AIARI XE

User’s Handbook

Weber Systems, Inc. Staff

Atari XE™
User’'s Haondlbook

Atari XE™
User's Handibook

by
WSI Staff

Weber Systems, Inc.
Cleveland, Ohio

The authors have exercised due care in the preparation of this book and the
programs contained in it. The authors and the publisher make no warranties
either express or implied with regard to the information and programs contained
in this book. In no event shall the authors or publisher be liable for incidental or
consequential damages arising out of the furnishing, performance, or use of this
book and/or its programs.

Atari® computers: 130XE™, 65XE™, 400™, 800™, 600XL™, 800XL™, 1200XL™, 600XL™

memory expansion, BASIC™, 810™ disk drive, 1050™ disk drive, 850™ interface module, 830™
acoustic modem, 1020™ printer, 1025™ printer, 1010™ program recorder are trademarks of
Atari Incorporated; Epson®, MX-80™, and FX-80™ are registered trademarks of Epson
Corporation; Gemini® is a registered trademark of Star Micronics Incorporated; Microsoft®
BASIC™ is a registered trademark of Microsoft Corporation.

Published by:

Weber Systems, Inc.
8437 Mayfield Road
Chesterland, Ohio 44026

Forinformation on translations and book distributors outside of the United
States, please contact WSI at the above address.

Atari XE™ User’s Handbook

Copyright® 1985 by Weber Systems, Inc. All rights reserved under Interna-
tional and Pan-American Copyright Conventions. Printed in United States of
America. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written permission of the
publisher.

Library of Congress Cataloging in Publication
Main entry under title:

Atari XE User’s Handbook

Includes index

1. Atari XE computers I. Weber Systems, Inc.
QA76.8.A828A83 1985 005.265 85-13896
ISBN 0-938862-41-3

Typesetting and Layout: Tina Koran and Susan Zaksheske

Contfents

Introduction & Acknowledgements 13
1. Introduction to the XE Series 17
XE Models 18
Technical Data 21
RAM & ROM 21
Dynamic & Static RAM 21
130 XE Features 22
Keyboard 22
Peripheral Port 22
Cartridge Slot 22
Expansion Slot 22
Monitor Jack 23
Television Channel Select Switch 23
Television Jack 23
Power Adapter Plug 23
On/Off Switch 23
Controller Ports 23
Atari XE CPU 24
Software 26
Operating System Software 26
Language Software 26
Applications Software 27

Atari Cartridges 28

Peripheral and Add-On Devices 29
Disk Drives 29
Floppy Diskettes 30
Tracks & Sectors 30
Hard & Soft Sectors 31
Diskette Write Protection 33
Disk Drive Operation 34
Atari 1010 Program Recorder 36
Printers 37
Atari 1020 Color Printer 38
Atari 1025 80-Column Printer 38
Atari 1027 Letter Quality Printer 38
Atari 850 Interface Module 39
Atari Modems 40
Game Controllers 42

2. Installation, Operating, & Keyboard Usage 43

Introduction 43

Instaliation 44
Attaching a Television Set 45
Attaching a Montior and/or Audio System 48
Installing an Atari Disk Drive 48
Daisy Chaining 49
Installing the Atari 1010 Program Recorder. 50
Installing the Atari 825 or Other Parallel Printer. 50
Installing the Atari 830 Modem or Other RS232C Device 51

Operation 51

Keyboard Usage 52
RESET 53
OPTION, SELECT, START 54
HELP 54
RETURN 54
BREAK 54
SHIFT 55
CONTROL 55
CAPS 56
| 4| 56
BACK SPACE 56
CLEAR 56
DELETE 56
INSERT 57
TAB 57
ESC 57
ARROW KEYS 58

3. Introduction to Atari BASIC

Introduction

Getting Started with Atari BASIC

Start-up without a Disk Drive

Start-up with a Disk Drive

Immediate and Program Modes

Command and Statement Structure

Entering a Program

Error Messages

Listing a Program
Editing a Program

Running a Program

Saving a Program

Loading a Program

Multiple Statements

Data Types

Strings

Numeric Data

Variables — An Overview

Variable Names

Assignment Statements

Expressions & Operators

Arithmetic Operators

Order of Evaluation (Arithmetic Expressions)
Relational Operators

Logical Operators

Overall Order of Evaluation

4. Programming Concepts

Introduction

Inputting and Outputting Data

PRINT

Escape Sequences in Strings

Graphics Characters in Strings

Tab Function

Moving the Cursor with Escape Sequences

Home Cursor

Position Statements

Changing the Display Screen Margins

Screen Input Programming

INPUT

Prompt Messages

Input Response Checks

GET

59
59
60
60
61
61
62
63
65
66
68
70
7
72
73
74
74
75
77
78
79
80
81
83
84
86
88

91
91
92
92
94
926
97
98
99
99

100

100

101

102

103

104

Conditionals, Branching and Looping

Conditionals

Branching Statements

Subroutines and GOSUB

Conditional Statements with Branching
Looping Statements

Error Handling

Tables and Arrays

Variable Storage

Subscripted Variables

Dimensioning an Array

DATA & READ Statements

Functions and String Handling

Built-in Mathematical Functions

Strings & String Handling

Substrings

String Concatentation

String/Numeric Data Conversion

Program Chaining

5. File Handling

Introduction

Files, Records, and Fields

File Specifications

File Access

Sequential and Random Files

Opening a Sequential File

Writing to a Sequential File

Reading From a Sequential File

Avoiding EOF Errors

Random Files

Note & Point

Extended Input and Output Commands
File Commands

SAVE

LOAD

RUN

LIST.

ENTER

ERASE(XIO 33)

RENAME(XIO 32)

PROTECT(XIO 35)

UNPROTECT(XIO 36)

FORMAT(XIO 253 & XIO 254)

104
105
105
106
107
109
110
113
113
113
116
117
121
122
125
125
126
127
129

131
131
131
133
135
135
137
140
141
143
143
144
145
148
148
149
149
151
152
152
153
153
153
154

6. BASIC Graphics & Sound

Introduction

The Graphics Modes

Pixels

Character Graphics

Selecting a Graphics Mode

Color Registers

Commands Used with Pixel Graphics

Selecting a Color Register

Plotting

Advanced Graphics Commands

GTIA Graphics

Commands Used with Character Graphics
Sound

Writing a Game Program

7. DOS Usage

Introduction

Disk Files

Filename Match Characters

Types of Commands

Activating DOS

DOS Operation

DOSs 2.08

Keyboard Usage
A. Disk Directory

B. Run Cartridge

C. Copy File

D. Delete File

E. Rename File

F. Lock File

G. Unlock File

H. Write DOS File

I. Format Disk

J. Duplicate Disk

K. Binary Save

L. Binary Load

M. Run at Address

N. Create MEM.SAV

O. Duplicate File

DOSs 25

Keyboard Usage

|. Format Disk

P. Format Single

155
155
156
156
157
158
159
161
161
162
162
165
165
166
167

173
173
174
175
176
176
178
179
179
179
181
181
183
184
186
186
186
187
188
189
190
191
191
192
193
193
193
193

Utility Programs

SETUP.COM

COPY32.COM

DISKFIX.COM

RAMDISK.COM

8. Atari BASIC Reference Guide

Introduction

ABS

ADR

AND

ASC

ATN

BYE

CHR$

CLOAD (CLOA.)

CLOG

CLOSE (CL.)

CLR

COLOR

COM

CONT (CON.)

Ccos

CSAVE (CS.)

DATA (D.)

DEG (DE.)

DIM (DI.)

DOS (DO.)

DRAWTO (DR.)

END

ENTER

EXP

FOR (F.)...NEXT (N.)

FRE

GET (GE.)

GOSUB (GOS.)

GOTO (G.)

GRAPHICS (GR.)

IF..THEN

INPUT (1.)

INPUT# (1.#)

INT.

LEN

LET (LE.)

193
193
194
194
194

197
197
198
199
199
201
201
202
202
203
203
204
204
205
216
217
218
218
219
220
221
224
226
228
229
230
231
234
234
238
240
240
241
243
245
247
247
248

LIST (L.)

LOAD (LO.)

LOCATE (LOC))

LOG

LPRINT (LP)

NEW

NEXT (N.)

NOT

NOTE (NO.)

ON...GOSUB, ON...GOTO

OPEN (0.)

Cassette Unit

Keyboard

Disk

Printer

Editor

Atari 850 Interface Module
Screen

OR

PADDLE

PEEK

PLOT (PL.)

POINT (P.)

POKE (POK.)

POP

POSITION (POS.)

PRINT (PR. or ?)

PRINT# (PR.# or ?#)

RESTORE

RETURN (RET.)

RND.

RUN (RU.)
SAVE

Cassette Unit

Disk Drive

SET COLOR (SE.)

SGN

SIN

SOUND

SQR

STATUS

STICK

STRIG

249
251
252
254
254
255
255
256
256
257
258
260
261
262
262
262
263
264
266
267
268
268
269
270
271
274
275
276
277
277
278
279
280
280
280
281
282
282
283
284
284
285
286

STOP

STR$

TRAP

USR

Returning to BASIC

VAL

X10

9. Advanced Memory Concepts
Introduction

130 XE RAM System

Binary System

Conversion

Binary to Decimal

Decimal to Binary

The Computer and The Binary System

Bit-Controlled Operations
Bit Control of the “Bank Switch”

Using “Bank Switching” in BASIC

Example Program

Appendix A. Atari Error Messages
Appendix B. Atari ASCIl Code Set
Appendix C. Atari BASIC Reserved Words

Appendix D. Pinouts

Appendix E. Printer Usage with the Atari XE
Appendix F. Atari PEEK and POKE Locations
Appendix G. Memory Bank Switching

Index

287
288
288
290
291
291
292

297
297
297
299
300
300
301
302
303
306
306
307

309
316
332
333
335
337
345
347

iInfroduction & Acknowledgements

Atari XE User’s Handbook is meant to serve as a tutorial as well as
on-going reference guide to the operation and programming of the Atari
XE computers. All of the Atari’s important features are discussed. These
include the following:

® |nstallation

e Keyboard usage

e BASIC programming
e Graphics

¢ File handling

¢ DOS usage

A number of examples are included with the text to illustrate the
topics being discussed. Terms that may be unfamiliar to the reader will be
presented in bold in the text. These terms will be defined in subsequent
paragraphs.

13

14 Atar XE Users Handbook

Chapter 1 of this book is meant to serve as an introduction to the XE
computers and their peripherals. Topics include the system unit, the 1050
disk drive, the 1010 cassette unit, 6502C CPU, ANTIC, POKEY, DOS
2.5, operating system, Atari BASIC and peripherals such as printers,
joysticks, and modems.

Chapter 2 details the installation procedure for the Atari XE as well
asits start-up. Keyboard usage and the connecting of peripherals are also
discussed here.

Chapter 3 is meant to serve as an introduction to programming the
130XE in Atari BASIC. The following topics are discussed:

BASIC start-up

Program entry

Listing a program

Editing a program

Running a program

Saving and loading a program
Data types

Operators

Variables

Chapter 4 discusses additional fundamental programming concepts.
These include the following:

Input and output
Tables and arrays
Functions

String handling
Program concatenation

Chapter 5 discusses the use of files in Atari BASIC. Both sequential
and random file access are covered in detail.

Chapter 6 describes techniques for outputting graphics using BASIC
commands. The video game, BARACADE, will be designed in this
chapter using the Atari’s advanced graphics and sound capabilities.

Infroduction & Acknowledgements 15

Chapter 7 consists of a detailed discussion of DOS 2.5. Topics
covered include:

DOS start-up

DOS keyboard usage
Copying diskettes

Copying files

Formatting diskettes
Backing-up diskettes

Listing the diskette directory
Renaming files

Erasing files

Creating files

Executing files

DOS supplementat programs
RAM disk operation

Chapter 8 contains a reference guide to the various Atari BASIC
commands, operators, and functions. The following are also included:

® correct syntax for every BASIC command

o illustrative examples

¢ programming tips to optimize the performance of an Atari
BASIC program

The final chapter contains a complete discussion of advanced
memory concepts such as:

® bank switching on the 130 XE
e the binary system
® bits and bytes of data

A number of appendices are included with the Atari XE User’s
Handbook. These detail the Atari ASCII character set, BASIC reserved
words, BASIC error messages, useful PEEK’s and POKE?s, and printer
usage with the Atari XE computer.

We wish to gratefully acknowledge Pam Berliner of the Atari Corpo-
ration for her assistance in this project.

1

Infroduction to the XE Series

The XE™ line represents the first products introduction by Atari
since its takeover by Jack, Sam, and Leonard Trameil. At the time of this
writing only the 130XE model is available, however three other XE
models, the 65XE™, 65XEP™, and 65XEM™, have been announced.

One of the key features of the XE series is that they are designed to be
100% compatible with the previous XL series. Due to the similar designs
around the 6502C 8-bit microprocessor, the XE series is also somewhat
compatible with the original 400/800 models. The vast majority of soft-
ware written for the 800XL as well as the 400/800 will run without
difficulty on the XE models. If you own a package written for the 400/ 800
that will not run on the XE, you can generally correct the problem by
purchasing a translator disk. The cost of the disk is nominal — $9.95 plus
$2.00 shipping. 1t can be obtained from:

18 Asari XE User's Handbook

Atari Customer Relations
Atari Corporation

P.O. Box 61657
Sunnyvale, CA 94088

XE Models

As was mentioned in the introduction, four different XE models
have been announced by Atari. The star and first model of the series
released, the 130XE, is pictured in figures 1.1. through 1.4.

The 130XE offers the following features:

e 128K of random access memory (RAM).

e 62-key keyboard.

e Parallel interface to allow easy addition of peripherals.
e Atari BASIC programming language.

e Software cartridge slot

e Graphics and sound capability

e Expansion port

o Game controller ports

e Television jack/RF modulator®

These features will be explained in greater detail in the following
sections.

The member of the XE family known as the 65XE is virtually
identical to the 130XE except that it contains 64K of memory rather than
128K.

The 65XEM is an enhanced version of the 65XE which will have
sound generating capabilities designed around the AMIE sound chip.

The 65XEP is a portable version of the 65XE. It boasts a built in 314"
disk drive and a built-in 5” green monitor. At the time of this writing,
neither the 65XE, XEM, nor XEP were available.

* Monitor cables must be purchased separately.

infroduction to the XE Series 19

a. System unit b. A.C. power supply c. T.V. switch box
d. 130XE owners manual e. T.V. connect cable

Figure 1.1. Atari 130XE (System)

Figure 1.2. Atari 130XE System Unit (top view)

20 Atari XE Users Handbook

a. peripheral port b. Cartridge slot c¢. Expansion slot d. Monitor jack
e. T.V.channel select f TV.jack g. Powerjack h.On/Off switch

Figure 1.3. Atari 130XE System unit (rear view)

a. game controller ports
Figure 1.4. Atari 130XE System unit (side view)

Infroduction to the XE Series 21

Technical Data

As was mentioned in the preceding section, the system unit contains
the fundamental components of the Atari. A system board or mother-
board is housed within the system unit. Most of the circuitry for the Atari
is located on the system board, including the following:

® 6502C microprocessor

64K or 128K RAM

¢ 24K ROM

¢ connectors for optional devices (POKEY)
display hardware (GTIA, ANTIC)

ROM and RAM

ROM stands for Read Only Memory. ROM will hold the data stored
in it permanently. If the power to the Atari is shut off, the information
stored in ROM will remain there. As previously mentioned, the Atari
BASIC language interpreter is stored in ROM.

RAM stands for Random Access Memory*. Any data stored in
RAM will be lost when the Atari’s power is shut off. When data is loaded
from the cassette unit, disk drive, or keyboard, it is stored in RAM.

DYNAMIC AND STATIC RAM

There are two different types of RAM, dynamic RAM and static
RAM. Dynamic RAM can only hold the data it is storing for a few
milliseconds. Therefore, any data being stored in dynamic RAM must
constantly be rewritten or refreshed. This dynamic RAM refresh function
must be part of ths support logic when the dynamic RAM memory is
designed.

Static RAM is more expensive than dynamic RAM. However, once
data has been written into static RAM, it will be retained as long as power
is supplied.

The Atari computers use dynamic RAM. The custom display pro-
cessor, ANTIC, has the responsibility to refresh the dynamic RAM.
ANTICs other responsibilities will be discussed later.

* Random Access Memory is a somewhat misleading term to describe RAM, as most memory
(including ROM) is randomly accessed.

22 Atari XE User's Handbook

130XE Features

In the following sections the 130XE and its visible components will
be discussed.

KEYBOARD

The 130XE’s keyboard is very similar to that of an office typewriter.
The individual keys are large and slightly concave to facilitate data entry.
The quality of the 130XE’s keyboard is suprising for a home computer. It
compares well with keyboards on machines priced much higher.

The keyboard itself consists of 57 keys used to generate both alpha-
numeric and graphics characters. In addition, five special function keys
are located on the right hand side, above the main keyboard.

PERIPHERAL PORT

The peripheral port is a serial interface which can be used to connect
various devices such as disk drives, a printer, or a modem to the
computer.

CARTRIDGE SLOT

This accepts Atari program cartridges. A number of Atari software
applications programs are packaged in plastic cartridges containing
either 8K or 16K of ROM. The cartridge slot enables the 130XE to run
these programs.

EXPANSION SLOT

The expansion slot or Enhanced Cartridge Interface (ECI) allows
high-speed peripheral devices such as fast floppy disk drives, hard disk
drives, and custom I/ O devices to be connected to the computer.

Introduction to the XE Series 23

MONITOR JACK

Allows either a monochrome or color monitor to be attached to the
computer. This jack uses a standard five DIN cable which must be
purchased separately.

NOTE: Please disregard the picture on page(2) of the 130XE
owners manual, as it shows the plugto be 6 DIN. ltisonly a
five DIN plug! This type of plug comes with most monitors
but be sure and verify this.

T.V. CHANNEL SELECT SWITCH

This is used to select which T.V. channel the computer will override.
Pick the channel with the weakest incoming signal for lowest interference
level.

TELEVISION JACK

This jack is used when a T.V. is to be used instead of a monitor. The
computer package should contain all of the necessary adapters to hook
up to a standard T.V. Check the 130XE owner’s manual for installation
procedures.

POWER ADAPTER PLUG

This is used to connect the computer to standard A.C. current via the
Atari Model: C061982 power supply unit.

ON/OFF SWITCH
This turns the power to the computer on and off.
CONTROLLER PORTS

This connects touch tablets, numeric keypads, joysticks,and paddles
controllers to the computer. Use port (1) if only one controller is used.

24 Atari XE User's Handbook

ATARI XE CPU

The central processing unit or CPU is the heart of any computer. The
CPU controls all the other components of the computer.

In larger computers, the CPU and the ALU (arithmetic logic unit)
consist of a group of IC chips each dedicated to its own task. In smaller
computers, the CPU and ALU are generally combined on a single chip
which is known as a microprocessor.

A microprocessor can be defined as a single chip which contains the
logic of a central processing unit as well as any additional logic that must
complement the CPU.

The Atari contains two microprocessors, ANTIC and the 6502C.
ANTIC is a dedicated display processor; its main function is to relay
information to the display chip (GTIA). The 6502C is a general purpose
microprocessor that controls every component within the Atari. The
Atari works as a team with the 6502C as the team captain. The members
of this team and their responsibilities are listed in table 1.1. A rough
schematic of the Atari is depicted in figure 1.5.

MEMORY
POKEY
10 & N 6502C ANTIC
f SOUND” hannd the "Boss” hamud “helper”

-J keyboard

GTIA
“display”

» disk drive

m cassette

o}

1 mouem h - o
TV

"'1 printer U

Figure 1.5. Inside the Atari

Introduction to the XE Series 25

Table 1.1. Atari chips

Chip Purpose

6502C -general control

-all numeric calculations
-can handle graphics
-all logical calculations

ANTIC -display processor
-relays screen information from memory
to GTIA

GTIA -convert digital information from ANTIC or

6502C into a signal that can be understood
by a display device
-light pen control

POKEY -handle serial 1/0 to peripherals including:
printer
modem
disk drive
cassette unit
-generate 4 channel music and sound effects.

Microprocessor logic is based on the bit. A bit is a switch that may be
set to one of two states — true or false (on/off; 1/0). All information
storage within a computer is based on the bit regardless of whether the
information is data or commands.

Bits are often separated into groups of eight. These groups of 8 bits
are known as a byte. A byte is required to represent a single character, (i.e.
letter, number, or symbol). Collectively, 1024 bytes are known as a
kilobyte. “K” is often used as an abbreviation for kilobyte.

Most microprocessors can address (or work directly with) 65,536
bytes (64K) at any one time. The 6502C is no exception. Even though this
number appears large, a 30 page document would fill this memory area.
Not to worry, 64K is quite sufficient for the majority of computer
applications.

26 Atar XE User's Handbook

Software

Software can be defined as the set of information or programs that
cause the computer to operate. Software can be divided among three
general classifications:

e Operating System Software
e Language Software
e Applications Software

Each of these classes of software will be defined and discussed briefly
in the context of the Atariin the following sections. Atarisoftware can be
stored on cassette tape, floppy diskettes, or cartridges.

OPERATING SYSTEM SOFTWARE

An operating system can be defined as a group of programs which
manage the overall operation of the computer. The operating system
performs system operations such as controlling data input/output,
memory assignments, etc. The Atari operating system is stored perman-
ently in ROM.

The operating system stored in ROM does not, however, support
disk access. A program known as a disk operating system (DOS) may be
loaded into the Atarito supplement its own operating system. The part of
DOS that supports the disk access is known as a file management system
(FMS). DOS is available in four versions — 1.0, 2.0S, 2.5 and 3. Each of
these has its own file management system. DOS 2.0S and DOS 2.5 will be
discussed in chapter 7, “DOS Usage”.

LANGUAGE SOFTWARE

A language can be defined as a group of characters and/ or symbols
which can be combined using a set of syntax rules to represent informa-
tion. Examples of languages include English, Spanish, French, as well as
computer programming languages such as BASIC, LOGO, PASCAL,
and COBOL. BASIC is supplied with the Atari.

Computer languages are often distinguished as being either com-
piled or interpreted languages. These terms refer to the way in which the

Introduction to the XE Series 27

program entered by the user is translated into the machine language used
by the microprocessor.

A compiled language program consists of the source code and the
compiled code. The source code consists of the program statements in
their original form. For example, the following is a line of source code
from a program written in the CBASIC compiled language.

100 INPUT “ENTER TODAY'S DATE:";DATE.1

The source code is processed by a program known as a compiler into
the compiled code. The compiled code is the machine language used by
the microprocessor. The compiled code is the code actually used when a
compiled program is run. A separate program known as a run-time
monitor is used to execute the compiled program. ,

An interpreted language consists only of source code. The source
code is translated line-by-line directly into machine language instruc-
tions. The BASIC language that is standard on the Atariisan interpreted
language.

One advantage of an interpreted language over a compiled language
is that interpreted language programs are more easily developed. When
working with an interpreted language, a programmer need only write a
program, enter it, run it, and alter it at his leisure. When working with a
compiled language, the source code must be recompiled every time it is
edited. This can be frustrating during the program debugging process.

An advantage of compiled languages over interpreted languages is
that execution time is much faster. The compiled code is much closer to
the machine language than the source code. Since interpretation is not
necessary, execution of compiled code is much faster.

BASIC programming on the Atari will be discussed in more detail in
chapters 3 through 6.

APPLICATIONS SOFTWARE

Applications software can be defined as a set of instructions designed
to accomplish a specific task that is of some value to the user. Examples of
applications programs include games, word processing programs, spread-
sheets, and database software. Generally, applications programs are
stored on cassette or diskette and are transferred into RAM, where the

28 Atari XE User's Handbook

program is available to the computer. Applications programs can also be
stored in a permanent form on a ROM cartridge. This ROM cartridge
can be plugged into the cartridge slot.

A large variety of applications software is available for use with the
Atari. These include programs which can be used in the home such as the
Home Filing Manager; programs which can be used at work such as the
Bookkeeper and Visicalc; programs with educational applications such
as Conversational German and Atari Speed Reading, and finally games
such as Donkey Kong, Dig Dug, Defender, etc.

ATARI CARTRIDGES

As was mentioned in the preceding section, cartridges are often used
to store Atari programs. An Atari ROM cartridge is pictured in figure
1.6. This cartridge consists of 16K of ROM enclosed in a plastic case. In
general, cartridges have either 8Kor 16K of ROM.

Figure 1.6. Atari cartridge

Introduction to the XE Series 29

Peripheral and Add-On Devices

A peripheral can be defined as an auxiliary device which can be
connected to a computer to perform some additional function.

A number of peripherals and add-on devices can be added to the
Atari to expand it into a total computer system. These include a cassette
recorder, a disk drive, printers, joysticks, a modem, and additional RAM.
A number of these peripheral components will be described in the follow-
ing sections.

DISK DRIVES

Atari manufacturers two disk drives that are compatible with the XE
series — the 810 and 1050. The 810 can store 90K of information in that it
is single sided and single density. The 1050 can store 90K in its single
density mode, while storing 130K in dual density. Both drives are soft
sectored.

The disk drive is one of the more important parts of a computer
system. Strong consideration should be given to the purchasing of a disk
drive because it allows the storage of relatively large amounts of data and
also offers relatively fast access to that data.

Unlike RAM storage, when information is stored on a disk, the
information is not lost when the computer is turned off. In other words,
disks offer a permanent means of storing data.

A disk stores data in a magnetic form, much like data is stored on
magnetic tape. The main difference between storage on a magnetic tape
and storage on a disk lies in the means by which that data can be accessed.

The disk drive contains a device known as a read/ write head, which
is used to read and write information. The computer can move the head to
any position desired on the disk surface. This is in contrast to magnetic
tape, where data is read from or written onto the tape in consecutive
order.

This capacity to read or write data at a particular position is known
as random access. Disk drives are known as random access storage
devices. On the other hand, in cases where data must be read or written in
a consecutive order, the accessing is known as sequential access. A
cassette tape recorder is known as a sequential access device.

30 Atari XE User's Handbook

FLOPPY DISKETTES

Disk drives store data on floppy diskettes. A floppy diskette consists
of a round vinyl disk which is enclosed within a plastic cover. The diskette
is generally stored in a diskette envelope.

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed from its
cover. A 5Y inch diskette with its protective envelope is shown in figure
1.7.

The diskette is allowed to rotate within the protective cover. The
round hole in the middle of the diskette allows the disk drive to hold the
diskette and spin it. The oblong shaped opening on the protective cover
provides an area where the head can read from or write to the diskette
surface.

Temporary Label .

Permanent Wtite Protect Notch

Label / {Some diskettes do

not have this notch)

. . —Index Hole
Diskette in

Protective Cover

|

Exposed Read/Write ° I
Head Slot Diskette

Envelope

Figure 1.7. 5Y4 inch floppy diskette

TRACKS AND SECTORS

To facilitate the processs of searching for data on the diskette sur-
face, that surface is divided into tracks and sectors. Tracks may be
visualized as a series of concentric circles on the diskette surface, as shown
in figure 1.8. Both single and dual density divide one side of the disk into
40 tracks. The other side is not used (single-sided).

Introduction to the XE Series 31

To further reduce the time necessary to search for a particular data
item, single density divides each track into 18 sectors, also shown in figure
1.8. Dual density divides each track into 26 sectors.

Each individual sectors holds 128 bytes of data. When DOS has
access to the track and sector where a particular data item is being stored,

it will only have to

search 128 bytes to find that item. The result of

dividing the diskette surface into tracks and sectors is that access time is

greatly decreased.

One—"|

Sector of
Track

L— Track

Single density: .

40 tracks

18 sectors 128 bytes . 90K

1

disk 1 track 1 sector disk

Dual density

40 tracks

26 sectors 128 bytes - 130K

1

disk 1 track) 1 sector disk

Figure 1.8. Tracks and sectors

HARD AND SOFT SECTORS

Locating a particular track on the disk surface is a relatively uncom-

plicated matter. The

drive merely moves the head to the position on the

diskette where the specified track is located, much like the needle on a
phonograph is positioned to the location of a specific song on a record

album.

32 Atari XE Users Handbook

However, locating a particular sector is a more difficult process. Two
different methods are used to locate sectors on a disk, hard sectoring and
soft sectoring.

Both the hard and soft sector methods involve the use of an index
hole. The index hole is shown in figure 1.7. It is located just to the right of
the large hole in the middle of the 54 inch diskette.

The index hole as shown in figure 1.7 is a hole only in the diskette’s
protective covering. Another index hole is located on the actual diskette
surface inside the envelope. As the diskette spins, the index hole (or holes)
on the diskette surface passes underneath the hole in the protective
envelope.

A light source inside the disk drive shines light onto the area of the
diskette containing the index hole. When an index hole on the disk
surface is aligned with the index hole on the protective envelope, the light
will shine through to a sensor. The sensor will relay information on the
location of the index holes which can be used to calculate the various
sector locations.

Now that we have discussed the concepts of locating sectors, we will
discuss the difference between hard and soft sectored diskettes. A hard
sectored diskette contains a number of holes, each of which indicates the
location of a sector. An extra hole is used to indicate the location of the
first sector. The location of the various sectors is determined by counting
the number of holes occuring after the first sector. A hard sectored
diskette is depicted in figure 1.9.

Soft sectored diskettes have only one index hole as shown in figure
1.10. This solitary index hole marks the location of the first sector. By
timing the rotation speed of the floppy diskette, the location of the other
sectors can be determined. The Atari drives use soft sectored diskettes.

Introduction to the XE Series 33

2 Index
Holes

Figure 1.9. Hard sector diskette

Index Hole

Sector

Figure 1.10. Soft sectored diskette

DISKETTE WRITE PROTECTION

Diskettes have a notch on the side of their protective envelope which
determines whether or not data can be written onto that diskette. On SY
inch diskettes this notch is known as a write-enable notch.

Information cannot be written onto a 5% inch diskette unless the
write-enable notch has been left uncovered.

Some 5% inch diskettes (especially system diskettes) may be per-
manently write protected if their protective envelopes does not contain a
notch. Any 5% inch diskette with a notch can be write protected by merely
covering the notch with a piece of tape as shown in figure 1.11.

34 Atari XE User's Handbook

Figure 1.11. Write protecting a 5% inch diskette

DISK DRIVE OPERATION

1050 disk drive operation is a relatively simple mater. When there is
no diskette in the disk drive, the disk slot handle should be in the
horizontal or open position (see figure 1.12).

When inserting a diskette, the diskette’s label should be facing up.
The edge of the diskette closest to the oval-shaped opening in the cover
should be inserted into the drive (see figure 1.13).

Slide the diskette into the diskette slot. Once the diskette has been
fully inserted, rotate the diskette slot handle to the vertical or closed
position. To remove a diskette from the drive, merely reverse this
procedure.

810 disk drive operation is similar to that of the 1050; however the
810 has a door which covers the disk slot. This door may be opened by
pressing the button directly beneath the door, (see figure 1.14). The disk
should be inserted into the slot, then the door should be closed.

In general, a disk drive has a small red lamp on its front cover. This
lamp will light whenever data is being read from or written to a diskette.
Do not remove a diskette when this lamp is on.

Introduction to the XE Series 35

Figure 1.12. Diskette slot handle in open position (1050)

Figure 1.13. Inserting a diskette into the Atari drive

36 Atari XE Users Handbook

Figure 1.14. The 810 disk drive with door closed

ATARI 1010 PROGRAM RECORDER

The Atari XE computers can utilize the 1010 Program recorder
(figure 1.15) for program and data storage. The Program recorder is the
most inexpensive data storage device available for a home computer,
providing a low cost and reliable means of data storage for the budget-
minded home computer consumer.

The Program recorder uses standard cassette tapes to store data. It is
a good practice to use only high quality cassette tapes to save programs
and data. Using lesser quality cassette tapes could result in the loss of
programs and data.

Besides data storage, the Atari 1010 can also store audio informa-
tion. This technique is used in the following computerized language
courses: ATARI Conversational French, German, Spanish, and Italian.

Introduction to the XE Series 37

Figure 1.15. Atari 1010 Program recorder

Printers

Printers used with personal computers can be classified among two
major types — dot matrix printers and daisy wheel printers. Dot matrix
printers output characters on paper as a group of dots. Dot matrix
printers output data at speeds ranging from 35 to 350 characters per
second (or 400 to 4000 words per minute).

Daisy wheel printers output characters that appear much like those
output by a typewriter. The only difference is that a daisy wheel printer
uses a round printing element which contains the standard character set.
The wheel spins to the correct position each time a character is to be
printed. Daisy wheel printers are generally more expensive as well as
slower than dot matrix printers. However, the quality of the characters
output by the daisy wheel printers is higher that those output by dot
matrix printers.

38 Atari XE User's Handbook

Printers used with personal computers are generally either serial or
parallel devices. In serial communications, data is transferred one bit at a
time from the source device to the receiving device. In parallel communi-
cations, data is transferred eight bits (or one byte).at a time.

ATARI 1020 COLOR PRINTER

The 1020 Color Printer specializes in printing four color graphics
and text. This printer draws with 4 pens (red, blue, green, and black).
Because the 1020 does not use a ribbon, as do most printers, it is suited for
only intermittent use.

ATARI 1025 80-COLUMN PRINTER

Atari 1025 80-column printer may be also be used with an XE series
computer. The 1025 is a serial dot-matrix printer with a throughput of 40
characters per second (40 c.p.s.). At this speed, it is the quickest of the
Atari printers; it is also the most durable.

ATARI 1027 LETTER QUALITY PRINTER

Like the 1025, the Atari 1027 (figure 1.16) letter quality printer is a
serial device capable of an 80-column output. The 1027 runs at half the
speed of the 1025, (20 c.p.s.). However, the 1027 is letter quality. This
printer is similar in operation to a daisy wheel printer — producing
typewriter quality text.

Introduction to the XE Series 39

Figure 1.16. Atari 1027 printer

ATARI 850 INTERFACE MODULE

The interface module (figure 1.17) is a device that converts the serial
output of the XE computers into a parallel output. This device will allow
the connection of many parallel printers not manufactured by Atarito the
XE series.

The 850 also contains 4 serial ports. These ports are RS-232* com-
patible. There are a plethora of peripherals available that use the RS-232
standard, including:

® Printers
* Modems
® Voice Synthesizers

Sp‘ecificélly, the Atari 830 acoustic modem attaches directly to the 850
interface module.

* RS-232is the industry standard for serial communications.

40 Atari XE User's Handbook

Figure 1.17. 850 interface module

ATARI MODEMS

Atari manufactures two models of modems, the 830 acoustic modem
(figure 1.18) and the 835 direct-connect modem. A modem is a device that
prepares data for transmission. Modems are generally used with compu-
ters to encode data into a series of tones that can be transmitted over
telephone lines. Modems can also be used to receive and decode this data.
A typical modem link is depicted in figure 1.19. The Atari 130XE on the
right has connected itself, via the telephone lines, to a mainframe
computer.

An acoustic modem is connected to the handset of the telephone,
while a direct-connect modem is connected directly to the phone line. A
direct-connect modem is generally more convenient because it has the
capability to dial a phone number in addition to just transmitting
information.

Introduction to the XE Series 41

Figure 1.18. 830 acoustic modem

Figure 1.19. Computer/ modem link

42 Atari XE User's Handbook

GAME CONTROLLERS

Four types of games control devices (figure 1.20) can be used with the
Atari:

e joysticks

paddles

keyboard controliers
track balls

Figure 1.20. Game controllers

2

Installation, Operation, &
Keyboard Usage

Introduction

The steps necessary for setting up an Atari will be explained in this
chapter. Atari has simplified the installation procedure to the point where
almost anyone can set up the unit. This involves unpacking the various
system components and attaching the necessary cables.

This chapter will also explain Atari keyboard usage. The keys on
the 130XE are arranged in the same order as on a regular typewriter.
However, the Atari keyboard contains several special keys not found ona

standard typewriter keyboard.
43

44 Atari XE User's Handbook

Installation

First of all, when unpacking the Atari XE, save the carton and
packing material. These should be used if the XE is to be moved or stored
in the future.

The Atari is easy to install. The Atari, television set or monitor, and
any peripherals should first be positioned so that they may be easily
accessed. At least two AC electrical outlets will be needed — one each for
the Atari, the television or monitor, and any peripherals.

Locate the Atari’s ON/OFF switch on the back left side of the
console and be certain that it is positioned to OFF. Next, plug the power
supply unit’s cord into an AC electrical outlet. Plug the other end into the
Atari’s POWER IN (DC) socket. (see figure 2.1)

Figure 2.1. Rear of Atari 130XE

Installation, Operation, & Keyboard Usage 45

The system unit must be attached to either a television set or a
monitor. If a television set is used, refer to the section entitled “Attaching
a Television Set”. If a monitor is to be used, refer to the section entitled
“Attaching a Monitor”.

ATTACHING A TELEVISION SET

Touse atelevisionsetasa display device, first connect the video cable
to the RCA jack on the rear of the Atari. This jack is labeled TELEVI-
SION. The video cable, shown in figure 2.2, contains a small box near one
end. This end should be connected to the computer.

The next stepis to install the TV Switch Box on the television set (see
figure 2.3). The TV Switch Box has been designed so that it can be
permanently installed on yojur television, as it allows regular TV recep-
tion as well as video output for the Atari. The Switch Box has an adhesive
backing that can be used to attach it to the back of your television.

Figure 2.2. Video cable

46 Atar XE User's Handbook

Figure 2.3. TV Switch Box

The Switch Box contains a switch marked GAME/TV. When this
switch is at the GAME position, the TV set recevies its signals from the
Atari. When the switch is set to the TV position, the TV set receives its
signals from your television antenna.

To install the TV Switch Box, first disconnect your television
antenna from the VHF connector at the back of your television. Then,
connect the two wires leading from the Switch Box to the twin 300 OHM
VHF terminals and tighten the screws. Finally, the antenna wire should
be connected to the appropriate plug on the Switch Box (75 OHM or 300
OHM).

Some of the newer television sets have only a 75 OHM antenna
hook-up. To attach the Switch Box to such a television,a 75 OHM to 300
OHM converter must be used between the television and the Switch Box.
If your television has a cable hook-up, treat the wire from the cable box to
the TV as the antenna wire in the previous discussion.

Installation, Operation, & Keyboard Usage 47

If your television antenna is a 300 OHM model, the TV Switch Box
installation is finished. If your antenna is a 75 OHM model, you must
convert your television to accept a 300 OHM signal from the TV Switch
Box.

Refer to figure 2.4. If the antenna box contains a switch as shown in
the top drawing, just push the switch to the 300 OHM position. If the
antenna box resembles that shown in the middle drawing, loosen the
screws holding the U-shaped slider, and move it to the 300 OHM posi-
tion. If the antenna box resembles the last drawing, screw the round wire
into the connector as pictured.

ee [T1] If your TV set resembles this draw-
ing, push the switch to the 300

Z; (O OHM position.

oo If your TV set resembles this draw-
ing, loosen the screws and move

gg (0] the slider to the 300 OHM position.

oo Ifyour TV setresembles this draw-
ing, screw the rounded wire into

gg m the connector.

Figure 2.4. 300 OHM conversion

Next, connect the Video Cable to the Switch Box. Be certain that the
slide in the center of the Switch Box is set to GAME and then turn on the
TV set.

Your TV set should be turned to VHF channel 2 or 3. The channel
chosen should correspond to the setting of the Atari’s 2-CHAN-3 switch.
A channel not used by a local television station should be selected. If both
stations are used in your area, select whichever channel has the weakest
reception.

48 Atari XE User's Handbook

ATTACHING A MONITOR AND/OR AUDIO SYSTEM

The Atari 130XE can also be connected to a monitor for visual
output and/or to a stereo for audio output.

The connection is accomplished through the MONITOR jack on the
rear panel of the 130XE. A standard 5-pin DIN audio cable can be used to
make the physical connection. This cable is not supplied with the 130XE,
but can be obtained from most electronic or audio stores. Appendix D
contains the pinouts of the MONITOR jack.

INSTALLING AN ATARI DISK DRIVE

As mentioned in chapter 1, Atari markets two disk drives — the 810
and the 1050. The installation procedures for these are virtually identical.

Before installing the disk drive, be certain that the power switches on
both the drive and the computer are off. The first step is to select a drive
number. Any drive may be assigned any number (1-4); however, drive
numbers may not duplicate and one of the disk drives must be assigned
drive number 1.

The drive number is set with the two DRIVE SELECT switches (or
drive code switches). These switches on the rear panel of the drive may be
set with a pencil or other slender object. Figure 2.5 illustrates possible
switch positions and the corresponding drive number assignment.

Next, plug one end of the data cord to the PERIPHER AL connector
on the rear panel of the Atari console. The other end of the data cord
should be inserted into either of the I/O connectors on the rear of the
drive. Additional peripherals can be attached via the unused 1/0
connector.

Finally, the power supply should be connected. Plug one end of the
power supply into a household outlet, and the other end into the POWER
IN connector on the rear of the disk drive.

Installation, Operation, & Keyboard Usage 49

DRIVE NUMBER 1

DRIVE NUMBER 2

DRIVE NUMBER 3

DRIVE NUMBER 4

Figure 2.5. DRIVE SELECT switches

DAISY-CHAINING

The majority of the peripherals available for the Atari are connected
to the serial 1/ O chain. This chain is started at the PERIPHERAL jack on
the rear of the computer and then connects, in turn, to each peripheral.
Figure 2.6 helps to clarify this concept.

50 Atar XE User's Handbook

ATARI COMPUTER
I

"

Drive #1 Drive #2

IMHZ— 300

etc.

Figure 2.6. Daisy chaining

INSTALLING THE ATARI 1010 PROGRAM RECORDER

The first step in installing the Atari 1010is to plug the data cord into
one of the I/ O connectors on its rear panel. Next, attach the other end of
the data cord into the daisy chain of peripherals. Finally, the power cord
should be attached.

Physically, more than one cassette unit may be attached to the
peripheral chain. However, the operating system will be unable to distin-
guish them. Backups of commercial cassette software may be made using
a direct connection between two 1010’s. This method by-passes the com-
puter entirely, allowing virtually any program tape to be duplicated.

INSTALLING THE ATARI 825 OR OTHER PARALLEL PRINTER

The Atari 850 interface module is required to install the Atari 825 or
other parallel printer. The interface module converts serial data from the
computer into the parallel data used by these printers. Figure 2.7 illus-

Installation, Operation, & Keyboard Usage 51

trates this connection. Usually, the printer cable must be purchased
separately.

T

Daisy
Chain

L]

. = l [© - 9 '
ATAR! Computer /;tsac;i
Printer Cable
| Ao L

Figure 2.7. Parallel printer connection

INSTALLING THE ATARI 830 MODEM OR OTHER RS232C DEVICE

The Atari 850 interface module may also be used to connect up to
four RS232 compatible devices. RS232, the industry standard for serial
communication, can be used to connect devices such as modems, single-
board computers, data acquistion hardware, and some printers, to the
Atari. Again, a cable must usually be purchased separately.

Operation

Once your Atarisystem has been properly installed, you may turn on
its power. Use the following procedure in turning on the various compo-
nents of your Atari system.

52 Atari XE Users Handbook

1. Turn on the television or monitor. If you are using a
television set, be certain both the set and the Atari
are both turned to the same channel. The switch box
connected to the television set should be placed in
the game position.

2. If you are using an Atari disk drive, turn on drive #1
and insert a diskette with the Atari disk operating
system (DOS) on it. Close the drive door once the
diskette has been inserted.

3. If a serial device that has been connected to the 850
interface module is to be used, turn on the 850.
Otherwise, leave it turned off.

4. Be certain that the correct ROM cartridge has been
installed, and then turn on the Atari computer
console.

5. Turn onthe printer when you wish to use it. Remem-
ber, if you are using a parallel printer, the 850 inter-
face module must also be turned on.

Unless the preceding power-on procedure is followed, the Atari may
not be able to interact with some of the system components.

Keyboard Usage

The Atari keyboard contains most of the same keys arranged in the
order of a regular typewriter keyboard (see figure 2.8). The Atari key-
board also contains several additional keys not found on the typewriter
keyboard. Two of these, ESCand CONTROL, are located on the left side
of the keyboard. Three other keys, BREAK, CAPS, and ﬂ are located
on the right side of the keyboard. Also, in the upper right-hand side of the
keyboard are five special function keys. Finally, some of the standard
typewriter keys contain special words or special symbols.

Every key except SHIFT, CONTROL, BREAK, and RESET has a
built-in auto-repeat feature. Auto-repeat means that when a key is held
down, that character will be repeatedly output until the key is released.
For example, if the A key is pressed, a single A will be displayed on the

Installation, Operation, & Keyboard Usage 53

screen. Afterasecond or two, the A will be repeated on the display as long
as the A key is depressed.

Experimentation is encouraged as the following paragraphs are
read. Do not worry about damaging the computer. Any error situation
caused by keyboard entries can be corrected by merely turning the Atari
off, then on again.

Figure 2.8. Atari 130XE keyboard

RESET

The RESET key is located at the top and at the far right of the
keyboard. When the RESET key is pressed, all computer operations stop,
and the Atariis restarted. In other words, control is generally returned to

the operator.

Be careful not to press RESET accidentally. Doing so can cause the
loss of data — especially if the disk drive is in use when RESET is pressed.
Generally, if the rest of the keyboard will not respond, it is apppropriate
to use the RESET key.

54 Atari XE User's Handbook

OPTION, SELECT, START

The functions of these three keys may be programmed for each
specific application. Generally, they are used to choose options within
commercial programs.

The OPTION key and START key have special meanings during
power-up. The OPTION key may be used to disable Atari BASIC.
Depressing the OPTION key during power-up will replace the 8K BASIC
ROM with 8K RAM. The START key is used to load machine language
cassette programs. Depressing START during power-up causes the tele-
vision speaker to emit a single tone that signals that the Atari is ready to
accept a cassette program. Pressingthe RETURN key, here, will boot the
program.

HELP

The HELP key has been added to the XE series of computers to
allow programs to have an on-line help feature. This feature is mainly
used in commercial software programs.

RETURN

As characters are entered via the keyboard, these characters are
displayed on the video screen and also saved in memory. However, these
characters are not actually interpreted by the computer until the
RETURN key has been pressed. The RETURN key tells the Atari that
the line into which characters are being typed has been finished.

When RETURN is pressed, the Atari will review the line just entered
for errors. If any errors are found, an error message will be displayed.

BREAK

The BREAK key will stop any action being undertaken by the
computer. For example, if you press BREAK while entering a BASIC
command line, the computer will ignore all data entered on the current
line.

Installation, Operation, & Keyboard Usage 55

Pressing BREAK may or may not affect a program depending upon
how the program is written. Some programs are written so that pressing
BREAK has no effect, while other programs may stop if BREAK is
pressed. Generally, if a program is interrupted by pressing BREAK, it can
be continued by typing in the BASIC command CONT and then pressing
RETURN.

SHIFT

Upon start-up, the keys for the letters (A-Z) always produce upper-
case letters on the Atari, regardless of whether the SHIFT key is
depressed or released. However, the position of the SHIFT key does have
an effect on many of the other keys on the Atari keyboard.

The keys that are affected by the position of the SHIFT key include
those with more than one character displayed on their top. The character
nearest the user is output when the SHIFT key is not pressed. The
character nearest the upper-right corner of the key is output when the
SHIFT key is pressed.

