

COMPUTErs FIRST BOOK OF

ATARI
GA ES

ATARI is a registered trademark of Atari , Inc

1I IIIII III II I I III IIIIIIIi~II~IIl~rlilr Ilir'
3 8445 0001 9886 4

The following articles were originally published in COMPUTE' magazine, copyright
1981, Small System Services, Inc.:
"Blockade" (August)
"Shoot" (September)

The following articles were originally published in COMPUTE! magazine, copyright
1982, Small System Services, Inc.:
"Word Hunt" (March)
"Programming Your First Game" (October)
"Tag" (October)
"MathMan" (October)
"Hidden Maze" (December)

The following articles were originally published in COMPUTE' magazine, copyright
1983, Small System Services, Inc.:
"Thunderbird" (January)
"Mastermaze" (February)
"Ski'" (February)
"Closeout" (March)

Copyright 1983, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without the permission of the copyright
owner is unlawfu l.

Printed in the United States of America

ISBN 0-942386-14-0

10 9 8 7 6 5 4 3 2

COMPUTE! Publica tions, Inc. Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC publishing compa nies, and is not associated with any
manufacturer of personal computers . Atari is a trademark of Atari, Inc.

ii

Contents

fureword .. v

Part 1: The Atari as a Game Machine. 1
Why the Atari Is a Great Game Machine

Orson Scott Card . 3
Writing Your First Game

Richard Mansfield. .. 13

Part 2: Maze Games. .. 19
Mastermaze

Kenneth S. Szajda .. 21
Tag

Ed Davis
(Translated for the Atari btJ Charles Brannon) 33

Hidden Maze I
Gary Boden
(Translated for the Atari by Charles Brannon) 41

Part 3: Two-Player Games 45
Blockade

Douglas Pinho .. 47
Tank Duel

Tom R. Halfhill .. 51
Pick-up Sticks

Jason Lex Thomas. 78
Poker Solitaire

Allen R. Breon .. 84

Part 4: Brain Testers 103
MathMan

Andy Hayes
(Translated for the Atari by Charles Brannon) 105

Word Hunt
Robert W Baker
(Translated for the Atari by Charles Brannon) 109

Total Recall
Tina Halcomb . 120

254151 iii

Part 5: Fast Action 127
Chiseler

John Scarborough . 129
Closeout

L. L. Beh . 170
Ski!

Charles Brannon and E.H. Foerster 179
Thunderbird

Dave Sanders
(Translated for the Atari by Charles Brannon) 191

Shoot
John H. Palevich 200

Appendix A: Writing Your Own Games
Tom R. Halfhill 207

Appendix B: Beginner's Guide to
Typing in Programs 213

Appendix C: Using the Machine Language
Editor: MLX

Charles Brannon 219
Listing Conventions . 231
Index 232

iv

Foreword

When the first huge computers were built, games were not what
the owners had in mind. Millions of dollars were invested in
every machine. Computer time was valuable, and not to be
wasted.

As computers shrank in size and increased in power, how­
ever, it was inevitable that weary programmers would begin ex­
ploring and programming, devising the forerunners of Pac-Man
and Donkey Kong. Today, a vast number of the world's computers
are built for one purpose only - to play games with whoever puts
in a quarter.

Your Atari is not a dedicated game machine - it is much more
versatile than that. But the Atari's designers knew that one of the
most common uses of the machine would be play. Like the arcade
machines, the Atari can give you experiences and entertainment
that you could never find anywhere except in the worlds the com­
puter can create.

This book serves a double purpose. First, it provides you with
a variety of games which you merely type into the computer, save
on tape or diskette, and then play again and again, as often as you
like. Second, because the program is printed you can see exactly
how the game's creator brought off the effects you like. It will be
fairly easy for you to learn techniques that you can use in your
own programs.

In fact, to make this book as useful as possible, many of the
games are accompanied by explanations of how the program
works . Chapters at the beginning and end of the book will also
help you learn how to write your own games.

Much of the value of this book comes from its variety:
Besides being fun, MathMan and Word Hunt, for instance,

are educational; Ski! can improve eye-hand coordination.
There are games that are simple and slow enough for small

children. There are also games as fast and challenging as any­
thing in the arcades .

No matter what level of programming skill you have reached,
there will be programs for which you can learn techniques, rang-

v

ing from fairly simple BASIC games to sophisticated all-machine
language games like Shoot and Chiseler.

Even if you are a subscriber to COMPUTE! Magazine,
there are things here you haven't seen before. One-third of
the games in this book have never been published before and
some of the others have been since refined and improved.

Some of the games here were originally programmed on
other computers, and were "translated" for the Atari. Computer
translation often requires as much creativity as the original pro­
gram, since the requirements and features of computers can be
very different.

Some games require more than simple translation: they re­
quire new coding in order to take advantage of the capabilities of
the Atari. This is the case with three games in this book. Charles
Brannon, of our editorial staff, has rewritten Tag, Ski! and Thun­
derbird for the Atari. In addition, E.H. Foerster has made impor­
tant improvements to Brannon's version of Ski!.

Since the first printing of this book, Atari has introduced
a new line of computers called the XL series. They've become
very popular. We've ensured that all the games, save one, will
run on any of the XL machines. That game, Ski, would have
to be almost completely rewritten to run on an XL model com­
puter. You can, however, play Ski on your 600 XL or 800 XL if
you have the Atari BASIC cartridge. Simply plug it into the
cartridge slot, type the program in, and play. Since the car­
tridge disables the built-in BASIC of the XL model computers,
Ski will work.

All the rest of the games in this book can be typed in
and played as is on an Atari XL computer.

vi

Part One

Why the Atari
Is a Great

Game Machine
Orson Scott Card

When you push the cartridge into the slot, unbelievable
things happen. Basketball players dribble and pass and shoot
and steal. Spaceships go through complex maneuvers and
blast asteroids out of the sky. Robots chase you through a
maze. A little man climbs a ladder and puts out fires. Your
computer has turned your TV screen into a universe of daz­
zling worlds, and it seems like whenever you aren't playing,
your children or your parents are.

But you bought a computer, not just a game machine.
And you bought an Atari, not just a computer. Which means
that all the techniques that the wizard programmers used to
create the games you like to play are all within your reach.

It probably won't surprise you that game designers like
the Atari, too. That's because the computer was designed
with many of the features that help programmers make their
games run smoothly, with lots of graphic effects, and without
a lot of extra, unnecessary programming steps.

The Atari Tool Kit
At their simplest level, computers consist of two basic parts,
the central processing unit that performs operations, and the
memory that holds all the instructions and data and results of
those operations. The power of the computer is that it's very,
very fast. The weakness is that it can still do only one thing
at a time.

But there are ways of getting around that. The Atari com­
puter saves a lot of time by actually having two processors:
the 6502 handles the main business of whatever program is
running, and the other, the ANTIC chip, handles what's go­
ing on on the TV screen. Once the main processor has told

3

Part One

the ANTIC what to do, it can pretty well forget the screen
and let the ANTIC go on telling the TV, every sixtieth of a
second, what to put on the screen.

The Atari also has a sound system with four voices that
plays through your TV speakers or your stereo system.
There's a little speaker built into your console, too, that can
be made to beep and click. And if you have a cassette or disk
drive for permanent memory storage, the Atari has several
ways of storing and reading information on both devices,
some fast and complicated, some slow and simple.

That's the machinery, the hardware. Many of the most
powerful features of your Atari as a game machine, however,
are hidden in the computer's operating system and in its
BASIC language. It isn't just the things that your computer
can do - it's also the way you can get the computer to do
them. It isn't quite as easy as wishing - this is the real
world, after all. But with planning and a little study, you'll
find that all those dazzling tricks the wizard programmers use
aren't so miraculous after all. Or maybe that's the wrong way
of looking at it. Maybe the tricks are miraculous - but the
Atari makes it relatively easy for you to become a wizard.

Cutting Up the Memory Chain
To understand how these features work, it's important to
understand how the Atari's memory is set up. Perhaps it's
easiest to visualize computer memory as a long chain. The
first link in the chain is memory location zero; the highest­
numbered link your computer can read is location 65535.

Each link, or location, can hold one item of information.
Your computer knows how to go from location to location and
either read the item stored there or store a new item there.
Whenever it stores something, it erases whatever was stored
there before. However, when it reads something, the informa­
tion at that location is unharmed - it can be read again and
again without change.

What is stored at each location? The same thing every
time : a number from 0 to 255. That's all - a long chain of
memory locations, each holding a number from 0 to 255.

What matters, then, is what the computer does with that
information.

It can interpret each number three ways:
Sometimes the computer reads those numbers as ins truc-

4

Part One

lions, machine language commands that tell the 6502 pro­
cessor what operations to perform.

Sometimes the computer reads the numbers as numbers,
positive integers from 0 to 255 - or as positive and negative
integers from -US to + 127.

And sometimes the computer reads the numbers as ad­
dresses - numbers which tell the computer where in memory
another instruction or item of information is to be found.

How a number is interpreted depends on what you have
told the computer to do with that information.

Screen Memory
Of great importance to arcade-type games is a long section of
the memory chain that is used for screen memory. The
Operating System (OS) tells ANTIC to look for screen
memory starting at a certain address in memory. Then AN­
TIC interprets that screen memory according to certain
predetermined patterns, called graphic modes.

Depending on the graphic mode your program is in, AN­
TIC will read screen memory as instructions to turn on or off
little squares of color on the TV screen, or as instructions to
display a certain character on the screen. When you type
words on your computer, ANTIC doesn't care what you're
saying. It only knows that at certain places in screen memory,
the number stored in that location is the code for a certain
letter.

So when alien invaders march back and forth across your
screen, your 6502 is really just storing numbers in different
memory locations, and ANTIC will make different patterns of
color in different places on the screen.

Machine language is very fast when compared to
BASIC. It can move large groups of numbers from one place
to another in screen memory so quickly that it causes objects
to move smoothly on the screen.

However, many computer users haven't yet learned how
to use machine language. Instead, most of us rely on BASIC,
a language a little closer to English, which, while a program is
RUNning, translates our commands so the 6502 can under­
stand them. The trouble is, this translation takes time. Our
BASIC program often can't move numbers through screen
memory quickly enough to make smooth movements on the
screen.

5

Part One

Player-Missile Graphics
Here is where your Atari really starts to shine. ANTIC doesn't
only look for screen memory - it can also look for another
section of memory that holds up to five player shapes (or
four player shapes and four narrower missile shapes), which
can be moved across the screen, independent of what the rest
of the screen memory is doing.

These player shapes can move much more quickly, and
with a lot less calculation, than shapes in regular screen
memory. They also are displayed on the screen without affect­
ing the screen memory that is supposed to be displayed in
the same place. This is why in "Tank Duel" you will see the
tanks move right over trees - when the tank passes, the tree
is still there, undisturbed.

You can also tell the computer which overlapping objects
should have priority - does your airplane shape go in front
of the cloud, or behind it, when they occupy the same place
on the screen?

Your computer also notices what players or missiles are
overlapping on the screen. That's how in Asteroids the game
program notices whether you have crashed into a big rock or
not, or whether another ship's missile has collided with your
ship. If it doesn't matter, the program can ignore the collision;
if it does matter, your program can go into its special effects
routine and make an explosion.

The important thing to remember is that all of this activ­
ity is controlled by telling the 6502 what numbers to store in
what locations. The Atari is designed so that you have almost
complete control over all the numbers that matter. If you are
working in machine language, you control all those numbers
directly, but even in BASIC you can store numbers by using
the POKE command, or read numbers by using the PEEK
function . Some ways of moving the numbers around are fast­
er than others. In these games, you'll see as many different
techniques as there are programmers. But in the end, all the
programmers are just putting numbers somewhere in the
chain.

The Atari's power derives from the way it uses those
numbers.

6

Part One

Changing Colors
Do you want to change the color of some object on the
screen? You have 128 different combinations of color and
brightness available to you - and to change a color, you
merely have to POKE one number into one memory location.
You can change the background, for instance, with the com­
mand POKE 712,66.

How many different colors can you display at once? Using
the simplest graphics modes, you can show four colors at the
same time. Add the five possible players, each with its own
color, and there can be nine colors showing, each controlled
by a single POKE. And the advanced graphics modes - 9,
10, and 11 - allow even more.

Sound
Your computer has four voices through the TV speaker. Four
notes can sound at the same time - or two can be used
together to make a combined sound. From BASIC, you can
choose eight different distortion levels, 16 different loudness
settings, and a wide range of pitches. Let's explore a bit.

Here's the sound of the sea:

10 FOR 1=4 TO 14 STEP 2:S0UND 0,76-1
,8,I:FOR X=0 TO 150*RND(1):NEXT X
:NEXT 1

20 FOR 1=14 TO 4 STEP -1:S0UND 8,60,
8,I:FOR X=0 TO RND(1)*800:NEXT X:
NEXT I:GOTO 10

30 FOR 1=12 TO 4 STEP -1:S0UND 0,60,
8,I:FOR X=0 TO RND(1)*800:NEXT X:
NEXT I:GOTO 20

And here's the tick-tock of a clock:

5 FOR X=0 TO 1
10 SOUND 0,50+10*X,10,8:S0UND 0,0,0,

o
20 FOR 1=0 TO 150:NEXT 1
30 NEXT X:GOTO 5

Program 1-1 is a simple program that will allow you to
create sounds and modify the pitch and distortion while the

7

Part One

sound is going on. If you have two pairs of paddles, you can
work with two sounds at once.

Paddles One and Two control the first voice. Paddle One
sets the pitch of the sound. Hold down the button, and the
voice goes on and off in a staccato pattern.

Paddle Two controls the distortion level. Hold down the
button, and the screen will report, over and over, what the
number of the pitch is and what the number of the distortion
is for the sound you're hearing.

If you find a sound you like, push the button, get the
numbers, write them down, and then use them in a SOUND
statement in a program. The SOUND statement looks like
this:

SOUND 0,76,10,10

The first number is the voice number. The four voices are 0,
1, 2, and 3. The second number is the pitch number, ranging
from 0 to 255. The third number is the distortion, which is
always an even number from 0 to 14. The fourth number is
the volume, any number from 0 (silent) to 15 (loud).

You can reproduce the sound you want by putting the
pitch and distortion number shown on the screen in the right
place in a SOUND statement in your own program.

Machine language programmers can even make their
music or sound effects take place during interrupt time, when
the TV screen isn't being actively displayed - but that's much
too fast for BASIC to take advantage of.

Program 1-1. Sound
10 DIM PITCH(3) , DISTORT(3),J(3):? "

{CLEAR}"
20

30
40

? "How many voices? (1,
4)":OPEN #1,4,0,"K:"

.., .L.., 3,

GET #1,A:IF A(49 OR A>52 THEN
CLOSE #1:PRINT CHRS(A):A=A-49

or

30

50 ? "[;;addles or !)Jysticks":OPEN #1,
4,0, "K: II

60 GET #1,N:IF N<>74 AND N<>80 AND N
<>106 AND N<>112 THEN 60

70 PRINT CHR$(N):CLOSE #1:0N N=74 OR
N=106 GOTO 200

8

Part One

80 REM JOYSTICK-ONLY USERS MAY DELET
E LINES 50 TO 190

100 FOR 1=0 TO A:PITCH(I}=27+PEEK(62
4+I*2):DISTORT(I)=2*INT(PEEK(625
+I*2)/29):NEXT I

110 FOR 1=0 TO A:SOUND I,PITCH(I),DI
STORT(I),8:NEXT I

120 FOR 1=0 TO A:ON NOT PTRIG(I*2)
GOSUB 150:0N NOT PTRIG(I*2+1) G
OSUB 140:NEXT I

130 GOTO 100
140 POSITION 1,I+l:? "Voice u;I,"pit

ch ";PITCH(I);"{3 SPACES}distort
ion ";DISTORT(I);" ":RETURN

150 SOUND I,0,0,0:RETURN
190 REM PADDLE-ONLY USERS MAY DELETE

LINE 50 TO 70 AND 200 TO 290
200 FOR 1=0 TO A:PITCH(I)=100:DISTOR

T(I)=10:S0UND I,PITCH(I),DISTORT
(1),8:NEXT I

205 J (tI) = J (1) - 1 0: 1 F J (I) < 0 0 R J (I))- 4
THEN J(I)=0

210 FOR 1=0 TO A:J(I)=STICK(I):IF J(
1)=7 THEN J(I)=12

220 J (I) =J (1) -10: IF J (I) < 0 OR J (I) >4
THEN J(I)=0

230 ON J(I) GOSUB 240,250,260,270:0N
NOT STRIG(I) GOSUB 290:NEXT I:

ON PEEK(53279}=6 GOSUB 280:GOTO
210

240 DISTORT(I)=DISTORT(I}-2:DISTORT(
I)=DISTORT(I)+14t(DISTORT(I)<0):
SOUND I,PITCH(I),DISTORT(I),8:RE
TURN

250 DISTORT(I)=DISTORTCI)+2:DISTORT(
1)=DISTORT(I)-14*(DISTORT(I»-14)
:SOUND I,PITCH(I),DISTORT(I),8:R
ETURN

260 PITCH(I)=PITCH(I)+l:PITCH(I}=PIT
CH (I) -256* (PITCH (I))255): SOUND I
,PITCH(I),DISTORT(I),8:RETURN

270 PITCH(I)=PITCH(I)-l:PITCH(I)=PIT

9

Part One

CH(I)+256*(PI~CH(I)<0):SOUND I,P
IrCH(I)~DISTORT(I),8:RETURN

280 POSITION 2~1:FOR 1=0 TO A:? "Voi
ce I;I ; "{3 SPACES}Pitch ";PITCH(
1);"{3 SPACES}Distortion ";DISTO
RT(I);" ":NEXT I:RETURN

290 SOUND I,PITCH(I),DISTORT(I),8:S0
UND 1~0,0,0:RETURN

Machine Language Subroutines
One of the tricks the Atari can play is changing the meaning
of numbers in the middle of a program. For instance, several
of the programs in this book will have statements that look
like this:

A$ = "hhh*VLd"

And then, later, a statement that looks like this:

X = USR(ADR(A$))

What the first statement does is store a group of numbers
as a string of characters. Ordinarily, the computer would inter­
pret those numbers from then on as the letters or symbols
shown.

But the second statement tells the computer to go to the
address where those letters are stored - ADR(A$) - and in­
terpret those numbers as machine language instructions -
X = USR. What looked like a string of characters is really a
subroutine for loading data from a disk file, very, very
quickly.

There are other ways to get short machine language
routines into game programs. What is important is that it
allows programmers to write most of a program in BASIC, the
language most programmers know best - and only write
machine language in the sections of the program that really
require speed.

Some of the programs in this book are entirely in
machine language. You can tell which ones they are - they're
the ones that consist almost entirely of lines like this:

DATA 15,233,0,55,99,5,23,120,120,0,0,0,40

Long, slow typing - but very fast games.
Most programs, though, are in BASIC, and even without

10

Part One

a lot of training, you can follow most of what's going on.
And because of those embedded machine language
subroutines, most of those BASIC games play just as fast as
you could ever want.

Additional Features
There are other features we've hardly touched on:

• Six different ways of displaying characters, which you
can define into many different shapes and colors, ranging
from the simple small white letters and numbers that the
machine usually uses to the multicolored characters in games
like "Tank Duel." As far as the computer knows, it's just
displaying letters on the screen - but you see trees and
buildings.

• Full joystick and paddle control, which you can use
with one-word functions like STICK(O), PADDLE(5), or, for
the buttons, STRIG(3) and PTRIG(7). The STICK functions
give you one of eight directions; the PADDLE functions give
you a number from 0 to 255. Notice how those are used in
the sound demonstration program you used a minute ago.

• A sound track on the cassette, alongside the data track,
that allows you to record music or speech and play it back,
all controlled and timed from within a program. Several ex­
cellent games and educational programs use this feature. (Un­
fortunately, it's one of the few things we just can't do in a
book of printed programs like this.)

• Three function buttons, OPTION, SELECT, and START,
can be used however you wish in a program, simply by see­
ing what's in memory location 53279, like this:

FOR I =0 TO 10000: A =PEEK(53279):PRINT A:NEXT I

If you type in that line and then press those three buttons,
one at a time or in combination, you will see what numbers
the computer automatically stores, ready for you to read
within a program.

• Scrolling, both up and down and side to side, so that
the television screen can seem to be a window looking onto a
much larger playfield. That's the technique used in "Ski!,"
which allows you to ski down a hill much larger than the TV
screen could ever show all at once.

All of these features were carefully built into the Atari -
this computer was designed to be a powerful game machine.

11

Part One

But much of its value comes from the simple fact that it
is a computer. Playing word games, doing mathematical calcu­
lations, designing mazes, remembering intricate patterns -
these are all things that computers do very well. They were
originally developed to do vast amounts of tedious work very
quickly.

It's just a bonus that they can be such a lot of fun.

12

Part One

Writing Your
First Game

Richard Mansfield

Richard Mansfield, Senior Editor of COMPUTE! Publications, ex­
plains the details of a simple game. A beginning programmer can
learn a great deal studying this short program.

If you are tempted to write your own games, go ahead. It's
a good way to learn to program. Games are basically the
same as any other kind of programming.

Computer games fall into two broad categories: imita­
tions of old standards (checkers, Othello), and games which
could not be played without a computer (Space Invaders, Pac­
Man). This second category is more difficult to program for
several reasons. For one thing, you've got to think up a new
and entertaining concept and then adjust the action until it is
just hard enough to be challenging but not so difficult that
people want to give up.

This category (basically "arcade" games) is especially
hard to program precisely because a good computer-only
game exploits all of the computer's special attributes: speed,
color, sound. To do this well, to make things look and re­
spond just the way you imagine them, requires a good bit
of programming experience. Usually, too, several things are
happening at once in an arcade game. This often means that
such a program must be written in machine language,
which is far faster than BASIC.

High Card Slice
Old standards, on the other hand, can often be the best way
to get started programming games. You already know the
game concept, and cards or dice or game boards are fairly
easily constructed and manipulated on your computer
screen. To illustrate, let's take a look at a simple simulation
of one of the oldest card games, High Card. The rules are

13

Part One

simple: you place a bet, and then you draw a card from the
deck. The computer, your opponent, draws a card too, and
the highest card wins the money.

One simplification here is that there is no attempt to
represent the cards on the screen . The entire game relies
simply on words ("Ace of Spades," for example) when
cards are drawn.

Like most computer programs, the program can be
visualized as having four distinct zones: initialization, main
loop, subroutines, data tables . We can go through the steps
in programming this game by looking at each zone
separately .

Initializa tion
From lines 10 through 80 we are "teaching" the computer
some basics about this game. Initialization is the activity
which must take place before any of the action can begin.
Computers are so fast that they will zip up through these
lines and start things off in the main loop at line 100 in a
flash. However, as programmers, we are aware that several
preliminary events took place inside before anything else.

In line 20, the computer discovers that there is a variable
called" dollars" which is equal to 500 . It sets aside a section
(like a small box) in its memory which it labels" dollars."
When the game is running, it will add or subtract from this
"box" (lines 230-240) to keep a running total of how much
money you have left to bet. From time to time (line 110), it
will check the box and report to the player how much he
has. The box labelled "dollars" is called a variable because
during the game the amount in it will vary.

Lines 30 through 60 are simple enough - they ask the
player to give his or her name. The computer "memorizes"
it in another "box" called "name$" and can now speak
more personally to the player in lines 140 and 230. Also, the
computer prints the rules of the game in line 60.

Line 70 "reads" four names (the face cards) from the
data tables in lines 510 on. It also makes a "mental note"
that it has already READ four items. So, when it's asked to
READ again (line 80), it will start with the next unread item
of data, which will be "clubs." By now, the computer has
"memorized" a variety of important facts: the player's
name, the amount of his or her betting purse, the names of

14

Part One

the face cards, and the suits of a standard deck. In less than
a second, the computer has grasped and filed away the
necessary facts to go on to the main loop where all the ac­
tion takes place.

The Main Loop
After checking that the player has money to bet, the com­
puter asks for the bet, checks again that the bet is possible,
and then runs through one cycle of the game starting in line
160. At this point, a programmer might find it worthwhile
to visualize the steps involved in the game:

1. Draw a card for the player
2. Draw for the computer
3. Decide who won
4. Adjust the player's purse

Since both draws are essentially identical actions (the only
dIfference will be that we say "Bob draws a ... " instead of
"The computer draws"), we don't need to program the
draw twice. This is where subroutines come in handy.

The Subroutine
Twice in the main loop, we GOSUB 300. First the player
draws, then the computer draws. Line 310 randomly picks
two numbers, the card and the suit. If line 320 finds that
this selection matches the one drawn just before by the
player, it goes back for another draw. Line 330 makes the
name of the card be the number if it wasn't a number higher
than 10 (a face card).

Then line 340 announces the draw using three variables.
The first variable (player$) is set up in either line 160 or 190
as appropriate. Then the card$ and suit$ variables are selected
from the lists that were "memorized" back in the initialization
phase (lines 70-80). The subroutine then RETURNs to the
main loop.

Lines 210-240 decide and announce the winner of this
round. First, if the variable "card" (the computer's card) is
greater than (» "yourcard," the computer is declared the
winner in line 240, the purse is adjusted, and the main loop
is restarted (GOTO 100). If the cards are equal, nothing hap­
pens to the purse and the next round begins. Notice that we
don't need to say "IF YOURCARD > CARD" at the start of

15

Part One

line 230 to test if the player has won. It's the only possible
thing if the computer has gotten this far.

Once you've solved a particular problem, you'll find you
can use the solution in many future games. This subroutine
which draws cards, for instance, would work just as well for
poker, or blackjack, or dozens of other games. Subroutines
are handy not only because they can be used repeatedly
within a program, but because they can be saved and used
repeatedly in future programs. So think up a simple, tradi­
tional game and teach it to your computer. There is prob­
ably no more pleasurable way to learn programming than to
write a game.

Program 1-2. High Card Slice
10 REM tNECESSARY INITIAL INFORMATION

t
20 DOLLARS=500:DIM NAME$(20},PLAYER$(

20)
30 GRAPHICS 0:PRINT " WITH WHOM DO I

HAVE THE PLEASURE"
40 PRINT " OF PLAYING HIGH CARD SLICE

?fJ

50 INPUT NAME$
60 PRINT " HIGH CARD WINS IN THIS GAM

E! "
70 DIM CARD$(14*5),T$(10):FOR 1=11 TO

14:READ T$:CARD$(I*5-4,I*5)=T$:NE
XT I

80 DIM SUIT$(8t4):FOR 1=1 TO 4:READ T
$:SUIT$(I*8-7,I*S)=T$:NEXT I

90 REM
100 REM **MAIN PROGRAM LOOP**
110 PRINT :PRINT " YDU HAVE $";DOLLAR

S
120 IF DOLLARS<=0 THEN PRINT " THE GA

ME IS OVER.{21 SPACES}YOU ARE OUT
OF CASH.":END

130 PRINT II WHAT IS YOUR BET";:INPUT
BET

140 IF DOLLARS<BET THEN PRINT " YOU 0

16

:

Part One

NLY HAVE $";DOLLARS;" TO BET",NAM
E$: GOTO 13el

150 YOURCARD=0:YURSUIT=0
160 PLAYER$=NAMES
170 GOSUB 3!2l!!:1
180 YOURCARD=CARD:YURSUIT=SUIT
1ge1 PLAYERS=" THE COMPUTER"
200 GOSUB 300
210 IF CARD>YOURCARD THEN GOTO 240
220 IF CARD=YOURCARD THEN PRINT " A T

IE! ": GO TO 10i!1
230 PRINT NAMES;" WINS":DOLLARS=DOLLA

RS+BET: GO TO 1!210
24el PR I NT " THE COMPUTER WINS": DOLLAR

S=DOLLARS-BET:GOTO 100
290 REM
300 REM *SUBROUTINE TO DRAW THE CARDS

* 310 CARD=INT(RND(0)*13)+2:SUIT=INT(RN
D(0)*4)+1

320 IF CARD=YOURCARD AND SUIT=YURSUIT
THEN 300:REM NO IDENTICAL DRAWS

330 IF CARD{ll THEN TS=STRS(CARD}:GOT
o 340

335 TS=CARD$(CARD*5-4,CARD*5)
340 PRINT" ";PLAYERS;" DRAWS THE ":P

RINT" ";TS;" OF ";SUIT$(8*SUIT-7
,SUIT*8):PRINT

35!!J RETUF:N
490 REM
500 REM **DATA TABLE**
510 DATA JACK ,QUEEN,KING, ACE
520 DATA CLUBS{3 SPACES} , DIAMONDS.HEA

RTS SPADES

17

Part Two

MASTERMAZE
Mazing in Three

DilDensions

"Mastermaze," an extremely challenging game, uses page flipping
and machine language to create up to 32 levels . This revised version
of Mastennaze will create 27 mazes in less than one minute.

Almost everyone finds mazes an enjoyable challenge. If you
are like me, however, you feel that mazes take only minutes
to solve and can soon become monotonous. That is why I
chose to use my personal computer to its fullest, having it
perform functions impractical with paper and pencil. This
three-dimensional maze game is the result.

One Level at a Time
First, let me explain how to use the program. Since it is im­
practical and nearly impossible to display an entire three­
dimensional maze at one time, the program displays only the
level that the player is on, which is really of no consequence
to the user, but makes life a lot easier for the programmer.
What we are doing is analogous to a book: instead of show­
ing the entire book in one screen, we are displaying only one
page at a time - the page that is being read.

After you have typed in the entire program, the first
thing you must do is SAVE a copy to tape or disk. This pro­
gram plays around with the display list, so typos could cause
problems and possibly crash your computer.

Playing the Game
Once a copy has been SAVEd, type RUN and you will be
prompted with the question "# OF LEVELS?" What the com­
puter really wants to know is how deep you would like your
maze to be. In other words, the computer wants you to tell it

21

Part Two

one more than the minimum number of down "tunnels" the
user must pass through before he reaches the end. In terms
of our book analogy, the computer is asking for the number
of pages in the book.

For a first-time player, I suggest three or four levels at
most. The minimum number of levels is one, and the maxi-
mum, for computers with 48K, is 32. The maximum number of
levels will be less on computers with DOS present or less memory.

Once you have entered your desired number of levels, the
program will ask '1NVISIBLE (1) OR VISIBLE (2)?" If you try
invisibility, beware. Although the screen appears to be blank,
the walls to the maze are still there.

Now that the program has the necessary data, the com­
puter begins to build the maze to your specifications. Before
work actually begins, the screen informs you of the work to
be done. After this short delay, the screen is turned off and
the maze is constructed. The actual time needed to construct
the mazes is relatively fast thanks to a machine language
routine written by David Butler.

Once the computer has completed construction of the
maze, the screen is turned back on, and you are asked to
PRESS START 10 BEGIN. Watch the word START closely. See
how it is flashing on and off? This effect is produced by tog­
gling CHACT (location 755 or hex 2F3) in rapid succession
(alternately POKEing in one and two). You are asked to press
START when you are ready because the program times you,
and it would not be fair to start timing from the moment the
maze was completed.

Therefore, when you are ready to begin, you press
START, which tells the program that you are poised with
joystick in hand; the top level is displayed and timing begins.
You will see an S in the upper left corner of the screen,
with the ball character (control-T) underneath. You are the ball
character.

Threading the TUnnels
Just move the joystick in the direction you want to go. "Sure;'
you say, ''but where do I want to go?" Simple enough. If you
chose a one-level maze (chicken), you will see anF at the
lower right corner of the maze. That's where you want to go.
If you were gutsy, however, and chose any number of levels
greater than one, you will see five graphics 1/ +" characters at

22

Part Two

random points throughout the top level. These symbols repre­
sent tunnels, through which you must pass to reach the fin­
ish (which is always in the lower right of the bottom level of
the maze) . As you might have guessed, you always start at
the upper left of the top level.

To pass through a tunnel, simply move onto the /I +/1
symbol and press the fire button. Voila! The new level is
displayed instantly. Have you gone up or down? Well, if you
were on the top level, the only place you could go is down.
If you are in the middle of a maze of four or more levels,
then I have absolutely no idea which direction you'll go; you
may pass through the same level three or four times before
you realize that you've gone nowhere.

In mazes of ten or more levels, be prepared to see the
same level a few times before you make any progress. No
matter how many levels you choose, however, the goal is still
the same. You must try to go down to unexplored levels; if
you end up on a level you have been on already, you have
looped, and you must figure out whether you've gone up or
down.

In any case, find the F on the lowest level, go to the
space directly above it, and move down. If you do not push
the joystick down, the timer will continue, and your record
time will be lost. When the timer has stopped, you will hear
five beeps.

If you do not hear the five beeps, you have not stopped
the timer, or the sound is gone on your machine. Either way,
just remember to go down when you reach the finish - as
you get better and better, times will get tougher and tougher
to beat, and each second will become important .

That's all there is to it. After the five beeps have informed
you that the timer has stopped, the screen will become visi­
ble (no change for visible mazers), and the time used to com­
plete the maze will be displayed in hours:minutes:seconds
format. The program will loop until you press the START but­
ton again, which will cause the program to re-RUN.

Possible Dead Ends
There are a few caveats, however. First, if you are attempting
an invisible maze, some joystick directions may not work.
There is nothing wrong with the program; if you cannot
move in a certain direction, you have hit a wall (I told you

23

Part Two

they were still there). Second, don't even try to do deep in­
visible mazes without the consent of your psychologist. Third,
each tunnel can be used only once, so make your moves
wisely.

Last, and most important, don't ever remove lines 14 and
15. This program, as mentioned earlier, will cause the com­
puter to do some strange things if you hit the BREAK key.
Lines 14 and 15 turn off the BREAK key; the only way to get
out of the program is to hit the SYSTEM RESET button.

An example of a one-Ieuelmaze.

The Program
Now let's look at how the program accomplishes what it
does. Line 8 is self-explanatory. Line 10 resets the screen and
sets the variable TOP to the address of the LSB of the screen
memory address. By POKEing different numbers into TOP
and TOP + I, we can display any area of memory. Line 12
stores the value of SAVMSC (locations 88 and 89, 58 and 59
hex) into RL and RH, respectively. This step is necessary to
reset the destination of PRINT statements after these locations
have been modified by the maze generator routine.

Lines 20 and 23 obtain the required data from the user
and determine the value of BOT, the page number of the

24

Part Two

lowest memory address to be used. Line 25 makes sure that
we haven't used up all available memory, and informs the user
of any memory conflict. Line 26 lets the user know that the
delay which will follow is intentional, not something gone
wrong with the program. Line 27 loads the machine language
maze generator program from the DATA statements (lines
1000-1070) into free RAM at page six. The routine, written by
David H. Butler, is a modification of Charles Bond's original
maze generator in BASIC.

Line 28 turns off the screen and sets up the display for the
start of the game. Line 29 clears memory using the CLEAR
key. Line 30 establishes the top of maze memory and sets up a
loop to construct each of the MAXLEV levels of the maze.
Lines 60-80 set up the screen and call the maze generator routine.

Establishing Start and Finish
Line 120 restores the PRINT statement destination to its
original value by POKEing RL and RH back into SAVMSC.
Line 130 establishes the S in the upper left and the F in
the lower right of the maze. Line 135 checks to see if any tun­
nels have to be built; in other words, if the maze is only one
level, jump over the tunnel building routine (lines 140-170) .

The tail end of line 170 restores the screen and sets up
the console switches for reading. Line 172 executes a GOSUB
to the routine that randomly sets the color of the background
at the beginning and also each time the user passes through
a tunnel. Line 173 loops indefinitely until the user presses the
START button. This line is the one that toggles CHACT, as
described earlier.

Line 174 makes the maze visible or invisible, based on
your response to the second prompt at the beginning of the
program. Line 175 resets the three-byte timer RTCLOK to
zero. Line 180 determines the start position for the player and
tells the display list where the first level of the maze is. Lines
185-321 are the main loop and should be self-explanatory.

A few notes, though: Line 190 reads the joystick and the
trigger, lines 200-230 perform routine motion, line 235 checks
for a win, line 240 checks for walls, and lines 300-321 change
levels. Lines 400-415 stop the timer, sound the bell, and
display the time used. Line 420 sets up the console switches
for reading and POKEs a 124 into the attract mode flag
ATRACT (location 77, hex 4D). The 124 in ATRACT gives the

25

Part Two

user approximately 16 seconds before the screen goes into at­
tract mode.

Line 430 loops until the START button is pressed. Line
450 is the string A$ (we can't PRINT it because we've changed
the screen memory locations). Don't forget to put the quota­
tion marks towards the end of the line; doing that fools
BASIC into reading trailing blanks to fill up A$. Finally, line
500 reads a random number from the random number
generator RANDOM (location 53770, D20A hex), masks out
the four low-order bits, and uses it to set the background col­
or. If you're interested in the technical aspects of the game,
read on. If not, RUN the program and have some fun.

Inner Secrets of Page Flipping
The programming tool behind the entire program is called
page flipping. What this technique involves is changing the
address that the ANTIC chip reads to determine the start of
screen memory. This address is always in the display list,
which is pointed to by SDLSTL and SDLSTH (locations 560
and 561, hex 230 and 231) in standard LSB, MSB order.

In the display list you will find all sorts of numbers; all
have a meaning and should not be tampered with by the in­
experienced programmer. In different graphics modes, the
display list changes both in length and location.

In general, the display list follows two rwes . First, all
graphics modes accessible through BASIC have display lists
that start with 112, 112, 112 in three successive bytes. These
three bytes tell the ANTIC that there are to be 24 blank lines
on the television screen.

Second, the fourth location of the display list contains a
byte which has its sixth bit set. The rest of the byte varies
depending on the graphics mode, but bit six is always set. Bit
six, when set, tells the ANTIC chip that it is to begin direct
memory access (DMA) at the location pointed to by the next
two bytes. Therefore, any area in memory can be displayed
by POKEing the address (LSB, MSB) into the location pointed
to by SDLSTL and SDLSTH plus four.

This is the basis of this program. All screens are con­
structed before play begins, and, instead of drawing an entirely
new screen, all the program does is change these addresses to
point to the first byte of the new screen.

During the blank-out period at the start of the program,

26

Part Two

the entire maze is constructed, layer by layer, and the
resulting mazes are stored in lK decrements, starting with the
last free kilobyte memory block before the display list. The
maze generator routine does not even need to be modified for
this purpose; all that was done was to change the PRINT
destination pointer SAVMSC (location 88, hex 58, mentioned
earlier) . In other words, all I did was fool the maze generator
routine into thinking that screen memory was located in mid­
dle area RAM (instead of the top), and since 960 bytes are
needed for the standard GRAPHICS 0 screen, lK blocks were
very convenient .

The tunnels used this information both at construction
time and at level-changing time. Random numbers were all
that was necessary to build the tunnels; checks were required
only to make sure that the tunnels would be within the maze
and that they did not cut through maze walls. Since no other
checks are made, it is possible to have many tunnels packed
closely together.

The simple method of checking upward and downward
movement causes tunnels to be disabled as they are used.
When the player changes levels, a control-T character is left
where the graphics plus symbol was previously. As a result,
the checks for the graphics plus symbols will always fail on
an already-used tunnel. This feature, added only to make the
mazes more challenging, can easily be altered by changing
the GOTO 185 in line 250 to GOTO 190.

This simple change makes the program think that you
have just moved across or down (i.e., you have not changed
levels). Therefore, the program replaces the previous space
with the variable 1: which contains the screen memory value
of the space you were on before. When you move, the
control-T is moved in the proper direction, and T is POKEd
into the space you just moved from. It is confusing, but it
works, and it works fast.

Tunnel Checking
The tunnels, when used, merely change the value of the sixth
byte of the display list. Since 1K memory blocks are used, it
is not necessary to change the fifth, LSB of the display list
DMA address; it will always be zero. Either the sixth byte is
added to four, or four is subtracted from it. The reason for
this change should be evident - four pages constitute one
kilobyte of memory.

27

Part Two

Locating the mazes in this fashion greatly simplifies all
checks. Instead of going through a series of different LSB,
MSB checks to determine the location (two-dimensionally) of
a space on two different levels, all that is required is a PEEK
to the address plus 1024 (1K) and the address minus 1024.
Again, this is how tunnel checking is done in lines 305 and
310.

Last, let's look at the timer. From the time the computer
is powered up until the time it is powered down, the OS, as
part of its stage one VBLANK (vertical blank) routine, in­
crements the three-byte jiffy counter RTCLOK. RTCLOK is
located in three consecutive bytes starting at address 18
decimal, 12 hex.

Unlike most of the system numbers, this clock is stored in
MSB first, LSB last order. Since vertical blanks occur once
every sixtieth of a second, this timer counts "jiffies" (sixtieths
of a second) . When the game start is pressed, zeros are
POKEd into the clock addresses (line 175). As soon as the
player has completed the maze, the locations are read and
stored in the variable ET (for elapsed time). Simple
mathematical manipulations derive the hours, minutes, and
seconds and store them in the variables EH, EM, and ES,
respectively.

That's all there is to it. Since we know that we started at
zero, no other manipulations are needed. (Incidentally, it is
possible to stop the clock, but doing so requires a shutdown of
the entire system VBLANK routine, which can have disastrous
effects on your program.)

Program 2-1. Mastermaze

1 REM ****MASTERMAZE****
2 REM **Mazing in Three*
3 REM ****Dimensions'***
8 DIM A$(37):SW=0
10 GRAPHICS 0:TOP=PEEK(560)+256*PEEK(

561)+4

12 RL=PEEK(88):RH=PEEK(89)
14 O=PEEK(16)-128:IF 0{0 THEN 0=0+128
15 POKE 16,0:POKE 53774,0

28

Part Two

20 ? :? "# OF LE'v'ELS";:INPUT MAXLEV:M
AXLEV=MAXLEV-l:'7 "INVISIBLE (1) OR

VISIBLE (2)";: IF MAXLEV<0 THEN MA
XLEV=0

23 BOT=INT(TOP/256)-MAXLEV*4-4:INPUT
INV

25 IF BOT*256<PEEK(144)+256tPEEK(145)
THE N ? "E •••• : i#lIJ iii ~ (!J .3: • -:13:[1] :'·" •• 3

":GOTO 20
26 POKE 752,1:~ "{CLEAR}":POSITION 4,

1 !ZI :? " CON S T Rue T I NG M A Z E. . . W A I T FOR
START"

27 RESTORE 1000:FOR 1=1536 TO 1690:RE
AD A:POKE I,A:NEXT I:POKE 755,1

28 POI<E 559,0:? "{CLEAR}": POSITION liZ!
, II:? "PRESS i'--"Jii:l:11 TO BEG IN"

29 TM=PEEK(106):POKE 106,TM-6:POKE 88
,!!J:PO!<E 89,BOT:? "{CLEAR}":POKE 1!Z!
6,TM

30 R1=BOT+MAXLEVt4:FOR X=BOT TO Rl ST
EP 4:POKE 77,0:POKE 88,0:POKE 89,X

60 SC=PEEK(88)+256*PEEK(89):A=SC+43
65 POSITION 2,0:POKE 752,1:FOR 1=1 TO

23:? "{ 3 7 ;#,5:1:tl:1 #i-1} " :: N EXT I
70 POKE A,5
80 G=USR(1536,1675,A):GOSUB 500

120 NEXT X:POKE 88,RL:POKE 89,RH
130 POKE BOT*256+917,38:POKE R1t256+3

, 51

135 IF MAXLEV=0 THEN POKE 559,34:POKE
53279,8:GOTO 172

140 FOR X=BOT TO Rl-4 STEP 4:FOR Y=l
TO 5

150 J=INT(RND(0)t876)+43
151 W=J-(INT(J/40)t40):IF W<3 OR W=39

THEN 1512!

155 IF PEEK(Xt256+J)=0 AND PEEK(Xt256
+1024+J)=0 THEN POKE X*256+J,83~P
OKE X*256+1024+J,83:GOTO 170

29

16(2) GOTO 150
17!3 NEXT Y:NEXT

279,8
172 GOSUB 50!!1

Part Two

X:POKE 559,34:POKE

173 IF PEEK(53279)()6 THEN POKE 755,-
PEEK(755)+3:GOTO 173

174 POKE 755,INV
175 POKE 18,0:POKE 19,0:POKE 20,0
180 ST=R1*256+43:WIN=BOT*256+960:POKE

TOP,0:POKE TOP+1,R1

185 S=PEEK(ST):T=ST:POKE ST,84
190 0=STICK(0):R=STRIG(0):IF R=0 AND

S=83 THEN 300
200 IF 0=7 THEN ST=ST+1
210 IF 0=11 THEN ST=ST-1
220 IF 0=14 THEN ST=ST-40
230 IF 0=13 THEN ST=ST+40
235 IF PEEK(ST)=38 THEN 400
240 IF PEEK(ST)=128 OR PEEK(ST)=51 TH

EN ST=T

250 IF ST()T THEN SW=0:POKE T,S:POKE
77,0:GOTO 185

251 GOTO 190
300 IF SW=1 THEN 190
305 IF PEEK(ST+1024)=83 THEN R1=R1+4:

ST=ST+1024:GOTO 320
310 IF PEEK(ST-1024)=83 THEN R1=R1-4:

ST=ST-1024
320 IF R1(BOT OR R1)MAXLEV*4+BOT THEN

330

321 POKE TOP+1,R1:SW=1:GOSUB 500:GOTO
185

330 A=USR(58484}

400 ET=PEEK(18'*65536+PEEK(19'*256+PE
EK(20):EH=INT(ET/216000):EM=INT«
ET-EH*216000)/3600)

401 FOR X=1 TO 5:FOR Y=15 TO 0 STEP -
0.2:S0UND 0,9,10,Y:NEXT Y:NEXT X:
POKE 755,2

402 ES=INT«ET-EH*216000-EM*3600)/60)

30

Part Two

403 ? "{CLEAR}":? :? "445 DATA ELAPSE
D TIME: ";EH;":";EM;":";ES;"
{19 SPACES}:"

404 '7 "CONT": POSITION !!j~ it!: POKE 842~ 13
:STOP

4!z!5 POKE 842, 12
406 POSITION 2,15:RESTORE :FOR V=0 TO

1
410 READ AS:FOR X=BOT*256+V*40 TO BOT

'256+V'40+LEN(AS)-1:POKE X+2,ASC(
AS(X-BOT'256+1-Y'40~X-BOT*256+1-Y

*4121» -32

415 NEXT X:NEXT Y

420 POKE 53279,8:POKE 77,124

430 IF PEEK(53279)<>6 THEN 430
440 RUN

45121 DATA PRESS ~ FOR ANOTHER MAZE
{10 SPACES}"

500 AA=PEEK(53770}:AB=AA-1INT(AA/16)*
16):SETCOLOR 2,AB , 4:POKE 712,PEEK
(710):RETURN

1000 DATA 104,104~133,208,104,133,207
,104, 133, 204~ 104, 133~ 203,173,10,
210,41 , 3~ 133,212

1010 DATA 133,213,24~10,168~165,203,1
13,207,133~205~165,204~200~113,2

07~133,206,160,0

1020 DATA 177 , 205,201,128~208,40,165,

212,24,105,1, 145 , 205 ~ 105,3,10,16
8,165,203,113

1030 DATA 207 , 133,203,200,165,204,113
~207, 133,204, 169,121, 168, 145,203, 1
65,205,133,203 , 165

1040 DATA 206,133,204,24,144,183,230,
212,165,212,41,3,133,212,197,213
,208,180,16121 ,0

1050 DATA 177,203,133,212 , 152,145,203
,169,251,24,101,212,176,24,198,2
12,165,212,24 , 10

31

Part Two

1060 DATA 168,56,165,203,241,207,133,
203,200,165,204,241,207,133,204,
24,144,131,96,2

1070 DATA 0,176,255,254,255,80,O,1,O,
216,255,255,255,40,0

32

Part Two

TAG
Ed Davis

Translated for the Atari by Charles Brannon

Presented here is a two-player game in graphics mode 1 - with a
total of ten colors on the screen at once.

