and the last line will be entirely unchanged.

The magnitude of PC determines the rate at which the proportion
of pixels plotted changes from the start of the polygon to the end. If
ABS(PC) =1, then the proportion ratio changes evenly from one end
of the polygon to the other. The line drawn at the halfway point will
have half of its pixels plotted and the other half unchanged. When
ABS(PC)>1, say 2 or 4, the start condition phases out more slowly to
the end condition, and the start condition will be seen to have more
influence over the entire polygon. When ABS(PC)«<1, say 0.5 or
0.25, then the start condition phases out more rapidly and the end
condition is seen to dominate the polygon area.

If you have read the previous article, you may have noted that
the “checkerboard” option that was available in the previous version
is not specified here. This routine can be used to provide that effect if
45 degree lines are drawn every other space over a previously colored
polygon.

This concludes a functional description of the POLY8 subroutine.
We will take a brief tour of its structure before continuing on to the
more practical aspects of how to use it. Overall, a great similarity will
be found with respect to the polygon fill subroutines that were
previously documented. Since these have been explained in previous
sections, we will just focus on the differences here.

The additional and new TYPE options, implemented in lines
18405 to 18425, are fairly obvious. A big functional difference
between this routine and the previous one is that this one lets us fill
the polygon with lines of any specified slope. In order to implement
this feature in the simplest way, a U, V axis system is defined as being
rotated with respect to the screen X,Y axis system by the angle whose

120

Chapter Three. Advanced Graphics And Game Utilities.

Sine and Cosine values are stored in the variables SA and CA,
respectively. SA and CA are calculated in terms of the slope ratio RA
in lines 18445 and 18450. RA is also the Tangent of the angle. Then,
each X(), Y() array element that defines the polygon perimeter is
rotated into a corresponding U(), V() array element in lines 18460 to
18475. Using the same method described in the previous article,
vertical line segments are calculated to fill the polygon in the U,V
plane, in lines 18550 to 18565. These line segments are then rotated
back into the X,Y plane in lines 18575 to 18610. The previously
described parity logic is implemented in the middle of this, in lines

18580 to 18590.

For the case of “bar painting,” the line segments can be simply
drawn with the PLOT-DRAWTO command in line 18620. In the
case of “pixel painting,” where each pixel must be tested to be plotted
or passed over, [finally broke down and did some assembly
programming. In Mode 8 graphics there are too many pixels and the
coding in BASIC is too slow. The pixel-painting probability factor is
calculated in lines 18643 and 18645, and the LINEP subroutine that
does the job starts at line 18790.

Note that the machine code component of this routine must first
be initialized by GOSUBing to line 18900.

Before we leave these dungeons of program structure, [have a
confession to make. With all this geometry-math-programming, 1
couldn’t escape the need for a cut-and-try Finagle correction factor.
That's the Z5 round-up factor in lines 18575, 18595 and 18600. It is
defined in lines 18430 and 18435. These values generally work well.
But if you strike out on your own in the uncharted land of Mode 8
patterns and textures, and you find that for some reason the pattern
suddenly shifts in the middle of the polygon, you might want to try
modifying that factor for your case.

So much for the POLYS structure. (Do I hear a sigh of relief
somewhere?) The easiest way | know to become familiar with this
subroutine is to use it to explore Mode 8 graphics, which is what this
is all about anyway! And the easiest way I know to do this is by using

Program 4, the PALETTS program.
Studying the listing of the PALETTS program, lines 270 and 275

define the constants for often used numeric values to reduce program
memory requirements. (Naturally, if the REM statements are
eliminated, memory requirements will be reduced much further.) The
required DIMensioned arrays are defined in line 280, and the machine
code routine is initialized in line 285.

Lines 295 to 320 initialize the E, F scale factors for the desired

121

Chapter Three. Advanced Graphics And Game Ultilities.

graphics mode. While these programs were developed specifically for
Mode 8, they can be used in any mode. This version of the PALETTS8
program can immediately run in Modes 6, 7, and 8. You can modify it
to run in the other modes by inserting additional logic in this area.

Lines 370 to 490 set the initial hue-luminance values in the four
registers of interest.

[t might be useful to pause and study lines 570 to 780, because
they represent an interesting programming technique. Instead of
cluttering up our program with a group of PLOT-DRAWTO
commands, the equivalent coding is set into DATA statements.
Then, in lines 750 to 780 the information is used to either PLOT or
DRAWTO, depending upon whether the code number is -1 or -2.
The negative values for the code make it easy to differentiate the code
from the X, Y coordinates in the DATA statements.

We will be studying Mode 8 colors and textures by placing them
in one of 15 available screen areas. These square areas are defined in
lines 810 to 950 in terms of four numbers that represent the lower left
and upper right corners of the squares in the variables XL, YL, XU,
YU. In line 1050 the program asks us which AREA we wish to use. If
we return a value of from 1 to 15, then line 1090 points to the
appropriate DATA location. Line 1100 reads the data, and lines 1110
to 1140 dump the appropriate values in the X(), Y() arrays (scaled
appropriately for the specified graphics mode) that the POLYS routine
needs to define its polygon perimeter.

Note that if we return a zero value to the AREA question, then
we are shunted to line 1660 where we can change our SETCOLOR
assignment values by using the joystick. It works the same as the
option in the previous article, as per the REM statements in lines
1840 to 1870.

Note also, as per REM lines 980 to 1030, that RETURNing the
value 99 to any question will always reset the input sequence back to
the AREA request on line 1050. We.can also do the same thing by
pressing the BREAK key and RETURNing the command GOTO 1050.

Now suppose we LOAD the program and RUN it. We specify
Mode 8 graphics and, in response to the AREA question, we answer
1. We are then asked to choose between the CREATE and PRESET
options by RETURNing 1 or 2. Let me defer an explanation of the
PRESET option for the time being, and go straight to the CREATE
option by RETURNinga [.

We are then asked which TYPE of painting we desire, Bar, Pixel,
or COLOR. Strictly speaking, the COLOR option is not a painting
method at all, just the option to redefine the color register selection

122

Chapter Three. Advanced Graphics And Game Utilities.

for the next PLOT-DRAWTO commands. This option is important,
and it was a convenient place to stick it in the question sequence. If
we do select the COLOR option, we are asked what COLOR number
we desire (line 1600) and are reminded that in Mode 8 only 1 and 0
are functional COLOR numbers. However, we are not restricted from
RETURNIng any value to obtain the flexibility of being able to use
this program in the other graphics modes.

Suppose we select Bar Painting. We are then asked for the angle
ratio. We will select O for vertical lines. We are then asked for the
value of the parity variable, P(0). We will select 1 for odd parity.
Then we are asked for a value to P(1). Note that the program will
refuse the value O for this variable. We will return with the value -2,
which specifies the use of the parity check because it is negative, and
will move two spaces (i.e., skip one space). We are then asked for the
value of P(1). We return a value of O to end the sequence, and watch

while it fills AREA 1 with Mode 8 primary blue (brown).

We are asked again “which AREA?” If we answer with a 2 and
then repeat the exact same answers we gave previously (except for the
parity variable P(0), for which we will return a value of 2 for even
parity), we will see the machine fill area 2 with Mode 8 primary

brown (blue).

With the next two areas we can repeat what we have just done.
But by returning a value of 2 for the angle ratio we will obtain the
Mode 8 primary colors, red and green. By returning a value of 1 for
the angle ratio, zero for P(0) (no parity check), 2 for P(1), and 1 for
P(2) we obtain Mode 8 primary grey.

Now let’s go back to our blue area. In response to the AREA
request we return a value of 1. This time, on top of the primary blue
that is already there, we will overwrite the Mode 8 primary grey pattern
and see how it interacts to form blue-grey diagonal bars. If we repeat
this over the primary brown, we will see green-grey diagonal bars.

Remember the beginning of this article, where we changed the
color of the blue vertical line by drawing another line immediately
adjacent to it? Well, let’s repeat that here.

We can return an AREA number 10, specify the CREATE
mode, Bar Painting, an angle ratio of 0, and parity P(0) of 1. Then,
for P(1) we can specify a -1 to move one space with parity check. For
P(2) we can specify 3, to move three spaces without parity check.
Since we are moving an odd number of spaces from our last parity
check, the parity here must be the opposite and should not be checked
against the reference P(0) specification. We can end this sequence by
returning a value for P(3) of 0, and then watch green (red) vertical

123

Chapter Three. Advanced Graphics And Game Utilities.

bars being drawn.

As we can see, this activity of generating Mode 8 textures and
colors can go on indefinitely. Now let’s take a look at that PRESET
option in the program. However, if you have only 24K of memory,

you may have to delete this PRESET coding, or at least some of the
PRESET DATA lines, in order to RUN this program.

From line 1160, in response to returning a value of 2 for the
PRESET option, we are shunted to line 1900 and asked “Which
PRESET Number?” In this program version, starting at line 2070, we
have stored only 67 “PRESET” colors and textures. Line 1930 prohibits
a return value of less than 0 or more than 66.

Suppose we return a value of 2 for the PRESET Number. The
DATA pointer on line 1950 will then point to DATA line 2090. The
READ statement on line 1960 will then pick up the value of 1 on line
2090 and assign it to the TYPE variable. It then proceeds to read
three more DATA values in line 1990 and assigns them to the variables
RA =0, P(0)=1, and P(1)=-2. It then reads P(2) =0 in line 2010
and, because of its zero value, it ends the READ sequence in line
2020 by GOSUBing to the POLY8 subroutine where it will proceed to
fill the AREA specified with Mode 8 primary blue (brown).

When it returns from the POLYS subroutine, it jumps to line
2040 and reads the next numeric DATA on line 2090. In this case
the value is zero so the program loops back to the AREA question.
However, if the value was 99 the program would have looped back to
read the next value for TYPE, plus the rest of the information that
would have laid another pattern over the previous one.

PRESET number 0, DATA line 2070, is important because it
can be used as an eraser to wipe out previous patterns. It consists of a
TYPE 7 COLOR command, a COLOR value of 0 (blank out), 99 to
loop around for another READ, a new TYPE =1 (Bar Painting),
RATIO =0 (vertical), P(0) =0 (no parity), P(1) =1 (no spaces
between lines), P(2) =0 to end the sequence and plot the off pixels,

99 to loop around again, 7 for the COLOR command, 1 to turn the
COLOR back on, and 0 to end the DATA sequence and jump to the
AREA request.

At this point you are on your own. You can call up the various
66 PRESET patterns stored here and study them. You can create new
patterns and, when you find something you want to file, add it to this
PRESET sequence. (Be sure to update the input limit test in line
1930.)

If you want to just continue drawing patterns over patterns, as
per the Video Easel game, you can modify this program to automate

124

Chapter Three. Advanced Graphics And Game Ultilities.

that kind of operation. However, the COLOR should be alternated
between [and O, else very quickly it will just be drawing white on
white.

At this point [imagine somebody is muttering that all this is
nice, but what can we do with it besides play Video Easel type games?

Ah hah! Glad you asked. That PRESET data we assembled was
not just an academic study. This is our color-texture PALETTE from
which we shall judiciously extract what we need to create scenes with
a quality that is unique to the graphics of Mode 8.

The time has now come to take a look at Program 5, the PICTURS
program. This program is specifically designed for drawing a picture in
Mode 8 graphics, although it would be a simple task to modify it for
any other graphics mode. The specific example picture in this version
of the program is defined entirely within the PRINT and DATA
statements starting at line 1000. The program statements before line
1000 are fairly general, with the exception of the Graphics mode and
SETCOLOR assignment values. If another Graphics mode is used,
where the COLOR register values could be more than just O or 1,
then the error detection statements in lines 390 and 590 must be
changed.

Since some have the CTIA chip and others have the GTIA
chip, this program has been designed to display the proper colors in
either case. To do this, the program asks which chip is being used at
line 330.

A great simplification technique is used here, where the picture
DATA is separated into two major functions: AREA and FILL. The
AREA DATA starts at line 3000 and defines the geometry in terms of
X, Y coordinates. The FILL DATA starts at line 2000 and determines
the type of painting technique, and the color-texture pattern that we
will use to fill the polygon AREA.

At line 360 in the program the first numeric value is read from a
line of AREA DATA and is assigned to the variable FILL. If FILL =999
then the picture is complete and the program stops reading data and
jumps to line 1000.

If the variable FILL is a positive number, then the program will
eventually use it to read the appropriate fill data using the program
logic at lines 550 and 560. For most cases this will probably be the
condition. However, there are certain cases where this AREA-FILL
split-up becomes excessively cumbersome and artificial. Therefore, a
provision has been made to allow one to bypass the reading of separate
fill data for these cases. This bypass option is enacted when the numeric
value read for the FILL variable is negative.

125

Chapter Three. Advanced Graphics And Game Utilities.

For example, line 380 allows the program to fall through if FILL =
7 and to read the next data value as the variable RA. It then assigns
the positive value of FILL to the variable type and lets the POLY8
subroutine handle it directly in line 405.

Another special provision has been implemented, allowing the
use of multiple data sequences on the same line. After it returns from
the POLYS8 routine, the program reads the next data value at line
410. If it reads a value of 99, then that tells it to go back and read
another set of data without incrementing the AREA DATA pointer.
Otherwise, it will increment the AREA DATA pointer in lines 340
and 350 before reading the next data set.

If the variable FILL is not -7 then it reads the next data value
and assigns it to the variable NP, at line 470. The program then
proceeds to read in the next NP amount of number pairs which it
promptly stores in the X(), Y() arrays, at line 496.

On line 510 FILL is checked one more time and, if it is a negative
number, TYPE is set equal to that positive value of FILL and the

program GOSUBs directly to the POLY8 subroutine. Otherwise, the
program reads the value for the type variable from the fill DATA
statement, as per line 550 and 560. If TYPE =7 then it simply reads
the next data value and sets the color in line 600. It then jumps to
line 700 where it reads the next data value. Here, too, a value of 99
will enable it to keep reading fill data without jumping back to the
AREA DATA and incrementing the AREA pointer.

If TYPE is not equal to 7, then it checks whether TYPE=2, at
line 620. If it is, then the next two data values are assigned to the
variables PB and PC, for the POLYS routine. If TYPE is not equal to
2, then the program directly reads the values for the variables RA,
P(0), P(1), P(2) etc., and then GOSUBs to the POLYS8 routine.

Suppose we take a look at some of the data and see how the
program uses it. The AREA DATA starts at line 3000. Originally
there were two items to be painted by the data that was in lines 3010
and 3020. Then [decided to move these items down in the sequence.
Instead of changing all the line numbers of the data statements, I just
inserted two “dummy” statements that don't really change anything.
They both just specify a -7 code for the FILL variable, which tells the
program to change the COLOR assignment. The next number is 1, so
the program just implements the command COLOR 1, which was
previously done anyway. The final zero in the data statement terminates
the sequence. The remaining alphanumeric string is stored as if it
were string data, but it is never read and has been inserted only for
REMark type information.

126

Chapter Three. Advanced Graphics And Game Ultilities.

The first real area painting is done in line 3030. The end string
tells us that this is AREA 3 DATA, and that it is supposed to represent
city walls. The first number, 8, is the value for the variable FILL. This
will cause the program to read the fill data set at line 2080, which is
“Bar Red,” according to its alphanumeric label. The first number in
line 2080 sets TYPE=1 for Bar Painting. The second number sets
RA =0 for vertical lines. The third number sets P(0) =2 for even
parity check. The next two numbers set P(1) =-1 to move one space
with parity check, and P(2) =3 to then move 3 spaces without parity
check. The next number sets P(3) =0 to end the move command
sequence. The final number of zero ends the DATA sequence for that
line.

Going back to line 3030, the second number sets NP =4, and
the next eight numbers set the four pair of X, Y values into the X(),
Y() arrays. The final zero ends the DATA sequence for that line.

The next area data on line 3040 has a similar format, but it draws
us a blue ocean with the fill data at line 2020. The area data at line
3050 is interesting. We can see that it has exactly the same numbers
as the ocean area data, except for its first FILL number of 9. It is
covering exactly the same screen area as the “ocean” data, but this
data will provide a watery looking reflection effect. FILL DATA
number 9 is called “receding bars.” It has TYPE =2 for Pixel Painting.
Thus, the next two numbers must define PB=1 and PC=-1. The
value of PB=1 specifies that there will be an uneven pixel-on
probability across the polygon, and that PC must be used to specify it.
The value of PC=-1 specifies that the initial line will be drawn with
all pixels on, the final line will be drawn with all pixels off, and that
the pixel proportion will vary evenly in between. An RA =100
specifies horizontal lines, a P(0) =0 specifies no parity check, and the
remaining lines specify the number of spaces.

This example is interesting for a number of reasons. First, unlike
the other cases, the line spacing sequence is non-repetitive. Second,
the optical effect of distance is achieved in two ways: the changing
line spacing, and the changing pixel-on proportions.

The next three area data statements are interesting because they
all work the same screen area, but with a different FILL specification.
First, line 3060 calls for FILL =0, which is the fill data at line 2000.
This data is called the “horizontal eraser.” The first value at line 2000
specifies TYPE=7, RA =0, which turns COLOR off. Then a 99
continue leads to TYPE =1 Bar Painting, RA =100 horizontal lines,
P(0)=0, P(1)=1, P(2) =0 for no parity check, lines drawn

immediately adjacent with no spaces in between. Another 99 to

127

Chapter Three. Advanced Graphics And Game Utilities.

continue, and then TYPE=7, RA=1 to reset the COLOR register
for further painting.

Unlike the lower resolution modes where we can simply over-plot
previously-colored pixels with new pixels colored differently, in Mode
8 graphics all the previously colored pixels must be turned off if we
want to insert a specific color pattern.

Line 3070 then inserts the primary color-texture pattern for this
area, and line 3080 then adds, on top of it, some additional random
texturizing effect to eliminate a flat repetitiveness.

The full power of Mode 8 hi-resolution graphics is called for in
lines 3180 to 3220. Lines 3180 and 3190 draw the small sailboat,
where the Mode 8 pixel size is needed to provide the proper proportions
for this small image.

Then line 3200 turns the color register off with a -7,0 command.
The 99 continue then leads to a value of -4, which specifies a direct
TYPE=4 command to just PLOT individual X, Y pixel coordinates.
An NP =10 specifies the 10 X, Y coordinate pairs to be PLOTted in
the boat, to represent the two individuals. Then on line 3210 the

COLOR register is turned back on.

The boat wake is drawn with line 3220 data which again turns
the COLOR off with the -7,0 data values. The 99 continue leads to a
-5 for a direct TYPE =5 command to just PLOT-DRAWTO lines,
and the NP =8 value specifies the eight X, Y pairs to draw the four
lines.

Of course, the mountain itself is the biggest surprise. But I won’t
spoil it for you by describing it here. Run it and see for yourself. With
the previously analyzed sections as background, you should be able to
decipher the DATA code for these last elements with little difficulty.

There are quite a few game programs for sale that advertise the
use of high resolution graphics with much enthusiasm. These include
adventure programs, space programs, and utility programs. Often
these are advertised in the magazines with multi-colored dramatic
pictures. However, when we actually see how they use Mode 8 to
illustrate their programs, it usually doesn’t even come close to the
dramatic pictures in the advertisements. If you have run this program
and seen this sample picture, then you know the programs presented
here can be used to close that gap between the drama of the advertising
illustrations and the drama of the program illustrations.

[t may be of interest to note that Paul Twitchell’s book, The
Tiger’s Fang, was a most appropriate source of inspiration to
demonstrate these dramatic graphic techniques. This book is the story
of one of the greatest adventures of all time.

128

Chapter Three. Advanced Graphics And Game Utilities.

One very useful TYPE option which was not demonstrated in
this example picture is the case where TYPE=3, to just draw the
boundary of an area. This option can be used in the initial picture
development phase to outline the area boundaries.

Naturally, we will start creating our overall picture on a grid
paper, with the screen coordinates marked off on the horizontal and
vertical edges. We sketch out our picture and then outline our major
areas with a straightedge and note the X, Y vertex coordinates of the
perimeters. High-resolution details must be “blown up” on another
sheet of grid paper so we can see each individual pixel of their form.

Once we have a good layout for our picture geometry, then we
can start constructing our AREA DATA statements after line 3000,
in line increments of 10. If we specify the first numeric value to be -3,
then we will see what our geometric outlines look like on the screen
without using any fill DATA statements.

You can see what this looks like by changing the first numeric
value to -3 in all the DATA statements from line 3030 to 3190 in the
PICTURS program.

You are now on your own to use these programs or modify them
as you see fit.

129

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. Multi-Colored Graphics In Mode 8.

18000
18005

18010
18015
18020
18023
18024
18025

18026
18030
18035
18040
18045
18050
180533
18055
18057
18058
18060
18065
18070
18075
18080
18085
18087
18090
18095
18100
18105
18110
18115
18120
18125
18130
18135

18140
18145
18150
18155
18160
18165
18170
18175
18180
18185
18190

130

REM
REM

={4 SPACES>POLY8 Subroutine

{5 SPACES:=

REM
REM
REM
REM
REM
REM

= Polygon Painting For{3 SPACES}=
= BASIC Graphics Mode 8 =

={10 SPACES}by; {12 SPACES}=
={7 SPACESYPhil Dunn{9? SPACES}=
={5 SPACES>12 Monroce Ave.

{6 SPACES:=

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

= Hicksville, NY 11801{3 SPACES:}=

Enter with the value for

TYPE= Type of Painting

"{3 SPACES}= 1 for Bar Painting
"{3 SPACES}Y= 2 for Pixel Painting
"{3 SPACES}= 3 for a Line Boundary
"{3 SPACES}= 4 to PLOT X(i),Y (i)
"{3 SPACES}= 5 TO PLOT X(i),Y (i),
" and DRAWTO X(i+1),Y(i+1)

"{3 SPACES}= 6 to DRAWTO X<¢i),Y (i)
"{3 SPACESY = 7 to COLOR RA

For TYPE = 1 to 6,

enter with the values...

NP = No. of Vertex Points.

- for i=1 to NFP:

X{i)= DIM Vertex X values

Y(i)= DIM Vertex Y values

For TYPE 1 and 2 Painting

also enter values for...

RA = Angle X/Y Ratio

" O for Vertical

+—1 for +—-435 degrees

100 for Horizontal

DIM array for spacing

P ()

-.Parity Color-Lock Option:
.P(O)= O for no parity

-.P(O)= 1 for odd parity

.P(0O)= 2 for even parity

.for i=1 to something:
-.ABS(P(i))= Spaces to move
-.SGN(P(i))=+1, no parity
-.8S6N(P(i))=—1, parity lock

. {4 SPACES}P(i) = 0 to end data

For TYPE 2 Pixel Painting

Chapter Three. Advanced Graphics And Game Utilities.

18195
18200
18205
18210
18215
18220
18225
18230
18235
18240
18245
18250
18235
18260
18265
18270
18275
18280
18285
18290
18295
18300
18305
18310
18315
18320
18325
18330
18335
18340
18345
18350
18355
18360
18365
18370
18375
18380
18400
18405

18410

18415

18420

18425

REM also enter values for...

REM PR & PC For Pixel Blending

REM %X Set PB<1 for an even

REM . blend of active and

REM . inactive pixels.

REM . PB= the proportion of

REM . active pixels. PB>O

REM % Set PB>=1 for an uneven

REM . blend across the area.

REM . area. Then...

REM . If PC>0 then the start

REM . {4 SPACES}color is inactive and
REM .{4 SPACESYthe end is active.

REM . If PC<O then the start

REM .{4 SPACES}color is active and
REM . {4 SPACESXYthe end is inactive.
REM . When ABS(PC)=1 then the

REM .{4 SPACES}start color phases out
REM . {4 SPACES}evenly to the end.

REM . When ABS(PC)>1 then the

REM . {4 SPACES}start color phases out
REM .{4 SPACES}more slowly.

REM . When ABS(PC)<1 then the

REM . {4 SPACES}start color phases out
REM .{4 SPACES}more rapidly.

REM :iuaawsaanesweamwnssmen R

REM For TYPE = 7, to COLOR RA,

REM enter with RA = 0 or 1

REM :sss s o 8)

REM S()= DIM array used here

REM T()= DIM array used here

REM U{()= DIM array used here

REM V()= DIM array used here

REM Variable names used...

REM CO,€C1,C2,Z3,24,25,19,

REM X1,Y1,X2,Y2,CA,SA

REM K,L,M,N, IM, IP,MAX,MIN, NOW

REM ===========================
CO=0:C1=1:C2=2:219=999

IF TYPE=3 THEN PLOT X(C1),Y(C1):=:FOR N=
C2 TO NP:DRAWTO X(N),Y(N):NEXT N:DRAWT
0 X(C1),Y(C1):RETURN

IF TYPE=4 THEN FOR N=C1 TO NP:PLOT X(N
) ,Y(N) :NEXT N:RETURN

IF TYPE=S THEN FOR N=C1 TO NP STEP C2:
PLOT X(N),Y(N):DRAWTO X(N+C1),Y(N+C1):
NEXT N:RETURN

IF TYPE=6 THEN FOR N=C1 TO NP:DRAWTO X
(N) , Y{N):NEXT N:RETURN

IF TYPE=7 THEN COLOR RA:RETURN

131

Chapter Three. Advanced Graphics And Game Utilities.

18430
18435
18440
18445

18450
18455
18460
184465
18470
18480

18485

18490
18495

18500
18505
18510

18515
18520
18525

18527
18530
18535
18540
18545
18550

18355
18560

18565
18570
18575
18580
18585

18590

18595
18600
18605
18610

18615
18620

132

Z5=0.5: IF RA=C2 THEN Z5=0.55

IF RA=-C2 THEN 15=0.18

Z3=—C1:1IF RA<C>CO THEN Z3=5GN(RA)

SA=5QR{(1/(1+RA~C2))%Z3:IF ABS(5A)<0.2

THEN SA=CO0

CA=5G@R (1-5A"C2)

REM Rotate X{(),Y() to U{(),V):

FOR M=C1 TO NP

UM)=X{(M) XCA+Y (M) x5A

VIM)=—X (M) XS5A+Y (M) XCA: NEXT M

FOR M=C1 TO NP:N=M+C1:IF N>NP THEN N=C
1

REM Calculate slopes S() amd Y axis in

tercepts T()

IF U(M)=U(N) THEN S(M)=Z9:60T7T0 18510

S(M)=(VI(N)-V((M))/(U(N)-UM)):=T(M)=V (M)

—S (M) RU(M)

IF ABS(S(M))>Z9 THEN S(M)=19

IF ABS(S(M))<C1/Z9 THEN S(M)=CO

NEXT M:MAX=—-Z9:MIN=Z9:FOR M=C1 TO NP:Z

3=V M)

IF MAX<Z3" THEN MAX=ZI3

IF MIN>Z3 THEN MIN=Z3:N=M

NEXT M:MXMN=MAX-MIN: NOW=MIN: IM=N-C1:IF
IM<C1 THEN IM=NP

IP=N+C1l:IF IP>NP THEN IP=C1

IF P(C1)=C0O THEN P(C1)=C1l:P(C2)=CO

M=C1l:IF P{(M)<CO THEN M=C1

GOTO 18675

REM Calculate intercepts...

IF S(N)=Z%9 OR S(N)=CO THEN Z3=U(N):60T

0 18560

Z3=(NOW-T (N)) /S (N)

IF S(IM)=2Z9 OR S(IM)=CO THEN Z4=U(IM):

60TO 18375

Z4=(NOW-T(IM))/S(IM)

REM Rotate U(),V() to X(),Y():

X1=INT(Z3XxCA-NOWEXSA+Z3)

IF NOW<K>MIN AND P(M)>=CO THEN 18595

IF P(CO)=C1 THEN IF X1=C2%¥INT(X1/C2) T

HEN X1=X1+C1

IF P(CO)=C2 THEN IF X1<>C2%INT(X1/C2)

THEN X1=X1+C1

YI=INT(Z3*SA+NOWXCA+Z3)

Y2=INT(Z4xSA+NOWXCA+Z35)

IF SA=CO0 THEN X2=Z4%CA

IF SA<K>CO THEN X2=X1+(Y2-Y1) XRA

REM Bar Painting....:.:.ccoceeaa-
IF TYPE=1 THEN PLOT X1,Y1:DRAWTO X2,Y2
:GOTO 18660

Chapter Three. Advanced Graphics And Game Utilities.

18635
18643
18645

186350
18655
18660
18665
18670

18675
18680
18685
18690
18695
18700
18705
18710

REM Pixel Painting....... o i 1

IF PB<KC1 THEN PR=PB:6G0TO 18650
PR=((NOW—-MIN) /MXMN) “ABS(PC) : IF PC<KCO T
HEN PR=C1-PR

GOSUB LINEP

REM cuasmesneeeesss i
NOW=Y1XxCA—-X1%XSA

REM Increment NOW for next bar
NOW=NOW+ABS (P (M)) :M=M+C1:IF P(M)=CO TH
EN M=C1

IF NOW<KV(IP) THEN 18690

IF V(IP)=MAX THEN RETURN

N=IP: IP=IP+C1:IF IP>NP THEN IP=C1

IF NOW<KV(IM) THEN GOTO 18550

IF V(IM)=MAX THEN RETURN

IM=IM-C1:IF IM<C1 THEN IM=NP

GOTO 18550

REM =s=======r=s=mmmcsssmmamasasam=s=s

133

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 2. Multi-Colored Graphics In Mode 8.

18750
18751
18755
18760
18765
18770
18775
18780
18785
18790
18795

18800

18805
18810
18815
18820
18825
18830
18835
18840
18845
18850
18855
18860

18865
18870
18875
18880
18883
18884
18885

18890
18895

18900
18905
18210
189215

18920

134

REM LINEP Subroutine

REM by... Phil Dunn

REM Draws a line pixel by pixel

REM With a probability to plot

REM or skip each pixel.

REM X1,Y1 = start point

REM X2,Y2 = end point

REM PR = probability to PLOT

REM ™ >=0 and <=1
CO0=0:C1=1:€C255=255:C230=230:C198=198
C92=92:C97=97:C103=103:C106=106:C120=1
20
K=X2-X1:L=Y2-Y1:Z3=ABS(K):Z4=ABS{(L):BI
=PR¥C255

IF K=CO0 AND L=CO THEN RETURN

IF K<CO THEN 18840
LINE$(C92,C922)=CHR$(C230) :REM INC
LINE$(C97,C97)=CHR$(CO)
LINE$(C103,C103)=CHR%(C1)
LINE$(C106,C106)=CHR$%(C230)

GOTO 18860
LINE$(C92,C92)=CHR%$(C198) :REM DEC
LINE$(C?7,C97)=CHR%$(C255)
LINE${(C103,C103)=CHR$(CO)
LINE$(C106,C106)=CHR%(C198)
LINE$(C120,C120)=CHR$(C230):1IF L<CO TH
EN LINE$(C120,C120)=CHR%$(C198)

IF Z3=CO0 THEN Z3=C1/C235

IF Z4=CO THEN Z4=C1/C255

IF Z3>=Z4 THEN K=Z3:Y2=Z3/7Z4:X2=1:1IF Y
2>C235 THEN Y2=C25%5

IF Z3<Z4 THEN K=Z4:X2=Z4/13:Y2=1:1F X2
>C255 THEN X2=C255

IF K<1 THEN RETURN

POKE 752,C1

L=USR(ADR(LINE®%) ,K,X1,Y1,X2,Y2,BI)
RETURN

REM ::9 5% 6 546 d5E da = 8% @ & @@ 5@] i

DIM LINE$(136):RESTORE 18910:LINEP=187
90

FOR K=1 TO 136:READ L:LINE$ (K,K)=CHR$ (
L) :NEXT K:RETURN

DATA 104,104,133,211,104,133,210,104,1
33,86

DATA 104,133,85,104,104,133,84,104,104
s 153

DATA 209,170,104,104,133,208,168,104,1
04,133

Chapter Three. Advanced Graphics And Game Utilities.

18925
18930
18935
18240
18245
18950

18955
18960

18965
18270

18975

DATA
138
DATA
DATA
DATA
DATA
133
DATA
, 209
DATA
DATA

DATA
30
DATA
240
DATA

207,173,10,210,24,101,207,144,46,
72,152,72,165,86,72,165,85,72,165
84,72,162,96,169,11,157,66,3,169
0,157,72,3,157,73,37169,1,32
86,228,104,133,84,104,133,85,104,
86,104,168,104,170,202,208,19,165

170,230,85,165,85,201,0,208,8, 165
86,201,1,240,30,230,86,169,255,19

208,240,8,136,208,5,165,208,168,2
84,198,210,208,162,169,0,197,211,

4,198,211,240,152,96

135

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 3. Multi-Colored Graphics In Mode 8.