In this book, a key produced in the SHIFT mode will be denoted by
the word SHIFT followed by the character produced without the SHIFT
key. For instance, SHIFT-8 would denote the symbol @. Appendix B lists
the characters produced in the SHIFT mode.

CONTROL

The CONTROL key is used in combination with another key much
as the SHIFT key is. CONTROL must be held down at the same time as
the other key.

The use of the CONTROL key with another key will be symbolized
by prefixing the name of that key with CONTROL. For example,
CONTROL-C designates holding the CONTROL key while pressing the
C key.

CONTROL is used with the letter keys to output the graphics
characters, and with other keys to instruct the computer to undertake a
particular function. For example, CONTROL- = causes the cursor to
move one row down. The CONTROL key combinations are listed in
appendix B.

56 Atari XE User's Handbook

CAPS

As mentioned earlier, upon start-up, the keys for the letters (A-Z)
always produce uppercase or capital letters, regardless of whether the
SHIFT key is depressed or released. The CAPS key allows both capital
and lowercase letters to be output.

To output both capitals and lowercase letters, press the CAPS key
once. Now, when the SHIFT key is released, lowercase letters will be
output; however, whenthe SHIFT key is depressed, uppercase will still be
output. Pressing the CAPS key a second time will return the Atari to the
all uppercase mode.

At any time, pressing the SHIFT-CAPS key combination results in
the all uppercase mode. The keyboard can be placed in the graphics
characters mode by pressing the CONTROL-CAPS key combination.

4

The P key is used to toggle the keyboard between the normal and
reverse video modes. In the reverse (inverse) video mode, the background
and foreground colors are exchanged when displaying subsequent
characters.

BACK SPACE

The Bk Sp key moves the cursor one position to the left each time it is
pressed. The character beneath the cursor will be erased when Bk Sp is
pressed. If the cursor is at the left edge of the screen and Bk Sp is pressed,
the cursor will not move.

CLEAR

Either the SHIFT-<< or CONTROL-< key combination can be used
to clear the display screen and move the cursor to the home position. The
home position is the upper left corner of the screen.

DELETE

Individual characters can be deleted from the line in which the cursor
resides. CONTROL-DELETE causes the character at the cursor position

Instaliation, Operation, & Keyboard Usage 57

to be deleted. The characters to the right of the cursor will be moved one
space to the left to fill the void.

SHIFT-DELETE causes the line that the cursor is currently in to be
erased from the screen. Then the lines beneath that line will be shifted
upward in the display.

INSERT

CONTROL-> will insert blank spaces at the cursor position. The
characters to the right of the cursor will be moved one position to the
right.

SHIFT->results in a blank line being inserted at the cursor position.
The remainder of the display below the current line is moved down by one
line.

TAB

When the TAB key is pressed, the cursor will move forward to the
next tab position on the screen. Standard tab positions occur after every
eight positions. The left margin on the Atari is indented two columns
from the screen’s edge. Because of this, the first tab stop occurs at the
sixth position from the left margin.

Additional tab positions can be set by pressing SHIFT-TAB at the
desired stop. Pressing CONTROL-TAB clears the tab stop at the cursor’s
current position.

ESC

ESC is an abbreviation for escape, a term originally used with
teletypes. The ESC key allows a key sequence to be entered in a program,
without that sequence being executed as a function. ESC is always
pressed and released prior to the entry of the key sequence whose effect is
to be negated. This entry of ESC followed by the key sequence is known
as an escape sequence.

For example the following escape sequence will not clear the screen
as CONTROL-< usually does:

ESC CONTROL-<

58 Atari XE User's Handbook

ARROW KEYS

The arrow keys are generally used to move the cursor on the screen,
so that the keyboard entries can be corrected where necessary. The arrow
keys are generated using the following CONTROL key combinations:

t CONTROL- —

| CONTROL- =
- CONTROL- *
- CONTROL- +

The right and left arrow keys move the cursor to the right or left by
one position along the same display line. These do not erase the charac-
ters that they pass over from the display. When the right arrow key is
pressed with the cursor at the far right edge of the display line, the cursor
will move to the left edge of the same line. When the left arrow key is
pressed with the cursor at the far left side of the display, the cursor will
move to the far right side.

The up and down keys move the cursor up and down by one line. If
the cursor is at the top of the screen, up arrow places the cursor at the
bottom of the screen. If the cursor is at the bottom of the screen, down
arrow places it at the screen’s top.

3

INnfroduction to the Atari BASIC

Introduction

In this chapter, the operating details necessary to begin using Atari
BASIC will be provided. These include start-up, program entry, state-
ment structure, program editing, program saving, and program listing. In
addition, the fundamental concepts necessary to master Atari BASIC will
be examined. Especially, the various data types used in Atari BASIC as
well as the operations that can be performed on that data will be
discussed.

59

60 Atari XE User's Handbook

Getting Started with Atari BASIC

Atari BASIC is a high-level language that must be interpreted into
the microprocessor’s native language. This is accomplished with a pro-
gram known as an interpreter. The correct activation procedure for the
BASIC interpreter is determined by the model of computer being used.
For example, the 1200X L requires that the BASIC cartridge be inserted;
whereas BASIC is built into the 130XE.

The correct BASIC start-up procedure also depends on whether or
not the system contains a disk drive. Both methods will be detailed in the
following sections.

START-UP WITHOUT A DISK DRIVE

This section describes how to start-up BASIC without a disk drive.
Therefore, if the system includes a disk drive, skip this section and
proceed to the next.

If a cartridge is presently inserted in the cartridge slot on the back of
the unit, it should be removed at this time. (The cartridge slot is located on
the back in the center of the computer.)

The computer itself should now be powered up. If the Atari is
already activated, it should be turned off, then reactivated. A clear blue
display will appear while a series of initialization procedures are per-
formed. About 4 seconds later, the “READY” prompt and the cursor will
appear at the top of the screen (see figure 3.1).

{ READY)
| |
__ Y.

Figure 3.1. Start-up display

Introduction to the Atari BASIC 61

START-UP WITH A DISK DRIVE

The Atari BASIC interpreter, by itself, does not support disk access.
However, disk access is supported by the interpreter if the disk operating
system has been loaded into memory.

To load DOS into the computer, the disk drive must first be
powered-up. Also, a system diskette containing a copy of DOS should be
inserted into the disk drive. Remember, never use the original copy of
DOS. Make a copy, and then store the original in a safe place. Always use
a copy for everyday use. Chapter 7, “DOS Usage™, explains how to make
back-ups.

If a cartridge is presently inserted in the cartridge slot on the top of
the unit, it should be removed at this time. (The cartridge slot is located on
the back in the center of the computer.)

The computer itself should now be powered-up. If the Atari is
already activated, it should be turned off, then reactivated. A clear blue
display will appear while DOS is loaded into memory. The television
speaker will emit a series of beeps at this time. After the loading of DOS is
complete, about 4 seconds of initialization procedures will be performed.
These will also be audible, producing a sputtering sound. Finally, the
“READY” prompt and the cursor will appear at the top of the screen.

IMMEDIATE AND PROGRAM MODES

The immediate mode is also known as the direct or calculator mode.
In the immediate mode, most BASIC command entries result in the
instructions being executed without delay. For example, if the following
immediate mode line was typed, and the RETURN key pressed,

PRINT "Walter A. Haupt"

the following would be displayed on the video screen:

62 Atari XE User's Handbook

Walter A. Haupt

In the program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution. This stored
program will be executed when the appropriate command (generally
RUN) is entered.

Figure 3.2 contains an example of the entry of a program in the
program mode and its execution. Notice that in the program mode, each
BASIC program line must be preceded with a line number. Line numbers
will be discussed in more detail later in this chapter.

()
10 PRINT "Walter A. Haupt”

20 PRINT 24270 Glenbrook”

30 PRINT "Euclid, OHIO 44112"

40 END

RUN

Walter A. Haupt

24270 Glenbrook

Euclid, OHIO 44112

READY
\. J

Figure 3.2. Program mode entry and execution

COMMAND AND STATEMENT STRUCTURE

In Atari BASIC, instructions being relayed to the interpreter are
known as commands in the immediate mode, and statements in the
program mode. In practice, the difference between a command and a
statement is primarily one of semantics, as both generally use the same
structure and keywords.

Both commands and statements begin with a BASIC keyword or
reserved word. The keyword identifies the operation to be undertaken by
the BASIC interpreter. For example, in the preceding section, the PRINT

Introduction to the Atari BASIC 63

command was used to instruct the Atari to display information on the
screen,

In Atari BASIC, keywords must be entered in uppercase letters. The
Atari will not recognize an entry as a program line unless its keyword is
capitalized. An error will result if a lowercase entry is made.

A BASIC command or statement generally includes one or more
arguments or parameters following the keyword. In our example, ”Wal-
ter A. Haupt” is the PRINT statement parameter.

PRINT “Walter A. Haupt"

ENTERING A PROGRAM

In the preceding section, the fundamentals of entering and running
an Atari BASIC program have been touched upon. In this section, that
discussion will be expanded upon by using the example in figure 3.3.

BASIC programs are entered as program lines. Any text preceded
with a number (line number) and ended by pressing the RETURN key
will be regarded as a program line. The maximum number of characters
that may be included in any one line is 114. Line numbers must be integers
in the range 0 to 32767. If a line exceeds its character limit, only the first
114 characters will be remembered. A bell will sound after the 107th
character is typed as a reminder that the limit is being approached. If a
line number is not valid, an error condition results.

Note that in the first 7 lines of figure 3.3, a program was entered in
the command mode and run in the execute mode. After the answer, 5, had
been displayed, the “READY” prompt appeared.

At this point, the original program will be stored in memory, and can
be added to or changed. That is what was done in line number 150 of
figure 3.3. An additional statement was inserted between statements 100
and 200 in the program being stored in memory. This revised program
can be executed by again entering RUN.

64 Atari XE User's Handbook

The computer memory can only hold one program at a time. The
NEW command is used to erase the program in memory so as to allow a
new program to be entered. Note the use of NEW in figure 3.3.

Note in our examples the following features common to BASIC
programs:

1. Each program line must begin with a line number. The com-
puter executes program lines in order from lowest line
number to highest line number.

2. The END statement signals the end of a program. When
END is executed, the program run will stop.

a)
NEW

READY

100 PRINT 5
200 END
RUN

5

READY

150 PRINT -5
RUN

5

-5

READY
NEW

READY

100 PRINT 50
200 END
RUN

50

READY
. J

Figure 3.3. Entering and running a program

Introduction to the Atari BASIC 65

It is recommended that consecutive line numbers (10, 11,12, 13, etc.)
not be used in programs. By using numbers that are a fixed distance apart
(100, 110, 120, 130, etc.), additional lines can be inserted between existing
lines without renumbering the lines.

Line numbers need not be entered in any particular order. For
example, the user could enter lines 100 and 200 and then enter line 150.
The computer will automatically rearrange the lines according to their
line numbers.

If two lines are entered with the same line number, the original line
will be erased, then replaced with the new line. This feature allows the user
to replace an entire line by merely entering a new line with the same line
number.

A new line can be added to a BASIC program by merely entering a
line number followed by the desired textand RETURN. When RETURN
1s pressed, the line will be saved as part of the BASIC program.

To delete a line in an existing program, merely enter the line number
of the line to be deleted followed by RETURN. Of course, an entire
program may be deleted with the NEW command.

ERROR MESSAGES

When a statement of incorrect format has been entered, an error
message will be displayed. Only syntax errors are detected when a pro-
gram is being entered. If an incorrect line is typed, and RETURN is
pressed, the Atari will print an error message, followed by the line just
entered. The location of the error within the line will be identified with an
inverse video character. In the following example, the operator’s entry is
signified with bold face, while the computer’s response appears in normal
type:

PRINT 5G
ERROR - PRINT 5

\

location of
error

66 Atari XE User's Handbook

If a problem develops while a program is being executed, an error
message will be displayed. Anerror that occurs during the execution of a
program will generate an error message that includes a numeric descrip-
tion of the problem as well as the line number of the statement that caused
the problem. The numeric description is a code that indicates the nature
of theerror. The various error codes and their corresponding descriptions
are listed in appendix A.

When an error occurs in a program, an error message will be dis-
played and the execution of the program will halt. Here, program execu-
tion may be resumed by using the CONT command.

LISTING A PROGRAM

LIST is used to display the program stored in memory on the screen.
This display is often referred to as a program listing. An example of the
use of LIST is given in figure 3.4,

When the LIST command is executed, the program in the compu-
ter’s memory will be displayed on the screen. Each line of the program
appears initially at the bottom of the display. In order for each subse-
quent line of the program to appear on the last line of the display, each
line of the display must be moved one line toward the top. As aresult, ifa
program occupies more than 24 display lines, the first lines of the pro-
gram will be moved off the top of the display in order to accommodate the
last lines. This process is called scrolling.

When a lengthy program is listed on the display, the information
may pass by too quickly to be usable. As a result, it is often necessary to
temporarily halt the listing of a program. If this is the case, simply hold
down the CONTROL key and type the “1” key. The pause will continue
until the CONTROL-1 key combination is repeated.

LIST can be used with optional parameters to display only a portion
of the program. For example, LIST can be used with a single line number.
LIST canalso be used with a range of line numbers. The command LIST
10,30 would list all line numbers within the range 10 to 30, inclusive.

introduction to the Atari BASIC 67

1

10 PRINT “Pat Kling”

20 PRINT "Rich Rheinhart”
30 PRINT "Karen Dorsey”
40 PRINT "Grady Dorsey”
LIST

10 PRINT "Pat Kling”

20 PRINT "Rich Rheinhart”
30 PRINT "Karen Dorsey”
40 PRINT "“Grady Dorsey”

READY
LIST 10

10 PRINT “Pat Kling”

READY
LIST 10,30

10 PRINT "Pat Kling"
20 PRINT "Rich Rheinhart”
30 PRINT "Karen Dorsey”

READY
LIST 25,50

30 PRINT "Karen Dorsey”
40 PRINT "“Grady Dorsey”

READY

Figure 3.4. Listing a program

68 Atari XE User's Handbook

EDITING A PROGRAM

If a program line is entered incorrectly, it can be changed in one of
two ways. The first method is to simply reenter the program line. This is
accomplished by retyping the line number, followed by one or more
appropriate statements.

The second method uses the Atari’s full screen edit feature to alter a
program line. This feature allows the cursor to be moved to any location
on the screen. Once the cursor has been positioned over the incorrect
entry, the correct character or characters can be typed in place of the
error.

The cursor can be moved by 4 of the keys on the right-hand side of
the keyboard. These keys are labeled 1, |, —, and —. The “arrow” keys
move the cursor in the direction of the arrow. The cursor is an inverse
video rectangle that indicates the position where the next character
entered via the keyboard will appear. Incidentally, the CONTROL key
must be held down while the arrow keys are used.

Program lines can be manipulated by the INSERT, DELETE, and
Back Space (Bk Sp) keys. The CONTROL key must be held down while
using either INSERT or DELETE. The CONTROL-DELETE key
combination deletes the character at the current cursor position. The
CONTROL-INSERT key combination inserts a blank space into the
program line. Pressing the Bk Sp key moves the cursor one position to the
left and deletes the character in that position.

The use of the full screen editor is best explained using a simple
example. Begin by entering the following program:

10 FOR S =100 TO 200
20 PRINT "ANSWER IS ";S
30 NEXTR

When the LIST command is issued, the program will appear on the
display as follows:

Introduction to the Atari BASIC 69

LIST

10 FOR § =100 TO 200
20 PRINT “"ANSWER IS ";S
30 NEXTR

READY

Suppose that line number 30 was incorrect and was intended to
appear as follows:

30 NEXT S

The correction can be made by using the t key to move the cursor up
to line 30. Proceed by pressing the — key until the cursor is on the “R™.
Correct the error by typing the correct letter, “S”, then press RETURN.

Suppose that line number 10 was intended to read as follows:

10 FOR S =1TO 200

Use the arrow keys to place the cursor on the first offending “0”.
Pressing CONTROL-DELETE will remove the first “0” from the line.
The cursor should now be positioned upon the other “0”. Pressing
CONTROL-DELETE a second time will delete the second “0”. The
cursor may also be placed on the zero on the end, and the Bk Sp key
pressed to delete the unwanted zeros. Now, press RETURN. The Atari
does not record any corrections until the RETURN key has been pressed.
Therefore, once a line has been edited, always press RETURN to register
the changes.

Finally, suppose line number 20 was also incorrect, and was intended
to appear as follows:

20 PRINT “THE ANSWER IS ;S

70 Atar XE User's Handbook

Use the arrow keys to place the cursor on the “A” in line 20. This is
the position where additional characters are to be inserted. To insert four
spaces into the line, press the INSERT key four times, while holding
down the CONTROL key. Notice that while inserting, any characters to
the right of the cursor will be moved over to make room for the additional
spaces. Now, type the text to be inserted, THE. Remember to press
RETURN after editing line 20, so that the changes will be stored.

RUNNING A PROGRAM

Once a program is present in memory, the operator can execute it. As
mentioned previously, a program can be entered into memory via the
keyboard orloaded into memory from a storage device -- cassette or disk.
The procedure for loading a program will be discussed later in the
chapter.

The RUN command is used to begin program execution. RUN can
be used with or without an optional file specification as its parameter.
Because RUN is generally executed without an optional parameter, the
discussion of RUN in this section will be limited to its execution without a
file specification. the usage of RUN with this parameter will be discussed
in chapter 5.

When the RUN command has been entered and the RETURN key
pressed, program statements entered in the indirect mode (with line
numbers) will be executed in order, beginning with the lowest line. An
example of the usage of RUN is shown in figure 3.5. The execution of a
program can be stopped at any time by pressing the BREAK key, and
resumed with the CONT command.

Introduction to the Atari BASIC 71

4 h
100 PRINT "THIS IS LINE 1"

200 PRINT “LINE 2 IS BEING EXECUTED"
300 PRINT "LINE 3 IS BEING EXECUTED"
400 PRINT “LINE 4 1S THE FINAL LINE"
500 END

RUN

THIS IS LINE 1

LINE 2 1S BEING EXECUTED

LINE 3 1S BEING EXECUTED

LINE 4 1S THE FINAL LINE

READY

Figure 3.5. RUN command

SAVING A PROGRAM

As you may recall from our discussion of program entry, only one
BASIC program may be stored in memory at any one time. When the
Atari’s power is turned off, the contents of memory will be erased and any
program stored there will be lost unless it is first stored on a permanent
medium such as a diskette or a cassette tape.

Before a program can be saved on diskette, it must first be assigned a
name from one to eight characters in length. This is known as a filename.
Once a filename has been selected for a program, it can be stored using the
SAVE command. The syntax of the SAVE command requires that the
characters, D:, prefix the filename to indicate the disk drive. The filename
and its prefix, together, are known as the file specification.

Forexample, if a program was presently residing in memory, it could
be saved on a diskette with the following command:

SAVE "D:VAPNIK"

72 Atar XE Users Handbook

Notice that quotation marks are required around the file specification,
D:VAPNIK.

When storing a program on cassette tape, no filename is required;
however, a file specification is needed. The file specification for the
cassette unit is C:.

SAVE "C:"

When the previous command is executed, a tone will sound twice asa
signal to position the tape. At the tone, press the cassette unit’s PLAY and
RECORD keys. Finally, RETURN should be pressed on the Atari
keyboard. Before pressing RETURN, the value of the tape counter
should be written down so that the program may be easily found later.
Incidentally, the CSAVE command may be used in place of the SAVE
”C:” command with identical results.

When SAVE is executed, the program remains in memory where it
can be added to, edited, or run, if desired.

Both cassettes and disks can be an effective means of retaining
programs and data when the computer is turned off. The details of the
procedures used to save programs and data will be presented in chapter 5.

LOADING A PROGRAM

Once a program has been saved on cassette tape or floppy disk, it can
be loaded back into memory using the LOAD command. An example of
a LOAD command is given below:

LOAD "D:VAPNIK"

Again, quotation marks are required around the file specification,
D:VAPNIK.

If a file with the indicated filename cannot be found on the disk, an
ERROR-170 (File not found) will be generated. Only files created with

Introduction to the Atari BASIC 73

the SAVE command may be retrieved using LOAD. If an attempt is made
toload a file not created with SAVE, an ERROR-21 (Bad load file) will be
generated.

When retrieving a program from cassette, the file specification must
be C..

LOAD "C:"

(or)
CLOAD

When either of the previous commands is executed, a single tone will
sound as a signal to position the tape (using the counter), and then press
the cassette unit’s PLAY key. Finally, RETURN should be pressed on the
Atari keyboard.

LOAD automatically clears the Atari’s memory before loading the
designated program. Effectively, a NEW command is implied within the
LOAD command.

MULTIPLE STATMENTS

In our examples thus far, only one BASIC statement has been
included in each program line. In Atari BASIC, multiple statements may
be included in a single program line as long as each statement is separated
with a colon. Remember, however that the computerignores any charac-
ters after a REM statement.

Thus:

10 PRINT "William”:REM Bill:PRINT "NELSON"
20 END

will result in the output of;

William

Figure 3.6 uses valid multiple statements in line 10.

74 Atari XE User's Handbook

r

10 PRINT "JOHN":PRINT”"NELSON"
20 PRINT "ATLANTA"

30 PRINT "GEORGIA”

40 END

RUN

JOHN

NELSON

ATLANTA

GEORGIA

READY

. J

Figure 3.6. Multiple statement lines

Data Types

The data processed in Atari BASIC can be classified under two
special headings: string and numeric. String and numeric data are stored
differently in memory by the Atari. Also, the various operators in BASIC
affect string and numeric data in different manners. The two types of data
will be described in the following sections.

STRINGS

A string can be defined as one or more ASCII characters. The
various ASCIl characters are listed in appendix B and consist of the digits
(0-9), the letters of the alphabet, and a number of special symbols.

BASIC also allows a string of zero characters. This is also known as
the empty or null string and is used much as a zero is in mathematics.

As may have already been noted from our examples at the beginning
of this chapter, when a string is used in a BASIC statement, it must be
enclosed within quotation marks. The quotation marks serve to identify
the beginning and ending points of the string. They are not a part of the
string.

A string enclosed within quotation marks is known as a string
constant. A constant is an actual value used by BASIC during execution.
The following are examples of string constants:

Introduction to the Atari BASIC 75

"SEAN GRADY"
"12197”

"E97432"

“"BOSTON, MA 01270
“213-729-4234"

Notice that numbers can be used within a string constant. Remember,
however, that the numbers within a string constant are string rather than
numeric data.

One final point that should be kept in mind regarding string con-
stants is that they cannot contain quotation marks. For example, the
following string constant would be illegal:

“Elaine said, “"Goodbye,” as she walked away.”

Since quotation marks are used to denote the beginning and ending
points of a string constant, their inclusion within the string itself would
cause difficulties, and, therefore, their inclusion is not allowed.

NUMERIC DATA

Numeric data can be defined as information denoted with numbers.
Numeric data is stored and operated on in a different manner than is
string data.

Numeric constants consist of positive and negative numbers.
Numeric constants cannot include commas. For example, 10900 would be
a valid number in Atari BASIC, while 10,900 would be invalid.

Atari BASIC stores all numbers in memory using a floating decimal
point form. Although all numbers are stored in the same form, they may
be entered and displayed in one of two formats: fixed point or floating
point.

Fixed point numbers can be defined as the set of positive and
negative real numbers. Fixed point numbers include integers as well as
numbers that contain a decimal portion. The following examples are
numbers represented in fixed point notation:

+12383
-.007
36.2436

0
-14

76 Atari XE User's Handbook

Floating point numbers are represented in scientific notation. A
number in scientific notation takes the following format:

TxExyy

H

is an optional plus or minus sign.

x is a fixed point number. This position of the number is known as

the coefficient or mantissa.

E stands for exponent,

yy isa two digit exponent. The exponent gives the number of places
that the decimal point must be moved to give its true location. The
decimal point is moved to the right with positive exponents, and
to the left with negative exponents.

The following are examples of floating point numbers and their

equivalent notation in fixed point:

Floating Point

3.87E+05
4.064E-04
1E+06
7.87642E+03

Fixed Point

387000
.0004064
1000000
7876.42

If a number can be expressed in scientific notation with an exponent
less than -2 or greater than 9, scientific notation will be used to display the
value. Otherwise, the fixed point notation will be used.

PRINT 1E8 <«———— not greater

100000000

READY

PRINT .001

than 9

1.0E-3 <««————— less than -2

READY

Infroduction to the Atar BASIC 77

Atari BASIC can only handle floating point numbers in the range
between -9.99999999E+97 and +9.99999999F+97. Any decimal numbers
in the range between -1E-98 and 1E-98 will be converted to Zero.

Floating point numbers can have at most 9 significant digits. Any
digits beyond 9 will be truncated.

PRINT 1E-99
0

READY
PRINT 1.234512345
1.23451234

READY

Variables -- An Overview

In the preceding section, we discussed BASIC’s different types of
data -- string and numeric. So far, data has only been represented as a
constant. The value of a string or numeric constant such as "MICHELLE”
or 382.436 always remains the same.

Data can also be represented by using a variable. A variable can be
defined as an area of memory that is represented with a name. That name
is known as the variable name. The information stored in the memory
area defined by a variable name can vary as BASIC commands or
statements are executed (hence the name variable). The data currently
stored in the memory area defined by a variable is known as the variable’s
value,

78 Atari XE User's Handbook

VARIABLE NAMES

BASIC allows variable names of any length. A variable name must
begin with a letter of the alphabet followed by additional alphanumeric
characters. Blank spaces are not allowed within a variable name. Only
uppercase letters may be used in variable names; lowercase will not be
accepted by the interpreter. The following are examples of valid BASIC
variable names:

BENJI X9
STASH PHONE23

A variable name may duplicate a BASIC reserved word (see appen-
dix C). However, the BASIC interpreter may be confused if a reserved
word is used as a variable name. As a result, it is recommended that
reserved words not be used as variables.

Variables, like constants, can either be string or numeric. Although
BASIC automatically alots memory for numeric variables, the pro-
grammer must markedly reserve space for string variables. Memory is
reserved using the DIM statement. The following example command
would reserve room for up to 200 characters in the string variable,
REBELS. Incidentally, all string variable names must end in a dollar sign

().

DIM REBEL$(200)

The following variable names would be declared as string and
numeric, respectively. If a dollar sign is not included in the variable name,
the variable is assumed to be numeric.

LOUISES BRIAN

Introduction to the Atari BASIC 79

ASSIGNMENT STATEMENTS

Numeric variables are initially assumed to have a value of zero.
String variables are initially assumed to be null. Values may be assigned to
a variable as the result of a calculation or as the result of an assignment
statement. The reserved word, LET, is used to assign a value to a variable.

LET variable = expression*

Whenever an assignment statement is used in a program, the value of
the variable on the left side of the equation will be replaced with the value
appearing on the right.

The reserved word, LET, need not actually be included in an assign-
ment statement. Both of the following commands have the same
meaning:

LETA=5
A=5

LET s not useless, however. In cases where a reserved word is used as
a variable name, LET serves to clarify the meaning of the program line.

COLOR=3
ERROR - COLORES

LET COLOR =3

* In our configuration examples, BASIC reserved words will be depicted in uppercase,
regular face type. Parameters to be entered by the programmer will be depicted in lowercase
italics.

80 Atari XE User's Handbook

In the former of the preceding examples, the reserved word,
COLOR, confused the interpreter causing an error. The LET in the latter
example deciphered the meaning of the statement. Therefore, no error
occured.

The value assigned to a variable can either be a constant, a variable,
or the result of an operation. In the following example, A$ is assigned the
string constant “JOHN". B is assigned the numeric constant 27.9. C is
assigned the value of B, and D is assigned the numeric value of B
multiplied by 2. Notice that the DIM statement in line 10 is required. This
statemnent alots up to 20 characters for the string variable, AS.

10 DIM A$(20)
20 A$ = "JOHN"

30 B=27.9
40C=8B
50D=B*2
60 PRINT A$
70 PRINT B
80 PRINT C
90 PRINT D
RUN

JOHN

27.9

27.9

55.8
READY

Variable types cannot be mixed. In other words, a numeric variable
cannot be assigned a string value; nor can a string variable be assigned a
numeric value.

Expressions and Operators

The values of variables and constants are combined to form a new
value through the use of expressions. The following are examples of
expressions:

introduction to the Atari BASIC 81

4+7
14/7
3*1
AS$ > B$
X AND Y

BASIC includes several types of expresions including arithmetic,
relational, and logical. In our previous examples, the first three examples
were arithmetic expressions, while the fourth and fifth were examples of
relational and logical expressions, respectively. Each of these types of
expressions will be discussed in detail in the following sections.

The sign or word describing the operation to be undertaken is known
as an operator. An operator is a symbol or word which represents an
action that is to be undertaken on one or more values specified with the
operator. These values are known as operands.

The operators in our previous examples were as follows:

+

/

*

>
AND

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical operations
on numeric variables and constants. The various arithmetic operators are
listed in table 3.1.

A number of these operations should already be familiar. The sym-
bols + and - are used for addition and subtraction, respectively. The
asterisk (*) is used to indicate multiplication, while the slash (/) is used to
indicate division.

PRINT 5+ 3
8

READY
PRINT 24/8
3

READY

82 Atari XE User's Handbook

When the symbol "-” precedes a numeric constant or variable, it
changes that value’s sign. This usage is known as negation.

10 PRINT A=-5
20 PRINT A

30 PRINT -A
RUN

-5

5

READY

The second arithmetic operation specified in table 3.1 is exponentia-
tion. Exponentiation (caret A) is the process of raising a number to a
specified power. For example, the following two expressions would eval-
uated identically as 125. The exponent, 3, indicates the number of times
that the base, 5, is to be multiplied by itself.

§*3=125
5*5*5=125

Table 3.1. Arithmetic operations

Symbol Operation Example

- Negation -A

N Exponentiation A™B

* Multiplication A*B
same / Division A/B
priority

+ Addition A+B
same .
priority - Subtraction A-B

Introduction to the Atar BASIC 83

ORDER OF EVALUATION (ARITHMETIC EXPRESSIONS)

The majority of our preceding examples were simple expressions. A
simple expression is one which contains just one operator and one or two
operands. Simple expressions can be combined to form compound
expressions. The following are examples of compound expressions:

(-A) +37N 2+ 2
A+B*A/(C+D)
27+47/AB

With compound expressions, it is necessary that the computer
knows which operations should be undertaken first. BASIC follows a
standard order of evaluation within compound expressions.

In this section, the order of evaluation of compound arithmetic
expressions will be discussed. Later in this chapter, the order of evalua-
tion of relational and logical operators will be discussed. Also, the relative
evaluation priorities of these three groups will be will be outlined.

Inanexpression with more than one arithmetic operator, the opera-
tors with higher priorities are evaluated first followed by those with lower
priority. If two operators have the same priority, evaluation is performed
from left to right in the expression. The operators in table 3.1 are listed in
descending priority. For example, exponentiation is listed before multi-
plication, because exponentiation has a higher priority. Multiplication
and division have the same priority. Also, addition and subtraction have
the same priority. The following is an example of the evaluation of the
arithmetic operators in an expression:

A=371+129*21-7+4"2
=37.1+129*21-7+16
=37.1+27.09-7+16
=64.19-7+ 16
=57.19+ 16
=73.19

84 Atari XE User's Handbook

Parentheses can be used to alter the order of evaluation in arithmetic
expressions. Expressions appearing within parentheses have the highest
priority in the order of evaluation. For example, the use of parentheses
with our preceding example could change the value of the expression:

A=(371+129)*21-(7+4"2)
=50*2.1- (7 + 16)

=50"21-23
=105-23
=82

RELATIONAL OPERATORS

Relational operators are used to make a comparison using two
operands. The following relational operators are used in BASIC:

< less then

<= less then or equal to
> greater than

> = greater than or equal to
= equal to

<> not equal

Arelational operation evaluates to either true or false. For example,
if the constant 1.5 was compared to the constant 2.4 to see whether they
were equal, the expression would evaluate to false. In BASIC, a value of 1
represents a condition of true, while a value of 0 represents false.

The only values returned by a comparisonin BASIC are 1 (true) or 0
(false). The values can be used as any other numeric expression would be
used. The following relational expressions and their results demonstrate
comparisons:

Introduction to the Atari BASIC 85

PRINT5>7
0 ~——_ false

READY
PRINT 5> 3
1 -+ true

READY
PRINT7=7
1 - true

READY

Relational operations are evaluated after the arithmetic operations.
Relational operations are performed from left to right in an expression
— each having the same priority.

Relational operations using numeric arguments are fairly straight-
forward. However, relational operations using string values may prove
confusing to the first time user. Strings are compared by taking the ASCII
value for each character in the string one at a time and comparing the
codes.

For example, consider the two string values "BONNIE” and
"BECK”. In a relational expression, the initial characters of the strings
will be compared first. Since both strings begin with “B”, the comparison
will continue with the second character. Since the ASCII code for ”E” (69)
is less than the ASCII code for 7Q” (79), "BECK” is considered less than
"BONNIE".

If the end of a string is encountered during a string comparison, the
string with the fewer number of characters will be considered to be less
than the longer string. For example "ZKLING” would be evaluated as less
than "KLINGON”. The relational operators can be used in this manner to
indicate the relative location of strings in alphabetical order.

Blank spaces are counted in string comparisons and have an ASCII
value of 32. Lowercase letters have higher ASCII values than uppercase
letters. Therefore, “Z”is less than “a”. Appendix Blists the various string
characters and their corresponding ASCII values.

86 Atar XE User's Handbook

The following examples demonstrate the use of relational operators
with string values. All of the following expressions are true. Notice that
all string constants must be enclosed in quotation marks.

"LORRIE" = "LORRIE"”

"LORRIE"” > "LAURIE"

"PAT"” < "PATRICK"

"PAT RICK" < "PATRICK"

"elaine” > "MOST”

A$ > Z$ where A$ = “elaine” and Z$ = "MOST"

LOGICAL OPERATORS

Logical operators are generally used in BASIC to compare the
outcomes of two relational operations. Logical operations themselves
return a true or false value which may be used to determine program flow.

The logical operators are NOT (logical complement), AND (con-
junction), and OR (disjunction). The results of the logical operators are
summarized in figure 3.7. These charts are known as truth tables.

A logical operator evaluates an input of one or more operands with
true or false values. The logical operator evaluates these true or false
values and returns a value of true or false itself. An operand of a logical
operator is evaluated as true if it has a non-zero value. (Remember,
relational operators return a value of 1 for a true value.) An operand of a
logical operator is evaluated as false if it is equal to zero.

The result of a logical operation is also a number. A value of 1
corresponds to a true result, while a value of 0 is considered false. This
value may be used as would any other numeric value.

The following are examples of the use of logical operators in combi-
nation with relational operators:

Introduction to the Atari BASIC 87

PRINT1+1=2AND1+1=3
0

READY
PRINT 1+1=2AND NOT(1+1=23)
1

READY
PRINT -5 OR NOT 3
1

READY

In the first example, the result of the logical expression was false.
Although 1+ 1 = 2is true, 1 + 1 = 3 is not true (false). In the second
example, 1 + 1 = 3 is again false; therefore, NOT (I + 1 = 3) is true. Since
both expressions of the logical operator are true, the entire expression is
true. In the final example, NOT 3 is false. (3 is non-zero; therefore, it is
true.) Likewise, -5 is true because it is non-zero. Since one of the argu-
ments of the OR operator is true, the entire expression is true.

Both the relational and logical operators are generally used in the
context of an IF... THEN statement. Here, program flow may be influ-
enced depending on whether an expression evaluates to true or false.

IF X>10 ORY < 0 THEN 800

In the previous example, the result of the logical operation will be
true if the variable X is greater than 10 or if the variable Y is less than 0.
Otherwise, it will be false. If the result of the logical operation is true, the
program will branch to line 900. Otherwise, it will continue to the next
statement.

88 Atari XE User's Handbook

NOT Operation
X NOT X
true false
false true

OR Operation
X Y XORY
true true true
true false true
false true true
false false faise]

AND Operation

X Y XANDY
true true true
true false false
false true false
false false false

Figure 3.7. Logical operators

OVERALL ORDER OF EVALUATION

In this chapter. the use of the arithmetic, relational, and logical
operators have been outlined. Table 3.2 summarizes the evaluation order
of these operators. The single exception to the rules given by the table
occurs when the relational operators are used to compare strings. In this
case, the relational operators are given the highest priority.

Introduction to the Atari BASIC 89

Incidentally, a unary operator can be defined as an operator havinga
single expression for its argument. NOT is the logical unary operator,

while “-” is the arithmetic unary operator.
Table 3.2. Overall order of evaluation
Symbol Priority

Negation _

Unary . 1
Logical Compiement NOT

Arithmetic Exponentiation A 2
Multiplication * 3
Division /
Addition + 4
Subtraction -

Relational Equality =
Inequality <>
Less than < 5
Greater than >
Less than or equal to <=
Greater than or equal to >=

. Conjunction AND 6

Logical

Disjunction OR 7

4

BASIC Programming Concepts

Introduction

In chapter 3, BASIC programming fundamentals were discussed. In
this chapter, we will explain some additional fundamental programming
concepts. These include:

e data input and output

e conditionals, branching and loops
e tables and arrays

e functions

e string handling

® program chaining

91

92 Atari XE Users Handbook

Inputting and Outputting Data

Thus far, we have briefly described the usage of the PRINT state-
ment to output data. Now, we will discuss the usage of PRINT to format
the outputted data. After we have discussed the methods used to output
data, we will discuss the statements used to input data into variables.
These include INPUT and GET.

PRINT

To this point, we have only used the PRINT statement to output a
single constant or variable value to the screen. The PRINT statement can
also be used to output more than one item to the screen. When PRINT is
used in this manner, the spacing between the items to be printed can be
controlled by separating them with a comma or semicolon. For example,
compare the results of the following PRINT statements:

PRINT "PAT";"MIKE";"KEN";"JOHN"
PATMIKEKENJOHN

READY

PRINT "PAT",”"MIKE"”,”KEN","JOHN"
PAT MIKE KEN JOHN

READY

In the first example, the semicolon was used as the delimiter. The
semicolon causes each string data item in the PRINT statement to be
output immediately adjacent to the preceding item.

When semicolons are used to separate data items in a PRINT
statement, the output will be displayed without the insertion of any
additional spaces between data items. As a result, spaces must be inserted
in PRINT statements between any data items that need to be separated.
The most common technique used to insert spaces is to include a space
(enclosed in quotation marks) in a PRINT statement. The following
example program demonstrates this technique:

BASIC Programming Concepts 93

10 DIM A$(5)

20 DIM B$(5)

30 A$ = "ATARI"
40 B$ = "130XE"
50 PRINT A$:B$

60 PRINT AS$:" ";B$
RUN

ATARI130XE
ATARI 130XE

In the second example on page 92, comma’s were used to delimit the
string constants. Atari BASIC divides the spacingon a line into a series of
print zones. Each print zone contains 10 spaces. When a comma appears
in a PRINT statement, the computer is instructed to begin printing the
next parameter in the PRINT statement at the beginning of the next print
Zone,

The number of spaces in each print zone can be changed by placinga
new value into memory location 201. For example, the statement,

POKE 201,20

would cause each print zone to contain 20 spaces.
Commas are very useful when data is to be output in tabular form.
This 1s illustrated in the following example program.

100 POKE 201,20

200 PRINT “Name”,”ID No."

300 PRINT “Diana Growski",”0-4377"
400 PRINT "Tim Mirroli”,”F-0010"

500 PRINT "Mary Bungalow”,"B-8008"
600 POKE 201,10

700 END

RUN

Name ID No.
Diana Growski 0-4377
Tim Mirroli F-0010
Mary Bungalow B-8008
READY

The POKE statement in line 100 causes each print zone to consist of
20spaces. Lines 200 through 500 display data on the screen using commas
as delimiters. Line 600 causes the print zones to consist of 10 spaces.

94 Atari XE User's Handbook

Generally, when a PRINT statement has been executed, the cursor
or print head will advance to the farthest left position on the next output
line. This is known as a carriage return line feed, which can be abbreviated
as CR LF.

A CR LF can be suppresed by ending a PRINT statement with either
a comma or a semicolon. When a semicolon is used to end a PRINT
statement, the output from the next PRINT statement will be positioned
immediately after the data output by its predecessor. This is illustrated in
the following example:

10 PRINT “"DATA1";
20 PRINT "DATA2";
30 PRINT "DATA3";
40 END

RUN
DATA1DATA2DATAS
READY

When a PRINT statement ends with a comma, subsequent data will
be output at the next zone on the same display line. This is shown in the
following example:

10 PRINT "DATA1",

20 PRINT "DATA2",

30 PRINT "DATAS3",

40 END

RUN

DATA1 DATAZ2 DATA3

READY
Escape Sequences in Strings

Generally, the cursor movement characters may not be included
within a string. They may, however, be included if they are preceded by
the operator pressing the Escape key.

When the Escape key prefixes a cursor movement key, the combina-
tion is known as an escape sequence.

The following program will illustrate the use of an escape sequence.

BASIC Programming Concepts 95

100 PRINT "JOHN-N—JOHNSON"
200 END

RUN

JOHN JOHNSON

In our example, the symbol — denotes pressing ESC followed by
CTRL-+. The symbol — denotes pressing ESC followed by CTRL-*.

In our previous example, the cursor movement itself was accom-
plished by using an escape sequence. Each cursor movement is also
associated with a character as shown in table 4.1. By pressing the Escape
key twice before the cursor movement key sequence, this character will be
output. This is shown in the following program.

100 PRINT"EgtEgtEgy”
200 END
RUN
1t
In this example, & represents pressing the Escape key twice, and t
represents pressing Escape Ctrl--. The escape sequences are given below.

Table 4.1. Escape Sequences

ASClI Echoed

Keyboard Entry Code | Character | String Character
ESC/ESC 27 Eﬂ Escape Code
ESC/CTRL-- 28 €3] Cursor Up
ESC/CTRL-= 29 £ 3] Cursor Down
ESC/CTRL-* 30 = Cursor Right
ESC/CTRL-+ 31 [« Cursor Left
ESC/CTRL-< 125 3 Clear Screen
ESC/SHIFT- < 125 3] Clear Screen
ESC/BACK S 126] Cursor left, replace with
blank space
ESC/TAB 127 B Cursor right to next
tab stop
ESC/SHIFT-BACK S | 156 1] Delete Line
ESC/SHIFT-> 157 a Insert Line
ESC/CTRL-TAB 158 | Clear Tab Stop
ESC/SHIFT-TAB 159 [~] Set Tab Stop
ESC/CTRL-2 253 Sound Built-in Speaker
ESC/CTRL-BACK S | 254 [«] Delete Character
ESC/CTRL-> 255 [>] Insert Character

96 Atar XE Users Handbook

Graphics Characters in Strings

The Atari has 29 graphic characters. These are output by using the
Control key in combination with another key. Table 4.2 contains a list of
the graphics characters.

Table 4.2. Atari graphics characters

Decimal ASCIl Decimal ASCIl
Code Character | Keystrokes Code Character | Keystrokes

0 CTRL-, 15 CTRL-O
1 [B |cmrea 16 [& | crep
2 [|cres 17 [d | cria
3 H] |[cmwric 18 [=] | cmrir
4 B] |cmweb 19 [#] | cmrus
5 Bl |cmree 2 [@ | cwer
6 CTRL-F 21 [| cTRLU
7 CTRL-G 2] | crev
8 CTRL-H 23 [w] | crrRiw
9 [(d | crreq 24 [®] | crrix
10 CTRL-| 2 W] | crey
1 CTRL-K 2% ™ | crrez
12 "l | cwe % CTRL-.
13 M | crim 123 [#] | ctres
14 [=] | cTRUN

The graphics characters can be included in a string with a PRINT
statement to output graphics to the screen. For example, the following
program,

BASIC Programming Concepts 97

100 DIM A$(20)

200 A$="1--¢@ --1"*

300 PRINT A$:PRINT A$:PRINT A$
400 END

would resultin a display similar to that shown in figure 4.1 when it is run.

4 N

1-- @ -1
1-- @ -1
1-- @ -1

_ /

Figure 4.1. Graphics example program output

Tab Function

Tabbing on the Atari is very similar to tabbing on a normal
typewriter. Tabs are preset along the entire length of a logical line. The
first tab position is the left margin (column 2), followed by columns 7, 15,
23, and every eighth column to the end of the logical line.

Tabs work much like commas do when they are used as formatting
characters in PRINT statements. However, tabs and commas function
completely separately. The column positions set up by commas have no
effect on the tab positions, and vice versa.

* ¥ --is generated by pressing Ctrl-.

98 Atari XE User's Handbook

In the immediate mode, the tab key is used to move the cursor to the
nexttab position. When the tab key is pressed, the cursor will move to the
next tab position without any of the characters it passes over being
erased. If the tab key is pressed with the cursor at the last stop, the cursor
will move to the start of the next logical line.

In the program mode, the cursor is tabbed by using the ASCII code
fortab, 127. This can either be accomplished by using the CHR$ function
or by using ESC/TAB within a string.

In addition to the pre-defined tab stops already mentioned, more tab
stops can be set in any column desired. In the immediate mode, a tab
stop can be set by moving to the desired column and pressing the
SHIFT-TAB keys.

Tab stops can also be set with a PRINT statement. The PRINT
statement must display a string which causes the cursor to move to the
desired position. The tab set character, CHR$(159) or ESC/SHIFT-
TAB, must then occur in the string. For example, in the following
statement,

100 PRINT "JOHN"; CHR$(159)

a tab stop is set in the fifth column.

A tab stop can be cleared in the immediate mode by moving the
cursor to the position desired then pressing CTRL-TAB. In the program
mode, a tab stop can be cleared by moving to the desired column and
displaying ASCII 158. This code can be displayed either with the CHRS
function or with ESC/CTRL-TAB.

One final point to keep in mind about tab stops is whenever a
characteris output in the space immediately preceding a tab stop, that tab
stop no longer has any effect.

Moving the Cursor with Escape Sequences

As mentioned earlier in this chapter, the cursor can be moved by
using the escape sequences for cursor control key sequences within a
PRINT statement string. For example, in the following statement,

100 PRINT "—— JOHN JOHNSON"

BASIC Programming Concepts 99

the symbol — represents pressing the following key sequence:
ESC/CTRL-*

This key sequence causes the cursor to move one position to the right
each time it is pressed.

Cursor control escape sequences can also be include in a PRINT
statement string by using the ASCII code for that sequence with the
CHRS function. For example, in the following program,

100 DIM A$(10)
200 A$ = CHR$(29)
300 PRINT A$;:PRINT AS$;:PRINT A$;

the string variable A$ is set equal to the cursor down character set. In line
300, the three PRINT statements cause the cursor to be moved down 3
lines.

These cursor control sequences do not erase any of the characters
that they pass over.

Home Cursor

The home position can be defined as the upper left-hand corner of
the video display. The home cursor control sequence moves the cursor to
this position and erases all existing data on the screen as well.

Home cursor is frequently used to position the cursor and erase the
screen in Atari BASIC. Home cursor can either be accomplished by using
the ASCII code for home cursor, 125, with the CHRS function, or by
using either of the following escape sequences:

ESC/CTRL-<
ESC/SHIFT-<

with the PRINT statements.

