

From The Editors of COMPUTE! Magazine

COMPUTE!'s
SECOND BOOK

OF
ATARI®

Published by COMPUTE! Books,
A Division of Small System Services, Inc.,
Greensboro, North Carolina

ATARI is a registered trademark of Atari, Inc.

A
Small System
Services, Inc.

• Publication

Copyrigh t © 1982, Small System Se rvices , Inc. A ll righ ts rese rved.

Reproduction or translation of any part of th is work beyond that permitted by Sections 107
and 108 of the United States Copyright Ac t without the permiss ion of the copyright owner is
unlawful.

Printed in the Un ited States of America

ISBN 0-942386-06-X

10 9 8 7 6 5 4 3 2

ii

iv Introduction Robert Lock

1 Chapter One. Utilities.
2 Atari BASIC Joystick Routine . Kirk Gregg
5 Joystick Tester Robert Rochon
7 Keyboard Input Or Contro lled Escape Brian Van C leve
9 POKE TAB In BASIC Lawrence R. Stark

11 The 49 Second Screen Dump David Newcom
15 Memory Test Ed Stewart

21 Chapter Two. Programming Techniques.
23 Atari BASIC String Manipulation Tricks .. David E. Carew
26 Using The Atari Forced Read Mode Frank C. Jones
33 A Simple Screen Editor For Atari Data Files Lawrence R. Stark
36 Plotting Made Easy John Scarborough
41 Graphics Generator Matthias M. Giwer
44 Analyze Your Program - An Atari BASIC Utility Fred Pinho
51 Inside Atari Microsoft BASIC: A First Look Jim Butterfield

53 Chapter Three. Advanced Graphics And Games
Utilities.

55 Player-Missile Drawing Editor
67 Point Set Graphics
76 Page Flipping
78 An Introduction To Display List Interrupts
85 Extending Atari High Resolution Graphics
85 Part 1: The Polygon Fill Subrouti ne
92 Part 2: Textured Graph ics

114 Part 3: Multi-colored Graphics In Mode 8
160 T extplot Makes A Game
169 Fun With Scrolling

183 Chapter Four. Applications.
185 A Simple Text Editor
194 The Atari Keyboard Speaks Out .. .
198 Atari Screen As Strip C hart Recorder
209 Fast Banner
213 Perfect Pitch

219 Chapter Five. Beyond BASIC.

. . E. H. Foerster
Douglas Winsand

Rick Williams
Alan Watson

.. Phil Dunn

Dav id Plotkin
Dav id Plotkin

Osvaldo Ramirez
. . W alter M. Lee

Helmut Schm idt
. Sol Guber

Fred Coffey

221 Put Your USR Code Into A BASIC Program Automatically . . F. T. Meiere
225 Back Up Your Machine Language Programs With BASIC .. Ed Stewart
229 Loading Binary DOS Files From BASIC Robert E. Alleger
249 The Resident Disk Handler Frank Kastenho lz

248 Listing Conventions
249 Index

iii

INTRODUCTION

Robert Lock, Editor/Pub lisher , COMPUTE! Magaz ine

W elcome to COMPUTErs Second Book of Atari. This book was a
direc t result of th e overwhelming success of our first book in this
series, which is now in its second printing. Unlike our First Book of
Atari, the Second Book is comprised entirely of prev iously unpublished
materia l. Even if you've followed all of the Atar i personal computer
informat ion in COMPUTE! Magaz ine since our beginning in the fall of
1979 , you'll discover exciting, interesting app lications and uses in the
pages of this book. And , as always with COMPUTE! Publications,
you'll find a range of materia l, from beginner to advanced, ready to
type righ t into your computer - programs and helpful hints des igned
to teach and en t ice you, applications and utilities des igned to help
you better use this fascinating world of personal computing.

We've organized the material and designed the book for ease of use.
We welcome your suggest ions and comments on this and future titles
from COMPUTE! Books.

Special thanks to C h arles Brannon, Richard Mansfi eld, and Kath leen
Martinek of our editorial staff; Kate T aylor, De Potter, T erry Cash ,
and Margret Jackson of our typese tting and product ion staff; Georgia
Papadopoulos, A rt Director; and Harry Blair , our illustrator.

i v

COMPUTE! Books is a d ivision of Sma ll System Services, Inc.,
pub lishers of COMPUTE! Magaz ine.

Ed itor ial offices are located at 625 Ful ton S tree t, P.O. Box 5406,
Greensboro, NC 27403 USA. (919) 275 ·9809.

CHAPTER ONE

· UTILITIES

OH BOY.

Q
<)

[]

Chapter One. Utilities.

ATARI BASIC t
Joystick Routine

Kirk Gregg

Complete with many techniques for conserving space and speeding program
execution, this handy routine, entirely in BASIC, provides you with a fairly
fast, non-assembler dependent, joystick reading routine.

Two exce llent Atari joystick reading rout ines have been publish ed in
COMPUTE! (July and A ugust 198 1, #14 and #1 5). So, is there really
any need for ano ther Atari joystick rout ine?

G lad you asked! Both of the published routines work, and both
are fast. However, bo th routines use calls to assembler routines via the
USR function call. This meth od requires th at the machine language
routine be included in the program encoded as DAT A statements to
be READ and POKE'd in to memory. The code required to initialize
the routines and the DAT A statements take up space in memory .

There are still many of the original 8K 400s around. If you h ave
one of them, and your program memory requirements begin to approach
or exceed your machine's RA M limi t, the in itia liza tion code and
associated DATA statements, used only once in the program, become
prime candidates for removal.

Also, since these routines both use calls to USR assembler
routines, you have to know A taril6502 assembler to modify them if
necessary for certain applica tions. I suspect that many of us are on
fairly good te rms with Atari BASIC, but have not rea lly gotten a
handle on assembler just yet .

Therefore , wh at would be useful is a simple A tari BASIC joystick
routine. It should be as compact as poss ible , for machines wi th limited
me mory. A lso, it should operate as fas t as poss ible so as not to unduly
degrade program speed when used in game applications. So, branches
within the routine itself should be avoided , since each transfer of
program control to any line number except the nex t sequential line
requires a line number search begin ni ng at the top of program memory,
comparing every line number in numerical order un t il the target line
number is loca ted.

Here, then , is my A tari BASIC joyst ick routine :

2

Chapter One. Utilities.

S=STICt«S) 20
30 DX=(S=5 OR S=6 OR S=7)-(S=9 OR S=10 OR S=

11> -\
40 DY=(S=5 OR S=9 OR S = 13)-(S=6 OR S=10 OR S

=14)
50 RETURN

This routine , as written in the li st ing above , uses less than 200
bytes of RAM , includ ing variables. It can be combined into one
program line, requiring only 188 bytes.

T o use this routine, se t variab le S equal to the number of the
joyst ick you want to read (0-3). Then , call the subroutine, in this case
GOSUB 20. The delta-X and de lta-Y va lues are re turned in variables
OX and OY, respec ti ve ly. Note that the value input to the routine in
variable S is lost. If the input va lue needs to be re ta ined fo r use by the
ca lling routine, change the input joystick index parameter variable to
any other availab le variable . For example , if your calling routine
needs to read the joystick for each of the four playe rs in a game
control loop, it could conta in the following sequence:

FOR 1=0 TO 3
GOSUB 20

(Code to handle OX and OY fo r player 1)

NEXT I

Then , the joyst ick routine entry point, line 20, would be changed to:

S=STICK(I)

In some applications, you may want to ge t joystick readings for
only the four cardinal directions, that is, N -S- E-W, but ignore the
diagonal stick readings. In that case, modify lines 30 and 40 of the
routine as fo llows:

30 DX=(S=7)-(S=11)
40 DY=(S=13)-(S=14)

T o try out this routine, type in the rout ine and the following
short demonstra tion program:

10 GOTO 100
100 S=O:GOSUB 20
110 IF NOT (DX OR DY) THEN 100
120? . "dX = ";DX,"dY = ";DY:GOTO 100

Plug a joystick into the player #1 slo t, then run the program.
Observe the OX and OY va lues fo r each st ick position.

Now, try the short demo program below. S tudy this program to

see how the joystick routine can be used in your programs.

3

Chapter One. Utilities.

PROGRAM. Atari BASIC Joystick Routine.

1 REM 5CRIBBLE DEMO PROGRAM
10 GRAPHIC5 23:X=79:Y=47:COLOR l:GOTO 160
20 S=5TICK(5) •
30 DX=(5=5 OR 5=6 OR 5=7) - (5=9 OR 5=10 OR 5=

11)
40 DY=(5=5 OR 5=9 OR 5=13)-(5=6 OR 5=10 OR 5

=14)
50 RETURN
100 5=O:G05UB 20
110 IF NOT (DX OR DY) THEN 100
120 X=X+DX:IF X> 159 THEN X=O
130 IF X< O THEN X=159
140 Y=Y+DY:IF Y>95 THEN Y=O
150 IF Y<O THEN Y=95
160 PLOT X,Y
170 N=255-INT«X/159+Y/95)*125)
180 50UND 0 , N,10,8
190 GOTO 100

4

Chapter One. Utilities.

Joystick Tester X
Robert Rochon

This short routine permits you to eas ily tes t your joysticks and pinpoint
potential problems.

The Atari joysticks are mass-produced and tend to malfunction. I
have seven joysticks and only three are working properly. The problems
are in the contacts which are held together with tape which loosens
much too eas ily . What a pity; the general design of the joysticks is
very good.

This program quickly reveals any flaws in a joys ti ck. You shou ld
be ab le to make the screen red when the fire button is pressed. You
shou ld also be able to make nine blue do ts for the nine different joystick
positions. T o clear the screen , press any key.

You can a lso find out how sensitive a joystick is by controlling it
with one finger only. With this test a sticky joystick wi ll sh ow up like
a sore thumb. For easy identification, number your best joys tick. I
a lways use my most sensitive joys tick for S tar Raiders. Hint: Jamming
a % inch plastic, T -shaped pipe connector onto the st ick of the joystick
wi ll make it twice as sensitive.

Program Design

2 turns on GR.3, turns off cursor (POKE 75 2).

5-15 records joyst ick position.

200 erases o ld line and draws new line .

230 plots center and outside dot.

300 colors the screen red when fire button is pressed.
500-520 writes the value of STICK(O) AND STRIG(O);

PEEKs 656 & 657 keeps the wr iting in one place.

540 Keep the screen when any key is pressed.

999 C & D last joyst ick position
(C & D are used to minimize blinking on the screen.)
A & B new joystick position creates continuous loop.

5

Chapter One. Utilities.

PROGRAM. Joystick Tester.

2 GRAPHICS 3:POKE 752,I:GOTO 999
5 A=24:B=14:GOTO 200
6 A=24:B=6:GOTO 200
7 A=25:B=10:GOTO 200
9 A=16:B=14:GOTO 200
10 A=16:B=6:GOTO 200
11 A=15:B=10:GOTO 200
13 A=20:B=15:GOTO 200
14 A=20:B=5:GOTO 200
15 A=20:B=10
2QO IF C< >A OR D< >B THEN COLOR 4:DRAWTO 20,1

O:COLOR 2:DRAWTO A,B
230 COLOR 3:PLOT 20,10:PLOT A,B
300 POKE 712,66-STRIG(0)*66
500 POKE 656,1:POKE 657,5
510 ? "~~~~~~~~8";STICK(0),

520 ? "~U~~~~~~8";STRIG(0'

540 IF PEEK(764) <> 255 THEN POKE 764,255:RUN
999 C=A:D=B:GOTO STICK(O)

6

Chapter One. Utilities.

Keyboard Input
Or

Controlled Escape
Brian Van Cleve

The BASIC INPUT statement is prone to user error. What is needed is
controlled input, where each key is checked for validity. The following
program even checks for the START key to permit an "escape" function.

Here is a short subroutine that I use in all my menu driven programs.
It allows the user to enter data as usual while checking for the start
key being pressed. If it discovers use of the start key, the subroutine
provides a controlled escape.

To use this, DIM IN$ to the maximum expected input and open
the keyboard for input using OPEN #1,4,0, "K:". Set the variable KEY
to the first line number in the subroutine and the variable ESC to the
line to return to if the user presses the START key (like the main menu,
for example). Then use a GOSUB KEY for any input. The user input
will be returned in IN$.

Now for the program.

7

Chapter One. Utilities.

PROGRAM. Keyboard Input

1000 REM KEYBOARD
INPUT

1005 IN$=""
1010 POKE 764.255
1020 POKE 756.224
1030 POKE 694,0
1050 IF PEEK(53279)=6

THEN POP :GOTO ESC
1060 IF PEEK(764)=255

THEN 1050
1070 GET #1,K
1080 IF K=155 THEN

RETURN
1090 IN$(LEN(IN$)+I)

""CHR$ (1<)

1100 ? CHR$ (1<> ;
1110 GOTO 1050

8

I use REM as the first sta tement in
my subrout ines, easy to mo ve

Set IN$ to null
C lem keyboard buffer out
Force uppercase letters
NO in ve rse video
ST ART key is pressed
Pop the return off stack and esc
No key pressed ye t

Key pressed, ge t it
Pressed return key

Put key in st ring

Print it o n screen
Luop til dune

Chapter One. Utilities.

POKE TAB
In BASIC

Lawrence R. Stark

A common /Jroblem, the lack of a T AB sta tement in Atari BAS IC, is
solved with a single POKE.

Perhaps my first experi ence with the Atar i was similar to yours. Looking
a t the machine on display and genera ll y fee ling favorab le , I fin a lly
pushed as ide a few space war playe rs and sa t down to try it out . H av ing
found the BASIC RO M cartridge , I tri ed to construct a short test
program. The only program that ca me to mind in this stage was to do
a few loops and GOSUBs with the phrase: "THIS IS A TEST." T o
va ry it a bit , I foo led around with print pos it ions.

But do this in Atari BAS IC and you d iscover that the TAB
command is no t the re. So you make do with spaces and the like to
design printed output. Thi s does not work wel l. A few subroutines ,
includ ing so me published in COMPUTE!, can be of he lp, but can a lso
be awkward .

It's In The Maps

So fina ll y I started looking at memory map li stings. And there it was.
The map is fu ll of TABs. They are at locat ions 82,85 ,9 1, and 657. A ll
one has to do is POKE in new va lues and most of these work - on the
TV screen . Not much happens on the pr inter.

But what is th is a t locat ion 20 I ! PT ABW is th e name. It even
looks li ke a shortened name of Pr int-T ab-Width. And it is! It is the
miss ing TAB command, and in th is case it works for both printer and
TV scree n .

Experiment with it a bit and you learn its rules. First, its formula
is POKE 20 1, nn, fo llowed by PRINT, avar or svar. Remembe r the
comma ; afte r a ll , it is the tabul a tor that you are modifying.

But there are two hitches. O ne is that if you try it with nn a t 0,
awfu l things happen. A loop is en tered and even the BREAK key
doesn't in terrupt. The second li mita ti on is that th e defau lt se tting is
not res to red except on powering down the computer. Even RESET
does not return the va lue at 20 I tll 10.

9

Chapter One. Utilities.

When using the Atari "TAB" in a program, you wi ll have to
provide error messages or traps and also reset the default sett ing. The
demonstration program shows an example. The value of nn is tested
for "less than one" and a "bypass" is executed if it is. This cou ld just as
easily work like an ord inary error message if you have the program
STOP or END on less than one. The va lue at 201 is restored before
the program shuts off at line 800. The demonstration program is what
might be called the "page centering algorithm." It is used here because
it is illustrat ive of several features of the pseudo-TAB in Atari
BASIC.

PROGRAM. POKE TAB In BASIC.
10 DIM A$(38):? CHR$(125)
15 TRAP 800:REM Trap end of data
20 READ A$
50 X=17-(LEN(A$)/2):REM Center at 17 on 38 c

01 TV screen
60 IF X<l THEN 20:REM Bypass a potential cra

sh
100 POKE 201,X
120 ? ,A$
150 GOTO 20
800 POKE 84.20:POKE 201,10:END :REM for a ne

ater screen AND to reset default tabs
899 REM Commas in DATA statements for blank

lines
900 DATA A TALE OF TWO CITIES"A Novel""by

"Charles Dickens""",,1832

10

Chapter One. Utilities.

The 49 Second
Screen Dump

David Newcorn

A machine language routine and a BASIC loader you can alJpend to any
gra/Jhics program to dump the contents of your screen to an Epson MX-BO
printer (with Graftrax) ... in only 49 seconds.

If you have an Epson MX-80 printer with Graftrax and an Atari 800
with a beautiful Graphics 8 picture on your screen, then what do you
do? Dump it to the printer, of course! How? At first I dumped my
pictures to the printer through BASIC by scanning each dot separately
with the LOCATE statement. It took about thirty minutes to do one
picture. Realizing that this was crazy, I redid the program so it would
PEEK into display memory and grab eight pixels (one byte of display
memory) at a time instead of only one pixel at a time. This reduced
printing time to about four and a half minutes, which is sti ll quite
slow. So then I turned to machine language . The routine that follows
dumps your Graphics 8 picture to your printer in only 49 seconds!
Sure beats tying up your computer for half an hour and waiting around
for your picture to be printed.

How It Works

Before I explain how it works, let me refresh your memory on how
display memory is organ ized in Graphics 8 . Every eight pixels forms
one byte of display memory. So, positions 0,0 through 7,0 would be
one byte, and positions 8,0 through 15,0 would be another byte, and
so on for 38 more bytes across the screen. The BASIC routine sets up
a loop which scans the X axis of display memory, starting with the left
byte, and finishing with the 40th byte on the right of the screen (0 to
39 is 40). During each row, control is passed to the machine language
subroutine along with the address of the string where the result is to
be stored and the base address of the column of display memory to be
dumped

The machine language program starts at the bottom of the screen
and scans eight bits at a time all the way to the top. After it looks at
the current display memory byte, it stores it in the current string

11

Chapter One. Utilities.

address . It then increments the string address and decrements the
display memory address by subtracting 40 to move up to the next line .
(The display memory is one-dimensional, and the display screen is
two-dimensional. That's why it subtrac ts 40 to move up to the next
line. It goes back 40 bytes in memory.) When it fini shes at the top of
the screen , contro l is passed back to BASIC. BASIC then prints the
string to the printer where each charac ter represents a byte of screen
memory. The bit pattern of the character is mapped directly to the
printhead . After the string is printed, the current column is
incremented in BASIC to pass along to the USeR function for the
next go-around. S imple , righ t? Ri ght . Just append Program 1 to your
program which draws the picture , and aft er it fini shes, use a GOTO or
GOSUB to this routine. That's a ll you have to do . Just sit back and
enjoy your 49-second picture .

12

Chapter One. Utilities.

PROGRAM 1. The 49 Second Screen Dump.
500 DIM A$CI92):FOR B=1 TO 61:READ N:POKE 15

35+B,N:NEXT B:DM=PEEK(88)+PEEKC89)*256:D
M=DM+40*191

505 REM POKE IN MIL PROGRAM AND SET UP DISPL
AY MEMORY POINTER

510 LPRINT CHR$(27);"A";CHR$C8):FOR X=DM TO
DM+39

515 REM SET LINE SPACING AND MAKE LOOP
520 A$=CHR$CO):A$CI92)=CHR$CO):A$C2)=A$
540 W=USRCI536.X.ADRCA$»:LPRINT CHR$(27);"K

";CHR$CI92);CHR$CO);A$
545 REM PASS BOTH VALUES TO MIL PROGRAM, AND

PRINT STRING
550 NEXT X
560 DATA 104,104.141,21.6,104,141,20,6,104,1

41,27,6.104.141,26,6,160,193,173,255,255
,136,240,35,141,255,255,238

570 DATA 26,6,240,21,173,20,6,56,233,40,141,
20,6,144,4,24,76,19,6,206,21,6,76,19,6,2
38.27,6,76,33,6,96

PROGRAM 2. The 49 Second Screen Dump.
10 ;ATARI 800 SCREEN DUMP UTILITY FOR DUMPIN

G GRAPHICS 8 PICTURES
20 ;TO EPSON MX-80 PRINTERS WITH GRAFTRAX.
30 ;BY DAVID NEWCORN 2/28/82
40 ;ASSEMBLY LANGUAGE LISTING
0100 ADR $FFFF ;DUMMY ADDRESS (S

CREEN MEM ADDR)
0110 STR $FFFF

TRING ADDR)
0120 *= $600
0130 PLA

E FROM BASIC
0140 PLA

STRING STORAGE
0150 STA LOA+2
0160 PLA

STRING STORAGE
0170 STA LOA+l
0180 PLA

BEGINNING OF SCREEN
0190 STA STO+2
0200 PLA

SCREEN MEM
0210 STA STO+l
0220 LDY #193

;DUMMY ADDRESS (S

;PULL OFF AUX BYT

;PULL HI BYTE OF

;STORE HI BYTE
;PULL LO BYTE OF

;STORE LO BYTE
;PULL HI BYTE OF

MEM
;STORE HI BYTE
;PULL LO BYTE OF

;STORE LO BYTE
;LOAD Y AXIS COUN

13

Chapter One. Utilities.

TER
0230 LOA
0240 LDA ADR
0250 DEY

R
0260 BEQ RET

URN TO BASIC
0270 STO
0280 STA STR

E IN A$
0290 INC STO+1

D OF STRING
0300 BEQ BIG1

LOWS, THEN INC HI END
0310 CONT
0320 LDA LOA+1

LOW SCREEN ADDRESS
0330 SEC

R SUBTRACT WIO BORROW
0340 SBC *40

BYTES PER SCAN LINE)
0350 STA LOA+1
0360 BCC BIG

C HI BYTE OF SCRN MEM
0370 CLC
0380 JMP LOA
0390 BIG
0400 DEC LOA+2

E OF SCREEN MEM
0410 JMP LOA
0420 BIG1
0430 INC STO+2

E OF STRING STORAGE
0440 JMP CONT
0450 RET
0460 RTS

14

;LOAD SCREEN BYTE
;DECREMENT COUNTE

;IF DONE THEN RET

;STORE SCREEN BYT

; INCREMENT LOW EN

;IF LOW END OVERF

;LOAD ACCUM WITH

;SET CARRY BIT FO

;SUBTRACT 40 (40

;STORE RESULT
;IF UNDERFLOW, DE

;CLEAR CARRY
;LOAD NEXT BYTE

;DECREMENT HI BYT

;LOAD NEXT BYTE

; INCREMENT HI BYT

;CONTINUE

;RETURN TO BASIC

Chapter One. Utilities.

Memory Test
Ed Stewart

All machines sometimes break and must then be fixed. My Atari
computer is no exception to this rule. The difficulty lies in determining
what went wrong. As you probably know, it's sometimes difficult to
ascertain the cause of an error. The first question that shou ld be asked
is this:

Is The Problem Hardware Or Software?
This is sometimes very difficult to answer, but shou ld be done before
you shell out fifty bucks for someone to look at your Atari. In this
art icle I will provide you with one helpful tool that you can use to
help answer this question if your Atari goes off the deep end some day.

One of the most cr itica l resources in any computer system is the
dynamic memory known as RAM. This memory, unlike disk or tape
memory, is operated upon directly by your Atari CPU, the 6502.
Information on disk or tape memory devices must be first p laced into
RAM memory before it can be used either as a program or by a program.
If an error were to occur at any RAM location where you have a
program or data stored, the program would probably not function
correctly. The error encountered could result in "lock up" or practically
any other conceivable symptom. It could even make you think that
the program is at fault if other programs appear to function normally.
The reason some programs may function o. k. is that they do not
reference the particular RAM location that is in error. Only one
faulty bit in one byte may be bad, but this would be enough to do the
trick. Computers are generally not tolerant of data errors, especially in
their RAMs. Most large scale computers have error checking circuitry
built into RAM memory, but this has not been done for our Atari
friend. The new IBM personal computer has such RAM checking
circuitry, so it is probably on ly a matter of time until this becomes
commonp lace for all our microcomputers. For now, though, the
question must be:

How Can I Check My RAM?
I'm glad you asked that question, because it just so happens that I
have a program to do just that. Of course, if you wish to buy a RAM
test program you may still do that, but you shou ld find this program as
helpful as any available for most of your needs.

15

Chapter One. Utilities.

About The Program
This program consists of a BASIC program that has the ass istance of a
little machine language program. The BASIC program determines the
amount of free RAM that can be used for testing-purposes and asks
you how much of that RAM you wish to ac tually test. It then proceeds
to test that memory range you specify by repe ti t ive ly invoking the
Machine Language Program (MLP) . The MLP tes ts every bit in every
byte of the requested range by tes ting every number capable of being
represented in the RAM area . After the area is tes ted, and if there are
no errors, re turn is made to the BASIC program, with a successfu l
completion indicated . If an error is encountered in RAM by the MLP,
then return is made to the BASIC program, indica ting the particular
problem found. The BASIC program will stop execution if an error is
found and will display error info rmation on the display screen . T o
continue execution after an error is found , you must depress any key
on the keyboard. The testing will then continue with all subsequent
bytes in the RAM area found to be defec ti ve.

During normal execution of this program the d isplay screen will
appear blank. This is done to speed the tes ting process . The program
will provide an audio signal after each tes ting pass is completed , but
the screen will still remain blank. If you wish to see what pass the test
is on, just depress any key and the program will pause with a good
di splay turned on after the current pass is compl eted . Depress ing a key
aga in will cause the program to continue. If you wish to tes t a diffe rent
RAM area , you can press BREAK or SYSTEM RESET at a ny time,
followed by RUN. T o improve the speed of this program requires that
the amount of memory to tes t must be at leas t 256 bytes .

The BAS IC program is fairly easy to fo llow and is documented
with REM sta tements. You may remove all REM sta tements to ge t
back a little more RAM . The MLP is included as DATA statements
in the BASIC program.

No Errors Found
If the program finds no errors in the RAM you are testing, this does
not mean that RAM is necessarily free of a ll errors, as some RAM will
not be tes ted. RAM in locations HEX 0-6 FF canno t be tes ted, and
neither can display li st RAM or the RAM occupied by this program,
because this tes ting program only tes ts "unused" RAM. If your machine
is 8K or 16K, o r if you have a 400 , then you cannot do what I am
about to recommend, although you can rest assured that you have
been able to tes t most of your RAM memory. For a ll you lucky 800
owners with more than one memory board , it is now time to rearrange

16

Chapter One. Uti lities.

your RAM boards if you have that ability. By ch an ging the pos ition of
your RAM boards you wi 11 be able to tes t a greater portion of RAM
memory . If, for instance , you have three 16K boards, you can be
assured that the entire 16K will be tes ted for the middle board,
although the first and third boards will contain some RAM that can't
be tested until it is placed in the middle slot. If you still find no errors
after testing all of RAM, then your problem is not with the RAM.
Great, huh ?

An Error Found

If the program stops with an error enco untered in RAM, then you
have probably found the source of the erro r. Usually through
rearranging the RAM boards the charac teri stics of the problem will
change , but the RAM will still be fa ulty. You now h ave a decision to
make. You can e i ther remove the faulty board and fix it yourse lf, or
you can h ave someone do it for you. If someon e does it for you, give
them the results of your RAM tes t. The repair should be much easier
for them and , poss ibly , somewhat less costly. You may even luck out
and catch a RAM board still on warranty.

17

Chapter One. Utilities.

PROGRAM. Memory Test.
51 REM ATARI RAM TEST PROGRAM
52 REM BY ED STEWART 03/82
53 REM 11025 SAGEBRUSH AVE
54 REM UNIONTOWN OHIO 44685
99 REM SETUP SOME REQUIRED CONSTANTS
100 N1=1:N2=N1+N1:N255=255:N256=N255+N1
200 DIM S$(N2):S$(N1,N1)=CHR$(157):S$(N2,N2)

=CHR$ (159)
299 REM READ IN THE MACHINE LANGUAGE PROGRAM
300 GOSUB 2900
399 REM GET LOW AND HIGH MEMORY BOUNDS
400 L=PEEK(15)*N256:H=PEEK(742)*N256:IF PEEK

(14)<>NO THEN L=L+N256
499 REM DISPLAY BOUNDS AND GET REPLY
500 ? CHR$(125);S$;"ATARI MEMORY TEST PROGRA

M";CHR$(155);S$;"MEMORY BOUNDS ARE"
600 ? S$;"LOW=";L:? S$;"HIGH=";H
700 ? S$;"GIVE TEST BOUNDS";CHR$(155)
BOO TRAP 800:? S$;"LOW=";:INPUT LOW:IF LOW<L

OR LOW >H THEN 800
900 TRAP 900:? S$;"HIGH=";:INPUT HIGH:IF HIG

H>H OR HIGH (L OR HIGH-LOW<N256 THEN 900
999 REM SETUP BOUNDS FOR THE MLP
1000 POKE 205,NO:POKE 206,INT(HIGH/N256)
1100 TRAP 32767:POKE 203,NO:POKE 204,INT(LOW

IN256)
1200 POKE 764,N255
1299 REM INVOKE THE MLP TO DO THE TEST
1300 POKE 559,NO:POKE 764,N255:X=USR(1536)
1399 REM CHECK RETURN FROM MLP
1400 IF PEEK(208)=NO THEN 2200
1499 REM SHOW MEMORY ERROR ON SCREEN
1500 ? " ERROR AT "; (PEEK(203)+PEEK(204)*N25

6);" EXP=";PEEK(207);" ACT=";PEEK(209)
1600 SOUND NO,PASS,6,B:FOR I=N1 TO 5:NEXT I:

SOUND NO,NO,NO,NO
1699 REM SETUP NEXT BYTE TO TEST SO WE DONT

STOP WITH FIRST ERROR
1700 IF PEEK(203)=N255 THEN POKE 204, (PEEK(2

04)+N1):POKE 203,NO:GOTO 1900
1800 POKE 203, (PEEK(203)+N1)
1900 POKE 764,N255:POKE 559 , 34
1999 REM CONTINUE ONLY IF KEY PRESSED
2000 IF PEEK(764)=N255 THEN 2000
2099 REM CONTINUE TESTING BAD RANGE
2100 GOTO 1300
2199 REM GOOD TEST PASS SO SAY SO
2200 PASS=PASS+N1:? " GOOD PASS NUMBER ";PAS

18

Chapter One. Utilities.

S:SOUND NO,PASS,10,8
2300 FOR I=Nl TO 5:NEXT I:SOUND NO,NO,NO,NO
2399 REM STOP AND DISPLAY STUFF IF KEY IS PR

ESSED
2400 IF PEEK(764)<>N255 THEN 2600
2499 REM CONTINUE WITH NEXT PASS
2500 GOTO 1100
2600 POKE 764,N255
2699 REM WAIT HERE UNTIL A KEY IS PRESSED
2700 POKE 559,34:IF PEEK(764)=N255 THEN 2700
2799 REM CONTINUE WITH NEXT PASS
2800 GO TO 1100
2899 REM READ IN MACHINE LANGUAGE PROGRAM
2900 FOR L=1536 TO 1576:READ H:POKE L,H:NEXT

L:RETURN
3000 DATA 104,169,0,160,0,24,145,203,209,203

,208,18,105,1,208,246,200,208,242,230,2
04,166,204,228,206

3100 DATA 208,234,133,208,96,133,207,177,203
,133,209,169,1,133,208,96

19

CHAPTER TWO

PROGRAMMING
TECHNIQUES

BODY

Chapter Two. Programming Techniques

Atari BASIC
String

Manipulation Tricks
David E. Carew

While the merits of Acari's method of handling strings have been the subject
of some debate, David Carew suggests how to make Acari strings work
effectively. He provides some interesting techniques.

BASIC programming languages were influenced, naturally enough, by
the minicomputer BASIC languages which preceded microBASIC's.
The most popular of these minicomputer BASICs was probably
Digital Equipment Corporation's (DEC's) PDP-II family of BASICs:
BASIC-II, BASIC-Plus and BASIC-Plus2. These BASICs possessed
(and still possess) special substring manipulation functions such as
MID$, LEFT$ and RICHT$, and implemented "arrays of strings"
which were referenced via subscripts exactly like a numeric array.
Microsoft BASIC is a child of such ancestry. Other large vendors,
including Data General Corporation, used the subscript syntax of
A$(X, Y) to handle substrings, which eliminated special syntax
(MID$,et al) for substring functions while precluding a "nice"
implementation of string arrays. Atari's BASIC is one of this type.
The DEC/Microsoft approach may be more popular than the DCI Atari
approach - so much so that it is sometimes necessary to remind
ourselves that simpler syntax does not necessarily mean inherently less
power. Indeed, a simpler BASIC syntax may well mean that the
BASIC interpreter uses fewer hardware resources, leaving more for
our programs. Some different coding techniques are definitely called
for, however.

I have a few tricks up my sleeve. I present some of these here in
order to open up the possibilities to you.

The idea is to play to the strengths of the tool you have. One
outstanding strength of Atari BASIC is its capability of addressing
very long strings. What can you do with very long strings? Well, who
says you can't build a viable word processor or editor in BASIC when
you have the power to control and manipulate an edit buffer as a

23

Chapter Two. Programming Techniques

single huge string of characters? One can initia lize a long string of an
inconvenient large size , without inconvenient large string literal
statements, and without a large number of itera tions by concatenating
the string to itse lf:

1000 E$=" ":TRAP 1010:FOR Jl=l TO 15:E$(LEN(
E$)+l)=E$

1010 NEXT Jl

For data base appli ca tions, a generali zed "screen forms" handler
might build and store desired screen input/d isplay formats as a long
"string image ." One can precise ly and fl ex ibly embed particular string
information into a surrounding string image with just one statement:

1200 REC$(J+1-LEN(EX$),J)=EX$

The above places the right edge of EX$ at position J in REC$,
effect ively right justi fy ing variable-length informat ion into REC$. T o
accomplish a similar left justifica tion , place the left edge ofEX$ at
position J in REC$:

1300 REC$(J,J-1+LEN(EX$»=EX$

If we begin using long strings as the handy data structures that
they are , then it will be occasionally necessa ry to "pad" a piece of data
with blanks so that it precisely fits a "Iongstring" subfield. Adding the
correct number of blanks to short data can be accomp lished in a single
line like this:

1400 LN=LEN(EX$):IF LN<25 THEN EX$(LN+1)=BLA
NK$(1,25-LN)

This code shows EX$ being padded with "trailing" blanks to a
length of 25 charac ters. EX$ must, of course, be shorter than 25
characters in the first place, and BLANK$ must be initialized and left
as a string of blanks. C hange the literal 25 to a variable, set it as
necessary, and the same single line in a subroutine will pad any string
to any required length.

Stripping the blanks from data taken out of a long string is a lso a
necessary housekeeping chore. The code to accompl ish this is aga in
very compact, but it does invo lve iteration (a " loop"):

1500 LN=LEN(EX$):IF LN) 1 AND EX$(LN,LN)=" "
THEN EX$=EX$(1,LN-1):GOTO 1500

line 1500 strips away "tra iling" blanks on the right end of EX$.
Any "leading" blanks at the left end of EX$ are just as vulnerable to
an ana logous technique:

1600 IF EX$(1,1)=" " THEN EX$=EX$(2,LEN(EX$»

24

Chapter Two. Programming Techniques

:IF LEN(EX$»=2 THEN 1600

Substituting a va ri able eq ual to a blank for the literal blank in
the above code will speed up execution; the literal, of course, improves
readability. The choice in this tradeoff is yours to make.

Long strings h ave much inherent power, and the possibilities are
endless and exciting. The old micro trick of storing graphics and
machine language routines as BASIC strings and/or string literals is
made all the more attractive by this power. And the tantalizing prospect
of "programs that write programs" abso lutely cries out for long strings
that turn out to be program code. The substring manipulat ion
techniques to be used are not as obv ious without the spec ial functi on
calls of other BAS ICs. H owever, hav ing seen a few such techniques
in this article , you will no t , I trust, now ignore Atari BAS IC's
"longstring" power, when this power could be of use to your
application.

25

Chapter Two. Programming Techniques

Using The Atari
Forced Read Mode

Frank C. Jones

Automatic data entry , line numbering, deletion, self-modifying programs -
this l)rogramming method ol)ens ttl) a new level of control over the computer's
behavior during a RUN.

There are many occas ions when it would be useful if one could cause
data and program lines to be entered into the computer's memory
without hav ing to push the RETURN key. Such a facility could be
used to enable a program to alter itself by adding or deleting program
lines or to automatically reenter data that h ad been temporarily stored
on the screen . In the article "Restoring and Updating Data on the
Atari" (COMPUTE! August , 198 1, #15) Bruce Frumker has shown
that the Atari computer does indeed have this capability. In this
article we will explore this face t of the Ata ri a little further with an
eye to gaining a better unde rstanding of how it works, and give a few
examples of how it can be put to good use.

T o begin our exploration we must v isit those often mentioned,
but little understood, objects - the IOCB's . 10CB stands for Input/
Output Control Block. There are eight of them, and each one is
nothing more than sixteen contiguous bytes of RAM . lOeB #0 runs
from $3 40 to $34F (Dec. 832 to 847), 10CB #1 runs from $350 to
$3 5F (Dec. 848 to 863), and so on.

Most input and output is h andled by a portion of the Atari
Operating System called the C TO (Central Input/Outpu t) facility.
When the CIO is ca lled by th e program that is ready to do some I/O,
only on e number is passed to it, the number of the IOCB that is to
control the ac tual I/O operation. A ll of the o ther informa tion that
the C IO needs (to perform the required 110 opera tion for you purists)
is contained in the sixteen bytes of the 10CB in ques tion. Of course,
all of the required inform ation must have been placed in the proper
bytes of the 10CB prior to the jump to the C IO entry point. One of
the ways that such informat ion is placed in the 10CB is with the
OPEN statement in BASIC. H owever, we are ge tting a bit ahead of
ourselves; we will return to the OPEN statement shortl y.

A few examples of the sort of informat ion that the C IO will find

26

Chapter Two. Programming Techniques

in the IOCB are: the first byte contains the 10 number of the dev ice
that is to exchange data with the computer, the third byte contains
the code that tells C IO what it is supposed to do (read data, write
data, etc.), the fifth and sixth bytes contain the address of the data to
be output or the location where incoming data is to be stored, and so
on until the eleventh byte (the auxiliary information byte o r ICAX l) .

Here is where we return to the OPEN statement of BASIC.
When a BASIC program executes a statement such as OPEN
#2,8,0,"P", IOCB # 2 is se t up to write data to the printer. The
number 8 in the command means "wri te data ." What many do no t
know is that the OPEN command sends that number 8 to the eleventh
byte of IOCB #2 or, in o ther words, ICAX l. The number 8 is
represented by the 3 bit of ICAX I be ing set . This te lls C IO that the
channel has been set up for output . If the 2 bit were se t, that sould
represent number 4 and would mean that the channel was se t up for
input. If both bits are set (a number 12, output and input are both
enabled .

We can see now why the 2 and 3 bits of ICAX I are called
"direction bi ts" - they contro l the direction of data flow. H owever,
this is not a ll that the bits of ICAX 1 ca n do. Certa in I/O dev ices can
be made to do spec ial things by sett ing some of the other bits. The
Screen Editor is one of these certa in devices. It supports a mode of
operation that Atari ca lls the force read mode. It would seem to me
that " forced enter mode" is a more descr ipti ve n ame, but I suppose
that this sounds too much like "forced entry" and hence, a bit too
fe lonious. This mode is enabled by sett ing the zero bit of ICAX I in
any IOCB that is O PENed to the Screen Editor. Setting the zero bit
is, of course, accomplished by adding one to the number that the
OPEN command sends to ICAX l.

This means that a command such as OPEN #2 ,5,0, "E" o r OPEN
2, 13,0, "E" wou ld se t up channe l number 2 to the Screen Editor in
the forced read mode. Note that OPEN # 2,9, 0 ,"E" is not appropriate
since it doesn't make much sense to in voke the forced read mode in a
channel that has been set up fo r outpu t only .

The obvious question that now comes to mind is: What is the
fo rced read mode? The answer is simple. Whenever an INPUT
command is issued over a channe l (I0CB) that h as been se t up for
forced read, the Operating System does no t wait for the operator to
push the RETURN key, but immediate ly INPUTs the data from the
logical line in which the cursor is res iding. A ll data that is under or to

the right of the cursor may be IN PUT at this time. N ote carefully this last
remark. This mode does not work precisely like the more usual one in

27

Chapter Two. Programming Techniques

which data to the left of the cursor may be INPUT.
As an example of the utili ty of this mode we will now write the

world's simplest text screen dump . Early in the program the forced
read mode should be se t up with a program line s,l.lch as:
o OPEN *2,5,0,"E":DIM LINE$(120):SDUMP=32000

S ince OPENing an IOCB to the screen edito r clears the screen ,
this line should be executed before anything is written to the screen
that you might want to dump to the printer. LIN E$ is the string that
wil l ho ld a line of tex t from the screen and SDUMP is the line number
of the beginning of the dump rout ine. It can be ca lled from anywhere
in your program o r from the immediate mode by the command GOSUB
SDUMP. The dump routine is as fo llows:
32000 POSITION PEEK(82),0
32010 FOR 1=1 TO 24
32020 INPUT *2,LINE$:LPRINT LINE$
32030 NEXT I:RETURN

What could be sim pler? Of course, th is won't fo rmat the text on
the printer exactly as it appears on the screen , and it might cause
some scrolling if you have some logica l lines that are longer than one
phys ica l line, but it will dump a ll of the text o n the screen to the
printed page.

There are man y other cases in wh ich it is adva ntageous to be able
to read data from the screen automatica lly. O ne occurred to me as I
was trying to work around what seemed at the t ime to be an
insurmountable problem. I was working on a program that was to read
tape files and perform calculati ons on each fi le before going on to the
next one. A fairly large array was needed whose size depended on the
data in each file . I could DIMension the array to the largest size that I
would ever need, bu t that wou ld be waste fu l of memory. Besides, I
wasn't sure that I could ever guess just how large th at would be. An
alte rnative would be to use the C LR command and reDIMension the
array after reading each data fil e .

The trouble with that is th at I wanted to ma intain a running
total from one file to th e nex t and the C LR command would clear all
variables. While pondering this d ilemma, I dec ided that I could write
the current va lue of the running tota l un the screen , use the C LR
command, and then read it right back aga in using the forced read
mode. Of course , if you have a disk syste m a ll of th is is unnecessary;
you can use a disk fil e as te mporary storage. But if (like me) you have
only cassette storage, this kind offile manipulation is no t poss ible. It
is nice that folks like us do have the alternat ive of the forced read mode.

This method is by no means li mited to storing on ly one va lue;
you ca n print severa l numbers, separated by commas with a command

28

Chapter Two. Programming Techniques

like PRINT A;", " ;B;", ";C; - etc. and then read them back in with a
multiple var iable INPU T statemen t . If you have reasons for no t
wanting all of this screen ac tivity to be seen , you can make the
writing and background the same co lor, as Bruce Frumker did . O r you
can disable screen DMA with a POKE 559,0, then do your thing with
the screen. Whe n you are done , clea r it , and res tore DMA with a
POKE 559,34. I am still thinking of vari a tions on this technique , and
I am sure that you will think of many that have no t occurred to me.

So far none of this allows a BASIC program to modify itself in
any way, although Bruce Frumker's mys terious POKE 842 ,13 should
be taking on a fa mil ia r look. A little ca lcula tion will show you that
location 842 is the ICAX 1 byte of IOCB #0, the one IOCB that
BASIC won't let you O PEN , C LOSE or o therwise modify . The
reason th at BAS IC won 't touch IOCB #0, is that it is reserved for the
O perating System to use in communi cating with the screen editor.
Whenever a BAS IC command such as PRINT, ?, LIST , or INPU T
that does not spec ify a parti cular IOCB is executed, the O perating
System uses IOCB #0 to do the job. In fac t , any time you use the
screen edito r to communicate with the Atari, such as entering
immediate mode commands, entering or deleting program lines or
anything, you do it th rough IOCB #0.

Even when it may look as if nothing at all is going on with your
Atari, the Operating System is ac tuall y issuing repea ted INPUT (or
its equi va lent) commands through IOCB #0 to the screen editor. It is
just wa iting for you to print something on the screen and then press
RETURN . Of course , iflOC B #0 were in the fo rced read mode it
wouldn't wait for you to press RETURN , would it ? The idea is ge tting
closer (although I'll bet that a lot of you are already there).

Although the gen eral rule ex ists that once IC A X 1 has been set
by an OPEN command it shouldn't be changed, it turns out that
turning the forced read mode on and off is an exception and the
statements POKE 842,13 and POKE 842, 12 do just that . Once IOCB
#0 h as been placed in the forced read mode and the BASIC program
relinquishes control to the O perating System (with a ST O P or END
statement), the Operating System starts immediately scanning the
screen for program lines to add or dele te or immediate mode commands
to carry out . This will continue until it comes across a command that
returns control to the BASIC program (C ONT RUN, or GOTO
line#) or turns off the forced read mode (POKE 842, 12) .

Although this may sound very straightforward, it takes some
careful planning to position the cursor and the printed lines to make
sure that the desired lines are , in fact , read when the Operating System

29

Chapter Two. Programming Techniques

takes over. A few things need to be remembered :

• First, when a program line (including a blank line) is read, the
cursor jumps to the beginning of the next logical line to INPUT the
next line. So far, so good .

• When a BASIC program comes to a STOP statement, the
cursor skips a line, prints "STOPPED ON LINE line#," and is ready
to read on the line following that. In other words, you must position
the cursor two lines above the line where you wish to start reading.
(Using END to stop the program does the same thing, only READY is
printed instead.)

• When an immediate mode command is read, the cursor skips a
line , prints READY and starts reading aga in on the line fo llow ing
that ; i.e. , two lines are skipped .

If the lines to be read are not positioned with these facts in mind,
some of the lines may be missed and not read . This can be especially
annoying when the line that is missed is the one that turns control
back to the BASIC program or turns off the forced read mode. In this
case the cursor "runs away" and continues to look for lines to read
until something stops it . There is no need to panic, however. The
SYSTEM RESET key wil l bring everything back to normal.

A little practice is all that it takes to get the h ang of setting up
the screen to be read. If you find that some of your lines are not being
read or the cursor is running away, look for something that is making
the cursor skip a line or two that you had no t counted on.

Uses for this mode abound. Have you ever wondered how an
algebraic formula could be entered into a program at run t ime and
become incorporated in the program to be eva luated and plotted ? The
forced read mode is the answer. In fact, Atari programmers have used
just this technique in the GRAPH IT programs. A program that
initi a lly POKEs a long machine language subroutine into memory
when it is first RUN can eliminate this POKEing routine when it is
through with it. In this way, it can avoid this time consuming and
unnecessary process when it is reRUN .

The automatic generation of DATA statements as in Bruce
Frumker's program is a natural use of the forced read mode . However,
there is one case where it is almost a necessity to remove this function
from error prone human hands. Anyone that has used the Atari Editor!
Assembler cartridge to write a machine language subroutine has had
to face the rather tedious job of incorporating it into the BASIC
program that is to use it. This job is no t only difficult, but is a very
likely source of errors as it is very hard to type a meaningless string of
numbers without making at least one mistake, and machine language

30

Chapter Two. Programming Techniques

is not at a ll forgiving of the smallest mistake.
Getting the program in memory in the first p lace is not too

difficu lt using the short BASIC program supplied with the Editor/
Assembler man ual errata sheet. The real problem comes when one
wants to integrate it into the BASIC program. Program 1 should be a
help in this respect. It reads the binary file generated by the Editor/
Assembler SAVE command and genera tes the appropriate DATA
statements for subsequent POKEing into memory.

In the program you will see a couple of words in curly brackets.
They represen t screen contro l characters . They are printed by press ing
the ESC key and the appropriate control key. (C LEAR) is the screen
clear character, and (BACK) is the DELETE BACKSPACE key.
Now for the program description.

Line 5 - Get ready for the EOF record
Line 10 - This is written for cassette files; the generalization to

any kind of file is obvious

Lines 20-40 - The first six bytes of a b inary fil e contain the
location in RAM of the program; it is assumed that the BASIC
program wil l POKE it into the correct location

Line 50 - The]'S are the DATA statement line numbers; they
may be changed at your convenience (except >460). Be sure to have
enough.

Line 70 - The range of I has been chosen to put twenty-five
numbers in each DATA statement . This, too, can be changed , but
you must make sure not to exceed a logical li ne length

Line 95 - Erases the last comma

Line 100 - Prints the command to return control to the program

Line 110 - Positions the cursor, turns on the forced read r .. ode,
and turns control over to the Operating System

Line 120 - Turns off the forced read mode

Line 300 - C hecks the error number and if it is an EOF, lines
400-430 set up the last DATA state ment and enter it in to memory

Lines 440-450 - C lear the screen and LIST the data sta tements

When this program has finished its job, the DATA sta tements
can be li sted to a file for la ter inclus ion in a BASIC program. It should
be easy to modify this program to your own needs. The basic framework
is there, and now that you understand how it works, write one that
fits your programming sty le more closely.

I am sure that these uses of the forced read mode are only the first
hints of what wi ll become an entirely new dimension in Atari
programming. I am eager to see what wi ll come next.

31

Chapter Two. Programming Techniques

PROGRAM. Using The Atari Forced Read Mode.
5 TRAP 300
10 OPEN *1,4,0,"C"
20 FOR 1=1 TO 6
30 GET *1,A
40 NEXT I
50 FOR J=500 TO 5000 STEP 10
55 PRINT "{CLEAR}"
60 POSITION PEEK(82),2:PRINT :PRINT J;" DATA

70
80
90
95
100
110
120
130
300
310
400
410
420
430
440
450
460

32

" . ,
FOR 1=1 TO 25
GET *1,A:PRINT
NEXT I

A ·.. ... , , ,

PRINT "{BACK S}"
PRINT "CONT"
POSITION PEEK(82),0:POKE 842,13:STOP
POKE 842,12
NEXT J
IF PEEK(195)=136 THEN 400
PRINT" ERROR - ";PEEK(195):END
PRINT "{BACK S}"
PRINT "CONT"
POSITION PEEK(82),0:POKE 842,13:STOP
POKE 842,12
PRINT "{CLEAR}"
LIST 500,5000
END

Chapter Two. Programming Techniques

A Simple '0
Screen Editor For
Atari Data Files

Lawrence R. Stark

Use this "BASIC M emo Pacl" program to enter a screenful of text. The
computer will automatically place the screen into the pseudo string-array B$.

Screen editing is a very convenient means for entry of data and text in
computer fil es. Yet one of the ironies surrounding several models of
small computers is that, while they have this means to edit the source
code of the BASIC language programs which they a ll feature, the user
is often reduced to some form of se ri al prompting for the entry of data.

There are various so lutions to this problem , but one of the nicer
is presented in the 4001800 Atari and its 8K BASIC. The key is the
abi lity to contro l the screen and to "dump" its contents quickly with
the "~namic keyboard" technique.

The fo llowing short program is a routine which demonstrates the
principle. Extracted from a larger program which ex ternally resembles
the data fil e manager carri ed in the November, 198 1, issue of
COMPUTE!, the routine presented here does little o ther than
demonstrate a method that has been mentioned at various places in
the literature on the Atari computers. The demonstra tion is, in effect,
a "BASIC Aklu.o Paci"

The routine is very simple. The margins of the screen are se t,
making a sort of sub screen . In the example, the screen dimensions
are 16 lines vert ically and 35 horizontally. The row of numbers that
appears on the left of the screen may be sa id to be outside the screen .
The programmer can make this left margin broader and put prompting
headers in it .

Once the screen is se t , characters are taken from the keyboard
and displayed in the subscreen. Troublesome characters like AT ASCII
125, clear screen, are bypassed. Then the routine checks to see if the
border of the subscreen is crossed , PEEKing locations 84 and 85.
Carriage return has no effect other than to print a carriage return that
becomes, in essence, a cursor control. A "home" key is provided in

33

Chapter Two. Programming Techniques

Control T. Within these confines - the loop from 150 to 220 - the
user can do almost anything.

Once the data is acceptable, the loop is exited. In the demo
program, Control J is used as the signal. The program prompts for a
confirmation at this stage, and if a "Y" is issued, passes to the dynamic
keyboard routine.

In the dynamic keyboard routine, the cursor is POSITIONed, an
INPUT from the editor is requested, and the dynamic keyboard is
activated and de-activated as it passes each of the 16 lines. The
necessary POKEs are illustrated in lines 260 and 270. The effect is to
read from the screen memory into the variable named A$.

At this point, the needs of the application program come into
play. In the larger programs in which I use this routine, A$ is written
to a disk file, sometimes with a second line concatenated. In the
demonstration program, I have merely put it into the pseudo-string
array called B$.

The demo program STOPs upon the transfer of the screen display
to B$ via A$. If CONT is issued at this stage the process will come
full cycle, placing B$ into display. While this is largely useless as
presented here, it is similar to the method of recalling data from a disk
file and displaying it on the screen. The programmer may then, once
again, invoke the editing routine for updating purposes, as in the
demo program. Of course, in an actual program, the revision would
have to result in something other than the endless loop in the
demonstration program!

In actual use many other features can be added. For instance, I
have included a "parser," perhaps better called an auto-return, which
searches the end of a line when the cursor passes a designated position.
A subroutine then positions all characters past the right-most space
on the next line. This is done using the LOCATE command.
Incidentally, the LOCATE command can also be used to dump this
screen, but it is much slower than the dynamic keyboard approach.

It seems a little surprising that it is possible to devise a form of
screen editor using the BASIC language, but here it is . Limited in
some ways, it is generally more user-friendly than the serial prompt
system which tells of BASIC's origins in the days of teletypewriter
terminals.

34

Chapter Two. Programming Techniques

PROGRAM. A Simple Screen Editor For Atari Data
Files.

o REM * * Screen editor & dump * * * * * * *
* * * * * * * * * * * * * * 100 DIM B$(600),A$(40)

110 ? CHR$(125)
120 GOSUB 500
130 OPEN #1,4,0,"K:"
140 REM * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * 150 POSITION 3,0:? :GOSUB 1000
160 GET #l,T:IF T=10 THEN 230:REM 10 = CTRL

ItJn

170 IF T=20 THEN 150:REM 20 = CTRL "T"
180 IF PEEK(85)=36 THEN BOSUB 1000
190 IF PEEK(85»38 THEN POKE 85,38:BOSUB 100

O:GOTO 160
200 IF PEEK(84»16 OR PEEK(84)(1 THEN 150
210 IF T=156 OR T=157 OR T=125 THEN 160
220 ? CHR$(T);:GOTO 160:REM main working 100

p (160-220)
230 POSITION 3,18:? "ARE YOU SURE?";:GET #1,

X:POSITION 3,18:? "{14 SPACES}"
240 IF X< >ASC ("Y") THEN 150
250 REM * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * *
260 FOR 1=1 TO 16:POSITION 3,I:POKE 842,13:1

NPUT A$
270 POKE 842,12
280 B$(1*35-34,1*35)=A$
290 NEXT I
300 REM *
310 STOP
315 ? CHR$(125)
320 FOR 1=1 TO 16
330 ? B$(1*35-34,1*35)
340 NEXT I
350 GOSUB 500:GOTO 150
360 STOP
500 B$(l)=" ":B$(600)=" ":B$(2)=B$
600 POKE 82,0:POSITION O,O:? :FOR 1=1 TO 16:

? I:NEXT I:POKE 82,4
610 POS I T I ON 3,0:? ": 1!:~G!~ulI~I&IiI~IiiIiiI.:i[!;~(!m:G![:;;u:

":RETURN
1000 FOR 1=1 TO 5:S0UND 0,50,10,10:NEXT I:SO

UND O,O,O,O:RETURN

35

Chapter Two. Programming Techniques

Plotting Made
John Scarborough

rJ
Easy

This utility lets you draw a figure on any graphics screen with a joystick. It
will then convert it into a series of PLOT, ORA WTO statements which are
automatically entered into the program. A real time-saver - you may never
need graph paper again!

If you've ever tried to PLOT and ORA WTO your way through some
complex or even simple figure in one of the graphics modes, then you
know how time consuming it is. So why not have the computer do it
for you? This program allows you to first draw your figure on the
screen using a joystick, and then have the computer do the PLOTs
and DRA WTOs for you.

Enter the program into your computer carefully. Don't try to
shorten it, or you're sure to get confused. I "squeezed" the program to
get as much free RAM as I could. If you still need more, you can get
rid of some lines from 603 on up. You don't want to go any higher
than 523. Just make sure that L = 650 on the last one you leave in.
Before you use the program, it'll be useful to make a couple of back-up
copies.

The following steps show you how to make a box with an x in it
(at first glance it might look long and confusing, but once you get the
hang of it you'll be able to move quickly).

1. Choose the graphics mode you want (I suggest you practice on
mode 3 until you get the feel of what you're doing).

2. Choose the cursor color.
3. Choose the cursor luminance (7 will give a nice shade).
4. Choose the background color.
5. Move the cursor to a starting point and draw the box (press

the joystick button to draw).
6. Position the cursor in one of the comers (comer I), and then

hit "P" (you are PLOTting your first line).
7. Move to the next comer (it doesn't matter how you get there),

and hit "D." You just had the computer PLOT and ORA WTO for
you.

8. For the second line: Stay in comer 2, and hit "P." Move to
the third comer and hit "D."

9. Follow the same procedure until you get back to the first comer.

36

Chapter Two. Programming Techniques

10. After you end your fourth line, start another one (by pressing
"P"). Move to the diagonal corner (line not needed), and end the
line.

11. Do the same with the other two corners.
12. Hit the ESCape key.
13 . You'll briefly see some program statements being entered into

the program; then you'll be in the graph ics mode.
14. You shou ld have your box with the X in it.
Lines 700-898 are saved for your PLOT -ORA WTO statements.

You can LIST them at any time, but don't run it to get back to the
drawing. Enter "G. 4000" instead. You will find that the cursor moves
very slowly in mode 8. If you can't handle the slowness then hit "F."
You'll have to slow it back down (by pressing "S") when you want to
PLOT. If you want to start a new figure or drawing you'll have to take
out lines 700-898. Just make sure line 700 reads: 700 RETURN. A
faster way to take out the lines would be to have the computer print
out the line numbers for you. Then you press RETURN after each
line. Example: 5000 FOR X = 701 TO 721: ?X:NEXT X. If your figure
consumed a lot of lines it might be faster just to CLOAO your fresh
program from tape.

37

Chapter Two. Programming Techniques

PROGRAM. Plotting Made Easy.
1 REM PLOTTING MADE EASY
2 REM BY JOHN SCARBOROUGH
3 DIM AN$(1):LI=699:GRAPHICS O:SETCOLOR 2,0,

a:? :? :? "GRAPHICS MODE(3 TO 8)";:INPUT M
ODE:IF MODE=8 THEN 5

4 ? :? ., CUR S 0 R COL 0 R (0 TO 1 4) " ; : I N PUT C C :? :
? "CURSOR LUMINENCE(O TO 14)";:INPUT CL

5 ? :? "BACKGROUND COLOR(YES OR NO)";:INPUT
AN$:IF AN$="N" THEN 7

6 ? :? "BACKGROUND COLOR(O TO 14)";:INPUT BC
:? :? "BACKGROUND LUMINENCE(O TO 14)";:INP
UT BL

7 IF MODE=8 THEN HRNG=319:VRNG=191
8 IF MODE=6 OR MODE=7 THEN HRNG=159:VRNG=95
9 IF MODE=4 OR MODE=5 THEN HRNG=79:VRNG=47
11 IF MODE=3 THEN HRNG=38:VRNG=23
14 GRAPHICS MODE:SETCOLOR 2,BC,BL:SETCOLOR °

,CC,CL:SETCOLoR 4,BC,BL:CoLoR l:POKE 752,
1:L=500:GOSUB 700

17 ? "HORIlONTAL-":? "VERTICAL-"
20 GoSUB 100:IF STRIG(O)=O THEN PLOT H,V:GoT

o 20
30 PLOT H,V:FoR X=l TO 5:NEXT X:PoSITIoN H,V

:? #6;" ": GoTo 20
100 S=STICK(O):IF 5=11 THEN H=H-l
105 IF 5=5 THEN H=H+1:V=V+l
110 IF S=7 THEN H=H+l
115 IF S=6 THEN H=H+1:V=V-1
120 IF S=14 THEN V=V-l
130 IF S=13 THEN V=V+l
135 IF S=9 THEN H=H-l:V=V+l
140 IF 5=10 THEN H=H-l:V=V-l
141 IF H(O THEN H=O
142 IF H>HRNG THEN H=HRNG
143 IF V>VRNG THEN V=VRNG
150 IF V<O THEN v=o
155 IF MM=O THEN POKE 656,0:PoKE 657,19:? "F

REE MEMoRY-";FRE(O):MM=l
160 IF PEEK(764}=56 THEN G05UB 2000:PoKE 656

,2:? "FA5T(SLoW DOWN TO PLOT OR DRAWTo}
":FT=1:GoSUB 440

165 IF PEEK(764)=62 OR oK=O THEN GOSUB 2000:
POKE 656,2:?" **** PLOTTING MADE EASY
****{3 5PACES}":FT=O:G05UB 440:0K=1

170 IF FT=1 THEN RETURN
180 IF PEEK(764)=10 THEN G05UB 2000:PoKE 656

,1:PoKE 657,19:? "PLOT ";H;",";V;"
{3 SPACES}":GoSUB L:G05UB 440

38

Chapter Two. Programming Techniques

185 IF PEEK(764'=28 THEN 1010
190 IF PEEK(764'=58 THEN GOSUB 2000:POKE 656

.1:POKE 657,19:? "DRAWTO ";H; ;V;"
{3 SPACES}":GOSUB L:GOSUB 440

210 POKE 656,0:POKE 657.13:?
230 POKE 657,11:? V;"
300 RETURN
440 POKE 764,255:RETURN
500 L=503:A=H:B=V:RETURN
503 L=510:C=H:D=V:RETURN
510 L=513:E=H:F=V:RETURN
513 L=520:G=H:I=V:RETURN
520 L=523:J=H:K=V:RETURN
523 L=530:M=H:N=V:RETURN
530 L=533:0=H:P=V:RETURN
533 L=540:Q=H:R=V:RETURN
540 L=543:SS=H:T=V:RETURN
543 L=550:U=H:W=V:RETURN
550 L=553:Y=H:Z=V:RETURN
553 L=560:AA=H:AB=V:RETURN
560 L=563:AC=H:AD=V:RETURN
563 L=570:AE=H:AF=V:RETURN
570 L=573:AG=H:AH=V:RETURN
573 L=580:AI=H:AJ=V:RETURN
580 L=583:AK=H:AL=V:RETURN
583 L=590:AM=H:AN=V:RETURN
590 L=593:AO=H:AP=V:RETURN
593 L=600:AQ=H:AR=V:RETURN
600 L=603:AS=H:AT=V:RETURN
603 L=650:AU=H:AV=V:RETURN
650 GOTO 1010
700 RETURN
899 RETURN

H. It •

950 IF DD=O AND EE=O AND FF=O AND GG=O THEN
RETURN

951 L I =L I + I:? L I;" PL."; DD; " • " ; EE; " : DR. " ; FF;
", "; GG: RETURN

1010 GRAPHICS O:? : ? :?
1015 DD=A:EE=B:FF=C:GG=D:GOSUB 950:DD=E:EE=F

:FF=G:GG=I:GOSUB 950:DD=J:EE=K:FF=M:GG=
N:GOSUB 950

1020 DD=O:EE=P:FF=Q:GG=R:GOSUB 950:DD=SS:EE=
T:FF=U:GG=W:GOSUB 950:DD=Y:EE=Z:FF=AA:G
G=AB:GOSUB 950

1030 DD=AC:EE=AD:FF=AE:GG=AF:GOSUB 950:DD=AG
:EE=AH:FF=AI:GG=AJ:GOSUB 950:DD=AK:EE=A
L:FF=AM:GG=AN:GOSUB 950

1040 DD=AO:EE=AP:FF=AQ:GG=AR:GOSUB 950:DD=AS
:EE=AT:FF=AU:GG=AV:GOSUB 950:? "G.4000"

1100 POSITION O,O:POKE 842.13:END

39

Chapter Two. Programming Techniques

2000 SOUND 0, 17,10,10:FOR X=1 TO 7:NEXT X:SO
UND O,O,O,O:RETURN

4000 A=O:B=O:C=O:D=O:E=O:F=O:G=O:I=O:J=O:K=O
:M=O:N=O:O=O:P=O:Q=O:R=O:SS=O:T=O:U=O:W
=0

4001 Y=O:Z=O:AA=O:AB=O:AC=O:AD=O:AE=O:AF=O:A
G=O:AH=O:AI=O:AJ=O:AK=O:AL=O:AM=O:AN=O:
AO=O:AP=O:POKE 842,12

4002 AQ=O:AR=O:AS=O:AT=O:AU=O:AV=O:LI=LI+I:M
M=O:OK=O:GOTO 14

40

Chapter Two. Programming Techniques

Graphics Generator
Matthias M. Giwer

Create graphics characters, SAVE them to disk, and use them in other
programs.

