USER’S
GUIDE

Atari 400
600XL

4
A &y

|
el

Mark Ellis, Robert Ellis, and Larry Joel Goldstein

Publishing Director: David Culverwell

Acquisitions Editor: Terrell Anderson

Production Editor/Text Designer: Michael J. Rogers
Art Director/Cover Design: Don Sellers

Assistant Art Director: Bernard Vervin
Photography: George Dodson

Manufacturing Director: John Komsa

Copy Editor: Carol Thorsten-Stein

Typesetter: Alexander Typesetting, Inc., Indianapolis, IN

Printer: Fairfield Graphics, Fairfield, PA

Typefaces: Souvenir (display), Palatino (text) OCR-B (computer programs and
related material)

The ATASCII table found in Table 6-4 and Appendix D is from Your Atari Computer
by Lon Poole with Martin McNiff and Steven Cook, © 1982 by McGraw-Hill, Inc.
Used with permission of Osborne/McGraw-Hill.

Atari
User’s Guide

Mark C. Ellis
Dr. Robert Ellis
Dr. Larry Joel Goldstein

Brady Communications
Company, Inc.
A Prentice-Hall Company

Bowie, MD

Atari User’s Guide

Copyright © 1984 by Brady Communications Company, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including, photocopying and
recording, or by any information storage and retrieval system, without permission
in writing from the publisher. For information, address Brady Communications
Company, Inc., Bowie, MD 20715.

Library of Congress Cataloging in Publication Data

Ellis, Mark C., 1969
Atari user’s guide.

Includes index.

1. Atari computer—Programming. 2 BASIC (Computer program language) I. Ellis,
Robert, 1938- . II. Goldstein, Larry Joel. III. Title.
QA76.8.A82E44 1984 001.64'24 83-26625

ISBN D0-89303-323-5

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

8485868788899091929394 12345678910

PREFACE

This book is designed to teach the computer novice how to use the ATARI
family of computers, including the 400, 600XL, 800, 800XL, and 1200XL.

The development of the personal computer is one of the most exciting
breakthroughs of our time. Indeed, the inexpensive personal computer
promises to bring the computer revolution to millions of people and to alter
the way they think, learn, work, and play. This book is intended to be an
introduction to this revolution. Accordingly, the book has two main pur-
poses. First, it instructs you in the operation and programming of ATARI
computers and, secondly, it illustrates some of the many ways computers
may be used. In addition, it acts as a handy reference guide, with useful
information in the appendices.

We guide you from the moment you first turn on the computer: We dis-
cuss the rudiments of programming in BASIC; show you how to use paddles,
joysticks, cassette recorders, disk drives, and printers; explain the sound and
graphics capabilities of ATARI computers; and give guidelines for making
simple games for the computer. There are numerous programs in the text to
illustrate not only the programming techniques presented, but also the use of
sound and graphics effects. We have included several applications that illus-
trate how the computer can be used in real-life situations. There are optional
chapters on data files and the use of mathematical functions in computuing.
We even provide suggestions for further exploration of the expanding com-
puter world.

Since the book is designed for self-study, exercises of varying difficulty
are provided. Located in the text of each section are boxed questions labeled
“TEST YOUR UNDERSTANDING.” These questions test your comprehen-
sion of concepts introduced in the section. The answers to “TEST YOUR
UNDERSTANDING” questions are found after the exercises for each
section.

Any book owes its existence to the dedicated labor and inspiration of
many people. In our case, we have been inspired by our families and friends.
Special thanks go to former teachers Carmela Mannarino and William
Lopes. Our sincere thanks to our reviewers, Gerald Isaacs, Mike Dunn, Greg
Leslie, and Mark Levine, for their careful scrutiny of the manuscript and
many helpful suggestions. Thanks also go to Michael Rogers, production
editor, for the professional manner in which he managed the editing and
production of this book. Finally, we would like to thank Charlie Siegel, Pres-
ident of the Brady Company, and David Culverwell, Publishing Director of
the Brady Company, for their continued support.

Mark C. Ellis

Dr. Robert Ellis

Dr. Larry Joel Goldstein
Silver Spring, Maryland

CONTENTS

Preface / v

1 A First Look at Computers / 1
1.1 Introduction / 1
1.2 What is a Computer? / 3
1.3 Meet Your ATARI Computer / 5
1.4 Using the Keyboard / 16
1.5 Special Keys for the ATARI 600XL, 800XL, and 1200XL / 20

2 Getting Started in ATARI BASIC / 23
2.1 Computer Languages / 23
2.2 Printing With the Direct Mode / 23
2.3 Printing With the Program Mode / 32
2.4 Giving Names to Numbers and Words / 35
2.5 Error Messages / 44

3 More on ATARI BASIC / 47
3.1 The GOTO Statement / 47
3.2 Doing Repetitive Operations / 51
3.3 Letting Your Computer Make Decisions / 66
3.4 Planning Your Program / 78
3.5 Subroutines / 82
3.6 POKE, PEEK, and TRAP Statements / 88
3.7 Debugging Your Programs / 91

4 Working With Data / 95
4.1 Working With Tabular Data / 95
4.2 Inputting Data / 100
4.3 Generating Data at Random / 108

5 Using Peripherals / 117
5.1 The Cassette Recorder / 117
5.2 The Disk Drive / 120
5.3 The Printer / 126
5.4 The Modem / 128

6 Computer Graphics and Text / 129
6.1 Introduction / 129
6.2 Graphics Commands / 131
6.3 Graphics Modes / 142
6.4 Text Commands / 149
6.5 Text Modes / 161
6.6 More Commands / 163

7 Using Sound and Game Controllers / 169
7.1 Using Sound / 169

7.2 Using Joysticks / 173
7.3 Using Paddles / 180

8 Games / 183
8.1 How to Make Your Own Games / 183
8.2 Tic Tac Toe / 185
8.3 CHASE / 189

9 Data Files / 193
9.1 Introduction / 193
9.2 Commands With Data Files / 194
9.3 Examples of Data Files / 196

10 Computing and Mathematical Functions / 203
10.1 Mathematical Functions in ATARI BASIC / 203
10.2 Using the Computer to Graph Functions / 210
10.3 Rounding Numbers / 212

11 Where to Go From Here / 215
11.1 Word Processing / 215
11.2 Buying Software / 216
11.3 Other Languages / 217

APPENDICES
A Common Error Messages / 219
B Sound Table / 223
C Text and Graphics Modes / 225
D ATASCII Codes / 229

E Statements, Commands, Functions, and Their Abbreviations / 236
F Glossary / 241

Answers to Selected Exercises / 247

Index / 265

viii

Limits of Liability and Disclaimer of Warranty

The authors and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts include
the development, research, and testing of the theories and programs to deter-
mine their effectiveness. The authors and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or the documenta-
tion contained in this book. The authors and publisher shall not be liable in
any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of these programs.

Note to Authors

Do you have a manuscript or a software program related to personal
computers? Do you have an idea for developing such a project? If so,
we would like to hear from you. The Brady Co. produces a complete
range of books and applications software for the personal computer
market. We invite you to write to David Culverwell, Publishing Direc-
tor, Robert J. Brady Co., Bowie, MD 20715.

Trademarks of Material in This Text

ATARI 400, 600XL, 800, 800XL, and 1200XL are registered trademarks of
Atari, Inc.

ATARIWRITER is a registered trademark of Atari, Inc.

ATARI 850 interface module is a registered trademark of Atari, Inc.

ix

A First Look at Computers

1.1 Introduction

The computer age is barely thirty years old, but it has already had
a profound effect on all our lives. Indeed, computers are now com-
mon in the office, the factory, and even the supermarket. In the last
three or four years, the computer has even become common in the
home, as people have purchased millions of computers and com-
puter games. Computers are so common today that it is hard to
imagine even a single day in which a computer will not somehow
affect us.

In spite of the explosion of computer use in our society, most
people know very little about them. They view a computer as an
“electronic brain,” and do not know how one works, how it may
be used, or how greatly it may simplify various everyday tasks.
This does not reflect a lack of interest. Most people realize com-
puters are here to stay, and are interested in finding out how to use
them. If you are one of those people, this book is for you.

This book is an introduction to personal computing for the novice.
You may be a student, teacher, homemaker, business person, or just
a curious individual. We assume you have had little or no previous
exposure to computers and want to learn the fundamentals. We will
guide you as you turn on your ATARI personal computer for the
first time. From there, we will lead you through the fundamentals of
communicating with your computer in a language called ATARI
BASIC. Throughout, we will provide exercises for you to test your
understanding of the material. We will show the many ways you can
use your computer. In the exercises, we will suggest programs to
write. Many of the exercises will be designed to give you insight into
how computers are used in business and industry. We will suggest a
number of applications of the computer within your home. For good
measure, we'll even provide a few computer games!

What is Personal Computing?

In the early days of computing (the 1940s and 1950s), the typical
computer was a huge mass of electronic parts which occupied sev-

1

2

1 / A First Look at Computers

eral rooms. In those days, it was often necessary to reinforce the
floor of a computer room, and install special air conditioning so
the computer could function properly. Moreover, an early com-
puter was likely to cost several million dollars.

Over the years, the cost of computers has decreased dramati-
cally and, thanks to micro-miniaturization, their size has shrunk
even faster than their price.

In the late 1970s, the first “personal” computers were put on the
market. These computers were reasonably inexpensive and were
designed to allow the average person to learn about the computer
and use it to solve everyday problems. These personal computers
proved to be incredibly popular and have stirred the imaginations
of people in all walks of life. It is no exaggeration to say that a
computer revolution is now under way, as millions of people are
learning to fit computers into their everyday lives.

The personal computer is not a toy, although it can be used as
one. It is a genuine computer that can be equipped with enough
capacity to handle the accounting and inventory control tasks of
most small businesses. It can also perform computations for engi-
neers and scientists, and can even be used to keep track of home
finances and personal clerical chores. It would be quite impossible
to give a complete list of all the applications of personal com-
puters. However, the following list is suggestive of the range of
possibilities:

For the business person
Accounting
Record keeping
Clerical chores
Inventory
Cash management
Payroll
Graph and chart preparation
Word processing
Data analysis

For the home
Record keeping
Budget management
Investment analysis
Tax preparation
Correspondence
Energy conservation
Home security

1.2 What is a Computer? 3

For the student
Computer literacy
Preparation of term papers
Analysis of experiments
Preparation of graphs and charts
Project schedules
Storage and organization of notes
Educational programs

For the professional
Billing
Analysis of data
Report generation
Correspondence

For recreation
Computer games
Computer graphics
Computer art
Computer music

As you can see, the list is quite comprehensive. If your interests
aren’t listed, don’t worry! There’s plenty of room for those of you
who are just plain curious about computers and wish to learn
about them as a hobby.

ATARI Personal Computers

This book will introduce you to personal computing on the
ATARI 400, 600XL, 800, 800XL, and 1200XL personal computers.
These machines are incredibly sophisticated devices which incor-
porate many of the features of their main-frame big brothers.
Before we begin to discuss the particular features of the ATARI
personal computers, let us begin by discussing the features found
in all computers.

1.2 What is a Computer?

At the heart of every computer is a central processing unit
(CPU) that performs the commands you specify. This unit carries
out arithmetic, makes logical decisions, and so forth. In essence,
the CPU is the “brain” of the computer. The memory of a com-
puter enables it to “remember” numbers, words, and paragraphs,

4

1 / A First Look at Computers

as well as the list of commands you wish the computer to
perform.

In ATARI computers, the CPU is contained in a tiny electronic
chip, called a 6502 microprocessor. For a computer novice, it will
not be necessary to know about the electronics of the CPU, so we
will not discuss it further.

There are two types of memory inside computers: ROM and
RAM. ROM stands for Read Only Memory. This type of memory
contains information that is used by the CPU to operate the com-
puter. The information is pre-recorded in the factory and can
NEVER be erased. All computers have been designed in such a
way that you can’t store anything in ROM. This prevents interfer-
ence with the operation of the computer.

RAM stands for Random Access Memory. This is the memory
into which you can store information. When you type characters
on the keyboard, they are stored in RAM. Similarly, results of cal-
culations are kept in RAM awaiting output to you.

There is an extremely important fact about RAM which you
should always remember:

When the computer is turned off, ALL information in RAM
is erased.

RAM is used as the computer's main working storage area
because of its quick accessibility. It takes about a millionth of a
second to store or retrieve a piece of data from RAM. RAM may

INPUT
keyboard
y
MEMORY - CENTRAL OUTPUT
Cassette PROCESSING > Sc.reen
Diskette [UNIT Printer

Figure 1-1. The main components of a computer.

1.3 Meet Your ATARI Computer 5

not be used to store data in permanent form since it is erased
when the computer is turned off.

To make permanent and retrievable copies of programs and
data, we may use either cassettes or diskettes, which we will dis-
cuss later. An input device allows you to send information to the
computer. Data sent to a computer is called input. An output
device accepts data sent from the memory of the computer. Data
sent by a computer is called output. The relationships of the four
basic components of a computer are shown in Figure 1-1.

The main input device of an ATARI computer is the keyboard.
We will discuss the special features of the keyboard in Sections 1.4
and 1.5. For now, think of the keyboard as a typewriter. By typing
symbols on the keyboard, you are inputting them to the computer.

ATARI computers have a number of output devices. The most
basic is the TV screen (sometimes called a video monitor, video
display, or CRT). You may also use a printer to provide output on
paper. In computer jargon, a printed output is called a hard copy.

Two of the devices that can be used for both input and output
are the cassette recorder and the disk drive.

The cassette recorder is just a tape recorder which allows
recording of information in a form which the computer can under-
stand. The recording tape is the same sort you use for musical
recordings. The main disadvantage of using a cassette recorder is
its slowness.

The ATARI disk drive records information on flexible diskettes.
The diskettes are often called “floppy disks,” and can store about
92 thousand characters each! (A double-spaced typed page con-
tains from 1,000 to 3,000 characters.) A disk drive can provide
access to information in much less time than a cassette recorder,
and is much more reliable. On the other hand, disk drives are
more costly than cassette recorders.

We will go into further detail about cassette recorders and disk
drives in Chapter 5.

1.3 Meet Your ATARI Computer

The best way to become quickly acquainted with your ATARI
computer is to read this book while sitting at the computer. That
way, you can verify the various statements as they come up and
type in programs. So why not have a seat in front of your com-
puter and become acquainted with it? We suggest you begin this

6 1 / A First Look at Computers

section by skipping ahead to the part that deals with your particu-
lar computer.

CAUTION: NEVER use your computer during a storm
unless you have a power surge protector. This protects your
computer from surges and dips in electricity that may be
caused by lightning. Make sure there isn’t too much static
electricity in the room you are in. Even a small spark can
erase and destroy your computer’s memory.

e

e i
Figure 1-2. The ATARI 400 computer.

1.3 Meet Your ATARI Computer 7

The ATARI 400

In case your computer is not conveniently available, we have
provided pictures of it and its keyboard in Figures 1-2 and 1-3.

Notice in Figure 1-2 we placed the monitor behind the computer
for convenient viewing. If you wish, you may place your monitor
beside the computer. The choice is yours, so arrange your system
for your comfort and convenience. You may be using your system
for many hours at a time and a little convenience will lessen eye-
strain and fatigue.

Now open the hatch at the top of the computer, insert your
BASIC cartridge into the slot (see Figure 1-4), close the hatch, and
turn on the computer. On the screen you will see

READY
|

This is called the ready prompt. It is the computer’s way of telling
you it is ready to receive instructions from you.

The keyboard of the ATARI 400 is similar to that of a type-
writer, except it has a flat, pressure-sensitive surface. It has keys
for A-Z, 0-9, and other symbols such as punctuation marks. Some
special keys are ESC, CTRL, CLEAR, INSERT, DELETE BACK S,
BREAK, CAPS LOWR ,THE ATARI KEY (), START, SELECT,
OPTION, and SYSTEM RESET. Don’t panic! We will discuss the
functions of these keys as we need them.

Figure 1-3. Keyboard of the ATARI 400 computer.

8

1 / A First Look at Computers

o~ (72~ =T G AR e o
Figure 1-4. Inserting the BASIC cartridge in the ATARI 400.

The ATARI 600XL

In case your computer is not conveniently available, we have
provided pictures of it and its keyboard in Figures 1-5 and 1-6.

Notice in Figure 1-5 we placed the monitor behind the computer
for convenient viewing. If you wish, you may place your monitor
beside the computer. The choice is yours, so by all means arrange
your system for your comfort and convenience. You may be using
your system for many hours at a time and a little convenience will
lessen eyestrain and fatigue.

The slot just above the keyboard (see Figure 1-5) is used for
inserting cartridges with games, languages, word processers, or
other programs.

XL BASIC, a variation of ATARI BASIC, is built into the 600XL.
Therefore, no BASIC cartridge is necessary. When you turn on the
computer, you will see

READY
|

1.3 Meet Your ATARI Computer 9

This is called the ready prompt. It is the computer’s way of telling
you it is ready to accept information.

The keyboard of the 600XL is similar to that of a typewriter. It
has keys for A-Z, 0-9, and other symbols such as punctuation
marks. Some special keys are RESET, START, SELECT, OPTION,

Figure 1-6. Keyboard of the ATARI 600XL computer.

10

1 / A First Look at Computers

HELP, THE ATARI KEY (=), BREAK, ESC, CONTROL, CLEAR,
INSERT, DELETE BACK SPACE, and CAPS. Don’t panic! We will
discuss the functions of these keys as we need them. In the rest of
this book, we will abbreviate CONTROL to CTRL and DELETE
BACK SPACE to DELETE BACK S when speaking generally about
the ATARI computers. We will also refer to the CAPS key as
CAPS LOWR and RESET as SYSTEM RESET.

The ATARI 800

In case your computer is not conveniently available, we have
provided pictures of it and its keyboard in Figures 1-7 and 1-8.

| Fire 1-7. The ATARI OO computer.

1.3 Meet Your ATARI Computer 11

Notice in Figure 1-7 we placed the monitor behind the computer
for convenient viewing. If you wish, you may place your monitor
beside the computer. The choice is yours, so arrange your system
for your comfort and convenience. You may be using your system
for many hours at a time and a little convenience will lessen eye-
strain and fatigue.

Open the hatch at the top of the computer, insert your BASIC
cartridge into the left slot (see Figure 1-9), close the hatch, and turn
on the computer. On the screen you will see

READY
|

This is called the ready prompt. It is the computer’s way of telling
you it is ready to receive instructions from you.