0100
0110
0120
0130
0140
0130
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540

0550
0560
0370

136

X=$5000

;s A=USR(LOC,N,X,Y,NX,NY,BI)
;DRAWS A LINE WITH EACH PIXEL
;PROBABILITY-TESTED TO BE

; ILLUMINATED OR NOT

s

NH=%D3 ;NO.PCINTS—-HI BYTE
NL=%D2 ;NO.POINTS-LO BYTE
XH=$56 ;CURSOR X —-HI BYTE
XL=%$55 ;CURSOR X —-LO BYTE
Y=%$54 ; CURSOR Y

NX=%$D1 ; X COUNT

NY=%DO ;Y COUNT

BI=%$CF ;PROB. BIAS

RANDOM=%$D20A; RANDOM # = 0-255
CIO=%E456 CENTRAL I/0
ICCOM=%342 IoCb COMmand to CIO
ICBLEN=%348 ;IoCb Buffer LENgth
CPBINR=%B ;Comnd.Put BINary Rec.

s we as

PLA sCLEAR STACK
PLA

STA NH ;N — HIGH BYTE
PLA

STA NL ;N — LOW BYTE
FPLA

STA XH 3 X =HIGH BYTE
PLA

STA XL ;X —LOW BYTE
PLA

PLA

STA Y ;Y -LOW BYTE
PLA

PLA

STA NX 5 X COUNTER

TAX s TEMP X COUNTER
PLA

PLA

STA NY ;Y COUNTER

TAY s TEMP Y COUNTER
FLA

PLA

STA Bl s PROB. BIAS

L]
LOOP LDA RANDOM

cLC sCLEAR CARRY
ADC BI s;ADD BIAS W. CARRY
BCC DOX sBYP.IF CARRY NOTSET

Chapter Three. Advanced Graphics And Game Ultilities.

0580
0590
0600
0610
0620
0630
0640
0630
0660
0670
0680
0690
Q700
0710
0720
0730
0740
0730
0760
0770
0780
0790
080Q
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070

TXA

PHA s SAVE TEMP X

TYA

PHA s SAVE TEMP Y

LDA XH

PHA s SAVE CURSOR XH

LDA XL

FHA s SAVE CURSOR XL

LDA Y

PHA s SAVE CURSOR Y

LDX #6%x%10 ;0FFSET TO IOCEB#6
LDA #CPBINR;Comd.Put BINary Rec
STA ICCOM, X

LDA #0O

STA ICBLEN, X

STA ICBLEN+1,X

LDA #1 ;COLOR Reg. #

JSR CIO ;Use CIO to PLOT
PLA

STA Y sCLAIM CURSOR Y

PLA

STA XL :CLAIM CURSOR XL
PLA

STA XH sCLAIM CURSOR XH
FPLA

TAY sCLAIM TEMP Y

PLA

TAX sCLAIM TEMP X

3
DOX DEX s DECR. TEMF. X

BNE DOY s;BYP.& DO Y IF<>0
LDA NX

TAX s RESET TEMF. X

INC XL s INCR. CURSOR X LOC
LDA XL ;s LOAD ACCUM. W. XL
CMP #%$00 s COMPARE WITH ©

BNE DOY ;BYP. IF NOT SAME
LDA XH

CMP #%$01 3IS5 HI BYTE=17

BEQ@ RTS :IF IT IS, RETURN
INC XH s INC. HI BYTE

&
DOY LDA #$FF

CMP NY s COMPARE NY WITH 255
BEQ@ COUN s BYP. IF=0 (HOR.LINE)
DEY ;DEC.TEMP Y

BNE COUN :BYP.& DO COUN IF<>0
LDA NY

TAY s RESET TEMF. Y

INC Y 3SHIFT CURSOR Y LOC

137

Chapter Three. Advanced Graphics And Game Utilities.

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170

138

s
COUN DEC NL ;COUNT PIXEL NO.

BNE LOOP ;KEEP PLOTTING IF<>0
LDA #$00

CMP NH ;1S NH ZERO?

BER RTS :IF IT IS, RETURN
DEC NH ; DECREMENT NH

BEQ LOOFP ; % LOOP
RTS RTS ; RETURN

.END

Chapter Three. Advanced Graphics And Game Ultilities.

PROGRAM 4. Multi-Colored Graphics In Mode 8.

100
110
120
130

140

150
160
170
180

190
200

210
270

2735

280

284
2895
290
295
300

305
310
3135
320
330
360
370
380
390
400
410
420
430
440
450
460
470
480
490
300
510
920

GRAPHICS O

o e e n

? " ={9 SPACESI;PALETT8{11 SPACES}>="
2?2 " ={35 SPACESYA Color—-Texture

{7 SPACES:>="

? " ={3 SPACES}YDevelopment Program
{4 SPACES>="

? " = For The POLY8 Subroutine ="

REM ={11 SPACES}by:{13 SPACES>=
REM ={8 SPACES}Phil Dunn{10 SPACES>}=

REM ={6 SPACES}12 Monroe Ave. {7 SPACES}=
REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES:-=

REM =============================
CO=0:C1=1:C2=2:C3=3:C4=4:C5=5:CH=6:C7=7:
C8=8:C9=9:C10=10

C99=99: AREA=1050: NP=C4:POLYB8=18400: DETRA
P=40000

DIM X(C4),Y(C4) ,P(C10),5(C4),T<(C4) ,U(C4)
,V(C€C4) ,CO(CC3I) ,LUCCI)

? 2?2 2?2 :2? "{4 SPACES}Reading data..."
GOSUR 18900:REM SETUP LINEP SUB.

REM =============================

? 2?7 ::7? "GRAPHICS MODE (6 to 8) = "j;
TRAFP 295: INPUT MODE: TRAFP DETRAP

IF MODE<Cé OR MODE>C8 THEN 295
GRAPHICS MODE

IF MODE=Cé OR MODE=C7 THEN E=0.49:F=0.49
IF MODE=C8 THEN E=Ci1:F=C1

REM =============================
REM Initial color assignment...
CO(CO)=CO:LU(CO)}=CO
CO(C1)=C2:LU(C1)=C8
CO(C2)=12:LU(C2)=C10
CO(C3)=C2:LU(CCI)=C4

IF MODE<>C8 THEN 300
CO(CO)=CO:LU(CO)=CO
CO(C1)=CO:LU(C1)=CO
CO(C2)=COo:LU(C2)=12
CO{(C3)=COo:LU(CC3)=CO

SETCOLOR C0C,CO(C1),LUCCY1)

SETCOLOR C1,CO(C2),LU((C2) :REM GRAPHC
SETCOLOR C2,C0(C3),LU((C3):REM BACKGR
SETCOLOR C4,C0O(COQ),LU(CO):REM BORDER
COLOR C1

REM oacpessmesnsesewoesnome s sms =&
REM DATA for area numbers:

139

Chapter Three. Advanced Graphics And Game Utilities.

230
340
550
260
S70
580
590

600
610
620

630
640

650
660

&70
680

690

700

Fai o,

720
730
740
745
750
760
770
780
790
800
810
820
830
840
850
860
870
880

140

REM -1 = PLOT
REM -2 = DRAWTO
REM -9 = end of data

REM One number per DATA statement

DATA -1,5,20,-2,5,40

DATA -1,65,20,-2,70,20,-2,65,40,-2,70,40
DATA —-1,130,20,-2,135,20,-2,135,40,-2,13

0,40,-1,130,30,-2, 135,30

DATA —-1,200,40,-2,200,20,-2,195,30,-2,20

2,30

DATA —-1,265,20,-2,260,20,-2,260,30,-2,26

5,30,-2,265,40,-2,260,40

DATA -1,2,70,-2,2,90,-2,7,90,-2,7,80,-2,

2,80
DATA -1,65,70,-2,70,70,-2,65,90

DATA -1,130,70,-2,135,70,-2,130,90,-2,13

5,90,-2,130,70

DATA -1,200,90,-2,200,70,-2,195,70,-2,19

5,80,-2, 200,80

DATA -1,259,70,-2,259,90,-1,263,70,-2,26

3,90,-2,267,90,-2,267,70,-2,263,70

DATA -1,3,120,-2,3,140,-1,7,120,-2,7,140
DATA -1,64,120,-2,64,140,-1,67,120,-2,72

,120,-2,67,140,-2,72,140

DATA -1,129,120,-2,129,140,-1,132,120,
,137,120,-2,137,140,-2,132,140,-1,132,

0,-2,137,130

DATA —-1,194,120,-2,194,140,-1,200, 140,

,200,120,-2,197,130,-2,202, 130

DATA -1,259,120,-2,259,140,-1,267,120,
,263,120,-2,263,130,-2,267,130,-2,267,

0,-2,263,140
DATA -9,-9,-9

o

REM Read DATA and draw numbers
RESTORE S70

READ I,X,Y

IF I=—-C1 THEN PLOT XXE,YXF

IF I=-C2 THEN DRAWTO X¥XE,Y%XF
IF 1<>-C9 THEN 7350

REM .ccccacnsannsaasnaannasnssananssa

REM DATA for areas: XL,YL,XU,YU
DATA 10,45,60,2

DATA 75,45,125,2

DATA 140,45,190,2

DATA 205,45,255,2

DATA 270,45,317,2

DATA 10,95,60,50

DATA 75,95,125,50

DATA 140,95,190,50

<2
13

2

=2
14

Chapter Three. Advanced Graphics And Game Utilities.

890
?00
7?10
920
?30
940
?50
?60
970
980
990
1000
1010
1020
1030

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

DATA 205,95,255,50
DATA 270,95,317,50

DATA 10,145,60,100

DATA 75,145,125, 100

DATA 140,145,190, 100

DATA 205,145,255,100

DATA 270,145,317,100

REM sssaseces R R R RS & e e e e
REM = NOTE: To RESET the =

REM =
REM = back to the "AREA" =

REM ={6 SPACES}request{(9 SPACES}=

REM = RETURN the value 99 =

REM ={3 SPACES} to any question
{4 SPACES}=

REM === ossmsssaomsmssaee

? 2? :? "Which AREA (0-13)";
TRAP AREA: INPUT A: TRAP DETRAFP

IF A<CO OR A>15 THEN GOTO AREA
IF A=CO THEN 1660

RESTORE 800+AXC10

READ XL, YL, XU, YU
X(C1)=XLXxE:Y{(C1)=YLXF
X(C2)=XLXE:Y(C2)=YUXF
X(C3)=XUxE: Y(C3)=YUXxF
X(C4)=XUXE:Y(C4)=YLXF

REM o ciouwmanm=s S W
? "CREATE, or PRESET (1 or 2)";
TRAP 1160: INPUT I:TRAP DETRAP

IF I=C92%2 THEN GOTO AREA

IF I=C2 THEN 1900

IF I<>C1 THEN 1160

REM cmmpmwaaoese s s e s e
? "Which TYPE of Painting;s;"

? "i=Bar, 2=Pixel, 7=COLOR ";
TRAP 1220: INPUT TYPE: TRAP DETRAP
IF TYPE=C99 THEN GOTO AREA

IF TYPE=C7 THEN 1600

IF TYPE=C1 THEN 1410

IF TYPE<>C2Z THEN 1220

REM =ss=s=sssmasoosoooSoooooos=sasmmess
? "For Pixel Painting,"

? "What value for PB, (0—-1)"j3
TRAFP 1310: INPUT PE: TRAP DETRAP
IF PB=C992 THEN GOTO AREA

IF PBLCO OR PB>C1 THEN 1310

IF PB<C1 THEN 1420

? "What value for PC";

TRAP 13460: INPUT PC:TRAP DETRAP

={3 SPACES}input sequence{3 SPACES}=

141

Chapter Three. Advanced Graphics And Game Utilities.

1380
1390
1400
1410
1420
1430
1440
1430
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

1680
1690
1700
1710
1720
1730
1740

1750
1760

1770

1780
1790
1800

1810

142

IF PC=C99 THEN GOTO AREA

GO0TO 1420

REM =s=s=ssoooossoooosooosmooamimesis
? "For Bar Painting,"

? "What Angle X/Y Ratio®;

TRAP 1420: INPUT RA: TRAP DETRAP

IF RA=C99 THEN GOTO AREA

REM cesmmssnssenonssnesmme s simsnss
? "P¢(0O) Parity value (0-2)=";
TRAP 1460: INPUT P:TRAP DETRAP
P(C0O)=P:IF P<CO OR P>C2 THEN 1460
IF P=C929 THEN GOTO AREA

REM z25:s0s L g R S p g SR TE e g
I=1

? "What value for P(";I3;") (O=end)";
TRAP 1520: INPUT P: TRAP DETRAP
P(I)=P:IF P=C99 THEN GOTO AREA

IF I=C1 AND P=CO THEN 1320

IF P=CO THEN 1380

I=I+C1:60T0 1520

G0S5UB POLY8:G0T0O AREA

? "What COLOR (MODE 8: 1=on, O=off)";
TRAP 1600: INPUT RA: TRAP DETRAP

IF RA=C99 THEN GOTO AREA

GOTO 1580

REM =sssscsosoeooomoooeoaaoassmiss stz =
REM REDEFINE THE COLORS...
? "Reg.No. = Hue, Luminance"

7 "O="g U CO) ;" ;" LUCCO) 1=z COLECLY "
"ILULEL) s " 2="3EO0CER2) 3" “sLULE2Y 5 "S="3C
(E3) ", "z LUC3)

? "Which COLOR Register (0-3) "3

TRAP 1660: INPUT I:TRAP DETRAP

IF I=C99 THEN GOTO AREA

IF I<CO OR I>C3 THEN 1660
K=CO(I):L=LUC(I):GO0TO 1760

IF STRIG(CO)=CO THEN 1460

IF COCI)=INT(K) AND LU(I)=C2XxINT(L/C2)
THEN 1800

COCI)=INT(K) :LU(I)=C2%XINTL(L/C2)

? "Reg. "3I;" = Color ";CO(I)3;" , Lumi
ance "3;LU(CI)

J=I-Cl:IF J<CO THEN J=C4

SETCOLOR J,CO(I),LUCCI)
COCI)=INT(K):LU(CI)=C2%INT(L/C2)

0

n

IF STICK(CO)=C7 THEN K=K+C1/C10:1IF K>16

THEN K=CO

IF STICK(CO)=11 THEN K=K-C1/C10:IF K<CO

THEN K=15

Chapter Three. Advanced Graphics And Game Ultilities.

1830

1840
1850
1860
1870
1880
1890
19200
1910
1920
19230
192350
1960
1970
1980
1990
2000
2010
2020
2030
2040
2030
2060
2065
2066
2067
2070

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

2180
2190
2200
2210
2220
2230
2240
2230
2260

IF STICK(CO)=14 THEN L=L+C2/C10:1IF L>16

THEN L=CO

IF STICK(C0O)=1F THEN L=L-C2/C10:1IF L<CO

THEN L=14

REM Joystick O controls:

REM Left—Rignt changes hue

REM Foward-Back changes luminance
REM Press Trigger to fix selection
GOTO 1730

REM ============s===========fF====

? "Which PRESET Number";

TRAP 1900: INPUT I:TRAF DETRAP

IF I=C9%9 THEN GOTO AREA

IF I<CO OR I>66 THEN 1900

RESTORE 2070+1%C10

READ TYPE

IF TYPE=C7 THEN READ P:COLOR P:GOTO
IF TYPE=CZ THEN READ PB,PC

READ RA,PO,P

P(CO)=PO:P(C1)=P:1I=C2

READ P:P(I)=P

IF P=C¢G THEN GOSUB POLYB:G0T0O 2040
I=I1+C1:60T0 2010

READ P:IF P=C929 THEN 1960

G0TO AREA

REM PRESET DATA. .« useaswa . i e
REM Color lables are accurate

REM only for the CTIA chip, and
REM are not correct for the GTIA

2040

pATA 7,0,99,1,0,0,1,0,99,7,1,0, ERASER=

0

DATA 1,0,0,1,0,0,WHT=1

DATA 1,0,1,-2,0,0,BLU=2

DATA 1,0,2,-2,0,0,BRN=3

DATA 1,0,0,3,0,0,DARK BRN VRT=4
DATA 1,0,0,1,2,0,0,BRN&0ORG VRT=5
DATA 1,0,1,-1,3,0,0,6RN VRT=6
DATA 1,0,2,-1,3,0,0,RED VRT=7
DATA 1,1,0,2,0,0,DK GRY=8

DATA 1,1,0,3,0,0,DK GRY DIA=9
DATA 1,2,1,-2,0,0,BRN=10

DATA 1,2,2,-2,0,0,RED=11

DATA 1,2,1,-1,-2,0,0,LT GRN DIA=12
DATA 1,2,2,-1,-2,0,0,PNK DIA=13
DATA 1,2,1,-2,-3,0,0,6RN DIA=14
DATA 1,2,2,-2,-3,0,0,RED DIA=15
DATA 1,3,0,2,0,0,NBY GRY=16

DATA 1,3,0,1,2,0,0,GRY DIA=17
DATA 1,4,1,-2,0,0,NBY RED=18
DATA 1,4,2,-2,0,0,NBY BLU=19

143

Chapter Three. Advanced Graphics And Game Ultilities.

2270
2280
2290
2300
2310

2320

2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460

2470

2480
2490
23500
2510

2520

144

DATA 1
DATA 1
DATA 1
DIA=22
DATA 1,0,2,
DIA=23
DATA 1,0,1,
GRY=24
DATA 1,0,2,
GRY=25
DATA 1,0,2,
=26
DATA
=27
DATA

!4,1!
!4!2!
!0!1!

DATA
D=34
DATA
5
DATA 1,1,0,
BLU DIA=36
DATA 1,1,1,
=37

DATA 1,1,2,
=38

DATA 1,1,0,
DIA=39
DATA 1,1,0,
DIA=40

DATA 1,1,0,
D=41
DATA
D=472
DATA
DIA=43

DATA 1,1,0,
KNIT=44
DATA 1,1,0,
KNIT=45

1,1,0,

1,1,0,

-1,-2,0,0,PNK
-1,-2,0,0,6RN
-2,0,99,
-2,0,99,
-2,0,99,
-2,0,99,
-2,0,99,
-2,0,99,
-2,0,99,
-2,0,99,

=250:99;

2,0

-2,0,99,

-2,0,99,

2,0,99,
2,0,99,
2,0,99,
3,0,99,
3,0,99,
2,0,99,
2;0599,

0

g

2,0,99,
3,0,99,
2,0,99,
3,0,99,

3,0,99,

299,

DIA=20
DIA=21
2,0,0,PNK—GRY

1,1,0,
2,0,0,BRN-GRY
3,0,0,NBY BLU-
3,0,0,NBY GRN-
-2,0,0,PNK-GRY
.—2,0,0,BLU-GRY
-1,-2,0,0,PNK~-
-1,-2,0,0,BLU-
1,3,1,2,0,0,BLU-GRY
2,0,0,6RN-GRY
-2,0,0,NUB PNK
1,4,1,-2,0,0,NUR GRN
1,-1,0,2,0,0,6RN PLAI
1,1,0,3,0,0,BRN DIA=3
1,-1,0,3,0,0,RED-GRN-—
1,-1,1,3,0,0,BLU CHKS
1,-1,1,3,0,0,RED CHKS
1,-2,1,-2,0,0,6BR/RED

1,-2,2,-2,0,0,RED/GRN

0,0,6RN GRI
1,-2,2,-2,0,0,RED GRI
1,-2,1,-1,-2,0,0,6RY
1,

-2,1,-1,-2,0,0,GRN

1,-2,2,-1,-2,0,0,PNK

Chapter Three. Advanced Graphics And Game Utilities.

2530

2540

2550

2560

2570

25380

2590
2600

2610

2620

2630

2640

2630

26606

2670

26890

2690

2700

2710

2730
18000
18005

18010
18015
18020
18023
18024
18025

‘'DATA 1,1,0,2,0,99,1,-3,0,2,0,0, BLU-RED

HOR=46&

DATA 1,1,0,2,0,99,1,3,0,1,2,0,0,BLU-RED
VRT=47

DATA 1,1,0,3,0,99:1,3,;0,2.0,0,PNK=BLU D
IAM=48

DATA 1,1,0,3,0,992,1,35,0,1,2,0,0,PNK—BLU
DIAG=49

DATA 1,1,0,2,0,99,.1,4,1,-2,0,0,=NBY RED
DIAG=S0

DATA 1,1,0,2,0,99,1,4,2,-2,0,0,=NBY GRN
DIAG=51

DATA 1,2,1,-2,0,99,1,—
DATA 1,2,1,-2,0,99,1,3
VRT=53

DATA 1,2,2,-2,0,99,1,3,0,2,0,0,PNK-GRY
VRT=54

DATA 1,2,1,-2,0,99,1,4,1,-2,0,0,NBY GRN
VRT=55

DATA 1,2,2,-2,0,99,1,4,2,-2,0,0,NBY PNK
VRT=56

DATA 1,2,1,-2,0,99,1,4,2,-2,0,0,GRN VRT
=57

DATA 1,2,2,-2;,0:992,1:4%4;1,;—=2,0,0,;PNK VRT
=58

DATA 1,:349,2,0,99:1:%4:1,—-2,0,0,PNK VRT
FAT=59

DATA 1,3,0,2,0,99,1,4,2,-2,0,0,GRN VRT
FAT=60

DATA 1:141:3;0,99:15—1,1,3,0,0,DULL BLU
=61

DATA 1,1;2;3,0,99;15—152,3;0;0;DULL ERN
=62

DATA 1,3,0,2,3,4,5,7,10,15,25,0,0,RECEE
DING=63

DATA 2:,0.95,1,100,0,2;3,4,59,7,10,15,25,0
,O0,RECEEDING COLORS=64

DATA 2,0.3,1,0,0,1,0,0,EVEN COLOR BLEND

=695

2,2,-2,0,0,6RY=52
.0,2,0,0,BRN-GRY

REM ={4 SPACES>POLY8 Subroutine

{5 SPACES:=

REM = Polygon Painting For{3 SPACES}=
REM = BASIC Graphics Mode 8 =

REM ={10 SPACESXby; {12 SPACES}=

REM ={7 SFACES>Phil Dunn{9 SPACES>}=
REM ={5S SPACES}12 Monroe Ave.

{6 SPACES:=

145

Chapter Three. Advanced Graphics And Game Ultilities.

18026
18030
18035
18040
18045
18050
18053
180355
18057
18058
18060
18065
18070

18075
18080
18085
18087
18090
18095
18100

18105
18110

18115
18120
18125
18130
18135
18140
18145
18150
18155
18160
18165
18170
18175
18180
18185
18190
18195
18200
18205
18210
18215
18220
18225
18230
18235
18240
18245

146

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM
REM
REM
REM

REM
REM

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

= Hicksville, NY 11801{(3 SPACES>=

Enter with the value for

TYPE= Type of Painting

"{3 SPACES:}= for Bar Painting
"{3 SPACES:= for Pixel Painting
"{3 SPACES3= for a Line Boundary
"{3 SPACES:}= to PLOT X (i) ,Y (i)
"{3 SPACES:= TO PLOT X1 Y (i),
= and DRAWTO X(i+1),Y(i+1)

"{3 SPACES>= 6 to DRAWTO X{(i),Y (i)
"{3 SPACESY= 7 to COLOR RA

For TYPE = 1 to 6,

enter with the values...
NP = No. of Vertex FPoints.
o for i=1 to NP:

X(i)= DIM Vertex X values
Y(i)= DIM Vertex Y values

NHWUN=

For TYPE 1 and 2 Painting
also enter values for...

RA Angle X/Y Ratio

" = 0 for Vertical

” = +—-1 for +-45 degrees
100 for Horizontal
P()= DIM array for spacing
.Parity Color-Lock Option:
-P(0)= 0 for no parity
.P(0O)= 1 for odd parity
.P(O)= 2 for even parity
.for i1i=1 to something:
-ABRS(P(i))= Spaces to move
-SGN(P(i))=+1, no parity
.S6N(P(i))=—-1, parity lock
- {4 SPACES}P(i) = 0 to end data

For TYPE 2 Pixel FPainting
also enter values for...
PB & PC For Pixel Blending
¥ Set PB<1 for an even

. blend of active and

. inactive pixels.

. PB= the proportion of

- active pixels. PEB>O

X Set PB>=1 for an uneven
- blend across the area.
- area. Then...

- If PC>0 then the start

I

Chapter Three. Advanced Graphics And Game Utilities.

18250
18235
18260
18265
18270
18275
18280
18285
18290
18295
18300
18305
18310
18315
18320
18325
18330
18335
18340
18345
18350
18355
18360
18365
18370
18375
18380
18400
18405

18410

18415

18420

18425
18430
18435
18440
18445

18450
18455
18460
18465
18470
18480

REM . {4 SPACES}color is inactive and
REM . {4 SPACESYthe end is active.

REM . If PC<0 then the start

REM . {4 SPACES}color is active and

REM . {4 SPACES}the end is inactive.
REM . When ABS(PC)=1 then the

REM . {4 SPACES}start color phases out
REM . {4 SPACES}evenly to the end.

REM . When ABS(PC)>1 then the

REM . {4 SPACES}start color phases out
REM . {4 SPACES}more slowly.

REM . When ABS(PC)<1 then the

REM .{4 SPACES)}start color phases out
REM .{4 SPACESXmore rapidly.

REM ssswsuswnas R % B BE A B e) A G s A

REM For TYPE = 7, to COLOR RA,

REM enter with RA = 0 or 1

REM Lassensamseaws mmesews &% 5 B

REM S()= DIM array used here

REM T{()= DIM array used here

REM U()= DIM array used here

REM V()= DIM array used here

REM Variable names used...

REM €0,€1,C2,Z3,7Z8,725+:Z9,

REM X1,Y1,X2,Y2,CA,SA

REM K,L,M,N,IM,IP,MAX,MIN, NOW

REM =s=s=sssm=smsmammsSosomsSsooaoasosmaSaes
CO=0:C1=1:C2=2:729=999

IF TYPE=3 THEN PLOT X{(C1),Y(C1):FOR N=
C2 TO NP:DRAWTO X(N),Y{(N):NEXT N:DRAWT
0 X(C1),Y{(C1):RETURN

IF TYPE=4 THEN FOR N=C1 T0O NP:PLOT X (N
), Y(N) :NEXT N:RETURN

IF TYPE=5 THEN FOR N=C1 TO NP STEP C2:
PLOT X(N),Y(N):DRAWTO X{(N+C1),Y(N+C1):
NEXT N:RETURN

IF TYPE=6 THEN FOR N=C1 TO NP:DRAWTO X
(N) , Y{N) :NEXT N:RETURN

IF TYPE=7 THEN COLOR RA:RETURN
Z5=0.5: IF RA=C2 THEN Z5=0.595

IF RA=-C2 THEN Z5=0.18

Z3=—C1:IF RA<K>CO THEN Z3=8SGN (RA)
SA=SER(1/ (1+RA"C2))xZ3:IF ABS(5A)<0.2
THEN SA=CO

CA=SQR(1-SA"C2)

REM Rotate X(),Y() to U(),V():

FOR M=C1 TO NP

UM)=X(M) XCA+Y (M) XSA
V{M)=—X (M) XSA+Y (M) XCAz:NEXT M

FOR M=C1 TO NP:N=M+C1:IF N>NP THEN N=C1

147

Chapter Three. Advanced Graphics And Game Utilities.

18485

18490
18495

18500
18505
18510

18515
18520
18525

18527
18530
18535
18540
18545

18550

18555
18560

18565
18570
18575
18580

18585
18590

18595
18600
18605
18610
18615
18620

18635
18643
18645

186350
18655
18660
18665
18670

18675

148

REM Calculate slopes S5() amd Y axis 1in
tercepts T()
IF U(M)=U(N) THEN S(M)=Z9:60T0 183510

S(M)=(VIN)-VM))/(UN)-UM))=T(M)=V (M)
-S (M) XU (M)

IF ABS(S(M))>Z9 THEN S(M)=Z9

IF ABS(S(M))<C1/Z9 THEN S(M)=CO

NEXT M:MAX=—-Z9:MIN=Z9:FOR M=C1 TO NFP:Z
3=V M)

IF MAX<Z3 THEN MAX=Z3

IF MIN>Z3X THEN MIN=Z3: N=M

NEXT M:MXMN=MAX-MIN: NOW=MIN: IM=N-C1:1IF
IM<C1 THEN IM=NP

IP=N+C1:1IF IP>NP THEN IP=C1

IF P(C1)=C0O THEN P(C1)=C1:P(C2)=CO

M=C1l: IF P{(M)<CO THEN M=C1

GOTO 18675

REM Calculate intercepts...

IF S(N)=Z9 OR S(N)=CO THEN Z3=U(N):G60T
0 18560

Z3=(NOW-T(N)) /5(N)

IF S(IM)=29 OR S(IM)=CO THEN Z4=U(IM):
GOTO 18375

ZA4=(NOW-T(IM))/S(IM)

REM Rotate U(),V() to X(),Y{():
X1=INT(Z3XCA-NOWXSA+Z3)

IF NOW<>MIN AND P (M) >=CO0 THEN 18595

IF P(C0O)=C1 THEN IF X1=C2%INT(X1/C2) T
HEN X1=X1+C1

IF P(CO)=C2 THEN IF X1<>C2%INT(X1/C2)
THEN X1=X1+C1

YI=INT(Z3%kS5A+NOWXCA+Z3)
Y2=INT(Z4%xSA+NOWXCA+Z3)

IF SA=CO THEN X2=Z4%CA

IF SA<C>CO THEN X2=X1+(Y2-Y1) xRA

REM Bar Painmting. ...cceccaceenss

IF TYPE=1 THEN PLOT X1,Y1:DRAWTO X2,Y2
:GOTO 18660

REM Pixel Painting...e.aeaueoaeecaeeas

IF PB<C1 THEN PR=PB:GOTO 18650

PR=((NOW-MIN) /MXMN) “"ABS(PC):1IF PC<CO T
HEN PR=C1-PR

GOSUB LINEP

REM o oo mams sim e sim s wm s wm e soe mme m e
NOW=Y1%XCA—-X1%SA

REM Increment NOW for next bar
NOW=NOW+ABS (P (M)) :M=M+Cl1l:1IF P(M)=CO0 TH
EN M=C1

IF NOW<KV(IP) THEN 18690

Chapter Three. Advanced Graphics And Game Utilities.

18680
18685
18690
18695
18700
18705
18710
187350
18751
187355
18760
18765
18770
18775
18780
18785
18790
18795

18800

18805
18810
18815
18820
18825
18830
18835
18840
18845
18850
18855

18860

18865
18870
18875

18880

18883
18884
18885
18890
18895
18900

18905

18910

IF V(IP)=MAX THEN RETURN

N=IP: IP=IP+C1:IF IP>NP THEN IP=C1
IF NOW<V(IM) THEN GOTO 18350

IF V(IM)=MAX THEN RETURN
IM=IM-C1:1IF IMKC1 THEN IM=NP

GO0TO 18550

REM LINEP Subroutine
REM by... Phil Dunn

REM Draws a line pixel by pixel

REM With a probability to plot

REM or skip each pixel.

REM X1,Y1 = start point

REM X2,Y2 = end point

REM PR = probability to PLOT

REM .{3 SPACES}>=0 and <=1
CO0=0:C1=1:C255=255:C230=230:C198=198
C92=92:C97=97:C103=103:C106=106:C120=1
20
K=X2-Xi:L=Y2-Y1:Z3=ABS(K):Z4=ABS(L):B1
=PR%¥C255

IF K=CO AND L=CO THEN RETURN

IF K<CO THEN 18840
LINE$(C?92,C92)=CHR$(C230):REM INC
LINE$(C?7,C97)=CHR$(CO)
LINE$(C103,C103)=CHR$(C1)
LINE$(C106,C106)=CHR$(C2390)

GOTO 18860
LINE$(C92,C92)=CHR$(C198) :REM DEC
LINE$(C?27,C97)=CHR$(C2355)
LINE$(C103,C103)=CHR$(CO)
LINE$(C106,C106)=CHR%(C198)

LINE$(C120,C120)=CHR$(C230):IF L<CO TH
EN LINE$(C120,C120)=CHR%$(C198)

IF 23=CO0 THEN Z3=C1/C255

IF Z4=CO THEN Z4=C1/C255

IF Z3>=Z4 THEN K=Z3:Y2=23/Z4:X2=1:1IF Y
2>C255 THEN Y2=C255

IF Z3<Z4 THEN K=Z4:X2=24/Z3:Y2=1:IF X2
>C255 THEN X2=C255

IF K<1 THEN RETURN

POKE 752,C1

L=USR(ADR(LINE$) ,K,X1,Y1,X2,Y2,BI)
RETURN

REM wv v seeeerrencennncanoanness S

DIM LINE$(136):RESTORE 18910:LINEP=187
90

FOR K=1 TO 136:READ L:LINES$ (K,K)=CHRS (
L) :NEXT K:RETURN

DATA 104,104,133,211,104,133,210,104,1

149

Chapter Three. Advanced Graphics And Game Utilities.