Recently my son has shown a distinct interest in learning to program a
computer. Although I do not expect much to come of this interest at
six years of age, I began working up some simple illustrative programs
on programming concepts. The first was a race track for a number to
go around to demonstrate a loop. The second was a Y-shaped branch
for a number to go through. After the second tedious construction of
the branch using line numbers, POSITION statements, and PRINT
statements, it was apparent that there had to be a better way. Here is
my approach to that better way.

This program permits graphics characters - or any characters -
on a Graphics 0 screen. The finished screen is written to a disk file of
line numbers which can then be merged with a master program by
means of the ENTER command.

After running the program and giving a filename to save the
results, you must not do anything to scroll the screen. This means
that what you draw must be done with the cursor and you must never
hit RETURN. It is recommended that the first thing you do is erase
the STOPPED AT message. Do not erase or move the CONT on line
22. You may use the cursor keys and any other screen editing functions
of the Atari. When finished, move the cursor down to the line
containing the CONT and hit RETURN. The program will execute.
When the disk drive stops, the program has finished.

There are many options available within the program. The one
option you do not have is to move CONT to the last line, for if you
do, the screen will scroll when you hit RETURN. Otherwise, it is
rather flexible. If you wish to compose several graphics screens, run
the program once for each screen. You will use a different file
specification and change the value of 30000 in line 2020. Since exactly
40 lines are required to save a screen, increase 30000 in blocks of 50
so you will have free lines for RETURN statements and so forth.
When putting together your finished program graphics, simply ENTER
all of the file specifications you have used and LIST them under one
new file specification.

41

Chapter Two. Programming Techniques

The program itse lf simply constructs R$ to look like a line of
BASIC. It concatenates (adds together) a line number (30000 + 1), a
print command in the form of a question mark, and then adds a
quotation mark in the form of C HR$(34) . (O therwise it wo uld be
interpreted by the computer as a clos ing quotat ion mark.) N ote that a
quota tion mark is not permitted on your graphi cs screen. Using the
LOCATE instruction , each pos ition of the screen is examined and
added to R$ by the C HR$ (X) instruct ion . In line 2030 J starts at 2 to
co inc ide with the default va lues of the screen. If you intend to use the
resulting lines with differen t screen widths, then this va lue should be
changed to coincide with them. R$ is completed with a closing
C HR$(34), a semico lon to prevent scrolling C HR$ (59), and a carri age
return C HR$ (155).

Upon ENTERing these lines you will need to do a bit of editing.
First you must remove the word CONT from the next to the last line
and the cursor from the last line. After this you may change blank
lines to simple PRINT or ? statements. Leav ing the lines in this form
takes up only a few bytes and gives you what might be called relocatable
graphics.

T o obtain fi xed location graphics , make the changes in Program
2. These will result in absolute positioning of your graphics. The
POSITION statements generated by these lines will place the graphics
exactly where you drew them.

42

Chapter Two. Programming Techn iques

PROGRAM 1. Graphics Generator.
100 GRAPHICS O:DIM R$(80),F$(17)
120 ? "ENTER DISK NAME TO SAVE UNDER

{10 SPACES}(Dn:filespec.ext)";:INPUT F$
140 GRAPHICS O:POSITION 4,22:? "CONT{5 UP}":

STOP
1900 OPEN #1,8,0,F$:J=0
2010 FOR 1=0 TO 23
2020 R$=STRS(30000+1)
2026 R$(LEN(R$)+I)=" ?"
2028 R$(LEN(RS)+I)=CHR$(34)
2030 FOR J=2 TO 39
2050 LOCATE J,I,X
2060 R$(LEN(R$)+I)=CHR$(X)
2070 NEXT J
2080 R$(LEN(RS)+I)=CHR$(34)
2082 R$(LEN(R$)+I)=CHRS(59)
2090 R$(LEN(RS)+I)=CHR$(155)
2100 ? #1;R$
2110 R$=""
2120 NEXT I
2190 CLOSE #1
2200 REM
2201 GOTO 2200

PROGRAM 2. Graphics Generator.

2022 R$(LEN(R$)+l)="POSITION
2023 R$(LEN(R$)+l)=STRS(I)
2024 R$(LEN(R$)+1)=":"

"7' " ~, ,

43

Chapter Two. Programming Techniques

Analyze Your
Program - An Atari

BASIC Utility
Fred Pinho

This program allows you to study the effects of space allocation in Atari
variable value and string/array tables. You'll discover the memory saving
effects of various methods of handling heavily edited programs. It' s also a
useful debugging tool for more advanced programmers.

This program was inspired by Art McGraw's "Variable Name Utility"
(COMPUTE!, Oct. 198 1, #17). To do advanced programming in
BASIC, one often needs information, not only on the variab le name
tab le, but also on the variable va lue and the string/array tab les. These
tables res ide in memory as follows:

Variable Name Table
Variable Value Table
BASIC Program
String/Array Table

Increasing
Memory
Locations

There are a se t of zero-page pointers that point to these tables and
enable BASIC (and the programmer) to keep track of the ir location.

MEMORY LOCA nON
OF POINTER

130,131
132,133

134,135
140,141
142,143

MEMORY AREA POINTED TO

Start of Variable Name Table.
End of Variable Name Table.
Points to a zero dummy byte when there
are less than 128 variables.
Otherwise points to the last byte of the
last variable name.
Start of Variable Va lue Table.
Start of the String/Array Table.
Start of Run Time Stack. Also defines the
end of the String/Array Table.

As usual, these pointers point to the address in low-high format (low
byte of 16 bit address is stored first). To find the complete address:

Address = PEEK (Lo Byte) + 256' PEEK (Hi Byte)
In order to be ab le to read the information displayed by the

44

Chapter Two. Programming Techniques

program, I've included a description of each of these tables.

V ARIABLE NAME TABLE

Lists all the variable names in the order entered by the program. Each element
of the name is stored as AT ASCII characters. There are three types of
variables:
1. Scalar variables - These contain a numeric value. The most significant bit
is set on the last character of the name.
2. String variables - The last character stored is a $ with the most significant
bit set.
3. Array variables - The last character stored is a (with the most significant
bit set.

V ARIABLE V ALUE TABLE

This table reserves eight bytes for each variable in the program. The first byte
of each entry defines the type of variable: zero for a scalar variable, 65 for a
properly-dimensioned array variable and 129 for a properly-dimensioned
string variable. The second byte is the variable number (0-127). The remaining
6 bytes vary with the type of variable:
1. Scalar - The number stored in 6-byte BCD (Binary Coded Decimal)
format.
2. Array - Bytes 3 and 4 give the location of the array as an offset from the
beginning of the String! Array Table. Bytes 5 and 6 give the size of the first
dimension of the array plus one. Bytes 7 and 8 give the size of the second
array DIMension plus one. All these byte-pairs give the number in low-byte,
high-byte format. To get the desired value you must again calculate by: (value
in 10 byte) + 256' (value in hi byte).
3. String - Bytes 3 and 4 give the location of the string as an offset from the
beginning of the String/Array Table. Bytes 5 and 6 give the current length of
the string (i.e., the length of the string actually written to). Bytes 7 and 8 give
the DIMensioned length of the string.

STRING/ ARRA Y TABLE

This block of memory stores all the actual string and array data. Each string
character is stored as a one-byte AT ASCII entry. Each element in an array is
stored as a six-byte BCD number. BASIC allocates memory space within this
table as dictated by the DIMension statements it encounters. As you can see,
it is much more costly in memory usage to store arrays than strings. (See
Program 1.) Ideally, this utility should be written with no declared variables
to give a "pure" analysis of the variable tables. However, this would give a
messy looking program and take a lot more coding. Therefore, I've used four
variables in this program. I've chosen names that are unlikely to be used in
normal programs. These are:

OPQ - FOR - NEXT counter
RST - Variable number
UVW - Location within Variable Value Table
XYZ - Location within Variable Name Table

If, for some reason, you are using these variables in your program, change the
variable names in the utility program. The utility variables will be printed last
and can be ignored.
A description of the program by line number is given.

18990 Vanity line

45

Chapter Two. Programming Techniques

46

19010

19025-19040

19050-19070

19080
19090
19100
19110

19120
19130
19140
19200-19240

19300-19350

19400-19450

Opens a file to the printer. It is best to do this rather than use
LPRINT since LPRINT causes formatting difficulties.
Prints variable names. Note that since each name is
ended with a character whose most significant bit is set (i.e.,
an inverse character), this bit is stFipped out before
printing. This would not be necessary if printing to the
screen.
Checks for type of variable by inspecting first bit of
entry in variable value table. Directs program to
proper subroutine
Checks for error in value table
Increments variables
Checks for end of variable name table
Prints number of variables found which equals the total
variables minus the four in the utility program.
Prints memory size of string/array table.
Closes printer file
Error routine. Prints number found
Scalar variable subroutine. Converts six-byte BCD
number to a decimal number multiplied by a power of 100
Array variable subroutine. Calculates location of array
as an offset from the start of the string/array table. Also
gives the first and second DIMensions of the array. Note
that the Atari stores the chosen DIMension plus one.
Therefore, the program subtracts one before printing.
However, the actual DIMension is one higher than the
chosen and printed value since the computer starts
counting from zero rather than one.
String variable subroutine. Calculates the string
storage location as an offset from the start of the string/
array table. Also gives the DIMensioned length and the
current length of the string. Note that the current length
of the string is just the last location written to; there
need not be anything in the previous locations. To show
this, load the utility and type:
100 DIM A$ (120), B$ (120)
110 A$ (103,103) = "F":B$= "FFFF"
Then RUN the utility program (i.e., let it analyze
itself). See Figure 1 for the output of this run. Also,
note that string position numbering starts from one, not
zero, as in arrays.

The abbreviations used in the printout are:
V AR. NO. - Variable Number
VAR.NAME
OFS
DIMI
DIM2

- Variable Name
-Offset
- First DIMension of Array
- Second DIMension of Array (zero if single-dimension
array)

CUR L TH - Current Length of String
DIM L TH - DIMensioned Length of String

Note that the location of the start of each table for the analyzed

Chapter Two. Programming Techniques

program should no t be found using this utili ty . This is because the
presence of the utili ty program will cause a shift of the st ring/array
table loca tion . If you need to know th ese locations, PEEK the
appropriate locati ons before you load th e utility program.

The utility program has been written with high line numbers so
that it won 't interfere with most programs to be analyzed . T o use this
utility, type it in and then save it to either disc or cassette using the
LIST command . Don ' t use SA VE or CSA VE, as thi s will prevent you
from merging the utility with the program to be analyzed (the program
in the computer will be wiped out as you LO AD or C LO AD the
utility program) . N ow LOAD in your program to be analyzed . T o
merge the two programs , LOAD in the ut ility using the ENTER
command. N ow turn on the printer, type in GOTO 19000
(RETURN) .

If you did the above , you will ge t some unexpected results. All
the vari ables will be listed , but they will have no en tri es fo r them. For
example, all sca lar variables will be zero regardless of their va lue in
the program. A lso, all stri ngs will be unDIMensioned and will have
zero fo r the ir length. Apparently, when a program is SAVEd to disc,
the Atari saves the Variab le Va lue T able with en tries se t to "zero"
condition . Therefore , to ge t the proper analys is, do the fo llowing:

1. LO A D your program.

Z. RUN it!

3 . EN TER the ut ility program.

4. T ype GOTO 19000 (RETU RN).

This will give you a prope r analys is. Note that loop va ri ables will not
a lways be caught at their initial va lue.

If your program has line numbers in the 18990-1 9450 area, it
could interfere wi th the utility. Therefore, RUN your program and
then delete the problem lines. This will no t affect the Variable N ame
and Variab le Value tables. Then ENT ER the utility and proceed as
before.

What can you use this program for? W ell , first you can use it to
gain a better understanding of how BASIC works. For example ,
analyze a heavily edited program which has had variables deleted . If
you've only SAVEd this program , you'll find that these vari ables are
still listed in the tables and continue to consume memory. LIST your
program to disc o r casset te and then ENTER it back into the computer.
If you now re-ana lyze the program , you' ll find that these "phantom"
variables will have been e liminated . If you check "free" memory
[FRE(O)] before and after, you' ll find a gain in useable memory.

47

Chapter Two. Programming Techniques

Many advanced programming techniques use string manipulations
to take advantage of the high speed, str ing handling rout ines in the
Atar i. These often depend on changing the entries in the var iab le
va lue tab le to re locate strings under program control. This utility is
useful as a debugg ing too l for these app li ca tions.

One final note for those who do not have pr inters. If you wish to
output to the screen, change line 19010 to:

OPEN #3, 8,0, "S: "

You can stop the screen output at any time and then resume it by
"Control-I. "

Figure 1.
VAR. NO. = 0 VAR. NAME = A$
STR[NG D[Med
OFS = O:CUR LTH = 103 :D[M LTH= 120
VAR. NO. = 1 VAR. NAME=B$
STR[NG D[Med
OFS= 120:CUR LTH=4:DIMLTH= 120
VAR. NO.=2 VAR. NAME = XYZ
SCALAR- 76. 82000000 , \00
VAR. NO. = 3 VAR. NAME = UVW
SCALAR- 77. 17000000' 100
VAR. NO. =4 VAR. NAME=RST
SCALAR-04. 00000000' 0
VAR. NO. = 5 VAR. NAME= OPQ
SCALAR--08. 00000000' 0
END OF VARIABLE NAME AND VALUE TABLES.
NUMBER OF VARIABLES FOUND= 2
STRING/ARRA Y AREA [S CURRENTLY 240 BYTES LONG.

48

Chapter Two. Programming Techniques

PROGRAM. Analyze Your Program - An Atari
BASIC Utility.

18990 REM VNT/VVT UTILITY BY F. PINHO 121221
81

19000 XYZ=PEEK(130)+256*PEEK(131):UVW=PEEK(1
34)+256*PEEK(135):RST=0

19010 OPEN #3,8,0,"P:"
19020 ? #3;"VAR. NO.=";RST;" ";:? #3;"VAR.

NAME=" ;
19025 IF PEEK(XYZ) < 128 THEN? #3;CHR$(PEEK(X

Y Z)) ;
19030 IF PEEK(XYZ)}127 THEN? #3;CHR$(PEEK(X

YZ)-128);
19040 IF PEEK(XYZ) < 128 THEN XYZ=XYZ+l:GOTO 1

9025
19050 IF PEEK(UVW)=O THEN GOSUB 19200
19060 IF PEEK(UVW)=64 OR PEEK(UVW)=65 THEN G

OSUB 19300
19070 IF PEEK(UVW)=128 OR PEEK(UVW)=129 THEN

GOSUB 19400
19080 IF PEEK(UVW)<}O AND PEEK(UVW) < >64 AND

PEEK(UVW) < >65 AND PEEK(UVW)< > 128 AND P
EEK(UVW) <> 129 THEN GO TO 19140

19090 UVW=UVW+8:XYZ=XYZ+l:RST=RST+l
19100 IF XYZ«PEEK(132)+256*PEEK(133» THEN

19020
19110 ? #3;"END OF VARIABLE NAME AND VALUE T

ABLES.":? #3;"NUMBER OF VARIABLES FOUN
D=";RST-4

19120 ? #3; "STRING/ARRAY AREA IS CURRENTLY"
; «PEEK(142)+256*PEEK(143»-(PEEK(140)
+256*PEEK(141»);" BYTES LONG . "

19130 CLOSE #3:END
19140? #3:? #3;"ERROR' VARIABLE TYPE NUMBER

=";PEEK(UVW):END
19200 ? #3:? #3;"SCALAR--";:IF PEEK(UVW+2)=0

THEN 7 #3;"ZERO":? #3:RETURN
19210 ? #3; INT (PEEK (UVW+3) 116); (PEEK (UVW+3)­

(INT (PEEK (UVW+3) 116» * 16) ;" . ";
19220 FOR OPQ=4 TO 7:? #3;INT(PEEK(UVW+OPQ)1

16); (PEEK (UVW+OPQ) - (INT (PEEK (UVW+OPQ) 1
16»*16);

19230 NEXT OPQ
19240? #3;"*";:? #3; «PEEK(UVW+2)-64)*100):

? #3:RETURN
19300? #3:? #3;"ARRAY ";
19310 IF PEEK(UVW)=64 THEN? #3;"unDIMed";:?

#3
19320 IF PEEK(UVW)=65 THEN? #3;"DIMed";:? #3

49

Chapter Two. Programming Techniques

19330? #3;"DFS="; (PEEK(UVW+2)+256*PEEK(UVW+
3»;":";

19340 ? #3; "DIM1="; «PEEK (UVW+4) +256*PEEK (UV
W+5»-1);":";

19350 ? #3;"DIM2="; «PEEK(UVW+6)+256*PEEK(UV
W+7»-1):? #3:RETURN

19400 ? #3:? #3;"STRING ";
19410 IF PEEK(UVW)=128 THEN? #3;"unDIMed";:

? #3
19420 IF PEEK(UVW)=129 THEN? #3;"DIMed";:?

#3 I
19430 ? #3;"DFS="; (PEEK(UVW+2)+256*PEEK(UVW+

3»;":";
19440 ? #3; "CUR LTH="; (PEEK(UVW+4)+256*PEEK(

UVW+5)) ; " : " ;
19450 ? #3;"DIM LTH="; (PEEK(UVW+6)+256*PEEK(

UVW+7»:? #3:RETURN

50

Chapter Two. Programming Techniques

Inside
Atari Microsoft

BASIC:
A First Look

Jim Butterfield

Atari's long-awaited Microsoft BASIC is here at last. Jim Butterfield, an
expert on the 8K Microsoft BASIC used on other machines, begins the
documentation of the complex inner workings of Atari Microsoft BASIC.

It's a big BAS IC. It occupi es 18K of RAM , which means there's a lo t
of code in the interpreter. It a lso does some new things . Single versus
double precision arithmet ic, for example, calls fo r a dramatic
rearrangement of the fl oa ting accumulato rs and of the way variables
are stored as compared to the better-known 8K Mi crosoft BASICs.

With the expanded fea tures come new techniques to be mastered .
I wince when PRINT 10/4 yields an answer of 2 (to get 2.5, you must
force floa ting point with PRINT 10/4.0).

The Architecture

The fo llowing discuss ion assumes that users have had some exposure
to the mechanics of o ther Microsoft BASICs.

Your BAS IC program will be stored right behind the interpreter
(Hex 6980 and up) . It's the usual forrnat: two-byte forward chain to
the next BASIC line , two-byte BASIC line number, the line itse lf
(tokenized) and finall y a zero byte to fl ag end-of-line. The end-of­
program is identified by zero-bytes in the forward cha in location .

Vari ables come behind your program - check the address in h ex
84 and 85 , o r PRIN T PEEK(13 2) + PEEK(l 33)* 256 - but storage is
fairly complex . The first two bytes are the first two characters of your
variable name , but with many bits stri pped away and replaced with
"variable type" bits: don ' t be surprised if your va ri able A ends up with
the name stored as va lue 1 rather than the ASCII 65 which corresponds
to A. The third byte is the length of this variable entry. N ow we h ave

51

Chapter Two. Programming Techniques

a messy bit: if you have a long var iable name such as PLUGH the
extra letters (UGH) are stored start ing at the fourth byte. Finally, the
value itse lf.

The following memory map is a brief list of the locat ions I have
spotted while looking around. It's far from comp l~te; but those who
would like to rummage around will find it handy .

0080-0081 128-129 Pointer: Start-of-Basic
0082-0083 130-131 Pointer
0084-0085 132-133 Pointer: Start-of-Variables
0086-0087 134-135 Pointer: Start-of-Arrays
008A-008B 138-139 Pointer: String storage (moving down)
0094-0095 148-149 Current data pointer
00AE-00C5 174-197 CHRGETsubroutine
00B4 180 CHRGOT entry point
00B5-00B6 181-182 Basic pointer within subroutine
00C7 -00C8 199-200 Variable pointer for FORINEXT
OOCB 202 $98 =READ,$40=GET,0 =INPUT
OOCD 204 Default DIM flag
OOD 1 209 Accum sign compare, # 1 vs #2
00D2 210 Accum#1 Low order (rounding)
00D4 212 Variable name length
00D5-00D8 213-216 Utility Pointer area
00DC-00E4 220-228 Misc numeric work area
00E5 229 Accum# 1 precision flag
00E6 230 Accum# I: Sign
00E7 231 Accum# I : Exponent
00E8-00EE 232-238 Accum#l: Mantissa
OOFO 240 Accum#2: Sign
OOFI 241 Accum#2: Exponent
00F2-00F8 242-248 Accum#2: Mantissa
00F9-00FF 249-255 Product area for multiplication

0480-

IFOO-697F
6980-

52

1152- Variable name setup area

7936-27007 Microsoft Basic Interpreter
27008- Basic program staging area

CHAPTER THREE

ADVANCED
GRAPHICS AND
GAME UTILITIES

CHECKMATE.

Chapter Three. Advanced Graphics And Game Utilities

Player-Missile
Drawing Editor

E. H. Foerster

You can toss out your graph jJaper and your binary to decimal conversion
tables. The PIM Drawing Editor lets you clesign jJiayers Clnd missiles on-screen
with a joystick. Because of automatic program adjustments, you can easily
visualize players of any size , including double jJlayers or combining two jJlayers
into one. When you're done, you can view the player "in action, " and even
automatically generate a BASIC routine for using the players and missiles in
your own programs. It will run in 16K.

Would you like to write a Playe r-Miss ile (P/M) program, but a re
intimidated by the n eed to convert your drawn player o n graph paper
to numerical image data? With the program in this art icle , you can
draw your P/M object using the jo ysti ck a nd then let your computer
do the work of converting the image to numerica l da ta for your
favorite P/M movement routine.

This program will ac tually perform the task of writing the DATA
statements containing the P/M image using a program-writing program.
The complete capabilities a lo ng with explanations are included in the
instructions for the program . O nly limited instructions and no REMark
statements are included in the program to permit its use in a 16K machine.
For those interested in the deta ils, a program o utline a long with a ltsting
of variables is included.

Using The Editor
Let's walk through a simple example of the use of the Editor. Set up a
player with double line resolution, size one, and e ight lines lo ng. Place
the cursor a t the top right comer of the drawing easel, press "0" for
draw-to, move the cursor to bottom left and push the trigger button.
Bingo , you have drawn a player consisting of a diagonal line. Press "S"
for stop and, when the menu is displayed, press "L" for list.

The computer now displays your player as numerica l data. Notice
that each number represents the bit value of the P/M pixel as you move
down the player, line-by-line. T o see your player in P/M graph ics mode:
press "Y" for view and, in a few seconds, your player appears in P/M graphics.

55

Chapter Three. Advanced Graphics And Game Utilities

W ould you like to see your object in single li ne resolution and at
size four ! Fo llow the instructions in the text window and, with a few
keystrokes, the ch anges have been accomplished. Suppose you want
to make changes to the image. Just a few keystrokes and you are back
to the draw ing ease l. However, now the ease l is different from the
original, in size and shape, reflect ing the changes made. The program
allows complete freedom when go ing from one area to another. This
allows you to make as many changes as needed before you reco rd your
final image data o n tape. You can add or de le te lines a t the top or
bo ttom and a fill routine will fill in an area.

Experiment by combining up to four players, changing the
parameters of size and reso lutio n, and you will soon have a better
understanding of the meaning and in terre la tions of these parameters.

One unique too l used in the program is the SGN functi on and
logical operators for converting the STICK(O) readings to X, Y
coordinates. The actual examples in the program may be a little
obscure. The rout ine is as fo llows:

10 S = STICK(O)
20 IF S< 12 THEN X=X+SGN(S-S):X = X + (X<XM IN)­

(X > XMAX): S = S + (X <S)" 4 + 4
30 IF S< 15 THEN Y = Y + SGN (13.s-S):Y = Y + (Y <YMIN) ­

(Y > YMAX)

You may not be li eve it, but these three lines read a ll nine joystick
positions, convert the read ing to new X, Y coordinates, and adjust
these coordinates to the limits expressed by the X and Y MAX and
MIN values. For those not fam iliar with logica l statements, the va lue
in parentheses of a compari son or equality eva luates to a one if true
and zero if no t true . Such statements can frequently reduce two lines
of code using IF statemen ts to a single li ne of code.

A note of caution if you are planning on using the "Player
Missile G raphics Made Easy," by Sak and Me ier in COMPUTE!,
February 19S 1, #21. The program is designed for use with single line
reso luti on . Addresses fo r p laye rs in P/M memory are indexed by page
number. However, in double line reso lu tion, memory fo r playe rs two
and fo ur sta rts a t half-page inte rva ls and cannot be accessed . The P/M
drawing Editor program gets around th is limitatio n by ex te nding the
lengths of playe rs o ne and three to include players two and four
respect ive ly . Thi s, however, works on ly when adjacent players are
moved together.

The LPRINT in li ne IsS0 in the program writing subroutine
se rves a simil ar purpose to the use of LPRINT before a CS A VE.

56

Chapter Three. Advanced Graphics And Game Utilities

Before this statement was included, only one player cou ld be recorded
on tape. Subsequent players would give error messages when they
were later entered.
Player-Missile Drawing Editor Instructions
A. INITIAL QUESTIONS

1. INPUT Resolution: See table for explanat ion. Resolution for
all players and missiles must be the same for anyone program.

2. INPUT Player or Missile: A playe r is eight P/M pixels (bits)
wide; a missile is two P/M pixels wide.

3. INPUT number of players: There are four players available,
each eight P/M pi xe ls wide. Any number of players may be
placed side by side and moved together. Thus, four players
combined will give 32 P/M pixels across.

4. INPUT Size: See table for explanation. This parameter can
be changed later in the program.

5. INPUT number of vertica l lines. See tab le for exp lanation.
Lines can be added o r de le ted late r in program.

B. ORA WING EASEL
The drawing ease l will appear as a green area. The drawn player
appears as an orange area. The cursor is indicated by a lighter
colored green or orange area. To change color, press joyst ick
trigger. To move cursor, use joystick.

Keyboard Options
(0-9) Controls speed of cursor movement. 0 = fas t, 9 = slow,
2 = initial speed .

(O)raw to: Draw line from current cursor position. Move cursor
to new pos ition. Press tri gger button to draw line between two
positions.

(F}ill: Used to fill an area. The area must be bounded by orange
on all four sides. Place cursor below highest green space and, if
possible, above lowest green space. Press F. For odd-shaped areas
the rout ine may have to be repea ted.

(L}ines: Add or de le te vert ica l lines at top or bottom of drawing
easel.

(S)top: Stop drawing. If the drawing is large, there may be a
considerable wait while the di agram is converted to numerical
data.

C. OPTION MENU
(V}iew: observe playe r(s) in P/M graphics. Move player using
joyst ick. During View you may press:

57

Chapter Three. Advanced Graphics And Game Utilities.

(S)ize to ch ange size of player,
(C)olor to change co lor of player. Horizontal movement of
joystick changes co lor. Vertica l movement of joystick changes
intensity. Co lor number and intensity ar~ displayed as
changes are made.
(R)esolution to change resolution .

(L)ist: Get listing of image data for player(s) .
(E)dit: Return to draw ing ease l. If size or resolu tion was changed
during view, then drawing ease l is mod ified accordingly. If size
limitations are exceeded , then size is reduced to two.
(S)ave: Save image numerica l data on tape . Insert blank tape in
recorder. Press RECORD and PLAY. Answer ques tion for player
number. If this is the first p layer, then answer zero. If previous
playe rs were saved, enter next player number. For example: if
first draw ing was two playe rs wide, they were player zero and
one. You, therefore, enter two for this playe r number. Data will
be transferred to tape using print statements. The recorder wi ll
start and stop during this procedure.
(D)raw new player: Used to erase current player and start new
player.

D. USE OF RECORDED DATA

58

Recorded data will be entered in to the computer using the
ENTER command. This data may be merged with a res ident
program. DATA statemen ts will be written starting at line
31,000.
A. If the program is not go ing to be merged with a res ident
program, then type NEW and press RETURN.

B. Place tape in recorder.

C. Press PLA Y.
For each player or group of playe rs:
D. Type ENTER"C" and press RETURN twice.

E. READY will appear twi ce on screen before playback is
complete.

F. Now LIST your entry .

Chapter Three. Advanced Graphics And Game Utilities.

Table 1.
T ABLE OF GRAPHICS POINT SIZE FOR PM GRAPHICS

Resolution Size P/M Pixel Size'

Vertical Horizontal

Double Line (1) 1 2 2
2 2 4

" " 4 2 8
Single Line (2) 2

" " 2 4
4 8

'Measured in Graphics Mode 8 pixel size (the text mode cursor is eight pixels high and eight
pixels wide).

Table 2. Program Outline.
10-20 Initializes and defines constants.

30-120 Inputs parameters and draws initial easel.

130-160 Drawing loop .
170-190 Checks RE ' NP , SI limit.

200-230 Calculates parameters for easel and draws easel.

250-290 Moves cursor.

290 Changes cursor to normal green or orange.
300-350 Loops for keyboard input during draw.

400-420 Gets keyboard entry.
450-560 Draw-to routine.

600-670 Fill routine.

700-730 Stops.

750-870 Adds or deletes lines.
900-980 Menu.

1000-1210 Views in PIM graphics.
1220 POKEs X position and size.
1230 Stops PIM View.

1240 POKEs Color.
1250-1280 Changes size.

1300-1390 Changes color.

1400-1450 Edits.
1450-1480 LISTs player data.
1500-1610 Programs writing program for tape.

59

Chapter Three. Advanced Graphics And Game Utilities.

Table 3. Constants Used In Program.
PIM = PIM page.

PIMB = PIM base address.

P(A) = Player A image data address.

PY(A) = Player A Y-position in player area .

PX(A) = Player A X-pos it ion.

PA = Pause fo r adj ust ing speed of cursor in drawing program.

LA = Line advance subroutine in program writing program.

CO = Color: 16*Color no. + intensity.

PLX = Player 0 horizon tal position register.

PLY = Player 0 ve rtical pos ition register.

PLL = Player length register.

RE = Reso lution.

MI = Missile fl ag.
NP = No. of players

SI = H orizonta l PIM size.

VL = No. of vert ical lines for player.

G = Graphics determinant.
XD = X draw-to dimension for each PIM pixe l.

H = Horizontal determinant.

Xl, YI = T emporary X and Y coordinates .

S = STICK(O)

60

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. Player-Missile Drawing Editor.

10 DIM A$(l) ,P(3) ,PY(3) ,PX(3) :PA=2:LA=1590:C
0=24:PLX=53248:PLY=1780:PLL=1784

15 IF PEEK(1536) <> 162 THEN GOSUB 9000
20 PM=PEEK(106)-16:PMB=PM*256:POKE 54279,PM:

FOR A=O TO 3:P(A)=PMB+A*24:NEXT A
30 GRAPHICS O:? :? "INPUT VERTICAL RESOLUTIO

N ? II (l)=DOUBLE LINE RESOLUTION":? "
(2)=SINGLE LINE RESOLUTION"

40 TRAP 30:INPUT RE:IF RE >2 OR RE < 1 THEN 30
50 ? :? "DO YOU WANT TO DRAW (P)LAYER OR

{7 SPACES}(M)ISSILE";:INPUT A$:IF A$<>"P"
AND A$ <> "M" THEN 50

60 IF A$="M" THEN MI=I:NP=I:GOTO 80
70 ? :? "HOW MANY PLAYERS DO YOU WANT TO COM

BINE TO FORM A PLAYER(1-4)":TRAP 70:INPUT
NP:IF NP < l OR NP >4 THEN 70

80 NP=NP-l:? :? "INPUT HORIZONTAL SIZE (1,2
OR 4)":TRAP 80:INPUT SI:IF SI < l OR SI >4 0
R SI=3 THEN 8 0

90 GOSUB 170
100 ? :? "HOW MANY LINES DO YOU WANT FOR YOU

R{3 SPACES}PLAYER(I-24)":TRAP 100:INPUT
VL:IF VL < l OR VL >24 THEN 100

110 GOSUB 200:SETCOLOR 2.12,6:COLOR 3:X=20*G
:Y=10*G-l:PLOT X, Y:DRAWTO X+XD.Y

120 IF STRIG(O)=O THEN POKE 710,42+(PEEK(710
)=42)*156:PLOT X,Y:DRAWTO X+XD,Y

130 S=STIC K (O):IF S (15 THEN GOSUB 250
140 IF PEE K (53775) < 255 THEN 300
150 FOR A=l TO 25*PA:NEXT A
160 GOTO 120
170 IF RE*(NP+l)*SI (17 THEN RETURN
180 GRAPHICS O:? :? "THIS PROGRAM CANNOT HAN

DLE 4 PLAYERS , SINGLE LINE RESOLUTION AN
D SIZE"

190 ? "GREATER THAN 2. THE SIZE WILL BE
(5 SPACES } CHANGED TO 2.":SI=2:? :? "PRES
S RETURN TO CONTINUE":INPUT A$:RETURN

200 XD1=RE*SI:XD=XD1-l:H=(NP+l)*XD1:IF MI TH
EN H=H/4

210 G=1+«H >5) OR (VL >20»+2*«H) 10) OR (VL >
40»:GRAPHICS 19+(G > I)*G

220 YMIN=INT(10*G-VL/2):YMAX=INT(10*G+VL/2-1
):XMIN=20*G-4*H:XMAX=20*G+4*H-I-XD

230 SETCOLOR 0,2,8:SETCOLOR 1 , 12.4:COLOR 2:F
OR Y=YMIN TO YMAX:PLOT XMIN,Y:DRAWTO XMA
X+XD,Y:NEXT Y:RETURN

250 GOSUB 290

61

Chapter Three . Advanced Graphics And Game Utilities.

260 IF S(12 THEN X=X+SGN(8-S)*XD1:X=X+(X(XMI
N)*XD1-(X >XMAX)*XD1:S=S+(S <8)*4+4

270 IF S (15 THEN Y=Y+SGN(13.5-S):Y=Y+(Y (YMIN
)-(Y >YMAX)

280 LOCATE X,Y,A:POKE 710,PEEK(707+A)+2:COLO
R 3:PLOT X,Y:DRAWTO X+XD , Y:RETURN

290 COLOR 1+(PEEK(710)=198):PLOT X,Y:DRAWTO
X+XD,Y:RETURN

300 GOSUB 400:IF A=ASC("D") THEN 450
310 IF A=ASC ("F") THEN 600
320 IF A=ASC("S") THEN GOSUB 700:GOTO 900
330 IF A=ASC("L") THEN GOSUB 700:GOTO 750
340 IF A(58 AND A>47 THEN PA=A-47
350 GOTO 120
400 OPEN #1,4,0,"K:":GET #l,A:CLOSE #1
410 IF PEEK(53775) (255 THEN 410
420 RETURN
450 Xl=X:Y1=Y
460 S=STICK(O):IF S=15 THEN 460
470 GOSUB 260
480 IF STRIG(O)=O THEN 510
490 S=STICK(O):IF S (15 THEN GOSUB 250
500 GOTO 480
510 COLOR 1:X2=X:Y2=Y:Y3=Y1:A=XD1*SGN(X2-Xl)

:B=SGN(Y2-Y1):C=X2-Xl+A:D=Y2-Y1+B
520 IF C=O OR D=O THEN FOR A=O TO XD:PLOT Xl

+A,Y1:DRAWTO X2+A,Y2:NEXT A:GOTO 570
530 FOR X=X1 TO X2 STEP A:FOR Y=Y3 TO Y2 STE

P B:PLOT X,Y:DRAWTO X+XD,Y
540 IF (X-X1+A)/C=(Y-Y1+B)/D THEN Y=Y+B:GOTO

560
550 IF (X-X1+A)/C > (Y-Yl+B)/D THEN NEXT Y
560 Y3=Y:NEXT X:X=X-A:Y=Y-B
570 GOSUB 280:GOTO 120
600 X1=X:COLOR 2:PLOT X,Y:DRAWTO X+XD,Y:B=67

o
610 GOSUB B:LOCATE X,Y-1,A:IF A=2 THEN Y=Y-l

:GOTO 610
620 GOSUB B:LOCATE X-l , Y,A:IF A=2 THEN X=X-l

:GOTO 620
630 GOSUB B:COLOR 1:PLOT X,Y
640 GOSUB B:LOCATE X+1,Y,A: IF A=2 THEN X=X+l

:PLOT X,Y:GOTO 640
650 X=X1:Y=Y+1:GOSUB B:LOCATE X,Y,A:IF A= 2 T

HEN 620
660 GOSUB 280:GOTO 130
670 IF X=XMAX OR X=XMIN OR Y=YMAX OR Y=YMIN

THEN POP :GOSUB 280:GOTO 120

680 RETURN
700 GOSUB 290:FOR A=O TO NP:B=0:X1=XMIN+8*A*

62

Chapter Three. Advanced Graphics And Game Uti lities.

XD1:FOR Y=YMIN TO YMIN+VL-l
710 C=128:D=0:FOR X=Xl TO Xl+7*XDl STEP XD1:

IF MI THEN FOR X=XMIN TO XMIN+XDl STEP X
Dl

720 LOCATE X,Y,E:IF E=l THEN D=D+C
730 C=C/2:NEXT X:B=B+l:POKE P(A)+B,D:NEXT Y:

NEXT A:RETURN
750 D=O:T=O:? :? "(A)DD OR (D)ELETE LINES":I

NPUT A$:IF A$="D" THEN D=1:GOTO 770
760 IF A$<>"A" THEN 750
770? :? "AT (T)OP OR (B)OTTOM":INPUT A$:IF

A$="T" THEN T=l:GOTO 790
780 IF A$ <> "B" THEN 770
790? :? "HOW MANY LINES":TRAP 790:INPUT C:I

F D THEN C=C-(C-VL+l)*(C>=VL):GOTO 840
800 IF VL+C>24 THEN C=24-VL:? :? "EXCEEDED L

IMIT":? :? "WILL ADD ONLY ";C;H LINES":?
:? "PRESS RETURN": INPUT A$

810 IF T THEN FOR A=O TO NP:FOR B=VL TO 0 ST
EP -l:POKE P(A)+B+C,PEEK(P(A)+B):NEXT B:
NEXT A:GOSUB 860

820 VL=VL+C:IF NOT D AND NOT T THEN GOSUB
870

830 GO TO 1400
840 IF T THEN FOR A=O TO NP:FOR B=C TO VL:PO

KE P(A)+B-C,PEEK(P(A)+B):NEXT B:NEXT A
850 FOR A=O TO NP:FOR B=VL-C+l TO VL:POKE P(

A)+B,O:NEXT B:NEXT A:VL=VL-C:GOTO 1400
860 FOR A=O TO NP:FOR B=1 TO C:POKE P(A)+B,O

:NEXT B:NEXT A:RETURN
870 FOR A=O TO NP:FOR B=VL-C+l TO VLzPOKE P(

A)+B,O:NEXT B:NEXT A:RETURN
900 GRAPHICS o:? :? "DO YOU WANT TO:":? :? "

(V)IEW PLAYER IN PM GRAPHICS?":?" (R
)ECORD DATA?":?" (L)IST DATA?"

910 ?" (E)DIT PLAYER?" : ?" (B)EGIN WITH A
NEW PLAYER?":?" (S)TOP?"

920 GOSUB 400:IF A=ASC("V") THEN 1000
930 IF A=ASC("R") THEN 1500
940 IF A=ASC("L") THEN 1450
950 IF A=ASC("E") THEN GOSUB 170:GOTO 1400
960 IF A=ASC("B") THEN RUN
970 IF A=ASC("S") THEN STOP
980 GOTO 900
1000 TRAP 40000:GOSUB 1240
1010 GRAPHICS 7:GRAPHICS 3:POKE 559,46+16*(R

E=2):POKE 53277,3:GOSUB 1220:Y=64*RE-VL
12

1026 FOR A=1774 TO 1787:POKE A,O:NEXT A
1030 IF RE=l AND NP>O THEN FOR A=O TO l:POKE

63

Chapter Three. Advanced Graphics And Game Utilities.

PLL+A,VL+128:NEXT A:GOTO 1050
1040 FOR A=O TO NP:POKE PLL+A,VL:NEXT A
1050 PXM~255-NP*8*SI
1060 FOR A=O TO 3:PYCA)=PMB+512*RE+128*RE*A:

NEXT A
1070 FOR A=O TO NP:FOR B=l TO VL:POKE PYCA)+

B,PEEKCPCA)+B):NEXT B:NEXT A
1080 POKE 1788,PM+2*RE:Z=USR(1696)
1090 ? :? ""RETURN" TO MAIN PROGRAM":? ""CO

TO CHANGE COLOR":? ""5" TO CHANGE SIZE"
1100? ""R" TO CHANGE RESOLUTION FROM ";RE;"

TO ";3-RE;
1110S=STICKCO):X=0
1120 IF 5(12 THEN X=S6NC8-S):S=S+CS(8)*4+4:X

=X+CPXCO)+X(O)-CPXCO)+X)PXM)
1130 FOR A=O TO NP:PXCA)=PX(A)+X:NEXT A
1140 IF 5(15 THEN Y=Y+SGNC13.5-S):Y=Y+CY(0)­

(Y)255-VL)
1150 FOR A=O TO NP:POKE PLY+A,Y:POKE PLX+A,P

XCA):NEXT A
1160 IF PEEK(53775)=255 THEN 1110
1170 GOSUB 400:IF A=155 THEN GOSUB 1230:GOSU

B 170:GOTO 900
1180 IF A=ASC("S") THEN 1250
1190 IF A=ASCCUC") THEN 1300
1200 IF A=ASCC"R") THEN RE=3-RE:GOSUB 1230:G

OTO 1010
1210 GOTO 1110
1220 PX(0)=128-4*CNP+l)*SI:FOR A=O TO NP:PX(

A)=PXCO)+8*SI*A:POKE PLX+A,PXCA):POKE 5
3256+A,SI-l:NEXT A:RETURN

1230 FOR A=O TO 3:POKE PLX+A,O:POKE PLY+A,O:
NEXT A:RETURN

1240 FOR A=704 TO 707:POKE A,CO:NEXT A:RETUR
N

1250 ? "SIZE=";SI:? "PRESS 1,2 OR 4 TO CHANG
E SIZE":? "PRESS "RETURN" TO GET OUT OF

SIZE{5 SPACES}SUBROUTINE";
1260 GOSUB 400:IF A=155 THEN 1090
1270 IF A=49 OR A=50 OR A=52 THEN SI=A-48:GO

SUB 1220
1280 GOTO 1250
1300 A=INTCCO/16):B=CO-A*16:? :? "COLOR=";A,

"INTENSITY=";B
1310 ? "MOVE JOYSTICK HORIZONTALLY TO CHANGE

COLOR; VERTICALLY TO CHANGE INTENSITY

1320 ? "PRESS RETURN TO EXIT SUBROUTINE";
1330 S=STICK(O):IF PEEKCS377S)(255 THEN 1380
1340 IF 5=15 THEN 1330

64

Chapter Three. Advanced Graphics And Game Uti li ties.

1350 iF 5=7 OR S=11 THEN A=A+SGN(8-S):A=A-(A
)15)'16+(A(0)*16

1360 IF S=13 OR S=14 THEN B=B-2'SSN(13.5-S)~
B=B-(B)14)'16+(B(0)'16

1370 CO=16'A+B:GOSUB 1240:GOTO 1300
1380 GOSUB 400:IF A=155 THEN 1090
1390 GOTO 1300
1400 GOSUB 200:COLOR I:FOR A=O TO NP:X=XMIN+

A'XD1*8:FOR Y=1 TO VL
1410 B=PEEK(P(A)+Y):C=128:FOR Xl=O TO 7:IF M

I THEN FOR Xl=O TO 1
1420 IF B)=C THEN B=B-C:GOSUB 1440
1430 C=C/2:NEXT Xl:NEXT Y:NEXT A:X=20'G:Y=10

'G-l:GOSUB 280:GOTO 120
1440 PLOT X+Xl.XD1,YMIN+Y-l:DRAWTO X+Xl.XD1+

XD,YMIN+Y-l:RETURN
1450 GRAPHICS O:FOR A=O TO NP:? :IF MI THEN

? "MISSILE":GOTO 1470
1460 ? "PLAYER ";A
1470 FOR B=1 TO VL:? PEEK(P(A)+B);",";:NEXT

B:? "{BACK S}":NEXT A
1480 ? :? "PRESS RETURN TO RETURN TO PROGRAM

":GOSUB 400:GOTO 900
1500 ? :? "WHAT NO. IS THIS PLAYER,MISSILE 0

R ISTPLAYER OF GROUP":TRAP 900: INPUT PN
1510 ? :? "PLACE BLANK TAPE IN RECORDER, PRE

5S PLAY, RECORD AND RETURN"
1520 OPEN #1,8,0, "C:":FOR A=1 TO 64:? #1;"R.

";:NEXT A
1530 FOR A=O TO NP:LI=31400+(PN+A)'100:? #1:

IF MI THEN 1600
1540 ? #1;LI;"REM" PLAYER ";PN;":RESOLUTION

,PLAYER LENGTH, SIZE , COLOR. SUBSEQUENT L
INE IS IMAGE DATA":GOSUB LA

1550 ? #1;LI; "DATA ";RE;", ";VL;", ";SI; ", ";CO
:GOSUB LA

1560 FOR B=1 TO VL:IF B=1 OR B=26 THEN? #1:
? #1;LI;"DATA ";:GOSUB LA:GOTO 1580

1570?#1;",";
1580? #1;PEEK(P(A)+B);:NEXT B:NEXT A:CL05E

#1:TRAP 900:LPRINT :GOTO 900
1590 LI=LI+I0:RETURN
1600 LI=3100+(PN+A)'100:? #1;LI;"REM" MISSI

LE ";PN;":RESOLUTION,MISSILE LENGTH,SIZ
E. ";

1610? #1; "SUBSEQUENT LINE IS MISSILE DATA:G
OS.LA"

1620 ? #1;LI;"DATA ";RE;",";VL;",";5I:GOSUB
LA:GOTO 1560

9000 FOR 1=1536 TO 1706:READ A:POKE I,A:NEXT

65

Chapter Three. Advanced Graphics And Game Utilities.

I:RETURN
9010 DATA 162,3,189,244,6,240,89,56,221,240,

6,240,83,141,254,6,106,141
9020 DATA 255,6,142,253,6,24,169,0,109,253,6

,24,109,252,6,133,204,133
9030 DATA 206,189,240,6,133,203,173,254,6,13

3,205,189,248,6,170,232,46,255
9040 DATA 6,144,16,168,177 , 203,145,205,169,0

,145,203,136,202,208,244,76,87
9050 DATA 6,160,0,177,203,145,205,169,0,145,

203,200,202,208,244,174,253,6
9060 DATA 173,254,6,157,240,6,189,236,6,240,

48,133,203,24,138,141,253,6
9070 DATA 109,235,6,133,204,24,173,253,6,109

,252,6,133,206,189,240,6,133
9080 DATA 205,189,248,6,170,160,0,177,203,14

5,205,200,202,208,248,174,253,6
9090 DATA 169,0,157,236,6,202,48,3,76,2,6,76

,98,228,0,0,104,169
9100 DATA 7,162,6,160,0,32,92,228,96

66

Chapter Three. Advanced Graphics And Game Uti lities.

Point Set Graphics
Douglas Winsand

Explore an entire universe, move into it, starting from the siml)licity of an
innocuous mathematical express ion. Best of all, you need not unders tand
the underlying mathematics to voyage into these equations , but the
exl)lorations might well deepen your apl)reciation and knowledge of them.

The computer ca n allow you to see mathematical events, to visuali ze
the often delicate inte rac tions of abstract, mathematica l ideas. This
program lets you generate, exa mine , and save pictures of recursive
point sets.

These point sets crea te some ve ry unusual computer graphics
when plotted on your screen. You'll see misshapen , reversing spirals,
abstrac t sh apes, wisps of smoke, ga lax ies, and pointill ist flowers - a ll
composed of myriads of po ints. Most of these point structures are ve ry
hard to describe, some are qui te beautiful. Many of them are also
infinite ly detailed . This program will turn your computer into a
powerfu l microscope, allow ing you to move closer into the deta il of
the inner structures in some of the point se ts yo u'll gen erate .

What are recursive point se ts? There are an infinite varie ty of
ways to scatter points in a plane. At one extreme is the perfect straight
order of points in a line . At the oppos ite ex treme is a totally random
scat tering of points across the plane. Between these two extremes,
there are an infinite number of coll ect ions or sets of points in thp
plane se ts which are partially ordered and pa rtia lly random. These are
the point se ts you'll be ab le to crea te.

The algorithm for generating recursive point se ts is rea lly quite
simple. We begin with a seed po int plotted in the x-y plane. W e then
plug the x and y coord inates of the seed point into a recurrence formula
in order to generate the x and y coordinates of a new po int . This new
point is then used as the seed point in the recurren ce formula to

generate a third point and so on, ad infinitum.
A typica l recurrence formula is:

Xl = Y - SIN (X)
YI = B*X2 + X-I

where

Xl is the x coordinate of the new point

67

Chapter Three. Advanced Graphics And Game Utilities.

Yl is the y coordinate of the new point
X is the x coordinate of the seed po int
Y is the y coordinate of the seed point

The recurrence formula is the heart of this process. By changing these
equations, you can begin to crea te new recursive po int se ts.

Running The Program
A fter you've entered the prog ram (and made the appropria te changes
if you use tape), RUN it. First you'll be asked whether you want to
crea te a new point se t, or view a po in t se t which you h ave saved on
tape or disk. If you enter a two, and you're using a disk dri ve , type in
the name of the picture fil e you wish to see . If you are using tape , push
PLA Y when the computer beeps.

Since you haven't crea ted any po int se ts ye t, enter 1. The
recurrence formula (lines 170- 190) will be displayed. T ype C ONT
and you' ll see the po ints crea ted by the recurrence formula begin to
appear on the screen along with the ir x and y coordinates . The points
will continue to be plotted until you take one of the fo llowing actions.

Either type C on the keyboard in order to change the recurrence
formula , or type S to save a pic ture of a po int structure whi ch you've
generated . When you type S, you'll be asked to supply an e ight­
character picture fil e name , if you're using a d isk drive . (The computer
will beep twice for tape. Push PLAY -REC ORD.) The recurrence
formula will be displayed in the tex t window so that you'll know how
to create the same se t later.

Or, typing M will stop the po int set generator and display a
fl ashing point which you can move around the screen with a joystick.
Push the trigger on the joystick to freeze the fl ashing cursor po int
where it is. At whatever loca tion you freeze the po int, this will be the
center of the screen when you aga in begin generating points. Using
this feature, you can choose a point of interes t and bring it to the
center of the screen . While you are mov ing the cursor , you'll see two
numbers displ ayed in the tex t window. These are the x and y
coordinates of the cursor po in t. You can use these two numbers as
references to spec ify areas within your po int structures .

Magnifying Beyond 100,000 X
O n ce you've frozen the cursor, you' ll be asked to specify a magnification
factor. If your po int set is too large for the screen , enter a magnificat ion
fac tor between zero and one. The fi e ld of vi ew will shrink by the
spec ified amount. If you want to magni fy th e point se t , enter a
magnifi ca tion factor grea ter than one . A rec tangle will appear on the

68

Chapter Three. Advanced Graphics And Game Utilities.

screen. The rectangle encloses an area wh ich will occupy the ent ire
sc reen when you begin generat ing po ints aga in . I sugges t that you
start with fairly low magn ificat ions at first , and that you magnify in
se ries of small steps rather than one large magnificat ion . This is simply
so that you won't lose sight of where you are in the point set. I' ve
magnified point structures up to 100,000 t imes with no problem .
Somewhere between a magnifi cat ion of 100,000 and 1,000,000,
however, the limited precis ion of your computer will become ev iden t,
and the computer will begin to randomize and des troy the o rder in
your point structure.

After you've se lected your magnifi cat ion fac tor, you'll be given a
cho ice of whether you wish to begin plotting points, sta rting with the
last point you plotted befo re you called the magnifi ca tion routine. I've
included this las t opt ion to allow you to magnify point se ts qu ickly. If
you attempt a high magnifica tion and begin plott ing points from the
original seed point, it may take a long t ime before the points begin to
appea r on the screen . There is also an S option at th is point to allow
YOLi to save a point set with the magnification rectangle included.
That's bas ica lly it .

If you le t Program 1 run for about five minutes, you' ll see a fluid,
streamlined structure take shape. Th is point se t is called the attractor
of Hena n. I t turns out th at each of the lines of points in the attractor
of H enon is actually composed of severa l para lle l lines of points, and
each of those several lines of poin ts is composed of several more parallel
lines and so on, forever. For more information about attractors, let me
refer you to Douglas H ofstadter's exce llent article in the November
198 I issue of Scientific American.

T o begin to see some of the deta il in the attractor of H enon , type
M and move the cursor poin t to (- .55,0), and then push the joys tick
trigger. Enter four for the magn ification fac tor and then type B. Again,
after about five minutes , you'll see an exploded view of the attractor.
You'll a lso see the lines of po ints begin to resolve into separate parallel
lines.

Genera lly, the higher the magnifi cat ion, the longer it will take
for a po in t se t to develop a recognizab le structure . I' ve freq uently run
a point set program for several hours (and sometimes overnight) in
order to see more of the detail. Most of these point sets are composed
of an infinite number of po ints, so you' ll a lways see onl y partia lly
completed sets. The more points in your set, the more it wi ll look like
the ac tual infinite set.

If you're using a cassette recorder, simply make the fo llow ing
ch anges:

69

Chapter Three. Advanced Graphics And Game Utilities.

1. eliminate lines 420 and 1160

2. change line 60 to : DIM B$(8):M = 80:PRINT' Pi ":PRINTPRINT

3. change line 410 to: TRAP 430:LPRINT

4. change line 450 to: OPEN #2, 8 ,0, "C"

5. change line 1170 to: OPEN #2,4,0,"C"

6. change line 1150 to: REM

Explorer's Notes

Now that you know how to generate these point structures , you can
begin to explore this strange territory.

As you try different recurrence formula and seed points, you'll
find that, more often than not, the point structures your formula
generates are divergent sets whose points quickly exceed the screen
limits or the computer's numerical limits. If a point set diverges, vary
the seed point, or ch ange additive or multiplicat ive constants in the
recurrence formula. Watch to see if one of these changes slows or
quickens the divergence . Here is where a little perseverance will be
rewarded .

Once you've found a convergent point set, you can usually create
slightly different looking sets by making sma ll variations in the same
parameters mentioned above. Some of the point structures I've found
will metamorphose into a tota lly different look ing pattern when one
of the parameters in the recurrence formula is changed. Try every
kind of function that Atari BASIC offers. Using subroutines, I h ave
tried Bessel and Legendre functions in some of my rec urrence
formulae.

The class of po int sets which I've discovered most often are the
spirals. Most of them slow ly converge toward a center point, but I
have found several sp irals which slowy grow out fron, a center toward
a fi xed boundary . I have also run across severa l sp iral structures which
look like spiral ga laxies.

Other types of point sets I' ve found are much harde r to describe
in a few sentences. I've included a few of these in the recurrence
formulae in Figure 1. These will help to get you started , and give you
an idea of the variety of point sets I've found. I'm sure there are many,
many others.

For those of you whose curios ity is piqued, there are many new
paths to explore. For example, with a few changes, each new point
can be ca lculated from severa l preceding points rather than just one,
immediately preceding, point. I've done a little experimenting using
two preceding points to calcu late a third, and I have found some
convergent point structures.

70

Chapter Three. Advanced Graphics And Game Utilities.

For those of you with a printer or a movie camera, a striking
animation sequence can be created by changing one of the parameters
in the recurrence formula, then recording a picture, changing that
same parameter by a sma ll amount, recording a picture, and so on
until you've built up about 20 or 30 of these pictures. Place these
pictures in order and flip through them rapidly to create an an imat ion
effect. I've on ly had time to create one such sequence, but the effect is
worth it. Lines of po ints appear to twist and writhe, evaporate back to
points and later condense into lines again.

The concept underlying these point sets can be extended to three
dimensions and, with a short algorithm, you can display these sets on
your screen. You can even generate stereoscopic views of three­
dimensional point structures.

Figure 1
1. X =O:Y = 1

Xl =Y+ 1.4'X '" 2-1
YI=X "' 2-.3'X

2. X =O:Y =.5 8
Xl = Y + 1.4' X '" 2-1
Y 1 = X '" 2-Y '" 2 + 1

3. X= I:Y=.5
Xl =Y-(COS(X) "' 2) '" 1.25
YI = .OI'X '" 2-X+ 1.125

4. X = I:Y=.5
Xl = Y-(COS(X) '" 2) A 1.25
YI = .OI'X '" 2-X + 1.27

5. X=.OI:Y=.OOI
X l =2 ' Y'SIN(X)-1
YI = 3'(COS(Y)-SIN(X))

6. X=.OI:Y=.OOl
X l = 1.4'Y 'SIN(Y)-X
YI = 1.4*COS(Y)-.3'SIN(X)

7. X =.75:Y=.5
Xl = Y-(ABS(COS(X)-SIN(X))) A 1.25
YI = .OI*X A 2-X + 1.5

71

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. Point Set Graphics.
10 REM * RECURSIVE POINT SET UTILITY *
20 REM * DOUGLAS WINsAND - 1982 *
30 REM
40 REM * INITIALIZATION & OPTIONS *
50 REM
60 DIM A$(15),B$(8):A$="D1:{8 sPACEs}.DAT":M

=80:PRINT "{CLEAR}":PRINT :PRINT
70 PRINT "DO YOU WISH TO:"
80 PRINT "{7 sPACEs}l) CREATE A POINT SET"
90 PRINT "{7 sPACEs}2) VIEW A PREVIOUSLY sTO

RED SET"
100 INPUT B
110 IF B=l THEN 320
120 IF B=2 THEN 1150
130 F=O:G=O:FLAG=O
140 B$="{8 SPACES}"
150 GRAPHICS 8:sETCOLOR 2,0.0:COLOR 1:0PEN #

1,4,0,"K:"
160 REM * RECURRENCE FORMULAE *
170 X=O:Y=O:PLOT X,Y
180 X1=Y+1.4*X A 2-1
190 Y1=0.3*X
200 REM * PLOT CALCULATED POINTS *
210 C=159+(X1-F)*M:D=79+(Y1-G)*M
220 IF C>O AND D)O AND C< 319 AND D< 159 THEN

PLOT C,D
230 PRINT X1,Y1
240 REM * READ KEYBOARD & BRANCH *
250 IF PEEK(764)< >255 THEN GET #l,J:B$(l,l)=

CHR$(J)
260 IF B$(l,l)="s" THEN GOsUB 410
270 IF B$(l,l)="M" THEN GOsUB 570
280 IF B$(l,l)="C" THEN GOTO 320
290 X=X1:Y=Y1:GOTO 180
300 REM
310 REM * CHANGE RECURRENCE RELATION *
320 GRAPHICS 0
330 PRINT :PRINT :PRINT
340 PRINT "CHANGE THE RECURSION FORMULA, THE

N TYPE 'CONT" TO PLOT YOUR NEW POINT SET"
350 LIST 170,190
360 STOP
370 CLOSE #l:GOTO 140
380 REM
390 REM * STORE SCREEN ROUTINE *
400 REM
410 PRINT "ENTER 8 CHARACTER NAME OF NEW PIC

TURE FILE.":INPUT B$:TRAP 410

7Z

Chapter Three. Advanced Graphics And Game Utilities.