The keyboard of the 800 is similar to that of a typewriter. It has
keys for A-Z, 0-9, and other symbols such as punctuation marks
and mathematical symbols. Some special keys are ESC, CTRL,
CLEAR, INSERT, DELETE BACK S, BREAK, CAPS LOWR, THE
ATARI KEY (a), START, SELECT, OPTION, and SYSTEM

IO

ﬂ ATARI OO

Fue 1-8. Keyboard of the ATARI 800 computer.

12

1 / A First Look at Computers

. CAaryd
) ?{\S]Q -

RN

AR ,{ ‘J!‘i‘('

NG,

Figure 1-9. Inserting the BASIC cartridge in the ATARI 800.

RESET. We will discuss the functions of these keys as we need
them.

The ATARI 800XL

In case your computer is not conveniently available, we have
provided pictures of it and its keyboard in Figures 1-10 and 1-11.

Notice in Figure 1-10 we placed the monitor behind the com-
puter for convenient viewing. If you wish, you may place your
monitor beside the computer. The choice is yours, so by all means
arrange your system for your comfort and convenience. You may
be using your system for many hours at a time and a little conven-
ience will lessen eyestrain and fatigue.

The slot just above the keyboard (see Figure 1-10) is used for
inserting cartridges with games, languages, word processers, or
other programs.

1.3 Meet Your ATARI Computer 13

Figure 1-10. The ATARI 800XL computer.

ATARI 80O XL

LI S

ELEAR SSERT QMLETC
BACK

Figure 111. Keyboard of the ATARI 800XL computer.

XL BASIC, a variation of ATARI BASIC, is built into the 800XL.
Therefore, no BASIC cartridge is necessary. When you turn on the

computer, you will see

14

1 / A First Look at Computers

READY
|

This is called the ready prompt. It is the computer’s way of telling
you it is ready to accept information.

The keyboard of the 800XL is similar to that of a typewriter. It
has keys for A-Z, 0-9, and other symbols such as punctuation
marks. Some special keys are RESET, START, SELECT, OPTION,
HELP, THE ATARI KEY ([=), BREAK, ESC, CONTROL, CLEAR,
INSERT, DELETE BACK SPACE, and CAPS. Don’t panic! We will
discuss the functions of these keys as we need them. In the rest of
this book, we will abbreviate CONTROL to CTRL and DELETE
BACK SPACE to DELETE BACK S when speaking generally about
the ATARI computers. We will also refer to the CAPS key as
CAPS LOWR and RESET as SYSTEM RESET.

The ATARI 1200XL

In case your computer is not conveniently available, we have
provided pictures of it and its keyboard in Figures 1-12 and 1-13.

Notice in Figure 1-12 we placed the monitor behind the com-
puter for convenient viewing. If you wish, you may place your
monitor beside the computer. The choice is yours, so by all means
arrange your system for your comfort and convenience. You may
be using your system for many hours at a time and a little conven-
ience will lessen eyestrain and fatigue.

Insert the BASIC cartridge into the left side of your computer
(see Figure 1-14) and then turn the computer on.

On the screen you will see

READY
n

This is called the ready prompt. It is the computer’s way of telling
you it is ready to accept information. (If you insert the BASIC car-
tridge after turning on the computer, you may see nothing on the
screen, or you may see colors moving on the screen. If so, just turn
the computer off and then back on.)

The keyboard of the 1200XL is similar to that of a typewriter. It
has keys for A-Z, 0-9, and other symbols such as punctuation marks.
Some special keys are RESET, START, SELECT, OPTION, F1, F2,
F3, F4, HELP, THE ATARI KEY (=), BREAK, ESC, CONTROL,
CLEAR, INSERT, DELETE BACK SPACE, and CAPS. Don't panic!
We will discuss the functions of these keys as we need them. In the
rest of this book, we will abbreviate CONTROL to CTRL and

1.3 Meet Your ATARI Computer 15

DELETE BACK SPACE to DELETE BACK S when speaking gener-
ally about the ATARI computers. We will also refer to the CAPS key
as CAPS LOWR and RESET as SYSTEM RESET.

" L2 START SELECT OPTION

Q] w| El R| T|
Al S| DI F|
| z| x| ¢| v| B]

kkaigure 1-13 Keard of the TI lOOL computer.

16 1 / A First Look at Computers

Figure 1-14. Inserting the BASIC cartridge into the ATARI 1200XL.

1.4 Using the Keyboard

In this section, you will learn how to use some of the keys on your
computer.

Try typing “HELLO” on the keyboard. Notice the word
“HELLO” appeared on the screen in capital letters, and the com-
puter (or TV if you are using a 600XL, 800XL, or 1200XL) made a
clicking sound each time you pressed a key. Now press the
RETURN key. On the screen you will see

ERROR- HELLOM

Don’t worry about this! You didn’t do anything wrong. The reason
for the error is that the computer does not understand what you
typed.

Whenever you hit the RETURN key, the computer tries to inter-
pret what you have typed, but it understands only its own lan-
guage, in this case ATARI BASIC. Whenever the computer
encounters something it does not understand, it conveniently gives
you an error message to let you know. Later with this book, you

1.4 Using the Keyboard 17

will learn ATARI BASIC so you can make yourself understood to
the computer. For now, just ignore error messages.

Before we proceed, let us make an important point. You cannot
damage your computer by pressing any of the keys in a normal
fashion. The worst that can happen is that you will erase some-
thing from the screen that you wanted to keep. In any case, you
can always turn the computer off and then back on. So please
don’t worry about damaging the computer.

The computer always prints with capital letters unless you press
the CAPS LOWR key. Try pressing this key and then typing
“HELLO” again. This time the computer put “hello” on the screen
in lower case letters. To get the computer back to upper case, press
SHIFT and CAPS LOWR simultaneously*. Try experimenting
until you fully understand the CAPS LOWR key.

As with a typewriter, you always use the SHIFT key in conjunc-
tion with other keys, not by itself. The same applies to the CTRL
key. You could consider it a second SHIFT key, with its own sepa-
rate purpose.

Notice that the numbers 0-9 are at the top of the keyboard. It is
not necessary to use the upper case O (as in Ontario) for the
number zero, or the lower case 1 (as in large) for the number one.
Unless the computer is given instructions to the contrary, it will
always interpret the lower case 1 and upper case O as letters, not
numbers.

Several of the special keys make it easy to change whatever you
or the computer has placed on the screen. Making such changes is
called screen editing. For example, to clear the screen all you have
to do is to press SHIFT and CLEAR (or CTRL and CLEAR) simul-
taneously. Try it! It is frequently convenient to clear the screen for
added clarity.

By now you have probably noticed a little white square on the
screen. It is called the cursor. The cursor’s “home” is at the top left
corner of the screen. That is where it is located right after the
screen has been cleared. Its location marks the place where the
next character you type will be put on the screen. It advances auto-
matically each time you type a character (this includes the space
character). At the end of a line, the cursor will advance to the
beginning of the next line. (In particular, this means that it is not
necessary to hit RETURN at the end of a line to go to the next line.
The computer does it for you!)

*When we ask you to press 2 keys simultaneously, press and hold the
first key while pressing the second key.

18

1 / A First Look at Computers

You may change the position of the cursor by using CTRL with
any of the four keys on the right side of the keyboard that contain
arrows. (On the 1200XL, F1 through F4 can also be used to move
the cursor.) To move the cursor, simultaneously press CTRL and
the key with the arrow that points in the direction you want the
cursor to move. Pressing the keys briefly will advance the cursor
one space in the chosen direction; holding the keys down will
cause the cursor to continue moving until you release the key with
the arrow. If the cursor disappears from either side of the screen, it
will reappear on the other side of the screen. The same sort of
thing happens when the cursor disappears from the top or bottom
of the screen. Practice moving the cursor until you understand the
procedure fully.

TEST YOUR UNDERSTANDING 1 (answer on
page 19)

Move the cursor to near the center of the screen, type your
name, and clear the screen. Where does the cursor move
when the screen is cleared? What is the name of this place?

Next we explain the use of the keys INSERT and DELETE
BACK S. Type the following exactly:

USING THE KOMPUTR IS FUN.....

There are several errors in this sentence. The letter K should be
C, there is an E missing between T and R, and there are too many
periods at the end of the sentence.

Your cursor should now be to the right of the last period. If it is
not, please place it there at this time.

To delete all the periods but one, press DELETE BACK S four
times. Each time you press this key, the cursor will move one
space to the left, deleting the character in the space to which it
moves. This is what should be displayed on the screen at this time:

USING THE KOMPUTR IS FUN.

Now let’s correct the word KOMPUTR. What a mess! First you
must insert the letter E between T and R. Move the cursor until it
is on top of the R. Then press CTRL and INSERT simultaneously.
This will shove everything from the cursor on one space to the
right, creating a space between the T and R. Now you can type an
E, leaving the following displayed on the screen:

1.5 Special Keys for the ATARI 600XL, 800XL, and 1200XL 19

USING THE KOMPUTER IS FUN.

Finally, you must change the K to a C. Just position the cursor
on top of the letter K and type the letter C. This will replace the K
with a C. Your sentence now reads

USING THE COMPUTER IS FUN.

There is another use of DELETE BACK S that is frequently use-
ful. Suppose you wanted to delete the word 'USING’ from your
sentence. Move the cursor until it is located on top of the ‘U’ in
"USING". While holding the CTRL key down, press DELETE
BACK'S five times. Each time you do so, the space occupied by the
cursor is deleted and everything after the cursor is retracted one
space.

If you now press and hold both CTRL and DELETE BACK S,
the cursor will appear to “eat up” the words THE COMPUTER IS
FUN. If you had pressed SHIFT with DELETE BACK S, an entire
line would have been deleted. Similarly, if you had pressed SHIFT
with INSERT, an entire line of empty space would have been cre-

ated, moving the existing line down.

TEST YOUR UNDERSTANDING 2 (answer on
page 19)

Type the following exactly as it is and then make all the
necessary corrections:

Computers aret geting beter and better all the time. They
have more membory and are getting smaler andd faster. Just
a few years ago,

e,0,got,ho,ogpeewrp;

computers were mush more costly, too.

The special keys we have not discussed will be explained later.

ANSWERS TO TEST YOUR UNDERSTANDINGS 1
and 2

1: Upper lefthand corner of screen; home

2: Computers are getting better and better all the time. They
have more memory and are getting smaller and faster. Just a
few years ago, computers were much more costly, too.

20

1 / A First Look at Computers

1.5 Special Keys for the ATARI 600XL, 800XL,
and 1200XL

Many keys are unique to the ATARI XL computers. One of
these is the HELP key. With this key, you can test various parts of
the computer. There is a2 memory test, an audio-visual test, and a
keyboard test

To use these tests on the 600XL or 800XL, turn the computer on
with no cartridge inserted while holding down the OPTION key.
After a few seconds, you will see a large selection menu. Press
SELECT until you get to the test you want. Then press the START
key. The test you selected will commence.

To use these tests on the 1200XL, turn on your computer with
no cartridge inserted. After a few seconds you will see the word
ATARI in large, multi-colored letters. At this point, press the
HELP key. You will see a selection menu. Press SELECT until you
get to the test you want. Then press the START key. The test you
selected will commence.

Each test is repeated indefinitely until you press RESET or HELP.
With the 600XL and 800XL, RESET takes you back to BASIC. With
the 1200XL, RESET takes you back to the word ATARI On all XL
computers, HELP takes you back to the selection menu.

The memory test is a test to check all parts of memory. After a
few seconds, you should see 2 long rectangular green strips. Under
them you should see small green boxes begin to appear one at a
time. The long rectangles are for testing ROM, and the small
squares for RAM. If any of the ROM rectangles or RAM squares
are red, you should see a qualified ATARI dealer to have your
machine fixed.

The audio-visual test checks your computer’s color and sound
capibilities. During the test, you will see a treble clef displayed,
with the voice number of the voice being tested under it. Six notes
are displayed and played sequentially on the screen. If any of
these notes does not play or is off key, you should get your com-
puter fixed.

The keyboard test will display a keyboard on the screen. If you
press a key, the corresponding key on the screen will flash. SHIFT
and CONTROL will only flash if another key is pressed with them.
BREAK, HELP, and RESET do not flash when you press them. If the
test is conducted on any computer other than an ATARI 1200XL,
there are no keys labeled F1, F2, F3, or F4. Therefore, the corre-
sponding keys on the simulated keyboard should be ignored.

1.5 Special Keys for the ATARI 600XL, 800XL, and 1200XL 21

The all tests option will go through all the tests one at a time.
With the all tests option, when the computer gets to the keyboard
test, it automatically tests the keyboard by pressing random keys.

The ATARI 1200XL has four other keys that are not available
on any of the other ATARI computers. These are the F1, F2, F3,
and F4 keys. Used by themselves, they move the cursor. F1 moves
the cursor up, F2 down, F3 to the left, and F4 to the right.

These keys can also be used in conjunction with SHIFT or
CONTROL. When used with CONTROL, they can deactivate the
computer’s keyboard (so you can leave the computer on without
worrying that someone will interfere with your program), turn off
the output to the screen (so the computer can work faster), turn off
the key-click output to the TV speaker, or switch the keyboard to
a set of international characters which can be printed by pressing
CONTROL in conjunction with any lettered key (see Figure 1-15).
Table 1-1 summarizes all the uses of these keys.

Table 1-1. The uses of the F1, F2, F3, and F4 keys available
on the 1200XL.

KEYSTROKES EFFECT

F1 Moves cursor up.

F2 Moves cursor down.

F3 Moves cursor to left.

Fa Moves cursor to right.

SHIFT & F1 Moves cursor to upper left of screen.
SHIFT & F2 Moves cursor to lower right of screen.
SHIFT & F3 Moves cursor to beginning of line.
SHIFT & Fa Moves cursor to end of line.

CONTROL & F1 Deactivates keyboard.
Press CONTROL & F1 again to reactivate.

CONTROL & F2 Turns off output to screen.
Press any key except SHIFT, BREAK, CONTROL,
OPTION, START, or SELECT to turn back on.

CONTROL & F3 Turns off key-click.
Press CONTROL and F3 to turn back on.

CONTROL & Fa Switches keyboard to international character set.
See Figure 1-15.
Press CONTROL and F4 to return keyboard.to
normal

22 1 / A First Look at Computers

Table 1-1. The uses of the F1, F2, F3, and F4 keys available
on the 1200XL (continued).

To switch to the international character set on the 600XL and
800XL, type

POKE 756,204

To switch the character set back to normal, type
POKE 756,224

Figure 1-15. The international character set on the ATARI
computers using CONTROL.

Getting Started in ATARI
BASIC

2.1 Computer Languages

In the last chapter we learned how to manipulate the keyboard
of ATARI computers and how to do screen editing. In this chapter,
we'll learn how to give instructions to the computer.

Just as humans use languages to communicate with one another,
computers use languages to communicate with other electronic
devices (such as printers), human operators, and even other com-
puters. There are hundreds of computer languages in use today.
Your ATARI computer is capable of “speaking” quite a few of
them, including ATARI BASIC, which is both versatile and easy to
learn.

ATARI BASIC is a version of BASIC, a language developed
especially for computer novices by John Kemeny and Thomas
Kurtz at Dartmouth College. Most home computers have their
own version of BASIC.

In the next few chapters, we will concentrate on learning the
fundamentals of ATARI BASIC. In the process, we will learn a
great deal about the way in which a computer may be used to
solve problems.

In order to use ATARI BASIC, you must have a BASIC cartridge
in the computer and have the computer on unless you have the
600XL or 800XL (see Section 1.3).

2.2 Printing With the Direct Mode

In this section we will be using the direct (or immediate) mode.
This means you can give the computer certain instructions and it
will execute each instruction immediately after you hit RETURN.
An instruction to the computer is called a statement or command.
You will eventually learn lots of statements and commands, but
for now, let’s begin with a few simple ones.

23

24

2 / Getting Started in ATARI BASIC

The PRINT Statement

The PRINT statement tells the computer to print something on
the screen. Type the following exactly and then hit RETURN:

PRINT "DON'T FORGET THE QUOTATION MARKS"

Immediately after you hit RETURN, the computer should have
printed

DON'T FORGET THE QUOTATION MARKS

on the screen directly under the the line with the PRINT state-
ment. If not, maybe you forgot to type in the quotation marks.

Actually, you can omit the second quotation mark and the com-
puter will still understand you. For example, if you type

PRINT "HELLO

the computer will print
HELLO

on the screen when you hit RETURN. But if you type
PRINT HELLO

or

PRINT HELLO"

the computer will not give you the desired result.
There is an exception to the rule of needing quotation marks:
They are not needed for printing numbers. To see this, try typing

PRINT 1

The computer will print the number 1 on the screen.

IMPORTANT: You may have noticed the computer did not
print any of your words until you hit RETURN. Hitting
RETURN is your way of telling the computer you want it to
execute the command that you have typed in. This is true of
the PRINT statement and all the other statements and com-
mands we will discuss later on. Usually we will not remind
you to hit RETURN after typing a statement. We expect you
to do it automatically.

The statement PRINT can be abbreviated to either PR. or ?.
Thus the following three statements have exactly the same mean-
ing to the computer:

2.2 Printing With the Direct Mode 25

PRINT "HELLO"
PR. "HELLO"
? "HELLO"

It is possible to give the computer more than one command in
the direct mode before hitting RETURN. It is necessary to separate
these commands with colons so the computer knows where one
command ends and the next begins. When you hit RETURN, the
computer will execute all of the commands (as long as they do not
occupy more than three lines on the screen). For example, try
typing

PRINT "COPY":PRINT "CAT"

When you hit RETURN, the computer will print
COPY
CAT

Notice that when the computer executed the second PRINT state-
ment, it skipped to the next line on the screen and printed “CAT”
beneath “COPY”. If we wanted the two words next to each other
on the same line, we could let the computer know by typing a
semicolon between the two words and using a single PRINT
statement

PRINT "COPY'";'"CAT"

The output on the screen would be
COPYCAT

The same result could also be obtained via the instructions
PRINT "COPY"; :PRINT"CAT"
Of course, we could have achieved the same result with no semi-
colon and a single set of quotation marks, but you will see later
how useful the semicolon can be.
If we wanted the two words on the same line but with a space

between them, we would include the space in one of the sets of
quotation marks. We could type either

PRINT "COPY " ;"CAT"
or

PRINT '"COPY";" CAT"
and the computer would print

COPY CAT

If we wanted several spaces between the words, we could
include as many spaces in the quotation marks as we wanted, or

26

2 / Getting Started in ATARI BASIC

we could use a comma in place of the semicolon. To see the effect
of the comma, type the following with twelve ones:

PRINT 1,1,1,1,1,1,1,1,1,1,1,1
The output will be

1 1 1 1
1 1 1 1
1 1 1 1

The PRINT statement works in a special way with a comma.
Each time the computer encounters a comma (not inside a set of
quotation marks) in a PRINT statement, it next begins printing at
the start of the next printing zone. Each printing zone is 10 spaces
wide.