When playing real-life tag with only two players, nobody
really wins because the number of tags per player remains
constant. But in computer Tag, the clock decides who will be
the champion. Every 15 seconds, if the person who is It can­
not tag the other, the computer will reverse the It player. This
feature allows a real fight for points. If you are not skilled in
attacking, you can become skilled in evasive tactics and win
the game.

Plug a joystick into jacks one and two, and get ready for
some furious chasing and desperate dodging. After the game
initializes, each player can type in his initials (three letters).
You then select the final score (what you play to) from 1-10.
Press OPTION to increase the final score, and SELECT when
the desired number appears. The game will begin with player
one in the upper left-hand corner, and player two in the op­
posite corner. Player one will be flashing, which indicates that
he is It.

Play consists of It trying to catch the "victim" as fast as
possible, while the "victim" tries to evade It for at least 15
seconds. Both players must maneuver about the screen, turn­
ing and twisting among a maze of pink rocks. But if you dal­
ly too long, the rocks will wake up, open their eyes, and fur­
ther confound the conflict. Don't let one of the Living Rocks
touch you.

Tag with a Twist
Tag uses character graphics in graphics mode one, but with a
twist. Usually, if you want a redefined character set along
with letters and numbers, you are limited to redefining punc­
tuation and other special symbols and have to wait 10 to 15
seconds for a POKE loop that downloads the ROM character
set to RAM.

33

Part Two

TAG

Tag with II twist!

Tag, however, uses a Display List Interrupt (DLI) to "flip"
the character set midway down the screen. This lets you use
the upper portion of the display for normal text (using the
entire character set), and the lower portion for as few or as
many custom characters as desired. The DLI used in TAG
also changes the screen colors, so you get five colors in each
portion, for a total of ten simultaneous colors.

Flipping Out
Another interrupt-driven machine language routine in Tag
uses Count-Down Timer 2 to "flip" the character set pointer
every 16/60 of a second. In Tag, there are two character
sets. The first character set, for example, displays one view of
a running person. The other character set, at an offset of 5U
bytes, displays another view.

When the CHBASE pointer is switched between the two
views, the character appears to be running. Character set flip­
ping can also be used to represent blinking, flashing, spin­
ning, bouncing, or any other simple motion. And, since the
flipping is controlled by machine language, the motion is fast
and regular. It also simplifies the BASIC program.

34

Part Two

Program 2-2. Tag

112HZ! REM _ i:ltw
110 G03UB 1170:REM INITIALIZE
120 PLR=I-PLR:IF PEEK(53279)=6 THEN R

UN :REM ALLOW RESTART
130 IF PEEK(20)+256*PEEK(19»900 THEN

IT=I-IT:POKE 20~0:POKE 19,0:FOR
W=15 TO ° STEP -0.1:30UND 0,10,12
,W:NEXT W

140 BLINK=BLINK-(BLINK)0):GOSUB 530
150 S=8TICK(PLR):T=8TRIG(PLR)~POKE PO

KEHERE+l~VV+IT

160 IF 8=15 AND T=1 THEN 3=3(PLR)
17!!l 3(PLR)=S
180 SOUND PLR,8*5+100,10,4
190 TE8T=POS(PLR)
200 TE8T=TEST-20*(S=10 OR 3=14 OR 8=6

)+20.(S=5 OR 8=9 OR 8=13)-(S)8 AN
D S(12)+(8)4 AND S(8)

210 IF TEST{SCR+20 OR TEST)3CR+439 TH
EN SOUND PLR,0,0,0:GOTO 120

220 CHR=(3)4 AND S(8)+3*(3)8 AND S<12
)+2*(3=14 OR S=13)

230 SOUND PLR~0,0~0
240 P=PEEK(TEST)~IF P=0 THEN POKE POS

(PLR)~0:POKE TEST,CHR+PLR*64:POS(
PLR)=TEST:GOTO 120

250 Z=P-(PLR=0)*64~IF Z<1 OR Z)3 THEN
280

260 IF PLR=IT THEN 310:REM GOTCHA
270 PLR=I-PLR:GOTO 310:REM WHOOPS!
280 IF P=196 THEN PLR=l-PLR:GOTO 310:

F:EM "MONSTEF:" GOT PLAYEF:
290 GOTO 12(2)
300 REM PLAYER CAUGHT ROUTINE
310 RESTORE 340:S0UND 3,0~0,0
32 !!I P 0 SIT I 0 I'l l!l, 1 :? # 6; "

PLR) + 1 ;" H:tIi113~11 "
330 POKE POS(0)~0:POKE POS(l',0
34!!! DATA 1!~H!l, 1, li!I;~I, 1, 115, 1,9!!i, 1, 1!!!Q,-2

,120,3

35

Part Two

350 FOR 1=1 TO 6:READ A~B
360 FOR W=15 TO 0 STEP -0.5!B:SOUND 0

, A, 1 1!1 ~ !.oJ : N EXT l·J

370 SOUND 0,0~0~0:NEXT I
380 COLOR 32:PLOT 0,1:DRAWTO 19~1

390 SCRCPLR)=SCR(PLR)+1
400 POSITION 3,1:? #6;SCR(0)~POSITION

17, I:? #6;SCR(I)
410 IF MONSTERS THEN FOR 1=1 TO MONST

ERS:POKE MPOSCI),5+128:NEXT 1
420 IF SCRCPLR)<ESCORE THEN IT=l-IT:G

OSUB 1510:GOTO 120
430 REM GAME OVER
440 FOR 1=255 TO 0 STEP -5:POKE COLTA

B+4,PEEK(53770):SOUND 0,1,12,4:S0
UND 1,1,10,4:NEXT I:SOUND 0,O,O,0

4 50 P 0 SIT ION 0, 1 :? # 6; " {3 SPA C E S } I:J _:i"
[3]! "; PLR+ 1;" wH'l~! {3 SPACES}"

460 FOR 1=1 TO 5:FOR W=0 TO 15:S0UND
0,10,0,W:NEXT W:FOR W=0 TO 15:S0U
ND 0,12,0,15-W:NEXT W:NEXT I

470 POKE COLTAB+4,28:S=0:GOTO 490
480 IF PEEK(20) (25 THEN 510
490 POKE 20,0:POSITION 7,0:S=I-S:IF S

THEN ? #6; "PRESS": GOTO 51121
500 ? #6;" I#»i:l:ii" : POKE 53279, 0
510 IF PEEK(53279)< >6 THEN 480
520 RUN
530 REM ... AND THE MONSTERS COME OUT

TO PLAY
540 DURATION=DURATION-l : IF DURATION T

HEN 590:REM MAKE IT RARE
550 MONSTERS=MONSTERS+l:IF MONSTERS >8

THEN MONSTERS=8:GOTO 590
560 MPOS=SCR+20+INT(420'RND(0» :IF PE

EK(MPOS)(>5+128 THEN 560
570 MPOSCMONSTERS)=MPOS:MCUR(MONSTERS

)=DIR(INT(8*RND(0») :MNERGY(MONST
ERS)=20-MONSTERS

580 BLINK=10:POKE MPOS,6+128:DURATION
=45:RETURN

590 IF MONSTERS=0 OR BLINK THEN RETURN

36

Part Two

600 INDEX=INDEX+l:IF INDEX >MONSTERS T
HEN INDEX=1

610 SOUND 3,INDEX*10+20,0,15
620 MPOS=MPOS(INDEX1+MCUR(INDEX):IF M

POS { SCR+20 OR MPOS>SCR+419 THEN 6
5!!.!

630 P=PEEK(MPOS) ~ IF P=0 THEN POKE MPO
S(INDEX 1 ,0:PO KE MPOS,196:MPOS(IND
EX)=MPOS:GOTO 670

640 IF P{4 OR P>64 AND P { 68 THEN PLR=
1-(P >64):GOTO 310:REM MONSTER BUM
P PLAYER

650 MCUR(INDEX)=DIR(INT(8*RND(0»)
660 MNERGY(INDEX)=MNERGY(INDEX)-1
670 IF MNERGY(INDEX) } 0 THEN SOUND 3,O

,0,0:RETURN
680 REM TURN TO STONE
690 FOR 1=1 TO 10 : S0UND 3,1%2+50,0,8:

NEXT I:SOUND 3,O , O,0
700 MONSTERS=MONSTERS-l:POKE MPOS(IND

EX),5+128:INDEX=INDEX-l
710 FOR I=INDEX+l TO MONSTERS
720 MPOS(I)=MPOS(I+l):MCUR(I)=MCUR(I+

1):MNERGY(I)=MNERGY(I+l)
730 NEXT I:SOUND 3,O , O,O
740 RETURN
75~J END
760 CHSET=(PEEK(106)-8)*256:FOR 1=0 T

o 7:POKE CHSET+I,0:POKE CHSET+512
+I,0:NEXT I

770 RESTORE 810:TP=0:IF PEEK(CHSET+8)
=24 THEN 96£1

780 READ A:IF A=-1 THEN 960
790 FOR J=0 TO 7:READ B:POKE CHSET+TP

*512+A*8+J,B:SDUND 0,B,10,8:POKE
712,B:NEXT J

800 TP=I-TP:GOTO 780:REM FOLLOWING DA
TA STATEMENTS ARE CUSTOM CHARACTE
RS

810 DATA 1,24,24,16,126,24,28,82,33
820 DATA 1,24,24,18,124,16,24,36,72
830 DATA 2,28,28,72 , 62,9,28,22,48

37

Part Two

840 DATA 2,28,28,9,62,72,28,52,6
850 DATA 3,24,24,8,126,24,56,74,132
860 DATA 3,24,24,72,62,8,24,36,18
870 DATA 4,30,63,91,255,231,219,126,6

880 DATA 4,30,63,91,255 ,231, 195,126,6
o

890 DATA 5,30,63,127,255,255,255,126,
60

900 DATA 5,30,63, 127,255,255,255~126,
60

910 DATA 6,30,63,127,219,255,255,126,
6 fl

920 DATA 6,30,63,127,255,255,255,126,
6 !2!

930 DATA 7,O,255,0,255,O,O,O,0
940 DATA 7,O,255,O,255,0,O,0,0
95121 DATA -1
960 IF PEEK(1600)=173 THEN 980
970 FOR 1=1536 TO 1629:READ A:POKE I,

A:POKE 712,A:SOUND 0,A,10,8:NEXT
I

980 SOUND 0,0,0,0:LET POKEHERE=1605:V
V=22:COLTAB=1624

99121 RETURN
1000 REM FOLLOWING IS MACHINE LANGUAG

E CODE. TYPE tl'i:l:H4iiiIJ.M.
101 !~ DATA 104,104,104,133,203,169
1020 DATA 36,141,0,2,169,6
1 !!130 DATA 141,1,2,169,192,141
1040 DATA 14,212,169,76,141,40
105O DATA 2,169,6,141,41,2
1060 DATA 169,16,141,26,2,96
1070 DATA 72,138,72,166,203,173
1080 DATA 92,6,141, 1I!!,212, 141
1090 DATA 26,208,142,9,212,162
1100 DATA 4,189,87,6,157,21
1110 DATA 208,202,208,247,173,10
1120 DATA 210,9,6,141,22,208
1130 DATA 104,170,104,64,165,203
1140 DATA 73,2,133,203,169,16
1150 DATA 141,26,2,96,102,118

38

Part Two

1160 DATA 72,216,28,O,0,0
1170 REM _II:i •• (:1 4:1i.o]:.II.]~l;;e
1180 OPEN #1,4,O,"1<:"
1190 GRAPHICS 2+16:POI<E 538,0:POKE 54

286,64
1200 POSITION 2, 2:? #6; "THE". : POSITION

4,4:? #6; "['1:1:;';;1": POSITION 6,6:?
#6;"~"!POSITION 7,8:? #6;"t a 9
"

1210 FOR 1=O TO 3:SETCOLOR 1,1,14-1*2
:NEXT I

1220 FOR 1=1 TO 50:POKE 53274,PEEK(53
770):POKE 53279,0:POKE 712,PEEK(
5377fl): NEXT I

1230 GOSUB 760:REM INITIALIZE CHSET A
ND MACHINE LANGUAGE

1240 GRAPHICS 1+16:DL=PEEK(560)+256tP
EEI< (561) +4

1250 A=USR(1536,CHSET/256}
1260 SETCOLOR 4,0,14:SETCOLOR 3,15,8:

SETCOLOR 0,2,10:SETCOLOR 2,9,6
1270 SCR=PEEK(DL)+256tPEEK(DL+l)+40
1280 POKE DL-l,7+64
1290 POKE DL+2,PEEK(DL+2)+128
1300 FOR 1=1 TO 120
1310 P=SCR+30+INT(388tRND(0»:IF PEEK

(P) THEN 1310
1320 POKE P,5+128:NEXT I
1330 FOR PLR=0 TO 1
1340 POSITION 6,0:? #6;"PLAYER ";PLR+

1
135!!! POS I T I ON 1, 1 :? #6; II 13:""=_"l.1I)=_1I:

11 •• (:1 .. 1" : FOR 1=1 TO 3
1360 GET #1,A:IF A(32 OR A } 90 THEN 13

60
1370 COLOR A+32*(A}64)+PLR*128:PLOT P

LR*14+1+I,0:NEXT I
1380 COLOR 32:PLOT 5,0:DRAWTO 15,0:PL

OT 0,I:DRAWTO 19,I:NEXT PLR:COLO
R 48:PLOT 3,I:PLOT 17,1

1390 POSITION 7,0: 7 #6;"r::J:fl!'aE":ESCO
RE=5

39

Part Two

1400 IF PEEK(53279)=5 THEN 1460
141!~ POSITION 8,1:? #6; "if ";ESCORE;"

II • ,
1420 IF PEEK(53279' {>3 THEN 1400
1430 IF PEEK(53279)=3 THEN 1430
1440 ESCORE=ESCORE+1:!F ESCORE}10 THE

N ESCORE=1
1450 GO TO 1400
1460 COLOR 32:PLOT 5,0:DRAWTO 15,0:PL

OT 5,1:DRAWTO 15 , 1
1470 POSITION 9,0:? #6;"~":IT=0:PLR

=IT
1480 POSITION 0,2:? #6;"{20 ~}II

1490 DIM POS (1) , S (1) , SCR (1) , MPOS (8) , D
IR(7),MCUR(8),MNERGY(8):SCR(0)=0
: SCR (1) =0

1500 DIR(0)=20:DIR(1)=20:DIR(2)=19:DI
R(3)=-19:DIR(4)=21:DIR(5)=-21:DI
R(6)=1:DIR(7)=-1

1510 POKE 20,0:POKE 19,0:MONSTERS=0:D
URATION=70

1520 POS(0)=SCR+20:POS(1)=SCR+419:S(0
)=7:S(1)=11: Z=0

1530 RETURN

40

Part Two

Bidden Maze
Gary Boden

Translated for the Atari by Charles Brannon

This game offers a different twist to maze puzzles: you can see only
a very small section of the maze at a time.

Mazes present a challenge different from arcade-type
"shootout" games, but the appeal of a maze can quickly fade
once it has been solved. I have enhanced the challenge by
hiding the complete maze from the player and showing only
a realistically limited view from any position inside it.
Although the view is from above rather than ground level,
the player still gets a claustrophobic feeling similar to that of
actually being inside the maze and groping along the
corridors.

The objective is simply to find a way out of the maze in
the least amount of time. You start at the center of the maze
with only your player character visible. As you move through
the passages, the walls around your player become visible, and
the maze unfolds.

Playing Hidden Maze
Use the joystick to move your ebullient little character around
the maze, your goal being the upper-left-hand corner of the
screen. The challenge is in how long it takes you to get there.
You can take a "cheat peek" of the entire maze by pressing
the fire button. This will display the maze for about three
seconds, then turn to black and delay your movement for
another three seconds as a penalty. If you want a really good
score, don't use it!

We can construct the maze directly on the screen
(GRAPHICS 1 is used here, with custom characters for the
walls and player). We make it invisible by setting its color
equal to the background color (done here with SET-COLOR
2,0,0).

Then, to open up the maze, we just have to PEEK (into
screen memory) the eight characters surrounding the player

41

Part Two

The more success YO Ii have, the //'lore of the maze YOLI see.

character, and if the PEEKed character is an "invisible wall,"
replace it with a visible wall.

Scoring is provided with RTCLOCK, Atari's realtime clock,
which is found at location 18, 19, and 20. These are used in
the opposite of the normal LSB/MSB order. Chaining all three
locations together will give the current "jiffy time" since the
machine was turned on, measured in sixtieths of a second:

JIFFY =PEEK(20) + PEEK(19)*256 + PEEK(18)*65536

Since location 18 only ticks every once in a long while, you
can leave it out for most measurements. Dividing the jiffy
time by 60 gives you the time in seconds:

SEC =(PEEK(20) +256*PEEK(19))/60

The ability to add timing to your programs will enhance
them. Many games would lose their challenge without the
time element. Try experimenting with locations 18, 19, and 20.
Experimenting is an excellent way to learn more about your
computer's capabilities.

Program 2-3. Hidden Maze

100 REM HIDDEN I'o'tAZE
110 GRAPHICS 17:GOSUB 360:GOSUB 480

42

120 PPOS=SC+230
130 POKE PPOS,5
140 DIM DIR(3)

Part Two

150 DIR(0)=20:DIR(I)=21:DIR(2)=19:DIR
(3)=1

160 POKE 20,0:POKE 19,0
170 FOR 1=0 TO 3
180 ZP=PPOS+DIR(I) : PK=PEEK(ZP):POKE Z

P,PK-64*(PK=129)
190 ZP=PPOS-DIR(I):PK=PEEK(ZP):POKE Z

P,PK-64*(PK=129)
200 NEXT I
210 ST=STICK(0):TPOS=PPOS+20*(ST=13)-

20*(ST=14)+(ST=7)-(ST=II)
220 CHR=3*(ST=II)+4*(ST=7)+5*(ST=14)+

6*(ST=13)
230 IF STRIG(0)=0 THEN SET COLOR 2,0,1

4:FOR W=1 TO 500:NEXT W:SETCOLOR
2,0,0:FOR W=1 TO 500 : NEXT W

240 IF STRIG(0)=0 THEN 240
250 IF PEEK(TPOS) THEN 270
260 POKE PPOS , 0:POKE TPOS,CHR:PPOS=TP

OS:IF PPOS<>SC+21 THEN 170
270 IF PPOS<>SC+21 THEN 170
280 FOR 1=1 TO 50 : FOR J=0 TO 3:POKE 7

08+J,PEEK(53770):NEXT J:NEXT I
29121 GRAPHICS 18:? #6;" {[D"
300 SEC=INT«PEEK(20)+256*PEEK(19»/6

I!I)
31!!1 ? #6;" IN "; SEC;" SECONDS."
3 2 0 ? # 6:? # 6; .. pre 5 5 I iii ij:;;;;! to"
33121 ? #6~"play again{N}"
340 IF STRIG(0) THEN POKE 711 , PEEK(53

770):GOTO 340
350 RUN
360 CHSET=(PEEK(106)-8)*256:FOR 1=0 T

o 7~POKE CHSET+I,0 : NEXT I
370 RESTORE 41 I!!
380 READ A:IF A=-1 THEN RETURN
390 FOR J=0 TO 7:READ B : POKE CHSET+Al

8+J,B:NEXT J
400 GOTO 380

43

Part Two

56
420 DATA 4,56,124~234,234,254,186,68,

56
430 DATA 5,56,84,214,254,254,186,68,5

6
440 DATA 6,56,124,254,214,214,186,68,

56
450 DATA 1,255,255,255,255,255,255,25

5,255
460 DATA 127,16,24,28,30,30,28,24,16
470 DATA -1
480 GRAPHICS 17:POKE 756,CHSET/256
490 SC=PEEK(88)+256tPEEK(89):SETCOLOR

2,0,0
500 DIM A(3):A(0)=2:A(1)=-40:A(2)=-2:

A(3)=40:WL=129:HL=0:TRAP 32767
510 A=SC+21
520 FOR 1=1 TO 21:? #6; H !!!!!!!!!!!!!

!!!!!! H:NEXT I:POKE A,5
530 J=INT(RND(1)*4):X=J
540 B=A+A(J)
550 IF PEEK(B)=WL THEN POKE B,J+1:POK

E A+A(J)/2,HL:A=B:GOTO 530
560 J=(J+1)*(J<3):IF J<>X THEN 540
570 J=PEEK(A):POKE A,HL:IF J(5 THEN A

=A-A(J-l):GOTO 530
580 RETURN

44

Part Three

Blockade
Douglas Pinho

"Blockade" is an exciting two-player game that also demonstrates a
simple joystick routine.

Surround (or Blockade) was a popular arcade game in the
early days of video games. The format of the game is not
complex, but it is still enjoyable and challenging. The object
of the game is to build walls to trap the opposing player and
force him to collide with: his own walls, the opposing player's
walls, or the boundaries of the playfield. When this occurs,
the player who did not crash receives a point. Upon every
collision, the walls of the player who crashed will blink. The
screen is then cleared and the game continues.

The first player to reach nine points is the winner. To start
the next game, just press the fire button. To play, plug joysticks
into the first two joystick ports (sticks 1 and 2).

Program Description and Explanation
Lines 1-2 set up the title display. Line 5 sets up a mixed
graphics mode with one line of GR. 1 followed by one line of
GR. 2 and 44 lines of GR. 5. START calculates the address of
the display list in memory. This pointer is needed since the
location of the display list depends upon the amount of
memory installed in the Atari. The two POKEs then place in­
structions for the desired graphics modes at the appropriate
memory locations. Line 10 initializes the variables X and y,
the starting location of player I, and Sand T which give the
location of player 2. Variables Xl and Y1 and Sl and T1 are
the increment or decrement values for plotting the walls on
the screen. F is a flag to determine whether there was a
simultaneous collision between the two players. HI and B1
are used to keep score. Line 12 plots the boundaries of the
playing field in blue. POKEing memory location 87 (current
screen mode) with 5 directs the computer to plot in GR.
mode 5. This is needed only in a mixed graphics mode. Line
14 goes to a subroutine at line 300 which prints the score in

47

Part Three

GR. 2 characters. Line 15 checks for the end of the game.
Lines 20-120 contain the main game loop. Lines 25 to 43

check for joystick movement and assign the move variable
(Xl, Y1, Sl, Tl), and a value for P and L. One of the nice
features of Atari BASIC is that you can use a variable as a
GOSUB address. This feature is used in line 50 to branch to

o

II

iiiiiiiiiii.I. ,

Tn; to outwit im opponent in "Blockade."

different subroutines depending upon the value of P (player
1) and L (player 2). Note that in line 23 you must POKE 5 in­
to memory location 87 again because it was changed during
subroutine 300 (line 14). Lines 150 to 185 first check for a col­
lision. If there is none, it plots the new block. A collision is
found by locating the next position in front of the plotted
block and finding its color. If the color is 0 (which is the
background default color), it continues and plots the next
block. If it is any other color, there is a collision. If the first
player has collided, the program branches to line 201 to check
for a simultaneous collision by the other player. Flag F is set
if a simultaneous collision is found. Lines 210-220 update the
score and blink the losing player's walls. Subroutine 300
prints the score at the top of the screen in GR. 2 characters.
Subroutine 350 blinks the colors of the colliding player's walls.

48

Part Three

Lines 400-410 check if you want to start a new game (prints in
GR. 1 characters).

If you haven't played "Blockade" before, grab a friend and
try it. It requires quick decisions and good strategy. You1l
like it.

Program 3-1. Blockade

1 GRAPHICS 2+16:SETCOLOR 4,5,5:POSIT
ION 6,5:PRINT #6; "BLOCKADE"

2 FOR Dl=1 TO 6:FOR E1=0 TO 89:S0UND
1,E1,10,10:NEXTE1:NEXT D1:S0UND

1,O,O,O
5 GRAPHICS 5+16:START=PEEK(560)+PEEK

(561)*256+4:POKE START-1,71:POKE S
TART+2,6

110 X=13:Y=23:X1=1:Y1=1:S=66:T=23:S1=
-1:T1=1:P=16!O:L=17!O:F=0

12 POKE 87,5:COLOR 3:PLOT 0,3:DRAWTO
0,46:DRAWTO 78,46:DRAWTO 78,3:DR

AWTO O,3
14 GOSUB 3010
15 IF Hl=9 OR Bl=9 THEN 4100
20 B=STICK(!O):H=STICK(1)
21 SOUND 3,21010,10,15
23 POKE 87,5
25 IF B=14 THEN Y1=-1:P=150
27 IF H=14 THEN T1=-1:L=18g
310 IF B=13 THEN Y1=I:P=15!O
32 IF H=13 THEN T1=1:L=18!O
35 IF B=7 THEN X1=I:P=16!O
37 IF H=7 THEN SI=I:L=170
410 IF B=11 THEN X1=-I:P=160
43 IF H=11 THEN S1=-1:L=170
44 SOUND 3,1510,110,15
50 GOSUB P:GOSUB L
1210 GOTO 210
1510 Y=Y+Y1:COLOR 1:LOCATE X,Y,Z:IF Z

<>0 THEN GOTO 201
155 PLOT X,Y:RETURN
160 X=X+X1:COLOR 1:LOCATE X,Y,Z:IF Z

<>0 THEN GOTO 201

49

Part Three

165 PLOT X,Y:RETURN
170 S=S+S1:COLOR 2:LOCATE S,T,U:IF U

<>O THEN GOTO 220
175 PLOT S,T:RETURN
180 T=T+T1:COLOR 2:LOCATE S,T,U:IF U

<>0 THEN GO TO 220
185 PLOT S,T:RETURN
201 IF L=170 THEN S=S+S1:POSITION S,

T:LOCATE S,T,U:IF U<>0 THEN F=1
202 IF L=180 THEN T=T+T1:POSITION S,

T:LOCATE S,T,U:IF U<>0 THEN F=1
203 GOTO 21 QI

210 SOUND 3,0,0,0:SDUND 1,100,14,14:
FOR W=1 TO 300:NEXT W:B1=B1+1:GO
SUB 300:Q1=0:GOSUB 350:S0UND 1,O
,0,0

211 IF F=1 THEN GOTO 220
212 GOTO 5
220 SOUND 3,0,0,0:S0UND 2,150,12,14:

FOR W=1 TO 300:NEXT W:H1=H1+1:GO
SUB 300:Q1=1:GOSUB 350:S0UND 2,O
,0,0:GOTO 5

300 POKE 87,2:POSITION 5,0:PRINT #6;
Hl:POSITION 15,0:PRINT #6;CHR$(B
1+16):RETURN

350 FOR P1=1 TO 7:FOR U1=1 TO 40:NEX
T U1:SETCOLOR Q1,9,4:FOR Gl=1 TO

40:NEXT G1:SETCOLOR Q1,4,6:NEXT
Pl:RETURN

400 POKE 87,1:POSITION 0,1:PRINT #6;
"PRESS fire TO BEGIN~"

405 IF STRIG(0)=0 OR STRIG(1)=0 THEN
H1=0:B1=0:GOTO 5

410 GOTO 405

50

Part Three

'lank Duel
Tom R. Halfhill

"Tank Duel" is a two-player action game requiring a pair of joy­
sticks. Two program listings are included: standard Atari BASIC
(16 RAM required), and BASIC A + (48K and BASIC A + lall­
guage required). Only the Atari BASIC version will nlll all all XL­
model computer.

Most video and computer games pit you against the com­
puter itself. They also tend to be tests of reaction reflexes. So
it's no surprise that you, a mere human, are doomed to even­
tual failure. Computers have a way to go before they catch up
with people in all aspects of intelligence, but when it comes
to response time, silicon beats protoplasm any day.

That's why I've always enjoyed computer games that pit
two people against each other. These games bring the full
range of human characteristics into play, characteristics that
are very difficult to program into a computer: real (as op­
posed to "artificial") intelligence; deception; skill that improves
with experience; and emotions of excitement, frustration, and
panic. The computer becomes the tool of interaction, the bat­
tlefield of conflict, like a chessboard. The unique capabilities
of a computer also allow it to act as a referee, by creating a
stage for the contest which precludes any actions not sanc­
tioned by the program.

How to Play Tank Duel
"Tank Duel" transforms the screen into a large battlefield oc­
cupied by two tanks. Each player controls one of the tanks
with a joystick. The tanks are fully maneuverable and armed
with a cannon fired by pressing the joystick trigger button. In
addition to the tanks on the screen, each player also has two
extra tanks in reserve. When a player's on-screen tank is
destroyed, it is automatically replaced by one of these reserve
tanks. The object of the game is to survive: destroy all the
enemy tanks before the enemy destroys yours.

First, type the program listing carefully, especially the
OAD\ statements. Some of these OAD\ statements contain

51

Part Three

machine language subroutines, and a mistyped number could
cause your computer to crash (the keyboard locks up and
refuses to respond to your commands). If this happens, and
the SYSTEM RESET key also locks up, the only way to
recover is to turn the computer off and then on again. Of
course, this means the program will be erased. So to be safe,
save the program on disk or tape at least twice before run­
ning it for the first time. Then if the computer crashes, you
can turn the computer off and on to clear it, and simply
reload the program to start looking for the mistake.

Also make sure to type in the correct program listing. If
you are using the standard Atari BASIC cartridge, type the
Atari BASIC version. The other version is for people with
BASIC A +, an advanced BASIC on disk that requires 48K
(see "Technical Details," below).

When you're ready to play, type RUN and press
RETURN. A title screen appears for 30 seconds while the pro­
gram initializes (sets itself up). When the battlefield appears
and you hear the low rumble of two idling tank engines, the
game is ready to start.

Here's how the joystick controls work: to rotate a tank in
place, move the stick right or left. Moving the stick right
rotates the tank clockwise, and moving the stick left rotates
the tank counterclockwise. Pushing the joystick forward drives
the tank in whichever direction it's pointed. If these joystick
controls sound familiar, it's because they are almost identical
to the way you manipulate the spaceship in the Atari com­
puter version of Asteroids. The only difference is that pulling
backward on the joystick does not flip your tank into
hyperspace!

The battlefield, surrounded by a screen border, is dotted
with trees, houses, and other buildings of varying shapes and
sizes. Note that you can drive your tank behind trees for con­
cealment, but that you cannot drive through buildings (your
tank just bounces off). You also cannot drive through the
screen border. And if you try ramming the enemy tank, your
own tank blows up, so forget about kamikaze charges.

To fire your tank's cannon, press the joystick trigger but­
ton . The gun's range is limited to about two-thirds the breadth
or height of the screen.

When a player's tank is destroyed, action stops for a few
seconds while it is replaced by one of the reserve tanks. The

52

Part Three

number of tanks each player has in reserve is indicated by the
tank symbols in the lower left and right corners of the screen.
Each time a player's tank is blown up, one of these tank sym­
bols is replaced by a tiny cross.

Just to make the game a little more interesting, there is
another hazard besides the enemy tanks - minefields. Every
game, a minefield - with four mines - is planted at random
somewhere on the battlefield. The minefield is about an inch
square and is invisible. The only way you'll know that you
found a minefield is when your tank blows up. (Hint:
minefields are planted in otherwise empty space, never
beneath trees, so you're safe in the forest.)

When all three of one player's tanks are destroyed, the
game ends. The winner's tank flashes colors for a few
seconds, and then the battlefield disappears. A screen
message explains how to start a new game of Tank Duel by
pressing either joystick trigger button.

Technical Details: BASIC A +
Tank Duel originally was written, not in Atari BASIC, but in
BASIC A +. If you're not familiar with BASIC A +, it's an
enhanced version of Atari BASIC produced by Optimized
Systems Software, Inc., of Cupertino, California. At this
writing, BASIC A + is available only on disk, although a car­
tridge version is being planned. The disk version requires at
least 32K of memory (48K recommended). BASIC A + is up­
ward compatible with Atari BASIC, which means any program
written in Atari BASIC will run in BASIC A + (and will run
faster, since BASIC A + is more streamlined). However, most
programs written in BASIC A + will not run in Atari BASIC.

Why was BASIC A + my first choice? Because this pro­
gram was my first attempt to use some of the Atari's special
features such as player/missile graphics and redefined
characters. This was easier done in BASIC A + than in Atari
BASIC.

When standard Atari BASIC was created, it was decided
to fit the whole language into a single cartridge within only
8K of memory. Although Atari BASIC has many powerful
features (Le., instant syntax checking, unlimited-length strings,
built-in commands for graphics and sound, etc.), it lacks
special commands for more advanced features such as
player/missile graphics. P/M graphics, known on some other

53

Part Three

home computers as "sprites:' allows you to create shapes and
move them around the screen without disturbing other screen
objects. It's also easy to determine if a P/M object is colliding
with any other objects. This makes P/M graphics a powerful
feature for games.

However, since Atari BASIC lacks built-in P/M commands,
this feature is hard to learn and use. That's where BASIC A +
really shines. It has many more commands than Atari BASIC,
including keywords such as PMGRAPHICS, PMCOLOR, and
PMMOVE. I found it much easier to learn P/M graphics with
these commands than to struggle with the many POKEs
necessary in Atari BASIC To see for yourself, compare the
BASIC A + program listing with the Atari BASIC listing.

After finishing Tank Duel in BASIC A +, though, I de­
cided to translate it into standard Atari BASIC Why? For one
thing, I wanted to give copies of the game to a few friends
who did not have BASIC A +. Second, the program could not
have been published in this book unless it appealed to the
widest possible range of readers, and only a minority of Atari
users have BASIC A +. And finally, I wanted to learn how to
use P/M graphics and other special features in my computer's
standard language, Atari BASIC However, writing Tank Duel
first in BASIC A + was a valuable experience. It introduced
me to some of the Atari's advanced techniques in a more
friendly way.

So if we have an Atari BASIC translation that anyone can
use, why are we including the original BASIC A + version
here? For two reasons: Atari users unfamiliar with BASIC A +
can compare the two listings to see the differences, and peo­
ple who already own BASIC A + can type in that listing and
take advantage of the language's superior features. The BASIC
A + version still runs a little faster and more smoothly than
the Atari BASIC translation. Note that this is despite the fact
that the Atari BASIC version includes two machine language
subroutines to speed up the animation, while the original
version is pure unadulterated BASIC

Streamlined Programming
If you are interested in trying some game programming
yourself, there are a few tricks you can learn by studying
these program listings. (For the rest of this discussion, we'll

54

Part Three

..
Th e beginning of the "Tank Duel."

assume you have some fundamental understanding of Atari
BASIC.)

Tank Duel was programmed with two goals in mind: to
make it run as fast as possible in BASIC, and to consume as
little memory as possible. When writing any program that
may be published or given to others, it is a good idea to
make it workable on minimum systems so the widest possible
range of people can use it. Tank Duel fits in 16K, which is
the minimum Atari system that has been sold recently.
Several techniques were used to make the program compact
and fast. Note that not all of these are considered good pro­
gramming techniques in programs which do not have to meet
such requirements .

REM statements are kept to a minimum to save memory.
To make up for this somewhat, most of the variable names
are not meaningless single letters, but rather short words
which mean what they do. (Luckily, Atari BASIC allows very
long variable names.) For instance, the string variable
SHAPE$ holds the player shape data; MISSILE$ holds the
missile shape data; HORIZ is the player horizontal position
value, and VERT is the vertical value; MHORIZ is the missile
horizontal value; and so on. This doesn't consume as much
memory as you might think, because Atari BASIC stores

55

Part Three

variables as short tokens internally after the first occurrence.
What's more, it's really helpful to have meaningful variables
when you stop working on a program for a few days and
come back later.

Another way of saving memory, and speeding up execu­
tion, is to pack as many statements on a program line as will
fit.

Also, look at the Atari BASIC listing and notice how the
program is structured (the BASIC A + version is structured
somewhat differently). Many people group their subroutines
at the bottom of the program. But when Atari BASIC en­
counters a GOSUB, it starts at the top of the program and
searches downward for the target line number. Subroutines
which are called often, and which need to be executed fast,
should be grouped at the top of the program. In Tank Duel,
the subroutines for moving tanks (lines 1000-1180), firing shots
(lines 2000-2200), and checking for hits (lines 4000-4820) are
placed above the "main loop" (lines 10040-10900). The subrou­
tines for initialization (setting up the program) are tucked
away beneath the main loop. Many of these lines are ex­
ecuted only once, when the game is first run.

A Little Machine Language
As mentioned, the BASIC A + version of Tank Duel was fast
enough to get along fine all by itself. But the Atari BASIC
version needed a little help from machine language.

Since machine language, not BASIC, is actually the
language which the computer uses internally, programs writ­
ten directly in machine language do not have to be inter­
preted by the computer and always run much faster. Unfor­
tunately, machine language is the hardest language for
humans to master. Tank Duel needed machine language for
two things: to rotate the tanks, and to move the tanks ver­
tically and diagonally (the Atari has built-in provisions for
easily moving P/M objects horizontally, but not for moving
them in any other direction). When I wrote Tank Duel, I
knew absolutely nothing about machine language. The solu­
tion was to use two machine language routines published in
COMPUTE!. These are "canned" routines; that is, you can be
totally ignorant about machine language and still use them.
Since they are very short and very handy, let's review them
briefly here.

56

Part Three

The first one allows fairly fast vertical and diagonal move­
ment. It originally appeared as ''Adding High-Speed Vertical
Positioning To P/M Graphics/' by David H. Markley, in COM­
PUTE!, December 1981. It was reprinted in COMPUTEt's First
Book of Atari Graphics. To use this routine in your own pro­
grams, copy lines 11100-11160 from the Atari BASIC listing.
The DATA statements are decimal equivalents of the machine
language instructions; type them very carefully. Line 11160
POKEs the routine into page six, an area of free memory in
the Atari.

This routine requires that the first number in the DATA
statement which defines the shape of your player be equal to
the height of the player. For example, look at line 12020. This
DATA statement defines the shape of a tank facing "north"
(up). There are nine numbers in the DATA statement. The
first number is an eight because the player shape is eight
bytes high. The following eight numbers are the eight bytes
(the second and third numbers just happen to be eights by
coincidence). If the player were ten bytes high, the DATA
statement would contain 11 numbers - a ten followed by the
ten bytes.

To call this routine, use this statement:

A = USR(1536,SHAPE,CURRENT LOCATION, NEW
LOCATION)

''A' is a dummy variable which doesn't mean anything,
but is required by the syntax of the USR statement. There are
four parameters in the parentheses of the USR statement. The
first parameter is the address of the machine language routine
itself; 1536 is the start of page six. The next parameter is the
address of the player shape. Tank Duel stores the player
shapes in SHAPE$ and uses the ADR function to find the
address. The third parameter is the player'S current location,
the actual memory address of the vertical position. The last
parameter is the new location, the memory address of the
vertical position to which you want to move the object.

For an example, see the first statement in line 4200:

A =USR(1536,ADR(SHAPE$(64)),VERT, VERT +2)

The ADR function finds the address of the substring
starting at SHAPE$(64). This is where the player shape that is
being moved is stored. Remember that the first number in

57

Part Three

this shape is an eight, the height of the player. The third
parameter, VERT, is a variable containing the memory address
of the player's vertical position (it is an offset from PMBASE).
The last parameter tells the routine to move the player to
VERT +2, or two notches down the screen (shifting a player up
in memory moves it down the screen, and vice versa).

P/M Metamorphosis
The second machine language routine in the Atari BASIC ver­
sion of Tank Duel allows you to instantly change a player's
shape. This is how the tanks rotate; the rotation is really an
illusion. Actually there are eight different tank shapes stored
in SHAPE$, one for each direction a tank can face. Pushing
the joystick right or left calls this routine and draws the ap­
propriate shape.

The routine originally appeared in the article "Extending
Player/Missile Graphics;' by Eric Stoltman, COMPUTE!, Octo­
ber 1981, and also was reprinted in COMPUTEt's First Book of
Atari Graphics. To use this routine in your own programs,
copy lines 11180-1U20. The DATA in line 1U20 is the machine
language, and line 11200 stores the routine in a string called
MOVE$, since we already used page six for the other routine
(although there was plenty of room left). The variable MOVE
is the address of MOVE$, making it easier to call the routine
later.

Like the previous routine, this one also needs to know
the height of the player. It handles this differently, though. It
stores the player's height in the 22nd number of the DATA
statement. Notice that this is an eight. For a ten-byte player,
you would change this number to a ten.

Call the routine with this statement:
A =USR(MOVE,CURRENT LOCATION,SHAPE)

''Pl.' is the usual dummy variable. This routine uses only
three parameters in the USR statement. The first is the
address of the routine itself. Remember, we stored this
routine in MOVE$ and set MOVE equal to the string address.
You could replace MOVE with ADR(MOVE$) and get the
same effect. The second parameter is the actual memory
address of the player'S vertical position, just as required
before. And the last parameter, SHAPE, is where the player's
shape is stored, also as before. See line 4700 for an example.

58

Part Three

If you intend to tackle some game programming with
player/missile graphics, these two routines will be invaluable
additions to your routine library. They are short, easy to use,
and relatively fast. For a fuller explanation, be sure to look up
the original articles. Since they were first published, they've
been the basis of several fine games in Atari BASIC.

Program 3-2. Tank Duel - Atari BASIC

1 121 REM *** TANK DUEL ***
20 REM *** ATARI BASIC VERSION 2 ***
30 REM ****
51D GOSUB i 1 llli!10
60 GOSUB 1 2 I!! 121 121
7i!1 GOSUB 1 4 (11210
80 GOSUB 130019
9fi GOTO 1 !!I I!:I 121 iij

1 12H~10 REM *** MOVE TANKS ***
1020 ON HEADING GO TO 1040,1060,1080,1

100, 112iZI, 114121, 1160, 118;!:1
1040 A= USR(1536,ADR(SHAPES(I»,VERT.V

ERT-2):VERT=VERT-2:RETURN
1060 A=USR(1536,ADR(SHAPES(10»,VERT,

VERT-2):POKE HREG,HORIZ+2:VERT=V
ERT-2:HORIZ=HORIZ+2:RETURN

1080 POKE HREG,HORIZ+2:HORIZ=HORIZ+2:
RETURN

1100 A=USR(1536,ADR(SHAPES(28),VERT,
VERT+2):POKE HREG,HORIZ+2:VERT=V
ERT+2:HORIZ=HORIZ+2:RETURN

1120 A=LJSR(1536,ADR(SHAPES(37»),VERT,
VERT+2):VERT=VERT+2:RETURN

1140 A=USR(1536,ADR(SHAPES(46»,VERT,
VERT+2):POKE HREG,HORIZ-2:VERT=V
ERT+2:HORIZ=HORIZ-2:RETURN

1160 POKE HREG,HORIZ-2:HORIZ=HORIZ - 2:
RETURN

1180 A=USR(1536,ADR(SHAPES(64»,VERT,
VERT-2):POKE HREG,HORIZ-2:VERT = V
ERT-2:HORIZ=HORIZ-2:RETURN

2000 REM *** FIRE MISSILES ***
59

Part Three

2010 TRAP 2200:FOR 1=15 TO 0 STEP -1:
SOUND 2~90~4~I:NEXT 1

2020 A=USR(1536,ADR(MISSILES),PMBASE+
384~MVERT):POKE 77,0:0N HEADING
GO TO 2040,2060,2080,2100,2120,21
4!!1, 2160, 218!!.I

2040 POKE MREG,MHORIZ+4:FOR 1=1 TO 15
:A=USR(1536,ADR(MISSILES),MVERT,
MVERT-4):MVERT=MVERT-4:NEXT 1

2050 A=USR(1536,ADR (MISSILES),MVERT,0
) : RETURN

2060 POKE MREG,MHORIZ+4:MHORIZ=MHORIZ
+4:FOR 1=1 TO 15:A=USR(1536,ADR(
MISSILES),MVERT,MVERT-3)

2070 POKE MREG,MHORIZ+3:MVERT=MVERT-3
:MHORIZ=MHORIZ+3:NEXT I:A=USR(15
36,ADR(MISSILES),MVERT,0):RETURN

2080 POKE MREG,MHORII+8:MHORIZ=MHORIZ
+8:FOR 1=1 TO 25:POKE MREG,MHORI
Z+3:MHORIZ=MHORIZ+3:NEXT I:POKE
MREG, !Z!

2090 A=USR(1536,ADR(MISSILES),MVERT,0
) : RETURN

2100 POKE MREG,MHORIZ+4:MHORIZ=MHORIZ
+4:FOR 1=1 TO 15:A=USR(1536,ADR(
MISSILES),MVERT,MVERT+3)

2110 POKE MREG,MHORIZ+3:MVERT=MVERT+3
:MHORIZ=MHORIZ+3 : NEXT I:A=USR(15
36,ADR(MISSILES),MVERT,0):RETURN

2120 POKE MREG,MHORIZ+4:FOR 1=1 TO 15
:A=USR(1536,ADR(MISSILES),MVERT,
MVERT+4):MVERT=MVERT+4:NEXT 1

2130 A=USR(1536,ADR(MISSILES),MVERT,0
):RETURN

2140 POKE MREG,MHORI Z +3~MHORIZ=MHORIZ

+3:FOR 1=1 TO 15:A=USR(1536,ADR (
MISSILES),MVERT,MVERT+3)

2150 POKE MREG,MHORIZ-3~M V ERT=MVERT+3

:MHORIZ=MHORIZ-3:NEXT I:A=USR(15
36,ADR(MISSILES),M VERT,0):RETURN

2160 POKE MREG,MHORIZ:FOR 1=1 TO 25:P
OKE MREG,MHORIZ-3:MHORIZ=MHORIZ-

60

hrtThree

3:NEXT I:POKE MREG,0
2170 A=USR(1536,ADR(MISSILES),MVERT,0

):RETURN
2180 POKE MREG,MHORIZ+3:MHORIZ=MHORIZ

+3:FOR 1=1 TO 15:A=USR(1536,ADR(
MISSILES),MVERT,MVERT-3)

2190 POKE MREG,MHORIZ-3:MVERT=MVERT-3
:MHDRIZ=MHORIZ-3:NEXT I:A=USR(15
36,ADR(MISSILES),MVERT,0):RETURN

2200 A=USR(1536,ADR(MISSILES),MVERT,0
):RETURN

4000 REM *1* COLLISIONS ill
4020 REM 1*1 BUMP PLAYFIELD III
4040 POKE HITCLR,0:0N HEADING GOTO 40

60,4080,4100,4120,4140,4160,4180
,4200

4060 A=USR(1536,ADR(SHAPES(1» ,VERT,V
ERT+2):VERT=VERT+2:GOTO 4220

4080 A=USR(1536,ADR(SHAPE$(10»,VERT,
VERT+2i:POKE HREG,HORIZ-2:VERT=V
ERT+2:HORIZ=HORIZ-2:GOTO 4220

4100 POKE HREG,HORIZ-2:HORIZ=HORIZ-2:
GOTO 4220

4120 A=USR(1536,ADR (SHAPE$(28»,VERT,
VERT-2):POKE HREG,HORIZ-2:VERT=V
ERT-2:HORIZ=HORIZ-2:GOTO 4220

4140 A=USR(1536,ADR(SHAPES(37»,VERT,
VERT-2):VERT=VERT-2:GOTO 4220

4160 A=USR(1536,ADR(SHAPE$(46»,VERT,
VERT-2):POKE HREG,HORIZ+2:VERT=V
ERT-2:HORIZ=HORIZ+2:GOTO 4220

4180 POKE HREG,HORIZ+2:HORIZ=HORIZ+2:
GOTO 4220

4200 A=USR(1536,ADR(SHAPES(64»,VERT,
VERT+2):POKE HREG,HORIZ+2:VERT=V
ERT+2:HORIZ=HORIZ+2

4220 IF HREG=53248 THEN VERT0=VERT:HO
RIZ0=HORIZ:RETURN

4240 VERT1=VERT:HORIZ1=HORIZ;RETURN
4500 REM 1** EXPLOSIONS *Ii
4520 EXPLO=65:FOR VOL=14 TO 0 STEP -2

:SOUND 0,90,0,VDL:SOUND 1,100,4,

61

Part Three

VOL:POKE PLYR,62
4540 A=USR(MoVE,VERT,ADRCSHAPE$(EXPLo

+9»):EXPLO=EXPLo+9:FOR 1=1 TO 1
5:NEXT I:NEXT VOL

4560 IF PLYR=704 THEN TANK0=TANK0-1
4580 IF PLYR=705 THEN TANK1=TANK1-1:G

OTO 4 72!~!
4600 IF TANK0=2 THEN POSITION 2, II:?