420 FOR X=4 TO II:A$(X,X)=B$(X-3,X-3):NEXT X
430 LIST 170,190
440 PICMEM=PEEK(88)+256*PEEK(89)
450 OPEN #2,8.0,A$
460 FOR J=PICMEM TO PICMEM+6400
470 IF PEEK(J)=O THEN GOTO 490
480 P=(J-PICMEM)/256:PUT #2,INT(P):PUT .2, (P

-INT(P»*256:PUT #2,PEEK(J)
490 NEXT J
500 PUT .2,0:PUT #2,0:PUT #2,0
510 TXTMEM=PEEK(660)+256*PEEK(661)
520 FOR J=TXTMEM TO TXTMEM+159:PUT #2,PEEK(J

):NEXT J
530 CLOSE .2:B$(I,I)=" ":RETURN
540 REM
550 REM * MAGNIFICATION SUBROUTINE *
560 REM
570 XO=159:YO=79
580 REM
590 REM * FLASHING CURSOR ROUTINE *
600 REM
610 POSITION XO,YO:PUT #6,1:H=STICK(0)
620 IF STRIG(O)=O THEN GOTO 790
630 IF H<> 15 THEN GOSUB 710
640 IF XO >319 THEN XO=XO-l
650 IF XO<O THEN XO=XO+l
660 IF YO > 159 THEN YO=YO-l
670 IF YO<O THEN YO=YO+l
680 POSITION XO,YO:PUT #6,0
690 FOR L=O TO 30:NEXT L
700 GOTO 610
710 POSITION XO,YO:PUT #6,0
720 IF H=6 OR H=10 OR H=14 THEN YO=YO-l
730 IF H=5 OR H=13 OR H=9 THEN YO=YO+l
740 IF H=6 OR H=7 OR H=5 THEN XO=XO+l
750 IF H=9 OR H=10 OR H=11 THEN XO=XO-l
760 PRINT "{CLEAR}"
770 PRINT INT«XO-159+M*F»/M. (-1)*INT«YO-7

9+M*G))/M

780 RETURN
790 F=(XO-159+M*F)/M
800 G=(YO-79+M*G)/M
810 REM
820 REM * MAGNIFICATION ROUTINE *
830 REM
840 PRINT "ENTER MAGNIFICATION FACTOR":INPUT

N
850 IF N< l THEN GOTO 990
860 Pl=XO-159/N:P2=XO+159/N:P3=YO-79/N:P4=YO

+79/N

73

Chapter Three. Advanced Graphics And Game Utilities.

B70 IF P2>319 AND P3<0 THEN PLOT Pl,O:DRAWTO
Pl,P4:DRAWTO 319,P4:GOTO 990

BBO IF Pl<O AND P3<0 THEN PLOT P2,0:DRAWTO P
2,P4:DRAWTO 0,P4:GOTO 990

B90 IF Pl<O AND P4>159 THEN PLOT 0,P3:DRAWTO
P2,P3:DRAWTO P2,159:GOTO 990

900 IF P2>319 AND P4>159 THEN PLOT 319,P3:DR
AWTO Pl,P3:DRAWTO Pl,159:GOTO 990

910 IF Pl<O THEN PLOT O,P3:DRAWTO P2,P3:DRAW
TO P2,P4:DRAWTO 0,P4:GOTO 990

920 IF P3<O THEN PLOT Pl,O:DRAWTO Pl,P4:DRAW
TO P2,P4:DRAWTO P2,0:GOTO 990

930 IF P4>159 THEN PLOT Pl,159:DRAWTO Pl,P3:
DRAWTO P2,P3:DRAWTO P2,159:GOTO 990

940 IF P2)319 THEN PLOT 319,P3:DRAWTO Pl,P3:
DRAWTO Pl,P4:DRAWTO 319,P4:GOTO 990

950 PLOT Pl,P3~DRAWTO P2,P3:DRAWTO P2,P4:DRA
WTO Pl,P4:DRAWTO Pl,P3

960 REM
970 REM * OPTIONS *
9BO REM
990 B$ (1 , 1) ="
1000 PRINT "IF YOU WISH TO RESUME THE RECURS

ION WHERE IT LEFT OFF PUSH 'R'."
1010 FOR L=O TO 500:NEXT L
1020 PRINT "IF YOU WISH TO START THE RECURSI

ON FROM THE BEGINNING,PUSH 'B"."
1030 FOR L=O TO 500:NEXT L
1040 PRINT "IF YOU WISH TO SAVE THIS PICTURE

PUSH ' 5' . "
1050 FOR L=O TO 500:NEXT L
1060 IF PEEK(764' <> 255 THEN GET #l,J:B$(I,l)

=CHR$(J)
1070 IF B$(l,l)="R" THEN M=M*N:GRAPHICS B:SE

TCOLOR 2,0,0:RETURN
lOBO IF B$(l,l)="B" THEN M=M*N:POP :GRAPHICS

B:SETCOLOR 2,0,0:GOTO 170
1090 IF B$(l,l)="S" THEN FLAG=l:GOSUB 410
1100 IF FLAG=l THEN FLAG=O:GOTO 1000
1110 GOTO 1060
11.20 REM
1130 REM * RECALL STORED PICTURES *
1140 REM
1150 PRINT "ENTER B CHARACTER PICTURE FILE N

AME":INPUT B$
1160 FOR X=4 TO 11:A$(X,X)=B$(X-3,X-3):NEXT

X

1170 OPEN #2,4,O,A$
IIBO GRAPHICS B:COLOR I:SETCOLOR 2,0,0
1190 PICMEM=PEEK(BB)+256*PEEK(B9)

74

Chapter Three. Advanced Graphics And Game Utilities.

1200 GET #2.J:GET #2,K:GET #2.L
1210 IF J=O AND K=O AND L=O THEN 1230
1220 POKE J*256+K+PICMEM.L:GOTO 1200
1230 TXTMEM=PEEK(660)+256*PEEK(661)
1240 FOR X=TXTMEM TO TXTMEM+159:GET #2,J:POK

E X,J:NEXT X
1250 CLOSE #2
1260 GOTO 1260

75

Chapter Three. Advanced Graphics And Game Utilities.

Page Flipping
Rick Williams

By changing only two bytes in the display list, you can cause the screen to

display any portion of memory. This permits many interes ting effects :
coarse scrolling, instant screen fill , and page flipping, or "screen switching. "

Did you envy that article in COMPUTE!'s (Novemberl98 1, #1 8)
Apple Gazette about page flipping? Well, relax. Atari can do it , too.
Actually, there are two ways of do ing it. The first way is a USR routine.
I will get to the second way later.

I have written a machine language rout ine to transfer RAM to
the screen. This routine (Program 1) wil l access BASIC through the
USR functi on . T o access this functi on, command "A = USR(1536,X)",
1536 being the start locat ion of the mach ine program, and X being
the location to start reading from RAM that will later be transferred
to the screen . I have wr itten the program only to work on graphics
zero. Without this, strange effects will be seen on your TV.

Now on to the second way . This is the better way because it uses
the horizonta l scroll register. It scrolls into an entire ly new frame . It
works just as the machine routine . Write the high and low byte to the
variables L and H. Here is the program:

76

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. Page Flipping.

1 GOTO 50
5 REM THIS REQUIRES NO GRAPHICS 0 COMMAND
10 DLIST=PEEK(560)+256*PEEK(561):POKE 82,0:R

EM SET LEFT MARGIN
20 L=DLIST+4
25 H=DLIST+5
30 A=ADR(A$):B=INT(A/256):C=A-(256*B)
31 D=ADR(B$):E=INT(D/256):F=D-(256*E)
32 POKE L,C:POKE H,B:FOR 1=1 TO 500:NEXT I
33 POKE L,F:POKE H,E:FOR 1=1 TO 500:NEXT 1:1

F PEEK(764)=255 THEN 32
34 GRAPHICS O:END
50 DIM A$(960),B$(960)
55 A$=CHR$(3):A$(960)=CHR$(3):A$(2)=A$:REM F

ILL A$ WITH CHR$(3)
56 B$=CHR$(4):B$(960)=CHR$(4):B$(2)=B$:REM F

ILL B$ WITH CHR$(4)
60 GO TO 10

PROGRAM 2. Page Flipping.

10 REM *** PAGE FLIPPING BASIC ***
11 REM *** By Rick Williams
12 REM
15 DIM A$(50),B$(50)
20 FOR 1=1536 TO 1536+42:READ A:POKE I,A:NEX

T I:REM LOAD MACHINE CODE
21 GRAPHICS O:FOR 1=1 TO 50:A$(I,I)=CHR$(RND

(1)*255):NEXT I:REM LOAD STRINGS
22 FOR 1=1 TO 50:B$(I,I)=CHR$(RND(1)*255):NE

XT I
23 GRAPHICS 0:A=USR(1536,ADR(A$»:FOR 1=1 TO

500:NEXT I
24 GRAPHICS 0:A=USR(1536,ADR(B$»:FOR 1=1 TO

500:NEXT I:GOTO 23
25 REM *** YOU MUST HAVE THE GRAPHICS 0 COMM

AND TO RESET THE DISPLAY LIST
26 REM *** DATA FOR MACHINE CODE ***
1000 DATA 104,104 , 133,205,104,133,204,32,20,

6,32,20,6,32,20,6,32,20,6,96,160,0,162,
0,169,0,177,204,145,88,200

1010 DATA 152,240,3,76,26,6,230,89,230,205,9
6,16

77

Chapter Three. Advanced Graphics And Game Utilities.

An Introduction To
Display List
Interrupts

Alan Watson

Many startling effects are possible with dis/Jlay list interru/Jts. This tutorial
will get you started.

Have you ever wondered how some commerc ial programs for your
Atari display more than the four colors you can get from BASIC? It 's
done by using display list interrupts. In fact, it is possible to get all of
Atari's 128 colors on the screen at the same t ime! While few programs
ever call for all 128 colors, it is nice to see how it can be done.

Inside your Atari there is an integrated circuit which Atari calls
ANTIC. This c ircuit takes care of the television screen display so the
main processor can do other things in the program. ANTIC is a
microprocessor and has its own program which it follows to display
information on the screen. Its program is called the display list. The
display list is different for each Graph ics mode since each Graphics
mode has different types and amounts of information which need to
be displayed.

When a program encounters a Graphics command, the starting
address for the display list is placed at decimal locations 560 (low byte
of the address) and 561 (high byte). A NTIC looks at this address to
find out what it needs to do. If no changes have been made in the
display list, the first three instructions cause ANTIC to blank the first
24 lines. Since televisions overscan, this insures all our data will be in
the visible area of the screen.

The next instruct ion (followed by an address) tells ANTIC
where to find the display memory. Then comes instruction register
OR) mode bytes (see T able 1). The number of IR mode bytes depends
on the Graphics mode that has been selected. Finally there is an
instruction (followed by an address) to return to the start of the display
list and start all over aga in.

78

Chapter Three. Advanced Graphics And Game Utilities.

Table 1
BASIC GRAPHICS IR MODE BYTE
MODE NUMBER (DECIMAL)

o 2
6

2 7
3 8
4 9
5 10
6 11
7 14
8 16

The Three Necessary Steps

C reat ing a display list interrupt involves three steps. First, we must
alter the IR mode byte for the line prior to the on e we want to change.
We do this by adding 128 (decimal) to it. Second , we must write a
routine which tells the 6502 what we want to do during the interrupt.
The third step is to a llo~ the interrupt to happen by "enabling NMI"
or POKEing decimal location 54286 with 192 (dec ima l) .

When an interrupt occurs, the 6502 looks at decimal location
512 and 513 to find the address where interrupt instruct ions are located.
The address is stored low byte then high byte. The examp les for this
art icle a ll use page six (starting at dec imal locat ion 1536) so each
example POKEs 512 with zero and 513 with six.

S ince we will interrupt the main processor to perform these
instruct ions, we will have to save any registers we use and then restore
them just before we return from the interrupt.

Here is how the interrupt display list program f1 ows.

v
V

IRMODEBYTE
IR MODE BYTE + 128 > INTERRUPT VECTOR ADDRESS

Y
IR MODE BYTE < INTERRUPT ROUTINE
IR MODE BYTE

V
V

Atari uses a number of registers (memory locat ions) to determine
what colors and luminances should be used for background, plotted
points, and characters. For each of these items there are a h ardware
register and a corresponding sh adow register. H ardware registers are
"write only" and cannot be read. They are updated from their respective
shadow registers at the end of each frame (during the vertical blanking
interval).

79

Chapter Three. Advanced Graphics And Game Utilities.

POKEing the shadow register is a quick alternat ive to the BASIC
SETCOLOR command. You simply choose the color you want from
the 16 colors listed on page 50 of Acari 4001800 Basic Reference Manual,
multiply it by 16, and add the luminance value desired . Then POKE
the result into the appropr iate shadow register. (See Table 2.)

Table 2

TO SET THE
COLOROF ...

POKE DESIRED
VALUE INTO

CORRESPONDING
HARDWARE REGISTER

Plotted Points 709 53271
Using COLOR 1
Plotted Points 710 53272
Using COLOR 2
Plotted Points 711 53723
Using COLOR 3
Background 712 53274

Note: This table is for Graphics modes I through 7.

If we place the ch ange resu lting from our display li st interrupt in
the appropriate hardware register, the part of the screen below the
interrupt will ch ange. The top of the screen remains as it was because
the hardware register is updated from its shadow register at the end of
the frame.

Now that you have the idea, type in Program 1 and RUN it.

Background Luminance, And More
All that changes is the background luminance. But you can do lots
more with this example!

Let's examine the interrupt routine we used.
Memory Location Decimal Value in Assembly Comments
Used in Example Data Statement Language

(Line 150) Mnemonic
1536 72 PHA Save accumulator
1537 169 LDA Load accumulator
1538 6 #6 with new color
1539 141 STA Wait for horizontal
1540 10 $OA so change doesn't
1541 212 $D4 occur in mid line
1542 141 STA Store new color
1543 26 $lA in hardware
1544 208 $DO register
1545 104 PLA Restore accumulator
1546 64 RTI Return from interrupt

You can choose any color you like for the bottom by determining
its value (the same way as I mentioned above) and using it as the third
number in the DATA statement (line 150) . I've listed the memory

80

Chapter Three. Advanced Graphics And Game Utilities.

locations above and left of a text window. I did this so you can type in
POKE commands to make changes and watch to see what happens.
To change the bottom co lor, POKE 1538 with the new co lor value
you want.

You can choose any color you like for the top of the screen as
we ll by POKEing the va lue into shadow register 712.

What's more, you can change the top and/or bottom color of any
of the plotted rectangles. To change them in the direct mode (after
the program has run and the "READY" prompt appears), POKE the
appropriate shadow register with the desired color value for the top
and POKE the corresponding hardware register with your co lor cho ice
for the bottom.

See Table 2 to determine which registers to use for each of the
rectangles. The left rectangle is plotted using COLOR 1, the center
using COLOR 2, and the right using COLOR 3.

If you would rather make the changes in the program itse lf,
change the eighth number in the DATA statement (line 150) to the
low byte of the appropriate hardware register. For the rectangle using
COLOR 1 use 22, for COLOR 2 use 23, and for COLOR 3 use 24.

To se lect a different vert ical position for the co lo r change to
occur, add 128 to a different disp lay li st instruction. W e've been using
the instruction as START + 24 (line 240) which places the interrupt
midway down the screen. Since there are 40 display blocks in BASIC
Graph ics mode 5, you can experiment anywhere from START + 6 to
START + 44 without problems.

Once you understand how to create and use display list interrupts,
your programming capabilities are expanded. You can use them
together with player-miss ile graphics to ch ange player co lor, width ,
and/or hori zontal position as the player passes through the interrupt
line. With a slightly more complicated interrupt routine, a player can
be drawn with the same or a different sh ape several times at different
vertica l positions on the screen.

A good example of this can be found in John Pa levich's article
"Shoot" in the September, 1981, issue of COMPUTE! Magazine (page
86). When programming with text modes, you can change character
sets in mid screen. Atari's "Space Invaders" uses many display li st
interrupts. Many things are possible, and you' ll discover more as you
experiment.

All 128 Colors At Once

Atari is capab le of showing a ll 128 colors at the same time. There are
a number of ways this can be done. Program 2 shows one way. The

81

Chapter Three. Advanced Graphics And Game Utilities.

two biggest changes compared to Program 1 are the interrupt routine
and the custom display li st .

The interrupt routine is written so that each time it's used, the
color!luminance value is increased by two. By the end of the display,
128 colors appear.

A custom display list was crea ted to get more than enough
vertically displayed lines for the 128 colors and to be able to plot a
des ign. BASIC Graphics 8 is essentially a one-color mode (one color!
luminance and one lumin ance are ava ilab le) . C h anges in the
background show up in the plotted points as well. But, between BASIC
Graphics 7 and G raphics 8, there is an ANTIC instruction register
mode 14 (dec imal) which has the same number of vertical positions as
BASIC Graphics 8. It has only half as many horizontal positions.
What you get instead is a four color mode. Program 2 uses only two of
the four registers ava ilab le!

In addition to the references cited at the end of this article,
credit and thanks go to Judy Bogart at Atari, who explained how
hardware registe rs are updated and helped with the interrupt routine
in Program l. It was my first attempt to use assembly language in a
program.

References:
Acari 4001800 Basic Reference Manual. Atari, Inc., copyri ght 1980.

Acari Personal Com/Juter System Hardware Manual. Atari, Inc., copyrigh t
1980.

82

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. An Introduction To Display List
Interrupts.

10 REM *** An Int~oduction To Display List I
nte~~upts

20 REM *** Listing #1
30 REM *** Alan Watson
40 REM *** Nov. 9, 1981
100 REM *** POKE CODE INTO PAGE 6
110 FOR 1=0 TO 10
120 READ C
130 POKE 1536+I.C
140 NEXT I
150 DATA 72,169,6,141,10,212,141,26,208,104,

64
160 REM *** POKE INTERRUPT VECTOR ADDRESS
170 POKE 512,0:POKE 513,6
200 REM *** GRAPHICS CALL AND FIND DISPLAY L

1ST
210 GRAPHICS 5
220 START=PEEK(560)+256*PEEK(561)
230 REM *** MODIFY DISPLAY LIST IR MODE BYTE
240 POKE START+24,10+128
300 REM *** PLOT SOMETHING ON THE SCREEN
310 FOR X=l TO 3
320 COLOR X
330 PLOT 20*X+5,30:DRAWTO 20*X+5,10
340 DRAWTO 20*X-5,10:POSITION 20*X-5,30
350 POKE 765,X
360 XIO 18,#6,0,0, "5:"
370 NEXT X
380 REM *** SHORT DELAY BEFORE COLOR CHANGE
390 FOR D=l TO 300:NEXT D
400 REM *** ENABLE NMI
410 POKE 54286,192

83

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 2. An Introduction To Display List
Interrupts.

10 REM *** An Introduction To Display List I
nterrupts

20 REM *** Listing #2
30 REM *** Alan Watson
40 REM *** Nov. 9, 1981
100 REM *** POKE CODE INTO PAGE 6
110 FOR 1=0 TO 17
120 READ B
130 POKE 1536+I,B
140 NEXT I
150 REM *** POKE INTERRUPT VECTOR ADDRESS
160 POKE 512,0:POKE 513,6
200 REM *** GRAPHICS CALL AND FIND DISPLAY L

1ST
210 GRAPHICS 8
220 START=PEEK(560)+256*PEEK(561)
230 COLOR 1
240 FOR 1=1 TO 5
250 READ Xl,Yl,X2,Y2,X3,Y3,X4,Y4
260 PLOT Xl,Yl:DRAWTO X2,Y2:DRAWTO X3,Y3:POS

ITION X4,Y4
270 POKE 765,1
280 XIO 18,#6,O,0,"S:"
290 NEXT I
300 REM *** CREATE CUSTOM DISPLAY LIST (IR M

ODE 14)
310 POKE START+3,78
320 FOR 1=6 TO 33:POKE START+I,14:NEXT I
330 FOR 1=34 TO 98:POKE START+I,14+128:NEXT I
340 POKE START+99,78+128
350 FOR 1=102 TO 164: POKE START+I, 14+128: NEXT I
360 FOR 1=165 TO 198:POKE START+I,14:NEXT I
370 POKE START+199,65
380 POKE START+200,80
390 POKE START+201,128
400 REM *** ENABLE NMI
410 POKE 54286,192
800 REM *** CODE FOR INTERRUPT ROUTINE
810 DATA 72,173,198,2,24,105,2
820 DATA 141,10,212,141,198,2,141,24,208,104

,64
830 REM *** PLOT POINTS
840
850
860

DATA
DATA
DATA

870 DATA
880 DATA

84

139,155,116,27,77,27,100,155
219,155,242,27,203,27,179,155
189,99,160,35,158,35,129,99
140,155,159,99,130,99,139,155
179,155,189,99,159,99,178,155

Chapter Three. Advanced Graphics And Game Utilities.

Extending Atari
High Resolution

Graphics
Part 1:

The Polygon Fill
Subroutine

Phil Dunn

In this three-part series, Mr. Dunn introduces the reader to advanced
graphics techniques, from a fle xible fill routine to realistic' 'textured"
graphics, and concludes with a technique that allows more than 66 pseudo­
colors in Graphics Mode 8.

Polyfil is a versatile subroutine that permits filling in any sha/)e, n ot
just boxes and trapezoids , as with the X IO Fill command.

This is the first of three essays which will develop some methods to a id
in crea ting more dramatic disp lays in the Atari high reso lutio n graphics
modes . The inten t is to show how we can LIse the hi -res modes more
effectively, and to set up techniques that enab le us to do these rhings
in the eas ies t possible way.

One very useful function that is not in the Atari BASIC repertoire
is the,polyz.on fill subrout ine. The ease with which this functi on
enables us to create pictures with large complex shapes is so significant
that any graphics system lack ing it should probably be cons idered
incomple te .

A type of color fill is ava ilable within the Atari BASIC function
options. However, its limitations are sLlch that it provides very li ttle
convenience for developing pictures with sh apes and areas that have
many angles and irregular boundaries. N aturally, the most interesting
pictures usually have just this characteristic!

The example program shows the power of the polygon colorfill
subroutine, Po lyfil. Let's scan the program to get an overview of how
it works . Lines 200 to 240 establish Graphics mode 7 without the text

85

Chapter Three. Advanced Graphics And Game Utilities.

window and se t the four color registers (that we are a llowed) to the
colors that we ch oose . Lines 250 to 400 set up the numeric values and
transfer them to Po lyfil. which sta rts at line 17000. The ac tual data
used by the Polyfil subroutine to create this particular picture are on
lines 420 to 730. You can use this program to create your own scene
by changing these lines.

Lines 800 to 959 have nothing to do with the po lygon fill. They
se t the images of two figures in the usual PLOT-ORA WTO way . You
may note that there is almost as much cod ing in lines 800 to 955 for
these two little figures as there is in li nes 430 to 730 for the rest of the
entire picture done with Po lyfil.

A Programming Trick
Inc identally, there is a little programming trick used here that you
might want to note . I was not sure of the exac t screen locations that
wou ld most effective ly, aes thet ica lly loca te the figures. So I calcu la ted
the X, Y pi xe l locat ions relat ive to a reference pi xel a t the head of
each figure. Then that number is added to the variab le XX or YY for
the PLOT-ORA WTO commands. I just changed the XX and YY
va lues until the image looked approp riate. The same thing could have
been done in lines 350 and 360, to add bias numbers to the X, Y
va lues for the area vertex po ints if I weren't sure of the placement of
these large areas.

Lines 16000 to 16130 just describe the input and vari ab le
req uirements for the Polyfil subroutine. The ac tual subrout ine itse lf
on ly consists of lines 17000 to 171 90. This subroutine was "mashed"
for minimum me mory usage, and then carefully "unmashed" for ease
in transcr ibing. If you want to type it in as a mashed vers ion, a ll you
have to do is to c hai n all the lines th at are not even multiples of ten
into the prev ious li ne that is. Thus, lines 1700 1, 17002, 17003,
17004, and 17005 can a ll be chained into line 17000. S imilarl y, lines
17020 and 1702 1 can be combined, and lines 17030, 17031, 17032,
17033 , and 17034 can a ll be placed on the same line.

How To Set Up POL YFIL
Now let's get into the input requ irements for the Polyfil subroutine.
The first va lue it must have is the number of vertex points around the
perimeter of the polygon, ente red in the variable NP. For a t ri angular
area, this numbe r wou ld be three, for a rec tangle it wou ld be four , e tc.
Then it needs th e X, Y va lues for each per imeter ve rtex po in t.

The user must have previous ly DIMens ioned the array var iab les
XO, yo, RO, and SO. The DIMension size must be equa l to or

86

Chapter Three. Advanced Graphics And Game Utilities .

greater than the number of ve rtex po ints. The vertex point values
must be loaded in to the array elements, starting with X(l), Y(l).
Polyfil then proceeds to fill the area with the usual PLOT-DRA WTO
commands. It should be no ted that Polyfiluses the vari able names
Ql, Q2, I, j, YMAX , YMIN, YNOW, 1M, IP, XA, and XB.

For those who want to understand h ow Polyfil works, an
explanation fo llows. For each line segment around the perimeter, the
slope and Y ax is intercept are calculated in lines 17020 and 17021,
respectively. Then the max imum and minimum Y ax is va lues of the
perimeter vertex po ints are de termined in lines 17034 and 17040. The
initial starting po int is es tab lished as the smalles t Y ax is value on line
17051.

The Y va lue is then increased by one on line 17130 and the
intercept points on the ho ri zontally opposite sides are ca lcula ted as
XA and XB on lines 17090 and 17110. A ho rizonta l line is then
drawn connecting the two points on line 17120. Y is then increased
again and this is repea ted until Y is the maximum polygon va lue .
Th.ere is additi on al logic for verti cal lines where the slope is not
calculable , and to switch intercept ca lculations from one lin e segment
to another as vertex po ints are passed over.

Now let's go ove r the program in some detail so we can see exactly
what is done to use the Po lyfil routine. First , an explanati on of those
code numbers in the data . The first number in each DATA sta tement
assigns a co lo r register to that shape . So, the mountain data on line
430 is ass igned to colo r register 2. The second number spec ifies the
number of vertex po ints in th e shape. The mounta in has six vertex
points. The remainder of the data consists of the X, Y va lues fo r each
vertex po int. So , the first spec ifi ed ve rtex point for the mountain is
the X, Y va lues of 54,4 2, th e second vertex point is 68 ,30, e tc .

It should be no ted th at, when es tablishing these areas for Po lyfil,
the farthes t background areas should be defined first and the nea rest
foreground areas should he defin ed las t. That's how you ge t the visual
effect of distance , where the "nea r" obj ect is drawn over the "far"
object.

There are only two limitations on how the vertex po int data
must be spec ified for Po lyfil. The first restriction is that the points
must be specified in a seque nti al order around the po lygon perimeter.
The second res tri c tion is that th e po lygon shape must not h ave an y
indentations that require the fill technique to skip over empty spaces .
Since the fill method used here consists of a series of hori zontal lines ,
this means that "E" and "L" type sh apes are ok , but "U" and "H"
type shapes will no t be fill ed properly. This is no major limitation,
since any unacceptab le shape ca n always be split up into two or more

87

Chapter Three. Advanced Graphics And Game Utilities.

acceptable shapes , each of which can be filled separately.
Now, back to the essential program fac tors for using the Polyfil

subroutine. line 250 DIMensions the va ri ab les XO, yO, SO, TO.
line 320 READs the first two bytes of DATA and ass igns them

to the variables COLR and NP, respective ly. H owever, if it READs a
-1 value for COLR, that signifies the end of DATA, and the program
then jumps to line 800. lines 330 to 370 then use that NP value to
READ the next NP amount of number-pairs and store them into the
X(), yo arrays. line 380 then applies the va lue in the COLR variable
to set the COLOR command . Finally, line 390 GOSUBs to the
Polyfil subroutine which does the job.

By now you may have loaded the example program and seen the
picture. Within its li mitat ions, it "works" the way I intended it to.
Not only is it a good example for using the Po lyfil subroutine, but it
has aesthetic quality . Within the limitations of the graphics techniques
we are using here , the picture is ok.

H owever, beca use of these limitations of Graphics Mode 7, only
four colors, and slightly rough resolution relat ive to Mode 8, the
picture seems somewhat fl at and blocky .

Of course , we could spruce it up a li ttle. We could get more
colors by replac ing the figures and the tree trunks with player-miss ile
images . W e cou ld use David Small 's Disp lay Li st Interrupt driver
routine to assign different colors to our reg isters a t different vertical
heights down the screen .

A ll these things could be used to improve the picture to a certain
exte nt. However, the picture would still have a somewhat blocky and
flat appearance.

The next essay on "Extending High Reso lu tion G raphics" will
address some aspec ts of this problem.

88

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. The Polygon Fill Subroutine.

100 REM =============================
105 REM ={4 SPACES}POLYFIL Subroutine

{5 SPACES}=
110 REM Demonstration Program{3 SPACES}=
120 REM =============================
125 REM ={11 SPACES}by:{13 SPACES}=
130 REM ={8 SPACES}Phil Dunn{10 SPACES}=
135 REM ={6 SPACES}12 Monroe Ave.{7 SPACES}=
140 REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES}=
150 REM =============================
170 REM
200 GRAPHICS 7+16
210 SETCOLOR O,5,6:REM C.l = MAROON
220 SETCOLOR 1,10,8:REM C.2 = GREEN
230 SETCOLOR 2,9, 10:REM C . 3 = WHITE, WINDO
240 SETCOLOR 4,8,8:REM C.O = BLUE, BACKG.
250 DIM X (12) , Y (12) , S (12) , T (12)
280 POLYFIL=17000
305 REM Read areas and fill them in
315 REM First read the color & no. of points.
320 READ COLR,NP
322 IF COLR=-1 THEN 800
325 REM Now read in all the vertex point coo

rdinates
330 FOR N=l TO NP
340 READ XX,YY
350 X(N)=XX
360 Y(N)=YY
370 NEXT N
375 REM Now set the color
380 COLOR COLR
385 REM Now let the subroutine fill it in
390 GOSUB POLYFIL
400 GO TO 320
402 REM =============================
403 REM ={4 SPACES}Scene from the book

{4 SPACES}=
404 REM = 'Stranger By The River'
405 REM ={4 SPACES}by Paul Twitchell

{5 SPACES}=
406 REM =============================
420 REM MOUNTAIN
430 DATA 2,6,54,42,68,30,85,22,110,35,118,45

,54,45
440 REM MOUNTAIN TOP
450 DATA 3,6,85,22,98,29,95,30,88,32,78,29,7

4,27

89

Chapter Three. Advanced Graphics And Game Utilities.

470 REM LOWLANDS
480 DATA 2,5,0,44,80,40,159,44,159,45,0,45
520 REM FOREGROUND
530 DATA 2,4,0,65,159,65,159,96,0,96
540 REM RIVER
550 DATA 3,12,0,44,159,44,159,66,140,68,125,

70,105,74,80,77,60,78,47,78,40,77,25,75,
0,69

630 REM LEFT TREE TOP
650 DATA 2,12,25,25,37,34,32,35,36,40,30,43,

33,55,18,59,5,50,12,41,8,37,15,32,12,30
660 REM RIGHT TREE TOP
670 DATA 2,8,130,32,149,39,145,48,153,56,135

,68, 116, 61 , 120, 53, 115, 47
690 REM LEFT TREE TRUNK
700 DATA 1,6,11,80,16,56,19,52,21,57,17,81,1

4,83
720 REM RIGHT TREE TRUNK
730 DATA 1,6,131,83,130,65,133,59,136,65,141

,82,136,85
750 DATA -1,-1
800 REM Paul
805 COLOR °
810 XX=55
820 YY=80
825 PLOT XX-l,YY+3:DRAWTO XX-l,YY+8
830 PLOT XX,YY:DRAWTO XX,YY+8
835 PLOT XX+l,YY+3:DRAWTO XX+l,YY+8
840 PLOT XX+4,YY+4:DRAWTO XX+4,YY+8
845 PLOT XX+l,YY:PLOT XX+l,YY+l
850 PLOT XX+2,YY+4:PLOT XX+3,YY+4
855 PLOT XX+3,YY+5:PLOT XX+3,YY+6
860 PLOT XX+2,YY+6:PLOT XX+2,YY+7
865 PLOT XX+5,YY+8
870 PLOT XX+l,YY:PLOT XX+l,YY+l
880 PLOT XX+2,YY+4:PLOT XX+3,YY+4
900 REM Rebezar
905 COLOR 1
910 XX=65
915 YY=70
920 PLOT XX-l,YY+2:DRAWTO XX-l,YY+13
925 PLOT XX,YY:DRAWTO XX,YY+I0
930 PLOT XX+l,YY:DRAWTO XX+l,YY+10
935 PLOT XX+2,YV+2:DRAWTO XX+2,YY+13
940 PLOT XX+5,VV+l:DRAWTO XX+5,YV+13
945 PLOT XX-4,YY+l:PLOT XX-3,YV+2
950 PLOT XX-2,YY+2:PLOT XX+3,VY+3
955 PLOT XX+4,YY+4

999 GOTO 999
16000 REM ===========================

90

Chapter Three. Advanced Graphics And Game Utilities.

16005 REM ={8 SPACES}POLYFIL{10 SPACES}=
16010 REM =A Polygon Fill Subroutine=
16020 REM ={5 SPACES}by Phil Dunn{8 SPACES}=
16025 REM ===========================
16030 REM Enter with the values ...
Ib040 REM NP = No. of vertex points.
16050 REM X DIM array of X values
16060 REM Y DIM array of y values
16070 REM S DIM array used here
16080 REM T DIM array used here
16090 REM Uses variables ...
16100 REM Ql,Q2,I,J,YMAX,YMIN,YNOW
16110 REM IM,IP,XA,XB
17000 01=1
17001 02=1000
17003 FOR 1=01 TO NP
17004 J=I+Ol
17005 IF J>NP THEN J=OI
17010 IF X(I)=XeJ) THEN SeI)=02:GOTO 17030
17020 SCI) = (Y (J) -Y (I)) I (X (J) -X e I))
17021 TeI>=yeI)-Sel)*xel)
17030 NEXT I ~
17031 YMAX=-02
17032 YMIN=02
17033 FOR I=Ql TO NP
17Q34 IF YMAX<Y(I) THEN YMAX=Y(I)
17040 IF YMIN>Y(I) THEN YMIN=Y(I):J=I
17050 NEXT I
17051 YNOW=YMIN
17052 IM=J-Ol
17053 IF IM(QI THEN IM=NP
17060 IP=J+Ql
17061 IF IP>NP THEN IP=Ql
17070 GOTO 17130
17080 IF SeJ)=02 THEN XA=XeJ):GOTO 17100
17090 XA=(YNOW-T(J»/S(J)
17100 IF S(IM)=Q2 THEN XB=X(IM):GOTO 17120
17110 XB=(YNOW-T(IM»/S(IM)
17120 PLOT XA,YNOW:DRAWTO XB,YNOW
17130 YNOW=YNOW+Ql
17131 IF YNOW(Y .(IP) THEN 17160
17140 IF Y(IP)=YMAX THEN RETURN
17150 J=IP
17151 IP=IP+Ql
17152 IF IP>NP THEN IP=Ol
17160 IF YNOW<Y(IM) THEN 17080
17170 IF yeIM)=YMAX THEN RETURN
17180 IM=IM-Ql
17181 IF IM(QI THEN IM=NP
17190 GOTO 17080

91

Chapter Three. Advanced Graphics And Game Utilities.

Part 2:
Textured Graphics

Phil Dunn

This article extends the techniques covered in Part 1, the Polyfil subroutine.
You 'll be surprised at what " textured" graphics can do .

With the Polygon Fill subroutine, we showed how easy it was to
create a picture . However, the picture quali ty suffered because of the
limitations of the Atari Graphics Mode 7 in terms of var iety of color.
Being limi ted to only four colo rs puts quite a constraint on our abi lity
to develop an interesting picture. Here we are go ing to use some
simple texture-creat ing effec ts.

Although we are restricting ourse lves to the development of
static pic tures, this is just the n ecessary init ial work that we can late r
build upon as we move into the creat ion of dynam ically ch anging
scen es with act ion, movement, and sound .

Polygon Fill Becomes PolyPaint

The key too l that we had deve loped in Po lygon Fi ll we will now
expand upon to do a much greater task. I ca II this new subroutine
Po lyPaint because it provides so much variety of possible textures and
colors within any defined po lygon shape.

First let's ge t an overv iew of what is being presented h ere. Program
1 sh ows the Poly Paint subroutine which is go ing to do all this picture­
paint ing for us. It starts off with a long list of REM statements which
summari ze its requirements and ab iliti es. We will go over these in
deta il in the fo llow ing paragraphs.

With all REM statements de leted, these programs will run with
only a 16K memory system up to Graphics Mode 7.

Program 2 is the Picture program. A lthough the listing does not
show it, it must be understood that the PolyPaint subroutine is to be
at tached to this program before it can be RUN. A ll th at is needed in
order to use this program wi ll be exp lained in the remainder of this
art icle .

Program 3, Palette, enables us to study the effec ts of various
command opt ions, pattern charac terist ics, hue- luminance

92

Chapter Three. Advanced Graphics And Game Utilities.

ass ignments, and resolutions in the various graphics modes. Naturally,
this too requires the PolyPaint subroutine to be appended before it
will RUN .

Now let's take a close look a t Program 1, the.PolyPaint subroutine.
Start ing at the top, there are the REM statements which summarize
the requirements and capab ilities of PolyPaint. The first item
mentioned is the variable NP, which must have the value of the
number of vertex points arou nd the perimeter of the polygon. The
actual values for the X, Y coordinates of these vertex points are stored
in the array variables XO and YO. These variables are to be
DIMensioned by the program that GOSUBs to PoIyPaint, and the
vertex points are to be stored in them with the first point being in
X(l), YO), the second point in X(2), Y(2), e tc.

Vertex Data Point Restrictions

There are some restrictions upon how the vertex data point va lues
may be spec ified. First, they must be defined in a sequentia l order
around the polygon perimeter. Second, there can be no indentat ions
that requ ire the fill technique to sk ip over empty spaces. The previous
Polygon Fill subroutine used a series of horizonta lly drawn lines to fill
in the polygon. That method prevents trouble filling in "L," "E" or
"F" shapes, for example, but it cannot fill in a "U" shape properly.

The same restriction exists for this Poly Paint rout ine when the
opt ion se lec ted consists of e ither hori zon tal bars, or ho ri zon tal pixel
sweep. On the other hand, if PolyPaint is used with the vertical bars
or ve rtica l pixel sweep opt ions, it would h ave no trouble filling in the
"L" or "U" shapes, but it would not fill the "E" or "F" shapes properly.
N aturally, any indented shape can be divided in to two or more non­
indented shapes, which can then be filled properly by any opt ion .

We have jumped ahead of ourse lves by referring to the opt ions
before this point, but now we will cover the var ious opt ions that are
ava ilable by ass ign ing the appropri ate va lue to the va ri ab le ca lled
TYPE. When TYPE = 1, the PolyPaint routine will a llow us to "paint"
our polygon with bars, o r lines . I prefer to use the word bar here, to
dist inguish this opt ion from the opt ion ava ilab le when TYPE = 4.

When TYPE = 1 the polygon is painted a who le bar at a time
with the PLOT-ORA WTO commands. When TYPE= 2 the polygon
is painted a single pixel at a time using only the PLOT command.
When TYPE = 3 the po lygon is painted a single pixel at a time also,
but only with a spec ific checke rboard pattern.

The TYPE = 4 option is a spec ia l feature that has nothing to do
with polygon filling at a ll , but is very useful for drawing pictures in

93

Chapter Three. Advanced Graphics And Game Utilities.

general. The TYPE = 4 option allows us to draw a line a pixel at a
time, where the pixe l can alternate between two colors .

If we se t TYPE= 1 for bar painting, then we must ass ign values to
four additional variables to specify how these bars will be used. The
first variable, OIR, spec ifies the direct ion of the bar orientation. A
value of OIR = 0 prov ides horizonta l bars, and a va lue of OIR = 1
provides vertica l bars. The variable SPA sets spaces between the bars.
When SPA = 0 there are no spaces, when SPA = 1 there is one space
between each bar , when SPA = 2 there are two spaces between each
bar, etc. "FAC" is a variable space factor. When FAC = 0, the spaces
between the bars (if any) are constant across the polygon. When
FAC = 1 the spaces between the bars increase as they are placed
within the po lygon. When FAC = 1 the spaces between the bars
decrease as they are drawn .

The bars are always drawn from the low value of the screen
variab le to the high value. Thus, the first hor izon tal bar wi ll be drawn
at the lowest va lue of Y, the top of the polygon, and the last hori zontal
bar wi ll be drawn at the larges t va lue ofY , at the bottom of the polygon.
S imilarly, vert ica l bars wi ll be drawn from left (the smalles t X) to
right (to the largest X).

The last var iab le that must be ass igned a va lue for bar painting is
C LO. This va lue is used to set the color register for the bars. A ll the
bars are drawn with the color of the C LO register.

When we set TYPE= 2 for pixel painting, this too requires four
additional variab les to be set. The OIR variable is used to determine
the pixe l "sweep" direct ion . The pixels are drawn in a sweep of one
line at a time. When OIR = 0 the sweep lines are horizontal, and
when OIR = 1, the sweep lines are vert ica l, much like the bar painting
convention.

The FAC variable is used to spec ify the color - blending
characterist ic for the two color registers that are spec ified in the
var iab les C LO and CHI. There are two different blending techniques
that may be used; the FAC va riab le is used to specify which of the two
techniques will be used and how the technique wi ll be applied.

When FAC>O.O and FAC<l.O, the polygon will be fill ed evenly
with a proportional blend between the two colors of CLO and CHI,
where the color of each pixel is se lec ted at random with a probability
determined by the value ofFAC. The smaller the va lue of FAC the
more the C LO color wi ll predominate, and the higher the va lue of
FAC the more the C HI color wi ll be represented. FAC is the percentage
of the C HI color. When FAC = .2 , there wi ll be 80% of the C LO
co lor , and 20% of the C HI co lor. When FAC = .5, there wi ll be a 50-

94

Chapter Three. Advanced Graphics And Game Utilities.

50 mix between the two colors. When FAC = .9, the re will be 10% of
C LO and 90% of C HI.

Creating Shading Effects And Multiple Overlays
When FAC is equal to or grea ter than 1.0, a comple tely different
co lor blend ing techn ique is used . With this technique, the CLO color
always predom inates at the end of the polygon with the low value for
the screen variab le, and the C HI color a lways predoo1inates at the
h igh va lue end of the po lygon . For hori zontal sweep (OIR=O), the
C LO color will predominate at the top of the polygon and the C HI
color will predom inate a t the bottom of the polygon. For vertica l
sweep (OIR = 1), the C LO co lor will predominate a t the left side of
the polygon and the C HI color will predom inate at the right side.
(This is useful for shadi ng effects .)

The rate at which the co lor ratio changes from C lO to C HI as
the polygon is filled is determined by the value of FAC. When FAC is
small (equal to or close to one) , then the C LO colo r will dominate
the polygon un t il the ve ry end, when some amount of C HI color will
appea r. When FAC is large (ten or more), some amoun t ofClO color
wi ll appear in the beginning, but the C HI co lor will rap id ly take over
and will dom inate the finished polygon. A va lue of FAC = 5 wi ll
provide a fai rly even ba lance between C LO and C HI, with the center
of the po lygon being abou t a 50-50 mixture.

This pixel painting tec hnique allows the poss ibility of multiple
color overlays . If the co lor reg iste r number ass igned to C LO or C HI is
-1, that co lor becomes the "transparent" co lo r. In oth er words, that
pixel is passed over and its co lor remains unchanged . Thus, the same
polygon can be painted several different times; each t ime the
transparent color wi II a llow the previously drawn pattern to show
through.

Polygon pa in t ing TYPE = 3 provides a checkerboard pattern that
alternates between CLO and C HI. The checkerboard may be pa inted
by sweeping ho ri zonta ll y (OIR = 0) or vert ica lly (OIR = 1) . In the
high reso lution mode of Graphics 7, the checkerboard pattern is
sufficiently small so that it can be used as a whole new color. Thus, by
blending the allowable four colors of Graphics 7 two at a time in th e
checkerboard patte rn , we can obtain six more colors. This gives us
ten colors in G raphics Mode 7! This color b lending technique works
best when the two colors used h ave about the same luminance level.
When the luminance level is vastly different between the two colors,
the checkerboard characteri stic becomes more visually obv ious.

The fina l opt ion found in this routine , TYPE = 4, does no t fi ll a

95

Chapter Three. Advanced Graphics And Game Utilities.

polygon at a ll , but simply draws a line. The starting point is specified
by vari ables X(O), Y(O) and the ending po int by X(1), Y(1) . However,
this option allows the pixel line elements to alternate between the
co lor of the C LO register and the color of the C HI register. N aturally,
the same register number ca n be used fo r bo th C LO and C HI to plot a
line of that one colo r.

If you plan to use this routine in a program of your own, you
should make no te of the vari able names that are used internally here .
These names are given in the REM statements in lines 17295 to
17305 .

The structure of the Po lyPaint routine is a direct expansion from
the structure of the Po lygon Fill subroutine presented previously.
Many of the li nes are identica l. The routine uses the po lygon perimeter
vertex points to ca lculate the slope and Y-ax is intercepts of the po lygon
perimeter line segments, and stores thi s info rmati on in the array
vari ables S O and TO in line 17335 . The max imum and minimum
po lygon va lues are ca lculated in lines 17345 to 17360. The intercept
po ints for hori zontal ba(s or pixe l-sweep are ca lculated in lines 17395
to 17410 , and fo r ve rtical bars or pi xe l-sweep , in lines 17420 to
17435.

Bar painting is done in lines 17455 to 17470, checkerboard
pa inting is done in lines 17495 to 1751 5, and pi xe l painting is done in
lines 175 20 to 17595. The sweep line , or bar, is incremented in line
17600. At lines 17615 to 17650 the incremented line is checked to
find if it passed over an adj acent vertex po in t. If it did , that po int is
checked aga inst the maximum point on the po lygon. If it is not beyond
the max imum, the index pointer to the perimeter slope- intercept
array elements is incremented.

So much fo r the Po lyPaint subrout ine itse lf. Now le t's take a
look a t how it may be used. The example program (Program 2) is
called the Picture program. This program h as bee n written in a ve ry
general and useful form . T o use it to create yc ur own pictures , just
redefine the Graphics mode and SETCOLO R ass ignments in lines
240 to 280, and the DATA and PLOT -ORA WTO commands aft er
line 1020. The rest of the program is des igned to read the DATA
sta tements that are se t up and let the Po lyPaint subroutine do its job.
Error detecting logic has been coded into this program so that if a
mistake is made in setting up the DATA sta tements, the chances are
that the program will catch it and te ll us what it is and where it is
loca ted.

The PIC TURE program se ts up the necessary array variables in
line 300. N o po lygon used here has more than 15 ve rtex po ints. Line

96

Chapter Three. Advanced Graphics And Game Utilities.

310 es tablishes the first sta tement which can be executed in the
PolyPa int subroutine as being a t line 173 15. The polygon or area
counter var iable , A, is se t to zero at line 370 and then the first data
va lue is read in.

The DATA in lines 1080 to 13 70 is arranged in a very specific
way to minimi ze the difficulty of read ing and debugging it . The first
number in every OAT A sta tement corresponds to the TYPE variable
for the PolyPa int subroutine . The number should only be from one to
four, depe nding upon the TYPE of paint ing that is des ired. The only
exception to this is the very last DATA sta tement where the TYPE
va lue of 999 te lls the PICTURE program that there is no more data.
The va lue for TYPE determines the in terpretation of the remaining
numeri c va lues on the remainder of each OAT A statement.

W hen TYPE = 1, the next four OAT A numbers represent the
va lues for the PolyPaint sub routine variables DIR, SPA, FAC, and
CLO, respect ively. When TYPE= 2, the next four numbers represent
the variables OIR, FAC, C LO and C HI. When TYPE =3, the next
three va lues represent the var iab les OIR , C LO and C HI.

The fo llowing OAT A va lue for TYPE = 1, 2, or 3 is for the
variable NP, and the remaining "NP" pair of va lues are for the vertex
point array variables X(1), Y(l), X(2), Y(2), e tc.

When TYPE = 4, the remaining six DATA va lues correspond to

the variab les C LO, C HI , X(O), Y(O), X(l), and Y(l) , respect ively.

How The Picture Is Painted

Now let's take a look at how this part icular picture is be ing painted.
As you read this, you might want to RUN th is program so you can see
eac h area being painted as we menti on it .

The first item painted is the moun ta in, in line 1080. It is first
established as a TYPE = 3 checkerboard blend , using a DlR = 1 vertica l
sweep, and blending the two co lors C LO = 3 (white) and C HI = 2
(green). This mountain is a polygon with NP=6 vertex po ints, the
first one be ing 54,42, the second 68,30, e tc . Then, in line 1090, the
left half of the mountain is repainted with TYPE = 2 p ixel painting,
OIR = 1 ve rtica l sweep, FAC = 9 fo r mostly C HI co lo r, and the co lo r
va lues C LO = 2 (green) and C HI = -1 (transpare nt). This g ives a
green shad ing effect at the left edge of the mountain. Line 1100
continues repa inting the right side of the mounta in with TYPE = 2
pixe l painting, OIR = 1 vertica l sweep, FAC = 2 for mostly CLO
co lor, and C LO = -1 (transparent) and C HI= 2 (green) . This gives a
green shading effect to the right edge of the mountain.

On line 11 20, the mounta in top is defined by a TYPE= 2 pixe l

97

Chapter Three. Advanced Graphics And Game Utilities.

painting form, with OIR = 0 horizonta l sweep, FAC = 1 for mostly
CLOcolor, andCLO=3 (white), CHI=-1 (transparent). This gives
a mountaintop that is complete ly white at the top, but lets a variable
amount of the former color show th rough at the lower altitudes.

On line 1140 the lowlands around the mountain are painted first
with a TYPE = 3 checkerboard blend and a OIR = ° horizontal sweep,
with the blended colors CLO = 3 (white) and C HI = 2 (green) . Then
this same area is repa inted in line 1150 with TYPE= 2 pixel painting,
OIR=O horizontal sweep , FAC=.5 for a 50-50 even mix ofCLO and
CHI, where CLO = -1 (transparent) and C HI = 2 (green) .

The foreground scene is first painted on line [1 90 with TYPE=3
checkerboard blending, with a DlR = 0 horizontal sweep technique,
and the two blended colors CLO = 2 (green) and C HI = 0 (blue).
Then the foreground is repainted with TYPE = 2 pixel painting with
OIR=O hori zontal sweep, FAC = 3 color blending, with the C LO
color at the top predominating over the C HI co lor at the bottom. The
C LO = -1 transparent color will allow the previous blue-green blend
to show through, while the CHI = 2 green color gives some texture
overlay effects.

The river is defined at line 1230, first as a TYPE= 3 checkerboard
blend with a horizontal sweep OIR = 0 , and the two blended colors
C LO=O, the blue background, and C HI = 3, white. Then the river is
repainted with TYPE = 1 bar painting, using DlR = 0 horizontal bars,
SPA= 3 spaces between bars, FAC= 1 for the spaces to increase
across the polygon, and C LO = 3 for the white co lor.

The next two DATA statements define the tops of two trees
and , while the shapes and locations differ, they are both painted in
the same way. They use TYPE= 2 pixel painting with a horizontal
sweep OIR = 0 and a FAC = .2 fo r an even mixture of 80% CLO and
20% C HI , where C LO = 2 (green) and C HI = 0 (blue).

The tree trunks are both painted in the TYPE = 1 bar mode,
using OIR = 0 horizonta l bars with SPA = 0 for no spaces between the
bars, and FAC = 0 for no variability in the bar spac ing across the
polygon . The color register C LO = 1 gives a redd ish maroon shade.

The remaining details of the picture consist of two human figures.
These fi gures are so small that the PolyPaint rout ine cannot be used
efficiently to display them. The high-resolution deta il required by
figures like these must be achieved by spec ifi c PLOT and DRA WTO
commands. The PolyPaint routine is suitab le for painting re lative ly
large screen areas .

At this point you can take this Picture program and change the
Graphics mode, SETCOLOR ass ignments, and DATA statements

98

Chapter Three. Advanced Graphics And Game Utilities.

and use it to paint your own picture. However, th e key word h ere is
paint, not create. W e don 't create our picture with this program, we
just manifes t it.

The ac tual crea tion of the picture is done awa y from the computer,
with a penc il and a paper that has a grid pattern marked off
corresponding to the screen 's horizon tal and ve rtica l coordinate
numbers for the G raphics mode that we choose . W e then sketch out
our picture on this grid paper, noting the various areas, the ir vertex
po int values , the colors we would like to ass ign, and the pa inting and
overlay methods that we might want to use. W e also must define
which high -resolution deta il we must draw pixe l-by-pixel o r line- by­
line . Only after all this homework is done can we sit down at our
machine and paint our pic ture .

The Palette Ut ility
I found that , to use this Po lyPaint subroutine effec tively, I needed a
utili ty program which allowed me to study the effec ts ava ilable by
usi ng the va ri ous pa int ing command options, a va rie ty of overlay
effec ts, different co lor and luminance va lues , and the different
resolutions ava ilab le from the various G raphics modes. The utility
program that a llows this study is Program 3, the Palette program.

A bri ef survey of this program will prove informati ve. The first
quest ion asked by the program is for the G raphics mode . The program
presently a llows the BASIC modes 3 th rough 8. Depending upon
the mode se lec ted , two scale fac tor va riables , E and F, are ass igned
appropr iate numeric va lues. As we scan th rough the rema inder of this
program we see th at every X, Y va lue in a PLO T o r DRA WTO
sta tement is multip lied by these sca le factors.

The initia l co lor ass ignment to the four registers is done between
lines 370 and 430 . The background is-white and the co lor registers 1,
2, and 3 are ass igned the co lors red , green , and blue.

If you RUN this program you will see that it proceeds to display
three rectangular areas show ing the colors in registers in 1, 2, and 3;
the areas are numbered appropriately. A bove each of these primary
co lo rs is a checkerboard ble nd of the primary colo r with the background
co lor. Below the primary colors are three rec tangular areas that show
checkerboard blends of eac h of the three primary colo rs aga inst each
other. The connecting lines clarify which color is be ing blended wi th
which.

Then, on the right part of the picture, four areas are reserved fo r
us to try out vari ous patterns. O n line 1480 we are asked whi ch area
we wish to use . W e can answer this questi on with the va lue zero to

99

Chapter Three. Advanced Graphics And Game Utilities.

four. If we answer with the va lue zero, then we are given the opt ion of
redefining any of the hue or lumi nance va lues in the four color registe rs.
We are shown the hue and lu m inance numbers for each reg ister, and
are then asked which register number we wish to change .

After we se lect a register number we then use joyst ick zero to
change the hue and luminance for that register. Moving the st ick
sideways changes the hue and mov ing it forward or back c hanges the
luminance . When we are ready to "fix" that hue and lumi nance we
press the trigger button. We then return to the "Which COLOR"
question. At this point we can return to the "Which AREA" question
by RETURNing with the va lue 99.

It should be noted that if, in response to any question, we return
with the va lue 99, then we wi ll a lways be shifted back to the "Which
AREA" question in the program. Thus, if we ch ange our minds while
spec ifying a certain type of pa in t ing technique, we can a lways abort
the sequence by typing the number 99 .

Instead of giving sugges tions on how this Palette program might
be used, I'll just le t you explore it yourse lf. I t is se lf-exp lan atory anyway,
and fai rl y we ll error-protected.

It should be understood that the area of textured graphics is
complete ly open -ended. The textur izing opt ions in this version of
Po lyPa in t just scratch the surface, so to speak, of what is possible
within this category. Anyone who wants to can modify or expand th is
program to incorporate a much greater va riety of effects. If you deve lop
so mething in this area, I wou ld certain ly be happy to learn about it .

The Palette program also can be expanded . The present version
of this program only allows the BASIC graphics modes 3 to 8. As we
learn more about the Atari sys tem , we should be ab le to modify th is
program to include the add itiona l ANTIC graphics modes and th us
expand our repertoire of picture-creat ing capabili ties.

100

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1. Textured Graphics.

17000 REM ===========================
17005 REM POLYPAINT Subroutine
17010 REM Polygon Color Painting
17015 REM
17020 REM by Phil Dunn, with The ECK*
17025 REM .•..•.•..•......••.••.•....
17030 REM Enter with the values •.•
17035 REM NP ~ No. of vertex points.
17040 REM X()= DIM array of X values
17045 REM Y<)= DIM array of Y values
17050 REM S<)= DIM array used here
17055 REM T()= DIM array used here
17060 REM TYPE= Type of painting
17065 REM U{3 SPACES}= 1 for bar painting
17070 REM U{3 SPACES}= 2 for pixel painting
17075 REM U{3 SPACES}= 3 for checkerboard
17080 REM U{3 SPACES}= 4 to draw a line
17085 REM ...•...........•.....••.•••
17090 REM ****** Bar painting input:
17095 REM DIR= Bar Direction
17100 REM
17105 REM U

o for horizontal bars
1 for vertical bars

17110 REM SPA= Spaces between bars
17115 REM 0 for no spaces
17120 REM U >=1 to skip spaces
17125 REM FAC= Variable space factor
17130 REM 1 for increasing spaces
17135 REM" = 0 for constant spaces
17140 REM" =-1 for decreasing spaces
17145 REM CLO= Color register number
17150 REM•.•......
17155 REM ***** Pixel painting input:
17160 REM DIR= Sweep Direction
17165 REM" 0 for horizontal sweep
17170 REM" 1 for vertical sweep

17175 REM FAC= Blending factor from
17180 REM. {5 SPACES}low end to high end
17185 REM" =0-.99 for an even mix
17190 REM "{5 SPACES} (.5=more CLO color
17195 REM "{5 SPACES} > .5=More CHI color

17200 REM" > =1 for uneven color mix
17205 REM "{5 SPACES}=1-3 for more low end
17210 REM "{5 SPACES} > 7 for more high end
17215 REM CLO= Low end color reg.
17220 REM CHI= High end color reg.
17225 REM Note: Setting CLO or CHI to

101

Chapter Three. Advanced Graphics And Game Utilities

17230 REM -1 will hold the previous
17235 REM color on those pixels.
17240 REM •.••......•...•.........•..
17245 REM **** Checkerboard painting:
17246 REM DIR= Sweep Direction
17247 REM" 0 for horizontal sweep
17248 REM" 1 for vertical sweep
17250 REM CLO= First color register
17255 REM CHI= Second color register
17260 REM
17265 REM *********** To Draw A Line:
17270 REM X(O),V(O)=Start point
17275 REM X(I),V(I)=End point
17280 REM CLO=Start color
17285 REM CHI=Alternate color
17290 REM
17295 REM
17300 REM
17305 REM
17310 REM

Uses the variable names QO,
Ql,Q2,Q3,Q4,Q5,COL,IM,IP,DL
K,L,M,N,R,MAX,MIN,MXMN,NOW

17315 QO=O:Ql=I:Q2=1000:IF TVPE=4 THEN 17660
17320 FOR M=Ql to NP:N=M+Ql:IF N) NP THEN N=Q

1
17325 IF X(M)=X(N) THEN S(M)=Q2:GOTO 17340
17330 REM Slopes=S(), Intercepts=T()
17335 S(M)=(V(N)-V(M»/(X(N)-X(M»:T(M)=V(M)

-S (M) *X (M)
17340 NEXT M:MAX=-Q2:MIN=Q2
17345 FOR M=Ql TO NP:Q3=V(M):IF DIR>QO THEN

Q3=X(M)
17350 IF MAX (Q3 THEN MAX=Q3
17355 IF MIN >Q3 THEN MIN=Q3:N=M
17360 NEXT M:MXMN=MAX-MIN:NOW=MIN:IM=N-Ql:IF

IM(QI THEN IM=NP
17365 IP=N+Ql:IF IP}NP THEN IP=Ql
17375 M=17395:IF DIR) QO THEN M=17420
17380 IF TVPE=Ql THEN COLOR CLO
17385 GOTO 17615
17390 REM Horizontal•.....•
17395 IF S(N)=Q2 OR S(N)=QO THEN Q3=X(N):GOT

o 17405
17400 Q3=(NOW-T(N»/S(N)
17405 IF S(IM)=Q2 OR S(IM)=QO THEN Q4=X(IM):

GO TO 17445
17410 Q4=(NOW-T(IM»/S(IM):GOTO 17445
17415 REM VerticaL•....
17420 IF S(N)=Q2 THEN Q3=V(N):GOTO 17430
17425 Q3=NOW*S(N)+T(N)
17430 IF S(IM)=Q2 THEN Q4=V(IM):GOTO 17445
17435 Q4=NOW*S(IM)+T(IM)

102

Chapter Three. Advanced Graphics And Game Utiliti es.