The ones in the above display indicate the starting points of the
first twelve printing zones. Notice that the first one on the second
line is indented two spaces. This is due to the fact that the com-
puter prints in 38 spaces on each horizontal line on the screen. (In
Section 3.6 we will learn how to alter the length of these lines with
the POKE statement.) This means that only eight spaces of the
fourth printing zone are on the first line. The other two are on the
second line. Therefore, the fifth printing zone must begin with
the third space on the second line rather than the first. Type in the
following example, which illustrates one use of the comma:

PRINT "PRICE","TAX","TOTAL":PRINT
"$18.95","$0.95","$19.90"

The output on the screen will be

PRICE TAX TOTAL
$18.95 $0.95 $19.90

So far, we have used the comma only to print in the next print-
ing zone. It is also possible to skip printing zones. This is done
simply by using two or more commas (instead of one) with a
PRINT statement. Here are two examples of this:

PRINT "HELLO",,"GOOD-BYE"
PRINT ,,"HELLO"

The first example will print HELLO on the screen, skip two print-
ing zones, and then print GOOD-BYE. The second example will
skip 2 printing zones and then print HELLO.

2.2 Printing With the Direct Mode 27

TEST YOUR UNDERSTANDING 1 (answers on
page 31)
Have the computer print out each of the following expres-
sions. Use a colon, semicolon, or comma, if possible.
a. BACK
SPACE
b. BACKSPACE
c. BACK SPACE
d. BACK SPACE
e. BOOKS FOOD TOTAL
$132 $1050 $1182
f. BOOKS FOOD
$132 $1050
Strings

From the preceding examples, you can see it is possible to print
on the screen any sequence of keyboard characters. An exception
is the quotation mark(”) since it has special significance for the
PRINT statement. A sequence of keyboard characters is called a
string or a string constant. When we refer to strings, we will usu-
ally enclose them in quotation marks. Here are a few examples:

IIHELLoll’ "A1b2", ll345ll’ "A le

A space is considered a keyboard character. For example, the
string “A Z” is different from the string “AZ”. The computer also
treats the string 345" differently than it does the number 345. For
example, it will not add the strings “345” and “846".

Arithmetic Operations

Your computer can perform arithmetic operations with light-
ning speed. You can use the PRINT statement to instruct the com-
puter to print out the results it obtains. Try typing this instruction:

PRINT 45+20

When you hit RETURN, the computer will print out the result, 65.
Notice we did not enclose 45+ 20 in quotation marks. If we had,
the computer would have printed the string 45+ 20”. Notice also
that the symbol for addition is the usual plus sign: +. The symbol
for subtraction is the minus sign -, which is located on the key-

28

2 / Getting Started in ATARI BASIC

board on the same key as the arrow that points upward. It is not

necessary to press SHIFT to type -. For an example of subtraction,
type the statement

PRINT 45-20

The computer will print the result, 25, on the screen.
It is frequently convenient to combine strings and numbers in
the same PRINT statement. Here is a nice example:

PRINT "40+25=";40+25
This will cause the computer to print
40+25=65

on the screen. This tells us the problem the computer solved as
well as the result. It is good technique to have the computer print
out information that will help you or someone else to understand
what the computer has done.

The symbols for multiplication and division are * and /, respec-
tively. For example, if you type

PRINT 45%20

the computer will print the product, 900, and if you type
PRINT 45/20

it will print the quotient, 2.25.

For many applications, you will need only the four arithmetic
operations just discussed. However, it is sometimes necessary to
raise a number to a power. For example, 3 to the power 5 means
the product of five threes (3*3+3+3+3), which happens to equal
243. For the computer, this is typed as 3A5. The symbol A is on the
same key as * and is typed by pressing that key simultaneously
with SHIFT. In 345, the number 5 is the POWER or EXPONENT.
For that reason, raising a number to a power is called exponentia-
tion. Now try typing

PRINT 345

The 600XL and 800XL will print 243, the correct answer, on the
screen. But the 400, 800, or 1200XL will print

242.999997

on the screen. This is not the exact answer, but it is very close. You
just have to get used to the fact that the computer sometimes gives
only approximate results. In fact, it always truncates (cuts off) a
number to either 9 or 10 digits. To see how this works, type the
following two statements:

2.2 Printing With the Direct Mode 29
PRINT 2.53148569876

and
PRINT 0.53148569876
The output on the screen will be
2.53148569

and

0.531485698

The computer handles very large and very small numbers in a
different way. To see how it handles such numbers, type in the
following two instructions:

PRINT 123456000000
and

PRINT 0.0000009876
The computer will print

1.23456E+11
and

9.876E-07

The E+11 means the decimal point in 1.23456 must be moved
eleven places to the right to obtain the intended number,
123456000000. The E-07 means the decimal point in 9.876 must be
moved seven places to the left to obtain the intended number,
0.0000009876.

In general, E with a plus sign means move the decimal to the
right, and E with a minus sign means move the decimal point to
the left. This type of notation is called scientific notation.
Although you may not need to use this notation, at least you will
know what it means if the computer uses it.

Notice we did not use any commas when we typed in the
number 123456000000. This is because commas have a special sig-
nificance to the computer, as we explained earlier. Thus the
number 125,000 must be typed to the computer as 125000.

Order of Arithmetic Operations

Suppose you type
PRINT 2%*3+4

30

2 / Getting Started in ATARI BASIC

What do you expect the computer to print? It must perform a mul-
tiplication and an addition, but in what order? If it first multiplies 2
times 3, getting 6, then adds 4, the final result will be 10. But if it
first adds 3 and 4, getting 7, then muliplies by 2, the final result
will be 14. As you can see, the final result depends on the order in
which the operations are performed. In this case the computer will
multiply first, so it will print 10 on the screen. If you wanted the
computer to add 3 and 4 before multiplying by 2, you could use
parentheses to let the computer know:

PRINT 2%(3+4)

The computer always performs the operations inside parentheses
before those outside. Parentheses can be NESTED, that is, one set
can be inside another. Here is an example:

PRINT (2*(3+4))12

In this case, the computer would start inside the innermost paren-
theses and perform the operations in the following order:

1. Add 3 and 4, getting 7.
2. Multiply 2 and 7, getting 14.
3. Raise 14 to the power 2, getting 196

Here are some rules the computer follows:

1. It starts with operations inside innermost parentheses.

2. Within parentheses, it first performs exponentiation (if any),
then multiplication and division (if any), then addition and
subtraction (if any). The operations in each of these three
groups are performed from left to right.

To see how the left to right feature works, type
PRINT 6/2*3

The computer will work from left to right, first dividing 6 by 2,
resulting in 3, then multiplying 3 by 3 to get the final result, 9.

If you are ever in doubt as to what order the computer will fol-
low, you can use extra sets of parentheses to get what you want,
The computer won’t mind at all. It never does.

Exercises (answers on page 247)

1. Have the computer perform the following operations and
print the results on the screen:

a. 31+62
b.456-278

2.2 Printing With the Direct Mode

c. (45-23)/3
d. 5*(45-(658+968))

2. Have the computer perform each of the following opera-
tions and print the problem along with the result:

a. 567+527
b.23%67

c. 1772

d. (34-19)%23

3. In each of the following, fill in the circles with the numbers
1, 2, 3,... to indicate the order in which the arithmetic opera-

tions would be performed by the computer:

a. 56-023+045

b. 4+(O5*(6

c. (4+(0O5)Y*0O6

d. (24/0O3*OQ&)rO4+O7-06)*(2
e. ((5-0O3)*O17+06)/02+O6

4. In each of the following examples, determine what the com-

puter would print:

a. PRINT 9.58436589287
b. PRINT 0.3571527948649

5. What number is meant by each of the following:

a. 4.69E+09
b.1.234E-10

6. How would the computer express each of the following in

scientific notation:

a. 245367000
b.0.00000000000572

ANSWERS TO TEST YOUR UNDERSTANDING 1
1: PRINT "BACK":PRINT 'SPACE"

PRINT "BACK";"SPACE"

PRINT "BACK ";"SPACE"

PRINT "BACK","SPACE"

PRINT "BOOKS","FOOD","TOTAL": PRINT

"$132","$1050","$1182"

PRINT "BOOKS",,"FOOD": PRINT

"$132",,"$1050"

o an o

o)

32 2 / Getting Started in ATARI BASIC

2.3 Printing With the Program Mode

In the preceding section you learned how to give commands in
the direct mode. There are several disadvantages to using the
direct mode:

1. The commands are executed each time you press RETURN.
Since you can type commands on only three lines before
having to press RETURN, it is impossible to have the com-
puter execute a long list of commands in the direct mode.

2. In the direct mode there is no easy way to preserve a list of
commands for future use (tomorrow, perhaps).

It is possible to eliminate these difficulties by using the’ program
mode. A program is a list of instructions to the computer. The
basic idea of the program mode is that none of the instructions in a
program are executed until all the instructions have been typed in
and the computer has been instructed to begin.

To inform the computer that the instructions are to be executed
in the program mode, you must number the lines in your program.
After each numbered line, you must hit RETURN to let the com-
puter know you have finished typing the line. It will automatically
reposition the cursor at the start of the next line. Here is an exam-
ple of a short program:

10 PRINT "PRICE"

20 PRINT "TAX"

30 PRINT "TOTAL COST"
40 END

If you type this into the computer, nothing will happen—yet. In
order to instruct the computer to execute, or “run,” the program,
you must type

RUN

in the direct mode, that is, without a number in front of it. It is not
necessary to have the program displayed on the screen when you
run it. The computer stores the program in memory. When you
run the preceding program, the computer will display

PRICE

TAX
TOTAL COST

READY
|

2.3 Printing With the Program Mode 33

When you run a program, the computer executes the commands
in the program according to the line numbers, beginning with the
smallest number and proceeding from any number to the next
higher number, unless instructed by the program to do otherwise.
Don't worry about this possibility now. We'll explain it in Section
3.1

In the program you just ran, the computer executed the lines in
the order 10, 20, 30, 40. Lines 10, 20, and 30 instructed the com-
puter to print something on the screen. Line 40 instructed the com-
puter to stop and return to the direct mode.

It is good practice for the last command of a program to be
END, although it is not necessary. When the computer reaches the
highest numbered command, it will automatically stop, unless
instructed to do otherwise.

It is also common practice for the line numbers to begin with 10
and to increase by 10s. However, you may use any line numbers
you wish, as long as they are whole numbers from 0 to 32767. It is
not necessary to type the lines in increasing order. The computer
will automatically order them. If, for example, you type in lines
10, 20, 30, and 40, and then decide you need a line between lines
20 and 30, you could type in the line as line 25. This is an advan-
tage of numbering the lines by 10’s; you have intermediate num-
bers to use for new lines. We will almost always be numbering by
10’s. We strongly suggest you do the same!

Before we proceed, we need to distinguish between two types of
lines. A display line refers to the collection of spaces on a horizon-
tal line on the screen. On ATARI computers, each display line nor-
mally contains 38 spaces. That number can be increased to 39 or 40
by changing the left margin (see Section 3.6.) A program line refers
to a numbered line of a program. A program line may contain sev-
eral statements separated by colons, but the maximum length of a
program line is three display lines (normally 114 spaces.)

Running a program does not erase it from memory. To verify
that your last program is still in memory, you could run it again by
typing RUN, or you could type LIST. This command instructs the
computer to print the program on the screen. The LIST command
can be abbreviated to L. Thus the following two statements do the
same thing;:

LIST
L.

The LIST command will display the entire program in memory
on the screen. This can be a disadvantage with long programs. You

34

2 / Getting Started in ATARI BASIC

may want to list only a part of the program. This is easily done.
Just type LIST followed by 2 numbers separated by a comma. The
numbers refer to the beginning and ending line numbers of the
portion of the program to be listed. The second number must
always be larger than the first. For example, the following com-
mand lists lines 17 through 28:

LIST 17,28

To list from any line number (57, for example) to the end of a
program, type

LIST 57,32767

If you wish to erase a program from RAM, you may turn off the
computer or you may type NEW. When you type NEW and hit
RETURN, the computer erases the old program from memory and
displays the READY prompt on the screen. The computer will not
clear the screen after you type NEW. This means your old pro-
gram might be on the screen, but not in memory! After you type
NEW, you can enter another program into the computer.

IMPORTANT:

1. Only one program can be in RAM at a time.
2. When the computer is turned off, any program in RAM
will be erased.

Program Editing

There are several ways of editing (changing) a program in RAM:

1. To add a line to the program, just type the new line, being
sure to give it a line number that will put the line where you
want it in the program. It is not necessary to have the pro-
gram displayed on the screen to add a line. For example, if
you wanted the last program to print NUMBER OF ITEMS
before PRICE, you could have typed in

5 PRINT "NUMBER OF ITEMS"

Type this in and then list the program to see that the computer
accepted the new line and put it in the right place. If the com-
puter did not accept your change, maybe you forgot to hit
RETURN after typing your new line. Try running the program.
2. To delete a line of the program, type the line number and
hit RETURN. Try this out on the last program: Type 5 and

2.4 Giving Names to Numbers and Words 35

hit RETURN. Then list the program. Line 5 should not
appear. Try running the program.

3. To edit an existing line in a program, you have two options.
You may simply retype the line as you want it, being sure to
use the same line number it had before. When you do this
and hit RETURN, the computer will erase the old line and
replace it with the new line. Or you may list the program on
the screen (if it is not already there) and use the screen edit-
ing techniques you learned in Section 1.4 to change the line
as you wish. This method will normally be quicker if you
need to make only minor corrections. Try both options on
the program you have in memory.

IMPORTANT: Be sure to hit RETURN after changing any line.
If you fail to do this, the computer will ignore the changes.

TEST YOUR UNDERSTANDING 1

Type the following program:

10 PRINT "HELLO"
20 PRINT "GOODBYE"
30 END

Run the program and have the computer list it on the screen.
Then change the program so that it prints out “GOODBYE”
first and then “HELLO”. Then erase the program from mem-
ory without turning off the computer. Verify that the pro-
gram has been erased by typing LIST and seeing how the
computer responds.

2.4 Giving Names to Numbers and Words

As you start making larger programs, you will probably find
yourself retyping certain numbers over and over. Not only does
this retyping waste time and computer memory, it also is a likely
source for errors. Fortunately, such retyping is unnecessary if we
use variables.

A variable is a letter which is used to represent a number. Any
letter of the alphabet may be used as a variable. There are other
possible names for variables as we will explain later.

36

2 / Getting Started in ATARI BASIC

At any given moment, a variable has a particular value. For
example, the variable A might have the value 5, while B might
have the value -2.137845. One method for changing the value of a
variable is through the use of the LET statement. The statement

LET A=7
sets the value of A equal to 7. Any previous value of A is erased.
A variable may be used throughout a program. The computer

will use the assigned value wherever the variable occurs. For
instance, if A has the value 7, then the expression

A+5

is evaluated as 7+5, or 12. The expression
3%A-10

is evaluated as 3*7-10, or 21-10, or 11. The expression
2*xAN2

is evaluated as 2*7A2, or 2+49, or 98.

TEST YOUR UNDERSTANDING 1 (answer on
page 43)

Suppose that A has the value 4 and B has the value 3. What
is the value of the expression A*2+2*BA2?

NOTE: If you use a variable whose value you have not set,
ATARI BASIC will automatically assign it the value 0.

Here are three useful programming hints:

1. The word LET is optional. For example, the statement
LET A=5
may be abbreviated
A=5
2. As we mentioned earlier, several statements may be included
on one line. To do so, just separate the various statements by

colons. In particular, a single line may be used to assign values
to several variables. For instance, the line

2.4 Giving Names to Numbers and Words 37

100 LET C=18: LET D=23: LET E=2.718

assigns C the value 18, D the value 23, and E the value
2.718. Using shortcut #1., we may write this instruction in
the simpler form

100 C=18:D=23:E=2.718

3. As we also mentioned earlier, you may use statements that
extend beyond a single display line. This is especially useful
when assigning values to many variables as in shortcut #2
above. When you reach the end of a display line, just keep
on typing. The computer will automatically jump to the
next display line. Hit RETURN when you have finished the
program line. Remember that a program line may be up to
three display lines long (normally 114 characters). If you
type more than three lines, the computer will ignore every-
thing beyond the first three display lines. After 107 charac-
ters, the 400 and 800 make a beeping sound. (The XL
computers cause the TV to beep.) This is a warning that the
end of the program line is approaching. The same thing
happens in the direct mode.

Variables may also be used in PRINT statements. For example,
the statement

10 PRINT A

will cause the computer to print the current value of A (in the first
print zone). The statement

20 PRINT A,B,C

will result in printing the current values of A, B, and C in print
zones 1, 2, and 3, respectively.

TEST YOUR UNDERSTANDING 2 (answer on
page 43)

Suppose A has the value 5. What will the result of the fol-
lowing line be?

10 PRINT A, AN2,2%AN2

Example 1. Consider the three numbers 5.71, 3.23, and 4.05.
Calculate their sum, their product, and the sum of their squares
(that is, the sum of their second powers; such a sum is often used
in statistics).

38

2 / Getting Started in ATARI BASIC

Solution. Introduce variables A, B, and C and set them equal to the
three numbers, respectively. Then compute the desired quantities.

10 LET A=5.71:LET B=3.23:LET €=4.05

20 PRINT "THE SUM IS "; A+B+C

30 PRINT "THE PRODUCT IS "; A*B*(

40 PRINT "THE SUM OF THE SQUARES IS ";
AN2+BA2+CA2

50 END

TEST YOUR UNDERSTANDING 3 (answer on
page 43)

Consider the numbers 101, 102, 103, 104, 105, and 106. Write
a program that calculates the product of the first two, the first
three, the first four, the first five, and all six numbers.

The following imagery may help you understand how ATARI
BASIC handles variables. When ATARI BASIC first encounters a
variable, let’s say A, it sets up a box (actually one or more memory
locations) which it labels “A” (see Figure 2-1). In this box it stores
the current value of A. When you request a change in the value of
A, the computer throws out the current contents of the box and
inserts the new value.

Notice that the value of a variable need not remain the same
throughout a program. At any point in the program, you may change
the value of a variable (with a LET statement, for example). If a pro-
gram is called upon to evaluate an expression involving a variable, it
will always use the current value of the variable, ignoring any previous
values the variable may have had at earlier points in the program.