#6; II X" : GOTO 468!~!

4620 IF TANK0=1 THEN POSITION I,ll:?
#6; "X" : GO TO 468i~j

464!~ POSITION 3,11: OJ #6;" X": POP: Goro

4680 FOR 1=1 TO 500:NEXT I:VERT0=PMBA
SE+572:HORIZ0=60:POKE PLYR,74:PO
KE HITCLR,0 : POKE 53248,HORIZ0

4700 A=USR(MoVE,VERT0,ADR(SHAPE$(20»
):RETURN

4720 IF TANK1=2 THEN POSITION 17,11:?
#6; II X II : GOTO 4812l!2J

4740 IF TANK1=1 THEN POSITION 18,11:?
#6; "X II : GOTO 48!~i0

476!~ POSITION 16, i1:? #6; "X":POP :GOT

4800 FOR 1=1 TO 500:NEXT I:VERT1=PMBA
SE+700:HORIZ1=185:PoKE PLYR,136:
POKE HITCLR,0:POKE 53249,HORIZI

4820 A=USR(MOVE,VERTl,ADR(SHAPE$(56»
) : F:ETURN

10000 A=USR(MoVE,VERT0,ADR(SHAPE$(20)
»:A=USR(MOVE,VERT1,ADR(SHAPE$(
56)))

10015 X=INT(18*RND(0)+I):Y=INT(10*RND
(0)+I):LoCATE X,Y,Z:IF Z<>32 TH
EN If2H!!15

10!!!2!21 POSITION X,Y:? #6; "w":TANK!!!=3:T
ANK1=3:IF PEEK(53252)=2 OR PEEK
(53253)=2 THEN 10015

10030 HEADING0=3:HEADING1=7:S0UND 0,1
8!2!,6,3

10040 S0=STICK(0):Sl=STICK(I):IF S0=1
1 THEN HEADING0=HEADING0-1

62

10060

10080

10100

1!!1120
10140
1!2!16~j

10180

IF
-1
IF
1
IF
1
IF
IF
IF
IF

Part Three

S1=11 THEN HEADING1=HEADING1

S0=7 THEN HEADING0=HEADING0+

S1=7 THEN HEADING1=HEADING1+

HEAD I NG~J< 1 THEN HEADING0=8
HEADING1 < 1 THEN HEADING1=8
HEAD I NG!~ >8 THEN HEAD I NG!!!= 1
HEADING1>8 THEN HEADING1=1

10200 A=USR(MOVE~VERT0,ADR(SHAPE$«HE
ADING0-1)'8+HEADING0+1»)

10240 A=USR(MOVE,VERT1,ADR(SHAPE$«HE
ADING1-l)*8+HEADING1+1»)

10260 VERT=VERT0:HORIZ=HORIZ0:IF STIC
K(0)=15 AND STICK(1)=15 THEN SO
UND 1,180,6,3

10280 IF STICK(0)=14 THEN SOUND 1,120
,6,6:HEADING=HEADING0:HREG=5324
8:POKE HITCLR,0:GOSUB 1000

10290 VERT0=VERT:HORIZ0=HORIZ:IF PEEK
(53252)=2 OR PEEK(53260)=2 THEN
PLYR=704:GOSUB 4500

10300 COLL=PEEK(53252):IF COLL=1 OR C
OLL=5 OR COLL=9 THEN HEADING=HE
ADING0:HREG=53248:VERT=VERT0:HO
RIZ=HORIZ0:GOSUB 4000

10310 VERT=VERT1:HORIZ=HORIZI
10320 IF STICK(I)=14 THEN SOUND 1,120

,6,6:HEADING=HEADING1:HREG=5324
9:POKE HITCLR~0:GOSUB 1000

10340 VERT1=VERT:HORIZ1=HORIZ:IF PEEK
(53253)=2 OR PEEK(53261)=1 THEN
PLYR=705:GOSUB 4500

10360 COLL=PEEK(53253):IF COLL=1 OR C
OLL=5 OR COLL=9 THEN HEADING=HE
ADING1:HREG=53249:VERT=VERT1:HO
RIZ=HORIZ1:GOSUB 4000

10700 IF STRIG(0)=1 THEN 10780
10740 POKE HITCLR,0:POKE 53252,0:MVER

T=VERT0-512+384+3:MHORIZ=HORIZ0
-1:HEADING=HEADING0:MREG=53252:

63

Part Three

GOSUB 2fH2l0
10750 POKE 53252~0:TRAP 40000
10760 IF PEEK(53256)=2 OR PEEK(53256)

=3 THEN PLYR=705:VERT=VERT1:GOS
UB 45019

10780 IF STRIG(I)=1 THEN 10040
10820 POKE HITCLR~0:POKE 53253,0:MVER

T=VERTI-640+384+3:MHORIZ=HORIZI
-1:HEADING=HEADING1:MREG=53253:
GOSUB 2000

10860 POKE 53253,0:TRAP 40000
10880 IF PEEK(53257)=1 OR PEEK(53257)

=3 THEN PLYR=704:VERT=VERT0:GOS
UB 4500

10900 GOTO 10040
11000 REM *** SETUP PM & ML ROUTINES

*** 1102121 GRAPHICS 2+16~ ':' #6;" {5 SPACES}t
ank duel":':' #6:? #6;"
{4 SPACES}PLEASE WAIT";:? #6;"
{5 SPACES}30 SECONDS"

11040 PM=PEEK(106)-8:POKE 54279~PM:PM
BASE=256*PM:POKE 559~46:POKE 53
277,3:POKE 623,4:POKE 53260~0:H
ITCLR=53278

11060 FOR I=PMBASE+384 TO PMBASE+768:
POKE I,0:NEXT I:POKE 704,74:POK
E 705~136:VERT0=PMBASE+572:HORI
Z0=61!J

11080 VERTl=PMBASE+700:HORIZ1=185:MVE
RT=PMBASE+384:POKE 53248,HORIZ0
:POKE 53249,HORIZI

11100 REM VERTICAL POSITIONING ROUTIN
E

111212i DATA 1!214, 162, 5~ 1(214,149,22:21, 2l212,
16,250,198,22121,198,222, 160, !2!~ 17
7,224,17!2!

1114:2i DATA 168,165,223,24121,9,169, {2!, 14
5,222,136,208,249,138~168, 165,2
21,24121,7, 177,224~ 145~22f!, 136,2121
8,249,96

11160 FOR 1=1536 TO 1579:READ A:POKE

64

Part Three

I,A:NEXT I
11180 REM FLIP PLAYER SHAPE ROUTINE
11200 DIM MOVE$(25):MOVE=ADR(MOVE$):F

OR 1=1 TO 25:READ A:MOVE$(I,I) =
CHR$(A):NEXT I

11220 DATA 104,104,133,204,104,133,20
3,104,133,207,104,133,206,160,O
,177,206,145,203,200,192,8,208,
247,96

11240 RETURI'l
12000 REM *** PLAYER SHAPES (CLOCKWIS

E N-NE-E-SE-S-SW-W-NW & EXPLOSI

ON) * * *
12020 DATA 8,8,8,42,62,62,62,62,34
12040 DATA 8,9,26,60,127,254,60,24,16
12060 DATA 8,0,252,120,127,120,252,O,

!!J
12080 DATA 8,16,24,60,254,127,60,26,9
12100 DATA 8,34,62,62,62,62,42,8,8
12120 DATA 8,8,24,60,127,254,60,88,14

4
12140 DATA 8,O,63,30,254,30,63,O,O
12160 DATA 8,144,88,60,254,127,60,24,

8
12180 DATA 8,0,0,8,28,28,8,0,0
12200 DATA 8,0,8,34,92,20,34,8,0
12220 DATA 8,8,65,4,168,20,1,64,8
12240 DATA 8,148,1,20, 16fi, 1, 2QJ, 1,136
12260 DATA 8,145,74,32,130,65,2,84,13

7
12280 DATA 8,72,1,64,O,130,1,8,82
12300 DATA 8,129,O,O,O,O,128,1,66
12320 DATA 8,O,O,O,O,O,O,O,O
12340 DIM SHAPE$(144)
12360 FOR 1=1 TO 144:READ A:SHAPE$(I,

I)=CHR$(A):NEXT I
12380 DIM MISSILE$(2):MISSILE$(I,I)=C

HR$(I):MISSILE$(2,2)=CHR$(5)
124!~H~! RETURN
13000 REM *** PLAYFIELD SETUP ***
13010 POKE 756,CHSETf256:POSITION 0,O

:? #6;CHR$(125):POSITION 0,0

65

Part Three

13!2!2!2! '::> #6;"]": COLOF: ASC ("M"): PLOT 1 ~

!!l: DRAf1nO 19~ !!l:? #6; "N": COLOR AS
C("O"):PLQT 19~I:DF:AWTO 19,11

13!~!4!~! COLOF: ASC ("t1"): PLOT 19~ 11: POSIT
ION !!! ~ II:? #6;" MYYMMMMMMMMMMMMM
MZZ":COLOF: ASC("V") :PLOT f!~ 1!21:D
F:AWTO .!! ~ 1

13060 SETCOLOR 0~2~10:SETCOLOR 1~0,0:

SETCOLOR 2~13~10:SETCOLOR 3~12,
8

13!!l8!21 POSITION 4 , 1:? #6;" u '50'1: T '1: T
"

131 !'z!l!l POS I T I ON 2 ~ 2:? #6;" [j{ 3 i • .-1:l:I!3#40.1} ~
'1: Tu U'1:S II

13121Z1 POSITION 5,3:'::> #6; "~LI'" __ I

13140 POSITION 7,4:? #6;";;'"i. __ -S:_."
1318!Z! POSITION 6~ 5:? #6; "r.r.-J!<F

{ 4 ;;.~ :1:t"3 ~1} uti
1320.21 POSITION 2,7: '::> #6; "[I"
1322121 POS I T I ON 4,8:? #6; II B-=-D~HC~

ia!"
1 3 2 4 0 PO SIT ION 4, 9 :? =It 6; "iH 5 jO.-"! a:t"3 ~1} ~

"
1326!!l POSITION 3, IIZI: '::> #6; "i:!

{ 3 ;;.~ :1:t"3 ~1} ~{ 3 i#1 :1:t"3 ~1} (0. __ 1 ." :

RETURN

14000 REM *** REDEFINE CHARACTERS ***
14020 CHSET=(PEEK(106)-4)*256:FOR 1=0

TO 512:POKE CHSET+I~PEEK(57344
+I):NEXT I

14040 RESTORE 14120
14060 READ A:IF A=-1 THEN RETURN
14080 FOR J=0 TO 7:READ B:POKE CHSET+

A*8+J,B:NEXT J
14100 GOTO 14060
14120 DATA 33~0~24,60,126,255~90~126~

o
14140 DATA 34,0,24,60~126~195~74,126,0

14160 DATA 35,62~42~62,42~62~42,62,58
14180 DATA 36,24~24,60,44,126,90,126,

9~1

66

Part Three

14200 DATA 37,O,O,0,0,4,255,118,94
14220 DATA 38~3,3~3~3,255,171,255~171
14240 DATA 39~127~85,127,85,127,85~12

7~1!!i6

14260 DATA 40~255,85,255,85,255,85~25
5, 171

14280 DATA 41~16~56,40,56~40,124~108,
238

14300 DATA 42,136,170,170,170,170,170
...... C"C'" -=-c-

,~JJ,LJ..J

143212! DATA 43, 13!Zl ~ 1 7!Z! ~ 1 7!!j, 1 7~! ~ 1 70 ~ 17l!!
,254,254

14340 DATA 44,O,126,86,126,86,126,86,
86

14360 DATA 45,255,255~0,0~0,0,0,0
14380 DATA 46,255~255,3~3,3,3,3,3
14400 DATA 47~3,3~3,3~3~3~3~3
14420 DATA 48~3,3,3~3,3,3,255,255
14440 DATA 49,0,0~0,0,0,0,255~255
14460 DATA 50~192~192,192 . 192~192~192

'1C"'C'" ...-,-=-c-
!,L...J...J~.L-'J

1448!2! DATA 51 ~ !2j~ (2!, 16~ 56, 124~ 16~ 16,!D
14500 DATA 52~8~28~62,127~62,8,8,0
14520 DATA 53~8,28~28~62,62,127,8,8
14540 DATA 54,192,192~192~192~192,192

,192~192

14560 DATA 55~1,64~0~0~0,0~2~128
14580 DATA 56~255,255~0~8~28,8,8,8
14600 DATA 57,255~255,0,252~120~127,1

20,252
14620 DATA 58~255,255,0~63~30,254~30,

63
14640 DATA 59~192~96,48,24~12,6,3,1
14660 DATA 61~255,255,192,192,192,192

~192,192

14680 DATA -1
15000 REM *** RESET GAME *i*
15020 FOR 1=255 TO 0 STEP -2:S0UND 0,

I,10,6:POKE 704,I:POKE 705,I:NE
XT I:SOUND 0,0,0,0:POKE 704,0:P
OKE 7!!!5, I!!

15040 POSITION 0,0:? #6;CHRS(125):POK

67

Part Three

E 756~224:POSITION 2~3:? #6;"TO
P LAY A G A I Nil: ':) # 6;" I ~ :~ t;i.-S-W iii .. ;:~ ..

(illjiill: "

15060 ? #6;"{4 SPACES}ON JOYSTICK"
15080 IF STRIG(0)=1 AND STRIG(I)=1 TH

EN 15080
15100 POKE HITCLR,0:A=USR(MOVE,VERT0,

ADR(SHAPE$(137»):A=USR(MOVE,VE
RT1,ADR(SHAPE$(137»)

15120 POKE 704,74:POKE 705,136:VERT0=
PMBASE+572:VERT1=PMBASE+700:MVE
RT=PMBASE+384:HORIZ0=60:HORIZ1=
185

15140 POKE 53248,HORIZ0:POKE 53249,HO
RIZ1:GOTO 80

Program 3-3. Tank Duel - BASIC A +

10 REM *** TANKDUEL ***
20 REM OSS BASIC A+ VERSION
30 REM
40 GRAPHICS 2+16:? #6;"{5 SPACES}tan

k duel":? #6:? #6;"{4 SPACES}PLEA
SE WAIT":? #6;"{5 SPACES}30 SECON
DS"

90 GOSUB 131Z100
100 GOSUB 9001Z1
110 GOSUB 31Z100
120 GOTO 101Z100
1000 REM *** PLAYER 0 COLLISIONS ***
101QI POKE 77~0
1020 IF BUMP(0~1) OR BUMP(0~9) THEN

1060
104QI GOTO 1220
1060 DAT=57:FOR VOL=14 TO 0 STEP -2:

SOUND 0~90~0~VOL:SOUND 1~100~4,

VOL:PMCOLOR 0~3~14
1080{3 SPACES}MOVE ADR(SHAPE$(DAT+8)

),PMADR(0)+VERT0~6:DAT=DAT+8:FO

R 1=1 TO 50:NEXT I:NEXT VOL:TAN
1<0=TANK0-1

68

Part Three

1120 IF TANK0=2 THEN POSITION 2~11:?
#6;"X":GOTO 1180

1140 IF TANK0=1 THEN POSITION 1~11:?

#6; "X":GOTO l18QI
1160 IF TANK0{1 THEN POSITION 3~ll:?

#6; "X" : POP : GOTO 12QIQI0
1180 FOR 1=1 TO 1000:NEXT I:VERT0=50

:HORIZ0=60:PMCOLOR 0~4~6:PMMOVE
lZl~HORIZy-l

1200 MOVE ADR(SHAPE$(25»~PMADR(0)+V
ERT0~6:POKE 53278~0:RETURN

1220 IF BUMP(0~8) THEN POKE 53278~0:
ON HEADING0 GOTo 1260~1280~1300

~1320,1340~1360~1380~1400

1240 PMCLR 4:GOTo 2060
1260 PMMoVE 0;-2:VERT0=VERT0+2:RETUR

N
1280 PMMOVE 0~HoRIZ0-2;-2:HORIZ0=HOR

IZ0-2:VERT0=VERT0+2:RETURN
1300 PMMOVE 0~HoRIZ0-2:HORIZ0=HORIZ0

-2:RETURN
1320 PMMOVE 0~HORIZ0-2;2:HORIZ0=HORI

Z0-2:VERT0=VERT0-2:RETURN
1340 PMMOVE 0;2:VERT0=VERT0-2:RETURN

1360 PMMOVE 0~HoRIZ0+2;2:HORIZ0=HoRI

Z0+2:VERT0=VERT0-2:RETURN
1380 PMMoVE 0~HORIZ0+2:HORIZ0=HoRIZ0

+2:RETURN
1400 PMMOVE 0~HORIZ0+2;-2:HoRIZ0=HOR

IZ0+2:VERT0=VERT0+2:RETURN
2000 REM *** PLAYER 1 COLLISIONS ***
2020 IF BUMP(I , 0) OR BUMP(I~9) THEN

2QI60

2040 GOTo 2220
2060 DAT=57:FOR VOL=14 TO 0 STEP -2:

SOUND 0~90~0~VOL:SOUND 1~100~4,

VOL:PMCOLOR 1~3,14

2080{3 SPACES}MOVE ADR(SHAPES(DAT+8)
),PMADR(I)+VERT1~6:DAT=DAT+8:Fo

R 1=1 TO 50:NEXT I:NEXT VOL:TAN
Kl=TANK1-l

69

Part Three

2120 IF TANK1=2 THEN POSITION 17,11:
? #6;"X":GOTO 2180

2140 IF TANK1=1 THEN POSITION 18,11:
? #6;"X":GOTO 2180

2160 IF TANK1 (1 THEN POSITION 16,11:
? #6;"X":POP :GOTO 12000

2180 FOR 1=1 TO 1000:NEXT I:VERT1=50
:HORIZ1=185:PMCOLOR 1,7,8:PMMOV
E I,HORIZI

2200 MOVE ADR(SHAPES(57»,PMADR(I)+V
ERT1,6:POKE 5 3 278,0:RETURN

2220 IF BUMP(I,8) THEN POKE 53278,O:
ON HEADING1 GOTO 2260,2280,2300
,2320 , 2340,2360,2 3 80,2400

2240 PMCLR 5:GOTO 1060
2260 PMMOVE 1;-2:VERT1=VERT1+2:RETUR

N
2280 PMMOVE I , HORIZI-2;-2:HORIZ1=HOR

IZ1-2 : VERT1=VERT1+2:RETURN
2300 PM MOVE I,HORIZI-2:HORIZ1=HORIZI

-2:RETURN
2320 PMMOVE 1,HORIZI-2 ; 2:HORIZ1=HORI

ZI-2:VERT1=VERTI-2:RETURN
2340 PMMOVE 1;2:VERT1=VERTI-2:RETURN

2360 PMMOVE I,HORIZ1+2;2:HORIZ1=HORI
ZI+2:VERT1=VERTI-2:RETURN

2380 PMMOVE I,HORIZ1+2:HORIZ1=HORIZI
+2:RETURN

2400 PMMOVE I,HORIZ1+2;-2:HORIZ1=HOR
IZ1+2:VERT1=VERT1+2:RETURN

3000 REM *** PLAYFIELD SETUP ***
3060 ? #6;CHRS(125) : POSITION 0,0:POK

E 756,CHSET/256
308~J ? #6; "] U: COLOR ASC (UM"): PLOT 1,

IZJ: DRAWTO 19, IZI:? #6; UN": COLOR AS
C("O") :PLOT 19,I:DRAWTO 19,11

3100 COLOR ASC("MU):PLOT 19,II:POSIT
ION 0,11: ? #6;"MYYMMMMMMMMMMMMM
MZZ":COLOR ASC("V") : PLOT 0,10:D
RAWTO O, 1

3110 SETCOLOR 0,2,10:SETCOLOR 1,O,O:

70

Part Three

SETCOLOR 2~13,10:SETCOLOR 3~12~
8

3120 POSITION 4~1:? #6;" u S"t: T "t: T

"
3 1 4 Ql PO SIT ION 2 ~ 2 :? # 6; II ILj{ 3 i#1 ;l:tij 0iIt--1} ~

,_ii_I ... -tI"
3 1 6 0 PO SIT ION 5 ~ 3 :? # 6; II .. -SO .. [I'" __ I

II

3180 POSITION 7 ~ 4:? #6; "i#ila.-SO_I"
3200 POSITION 3~5:? #6;"A~

{3 i#1:l:IijOilt-"1} ~"
322Ql POSITION 6~ 6:? #6; "u.-JI<F

{ 4 i#1 :l:Iij 0iIt-"1} ii II
324!Z1 POSITION 2~ 7:? #6; "[!"
3260 POSITION 2~8:? #6;"B"
3280 POSITION 6~ 9:? #6; "FD~HC-=:~

A"
3300 POSITION 3~10:? #6;"[!i!

{ 1 0 i#1 ;l:tij 0iIt-"1} [1 __ -) I"

3999 RETURN
9000 REM *** PLAYER SHAPES (CLOCKWIS

E N-NE-E-SE-S-SW-W-NW & EXPLOSI

ON) * * *
9020 DATA 8~8~42~62~62~62,62~34
9040 DATA 9,26,60,127,254,60,24~16
9060 DATA 0~252~120~127,120,252,0~0
9080 DATA 16,24,60,254~127,60~26~9

9100 DATA 34~62~62,62,62,42,8,8
9120 DATA 8,24~60,127,254,60,8B,144
9140 DATA 0,63,30,254,30,63~0,0
9160 DATA 144,88,60,254,127,60,24,8

9180 DATA 0,0,8,28,28,B,0,0
9200 DATA 0,8,34,92,20,34~8,0
9220 DATA 8,65,4,168~20~1~64,8
924!Z1 DATA 148~ 1,20,160,1,20,1,136
9260 DATA 145,74~32,130,65,2~84,137

9280 DATA 72,1,64,0,130,1~8,82
9300 DATA 129,0,0,0,0,12B,1,66
9320 DATA 0~0,0,0~0,0,0,0
9340 DIM SH$(1),SHAPE$(12B)
9360 RESTORE :FOR 1=1 TO 12B:READ SH

71

Part Three

APE:SH$=CHR$(SHAPE):SHAPE$(I,I)
=SH$:NEXT I

9380 RETURN
10000 PMGRAPHICS 2:PMCLR 0:PMCLR 4:P

MCLR I:PMCLR 5:PMCOLOR 0,4,6:P
MCOLOR 1,7,8:POKE 623,4

10025 VERT0=50:VERT1=50:HORIZ0=60:HO
RIZ1=185:TANK0=3:TANK1=3:PMMOV
E 0,HORIZ0:PMMOVE I,HORIZI

10030 MOVE ADR(SHAPE$(9»,PMADR(0)+V
ERT0,6:MOVE ADR(SHAPE$(9»,PMA
DR(I)+VERT1,6:MINES=0

10032 X=INT(18*RND(0)+I):Y=INT(10*RN
D(0)+I):LOCATE X,Y,Z:IF Z< >32
THEN 10032

10034 POSITION X,Y:? #6;"w":IF X=1 0
R X=2 OR X=17 OR X=18 AND Y=4
OR Y=5 THEN POSITION X,Y:? #6;
" ":GOTO 10032

10040 PMCLR 5:H0=HSTICK(0):Hl=HSTICK
(1):HEADING0=HEADING0+H0:HEADI
NG1=HEADING1+Hl:IF HEADING0 { 1
THEN HEADING0=8

10060 IF HEADING1 < 1 THEN HEADING1=8
10080 IF HEADING0 } 8 THEN HEADING0=1
10100 IF HEADING1) 8 THEN HEADING1=1
10105 POKE 53278,0
10110 ON HEADING0 GOTO 10120,10140,1

0160, 1018Qj, l1Z1201Z1, 1022Qj, 10240,1
0260

10120 MOVE ADR(SHAPE$(I»,PMADR(0}+V
ERT0,6:GOTO 10280

10140 MOVE ADR(SHAPE$(9»,PMADR(0)+V
ERT0,7:GOTO 10280

10160 MOVE ADR(SHAPE$(17»,PMADR(0)+
VERT0,6:GOTO 10280

10180 MOVE ADR(SHAPE$(25»,PMADR(0)+
VERT0,6:GOTO 10280

10200 MOVE ADR(SHAPE$(33»,PMADR(0)+
VERT0,6:GOTO 10280

10220 MOVE ADR(SHAPE$(41»,PMADR(0)+
VERT0,7:GOTO 10280

72

hrtThree

10240 MOVE ADR(SHAPES(49}),PMADR(0}+
VERT0,6:GOTO 10280

10260 MOVE ADR(SHAPES(57)},PMADR(0}+
VERT0,6

10280 IF BUMP(0,1) OR BUMP(0~9) THEN
GOSUB 1000

10290 ON HEADINGI GOTO 10300~10320~1

0340,10360~10380,10400~10420~1

0430
10300 MOVE ADR(SHAPES(I})~PMADR(I}+V

ERT1,6:GOTO 10440
10320 MOVE ADR(SHAPES(9})~PMADR(1)+V

ERT1,7:GOTO 10440
10340 MOVE ADR(SHAPES(17»~PMADR(1)+

VERT1,6:GOTO 10440
10360 MOVE ADR(SHAPES(25}),PMADR(I)+

VERT1,6:GOTO 10440
10380 MOVE ADR(SHAPES(33»,PMADR(1}+

VERT1,6:GOTO 10440
10400 MOVE ADR(SHAPE$(41»,PMADR(1)+

VERT1,7:GOTO 10440
10420 MOVE ADR(SHAPES(49»,PMADR(1)+

VERT1,6:GOTO 10440
10430 MOVE ADR(SHAPES(57»,PMADR(1)+

VERT1,6
10440 IF BUMP(1,0) OR BUMP(I,9) THEN

GOSUB 2000
10445 IF VSTICK(0)=1 THEN SOUND 1,12

0~6,6:0N HEADING0 GOTO 10460,1
0480~10500,10520,10540,10560,1

0580,10600
10450 SOUND 1,180,6,3:GOTO 10620
10460 PMMOVE 0;2:VERT0=VERT0-2:GOTO

10620
10480 PMMOVE 0,HORIZ0+2;2:HORIZ0=HOR

IZ0+2:VERT0=VERT0-2:GOTO 10620
10500 PMMOVE 0~HORIZ0+2:HORIZ0=HORIZ

0+2:GOTO 10620
10520 PMMOVE 0~HORIZ0+2;-2:HORIZ0=HO

RIZ0+2:VERT0=VERT0+2:GOTO 10620
10540 PMMOVE 0;-2:VERT0=VERT0+2:GOTO

10620

73

Part Three

10560 PMMOVE 0~HORIZ0-2;-2:HORIZ0=HO
RIZ0-2 : VERT0=VERT0+2:GOTO 1062
Q!

10580 PMMOVE 0~HORIZ0-2:HORIZ0=HORIZ
~!-2: GOTO 10620

10600 PMMOVE 0 ~ HORIZ0-2;2:HORIZ0=HOR

IZ0-2:VERT0=VERT0-2
10620 IF BUMP(0~1) OR BUMP(0~8) OR B

UMP(0~9) THEN GOSUS 1000
10625 IF VSTIC K (I)=1 THEN SOUND 0,12

0~6~6:0N HEADINGI GOTO 10640,1
0660~10680~10700~10720~10740~1

07612i, 1~1780
10630 SOUND 0~180~6~3:GOTO 10800
10640 PMMOVE 1;2:VERT1=VERTI-2:GOTO

1 ~!8!!!~!
10660 PMMOVE I~HORIZ1+2;2:HORIZ1=HOR

IZ1+2:VERT1=VERTI-2:GOTO 10800
10680 PMMOVE I~HORIZ1+2:HORIZ1=HORIZ

1 +2: GOTO 108!!!!!1
10700 PM MOVE I,HORIZ1+2;-2:HORIZ1=HO

RIZ1+2:VERT1=VERT1+2:GOTO 1080
o

10720 PMMOVE 1; - 2:VERT1=VERT1+2:GOTO
108fZI0

10740 PM MOVE I ~ HORIZI-2;-2:HORIZ1=HO

RIZI-2:VERT1=VERT1+2:GOTO 1080
121

10760 PMMOVE I~HORIZI-2:HORIZ1=HORIZ

1-2: GOTO 1 !!!80!!!
10780 PMMOVE I~HORIZI-2;2:HORIZ1=HOR

IZI-2:VERT1=VERTI-2
10800 IF BUMP(I,0) OR BUMP(I,8) OR B

UMP(I~9) THEN GOSUB 2000
10805 IF STRIG(0)=0 THEN POKE 53278,

0:MHORIZ=HORIZ0:FOR 1=15 TO 0
STEP -1:S0UND 2,90~0,I:NEXT I:
GO TO 1082{!!

10810 GOTO 110~!0

10820 ON HEADING0 GOTO 10840~10860~1

0880~10900,10920,10940~10960~1
098{!1

74

Part Three

10840 MISSILE 0~VERT0~1:PMMOVE 4~MHO
RIZ+3;50:GOTO 11000

10860 MISSILE 0~VERT0~1:FOR 1=2 TO 4
o STEP 2:PMMOVE 4~MHORIZ+6+I;2
:NEXT I:GOTO 11000

10880 MISSILE 0~VERT0+3~1:FOR 1=2 TO
50 STEP 2:PMMOVE 4~MHORIZ+I:N

EXT I:GOTO 110y-10
10900 MISSILE 0~VERT0+4~1:FOR 1=2 TO

40 STEP 2:PMMOVE 4~MHORIZ+3+I
;-2:NEXT I:GOTO 11000

10920 MISSILE 0~VERT0+4~1:PMMOVE 4~M
HORIZ+3;-50:GOTO 11000

10940 MISSILE 0~VERT0+4~I:FOR 1=2 TO
40 STEP 2:PMMOVE 4~MHORIZ+2-I

;-2:NEXT I:GOTO 11000
10960 MISSILE 0~VERT0+3~I:FOR 1=2 TO

50 STEP 2:PMMOVE 4~MHORIZ-I:N
EXT I: GO TO 1112100

10980 MISSILE 0~VERT0+3~I:FOR 1=2 TO
40 STEP 2:PMMOVE 4~MHORIZ+3-I

;2:NEXT I
11000 IF BUMP(4~1) THEN GOSUB 1000
11010 PMCLR 4:IF STRIG(I)=0 THEN POK

E 53278~0:FOR 1=15 TO 0 STEP -
I:S0UND 2~90~0~I:NEXT I:GOTO 1
104!,!1

11 ~12Ql GOTO 1 !,!1!,!14fl
11040 ON HEADINGI GOTO 11060~11090~1

1120~ 1115i!1~ 11180~ 11210~ 1124lZl~ 1
127121

11060 MISSILE I~VERTl~I:PMMOVE 5~HOR

IZl+3;50:GOTO 11300
11090 MISSILE 1~VERT1~1:FOR 1=2 TO 4

o STEP 2:PMMOVE 5~HORIZl+6+1;2
:NEXT I:GOTO 11300

11120 MISSILE 1~VERT1+3~1:FOR 1=2 TO
50 STEP 2:PMMOVE 5~HORIZ1+I:N

EXT I: GO TO 113!Z10
11150 MISSILE I~VERT1+4~1:FOR 1=2 TO

40 STEP 2:PMMOVE 5~HORIZl+3+I
;-2:NEXT I:GOTO 11300

75

Part Three

11180 MISSILE I~VERTl+4~I:PMMOVE 5~H
ORIZ1+3;-50:GOTO 11300

11210 MISSILE I~VERT1+4~ I:FOR 1=2 TO
40 STEP 2:PMMOVE 5~HORIZl+2-I

;-2:NEXT I:GOTO 11300
11240 MISSILE I~VERT1+3,I:FOR 1=2 TO

50 STEP 2:PMMOVE 5,HORIZI-I:N
EXT I:GOTO 11300

11270 MISSILE I,VERTl+3,I:FOR 1=2 TO
40 STEP 2:PMMOVE 5,HORIZ1+3-I

;2:NEXT I
11300 IF BUMP(5,0) THEN GOSUB 2000
11320 GOTO 1004fl
12000 REM *11 RESET GAME .**
12020 FOR 1=255 TO 0 STEP -2:S0UND 0

, I, Ifl, 6: POKE 704, I: POKE 7k:15, I:
NEXT I:SOUND 0,0,0,0:POKE 704,
QI: POKE 705, 121

12040 POSITION 0,0:? #6;CHRS(125):PO
KE 756,224:POSITION 2,3:? #6;"

TO PLAY AGA IN" : '7 #6;" 1:J:~3'--s. ...
~.:;_;;lIj.i.]: "

12060 ? #6;"{5 SPACES}ON JOYSTICK"
12080 IF STRIG(0)=1 AND STRIG(I)=1 T

HEN 12080
121121!21 GOTO 110
13000 REM **. REDEFINE CHARACTERS *.

I
13020 CHSET=(PEEK(106)-8)'256:FOR 1=

o TO 512:POKE CHSET+I,PEEK(573
44+I):NEXT I

13021 RESTORE 13025
13022 READ A:IF A=-1 THEN RETURN
13023 FOR J=0 TO 7:READ B:POKE CHSET

+A*8+J,B:NEXT J
13024 GO TO 13022
13025 DATA 33,O,24,60,126,255,90,126

, QI

13026 DATA 34,O , 24,60 , 126,195,74,126
, QI

13027 DATA 35,62,42,62,42,62,42,62,5
8

76

Part Three

13028 DATA 36~24~24~60~44~126~90~126
~90

13029 DATA 37~0~0~0~0~4~255~118~94
13030 DATA 38~3~3~3~3~255~171~255~17

1
13031 DATA 39~127~85~127~85~127,85~1

27~ l1Z16
13032 DATA 40~255~85~255~85 ~ 255~85~2

55 ~ 1 71
13033 DATA 41~16~56~40~56,40~124~108

,238
13034 DATA 42~136,170,170,17y-1,170,17

0~255,255

13035 DATA 43,130,170~170,170,170,17
~I, 254 ~ 254

13036 DATA 44~0~126~86,126,86~126~86
,86

13037 DATA 45,255,255,0~0,0,0~0~0
13038 DATA 46~255~255,3,3~3~3,3~3
13039 DATA 47,3,3,3~3,3,3~3~3
13040 DATA 48,3~3~3~3,3,3,255,255
13041 DATA 49~0,0~0~0,0~0,255~255
13042 DATA 5!'!1~ 192, 192~ 192~ 192, 192, 19

131!143 DATA 51 ~ y-I~ !,!I, 16,56, 124, 16~ 16,!'!1
13044 DATA 52~8,28~62~127~62~8~8~0
13045 DATA 53,8,28,28,62,62.127,8,8
13046 DATA 54,lQ2,192,192,192,192,19

2,192,192
13047 DATA 55,1,64,0,0,O,O,2,128
13048 DATA 56,255,255,0~8,28,8,8~8
13049 DATA 57,255 , 255,0,252,120,127,

120~252

13050 DATA 58,255,255,O,63,30,254,30
,63

13~151 DATA 59,192,96,48,24,12,6,3,1
13052 DATA 61~255,255,192,192~192,19

2~192,192

13y-153 DATA -1

77

Part Three

Pick-up Sticks
Jason Lex Thomas

This game demonstrates that good games can be written completely
in BASIC. "Pick-up Sticks" doesn't even use the statements PEEK or
POKE.

"Pick-up Sticks" requires two players. Each player uses one
joystick. The screen displays 15 sticks and two players. The
players will appear at random, but always immediately beside
each other. A stick will begin to flash, indicating that it is the
next target. The first player reaching the stick gets the point.
The player who has the most points, when all 15 sticks are
gone, wins. A complication is that if both players reach the
stick at the same time, no one gets the point. Since both
players start out at virtually the same place on the screen,
this can playa deciding role.

You'll notice that when a player moves, he leaves a trail
behind him. This does not affect the game. But it does let
you draw pretty pictures if you like.

No PEEKs or POKEs
One of the first things I discovered about my computer was
that Atari 8K BASIC is slow. It is so slow, in fact, that many
games cannot be written without PEEKs or POKEs. And
when it comes to moving images or players across a playfield,
nothing comes in handier than a POKE or a USR command
to call some machine language subroutine.

How do we get by with such a slow language? We could
use PEEK and POKE or Assembler routines. But then there
would be no reason for this article. The first criterion is to
make the most of what you have. Don't get too fancy, either.
It's been my experience that in BASIC, when you get fancy,
you get slow. The second criterion that we must impose is
that the more graphically oriented your program is, the more
overhead involved by the computer. (Remember, it's not the
amount of RAM used in a particular graphics mode that
hurts you; it's the amount of coding required in your program

78

Part Three

to address it all.) Finally, when it comes to sound, experi­
ment. Many good sound effects can be done by a simple
SOUND command with various distortions. It may take
awhile to achieve the results that you desire, but it can be
done.

Here's proof: a program that I wrote called Pick-up Sticks.
Nowhere in the entire program will you find one POKE or
one USR statement. The game itself is quite simple and will
run easily on any Atari.

Variable Usage Table
Variable

X$,Y$
A(lS)

XHOR,XVERT

YHOR,YVERT

XDIR

YDIR

NORTH, EAST, SOUTH,WEST
CBLINK

SUBSC

MATCH

NUMMATCH

XMAT

YMAT

BLINK

Usage

Players' initials
Array used to determine
sticks' positions
Player X's horizontal and
vertical position
Player Y's horizontal and
vertical position
Player X's current direction
of travel
Player Y's current direction
of travel
Playfield boundaries
Color cycle for blinking of
sticks
Subscript for scanning
through array A
Used to determine which
player picked up the stick
The number of sticks which
have been picked up
The number of sticks picked
up by player X
The number of sticks picked
up by player Y
Selected stick board position

79

Part Three

Race to the sticks in "Pick-up Sticks."

Program 3-4. Pick-up Sticks
100 DIM X$(3),Y$(3),A(15):NORTH=5:EAS

T=75:WEST=3:S0UTH=19:GOSUB 900
110 REM DRAW BORDER & INITIALIZE
120 GRAPHICS 21:COLOR 0~FOR J=1 TO 15

:A(J)=J*5:NEXT J:XMAT=0:YMAT=XMAT
130 SETCOLOR 1,0,14
140 COLOR I:PLOT 3,I:DRAWTO 78,I:DRAW

TO 78,38:DRAWTO 3,38:DRAWTO 3,1
150 REM DRAW INITIAL BOARD
160 FOR J=5 TO 75 STEP 5:PLOT J,35:DR

AWTO J,30:PLOT J+l,35:DRAWTO J+l,
3fZl: NEXT J

170 COLOR 2:FOR J=5 TO 75 STEP 5:PLOT
J,29:DRAWTO J,20:PLOT J+l,29:DRA

WTO J+l,20:NEXT J
180 XHOR=40:YHOR=XHOR+2:XVERT=5:YVERT

=XVEF:T
190 SOUND 0,200,2,6
200 REM SELECT STICKS
21 fZj GOSUB 53!!!
22!!j REM PLAYEF:S

80

~rtThree

230 GOSUS 610
240 COLOR 2:PLOT XHOR~XVERT:COLOR 3:P

LOT YHOR~YVERT
250 REM INPUT MOVE CHECK STICKS
260 XDIR=STICK(0):YDIR=STICK(I)
270 IF XDIR=14 THEN XVERT=XVERT-l
280 IF XDIR=6 THEN XVERT=XVERT-l:XHOR

=XHOR+i
290 IF XDIR=13 THEN XVERT=XVERT+l
300 IF XDIR=5 THEN XVERT=XVERT+l:XHOR

=XHOR+l
310 IF XDIR=ll THEN XHOR=XHOR-l
320 IF XDIR=9 THEN XHOR=XHOR-l:XVERT=

XVERT+l
330 IF XDIR=7 THEN XHOR=XHOR+l
340 IF XDIR=10 THEN XHOR=XHOR-l:XVERT

=XVERT-l
350 IF YDIR=14 THEN YVERT=YVERT-l
360 IF YDIR=6 THEN YVERT=YVERT-i:YHOR

=YHOR+l
370 IF YDIR=13 THEN YVERT=YVERT+l
380 IF YDIR=5 THEN YVERT=YVERT+l:YHOR

=YHOR+l
390 IF YDIR=ll THEN YHOR=YHOR-l
400 IF YDIR=9 THEN YHOR=YHOR-l:YVERT=

YVERT+l
410 IF YDIR=7 THEN YHOR=YHOR+l
420 IF YDIR=10 THEN YHOR=YHOR-l:YVERT

=YVERT-l
430 REM SET UP BOUNDARIES
440 IF XVERT { =WEST THEN XVERT=WEST
450 IF XVERT}=SOUTH THEN XVERT=SOUTH
460 IF YVERT{=WEST THEN YVERT=WEST
470 IF YVERT >=SOUTH THEN YVERT=SOUTH
480 IF XHOR{=NORTH THEN XHOR=NORTH
490 IF XHOR}=EAST THEN XHOR=EAST
500 IF YHOR{=NORTH THEN YHOR=NORTH
510 IF YHOR } =EAST THEN YHOR=EAST
520 GOTO 680
530 REM ROUTINE TO SELECT STICKS AND

DETERMINE IF GAME OVER

81

Part Three

540 CBLINK=I:SUBSC=INT(RND(0)*15)+I:C
OUNT=lZl

550 FOR J=1 TO 15:IF A(J'<>0 THEN 570
560 NEXT J:GO TO 850
570 IF SUBSC>15 THEN SUBSC=1
580 BLINK=A(SUBSC):IF BLINK{5 THEN SU

BSC=SUBSC+l:GOTO 570
59!Zi A (SUBSC) =0
600 RETURN
610 REM BLINK STICKS
62!!i COLOR CBL I NK
630 PLOT BLINK,29:DRAWTO BLINK,20
640 PLOT BLINK+l,29:DRAWTO BLINK+l,20
650 CBLINK=CBLINK+l
660 IF CBLINK>4 THEN CBLINK=l
67!Zi RETURN
680 REM TEST TO SEE IF MATCH
69!!1 MATCH= 1
700 IF XVERT=19 AND (XHOR=BLINK OR XH

OR=BLINK+l) THEN MATCH=MATCH+l
710 IF YVERT=19 AND (YHOR=BLINK OR YH

OR=BLINK+l) THEN MATCH=MATCH+2
720 IF MATCH=1 THEN GOTO 220
730 REM BLANK ITEM
740 COLOR 0:PLOT BLINK,29:DRAWTO BLIN

K,2Qi
750 PLOT BLINK+l,29:DRAWTO BLINK+l,20
76!!1 COLOR I"1ATCH
770 PLOT BLINK,30:DRAWTO BLINK,35
780 PLOT BLINK+l,30:DRAWTO BLINK+l,35
790 IF MATCH=2 THEN XMAT=XMAT+l
800 IF MATCH=3 THEN YMAT=YMAT+l
810 FOR J=1 TO 250 STEP 5:S0UND 0,J,1

0,10:NEXT J:SOUND 0,0,0,0~COLOR 0
8?~ FOR J=3 TO 19:PLOT 5,J:DRAWTO 75,

J:NEXT J
830 NUMMATCH=NUMMATCH+l:IF NUMMATCH=1

5 THEN 85i!!
840 XVERT=INT(RND(0'*15)+3:YVERT=XVER

T:XHOR=INT(RND(0'*50)+5:YHOR=XHOR
+2: GOTO 19QI

850 REM GAME OVER

82

Part Three

860 FOR J=l TO 10:S0UND 0,20*J,10,10:
FOR K=1 TO 10:NEXT K:SOUND 0,O,O,
0:FOR K=1 TO 15:NEXT K:NEXT J

87Ql GRAPHICS 18: POSITION 5,1:? #6; "GA
ME OVER":? #6

8 8 !!l PO SIT ION 2, 3 :? # 6 ; X $;" ':; x MAT: P 0 S
ITION 11,3:? #6;Y$;" ";YMAT

890 FOR J=1 TO 200:NEXT J:GOSUB 910:G
OTO 110

90f!J GRAPH I CS 18: POS I T I ON 1, 1 :? #6;" ~
ce :(11,.. (e :,.1"

9 l!!l PO SIT ION 1, 7 :? # 6; "P RES S I iII":;~ TO
PLAY":FOR WAIT=1 TO 30:NEXT WAIT

920 IF STRIG(0)<>STRIG(1) THEN 940
930 POSITION 1,7:? #6;"PRESS FIRE TO

PLAY":FOR WAIT=l TO 30:NEXT WAIT:
GOTO 910

940 GRAPHICS 0:? "ENTER INITIALS OF F
IRST PLAYER": INPUT X$

950 ? "ENTER INITIALS OF SECOND PLAYE
R":INPUT Y$:RETURN

83

Part Three

Poker Solitaire
Allen R. Breon

This strategy game is for one or two players, although more can
play if your machine has more than 16K memory.