17440 REM••...
17445 IF TYPE)Ql THEN 17480
17450 REM BAR-FILL•...•.....•.•
17455 IF DIR=QO THEN PLOT Q3,NOW:DRAWTO Q4,N

OW
17460 IF DIR >QO THEN PLOT NOW,Q3:DRAWTO NOW,

Q4
17465 Q3=(NOW-MIN)/MXMN:Q4=INT(SPA*(2*FAC*Q3

+1-FAC»
17470 NOW=NOW+Ql+Q4:GOTO 17615
17475 REM PIXEL-FILL (PF) ••.•...•..•.
17480 Q5=INT(ABS(Q4-Q3»:DL=SGN(Q4-Q3):L=Q3:

R=FAC*(NOW-MIN)/MXMN
17485 IF TYPE<>3 THEN 17520
17490 REM CHECKERBOARD•........•
17495 Q3=CLO:Q4=CHI:R=INT(L+NOW+0.5):IF R=2*

INT(R/2) THEN Q3=CHI:Q4=CLO
17500 R=DL+DL+0.5
17505 IF DIR=O THEN FOR K=Ql TO Q5/2:COLOR Q

3:PLOT L,NOW:COLOR Q4:PLOT L+DL,NOW:L=
INT(L+R):NEXT I<

17506 IF DIR=1 THEN FOR I<=Ql TO Q5/2:COLOR Q
3:PLOT NOW,L:COLOR Q4:PLOT NOW,L+DL:L=
INT(L+R):NEXT K

17510 IF Q5=2*INT(Q5/2) THEN 17600
17511 IF DIR=O THEN COLOR Q3:PLOT L,NOW
17512 IF DIR=1 THEN COLOR Q3:PLOT NOW,L
17515 GOTO 17600
17520 IF FAC (QI AND DIR=QO THEN 17540
17525 IF FAC (QI AND DIR) QO THEN 17555
17530 IF FAC) =Ql AND DIR=QO THEN 17570
17535 IF FAC) =Ql AND DIR) QO THEN 17585
17540 FOR K=QO TO Q5:COL=CLO:IF RND(QO) (FAC

THEN COL=CHI
17545 IF COL) =QO THEN COLOR COL:PLOT L,NOW
17550 L=L+DL:NEXT K:GOTO 17600
17555 FOR K=QO TO Q5:COL=CLO:IF RND(QO) < FAC

THEN COL=CHI
17560 IF COL) =QO THEN COLOR COL:PLOT NOW,L
17565 L = L+DL:NEXT K:GOTO 17600
17570 FOR I<=QO TO Q5:COL=CLO:IF R*RND(QOJ>O.

5 THEN COL=CHI
17575 IF COL) =QO THEN COLOR COL:PLOT L,NOW
17580 L=L+DL:NEXT K:GOTO 17600
17585 FOR I<=QO TO Q5:COL=CLO:IF R*RND(QO»O.

5 THEN COL=CHI
17590 IF COL) =QO THEN COLOR COL:PLOT NOW,L
17595 L=L+DL:NEXT K:GOTO 17600
17600 NOW=INT(NOW+Ql)
17605 REM Check fo~ ve~tex point

103

Chapter Three. Advanced Graphics And Game Utilities

17610 REM passover ~ end of polygon
17615 03=Y(IP):04=Y(IM):IF DIR)OO THEN 03=X(

IP):04=X(IM)
17620 IF NOW<=03 THEN 17635
17625 IF 03=MAX THEN RETURN
17630 N=IP:IP=IP+Ol:IF IP) NP THEN IP=OI
17635 IF NOW<=04 THEN GOTO M
17640 IF 04=MAX THEN RETURN
17645 IM=IM-01:IF IM<01 THEN IM=NP
17650 GOTO M
17655 REM Line Drawing
17660 K=X(OI)-X(00):02=ABS(K)
17665 L=Y(01)-Y(00):03=ABS(L)
17670 IF 02)=03 THEN N=02:04=SGN(K):05=L/02
17675 IF 02<03 THEN N=Q3:05=SGN(L):04=K/03
1768002=X(OO):03=Y(OO):S(00)=CLO:S(01)=CHI:

IP=OO
17685 FOR M=OI TO N:COLOR S(IP):PLOT 02.03:0

2=02+04:03=03+05:IP=01-IP:NEXT M
17690 RETURN
17695 REM ===========================

104

Chapter Three. Advanced Graphics And Game Uti lities.

PROGRAM 2. Textured Graphics.

100 REM =============================
105 REM ={5 SPACES}PICTURE Program

{7 SPACES}=
107 REM ={8 SPACES}for the{12 SPACES}=
110 REM ={3 SPACES}POLYPAINT Subroutine

{4 SPACES}=

120 REM =============================
125 REM ={11 SPACES}by:{13 SPACES}=
130 REM ={8 SPACES}Phil Dunn{10 SPACES}=
140 REM ={6 SPACES}12 Monroe Ave.{7 SPACES}=
150 REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES}=

160 REM =============================
220 REM Set the graphics mode
230 REM and the color registers .•.
240 GRAPHICS 7+16
250 SETCOLOR 0,5,6:REM C.l = MAROON
260 SETCOLOR 1,!0,8:REM C.2 = GREEN
270 SETCOLOR 2 ; ~,10:REM C.3 = WHITE, WINDO
280 SETCOLOR 4,8,8:REM c.o = BLUE, BACKG.
290 REM =============================
300 DIM X(15),Y(15),S(15),T(15)
310 POLYPAINT=17315
330 REM ============================
340 REM Read areas and fill them in
350 REM
360 REM First read the TYPE of painting to b

e done for this area.

370 A=O
380 READ TYPE
390 A=A+l
400 REM Test for end of data
410 IF TYPE=999 THEN 1020
420 REM Now go to proper line to read the re

st of the data for this TYPE.
430 IF TYPE=4 THEN 820
440 IF TYPE=3 THEN 730
450 IF TYPE=2 THEN 620
460 IF TYPE<>l THEN? "TYPE=";TYPE,"for AREA

=";A:STOP
470 REM •...........................
480 REM Read data for TYPE 1
490 REM bar painting.
500 READ DIR
510 IF DIR<>O AND DIR <> l THEN? "DIR=";DIR,"

for AREA=";A:STOP
520 READ SPA

105

Chapter Three. Advanced Graphics And Game Utilities

530 IF SPA<O THEN? "SPA=";SPA,"for AREA=";A
:STOP

540 READ FAC
550 IF FAC<-1 OR FAC)l THEN? "FAC=";FAC,"fo

r AREA=";A:STOP
560 READ CLO
570 IF CLO<-l OR CLO>3 THEN? "CLO=";CLO,"fo

r AREA=";A:STOP
580 GOTO 920
590 REM•.•........
600 REM Read data for TYPE 2
610 REM pixel painting.
620 READ OIR
630 IF DIR<>O AND DIR<>1 THEN? "DIR=";DIR,"

for AREA=";A:STOP
640 READ FAC
650 IF FAC<O THEN':> "FAC=";FAC,"for AREA=";A

:STOP
660 READ CLO
670 IF CLO<-l OR CLO>3 THEN? "CLO=";CLO,"fo

r AREA=";A:STOP
680 READ CHI
690 IF CHI<-l OR CHI>3 THEN':> "CHI=";CHI,"fo

r AREA=";A:STOP
700 GOTO 920
710 REM ...•.........................
720 REM Input for TYPE 3
725 REM checkerboard painting.
730 READ DIR
735 IF DIR<>O AND DIR<>l THEN? "DIR=";DIR,"

for AREA=";A:STOP
740 READ CLO
750 IF CLO<O OR CLO)3 THEN? "CLO=";CLO,"for

AREA=";A:STOP
760 READ CHI
770 IF CHI(O OR CHI>3 THEN? "CHI=";CHI,"for

AREA=";A:STOP
780 GOTO 920
790 REM
800 REM Input for TYPE 4,
810 REM to draw a line.
820 READ CLO
830 IF CLO<O OR CLO>3 THEN':> "CLO=";CLO,"for

AREA=";A:STOP
840 READ CHI
850 IF CHI<O OR CHI)-3 THEN? "CHI =" ;CHI,"for

AREA=";A:STOP
860 READ X,Y:X(O)=X:Y(O)=Y
870 READ X,Y:X(l)=X:Y(l)=Y
880 GOSUB POLYPAINT

106

Chapter Three. Advanced Graphics And Game Utili ties.

890 GOTO 380
900 REM
910 REM Now read the polygon perimeter data
920 READ NP:REM Number of points
930 IF NP<3 THEN? "NP=";NP,"for AREA=";A:ST

OP
940 FOR N=1 TO NP
950 READ X,V
960 X(N)=X
970 V(N)=Y
980 NEXT N
990 REM Now let the subroutine fill it in
1000 GOSUB POLYPAINT
1010 GOTO 380
1020 REM ============================
1030 REM ={3 SPACES}Scene from the book

{4 SPACES}=
1040 REM = 'Stranger By The River'
1050 REM ={4 SPACES}by Paul Twitchell

{5 SPACES}=
1060 REM ============================
1070 REM MOUNTAIN
1080 DATA 3,1,3,2,6,54,42,68,30,85,22,110,35

,118,45,54,45
1090 DATA 2,1,9,2,-1,5,54,42,68,30,85,22,85,

45,54,45
1100 DATA 2,1,2,-1,2,4,85,22,110,35,118,45,8

5,45
1110 REM MOUNTAIN TOP
1120 DATA 2,0,1,3.-1,6,85,22,98,29,95,30,88,

32,78,29,74,27
1130 REM LOWLANDS
1140 DATA 3,0,3,2,3,0,45,80,40,159,45
1150 DATA 2,0,.5, -1,2,3,0,45,80,40,159,45
1180 REM FOREGROUND
1190 DATA 3,0,2,0,4,0,69,159,66,159,95,0,95
1200 DATA 2,0,3,-1,2,4,0,80,159,80,159,95,0,

95
1210 REM RIVER
1230 DATA 3,0,0,3,12,0,50,159,50,159,66,140,

68,125,70 ,105,74,80,77,60,78,47, 78,40,7
7,25,75,0,69

1260 DATA 1,0,3,1,3,6,0,45,159,45,159,60,90,
75,40,75,0,60

1270 REM LEFT TREE TOP
1280 DATA 2,0,.2,2,0,12,25,25,37,34,33,36,36

,40,31,43,33,55,18,59,5,50,13,42,8,37,1
6,34,12,30

1310 REM RIGHT TREE TOP
1320 DATA 2,0,.2,2 , 0,8,130,32,149,39,145,46,

107

Chapter Three. Advanced Graphics And Game Utilities.

153,56,135,68,116,61,122,52,115,47
1340 REM LEFT TREE TRUNK
1350 DATA 1,0,0,0,1,6,11,80,16,56,19,52,21,5

7,17,81,14,83
1360 REM RIGHT TREE TRUNK
1370 DATA 1,0,0,0,1,6,131,83,130,65,133,59,1

36,65,141,82,136,85
1380 REM END OF DATA
1390 DATA 999
1400 REM ============================
1410 REM Human figures ...
1420 REM Paul
1430 COLOR 3
1440 XX=55
1450 YY=80
1460 PLOT XX-1,YY+3:DRAWTO XX-1,YY+8
1470 PLOT XX,YY:DRAWTO XX,YY+8
1480 PLOT XX+l,YY+3:DRAWTO XX+l,YY+8
1490 PLOT XX+4,YY+4:DRAWTO XX+4,YY+8
1500 PLOT XX+l,YY:PLOT XX+l,YY+1
1510 PLOT XX+2.YY+4:PLOT XX+3,YY+4
1520 PLOT XX+3~~Y+5:PLOT XX+3,YY+6
1530 PLOT XX+2,YY+6:PLOT XX+2,YY+7
1540 PLOT XX+5,YY+8
1550 PLOT XX+1,YY:PLOT XX+1,YY+1
1560 PLOT XX+2,YY+4:PLOT XX+3,YY+4
1570 REM Rebezar
1580 COLOR 1
1590 XX=65
1600 YY=70
1610 PLOT XX-1,YY+2:DRAWTO XX-l,YY+13
1620 PLOT XX,YY:DRAWTO XX,YY+10
1630 PLOT XX+1,YY:DRAWTO XX+l,YY+l0
1640 PLOT XX+2,YY+2:DRAWTO XX+2,YY+13
1650 PLOT XX+5,VY+l:DRAWTO XX+5,YY+13
1660 PLOT XX-4,YY+1:PLOT XX-3,YY+2
1670 PLOT XX-2,YY+2:PLOT XX+3,YY+3
1680 PLOT XX+4,YY+4
1690 GOTO 1690
1700 REM ============================

108

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 3. Textured Graphics.
100 REM ===============~=============
105 REM ={5 SPACES}PALETTE Program

{7 SPACES}=
110 REM =A Color-Texture Development=
120 REM = Utility Program For The
130 REM ={3 SPACES}PoLYPAINT Subroutine

{4 SPACES}=
140 REM =============================
145 REM ={11 SPACES}by:{13 SPACES}=
150 REM ={8 SPACES}Phil Dunn{10 SPACES}=
160 REM ={6 SPACES}12 Monroe Ave. {7 SPACES}=
170 REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES}=
180 REM =============================
240 DIM A$(2),X(4),Y(4),S(4)~T(4),U(50)
245 DIM HU(3),LU(3)
250 PoLYPAINT=17315
260 REM =============================
270 REM Input mode & scale palette
280 GRAPHICS 0
290? "Which Graphics MODE (3-8)";
300 TRAP 290: INPUT MODE
310 IF MoDE(3 OR MoDE) 8 THEN 290
320 GRAPHICS MODE
325 POKE 752, l:REM Blank Cursor
330 IF MoDE=3 THEN E=0.25:F=0.25
340 IF MoDE=4 OR MoDE=5 THEN E=0.5:F=0.5
350 IF MoDE=6 OR MoDE=7 THEN E=l:F=l
360 IF MoDE=8 THEN E=2:F=2
370 REM =============================
372 REM Initial color assignment ...
374 HU(O)=0:LU(O)=8:REM =WHITE
376 HU(I)=5:LU(l)=8:REM =RED
378 HU(2)=10:LU(2)=6:REM =GREEN
380 HU(3)=8:LU(3)=8:REM =BLUE
390 SETCoLoR O,HU(l),LU(l)
400 SETCoLoR 1,HU(2) ,LU(2)
410 SETCoLoR 2,HU(3),LU(3):REM WINDOW
420 SETCoLoR 4,HU(O),LU(O):REM BACKGR
430 REM =============================
440 REM Primary colors numbers
450 COLOR 1
460 REM Number 1 ...
470 PLOT 3*E,22*F
480 DRAWTo 3*E,28*F
490 REM Number 2 ...
500 PLOT 19*E,22*F
510 DRAWTo 21*E,22*F

109

Chapter Three . Advanced Graphics And Game Utilities.

520 PLOT 22*E,23*F
530 DRAWTO 19*E,28*F
540 DRAWTO 22*E,28*F
550 REM Nunber 3 ...
560 PLOT 37*E,22*F
570 DRAW TO 40*E,22*F
580 DRAWTO 40*E,28*F
590 DRAWTO 37*E,28*F
600 PLOT 38*E,25*F
610 DRAW TO 40*E,25*F
620 REM =============================
630 REM Display Primary Colors
640 NP=4:TVPE=1:DIR=0:SPA=0:FAC=0
650 FOR 1=1 TO 3
660 CLO=I
670 FOR J=l TO 4
680 READ X,V:X(J)=X*E:V(J)=V*F
690 NEXT J
700 GOSUB POLVPAINT
710 NEXT I
7~0 REM =============================
730 REM Display Secondary Colors
740 TVPE=3:REM Checkerboard
745 DIR=O
750 FOR 1=1 TO 6
760 FOR J=l TO 4
770 READ X,V:X(J)=X*E:V(J)=V*F
780 NEXT J
790 IF 1 < =3 THEN CLO=O:CHI=I
800 IF 1=4 THEN CLO=1:CHI=2
810 IF 1=5 THEN CLO=1:CHI=3
820 IF 1=6 THEN CLO=2:CHI=3
830 GOSUB POLVPAINT
840 NEXT I
850 REM ============================
860 REM Areas for primary colors
870 DATA 0,45,0,30,15,30,15,45
880 DATA 18,45,18,30,33,30,33,45
890 DATA 36,45,36, '30,51,30,51,45
900 REM Areas for secondary colors ..
910 DATA 0,20,0,5,15,5,15,20
920 DATA 18,20,18,5,33,5,33,20
930 DATA 36,20,36,5,51,5,51,20
940 DATA 0,70,0,55,15,55,15,70
950 DATA 18,70,18,55,33,55,33,70
960 DATA 36,70,36,55,51,55,51,70
970 REM Connect the colors
980 DATA 8,30,8,20,8,45,8,55,12,45,22,55
990 DATA 26,30,26,20,22,45,12,55,28,45,39,55
1000 DATA 44,30,44,20,44,45,44,55,40,45,29,55

[LO

Chapter Three. Advanced Graphics And Game Utilities.

1010 REM Palette Display Areas •....•.
1020 DATA 60,35,60.0,105,0,105,35
1030 DATA 115,35,115,0,159,0,159,35
1040 DATA 60,75,60,40,105,40,105,75
1050 DATA 115,75,115,40,159,40~159,75

1060 REM ==============~==~==========
1070 REM Connect the colors
1080 FOR 1=1 TO 3
1090 COLOR I
1100 FOR J=l TO 3
1110 READ Xl,Yl,X2,Y2
1120 PLOT Xl*E,Yl*F
1130 DRAWTo X2*E , Y2*F
1140 NEXT J:NEXT I
1150 REM ============================
1160 COLOR 1
1170 REM Number the palette areas ...
1180 REM Number 1
1190 PLOT 57*E,15*F
1200 DRAW TO 57*E,25*F
1210 REM Number 2
1220 PLOT 109*E,15*F
1230 DRAWTo 112*E,15*F
1240 DRAW TO 113*E , 17*F
1250 DRAWTo 109*E,25*F
1260 DRAWTo 113*E,25*F
1270 REM Number 3
1280 PLOT 54*E,55*F
1290 DRAWTo 58*E,55*F
1300 DRAWTo 58*E,65*F
1310 DRAWTo 54*E,65*F
1320 PLOT 55*E,60*F
1330 DRAW TO 58*E,60*F
1340 REM Number 4
1350 PLOT 110*E,57*F
1360 DRAWTo 110*E,60*F
1370 DRAWTo 113*E,60*F
1380 PLOT 113*E,55*F
1390 DRAWTo 113*E,65*F
1400 NP = 4
1410 REM ============================
1420 REM
1430 REM
1440 REM
1450 REM

NOTE: TO RESTART THE{4 SPACES}=
INPUT SEQUENCE AT ANY{4 SPACES}=
TIME BACK TO THE ' AREA'

1460 REM
1470 REM

INPUT REQUEST, RETURN{4 SPACES}=
WITH THE VALUE 99.{7 SPACES}=

=============~==============

1480? "Which AREA to use (0-4)";
1490 TRAP 1480:INPUT A
1500 IF A(O OR A) 4 THEN 1480

III

Chapter Three. Advanced Graphics And Game Utilities.

1505 IF A=O THEN 2140
1510 RESTORE 1010+A*10
1520 FOR 1=1 TO 4
1530 READ X,Y:X(I)=INT(X*E):Y(I)=INT(Y*F)
1540 NEXT I
1550 REM ============================
1560? "What painting TYPE (1 , 2, or 3),"
1570 ? "Bar, pixel, or checkerboard";
1580 TRAP 1560: INPUT TYPE
1590 IF TYPE=99 THEN 1480
1600 IF TYPE (l OR TYPE >3 THEN 1560
1610 IF TYPE=2 THEN 1850
1620 IF TYPE=3 THEN 2020
1630 REM ===============c============
1640 REM Bar painting input . . .
1650? "HORIZ. or VERTICAL Bars (0 or I)";
1660 TRAP 1650:INPUT DIR
1670 IF DIR=99 THEN 1480
1680 IF DIR< >O AND DIR <> l THEN 1650
1690 ? "SPACES between bar s, } =o
1700 TRAP 1690:INPUT SPA
1710 IF SPA=99 THEN 1480
1720 IF SPA (O THEN 1690

" . ,

1730? "Space VARIABILITY (-1 to +1)";
1740 TRAP 1730:INPUT FAC
1750 IF FAC=99 THEN 1480
1760 IF FAC(-l OR FAC) l THEN 1730
1770? "COLOR register (0-3)" ;
1780 TRAP 1770:INPUT CLO
1790 IF CLO=99 THEN 1480
1800 IF CLO (O OR CLO >3 THEN 1770
1810 GOSUB POLYPAINT
1820 GOTO 1480
1830 REM =============================
1840 REM PIXEL Painting . . .
1850? "HORIZ. or VERTICAL Sweep (0 or I)";
1860 TRAP 1850:INPUT DIR
1870 IF DIR=99 THEN 1480
1880 IF DIR<>O AND DIR< > l THEN 1850
1890 ? "BLENDING Factor, 0-0.99, or >=1";
1900 TRAP 1890:INPUT FAC
1910 IF FAC=99 THEN 1480
1920 IF FAC(O THEN 1890
1930? "LOW Color (-1 to 3)";
1940 TRAP 1930:INPUT CLO
1950 IF CLO=99 THEN 1480
1960? "HIGH Color (-1 to 3)";
1970 TRAP 1960:INPUT CHI
1980 IF CHI=99 THEN 1480
1990 GOSUB POLYPAINT

112

Chapter Three. Advanced Graphics And Game Utilities.

2000 GOTO 1480
2010 REM ============================
2015 REM CHECKERBOARD Painting ••.
2020 ? "HOR I Z. or VERT I CAL Sweep (0 or 1)";
2024 TRAP 2020: INPUT DIR
2026 IF DIR=99 THEN 1480
2028 IF DIR< >O AND DIR <> 1 THEN 2020
2030? "First Color (0 to 3)";
2040 TRAP 2030: INPUT CLD
2050 IF CLO=99 THEN 1480
2055 IF CLO(O OR CLO)3 THEN 2030
2060? "Alternate Color (0 ·to 3)";
2070 TRAP 2060:INPu f CHI
2080 IF CHI=99 THEN 1480
2085 IF CHI<O OR CHI>3 THEN 2060
2090 GOSUB POLYPAINT
2100 GO TO 1480
2110 REM ============================
2130 REM Redefine the colors •..
2140 ? "Reg. No. = Hue, Luminance"
2145? "O=";HU(O);" , ";LU(O),"I=";HU(I);",";L

U(I), "2=";HU(2); ". ";LU(2). "3=";HU(3); ",
";LU(3)

2150? "Which COLOR Register (0-3) ";
2160 TRAP 2140:INPUT I
2170 IF 1=99 THEN 1480
2180 IF 1 < 0 OR 1) 3 lHEN 2140
2190 K=HU(I):L=LU(I):GOTO 2230
2200 IF STRIG(O)=O THEN 2140
2210 IF HU(I)=INT(K) AND LU(I)=2*INT(L/2) TH

EN 2260
2220 HU(I)=INT(K):LU(I)=2*INT(L/2)
2230 ? "Reg. "; I;" = Hue "; HU (I) ; "

ce ";LU(I)
2240 J=I-l:IF J (O THEN J=4
2250 SETCOLOR J,HU(I),LU(I)
2255 HU(I)=INT(K):LU(I)=2*INT(L/2)

Luminan

2260 IF STICK(0)=7 THEN K=K+O.l:IF K>16 THEN
K=O

2270 IF STICK(0)=11 THEN K=K-O.l:IF K(O THEN
K=15

2280 IF STICK(O)=14 THEN L=L+0.2:IF L > 16 THE
N L=O

2290 IF STICK(0)=13 THEN L=L-0.2:IF L(O THEN
L=14

2292 REM Joystick 0 controls:
2293 REM Left-Right changes hue
2294 REM Foward-Back changes luminance
2295 REM Press Trigger to fix selection
2300 GO TO 2200

113

Chapter Three. Advanced Graphics And Game Utilities.

Part 3:
Multi-Colored Graphics

In Mode S
Phi l Dunn

Into the world of Graphics mode 8, with multi-colored displays. This
tutorial and commentary covers both the CTIA and the GTIA chiN. You'll
find the explanations and utility programs invaluable. 32 K RAM memory is
recommended, but, with judicious cutting, you can run this with 24K.

Graphics Mode 8 prov ides the highes t resolution images that we can
generate with the Atari sys tem, with a horizontal gri d of 3 20 and a
vertical grid of 192 (or r60 with a split sc reen). Therefore , a mastery
of the mysteries of Mode 8 will enabl e us to deve lop some of the
highest quality images that the A tari sys tem can provide. This article
offers you that abili ty , with some user-fri endl y programs th at make it
as easy as apple pie. If you want to, you can generate your own version
of the Atari Video Ease l, or you can use the programs to make rea lly
fine pictures .

These routines will require 32K of memory to work in Mode 8
graphics. With a ll REM sta tements removed, and a reduc ti on in some
nonessentia l func tions, these routines should work with only 24K of
me mory.

There is a rumor that Mode 8 graphics a llows onl y one co lor.
This rumor sta tes that the SETCOLO R 2 command determines the
hue and luminan ce of the background, and the SETCOLO R 1
command determines just the luminance of a point or line drawn wi th
the PLOT-ORA WTO commands. The only other SETC OLO R
command that h as any effec t in Mode 8 is SETC OLO R 4 , whi ch only
controls the hue and luminance of the border.

This rumor has an impeccable source: the Atari BASIC Reference
Manual. Let's ch eck it out . W e go over to our favorite machine and
flip on the power switches for our computer and TV monitor, and see
our friendly 'READY' message pop up at the top of the screen.

From pas t encounters of this kind we know that we are in Mode
o. So , we type in the direc t command, G RAPHICS 8 . The screen
flips and now we see the READY at the bottom of the screen. "Aha!"

114

Chapter Three. Advanced Graphics And Game Utilities

we think, "Mode S with our split-screen text window at the bottom."

Let's draw a line. We type in the command, COLOR l:PLOT
5,SO:ORA WTO 315,SO and a hori zontal line appears. Now we can
play with SETCOLOR commands to our heart's content, and we will
only conclude that the manua l is te lling the truth, the who le truth,
and nothing but the truth, so help them Atari!

N ow let's run a different expe riment. A s in any good experiment,
we must carefu lly se t the conditions. With SETCOLOR 2,0,0 we se t
a black background, and with SET COLOR 1,0,12 we ge t se t for high ­
contrast lines. N ow, with the command PLOT 160, 150:0RAWTO
160,5 we see a brown line if we have the CTIA chip, or we see a blue
line if we h ave the GTIA chip.

But you may not see brown or blue. The co lor you see, and all
the co lors that are mentioned in the remainder of this article , are
dependent upon the condition and a lignment of your sys tem. While
the co lors you see may be different than the ones described h ere, the
principles and tec hniques for obta ining the variety of colors remain
the same.

Now let's enter the command PLOT 101,150: ORA WTO 101,5,
and we will see a blue vertica l lin e if we have the CTIA chip, or a
brown line with the GTIA. Wh y are the two lines different co lors?
It' s just dependent upon whether the vertical line has an even or an
odd va lue for its X coord inate. A ll ve rtical lines with an even X value
will be one co lor, and a ll with an odd X va lue will be the o ther. Thi s
is true for all PLOT points also. If we wish to draw a line a t any angle
by PLOTting only those li ne points a t the odd or even X coordinate
va lues, then we will obta in a b lue or brown line.

Notice that I am say ing that the color we obta in (as a function of
whether the X coordinate parity is odd or even) is reversed between
the C TIA and the GTI A chi ps. Both chips give us exac tl y the same
va riety of colors and textures in Mode S. It is just the effec t of the X
coordinate par ity th at is reversed. As far as I know , this type of color
difference between the two chips does no t exist in any mode other
than G raphics S.

In the rema inder of this article, when I refer to co lors, I will first
ind ica te the co lor we obta in with the CTIA ch ip, and then, a longs ide
it and in parentheses, the co lo r obtained with the GTIA chip .

If we draw ano ther li ne with the command PLOT
160 ,SO:ORAWTO 240 ,1 20 we see a green (red) line. Typing PLOT
lOl ,SO:ORA WTO l S I , 120 gives a red (green) line. The rule here is
that a ll sloping lin es with an X/Y ra ti u slope of 211 will be e ither green
or red , depending upon the X coord inate of the start point.

lI S

Chapter Three. Advanced Graphics And Game Utilities.

The command PLOT 10, 10:ORA WTO 150,150 gives us a grey
line. All lines drawn with an X/Y ratio slope of 111 will be grey.

These are what we will ca ll the six primary co lors of Mode 8
graphics. White (hori zontal lines, or several lines adjacent to each
other)' brown and blue (vertical lines), green and red (2 /1 slope
lines) , and grey (1/1) slope lines. All other sloping lines tend to give
peppermint-stripe mi xtures of these primary colors.

Now, next to the blue (brown) vertica l line at 10 1, 150- 101, 5
let's PLOT-ORAWTO another line at 102, 80-102,60. This gives us a
green (red) line , but one with a d ifferent texture than we saw in the
211 ratio version. If we PLOT -ORA WTO another line at 100,60-
100,40 we ge t a red (green) li ne, aga in with a different texture than
we saw prev iously.

If we enter the PLOT-ORAWTO command 159, 80- 199 ,100, it
merges with our green (red) sloping line to give a warm grey. The
command 201,100-241 ,120 converts our green (red) line to a cool grey.

The colors and tex tures that we obta in by drawing multiple lines
that interact with one another we can ca ll the secondary colors and
textures of Mode 8 graphi cs . How many are there? I don't know. Later
on in this article you will see over 60 that I h ave found. I only stopped
at that point to wr ite this up so others could explore this also.

Well, what is going on here with that Atari Manual? Is Atari
trying to hide something from us about Mode 8? What's the story?

The Atari Manual is not lying. It is hiding something, though . It
is hiding something that might only be confusing to the programming
nov ice who is still struggling to grasp the impli ca tions of the various
commands in BASIC and the Atari graphics modes . A lso, what va lue
is a color you can on ly get by drawing a line a t some specific angle?
(Plenty of va lue! More about this later.)

The answer to what this is a ll about li es in the structure of our
video tubes and the way they generate colors. The face of these rubes
is covered with a ser ies of hor izonta l '.'scan lines" that consist of a
repeating seri es of blue, green and red phosphor dots. These phosphor
dots only glow their co lor if the electron beam gun in the n eck of the
tube shoots them. These dots are so sma ll that we don't see them as
dots, but only as the composite color of many dots . The var ie ty of
colors that we see on TV, and with wh ich Atar i prov ides us in its hue­
luminance SET COLOR command, is obtained by controlling the
elec tron beam intensity to each dot. It is the balanc ing of the br igh tness
between the blue, green, and red dots that provides us with the fu ll
spectrum of colors.

This feature of Mode 8 graphics occurs because when we draw a

11 6

Chapter Three. Advanced Graphics And Game Utilities.

vertical line , that line is so thin that it cannot cover all three colors of
the screen. When the X coord inate of the vertical line is odd (even),
it hits mostly the blue dots, and we ge t a blue line . When the X
coordinate is even (odd) , it hits both red and green dots, giving us a
brown line . The resolution of Atari Mode S graphi cs is almost as fine
as the resolution of the TV screen dot pattern! S ince our lines may
not touch all three color dots, the line color cannot be adjusted
effectively by balancing the co lor-dot intensities as is done in the
lower resolution graphics modes. (Horizontal lines always cover all
three dot colors.)

Now we understand Mode S, and we recognize that it has colors,
but how can we use them? Well, we can always draw blue and brown
lines, but that is not where the act ion is. The ac tion is where the
possibility ex ists for a multitude of co lors, patterns, and textures. The
act ion lies not in draw ing lines, but in coloring areas . And what is our
simplest , most useful method for co lo ring areas? If you h ave read the
previous articles you know the answer. It is the polygon fill technique.

If we want to think of the PLOT-ORA W commands as be ing our
Atari colored pencils, then the polygon fill technique is our Atari
paintbrush.

At this point it is most appropriate to scan the programs presented
here . Program 1, the POLYS subroutine, is the essenti al tool that we
will use to h arness the graphi cs power of Mode S. The POLYS
subroutine is supported by a secondary subroutine ca ll ed LINEP, given
here as Program 2. LINEP is based upon a machine code program. For
those interested, the machin e code assembly listing is presented as
Program 3. My appreciation to Bill Wilkinson for that fantastically
useful article on Atari I/O Graphics (COMPUTE! , Febru ary 19S2,
#21), and to Judy Bogart of Atari for her adv ice and direction regarding
the C IO method.

Program 4 is the PALETTS program, which a ll ows us to
in vest iga te and discover the colors, patterns, and textures inherent in
Mode S. Although it has been set up- to work in Modes 6 and 7 also , it
was primarily designed to study Mode 8 graph ics. Naturally, it
essentially depends upon th e POLYS subrout ine which must be
appended to it.

Program 5 is the PICTURS program. This program allows us to
define a complete picture just by en te ring values in data sta tements.
This, too, is essenti ally dependent upon the POLYS subroutine .

These programs have been written with an abundance of REM
statements. Even with all the REM statements removed, they will
require more than 16K of memory to run in Graphics Mode S. With
the REM sta tements removed they should run with 24K, o r they can

117

Chapter Three. Advanced Graphics And Game Utilities.

be left in if you h ave more.
The Atari BAS IC Reference Manual te lls us that we can reduce

the memory requirements of our programs by defining constant numeric
va lues in variables , when the constants are llsed in more than two or
three places in our program. I h ave decided as a regular practice to se t
up the beginning of a ll my programs and gen eral purpose subroutines
with variables with names beginning with the le tter "c" to represent
the most commo nly used numeric constants . This procedure has been
implemented in these programs.

The key to the use of these programs is in the POL Y8 subroutine,
so le t's take a look at Program 1. The initia l REM sta tements summari ze
its capabilities , so we'll rev iew them. The fi rs t variable this subroutine
uses is TYPE, whi ch can va ry from 1 to 7, depending upon how this
routine will be used. For TYPE va lues of 1 to 6 this routine also requires
a value for the va riable NP, and values for the DIMensioned array
vari ables X(i), Y(i), where i varies from 1 to NP.

When TYPE= 1, for "Bar Painting," a defined po lygon area will
be fill ed with lines (or "bars") in a way which we can specify. The
polygon is defined by its perimeter po ints, the X, Y values stored in
the XO, yo DIMensio ned array va riables. NP spec ifies the number of
perimeter po ints around the po lygon.

When TYPE = 2, for "Pi xe l Painting," the defined po lygon will
be fill ed on a pi xe l-by-pi xe l bas is, according to our specified
instruc tions. When TYPE = 3 the defined po lygon area will only be
outlined, by drawing a se ries of lines around its perimeter.

For values of T YPE that are grea ter than 3 , we are no longer
dea ling with a defined po lygon area. Later on I will show how these
options enable us to spec ify a huge amount of picture de ta il with a
minimum amount of program coding.

When T YPE = 4 we simply color in the pixels, connected or
disconnected , that are spec ified in the X(i), Y(i) array variables ,
where i va ries fro m 1 to N P.

When TYPE = 5 we PLO T -DRA W T O a se ries of lines spec ifi ed
in the array va ri ables X(i), YO) and X(i + 1) , Y(i + 1) where i varies
from 1 to N P. N ote that N P a lways refers to the number of X, Y pairs
to be used. Therefore , for one line se t N P = 2, for two lines set NP = 4,
for three line se t NP= 6, etc.

When TYPE = 6 we DRA WTO from o ne point to another,
starting a t the initia l cursor position to X(1) , Y (1), then to X(2),
Y(2), then to X(NP) , Y(NP) .

When TYPE = 7 a color register is ass igned by the C OLOR
command using the value stored in the RA variable.

11 8

Chapter Three. Advanced Graphics And Game Uti lities.

For cases where T YPE = 1 or TYPE = 2, additional info rmation is
requ ired. The slope at which the bars are to be drawn, or the pixels
are to be swept, is specified in the RA variabl e in terms of the X/Y
ratio. RA = 0 for vertica l lines, + 1 or -1 for lines at + 45 degrees or
45 degrees, and RA = 100 for horizontal lines.

As we have prev iously seen, the factors that determine the line
colors in Mode 8 are the lin e slope and the X-ax is odd/even parity.
The zero element of the PO array is used to specify the parity opt ion.
If P(O) = 0 then the parity opt ion is bypassed. If P(O) = 1 then odd
parity is se lec ted, and if P(O) = 2 then the even parity opt ion is
chosen.

The remaining elements in the P(i) array, for va lues of i greater
than zero, are used to spec ify the line spac ing sequence, and determine
whether or not the par ity opt ion is to be applied to that lin e. The
parity option, if se lected, always is app lied to the first line drawn. All
succeeding lines can have the parity option applied or not, at our
spec ification. If the corresponding va lue of PO) is n egat ive, then the
parity opt ion wil l be app li ed to that line. If P(i) has a pos itive va lue,
then the parity option will be bypassed fo r that line.

The magnitude of P(i) determines the increment to move to
draw the next line . If the magnitude ofP(i) is equal to 1, then the
next line will be drawn immediately adjacent to the prev ious one. If
the magnitude is 2, then there will be one space between; if 3, then
two spaces between, etc. Therefore, a value of zero would mean that
the next line should be drawn directly over the previous one. S ince
this wou ld make n o sense at a ll , the va lue of ze ro is used to indi cate
the end of the P(i) sequence.

Now here comes the neat part: If the po lygon was not completely
filled and a va lue of P(i) = 0 is obtained (signifying the end of the line
spacing sequence), then the line spac ing sequence is set back to the
first element in the sequence, P(1) , and the procedure continues until
the polygon is filled up.

Therefore, on e of the simples t sequences for this array is P(O) = 1,
PO) = -2, P(2) = O. For this example sequence P(O) specifies odd
parity, PO) specifies the app licat ion of the odd parity to that line and
to increment the line positi on by 2 (i .e. , to skip one space), and P(2)
ends the sequence. This command sequence will fill the po lygon with
a series of lines separated by one space, with each line drawn from an
odd X coordinate.

When TYPE = 2 for Pixe l Painting, additional informat ion must
be spec ified. The variable PB spec ifies the random probability blend
of plotted and unchanged pixels. The plotted pixels are colored as per

11 9

Chapter Three. Advanced Graphics And Game Uti lities.

the prev iously specified COLOR command. The unchanged pixels
may be spoken of as being plotted with the "transpa rent" co lor. This
gives us the poss ib ility of do ing a multiplicity of "overlay" effec ts on
the same area . If PB is less than 1, then PB specifies the probabi lity or
proport ion of plot ted pixe ls. When PB = . 1 then ten percent of the
pi xe ls will be p lotted. When PB = .5 then 50 percent will be plotted,
etc.

If PB = 1 then another form of blending wi ll be used, and another
variable, PC, must be used to control this technique. When PC>O
then the first line drawn wil l be ent ire ly unchanged pixels and the las t
line drawn to fill the polygon will be ent irely plotted pixe ls. The lines
in between will have a higher proportion of plotted pixe ls as they are
drawn closer to the end of the polygon. When PC<O then the
unchanged-p lotted pixel effec t is reversed: the first line will be ent ire ly
ploned and the last line will be en t irely unchanged.

The magnitude of PC determines the rate at wh ich the proportion
of pixe ls plotted c hanges from the sta rt of the po lygon to the end. If
ABS(PC) = 1, then the-proport ion rat io changes evenly from one end
of the polygon to the other. The li ne drawn at the halfway point wi ll
have half of its pixe ls plotted and the other h alf unchanged. W hen
ABS(PC» 1, say 2 or 4, the start condition phases out more slow ly to
the end condition, and the sta rt condition will be seen to have more
influence over th e entire po lygon. When ABS(PC) <l , say 0.5 or
0.25, then the start condition phases out more rap idly and the end
condition is seen to dominate the polygon area.

If you have read the previous article , you may have noted that
the "checkerboard" opt ion that was ava ilab le in the prev ious version
is not spec ified here. Th is routine can be used to provide that effect if
45 degree lines are drawn every other space over a previously cOlored
polygon.

This concludes a functional descript ion of the POL Y8 subroutine.
We will take a brief tour of its st ructure before continuing on to the
more prac tical aspects of how to use it . Overall , a grea t similarity will
be fo und with respect to the polygon fill subroutines that were
prev iously documented. S ince these have been explained in prev ious
sec t ions, we will just focus on the differences here.

The additional and new TYPE opt ions, implemented in lines
18405 to 18425, are fairly obv ious. A big functiona l d ifference
between this rout ine and the previous one is that this one lets us fill
the po lygon with lines of any specified slope . In order to implement
this feature in the simplest way, a U, V ax is system is defined as being
rotated with respect to the screen X, Y ax is system by the angle whose

120

Chapter Three. Advanced Graphics And Game Utili ties.

Sine and Cosine values are stored in the variables SA and CA,
respectively. SA and CA are ca lculated in terms of the slope rat io RA
in lines 18445 and 18450. RA is also the Tangent of the angle. Then,
each XO, yo array element that defines the polygon perimeter is
rotated into a corresponding UO, VO array element in lines 18460 to
18475 . Using the same method desc ribed in the previous article,
vertica l line segments are calculated to fill the po lygon in the U, V
plane, in lines 18550 to 18565. These line segments are then rotated
back into the X,Y plane in lines 185 75 to 186 10. The previously
described parity logic is implemented in the middle of this, in lines
18580 to 18590.

For the case of "bar painting, " the line segments can be simp ly
drawn with the PLOT-ORAWTO command in line 18620. In the
case of "pixe l painting," where each pixel must be tes ted to be plo tted
or passed over, I finally broke down and did some assembly
programming. In Mode 8 graphi cs there are too many pixels and the
cod ing in BASIC is coo slow. The pixe l-painting probability factor is
calcu lated in lines 18643 and 18645, and the LINEP subroutine that
does the job starts at line 18790.

Note that the machine code component of this routine must first
be initia li zed by GOSUBing to line 18900.

Befo re we leave these dungeons of program structure , I have a
confess ion to make. With a ll this geometry-math -programming, I
couldn't escape the need fo r a cut-a nd -try Finag le correct ion factor.
That's the Z5 round-up factor in li nes 18575, 18595 and 18600. It is
defined in lin es 18430 and 18435. These va lues genera lly work we ll.
But if you strike out on your ow n in the uncharted land of Mode 8
patterns and tex tures, and you find that for some reason the pattern
suddenly shifts in the midd le of the po lygon, you might want to try
modifying that factor fo r your case.

So much for the POL Y8 structure. (Do I hea r a sigh of relief
somewhere ?) The eas iest way I know to become familiar with th is
subroutin e is to use it to exp lore Mllde 8 graphi cs , whi ch is what this
is all about anyway ! And the eas iest way I know to do this is by using
Program 4, the PALETT8 program.

Studying the li sting of the PALETT8 program, lines 270 and 275
define the constants for often used numeric values to reduce program
memory requirements. (N aturally, if th e REM sta temencs are
e li minated, memory requirements will be reduced much further.) The
requ ired DIMensioned arrays are defined in line 280, and the mach ine
code rout ine is initi alized in line 285 .

Lines 295 to 320 initi alize the E, F sca le factors for the desired

121

Chapter Three. Advanced Graphics And Game Utilities.

graphics mode . While these programs were developed spec ifically for
Mode 8, they can be used in any mode. This version of the PALETT8
program can immediately run in Modes 6,7, and 8. You can modify it
to run in the other modes by inserting additional logic in this area.

lines 370 to 490 set the initial hue- luminance values in the four
registers of interes t .

It might be useful to pause and study lines 570 to 780, because
they represent an interesting programming technique . Instead of
cluttering up our program with a group of PLOT-ORAWTO
commands, the equivalent coding is se t into OAT A statements.
Then , in lines 750 to 780 the information is used to either PLOT or
ORA WTO, depe nding upon whether the code number is -1 or -2.
The negative values for the code make it easy to differenti ate the code
from the X, Y coord inates in the DATA sta tements.

We will be studying Mode 8 colors and tex tures by placing them
in one of 15 ava ilable screen areas . These square areas are defined in
lines 8 10 to 950 in terms of four numbers that represent the lower left
and upper right corners of the squ ares in the variables XL, YL, XU,
yu. In line 1050 the program asks us which AREA we wish to use. If
we return a value of from 1 to 15, then line 1090 points to the
appropriate DATA location. Line 1100 reads the data, and lines 1110
to 1140 dump the appropr iate values in the XO, yo arrays (sca led
appropriately for the specified graphics mode) that the POL Y8 routine
needs to define its polygon perimeter.

Note that if we return a ze ro va lue to the AREA question, then
we are shunted to line 1660 where we can change our SET COLO R
ass ignment va lues by using the joys tick. I t works the same as the
option in th e prev ious article, as per the REM statements in lines
1840 to 1870.

Note also, as per REM lines 980 to 1030, that RETURNing the
value 99 to an y ques ti on will always rese t the input sequence back to
the AREA reques t on line 1050. W e. can also do the same thing by
press ing the BREAK key and RETURN ing the command GOTO 1050.

Now suppose we LOAD the program and RUN it. We spec ify
Mode 8 graphics and, in response to the AREA question, we answer
1. W e are then asked to choose between the CREATE and PRESET
options by RETURNing 1 or 2. Let me defer an explan ation of the
PRESET option for the time be ing, and go straight to the CREATE
option by RETURNing a I.

We are then asked whi ch TYPE of painting we des ire, Bar, Pi xe l,
or COLOR. S tri c tl y speaking, the COLOR option is not a painting
method at a ll , just the option to redefin e the color register se lect ion

l22

Chapter Three. Advanced Graphics And Game Utilities.

for the next PLOT-ORA WTO commands. This option is important,
and it was a convenient place to sti ck it in the ques tion sequence . If
we do select the COLOR option, we are asked what COLOR number
we desire (line 1600) and are reminded that in Mode 8 only 1 and 0
are functional COLOR numbers. H owever, we are no t restricted from
RETURNing any value to obtain the fl exibility of be ing able to use
this program in the other graphics modes.

Suppose we select Bar Painting. W e are the n asked for the angle
ratio. We will select 0 for vertical lines. W e are then asked for the
value of the parity variable, P(O) . We will se lec t 1 for odd parity.
Then we are asked for a va lue to P(l). Note that the program will
refuse the value 0 for this variable. We will return with the value -2 ,
which specifies the use of the parity check because it is negative, and
will move two spaces (i .e., skip one space). We are then asked for the
value of P(1) . W e retu rn a va lue of 0 to end the sequence, and watch
while it fills AREA 1 with Mode 8 primary blue (brown) .

We are asked aga in "which AREA?" Ifwe answer with a 2 and
then repea t the exact same answers we gave previously (except for the
parity variable P(O), fo r which we will return a value of 2 for even
parity), we will see the machine fill area 2 with Mode 8 primary
brown (blue) .

With the next two areas we can repeat what we have just done.
But by returning a value of 2 for the angle rat io we will obtain the
Mode 8 primary colors, red and green. By returning a value of 1 for
the angle ratio, zero for P(O) (no parity check), 2 for P(l)' and 1 for
P(2) we obtain Mode 8 primary grey.

Now let's go back to our blue area. In response to the AREA
request we return a va lue of 1. Thi s time, on top of the primary blue
that is already there, we will overwrite the Mode 8 primary grey pattern
and see how it interacts to form blue-_grey diagonal bars. If we repea t
this over the primary brown, we will see green-grey di agonal bars.

Remember the beginning of this article , where we changed the
color of the blue vertica l line by drawing ano ther line immediate ly
adj acent to it? W e ll , let's repeat that here.

W e can return an AREA number 10, specify the C REATE
mode, Bar Painting, an angle rat io of 0, and parity P(O) of 1. Then,
for P(1) we can specify a - 1 to move one space with parity check . For
P(2) we can specify 3, to move three spaces without parity check.
Since we are mov ing an odd number of spaces from our las t parity
check, the parity h ere must be the oppos ite and should not be checked
aga inst the reference P(O) spec ifica tion. We can end this sequence by
returning a value fo r P(3) of 0, and then watch green (red) vertical

123

Chapter Three. Advanced Graphics And Game Utilities.

bars being drawn.
As we can see, this ac ti vity of generating Mode 8 textures and

colors can go on indefinitely. Now le t 's take a look at that PRESET
option in the program. However, if you have only 24K of memory,
you may have to de le te thi s PRESET cod ing, or at least some of the
PRESET DATA lines , in order to RUN this program.

From line 1160, in response to returning a value of 2 for the
PRESET option, we are shunted to line 1900 and asked "Which
PRESET Number?" In this program version, starting at line 2070, we
have stored only 67 "PRESET" colors and tex tures. Line 1930 prohibits
a return va lue of less than 0 or more than 66.

Suppose we return a va lue of 2 for the PRESET Number. The
DATA pointer on line 1950 wil l then po int to DATA line 2090. The
READ statement on line 1960 will then pick up the value of 1 on line
2090 and ass ign it to the TYPE variable. It then proceeds to read
three more DATA va lues in line 1990 and ass igns them to the va riab les
RA = 0, P(O) = 1, and P(l) = -2. It then reads P(2) = 0 in line 2010
and, because of its zero va lue, it ends the READ sequence in line
2020 by GOSUBing to the POL Y8 subroutine where it will proceed to
fill the AREA spec ified with Mode 8 primary blue (brown) .

When it returns from the PO L Y8 sub routine, it jumps to line
2040 and reads the nex t numeri c DATA on line 2090. In this case
the value is zero so the program loops back to the AREA ques tion .
However, if the va lue was 99 the program wou ld have looped back to
read the next value for TYPE, plus the rest o f the informat ion that
would have laid a nother pattern ove r the previous one.

PRESET number 0, DATA line 2070, is important because it
can be used as an eraser to wipe out previous patterns. It consists of a
TYPE 7 COLOR command, a COLOR va lue of 0 (blank out), 99 to
loop around for another READ, a new TYPE= 1 (Bar Painting),
RATIO = 0 (vertica l), P(O) = 0 (no parity), PO) = 1 (no spaces
between lines), P(2) =0 to end the sequence and plot the off pixels,
99 to loop around aga in , 7 for the COLOR command, 1 to turn the
COLOR back on, and 0 to end the DATA sequence and jump to the
AREA request.

At this point you are on your own . You can call up the various
66 PRESET patterns stored here and study them. You can create new
patterns and, when you find something you want to file, add it to this
PRESET sequence. (Be sure to update the input limit test in line
1930.)

If you want to just continue draw ing patterns over patterns, as
per the Video Ease l game, you can modify this program to automate

124

Chapter Three. Advanced Graphics And Game Utilities.

that kind of operation . However, the COLO R should be alternated
between 1 and 0, e lse very qui ckly it will just be drawing white on
white.

At this po int I imagin e somebody is muttering that all this is
nice, but what can we do with it bes ides play Video Ease l type games?

Ah hah! Glad you asked . That PRESET data we assembled was
not just an academic study. This is our color-tex ture PALETTE from
whi ch we shall judic iously extract wh at we need to create scenes with
a quality that is unique to the graphics of Mode 8 .

The time has now come to take a look at Program 5 , the PIC TUR8
program. This program is spec ifically des igned for draw ing a pic ture in
Mode 8 graphics, a lthough it would be a simple task to modify it for
any other graphics mode. The spec ific example picture in this ve rsion
of the program is defined entirely within the PRINT and DATA
sta tements starting at line 1000. The program sta tements befo re line
1000 are fairly general, with the exception of the Graphics mode and
SETCO LO R ass ignmen t va lues . If another G raphics mode is used,
where the COLO R reg ister va lues could be more than just 0 or 1,
then the error detection sta tements in lines 390 and 590 must be
changed .

Since some h ave the C TIA chip and o thers have the G TIA
chip, this program has been des igned to displ ay the proper co lors in
either case. T o do thi s, the program asks which chip is being used a t
line 330.

A great simplifi ca tion technique is used here, where the picture
DATA is separated in to two major functions: AREA and FILL. The
AREA DATA starts at line 3000 and defin es the geometry in te rms of
X, Y coordinates. The FILL DATA starts a t line 2000 and determines
the type of painting technique, and the color- tex ture pattern that we
will use to fill the po lygon A REA.

At line 360 in the program the first numeric va lue is read from a
line of AREA DATA and is ass igned to the va ri able FILL. If FILL = 999
then the pic ture is complete and the program stops reading data and
jumps to line 1000.

If the variable FILL is a pos itive number, then the program will
eventually use it to read the appropria te fill data using the program
logic a t lines 550 and 560. For most cases this will probably be the
condition. H owever, there are certain cases where this AREA -FILL
split-up becomes excessive ly cumbersome and artificial. Therefore , a
provision h as been made to a llow on e to bypass the reading of separate
fill data for these cases. This bypass option is enac ted when the numeric
value read fo r the FILL va ri ab le is negative .

125

Chapter Three. Advanced Graphics And Game Utilities.

For example , line 380 a llows the program to fa ll through if FILL =
7 and to read the nex t data va lue as the va riable RA. It th en assigns
the pos itive va lue of FILL to the vari abl e type and lets the POL Y8
subroutine handle it direc tly in line 405.

Another spec ial provisi on has been implemented, allow ing the
use of multiple data sequences on th e sa me line. After it re turns from
the POL Y8 routine, the program reads the n ex t data value at line
410 . If it reads a va lue of99 , then that te lls it to go back and read
ano ther se t of data without increnlenting the AREA DATA pointer.
Otherwise , it will increment the AREA DAT A po inter in lines 340
and 350 before reading the next data set.

If the vari abl e FILL is not -7 then it reads the nex t data va lue
and assigns it to t he variable NP, at line 470. The program then
proceeds to read in the next NP amount of number pairs which it
promptly stores in the XO, yo arrays , at line 496.

O n line 510 FILL is checked one more time and , if it is a negat ive
number , TYPE is se t eq ual to that pos it ive va lue of FILL and the

program GOSUBs direcdy to the POL Y8 subroutine. Otherwise, the
program reads the va lue for the type va riable from the fill DATA
sta tement, as per line 550 and 560. IfTYPE = 7 then it simply reads
the next data va lue and se ts the color in line 600. It then jumps to
line 700 where it reads the next data value. Here, too, a value of99
will enable it to keep reading fill data without jumping back to the
AREA DATA and incrementing the AREA pointer.

If TYPE is not equal to 7, then it checks whether TYPE = 2, at
line 620. If it is, then the next two data va lues are ass igned to the
variables PB and PC, for the POL Y8 rout ine. If TYPE is not equal to
2, then the program directly reads the va lues for the variables RA,
P(O), P(l), P(2) etc., and then GOSUBs to the POLY8 routine.

Suppose we take a look a t some of the data and see h ow the
program uses it . The AREA DATA starts at line 3000. O rigin ally
there were two items to be pai nted by the data that was in lines 3010
and 3020. Then I decided to move these items down in the sequence.
Instead of changing all the line numbers of the data statements, I just
inserted two "dummy" statements th at don't really change anything.
They both just specify a -7 code for the FILL variab le , which tells the
program to change the COLOR ass ignment. The next number is I , so
the program just implements the command COLOR I , which was
previously done anyway. The fin al zero in the data stateme nt terminates
the sequence. The remaining alphanumeric string is stored as if it
were string data, but it is never read and has been inserted only for
REMark type information.

126

Chapter Three. Advanced Graphics And Game Utilities.

The first rea l area pa inting is done in line 3030. The end string
te lls us that this is AREA 3 DATA, and that it is supposed to represent
city walls. The first number, 8 , is the value for the variable FILL. This
will cause the program to read the fill data se t at line 2080 , which is
"Bar Red," according to its alphanumeric labe l. The first number in
line 2080 sets TYPE = 1 for Bar Painting. The second number se ts
RA = 0 for vertica l lines . The third number se ts P(O) = 2 fo r even
parity check. The n ext two numbers se t P(1) = -1 to move one space
with parity check, and P(2) = 3 to then move 3 spaces without parity
check. The next number se ts P(3) = 0 to end the move command
sequence . The final number of ze ro ends the DATA sequence for that
line .

Going back to line 3030 , the second number se ts NP = 4, and
the next e ight numbers se t the fo ur pair of X, Y va lues in to the X() ,
yo arrays. The fin al ze ro ends the DATA sequence for that line .

The next area data on line 3040 has a similar format, but it draws
us a blue ocean with the fill data at line 2020. The area data a t line
3050 is interesting. W e can see that it has exactly the same numbers
as the ocean area data, except fo r its first FILL number of9. It is
covering exactly the same screen area as the "ocean" da ta, but this
data will provide a watery looking refl ec tion effec t. FILL DATA
number 9 is ca ll ed "receding bars." It has T YPE = 2 fo r Pixe l Painting.
Thus, the next two numbers must define PB = 1 and PC = - 1. The
va lue of PB = 1 spec ifies that there will be an uneven pi xe l-on
probability across the polygon, and that PC must be used to specify it .
The value of PC = -1 spec ifies that the initi al line will be drawn with
all pixels on, the fin al line will be drawn with all pixels off, and that
the pixel proportion will vary evenly in be twee n. An RA = 100
spec ifies ho ri zontal lines , a P(O) = 0 spec ifies no parity check, and the
remaining lines spec ify the number of spaces .

This example is interes ting fo r a number of reasons. First, unlike
the o ther cases, the line spac ing sequence is non -repetiti ve . Second ,
the optical effec t of di stance is achieved in two ways: the ch anging
line spacing, and the changing pixel-on proportions.

The next three area data sta temen ts are interesting because they
all work the same screen area , but with a di fferent FILL spec ification.
First, line 3060 ca lls for FILL = 0, which is the fill data at line 2000.
This data is ca lled the "ho ri zontal erase r. " The first va lue a t line 2000
spec ifies TYPE = 7, RA = 0 , which turns COLOR off. Then a 99
continue leads to TYPE = 1 Bar Pa inting, RA = 100 hori zonta l lines ,
P(O) = 0, P(l) = 1, P(2) = 0 fo r no pari ty chec k, I ines drawn
immediately adj acent with no spaces in between. Another 99 to

127

Chapter Three. Advanced Graphics And Game Utilities.

continue, and then TYPE = 7, RA = 1 to rese t the COLOR register
for further painting.

Unlike the lower resolution modes where we can simply over-plot
previously-colored pixels with new pixels colored differently, in Mode
8 graphics all the previously colored pixels must be turned off if we
want to insert a specific color pattern.

Line 3070 then inserts the primary color-texture pattern for this
area, and line 3080 then adds, on top of it , some additional random
texturizing effect to eliminate a flat repet itiveness.

The full power of Mode 8 hi -resolution graphics is ca lled for in
lines 3180 to 3220. Lines 31 80 and 3190 draw the small sa ilboat ,
where the Mode 8 pixel size is needed to provide the proper proportions
for th is small image .

Then line 3200 turns the color register off with a -7 ,0 command.
The 99 continue then leads to a va lue of -4 , which specifies a direct
TYPE = 4 command to just PLOT individual X, Y pixel coordinates.
An NP= 10 specifies the 10 X, Y coordinate pairs to be PLOTted in
the boat, to represent the two individuals. Then on line 3210 the
COLOR register is turned back on .

The boat wake is drawn with line 3220 data which aga in turns
the COLOR off with the -7,0 data va lues. The 99 continue leads to a
-5 fo r a direct TYPE = 5 command to just PLOT-ORA WTO lines,
and the NP = 8 va lue specifies the eight X, Y pairs to draw the four
lines.

Of course, the mountain itse lf is the biggest surprise. But I won't
spoil it for you by describing it h ere. Run it and see fo r yourself. With
the previously an alyzed sections as background, you should be able to
decipher the DATA code for these last elements with little difficulty .

There are quite a few game programs for sa le that advertise the
use of high resolution graphics with much enthusiasm. These include
adventure programs, space programs, and utility programs. Often
these are advertised in the magazines, with multi -colored dramatic
pic tures. However, when we ac tually see how they use Mode 8 to

illustrate their programs, it usually doesn't even come close to the
dramatic pictures in the adve rti sements. If you have run this program
and seen this sample picture, then you know the programs presented
here can be used to close that gap between the drama of the adverti sing
illustrations and the drama of the program illustra tions.

It may be of interest to note that Paul Twitchell 's book, The
Tiger's Fang, was a most appropriate source of inspiration to
demonstrate these dramatic graphic techniques. This book is the story
of one of the grea test adventures of all time.

128

Chapter Three. Advanced Graphics And Game Utilities.

One very useful TYPE option which was no t demonstra ted in
this example picture is the case where TYPE = 3, to just draw the
boundary of an area. This option can be used in the initial picture
deve lopment phase to outline the area boundari es .

Naturally, we will start crea ting our overall pic ture on a grid
paper, with the screen coordinates marked off on the horizontal and
vertical edges. W e ske tch out our picture and then outline our major
areas with a straightedge and n ote the X, Y vertex coordinates of the
perimeters. High -resolution details must be "blown up" on another
shee t of grid paper so we can see each indi vidual pi xe l of the ir form .

O nce we have a good layout fo r our picture geometry , then we
can start constructing our AREA DATA statements after line 3000,
in line increments of 10. If we spec ify the first numeric value to be -3,
then we will see what our geometric outlines look like on the screen
without using an y fill DATA sta tements.

You can see what this looks like by changing the first numeric
value to -3 in all the DATA statements fro m line 3030 to 3190 in the
PICTUR8 program.

You are now on your own to use these programs or modify them
as you see fit.

129 /

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 1 . Multi-Colored Graphics In Mode 8.

18000 REM ===========================
18005 REM ={4 SPACES}POLY8 Subroutine

{5 SPACES}=
18010 REM Polygon Painting For{3 SPACES}=
18015 REM = BASIC Graphics Mode 8
18020 REM ===========================
18023 REM ={10 SPACES}by;{12 SPACES}=
18024 REM ={7 SPACES}Phil Dunn{9 SPACES}=
18025 REM ={5 SPACES}12 Monroe Ave.

{6 SPACES}=
18026 REM Hicksville, NY 11801{3 SPACES}=
18030 REM ===========================
18035 REM Enter with the value for
18040 REM TYPE= Type of Painting
18045 REM "{3 SPACES}= 1 for Bar Painting
18050 REM "{3 SPACES}= 2 for Pi>:el Painting
18053 REM "{3 SPACES}= 3 for a Line Boundary
18055 REM "{3 SPACES}= 4 to PLOT X(i),Y(i)
18057 REM "{3 SPACES}= 5 TO PLOT X(i),Y(i),
18058 REM. and DRAWTO X(i+l),Y(i+l)
18060 REM "{3 SPACES}= 6 to DRAW TO X(i),Y(i)
18065 REM "{3 SPACES}>: 7 to COLOR RA
18070 REM •.....•..•..•.•.•.......•. _
18075 REM For TYPE = 1 to 6,
18080 REM enter with the values ...
18085 REM NP = No. of Vertex Points.
18087 REM. for i=l to NP:
18090 REM X(i)= DIM Vertex X values
18095 REM Y(i)= DIM Vertex Y values
18100
18105
18110
18115

REM••.•• _
REM For TYPE 1 and 2 Painting
REM also
REM RA

18120 REM "
18125 REM "
18130 REM "

enter values for ..•
Angle X/Y Ratio
o for Vertical
+-1 for +-45 degrees
100 for Horizontal

18135 REM P()= DIM array for spacing
18140 REM .Parity Color-Lock Option:
18145 REM .P(O)= 0 for no parity
18150 REM .P(O)= 1 for odd parity
18155 REM .P(O)= 2 for even parity
18160 REM .for i=l to something:
18165 REM .ABS(P(i»= Spaces to move
18170 REM .SGN(P(i»=+l, no parity
18175 REM .SGN(P(i))=-1, parity lock
18180 REM .(4 SPACES}P(i) = 0 to end data
18185 REM •.•..........•.••........••
18190 REM For TYPE 2 Pixel Painting

130

Chapter Three. Advanced Graphics And Game Utilities.