18915
18920
18925
18930
18935
18940
18945
18950

18955
18960

18965
18970

18975

150

33,86

DATA
s 133
DATA

104,133,85,104,104,133,84,104,104

209,170,104,104,133,208,168,104,1

04,133

DATA
138
DATA
DATA
DATA
DATA
133
DATA
, 209
DATA
DATA
7

DATA
30

DATA
240
DATA

207,173,10,210,24,101,207, 144,46,
72,152,72,165,86,72,165,85,72,165
84,72,162,96,169,11,157,66,3,169
0,157,72,3,157,73,3,169,1,32
86,228,104,133,84,104,133,85,104,
86,104,168,104,170,202,208,19, 165

170,230,85,165,85,201,0,208,8,165
86,201,1,240,30,230,86,169,255,19

208,240,8,136,208,5,165,208,168,2
84,198,210,208,162,169,0,197,211,

4,198,211,240,152,96

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 5. Multi-Colored Graphics In Mode 8.

100 REM =============================
110 REM ={9 SPACESYPICTUR8{11 SPACES}=
120 REM ={3 SPACESJ>An Example Picture
{5 SPACES:}=
130 REM ={5 SPACES}Program For The
{7 SPACES}=
140 REM ={4 SPACES}POLYS Subroutine
{6 SPACES}=
150 REM =ssossosoooaiasssesa o s asies s e
160 REM ={11 SPACES}by:{13 SPACES}=
170 REM ={8 SPACES>Phil Dunn{10 SPACES}=
180 REM ={6 SPACES}12 Monroe Ave. {7 SPACES>=

190 REM ={(3 SPACES)>Hicksville, NY 11801
{4 SPACES:=

200 REM =============================

250 CO=0:C1=1:C2=2:C3=3:C4=4:C5=5:C10=10:C16
=16:DETRAP=40000

260 DIM P(C10),X(C16),Y(C16),5(C16),T(C1&),U
(C16) ,V(C16) ,EA$(C10) ,EF$(C10)

270 EA$="AT AREA = *

280 EF$="AT FILL = "

290 POLYS8=18400: GRAPHICS 8

300 SETCOLOR C2,C5,C0:SETCOLOR C4,CS5,CO0
310 SETCOLOR C1,C0,14:COLOR C1t

322 REM SET UP LINE SUBROUTINE
325 ? " Reading DATA...":GOSUR 18900

330 ? " CTIA or GTIA chip (1 or 2)";
332 TRAP 330: INPUT CHIP: TRAP DETRAP
334 IF CHIP<>1 AND CHIP<>2 THEN 330
336 REM =============================
339 AREA=CO

340 AREA=AREA+C1

350 RESTORE 3000+C10XxAREA

360 TRAP 730:READ FILL

362 ? "AREA, FILL = ";AREA;", "3;FILL
365 IF FILL=999 THEN 1000
370 REM enan " e s e mcmms e amennnaa

380 IF FILL<>-7 THEN 470
385 READ RA

390 IF RA<>CO AND RA<>C1 THEN ? "COLOR = ";R
A; "{3 SPACES}";EA$; AREA: STOP

400 TYPE=ABS(FILL)

405 TRAP DETRAP:GOSUR POLYS

410 READ P:1IF P=99 THEN 360

420 GOTO 340

460 REM . . i cnemeanmnonsenmmnmmen s

151

Chapter Three. Advanced Graphics And Game Utilities.

470
480

490
493

496
300
310
540
550
360
370
580
585
290

600
610
620
623
630

640
630

652
654
656
660
670

&80
690
700
710
720
730
740
750
1000
1010
1020

1030
1100
1990
2000

READ NP

IF NP{C3 OR NP>C16 THEN ? "NP = ";NP;"
{3 SPACES}";EA$; AREA:STOP

FOR I=C1 TO NP:READ X,Y

IF X<CO OR Y<COQO OR X>319 OR Y>159 THEN ?

"X,Y="3X;",";Y;" “;EA%$;AREA:STOP
X(I)=XzY(I)=Y:NEXT I

REM v oevccmcnnacnnnnnnnns .
IF FILL<CO THEN 400

REM =============================

RESTORE 2000+C10¥FILL
TRAP 740:READ TYPE

REM ...cccccrnananannnsnas " s amsseasa

IF TYPE<>7 THEN 620

READ RA

IF RA<CK>CO AND RAK>C1 THEN ? "COLOR = "3k

A; " {3 SPACES}";EF$;FILL:STOP

COLOR RA:GOTO 700

REM wovueouenn L Ay R ..

IF TYPE<>C2 THEN 640

READ PB,PC

IF PB<=CO OR PB>C1 THEN ? "PB = ";PB;"
{3 SPACES}";EF$;FILL:STOP

READ RA,PO,P:P(CO)=P0:P(C1)=P:1=C2

IF PO<CO OR P=CO THEN ? "“PO,P1="3;PO0;",";
P1;"{(3 SPACES}";EF$;FILL:STOP

IF CHIP=C1 THEN 660

IF PO=1 THEN P(C0)=2

IF PO=2 THEN P(CO)=1

READ P:P(I)=P

IF P=CO THEN TRAP DETRAP:GOSUB POLYB8:GOT

o 700

I=I1+C1:G0T0O 660

REM . .c.icccnsceccccncanannsannans 2

READ P:IF F=929 THEN 360

GOTO 340

REM =======cs=s=csss=s==ss===========

? "ERROR AT AREA DATA = ";AREA:STOP

? "ERROR AT FILL DATA = ";FILL:STOP
REM ======s=ss=sm=s==s=Ss=s========

? "{3 SPACESIYTHE MOUNTAIN OF LIGHT"™
2" Inspired by >The Tiger’s Fang™"

? "{4 SPACES>A book by{3 SPACES}Paul Tw
itchell™

GOTO 1030

REM ===========s=================

REM FILL Colors & Textures

DATA 7,0,99,1,100,0,1,0,99,7,1,0,HORIZ.
ERASER

2010 DATA 1,100,0,1,0,0,WHITE=1

152

Chapter Three. Advanced Graphics And Game Utilities.

2020
2030
2040
20350
2060
2070
2080
2090

2100
2110
2120
2130
2140
2990
3000
3010
3020
3030
2040
3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

DATA

[
|

DARK BLUE=2

1,0,1,-2,0,0,
DATA 1,-2,1,3,0,0,RED&GREEN=3
DATA 1,4,1,-9,0,0,NUBBY RED=4
DATA 1,-4,2,-10,0,0,NUBBY RED=5
DATA 1,4,1,-10,0,0,NUBBY BLUE=6
DATA 1,-4,2,-10,0,0,NUBBY BLUE=7
DATA 1,0,2,-1,3,0,0,BAR RED=8
DATA 2,1,-1,100,0,2,2,3,4,5,7,10,13,17,
0,0,RECEEDING BARS=9
DATA 2,1,1,-0.5,0,1,0,0,LEFT BLEND=10
DATA 2,1,1,0.5,0,1,0,0,RIGHT BLEND=11
DATA 1,-2,1,-2,0,0,LIGHT GREEN=12
DATA 1,2,1,-2,0,0,LIGHT GREEN=13
DATA 2,0.2,1,100,0,2,0,0, TEXTURIZER=14
REM AREA Datas

DATA -7,1,0,DUMMY=1
DATA -7,1,0,DUMMY=2

DATA 8,4,65,100,65,95,275,95,275,100,0,
CITY WALLS=3

DATA 2,4,1,158,1,100,318,100,318,158,0,
OCEAN=4

DATA 9,4,1,158,1,100,318,100,318,158,0,
REFLEC=5

DATA 0,9,1,158,1,115,25,108,56,113,59,1
17,59,126,75,130,75,156,80, 158, 0, ERASE

LEFT CLIF=6

DATA 12,9,1,158,1,115,25,108,56,113,59,
117,59,126,75,130,75,156,80,158,0,FILL

LEFT CLIF=7

DATA 14,9,1,158,1,115,25,108,56,113,59,
117,59,126,75,130,75,156,80,158,0, TEXTU
RE LEFT CLIF=8

DATA 0,3,75,130,56,140,75,156,0,ERASE L
EFT NEAR FACE=9

DATA 3,3,75,130,56,140,75,156,0,FILL LE
FT NEAR FACE=10

DATA 0,3,59,117,45,122,59,126,0,ERASE L
EFT FAR FACE=11

DATA 3,3,59,117,45,122,59,126,0,FILL LE
FT FAR FACE=12

DATA 0,6,205,158,245,135,290,125,305,13
0,305,155,310,158,0,ERASE RIGHT CLIF=13
DATA 13,6,205,158,245,135,290,125,305,1
30,305,155,310,158,0,FILL RIGHT CLIF=14
DATA 14,6,205,158,245,135,290,125,305,1
30,305,155,310,158, 0, TEXTURE RIGHT CLIF
=15

DATA 0,3,305,130,280,145,305, 155, 0, ERAS
E RIGHT FACE=16

153

Chapter Three. Advanced Graphics And Game Ultilities.

3170
3180

3190

3200

3210
3220

3230
3260
3270
3280

3290
18000
18005

18010
18015
18020
18025
18030
18035
18040
18045
18050
18033
18055
18057
18058
18060
18065
18070
18075
18080

154

DATA 3,3,305,130,280,145,305,155,0,FILL
RIGHT FACE=17

DATA 1,4,155,125,162,132,168,145,155,14
1,0,SAIL=18

DATA 1,8,154,141,156,141,159,146,159,14
8,156,151,154,151,151,148,151,146,0, BOA
T=19

DATA -7,0,99,-4,10,153,145,153, 146,153,
147,154,146,154,147,156,147,156,148,157
,146,157,147,.157,148.0

pATA -7,1,0,PAUL & REBEZAR=21

pATA -7,0,99,-5,8,160,144,174,158,158,1
52,162,158,152,152,146, 158,150, 144, 136,
158,99,-7,1,0, WAKE=22

DATA 10,10,70,95,95,95,102,87,120,60,13
0,36,145,18,160,5,165,5,170,10,170,95,0
sMTN.LEFT=23

DATA 11,9,170,95,170,10,182,7,192,20,20
5,32,212,35,225,65,245,95,275,95, 0, MTN.
RIGHT=24

DATA 6,4,145,2,60,2,100,77,105,27,0,LEF
T RAYS BLUE=25

DATA 7,4,205,5,290,5,235,80,235,30,0,RI
GHT RAYS BLUE=26

DATA 4,3,150,1,95,85,50,1,0,LEFT RAYS R
ED=27

DATA S5,3%,200,1,240,85,300,1,0,RIGHT RAY
S RED=28

DATA 999

REM =====s===s=s=ssssssssssssss=s==

REM ={4 SPACES>POLY8 Subroutine

{5 SPACES:}=

REM = Polygon Painting For{3 SPACES}=
REM = BASIC Graphics Mode 8 =

REM ==============c=============

REM = by: Phil Dunn<{9 SPACES>}=

REM ===========s===sssSssSS=sSsS=s=

REM Enter with the value for

REM TYPE= Type of Painting

REM " {3 SPACES> = 1 for Bar Painting
REM "{3 SPACES>Y= 2 for Pixel Painting
REM "{3 SPACES?= 3 for a Line Boundary
REM " {3 SPACES>= 4 to PLOT X(i),Y (1)
REM " {3 SPACES> = S5 TO PLOT X(i),Y (1),
REM . and DRAWTO X(i+1),Y(i+1)

REM " {3 SPACESY= & to DRAWTO X (i) ,Y (i)
REM " {3 SPACES} = 7 to COLOR RA

REM wows wimm o mos = som e s & o w6 &8 8

REM For TYPE = 1 to 6,

REM enter with the values...

Chapter Three. Advanced Graphics And Game Utilities.

18085
18087
18090
18095
18100
18105
18110
18115
18120
18125
18130
18135
18140
18145
18150
18135
18160
18165
18170
18175
18180
18185
18190
18195
18200
18205
18210
18215
1822

18225
18230
18235
18240
18245
18230
182355
18260
18265
18270
18275
18280
18285
18290
18295
18300
18305
18310
18315

18320
18325

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM

NP = No. of Vertex Points.

for i=1 to NP:

X{(i)= DIM Vertex X values
Y{(i)= DIM Vertex Y values

For TYPE 1 and 2 Painting
also enter values for...
RA = Angle X/Y Ratio

= O for Vertical
= +-1 for +-45 degrees
= 100 for Horizontal

P()= DIM array for spacing
-.Parity Color—-Lock Option:
.P(0O)= 0 for no parity
.P(O)= 1 for odd parity
-.P(O)= 2 for even parity
-for i=1 to something:
-ABS(P(i))= Spaces to move
.S6GN(P(i))=+1, no parity
-SGN(P(i))=—1, parity lock

{4 SPACESXP(1) = O to end data

For TYPE 2 Pixel Painting
also enter values for...
PB & PC For Pixel Blending

Set PB<1 for an even

blend of active and

inactive pixels.

PB= the proportion of

active pixels. PB>0O

Set PBR>=1 for an uneven

blend across the area.

area. Then...

If PC>0 then the start

{4 SPACESJ}color is inactive and
{4 SPACES}the end 1s active.

I+ PC<O then the start

{4 SPACES}color is active and

{4 SPACES}the end is inactive.
When ABS(PC)=1 then the

{4 SPACES3start color phases out
{4 SPACES}evenly to the end.
When ABS(PC)>1 then the

{4 SPACES)start color phases out
{4 SPACES}more slowly.

When ABS(PC)<1 then the

{4 SPACES}Ystart color phases out
{4 SPACES}more rapidly.

For TYPE = 7, to COLOR RA,

155

Chapter Three. Advanced Graphics And Game Utilities.

18330
18335
18340
18345
18350
18355
18360
18365
18370
18375
18380
18400
18405

18410

18415

18420

184235
18430
18435
18440
18445

18450
18455
18460
184465
18470
18480

18485

18490
18495

18500
18505

18510
18515
18520
18525

18527
18530

156

REM enter with RA = 0 or 1

REM owswwese R w wimm m e Wi

REM S()= DIM array used here

REM T()= DIM array used here

REM U()= DIM array used here

REM V()= DIM array used here

REM Variable names used...

REM CO,C1,C2,23,14,125,129,

REM X1,Y1,X2,Y2,CA,SA

REM K,L.M,N,IM,IP,MAX,MIN,NOW

REM ===========================
CO0=0:C1=1:C2=2:19=999

IF TYPE=3 THEN PLOT X(C1).Y(C1):FOR N=
C2 TO NP:DRAWTO X(N),Y{(N):NEXT N:DRAWT
0 X(C1),Y{(C1):RETURN

IF TYPE=4 THEN FOR N=C1 TO NF:PLOT X (N
), Y{N) :NEXT N:RETURN

IF TYPE=S THEN FOR N=C1 TO NP STEP C2:
PLOT X(N),Y{(N):DRAWTO X{(N+C1l),Y (N+C1):
NEXT N:RETURN

IF TYPE=6, THEN FOR N=C1 TO NP:DRAWTO X
(N) ,Y{N) : NEXT N:RETURN

IF TYPE=7 THEN COLOR RA:RETURN
Z15=0.5:IF RA=C2 THEN Z5=0.3535

IF RA=-C2 THEN Z5=0.18

Z3=—-C1:1IF RA<>CO THEN Z3=SGN(RA)
SA=SER(1/{(1+RA"C2))%XZ3:IF ABS(5A)<0.2
THEN SA=CO

CA=SER(1-5A~C2)

REM Rotate X(),Y{() to U(),V():

FOR M=C1 TO NP

U(M)=X(M) XCA+Y (M) ¥x5A
VIM)=—X (M) XSA+Y (M) XCA:NEXT M

FOR M=C1 TO NP:N=M+C1:IF N>NP THEN N=C
1

REM Calculate slopes S() amd Y axis in
tercepts T{)

IF U(M)=U(N) THEN S(M)=Z9:G0T0O 18510
S(M)=(V(N)-VM))/(U(N)-UM)):T(M)=V (M)
—S (M) XU M)

IF ABS(S5(M))>Z9 THEN S(M)=Z9

IF ABS(S5(M))<C1/7Z9 THEN S({(M)=Co0O

NEXT M:MAX=-Z9:MIN=Z9:FOR M=C1 TO NP:Z

3=V (M)

IF MAX<Z3 THEN MAX=Z3

IF MIN>Z3 THEN MIN=Z3:N=M

NEXT M:MXMN=MAX-MIN: NOW=MIN: IM=N-C1:IF
IM{C1 THEN IM=NP

IP=N+C1:IF IP>NP THEN IP=C1

IF P(C1)=CO THEN P(C1)=C1:P<(C2)=CO

Chapter Three. Advanced Graphics And Game Utilities.

18535
18540
18545
18550

18555
18560

18565
18570
18575
18580
18585

18520

18595
18600
18605
18610
18615
18620

18635
18643
18645

18650
18655
18660
18665
18670

18675
18680
18685
18690
18695
18700
18705

18710
18750
18755
18760
18765
18770
18775
18780
18785
18790

M=C1:IF P(M)<CO THEN M=C1

GOTO 18675

REM Calculate intercepts...

IF S(N)=Z9 OR S(N)=CO THEN Z3=U(N):G0T
0 18560

Z3I=(NOW-T (N)) /S (N)

IF S(IM)=Z9 OR S(IM)=CO THEN Z4=U(IM):
GOTO 18575

Z4=(NOW-T(IM))/S(IM)

REM Rotate U(),V() to X<¢),Y():
X1=INT(Z3XCA-NOWXSA+Z5)

IF NOW<>MIN AND P (M) >=CO THEN 18395

IF P(C0O)=C1 THEN IF X1=C2Z2xINT(X1/7C2) T
HEN X1=X1+C1

IF P(CO)=C2 THEN IF X1<>C2%XINT(X1/C2)
THEN X1=X1+C1

YI=INT(ZZIXSA+NOWXCA+Z35)
Y2=INT(Z4XSA+NOWXCA+Z3)

IF SA=C0O0 THEN X2=Z4x%xCA

IF SA<>CO THEN X2=X1+(Y2-Y1) XRA

REM Bar Painting...... W W E

IF TYPE=1 THEN PLOT X1,Y1:DRAWTO X2Z,Y2
:GOTO 18660

REM Pixel Painting.s.cecceccecenas

IF PBRB<C1 THEN PR=FR:GOTO 18650
PR=((NOW-MIN) /MXMN) ~"ABS(PC) : IF PC<CO T
HEN PR=C1-PR

GOSUE LINEF

REM swissasaas e e T gy
NOW=Y1XCA—-X1%xS

REM Increment NOW for next bar
NOW=NOW+ABS (P (M)) :M=M+C1l:IF P(M)=CO TH
EN M=C1

IF NOW<KV(IP) THEN 18&90

IF V(IP)=MAX THEN RETURN

N=IP: IP=IP+C1:1IF IP>NP THEN IP=C1

IF NOW<V(IM) THEN GOTO 18550

IF V(IM)=MAX THEN RETURN

IM=IM-C1l:IF IM<C1 THEN IM=NP

GOTO 18550

REM ===========================

REM LINEF Subroutine

REM Draws a line pixel by pixel

REM With a probability to plot

REM or skip each pixel.

REM X1,¥Y1 = start point
REM X2,Y2 = end point
REM PR = probability to PLOT

REM . {3 SPACES3>>=0 and <=1
CO=0:€C1=1:C255=255:C230=230:C198=198

157

Chapter Three. Advanced Graphics And Game Utilities.

18795
18800

18805
18810
18815
18820
18825
18830
18835
18840
18845
18850
18855
18860

18865
18870
18875
18880
18883
18884
18885
18890
18895
18900
18905
18910
18915

189220

18925
18930
18935
18940
18945
18950

18955
18960

158

C92=92:C97=97:C103=103:C106=106:C120=1
20
K=X2-X1:L=Y2-Y1:Z3=ABS(K):Z4=ABS (L) :BI
=PRX¥C255

IF K=CO AND L=CO THEN RETURN

IF K<CO THEN 18840
LINE$(C92,C92)=CHR$(C230) : REM INC
LINE$(C97.C97)=CHR$(COQ)
LINE$(C103,C103)=CHR$(C1)
LINE$(C106,C106)=CHR$ (C230)

GOTO 18860
LINE$(C92,C92)=CHR$(C198) : REM DEC
LINE$(C97,C97)=CHR$(C255)
LINE$(C103,C103)=CHR$(CO)
LINE$(C106,C106)=CHR$(C198)
LINE$(C120,C120)=CHR$(C230):IF L<CO TH
EN LINE$(C120,C120)=CHR$(C198)

IF Z3=CO THEN Z3=C1/C255

IF Z4=CO THEN Z4=C1/C255

IF Z3>=24 THEN K=23:Y2=23/24:X2=1:1IF Y
2>C255 THEN Y2=C255

IF Z3<Z4 THEN K=Z4:X2=Z4/73:Y2=1:1IF X2
>C255 THEN X2=C255

IF K<1 THEN RETURN

POKE 752,C1

L= USR(ADR(LINE$) K,X1,Y1,X2,Y2,BI)
RETURN

BEM o owe sne 65 He S Bale s s w5

DIM LINES$(136):RESTORE 18910:L INEP=187
90

FOR K=1 TO 136:READ L:LINE%$(K,K)=CHR% (
L) :NEXT K:RETURN

DATA 104,104,133,211,104,133,210,104,1
33,86

DATA 104,133,85,104,104,133,84,104,104
, 133

DATA 209,170,104,104,133,208,168,104,1
04,133

DATA 207,173,10,210,24,101,207, 144,46,
138

DATA 72,152,72,165,86,72,165,85,72,165
DATA B84,72,162,96,169,11,157,66,3,169

DATA 0,157,72,3,157,73,3,169,1,32

DATA 86,228,104,133,84,104,133,85,104,
13X

DATA 86,104,168,104,170,202,208,19,165
s 209

DATA 170,230,85,165,85,201,0,208,8, 165
DATA 86,201,1,240,30,230,86,169,255,19
?

Chapter Three. Advanced Graphics And Game Utilities.

18965 DATA 208,240,8,136,2¢68,5,165,208,168,2
30

18970 DATA 84,198,210,208,162,169,0,197,211,
240

18975 DATA 4,198,211,240,152,95

159

Chapter Three. Advanced Graphics And Game Utilities.

TEXTPLOT
Makes A Game

David Plotkin

The animation capabilities of “Textplot” (sece COMPUTE!, November,
1981, #18) are exploited in Paratroop Attack, a multicolor action game.
Requires 24K.

The machine language subroutine entitled Textplot (COMPUTE!,
November, 1981, #18) is an excellent tool for animating interesting
shapes in Graphics modes 3-7 on the Atari home computer. It is
probably the easiest and most straightforward way to effect animation
with any kind of speed in these modes. There are really only two
things to remember when using Textplot. The first is that the horizontal
resolution is only from zero to 19 in Graphics 7, whereas such
statements as LOCATE, PLOT, etc., use a resolution from zero to
159. Thus a conversion from the standard Graphics coordinate system
to the Textplot coordinate system has to be made. As an example, the
point located at Textplot coordinate X =13 is actually at 3" 8 =24 for
the pixel at the far left of the area occupied by the Textplot shape.
The horizontal coordinate varies from 24 +0=24 to 24+ 7=31, with
pixel 32 at the far left of the area occupied by the Textplot X coordinate
equal to four. That is, each Textplot shape is eight pixels wide.

The second thing to remember is that, when using a redefined
character set protected by POKEing a lower value of RAMTOP into
location 106, the step-back must be 4K, or 16 pages (see line 32000).
This is because the Graphics 7 display list, which is located just below
RAMTOP, must not cross a 4K boundary, or strange things happen.

One other thing. This program gives you joystick jockeys a break
— it uses paddles to ease the wear and tear on the wrists and fingers.

So ... your gun emplacement is under attack by enemy
paratroopers. Periodically, a helicopter flies onto the screen and
begins dropping paratroopers, who float toward the ground. Should
four of the paratroopers get to the ground safely on either side of your
gun emplacement, they will blow you up and you will have lost the
game. Also, if a paratrooper drops directly onto your gun emplacement,
you will be blown up. Your only defense is the high powered laser

160

Chapter Three. Advanced Graphics And Game Utilities.

mounted on your gun emplacement. Its aiming system consists of a
target cursor (shaped like a +) which moves about the edge of the
screen controlled by Paddle (0). Pressing the red button on the paddle
fires the laser, unleashing an energy bolt from the gun to the cursor,
destroying everything in its path. Hitting the helicopter causes it to
blow up, and hitting the paratrooper causes him to blow up. Hitting
the parachute is just as good, since it causes the paratrooper to fall to
the ground without his parachute. Also, if one paratrooper lands on
another, they are both put out of action.

It takes a while to get used to the paddle aiming system, because
there is a delay between moving the paddle and the response of the
cursor, so don’t turn the paddle too far in trying to get the cursor to
move. Unlike with the joystick, however, you can jump the cursor
from one edge of the screen to the other in a single flick of the wrist.
As your skill increases, the enemy sends better paratroopers against
you (they fall faster). A score of 800 points wins the game.

[think you will enjoy this little game as it provides a test of how
skillful you are with the paddles on your Atari.

Documentation

Variables:

CX,CY Coordinates of the target cursor ~ SC score

H=0, no helicopter; =1, helicopter on screen

HX,HY X and Y coordinates of the helicopter

T(N) =0, paratrooper not on screen; = |, paratrooper on screen
TX(N), TY(N) X and Y coordinates of each paratrooper

P paddle (0)

HP position variable of helicopter

PP position variable of paratrooper

These position variables determine what shapes the helicopter or
paratroopers have.

Program Description

1-4 Initializes subroutines and title page.

5-10 Sets up graphics and dimension arrays.
40-50 Specifies colors and initializes variables.
60-70 Draws terrain and gun emplacement.
75 Puts score on the screen.

80-220 Aims and fires paddle operated laser.
230-280 Tests for hit on the helicopter.

161

Chapter Three. Advanced Graphics And Game Utilities.

290-340 Tests for hits on the paratroopers.

350-380 Tests for hits on the parachutes.

385-390 Updates score, jumps to end of game on high score.
400-430 Launches new helicopter.

440-470 Advances existing helicopter.

480-510 Launches new paratroopers.

520-580 Advances existing paratroopers and tests for
540 Landing of paratrooper on ground
550 Landing of paratrooper on another paratrooper
560 Landing of paratrooper on the gun emplacement.

525 Increases paratrooper fall rate based on the score

600-650 Subroutine for paratrooper with hole in parachute
660-690 Subroutine for one paratrooper landing on another
700-750 Subroutine for blowing up gun emplacement

800-840 End of game (lost) display

850-870 Erases remaining paratroopers when four have landed.

880-920 Flies helicopter off-screen when four paratroopers have
landed.

930-1060 Subroutine to line up paratroopers on the left and destroy
the gun emplacement

1070-1190 Subroutine to line paratroopers on the right and destroy
the gun emplacement

1200-1280 End of game (won) title and tune
1500-1550 Title page

20000-20430 TEXTPLOT

32000-32200 Redefined character set

162

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. TEXTPLOT Makes A Game.

GOSUB 32000:CLR

GOSUB 20000

GOSUB 1500

DIM TX(25),TY(23),T{(25)

O GRAPHICS 23:POKE 752,1:5C=0:POKE 73536, PEEK
(106)

40 SETCOLOR 4,9,2:SETCOLOR 2,12,6

S50 P=0:FOR N=1 T0O 25:T(N)=0:TX(N)=0:TY(N)=0:
NEXT N:N1=0:N2=0:H=0:HX=0:HY=0:CX=0:C¥Y¥=0

60 COLOR 3:FOR W=80 TO 92:PLOT O,W:DRAWTO 15
P, WNEXT W

70 COLOR 1:FOR Y=72 T0 79:PLOT 75,Y:DRAWTO 8
S,Y:NEXT Y:D=USR(1536,9,1,10,66)

75 D=USR(1536,48,2,1,82):D=USR(15346,48,2,2,8
2):D=USR(1536,48,2,3,82)

80 FOR M=1 TO 2:D=USR(1536,32,2,CX,CY)

20 P=PADDLE(0):IF P<165 THEN GOTO 110

100 CY=P—-164:CX=0:60T0 140

110 IF P<6S THEN GOTO 130

120 CX=INT((164-P)/3):CY=2:60T0 140

130 CX=19:CY=64—-P

140 COLOR 2:D=USR(1536,8,2,CX,CY):NEXT M

150 IF PTRIG(O)=1 THEN GOTO 230

160 IF P>190 THEN D=USR(1536,9,1,10,66) :G0T0
210

170 IF P>154 THEN D=USR(1536,10,1,10,66):G0T
0 210

180 IF P>80 THEN D=USR(1536,11,1,10,66):60T0
210

190 IF P>44 THEN D=USR(1536,12,1,10,66):60T0
210

200 D=USR(1536,13,1,10,66)

210 COLOR 2:PLOT 80,65:DRAWTO 8%CX,CY:COLOR
0:FPLOT 80,65:DRAWTO BXCX,CY

220 FOR X=1 TO 10:SOUND 0,30,10,8:NEXT X:SOU
ND 0,0,0,0

230 IF H=0 THEN GOTO 290

240 FOR M=2 TO 6:LOCATE HX%8+M,HY+3,Z:IF Z<>
0 THEN GOTO 280

250 SOUND 1,0,0,0:SOUND 0,30,8,8:D=USR(1536,
14,2,HX,HY) : SC=SC+10

260 FOR @=1 TC 30:NEXT @

270 SOUND 0,0,0,0:D=USR(1536,32,2,HX,HY):H=0
:HX=0:HY=0:60T0 290

280 NEXT M

290 FOR M=1 TO S:IF T(M)=0 THEN GOTO 340

300 LOCATE TX(M)Xx8+3,TY(M)+4,Z:LOCATE TX(M)X
8+4,TY(M)+4,Z1:LOCATE TX(M)X8+4,TY(M)+3,
Z2:LO0CATE TX(M)X8+2,TY(M)+4,23

=UURN -

163

Chapter Three. Advanced Graphics And Game Utilities.

305

U
W
]

340
350
360

370
380
385

386

390
400
410
420

430
440

450
460
470
480
490

500
510
320
925

530

340
5435

546
547
548

550
560
570

580
390

164

IF Z<>0 AND Z1<>0 AND Z2<>0 AND Z3<>0 TH
EN GOTO 340

SOUND 0,15,8,8:D=USR(1536,14,2, TX (M), TY(

M)) : SC=SC+5

FOR @=1 TO 20:NEXT @

SOUND ©0,0,0,0:D=USR(1536,32,2, TX(M),TY(M
)):T(M)=0:TX(M)=0:TY(M)=0

NEXT M

FOR M=1 TO S5:IF T(M)=0 THEN GOTO 380

FOR N=2 TO S:LOCATE TX(M)XB8+N,TY(M),Z:IF
Z=0 THEN GOSUB 600:SC=SC+5:G0T0 380

NEXT N

NEXT M

A=INT(SC/100) :B=INT(SC/10)-A%x10:C=SC-100
¥A-10%¥R: A=A+48: B=B+48:C=C+48

D=USR(1536,A,2,1,82):D=USR(1536,B,2,2,82
) :D=USR(1536,C,2,3,82)

IF SC>800 THEN GOTO 1200

IF H<>0 THEN GOTO 440

W=INT(RND(O)x3+1):IF W>1 THEN GOTO 520

H=1:S50UND 1,20,8,4:HX=1:HY=INT (RND (0) *x30

+10) : HP=6

D=USR(1536,6,1,HX,HY):60T0 480

D=USR(1536,32,1,HX,HY) :HX=HX+1:IF HX>18

THEN H=0:SOUND 1,0,0,0:50T0 520

IF HP=6 THEN HF=7:G0OTO 470

HP=6

D=USR(1536,HP, 1,HX,HY)

FOR N=1 TO 5:IF T(N)<>0 THEN GOTO 510

W=INT(RND(O)%4+1):IF W=1 AND HX>=2 THEN

T(N)=1zTX(N)=HX-1:TY(N)=HY:D=USR(1536,0,

3,TX(N),TY (N))

GOTO 520

NEXT N

FOR N=1 TO S5:IF T(N)=0 THEN GOTO 580

J=INT(SC/100)+1:IF TY(N)+J>66 THEN J=67-

TY(N):IF J<1 THEN J=1

D=USR(1536,32,3, TX(N),TY(N)):zTY(N)=TY (N)

+J

IF TY(N)<>72 THEN GOTO S50

D=USR(1535,1,3, TX(N),TY{(N)):T(N)=0:IF TX
(N)<10 THEN N1=N1+1:60T0 547

N2=N2+1

IF N1=4 OR N2=4 THEN GOTO 850

G0TO 580

IF TY(N)=67 THEN LOCATE TX(N)%8+3,76,2Z:1

F Z=3 THEN GOSUE 660:60T0 580

IF TY(N)>=58 AND TX(N)=10 THEN GOTO 700

D=USR{15336,0,3, TX(N) ,TY (N))
NEXT N
GOTO 80

Chapter Three. Advanced Graphics And Game Ultilities.