"Poker Solitaire" is a strategy game played with a standard
deck of cards. The object is to create the best ten poker hands
possible within a five-by-five matrix, using the first 25 cards
in the deck. These are dealt one at a time and, once posi­
tioned in the matrix, cannot be moved. When 25 cards have
been played, each hand of five cards (five across, five down)
is scored; the final score is the sum of the ten individual
hands.

The version presented here requires 13K of free RAM,
without the REM statements, which are provided only to
clarify the listing. One or two persons can play, although
more players can easily be added if enough RAM is available.

Playing the Game
After typing RUN, you will see a title screen while initializa­
tion is taking place. When the game has been set up, the
option/score screen will appear. The first time you see this
screen, the top half will be blank. The bottom half will con­
tain the options.

Only the option that is blinking can be changed. To
change the value, execute the command, or view a screen,
press the trigger of the joystick plugged into port one or press
the OPTION console key. To move to another option, move
the joystick in any direction or press the SELECT console key.
You may start the game at any time by pressing START.

The options are fairly obvious, except for "DECKS." If
there is more than one player, this option allows each player
to have either a unique set of cards or the same sequence as
the other players. In the former case, the cards received by
one player have no bearing on the cards dealt to the other
players - they are not being dealt from the same "deck:' In
the latter case, players will see who gets the highest score
using the same cards.

84

Part Three

The Play Begins
After you have indicated you wish to START the game, there
will be a, delay of a few seconds, followed by the playing
screen of the first player, This will consist of a five-by-five
matrix, the notice PLAYER 1 vertically along the right-hand
side, and the first card displayed in the lower right-hand
corner,

The colored rectangle is a cursor that can be moved in
any direction by the joystick. When you find a location you
like, press the joystick trigger, The card will appear at that
position and also remain at the bottom of the screen,

If you change your mind, simply move the joystick to
reposition the card, Once you are satisfied with the location,
press the trigger a second time to finalize your selection,

If there is more than one player, the next player'S screen
will immediately appear, Play continues until 24 rectangles
have been filled for each player. It is not necessary to do
anything to position the 25th card, It will be placed in the re­
maining location automatically, You can hold the trigger to
view the screen; otherwise the next screen comes up
automatically, Release the trigger to continue.

Scoring
After the final card for the last player has been positioned,
the first player's screen will appear and be scored. The final
score will appear in the lower right-hand corner. When the
screen has been scored, either move the joystick in any direc­
tion or press the trigger to bring the next player's screen to be
scored.

These are the scores for each possible hand:

HAND SCORE HAND
One Pair 2 Two Pair

SCORE
5

Three of a Kind 10 Straight
Flush 20 Full House
Four of a Kind 50 Straight Flush
Royal Flush 100

After the scoring of the final player, moving the joystick
or pressing the trigger will cause the option/score screen to
appear. In addition to the options listed before, this screen
will now contain each player's score for the game just com­
pleted, plus the highest score since RUN. By using the

15
25
75

85

Part Three

joystick or the console keys, you can review these screens.
Press the BREAK key to end the game and return to BASIC.

Any time joystick or console input is required, you can
instead press START to begin a new game, or OPTION or
SELECT to return to the option/score screen.

The Program
The program is divided into five general areas: the game
itself, the scoring routine, the options routine, initialization,
and character set redefinition. The game and the scoring
routines, since they are the most frequently used, are located
near the beginning of the program to take advantage of the
faster execution speed for statements near the beginning. Also
near the beginning is a subroutine used by several of the
routines for blinking displays while checking for input.

Extensive use is made of the capability to relocate the
display and write screens. The location of the pointer for the
display list is figured by calculating PEEK(560) + PEEK(561)
*256 +4. The start of screen memory is the two-byte address
beginning at location 88.

Changing the Screen
Each player in this game has his or her own playing screen.
In addition, two screens are used to display the option/score
data and to retain the high-score hands. Redrawing these
screens each time they are needed would be time-consuming .
Instead, each screen has its own memory location, which is
stored in an array. When a screen is required, the appropriate
numbers are POKEd into the pointers and the screen appears.

The screens are stored below RAMTOP (PEEK(106)*256).
The first four pages below RAMTOP are used for the rede­
fined character set. Each page holds 256 bytes of information.
We need to set aside 240 bytes for each Graphics 2 screen we
need. Each screen will begin on an even page. This way the
least significant byte of the pointers will be zero, making
housekeeping chores easier.

Before anything is stored in the area we have set aside,
we must check to see if there is enough memory to hold
everything. If the end of the program - PEEK(l44) +
PEEK(145)*256 - extends into the memory for the screens,
the program will stop.

86

Part Three

Memory Requirements
Memory requirements change with the number of players that
could play. With the REM statements removed, the program
requires 13K RAM with two players. Each player beyond the
first one uses about 900 additional bytes. Up to five people
can play without affecting the game at all. Nine players will
cause the option/score screen to display incorrectly, but will
not affect the playing of the game. The variable MAXPL in
line 4010 sets the maximum number of players. Set this to
whatever your system can handle.

Wh ere to put the five of diamonds??

The character set is redefined in lines 5000-5110. Graphics
2 displays can use only half the character set. We need up­
percase and non-inverse characters most of the time. The
machine language routine in line 5020 copies one page of
memory. It is used to copy the first two pages of the ROM
character set to the memory location set up in RAM. It is also
used to copy a new high score display.

We redefine four unused characters to be the suit
characters. These are copied directly from ROM. Also, we
create a single character 10, designed using SuperFont (see

87

Part Three

COMPUTEt's First Book of Atari Graphics), and an inverse blank
by turning on all bits.

Dealing the Cards
This program "deals" the cards by randomly choosing a
number between one and 13 for the value and a second
number between one and four for the suit. In order to make
certain that no card is used more than once, these numbers
are mapped into a 52-element array to represent each card. If
the card has been used, a new value and suit are chosen.
Note that while this is a good method for choosing cards for
this game, it would be inadequate if all the cards in the deck
were eventually to be used, because there could be problems
finding an unused card near the end of the deck. In that case
the deck would have to be "reshuffled."

Logical assignments are used to reduce the number of IF­
THEN statements. If a variable could take on many values
depending on several conditions, then memory requirements
are decreased by replacing many IF-THEN statements with
one line containing many logical assignments. This technique
is used in lines 90 and 100, for instance, to determine the new
cursor position caused by the motion of the joystick. These
two lines replaced 12 statements otherwise needed to test all
joystick positions.

Whenever possible, the variables NO and Nl are used to
replace a and 1. The variables take up one byte for each oc­
currence after the first; the constants require six bytes every
time they are used. Since there are more than 250 occur­
rences, this is a considerable savings.

Program 3-5. Poker Solitaire

8 REM COMMENTS NOT NEEDED FOR PROGRAM
EXECUTION

9 REM LEAST-USED ROUTINES AT END OF P
ROGRAM

10 CLR :GOSUB 4000:GOTO 3000
15 REM BEGIN GAME
20 FOR J=N1 TO --. C"

L..J

--. C" REM RESET ATTRACT MODE L..J

26 REM RANDOMLY CHOOSE VALUE AND SUIT

88

Part Three

30 POKE 77,N0:F=N0:C=INT(RNDCN0)'13)+
Nl:S=INT(RND(N0)'4)+Nl:IF PLAY«S­
Nl)'13+C-l,DK-l)=Nl THEN 30

35 REM RECORD THAT CARD HAS BEEN USED
36 REM IF SUIT=HEARTS OR DIAMONDS FLA

G F WILL CAUSE SUIT TO BE PRINTED
IN RED

4!Z1 PLAY((S-Nl)*13+C-l,DK-1}=Nl: IF S=N
1 OR S=3 THEN F=32

50 POSITION 10~11:? #6;CDS(C,C);CHRS(
ASC(SUITS(S,S»+F):POSITION X,Y:?
#6; ";])@";: POSITION X, Y

60 FOR I=Nl TO 25:NEXT I
70 STK=(PL-Nl)'iSTKS } Nl)
8~ A=STICK(STK):IF A=15 THEN 240

85 REM DETERMINE NEW X-V COORDINATES
9f! X=X+3* «A }4) AND (A{8» -3* «(A>8) A

ND (A<12»):X=X,(X}=N1 AND X{=13)+1
3t<X<Nl}+(X>i3)

1 i21 !2! Y = Y + 2:+: ((A = 5) 0 ::;. (A = 9) 0 F: (A = 1 3)) -
2!«A=6) OF: (A=Hn OR (A=14»:Y=Y
*(Y)=N0 AND Y{=8)+8*CY{N0)

105 REM CHECK IF NEW LOCATION IS FREE
106 REM IF NOT, SET PARAMETERS TO CAL

L SUBROUTINE AT 1000

107 REM CARD CURRENTLY AT LOCATION WI
LL BLINK ON AND OFF UNTIL JOYSTIC
K IS MOVED

110 IF MATC(INT(X/3),INT(Y/2)+5*CPL-N
1»=N0 THEN ON FLAG GOTO 180,190

120 K=N0:IF FLAG=Nl THEN? #6;BL32S;B
L32$;:FLAG=2

130 XSV(PL)=INT(X/3):YSV(PL)=INT(Y/2)
+5*(PL-Nl):CD=MATC(XSV(PL),YSV(PL
»:SUIT=MATS(XSV(PL),YSV(PL»

140 IF SUIT=Nl OR SUIT=3 THEN K=32
150 SS(Nl)=CDS(CD):S$(2)=CHRS(ASC(SUI

TS(SUIT))+1<) :A$="
Y

":XPOS=x:YPos=

89

Part Three

155 REM IF RETURN FROM SUBROUTINE WAS
DUE TO TRIGGER BEING PUSHED THEN
RETURN TO SUBROUTINE

160 GOSUB 1000:IF OP=7 AND L=15 THEN
16iD

170 A=L:ON INT(OP/2)+ (OP=7) GOTO 3010
,301!!I, 3220, 9!ZI

175 REM IF NEW LOCATION IS FREE, MOVE
CURSOR

180? #6;BL32$;BL32$;
190 FLAG=Nl:FOR I=N0 TO 2:S0UND Nl,10

0-1, lQ!, 15:S0UND 2,1*15,11, 15:NEXT
I:SOUND Nl,0,N0,N0:S0UND 2,N0,N0

, NQ!
2QI!!I POSITION X, Y: ') #6; ";1) ;1)": POSITION X

, Y
205 REM CHECK FOR INPUT FROM JOYSTICK

, TRIGGER, OR CONSOLE BUTTONS
210 IF STICK(STK)<>15 THEN 60
215 REM CONSOLE BUTTONS CHANGE LOCATI

ON 53279
216
217
218
219

F:EM
REM
REM
REM

3:
5:
6:
7:

OPTION
SELECT
STAF:T
NO BUTTON PUSHED

220 OP=PEEK(532 7 9':IF OP(7 THEN ON IN
T(OP!2) GO TO 3010 , 3010,3220

230 IF J=25 THEN 250
240 ON STRIG(STK) ~ 1 GOTO 270,210
250 FOR I=Nl TO 30:IF STICK(STK) < >15

THEN POP :GOTO 60
261!:1 NEXT I
265 REM TRIGGER HAS BEEN PUSHED
266 REM PRINT CARD AT LOCATION
270 FOR I=N0 TO 15:S0UND Nl,100-S*5,1

ID,15-I:NEXT I
280 ? #6;CD$(C,C) ;CHRS (ASC(SUITS(S,S)

) +F):POSITION X,Y
290 FOR I=N0 TO 15:S0UND N0,100-C,10,

15-I:NEXT I:FOR I=Nl TO 10:NEXT I
300 SOUND N0,N0,N0,N0:S0UND Nl,N0,N0,

NY-I

90

Part Three

305 REM CHECK FOR INPUT
310 FOR I=N1 TO 25:0P=PEEK(53279):IF

OP<7 THEN POP :ON INT(OP!2) GOTO
3~211 !2!, 3(2! 1 (9, 322~j

32f2! NEXT I
330 IF STICK(STK,<>15 THEN 60
340 IF J=25 THEN 360
350 ON STRIG(STK)+Nl GO TO 380,310
355 REM ALLOWS SCREEN TO BE HELD AFTE

R AUTOMATIC PLACEMENT OF 25TH CAR
D

360 FOR I=Nl TO 30:IF STICK(STK'<>15
THEN POP :GOTO 60

3712! NEXT I
375 REM TRIGGER WAS PUSHED FOR FINAL

PLACEMENT OF CARD
380 FOR I=NI21 TO 15: SOUND N!2I , 19i2!-C'2, 1

!21,15-I:NEXT I
390 MATC(INT(X/3),INT(V/2)+5'(PL-Nl»

=C:MATS(INT(X/3),INT(V/2)+5*(PL-N
1)) =S

400 SOUND N0,N0,N0,N0:S0UND Nl,N0,N0,
N0

405 REM FIND TOPMOST/LEFTMOST FREE PO
SITION FOR CURSOR

410 FOR V=5*(PL-Nl) TO 4+5'(PL-Nl):FO
R X=N0 TO 4:IF MATC(X,V)=N0 THEN
POP : GOTO 43 121

420 NEXT X:NEXT V
430 X=X'3+Nl:V=(V-5*(PL-Nl»*2
440 IF J=25 AND STRIG(STK'=N0 THEN 44

!21
445 REM SAVE STATISTICS FOR THIS PLAY

EF:
450 XSV(PL) =X:VSV(PL)=Y:PL=PL+Nl:IF P

L)NP THEN PL=Nl
460 IF DKS)Nl THEN DK=PL
4 '0:::­

O-J REM RELOAD STATISTICS
AVER

FOR NEXT PL

470 X=XSV(PL):V=VSV(PL):POKE 89,SC2(P
L):POKE START+Nl,SC2(PL)

48121 POSITION 1!21, 11:? #6;" l!: IF PL=Nl
THEN 51 !2l

91

Part Three

490 IF DKS}Nl THEN 30
5 lZH!i GOT 0 5 :~!

510 NEXT J:GOTO 2000
995 REM SUBROUTINE FOR BLINKING
996 REM VALUE IS IN S$;A$ CONTAINS EN

OUGH BLANKS TO COVER S5
997 REM X-V COORDINATES IN XPOS-YPOS
998 REM CHECKS FOR INPUT WHILE ALTERN

ATELY PRINTING S$ AND A$
999 REM RETURNS TO CALLING SUBROUTINE

IF INPUT RECEIVED~ UNLESS START
IS INDICATED~ IN (,LJHICH CASE GAME
IS STARTED

1000 POSITION XPOS~YPOS:? #6;A$:I=STR
IG(STK):L=STICK (STK):OP=PEEK(532
~O) / . ,

1010 IF I=Nl AND L=15 AND OP=7 THEN 1
f130

1020 ON OP GOTO 1030~1030~1080,1030,1

080 ~ 321 Q! ~ 1 f!8!~!
1030 FOR K=Nl TO 10:I=STRIG(STK):L=ST

ICK(STK):OP=PEEK(53279)
1040 IF I=N0 OR L{>15 OR OP{7 THEN PO

SITION XPOS~YPOS:? #6;S$:POP :GO
TO 1 !2J2(~!

1050 NEXT K:POSITION XPOS , YPOS:? #6;S
$:FOR K=Nl TO 40:I=STRIG(STK):L=
STICK(STK):OP=PEEK(53279)

1060 IF I=N0 OR L{>1 5 OR OP { 7 THEN PO
P : GOTO 1 12!2 !!l

1070 NEXT K:GOTO 1000
1080 IF OP {>7 THEN I=(OP{>3):L=13+(OP

<>5)*2
1090 POSITION XPOS~YPOS :? #6;S$
1 1 f! 0 I F (S $ = II pSlfil iik." AND I = N l21) 0 R (LEN

(S$)=2) THEN RETURN
1110 FOR K=5 TO N1 STEP -1~SOUND N0~I

*(100-K)+L*5,14,15:NEXT K!SOUND
N0~N0~N0~N0:RETURN

1995 REM SCORING ROUTINE
1996 REM CLEAR AND RESET OPTION/SCORE

SCREEN

92

Part Three

2000 POKE 89~SC2(MAXPL+N1) :POSITION N
0~N0:FOR I=N0 TO 7:? #6;BLANK$;~
NEXT I

2010 S$=STR$ (H S):GOSUB 2490:POSITION
3 ~ N P + 1 : ':) # 6; n tit:l!l.W--"lIll.j iitg" ; C H R -$ (AS
C(I:")+96);" ";S$

2020 FOR SCS=Nl TO NP:STK=(SCS-Nl)*(S
TKS}Nl):POKE 89~SC2(SCS):POKE ST
ART+Nl~SC2(SCS) :POSITION ll!!~ 11:':)

#6; II

2030 SC=N0:FOR Y=5*(SCS-N1) TO 4+(5*(
SCS-1»):FOR X=N1 TO 13:EC(X)=N0:
NEXT X:FOR X=Nl TO 4:ES(X)=N0:NE
XT X

2035 REM PLACE INFORMATION FROM ONE H
ORIZONTAL HAND INTO ARRAYS FOR S
CORING

2040 FOR X=N0 TO 4:C=MATC(X~Y):EC(C)=

EC(C)+N1:S=MATS(X~Y): ES(S)=ES(S)

+N1:NEXT X:XS=16:YS=(Y-5*(SCS-1)
'*2

2045 REM GO TO EVALUATION SUBROUTINE,
THEN TO DISPLAY SUBROUTINE

2050 GOSUB 2110:GOSUB 2290:NEXT Y
2055 REM VERTICAL HANDS SCORED
2060 FOR X=N0 TO 4:FOR Y=Nl TO 13:EC(

Y)=N0:NEXT Y:FOR Y=Nl TO 4:ES(Y)
=N0:NEXT Y

2070 FOR Y=5*(SCS-N1) TO 4+5*(SCS-N1)
2080 C=MATC(X~Y):EC(C)=EC(C)+Nl:S=MAT

S(X~Y):ES(S)=ES(S)+N1:NEXT Y:XS=
X*3+Nl:YS=10+(INT(X / 2)*2=X)

209Qi YS=10
2100 GOSUB 2110:GOSUB 2290:NEXT X:GOT

o 23ft!!
2105 REM EVALUATION SUBROUTINE
2106 REM CHECK FOR FLUSH
2110 F=N0:FOR I=Nl TO 4 :I F ES(I)=5 TH

EN F=N1
212Q! NEXT I
2125 REM CHECK NUMBER OF OCCURRENCES

FOR EACH VALUE

93

Part Three

2130 S=N0:P=N0:T=N0:FOR I=Nl TO 13:oN
EC(I)+Nl GOTo 2140~2150~2180~22

0121,2190
2140 S=N0:GOTO 2220
2150 S=S+N1:IF S=5 THEN POP :GOTo

121
2160 IF S=4 AND 1=4 AND EC(13)=N1 THE

N POP : GOTO 225121
217s!:! GOTO 222QI
2175 REM TWO OF A KIND
2180 P=P+N1:S=N0 : GOTO 2210
2190 POP :GOTO 2240
2195 REM THREE OF A KIND
221ZI!Z1 T=T+N 1: S=t-H21
2205 REM. CHEC K FOR F ULL HOUSE
2210 IF P*2+T*3=5 THEN SCORE=SCORES(3

) : POP : GOTO 22812!
222Y-! NEXT I
2225 REM SCORES FLUSH~ ONE PAIR~ TWO

PAIF:~ THREE OF A KIND
2230 SCORE=SCORES(4'*(F=Nl)+SCORES(8)

(P=N1)+SCORES(7)(P=2)+SCORES(6
'*(T=Nl):GOTO 2280

2235 REM FOUR OF A KIND
2240 SCORE=SCORES(2):GOTo 2280
2250 IF 1=13 THEN GOTO 2270
2255 REM STRAIGHT FLUSH OR STRAIGHT
2260 SCORE=SCORES(Nl)*(F=Nl)+SCORES(5

'*(F{} N1):GOTO 2280
2265 REM ROYAL FLUSH OR STRAIGHT
2270 SCORE=SCORES(N0'*(F=Nl)+SCORES(5

)*(F <> N1)
22812) RETURN
2285 REM DISPLAY SCORE
2286 REM ROYAL FLUSH HAS SEPARATE DIS

PLAY ROUTINE
2290 IF SCORE=SCORES(N0) THEN 2330
2300 FOR I=6*SCORE TO 2.7*SCORE STEP

-2:S0UND N0~I~10~5:S0UND N1~I/2~
12~6:NEXT I

2305 REM SCORE OF 0 GETS A RASPBERRY
2310 IF SCoRE=N0 THEN FOR I=N1 TO 15:

94

Part Three

SOUND N1,204,2~14:NEXT I
2320 POSITION XS+(SCORE<10)~YS:S$=STR

$(SCORE):SOUND N1~N0~N0,N0:S0UND
N0~N0,N0,N0:GOSUB 2490:? #6;S$:

GOTO 2351!!
2330 FOR 1=13 TO N1 STEP -1:FOR J=N1

TO 13:S0UND N0,I*J,10~8:S0UND N1
, Jt15, 14~ 112!: NEXT J: NEXT I
REM $ IS REDEFINED TO BE A SINGL
E CHARACTEF: 1!2!

234121 POSITION XS,YS:PUT #6,ASC("$")+1

236!Z!
2365

28: PUT #6, ASC ("e!") +128
SOUND N0,N0,N0,N0:S0UND N1,N0,N0
, Nf!
SC=SC+SCORE:RETURN
REM ALL 10 HANDS HAVE BEEN SCORE
D

2366 REM TOTAL SCORE IS DISPLAYED IN
BOTTOM RIGHT-HAND CORNER

2370 FOR I=N1 TO 150:NEXT I
2380 FOR 1=10 TO 60 STEP 10:FOR J=193

TO 243 STEP 25:S0UND 0,1,10,15:
SOUND 1,J,4~10:S0UND 2,243,1,15

2390 NEXT J:NEXT I:FOR I=N1 TO 25:NEX
T I

2400 SS=STRS(SC):SDUND N0,N0,N0,N0:S0
UND N 1 , N;~!, N!21, N!2j: GOSUE 249!21:; A$= II

2410 XPOS=16+3-LEN(SS):YPOS=10:PDSITI
ON XPOS,YPOS:? #6;SS:FOR I=Nl TO

25:;NEXT I

2420 SOUND N0,N0,N0,N0:S0UND N1,N0,N0
,N0:SDUND 2,N0,N0,N0:FOR I=Nl TO

25:NEXT I
2425 REM POKE ADDRESS OF OPTION/SCORE

SCREEN INTO WRITE-SCREEN POINTE
R

2426 REM IF PLAYER'S SCORE IS HIGHEST
SO FAR, UPDATE HIGH SCORE LINE

2427 REM THEN REPLACE HIGH SCORE SCRE
EN WITH PLAYER'S SCREEN

95

Part Three

2430 POKE 89,SC2(MAXPL+Nl):IF SC (=HS
THEN 245!!!

2440 HS=SC:A=USR(1536,SC2(SCS)*256,SC
2(MAXPL+2)1256):POSITION 15,NP+l
:? #6;S$

2445 REM RECORD PLAYER"S SCORE ON OPT
ION/SCORE SCF:EEN

245SZ1 POSITION 3, (SeS-Nl)::? #6; "player-
II • ,

246!!1 PUT #6, SCS+272:? #6; CHR$ (ASC (" : II

)+224);:POSITION 13+(SC(100)+(SC
(10),PEEK(84):? #6;SC

2465 REM BLINK FINAL SCORE UNTIL PLAY
ER INDICATES TO PROCEED

2470 POKE 89,SC2(SCS):GOSUB 1000:IF 0
P=3 OR OP=5 THEN POP :SCS=SCS+Nl
: GOTO 3!!!Q!!z!

,

2475 REM SCORE NEXT PLAYER'S SCREEN
2480 NEXT SCS:GOTO 3000
2485 REM SUBROUTINE TO CONVERT SCORE

FROM TAN NUMERALS TO WHITE NUMER
ALS

2490 FOR I=N1 TO LEN(S$):S$(I,I)=CHR$
(ASC(S$(I~I»+224):NEXT I:RETURN

2995 REM OPTION/SCORE SCREEN ROUTINE
2996 REM VARIABLE SC IS USED TO CALCU

LATE POSITION OF HIGH SCORE LINE
3000 SC=NP+N1
3005 REM ADDRESS OF OPTION/SCORE SCRE

EN IS POKED TO WRITE AND DISPLAY
SCREEN POINTERS

3010 POKE 89,SC2(MAXPL+N1):POKE START
+N1,SC2(MAXPL+N1):POKE 559,34

3020 FOR I=N1 TO 45:NEXT I:STK=N0
3025 REM START OPTION
303f! XPOS=7: YPOS=7: S$= l50iFiilli.": A$= II

{5 SPACES}": GOSUB 100lZl: IF I=N!!! T
HEN 3220

3035 REM NUMBER OF PLAYERS, SAME/DIFF
ERENT DECKS, SAME/DIFFERENT JOYS
TICKS OPTIONS

3040 FOR I=N1 TO 25:NEXT I

96

Part Three

3050 XPOS=15:FOR N=N0 TO 2:VPOS=9+N
3055 REM S$ CONTAINS OPTION CURRENTLV

BEING EXERCISED
3060 S$=STR$(NP*(N=N0)+DKS*(N=I)+STKS * (N=2»: A$=" ": GOSUB 101~j!Zj: IF I=N

1 THEN 311i21
3070 ON N+Nl GOSUB 3080,3090,3100,310

0: GOTO 312j6~2j

3075 REM UPDATE APPROPRIATE VALUE(S)
3080 NP=NP*(NP < MAXPL)+Nl:DKS=(NP-Nl)*

(DKS } Nl)+Nl:STKS=(NP (5)*(NP-Nl'*
(STKS } Nl)+Nl:RETURN

3090 DKS=(NP-Nl ' *(DKS<NP)+Nl:RETURN
3100 STKS=(NP { 5)*(NP-Nl)*(STKS<NP)+Nl

:RETURN
3110 FOR I=Nl TO 25:NEXT I:NEXT N
3115 REM IF ANY SCORES ARE DISPLAVED,

ALLOW THESE TO BE REVIEWED
3120 IF SCS=N0 THEN 3160
3130 FOR N=Nl TO SCS-Nl
3140 XPOS=10:VPOS=(N-Nl) :S$=CHR$(ASC(

STR$ (N» +224): A$=" ": GOSUB 10f10:
IF I=N0 THEN GOSUB 3190

3150 FOR I=Nl TO 25:NEXT I:NEXT N
3160 IF HS=N0 AND SCS=N0 THEN 3020
3165 REM IF A HIGH SCORE EXISTS, ALLO

W THAT SCREEN TO BE REVIEWED
3170 N=MAXPL+2:XPOS=3:VPOS=SC:S$="~

! ._-ili.] it:;" : A $ = " { 1 0 SPA C E S} .. : GO SUB 1
000:IF I=N0 THEN GOSUB 3190

318Q! GOTO 302!~i

3190 XPOS=N0: VPOS=N0: S$=" ": A$=" ": PO
KE START+Nl,SC2(N):FOR 1=1 TO 50
:NEXT I

3200 GOSUB 1000:POKE START+Nl,SC2(MAX
PL+Nl) : F:ETURN

3205 REM REINITIALIZE FOR NEW GAME
3210 POSITION XPOS,VPOS:? #6;S$
3220 FOR K=2 TO 10:S0UND N0,K*(130-K)

+L*5,14,15:NEXT K:SOUND N0,N0,N0
, Nl~

3225 REM BRANCHING PREMATURELV OUT OF

97

Part Three

FOR-NEXT LOOPS CAN CAUSE ERRORS
3226 REM POP's WILL CLEAR THE STACK 0

F UNNEEDED RETURN ADDRESSES
3230 POP :POP :POP :POP ~FOR I=N0 TO

4:FOR J=N0 TO NP*5-1:MATCCI,J)=N
0:MATS(I,Jl=N0:NEXT J:NEXT I:SCS
=N0

3240 FOR I=N0 TO 51:FOR J=N0 TO DKS-l
:PLAY(I,J)=N0:NEXT J:NEXT I:POKE
89,SC2(Nl)

3250 FOR PL=Nl TO NP:POKE 89,SC2(PL)
3260 POSITION N1,N0:FOR I=N1 TO 5:FOR

J=N1 TO 5: 7 #6; BL32$; BL32$; II ";

:NEXT J
3271!! ? #6; II

328~~! POSITION N1, (I;*2:NEXT I
3290 POSITION N1,10:? #6;BLANK$(Nl,18

):X=N1:Y=N0:POSITION Nl,11:7 #6;
BLANK$ (N1, 18)

3300 XSV(PL)=X:YSV(PL)=Y
331!~! A$="PLAYEF:!I: FOR 1=1 TO 6: POSITIO

N 19,I-1:PUT #6,ASC(A$(I,I»+32:
NEXT I:POSITION 19,7:PUT #6,272+
PL:NEXT PL

3320 POKE 89,SC2(Nll:POKE START+Nl,SC
2(Nl):PL=Nl:DK=Nl:FLAG=Nl

3330 FOR 1=8 TO Nt STEP -1:FOR J=l TO
8: SOUND fl, I, 1!!1, 8: SOUND 1, J, 14, 1

0:NEXT J:NEXT I:SOUND 0,0,0,0:S0
U N D 1, I!! , fi , 0

334121 GOTO 2!2!
3995 REM INITIAL DIMENSIONS AND SET U

P
4000 GRAPHICS 2+16:POSITION 7,1: 7 #6;

II PO K E R II : PO SIT ION 5, 3 :? # 6; II ~-'lI] III Ii.
t:)II.; ."

4005 REM MAXPL IS THE MAXIMUM NUMBER
OF PLAYERS DURING A RUN

4010 MAXPL=2:N0=0:Nl=i:HS=0
4015 REM ARRAYS ARE DIMENSIONED FOR T

HE MAXIMUM NUMBER OF PLAYERS

98

Part Three

4020 DIM XSV(MAXPL),YSV(MAXPL),PLAY(5
I,MAXPL-l),MATC(4,MAXPL*5-Nl),MA
TS(4,MAXPL*5-Nl),SC2(MAXPL+2)

403(2J DIM CDS (13), SUITS (4), AS (12), SS (1
2), EC (13), ES (4), SCORES (8) , BLANKS
(2fJ) ,BL32S(Nl)

4035 REM SCORE FOR EACH POSSIBLE POKE
R HAND, I N DESCEND I NG ORDEF:

4040 RESTORE 4050:FOR I=N0 TO 8:READ
J:SCORES(I)=J:NEXT I

4050 DATA 100,75,50,25,20,15,10,5,2,
4055 REM A DIFFERENT COLOR BLANK
4056 REM BLANK LINE (20 BLANKS)
4060 BL32S=CHRS(ASC("@")+32):BLANKS="

{20 SPACES}"
4065 REM FIND 4 PAGES BELOW RAMTOP FO

R REDEFINED CHARACTER SET
4070 CHSET=(PEEK(106)-4)*2 56
4075 REM FIND 1 PAGE FOR EACH OF THE

DISPLAY SCREENS NEEDED
4076 REM (1 FOR EACH PLAYER, 1 FOR OP

TION/DISPLAY SCREEN, 1 FOR HIGH
SCORE SCREEN)

4080 FOR I=Nl TO MAXPL+2:NSC=(PEEK(10
6)-4-1'*256

4090 SC2(I)=INT(NSC/256):NEXT I:GOSUB
50!Hi

4095 REM BEGINNING OF DISPLAY SCREEN
4096 REM ALL SCREENS WILL BE ON EVEN

PAGE, SO LEAST SIGNIFICANT BYTE
WILL BE l21

4100 START=PEEK(560)+PEEK(561)* 256+4:
F' 0 K E 8 8 , "HI

4105 REM CLEAR ALL SCREENS
4110 FOR F'L=Nl TO MAXPL+N1:F'OKE 89,SC

2(F'L):POSITION N0,N0:FOR J=N0 TO
II:? #6;BLANKS;:NEXT J:NEXT PL

4115 REM SET UP OPTION/SCORE SCREEN
412121 POS I T I ON N 1 ,9;? #6;" E:_ll_:J.:\·IiI#4:~1

r." ; : N P = N 1 :? # 6; N P : PO SIT ION 8, 1121
:? #6;" I~);;(ij:"'''''' ; : DI<S=N 1:? #6; OKS

99

Part Three

4 1 3 f! PO SIT ION 7 ~ 1 1 :? # 6; "18 (1:3 :,.,.. .. ; : S
TKS=Nl:? #6;STKS : POSITION 7~7:?
it 6; u 5if$j iii- II

4135 REM CARD VALUES AND SUITS
4136 REM $ IS REDEFINED TO BE SINGLE

CHARACTEF: 1 !~i
4137 REM ~~~~~~~ IN INVERSE VIDEO ARE

REDEFINED TO BE THE GRAPHICS CH
ARACTERS FOR HEARTS,CLUBS~DIAMON
DS.SPADES

4140 RESTORE 4150:FOR I=Nl TO 13:READ
A$:CD$(I)=A$:NEXT I:FOR I=Nl TO
4:READ A$:SUIT$(I)=A$:NEXT I

4150 DATA 2,3~4~5,6,7~8,9,$,J~Q,K,A,~
~ ~, ~~ till

4155 REM DISABLE DISPLAY SCREEN TO AV
DID FLICKER WHILE NEW DISPLAY se
REEN ADDRESS IS POKED IN

4160 POKE 559,N0:PO KE START,N0
4170 RETURN
4995 REM REDEFINE CHARACTER SET
4996 REM IF THE END OF THE PROGRAM (P

EEK (144)+PEEK(145'*256) EXTENDS
INTO THE MEMORY FOR DISPLAY SCRE
ENS~

4997 REM THERE IS NOT ENOUGH MEMORY;
SEE TEXT

5000 IF SC2(MAXPL+2) *256(PEEK(144)+PE
EK (145) *256 THEN GRAP HICS NQi:~' II

NOT ENOUGH MEMORY; DECREASE MAXP
L" : END

5005 REM MACH I NE LANGUAGE ROUTINE TO
COPY ONE PAGE OF MEMORY FROM ONE

LOCATION TO ANOTHER
5010 J=CHS E T:RESTORE 5020~FOR I=N0 TO

20:READ A:POKE 1536+I,A:K= K+A:N
EXT I

5020 DATA 1 0 4 ~ 104~1 3 3~206 ~ 104 , 104~133

~2 0 4,104 , 160,0~1 7 7 ~ 205~145,203,2

00 , 192 ~ 0,208 , 247 , 96

5025 REM SUM CHECK HELPS DECREASE THE
L I KELIHOOD OF S YSTEM CRASH DUE

TO INCORRECT T YPING OF LINE 5020

100

Part Three

5030 IF K<> 3029 THEN GRAPHICS N0:? :?
.. CHECK LINE 5!212!2! FOR ERROR":? :

LIST 5i212i21: END
5035 REM COPY FIRST HALF OF ROM CHARA

CTER SET TO RAM
5040 A=USR(1536~57344~CHSET):A=USR(15

36~57344+256~CHSET+256}

5045 REM REDEFINE SUIT CHARACTERS
5046 REM REPLACE ~,~~~,~ WITH THE GRA

PHICS CHARACTERS FOR THE SUITS
5050 S=J:J=J+472:AS (I,1)=CHRS(N0):A$(

2,2)=CHR$(16}!A$(3,3)=CHR$(96):A
$(4,4)=CHR$(123)

5060 FOR I=Nl TO 4:FOR K=N0 TO 7:POKE
J+«I-Nl)t8+K),PEEK(57344+(ASC(

A$ (I, I)) +64* (1 <3)) :*8+!<) : NEXT K: N
EXT I

5065 REM SINGLE CHARACTER 10
5070 RESTORE 5080:A=S+8*4:FOR I=N0 TO

7:READ N:POKE A+I,N:NEXT I
5080 DATA O,102,237,109,107,107,246,O
5085 REM REDEFINE @ TO BE INVERSE VID

EO BLANK
5090 S=S+8*32:FOR 1=0 TO 7:POKE S+I,2

55:NEXT I
5095 REM ADDRESS OF NEW CHARACTER SET
5100 POKE 756,CHSET/256
5110 RETURN

101

Part Four

MathMan
Andy Hayes

Translated for the Atari by Charles Br.annan

Entertaining animation makes this math practice game fun to play.

Here's a program which proves that computer-aided math
practice need not be boring. In the guise of a game,
"MathMan" teaches multiplication facts by presenting random
problems. The player (or student) types in the answer and
presses RETURN. If he is correct, his friends gathered below
cheer, but if the player fails to guess correctly one of his
friends will run away in shame. If all six friends flee, the
game is over.

A good player can advance to the next level by success­
fully completing ten problems. The problems get successively
more difficult, so this single program will provide challenge
for almost any elementary school child. (Adults may also en­
joy the animation.)

Multiplication practice ca ll be fun with "Mati1l11al1 ,"

105

Part Four

Program 4-1. MathMan

o A=6
1 LV=1
10 GRAPHICS 0:POKE 82,0:POKE 752,1:?

"{CLEAR}"
11 Y=INT(RND(0)*15):SETCOLOR 4,Y,6:SE

TCOLOR 2,Y,4
2~! POSITION 121,16
20 Y-!? _{ F} "
22Q! ?

23121 ?
240 ?

{ 3 t#! :Iilli a;o.1} "
{ 4 ;;.--, :Iilli ?i-1} "
{5 t#! :Iilli ?i-1} "

25121? {6 t#! :l:IIi ?i-1} "
26!!1? { 7 ;;.--, :Ii!!:1 ?i'-1} "
270 IF A=0 THEN 3000
275 FOR 1=1 TO A
280 POSITION 1*3+6,17
29121 ? "{RIGHT} {Q} {E} {DOl!JN} {2 LEFT}

{Z}{C}{DOWN}{2 LEFT}{E}{Q}{DOWN}
{2 LEFT}{F}{G}"

295 NEXT I
298 SC=PEEK(88)+256*PEEK(89)
299 POSITION 121,0:? "LEVEL ";LV
322 IF 0=10 THEN LV=LV+1:GOTO 2000
35121 S=LV*2
355 0=0+1
360 B=INT(RND(11*S)+1
370 C=INT(RND(1)*9)+1
375 POSITION I~j, 22:? "SCORE-"; SCO;"

{3 SPACES}TURNS-";O
38!!! POSITION 11!!, 5:? B; I!

39Q! POSITION 8,7:? "X ";C
4 !!J !2! POSITION 8,8:? "{6 R}"
41121 POSITION 8,9:? "{6 SPACES}"
415 TRAP 415:POSITION 8,10:INPUT AS:T

RAP 4!2i f21 0 I!!

430 IF AS=B*C THEN 700
440 IF AS<>B*C THEN 1000
700 SCO=SCO+5 'LV
711 POSITION 1Ql, 14:? "1i.:r:l:I:.-ii1:.11 "
715 X=X+l

106

Part Four

730 E=INT(RND(1)'30)+210
742 FOR T=1 TO 10:POKE 710,PEEK(53770

):SOUND 0,T,10,8:NEXT T
743 SETCOLOR 2,9~4:50UND 0~0,0,0
744 IF X=10 THEN X=0:GOTO 760
75;ZI GOTO 715
760 FOR T=1 TO 500
770 COLOR 32:PLOT 0,23:DRAWTO 39,23
77? PLOT 0,10:DRAWTO 39,10
775 PLOT 0,16:DRAWTO 39,16
776 IF 0=10 THEN 790
78!ZI F=f!: GOTO 1 !ZI
790 LV=LV+1:GOTO 2000
1000 Q=SC+6fl4
1005 POKE Q,0:Q=Q-39:POKE Q,10
1010 IF Q-SC{=409 THEN 1030
102fl GOTO 1005
1030 FOR 1=1 TO 10:S0UND O,1,O,10-1:5

OUND 1,1*10+50,2,8
1040 POKE Q,128:POKE Q+l,128:POKE 0-1

,128:POKE 0+40,128:POKE 0-40,128
1050 POKE 0+40,0:POKE 0-40,0:POKE 0,O

:POKE 0-1,0:POKE 0+1,O
1060 NEXT I:SOUND 1,O,O,0
1 !Z! 7 121 PO SIT ION 8, 1 !Z! :? II {4 .. -J :loIH 4--t;- II : PO S

I T I ON l!!I, lIZl:? B * C; II ;;IH)l:;:pil[li_:l:""1:
[3I"

1071 PO SIT ION 8, 12:? II {4 .. -J :l:IH ~1} II : PO S
I T I 0 N 1 !~i, 1 2 :? AS;" QUIIll :_:1 : i€J:1 #II :;
{ 3 .. -] :l:Itt; 41} II

1072 FOR Z=1 TO 200:NEXT Z
1080 REM MAN RUN S AWAY
1 !2!9QI F:EM
1100 FOR I=A*3+6 TO 35
l11e! POSITION I,17:? II {a} {E} {DOvJN}

{3 LEFT} {A}{C}{DOWN}{3 LEFT}
{F} {DOl>JN} {3 LEFT} {F} {G} II

1115 SOUND O,100,O,8
1120 FOR W=1 TO 5:NEXT W
1125 SOUND 0,10,O,8
1130 POSITION I,17:? .. {Q} {E} {DOvJN}

{3 LEFT} {A}{C}{DOWN}{3 LEFT}
{ F:} {D 0 II} N } {3 L EFT} : {G]- "

107

Part Four

1140 FOR W=1 TO 5:NEXT W
1145 SOUND 0~0,0~0
1150 NEXT I
1160 A=A-1:GOTO 10
1199 END
1413 NEXT K
2000 PRINT " {CLEAR}{6 DOWN} YOU MADE

IT THROUGH"
2fiQI5 PRINT "{6 SPACES}LE'v'EL "; LV-1
2010 PRINT "{2 DOWN} YOU NOW ADVANCE

TO"
2~115 PRINT "{6 SPACES}LEVEL "; LV: 0=0:

FOR T=1 TO 500:NEXT T:GOTO 10
3!?H!H!1 REM
31Z1 1 0 P R I NT" {C LEA R } {4 DOW I'D SO R R Y BUT

YOU LOST ALL";
3020 PRINT" {2 DOt,.JN} {7 SPACES}YOUR ME

N"
3Y.:130 PRINT "{4 DOWN} {4 SPACES}YOUR SC

ORE WAS"
3y':140 PR I NT "{2 DOL-Jt,1} {7 SPACES}"; SCO

108

Part Four

Word Bunt
Robert w. Baker

Translated for the Atari by Charles Brannon

Word search puzzles are interesting and enjoyable. This computerized
word search game creates a puzzle using words entered by the players.

This game is designed to test your ability to find specific
words or letter sequences hidden in a ten-by-ten letter matrix.
Scoring is based on the time it takes to enter your correct
answer within a given time period determined by the skill
level selected. The program uses very little memory and will
easily run in BK.

To play the game, first select the skill level you want to
play at, between one and five. One is the easiest, allowing
the maximum time of approximately 1.5 minutes to find each
word. Skill level five, however, will allow only about 20
seconds to find each word.

Entering the Words
Next enter a list of ten words, each being three to eight
characters long. Only the letters A to Z may be entered, but
they really do not have to be words. You can even use the
game to make learning foreign languages more fun. If two
people are playing, let one player enter the words for the
other to find . Try to mix the word lengths entering both long
and short words for best results. If too many long words are
entered, it may take awhile for the puzzle to be generated. If
any word will not fit into the matrix, enter a new list of
words when asked.

When the puzzle is ready, hit any key to start the game.
Timing starts when the first word is shown.

Scoring for a correct answer is based on the amount of
time it takes to respond, with 100 points maximum for each
of ten words. If a correct answer is given in five seconds, you
score 100 points. After that, your possible score decreases
with time to a minimum of ten points for a correct answer. A
wrong answer does not score any points, and you get only
one try for each word.

109

Part Four

~ ~

012345678~ COMPUTE

0 FOHFBBFVLT
~ 1 ROClPHG05DO 5TARTING LOCATION
~ 2 E5RIRHRVIO (ROH, COLUHN) :

3 TOEHCKH55B
4 NUTCUPURKF
5 ITUV5LLEET
6 RPPBXOA5RU
7 PUHV5XOVAP
8 TT05ER5V5N
3 LECVGIVVHI

~
7 8 1

L:J ,,/
6-41-2 /" 5 . 4 3

How many words cal1 you find il1 our puzzle?

To enter your answer, you give a row and column
number of the first character of the word, followed by the
direction code (see the diagram in the game) . Any invalid en­
tries are discarded, and you type only numbers; you do not
type a comma or RETURN.

Program Variables
Before looking at how the program actually works, let's take a
look at the major variables used in the program:

110

5 - defines the size of the letter matrix to be created.
W - defines the number of words to be entered and
used in the matrix .
M(S,S) - is the actual letter matrix; note that a floating
point numeric matrix is used instead of a string matrix.
More about this later.
W$(W) - contains the word list .
L(W,3) - remembers the starting location and direction of
each word after it has been placed in the letter matrix.
Each entry directly corresponds to the entry in the same
position in the word matrix .
P(S,S) and F(8) - are working matrices used to create the
actual letter matrix used in the game.

Part Four

Program Description
Now let's take a look at how the program works. First the
program gets the desired skill level (SL) as a number between
one and five . The program sets a default value of three on
the input line that the user can change before hitting the
RETURN key. Lines 130-290 then get the list of words and
check if each is a valid character string (A-Z). Each word is
put into the word list in alphabetical order as it is entered by
the user. This avoids the time-consuming process of sorting
the entire word list at the end. In this way, there is a short
delay as each word is entered. This short delay is not even
noticeable by the user.