TEST YOUR UNDERSTANDING 4 (answer on
page 43)

Suppose that a loan for $5,000 has an interest rate of 1.5
percent on the unpaid balance at the end of each month. Sup-
pose that at the end of the first month, you make a payment
of $150 (after the interest is added). Write a program to cal-
culate the balance at the end of the first month. Design your
program to calculate the balance after the payment. (Begin by
letting B = the loan balance, I = the interest, and P = the
payment. After the payment, the new balance is B +I-P.)

2.4 Giving Names to Numbers and Words 39

LET

5.7

A
Figure 2-1.The variable A.

Example 2. What will the output of the following program be?

10 LET A=10:LET B=20
20 LET A=5

30 PRINT A+B+C,A*B*(
40 END

Solution. Note that no value for C is specified, so C=0. Also
note that the value of A is initially set to 10. However, in line 20,
this value is changed to 5. So in line 30, A, B, and C have the
respective values 5, 20, and 0. Therefore, the output will be

25 0

To the computer, the statement
LET A=

means that the current value of A is to be replaced by the current
value of whatever appears to the right of the equal sign. Therefore,
if we write

LET A=A+1

we are asking the computer to replace the current value of A with
the current value of A+ 1. In other words, we are asking the com-
puter to increase the value of A by 1. So if the current value of A is
4, the value of A after performing the instruction is 4+1, or 5. If
the current value of A is 2.351, the value of A after performing the
instruction is 2.351+1, or 3.351. As you will see later, this state-
ment is used frequently.

TEST YOUR UNDERSTANDING 5 (answer on
page 43)

What is the output of the following program?

10 LET A=5
20 LET A=A+1
30 LET A=2*A

40

2 / Getting Started in ATARI BASIC

40 LET A=A+B
50 PRINT A
60 END

Legal Variable Names

As we mentioned previously, you may use any letter of the
alphabet as a variable name. ATARI computers are quite flexible
concerning variable names. A sequence of characters is a legal
variable name if it satisfies the following:

1. It must begin with a capital letter.

2. Each of its characters must be a capital letter or one of the
digits 1,2, 3,4,5,6,7, 8,9, or 0.

3. It cannot be any sequences of characters which are reserved
by ATARI BASIC for special meanings. Examples of such
words are

IF, ON, OR, THEN, GOTO, RUN, and LIST

4. A variable can be up to 112 characters long (that’s larger
than anyone will probably ever need!!!).

Here are some examples of legal variables you can use:
A, A1, A1B2, SCORE, DELAY1, TAX, BALANCE

The sequences 1A and al are not legal variable names since
neither begins with a capital letter. The sequence DELAY 1 is not
legal since it contains a space (sometimes called the empty
character).

String Variables

So far, all the variables we have discussed have represented
numerical values. ATARI BASIC also allows variables for strings.
Such variables are called string variables and are denoted by a
variable name followed by a dollar sign. Thus, A$, B1$, and ZZ$
are all valid names of string variables.

To assign a value to a string variable, we use the LET statement
with the string enclosed in quotation marks. The word LET is
optional, but we will use it for maximum clarity. For example, to
set A$ equal to the string “BALANCE SHEET”, we can use either
the statement

LET A$=""BALANCE SHEET"

2.4 Giving Names to Numbers and Words 41

or
A$="BALANCE SHEET"

Before assigning any value to a string variable, you must tell the
computer how many characters the string will hold. By the follow-
ing count

BALANCE SHEET
1234567891111
0123

we see that the string “BALANCE SHEET” has a length of 13. If
you want to use A$ for this string, you must tell the computer the
length, or dimension, of A$ by the following DIM statement:

DIM A$(13)

This instructs the computer to reserve enough space in its memory
to store the value you assign to A$. If A$ will be given several
values during a program, use the length of the largest value it will
have. If you don’t know what the largest value will be, use a
number large enough to handle anything that is likely to come
along. For example:

DIM A$(100)

will probably handle most strings you will ever need. After you
have dimensioned a string variable and assigned it a value, you
can have the computer print its value, just as you would with a
numeric variable . Consider this example:

10 DIM AS(13)

20 A$=""BALANCE SHEET"
30 PRINT A$

40 END

Running this program will result in the following screen output:

BALANCE SHEET

Example 3. What will the output of the following program be?

10 DIM A$(16),B$(16)

20 LET A$="MONTHLY RECEIPTS":B$=""MONTHLY
EXPENSES"

30 LET A=20373.19:B=17584.31

40 PRINT AS$,,B$

50 PRINT A,,B

60 END

42

2 / Getting Started in ATARI BASIC

Solution.
MONTHLY RECEIPTS MONTHLY EXPENSES
20373.19 17584.31

Notice we used the variables A and A$ in the same program.
The variables A and A$ are considered different by the computer.
Notice also that we used two commas between A and B in line 50.
The reason is that “MONTHLY RECEIPTS” required more than
one print zone, whereas “20373.19” did not. The extra comma
caused the computer to skip a complete print zone and resulted in
17584.31” being lined up with “MONTHLY EXPENSES”.

CAUTION: You can only DIMension a variable ONCE in a
program. For this reason, don’t use DIM statements inside of
loops. A good place to put DIMension statements is at the
very beginning of a program.

Remarks in Programs

It is very convenient to have remarks in programs that do noth-
ing but explain what the program does. For one thing, remarks
make programs easy to read. Remarks also assist in finding errors
and making modifications in a program. To insert a remark in a
program, you may use the REM statement. For example, consider
the line

10 LET X=5:REM -Initial value of X

Whenever the computer encounters REM, it ignores the rest of the
line. Thus in the above statement, the computer sets X equal to 5,
and then goes on to the next line. The remark serves only to
inform anyone reading the program. It should be clear that a REM
must be the last (or only) statement on a program line. REM may
be abbreviated to R. or . if you wish. Thus, all the following have
the same meaning;

REM Initial value of X
R. Initial value of X
. Initial value of X

The REM statement can be conveniently used to temporarily
delete a line or part of a line from a program. You might wish to
do this, for example, if you are looking for errors in a program or
if you just want to see how the program works with the deletion.

2.4 Giving Names to Numbers and Words 43

To delete a line, just type REM, R, or . right after the line number.
If you later wish to restore the line to the program, you have only
to remove the REM (or its abbreviation).

TEST YOUR UNDERSTANDING 6 (answer on
page 43)

What is the result of the following program line?
10 LET A=19: PRINT "A=";A:REM A=age

Exercises (answers on page 247)
In Exercises 1-4, explain what is wrong with the given program.

1. 10 LET S$="SCORE":LET S$=10
20 PRINT S$,S
30 END

2. 10 LET A=5.1:LET B=3.2
20 PRINT (A+B)/C
30 END

3. 10 DIM N$(4)
20 LET N$=NAME
30 PRINT N$,"ATARI"
40 END

4. 10 DIM T$(10)
20 LET T$="TOTAL PRICE"
30 LET T=101.40+219.95+19.98
40 PRINT T$;"=";T
50 END

ANSWERS TO TEST YOUR UNDERSTANDINGS 1,
2,3,4,5 and 6

1. 26

2: 5 25 50

3: 10 LET A=101:LET B=102:LET C=103:LET
D=104:LET E=105:LET F=106
20 PRINT "THE PRODUCT OF THE FIRST TWO
IS ";A*B

44

2 / Getting Started in ATARI BASIC

30 PRINT "THE PRODUCT OF THE FIRST
THREE IS ";A*B*(

40 PRINT "THE PRODUCT OF THE FIRST
FOUR IS ";A*B*C*D

50 PRINT "THE PRODUCT OF THE FIRST
FIVE IS ";A*B*C*D*E

60 PRINT "THE PRODUCT OF ALL THE
NUMBERS IS '";A*BXx(CXxD*ExF

70 END

10 LET B=5000

20 LET I=.015*B

30 LET P=150

40 LET B=B+I-P

50 PRINT "THE BALANCE AFTER THE FIRST
PAYMENT IS ";B

60 END

12
A=19

2.5 Error Messages

At some time or another while using the computer, you will
probably receive an ERROR message. This is perfectly normal. It
is the computer’s way of telling you that you typed something it
did not understand. In this section, we will discuss the meanings of
these messages.

Let’s begin with error messages in the direct mode. Type the
following with the BASIC cartridge inserted and hit RETURN.

KFKR
On the screen, the computer will display
ERROR- KFKRHE

This error message informs you that what you typed can’t be
interpreted by the computer in any way. A cursor-like symbol is
located at the end of the line, which is the place where the com-
puter detected the first error in the line. Up to that point, what you
typed could have been the first part of a statement assigning a
value to the variable KFKR, so the computer had no reason to give
you an error message at a prior point.

2.5 Error Messages 45

Here is an example of a statement that will give an error
message with a number:

PRINT 10~100
When you hit RETURN, the computer will display:

ERROR- 11
[

The 11 is the error number meaning you used a number too large
for BASIC to work with. (The largest allowable number is 10/98.)

ATARI computers have numbers for many types of errors. For a
complete list of the error numbers and their descriptions, see
Appendix A. Most of the descriptions will probably not make
much sense to you now, but as you learn more statements, the
error messages will become clearer and more helpful.

Now let’s look at some error messages you might encounter
while typing in a program. Type the line

10 PRINT "HELLO":KFKR:PRINT 'GOODBYE"
and hit RETURN. When you do so, the screen will display
10 ERROR- PRINT "HELLO":KFKREEPRINT '"GOODBYE"

The number 10 in front of the word ERROR informs you that the
error was made in line 10. The position of the cursor-like symbol
indicates the first place an error was encountered.

Some error messages are not given until the program is run. For
example, consider the program

10 PRINT 10~100

When you type this in, the computer will accept it without giving
an error message of any kind. But when you run the program, the
computer displays '

ERROR- 11 AT LINE 10
|

As we mentioned earlier, error number 11 tells you that the com-
puter has encountered a number larger than 10198. The message
also tells you the line number at which the error was detected.
This is a valuable piece of information when you are running a
large program. It gives you a logical starting point for tracking
down mistakes in the program. In this case, we would, of course,
look for our error in line 10. In other cases, the computer might
give us the number of a line which is totally correct. Here is an
example of this:

46

2 / Getting Started in ATARI BASIC

10 LET A=8%10197
20 PRINT A*10
30 END

By themselves, lines 10 and 20 are perfectly fine. But when the
program is run, the computer displays

ERROR- 11 AT LINE 20
|

In the above example, we might have wanted line 10 to read
10 LET A=8*10/87

but made a typing error. The error message said the error was at
line 20, but it actually was at line 10. Since error 11 means a
number is too large, we could deduce that A*10 was too large, and
thus find the error in line 10. This is the hardest kind of error to
correct in large programs, since you may have to search the entire
program to locate the error.

More on ATARI BASIC

3.1 The GOTO Statement

In this chapter we will continue our introduction of ATARI
BASIC. Our discussion will center on the instructions for control-
ling the order of statement execution.

We said earlier that unless instructed to do otherwise, the com-
puter executes the statements in a program in increasing line
number order. There are several ways of instructing the computer
to deviate from that order. The most basic is by using the GOTO
statement. (This is not a typographical error. There is no space
between GO and TO.) This instruction has the form

GOTO X

where X is the number of the line you want the computer to exe-
cute next. For example, the instruction

1000 GOTO 300

will instruct the computer to execute line 300 immediately after
line 1000, even if line 300 has already been executed. After execut-
ing line 300, the computer will continue in the normal fashion
from that line: It will execute the next line after line 300, unless
instructed by line 300 to do otherwise. Similarly, the instruction

230 GOTO 300

will send the computer forward to line 300. If there are any lines
between 230 and 300, they will not be executed between the time
230 is executed and the time 300 is executed. The only way inter-
mediate lines could be executed is for some other statement to
instruct the computer to go to one of them.

To see how these ideas work, consider the following example:

10 LET A=5

20 GOTO 100

30 PRINT

40 PRINT "OUTPUT COMPLETE"
50 END

100 PRINT A

47

48 3 / More on ATARI BASIC

110 PRINT A*2
120 PRINT A*3
130 GOTO 30
140 END

This is the order in which the computer executes the lines:
10, 20, 100, 110, 120, 130, 30, 40, 50

When the program is run, the computer displays

5
10
15

OUTPUT COMPLETE

It is a good idea not to have a GOTO statement that sends the
computer to a line containing only a REM. The reason is that if
you ever give a copy of the program away, the program may be
typed in without the REMs to save time. Instead, use a GOTO
statement with the number of the first line following the REM.

TEST YOUR UNDERSTANDING 1 (answer on
page 51)

In what order will the lines in the following program be
executed?

10 PRINT "YOUR ORDER:"

20 GOTO 100

30 PRINT

40 PRINT "ORDER COMPLETE"

50 GOTO0 200

100 PRINT "1000 pounds fertilizer",
'"$99.50"

110 PRINT "300 pounds lLimestone",
"$20.10"

120 PRINT "25 pounds premium grass
seed" ,""$24.95"

130 PRINT "TAX",,,"$7.23"

140 PRINT "TOTAL",,,"$151.78"

150 GOTO 30

200 END

The ability to use the GOTO statement to make the computer
jump around in a program is critically important. In the remaining

3.1 The GOTO Statement 49

sections of this chapter we will see how to combine the GOTO
statement with other statements. But for now, let's make a simple
program with the GOTO statement that illustrates a new idea:

10 PRINT "HELLO, EVERYBODY!"
20 GOTO 10
30 END

Before you run the program, let’s go through it as if we were
the computer. We start at line 10, which instructs us to print
HELLO, EVERYBODY! on the screen. Then we proceed to line
20, which tells us to GOTO line 10. We faithfully follow the
instructions and return to line 10. We are now at line 10 for the
second time! We print HELLO, EVERYBODY! on the screen a
second time, and proceed to line 20. But line 20 sends us back to
line 10 again. We could go on, but by now you probably get the
idea: HELLO, EVERYBODY will be printed over and over,
because line 20 keeps sending us back to line 10.

When a sequence of lines in a program would be executed over
and over without anything in the program to stop it, we call the
sequence an INFINITE LOOP. Now run the program and watch.
Watch some more. Keep on watching. The computer repeatedly
prints HELLO, EVERYBODY! on the screen. You might be won-
dering how to stop the program. It's very simple. Just hit the
BREAK key in the upper right hand corner of the keyboard. This
key will interrupt the program currently in progress and display
on the screen

STOPPED AT LINE X

where X is the number of the line the computer was executing at
the time you hit BREAK. The computer will finish the line it's on,
but will not continue to the next line when you hit BREAK.
When it stops, the computer returns to direct mode. It is then
ready to accept a command from the keyboard. The program in
memory will not be harmed in any way when you hit BREAK.
You may have the program pick up where it left off by typing

CONT

and hitting return. CONT should remind you of “continue.” In
some cases, this will not cause the program to resume operation.
In those cases, you can always execute the program again by sim-
ply typing RUN and hitting RETURN. You may also have your
program printed on the screen by typing LIST.

Occasionally you may intentionally run a program with an infi-
nite loop. You might do this, for example, if you wanted to repeat-

50

3 / More on ATARI BASIC

edly print something on the screen, or if you wanted some process
to continue until you decide to discontinue it by hitting BREAK.
There will be many examples of such loops later in the book. For
example, we will use a statement like

100 GOTO 100

at the end of a program when we want to keep the display on the
screen for an indefinite period of time. However, if an unwanted
infinite loop slips into a program, a lot of time could elapse before
it is discovered. This is frustrating, and could be expensive if
rented equipment is being used. It is therefore a good idea to be
on the watch for unwanted infinite loops.

Exercises (answers on page 247)

1. In what order will the lines in the following program be

executed?

10 LET A=5

20 GOTO 200

30 END

40 PRINT "WHAT IS THE VALUE OF A?"
50 GOTO 30

200 PRINT "A+9=";A+9

210 GOTO 40

220 END

2. In what order will the lines in the following program be
executed? What will the output be?

10 LET A=5
20 GOTO 10*A
30 PRINT 30
40 END

50 PRINT 50
60 GOTO 40
70 END

3. In what order will the lines in the following program be
executed?

10 LET A=2

20 GOTO 100*A

30 PRINT "PRINT"
200 PRINT A

210 LET A=3

220 GOoTO 20

300 PRINT A

3.2 Doing Repetitive Operations 51

310 LET A=4
320 GoTO 20
400 PRINT A
500 END

4. Describe what the following program does.

10 PRINT 1;
20 GOTO 10
30 END

5. a. Write a program that prints an unending sequence of
A’s on the screen, all in a vertical line.
b. Alter the program in part a. so that there are two verti-
cal lines of A’s separated by four spaces.

ANSWER TO TEST YOUR UNDERSTANDING 1

1: 10, 20, 100, 110, 120, 130, 140, 150, 30, 40, 50, 200

3.2 Doing Repetitive Operations

Suppose we wish to solve 50 similar multiplication problems. It is
certainly possible to type in the 50 problems one at a time and let the
computer solve them, but this is a very inefficient way to proceed.
Suppose that instead of 50 problems there were 500, or even 5000,
Typing the problems one at a time would not be practical.

If we can describe to the computer the entire class of problems
we want solved, then we can instruct the computer to solve them
using only a few statements. Let us consider a concrete problem.
Suppose we wish to calculate and print the quantities

7%1, 7%x2, 7%¥3, ... , 7*10

That is, we wish to calculate and print the first ten multiples of 7.
This calculation can be described to the computer as calculating
7*N, where the variable N is allowed to assume, one at a time,
each of the values 1,2,3,...,10. Here is a sequence of statements that
instructs the computer to carry out the calculations:

10 FOR N=1T0 10 {This instruction

20 PRINT 7xN -— repeated 10 times

30 NEXT N
40 END

The sequence of statements 10, 20, 30 is called a loop.

52

3 / More on ATARI BASIC

When the computer first encounters the FOR statement, it sets N
equal to the first value after “FOR N = ”, in this case 1, and pro-
ceeds to the next line. Line 20 calls for printing 7*N. Since N is
equal to 1, we have 7*N=7+1=7. Therefore, the computer will
print a 7. Next comes line 30, which contains a NEXT statement.
This increases N by 1 (making it 2) and tells the computer to go
back to the corresponding FOR statement in line 10. This next time
through the loop, 7*N=7+2=14, so line 20 instructs the computer
to print 14. At line 30 the computer increases N again (making the
new value 3). Then it returns to the FOR statement in 10 and
repeats instruction 20. This time, 7*N=7+3=21, so line 20 prints
21. Line 30 instructs the computer to increase N to 4 and go back to
line 10, and so forth. Each time the computer returns to line 30, it
increases the value of N by 1. Lines 10, 20, and 30 are repeated 10
times! After the computer “cycles” through the loop 10 times, it will
get to line 30 and increase N to 11. Since this number is bigger than
10, it will leave the loop and go on to line 40.