600 D=USR(1536,1,.3,TX(M),TY(M))

610 FOR @=TY(M) TO 72 STEP 2:D=USR(1536,1,3,
TX (M), Q)

615 IF @<>67 AND @<>68 THEN GOTO 620

616 LOCATE TX(M)X8+3,76,Z:1IF Z<>3 THEN GOTO
620

617 IF TX{(M)<10 THEN N1=N1-1

618 N2=N2-1

620 D=USR(1536,32,3,TX(M),R):S0OUND 2,90-Q,10
.8

630 NEXT @:D=USR(1536,4,3,TX(M),72):T{(M)=0:T
Y (M) =0

640 FOR =1 TO 30:SOUND 2,30,8,8:NEXT @:SOUN
D 2,0,0,0

650 RETURN

660 D=USR(1536,4,3,TX(N),72):S50UND 0,30,8,8:
D=USR(1536,14,2, TX(N),TY(N))

670 FOR @=1 TO 30:NEXT @:D=USR(1536,32,2,TX(
N), TY(N)):SOUND 0,0,0,0

680 T(N)=0:IF TX(N)<10 THEN N1=N1-1:RETURN

690 N2=N2-1:RETURN

760 D=USR(1536,1,3,10,60):FOR @=1 TO S0:NEXT
e

710 FOR @=54 TO 80 STEP 4:FOR 21=9 TO 11

720 SOUND 0,Q,8,8:SOUND 1,R21,8,8:D=USR (1536,
14,2,01,Q)

730 FOR M=1 TO 10:NEXT M:D=USR(1536,32,2,01,

@)

740 NEXT @1:NEXT @:SOUND 0,0,0,0:S0OUND 1,0,0
0
3

750 FOR @=1 TO BO:NEXT @

800 GRAPHICS 1+16:PRINT #6;"YOU LOST'! YODUR"

:PRINT #6;"GUN WAS DESTROYED!'"

810 PRINT #6;"FINAL SCORE ";SC:PRINT #6;"PO
INTS. PRESS FIRE"

820 PRINT #6;"TO PLAY AGAIN"

830 IF PTRIG(0)=1 THEN BOTO 830

840 GOTO 10

850 FOR N=1 TO 10:IF T(N)=0 THEN GOTO 870

860 D=USR(1536,32,3,TX(N),TY(N))

870 NEXT N

880 IF H=0 THEN GOTO 930

890 FOR N=HX TO 19:1IF HP=6 THEN HP=7:G60T0 91
0

900 HP=7

910 D=USR(1536,HP,1,N,HY):D=USR(1536,32,1,N,
HY)

920 NEXT N

930 SOUND 1,0,0,0:IF N2=4 THEN GOTO 1070

940 FOR N=1 TO 4:FOR @=N TO 10:TX=(10-Q) x8+3

950 LOCATE TX,76,Z:1IF Z=3 THEN PP=2:60TO 970

960 NEXT @

165

Chapter Three. Advanced Graphics And Game Utilities.

Q70

80
290
1000

1010
1020

1030
1040
1050
1060
1070
1080

1090
1100

1110
1120
1130

1140
1150

1160
1170
1180

1190
1200

1210
1220
1230
1240
1250
1260

L2770
1280

1500

1510
1520

166

FOR TT=10-@ TO 10-N:D=USR(1536,PP,3,TT,7
2):FOR W=1 TO SO0:NEXT W

IF PP=2 THEN PP=3:60T0 1000

PP=2

D=USR(1536,32,3,TT,72) :NEXT TT:D=USR(15
Byl 5, TT=1,72)

NEXT N
D=USR(1536,5,3,9,72):D=USR(1536,32,3,6,
72):FOR W=1 TO SO:NEXT W
D=USR(1536,5,3,9, 64):D=USR(1536,32,3,7,
72):FOR W=1 TO SO:NEXT W
D=USR(1536,5,3,9,56):D=USR(1536,32,3,8,
72):FOR W=1 TO SO:NEXT W
D=USR(1536,2,3,9,48):FOR W=1 TO S0:NEXT
W

D=USR(1536,32,3,9,48):60T0 700

FOR N=1 TO 4:FOR Q=N TO 9:TX=(10+0Q) %8+3
LOCATE TX,76,Z:1F Z=3 THEN PP=2:60T0 11
00

NEXT @

FOR TT=10+Q TO 10+N STEP —-1:D=USR(1536,
PP,3,TT,72):FOR W=1 TO SO:NEXT W

IF PP=2 THEN PP=3:G60TO0 1130

PP=2

D=USR(1536,32,3,TT,72):NEXT TT:D=USR(15
36,1,3,TT+1,72)

NEXT N

D=USR(1536,5,3,11,72) : D=USR(1536,32,3, 1
4,72):FOR W=1 TO SO:NEXT W

D=USR(1536,5,3,11,64) : D=USR (1536, 32,3, 1
o,72).FDR W=1 TO S0:NEXT W
D=USR(1536,5,3,11,56) : D=USR(1536, 32,3, 1

2 7°)-FFR =1 TD 50:NEXT W
D=USR(1536,2,3,11,48):FOR W=1 TO S0:NEX
T W

D=USR(1536,32,3,11,48):60T0 700
GRAPHICS 1+16:PRINT #63;"VERY GOOD'!'' YOU
“":PRINT #6; "WON THIS ROUND'™"

SOUND 0,40,10,8:G0SUB 1280

SOUND 0,30,10,8:60SUB 1280

SOUND ©,24,10,8:G60SUR 1280

SOUND ©0,20,10,8:G0SUB 1280

SOUND 0,24,10,8:G0SUR 1280

SOUND 0,20,10,8:G0SUB 1280:G0SUB 1280:6
OSUB 1280

SOUND ©0,0,0,0:60T0O 810

FOR W=1 TO 45:NEXT W:RETURN

GRAPHICS 1+16:FOR @=1 TO 7:PRINT #6:NEX
T @:PRINT #6; "¥PARATROOP [FLfHEEG*" : PRINT
#63"by DAVID PLOTKIN"

FOR @=1 TO 15:SETCOLOR 2,@,5

FOR W=1 TO 20:S0UND 0,56,10,8:S0UND 1,5

Chapter Three. Advanced Graphics And Game Utilities.

1530

1540
1550
20000

20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250
20260
20270
20280
20290
20300

20310
20320
20330
20340
20350
20360
20370
20380
20390
20400
20410
20420
20430
32000

6,6,4:NEXT W

FOR W=1 TO 20:SOUND 0,78,10,8:SOUND 1,7
8,6,4:NEXT W

NEXT Q@:SOUND 0,0,0,0:S0OUND 1,0,0,0
RETURN

ML=1536:FOR I=0 T0O 252:READ A: POKE ML+
I.A:NEXT I:RETURN

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
POKE

104,240,10,201,4,240
11,170,104,104,202,208
251,169,253,76,164,24&
104,133,195,104,201, 128
144,4,41,127,198,195
170,141,250,6,224,96
176,15,169,64,224,32
144,2,169,224,24,109
250,6,141,250,6, 104
104,141,251,6,104,104
141,252,6,14,252,6
104,104,141,253,6,133
186,166,87,169,10,224
3,240,8,169,20,224
5,240,2,169,40,133
207,133,187,165,88, 133
203,165,89,133,204,32
228,6,24,173,252,6
101,203,133,203,144,2
230,204,24,165,203,101
212,133,203,165,204,101
213,133,204,173,250,6
133,187,169,8,133,186
32,228,6,165,212,133
205,173,244,2,101,213
133,206,160,0,162,8
169,0,133,208,133,209
177,205,69,195,72,104
10,72,144,8,24,173
251,6,5,208,133,208

224,1,240,8,6,208
38,209,6,208,38, 209
202,208,228,104,152,72
160,0,165,209,145,203
200,165,208,145,203, 104
168,24,165,203,101,207
133,203,144,2,230,204
200,192,8,208,183,96
169,0,133,212,162,8
70,186,144,3,24,101
187,106,102,212,202,208
243,133,213,96,0,1

28

106,PEEK(106)-16: GRAPHICS 0:START

167

Chapter Three. Advanced Graphics And Game Utilities.

32010
32020

32030
32040

32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115

168

=(PEEK(106)) %256: POKE 756,START/256:P0
KE 752,1

? "INITIALIZING...TAKES ABOUT 40 SECON
DS*"

FOR Z=0 TO 1023:POKE START+Z,PEEK(5734
4+7Z):NEXT Z:RESTORE 32100

READ X:IF X=—-1 THEN RESTORE :RETURN
FOR Y=0 TO 7:READ Z:POKE X+Y+START,Z:N
EXT Y:GOTO 32030

DATA 512,126,195,129,90,60,24,36,66
DATA 520,0,0,24,24,126,24,36,66

DATA 528,0,0,24,24,56,24,16,24

DATA 536,0,0,24,24,28,24,36,66

DATA 544,0,0,0,0,0,0,90,126

DATA 552,66,66,90,90,126,24,36,566

DATA 560,31,4,142,126,14,4,14,0

DATA S68,0,4,142,126,14,4,14,0

DATA 576,0,0,0,16,56,16,0,0

DATA 584,0,0,248,24,60,60,126,126

DATA 592,128,64,32,24,60,60,126,126
DATA 600,16,16,16,24,60,60,126,126
DATA 608,),2,4,24,60,60,126,126

DATA 616,0,0,31,24,60,60,126,126

DATA 624,73,42,20,119,20,42,73,8

DATA —1

Chapter Three. Advanced Graphics And Game Utilities.

Fun With Scrolling

David Plotkin

While this article doesn't tackle the finer points of pixel scrolling, it does
present several useful BASIC routines to help you learn more about
“coarse’’ scrolling ... the ability to mowve lines of graphics vertically and
horizontally.

Many of the graphic capabilities of the Atari home computers have
been documented in COMPUTE! Magazine: alternate character sets
(“Superfont”)'; use of characters in graphics modes (“Textplot”)?;
and several articles on Player/Missile graphics, including some
excellent machine language subroutines. Notably absent has been one
of the more spectacular abilities of the Atari — scrolling. For those
who don’t know, scrolling is the movement of the text or graphics on
the screen in whole or in part. The arcade games Scramble and
Defender use scrolling. And few of you avid gamesters have not seen
Greg Christensen’s “Caverns of Mars,” a game that is so good that
Atari itself is marketing it as “official” Atari. In the pages that follow,
[will tell you how to scroll, and provide a program for a game which
not only scrolls but includes some other tricks with P/M graphics.

First, though, a few words about the types of scrolling. Horizontal
scrolling scrolls left and right; vertical scrolling scrolls up and down.
Two subsets are coarse and fine scrolling, both applicable to horizontal
and vertical scrolling. Coarse and fine scrolling can be combined to
produce combined scrolling (tricky, huh?), which is the type of
scrolling that games such as “Caverns of Mars” use.

What does all this mean? Well ... coarse scrolling is movement of
text or graphics in increments of one letter or one row or one column.
Thus, graphics mode 3 has 24 rows from the top to the bottom of the
screen, and 24 coarse vertical scrolls will move all the picture on the
original screen off the screen. Fine scrolling allows for scrolling in the
pixel elements of coarse scrolling, so the motion appears smoother.
For example, in graphics mode 3, each coarse scroll is broken into
eight finer scrolls. Fine scrolling by itself can only move screen data a
total of one row or column, so the combination of coarse and fine
scrolling is used to produce smooth motion over as many screens of
data as required. Unfortunately (although combined scrolling is not

169

Chapter Three. Advanced Graphics And Game Ultilities.

particularly difficult or complicated), the necessary transition from
fine to coarse scrolling and back which occurs during combined
scrolling must happen very fast, too fast for BASIC. Otherwise, there
will be some distracting displays on the screen.

A machine language routine for combined scrolling would
probably do the screen manipulations during a vertical blank, which
occurs 60 times a second when the TV electron gun has finished
drawing the picture and is returning to the top of the tube to draw the
next screen. Thus, the distracting graphics which occur when using
combined scrolling in BASIC would not be seen.

The balance of this article will deal only with coarse scrolling,
which is all you need for most applications. The Tricky Tutorial #2
by Santa Cruz Educational Software presents a machine language
routine (for inclusion in a BASIC program — you don’t need an
assembler cartridge) for vertical combined scrolling which works very
well. T will not reproduce it here, but I urge readers interested in
learning combined scrolling to obtain the program and try the
examples. The Tricky Tutorial #2 and this article will give you the
necessary tools for some really great graphics displays.

Atari home computers keep the address of the Display List at
memory locations 560 and 561 (PEEK(560) + 256 *PEEK(561)). The
Display List is a set of instructions in memory that the computer
uses to find out what to put on the screen. Every time you use a
graphics # command, the computer creates a Display List somewhere
in memory and puts the address at locations 560 and 561. The fifth
and sixth numbers in the Display List are the address of screen memory
— the first byte to be displayed on the screen. If you adjust the value of
the number stored here, all the data on the screen will move — it will
scroll!

So plug in your joystick and punch in the following program:

10 GRAPHICS 3:COLOR 1:PLOT 0,0:DRAWTO 40,20

20 DL=PEEK(560) +2536%¥PEEK (361)

30 DL4=DL+4:DL53=DL+5: NUML=PEEK (DL4) : NUMH=PEE
K(DLS)

40 ST=STICK ((0)

S50 IF ST=11 THEN NUML=NUML+1

60 IF ST=7 THEN NUML=NUML-1

70 IF NUML<O THEN G6OTO 110

80 IF NUML>256 THEN GOTO 140

90 NUML=NUML-256: NUMH=NUMH+1

100 GOTO 120

110 NUML=NUML+256: NUMH=NUMH-1

120 IF NUMH<O THEN GOTO 40

170

Chapter Three. Advanced Graphics And Game Utilities.

130 IF NUMH>255 THEN GOTO 40
140 POKE DL4,NUML:POKE DLS5S, NUMH
150 GOTO 40

Line 20 gets the address of the Display List, while line 30 establishes
the variable for the fifth and sixth numbers on the Display List (DL4
is the fifth number). The loop from 40 to 60 changes the variable
corresponding to the low part of the screen memory based on the
position of the joystick. Lines 70 to 110 adjust the low part (NUML)
and high part (NUMH) of screen memory to keep the values from
going outside “legal” values. Thus, if NUML gets above 255, then
you subtract 256 from it and add one to NUMH. And if NUML gets
below zero, then you add 256 to it and subtract one from NUMH.
Lines 120 and 130 keep the high part of screen memory from going
outside of its limits. Once you reach NUMH =0 or NUMH =256
that's as far as you can go. Finally, line 140 POKEs the adjusted values
of the address of screen memory and goes back to start again.

A few things you will notice about this program: as you scroll
right with your joystick, the picture on the screen disappears off the
left edge of your screen and reappears from the right edge. After ten
horizontal scrolls, the line is once more on the screen, but now is
displaced up one line. This is because in graphics 3, there are ten
bytes per line of memory. Below is a chart of graphics modes versus
some useful quantities.

GRAPHICS MODE 0 1 2 3 4 5 6 7 8
Rows per screen 24 24 12 24 48 48 96 96 192
Bytes per row 40 20 20 10 10 20 20 40 40

Every time you scroll a horizontal distance equal to the number
of bytes per line (ten times in graphics 3, 40 times in graphics 7, etc.)
you have scrolled vertically by one line. It looks, then, like horizontal
and vertical scrolling are really the same thing. Of course, if you have
ever played “Eastern Front” by Chris Crawford, you know it’s possible
to scroll horizontally without the same data coming back on the
screen. As far as [can tell, to do that you have to modify the Display
List to get the Atari to think that your TV screen is really more than
one screen wide.

For the rest of this article, we'll stick to vertical scrolling. Let’s
change a few lines of the previous program:

50 NUML=NUML+10%(S5T7=4)-10%(ST=13) : NUMH=NUMH+
(NUML >255) — (NUML<O)
60 NUML=NUML+256% (NUML<0)—-236% (NUML>2535)

L7

Chapter Three. Advanced Graphics And Game Ultilities.

and delete lines 70-110. Run the program and push your joystick
forward and back. The new line 50 increments the value of NUML by
10, depending on the joystick position. It also takes care of
incrementing the value of NUMH. Line 60 is responsible for adjusting
the value of NUML if it goes outside its limits. Note that the expressions
in parentheses are equal to one if the expression is true, and zero if the
expression is false. This is much more efficient than the first program.
By scrolling up and down in increments of ten (the number of bytes
per line), you can achieve vertical scrolling without any horizontal
movement.

So far you have not done anything really useful for making
graphics displays. You can scroll down, leaving you with an empty
screen, or up, which shortly produces a brightly colored jumble on the
screen. What has happened is that you are displaying an area of RAM
which has data in it. What you need is an empty protected area of
RAM to put your own pictures into. To get the memory you need,
we'll use a standard Atari trick. Location 106 holds the number of
pages available in RAM. You can find this number, which will vary
depending on how much memory you have installed in your computer,
by doing a PEEK(106). If you then POKE a number into location 106
which is less than the original number, the difference is now protected
and won't be used by the computer because it doesn’t know that it is
there. See the program following to see exactly how to code these
commands. Now set up a loop to read zeroes into your protected
memory and it will be blank.

The key to scrolling is defining the multi-screen picture to scroll
across. I've already told you about locations DL4 and DL5, which
hold the address of the beginning of screen memory. To understand
how to set up your own pictures, there are two more memory locations
you need to know about: 88 and 89. These memory locations hold the
address of the start of write memory — the memory location where the
computer is to execute commands from the keyboard or from a
running program. The reason that you see the results of keyboard or
program inputs on the screen is that, normally, the address of Display
Memory and the address of Write Memory are the same. But they
don’t have to be. If you change the address of Write Memory and then
execute some PLOTs and DRAWTOs, you will see nothing on the
screen. However, when you change the Display Memory to match the
Write Memory, the picture you've drawn will flash onto the screen.
This is a technique known as page flipping.

To utilize this technique, change the Write Memory to write
into your protected area of memory and draw the screen as you

172

Chapter Three. Advanced Graphics And Game Utilities.

normally would. Then change the address of the Write Memory to be
one screen away from where it was, and draw another screen. You can
keep this up as long as you like, generating as many screens edge-to-edge
as your memory allows. Then place your Display Memory at one end
or the other (or in the middle if you like), and scroll away. The
screens will run together if you've done it right, so you won't see the
start of one screen and the end of another. And what is the memory
length of one screen, for incrementing the Write Memory! Refer back
to my chart. If you take the number of rows per screen and multiply by
the number of bytes per row, you'll get the number of bytes per screen
to move the Write Memory. In Graphics 3, for example, one screen is
24710 =240 bytes. Note that, in general, you will have to change
both the high and low parts of Write Memory (locations 89 and 88,
respectively) to get a total move of 240 bytes. The math is the same as
that for the Display Memory since:

Write Memory =PEEK(88) + 256 *PEEK(89)

and the low part and high part of Write Memory have the same limits
as those for the Display Memory. Also notice that each Graphics 7
screen uses up almost 4K of memory! The subroutine which begins at
location 4900 sets up the cavern for the game. I've used the same
screen pattern several times to generate a long cavern from just a few
different screens. Each time one screen is drawn, I change the Write
Memory by 240 bytes and draw the next screen. The POKE 559,0 just
turns off the screen and processor to speed up drawing the cavern.
POKE 559,34 turns them back on again.

P/M graphics is pretty much ideal for the user-controlled shapes
when using scrolling, since it is displayed through a separate system
from normal graphics and, as a result, doesn’t move when scrolling or
page flipping. The excellent machine language routine VBLANK
PM’ was used for moving the space ship, missile, and pterodactyls in
the program at the end of this article. [will refer you to that issue to
familiarize yourself with VBLANK PM. One thing that it does not
seem to be able to do is to change the shapes of the players. Thus,
there is no way to blow up the ship or missile, or make the shapes
appear different when moving left or right. This is not criticism. The
authors were trying to make calls of the program from BASIC
unnecessary, and they’ve done an excellent job. Nonetheless, 1
needed to change the shapes, and there's a fast and easy way to
do that.

Remember “Extending Player Missile Graphics”?? In that article,
a machine language program was presented. Its strong suit was that it
could change the shape of players very quickly. It was called by a

173

Chapter Three. Advanced Graphics And Game Utilities.

command of the form:

A=USR(XXX,PMBASE+FM +Y, MEM)

where XXX =address of the machine language routine

FM = First memory location of the player you want to change (512
for pl.0, double line resolution, 1024 for pl.0, single line
resolution, etc.)

Y = horizontal coordinate of player

MEM = memory address of shape to change player to.

[read this routine into memory between 256 and 511, which are
empty and protected, since page 6 (1536-1792) is used for VBLANK
PM. The data for player shapes was put into the empty P/M memory
from PMBASE to the beginning of Player 0. Once done, every time [
needed to change a player shape, [used a call to Mr. Stoltman’s
routine, and voila!

And so [present “Cavern Battle.” Your spaceship hangs poised
over a deep cavern, at the bottom of which lies a big blue box full of
treasure. The object: get to the bottom of the cavern, retrieve the
treasure, and get out again, all the while avoiding or destroying the
pterodactyls trying to keep you from reaching the treasure. The
pterodactyls can move through the walls of the cavern, but don’t you
try it or you'll blow up! To move your spaceship, use joystick 0, and
press the red button to fire your missile. You can only have one missile
in flight at a time, so don't waste them. If the pterodactyls catch you,
you'll probably blow up, so be careful. You have several things in your
favor — your ship is faster and there are only so many prehistoric birds
per cavern. But they are tenacious and come unerringly for you.
When you reach the bottom of the cavern, hover over the treasure
and you'll hear a tune announcing recovery of the treasure. Head for
the surface and if you make it, you'll hear the little tune again. If you
want to play again, just start down the cavern again. But this time
there will be more pterodactyls. One note of warning: When you first
RUN the program, the screen will go blank for about 45 seconds
while the caverns are drawn. This is normal. Good luck and good
hunting!!

LIST Of VARIABLES

NUML: Low part of screen memory

NUMH: High part of screen memory

SF: Ship flag position-equal to 1 when ship is facing right, equal to -1
when ship is facing left

MF: Missile position flag — works like SF except also equal to zero

174

Chapter Three. Advanced Graphics And Game Utilities.

when missile is exploded or not launched

P2,P3: Position flags for Players 2 and 3. Work like MF
X0,X1,X2,X3: X coordinates of Players

Y0,Y1,Y2,Y3: Y coordinates of Players

PMBASE: Memory location of beginning of PM graphics

T2,T3: Temporary variables for remembering values of P2 and P3
M,MON: Keep track of number of Pterodactyls.

BOT: =0 when ship has not reached bottom of cavern
=1 when ship has reached bottom of cavern

PROGRAM DESCRIPTION

Line 40: Sets high and low part of screen memory variables.

Lines 50-180: Moves ship, scrolls background, keeps Pterodactyls
and missile from moving off the screen, and makes Pterodactyls move
up and down when background scrolls.

Lines 150 and 160: Changes ship direction.

Line 155: Detects arrival of ship at bottom of cavern.

Line 156: Detects arrival of ship at top of cavern after recovery of
treasure.

Lines 162, 165: Line 165 detects a hit on the ship. Line 162 clears
the register which detects a collision between the ship and the
background. The need to do this arises from the fact that occasionally
the background flashes when you are scrolling. This will register as a
collision unless the collision register is cleared. This sequence also will
give an element of randomness to the detection of a collision, since a
collision will only be registered if a resetting of the collision register
occurs between the execution of line 162 and 165. If you don’t like
this randomness, add a small waiting loop to the end of line 162.
Since you only have to delay 1/60 of a second to allow the collision
register to reset, only a small loop is required (resetting occurs during
a Vertical Blank).

Lines 170 and 180: Resets ship position flags.

Lines 200-215: Launches missile.

Line 220: Advances missile and detects for a collision.

Lines 230-240: Explodes missile.

Lines 250-260: Determines if a Pterodactyl is hit — if it is, moves it
off the screen.

Lines 310-350: Launches new Prerodactyls.

Lines 380-440: Changes bird positions and advances them.

175

Chapter Three. Advanced Graphics And Game Utilities.

Lines 500-560: Resets ship to top of cavern when it is destroyed.
Starts game over again when five ships are lost.

Lines 600-640: Plays tune for arrival at the treasure and at top of
cavern.

Lines 1000-2100: Initializes VBLANK PM and reads it into memory.
Line 1075: Reads data for various player shapes into memory.

Line 4900: Steps back top of memory.

Line 4910: Clears protected memory.

Lines 4920-4965: Changes Write Memory and draws each screen.
Lines 4970-4980: Defines Display Memory address variables.

Lines 5100-5500: Data for drawing screens.

References:

l“Superfont,” COMPUTE!, January, 1982, #20

2«Textplot,” COMPUTE!, November, 1981, #18

3“P/M Graphics Made Easy,” COMPUTE!, February, 1982, #21
*Extending Player Missile Graphics,” COMPUTE!, October, 1981, #17

176

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. Fun With Scrolling.

20
30
40

30
60

80

90
100

110

115
120

125
126
130
135
139
140
143
1435

150

155

156

160

162
165

170
180
190
200

210

GOSUB 4900

GOSUB 1000

NUML=PEEK (DL4) : NUMH=PEEK (DL3) : SF=1:MF=0:N
§=5:P2=—1:P3=—-1:M=25:B0O0T=0: MON=M

IF STICK(0)=15 THEN G60TO 50
ST=STICK(0):IF S8T=15 AND STRIG(0)=1 AND P
EEK (53260)=0 THEN GOTO 215
NUML=NUML+10%x(ST=14)-10%(ST=13) : NUMH=NUMH
+ (NUML >255) - (NUML<0)
NUML=NUML+256% (NUML<O) -256% (NUML >25%5)

IF NUMH=RT+14 AND NUML>48 THEN NUML=48:06
0TO 60

IF NUMH=RT+1 AND NUML<136 THEN NUML=136:
GOTO 60

IF P2=0 THEN GOTO 126
Y2=Y2-8%(ST=14)+8%x(ST=13): IF Y2<32 THEN
Y2=32

IF Y2>224 THEN Y2=224

IF P3=0 THEN GOTO 139
Y3=Y3-8%(5T=14)+8%x(ST=13) : IF Y3<32 THEN
Y3=32

IF Y3>224 THEN Y3=224

IF MF=0 THEN 60TO 145
Y1=Y1-8%(ST=14)+8%x(S5T=13):IF Y1<32 THEN
Y1=32

IF Y1>224 THEN Y1=224

POKE PLY+2,Y2:POKE PLY+3,Y3:POKE DL4,NUM
L:POKE DLS,NUMH:IF MF<>0 THEN POKE PLY+1
,Y1:POKE 53278,1

X0=X0+8% (ST=7)-8%(ST=11) : POKE PLX, X0z IF
ST=7 AND SF=—-1 THEN D=USR(260,PMBASE+102
4+Y0,PMBASE+1)

IF NUML=194 AND NUMH=RT+13 AND X0=124 TH
EN BOT=1:G0SUER 600

IF NUML=136 AND NUMH=RT+1 AND BOT=1 THEN
BOT=0: M=MON+5: MON=M:GOTO 600

IF ST=11 AND SF=1 THEN D=USR(260,PMBASE+
1024+Y0, PMBASE+9?)

POKE 53278,1

IF PEEK(33260)<>0 OR PEEK{(53232)<>0 THEN
6070 500

IF 8T=7 THEN SF=1

IF §ST=11 THEN SF=-1

IF STRIG(O)=1 OR MF=1 OR MF=-1 THEN GOTO
215

MF=SF: X1=X0+8%x (MF=1)-8Xx (MF=—-1):Y1=Y0: POK
E PLX+1,X1:POKE PLY+1,Y1

D=USR (260, PMBASE+1280+Y1,PMBASE+17% (MF=1

177

Chapter Three. Advanced Graphics And Game Ultilities.

215
220
230
235

240
250

260
270
300
310
320
330
345
346
350

380
390

400
410

415
420

430
440
450

300

310
220
230
540

545

178

)+25%x (MF=—-1)):1IF PEEK(533253)<>0 0OR PEEK(
53261)<>0 THEN GOTO 230

IF MF=0 THEN GOTO 300

IF PEEK(53253)=0 AND PEEK(53261)=0 THEN

X1=X1+4% (MF=1)-4% (MF=—1) : POKE PLX+1,X1:6

0TO 300

D=USR (260, PMBASE+1280+Y1,PMBASE+33) : SOUN

D 0,100,8,8

FOR W=1 TO S0:NEXT W:D=USR(260,PMBASE+12

80+Y1, PMBASE+41) :MF=0: SOUND 0,0,0,0

IF PEEK(S53261)=0 THEN GOTO 270

IF PEEK(53262)<>0 THEN X2=0:Y2=0:POKE PL
X+2,X2:POKE PLY+2,Y2:T2=P2:P2=0:M=M-1

IF PEEK(53263)<>0 THEN X3=0:Y3=0:POKE PL
X+3,X3:POKE PLY+3,Y3:T3=P3:P3=0:M=M-1

POKE 53278,1

IF M<=0 THEN GOTO 380

IF P2<>0 THEN GOTO 345
X=INT(RND(0)%3):IF X<>0 THEN GOTO 345

P2=T2:Y2=INT(RND(0) x180+32) : X2=INT (RND (O
) X¥130+48) : POKE PLX+2,X2:POKE PLY+2,Y2

IF P3<>0 THEN GOTO 380
X=INT(RND(0)%x3):IF X<>0 THEN GOTO 380

P3=T3:Y3=INT(RND(0) ¥180+32) : X3=INT (RND (O
) $130+48) : POKE PLY+3,Y3:POKE PLX+3,X3

IF P2=0 THEN GOTO 415

IF X2>X0 AND P2=1 THEN P2=-1:D=USR(260,P

MBASE+1537+Y2, PMBASE+57) : GOTO 410

IF X2<X0 AND P2=-1 THEN P2=1:D=USR(260,P

MBASE+1537+Y2, PMBASE+65)

X2=X2+4% (X2<X0) -4k (X2>X0) : Y2=Y2+4%k (Y2<YO
)—4%(Y2>Y0):POKE PLX+2,X2:POKE PLY+2,Y2
IF P3=0 THEN GOTO &0

IF X3>X0 AND P3=1 THEN P3=—1:D=USR(260,P

MBASE+1793+Y3,PMBASE+57) : 6OTO 440

IF X3<X0 AND P3=—1 THEN P3=1:D=USR(260,P

MBASE+1793+Y3, PMBASE+&65)

XI=X3+4K (XI<X0)—4%(XI>X0): YI=YI+4%K(Y3<YO
)—4%(Y3>Y0) : POKE PLX+3,X3:POKE PLY+3,Y3

GOTO 60
D=USR(260,PMBASE+1024+Y0, PMBASE+33) : NS=N
S—1:SOUND 1,200,4,10:FOR W=1 TO SO00:NEXT
W:SOUND 1,0,0,0

IF NS<>0 THEN GOTO 540

NS=5: M=MON

IF STICK(0)=15 THEN GOTO 530

POKE DL4,136:POKE DLS,RT+1:POKE PLX,116:

POKE PLY,95:SF=1:D=USR (260, PMBASE+1024+9
5,PMBASE+1)

X0=116:Y0=95: NUML=136: NUMH=RT+1

Chapter Three. Advanced Graphics And Game Utilities.