Line 340 initializes the letter matrix to all *'s (decimal value
42). Now each word in the word list is inserted randomly in
the letter matrix in the following fashion:

1) The point matrix is cleared (line 360) so we can
remember what points in the matrix have been tried for a
particular word in the word list .
2) Lines 400-440 check that there is still at least one point
in the letter matrix that has not been tried (entry in P is
still 0). If all points have been tried, the user is asked to
enter a new list of words since this list will not fit proper­
ly in the letter matrix.
3) A random starting point (that has not been tried) is
chosen in line 450.
4) The starting point is flagged as having been tried (P
value now I), and then a check is made to see if the
matrix position is open (still *) or matches the first letter
of the word (lines 460-470).
5) Now the direction matrix (F) is cleared to remember
what directions have been tried from this starting point
(line 490).
6) A check is made that a least one direction still hasn't
been tried from this point (lines 500-510).
7) A random direction (that has not been tried) is chosen
in line 520.
8) Then the word is checked to see if it can physically fit
in the matrix in the selected direction from the current
starting point (lines 530-650). This insures that the word
will not exceed the boundaries of the letter matrix from
this point.

111

Part Four

9) If the word can fit, then each character position in the
selected direction is checked against the corresponding
character of the word (lines 670-690). Each character in the
matrix must match the corresponding character in the
word or must be unused (still *).
10) If the word can be entered at this starting point and in
this direction, each letter is inserted in the letter matrix
(lines 710-720) . Then the starting location and direction are
saved for later use (line 740).
11) If the word will not fit, then the next direction is tried
until all directions are exhausted from this point.

When all words have been put into the matrix, the re-
maining unused positions (still *) are filled in with random
letters (lines 760-770).

Play Begins
Everything is now set to play the game, as soon as the player
hits a key (lines 780-800) . The letter matrix is displayed along
with a direction code diagram and a score box (lines 820-960) .
A word is given to the player for him or her to find in the
matrix, and the timer is restarted (lines 970-1000). Then the
program prompts the player for the starting location and
direction code (lines 1020-1170). The values entered are then
checked to see if correct, first against the values saved when
the word was put into the matrix (lines 1190-1210). If the value
does not match, then the program checks to see if a "double"
was created when the unused positions were filled with ran­
dom letters. Thus the program checks the player's answer
again to insure it is right or wrong (lines 1230-1280). If a bad
answer is entered, it is indicated, and the correct answer is
displayed with no score added (lines 1360-1430). A good
answer is indicated and the appropriate score is displayed
and added to the player's total. The score is based on the
selected skill level and the time it takes to enter the answer.

That's all there is to it . I should explain that a numeric
vector is used for the actual letter matrix since it is easier and
faster to use. Most people who have tried this game have
found it to be very interesting and fun to play. At times it can
even be educational.

112

Part Four

Program 4-2. Word Hunt

70 OPEN #1,4, f!, "1<:"
80 S=10:W=10:DIM M(S,S),W$(W*10),LN(W

) ,peS,S) ,L(~1,3) ,F(8) ,R$(l~!I) ,T$(lfl)

85 T$="{10 SPACES}":FOF: I=!!l TO 9:W$(I*
10+1,I*10+10)=T$:NEXT I

90 POI<E 752, !!l: PRINT" {CLEAR} {DOWN}lflHA
T SKILL LEVEL"

10fl? :? "I (EASY) - TO - 5 - (HARD)?
3{2 LEFT}";

110 INPUT X:IF X{l OR X>5 THEN 100
12121 SL=6- X
13l'21 ? "{2 DOWN}ENTER "; W;" WORDS,"
14!!J ? "Each 3 to 7 characters long

{2 DOWN}"

150 REM *** GET WORDS & PUT IN ORDER
160 REM **t LONGEST TO SHORTEST
170 FOR X=l TO W:L(X,1)=0:L(X,2)=0:L(

X,3)=IZI
18!'!1 PRINT "WORD"; X;: INPUT R$
19121 Q=LEN (R$)
2!2HZI IF Q< 3 THEN -J !I * TOO SHORT *": GOT

o 18121

21!ZI IF 0) 7 THEN '7 lit; TOO LONG
o 18iZ!

*":GOT

22121 X9=i2!: T$=" *": T$ (2) =R$: T$ (LEN (T$) +1
)="*":FOR Y=l TO G:A=ASCCT$(Y+l,Y
+ 1))

230 IF A{ 65 OR A)90 THEN X9=1~Y=Q

24121 NEXT Y: IF X9=1 THEN PRINT "* BAD
WOF:D *": GOTO 180

250 IF X=l THEN T$=R$:T$(Q+l)="*":W$(
X*10-9,X*10)=T$:LN(X)=Q+l:GOTO 290

260 X9=0:FOR Y=1 TO X-l:IF Q< =LN(Y)-1
THEN 281!J

270 FOR B=X TO Y+l STEP -1:T$=W$«B-l
) *1121-9, (B-1) *1121): W$ (B*10-9, B*10) =
T$:LN(B)=LN(B-l):NEXT B

113

Part Four

275 T$=R$: T$ (Q+1) ="*": W$ (V*1i21-9, V*1!~I)
=T$:LN(Y)=LEN{TS):Y=X-l

280 NEXT Y:IF X9=0 THEN T$=R$:T$(Q+1)
=" *" : L>J$ (X * 10-9, X * 1 !~I) =T$: LN (X) =LEN
(T$)

29!~1 NEXT X
3!!H!1 POKE 752,1:? II {CLEAF:} {7 DOl~N}That

'5 enough wo~ds!"
31!2! PRINT "{6 DOWN}Please be patient.

320 ? "{3 DOWN}{12 SPACES}I'm now maki
ng the pLlzzle~"

330 REM *** INITIALIZE LETTER MATRIX
t**

340 FOR X=1 TO S:FOR Y=1 TO S:M(Y,X)=
42:NEXT Y:NEXT X:Q=0

350 REM *** INIT POINT MATRIX & GET N
EXT WORD

360 FOR X=l TO S:FOR Y=1 TO S:P(Y,X)=
!~I:NEXT Y

370 NEXT X:Q=Q+1:IF Q} W THEN 760
380 G=LN(Q)-2

390 REM *** TRY ALL POINTS FOR EACH W
ORD

400 X9=0:FOR X=1 TO S:FOR Y=1 TO S:IF
P(Y,X)=0 THEN X9=1:X=S:Y=S

410 NEXT Y:NEXT X:IF X9=1 THEN 450
420 REM *** WORD WILL NOT FIT, TRY AG

AIN

43!~1 '7 "{CLEAF:}This list of words vJil1
not all fit."

440 r;. :? "Please ente~ another list 0

f \o"Jor-ds!": GOTO 13!2!
450 A=INT(S*RNDC1)+1):B=INT(StRND(1)+

1): IF P (B, A) < >121 THEN 45!!1

460 P(B,A)=I:IF M(B,A)=42 THEN 490
470 IF M(B,A)<>ASCCW$(Q*10-9» THEN 4

480 REM *** TRY ALL DIRECTIONS FROM T

114

Part Four

HIS POINT
490 FOR X=1 TO 8~F(X)=0:NEXT X
500 X9=0:FOR X=l TO 8:IF F(X)=0 THEN

X9=I:X=8
510 NEXT X:IF X9=0 THEN 400
520 D=INT(8IRND(I)+I):IF F(D)=1 THEN

52~~j

530 F(D)=1:0N D GOTO 550~590,580~620,
61 !~-j, 65!2!, 641~j, 56!!!

540 REM 11* CHECK WORD WILL FIT
550 IF (A+G)}S THEN 500
561~! IF (B-G) <: 1 THEN 50fl
57£1
58!2!
59!!!
6012l
6112!
62121
63!!1
64!21
650

GOTO 67!2j
IF (B+G)
IF (A+G)
GO TO 6712!
IF (A-G)
IF (B+G)
GOTO 67(2)
IF (B-G)
IF (A-G)

.>S THEN 5!2! !!l
}S THEN 5l2l!21

, -- I THEN 5 !!I!21 --
}S THEN 5f!!2l

---- 1 THEN 512! 121 ,

< 1 THEN 512HZ!
660 REM It* CHECK WORD MATCHES INTO M

ATRIX
670 X=A:Y=B:X9=0:FOR N=2 TO G+l:GOSUB

1550:IF M(Y~X)=42 THEN 690
680 IF M(Y,X)<}ASC(W$«Q-l)*10+N» TH

EN X9=I:N=G+l
690 NEXT N:X=A:Y=B:IF X9=1 THEN 500
700 REM 1** ENTER WORD
710 FOR N=1 TO G+l:IF M(Y,X)=42 THEN

M (Y, X) =ASC (W$ ((Q-l) * 1 QI+N))
720 GOSUB 1550:NEXT N
730 REM *** SAVE START & DIRECTION IN

Fa
740 L(Q,I)=A-l:L(Q~2)=B-l:L(Q,3)=D:IF

D< W THEN 36fl
750 REM 1** FILL IN SPACES
760 FOR Y=l TO S:FOR X=1 TO S:IF M(Y,

X)=42 THEN M(Y,X)=INT(25*RND(1)+6
5)

770 NEXT X:NEXT Y:WP=0:TS=0
78121 --::' "{CLEAR}{112l DOL1JN}{15 SPACES}I;:HiljH'"''

115

Part Four

791Z1 ? "{6 DOWN}Depress any key \o<Jhen r
eady to play!"

800 IF PEEK(764)=255 THEN 800
805 POKE 764,255
810 REM *** SET UP DISPLAY
82 fl ? "{ C LEA R} {D 0 !,lJt.J} {4 SPA C E S}- rlOtl] IIIJ:a: "

; : POKE 85, 26:;? n I:.I.:_~:"
830 REM *** PRINT "ROW" DOWN LEFT COL

UMN
840 REM *** START OUT DOWN 4
850 REM *** LATER DO 5 UP & 3 RIGHT
86i!:! ? "{4 DOWN}I1!{DOWt-D {LEFT}[!:{DOWN}

{LEFT}~{5 UP}{3 RIGHT}";
870 FOR X=0 TO S-1:? X;:NEXT X:? :Y=1

: GOSUB 165!Z1
88121 FOR Y=l TO S'? "{2 RIGHT}"; Y-l; n:

" . ,
890 FOR X=1 TO S:;? CHR$ (M(Y,X»;:NEXT

x
900 ? ":":; NEXT Y: Y=!2l: GOSUB 165121
91£1 ? :? nl~>ij::;;(ijj.(I]:"''''''':? n{DOWN} 7 8

1 "
92121 ? n {3 SPACES} {G}: {F} n ~?" 6{R}

{T}{R}2":? "{3 SPACES}{F}:{G}":?
" 5 4 3"

9 3 :!:I G = 1 6 : GO SUB 1 70 !!:I :? "{ 5 SPA C E S } ?I":
til :; " : PO K E 85, 25 :;? "{ V }
{7 SPACES}{B}"

940 POKE 85,25:? "{V} IZI {4 SPACES}
{B}fI

95121 POKE 85,25:? "{V} {7 SPACES} {B}"

955 POKE 85,25:? II r Q
"\. , M II

• J

960 G=0: GOSUB 1 7 !!l fl :? "{ 19 SPACES}": REM
<-- 19 SPACES

970 WP=WP+1:IF WP>W THEN 1450
980 Q=LN(WP)-1
990 REM *** NEXT WORD
1000 GOSUB 1700:POKE 85,29-(Q/2):? W$

«WP-1) *1!!:1+1, (WP-l) *1fl+Q)
1005 POKE 20,0:POKE 19,0:REM KILL RTC

LK
1010 REM t** GET START LOC

116

Part Four

1t~j20 G=3:: GOSUB 17t~l!~j:? "STARTING LOCAT
ION" : POI<E 85, 2!!!:? "(ROl"'). COLUMN) :
"

1030 FOR G=6 TO 14:GOSUB 1700
1040 ? "{19 SPACES}":NEXT G:G=6:GOSUB

1700:REM < -- 19 SPACES
1050 GET #1,B:IF B=155 THEN 1050
1!~7!Zj PF:INT CHR$ (B);".";: IF B=48 THEN

B=!!!: GOTO 109!'!!
1080 B=B-48:IF B<1 OR B } 9 THEN PRINT

II {2 BACK S} "; : GOTO 1 !215!~!
1 i~19!~! GET # 1, A
1100 IF A=155 THEN 1090
1110 PRINT CHR$(A);:IF A=48 THEN A=0:

GOTO 1140
1120 A=A-48:IF A<1 OR A}9 THEN 1030
1140 G=8: GOSUB 17;~I!!j: PF:INT uD IF:ECTION:

":'7 :PO!<E 85,2 !Z!:? " {LEFT}";
1t5!!) GET #l,D
1160 IF D=155 THEN 1150
1170 PRINT CHR$(D) ;:D =D-48:IF D(1 OR

D >8 THEN 114i2!
1180 REM *** CHK IF GOOD INFO INPUT
1190 WT=PEE K(20) +256*PEEK(19):IF B<>L

(WP,2) THEN 123121
1210 IF D=L (WP,3) THEN 1360
1220 REM *** CHK IF A DOUBLE MAY EXIS

T
1230 X=A+1:Y=B+1:G=LN(WP)-1:IF M(Y,X)

(> A S C (ifJ $ (v.J P * 1 !21 - 9» THE N 1 3 fl!~!
1240 X9=0:FOR N=2 TO G:GOSUB 1550:IF

X<l OR X>10 THEN 1270
1250 IF Y<l OR Y>10 THEN 1270
126121 IF M(Y, X)=ASC (W$«W P-1)*10+N» T

HEN 128121
1270 X9=1:N=G
1280 NEXT N:IF X9=0 THEN 1360
1290 REM *** BAD START/DIR - NO SCORE
13Ql!21 G=6: GOSUB 1 7!2Il~j: PR I NT "

{14 SPACES}"; :B=L(WP,2) :A=L(WP, 1)
: REI"1 14 SPACES

131!,!j '7 B;",";A

117

Part Four

132~1 G=l!~I: GOSUB 17!!10:? "{ 13 SPACES}"; L
(WP~3) :REM 13 SPACES

133~1 G=12: GOSUB 17!!10:? "{ESC} {UP}
{13 SPACES} {ESC} {UP}": REI'l 13 SPAC
ES

13410 G= 13: GOSUB 1 7!21~1:? "{ Z} I::II, CORRE
CT {C}": GOTO 142y-1

13510 REM *** GOOD ANSWER - GET SCORE
13610 IF WT«SL*60) THEN WS=100:GOTO 1

39!O:REM (-- MAX SCORE
13710 IF WT } (SL*120!O) THEN WS=10:GOTO

139!O:REM (-- MIN SCORE
13810 WS=5+INT«(SL*120!O)-WT)/6!O)
13910 G=12:GOSUB 170!O:? "{ESC}{UP}"
1 4 0 10 G = 1 3 : GO SUB 1 7 !~I 0 :? "{ Z} ~, "; W S

;" POINTS":TS=TS+WS
14110 REM *** UPDATE TOTAL SCORE
142i!1 G=18: GOSUB 170i!1:? "{8 RIGHT}"; TS
14310 FOR X=l TO 5100:NEXT X:GOTO 960
14410 REM *** END GAME ***
1450 POSITION 2,15
14610 FOR X=1 TO 8:? "{12 SPACES}":NEXT

X:REM (-- 12 SPACES
1470 FOR G=-2 TO 14:GOSUB 1700
1480 PRINT "{17 SPACES}":NEXT G:REM 17

SPACES
149121 POSITION 2~ 15:? "PLAY AGAIN (Y 0

R N) ?"
1512110 GET #l.R
151121 IF R=ASC("Y") THEN 9121
1520 IF R(>ASC ("N ") THEN 15!~1!!1

153i!1 END
1540 REM *** SUBR TO INC COORDINATES

IN DIR
15510 ON D GOTO 1560~1570~1580~1590~16

0!O~1610~1620~1630

156!!i Y=Y-l
1570 X=X+l:RETURN
1580 X=X+l
1590 Y=Y+l:RETURN
16!~10 Y=Y+l
1610 X=X-l:RETURN

118

Part Four

1620 X=X-l
1630 Y=Y-1:RETURN
1640 REM 11* SUBR FOR BOT TOP/BOTTOM
165~1 PF:INT II {3 F:IGHT} ";: IF Y=l THEN ')

II {Q} "; : GOTO 167~j

1660 PRINT II{Z}II;
167!!! FOF: X=0 TO 5-1:') II{F:}II;:NEXT X:I

F Y=l THEN PRINT "{E}":RETURN
168QI ? II {C} ": RETURN
1690 REM t** SUBR TO POSITION
1700 POSITION 20,G+2:RETURN

119

Part Four

Total Recall
Tina Halcomb

"Total Recall" is a simple memory game. It's easy at first, but as the
computer adds more and more to remember, the game becomes more
difficult .

After playing a game or two of "Simon," it occurred to me
that this would be a terrific game to write for the Atari. After
all, the Atari has color graphics, sound - everything I could
possibly need. However, I couldn't come up with an easy way
to display more than four colors on the screen at one time
without painting my television set.

Then along came the articles on Player/Missile Graphics .
At last I have access to a multitude of colors. What a perfect
solution to my problem:

"Total Recall."

120

Part Four

Using Player/Missile Graphics I drew four vertical bars,
giving each a separate color and sound. As the selection
routine makes each decision, the luminescence of the bar
chosen is changed and its tone sounded. Several counting
routines are called upon to keep track of the events; and
there are, of course, timing loops.

There are also times when the screen is needed for text.
Instructions to the game might be needed. And since I have
not discovered a way to make the Atari laugh, we need to be
able to convey a message to the poor person who loses the
game.

To clear the screen for the text display, you can position
the bars to the far right where they are not visible. They can
be returned to their playing positions at any time.

The keys V B N M are used to identify the bars. The
keyboard is monitored to determine if your responses are cor­
rect. The Atari keeps score.

How good is your memory? Playa few games of "Total
Recall" and you will soon find out .

Program 4-3. Total Recall
10 DIM A$(32)
15 REM ASSIGN TONE TO BAR
20 DIM TONE(4):TONE(I)=60:TONE(2)=72:

TONE(3)=96:TONE(4)=144 <

1000 GRAPHICS 2+16:SETCOLOR 2,7,0:SET
COLOR 4,7,0:SETCOLOR 0,O,14

101{!! POSITION 3,5:PHINT #6; "TOTAL REC
ALL"

1020 FOR W=1 TO 1000:NEXT W
1200 REM DRAW BARS
1210 A=PEEK(106)-8:POKE 54279,A:PMBAS

E=256'A:FOR X=512 TO 1023:POKE P
MBASE+X,255:NEXT X

1215 REM ASSIGN COLOR TO BAR
1220 POKE 559,46:PO KE 704,26:POKE 705

,116:POKE 706,68:POKE 707,196
1225 REM SET PLAYERS TO QUAD WIDTH AN

D TURN ON P/M GRAPHICS
1230 POKE 53256,3:POKE 53257,3:POKE 5

3258,3 : POKE 53259,3:SETCOLOR 2,0
,0:SETCOLOR 4 , O , 0

121

Part Four

1240 GOSUB 3 !!IIZH!I
1250 POKE 53277~3
1290 REM PLAY INTRODUCTION
1300 DELAY=100:RESTORE 1375
13112! READ SELECT
1320 IF SELECT=256 THEN 1500
1340 GOSUB 14!!!!!!
135~j GOTO 131 !!I
1375 DATA 2, 1,!!1~ i,2~ 1, !!1, 1,3~2, 1,!!!~ 1,2

56
1400 REM FLASH BARS AND SOUND TONES
1410 A=704:P=PEEK(A+SELECT):C=INT(P/1

6):L=P-C*16 : PO KE A+SELECT,C*16+1
4

1420 SOUND 0,TONE(SELECT+11,10,10
1430 FOR Y=l TO DELAY:NEXT Y:SOUND 0,

0,!!!,!21
1440 POKE A+SELECT~P
145f!! RETURN
1500 REM SHORT INSTRUCTIONS
1510 GOSUB 400121
1520 GRAPHICS 2+16:SETCOLOR 2,7,0:SET

COLOR 4,7,0:SETCOLOR 0,0,14:POKE
559,46

1530 POSITION 3,3:PRINT #6;"PRESS RET
URN"

1540 POSITION 4,6:PRINT #6;"TO START"
1550 POKE 764,255
1560 IF PEEK(764)=255 THEN 1560
2000 REM SHORT INSTRUCTIONS
2005 GRAPHICS 2+16:POKE 559 , 46:SETCOL

OR 0,0,14:SETCOLOR 2,0,0:SETCOLO
R 4,O,121

2008 POSITION 5,4:PRINT #6;"USE KEYS"
2010 POSITION 0,10:PRINT #6;" V

{4 SPACES}B{4 SPACES}N
{4 SPACES}M "

2011 FOR W=1 TO 500:NEXT W
2014 REM PLAY GAME
2015 GOSUB 3000
2018 REM SET UP ENTIRE SEQUENCE OF 32

IN A$

122

Part Four

2020 FOR X=1 TO 32:A$(X,X)=STR$(INT(R
ND(0)*4»:NEXT x

2030 CURRENT=1
2040 DELAY=50
2045 REM MAKE GAME GO FASTER AFTER I

MOVES
2050 IF CURRENT>8 THEN DELAY=DELAY-l
2060 FOR X=1 TO CURRENT
2070 SELECT=VAL(A$(X,X»:GOSUB 1400:1

F X<>CURRENT THEN FOR Y=1 TO DEL
AY:NEXT Y:NEXT X

2075 REM CLEAR KEYBOARD AND WAIT FOR
KEY TO BE PRESSED (DON"T WAIT TO
o LONG)

2080 X=l:POKE 764,255
2090 WAIT=5*DELAY:SELECT=4
2100 WAIT=WAIT-I:IF WAIT=0 THEN 2300
2110 CH=PEEK(764):IF CH=255 THEN 2100
2120 POKE 764,255
2125 REM DECIDE WHICH KEY IS PRESSED

IF NOT V B N M THEN IGNORE IT
2130 IF CH=16 THEN SELECT=0
2140 IF CH=21 THEN SELECT=1
2150 IF CH=35 THEN SELECT=2
2160 IF CH=37 THEN SELECT=3
2170 IF SELECT=4 THEN 2100
2180 IF SELECT <> VAL(A$(X,X» THEN 221

o
2190 GOSUB 1400:X=X+l : IF X<> CURRENT+l

THEN 209~j

2200 CURRENT=CURRENT+l:IF CURRENT<>32
THEN FOR Y=1 TO 5tDELAY:NEXT Y:

GO TO 2050
2210 REM
2300 REM SCORE ROUTINE
2310 GOSUB 4000
2320 GRAPHICS 2+16:SETCOLOR 2,7,0:SET

COLOR 4,7,0:SETCOLOR 0,O,14
2330 IF CURRENT=32 THEN 2950
2340 POSITION 4,5:PRINT #6;"YOU LOSE"
2350 RESTORE 2400
2360 READ A

123

Part Four

2370 IF A=256 THEN SOUND 0,0,0,0:GOTO
2600

2380 SOUND 0,A,10,10
2390 FOR W=l TO 50:NEXT W
2395 GOTO 2360
2400 DATA 91,91,108,81,91,91,108,256
2600 GRAPHICS 2+16:POKE 559,46:SETCOL

OR 2,7,0:SETCOLOR 4,7,0:SETCOLOR
0,0,14

2610 POSITION 5,2:PRINT #6;"YOU GOT"
2620 POSITION 8,4:PRINT #6;CURRENT-l
2630 POSITION 5,6:PRINT #6; "CORRECT"
2640 FOR W=l TO 1000:NEXT W
2650 REM
2700 IF CURRENT>6 THEN 2750
2710 GRAPHICS 2:POKE 559,46:SETCOLOR

2,2,8:SETCOLOR 4,2,8:SETCOLOR 0,
3,O

2720 POSITION 4,2:PRINT #6;"NOW TRY I
T "

2730 POSITION 4,4:PRINT #6;"WITH YOU
R"

274O POSITION 4,6:PRINT #6; "
"

2745 FOR W=l TO 200:NEXT W
2746 GOTO 1500
2750 IF CURRENT>12 THEN 2800

T.V. ON!

2760 GRAPHICS 2:POKE 559,46:SETCOLOR
2,7,8:SETCOLOR 4,7,8:SETCOLOR 0,
5, !~

2770 POSITION 3,2:PRINT #6;"THIS TIME
USE"

27812! POSITION 6,4:PRINT #6; "*KEYSt"
2785 POSITION 5,6:PRINT #6;"V B N M"
2790 FOR W=l TO 400:NEXT W
2795 GOTO 15!~12!

2800 IF CURRENT>24 THEN 2850
2810 GRAPHICS 2:POKE 559,46:SETCOLOR

2,6,0:SETCOLOR 4,6,0:SETCOLOR 0,
l2!, 1 4

2820 POSITION 2,2:PRINT #6;"YOU THOUG
HT YOU"

124

Part Four

2825 POSITION 4,4:PHINT #6;"WEHE DOIN
G"

2830 POSITION 2,6:PRINT #6;"PRETTY
LL "

2835 POSITION 3,8:PRINT #6;"DIDN'T
U~ I "

2840 FOR W=1 TO 400:NEXT W
2845 GOTO 1500
2850 IF CURHENT>28 THEN 2900

WE

YO

2860 GRAPHICS 2:POKE 559,46:SETCOLOR
2,5,8:SETCOLOH 4,5,8:SETCOLOR 0,
7,0

2865 POSITION 2,3:PRINT #6;"HOW MANY
PEOPLE"

287~S POSITION 4,5: PRINT #6; "AF:E PLAYI
NG"

2880 POSITION 4,7:PRINT #6;"THIS GAME
??II

2890 FOR W=1 TO 400:NEXT W
2895 GOTO 15!!lf1
2900 GRAPHICS 2:POKE 559,46:SETCOLOR

2,2,8:SETCOLOR 4,2,8:SETCOLOR 0,
0,14

2910 POSITION 1,2: PF: INT #6;" IF YOU'RE
SO SMART"

292~1 POSITION 3,4:PRINT #6; "WHY DIDN'
T YOU"

293121 POSITION 5,6: PRINT #6; "WHITE THI
S"

2935 POSITION 8,8:PRINT #6;"GAME "
2940 FOR W=1 TO 400:NEXT W
2945 GOTO 15!!10
2950 FOR T=l TO 5
2955 GRAPHICS 2:SETCOLOR 2,7,0:SETCOL

OR 4,7,0:SETCOLOR 0,5,8
2960 FOR W=1 TO 50:NEXT W
2965 POSITION 5,4:PRINT #6;"TILT!
2970 FOR W=l TO 200:NEXT W
2975 NEXT T
2990 GO TO 150121

I "

3000 REM PUT BARS INTO PLAYING POSITI
ON

125

Part Four

3010 POKE 53248,50:POKE 53249~90:POKE
53250~130:POKE 53251,170:POKE 6

23~4

3020 RETURN
4000 REM MOVE BARS OVER FOR TEXT DISP

LAY
4010 POKE 53248 , 250:POKE 53249,250:PO

KE 53250,250:POKE 5325~,250
4020 RETURN

126

Part Five

Chiseler
John Scarborough

Who writes arcade-quality games? John Scarborough is nineteen
years old and leamed machine language from a book. He wrote
"Chiseler" on an Atari 400 with 16K, a cassette recorder, and an
Assembler Editor cartridge. He didn't even have a full memory map.
It doesn't take a college education or years of experience. It just takes
patience, careful design, and love for what the computer can do. A
little wizardry doesn't hurt, either.

It seems like an easy enough job. Four boards are laid out in
front of you, and your task is to chisel them away. To help
you, you have five sets of four chisels each. And not just or­
dinary tools - these chisels will hurl themselves at the
boards and chip away strips of wood at a pretty reckless
speed.

But it isn't as easy as it sounds. Your chisels also hurl
themselves away from the boards each time they strike, and if
you don't catch them and bounce them back, they1l get away
for good. And you1l soon discover that every time you get rid
of one board, another appears in its place.

The only way you can keep going on the job is either to
be incredibly quick at catching chisels, or to get as many
chisels as possible behind the new board when it appears. If
you can trap them there, you can sit back and watch while
they do the work for you. But don't doze off - you never
know when they'll escape again, and you'll be back to work.

This is an arcade-speed game, but don't worry if you
aren't an accomplished arcader. "Chiseler" begins at a slow
enough speed that a beginner can pick it up pretty well. But
it keeps its challenge, no matter how good you get.

You'll need a paddle controller. The game doesn't require
any cartridges to play, but you will need either BASIC or an
Assembler Editor to enter the program the first time.

129

Part Five

Entering Chiseler
There are two ways to enter and SAVE Chiseler. If you have
an Assembler Editor, you can use it and the assembly listing,
or you can use the "Machine Language Editor (MLX)" pro­
gram found in Appendix C and the DAD\. listing. If you don't
have an Assembler Editor, then you must use the MLX pro­
gram to enter the DATA statements. It is important that those
who use the MLX program read the article that accompanies
it . When you use the MLX program, it may seem like extra
work at first to have to type in two programs, but you'll save
time later when you end up with a virtually error-free
program.

Starting Up
Once you have entered the game and saved it on cassette or
disk, you can start one of two ways.

If you entered the game from BASIC using MLX, then
the game was saved as an autoboot program. If you have it
on cassette, just remove all cartridges, put the cassette in the
recorder, and turn on the computer while holding down the
START button. You will hear one beep. Push PLAY on the
recorder, then RETURN on the computer keyboard. The game
will load in automatically. If Chiseler is on disk, turn on the
disk drive, put in the disk, and turn on the computer.

If you entered the game with an Assembler Editor, then
Chiseler must be loaded from the assembler cartridge or
DOS.

From the assembler cartridge, use the LOAD command.
Then the debug command G2800 will start the game.

If you created a binary file with MLX, then you must
LOAD from the DOS menu. Choose option L, Binary Load.
Enter the filename, then select M, RUN at $2800.

How to Play the Game
Chiseler comes up with two side walls and a back wall, with
four colored boards stretching across from side to side. When
you press the paddle trigger, the first of four chisels will come
at you. You must move your paddle at the bottom of the
screen to catch the chisel and hurl it back at the boards. It
will bounce off the first board and come back toward the bot­
tom of the screen.

130

Part Five

Meanwhile, another chisel will start down toward you. If
you catch it - and keep the first one going as well - two
more chisels will come. As soon as you miss one chisel, new
chisels will stop appearing, and you will never have more
than four chisels at a time.

You will notice that as each chisel strikes the board, a
thin strip of wood disappears. When all the wood is chipped
away at one point, the chisels can get behind the first board,
and start bouncing back and forth between the first and sec­
ond boards. This can be repeated with every board.

When the last bit of a board has been destroyed, a new
board will appear in its place. Try to have your chisel strike
the last strip of wood from above, so the chisel will bounce
back up on the screen and be trapped behind the new board.
Then you can relax and watch the chisel do your work for
you - until it breaks through again and starts coming back at
you.

When the last chisel has got by you, that turn is over. To
start the next turn, press the paddle trigger. Four new chisels
will be launched. You get a total of five turns.

Scoring
Each strip of wood in the first board is worth one point; each
in the second is worth two; in the third, three; and in the
fourth, four.

Speed
Every time a new board is put in place, the chisels on the
screen speed up slightly. The more new boards, the faster the
chisels. After a while, it gets going faster than human dexter­
ity can handle. But try to handle it, because if you let the
chisels get by you, they don't start slowly again on the next
turn - they keep every bit of the speed they've built up.

Chisel Control
If the chisel strikes on the right half of your paddle, it will
bounce off at an angle toward the right. If it strikes on the
left half, it will bounce off toward the left. When you first
start, youl1 probably feel lucky to catch the chisel at all. But
quite soon you'll start getting some finesse, and the chisels '
will go pretty much where you want them.

131

Part Five

Th is ch iseler needs a lot of practice.

Entering Chiseler from BASIC with the
Machine Language Editor: MLX
The last program in this book is the Machine Language
Editor: MLX. It isn't a game - it's a utility to make sure that
entering this long machine language program is easy and
accurate.

MLX prompts you by asking for the program's starting ad­
dress: enter 8192. Then MLX will prompt you again for the
ending address: enter 11136. Finally it will ask for the
RUN/initialization address: enter 10240. Start entering
numbers exactly as they appear in this listing.

The seventh number on every line is a test number.
When you enter that, MLX uses it to check to see if every
number was entered correctly on that line. If it was, you will
be prompted to enter the next line. If there was a mistake,
you will hear a beep and you will be prompted to enter the
same set of numbers again.

Entering Chiseler with the Assembler Editor
If you aren't a machine language programmer, don't worry.
Just enter the program from BASIC with MLX. This listing is
included for those who are learning machine language for

132

Part Five

their Atari's 6502 microprocessor. Instead of an inscrutable list
of numbers, you can read the actual commands - with many
remarks (which don't have to be entered), explaining exactly
what is going on in every part of the program.

If you've ever felt the urge to get inside the arcade
machine and see how Pac-Man or Super Breakout achieves those
dazzling effects, this listing is for you. Once you have actually
gone through the process of making the computer do tricks
just by loading the right numbers into the Accumulator and
the X and Y registers, performing the right operations on
them, and then storing them into the right locations in
memory, youl1 realize that putting together a fantastic arcade
game isn't such a mystery after all. You've got it right within
your reach.

This program was written entirely in machine language,
using the Assembler Editor cartridge. It can be assembled in a
computer with only 16K of memory, then saved as a single
program on cassette. To accomplish this, the program is divid­
ed into six subdivisions. This enables the 16K computer
owner to assemble the programs without having to worry
about running out of memory for the source code. Each unit
must be typed in and assembled independently. This
shouldn't be too monotonous if you read the remarks as you
type. After all six have been assembled, the object code can
be SAVED to cassette with this command:

SAVE #C: < 2000,2B80

To retrieve the object code from cassette, enter

LOAD#C: < 2000,2B80

These commands are utilized exactly like CLOAD and CSAVE.
Then the command DEBUG, followed by G2800, will start

the game.

Program 5-1. Chiseler Using MLX

8192:162~OOO~169~OOO~157~OOO~232
8198:060~232~224~008~208~248~218

8204:169~255~157~OOO~060~232~117

8210:224~016~208~248~169~OOO~115

8216:133~176~169~062~i~3~177~106

8222:160~OOO~169,OOO~145,176~168

133

Part Five

8228:200,208,2~1,166,177,232,246

8234:134,177,224,063,240,238,094
8240:169,034,141,006,062,169,117
8246:033,141,007,062,169,044,254
8252:141,008,062,141,009,062,227
8258: 169,013, 141,011,062, 169, 119
8264:016,141,013,062,141,023,212
8270:062,141,024,062,141,025,021
8276:062,141,026,062,141,027,031
8282:062,162,000,189,201,006,198
8288:157,033,062,232,224,005,041
8294:208,245,169,000,133,176,009
8300:169,062,133,177,160,042,083
8306:169,001,145,176,200,192,229
8312:059,208,249,160,062,169,003
8318:001,145,176,152,024,105,217
8324:016,168,169,001,145,176,039
8330:152,024,105,004,168,056,135
8336:201,241,144,233,166,177,026
8342:232,134,177,224,064,240,197
8348:005,160,006,076,125,032,048
8354: 169,001,141,242,062,141,150
8360:002,063,169,000,133,176,199
8366:169,062,133,177,160,103,210
8372:162,068,138,145,176,232,077
8378:200,224,083,208,247,160,028
8384:163,162,147,138,145,176,099
8390:232,200,224,162,208,247,191
8396:160,223,162,098,138,145,106
8402:176,232,200,224,113,208,083
8408:247,169,063,133,177,160,141
8414:027,162,177,138,145,176,023
8420:232,200,224,192,208,247,251
8426:169,032,133,178,169,060,207
8432:133,179,160,000,152,145,241
8438:178,200,208,251,169,061,033
8444:133,179,169,000,145,178,032
8450:200,192,224,208,249,169,220
8456:032,133,178,169,060,133,201
8462:179,160,000,177,178,208,148
8468:008,200,192,120,208,247,227
8474:032,000,034,169,152,133,034

134

Part Five

8480:178,160,000,177,178,208,165
8486:008,200,192,120,208,247,245
8492:032,049,034,169,016,133,221
8498:178,169,061,133,179,160,162
8504:000,177,178,208,008,200,059
8510:192,120,208,247,032,060,153
8516: 034,169,136,133,178,160,110
8522:000,177,178,208,008,200,077
8528:192,120,208,247,032,071,182
8534:034,096,000,000,000,000,216
8540:000,000,000,000,000,000,092
8546:000,000~OOO,000,000,000,098
8552:000,000,000,000,000,000,104
8558:000,000,000,000,000,000,110
8564:000,000,000,000,000,000,116
8570:000,000,000,000,000,000,122
8576:000,000,000,000,000,000,128
8582:000,000,000,000,000,000,134
8588:000,000,000,000,000,000,140
8594:000,000,000,000,000,000,146
8600:000,000,000,000,000,000,152
8606:000,000,000,000,000,000,158
8612:000,000,000,000,000,000,164
8618:000,000,000,000,000,000,170
8624:000,000,000,000,000,000,176
8630:000,000,000,000,000,000,182
8636:000,000,000,000,000,000,188
8642:000,000,000,000,000,000,194
8648:000,000,000,000,000,000,200
8654:000,000,000,000,000,000,206
8660:000,000,000,000,000,000,212
8666:000,000,000,000,000,000,218
8672:000,000,000,000,000,000,224
8678:000,000,000,000,000,000,230
8684:000,000,000,000,000,000,236
8690:000,000,000,000,000,000,242
8696:000,000,000,000,000,000,248
8702:000,000,169,032,133,178,254
8708:169,060,133,179,160,000,193
8714:177,178,208,034,200,192,231
8720:120,208,247,160,000,169,152
8726:255,145,178,200,192,120,088

135

Part Five

8732:208~249~169,041,141~210~022

8738:006~173,209~006~201,001,118

8744:240~006~056,233,001,141,205

8750:209,006,096,169,152,133,043
8756:178,169,060,133~179,076,079

8762:008,034,169,016,133,178,084
8768:169,061,133,179,076,008,178
8774: 034, 169, 136~ 133,178,169,121
8780:061,133,179,076,008,034,055
8786:000~000,000,000,000,000~082

8792:000,000,000,000,000,000,088
8798:000,000,000,000,000,000,094
8804:000,000,000,000,000,000,100
8810:000,000,000,000,000,000,106
8816:000,000,000,000,000,000,112
8822:000,000,000,000,000,000,118
8828:000,000~000,000~000,000,124

8834:000,000,000,000,000,000,130
8840:000,000,000,000~000,000,136
8846:000,000,000,000,000,000,142
8852:000,OOO,000~000~000~000~148

8858:000~000,000~000~000~000~154

8864:000~OOO~000~000,000~000~160

8870:000~000~000~000~000~000~166

8876:000~OOO~000~000~000,000~172
8882:000~OOO,000,000,000,000,178

8888:000~OOO,000,000~000,000,184

8894:000,000,000,000~000,000,190

8900:000,000,000,000~000~000~196

8906:000~000~000,000~000~000,202

8912:000~000~000,000~000,000,208

8918:000,000~000,000~000~000,214

8924:000~000~000~000~000~000,220

8930:000~000,000,000~000~000~226

8936:000~OOO~000,OOO,000,OOO,232

8942:000~000~000,000,OOO,000,238

8948:000~000,000,000,000,000,244

8954:000~000,000,000~OOO,OOO,250

8960:169~062~141,047~002,169,078

8966: 001, 141 ~ 008, 208, 169, 239~ 004
8972: 141 ~ 192 , 002, 169, 015~ 141 ~ 160
8978:193,002~141,194,002,141~179

136

hrtF~

8984:195~002~141~199~002~169~220

8990:048,141~007~212,169~003,098

8996:141,029,208,169,000,133,204
9002:180~169,048,133~181,160,145

9008:000,152,145~180,200,208~165

9014:251,166,181,232,134,181~175

9020:224,056,208,242,169,255,190
9026:141,196,052,141,197,052,077
9032:141,198,052,169,255,141,004
9038:221,052,141,222,052,141~139

9044:223,052,169~000,141,196,097

9050:006,141,197,006,141,198,011
9056:006,141,199,006,169,001,106
9062:141,175,006,162,000,173,247
9068:010,210,056,201,075,144,036
9074:248,024,201,186,176,243,168
9080:157,176,006,232,224,004,151
9086:208~235,162,000,169,047,179

9092:157,180,006,169,112,157,145
9098:171,006,232,224,004,208,215
9104:241,162,000,173,010,210~172

9110:041,001,157,184,006,232,003
9116:224,004,208,243,162,000,229
9122:169,001,157,188,006,232,147
9128:224,004,208,246,162,000,244
9134:169,001,157,164,006,232,135
9140:224,004,208,246,173,112,123
9146:002,074,024,105,070,141,090
9152:160,006,169,255,056,237,051
9158:160,006,056,201,177,144,174
9164:002,169,177,141,000,208,133
9170:141,163,006,096,000,000,104
9176:000,000,000,000,000,000,216
9182:000~000,000,000,000,000,222

9188:000,000,000,000,000,000,228
9194:000~000~000~000~000~000,234

9200:000,000~000~000~000,000~240

9206:000~000~000,000,000~000,246

9212:000,000,000,000,174,162,076
9218:006,189,164,006,208,001,064
9224:096~189,184,006,208,012,191

9230:189,176,006,056,233,001,163

137

Part Five

9236:157~176~006,076,035~036~250

9242:189~176~006~024~105,001,015

9248:157,176~006,189,188~006~242

9254:208~012~189~180,006~056~177

9260:233~001,157~180~006,076,185

9266:061,036~189~180~006,024,034

9272:105,OOI,157,180~006~189,182

9278:180,006~056~201,219,144,100

9284:044,208,009,173~175~006,171

9290:056~233~001~141~175~006~174

9296:169~001~141~199,006~189~OI7

9302:180~006,201~252,208,021,186

9308:169,000,224~003,208,006,190

9314:141,199,002,076,107~036,147

9320:157,193,002,169,OOO~157,014

9326:164,006~096,189,188~006,247

9332:208,003,076,228,036~189,088

9338:180,006,201~193~240~004,178

9344:201,218,208,096,189,176,192
9350:006~056,205,163,006~144,202

9356:087,056,233,OI6~024~205,249

9362:163~006~176~078,173~199,173

9368:006,208,029,162,OOI~189,235

9374:195~006,208,017,169~OOI~242

9380:157~195~006,173~175,006~108

9386:024~105,001,141,175,006,110

9392:076~184,036,232,224~004,164

9398:208,229~174,162,006,169,106

9404:000,157,188,006~169,OI7,213

9410:141~000~210,189,176~006,148

9416:056,233,005,141,160,006~033
9422:173,163,006,056,205,160,201
9428:006,144,008,169,000,157,184
9434:184,006,076,228,036,169,149
9440:001,157,184,006,189,176,169
9446:006,201,072~208,OI0,169,128

9452:001,157~184,006~169,029,014

9458:141,002~210,189,176~006,198

9464:201~190,208,010,169~000~002

9470: 157, 184,006~ 169~029~ 141~ 172
9476:002~210,189,180~006~201~024

9482:047~208~010~169~001~157~090

138

Part Five

9488:188~006~169~029~141~002,039

9494:210,189,176~006~157,001~249

9500:208~189,180,006,133~182~158

9506:224~003,208~005,169,051~182

9512:076~047~037,138~024~105~211

9518:053~133~183~160~000~152~215

9524:145,182~200,224,003~208~246

9530:005~169~003,076~066~037~158

9536:169~192~145,182~200,145~073

9542:182~200~145,182~200~169~124

9548:000,145~182,096,000,000,243

9554:000~000~000,000~000,000,082

9560:000~000,000,000,000,000,088

9566:000,000,000,000,000,000,094
9572:000,000,000,000,000,000,100
9578:000,000,000,000,000,000,106
9584:000,000,000,000~000,000~112

9590:000~000~000~000,000~000~118

9596:000~000~000~000~000,000,124

9602:000~000~000~000~000~000,130
9608:000,000~000,000~000,000,136

9614:000,000~000~000~000~000~142

9620:000~000~000~000,000~000~148
9626:000~000~000~000~000~000,154

9632:000,000~000,000,000,000,160

9638:000,000~000,000,000,000,166

9644:000,000,000~000,000,000,172

9650:000~000,000,000,000,000,178

9656:000,000,000,000,000,000,184
9662:000~000,000,000,000,000,190

9668:000~000~000,000,000,000,196

9674:000~000~000,000,000,000,202

9680:000,000~000~000,000,000,208

9686:000~000,000,000,000,000,214

9692:000,000,000,000,000,000,220
9698:000~000~000,000~000,000,226

9704:000,000,000,000,000,000,232
9710:000,000~000,000,000,000,238

9716:000,000,000,000,000,000,244
9722:000,000,000,000,000,000,250
9728:174,162,006,189,171,006,196
9734:240,007,056,233,001,157,188

139

Part Five

9740:171~006,096,189,180,006,148

9746:056~201,062~144,047~024,040

9752:201~070~176,003,076~071~109
9758:038,056,201,086,144~034~077

9764:024~201,094,176~003~076,098

9770:084,038,056~201,110~144,163

9776:021,024,201~118,176,003,079

9782:076,097,038~056~201,134~144

9788:144~008,024,201,142,176,243

9794:003,076~110~038,096,169,046

9800:070~141~170,006~169,004,120

9806:032,123~038,076,170~038,043

9812:169~094,141,170,006~169,065

9818:019,032,'123,038,076,170,036
9824:038,169,118,141,170,006,226
9830:169~034~032,123,038,076,062

9836:170,038,169,142,141,170,170
9842:006,169,049,032,123,038,019
9848:076,170,038,141,169,006,208
9854:169,080,141,194,006,189,137
9860:176,006,024,205,194,006,231
9866:176,011,173,170,006,056,218
9872:253,180,006,141~168,006,130

9878:096,173~194,006,024,105,236

9884:008~141~194,006~172~169~078

9890:006~200,140~169,006,076~247

9896:131,038 ~ 173,169,006~024,197

9902:201,032,176,011,169~000~251

9908:133~178,169,060,133~179~008

9914:076,203,038,169,000,133~037

9920:178,169,061~133~179,173,061

9926:169,006,056~233,032,173~099

9932:169,006,010,010,010,072,225
9938:174~162,006~189~188~006,167

9944:240~011~104,024~105~008,196

9950:056,237~168,006~076~237~234

9956:038,104~024,105,008,056,051

9962:237,168,006,168,177~178,144

9968:208~001~096,169,000,145,091

9974:178,173,200,006,141,004,180
9980:210,032,007,033,032,000,054
9986:042,174,162,006,169,009~052

140

Part Five

9992:157,171~006,189,188~006,213

9998:208,006,169~001~157,188~231

10004:006,096~169,000~157,188,124

10010:006~096~000,000,000,000,128

10016:000~000,000,000~000,000,032

10022:000,000,000,000,000,ODO,038
10028:000~000,000,000,000,000,044

10034:000~000~000~000,000,000,050

10040:000,000,000,000,000,000,056
10046:000,000~072,138,072,169,001

10052:008,162,056,141,010,212,145
10058:141,022,208,142,023,208,050
10064:169,224,141,009,212,169,236
10070:112,141~000,002,104,170,103