18195 REM also enter values for ...
18200 REM PB & PC For Pixel Blending
18205 REM * Set PB < 1 for an even
18210 REM. blend of active and
18215 REM. inactive pixels.
18220 REM . PB= the proportion of
18225 REM. active pixels. PB)O
18230 REM * Set PB) =1 for an uneven
18235 REM. blend across the area.
18240 REM. area. Then ...
18245 REM . If PC) O then the start
18250 REM .{4 SPACES}color is inactive and
18255 REM .{4 SPACES}the end is active.
18260 REM • If PC < O then the start
18265 REM .{4 SPACES}color is active and
18270 REM .{4 SPACES}the end is inactive.
18275 REM. When ABS(PC)=1 then the
18280 REM .{4 SPACES}start color phases out
18285 REM .{4 SPACES}evenly to the end.
18290 REM. When ABS(PC»1 then the
18295 REM .{4 SPACES}start color phases out
18300 REM .{4 SPACES}more slowly .
18305 REM. When ABS(PC) < 1 then the
18310 REM . {4 SPACES}start color phases out
18315 REM .{4 SPACES}more rapidly.
18320 REM• •••...••..
18325 REM For TVPE = 7, to COLOR RA,
18330 REM enter with RA = 0 or 1
18335 REM • ...•......
18340 REM S()= DIM array used here
18345 REM T()= DIM array used here
18350 REM U()= DIM array used here
18355 REM V()= DIM array used here
18360 REM Variable names used •.•
18365 REM CO , C1,C2,Z3,Z4,Z5,Z9,
18370 REM X1 , V1,X2 , Y2,CA,SA
18375 REM K , L,M,N,IM,IP,MAX,MIN,NOW
18380 REM ===========================
18400 CO=0:C1=1:C2=2:Z9=999
18405 IF TVPE=3 THEN PLOT X(C1),V(C1):FOR N=

C2 TO NP:DRAWTO X(N),V(N):NEXT N:DRAWT
o X(C1),V(C1):RETURN

18410 IF TVPE=4 THEN FOR N=C1 TO NP:PLOT X(N
),V(N):NEXT N:RETURN

18415 IF TVPE=5 THEN FOR N=C1 TO NP STEP C2:
PLOT X(N),V(N):DRAWTO X(N+C1),V(N+C1):
NEXT N:RETURN

18420 IF TVPE=6 THEN FOR N=C1 TO NP:DRAWTO X
(N),V(N):NEXT N:RETURN

18425 IF TVPE=7 THEN COLOR RA:RETURN

131

Chapter Three . Advanced Graphics And Game Uti lit ies.

18430 Z5=0.5:IF RA=C2 THEN Z5=0.55
18435 IF RA=-C2 THEN Z5=0.18
18440 Z3=-Cl:IF RA<>CO THEN Z3=SGN(RA)
18445 SA=SQR(I/(I+RA~C2»*Z3:IF ABS(SA)<0.2

THEN SA=CO
18450 CA=SQR(I-SA A C2)
18455 REM Rotate X(),Y() to U(),V,):
18460 FOR M=Cl TO NP
18465 U(M)=X(M)*CA+Y(M)*SA
18470 V(M)=-X(M)*SA+Y(M)*CA:NEXT M
18480 FOR M=Cl TO NP:N=M+Cl:IF N>NP THEN N=C

1
18485 REM Calculate slopes S() amd Y axis in

tercepts T ()
18490 IF U(M)=U(N) THEN S(M)=Z9:GOTO 18510
18495S(M)=(V(N)-V(M»/(U(N)-U(M»:T(M)=V(M)

-S(M)*U(M)
18500 IF ABS(S(M»>Z9 THEN S(M)=Z9
18505 IF ABS(S(M»(Cl/Z9 THEN S(M)=CO
18510 NEXT M:MAX=-Z9:MIN=Z9:FOR M=Cl TO NP:Z

3=V(M)
18515 IF MAX<Z3;THEN MAX=Z3
18520 IF MIN>Z3 THEN MIN=Z3:N=M
18525 NEXT M:MXMN=MAX-MIN:NOW=MIN:IM=N-C1:IF

IM<Cl THEN IM=NP
18527 IP=N+Cl:IF IP>NP THEN IP=C1
18530 IF P(Cl)=CO THEN P(Cl)=Cl:P(C2)=CO
18535 M=Cl:IF P(M)<CO THEN M=Cl
18540 GOTO 18675
18545 REM Calculate intercepts ...
18550 IF S(N)=Z9 OR S(N)=CO THEN Z3=U(N):GOT

o 18560
18555 Z3=(NOW-T(N»/S(N)
18560 IF S(IM)=Z9 OR S(IM)=CO THEN Z4=U(IM):

GOTO 18575
18565 Z4=(NOW-T(IM»/S(IM)
18570 REM Rotate U(},V() to X(),Y():
18575 Xl=INT(Z3*CA-NOW'SA+Z5)
18580 IF NOW<>MIN AND P(M»=CO THEN 18595
18585 IF P(CO)=Cl THEN IF Xl=C2*INT(Xl/C2) T

HEN Xl=Xl+Cl
18590 IF P(CO)=C2 THEN IF Xl<>C2.INT(Xl/C2)

THEN Xl=Xl+Cl
18595 Yl=INT(Z3*SA+NOW*CA+Z5)
18600 Y2=INT(Z4*SA+NOW*CA+Z5)
18605 IF SA=CO THEN X2=Z4.CA
18610 IF SA<>CO THEN X2=Xl+(Y2-Yl)'RA
18615 REM Bar Painting •..............
18620 IF TYPE=1 THEN PLOT Xl,Yl:DRAWTO X2,Y2

:GOTO 18660

132

Chapter Three. Advanced Graphics And Game Utilities.

18635 REM Pixel Painting •...
18643 IF PB < Cl THEN PR=PB:GOTO 18650
18645 PR=(CNOW-MIN)/MXMN) ~ABSCPC):IF PC<CO T

HEN PR=CI-PR
18650 GOSUB LINEP
18655 REM
18660 NOW=Yl*CA-Xl*SA
18665 REM Increment NOW for next bar
18670 NOW=NOW+ABSCPCM»:M=M+Cl:IF PCM)=CO TH

EN M=Cl
18675 IF NOW <VCIP) THEN 18690
18680 IF V(IP)=MAX THEN RETURN
18685 N=IP:IP=IP+Cl:IF IP >NP THEN IP=Cl
18690 IF NOW < VCIM) THEN GOTO 18550
18695 IF VCIM)=MAX THEN RETURN
18700 IM=IM-Cl:IF IM < Cl THEN IM=NP
18705 GOTO 18550
18710 REM ===========================

133

Chapter Three. Advanced Graphics And Game Utili ties.

PROGRAM 2. Multi-Colored Graphics In Mode 8.

18750 REM LINEP Subroutine
18751 REM by ... Phi I Dunn
18755 REM Draws a line pixel by pixel
18760 REM With a probability to plot
18765 REM or skip each pixel.
18770 REM Xl,Vl = start point
18775 REM X2,V2 = end point
18780 REM PR = probability to PLOT
18785 REM" >=0 and (=1
18790 CO=0:Cl=1:C255=255:C230=230:C198=198
18795 C92=92:C97=97:CI03=103:CI06=106:C120=1

20
18BOO K=X2-Xl:L=V2-Vl:Z3=ABS(K):Z4=ABS(L):BI

=PR*C255
18805 IF K=CO AND L=CO THEN RETURN
18810 IF K<CO THEN 18840
18815 LINE$(C92,C92)=CHR$(C230):REM INC
18820 LINE$(C97,C97)=CHR$(CO)
18S25 LINE$(CI03,CI03)=CHR$(CI)
18830 LINE$(CI06,CI06)=CHR$(C230)
18835 GO TO 18860
18840 LINE$(C92 ,C92) =CHR$(C198):REM DEC
18845 LINE$(C97,C97)=CHR$(C255)
18850 LINE$(CI03,CI03)=CHR$(CO)
18855 LINE$(CI06 ,CI06)=CHR$(C198)
18860 LINE$(C120,C120)=CHR$(C230):IF L<CO TH

EN LINE$(C120~C120)=CHR$(C198)
18865 IF Z3=CO THEN Z3=CI/C255
18870 IF Z4=CO THEN Z4=CI/C255
18875 IF Z3)=Z4 THEN K=Z3:V2=Z3/Z4:X2=1:IF V

2 } C255 THEN V2=C255
18880 IF Z3<Z4 THEN K=Z4:X2=Z4/Z 3:V2=1:IF X2

>C255 THEN X2=C255
18883 IF K<l THEN RETURN
18884 POKE 752,Cl
18885 L=USR(ADRCLINE$),r,Xl,Yl,X2,V2,BI)
18890 RETURN
18895 REM
18900 DIM LINE$CI36):RESTORE 18910:LINEP=187

90
18905 FOR K=l TO 136:READ L:LINE$CK,K)=CHR$(

L):NEXT K:RETURN
18910 DATA 104,104,133,211,104,133,210,104,1

33,86
18915 DATA 104,133,85,104,104,133,84,104,104

, 133
18920 DATA 209,170,104,104,133,208,168,104,1

04,133

134

Chapter Three. Advanced Graphics And Game Utilities.

18925 DATA 207,173,10,210,24,101,207,144.46.
138

18930 DATA 72,152,72,165,86,72,165,85,72.165
18935 DATA 84,72,162,96,169,11.157,66,3,169
18940 DATA 0,157.72,3,157,73,3,169,1,32
18945 DATA 86,228,104,133,84,104.133,85,104,

133
18950 DATA 86,104,168,104,170,202,208,19,165

,209
18955 DATA 170,230,85,165,85,201,0,208,8,165
18960 DATA 86,201,1,240,30,230,86,169,255,19

7
18965 DATA 208,240,8,136,208,5,165,208,168,2

30
18970 DATA 84,198,210,208,162,169,0,197,211,

240
18975 DATA 4,198,211,240,152,96

135

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 3. Multi-Colored Graphics In Mode 8.

0100 *=$5000
0110 ;A=USR(LOC,N,X,Y,NX,NY,BI)
0120 ;DRAWS A LINE WITH EACH PIXEL
0130 ;PROBABILITY-TESTED TO BE
0140 ;ILLUMINATED OR NOT
0150
0160 NH=$D3 ;NO.POINTS-HI BYTE
0170 NL=$D2 ;NO.POINTS-LO BYTE
0180 XH=$56 ;CURSOR X -HI BYTE
0190 XL=$55 ;CURSOR X -LO BYTE
0200 Y=$54 ;CURSOR Y
0210 NX=$Dl ;X COUNT
0220 NY=$DO ;Y COUNT
0230 BI=$CF ;PROB. BIAS
0240 RANDOM=$D20A;RANDOM # = 0-255
0250 CIO=$E456 ;CENTRAL I/O
0260 ICCOM=$342 ;IoCb COMmand to CIO
0270 ICBLEN=$348 ;IoCb Buffer LENgth
0280 CPBINR=$B ;Comnd.Put BINary Rec.
0290
0300
0310
0320
0330
0340
0350
0360

PLA
PLA
STA NH
PLA
STA NL
PLA
STA XH

0370 PLA
0380 STA XL
0390 PLA
0400 PLA
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530

STA Y
PLA
PLA
STA NX
TAX
PLA
PLA
STA NY
TAY
PLA
PLA
STA BI

;CLEAR STACK

;N - HIGH BYTE

;N - LOW BYTE

;X -HIGH BYTE

;X -LOW BYTE

;Y -LOW BYTE

;X COUNTER
;TEMP X COUNTER

;Y COUNTER
;TEMP Y COUNTER

;PROB. BIAS

0540 LOOP LDA RANDOM
0550 CLC ;CLEAR CARRY
0560 ADC BI ;ADD BIAS W. CARRY
0570 BCC DOX ;BYP.IF CARRY NOTSET

136

Chapter Three. Advanced Graphics And Game Utilities.

0580 TXA
0590 PHA ;SAVE TEMP x
0600 TYA
0610 PHA jSAVE TEMP Y
0620 LOA XH
0630 PHA jSAVE CURSOR XH
0640 LOA XL
0650 PHA jSAVE CURSOR XL
0660 LOA Y
0670 PHA jSAVE CURSOR Y
0680 LOX #6*$10 jOFFSET TO IOCB#6
0690 LOA #CPBINR;Comd.Put BINary Rec
0700 STA ICCOM,X
0710 LOA #0
0720 STA ICBLEN,X
0730 STA ICBLEN+l,X
0740 LOA #1 ;COLOR Reg.#
0750 JSR CIO ;Use CIO to PLOT
0760 PLA
0770 STA Y ;CLAIM CURSOR Y
0780 PLA
0790 STA XL ;CLAIM CURSOR XL
0800 PLA
0810 STA XH ;CLAIM CURSOR XH
0820 PLA
0830 TAY jCLAIM TEMP Y
0840 PLA
0850 TAX jCLAIM TEMP X
0860 j
0870 OOX OEX jOECR. TEMP. X
0880 BNE OOY ;BYP.& 00 Y IF < >0
0890 LOA NX
0900 TAX jRESET TEMP. X
0910 INC XL ; I NCR. CURSOR X LOC
0920 LOA XL ;LOAO ACCUM. W. XL
0930 CMP #$00 ;COMPARE WITH 0
0940 BNE OOY j BYP . IF NOT SAME
0950 LOA XH
0960 CMP #$01 ;IS HI BYTE=l?
0970 BEQ RTS ; IF IT IS, RETURN
0980 INC XH ; INC. HI BYTE
0990 ;
1000 OOY LOA #$FF
1010 CMP NY jCOMPARE NY WITH 255
1020 BEQ COUN jBYP.IF=O (HOR.LINE)
1030 OEY jOEC.TEMP Y
1040 BNE COUN ;BYP.& 00 COUN I F < >0
1050 LOA NY
1060 TAY jRESET TEMP . Y
1070 INC Y jSHIFT CURSOR Y LOC

137

Chapter Three. Advanced Graphics And Game Utilities.

1080 ;
1090 COUN DEC NL ;COUNT PIXEL NO.
1100 BNE LOOP ;KEEP PLOTTING IF< >0
1110 LDA #$00
1120 CMP NH ; IS NH ZERO?
1130 BEQ RTS ; IF IT IS, RETURN
1140 DEC NH ;DECREMENT NH
1150 SEQ LOOP ; & LOOP
1160 RTS RTS ;RETURN
1170 .END

138

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 4. Multi-Colored Graphics In Mode 8.

100 GRAPHICS 0
110 ':> " ============================="
120 ':> " ={9 SPACES}PALETT8{11 SPACES}="
130 ':> " ={5 SPACES}A Color-Te>:ture

{7 SPACES}="
140 ? " ={3 SPACES}Development

{4 SPACES}="
Program

150 ? " = For The POLY8 Subroutine ="
160 ':> " ============================="
170 REM ={11 SPACES}by:{13 SPACES}=
180 REM ={8 SPACES}Phil Dunn{10 SPACES}=

190 REM ={6 SPACES}12 Monroe Ave.{7 SPACES}=
200 REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES}=
210 REM =============================
270 CO=0:Cl=I:C2=2:C3=3:C4=4:C5=5:C6=6:C7=7:

C8=8:C9=9:CI0=10
275 C99=99:AREA=1050:NP=C4:POLY8=18400:DETRA

P=40000
280 DIM X (C4), Y (C4), P (CI0), S (C4), T (C4), U (C4)

,V (C4), CO (C3), LU (C3)
284
285
290
295
300

? :? :':> :':> "{4 SPACES}Reading data ••. "
GOSUB 18900:REM SETUP LINEP SUB.
REM =============================
? :? :? "GRAPHICS MODE (6 to 8)
TRAP 295:INPUT MODE:TRAP DETRAP

IF MODE<C6 OR MODE>C8 THEN 295
GRAPHICS MODE

" . ,

305
310
315
320

IF MODE=C6 OR MODE=C7 THEN E=O.49:F=0.49
IF MODE=C8 THEN E=Cl:F=Cl

330 REM =============================
360 REM Initial color assignment ...
370 CO(CO)=CO:LU(CO}=CO
380 CO(Cl)=C2:LU(Cl)=C8
390 CO(C2)=12:LU(C2)=CI0
400 CO(C3)=C9:LU(C3)=C4
410 IF MODE<>C8 THEN 500
420 CO(CO)=CO:LU(CO)=CO
430 CO(Cl)=CO:LU(Cl)=CO
440 CO(C2)=CO:LU(C2)=12
450 CO(C3)=CO:LU(C3)=CO
460 SETCOLOR CO,CO(Cl),LU(Cl)
470 SETCOLOR Cl,CO(C2),LU(C2):REM GRAPHC
480 SETCOLOR C2,CO(C3),LU(C3):REM BACKGR
490 SET COLOR C4,CO(CO),LU(CO):REM BORDER
500 COLOR Cl
510 REM•....
520 REM DATA for area numbers:

139

Chapter Three. Advanced Graphics And Game Utilities.

530 REM -1
540 REM -2

PLOT
DRAW TO

550 REM -9 end of data
560 REM One number per DATA statement
570 DATA -1,5,20 ,-2,5,40
580 DATA -1,65,20 ,-2,70,20,-2,65,40,-2,70,40
590 DATA -1,130,20,-2,135,20,-2,135,40,-2,13

0,40,-1,130,30,-2,135,30
600 DATA -1,200 ,40,-2,200,20,-2,195,30, -2 ,20

2,30
610 DATA -1,265 ,20,-2,260,20, -2 ,260,30, -2 ,26

5,30,-2,265,40,-2,260,40
620 DATA -1,2,70,-2,2,90,-2,7,90,-2,7,80,-2,

2,80
630 DATA -1,65,70 ,-2,70,70,-2,65,90
640 DATA -1,130,70,-2,135,70,-2,130,90,-2,13

5,90, -2 ,130,70
650 DATA -1,200 ,90, -2 ,200,70,-2,195,70, -2 ,19

5,80,-2,200,80
660 DATA -1,259 , 70,-2,259,90,-1,263,70,-2,26

3,90,-2,267,90,-2,267,70,-2,263,70
670 DATA -1,3,120,-2 ,3,140,-1,7,120, -2,7,140
680 DATA -1 ,64,120, -2 ,64,140,-1,67,120,-2,72

,120,-2,67,140,-2,72,140
690 DATA -1,129 ,120,-2,129,140,-1,132,120, -2

, 137, 120, - 2, 137, 140, - 2, 132, 140, - 1 , 132, 13
0,-2,137,130

700 DATA -1,194,120,-2,194 ,140, -1,200,140 ,-2
,200,120,-2,197,130,-2,202,130

710 DATA -1,259 ,120,-2,259,140,-1,267,120, -2
,263,120,-2,263,130,-2,267,130,-2,267,14
0,-2,263,140

720 DATA -9 ,-9,-9
730 REM .•..•........................
740 REM Read DATA and draw numbers
745 RESTORE 570
750 READ I,X,V
760 IF I=-Cl THEN PLOTX*E,V*F
770 IF I=-C2 THEN DRAWTO X*E,V*F
780 IF I<>-C9 THEN 750
790 REM .•...........................
800 REM DATA for areas: XL,VL,XU,VU
810 DATA 10,45,60,2
820 DATA 75,45,125,2
830 DATA 140,45,190,2
840 DATA 205,45,255,2
850 DATA 270,45 ,317,2
860 DATA 10,95,60,50
870 DATA 75,95,125,50
880 DATA 140,95,190,50

140

Chapter Three. Advanced Graphics And Game Utilities.

890 DATA 205,95,255,50
900 DATA 270,95,317,50
910 DATA 10,145,60,100
920 DATA 75,145,125,100
930 DATA 140,145,190,100
940 DATA 205,145,255,100
950 DATA 270,145,317,100
960 REM•.................
970 REM ========================
980 REM = NOTE: To RESET the
990 REM ={3 SPACES}input sequence{5 SPACES}=
1000 REM back to the "AREA"
1010 REM ={6 SPACES}request{9 SPACES}=
1020 REM = RETURN the value 99
1030 REM ={3 SPACES}to any question

{4 SPACES}=
1040 REM ========================
1050? :? :? "Which AREA (0-15)";
1060 TRAP AREA: INPUT A:TRAP DE TRAP
1070 IF A<CO OR A > 15 THEN GOTO AREA
1080 IF A=CO THEN 1660
1090 RESTORE 800+A'CI0
1100 READ XL,YL,XU,YU
1110 X(Cl)=XL*E:Y(Cl)=YL*F
1120 X(C2)=XL.E:Y(C2)=YU*F
1130 X(C3)=XU'E:Y(C3)=YU*F
1140 X(C4)=XU*E:Y(C4)=YL.F
1150 REM•.................
1160 ? "CREATE, or PRESET (lor 2)";
1170 TRAP 1160:INPUT I:TRAP DE TRAP
1180 IF I=C99 THEN GOTO AREA
1190 IF I=C2 THEN 1900
1200 IF I< >Cl THEN 1160
1210 REM
1220? "Which TYPE of Painting;"
1230 ? "I=Bar, 2=Pixel, 7=COLOR ";
1240 TRAP 1220:INPUT TYPE:TRAP DETRAP
1250 IF TYPE=C99 THEN GO TO AREA
1260 IF TYPE=C7 THEN 1600
1270 IF TYPE=Cl THEN 1410
1280 IF TYPE<>C2 THEN 1220
1290 REM ============================
1300? "For Pixel Painting,"
1310? "What value for PB, (0-1)";
1320 TRAP 1310:INPUT PB:TRAP DETRAP
1330 IF PB=C99 THEN GO TO AREA
1340 IF PB < CO OR PB >Cl THEN 1310
1350 IF PB<Cl THEN 1420
1360 ? "What value for PC";
1370 TRAP 1360:INPUT PC:TRAP DE TRAP

141

Chapter Three. Advanced Graphics And Game Utilities.

1380 IF PC=C99 THEN GOTO AREA
1390 GO TO 1420
1400 REM ============================
1410? "For Bar Painting,"
1420 ? "What Angle XIV Ratio";
1430 TRAP 1420:INPUT RA:TRAP DE TRAP
1440 IF RA=C99 THEN GOTO AREA
1450 REM •••..•....•......•.•.••.•..•
1460? "P(O) Parity value (0-2)=";
1470 TRAP 1460:INPUT P:TRAP DE TRAP
1480 P(CO)=P:IF P<CO OR P>C2 THEN 1460
1490 IF P=C99 THEN GO TO AREA
1500 REM •..................•.•......
1510 1=1
1520? "What value for P(";I;") (O=end)";
1530 TRAP 1520:INPUT P:TRAP DE TRAP
1540 P(I)=P:IF P=C99 THEN GOTO AREA
1550 IF I=Cl AND P=CO THEN 1520
1560 IF P=CO THEN 1580
1570 I=I+Cl:GOTO 1520
1580 GOSUB POLV8:GOTO AREA
1590 REM ============================
1600? "What COLOR (MODE 8: l=on, O=off)";
1610 TRAP 1600:INPUT RA:TRAP DE TRAP
1620 IF RA=C99 THEN GOTO AREA
1630 GOTO 1580
1640 REM ============================
1650 REM REDEFINE THE COLORS ..•
1660 ? "Reg. No. = Hue, Luminance"
1670? "0=";CO(CO);",";LU(CO),"1=";Co(C1);",

";LU(Cl),"2=";Co(C2);",";LU(C2),"3=";Co
(C3); ", ";LU(C3)

1680? "Which COLOR Register (0-3) ";
1690 TRAP 1660:INPUT I:TRAP DE TRAP
1700 IF I=C99 THEN GoTo AREA
1710 IF I<CO OR I>C3 THEN 1660
1720 K=Co(I):L=LU(I):GoTO 1760
1730 IF STRIG(CO)=CO THEN 1660
1740 IF Co(I)=INT(K) AND LU(I)=C2*INT(L/C2)

THEN 1800
1750 CO(I)=INT(K):LU(I)=C2*INT(L/C2)
1760? "Reg. ";1;" = Color ";CO(I);" , Lumin

ance ";LU(I)
1770 J=I-Cl:IF J < CO THEN J=C4
1780 SETCOLOR J,Co(I),LU(I)
1790 CO(I)=INT(K):LU(I)=C2*INT(L/C2)
1800 IF STICK(CO)=C7 THEN K=K+Cl/Cl0:IF K>16

THEN K=CO
1810 IF STICK(CO)=ll THEN K=K-Cl/Cl0:IF K<CO

THEN K=15

142

Chapter Three. Advanced Graphics And Game Utilities.

1820 IF STICK(CO)=14 THEN L=L+C2/CI0:IF L)16
THEN L=CO

1830 IF STICK(CO)=13 THEN L=L-C2/CI0:IF L<CO
THEN L=14

1840 REM JoysticK 0 controls:
1850 REM Left-Rignt changes hue
1860 REM Foward-BacK changes luminance
1870 REM Press Trigger to fix selection
1880 GOTO 1730
1890 REM =======================~====
1900 ? "Which PRESET Number";
1910 TRAP 1900:INPUT I:TRAP DE TRAP
1920 IF I=C99 THEN GOTO AREA
1930 IF I<CO OR 1>66 THEN 1900
1950 RESTORE 2070+I*CI0
1960 READ TYPE
1970 IF TYPE=C7 THEN READ P:COLOR P:GOTO 2040
1980 IF TYPE=C2 THEN READ PB,PC
1990 READ RA,PO,P
2000 P(CO)=PO:P(Cl)=P:I=C2
2010 READ P:P(I)=P
2020 IF P=CO THEN GOSUB POLY8:GOTO 2040
2030 I=I+Cl:GOTO 2010
2040 READ P:IF P=C99 THEN 1960
2050 GO TO AREA
2060 REM PRESET DATA
2065 REM Color lables are accurate
2066 REM only for the CTIA chip, and
2067 REM are not correct for the GTIA
2070 DATA 7,0,99,1,0,0,1,0,99,7,1,0, ERASER=

o
2080 DATA
2090
2100
2110
2120
2130
2140

DATA
DATA
DATA
DATA
DATA
DATA

l,O,O,l,O.O,WHT=l
l,O,I,-2,O,O,BLU=2
I,O,2,-2,O,O.BRN=3
I,O,O,3,O,O,DARK BRN VRT=4
l,O,O,I,2,O,O,GRN&ORG VRT=5
l,O,l,-I,3,O,O,GRN VRT=6
I,O,2,-l,3,O,O,RED VRT=7

2150 DATA l,I,0,2,0,0,DK GRY=8
2160 DATA l,l,0,3,O,O,DK GRY DIA=9
2170 DATA 1,2,I,-2,O,O,GRN=10

2180 DATA 1,2,2,-2,O,O,RED=11
2190 DATA 1,2,l,-I,-2,O,O,LT GRN DIA=12
2200 DATA l,2,2,-l,-2,0,0,PNK DIA=13
2210 DATA l,2,I,-2,-3,O,O,GRN .DIA=14
2220 DATA 1,2,2,-2,-3,O,O,RED DIA=15
2230 DATA 1,3,O,2,O,O,NBY GRY=16
2240 DATA 1,3,O,l,2,O,O,GRY DIA=17
2250 DATA 1,4,I,-2,0,0,NBY RED=18
2260 DATA l,4,2,-2,O,0,NBY BLU=19

143

Chapter Three . Advanced Graphics And Game Util ities.

2270 DATA 1,4,1,-1,-2,0,0,PNK DIA=20
2280 DATA 1,4,2,-1,-2,0,0,GRN DIA=21
2290 DATA 1,0,1,-2,0,99,1,1,O,2,0,O,PNK-GRY

DIA=22
2300 DATA 1,O,2,-2,0,99,1,1,0,2,O,O,GRN-GRY

DIA=23
2310 DATA 1,0,1,-2,0,99,1,I,O,3,O,O,NBY BLU­

GRY=24
2320 DATA I,O,2,-2,O,99,l,I,O,3,O,O,NBY GRN­

GRY=25
2330 DATA I,O,2,-2,O,99,I,2,1,-2,O,O,PNK-GRY

=26
2340 DATA l,O,l,-2,O,99,I,2,2,-2,O,O,BLU-GRY

=27
2350 DATA l,O,I,-2,O,99,1,2,2,-I,-2,O,O,PNK­

GRY DIA=28
2360 DATA 1,0,2,-2,O,99,1,2,2,-I,-2,O,O,BLU­

GRY DIA=29
2370 DATA 1,0,1,-2,O,99,1,3,l,2,0,O,BLU-GRY

COR=30
2380 DATA I,O,2,-2,O,99,l,3,I,2,O,O,GRN-GRY

COR=31 ~.

2390 DATA l,O,1,-2,O,99,l,4,2,-2,O,O,NUB PNK
=32

2400 DATA I,O,2i-2,O,99,l,4,1,-2,O,O,NUB GRN
=33

2410 DATA 1,1,0,2,0,99,1,-I,O,2,O,O,GRN PLAI
D=34

2420 DATA 1,1,0,2,O,99,I,I,0,3,0,0,BRN DIA=3
5

2430 DATA 1,I,O,2,0,99,I,-1,O,3,0,0,RED-GRN­
BLU DIA=36

2440 DATA 1,I,I,3,O,99,1,-l,l,3,O,O,BLU CHKS
=37

2450 DATA l,I,2,3,O,99,I,-l,I,3,O,O,RED CHKS
=38

2460 DATA l,I,0,2,O,99,I,-2,I,-2,O,O,GR/RED
DIA=39

2470 DATA l,I,O,2,O,99,I,-2,2,-2,O,O,RED/GRN
DIA=40

2480 DATA 1,1,0,3,0,99, I, -2, I, -2, 0, 0, GRN GRI
D=41

2490 DATA 1,I,O,3,O,99,1,-2,2,-2,O,O,RED GRI
D=42

2500 DATA 1,I,O,2,O,99,1,-2,1,-I,-2,O,0,GRY
DIA = 43

2510 DATA 1, 1, 0,3, 0,99, 1, -2, 1, -1 , -2, 0, 0, GRN
KNIT=44

2520 DATA 1,1,0,3,0,99,1,-2,2,-I,-2,0,0,PNK
KNIT=45

144

Chapter Three. Advanced Graphics And Game Utilities.

2530·DATA 1,I,O,2,O,99,I,-3,O,2,0,0,BLU-RED
HOR=46

2540 DATA 1,I,O,2,O,99,1,3,O,I,2,0,0,BLU-RED
VRT=47

2550 DATA 1,I,O,3,O,99,l,3,0,2,O,O,PNK-BLU D
IAM=48

2560 DATA 1,1,0,3,O,99,1,3,O,l,2,O,O,PNK-BLU
DIAG=49

2570 DATA 1,1,0,2,O,99,1,4,1,-2,0,O,=NBY RED
DIAG=50

2580 DATA l,l,O,2,O,99,l,4,2,-2,0,0,=NDY GRN
DIAG=51

2590 DATA 1,2,1, -2, 0, 99,1, -2, 2, -2, 0, 0, GRY=52
2600 DATA 1,2,1,-2,0,99,1,3,O,2,0,0,GRN-GRY

VRT=53
2610 DATA 1.2,2,-2,0,99,1.3,0,2,0,0,PNK-GRY

VRT=54
2620 DATA 1.2,I,-2,O,99,1,4,1,-2,0,0.NBY GRN

VRT=55
2630 DATA 1,2,2,-2,0,99,1,4,2,-2,0,0,NBY PNK

VRT=56
2640 DATA 1,2,1,-2,0,99,1,4,2,-2,0,0,GRN VRT

=57
2650 DATA 1,2,2,-2,O,99,1,4,1,-2,0,O,PNK VRT

=58
2660 DATA 1,3,0,2,0,99.1,4,1,-2,0,0,PNK VRT

FAT=59
2670 DATA 1,3,0,2,0,99,1,4,2,-2,0,0,GRN VRT

FAT=60
2680 DATA 1,1,1,3,0,99,1,-1,1,3,O,0,DULL BLU

=61
2690 DATA 1,1,2,3,0,99,1,-1,2,3,0,0,DULL ERN

=62
2700 DATA 1,3,0,2,3,4,5,7,10,15,25,0,0,RECEE

DING=63
2710 DATA 2,0.5,1,100,0,2,3,4,5,7,10,15,25,0

,O,RECEEDING COLORS=64
2720 DATA 2,0.3,1,0,0.1,0,0,EVEN COLOR BLEND

=65

2730 DATA 2,1,1,1,0,1,0,0,UNEVEN BLEND=66
18000 REM ===========================
18005 REM ={4 SPACES}POLY8 Subroutine

{5 SPACES}=
18010 REM Polygon Painting For{3 SPACES}=
18015 REM = BASIC Graphics Mode 8
18020 REM ===========================
18023 REM ={10 SPACES}by;{12 SPACES}=
18024 REM ={7 SPACES}Phil Dunn{9 SPACES}=
18025 REM ={5 SPACES}12 Monroe Ave.

{6 SPACES}=

145

Chapter Three. Advanced Graphics And Game Utilities.

18026 REM Hicksville, NY 11801{3 SPACES}=
18030 REM ===========================
18035 REM Enter with the value for
18040 REM TYPE= Type of Painting
18045 REM "{3 SPACES}= 1 for Bar Painting
18050 REM "{3 SPACES}= 2 for Pixel Painting
18053 REM "{3 SPACES}= 3 for a Line Boundary
18055 REM "{3 SPACES}= 4 to PLOT X(i),Y(i)
18057 REM "{3 SPACES}= 5 TO PLOT X(i) .Y(i),
18058 REM. and DRAWTO X(i+1).Y(i+1)
18060 REM "{3 SPACES}= 6 to DRAWTO X(i),Y(i)
18065 REM "{3 SPACES}= 7 to COLOR RA
18070 REM

18075 REM For TYPE = 1 to 6,
18080 REM enter with the values ...
18085 REM NP = No. of Vertex Points.
18087 REM. for i=l to NP:
18090 REM X(i)= DIM Vertex X values
18095 REM Y(i)= DIM Vertex Y values
18100 REM•.......•

18105 REM For TYPE 1 and 2 Painting
18110 REM also enter values for •..

18115 REM RA
18120 REM "
18125 REM "
18130 REM "

Angle X/V Ratio
o for Vertical
+-1 for +-45 degrees
100 for Horizontal

18135 REM P()= DIM array for spacing
18140 REM .Parity Color-Lock Option:
18145 REM .P(O)= 0 for no parity
18150 REM .P(O)= 1 for odd parity
18155 REM .P(O)= 2 for even parity
18160 REM .for i=1 to something:
18165 REM .ABS(P(i»= Spaces to move
18170 REM .SGN(P(i»=+1, no parity
18175 REM .SGN(P(i»=-l, parity lock
18180 REM. {4 SPACES}P(i) = 0 to end data
18185 REM•.......•
18190 REM For TYPE 2 Pixel Painting
18195 REM also enter values for .•.
18200 REM PB & PC For Pixel Blending
18205 REM * Set PB < 1 for an even
18210 REM. blend of active and
18215 REM. inactive pixels.
18220 REM. PB= the proportion of
18225 REM. active pixels. PB>O
18230 REM * Set PB>=l for an uneven
18235 REM. blend across the area.
18240 REM . area. Then ...
18245 REM • If PC >O then the start

l46

Chapter Three. Advanced Graphics And Game Utilities.

18250 REM .{4 SPACES}color is inactive and
18255 REM .{4 SPACES}the end is active.
18260 REM . If PC<O then the start
18265 REM. {4 SPACES}color is active and
18270 REM .{4 SPACES}the end is inactive.
18275 REM. When ABS(PC)=l then the
18280 REM. {4 SPACES}start color phases out
18285 REM .{4 SPACES}evenly to the end.
18290 REM. When ABS(PC»l then the
18295 REM .{4 SPACES}start color phases out
18300 REM .{4 SPACES}more slowly.
18305 REM. When ABS(PC)<l then the
18310 REM .{4 SPACES}start color phases out
18315 REM .{4 SPACES}more rapidly.
18320 REM•.•..............
18325 REM For TYPE = 7, to COLOR RA,
18330 REM enter with RA = 0 or 1
18335 REM•.
18340 REM S()= DIM array used here
18345 REM T()= DIM array used here
18350 REM U()= DIM array used here
18355 REM V()= DIM array used here
18360 REM Variable names used .•.
18365 REM CO,C1,C2,Z3,Z4,Z5,Z9,
18370 REM X1,Y1,X2,Y2,CA,SA
18375 REM K,L,M,N,IM,IP,MAX,MIN,NOW
18380 REM ===========================
18400 CO=0:C1=1:C2=2:Z9=999
18405 IF TYPE=3 THEN PLOT X(C1),Y(C1):FOR N=

C2 TO NP:DRAWTO X(N),Y(N):NEXT N:DRAWT
o X(C1),Y(Cl):RETURN

18410 IF TYPE=4 THEN FOR N=C1 TO NP:PLOT X(N
),Y(N):NEXT N:RETURN

18415 IF TYPE=5 THEN FOR N=C1 TO NP STEP C2:
PLOT X(N),Y(N):DRAWTO X(N+C1),Y(N+C1):
NEXT N:RETURN

18420 IF TYPE=6 THEN FOR N=C1 TO NP:DRAWTO X
(N),Y(N):NEXT N:RETURN

18425 IF TYPE=7 THEN COLOR RA:RETURN
18430 Z5=0.5:IF RA=C2 THEN Z5=0.55
18435 IF RA=-C2 THEN Z5=0.18
18440 Z3=-C1:IF RA<>CO THEN Z3=SGN(RA)
18445 SA=SQR(1/(1+RA-C2»*Z3:IF ABS(SA)<0.2

THEN SA=CO
18450 CA=SQR(1-SA A C2)
18455 REM Rotate X(),Y() to U(),V():
18460 FOR M=C1 TO NP
18465 U(M)=X(M)*CA+Y(M)*SA
18470 V(M)=-X(M)*SA+Y(M)*CA:NEXT M
18480 FOR M=C1 TO NP:N=M+C1:IF N>NP THEN N=C1

147

Chapter Three . Advanced Graphics And Game Utilities.

18485 REM Calculate slopes S() amd Y axis in
tercepts T()

18490 IF U(M)=U(N) THEN S(M)=Z9:GOTO 18510
18495S(M) = (V(N)-V(M»/(U(N)-U(M»:T(M)=V(M)

-S(M)*U(M)
18500 IF ABS(S(M»>Z9 THEN S(M)=Z9
18505 IF ABS(S(M»<CI/Z9 THEN S(M)=CO
18510 NEXT M:MAX=-Z9:MIN=Z9:FOR M=Cl TO NP:Z

3=V(M)
18515 IF MAX<Z3 THEN MAX=Z3
18520 IF MIN>Z3 THEN MIN=Z3:N=M
18525 NEXT M:MXMN=MAX-MIN:NOW=MIN:IM=N - Cl:IF

IM<Cl THEN IM=NP
18527 IP=N+Cl:IF IP)NP THEN IP=Cl
18530 IF P(Cl)=CO THEN P(Cl)=Cl:P(C2)=CO
18535 M=Cl:IF P(M)<CO THEN M=Cl
18540 GOTO 18675
18545 REM Calculate intercepts ...

18550 IF S(N)=Z9 OR S(N)=CO THEN Z3=U(N):GOT
o 18560

18555 Z3=(NOW-T(N»/S(N)
18560 IF S(IM)=Z9 OR S(IM)=CO THEN Z4=U(IM):

GOTO 18575
18565 Z4=(NOW-T(IM»/S(IM)
18570 REM Rotate U(),V() to X(),Y():
18575 Xl=INT(Z3*CA-NOW*SA+Z5)
18580 IF NOW<>MIN AND P(M»=CO THEN 18595
18585 IF P(CO)=Cl THEN IF X1=C2*INT(XI/C2) T

HEN Xl=Xl+Cl
18590 IF P(CO)=C2 THEN IF Xl<>C2*INT(Xl/C2)

THEN Xl=Xl+Cl
18595 Yl=INT(Z3*SA+NOW*CA+Z5)
18600 Y2=INT(Z4*SA+NOW*CA+Z5)
18605 IF SA=CO THEN X2=Z4*CA
18610 IF SA<>CO THEN X2=Xl+(Y2-Yl)*RA
18615 REM Bar Painting
18620 IF TYPE=l THEN PLOT Xl,Yl:DRAWTO X2,Y2

:GOTO 18660
18635 REM Pixel Painting
1~643 IF PB<Cl THEN PR=PB:GOTO 18650
18645 PR=((NOW-MIN)/MXMN)AABS(PC):IF PC{CO T

HEN PR=CI-PR
18650 GOSUB LINEP
18655 REM
18660 NOW=Yl*CA-Xl*SA
18665 REM Increment NOW for next bar
18670 NOW=NOW+ABS(P(M»:M=M+Cl:IF P(M)=CO TH

EN M=Cl
18675 IF NOW<V(IP) THEN 18690

148

Chapter Three. Advanced Graphics And Game Utilities.

18680 IF V(IP)=MAX THEN RETURN
18685 N=IP:IP=IP+Cl:IF IP>NP THEN IP=Cl
18690 IF NOW<V(IM) THEN GOTO 18550
18695 IF V(IM)=MAX THEN RETURN
18700 IM=IM-Cl:IF IM < Cl THEN IM=NP
18705 GO TO 18550
18710 REM ===========================
18750 REM LINEP Subroutine
18751 REM by ... Phil Dunn
18755 REM Draws a line pixel by pixel
18760 REM With a probability to plot
18765 REM or skip each pixel.
18770 REM Xl,Yl = start point
18775 REM X2,Y2 = end point
18780 REM PR = probability to PLOT
18785 REM .{3 SPACES} >=O and <=1
18790 CO=0:Cl=1:C255=255:C230=230:C198=198
18795 C92=92:C97=97:CI03=103:CI06=106:C120=1

20
18800 K=X2-Xl:L=Y2-Yl:Z3=ABS(K):Z4=ABS(L):BI

=PR*C255
18805 IF K=CO AND L=CO THEN RETURN
18810 IF K<CO THEN 18840
18815 LINE$(C92,C92)=CHR$(C230):REM INC
18820 LINE$(C97,C97)=CHR$(CO)
18825 LINE$(C103,CI03)=CHRS(Cl)
18830 LINES(CI06,CI06)=CHR$(C230)
18835 GOTO 18860
18840 LINE$(C92,C92)=CHR$(C198):REM DEC
18845 LINE$(C97,C97)=CHR$(C255)
18850 LINES(CI03,CI03)=CHRS(CO)
18855 LINE$(CI06,C106)=CHR$(C198)
18860 LINES(C120,C120)=CHR$(C230):IF L<CO TH

EN LINE$(C120,C120)=CHR$(C198)
18865 IF Z3=CO THEN Z3=CI/C255
18870 IF Z4=CO THEN Z4=CI/C255
18875 IF Z3>=Z4 THEN K=Z3:Y2=Z3/Z4:X2=1:IF Y

2>C255 THEN Y2=C255
18880 IF Z3<Z4 THEN K=Z4:X2=Z4/Z3:Y2=1:IF X2

>C255 THEN X2=C255
18883 IF K<l THEN RETURN
18884 POKE 752,C1
18885 L=U5R(ADR(LINE$),K,Xl,Y1,X2,Y2,BI)
18890 RETURN
18895 REM •..........................
18900 DIM LINE$(136):RESTORE 18910:LINEP= 187

90
18905 FOR K=l TO 136:READ L:LINE$(K,K)=CHR$(

L):NEXT K:RETURN
18910 DATA 104,104,133,211,104,133,210,104,1

149

Chapter Three . Advanced Graphics And Game Utiliti es.

33,86
18915 DATA 104,133,85,104,104,133,84,104,104

,133
18920 DATA 209,170,104,104,133,208,168,104,1

04,133
18925 DATA 207,173,10,210,24,101,207,144,46,

138
18930 DATA 72,152,72,165,86,72,165,85,72,165
18935 DATA 84,72,162,96,169,11,157,66,3,169
18940 DATA 0,157,72,3,157,73,3,169,1,32
18945 DATA 86,228,104,133,84,104,133,85,104,

133
18950 DATA 86,104,168,104,170,202,208,19,165

,209
18955 DATA 170,230,85,165,85,201,0,208,8,165
18960 DATA 86,201,1,240,30,230,86,169,255,19

7
18965 DATA 208,240,8,136,208,5,165,208,168,2

30
18970 DATA 84,198,210,208,162,169,0,197,211,

240
; '

18975 DATA 4,198,211,240,152,96

150

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM 5. Multi-Colored Graphics In Mode 8.

100 REM =============================
110 REM ={9 SPACES}PICTUR8{11 SPACES}=
120 REM ={3 SPACES}An Example Picture

{5 SPACES}=
130 REM ={5 SPACES}Program For The

{7 SPACES}=
140 REM ={4 SPACES}PoLY8 Subroutine

{6 SPACES}=
150 REM =============================
160 REM ={11 SPACES}by:{13 SPACES}=
170 REM ={8 SPACES}Phil Dunn{10 SPACES}=
180 REM ={6 SPACES}12 Monroe Ave.{7 SPACES}=
190 REM ={3 SPACES}Hicksville, NY 11801

{4 SPACES}=
200 REM ===================~=========
250 CO=0:Cl=1:C2=2:C3=3:C4=4:C5=5:C10=10:C16

=16:DETRAP=40000
260 DIM P(C10),X(C16),Y(C16).S(C16),T(C16),U

(C16). V (C16), EA$ (CI0), EF$ (C10)
270 EA$="AT AREA = "
280 EF$="AT FILL = "
290 PoLY8=18400:GRAPHICS 8
300 SETCoLoR C2,C5,CO:SETCoLoR C4,C5,CO
310 SETCoLoR Cl,CO,14:CoLoR Cl
320 REM =============================
322 REM SET UP LINE SUBROUTINE
325? " Reading DATA ... ":GoSUB 18900
327 REM =============================
330? " CTIA or GTIA chip (1 or 2)";
332 TRAP 330:INPUT CHIP:TRAP DE TRAP
334 IF CHIP<>l AND CHIP<>2 THEN 330
336 REM ============~================
339 AREA=CO
340 AREA=AREA+Cl
350 RESTORE 3000+CI0*AREA
360 TRAP 730:READ FILL
362? "AREA, FILL = ";AREA;", ";FILL
365 IF FILL=999 THEN 1000
370 REM .••........•.................
380 IF FILL<)-7 THEN 470
385 READ RA
390 IF RA<>CO AND RA<>C1 THEN? "COLOR ";R

A;"{3 SPACES}";EA$;AREA:SToP
400 TYPE=ABS(FILL)
405 TRAP DETRAP:GoSUB PoLY8
410 READ P:IF P=99 THEN 360
420 GoTO 340
460 REM

151

Chapter Three. Advanced Graphics And Game Utilities.

470 READ NP
480 IF NP<C3 OR NP>CI6 THEN? "NP = ";NP;"

(3 SPACES}";EA$;AREA:STOP
490 FOR I=Cl TO NP:READ X,Y
493 IF X<CO OR Y<CO OR X>319 OR Y>159 THEN?

"X, Y=" ; X; " , " ; Y; " " ; EA$; AREA: STOP
496 X(I)=X:Y(I)=Y:NEXT I
500 REM•....•....
510 IF FILL<CO THEN 400
540 REM =============================
550 RESTORE 2000+CI0*FILL
560 TRAP 740:READ TYPE
570 REM
580 IF TYPE <> 7 THEN 620
585 READ RA
590 IF RA<>CO AND RA<>Cl THEN? "COLOR ";R

A;"{3 SPACES}";EF$;FILL:STOP
600 COLOR RA:GOTO 700
610 REM•.........
620 IF TYPE< >C2 THEN 640
62.:') READ PB,PC
630 IF PB<=CO OR PB>Cl THEN? "PB = ";PB;"

{3 SPACES}";EF$;FILL:STOP
640 READ RA,PO,P:P(CO)=PO:P(Cl)=P:I=C2
650 IF PO(CO OR P=CO THEN? "PO,Pl=";PO;",";

Pl;"{3 SPACES}";EF$;FILL:STOP
652 IF CHIP=Cl THEN 660
654 IF PO=1 THEN P(CO)=2
656 IF PO=2 THEN P(CO)=l
660 READ P:P(I)=P
670 IF P=CO THEN TRAP DETRAP:GOSUB POLY8:GOT

o 700
680 1=I+Cl:GOTO 660
690 REM
700 READ P:IF P=99 THEN 560
710 GOTO 340
720 REM =============================
730 ? "ERROR AT AREA DATA = ";AREA:STOP
740 ? "ERROR AT FILL DATA = ";FILL:STOP
750 REM =============================
1000 ? "{5 SPACES}THE MOUNTAIN OF LIGHT"
1010?" Inspired by 'The Tiger's Fang'"
1020 ? "{4 SPACES}A book by{3 SPACES}Paul Tw

itchell"
1030 GOTO 1030
1100 REM ============================
1990 REM FILL Colors & Textures
2000 DATA 7,O,99,I,100,O,I,O,99,7,I,O,HORIZ.

ERASER
2010 DATA 1,100,O,I,O,O,WHITE=1

152

Chapter Three. Advanced Graphics And Game Utilities.

2020 DATA I,O,I,-2,O,0,DARK BLUE=2
2030 DATA 1,-2,1,3,O,O,RED&GREEN=3
2040 DATA 1,4,1,-9,O,0,NUBBY RED=4
2050 DATA 1,-4,2,-10,0 . 0,NUBBY RED=5
2060 DATA 1,4,1.-10,0,0,NUBBY BLUE=6
2070 DATA 1, - 4,2,-10 , 0,0,NUBBY BLUE=7
2080 DATA 1,0,2,-1,3,0,0,BAR RED=8
2090 DATA 2,1, -1,100,0,2,2,3,4,5,7,10,13,17,

O,O,RECEEDING BARS=9
2100 DATA 2,1,1,-0.5,0,1,0,0,LEFT BLEND=10
2110 DATA 2,1,1,0.5,O,I , 0,0,RIGHT BLEND=11
2120 DATA 1,-2,1,-2,O , 0,LIGHT GREEN=12
2130 DATA 1,2,1,-2,0,0,LIGHT GREEN=13
2140 DATA 2,0.2,1,100,0,2,0,0,TEXTURIZER=14
2990 REM == = =========================
3000 REM AREA Datas
3010 DATA -7,l,0,DUMMY=1
3020 DATA - 7,1,0,DUMMY=2
3030 DATA 8,4,65,100,65,95,275,95,275,100,0,

CITY WALLS=3
3040 DATA 2,4,1,158,1,100,318.100,318,158,0,

OCEAN=4
3050 DATA 9,4,1,158,1,100,318,100,318,158,0,

REFLEC=5
3060 DATA 0,9,1,158, I , 115,25,108,56,113,59,1

17,59, 126,75, 130, 75, 156,80, 158,0, ERASE
LEFT CLIF=6

3070 DATA 12,9,1,158, I, 115,25,108,56,113,59,
117,59,126,75,130,75,156,80,158,0,FILL
LEFT CLIF=7

3080 DATA 14,9,1,158 , 1,115 , 25,108,56,113,59,
117,59.126,75,1 3 0,75 , 156,80,158,0,TEXTU
RE LEFT CLIF=8

3090 DATA 0,3,75,130,56,140,75,156,0,ERASE L
EFT NEAR FACE=9

3100 DATA 3,3,75,130,56~ 140,75,156,O,FILL LE
FT NEAR FACE=10

3110 DATA 0,3,59,117,45,122,59,126,0,ERASE L
EFT FAR FACE=11

3120 DATA 3,3,59,117,45,122,59,126,0,FILL LE
FT FAR FACE=12

3130 DATA 0,6,205,158,245,135,290,125,305,13
0,305,155,310,158,0,ERASE RIGHT CLIF=13

3140 DATA 13,6,205,158,245,135,290,125,305,1
30,305,155,310,158,0,FILL RIGHT CLIF=14

3150 DATA 14,6,205,158 , 245,135,290,125,305,1
30,305,155 , 310,158,0,TEXTURE RIGHT CLIF
=15

3160 DATA 0,3,305,130,280,145,305,155,0,ERAS
E RIGHT FACE=16

[53

Chapter Three. Advanced Graphics And Game Utilities.

3170 DATA 3,3,305,130,280,145,305,155,0,FILL
RIGHT FACE=17

3180 DATA 1,4,155,125,162,132,168,145,155,14
1,0,SAIL=18

3190 DATA 1,8,154,141,156,141,159,146,159,14
8,156,151,154,151,151,148,151,146,0,BOA
T=19

3200 DATA -7,0,99,-4,10,153,145,153,146,153,
147,154,146,154,147,156,147,156,148,157
,146,157,147,157,148.0

3210 DATA -7,1,0,PAUL & REBEZAR=21
3220 DATA -7,0,99,-5,8,160,144,174,158,158,1

52,162,158,152,152,146,158,150,144,136,
158,99,-7,1,0,WAKE=22

3230 DATA 10,10,70,95,95,95,102,87,120,60,13
0,36,145,18,160,5,165,5,170,10,170,95,0
,MTN.LEFT=23

3240 DATA 11,9,170,95,170,10,182,7,192,20,20
5,32,212,35,225,65,245,95,275,95,0,MTN.
RIGHT=24

3250 DATA 6,4,145,2,60,2,100,77,105,27,0,LEF
TRAYS BLUE=25

3260 DATA 7,4,205,5,290,5,235,80,235,30,0,RI
GHT RAYS BLUE=26

3270 DATA 4,3,150,1,95,85,50,1,0,LEFT RAYS R
ED=27

3280 DATA 5,3,200,1,240,85,300,1,O,RIGHT RAY
S RED=28

3290 DATA 999
18000 REM ===========================
18005 REM ={4 SPACES}POLY8 Subroutine

{5 SPACES}=
18010 REM Polygon Painting For{3 SPACES}=
18015 REM = BASIC Graphics Mode 8
18020 REM
18025 REM
18030 REM

===========================
by: Phil Dunn{9 SPACES}=

18035 REM Enter with the value for
18040 REM TYPE= Type of Painting
18045 REM "{3 SPACES}= 1 for Bar Painting
18050 REM "{3 SPACES}= 2 for Pixel Painting
18053 REM "{3 SPACES}= 3 for a Line Boundary
18055 REM "{3 SPACES}= 4 to PLOT X(i),Y(i)
18057 REM "{3 SPACES}= 5 TO PLOT X(i),Y(i),
18058 REM. and DRAWTO X(i+l),Y(i+l)
18060 REM "{3 SPACES}= 6 to DRAW TO X(i),Y(i)
18065 REM "{3 SPACES}= 7 to COLOR RA
18070 REM
18075 REM For TYPE = 1 to 6,
18080 REM enter with the values ...

154

Chapter Three. Advanced Graphics And Game Uti li ties.

18085 REM NP = No. of Vertex Points.
18087 REM. for i=l to NP:
18090 REM X(i)= DIM Vertex X values
18095 REM Y(i)= DIM Vertex Y values
18100
18105
18110
18115
18120
18125
18130
18135
18140
18145
18150
18155
18160
18165
18170
18175
18180
18185

REM
REM For TYPE 1 and 2 Painting
REM also enter values for .•.
REM RA Angle X/Y Ratio
REM" 0 for Vertical
REM" +-1 for +-45 degr~es
REM" 100 for Horizontal
REM P()= DIM array for spacing
REM .Parity Color-Lock Option:
REM .P(O)= 0 for no parity
REM .P(O)= 1 for odd parity
REM .P(O)= 2 for even parity
REM .for i=l to something:
REM .ABS(P(i»= Spaces to move
REM .SGN(P(i»=+l, no parity
REM .SGN(P(i»=-l, parity lock
REM .(4 SPACES}P(i) = 0 to end
REM

18190 REM For TYPE 2 Pixel Painting
18195 REM also enter values for .•.
18200 REM PB & PC For Pixel Blending
18205 REM * Set PB<l for an even
18210 REM. blend of active and
18215 REM. inactive pixels.
18220 REM. PB= the proportion of
18225 REM. active pixels. PB>O
18230 REM * Set PB >=l for an uneven
18235 REM. blend across the area.
18240 REM • area. Then ...
18245 REM. If PC >O then the start

data

18250 REM. {4 SPACES}color is inactive and
18255 REM .{4 SPACES}the end is active.
18260 REM • If PC<O then the start
18265 REM .{4 SPACES}color is active and
18270 REM .{4 SPACES}the end is inactive.
18275 REM. When ABS(PC) = l then the
18280 REM .{4 SPACES}start color phases out
18285 REM .{4 SPACES}evenly to the end.
18290 REM. When ABS(PC»l then the
18295 REM .{4 SPACES}start color phases out
18300 REM .{4 SPACES}more slowly.
18305 REM. When ABS(PC)<l then the
18310 REM .{4 SPACES}start color phases out
18315 REM .{4 SPACES}more rapidly.

18320 REM •...........••......•.•.•..
18325 REM For TYPE = 7, to COLOR RA,

155

Chapter Three. Advanced Graphics And Game Uti lities.

18330 REM enter with RA = 0 or 1
18335 REM .. . • •.. . • • .. •. •.•.•
18340 REM S()= DIM array used here
18345 REM T()= DIM array used here
18350 REM U()= DIM array used here
18355 REM V()= DIM array used here
18360 REM Variable names used ...
18365 REM CO,Cl,C2,Z3,Z4,Z5,Z9,
18370 REM Xl,Vl , X2,V2,CA,SA
18375 REM K,L,M , N , IM,IP , MAX,MIN,NOW
18380 REM ===========================
18400 CO=0:Cl=I:C2=2:Z9=999
18405 IF TVPE= 3 THEN PLOT X(Cl),V(Cl):FOR N=

C2 TO NP : DRAWTO X(N),Y(N):NEXT N:DRAWT
o X (C 1) , V (C 1) : RETURN

18410 IF TVPE=4 THEN FOR N=Cl TO NP:PLOT X(N
),Y(N):NEXT N:RETURN

18415 IF TVPE=5 THEN FOR N=Cl TO NP STEP C2:
PLOT X(N) , V(N):DRAWTO X(N+Cl),V(N+Cl):
NEXT N:RETURN

18420 IF TVPE=6
6

THEN FOR N=Cl TO NP:DRAWTO X
(N),V(N):NEXT N:RETURN

18425 IF TVPE=7 THEN COLOR RA:RETURN
18430 Z5=0 . 5 : IF RA=C2 THEN Z5=0.55
18435 IF RA=-C2 THEN Z5=0 . 18
18440 Z3=-Cl:IF RA <> CO THEN Z3=SGN(RA)
18445 SA=SQR(I/(I+RA A C2» * Z3:IF ABS(SA)<0.2

THEN SA=CO
18450 CA=SQR(I-SA A C2)
18455 REM Rotate X() , V() to U(),V():
18460 FOR M=Cl TO NP
18465 U(M)=X(M) * CA+V(M) * SA
18470 V(M)=-X(M) * SA+V(M) * CA:NEXT M
18480 FOR M=Cl TO NP:N=M+Cl:IF N>NP THEN N=C

1
18485 REM Calculate slopes S() amd V axis in

tercepts T()
18490 IF U(M)=U(N) THEN S(M)=Z9:GOTO 18510
18495 S(M)=(V(N)-V(M»/(U(N)-U(M»:T(M)=V(M)

-S(M) * U(M)
18500 IF ABS(S(M») Z9 THEN S(M)=Z9
18505 IF ABS(S(M» < CI/Z9 THEN S(M)=CO
18510 NEXT M: MAX=-Z9:MIN=Z9:FOR M=Cl TO NP:Z

3=V(M)
18515 IF MAX (Z3 THEN MAX=Z3
18520 IF MIN >Z3 THEN MIN=Z3 : N=M
18525 NEXT M:MXMN=MAX-MIN : NOW=MIN:IM=N-Cl:IF

IM(CI THEN IM=NP
18527 IP=N+Cl:IF IP >NP THEN IP=Cl
18530 IF P(Cl)=CO THEN P(Cl)=Cl:P(C2)=CO

156

Chapter Three. Advanced Graphics And Game Utilities.

18535 M=Cl:IF P(M)(CO THEN M=Cl
18540 GO TO 18675
18545 REM Calculate intercepts ..•
18550 IF S(N)=Z9 OR S(N)=CO THEN Z3=U(N):GOT

o 18560
18555 Z3 = (NOW -T(N» /S(N)
18560 IF S(IM)=Z9 OR S(IM)=CO THEN Z4=U(IM):

GOTO 18575
18565 Z4=(NOW-T(IM»/S(IM)
18570 REM Rotate U(),V() to X(),Y():
18575 Xl=INT(Z3*CA-NOW*SA+Z5)
18580 IF NOW <> MIN AND P(M»=CO THEN 18595
18585 IF P(CO)=Cl THEN IF Xl=C2*INT(XI/C2) T

HEN Xl = Xl+Cl
18590 IF P(CO)=C2 THEN IF Xl <> C2*INT(Xl/C2)

THEN Xl=Xl+Cl
18595 Yl=INT(Z3*SA+NOW*CA+Z5)
18600 Y2=INT(Z4*SA+NOW*CA+Z5)
18605 IF SA=CO THEN X2=Z4*CA
18610 IF SA ()CO THEN X2=Xl+(Y2-Yl)*RA
18615 REM Bar Painting
18620 IF TYPE=1 THEN PLOT Xl,Yl:DRAWTO X2,Y2

:GOTO 18660
18635 REM Pixel Painting ..•.........
18643 IF PB { CI THEN PR=PB:GOTO 18650
18645 PR=«NOW-MIN)/MXMN) AABS(PC):IF PC(CO T

HEN PR=CI-PR
18650 GOSUB LINEP
18655 REM
18660 NOW=Yl*CA-Xl*SA
18665 REM Increment NOW for next bar
18670 NOW=NOW+ABS(P(M»:M=M+Cl:IF P(M)=CO TH

EN M=Cl
18675 IF NOW < V(IP) THEN 18690
18680 IF V(IP)=MAX THEN RETURN
18685 N=IP:IP=IP+Cl: IF IP >NP THEN IP=Cl
18690 IF NOW < V(IM) THEN GOTO 18550
18695 IF V(IM)=MAX THEN RETURN
18700 IM=IM-Cl:IF IM < Cl THEN IM=NP
18705 GOTO 18550
18710 REM ===========================
18750 REM LINEP Subroutine
18755 REM Draws a line pixel by pixel
18760 REM With a probability to plot
18765 REM or skip each pi x el.
18770 REM Xl,Yl = start point
18775 REM X2.Y2 = end point
18780 REM PR = probability to PLOT
18785 REM. {3 SPACES} >=O and < =1
18790 CO=0:Cl=1:C255= 255:C230=2 30:C198=198

157

Chapter Three. Advanced Graphics And Game Utilities.