550

555
5356
260
600
610
620
630
640

1000
1010

1020
1030
1040
1050
1060
1065
1070
1075

1080
1090

1100
1110

1115

1120

1130

1140
2000

X2=0:Y2=0:X3=0:Y3=0: POKE PLX+2,X2:POKE P
LY+2,Y2:POKE PLX+3,X3:POKE FPLY+3,Y3:B0T=
0

IF P2<>0 THEN T2=P2:P2=0

IF P3<>0 THEN T3=P3:P3=0

MF=0:D=USR (260, PMBASE+1280+Y1, PMBASE+41)
:POKE 53278,1:FOR W=1 TO S00:NEXT W:GOTO
60

SOUND 1,40,10,8:FOR W=1 TO 30:NEXT W:SOU
ND 1,32,10,8:FOR W=1 TO 30:NEXT W
SOUND 1,26,10,8:FOR W=1 TO 3I0:NEXT W:SOU
ND 1,22,10,8:FOR W=1 TO 30:NEXT W
SOUND 1,32,10,8:FOR W=1 TO 30:NEXT W:S0OU
ND 1,26,10,8:FOR W=1 TO 70:NEXT W:SOUND
1,0,0,0

IF BOT=1 THEN RETURN
GOTO 530

REM INITIALIZE VBLANK PM

FOR I=1536 TO 1704:READ A:POKE I,A:NEXT

I

FOR I=1774 TO 1787:POKE I,0:NEXT I

PM=PEEK (106)-16: PMBASE=256%PM

FOR I=PMBASE TO PMBASE+2047:POKE I,0:NE
XT 1

FOR I=FPMBASE+1025 TO PMBASE+1029:READ A
:POKE I,A:NEXT I

FOR I=PMBASE+1537 TD PMBASE+1545:READ A
:POKE I,A:NEXT I:RESTORE 3010

FOR I=PMBASE+1793 TO PMBASE+1800:READ A
:POKE I,A:NEXT I

POKE 704,18:POKE 705,226:P0OKE 706,179:P

OKE 707,82

FOR I=PMBASE+1 TO PMBASE+72:READ A:POKE
I,A:NEXT I

PLX=53248:PLY=1780:PLL=1784

POKE 559,62:POKE 623,1:POKE 1788,PM+4:P

OKE 53277,3:POKE 54279,PM

X=USR(1696)

POKE PLL,8:POKE PLL+1,8:P0OKE PLL+2,8:P0

KE PLL+3,8

X0=116:Y0=95:X2=190: Y2=175: X3=170:Y3=17

5

POKE PLX,X0:POKE PLY,YO:POKE PLX+2,X2:P

OKE PLY+2,Y2:POKE PLX+3,X3:POKE PLY+3,Y

3

FOR A=260 TO 284:READ I:POKE A,I:NEXT A

RETURN

REM DATA FOR VBLANK INTERRUPT

{8 SPACES}ROUTINE-SEE COMPUTE' FEB. 198

2

179

Chapter Three. Advanced Graphics And Game Utilities.

2010
2020
2030
2040
2030
2060
2070
2080
2090

2100
3000
3010
3020

3030
3060
3070

4000

4900
4910

4920
4930
4940
4930
4951
4932
4933
4954
49355
4956
49357
4938
4960

4965
4970

180

DATA 162,3,189,244,6,240,89,56,221,240,
6,240,83,141,254,6,106,141

DATA 255,6,142,253,6,24,169,0,109,253,6
»24,109,252,6,133,204,133

DATA 206,189,240,6,133,203,173,254,6,13
3,205,189,248,6,170,232,46,255

DATA 6,144,16,168,177,203,145,205,169,0
.145,203,136,202,208,244,76,87

DATA 6,160,0,177,203,145,205,169,0,145,
203,200,202,208,244,174,253,6

DATA 173,254,6,157,240,6,189,236,6,240,
48,133,203,24,138,141,253,6

DATA 109,235,6,133,204,24,173,.253,6,109
,252,6,133,206,189,240,6,133

DATA 205,189,248,6,170,160,0,177,203,14
5,205,200,202,208,248,174,253,6

DATA 169,0,157,236,6,202,48,3,76,2,6,76
,98,228,0,0,104,169

DATA 7,162,6,160,0,32,92,228,96

DATA 128,64,127,24,48

DATA 1,54,52,248,28,103,74,138

DATA 128,64,127,24,48,0,0,0,1,2,254,24,
12,0,0,0,224,56,224,0,0,0,0,0,7,28,7,0,
0,0,0,0

DATA 219,219,60,231,231,60,219,219

DATA ©,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DATA 1,54,52,248,28,103,74,138,128,108,
44,31,56,230,82,82

DATA 104,104,133,204,104,133,203,104,13
3,207,104,133,206,160,0,177,206,145,203
,200,192,8,208,247,96
RT=PEEK (106) :RT=RT-16:POKE 106,RT

POKE 559,0:FOR I=RTX256 TO (RT+16)%256:
POKE I,0:NEXT I:GRAPHICS 3+16:COLOR 1:P
OKE 765,1

POKE 89,RT+2:POKE 88,0: GOSUB 5100

POKE
POKE
POKE
POKE
POKE
POKE
POKE
POKE

89,RT+2: POKE
89,RT+3: POKE
89,RT+4: POKE
89,RT+5: POKE
89,RT+6: POKE
89,RT+7:POKE
89,RT+8: POKE
89,RT+9: POKE

88, 240: GOSUB
88, 224: GOSUB
88, 208: GOSUB
88, 192: GOSUB
88, 176: GOSUB
88, 160: GOSUB
88, 144: GOSUB
88, 128: GOSUB

5100
5200
5300
5100
5200
5300
5100
5200

POKE
POKE
POKE

89,RT+10: POKE 88,112: 605UB 5300
89,RT+11: POKE 88,96:6G05UB 5100
89,RT+12: POKE 88,80:605UB 5200
POKE 89,RT+13: POKE 88,64:605UB 5400

POKE 89,RT+14:POKE 88,48:605UB 5500
DL=PEEK (560) +256%PEEK (561) : DL4=DL+4:DLS

Chapter Three. Advanced Graphics And Game Utilities.

4980
4990
5100

9105
9110

5120

5130

5140

5150

5160

5170

5180
5200

s5210
85220

5230

5240
5300

35310

=DL+5

POKE DLS,RT+1:POKE DL4,136:POKE 559,34

RETURN

PLOT 0,0:PLOT 29,0:DRAWTO 39,0:PLOT 0,1
:PLOT 1,1:PLOT 30,1:DRAWTO 39,1:PLOT O,

2:DRAWTO 2,2:PLOT 31,2:DRAWTO 39,2:PLOT
0,3:DRAWTO 3,3:PLOT 32,3

DRAWTO 39,3

PLOT 0,4:DRAWTO &6,4:PLOT 34,4:DRAWTO 39
,4:PLOT 0,5:DRAWTO 7,5:PLOT 32,5:DRAWTO
39,5:PLOT 0,6:DRAWTO 8,6:PLOT 31,6:DRA
WTO 39,6:PLOT 0,7:DRAWTO 7,7

PLOT 32,7:DRAWTOD 39,7:PLOT 0,8:DRAWTO S
,8:PLOT 34,8:DRAWTO 39,8:PLOT 0,9:DRAWT
0 4,9:PLOT 35,9:DRAWTO 39,9:PLOT 0,10:D
RAWTO S,10:PLOT 34,10:DRAWTO 39,10

PLOT 0,11:DRAWTO 7,11:PLOT 32,11:DRAWTO
39,11:FPLOT 0,12:DRAWTO 8,12:PLOT 31,12
:DRAWTO 39,12:PLOT 0,13:DRAWTO 7,13:PLO
T 32,13:DRAWTO 39,13

PLOT 0,14:DRAWTO S5,14:PLOT 34, 14:DRAWTO
39,14:PLOT 0,15:DRAWTO 4,15:PLOT 34,15
:DRAWTO 39,15:PLOT 0, 16:DRAWTO S,16:PLO

T 34,16:DRAWTO 39,16

PLOT 0,17:DRAWTO 7,17:PLOT 32,17:DRAWTO
39,17:PLOT 0,18:DRAWTO 8,18:PLOT 31,18
:DRAWTO 39,18:PLOT 0,19:DRAWTO 7,19:PLO
T 32,19:DRAWTO 39,19

PLOT 0,20:DRAWTO 5,20:PLOT 34,20:DRAWTO
39,20:PLOT 0,21:DRAWTO 4,21:PLOT 35,21
:DRAWTO 39,21:PLOT 0,22:DRAWTO 5,22:PLO
T 34,22:DRAWTO 39,22

PLOT 0,23:DRAWTO 7,23:PLOT 32,23:DRAWTO
39,23

RETURN

PLOT 12,23:DRAWTO 16,19:DRAWTO 16,8:DRA

WTO 8,0:DRAWTO 0,0:POSITION 0,23:XI0 18
,#6,0,0,"S: ":PLOT 39,19:DRAWTO 39,8:DRA

WTO 23,8

POSITION 23,19:XI0 18,#6,0,0,"Sz"
X=31:FOR Y=0 TO 7:PLOT X,Y:DRAWTO 39,Y:
X=X—1:NEXT Y

X=24:FOR Y=20 TO 23:PLOT X,Y:DRAWTO 39,
Y:X=X+1:NEXT Y

RETURN

PLOT 17,23:DRAWTO 7,12:DRAWTO 18, 12: DRA
WTO 22,8:DRAWTO 20,8:DRAWTO 12,0:DRAWTO
0,0:POSITION 0,23:XI0 18,#6,0,0,"S:"

X=27:FOR Y=0 TO 7:PLOT X,Y:DRAWTO 39,Y:
X=X+1:NEXT Y

181

Chapter Three. Advanced Graphics And Game Ultilities

9320
5330
5340
5400
5410
9420
5430
5440

5450
3500

182

X=29:FOR Y=8 T0O 13:PLOT X,Y:DRAWTO 39,Y
s X=X—1:NEXT Y

X=33:FOR Y=14 TO 23:PLOT X,Y:DRAWTO 39,
Y:X=X—1:NEXT Y

RETURN

PLOT 11,23:DRAWTO 11,13:DRAWTO 3,13:DRA
WTO 3,8:DRAWTO 16,0:DRAWTO 0,0: POSITION
0,23:XI0 18,#6,0,0,"S: "

X=24:FOR Y=0 TO 10:PLOT X,Y:DRAWTO 39,Y
s X=X+1:=:NEXT Y

PLOT 34,11:DRAWTO 39,11:PLOT 34,12:DRAW
TO 39,12

X=27:FOR Y=13 TO 23:PLOT X,Y:DRAWTO 39,
Y:NEXT Y:PLOT 0,23:DRAWTO 39,23

COLOR 3:PLOT 18,22:DRAWTO 20,22:PLOT 17
,22: DRAWTO 20,22

RETURN

COLOR 1:FOR Y=0 TO 23:PLOT 0,Y:DRAWTO 3
9,Y:NEXT Y:RETURN

CHAPTER FOUR
APPLICATIONS

Chapter Four. Applications.

A Simple Text Editor

Osvaldo Ramirez

You can use this line-oriented Editor for simple word processing, or even to

edit BASIC programs stored with the LIST"'D:"" command.

This program is a modification of Arnie Lee’s and Steve Gradigan’s
text editor published in COMPUTE!, issues no. 9 and 20. The original
program was written for the PET machine. This modification is for
the Atari 800 and will work with an Epson MX 80 F/T printer with the
Graftrax option. The program itself requires 9676 bytes, but goes up
to 31865 bytes once the buffer is initiated. The buffer accommodates
five pages of 54 lines each, 80 characters per line. Two extra lines
were added for string manipulations. Each page requires 4405 bytes.
This amount may be reduced for machines with less memory by
changing the DIM statement in line 20 and the string clearing routine
in line 30. The translation was accomplished using Charles Brannon’s
suggestions in COMPUTE!, issue no. 16 and Teri Li’s in Byte of
January 1981.

[added a few extra routines that enhance an already useful
program. Each function now has its own screen. In addition to the
bell warning that there are five spaces left to fill the input string, there
are now five reverse video spaces to be overwritten so that the user has
visual control of the spaces left for proper hyphenation, when needed.
If the string length (the M value) exceeds 76, a new line will be
displayed on the TV. It will not affect the buffer or the printing.

A new line exchange function and a block move of lines were
added. These two new routines increase editing flexibility. They can
be accessed with the B and the E commands, respectively.

The loading function will automatically append to whatever
program is resident in the machine’s memory if it is not deleted before
loading the new text.

The printing routine formats to 54 lines per page and exits
printing with a top of form command. It will number pages
automatically at the top, with right justification starting at the second

185

Chapter Three. Advanced Graphics And Game Utilities.

page while retaining the 54 line format. It stops at the end of each
page and prompts the user to continue when ready. This feature
allows for the insertion of a new page if you are using cut paper instead
of fanfold. The printer will respond to the Atari control characters,
allowing for different fonts in the same line.

The string change function will accept from one line up to the
entire document for search and substitution. It will display on the
screen the line selected or the first line of the block of lines to search.
The program takes about two minutes to scan each page.

The program was renumbered to maintain the same routine
locations as in the original listing of Lee and Gradijan. This way you
can refer to their original articles for documentation. The renumber
was done using one of the utility programs from the Atari Program
Exchange.

When keying in this program, remember the five reverse video
characters in line 10100, the five left arrow characters in line 10080,
and one down arrow in line 21010 right after the colon.

186

Chapter Four. Applications.

PROGRAM. A Simple Text Editor For The Atari

10 REM —-A SIMPLE TEXT EDITOR FOR ATARI

11 REM BY O0.RAMIREZ-MARCH 1982

12 REM ORIGINAL PROGRAMS BY A.LEE AND S.GRAD
IJAN

13 REM COMPUTE #9 AND #20

20 DIM T$(21760) ,L$(80),B%(80) ,A$(13)

30 T$(1)=" ":TH(21760)=" ":TH(2)=T$%
40 DIM DM$(2) ,FR$%(BO) ,TS%(80)
90 L$(1)=" ":L$$(80)=" ":L$(2)=L%$

60 DIM FI$(12) ,NL$(BO) , Fs(2)

70 OPEN #1,4,0,"K:"

80 POKE 82,0

0 LL=1:M=79

100 A$="ABCDEFILMPQEGRS"

110 ? "{CLEAR}{10 SPACESYSOFTWARE LINE EDITOR

120 2?2 =2 27 "FUNCTIONS:"

130 72

140 POKE 85,10:7? "A.append to end of text/st
art"

150 POKE 85,15:

160 POKE 8353,15:

170 POKE 85,10:

180 POKE 85,10:

190 POKE 85,10:

200 POKE 85,10:

210 POKE 85,10:

22 POKE 85,10:

230 POKE 85,10:

240 POKE 85,10:

250 POKE 85,10:

260 POKE 85,10:

270 POKE 85,10:

280 POKE 85,10:

290 ? =27

300 B=0:7? "ENTER SELECTION--—->"3

310 6GOTO 330

320 TRAP 40000:7? :7?7 "[ELEDERATHMEMEREMEMGEMEMMPME
HERMEMEN s

"® =5 space tab"
"?2+RETURN = skip a line"”
"B.block move"
"C.change string”
"D.delete a line"
"E.exchange lines"”
"F.filer commands"
"I.insert before line"”
"L.list line(s)"”
"M.menu display"
"P.print lines"”
"@.quit editor”
"R.replace a line"
"S.set margins”

Wl))))))

330 GET #1,B: B$=CHR$(B):IF Bs="" THEN 330

340 J=0:FOR I=1 TO 13:1IF A$(I,I)=B%(1,1) THE
N J=I

350 NEXT I:I=13

360 7?7 BS%

370 IF J=0 THEN 320
380 ON J GOTO 1000,12000,2000,3000,11000, 400
0,5000,6000,110,9000,8000,7000,21000

1000 ? "{CLEAR[T[EIEELE TO END OF TEXT OR STAR

187

Chapter Four. Applications.

1010
1020
1030
1040
1050
1060
2000
2010
2020
2030

2040
2050
2060
2070
2080

2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210

2220
2230

2240
2250
2260

2265
2279
2280
3000
3010
3020
3030
3040
3050

3060

188

Tll

? LLz">"

GOSUB 10000

IF LEN(L$)=0 THEN 320

T$((LL¥B0)-79, (LLXBO))=L$%

LL=LL+1

GOTO 1010

? "{CLEAR}EG[I[FE ";:G0SUB 16000

IF HI=0 THEN 320

J2=L0

? "CHANGE STRINGS->":7? J2;">";T$(J2%80-
79,J2%80-80+M) : GOSUB 10000

L=LEN(L%)

IF L=0 THEN 320

IF L<4 THEN 2000

DM$=L%$(1,1)

IF L$(LEN(L%))<>DM$ THEN ? "XWRONG, TRY
AGAIN":FOR I=1 TO 200:NEXT I:G0TO 2000
J=0:FOR I=2 TO L-1

IF L$(I,I)=DM$ THEN J=1I

NEXT I

IF J=0 THEN 2000

IF J=2 THEN 2000

FR$=L$(2,J-1)

IF J+1=L THEN TS$="":GOTO 2170
TS$=L$(J+1,L-1)

F=LEN (FR$)

POP :FOR I=LO TO HI

T=M:S=1:NL$=""

FOR J=1 TO T-F+1

IF T$(I1¥80-80+J, I¥80-80+J+F—1)<>FR$% THE
N 2250

IF J=1 THEN NL$=TS$:G0TO 2240

NL$ (LEN(NL$)+1)=T$(I%X80-80+5, IX80-80+J—
1):NL$(LEN(NL$)+1)=TS%

S=J+F

NEXT J

IF S<>1 THEN NL$(LEN(NL$)+1)=T$(IXx80-80
+5, I1X80-80+M+1): T$(I%B0-79, 1¥80)=T% ((LL
+1) X80-79, (LL+1) ¥x80)

T$(I1%80-79, [%x80)=NL%

NEXT I

GOTO 320

? "{CLEAR3}[E[EMEKE ";:G0SUB 16000

IF DF=0 THEN 3060

? “DELETE THE ENTIRE FILE?(Y/N)"j;

GET #1,B:B$=CHR$(E):IF B$=" " THEN 3030
? B$:IF B$="N" THEN 320

IF B$<>"Y" THEN 3020

IF HI>LL-1 THEN 320

Chapter Four. Applications.

3070 IF HI=LL-1 THEN TRAP 320:T$‘HIXB8B0-79,HI
¥80)=TH ((LL+1)%x80-79, (LL+1)380):LL=LO:6G
0oT0 320

3080 J=HI-LO+1

3090 FOR I=LO TO LL+1

3100 T$(Ix8B0-79,I1%80)=T$((I+J)*x80-79, (I+J) %8
0)

3110 NEXT I

3120 LL=LL-(HI-LO)-1

3130 GOTO 320

4000 ? "{CLEARZ[GEEiMEMEN L VT MEHBENTER L=LOAD,S—
SAVE—->";

4010 GET #1,B:B$=CHR%(B):IF B$="" THEN 4010

4020 IF B$=CHR$(155) THEN ? "":60T0 320

4030 1IF B$<>"L" AND B$<{>"S" THEN 7?7 :60T0 400
o}

4040 ? B$:F%$=BE%

4045 ? :? :POKE 85,10:7? "INSERT STORAGE DISK
Ve 22

4050 POKE 85,20:? "i—-———————— gy = g

4060 POKE 85,5:? "ENTER FILENAME->";

4070 GOSUB 10000

4080 IF LEN(L%)=0 THEN 320

4090 IF LEN(L%)>12 THEN ? "USE LESS THAN 12
CHARACTERS":6G0TO 4050

4100 FI$=L%

4110 B$="D:"

4120 B$S(LEN(B$)+1)=F1I%

4130 IF F$="L" THEN 4210

4140 IF LL=1 THEN 7?7 "NO FILE TO SAVE":60T0 3
20

4150 CLOSE #3:0PEN #3,8,0,B%

4160 FOR I=1 TO LL-1

4170 2? #3;T$(1%x80-79,1%x80Q)

4180 NEXT I

4190 CLOSE #3:7? :? FI%$3" SAVED"

4200 GOTO 320

4210 CLOSE #3:TRAP 4280:0PEN #3,4,0,B%

4220 IF LL>1 THEN LL=LL-1:60T0 4230

4225 LL=0

4230 LL=LL+1:T$(LLX8B80-79,LLX8B0)=" "

4240 L%=" "

4250 TRAP 4270: INPUT #3;L%$:T${(LL¥80-79,LL%x80
)=L%

4260 GOTO 4230

4270 TRAP 40000:CLOSE #3:G0T0O 320

4280 CLOSE #3:TRAP 40000:7? "FILE NOT ON DISK
":GOTO 320

5000 ? "{CLEARZIEIIEE[FEI BEFORE ";:G0SUB 17000

S010 IF LO>LL OR LO<1 THEN 5000

189

Chapter Four. Applications.

5020
5030
5040
5050
3060
3070
5080

5090
5100

9110
5120
5130
6000
6010
6020
6030
6040

60350
6060
7000
7010
7020
7030
7040
7050
7060
7080

7090
7100
8000

8010
8020
8030
8040

9000
?010
2020

2030
9040

90350

190

? :7? LO;">";

GOSUB 10000

IF LEN(L$)=0 THEN 320

LL=LL+1

FOR I=LL TO LO STEP -1

IF I=1 THEN 5090
T$(I%x80-79,1%80)=T$((I—1)%x80-79, (I-1) %8
0) _

NEXT I
T$(LOXBO-79,L0XBO)=T$((LL+2) x80-79, (LL+
2) %80)

T$(LOXB0-79,L0%B0-80+M)=L$

LO=LO+1

GOTO S020

? "{CLEARI[®EEK ";:60SUB 16000

IF HI=0 THEN 320

FOR J=L0O TO HI

? J;">";T$(JXB0-79,J%80-80+M)

IF J/10=INT(J/10) THEN POSITION 3,23:7?
"HIT E TO END,RETURN TO CONTINUE->";:GE
T #1,B:? CHR$(B):IF B=69 THEN 320

NEXT J

GOTO 320

? "(CLEAR}E[EEMEEE ";: 60SUB 17000

IF LO>=LL OR LO<1 THEN 7000

? “LINE TO REPLACE:"

? LO;">";T$(LOXBO-79,L0%80)

? :? LOj“">";

GOSUB 10000

IF LEN(L$)=0 THEN 320
T$(LOXB0-79,L0%80)=T$ ((LL+1)%¥80-79, (LL+
1) x80)

T$(LOXB80-79,L0%80)=L$

GO0TO 320

? "(CLEAR}":POSITION 4,10:? "LEAVE EDIT
OR: ARE YOU SURE? (Y/N)";

GET #1,B:B$=CHR$(B):IF B$="" THEN 8010
IF B$<>"Y" AND B$<>"N" THEN 8000

IF B$="N" THEN ? :? :? :? :? :GOTO 320
POKE 752,1:POSITION 9,12:? CHR$(253);"E
ND OF EDITOR PROGRAM...":FOR I=1 TO 200
:NEXT I:GRAPHICS 0:END

CLOSE #2:TRAP 9200:0PEN #2,8,0,"P:"

? "{CLEAR}EEKCE ";:G0SUB 16000

? “NUMBER OF SPACES BETWEEN LINES(1-2)*"
;: INPUT S1

? "IF THIS IS THE FIRST PAGE ENTER 1"

? "OTHERWISE ENTER APPROPIATE NO...."3:
INPUT PP

IF HI=0 THEN 320

Chapter Four. Applications.

9060 CT=0

9070 ? #2;CHR$(27);"D";CHRS$ (SP) ; CHR$ (0)

9080 FOR I=L0O TO HI

9090 ? #2;CHR$(137);T$(I1%80-79, I¥80-80+M)

9100 CT=CT+1

9110 IF S1=2 THEN 7 #2:CT=CT+1

9120 IF CT/S4=INT(CT/54) THEN GOSUB 23000

9130 NEXT I

9140 ? #2;CHR$(12)

9150 CLOSE #2:G0T0 320

9200 ? :? :POKE 85,10:? "IECMEEOCGEIMIT": TR
AP 40000:G0TO0 320

10000 L$=""

10010 REM

10020 GET #1,B:B$=CHR%(B):1IF B$="" THEN 1002
0

10030 IF B$=CHR$(1535) THEN POKE 752,0:7 :RET
URN

10040 IF B%$=CHR$%(126) THEN L$(LEN(L%))="":27?

B$;:60T0 10110
10050 IF B%$="2" THEN B$="{5 SPACES}"
10060 IF LEN(L$)=M-6 THEN 7?7 CHR$(233);
10070 IF LEN(L$)=M THEN POKE 752,0:G0T0 1012
0
10080 IF LEN(L$)=M-5 THEN ? "{35 LEFT3}";
10090 L$S(LEN(L$)+1)=B%:7 B%;
10100 IF LEN(L$)=M-5 THEN POKE 752,1:72 "
{5 ERCEEEEY";
10110 GOTO 100190
10120 ? "[ERERE-LINE TUNCATED":RETURN
11000 7?7 "[ERENFCEEEBEGTTSE"
11010 ? "ENTER LOWER NUMBER FIRST"
11030 ? "ENTER ";:60SUB 16000
11040 IF L=0 THEN 320
11060 TS$=" ":TS$=T$(LO¥BO-79,L0%x80)
11070 T$(LO¥BO0-79,L0%80)=T$(HI¥*B80-79,HI%X80)
11080 T$(HIXBO-79,HIX80)=" "
11090 T$(HIXBO0-79,HIXB0)=TS$:TS%=" "
11100 ? LO;">";T$(LO%X8B0-79,L0%80)
11110 ? =2 HI;">";T$(HIXB0O-79,HI%X80)
11120 GOTO 320
12000 ? "({CLEAR: I[NNI B0 E NI EE"
12010 ? "INSERT BEFORE LINE NO.-> ";:INPUT B
$:IF LEN(B%)=0 THEN 320

12015 A=VAL (B$):B$s=""

12020 ? :? "BLOCK TO MOVE ";:G0SUB 16000
12030 IF LO=A THEN 12000

12040 CTR=0

12050 IF LO<A THEN 12200

12060 IF HI>LL-1 THEN 320

191

Chapter Four. Applications.

12080
12090

12100
12110

12120
12130

12140
12160
12170
12180
12200
12210

12220
12230
12240
12250

12260
12280
12290
12300
16000
16010
16020
16030
16040
16050
16060
16070
16080
16100
16110
16120
16130
16140
16150
16160
16170
17000
17010
17020
17030
17040
17050
17060
17070

192

I1=0:FOR I=LL+1 TO A STEP -1
T$(I%B0-79,I%x80)=T$((I-1)%80-79, (I-1) %
80)

NEXT I
T$(AXB0-79,A%B80)=TH((HI+1)xB0-79, (HI+1
) ¥80)

I=0:FOR I=HI+1 TO LL+1
T$(I%B0-79,I%B80)=T$((I+1)%80-79, (I+1)%
80)

NEXT I

CTR=CTR+1

IF CTR=HI-LO+1 THEN 320

GOTO 12080

I=0:FOR I=LL+1 TO A STEP -1
T$(I%XB0-79,I1%80)=T$((I-1)%80-79, (I-1) %
80)

NEXT I

T$ (AXBO-79,AXB80)=T$(LOXB0-79,L0%80)
I=0:FOR I=LO TO LL+1
T$(I1%80-79,1%80)=T$((I+1)%80-79, (I+1) %
80)

NEXT I

CTR=CTR+1

IF CTR=HI-LO+1 THEN 320

GOTO 12200

? "RANGE (LOW-HIGH)=> ";

GOSUB 10000

LO=1:HI=LL-1

L=LEN(L$%)

DF=0:IF L=0 THEN DF=-1:G0TO 16170
J=0:FOR I=1 TO L

B$=L$(I,I)

IF B$>="0" AND B$<="9" THEN 16110

IF B$="-" THEN J=I1:G0TO 16110
J=99:1=99

NEXT I

IF J=99 THEN 16000

IF J=0 THEN LO=VAL(L$):HI=LO:RETURN

IF J>1 THEN LO=VAL(L$(1,J-1))

IF J<L THEN HI=VAL(L$(J+1,LEN(LS$)))

IF LO>HI THEN 16000

RETURN

? "—LINE NO.->";

GOSUB 10000

L=LEN(LS$)

IF L=0 THEN 320

J=0

FOR I=1 TO L

B$=L$(I,I)

IF B$>="0" AND B$<="9" THEN 17090

Chapter Four. Applications.

17080 J=992:1=L

17090 NEXT I

17100 IF J=99 THEN 17000

17110 LO=VAL(LS)

17120 RETURN

21000 ? "{CLEARYEEGUNICZEEDIE"

21010 POKE 85,7:? "MARGIN SIZE: {DOWN>XN.none"

21020 POKE 85,19:? "S.small (0.5 in.)"

21030 POKE 85,19:? "M.medium (1.0 in.)"

21040 POKE 85,19:7? "L.large (1.5 in.)"

21050 POKE 85,19:? "O.own design”

21060 B=0:7? :? "SELECT MARGIN SIZE—->";

21070 GET #1,B:B$=CHR$(B):1IF B%="" THEN 2107
0

21080 ? B$

21085 IF B$<>"N" AND B&<{>"S" AND B$<{>"M" AND
B&<>"L" AND B%<>"0" THEN 21060

21090 IF B%$="N" THEN M=79:SP=0:G0T0 320

21100 IF B$="S" THEN M=74:5P=3:60T0 320

21110 IF B$="M" THEN M=64:5P=8:6G0T0 320

21120 IF B$="L" THEN M=54:5SP=13:60T0 320

21130 IF B#$="0" THEN ? :? "INCHES FOR LEFT M
ARGIN=";: INPUT SP

21140 ? :7? "INCHES FOR RIGHT MARGIN="j;: INPUT
RM

21150 SP=INT((SP-0.2)%x10):M=792-SP—-INT ((RM-0.
25)%10)

21160 GOTO 320

23000 7?7 :? "EEGEEMCEGEOO MR EEOEEEE
;= INPUT B%

23010 ? #2;CHR$(12)

23020 P1=6:1IF PP>9 THEN P1=7

23030 PP=PP+1:CT=CT+1

23040 FOR I1=1 TO SP+M-P1:PUT #2,32:NEXT I1:
? #2; "Page ";PP

23045 IF S1=2 THEN ? #2:CT=CT+1

23050 RETURN

193

Chapter Four. Applications

The Atari Keyboard
Speaks Out

Walter M. Lee

How to use the console speaker — Atari’s fifth voice. Here's an explanation
of the Atari built-in loudspeaker and a user-controllable BASIC program to
play music without using the TV speaker.

One of the frequently unused features of the Atari computer is the
keyboard loudspeaker. Many of the sound effects created on the Apple
I1+ keyboard loudspeaker can also be generated on the Atari. The
four-voice audio output of the Atari to the television is more flexible
than the keyboard speaker. However, if your display is a monitor
instead of a television set, it may not support the four-voice audio
output. The keyboard loudspeaker is then a practical means for audio
output or feedback. In addition, the keyboard loudspeaker allows the
television or monitor to be turned off while the Atari is executing a
long program. The loudspeaker can then signal when the job is
finished.

The Atari keyboard loudspeaker is accessible from the BASIC
cartridge. A simple PRINT statement will create a buzzer.

10 PRINT "{BELLX";

This buzzer has a fixed tone and duration. To create a variable duration,
one must POKE zero into the speaker register, CONSOL, at location
53279 decimal. The duration is set by the number of times CONSOL

is set to zero.

10 INPUT N
20 FOR I=0 TO N:POKE 53279,0:NEXT I
30 GOTO 190

Creating pure pitches on the Atari keyboard loudspeaker requires
more work. A loudspeaker produces sound by creating waves of
alternating high and low pressure in the air. The loudspeaker does this
by moving a diaphragm (the loudspeaker’s cone) forward and backward.
As the diaphragm moves forward it squeezes the air in front of it,
causing a region of high pressure. As the diaphragm moves backward,

194

Chapter Four. Applications.

the air rushes in to fill the space left behind the moving diaphragm
and creates a region of low pressure. These pressure waves radiate out
from the loudspeaker in the direction of propagation; i.e., sound
waves are longitudinal waves. Storing 8 into CONSOL pushes the
diaphragm one way, and storing 0 into CONSOL pushes the diaphragm
the other way.