A finite loop is like an infinite loop, in that some sequence of
program lines is repeated. However, in an infinite loop there is
nothing to stop the repetition, whereas in a finite loop the repeti-
tion stops after a certain number of steps.

Type in the above program and type the RUN command. The
output will look like this:

7

14
21
28

The variable N is called the loop variable. You may use it inside
the loop just as you would use any other variable. For example, it
may be used in algebraic calculations and PRINT statements.
However, you should not change its value inside the loop. This
could mess up the loop. Consider the following program:

10 FOR A=1 TO 10
20 LET A=11

30 LET B=B+1
40 NEXT A

50 END

3.2 Doing Repetitive Operations 53

At line 10, A is set equal to 1. At line 20, A is set equal to 11.
When the program gets to line 40, the computer exits from the
loop because A is greater than 10. The program then ends, with
the value of B equaling 1. If there would be no line 20, B would
equal 10 at the end of the program.

Some Cautions

Here are two of the errors you are most likely to make in deal-
ing with loops.

1. Every FOR statement must have a corresponding NEXT
statement. Otherwise ATARI BASIC will not return to the
FOR statement. It will go through the loop only once, using
the first value of the variable.

2. Be sure the loop variable is not already used with some
other meaning. For example, suppose the loop variable N is
used before the loop begins. Then the loop will destroy the
old value of N and there is no way to get it back after the
loop is over.

Let us give you two more examples of programs containing
loops. In each case, first decide what you think the computer will
print on the screen. Then type in and run the program.

First program:

10 FOR N=1 TO 20
20 PRINT "HELLO"
30 NEXT N

40 END

Second program:

10 FOR N=1 TO 1000

20 PRINT N,:REM -Don't forget the comma-
30 NEXT N

40 END

TEST YOUR UNDERSTANDING 1 (answers on
page 64)

a. Devise a loop allowing N to assume the values 3 to 20.
b. Write a program which calculates and prints 7*N, with
N ranging from 3 to 20.

54

3 / More on ATARI BASIC

Making Loops More Readable

Notice that in each of the above programs we have indented the
textual portion of line 20. This lets us clearly see the beginning
and end of the loop. You can use the TAB key to create the same
effect when typing in programs, but when the computer lists the
program, all indentations will be deleted. Also, when you list your
programs, all abbreviations except ? (one of the two abbreviations
for PRINT) will be “un-abbreviated.” We will be introducing
many new statements which can be abbreviated. Appendix E gives
a list of descriptions and abbreviations for all the statements we
will cover.

Let’s modify our program for printing multiples of 7 to include
on each line of output not only 7*N, but also the value of N. To
make the table easier to read, let’s also add two column headings.
The new program reads

10 PRINT '"N","7*N":PRINT
20 FOR N=1 TO 10

30 PRINT N,7*N

40 NEXT N

50 END

The output now looks like this:

N 7*N

=000 ~NOVIPAWN =
o
N

0 70

Notice that there is a PRINT statement at the end of line 10 in
the program. Since there is nothing given after PRINT for the
computer to print, the computer prints nothing. This results in a
line being skipped, and has the effect of separating the column
headings from the numbers in the columns.

3.2 Doing Repetitive Operations

TEST YOUR UNDERSTANDING 2 (answer on
page 64)

What would happen if we changed the number of line 10
to 25 in the preceding program?

55

Let us now illustrate some of the many uses loops have by
means of some examples.

Example 1. Write a program to calculate 1+ 2+ 3 +... + 100.

Solution. Let us use a variable S (first letter of “sum”’) to contain
the sum. Let us start S at 0 and use a loop to successively add to S
the numbers 1,2,3,...,100. Here is the program:

10 LET S =0

gg FOEE¥ ; 1 1S-2N100 This instruction
40 NEXT N " repeated 100 times
50 PRINT "1+2+43+...+100=";S

60 END

When we enter the loop the first time, S=0 and N=1. Line 30
then replaces S by S+N, or 0+ 1. Line 40 increases N to 2 and
sends us back to line 20. In line 30, S (which is now 0+1) is
replaced by S+N, or 0+ 1+2. Line 40 now increases N to 3 and
sends us back to line 20. Line 30 then sets S equal to 0+ 1+ 2+ 3.
Finally, on the 100th time through the loop, S is replaced by
O0+1+2+ .. +100, the desired sum. If we run the program, the
output will be:

1+2+3+...+100=5050

TEST YOUR UNDERSTANDING 3 (answers on
page 64)

a. Write a program to calculate 101+ 102+ ...+ 110.
b. Write a program to calculate and display the numbers 2
2%2,2%3, ..., 2%20

7

Example 2. Write a program to calculate the sum:

1%2+2%3+3%4+, . . +49%5(0

56

3 / More on ATARI BASIC

Solution. We let the sum be contained in the variable S, as we
did in Example 1. The quantities to be added are just the numbers
N*(N+1) for N=1, 2, 3, ..., 49. Here is our program:

10 LET S =0

20 FOR N = 1 TO 49

30 LET S = S + N*(N+1)
40 NEXT N

50 PRINT "1*2+2%3+3%4+ .. _+49*50=n’.s
60 END

Nested Loops

In many applications, it is necessary to execute a loop within a
loop. For example, suppose we wish to print the following series
of numbers:

101, 102, 103, 104, 105, 106, 107, 108, 109
201, 202, 203, 204, 205, 206, 207, 208, 209
301, 302, 303, 304, 305, 306, 307, 308, 309
401, 402, 403, 404, 405, 406, 407, 408, 409
501, 502, 503, 504, 505, 506, 507, 508, 509

There are five groups of 10 numbers each. Each line may be printed
using a loop. For example, the first line may be printed with

100 FOR I1=1 TO 9

110 PRINT 100+I;" ";:REM -This leaves a
space between numbers-

120 NEXT I

The second line may be computed with

100 FOR I=1 TO0 9
110 PRINT 200+I1;" ";
120 NEXT I

And the last line may be computed with

100 FOR I=1 T0 9
110 PRINT 500+1;" ";
120 NEXT I

We could compute the desired numbers by repeating essentially
the same instructions five times, but it is much easier to do the
repetition using a loop. The numbers to be added to I range from
100 (which is 1*100) for the first line, to 500 (which is 5+100) for
the last line. This suggests that we represent these numbers as
J*100, where] is a loop variable which runs from 1 to 5. We may
then print our desired table of numbers using this program:

3.2 Doing Repetitive Operations 57

10 FOR J=1T0 5

100 FOR I=1T0 9

110 PRINT J*100+I;" ";

120 NEXT I

200 PRINT:REM -This will cause the next
group to be printed on the next line-

300 NEXT J

400 END

The instructions that are indented one level are repeated 5 times,
corresponding to the values J=1 through J=5. On the first repeti-
tion (J=1), lines 100-120 instruct the computer to print the first
group of numbers on the first display line and line 200 causes the
computer to jump to the next display line; on the second repetition
(J=2), lines 100-120 instruct the computer to print the numbers in
the second group on the second display line, and so forth. Note
how the indentations help you to read the program. This is an
example of good programming style.

If a loop is contained within a loop, we say the loops are nested.
ATARI BASIC allows you to have nesting in as many layers as you
would probably ever need (a loop within a loop within a
loop, ...).

TEST YOUR UNDERSTANDING 4 (answer on
page 64)

Write a program to print the following table of numbers.
Remember to use nested loops!

1 11 21 31
2 12 22 32
3 13 23 33
4 14 24 34
5 15 25 35
6 16 26 36
7 17 27 37
8 18 28 38
9 19 29 39
10 20 30 40

CAUTION: Be careful not to “overlap” loops. For example,
the following sequence should not be used:

58

3 / More on ATARI BASIC

10 FOR J=1 T0 100
20 FOR K=1 T0 50

80 NEXT J
90 NEXT K

Rather, the NEXT K statement must precede the NEXT J, so the K
loop is “completely inside” the | loop.

Applications of Loops

Example 3. You borrow $7000 to buy a car. The interest rate is
one percent per month. (This means that at the end of every
month you are charged interest equal to 1% of the amount you still
owe.) Your monthly payments are $232.50. Write a program
which computes the balance (amount owed) at the end of each of
the first 36 months.

Solution. Let B denote the balance owed. Initially we have B
equal to 7000 dollars. At the end of each month, B will change
because a month’s interest is added and your payment of 232.50 is
subtracted. Let I denote the monthly interest. Then I=.01*B since
the interest rate is 1% per month. For example, at the end of the
first month, the interest owed is .01*7000.00 = $70.00. Let P
denote the monthly payment, so that P=232.50. At the end of
each month, B changes to B+I-P. Here is a program which per-
forms these calculations:

10 PRINT "MONTH'","BALANCE"

20 PRINT: REM -Skip a line-

30 LET B=7000: REM B=initial balance

40 LET P=232.50: REM P=monthly payment

50 FOR M=1 TO 36: REM M=month number

60 LET I=.01*B: REM -Calculate interest

for month-

70 LET B=B+I-P: REM -Calculate new
balance-

80 PRINT M,"$";B: REM -Print out data for
month-

90 NEXT M

100 END

You should run this program. Notice that it runs, but it is pretty
useless because the screen will not contain all of the output. Most
of the output goes flying by before you can read it. One method

3.2 Doing Repetitive Operations 59

for remedying this situation is to press CTRL and 1 simultaneously
as the output scrolls by on the screen. This will pause execution of
the program and freeze the contents of the screen. To resume exe-
cution and unfreeze the screen press CTRL and 1 again. The out-
put will begin to scroll again. To use this technique requires some
manual dexterity. Moreover, it is difficult to stop the scrolling at a
desired location.

TEST YOUR UNDERSTANDING 5

Run the program of Example 3 and practice freezing the
output on the screen. It may take several runs before you are
comfortable with the procedure.

Another method of adapting the output to your screen size is by
printing only 12 months of data at one time.This amount of data
will fit since the screen contains 24 lines. We will use a second
loop to keep track of 12 month periods. The variable for the new
loop will be Y (for “year”), and Y will go from 0 to 2. The month
variable will be M as before, but now M will go only from 1 to 12.
The month number will now be 12+Y +M since there are twelve
months in each year. Here is the revised program:

10 LET B=7000

20 LET P=232.50

30 FOR Y=0 TO 2: REM Y=year number

40 PRINT "MONTH",' "BALANCE"

50 PRINT:REM -Skip a line-

60 FOR M=1 TO 12:REM -Run through the
months of year Y-

70 LET I=.01*B:REM -Calculate interest
for month-

80 LET B=B+I-P:REM -Calculate new
balance-

90 PRINT 12*Y+M,"$";B:REM -Print data
for month-

100 NEXT M

110 STOP:REM -Halts execution-~

120 GRAPHICS O:REM -Clears screen-
130 NEXT Y:REM -Go to next 12 months-
140 END

This program utilizes several new statements. In line 110, we use
the STOP statement. This has the same effect as pressing BREAK.

60

3 / More on ATARI BASIC

It causes the computer to stop execution of the program. The com-
puter remembers where it stops, and all values of the variables are
preserved. The STOP statement also leaves unchanged the con-
tents of the screen. You can take as long as you wish to examine
the data on the screen. When you are ready for the program to
continue, type CONT and hit RETURN. The computer will
resume where it left off. The first instruction it encounters is in
line 120. GRAPHICS 0 clears the screen. So, after being told to
continue, the computer clears the screen and goes on to the next
value of Y for the next 12 months of data. Here is a copy of the
output for the ATARI 800, including the statements you type. The
output for the 600XL and 800XL would be slightly different.

RUN

MONTH BALANCE

1 $6837.5

2 $6673.375

3 $6507.60875
4 $6340.184837
5 $6171.086685
6 $6000.297551
7 $5827.800526
8 $5653.578531
9 $5477.614316
10 $5299.890459
11 $5120.389363
12 $4939.093256
STOPPED AT LINE 110
CONT

MONTH BALANCE

13 $4755.984188
14 $4571.044029
15 $4384.255

16 $4195.597013
17 $4005.052983
18 $3812.603512
19 $3618.229547
20 $3421.911842
21 $3223.63096
22 $3023.367269
23 $2821.10094

24 $2616.81195

3.2 Doing Repetitive Operations 61
STOPPED AT LINE 110

CONT

MONTH BALANCE

25 $2410.480069
26 $2202.084869
27 $1991.605717
28 $1779.021774
29 $1564.311991
30 $1347.45511
31 $1128.429661
32 $907.213957
33 $683.786096
34 $458.123956
35 $230.205195
36 $7.246E-03

STOPPED AT LINE 110

Note that the data in the output is carried out to as many as six
digits after the decimal point, even though the problem deals with
dollars and cents. We will look at the problem of rounding num-
bers in Section 10.3. Also note the balance listed for month 36. It is
in scientific notation. The -03 indicates that the decimal point is to
be moved three places to the left. The number listed is the same as
.007246. This means that the final balance is about seven tenths of
one cent!

Using Loops to Create Delays

By using a loop we can create a delay inside the computer. Con-
sider the following sequence of instructions:

10 FOR N=1 TO 3000
20 NEXT N
30 END

This loop doesn’t do anything except waste time! Notice that the
computer executes lines 10 and 20 three thousand times! While this
may seem like a lot of work, it really isn’t for a computer. To obtain
a feel for the speed at which the computer works, you should time
this sequence of instructions. Such a loop may be used to create a
delay. For example, when you wish to keep some data on the screen
without stopping the program, just build in a delay.

Here is a part of a program which prints two screens of text. A
delay is imposed to give the user time to read the first screen.

62

3 / More on ATARI BASIC

10 PRINT "THIS IS A GRAPHICS PROGRAM TO
DISPLAY SALES"

20 PRINT "FOR THE YEAR TO DATE"

30 FOR N=1 TO 5000

40 NEXT N:REM -Delay Loop-

50 GRAPHICS 0:REM -Clears screen-

60 PRINT "YOU MUST SUPPLY THE FOLLOWING
INFORMATION:"

70 PRINT "PRODUCT, TERRITORY, SALESPERSON"

Example 4. Use a loop to produce a blinking display for a
security system.

Solution. Suppose that your security system is tied in with your
computer and the system detects that an intruder is in your ware-
house. Let us print out the message:

SECURITY SYSTEM DETECTS INTRUDER IN ZONE 2
For attention, let us blink this message on and off by alternately
printing the message and clearing the screen.

10 FOR N=1 TO 2000
20 PRINT "SECURITY SYSTEM DETECTS INTRUDER

IN ZONE 2"
30 FOR K=1 TO 50
40 NEXT K

50 GRAPHICS O:REM -Clears the screen-
60 NEXT N
70 END

The loop in lines 30-40 is a delay loop to keep the message on the
screen for a moment. Line 50 turns the message off, but the PRINT
statement in line 20 turns it back on. The message will blink 2000
times.

TEST YOUR UNDERSTANDING 6 (answer on
page 64)

Write a program which blinks your name on the screen
500 times, leaving your name on the screen for a loop of
length 50 each time.

More About Loops

In most of our loop examples, the loop variable started at one
and increased by one with each repetition of the loop. However, it

3.2 Doing Repetitive Operations 63
is possible to have the loop variable start at any number and
increase or decrease by any amount. For example, the instructions

10 FOR N=13 TO 5000 STEP 2

1000 NEXT N

define a loop in which N starts at 13 and increases by 2 with each
repetition, so N will assume the values
13, 15, 17, 19,..., 4999

Similarly, use of STEP .5 in the above loop will cause N to advance
by .5 and assume the values

13, 13.5, 14, 14.5, 15.5, 16, 16.5, ...
5000

It is even possible to have a negative step. In this case, the loop
variable will decrease with each loop repetition. For example, the
instructions

10 FOR N=100 TO 19 STEP -1

100 NEXT N

will “count down” from N=100 to N =19 one unit at a time.

TEST YOUR UNDERSTANDING 7 (answers on
page 64)

Write instructions to allow N to assume the following
sequences of values:

a. 95, 96.7, 98.4,..., 112
b. 200, 199.5, 199,..., 100

Exercises (answers on page 248)

In Exercises 1-4 write programs to compute the given quantities.

1. 12+422+32+...+252

2. 1+.5+1+1.542+...45
3. 13+23+33+...+103

4. 1+1/2+1/3+...+1/100

64

3 / More on ATARI BASIC

5.

Write a program to compute NA2, NA3, NA4 for N=1,...,12.
The format of your output should be as follows:

N NA2 NA3 NAG

W

12

Suppose you have a car loan whose current balance is
$4,000.00. The monthly payment is $125.33 and the interest
is one percent per month. Make a table of the balances for
the next 12 months.

Suppose you deposit $1,000 on January 1 of each year into a
savings account paying 10 percent interest per year. Sup-
pose the interest is computed on January 1 of each year,
based on the balance for the preceding year. Calculate the
balance in the account for each of the next 15 years.

A stock market analyst predicts that Tyro Computers, Inc.
will achieve a 20 percent growth in sales in each of the next
three years, and that profits will grow at a 30 percent annual
rate. Last year’s sales were $35 million and last year’s profits
were $5.54 million. Project the sales and profits for the next
three years, based on the analyst’s prediction.

ANSWERS TO TEST YOUR UNDERSTANDINGS 1,
2,3,4,6,and 7

1:

a.

10 FOR N=3 TO 20

30 NEXT N
40 END

10 FOR N=3 TO 20
20 PRINT 7*N

30 NEXT N

40 END

2:

3:

The heading

would be printed before each entry of the table.

a.

10
20
30
40
50
60

10
20
30
40
50
60
70

3.2 Doing Repetitive Operations

N 7*N

10 LET S=0

20 FOR N=101 TO 110

30 LET S=S+N

40 NEXT N

50 PRINT "101+102+103+...+110=";S
60 END

10 FOR N=1 TO 20
20 PRINT 2*N
30 NEXT N

40 END

FOR J=1 T0 10
FOR 1=0 70 3
PRINT 10*I+J
NEXT I
NEXT J
END

FOR N=1 70 500

PRINT "<YOUR NAME>"
FOR K=1 TO 50
NEXT K
GRAPHICS O
NEXT N
END

10 FOR N=95 TO 112 STEP 1.7

100 NEXT N
110 END

20 FOR N=200 TO 100 STEP -.5

100 NEXT N
110 END

65

66 3 / More on ATARI BASIC

3.3 Letting Your Computer Make Decisions

One of the principal features that makes computers useful as
problem-solving tools is their ability to make decisions. ATARI
BASIC contains instructions that let you ask a question. The com-
puter will determine the answer and take an action that depends
on the answer. Here are some examples of questions that the com-
puter can answer:

IS A GREATER THAN ZERO?
IS A~2 AT LEAST 2007

IS AT LEAST ONE OF THE VARIABLES A, B OR C
NEGATIVE?