10076:104,064,000,000~000~000,004

10082:000,000,000,000,000,000,098
10088:000,000,000,000,000,000,104
10094:000~000,072,138,072,152,032

10100: 072~ 169~ 152~ 162~ 120~ 160, 183
10106:056,141~010,212~141,022~192

10112: 208,142,023,208, 140, 024~ 105
10118: 208,169,060, 141 ~ 009~ 212,165
10124: 169~ 224,141, OOO~ 002~ 104,012
10130: 168~ 104,·170~ 104~ 064, 000, 244
10136:000,000~000,OOO,000~OOO~152

10142:000,OOO,OOO,000~000,OOO,158

10148:000,OOO~000~OOO~000~000~164

10154:000,OOO~000~000~000~000,170

10160:000~000,000,000~000,000,176

10166:000~000,000,OOO,000~000,182

10172:000~000,000~000,000,000~188

10178:000~000~000~000,000,000,194

10184:000~000~000~000~000~000~200

10190:000~000~000,000~000~000~206

10196:000~000~000,000,000~000,212

10202:000,000,000~000,OOO,000~218

10208:072~138~072,169,088,162~157

10214:216~141~010,212~141~023,205

10220:208~142~024~208~169~064,027

10226: 141 ~ OOO~ 002~ 104~ 170, 104~ 251
10232:064~000~OOO~000,000~000,056

10238:000,000,032,000,043,162,235

141

Part Five

10244:000~169~080~157,201~006,105

10250:232,224~005~208~248~169~072

10256:000,141,008~210,169,001,033

10262:141~192,006,169,020,141,179

10268:209,006,032,000,032,032,083
10274:000,035,169,000,141,210,077
10280:006,169,166,141,001,210,221
10286: 141, 003~ 210~ 169, 170, 141,112
10292:005~210~141,007,210,169,026

10298:000,141,000,210,141,002,040
10304:210,141,004~210,141,006,008

10310:210,032,184,035,173,124,060
10316:002,208,248,169,001,141,077
10322:195,006~169,000,133,176,249

10328:169,062,133,177,173,192,226
10334:006,024,105,016,160,013,162
10340:145,176,174,210,006,240,027
10346:012,202,142,210,006,169,079
10352:060,141,006,210,076,124,217
10358:040,169,000,141,006,210,172
10364:169,000,133,077,141,000,132
10370:210,141,002,210,141,004,070
10376:210,169,000,141,162,006,056
10382:032,119,041,032,000,036,146
10388:032,000,038,162,001,142,011
10394:162,006,189,195,006,240,184
10400:009,032,119,041,032,000,137
10406:036,032,000,038,162,002,180
10412:142,162,006,189,195,006,104
10418:240,009,032,119,041,032,139
10424:000,036,032~000,038,162~196

10430:003,142,162,006,189,195,119
10436:006,240,009,032,119~041,131

10442:032,000,036~032,000,038,084

10448:173,199,006,240,126,162,090
10454: 000, 189·, 164,006,208,008,021
10460:232,224,004,208,246,076,186
10466:241,040,189,195,006,208~081

10472:106,232~224~004~208~233~215

10478:076,241~040,173~192~006,198

10484:201,005~208~063~169~006,128

10490:133,176,169~062,133~177,076

142

Part Five

10496:160,000,169,039,145,176,177
10502:200,169,033,145,176,200,161
10508:169,045,145,176,200,169,148
10514:037,145,176,200,200,169,177
10520:047,145,176,200,169,054,047
10526: 145, 176,200,169,037,145,134
10532:176,200,169,050,145,176,184
10538:032,184,035,173,031,208,193
10544:201,006,208,246,076,015,032
10550:040,032,184,035,173,031,037
10556:208,201,006,208,003,076,250
10562:015,040,173,124,002,208,116
10568:238,174,192,006,232,142,032
10574:192,006,032,000,035,174,005
10580:209,006,142,211,006,032,178
10586:184,035,173,031,208,201,154
10592:006,208,003,076,015,040,188
10598:160,160,136,208,253,174,169
10604: 211,006,202,142,211,006,118
10610:208,229,076,084,040,189,172
10616:180,006,024,201,080,176,019
10622:011,169,072,141,200,006,213
10628:169,005,141,213,006,096,250
10634: 024, 201,100,176, 011,169,051
10640:108,141,200,006,169,004,004
10646:141,213,006,096,024,201,063
10652: 128, 176,011, 169, 144, 141, 157
10658:200,006,169,003,141,213,126
10664:006,096,169,217,141,200,229
10670:006,169,002,141,213,006,199
10676:096,000,000,000,000,000,020
10682:000,000,000,000,000,000,186
10688:000,000,000,000,000,000,192
10694:000,000,000,000,000,000,198
10700:000,000,000,000,000,000,204
10706:000,000,000,000,000,000,210
10712:000,000,000,000,000,000,216
10718:000,000,000,000,000,000,222
10724:000,000,000,000,000,000,228
10730:000,000,000,000,000,000,234
10736:000,000,000,000,000,000,240
10742:000,000,000,000,000,000,246

143

Part Five

10748:000,000,000,000,169,000,165
10754:133,176,169,062,133,177,084
10760:174,213,006,202,142,213,190
10766:006,24 0,006,032,024,042,108
10772:076,008,042,096,174,175,079
10778:006,138,072,032,038,042,098
10784:104,170,202,208,246,096,034
10790:160,027,177,176,201,025,036
10796:208,009,169,016,145,176,255
10802:136,192,022 9 208,241,024,105
10808:105,001,145~176,169,033,173

10814:141,207,006,169,023,141,237
10820:208,006,172,207,006,177,076
10826:176,056,233,064,172,208,215
10832:006,056,209,176,144,023,182
10838:208,039,172,208,006,200,151
10844:140,208,006,172,207,006,063
10850:200,140,207,006,192,038,113
10856:208,220,076,127,042,162,171
10862:000,160,023,177,176,024,158
10868:105,064,157,201,006,232,113
10874:200,192,028,208,242,160,128
10880:033,162,000,189,201,006,207
10886:145,176,200,232,224,005,092
10892:208,245,096,000,000,000,177
10898:000,000,000,000,000,000,146
10904:000,000,000,000,000,000,152
10910:000,000,000,000,000,000,158
10916:000,000,000,000,000,000,164
10922:000,000,000,000,000,000,170
10928:000,000,000,000,000,000,176
10934:000,000,000,000,000,000,182
10940:000,000,000,000,000,000,188
10946:000,000,000,000,000,000,194
10952:000,000,000,000,000,000,200
10958:000,000,000,000,000,000,206
10964:000,000,000,000,000,000,212
10970:000,000,000,000,000,000,218
10976:000,000,000,000,000,000,224
10982:000,000,000,000,000,000,230
10988:000,000,000,000,000,000,236
10994:000,000,000,000,000,000,242

144

Part Five

11000:000~000~000~000~000,000,248

11006:000~000,169~112,141,OOO~164

11012:006,141~OOI~006,169~198,013
11018:141~002,006~169,000,141,213
11024:003,006,169~062,141~004,145

11030:006,169,134~141,005~0~6,227
11036:169,006,141,006~006,141,241

11042:007~006,141,008,006,141,087
11048:009,006,141,010,006,169,125
11054:134,141~011,006~169,006,001

11060:162,OOO,157,012~006,232,109

11066:224~017,208,248,169~065~221

11072:141,029~006,169~000,141~038

11078:030,006~169,006,141,031,197

11084:006,169,000,141,047,002,185
11090:141,048,002,169,006,141,077
11096:049,002,169,064,141,000,001
11102:002,169,039,141,001,002,192
11108: 169, 192, 141,014,212,169,229
11114:034,141,047,002,096,000,170
11120:000~OOO,000,000,000,000,112

11126:000,000,000,000,000,000,118
11132:000,000,000~000,000,000,124

Program 5-2a. Chiseler Using Assembler Editor
- Program Control

HiJ ;
20 ;PROGRAM CONTROL
30
40 *=$2800
50 PTRGST=$6C2
60 BALOFS=$6A2
70 BALLNB=$6C0
80 PDLCNT=$23B8
90 LAUNCH=$6C3
0100 STIMER=53279
0110 BRKFRQ=$6C8
0120 PTRIG0=$27C
0130 ATRACT=$4D
0140 BALLS=$6AF
0150 NOMORE=$6C7
0160 BALIFE=$6A4

145

Part Five

0170 SCRCNT=$2A00
0180 SCRNPL=$B0
0190 SCRNPH=$Bl
0200 BALSPD=$6Dl
0210 HIGHl=$6C9
0220 RSTFRQ=$6D2
0230 TMPDLY=$6D3
0240 BLIVPS=$6B4
0250 AUDCTL=$D208
0260 BRKVAL=$6D5
0270 STDLST=$2B00
0280 SETPLF=$2000
0290 SETPMG=$2300
0300 BALLCT=$2400
0310 BRKCNT=$2600
0320
0330
0340
0350

,
;SET UP DISPLAY LIST

JSR STDLST
,

0360 ;SET HIGH SCORE EQUAL TO 00000
0370 LDX #0
0380 LDA #$50
0390 CLRHGH STA HIGH1,X
0400 INX
0410 CPX #5
0420 BNE CLRHGH
0430
0440 ;THIS IS THE INTRODUCTION TO
0450 ;THE MAIN LOOP
0460
0470 ;SET THE AUDIO CONTROL
0480 START LDA #0
0490 STA AUDCTL
0500
0510
0520
0530
0540
0550
0560
0570
0580

146

;SET
LDA
STA

;
;SET

LDA
STA

BALL NUMBER
#1
BALLNB

BALL SPEED
#20
BALSPD

TO 1

Part Five

0590
0600
0610
0620
0630
0640

;SET PLAYFIELD
JSR SETPLF

,
;SET P/M GRAPHICS

JSR SETPMG

0650 ;CLEAR BRICK RESET FREQUENCY
0660 LDA #0
0670 STA RSTFRQ
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830

;SET
LDA
STA
STA
LDA
STA
STA

;
;MAKE

LDA
STA
STA
STA
STA

AUDIO
#$A6
$D201
$D203
#$AA
$D205
$D207

SURE
#0
$D200
$D202
$D204
$D206

CONTROL

FREQUENCY IS OFF

0840 ;WAIT FOR PADDLE TRIGGER
0850 TRGCNT JSR PDLCNT
0860 LDA PTRIG0
0870 BNE TRGCNT
0880 ;
0890 ;SHOW THAT BALL 1
0900 ;HAS BEEN LAUNCHED
0910 LDA #1
0920 STA LAUNCH
0930 ;
0940 ;THE MAIN LOOP
0950 ;
0960 ;SET SCREEN POINTER TO $3E00
0970 MAINLP LDA #$0
0980 STA SCRNPL
!21990 LDA #$3E
1000 STA SCRNPH

147

Part Five

, HH0
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

;DISPLAY BALL NUMBER
LDA BALLNB
CLC
ADC #$10
LDY #$D ;DISPLAY
STA (SCRNPL),Y ;BALL NUMBER

;IF A BLOCK HAS RECENTLY BEEN
;RESET, THEN PRODUCE SOUND

LDX RSTFRQ
BEQ NOSND
DEX
STX RSTFRQ

1150 LDA #$3C
1160 STA $D206
1170 JMP FIXATC
1180 NOSND LDA #0
1190 STA $D206
1200 ,
1210 ;INHIBIT ATTRACT MODE
1220 FIXATC LDA #0
1230 STA ATRACT
1240 ;
1250 ;TURN OFF FREQUENCY
1260 STA $D200
1270 STA $D202
1280 STA $D204
1290
1300 ;ENABLE BALL 1
1310 BALCNT LDA #0
1320 STA BALOFS

,

CONTROL

1330
1340
1350
1360

;UPDATE BALL
JSR GETFRQ
JSR BALLCT

1'5 STATUS

1370 JSR BRKCNT
1380 ;
1390 ;ENABLE BALL 2 CONTROL
1400 LDX #1
1410 STX BALOFS
1420

148

Part Five

1430 ;HAS BALL 2 BEEN LAUNCHED?
1440 LDA LAUNCH,X
1450 BEQ CHI<LN2
1460
1470 ;IF SO, THEN UPDATE ITS STATUS
1480 JSR GETFRQ
1490 JSR BALLCT
1500 JSR BRKCNT
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

;FOLLOW THE SAME
;BALLS THREE AND
CHKLN2 LDX #2

STX BALOFS
LDA LAUNCH,X
BEQ CHKLN3
JSR GETFRQ
JSR BALLCT
JSR BRI<CNT

CHKLN3 LDX #3
STX BALOFS
LDA LAUNCH,X
BEQ CHI<END
JSR GETFRQ
JSR BALLCT
JSR BRKCNT

,

PROCEDURE FOR
FOUR

;CHECK IF ANY BALLS
;ARE STILL ALIVE
CHKEND LDA NOMORE

BEQ DELAY
LDX #0

LFECHI< LDA BALIFE,X
BNE CHI<VOD
INX
CPX #4
BNE LFECHK
JMP DEAD

1800 CHI<VOD LDA LAUNCH,X
1810 BNE DELAY
1820 INX
1830 CPX #4
1840 BNE LFECHK

149

Part Five

1850 JMP DEAD
1860 DEAD LDA BALLNB
1870 CMP #5
1880 BNE GTPTRG
1890
190121 ;ALL BALLS ARE DEAD
1910 ;DISPLAY "GAME OVER"
192121 LDA #$6
1930 STA SCRNPL
1940 LDA #$ 3 E
1950 STA SCRNPH
196121 LDY #0
1970 GMEOVR LDA #$27 ; G
1980 STA (SCRNPL} ~ Y

1990 INY
20i!10 LDA #$21 ; A
2010 STA (SCRNPL},Y
2020 INY
2030 LDA #$2D ; M
2040 STA (SCRNPL)~Y

2050 INY
2060 LDA #$25 ; E
2070 STA (SCRNPL)~Y

2080 INY
2090 INY
2100 LDA #$2F ; 0
2110 STA (SCRNPL}~Y

2120 INY
2130 LDA #$36 ; V
2140 STA (SCRNPL},Y
2150 INY
2160 LDA #$25 ; E
2170 STA (SCRNPL) ,Y
2180 INY
2190 LDA #$32 ; R
2200 STA (SCRNPL}~Y

2210
2220 ;WAIT FOR USER TO PRESS START
2230 CHKSTM JSR PDLCNT
2240 LDA STIMER
2250 CMP #6
2260 BNE CHKSTM

150

2270
2280 ;START OVER
2290 JMP START
2300

Part Five

2310 ;ALL BALLS ARE DEAD, BUT NOT
2320 ;ALL BALL SETS
233121 ;WAIT FOR TRIGGER OR START KEY
2340 GTPTRG JSR PDLCNT
2350 LDA STIMER
2360 CMP #6
2370 BNE TRIGER
2380
2390 ;START OVER
2400 JMP START
2410 TRIGER LDA PTRIG0
2420 BNE GTPTRG
2430 ;
244121 ; INCREMENT BALL NUMBER
2450 LDX BALLNB
2460 INX
2470 STX BALLNB
2480 ,
2490 ;RESET
2500 JSR SETPMG
25112' ,
2520 ;DELAY PROGRAM EXECUTION
2530 DELAY LDX BALSPD
2540
255121
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680

STX TMPDLY
DLY1

JSR PDLCNT
LDA STIMER
CMP #6
BNE CNTDLY
JMP START

CNTDLY LDY
DLY2 DEY

BNE DLY2
LDX TMPDLY
DEX
STX TMPDLY
BNE DLY1

#$AQI

151

Part Five

2690 ;EXECUTE MAIN LOOP AGAIN
2700 JMP MAINLP
2710
2720 ;SET BRICK FREQUENCY
2730 ;AND BRICK VALUE
2740 GETFRQ LDA BL1VPS,X
2750 CLC
2760 CMP #$50
2770 BCS FRQ2
2780 LDA #$48
2790 STA BRKFRQ
2800 LDA #5 ;ADD 1 TO COMPENSATE
2810 STA BRKVAL ;FOR OFFSET
2820 RTS
2830 FRQ2 CLC
2840 CMP #$64
2850 BCS FRQ 3
2860 LDA #$6C
2870 STA BRKFRQ
2880 LDA #4
2890 STA BRKVAL
2900 RTS
2910 FRQ3 CLC
2920 CMP #$80
2930 BCS FRQ4
2940 LDA #$90
2950 STA BRKFRQ
2960 LDA #3
2970 STA BRKVAL
2980 RTS
2990 FRQ4 LDA #$D9
3000 STA BRKFRQ
3010 LDA #2
3020 STA BRKVAL
3030 RTS

Program 5-2b. Chiseler Using Assembler Editor
- Display Setup

10 ;
20 ;SET UP THE DISPLAY LIST
30 ;

152

40 *=$2B00
50

Part Five

60 ;BLANK THE TOP 16 SCAN LINES
70 LDA #$70
80 STA $600
90 STA $601
0100 ;
0110 ;SET UP 1 LINE OF IR MODE 6 (BA

SIC
0120 ;MODE 1)~ ENABLE DISPLAY LIST
0130 ; INTERRUPT AND LOAD THE MEMORY
0140 ;SCAN COUNTER WITH $3E00
0150 LDA #$C6
0160 STA $602
0170 LDA #$00
0180 STA $603
0190 LDA #$3E
0200 STA $604
0210
0220 ;SET UP 1 LINE OF IR MODE 1 AND
0230 ;ENABLE 2ND DLI
0240 LDA #$86
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440

STA $605

;SET UP 5 LINES OF IR MODE 1
LDA #$6
STA $606
STA $607
STA $608
STA $609
STA $60A

,
;SET UP 1 LINE OF IR MODE 1 AND
;ENABLE 3RD DLI

LDA #$86
STA $60B

,
;SET UP 17 LINES OF IR MODE 1

LDA #$6
LDX #0

MODE17 STA $60C~X
INX

153

0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590

;

Part Five

CPX #17
BNE MODE17

;WAIT FOR VERTICAL BLANK, THEN
;EXECUTE DISPLAY LIST AGAIN

LDA #$41
STA $61D
LDA #$00
STA $61E
LDA #$6
STA $61F

DLISTL=$230
DLISTH=$231
DMACTL=$22F
NMIEN=$D40E

0600 DLILOW=$200
0610 DLIHGH=$201
0620 ;DISABLE DMA
0630 LDA #0
0640 STA DMACTL
0650
0660 ; INFORM ANTIC OF DISPLAY LIST
0670 ;LOCATION
0680 STA DLISTL
0690 LDA #$6
0700 STA DLISTH
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810

,
; INFORM ANTIC OF DISPLAY LIST
; INTERRUPT LOCATION

,

LDA #$40
STA DLILOW
LOA #$27
STA DLIHGH

;ENABLE DISPLAY LIST INTERUPTS
LOA #$C0
STA NMIEN

0820 ;
0830 ;ENABLE OMA
0840 LDA #$22
0850 STA DMACTL
0860 RTS

154

Part Five

Program 5-2c. Chiseler Using Assembler Editor­
Display List Interrupts

10 ;
20 ;DISPLAY LIST INTERRUPTS
30
40 DLILOW=$200
50 CHBASE=$D409
60 WSYNC=$D40A
70 COLPF0=$D016
80 COLPF1=$D017
90 COLPF2=$D018
0100
0110
0120
0130
014121
0150
0160
017121
121180
019121
0200
0210
0220
0230
0240
0250
121260
0270
0280
0290
121300

,
;THIS DLI WILL AFFECT
;THE SECOND MODE LINE

*=$2740
,
;SAVE REGISTERS

PHA
TXA
PHA

,
;SET COLPF0 (SCORE) TO GREY
;AND COLPFl (HIGH) TO RED

LDA #$08
LDX #$38
STA WSYNC
STA COLPF0
STX COLPFl

;ENABLE STANDARD CHBASE
LDA #$E0
STA CHBASE

0310 •
0320 ;ENABLE 2ND DLI
0330 LDA #$70
0340 STA DLILOW
0350
0360
10370
038121
0390
0400

,
;RESTORE REGISTERS

PLA
TAX
PLA

155

Part Five

0410 ;RETURN FROM INTERRUPT
0420 RTI
0430 ;
0440 ;THIS DLI WILL AFFECT
0450 ;MODE LINES
0460 *=$2770
el470 PHA
0480 TXA
0490 PHA
0500 TYA
0510 PHA
0520

2-6

0530 ;SET COLPF0 (WALLS) TO LIGHT BL
UE

0540 ;SET COLPF1 (BLOCK 1) TO BLUE
0550 ;SET COLPF2 (BLOCK 2) TO RED
0560 LDA #$98
0570 LDX #$78
0580 LDY #$38
0590 STA WSYNC
0600 STA COLPF0
0610 STX COLPF1
0620 STY COLPF2
0630 ;
0640 ;CHANGE CHARACTER BASE TO $3CE0
0650 LDA #$3C
0660 STA CHBASE
0670
0680 ;ENABLE 3RD DLI
0690 LDA #$E0
0700 STA DLILOW
0710 PLA
0720 TAY
0730 PLA
0740 TAX
0750 PLA
0760 RTI
0770 ;
0780 ;THIS DLI WILL AFFECT
0790 ;MODE LINES 8-24
0800 *=$27E0
0810 PHA

156

Part Five

0820 TXA
0830 PHA
0840 ;
0850 ;SET COLPF0 (BLOCK 3) TO VIOLET
0860 ;AND COLPF1 (BLOCK 4) TO YELLOW

0870 ;GREEN
0880 LDA #$58
13890 LDX #$D8
13 9 i!J 0 STA WSYNC
13910 STA COLPF1
0920 STX COLPF2
0930
13940 ;ENABLE 1ST DLI
0950 LDA #$40
0960 STA DLILOW
0970 PLA
0980 TAX
0990 PLA
1000 RTI

Program 5-2d. Chiseler Using Assembler Editor­
Playfield Setup

10
20 ;SET PLAYFIELD
30 ,
40 *=$2000
50 NEWCHB=$3C00
60 SCRNPL=$B0
70 SCRNPH=$B1
80 CHBSPL=$B2
90 CHBSPH=$B3
0100 FILRW1=$2200
0110 FILRW2=$2231
0120 FILRW3=$223C
0130 FILRW4=$2247
0140 HIGH1=$6C9
0150 ,
0160 ;SET CHAR 0 TO A BLANK SPACE
0170 LDX #0
0180 LDA #$0

157

Part Five

0190 SBLANK STA NEWCHB,X
0200 INX
0210
0220
0230
0240

'025121
0260
027121
0280
0290
030121

CPX #8
BNE SBLANK

;SET CHAR 1 TO A SOLID SPACE
LDA #$FF

SSOLID STA NEWCHB,X
INX
CPX #16
BNE SSOLID

0310 ;SCRNPL POINTS TO THE
0320 ;SCREEN MEMORY REGION
0330 LDA #$00
0340 STA SCRNPL
0351Z! LDA #$3E
0360 STA SCRNPH
0370
12138121 ;CLEAR SCREEN MEMORY REGION
121390 CLRSMR LDY #0
0400 LDA #0
041121 STRSMR STA (SCRNPL),Y
042121 INY
12143121 BNE STRSMR
044121 LDX SCRNPH
121450 INX
0460 STX SCRNPH
0470 CPX #$3F ;SCREEN MEMORY
0480 BEQ CLRSMR
0490
0500 ;PRINT "BALL - 0" ON TOP LINE
0510 LDA #$22 ;B
0520
0530
0540
0550
0560
0570
0580
0590
0600

158

STA $3E06
LDA #$21
STA $3E07
LDA #$2C
STA $3E08
STA $3E09
LDA #$D
STA $3E0B
LDA #$10

:. A

;L
;L

;0

Part Five

0610
0620 ;DISPLAY SCORE (0012100)
0630 STA $3E0D
0640 STA $3E17
065121 STA $3E18
12166121 STA $3E19
0670 STA $3E1A
0680 STA $ 3 E1B
0690 ~

121700 ;DISPLAY HIGH (XXXXX)
0710 LDX #0
121720
073121
121740

DSPHGH LDA HIGH1~X
STA $3E21 ~ X

INX
0750 CPX #5
0760 BNE DSPHGH
0770
121780 ;RESET SCREEN MEMORY POINTER
0790 LDA #$121
1218121121 STA SCRNPL
12181121 LDA #$3E
12182121 STA SCRNPH
083121 ~

121840 ;DRAW TOP WALL
121850 LDY #$2A
0860 LDA #1
121870 DRWTOP STA (SCRNPL}~Y

0880 INY
121890 CPY #$3B
12191210 BNE DRWTOP
0910
121920
0930
094121
095121
096121
097121

;DRAW LEFT AND RIGHT WALLS
DRWALS LDY #$3E
DRWLFT LDA #1

STA (SCRNPL)~Y

TYA
CLC

121980 ADC #16
099121 TAY
1000 LDA #1
112110 DRWRGT STA (SCRNPL),Y
102121 TYA

159

1030
1040
1050
110610
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

CLC
ADC
TAY
SEC
CMP
BCC
LDX
INX
STX
CPX
BEQ"
LDY
JMP

Part Five

#4

#$F1
DRWLFT
SCRNPH

SCRNPH
#$40
TWOMOR
#6
DRWLFT

1170 ;PERFECT WALL
11810 TWOMOR LDA #$1
1190
12100
1210
12210
1230
1240
1250

STA
STA
LDA
STA
LDA
STA

$3EF2
$3F102
#$10
SCRNPL
#$3E
SCRNPH

1260 ;LOAD EACH BRICK ROW WITH
12710 ;15 DISTINCT CHARACTERS
12810
1290 ;ROW 1 GETS CHARS 4-12
13100 ; (#$410 IS ADDED FOR COLPF1)
13110 LDY #$67
1320 LDX #$44
1330 FIXRW1 TXA
13410 STA (SCRNPL),Y
13510 INX
136i21 INY
1370 CPX #$53
1380 BNE FIXRW1
1390
141010 ;ROW 2 GETS CHARS"13-21
14110 ; (#$810 IS ADDED FOR COLPF2)
1420 LDY #$A3
143!3 LD X #$93
14410 FIXRW2 TXA

160

Part Five

1450 STA (SCRNPL)~Y

1460 INX
1470 INY
1480 CPX #$A2
1490 BNE FIXRW2
1500
1510 ;ROW "' USES CHARS 22-30 oJ

1520 ; (ADD #$40 FOR COLPF 1)
153!!S LDY #$DF
1540 LDX #$62
1550 FIXRW3 TXA
1560 STA (SCRNPL),Y
1570 INX
1580 INY
1590 CPX #$71
1600 BNE FIXRW3
1610 LDA #$3F
1620 STA SCRNPH
1630
1640 ;ROW 4 USES CHARS 31-3F
165i!J ; (ADD #$80 FOR COLPF2)
1660 LDY #$lB
1670 LDX #$B1
1680 FIXRW4 TXA
1690 STA (SCRNPL),Y
1700 INX
1710 INY
1720 CPX #$C0
1730 BNE FIXRW4
1740
1750 ;CLEAR CHARACTEfl BASE
1760 ;FROM $3C2!ZJ-3DFF
1770 LDA #$20
1780 STA CHBSPL
1790 LDA #$3C
1800 STA CHBSPH
1810 LDY #0
1820 TYA
1830 CLRCHB STA (CHBSPL},Y
1840 INY
1850 BNE CLRCHB
1860 LDA #$3D

161

Part Five

1870 STA CHBSPH
1880 LDA #0
1890 CHBTWO STA (CHBSPL),Y
1900 INY
1910 CPY #$E0
1920 BNE CHBTWO
1930
1940 ;CHECK IF ANY ROWS HAVE BEEN
1950 ; CLEARED . I F THEY HAVE, THEN
1960 ;RESET THEM
1970 CHKRW1 LDA #$20
1980 STA CHBSPL
1990 LDA #$3C
2000 STA CHBSPH
2010 LDY #0
2020 GETRW1 LDA (CHBSPL},Y
2030 BNE CHKRW2
2040 I NY
2050 CPY #120 ; CHECK 120 BRICKS
21060 BNE GETRL<J 1
2070 JSR FILRL<J1
2080 CHKRW2 LDA #$98
20910 STA CHBSPL
2100 LDY #0
2110 GETRW2 LDA (CHBSPL),Y
2120 BNE CHKRW3
2130 INY
2140 CPY #120
2150 BNE GETRW2
2160 JSR FILRW2
2170 CHKRW3 LDA #$10
2180 STA CHBSPL
2190 LDA #$3D
2200 STA CHBSPH
2210 LDY #0
2220 GETRW3 LDA (CHBSPL},Y
22310 BNE CHKRW4
2240 I NY
2250 CPY #120
2260 BNE GETRW3
22710 JSR FILRW3
2280 CHKRW4 LDA #$88

162

Part Five

2290 STA CHBSPL
2300 LDY #0
2310 GETRW4 LDA (CHBSPL)~Y

2320 BNE FINISH
2330 INY
2340 CPY #120
2350 BNE GETRW4
2360 JSR FILRW4
2370 FINISH RTS

Program 5-2e. Chiseler Using Assembler Editor­
Reset Brick Rows

, 10
20
30

;SHOULD BRICK ROWS BE RESET?

40 '=$2200
50 CHBSPL=$B2
60 CHBSPH=$B3
70 BALSPD=$6D1
80 RSTFRQ=$6D2
90
0100
0110
0120
0130
0140
0150
0160

;MAKE CHARACTER BASE POINTER
;POINT TO BRICK ROW 1
BRKROW LDA #$20

STA CHBSPL
LDA #$3C
STA CHBSPH

0170 ;15 BRICK ROW CLEAR?
0180 SETY LDY #$0
0190 CHKROW LDA (CHBSPL)~Y

0200 ~

0210 ;IF NOT THEN RETURN
0220 BNE NOTCLR
0230 I NY
0240 CPY #$78
0250 BNE CHKROW
0260
0270
0280
0290

,
;IF SO~ THEN REFILL BRICK ROW

LDY #$0
LDA #$FF

163

Part Five

0300 FILROW STA (CHBSPL)~Y

0310 INY
0320 CPY #$78
0330 BNE FILROW
10340 ;
0350 ;PRODUCE SOUND TO CORRESPOND
0360 ;WITH RESET
0370 LDA #$29
10380 STA RSTFRQ
0390
10400 ;SPEED UP BALLS
0410 LDA BALSPD
10420 CMP #1
0430 BEQ NOTCLR
0440 SEC
10450 SBC #1
0460 STA BALSPD
0470 NOTCLR RTS
0480 ;
0490 ;MAKE CHARACTER BASE POINTER
0500 ;POINT TO BRICI< ROW " .L-

10510 BRI<RW2 LDA #$98
0520 STA CHBSPL
0530 LDA #$3C
0540 STA CHBSPH
0550 JMP SETY
10560
105710 ;MAI<E CHARACTER BASE POINTER
10580 ;POINT TO BRICI< ROW <,

10590 BRKRW3 LDA #$10
06100 STA CHBSPL
10610 LDA #$3D
10620 STA CHBSPH
0630 JMP SETY
10640
10650 ;MAKE CHARACTER BASE POINTER
10660 ;POINT TO BRICK ROW 4
10670 BRKRW4 LDA #$88
06810 STA CHBSPL
10690 LDA #$3D
107100 STA CHBSPH
0710 JMP SETY

164

Part Five

Program 5-2f. Chiseler Using Assembler Editor­
Player/Missile Graphics

, 10
20 ;SET PLAYER/MISSILE GRAPHICS
30
40 *=$2300
50 PMBASE=$D407
60 PMBSPL=$B4
70 PMBSPH=$B5
80 GRACTL=$D01D
90 DMACTL=$22F
0100 SIZEP0=$D008
0110 COLPM0=$2C0
0120 COLPM1=$2C1
0130 COLPM2=$2C2
0140 COLPM3=$2C3
0150 COLPF3=$2C7
0160 NMIEN=$D40E
0170 PADDL0=$270
0180 HPOSP0=$D000
0190 RANDOM=$D20A
0200 TEMP=$6A0
0210 PDLHPS=$6A3
0220 BALLS=$6AF
0230 NOMORE=$6C7
0240 LAUNCH=$6C3
0250 AVOID=$6AB
0260 BALIFE=$6A4
0270 BL1HPS=$6B0
0280 BL1VPS=$6B4
0290 BL1HDR=$6B8
1.3300 BL1VDR=$6BC
0310 ,
0320 ;ENABLE PLAYER/MISSILE
0330 LDA #62
0340 STA DMACTL
0350
0360 ;SET PLAYER 1.3 (PADDLE)
0370 ;TO DOUBLE WIDTH
1.3380 LDA #1
0390 STA SIZEP0

DMA

165

Part Five

0400 ,
0410 ;COLOR PADDLE ORANGE-GREEN
0420 LDA #$EF
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570

STA COLPM0

;COLOR BALLS WHITE
LDA #$F
STA COLPM1
STA COLPM2
STA COLPM 3
STA COLPF3

;SET P/M BASE TO $ 3 000
LDA #$30
STA PMBASE

,
;ENABLE PLAYER/MISSILE

LDA #3
0580
0590 ;

STA GRACTL

GRAPHICS

0600 ;CLEAR P/M GRAPHICS TABLE
0610 LDA #$0
0620
0630
0640
0650

STA PMBSPL
LDA #$30
STA PMBSPH
LDY #0

0660 TYA
0670 CLRPMB STA (PMBSPL),Y
0680 I NY
0690 BNE CLRPMB
0700 LDX PMBSPH
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810

166

,

INX
STX PMBSPH
CPX #$38
BNE CLRPMB

;DRAW PADDLE
LDA #$FF
STA $34C4
STA $34C5
STA $34C6
LDA #$FF

0820 STA $34DD
0830 STA $34DE
13840 STA $34DF
0850

Part Five

13860 ;MAKE SURE BALLS DON"T LAUNCH
0870 ;BEFORE THEIR TIME IS DUE
0880 LDA #!:!!
13890 STA $6C4 ;LAUNCH+1
09130 STA $6C5
13910 STA $6C6
0920 ~

0930 ;WHEN NOMORE=l~ NO MORE BALLS
0940 ;WILL BE LAUNCHED. NOMORE WILL
0950 ;BE SET TO 1 WHEN USER MISSES
0960 ;A BALL
09713 STA NOM ORE
0980
0990 ;BALLS HOLDS THE NUMBER OF BALL

S
1000 ;ON THE FIELD AT ONE TIME
1010 ;THIS WILL BE INITIALIZED TO 1
11320 LDA #1
10313 STA BALLS
1040
1050 ;SET EACH BALL TO A RANDOM
1060 ;HORIZONTAL POSITION
1070 ;BETWEEN #$4B AND #$BA
1080 LDX #0
1090 RNDHPS LDA RANDOM
11130 SEC
1110 CMP #$4B
1120 BCC RNDHPS
1130 CLC
1140 CMP #$BA
1150 BCS RNDHPS
1160 STA BL1HPS~X
1170 INX
1180 CPX #4
1190 BNE RNDHPS
1200 ;
1210 ;SET EACH BALL'S VERTICAL
1220 ;POSITION TO TOP OF FIELD

167

Part Five

123121 LDX #121
124121 FIXVPS LDA #$2F
125121 STA BL1VPS~X
126121
127121
128121
1290
130121
131121

;BALLS MUST
;UNTIL THEY

LDA #$7~1

STA AVOID,X
INX

132121 CPX #4
133121 BNE FIXVPS
134121 ,

AVOID BRICKS
HIT THE PADDLE

1350 ;SET EACH BALL TO A RANDOM
136121 ;HORIZONTAL DIRECTION
137121 LDX #0
138121 RNDHDR LDA RANDOM
139121 AND #1
14121121 STA BL1HDR~X
1410 INX
142121 CPX #4
143121 BNE RNDHDR
144121
1450 ;ALL BALLS MUST MOVE DOWN
146121 ;WHEN THEY ARE LAUNCHED
147121 LDX #0
148121 FIXVDR LDA #1
149121 STA BL1VDR,X
151210 INX
151121 CPX #4
152121 BNE FIXVDR
153121
154121 ;GIVE EACH BALL LIFE
155121 LDX #121
156121 ACTVTE LDA #1
1570 STA BALIFE,X
1580
159121
16121121

INX
CPX #4
BNE ACTVTE

161121 ;HORIZONTAL PADDLE POSITION
162121 ;MUST CORRESPOND TO PADDLE 121
163121 PDLCNT LDA PADDL0
164121 LSR A

168

Part Five

1650 CLC
1660 ADC #$46
1670 STA TEMP
1680 LDA #$FF
1690 SEC
1700 SBC TEMP
1710 SEC
1720 CMP #$B1
1730 BCC STRHPS
1740 LDA #$B1
1750 STRHPS STA HPOSP0
1760 ;
1770 ;THE POSITION OF THE PADDLE
1780 ;WILL BE NEEDED LATER
1790 STA PDLHPS
1800 RTS

169

Part Five

Closeout
L.L. Beh

"Closeout" is a fast action game which has been enjoyed by both
children and adults.

This program just fits into a 16K Atari. Almost all lines con­
tain multiple statements, so make no alterations unless you
have a bigger machine.

Scrambling for Bargains
There's a huge sale going on at a local department store. You
arrive at the multistory building hungry for bargains. Boldly,
you enter the store and look around - and see bargains
galore. A real sale! You start gathering up sale items, but then
become aware of a strange group of shoppers. Wherever you
go, they follow you around. Soon you learn their true inten­
tions - they are out to stop you at all costs, so they can
have the store to themselves. What's worse, they're armed
with ray guns from the Toy Department which are modified
to work.

The object of "Closeout" is to snatch up as many sale
items as possible while evading the hostile bargain hunters.
Don't let them get too close, because. they'll either capture you
or shoot you. Some of them can shoot farther than others.
You can shoot back with the slingshot you bought in the
Sporting Goods Department (50 percent off), but since
slingshots require two hands to shoot, you must drop 25 sale
items each time you use it.

You have only one chance and about three minutes of
play. Extra time is awarded for higher scores. The remaining
time is indicated on the left, and colors change as time runs
out (there can be up to nine different colors on the screen at
a time). When your score surpasses 25 points, you can shoot
your slingshot, but remember, it costs you 25 points. You can
only shoot horizontally, by aiming the joystick and pressing
the fire button. The best strategy is to shoot only when
cornered.

170

Part Five

How IlIal7Y bargail7s cal7 you fil7d il7 "Closeout"?

After you have typed in the program, save it twice on a
disk or tape, then type RUN. There will be a short initializa­
tion pause, and the screen will clear to GRAPHICS 7. The
four players will appear, and the floors and stairways will be
drawn. Short instructions will appear. Plug your joystick into
port one. Press the fire button to start.

Your shopper is on the ground floor in the bottom left
corner. Use the joystick to move left and right, or up and
down stairs. You must be directly under the stairs to use
them, and to exit onto a floor you must be standing exactly
on it.

The program might run faster on U.S. Ataris than on my
New Zealand model. American televisions use the NTSC
standard, which allows 60 vertical blank interrupts per se­
cond, while New Zealand's PAL standard allows only 50. On
the other hand, the 6502 Central Processing Unit chip in our
Ataris is clocked at three megahertz, as opposed to 1.8 MHz
in U.S. Ataris, so the two factors might cancel each other out .

Good luck! I'd like to know who can better my score of
1200 points.

Since I omitted REM statements from the program to save
space, here is a short explanation:

171

Part Five

Line
No. Comments

10

20-23
30-33
37-44
55-59

Initialize. Jump to line 209 to POKE in the PIM utility and
player shapes, then to line 112 to wait for the trigger to be
pressed to start the game. These jumps keep the lower
numbered lines free for frequently accessed statements.
Check for your moves up the stairs.
Check for your moves down the stairs.
Check for enemy movement on the left stairs.
Check for enemy movement on the right stairs and also
give the enemy some brainpower.

60-65 Check for enemy movement on the middle stairs.
73-76 Read joystick zero (leftmost slot) to determine your moves.

78
79
80-82
84-86
87-89
90
93-95

Change this reading here and at two other locations if you
want to use any other slot for the game.
Use BASIC LOCATE statement to determine points scored.
If the sale items run low, draw some more.
Determine movement of Player 2 - Enemy No.1.
Determine movement of Player 3 - Enemy No.2.
Determine movement of Player 4 - Enemy No.3.
Check if you can shoot.
Check to see if you are in the enemy shooting range. Note:
Some enemies can shoot farther than others.

96 Game timekeeper.
97 Go back to start of loop.
100-101 Draw dots - sale items.
105-108 Draw time bar graph and erase the portion of time that

has run out; also award extra time for high scores.
109-114 You got shot! So these lines get you off the visible side of

209

the screen, and wait for the trigger to be pressed to start a
new game.
Only simple constants and variables are used in the pro­
gram. These constants and variables are used all over the
place to conserve RAM; they are also used for the line
numbers. These make the program look very untidy, but
this is the only way I can get this program to run on my
16K Atari.

210-215 POKE the PIM utility and players' shapes and colors into
RAM.

216-225 Constants and variables for the stairs and building levels;
draw it out in Graphics 7.

230 Data for PIM graphics utility.
236-237 Last eight DATAs in line 236 and all of line 237 are for the

PIM shapes. Change these if you like different shapes.