POSITION Statements

The POSITION statement can be used to place the cursor at any
location on the screen. The POSITION statement is used with the follow-
ing configuration,

100 Atari XE User's Handbook

POSITION column, row

where column is the number of the column to be moved to, and row is the
number of the row to be moved to.

In actuality, the POSITION statement does not cause the cursor to
be moved. POSITION merely changes the values in the Atari’s memory
where the cursor location is stored. When data is subsequently displayed
on the screen, that data will be displayed at these new display coordinates.

The display row number is stored in memory address 84, and the
column number is displayed in address 85. The contents of these locations
can be examined with the PEEK function. For example, the following
statements:

PEEK (84)
PEEK (85)

will return the row and column numbers respectively.
Remember, rows are numbers from 0 to 23, and columns are num-
bered from 0 to 39.

Changing the Display Screen Margins

The standard left margin on the display screen is column 2. The
standard right margin is column 39. The Atari uses memory address 82
to store the column number of the left margin, and location 83 to store the
column number of the right margin.

The POKE statement can be used to change either left or right
margins. The following statments would reset the left margin to column 5,
and the right margin to column 30.

POKE 82, 5
POKE 83, 30

Screen Input Programming

Input programming is a vital part of BASIC programming. Nearly
every BASIC program requires some form of operator input. In the
following few sections, we will discuss programming practices that are
designed to make operator input efficient and as error-free as possible.

BASIC Programming Concepts 101

INPUT

When an INPUT statement is executed, the computer will display a
question mark and wait for the operator to enter a response. That entry
will be assigned to the variable indicated. The entry must be ended by
pressing the Enter key. Program execution will then resume.

The values of several variables can be input with a single INPUT
statement. These variables may either be numeric or string as shown in
the following example:

100 DIM A$ (255),B$ (255)
200 INPUT AS$, B$,C,D

When the preceding INPUT statement is executed, the INPUT
prompt (?) will be displayed. The operator should then input the data
items for the variables AS$, B$, C, and D. Fach string input must be
separated by pressing RETURN. The numeric inputs may be separated
by either a comma or by pressing RETURN. The RETURN key should
be pressed after all input entries have been made. An example of a valid
entry for the preceding INPUT statement is given below:

JOHN
SMITH *
281,347 *

These entries will be assigned to the variables as follows:

A$ = "JOHN"
B$ = "SMITH"
C =281
D = 347

A potential problem arises when using numeric variables within an
INPUT statement. If a string constant is input for a numeric variable, the
following error would be displayed:

ERROR — 8 AT LINE 200

* denotes pressing the RETURN key.

102 Atari XE User's Handbook

and the computer will cease execution of the program.

In many cases, it is a good idea to use only string variables in an
INPUT statement. Once a string has been entered through the INPUT
statement, it can be converted to its numeric equivalent by using the VAL
function. The VAL function will be explained in detail later in this
chapter.

Prompt Messages

One programming principle that should nearly always be followed in
input programming is to include a prompt message with the INPUT
statement. An example is given below.

100 PRINT "ENTER YOUR AGE";
200 INPUT AGE

In general, it is advisable to keep prompt messages as brief as
possible — as long as the message is clear to the user. Avoid prompt
messages which are overly wordy.

When long prompt messages are being used, it is a good practice to
place the prompt message on one line, and the input response on the next
line. For example, the following program lines:

100 PRINT "ENTER OPERATION CODE (1 = ADD; 2 = DEL)”
200 INPUT X

would result in the following display:

ENTER OPERATION CODE (1= ADD; 2 = DEL) \
?

N\ y

BASIC Programming Concepts 103

Input Response Checks

A well-designed program should check the user’s response to an
INPUT statement to be certain that no obvious input errors have been
made. If such an error was made, the program should detect the error and
force the user to re-enter the data.

Examples of input errors that can occur are numeric entries that are
outside of the allowed ranges, string entries that are longer than allowed
for by the INPUT statement’s variables, and an input response other than
that prompted for.

The very nature of the INPUT statement prevents certain errors
from occuring as these are detected by the BASIC interpreter. For exam-
ple, if a string entry is made when a numeric variable is specified with the
INPUT statement, an error will occur.

However, many INPUT entry errors will not be detected by the
BASIC interpreter. Serious errors can occur when the wrong data is
entered in response to an INPUT statement. It is a good programming
practice to check the operator’s response to an INPUT statement. This
can either be accomplished with one or more IF-THEN statements, or
with ON-GOTO or ON-GOSUB statements. All of these statements will
be covered later in this chapter.

For example, in the following program, the operator’s input is
checked with two IF-THEN statements. If the response is not one of the
following:

Y,N,y,n
the program will branch back to line 1200 for a new entry.

1000 DIM A$(20)

1100 PRINT

1200 PRINT “Enter Your Response (Y/N)”
1300 INPUT A$

1400 A% = A$(1,1)

1500 IF A$ = "Y” OR A$ = “y” THEN 1800
1600 IF A$ = "N” OR A$ “n” THEN 9999
1700 GOTO 1300

1800 REM Subroutine For 'Yes' Response
1900 PRINT "YES”

9999 END

104 Atari XE User's Handbook

GET

The GET statement, like the INPUT statement, is used to enter data.
The difference between GET and INPUT is that GET will accept only one
character per entry. This is convenient when a single character response is
needed in a program.

The GET statement must be used in conjunction with the OPEN
statement. The OPEN statement must open a channel from the keyboard.
The following configuration is used to open a channel from the keyboard:

OPEN #filenumber,4,0,"K:"

The filenumber may be any integer from 0 to 7.
Once the channel from the keyboard is opened, the GET statement
may be used. The GET statement uses the following configuration:

GET #filenumber, numeric variable

The filenumber must be the same as that specified in the OPEN statement
used to open the keyboard. The ASCII code of the character that is
entered will be assigned to the numeric variable.

When a GET statement is encountered, the computer will wait for
one key to be pressed. When a key is pressed, the ASCII code of that
character will be assigned to the numeric variable and program execution
will continue. The following example shows the use of a GET statement.

100 OPEN #1,4,0,"K:"

200 PRINT "DO YOU WISH TO CONTINUE(Y/N)?"
300 GET #1,A

400 IF A=89 0ORA =121 THEN 700

500 IF A =78 OR A = 100 THEN 900

600 GOTO 300

700 PRINT "YOU PRESSED Y FOR YES"

800 END

900 PRINT "YOU PRESSED N FOR NO”

1000 END

Conditionals, Branching and Looping

Thus far in our discussion of ATARI BASIC, program statements
have been executed in sequential order. Several BASIC statements are

BASIC Programming Concepts 105

available that can be used to alter program control. These include:

IF-THEN ON-GOTO
GOTO ON-GOSUB
GOSuUB TRAP
FOR-NEXT

These statements will be discussed in the following sections.
CONDITIONALS

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF-THEN statement to take advantage
of the computer’s decision making ability. The IF-THEN statement takes
the following form:

IF expression THEN statement

The IF statement sets up a decision. If expresssion evaluates to true,
then statement will be executed. If expression evaluates to false, the
subsequent program statement will be executed. In the following exam-
ple, if AGE is greater than or equal to 21. "LEGAL” will be printed.

IF AGE > = 21 THEN PRINT “LEGAL"
BRANCHING STATEMENTS

Branching statements change the execution pattern of programs
from their usual line by line execution. A branching statement allows
program control to be altered to any line number desired. The most
commonly used branching statements in BASIC are GOTO and GOSUB.

GOTO takes the following format:

GOTO line number
The following program shows the effect of the GOTO statement.

10 PRINT "THIS IS LINE 10"
20 PRINT “THIS IS LINE 20"
30 GOTO 50

program continued on next page

106 Atari XE User's Handbook

40 PRINT "THIS IS LINE 40"
50 PRINT “THIS IS THE END"
60 END

RUN

THIS IS LINE 10

THIS IS LINE 20

THIS IS THE END

READY

In the preceding program, the GOTO statement in line 30 transferred
program control to line 50. The GOTO statement can be used to transfer
program control to any line within a program.

SUBROUTINES AND GOSUB

Many times you will find that the same set of program intructions are
used more than once in a program. Re-entering these instructions
throughout the program can be very time consuming. By using subrou-
tines, these additional entries will be unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as many times
as desired.

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for the GOSUB statement is as
follows:

GOSUB linenumber

The computer will begin execution of the subroutine beginning at the
linenumber indicated. Statements will continue to be executed in order,
until a RETURN statement is encountered. Upon execution of the
RETURN statement, the computer will branch out of the subroutine
back to the first line following the original GOSUB statement. This is
illustrated in the following example:

BASIC Programming Concepts 107

10 GOSUB 100

20 GOSUB 200

30 END

100 PRINT “subroutine #1"
110 RETURN

200 PRINT "“subroutine #2"
210 RETURN

RUN

subroutine #1

subroutine #2

READY

Subroutines can help the progammer organize his program more
efficiently. Subroutines also can make writing a program easier. By
dividing a lengthy program into a number of smaller subroutines, the
complexity of the program will be reduced. Individual subroutines are
smaller and therefore, more easily written. Subroutines are also more
easily debugged than a longer program.

CONDITIONAL STATEMENTS WITH BRANCHING

Branching statements are often used in conjunction with conditional
statements. In such a situation, the normal execution of the program will
be altered depending upon the outcome of the condition set upinanlIF or
an ON statement. This is shown in the following example:

100 DIM A$(10)

200 PRINT "ENTER THE AMOUNT";
300 INPUT A

400 IF A = 0 THEN 700

500 PRINT A

600 GOTO 200

700 PRINT "ARE YOU FINISHED";
800 INPUT A$

900 IF A$ <>"Y" THEN 200

1000 END

In our preceding example, if the value input for A has a zero value,
then the program will branch to line 700 where the operator will be asked
whether he has finished entering data. In line 900, the program will set up
a condition where if the input was anything other than the letter “Y”, the
program will branch to line 200. If the entry was equalto Y, the program

108 Atari XE User's Handbook

will end at line 1000.

Notein line 900 that a GOTO statement is not used to precede the line
number being branched to. When a line number is indicated following a
THEN statement, the computer assumes the presence of GOTO.

The ON-GOTO and ON-GOSUB statements are also combinations
of a conditional statement and a branching statement. The use of the
ON-GOTO statement is illustrated in the following program:

100 INPUT A

200 ON A GOTO 400,600
300 GOTO 999

400 PRINT “A =1"

500 GOTO 999

600 PRINT "A =2"

999 END

If the variable or expression following ON evaluates to 1, program
control will branch to the first line number specified after GOTO: if 2, to
the second, etc.

If the variable or expression evaluates to a number greater than the
number of line numbers following GOTO program control will branch to
the statement immediately following the ON-GOTO statement. This is
also the case if the variable or expression following ON evaluates to zero.
Negative values and values greater than 255 are not allowed for the
control expression.

The ON-GOSUB statement is very similar in nature to the ON-
GOTO statement. The following statement is an example of an ON-
GOSUB statement.

100 ON X GOSUB 1000,2000,3000

If the value of Xiis 1, the subroutine at line 1000 will be executed. If X
is 2, the subroutine at line 2000 will be executed. If X is 3, the subroutine
at line 3000 will be executed. If X evaluatesto 0 or to a number between 3
and 255, the statement immediately following the ON-GOSUB will be
executed. If X evaluates to a negative value or a’value greater than 255, an
error will occur.

If ON-GOSUB causes a branch to a subroutine, program control

BASIC Programming Concepts 109

will revert to the line immediately following the ON-GOSUB statement,
once the subroutine has been executed.

LOOPING STATEMENTS

Suppose that you needed to compute the square of the integers from
1 to 20. One way of doing this is by calculating the square for each
individual integer as shown below:

100 A=1A2
200 PRINT A
300 B=2A2
400 PRINT B
500 C=3A2
600 PRINT C

This method is very cumbersome. The problem could be solved
much more efficiently through the use of a FOR-NEXT loop as shown
below:

100 FORA =1TO 20
200 X = A2

300 PRINT X

400 NEXT A

500 END

The sequence of statements from line 100 to 400 is known as a loop.
When the computer encounters the FOR statement in line 100, the
variable A will be set to 1. X will then be calculated and displayed in lines
200 and 300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A will be incremented (to
2) and then compared to the value appearing after TO. Since the value of
A is less than that value, the loop will be executed again with the value of
A set at 2. The loop will continue to be executed until A attains a value
greater than 20. When this occurs, the statement following the NEXT
statement will be executed.

In our preceding example, A is known as an index variable.If the
optional keyword STEP is not included with the FOR statement, the
index variable will be increased by 1 every time the NEXT statement is

110 Atari XE User's Handbook

executed.

STEP can be included at the end of a FOR statement to change the
value by which the index variable is increased. The integer appearing after
STEP is the new increment. For example, if our preceding example were
changed as follows:

100 FOR A = TO 20 STEP 2
200 X = AA2

300 PRINT X

400 NEXT A

500 END

the index variable, A, would be increased by 2 every time the NEXT
statement was executed.

One loop can be placed inside another loop. The innermost loop is
known as a nested loop. The following program contains a nested loop:

100 DIM R(2,3)

200 DATA 10,20,30,40,50,60
300 FORK=1T0 2 =

400 FORJ=1TO 3= l
500 READ T inner loop outer loop
600 R(K,J) =T
700 NEXT J--
800 NEXT K-

Our preceding example is used to read data into the numeric array R.
Arrays, as well as the READ and DATA statements, will be discussed in
detail later in this chapter.

Be certain that any inner loop is ended prior to ending its outer loop.
Also, be certain that every NEXT statement has a matching FOR state-
ment. If the BASIC interpreter cannot match every NEXT statement with
a preceding FOR statement, an error will result.

ERROR HANDLING

In some situations, it is easier to correct problems as they occur in a
program, rather than avoid them. This technique is called error handling.
BASIC allows the use of a TRAP statement to specify a line number
where a program should proceed if an error occurs. This feature allows a

BASIC Programming Concepts 111

portion of the program to be set aside as an error handling routine. Error
handling routines are commonly used to correct small problems that
occur infrequently in a program.

The following program demonstrates the technique used to branch a
program in event of an error:

10 TRAP 100

20 PRINT "INPUT X";

30 INPUT X

40 Y=X"0.5

50 PRINT "The square root of” X,"is";Y

60 END

100 Y = (-X)™.5

110 PRINT “The square root of”";X":is";Y:"i"
120 END

The preceding example program contains a TRAP statement at line
10. This statement indicates that the program control will branch to line
100 in the event of an error. A TRAP statement must be executed in a
program before an error actually occurs.

The program calculates the square root of a value input for the
variable X. However, BASIC does not allow the square root of negative
numbers. These values can only be defined in the context of complex
numbers, where the symbol ”i” is used to represent the square root of -1.
Asaresult, the square root of -4 could be represented by the value 2i since
the following expression is true:

NENC NV B

It is not necessary to understand the use of “complex” numbers to
comprehend the example. The main concept of the program is:

The statement at line 40 would normalily have caused an
error if a negative value had been input for the variable X.
However, in this case, the TRAP statement causes the
program to branch to line 100 whenever an error occurs.

Lines 100 and 110 perform an alternate set of operations whenevera
negative value is input for X. Some typical applications of the sample
program would appear as follows:

112 Atari XE User's Handbook

RUN

INPUT X:4 <= user's response
The square root of 4 is 2

READY

RUN

INPUT X:-16 - user’s response
The square root of -16 is 4i

READY

There are several memory locations that are used to store informa-
tion regarding the error which has occured. Memory location 195 stores
the error code of the previous error. Also, memory locations 186 and 187
can be used to determine the line number where the error occured. The
following example shows how these memory locations can be used in a
program.

100 TRAP 700

200 INPUT A

300 IF A=0THEN 999

400 PRINT A

500 GOTO 200

700 PRINT PEEK(195)

800 PRINT 256*PEEK(187)+PEEK(186)
RUN

?2JOHN - user's response
8

200

READY

In the preceding example, the TRAP statement in line 100 will cause
the program to branch to line 700 if an error is encountered. In line 700
the error code is displayed. (Address 195 is used to store the error code.)
In line 800, the line number where the error occured is displayed. The
following expression:

256*PEEK (187)+PEEK(186)

returns the line number where the error occurred.

In our example, the data input in response to the INPUT statement
in line 200 was a string. Since a numeric variable was specified in line 200,
error code 8 was generated. This was displayed along with the line
number where the error occurred (200).

BASIC Programming Concepts 113

Appendix A contains the BASIC error messages along with their
corresponding error numbers and descriptions of the errors.

Tables and Arrays

In chapter 3 we introduced the concept of variables. A variable is
designed to hold a single data item — either string or numeric. However,
some programs require that hundreds or even thousands of variable
names be used.

The processing of large quantities of data can be greatly facilitated
through the use of arrays and tables in a program.

Variable Storage

Atari BASIC keeps a list of the variable names used in a program in
its variable name table. A maximum of 128 variable names can be stored
in the variable name table. Therefore, an Atari BASIC program is effec-
tively limited to a maximum of 128 variables. These include numeric,
string, and array variables. An array variable name counts as only 1 name
in the variable name table, regardless of the number of elements within
that array.

Every time a new variable is entered in the immediate mode, that
name is added to the variable name table. In the program mode, variables
are added to the variable name table as they are encountered in the
program,

Variable names are stored in the variable name table until a NEW
command is issued. NEW causes the entire variable name table to be
cleared.

When a program is saved on cassette or disk, the variable name table
is saved along with the program. If the program is later loaded back into
memory with the LOAD or CLOAD statement, the variable name table
will also be read into memory and will take the place of the existing
variable name table.

SUBSCRIPTED VARIABLES

Obviously, the use of thousands of individual names could prove
extremely cumbersome. To overcome this problem, BASIC allows the

114 Atari XE User's Handbook

use of subscripted variables. Subscripted variables are identified with a
subscript, a number appearing within parentheses immediately after the
variable name. An example of a group of subscripted variables is given
below:

A(0),A(1).A(2),A(3),A(4)..A(10)

Note that each subscripted variable is a unique variable. In other
words. A(0) differs from A(1), A(2), A(3), etc...

Subscripted variables may be visualized as an array (or table). In our
previous example, the data contained in the array defined by A would
consists of a one-dimensional array with 11 elements.

A(10)

A(9)

A(8)

A(7)

A(6)

A(S)

A(4)

A(3)

A(2)

AQ1)

A(0)

BASIC Programming Concepts 115

Arrays can have up to two dimensions. Two-dimensional arrays are
also known as tables. A table containing 6 rows and 8 columns is depicted

below:

0

1

Columns
2 3 4 5 6 7

A(0,0)

A(0,1)

A(0,2) | A(0,3) | A(0,4) | A(0,5) | A(0,6) | A(0,7)

A(1,0)

A(1,1)

A(1,2) | A(1,3) | A(1,4) | A(1,5) | A(1,6) | A(1,7)

Rows A(2,0)

A(2,1)

A(2,2) | A(2,3) | A(2,4) | A(2,5) | A(2,6) | A(2,7)

A(3,0)

A(3,1)

A(3,2) | A(3,3) | A(3,4) | A(3,5) | A(3,6) | A(3,7)

A(4,0)

A(4,1)

A(4,2) | A(4,3) [A(4,4) | A(4,5) | A(4,6) | A(4,7)

A W N 2 O

A(5,0)

A(5,1)

A(5,2) | A(5,3) | A(5,4) | A(5.5) | A(5.6) | A(5,7)

Array variables can be assigned values and used with most opera-
tors. However, array variables cannot be used in a READ, INPUT or
GET statement. The following 2 examples illustrate the use of array

variables.

Example 1

10 DIM A(5)
20 A(0)=5

30 A(1) =6
40 A(2) =7
50 A(3) =8

60 A(4) =9

70 PRINT A(0)*A(1)
80 A(5) = A(2) + A(4)
90 PRINT A(5)

100 END

RUN

30

16

READY

116 Atari XE User's Handbook

Example 2
10 DIM A(7)
20 FORJ=0TO6
30 READ D
40 A(J)=D
50 NEXT J
60 FORJ=0TO®6
70 PRINT A(J)
80 NEXT J
90 DATA 10,15,8,14,14,9,14

DIMENSIONING AN ARRAY

Before an array variable can be used in a program, an area in
memory must be reserved to store its elements. This is known as dimen-
sioning the array and is accomplished with the DIM statement.

The DIM statement defines the maximum subscript value that can
be used for an array. For example, the following DIM statement:

DIM A(20)

would define a one-dimensional array consisting of twenty-one elements
ranging from A(0) to A(20) inclusive.
Two dimensional arrays are dimensioned as follows:

DIM A(4,7)

The preceding DIM statement would dimension an array consisting of
five rows with eight columns each.

Generally, it is good programming practice to group all DIM state-
ments at the beginning of the program. This prevents an array variable
from inadvertently being referenced before it has been dimensioned.
Referencing an array variable before it has been dimensioned will result
in an error.

When an array is no longer needed in a program, the DIM statement
can be reversed with a CLR statement. This will free the memory area
previously reserved for the array. This is illustrated in the following
program:

BASIC Programming Concepts 117

10 PRINT FRE(0)
20 DIM A(25,25)
30 PRINT FRE(0)
40 CLR

50 PRINT FRE(0)
60 END

RUN

13242

9186

13242

READY

In line 10, the number of available bytes in memory is displayed.
FREisa function which displays the available free bytes in memory. FRE
is explained in more detail, later in this chapter.

In line 20, the DIM statement reserves an area in memory for a table
consisting of 676 elements. From line 30, it is evident that the number of
free bytes has decreased substantially. This is due to the fact that an area
of memory has been reserved for the elements in table A.

In line 40, the CLR statement reverses the DIM statement and frees
the memory previously required for the elements in table A. The CLR
statement is also a memory management command.

DATA & READ STATEMENTS

Earlier, we discussed how data could be assigned to a variable witha
LET statement as well as how data could be input directly from the
keyboard and assigned to a variable with an INPUT statement. However,
none of these statements are practical for assigning data values to the
individual variables in a large array or table. DATA and READ state-
ments are much more practical for assigning values to variables in an
array.

A typical DATA statement is shown below:

100 DATA WILLIAMS,CLEVELAND,OHI0,44109

Notice that this DATA statement contains four data items, three of
which are string, and one of which is numeric. Notice also that the string
data items need not be enclosed in quotation marks. A data item is
determined as string or numeric depending on the variable type in the

118 Atari XE User's Handbook

READ statement.

DATA statements are used in conjunction with READ statements to
assign data values to variables. An example ofa READ statement is given
below:

200 READ NAMES$,CITY$,STATES,ZIP

When a READ statement is executed, the computer will first search
for a DATA statement. When a DATA statement is found, the values in
the DATA statement will be assigned one-by-one to the variables in the
READ statement.

If the first DATA statement encountered does not have enough data
items to be assigned to all the variables in the READ statement, the next
DATA statement will continue to be assigned to the variables in the
READ statement until all of the variables in the READ statement have
been assigned a value.

The computer keeps track of the next DATA statement data item to
be used via an internal pointer. When any future READ statements are
executed, this pointer will determine which is the next data item to be read
into the READ variable.

BASIC includes a statement known as RESTORE, which when
executed, sets the DATA item pointer back to the beginning of the DATA
statement list. The use of the DATA item pointer and the effect of
RESTORE on it is depicted in figure 4.2,

The RESTORE statement may be used with a line number following
the reserved word. Whena RESTORE is used in this manner, the DATA
item pointer is set to the first item of the DATA statement in that line. For
example, if line 400 in our example had the following.

400 RESTORE 110

the READ statement in line 500 would have assigned the value 27 to the
variable X.

When not properly used, DATA and READ statements can be the
source of program errors. One potential error source occurs when the

BASIC Programming Concepts 119

é)

100 DATA 537

110 DATA 27, WILSON,276-46-4142
200 READ A,B

300 READ C$,D$

DATA Item List

537 27 WILSON 276-46-4142

~ N A
Data Statement Data Statement Data Statement
Pointer Pointer Pointer
(Before Line 200) (After Line 200) (After Line 300)

400 RESTORE
500 READ X,Y,Z$

DATA Item List

537 27 WILSON 276-46-4142

N N
Data Statement Data Statement
Pointer Pointer
(After Line 400) (After Line 500)

. y,

Figure 4.2. DATA item pointer

program attempts to READ more data items than were given in the
DATA statements. Such an error would occur in the following program:

100 DATA 7,8,11,13,15
200 FORK=1TO 7
300 READ A

400 PRINT A

500 NEXT K

600 END

120 Atari XE User's Handbook

In the preceding example, the program would attempt to read 7 data
items. However, since the DATA statement only contained 5 data items,
the following error message would appear:

ERROR— 6 AT LINE 300

Another potential source of error when executing DATA and READ
statements are situations where the program attempts to read a string
data item into a numeric variable. If such an error is encountered, the
following message will be displayed:

ERROR— 8 AT LINE 300

DATA and READ statements are often used in conjunction with
FOR-NEXT loops to read large amounts of data into arrays. An example
of this use of FOR-NEXT is given below:

10 DIM YEAR(7),INCOME(7)
20 PRINT “YEAR”,,"INCOME"
30 FORK=0TO 6

40 READ Y,

50 YEAR(K) = Y

60 INCOME(K) = |

70 NEXT K

80 FORK=0TO 6

90 PRINT YEAR(K),,INCOME(K)
100 NEXT K

110 DATA 1978,20876

120 DATA 1979,21456

130 DATA 1980,21987

140 DATA 1981,22396

150 DATA 1982,22987

160 DATA 1983,24098

170 DATA 1984,25234

RUN

YEAR INCOME
1978 20876
1979 21456
1980 21987
1981 22396
1982 22987
1983 24098

1984 25234

BASIC Programming Concepts 121

An example of the use of the READ and DATA statements in
conjunction witha FOR-NEXT loop for the purpose of reading data into
a two-dimensional array is given in the following program.

10 DIM A(3,4)

20 DATA 10,20,30,40
30 DATA 50,60,70,80
40 DATA 90,10,20,30
50 FORJ=0TO 2

60 FORK=0TO 3
70 READ D

80 A(J,K) =D

90 NEXT K

100 NEXT J

110 FORJ=0TO 2
120 FORK=0TO 3
130 PRINT A(J,K)
140 NEXT K

150 PRINT

160 NEXT J

170 END

RUN

10 20 30 40
50 60 70 80
90 10 20 30
READY

The preceding program would read data items into table A()as
shown in the following illustration.

Columns
0] 1 2 3
o] 10 20 30 40
Rows 1] 50 60 70 80
2] 90 10 20 30

Functions and String Handling

In mathematics, a function is generally defined as a quantity whose
value will vary as a result of another quantity. In computing, functions
define operations that are performed on strings or numeric values.

122 Atari XE User's Handbook

In BASIC, a number of functions are already defined by reserved
words and are a part of the BASIC interpreter. These are known as
built-in functions (see table 4.3). Built-in functions cover a wide range of
standard math operations such as absolute value, square root, loga-
rithms, etc. Built-in functions are also available for working with strings,
as well as a variety of other operations. Both numeric and string functions
will be discussed in this section.

BUILT-IN MATHEMATICAL FUNCTIONS

The majority of BASIC functions are used in mathematical applica-
tions. We provide an overview of BASIC’s math functions in this section.
Each individual function will be described at the end of the chapter.

Table 4.3. BASIC built-in functions

ABS DEG PEEK STICK
ASC EXP PTRIG STRIG
ADR FRE RAD STR$
ATN INT RND USR
CHR$ LEN SGN VAL
CLOG LOG SIN

COSs PADDLE SQR

All of the BASIC mathematical functions operate in much the same
manner. Each function is defined by a reserved word (ex. SIN for sine,
COS for cosine, LOG for logarithm etc.).

A numeric constant, variable, or expression may appear in paren-
theses following the reserved word which identifies the function. The
function for that numeric value will then be calculated by the computer.
The use of several mathematical functions is shown in figure 4.3,

BASIC includes the following three trigonometric functions:

SIN(N) = sine of the angle N.
COS(N) = cosine of the angle N.
ATN(N) = arctangent of the angle N.

BASIC Programming Concepts 123

The angle N may be given in either radians or degrees. The two
commands, DEG and RAD, are used to specify whether the angle is going
to be in degrees or radians.

Executing the DEG command will cause any subsequent trigono-
metric functions to treat their arguments as degrees. Executing the RAD
command causes any subsequent trigonometric functions to treat their
arguments as radians.

When the system is powered up, or whena NEW or RUN command
is issued, the computer defaults to radians.

BASIC also contains functions for calculating natural logarithms
and exponentials. The exponential formula takes the following form:

A = EXP(B)

The preceding EXP function is calculated by computing the value of e
raised to the B power, e is known as the base of natural logarithms. The
value e in BASIC is 2.7182179.

The naturallogarithm of a number may be calculated with the LOG
function.

LOG(X) = natural logarithm of X

Logarithms with a base other than e may be calculated using the follow-
ing formula:

LOBy(X) = LOG(X)/LOG(b)

where b is the base of the logarithm.
BASIC includes the SQR function for determining the positive
square root of its argument.

r 100 PRINT SIN(0.47) R
200 PRINT COS(0.98)

300 PRINT ATN (0.38)

400 PRINT SQR(49)

500 PRINT INT(5.79)

600 PRINT INT(-5.79)

program continued on next page

124 Atari XE User's Handbook

700 PRINT ABS(-4.7)
800 PRINT SGN(2.7)
900 PRINT SGN(-2.7)
1000 END

RUN

0.452886286
0.557022556
0.363147009

7

5

-6

4.7

]

-1

READY

L _J

Figure 4.3. Mathematical functions

SQR(X) = positive square root of X

The square root of a number can also be calculated with the exponential
arithmetic operator. The following expression.

X ™ (1/2)

will calculate the square root of X. The arithmetic exponential operator
can also be used to calculate a root other than the square root (ex. cube
root) as shown below:

X ™ (1/3)

BASIC also includes several functions that can be used in working
with numeric values. These include INT, ABS, and SGN. The INT
function returns the integer with the greatest value which is less than or
equal to its argument. INT takes the following form:

INT(X)=highest integer whose value
is less than or equal to X

BASIC Programming Concepts 125

Figure 4.3 contains examples of the usage of the INT function.
The ABS function returns the absolute value of its argument. ABS
takes the following form:

ABS(X) =|X|

An example of the use of ABS appears in figure 4.3.
The SGN function returns the sign of its argument. An example of
the use of SGN appears in figure 4.3.

STRINGS & STRING HANDLING

As a programmer, you will encounter a number of situations where
you may need to work with string data. For example, you might want to
combine several strings, compare two strings, separate portions of a
string, or even convert string data to its numeric equivalent. BASIC
allows for all of these.

SUBSTRINGS

Atari BASIC allows the programmer to extract a portion of a string,
known as a substring. However, Atari BASIC accomplishes this extrac-
tion in a manner which is very different from other versions of BASIC,
which use MIDS$, RIGHTS, and LEFTS$ to accomplish this task.

Atari BASIC uses the following configuration to extract a substring:

NAMES$(first,[last])

Where NAMES$ is the name of the string from which the substring is
to be extracted, first is the position of the first character from NAMES$to
be included in the substring, and last is the position of the last character
from NAMES to be included in the substring.

For example, if X$ consisted of the following,

JOSEPH IZAK

the substring defined by X$(1,6) would consist of "JOSEPH”, and
X3$(8,11) would consist of “IZAK”. Notice that the blank space in X$ is
counted as one character position.

126 Atar XE Users Handbook

The first and last character position in a substring specification can
be specified with a variable or an expression as well as a constant. Also,
the last character position need not be specified. It if is not, the entire right
hand portion of the string will be returned beginning with the specified
first character.

Substrings can be used to replace characters in larger strings. In the
following program, a substring is used to change X$ from "TIM MIR-
ROLI” to ’/DON MIRROLY".

100 DIM X$(15)

200 X$ = "TIM MIRROLI"
300 PRINT X$

400 X$(1,3) = "DON"
500 PRINT X$

600 END

Line 100 in the previous program dimensions X$ to 15. Line 200 assigns
the string “TIM MIRROLI”to X$. Line 300 prints X$. Line 400 replaces
the characters 1 through 3 in X$ with “DON”. Line 500 prints the new X$.

STRING CONCATENATION

The process of joining together one or more strings is known as
concatenation. The LEN function is used in conjunction with substrings
in concatenation. The LEN function is used to return the length of its
string argument. LEN uses the following configuration.

LEN(string)

Atari BASIC uses the following configuration for string con-
catenation.

Variable1$(LEN(variable1$)+1)=variable2$

Variable1$ and variable2$ are both string variables. The contents of
variable2§ will be joined to the contents of variablel3. The entire string
will be assigned to variablel$.

The following program will illustrate string concatentation in Atari
BASIC.

BASIC Programming Concepts 127

100 DIM X$(10)

200 DIM Y$(10)

300 X$ = "JOHN"

400 Y$ = "NIN"

500 X$(LEN(X$)+1)=Y$
600 PRINT X$

700 END

RUN

JOHNNIN

The actual concatenation takes place in line 500. Here, Y$ is added
onto the end of X$ to form a new X$. Notice that 1 was added to the result
of LEN(XS). This causes Y$ to be added following the end of the original
X$.

If line 300 was revised as follows,

300 X$ = "JOHN "
the following could be output:
JOHN NIN

The addition of a blank space in X$ results in one additional blank
space being output.

STRING/NUMERIC DATA CONVERSION

Programmers often encounter situations where numeric data must
be converted into string data and vice versa. This is often the case where a
function is being used which will accept only string or numeric data as its
arguments.

The STRS and VAL functions are used to convert data to its string
equivalent andstrings to their numeric equivalent respectively. The ASC
function is used to convert a single character to its ASCII numeric
equivalent. If ASCis givena string, it will return the ASCII equivalent of
the first character in that string. The CHRS function converts an ASCII
numeric code to an equivalent text character,

Examples of the use of STRS, VAL, CHRS, and ASC are given in
figure 4.4 and figure 4.5.

128 Atari XE User's Handbook

100 DIM W$(15),X$(15)

200 W = 12345

300 W$ = STR$(W);REM W$ = "12345"
400 X =6789

500 X$ = STR$(X);REM X$ = "6789"
600 W$ = (LEN(W$)+1) = X$;REM W$ = 7123456789
700 W = VAL(WS);REM W = 123456789
800 Z = W/1000

900 PRINT Z

1000 END

123456.789

READY

Figure 4.4. Use of STRY and VAL

100 DIM A$(15),X$(15)
200 A$ = "GEORGE”
300 A = ASC(A$)
400 PRINT A

500 X = 90

600 X$ CHR$(90)
700 PRINT X$

800 END

RUN

71

z

Figure 4.5. Use of ASC and CHRS

BASIC Programming Concepts 129

Program Chaining

The final topic covered in this chapter is program chaining. A long
program may overrun the memory of the Atari. When this s the case, the
program can be separated into two or more self-sufficient parts. If a
portion of the program is needed that is not currently in memory, it can be
loaded and executed by the RUN command.

The RUN statement can be included as a program line in one
program in order to load and execute another program. For example,
when the following program is executed, line 500 will cause a second
program (PROGB.BAS) to be executed.

100 REM PROGA.BAS
200 A =9:B=10

300 C=A"B

400 PRINT C

500 RUN "D:PROGB.BAS"

When the new program is loaded in line 500, all variable values will
be cleared before PROGB.BAS is loaded. This is due to the fact that the
RUN statement, as used in line 500, executes a LOAD statement. The
LOAD statement in turn executes a NEW statement which erases any
existing programs in memory and clears all variables.

5

File Hondling

Introduction

In the preceding chapters, we did not discuss the concepts and
programming techniques related to storage of data on cassette tape or
diskette. In this chapter, these concepts will be discussed. The writing of
programs that make use of these devices will also be discussed.

Files, Records and Fields

Before learning specific concepts which relate to the cassette tape
unit and diskette drives, it is essential that the user understand the
concepts of files, records, and fields.

A file can be defined as a collection of related data. Files can be
distinguished as being either program files or data files. A program file
consists of a program which has been saved on diskette or cassette tape.

131

132 Atari XE User's Handbook

A data file consists of a collection of related information which has
been saved on a diskette or cassette tape. Generally, a data file is read
from storage by a program or written to storage by a program. Data files
are divided into smaller segments known as records and fields. A field isa
single piece of data. Fields are grouped together as a record. These
records, in turn, make up the file

A simple illustration may help you understand the concepts of a data
file, record, and field. Take an address book as an example of a data file.
This file would contain name, address, and telephone number data for the
individuals appearing in the address book. Each individual’s name,
address, and phone number would represent one record. For example, the
following data would make up one record:

Jay Gatsby
1 Shore Lane
West Egg, NY 10565
516-787-2122

Each individual data item within the record (i.e. name, street
address, city, state, zip code, telephone number) could be thought of as a
field.

A datafile is written or read as a series of constants. For example, our
address book example might be read as follows:

“"Jay Gatsby”,”1 Shore Lane","West Egg"”,”NY"”,10565,"516-787-2122"
"Nick Carraway"”,”7 Shore Lane”,”"West Egg”,”NY",10565,"516-787-2736"

When these data items are read or written, the first field will have
been defined as the name, the second as the street address, the third as a
city, the fourth as the state, the fifth as the zip code, and the sixth as the
telephone number.

Note that the fifth field is numeric, while the others contain string
data. Notice that the string data is enclosed in quotation marks. Finally,
note that each data item is separated by a comma. For the computer to be
able to distinguish where one data item ends and another begins, these
items must be separated with a character known as a delimiter. A delim-
iter might be a comma (as in our example), a blank space, a line return
character, or a form feed character.

File Handling 133

The advantages of using data files with programs is obvious. Data
files allow the user to save, alter, and redisplay data as is necessary. For
example, using our address book as an example, programs could be
written to do the following.

1. Enter changes in an individual’s record by reading
the file from storage until the desired record is
found, inputting the required changes, and rewriting
the file back into storage.

2. Displaying an individual's name, address, and tele-
phone information by reading the file from storage
until the desired record is found, outputting the field
data to the screen and rewriting the file back into
storage.

The use of a data file with a mass storage device is analogous to the
use of a file cabinet for storing information in an office.

FILE SPECIFICATIONS

Every file is identified with a file specification that consists of a
filename and a device name. The filename identifies which file to search
for, while the device name identifies where the file can be located.

C: ACCOUNT
D1: GAMES
D4: BOWLING.SCR

Because only the disk drive device can access more than one file at
any one time, a filename is only required when using the disk drive. A
filename is optional when using any other device, and, in this case, serves
only as a memory aid to the programmer.

A filename can include up to eight alphanumeric characters. In other
words, the only characters that can be used in a filename are the letters A
through Z, and the numbers 0 through9. A filename may also include an
optional three character extender. A filename extension consists of a
period and three alphanumeric characters which appear immediately
after the primary filename.

A filename can be entered with uppercase or lowercase letters.
The computer will interpret all lowercase entries as capitals. The

134 Atar XE User's Handbook

following filenames all refer to the same file:

Holyname.HS
HOLYNAME.hs
HOLYNAME.HS
holyname.hs

The file specification prefixes the filename with a device name. The
device name designates the storage device that is to hold the file. A device
name can consist of one or two characters followed by a colon. Table 5.1
lists the device names that are recognized by the Atari. Of course, any
required hardware must be included in the system for a device to operate
correctly.

Each of the devices in the table can accept files. Although the disk
drive and cassette unit will be used extensively in this chapter as both
input and output devices, any of the devices listed in Table 5.1 could easily
be substituted. A few of the devices can only be used for input or output.
For example, P: can only be used as an output file, while K: can only be
used as an input file.

Table 5.1. Input/output devices

Device

Name Reference Input Output
C: Cassette X X
D1:or D: First Disk Drive X X
D2: Second Disk Drive X X
D3: Third Disk Drive X X
D4: Fourth Disk Drive X X
E: Screen Editor X X
K: Keyboard X
P: Printer X
R1: or R: RS232 Port #1 X X
R2: RS232 Port #2 X X
R3: RS232 Port #3 X X
R4: RS232 Port #4 X X
S: Display X X

File Handling 135

File Access

File access refers to the process of reading data from a file or writing
data to it. In BASIC, data is organized in a file in either a sequential or a
random manner. The mode in which a file’s data is organized determines
how that data will be accessed. Random access does not mean that the file
is stored in a haphazard manner. Random access denotes that any part of
the file can be accessed directly. Sequential access denotes that the file’s
data must be read or written in a specific order.

SEQUENTIAL AND RANDOM FILES

Two types of data files are used in Atari BASIC, sequential data files
and random access data files. All of the aforementioned devices support
sequential files, while the disk drive also allows random files.

Each record of a sequential disk file is assigned exactly as much
storage space as it requires. There are no blank spaces between records in
a sequential file. In random data files, a constant space is assigned to
every record in the file. If the record does not occupy the entire space
assigned to it, the remaining space is left blank.

The concepts of sequential and random files are pictured in figure
5.1. Notice that the length of each record in the random file is constant at
100 bytes. The record length of a sequential file is variable.

Random File

SECTOR 1 SECTOR 2 SECTOR 3

paansy
LI gt

A N f

Record 1 Record 2 Record 3
100 Bytes 100 Bytes 100 Bytes

Figure 5.1 continued on next page

136 Atari XE User's Handbook

Sequential File

SECTOR 1 SECTOR 2 SECTOR 3

LIt
punna

LELLT
hanand

Py oty

Record 1 Record 2 Record 3 Record 4
100 Bytes 40 Bytes 90 Bytes 120 Bytes

Figure 5.1. Random and sequential data files

The important difference between random and sequential files lies in
how each file is accessed. Direct access of any record in a random file is
possible regardless of where that record is located in the file. By direct
access, we mean that any record in the file may be retrieved regardless of
its position, without having to search through the entire file to find it.
Withrandom files, BASIC knows the length of each record and can easily
calculate the location of any record in the file.

Records in a sequential file can only be retrieved by sequential
access. In sequential access, the record search begins with the first record
in the file and must continue until the desired record is found. In other
words, to find record 17 in a sequential file, BASIC would have to read
the preceding 16 records. BASIC has no way of determining the location
of record 17, other than reading the first 16 records.

Both random and sequential files have advantages and disadvan-
tages. Sequential files use less disk space than do random files. Each
record in a sequential file is assigned only the disk space that it needs.
Random files require every record to be the same length. Therefore, each
record must be assigned the amount of disk space required by the longest
record in the file. Generally, this results in wasted space.

Random files have an advantage over sequential files in that a record
from a random file may be read into memory, changed, and then written
back to the disk without affecting the rest of the file. Record editing,

File Handling 137

however, cannot be done in a sequential file because any change in a
single record’s length will adversely affect the entire file.

Opening a Sequential File

Before a file can be read from or written to, it must be opened. When
a file is opened, first the operating system is called upon to obtain
information from the disk regarding the file. This information is found in
the disk directory. Once this information has been obtained, BASIC will
initialize buffer areas in memory.

After a file has been opened, the operating system will read the first
sector of data. This data is passed to the memory buffer that was set up
when the file was opened. BASIC may then read this data from the buffer
area. After BASIC has used all the data in a sector, the operating system
automatically reads the next sector into the buffer area.

When BASIC writes data to an open file, the data is first written to
that file’s memory buffer. Data is not actually written to the diskette until
the buffer has become full. When the buffer is full, the operating system
places the contents of the buffer in the correct sector of the disk.

When a file is no longer in use, it should be closed. This is especially
important whenever data has been written to a file. When a file is closed,
any data remaining in the buffer will be written to diskette. This occurs
even if the memory buffer is not full. Then, the operating system adds the
necessary directory information for that file to the diskette.

The BASIC statement, OPEN, has the following configuration:

OPEN #filenumber, aux1, aux?2, “filespec”

filenumber is an integer that will refer to a file while it is open.
Although necessary in the OPEN statement, the filenumber is a matter of
convenience. Specifically, it would be much easier to refer to a file as #3
than by "D1:CHLAM.DAT” throughout a program. The OPEN state-
ment assigns an integer to the file specification so that file access is
simplified. Incidentally, the file specification is indicated by filespec.

Jilenumber must be in the range between 0 and 7. 0 is always reserved
for the editor, while 6 is used for graphics. 7 is used to save and load
programs, as well as with the LPRINT statement. As a result, only 1
through 5 are available for use with BASIC programs. 6 and 7 are

138 Atan XE User's Handbook

available only on a limited basis. 6 is available if no graphics are used. 7 is
available unless programs will be loaded or saved, or if an LPRINT
statement will be executed.

aux] and aux2 are called auxillary parameters. Generally, auxl
specifies the direction of data flow between the file and the computer.
auxl 1s also known as the mode. aux?2 is a parameter that is specific to the
device. For example, an 83 in aux2 causes the Atari 820 Printer to print
sideways.

Both the cassette unit and the disk drive may be opened for input
(auxl1 = 4) or output (aux] = 8). In the input mode data can only be read
from the file. Data cannot be written to it. If an attempt is made to opena
file for input that does not already exist, a "file not found” error will occur
(ERROR- 170).

The output mode always causes a new file to be created. If a file
already exists with the same filename as that specified in the OPEN
statement, existing data in that file will be erased. Data will be written to
that file from its beginning point.

Besides the standard input and output modes, the disk drive sup-
ports the following advanced modes: directory (auxli = 6), append (aux! =
9), and update (aux1=12).

The directory mode is similar to the input mode in that nothing may
be output through this mode. The difference between these two modes is
that the directory mode can only use the disk directory as the input file.
The following program lists all entries in the directory of drive #1 that
have the extention UTL:

10 DIM A$(20)
20 OPEN #3,6,0,"D:*.UTL"
30 INPUT #3,A$

40 PRINT A$

50 GOTO 30

RUN
COPY UTL 005
DUPDISK UTL 004
INIT UTL 006
CONVERT UTL 005
HELP UTL 002

039 FREE BLOCKS
ERROR- 136 AT LINE 30

File Handling 139

The ERROR-136 is an "End of file” error. It indicates that the
program did not know when to stop reading data from the directory.
Techniques for avoiding such errors will be discussed later in this chapter.

The file specification in the OPEN statement was “D:*.UTL”. The
asterisk "*” is a wildcard that may represent any string of characters.
When the directory file is used as an input file, any filenames matching the
file specification in the OPEN statement will be used. For example, if the
file specification had been changed from "D:*. UTL” to ”D:*.*”, the entire
directory would have been listed. The use of wild cards in filespec is
completely analogous to their usage with the DOS command option,
Files. Please refer to chapter 7 for an explanation of wildcards.

The append mode is specified when data is to be added to the end of
an existing file. If the file to be opened for append already exists, new data
will be written to the end of that file. However, if that file does not exist, a
“file not found” error will occur (ERROR-170). No input may be done
through a file opened for append.

The update mode is a combination of the input and output modes.
The OPEN statement will set the file pointer to the beginning of the file.
Any read or write operation will then advance the file pointer. The file
pointer is a value stored in memory indicating the position of current data
access within the file. The file pointer may not be moved past the end of
the existing file. Therefore, although the contents of a file may be
updated, the length of the file may not be changed in this mode.

Like the append and input modes, if the file specified in the OPEN
statement does not yet exist, an ERROR-170 will occur.