The time delay between switching CONSOL from 8 to 0
constitutes the period of the sound wave; therefore, it designates the
frequency generated by the sound wave. The shorter the time delay,
the higher the frequency. The Vertical Blank Interrupt stores an 8
into CONSOL every 1/60 of a second. This is why Program 1 works.
However, this also prevents the keyboard loudspeaker from generating
any pitch other than 60 hertz (hertz=cycles/second). Fortunately, we
do not have to disable the entire Vertical Blank Interrupt to create
variable pitches on the loudspeaker. The Vertical Blank Interrupt is
broken into two stages. During critical code sections (e.g., I/O
routines), the Atari Operating System will defer the second stage of
the Vertical Blank Interrupt. This is done by setting the CRITIC flag,
at location 66 decimal, to a nonzero value. The second stage stores 8
into CONSOL. The first stage updates the real-time clock, the
ATTRACT mode, and the system countdown timer 1. The shadow
registers, the game controllers, and the system countdown timers two
through five are disabled with the second stage. To regain the second
stage, we set CRITIC=0, which is its normal state.

The time delay for the Atari has an intrinsic pitch distortion.
This is due to the Atari Display processor, ANTIC, which “steals”
machine cycles from the 6502 in order to generate the display on the
television and to refresh memory. This is called Direct Memory Access
(DMA). The DMA cannot be accounted for in the delay loop and
causes the pitch to get out of synchronization. The accuracy of the
pitch generated must be sacrificed if we are to maintain a display.
Graphics mode 3 through 6 (BASIC) seem to have the least effect on
pitch distortion. To create the purest tone possible, the screen must
be turned off. This is achieved by storing zero into DMACTL, at
location 54272 decimal, after disabling the shadow registers by setting
CRITIC=1. Program 1 creates various low tones on the keyboard
loudspeaker.

In machine language, the frequency range is extended. The
upper frequencies are increased by a much greater extent than the
lower frequencies. The lower frequencies degrade into “clicks,” which
is normal for square wave sound synthesis.

Most users will want to use this technique in BASIC. | have

195

Chapter Four. Applications.

written an Atari BASIC USR function to control the keyboard
loudspeaker. Program 2 puts this USR function in memory locations

1536 to 1600 decimal. The USR function
DUMMY = USR(1536,1,])

sets [=pitch and] =duration. The pitch can be from 1 (the highest)
to 255 (the lowest). Setting =0 is equivalent to setting [=256. The
variable J has a range from 0 to 65,535. The longest duration is when
] =65,535. The pitch distortion should be around 10% when the
screen is off. Program 2 does a frequency range test and then plays a
perceptible version of the ABC song. A table of pitch values for
musical notes is also included in the program. To create other tunes, 1
have included a table of corresponding musical notes and their
approximate pitch numbers. These values were calculated from a
CRC Handbook of Chemistry and Physics and may not be correct. My
checking was hampered by the fact that I do not have a musical ear.
The Pitch number is the reciprocal of the product

pitch = I

musical note frequency * cycle speed * 5 cycles

The cycle speed is .8517 microseconds per machine cycle, which is
much slower than the official speed of .56 microseconds per machine
cycle. The Atari’s 6502B main processor has an effective speed of
1.17Mhz in Graphics Mode 0 (BASIC). I calculated this speed by
dividing the execution time of A =USR(1536,255,8191) by the
number of cycles the 6502 must execute.

These programs present the fifth audio voice to Atari users. For
users without a television or monitor audio output, these programs
give the user a limited audio output without additional hardware. For
the less ambitious programmer, lines 29100 to 30002 in Program 2
and the pitch table to musical notes are all you need.

PROGRAM 1. The Atari Keyboard Speaks Out

100 C=53279

101 §1=8:52=0:A=24:B=2:D=48

102 CRITIC=66:DMACTL=54272

200 POKE CRITIC,66:POKE DMACTL,O

222 FOR J=0 TO A STEP B:FOR K=0 TO D:POKE C,
S1:FOR I=0 TO J:NEXT I:POKE C,S2:NEXT K:
NEXT J

240 POKE CRITIC,O

196

Chapter Four. Applications.

PROGRAM 2. The Atari Keyboard Speaks Out

90 DIM PITCH(32,2)
99 GRAPHICS 2+16:7 #6; "GEEEIECEHMEEIES TEST
100 GOSUB 29100:REM MAKE SUBROUTINE
101 RESTORE 110
102 REM [EFEifEXHBEOGEHREEEZOACERRERDBERD
103 REM [SE(e 073 (= (S S0 GE 00 e O o e e
104 REM EEIMNMEAZEDOEODERE
105 REM GREEINICOGENBEEFEDIE GG M
106 REM EEGENBODEEFEACEEENMEEENIE NN EEIDR
107 REM FGEERETAETEEZCFEARENECEMEEER
108 REM EEFEENEEDE
110 DATA 252,238,224,212,200,189,178,168,159
,150,141,133,126,119,112,106,100,94,89,8
4,79,75,71,67,63,59,56,53
200 FOR I=1 TO 28:READ A
210 PITCH(I,1)=A:PITCH(I,2)=1024+(I—-1)%127:N
EXT I
290 REM [EE[EEIIECIESMEEIFEMIEEL
300 FOR I=1 TO 28:A=USR(1536,PITCH(I,1),PITC
H(I,2)):NEXT I
390 REM Wi [F BN P RS 1 S
400 RESTORE 410
401 POSITION 0,3:7 #6; "ABC"
410 DATA 3,3,10,10,12,12,10,8,
3,10,10,8,8,7,7,5,10,10,8,
,10,12,12,10,8,8,7,7,5,5,3
420 FOR I=1 TO 44:READ A:A=USR(1536,PITCH(A,
1) ,PITCH(A,2)):NEXT I
29099 END
29100 RESTORE 30000
29101 FOR I=1536 TO 1600:READ A:POKE I,A:NEX
T I:POKE I+1,0:RETURN
30000 DATA 133,203,104,104,133,205,104,133,2
04,104,133,207,104,133,206,165,203,72,
138,72,152,72
30001 DATA 169,1,133,66,166,206,169,8,141,31
,208,164,204,136,208,253,140,31,208, 20
2,208,240
30002 DATA 169,0,197,207,240,5,198,207,76,26
,6,104,168,104,170,104,169,0,133,66,96

197

Chapter Four. Applications.

Atari Screen As
Strip Chart Recorder

Helmut Schmidt

This program lets you simulate a two-pen strip chart recorder. There
is information here on coarse scrolling, vertical blank interrupts, and
even ESP!

[will describe a subroutine that gives a display like a strip chart
recorder where two colored pens write on a moving roll of paper. We
will make the screen scroll up, while at the bottom the coordinates X1
and X2 of the two pens are entered continuously. This display can be
very useful to plot computer generated functions or to graph data
provided from outside.

Using a 4K memory block as display area, the Atari allows us
very easily to scroll this memory block as a closed loop past the screen
display window. Remember that two bytes in the display list specify
the current start address of the display memory. Using Graphics Mode
74 16 where each line holds 40 bytes, we get vertical scrolling if we
regularly increment the start address in steps of 40. Beginning at the
start address, the subsequent memory is displayed on the screen. But
there is a hitch that comes in very handy. When the display memory
reaches a 4K boundary, the display does not enter the next 4K block,
but starts at the beginning of the initial 4K block. Thus, the memory
block appears “wrapped around” in a continuous loop, provided that
the start address stays within this block.

To display, for example, the lowest 4K memory block in this
closed loop scroll fashion we can use the simple BASIC program:

10 GRAPHICS 7+16

20 LOC=PEEK (560) +256%¥PEEK (561) +4
30 L=0:H=0

40 L=L+40

SO0 IF L>255 THEN L=L-236:H=H+1
60 IF H>15 THEN H=H-16

70 POKE LOC,L:POKE LOC+1,H

80 GOTO 490

198

Chapter Four. Applications.

Unfortunately, this program needs two POKE steps to increment
the display start address, so that an eye straining flicker may occur
when a display interrupt falls between the two steps. This problem
disappears if we advance the display window by a machine language
program that is inserted in the Vertical Interrupt section at the end of
each display cycle. Chapter 8 of De Re Atari tells specifically where to
do this insertion. For reasons of economy and speed it is good to
include into the machine language program the other housekeeping
functions of the display — like entering the new coordinates at the
bottom, and clearing the outdated entries (leaving the screen at the
top).

Our machine program gets assembled (Program 1) into the
second half of page six ($680-$6FF). The reader with an assembler
cartridge can easily disassemble the program and study it in detail.

For most practical purposes it is sufficient to know the location of a
few parameters, so that by POKEing in new values we can set the pen
coordinates, alter the scrolling speed, and stop and start the scrolling.

Here is a list of the useful POKE operations:

POKE 1664,A Sets the writing pens to positions

POKE 1665,B A and B (Range O to 179)

POKE 1677,144 Stops scrolling

POKE 1677,208 Scrolling again

POKE 1666,80 Extra fast scrolling

POKE 1666,40 Back to normal scroll

POKE 1665,Z Normal speed for Z=0. Slower
forZ=1,3,7,15,31,63,127,255

Program 1 gives the three basic subroutines to handle the strip
chart display.

1. GOSUB 800 has to be run first to enter the machine program into
the lower half of page six.

2. When we actually want the scrolling display we call GOSUB 700.
This tells the machine program where the display memory is (depending
on RAM size), and then switches the machine program into the
Vertical Interrupt cycle.

3. GOSUB 780 provides an orderly exit from the scrolling mode into
Graphics 0.

To demonstrate the use of these subroutines in a most simple
example, merge Program 2 with Program 1. The resulting program
shows the traces of the two pens that are moved by Paddle O and 1. (If
the paddles are not plugged in, or are set out of range, no trace is
displayed.) To change parameters press RESET, POKE in the new

199

Chapter Four. Applications.

values, and GOTO 100. Program 2 gives some more explanations.

Strip Chart Application: Man-Computer Interaction
The merger of Program 3 with Program 1 gives our next program.
Again we have two pens writing on the scrolling screen. One pen is
stationary to mark the center line, and the other pen performs a sine-
wave motion with randomly varying amplitude. Whenever the pen
crosses the center line, a random decision is made on whether to
increase or decrease the amplitude for the next half cycle (with upper
and lower bounds for the amplitude).

After a certain number of cycles the swinging stops and a score is
displayed. A positive or negative value indicates that the average
amplitude of the swinging pen in this run was higher or lower than
chance expectancy. Thus, by the laws of chance, positive and negative
scores are equally likely.

Each of the binary decisions (increase or decrease) results from a
combination of human decision and computer decision. The Atari
provides in Location 53770 a rapidly changing sequence of quasi
random numbers in the range from 0 to 255. At each crossing of the
center line, the computer decides to increase or decrease the pen
amplitude depending on whether or not the current random number is
larger than 127. This determines the course of events as long as the
human operator does not press the OPTION button on the console.
If, however, the OPTION button is held down at the time of the
crossing, then the computer’s internal decision for increase or decrease
is inverted.

To explore the program further, let us first run it without using
the OPTION button. What determines the history of the pen
oscillations is the internal state of the computer’s quasi random
number generator at the time when the START button is pushed.
And because this internal state changes at a very rapid rate (in the
megacycle range), the timing of the START button push has a
decisive effect on the outcome. Pressing the START button only one-
tenth of a second later would lead to a completely different history of
the pen oscillations.

[t is interesting to know that a “favorable” timing of the START
button push can produce high scores. But we cannot use this knowledge
for actually obtaining high scores. This is because we have no way of
knowing the internal state of the computer’s random generator. And
even if we knew, we could not do the fast mental arithmetic to
calculate the resulting pen movements. And even if we could, our
fingers would not be fast enough to press the start button at precisely
the right time.

200

Chapter Four. Applications.

Having the OPTION button available doesn’t help either. Now
we can change the history of a run while it is in progress. But since we
do not know the computer’s internal choice for the next amplitude,
we cannot tell whether we should or should not invert the computer’s
decision by pushing the OPTION button. Thus, the arrangement
provides a “fair game of chance” with no room for a systematic
winning strategy.

Now we come to our main question: suppose you concentrate
intensely on the swinging pen, trying to make it swing widely or to
keep it still at the center, and you push the OPTION button whenever
you feel it is right. Could you then by some “psychic” mechanism
succeed more often than not? Here success means a positive or
negative score when the aim was a high or a low swing amplitude,
respectively.

The most recent report on the existence of such psychic effects
can be found in the Proceedings of the IEEE (Vol. 70, No. 2, Feb.
1982, pp. 136-170). Its author, Robert Jahn, is the Dean of the
Princeton Engineering Department. Thus, you don’t have to feel too
foolish in trying such an experiment.

The aim of a high or low swing amplitude is a rather plain and
simple one. This may be important so that you can pay undivided
one-pointed attention to the task and can get some feeling for the best
mental approach. Keep the test sessions short and don’t expect
miracles. If, after some time, you could reach an average success rate
of 65% or more of the runs in the desired direction, then your skill
would be in high demand at several research laboratories.

201

Chapter Four. Applications.

PROGRAM 1. Atari Screen As Strip Chart Recorder.

&97
698

699
700
709
710
720
727
728

729
730

740
750

760
770

771
772

773
780

790

797
798

799
800

810
811
812
813

814

202

REM

REM Xx%x%x%x%x GOSUB 700 STARTS SCROLLING %xX
XX

REM

GRAPHICS 7+16:POKE 559,0:REMTV OFF
REM ...SET COLOR FOR BACKGROUND, TRACE X1

, TRACE X2
SETCOLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR 0

,8,4

P6=PEEK(106):REM “eseesea---NUMBER
OF RAM PAGES

REMSCREEN DISPLAY STARTS AT 256
XFG-4000

REMSTART WRITE 95 LINES (3800 WD

S) FURTHER,I.E.

BEM « wow sws s WRITESTART = 256%(PB-1)+56

POKE 203,56:FPOKE 204,PG-1:REMS5ET WR
ITESTART

POKE 205,PEEK(560) :POKE 206,PEEK(361)

KEEPL=PEEK (546) : KEEPH=PEEK (547):REM ...S

AVE PARAMETERS

POKE 546,135:POKE 547,6:REM MACHIN

E PROGRAM START

POKE 559,34:RETURN :REM TV ON

AGAIN

REM

REM xxXx%x%x GOSUB 780 EXITS FROM SCROLLING
Xk kXX

REM

POKE 559,0:GRAPHICS 7+16:POKE S546,KEEPL:

POKE 3547 ,KEEPH

GRAPHICS O:RETURN

REM

REM Xxxx¥xx GOSUB 800 LOADS MACHINE PROGRA

M kkXx¥kx

REM

X1=1664:X2=1665:REM . vccvenncennnn PEN CO
ORDINATES

DATA 200,200,40,192,48,12,3,216,165,20,4
1,0,24,208,66,165

DATA 203,109,130,6,133,203, 144,26, 165,20
4,105,0,41,15,72,13

DATA 175,6,133,204,104,208,11,174,130,6,
169,0,202,157,0,112

DATA 208,250,172,130,6,169,0,136, 145,203
,208,251,160,4,177,205

DATA 109,130,6,145,205,200,177,205,105,0
,41,15,109,175,6,145

Chapter Four. Applications.

817

820
830
840
850
860

DATA 205,169,255,141,250,6,173,128,6,32,
234,6,169,85,141, 250

DATA 6,173,129,6,32,234,6,76,95,228,201,
180,176,17,72,74

DATA 74,168,104,41,3,170,189,131,6,41,25
5,17,203,145,203, 96

POKE 559,0

FOR N=1664 TO 1791

READ DAT:POKE N,DAT:NEXT N

POKE 1711,PEEK(106)—-16

POKE S559,34:RETURN

203

Chapter Four. Applications.

PROGRAM 2. Atari Screen As Strip Chart Recorder.

(o)

1

11
80

?0
10

11

12
13

14
15
16
17

69
69

69
70
70
71

72

REM «vcven-- XXL¥%x MERGE WITH LISTING 1 %xx%x%
X
REM v.ccena AT "RUN" WAITING PERIOD TO ENTE
R PROGRAM,
REM ...c... THEN DISPLAY OF 2 PENS FROM PAD
DLE INPUT.
REMNO TRACE IF INPUT OUT OF RANGE
(0...179).
REM «©vvouan. PUSH "SELECT"/"START" TO STOP/M
OVE DISPLAY.
REM .voou.. TO CHANGE PARAMETERS PRESS "SYS
TEM RESET".
REM POKE 1675,Z WITH Z=0,1,3,7,15,3
1,63,127,255.
REM 2=0 GIVES FASTEST (NORMAL) SCROL
L SPEED.
REM +..co.. FOR DOUBLE SPEED (SKIPPING ODD
LINES) POKE 1666,80
REM NORMALLY POKE 1666,40
REM AFTER "SYSTEM RESET" ENTER PROG
RAM BY "GOTO START".
REM
GOSUB B800:REMLOAD MACHINE PROGRAM FR
OM "DATA"
START=100
0 G0SUB 700:REM ENTER SCROLL ROUTI
NE
O CONS=53279:REM READS CONSOLE SWIT
CHES

0 POKE X1,PADDLE(0):POKE X2,PADDLE(1)

0 IF PEEK(CONS)<>5 THEN GOTO 120:REM LOOP
UNTIL "SELECT" IS PUSHED

0 POKE 1677,144:REMSTOP SCROLL MOVEME
NT

0 IF PEEK(CONS)<>&6 THEN GOTO 150:REM ..WAI
T UNTIL "START" IS PUSHED

O POKE 1677,208:REMCONTINUE SCROLLING

0 60TO 120

7 REM

8 REM x%x%%x GOSUB 700 STARTS SCROLLING XXX
X

9 REM

O GRAPHICS 7+16:POKE S59,0:REM TV OFF

9 REM ...SET COLOR FOR BACKGROUND, TRACE X1

, TRACE X2

O SETCOLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR O
,8,4
O PG=PEEK(106):REMcccucnccaasnas NUMBER

204

Chapter Four. Applications.

727

728

729
730

740
750

760

770

771
772

773
780

790
797
798

799
800

810

811

812

820
830
840
850
860

OF RAM PAGES

REMSCREEN DISPLAY STARTS AT 256
$PB-4000

REMSTART WRITE 95 LINES(3800 WD

S) FURTHER,I.E.

REMWRITESTART = 256% (PG—-1) +56

POKE 203,56:P0OKE 204,PG-1:REMSET WR
ITESTART

POKE 205,PEEK(560):POKE 206,PEEK(S561)

KEEPL=PEEK (546) : KEEPH=PEEK (547):REM ...S

AVE PARAMETERS

POKE S546,135:POKE S547,6:REMMACHIN

E PROGRAM START

POKE 559,34:RETURN :REMTV ON

AGAIN

REM

REM xx%x%%x GOSUB 780 EXITS FROM SCROLLING
EEXXX

REM

POKE 559,0:GRAPHICS 7+16:P0OKE S546,KEEPL:

POKE 547,KEEPH

GRAPHICS 0:RETURN

REM

REM Xx%xxxx GOSUB 800 LOADS MACHINE PROGRA

M XXXXX

REM

X1=1664:X2=1665:REM ..cvvewnnnannas PEN CO

ORDINATES

DATA 200,200,40,192,48,12,3,216,165,20,4
1,0,24,208,66,1565

DATA 203,109,130,6,133,203,144,26,165,20

5,105,0,81,15,72,13

DATA 175,6,133,204,104,208,11,174,130,6,
169,0,202,157,0,112

DATA 208,250,172,130,6,169,0,136,145,203
,208,251,160,4,177,205

DATA 109,130,6,145,205,200,177,205,105,0
,41,15,109,175,6,145

DATA 205,169,255,141,250,6,173,128,6,32,

234,6,169,85,141,250

DATA 6,173,129,6,32,234,6,76,95,228,201,
180,176,17,72,74

DATA 74,168,104,41,3,170,189,131,6,41,25

5,17,203,145,203,96

POKE 559,0

FOR N=1664 TO 1791

READ DAT:POKE N,DAT:NEXT N

POKE 1711,PEEK(106)—-16

POKE 559,34:RETURN

205

Chapter Four. Applications.

PROGRAM 3. Atari Screen As Strip Chart Recorder.
0 REM ..%XX%xx MERGE WITH LISTING 1 XxXXxkx

1 REM ..AT "RUN" WAITING TIME WITH BLANKED S

CREEN, WHILE DATA

2 REM ..ARE PREPARED. SUBSEQUENT RUNS BEGIN
AT START=100.

3

REM ..TO CHANGE PARAMETERS PRESS "SYSTEM R

ESET", POKE IN NEW

REM ..VALUES AND TYPE "GOTO START" [RETI].
REM ..POKE 1675,SPEED WITH SPEED = 0,1 (PRE
-SET), 3,7

6 REM ..GIVES DIFFERENT SCROLL SPEEDS.

U s

7 REM ..AT SPEED=0 WE GET "MULTIPLE EXPOSURE

" DISPLAYS BY

8 REM ..POKE 1666,5KIP WITH SKIP = 30,30, OR

70. THE NORMAL

9 REM ..VALUE IS SKIP=40 WITH DISPLAY WINDOW

ADVANCE STEPS
10 REM ..0F 40 WORDS = 1 LINE.

11 REM

50 GOSUB BOO:REMLOAD MACHINE PROGRAM

60 GOSUB 900:REMINITIAL SWING PROGRA
M

70 POKE X2,80:REMSET CENTER LINE

80 POKE 1675,1:REM SET SPEED 1

20 START=100

100 ? =727 =27 =27 ::7? "PRESS START FOR NEXT RUN"

110 IF PEEK(33279)<>6 THEN GOTO 110
120 GOSUB 700:REMINITIATE SCROLLING

130 W=INT(PEEK(53770)/32):REMGET RAND.N

UMBER O,..,7

140 SCORE=W:PHI=T(W):REM ..PHASE ANGLE GIVES

AMPL I TUDE ,
150 @=-16:TRIALS=100:REM . .TRIALS SETS RUN L
ENGTH

160 FOR TRY=1 70O TRIALS-1:R=-Q:5=Q+16

170 R=PEEK(53770):REMGET RANDOM NUMBER
180 IF PEEK(33279)=3 THEN R=2536-R:REM . INVER

T IF "OPTION" PRESSED
190 IF R>127 THEN GOTO 220
200 W=W+1:IF W=8 THEN W=7
210 GOTO 230
220 W=W-1:1IF W=—-1 THEN W=0
230 SCORE=SCORE+W:PHI=T (W)
240 FOR Z=32+S T0O 63+S
250 POKE X1,PEEK(SB+Z—-PHI)+PEEK(SB+Z+PHI-1)
260 NEXT Z:=:NEXT TRY

270 GOSUB 780:7? ::? ::? :? :REM ..EXIT SCROLLI

NG

206

Chapter Four. Applications.

280
290
300
310
320
&?7
698
699
700
709
710
720
727
728

729
730

740
730

760

770

771
772

773
780

790
797
798

i
800

810

811

PRINT "{3 SPACESJ}THE SCORE 1S POSITIVE O
R NEGATIVE"
PRINT "<{3 SPACES}IF THE AVERAGE SWING AM
PLITUDE WAS"™
PRINT " {3 SPACES}>ABOVE OR -BELOW CHANCE E
XPECTATION"

? :2? 320" SCORE = "; SCORE-TRIALSXx7/2

? 2?7 27?7 :607T0 START

REM

REM xxxxx GOSUB 700 STARTS SCROLLING Xxxx
XX

REM

GRAPHICS 7+16:POKE 559,0:REM TV OFF
REM ...SET COLOR FOR BACKGROUND, TRACE X1

, TRACE X2
SETCOLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR O

,8!4

PG=PEEK(106):REMccccecuas= - - NUMBER
OF RAM PAGES

REMSCREEN DISPLAY STARTS AT 256

*PG-4000

REMSTART WRITE 95 LINES(3800 WD

S) FURTHER,I.E.

REM ...cu0aaa WRITESTART = 256%(PG—-1)+56

POKE 203,56:POKE 204,PG-1:REMSET WR
ITESTART

POKE 205,PEEK(560):POKE 206,PEEK(361)

KEEPL=PEEK (546) : KEEPH=PEEK (547):REM ...S

AVE PARAMETERS

POKE 546,135:P0OKE S47,6:REMMACHIN

E PROGRAM START

POKE 559,34:RETURN :REM- TV ON

AGAIN

REM

REM Xxx%xx GOSUB 780 EXITS FROM SCROLLING
kXXX

REM

POKE 559,0:GRAPHICS 7+16:POKE S46,KEEPL:
POKE 547 ,KEEPH

GRAPHICS O:RETURN

REM

REM Xx%xxx% GOSUB B00 LOADS MACHINE PROGRA
M XXX%X

REM

X1=1668:X2=1665:REM .o eeeceanns PEN CO
ORDINATES

DATA 200,200,40,192,48,12,3,216,165,20,4
1,0,24,208,66,165

DATA 203,109,130,6,133,203,144,26,165,20
4,105,0,41,15,72,13

207

Chapter Four. Applications.

812
813
814
815
816
817

820
830
840
850
860
900

910
920

930
940
950
960
970
980

208

DATA 175,6,133,204,104,208,11,174,130,6,
169,0,202,157,0,112

DATA 208,250,172,130,6,169,0,136,145,203
,208,251,160,4,177,205

DATA 109,130,6,145,205,200,177,205,105,0
,81,15,109,175,6, 145

DATA 205,169,255,141,250,6,173,128,6,32,

234,6,169,85,141,250

DATA 6,173,129,6,32,234,6,76,95, 228,201,
180,176,17,72,74

DATA 74,168,104,41,3,170,189,131,6,41, 25

5,17,203,145,203,96

POKE 559,0

FOR N=1664 TO 1791

READ DAT:POKE N,DAT:NEXT N

POKE 1711,PEEK(106)-16

POKE 559,34:RETURN

DIM T(8):REM ..BOSUB 900 INITIALS SWING
PROGRAM

POKE 559,0:REMTV OFF

DEG :SB=1536:REMSINE TABLE STORE ON
PAGE 6

FOR N=0 TO 127

POKE SB+N,40%SIN(N%45/8) +40:NEXT N
T(O)=16:T(1)=15:T(2)=14:T(3)=13
T(4)=11:T(5)=9:T(6)=6:T(7)=0

POKE S559,34:REMTV ON

RETURN

Chapter Four. Applications.

Fast Banner

Sol Guber

Run an advertisement or display banner across the screen.

The internal registers of the Atari are easily accessed and many
interesting effects are possible without much difficulty. This program
will place a message on the screen and then move it along the screen,
shifting the color every time the message is printed. The speed can be
controlled so that the letters move very slowly or at a speed where
they cannot be read. This is one step away from animation for the
Atari.

The program is divided into three parts. The first part determines
the message and translates it into a string variable. The second part
decides which part of the string to put onto the screen. The second
part consists of machine language subroutine that specifically moves
the string onto the screen. The nice thing about this program is the
size. The total memory usage of the program is less than 3.5K and will
produce any message up to 120 characters long.

A small amount of information about the internals of the Atari is
needed to understand fully how the program works. The screen memory
is a continuous section of memory that stores the information linearly.
For each Graphics mode, the exact location of the beginning of
memory is stored in locations 88 and 89, with 89 being the HI portion
of memory. The size of the screen memory depends on the Graphics
mode and for Graphics 4 is 480 bytes long (10°48). Graphics 4 is a
single color mode so that the information stored in each byte will
determine which pixel on the screen is lit. Thus, if the byte contains
the number 170 (10101010 in binary), every other pixel will be lit. If
the byte contains the number 255 (11111111 in binary), every pixel
will be lit. If the byte contains the number 0, then no pixel will be lit.
Every spot on the screen will have a corresponding number in the
screen memory, and every time a number is POKEd into the screen
memory, it will have an effect on the screen.

To put a letter on the screen, the right information needs to be
put into the screen memory. Because of the linearity of the screen and
the fact that there are eight lines that make up each letter, it is not
possible to put the eight bytes in a simple configuration in Graphics 4.
To make a letter, information must be put in a screen memory byte,

209

Chapter Four. Applications.

then in a screen memory ten bytes further, then in a screen memory
ten bytes further, and so forth. The information on how to make the
letter is its binary component, and this is made up of eight bytes. This
information is presently stored in memory and can be generated for
each letter as needed. To use this information, it must be removed
from memory and stored in a variable. The two methods to do this
would be a dimensioned variable or a string variable for the large
amounts of information needed. The Atari BASIC stores each number
as a six byte word and takes up a great deal of memory to store many
numbers. The Atari BASIC stores string variables with one letter per
byte and is much more compact when a great deal of information
needs to be stored. Thus, the eight bytes of each letter are stored as a
part of a string, and the 960 numbers take up only 960 bytes rather
than the 5760 that would be taken up if they were stored as numbers.

A description of the program follows.

Lines 5-7 initialize several constants that will be used throughout
the program. Line 10 dimensions the three string variables that will
be used. Line 15 puts the value of O into the string L$ and line 18
determines where in memory the string L$ is found. Lines 20-48
determine the message, its length, how many times it is to cycle, and
the speed of it.

Lines 50-120 translate the string message into its components
and put it into the string L$. The subroutine at 600 determines where
the offset of the letter is found in memory, and variable 13 contains
that value. The value in that byte is stored in L$ with a 120 byte
offset for each line. The sound is turned on to show that something is
happening. It cycles through eight times for each letter, and each
letter is put into an appropriate spot in the string L$.

Line 125 turns off the sound and goes into Graphics 4. Line 127
goes to the beginning of the string L$ and defines a variable R which
will be the color variable. In Graphics 4, the color register is located
at 708 and the value in 708 defines the color of the letters. Its format
is that the first four bits in the byte define the intensity of the color
and the last four bits define the color itself, with the first bit in the
byte being ignored. Thus, there are eight intensities to the color and
16 colors possible. To shift from one color to the next at the same
intensity, a multiple of 16 is added to the value of register 708. The
maximum value is 255 as for any register. Line 129 defines the point
on the screen memory where the message will start.

Lines 130 to 190 put the message into the screen memory and
the system itself puts it onto the screen. Line 130 defines the number
of cycles for the message. Lines 133-134 define the color for the message

210

Chapter Four. Applications.

cycle. The heart of the movement is in the loop from 140-165. Line
153 points to the letter in the message that is to be on the far left of
the screen. The machine language subroutine on page six (1536)
moves the appropriate letters to the screen memory. Line 163 is a
timer that displays the line for a certain amount of time before it is
shifted over to the next letter. When the speed is fast, the time lag is
short and the letters look as if they were marching across the screen.
When the speed is very fast, the letters are a blur. The subroutine at
3000 reads in a machine language subroutine into page six of memory
where it is used to move parts of the string variable L$ into the screen
memory.

This program opens up several possibilities for further utilization.
The subroutine can be modified to put anything on the screen
anywhere. With changes in the graphics mode, the size of the letters
can be doubled or decreased by 25%. Any of the graphics characters
can be used by the program. With modification, the letters can be
reversed or made upside-down or even sideways. Using interrupts, the
colors can flow along with the letters so that each letter can be a
different color. The possibilities are endless for showing off the
capabilities of your Atari computer.

211

Chapter Four. Applications.

PROGRAM. Fast Banner.