172

Part Five

Program 5-3. Closeout

10 GRAPHICS 7 : SETCOLOR 2,0,0:POKE 75
2,1:? "{14 SPACES}CLOSEOUT~":GOSUB

209:GOSUB 112 : Y1=181:GOTO C
20 IF X1=J THEN IF Y1 >A AND Y1{=B OR

Y1>C AND Y1{=D OR Y1 >E AND Y1(=I
THEN Y1=Yl-3:RETURN

21 IF X1=L THEN IF Y1 >A AND Y1 { =E OR
Y1>F AND Y1 (=I THEN Y1=Yl-3:RETU

RN
22 IF X1=K THEN IF Y1 >A AND Y1(=G TH

EN Y1=Yl-3 : RETURN
23 RETURN
30 IF X1=J THEN IF Y1 >=A AND Y1 < B OR

Y1 >=C AND Y1 < D OR Y1 >=E AND Y1<I
THEN Y1=Y1+3:RETURN

31 IF X1=K THEN IF Y1 >=A AND Y1 (G TH
EN Y1=Y1+3:RETURN

32 IF X1=L THEN IF Y1 >=A AND Y1 < E OR
Y1)=F AND Y1(I THEN Y1=Y1+3

33 RETURN
37 IF Y5=I OR Y5=H OR Y5=G OR Y5=F 0

R Y5=E OR Y5=D OR Y5=C OR Y5=B OR
Y5=A THEN GOSUB 42:RETURN

41 RETURN
42 Z=INT(RND(0)* 3) : IF Z=0 THEN IF Y5

=1 OR Y5=H OR Y5=G OR Y5=F OR Y5=
D OR Y5=B THEN X9=0:Y9=-3:RETURN

43 IF Z=l THEN IF Y5=A OR Y5=C OR Y5
=E OR Y5=F OR Y5=G OR Y5=H THEN X
9=0:Y9=3:RETURN

44 X9=4:Y9=0:RETURN
55 IF Y5=I OR Y5=H OR Y5=G OR Y5=F 0

R Y5=E OR Y5=D OR Y5=C OR Y5=B OR
Y5=A THEN GOSUB 57

56 RETURN
57 IF Y5 >Y1 THEN IF Y5=B OR Y5=C OR

Y5=D OR Y5=E OR Y5=G OR Y5=H OR Y
5=1 THEN X9=0:Y9=-3:RETURN

58 IF Y5 < Y1 THEN IF Y5=A OR Y5=B OR
Y5=C OR Y5=D OR Y5=F OR Y5=G OR Y
5=H THEN X9=0:Y9=3:RETURN

173

Part Five

59 X9=-4:Y9=0:RETURN
60 IF Y5=G OR Y5=F OR Y5=E OR Y5=D 0

R Y5=C OR Y5=B OR Y5=A THEN G05UB
62

61 RETURN
62 Z=INT(RND(0)*4):IF Z=0 THEN IF Y5

=E OR Y5=F OR Y5=D OR Y5=C OR Y5=
B OR Y5=A THEN X9=0:Y9=3:RETURN

63 IF Z=1 THEN IF Y5=B OR Y5=C OR Y5
=D OR Y5=E OR Y5=G OR Y5=F THEN X
9=0:Y9=-3:RETURN

64 IF Z=2 THEN X9=-4:Y9=0:RETURN
65 X9=4:Y9=0:RETURN
73 5=5TICK(0):IF 5=14 OR 5=10 OR 5=6

THEN G05UB 20
74 IF 5=13 OR 5=9 OR 5=5 THEN Go5UB

30
75 IF 5=7 AND X1 < L THEN IF Yl=A OR Y

I=B OR Yl=C OR Yl=D OR Yl=E OR Y1
=F OR Yl=G OR Yl=H OR Yl=I THEN X
1=Xl+4

76 IF 5=11 AND X1) J THEN IF Yl=A OR
Yl=B OR Yl=C OR Yl=D OR Yl=E OR Y
I=F OR Y1=G OR Y1=H OR Y1=I THEN
Xl=XI-4

78 Q=Xl-42:R=(YI-25)/2:LOCATE Q,R~Z:
IF Z=1 THEN COLOR 4:PLOT Q, R:T=T+
1:Tl=T1+1:? "SALE ITEMS=";:? T

79 IF T1) T2 THEN G05UB 100
80 POKE 77~0:POKE M~X1:POKE N~Yl:50U

ND 0,Yl,10~7:IF X2=J THEN Y5=Y2:X
9=X7:Y9=Y7:G05UB A:X7=X9:Y7=Y9

81 IF X2=K THEN Y5=Y2:X9=X7:Y9=Y7:Go
5UB 60:X7=X9:Y7=Y9

82 IF X2=L THEN Y5=Y2:X9=X7:Y9=Y7:Go
5UB B:X7=X9:Y7=Y9

84 X2=X2+X7:Y2=Y2+Y7:POKE M+l,X2:PoK
E N+l~Y2:IF X3=J THEN Y5=Y3:X9=X8
:Y9=Y8:GOSUB A:X8=X9:Y8=Y9

85 IF X3=K THEN Y5=Y3:X9=X8:Y9=Y8:GO
5UB 60:X8=X9:Y8=Y9

174

Part Five

86 IF X3=L THEN Y5=Y3:X9=X8:Y9=Y8:GO
SUB B:X8=X9:Y8=Y9

87 X3=X3+X8:Y3=Y3+Y8:POKE M+2~X3:POK
E N+2,Y3:IF X4=J THEN Y5=Y4:X9=X6
:Y9=Y6:GOSUB A:X6=X9:Y6=Y9

88 SOUND 0~0,0~0:IF X4=K THEN Y5=Y4:
X9=X6:Y9=Y6:GOSUB 60:X6=X9:Y6=Y9

89 IF X4=L THEN Y5=Y4:X9=X6:Y9=Y6:GO
SUB B:X6=X9:Y6=Y9

90 X4=X4+X6:Y4=Y4+Y6:POKE M+3,X4:POK
E N+3,Y4:IF STRIG(0)=0 AND T>25 T
HEN IF Y1=Y2 OR Y1=Y3 OR Y1=Y4 TH
EN GOSUB H

93 IF Y1=Y2 AND 70}ABS(X1-X2) THEN U
=X2-44:V=(Y2-31)/2:GOSUB E

94 IF Y1=Y3 AND 60 } ABS(X1-X3) THEN U
=X3-44:V=(Y3-31)/2:GOSUB E

95 IF Y1=Y4 AND 55>ABS(X1-X4) THEN U
=X4-44:V=(Y4-31)/2:GOSUB E

96 IF PEEK(19»A1 THEN GOSUB 105
97 GOTO C
100 SOUND 0~0,0~0:COLOR 1:SETCOLOR 0

,C1,9
101 FOR Y=6 TO 79 STEP 9:FOR W=16 TO

148 STEP 4:PLOT W,Y:NEXT W:NEXT
Y:T1=0:RETURN

105 C1=INT(RND(0)t15):SETCOLOR 1,C1,
8:COLOR 4:PLOT 0~V1:DRAWTO 3~V1:
A1=A1+1:V1=V1+2:IF A1<>41 THEN R
ETURN

106 IF T<T3 THEN GOSUB 112:RETURN
107 ? "EXTRA 3.5 MIN":T3=T3+T4:? "NE

XT BONUS AT ";:? T3:T4=T4+100
108 COLOR 2:FOR Y=0 TO 78 STEP 2:PLO

T 0,Y:DRAWTO 3~Y:NEXT Y:A1=1:V1=
0:POKE 19,0:POKE 20,0:RETURN

109 SOUND 0,2,6,15:COLOR 2:PLOT U,V:
DRAWTO Q,R:POKE M,1:POKE N,247:C
OLOR 4:PLOT U,V:DRAWTO Q,R

112 SOUND 0,0,0,0:GOSUB 216:GOSUB 10
0·? :? "GAME OVER, SALES FOUND="
;:? T:T=0:? "To play-Press FIRE"

175

hrtF~

113 IF STRIG(0)<>0 THEN 113
114 ? "Extra TIME at 200":GOSUB 108:

T=0:T3=200:T4=300:RETURN
163 W=0:T=T-25:? "SALE ITEMS=";:? T:

IF Yl=Y2 THEN U=X2-44:V=(Y2-31)/
2:Il=M+l:Jl=N+l:GOSUB I:Y2=Z:X2=
L:RETURN

164 IF Yl=Y3 THEN U=X3-44:V=(Y3-31)/
2:Il=M+2:Jl=N+2:GOSUB I:Y3=Z:X3=
L:RETURN

165 IF Yl=Y4 THEN U=X4-44:V=(Y4-31}/
2:Il=M+3:Jl=N+3:GOSUB I:Y4=Z:X4=
L:RETURN

181 SOUND 0,1,6,15:COLOR l:PLOT Q,R:
DRAWTO U,V:COLOR 4:PLOT Q,R:DRAW
TO U,V:SOUND 0,0,0,0:POKE Il,l:P
OKE Jl,247

189 Z=V*2+67:IF Z=A OR Z=B OR Z=C OR
Z=D OR Z=E OR Z=F OR Z=I OR Z=G
THEN GOSUB T2:RETURN

190 V=3:GOTO 189
209 A=37:B=55:C=73:D=91:E=109:F=127:

G=145:H=163:I=181:J=54:K=126:L=1
98:M=53248:N=1780:0=1784:P=704:T
2=220

210 ? "Please wait":FOR Y=1536 TO 17
06:READ Z:POKE Y,Z:NEXT Y:FOR Y=
1774 TO 1787:POKE Y,0:NEXT Y:PM=
PEEK(106}-32

211 PMBASE=256*PM:FOR Y=PMBASE+1023
TO PMBASE+2047:POKE Y,0:NEXT Y:F
OR Y=PMBASE+1025 TO PMBASE+1032:
READ Z

212 POKE Y,Z:NEXT Y:FOR Y=PMBASE+128
1 TO PMBASE+1288:READ Z:POKE Y,Z
:NEXT Y:FOR Y=PMBASE+1537 TO PMB
ASE+1544

213 READ Z:POKE Y,Z:NEXT Y:FOR Y=PMB
ASE+1793 TO PMBASE+1800:READ Z:P
OKE Y,Z:NEXT Y:POKE P+2,76:POKE
P+3,204

214 POKE P,252:POKE P+l,140:POKE 559

176

Part Five

~62:POKE 623~I:POKE 1788,PM+4:PO
KE 53277,3:POKE 54279~PM:X=USR(1
696)

215 POKE O,8:POKE O+I,8:POKE O+2,8:P
OKE O+3,8:RETURN

216 Xl=J:Yl=I:Y2=B:X2=62:Y3~E:X3=154
:Y4=6:X4=122:X6=4:Y6=0:X7=-4:Y7=
0:X8=-4:Y8=0

220 COLOR 3:SETCOLOR 2,15-Cl,5:FOR Y
=7 TO 79 STEP 9:PLOT 4,Y:DRAWTO
159,Y:NEXT Y

221 PLOT 4,0:DRAWTO 4,79:PLOT 159,O:
DRAWTO 159,79:PLOT 149,79:DRAWTO

149,52:FOR Y=52 TO 79 STEP 3:PL
OT 149,Y

222 DRAWTO 159~Y:NEXT Y:PLOT 14,79:D
RAWTO 14,43:FOR Y=43 TO 79 STEP
3:PLOT 4,Y:DRAWTO 14,Y:NEXT Y:PL
OT 149,43

223 DRAWTO 149,7:FOR Y=7 TO 43 STEP
3:PLOT 149,Y:DRAWTO 159,Y:NEXT Y
:PLOT 14,7:DRAWTO 14,16:FOR Y=7
TO 16 STEP 3

224 PLOT 4,Y:DRAWTO 14,Y:NEXT Y:PLOT
77,7:DRAWTO 77,61:PLOT 87,7:DRA

WTO 87,61:FOR Y=7 TO 61 STEP 3
225 PLOT 77,Y:DRAWTO 87,Y:NEXT Y:PLO

T 14,25:DRAWTO 14,34:FOR Y=25 TO
34 STEP 3:PLOT 4,Y:DRAWTO 14,Y:

NEXT Y:RETURN
230 DATA 162,3,189,244,6,240,89,56,2

21,240,6,240,83,141,254,6,106,14
1,255,6,142,253,6,24,169,O,109,2
53,6,24,109

231 DATA 252,6,133,204,133,206,189,2
40,6,133,203,173,254,6,133,205,1
89,248,6,170,232,46,255,6,144,16
,168,177,203

232 DATA 145,205,169,O,145,203,136,2
02,208,244,76,87,6,160,0,177,203
,145,205,169,O,145,203,200,202,2
08,244,174

177

Part Five

234 DATA 253,6,173,254,6,157,240,6,1
89,236,6,240,48,133,203,24,138,1
41,253,6,109,235,6,133,204,24,17
3,253,6,109

235 DATA 252,6,133,206,189,240,6,133
,205,189,248,6,170,160,0,177,203
,145,205,200,202,208,248,174,253
,6,169,0,157

236 DATA 236,6,202,48,3,76,2,6,76,98
,228,0,0,104,169,7,162,6,160,0,3
2,92,228 ,96,60,126,219, 255,195,1
26,60,231

237 DATA 126,219,255,129,126,102,195
,129,195,126,90,255,129, 255,60,1
02,126,90,126,195,255,60,102,195

178

Part Five

SKI!
Charles Brannon and E.H. Foerster

"Ski!" is a fin e-scrolling arcade-style game that lets you test your
skill at electronic winter sports. It will run in 16K if you remove
all REM statements. (R emove only the text; leave in the line num­
ber and REM.) Unfortunately, Ski! will not work on an XL-model
computer, unless you plug in an Atari BASIC cartridge.

Ski down Pine Mountain and never leave the warmth of your
home. That's exactly what "Ski!" allows you to do.

The object of Ski! is to ski down the slalom course
without running into any rocks, trees, or other obstacles while
trying to go between the flags. Using a joystick plugged into
the first port to control the skier, you "gobble up" bonus
points planted in the snow. You can move the joystick left or
right to turn. You can also position your player up or down
to change difficulty, points, and maneuverability.

The higher you go, the faster the scene scrolls, and the
more points you win. The higher speeds necessitate fast
response. The novice will want to position himself a little
below midway up the screen. That way, you have room to
pull back if you need to duck. If you hit a rock, tree, or flag,
you crash, and start over at the bottom of the screen. You
lose fifty points for every crash.

Up the Hill
Every time you play the game, a random ski course is
generated. If you wish, you can see the screen scroll in reverse
as the course is being laid out. Your computer will buzz when
the game is ready to play. Press FIRE to begin.

Fine Scrolling
Fine scrolling couples coarse scrolling (which moves the
pointers to screen memory around) with a special feature of
the ANTIC chip.

To fine scroll, you set a special bit in every line of the
display list you wish to scroll. You then scroll one scan line at
a time by storing numbers from 0-15 in VSCROL. When you

179

Part Five

SKX.-' .1.00 ••

so

A tricky maneuver between the flagpoles in "Ski!"

reach the limit of ANTIC's fine-scrolling resolution (8 scan
lines in GRAPHICS 1), you reset VSCROL and then coarsely
scroll a full eight scan lines. Coarse scrolling is described in
COMPUTEt's Second Book of Atari. Machine language is re­
quired for fine scrolling, since you must reset VSCROL and
perform the coarse scroll almost simultaneously, or else you
get a jumpy, unpleasant display.

Interfacing to BASIC
The fine-scrolling routine could be written as a USR state­
ment, but BASIC would have to call it every time a scroll was
needed, and this would be too slow. We need to periodically
update the screen in a way that's not dependent on BASIC.

The Vertical Blank Interrupt (VBI) is perfect for this task.
Every 1/60th of a second, the scroll routine is called to update
the screen. BASIC can control the speed with memory loca­
tion zero. POKEing a number from 1-255 controls the speed
from one (fastest) to 255. A zero will stop the scrolling,
although the vertical blank routine will still be "hooked up:'
BASIC sets up the VBLANK scrolling routine by passing the
address of the Load Memory Scan counter to change in the

180

Part Five

display list (which can be found on a normal screen with
LMS = PEEK(560) + 256*PEEK(561) + 4) and the number of
lines to scroll. BASIC can PEEK location 1 to see how many
full lines still need to be scrolled.

The VB LANK routine will stop scrolling when it runs out
of lines, and memory location 1 will hold a zero. You could
use the machine language routine in your own programs, but
since it is not general-purpose, you will be limited to
unidirectional scrolling in GRAPHICS 1. Be sure to use the
"disable routine" (A =USR(1638)) to remove the VBI routine
from the system.

An ANTIC Anomaly
It's not mentioned anywhere as far as I know, but the address
of the start of your screen memory for fine scrolling should
start on a 4K boundary. ANTIC apparently cannot cross a 4K
boundary, so if your screen buffer (that holds the rocks, trees,
etc.) is too long, ANTIC can get confused and start displaying
nonsense. Another thing to watch for: when using a vertical
blank routine, be sure to include a CLD (Clear Decimal) at
the start of the program. If you don't, your arithmetic will be
foiled every time BASIC calls the floating point routines
(which use BCD math).

Strings are used extensively in the BASIC program, to pre­
vent memory conflicts. A string is used to hold the display list,
the screen memory area, the player!missile memory, and the
shapes for the player. The screen memory area and the player!
missile address are insured to be on proper page boundaries
by modification of the Variable Value Table. Because of this,
line 100 must be typed first, in order for the program to work
properly.

Typing in Ski!
It is extremely important that you follow these typing instruc­
tions carefully. (It is a good idea to read all the directions
first.)

1. Type in Program 5-4.

Do not run program at this time.
2. LIST this program to disk (LIST "D:LOADER") or

cassette (LIST "C:"). You might want to make two copies.
3. Turn off your computer; then turn it back on.

181

Part Five

4. Type in Program 5-5.

Do not run program at this time;
5. LIST this program to disk (LIST "D:SKI.LST) or

cassette (LIST "C") . Again you may wish to make two
copies.
6. Type NEW and ENTER the loader (ENTER

"D:LOADER or ENTER "C").
7. RUN the loader. If it runs correctly then go to step 8;

if it doesn't run correctly, or the computer crashes, turn
off your computer and then turn it back on and reENTER
the loader and check your typing of the program. Once
corrections have been made, complete step 2 before run­
ning the program.
8. Delete all remaining program lines. (Do not turn off

your computer.)
9. ENTER Program 5-5 (ENTER "D:SKI.LST or ENTER
"C:").

10. RUN the program. If it runs correctly, move on to
step 11. If it does not run correctly, or the system crashes,
check your typing. You may have to reENTER the pro­
gram from disk or tape. Make corrections and go back to
step 5.
11. Once you are certain the game RUNs correctly, SAVE
Ski! (SAVE "D:SKI" OR CSAVE).
12. The next time you wish to use this game, just load
the SAVEd version of Ski!.

Program 5-4. Loader for Ski!
Ski! will 1I0t work all all XL-model II nless all Atari BASIC cartridge is pl/lgged ill to til e
slot.

o REM 1 •• 1:1 tl iiII;_ ill];= Eft:+· - .I:a «_ ;;[;);
10 ? "JUST A MOMENT":OIM A$(746):A=1

:B=0:C=20:FOR 0=0 TO 36:GOSUB 70:
NEXT 0:C=6:GOSUB 70

20 IF B<>73882 THEN? "CHECK ALL OAT
A LINES":ENO

30 VNTO=PEEK(132)+256*PEEK(133)
40 A=USR(ADR(A$),746)
50 A=USR(ADR(A$)+22,VNTO+l,AOR(A$),7

46)
60 GOTO 1000
70 E=0:FOR F=1 TO C:REAO G:E=E+G:B=B

182

Part Five

+G:AS(A,A)=CHRS(G):A=A+l:NEXT F
80 READ F:IF F<>E THEN? "CHECK DATA

STATEMENTS AT LINE ";100+D*10:END
90 RETURN
100 DATA 104,104,170,104,168~138,162

,134,76,129, 168, 104~ 104; 170~ 104~
168,138,162,134~76,2617

110 DATA 253,168,104,162, 3, 104~ 149, 1
53,202,16,250~56~165,155,229,153

,165,156~229,154,3026

120 DATA 104,170,144,16,24,101, 154~ 1
33, 154, 138~ 101,156,133,156,232,1
04,168,76,227~168,2659

130 DATA 232,104,168,101,153,133,153
, 176, 2, 198, 154 , 152, 24, 101 , 155 ~ 13
3,155~176,2,198,2670

140 DATA 156~152,73~255,168~200,76,7

6~ 169~ 104, 104, 104~ 160~ 4, 200,177,
138~201,60,208~2785

150 DATA 249~200,200,200,177,138,32,
40,172,160,7 , 104,145,157,136,192
,2,208,248,56,2823

160 DATA 170,104,229,140,145,157,200
,138,229,141,145,157,96,112,112,
112,70 , 155,34,102,2748

170 DATA 20,144,38,38,38,38,38,38,38
,38,38,38,38,38,38,38,38,38,38,3
8,848

180 DATA 38,38,6,65,130 , 9,O,O,O,21,O
,O,O,O,O,O,O,O,O,0,307

190 DATA O,O,6,14,28,24,32,O,128,O,O
,O,O,O,O,O,O,O,O,O,232

200 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0

210 DATA 0,192,192,220,20,28 , 7,5,7,O
,0,24,52,44,60,24,0,16,56,56~100

3
220 DATA 124,124,254~16 , 16,8,28,62,6

2,62,8,8,O,O,56,94.106,94,116.56
, 1294

230 DATA O,O,119,69,117,21,119,O,O,8
,24,56,120,8,8 , 8,8,O,O,O,685

183

Part Five

24121 DATA 48,88,56,16,186,254,89,24,1
56,82,33,16,8,0,0,121,12,26,28,8,1
130

250 DATA 93,127,154,24,57,74,132,8,1
6,0,0,24,60,60,24,24,6121,186,89,2
4,1236

260 DATA 154,170,198,65,65,1,18,36,7
4,161,18,156,77,10,24,24,0,0,0,0
, 1251

270 DATA O,169,O,133,O,169,1,141,99,
6,169,8,141,98,6,104,104,133,7,1
04,1592

280 DATA 133,6,104,104,133,1,162,10,
160,117,169,7,32,92,228,96,216,1
73,4,208,2155

290 DATA 240,4,169,O,133,O,165,O,240
,85,165,1,240,81,206,99,6,173,99
,6,2112

300 DATA 208,73,198,203,208,26,169,2
,133,203,173,124,2,208,3,206,100
,6,173,125,2543

310 DATA 2,208,3,238,100,6,173,100,6
,141,0,208,165,0,141,99,6,206,98
,6,1906

320 DATA 1/4,98,6,142,5,212,208,27,1
60,0,56,177,6,233,20,145,6,160,1
,177,2013

330 DATA 6,233,O,145,6,169,7,141,98,
6,141,5,212,198,1,76,98,228,0,0,
1770

340 DATA 0,O,104,162,228,160,98,169,
7,32,92,228,96,173,1121,210,41,3,2
01,3,2017

35121 DATA 176,247,96,17121,169,72,224,1
,240,6,169,73,144,2,169,0,145,20
3,96,165,2567

360 DATA 206,133,205,173,10,210,41,7
,24,105,6,168,169,134,145,203,17
3,10,210,48,2380

370 DATA 14,169,23,133,207,169,18,13
3,208,169,22,133,209,208,12,169,

184

Part Five

17,133~207,169,2522

380 DATA 22,133,208,169,18,133,209,5
6,152,229,209,168,162,3,152,24,1
01,207~168~169,2692

390 DATA 204,145,203,152,24,101,208,
168,169,204,145,203,202,208,235,
96,104,104,133,204,3212

400 DATA 104~133,203,169,0,133,205,1

69,24,133,206,32,113,6, 168, 32~ 11
3,6,32,123,211214

410 DATA 6,136,16,247,160,17,32,113,
6,201,1,240,4,200,144,1, 20{!J, 32,1
13,6,1875

420 DATA 32,123,6,200,192,20,21218,245
,173,10,210,201,13,176,18,24,165
,205,105,10,2336

430 DATA 197,206,176,9,32,139,6,240,
52,208,2,208,194,173,1121,210,201,
25,176,4,2468

440 DATA 169,7,208,20,173,10,210,201
,25,176,4,169,10,208,9,173,10,21
10,201,25,2218

450 DATA 176,19,169,139,170,173,10,2
1121,41,15,201,12,176,247,24,105,3
,168,138,145,2341

460 DATA 203,230,206,165,206,201,175
,208,1,96,24,169,20,11211,203,133,
203,165,204,105,3018

470 DATA 0,133,204,208,182,121,727
112100 A=!O:FOR B=1 TO 5
1010 GRAPHICS 0:POSITION 2,4
1020 FOR C=1 TO 10:? AtI0:A=A+l:NEXT

C
1030 ? "CONT":POSITION 2,0:POI<E 842,

13:STOP
1040 POKE 842,12
1050 NEXT B
1060 ? "BAS I C RAM I S LOADED. DELETE

REMAINING LINES AND ENTER LIST
I NG 2."

185

Part Five

Program 5-5. Ski!

100 DIM SCREEN$(1),PM$(1)
101 DIM LEFT$(20) ,CENTER$(20),RIGHT$

(20),CURR$(20),CRASH$(20),ERASE$
(20), DIR (8), SCR (4), DLIST$ (1)

102 DIM T$(20},TOPLINE$(20):GOTO 130
110 REM "-""1:'_3 LINE 1 !Z10 MUST BE TYP

EDIN FIRST ~ I ~

120 HI=INT(A/256):LO=A-HI*256:RETURN

125 POKE 66,1:FOR W=1 TO 10:POKE 532
79,0:POKE 53279,8:NEXT W:POKE 66
,0:RETURN

130 GOSUB 790:REM Initialization rou
tines

140 REM PLAYER ROUTINE
150 POKE 559,62:POKE 54279,PMBASE
160 POKE 53277,3:POKE 704,2*16+6
170 PO=1024:YP=180:XP=128
180 PM$(PO)=CHR$(0):PM$(PO+254)=CHR$

(0):PM$(PO+1)=PM$(PO)
195 SCR(0)=0:SCR(1)=10:SCR(2)=4:SCR(

3)=2:SCR(4)=1
200 ERASE$=CHR$(0):ERASE$(20)=CHR$(0

):ERASE$(2)=ERASE$
210 LEFT$=ERASE$:CENTER$=ERASE$:RIGH

T$=ERASE$:CRASH$=ERASE$
220 FOR 1=0 TO 15
230 LEFT$(I+2,I+2)=CHR$(PEEK(CHSET+2

08+ I))
240 CENTER$(I+2,I+2)=CHR$(PEEK(CHSET

+224+1))
250 RIGHT$(I+2,I+2)=CHR$(PEEK(CHSET+

104+I>)
260 CRASH$(I+2,I+2)=CHR$(PEEK(CHSET+

240+1))
270 NEXT I
280 D1R(0)=0:DIR(1)=20:D1R(2)=19:DIR

(3)=21:DIR(4)=1:FOR 1=0 TO 3:DIR
(I+5)=-DIR(I):NEXT I:DIR(5)=-1

290 CURR$=CENTER$

186

Part Five

295 POKE 1636~XP:POKE 203~2:SCR=0

300 PM$(PO+VP~PO+VP+20)=CURR$
310 SCR=SCR+SCR(PEEK(0»:POKE 77~0
320 POSITION 2,0:? #6;SCR;" ";:POSIT

ION 15~0:IF PEEK(0)< >0 THEN? #6
; (5-PEEK (0» *100

330 IF PEEK(I) <3 THEN POKE 0~0:GOTO
740

3413 ST=STICK (0)
350 LEFT= NOT PTRIG(I):RIGHT= NOT PT

RIG(0):LR=LEFT+2tRIGHT
360 CURR$=CENTER$:XP=PEEK(1636)
370 IF LEFT THEN CURR$=LEFT$:IF LR<>

OLR THEN SV=2:TI=5
380 IF RIGHT THEN CURR$=RIGHT$:IF LR

<>OLR THEN SV=4:TI=5
390 IF TI>O THEN TI=TI-l:S0UND 0.SV~

0,TI
400 IF LR=0 THEN SOUND 0,0~0,0:TI=0
41 QI OLR=L
420 UP=(ST=14 OR ST=10 OR ST=6):DOWN

=(ST=5 OR ST=9 OR ST=13)
430 VP=VP-2*UP+2*DOWN:IF VP >200 THEN

VP=200
440 IF VP<40 THEN VP=40
450 POKE 0,1+(VP>130)+(VP } 160}+(VP } 1

85)
460 IF PEEK(P0PF)=0 THEN 300
470 WHICH=INT(LOG(PEEK(P0PF»/LOG(2)

+0.1):TEMP=PEEK(0):POKE 0~0
480 PM$(PO+VP,PO+VP+20)=ERASE$
490 POKE HITCLR , I:IF WHICH (}2 THEN 6

20
500 REM POINTS
510 PTR=ASC(DLIST$(8»+256*ASC(DLIST

$ (9))

520 LINE=INT«VP-39)/8)+1
530 COL=INT«XP-49)/8)+1
540 LOC=PTR+LINE*20+COL:SOUND 0,0~0,

o
550 FOR 1=0 TO 8:P=PEEK(LOC+DIR(I)}
560 IF P{128 OR P } 192 THEN 590

187

Part Five

570 POKE LOC+DIR(I),O
580 SCR=SCR+(P=139)*50+(P=134)*100*(

5-TEMP):I=11:NEXT I:GOTO 600
590 NEXT I:GOTO 610
600 FOR W=15 TO 0 STEP -1:S0UND 0,20

,10,W:NEXT W
610 POKE 0,TEMP:POKE HITCLR,1:GOTO 3

!!J 0
620 REM CRASH!
630 SOUND O,0,0,0
640 PM$(PO+VP,PO+VP+20)=CRASH$
650 FOR W=100 TO 150 STEP 2:S0UND 0,

W,12,10:NEXT W
660 PM$(PO+VP,PO+VP+20)=ERASE$
670 VP=200
680 PM$(PO+VP,PO+VP+20)=CURR$
690 POKE O,1:SDUND 0,O,O,O
700 XP=INT(72+90*RND(0»:POKE 53248,

XP:POKE 1636,XP
710 IF PEEK(P0PF)(>0 THEN POKE HITCL

R,1:GOTO 700
720 POKE HITCLR,0:SCR=SCR-50:IF SCR(

° THEN SCR=0
730 GOTO 300
740 IF SCR)HSCR THEN HSCR=SCR
745 POSITION 8,0:? #6;"
750 SOUND 0,0,0,0

HIGH ";HSCR

760 S C R E E N $ (326 , 336) = II pre s s { , } Be' a."
770 IF STRIG(0) THEN 770
780 GOTO 130
790 REM ."'II::1"':"II:-'ii..,.:a:;-::p(';'I:lr11.~ """=':i""'~("""I]rr:

800 GRAPHICS 17:HILO=120:POKE 53248,
0:POKE 0,0

810 SETCOLOR 4,0,12:SETCOLOR 1,12,8:
SETCOLOR 2,9,6:SETCOLOR O,15,4

820 P0PF=53252:HITCLR=53278:POKE HIT
CLR,0

830 SCRBASE=PEEK(106)-16:REM 4K BOUN
DARV

840 PMBASE=SCRBASE-8:REM 2K BOUNDAR V
,DOUBLE-LINE RES

850 CHBASE=PMBASE:REM FILL UP OFFSET

188

Part Five

WITH CHARACTERS
870 VNTD=PEEK(132)+256*PEEK(133)
880 A=USR(VNTD+90~ADR(SCREEN$),4097,

4097,SCRBASE*256)
890 A=USR(VNTD+90~ADR(PM$)~2049,2049

,PMBASE*256)
900 A=USR(VNTD+90,ADR(DLIST$),40,40,

VNTD+134)
910 CHSET=CHBASE*256
920 A=USR(VNTD+23,CHSET,VNTD+174,120

):A=USR(VNTD+23,CHSET+128,57472,
344):A=USR(VNTD+23,CHSET+208,VNT
D+294,48)

930 A=VNTD+377:GOSUB 120:POKE VNTD+3
68,HI:POKE VNTD+370,LO

940 A=USR(VNTD+23,1649,VNTD+494,103)
950 Z=USR(VNTD+483):REM DISABLE VBLA

Nt<
960 POKE 756,CHBASE:RESTORE 990
980 A=ADR(DLIST$):GOSUB HILO:POKE 56

1,HI:POKE 560,LO
1020 DLIST$(32)=CHR$(PEEt«560}}:DLIS

T$(33)=CHR$(PEEK(561)}
1030 SCREEN$(1)=CHR$(0):SCREEN$(4095
~)=CHR$(0):SCREEN$(2}=SCREEN$

1040 TOPLINE$=SCREEN$
1050 A=ADR(TOPLINE$):GOSUB HILO
1060 DLIST$(5,5)=CHR$(LO):DLIST$(6,6

}=CHR$(HI)
1070 POKE 88~LO:POKE 89,HI
1 080 PO SIT ION 8, 0 :? # 6; "t#1"""'~""'.""'''''''" ;
1082 SCREEN$ (121 , 139) =" iElIZ4-...... -:{ , } 1 #\1 i.:;[;:

[L{ , } iE{ , } ~"
1083 SCREEN$ (163, 178) = "I£tl"'{ft} ii1!i!'ftiI]

[!CH "} [It" : S C R E E N $ (1 85, 1 95) = " tttt=:o;o,
{ , } tli_Xi I jIla-jg II

1085 SCREEN$(403,419)="U{2 "}~{2 ft}I:L
{2 ftJ- ~{2 ft} 8{ 2 ftJ- £::"

1090 A=USR(VNTD+597,ADR(SCREEN$)+480
)

1410 A=SCRBASE*256

189

Part Five

1420 A=A-20*(STICK(0)=14)+20*(STICK(
0)=13)

1430 IF A)SCRBASE*256+3480 THEN A=A-
20

1440 IF A(SCRBASE*256 THEN A=A+20
1450 GOSUB HILO:T$=CHR$(LO):T$(2)=CH

R$(HI):DLIST$(8~9)=T$

1460 IF STRIG(0)=1 THEN 1420
1470 A=SCRBASE*256+3480:GOSUB HILO
1480 T$=CHR$(LO):T$(2)=CHR$(HI):DLIS

T$(8,9)=T$
1481 GOSUB 125:IF STRIG(0) THEN 1481
1490 A=USR(VNTD+342~ADR(DLIST$(8»,1

76)
1495 SCREEN$(121,195)=SCREEN$(120)
1500 RETURN
2000 VNTD=PEEK(132)+256*PEEK(133)
2010 POKE VNTD+342+26,78
2020 POKE VNTD+342+28~67
2030 POKE VNTD+342+39,85
2040 POKE VNTD+342+43~81
2050 POKE VNTD+342+51,73
2060 A=USR(VNTD+23,20000,VNTD+342~36

5)
2070 A=USR(VNTD+23~20000+52+30,20000

+52,365)
2075 A=USR(VNTD+23,20000+36+9~20000+

36,400)
2080 RESTORE 2000
2085 FOR A=0 TO 8:READ B:POKE 20036+

A~B:NEXT A
2086 DATA 173,4,208,240,4~169,0,133,

o
2090 FOR A=0 TO 29:READ B:POKE 20000

+61+A,B:NEXT A
2095 DATA 198,203,208,26,169~2~133,2

03
2100 DATA 173,124,2,208~3,206,100,6

2110 DATA 173,125,2,208~3,238~100,6
2112 DATA 173,100,6,141,0~208

2200 FOR A=0 TO 103:? A,PEEK(VNTD+36
0+A)~PEEK(20000+A):NEXT A

190

Part Five

Thunderbird
Dave Sanders

Translated for the Atari by Charles Brannon

"Thunderbird" offers a challenge for the experienced game player as
well as the novice.

"Thunderbird" will demand your undivided attention and
16K of memory. The object of Thunderbird is to score as high
as possible. Using a joystick you move the bird left and right,
using it to bounce a ball into a wall of bricks. The object of
the game is to clear out all the bricks, without letting the ball
escape past you. A 1,000 point bonus is awarded when you
break out the bottom of the wall (a ''breakthrough''); and if
you're really good, you get 10,000 points for clearing out all
the bricks (no mean feat).

Shades of Zeus
The Thunderbird can unleash the most awesome power of
nature - lightning - at the touch of a button (the fire but­
ton) . Thunderbird will ''beam down" several luminous "tiles"
that serve to deflect the ball downward when hit. You can lay
down tiles like a cap over a hole the ball has created, to force
it to widen the hole. Every time the ball hits a tile, it swoops
downward, but 25 points are subtracted from your score. That
should discourage overuse of this miraculous feature.

Vertical Blank and IRG 4
Here's a bit of information about the programming. The play­
ing field is a mixed-mode display consisting of two rows of
GRAPHICS 1 text and 21 rows of a multicolored character
mode, IRG 4. This lets us have multicolored bricks.

Player/missile graphics are used to represent the bird,
which can be any of three sizes, depending on the skill level.
The bird is moved left and right by a small machine language
routine that is executed every 1/60 second during the TV's
vertical blank (when the electron beam is traveling from the
lower right-hand corner to the upper left-hand corner of the
screen).

191

Part Five

Unleashing a lightning bolt in "Thunderbird,"

IRG mode 4, the multicolor mode, is quite interesting. A
single character can be any of three colors. To design these
colored characters, divide the character horizontally into four
two-bit zones. Each two-bit block controls one pixel of color
within the character (a multicolor character's resolution is
4xS). No color would be 00, color one is 01, two 10, and three
11 (simple two-bit binary). For example, one of the bricks con­
sists of several colored bands:

1110
2220
3330
1110
2220
3330
1110
0000

The numbers correspond to a "COLOR" statement. One side
and the bottom row are left blank, so the blocks won't touch .
The pattern, when expanded into binary, would look like:

192

01010100
10101000

11111100
01010100
10101000
11111100
01010100
00000000

Part Five

Such a "custom character" would look strange on a nor­
mal screen (although you would see some semblance of
multicolors, due to artifacting) . But when displayed on either
an IRG 4 or IRG 5 mode screen, each character is like a tiny
4x8 block of GRAPHICS 7 pixels. Also, any character printed
in inverse (with the Atari logo key) will look different. The
COLOR 3 pixels in such a character will be displayed as
COLOR 4 (normally available only in GRAPHICS 1 or 2).

To create an IRG 4 screen, you must replace the bytes for
GRAPHICS 0 by modifying the display list. Luckily, the
resolution of IRG 4 is identical to GRAPHICS 0, 40x24.

DL =PEEK(560) +256*PEEK(561) +4
POKE DL-1,4 +64
FOR 1=2 1D 24:POKE DL +1,4:NEXT I

See lines 160-180 of Thunderbird. You can also tryout
IRG 5, which displays these characters in double height
(40x12).

Program 5-6. Thunderbird

100 REM _.al]:l~l#il:;;JII.:~~.

110 REM A"tari Versio
120 GRAPHICS 0:BASE=(PEEK(106)-16)*25

6:GOSUB 1560:REM ~emove old playe
~s f~om sc~een

130 DIM A$(40},BALL$(4}:POKE 82,0:BAL
L$="*U{J}{~}":BALLS=4

140 CHSET=BASE:IF PEEK(CHSET+9} <> 252
THEN GOSUB 1200:REM If not initia
lized

150 GRAPHICS 0:POKE 752,1:POKE 559,O:
REM Tu~n off cu~so~, sc~een

160 DLIST=PEEK(560}+256*PEEK(561}+4:R
EM location of display list

170 FOR 1=3 TO 24:POKE DLIST+I,4:NEXT

193

Part Five

I:REM Change mode ze~o lines to
IRG 4 (mulicolo~ cha~acte~)

180 POKE DLIST-l,6+64:POKE DLIST+2,6:
REM top two lines GRAPHICS 1

190 POKE 756,CHSET/256:REM tu~n on ch
a~acte~ set

200 SETCOLOR 0,0,12:SETCOLOR 1,3,6:RE
M white and ~ed

210 RESTORE 240:REM d~aw b~ick a~ea

220 POSITION 0,0:? BALL$(I,BALLS):REM
display # of balls (birds) left

230 REM Pattern of wall:
24~1 DATA 1,1,2,3,14,129, 13!!!, 131
250 SCR=PEEK(88)+256*PEEK(89):REM loc

ate screen memory
260 REM put bricks on screen
270 FOR I=SCR+520 TO SCR+800 STEP 40:

READ A:FOR J=I+l TO I+38:POKE J,A
:NEXT J:NEXT I

280 POS I T I ON 5,0:? #6; II liiaIJ=lt]#iiI:J;;JIiII:~t:"

290 P0=BASE+1024:PADR=P0+48:REM playe
r zero.

300 POKE 704,28+176t(DIFF=I)+80*(DIFF
=2):REM Gold, green, or violet

310 POKE 54279,BASE/256:REM single-Ii
ne res.

320 POKE 53277,3:POKE 53256,3-2*(DIFF
=1)-3*(DIFF=2):REM Start P/M DMA,
select width according to diffic

ulty
330 RESTORE 370
340 FOR 1=0 TO 21:POKE PADR+I,0:NEXT

I:REM clear out player
350 FOR 1=0 TO 7*(3-DIFF) STEP 3-DIFF

:READ A:FOR J=0 TO 3-DIFF:POKE PA
DR+I+J,A:NEXT J:NEXT I

360 REM bird pattern
370 DATA 0,24,8,107,28,8,0,0
380 IF PEEK(547)(>6 THEN A=USR(1536):

REM turn on VB LANK if necessary
390 POKE 559,62:GOSUB 750:REM turn on

screen (single-line res. P/M), w

194

Part Five

ait for START
400 DY=I:DX=0.5:IF RND(I) } 0.5 THEN DX

=-0.5:REM Set up ball direction
410 BX=INT(40*RND(0»:BY=INT(7*RND(0)

+3):REM select random starting po
sition

420 REM -;!?n .••. t.iEal
430 IF STRIG(0)=0 THEN GOSUB 800:REM

allow "thunder"
440 IF STIC K (0)<>15 THEN POKE 77,0
450 TX=BX+DX:TY=BY+DY:REM update ball
460 IF TY < 1 THEN GOSUB 600:GOTO 430:R

EM check for miss
470 IF TY>20 THEN DY=-DY:IF TX>0 AND

TX<39 THEN GOSUB 920:GOTO 430:REM
check for breakthrough

480 IF TX < 0 THEN TX=0:DX=-DX
485 IF TX) 39 THEN TX=39:DX=-DX
490 TPOS=SCR+TX+40*TY:REM check for 0

bstacles
500 IF PEEK(TPOS)=0 THEN POKE TPOS,5:

POKE SCR+BX+40*BY,0:BX=TX:BY=TY:G
OTO 43~1

510 REM Rebound tiles (lasered down)
520 IF PEEK(TPOS)=4 THEN GOSUB 890:SC

ORE=SCORE-20:DY=ABS(DY):GOTO 560
530 DY=-ABS(DY):IF RND(0»0.5 THEN DX

=-DX
540 FOR W=14 TO 0 STEP -2:S0UND 0,W*5

,10,W:NEXT W
550 SCORE=SCORE+(BY-ll)*5:BLOCKS=BLOC

KS+l:REM score according to row
560 POKE TPOS,0:POSITION 29-LEN(STR$(

SCORE»/2,{!I:? " ";SCORE;" ";
570 IF BLOCKS=304 THEN 1000:REM BREAK

-OUT~

580 IF SCORE (0 THEN 720
590 GOTO 500
600 REM Hit bird?
610 IF PEEK(53252) THEN DY=-DY:Z=I:GO

TO 630
620 GO TO 66~!J

195

Part Five

630 FOR W=14 TO 0 STEP -2:S0UND 0~W+l
!!J, 110, W: NE X T W

640 POKE SCR+BX+41O*BY~IO:BX=BX+DX:BY=B
Y+DY

650 POKE 53278~255:RETURN
660 REM BaIlout of bounds (past bird

)

670 POKE SCR+BX+40*BY,0
680 FOR W=100 TO 0 STEP -5:S0UND 0,W,

12,8:NEXT W:FOR W=W=IO TO 100 STEP
5:S0UND IO~W,12,8:NEXT W:SOUND 0,

10,0,10
690 POKE 53278,255
71010 BALLS=BALLS-l:POSITION BALLS,IO:7

II • ,
710 IF BALLS}IO THEN 41010
7210 REM GAME OVER
7310 POS I T I ON 5 ~ 0: 7 II Gmn~ O[!)?~ II

740 GOSUB 751O:RUN
750 IF PEEK(53279)=6 THEN POSITION 210

,10:7 "{5 SPACES}":RETURN
7610 IF PEEK(21O)}21O THEN POSITION 210,10

:7 "PRESS"
770 IF PEEK(21O)}40 THEN POSITION 210,0

: 7 13if¥1i4.": POKE 20~ 0
7810 GOTO 7510
7 9 10 REM nl.":=--;;'::::II;Jr::#iI""':"'.~~Xr..""]:"I"'r:

800 XPOS=(PEEK(1664)-48)/4+4-2*(DIFF=
1)-3*(DIFF=2':FLIP=@:REM equate p
layer pas. to screen pas.

8110 FOR 1=3 TO 12:WHERE=SCR+XPOS+4@*I
8210 P=PEEK(WHERE):POKE WHERE,6+FLIP:F

LIP=I-~LIP:REM zig-zag line
8310 SOUND 0,I*IIO,0,15-I:POKE 71@,PEEK

(53771O):REM scintillate color
84~1 NEXT I
8510 FOR 1=3 TO 12:POKE SCR+XPOS+4@tI,

0:NEXT I:REM erase lightning
8610 WHERE=SCR+12*4@+XPOS:SOUND 10,10,10,

IO:POKE WHERE-l,4:POKE WHERE+l,4:P
OKE WHERE,4:REM lay down tiles

8710 SETCOLOR 2,9~4:RETURN

196

Part Five

880 REM sound effect:
890 FOR W=0 TO 240 STEP 3121:S0UND 0,W,

12,15-W/17:S0UND 1,W+10,10,15-W/1
7:NEXT W:SOUND 0,0,0,0:S0UND 1,O,
0,O

900 RETURN
910 REM break-through
920 IF DONE THEN RETURN
930 FOR 1=1 TO 100:POKE 53274,PEEK(53

770):SDUND 0,I,0,15-I/10:NEXT I
940 SOUND 0,0,0,0:PDSITION 4,121:? "~

fEn'iil ijlia:.l1 t;It" : PO SIT ION 2 2 , QI :? "1 ° ° °
poi nt 1;i.]:[I~1"

950 FOR 1=1 TO 11Z1:POSITION 22,0:? "10
00":FOR W=1 TO 20:NEXT W:POSITIDN
22,0:? "{4 SPACES}":FOR W=1 TO 2

0:NEXT W:NEXT I
960 POS I T I ON 4, 0:? " uaIJ:I.]?I:~.liil:g ": PO

SITION 22,0:? "{17 SPACES}"
970 FOR 1=1 TO 10:FOR J=0 TO 15 STEP

5:S0UND 0,50+10-I,0,15-J:NEXT J:S
CORE=SCORE+100

980 POSITION 29-LEN(STR$(SCORE»/2,0:
? " "; SCORE;" ";

990 NEXT I:DONE=1:RETURN
1000 REM All bricks cleare
1010 GOSUB 1100:REM do "BLAST"
1020 FOR 1=1 TO 50:FOR J=0 TO 3:POKE

708+J,PEEK(53770):NEXT J:Z=Z*(Z<
5)+1

1030 SOUND 0,I+Z,10,I/10:S0UND 1,I+Z+
10,10,I/10:NEXT I

1040 SOUND 0,0,0,0:S0UND 1,0,0,0:GOSU
B 1560

1050 GRAPHICS 18:PDSITION 0,6:? #6;"
{ Q} {P} {L} {3 P } poi n t I #i.hil k{ [r} "

1060 FOR W=1 TO 100:SDUND 0,PEEK(5377
0) ,0, 15-WI 10: POKE 712, (3-FLIP*2)
*16+FLIP*4+4:FLIP=1-FLIP:NEXT W

1070 SCORE=SCORE+10000:S0UND 0,0,0,0
108121 DIFF=DIFF+1:IF DIFF}2 THEN DIFF=

2

197

Part Five

1090 GOTO 150
1100 POKE 82,5:POSITION 5,10
1110 ? "I I I I #{6 SPACES}liliij{4 SPACES}. 1·· •• 1"
1120 ? "~{3 SPACES}~ #{5 SPACES}'IiI 'iii

.{3 SPACES}.{3 SPACES}D"
1130 ? "~{3 SPACES}~ #{4 SPACES}'IiI

{3 SPACES}'IiI .{7 SPACES}D"
1140 ? "I I I I #{4 SPACES}'IiI{3 SPACES}'IiI

... {4 SPACES}D"
1150 ? "~{3 SPACES}~ #{4 SPACES}"""",,,

{5 SPACES}.{3 SPACES}D"
1160 ? "~{3 SPACES}~ #{4 SPACES}'IiI

{3 SPACES}~ .{3 SPACES}.
{3 SPACES}D"

1 1 7 0 ? "I I I I # # # # 'IiI{ 3 SPA C E S } 'iii
{4 SPACES}D"

1180 POKE 82,0:RETURN
1190 END
1200 REM Ini~ializa~ion s~u~

1210 POKE 88,0:POKE 89,BASE/256:? "
{CLEAR}":GRAPHICS 2+16:REM CLEAR
S OUT P/M AND CHARACTER MEMORY

1220 POS I T ION 5,0:? #6; II Uiiil.tiimi#flii# II :

POSITION 6,4:? #6;"patience":POS
ITION 5,8:? #6;"READING ML"

1230 RESTORE 1260
1240 FOR 1=1536 TO 1611:READ A:SOUND

0,A,10,8:POKE 712,A:POKE I,A:NEX
T I

1250 A=USR(1536):GOTO 1400
1260 DATA 104,173,34,2,141,74
1270 DATA 6,173,35,2,141,75
1280 DATA 6,169,6,162,6,160
1290 DATA 23,32,92,228,96,24
1300 DATA 173,128,6,141,0,208
1310 DATA 173,124,2,208,6,206
1320 DATA 128,6,206,128,6,173
1330 DATA 125,2,208,6,238,128
1340 DATA 6,238,128,6,173,128
1350 DATA 6,201,1,176,5,169
1360 DATA 200,141,128,6,201,250

198

Part Five

1370 DATA 144,5,169,32,141,128
1380 DATA 6,76,73,6
1390 REM
141210 POS I T I ON 3, 8:? #6;" '1(1l:H).:Cz

(i"
1410 FOR 1=128 TO 510:POKE CHSET+I,PE

EK(57344+I):SOUND 0,I/2,12,8:POK
E 712,I/2:NEXT I

1420 RESTORE 1460
1430 READ A:IF A=-1 THEN SOUND 0,O,O,

0:S0UND 1,0,0,0:RETURN
1440 FOR J=0 TO 7:READ B:SOUND 0,B,10

,8:S0UND 1,B+10,10,8:POKE 712,B:
POKE CHSET+A*8+J,B:NEXT J

1450 GOTO 1430
1460 DATA 1,O,252,168,84,252,168,252,

° 1470 DATA 2,O,168,168,252,252,168,168

, °
1480 DATA 3,O,216,120,184,228,180,212

, °
1490 DATA 4,O,O,O,219,150,O,O,O
1500 DATA 5,O,40,40,169,169,40,40,0
1510 DATA 6,192,192,48,48,12,12,3,3
1520 DATA 7,3,3,12,12,48,48,192,192
1530 DATA 10,24,40,24,153,126,255,20,

34
1540 DATA 14,0,126,126,126,126,126,12

6,O
1550 DATA -1
1560 REM KILL P/M GRAPHICS
1570 POKE 53277,0:FOR 1=0 TO 3:POKE 5

3261+I,0:NEXT I
1580 RETURN

199

Part Five

Shoot
John H. Palevich

"Shoot" is a machine language arcade-style game that must be
initialized on a 16K or greater Atan with or without DOS, but will
run on any Atari, even an Atari with 8K of RAM.

This game must be entered using the "Machine Language Editor:
MLX" program found in Appendix C. Please refer to Appendix C
before typing in this program.