The following are examples of the use of the OPEN statement:

OPEN#3,4,0,"K:"
OPEN#1,8,0,"C:"

The first example opens the keyboard as #3 for input. The second
example opens the cassette unit for output using long interrecord gaps. If
aux2 had equalled 255, short gaps would have been specified.

Although seven filenumbers are available, the total number of disk
files has a limit. The default limit with one drive is four simultaneously
opened files.

140 Atar XE Users Handbook

Itis good programming practice to close a file, once the program has
finished accessing it. The BASIC statement, CLOSE, is used with the
following configuration:

CLOSE #filenumber

After afile has been closed, its filenumber may be assigned to another file
using an appropriate OPEN statement.

Writing to a Sequential File

Once a sequential file has been opened, either of the following
statements can be used to output data.

PRINT#
PUT#

PRINTH# functions almost exactly as does PRINT. The difference lies
in the fact that PRINT# requires that a file number be specified. Data is
written to that file rather than to the display. An example of PRINT# is
given below:

10 OPEN #2,8,0,"D:FILE.DAT"
20 A =27.932

30 PRINT #2; A, "J. C.”

40 PRINT #2; "REBEL"

The following will be saved by the PRINT# statements in lines 30
and 40:

27.932 J.C.
REBEL - CR & LF characters

File Handling 141

This output can be verified by substituting ”S:” for "D:FILE.DAT”
in line 10. This change causes the output to appear on the screen.

The PUT# statement is used to send one byte of data to a particular
device. The following two statements are equivalent:

PUT #3, 65
PRINT #3; CHRS$ (65);

Notice that the equivalent PRINT# statement has a trailing semi-
colon to suppress the carriage return which is generated by an ordinary
PRINT# statement. PUT# is generally used as a shorthand for the equi-
valent PRINT# statement. It is most useful for single byte data transfers.
The following program outputs the characters that correspond to the
ASCII codes 0 through 100. The output device is the screen.

10 OPEN #3,8,0,"S:"”
20 FOR I=0 TO 100
30 PUT #3,1

40 NEXT I

Reading from a Sequential File

The following commands are used in Atari BASIC to input data
from a sequential file:

INPUT#
GET#

INPUT# functions with sequential files much like INPUT does with
the keyboard. INPUT# will read the data at the current position in the
sequential file and assign that data to the variable indicated as its argu-
ment. The data and variable must be of the same type. If they are not, an
error condition will result.

142 Atar XE Users Handbook

When INPUTH# is reading numeric data, any leading blanks will be
ignored. Asis the case withINPUT, CR/LF characters and commas may
be used as delimiters. Any non-numeric characters, excluding leading
spaces, will result in an error.

When INPUT# is reading string data, all characters up to the next
carriage return will be assigned to the string. This assumes that the string
variable has been dimensioned sufficiently large to accommodate the
data. If the string variable is not large enough, as much as will fit will be
placed in the variable. Commas, spaces and semi-colons will be treated as
data, not as delimiters.

100 DIM A$(20),B$(20)

110 OPEN #3,8,0,"D:DATA"
120 PRINT #3;"John”

130 PRINT #3;"Smith”

140 CLOSE #3

150 OPEN #3,4,0,”D:DATA"
160 INPUT #3;A$

170 INPUT #3;B%

180 PRINT A$,B$

In the preceding example, the data was first written to the disk file,
then retrieved using two INPUT# statements. Lines 160 and 170 could
have been combined into the following line:

160 INPUT #3;A$,B%

The GET# statement is used to retrieve one byte of data from a
device. GETH# is not limited by the carriage return delimiter because it
always fetches one byte, regardless of that byte’s value.

The following program will output the data contained in "D:DATA”
to the screen. The infinite loop in lines 120-140 will continually reexecute
until the "End of file” is reached. Here, an error will occur. The technique
for avoiding this error is discussed in the next section.

100 OPEN #1,4,0,"D:DATA"
110 OPEN #2,8,0,”S:"

120 GET #1.X

130 PUT #2,X

140 GOTO 120

File Handling 143

AVOIDING EOF ERRORS

Atari BASIC does not contain an explicit EOF function — one that
indicates whether the end of file has been reached. Therefore, this error
must be side-stepped using the TRAP statement. If the last example is
edited as follows, the error will be avoided:

90 TRAP 150

100 OPEN #1,4,0,”"D:DATA"

110 OPEN #2,8,0,”S:"”

120 GET #1,X

130 PUT #2,X

140 GOTO 120

150 REM ***** ERROR ROUTINE *****
160 ERR=PEEK(195)

170 IF ERR=136 THEN END

180 PRINT "ERROR—";ERR

The TRAP statement at line 90 branches program control to the
subroutine at line 150 in the event of an error. However, TRAP does not
discriminate between errors — any error will cause the execution of the
subroutine. The routine must verify that the error was indeed caused by
the "End of file” condition.

Recall that PEEK(195) returns the error number. This number is
compared to the error code for the EOF (136). If the error was an EOF
error, the program ends normally. Otherwise, the error code is printed. To
demonstrate this, power-down the disk drive before executing the pro-
gram. "ERROR—138” (Device timeout) should appear on the screen.

Random Files

Generally, files are created sequentially in Atari BASIC. BASIC
does not include commands specifically designed to create random access
files. For example, many versions of BASIC include the command
FIELD. This command insures that each record of the file occupies the
same amount of disk space. Recall that records with equivalent lengths
are necessary for random access.

144 Atari XE User's Handbook

The creation of a random access file may be simulated by using the
PRINT# and GET# statements. The programmer is then left with the
responsibility to write records with equal lengths. Therefore, true random
access is rarely implemented in Atari BASIC unless frequent and/ or fast
file updates are required.

NOTE & POINT

Random access in Atari BASIC is usually limited to a pseudo-
random access accomplished by the commands NOTE and POINT. Files
used with these commands are generally written sequentially and read
randomly. To eliminate the delays of sequential access, the NOTE com-
mand is used to remember the location of each record in the file. Later,
the POINT command may be used to place the file pointer at the begin-
ning of any record. NOTE and POINT are used with the following
configurations:

NOTE #filenumber, variable1, variable2
POINT #filenumber, variablel, variable2

The significance of variablel and variable2 are the same for both
version 2.0S and 2.5 DOS. Variablel indicates the absolute sector number
(1-719), while variable2 indicates the character number within the sector
(0-125). Notice that care must be taken when using POINT. The file
pointer could easily be moved to a place on the disk that does not contain
the correct file. The specified sector is not verified as part of the file untila
read or write operation is performed.

Here, one of the following errors may occur:

ERROR-170 attempted READ outside file
ERROR-171 attempted WRITE outside file

Neither NOTE nor POINT will operate correctly with version 1.0 of
the disk operating system. Therefore, random access may not be accomp-
lished using DOS 1.0.

File Handling 145

EXTENDED INPUT AND OUTPUT COMMANDS

Atari BASIC includes the extended input-output command — XIO.
The XIO command may be used in a plethora of applications; many of
these are related to disk access. XIO is used with the following
configuration:

X0 command, #filenumber, aux1, aux2, aux3

command is an integer that selects the desired 1/ O operation. Table
5-2 lists the operations discussed in this section. Chapter 8, “BASIC
Reference Guide”, lists the XIO commands in their entirety.

filenumber must be the same as the one used when the file was
opened. aux! specifies the direction of data flow — input (auxl = 4) or
output (auxl = 8). aux2 is not used and should be set to 0.

Table 5.2. Extended input-output commands

c?mmand data direction operation
5 input read line
7 input read record
(255 characters)
9 output write line
11 output write record
(255 characters)

Generally, aux3 is the string variable through which input or output
is done. For output operations, aux3 may be a string constant. If qux3 isa
variable, it must be dimensioned before the XIO command is executed.

X105 and X109 are similar to INPUT# and PRINTH#, respectively.
The first example program in this section will illustrate the difference
between INPUT# and XIO 5, while the second program will differentiate
PRINT# and X10 9.

146 Atar XE User's Handbook

10 DIM A$(9), B$(9), C$(9)

20 POKE 201,11

100 OPEN #3,8,0,"D:DATA"
110 PRINT #3;"MERRY CHRISTMAS, EVERYONE!"
120 PRINT #3; "HO, HO, HO!”
130 CLOSE #3

200 OPEN #3,4,0,"D:DATA"
210 INPUT #3,A%

220 INPUT #3,B%

230 CLOSE #3

240 PRINT A$,B$

300 OPEN #3,4,0,"D:DATA"
310 XIO 5,#3,4,0,A%

320 CLOSE #3

330 PRINT A$,B$,C$

340 C$(9)="#"
350 PRINT A$,B$,C$
RUN

MERRY CHR HO, HO, H
MERRY CHR HSTMAS, E
MERRY CHR HSTMAS,E VERYONE!#

Both XIO 5 and INPUT# will read the input file to an “end of line”
character. INPUT# will then discard any data that cannot fit into the
specific string variable; however, X10 5 will continue to store this data in
successive memory locations. These locations are generally assigned to
another string variable. Therefore, a single XIO statement may be used to
load several string variables.

X105 does have a few quirks that must be understood to effectively
implement this command. Although the INPUT command does not store
the EOL character, XIO 5 does. The INPUT command will change the
length of the string variable to the number of characters input, where X10
5 will not adjust the length of the string. (Notice the final output line of the
example program.) The XIO 5 command can load more than one varia-
ble; however, the first memory location after the current length of the
specified variable will not be changed. (This fact is illustrated in the
second output line of the example program.)

File Handling 147

Incidentally, line 20 of the program merely adjusts the tabulation
width of the display. All successive commas in PRINT statements will
cause the output to begin in the next 11 character print zone. This was
done to facilitate a more pleasing display and has nothing to do with the
concept of the program.

The X10 9 command will write characters from a specified string.
The string will be output until an EOL is encountered. If the string does
not contain an EOL character, one will appended to the output. XIO 9 is
similar to PRINT# except that PRINT# will write the entire string
regardless of contents. The ASCII value of the EOL character is 155
decimal.

10 DIM A$(20)

20 A$="HAPPY EASTER BUNNY"
100 OPEN #3,8,0,"E."

110 PRINT A$

115 PRINT

120 A$(13,13)=CHR$(155)

130 PRINT #3;A%

135 PRINT

140 XIO 9,#3,8,0,A%

150 CLOSE #3

When the previous program is executed, the following will be
output:

HAPPY EASTER BUNNY

HAPPY EASTER
BUNNY

HAPPY EASTER

The X107 and XIO 11 commands are used to read and write records
of 255 characters, respectively. Because they transfer a fixed number of
bytes, these commands are generally not useful for random string storage.
However, the commands are useful for array storage because the contents
of the transferred bytes have no effect on the operation of the commands.

148 Atari XE User's Handbook

Like the X1O 5 commands, after X10 7 fills the specified string to its
current length, the next byte read isn’t stored in memory. When X10 11 is
executed, the specified string will be output to its current length. Then,
regardless of the next byte’s value, an EOL will be output. After the EOL,
the balance of the 255 characters will be written.

The following statements will store the array, ELAINE, as well as the
strings — MARKERS and DUMMYS.

10 OPEN #1,8,0,"D:ARRAY"

20 DIM MARKERS$(1),ELAINE(5,6),DUMMY$(2)
30 X10 11,#1,8,0,MARKERS$

40 CLOSE #1

MARKERS indicates where the array, ELAINE, can be found in
memory. DUMMYS$ occupies the rest of the 255 bytes stored by X10 11.
(An array requires 6 bytes per element — 6 bytes * 6 * 7 = 252) The
following statements will recover the array:

10 OPEN #1,4,0,"D:ARRAY"”

20 DIM MARKERS$(1), ELAINE(5,6),DUMMY$(2)
30 XIO 7,#1,4,0MARKERS

40 CLOSE #1

File Commands

Atari BASIC includes five commands designed to perform file han-
dling operations while the BASIC interpreter is active. These include
SAVE, LOAD, RUN, LIST, and ENTER. The extended input-output
command, XIO, is also available. XIO can be used to erase, rename,
protect or unprotect a file and to format a disk.

SAVE

SAVE generally is used to store a program on a cassette or disk file.
Before storing, a program is encoded into a tokenized form. This form
allows the program to consume less disk space and to load more quickly.
SAVE is used with the following configuration:

SAVE “filespec”

File Handiing 149

filespec is composed of a device name and a filename. The device
name specifies where to save the program, while the filename specifies
what to call the program.

SAVE "D2:GLADYS"

The previous example would save the program in RAM in a file
named "GLADYS” on disk drive #2.

LOAD

The LOAD command is generally used to load a program file into
memory from cassette or diskette. LOAD recognizes only the tokenized
format used by the SAVE command.

LOAD "filespec”

LOAD erases any program lines and variables in memory before the
specified program is loaded.

RUN

The RUN command causes the computer to both load and execute
the designated file specification. This file must have been stored in the
tokenized format.

RUN "filespec”

When used as a program line, RUN facilitates program concatena-
tion. A complex program may overrun the Atari’s memory limitations.
When this is the case, the program can be separated into two or more
self-sufficient parts. If a portion of the program is needed that is not
currently in memory, it can be loaded to continue the work that the
previous portion had accomplished.

The following program will display the disk directory. Any token-
ized BASIC program on the disk may be executed at the touch of a key.
This is a convenient program to have on every diskette containing BASIC
programs.

150 Atari XE User's Handbook

100 DIM FILE$(20),EXTENTION$(3)
110 OPEN #1,4,0,"K:"

120 OPEN #2,5,0,"E:"

130 OPEN #3,6,0,"D:*.*"

200 REM

210 REM READ DIRECTORY

220 REM

230 TRAP 300

240 CHAR=65

250 INPUT #3;FILE$

260 PRINT CHR$(CHARY);” ";FILE$
270 CHAR=CHAR+1

280 IF CHAR<86 THEN 250

300 REM

310 REM WHICH FILE?7??

320 REM

330 TRAP 600

340 GET #1,PROGNUM

350 POSITION 4,PROGNUM-65
360 INPUT #2;FILES$

400 REM

410 REM RUN PROGRAM

420 REM

430 FILE$(1,2)="D:"

440 EXTENTIONS$=FILE$(11,13)
450 POS=1

460 IF FILE$(POS,POS)<>" "AND POS<11 THEN POS=POS+1:GOTO 460
470 FILE$(POS)="."

480 FILE$(POS+1)=EXTENTIONS
490 POSITION 5,22

500 PRINT "LOADING........";FILE$;” "
510 RUN FILE$

600 REM

610 REM ERROR ROUTINE

620 REM

630 POSITION 5,22

640 PRINT "SELECT AGAIN ERROR—";PEEK(195);" "
650 GOTO 300

Lines 100-130 are the initialization procedures. Here, the keyboard
and screen editor will be opened for input. The screen editor will not be
opened in the conventional manner (auxl =4) because the editor has two
input modes. The standard mode requires that the RETURN key be
pressed to input data, while the force-read mode (aux! = 5) eliminates this

File Handling 151

requirement. In the forced-read mode, the computer will generate a
return regardless of operator interaction.

Lines 200-280 will list the disk directory. Each entry will be prefixed
with a letter to more easily indicate a selection. Lines 300-360 will wait for
anappropriate keypress, then will move the name of the selected file from
the screen to the variable FILES.

Lines 400-480 will manipulate FILES$ until its form matches that
required by a RUN "filespec” statement. Then, line 510 will execute the
desired file.

LIST

The LIST statement is used with the following configuration to
display or record programs found in the computer’s memory:

LIST "filespec”, linenumber1, linenumber2

The LIST statement can be used to save a program, or part of a
program, on disk or cassette. It operates in a manner similar to the SAVE
command. The major difference is that any program stored using LIST is
not placed into a tokenized form. Therefore, programs stored with LIST
may not be retrieved by either LOAD or RUN. ENTER is the only
BASIC statement that can recover a program saved by LIST.

Untokenized programs are stored in an ASCII format, and therefore
require more disk space than do equivalent tokenized programs. Also,
untokenized programs load more slowly. However, ASCII formatted
programs may be merged, whereas tokenized programs may not.

The optional parameters, linenumberl and linenumber? specify the
range of program lines to be saved by the command. If these are omitted,
the entire RAM-resident program will be stored.

filespec indicates the device and filename used to save the program.
If filespec is omitted, the screen editor is used by default.

152 Atari XE User's Handbook

ENTER

The ENTER statement loads the specified program file into memory
and merges it with the existing RAM-resident program lines.

ENTER "filespec”

For a program to be loaded with ENTER, it must have been saved in
ASCII format using the LIST command. If the file being loaded contains
a program line with the same line number as one of the program lines
already present in memory, the program line being loaded will replace
that line.

Suppose that two parts of a program have been developed separ-
ately. Now they must be combined, so that they may be loaded with a
single command. These parts are stored on diskette using the names
—”"PROGA” and "PROGB”, respectively. The following sequence of
commands will combine the two programs and store the result with the
filename "FINAL":

LOAD "D:PROGA"
LIST "D:PROGA"
LOAD "D:PROGB"
ENTER "D:PROGA"
SAVE "D:FINAL"

The first two lines will place "PROGA” into ASCII form. Line three
loads "PROGB”, erasing "PROGA” from memory. Line four merges the
two programs. Finally, line five saves the result.

ERASE (XIO 33)

“Erase” is used with the following configuration to delete the disk file
indicated by filespec:

X0 33,#7,0,0,"filespec”

File Handling 153

RENAME (X10 32)

“Rename” is used with the following configuration to change a
filename. The filename included in filespec will be changed to that speci-
fied in newname.

X10 32,#7,0,0,"filespec,newname”

As an example, the following command will affect the file named
“HAUPT” on drive #4. The filename “HAUPT” will be replaced with its
newname, “KLING”,

X10 32,#7,0,0,"D4:HAUPT,KLING"
PROTECT (XI10 35)

A protected file may not be erased or replaced by a file of the same
name. Also, nothing may be appended to a protected file. “Protect” uses
the following configuration to mark a directory entry as a permanent file.

XIO 35,#7,0,0,"filespec”
UNPROTECT (XIO 36)

“Unprotect” uses the following configuration to release a file from its
protected state:

XIO 36,#7,0,0,"filespec”

Suppose that a BASIC program is stored under the protected file-
name, “ANDY?”, and that the program has just been edited. Now, the
revised program must be stored again using the old filename. The follow-
ing sequence of commands will unprotect, re-save, and then re-protect the
program:

XIO 36,#7,0,0,"D:ANDY"
SAVE "D:ANDY"
X10 35,#7,0,0,"D:ANDY"

154 Atar XE User's Handbook

FORMAT (XIO 253 & XIO 254)

Atari manufactures two disk drives — the 810 and the 1050. The 810
can only format in single-density (90K); whereas, the 1050 can format in
both single-density and dual-density (130K). The appropriate format
command may be determined by the desired format density.

X10 253,#7,33,aux2,”Ddrivenum:”
X0 254,#7,0,0,"Ddrivenum:”

XIO 254 can only be used to format a single-density disk. X10 253
may be used for either single-density or dual-density formatting. drive-
num indicates which drive to format. Generally, this number ranges from
1 to 4.

When using XI10 253, aux2 determines the format density. aux2 = 87
indicates single-density. Likewise, aux2 = 127 specifies dual-density. If
aux? is assigned any other value, a non-standard disk format will result.

6

BASIC GRAPHICS & SOUND

Introduction

The Atari 130XE has 15 graphics modes encompassing 256 colors.
This gives the 130XE some of the best color graphics capabilities availa-
ble on a home computer.

Besides the many graphics modes available on the 130XE, the com-
puter has sophisticated BASIC supported, sound capabilities, including
sound effects and four channel music. These are generated by POKEY
—Atari’s custom input, output, and sound IC chip. The use of POKEY to
generate complex sounds will be discussed later in this chapter.

155

156 Atari XE User's Handbook

The Atari’s forte is obviously its graphics and sound. This chapter is
designed to familiarize the user with the graphics capabilities available in
Atari BASIC. But, to paraphrase Shakespeare, “There are more things in
heaven and earth than are dreamt of in your BASIC.” In general, Atari
BASIC is not equipped to support the graphics capability of the hard-
ware. Graphics features not well supported in BASIC will be discussed in
various appendices.

The Graphics Modes

Atari BASIC supports fifteen graphics modes, all of which are color
capable. However, the maximum number of concurrently displayable
colors is limited by the selected mode. Of the fifteen modes, eleven use
pixel graphics, while the other four use character graphics.

PIXELS

In pixel graphics, the display can be divided into a grid. Every point
on the screen can be uniquely indentified by its row and column numbers.
For example, the screen element at column 15 and row 9 can be specified
by the ordered pair (15,9). Notice that the column number is listed first.
Each specific screen element is called a pixel.

A pixel can be assigned a single color. Pictures formed using pixel
graphics are generated by assigning appropriate colors to a number of
pixels. Since there is no space between pixels, assigning the same color to
adjacent pixels will cause that portion of the screen to appear as a solid
color.

In low resolution graphics, the display can be divided into a grid of
24 rows and 40 columns. The farthest left column of the screen has been
defined as column 0. The farthest right column has been defined as
column 39. In a similar manner, the row numbers extend from 0 (top) to
23 (bottom). This arrangement may seem upside down to a person
familiar with a cartesian coordinate system.

The remainder of the pixel graphics modes can likewise be divided
into grids of 80 x 48, 160 x 96, 160 x 192, or 320 x 192. The selected
graphics mode determines the screen resolution. In the case of high
resolution graphics, the column numbers now extend from 0 (left) to 319
(right), while the rows are numbered from 0 (top) to 191 (bottom).

BASIC Graphics & Sound 157

row 0 —»

row 23—

r | 1

column 0 column 39

Figure 6.1. Low resolution pixels

CHARACTER GRAPHICS

Character graphics differ f=om pixel graphics in that objects drawn

with character graphics must be predefined. For example, enter the
following two lines:

GRAPHICS 2
PRINT#6," A"

The large capital A, drawn by the preceding lines, is a character.
Nowhere in these two lines is the computer told what an uppercase-A
looks like. None the less, an A was drawn. This character had been
predefined in ROM. Incidentally, the text mode is a type of character
graphics mode.

The programmer has the ability to define his own characters. For
example, a rocket ship or a man could be defined as a character. Changing
the definition of a character will immediately change the appearance of
the character on the screen.

POKE 756,226

158 Atar XE User's Handbook

The previous statement will change the character set causing the
displayed characters to change in appearance. A dynamic character set is
an effective way to animate screen images. Appendix F discusses the
creation of a custom character set.

SELECTING A GRAPHICS MODE

The GRAPHICS statement allows the programmer to select be-
tween the fifteen graphics modes and the text mode. GRAPHICS is used
with the following configuration:

GRAPHICS argument

argument indicates the display mode. GRAPHICS 0 selects the text
mode. GRAPHICS 1 through GRAPHICS 15 selects the graphics
modes. This is summarized in table 6.1. Only GRAPHICS 0 through
CRAPHICS 11 are supported on earlier Ataris.

The GRAPHICS statement generally clears the screen display upon
execution. Adding 32 to argument suppresses this feature.

Likewise, adding 16 to argument suppresses the text window. In
modes 1-8 and 12-15, four lines of text known as the text window are
located beneath the graphics display. To accommodate the text window,
the screen resolution must be reduced. For example, a high resolution
screen without a text window has a resolution of 320 x 192 pixels;
however, with a text window the resolution of the screen is reduced to 320
x 160 pixels. Table 6.1 lists both full-screen and split-screen resolutions.

GRAPHICS 3+16
GRAPHICS 7+32

Of the preceding statements, the first will configure the Atari to
display a full-screen of graphics mode 3. The screen will be cleared upon
its execution. The second will configure the Atarito a mode 7 screen with
a text window; however, the screen will not be cleared by this command.

BASIC Graphics & Sound 159

Table 6.1. Atari graphics modes

Resolution
Graphics Mode Full Split Number
Mode Type Screen Screen Of Colors
0 Text 40 x 24 - 1*
1 Character 20 x 24 20x 20 5
2 Character 20x 12 20x 10 5
3 Pixel 40 x 24 40 x 20 4
4 Pixel 80 x 48 80 x 40 2
5 Pixel 80 x 48 80 x 40 4
6 Pixel 160 x 96 160 x 80 2
7 Pixel 160 x 96 160 x 80 4
8 Pixel 320 x 192 320 x 160 1
9 Pixel 80 x 192 — 1
10 Pixel 80 x 192 — 9
11 Pixel 80 x 192 - 16***
12 Character 40 x 24 40 x 20 5
13 Character 40 x 12 40 x 10 5
14 Pixel 160 x 192 160 x 160 2
15 Pixel 160 x 192 160 x 160 4

Color Registers

The Atari 130XE can display 16 different hues in 16 luminances (or
shades) for a total of 256 displayable colors. Although the number of
concurrently displayable colors is generally limited to 2 or 4, these colors
may be any from the pallette of 256.

The screen color registers are memory locations within the Atari that
determine the foreground, background, and border colors. The color

*] Hue; 2 Luminances
** | Hue; 16 Luminances
*** 16 Hues; 1 Luminances

160 Atari XE User's Handbook

registers record both the hue and luminance with which to display the
color. The Atari’s operating system uses the following RAM addresses to
store the contents of the five registers:

Color Default
Address Register Color
708 0 ORANGE
709 1 GREEN
710 2 BLUE
711 3 RED
712 4 BLACK

The default color values for the five color registers can be changed
with the SETCOLOR command. SETCOLOR is used with the following
configuration:

SETCOLOR register, hue, luminance

The first argument of SETCOLOR indicates which register to set.
The second argument selects the hue itself and can range from 0 to 15.
Table 6.2 lists the available hues and their corresponding numbers. The
final argument of SETCOLOR determines the brightness of the color and
can also range from 0 (darkest) to 15 (brightest).

Generally, registers 0-3 each determine a foreground color, while
register 4 controls the background and border color. However, this is not
always the case — for example, register 2 controls the background in
mode 0 (text mode). Table 6.2 lists the color register control assignments.

As an example, the following statement, when executed in mode 0,
will set the background color of the screen to black (0 = grey, 0= darkest).

SETCOLOR 2,0,0

BASIC Graphics & Sound 161

Table 6.2. Hue vs. hue numbers

Hue

Hue number
Gray 0
Gold 1
Orange 2
Red 3
Pink 4
Violet 5
Blue-Violet 6
Blue 7
Blue 8
Light Blue 9
Turquoise 10
Green-Blue 11
Green 12
Yellow-Green 13
Orange‘-Green 14
Orange 15

Commands Used with Pixel Graphics
SELECTING A COLOR REGISTER

Before any graphics information can be placed on the screen, a color
register must be selected. This isaccomplished by the COLOR statement.
The correct syntax of this command is as follows:

COLOR argument

Whenever a graphics output command such as PLOT or DRAWTO
isissued, the color register selected by the most recent COLOR statement
is used. argument indirectly specifies the desired color register. Generally,
COLOR 0 selects the background color (color register 4). arguments
greater than zero select one of the foreground colors.

162 Atan XE User's Handbook

COLOR 0 —register 4
COLOR 1 ——register 0
COLOR 2 — register 1
COLOR 3 —>register 2

The previous assignments are valid in modes 3-7, 14 and 15. Modes
4, 6 and 14 are two color modes (see table 6.1); therefore, COLOR 2 and
COLOR 3 will not operate correctly in these modes. The GTIA modes
(9-11) use the COLOR command differently; this will be discussed in a
later section.

PLOTTING

After a color register has been selected, information can be plotted
to the screen. This is accomplished by the PLOT command. The correct
syntax of this command is as follows:

PLOT column, row

column and row specify the coordinate of the pixel to be illumi-
nated. The range of these arguments is determined by the current gra-
phics modes.

ADVANCED GRAPHICS COMMANDS

With the right combination of PLOT and elbow grease, any graphics
screen can be drawn. In other words, although PLOT gets the job done, it
does not accomplish it with a great deal of efficiency. BASIC includes
two commands that can simplify the creation of graphics displays —
DRAWTO and XIO 18.

DRAWTO is used to plot consecutive pixels. For example, the
following statements will connect the pixel (10,10) to pixel (150,70) with
an orange line.

GRAPHICS 14
COLOR 1

PLOT 10,10
DRAWTO 150,70

BASIC Graphics & Sound 163

DRAWTO connects the last pixel referenced to the coordinate
specified as DRAWTO’s argument. The last pixel referenced can be set
by either a PLOT statement or a previous DRAWTO statement. For
example, the following statements draw an orange triangle:

GRAPHICS 6
COLOR 1
PLOT 80,20
DRAWTO 60,40
DRAWTO 85,45
DRAWTO 80,20

The second advanced graphics command is X10 18, commonly
known as “fill”. This command will paint a bounded section of the screen
with a user determined color. The correct syntax of this command is as
follows:

X10 18, #6, 0, 0, “S:”

“18” signifies the fill operation. “#6” is the filenumber used with the
graphics modes. Finally, “S:” indicates the screen device. (All graphics
modes output through the screen device.)

Painting an area involves more than including the fill command in a
program. The boundaries of the area must first be defined. The first step
is to draw the right edge of the figure. This edge can be as complicated as
desired and drawn in any foreground color.

10 GRAPHICS 15

20 COLOR 2

30 PLOT 10,150

40 DRAWTO 150,140
50 DRAWTO 80,80
60 DRAWTO 150,20
70 DRAWTO 10,10

The preceding program will cause the following graphics output:

164 Atari XE User's Handbook

(-)

\& /

The next step is to execute a POSITION statement to the screen
coordinate of the lower left corner of the figure. In our case, this is
(10,150). The color with which to fill the area should then be poked into
location 765.

80 POSITION 10,150
90 POKE 765,1

Finally, the XIO 18 command should be executed. The enclosed
area will then be painted.

100 X1O 18, #6, 0, 0, “S:”
RUN

/

~

BASIC Graphics & Sound 165

GTIA GRAPHICS

The color selection schemes in modes 9,10, and 11 differ from that in
the other pixel graphics modes. These color selection schemes are out-
lined in the BASIC Reference chapter under the COLOR command.

Mode 9 is used extensively for creating 3-dimensional images. It can
display 16 luminances of any single hue. The hue is determined by the
value stored in color register #4. SETCOLOR 4 is the easiest way to set
this value. The luminance argument of SETCOLOR 4 should be set to 0
when using mode 9.

100 GRAPHICS ¢

110 SETCOLOR 4,0,0

120 FOR I=0 TO 191

130 COLOR INT(I/3)

140 PLOT 0,I:DRAWTO 79,1
130 NEXT 1

200 FOR X=0 TO &4 STEP 14
210 FOR Y=0 TO 144 STEP 48
220 GOSUB 300

230 NEXT Y

240 NEXT X

250 GOTO 250

300 FOR I=0 TO 15

310 COLOR 1

320 PLOT X+1,Y:DRAWTO X+1I,Y+1%3
330 NEXT 1

340 RETURN

Mode 11 allows a sixteen hue graphics display. Here, color register
#4 determines the luminance of the screen, while the COLOR statement
determines the hue. The hue argument of SETCOLOR 4 should be set to
0 for proper results.

Commands Used with Character Graphics

Modes 1 and 2 can be used to display enlarged text. The items
available for display can be chosen from one of three character sets. The
standard character set consists of the uppercase letters, digits, and punc-
tuation symbols. The alternate character set consists of the lowercase
letters and special graphics characters. The extended characters consist of
a number of international symbols. (ex. a)

166 Atar XE User's Handbook

The standard character set will be active whenever the Atari is
powered-on, when the RESET key is pressed, or when a GRAPHICS
statement is executed. Location 756 determines the active character set.

POKE 756,206 extended
POKE 756,224 standard
POKE 756,226 alternate

In mode 1, the characters are printed at the same height as those in
the text mode (0); however, they are printed at twice the width. In mode 2,
the characters are printed at twice the height and width of those in the
text mode.

When a GRAPHICS statement is issued, filenumber 6 is opened to
the screen device (S:). Therefore,a PRINT#6 or PUT#6 will cause data to
be output to the graphics display.

Five different default colors are available in graphics modes 1 and 2.
These correspond to color registers 0 through 4. Color register 4 controls
the background and border colors. The default color is hue = 0; lumi-
nance = 0. This sets the background and border colors to black. SETCO-
LOR 4,0,4 will set the border and background colors to grey in graphics
modes 1 and 2. SETCOLOR 4,2,4 will set the background and border
colors to orange.

The BASIC reference chapter gives the procedure for determining
which color register is used to draw a character in these modes. This
information is listed under the PRINT# and PUT# statements.

SOUND

In Atari BASIC, the SOUND statement is used to output music or
noise via the television set’s speaker. The SOUND statement is used with
the following configuration:

SOUND voice, pitch, distortion, volume

Together these four arguments determine the sound produced. voice
sets one of the four independent voices. These are numbered 0 to 3.

pitch sets the frequency of the sound produced by the SOUND
statement. pitch can range from 0 to 255. The highest pitch begins at 0
and the lowest at 255.

BASIC Graphics & Sound 167

The SOUND statement can produce either pure or distorted tones.
distortion can range from between O and 15. A distortion value of 10 or 14
will produce a pure tone. Any of the other even distortion values ©, 2, 4,
6, 8, and 12) will generate a different amount of noise into the tone
produced. The amount of this noise will depend upon the distortion and
pitch values specified.

The odd numbered distortion values (1,3,5,7,9, 11, 13, and 15)
cause the voice indicated in the SOUND statement to be silenced. If the
voice is on, an odd-numbered distortion value will result in its being shut
off,

The volume controls the loudness of the voice indicated in SOUND.
volume ranges from 0 (no sound) to 15 (highest volume).

An Atari BASIC statement with a volume of 0 will turn off the
sound. Sound can also be turned off by executingan END, RUN, NEW,
DOS, CSAVE, or CLOAD. If the RESET key is pressed, sound will be
turned off. However, if the BREAK key is pressed, sound will not be
turned off.

Writing A Game Program

In this section, the game, BARACADE, will be designed. The object
of the game is to avoid the obstacles, your trail, and your opponent’s trail.
The game will be written in BASIC so that it may easily be modified. If the
reader does not wish to follow the step by step designing of BARACADE,
he may page through the chapter. All program lines may easily be
distinguished from the rest of the text. To play BARACADE, merely
- enter every line belonging to the program.

The first step in designing BARACADE is to program the computer
to draw a trail. The following statements accomplish this:

100 DIM X(l),Y(l),DX(l),DY(l),SCORE(I)
130 X<0>=15:Y(0)=11

140 DX(0)>=1:DY(0)=0

170 GRAPHICS 19:REM no text window
230 S=STICK(I)

250 DX=(S=7)-(S=11)

260 DY=(S=13)-(S=14)

program continued on next Ppage

168 Atari XE User's Handbook

280 IF DX OR DY THEN DX(1)=DX:DY(I1)=DY
290 X(IX=X(1>+DX(I)

300 Y(I)=Y(I)>+DY(I)

330 COLOR I+1

340 PLOT X<(I1)>,Y(D>

380 GOTO 230

Line 130 sets the initial position at screen location (15,11). The DX
and DY in line 140 are the direction variables. Initially, the direction of
movement is set to the right (DX = 1; DY = 0).

(-1)

1

(0) (-1) = —> (+1)
0

DX
\
+1)

DYy

Lines 230 through 380 set up a loop that monitors joystick #1 and
then act accordingly. Since I = 0 everywhere in the program, the variable S
is assigned the value of STICK(0). The value returned corresponds to the
position of joystick #1. STICK(1) will later be used with joystick #2.

14
'y

16
11— > 7

BASIC Graphics & Sound 169

Lines 250-280 recalculate the direction variables based on the joy-
stick position. The numeric variables DX and DY receive the temporary
result of STICK. If either DX or DY is non zero, their values are stored in
the array variables DX(I) and DY(I). Therefore, the array variables are
only affected when the joystick is being manipulated.

The current position variables are recalculated in line 290 and 300,
while line 340 plots the new position. Executing the program is the best
way to understand how it operates.

The program has been written so as to simplify the addition of a
second player. Array variables were used so that the same loop can
control both players. By including the following three.lines in the pro-
gram, a second player can enjoy BARACADE:

130 X(1)>=25:Y(1)=11
160 DX(1)=-1:DY(1)=0
330 I= NOT 1

Line 150 and 160 set the initial position and direction of the second
player. Line 350 toggles between selecting player #1 (I=0) and player #2
(I=1).

Recall, from our description of BARACADE, that the purpose of
the game is for the player to avoid colliding with any obstacles. The
LOCATE statement will be used to check for collisions. If the following
lines are added to the program, collisions will be detected:

310 LOCATE X<¢I)>,Y(I)>,COLLISION
320 IF COLLISION THEN 440

The program has not yet been completed. When it is run, an error
will occur after every collision. This is because the computer has not yet
been instructed what to do upon collision. Let’s tell it by adding the
following lines to the program:

170 Atari XE User's Handbook

440
450
440
470
480
540
S50

Line 460 and 470 determine the winning player. At this point in the
program, | is equal to the number of the player who just collided with
something. Line 540 delays the computer until both players are ready for
another game. Pressing the button on the joystick indicates that a player
is ready.

A playing field can be added by using the following lines:

GRAPHICS 35

POKE 752,1

IF I<>1 THEN PRINT "GREEN";
IF I1<>0 THEN PRINT "ORANGE";
PRINT * WINS*"

IF STRIG(0) OR STRIG(1)> THEN 540
60TO 130

180 COLOR 3

190 PLOT 0,0

200 DRAWTO 39,0 :DRAWTO 39,23
210 DRAWTO 0,23:DRAWTO 0,0

To keep track of the score, add the following lines to the BARA-

CADE program:
110 PRINT "®RTO BEGIN PRESS JOYSTICK TRIGGER"
120 GOTO 430
220 BLOCKS=0
370 BLOCKS=BLOCKS+1
480 PRINT " WINS ";BLOCKS;" BLOCKS"
490 SCORE(1-1)=SCORE(1-1)+BLOCKS
500 PRINT ,,"ORANGE = * ;SCORE(0)
310 PRINT ,," GREEN = " ;SCORE(1)>
520 IF SCORE(0)>999 THEN 3560
930 IF SCORE(1)>999 THEN 540
540 GRAPHICS 18
970 IF I<>0 THEN PRINT #6&;"ORANGE";
980 IF I1<>1 THEN PRINT #4;"GREEN";
590 PRINT #6;" WINS®
400 POSITION 0,3

program continued on next page

BASIC Graphics & Sound 171

610 PRINT #6;"FINAL SCORE"

620 PRINT #4;SCORE(0),SCORE(1)
630 SCORE(0)>=0:SCORE(1)=0

640 GOTO 540

When the preceding lines are added to the BARACADE program, a
single BARACADE match will consist of a number of BARACADE
games. The first player to claim 1000 screen blocks will be declared the
winner. Lines 520 and 530 determine the point total needed for victory.

Arcade sound may be added to BARACADE by adding the follow-
ing lines. The sound of an explosion is simulated in line 390. The loop at
lines 400-420 cause the losing player to flash, as if exploding.

240 SOUND 0,0,0,0

320 IF COLLISION THEN 350
360 SOUND 0,I*50+10,10,8
390 SOUND 0,100,4,15

400 FOR J=0 TO 127

410 SETCOLOR 1,0,J

420 NEXT J

430 SOUND 0,0,0,0

The program as it stands has one minor bug. If a player tries to
change direction by 180°, he will lose. This is because, as far as the
computer is concerned, the player ran into himself. Although this does
not detract from game play, it can be annoying. When the following line is
added to the program, the bug will be corrected.

270 IF DX AND DX(I)> OR DY AND DY(I) THEN 290

The ideas in this section by no means exhaust the possibilities that
could be added to BARACADE. Other upgrades might include: keeping
track of matches won, adding a more complex playing field, or making
one player faster than the other. The only two limiting factors are execu-
tion speed and one’s imagination.

DOS Usage

Introduction

Atari DOS, or disk operating system, is a group of programs that
allows the user to manage information on diskette. The DOS programs
(commands) are provided on a diskette known as the master diskette. The
diskette should not be used in day to day operations — copies should be
used instead. Procedures for copying the master diskette will be detailed
in this chapter. DOS command usage will also be explained,

There are several versions of DOS that can be used with Atari home
computers. This chapter will focus specifically on versions 2.0S and 2.5
—the two most popular Atari disk operating systems. The label on the
master diskette should specify the version of DOS.

173

174 Atari XE User's Handbook

Disk Files

Both of the Atari disk operating systems store data in files. A fileisa
group of related information. For example, a file might consists of a list of
customers or perhaps might contain the text of a standard form letter. A
file could also contain a program to edit and print the form letters. The
advantage of grouping information in a file is that the file can then be
easily accessed by DOS.

A number of files can be stored on a single diskette. Both Atari DOS
2.0S and 2.5 allow up to 64 files per diskette. Every file stored on a specific
diskette must have a unique filename. A filename consists of a primary
filename and an optional filename extension. Examples of filenames are
given below. Note that the second example does not contain a filename
extension.

GRIM.JIM

ARNE18
PHONE.BK
DONKEYKONG.JR

DOS allows primary filenames of up to eight alphanumeric charac-
ters in length. Valid characters include the letters A through Z and the
digits 0 through 9.

The filename extension is an optional name that can appear after the
primary filename. The filename extension begins with a period followed
by one, two, or three characters. When a filename extension is included in
a filename, both the primary filename and the extension must be used to
identify the file.

Filename extensions are often used to indicate the type of file.
Commonly used filename extensions and their corresponding meanings
are listed in table 7.1.

DOS Usage 175

Table 7.1. Commonly used filename extensions

Filename

Extension Type of File

ASM Assembly language source file.

BAK Backup file.

BAS File contains a BASIC program in tokenized
format.

COM DOS 2.5 utility program

DAT Data file.

LST File containing a program in ASCII format.

OoBJ Assembly language program assembled into
machine language. Also known as an object file.

TXT Text file.

SYS System file. Used with system programs such as
DOS or the BASIC language interpreter.

Filename Match Characters

In a situation where the same DOS operation is to be performed
with several files, a filename match character or wildcard may be used.
For example, it may be necessary to delete all the data files on one
diskette, while leaving the program files. Wildcards allow the user to
specify a number of files with a single filename. The two wildcards are the
asterisk (*) and the question mark .

The question mark can stand for any single character, while the
asterisk can represent any group of characters. The following example
illustrates the use of wildcards. Suppose that the five files listed below are
stored on a diskette:

TEXT1.DAT
TEXT2.DAT
TEXTY.DAT
TEXT1.BAS
TEXT12.DAT

176 Atari XE User's Handbook

The following filename will match the first three filenames. Here, the
question mark matches any single character. Notice that TEXT12.DAT
does not match.

TEXT?.DAT

The following filename will match the first and fourth filenames.
Here, the asterisk is used to match any file extension.

TEXT1.”

The following filename selects only the BASIC program files. The
asterisk is used to match any primary filename with the extension .BAS.

*.BAS

Finally, the universal match uses two asterisks — one for the primary
filename and one for the extension. The universal match selects every
entry on the disk (a total of five files in our example).

Types of Commands

The DOS commands used in the 2.0S ATARI DOS as well as the new
Atari 2.5 DOS are all internal commands. This means that the DOS disk

need not be present in the drive because the commands have been
imbedded in the Atari operating system.

Activating DOS

Generally, DOS must be loaded whenever the computer is powered-
up. When starting DOS, the File Management System (FMS) will be
read from the DOS diskette into the computer’s memory. Then, depend-
ing on the specific application, the internal commands of DOS may be
loaded automatically.

If BASIC is also to be used, only the FMS will be loaded at first. To
load the internal commands, the user must enter an appropriate com-
mand. This is the case for most cartridge-based languages. The following

steps are involved in loading DOS with BASIC or a cartridge-based
language.

DOS Usage 177

—

. Power-up the disk drive.

2. Wait for the “busy” light to be extinguished, then
insert a DOS diskette.

3. Insert the desired cartridge into the cartridge slot
(insert nothing for BASIC).

4. Power-up the system unit (computer).

5. Wait for the language’s prompt, then type DOS fol-
lowed by the RETURN key.

6. The DOS menu will be displayed shortly.

If neither BASIC nor a cartridge is to be used, DOS’s internal
commands may also be loaded automatically at power-up. If the
OPTION key is depressed when the system unit is activated, BASIC will
not be utilized and DOS will be loaded and activated. The following steps
are involved in loading DOS without BASIC or a cartridge-based
language.

1. Power-up the disk drive.

2. Wait for the “busy” light to be extinguished, then
insert a DOS diskette.

3. Hold down the OPTION key, while powering-up the
system unit.

4. The DOS menu will be displayed shortly.

DISK OPERATING SYSTEM Il VERSION 2.0S
COPYRIGHT 1980 ATARI

A. DISK DIRECTORY l. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SAV
G. UNLOCK FILE O. DUPLICATE FILE

H. WRITE DOS FILES
iELECT ITEM OR [RETURN] FOR MENU

178 Atari XE User's Handbook

a4 N\
DISK OPERATION SYSTEM Il VERSION 2.5
COPYRIGHT 1984 ATARI CORP.

A DISK DIRECTORY I FORMAT DISK

B RUN CARTRIDGE J DUPLICATE DISK

C COPYFILE K BINARY LOAD

D DELETE FILE(S) L BINARY LOAD

E RENAME FILE M RUN AT ADDRESS

F LOCKFILE N CREATE MEM.SAV

G UNLOCK FILE O DUPLICATE FILE

H WRITE DOS FILES P FORMAT SINGLE
o J
DOS Operation

As mentioned previously, a copy of the master diskette should be
used in day to day operation. The master diskette should be stored in a
safe place. Then, if the back-up DOS diskette becomes damaged or
misplaced, additional copies can be made from the master.

Before a copy of the master diskette can be made, the back-up
diskette must be formatted. If DOS 2.0S is being used, then menu option
(I) will format the disk in the single density format. If an Atari 1050 disk
drive and the Atari DOS 2.5 are being used, then it is possible to format in
single density (menu option P) or in double density (menu option I).

After the diskette has been formatted a backup of the master diskette
can be made using menu option (J). It is also possible to make an
operating copy of either DOS by using menu option (H). All of the
internal commands will be supported by the copy using either option,
however, using option (H) writes only the DOS files and omits any other
system boot files (i.e. the 130XE RAM disk on DOS 2.5 or the AUTO-
RUN.SYS on DOS 2.0S).

DOS Usage 179

DOS 2.0S

In the following sections, we will discuss DOS 2.0S keyboard usage
as well as the various DOS 2.0S commands.

KEYBOARD USAGE

DOS 2.0S uses the ROM-resident operating system’s screen editor
for command entry. Therefore, the screen can get rather messy after a few
commands are used. Pressing a solitary RETURN in response to the
DOS prompt will clear the screen then redraw the command menu,

Because the screen editor is used, keyboard usage in DOS 2.0S is
essentially identical to keyboard usage in Atari BASIC. Generally, how-
ever, the screen editing capability of the editor is not needed, in that most
commands can be signaled with a single keystroke. BACK SPACE is
usually the only editing key needed.

Once RETURN is pressed following a command entry, the com-
mand may be ignored by pressing the BREAK key. At this point, the
DOS prompt will be redisplayed.