S
6

74

10
15
i8
20
30
40
45
48

20
60
70
80
11
12

C1=1:C16=16:C4=4:C0=0:C7=7
LTT=600:C31=31:C32=32:C128=128:C96=96:C64=
64:C127=127:C12=C4+C7+C1
C2=2:C120=120:C60=C&64-C4
DIM L$(960),A%$(110),0%(1)
LE(1)="¢,3":L$(960)="(,3":L$(2)=L%
LPT=ADR(L%$)+C4+C1
? "WHAT IS YOUR MESSAGE"
INPUT A$:N=LEN(AS%)
? "HOW MANY CYCLES":INPUT N1
GOSUB 3000
? "HOW FAST 1-SLOW 10-FAST":INPUT S§2:52=
(C128+C32) /S2
FOR I=C1 TO N
0$=A%$(I,1):G0OSUB LTT
I3=57344+X%8: FOR J=CO TO C7:M=PEEK(I3+J)
Y=J%120+1:POKE Y+LPT,M
5 SOUND 1,M+C16,10,8
0 NEXT J:NEXT I

12S SOUND 1,0,0,0:GRAPHICS C4+Cl6

12
12
13
13

7 LPT=ADR(L%):R=C16-C4

9 T=PEEK (88) +256XPEEK (8%) +59

0 FOR K=C1 TO N1

3 R=R+C16:IF R{(=255 THEN POKE 708,R:G0TO0O 140

134 R=12:POKE 708,R

140 FOR I=CO TO N+C4

155 A=USR(1536,LPT+I,T)

163 FOR Ki1=1 TO S2Z2:NEXT K1

165 NEXT I

1753 R=PEEK(708)

120 NEXT K

500 STOP

600 X=ASC(O0%$):1IF X>C127 THEN X=X-C128

61
62
63
30

30
30
30
30
30
30
30
30
30
30

0 IF X>C31 AND X<C96 THEN X=X-C32:RETURN

0 IF X<C32 THEN X=X+Cb&4

0 RETURN

00 FOR I=1536 TO 1600:READ X:POKE I, X:SOUN
D 1,X,10,10:NEXT I

05 SOUND 1,0,0,0

10 DATA 104,104,133,199,104,133,198,104, 133

20 DATA 201,104,133,200,162,8,160,12

30 DATA 177,198,145,200,136,208,249,24

40 DATA 165,200,105,10,133,200,144,3

50 DATA 230,201,24,165,198,105,120,133,198

60 DATA 144,3,230,199,24,202,208

70 DATA 221,96,0,0,0,0,0,0,0,0,0

80 DATA 202,208,215,96,0,0,0,0,0,,24

90 RETURN

212

Chapter Four. Applications.

Perfect Pitch

Fred Coffey

“It sounds a bit out of tune,” said my musician friend after listening to
my Atari’s rendition of “The Star Spangled Banner” in two voices.
“You should work on pitch control.”

“It sounds fine to me the way it is,” [protested. “Anyway, let’s
play Asteroids.”

Later I began to wonder just how good the Atari’s pitch was.
remembered that the note “A” above “middle C” was usually tuned to
440 cycles per second. And the Atari BASIC Manual said that if I put
a “72" in for the pitch control (P) in the command “SOUND
0,P,D,V”, I would get the note “A.” Was this sound actually
440 Hz!?

So I turned to my newly acquired Atari Hardware Manual for
help. I finally determined that the Atari controls pitch by dividing an
internal 64 kilohertz clock according to the following formula (where
“P” is an integer between 0 and 255):

PITCH = 63921.0/(2"(P+ 1)) (1)

So, if we plug the “72” (which Atari says is our “A” note) into
the above equation, we get a pitch of 437.8 Hz. The Atari is out of
tune! It is, in fact, not possible to generate a precise “440” note.

But the Atari Hardware Manual does have a solution — we are
allowed to switch to 16-bit precision on our note generation as long as
we are willing to settle for two voices instead of four.

However, before we can exploit that, we need to learn a new way
of controlling sound. We will have to POKE instructions instead of
using the BASIC SOUND command. It's really no problem since we
can define an exact equivalence to SOUND as follows:

Table 1
Voice SOUND Command Equivalent POKE
1 SOUND 0,P,D,V POKE 53760,P: POKE 53761, (16"D)+V
2 SOUND 1,P,D,V POKE 53762,P: POKE 53763, (16*D)+V
3 SOUND 2,P,D,V POKE 53764,P: POKE 53765, (16"'D)+V
4 SOUND 3,P,D,V POKE 53766,P: POKE 53767, (16"D)+V

Now we can go on. The Atari has a memory register, at location
53768, which has 256 ways (i.e., one byte) to control sound options.
[don’t understand most of them yet, but I did sort out a few of them.

Just as an example [found that if I “POKE 53768,1” the Atari switches

213

Chapter Four. Applications.

to a 15 kilohertz clock for sound control, and equation (1) above
becomes:

PITCH = 15699.9/(2*(P+1)) (2)

But to get back to our immediate objective of more precise pitch
control, I found that if [do a “POKE 53768,80" then voices one and
two merge into a single high-resolution voice. If I “POKE 53768,120”
voices three and four follow suit.

We can control these new combined voices as follows:
Voice 1 +2

POKE 53760,P1: POKE 53762,P2: POKE 53763, (16*D)+V
Voice 3+4

POKE 53764,P1: POKE 53766,P2: POKE 53767, (16°D)+V

You will recognize the distortion (D) and volume (V) terms from
the old SOUND commands. But what are these new terms P1 and
P2? They are simply a pair of integer sound control terms like the “P”
in equations (1) and (2), and they generate a high-precision sound
using a 1.79 megahertz clock as follows:

PITCH = 1789790/(2* (256" P2+ P1+ 7)) (3)

Conversely, if we want to know what values to POKE in order to
generate an objective pitch, we can solve (or let the computer solve)
the following and POKE the values into the computer:

P2 = INT ((1789790/(2*PITCH)-7)/256) (4)
P1 = INT (1789790/(2*PITCH)-7 -256*P2 +.5) (5)

To generate a 440 Hz note, then, we can solve the above equations
to find that P2=7 and P1 =235. We can then POKE these values to
generate our note (which comes out at 439.97 Hz — pretty good!).

So much for the mathematics. Now for a demonstration (Program
1). The demonstration uses two joysticks to control one high-resolution
voice and one “normal” voice, and displays the relevant pitch equations
on the screen as the equation terms change. You can quickly see how
much control over pitch you have in each case.

Program 2 allows you to experiment with different scales of notes
— using the best normal Atari approximation and then playing the
scale again with high resolution pitch control.

Finally, I was ready to call my musician friend back in. “Listen to
this,” I said. “I can control pitch to a fraction of a cycle per second. In
fact, if I simultaneously sound two notes that are very close to each
other, you can hear the combined sound waver as the two wave forms
drift in and out of phase and alternately reinforce and cancel each
other.”

214

Chapter Four. Applications.

“Not bad,” he said. “We call that phenomenon ‘beating’ and
use it to tune instruments precisely against a tuning fork reference.”

“Hey,” I said, “that means you could play a note on your piano
and I could match my Atari note to it precisely by listening to the
beat. I've invented a piano tuner!

“Now,” ['said, “if you'll just tell me the mathematical relationship
between the rest of the notes on the musical scale, I'll tune my Atari
and we'll hear some real music!”

“Well,” he said, “it’s not that simple. There are several methods
of tuning. It depends on what instrument you're tuning, and even
depends on what country you live in. Besides, pitch control isn’t the
only problem with your Atari sound. For example...”

“It sounds fine to me the way it is,” [said. “Let’s play Asteroids.”

215

Chapter Four. Applications.

PROGRAM 1. Perfect Pitch

BN

goND>U

30
40
S50

S

10
ok |
13
14
16

17

18
19

REM ———————— PROGRAM 1 ————————
REM
REM
GRAPHICS 0:7 :7? :7? :? "WHAT FREQUENCY WOUL
D YOU LIKE TO":? “START";:INPUT FRE®
AUDF3I=INT(63921/ (2XFRER) —-1+0.5)
AUDF2=INT({(1789790/ (2%FRERQ) —7) /256)
AUDF1=INT ((1789790/ (2X¥FRER)) ~7-256%XAUDF2+0.5)
IF FRE@>125 AND FRER<16000 THEN 10
? "ALLOWABLE RANGE 125 TO 16000":? "TRY AG
AIN"; : INPUT FRE@:GOTO 5
GRAPHICS 0:7? "JOYSTICK #1 CONTROLS HIGH R
ESOLUTION"
? "FRERUENCY. PRESS BUTTON TO SOUND,
? "MOVE UP/DOWN FOR SLOW FREQUENCY SHIFT"
:? "OR LEFT/RIGHT FOR FAST SHIFT."
2:?"JOYSTICK #2 CONTROLS LOW RESOLUTION,
?"BUTTON TO SOUND OR UP/DOWN FOR SHIFT.":7
REM FOR UNKNOWN REASON FOLLOWING COMMAND
NECESSARY FOR RELIABLE OPERATION:
SOUND 0,0,0,0:SOUND 1.0,0,0:S0OUND 2,0,0,0
:SOUND 3,0,0,0
0 POKE 752,1
0 POKE 53768,80
0 POKE 53763,10%16+15
0 POKE 53765,10%16+15
0 IF STICK(0)=13 THEN AUDF1=AUDF1+1:IF AUD
F1>255 THEN AUDF2=AUDF2+1:AUDF1=0
0 IF STICK(0)=14 THEN AUDF1=AUDF1-1:IF AUD
F1<0 THEN AUDF2=AUDF2-1:AUDF1=255
0 IF STICK(0)=11 THEN AUDF2=AUDF2+1
0 IF STICK(0)=7 THEN AUDF2=AUDF2-1

220 IF STICK(1)=13 THEN AUDF3=AUDF3+1

23
24

25
26
27

28
29

30
31
32

O IF STICK(1)=14 THEN AUDF3=AUDF3-1

0O IF STRIG(0)=0 THEN POKE 53760,AUDF1:POKE
53762,AUDF2:60T0 260

0O POKE S53760,0:POKE 353762,0

0 IF STRIG(1)=0 THEN POKE 53764,AUDF3:60T0280

O POKE 53764,0

0 FOUT2=1789790
0 FOUT3I=63921/ (

O POSITION 1,9:7
0O ? "HI RES FRERUENCY:":7

0O ? " FREQ = 1789790/ (2x("; AUDF2; "%¥256+";A
UDF1;"+7)) (3 SPACES}>":"7?

fE2 UDF2%x256+AUDF1+7))
2% (F3+1))

325 ? "{7 SPACES}Y= “3;FOUTZ2
330 ? :? 2?2 "LO RES FREQUENCY:":7?
340 2?2 " FREQ = 63921/ (2% (";AUDF3;"+1))
{5 _SPACES}":7? :? "{7 SPACES}= ";FOUT3

200 GOTO 100

216

Chapter Four. Applications.

PROGRAM 2. Perfect Pitch.

2 R
9 R
10
20

30

40

50
60
70
90
100
110
120
150

160

170
200
210
220
230
240
250
260
270
300
305
310
320
330
340

350
360

370
380
400

410

420

EM
EM PROGRAM 2
REM
REM THE FOLLOWING PROGRAM TAKES A GIVEN S
CHEDULE OF EIGHT PITCH VALUES
REM (I.E. A SCALE) AND PLAYS THE NOTES US
ING THE BEST NORMAL ATARI
REM APPROXIMATION AND THEN USING A "HIGH
RESOLUTION" RENDITION
REM
REM
REM
REM "EQUAL TEMPERMENT" SCALE

DATA 520,584,655,694,779,874,982, 1040
DIM PITCH(8) ,A% (1)

FOR J=1 TO B8:READ X:PITCH(J)=X:NEXT J
GRAPHICS 0:? :? " NORMAL ATARI

(7 SPACES3>HIGH RESOLUTION":? " —————————
-——{(7 SPACES}——————————————~— -

? " P({(4 SPACESIPITCH(B8 SPACES}P1 P2

(3 SPACES3PITCH":? " --(4 SPACES}-———-—
{8 SPACES3}-- --{3 SPACES}————— m

POKE 752,1

REM GENERATE *NORMAL’ ATARI SOUND

FOR J=1 TO 8

P=INT(63921/ (2%PITCH(J))~-1)

SOUND 2,P,10,8

PITCH=63921/(2%(P+1))

POSITION 3,J+6:? P;" “;PITCH

FOR W=1 TO 200:NEXT W:NEXT J

SOUND 2,0,0,0:FOR W=1 TO S00:NEXT W

REM *HIGH RESOLUTION® SOUND

POKE 53768,80

FOR J=1 TO 8

P2=INT((178979C/ (2%XPITCH(J))~-7) /256)
P1=INT(1789790/(2%PITCH(J)) -7-256%P2+0.5)
POKE 53760,P1:POKE 53762,.P2:POKE 53763, (
16%10) +8

PITCH=1789790/ (2% (256%P2+P1+7))

POSITION 21,J+6:? P1:POSITION 25,J+6:7 P
23" ";PITCH

FOR W=1 TO 1S0:NEXT W:NEXT J

POKE 53760,0:POKE 53762,0

POSITION 2,19:7? " PLAY IT AGAIN (Y OR N)
“;: INPUT A$:IF A$="Y" THEN 150

? "ENTER 8 NEW PITCH VALUES, ONE AT A":?

"TIME™"
FOR J=1 70O 8: INPUT X:PITCH(J)=X:NEXT J:6

0oTO0 150

217

CHAPTER FIVE

BEYOND BASIC

ONWAKD
ANDP

UPWARD !

O

O

@¥\)

Chapter Five. Beyond BASIC

Put Your USR Code
Into A
BASIC Program
Automatically

F. T. Meiere

Entering machine language into a BASIC program can be tedious, but with
AUTOTYPE, you just enter the file name and a BASIC subroutine is

automatically written for you.

This utility routine automatically reads machine language code into
your BASIC program as a graphic string. [t DIMensions the string
properly and successfully handles the troublesome quote and carriage
return. All you type is RUN. If your fancy turns to READ and POKE,
then minor changes will put the code in DATA statements. None of
the ideas are new, but the key step is POKE 842,13 from COMPUTE!,
August 1981, #15. My thanks to our sharp-eyed editor who pointed
out the potential of this POKE which has been around for some time
(e.g., Santa Cruz Software “Memory Map for the Atari”). For
entertainment and debugging, you may want to skip the input of
actual code, read in the integers from 1 to 255, and watch your Atari
program itself.

To enter a USR program as a string, create relocatable machine
code and save it to disk or cassette. ENTER this program AUTOTYPE
temporarily in your BASIC program. GOTO 9000. The proper string
will be entered and displayed on the screen. The whole program can
be SAVEd or just the desired portion LISTed to disk or cassette.
Alternatively, AUTOTYPE can be RUN separately and the string
LISTed and ENTERed as needed.

Line 9000-9310: The disk file containing USR code is OPENed
and the first six bytes of DOS information are removed. Cassette users
will OPEN #C1,4,0,“C:”. The remainder of the section makes the
program user friendly by setting default values and error messages. The
program can be shortened by omitting this whole section, providing

221

Chapter Five. Beyond BASIC

the USR file is opened and values given to NAME$,LN1 and INCR.
Line 10020:PDIM dimensions the string.

Line 10030:LNUM prints the line number and the string name.
XPR is the position of the first string entry on the current line.

Line 10050:PSPEC enters the quote and carriage return (EOL)
separately using CHRS$. Lines 10410 and 10420 make sure there is
information to enter and remove the quote mark which would normally
follow the line number.

Line 10060:CHR$(27) =ESC ensures that the control characters
will print. If you POKE 766, 1 to do this, then LNUM cannot clear

the screen.

Line 10070: The final quote is added and LENT enters the
whole line into this program.

Line 10220:POKE 842,13 makes the Atari shoot carriage returns
continuously after the STOP. This enters the string as printed on the
screen. However, when the CONT printed by line 10120 is
encountered, the program will resume with line 10230 POKE 842,12
which returns the computer to normal.

If the USR code is not relocatable, you may want to enter it as
DATA and POKE it into memory. The following changes will enter
the code as DATA statements.

2130 TRAP 40000

10060 ? Xz3","3:IF PEEK(84)=4 THEN IF PEEK (85
) >30 THEN GOSUB LENT

10070 NEXT I:G05UB LENT

10110 ? CHR$%(125):7?:7? L:;" DATA ";:XPR=PEEK (8
3)

10205 ? CHR$(126)

Omit the references to PDIM and PSPEC on Line 10020, and
omit Line 10050 and Lines 10300 to the end.

One final comment: There are at least three ways to save USR
code as part of a BASIC program. 1) Put it in as a SUBR$ string and
call USR(ADR(SUBRY$)). 2) Put it in DATA statements and POKE
it into RAM at a fixed address. 3) Load it immediately following your
program and change the pointers to fool BASIC into saving your code
along with the program. BASIC does not normally save string space
and option 3 can be rather tricky. However, many descriptions,
including those in the Atari manuals, are misleading. I recommend
that you consider your specific needs and take any other program
(including this one) with a grain of salt.

222

Chapter Five. Beyond BASIC

PROGRAM. Put Your USR Code Into A BASIC
Program Automatically.

2000 REM Convert USR code to a string

2010 AUTOTYPE=10000:XYZ=9200

2020 DIM FILE$(15) ,NAME$(15):C0=0:C1=1:C2=C1
#E 1

030 GRAPHICS 0:POSITION 10,C1:7? "MIVGEENSEENE
A R Cloinivieirit ISR clofdlel tol al sidrjiinig B

2040 ? :7? "Please enter information below":?

"For default values (..) hit FEnOITEI®
9050 ? ::7? "USR code FILE NAME ";:INPUT NAMES

:IF NAME$="" THEN 9050
060 FILE$=NAME$: TRAP 9070:1IF NAME$(1,1)="D"
THEN IF (NAME$(2,2)=":" OR NAME$(3,3)=

":") THEN 9080

070 FILE$(1,2)="D:":FILE%$(3)=NAMES$

2080 TRAP 9300:0PEN #C1,4,0,FILE$:G0SUB XYZ

090 IF (X<>255 0OR Y<>255) THEN ? "[EDONRIITIHE
[EEa(ME" ,FILE$:60T0 9310

2100 GOSUB XYZ:L=Z:605UB XYZ:BYTES=Z-L+C1

2110 LN1=100:TRAFP 9120:7 "First line number
{100) "j;:INPUT LN1

2120 INCR=10:TRAP 2130:7? "Incr. line number
(10) "j3;:=:INPUT INCR

2130 TRAP 40000:7? "USR string name (SUBR%) "
;5 INPUT NAME$:L=LEN(NAME$) : IF L<2 THEN
NAME$="SUBR$":L=5

2140 NAME$S (L)="%"

2150 GOSUB AUTOTYPE:CLOSE #C1:END

9200 REM KNAEEEEGEE:SZGMEEDGEE

9210 GET #C1,X:GET #C1,Y:Z=X+256%XY: RETURN

2300 7?7 "M EEERREETTIEEMN ,FILES

2310 ? :? "Hit [EELOEELD to RUN again "j;: INPUT
NAME$: RUN

10000 REM {3 BELACEEEIEMFOEDNERS EBEEEEEE >

10010 REM Type lines in program

10020 LNUM=10100: LENT=10200:PDIM=10300: PSPEC
=10400:L=LN1:G0SUE PDIM

10030 K=CO:FOR I=C1 TO BYTES:1IF K=CO THEN GO
SUB LNUM

10040 GET #C1,X:K=K+C1:REM code byte

10050 IF (X=34 0OR X=155) THEN GOSUB PSPEC:GO
TO 10070

10060 ? CHR%$(27);CHR%(X);:IF K=80 THEN ? CHR
$(34): GO0SUR LENT

10070 NEXT I1:1IF K<>0 THEN ? CHR$%$(34):G0S5UB L
ENT

10080 GRAPHICS CO:LIST C1,8999:RETURN

10100 REM [V 3T Gl U B0 U G5 Y 7 O O " I IR TG R

223

Chapter Five. Beyond BASIC

10110
10120

10200
10210

10220
10230
10240
10300
10310
10320

10400
10410

10420

224

? CHR$(125):7 ::? L3" ";NAMES$; " (";I;")=
";CHR% (34) ; : XPR=PEEK (835)
POSITION C2,6:7 "CONT":POSITION XPR,2:

RETURN

REM [W[GE[b 0 e VO

? CHR$(126):FPOSITION CO,CO:K=CO:L=L+IN
CR

POKE 842,13:5STOP :REM auto <CR?>

POKE 842,12:REM stop auto <CR>

RETURN

REM [0 5 el 70 00 B U e = S B S = 0 (R T

? CHR$(125):7 ::? L3;" DIM ";NAME$;" (";R
YTES; ") "

POSITION C2,6:7?7 "CONT":G0S5UR LENT:RETU
RN

REM [(G300 G G 0 100 s 1 " [S e (e[

IF PEEK(83)<>XPR THEN ? CHR%(34):G0S5UR
LENT: GOSUB LNUM

? CHR$(30); "CHR$(";X3")":605UB LENT:RE
TURN

Chapter Five. Beyond BASIC

Back Up
Machine Language
Programs With BASIC

Ed Stewart

This fairly technical article shows you how to back up cassette-based machine
language programs. If that's not a priority for you, it’s still worthwhile
reading. The author explains IRGs (interrecord gaps) on the Atari and a
good bit more.

If you have any machine language programs on cassette tape, you may
be painfully aware of what a “BOOT ERROR” message means to you.
If you haven't yet experienced the anguish of a non-readable machine
language tape, then read on and avoid future pain. For those of you
who are not masochistic and who, like me, have lost a tape or two,
take heart, for you can now save a backup copy in your wine cellar
tape vault. The program described in this article allows you to make
your own private copy of any Atari machine language program. It is
almost as easy as CLOAD/CSAVE and is well worth your time to
incorporate into your program library.

When I began developing this BASIC program, I thought it
would be easy as GET/PUT and would be a trivial program requiring
perhaps 30 minutes at the outside to develop. Wrong. After about 16
hours of work over three weeks I came up with this solution. I could
not have done it without the Atari Operating System source listing.
My final version of the program ended up with two machine language
subroutines filling and emptying a very long string variable while
tricking the Operating System Cassette Handler into doing all the I/O
for me.

The basic reason why I had to resort to machine language was
very simple — BASIC was too slow to do the job. Each block of data
stored on a cassette tape is 128 bytes in length. All [had to do was
read a block of data from the tape, transfer all 128 bytes to my string,
and read the next block of data in before the tape ground to a halt.
Each block of data on the tape is separated by a gap called an interrecord
gap (IRG). There are two kinds — short ones and long ones. The short

225

Chapter Five. Beyond BASIC

IRG’s are used when you can dispose of the 128-byte data block quickly
and request the next one while the record motor is still on. If the
recorder stops between blocks on a tape that has short IRG’s, then
when it starts back up again it will begin reading from the tape just a
little bit beyond where the data really is. The result is usually error
code 143 — Serial Bus Data Frame Checksum Error. Long IRG’s, on
the other hand, are long enough to permit the tape to come to a
complete stop and start again without any loss of data or error codes.
Long IRG’s are used, therefore, when the 128-byte data block in the
cassette buffer cannot be used very fast, for example, when you use
the GET commands in BASIC. Machine language programs are
stored on tape with short IRG’s. By the time you can issue 128 GET
commands and transfer those 128 bytes into a string, the tape has
stopped. The 129th requested GET will recognize an empty cassette
buffer and cause a new data block to be read from the tape, but it will
be read too late — the motor stopped with a short IRG tape and bingo
— error 143.

The solution was to request a data block from tape with a GET
command, empty the cassette buffer into my string with a machine
language subroutine and make the machine think that its cassette
buffer was empty so that a subsequent GET would cause another data
block to be read into the buffer. This process was repeated until the
EOF condition was obtained on the tape. Then the string had to be
written back to tape, using another machine language program to
empty the string into the cassette buffer while using the PUT command
to cause the actual tape write to occur. If this seems a bit complex to
you, perhaps the following diagram will help.

READ SIDE WRITE SIDE

Open Open

Basic “GET”’ empty string to cassette
Move cassette buffer to string mark cassette buffer full
mark cassette buffer empty Basic “PUT”
EOF-CLOSE EOF-CLOSE

The only limitation this program has is that the program size you
may copy is limited by the size of the string A$. The size of the string
A is limited by the size of your available RAM and is derived
dynamically based upon your RAM size. A string cannot exceed 32K
and so A$ is limited to 32K. In other words, a program greater than
32K cannot be copied.

Now that I have showered you with all the technicalities of this
little program, let’s see what it looks like line by line.

2126

Chapter Five. Beyond BASIC

PROGRAM. Back Up Machine Language Programs
With BASIC.

REM BACKUP TAPE UTILITY FOR MACHINE

REM LANGUAGE FPROGRAM OR TO EBACKUP

REM ANY 600 BAUD TAPE WITH SHORT

REM IRG"S FOR THAT MATTER

REM

REM AUTHOR ED STEWART

O NO=0:N1=1:N2=2:N256=256:GRAPHICS N2Z+16:RE

M SET LOW MEMORY GRAPHICS MODE

20 Z=PEEK (742) %¥N25S46+PEEK (741) -PEEK (143) XN256
+PEEK (144)—-1500: IF Z>32767 THEN Z=32767

24 DIM A%$(Z):REM SET STRING LENGTH

30 A1) ="{ 3 ":1AS(Z)="{,3": A% (2) =A%

34 REM INITIALIZE STRING IN 30

40 POKE 203,ADR(A%) - (INT(ADR(A%$) /N256) XN236)
:POKE 204, INT(ADR(A%) /N256):REM POKE STR
ADR FOR M.L. ROUTINE

60 FOR I=1536 TO 1565:READ A:FPOKE I,A:NEXT I
:REM POKE IN M.L. ROUTINE

70 TRAP 200:REM SET TRAP FOR EOF

74 ? #63;"INSERT INPUT TAPE":? #6; "MEEEENME™R
REFBEE (4 EREEEE > REFBLR "

80 OPEN #N1,4,255,"C":CNT=NO:REM OPEN INPUT
FILE

20 FOR I=NO TO Z STEP 128:REM SET INFUT LOOP
COUNTER

100 GET #1,B:CNT=CNT+128:REM FILL CASSETTE B
UFFER FROM TAPE

120 X=USR(1536):REM MOVE BUFFER TO STRING AN
D MARK BUFFER EMPTY

140 NEXT I:7? "NOT ENOUGH RAM TO COPY TAFPE":E
ND

200 IF PEEK(195)=136 THEN CLOSE #N1:GRAPHICS

N2+16:7 #6; "INSERT OUTPUT TAFE"
202 ? #6; "MEREEEEENNBEECMEE (5 ELEEERE > EEEERN": 6

=N U B AN -

0oTOo 210

204 ? "ERROR — ";PEEK(195):END

210 RESTORE 12000:REM SETUP FOR 2ND M.L. PRO
GRAM

220 FOR I=135336 TO 1566

230 READ B:POKE I,B:NEXT I:REM POKE IN 2ND P
ROGRAM

234 POKE 203,ADR(A%)—(INT(ADR(A$) /N256) XN256
) :POKE 204,INT(ADR{(A%$)/N256):REM SET UP
STRING ADD FOR 2ND PGM

240 OPEN #N1,8,255,"C":REM OPEN OUTPUT TAPE

260 FOR I=NO TO CNT STEP 128:REM SETUP OUTTA
PE LOOFP COUNTER

227

Chapter Five. Beyond BASIC

262

279

300
320

400

X=USR(1536):REM EMPTY STRING TO CASSETTE
BUFFER AND MARK BUFFER FULL
ZI=ASC(A$(I+128)):PUT #N1,Z:REM PUT LAST

BYTE IN BUFFER AND WRITE TO TAPE

NEXT I

CLOSE #N1:GRAPHICS N2+16:7 #6;"THAT’S AL

L FOLKS":REM SAY DONE OK NOW

FOR I=NO TO B00:NEXT I:RUN :REM MAKE MOR
E OUTPUT TAPES IF DESIRED

9000 DATA 104,174,138,2,134,61,160,0,162,0,1

85,0,4,129,203,200,230,203,208,2,230,20
4,196,61,240,3,76,10,6,96

10000 DATA 104,169,128,133,61,160,0,162,0,16

228

1,203,153,0,4,200,230,203,208,2,230,20
4,196,61,240,3,76,9,6,198,61,96

Chapter Five. Beyond BASIC

Loading Binary DOS
Files From BASIC

Robert E. Alleger

You can load binary (machine language) files from DOS with selection
“L.”” Here's a machine language program that lets you do it from BASIC.

Introduction

Several months ago, my friend Doug came to me and said, “Hey Bob,
[want to show you the nifty menu program I wrote.” After he
demonstrated his program, I said, “Big deal! You came all the way
over here to show me this?”” He replied, “Not exactly. There’s one
slight problem that [don’t know how to solve. My menu will not load
machine language programs. I thought that you might be able to help
me.” After some arm twisting, | agreed to write a routine that would
allow a BASIC program to load machine language disk files.

DOS 2 LOAD File Format

Before [begin with a step-by-step breakdown of LOADIT, it might be
helpful to define the format of a DOS 2 binary load file (see Figure 1).
A binary load file begins with a two-byte header id of $FF $FF ($xx
indicates hexadecimal numbers), followed by a two-byte start address,
a two-byte end address, and the program data (object code).

For programs with multiple ORGs, this pattern may repeat over
and over again, beginning with the start address. If the file was created
by using the DOS copy (‘C’) command to append two or more files
together, then the pattern may repeat beginning with the header id.

Figure 1.
: $FF $FF : start address : end address : object code : ...

On With The Show

LOADIT is designed to be called from BASIC via the USR function.
[t is ORG'd for page six (1536-1791) so that it is relatively safe, as
long as the machine language program that it runs does not load into
this area.

Referring to Program 1 (LOADIT.ASM) line numbers 0440-0580

279

Chapter Five. Beyond BASIC

(INIT) is the initialization routine. It calls a subroutine that CLOSEs
IOCB (I/O Control Block) number one (in case it was already open),
retrieves the address of the file-spec from BASIC, and then OPENs
the specified file.

Lines 0620-0810 (RDHDR) read the first two bytes of a block of
object code from the input file. If both bytes are an $FF (header id),
then the program loops back to get the next two. Together, these
bytes form the address into which to start loading the object code. An
end of file error ($88) at this point indicates that the whole file has
been loaded, and therefore execution branches to the DONE routine.

Lines 0850-0930 (CONT) read the next two bytes, which form
the ending address for the current block of object code. Any error
returned in the Y-register by CIO at this point either indicates that
the file is bad (i.e., “File Number Mismatch,” etc.) or that the file is
not in binary load format (see Figure 1).

Lines 0970-1040 (HDROK) check to see if this is the first block
of object code that has been read from this file. If it is, then the
address of the first instruction is used as the default run address, in
case none is specified. In assembly language, the run address is specified
by storing the address of the entry point to your program in locations

$02E0-02E1.

Lines 1080-1270 (RDBLOK) read the object code from the file
and store it in memory, from start address through end address. The
number of bytes to be read is calculated by taking the ending address,
subtracting the start address, and adding one. The only non-fatal error
code that CIO could return at this point is $03, which indicates that
an end of file error will be encountered on the next read.

After loading the entire block of object code, the program loops
back to the RDHDR routine.

Lines 1340-1350 (DONE) are executed on an end of file error in
the RDHDR routine. The input file is CLOSEd and execution is
transferred to the loaded program via the vector at address $02EO-

0ZEL.
Does It Really Work?

[will use a very simple, no frills menu program (see Program 2) to
demonstrate that LOADIT really does work. Although LOADIT
might be useful in other applications, I chose this menu because it
illustrates the most common usage.

The subroutine starting at line number 5000 is responsible for
placing LOADIT at its proper location in memory. A FOR/NEXT

loop reads the decimal equivalent of the machine language instructions

230

Chapter Five. Beyond BASIC

and POKEs them into page six of memory.

LOADIT is only called when a machine language program is
chosen from the screen menu. [chose to indicate a machine language
load-and-go file by using the file extension “.CND” (from my old
TRS-80 days). Of course you can use anything you like, just change
line number 480.

LOADIT is called by the statement in line number 550. The
parameters specified in the USR function are LOADIT’s starting
address (1536 = $0600) and the address of the string variable which
contains a complete file-spec (i.e., Dn:name.ext).

BASIC should never fall through to line number 570, because
LOADIT only returns to BASIC if an error is encountered.

Did I Really Type All Those DATA Statements?

In case you were wondering, 1 did not type in the DATA statements
on line numbers 5001-5008. Instead, I used a handy BASIC utility
program that I wrote called DATAGEN (see Program 3). It is included
as a bonus.

DATAGEN reads a binary load format file, such as
LOADIT.OB]J, and produces a file that can be appended to your
BASIC program with the ENTER command (see page 25 of the
ATARI “BASIC REFERENCE MANUAL"). This file will contain
one FOR/NEXT loop and a number of DATA statements for each
block of object code in the file.

Upon startup, DATAGEN requests a complete file-spec for the
input and output files. It also asks for the starting line number that
will be used to begin numbering the subroutine that is being written
to the output file.

And That's Not All, Folks

Program 4 is another utility program which can be used to find out the
load parameters of a binary load format file. DPSLOAD reads a binary
file and displays the starting and ending address of each block of
object code, the auto run, and init addresses, if present (see pages 41-
44 of the Atari Disk Operating System I Reference Manual).

The input requested by DSPLOAD is a complete file-spec of the
input file. The information will be displayed on the screen when each
block of object code is encountered.

To some, it may seem that DATAGEN and DSPLOAD have
nothing to do with my intended topic, but [hope that they prove to
be educational as well as useful aids to programming.