IS A$ THE STRING "YES"?

The IF...THEN statement lets you ask such questions. It has the
form

IF <question> THEN <statement or line number>

Here is how this statement works:

1. The “question” part of an IF..THEN statement allows you
to ask questions like those above.

2. If the answer to the question is YES, the program executes
the portion of the statement following THEN.

a. If a statement follows THEN, that statement is
executed.
b. If a line number follows THEN, the computer jumps

to that line and executes it, just as it would with a
GOTO statement.

3. If the answer to the question is NO, the computer ignores
the portion of the statement following THEN and proceeds
to the next line in the program.

For example, consider this instruction:

500 IF N=0 THEN PRINT "CALCULATION DONE"
The question portion of this instruction is

N=0
The portion following THEN is the statement

PRINT "CALCULATION DONE"

3.3 Letting Your Computer Make Decisions 67

When the computer encounters this statement, it first determines
whether N is equal to zero. If so, it prints “CALCULATION
DONE” and proceeds to the next program line after line 500.
However, if N is not zero, the computer goes immediately to the

next program line after 500. It ignores the PRINT statement after
THEN.

Here is another example:
600 IF 2*A<1 THEN 300

When the computer reaches this instruction, it will examine the

value of 2*A. If 2#A is less than 1, the computer will go to line

300. Otherwise, it will go on to the line that follows line 600.
Consider the following two lines of a program:

60 IF A=500 THEN LET S=1:GOTO 80
70 LET s=0

If A=500, then S will be set equal to 1 and the computer will
advance to line 80. Otherwise, the computer ignores the LET and
GOTO statements in line 60 and proceeds to line 70, where S is
set equal to 0. The net effect is that S is set equal to either 1 or 0,
depending upon whether A=500 or not. The following lines
accomplish this also:

60 LET s=0
70 IF A=500 THEN LET S$=1

After IF, you may insert any expression which the computer
may test for truth or falsity. Here are some examples:

N=0

N>5 (N is greater than 5)

N<12.9 (N is less than 12.9)

N>=0 (N is greater than or equal to 0)
N<==1 (N is less than or equal to -1)
N<>0 (N is not equal to 0)

A+B<>C (A+B is not equal to C)

A$="STOP" (A$ is the string "STOP")

The expression after IF may contain two or more expressions sep-
arated by AND or OR. Here are some examples:

68

3 / More on ATARI BASIC

N=0 OR A>B (either N=0 or A>B or both)
N>M AND I=0 (both N>M and 1=0)

D =100 OR A$="STOP” (either D=100 or A$="STOP” or
both)

N=0 AND D=100 AND A$="STOP” (N=0 and D=100 and
A$="STOP”)

TEST YOUR UNDERSTANDING 1 (answers on
page 77)

Write instructions (one or two lines long, beginning with
line 10) which do the following:
a.

b.

If A equals 5, then print the value of A plus B.

If A is less than 5000, then go to line 300. Otherwise,
set A equal to 5000.

If N is larger than the sum of I and K, then set N equal
to the sum of I and K. Otherwise, go to line 300.

If X<<0 or X>319, then let S=-S.

If A$="DELAY” and D is not equal to 24, then go to
line 150

The next few examples illustrate some of the possibilities of
combining the IF..THEN and GOTO statements.

Example 1. A lumber supply house has a policy that no charge
may exceed $1,000, including a 10 percent processing fee and a 5
percent sales tax. A customer orders 150 2x4 studs at $1.99 each,
30 sheets of plywood at $14.00 each, 300 pounds of nails at $1.14
per pound, and two double hung insulated windows at $187.95
each. Write a program which prepares a bill and decides whether
the order is over the credit limit.

Solution. Let's use the variables A1, A2, A3, and A4 to denote,
respectively, the number of studs, sheets of plywood, pounds of
nails, and windows. Let’s use the variables B1, B2, B3, and B4 to
denote the unit costs of these four items. The cost of the order is
then computed as

A1*%B1+A2%B2+A3*B3+A4*B4

3.3 Letting Your Computer Make Decisions 69

We add 10 percent of this amount to cover processing and form
the sum to obtain the total order. Next, we compute 5 percent of
the last amount as tax and add it to the total to obtain the total
amount due. Finally, we determine whether the total amount due
is at most $1,000. If it is, we approve the charge. If not, we print

out the message: ORDER EXCEEDS $1,000. CHARGE NOT PER-
MITTED. Here is our program.

10 LET A1=150:LET A2=30:LET A3=300:LET
A4=2:REM -Assign quantities-

20 LET B1=1.99:LET B2=14:LET B3=1.14:LET
B4=187.95:REM -Assign prices-

30 LET T= A1*B1+A2*B2+A3*B3+A4*B4:REM
T=total price

40 PRINT "TOTAL ORDER",T

50 LET P=.1*T: REM P=processing fee

60 PRINT "PROCESSING FEE",P

70 LET TX=.05*%(P+T): REM TX=sales tax

80 PRINT "SALES TAX",,TX

90 LET DU=T+P+TX: REM DU=Amount due

100 PRINT "AMOUNT DUE'", DU

110 IF DU<=1000 THEN 300:REM -Is DU at most
10007~

200 PRINT "ORDER EXCEEDS $1,000"

210 PRINT "CHARGE NOT PERMITTED"

220 GOTO 400

300 PRINT "CHARGE APPROVED"

400 END

Note the decision in line 110. If the amount due exceeds $1,000,
then the computer ignores the THEN part of statement 110 and
goes to the next line, line 200, where it prints out a message disal-
lowing the charge. In line 220, the computer is sent to line 400
which is the END of the program. On the other hand, if the
amount due is at most $1,000, the computer executes the THEN
part of line 110, which instructs the computer to go to line 300, in
which credit is approved.

TEST YOUR UNDERSTANDING 2 (answer on
page 77)

Consider the following sequence of instructions:

100 IF A>=5 THEN 200
110 IF A>=4 THEN 300
120 IF A>=3 THEN 400

70 3 / More on ATARI BASIC

130 IF A>=2 THEN 150
400 END

Suppose the current value of A is 3. List the sequence of
line numbers which will be executed if the computer starts at
line 100.

Example 2. At $20 per square yard, a family can afford up to
500 square feet of carpet for their dining room. They wish to
install the carpet in a circular shape. It has been decided that the
radius of the carpet is to be a whole number of feet. What is the
radius of the largest carpet they can afford? (The area of a circle of
radius “R” is PI times RA2, where Pl equals approximately
3.14159.)

Solution. Let us compute the areas of the circles of radius 1, 2,
3, 4,... and determine which of the areas are less than 500.

10 LET PI=3.14159

20 LET R=1:REM R=radius

30 LET A=PI*RA2:REM A=area

40 IF A>500 THEN 100

50 LET R=R+1:REM -Go to next radius-

60 GOTO 30:REM -Repeat-

100 PRINT "THE LARGEST RADIUS YOU CAN AFFORD
IS";R-1

110 END

Note that line 40 contains an IF.. THEN statement. If A, as com-
puted in line 30, is less than 500, the computer ignores the THEN
part of line 40 and proceeds to line 50, where R is increased by 1.
Then, in line 60, the computer is sent back to line 30 to compute
the area again. This process is repeated until a value of R is found
for which the area A is greater than 500 (so that a carpet with that
radius is too expensive). Then the computer executes the THEN
part of line 40, which instructs the computer to go to line 100.
Then the computer prints out the radius that is one less than the
current radius. (That must be the largest radius that is affordable.)
After that, the program ends.

In effect, the lines 30-40-50-60 form a loop. However, we did
not use a FOR ... NEXT instruction because we did not know in
advance how many times we wanted to execute the loop. We let
the computer decide the stopping point with the IF..THEN
instruction.

3.3 Letting Your Computer Make Decisions 71
The INPUT Statement

It is very convenient to have the computer request information
from you while the program is actually running. This can be
accomplished with the INPUT statement. To see how, consider the
statement

570 INPUT A

When the computer encounters this statement in the course of
executing the program, it displays

n

and waits for you to respond by typing a value for A (and then
hitting RETURN). The computer then sets A equal to the value
you specified and continues running the program.

You may use an INPUT statement to specify the values of sev-
eral different variables at one time. These variables may be
numeric or string variables. For example, suppose that the com-
puter encounters the statement

50 INPUT A,B,C$
It will type
4 |

You then type in the desired values for A,B, and C$, in the same
order as in the program, separated by commas. For example, sup-
pose you type

10.5, 11.42, BEARINGS
and hit RETURN. The computer will then set

A=10.5, B=11.42, C$=""BEARINGS"

If you respond to the above question mark by typing only a single
number, 10.5, for example, the computer will respond with
another question mark and wait for you to give the remaining val-
ues. If you attempt to specify a string where you should have a
number, the computer will respond with an error message and
return to direct mode. You would have to run the program again if
you wanted to continue. If you enter a number when the computer
expects a string, it will consider the number as a string.

It is helpful to include a prompting message which describes the
input the computer is expecting. To do so, first type PRINT and
then the message in quotation marks, as you would with a regular
PRINT statement. After the message type a semicolon. On the

72

3 / More on ATARI BASIC

next line type INPUT, and then the variable you wish to have
input. Here is an example:

10 DIM A$(100)

20 PRINT "What is your name";

30 INPUT AS$

40 END

When this program is run, the computer will print
What is your name?m

and wait for a response. Notice that you do not need to include a
question mark in line 20 in the preceding program because the
INPUT statement puts a question mark on the screen for you.

TEST YOUR UNDERSTANDING 3 (answer on
page 77)

Write a program that allows you to set variables A and B to
any desired values with an INPUT statement and print out
their sum. Use the program to set the variable A equal to 12
and the variable B equal to 17.

The next two examples illustrate the use of the INPUT state-

ment and provide further practice in using the IF..THEN
statement.

Example 3. You are a teacher compiling semester grades. Sup-
pose there are four grades for each student and each grade is on
the traditional 0 to 100 scale. Write a program which accepts the
grades as input, computes the semester average, and assigns
grades according to the following scale:

90-100 A
80-89.9 B
70-79.9 C
60-69.9 D
< 60F

Solution. We will use an INPUT statement to enter the grades
into the computer. Our program will allow you to compute the
grades of students, one after the other, via a loop. You may termi-
nate the loop by entering a negative grade. Here is our program.

10 PRINT "ENTER STUDENT'S 4 GRADES."
20 PRINT "SEPARATE GRADES BY COMMAS."

3.3 Letting Your Computer Make Decisions 73

30 PRINT "FOLLOW LAST GRADE WITH RETURN."

40 PRINT "TO END PROGRAM, ENTER A NEGATIVE
GRADE."

50 PRINT "WHAT ARE THE FOUR GRADES";

60 INPUT A1,A2,A3,A4:REM -Input grades-

70 IF A1<0 OR A2<0 OR A3<0 OR A4<0 THEN
200:REM -Negative number?-

100 LET A=(A1+A2+A3+A4)/4:REM -Average of
the four grades-

110 PRINT "SEMESTER AVERAGE ";A:REM -Print
average on screen-

120 IF A>=90 THEN PRINT "SEMESTER GRADE

A": GOTO 10

130° IF A>=80 THEN PRINT "SEMESTER GRADE =
B": GOTO 10

140 IF A>=70 THEN PRINT "SEMESTER GRADE =
¢": GOTO 10

150 IF A>=60 THEN PRINT "SEMESTER GRADE =
D": GOTO 10

160 PRINT "SEMESTER GRADE = F": GOTO 10
200 END

Note the logic for printing out the semester grades. First compute
the semester average, A. In line 120 we ask whether A is greater
than or equal to 90. If so, we assign the grade A and go to line 10
to obtain the next grade. In case A is less than 90, the THEN part
of line 120 is not executed and the computer goes on to line 130. In
line 130, we ask whether A is greater than or equal to 80. If so,
then we assign the grade B and go back to line 10. (The point is
that the only way we can get to line 130 is for A to be less than 90.
So if A is greater than or equal to 80, we know that it lies in the B
range.) If A is not greater than or equal to 80, we go to line 140,
and so forth. This logic may seem a trifle confusing at first, but
after repeated use, it will seem quite natural.

The ON ... GOTO Statement

A very useful variant of the GOTO statement is the ON ...
GOTO statement. It instructs the computer to go to one of several
possible program lines, depending on the value of a variable (A,
for example) or an expression (2*A+1,for example). Here is an
example:

30 ON A GOTO 100, 150, 200, 250

74

3 7/ More on ATARI BASIC

Whenever the computer comes to line 30, it will go to line 100 if
the current value of A is 1, to line 150 if the current value is 2, to
line 200 if the current value is 3, and to line 250 if the current
value is 4. There could be a longer list of line numbers after
GOTO. If the current value of A is negative or greater than 255,
line 30 will cause the computer to give you an error message. If the
current value of A is O or greater than the number of line numbers
after GOTO (but less than 256), the computer will ignore line 30
and go to the next line after line 30. If A is not an integer, the
computer will round off before deciding what line number to go
to.

Let’s see the ON ... GOTO statement in action. We will write a
program for maintaining a checkbook. The user will tell the com-
puter what sort of transaction is to be entered by inputting a
number A. Depending on the value of A, an ON...GOTO state-
ment will send the computer to the part of the program that han-
dles the desired transaction.

Example 4. Write a program to maintain your checkbook. The
program should allow you to record an initial balance, enter
deposits, and enter checks. It should also warn you of overdrafts.

Solution. Let the variable B always contain the current balance
in the checkbook. The program will first ask for the starting bal-
ance. Then it will ask for the type of transaction you wish to
record. A “1” will mean that you wish to record a deposit; a “2”
will mean you wish to record a check; a “3” will mean that you are
finished entering transactions and wish to terminate the program.
After entering each transaction, the computer will figure your new
balance, report it to you, will check for an overdraft, and report
any overdraft to you. In case of an overdraft, the program will
allow you to cancel the preceding check. When each transaction is
completed, the computer will give you the option of quitting or
going on to another transaction.

10 DIM E$(1): PRINT "WHAT IS YOUR STARTING
BALANCE";

20 INPUT B

30 PRINT "1) ADD DEPOSIT"

40 PRINT "2) SUBTRACT CHECK"

50 PRINT "3) QuIT"

60 PRINT

70 PRINT "NUMBER OF OPTION DESIRED 1/72/3)";

80 INPUT A

90 ON A GOTO 110, 210, 500

100 REM -~Add deposit~

3.3 Letting Your Computer Make Decisions 75

110 PRINT "AMOUNT OF DEPOSIT";

120 INPUT D

130 LET B=B+D :REM -Add desposit to balance-
140 PRINT "YOUR NEW BALANCE IS ";"$";B

150 GOTO 30

200 REM -Subtract check-

210 PRINT "AMOUNT OF CHECK";

220 INPUT €

230 LET B=B-C : REM -Deduct check amount-
240 IF B<O THEN 310 :REM -Test for overdraft-
250 PRINT "YOUR NEW BALANCE IS ""$",B

260 GOTO 30

300 REM -Process overdraft-

310 PRINT "LAST CHECK CAUSES OVERDRAFT"

320 PRINT "DO YOU WISH TO CANCEL CHECKC(Y/N)";
330 INPUT E$

340 IF E$="Y" THEN 410

350 PRINT "YOUR NEW BALANCE IS ";"$";B

360 GOTO 30

400 REM -Cancel check-

410 LET B=B+C :REM -Cancel last check-

420 GOTO 30

500 END

You should scan this program carefully to make sure you under-
stand how each of the INPUT and ON...GOTO statements is used.
In addition, you should use this program to obtain a feel for the
dialog between you and your computer when INPUT statements
are used.

Note how the above program is divided into sections. For visual
purposes, each section begins with a line number which is a multi-
ple of 100. Moreover, each section begins with a comment which
identifies the function of the section. In order to write a complex
program, you should break the program into manageable sections.
Don’t get caught in the common “maze of complexity.” Work out
one section at a time and include plenty of REMs to clarify each
statement. Then put the various sections together into one
program.

Example 5. Write a program which tests mastery in addition of
two-digit numbers. Let the user suggest the problems, and let the
program keep score of the number correct out of ten.

Solution. Let us request the program user to provide pairs of
numbers via an INPUT statement. The sum will also be requested
via an INPUT statement. An IF ... THEN statement will be used to

76

3 / More on ATARI BASIC

judge the correctness. The variable S will keep track of the
number correct. We will use a loop to repeat the process ten times.

10

20
30
40
50
60
100
110

120
200
210

220
300
400
410

510
600

FOR N=1 TO 10:REM -Loop to give 10
problems-
PRINT "TYPE TWO 2-DIGIT NUMBERS";
INPUT A,B
PRINT "WHAT IS THEIR SUM";
INPUT C
IF A+B=C THEN 210
REM -Respond to incorrect answer-
PRINT "SORRY. THE CORRECT ANSWER IS ";
"A+B
GOTO 300:REM -Go to the next problem-
REM -Respond to correct answer-
PRINT "YOUR ANSWER IS CORRECT!
CONGRATULATIONS!"
LET S=S+1:REM -Increase score by 1-
NEXT N
REM -Print score for 10 problems-
PRINT "YOUR SCORE IS '";S;" CORRECT OUT OF
10"
PRINT "TO TRY AGAIN, TYPE RUN"
END

Exercises (answers on page 249)

Here are some exercises that you can try to solve. Of course,
you don’t have to do them all. Just do the ones which seem inter-
esting or challenging to you. It is important that you move at your
own pace.

1.

Write a program to calculate and print out all perfect
squares which are less than 45,000.(Perfect squares are the
numbers 1*1, 2+2, 3#3, 4%4,...)

Write a program to determine all of the circles of integer
radius and area less than or equal to 5,000 square feet.
(The area of a circle of radius R is PI*RA2, where
PI=3.14159 approximately.)

Write a program to find all positive integers X such that
XA3<175,000.

Modify the arithmetic testing program of Example 5 so
that the operation tested for is multiplication instead of
addition.

Modify the arithmetic testing program of Example 5 so
that it allows you to choose, at the beginning of each group

10.

11.

12.

3.3 Letting Your Computer Make Decisions 77

of ten problems, from among these operations: addition,
subtraction, or multiplication.

Write a program which accepts three numbers via an INPUT
statement and determines the largest of the three.

Write a program which accepts three numbers via an INPUT
statement and determines the smallest of the three.

Write a program which accepts a set of numbers via INPUT
statements and determines the largest among them.