A. DISK DIRECTORY

The DISK DIRECTORY operation lists the files present on a
diskette. When the DISK DIRECTORY operation has been specified by
entering A and pressing RETURN, the following prompt will appear on
the video display:

DIRECTORY -- SEARCH SPEC, LIST FILE?

If the RETURN key is pressed in response to this prompt, the names
of each file on the diskette in drive #1 will be displayed on the screen
followed by the size of the file (in sectors). The last line of the directory
listing will contain the number of unused sectors on the diskette. A
sample directory listing is pictured in figure 7.1

180 Atari XE User's Handbook

As previously mentioned, pressing RETURN in response to the
SEARCH SPEC, LIST FILE prompt will cause all files on the diskette in
drive #1 to be listed. When RETURN is pressed in response to this
prompt, DOS will assume the default values for the SEARCH SPEC and
LIST FILE parameters.

SEARCH SPEC indicates the file specification of any specific files
to be listed by the DISK DIRECTORY operation. This file specification
consists of the capital letter D followed by the number of the disk drive
whose diskettes is to be searched, followed by the name of the file or files
to be searched for. The drive identifier and filename should be separated
by a colon. If the drive number is omitted, DOS will assume drive #1 is to
be searched. In other words DI: is the default value for the drive
identifier.

4)

*DOS SYS 039
*DUP SYS 042
DISP OBJ 001
PROGRAM2 BAS 012
PROGRAM3 BAS 013

600 FREE SECTORS

\ %

Figure 7.1. Directory listing

Filename match characters can be used in the filename portion of
the SEARCH SPEC parameter. For instance, the following entry would
cause all files on drive #2 with the filename extensions DAT to be listed.
The default value for the filename portion of the SEARCH SPEC
parameter is *.*. This value causes all files to be listed, as *.* matches all
filenames.

DOS Usage 181

D2:*.DAT

The second DISK DIRECTORY parameter, LIST FILE, specifies
the device where the directory outputis to be listed. The default value for
the output device is E:, which indicates the video screen.

If you wish to send the directory listing to the printer, enter P: as the
LIST FILE parameter. For example, the following entry will cause all
files on drive #2 with the extension DAT to be listed by the printer.

D2:*.DAT,P:

When using the LIST FILE option, be certain to separate your entry
from the SEARCH SPEC entry with a comma.

B. RUN CARTRIDGE

When the RUN CARTRIDGE operation is chosen from the menu,
DOS will return control of the Atari computer to the cartridge inserted in
the unit. If no cartridge is inserted and BASIC has not been deactivated
at power-up, the BASIC prompt will be displayed on the screen.

READY

If a cartridge is not inserted and BASIC has been deactivated, the
following message will appear on the screen:

NO CARTRIDGE

Another operation must then be chosen from the menu. This opera-
tion or the RESET key may be used to return to BASIC when the
MEM.SAYV file exists on the diskette. Either procedure will cause data to
be correctly returned into memory from the MEM.SAYV file. MEM.SAV
will be discussed in more detail later in this chapter.

C. COPY FILE

The COPY FILE disk operation is used on Atari systems with two or
more disk drives to copy a file from the diskette in one drive to a diskette
in another drive. COPY FILE can also be used to create a back-up copy
of a file on the same diskette with a different filename.

182 Atari XE User's Handbook

When COPY FILE is executed, the following prompt will appear on
the video display:

COPY -- FROM, TO?

The FROM parameter specifies the file or files to be copied. The
FROM parameter generally consists of a file specification, but can also
be a device name such as the video screen (E:). Filename match charac-
ters can be used in the file specification used for the FROM parameter.

The TO parameter specifies the destination of the file or files being
copied. Again, the TO parameter generally consists of a file specification,
but can also be a device such as a printer (P:), screen (E:), or disk drive
(D).

The COPY FILE operation cannot be used to copy the DOS.SYS
file. Any attempt to do so will result in an error message. The DOS.SYS
file can be copied using H. WRITE DOS FILES.

If the source file specified does not exist, ERROR-170 (File not
found) will appear on the screen. If the destination diskette’s directory
already contains 64 filenames, ERROR-169 (Directory full) will appear.
If there are not enough free sectors on the destination diskette for the
copy operation to take place, ERROR-162 (Disk full) will appear.

The first time since DOS activation that this operation is selected, a
second prompt will appear before the COPY FILE operation is executed.
If the user’s response to the following prompt is Y, COPY FILE will use
the entire user program area for the copying process which invalidates
the MEM.SAV file. A response of N instructs DOS to use a smaller
internal buffer for the COPY FILE operation. The MEM.SAV file will
then be retained; however, the copying process will be siower.

TYPE “Y” IF OK TO USE PROGRAM AREA
CAUTION: A “Y” INVALIDATES MEM.SAV

The COPY FILE operation can be used to tack one file to the end of
another file. This process is known as appending. Suppose that the
following two files exist on drive #1.

<—— TEXT1.DAT

| DOE | «——TEXT2.DAT

DOS Usage 183

After using the append option (/ A) of the COPY FILE command,
the following two files would exist on drive #1. Notice that the first file
listed in the command line is appended to the second file. The append
option should not be used with BASIC program files stored with the
SAVE command.

COPY -- FROM,TO?
TEXT2.DAT, TEXT1.DAT/A

JOHN DOE |«—TEXT1.DAT
[DOE__]~—TexrzpAT

D. DELETE FILE

The DELETE FILE operation allows the user to remove unneeded
files from the diskette and the disk directory. When chosen, the following
prompt will appear on the video display:

DELETE FILESPEC

The file specification should be entered. Filename match characters
may be used in the file specification.

Once the file specification has been entered, a second prompt will be
displayed:

TYPE “Y” TO DELETE...
FILENAME

FILENAME will be replaced with the filename of the file to be
deleted. If the user enters Y followed by RETURN the file will be deleted.
If N or any other letter is entered followed by RETURN the file will not be
deleted.

If the file specification entered in response to the DELETE FILE-
SPEC prompt matches more than one filename on the diskette, each
matching filename will be displayed. The user must enter Y following
each filename for the deletion to occur.

In the no verification option (/N) is specified in response to the
DELETE FILESPEC prompt, the second prompt will not appear. The
files specified will automatically be deleted without query.

184 Atfari XE User's Handbook

A file which has been locked cannot be erased using the DELETE
FILE operation. An attempt to do so will generate an ERROR-167 (File
locked).

The following example uses the no verification option to erase all
files ondrive #1. If any of the files on this drive are locked an error will be
generated.

Example 1
()
SELECT ITEM OR GISEIRIEYI FOR MENU
D

DELETE FILESPEC
**/N

SELECT ITEM OR FOR MENU

E. RENAME FILE

The RENAME FILE operation can be used to change the name of
any file on the diskette. Be careful not be use RENAME FILE to change
the name of DOS.SYS. If DOS.SYS is renamed, the DOS menu will no
longer load properly.

When RENAME FILE is specified, the following prompt will
appear:

RENAME -- GIVE OLD NAME, NEW

OLD NAME consists of the file specification of the file to be
renamed. If a drive identifier is not included in the file specification, drive
#1 will be assumed. The NEW NAME consists of the new filename for the
file specified in OLD NAME. Filename match characters can be used
with both the OLD NAME and NEW NAME parameters.

A locked file cannot be renamed. Any attempt to.do so will result in
ERROR-167 (File locked). Also, a file on a diskette that has been

DOS Usage 185

write-protected cannot be renamed. Any attempt to do so will result in
ERROR-144 (Device done error). If the user attempts to rename a file

that does not exist on the diskette, ERROR-170 (File not found) will
occur.

Example

4 I

SELECT ITEM OR EISEIMEY] FOR MENU
E

RENAME -- GIVE OLD NAME, NEW
TEXTA,DAT.TEXTB.DAT

SELECT ITEM OR FOR MENU

o J

In the preceding example, TEXTA.DAT on drive #1 is renamed to
TEXTB.DAT. In the following example, all files on drive #2 with the
extension .BAS will be renamed with the extension .BAK, while retaining
their original primary filenames.

Example

4)

SELECT ITEM OREIEENIEEL FOR MENU
E

RENAME -- GIVE OLD NAME, NEW
D2:*.BAS,*.BAK

SELECT ITEM OR FOR MENU

_ /

186 Atari XE User's Handbook

F. LOCK FILE

The LOCK FILE operation write-protects a file. Although a locked
file can be read, it cannot be written to, renamed, deleted, updated, or
appended. In other words, a locked file may not be changed. If an attempt
is made to alter a locked file, an ERROR-167 (File locked) will be
generated.

When the LOCK FILE operation is specified, the following prompt
will appear:

WHAT FILE TO LOCK?

The file specification of the file to be locked should be entered in
response to this prompt. Wildcards may be used to lock multiple files with
a single file specification. Locked files will appear in the directory listing
with an asterisk before the filename. Incidentally, it is good practice to
lock the DOS.SYS and DUP.SYS files.

G. UNLOCK FILE

A file can be released from its write-protected state by using the
UNLOCK FILE operation. When this operation is specified, the follow-
ing prompt will appear:

WHAT FILE TO UNLOCK?

The file specification of the file to be unlocked should be entered.
Wildcards can be used to specify more than one file.

H. WRITE DOS FILE

The WRITE DOS FILE operation places a copy of DOS onto a
diskette. DOS will be copied directly from the computer’s memory, not
from the diskette during this operation.

First, the following prompt will appear:

DRIVE TO WRITE FILES TO?

DOS Usage 187

Here, the operator should enter the drive number where DOS should
be copied. This can be either drive 1, 2, 3, or 4. Once the drive number has
been entered, the following prompt will appear:

TYPE “Y” TO WRITE DOS TO DRIVE 1*

Ifa Y is entered, DOS will be written to the diskette in the specified
drive. Any other entry will abort the WRITE DOS FILE operation.

I. FORMAT DISK

All blank diskettes must be formatted before they can be used by
DOS. Formatting is a process where a pattern is recorded on the diskette
which allows data to be written to or read from its surface. Both the 810
and 1050 require approximately two minutes to format a diskette.

When the FORMAT DISK operation is specified, the following
prompt will appear:

WHICH DRIVE TO FORMAT?

The user should specify the number of the drive containing the
diskette to be formatted. A second prompt will then appear.

TYPE “Y” TO FORMAT DRIVE 1*

If the user responds to this prompt with a Y, the diskette in the drive
specified will be formatted. Any other entry will abort the FORMAT
DISK operation.

If a diskette contains bad sectors, DOS will not format it. After the
initial discovery that the diskette contains bad sectors, DOS will attempt
to format the diskette two more times. After the third unsuccessful
attempt, ERROR-173 (Bad sector at format time) will be displayed.

Be certain that you do not format a diskette that contains data you
wish to retain. Formatting a diskette destroys any existing data on that
diskette.

* assuming drive #1 was specified in the first prompt.

188 Atari XE User's Handbook

J. DUPLICATE DISK

The DUPLICATE DISK operation allows an entire diskette to be
copied. For example, a back-up DOS diskette could easily be made from
the master. This operation can be used with one or more disk drives.
When specified, the following prompt will appear:

DUP DISK—SOURCE,DEST DRIVES?

The user should respond with the drive number containing the
diskette to be copied (source), and the drive number containing the
diskette on which to place the copy (destination). These should be separ-
ated with a comma.

If your Atari system has only one drive, you should respond to this
prompt with an entry of 1,1.

The following prompt will then be displayed:

INSERT SOURCE DiSK, TYPE RETURN

The user should then insert the diskette to be copied in the disk drive
and press RETURN. A portion of the data stored on the diskette will be
read into the Atari’s memory. Then the following prompt will be
displayed:

INSERT DESTINATION DISK, TYPE RETURN

The user should then replace the diskette being copied with a blank
formatted diskette and press RETURN.

The data held in the Atari’s RAM will be written to the destination
diskette, after which the INSERT SOURCE DISK prompt will reap-
pear. This process should be continued until the entire diskette has been
copied.

If your Atari system contains multiple drives, the duplication pro-
cess is more simple. When different source and destination drives are
specified (ex. 1,2), the following prompt will be displayed.

INSERT BOTH DISKETTES, TYPE RETURN

DOS Usage 189

After inserting the diskette to be copied in the source drive and the
blank diskette on which the copy is to be made in the destination drive,
press RETURN and the duplication process will begin.

It is a good practice to cover the write-protect notch of the source
diskette to prevent it from being accidentally overwritten if an error is
made.

The following prompt will be displayed the first time a copying
procedure is attempted since DOS activation:

TYPE “Y” IF OK TO USE PROGRAM AREA?
CAUTION: A “Y” INVALIDATES MEM.SAV

If Y is entered, the user program area will be used for the copying
process, and existing programs in memory will be erased. An entry other
than Y causes DUPLICATE DISK to be aborted. If a program is stored
in RAM that you wish to save, it should be copied to cassette or diskette
before the DUPLICATE DISK operation is begun.

K. BINARY SAVE

The BINARY SAVE operation is used to save the contents of RAM
on disk in object file format. This format is also used for programs
written using the Assembler Editor cartridge.

When the BINARY SAVE operation is specified, the following
prompt will be displayed. FILE is the name of the file to be saved. A drive
specifier may be included.

SAVE -- GIVE FILE, START, END (,INIT, RUN)

The START and END parameters are required for either a binary
file or a program. These specify the starting and ending addresses in
hexidecimal of the portion of the memory to be saved.

The INIT and RUN addresses are optional parameters. These allow
a program to be executed upon loading. The INIT address gives the
starting address of an initialization routine. The RUN address gives the
starting location of the main program. The INIT and RUN addresses are
used by the BINARY LOAD operation to automatically execute a

190 Atari XE User's Handbook

program after it has been loaded. The INIT and RUN addresses must be
specified in hexadecimal notation.

Example

SELECT ITEM OR RETURN FOR MENU

K

SAVE-GIVE FILE, START, END (,INIT, RUN)
FILEA.OBJ, 2B00, 4COF

SELECT ITEM OR RETURN FOR MENU

o y

In the preceding example, the contents of memory locations begin-
ning at 2B00 and ending at 4COF will be saved in a file named
FILEA.OBIJ on drive #1.

L. BINARY LOAD

The BINARY LOAD operation is used to load a file created with
BINARY SAVE or an assembly language object file into RAM. If the
RUN and INIT addresses were appended to the file, the file will executed
upon loading.

If the /N option is specified, the INIT and RUN addresses will be
disregarded, and the file must be run using the DOS menu’s RUN AT
ADDRESS operation. Also, files without an INIT or a RUN address
must be executed with the RUN AT ADDRESS operation.

Example

~

SELECT ITEM OR HEEIYIER] FOR MENU
L

LOAD FROM WHAT FILE?

FILEA.OBJ

SELECT ITEM OR EXEfliIELY] FOR MENU

_ Y,

DOS Usage 191

M. RUN AT ADDRESS

The RUN AT ADDRESS operation is used to execute a machine
language program in memory by entering its hexadecimal starting

address.
\

Example

(SELECT ITEM OR [RETURN] FOR MENU
M

RUN FROM WHAT ADDRESS
2B00

_ Y,

N. CREATE MEM.SAV

The CREATE MEM.SAV operation is used to create a MEM.SAV
file on the diskette in drive #1.

When the DOS 2.0S menu is activated, the DUP.SYS file is loaded
into memory that is used for BASIC program storage. Whenever a
MEM.SAYV file is present on the diskette in drive #1, the computer will
first transfer all data present in this memory area into the MEM.SAYV file.
Only then will the DUP.SYS file be loaded. Finally, the DOS menu will
appear.

The RUN CARTRIDGE operation or the RESET key may be used
to exit DOS. At this time, the program in MEM.SAYV will be automati-
cally loaded from MEM.SAV into RAM.

Example

SELECT ITEM OR (SIERYEL] FOR MENU \
N

TYPE “Y” TO CREATE MEM.SAV

Y

SELECT ITEM OREEEIVE] FOR MENU

N /

192 Atari XE Users Handbook

If the user attempts to create a MEM.SAV file on a diskette which
already contains a MEM.SAUV file, the following will be displayed on the

video screen:
MEM.SAV FILE ALREADY EXISTS

O. DUPLICATE FILE

The DUPLICATE FILE operation is used to copy files from one
diskette to another in systems with only one drive. When specified, the
following prompt will appear:

NAME OF FILE TO MOVE?

Since the source and destination files will be the same, only one
filename need be entered. Also, since the system includes only one disk
drive, a drive identifier is not necessary. Wildcards may be used in the
filename entry.

The following prompt will be displayed the first time a copying
operation (C, J, O) is attempted since DOS activation:

TYPE “Y” IF OK TO USE PROGRAM AREA
CAUTION: A “Y” INVALIDATES MEM.SAV

If a Y is entered, the entire program area of memory will be used for
the file duplication process. This will speed the duplication process.
However, by allowing the program area to be used for duplication, the
contents of MEM.SAV cannot be rewritten into RAM. Any BASIC
program that you intended to save using MEM.SAV will be lost when the
system returns to BASIC.

Any response other than Y disallows the use of the program area of
memory for the DUPLICATE FILE operation. This allows the contents
of MEM.SAV to be later rewritten into RAM. However, by disallowing
the use of the program area of memory, the time necessary to duplicate
the file will increase.

DUPLICATE FILE will then prompt the user to insert the disk
containing the file to be copied (source). The user will next be prompted
toinsert the destination disk. These two prompts will then alternate until
the copy is complete.

INSERT SOURCE DISK, TYPE RETURN
INSERT DESTINATION DISK, TYPE RETURN

DOS Usage 193

DOS 2.5

In the following sections, the revisions and additions to DOS 2.0S,
which are present in DOS 2.5 will be discussed.

The DOS 2.5 is a system designed especially for the 130XE computer
and/oran Atari 1050 disk drive. If it is used on another computer or disk
drive type, the advantage of the DOS will be lessened.

Keyboard Usage

Since the DOS 2.5 is an upgraded version of the DOS 2.0S system all
of the main menu commands are the same except for the f ollowing
changes.

I. FORMAT DISK

In the Atari version 2.5 of DOS, this command formats a disk in the
double density format. This will only work with an Atari 1050 disk drive.

P. FORMAT SINGLE

This option, present only on DOS version 2.5, allows the user to
format a diskette according to the single density format.

Utility Programs

In addition to the changes in the main menu, several separate pro-
grams have been placed on the master diskette which can aid the user in
many disk operations. The following is a brief description of these
programs.

SETUP.COM

This program is loaded using the (L) Binary load command from the
main menu of the DOS. It will run automatically and provide the user
with several options. They are menu driven and self explanatory. Their
purpose is to change system configurations.

194 Atar XE User's Handbook

COPY32.COM

This utility allows files created and stored under DOS 3.0 to be
copied into the DOS 2.5 (or DOS 2.0) format. The program is loaded
using the (L) Binary load option. It is menu driven and self explanatory.

DISKFIX.COM

This is a very useful utility which allows the user to rename files,
unerase files, or verify an entire disk. However, care should be used in
verifying diskettes as the program will delete any files that are left open.
This program is also loaded using the (L) Binary load option, and it is
menu driven as well.

RAMDISK.COM

This is the most powerful utility program contained on the DOS 2.5
disk. When the DOS 2.5 is booted, this program is set to automatically
run. The program first checks to see if the computer is a 130XE. If the
computer is a 130XE it programs the extra 64K of memory intoa RAM
disk.

The RAM disk represents a remarkable new tool to the user. With it
he/she may access the other 64K of memory in the 130XE and use it in the
same manner as a disk drive.

In use, the RAM disk runs the same as a disk drive with one major
advantage: it is extremely fast. It has 499 sectors, a normal directory and
is accessed (i.e. filing procedures and DOS commands) in the same way
as a disk drive. The only abnormal characteristic of the RAM disk is its
device code, DS.

To use the RAM disk, you need only substitute DS8: in any place
‘where a device code is required. In some instances, if a device code is not
specified, a default code is used. Such is the case with the DOS 2.5. To use
the RAM disk in place of disk drive (D1), the device code of the RAM
disk (D8) must be added to the file specifications to override the default
drive. For example, to read the directory of the RAM disk:

DOS Usage 195

1. Type DOS then press <RETURN> to enter the DOS 2.5
menu.

2. Type “A” then press <RETURN> to select the disk directory
option.

3. When prompted with:
Directory — Search Spec, List File?
type in “D8:” and press <RETURN>.

As stated previously, RAM disk files are accessed in the same
manner as they are in a disk drive. For example, to load a BASIC
program saved in the RAM disk while in BASIC type:

LOAD “D8: Filespec”

and press CTRETURN>>. The file will load as normal, except much faster.

The only “catch”in using the RAM disk is that the memory it uses to
store files is not permanent. In other words, if you turn the computer off
without saving your files to permanent memory (disk drive, or tape
drive), then they will be lost! Files can be saved by loading them from the
RAM disk and saving to the disk drive (or tape drive) or by using the
COPY FILE option in the DOS 2.5, menu. For example, to copy a file
from the RAM disk to a floppy disk:

1. Type DOS then press <RETURN> to enter the DOS 2.5
menu.

2. Type “C” then press <RETURN> to select the COPY FILE
option.

3. When prompted with:
COPY — FROM, TO?
type D8: Filespec, D1:Filespec

All other DOS options operate in the same manner on the RAM
disk as on the disk drive, however, the correct device code (D8) must be
implemented with all of them.

196 Atar XE User's Handbook

NOTE: If while working with the RAM drive, you discover
you need extra memory, it is possibie to delete the MEM.SAV,
and even the DUP.SYS file. However, upon entering BASIC if
you have deleted the MEM.SAV file and then return to the
DOS menu, any program in BASIC memory will be lost. Also
if the DUP.SYS file is deleted and you return to BASIC it will
appear that you can no longer access the DOS menu. What
actually is happeningis that when DOS <RETURN> is typed
the computer searches the RAM disk for DUP.SYS. Because
the file has been deleted the computer defaults back to
BASIC. To correct this type POKE 5439,ASC(“1") <RE-
TURNZ>. This will direct the computer to search drive one
(D1) for the DUP.SYS file in order to run the DOS menu (a
disk containing DUP.SYS must be in drive one). To return the
control of the DOS menu to the RAM disk, simply replace the
DUP.SYS file on the RAM disk and (while in BASIC) type
POKE 5439, ASC(“8").

As was stated previously, the major advantage of the RAM disk is its
speed. It accesses files at speeds that almost make the disk drive obsolete.
Almost, that is, but not quite. It is suggested by this author, who has had
more than one incidence of a “locked up” computer, that all important
files be saved to permanent memory. It may seem an unnecessary burden
to do this, until one experiences the pain associated with lost files or
programs.

Atari BASIC Reference Guide

Introduction

This chapter provides descriptions of the various commands, opera-
tions, and functions available in Atari BASIC. The reserved words are
listed in alphabetical order with an appropriate abbreviations, if
applicable.

The following rules and abbreviations will facilitate our descriptions
of the various BASIC commands, operators, and functions.

197

198 Atar XE User's Handbook

1. Any capitalized words are keywords.

2. Any words, phrases, or letters shown in lowercase italics iden-
tify an entry that must be made by the operator (unless enclosed
within brackets).

3. Any items enclosed in brackets [] are optional.

4. Anellipsis (...) shows that an item may be repeated as often as
desired.

5. Any punctuation marks, except the square brackets (ex. ;,=)
must be included where they are shown.

6. Ifanitem is listed directly above another item, either item may
be used for correct syntax.

ABS Function

The ABS function returns the absolute value of its argument. A
number’s absolute value is its value without regard to sign.

Configuration

ABS(argument)

argument can be any numeric expression or numeric constant.

Example

PRINT ABS(-81), ABS(82)
81 82

Atari BASIC Reference Guide 199

ADR Function

The ADR function returns the absolute memory address of the
argument. The argument must be a predimensioned string variable or a
string constant.

In BASIC, a machine language program can be put in a string
variable. However, the operating system moves variables around to
efficiently use memory. As a result, to call a machine language routine,
the ADR function may be used to locate the string.

Configuration

ADR(argument)

Example

X =USR(ADR("Lw d "))

The previous command line will reboot or cold start the Atari.
Typing this line is equivalent to flipping the power switch off, then on.
Upon execution, this command will erase any RAM-resident program
and will cause the Atari to behave as if it had just been powered up.

The string argument of the command line is the machine language
command to cold start the Atari. The USR function executes this com-
mand by finding its address using ADR.

AND Operator

AND is a logical operator. This reserved word is generally used to
combine two comparisons in the context of an IF.. THEN statement.

Configuration

expression] AND expression?2

200 Atari XE User's Handbook

If an expression is non-zero, that expression will be evaluated as
true. Likewise, an expression with a value of zero will be evaluated as
false. The following is the truth table for AND.

X Y X AND Y
true true true
true false false
false true false
false false false

In Atari BASIC, a true is represented by a 1 and a false by a 0.

Example 1

10 X=10

20 Y=30

30 IF X =10 AND Y > 100 THEN END

40 PRINT "CONDITIONS WERE NOT MET"
RUN

CONDITIONS WERE NOT MET

In this example, AND is used in an IF... THEN statement which ends
the program if both conditions are true. The first expression of the AND
statement is X = 10. This is true because X is assigned the value 10 in line
10. The second expression, Y > 100, is false because Y is assigned the
value 30 in line 20. As a result, expressionl is true and expression? is false.
This corresponds to the second line of the truth table. The result from the
table is false (0), so the condition of the IF... THEN statement is false, and
the next line is executed.

Example 2

PRINT (3=1+2) AND (-5)
1

Atari BASIC Reference Guide 201

In this example, 3 is compared to the result of 1 + 2, so the first
expression evaluates as true. The second expression (-5)is non-zero, so it
is also evaluates as true. According to the AND truth table, if both
expressions evaluate as true, then the whole expression is true. Therefore,
1 is printed.

ASC Function

The ASC function returns the ASCII code for the first characterofa
string. The argument of ASC can be a string variable or constant.

Configuration

ASC(argument)

Example

10 DIM B$(10)

20 B$ = "ZEBRA"
30 PRINT ASC(B$)
RUN

90

ATN Function

The ATN function is a trigonometric function that returns the arc-
tangent of its argument. The argument can be a numeric expression or
numeric constant in radians. The value returned will be the primary angle
inradians, unless degrees have been specified with DEG (-7 /2 < angle <
m/2; -90° < angle < 90°).

Configuration

ATN(argument)

202 Atari XE User's Handbook

Example

10 Pl =4 " ATN(1)
20 PRINT PI
RUN

3.14159267

In the preceding example, the arctangent of 1 returns the value /4.
Multiplying this value by 4 returns the indicated value.

BYE Statement

BYE switches the system to the Self-Test mode. The system will then
perform the various user specified self-tests. System control will be
returned to BASIC when the RESET key is pressed. BYE will erase any
RAM resident program.

Configuration

BYE

Example

10 BYE
RUN

CHRS Function

The CHRS function returns the character with the ASCII code
specified by argument. Although argument values can range from 0 to
65535, the ASCII code corresponding to argument modulo 256 is used.

Configuration

CHRS$(argument)

Atari BASIC Reference Guide 203

Example

10 PRINT CHR$(65)

20 PRINT CHR$(65 + 256)
RUN

A

A

CLOAD (CLOA)) Statement

The CLOAD command is used to load a previously recorded pro-
gram into the computer’s memory. The program must have been stored
on a cassette with a CSAVE or SAVE command.

At the sound of the tone, press PLAY on the program recorder, then
press RETURN on the keyboard. The tape must be correctly positioned
before CLOAD is executed.

The CLOAD command clears the memory before the program is
loaded from the tape.

Configuration
CLOAD

Example

10 CLOAD
RUN

CLOG Function

The CLOG function returns the base 10 logarithm of the argument.

Configuration

CLOG(argumentr)

204 Atari XE User's Handbook

Example

PRINT CLOG(4)
0.602059991

CLOSE (CL)) Statement

The CLOSE statement closes a data file that had been previously
opened for input, output, or both. However, closing a file that has not
been opened will not cause an error.

The filenumber of a CLOSE statement must be identical to the
filenumber used in the corresponding OPEN statement. A filenumber
that has been opened for the use of a particular I/ O device must be closed
before it can be used for another device. filenumber can be any numeric
constant or expression.

Configuration

CLOSE #filenumber

Example

CLOSE #3

CLR Statement

The CLR command clears the values of the variables in the memory.
However, the variable name table remains unchanged. As a result, the
CLR command does not reduce the number of variable names. After
using CLR, all strings, arrays, and matrices must be redimensioned. CLR
also frees any memory used by dimensioned variables.

Configuration

CLR

Atari BASIC Reference Guide 205

Example

10 PRINT FRE(0)
20 DIM A(500)
30 PRINT FRE(0)
40 CLR

50 PRINT FRE(0)
RUN

13246

10240

13246

COLOR Statement

The COLOR statement determines the data that will be placed on
the screen by subsequent PLOT statements. In the text mode (0), COLOR
determines which character will be plotted. In the character graphics
modes (1,2, 12, 13), COLOR determines the character as well asits color.
In the bit-image graphics modes (3-11, 14, 15), COLOR determines the
color of any subsequently plotted pixels.

Configuration

COLOR argument

In all graphics modes, the argument of the COLOR statement must
be non-negative. If it is not an integer, it will be rounded off.

In mode 0, the text and background are displayed in the same color
but in differing brightnesses. The color, the brightness of the text, and the
brightness of the background are determined by the SETCOLOR com-
mand. The COLOR statement does not select a color; it indicates the
character to be printed with the next PLOT statement. Table 8.1 lists these
characters and their corresponding COLOR statement arguments.

If two characters are assigned the same numeric representation, the
character that is displayed on the screen depends on the value stored in
memory location 756. The character on the right corresponds to a value

206 Atari XE User's Handbook

of 224 (standard), while the character on the left corresponds to a value of
204 (extended).

POKE 756,224 set standard
POKE 756,204 set extended

Example 1

10 GRAPHICS 0

20 FORI=1TOS5

30 READ X

40 COLOR X

50 PLOT 10+ 1,10

60 NEXT |

70 DATA 65, 84, 65, 82, 73

In the previous example, the word ATARI is printed at the center of
the display. Each data item is read individually at line 30, and becomes the
argument of the COLOR statement in line 40. The loop is repeated 5
times; each time the COLOR statement has a different value as its
argument. It can be seen from table 8.1 that in graphics mode 0, COLOR
65 indicates the character A.

After a COLOR 65 statement has been executed, any PLOT or
DRAWTO statement will output the character “A” until another
COLOR statement has been executed.

Example 2

10 GRAPHICS 0

20 COLOR 65

30 PLOT 0,0

40 DRAWTO 10,10
50 SETCOLOR 2,2,0

When executed, the preceding program will print the character “A”
in the upper left corner of the screen because of the PLOT 0,0 statement.
The DRAWTO 10,10 will cause a diagonal line consisting of several A’s
to appear on the display. A’s will appear at the positions (0,0), (1,1),
(2,2)...(10,10). Line 50 sets the screen color to orange.

Atari BASIC Reference Guide 207

Table 8.1. Characters displayed by COLOR statement values in

graphics mode 0

COLOR COLOR COLOR
Value Value Value
Character Normal/ Character Normal/ Character Normal/
ext. std. Inverse ext. std. Inverse ext. std. Inverse
0/128 5] 35/163 70/198
4 [H 1/129 5 3 36/164 71/199
a 2/130 377165 | W 72/200
= (] 3/131 & & 38/166 X 73/201
L] 4/132 O @ 39/167 74/202
Al 5/133 40/168 i 75/203
6/134]| 41/169 [n] 76/204
1] 7/135 42/170 77/205
B 4 8/136 H M 43/171 78/206
B @@ 9/137 L 44/172 0] o 79/207
1-/138 B B8 45/173 P 80/208
M 11/139 O @G 46/174 i i 81/209
O M 12/140 A @A 47/175 R 82/210
] 13/141 48/176 83/211
3] (] 14/142 @ 49/177 m 84/212
o il 15/143 vi 50/178 85/213
16/144 51/179 86/214
3 17/145 4] 52/180 87/215
=) 18/146 S 53/181 b e 88/216
B B 19/147 54/182 89/217
20/148 #A 55/183 Z 90/218
N o 21/149 56/184 s} 91/219
0O 22/150 57/185 N 92/220
(o) 23/151 G @ 58/186 al 93/221
£ (o) 24/152 B @ 59/187 A 94/222
& I 25/153 60/188 a g8 95/223
L] 26/154 B B 61/189 m 96/224
27/--- 3] 62/190 97/225
G 28/156 B A 63/191 98/226
29/157 64/192 3] 99/227
M 30/158 0 65/193 100/228
B B 31/159 5 66/194 ~ 101/229
O 0O 32/160 67/195 102/230
m O 33/161 B 68/196 103/231
R N 34/162 "3 69/197 104/232

table 8.1 continued on next page

208 Atari XE User's Handbook

Table 8.1. (cont.) Characters displayed by COLOR statement values in
graphics mode 0.

COLOR COLOR COLOR
Value Value Value
Character Normal/ Character Normal/ Character Normal/
ext. std. Inverse ext. std. inverse ext std. inverse
[ﬂ E] 105/233 B 114/242 123/251
ﬁ [] 106/234 5 115/243 []] |]] 124/252
107/235 i [t 116/244 Clear Screen 125/---
[ﬂ [']_T] 108/236 117/245 m 126/254
109/237 118/246 K 127/255
T 110/238 119/247 EOL ---/165
o 111/239 B 120/248 Q 3 ---/253
E 112/240 T 121/249
E 113/241 = 122/250

The COLOR statement has an additional function in graphics
modes 1 and 2. Besides character selection, COLOR must also specify the
color of the character. Table 8.2 lists the values of the COLOR statement
arguments for each character. Each character can be printed in one of
four colors. The columns of the table correspond to the color registers
1-4. The standard character set will be used unless either the alternate or
the extended character set is specified by an appropriate POKE
statement.

POKE 756,224 set standard
POKE 756,226 set alternate
POKE 756,206 set extended

Atari BASIC Reference Guide 209

Table 8.2. Standard, alternate and extended character sets in
graphics modes 1 and 2 and color register values

Value for
Character Color Register

Std. Alt. Ext. 0 1 2 3
O 32* 0 160 128
@ B 33 1 161 129
k| 0 34 2 162 130
] #l € 35 3 163 131
Hl 36 4 164 132
Z hl a7 5 165 133
L A 38 6 166 134
] N H 39 7 167 135
d 40 8 168 136
d & 41 9 169 137
N 42 10 170 138
L} M 43 22 171 139
L] ol G 44 12 172 140
=) 0 45 13 173 141
N (] 46 14 174 142
A &l 47 15 175 143
48 16 176 144

d 49 17 177 145
=H 50 18 178 146
K H & 51 19 179 147
& 52 20 180 148
S == '3 53 21 181 149
O 54 22 182 150
@A o) 55 23 183 151
o 56 24 184 152
[§ 57 25 185 153
[z] ™ >} 58 26 186 154
] 59 27 187 -
) 60 28 188 156
=] 3] # 61 29 189 157
G «H 62 30 190 158
£ =] 63 31 191 159

* 155 will designate the same character and color register as 32.
** No value is available to select this color register/character.

table 8.2 contined on next page

210 Afari XE User's Handbook

Table 8.2. (cont.) Standard, alternate and extended character sets in
graphics modes 1 and 2 and color register values

Value for
Character Color Register
std Alt. Ext. 0 1 2 3
1] 64 96 192 224
65 97 193 225
b Bl 66 98 104 226
= k] €] 67 99 195 227
D! 68 100 196 228
] 69 101 197 229
L] 70 102 198 230
71 103- 199 231
72 104 200 232
T FY] [73 105 201 233
(3 (3 74 106 202 234
K i 0 75 107 203 235
a a 76 108 204 236
77 109 205 237
78 110 206 238
0 79 111 207 239
80 112 208 240
" 81 113 209 241
O]] 82 114 210 242
83 115 211 243
M x 84 116 212 244
85 17 213 245
™ 86 18 214 246
87 119 215 247
B 88 120 216 248
T 89 121 217 249
[[z 73] 90 122 218 250
@ & 91 123 219 251
m 1] 92 124 220 252
N 93 " 221 253
) [94 126 222 254
] L)) 95 127 223 255

** No value is available to select this color register/character.

Atari BASIC Reference Guide 211

Example 3

10 GRAPHICS 1

20 FOR1=1TO5

30 READ X

40 COLOR X

50 PLOT6+1,0

60 NEXT |

70 DATA 65, 116, 193, 114, 73

Example 3displays the word ATARI at the top of the display in three
colors. The data is read at line 30 and becomes the argument of the
COLOR statement at line 40,

The COLOR statement chooses the character and the color register
to be used in the display. From table 8.2, COLOR 65 indicates the
character A in color register 0. COLOR 116 indicates the character T in
color register 1.

The color registers are assigned specific information about the color
to be used. Color registers can be changed witha SETCOLOR statement,
but if no SETCOLOR statement is executed, a standard set of default
colors are used. The default colors for graphics mode 1 and 2 are as
follows:

COLOR REGISTER DEFAULT COLOR

0 ORANGE

1 LIGHT GREEN
2 DARK BLUE

3 RED

4 BLACK

Inexample 3, the first character displayed was an A in color register
0. Since no SETCOLOR was executed, the A will be orange. The T will be
green because COLOR 116 is in color register 1.

If the same program was executed in the alternate character set, by
executing POKE 756,226 after the GRAPHICS statement, the word
ATARI would appear in lowercase letters. Also, in the alternate character
set, a “heart” character will appear in every blank space. This occurs

212 Atari XE User's Handbook

because the standard character set puts a space (COLOR 32) in areas
where no character has been assigned. When the conversion to the
alternate character set occurs, COLOR 32 is interpreted as a “heart” in
color register 0 (see table 8.2). As a result, an orange “heart” will appear
in every space except where the word ATARI appears.

In graphics modes 3-7, 10, 14, and 15, the COLOR statement is used
to choose the color register that will be used to plot points and draw lines.
These modes are different from modes 0 through 2 because mode 0,1,and
2 are used to place characters on the screen. Modes 3-7, 10, 14, and 15 are
used to place picture elements (pixels) on the screen. A pixelis a rectangle
that is referred to by its coordinates (column and row) on the display.
Here, the COLOR statement actually chooses a color register, not a
character.

Modes 3, 5, 7, and 15 can display four colors simultaneously. The
argument of the COLOR statement is used modulo 4. COLOR 0 selects
the color stored in color register 4, COLOR 1 selects color register 0;
COLOR 2 selects color register 1; and COLOR 3 selects color register 2.

Example 4

10 GRAPHICS 3
20 FORT=0TO3
30 COLORT

40 PLOTT,0

50 NEXTT

Example 4 displays the four colors of graphics mode 3. Line 40 plots
a pixelat column T, row 0. The color of the pixel is determined by the last
COLOR statement. The first time through the program, T is set equal to 0
at line 20. Line 30 indicates that color T is used. Since no SETCOLOR
statement was executed, the default colors are used.

Atari BASIC Reference Guide 213

GRAPHICS MODES 3,5, 7, and 15
COLOR’s argument DEFAULT COLOR COLOR REGISTER

0 BLACK 4
1 ORANGE 0
2 LIGHT GREEN 1
3 DARK BLUE 2

Since COLOR selects a color register and not an actual color, the
SETCOLOR command can be used to change the default colors to user
specified hues. See the SETCOLOR command for details.

In graphics modes 4, 6, and 14, the COLOR statement selects a color
register as in modes 3, 5, 7, and 15. However, modes 4, 6, and 14 support
only two colors. If an argument greater than 1 is specified, argument
modulo 2 will be used. In other words, an even argument will select color
register 4, while an odd argument will select color register 0.

GRAPHICS MODES 4, 6, 14

COLOR’s argument DEFAULT COLOR COLOR REGISTER

(0] BLACK 4
1 ORANGE 0

When configured in mode 10, the Atari can display nine colors
simultaneously. The COLOR statement is again used to specify a color
register. The screen usually has 5 color registers alloted to it. However,
mode 10 makes use of the 4 player-missile color registers as well. These
are located at memory locations 704 to 707 and must be accessed by
POKE?s.

214 Atar XE Users Handbook

GRAPHICS MODE 10
COLOR REGISTER

COLOR’s argument (MEMORY LOCATION)
0 - (704)
1 - (705)
2 - (706)
3 - (707)
4 0 (708)
5 1 (709)
6 2 (710)
7 3 (711)
8 4 (712)
9 4 (712)
10 4 (712)
1 4(712)
12 0 (708)
13 1 (709)
14 2 (710)
15 3 (711)

The locations 704 to 707 are not reset by BASIC or the operating
system. Therefore, these color registers have no “default” color assigned
to them. Generally, these locations have a value of zero (black) until
intentionally changed.

Example 5

10 GRAPHICS 10

20 FORI1=0TO 67

30 COLOR I/8

40 PLOT 1,0

50 DRAWTO 1,159

60 NEXT I

70 POKE 704,222:REM YELLOW-GREEN
80 POKE 705,126:REM LIGHT BLUE
90 POKE 706,190:REM GREEN-BLUE
100 POKE 707,200:REM GREEN

110 GOTO 110

Atari BASIC Reference Guide 215

Graphics mode 8 has only one color, with two luminence levels. As a
result, the COLOR statement is used to select the luminence of a pixel. In
other words, COLOR 1 causes the next plotted pixel to be visible;
COLOR 0 causes the next plotted pixel to be the same as the background.
If the argument is specified greater than I, argument modulo 2 will be
used.

In graphics mode 8, the pixels are very small, and the graphics are
slow. It sometimes is useful to draw an entire area, then “erase” what is
not wanted. This is often faster than drawing only what is wanted. This
can be done by drawing an area using COLOR 1, then “erasing” by using
COLOR 0.

Graphics modes 9 and 11 differ from the other bit-image modes in
that the COLOR statement actually specifies a color, not a color register.
In mode 9, only one hue may be displayed although all 16 shades (lumi-
nences) of that hue may be shown simultaneously. In mode 11, only one
luminence may be displayed although all 16 hues in that shade may be
shown.

The following table summarizes the hue selection in mode 11 and the
luminence selection in mode 9. If argument is greater than 15, argument
modulo 16 will be used.

GRAPHICS MODES 9 and 11

COLOR’s argument MODE 9 MODE 11
0 darkest gray
1 gold
2 T orange
3 darker red-orange
4 red
5 T red
6 dark purple-blue
7 blue
8 blue
9 bright light blue
10 turquoise
11 1 green-blue
12 brighter green
13 1 yellow-green
14 orange-green

15 brightest light orange

216 Atari XE User's Handbook

Example 6

10 GRAPHICS 11

20 SETCOLOR 4,0,10

30 FORI=0TO 79

40 COLOR I/5

50 PLOT I,0:DRAWTO |,159
60 NEXT I

70 GOTO 70

In mode 9, color register 4 selects the hue of the display; likewise, in
mode 11, color register 4 selects its luminence.

Graphics modes 12 and 13 are somewhat an enigma. These are color
character graphics modes; however, their color selection process is not
similar to that of modes 1 and 2. COLOR, in modes 12 and 13 specifies a
character which in turn determines the color of the displayed data. In
other words, the character determines its own color; the COLOR state-
ment does not.

The Atari does not have a built-in character set which is compatible
with these modes. Unless the user is interested in defining his own charac-
ter set, modes 12 and 13 are generally not useful.

COM Statement

COM may be used interchangeably with DIM in dimensioning
strings, arrays and matrices.

Configuration

COM variable(range{ ,range)) [,variable(range[,range])]...

Example

10 COM PAT$(81), KAREN(84)

Atari BASIC Reference Guide 217

CONT (CON.) Statement

The CONT statement causes a program which had been stopped to
continue execution at the next numbered line. A program will be stopped
because of an error, RESET, BREAK, END, or STOP.

In any situation, the use of CONT will cause the rest of the current
line of code to be ignored. As a result, executing BREAK and CONT
during a program may cause serious problems. When a program is
stopped using BREAK, there is no way to be sure the program will
resume where it was stopped. Important steps may be interrupted or
skipped, or loops may be improperly exited.

A program can be continued after an error, but the entire line of the
error will be skipped.

A program can be continued after a RESET, but this will generally
have negative results for the following reason: All I /O will be closed; the
screen will be cleared; graphics mode 0 will have resumed; etc.

Configuration

CONT

Example

10 PRINT “PUPPY"
20 STOP

30 PRINT "LOVE"
RUN

PUPPY

STOPPED AT LINE 20
CONT
LOVE

READY

In the preceding example, the computer’s responses are set in bold
type to differentiate them from user entered lines.

218 Atari XE User's Handbook

COS Function

The COS function returns the cosine of its argument. The argument
will be assumed in radians unless a DEG statement precedes the COS
statement. In this case, the argument is assumed in degrees.

Configuration

COS(argument)

Example

10 DEG

20 X = COS(180)
30 PRINT X
RUN

-1

CSAVE (CS.)) Statement

The CSAVE command is used to copy the program in the computer’s
memory onto cassette tape. Only CLOAD can be used to read a program
that was stored using CSAVE.

When the tape is properly positioned, enter CSAVE. The tone will
sound twice as a signal to press the cassette recorder’s PLAY and
RECORD keys, followed by pressing RETURN on the Atari keyboard.

If filenumber 7 had been open for another device, an error will occur,
but the file will be closed. A repeat of CSAVE will then be successful.

Configuration

CSAVE

CSAVE may be used as a program line, although this is rarely done.

Example

10 CSAVE

Atari BASIC Reference Guide 219

DATA (D.) Statement

The DATA statement supplies a list of information that is used in a
program through READ statements. A DATA statement can include
numeric values, string values, or both.

Data items are separated by commas. Therefore, string values that
contain commas will be read as separate data items. For example, DATA
DOE,JOHN is a DATA statement with two data items. However, DATA
DOE. JOHN has only one item.

Configuration

DATA constant [,constant]...

Data must be read into the correct type of variable. A string variable
can accept data in any form.

Example 1

10 DIM A$(20)

20 FORI=1TOS5

30 READ A$:? A$

40 NEXT |

50 DATA TOM C.,25,,3 + 4 * %,247
RUN

TOMC.

25

3+4*%

247

The preceding example shows correct data for a string variable.
Notice the blank line in the output that corresponds to the two commas in
arow. Thisis read as a string value with no characters and length equalto
zero.

If only 4 data items had been supplied with this program, the
message: ERROR-6 AT LINE 30 would have been displayed to notify the
user that not enough data was supplied.

220 Atari XE User's Handbook

Numeric variables can only accept numbers as input. Standard
notation and scientific notation are both acceptable. For example,
3,14159266, 2.85E-10, .0001, 35, and 45 are all acceptable data items.
Expressions will not be evaluated. They will cause an Error-8 (Input
statement error). Numeric data must not include commas.

Example 2

10 DIM A$(10)

20 FORI=0TO 4

30 READ A$,A

40 PRINT A$,A

50 NEXT |

60 DATA PENCILS,20,PENS,25,RULERS,40,ERASERS,50,
PAPER,200,GLUE,5

The preceding example shows a correct sequence for reading string
and numeric data into correct variables. However, the READ statement
is only called S times, and there are 6 sets of data. This will not cause an
error, but the last set of data (GLUE,5) will never be read.

DATA statements can appear anywhere in a program, even after an
END statement. However, any statement that follows a DATA statement
on the same line will not be executed.