231

Chapter Five. Beyond BASIC

PROGRAM 1. Loading Binary DOS Files From BASIC.

10
20
30

. TITLE
sAuthor:

L]

sThis program a
sprogram to LOA
slanguage progr

"LOADIT
Robert

IOCBi=1%16
;IOCB (B % 16
ICHID=%0340
ICDNO=ICHID+1
ICCOM=ICDNO+1
ICSTA=ICCOM+1
ICBAL=ICSTA+1
ICPTL=ICBAL+2
ICBLL=ICPTL+2

; I0CB #1

1.1
E.

02/24/82"
Alleger

l1lows a BASIC
D a machine
am and execute it.

(D:)
bytes)

shandler ID

sdevice #
scommand

sstatus

sbuffer address
sPUT routine addr
sbuffer length

ICAX1=ICBLL+2
ICAX2=ICAX1+1
ICAX3=ICAX2+1
ICAX4=ICAX3+1
ICAXS=ICAX4+1
ICAX6=ICAXS5+1
L

CIO=%E456
ENR=%03

s AUX
s AUX
s AUX
s AUX
s AUX
s AUX

UL UN=

sCI0 entry point
s;EOF on next read
EOF=%88 ;EOF status
OPEN=%03 ;0OPEN command
GETCHR=%07 ;GET CHARACTERS
CLOSE=4%0C :;CLOSE command
OREAD=%04 ;0PEN direction=

command

READ

s

RUNLOC=%02E0 j;auto run vector
FREEO=%00CB ;free 0 page RAM
HEADER=FREEO ;block header buffer
FLAB=HEADER+4 ;1st block flag

5
k=4$0600
Initialization

LDX #I0CB1
CLOSEIT
FLAG
5get rid of # of args on stack
sMSB of file spec location

(to $00D1)

sin case I0CB was in use

Chapter Five. Beyond BASIC

0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0741
0742
07350
0760
0770
0780
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0930
0940
0950
0960
0970

0980
0990

STA
PLA
STA
LDA
STA
LDA
STA
JSR
BPL
JMP

ICBAL+1,X

sLSB

ICBAL, X

#0OREAD

ICAX1,X

#0OPEN

ICCOM, X

CI0O ;open file

RDHDR

ERROR 3file not found

s
s Read header id or start address

5
RDHDR LDA #HEADER&25S

STA
LDA
STA
LDA
85TA
LDA
STA
LDA
STA
JSR
BPL
CPY
BEQ@
BNE

ICBAL,. X

#HEADER /256

ICBAL+1,X

#2

ICBLL, X

#0

ICBLL+1,X

#GETCHR

ICCOM, X

CIO ;get id or start addr
CHKID

#EOF ;end of file?
DONE ;3 -vyes

ERROR 3 -no, bad file

3
CHKID LDA #$FF

CMP
BNE
CHMP
BEQ

L

HEADER

CONT

HEADER+1

RDHDR ;ignore $FF,$FF id code

;:Read end address

5

CONT
STA
LDA
STA
JSR
BPL
BMI

LDA #HEADER+2&255
ICBAL, X
#HEADER+2/236
ICBAL+1,X

CIO 3;get end address
HDROK

ERROR ;bad file

;Store program start address

5
HDROK LDA FLAG

BEQ®
LDA

RDBLOK 3;skip if not 1st block
HEADER j;use start of program

233

Chapter Five. Beyond BASIC

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

1460

1470
1480

234

STA RUNLOC ; as default run adr
LDA HEADER+1

STA RUNLOC+1

LDA #O

STA FLAG j;clear 1st block flag

L]

sRead a block of object code

L]
RDBLOK LDA HEADER ;load address
STA ICBAL,.X

LDA HEADER+1

STA ICBAL+1.X

LDA HEADER+2 ;end address

SEC

SBC HEADER :;length = end - start
STA ICBLL,X

LDA HEADER+3

SBC HEADER+1

STA ICBLL+1,X

INC ICBLL,X 3adijust length by 1
BNE %x+35

INC ICBLL+1,X

JSR CIO ;read block

BPL RDHDR j3;get next block
CPY #ENR

BER@ RDHDR ;this is also OK
JMP ERROR ;bad file

s Subroutines follow

2223203233330 3088823
;Start selected program

RSS2 2208030022000 0 88

DONE JSR CLOSEIT

JMP (RUNLOC) j;start program
RS2 S2 0020882033833 33323888¢8

sReturn error code to BASIC

R 2323332823323 3332333333238 %

ERROR TYA

STA 212 ;tell BASIC what’s wrong
LDA #O

STA 213

snow fall through to CLOSEIT
sthen return to BASIC
sEERERXEAKRARKX

sClose the 10CBHB

HEES 22282202288
CLOSEIT LDA #CLOSE

Chapter Five. Beyond BASIC

1490 STA ICCOM,X
1500 JSR CIO ;close file
1510 RTS

235

Chapter Five. Beyond BASIC

PROGRAM 2. Loading Binary DOS Files From BASIC.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260
270
280
290
300
310
320
330
340
350

360
370
380
390

400
410
420
430

440
450

236

REM LOADIT demo menu
REM by Robert E. Alleger
DIM LINE$(15),DIR$(12%x64) ,DRIVE% (3)
REM % Initialization X
6RAPHICS O0:POKE 752,1
DRIVE$="D1:"
PRINT ,"J[ECNX for Drive ";DRIVE$:PRINT
GO0SUB S000:REM store LOADIT.OBJ
LINE$=DRIVE$:LINE${(4)="%.x%x"
DIR$(1,1)=" ":DIR$(12%x64)=" "
DIR$ (2)=DIR%
CLOSE #1:0PEN #1,6,0,LINES
TRAP 3BO0:ENTRY=1:LINEFLAG=1
REM * Read the directory x

FOR FILENUMBER=1 TO 64
INPUT #1,LINES$

IF LINE$(2,2)<>" " THEN 380
PD=ENTRY

REM %X Scan file name X

FOR PS=3 TO 10

IF LINE$(PS,PS)=" " THEN 240
DIR$(PD,PD)=LINE$(PS,PS)

PD=PD+1:NEXT PS

REM %X Check for extension X

IF LINE$(11,11)=" " THEN 320:REM no exte
nsion

DIR$(PD,PD)=".":REM append dot

PD=FD+1

REM % Scan file extension X

FOR PS=11 TO 13

DIR$(PD,PD)=LINE$(PS,PS)

PD=PD+1:NEXT PS

REM X Display file name.ext X

IF LINEFLAG=3 THEN PRINT :LINEFLAG=1

IF FILENUMBER<10 THEN PRINT " ";

PRINT FILENUMBER;" ";DIR$(ENTRY,ENTRY+11
Yo"

LINEFLAG=LINEFLAG+1

ENTRY=ENTRY+12: NEXT FILENUMBER

REM * Choose one X

PRINT :PRINT "Enter number of file to 1o
ad: "3

TRAP 390: INPUT N

IF N<1 OR N>FILENUMBER—-1 THEN 390
LINE$=DRIVES%

LINE$(4)=DIRs(NXx12—-11,N%x12)

GRAPHICS 0:POSITION 2,10
FPRINT "{6 SPACESYLOADING ";LINES$

Chapter Five. Beyond BASIC

460 REM % See if machine language X
470 FOR PS=4 TO 12
480 IF LINE$(PS,PS+3)=".CMD" THEN 540
490 NEXT PS
500 REM %X Load BASIC program »
510 TRAP 530
520 RUN LINES
530 ERROR=PEEK(195):6G0T0 560
540 REM %X Load M.L. program X
550 ERROR=USR (1536, ADR(LINE$))
560 REM %x Shouldn’t be here! x
570 PRINT "[EEEEE #"3;ERROR;" encountered duri
ng load"
S80 END
5000 FOR A=1536 TO 1717:READ B:POKE A,B:NEXT
A
5001 DATA 162,16,32,173,6,134,207,104,104,15
7,69,3,104,157,68,3,169,4,157,74,3,169,
3,157,466
5002 DATA 3,32,86,228,16,3,76,166,6,169,203,
157:68;3:;169;0:;157:69:F3+169:2;157:72; I
169
5003 DATA 0,157,73,3,169,7,.157,66,3,32,86,22
8,16,6,192,136,240,92,208,96,169,255,19
7,203,208
5004 DATA 4,197,.204,240,210,169,205,157,68,3
+1692,0,157,6%9,3,32,86,228,146,2,48,69,16
5,207,240
5005 DATA 14,165,203,141,224,2,165,204,141,2
25:2:; 169,090,133, 207,165,203,157,68,3,165
s 204,157 ,69,3
5006 DATA 165,205,56,229,203,157,72,3,165,20
6,229,204,157,73,3,254,72,3,208,3,254,7
F.3,32,86
5007 DATA 228,16,137,192,3,240,133,76,166,6,
32,173,6,108,224,2,152,133,212,1692,0,13
3,2183,169,12
5008 DATA 157,66,3,32,86,228,96
5009 RETURN

237

Chapter Five. Beyond BASIC

PROGRAM 3. Loading Binary DOS Files From BASIC.

10 REM DATAGEN

20 REM Translates DOS LOAD files
30 REM to BASIC DATA statements
40 REM (C) 1981 by Robert E. Alleger
50 REM x Initialization X

60 DIM FI$(15) ,FO%(15)

70 ERRSAV=195: MAX=25

80 REM % ask for file specs X

90 GRAPHICS ©

100 PRINT , "[EEOEZEGD":PRINT

110 TRAP 120

120 PRINT "Input file spec: "
130 INPUT FIs%

140 TRAP 150

150 PRINT "Output file spec: ";
160 INPUT FO%

170 TRAP 610:CLOSE #1:CLOSE #2
180 OPEN #1,.4,0,FI%

120 OPEN #2,8,0,F0%

200 REM ¥ Get header ID (2 bytes) %
210 GET #1,B1:GET #1,R2

220 IF (BR1=132 AND B2=152) OR (B1=255 AND B2
=2355) THEN 260

230 PRINT "{BELLX}Not LOAD format":G0T7T0 &20

240 REM ¥ Ask for starting line X%

250 TRAP 260

260 PRINT "Starting line number: ";

270 INPUT LNBR

280 REM ¥ Get START & END addresses X

290 TRAP S560:REM trap normal EOF

300 GET #1,B1:GET #1,B2

310 ADRSTART=B1+B2%2356

I20 IF ADRSTART=65335 THEN 300

330 GET #1,B1:GET #1,E2

340 ADREND=B1+RB2%x256

350 TRAP S5490:REM trap premature EOF
360 REM ¥ Build FOR/NEXT loop X

370 PRINT #2;S5STR$ (LNBR) ;

380 PRINT #2;"FOR A=";STR$ (ADRSTART);" TG ";
STR$ (ADREND) ;

390 PRINT #2; ":READ B:POKE A,B:NEXT A"

400 A=ADRSTART-1

410 REM %X Build DATA statements X

420 LNBR=LNBR+1

430 IF A+1>ADREND THEN 520

440 1IF LNBR>32765S THEN PRINT "{BELL}Line num
ber too large":6G0T0 620

450 PRINT #2;STR$ (LNBR);"DATA ";

238

Chapter Five. Beyond BASIC

460
470
480
490
200
310
520
230
3540

350
560
570
580
590
600
610

620

FOR N=1 TO MAX:A=A+1

IF A>ADREND THEN 520

IF N>1 THEN PRINT #2;".,":

GET #1,B1:PRINT #2;STR$(B1);

IF N=MAX THEN PRINT #2

NEXT N:GOTO 410

PRINT #2:LNER=LNBR+1

GOTO 290

IF PEEK(ERRSAV)=136 THEN PRINT "Prematur
e EOF on input file":60T0 620

GOTO 610

REM x Error TRAP X

IF PEEK(ERRSAV)<>136 THEN 610

PRINT #2;STR$ (LNBR) ; "RETURN"

PRINT "<<< [REM[E >>>"

GOTO 620

PRINT :PRINT "{BELL>ERROR #"j;PEEK(ERRSAV
)

CLOSE #1:CLOSE #2: TRAP 65535

239

Chapter Five. Beyond BASIC

PROGRAM 4. Loading Binary DOS Files From BASIC.

10 REM DSPLOAD

20 REM Display DOS LOAD

30 REM format information

40 REM (C) 1981 by Robert E. Alleger

50 REM % Initialization X

60 DIM F$(15) ,HEX%(4)

70 GRAPHICS O

80 PRINT , "DSPLOAD":PRINT :PRINT

920 PRINT "This program will print informatio
nll

100 PRINT "for DOS LOAD format files."

110 TRAP 110:CLOSE #1

120 PRINT :PRINT "File spec: ";

130 INPUT F$

140 OPEN #1,4,0,F%

150 PRINT "{CLEAR}","LOAD Display":PRINT
INT :

160 PRINT "File name",F%

170 PRINT "Format",,

180 REM X GET header ID X%

190 TRAP 530

200 GET #1,B1:GET #1,R2

210 IF B1i=132 AND E2=9 THEN PRINT "DOS 1 LOA
D":60TO 240

220 1F B1=235 AND E2=255 THEN PRINT "DOS 2 L
OAD":GOTO 240

230 PRINT "{BELLXNot LOAD format{DOWN}":60TO

730

240 REM ¥ Get START & END Addresses X

2350 TRAP S5920:GET #1,EBE1

260 TRAP S30:GET #1,B2

270 NBR=B1+B2%256

280 IF NBR=65535 THEN 310

290 ADRSTART=NBR:GOSUB 460

300 PRINT "Start - End Address ";HEX$;" — "3

310 GET #1,B1:GET #1,B2

320 NBR=B1+B2%256

330 ADREND=NBR: GOSUB 460

340 PRINT HEX%

350 IF ADREND<ADRSTART THEN 710

360 REM * Read LOAD file X%

370 TRAP 560

380 FOR N=ADRSTART TO ADREND

390 GET #1,B1:BYTES=BYTES+1

400 1IF N=736 THEN ADRAUTOL=B1

410 IF N=737 THEN ADRAUTOH=B1

420 IF N=738 THEN ADRINITL=B1

430 IF N=739 THEN ADRINITH=B1

PR

240

Chapter Five. Beyond BASIC

440
450
460
470
480
490
300
S10
S20
530
540

550
360
S70

380
590
600
510
620
630
640
6350
660
670
680

690
700
710
720

730
740

NEXT N

GOTO 240:REM get next LOAD block

REM %X Convert decimal to hex X

I=4: HEX%="0000"

T=NBR: NBR=INT(NBR/16): T=T—NBRX%X16&6

IF T<10 THEN HEX$(I,I)=STR$(T):G6G0TO0 510
HEX$ (I, I)=CHR$(T+55)

IF NBR<>0 THEN I=1I-1:60T0 480

RETURN

REM ¥ ERROR #1 X

PRINT :PRINT "{RELL}Premature EOF while
reading HEADER"

GOTO 730

REM ¥ ERROR #2 x

PRINT :PRINT "{BELL>Premature EOF while
reading DATA"

GOTO 730

REM ¥ ERROR #3 x

IF ADRAUTOL=0 AND ADRAUTOH=0 THEN 640
NBR=ADRAUTOL+ADRAUTOHX256

GOSUB 460

FRINT "Auto Run Address",HEXS%

IF ADRINITL=0 AND ADRINITH=0 THEN 680
NBR=ADRINITL+ADRINITHX256

GOSUB 460

PRINT "Init Address",HEX%$

PRINT "Program size",INT(BYTES/1024%100)
/1003 "K BYTES"

PRINT :PRINT "{BELL}-——-EOF——-"

GOTO 730

REM x ERROR #4 x

FPRINT :PRINT "{BELLJYEND Address less tha
n START Address"”

REM Xx Exit X

TRAP 65535:CLOSE #1:END

241

Chapter Five. Beyond BASIC

The Resident
Disk Handler

Frank Kastenholz

This technical article explores, with commentary and examples, the use of
the operating system’s Resident Disk Handler for accessing disk sectors ...
without DOS. If you're interested in learning more about the Atari DOS

itself, see Inside Atari DOS from COMPUTE! Books.

Would you like to be able to hide data on your disks without having
DOS signal its presence with a file name and directory entry? Would
you like to be able to access any sector on a disk, independent of
DOS? You could check the disks that you are using for bad sectors
without destroying what's on the disk. You could create your own
unique disk format to suit your own unique needs.

The keys that open the door to this wonderland of direct access
storage are the Resident Disk Handler and the Device Control Block.

The Resident Disk Handler is a section of code that exists in the
ROMs of your Atari computer (both the 400 and the 800), and the
Device Control Block is a section of RAM that contains the various
parameters which control the actions of the Resident Disk Handler.
The Resident Disk Handler is capable of performing four different
operations: Get Sector, Put Sector with Verify, Status Request, and
Format Disk. For the purposes of disk access only the first two operations
are important, and [shall discuss only those two operations.

The Get Sector operation will retrieve any one sector from the
disk and place it in any 128 byte block of RAM. The Put Sector with
Verify operation will take 128 bytes of data anywhere from memory
(RAM or ROM) and write that data to any sector on the disk. It will
then check to make sure that the data were written correctly.

And how, I hear you cry, does one make use of this miracle of
modern science? To use the Resident Disk Handler is an extremely
simple task. It just sounds hard. At the end of this article I have
included a program that should adequately demonstrate the basics of
using the Resident Disk Handler.

The key to using the Resident Disk Handler is a chunk of memory
called the Device Control Block. The Device Control Block is similar

241

Chapter Five. Beyond BASIC

in function to the [OCBs that are used in BASIC. The Device Control
Block is 11 bytes long and begins at location $0300 (768 decimal).
(All hexadecimal numbers are preceded by a $ and followed by their
decimal equivalent in parentheses.) For our purposes only seven bytes
are needed, the other four being used internally by the Resident Disk
Handler. The bytes we shall use are the device unit number byte, the
command number byte, the status byte, the two buffer address bytes,
and the two sector number bytes.

The device unit number byte is located at location $0301 (769)
and contains the unit number of the disk drive you wish to access (1,
2,3, 0r4).

The command number byte is at location $0302 (770) and
contains the command number of the operation to be performed. The
command number for the Get Sector operation is $52 (82), and the
number for the Put Sector with Verify operation is $57 (87).

The status byte is the only byte that you do not have to put
something into before you use the Resident Disk Handler. It sets up
the status byte to reflect the success (or lack of it) of the operation
that was just attempted. The status byte is at location $0303 (771)
and may have one of seven values. A 1 in this byte indicates that the
operation was completed successfully. The other six values indicate an
error occurred during the operation. The values are $8A (138), $8B
(139), $8C (140), $8E (142), $8F (143), and $90 (144). The meaning
of these status codes is the same as for the error codes of the same
number in BASIC.

The two buffer address bytes are at locations $0304 (772) for the
low order byte of the address and location $0305 (773) for the high
order byte of the address. These two bytes contain the address in
memory of the source of the data, for a Put Sector with Verify, or the
destination of the data, for a Get Sector. To set these bytes up in
BASIC you must divide the address that is to be used by 256 and place
the remainder in byte 772 and the quotient in byte 773.

The two sector number bytes contain the number of the sector
on the disk that is to be accessed. This number may be any number
from 1 to 720 inclusive. If you were not the trusting type you might
say “Sector 720 is not addressable — it says so in the DOS manual.”
But since you are the trusting type, you will not say that, and [will
not be forced to reply “True, but we are not using DOS here and
sector 720 is addressable when using the Resident Disk Handler!”

Once the Device Control Block has been properly set up you
have to call the Resident Disk Handler so it can do its work. If you are
programming in machine language, this is a trivial job. You merely do

243

Chapter Five. Beyond BASIC

a JSR $E453. It will do its work and then do a RTS when it is done.
Nothing could be simpler. If you are a BASIC programmer it is slightly
harder to call the Resident Disk Handler. You must load the following
assembly code into RAM and then do a USR o it.

PROGRAM 1.

Object Code Source

HEX Decimal Code Comments

$68 104 PLA The Extra PLA required
by USR.

$20$53$E4 3283228 JSR$E453 Call the Resident Disk
Handler.

$60 96 RTS Return to BASIC.

The BASIC code in Program 2 will load the assembler code of Program
1 into RAM beginning at location 1536. To call the Resident Disk
Handler you would then do a X =USR(1536).

PROGRAM 2.

10 DATA 104,32,83,228,96
20 FOR I=1536 TO 1540
30 READ J:POKE I,J

40 NEXT I

The code in Program 3 is a short BASIC program that will show you
how to use the Resident Disk Handler. The program will either put or
get one sector of data. If you get a sector of data, the program will
print out that data as character data (if a byte is a 65, it will print A).
If you are going to put a sector of data to the disk, the program will ask
you to enter the data to put in character form. Comments on the
program follow the listing.

PROGRAM 3.

10 DATA 104,32,83,228,96

20 FOR I=1536 TO 1540

30 READ J:POKE 1,J

40 NEXT I

S0 DIM A%$(128)

60 PRINT "GET OR PUT";:INPUT A%
70 IF A$="GET" THEN 100

80 IF A%$="PUT" THEN 200

90 GOTO &O

100 LET COMMAND=82

110 GOSUB 1000

120 STAT=PEEK(771)

130 IF STAT=1 THEN 160

140 PRINT "ERROR #";STAT;" ON GET"

244

Chapter Five. Beyond BASIC

150 60TO 60

160 FOR I=0 TO 127

170 A$(I+1,1I+1)=CHR%(PEEK (1664+1)):NEXT I

180 PRINT A%

190 GOTO 60O

200 FOR I=1 TO 128:A%(I,I)=" ":NEXT I

210 PRINT "ENTER DATA";: INPUT A%

220 FOR I=0 TO0 LEN(A%$)-1

230 POKE 1664+1,ASC(AS(I+1,I+1)):z:NEXT I

240 FOR I=LEN(A$) TO 127 ,

250 POKE 1664+1,0:NEXT I:LET COMMAND=87

260 GOSURB 1000

270 STAT=PEEK(771)

280 IF STAT=1 THEN PRINT "OPERATION COMFLETE
":60TO &0

290 PRINT "ERROR #";STAT;" ON PUT":G60T0O 60

1000 REM DISK ACCESS ROUTINE FOLLOWS

1010 PRINT "SECTOR NUMBER TO ACCESS";: INPUT
SNUM

1020 POKE 77%,INT(SNUM/256):POKE 778, INT ((SN
UM/ 256-INT(SNUM/256)) ¥256)

1030 POKE 769.,1

1040 POKE 772,128:POKE 773,6

1050 POKE 770,COMMAND

1060 X=USR(1536)

1070 RETURN

Lines 10-40 load the short assembler routine needed to call the
Resident Disk Handler into memory.

Line 50 dimensions A$ as a text string so we can use it to store data.

Lines 60-90 input an operation from the keyboard, determine which
operation it is, and jump to the appropriate routine to handle that
operation.

Lines 100-190 are the Get operation.

Line 100 sets the command as Get Sector.

Line 110 calls the disk access subroutine.

Line 120 sets STAT equal to the status of the operation.

Line 130 determines if the operation was successful. If it was it goes to
Line 160.

Lines 140 and 150 print an error message and then start another
operation.

Lines 160, 170, and 180 get the input data from the input buffer, put
them into A$ and print them.

Line 190 starts another operation.
Lines 200-290 are the Put Sector Lines.

245

Chapter Five. Beyond BASIC

Line 200 clears A$ out.

Line 210 enters the data from the keyboard.

Lines 220 and 230 put the output data into the output buffer.
Lines 240 and 250 fill any bytes remaining after the last data byte
and the 128th byte of the buffer with zeros. Line 240 also sets the
command to the Put Sector with Verify operation.

Line 260 calls the disk access subroutine.

Line 270 sets STAT equal to the status of the operation.

Line 280 determines if the operation was successful or not and if it
was, prints “OPERATION COMPLETE” and starts another
operation.

Line 290 prints an error message and then starts another operation.
Lines 1000-1070 set up the Device Control Block and then call the
Resident Disk Handler.

Line 1010 inputs the sector number to access.

Line 1020 puts the sector number into the sector number bytes. The
first POKE statement takes the quotient of the sector number divided
by 256 and puts it into the high byte of the two sector number bytes.
The second POKE statement takes the remainder of the sector
number divided by 256 and puts it into the low byte of the sector
number bytes.

Line 1030 sets the unit number to 1.

Line 1040 sets the two buffer address bytes to 1664.

Line 1050 sets up the Command Number Byte.

Line 1060 calls the short assembler routine which then calls the

Resident Disk Handler.

Line 1070 returns to the main routine.

This program is tutorial, intended to help you understand the Resident
Disk Handler, what it is and how to use it. If you wish to use the
Resident Disk Handler, you would want to make some improvements
to the subroutine that I have presented here. First you would pass the
sector number from the main program instead of entering it from the
keyboard. Other improvements would include combining some of the
statements to make the program shorter, or converting the program
into machine language. One improvement that [have found
particularly valuable is to have the subroutine repeat an error several
times if an error occurs. Since most disk errors are recoverable if the
operation is retried, this has the effect of reducing the number of disk
errors | get to almost nothing.

246

Chapter Five. Beyond BASIC

Now that you have finished reading this article, I can hear you
grumbling “This just looks like a hard way of doing a POINT!” But it
isn't! The Resident Disk Handler allows you to access any sector on
the disk. The POINT command in BASIC allows you to access any
sector in a particular file. If you POINT to sector 3, you will access
sector 3 of the file, and not absolute sector 3. The Resident Disk
Handler will get you absolute sector 3. It can access a sector that is
un-allocated, POINT can’t. It can access the sectors that DOS uses,
POINT can't.

While using these methods takes more work than just OPENing,
PRINTing, and CLOSEing a file in BASIC, the added flexibility

more than compensates for the extra work.

247

LISTING
CONVENTIONS

In order to make special characters, inverse video, and cursor characters
easy to type in, COMPUTE! magazine’s new Atari listing conventions
are used in all the program listings in this book.

Please refer to the following tables and explanations if you come
across an unusual symbol in a program listing.

Characters in inverse video will appear like: Bi[T IN[E[EEE MR RIS
Enter these characters with the Atari logo key, “ A ”.

Graphics characters, such as CTRL-T, the ball character @ will appear
as the “normal” letter enclosed in braces, e.g. {T}.

A series of identical control characters, such as 10 spaces, three
cursor-lefts, or 20 CTRL-R’s, will appear as { 10 SPACES}, {3 LEFT},
{20 R}, etc. If the character in braces is in inverse video, that character
or characters should be entered with the Atari logo key. For example,
¥ means to enter a reverse-field heart with CTRL-comma, {5 [¥ }
means to enter five inverse-video CTRL-U’s.

248

INDEX

ANTIC 82

Arrays, String 185

Artifacting 113-128

Assembly Language (See Machine
Language)

ATASCII (See Characters)

Backup 225-226

BASIC 44-48,51-52,85,185,
210,225

Binary SAVE/LOAD 229-231

Cartridges 15-17

Cassette 70

Characters 160-162, 209-211
Control characters 33-34,222

CLOAD 37

Color 78-82, 114-128
Registers 80,210

Concatenation 24

Console switches 7,200

CTIA 115-128

DATA 29-31,55-56,221-222,231

Debugging (Also see Error
Messages) 44-48

Disk (Also see DOS, Files, etc.)
242-241

Display List (Also see Scrolling)
18-82

DMA 29,196

DOS 229

Dynamic Keyboard (See Forced
Read Mode)

Editing 33-35,55-56,185

Error Messages 226

Files 29-31,33-34,41-42, 185,
221-222,225-226,229-231

Fill 85-113

Forced Read 26-31,133-134,
221-222

Games 160-162,169-176

GET 226,242-247

GOSUB (See Subroutines)

Graphics (Also see related topics:
Scrolling, Player/Missile,

Page Flipping, etc.) 11-14,
33-34,67-71,82,85-128,
160-162

GTIA 115-128

Hardcopy (See Printer)

Hardware (See Disk, Printer, etc.)

Input 7,29-31

IOCB 26-31

Joystick 2-4,5-6,33-34

Keyboard 7

LIST 31,47,85

LOAD 47

Machine Language 2,117,221-222,

229-231

Memory (Also see POKE) 160,198
Memory Test 15-17

Menu Selection 55-58,229-231

Music (See Sound)

Operating System (Also see [OCB)
225,242-247

Output (See Disk, Files, Interface,
etc.)

Paddles 160,199

Page Flipping (Also see Scrolling) 76

Peripherals (See Disk, Cassette,
etc.)

Player/Missile Graphics 55-56,
173-174

POKE (Also see Memory) 9-10,
29-31,160,213-215

Printer 11,185

Program Writing Programs (Also
see Forced Read Mode)
29-31,41-43,55-56,221-222,
231

PUT 226,242-247

RAM (See Memory)

READ (See DATA)

SAVE 47

Screen 11-12,33-35,209-211

Screen Dump 11-14,33-34,41-42

Scrolling 169-173,198-199

SETCOLOR (See Color)

249

Sound 194,213-215

Strings 23-25,33-34,185,210,
221222

Subroutines 2-4,7-8,85-128,
221-222

TABO9-10

Tape (See Cassette)

TextPlot 160-162

Variables 7,44-48

Vertical Blank 173,196,199

Voice 194

Window 33-35

XIO (See IOCB; Fill)

250

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line
800-334-0868

In NC call 919-275-9809

COMPUTE!

P.O. Box 5406
Greensboro, NC 27403

My Computer Is:

[JPET [JApple [JAtari []JOSI [[]Other [1Don'tyet have one..

[1520.00 One Year US Subscription
[]$36.00 Two Year US Subscription
[]$54.00 Three Year US Subscription

Subscription rates outside the US:

[]$25.00 Canada r=2

[]$38.00 Europe/Air Delivery f=3

[] $48.00 Middle East, North Africa, Central America/Air Mail - =5
[]$88.00 South America, South Africa, Australasia/Air Mail — r=7
[]$25.00 International Surface Mail (lengthy, unreliable delivery) r=468

Name
Address
City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card.

[] Payment Enclosed] VISA
[] MasterCard (] American Express
Acc't. No. Expires /

06-X

COMPUTE! Books

P.O.Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly froon COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868

In NC call 919-275-9809

Quantity Title Price Total

The Beginner’s Guide To
Buying A Personal Computer $ 3.95

gAdd $1.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

COMPUTE"'s First Book of Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail)

Inside Atari DOS : $19.95
gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail))

COMPUTE"’s First Book of

PET/CBM $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 airmail; $2.00 surface mail)

Programming the PET/CBM $24.95
gAdd $3.00 shipping and handling. Outside US add
9.00 air mail; $3.00 surface mail.)

Every Kid’s First Book of

Robots and Computers $ 495

gAdd 31:00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

COMPUTE"'s Second Book of

Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4,00 air mail; $2.00 surface mail)
COMPUTEYs First Book of VIC $12.95

gAdd $2.00 shipping and handiing. Outside US add
4,00 air mail; $2.00 surface mail)

All orders must be prepaid (money order, check, or charge). All
payments must be in US funds. NC residents add 4% sales tax.
[JPayment enclosed Please charge my: [JVISA [] MasterCard

[]American Express Acc't. No. Expires /
Name

Address

City State Zip
Country

Allow 4-5 weeks for delivery.
06-X

ISBN 0-942386-06-X

	Cover

	Table of Contents

	Introduction

	Utilities

	BASIC Joystick Routine

	Joystick Tester

	Keyboard Input

	POKE TAB

	The 49 Second Screen Dump
	Memory Test

	Programming Technques

	String Manipulation

	Forced Read Mode

	Simple Screen Editor

	Plotting Made Easy

	Graphics Generator

	Analyze Your Program - a BASIC Utility

	Atari Microsoft BASIC

	Advanced Graphics and Game Utilities

	Player-Missile Editor

	Point Set Graphics

	Page Flipping

	Display List Interrupts

	Extenting Hi-Res Graphics Part I: Polygon Fill Subroutine
	Part 2: Textured Graphics
	Part 3: Multi-Colored Graphics in Mode 8

	TEXTPLOT makes a Game

	Fun With Scrolling

	Applications

	A Simple Text Editor

	The Atari Keyboard Speaks Out

	Atari Screen as Strip Chart Recorder

	Fast Banner

	Perfect Pitch

	Beyond BASIC

	Put USR Code into a BASIC Program Automatically

	Back up Machine Language Programs with BASIC

	Loading Binary DOS Files from BASIC

	The Resident Disk Handler

	Listing Conventions

	Index