Write a program which accepts a set of numbers via INPUT
statements and determines the smallest among them.

A credit card company computes its monthly interest
charge on unpaid balances as follows: 1.5 percent on
amounts up to $500 and 1 percent on any excess over $500.
Write a program that accepts balances as input and then
computes the interest charge and new balance.

Write a program which does the arithmetic of a cash regis-
ter. That is, let the program accept purchases via INPUT
statements, then total the purchases, figure out sales tax
(assume 5 percent), and compute the total purchase. Let
the program ask for the amount of payment given and
then let it compute the change due.

Write a program that analyzes cash flow. Let the program
ask for cash on hand as well as accounts expected to be
received in the next month. Let the program also compute
the total anticipated cash for the month. Let the program
ask for the bills due in the next month, and let it compute
the total accounts payable during the month. By comparing
the amounts to be received and to be paid out, let the pro-
gram compute the net cash flow for the month and report
either a surplus or a deficit.

ANSWERS TO TEST YOUR UNDERSTANDINGS 1,

2, and 3

1: a 10
b. 10

20

c. 10

20

d 10

e. 10

2: 100-110-120-400

IF A=5 THEN PRINT A+B

IF A<500 THEN 300

LET A=5000

IF N>I+K THEN LET N=I+K

GOTO 300

IF X<0 OR X>319 THEN LET S=-§

IF A$="DELAY'" AND D<>24 THEN 150

78 3 / More on ATARI BASIC

3: 10 PRINT "WHAT ARE THE VALUES OF A AND
B";
20 INPUT A,B
30 PRINT A;"+";B;"=";A+B
40 END

3.4 Planning Your Program

As you proceed with this book, you will notice programs getting
longer and more complicated. Pretty soon, you too will be writing
programs of this sort yourself. If you do not have a structured
method for writing programs, they may contain errors and be hard
to debug. The old saying, “A picture is worth a thousand words”
is true for computer programming. In designing a program, espe-
cially a long one, it helps to draw a picture called a flowchart.

A flowchart is an organized chart that lets you plan your pro-
gram before you begin writing it. A flowchart consists mainly of
boxes, each containing a single instruction corresponding to one or
more lines of a program. The boxes are connected by arrows that
show the order of execution of the instructions. Figure 3-1 is an
example of a very simple flowchart.

START

l

ASK FOR
TWO NUMBERS

'

ADD THE
TWO NUMBERS

l

PRINT
THE SUM

:

END

Figure 3-1. A flowchart.

3.4 Planning Your Program 79

This flowchart is the framework of a simple program:

10 PRINT "TYPE TWO NUMBERS TO BE ADDED"

20 INPUT N1, N2

30 LET S=N1+N2

40 PRINT "THE SUM OF ";N1;" AND ";N2;" IS ";S
50 END

Of course, a program this simple needs no flowchart, but let’s say
we wanted the computer to continue asking us values and printing
the sum until we hit BREAK. Our new flowchart would look like
the one in Figure 3-2.

START

l<_

ASK FOR
TWO NUMBERS

'

ADD THE
TWO NUMBERS

'

PRINT
THE SUM

Figure 3-2. Another flowchart.

The arrow in the above flowchart is the equivalent of a GOTO
statement in a program. Here is what the program for this
flowchart would look like:

10 PRINT "TYPE TWO NUMBERS TO BE ADDED"

20 INPUT N1, N2

30 LET S=N1+N2

40 PRINT "THE SUM OF ";N1;" AND ";N2;" IS ";S
50 PRINT

60 GOTO 10

70 END

Now let’s give an example in which a decision is required. Let’s
stick with our addition problem, but have the computer ask us for
the sum, check it for correctness, and inform us of our perform-

80

3 7 More on ATARI BASIC

ance. As is commonly done, we will put any step requiring a deci-
sion by the computer in a diamond-shaped box. There will be two
arrows coming from such a box, depending on the decision made.

Our flowchart looks like the one in Figure 3-3. Our program for
this flowchart would be:

10 PRINT "TYPE TWO NUMBERS TO BE ADDED"
20 INPUT N1, N2

30 PRINT "WHAT DO YOU THINK THE SUM IS";

START

'

ASK FOR
TWO NUMBERS

'

ASK FOR SUM

\

ADD THE
TWO NUMBERS

PRINT “SORRY!”
AND CORRECT

ANSWER

WAS ANSWER
CORRECT?

PRINT
“CONGRATULATIONS!

THAT'S RIGHT!”

'

END -

Figure 3-3. A flowchart with a decision box.

3.4 Planning Your Program 81

40 INPUT A

50 LET S=N1+N2

60 IF A<>S THEN PRINT "SORRY! THE SUM OF ";
N1;" AND ";N2;" IS ";S:GOTO 70

60 PRINT "CONGRATULATIONS! THAT'S RIGHT!"

70 END

START

'

INPUT A

NO

INPUT N

YES

NO

PRINT
THE NUMBERS
1+A, 2+A, ... N+A

-

END

Figure 3-4. Exercise 1 flowchart.

82

3 / More on ATARI BASIC

Flowcharting can help you structure and write programs. The
flowchart might even help you debug (correct) programs. Remem-
ber, one of the most important factors in writing programs is
organization.

Exercises (answers on page 253)

1. Write a program that corresponds to the flowchart in Figure
3-4.
2. Draw a flowchart that corresponds to the following program:

10 LET N=0

20 LET N=N+1

30 LET S=S+1/N

40 IF S<10 THEN 20
50 PRINT N

60 END

3. Draw a flowchart to plan a program that computes and
prints the average of any collection of numbers input by the
user. Write the program using the flowchart.

3.5 Subroutines

In writing programs it is often necessary to use the same
sequence of instructions more than once. It may not be convenient
(or even feasible) to retype the set of instructions each time it is
needed. Fortunately, ATARI BASIC offers a convenient alterna-
tive: the subroutine.

A subroutine is a program that is incorporated within another,
larger program. The subroutine may be used any number of times
by the larger program. Often, the lines corresponding to a subrou-
tine are isolated toward the end of the larger program. This
arrangement is illustrated in Figure 3-5. The arrow to the subrou-
tine indicates the point in the larger program at which the subrou-
tine is used. The arrow pointing away from the subroutine
indicates that, after completion of the subroutine, execution of the
main program resumes at the point at which it was interrupted for
the subroutine.

Subroutines are handled with the pair of instructions GOSUB
and RETURN. The statement

100 GosuB 1000

sends the computer to the subroutine which begins at line 1000.
The computer starts at line 1000 and carries out statements in

3.5 Subroutines 83

order. When a RETURN statement is reached, the computer goes
back to the main program, starting at the first statement after
GOSUB.

A simple example of a subroutine is provided by the following
lines, which creates a delay of about two seconds:

1000 FOR N=1 TO 1000
1010 NEXT N
1020 RETURN

You may call this subroutine at any place in the program as many
times as you want by the instruction GOSUB 1000. For example,
you might have

100 PRINT "THIS PROGRAM WILL HELP YOU LEARN"
110 GosuB 1000

120 PRINT "HOW TO TYPE"

130 GosuB 1000

Main Program

@ /
\ Subroutine

Figure 3-5. A subroutine.

84

3 / More on ATARI BASIC

1000 FOR D=1 TO 1000
1010 NEXT D
1020 RETURN

At line 100 the computer will print
THIS PROGRAM WILL HELP YOU LEARN

Then it goes to line 110, which calls the subroutine at line 1000. As
a result, the computer will delay about two seconds. Then it
returns to line 120 and prints

HOW TO TYPE

It proceeds immediately to line 130, which calls the two-second
delay again. Afterward, the computer continues with the rest of
the program.

If you have several subroutines in a single program, it may be
difficult to remember their starting line numbers. It sometimes
helps to assign suggestive variables to represent the starting line
numbers. For the delay subroutine we had at line 1000, you might
choose to use DELAY for 1000. Then our last program could take
the following form:

10 LET DELAY=1000

100 PRINT "THIS PROGRAM WILL HELP YOU LEARN"
110 GOSUB DELAY

120 PRINT ""HOW TO TYPE"

130 GOSUB DELAY

1000 FOR D=1 TO 1000
1010 NEXT D
1020 RETURN

3.5 Subroutines 85

TEST YOUR UNDERSTANDING 1 (answer on
page 88)

Consider the following program:

10 GOsSuB 40

20 PRINT "LINE 20"
30 END

40 PRINT "LINE 40"
50 RETURN

List the line numbers in order of execution.

Nested Subroutines

Just as it is possible to have nested loops, it is also possible to
have nested subroutines, that is, a subroutine within a subroutine.
Consider the following example:

240 GOSUB 1000

‘iOOO PRINT "THE BALANCE IN YOUR ACCOUNT IS
$";B

1010 GosuB 2000

1020 RETURN

2000 FOR D=1 TO 3000
2010 NEXT D
2020 RETURN

When the computer reaches line 240, it advances to the subroutine
starting at line 1000, which contains a PRINT statement. At line
1010 of that subroutine, the subroutine starting at line 2000 is
called, so the computer advances to line 2000. It executes the delay
subroutine on lines 2000-2020 and then returns to line 1020 to
complete the subroutine on lines 1000-1030. Then, the computer is
sent by line 1020 back to the next line after line 240. As you can
see, the subroutine starting at line 2000 is executed during the exe-

86

3 / More on ATARI BASIC

cution of the subroutine starting at line 1000. Thus, the subrou-
tines are nested.

You may use nesting to any level that you are likely to need. (A
subroutine within a subroutine within a subroutine, and so forth.)
However, you should be aware that a RETURN instruction always
refers to the innermost subroutine. To put it another way, a
RETURN always refers to the subroutine which was called most
recently.

CAUTION: It is possible to accidentally create an infinite
nesting of subroutines by repeatedly issuing GOSUB instruc-
tions, as in this program:

10 PRINT "HELLO"

20 GosuB 10

The computer will eventually run out of memory trying to
keep track of this nesting and an error will result.

The ON ... GOSUB Instruction

The ON...GOSUB statement, like the ON...GOTO statement,
allows you to instruct the computer to jump to any of several sub-
routines, depending on the current value of a variable (A, for
example) or an expression (2*A + 1, for example). The form of this
statement is

ON <expression> GOSUB <line #1>, <line #2>, ...

When the computer encounters this instruction, it evaluates
<expression> and rounds it off. If the resulting value is 1, the
program executes a GOSUB to <line #1>. If the value is 2, the
program executes a GOSUB to <line #2>, and so forth. If the
value is O or more than the number of line numbers provided, the
instruction will be ignored. If <expression> is rounded to a nega-
tive value or a value larger than 255, an error results.

To illustrate the ON...GOSUB statement, we will rewrite the
checkbook program in Section 3.3:

10 DIM E$(1)

20 PRINT "WHAT IS YOUR STARTING BALANCE";
30 INPUT B

40 PRINT "1) ADD DEPOSIT"

50 PRINT "2) SUBTRACT CHECK"

60 PRINT "3) QuiT"

70 PRINT

3.5 Subroutines 87

80 PRINT "NUMBER OF OPTION DESIRED (1/2/
3)ll;

90 INPUT A

100 ON A GOsuB 1010, 2010, 3010

110 PRINT

120 PRINT "YOUR NEW BALANCE IS $";B

130 GOTO 40

1000 REM -Add deposit-

1010 PRINT "AMOUNT OF DEPOSIT";

1020 INPUT D

1030 LET B=B+D

1040 RETURN

2000 REM -Subtract check amount-

2010 PRINT ''AMOUNT OF CHECK";

2020 INPUT C

2030 B=B-C

2040 IF B<0 THEN GOSUB 4010

2050 RETURN

3000 REM -Quit-

3010 END

4000 REM -Process overdraft-

4010 PRINT

4020 PRINT "LAST CHECK CAUSES OVERDRAFT"

4030 PRINT "DO YOU WISH TO CANCEL CHECK (Y/
N)";

4040 INPUT ES$

4050 IF ES$="Y" THEN B=B+C:PRINT "LAST CHECK
CANCELLED"
4060 RETURN

At line 100, the computer will jump to one of three subroutines,
depending on the option selected at line 90. In the subroutines
starting at line 1010 and 2010, the necessary calculations are made
and the computer is returned to line 120 to print the new balance.
At line 130 the computer is sent to line 40 to ask for another
choice. When option 3 is chosen, the computer jumps to line 3010,
which terminates the program. In line 3010, the END statement
“cancels” the GOSUB statement, and ends the program. If a check
causes an overdraft, it is detected at line 2040 and the computer
jumps to the subroutine starting at line 4010. Thus the program
contains nested loops.

Exercises (answers on page 256)
1. Consider the instruction

10 ON A+2 GOSUB 100, 200, 300, 400, 500

88 3 / More on ATARI BASIC

To which line (if any) will the computer advance if

P a0 o

A=2
A=3
A=-2
A=
A=-4

2. Consider the program

10
20
30
40
50
60
100
200
300
400

LET Y=5

LET J=3

LET S=Y-J

ON S GOSUB 100, 200, 300, 400
PRINT "HELLO"

END

RETURN

RETURN

RETURN

RETURN

What are the two lines executed immediately after line 40?

3. Suppose you wish to use the checkbook program to add one
deposit, subtract two checks (neither of which causes an
overdraft), and then quit. List, in the order of execution, the
line numbers that would be executed.

ANSWER TO TEST YOUR UNDERSTANDING 1

1: 10, 40, 50, 20, 30

3.6 POKE, PEEK, and TRAP Statements

As we mentioned earlier, the computer stores information in its
memory. All information is stored in the form of numbers, and
the memory locations are themselves numbered. You can find the
number stored in any memory location by using PEEK. The

expression

PEEK(M)

where M is the number of a memory location, gives the number
stored in memory location M. For example, if 1 is stored in mem-
ory location 752, then PEEK(752)=1. This might be a valuable

3.6 POKE, PEEK, and TRAP Statements 89

piece of information, because whenever 1 is stored in location 752,
the cursor is turned off.

You can have the computer store numbers in certain memory
locations by means of POKE. The command

POKE M,X

instructs the computer to store the number X in memory location
M. The number X cannot be greater than 255 or less than 0, or an
error will result. The statement

POKE 752,1

instructs the computer to store the number 1 in memory location
752 and, as we said earlier, this causes the cursor to disappear.
You may use this command in the direct mode or in a program to
turn off the cursor. In games, for example, you may wish to
remove the cursor so it will not interfere with whatever you are

displaying on the screen. You can turn the cursor back on with the
command

POKE 752,0

IMPORTANT:

1. Never poke aimlessly into memory. You may delete
your program,

2. When you turn off your computer, all memory locations
are set to their default values.

TEST YOUR UNDERSTANDING 1 (answers on
page 90)

a. Instruct the computer to turn off the cursor.
b. Instruct the computer to turn the cursor back on.

Here are some useful memory locations and their default values:

LOCATION USE

82 Poke a number from 0-39 here to change the left
margin of the screen. Default value = 2.
83 Poke a number from 0-39 here to change the

right margin of the screen. Default value = 39.

90

3 / More on ATARI BASIC

580 If you poke a 1 here, when someone hits SYS-
TEM RESET the computer will act as if it had
been turned off and on, and all data in RAM will
be erased. Default value = 0.

764 Tells number of last key pressed. 255 = no key
pressed. Default = 255.
838, 839 Poke 166 in 838 and 238 in 839, and all text usu-

ally printed on the screen will be sent to the
printer instead. Poke 838,244 and 839,241 for
normal operation. Default values are 244 and
241.

53770 If you PEEK here, you will get a random integer
from 0-255.

The TRAP statement is used only with a program. It has the
format

TRAP X

where X is a line number in the program which the computer will
GOTO if you have an error. In the following program, the com-
puter will GOTO line 100 after the error in line 20 occurs:

10 TRAP 100
20 GOTO 546
30 END

100 PRINT "AN ERROR HAS BEEN ENCOUNTERED!"
110 END

The following program will not give the previous result because
the error occurs in line 10, before the TRAP statement.

10 GOTO 546
20 TRAP 100
30 END

100 PRINT "AN ERROR HAS BEEN ENCOUNTERED!"
110 END

To disable trap (to turn it off), use the statement:
TRAP 40000

ANSWERS TO TEST YOUR UNDERSTANDING 1

POKE 752,1
POKE 752,0

3.7 Debugging Your Programs 91

3.7 Debugging Your Programs

Eliminating errors in programs is called debugging. Tracking
down program bugs (errors) can be a very tricky business and to
be good at it, you must be a good detective.

In Section 2.5, we listed some of the clues which ATARI BASIC
automatically supplies, namely the error messages. Sometimes,
these clues are not enough to locate an error. For example, your
program may run without error. It may just not do what it is sup-
posed to. In this case, no error messages will be triggered. In such

circumstances you must be prepared to supply your own clues.
Here are some techniques.

Inserting Extra PRINT Statements

You may temporarily insert extra PRINT statements into your
program. This technique lets you keep track of a variable as your
program is executed. If the printed values of the variable are not
what you would expect, you could examine all the statements that
affect that variable in hopes of locating the bug in the program.
Let’s consider the following example:

10 LET A=91

20 FOR B=1 T0 13
30 LET A=A-B
40 NEXT B

50 LET C=1/A

60 PRINT C

70 END

When you run this program, the computer gives you the following
error message:

ERROR- 11 AT LINE 50

Since line 50 involves A, let’s put in a PRINT statement to follow
the value of A:

35 PRINT A

If you run the new program, the computer will print

90

92

3 / More on ATARI BASIC

63
55
46
36
25
13
0

ERROR- 11 AT LINE 50

Thus the error occurs when A=0. If you now look at line 50, you
see what is wrong. You are trying to divide by 0, which is an
invalid arithmetic operation. You could now correct the program
in any of several ways, depending on what you really want the
program to do. After correcting it you could delete the PRINT
statement you inserted at line 35.

Inserting STOP Commands

Sometimes your program runs without error messages, but does
not perform as you expect it to. In such a case there may be a flaw
in your program planning. To debug such a program, you may
temporarily insert STOP commands to force halts wherever you
wish. This debugging technique may be used in several ways.

1. When the program encounters a STOP instruction, it halts
execution and prints out the line number at which the pro-
gram was stopped. If the program does stop, you will know
the instruction just before the STOP was executed. On the
other hand, suppose the program continues on its merry
way. This tells you the program is avoiding the instructions
immediately preceding the STOP. If you determine the rea-
son for this behavior, then you will likely correct a bug.

2. When the program is halted, the values of the variables are
preserved. You may examine them to determine the behav-
ior of your program. (See below for more information.)