Ordinarily, data can only be read once. A RESTORE statement may
be used to alter the data reading sequence or to reread data if necessary.

DEG (DE.) Statement

The DEG statement causes the trigonometric functions to be per-
formed in degrees instead of radians. The functions will be performed in
radians until degrees are specified. Also, radians will be used after a
RESET, NEW, or RUN command.

Afari BASIC Reference Guide 221

Configuration

DEG

Example

10 DEG

20 PRINT SIN(90)
RUN

1

The example shows that the sine of 90° is 1. If the DEG statement
had not been present, the result would have been 0.893997024.

DIM (DI.) Statement

The DIM statement is used to set aside memory space for strings,
arrays or matrices.

Configuration

DIM variable (range[,range])[,variable(range[,range])]...

A DIM statement can include any combination of numeric and
string variable dimension statements. For example, the following state-
ment dimensions four variables in one statement:

DIM A(10,10),B(69),A$(255),B$(10)

A string variable can contain only a single string. The range of a
string variable indicates the maximum number of characters that the
string can contain.

222 Atar XE Users Handbook

Example

10 DIM A$(10)

20 READ A$

30 PRINT A$

40 DATA INDEPENDENCE DAY
RUN

INDEPENDEN

The preceding example shows that the string variable A$ is dimensi-
oned to 10 characters at line 10. However, during the program, AS is
assigned a 16 character string with the READ statement at line 20. Since
room for only 10 characters was set aside in memory, only the first 10
characters of the DATA item are assigned to A$. The PRINT statement in
line 30 displays the contents of A$. It can be seen from the output that A$
only has 10 characters.

The DIM statement must be executed before an INPUT or READ
occurs. If the DIM statement of the previous example was deleted, the
following message would occur:

ERROR-9 AT LINE 20

ERROR-9 is the string dimension error. This error also occurs if a
variable is dimensioned twice in the same program (without an interven-
ing CLR).

The maximum size of a string variable depends on the amount of
available memory at the time of the DIM statement. Also, a string’s
length may not exceed 32767 characters.

Dimensioning a numeric variable determines the number of ele-
ments that the variable can contain. Each element is an independent
entity that may take a value from -9.9 x 1097 to +9.9 x 1097. The following
example shows how to assign four values to a subscripted variable:

Atari BASIC Reference Guide 223

Example

10 DIM ARRAY(3)

20 FORI1=0TO3

30 READ X:ARRAY(l) = X
40 NEXT |

50 FOR1=0TO 3

60 PRINT ARRAY(l)

70 NEXT |

80 DATA 12,14,13,15

RUN

12 14 13 15

Notice that four values can be assigned to a variable that has a range
of 3. This is possible because each array’s initial element has a subscript of
0. The array can be represented as a table of values as shown in the
following illustration:

The range in the DIM statement indicates the largest subscript that
can be used.

It should be noted from the example (line 30) that subscripted
variables cannot be used in a READ statement. As a result, a separate
statement is needed to assign the subscripted variable. The assignment
statement can be on the same line (as shown here) or on a separate line.

Numeric variables can also be used with two subscripts. This results
ina two dimensional array, or matrix. For example, if X is dimensioned in
the statement DIM X(3,2), the following table would result:

W N = 0O

224 Atari XE User's Handbook

DOS (DO.) Statement

The DOS command is used to display the DOS utilities menu. DOS
must be present if the DOS command is to be used. If DOS is not present,
the system will be put into the self-test mode. To return to BASIC from
the self-tests, press RESET.

Configuration

DOS

When the DOS command is executed, all I/O is closed except
filenumber 0. The display is cleared and the sound voices are shut off.
Also, the color registers resume their default values.

The Disk Operating System menu is a list of the disk functions.
There are three versions of the Disk Operating System, version 1.0,
version 2.0S, and version 2.5. The DOS command has a different effect in
each of the three versions.

Inversion 1.0, the DOS menu appears on the display as soon as DOS
is executed.

(")
DISK OPERATING SYSTEM 9/24/79
COPYRIGHT 1979 ATARI
A. DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FiLE M. FUN AT ADDRESS
F. LOCK FILE N. DEFINE DEVICE
G. UNLOCK FILE O. DUPLICATE FILE
H. WRITE DOS FILE

\. J

Atari BASIC Reference Guide 225

A program that is in memory will not be affected by a DOS state-
ment in version 1.0. However, disk operations J or O will erase the
contents of the memory. For example, if a program is in memory, and a
DOS command is executed, followed by DUPLICATE DISK or
DUPLICATE FILE, the program will be gone when the system returns to
BASIC.

f)
DISK OPERATING SYSTEM Il VERSION 2.0S
COPYRIGHT 1980 ATARI
A. DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FILE M.RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SAV
G. UNLOCK FILE O. DUPLICATE FILE
H. WRITE DOS FILES

. J

In DOS 2.0S, DOS consists of 2 files, DOS.SYS and DUP.SYS.
DUP.SYS must be present on the diskette in drive 1 or the Atari will
return to BASIC. DUP.SYS was a portion of memory where BASIC
programs normally reside. In order to save any BASIC program residing
in this area of memory, the Atari will save that program onto the MEM .-
SAV file on drive 1 -- if that file exists.

Once these operations have been completed, the DOS utilities menu
will appear. You can return to BASIC by choosing menu item B or by
pressing the RESET key.

226 Atar XE User's Handbook

é)

DISK OPERATING SYSTEMS Il VERSION 2.5
COPYRIGHT 1984 ATARI CORP.

A. DISK DIRECTORY |. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCKFILE N. CREATE MEM.SAV
G. UNLOCK FILE O. DUPLCIATE FILE

H. WRITEDOS FILES P. FORMAT SINGLE

In DOS 2.5, asin DOS 2.0, the DOS consists of two files. However, if
DOS 2.5 is used on the 130XE with the RAM disk program, a disk with
DUP.SYS need not be in drive one. The computer will use the DUP.SYS
file on the RAM disk.

In addition, the MEM.SAV need not be present in drive one if it is
present onthe RAM disk. All other operations are explained in chapter 7
of this text.

DRAWTO (DR.) Statement

The DRAWTO statement is used in the graphics modes to draw a
line. The arguments of the DRAWTO statement indicate the column and
row where that line ends.

Atari BASIC Reference Guide 227

Configuration
DRAWTO column,row

Both arguments of a DRAWTO statement must be positive, and if
they are not integers, they will be rounded off. The arguments must also
lie within the range of the display. For example, GRAPHICS 3 has 40
columns and 24 rows, numbered 0 through 39 and 0 through 23, respec-
tively. DRAWTO 40,20 would result in ERROR-141. DRAWTO 40,20
contains an argument that lies outside the range of the display.

A DRAWTO statement must occur after a PLOT statement. PLOT
determines the starting point of the line, and DRAWTO determines the
end point. A DRAWTO statement can follow another DRAWTO state-
ment, if the first DRAWTO is preceded by a PLOT statement.

Example 1

10 GRAPHICS 3
20 COLOR1

30 PLOT 5,5

40 DRAWTO 10,5
50 DRAWTO 10,10
60 DRAWTO 5,10
70 DRAWTO 5,5

A DRAWTO statement that follows another DRAWTO statement
will use the end of the last line to start the new line. The preceding
example began by plotting a point at line 30, then proceeded to draw the
four sides of a square in lines 40, 50, 60, and 70.

The DRAWTO statement can also be used in graphics modes 0, 1,
and 2. However, the PLOT statement in the text modes (0, 1, and 2) places
a character on the display. The COLOR statement determines the charac-
ter that is printed. As a result, the DRAWTO statement in the text mode
creates a line of characters.

228 Afari XE User's Handbook

Example 2

10 GRAPHICS 2
20 COLOR 65
30 PLOT 0,0

40 DRAWTO 9,9

Example 2 specifies graphics mode 2 in line 10. Line 20 indicates the
character that appears on the display. The PLOT statement in line 30
places an orange, uppercase A at column 0, row 0. The DRAWTO
statement makes a diagonal line, consisting of the character A. The
characters appear at the positions (0,0), (1,1), (2.2), ... (9.9).

The line drawn with a DRAWTO statement is either composed of
picture elements or characters. When a diagonal line is drawn using
PLOT and DRAWTO, the line appears in steps. This occurs because the
line is drawn with characters or picture elements that are relatively large.

()
R

e W

\ J

A “line” drawn with PLOT and DRAWTO

END Statement

An END statement ends the execution of the program. An END is
not necessary at the end of a program because execution stops automati-
cally after the last line of code. However, it is good programming tech-
nique to conclude BASIC programs with an END statement.

Configuration

END

Atari BASIC Reference Guide 229

When an END statement is executed, all I /O will be closed except
filenumber 0, and all sound will be turned off. Also, if a full screen
graphics mode had been active, graphics mode 0 will be activated.

Example

10 INPUT X

20 IF X <=10 THEN END

30 PRINT "X IS LARGER THAN 10"
40 GOTO 10

The previous example will end only if a value of X is entered which is
less than or equal to 10.

ENTER Statement

ENTER is used to recover programs that have been saved on a
cassette or disk. ENTER can only be used to load programs that were
saved with the LIST statement.

Configuration

ENTER “filespec”

When an ENTER statement is executed, the computer’s memory is
not erased. As a result, the new program being loaded will be put into
memory together with any existing program lines. For example, if the
program in memory contains line numbers 10, 20, 30..., and the program
being loaded (using ENTER) contains line numbers 5, 15, 25, 35,..., the
resulting program in RAM will include the line numbers from each of the
two programs.

ENTER does not alter the program in memory unless the program
being entered has the same line numbers as the program being loaded. For

230 Atari XE User's Handbook

example, if the program in memory contains line numbers 10, 20, 30, 40,
50, and 60, and the program being entered contains 10, 20, 30, 45, 55, 70,
80, and 100, the new program in memory will contain all of the newly
entered program, but only lines 40, 50, and 60 of the original program.
The original lines 10, 20, and 30 in RAM will be replaced with lines 10, 20,
and 30 being loaded from cassette or disk. Lines 40, 50, and 60 of the
original program remain unchanged.

ENTER is the only Atari BASIC statement that can recover a
program without clearing the memory first.

When ENTER is used with the program recorder, the tape must be in
the correct position prior to execution. When the ENTER statement is
executed, the tone will sound once to remind the operatorto press PLAY
on the recorder. The recorder will be activated after the RETURN key on
the keyboard has been pressed.

When ENTER is used with a disk, the DOS must have been booted
first. If a drive other than drive #1 is being used, the number of the drive
must be specified.

Example

ENTER “C”
ENTER "D2:JONES”

EXP Function

The EXP function returns the exponential of the argument. The
exponential is the value of e (approximately 2.71828179) raised to the
power of the argument.

Configuration

EXP(argument)

Example

PRINT EXP(5)
148.413155

Atari BASIC Reference Guide 231

FOR (F.)...NEXT (N.) Statement

The FOR..NEXT statements are used to execute a sequence of
commands a set number of times.

Configuration

FOR variable = start TO stop [STEP increment]

NEXT variable

variable is a numeric variable that is used as a counter. start, stop,
and increment are numeric expressions or constants. szarf is the initial
value of the counter and stop is the final value. The counter is increased or
decreased depending on the sign of increment. If increment is omitted, it
will be assumed as 1. Every FOR statement must have a corresponding
NEXT statement.

The program lines following the FOR statement will be executed
until the NEXT statement is encountered. At this point, the counter’s
value is increased by the STEP value. The value of the counter is then
compared with its final value. As long as the counter’s value does not
exceed stop (assuming a positive increment), the program will branch
back to the statement following the FOR statement. The entire process
will then be repeated.

Example 1

100 FORI1=1TO5
200 PRINT I;

300 NEXT I

RUN

12345

In the previous example, the FOR..NEXT loop is repeated five
times. Although line 200 is the only statement inside the loop, any number
of program lines could have been placed there.

232 Atari XE User's Handbook

In line 100, I is assigned the value 1. When the NEXT I statement is
executed, the program returns to the FOR statement with its value
incremented by one. This loop is repeated until I is set equal to 6. When
the counter is set equal to 6, note that the body of the loop is not executed.
The program will proceed with the statement following NEXT I. In the
preceding example, no program lines follow the NEXT statement; there-
fore, program execution halts.

A FOR..NEXT loop can use a STEP statement to increment the
counter by a value other than 1.

Example 2

10 FORJ=1TO 2STEP 5
20 PRINT J,

30 NEXT J

RUN

1 1.5 2

The preceding example contains a FOR...NEXT loop which incre-
ments the value of J by .5 each time the loop is executed.

A FOR...NEXT loop can also be used to decrease the value of the
counter. This can be accomplished by using the optional STEP statement
within the FOR statement. If the STEP statement has a negative argu-
ment, the counter is decreased each time the loop is executed. The
following example illustrates a FOR...NEXT loop where the counter is
decremented rather than incremented.

Example 3

10 FORK=10TO 5 STEP -2
20 PRINT K,

30 NEXT K

40 PRINT

50 PRINT K

RUN

10 8 6
4

This loop begins at line 10 by assigning the counter (K) the value 10.
At line 20 the value of K is printed. When line 30 is encountered,
execution continues at line 10, because the NEXT statement returns the

Atari BASIC Reference Guide 233

program to the preceding FOR statement. The value of the counter is
changed by the argument of STEP. Since the STEP value is -2, the
counter is decreased by 2. The value of the counter is changedto 8. Atline
20, the new value of K is printed. Line 30 is executed again, so the
program returns to the FOR statement at line 10. The counter is again
decremented by 2. The new value of K is 6. At line 20, this K value is
printed.

When line 30 is executed again, the program returns to line 10. The
current value of the counter is decremented by 2. The new value of K is 4,
This K value is less than the stop value of 5, so execution of the program
branches to the statement immediately following the NEXT statement in
line 30.

If the counter of a loop is being incremented, the loop will be
executed until the counter exceeds the final value. For example, FOR J=1
TO 4 STEP 2 would cause the body of the loop to be executed twice. The
final value of J would be 5.

A FOR...NEXT loop should be executed as if it were a single
statement. An attempt to branch into a FOR...NEXT loop will cause an
error.

Example 4

10 GOTO 30

20 FOR1=1TO 10

30 PRINT I

40 NEXT |

RUN

ERROR-13 AT LINE 40

In general, branching out of a FOR...NEXT loop will not cause an
error. However, exiting a loop before it has completed should be avoided.
The statement POP facilitates exiting a FOR...NEXT loop prematurely.

234 Atar XE User's Handbook

FRE Function

The FRE function returns the number of bytes of memory available.
The FRE function requires an argument, but argument has no effect on
the value returned.

Configuration

FRE(argument)

Example

PRINT FRE(0)
10109

GET (GE.) Statement

The GET function reads 1 byte from a channel that has been opened
for input. GET is used with the keyboard, display, cassette unit, disk
drive, RS232 port, and printer.

Configuration

GET # filenumber, variable

Jilenumber indicates the data channel that will be used. This channel
must be previously specified in an OPEN statement. If filenumber is not
an integer, it will be rounded off. variable will be assigned the value read
from the channel. This value will be an integer between 0 and 255.

Example 1

10 OPEN #3,4,0,"C"
20 FORJ=1TO 100
30 GET #3, X

40 PRINT CHR$(X)
50 NEXT J

60 CLOSE #3

Atari BASIC Reference Guide 235

The previous example shows the correct format for using a GET
statement. Line 10 opens the data channel and specifies filenumber 3 for
input with the cassette unit. filenumber can be any number from 1
through 7, but the channel must not be open for another device. The
second argument of the OPEN statement (4) indicates that the device will
be used for input.

Line 20 is the first line of a FOR...NEXT loop. The loop ends with
the NEXT statement at line 50. The initial value of the counter (J)is1,and
the final value is 100. The counter is incremented by 1 each time the loopis
executed, so the loop will be executed 100 times. Lines 30 and 40 both
appear inside the loop (between FOR and NEXT). As a result, lines 30
and 40 are repeated 100 times. Each time line 30 is executed, an integer
between 0 and 255 is assigned to the variable X. Line 40 prints the
character that has the ASCII code specified by X. Line 60 closes the data
file.

GET is used with the disk in the same fashion as it is used with the
cassette unit. However, the OPEN statement must include a file specifica-
tion. The first argument of the OPEN statement is a filenumber. The
second argument is the operation being performed. GET can be used with
the disk if the OPEN statement has a second argument of 4 (input), 12
(input and output), or 13 (input and output). For example, OPEN #2, 12,
0,”D:BUDGET"”is a correct OPEN statement for using GET with a disk.
GET assigns the next byte read from the disk to the variable specified in
the GET statement.

The GET statement can also be used with the keyboard. An OPEN
statement must be executed before the GET statement is encountered.
The first argument of the OPEN statement is the number of the channel
that is not already OPEN. The second argument of the OPEN statement
must be 4 (input). The third argument is generally 0. The device code “K
is the fourth argument.

With the keyboard, a GET statement causes the program to wait for
one keystroke. When a key (or combination of keys -- ex. CONTROL-A)
is pressed, the ASCII code of the character is assigned to the variable in
the GET statement.

236 Atari XE User's Handbook

Example 2

10 OPEN #3, 4, 0, "KEYBOARD"”
20 GET #3, CHAR

30 PRINT CHR$(CHAR);

40 GOTO 20

The preceding example consists of a program that uses the GET
statement with the keyboard. Line 10 opens filenumber 3 for keyboard
input. In line 20, the GET statement assigns the ASCII value of a
character to the variable CHAR. Line 30 displays the character on the
screen. When the program is executed, line 10 opens the I/O channel,
then the program waits at line 20. When a keystroke occurs, the program
continues.

The GET statement can also be used with the display. An OPEN
statement must precede the GET statement. The OPEN statement speci-
fiesan1/O channel that is not currently open. The second argument must
be 4 (input) or 12 (input and output), and the device must be “S”, With the
display, the position of the cursor determines the character or picture
element to which the GET statement applies. The GET statement
retrieves the COLOR information at that point. The cursor advances to
the next position after a GET statement has been executed.

Example 3

10 OPEN #3, 4, 0, "SCREEN"
20 GRAPHICS 2

30 COLOR 65

40 PLOT 0,0

50 POSITION 0,0

60 GET #3, X

70 PRINT X

80 CLOSE #3

Example 3 consists of a program that uses GET with the display.
Line 10 opens filenumber 3 for input from the display (device “S™). Line
20 specifies graphics mode 2. Line 30 indicates the character and color
that is displayed. COLOR 65 indicates an uppercase A in color

Atari BASIC Reference Guide 237

register 0. Since SETCOLOR is not used in this program, the character s
orange, the default color. The PLOT statement at line 40 places the
character at the upper left corner of the display. Line 50 moves the cursor
to the same position as the character (0,0). The GET statement at line 60
assigns the COLOR information to the variable X. The filenumber in the
GET statement must be the same as the filenumber in the OPEN state-
ment. Line 70 displays the COLOR information (65) on the display, and
line 80 closes the 1/O channel.

Whenever a GRAPHICS command is executed, Atari BASIC opens
Jilenumber 6 to the screen device. Since the screen is already opened on
Jilenumber 6, it need not markedly be reopened under a new Sfilenumber.

Example 3 could be revised as follows:

Example 4

20 GRAPHICS 2
30 COLOR 65
40 PLOT 0,0

50 POSITION 0,0
60 GET #6,X

70 PRINT X

80 END

GET can also be used with the screen editor (device“E”). The OPEN
statement must include an unused I /O filenumber. Also, the OPEN
statement must have operation code 4 (input) or 12 (input and output).
Since the screen editor uses the keyboard for input, the GET statement
has nearly the same function with devices “K” and “E”. The GET state-
ment assigns the ASCII code of a keystroke to the variable specified in the
statement. The program waits for input from the keyboard before it
continues. However, when a GET statement is executed, the character
from the keyboard must be followed by RETURN.

Example 5§

10 OPEN #3, 4, 0, "EDITOR”

20 GET #3, X

30 PRINT X

40 CLOSE #3

RUN

(Press “S” followed by RETURN)
83

238 Atar XE Users Handbook

In the preceding example, line 10 opens filenumber 3 for input from the
screen editor. When the screen editor is accessed, the screen is cleared.
The program will wait at line 20 for input from the keyboard. If more than
one character is entered, an error results.

The GET statement only accepts one character, followed by
RETURN. If only one character is entered, the GET statement assigns
the ASCII code of that character to the variable X. Line 30 displays the
value of X which is 83, since the ASCII code of S is 83. Line 40 closes the
1/O channel.

If the editor is opened in the forced-read mode, the GET statement
does not require that RETURN be pressed. The forced-read mode is
activated when the operation code of the OPEN statement is 5 (input) or
13 (input and output).

Example 6

10 OPEN #3, 5, 0, "EDITOR"
20 PRINT "A”

30 POS 2,0

40 GET #3, X

50 PRINT X

60 CLOSE #3

RUN

65

GOSUB (GOS.) Statement

GOSUB branches program control to the subroutine beginning at
the linenumber specified by its argument.

Configuration

GOSUB linenumber

Atari BASIC Reference Guide 239

Subroutines can be called from any part of a program. A RETURN
statement, at the end of a subroutine, causes the program to resume
execution with the statement directly after the GOSUB statement.

Subroutines are convenient to use when the same set of operations
need to be repeated at different parts of a program.

Example

10 FORJ=0TO 2
20 GOsSUB 100
30 NEXT J

40 J=5

50 GOSUB 100
60 END

100 PRINT J;

110 RETURN
RUN

0125

The preceding example illustrates a subroutine that is called four
times, from two different parts of the program. In this example, only one
statement is included in the subroutine. However, many statements can
be included in a subroutine.

Line 10 begins a FOR...NEXT loop. The counter (J)issetequalto0
the first time through the loop. Line 20 calls the subroutine at line 100. As
aresult, line 100 is executed next. The subroutine prints the value of J and
proceeds to line 110. At line 110, the program is returned to the point
where the subroutine was called (line 20).

The statement at line 30 is then executed. The NEXT statement
causes the loop to be incremented and repeated. The counter (J) is set
equalto I, and the subroutine is called again from line 20. At line 100, the
value of J is printed. Line 110 returns the program to line 20.

These steps are also repeated for J = 2. When the loop has been
executed three times, the program will proceed to line 40. J is assigned the
value 5, and the subroutine is called again at line 50. The subroutine prints
the value of J. The program then returns to line 60 where it ends.

240 Atari XE User's Handbook

GOTO (G.) Statement

The GOTO statement causes the program to proceed at the indicated
linenumber.

Configuration

GOTO linenumber

Example

10 X=X +1
20 IF X2 > 50 THEN END
30 PRINT X;

40 GOTO 10

RUN

1234567

The previous example demonstrates the use of GOTO. Line 10
increases the value of X by 1. Line 20 ends the program when X squared is
greater than 50. When line 40 is executed, the program returns to line 10.
This program repeats lines 10 through 40 until the program is ended or
branched out of the loop. The program ends when X = 8 because 8
squared is greater than 50.

GRAPHICS (GR.) Statement

GRAPHICS sets one of the graphics modes.

Configuration

GRAPHICS argument

The GRAPHICS statement generally clears the screen display upon
execution. By adding 32 to the GRAPHICS statement argument, this
feature is suppressed.

In graphics modes 1-8, 12-15 a four line text window appears in the
bottom of the display. By adding 16 to the GRAPHICS statement
argument, the text window will be suppressed.

Atari BASIC Reference Guide 241

Example

GRAPHICS 49

The preceding GRAPHICS statement sets graphics mode 1 with the
screen clearing and text window features suppressed.

IF...THEN Statement

The IF...THEN statement exploits the decision making power of
your computer by setting up a condition that will influence the program
flow.

Configuration

IF expression THEN statement [:statement]...

The expression that follows IF can be either logical or algebraic. Any
non-zero algebraic expression is considered true. statement can be any
valid BASIC statement. If expression is evaluated as true, then statement
will be executed. If statement is a number then a GOTO that line number
will be executed (assumed GOTO).

Example 1

10 X =15

20 Y =30

30 IF X>10 AND Y > 20 THEN 50

40 PRINT "CONDITIONS NOT MET”:END
50 PRINT "CONDITIONS HAVE BEEN MET”
RUN

CONDITIONS HAVE BEEN MET

242 Atar XE User's Handbook

The preceding example shows two logical expressions and a logical
operator inthe IF... THEN statement (line 30). The AND will only be true
when both conditions have been met. Since X = 15 (line 10) and Y = 30
(line 20), both of the conditions of line 30 are true. As a result, the
program branches to line 50. At line 50, the message CONDITIONS
HAVE BEEN MET is printed. An END statement is used in line 40 to
prevent both messages from being printed when the IF statement is false.

AnIF... THEN statement can also be followed by statements instead
of a line number.

Example 2

10Y=5
20 X =10
- 30 IF X <100 THEN PRINT X:PRINT Y
RUN
10
5

Example 2 shows that statements can follow a THEN statement,
separated by colons. If the expression is true, the statements are executed.
If the expression is false, the program will continue at the next line, and
the statements after the THEN statement are ignored. Since X=10 (line
20), the expression at line 30 (X < 100) is true. As a result, the statements
after THEN are executed, and the values of X and Y are printed.

The following example illustrates the use of algebraic expressions.
An algebraic expression is true when it does not equal zero.

Example 3

10 FORI=-2TO 2

20 IF NOT | THEN END
30 PRINT |

40 NEXT |

RUN

-2

-1

Atari BASIC Reference Guide 243

The preceding example contains a program that ends when the
expression is true. The expressionis NOT 1. NOT I is true when I is false,
and I is false when I is set equal to zero. When I has any value other than
zero, it is true.

Line 10 begins a FOR...NEXT loop. The first time the loop is
executed, I is set equal to 2. Line 20 is an IF... THEN statement with the
expression NOT I. When I is set equal to -2, it is considered true because it
is not equal to zero. Since I is true, NOT I is false.

The expression at line 20 is false, so the program does not end. Line
30 is executed next, so the value of I is printed. Line 40 returns the
program to line 10, where the counter (I) is incremented by 1. I is set equal
to-1,solisstill true. Since [is true, NOT 1 is false. The expression of line
20 fails, so the value of I is printed.

When the loop is executed the third time, I is set equal to zero. I is
false, so NOT I is true. Since NOT I is true, the program is ended at line 20.

INPUT (1.) Statement

The INPUT statement permits data entry while the program is being
executed.

Configuration

INPUT variable [,variable]...

When an INPUT statement is executed, program execution will stop
temporarily. A question mark will be displayed on the screen. The user
may then enter the desired data at the keyboard. This data is assigned to
the variable(s) listed in the INPUT statement.

The correct format for numeric data is standard notation or scien-
tific notation. Spaces can appear before or after a numeric value, but
spaces within a numeric value cause an error. Numeric data can be
entered on the same line, separated by commas.

244 Atar XE User's Handbook

Example 1
54, 4ES5, -10
-3.45E-10
0,1,1,5,3,10

Expressions cannot be used as numeric data with INPUT. Any
format other than standard floating point decimal or scientific notation
causes an error. Each line of numeric data must be followed by an
end-of-line character (RETURN).

String data must also be followed by an end-of-line character. Only
one string data item can occur on a line. Also, a string data can be read
only into dimensioned string variables. If the length of a data item is more
than the dimensioned length of the variable, the excess characters are
eliminated, but no error occurs. Any character can be a part of a string
data item for INPUT (including commas and special graphics characters).

Example 2

10 DIM X$(10)

20 INPUT X, X$

30 PRINT X$, X

40 RUN

? 45,JONES,BILL
JONES,BILL 45

In the preceding example, line 10 dimensions the string variable for
10 characters. Line 20 is an INPUT statement that requests a numeric
value to assign to X, and a string value to assign to X$. When the program
is executed, the INPUT statement causes the program to wait at line 20
for input. The user responds with two data items. The value 45 is entered
for a value of X. The string value JONES, BILL is entered for a value of
X$. These two data items could be entered on separate lines. Notice that
the comma in the string value does not separate data items.

Atari BASIC Reference Guide 245

INPUT# (1.%) Statement

The INPUT# statement is used to read data items from a sequential
file or device and to assign those items to a program variable.

Configuration

INPUTH# filenumber, variable [,variable]...

Jilenumber is the number assigned to the file specification when it
was OPEN’ed. variable is the name of the variable that will be assigned a
data item from the device or file. The data items being read and assigned
to the variable(s) may either be from a sequential file on diskette or
cassette; from the keyboard; from the screen; or from the interface
module.

The INPUTH# statement can be used with the cassette unit to recover
data. When the cassette unit is used, an OPEN statement must be exe-
cuted before an INPUTH# statement is encountered. The OPEN statement
must include a filenumber, the operation code for input (4), and the
device code ("C”). The third argument of the OPEN statement is a special
function code, and is generally set to zero. If any of the arguments of an
OPEN statement are not integers, they will be rounded off.

The INPUTH# statement recovers data that was stored with the
PRINTH# statement.

Example 1

10 DIM A$(100)

20 OPEN #t1, 4,0, "C"
30 INPUT #1, A$

40 PRINT A$

50 CLOSE #1

The previous example contains a program that reads and displays
one string value. Line 10 dimensions the variable A$. Line 20 opens
filenumber 1 for input from the cassette unit. When line 20 is executed,

246 Atar XE User's Handbook

the tone sounds to remind the operator to find the correct position on the
tape, press PLAY on the cassette drive, then press RETURN on the
keyboard.

When line 30 is executed, one string value is read from the cassette
and assigned to the variable AS$. Line 40 causes the value of A$ to be
displayed on the screen. Line 50 closes the data file.

The INPUTH# statement can also be used to recover data that was
saved on a disk. The INPUTH# statement has the same configuration with
the disk and cassette. The INPUT# statement must include a filenumber
and variable names.

The OPEN statement for the data channel must include the file-
number and the operation code 4 (input), 6 (directory), 12 (update), or 13
(special update). The third argument of the OPEN statement is zero, and
the fourth argument is the file specification.

Example 2

OPEN #2, 4, 0, "D2:BUDGET.BAS"
OPEN #3, 12, 0, "D:NAMES”

If only one drive is in use, the device name is simply “D”. If two or
more drives are being used, the number of the drive must be specified.

The INPUTH# statement can also be used with the keyboard. The
OPEN statement must include a file number, operation code 4, auxiliary
byte 0, and the device “K™.

Example 3

10 DIM Y$(10)

20 OPEN #2, 4,0, "K"
30 INPUT #2, X, Y$
40 PRINT X, Y$

50 CLOSE #2

Example 3 contains a program that uses the keyboard for input. Line
10 dimensions the variable Y$. Line 20 opens filenumber 2 for input
from the keyboard. When line 30 is executed, the program waits for

Atari BASIC Reference Guide 247

input. However, no prompt symbol appears, and the data is not displayed
when it is entered. Line 40 displays the values of the two variables, and
line 50 closes the filenumber.

The first variablein the INPUTH# statement is X. Since X is a numeric
variable, a numeric data item must be entered first. The second variable in
the INPUTH# statement is Y$. Since Y$ is a string variable, a string data
item must be entered next. A comma can be used to separate the data
items, or each data item can be followed by RETURN.

INPUTH# operates in a similar manner with the screen editor (E),
screen device (S:), and RS232 module (R:). INPUT# will continually read
data bytes from a file or device until a carriage return is encountered.
These bytes are stored in the specified variable.

INT Function

The INT function returns the largest integer that is less than or equal
to the argument.

Configuration

X = INT(argument)

Examples

PRINT INT(13.9)
13
PRINT INT(-4.7)
-5

LEN Function

The LEN function returns the number of characters in a string value
or variable, including spaces and punctuation.

248 Afari XE Users Handbook

Configuration

X = LEN(string)

Example

10 DIM A$(20)

20 A$ = "JONES, BILL"

30 PRINT LEN(AS$)

40 PRINT LEN("BILL JONES")
RUN

11

10

Line 10 dimensions the variable A$, and line 20 assigns AS$ a string
value. Line 30 displays the number of characters in the variable A$. Line
40 displays the number of characters in the string "BILL JONES”.

LET (LE.) Function

The LET statement is optional. It is used to assign a value to a
variable.

Configuration

[LET] variable = expression

Example

10 A=4

20 LET COLOR =5
30 PRINT COLOR, A
RUN

5 4

Notice that the LET in line 20 is not optional, as is usually the case.
The BASIC interpreter would not accept the line without the LET,
because COLOR is a reserved word in Atari BASIC. If the interpreter

Atari BASIC Reference Guide 249

saw the following command, it would assume that a COLOR command
of incorrect syntax was entered:

20 COLOR =5
20 ERROR- COLORB>5

LIST (L.) Statement

The LIST statement is used to display or record information stored
in the computer’s memory.

Configuration

LIST [”ﬁlespec",][linenumber[,linenumber]]

The LIST statement can be used to save a program, or part of a
program, on a disk or cassette in the file indicated by filespec. The
ENTER statement is the only Atari BASIC statement that can recover a
program saved with LIST. The optional linenumber(s) indicate the sec-
tion of the program that is to be saved. If no linenumber is specified, the
entire program will be saved. If only one linenumber is specified, only that
line of the program will be saved. If both linenumbers are specified, the
section of the program between those lines is saved, inclusively. That is, if
either or both of the specified linenumbers are contained in the program,
they will also be saved.

A program is saved on a cassette tape with the statement LIST ”C”.
Before saving the program, the tape must be properly positioned. When a
LIST "C” statement is executed, the tone sounds twice to remind the
operator to press PLAY and RECORD on the cassette drive, followed by
RETURN on the keyboard.

DOS must be booted before a LIST statement can be used with a
disk. A program is saved on a disk with a statement of the form LIST”D
number:filename” followed by the appropriate linenumbers (if any).

250 Atari XE User's Handbook

Example 1

10 DIM A$(10)

20 FORA=1TO 100

30 PRINT A$, A2

40 IF A™2>500 THEN END
50 NEXT A

LIST "D:PROGR.BAS",5,45

In the previous example, the LIST statement saves lines 10 through
40 on the disk. The linenumbers that are specified (5 and 45) do not exist
in the program, so the section of the program with line numbers between
those values is saved.

The device code "D:” can be used only to reference drive #1. To
reference a drive other than drive #1, the number of the drive must also be
specified (ex. D2:PAT, D3:REBEL).

The LIST statement can also be used to display a program on the
monitor. The LIST command displays the entire program on the screen
unless the LIST statement is followed by linenumbers.

If one linenumber follows the LIST statement, the line of the pro-
gram with that number is displayed. If the program does not have a line
with the linenumber specified in the LIST statement, the LIST statement
has no result.

Example 2
LIST 20
20 FORA =1TO 100
READY

If both linenumbers are specified, those two lines are displayed along
with all the code between those lines. If either or both of the specified
linenumbers do not appear in the program, the section of the program
between those linenumbers is displayed.

The LIST statement can also be used with a printer. The statement
LIST ”"P:” causes the program in the computer’s memory to be listed on

Atari BASIC Reference Guide 251

the printer. The printer, or course, must be on-line.

The computer’s character set is slightly different from the printer’s,
so certain characters appear differently when printed. Also, the printer
interprets some of the control characters as commands. As aresult, when
control characters are printed, the printer may have an unusual response.
To avoid this problem do not use control characters within quotation
marks. Instead, use the CHRS function to generate special characters.

Example 3

PRINT "1 (ESC, CONTROL-*)
PRINT CHR$(31) (preferred)

The computer can only accommodate 128 variables. If the limit is
exceeded, ERROR-4 occurs. The computer maintains a variable name
table with the names of all variables used since the NEW command was
executed. As a result, the variable name table can accumulate variable
names that are no longer being used. The LIST statement is the only Atari
BASIC statement that saves a program without saving the variable name
table. As a result, the LIST and ENTER statements can be used to
eliminate unused variables from the variable name table.

Example 4

Save the program on cassette or disk using LIST.
Execute a NEW statement to clear the memory.
Put the program back into memory using ENTER.

LOAD (LO.) Statement

The LOAD statement can be used to recover programs recorded on
diskette or cassette tape with the SAVE statement.

252 Atari XE User's Handbook

Configuration

LOAD "filespec”

When the LOAD statement is executed, the computer’s memory will
be cleared before the new program is loaded. Also, all I/O (except
filenumber 0) will be closed, and the voices shut off.

With the cassette unit, LOAD does not require a filename; only
device name is necessary (“C”). When the LOAD ”C” statement is exe-
cuted, a single tone will sound to remind the operator to align the tape and
press PLAY onthe cassette unit. Pressing the RETURN key will start the
retrieval process.

With a disk drive, the LOAD statement must include a filename
along with the device name. When referencing any drive but drive #1, the
device name must also include the number of the drive. If drive #1 is being
referenced, the device name ”D:” is sufficient.

Example

LOAD "D2:GRADES”

LOCATE (LOC.) Statement

The LOCATE statement is used to obtain COLOR data from the
screen. This data will be returned through a numeric variable.

Configuration

LOCATE column,row,variable

columnand row are numeric expressions that determine from where
onthe screen the COLOR data is to be obtained. variable will be assigned
this data value.

Atari BASIC Reference Guide 253

A LOCATE statement is equivalent to the following two commands.
For this reason, LOCATE may not be used unless a GRAPHICS com-
mand has previously been executed.

POSITION column, row
GET #6, variable

Example

10 GRAPHICS 3
20 COLOR?2

30 PLOT 0,0

40 DRAWTO 35,0
50 LOCATE5, 0, X
60 PRINT X

The previous example consists of a program that uses the LOCATE
statement. Line 10 chooses a graphics mode 3. Line 20 indicates which
color register is used in the PLOT and DRAWTO statements. Since no
SETCOLOR statement was executed, the default color (green) is used.
The PLOT statement at line 30 illuminates a green picture element at the
upper left corner of the screen. The DRAWTO statement at line 40
illuminates the top row of the display in the same color. Line 50 is a
LOCATE statement that places the cursor at position 5,0. Since the line
was drawn from 0,0 to 35,0 the position 5,0 is an illuminated picture
element. The value of the COLOR data at that position is 2. The
LOCATE statement assigns the COLOR data value(2) to the variable X.
Line 60 is a PRINT statement that displays the value of X.

The DRAWTO and XIO statements have separate memory loca-
tions for the cursor position. As a result, a LOCATE statement has no
effect on the cursor position of a DRAWTO or XIO statement,

LOCATE moves the cursor by altering the values stored in memory
address 84 (current cursor row number) and memory addresses 85 and 86
(current cursor column number). The cursor position change as a result of
the execution of LOCATE will have no effect on DRAWTO and XIO
statements, as they use memory addresses 90,91, and 92 to determine the
next cursor address.

254 Arari XE User's Handbook

LOG Function

The LOG function returns the natural logarithm of the argument.
The natural log function is undefined for arguments less than or equal to
zero. Therefore, a value error results from a zero or negative argument.

Configuration

LOG (argument)

Examples

PRINT LOG(2.71828183)
1

PRINT LOG (-1)
ERROR- 3

LPRINT (LP)) Statement

The LPRINT statement sends a line of output to the printer.

Configuration

LPRINT [expression] [:] [expression]...

The LPRINT statement can include numeric variables names and
string variable names, as well as string constants. String constants must
appear in quotation marks.

The items in an LPRINT statement must be separated by commas or
semicolons. A semicolon causes the values to be printed on the same line
without any spaces. A comma causes the next item to be printed at the
next column stop location. A comma or semicolon is optional at the end
of an LPRINT statement. If a semicolon is used at the end of an LPRINT
statement, the next output will be adjacent to the last output. Ifacomma
is used at the end of an LPRINT statement, the next output occurs at the

Atari BASIC Reference Guide 255

next column stop after the last output. If neither a comma nor a semi-
colonis used at the end of an LPRINT statement, the next output occurs
on the next line.

When an LPRINT statement is executed, an error occurs if the
printer is not ready to operate.

The LPRINT statement uses filenumber 7. If filenumber 7 is open
when an LPRINT statement is executed, an error will occur.

Example

10 DIM A$(5)

20 A$ = "GREEN"

30 X=25

40 LPRINT "INVENTORY:":X,A$

In the previous example, LPRINT is used to print a string constant,
a string variable, and a numeric variable. The LPRINT statement at line
40 prints the word INVENTORY followed by a colon and a space. Any
characters that appear in quotation marks are reproduced as they appear.
A semicolon separates the items, so the value of X (25) follows the string.

A comma separates the variable names X and AS,sothe valuec of A$
is printed in the next display column.

NEW Statement

The NEW command eliminates the current program in the compu-
ter’s memory. The NEW command erases all variables, turns off all
voices, and closes all files except filenumber 0.

Configuration

NEW

NEXT (N.) Statement

The NEXT statement is always used in conjunction with a FOR
statement to form program loops. See the FOR statement for more
information.

256 Atfar XE User's Handbook

Configuration

NEXT variable

NOT Operator

The NOT operator logically compliments the value given in expres-
sion. It is generally used in an IF.. THEN statement.

Configuration

NOT expression

expression is a numeric constant or numeric expression. If the
expression evaluates to true (non-zero), false (zero) will be returned. If the
expression evaluates to false (zero), true (one) will be retained.

Example
10 X=2
20 IF NOT(X = 1) THEN PRINT ”“X"” DOES NOT EQUAL ONE"
30 END
RUN

X DOES NOT EQUAL ONE

NOTE (NO.) Statement

The NOTE statement returns the location of the file pointer for a
specified disk file. The NOTE statement is not available in version 1.0 of
the disk operating system although it is supported in versions 2.0S and 2.5.

Configuration

NOTE # filenumber , variablel, variable2

The NOTE statement must specify a filenumber that is presently
opened to a disk file.

With DOS 2.0S and DOS 2.5, the second argument is a numeric
variable that will be assigned the sector number of the file pointer. The
third argument is a numeric variable that will be assigned the byte number

Atari BASIC Reference Guide 257

of the file pointer within the specified sector.

ON...GOSUB,ON...GOTO Statement

The ON statement is used to branch program control. When used
with a GOTO statement, the ON statement branches program control to
one of several lines. An ON statement is also used with GOSUB to branch
a program to one of several subroutines.

Configuration

ON expression GOSUB linenumber [, linenumber]...
ON expression GOTO linenumber [, linenumber]...

The control expression determines to which line number the pro-
gram will proceed. If the control expression equals 1, the program
branches to the first linenumber after the GOTO or GOSUB. If the
control expression equals 2, the program branches to the second line-
number after GOTO or GOSUB, etc.

The control expression must evaluate between 0 and 255 to prevent
an error. If expression evaluates to zero or to a value greater than the
number of linenumbers specified, the program line following the ON
statement will be executed.

Example

10 X=2

20 ON X GOTO 30, 40, 50
30 PRINT "FIRST":END
40 PRINT "SECOND":END
50 PRINT "THIRD":END
RUN

SECOND

258 Atari XE User's Handbook

The previous example consists of a program that uses an ON...GOTO
branch. At line 20, the ON...GOTO statement branches to line 30, 40, or
50 depending on the value of X. Since X is assigned the value 2, the
ON...GOTO statement causes a branch to the second number. The second
choice is line 40, so the message SECOND is printed.

OPEN (0.) Statement

The OPEN statement is used to open an input/ output filenumber for
an input or output device. The computer cannot receive input from or
send output to a device unless an 1/ O filenumber has been opened for that
purpose.

Configuration

OPEN # filenumber,aux1,aux2, "filespec”

The first argument of an OPEN statement is the filenumber. file-
number can range from 0 through 7. filenumber 0 is always reserved for
the editor. filenumber 6 is used for graphics, while filenumber 7 is used to
save and load programs. filenumber 7 is also used with the LPRINT
statement.

As aresult, filenumbers 1 through 5 are available for use with BASIC
programs. filenumber 6 and 7 are available only on a limited basis for use
with BASIC programs. filenumber 6 is available if no graphics are used.
Jfilenumber 7 is available unless programs are being loaded or saved. Also,
Jilenumber 7 is unavailable if an LPRINT statement is executed.

aux] indicates the operation of the input/output device. In general,
aux] = 4if the computer is accepting information (input). Generally, aux]
= 8 if the computer is sending information (output) to a device. Table 8.3
contains a list of the I/O operations with their associated devices and
operation numbers.

Table 8.3 is not complete because the screen device has been dis-
counted. The use of the OPEN statement concerning the screen device
will be discussed in the latter part of this section.

Atari BASIC Reference Guide 259

Table 8.3 1/0 operations

Operation
Device Number (aux1) Operation Type
Cassette unit 4 input
8 output
Keyboard 4 input
Printer 8 output
Editor 4 input:keyboard
5 input:screen (forced read)
8 output:screen
12 input:keyboard
output:screen
13 input:screen (forced read)
output:screen
Disk 4 input
6 read disk directory
8 output, new file
9 output,append
12 input and output, update
Interface 5 concurrent input
8 block output
9 concurrent output
13 concurrent input and output

260 Atari XE User's Handbook

aux? is a device-specific parameter, and is usually set to 0. Generally,
aux? is only used when opening the screen display for a graphics mode.

The final argument of an OPEN statement is the file specification. A
file specification consists of a device and an optional filename (only with
disk device). The device names used by the Atari are listed below. In the
OPEN statement, the filespec must appear in quotation marks.

Cassette unit
Editor
Keyboard
Printer
Screen

Disk
Interface

ROV XMO

Cassette Unit

A filenumber can be opened for the cassette unit for either input or
output, but not both at the same time. When the OPEN statement is
executed, the tape must be at the correct location before proceding.

When an OPEN statement is executed for output to the cassette unit,
the tone sounds twice. This is a reminder for the operator to press PLAY
and RECORD on the cassette unit, followed by RETURN on the key-
board. For input, the tone sounds once to remind the operator to press
PLAY on the cassette unit, followed by RETURN on the keyboard.

aux2 in an OPEN statement for the cassette unit can be assigned
either 0 or 128. Files will be recorded with shorter gaps between the
records when aqux2 = 128.

When an OPEN statement is executed, and the correct levers on the
cassette unit are pressed, the cassette unit begins operating as soon as the
RETURN key on the keyboard is pressed. The tape keeps moving until a
set of data (128 bytes) is accumulated for output. While the data is being
accumulated, nothing is recorded on the tape. As a result, if a long delay
occurs from the period when the OPEN statement is executed to when the
information is recorded, a long gap will appear on the tape.

Atari BASIC Reference Guide 261

When a long section of blank tape (30 sec. or more) is encountered
during input, an ERROR-138 (Device timeout) occurs. To avoid these
errors, the device should be closed whenever a delay in the output
procedure occurs.

Keyboard

The OPEN statement for the keyboard can be for input only. When
the keyboard is used for input, the question mark does not appear as a
prompt for an INPUT statement. Also, the response to an INPUT
statement does not appear on the display.

aux2 of an OPEN statement for the keyboard is ignored.

Example 1

10 DIM A$(1)

20 OPEN #2, 4,0, "K:"
30 GRAPHICS 3 + 16
40 INPUT #2,A$

50 END

The previous example contains a program that maintains a graphics
display until input is received from the keyboard. Line 10 dimensions the
string variable A$. Line 20 opens the keyboard for input. Line 30 selects
graphics mode 19, which is the same as graphics mode 3, but without a
text window.

In order to maintain a full screen graphics display, the program must
pause, but not end. When a character is displayed, the display returns to
graphics mode 0.