18795 C92=92:C97=97:CI03=103:CI06=106:CI20=1
20

18800 K=X2-Xl:L=Y2-Yl:1 3 =ABS(K):14=ABS(L):BI
=PR*C255

18805 IF K=CO AND L=CO THEN RETURN
18810 IF K(CO THEN 18840
18815 LINE$(C92,C92)=CHR$(C2 3 0):REM INC
18820 LINE$(C97 , C97)=CHR$(CO)
18825 LINE$(CI03,CI03)=CHR$(Cl)
18830 LINE$(CI06,CI06)=CHR$(C230)
18835 GO TO 18860
18840 LINE$(C92,C92)=CHR$(C198):REM DEC
18845 LINE$(C97,C97)=CHR$(C255)
18850 LINE$(CI03,CI03)=CHR$(CO)
18855 LINE$(CI06,C106)=CHR$(C198)
18860 LINE$(C120,C120)=CHR$(C230):IF L (CO TH

EN LINE$(C120,C120)=CHR$(C198)
18865 IF 13=CO THEN Z3=CI/C255
18870 IF 14=CO THEN 14=CI/C255
18875 IF 13 >=14 THEN K=13:Y2=13/14:X2=1:IF Y

2 >C255 THEN Y2=C255
18880 IF 13 (14 THEN K=14 : X2=14/13:Y2=1:IF X2

>C255 THEN X2=C255
18883 IF K< 1 THEN RETURN
18884 POKE 752 , Cl
18885 L=USR(ADR(LINE$), K ,Xl,Yl,X2,Y2,BI)
18890 RETURN 18895 REM ____ _ _____ __ __ _ __ _ _ __ _____ _

18900 DIM LINE$(136):RESTORE 18910:LINEP=187
90

18905 FOR K=l TO 136:READ L:LINE$(K,K)=CHR$(
L):NEXT K:RETURN

18910 DATA 104,104,1 3 3,211,104,133,210,104,1
33,86

18915 DATA 104 , 133,85 , 104,104,133 , 84,104,104
, 133

18920 DATA 209,170,104,104,133,208,168,104,1
04,13 3

18925 DATA 207,173,10,210,24,101,207,144,46,
138

18930 DATA 72,152,72,165,86,72,165,85,72,165
18935 DATA 84,72,162,96,169,11,157,66,3 , 169
18940 DATA 0,157,72,3,157,73,3,169,1,32
18945 DATA 86 , 228,104,133,84,104,133,85,104,

133
18950 DATA 86,104,168,104,170,202,208,19,165

,209
18955 DATA 170,230,85,165,85,201,0,208,8,165
18960 DATA 86,201,1,240,30,230,86,169,255,19

7

158

Chapter Three. Advanced Graphics And Game Utilities.

18965 DATA 208,240,8,136,208,5,165,208,168,2
30

18970 DATA 84,198,210,208,162,169,0,197,211,
240

18975 DATA 4,198,211,240,152,9~

159

Chapter Three. Advanced Graphics And Game Utilities.

TEXTPLOT
Makes A Game

David Plotkin

The animation ca/)abilities of "T ext/)lot" (see COMPUTE!, November,
1981, # 18) are eX/J/oited in ParCLtTOo/) Attack a multicolor action game.
Requires 24K.

The machine language subroutine entitled T extplot (COMPUTE!,
November, 1981, #18) is an exce llent too l for animating interesting
shapes in Graphics modes 3-7 on the Ata ri home computer. It is
probably the easies t and most straightfo rward way to effect animation
with any kind of speed in these modes. The re are really on ly two
things to remember when using T extplot. The first is that the horizontal
reso lution is only from zero to 19 in Graphics 7, whereas such
statements as LOCATE, PLOT, etc., use a reso lution from zero to
159. Thus a conversion from the standard Graphics coordinate system
to the T extplot coordinate sys tem has to be made. As an example, the
point located at T extplot coord inate X = 3 is actually at 3 ' 8 = 24 for
the pixel at the far left of the area occup ied by the T ex tplot shape.
The horizontal coordinate va ries from 24 + 0 = 24 to 24 + 7 = 31, with
pixel 32 at the far left of the area occupied by the T extplot X coordinate
equal to four. That is, each T extplot shape is e ight pixels wide .

The second thing to remember is that, when using a redefined
character se t protected by POKEing a lower va lue of RAMTOP into
location 106, the step-back must be 4K, or 16 pages (see line 32000).
This is because the Graph ics 7 display list, which is located just below
RAMTOP, must not cross a 4K boundary, or strange things happen.

One other thing. This program gives you joystick jockeys a break
- it uses paddles to ease the wear and tear on the wrists and fingers.

So .. . your gun emplacement is under attack by enemy
paratroopers. Periodically, a helicopter flies onto the screen and
begins dropping paratroopers, who float toward the ground. Should
four of the paratroopers get to the ground safe ly on either side of your
gun emplacement, they wi ll b low you up and you will have los t the
game. Also , if a paratrooper drops directly onto your gun emplacement,
you wi ll be blown up. Your on ly defense is the high powered laser

160

Chapter Three. Advanced Graphics And Game Utilities.

mounted on your gun emplacement. Its a iming system consists of a
target cursor (sh aped like a +) whi ch moves about the edge of the
screen contro lled by Padd le (0). Press ing the red button on the paddle
fires the lase r, unleashing an energy bolt from the gun to the cursor,
destroying everything in its path. Hitting the h e licopter causes it to
blow up , and hitting the paratrooper causes him to blow up. Hitting
the parachute is just as good, since it causes the paratrooper to fall to
the ground without hi s parachute. A lso, if one paratrooper lands on
another , they are both put out of action . .

It takes a while to get used to the paddle aiming system, because
there is a de lay between moving the paddle and the response of the
cursor, so don't turn th e padd le too far in trying to ge t the cursor to
move. Unlike with the joyst ick, however, you can jump the cursor
from one edge of the screen to the o ther in a single fli ck of the wrist.
As your skill increases, the enemy sends better paratroopers aga inst
you (they fall faste r). A score of800 points wins the ga me.

I think you will enj oy this little game as it prov ides a test of how
skillful you are with the paddles on your Atari.

Documentation

Variables:
CX,CY Coordin ates of the target cu rsor SC score

H = 0, no he licopter; = 1, helicopter on screen
HX,HY X and Y coord inates of the he licopter

T(N) = 0, paratrooper not on screen ; = I , paratrooper on screen

T X(N) ,TY(N) X and Y coord inates of each paratrooper

P paddle (0)

HP position variable of he li copter

PP position variable of paratrooper

These posi tion va riables determine what shapes the h eli copter or
paratroopers h ave.

Program Description
1-4 Initia li zes subroutines and title page.

5- 10 Sets up graphics and dimension arrays.

40-50 Spec ifi es colors and ini t ia lizes va riab les.

60-70 Draws terrain and gun emplacement.

75 Puts score on the screen .
80-220 Aims and fires paddle opera ted lase r.

230-280 Tests for hit on the he licopter.

161

Chapter Three. Advanced Graphics And Game Utilities.

290-340 Tests for hits on the paratroopers.

350-380 T ests for hits on the parachutes .
385-390 Updates score, jumps to end of game on hi gh sco re.

400-430 Launches new helicopter.
440-470 Advances ex isting he licopter.

480-510 Launches new paratroopers.
520 -580 Advances ex isting paratroopers and tes ts for

540 Landing of paratrooper on ground
550 Landing of paratrooper on another paratrooper
560 Landing of paratrooper on the gun emplacement.

525 Increases paratrooper fall rate based on the score

600-650 Subroutine for paratrooper with ho le in parachute
660-690 Subroutine for one paratrooper landing on another

700-750 Subroutine for blow ing up gun emplacement
800-840 End of game (los t) display

850-870 Erases remaining pa ratroopers when four have landed.
880-920 Flies he licopter off- screen when fo ur paratroopers have

landed .
930-1060 Subroutine to line up paratroopers on the left and destroy

the gun emplacement
1070-1190 Subroutine to line paratroopers on the right and destroy

the gun emplacement
1200-1280 End of game (won) title and tune

1500-1550 Title page
20000- 20430 TEXTPLOT
32000-3 2200 Redefin ed charac ter se t

162

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. TEXTPLOT Makes A Game.
1 GOSUB 32000:CLR
2 GOSUB 20000
3 GOSUB 1500
5 DIM TX(25),TY(25),T(25)
10 GRAPHICS 23:POKE 752,1:SC=0:POKE 756,PEEK

(106)
40 SETCOLOR 4 , 9,2:SETCOLOR 2,12,6
50 P=O:FOR N=l TO 25:TCN)=0:TXCN)=0:TY(N)=0:

NEXT N:Nl=0:N2=0:H=0:HX=0:HY=0:CX=0:CY=0
60 COLOR 3:FOR W=80 TO 92:PLOT O,W:DRAWTO 15

9,W:NEXT W
70 COLOR l:FOR Y=72 TO 79:PLOT 75,Y:DRAWTO 8

5,Y:NEXT Y:D=USR(1536,9,1,10,66)
75 D=USRC1536,48,2,1,82):D=USR(1536,48,2,2,8

2):D=USR(1536 ,48,2,3,82)
80 FOR M=1 TO 2:D=USR(1536,32,2,CX,CY)
90 P=PADDLE(O):IF P (165 THEN GOTO 110
100 CY=P-164:CX=0:GOTO 140
110 IF P < 65 THEN GOTO 130
120 CX=INTCCI64-P)/5):CY=2:GOTO 140
130 CX=19:CY=64-P
140 COLOR 2:D=USR(1536,8,2,CX,CY):NEXT M
150 IF PTRIGCO)=l THEN GOTO 230
160 IF P>190 THEN D=USR(1536,9,1,10,66):GOTO

210
170 IF P)1 54 THEN D=USRC1536, 10, 1, 10,66) :GOT

0 210
180 IF P)80 THEN D=USRC1536,11,l,10,66):GOTO

210
190 IF P>44 THEN D=USRCI536,12,1,10,66):GOTO

210

200 D=USR(1536,13,I,10,66)
210 COLOR 2:PLOT 80,65:DRAWTO 8*CX,CY:COLOR

O:PLOT 80,65:DRAWTO 8*CX,CY
220 FOR X=1 TO 10:S0UND O,30,10,8:NEXT X:SOU

ND 0,0,0,0
230 IF H=O THEN GOTO 290
240 FOR M=2 TO 6:LOCATE HX*8+M,HY+3,Z:IF Z<>

o THEN GOTO 280
250 SOUND 1,0,O,O:SOUND 0,30,B,8:D=USRC1536,

14,2,HX,HY) :SC=SC+I0
260 FOR 0=1 TO 30 :NEXT 0
270 SOUND o,0,0,0:D=USRC1536,32,2,HX,HY):H=0

:HX=O:HY=O:GOTO 290
280 NEXT M
290 FOR M=l TO 5:IF TCM)=O THEN GOTO 340
300 LOCATE TXCM)*B+3,TYCM)+4,Z:LOCATE TX(M)*

8+4,TYCM)+4,ZI:LOCATE TXCM)*B+4,TYCM)+3,
Z2:LOCATE TXCM)*8+2,TYCM)+4,Z3

163

Chapter Three. Advanced Graphics And Game Utilities.

305 IF Z<>O AND Z1 < >0 AND Z2< >0 AND Z3<>0 TH
EN GOTO 340

310 SOUND 0,15,8,8:D=USR(1536,14,2,TX(M),TY(
M»:SC=SC+5

320 FOR Q=1 TO 20:NEXT Q
330 SOUND O,O,0,0:D=USR(1536,32,2 , TX(M),TY(M

»:T(M)=O:TX(M)=O:TY(M)=O
340 NEXT M
350 FOR M=1 TO 5:IF T(M)=O THEN GOTO 380
360 FOR N=2 TO 5:LOCATE TX(M)*8+N,TY(M),Z:IF

Z=O THEN GOSUB 600:SC=SC+5:GOTO 380
370 NEXT N
380 NEXT M
385 A=INT(SC/100):B=INT(SC/IO)-A*10:C=SC-I00

*A-I0*B:A=A+48:B=B+48:C=C+48
386 D=USR(1536,A , 2,1,82):D=USR(1536,B,2,2,82

):D=USR(1536,C,2,3,82)
390 IF SC >800 THEN GOTO 1200
400 IF H< >O THEN GOTO 440
410 W=INT(RND(0)*3+1):IF W> 1 THEN GOTO 520
420 H=1:S0UND 1,20,8,4:HX=1:HY=INT(RND(0)*30

+10):HP=6
430 D=USR(1536,6,1,HX,HY):GOTO 480
440 D=USR(1536, 3 2,1,HX,HY):HX=HX+1:IF HX >18

THEN H=O:SOUND 1,0 , 0,0:GOTO 520
450 IF HP=6 THEN HP=7:GOTO 470
460 HP=6
470 D=USR(1536,HP,1,HX,HY)
480 FOR N=1 TO 5:IF T(N) <> O THEN GOTO 510
490 W=INT(RND(0)*4+1):IF W=1 AND HX >=2 THEN

T(N)=1:TX(N)=HX-1:TY(N)=HY:D=USR(1536,0,
3,TX(N) ,TY(N»

500 GO TO 520
510 NEXT N
520 FOR N=l TO 5:IF T(N)=O THEN GOTO 580
525 J=INT(SC/100)+1:IF TY(N)+J) 66 THEN J=67-

TY(N):IF J (1 THEN J=1
530 D=USR(1536,32,3,TX(N),TY(N»:TY(N)=TY(N)

+J
540 IF TY(N) <) 7 2 THEN GtiTO 550
545 D=USR (15 ;:' 6,1,3, TX (N) , TY (N»: T (N) =0: IF TX

(N) < 10 THEN Nl=Nl+l:GOTO 547
546 N2=N2+1
547 IF Nl=4 OR N2=4 THEN GOTO 850
548 GO TO 580
550 IF TY(N)=67 THEN LOCATE TX(N)*8+3,76,Z:I

F Z=3 THEN GOSUe 660:GOTO 580
560 IF TY(N»=58 AND TX(N)=10 THEN GOTO 700

570 D=USR(1536,0,3,TX(N) , TY(N»
580 NEXT N
590 GO TO 80

164

Chapter Three. Advanced Graphics And Game Utilities.

600 D=USR(1536,I,3,TX(M),TY(M»
610 FOR Q=TY(M) TO 72 STEP 2:D=USR(1536,1,3,

TX(M),Q)
615 IF Q(>67 AND Q<>68 THEN GOTO 620
616 LOCATE TX(M)*8+3,76,Z:IF Z(~3 THEN GOTO

620
617 IF TX(M)(10 THEN Nl=Nl-l
618 N2=N2-1
620 D=USR(1536,32,3,TX(M),Q):SOUND 2,90-Q,10

,8
630 NEXT Q:D=USR(1536,4,3,TX(M),72):T(M)=0:T

Y(M)=O
640 FOR Q=1 TO 30:S0UND 2,30,8,8:NEXT Q:SOUN

D 2 , 0,0,0
650 RETURN
660 D=USR(1536,4,3,TX(N),72):SOUND 0,30,8,8:

D=USR (1536,14,2, TX (N), TY (N»
670 FOR Q=1 TO 30:NEXT Q:D=USR(1536,32,2,TX(

N) , TY(N»:SOUND 0,0,0,0
680 T(N)=O:IF TX(N) (10 THEN Nl=Nl-l:RETURN
690 N2=N2-1:RETURN
700 D=USR(1536,1,3,10,60):FOR Q=1 TO 50:NEXT

Q

710 FOR Q=54 TO 80 STEP 4:FOR Ql=9 TO 11
720 SOUND 0,Q,8,8:S0UND I , Ql,8,8:D=USR(1536,

14,2,Ql,Q)
730 FOR M=l TO 10:NEXT M:D=USR(1536,32,2,Ql,

Q)
740 NEXT Ql:NEXT Q:SOUND O,O,O,O:SOUND 1,0,0

,0
750 FOR Q=l TO 80:NEXT Q
800 GRAPHICS 1+16:PRINT #6;"YOU LOST' ~ YOUR"

:PRINT #6;"GUN WAS DESTROYED~"

810 PRINT #6;"FINAL SCORE ";SC:PRINT #6;"PO
INTS. PRESS FIRE"

820 PRINT #6;"TO PLAY AGAIN"
830 IF PTRIG(O)=1 THEN GO TO 830
840 GOTO 10
850 FOR N=1 TO 10:IF T(N)=O THEN GO TO 870
860 D=USR(1536,32,3,TX(N),TY(N»
870 NEXT N
880 IF H=O THEN GOTO 930
890 FOR N=HX TO 19:IF HP=6 THEN HP=7:GOTO 91

o
900 HP=7
910 D=USR(1536,HP,I,N,HY):D=USR(1536,32,I,N,

HY)
920 NEXT N
930 SOUND I,O,O,O:IF N2=4 THEN GO TO 1070
940 FOR N=l TO 4:FOR Q=N TO 10:TX=(10-Q)*8+3
950 LOCATE TX,76,Z:IF Z=3 THEN PP=2:GOTO 970
960 NEXT Q

165

Chapter Three. Advanced Graph ics And Game Utilities.

970 FOR TT=10-Q TO 10-N:D=USR(1536,PP,3,TT,7
2):FOR W=l TO 50:NEXT W

980 IF PP=2 THEN PP=3:GOTO 1000
990 PP=2
1000 D=USR(1536,32,3,TT , 72):NEXT TT:D=USR(15

36,1,3, TT-l, 72)
1010 NEXT N
1020 D=USR(1536,5,3,9 , 72):D=USR(1536,32,3,6,

72):FOR W=l TO 50:NEXT W
1030 D=USR(1536,5,3 , 9 , 64):D=USR(1536,32,3,7,

72):FOR W=l TO 50:NEXT W
1040 D=USR(1536,5,3,9 , 56):D=USR(1536,32,3,8,

72):FOR W=l TO 50:NEXT W
1050 D=USR(1536 ,2, 3,9,48):FoR W=l TO 50:NEXT

W
1060 D=USR(1536,32,3 , 9,48):GOTo 700
1070 FOR N=l TO 4:FoR Q=N TO 9:TX=(10+Q)*8+3
1080 LOCATE TX,76,Z:IF Z=3 THEN PP=2:GoTO 11

00
1090 NEXT Q
1100 FOR TT=10+Q TO 10+N STEP -1:D=USR(1536,

PP,3,TT,72):FoR W=l TO 50:NEXT W
1110 IF PP=2 THEN PP=3:GoTo 1130
1120 PP=2
1130 D=USR(1536,32,3,TT,72):NEXT TT:D=USR(15

36,1,3, TT+l, 72)
1140 NEXT N
1150 D=USR(1536,5,3,11 , 72):D=USR(1536,32 , 3,1

4,72):FOR W=l TO 50:NEXT W
1160 D=USR(1536 , 5,3,11,64):D=USR(1536 , 32 , 3,1

3,72):FoR W=l TO 50:NEXT W
1170 D=USR(1536,5,3,11,56):D=USR(1536 , 32,3,1

2 , 72):FCR W=l TO 50:NEXT W
1180 D=USR(1536,2,3,11,48):FoR W=l TO 50:NEX

T W
1190 D=USR(1536,32,3,11,48):GoTo 700
1200 GRAPHICS 1+16:PRINT #6;"VERY GOOD' YOU

":PRINT #6;"WoN THIS ROUND'"
1210 SOUND O , 40,10,8:GoSUB 1280
1220 SOUND 0,30,10,8:GoSUB 1280
1230 SOUND 0,24,10,8:GoSUB 1280
1240 SOUND 0,20,10,8:GOSUB 1280
1250 SOUND 0,24,10,8:GoSUB 1280
1260 SOUND 0 , 20,1 0, 8:GOSUB 1280:GOSUB 1280:G

OSUB 1280
1270 SOUND O,O,O,O:GoTO 810
1280 FOR W=l TO 45:NEXT W:RETURN
1500 GRAPHICS 1+16:FoR Q=l TO 7:PRINT #6:NEX

T Q:PRINT #6;"*PARATRooP ~~~~~rn*":PRINT
#6;"by DAVID PLoTI<IN"

1510 FOR Q=l TO 15:SETCoLoR 2,Q,5
1520 FOR W=l TO 20:SoUND 0,56,10,8:S0UND 1,5

166

Chapter Three. Advanced Graphics And Game Utili ties.

6,6,4:NEXT W
1530 FOR W=1 TO 20:S0UND O,78,10,8:S0UND 1,7

8,6,4:NEXT W
1540 NEXT Q:SOUND O,O,O,O:SOUND 1,0,0,0
1550 RETURN
20000 ML=1536:FOR 1=0 TO 252:READ A:POKE ML+

I,A:NEXT I:RETURN

20010 DATA 104,240,10,201,4,240
20020 DATA 11,170,104 , 104,202,208
20030 DATA 251,169,253,76,164,24~
20040 DATA 104,133,195,104 , 201,128
20050 DATA 144,4,41,127,198,195
20060 DATA 170,141,250,6,224,96
20070 DATA 176,15,169,64,224,32
20080 DATA 144,2,169 , 224,24,109
20090 DATA 250,6,141,250,6,104
20100 DATA 104,141 , 251,6 , 104,104
20110 DATA 141,252 , 6,14,252,6
20120 DATA 104,104,141,253 ,6,133
20130 DATA 186,166,87,169,10,224
20140 DATA 3,240,8,169,20,224
20150 DATA 5,240,2,169,40,133
20160 DATA 207,133,187,165,88,133
20170 DATA 203,165,89,133,204,32
20180 DATA 228,6,24,173,252 , 6
20190 DATA 101,203,1 33 ,203,144,2
20200 DATA 230,204,24,165 , 203,101
20210 DATA 212,133,203,165,204,101
20220 DATA 213,133,204,173,250,6
20230 DATA 133,187,169,8,133,186
20240 DATA 32,228,6,165,212,133
20250 DATA 205,173,244,2,101,213
20260 DATA 133,206,160,0,162,8
20270 DATA 169,0,133,208,133,209
20280 DATA 177,205,69,195,72,104
20290 DATA 10,72,144,8,24,173
20300 DATA 251 , 6,5,208,133,208

20310 DATA 224,1,240 , 8 , 6,208
20320 DATA 38,209,6,208,38,209
20330 DATA 202,208,228,104,152,72
20340 DATA 160,0 , 165,209,145,203
20350 DATA 200 , 165,208 , 145,203,104
20360 DATA 168,24,165,203,101,207
20370 DATA 133,203,144,2,230,204
20380 DATA 200,192 , 8,208,183,96
20390 DATA 169,0,133,212,162,8
20400 DATA 70,186,144,3,24,101
20410 DATA 187,106,102,212,202,208
20420 DATA 243 , 133,213,96,0,1
20430 DATA 28
32000 POKE 106,PEEK(106)-16:GRAPHICS O:START

167

Chapter Three. Advanced Graphics And Game Utilities.

=(PEEK(106»*256:POKE 756,START/256:PO
KE 752,1

32010? "INITIALIZING ... TAKES ABOUT 40 SECON
DS"

32020 FOR Z=O TO 1023:POKE START+Z,PEEK(5734
4+Z):NEXT Z:RESTORE 32100

32030 READ X:IF X=-1 THEN RESTORE :RETURN
32040 FOR y=o TO 7:READ Z:POKE X+Y+START,Z:N

EXT Y:GOTO 32030
32100 DATA 512,126,195,129,90,60,24,36,66
32101 DATA 520,0,0,24,24,126,24,36,66
32102 DATA 528,0,0 , 24,24,56,24,16,24
32103 DATA 536,0,0,24,24,28 ,24,36,66
32104 DATA 544,0,0,0,0,0,0,90,126
32105 DATA 552,66,66,90,90,126,24, 3 6 , 66
32106 DATA 560,31,4,142,126,14,4,14,0
32107 DATA 568,0,4 ,14 2,126,14,4,14 ,0
32108 DATA 576,0,0,0,16 , 56,16,0,0
32109 DATA 584,0,0,248,24,60,60,126,126
32110 DATA 592,128,64,32,24,60,60,126,126
32111 DATA 600,16,16,16,24,60,60,126,126
32112 DATA 608.),2,4,24,60,60,126,126
32113 DATA 616,0,0,31,24 , 60,60,126,126
32114 DATA 624,73,42,20,119,20,42,73,8
32115 DATA -1

168

Chapter Three. Advanced Graphics And Game Utilities.

Fun With Scrolling
David Plotkin

While this article doesn't tackle the finer points of pixel scrolling, it does
present several useful BASIC routines to hell) you learn more about
"coarse" scrolling ... the ability to move lines of graphics vertically and
horizontally.

Many of the graphic capab ilities of the Atari home computers have
been documented in COMPUTE! Magaz ine: alternate ch aracte r se ts
("Superfont") 1; use of characters in graphics modes ("Textplot,,)2;
and several articles on Playe r/M iss ile graphics, including some
exce llent machine language subroutines. Notab ly absent has been one
of the more spectacular ab ilities of the Atari - scrolling. For those
who don't know, scro lling is the movement of the text or graphics on
the screen in whole or in part. The arcade games Scramble and
Defender use scrolling. And few of you av id gamesters have not seen
G reg Christensen 's "Caverns of Mars," a game th at is so good that
Atari itse lf is market ing it as "official" Atari. In the pages that fo llow,
I wi ll te ll you how to scro ll , and prov ide a program for a game which
not only scrolls but includes some o ther tricks with P/M graphics.

First, though, a few words about the types of scrolling. H ori zontal
scro lli ng scrolls left and right; vert ica l scrolling scro lls up and down.
Two subse ts are coarse and fine scrolling, bo th applicable to h orizontal
and vertica l scro lling. Coarse and fine scro lling can be combined to
produce combined scrolling (tri cky, huh ?), which is the type of
scro ll ing that games such as "Caverns of Mars" use.

What does all this mean? W e ll ... coarse scrolling is movement of
text or graphics in incremen ts of one le tter or on e row or one co lumn .
Thus, graphics mode 3 has 24 rows from the top to the bottom of the
screen, and 24 coarse vert ica l scro lls will move a ll the pi c ture on the
original screen off the scree n. Fine scrolling allows for scro lling in the
pixe l e lements of coarse scro lling, so the motion appears smoother.
For example, in graphi cs mode 3, each coarse scro ll is broken in to
e ight fine r sc ro ll s. Fine scro lling by itse lf can only move screen data a
tota l of one row or co lu mn, so the combinat ion of coarse and fine
scrolling is used to produce smooth motion over as man y screens of
data as required. Unfortun ate ly (although combined scro lling is no t

169

Chapter Three. Advanced Graphics And Game Utilities.

particularly difficult or complicated), the necessary transition from
fine to coarse scrolling and back which occurs during combined
scrolling must happen very fast, too fast for BA SIC. Otherwise , there
will be some distracting displays on the screen .

A machine language routine for combined scro lling would
probably do the screen manipulations during a ve rtica l blank, which
occurs 60 times a second when the TV elec tron gun has fini shed
drawing the picture and is returning to the top of the tube to draw the
next screen. Thus, the distracting graphics which occur when using
combined scrolling in BASIC would not be seen .

The balance of this article will deal only wi th coarse scrolling,
which is all you need for most applications. The Tricky Tutorial #2
by Santa Cruz Educational Software presents a machine language
routine (for inclusion in a BASIC program - you don't need an
assembler cartridge) for vertical combined scro lling which works very
well. I will not reproduce it here, but I urge readers interested in
learning combined scrolling to obtain the program and try the
examples. The Tricky Tutorial #2 and this article will give you the
necessary tools for some rea lly grea t graphics displays.

Atari home computers keep the add ress of the Display List at
memory locations 560 and 561 (PEEK(560) + 256 ' PEEK(561)). The
Display List is a se t of instructions in memory that the computer
uses to find out what to put on the screen . Every time you use a
graphics # command, the computer creates a Display List somewhere
in memory and puts the address at locations 560 and 561. The fifth
and sixth numbers in the Display Li st are the address of screen memory
- the first byte to be displayed on the scree n. If you adjust the value of
the number stored here , a ll the data on the screen will move - it will
scroll !

So plug in your joys tick and punch in the fo llowing program:

10 GRAPHICS 3:COLOR l:PLOT O , O:DRAWTO 40,20
20 DL=PEEK(560)+256*PEEK(561)
30 DL4=DL+4:DL5=DL+5:NU ML=PEEK(DL4):NUMH=PEE

K(DL5)
40 ST=STICK(O)
50 IF ST=ll THEN NUML=NUML+l
60 IF ST=7 THEN NUML=NUML-l
70 IF NUML<O THEN GOTO 110
80 IF NUML >256 THEN GOTO 140
90 NUML=NUML-256:NUMH=NUMH+l
100 GOTO 120
110 NUML=NUML+256:NUMH=NUMH-l
120 IF NUMH<O THEN GOTO 40

170

Chapter Three. Advanced Graphics And Game Utilities.

130 IF NUMH>255 THEN GOTO 40
140 POKE DL4.NUML:POKE DL5,NUMH
150 GOTO 40

Line 20 gets the address of the Display List, while line 30 establishes
the variable for the fifth and sixth numbers on the Display List (DL4
is the fifth number). The loop from 40 to 60 changes the variable
corresponding to the low part of the screen memory based on the
pos ition of the joys ti ck. Lines 70 to 110 adjust the low part (NUML)
and high part (N UMH) of screen memory to keep the va lues from
go ing outside " legal" va lues . Thus, ifNUML ge ts above 255, then
you subtract 256 from it and add one to NUMH. And ifNUML gets
below zero, then you add 256 to it and subtract one from NUMH.
Lines 120 and 130 keep th e high part of sc reen memory from going
outside of its limits. Once you reach NUMH = 0 or NUMH = 256
that's as far as you can go. Finally, line 140 POKEs the adjusted values
of the address of screen memory and goes back to start again.

A few things you wi ll no tice about this program: as you scroll
right with your joystick, the picture on the screen disappears off the
left edge of your screen and reappears from the right edge. After ten
hori zontal scrolls, the line is once more on the screen, but n ow is
di splaced up one line. This is because in graphics 3, there are ten
bytes per line of memory. Be low is a chart of graphics modes versus
some useful quantities .

GRAPHICS MODE o 234 5 678

Rows per screen 24 24 12 24 48 48 96 96 192

Bytes per row 40 20 20 10 10 20 20 40 40

Every time you scroll a ho ri zontal distance equa l to the number
of bytes per line (ten times in graphi cs 3, 40 times in graphics 7, etc.)
you have scro lled vertica ll y by one line. It looks, then, like hori zontal
and verti ca l scrolling are rea ll y the sa me thing . Of course, if you have
ever played "Eas tern Front" by C hris C rawford, you know it's poss ible
to sc roll horizontally without the sa me data coming back on the
screen. As far as I can te ll, to do th at you have to modify the Display
List to ge t the Atari to think that your TV screen is rea lly more than
one screen wide.

For th e rest of thi s article , we' ll st ick to vertica l scrolling. Let's
change a few lines of the prev ious program:

50 NUML=NUML+I0*(ST=4)-10*(ST=13):NUMH=NUMH+
(NUML>255)-(NUML<0)

60 NUML=NUML+256*(NUML<0)-256*(NUML)255)

171

Chapter Three. Advanced Graph ics And Game Utili ties.

and dele te lines 70-110. Run the program and push your joyst ick
forward and back. The new line 50 increments the va lue of NUML by
10, depending on th e joyst ick pos ition. It a lso takes care of
incrementing the value ofN UMH . Line 60 is responsible for adjusting
the va lue ofNUML if it goes outside its limits. Note tha t the express ions
in parentheses are equa l to one if the express ion is true, and ze ro if the
express ion is fa lse. This is much more effi c ient th an the first program.
By scro lling up and down in in cremen ts of ten (the number of bytes
per line), you can ac hieve vert ica l scro lling without any horizontal
movement.

So far you have not done anything rea ll y useful for making
graph ics displays . You ca n sc roll down, leav ing you with an empty
screen, or up , which shortly produces a brightly colored jumble on the
screen. What has happened is that you are disp lay ing an area of RAM
which has data in it. What you need is an empty protected area of
RAM to put your own pictures into. T o get th e memory yo u need,
we 'll use a standard Atari tr ick. Locat ion 106 ho lds the number of
pages availab le in RAM. You can find this number, whi ch will vary
depending on how much memory you have insta lled in your computer,
by doing a PEEK(106). If you then PO KE a number into location 106
which is less than the original number, the difference is now protec ted
and won't be used by the co mputer because it doesn't know that it is
there. See the program fo llowing to see exac tly how to code these
commands. Now set up a loop to read zeroes in to your protected
memory and it will be blank.

The key to sc rolling is defining the multi-screen picture to sc ro ll
ac ross . I' ve a lready told you about locat ions DL4 and DL5, which
ho ld the address of the beginning of sc reen memory. T o understand
how to se t up your own pictures, there are two mo re memory locations
you need to know about: 88 and 89 . These memory locat ions hold the
address of th e start of write memory - the memory locat ion where the
computer is to exec ute commands from the keyboard or from a
running program. The reason that you see the resu lts of keyboard or
program inputs on the screen is that, normally, the address of Disp lay
Memory and the address of Write Memory are the same. But they
don't h ave to be . If you change the add ress of Write Memory and then
execute some PLOTs and ORA WTOs, you wi ll see nothing on the
sc reen. However, when you change the Disp lay Memory to match the
Write Memory, the picture you've drawn wil l fl ash onto the screen .
This is a technique known as page flippin g.

T o utili ze this techn ique, change the Write Memory to write
into your protec ted area of memory and draw the screen as you

172

Chapter Three. Advanced Graphics And Game Utilities.

norma lly wou ld. Then c hange the address of the Write Memory to be
one sc reen away from where it was, and draw ano ther screen . You ca n
keep this up as lo ng as you like, ge nerating as many scree ns edge-to-edge
as your memory a llows. Then p lace your Disp lay Memory at o ne end
or the other (or in the middle if you like), and scro ll away . The
screens will run togeth er if you've done it right , so you won't see the
start of o ne sc ree n and the end of another. And what is the memory
length of one screen, for incrementing the Write Memory ? Refer back
to my chart. If you take the number of rows per sc reen and mu lti ply by
the number of bytes per row, you' ll get the number of bytes per screen
to move the Write Memory. In G raphics 3, for example, one screen is
24 *1 0 = 240 bytes. Note that, in genera l, you will have to change
both the high and low parts of W rite Memory (locat ions 89 and 88,
respect ively) to ge t a tota l move of 240 bytes. The math is the same as
that for the Display Memory since :

Write Memory = PEEK(88) + 256 * PEEK(89)

and the low part and high part of Write Memory have the same limits
as those for the Display Memo ry. A lso not ice that each Graph ics 7
sc reen uses up a lmost 4K of memo ry! The subroutine which begins at
loca tion 4900 se ts up the cave rn for the ga me. I've used the same
screen pattern several times to generate a lo ng cavern from just a few
differen t sc reens. Each time one sc reen is drawn, I change the Write
Memory by 240 bytes and draw the nex t sc reen. The POKE 559,0 just
turns off th e sc reen and processor to speed up draw ing the cavern .
POKE 559,34 turns them back o n aga in.

PIM graphi cs is pretty much idea l for the user-contro lled shapes
when using scro lling, since it is di splayed through a separate sys tem
from norma l graphics and, as a resul t, doesn't move when scro lli ng or
page flipping. The exce llent machine language routine YBLANK
PM 3 was used for mov ing the space sh ip, miss ile, and pterodacty ls in
the program at the end of th is art ic le . I will refe r you to that issue to
fam ili ari ze yourse lf with YBLANK PM . One thing that it does not
seem to be able to do is to change the shapes of the p layers . Thus,
there is no way to blow up the ship o r miss ile, or make the shapes
appea r diffe rent when mov ing left or righ t. This is not c riti c ism. The
authors were trying to make ca lls of th e program from BASIC
unnecessary, and they've do ne an exce llent job. N o netheless, I
needed to change the shapes, and there's a fast and easy way to
do that.

Remember "Extending Playe r Miss ile Graph ics,,4? In tha t article ,
a machine language program was presented. Its stro ng suit was tha t it
could change the sh ape of p laye rs very quickly. It was ca lled by a

l73

Chapter Three. Advanced Graphics And Game Utilities.

command of the form:

A=USR(XXX,PMBASE+FM+Y, MEM)

where XXX = address of the machin e language routine

FM = First memory locat ion of the player you want to change (512
fo r pl.O, double line resoluti on, 1024 for pl.O, single line
resoluti on, etc.)

Y = hori zontal coord inate of player

MEM = memory address of shape to change player to.

r read this routine in to memory between 256 and 5 11 , which are
empty and protec ted, sin ce page 6 (15 36- 1792) is used for VBLANK
PM. The data for playe r shapes was put into the empty P/M memory
from PM BASE to the beginning of Player 0. O nce done, every time I
needed to change a playe r shape, I used a ca ll to Mr. S toltman's
routine , and vo il a !

And so I present "Cavern Battle." Your spaceship hangs poised
over a deep cavern, at the bottom of whi ch li es a big blue box full of
treasure. The object : ge t to the bottom of the cavern, retrieve the
treasure, and get out aga in , a ll the while avo iding or des troy ing the
pterodactyls trying to keep you from reaching the treasure. The
pterodactyls can move through the wa lls of the cavern, but don't you
try it or you' ll blow up! T o move your spaceship , use joyst ick 0, and
press the red bu tton to fire your miss il e. You can only have one miss ile
in flight at a time, so don't waste them. If the pterodacty ls catch you,
you' ll probably blow up , so be careful. You have several things in your
favor - your ship is fas ter and there are only so many prehistoric birds
per cavern. But they are tenac ious and come unerringly for you.
When you reach the bo ttom of the cavern, hover over the treasure
and you'll hear a tune announcing recovery of the treasure. HeaJ for
the surface and if you make it , you'll hear the little tune aga in. If you
want to play aga in, just start down th e cavern aga in. But this time
there will be more pterodactyls . One note of warn ing: When you first
RUN the program, the sc reen will go bl ank for about 45 seconds
while the caverns are drawn. This is normal. Good luck and good
hunting! !

LIST Of VARIABLES
NUML: Low part of screen memory

NUMH: High part of screen memory
SF: Ship fl ag pos ition-equal to 1 when ship is facing right, equal to -1
when ship is fac ing left
MF: Missile pos ition fl ag - works like SF except also equal to zero

174

Chapter Three. Advanced Graphics And Game Utilities.

when missile is exploded or no t launched

P2,P3: Position fl ags for Playe rs 2 and 3. Work like MF

XO,Xl,X2,X3: X coordinates of Players

YO,Yl,Y2,Y3: Y coordinates of Playe rs

PMBASE: Memory location of beg inning of PM graphics

T2,T3: T emporary va riables fo r remembering va lues of P2 and P3

M,MON: Keep track of number of Pterodactyls.

BOT: = 0 when ship has no t reached bottom of cavern
= 1 when ship has reached bottom of cavern

PROGRAM DESCRIPTION
Line 40: Sets high and low part of screen memory variab les.

Lines 50-180: Moves ship, scrolls background, keeps Pterodactyls
and missile from moving off the screen , and makes Pterodactyls move
up and down when background scrolls.
Lines 150 and 160: C hanges ship direc tion.

Line 155: Detects arriva l of ship at bottom of cavern.

Line 156: Detec ts arri va l of shi p a t top of cavern after recovery of
treasure.

Lines 162, 165: Line 165 detects a hit on the ship. line 162 c lears
the register which detects a co llision between the ship and the
background. The need to do thi s ari ses from the fact that occas ionally
the background fl ashes when you arc scro lling. This will register as a
collision unless the collision registe r is cleared. This sequence a lso will
give an element of randomn ess to the detection of a co llision , since a
collision will only be reg istered if a rese tting of the collision register
occ urs between the execution of line 162 and 165. If you don't like
this randomness , add a sma ll wa it ing loop to the end of line 162.
S ince you only have to delay 1160 of a second to a llow the co llision
register to reset, on ly a small loop is required (resetting occurs during
a Vertical Blank).

Lines 170 and 180: Rese ts ship pos iti on fl ags .

Lines 200-215: Launches miss ile .

Line 220: Advances miss ile and detects for a co lli sion.

Lines 230-240: Explodes miss ile .
Lines 250-260: Determines if a Pterodacty l is hit - if it is, moves it
off the screen.
Lines 310-350: Launches new Pterodactyls.

Lines 380-440: C hanges bird pos it ions and advances them.

175

Chapter Three. Advanced Graphics And Game Utilities.

Lines 500-560: Resets ship to top of cavern when it is dest royed.
Starts game over aga in when fi ve ships are lost.

Lines 600-640: Plays tune for arrival at the treasure and at top of
cavern.

Lines 1000-2100: Initia lizes VBLANK PM and reads it into memory.

Line 1075 : Reads data for various player shapes into memory .
Line 4900: Steps back top of memory .

Line 4910: C lears pro tec ted memory.
Lines 4920-4965 : C hanges Write Memory and draws each screen.
Lines 4970-4980: Defines Display Memory address variables.
Lines 5100-5500: Data for drawing screens.

References:
'''Superfont, '' COMPUTE!, January, 1982, # 20
2"Textplot," COMPUTE!, November, 198 1, #18
3"~/M G raphics Made Easy ," COMPUTE!, February, 1982, #21
4"Extending Player Miss ile Graphics, " COMPUTE!, October, 1981 , #17

176

Chapter Three. Advanced Graphics And Game Utilities.

PROGRAM. Fun With Scrolling.
20 GOSUB 4900
30 GOSUB 1000
40 NUML=PEEK(DL4):NUMH=PEEK(DL~):SF=I:MF=0:N

S=5:P2=-I:P3=-I:M=25:BOT=0:MON=M
50 IF STICK(0)=15 THEN GOTO 50
60 ST=STICK(O):IF ST=15 AND STRIG(O)=1 AND P

EEK(53260)=0 THEN GOTO 215
80 NUML=NUML+I0*(ST=14)-10*(ST=13):NUMH=NUMH

+(NUML>255)-(NUML<0)
90 NUML=NUML+256*(NUML<0)-256*(NUML>255)

100 IF NUMH=RT+14 AND NUML>48 THEN NUML=48:8
OTO 60

110 IF NUMH=RT+l AND NUML<136 THEN NUML=136:
GOTO 60

115 IF P2=0 THEN GOTO 126
120 Y2=Y2-8*(ST=14)+8*(ST=13):IF Y2<32 THEN

Y2=32
125 IF Y2>224 THEN Y2=224
126 IF P3=0 THEN GOTO 139
130 Y3=Y3-8*(ST=14)+8*(ST=13):IF Y3<32 THEN

Y3=32
135 IF Y3>224 THEN Y3=224
139 IF MF=O THEN GOTO 145
140 Yl=YI-8*(ST=14)+8*(ST=13):IF Yl<32 THEN

Yl=32
143 IF Y1>224 THEN Yl=224
145 POKE PLY+2,Y2:POKE PLY+3,Y3:POKE DL4,NUM

L:POKE DL5,NUMH:IF MF<>O THEN POKE PLY+l
,Yl:POKE 53278,1

150 XO=XO+8*(ST=7)-8*(ST=11):POKE PLX,XO:IF
ST=7 AND SF=-l THEN D=USR(260,PMBASE+I02
4+YO,PMBASE+l)

155 IF NUML=194 AND NUMH=RT+13 AND XO=124 TH
EN BOT=I:GOSUB 600

156 IF NUML=136 AND NUMH=RT+l AND BOT=l THEN
BOT=0:M=MON+5:MON=M:GOTO 600

160 IF ST=11 AND SF=l THEN D=USR(260,PMBASE+
1024+YO,PMBASE+9)

162 POKE 53278,1
165 IF PEEK(53260)<>0 OR PEEK(53252)<>0 THEN

GO TO 500
170 IF ST=7 THEN SF=l
180 IF ST=11 THEN SF=-1
190 IF STRIG(0)=1 OR MF=1 OR MF=-1 THEN GOTO

215
200 MF=SF:X1=XO+8*(MF=1)-8*(MF=-1):Y1=YO:POK

E PLX+1,X1:POKE PLY+1,Y1
210 D=USR(260,PMBASE+1280+Y1,PMBASE+17*(MF=1

[77

Chapter Three. Advanced Graphics And Game Util ities.

)+25*(MF=-1»:IF PEEK(53253)<>0 OR PEEK(
53261)<>0 THEN GOTO 230

215 IF MF=O THEN GOTO 300
220 IF PEEK(53253)=0 AND PEEK(53261)=0 THEN

X1=X1+4*(MF=1)-4*(MF=-1):POKE PLX+1,X1:G
OTO 300

230 D=USR(260,PMBASE+1280+Y1,PMBASE+33):SOUN
D 0,100,8,8

235 FOR W=1 TO 50:NEXT W:D=USR(260,PMBASE+12
80+Y1,PMBASE+41):MF=0:SOUND 0,0,0,0

240 IF PEEK(53261)=0 THEN GO TO 270
250 IF PEEK(53262)<>0 THEN X2=0:Y2=0:POKE PL

X+2,X2:POKE PLY+2,Y2:T2=P2:P2=0:M=M-1
260 IF PEEK(53263)<>0 THEN X3=0:Y3=0:POKE PL

X+3,X3:POKE PLY+3,Y3:T3=P3:P3=0:M=M-1
270 POKE 53278,1
300 IF M<=O THEN GOTO 380
310 IF P2<>0 THEN GOTO 345
320 X=INT(RND(0)*3):IF X<>O THEN GoTO 345
330 P2=T2:Y2=INT(RND(0)*180+32):X2=INT(RND(0

) *1 30+48) :POKE PLX+2,X2:POKE PLY+2,Y2
345 IF P3<>0 THEN GoTO 380
346 X=INT(RND(0)*3):IF X<>O THEN GOTO 380
350 P3=T3:Y3=INT(RND(0)*180+32):X3=INT(RND(0

)*130+48):POKE PLY+3,Y3:POKE PLX+3,X3
380 IF P2=0 THEN GO TO 415
390 IF X2>XO AND P2=1 THEN P2=-1:D=USR(260,P

MBASE+1537+Y2,PMBASE+57):GOTO 410
400 IF X2<XO AND P2=-1 THEN P2=1:D=USR(260,P

MBASE+1537+Y2,PMBASE+65)
410 X2=X2+4*(X2<XO)-4*(X2>XO):Y2=Y2+4*(Y2<YO

)-4*(Y2>YO):POKE PLX+2,X2:POKE PLY+2,Y2
415 IF P3=0 THEN GOTo 60
420 IF X3>XO AND P3=1 THEN P3=-1:D=USR(260,P

MBASE+1793+Y3,PMBASE+57):GOTO 440
430 IF X3<XO AND P3=-1 THEN P3=1:D=USR(260,P

MBASE+1793+Y3,PMBASE+65)
440 X3=X3+4*(X3<XO)-4*(X3>XO):Y3=Y3+4*(Y3<YO

)-4*(Y3>YO):POKE PLX+3,X3:POKE PLY+3,Y3
450 GO TO 60
500 D=USR(260,PMBASE+1024+YO,PMBASE+33):NS=N

S-1:S0UND 1,200,4,10:FOR W=1 TO 500:NEXT
W:SOUND 1,0,0,0

510 IF NS<>O THEN GOTO 540
520 NS=5:M=MON
530 IF STICK(0)=15 THEN GOTO 530
540 POKE DL4,136:PoKE DL5,RT+l:PoKE PLX,116:

POKE PLY,95:SF=1:D=USR(260,PMBASE+I024+9
5, PMBASE+ 1)

545 XO=116:YO=95:NUML=136:NUMH=RT+l

178

Chapter Three. Advanced Graphics And Game Utilities.

550 X2=0:Y2=0:X3=0:Y3=0:POKE PLX+2,X2:POKE P
LY+2,Y2:POKE PLX+3,X3:POKE PLY+3,Y3:BOT=
o

555 IF P2<>0 THEN T2=P2:P2=0
556 IF P3<>0 THEN T3=P3:P3=0
560 MF=0:D=USR(260,PMBASE+1280+Yl,PMBASE+41)

:POKE 53278,1:FOR W=l TO 500:NEXT W:GOTO
60

600 SOUND 1,40,10,8:FOR W=l TO 30:NEXT W:SOU
ND 1,32,10,8:FOR W=l TO 30:NEXT W

610 SOUND 1,26,10,8:FOR W=1 TO 30:NEXT W:SOU
ND 1,22,10,8:FOR W=l TO 30:NEXT W

620 SOUND 1,32,10,8:FOR W=l TO 30:NEXT W:SOU
ND 1,26,10,8:FOR W=l TO 70:NEXT W:SOUND
1,0,0,0

630 IF BOT=l THEN RETURN
640 GOTO 530
1000 REM INITIALIZE VBLANK PM
1010 FOR 1=1536 TO 1706:READ A:POKE I,A:NEXT

I

1020 FOR 1=1774 TO 1787:POKE I,O:NEXT I
1030 PM=PEEK(106)-16:PMBASE=256*PM
1040 FOR I =PMBASE TO PMBASE+2047:POKE I,O:NE

XT I
1050 FOR I=PMBASE+I025 TO PMBASE+I029:READ A

:POKE I,A:NEXT I
1060 FOR I=PMBASE+1537 TO PMBASE+1545:READ A

:POKE I,A:NEXT I:RESTORE 3010
1065 FOR I=PMBASE+1793 TO PMBASE+1800:READ A

:POKE I,A:NEXT I
1070 POKE 704,18:POKE 705,226:POKE 706,179:P

OKE 707,82
1075 FOR I=PMBASE+l TO PMBASE+72:READ A:POKE

I,A:NEXT I
1080 PLX=53248:PLY=1780:PLL=1784
1090 POKE 559,62:POKE 623,1:POKE 1788,PM+4:P

OKE 53277,3:POKE 54279,PM
1100 X=USR(1696)
1110 POKE PLL,8:POKE PLL+l,8:POKE PLL+2,8:PO

KE PLL+3,8
1115 XO=116:YO=95:X2=190:Y2=175:X3=170:Y3=17

5
1120 POKE PLX,XO:POKE PLY,YO:POKE PLX+2,X2:P

OKE PLY+2,Y2:POKE PLX+3,X3:POKE PLY+3,Y
3

1130 FOR A=260 TO 284:READ I:POKE A,I:NEXT A
1140 RETURN
2000 REM DATA FOR VBLANK INTERRUPT

{8 SPACES}ROUTINE-SEE COMPUTE~ FEB. 198
2

179

Chapter Three. Advanced Graphics And Game Utilities.

2010 DATA 162,3,189,244,6,240,89,56,221,240,
6,240,83,141,254,6,106,141

2020 DATA 255,6,142,253,6,24,169,0,109,253,6
,24,109,252,6,133,204,133

2030 DATA 206,189,240,6,133,203,173,254,6,13
3,205,189,248,6,170,232,46,255

2040 DATA 6,144,16,168,177,203,145,205,169,0
,145,203,136,202,208,244,76,87

2050 DATA 6,160,0,177,203,145,205,169,0,145,
203,200,202,208,244,174,253,6

2060 DATA 173,254,6,157,240,6,189,236,6,240,
48,133,203,24,138,141,253,6

2070 DATA 109,235,6,133,204,24,173,253,6,109
,252,6,133,206,189,240,6,133

2080 DATA 205,189,248,6,170,160,0,177,203,14
5,205,200,202,208,248,174,253,6

2090 DATA 169,0,157,236,6,202,48,3,76,2,6,76
,98,228,0,0,104,169

2100 DATA 7,162,6,160,0,32,92,228,96
3000 DATA 128,64,127,24,48
3010 DATA 1,54,52,248,28,103,74,138
3020 DATA 128,64,127,24,48,0,0,0,1,2,254,24,

12,0,0,0,224,56,224,0,0,0,0,0,7,28,7,0,
0,0,0,0

3050 DATA 219,219,60,231,231,60,219,219
3060 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3070 DATA 1,54,52,248,28,103,74,138,128,108,

44,31,56,230,82,82
4000 DATA 104,104,133,204,104,133,203,104,13

3,207,104,133,206,160,0,177,206,145,203
,200,192,8,208,247,96

4900 RT=PEEK(106):RT=RT-16:POKE 106,RT
4910 POKE 559,0:FOR I=RT*256 TO (RT+16)*256:

POKE I,O:NEXT I:GRAPHIC5 3+16:COLOR 1:P
OKE 765,1

4920 POKE 89,RT+2:POKE 88,0:G05UB 5100
4930 POKE 89,RT+2:POKE 88,240:G05UB 5100
4940 POKE 89,RT+3:POKE 88,224:G05UB 5200
4950 POKE 89,RT+4:POKE 88,208:G05UB 5300
4951 POKE 89,RT+5:POKE 88,192:G05UB 5100
4952 POKE 89,RT+6:POKE 88,176:G05UB 5200
4953 POKE 89,RT+7:POKE 88,160:G05UB 5300
4954 POKE 89,RT+8:POKE 88,144:G05UB 5100
4955 POKE 89,RT+9:POKE 88,128:G05UB 5200
4956 POKE 89,RT+10:POKE 88,112:G05UB 5300
4957 POKE 89,RT+11:POKE 88,96:G05UB 5100
4958 POKE 89,RT+12:POKE 88,80:G05UB 5200
4960 POKE B9,RT+13:POKE 88,64:G05UB 5400

4965 POKE B9,RT+14:POKE 88,48:G05UB 5500
4970 DL=PEEK(560)+256*PEEK(561):DL4=DL+4:DL5

180

Chapter Three. Advanced Graphics And Game Utilities.

=DL+5
4980 POKE DL5,RT+l:POKE DL4,136:POKE 559,34
4990 RETURN
5100 PLOT O,O:PLOT 29,0:DRAWTO 39,0:PLOT 0,1

:PLOT 1,1:PLOT 30,1:DRAWTO 39,1:PLOT 0,
2:DRAWTO 2,2:PLOT 31,2:DRAWTO 39,2:PLOT

0,3:DRAWTO 3,3:PLOT 32,3
5105 DRAWTO 39,3
5110 PLOT 0,4:DRAWTO 6,4:PLOT 34,4:DRAWTO 39

,4:PLOT O,5:DRAWTO 7,5:PLOT 32,5:DRAWTO
39,5:PLOT O,6:DRAWTO 8,6:PLOT 31,6:DRA

WTO 39,6:PLOT O,7:DRAWTO 7,7
5120 PLOT 32,7:DRAWTO 39,7:PLOT O,8:DRAWTO 5

,8:PLOT 34,8:DRAWTO 39,8:PLOT 0,9:DRAWT
o 4,9:PLOT 35,9:DRAWTO 39,9:PLOT 0,10:D
RAWTO 5,10:PLOT 34,10:DRAWTO 39,10

5130 PLOT O,II:DRAWTO 7,II:PLOT 32,ll:DRAWTO
39,ll:PLOT O,12:DRAWTO 8,12:PLOT 31,12

:DRAWTO 39,12:PLOT 0,13:DRAWTO 7,13:PLO
T 32,13:DRAWTO 39,13

5140 PLOT O,14:DRAWTO 5,14:PLOT 34,14:DRAWTO
39,14:PLOT 0,15:DRAWTO 4,15:PLOT 34,15

:DRAWTO 39,15:PLOT 0,16:DRAWTO 5,16:PLO
T 34,16:DRAWTO 39,16

5150 PLOT O,17:DRAWTO 7,17:PLOT 32,17:DRAWTO
39,17:PLOT 0,18:DRAWTO 8,18:PLOT 31,18

:DRAWTO 39,18:PLOT 0,19:DRAWTO 7,19:PLO
T 32,19:DRAWTO 39,19

5160 PLOT 0,20:DRAWTO 5,20:PLOT 34,20:DRAWTO
39,20:PLOT 0,21:DRAWTO 4,21:PLOT 35,21

:DRAWTO 39,21:PLOT 0,22:DRAWTO 5,22:PLO
T 34,22:DRAWTO 39,22

5170 PLOT 0,23:DRAWTO 7,23:PLOT 32,23:DRAWTO
39,23

5180 RETURN
5200 PLOT 12,23:DRAWTO 16,19:DRAWTO 16,B:DRA

WTO B,O:DRAWTO O,O:POSITION O,23:XIO 18
,#6,0,0, "S:":PLOT 39,19:DRAWTO 39,8:DRA
WTO 23,8

5210 POSITION 23,19:XIO 18,#6,0,0,"5:"
5220 X=31:FOR y=o TO 7:PLOT X,Y:DRAWTO 39,Y:

X=X-l:NEXT Y
5230 X=24:FOR Y=20 TO 23:PLOT X,Y:DRAWTO 39,

Y:X=X+l:NEXT Y
5240 RETURN
5300 PLOT 17,23:DRAWTO 7,12:DRAWTO IB,12:DRA

WTO 22,B:DRAWTO 20,8:DRAWTO 12,0:DRAWTO
O,O:POSITION O,23:XIO IB,#6,O,O,"5:"

5310 X=27:FOR Y=O TO 7:PLOT X,Y:DRAWTO 39,Y:
X=X+l:NEXT Y

181

Chapter Three. Advanced Graphics And Game Utilities

5320 X=29:FOR Y=8 TO 13:PLOT X,Y:DRAWTO 39,Y
:X=X-1:NEXT Y

5330 X=33:FOR Y=14 TO 23:PLOT X,Y:DRAWTO 39,
Y:X=X-i:NEXT Y

5340 RETURN
5400 PLOT 11,23:DRAWTO 11,13:DRAWTO 3,13:DRA

WTO 3,8:DRAWTO 16,0:DRAWTO 0,0:P05ITION
0,23:XIO 18,36,0.0,"5:"

5410 X=24:FOR Y=O TO 10:PLOT X,Y:DRAWTO 39,Y
:X=X+l:NEXT Y

5420 PLOT 34,11:DRAWTO 39,11:PLOT 34,12:DRAW
TO 39,12

5430 X=27:FOR Y=13 TO 23:PLOT X,Y:DRAWTO 39,
Y:NEXT Y:PLOT 0,23:DRAWTO 39,23

5440 COLOR 3:PLOT 18,22:DRAWTO 20,22~PLOT 17
,22:DRAWTO 20,22

5450 RETURN
5500 COLOR 1:FOR Y=O TO 23:PLOT O,Y:DRAWTO 3

9,Y:NEXT Y:RETURN

182

CHAPTER FOUR

APPLICATIONS

Chapter Four. Applications.

A Simple Text Editor
Osvaldo Ramirez

You can use this line-oriented Editor for simple word processing, or even to
edit BASIC programs stored with the LIST"D:" command.

This program is a mod ification of Arnie Lee 's and Steve Gradigan's
text editor published in COMPUTE!, issues no. 9 and 20. The origina l
program was written fo r the PET machine. This modificat ion is for
the Atari 800 and wi ll work with an Epson MX 80 FIT printer with the
Graftrax optio n. The program itse lf requires 9676 bytes , but goes up
to 31865 bytes once the buffer is initiated. The buffer accommodates
five pages of 54 lines each, 80 characters per line. Two extra lines
were added for st ring manipulat ions. Each page requires 4405 bytes.
This amount may be reduced for machines with less memory by
ch anging the DIM statement in line 20 and the string clearing routine
in line 30. The trans la tion was accomplished using Charles Brannon's
suggestions in COMPUTE!, issue no. 16 and Teri Li' s in Byte of
January 1981.

I added a few extra ro utines that enhance an already useful
program. Each function now has its own screen . In additio n to the
be ll warning that there are five spaces left to fi ll the input strine there
are now five reverse video spaces to be overwritten so that the user has
visua l control of the spaces left for proper hyphenatio n, when needed.
If the string length (the M va lue) exceeds 76, a new line will be
displayed on the TV. It will not affect the buffe r or the printing.

A new line exchange function and a b lock move of lines were
added. These two new routines increase editing flexibility. They can
be accessed with the B and the E commands, respectively.

The loading function will automatically append to whatever
program is resident in the mac hine's memo ry if it is not dele ted before
loading the new text.

The printing routine formats to 54 lines per page and ex its
printing with a top of form command. It will number pages
automatica lly at the top, with right justifica tion starting at the second

185

Chapter Three. Advanced Graphics And Game Utilities.

page while retaining the 54 line format. It stops at the end of each
page and prompts the user to continue when ready . This feature
allows for the insertion of a new page if you are using cut paper instead
of fanfold. The printer will respond to the Atari contro l characters,
allowing for different fonts in the same line.

The string change function will accep t from one line up to the
entire document for searc h and substitution. It will display on the
screen the line selected or the first line of the block of lines to search.
The program takes about two minutes to scan each page.

The program was renumbered to maintain the same routine
locations as in the original li sting of Lee and Grad ij an . This way you
can refer to their original art icles for documentation. The renumber
was done using one of the utility programs from the Atari Program
Exchange.

When keying in this program, remember the five reverse video
characters in line 10100, the five left arrow characters in line 10080,
and one down arrow in line 21010 right afte r the co lon.

186

Chapter Four. Applications.