Loading Shoot
Once you have typed in and SAVEd "Shoot;' LOADing the
program is simple. With the MLX you have created a boot
tape or a boot disk. What is a boot tape or disk? It is the
name of a tape or disk that has a machine language program
on it, along with information to tell the Atari how to load it
into memory and where to jump to begin execution. You can
think of a boot tape as a do-it-yourself ROM pack, since you
need not have BASIC (or any other cartridge) installed in your
Atari at the time you boot up the system.

If you have a boot disk, simply turn on your disk drive .
When the busy light goes out, insert the boot disk of Shoot
and turn on the Atari. A few seconds later the title screen
will appear.

If you have a boot tape, simply place it in the program
recorder and rewind to the beginning. Press the Play button
on the recorder. Open the lid and remove the BASIC car­
tridge. Turn off all the peripherals (especially all 815s, 810s
and 850s) except for the cassette recorder. Turn off the Atari,
press down on the START button, and turn it back on. It
should beep once, which is your signal to press the RETURN
key and wait. The boot tape will load into the RAM of your
Atari. Once there, the cassette will stop and the game will
begin.

Playing Shoot
First you will see a copyright message which will last for
about 8 to 12 seconds. Then the message will disappear and

200

Part Five

~JU hav~ to he acc lI rate alld fast to /lil the 1110vi11S ta/gets ill
Shoot.

three zeros will appear. The left (green) one is your score.
The middle (red) one is your high score. The right (yellow)
one is time remaining. Plug a joystick into controller jack 1
(far left) and press the START button .

Shazam! Eight rows of assorted sizes and colors of
airplanes, helicopters, and saucers will start flying hither and
yon across the screen. Push the joystick left and right to aim
the gun, press the button to fire the missile, then use the
joystick to guide the missile into one of the planes. If you
miss, try again. If you hit the plane, it will explode and you
will score some points: Helicopter - 5 points, Plane - 10
points, Saucer - 25 points. Clearing a rack of planes within
30 seconds gives you a bonus of 50 points. If you take more
than 30 seconds to clear a rack of planes, the game will give
you another full rack of planes immediately. For every 15
points you score you get an additional second of play time.
When the timer goes to zero, your game ends, the high score
is adjusted, and the program waits for you to press on the
console buttons: press START to restart the game.

Well, that's Shoot in a nutshell . Enjoy the game.

201

Part Five

Typing in Shoot
The Machine Language Editor (MLX) was written to help you
type in long machine language programs without making
mistakes. MLX will not allow you to enter in the DATA
incorrectly.

It may at first seem like a lot of extra typing, but in the
long run it will save you a great deal of time.

The MLX will ask you to enter in three numbers; the
prompts should be answered this way: Starting Address?
4096; Ending Address? 5240; Run/Init Address? 4118. Then
you will be prompted to start entering DA1A. Just enter the
DATA for the correct line from the listing that follows. MLX
will not let you enter an incorrect number. It will not even let
you enter the correct DATA for a different line.

Program 5-7. Shoot Using MLX (see
Appendix C)

4096:000,009,000,016,008,016,049
4102:024,096,169,060,141,002,242
4108:211,169,022,133,010,169,214
4114:016,133,011,096,076,078,172
4120:018,112,112,112,070,000,192
4126:024,240,112,240,112,240,230
4132:112,240,112,240,112,240,068
4138:112,240,112,240,112,240,074
4144:112,240,112,240,112,065,161
4150:025,016,040,067,041,049,036
4156:057,056,049,032,074,032,104
4162:072,032,080,065,076,069,204
4168:086,073,067,072,128,144,130
4174:130,146,132,148,134,150,150
4180:136,152,200,008,024,040,132
4186:056,072,088,104,120,128,146
4192:026,026,000,001,002,003,154
4198:004,005,006,007,008,124,000
4204:124,001,002,003,002,001,241
4210:255,254,253,254,000,000,106
4216:001,002,003,004,005,006,141
4222:007,008,009,010,011,000,171
4228:001,000,001,000,001,000,135

202

4234:001,000,001,001,000,001,142
4240:255,000,000,003,006,012,164
4246:028,060,126,255,000,192,043
4252:096,048,056,060,126,255,029
4258:000,024,024,024,024,060,062
4264:126,255,000,000,248,032,061
4270:242,158,144,240,000,000,190
4276:031,004,079,121,009,015,183
4282:000,000,001,013,063,127,134
4288:024,000,000,000,128,176,008
4294:252,254,024,000,000,024,240
4300:036,126,129,126,000,000,109
4306:001,005,000,008,255,005,228
4312:000,000,002,010,001,024,253
4318:254,010,001,016,003,025,019
4324:000,032,253,025,000,032,058
4330:072,138,072,166,176,232,066
4336:189,076,016,141,010,212,116
4342:141,026,208,166,176,173,112
4348:008,208,041,001,240,019,001
4354:169,000,157,098,016,157,087
4360:109,016,189,120,016,024,226
4366:101,177,133,177,141,030,005
4372:208,232,134,176,189,098,033
4378:016,024,125,109,016,157,217
4384:098,016,141,000,208,189,172
4390:087,016,141,018,208,189,185
4396:131,016,141,008,208,104,140
4402:170,104,064,165,177,208,170
4408:008,169,128,141,003,210,203
4414:076,144,017,056,233,001,077
4420:133,177,169,138,141,003,061
4426:210,162,005,189,000,024,152
4432:024,105,001,009,016,157,136
4438:000,024,201,026,208,009,042
4444:169,016,157,000,024,202,148
4450:076,077,017,165,183,208,056
4456:039,166,181,232,134,181,013
4462:224,015,208,030,162,000,237
4468:134,181,162,005,189,014,033
4474:024,024,105,001,009,144,173
4480:157,014,024,201,154,144,054

203

Part Five

4486:009,169,144,157,014,024,139
4492:202,076,120,017,166,182,135
4498:232,134,182,224,060,208,162
4504:034,162,000,134,182,165,061
4510:183,208,046,162,005,189,183
4516:014,024,056,233,001,009,245
4522:144,157,014,024,201,159,101
4528:208,009,169,153,157,014,118
4534:024,202,076,163 , 017,169,065
4540:000,162,006,029,013 , 024,166
4546:202,208,250,041,015,201,087
4552:000,208,004,169,001,133,203
4558:183,169,000,133,077,173,173
4564:120,002,074,074 , 170,189,073
4570:142,016,133,179,202 , 138,004
4576:010,010,010,170,160,000,072
4582:189,146,016,153,096,026,088
4588:200,153,096,026,232,200,119
4594:192,016,208,240,165,178,217
4600:024,101,179,133,178,141,236
4606:004,208,165,180,240,038,065
4612:170,169,000,157,128,025,141
4618:202,240,017,165,177,208,251
4624:018,134,180,169,255,157,161
4630:128,025,142,000,210,076,091
4636:042,018,134,180,076,042,008
4642:018,162,000,142,000,210,054
4648:134,180,165,183,208,022,164
4654:173,132,002,208,017,165,231
4660:180,208,013,169,098,133,085
4666:180,165,179,010,010,024,114
4672:105,132,133,178,169,255,012
4678:133,176,141,030 , 208,076,066
4684:095,228,169,168,141,001,110
4690:210,169,128,141,003,210,175
4696:169,000,141,000,210,169,009
4702:048,141,002,210,162,128,017
4708:169,000,157,255,025,157,095
4714:127,025,202,208,247,169,060
4720:000,162,008,157,255,207,133
4726:202,208,250,169,046,141,110
4732:047,002,169,024,141,007,002

204

Part Five

4738:212,169,003,141,029,208,124
4744:169,016,013,111,002,141,076
4750:111,002,141,027,208,169,032
4756:000,133,180,169,001,133,252
4762:183,169,064,141,014,212,169
4768:169,016,141,049,002,169,194
4774:025,141,048,002,169,016,055
4780:141,001,002,169,234,141,092
4786:000,002,162,017,160,053,060
4792:169,006,032,092,228,169,112
4798:192,141,014,212,169,198,092
4804:141,196,002,169,054,141,131
4810:197,002,169,024,141,198,165
4816:002,169,010,141,199,002,219
4822:162,020,189,055,016,032,176
4828:014,020,009,192,157,255,099
4834:023,202,208,242,165,019,061
4840:024,105,003,197,019,208,020
4846:252,162,020,169,000,157,230
4852:255,023,202,208,250,169,071
4858:016,141,005,024,169,080,173
4864:141,012,024,169,144,141,119
4870:019,024,169,001,133,183,023
4876:169,008,141,031,208,173,230
4882:031,208,201,001,208,006,161
4888:032,042,020,076,078,018,034
4894:201,006,208,239,169,000,085
4900:162,006,157,013,024,157,043
4906:255,023,202,208,247,169,122
4912:145,141,017,024,169,146,178
4918:141,018,024,169,144,141,179
4924:019,024,169,016,141,005,178
4930:024,169,000,133,183,133,196
4936:177,133,182,133,181,162,016
4942:024,160,000,032,197,019,254
4948:200,192,008,208,248,162,078
4954:007,160,208,169,003,141,010
4960:042,002,032,092,228,169,149
4966:192,141,014,212,173,042,108
4972:002,208,003,076,077,019,237
4978:160,008,169,000,025,108,072
4984:016,136,208,250,201,000,163

205

Part Five

4990:208,010,169,050,024,101,176
4996:177,133,177,076,077,019,023
5002:165,183,240,220,165,019,106
5008:024,105,002,197,019,208,187
5014:252,162,000,189,007,024,016
5020:041,031,221,000,024,240,201
5026:005,176,008,076,176,019,110
5032:232,224,006,208,236,076,126
5038:008,019,162,006,189,255,045
5044:023,041,031,009,064,157,249
5050:006,024,202,208,243,076,177
5056:008,019,000,000,000,142,105
5062:194,019,140,195,019,173,170
5068:010,210,041,007,201,006,167
5074:176,247,010,010,170,189,244
5080:210,016,153,109,016,189,141
5086:211,016,153,120,016,189,159
5092:212,016,153,131,016,169,157
5098:000,153,098,016,189,213,135
5104:016,170,172,194,019,169,212
5110:008,141,196,019,189,170,201
5116:016,153,000,026,232,200,111
5122:206,196,019,208,243,152,002
5128:170,172,195,019,096,000,148
5134:140,013,020,168,138,072,053
5140:152,042,042,042,042,041,125
5146:003,170,152,041,159,029,068
5152:246,254,168,104,170,152,102
5158:172,013,020,096,162,032,021
5164:169,012,157,066,003,032,227
5170:086,228,169,020,157,069,011
5176:003,169,117,157,068,003,061
5182:169,003,157,066,003,169,117
5188:008,157,074,003,169,128,095
5194:157,075,003,032,086,228,143
5200:169,000,157,068,003,169,134
5206:016,157,069,003,169,120,108
5212:157,072,003,169,004,157,142
5218:073,003,169,011,157,066,065
5224:003,032,086,228,169,012,122
5230:157,066,003,032,086,228,170
5236:096,067,058,155,000,224,204

206

Appendix A

Writing Your
Own Games:

Where to Get
More InforDlation

Tom R. Halfhill

By now you've probably typed in, played, and admired some
of the games in this book. In time, perhaps some of them
will be counted among your favorites. If so, then COMPUTE!'s
First Book of Atari Games has succeeded. Our main goal was
simply to provide more than a dozen fun games for about a
third of the cost of one commercial computer game. You can
stop right here and have your money's worth.

But this book could be something more. Once you realize
that these games were written not by professional program­
mers, but rather by ordinary hobbyists who probably had
never touched a computer in their lives until they bought
one, it's not so hard to picture yourself writing games, too.

Unfortunately, too many people dismiss this idea, be­
sieged by self-doubts. "I'll never be able to program like that:'
they complain. "1 don't know anything about computers. And
math was my worst subject in school."

Almost always you will hear this kind of statement from
adults. Meanwhile, grade school children and teenagers are
developing into crack programmers. Two years ago most of
them knew nothing about computers either, but they learned.
And some of them are flunking math, too. It should be com­
mon knowledge by now that mathematics and technical
genius have very little to do with computer programming.

Instead, good programmers tend to be people who are
creative, have a willingness to learn new things in an ex­
ploratory way, and can think logically.

We're not saying that everyone can be a good computer
programmer. But many more can than you might suspect.
Don't be afraid to see if this includes you.

209

Appendix A

One reason people are reluctant to attempt game pro­
gramming - admittedly one of the most difficult types of
programming - is their fear of machine language. Virtually
all commercial games these days are programmed in machine
language because BASIC is just too slow. But the fact is,
many good games have been written in BASIC. There are
clever ways to get around machine language if you want.

The games in this book are perfect examples. They cover
a very wide range of styles and techniques. A few, such as
"Blockade," are written entirely in straightforward BASIC -
easily within reach of the beginning-to-intermediate home
programmer. Blockade has been in my personal program
library since I first typed it in from COMPUTE! more than
two years ago. It's been played as many hours as some com­
mercial games for which I paid $35.

On the other hand, there are games such as "Chiseler"
and "Shoot" which are written completely in machine
language. They are the work of advanced programmers, and
are as fast and as fun as any games on the commercial soft­
ware market .

Between these two extremes are games such as "Ski!;'
"Thunderbird;' and "Closeout," hybrids of BASIC and
machine language. Closeout is a particularly good example,
because the author was not a machine language programmer.
He used a machine language routine published in COM­
PUTE!, a routine easily used by BASIC programmers who
know little or nothing about machine language. If you decide
to try your hand at game programming, one of your first
goals should be to acquire a "subroutine library" stocked with
routines of this type. You'll also need to start collecting
magazines and books with important information about your
computer.

A couple of years ago the information cupboard for Atari
computers was very bare. The machines were new, the idea
of home computers was new, and hardware prices were very
high. This meant the Atari market was very small. At first it
was difficult to find out even the simplest facts about the
computers. Some of the Atari's most powerful features -
such as player/missile graphics and programmable characters
- were not even mentioned in the standard manuals (and
still aren't). Home programmers were wandering in the dark.

Today, though, the market abounds with good software,

210

Appendix A

books, and magazines. If you really want to learn, almost all
the information is out there, somewhere. Not all of it is ex­
plained as clearly as it could be, but usually it's decipherable.
At least, for the most part, it's available.

But now aspiring programmers are faced with a new
problem - with so much information available; it's hard to
choose. Which books are clearly written, and which are jU&~
plain confusing? Which material is suitable for beginners, or
intermediates, or advanced programmers? Which books
should be read first? Which of the additional manuals sold by
Atari are really worth buying?

We can't tackle all of these questions here, but we can
recommend sources for further reading and experimenting if
you want to start programming your own games. This list in­
cludes material which covers a range of skills, from beginning
to advanced. Naturally, some of these items are from COM­
PUTE! Publications. But some are sold by our competitors,
too. This shouldn't be construed as an endorsement, but
rather as a list of reliable sources, a starting point for your
own explorations.

Further Reading
*Atari, Inc. Atari Personal Computer Operating System. Sunnyvale,

CA: Atari, Inc., 1980.

*--. Atari Personal Computer System Hardware Manual. Sun­
nyvale, CA: Atari, Inc. , 1980.

Carris, Bill. Inside Atari BASIC. Reston, VA: Reston Publishing
Co., Inc., 1983.

Chadwick, Ian. Mapping the Atari. Greensboro, NC: COM­
PUTE! Books, 1983.

*Chen, Amy and others. De Re Atari. Sunnyvale, CA: Atari,
Inc., 1981.

Editors of COMPUTE!. COMPUTE!'s First Book of Atari.
Greensboro, NC: COMPUTE! Books, 1981.

*--. COMPUTE!'s First Book of Atari Graphics. Greensboro, NC:
COMPUTE! Books, 1982

*--. COMPUTE!'s Second Book of Atari. Greensboro, NC:
COMPUTE! Books, 1982.

Inman, Don and Kurt Inman. The Atari Assembler. Reston, VA:
Reston Publishing Co. , Inc. , 1981.

211

Appendix A

*Leventhal, Lance A. 6502 Assembly Language Programming.
Berkeley, CA: Osborne/McGraw-Hill, 1979.

Mansfield, Richard. Machine Language for Beginners. Greensboro,
NC : COMPUTE! Books, 1983.

Moore, Herb, Judy Lower, and Bob Albrecht. Atari Sound and
Graphics, A Self-teaching Guide. New York: John Wiley & Sons, Inc.,
1982.

Poole, Lon, Martin McNiff, and Steven Cook. Your Atari Com­
puter. Berkeley, CA: Osborne/McGraw-Hill, 1982.

Sherer, Robin. Tricky Tutorial #1: Display Lists. Soquel, CA:
Educational Software, Inc., 1981.

* __ . Tricky Tutorial #2: Horizontal and Vertical Scrolling. Soquel,
CA: Educational Software, Inc., 1981.

Sherer, Robin Alan, Bill Bryner. Tricky Tutorial #5: Player Missile
Graphics. Soquel, CA: Educational Software, Inc. , 1982.

*Wilkinson, Bill. The Atari BASIC Sourcebook. Greensboro, NC:
COMPUTE! Books, 1983.

*Zaks, Rodnay. Programming the 6502. Berkeley, CA: Sybex,
Inc., 1980.

* For the more advanced readers

212

Appendix B

A Beginner's
Guide to Typing

in Programs
What Is a Program?
A computer cannot perform any task by itself. Like a car
without gas, a computer has potential, but without a program,
it isn't going anywhere. Most of the programs published in
COMPUTEt's First Book of Atari Games are written in a com­
puter language called BASIC. Atari 8K BASIC is easy to learn.

BASIC Programs
Computers can be picky. Unlike the English language, which
is full of ambiguities, BASIC usually has only one "right way"
of stating something. Every letter, character, or number is
significant. A common mistake is substituting a letter such as
"0" for the numeral "0", a lowercase "I" for the numeral "1",
or an uppercase "B" for the numeral "8". Also, you must
enter all punctuation such as colons and commas just as they
appear in the book. Spacing can be important. To be safe,
type in the listings exactly as they appear.

Braces and Special Characters
The exception to this typing rule is when you see the braces,
such as "{DOWN}". Anything within a set of braces is a
special character or characters that cannot easily be listed on a
printer. When you come across such a special statement, refer
to the section of this book entitled "Listing Conventions:'

About DATA Statements
Some programs contain a section or sections of DATA
statements. These lines provide information needed by the
program. Some DATA statements contain actual programs
(called machine language); others contain graphics codes.
These lines are expecially sensitive to errors.

215

Appendix B

If a single number in anyone DATA statement is
mistyped, your machine could "lock up," or "crash:' The
keyboard, break key, and RESET keys may all seem "dead,"
and the screen may go blank. Don't panic - no damage is
done. To regain control, you have to turn off your computer,
then turn it back on. This will erase whatever program was in
memory, so always SAVE a copy of your program before you
RUN it. If your computer crashes, you can LOAD the pro­
gram and look for your mistake.

Sometimes a mistyped DATA statement will cause an er­
ror message when the program is RUN. The error message
may refer to the program line that READs the data . This error
is still in the DAm statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before at­
tempting to type in a program. Learn the statements you use
to store and retrieve programs from tape or disk. You11 want
to save a copy of your program, so that you won't have to
type it in every time you want to use it. Learn to use the
machine's editing functions. How do you change a line if you
made a mistake? You can always retype the line, but you at
least need to know how to backspace. Do you know how to
enter inverse video, lowercase, and control characters? It's all
explained in your computer's manuals.

A Quick Review
1. Type in the program a line at a time, in order. Press
RETURN at the end of each line. Use backspace or the back
arrow to correct mistakes.
2. Check the line you've typed against the line in the listing.
You can check the entire program again if you get an error
when you RUN the program.
3. Make sure you've entered statements in braces as the ap­
propriate control key (see "Listing Conventions" elsewhere in
this book).
4. Be sure to SAVE the program on tape or disk before RUN­
ning the program.

216

Appendix C

Using the
Machine

Language
Editor:MLX

Charles Brannon

Remember the last time you typed in a long machine language
program? You typed in hundreds of DATA statements,
numbers, and commas. Even then, you couldn't be sure if
you'd typed it in right. So you went back, proofread, tried to
run the program, crashed, went back and proofread again, cor­
rected a few typing errors, ran again, crashed, rechecked your
typing Frustrating, wasn't it?

Until now, though, that has been the best way to enter
machine language into your machine. Unless you happen to
own the Assembler Editor cartridge and are willing to wrangle
with machine language on the assembly level, it is much
easier to enter a BASIC program that reads the DATA
statements and POKEs the numbers into memory.

Some of these "BASIC loaders" will use a checksum to see
if you've typed the numbers correctly. The simplest checksum
is just the sum of all the numbers in the DATA statements. If
you make an error, your checksum will not match up. Some
programmers have made your task easier by creating
checksums every ten lines, so you can zero in on your errors.

There is a problem with BASIC loaders, however.
Sometimes a program should reside in low memory, which is
where BASIC stores its BASIC programs (including the
loader). If the loader was RUN, it would destroy itself as it
POKEd the machine language into memory. Sometimes a
cassette user will create a program that resides in the same
area of memory ($0700-$1EFF, approximately) as the Disk
Operating System on disk-based machines.

219

Appendix C

To get around the low memory problem, some BASIC
loaders will directly create the loadable object file (binary file) .
You can then go to DOS and load the file with menu selec­
tion L, or name the file AUTORUN.SYS and have it boot up
with the DOS. But this excludes the cassette-based Atari
users.

A Thorny Problem
Both of the high-quality machine language programs in this
book have this problem. "Shoot" got around it by creating a
''boot tape" that cassette users could load as conveniently as
CLOAD. Unfortunately, many disk owners don't have a tape
drive. "Chiseler" was meant to be entered by assembling it
with the Assembler Editor cartridge and run from that en­
vironment . For the novice, this is too difficult, and since
Chiseler resides in low memory, your average BASIC loader
can't cope with it.

MLX was designed to solve these problems. It is a great
way to enter all those long machine language programs with
a minimum of fuss. MLX lets you enter the numbers from a
special list that looks similar to BASIC DATA statements. It
checks your typing on a line-by-line basis . It won't let you
enter illegal characters when you should be typing numbers.
It won't let you enter numbers greater than 255. It will pre­
vent you from entering the wrong numbers on the wrong
line. In short, MLX will make proofreading obsolete!

Boot Disks
In addition, MLX will generate a ready-to-use boot tape or
boot disk. It also has an option to create binary files for DOS
users . A boot disk is like those commercial games you buy.
You just insert the disk, remove any cartridges, and turn on
your computer. The game will then automatically load.

Boot Tapes
Using a boot tape is almost as simple. Just insert it into your
player, rewind, press PLAY. Hold down the START key while
turning on your computer until you hear a beep (like the one
you hear with CLOAD). Then press a key on the keyboard,
and the program will automatically load and run.

Incidentally, the binary file option is more useful for
utilities than games. Binary files are loaded from the DOS

220

Appendix C

menu (selection L) or automatically if the file is named
''AUlDRUN.5YS''. If you can't stand the thought of putting
only one game on each disk (as with boot disks), you can
place several binary file machine language games on one
disk. This option is not workable with Shoot, since the program
would overwrite DOS.

Using MLX
Type in and SAVE MLX (you'll want to use it in the future).
When you're ready to key in the ML program, RUN it. The
program will ask you for three addresses: the start address,
the ending address, and the run address. These numbers
should be: 4096, 5240, 4118, respectively, for Shoot, and 8192,
11136, 10240 for Chiseler. If you get stuck, refer to the screen
dumps below.

Shoot
Starting ~ddress?4096

Ending ~ddress?5240
Run/lnit ~ddress?4118

[jape or [})i5k:.

Chiseler
Starting ~ddress?8192

Ending ~ddress?11136
Run/lnit ~ddress?10240

[jape or [})iSk:.

After you enter the addresses, you'll be asked to press
either T for boot tape, or 0 for disk. If you press 0, you'll be
asked if you want to generate a boot disk (press D) or a
binary file (press F).

You'll then get the prompt:

4096: (for Shoot) or
8192: (for Chiseler)

The prompt is the current line you are entering from the
listing. Each line is six numbers plus a checksum. If you enter
any of the six numbers wrong, or enter the checksum wrong,

221

Appendix C

the Atari will ring the buzzer and prompt you to re-enter the
line. If you enter it correctly, a pleasant bell tone will sound
and you can enter the next line.

A Special Editor
You are not using the normal Atari editor with MLX. For ex­
ample, it will only accept numbers as input. If you need to
make a correction, press the < DELETEIBACK S> key; the
entire number is deleted. You can press it as many times as
necessary back to the start of the line. If you enter three-digit
numbers as listed, the computer will automatically print the
comma and go on to accept the next number. If you enter
less than three digits, you can press either the comma,
SPACE bar, or RETURN key to advance to the next number.
When you get to the checksum value, the Atari will emit a
low drone to remind you to be careful. The checksum will
automatically appear in inverse video; don't worry, and don't
press the logo key to un-reverse it . It's highlighted for
emphasis.

When testing MLX, I've found it to be extremely easy to
enter long listings. With the audio cues provided, you don't
even have to look at the screen if you're a touch-typist. And
if you have the Atari CX85 Numerical Keypad, you're really
on easy street!

Done at Last!
When you get through typing, assuming you type it all in
one session, you can then save the completed and bug-free
program to tape or disk. Follow the screen instructions. With
a boot disk, the program will offer to format the disk. If you
press Y (yes), be sure you have a blank disk in drive one -
not your program disk! After the file is written, the program
will end, and you can proceed to boot up your tape or disk
(you may need to remove the BASIC cartridge). Now if you
get any errors while writing, you probably have a bad tape or
disk, or the disk was full (binary file) , or you've made a typo
somewhere in the MLX itself.

Command Control
What if you don't want to enter the whole program in one
sitting? MLX lets you enter as much as you want, save the

222

Appendix C

whole schmeer, and then reload the boot tape, boot disk, or
binary file when you want to continue. MLX recognizes these
few commands:

CTRL-S: Save
CTRL-L: Load
CTRL-N: New Address
CTRL-D: Display

Hold down CTRL while your press the appropriate key.
You will jump out of the line you've been typing, so I recom­
mend you do it at a new prompt. Use the Save command to
save what you've been working on. MLX will write the boot
tape or disk file as if you've finished, but the boot tape or
disk won't run, of course, until you finish the typing.
Remember what address you stop on. The next time you
RUN MLX, answer all the prompts as you did before, then
insert the disk or tape. When you get to the entry prompt
(4096: or 8192:), press CTRL-L to reload the file into memory.
You'll then use the New Address command to resume typing.

New Address and Display
After you press CTRL-N, enter the address where you
previously stopped. The prompt will change, and you can
then continue typing. Always enter a New Address that
matches up with one of the line numbers in the special
listing, or else the checksum won't match up. You can use the
Display command to display a section of your typing. After
you press CTRL-D, enter two addresses within the line
number range of the listing. You can abort the listing by
pressing any key.

Sample Display

40~6:
Display :FroM?40~6

To?4118

40~6:000~009,000,016}008,016
4102:024,096,169,060,141,002
4108:21~}169,022,133,010,169
4114:016,133,011,096,076,078

4096 : 000,009,OOO,016,008}016,~

223

Appendix C

Incor ect
4096:000,009JOOO,016,008,016}~
4102:
4.192:
4192:
New Address?4114

4114:016}133}011}O~6}.

Tricky Stuff
The special commands may seem a little confusing, but as
you work with MLX, they will become valuable. For example,
what if you forgot where you stopped typing? Use the
Display command to scan memory from the beginning to the
end of the program. When you see a bunch of zeros, stop the
listing (press a key) and continue typing where the zeros
start. Chiseler contains many sections of zeros. To avoid
typing them, you can use the New Address command to skip
over the blocks of zeros. Be careful, though; you don't want
to skip over anything you should type.

Making Copies of Your Boot Tapes or Disks
You can use the SAVE and LOAD commands to make copies
of the completed game. Use the LOAD command to reLOAD
the boot tape or disk, then insert a new tape or disk and use
the Save command to create a new copy.

Programmers will find MLX interesting. It contains many
useful input/output subroutines such as high-speed save/recall
of a huge string (BUFFER$), a sector input/output subroutine,
and a sector control routine. Be careful, though; you could ac­
cidentally wipe out a disk with the sector routines if you
don't use them correctly.

I hope you will find MLX to be a true labor-saving pro­
gram. Since it has been tested by entering actual programs,
you can count on it as an aid for generating bug-free machine
language. Be sure to save MLX; it will be used for future ap­
plications in both COMPUTE! Magazine and COMPUTE!
Books.

Program C-l. Machine Language Editor: MLX
100 GRAPHICS 0:DL=PEEK(560)+256'PEEK

(561)+4:POKE DL-1,71:POKE DL+2,6

224

Appendix C

110 POSITION 8,0:? "MLX":POSITION 23
,0:? " ":POKE 710,0:?

120? "Starting Address";:INPUT BEG:
?" Ending Address";:INPUT FIN:
? "Run/Init Address";~INPUT STAR
TADR

130 DIM A(6),BUFFER$(FIN-BEG+127),T$
(20),F$(20),C10$(7),SECTOR$(128)
,DSK1NV$(6)

140 OPEN #1,4,0,"K:":? :? ,"[jape or
n:isk:";

150 BUFFER$=CHR$(0):BUFFER$(F1N-BEG+
30)=BUFFER$:BUFFER$(2)=BUFFER$:S
ECTOR$=BUFFER$

160 ADDR=BEG:C10$="hhh":C10$(4)=CHR$
(170) : C10$ (5) ="LV": C10$ (7) =CHR$ (
228)

170 GET #1,MED1A:1F MED1A<>84 AND ME
D1A<>68 THEN 170

180 ? CHR$(MED1A):? :1F MED1A<>ASC("
T") THEN BUFFER$="":GOTO 250

190 BEG=BEG-24:BUFFER$=CHR$(0):BUFFE
R$(2)=CHR$«F1N-BEG+127)/128)

200 H=1NT(BEG/256):L=BEG-H*256:BUFFE
R$(3)=CHR$(L):BUFFER$(4)=CHR$(H)

210 P1N1T=BEG+8:H=1NT(P1N1T/256):L=P
1N1T-H*256:BUFFER$(5)=CHR$(L):BU
FFER$(6)=CHR$(H)

220 FOR 1=7 TO 24:READ A:BUFFER$(I)=
CHR$(A):NEXT 1:DATA 24,96,169,60
,141,2,211,169,0,133,10,169,0,13
3,11,76,0,0

230 H=INT(STARTADR/256):L=STARTADR-H
*256:BUFFER$(15)=CHR$(L):BUFFER$
(19}=CHR$(H)

240 BUFFER$(23)=CHR$(L):BUFFER$(24)=
CHR$(H)

250 IF MED1A<>ASC(JlDJI} THEN 360
260? :? "Boot n:isk or Binary ~le:JI;
270 GET #1,DTVPE:1F DTVPE<>68 AND DT

VPE<>70 THEN 270
280? CHR$(DTVPE}:IF DTVPE=70 THEN 360

225

Appendix C

290 BEG=BEG-30:BUFFER$=CHR$(0):BUFFE
R$(2)=CHR$«FIN-BEG+127)/128)

300 H=INT(BEG/256):L=BEG-H*256:BUFFE
R$(3)=CHR$CL):BUFFER$C4)=CHR$(H)

310 PINIT=STARTADR:H=INT(PINIT/256):
L=PINIT-H*256:BUFFER$(5)=CHR$(L)
:BUFFER$(6)=CHR$(H)

320 RESTORE 330:FOR 1=7 TO 30:READ A
:BUFFER$(I)=CHR$(A):NEXT I

330 DATA 169,0,141,231,2,133,14,169,
0,141,232,2,133,15,169,0,133,10,
169,0,133,11,24,96

340 H=INT(BEG/256):L=BEG-H*256:BUFFE
R$(8)=CHR$(L):BUFFER$(15)=CHR$(H
)

350 H=INT(STARTADR/256):L=STARTADR-H
*256:BUFFER$(22)=CHR$CL):BUFFER$
(26)=CHR$(H)

360 GRAPHICS 0:POKE 712,10:POKE 710,
10:POKE 709,2

370 ? ADDR;":";:FOR J=1 TO 6
380 GOSUB 570:IF N=-1 THEN J=J-l:GOT

o 380
390 IF N=-19 THEN 720
400 IF N=-12 THEN LET READ=I:GOTO 72

o
410 TRAP 410:IF N=-14 THEN? :? "New

Address";:INPUT ADDR:? :GOTO 37
o

420 TRAP 32767:IF N(>-4 THEN 480
430 TRAP 430:? :7 "Display:From";:IN

PUT F:7 ,"To";:INPUT T:TRAP 3276
7

440 IF F(BEG OR F>FIN OR T(BEG OR T>
FIN OR T(F THEN 7 CHR$(253);"At
least ";BEG;", Not More Than ";F
IN:GOTO 430

450 FOR I=F TO T STEP 6:7 :7 I;":";:
FOR K=0 TO 5:N=PEEK(ADR(BUFFER$)
+I+K-BEG):T$="000":T$(4-LENCSTR$
(N))) =STR$ (N)

460 IF PEEK(764)<255 THEN GET #l,A:P

226

Appendix C

OP :POP :7 :GOTO 370
470 7 T$;",";:NEXT K:7 CHR$(126);:NE

XT 1:7 :7 :GOTO 370
480 IF N<0 THEN 7 :GOTO 370
490 A(J)=N:NEXT J
500 CKSUM=ADDR-INT(ADDR/256)*256:FOR

1=1 TO 6:CKSUM=CKSUM+A(I):CKSUM
=CKSUM-256*(CKSUM>255):NEXT I

510 RF=128:S0UND 0,200,12,8:GOSUB 57
0:S0UND 0,0,0,0:RF=0:? CHR$(126)

520 IF N<>CKSUM THEN 7 :7 "Incorrect
";CHR$(253);:7 :GOTO 370

530 FOR W=15 TO 0 STEP -1:S0UND 0,50
,10,W:NEXT W

540 FOR 1=1 TO 6:POKE ADR(BUFFER$)+A
DDR-BEG+I-1,A(I):NEXT I

550 ADDR=ADDR+6:IF ADDR<=FIN THEN 37
o

560 GOTO 710
570 N=0:Z=0
580 GET #1,A:IF A=155 OR A=44 OR A=3

2 THEN 670
590 IF A<32 THEN N=-A:RETURN
600 IF A<>126 THEN 630
610 GOSUB 690:IF 1=1 AND T=44 THEN N

=-1:7 CHR$(126);:GOTO 690
620 GO TO 570
630 IF A<48 OR A>57 THEN 580
640 ? CHR$(A+RF);:N=N*10+A-48
650 IF N>255 THEN 7 CHR$(253);:A=126

:GOTO 600
660 Z=Z+1:IF Z<3 THEN 580
670 IF Z=0 THEN? CHR$(253);:GOTO 57

o
680 7 ",";:RETURN
690 POKE 752,1:FOR 1=1 TO 3:? CHR$(3

0);:GET #6,T:IF T<>44 AND T<>58
THEN? CHR$(A);:NEXT I

700 POKE 752,0:? " ";CHR$(126);:RETU
RN

710 GRAPHICS 0:POKE 710,26:POKE 712,
26:POKE 709,2

227

Append.ix C

720 IF MEDIA=ASC("T") THEN 890
730 REM DISK
740 IF READ THEN? :? "Load File":?
750 IF DTVPE<)ASC("F") THEN 1040
760 ? :? "Enter AUTORUN.SVS for auto

matic use":? :? "Enter filename"
:INPUT T$

770 F$=T$:IF LEN(T$»2 THEN IF T$(l,
2)<)"D:" THEN F$="D:":F$(3)=T$

780 TRAP 870:CLOSE #2:0PEN #2,8-4*RE
AD,0,F$:? :? "Working

790 IF READ THEN FOR 1=1 TO 6:GET #2
,A:NEXT I:GOTO 820

800 PUT #2,255:PUT #2,255
810 H=INT(BEG/256):L=BEG-H*256:PUT #

2,L:PUT #2,H:H=INT(FIN/256):L=FI
N-H*256:PUT #2,L:PUT #2,H

820 GOSUB 970:IF PEEK(195»1 THEN 87
o

830 IF STARTADR=0 OR READ THEN 850
840 PUT #2,224:PUT #2,2:PUT #2,225:P

UT #2,2:H=INT(STARTADR/256):L=ST
ARTADR-H*256:PUT #2,L:PUT #2,H

850 TRAP 32767:CLOSE #2:? "Finished.
":IF READ THEN? :? :LE:T READ=0:
GO TO 360

860 END
870? "Error ";PEEK(195);" trying to

access":? F$:CLOSE #2:? :GOTO 7
60

880 REM BOOT TAPE
890 IF READ THEN? :? "Read Tape"
900? :? :? "Insert, Rewind Tape.":?

"Press PLAY ";:IF NOT READ THE
N ? "Sc RECORD"

9 1 0 ? :? " Pre s s r=1:"-::H:z-::r'iWTIJ~d""': w hen rea d y: " ;
920 TRAP 960:CLOSE #2:0PEN #2,8-4*RE

AD,128,"C:":? :? "Working ... "
930 GOSUB 970:IF PEEK(195»1 THEN 960
940 CLOSE #2:TRAP 32767:? "Finished.

":? :? :IF READ THEN LET READ=0:
GOTO 360

228

Appendix C

950 END
960? :? "Error ";PEEK(195};" when r

eading/writing boot tape":? :CLO
SE #2:GOTO 890

970 REM [!II 0_ •• f¥Y; 5-FjJiJ¥M a. mi.,. •.] £t4.tM.
READ=O ~or wri~e READ=1 ~or r

m
980 X=32:REM File#2,$20
990 ICCOM=834: ICBADR=836: ICBLEN=840:

ICSTAT=835
1000 H=INT(ADR(BUFFER$}/256):L=ADR(B

UFFER$)-H*256:POKE ICBADR+X,L:P
OKE ICBADR+X+l,H

1010 L=FIN-BEG+l:H=INT(L/256}:L=L-H*
256:POKE ICBLEN+X,L:POKE ICBLEN
+X+l,H

1020 POKE ICCOM+X,11-4*READ:A=USR(AD
R(CIO$},X}

1030 POKE 195,PEEK(ICSTAT):RETURN
1040 REM SECTOR I O
1050 IF READ THEN 1100
1060 ? :? "Format Disk In Drive 1?

YIN}:";
1070 GET #l,A:IF A<>78 AND A<>89 THE

N 1070
1080 ? CHR$(A}:IF A=78 THEN 1100
1090 7 :7 "Formatting ... ":XIO 254,#2

,0,0,"D:":7 "Format Complete":?

1100 NR=INT«FIN-BEG+127}/128}:BUFFE
R$(FIN-BEG+2)=CHR$(0):IF READ T
HEN 7 "Reading ... ":GOTO 1120

1110 7 "Writing ... "
1120 FOR 1=1 TO NR:S=I
1130 IF READ THEN GOSUB 1220:BUFFER$

(1*128-127)=SECTOR$:GOTO 1160
1140 SECTOR$=BUFFER$(I*128-127)
1150 GOSUB 1220
1160 IF PEEK(DSTATS}<>l THEN 1200
1170 NEXT I
1180 IF NOT READ THEN END
1190 7 :7 :LET READ=0:GOTO 360

229

Appendiz C

1200? "Error on disk access.":? "Ma
y need formatting.":GOTO 1040

1210 REM
1 220 REM, #/(Ii ill :_:tllij *'-'S,.I):J :11111 _ .. : I ..
1230 REM Drive ONE
1240 REM Pass buffer in SECTOR$
1250 REM sector # in variable 5
1260 REM READ=1 for read,
1270 REM READ=0 for write
1280 BASE=3*256
1290 DUNIT=BASE+l:DCOMND=BASE+2:DSTA

TS=BASE+3
1300 DBUFLO=BASE+4:DBUFHI=BASE+5
1310 DBYTLO=BASE+8:DBYTHI=BASE+9
1320 DAUX1=BASE+10:DAUX2=BASE+ll
1330 REM DIM DSKINV$(4)
1340 DSKINV$="hLS":DSKINV$(4)=CHR$(2

28)
1350 POKE DUNIT,I:A=ADR(SECTOR$):H=I

NT(A/256):L=A-256*H
1360 POKE DBUFHI,H
1370 POKE DBUFLO,L
1380 POKE DCOMND,87-5*READ
1390 POKE DAUX2,INT(S/256):POKE DAUX

I,S-PEEK(DAUX2)*256
1400 A=USR(ADR(DSKINV$»
1410 RETURN

230

Listing
Conventions

In order to make special characters, inverse video, and cursor
characters easy to type in, COMPUTE! Magazine's Atari listing
conventions are used in all the program listings in this book.

Please refer to the following tables and explanations if you
corne across an unusual symbol in a program listing.

Atari Conventions
Characters in inverse video will appear like: INVERS E VIDE

Enter these characters with the Atari logo key, (A-.).

When you see Type See
{CLEAR} ESC SHIFT < ... Clear Screen

{UP} ESC CTRL - ~ Cursor- Up

{DOWN} ESC CTRL ... Curso,.- Down

{LEFT} ESC CTRL + ... Cursor Left

{RIGH"T:} ESC CTRL • ~ Cursor Right

{BACK S} ESC DELETE ~ Backspace

{DELETE} ESC CTRL DELETE 0 Delete Character

<INSERT} ESC CTRL INSERT C Insert Character

{DEL LINE} ESC SHIFT DELETE 0 Delete Line

{I NS LINE} ESC SHIFT INSERT ~ In ser t Line

{TAB} ESC TAB TAB key

{CLR TAB} ESC CTRL TAB CI Clear TAB

{SET TAB} ESC SHIFT TAB ~ Set TAB stop

{BELL} ESC CTRL 2 G'l Ring Buzzer

{ESC} ESC ESC ~ ESCape key

Graphics characters, such as CTRL-T, the ball character • will
appear as the "normal" letter enclosed in braces, e.g., {T}.

A series of identical control characters, such as 10 spaces,
three cursor-lefts, or 20 CTRL-R's, will appear as {10 SPACES},
{3 LEFT}, {20 R}, etc. If the character in braces is
in inverse video, that character or characters should be
entered with the Atari logo key. For example, {,,} means to
enter a reverse-field heart with CTRL-comma, {Sm} means
to enter five inverse-video CTRL-U's.

231

Index
ANTIC chip 3-6, 179-81
Atari, special features of 11-12
Atari BASIC 4, 6, 10-11, 53-54, 78-79, 215

loaders 219-20
Atari BASIC A+ 54
boot disk 200, 220, 224
boot tape 200, 220-21, 224
color 7
CPU (Central Processing Unit) 3-4
DATA statements 215-16
function buttons 11
games

computer, categories of 13
writing 13-16,209-12

GRAPHICs modes 5
initialization 14-15
IRG mode 191-93
joystick 11
listing conventions 231

machine language 5, 10-11, 13, 56-58, 210
Machine Language Editor (MLX) 202,

219-24
main loop 15
memory locations 4-6

OPTION button 11
OS (Operating System) 5
paddle 11
PADDLE functions 11
page flippi ng 26
player/missile graphics 6, 58-59
scrolling 179-80
SELECT button 11
sound 7-8, 11
sprites (see player/missile graphics)
START button 11,22
STICK functions 11
subroutine 15-16
VBI (Vertical Blank Interrupt) 180-81

IIIIIII IIIII IIIII IIIII Ili~II\I\II~\li~\{llrl~li~~11 1\1\1 1\11\ I~II IIII 11\1
3 8445 0001 9886 4

232

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!.

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
P.o . Box 5406
Greensboro. NC 27403

My Computer Is: o Commodore 64 0 TI-99/4A 0 TimeX/Sinclair 0 VIC-20 0 PET o Radio Shack Color Computer 0 Apple 0 Atori D Other _ _ _ o Don't yet have one ...

o $24 One Yeor US Subscription o $45 Two Year US Subscription
0$65 Three Year US Subscription
Subscription rates outside the US:
o $30 Canada
0$42 Europe, Australia, New Zealand/Air Delivery
0$52 Middle East, North Africa, Central America /Air Mail
0$72 Elsewhere/Air Mail
0$30 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card
o Payment Enclosed
o MasterCard
Acct. No.

DVISA
o American Express

Expires

COMPUTE! Books
PO Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPtJTE! Books, If he or she
has sold out, order directly from C;:OMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In Ne call 919-275-9809

Quantity Tille

_ _ _ Mac hine Lang uage fo r Beginne rs

___ Ho m e Ene rgy Ap pl icatio ns

___ COMPUTE l's First Book o f VIC

___ COMPUTEl's Second Book o f VIC

___ COMPUTEI's First Book o f VIC Gomes

_ __ COMPUTEI's First Book o f 64

___ COMPUTHs First Book o f Atori

___ COMPUTEI's Second Book o f Atori

_ __ COMPUTEI's First Book o f Atori G ra phics

___ COMPUTHs Fi rst Book o f Atori Games

___ Mapping The Atori

Inside Ata r! DOS

The Ata r! BASIC Sourcebook

___ Progra mme(s Re fe re nce G uide for TI -99/4A

COMPUTEl's First Book o f TI Gam es

___ Every Kid's First Book o f Robots cmd Compute rs

___ The Beginne(s Guide to Buying A Persona l
Com p ute r

Price

$14.95-

$14.95-

$12.95-

$12.95-

$12.95-

$12.95-

$12.95-

$12.95-

$12.95*

Tatal

$12.95* __
$14.95* _ _

$19.95* __ _
$12.95- _ _

$14.95* __

$12.95* __

$ 4.9St __

$ 3.9St - _.
• Add 52 shipp ing a nd handling. Outside US odd 55air moil; 52

surface m o il.
t 'Add 51 shipping a nd hand ling . Outside US o dd 55 air moil; 52

surface moil.

Please add shipping and handling for each book
ordered.

Total enclosed or to be charged.

All orders must be prepaid (money order. check, or charge) . All
payments must be in US funds, NC residents add 4% sales tax.
o Payment enclosed Please charge my: DVISA 0 MasterCard
o American Express Accl No. Expires I

Name

Address

City State Zip

Country
Allow 4-5 weeks fo r delivery.

	Cover

	Contents

	Atari As a Game Machine

	Why the Atari is a Great Game Machine

	Writing Your First Game

	Maze Games

	Mastermaze

	Tag
	Hidden Maze

	Two-player Games

	Blockade

	Tank Duel

	Pick-up Sticks

	Poker Solitare

	Brain Testers

	Mathman

	Word Hunt

	Total Recall

	Fast Action

	Chiseler

	Closeout

	Ski!

	Thunderbird

	Shoot

	Appendix
	Writing your own games: Where to get more Information
	Guide to Typing in programs

	Using the Machine Language Editor: MLX

	Listing Conventions

	Index