When the INPUT statement is executed at line 40, the program waits
for an input, but does not ruin the display by printing the prompt (?) or
the response. As a result, the display is preserved until the operator enters
a suitable input for A$. The easiest response to the INPUT statement is
the RETURN key.

262 Atari XE User's Handbook

Disk

A filenumber can be opened for any of the disk I/ O operations listed
in table 8.3. When an OPEN statement for the disk is executed, DOS
must have been booted and ready to operate.

An OPEN statement for a disk file must include a filename and may
include an optional filename extention. If included, the filename exten-
tion must be separated from the filename by a period.

The statements in example 2 are correct OPEN statements for a
disk.

Example 2

OPEN #1, 4,0, "D2:GRADES.BAS”
OPEN #3, 12, 0 "D:JONES”

Printer

An 1/0 channel for the printer may only be opened for output. The
printer must be powered-up before an OPEN statement may be executed,
and, if used with the Atari 850 interface, the interface must also be
activated.

The third argument of an OPEN statement for the printer is gener-
ally 0. However, the Atari 820 printer outputs sideways characters if the
third argument is 83.

Editor

An OPEN statement for the editor allows the screen and keyboard to
be used for input and output. When an OPEN statement is executed for
the editor, the display resumes graphics mode 0, the screen is cleared, the
cursor is reset, and the color registers are set to the default values.

The editor can be used in one of three modes. The mode is deter-
mined by aux! of the OPEN statement (Table 8.3). The display is always
used for output, but the display or the keyboard can be used for input.

The third argument of an OPEN statement for the editor is ignored.
Even though this value has no effect, it must always be included in the
OPEN statement.

Alari BASIC Reference Guide 263

Example 3
10 OPEN #1, 13,0, "E:"
20 T=3.14
30 PRINTT
40 POSITION 0,0
50 INPUT #1, X
60 PRINT X
70 END

Example 3 contains a program that uses a display screen as an input
device. Line 10 opens 1/O filenumber 1 for the editor (device "E:”). The
second argument of the OPEN statement (13) indicates that the display is
used for input and output. The second line of the program assigns the
value 3.14 to the variable T. Line 30 causes the value of T to be displayed
on the screen. Since the OPEN statement clears the screen and resets the
cursor, the value 3.14 is displayed at the upper left hand corner of the
screen,

The POSITION statement at line 40 returns the cursor to the upper
left hand corner of the screen. The INPUT statement at line 50 chooses
the device on filenumber 1. As a result, the screen is used to input a value
for the variable X.

When an INPUT statement is used with the screen, the value that
follows the cursor is used for input. Since the value 3.14 appears at the top
of the screen, and the cursor is also at the top of the screen, the value 3.14
is assigned to X. Line 60 displays the value of the variable X.

The output of this program is the value 3.14 displayed twice. The
number is repeated because it is printed at lines 30 and 60.

Atari 850 Interface Module

An OPEN statement for a serial port of an Atari 850 Interface
module requires the device name ”R:”. The number of the port is also
necessary for ports 2 through 4. The first argument of the OPEN state-
ment is the filenumber. aux] determines the I / O operation, as listed in
Table 8.3. Although aux2 has no effect, it must appear in the OPEN
statement.

264 Atari XE User's Handbook

The interface module must be ready to operate when the OPEN
statement 1s executed. It will not operate unless it was turned on before
the computer console was turned on. Also, the interface module may not
operate properly until the appropriate XIO statements have been
executed.

Example 4 contains correct OPEN statements for the interface
module.

Example 4

OPEN #1, 5, 0, "R2:”
OPEN #2, 13,0, "R:”
OPEN #4, 8, 0, "R4:”

Screen

The OPEN statement for the screen device (S:) is used to configure
the display. aux] selects whether the screen may be used for input. The
screen device may always be used for output. Also, aux! determines if the
display has a text window and if the display is cleared when the OPEN
statement is executed aux2 selects the graphics mode.

Table 8.4. Screen 1/ 0 operations

OPERATION Text Clear
NUMBER OUTPUT INPUT WINDOW SCREEN
(aux 1)
4 (12) X X X
8 X X
20 (28) X X X X
24 X X X
36 (44) X X
40 X
52 (60) X X X
56 X X

Atari BASIC Reference Guide 265

Generally, when the screen is used with an OPEN statement instead
of a GRAPHICS statement, the PLOT and DRAWTO comands cannot
be used. Input is performed by the GET statement, while output is done
with either PUT or PRINT#. Each of these statements requires a file-
number that matches to the filenumber of the OPEN statement. How-
ever, if filenumber = 6, both PLOT and DRAWTO will be functional
regardless of how the screen was opened.

There are few exceptions to the rules given by Table 8.4. Graphics
modes 0, 9, 10, and 11 may have no text window. Also, the screen will
always clear when entering graphics mode 0.

Example 5

10 GRAPHICS 8

20 COLOR 1

30 PLOT 0,0

40 DRAWTO 10,10

50 OPEN #1, 60, 8, "S:"
60 POSITION 5,5

70 GET #1, X

80 PRINT X

90 END

Example 5 contains a program that uses the screen as an input
device. Line 10 has a GRAPHICS statement that indicates graphics
mode 8. Line 20 chooses the foreground color. Lines 30 and 40 draw a
small diagonal line in the upper left of the display.

Atline 50, the screen is opened as an 1/ O device. aux2 = 60 indicates
that the screen will be used for input and output, that a text window will
be present and that the screen will not be cleared (see Table 8.4). aux2
indicates graphics mode 8.

At line 60, the cursor is positioned at the location of 5,5. The GET
statement at line 70 assigns the color number at the cursor positionto the
variable X. Since the cursor is at location 3,5, the color number at that
location is 1. (5,5) is one of the points on the line between 0,0 and 10,10).
The PRINT statement at line 80 displays the value of the variable Xinthe
display window.

266 Atfari XE User's Handbook

OR Operator

OR is a logical operator. This reserved word is generally used to
combine two comparisons in the context of an IF.. THEN statement.

Configuration

expressionl OR expression2

If an expression is non-zero, that expression will be evaluated as
true. Likewise, an expression with a value of zero will be evaluated as
false. The following is the truth table for OR.

X Y XORY
true true true
true false true
false true true
false false false

In Atari BASIC, a true result is represented by a 1, and a false by 0.

Example
10 A=3
20B=5
30 IF (B<<A) OR (B=5) THEN 50
40 END

50 PRINT "EITHER B IS LESS THAN A"
60 PRINT "OR B IS EQUAL TO 5"

70 END

RUN

EITHER B IS LESS THAN A
ORBISEQUALTOS

Atari BASIC Reference Guide 267

In the preceding example, B is not less than A, but B is equal to 5.
Therefore, the whole OR expresson is true, and the program branches to
line 50.

PADDLE Function

The PADDLE function returns an integer between 1 and 228 that
depends on the rotation of a particular paddle.

Configuration

PADDLE (argument)

A total of 4 paddle game controllers may be used at one time. The
value of argument indicates the paddle number. If argument is not an
integer, it will be rounded. The paddles are numbered 0 to 3; however
PADDLE will accept argument in the range 0-255. If the PADDLE
function has an argument in the range 4-255, the results are unpredicable.
If a paddle is not present when the PADDLE function is executed, the
value 228 is returned.

The paddle controllers are only used in pairs. A pair of controllers is
plugged into one of the controllers jacks on the side of the computer. The
first jack accepts paddles 0 and 1. The second jack accepts paddles 2 and
3.

If a paddle is rotated fully clockwise, the value 1 is returned. The
value increases as the paddle is rotated counter-clockwise. The maximum
value returned is 228.

Example

10 IF PADDLE (1)=150 THEN END
20 GOTO 10

268 Atari XE User's Handbook

The previous example consists of a program that executes line 10
repeatedly until the paddle is rotated more than halfway counter-
clockwise. Since PADDLE (1) is specified, the paddles must be plugged
into controller jack 1.

PEEK Function

The PEEK function is used to recover the value in a memory
location.

Configuration

PEEK (argument)

A memory location contains an integer value between 0 and 255. The
argument of a PEEK statement refers to the memory location. A value
error occurs if the argument is negative or greater than 65535. If the
argument is not an integer, it will be rounded off.

Many memory locations are of general interest. The contents of a
memory location can be changed with a POKE statement. Appendix F
contains information about commonly used memory locations.

Example

PRINT PEEK (83)
39

The previous example displays the current value of the right center
margin screen. The default value is 39.

PLOT (PL.) Statement

The PLOT statement is used to illuminate a character or picture
element on the display. PLOT will output the data that has been selected
by the last COLOR statement.

Atari BASIC Reference Guide 269

Configuration

PLOT column, row

column and row are numeric expressions that determine the position
on the screen where the character or pixel will appear. The currently
active graphics mode determines the allowable value for column and row.
If either row or column is not an integer, it will be rounded. If either
argument is negative or greater than the dimensions of the screen, an
error will result.

Example

10 GRAPHICS 3

20 COLOR 2

30 FOR COL=0TO 39 STEP 3
40 FOR ROW=0TO 21 STEP 3
50 PLOT COL,ROW

60 NEXT ROW

70 NEXT COL

The previous example program illustrates the use of PLOT. Line 10
activates graphics mode 3; line 20 chooses color register 1. Since no
SETCOLOR statement has been executed, color register 1 remains at its
default value, green. Line 30 begins a FOR...NEXT loop that is executed
14 times. The value of its counter, COL, is successively set to 0, 3,6,
9,...39. The inner loop, beginning at line 40, is executed once for every
value of COL. During an execution of the inner loop, its counter, ROW,
is successively set t0 0, 3, 6, 9,...21. When all is said and done, the PLOT
statement in line S0 will be executed 112 times. Asa result, 112 pixels will
be plotted in a grid-like pattern on the screen.

POINT (P.) Statement

The POINT command sets the location of the file pointer for a
specified disk file. POINT is not available in version 1.0 of the disk
operating system although it is supported in versions 2.0S and 2.5.

270 Atari XE User's Handbook

POINT #filenumber, variablel, variable2

Configuration

The POINT statement must specify a filenumber that is presently

opened to a disk file.

With DOS 2.0S and DOS 2.5, variablel is a numeric variable that
sets the sector number of the file pointer. variable2 is also a numeric
variable. It sets the byte number of the file pointer within the specified
sector. Notice that both variablel and variable2 must be numeric
variables. They may not be numeric constants or expressions.

100
110
120
130
140
150
160
170
180
190
200

RUN

Example

DIM A$ (10)

OPEN #2,8,0, “D:JOE"
NOTE #2, WHERE, DUMMY
PRINT #2, “LIVES HERE”
CLOSE #2

OPEN #2,4,0, “D:JOE”
DUMMY=DUMMY+10
POINT #2, WHERE, DUMMY
INPUT #2, A$

PRINT A$

CLOSE #2

LIVES HERE

POKE (POK.)

Statement

The POKE statement is used to store one byte of information in a
particular memory location.

Configuration

POKE address, value

Atari BASIC Reference Guide 271

address specifies a memory location. If a POKE statement specifies a
memory location that does not exist, the POKE statement has no effect.
Also, if a POKE statement specifies a memory location that is part of the
ROM, the POKE statement has no effect.

The second argument of a POKE statement is the value that is to be
stored at the specified memory location. value represents one byte, and
therefore, must be an integer between 0 and 255.

If either of the arguments of a POKE statement is not an integer, it
will be rounded. A value error occurs if the address specified is greater
than 65535 or the value exceeds 255. An error also results if either of these
arguments are negative.

If the POKE statement is not used carefully, it can seriously disrupt
the operation of the computer.

Appendix F contains information regarding commonly used mem-
ory locations.

Example

POKE 83,20

The previous example consists of a statement that changes the right
margin of the screen to column 20. The value of the right margin is stored
in memory location 83.

POP Statement

The POP statement causes a program to ignore the most recent
GOSUB or ON...GOSUB statement. POP may also be used to prema-
turely exit a FOR...NEXT loop.

Configuration

POP

272 Atar XE User's Handbook

In effect, a GOSUB or ON...GOSUB statement is converted to a
GOTO or ON...GOTO statement when POP is executed. The program
“forgets” that it is in a subroutine. POP deletes the top entry on the
run-time stack.

Example

100 GOSUB 200

110 PRINT "PROGRAM FINISHED"
120 END

200 GOSUB 300

215 PRINT “"MIDDLE ROUTINE"
230 RETURN

300 POP

310 PRINT "LAST ROUTINE"
320 RETURN

RUN

LAST ROUTINE

PROGRAM FINISHED

The run-time stack contains the return addresses from the subrou-
tines. Before the program is executed the stack is cleared:

nothing on stack
\

The subroutine call in line 100 places the value of 110 on the stack. A
subsequent RETURN statement would continue program execution at
line 110.

after "100 GOSUB 200"
is executed

A\

Atari BASIC Reference Guide 273

From line 100, program execution continues with line 200. The
GOSUB, here, places a 215 on the run-time stack.

fter “200 GOSUB 300"
\ e is executed
gz

From line 200, program execution continues with line 300. The POP,
here, removes the top value from the stack.

i
\

after “300 POP”
é is executed
N

Line 310 prints the message "LAST ROUTINE”, then line 320
executes a RETURN. The RETURN statement gets the top value from
the stack, then resumes program execution at this line number. Therefore,
line 110 is executed, printing the message, "PROGRAM FINISHED”.
Line 120 ends the program. Notice that the POP statement caused the
program to forget the "MIDDLE ROUTINE”.

Likewise, a POP statement can be used to make the program ignore
the previous FOR statement. When POP is executed within a FOR...
NEXT loop, that loop will not be replaced. However, an error will occur
if a NEXT statement is executed for that loop. The correct way to exit a
FOR...NEXT loop is illustrated in the following example.

Example

10 FOR 1=1 TO 10

20 IF 1”™°3>500 THEN POP: GOTO 50

30 NEXT |

40 END

50 PRINT “THE CUBE OF”;l;” IS GREATER THAN 500"

274 Atar XE User's Handbook

POSITION (POS.) Statement

The POSITION statement moves the cursor to the specified column
and row.

Configuration

POSITION column,row

The cursor does not actually move when the POSITION statement is
executed. The cursor takes on the new position when the next PUT, GET,
PRINT, or INPUT statement is executed.

If a POSITION statement specifies a location that is outside the
range of the display, no error occurs until another statement that uses the
display is executed.

A POSITION statement does not affect the DRAWTO, PLOT, or
XIO functions. These operations maintain a separate cursor location.

Example

10 GRAPHICS 0
20 POSITION 5, 4
30 PRINT EXP(1)

The previous example contains a program that uses a POSITION
statement. The GRAPHICS 0 statement causes the display to be cleared.
Line 20 moves the cursor to column = 5 and row = 4. Line 30 prints the
output on the screen at the position of the cursor. As a result, the value
2.71828179 is displayed four lines from the top of the display and 5
columns from its left edge.

Atari BASIC Reference Guide 275

PRINT (PR. or ?) Statement

The PRINT statement is used to display data on the screen.

Configuration

PRINT [expression.] [i]-..
? [expression] [}]

The PRINT statement can include numeric variable names and
string variable names, as well as string and numeric constants. String
constants must appear in quotation marks.

Items within a PRINT statement must be separated byacommaora
semicolon. A semicolon causes the values to be printed on the same line,
without any spaces between items. A comma causes the next item to be
printed at the next column stop location.

If a semicolon is used at the end of a PRINT statement, the next
PRINT statement output will be adjacent to the last output. Ifa comma is
used at the end of a PRINT statement, the next output occurs at the next
column stop after the last output. If neither a comma nor a semicolon is
used at the end of a PRINT statement, the next output occurs on the next
line.

Column stops occur at intervals of 10 spaces. However, if the last
character that was printed is within two spaces of the next column stop,
that column stop will be ignored. As a result, items ina PRINT statement
that are separated by commas will have at least two spaces between them.

Example 1

10 DIM A$(15)

20 A$ = "THOMAS R SMITH"

30 X =27

40 PRINT "NAME:";A$,”AGE:";X
50 END

276 Afari XE User's Handbook

Example | contains a program that usesa PRINT statement. At line
10, the variable A$ is dimensioned. At line 20, the variable A$ is assigned
the string value "THOMAS R SMITH”. At line 30, the variable X is
assigned the value 27,

Line 40 contains a PRINT statement. The string constant "NAME:”
is printed first, followed immediately by the value of the variable AS.
Since a comma follows the variable AS$, the string constant "AGE:” is
printed in the next available column. However, the last character was
printed in column 19, so the column stop at column 20 is ignored. As a
result, the string contant "AGE:” and the value of the variable X are
displayed in the last column.

Incidentally, the comma stops need not be set at intervals of 10
spaces. The memory location 201 contains the current comma stop width.
POKE 201,20 would set the tab width to 20 spaces.

Example 2

10 POKE 201,15
20 PRINT,"15"
30 POKE 201,25
40 PRINT,"25"

PRINT# (PR.# or ?#) Statement

The PRINT# statement is used to output data to an I/ O device.

Configuration

PRINTH# filenumber [;][expression]...
% filenumber [;)[expression]...

Jfilenumber indicates the I/ O channel through which to output data.
This filenumber must have been previously opened in the program,
PRINT# operates in a manner similar to PRINT. The commas and
semi-colons operate in an analogous fashion.

Atari BASIC Reference Guide 277

RESTORE Statement

A RESTORE statement is used to move the data pointer.

Configuration

RESTORE [linenumber)

The data in a program is read in order, starting with the first DATA
statement item. In order to reread a section of data, a RESTORE state-
ment is necessary.

If a RESTORE is executed without a linenumber being given, the
next READ statement executed will read the first data item in the first
DATA statement in the program. If a linenumber is given with the
RESTORE statement, the next READ statement will read the first data
item in the DATA statement named in linenumber.

Example

RESTORE 100

The previous example contains a statement that moves the data
pointer to the DATA statement at line 100. If line 100 is not a DATA
statement, the data pointer is moved to the next DATA statement after
line 100.

RETURN (RET) Statement

A RETURN statement is used to branch a program back to the line
where the last subroutine was called.

278 Atar XE User's Handbook

Configuration
RETURN

A subroutine is called with a GOSUB or ON...GOSUB statement.
When the subroutine has been completed, a RETURN statement causes
the program control to return to the statement following the most
recently executed GOSUB or ON...GOSUB statement.

Example

10 GOSUB 100

20 PRINT "END”

30 END

100 PRINT "SUBROUTINE"
110 RETURN

RUN

SUBROUTINE

END

READY

When a POP statement is executed before a RETURN statement,
the most recent GOSUB statement is ignored, and the program control is
branched to the next most recent GOSUB statement.

RND Function

The RND function is used to generate random numbers.

Configuration

RND (argument)

The argument of a RND statement has no effect on the results, but it
is necessary. The value of the random number is less than 1 and greater
than or equal to zero.

Atari BASIC Reference Guide 279

Example
X = INT(RND(1) * 100)

The previous example contains a statement that generates random
integers between 0 and 99 inclusive.

RUN (RU.) Statement

The RUN statement is used to execute the program that is currently
in the computer’s memory. A RUN statement is also used to load and
execute a program from an input device.

Configuration
RUN [*filespec”]

Jilespec consists of a device name and an optional filename. Disk files
require a filename.

A RUN statement closes all files and turns off the sound voices
before executing or loading the program.

When a RUN statement is used with an input device, the contents of
the computer’s memory are erased before the program is loaded. Only
BASIC programs that were recorded with the SAVE statement can be
loaded and executed with a RUN statement.

The cassette unit is activated with a RUN ”C:” statement. The tone
sounds once to remind the operator to position the tape and press the
PLAY lever on the cassette unit followed by RETURN on the computer’s
keyboard.

A RUN statement can load and execute a program from a disk file if
the disk operating system has been booted. An error results if the speci-
fied file does not exist.

280 Atari XE User's Handbook

Example

RUN "C:”
RUN “D2:JONES.BAS”

SAVE Statement

The SAVE command is used to send a BASIC program in RAM to
an output device.

Configuration

SAVE "filespec”

filespec consists of a device name, such as the cassette unit (C:) or
disk drive (D:), and and optional filename. In the case of the disk drive,
the filename is required.
Files stored via SAVE are transferred in a tokenized format. These
files can only be subsequently loaded using LOAD or RUN. ENTER will
not load a program stored with SAVE.

Cassette Unit

The SAVE ”C:” command is used to transfer a program to the
program recorder. When SAVE "C:” is executed, the Atari’s speaker will
sound twice to indicate that the tape is to be positioned correctly to
receive the file. Once the tape has been positioned, press the RECORD
and PLAY buttons on the recorder. Then, press any key on the Atari’s

keyboard. The program will then be transferrred from RAM to the
cassette unit.

Disk Drive

Before SAVE can be used to transfer a program to the disk drive,
DOS must have first been booted. An error will result if an attempt is
made to execute SAVE when DOS has not been booted. If a file with the

Atari BASIC Reference Guide 281

same filename as the file specified with SAVE already exists on the
diskette to which the program is being transferred, the file being trans-
ferred will replace the file on diskette with the same name.

Example

SAVE "D:GRIM"
SAVE "C:"

SETCOLOR (SE.) Statement

The SETCOLOR statement is used to change the default color and
luminance of a specified color register.

Configuration

SETCOLOR register, color, luminance

The color register must range from 0 to 4, inclusive. The color must
range from 0to 15, inclusive. These values and their corresponding colors

are listed in table 6.2. The luminance can range from 0 (darkest) to 14
(brightest).

Color Register Default Color
0 ORANGE
1 LIGHT GREEN
2 DARK BLUE
3 RED
4 BLACK

282 Atari XE User's Handbook

Example

100 GR.3+16

110 COLOR 1

120 FORI1=1TO 39 STEP 2
130 PLOT I,0:DRAWTOI,23
140 NEXT |

150 FORI1=0TO 15

160 FORJ=0TO 15

170 SET COLOR0,1,J

180 NEXT J

190 NEXT I

SGN Function

The SGN function returns a +1 if its argument is positive, a -1 if
negative, and a 0 if zero.

Configuration

SGN (argument)

Example

100 A =100

200 X =SGN (A)
300 PRINT X
RUN

1

SIN Function

The SIN function returns the sine of the angle specified as its argu-
ment. The argument will be assumed in radians unless a DEG statement
precedes the SIN function.

Atari BASIC Reference Guide 283

Configuration

SIN (argument)

Example

10 DEG

20 X =SIN (80)
30 PRINT X
RUN

1

SOUND Statement

The SOUND statement is used to output sound via the television set
or monitor’s speaker.

Configuration

SOUND voice, pitch, distortion, volume

Together these four arguments determine the sound produced. voice
sets one of four voices available with the Atari. These are numbered from
0to 3. These four voices are independent of each other. In other words, as
many as four voices can be sounded at the same time.

pitch sets the pitch of the sound produced by the SOUND statement.
The pitch can range from 0 to 255. The highest pitch begins at 0 and the
lowest at 255.

The SOUND statement can produce either pure or distorted tones.
distortion can range between 0 and 15. A distortion value of 10 or 14 will
produce a pure tone. Any of the other even distortion values 0,2,4,6,8,
and 12) will generate a different amount of noise into the tone produced.
The amount of this noise will depend upon the distortion and pitch values
specified.

284 Atari XE User's Handbook

The odd numbered distortion values (1, 3, 5, 7, 9, 11, 13, and 15)
cause the voice indicated in the SOUND statement to be silenced. If the
voiceis on, an odd-numbered distortion value will result in its being shut
off.

The volume controls the loudness of the voice indicated in SOUND.
volume ranges from 0 (no sound) to 15 (highest volume).

An Atari BASIC statement with a volume of 0 will turn off the
sound. Sound can also be turned off by executingan END, RUN, NEW,
DOS, CSAVE, or CLOAD. If the RESET key is pressed, sound will be
turned off. However, if the BREAK key is pressed, sound will not be
turned off.

SQR Function

SQR returns the square root of its argument.

Configuration

SQR (argument)

Example

10 X =49

20 PRINT SQR (X)
RUN

7

STATUS Statement

STATUS returns a code which identifies the last input/ output opera-
tion undertaken on the channel specified.

Atari BASIC Reference Guide 285

Configuration

STATUS #channel, X

The status code will be returned via the numeric variable indicated.
The status codes are listed in table 8.5.

Example

100 STATUS #5, ST4
200 PRINT ST4
RUN

130

In the preceding example, the status code for the last input/output
activity undertaken on the device opened as channel 5 is displayed.

Table 8.5. STATUS code values

STATUS Code Reference
1 Operation completed with no problem.
3 Approaching end of file, Next READ
receives last data in file.
128-171 Reference error messages 128-171
in appendix A.
STICK Function

The STICK function returns the position of the joystick indicated as
its argument.

Configuration

STICK (argument)

286 Atari XE User's Handbook

argument indicates the joystick number (0 or 1). The value returned
can range from 0 to 15 and corresponds to the positions indicated in
figure 8.1.

Example

IF STICK (1) =7 THEN GOTO 700

14
r N\
}
10 o |)
0(\ ! ! //\\\6
) 1] T / \
\r \\ | | 7/ /I
'\ M I 7 A
\ /s 7/
7/
N /

[T T T === “TTTT T T
11 | V4
N L. _ AN S .

AN
// N\
J/ 2 ' \\ A
N
¢\~ PN J N
\ 7 T T ‘*\ I
9~ | : -7 5
|

13
Figure 8.1. STICK Joystick Positions

STRIG Function

The STRIG function returns a value of 0 if the specified joystick’s
button is depressed. A 1 is returned if the button is released.

Configuration

STRIG (argument)

Atari BASIC Reference Guide 287

argument indicates the joystick number (0 or 1).

Example
100 IF STRIG (0) = 0 THEN GOTO 700

STOP Statement

The STOP statement cause program execution to halt as though the
BREAK key were pressed. (files are not closed, sound is not deactivated,
etc.)

Configuration
STOP

If STOP is executed in the program mode, the following screen
message will be displayed:

STOPPED AT LINE number

number is the line number where STOP was executed. If STOP is
executed in the immediate mode, the following message will appear:

STOPPED

After program execution has been halted by STOP, it may be
resumed using CONT,

Example

100 INPUT A

105 IF SGN (A) = -1 THEN 150
110 B = SQR (A)

120 IF SGN (B) <> 1 THEN STOP
130 PRINT B

140 GOTO 100

150 END

288 Atari XE User's Handbook

In the preceding example, if a value of 0 is input for A in line 100,
program execution will stop and the following message will be displayed.

STOPPED AT LINE 120

By entering CONT, program execution will resume with line 130.

STRS

Function

STRS returns the string representation of its numeric argument.

Configuration

STRS (argument)

In the following example, A$ would consist of the string 740”. In this
case, "40” is a string — not a number. In other words, "40” (in its string
equivalent) could not be used in calculations.

Example

050 DIM A$(5)

150 A$ = STR$(40)

200 PRINT A$, LEN(A$)
RUN

40 2

TRAP Statement

The TRAP statement causes program execution to branch to the
linenumber indicated when an error is encountered.

Configuration

TRAP linenumber

Atari BASIC Reference Guide 289

TRAP must have been executed prior to the occurrence of the error.
Otherwise, a branch to the indicated program line will not take place.

TRAP will invalidate the Atari’s automatic error handling routine
which halts program execution. The error handling routine can be reacti-
vated with the following statement:

TRAP 40000

Example

100 TRAP 700

200 INPUT A

300 IF A =0 THEN 999
400 PRINT A

500 GOTO 200

700 PRINT PEEK (195)
800 PRINT 256 * PEEK (187) + PEEK (186)
999 END

RUN

?7A

8

200

READY

In the preceding example, the TRAP statement in line 100 will cause
the program to branch to line 700 if an error is encountered. In line 700,
the error code is displayed. (Address 195 is used to store the error code.)
In line 800, the line number where the error occurred is displayed. The
following expression, returns the line number where the error occurred:

256 * PEEK(187) + PEEK(186)

In our example, the data input in response to the INPUT statement
in line 200 was string data. Since a numeric variable was specified in line
200, ERROR-8 (INPUT statement error) was generated. This was dis-
played along with the line number where the error occurred (200).

290 Atari XE User's Handbook

USR Function

USR is used to branch program control to a machine language
program.

Configuration

USR (address[, argument]...)

The address indicated is that of the machine language subroutine to
be branched to. Function arguments between 0 and 65535 can be option-
ally included with the USR command as indicated in the configuration.

Beginning with the last argument, each argument is evaluated and
converted to a 2-byte hexadecimal integer. This integer is placed on the
hardware stack, and a count of the USR argumentsis also pushed on the
stack. The hardware stack configuration is depicted in figure 8.2

Top of Stack
USR Argument Count

First USR Argument

Second USR Argument

Final USR Argument

BASIC Program’s
Return Address

Stack Contents Prior
to USR

Bottom of Stack

Figure 8.2. USR Hardware Stack

Atari BASIC Reference Guide 291

Returning to BASIC

When BASIC executes a USR function, the BASIC program’s cur-
rent location is pushed onto the hardware stack (see figure 8.2). The
machine language program can return to BASIC by executing the assem-
bly language RTS instruction. RTS will pull the return location within
the BASIC program from the hardware stack.

However, before RTS can be used to pull the return location off the
stack, all data on the stack related to function arguments must have been
pulled off the stack. This includes both the arguments themselves as well
as the argument count. Even if there are not arguments, the machine
langauge program must pull the argument count off the stack before
returning to the BASIC program

Example

X = USR (58487)

The preceding example will boot the Atari as if the computer had
been just powered-up. Anything contained in memory will be lost.

VAL Function

The VAL function converts its string argument to a numeric value.
The first character of the string argument must be a numeric character.
Otherwise, an error will occur. The numeric characters in the string
argument will be converted to their numeric equivalents until a non-
numeric string character is encountered.

Configuration

VAL (argument)

292 Atari XE User's Handbook

Example

50 DIM A$(50)

100 A$ = "57A72B"
200 PRINT VAL(A$)
300 PRINT VAL(A$) + 2
RUN
57
59

XIO Statement

The XIO statement is a generalized input/output statement which
can perform a wide range of input and output operations. These opera-
tions are summarized in table 8.6.

Configuration

XI10 command,# filenumber,auxl,aux2,aux3

The command value (as specified in table 8.6) indicates the opera-
tion to be performed. Generally, the filenumber specified must have been
previously opened for input or output.

The auxillary expressions (aux 1, aux2, aux3) are not always used by
XIO, however, they must always be present as parameters. Generally,
aux3 specifies the device to be used for the input/output operation.

Example

100 GRAPHICS 15

110 COLOR 2

120 PLOT 80,80

130 DRAWTO 140,20
140 DRAWTO 19,20

150 POSITION 79,80
160 POKE 765,3

170 XI10 18, #6, 0, 0, "S:"

The preceding example illustrates the use of the XIO statement to fill
an area in graphics. command = 18 specifies the graphics fill-area action.

6 is the graphics filenumber. The numeric parameters are both specified
as 0, and the device is the screen (qux3 = ”S:”)

Atari BASIC Reference Guide 293

Table 8.6. XIO Command Summary

Equivalent
Operation Command Command aux 1 aux 2 aux 3
General 1/0 Operations:
Open a channel 3 OPEN identical to OPEN statement parameters
Read a line 5 INPUT# 4 0 dimensioned
string
variable
Read 255 characters 7 — 4 0 dimensioned
string
variable
Write a line 9 PRINT# 8 0 string data
Write 255 characters 1 — 8 0 string data
Close channel 12 CLOSE 0 0 string
Status of channel 13 STATUS 0 0 string
Screen Graphics:
Draw a line 17 DRAWTO 0 "8
Fill an area 18 — 0 0 “8:”
Disk:
Rename 32 DOS 2 0 0 “D:old,new”
Menu E
Delete 33 DOS 2 0 0 “D:file”
Menu D
Lock 35 DOS 2 0 0 “D:file”
Menu F
Unlock 36 DOS 2 0 0 “D:file”
Menu G
Move file pointer 37 POINT 0 0 —
Fine file pointer 38 NOTE 0 0 —
Directory entry 39 INPUT# 0 0 string
variable
Wildcard decipher 40 — 0 0 —
Format single-density 253 DOS 2 33 87 “D:"
254 Menu | 0 0 “D:”
Format dual-density 253 — 33 127 “D:"
RS232 Port:
(Interface module)
Force short block 32 - 0 0 “R”
Control DTR,RTS,XMT 34 — table 8.7] “R:”
Baud rate, word size, 36 — table 8.9 table 8.10 “R:”
stop bits, and ready
monitoring
Translation mode 38 - table 8.8 ASCII code “R:”
Concurrent mode 40 — 0 0 “R:"

294 Atari XE User's Handbook

Table 8.7. aux! values for RS232 Port
Function* DTR | RTS | XMT
No change 0 0 0
Turn Off (XMT to 0) | 128 32 2
Turn On (XMTto 1) | 192 48 3
* Add values for DTR, RTS, & XMT to obtain aqux/
Example Values DTR | RTS | XMT
of aux1
162 Off | Off 0
163 Off | Off 1
178 Off | On 0
179 Off On 1
226 On Off 0
227 On Off 1
242 On | On 0
243 On | On 1
Table 8.8. aux/ values for XIO 38
Numeric Expression 1*
Translate Atari
Line Feed ASCHto ASCII | Input Parity Output Parity
Append || Value | Mode | Value| Mode | Value| Mode [Value
No 0 |Light 0 |[Disregard] 0 [Nochange] 0
Yes** 64 JHeavy | 16 |Odd 4 |Odd 1
None 32]Even 8 Even 2
Disregard] 12 |Bit On 3

* Add one value from each column to determine aux/
** The line feed character is appended after a carriage return (EOL).

Atari BASIC Reference Guide 295

Table 8.9. aux] values for XIO 36

Numeric Expression 1 Value*

Stop Bits | Value | Word Size | Value | Baud Rate | Value
1 0 8 bits 0 300 0
2 128 7 bits 16 45.5 1

6 bits 32 50 2
5 bits 48 56.875 3
75 4

110 5

134.5 6

150 7

300 8

600 9

1200 10

1800 1

2400 12

4800 13

9600 14

9600 15

* Add value from each column to determine aux/

Table 8.10. aux2 values for XIO 36
Numeric Expression 2 Value

DSR | CTS | CRX | Value

No No No
No No Yes
No Yes No
No Yes Yes
Yes No No
Yes No Yes
Yes Yes No
Yes | Yes | Yes

NV A WN-=O

9

Advanced Memory Concepts

In this chapter the means of accessing the full 128K of memory in the
Atari 130XE will be covered in detail. In addition, the general concepts of
the memory and operating system in the Atari 130XE will be discussed.
Although the explanation will center around the memory system in the
130XE, the concepts explained in these sections will be extremely helpful
to any computer operator.

130XE RAM System

The Atari 130XE contains 131,072 bytes (128K) of Random Access
Memory (RAM), twice the amount contained in the Atari 65XE or
800XL. Because the computer is designed around the 6502C micropro-

297

298 Atari XE User's Handbook

cessor, it cannot, however, access more than 65536 bytes (64K) of that
RAM at any one time (see figure 9.1).

16-BIT
ADDRESS
BUS
1
2
3
4 The 6502C microprocessor address bus
has 16-bits, each of which may be on or off
6 (binary 1 or 0). This leads to a total possible
7 combination value of 2'¢ or 65536. Thus the
8 total number of unique addresses that the chip
0 9 can recognize is 65536.*
11
12
13
14
15
16

Figure 9.1. 16-bit address bus

To make up for this limitation of the 6502C, the Atari 130XE
depends upon “bank switching” to utilize the extra 64K of memory. In
this process, the computer accesses the extra memory by switching “out”
one section of memory and switching “in” another section. While the
computer never has access to more than 64K at any one time, it can use
this method to store and retrieve information from all of the 128K of
available memory.

* The number 2'%, which represents the total combinations of 1 and 0, is arrived at
through application of basic probability theory.

Advanced Memory Concepts 299

The “bank switching” technique, in the Atari 130XE, operates on the
section of RAM located between 16384 and 32767. The determination as
to which bank of memory will occupy that region of memory depends on
the setting of the “bank switch” located at memory location 54017. This
location is used as the port B address of the 6520 Peripheral Interface
Adaptor chip, which controls the computer input and output. By chang-
ing the value in the bank switch, any desired memory bank may be used.
(Although no physical exchange occurs, it appears to the user that the
memory sections have been switched.)

In dealing directly with the bank switch (which is actually a set of
switches) it is necessary to understand how the bits of data in a byte of
data are related. The purpose of the following section is to familiarize the
user with the binary system. The applications of the binary system to the
memory bank switching techniques, as well as to the general operation of
the computer, will be discussed later in this chapter.

Binary System

To fully understand the concept of the binary system it is helpful to
compare it to the decimal system. In the decimal (base 10) system values
are represented using the digits 0-9. The digits are placed side by side with
each digit being ten times the value of the digit preceding it (right to left).
In the following example each two has 10 times the value of the preceding
two (right to left):

222 = 2"100+2*10+2

The binary system is very similar to the decimal system in that the
digits are placed side by side and increase in value moving from right to
left. However, in the binary system (base 2) only the digits 1 and 0 are
used. Also, moving from right to left, each digit has twice the value of the
preceding digit. See figure 9.2.

300 Atari XE User's Handbook

Binary Digits
101010 = 1*(32)+0*(16)+1*(8)+0*(4)+1*(2)+0*(1)

Decimal Digits
101010 = 17(10%)+0* (104)+1*(10%)+0*(102)+1*(10)+(0)

Value Placement

Digit # 8 7 6 5 4 3 2 1

BINARY .. 128 64 32 16 8 4 2 1

DECIMAL .. 107 10% 105 10¢ 10® 102 10 1
Note: ... —denotes thatthe values continue oninfinitely

in either direction. For the purpose of computer applica-
tion, however, only this range will be discussed.

Figure 9.2. Binary -v- decimal

Conversion

In some instances programmers or users find it necessary to convert
between the decimal and binary systems. The following sections will
discuss the conversion process completely.*

BINARY TO DECIMAL

Converting a value written in binary form to decimal form is a
relatively simple matter. It requires the addition of the place values
corresponding to the columns where the ones digits are located. (In
binary as in decimal, zeros are place holders only).

For example, in the binary number 1010, the ones are located in the
second place (having a value of 2) and the fourth place (having a value of
8). Thus, the decimal value of the binary number 1010 is 10.

* Many programmers use an intermediate system known as hexadecimal (base 16). For
the purpose of this text, however, a discussion of the hexadecimal system is
unnecessary.

Advanced Memory Concepts 301

Decimal Binary
64 32 16 8 4 2 1
Example (1): 126 000 0O0O0OTG O
126 -[64] [(Jo oo o0 o0 o0
62 - 32 1o oo oo
30- 1 1o o o0 o
14 {8] 11 1o o0 o0
6- 111 100 o
2-2] 1111 1[3o
0
12864 32 16 8 4 2 1
Exampie (2): 135 0 0 000 0 0O
135 - [128] [(Jo o oo o0 0 o0
7--57 1[0Jooo0oo0 o000
1 00o oo o0 o0
10 00o oo o
10 0 0[0Jo o o
100 0 0f[1]o o
10000 1o
100 0 0 1 1[1]

Figure 9.3. Decimal to binary

DECIMAL TO BINARY

The process by which a decimal number is converted to binary form
is somewhat more difficult than the binary to decimal conversion. This is
because the decimal number must be broken down to fit into the binary
format. To convert the decimal value, the first step is to fmd the binary
column which has the largest value that is less than the decimal value.
Then, a one is placed in that column and its value is subtracted from the
decimal number. This process is repeated with the remainder, after sub-
tracting the column’s value, until the remainder is zero. See figure 9.3

302 Atari XE User's Handbook

example (1). If while converting, the subtraction results in a negative
value, then a zero should be placed in that binary column and it should be
skipped. (Proceed to the next column; do not subtract the value). See
figure 9.3 example (2).

The Computer and The Binary System

The basic unit that a computer operates with is known as a bit or
“binary digit”. As in inflected by the term, “binary digit”, the computer
operates in the binary system. The computer can only recognize a one ora
zero.* Using the information covered in the previous section designers
have devised a system by which the computer, using combinations of ones
and zeros, can represent more complex values.

In most microcomputers, including the Atari 130XE, more complex
units such as alphanumeric characters are represented using 8-bit sets
known as bytes. These complex codes are used to display, calculate, and
transmit data. However, because microcomputers are designed to handle
the 8-bit form of data, they are limited to an 8-bit data bus. This means
that no byte of data can have a value greater than 255. See figure 9.4.

8-bit Data bus

28=256

Since the data bus is set up for 8-bits (byte), it can only
handle a combination of 256 values (0-255).
Lowest Value
00000000 = 0(128)+0(64)+0(32)+0(16)+0(8)+0(4)+0(2)+0=0
Highest Value
11111111=1(128)+1(64)+1(32)+1(8)+1(4)+1(2)+1=255

Figure 9.4. 8-bit data bus

* Computers actually deal with voltage (1) or no voltage (0).

Advanced Memory Concepts 303

Bit# 7 6 5 4 3 2 1 0
Decimal Value 128 64 32 16 8 4 2 1
State 1 or 0 1 1 A B C D 0 1

Figure 9.5. Location 54017

Bit Bit Antic C.P.U.
A B access access
0 1 extra normal
1 0 normal extra
1 1 normal normal
0 0 extra extra

Extra: refers tothe extra bank of memory that bits C
and D determine

Normal: refers to normal access memory. In this
mode C and D have no effect on this device.

Figure 9.6. Processor access

Bit-Controlled Operations

The computer itself operates on the binary level at all times. The
complex characters, created by the bytes of data are purely for the user’s
comprehension. Because of this it is sometimes difficult for a user to
comprehend the purpose of placing certain values in specific places to
accomplish a desired task. This is because the user is examining the data
heis using on his level or at the 8-bit level. However, the computer may be
dealing with a single bit, and the result in a confused operator.

The following section will address this question by providing a
thorough explanation of an example of just a procedure. Although the
concepts in the following example can be applied to many operations, it is
designed specifically to clarify “bank switching”,

304 Atari XE User's Handbook

Bit Control Of The “Bank Switch”

Earlier in this chapter, the significance of memory location 54017 in
the Atari 130XE, the bank switch, was discussed briefly. The location is
used to direct input and output to and from the central processing unit
and/or the Antic (graphics) microprocessor. This section is designed to
teach the user to alter bits of data and thus gain better control over the
bank switch.

The control of the bank switch depends on four bits (a nibble) of
location 54017. In figure 9.5 these bits are labeled A, B, C, and D.

Bits A and B determine which device (Antic and/ or CPU) has access
to the extra memory. Since there are only two bits controlling the access,
there can only be four states of access. See figure 9.6.

Bits C and D control which bank of memory the device specified by
bits A and B can access. Because they only determine which section of
extra memory the device can access, bits C and D have no effect if A and B
are “set” to one (when normal memory is being accessed). It is for this
reason that different values can be “poked” into the lecation 54017
without altering its effect see figure 9.7.

253=128+64+32+16+8+4+0+1
1T 11 11101

A BCD
241=128+64+32+16+0+0+0+1
1 11 10001

Since bits A, B are “set”, access is to normal
memory and C D have no effect. Therefore, if either
value was poked into location 54017, the CPU and
Antic would be directed to access normal memory.

Figure 9.7. Bits Cand D

Advanced Memory Concepts 305

As was previously stated, bits Cand D in figure 9.5 determine which
section of extra memory will be accessed. Again, since only two bits are
controlling the bank selection, only four possible banks can be selected.
See figure 9.8. Although some texts refer to these banks as being sequen-
tially oriented (i.e. bank #1: 0 to 16383, bank #2: 16384 to 32767), it is
not necessary to do so. This is because each bank can only be accessed
individually. In other words, the CPU and the Antic chips may both be
directed to access the same memory (normal or extra) or they may be split
between the normal memory and one extra memory bank. Thus it is
impossible to access more than one extra memory bank at a time.

Combination
C D “Extra” Memory Access
0 0 bank #1
0 1 bank #2
1 0 bank #3
1 1 bank #4

Figure 9.8. Memory Access

To control the access, all the programmer need do is develop a binary
byte which fits the task he requires, convert it to decimal and poke that
value into location 54017. Remember, however, that in figure 9.5 the bits
numbered (0,6,7) are shown to be “set” (ones) and bit 2 is not “set” (zero).
These bits must always be in this state or the computer will lose track of
input and output and “lockup”.

Note: For a complete listing of the numbers that
may be poked into location 54017 and their resuits,
refer to appendix G.

306 Atarl XE User's Handbook

Using “Bank Switching” in BASIC

The following program effectively illustrates the memory bank
switching process. It should clarify the methods described in the previous
chapter.

When the program runs, five messages are written to the five banks
of memory used in the process (normal memory and the four (16K) extra
banks). The program then reads back the messages to verify that the extra
banks were used.

The important loop in the program occurs between line 150 and 230.
Within this loop, line 190 changes the bank in which data will be written.
The sequence through the loop as it affects line 190 is as follows:

. When x=0 => POKE 54017,221
. When x=1 => POKE 54017,225
. When x=2 => POKE 54017,229
. When x=3 => POKE 54017,233
. When x=4 => POKE 54017,237

GO s ON =

By referring to table G.1in appendix G, it is evident that as x and the
54017 “poked” values are incremented (x by one and the poked value by
multiples of four), the memory bank switch (CPU) is set first to normal,
and then to each bank. The bit changes that correspond to the decimal
changes of the “poked” value can be seen in table G.2 of appendix G.

The process for reading the data is exactly the same only the data is
read not written.

Advanced Memory Concepts 307

100 REM BANK SWITCHING

110 REM By Ron Lee

120 REM

130 DIM A$(30)

140 PRINT CHR$(125)

150 FOR X=0 TO 4

160 IF X=0 THEN PRINT “WRITING TO NORMAL MEMORY”

170 IF X<>0 THEN PRINT “WRITING TO BANK #”:X

180 READ A$

190 POKE 54017,221+X*4

200 FOR Y=1 TO LEN(A$)

210 POKE 16384+Y,ASC(AS(Y,Y)):PRINT AS(Y,Y);

220 NEXT Y:PRINT:PRINT

230 NEXT X

240 RESTORE

250 GOSUB 600:PRINT CHR$(125)

260 FORX=0TO 4

270 IF X=0 THEN PRINT “READING FROM NORMAL MEMORY"”

280 IF X<>0 THEN PRINT “READING FROM BANK #":X

290 READ A$

300 POKE 54017,221+X*4

310 FOR Y=1 TO LEN(A$%)

320 PRINT CHR$ (PEEK(16384+Y));

330 NEXTY

340 PRINT:PRINT

350 NEXT X

360 END

500 DATA TIFFANY WAS HERE, BEAUFORD WAS HERE,
RON WAS HERE

510 DATA NUKE WAS HERE, SAM WAS HERE

600 POSITION 2,22:PRINT “Press <RETURN> to Continue”

610 OPEN #5,4,0,“K:"

620 GET #5, A:IF A=155 THEN CLOSE #5: RETURN

630 GOTO 620

Appendix A. Atari Eror Messages 309

Appendix A.

Atari Error Messages

This appendix describes the error numbers used by the Atari. Error
numbers less than 128 are application specific. That is, the meaning of
each code depends on whether BASIC or DOS is active. Error numbers
greater than 127 generally result from an I/0 error and keep their
meaning regardless of the application.