PROGRAM. A Simple Text Editor For The Atari
10 REM -A SIMPLE TEXT EDITOR FOR ATARI
11 REM BY O.RAMIREZ-MARCH 1982
12 REM ORIGINAL PROGRAMS BY A.LEE AND S.GRAD

IJAN
13 REM COMPUTE *9 AND *20
20 DIM T$(21760),L$(80),B$(80),A$(13)
30 T$(I)=" ":T$(21760)=" ":T$(2)=T$
40 DIM DM$(2),FR$(80),TS$(80)
50 L$(I)=" ":L$(80)=" ":L$(2)=L$
60 DIM FI$(12),NL$(80),F$(2)
70 OPEN *1,4,0, "K:"
80 POKE 82,0
90 LL=1:M=79
100 A$="ABCDEFILMPQRS"
110 ? "(CLEAR}{10 SPACES}SoFTWARE LINE EDITOR

120? :? :? "FUNCTIONS:"
130 ?
140 POKE 85,10:? "A.append to end of text/st

art"
150 POKE 85,15:? "@ =5 space tab"
160 POKE 85,15:? "@+RETURN = skip a line"
170 POKE 85,10:? "B.block move"
180 POKE 85,10:? "C.change string"
190 POKE 85,10:? "D.delete a line"
200 POKE 85,10:? "E.exchange lines"
210 POKE 85,10:? "F.filer commands"
220 POKE 85,10:? "I.insert before line"
230 POKE 85.10:? "L.list line(s)"
240 POKE 85,10:? "M.menu display"
250 POKE 85,10:? "P.print lines"
260 POKE 85,10:? "Q.quit editor"
270 POKE 85,10:? "R.replace a line"
280 POKE 85,10:? "S.set margins"
290 ? :?
300 B=O:? "ENTER SELECTIoN-->";
310 GOTo 330
320 TRAP 40000:? :? "~~fi@rug~~IT"~"~"~"~"~"~"~

"(I"rr:"~::!,,::;::a;;~" ;
330 GET *l,B:B$=CHR$(B):IF B$= THEN 330
340 J =0: FOR 1=1 TO 13: IF A$ (I , I) =B$ (1 , 1) THE

N J=I
350 NEXT 1:1=13
360 ? B$
370 IF J = O THEN 320
380 ON J GoTo 1000.12000.2000,3000,11000,400

0,5000,6000,110,9000,8000,7000,21000

1000 ? "{CLEAR}~~~@~~ TO END OF TEXT OR STAR

187

Chapter Four. Applications.

T"
1010 ? LL; .. > ..
1020 GOSUB 10000
1030 IF LEN(L$)=O THEN 320
1040 T$ «LL*80) -79, (LL*80» =L$
1050 LL=LL+l
1060 GO TO 1010
2000 ? "(CLEAR}~~~~~~ ";:GOSUB 16000
2010 IF HI=O THEN 320
2020 J2=LO
2030? "CHANGE STRINGS- > ":? J2;">";T$(J2*80-

79,J2*80-80+M):GOSUB 10000
2040 L=LEN(L$)
2050 IF L=O THEN 320
2060 IF L<4 THEN 2000
2070 DM$=L$(I,I)
2080 IF L$(LEN(L$»<>DM$ THEN? "*WRONG,TRY

AGAIN":FOR 1=1 TO 200:NEXT I:GOTO 2000
2090 J=O:FOR 1=2 TO L-l
2100 IF L$(I,I)=DM$ THEN J=I
21.10 NEXT I
2120 IF J=O THEN 2000
2130 IF J=2 THEN 2000
2140 FR$=L$(2,J-l)
2150 IF J+l=L THEN TS$= :GOTO 2170
2160 TS$=L$(J+l,L-1)
2170 F=LEN(FR$)
2180 POP :FOR I=LO TO HI
2190 T=M:S=1:NL$=
2200 FOR J=1 TO T-F+l
2210 IF T$(I*80-80+J,I*80-80+J+F-l)<>FR$ THE

N 2250
2220 IF J=1 THEN NL$=TS$:GOTO 2240
2230 NL$(LEN(NL$)+1)=T$(I*80-80+5,I*80-80+J-

1):NL$(LEN(NL$)+1)=T5$
2240 5=J+F
2250 NEXT J
2260 IF 5<>1 THEN NL$(LEN(NL$)+1)=T$(I*80-80

+5,I*80-80+M+1):T$(I*80-79,I*80)=T$«LL
+1) *80-79. (LL+1) *80)

2265 T$(I*80-79,I*80)=NL$
2270 NEXT I
2280 GOTO 320
3000 ? "{CLEAR}[8~[~[:5iu~ " ;:G05UB 16000
3010 IF DF=O THEN 3060
3020? "DELETE THE ENTIRE FILE?(Y/N)";
3030 GET it1,B:B$=CHR$(B):IF B$=" .. THEN 3030
3040? B$:IF B$="N" THEN 320
3050 IF BS<>"Y" THEN 3020
3060 IF HI>LL-1 THEN 320

188

Chapter Four. Applications.

3070 IF HI=LL-l THEN TRAP 320:T$(HI*80-79,HI
*80) =T$ «LL+l) *80-79, (LL+l) *80): LL=LO: G
OTO 320

3080 J=HI-LO+l
3090 FOR I=LO TO LL+l
3100 T$ (I *80-79, 1*80) =T$ « I+J) *80-79, (I+J) *8

0)
3110 NEXT I
3120 LL=LL-(HI-LO)-1
3130 GOTO 320
4000 ? .. {CLEAR} [jjf_i~[§,':!:t£ :.:;::;;:ti:t:: [~~IJENTER L=LOAD, 5-

SAVE-)" ;
4010 GET #1,B:B$=CHR$(B):IF B$= THEN 4010
4020 IF B$=CHR$(155) THEN ? :GOTO 320
4030 IF B$ <> "L" AND B$ <> "S" THEN? :GOTO 400

o
4040 ? B$:F$=B$
4045? :? :POKE 85,10:? "INSERT STORAGE DISK

II:? :?
4050 POKE 85,20:? .. :--------.---: ..
4060 POKE 85,5:? "ENTER FILENAME-) ";
4070 GOSUB 10000
4080 IF LEN(L$)=O THEN 320
4090 IF LEN(L$»12 THEN? "USE LESS THAN 12

CHARACTERS":GOTO 4050
4100 FI$=L$
4110 B$=" D: ..
4120 B$(LEN(B$)+1)=FI$
4130 IF F$= " L" THEN 4210
4140 IF LL=1 THEN? "NO FILE TO SAVE":GOTO 3

20
4150 CLOSE #3:0PEN #3 , 8 , 0,B$
4160 FOR 1=1 TO LL-1
4170 ? #3;T$(I*80-79,I*80)
4180 NEXT I
4190 CLOSE #3:? :? FI$;- " SAVED"
4200 GOTO 320
4210 CLOSE #3:TRAP 4280:0PEN #3,4,0,B$
4220 IF LL) 1 THEN LL=LL-1:GOTO 4230
4225 LL=O
4230 LL=LL+1:T$(LL*80-79,LL*80)=" "
4240 L$=" "
4250 TRAP 4270: INPUT #3;L$:T$(LL*80-79,LL*80

)=L$
4260 GOTO 4230
4270 TRAP 40000:CLOSE #3:GOTO 320
4280 CLOSE #3:TRAP 40000:? "FILE NOT ON DISK

":GOTO 320
5000 ? "{CLEAR}Ut::~[§'~fl BEFORE ";:GOSUB 17000
5010 IF LO) LL OR LO < 1 THEN 5000

189

Chapter Four. Applications.

5020? :? LO;" >";
5030 GOSUB 10000
5040 IF LEN(L$)=O THEN 320
5050 LL=LL+l
5060 FOR I=LL TO LO STEP -1
5070 IF 1=1 THEN 5090
5080 T$(1*80-79,1*80)=T$«I-l)*80-79, (1-1)*8

0)
5090 NEXT I '
5100 T$(LO*80-79,LO*80)=T$((LL+2)*80-79, (LL+

2)*80)
5110 T$(LO*80-79,LO*80-80+M)=L$
5120 LO=LO+l
5130 GOTO 5020
6000 ? "(CLEAR}~~~~ ";:GOSUB 16000
6010 IF HI=O THEN 320
6020 FOR J=LO TO HI
6030 ? J;")";T$(J*80-79,J*80-80+M)
6040 IF J/l0=INT(J/l0) THEN POSITION 3.23:?

"HIT E TO END,RETURN TO CONTINUE-)";:GE
T #l,B:? CHR$(B):IF B=69 THEN 320

6050 NEXT J
6060 GOTO 320
7000 ? "(CLEAR}~~~~rr~~ ";:GOSUB 17000
7010 IF LO)=LL OR LO<l THEN 7000
7020? "LINE TO REPLACE:"
7030? LO;")";T$(LO*80-79,LO*80)
7040 ? :? LO;" >" ;
7050 GOSUB 10000
7060 IF LEN(L$)=O THEN 320
7080 T$(LO*80-79,LO*80)=T$«LL+1)*80-79 , (LL+

1)*80)
7090 T$(LO*80-79,LO*80)=L$
7100 GOTO 320
8000? "{CLEAR}":POSITION 4,10:? "LEAVE EDIT

OR:ARE YOU SURE? (YIN)";
8010 GET #l,B:B$=CHR$(B):IF B$="" THEN 8010
8020 IF B$<)"Y" AND B$<) "N" THEN 8000
8030 IF B$="N" THEN? :? :'7 :? :? :GOTO 320
8040 POKE 752,1:POSITION 9,12:? CHR$(253);"E

ND OF EDITOR PROGRAM ... ":FOR 1=1 TO 200
:NEXT I:GRAPHICS O:END

9000 CLOSE #2:TRAP 9200:0PEN #2,8,0,"P:"
9010 ? "(CLEAR}~~~~~ ";:GOSUB 16000
9020? "NUMBER OF SPACES BETWEEN LINES(1-2)"

;:INPUT Sl

9030 ? "IF THIS IS THE FIRST PAGE ENTER 1"
9040? "OTHERWISE ENTER APPROPIATE NO •.•• ";:

INPUT PP
9050 IF HI=O THEN 320

190

Chapter Four. Applications.

9060 CT=O
9070 7 *2;CHR$(27);"D";CHR$(SP);CHR$(0)
9080 FOR I=LO TO HI
9090 7 *2;CHR$(137);T$(I'80-79,I'80-80+M)
9100 CT=CT+1
9110 IF SI=2 THEN 7 *2:CT=CT+1
9120 IF CT/54=INT(CT/54) THEN GOSUB 23000
9130 NEXT I
9140 7 *2;CHR$(12)
9150 CLOSE *2:GOTO 320
9200 7 : 7 : POKE 85, 10: 7 "U[!rr;a:.:::;rr;[!a:U[§rr;~a:": TR

AP 40000:GOTO 320
10000 L$=""
10010 REM
10020 GET *1,B:B$=CHR$(B):IF B$="" THEN 1002

o
10030 IF B$=CHR$(155) THEN POKE 752,0:7 :RET

URN
10040 IF B$=CHR$(126) THEN L$(LEN(L$»="":7

B$;:GOTO 10110
10050 IF B$="~" THEN B$="{5 SPACES}"
10060 IF LEN(L$)=M-6 THEN 7 CHR$(253);
10070 IF LEN(L$)=M THEN POKE 752,0:GOTO 1012

o
10080 IF LEN(L$)=M-5 THEN 7 "{5 LEFT}";
10090 L$(LEN(L$)+I)=B$:7 B$;
10100 IF LENCL$)=M-5 THEN POKE 752,1:7 "

{5 ~ITO[f~l"§~}";

10110 GOTO 10010
10120 7 " [§rr;rr;(!;rr; -L I NE TUNCATED": RETURN
11000 7 "(§E::~a:[fa:[!,,@IU![!a:@~"

11010 7 "ENTER LOWER NUMBER FIRST"
11030 7 "ENTER ";:GOSUB 16000
11040 IF L=O THEN 320
11060 TS$=" ":TS$=T$(LO'80-79,LO'80)
11070 T$(LO'80-79,LO'80)=T$(HI'80-79,HI'80)
11080 T$CHI'80-79,HI'80)=" "
11090 T$(HI'80-79,HI'80)=TS$:TS$=" "
11100 7 LO;")";T$CLO*80-79,LO*80)
11110 7 :7 HI;")";T$CHI*80-79,HI'80)
11120 GOTO 320
12000 7 "{ CLEAR} :;::(!;~@.:I..:!:~t!:~~':!:[jjIU![!a:@~"
12010 7 "INSERT BEFORE LINE NO.-) ";:INPUT B

$:IF LENCB$)=O THEN 320
12015 A=VALCB$):B$=""
12020 7 :7 "BLOCK TO MOVE ";:GOSUB 16000
12030 IF LO=A THEN 12000
12040 CTR=O
12050 IF LO (A THEN 12200
12060 IF HI)LL-l THEN 320

191

Chapter Four. Appl ications.

12080 I=O:FOR I=LL+l TO A STEP -1
12090 TS(I*80-79,I*80)=TS«I-1)*80-79. (1-1)*

80)
12100 NEXT I
12110 TS(A*80-79,A*80)=T$«HI+l)*80-79, (HI+l

)*80)
12120 I=O:FOR I=HI+l TO LL+l
12130 TS(I*80-79,I*80)=T$«I+l)*80-79, (1+1)*

80)
12140 NEXT I
12160 CTR=CTR+l
12170 IF CTR=HI-LO+1 THEN 320
12180 GO TO 12080
12200 I=O:FOR I=LL+1 TO A STEP -1
12210 TS(I*80-79,I*80)=T$«I-l)*80-79, (1 - 1)*

80)
12220 NEXT I
12230 TS(A*80-79,A*80)=T$(LO*80-79,LO*80)
12240 I=O:FOR I=LO TO LL+l
12250 TS(I*80-79,I*80)=T$«I+1)*80-79, (1+1)*

80)
12260 NEXT I
12280 CTR=CTR+l
12290 IF CTR=HI-LO+l THEN 320
12300 GO TO 12200
16000 ? "RANGE(LOW-HIGH)=) ";
16010 GOSUB 10000
16020 LO=1:HI=LL-1
16030 L=LEN(L$)
16040 DF=O:IF L=O THEN DF=-l:GOTO 16170
16050 J=O:FOR 1=1 TO L
16060 BS=LS(I,I)
16070 IF B$)="O" AND BS(="9" THEN 16110
16080 IF BS="-" THEN J=I:GOTO 16110
16100 J=99:I=99
16110 NEXT I
16120 IF J=99 THEN 16000
16130 IF JzO THEN LO=VAL(LS):HI=LO:RETURN
16140 IF J) 1 THEN LO=VAL(LS(1,J-l»
16150 IF J(L THEN HI=VAL(LS(J+l,LEN(LS»)
16160 IF LO)HI THEN 16000
16170 RETURN
17000 ? "-LINE NO.-)";
17010 GOSUB 10000
17020 L=LEN(LS)
17030 IF L=O THEN 320
17040 J=O
17050 FOR 1=1 TO L
17060 BS=LS(I,I)
17070 IF 8$)="0" AND 8S(="9" THEN 17090

192

Chapter Four. Applications.

17080 J=99:I=L
17090 NEXT I
17100 IF J=99 THEN 17000
17110 LO=VAL(LS)
17120 RETURN
21000 ? "{ CLEAR} ~~u~ITa;t!:[!t::~"
21010 POKE 85,7:? "MARGIN SIZE2{DOWN}N.none"
21020 POKE 85,19:? "S.small (0.5 in.)"
21030 POKE 85,19:? "M.medium (1.0 in.)"
21040 POKE 85,19:? "L.large (1.5 in.)"
21050 POKE 85,19:? "O.own design"
21060 B=O:? :? "SELECT MARGIN SIZE->H;
21070 GET *1,B:B$=CHRS(B):IF B$="" THEN 2107

o
21080 ? BS
21085 IF BS<>"N" AND B$<>"S· AND BS<>"M" AND

BS<>"L" AND BS<>"O" THEN 21060
21090 IF BS="N" THEN M=79:SP=0:GOTO 320
21100 IF BS="S" THEN M=74:SP=3:GOTO 320
21110 IF BS="M" THEN M=64:SP=8:GOTO 320
21120 IF BS="L" THEN M=54:SP=13:GOTO 320
21130 IF BS~"O" THEN? :? "INCHES FOR LEFT M

ARGIN=";:INPUT SP
21140? :? "INCHES FOR RIGHT MARGIN=";:INPUT

RM
21150SP=INT«SP-0.2)*10):M=79-SP-INT«RM-0.

25)*10)
21160 GOTO 320
23000 ? :? "r:;;rr;~~~.-I;~[i[!: rr;t::-=m:~a;[![::: i]'::::~~i]'::;IT~~"

;:INPUT BS
23010 ? *2;CHRS(12)
23020 Pl=6:IF PP>9 THEN Pl=7
23030 PP=PP+l:CT=CT+l
23040 FOR 11=1 TO SP+M-Pl:PUT *2,32:NEXT II:

? *2;"Page ";PP
23045 IF SI=2 THEN? *2:CT=CT+l
23050 RETURN

193

Chapter Four. App lications.

The Atari Keyboard
Speaks Out

Walter M . Lee

How to use the console speaker - Atari's fi fth voice . Here's an explanation
of the Atari built-in louds/Jeaker and a user-controllable BASIC program to
play music without using the TV speaker.

One of the frequently unused features of the Atari computer is the
keyboard loudspeaker. Many of the sound effects crea ted on the Apple
II + keyboard loudspeaker can also be generated on the Atari. The
four-vo ice audio output of the Atari to the television is more flexible
tha'n the keyboard speaker. H owever, if your display is a monitor
instead of a television se t, it may not support the four-vo ice audio
output. The keyboard loudspeaker is then a practical means for audio
output or feedback. In addition , the keyboard loudspeaker allows the
television o r monitor to be turned off while the Atari is executing a
long program. The loudspeaker can then sign al when the job is
fini sh ed.

The Atar i keyboard loudspeaker is access ible from the BASIC
cartridge. A simple PRINT statement wi ll create a buzzer.

10 PRINT "{BELL}";

This buzzer has a fi xed tone and duration. T o crea te a variable duration,
one must POKE zero into the speaker register , CON SOL, at location
53279 decimal. The duration is se t by the number of times CON SOL
is se t to zero.

10 INPUT N
20 FOR 1=0 TO N:POKE 53279,0:NEXT I
30 GOTO 10

Creating pure pitches on the Atari keyboard loudspeaker requires
more work. A loudspeaker produces sound by crea ting waves of
alternat ing high and low pressure in the air. The loudspeaker does thi s
by moving a diaphragm (the loudspeaker's cone) forward and backward.
A s the diaphragm moves forward it squeezes the air in front of it,
causing a region of high pressure. As the diaphragm moves backward,

194

Chapter Four. Applications.

the air rushes in to fill the space left behind the moving diaphragm
and creates a region of low pressure. These pressure waves radiate out
from the loudspeaker in the direction of propaga tion; i. e., sound
waves are longitudina l waves. Storing 8 into CON SOL pushes the
diaphragm one way, and storing 0 into CONSOL pushes the diaphragm
the o ther way.

The time delay between sw itching CON SOL from 8 to 0
const itutes the period of the sound wave; therefore, it designates the
frequency generated by the sound wave. The shorter the time delay,
the higher the frequency. The Vertical Blank Interrupt stores an 8
into CON SOL every 1160 of a second . This is why Program 1 works.
However, this also prevents the keyboard loudspeaker from generating
any pitch o ther than 60 hertz (hertz = cycles/second). Fortunately, we
do not have to disable the entire Vertica l Blank Interrupt to create
variable pitches on the loudspeaker. The Vert ica l Blank Interrupt is
broken into two stages. During critical code sec tions (e .g. , I/O
routines), the Atari Operat ing System wil l defer the second stage of
the Vertical Blank Interrupt . This is done by se tting the CRITIC fl ag ,
at location 66 dec imal, to a nonzero va lue. The second stage stores 8
into CONSOlo The first stage updates the rea l-time clock, the
ATTRACT mode, and the system countdown timer 1. The shadow
registers, the game contro llers, and the system countdown timers two
through five are disabled with the second stage. To rega in the second
stage, we se t C RITIC= 0, which is its normal state.

The time delay for the Atari has an intrinsic pitc h disto rtion .
This is due to the Atari Disp lay processor, ANTIC, which "steals"
machine cycles from the 6502 in order to generate the d isplay on the
television and to refresh memory. Thi s is ca lled Direc t Memory Access
(DMA). The DMA cannot be accounted fo r in the delay loop and
causes the pitch to ge t out of sy nchroni zat ion. The accuracy of the
pitch generated must be sacr ificed if we are to mainta in a disp lay.
Graph ics mode 3 through 6 (BAS IC) seem to h ave th e leas t effect on
pitch distortion. T o create the purest tone possible, the screen must
be turned off. This is achieved by storing zero into DMACTL, at
location 54272 decima l, after disabling the shadow registers by setting
C RITIC = 1. Program 1 creates va rious low tones on the keyboard
loudspeaker.

In machine language, the frequency range is exte nded. The
upper frequencies are increased by a much greater extent than the
lower frequencies . The lower frequencies degrade in to "clicks," whi ch
is normal for square wave sound synthesis.

Most users will want to use this technique in BASIC. I h ave

195

Chapter Four. Applications.

written an Atari BASIC USR fun ct ion to contro l the keyboard
loudspeaker. Program 2 puts this USR function in memory locat ions
15 36 to 1600 decimal. The USR functi on

DUMMY = USR(l536,I,])

sets I = pitch and] = durat ion. The pitch can be from 1 (the highest)
to 255 (the lowest) . Setting 1=0 is equ iva len t to sett ing 1= 256. The
variable] has a range from 0 to 65,535. The longest duration is when
] =65,535. The pitch di sto rtion should be around 10% when the
screen is off. Program 2 does a frequency range test and then plays a
perceptible version of the ABC song. A table of pitch va lues for
musical no tes is a lso included in the program. T o create o ther tunes, I
have inc luded a table of corresponding musica l notes and their
approx imate pitch numbers. These values were ca lculated from a
CRC H andbook of Chemistry and Phys ics and may no t be correct. My
checking was hampered by the fac t that I do not have a musical ear.
The Pitch number is the rec iproca l of the produc t

pitch = _______________ ________ _

musical no te frequency' cycle speed ' 5 cycles

The cycle speed is .8517 microseconds per machine cycle, which is
much slower than the offi c ial speed of .56 mic roseconds per machine
cycle. The Atari's 6502B main processor has an effec tive speed of
1. 17Mhz in Graphics Mode 0 (BASIC). I calcu la ted this speed by
dividing the executi on time of A = USR(l536, 255 ,8 191) by the
number of cycles the 6502 must execute.

These programs present the fifth audio vo ice to Atari users. For
users without a te lev ision or monitor aud io o utput, these programs
give the user a limited audio output without additiona l hardware. For
the less ambitio us programmer, lines 29100 to 30002 in Program 2
and the pitch table to musical no tes are a ll you need.

PROGRAM 1. The Atari Keyboard Speaks Out

100 C=53279
101 Sl=B:S2~0:A=24 :B=2:D=4B
102 CRITIC=66:DMACTL=54272
200 POKE CRITIC,66:POKE DMACTL,O
222 FOR J=O TO A STEP B:FOR K=O TO D:POKE C,

Sl:FOR 1=0 TO J:NEXT I:POKE C,S2:NEXT K:
NEXT J

240 POKE CRITIC,O

196

Chapter Four. Applications.

PROGRAM 2. The Atari Keyboard Speaks Out

90 DIM PITCH(32,2)
99 GRAPH I CS 2+ 16:? *6;" CiiIl![3rrrr:[Bt:::t:!:i.".i.:IITt:::[!"[B TEST

100 GOSUB 29100:REM MAKE SUBROUTINE
101 RESTORE 110
102 REM ~~ut:!:~m8~~~Cii~~rrgft~~~=IT~D~~
103 REM [Brrrr:IT~.u[B~~[B~~~~~~~~ITu~t:!:

104 REM ~t:!:IT~[BDIT~~~8~~IT~~
105 REM [ij~~~.rrru~~~8~~~~~~~.
106 REM ~~~~8~~~~~~ft~~~~~t:!:.rrErr~~~~~
107 REM ~U~~~~ftErr~~~~~~~~~~~~~~ft
108 REM ~E~~~=~~
110 DATA 252,238,224,212,200,189,178,168,159

, 150, 141, 133, 126, 119, 112, 106, 100,94,89,8
4,79,75,71,67,63,59,56,53

200 FOR 1=1 TO 28:READ A
210 PITCH(I,1)=A:PITCH(I,2)=1024+(I-1)*127:N

EXT I
290 REM [ij~[Brrrr:[Bt:::~~~~t:::[!"~.u~~u
300 FOR 1=1 TO 28:A=USR(1536,PITCH(I,1),PITC

H(I,2»:NEXT I
390 REM ~[~C::~"-;:I!I~I!I~I!I.
400 RESTORE 410
401 POSITION O,3:? #6;"ABC"
410 DATA 3,3,10,10,12,12,10,8,8,7,7,5,5,5,5,

3,10,10,8,8,7,7,5,10,10,8,8,7,7,5,3,3,10
,10,12,12,10,8,8,7,7,5,5,3

420 FOR 1=1 TO 44:READ A:A=USR(1536,PITCH(A,
1),PITCH(A,2»:NEXT I

29099 END
29100 RESTORE 30000
29101 FOR 1=1536 TO 1600:READ A:POKE I,A:NEX

T I:POKE I+l,O:RETURN
30000 DATA 133,203,104,104,133,205,104,133,2

04,104,133,207,104,133,206,165,203,72,
138,72,152,72

30001 DATA 169,1,133,66,166,206,169,8,141,31
,208,164 , 204,136,208,253,140,31,208,20
2,208,240

30002 DATA 169,0,197,207,240,5,198,207,76,26
,6,104,168,104,170,104,169,0,133,66,96

197

Chapter Four. Applications.

Atari Screen As
Strip Chart Recorder

Helmut Schmidt

This program lets you simulate a two-pen strip chart recorder. There
is information here on coane scrolling, vertical blank in terrujJts , and
even ESP!

I will describe a subroutin e that gives a disp lay like a strip chart
reco rder where two co lo red pens write on a mov ing ro ll of paper. W e
will make the sc reen scro ll up, wh ile at the bottom the coordinates X I
and X2 of the two pens are ente red continuously. Thi s display can be
very useful to plot computer generated functions or to graph data
prov ided from o utside.

Using a 4K memory block as disp lay area, the Atari a llows us
very eas ily to scro ll this memory block as a closed loop past the screen
display window. Remember that two bytes in the display list specify
the current start address of the display memory. Us ing G raphics Mode
7 + 16 where each line ho lds 40 bytes, we get ve rti cal scrolling if we
regularly increment the sta rt address in steps of 40. Beginning at the
start address, the subsequent memo ry is d isplayed o n the sc reen. But
there is a hitch that comes in very handy . When the display memory
reaches a 4K boundary, the display does not enter the next 4K Llock,
but starts at the begi nning of the initial 4K block. Thus, the memory
block appears "wrapped around " in a continuous loop, provided that
the start address stays within this block.

T o display , fo r example , the lowes t 4K memory block in this
closed loop scro ll fashion we ca n use the si mple BASIC program:

10 GRAPHICS 7+16
20 LOC=PEEK(560) +256*PEEK(561)+4
30 L=O:H=O
40 L=L+40
50 IF L >255 THEN L=L-256:H=H+1
60 IF H > 15 THEN H=H-16
70 POKE LOC,L:PO KE LOC+1 ,H
80 GOTO 40

[98

Chapter Four. App lications.

Unfortunate ly, th is program needs two POKE steps to increment
the display start address, so that an eye straining fli cker may occur
when a display interrupt fa lls between the two steps. This problem
disappears if we advance the d isplay window by a machine language
program that is inserted in the Vertical Interrupt sec tion at the end of
each display cycle . C hap ter 8 of De Re Atari te lls spec ifically where to
do this insertion . For reasons of economy and speed it is good to
include into the machine language program the o ther housekeeping
functions of the display - like entering the new coordinates at the
bottom , and clearing the outda ted entries (leaving the screen at the
top) .

Our machine program gets assembled (Program 1) into the
second half of page six ($680-$6FF) . The reader with an assembler
cartridge can eas ily disassemble the program and study it in de tail.
For most prac tical purposes it is sufficient to know the location of a
few parameters, so that by PO KEing in new values we can set the pen
coordinates , alter the scrolling speed, and stop and start the scrolling.

Here is a li st of the useful PO KE operations:

POKE 1664 ,A
PO KE 1665,B
POKE 1677 , 144
POKE 1677 ,208
POKE 1666 ,80
POKE 1666, 40
POKE 1665,Z

Se ts the writing pens to pos itions
A and B (Range 0 to 179)
Stops scrolling
Scrolling aga in
Extra fas t scrolling
Back to normal scro ll
Normal speed for Z = O. S lower
fo r Z = 1, 3 ,7 ,1 5,3 1, 63 ,1 27,255

Program 1 gives the three bas ic subroutines to handle the strip
chart display.

1. GOSUB 800 has to be run first to enter the machine program into
the lower ha lf of page six.

2. When we ac tually wan t the scrolling display we call GOSUB 700.
This tells the machine program where the display memory is (depending
on RAM size), and then switches the machine program into the
Vertical Interrupt cycle .

3. GOSUB 780 prov ides an orderly ex it from the scrolling mode into
G raphics O.

T o demonstrate the use of these subroutines in a most simple
example , merge Program 2 with Program 1. The resulting program
shows the traces of the two pens that are moved by Paddle 0 and 1. (If
the paddles are no t plugged in, or are set out of range , no trace is
displayed.) T o change parameters press RESET , POKE in the new

199

Chapter Four. Applications.

values, and GOTO 100. Program 2 gives some more explanat ions.

Strip Chart Application: Man-Computer Interaction
The merger of Program 3 with Program 1 gives our next program.
Again we have two pens writ ing on the scrolling screen. O ne pen is
stationary to mark the center line, and the other pen performs a sine­
wave motion with randomly varying amp litude. Whenever the pen
crosses the center line, a random decision is made on wheth er to
increase or decrease the amplitude for the next half cycle (with upper
and lower bounds for the amplitude).

After a certa in number of cycles the swinging stops and a score is
d isplayed. A positi ve or negat ive va lue indicates that the ave rage
amplitude of the swinging pen in this run was higher or lower than
chance expectancy . Thus, by the laws of chance, positive and negative
scores are equally likely.

Each of the binary decisions (increase or decrease) results from a
combinat ion of human dec ision and computer decision. The Atari
prqvides in Locat ion 53770 a rap idly changing sequence of quas i
random numbers in the range from 0 to 255. At each cross ing of the
center line, the computer decid es to increase or dec rease the pen
amplitude depending on whether or not the current random number is
larger than 127. This determines the course of events as long as the
human operator does not press the OPTION button on the console.
If, h owever, the OPTION button is held down at the time of the
cross ing, then the computer's intem al dec ision fo r increase o r decrease
is inverted.

T o explore the program further, let us first run it without using
the OPTION button. What dete rmines the history of the pen
osc illa tions is the internal sta te of the computer's quas i random
number gene rator at the time when the START button is pushed.
And because this internal state changes at a very rapid rate (in the
megacycle range) , the timing of the START button push h as a
decis ive effect on the outcome. Pressing the ST ART button only one­
tenth of a second late r would lead to a completely d ifferent history of
the pen osc illat ions.

It is interest ing to know that a "favorable" t iming of the ST ART
button push can produce high scores. But we cannot use this knowl edge
for ac tuall y obta ining high scores. This is because we have no way of
knowing the interna l state of the computer's random generator. And
even if we knew, we could not do the fast mental arithmetic to
ca lculate the resu lting pen movements. And even if we could, our
fingers would not be fast enough to press the start button at prec ise ly
the right time.

zoo

Chapter Four. Applications.

H aving th e O PTIO N button ava ilable doesn't he lp either. Now
we can change the history of a run while it is in progress. But since we
do not know the computer's in te rnal cho ice for the nex t amplitude ,
we canno t te ll whether we should or should no t invert the computer's
dec ision by pushing the O PTION button. Thus, the arran gement
provides a "fa ir game of ch ance" with no room for a syste matic
winning strategy.

Now we come to our main ques tion : suppose you concentrate
intense ly on the swinging pen , trying to make it swing wide ly or to
keep it still at the center, and you push the O PTIO N button whenever
you feel it is right . Could you then by some "psychic" mechanism
succeed more often than not ? Here success means a pos i ti ve or
negati ve score when th e a im was a high o r a low sw ing amplitude,
respecti ve ly.

The most recent report on the ex istence of such psychic effec ts
can be found in the Proceedings of the IEEE (Vol. 70, N o. 2, Feb.
198 2, pp . 136- 170). Its author, Robert Jahn , is the Dean of the
Princeton Engineering Department. Thus, you don' t have to fee l too
foolish in trying such an experiment.

The a im of a high or low sw ing ampli tude is a ra ther pla in and
si mple one. This may be important so that you can pay undivided
one-po inted attention to the task and can ge t some feeling for the best
mental approach . Keep the test sess ions short and don't expect
miracles. If, after some t ime, you could reach an ave rage success ra te
of 65% or more of the runs in the desired d irec tion , then your skill
would be in high demand at several research laborato ries.

20 1

Chapter Four. Applications.

PROGRAM 1. Atari Screen As Strip Chart Recorder.

697 REM
698 REM ***** GOSUB 700 STARTS SCROLLING ***

**
699 REM
700 GRAPHICS 7+16:POKE 559,0:REM TV OFF
709 REM ... SET COLOR FOR BACKGROUND, TRACE Xl

,TRACE X2
710 SETCOLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR 0

,8,4
720 PG=PEEK(106):REM•....••... NUMBER

OF RAM PAGES
727 REM ...•.... SCREEN DISPLAY STARTS AT 256

*PG-4000
728 REM •..•.... START WRITE 95 LINES(3800 WD

5) FURTHER,!. E.
729 REM WRITESTART = 256*(P8-1)+56
730 POKE 203,56:POKE 204,PG-l:REM •.•. SET WR

ITESTART
740 POKE 205,PEEK(560):POKE 206,PEEK(561)
750 KEEPL=PEEK(546):KEEPH=PEEK(547):REM ..• 5

AVE PARAMETERS
760 POKE 546,135:POKE 547,6:REM MACHIN

E PROGRAM START
770 POKE 559,34:RETURN :REM •......... TV ON

AGAIN
771 REM
772 REM ***** GOSUB 780 EXITS FROM SCROLLING

773 REM
780 POKE 559,0:GRAPHICS 7+16:POKE 546,KEEPL:

POKE 547,KEEPH
790 GRAPHICS O:RETURN
797 REM
798 REM ***** GOSUB 800 LOADS MACHINE PROGRA

M *****
799 REM
800 Xl=1664:X2=1665:REM•......... PEN CO

ORDINATES
810 DATA 200,200,40,192,48,12,3,216,165,20,4

1,0,24,208,66,165
811 DATA 203,109,130,6,133,203,144,26,165,20

4,105,0,41,15,72,13
812 DATA 175,6,133,204,104,208,11,174,130,6,

169,0,202,157,0,112
813 DATA 208,250,172,130,6,169,0,136,145,203

,208,251,160,4,177,205
814 DATA 109,130,6,145,205,200,177,205,105,0

,41,15,109,175,6,145

202

Chapter Four. Applications.

815 DATA 205,169,255,141,250,6,173,128,6,32,
234,6,169,85,141,250

816 DATA 6,173,129,6,32,234,6,76,95,228,201,
180,176,17,72,74

817 DATA 74,168,104,41,3,170,189,131,6,41,25
5,17,203,145,203,96

820 POKE 559,0
830 FOR N=1664 TO 1791
840 READ DAT:POKE N,DAT:NEXT N
850 POKE 1711,PEEK(106)-16
860 POKE 559,34:RETURN

203

Chapter Four. Applications.

PROGRAM 2. Atari Screen As Strip Chart Recorder.

o REM ***** MERGE WITH LISTING 1 ***
**

1 REM AT "RUN" WAITING PERIOD TO ENTE
R PROGRAM,

2 REM THEN DISPLAY OF 2 PENS FROM PAD
DLE INPUT.

3 REM ...•... NO TRACE IF INPUT OUT OF RANGE
(0 ... 179).

4 REM PUSH "SELECT"/"START" TO STOP/M
OVE DISPLAY.

5 REM TO CHANGE PARAMETERS PRESS "SYS
TEM RESET".

6 REM POKE 1675,Z WITH Z=0,1,3,7,15,3
1,63,127,255.

7 REM•. Z=O GIVES FASTEST(NORMAL) SCROL
L SPEED.

8 REM FOR DOUBLE SPEED (SKIPPING ODD
LINES) POKE 1666,80

9 REM NORMALLY POKE 1666,40
10 REM AFTER "SYSTEM RESET" ENTER PROG

RAM BY "GOTO START".
11 REM
80 GOSUB 800:REM LOAD MACHINE PROGRAM FR

OM "DATA"
90 START=100
100 GOSUB 700:REM ENTER SCROLL ROUTI

NE
110 CONS=53279:REM •...... READS CONSOLE SWIT

CHES
120 POKE Xl,PADDLE(O):POKE X2,PADDLE(1)
130 IF PEEK(CONS)<>5 THEN GO TO 120:REM LOOP

UNTIL "SELECT" IS PUSHED
140 POKE 1677,144:REM STOP SCROLL MOVE ME

NT
150 IF PEEK(CONS)<>6 THEN GOTO 150:REM .. WAI

T UNTIL "START" IS PUSHED
160 POKE 1677,208:REM CONTINUE SCROLLING
170 GOTO 120
697 REM
698 REM ***** GOSUB 700 STARTS SCROLLING ***

**
699 REM
700 GRAPHICS 7+16:POKE 559,0:REM TV OFF
709 REM ... SET COLOR FOR BACKGROUND, TRACE Xl

,TRACE X2
710 SET COLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR 0

,8,4
720 PG=PEEK(106):REM NUMBER

204

Chapter Four. Applications.

OF RAM PAGES
727 REM •••..••• SCREEN DISPLAY STARTS AT 256

*PB-4000
728 REM •.•...•• START WRITE 95 LINES(3800 WD

S) FURTHER, I. E.
729 REM ••••.••. WRITESTART = 256*(PG-1)+56
730 POKE 203,56:POKE 204,PG-1:REM ...• SET WR

ITESTART
740 POKE 205,PEEK(560):POKE 206,PEEK(S61)
750 KEEPL=PEEK(546):KEEPH=PEEK(547):REM ••. S

AVE PARAMETERS
760 POKE 546,135:POKE 547,6:REM •.•••. MACHIN

E PROGRAM START
770 POKE 559,34:RETURN :REM .••.••..•• TV ON

AGAIN
771 REM
772 REM ***** GOSUB 780 EXITS FROM SCROLLING

773 REM
780 POKE 559,0:GRAPHICS 7+16:POKE 546,KEEPL:

POKE 547,KEEPH
790 GRAPHICS O:RETURN
797 REM
798 REM ***** GOSUB 800 LOADS MACHINE PROGRA

M *****
799 REM
800 Xl=1664:X2=1665:REM PEN CO

ORDINATES
810 DATA 200,200,40,192,48,12,3,216,165,20,4

1,0,24,208,66,165
811 DATA 203,109,130,6,133,203,144,26,165,20

4,105,0,41,15,72,13
812 DATA 175,6,133,204,104,208,11,174,130,6,

169,0,202,157,0,112
813 DATA 208,250,172,130,6,169,0,136,145,203

,208,251,160,4,177,205
814 DATA 109,130,6,145,205,200,177,205,105,0

,41,15,109,175,6,145
815 DATA 205,169,255,141,250,6,173,128,6,32,

234,6,169,85,141,250
816 DATA 6,173,129,6,32,234,6,76,95,228,201,

180,176,17,72,74
817 DATA 74,168,104,41,3,170,189,131,6,41,25

5,17,203,145,203,96
820 POKE 559,0
830 FOR N=1664 TO 1791
840 READ DAT:POKE N,DAT:NEXT N
850 POKE 1711,PEEK(106)-16
860 POKE 559,34:RETURN

205

Chapter Four. Applications.

PROGRAM 3. Atari Screen As Strip Chart Recorder.

o REM .. ***** MERGE WITH LISTING 1 *****
1 REM .. AT "RUN" WAITING TIME WITH BLANKED S

CREEN, WHILE DATA
2 REM .. ARE PREPARED. SUBSEQUENT RUNS BEGIN

AT START=100.
3 REM .. TO CHANGE PARAMETERS PRESS "SYSTEM R

ESET". POKE IN NEW
4 REM .. VALUES AND TYPE "GOTO START" [RET].
5 REM .. POKE 1675,SPEED WITH SPEED = O,l(PRE

-SET),3,7
6 REM .. GIVES DIFFERENT SCROLL SPEEDS.
7 REM •. AT SPEED=O WE GET "MULTIPLE EXPOSURE

" DISPLAYS BY
8 REM .. POKE 1666,SKIP WITH SKIP = 30,50, OR

70. THE NORMAL
9 REM .. VALUE IS SKIP=40 WITH DISPLAY WINDOW

ADVANCE STEPS
10 REM .. OF 40 WORDS = 1 LINE.
11 REM
50 GOSUB 800:REM •.••... LOAD MACHINE PROGRAM
60 GOSUB 900:REM ..•...• INITIAL SWING PROGRA

M
70 POKE X2,80:REM •..... SET CENTER LINE
80 POKE 1675,1:REM SET SPEED 1
90 START=100
100 ? :? :? :? :? "PRESS START FOR NEXT RUN"
110 IF PEEK(53279)<>6 THEN GOTO 110
120 GOSUB 700:REM INITIATE SCROLLING
130 W=INT(PEEK(53770)/32):REM GET RAND.N

UMBER 0, .. ,7
140 SCORE=W:PHI=T(W):REM .. PHASE ANGLE GIVES

AMPLITUDE
150 Q=-16:TRIALS=100:REM ~ .TRIALS SETS RUN L

ENGTH
160 FOR TRY=l TO TRIALS-l:Q~-Q:S=Q+16
170 R=PEEK (53770) : REM ., GET RANDOM NUMBER
180 IF PEEK(53279)=3 THEN R=256-R:REM .INVER

T IF "OPTION" PRESSED
190 IF R>127 THEN GOTO 220
200 W=W+l:IF W=8 THEN W=7
210 GOTO 230
220 W=W-1:IF W=-l THEN W=O
230 SCORE=SCORE+W:PHI=T(W)
240 FOR Z=32+S TO 63+S
250 POKE Xl,PEEK(SB+Z-PHI)+PEEK(SB+Z+PHI-l)
260 NEXT Z:NEXT TRY
270 GOSUB 780:? :? :? :? :REM .. EXIT SCROLLI

NG

206

Chapter Four. Applications.

280 PRINT "{3 SPACES}THE SCORE IS POSITIVE 0
R NEGATIVE"

290 PRINT "{3 SPACES}IF THE AVERAGE SWING AM
PLITUDE WAS"

300 PRINT "{3 SPACES}ABOVE OR ~ELOW CHANCE E
XPECTATION"

310 ? :? :?" SCORE = ";SCORE-TRIALS*7/2
320 ? :? :? :GOTO START
697 REM
698 REM ***** GOSUB 700 STARTS SCROLLING ***

**
699 REM
700 GRAPHICS 7+16:POKE 559,0:REM TV OFF
709 REM ... SET COLOR FOR BACKGROUND, TRACE Xl

,TRACE X2
710 SETCOLOR 4,0,0:SETCOLOR 2,1,8:SETCOLOR 0

,8,4
720 PG=PEEK(106):REM•. NUMBER

OF RAM PAGES
727 REM ••...... SCREEN DISPLAY STARTS AT 256

*PG-4000
728 REM •.••.... START WRITE 95 LINES(3800 WD

5) FURTHER, I. E.
729 REM WRITESTART = 256*(PG-l)+56
730 POKE 203,56:POKE 204,PG-l:REM SET WR

ITESTART
740 POKE 205,PEEK(560):POKE 206,PEEK(561)
750 KEEPL=PEEK(546):KEEPH=PEEK(547):REM ... 5

AVE PARAMETERS
760 POKE 546,135:POKE 547,6:REM •..... MACHIN

E PROGRAM START
770 POKE 559,34:RETURN :REM TV ON

AGAIN
771 REM
772 REM ***** GOSUB 780 EXITS FROM SCROLLING

773 REM
780 POKE 559,O:GRAPHICS 7+16:POKE 546,KEEPL:

POKE 547,KEEPH
790 GRAPHICS O:RETURN
797 REM
798 REM ***** GOSUB 800 LOADS MACHINE PROGRA

M *****
799 REM
800 Xl=1664:X2=1665:REM ...•.......... PEN CO

ORDINATES
810 DATA 200,200,40,192,48,12,3,216,165,20,4

1,0,24,208,66,165
811 DATA 203,109,130,6,133,203,144,26,165,20

4, 105,0,41, 15,72, 13

207

--

Chapter Four. Applications.

812 DATA 175,6,133,204,104,208,11,174,130,6,
169,0,202,157,0,112

813 DATA 208,250,172,130,6,169,0,136,145,203
,208,251,160,4,177,205

814 DATA 109,130,6,145,205,200,177,205,105,0
,41,15,109,175,6,145

815 DATA 205,169,255,141,250,6,173,128,6,32,
234,6,169,85,141,250

816 DATA 6,173,129,6,32,234,6,76,95,228,201,
180,176,17,72,74

817 DATA 74,168,104,41,3,170,189,131,6,41,25
5,17,203,145,203,96

820 POKE 559,0
830 FOR N=1664 TO 1791
840 READ DAT:POKE N,DAT:NEXT N
850 POKE 1711,PEEK(106)-16
860 POKE 559,34:RETURN
900 DIM T(8):REM .. GOSUB 900 INITIALS SWING

PROGRAM
910 POKE 5S9,0:REM ••••.• TV OFF
920 DEG :SB=1536:REM SINE TABLE STORE ON

PAGE 6
930 FOR N=O TO 127
940 POKE SB+N,40*SIN(N*45/8)+40:NEXT N
950 T(0)=16:T(1)=15:T(2)=14:T(3)=13
960 T(4)=11:T(5)=9:T(6)=6:T(7)=0
970 POKE 559,34:REM ...•• TV ON
980 RETURN

208

Chapter Four. Applications.

Fast Banner
Sol Guber

Run an advertisem ent or displa y banner across the screen.

The internal registers of the Atari are eas il y accessed and many
interesting effec ts are poss ible without much diffi culty . This program
wi ll place a message on the screen and then move it a long the screen,
shifting the co lo r every time the message is printed. The speed can be
controlled so that the letters move very slow ly or at a speed where
they cannot be read. This is one step away from animation for the
Atari.

The program is divided into three parts. The first part determines
the message and translates it into a string variable. The second part
dec ides which part of the string to put on to the screen. The second
part consists of machine language subroutine that spec ifica lly moves
the string onto the screen . The nice thing about this program is the
size. The total me mory usage of th e program is less than 3. 5K and wi II
produce any message up to 120 ch arac ters long.

A small amo unt of information about the internals of the Atari is
needed to understand fully how the program works. The screen memory
is a continuous sec tion of memory th at stores the info rmation linearly .
For each G raphics mode, the exac t locat ion of the beginning of
memory is stored in loca tions 88 and 89, with 89 be ing the HI portion
of memory. The size of the screen memory depends on the Graphi cs
mode and for G raphics 4 is 480 bytes long (10 ' 48) . G raphics 4 is a
single color mode so that the info rmation stored in each byte will
de termine which pixel on the scree n is li t . Thus, if the byte conta ins
the number 170 (1010101 0 in binary), every o ther pixe l will be lit . If
the byte contains the number 255 (11111111 in binary), every pixe l
wi ll be lit. If the byte conta ins the number 0, then no pixel will be lit.
Every spot on the screen wi II have a corresponding number in the
screen memory, and every time a number is POKEd into the screen
memory, it will have an effec t on the screen .

To put a le tter on the screen, the right information needs to be
put into the screen memory. Because of the linearity of the screen and
the fact that there are e ight lines that make up each letter, it is n ot
possible to put the eight bytes in a simple configurati on in Graphics 4.
T o make a le tter, informati on must be put in a screen memory byte,

209

Chapter Four. Applications.

then in a screen memory ten bytes fur ther, then in a screen memory
ten bytes further, and so fo rth. The information on how to make the
letter is its binary component , and this is made up of eight bytes. This
info rmation is presently stored in memory and can be generated for
each letter as needed. T o use this info rmation , it must be removed
from memory and stored in a va ri able . The two methods to do this
would be a dimensioned variable or a string va riable for the large
amounts of info rmation needed . The A tari BASIC stores each number
as a six byte word and takes up a grea t dea l of memory to store many
numbers. The Atari BASIC stores string variables with one le tter per
byte and is much more compac t when a grea t dea l of information
needs to be stored. Thus, the e ight bytes of each le tter are stored as a
part of a string, and the 960 numbers take up only 960 bytes rather
than the 5760 that would be taken up if they were stored as numbers.

A description of the program fo llows .
Lines 5-7 initialize several constants that will be used throughout

the program. Line 10 dimensions the three string variables that will
be used. Line 15 puts the va lue of 0 into the string L$ and line 18
determines where in memory the string L$ is found. Lines 20-48
determine the message, its length, how many times it is to cycle , and
the speed of it .

Lines 50- 120 translate the string message into its components
and put it into the string L$. The subroutine at 600 determines where
the offset of the le tter is found in memory, and variable 13 contains
that value. The va lue in that byte is stored in L$ with a 120 byte
offset for each line . The sound is turned on to show that something is
happening. It cycles through e ight times for eac h le tter, and each
letter is put into an appropriate spot in the string L$.

Line 125 turns off the so und and goes into G raphics 4. Line 127
goes to the beginning of the string L$ and defines a variable R which
will be the color vari able . In G raphics 4 , th e color register is located
at 708 and the value in 708 defines th e co lor of the letters. Its form at
is that the first four bits in the byte defin e the intensity of the co lor
and the las t four bits define the color itse lf, with the first bit in the
byte being ignored. Thus, there are eight intensities to the color and
16 co lors poss ible. T o shift from one color to the next at the same
intensity, a multiple of 16 is added to the value of register 708 . The
max imum value is 255 as for any registe r. Line 129 defines the po int
on the screen memory where the message will start .

Lines 130 to 190 put the message into the screen memory and
the system itself puts it onto the screen . Line 130 defines the number
of cycles for the message. Lines 133- 134 define the color for the message

210

Chapter Four. Applications.

cycle . The heart of the movement is in the loop from 140-165. line
153 points to the letter in the message that is to be on the far left of
the screen. The machine language subroutine on page six (1536)
m oves the appropriate letters to the screen memory. line 163 is a
t imer that displays the line fo r a certain amount of time before it is
shifted over to the next letter. When the speed is fast, the time lag is
short and the letters look as if they were marching across the screen.
When the speed is very fast , the le tters are a blur. The subroutine at
3000 reads in a machine language subroutine into page six of memory
where it is used to move parts of the string var iab le L$ into the screen
memory.

This program opens up several poss ibiliti es for further utilization.
The subroutine can be modifi ed to put anything on the screen
anywhere. With changes in the graphi cs mode, the size of the letters
can be doubled o r decreased by 25%. Any of the graphics characters
can be used by the program. With modifi ca tion, the le tters can be
reversed or made upside-down or even sideways . Using interrupts, the
colors can flow a long with the letters so that each letter can be a
different colo r. The possibilities are endless fo r showing off the
capabilities of your Atari computer.

211

Chapter Four. Applications.

PROGRAM. Fast Banner.
5 C1=I:CI6=16:C4=4:CO=0:C7=7
6 LTT=600:C31=31:C32=32:CI28=128:C96=96:C64=

64:CI27=127:CI2=C4+C7+C1
7 C2=2:CI20=120:C60=C64-C4
10 DIM L$(960),A$(110),O$(I)
15 L$(I)="{,}":L$(960)="{,}":L$(2)=L$
18 LPT=ADR(L$)+C4+C1
20 ? "WHAT IS YOUR MESSAGE"
30 INPUT A$:N=LEN(A$)
40 ? "HOW MANY CYCLES": INPUT Nl
45 GOSUB 3000
48 ? "HOW FAST I-SLOW 10-FAST":INPUT S2:S2=

(CI28+C32)/S2
50 FOR I=C1 TO N
60 O$=A$(I,I):GOSUB LTT
70 I3=57344+X*8:FOR J=CO TO C7:M=PEEK(I3+J)
80 Y=J*120+I:POKE Y+LPT,M
115 SOUND 1,M+CI6,10,8
120 NEXT J:NEXT I
1~5 SOUND 1,0,0,0:GRAPHICS C4+C16
127 LPT=ADR(L$):R=CI6-C4
129 T=PEEK(88)+256*PEEK(89)+59
130 FOR K=Cl TO Nl
133 R=R+C 16: IF R< =255 THEN POKE 708, R: GOTO 140
134 R=12:POKE 708,R
140 FOR I=CO TO N+C4
155 A=USR(1536,LPT+I,T)
163 FOR Kl=1 TO S2:NEXT K1
165 NEXT I
175 R=PEEK(708)
190 NEXT K
500 STOP
600 X=ASC(O$):IF X>C127 THEN X=X-C128
610 IF X>C31 AND X<C96 THEN X=X-C32:RETURN
620 IF X<C32 THEN X=X+C64
630 RETURN
3000 FOR 1=1536 TO 1600:READ X:POKE I,X:SOUN

D 1,X,10,10:NEXT 1
3005 SOUND 1,0,0,0
3010 DATA 104,104,133,199,104,133,198,104,133
3020 DATA 201,104,133,200,162,8,160,12
3030 DATA 177,198,145,200,136,208,249,24
3040 DATA 165,200,105,10,133,200,144,3
3050 DATA 230,201,24,165,198,105,120,133,198
3060 DATA 144,3,230,199,24,202,208
3070 DATA 221,96,0,0,0,0,0,0,0,0,0
3080 DATA 202,208,215,96,0,0,0,0,0,,24
3090 RETURN

212

Chapter Four. Applications.

Perfect Pitch
Fred Coffey

"It sounds a bit out of tune ," sa id my music ian friend afte r listening to
my Atari's rendition of "The S tar Spa ngled Banner" in two voices.
"You should work o n pitch control."

"It sounds fine to me the way it is," I protested. "Anyway, let's
play A steroids. "

Later I began to wonder just how good the Atari's p itch was. I
remembered tha t the note "A" above "midd le C " was usua lly tuned to
440 cycles per second . And the Acari BAS IC Manual said that if I put
a "72" in for the pitch con tro l (P) in the command "SOUND
O, P,D,V", I would ge t th e note "A." Was thi s sound actua lly
440 H z!

So I turned to my new ly acquired Atari Hardware Manual for
he lp. I final ly determined tha t the Atari contro ls pitch by d ividing an
internal 64 kiloh ertz c lock accord ing to the following formul a (where
"P" is an integer between 0 and 255):

PITCH = 63921.0/(2*(P+ 1)) (1)

So, if we plug the "72" (whi ch Atari says is o ur "Ai' no te) into
the above equatio n, we get a pitch of 437 .8 H z. The Atari is o ut of
tune! It is, in fact, no t poss ible to ge nerate a precise "440" no te .

But the Atari Hardware Manual does have a so lution - we are
a llowed to switch to 16-b it precision on our note generation as long as
we are willing to se ttle for two vo ices instead of four.

However, before we can exploit that, we need to learn a new way
of controlling sound . We will have to POKE instruct ions instead of
using the BASIC SOUND command. It's really no problem since we
can define an exac t equiva lence to SOUND as follows:

Table 1
Voice SOUND Command

1
2
3
4

SOUND O,P,D,V
SOUND 1,P,D,V
SOUND 2,P,D,V
SOUND 3,P,D,V

Equivalent POKE

POKE 53760,P: POKE 53761, (16 *D) + V
POKE 53762,P: POKE 53763, (16 *D)+ V
POKE 53764,P: POKE 53765, (16 *D) + V
POKE 53766,P: POKE 53767, (16 *D) + V

Now we can go o n . The Atar i has a memo ry register, at location
53768, which h as 256 ways (i. e . , one byte) to control sound optio ns.
I don't understand most of them ye t, but I did sort out a few of them.
Just as an example I found that if I "POKE 53768, 1" the Atari switches

213

Chapter Four. Applications.

to a 15 kilohertz clock for sound contro l, and equation (1) above
becomes:

PITC H = 15699 .9/(2* (P+l)) (2)

But to get back to our immediate obj ec ti ve of more precise pitch
contro l, I found that if I do a "PO KE 53768,80" then voices one and
two merge into a single high-resolution voice . If I "POKE 53768,1 20"
voices three and four follow suit .

W e can contro l these new combined voices as fo llows:
Voice 1 + 2

POKE 53760,Pl: PO KE 53762,P2: POKE 53763, (16 *0) + V
Voice 3 + 4

POKE 53764,Pl: PO KE 53766,P2 : POKE 53767, (16 *0) + V

You will recognize the distortion (D) and volume (V) terms from
the o ld SOUND commands. But what are these new terms PI and
P2 ? They are simply a pa ir of integer sound contro l terms like the "P"
in equations (1) and (2), and they ge nerate a high-precision sound
using a 1.79 megahertz clock as fo llows:

PITC H = I789790/ (2* (256* P2 +Pl+7)) (3)

C onversely, if we want to know what values to POKE in order to
generate an obj ec ti ve pitch , we can solve (or le t the computer solve)
the fo llowing and PO KE the values in to the computer:

P2 = INT ((17 89790/(2* PITC H) -7)/256)
PI = INT (1789790/(2* PITC H) -7 -256 * P2 + .5)

(4)
(5)

To generate a 440 H z note, then, we can solve the above equations
to find that P2 = 7 and Pl = 235. W e can then POKE these values to
generate our note (which comes out at 439 .97 Hz - pretty good!).

So much for the mathemat ics. Now fo r a demonstra tion (Program
l). The demonstration uses two joysticks to control one high-resolution
voice and one " normal" voice , and displays the relevant pitch equations
on the screen as the equation terms change. You can quickly see how
much control over pitch you have in each case .

Program 2 allows you to experiment with different scales of notes
- using the best normal Atari approx imat ion and then playing the
scale again with high resolution pitch control.

Finally, I was ready to ca ll my musician fri end back in. "Listen to
this," I said. "I can contro l pitch to a fraction of a cycle per second. In
fact, if I simultaneously sound two notes that are very close to each
o ther, you can hear the combined sound waver as the two wave forms
drift in and out of phase and alternately re inforce and cancel each
o ther. "

214

Chapter Four. App lications.

"Not bad," he said. "We ca ll that phenomenon 'beat ing' and
use it to tune instruments precise ly aga inst a tuning fork reference. "

"Hey," I sa id, "that means you cou ld playa note on your pi ano
and I cou ld match my Atari no te to it precise ly by listening to the
beat. I've invented a piano tuner!

"Now," I sa id, "if you' ll just te ll me the mathematical rela tionship
between the rest of the notes on the musica l sca le, I'll tune my Atari
and we'll hear some rea l music !"

"Well ," he sa id , "it's no t that simp le. There are several methods
of tuning. It depends on what instrument you're tuning, and even
depends on what country you li ve in . Besides, pitch control isn 't the
only probl em with your Atari sound . For example ... "

" It sounds fin e to me the way it is," I sa id . "Let's p lay Astero ids. "

215

Chapter Four. Applications.

PROGRAM 1. Perfect Pitch
1 REM -------- PROGRAM 1
2 REM
3 REM
4 GRAPHICS 0:7 :? :7 :? "WHAT FREQUENCY WOUL

D YOU LIKE TO":':> "START";:INPUT FREQ
5 AUDF3=INT(63921/(2*FREQ)-1+0.5)
6 AUDF2=INT«(1789790/(2*FREQ)-7)/256)
7 AUDFl=INT«1789790/(2*FREQ»-7-256*AUDF2+0.5)
8 IF FREQ > 125 AND FREQ (16000 THEN 10
9 ? "ALLOWABLE RANGE 125 TO 16000":? "TRY AG

AIN";:INPUT FREQ:GOTO 5
10 GRAPHICS 0:':> "JOYSTIC K #1 CONTROLS HIGH R

ESOLUTION"
15 ':> "FREQUENCY. PRESS BUTTON TO SOUND,"
20 ? "MOVE UP/DOWN FOR SLOW FREQUENCY SHIFT"

:7 "OR LEFT/RIGHT FOR FAST SHIFT."
30 ?:':> "JOYSTICK *2 CONTROLS LOW RESOLUTION,"
40 7" BUTTON TO SOUND OR UP / DOWN FOR SH I FT . " : ?
50 REM FOR UNKNOWN REASON FOLLOWING COMMAND

NECESSARY FOR RELIABLE OPERATION:
55 SOUND O,O,O,O:SOUND 1,0.0.0:SOUND 2,0,0,0

:SOUND 3 .0,0,0
100 POKE 752,1
110 POKE 5 3 768,80
130 POKE 53763,10*16+15
140 POKE 53765,10*16+15
160 IF STICK(0)=13 THEN AUDFl=AUDFl+l:IF AUD

Fl >255 THEN AUDF2=AUDF2+1:AUDFl=0
170 IF STICK(0) = 14 THEN AUDFl=AUDFl-l:IF AUD

Fl (O THEN AUDF2=AUDF 2- 1:AUDFl=255
180 IF STICK(O)=11 THEN AUDF2=AUDF2+1
190 IF STICK(01 =7 TH E N AUDF2=AUDF2-1
220 IF STICK(I'=13 THEN AUDF3=AUDF3+1
230 IF STICK(I'=14 THEN AUDF 3= AUDF3-1
240 IF STRIG(OI=O THEN POKE 5 37 60,AUDFl:POKE

53762,AUDF2:GOTO 260
250 POKE 5 37 60,0:PO KE 53762,0
260 IF STRIG(I'=O THEN POKE 53764,AUDF3:GOT0280
270 POKE 53764,0
280 FOUT2=1789790/(2* (AUDF2*256+AUDFl+711
290 FOUT3=63921/(2*(AUDF3+111
300 POSITION 1,9:?
310? "HI RES FREQUENCY:":?
320

325
330
340

500

216

? " FREQ = 1789790/(2*(";AUDF2;"*256+";A
UDFl; "+711 {3 SPACES }" :?
? "{7 SPACES}= ";FOUT2
7 :7 :? "LO RES FREQUENCY:":?
7 " FREQ = 63921/(2*(";AUDF3;"+1»
{5 SPACES}":? :? "{7 SPACES}= ";FOUT3
GOTO 100

Chapter Four. Applications.

PROGRAM 2. Perfect Pitch.

2 REM
5 REM PROGRAM 2
10 REM
20 REM THE FOLLOWING PROGRAM TAKES A GIVEN S

CHEDULE OF EIGHT PITCH VALUES
30 REM (I.E. A SCALE) AND PLAYS THE NOTES US

ING THE BEST NORMAL ATARI
40 REM APPROXIMATION AND THEN USING A "HIGH

RESOLUTION" RENDITION
50 REM
60 REM
70 REM
90 REM "EQUAL TEMPERMENT" SCALE
100 DATA 520,584,655,694,779,874,982,1040
110 DIM PITCH (8) , A$ (1)
120 FOR J=l TO 8:READ X:PITCH(J)=X:NEXT J
150 GRAPHICS o:? :? " NORMAL ATARI

{7 SPACES}HIGH RESOLUTION":? " --------­
---{7 SPACES}---------------"

160 ? " P(4 SPACES}PITCH(8 SPACES}Pl P2
{3 SPACES}PITCH":? " --(4 SPACES}----­
(8 SPACES)-- --(3 SPACES}-----"

170 POKE 752,1
200 REM GENERATE 'NORMAL' ATARI SOUND
210 FOR J=l TO 8
220 P=INT(63921/(2*PITCH(J»-1)
230 SOUND 2,P,10,8
240 PITCH=63921/(2*(P+1»
250 POSITION 3,J+6:? P;" ";PITCH
260 FOR W=1 TO 200:NEXT W:NEXT J
270 SOUND 2,0,0,0:FOR W=1 TO 500:NEXT W
300 REM 'HIGH RESOLUTION' SOUND
305 POKE 53768,80
310 FOR J=1 TO 8
320 P2=INT«1789790/(2*PITCH(J))-7)/256)
330 Pl=INT(1789790/(2*PITCH(J»-7-256*P2+0.5)
340 POKE 53760,Pl:POKE 53762.P2:POKE 53763, (

16*10)+8
350 PITCH=1789790/(2*(256*P2+Pl+7»
360 POSITION 21,J+6:? P1:POSITION 25,J+6:? P

2;" ";PITCH
370 FOR W=1 TO 150:NEXT W:NEXT J
380 POKE 53760,0:POKE 53762,0
400 POSITION 2,19:? " PLAY IT AGAIN (Y OR N)

";:INPUT A$:IF A$="Y" THEN 150
410 ? "ENTER 8 NEW PITCH VALUES, ONE AT A":?

"TIME"
420 FOR J=1 TO 8:INPUT X:PITCH(J)=X:NEXT J:G

OTO 150

217

CHAPTER FIVE

BEYOND BASIC

ONWAR[7
AN[7

UPWARD!

o

Chapter Five. Beyond BASIC

Put Your USR Code
Into A

BASIC Program
Automatically

F. T. Meiere

Entering machine language into a BASIC program can be tedious, but w ith
AUT O T YPE, you jus t enter the file name and a BA SIC subroutine is
automatically written for you.

This utility routine automat ica lly reads machine language code into
your BAS IC program as a graphi c string. It DIMensions the str ing
properly and successfull y handles the troublesome quote and carriage
return . A ll you type is RUN. If your fa ncy turns to READ and POKE,
then minor changes will put the code in DATA statemen ts. N one of
the ideas are new, but the key step is POKE 842,13 fro m COMPUTE! ,
A ugust 198 1, #1 5. My thanks to our sharp-eyed edito r who po inted
out the potential of this POKE which has been around for some time
(e .g., Santa C ruz Software " Memory Map for the Atari") . For
en tertainment and debugging, you may want to skip the input of
ac tual code, read in the integers fro m 1 to 255 , and watch your Atari
program itself.

To enter a U SR program as a string, crea te relocatable machine
code and save it to disk o r cassette. ENT ER this program AU TOTYPE
temporarily in your BASIC program. GOT O 9000. The proper string
will be entered and d isplayed on the screen . The whole program can
be SAVEd or just the des ired portion LIST ed to disk or cassette .
A lternat ively, AUTOTYPE can be RUN separately and the string
LIST ed and ENTERed as needed.

Line 9000-9310: The disk fil e containing USR code is OPENed
and the first six bytes of DOS info rmation are removed. Cassette users
will O PEN # C 1,4,O, "C". The remainder of the sec ti on makes the
program user fri endly by se tting defaul t va lues and error messages. The
program can be shortened by omitting this who le section, providing

221

Chapter Five. Beyond BASIC

the USR fil e is opened and va lues given to NAME$,LN 1 and INCR.

Line 10020:PDIM dimensions the string.

Line 10030:LNUM prints the line number and the string name.
XPR is the position of the first string entry on the current line .

Line 10050:PSPEC enters the quote and carriage return (EOL)
separately using C HR$. Lines 10410 and 10420 make sure there is
information to enter and remove the quote mark which would normally
follow the line number.

Line 10060:C HR$ (27) = ESC ensures that the contro l characte rs
will print. If you POKE 766,1 to do this, then LNUM cannot clear
the screen .

Line 10070: The final quote is added and LENT enters the
whole line into this program.

Line 10220:POKE 842,13 makes the Atari shoot carriage returns
continuously after the ST O P. This enters the string as printed on the
screen. However, when the CONT printed by line 10120 is
encountered, the program will resume with line 10230 POKE 842,12
which returns the computer to normal.

If the USR code is not relocatable , you may want to enter it as
DATA and POKE it in to memory. The following changes will enter
the code as DATA statements.

9130 TRAP 40000
10060? X;",";:IF PEEK(B4)=4 THEN IF PEEK(B5

»30 THEN GOSUB LENT
10070 NEXT I:GOSUB LENT
10110 ? CHR$(125):?:? L;" DATA ";:XPR=PEEK(B

5)
10205 ? CHR$(126)

Omit the references to PDIM and PSPEC on Line 10020, and
omit Line 10050 and Lines 10300 to the end .

One final comment: There are at least three ways to save USR
code as part of a BASIC program. 1) Put it in as a SUBR$ string and
call USR(ADR(SUBR$)). 2) Put it in DATA statements and POKE
it into RAM at a fixed address. 3) Load it immed iately following your
program and change the pointers to fool BASIC into saving your code
along with the program. BASIC does no t normally save string space
and option 3 can be rather tricky. However, many descriptions,
including those in the Atari manuals, are mislead ing. I recommend
that you cons ider your specific needs and take an y o ther program
(including this one) with a grain of sa lt.

222

Chapter Five. Beyond BASIC

PROGRAM. Put Your USR Code Into A BASIC
Program Automatically.

9000 REM Convert USR code to a string
9010 AUTOTYPE=10000:XYZ=9200
9020 DIM FILE$(15),NAME$(15):CO=0:Cl=1:C2=Cl

+Cl
9030 GRAPH I CS 0: POS I T I ON 10. C I:? .. "::::1!:[jCI[jkj[:;~ •

.. :? :? "1K!:t1<~CL~~[i:i!.::.r:~rr;~r!::~~'::;r!::~~i!r;rm:·tr."
9040 ? :? "Please enter information below":?

"For default values (••) hit rr;~[jl!:rr;~"

9050? :? "USR code FILE NAME ";:INPUT NAME$
:IF NAME$= THEN 9050

9060 FILE$=NAME$:TRAP 9070:IF NAME$(l,l)="D"
THEN IF (NAME$(2,2)=":" OR NAME$(3,3)=

" : ") THEN 9080
9070 FILE$(1,2)="D:":FILE$(3)=NAME$
9080 TRAP 9300:0PEN #Cl,4,0,FILE$:GOSUB XYZ
9090 IF (X< >255 OR Y< >255) THEN ? "C.T,=[j~CIIT[>--:"

[ji~~~" , F I LE$: GoTO 9310
9100 GoSUB XYZ:L=Z:GoSUB XYZ:BYTES=Z-L+Cl
9110 LN1=100:TRAP 9120:? "First line number

(100) ";:INPUT LNI
9120 INCR=10:TRAP 9130:? "Incr. line number

(10) ";: INPUT INCR
9130 TRAP 40000:? "USR string name (SUBR$)

;:INPUT NAME$:L=LENCNAME$):IF L < 2 THEN
NAME$="SUBR$":L=5

9140 NAME$CL)="$"
9150 GOSUB AUToTYPE:CLOSE #Cl:END
9200 REM E::~~=~~i!'-:::~kj"C3E[lC3I!]]E'i:!G~
9210 GET #Cl,X:GET #Cl,Y:Z=X+256*Y:RETURN
9300 ? "-=CI.:ii~~~~-=r.:: ::;:I3:i[';:.', F I LE$
9310 ? :? "Hi t C;::~[j[!T;::~ to RUN agai n ";: INPUT

NAME$:RUN
10000 REM {3 ~~r.::~~~}r.::I!:[jCIukj[:;~{3 ~~IT~~~}

10010 REM Type lines in program
10020 LNUM=10100:LENT=10200:PDIM=10300:PSPEC

=10400:L=LN1:GoSUB PDIM
10030 K=CO:FoR I=Cl TO BYTES:IF K=CO THEN GO

SUB LNUM
10040 GET #Cl,X:K=K+Cl:REM code byte
10050 IF (X=34 OR X=155) THEN GOSUB PSPEC:GO

TO 10070
10060 ? CHR$(27);CHR$CX);:IF K=80 THEN? CHR

$(34):GOSUB LENT
10070 NEXT I:IF K<>O THEN? CHR$(34):GOSUB L

ENT
10080 GRAPHICS CO:LIST Cl,8999:RETURN
10100 REM ~C::(!:;::=I"!:LiIt![i:i!.:Jt!IT~.:3~CLt:.:~CLi!Li:r!::

223

Chapter Five. Beyond BASIC

10110 ? CHR$(125):? :? L;" ";NAME$;"<";I;")=
";CHR$(34);:XPR=PEEK(85)

10120 POSITION C2,6:? "CONT":POSITION XPR,2:
RETURN

10200 REM [![~[:':U=G[Li!G[il~tm~rr:
10210? CHR$(126):POSITION CO,CO:K=CO:L=L+IN

CR
10220 POKE 842,13:STOP :REM auto (CR>
10230 POKE 842,12:REM stop auto (CR>
10240 RETURN
10300 REM r'::;U:[G: =r:::[ilFj[Li;.u::[!::;: IEi!E:i!G~GlTi!
10310? CHR$(125):? :? L;" DIM ";NAME$;"(";B

YTES;")"
10320 POSITION C2,6:? "CONT":GOSUB LENT:RETU

RN
10400 REM [;;~[;;j[~(!!=c:.t!t:!:i:"G~[:r~~~rr:~
10410 IF PEEK(85)< >XPR THEN? CHR$(34):GOSUB

LENT:GOSUB LNUM
10420? CHR$(30);"CHR$(";X;")":GOSUB LENT:RE

TURN

224

Chapter Five. Beyond BASIC

BackUp
Machine Language

Programs With BASIC
Ed Stewart

This fairl y technical article shows you how to back up cassette-based machine
language programs. If that's not a priority for you, it's still worthwhile
reading. The author explains IRGs (interrecord gaps) on the Atari and a
good bit more.

If you have any machine language programs on cassette tape, you may
be painfully aware of what a "BOOT ERROR" message means to you.
If you haven ' t yet experienced the angu ish of a n on -readable machine
language tape, then read on and avoid future pain. For those of you
who are not masochist ic and who, like me, have lost a tape or two ,
take heart , for you can now save a backup copy in your wine ce llar
tape vault. The program described in this article allows you to make
your own private copy of any Atari machine language program. It is
a lmost as easy as CLOAO/CSA VE and is we ll worth your time to
incorporate into your program library.

When I began developing this BASIC program, I thought it
would be easy as GET/PUT and would be a trivial program requiring
perhaps 30 minutes at the outside to develop. Wrong. After about 16
hours of work over three weeks I came up with this solut ion. I could
no t h ave done it without the Atar i Operating System source listing.
My final version of the program ended up with two machine language
subroutines filling and emptying a very long string variable while
tricking the Operating System Cassette Handler into do ing all the I/O
for me.

The basic reason why I had to resort to machine language was
very simple - BASIC was too slow to do the job. Each block of data
stored on a cassette tape is 128 bytes in length . All I h ad to do was
read a block of data from the tape, transfer a ll 128 bytes to my string,
and read the next block of data in before the tape ground to a h alt.
Each block of data on the tape is separated by a gap ca lled an interrecord
gap (lRG) . There are two kinds - short ones and long on es. The short

225

Chapter Five. Beyond BASIC

IRG's are used when you can dispose of the 128-byte data block quickly
and request the next one while the record motor is st ill on. If the
recorder stops between blocks on a tape that has short IRG's, then
when it starts back up again it will begin read ing from the tape just a
little bit beyond where the data really is. The result is usually error
code 143 - Serial Bus Data Frame C hecksum Error. Long IRG's, on
the other hand, are long enough to permit the tape to come to a
complete stop and start aga in without any loss of data or error codes.
Long IRG's are used, therefore, when the 128-byte data block in the
cassette buffer cannot be used very fast, for example, when you use
the GET commands in BASIC. Machine language programs are
stored on tape with short IRG's. By the time you can issue 128 GET
commands and transfer those 128 bytes into a string, the tape has
stopped. The 129th requested GET will recognize an empty cassette
buffer and cause a new data block to be read from the tape, but it will
be read too late - the motor stopped with a short IRG tape and bingo
- error 143.

The solution was to reques t a data block from tape with a GET
command , empty the cassette buffer into my string with a machine
language subroutine and make the machine think that its cassette
buffer was empty so that a subsequent GET would cause another data
block to be read into the buffer. This process was repeated until the
EOF condition was obta ined on the tape. Then the string had to be
written back to tape, using another machine language program to
empty the string into the cassette buffer while using the PUT command
to cause the actual tape write to occur. If this seems a bit complex to
you, perhaps the following diagram wi ll help.

READ SIDE WRITE SIDE

Open
Basic "GET"

Move cassette buffer to string
mark cassette buffer empty

EOF-CLOSE

Open
empty string to cassette

mark cassette buffer full
Basic "PUT"

EOF-CLOSE

The only limitat ion this program has is that the program size you
may copy is limited by the size of the string A$. The size of the string
A$ is limited by the size of your ava ilab le RAM and is derived
dynamically based upon your RAM size. A string canno t exceed 32K
and so A$ is limited to 32K. In other words, a program greater than
32K cannot be copied.

N ow that I have showered you with all the technicalities of this
little program, let's see what it looks like line by line.

226

Chapter Five. Beyond BASIC

PROGRAM. Back Up Machine Language Programs
With BASIC.

1 REM BACKUP TAPE UTILITY FOR MACHINE
2 REM LANGUAGE PROGRAM OR TO BACKUP
3 REM ANY 600 BAUD TAPE WITH SHORT
4 REM IRG'S FOR THAT MATTER
5 REM
6 REM AUTHOR ED STEWART
10 NO=0:Nl=1:N2=2:N256=256:GRAPHICS N2+16:RE

M SET LOW MEMORY GRAPHICS MODE
20 Z=PEEK(742)*N256+PEEKC741)-PEEK(145)*N256

+PEE K (144)-1500:IF Z >32767 THEN Z=32767
24 DIM A$CZ):REM SET STRING LENGTH
30 A$ (1) =" { • } " : A$ C Z) =" { • } " : A$ (2) =A$
34 REM INITIALIZE STRING IN 30
40 POKE 203.ADR(A$)-CINTCADRCA$)/N256)*N256)

:POKE 204,INTCADRCA$)/N256):REM POKE STR
ADR FOR M.L . ROUT I NE

60 FOR 1=1536 TO 1565:READ A:POKE I , A:NEXT I
:REM POKE IN M. L . ROUTINE

70 TRAP 200:REM SET TRAP FOR EOF
74 ? #6;"INSERT INPUT TAPE":? #6;" ~~~~~.Err~1

~~~.~~ {4 ~~~~~~}~C~~~" 
80 OPEN #N1 , 4,255 , "C":CNT=NO:REM OPEN INPUT 

FILE 
90 FOR I=NO TO Z STEP 128:REM SET INPUT LOOP 

COUNTER 
100 GET #1,B:CNT=CNT+128:REM FILL CASSETTE B 

UFFER FROM TAPE 
120 X=USR(15 3 6):REM MOVE BUFFER TO STRING AN 

D MARK BUFFER EMPTY 
140 NEXT I:? "NOT ENOUGH RAM TO COPY TAPE":E 

ND 
200 IF PEEK(195)=1 3 6 THEN CLOSE #Nl:GRAPHICS 

N2+16: ? #6;"INSERT OUTPUT TAPE" 
2 0 2 ? # 6; " r::U;:IT. 88.Err~.[~G~.Ii:;C;:: {5 ~sc:;r::::r~ [§ ~~ } ~IT.~ r:!rL " : G 

OTO 210 
204 ? "ERROR - ";PEE K (195):END 
210 RESTORE tOOOO:REM SETUP FOR 2ND M.L. PRO 

GRAM 
220 FOR 1= 1 336 TO 1566 
230 READ B:POKE I , B:NEXT I : REM POKE IN 2ND P 

ROGRAM 
234 POKE 203,ADR(A$)-CINTCADRCA$)/N256)*N256 

):POKE 204,INTCADRCA$)/N256):REM SET UP 
STRING ADD FOR 2ND PGM 

240 OPEN #Nl,8,255 , "C":REM OPEN OUTPUT TAPE 
260 FOR I=NO TO CNT STEP 128:REM SETUP OUTTA 

PE LOOP COUNTER 

227 



Chapter Five. Beyond BASIC 

262 X=USR(1536):REM EMPTY STRING TO CASSETTE 
BUFFER AND MARK BUFFER FULL 

270 Z=ASC(A$(I+12B»:PUT #N1,Z:REM PUT LAST 
BYTE IN BUFFER AND WRITE TO TAPE 

300 NEXT I 
320 CLOSE #N1: GRAPHICS N2+16:? #6; "THAT'S AL 

L FOLKS":REM SAY DONE OK NOW 
400 FOR I=NO TO 800:NEXT I:RUN :REM MAKE MOR 

E OUTPUT TAPES IF DESIRED 
9000 DATA 104,174,138,2,134,61,160,0,162,0 , 1 

85,0,4,129,203,200,2 3 0,203,208,2,230,20 
4,196,61,240,3,76,10,6,96 

10000 DATA 104,169,128,1 33 ,61,160,0,162,0,16 
1,203,153,0,4,200,230,203,208,2,230,20 
4,196,61,240,3 , 76,9,6,198,61,96 

228 



Chapter Five. Beyond BASIC 

Loading Binary DOS 
Files From BASIC 

Robert E. Alleger 

You can load binary (machine language) file s from DOS with selection 
"L " Here's a machine language program that lets you do it from BASIC. 

Introduction 

Severa l months ago, my friend Doug came to me and said, "Hey Bob, 
I want to show you the nifty menu program I wrote ." After he 
demonstrated his program, I sa id, "Big dea l! You came all the way 
over here to show me this?" H e replied, "Not exactly. There's one 
slight problem that I don't know how to so lve. My menu will not load 
machine language programs. I thought that you might be able to help 
me." After some arm twisting, I agreed to write a routine that would 
allow a BASIC program to load machine language disk files. 

DOS 2 LOAD File Format 

Before I begin with a step-by-step breakdown of LOADIT, it might be 
helpful to define the format of a DOS 2 binary load file (see Figure 1). 
A binary load fil e begins with a two-byte header id of $FF $FF ($xx 
indicates hexadec imal numbers), fo llowed by a two- byte start address, 
a two-byte end address, and the program data (obj ec t code ). 

For programs with multiple ORCs, this pattern may repeat over 
and over aga in, beginning with the start address. If the fil e was created 
by using the DOS copy ('C') command to append two or more files 
together, then the pattern may repeat beginning with the header id . 

Figure 1. 
: $FF $FF : start address: end address: object code: .. . 

On With The Show 
LOADIT is designed to be called from BASIC via the USR function. 
It is ORG'd for page six (1536-179 1) so that it is re latively safe , as 
long as the machine language program that it runs does not load into 
this area. 

Referring to Program 1 (LOADIT.ASM) line numbers 0440-0580 

229 



Chapter Five. Beyond BASIC 

(IN IT) is the initialization routine. It ca lls a subroutine that CLOSEs 
IOCB (I/O Control Block) number one (in case it was already open), 
retrieves the address of the file-spec from BASIC, and then OPENs 
the specified file. 

Lines 0620-0810 (RDHDR) read the first two bytes of a block of 
object code from the input file. Ifboth bytes are an $FF (header id) , 
then the program loops back to ge t the next two. T ogether, these 
bytes form the address into which to start loading the obj ect code. An 
end of file error ($88) at this po int indicates that the whole file has 
been loaded, and therefore execution branches to the DONE routine. 

Lines 0850-0930 (CONT) read the nex t two bytes, which form 
the ending address for the current block of object code. Any error 
returned in the Y-register by C IO at this point either indicates that 
the file is bad (i .e., "File Number Mismatch," etc .) or that the file is 
not in binary load format (see Figure 1). 

Lines 0970-1040 (HDROK) check to see if this is the first block 
of object code that has been read from this file. If it is, then the 
address of the first instruction is used as the default run address, in 
case none is spec ified. In assembly language, the run address is specifi ed 
by storing the address of the entry point to your program in locat ions 
$02EO-02E1. 

Lines 1080-1270 (RDBLOK) read the object code from the file 
and store it in memory, from start address through end address. The 
number of bytes to be read is calculated by taking the ending address, 
subtrac ting the start address, and adding one . The only non-fata l error 
code that C IO could return at this point is $03, which indicates that 
an end of fil e error will be encountered on the nex t read. 

After loading the entire block of object code, the program loops 
back to the RDHDR routine. 

Lines 1340-1350 (DONE) are executed on an end of file error in 
the RDHDR routine. The input fil e is C LOSEd and execution is 
transferred to the loaded program via the vec tor at address $02EO-
02E1. 

Does It Really Work? 

I wi ll use a very simple, no fril ls menu program (see Program 2) to 
demonstrate that LOADIT rea lly does work. A lthough LOADIT 
might be useful in other app lica tions, I chose this menu because it 
illustrates the most common usage. 

The subroutine starting at line number 5000 is responsible for 
plac ing LOADIT at its proper locat ion in memory. A FORINEXT 
loop reads the decima l equiva lent of the machine language instruct ions 

230 



Chapter Five. Beyond BASIC 

and POKEs them into page six of memory. 
LOADIT is only ca lled when a machine language program is 

chosen from the screen menu . I chose to indicate a machine language 
load-and-go fil e by using the file extens ion ".CNiD" (from my oid 
TRS-80 days). O f course you can use anything you like , just change 
line number 480. 

LOADIT is ca lled by the statement in line number 550. The 
parameters specified in the USR function are LOADIT's starting 
address (1536 = $0600) and the address of the str ing variable which 
contains a complete file-spec (i. e., Dn:name.ext). 

BASIC should never fa ll th rough to line number 570, because 
LOADIT only returns to BASIC if an error is encountered. 

Did I Really Type All Those DATA Statements? 

In case you were wondering, I did not type in the DATA statements 
on line numbers 5001-5008. Instead, I used a handy BASIC utility 
program that I wrote called DAT AGEN (see Program 3). It is included 
as a bonus. 

DA T AGEN reads a binary load format file, such as 
LOADITOBJ, and produces a file that can be appended to your 
BASIC program with the ENTER command (see page 25 of the 
ATARI "BASIC REFERENCE MANUAL"). This file will contain 
one FOR/NEXT loop and a number of DATA statements for each 
block of object code in the file. 

Upon startup, DA T AGEN requests a complete file-spec for the 
input and output files. It also asks for the starting line number that 
will be used to begin numbering the subrout ine th at is being written 
to the output fil e. 

And That's Not All, Folks 

Program 4 is another utility program which can be used to find out the 
load parameters of a binary load format file. DPSLOAD reads a binary 
file and displays the starting and end ing address of each block of 
object code, the auto run, and init addresses, if present (see pages 41 -
44 of the Atari Disk Operating System II Reference Manual). 

The input requested by DSPLOAD is a complete file-spec of the 
input file. The informat ion will be d isplayed on the screen when each 
block of object code is encountered . 

To some, it may seem that DATAGEN and DSPLOAD have 
nothing to do with my intended topic, but I hope that they prove to 
be educat ional as we ll as useful aids to programming. 

23 1 



Chapter Five. Beyond BASIC 

PROGRAM 1. Loading Binary DOS Files From BASIC. 

10 .TITLE "LOADIT 1.1 02/24/82" 
20 ;Author: Robert E. Alleger 
30 ; 
40 ;Thig program allow5 a BASIC 
50 ;program to LOAD a machine 
60 ;language program and execute it. 
70 
80 
90 
0100 IOCB1=1*16 ;IOCB *1 (0:) 
0110 ; IOCB (8 * 16 bytes) 
0120 ICHID=.0340 ;handler 10 
0130 ICDNO=ICHID+l ;device * 
0140 ICCOM=ICDNO+l ;command 
0150 ICSTA=ICCOM+l ; status 
0160 ICBAL=ICSTA+l ;buffer address 
0170 ICPTL=ICBAL+2 jPUT routine addr - 1 
0180 ICBLL=ICPTL+2 jbuffer length 
0190 ICAX1=ICBLL+2 jAUX 1 
0200 ICAX2=ICAX1+1 jAUX 2 
0210 ICAX3=ICAX2+1 ;AUX 3 
0220 ICAX4=ICAX3+1 jAUX 4 
0230 ICAX5=ICAX4+1 jAUX 5 
0240 ICAX6=ICAX5+1 ;AUX 6 
0250 
0260 CIO=$E456 ;CIO entry point 
0270 ENR=$03 jEOF on next read 
0280 EOF=$88 jEOF status 
0290 OPEN=$03 ;OPEN command 
0300 GETCHR=$07 jGET CHARACTERS command 
0310 CLOSE=$OC ;CLOSE command 
0320 OREAD=$04 ;OPEN direction~ READ 
0330 ; 
0340 RUNLOC=$02EO ;auto run vector 
0350 FREEO=$OOCB ;free 0 page RAM (to $00D1) 
0360 HEAOER=FREEO ;block header buffer 
0370 FLA8=HEAOER+4 ;lst block flag 
0380 
0390 
0400 *=$0600 
0410 ; 
0420 ;Initialization 
0430 
0440 
0450 
0460 
0470 
0480 

232 

; 
INIT LOX #IOCBl 

JSR CLOSEIT ;in case IOCB was in use 
STX FLAG 
PLA ;get rid of # of args on stack 
PLA ;MSB of file spec location 



Chapter Five. Beyond BASIC 

0490 
0500 
0510 
0520 
0530 
0540 
0550 
0560 
0570 
0580 
0590 
0600 
0610 
0620 
0630 
0640 
0650 
0660 
0670 
0680 
0690 
0700 
0710 
0720 
0730 
0740 
0741 
0742 
0750 
0760 
0770 
0780 
0800 

STA ICBAL+l,X 
PLA ;.LSB 
STA ICBAL,X 
LDA #OREAD 
STA ICAX1,X 
LDA #OPEN 
STA ICCOM,X 
JSR CIO ;op.n file 
BPL RDHOR 
JMP ERROR ;file not found 

; 
;Read header id or start address 
; 
ROHDR LOA #HEAOER&255 

STA ICBAL.X 

; 

LOA #HEAOER/256 
STA ICBAL+l,X 
LOA #2 
STA ICBLL,X 
LOA #0 
STA ICBLL+l.X 
LOA #GETCHR 
STA ICCOM,X 
JSR CIO ;get id or start addr 
BPL CHKID 
Cpy #EOF ;end of file? 
BEQ DONE ; -yes 
BNE ERROR; -no. bad file 

CHKID LOA #$FF 
CMP HEAOER 
BNE CONT 
CMP HEADER+l 

0810 
0820 ; 

BEQ RDHDR ;ignore $FF,$FF id code 

0830 ;Read end address 
0840 ; 
0850 CONT LOA #HEAOER+2&255 
0860 STA ICBAL,X 
0870 LOA #HEAOER+2/256 
0880 STA ICBAL+l,X 
0890 JSR CIO ;get end address 
0900 BPL HOROK 
0930 BMI ERROR ;bad file 
0940 
0950 
0960 
0970 
0980 
0990 

; 
;Store program start address 
; 
HOROK LOA FLAG 

BEQ ROBLOK ;skip if not 1st block 
LOA HEADER ;use start of program 

233 



Chapter Five. Beyond BASIC 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 

; 

STA 
LOA 
STA 
LOA 
STA 

RUNLOC ; 
HEADER+l 
RUNLOC+l 
#0 

as default run adr 

FLAG ;clear 1st block flag 

;Read a block of object code 
; 
RDBLOK LDA HEADER ; load address 

STA ICBAL.X 

; 

LDA HEADER+l 
STA ICBAL+l.X 
LDA HEADER+2 ;end address 
SEC 
SBC HEADER ;length = end - start 
STA ICBLL , X 
LDA HEAOER+3 
SBC HEADER+l 
STA ICBLL+1,X 
INC ICBLL,X ;adjust length by 1 
BNE *+5 
INC ICBLL+l , X 

JSR CIO ;read block 
BPL RDHDR ;get next block 
CPY #ENR 
BEQ RDHDR ;this is also OK 
JMP ERROR ;bad file 

;Subroutines follow 
; 

;********************** 
;Start selected program 

;********************** 
DONE .JSR CLOSEIT 

.JMP (RUNLOC) ;start program 
;************************** 

1370 ;Return error code to BASIC 

1380 ;************************** 
1390 ERROR TYA 
1400 STA 212 ;tell BASIC what's wrong 
1410 LDA #0 
1420 STA 213 
1430 ;now fall through to CLOSEIT 
1440 ;then return to BASIC 
1450 ;************** 
1460 ;Close the IOCB 

1470 ;************** 
1480 CLOSEIT LDA #CLOSE 

234 



Chapter Five. Beyond BASIC 

1490 STA ICCOM,X 
1500 JSR CIO ;close file 
1510 RTS 

235 



Chapter Five. Beyond BASIC 

PROGRAM 2. Loading Binary DOS Files From BASIC. 

10 REM LOADIT demo menu 
20 REM by Robert E. Alleger 
30 DIM LINES(1~),DIR$(12*64),DRIVE$(3) 
40 REM. Initialization * 
50 GRAPHICS O:POKE 752,1 
60 DRIVE$="D1:" 
70 PRINT ,"~@~~ for Drive ";DRIVE$:PRINT 
80 GOSUB 5000:REM store LOADIT.OBJ 
90 LINE$=DRIVE$:LINE$(4)=" •. *" 
100 DIR$(1,1)=" ":DIRS(12*64)=" .. 
110 DIR$(2)=DIR$ 
120 CLOSE *1:0PEN *1,6,0,LINE$ 
130 TRAP 380:ENTRY=1:LINEFLAG=1 
140 REM * Read the directory * 
150 FOR FILENUMBER=l TO 64 
160 INPUT *1,LINES 
170 IF LINE$(2,2)<>" .. THEN 380 
180 PD=ENTRY 
190 REM * Scan file name * 
200 FOR PS=3 TO 10 
210 IF LINE$(PS,PS)=" .. THEN 240 
220 DIR$(PD,PD)=LINE$(PS,PS) 
230 PD=PD+1:NEXT PS 
240 REM * Check for extension * 
250 IF LINE$(11,11)=" .. THEN 320:REM no exte 

nsion 
260 DIR$(PD,PD)= ..... :REM append dot 
270 PD=PD+l 
280 REM * Scan file extension. 
290 FOR PS=11 TO 13 
300 DIR$(PD,PD)=LINE$(PS,PS) 
310 PD=PD+l:NEXT PS 
320 REM * Display file name.ext * 
330 IF LINEFLAG=3 THEN PRINT :LINEFLAG=l 
340 IF FILENUMBER<10 THEN PRINT" "; 
350 PRINT FILENUMBER;" ";DIR$(ENTRY,ENTRY+11 

) ; II II ; 

360 LINEFLAG=LINEFLAG+l 
370 ENTRY=ENTRY+12:NEXT FILENUMBER 
380 REM * Choose one • 
390 PRINT :PRINT "Enter number of file to 10 

ad: It; 
400 TRAP 390:INPUT N 
410 IF N( l OR N ) FILENUMBER-l THEN 390 
420 LINE$=DRIVE$ 
430 LINE$(4)=DIR$(N*12-11,N*12) 
440 GRAPHICS O:POSITION 2,10 
450 PRINT "{6 SPACES}LOADING 

236 

";LINE$ 



Chapter Five. Beyond BASIC 

460 REM * See if machine language * 
470 FOR PS=4 TO 12 
480 IF LINE$(PS,PS+3)=".CMD" THEN 540 
490 NEXT PS 
500 REM * Load BASIC p~og~am r 
510 TRAP 530 
520 RUN LINE$ 
530 ERROR=PEEK(195):GOTO 560 
540 REM * Load M.L. p~og~am * 
550 ERROR=USR(1536,ADR(LINE$» 
560 REM * Shouldn"t be he~e' * 
570 PRINT "~~~OC~ *";ERROR;" encounte~ed du~i 

ng load" 
580 END 
5000 FOR A=1536 TO 1717:READ B:POKE A,B:NEXT 

A 
5001 DATA 162,16,32,173,6,134,207,104,104,15 

7,69,3,104,157,68,3,169,4,157,74,3,169, 
3,157,66 

5002 DATA 3,32,86,228,16,3,76,166,6,169,203, 
157,68,3,169,0,157,69,3,169,2,157,72,3, 
169 

5003 DATA 0,157,73,3,169,7,157,66,3,32,86,22 
8,16,6,192,136,240,92,208,96,169,255,19 
7,203,208 

5004 DATA 4,197,204,240,210,169,205,157,68,3 
,169,0,157,69,3,32,86,228,16,2,48,69,16 
5,207,240 

5005 DATA 14,165,203,141,224,2,165,204,141,2 
25,2,169,0,133,207,165,203,157,68,3,165 
,204,157,69,3 

5006 DATA 165,205,56,229,203,157,72,3,165,20 
6,229,204,157,73,3,254,72,3,208,3,254,7 
3,3,32,86 

5007 DATA 228,16,137,192,3,240,133,76,166,6, 
32,173,6,108,224,2,152,133,212,169,0,13 
3,213,169,12 

5008 DATA 157,66,3,32,86,228,96 
5009 RETURN 

237 



Chapter Five. Beyond BASIC 

PROGRAM 3. Loading Binary DOS Files From BASIC. 
10 REM DATAGEN 
20 REM Translates DOS LOAD files 
30 REM to BASIC DATA statements 
40 REM (C) 1981 by Robert E. Alleger 
50 REM * Initialization * 
60 DIM FI$(15),FO$(15) 
70 ERRSAV=195:MAX=25 
80 REM * ask for file specs * 
90 GRAPHICS 0 
100 PR I NT • "l:E:r~:urIl:f(l;iC::: " : PR I NT 
110 TRAP 120 
120 PRINT "Input file spec: 
130 INPUT FI$ 

" . , 

140 TRAP 150 
150 PRINT "Output file spec: "; 
160 INPUT FO$ 
170 TRAP 610:CLOSE #1:CLOSE #2 
180 OPEN #I,4,0,FI$ 
190 OPEN #2,8,0,FO$ 
200 REM * Get header ID (2 bytes) * 
210 GET #1,B1:GET #1,B2 
220 IF (B1=132 AND B2=152) OR (B1=255 AND B2 

=255) THEN 260 
230 PRINT "(BELL}Not LOAD format":GOTO 620 
240 REM * Ask for starting line * 
250 TRAP 260 
260 PRINT "Starting line number: "; 
270 INPUT LNBR 
280 REM * Get START & END addresses * 
290 TRAP 560:REM trap normal EOF 
300 GET #1,B1:GET #1,B2 
310 ADRSTART=Bl+B2*256 
320 IF ADRSTART=65535 THEN 300 
330 GET #1,B1:GET #1,B2 
340 ADREND=Bl+B2*256 
350 TRAP 540:REM trap premature EOF 
360 REM * Build FOR/NEXT loop * 
370 PRINT #2;STRS(LNBR); 
380 PRINT #2;"FOR A=";STR$(ADRSTART);" TO "; 

STR$(ADREND); 
390 PRINT #2;":READ B:POKE A,B:NEXT A" 
400 A=ADRSTART-1 
410 REM * Build DATA statements * 
420 LNBR=LNBR+1 
430 IF A+l>ADREND THEN 520 
440 IF LNBR )3 2765 THEN PRINT "{BELL}Line num 

ber too large":GOTO 620 
450 PRINT #2;STR$(LNBR);"DATA "; 

238 



Chapter Five. Beyond BASIC 

460 FOR N=l TO MAX:A=A+1 
470 IF A>ADREND THEN 520 
480 IF N>l THEN PRINT *2;","; 
490 GET *l,Bl:PRINT *2;STR$(Bl); 
500 IF N=MAX THEN PRINT *2 
510 NEXT N:GOTO 410 
520 PRINT *2:LNBR=LNBR+1 
530 GOTO 290 
540 IF PEEK(ERRSAV)=136 THEN PRINT "Prematur 

e EOF on input file":GOTO 62,0 
550 GOTO 610 
560 REM * Error TRAP * 
570 IF PEEK(ERRSAV> <> 136 THEN 610 
580 PRINT *2;STR$(LNBR) ; "RETURN" 
590 PRINT " «< ct: C!:C:::~ »> " 
600 GO TO 620 
610 PRINT :PRINT "(BELL } ERROR *";PEEK(ERRSAV 

) 

620 CLOSE *l:CLOSE #2 : TRAP 65535 

239 



Chapter Five. Beyond BASIC 

PROGRAM 4. Loading Binary DOS Files From BASIC. 

10 REM DSPLOAD 
20 REM Display DOS LOAD 
30 REM format information 
40 REM (C) 1981 by Robert E. Alleger 
50 REM * Initialization * 
60 DIM F$(15),HEX$(4) 
70 GRAPHICS (I 

80 PRINT, "DSPLOAD":PRINT :PRINT 
90 PRINT "This program will print informatio 

n" 
100 PRINT "for DOS LOAD format files." 
110 TRAP 110:CLOSE #1 
120 PRINT : PRINT "Fi I e spec: "; 
130 INPUT F$ 
140 OPEN #1,4,O,F$ 
150 PRINT "{CLEAR}","LOAD Display":PRINT :PR 

INT 
160 PRINT "File name",F$ 
170 PRINT "Format",. 
180 REM * GET header ID * 
190 TRAP 53(1 
200 GET #l,Bl:GET #1,B2 
210 IF Bl=132 AND B2=9 THEN PRINT "DOS 1 LOA 

D":GOTO 24(1 
220 IF Bl=255 AND B2=255 THEN PRINT "DOS 2 L 

OAD":GOTO 240 
230 PRINT "{BELL}Not LOAD format{DOWN}":GOTO 

730 
240 REM * Get START & END Addresses * 
250 TRAP 590:GET #l,Bl 
260 TRAP 530:GET #1,B2 
27(1 NBR=Bl+B2*256 
280 IF NBR=65535 THEN 310 
290 ADRSTART=NBR:GOSUB 460 
300 PRINT "Start - End Address ";HEX$;" - "; 
310 GET #l,Bl:GET *1,B2 
320 NBR=Bl+B2*256 
330 ADREND=NBR:GOSUB 460 
340 PRINT HEX$ 
350 IF ADREND < ADRSTART THEN 710 
360 REM * Read LOAD file * 
370 TRAP 560 
380 FOR N=ADRSTART TO ADREND 
390 GET #l,Bl:BYTES=BYTES+l 
400 IF N=736 THEN ADRAUTOL=Bl 
410 IF N=737 THEN ADRAUTOH=Bl 
420 IF N=738 THEN ADRINITL=BI 
430 IF N=739 THEN ADRINITH=Bl 

240 



Chapter Five. Beyond BASIC 

440 NEXT N 
450 GOTO 240:REM get next LOAD block 
460 REM * Convert decimal to hex * 
470 I=4:HEX$="0000" 
480 T=NBR:NBR=INT(NBR/16):T=T-NBR*16 
490 IF T < 10 THEN HEX$(I,I)=STR$(T):GOTO 510 
500 HEX$(I,I)=CHR$(T+55) 
510 IF NBR <> O THEN I=I-l:GOTO 480 
520 RETURN 
530 REM * ERROR #1 * 
540 PRINT :PRINT "{BELL}Premature EOF while 

reading HEADER" 
550 GOTO 730 
560 REM * ERROR #2 * 
570 PRINT :PRINT "(BELL}Premature EOF while 

reading DATA" 
580 GOTO 730 
590 REM * ERROR #3 * 
600 IF ADRAUTOL=O AND ADRAUTOH=O THEN 640 
610 NBR=ADRAUTOL+ADRAUTOH*256 
620 GOSUB 460 
630 PRINT "Auto Run Address",HEX$ 
640 IF ADRINITL=O AND ADRINITH=O THEN 680 
650 NBR=ADRINITL+ADRINITH*256 
660 GOSUB 460 
670 PRINT "Init Address",HEX$ 
680 PRINT "Program size",INT(BYTES/l024*100) 

1100;"K BYTES" 
690 PRINT :PRINT "{BELL}---EOF---" 
700 GOTO 730 
710 REM * ERROR #4 * 
720 PRINT :PRINT "{BELL}END Address less tha 

n START Address" 
730 REM * Exit * 
740 TRAP 65535:CLOSE #l:END 

241 



Chapter Five. Beyond BASIC 

The Resident 
Disk Handler 

Frank Kastenholz 

This technical article explores , with commentary and examples, the use of 
the operating system's Resident Disk Handler for accessing disk sectors . . . 
without DOS. If you're interes ted in learning more about the Atari DOS 
itself, see Inside Atari DOS from COMPUTE! Books. 

Wou ld you like to be able to hide data on your disks without having 
DOS signal its presence wi th a fil e name and direc tory entry ? W ould 
you like to be able to access any sector on a disk, independent of 
DOS? You could check the disks that you are using for bad sec tors 
without destroying what's on the disk. You could create your own 
unique disk fo rmat to sui t your own unique needs. 

The keys that open the door to this wonderland of direct access 
storage are the Resident Disk Handler and the Devi ce Contro l Block . 

The Resident Disk Handler is a sec tion of code that exists in the 
ROMs of your Atari computer (both the 400 and the 800), and the 
Device Control Block is a sec ti on of RAM that contains the various 
parameters which contro l the actions of the Res ident Disk H andler. 
The Resident Disk Handler is capable of performing four different 
operations: G et Sec tor, Put Sec tor with Verify , Status Reques t, and 
Format Disk. For the purposes of disk access only the first two operations 
are important, and I shall discuss only those two operations. 

The G et Sector operation will retri eve any one sec tor from the 
disk and place it in any 128 byte bloGk of RAM . The Put Sec tor with 
Verify operation will take 128 bytes of data anywhere from memory 
(RAM or ROM) and write that data to any sector on the disk. It will 
then check to make sure that the data were written correctly. 

And how, I hear you cry, does one make use of this miracle of 
modern scien ce? To use th e Resident Disk H andler is an ex treme ly 
simple task. It just sounds hard. At the e nd of this artic le I have 
included a program that should adequate ly demonstrate the basics of 
using the Resident Disk H andler. 

The key to using the Resident Disk Handler is a chunk of memory 
called the De vice Contro l Block. The Dev ice Control Block is similar 

242 



Chapter Five. Beyond BASIC 

in function to the IOCBs that are used in BASIC. The Device C ontrol 
Block is 11 bytes long and begins a t location $0300 (768 decimal) . 
(All hexadecimal numbers are preceded by a $ and fo llowed by the ir 
decima l equivalent in parentheses .) Fo r our purposes only seven bytes 
are needed, the o ther four being used interna ll y by the Resident Disk 
Handler. The bytes we shall use are the device unit number byte , the 
command number byte , the status byte, the two buffer address bytes, 
and the two sector number bytes. 

The device unit number byte is located a t location $0301 (769) 
and contains the unit number of the disk dri ve you wish to access (1, 
2, 3, or 4) . 

The command number byte is at loca tion $0302 (770) and 
contains the command number of the operati on to be performed. The 
command number fo r the Get Sec to r operati on is $52 (82) , and the 
number fo r the Put Sector with Verify operati on is $5 7 (87). 

The status byte is the only byte that you do not have to put 
something into before you use the Res ident Disk H andler. It se ts up 
the status byte to refl ec t the success (or lack of it) of the operation 
that was just attempted. The sta tus byte is at location $0303 (771) 
and may have one of seven va lues. A 1 in this byte indicates that the 
operation was completed successfull y. The other six va lues indica te an 
error occurred during the operation. The va lues are $8A (138 ), $8 B 
(139), $8C (140) , $8E (1 42 ) , $8 F (143) , and $90 (144) . The meaning 
of these sta tus codes is the same as for the error codes of the same 
number in BAS IC. 

The two buffe r address bytes are at loca tions $0304 (772) fo r the 
low order byte of the address and location $0305 (773) for the high 
order byte of the address. These two bytes conta in the address in 
memo ry of the source of the data , fo r a Put Secto r with Verify, or the 
destin ation of the data , for a G et Sector. T o se t these bytes up in 
BASIC you must d iv ide the address that is to be used by 256 and place 
the remainder in byte 772 and th e quo tient in byte 773 . 

The two sector number bytes contain the number of the sec to r 
on the disk that is to be accessed. This number may be any number 
from 1 to 720 inclusive . If you were no t the trusting type you might 
say "Sec tor 720 is no t addressable - it says so in the DOS manua l. " 
But since you are the trusting type , you will no t say that, and I will 
not be fo rced to reply "True, but we are no t using DOS here and 
sector 720 is addressable when using the Res ident Disk Handler!" 

Once the Dev ice Contro l Block has been properly se t up you 
have to ca ll the Res ident Disk Handler so it can do its work. If you are 
programming in machine language , this is a trivial job. You merely do 

243 



Chapter Five. Beyond BASIC 

a ]SR $E453. It wi ll do its work and then do a RTS when it is done. 
Nothing could be simpler. If you are a BASIC programmer it is slightly 
harder to ca ll the Res ident Disk Handler. You must load the following 
assembly code in to RAM and then do a USR to it. 

PROGRAM 1. 

Object Code So urce 
HEX Dec imal Code Comments 

$68 104 PLA The Extra PLA required 
by USR. 

$20$53 $E4 3283228 ]SR $E453 Ca ll the Resident Disk 
Handler. 

$60 96 RTS Return to BASIC. 

The BASIC code in Program 2 will load the assembler code of Program 
1 into RAM beginning at loca ti on 1536. T o call the Resident Disk 
Handler you would then do a X = USR( 1536) . 

PROGRAM 2. 
10 DATA 104,32,83,228,96 
20 FOR 1=1536 TO 1540 
30 READ J:POKE I,J 
40 NEXT I 

The code in Program 3 is a short BAS IC program that will show you 
how to use the Resident Disk Handler. The program will either put or 
ge t one sector of data. If you ge t a sector of data, the program will 
print out that data as characte r data (if a byte is a 65, it will print A). 
If you are go ing to put a sector of data to the disk, the program will ask 
you to enter the data to put in character form . Comments on the 
program follow the listing. 

PROGRAM 3. 
10 DATA 104,32,83,228,96 
20 FOR 1=1536 TO 1540 
30 READ J:POKE I,J 
40 NEXT I 
50 DIM A$ (128) 
60 PRINT "GET OR PUT";:INPUT A$ 
70 IF A$="GET" THEN 100 
80 IF A$="PUT" THEN 200 
90 GOTO 60 
100 LET COMMAND=82 
110 GOSUB 1000 
120 STAT=PEEK(771) 
130 IF STAT=l THEN 160 
140 PRINT "ERROR #";STAT;" ON GET" 

244 



Chapter Five. Beyond BASIC 

150 GOTO 60 
160 FOR 1=0 TO 127 
170 A$II+l.I+l)=CHR$IPEEKI1664+I»:NEXT I 
180 PRINT A$ 
190 GOTO 60 
200 FOR 1=1 TO 128:A$II,I)=" ":NEXT I 
210 PRINT "ENTER DATA";:INPUT A$ 
220 FOR 1=0 TO LENIA$)-l 
230 POKE 1664+1,ASCIA$II+l,I+l»:NEXT I 
240 FOR I=LENIA$) TO 127 
250 POKE 1664+I,0:NEXT I:LET COM~AND=87 
260 GOSUB 1000 
270 STAT=PEEK(771) 
280 IF STAT=l THEN PRINT "OPERATION COMPLETE 

":GOTO 60 
290 PRINT "ERROR #";STAT;" ON PUT":GOTO 60 
1000 REM DISK ACCESS ROUTINE FOLLOWS 
1010 PRINT "SECTOR NUMBER TO ACCESS";:INPUT 

SNUM 
1020 POKE 779.INTISNUM/256):POKE 778,INTI(SN 

UM/256-INT(SNUM/256»*256) 
1030 POKE 769,1 
1040 POKE 772,128:POKE 77 3, 6 
1050 POKE 770.COMMAND 
1060 X=USR(1536) 
1070 RETURN 

Lines 10-40 load the short assembler routine needed to call the 
Resident Disk H and ler into memory. 

Line 50 dimensions A$ as a text st ring so we can use it to store data. 

Lines 60-90 input an operat ion from the keyboard, determine which 
operation it is, and jump to the appropriate routine to h andle that 
operation. 

Lines 100-190 are the Get operat ion. 

Line 100 sets the command as Get Sector. 

Line 110 calls the disk access subroutine. 
Line 120 se ts STAT equal to the status ,)f the opera tion . 

Line 130 determines if the operat ion was successful. If it was it goes to 

Line 160. 

Lines 140 and 150 print an error message and then start another 
operation. 

Lines 160, 170, and 180 get the input data from the input buffer, put 
them into A$ and print them. 

Line 190 starts another opera tion. 
Lines 200-290 are the Put Sector Lines. 

245 



Chapter Five. Beyond BASIC 

Line 200 clears A$ out . 

Line 210 enters the data from the keyboard. 

Lines 220 and 230 ptlt th e output data in to the output buffer. 

Lines 240 and 250 fill any bytes remaining afte r the last data byte 
and the 128th byte of the buffer with zeros. Line 240 also se ts the 
command to the Put Sector with Ver ify operat ion. 

Line 260 ca lls the d isk access subrout ine. 

Line 270 sets STAT eq ual to the status of the opera tion. 

Line 280 determi nes if the operat ion was successful or not and if it 
was, prints "OPERATION COMPLETE" and starts another 
operation. 

Line 290 pr in ts an error message and then starts another operat ion. 

Lines 1 000-1 070 set up the Device Control Block and then ca ll the 
Res ident Disk H andler. 
Line 1010 inputs the sec tor number to access. 

Line 1020 puts the sector number into the sector number bytes. The 
first POKE statement takes the quotient of the sector number divided 
by 256 and puts it in to the high byte of the two sec tor number bytes. 
The second POKE statement takes the remainder of the sector 
number divided by 256 and puts it into the low byte of the sec tor 
number bytes. 
Line 1030 sets the unit number to 1. 

Line 1040 sets the two buffer address bytes to 1664. 

Line 1050 sets up the Command Number Byte. 

Line 1060 calls the short assembler routine which then ca lls the 
Resident Disk H andler. 

Line 1070 re turns to the ma in rout ine. 

This program is tutoria l, intended to he lp you understand the Res ident 
Disk H andl er, what it is and how to use it. If you wish to use the 
Res ident Disk Handl er, you would want to make some improvements 
to the subroutine that I have presented here. First you would pass the 
sec tor number from the main program instead of entering it from the 
keyboard. Other improvements would include combining some of the 
statements to make the program shorter, or converting the program 
into machine language. One improvemen t that I h ave found 
particu larly va luable is to have the subrout ine repeat an error several 
t imes if an error occurs. S ince most di sk errors are recoverable if the 
operation is retri ed, this has the effect of reduc ing the number of disk 
e rrors I get to a lmost noth ing. 

246 



Chapter Five. Beyond BASIC 

Now that you have finished reading this article, I can hear you 
grumbling "This just looks like a hard way of doing a POINT! " But it 
isn't! The Res ident Disk Handler allows you to access any sec tor on 
the disk. The POINT command in BASIC allows you to access any 
sector in a particular fil e. If you POINT to sector 3, you will access 
sector 3 of the file, and not absolute sector 3. The Res ident Disk 
H andler will ge t you absolute sec tor 3. It can access a sector that is 
un-allocated, POINT can't. It can access the sectors that DOS uses, 
POINT can't. 

While using these methods takes more work than just OPENing, 
PRINTing, and CLOSEing a file in BASIC, the added fl ex ibility 
more than compensates for the extra work. 

247 



LISTING 
CONVENTIONS 

In order to make special characters, inverse video, and cursor characters 
easy to type in , COMPUTE! magazine's new Atari listing conventions 
are used in all the program listings in th is book. 

Please refer to the fo llowing tab les and explanations if you come 
across an unusual symbol in a program list ing. 

Characters in inverse video will appear like: ~[':::(!;I]![l~i€[B.(I:;I.iJ.[EI]![I 
Enter these charac ters wi th the Atari logo key, " A ". 

Graph ics characters, such as C TRL-T , the ball character. will appear 
as the "normal" letter enclosed in braces, e.g. {T}. 

A series of identica l contro l characters, such as 10 spaces , three 
cursor-lefts, or 20 CTRL-R's, will appear as {10 SPACES}, {3 LEFT}, 
{20 R} , etc. If the character in braces is in inverse video , that character 
or charac ters should be en te red with the Atari logo key. For example, 
,. meqns to enter a reverse-field hea rt with CTRL-comma, { 5 IT } 
means to ente r five inverse-v ideo CTRL-U's. 

248 



INDEX 

ANTIC 82 
A rrays, String 185 
Artifac ting 113-128 
Assembly Language (See Mac h ine 

Language) 
AT ASCII (See C harac ters) 
Backup 225 -226 
BASIC 44-48 ,5 1-52,85, 185, 

210, 225 
Binary SAVE/LOAD 229-23 1 
Cartridges 15-17 
Cassette 70 
C haracters 160- 162, 209-21 1 

Control charac ters 33-3 4 ,222 
C LOAD37 
Color 78-82 , 11 4- 128 

Registers 80 ,2 10 
Concatenat ion 24 
Console switches 7, 200 
CTIA 11 5-128 
DAT A 29-3 1, 55 -56 ,22 1-2 22 ,23 1 
Debugging (Also see Error 

Messages) 44-48 
Disk (A lso see DOS , Fil es, etc. ) 

242-247 
Display List (Also see Scro ll ing) 

78-82 
DMA 29, 196 
DOS 229 
Dynamic Keyboard (See Forced 

Read Mode) 
Editing 33-3 5,55-56, 185 
Error Messages 226 
Files 29-3 1,33-34 ,4 1-42,1 85, 

22 1-222 ,22 5-226 ,229-23 1 
Fill 85- 113 
Forced Read 26-3 1,13 3-134, 

22 1-222 
G ames 160-162 , 169- 176 
GET 226,242-247 
GOSUB (See Subrout ines ) 
G raphics (Also see related topics: 

Scrolli ng , Playe r/Miss ile , 

Page Flipping, e tc. ) 11- 14 , 
33-34 ,67 -7 1,82 ,85- 128 , 
160-1 62 

GT IA 11 5- 128 
Hardcopy (See Printer) 
Hardware (See Disk, Printer, etc. ) 
Input 7,29-3 1 
IOCB 26-3 1 
Joystick 2-4,5-6 ,33-3 4 
Keyboard 7 
LIST 3 1,47, 85 
LOA D 47 
Machi ne Language 2,1 17,22 1-222 , 

229-23 1 
Memory (A lso see PO KE) 160 ,198 

Memory T est 15- 17 
Menu Seb~tion 55-58 ,229-23 1 
Music (See Sound) 
Operat ing System (Also see IO CB) 

225, 242-247 
O utput (See Disk, Fil es, Interface, 

etc. ) 
Padd les 160 , 199 
Page Flipping (Also see Scrolling) 76 
Peri pherals (See Disk, Casse tte , 

etc. ) 
Playe r/Miss il e G raphics 55-56 , 

173- 174 
POKE (Also see Memory) 9- 10, 

29-3 1, 160,2 13-215 
Printer 11 , 185 
Program W ri ting Programs (A lso 

see Forced Read Mode) 
29-3 1,41-43 ,55 -56 ,22 1-222, 
23 1 

PUT 226,242 -247 
RAM (See Memory) 
READ (See DATA) 
SAVE 47 
Screen 11 -12,33 -3 5, 209-21 1 
Screen Dump 11 -14 ,33 -34, 41 -42 
Scrolling 169- 173, 198- 199 
SETCOLO R (See Color) 

249 



Sound 194, 213-215 
Strings 23-25,33-34 , 185,2 10, 

22 1-222 
Subroutines 2-4, 7 -8 ,85- 128 , 

22 1-222 
TAB 9- 10 
T ape (See Casse tte) 
T extPlot 160- 162 
Variab les 7,44-48 
Verti ca l Blank 173, 196,199 
Voice 194 
Window 33-35 
XIO (See IOCB; Fill) 

250 



If you've enjoyed the articles in this book, you'll find the 
same style and quality in every monthly issue of COMPUTE! 
Magazine. Use this form to order your subscription to 
COMPUTE! 

For Fastest Service, 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-275-9809 

COMPUTE! 
P.o. Box 5406 
Greensboro. NC 27403 

My Computer Is: 
o PET 0 Apple 0 Atari DOSI 0 Other _ _ 0 Don't yet have one ... 

0$20.00 One Year US Subscription o $36.00 Two Year US Subscription o $54.00 Three Year US Subscription 

Subscription rates outside the US: 
0$25.00 Canada F= 2 

0$38.00 Europe/Air Delivery FI= 3 

0$48.00 Middle East, North Afri ca, Central America/Air Mail FI= 5 

0$88.00 South America, South Africa, Australasia/Air Mail FI = 7 

0$25.00 International Surface Mai l (lengthy, unreliable delivery) FI=4.6.8 

Name 

Address 

City State Zip 

Country 

Payment must be in US Funds drawn on a US Bank; International Money 
Order, or charge card. 
o Payment Enc losed 
D MasterCard 
Accl No. 

06·X 

DVISA 
D American Express 

Expires 



COMPUTE! Books 
P.o. Box 5406 Greensboro. NC 27403 

Ask your retailer for these COMPUTE! Books. If he or she 
has sold out, order directly from COMPUTE! 

For Fastest Service 
Call Our TOLL FREE US Order Line 

800-334-0868 
In He call 919-275-9809 

Quantity Title Price Total 

____ The Beginner's Guide To 
Buying A Personal Computer $ 3.95 
(Add $1.00 shipping and handling. Outside US add 
$4.00 a ir mail; $2.00 surface mail.) 

___ COMPUTE!'s First Book of Atari $12.95 
(Add $2.00 shipping and handling. Outside US add 
$4.00 a ir mail; $2.00 surface mail.) 

Inside Atari DOS $19.95 
(Add $2.00 sh ipping and ha ndling. Outside US add 
$4.00 air mail; $2.00 surface ma il.) 

___ COMPUTE!'s First Book of 
PET/CBM $12.95 
(Add $2.00 shipping a nd handli ng. Outside US add 
$4.00 air mail; $2.00 surface ma il.) 

Programming the PET/CBM $24.95 
(Add $3.00 shipping and handli ng. Outside US add 
$9.00 air mail; $3.00 surface mail.) 

Every Kid's First Book of 
Robots and Computers $ 4.95 
(Add $1.00 shipping and handling. Outside US add 
$4.00 air mail; $2.00 surface mail.) 

___ COMPUTE!'s Second Book of 
Atari $12.95 
(Add $2.00 shipping and handling. Outside US add 
$4.00 a ir mail; $2.00 surface mail.) 

___ COMPUTE!'s First Book of VIC $12.95 
(Add $2.00 shipping a nd handli ng. Outside US add 
$4.00 air mail; $2.00 surface mail.) 

All orders must b e prepaid (money o rder, check o r c harge). All 
payments must be in US funds. NC residents odd 4% sa les tax. 
o Payment enc losed Please c harge my: 0 VISA 0 MasterCard 
o American Express Acc't. No. Expires I 

Nome 

Address 

City State Zip 

Country 
Allow 4-5 weeks fo r delivery. 

06-X 






	Cover

	Table of Contents

	Introduction

	Utilities

	BASIC Joystick Routine

	Joystick Tester

	Keyboard Input

	POKE TAB

	The 49 Second Screen Dump
	Memory Test


	Programming Technques

	String Manipulation

	Forced Read Mode

	Simple Screen Editor

	Plotting Made Easy

	Graphics Generator

	Analyze Your Program - a BASIC Utility

	Atari Microsoft BASIC

	Advanced Graphics and Game Utilities

	Player-Missile Editor

	Point Set Graphics

	Page Flipping

	Display List Interrupts

	Extenting Hi-Res Graphics Part I: Polygon Fill Subroutine 
	Part 2: Textured Graphics 
	Part 3: Multi-Colored Graphics in Mode 8

	TEXTPLOT makes a Game

	Fun With Scrolling


	Applications

	A Simple Text Editor

	The Atari Keyboard Speaks Out

	Atari Screen as Strip Chart Recorder

	Fast Banner

	Perfect Pitch


	Beyond BASIC

	Put USR Code into a BASIC Program Automatically

	Back up Machine Language Programs with BASIC

	Loading Binary DOS Files from BASIC

	The Resident Disk Handler


	Listing Conventions

	Index