Error # Error Name Cause

2 Insufficient Additional memory is required to store

(BASIC) | memory the statement or to dimension the new
string variable. By adding more RAM
or by deleting any unused variables,
this error can be avoided. This error
can also be caused by a GOSUB
statement with too many levels of
nesting.

2 No command The “X-user-defined” option of the

(DOS) file found DOS 3 menu was attempted, but no
files of the form *.CMD were contained
on drive #1.

3 Value error A numeric value was encountered that

(BASIC) was outside of the allowed range i.e.
too large or too smali. This error can
also occur when a negative value is
returned when the value should be
positive.

3 Input required Only the RETURN key was pressed in

(DOS) response to a prompt that required an
input.

4 Too many Over 128 variable names have been

(BASIC) | variables specified. Any unused names should

be deleted by executing the following
lines.

L."D:TEMP"

NEW

E."D:TEMP"
The cassette unit could also be used to
delete the names in a similar manner.

310 Atari XE User's Handbook

Error # Error Name Cause

4 No cartridge The "To cartridge” Menu Option of

(DOS) DOS 3 was attempted; however no car-
tridge was present and BASIC had
been deactivated.

5 String length The program attempted to read or

(BASIC) | error write outside of the range for which the
string was dimensioned. This also
occurs when zero is used as the index.
This error can be corrected by increas-
ing the DIM index size.

5 170 error A generic input/output error.

(DOS)

6 Out of data error The DATA statements did not contain

(BASIC) enough data items for the variables in
the corresponding READ statements.

6 Invalid end The End address for the “Save” option

(DOS) address was entered as less than the Start
address.

7 Line number The line number is negative or greater

(BASIC) | greater than 32767 than 32767.

7 Error loading The Atari has not been able to reload

(DOS) MEM.SAV the RAM using MEM.SAV. Possible
causes include a faulty disk or a dirty
drive.

8 INPUT statement An attempt was made to input a non-

(BASIC) | error numeric value into a numeric variable.
Be certain that the type of data being
entered corresponds to the INPUT var-
iable type.

8 Error saving The MEM.SAV file on disk is no longer

(DOS) MEM.SAV valid after this error.

9 Array or string This error occurs when the program

(BASIC) | DIM error references an array or string which has
not been dimensioned. This error also
occurs when a DIM statement includes
a string or array that was previously
dimensioned. Or if an attempt is made
to DIM a string of length zero or length
greater than 32767.

Appendix A. Atari Eror Messages 311

Error # Error Name Cause

9 Drive input An invalid device specification was

(DOS) error supplied.

10 Argument stack To many nested parenthesis in an

(BASIC) | Overtlow expression.

10 Filename input An invalid filename was supplied.

(DOS) error

11 Floating point The program encountered a number

(BASIC) | overflow/underflow with an absolute value less than 1E-99
or greater than 1E+98. This error also
occurs when an attempt is made to
divide by zero.

12 Line not found An IF-THEN, ON-GOSUB, ON-GOTO,

(BASIC) GOSUB, or GOTO statement refer-
enced a line number that does not
exist.

13 No matching FOR A NEXT statement was encountered

(BASIC) that did not have a corresponding FOR
statement.

14 Line too long The line entered is greater than the

(BASIC) length of the BASIC line processing
buffer length.

15 GOSUB or FOR A NEXT statement was encountered

(BASIC) | line deleted for which the corresponding FOR or
GOSUB statement had been deleted.

16 RETURN error A RETURN statement was encountered

(BASIC) without a corresponding GOSUB
statement.

17 Garbage error This error can be caused by faulty

(BASIC) RAM or the incorrect use of a POKE
statement.

18 Invalid string A string does not begin with a valid

(BASIC) | character character or the argument of a VAL
statement is not a numeric string.

19 LOAD program too The program being loaded will not fit

(BASIC) | long in the available RAM.

20 Device number A device number outside of the range 0

(BASIC)

error

to 7 was entered.

312 Atari XE User's Handbook

Error #

Error Name

Cause

21
(BASIC)

128

129

130

131

132

133

134

135

136
137

LOAD file error

BREAK abort

ICOB* already
open

Nonexistent device

IOCB write only

Invalid command

Device/file
not open

Bad I0CB
number

I0CB read
only error

End of file
Truncated record

The LOAD statement was incorrectly
used to load a program that was not
stored using the SAVE format.

The BREAK key was pressed during an
I/0 operation causing execution to
stop.

This error occurs when an attempt is
made to use a filenumber currently in
use. Often, the filenumber causing the
error is automatically closed.

This error occurs when a program
attempts to access a device which is
undefined. This error can occur when a
filename is given without a required
device name (ex. "FILE.BAS" instead
of "D:FILE.BAS").

An attempt was made to read from a
file opened only for write operations.
The file must be reopened for a read or
read/write operation.

This error is generally caused by an
illegal command code being used with
an XIO or IOCB command.

A filenumber was referenced before it
was opened.

An attempt was made to use an itlegal
IOCB index. A BASIC program can
only use filenumbers 1-7.

An attempt was made to write to a
device or file that is opened only for
read operations.

The end-of-file record was reached.

- This error occurs when an attempt is

made to read a record whose record
size is larger than the allowed maxi-
mum. This error also occurs when an
INPUT statement is used to read from
a file created with a PUT command.

* 1OCB — Input/output control block

Appendix A. Atari Emor Messages 313

Error #

Error Name

Cause

138

139

140

141

142

143

144

145

146

147

Device timeout

Device NAK

Serial frame error

Cursor out of
range

Serial bus overrun

Checksum error

Device done error

Read. After-write

compare Error or

Bad Screen Mode
Handler

Function not
implemented

Insufficient RAM

The external device specified does not
respond within the time allowed by the
Atari operating system. Be certain the
proper device was specified, the device
is properly connected, and that the
device's power is on.

The device does not respond, as it
received an incorrect parameter. Check
the input/output command for any ille-
gal parameters. Also, be certain all
cables are properly connected. This
error can also result when the Atari 850
interface module is unable to accept
five, six, or seven bit input at an exces-
sive baud rate.

This is a very rare error. If this error
reoccurs, have the computer and/or
device checked.

The cursor is outside the defined limits
for the current graphics mode. This
error can be corrected by using legal
cursor positioning parameters.

This error is due to serial bus data
problems. If the error reoccurs, the
disk unit, cassette unit, or computer
may require service.

The communications on the serial bus
are in error. The problem may be due
to either defective hardware of faulty
software.

This error is generally due to an
attempt to write to a write-protected
diskette or device.

The disk drive identified a difference
between what was written and what

should have been written. Also, this

error can result from a problem with
the screen handler.

An attempt was made to use a device
in a manner not aliowed (ex. write to
the keyboard).

More RAM is require for the graphics
mode chosen. Either add RAM or
change graphics modes.

314 Atari XE User's Handbook

Error # Error Name Cause
150 Port aiready An attempt was made to open a serial
open port already open.
151 Concurrent mode Before current mode input/output is
1/0 not enabled enabled with the XIO 40 statement, the
serial port must have been opened for
concurrent mode.
152 lllegal user Upon the initialization of the con-
supplied buffer current input/output, an incorrect
buffer length and address was used.
163 Active concurrent An attempt was made to access a
mode 1/0 error serial port while another serial port was
open and active in the concurrent
mode.
154 Concurrent mode The concurrent mode must be active
170 not active for the input/output operation to be
executed.
160 Drive number The specified drive must be D:, D1:,
error D2:, D3;, or D4.. This error can also be
caused if the drive was not powered on
or if the drive buffer was not specified.
161 Too many open Another file may not be opened, as the
files limit of open files has been reached.
Generally, only 4 disk files can be open
at the same time.
162 Disk full All diskette sectors are in use.
163 Unrecoverable Either the DOS or the diskette contains
system 1/0 error an error. Try using a different DOS
diskette.
164 File number The POINT statement moved the file
mismatch pointer to a sector which was not
included in the open file. This error can
also occur when the file’s intra-sector
links are incorrect.
165 File name error The filename is illegal. Check the file
specification.
166 POINT data The POINT statement attempted to
length error move to a byte number that did not
exist within the specified sector.
167 File locked An attempt was made to write to,
rename, or erase a locked file.

Appendix A. Atari Emor Messages 315

Error #

Error Name

Cause

168

169

170

171

172

173

174

175
176

177

Device command
invalid

Directory fuil

File not found

POINT invalid

lilegal append

Bad sectors at
format Time

Duplicate filename

Bad load file
Incompatible format

Disk structure
damaged

An attempt was made to use an illegal
device command.

A diskette directory’s maximum capac-
ity is 64 filenames in DOS 2.0S (63 in
DOS 3).

An attempt was made to access a file
not present in the disk directory.

The POINT statement was used with a
disk sector in a file not opened for
Update.

An attempt was made to open a DOS
1.0 file for append using the DOS 2.0S
operating system. Try copying the DOS
1.0 file to a DOS 2.0S diskstte using
DOS 2.08. ltis illegal for DOS 2.08 to
append to DOS 1.0 files.

Bad sectors were found while the disk
drive attempted to format the diskette.
A diskette with bad sectors cannot be
formatted. Use another diskette.

A “Rename” has been attempted that
would have resuited in two files of the
same name on a diskette.

The specified file is not a load-type file.

This error occurs when a DOS 3
operation is attempted using a DOS
2.08S diskette. Use “Access DOS 2" to
translate the file to rectify the situation.

DOS 3 does not recognize the file on
the disk, due to damage on the disk.
(May be caused from use of a
non-DOS 3 diskette).

316 Atari XE User's Handbook

Appendix B.
Atari ASCII Code Set

In this appendix, the 256 characters in the standard character set of
graphics mode 0 are listed along with the Atari ASCII codes for each
character. The keystrokes used to produce the characters are also listed
along with the associated standard ASCII character (if any). Remember,
in graphics modes other than graphics mode 0, an entirely different
character may be output.

Some of the Atari codes produce control characters. When control
characters are output using a PRINT statement, nothing is actually
displayed on the screen. Instead a control process of some kind will be
executed or the cursor will be moved.

Control characters can be included in PRINT statements by supply-
ing the CHRS$ function with the Atari ASCII code of the control charac-
ter. Control characters can also be output using an escape sequence
enclosed within quotation marks.

To produce an escape sequence, first press the ESC key, and then
press the keys which will produce the desired control character. For
example, if the ESC key is pressed prior to pressing the CONTROL key
and the = key, the Atari code 29 for cursor down is produced.

When an escape sequence is used with a control character, the
control process does not actually take place during keyboard entry.
However, the control character does appear on the screen. When the
PRINT statement containing the escape sequence and control character
is executed, the control process will take place.

For example, if the following statement was entered,

READY K7 ESC then CONTROL- =
PRINT "NNN | A" pressed here

The output produced would be;

NNN A

Appendix B. Atari ASCIl Code Set 317

Notice that when the ESC \ CONTROL- = keyboard entry was
made, the control process specified (cursor down) did not actually occur.
However, the screen character for cursor down (}) was displayed on the
screen.

When the PRINT statement was subsequently executed, the cursor
down control process did take place. The result of this control process
was the movement of the cursor one row down. This caused the “A” to be
printed on the line below the line on which the three N’s were output.

If the Atari code 27 (keyboard entry ESC \ ESC) is included in the
PRINT statement just before the control character, that control process
will not occur. However, the control character will be displayed.

For example, if the following statement was entered,

ESC ESC pressed here

PRINT "NN% 1A
T ESC CONTROL-= pressed here

the following output would be displayed on the screen;
NNN | A

Notice that although the control process did not occur, the control
character was displayed.

A great number of the Atari characters can only be entered via the
keyboard when the keyboard is in the lowercase mode. By pressing the
CAPS key once, the keyboard will be placed into the lowercase mode.
Repressing the CAPS key will return the keyboard to the uppercase
mode.

The XE series has two built-in character sets—the standard set and
the extended set. For the majority of the characters these sets coincide.
However, for a few of the ASCII codes the extended set will produce a
different character than does the standard set. The standard set is selected
if location 756 is assigned a value of 224, the extended set is selected if
location 756 is assigned 204.

POKE 756,204 select extended
POKE 756,224 select standard

Most of the ASCII codes greater than 127 can be generated in the
inverse video mode. Pressing the [@ key toggles this mode. The symbol for
this key will be listed with the key combination for the ASCII codes that
require this mode to be active.

318 Atari XE User's Handbook

Atarl ASCII
Character ASCI Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
i 3 NULL 0 CONTROL-,
N
u SOH 1 CONTROL-A
Cid
" STX 2 CONTROL-B
B- E ETX 3 CONTROL-C
H: E EOT 4 CONTROL-D
[2"E]
° ENQ 5 CONTROL-E
%
u ACK 6 CONTROL-F
bl
1 BEL 7 CONTROL-G
D I BS 8 CONTROL-H
» -
j HT 9 CONTROL-I
- -
n u LF 10 CONTROL-J
[
1 a VT 11 CONTROL-K
[
H n FF 12 CONTROL-L
I | u CR 13 CONTROL-M
D o SO 14 CONTROL-N
h_] -d si 15 CONTROL-O
[
E u DLE 16 CONTROL-P
E E DCt1 17 CONTROL-Q
E u DC2 18 CONTROL-R

Appendix B. Atari ASCIl Code Set 319

Atarl ASCII
Character ASCH Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
L] |
E 1 DC3 9 CONTROL-S
. E DC4 20 CONTROL-T
; E NAK 21 CONTROL-U
T d
mn SYN 22 CONTROL-V
E e ETB 23 CONTROL-W
-
m a CAN 24 CONTROL-X
[E EM 25 CONTROL-Y
e
—q ﬁ suB 26 CONTROL-Z
E E ESC 27 ESC/ESC
-f -f FS 28 ESC/CONTROL-
+ .l. GS 29 ESC/CONTROL-=
{. {- RS 30 ESC/CONTROL-+
-} -} us 31 ESC/CONTROL-*
Space 32 SPACE BAR
118 ! 33 SHIFT-1
- -
annn - 34 SHIFT-2
35 SHIFT-3
I'g g $ 36 SHIFT-4
% 37 SHIFT-5
Al

320 Atari XE User's Handbook

Atari ASCII
s Ext | Chameter | oo Outputting Character
| a ﬁ & 38 SHIFT-6
|[e 39 SHIFT-7
(€ (40 SHIFT-9
] :) 41 SHIFT-0
3 42
HE | - | - :
Fijri “
| [a5
A0 “°
AA |l | - ,
aa | © | :
g | | - 1
22| | = :
I | | - :
4|4) .)
505 | - | - 5
66 | © | - 6
77| | - 7
8|8 ’ * °

Appendix B. Atari ASCIl Code Set 321

Atari ASCII
Character ASCII Decimal Keystrokes For
Std. Ext. Character Code Outputting Character

FIEIREE o :

] . ..

: - 58 SHIFT-;

] (] ; 59 ;
J_, rFu
, i l z < 60 <

| | =—— = 61 =

L | L]

F s > 62 >

o s ? 63 SHIFT-/

- -
E E @ 64 SHIFT-8
n n A 65 (SHIFT OR CAPS ON) A
B B B 66 (SHIFT OR CAPS ON) B
c c (o} 67 (SHIFT OR CAPS ON) C
D D D 68 (SHIFT OR CAPS ON) D
E E E 69 (SHIFT OR CAPS ON) E
F F F 70 (SHIFT OR CAPS ON) F
G G G 71 (SHIFT OR CAPS ON) G
H H H 72 (SHIFT OR CAPS ON) H
I I | 73 (SHIFT OR CAPS ON) |
J J J 74 (SHIFT OR CAPS ON) J
K K K 75 (SHIFT OR CAPS ON) K

322 Atar XE User's Handbook

Atari ASCII
Character ASCl Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
| L L L 76 (SHIFT OR CAPS ON) L
" H M 77 (SHIFT OR CAPS ON) M
" " N 78 (SHIFT OR CAPS ON) N
u n o) 79 (SHIFT OR CAPS ON) O
P p P 80 (SHIFT OR CAPS ON) P
Cr A, Q 81 (SHIFT OR CAPS ON) Q
R n R 82 (SHIFT OR CAPS ON) R
'5 '5 s 83 (SHIFT OR CAPS ON) S
T T T 84 (SHIFT OR CAPS ON) T
u u U 85 (SHIFT OR CAPS ON) U
u u v 86 (SHIFT OR CAPS ON) V
l!! H w 87 (SHIFT OR CAPS ON) W
H H X 88 (SHIFT OR CAPS ON) X
l.! l.! Y 89 (SHIFT OR CAPS ON) Y
z z 4 90 (SHIFT OR CAPS ON) Z
[[(91 SHIFT-;
\. l\ 92 SHIFT-,
]]] 93 SHIFT-+
Ml | ! 94 SHIFT-*

Appendix B. Atari ASCII Code Set 323

Atari ASCII
Character ASCH Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
- 95 SHIFT--

' l_i_ 96 CTRL-

a a a 97 (CAPS OFF) A
b b b 98 (CAPS OFF) B
C C c 99 (CAPS OFF) C
d d d 100 (CAPS OFF) D
2 e e 101 (CAPS OFF) E
f f f 102 (CAPS OFF) F
S 9] 9 103 (CAPS OFF) G
h h h 104 (CAPS OFF) H
i i i 105 (CAPS OFF) |
..i i j 106 (CAPS OFF) J
"‘. k k 107 (CAPS OFF) K
l l I 108 (CAPS OFF) L
ﬁ ﬁ m 109 (CAPS OFF) M
nln n 110 (CAPS OFF) N
oo o 11 (CAPS OFF) O
E .EI p 112 (CAPS OFF) P
5 ﬂj q 113 (CAPS OFF) Q

324 Atari XE User's Handbook

Atari ASCIl
Character ASCl Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
r‘- r‘- r 114 (CAPS OFF) R
5 S S 115 (CAPS OFF) S
't t t 116 (CAPS OFF) T
u u u 117 (CAPS OFF) U
u u v 118 (CAPS OFF) V
H “ w 119 (CAPS OFF) W
x x x 120 (CAPS OFF) X
! ! y 121 (CAPS OFF) Y
z z z 122 (CAPS OFF) Z
* H { 123 CTRL-;
I I | 124 SHIFT-=
E E } 125 ESC/CTRL-<
ESC/SHIFT-<
-' .‘ 126 ESC/BACK S
'. i. DEL 127 ESC/TAB
D E 128 (@) CONTROL-,
m 129 (@) CONTROL-A
I] E 130 (@) CONTROL-B
u 131

(@) CONTROL-C

Appendix B. Atari ASCil Code Set 325

Atari ASCII
Character ASCIl Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
132 (@) CONTROL-D
n E 133 (@) CONTROL-E
E 134 (@) CONTROL-F
E 135 (@) CONTROL-G
[] 136 (@) CONTROL-H
n E 137 (@) CONTROL-|
l! m 138 (@) CONTROL-J
n E 139 (@) CONTROL-K
u m 140 (@) CONTROL-L
i m 141 (@) CONTROL-M
! E 142 (@) CONTROL-N
u E 143 (@) CONTROL-O
E m 144 (@) CONTROL-P
ﬂ E 145 (@) CONTROL-Q
= E 146 (@) CONTROL-R
E 147 (@) CONTROL-S
n E 148 (@) CONTROL-T
E E 149 (@) CONTROL-U
[. E 150 (@) CONTROL-V

326 Atari XE User's Handbook

Atari ASCII
Character ASCl Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
‘ E 151 (@) CONTROL-W
- E 152 (@) CONTROL-X
[I E 1583 (@) CONTROL-Y
u E 154 (@) CONTROL-Z
155 RETURN
156 ESC/SHIFT-
BACK S
1587 ESC/SHIFT->
158 ESC/CTRL-
TAB
159 ESC/SHIFT-
TAB
. . 160 () SPACE BAR
n n 161 (@) SHIFT-1
m m 162 (@) SHIFT-2
m E 163 ([@) SHIFT-3
164 (@) SHIFT-4
K 165 (@) SHIFT-5
166 ([d) SHIFT-6

Appendix B. Atari ASCIl Code Set 327

Atari ASCII
Character ASCl Decimal Keystrokes For

Std. Ext. Character Code Outputting Character
" . 167 (@) SHIFT-7
n E 168 (@) SHIFT-9
ﬂ n 169 (@) SHIFT-0
E E 170 (@-

17 () +

u ! 172 (@,

= = 173 (@) -

- ! 174 (@.

175 (@/

m m 176 (@ o

177 (@1

‘ 178 (@) 2

179 (@3

E E 180 (@ 4

E 181 (@ 5

E E 182 (@e

183 (@ 7

E E 184 (@ 8

E E 185 (@) 9

328 Atari XE User's Handbook

Atari ASCII

Character ASCIlI Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
n E 186 (@) SHIFT-;

E H 187 (@) ;

188 @ <

E E 189 (@ =

190 (@ >

191 () SHIFT-/

192 (@) SHIFT 8

m m 193 (@) (SHIFT OR CAPS ON) A
m E 194 (@) (SHIFT OR CAPS ON) B
195 (@) (SHIFT OR CAPS ON) C
m m 196 (@) (SHIFT OR CAPS ON) D
E E 197 (@) (SHIFT OR CAPS ON) E
198 (@) (SHIFT OR CAPS ON) F
E E 199 (@) (SHIFT OR CAPS ON) G
m m 200 (@) (SHIFT OR CAPS ON) H
201 (@) (SHIFT OR CAPS ON) |
202 (@) (SHIFT OR CAPS ON) J
m m 203 (@) (SHIFT OR CAPS ON) K
204 (@) (SHIFT OR CAPS ON) L

Appendix B. Atari ASC!l Code Set 329

Atari ASCII
Character

ASCII
Character

Decimal
Code

Keystrokes For
Outputting Character

[N B I = R E E R SR S R M B E R E |
[N E S R R FEHEER M EE EEEE |

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

(@) (SHIFT OR CAPS ON) M
(@) (SHIFT OR CAPS ON) N
(@) (SHIFT OR CAPS ON) O
(@) (SHIFT OR CAPS ON) P
(@) (SHIFT OR CAPS ON) Q
(@) (SHIFT OR CAPS ON) R
([d) (SHIFT OR CAPS ON) S
([@) (SHIFTORCAPSON) T
() (SHIFT OR CAPS ON) U
([@) (SHIFT OR CAPS ON) V
() (SHIFT OR CAPS ON) W
(@) (SHIFT OR CAPS ON) X
(@) (SHIFT OR CAPS ON) Y
(@) (SHIFT OR CAPS ON) Z
(@) SHIFT-,

([@) SHIFT-+

([@) SHIFT-.

(@) SHIFT-*

(@) SHIFT--

330 Atari XE User's Handbook

Atari ASClI
Character ASCl Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
n ﬂ 224 (@) CTRL-.
E E 225 (@) (CAPS OFF) A
m E 226 (@) (CAPS OFF) B
227 (@) (CAPS OFF) C
m m 228 (@) (CAPS OFF) D
E E 229 (@) (CAPS OFF) E
230 (@) (CAPS OFF) F
E E 231 (@) (CAPS OFF) G
232 (d) (CAPS OFF) H
ﬂ ﬂ 233 (@) (CAPS OFF) |
234 (@) (CAPS OFF) J
235 (@) (CAPS OFF) K
n n 236 (@) (CAPS OFF) L
m m 237 (@) (CAPS OFF) M
m m 238 (@) (CAPS OFF) N
m m 239 (@) (CAPS OFF) O
m E 240 (@) (CAPS OFF) P
m m 241 (@) (CAPS OFF) Q
242 (@) (CAPS OFF) R

Appendix B. Atarl ASCH Code Set 331

Atari ASCII

Character ASCII Decimal Keystrokes For
Std. Ext. Character Code Outputting Character
= 243 (@) (CAPS OFF) S

244 (@) (CAPS OFF) T
m m 245 (@) (CAPS OFF) U

246 (@) (CAPS OFF) V
m m 247 (@) (CAPS OFF) W
248 (@) (CAPS OFF) X
m m 249 (@) (CAPS OFF) Y

250 (@) (CAPS OFF) Z
n E 251 (@) CTAL;

I] I] 252 (@) SHIFT-=

B m 253 ESC/CONTROL-2
n 254 ESC/CONTROL->
u u 255 ESC/CONTROL-BACKSPACE

332 Atari XE User's Handbook

Appendix C.
Atari BASIC Reserved Words
Reserved Reserved
Word Abbrev, Word Abbrev.

ABS NEXT N.
ADR NOT
AND NOTE NO.
ASC ON
ATN OPEN O.
BYE B. OR
CHRS$ PADDLE
CLOAD CLOA. PEEK
CLOG PLOT PL.
CLOSE CL. POINT P.
CLR POKE POK.
COLOR C. POP
COM POSITION POS.
CONT CON. PRINT PR. or ?
COS PRINT# PR# or 7%
CSAVE CS. PTRIG
DATA D. PUT PU.
DEG DE. RAD
DIM Dl. READ REA.
DOS DO. REM R.or.
DRAWTO DR. RESTORE RES.
END RETURN RET.
ENTER E. RND
EXP RUN RU.
FOR F. SAVE S.
FRE SETCOLOR SE.
GET GE. SGN
GOSUB GOS. SIN
GOTO G. SOUND SO.
GRAPHICS GR. SQR
IF STATUS ST.
INPUT l. STEP
INPUT# |.# STICK
INT STRIG
LEN STOP STO.
LET LE. STR$
LIST L. THEN
LOAD LO. TO
LOCATE LOC. TRAP T.
LOG USR
LPRINT LP. VAL
NEW XI10 X.

Appendix D. Pinouts 333

Appendix D.
Pinouts

Monitor Jack

. Composite Luminence
. Ground

. Audio Output

. Composite Video

. Composite Chroma

Db WN -

Serial 1/0 Jack

. Clock Input

. Clock Output
Data Input

. Ground

. Data Output
Ground
Command
Motor Control
Proceed

10. =5/Ready
11. Audio Input
12. =12 VOLTS
13. Interrupt

20 40 seo t® we 120

10 e L1 J 10 e ne ne

PONPOALN

Joystick Jack

- (Joystick) Forward Input
. (Joystick) Back Input

. (Joystick) Left Input

. {Joystick) Right Input

. B (Paddle) Input

. Trigger Input

=5 VOLTS

. Ground

. A (Paddle) Input

(1] 1@ e ‘e

[}
~
L
w
[
-~
L]
o
[
©EONONBRWN =

334 Atari XE User's Handbook

Cartridge Slot

A B C D E F H R

L] [J [] L L] [] * [] L L] [
L] L [] * L] [L] L]
1 2 3 5 6 7 8 10 11 12 13 14 15

Enhanced Cartridge Interface

A B C D E F H
e e o o o o o
.

1 2 3 4 5 6 7

N RN

ITMOOD>

Reserved
IRQ
HALT
A13

Al4
A15

GND

+5V

. Shield

Ground
+5V
Ground
+5V
Ground

e maaa
ORPPIoOPNDO RGNS

NOoOO AW

54
A3
A2
Al
A0
D4
D5
D2

. D1

. DO

. D6

. 8§

. +5V

. RD5
. CCTL

EXSEI
RST
DIXX
MPD
Audio
REF
+5V

Appendix E. Printer Usage with the Atari XE 335

Appendix E.
Printer Usage with the Atari XE

A printer can be a valuable addition to an XE computer system,
allowing it to perform a number of useful tasks. For example, a printer
enables the XE to function as a word processor. Atari provides two ways
to interface a printer to the system unit:

e Atari 800 interface modulue
® Peripheral expansion bus

Almost any parallel printer may be connected to the Atari XE after
the interfae module has been correctly installed. Two of the more popular
parallel printers used with the Atari are the Epson MX/RX-80 and the
GEMINI

As an alternative to the Atari 850 interface module, the consumer
may elect to use the peripheral daisy chain. To date, only Atari markets
printers that may be attached via the peripheral bus. These include the
Atari 1020, Atari 1025, and Atari 1027.

A printer attached to the Atari in either of the preceding ways can be
referenced using the device name “P:”. The operating system only sup-
ports one printer device. Therefore, confusion will result if more than one
active printer is attached to the peripheral chain.

The final way to connect a printer to an Atari system is to use one of
the serial ports of the Atari 850 interface module. When so attached, the
operating system will recognize the printer as “RX:”. where X represents
the number of the serial port (1-4).

336 Atari XE User's Handbook

LISTING PROGRAMS

The LIST command can output a copy of the program currently
stored in the computer’s memory. Since the printer is known as “P:”, the
LIST command requires this device name to cause the output to besent to
the printer.

LIST “P:"
OUTPUTTING DATA

A PRINT# statement is most commonly used to output data to the
printer. However, an 1/0O filenumber must be opened for the printer
before any data can be output. The following statement is a typical OPEN
statement that can be used to establish an 1/ O filenumber for the printer:

OPEN #3, 8,0, “P:”

The *“8” designates the printer for output. “#3”is the filenumber. The
following example program demonstrates the use of the OPEN and
PRINT# statements to output data to the printer:

100 OPEN #1, 8, 0, “P:"”
110 FORJ=1TO 15
120 PRINT# 1; J, J/2
130 NEXT J

140 CLOSE #1
150 END

If only intermittent printer output is necessary for a specific pro-
gram, it is advisable to use LPRINT instead of PRINT#. The equivalent
of the preceding program using LPRINT is given below:

100 FORJ=1TO 15
110 LPRINT J, JN\2
120 NEXT J

130 END

Notice that no OPEN statement is required with LPRINT, Gener-
ally, PRINT#is used in place of LPRINT because PRINT#is faster than
LPRINT. The speed difference is difficult to notice in a short program,
but becomes apparent in more lengthy applications.

Appendix F. Atari PEEK and POKE Locations 337

Appendix F.
Atari PEEK and POKE Locations

This appendix lists memory addresses that BASIC programmers
may wish to access via the PEEK or POKE statements.

In BASIC, memory addresses as well as the contents at those
addresses are given in decimal notation. Fach address contains a value
between 0 and 255.

Two consecutive addresses are required to store numbers greater
than 256. In these instances, the value of the first address plus the value of
the second address multiplied by 256 will result in the total value. For
example, PEEK (97) + 256 * PEEK (98) will return the ending graphics
cursor column.

Most Atari memory locations are referred to by name as well as by
decimal memory address. Both are given in Appendix F.

Decimal

Address Name Description
Memory Addresses

14,15 APPMHI These addresses contain

the highest address that can
be used for program lines
and variables,

88,89 SAVMSC These addresses contain
the lowest screen memory
address. The contents of
that address will be dis-
played in the screen’s
upper right-hand corner.

128,129 | LOMEM The BASIC low memory
pointer.

144,145 | MEMTOP The BASIC top of memory
pointer.

338 Atari XE User's Handbook

741,742

743,744

MEMTOP

MEMLO

The highest address in the
free memory address will
be returned by PEEK (741) +
PEEK (742) * 256 ~ 1.

These locations contain the
lowest address in the free
memory area.

Screen Addresses

82

83

84

85,86

87

90

91,92

LMARGIN

RMARGIN

ROWCRS

COLCRS

DINDEX

OLDROW |

OLDCOL

This address gives the col-
umn position of the left
margin in graphics 0 mode.
The default value is 0.

This address gives the col-
umn position of the right
margin of the screen in
graphics 0 mode. The de-
fault value is 39.

This address gives the cur-
rent row position.

This address gives the cur-
rent column position.

This address gives the cur-
rent screen mode.

This address specifies the
starting graphics cursor row
for DRAWTO and X1018
statements.

This address gives the be-
ginning graphics cursor
column for DRAWTO and
XIO 18 statements.

Appendix F. Atari PEEK and POKE Locations 339

93 OLDCHR | This address contains the
character beneath the cur-
sor. This value will be used
to redisplay the character
when the cursor is moved.

94,95 OLDADR This address contains the
current text cursor address.
This value is used with
address 93 to restore the
character beneath the cur-
sor once the cursor is
moved.

96 NEWROW | This address contains the
ending cursor row for a
DRAWTO or graphics XIO
statement.

97,98 NEWCOL | This address contains the
ending cursor column for a
DRAWTO or graphics XIO
statement.

201 PTABW This address indicates the
number of columns be-
tween tab stops. The de-
fault value is 10.

656 TXTROW This address indicates the
cursor row in the text win-
dow. This value will range
from 0 to 3, with 0 indi-
cating the top row in the
text window.

340 Atari XE User's Handbook

657,658

752

755

756

763

765

TXTCOL

CRSINH

CHACT

CHBAS

ATACHR

FILDAT

This address indicates the
cursor column in the text
window. This value will
range from 0 to 39, with 0
being the first column.

A value of 0 at this address
results in the cursor not
being visible. Any other
value results in the cursor
being visible.

This address generally hasa
value of 2. Any other
value will result in the cur-
sor’s being opaque, the
cursor being absent, or
characters being inverted.
These values and their ef-
fect are summarized in
Table F-1.

This address indicates the
character set to be used in
graphics modes 1and 2 (224
=standard; 226 =alternate).

This address contains the
Atari ASCII code for the last
character read or written or
last graphics point output.

The address contains the fill
data to be used with a
graphics XIO command.

Graphics Addresses

708

COLORO

Color register 0.

Appendix F Atari PEEK and POKE Locations 341

709 COLOR1 Color register 1.
710 COLOR2 Color register 2.
71 COLOR3 Color register 3.
712 COLOR4 Color register 4.

Cassette Buffer

61 BPTR This address contains a
pointer to the next location
to be accessed in the cas-
setted buffer.

63 FEOF If this address contains a 0,
an end-of-file has not been
encountered. A value of 0
indicates an end-of-file has
been encountered.

649 WMODE This address indicates the
present cassette operation
(0 = read; 128 = write).

650 BLIM This address indicates the
size in bytes of the cassette
buffer (0-128).

1021- CASBUF These addresses are used as
1151 the cassette buffer.

Printer Addresses

29 PBPNT This address contains a
pointer to the current loca-
tion in the printer buffer.

342 Atari XE User's Handbook

30

960-999

PBUFSZ

PRNBUF

This address indicates the
size of the printer buffer (40
= normal mode; 29 =side-
ways mode).

These addresses are avail-
able for the printer buffer.

Keyboard Addresses

17

694

702

764

53279

BRKKEY

INVFLG

SHFLOK

CH

CONSOL

This address indicates that
the Break key has been
pressed (0 indicates Break
pressed).

This address controls
whether keyboard entries
result in normal or inverse
video character output (0 =
normal; non-zero = in-
verse).

This address indicates
whether the caps or control
locks are in effect (0 = nor-
mal--no locks; 64 = caps
lock; 128 = control lock).

This address contains the
value of the key which was
previously pressed. If no
key was pressed, the ad-
dress will contain 255.

Executing a PEEK to this
location returns a value
which indicates whether a
special function key has
been pressed. These values
along with the function key
indicated are listed in Table

Ll

Appendix F. Atari PEEK and POKE Locations 343

POKE (53279,8) retracts the
core of the built-in speaker
while POKE (53279,0)
extends it. When these two
statements are alternated,
clicking sounds will be
emitted from the speaker.

Miscellaneous

65 SOUNDR | If the value for this address
is 0, sound can be heard
over the television set dur-
ing disk or cassette access-
ing. A value of 0 eliminates
this sound.

186,187 | STOPLN These addresses return the
line number where exe-
cution of a BASIC program
was stopped due to a STOP
statement, a TRAP state-
ment, an error, or the
Break key being pressed.

195 ERRSAYV This address contains the
error number if an error
takes place.

212,213 | FRO These addresses contain a
value which is to be re-
turned to a BASIC pro-
gram from a USR function.

251 RADFLG or| This address determines
DEGFLG whether trigonometic
functions are calculated
using degrees or radians (0
= radians; 6 = degrees).

344 Atari XE User's Handbook

Table F-1. Address 755 Values and Effects on
Cursor and Character Display

Address 755 Cursor Cursor Characters
Value Visible/Not Visible | Transparent/Opaque | Normal/Inverse
0 Not Visible Transparent Normal
1 Not Visible Opaque Normal
2 Visible Transparent Normal
3 Visible Opaque Normal
4 Not Visible Transparent inverted
5 Not Visible Opaque Inverted
6 Visible Transparent Inverted
7 Visible Opaque Inverted

Table F-2. PEEK (53279) Function Key Values

Value Returned

Function Keys Pressed

NSOV HEWN=O

OPTION, SELECT, & START

OPTION & SELECT
OPTION & START
OPTION

SELECT & START
SELECT

START

None

Appendix G. Memory Bank Switching 345

Appendix G.

Memory Bank Switching

Table G.1.

Bank Switching

Device States Bank of “Extra” memory being accessed
CPU Antic #1 #2 #3 #4
Extra Extra 193 197 201 205
Extra Normal 225 229 233 237
Normal Extra 209 213 217 221
Normal Normal 241 245 249 253

“Poking” the value indicated in table G.1 into location 54017 will
have the described affect. For example,

POKE 54017,193

will set both devices to operate with extra memory bank #1.
Table G.2 shows the binary values corresponding with the decimal

values in table G.1.

346 Atar XE User's Handbook

Table G.2. Decimal and Binary Equivalents

Decimal Binary
193 11000001
197 11000101
201 11001001
205 11001101
225 11100001
229 11100101
233 11101001
237 11101111
209 11010001
213 11010101
217 11011001
221 11011101
241 11110001
245 11110101
249 11111001
253 11111101

Index 347

INdex

A

ABS 198
Access DOS 2, DOS 2.5 224
Acoustic modem 40-41
Activating DOS 224
ADR 199
AND 199
ANTIC microprocessor 24-25
Applications software 27-28
Arithmetic operators 81-82
Array 113
dimensioning 116
intializing 116
Arrow keys 58
ASC 127, 201
ASCII code set 316-331
Atari
65 XE 17-18
65 XEP 17-18
130 XE 17-18
picture 19-20, 44
cartridges 28
chips-table 25
schematic 24
XE CPU 24
ATN 201-202

BACK SPACE key 56
Bank Switching 303-306
BARACADE game, example 167-171
BASIC
branching 105-108
command structure 62-63
commands 197
ABS 198
ADR 199
AND 199
ASC 201
ATN 201
BYE 202
CHRS 202
CLOAD 203
CLOG 203
CLOSE 204
CLR 204
COLOR 205-216
COM 216
CONT 217
COS 218
CSAVE 218
DATA 219-220
DEG 220-221
DIM 221-223

350 Atari XE User's Handbook

Error handling 110-113

Error messages 309-315
BASIC 65-66
memory location 112

ESC key 57

Escape sequences 94-95

Example
BARACADE game 167-171
Bank Switching 307

EXP 230

F

Field 131-132
File 131-132
access 136
data 131-132
handling 131-154
random 143-145
sequential 137-143
specification 71
specifications 133
Filename 71, 174
extensions 174
match characters 175
Fill 163-164
Floppy diskettes 28-33
Format 187, 193

FORMAT DISK, DOS 2.0S, 2.5 187, 193

FOR...NEXT 109-110, 231-233
FRE 234
Functions 121

built-in 122

math 122-125

G

Game controllers
joysticks 42
keyboard 42
paddles 42
track balls 42

GET 234-238

GET# 234-238

GOSUB 106-107, 238-239

GOTO 105-106, 240

Graphic characters 157

Graphics 155 .
character 157
GTIA 165
modes 156
pixel 156

INE L VAN &t

GRAPHICS 155
GTIA graphics 165

H

HELP key 54
Home 99
Hue 160

If...THEN 241

Immediate mode, BASIC 61-62

Index variable 109

Init disk 187

INPUT 243

INPUTH# 245

INSERT key 57

Installation 43-52
daisy chaining 49-50
disk drives 48-50
modems 40-42
parallel printers 50
program recorder 50
serial device 51
television 46-48

INT 247

Interface module 38

Interpreter, BASIC 60

Interpretted language 24-25

J
Joysticks 41

K

Keyboard
DOS 2.0S 179
DOS 2.5 193
Keys
arrow 58
BACK SPACE 56
BREAK 54
CAPS 56
CLEAR 56
CONTROL 55
DELETE 56
ESC 57
HELP 54
INSERT 57
OPTION 54

TISLARA NO

Index 349

CLEAR key 56
CLOAD 72-73
CLOG 203-204
CLOSE 140, 204
CLR 204-205
Code
compiled 26-27
source 26-27
COLOR 205-216
Color printer 38
COM 216
Communications
parallel 39-41
serial 39-41
Compiled code 26-27
Compiled language 26-27
Concatenation 126-127
CONT 217
CONTROL key 55
COPY FILE, DOS 2.0S, 2.05 181-183
COS 218
CPU 24-25
CREATE MEM.SAVE, DOS 2.0S, DOS 2.5
191-192
CSAVE 72, 218

D

Daisy-chaining 49-50
DATA 117-121, 219-220
Data file 131-132
record 131-132
Data types 74-77
numeric 75-77
strings 74-75
DEG 123, 220-221
DELETE FILE, DOS 2.0S, DOS 2.5 183
DELETE key 56-57
Delimiter 132
DIM 116, 221-223
Dimensioning an array 116-117
Direct-connect modem 40
DIRECTORY, DOS 2.0S, DOS 2.5 179-181
DISK DIRECTORY, DOS 2.0S, DOS 2.5
179-181
Disk drives 29
81029
1050 29
installation 48-50
operation 33-35

Disk operating system
1.0 26
2.0S 26
2526
Diskettes 30-33
sectors 30-31
tracks 30-31
write protection 33
DOS 173-196, 224-226
activating 176-178
commands 176
types 176
menus 177-178
operations 179-196
versions 26
208,179
BINARY LOAD 190
BINARY SAVE 189
COPY FILE 181-182
CREATE MEM.SAV 191
DELETE FILE 183
DISK DIRECTORY 179
DUPLICATE DISK 188
DUPLICATE FILE 192
FORMAT DISK 187, 193
LOCK FILE 186
RENAME FILE 184
RUN AT ADDRESS 191
RUN CARTRIDGE 181
UNLOCK FILE 186
WRITE DOS FILE 186
keyboard 179
2.5193
Utility Programs 193
COPY32.COM 194
DISKFIX.COM 194
RAMDISK.COM 194
SETUP.COM 193
keyboard 193
Dot matrix printer 37
DRAWTO 162-164, 226-228
DUPLICATE DISK, DOS 2.0S, 2.5 188
DUPLICATE FILE, DOS 2.0S, 2.5 192

E

END 228-229
ENTER 152, 229-230
EOF 143

Erase 153

352 Atari XE User's Handbook

Protect
DOS 2.0S, 2.5 186
PUT# 140-141

R

RAD 123
RAM 20-21
Random file 143-145
READ 117-121
Record 131-133
Relational operators 84-86
Rename 153
RENAME FILE, DOS 2.0S, 2.5 184
Reset key 53
RESTORE 118, 277
RETURN 106-107, 207-208
key 54
RND 278-279
ROM 20-21
cartridge 28
RUN 70, 149-151, 279-280
RUN AT ADDRESS, DOS 2.0S, 2.5 191
RUN CARTRIDGE, DOS 2.0S, 2.5 181

S

SAVE 71-72, 148-149, 280-281
Screen input 100-104
Sectors
hard 31-32
soft 31-32
SELECT key 54
Sequential file 135-143
Serial device, installation 51
SET COLOR 160, 281-282
SGN 282
SHIFT key 55
SIN 282-283
Software 24
applications 25-26
language 24
operating system 24
SOUND 166-167, 283-284
Source code 25
SQR 284
START key 54
STATUS 284-285
STEP 110
STICK 285-286
STOP 287-288
STRS 288, 127-128

STRIG 286-287
Strings
concatenation 126-127
handling 125
Subroutines 106-107
Subscripted variables 113-117
Substrings 125-126

T

TAB key 57

Table 115

Television installation 45-47
Track balls 41

Tracks 30-31

TRAP 110-112, 288-289
Trigonometric functions 122

U

UNLOCK FILE, DOS 2.08S, 2.5 186
Unprotect 186
USR 290-291

\'

VAL 127-128, 291-292

Variable 77-80
assignments 79
index 113-117
name table 113-117
names 78
subscripted 113-117
types 78

w

Wildcards 175-176
WRITE DOS FILE, DOS 2.08S, 2.5 186-187
Write protection 32

X

X10 145-148, 292-295

erase 152

fill 163-165
format 154

paint 163-165
protect 153
rename 153
unprotect 153

Index 351

RESET 53
RETURN 54
SELECT 54
SHIFT 55
START 54
TAB 57
Kilobyte 25

L

Language 26

compiled 26

interpreted 26

software 26
LEN 126, 247
LET 79, 248
Letter quality printer 38
LIST 66-67, 151-152, 249-251
LOAD 72, 149, 251-252
LOCATE 252, 254
LOCK FILE, DOS 2.0S, 2.5 186
LOG 254
Logical operators 86-88
Loop 109

nesting 110
LPRINT 254-255
Luminance 160

M

Margins 100
Math functions 122-125
Mem save, DOS 2.0S, 2.5 191
Memory bank switching 297
Menus, DOS 177-178
Microprocessor 21
6502C 22
address space 23, 298
ANTIC 22
logic 23
Modems 39-40
acoustic 39-40
direct-connect 39-40
installation 51
Modes, graphics 156

N

Nesting loops 110
NEW 255

NEXT 255

NOT 256

NOTE 256

o

ON...GOSUB 108, 257
ON...GOTO 108, 257
OPEN 104, 258
Operating system 24
OPTION key 54

OR 266-267

P

PADDLE 267-268
Paddles 42
Paint 163
Parallel printers, installation 50-51
PEEK 268
Periphal devices 29-42
disk drives 29
game controllers 42
interface module 39
modems 40
printers 37
program recorder 36
Pinouts
joysticks jack 333
monitor jack 333
serial I/ O jack 333
cartridge slot 334
enhanced cartridge interface 334
power adapter plug 334
Pixel 156
PLOT 162, 268-269
POINT 144-145
POKE 269-270
POP 271-274
POSITION 99-100
Power supply 17, 19, 20
Power up procedure 51-52
PRINT 92-94, 275-276
PRINT# 140-141, 276
Printer usage 335-336
Printers 36-38
color 38
dot matrix 38
letter quality 38
Program chaining 129
Program entry, BASIC 63-65
Program file 131-132
Program mode, BASIC 61-62
Program recorder
installation 50

$15.95

ATARI® XE” User’s Handbook

Atari XE User’s Handbook is a clear, concise, and practical
guide to the Atari XE line of personal computers. This book covers
introductory concepts designed to allow the “first time” compu-
ter user to operate and program the Atari XE in BASIC. This book
also contains a great deal of information on advanced topics such
as graphics, DOS usage, and file handling that are of interest to the
experienced computer user.

The following topics are covered in depth in the Atari XE
User’s Handbook:

Installation

Operation

Atari XE hardware

Atari peripherals

BASIC programming fundamentals
File handling

Graphics and sound

DOS 2.0 and 2.5

Printer usage

Useful PEEKS and POKES
Memory Bank Switching

Numerous examples and illustrations are provided through-
out the book. Atari XE User’s Handbook also includes a number of
useful appendices and is fully indexed. No user of an Atari XE
computer should be without the Atari XE User’s Handbook.

ISBN: 0-9388Lk2-HL-3 LC: 85-13896

Weber Systems, Inc.
',..'Si 8437 Mayfield Road
Chesterland, OH 44026