3. You may insert several STOP instructions. After each halt,
you may note the behavior of the program (line number,
values of key variables, and so forth). You may continue
execution by typing CONT and hitting RETURN. While the
program is stopped, you may change lines in the program
or set variables to any desired values before giving the
CONT command. The program will still pick up where it
left off and will use the new values of any reset variables.

3.7 Debugging Your Programs 93

Examining Variables in the Direct Mode

When ATARI BASIC stops executing your program, the current

values of the program variables are not destroyed. Rather, they are
still in memory and may be examined by printing their values on
the screen as an indication of program behavior. This is true even

if the program is halted by means of a STOP instruction or by
hitting BREAK.

Executing Only a Part of a Program

Sometimes it helps to run only a portion of your program. You
may start execution at any line using a variation of the GOTO
command. For example, to begin execution at line 500, type

GOTO 500

and hit RETURN. You can even set any variables in the program
to any desired values before giving the GOTO command. For
example, the command

LET A=6:G0T0 500

sets the value of A equal to 6 and causes the program to begin
running at line 500. When the program resumes at line 500, the
initial value of A will be 6.

We have mentioned only a few debugging techniques to get you
started. As you gain more experience, you will probably develop
some of your own techniques.

Working With Data

4.1 Working With Tabular Data

In the preceding chapter, we introduced the notion of a variable
and used variable names like

A, B1, and DELAY

As we will see in this chapter, there are relatively innocent pro-
grams which require hundreds or even thousands of variables. To
meet the needs of such programs, ATARI BASIC allows the use of
so-called subscripted variables. Such variables are used constantly
by mathematicians and are identified by numbers attached to a
letter. For instance, here is a list of 1000 variables as they might
appear in a mathematical work:

All AZ/ ASI"'I AlOOO

The numbers used to distinguish the variables are called sub-
scripts. Likewise, ATARI BASIC allows definition of variables to
be distinguished by subscripts. Since the computer has difficulty
placing the numbers in the traditional position, they are placed in
parentheses on the same line as the letter. For example, the above
list of 1000 different variables would be written in ATARI BASIC
as

A(1),A(2),A(3),...,A(1000).

The variable A(1) is not the same as the variable A or even Al.
You may use all of them in the same program and ATARI BASIC
will interpret them differently.

A subscripted variable is really a group of variables with a com-
mon letter identification, distinguished by different integer “sub-
scripts.” For instance, the above group of variables would
constitute the subscripted variable A().

It is often useful to view a subscripted variable as a table or
array. For example, the subscripted variable A() considered above
can be viewed as providing a table of values:

95

96

4 / Working With Data

AQ)
AQR)
AQ)

A(1000)

As shown here, the subscripted variables define a table consisting
of 1000 rows. For each integer J between 1 and 1000, row number |
contains a single entry, namely, the value of the variable A(J). The
first row contains the value of A(1), the second the value of A(2),
and so forth. Since a subscripted variable can be thought of as a
table (or array), subscripted variables are often called arrays.

The array shown above is a table consisting of 1000 rows and a
single column. ATARI computers let you consider more general
arrays. For example, consider the following financial table that
records the monthly income for January, Febuary, and March
from each of four computer stores:

Month Store #1 Store #2 Store #3 Store #4
]anuary 1258.38 2437.46 4831.90 987.12
February 1107.83 2045.68 3671.86 1129.47
March 1298.00 2136.88 4016.73 1206.34

This table has three rows and four columns. Its entries may be
stored in the computer as a set of 12 variables:

A(L1) A(1,2) A(1,3) A(1,4)
A21) AR2,2) A(2,3) A(2,4)
A(3,1) A(3,2) A(3,3) A34)

This array of variables is very similar to a normal subscripted vari-
able, except there are now two subscripts. The first subscript indi-
cates the row number and the second subscript indicates the
column number. For example, the variable A(3,2) is in the third
row and second column.

A collection of variables such as that given above is called a
two-dimensional array or a doubly-subscripted variable. Each
setting of the variables in such an array defines a tabular array. For
example, if we assign the values

A(1,1)=1258.38, A(I,Z) =2437.46
A(1,3)=4831.90, and so forth,

we will have the table of earnings for the computer stores.

4.1 Working With Tabular Data 97

You must inform the computer of the sizes of the arrays you
plan to use into the program. This allows the computer to allocate
memory space to house all the values. To specify the size of an
array, use a DIM (for dimension) statement. For example, to define

the size of the subscripted variable A(J),] = 1, .. ., 1000, we insert
the statement

10 DIM AC1000)

in the program. This statement informs the computer that it should
expect variables A(0), A(1), . . ., A(1000) in the program and that it
should set aside memory space for 1001 variables. Note that, in the
absence of furthur instructions from you, BASIC begins all subscripts
at 0. If you wish to use A(0), fine. If not, ignore it.

You need not use the variables defined by a DIM statement. For
example, in the case of the DIM statement above, you might actu-
ally use only the variables A(1), . . .,A(900). Don’t worry about it!
Just make sure you have defined enough variables. Otherwise you
could get an error message.

In the case of the subscripted variable above, your program
might call for the variable A(1001). This will create an error condi-
tion. Suppose that this variable is used first in line 570. When you
attempt to run the program, the computer will report

ERROR- 9 AT LINE 570

Moreover, execution of the program will be halted. To fix the
error, merely redo the DIM statement to accommodate the unde-
fined subscript.

To define the size of a two-dimensional array, use a DIM state-
ment of the form:

10 DIM A(5,4)

TEST YOUR UNDERSTANDING 1 (answers on
page 100)

Here is an array:

12 645.80
148 489.75
589 12.89
487 14.50

a. Define an appropriate subscripted variable to store this
data.
b. Define an appropriate DIM statement.

98

4 / Working With Data

It is possible to dimension several arrays with one DIM state-
ment. For example, the dimension statement

10 DIM A(1000),B(5),C(5,6)
defines the arrays
ACO),..., AC1000)

B(0),..., B(5)

c(,Jd>, 1=0,..., 5; J4=0,..., 6.

We know how to set aside memory space for the variables of an
array. We must now take up the problem of assigning values to
these variables. We could use individual LET statements, but with
1000 variables in an array, this could lead to an unmanageable
number of statements. There are more convenient methods which
make use of loops. The next two examples illustrate two of these
methods.

Example 1. Define an array A(J), J=1, 2,..., 1000 and assign the
following values to the variables of the array:

AC(1)=2, A(2)=4, A(3)=6, A(4)=8,...

Solution. We wish to assign each variable a value equal to twice
its subscript. That is, we wish to assign A(J) the value 2*]. To do
this we use a loop:

10 DIM AC1000)

20 FOR J=1 TO 1000
30 AQJ)=2%)

40 NEXT J

50 END

Note that the program ignores the variable A(0). Like any variable
which has not been assigned a value, it has the value 0.

TEST YOUR UNDERSTANDING 2 (answer on
page 100)

Write a program that assigns the variables A(0),..., A(30)
the values A(0)=0, A(1)=1, A(2)=4, A(3)=9, ...

When the computer is first turned on, all variables (including
those in arrays) are cleared. All numeric variables are set equal to
0, and all string variables are set equal to the null string (the string

4.1 Working With Tabular Data 99

with no characters in it). This also occurs if you type NEW or
RUN. If you wish to return all variables to this state during the
execution of a program, use the command CLR.

For example, when the computer encounters the command

570 CLR

it will reset ALL the existing variables. Be aware that CLR will also
undimension all arrays and string variables. If you wish to reuse
an array or string variable after giving the CLR command, you
must redimension it. The CLR command can be convenient if, for
example, you wish to use the same array to store two different sets
of information at two different stages of the program. After the
first use of the array, you could prepare for the use of the second
by using a CLR command.

Exercises (answers on page 256)

For each of the tables in Exercises 1-4, define an appropriate
array and determine the appropriate DIM statement.

1. 5

2
1.7
4.9
11
2. 1.

1.

- —

3. 123

4. 575.00
249.78
174.98
348.70

5. Write a program to display the following array on the
screen. Use an array to store the numbers in the table. Use a
loop with a READ statement mentioned on page 100 to
store the numbers in the array.

Dates Store Store Store

#1 #2 #3
1/1-1/10 57,385.48 62,205.34 38,464.34
1/11-1/20 39,486.98 62,238.24 34,256.32

1/21-1/30 45,467.21 62,211.64 37,973.38

100

4 / Working With Data

6. Write a program that displays the array of Exercise 5 along
with totals of the receipts from each store.

and 2

ANSWERS TO TEST YOUR UNDERSTANDINGS 1

a. A1), I1=1,2,3,4,J =1,2

b. DIM A(4,2)

10 DIM A(30)

20 FOR J=0 710 30
30 LET A(J)=Jr2
40 NEXT J

50 END

4 .2 Inputting Data

In the preceding section we introduced arrays and discussed
several methods for assigning values to the variables in an array.
These methods can be tedious for large arrays. Fortunately,
ATARI BASIC provides us an alternate method for inputting
data.

A given program may need many different pieces of data. You
may store the data needed in one or more DATA statements. Here

is an example of a data statement:

10 DATA 3.457, 2.588, 11234, WINGSPAN

Notice that this data statement consists of four data items: three
numbers and one string. The items are separated by commas. You
may include as many data items in a single DATA statement as
the line allows. Moreover, you may include any number of DATA
statements in a program and they may be placed anywhere in the
program, although a common placement is at the end of the pro-
gram. Notice we did not enclose the string WINGSPAN in quota-
tion marks. If we had, the quotation marks would become part of
the string.

DATA statements may be used to assign values to variables
and, in particular, to variables in arrays. To do this, you use
one or more READ statements in conjunction with the DATA
statements. For example, suppose the above DATA statement
appeared in a program. Further, suppose you wish to assign the
values

4.2 Inputting Data 101

A=3.457, B=2.588, C=11234, Z$="WINGSPAN"

This can be accomplished with the READ statement

100 READ A, B, C, 1%

(In the above example, Z$ must be dimensioned.) On encounter-

ing a READ statement, the computer will look for a DATA state-
ment. It will then assign values to the variables in the READ
statement by taking the values, in order, from the DATA state-
ment. If there is insufficient data in the first DATA statement, the
computer will continue to assign values, using the data in the next
DATA statement. If necessary, the computer will proceed to the
third DATA statement, and so forth. If the computer runs out of
data in DATA statements, it will return an error if it encounters
another READ statement.

TEST YOUR UNDERSTANDING 1 (answer on
page 107)

Assign the following values using READ and DATA state-
ments: A(1)=5.1, A(2)=4.7, A(3)=5.8, A(4)=3.2, A(5)="7.9,
A(6)=6.9. (Don't forget the DIM statement.)

The computer maintains an internal pointer which points to the
next DATA item to be used. If the computer encounters a second
READ statement, it will start reading where it left off. For exam-
ple, suppose that instead of the above READ statement, we use the
two read statements

100 READ A, B
200 READ C, 1%

Upon encountering the first statement, the computer will look for
the location of the pointer. Initially, it will point to the first item in
the first DATA statement. The computer will assign the values
A=3.457 and B=2.588. The position of the pointer will be
advanced to the third item in the DATA statement. Upon encoun-
tering the next READ statement, the computer will assign values
beginning with the one designated by the pointer, namely
C=11234 and Z$="WINGSPAN".

102

4 / Working With Data

10
20
30
40
50

TEST YOUR UNDERSTANDING 2 (answer on
page 107)

What values are assigned to A and B$ by the following
program?

DIM C$(6),B$(4)

DATA 10, 30, ENGINE, DOOR
READ A,B

READ C$,B$

END

The following example illustrates the use of the READ and
DATA statements in assigning values to a variable.

Example 1. Suppose the monthly electricity costs of a certain
family are as follows:

Jan. $89.74 Feb. $95.84 March $79.42
Apr. 78.93 May 72.11 June 115.94
July 158.92 Aug. 164.38 Sep. 105.98
Oct. 90.44 Nov. 89.15 Dec. 93.97

Write a program that calculates the average monthly cost of
electricity.

Solution. Let us unceremoniously dump all of the numbers
shown above into DATA statements at the end of the program.
Arbitrarily, let’s start the DATA statements at line 1000. This
allows us plenty of room. To calculate the average monthly cost,
we must add up all the monthly costs to get the total cost and
divide the total by 12. To do this, let us use T as a variable to
represent the total. Initially, T will be 0 and we will add on the
monthly costs one at a time. We do this with a loop and a READ
statement. Then we divide by 12 and print the answer. Here is the
program:

10 FOR J=1 T0 12

20 READ C
30 LET T=T+C
40 NEXT J

50 LET A=T/12:REM -Compute average-

60 PRINT "THE AVERAGE MONTHLY COST OF
ELECTRICITY IS $'";A

70 END

4.2 Inputting Data 103

1000 DATA 89.74, 95.84, 79.42, 78.93, 72.11,
115.94

1010 DATA 158.92, 164.38, 105.98, 90.44,
89.15, 93.97

You may ask why you should write such a complicated program
to find the average of twelve numbers. The point is that by chang-
ing the numbers in the DATA statements, you can find the aver-
age cost for a different year or for a different consumer. The
program could be used over and over.

NOTE: You may not use commas in a string with a DATA
statement. The computer will interpret the comma as the divid-
ing point of two data entries. For example, this DATA state-
ment will be interpreted as having two strings instead of one:

1000 DATA HELLO, ARTHUR

Restoring Data

In certain applications, you may wish to read the same DATA
statements more than once. To do this you must reset the pointer
with the RESTORE statement. For example, consider the following
program:

10 READ A,B

20 RESTORE

30 READ C,D

40 END

50 DATA 2.3, 5.7, 4.5, 7.3

Line 10 sets A equal to 2.3 and B equal to 5.7. The RESTORE state-
ment of line 20 moves the pointer back to the first item of data, 2.3.
The READ statement in line 30 then sets C equal to 2.3 and D equal
to 5.7. Note that without the RESTORE in line 20, the READ state-
ment in line 30 would set C equal to 4.5 and D equal to 7.3.

It is also possible to restore just one line of data in a series of
DATA statements. All you have to do is write the number of the
line with the DATA statement to restore right after the RESTORE
statement. Here is an example:

10 READ A, B, C, D
20 RESTORE 1010
30 READ E, F, G
40 RESTORE 1000

104

4 / Working With Data

50 READ H, I, J
60 END

1000 DATA 10, 40, 27
1010 DATA 23, 47, 25

This program sets A=10, B=40, C= 27, D=23, E=23, F=47,
G=25 H=10. =40, J=27

Example 2. A small business has five employees. Here are their
names and hourly wages:

Name Hourly Wage
1. Julie Axler 7.75
2. Susan Greer 8.50
3. Chico Lee 8.50

4. Aseem Topez 6.00
5. Raul Polanski 6.00

Write a program that accepts as input the hours worked for the
current week and calculates the current gross pay along with the
amount of Social Security tax to be withheld from each
employee’s pay. Assume that the Social Security tax amounts to
6.7 percent of gross pay.

Solution. The individual employees will be represented by J,
which will assume the values 1, 2, 3, 4, 5. By means of a loop, their
names will be read one at a time by a READ statement. When
each name is read, the number of hours worked, H(J), will be
entered by an INPUT statement. Since ATARI BASIC does not
allow for inputting subscripted variables, for each employee, rep-
resented by J, we will input H and then let H(J)=H. We will use a
loop to make the computations for each employee and print out
each employee’s name, along with his or her gross wages (G) and
Social Security tax (S). The gross wages equal the number of hours
worked times the hourly wage rate, and the Social Security tax
equals .067 times the gross wages. It will be necessary to read the
names twice, so we will use the RESTORE statement. Here is the
program:

10 DIM N$(15), H(5)
20 FOR J=1 TO 5

30 READ N$, W

40 PRINT "CURRENT HOURS OF "; NS$;
50 INPUT H

60 LET H(J)=H

70 NEXT J

4.2 Inputting Data 105

100 PRINT "EMPLOYEE","GR. WAGES",
""SOC.SEC.TAX"
110 RESTORE

120 FOR J=1 T0 5
130 READ N$, W

140 LET G=H(J)*W

150 LET $=.067*G

160 PRINT N$, G, S

170 NEXT J

180 END

1000 DATA JULIE AXLER, 7.75, SUSAN GREER,
8.50, CHICO LEE, 8.50

1010 DATA ASEEM TOPEZ, 6.00, RAUL POLANSKI,
6.00

Notice that in line 30 we read both N$ and W, but used only N$
(in line 40). The reason is that in line 130 we needed to read both
N$ and W, which made it necessary to arrange the data as we did
in the DATA statements at the end of the program, with names
alternated with hourly wage rates.

Common Errors

There are two common errors in using READ and DATA state-
ments. First, you may instruct the program to READ more data
than is present in the DATA statements. For example, consider the
following program:

10 DIM A(5)

20 FOR J=1 T0 5

30 READ A:LET A(J)=A
40 NEXT J

50 END

60 DATA 1,2,3,4

This program attempts to read five pieces of data, but the DATA
statement only has four. In this case, you will receive an error
number 6.

A second common error is attempting to assign a string value to
an array (like A$(J) for] = 1, 2, 3, 4, 5). Such an array is not
permitted by ATARI BASIC.

Exercises (answers on page 257)

Each of the programs in Exercises 1-6 assigns values to the vari-
ables of an array. Determine which values are assigned.

106

4 / Working With Data

1.

10 DIM A(10)

20 FOR J=1 TO 10

30 READ A:A(J)=A

40 NEXT J

50 DATA 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
100 END

10 DIM A(3), B(3)

20 FOR J=0 70 3

30 READ A,B:A(J)=A:B(J)=B

40 NEXT J

50 END

60 DATA 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7,

10
20
30
40
50
60
70
80
90

10
20
30
40
50
60
70
80

10
20
30
40
50
60
70

80

10
20

8.8, 9.9

DIM A(3), B(3)
FOR J=0 T0 3
READ A:A(J)=A
NEXT J
FOR J=0 T0 3
READ B:B(J)=B
NEXT J
DATA 1, 2, 3, 4, 5, 6, 7, 8
END

DIM AC3), B(3)

READ A,B:A(0)=A:B(0)=B

READ A,B:A(1)=A:B(1)=B
RESTORE

READ A,B:A(2)=A:B(2)=B

READ A,B:A(3)=A:B(3)=B

DATA 1, 2, 3, 4, 5, 6, 7, 8
END

DIM A(3,4)
FOR I=1 T0 3

FOR J=1 TO 4

READ A:A(I,J)=A

NEXT J
NEXT I
DATA 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11,
12
END

DIM A(3,4)
FOR J=1 TO 4

4.2 Inputting Data 107

30 FOR I=1 T0 3

40 READ A:A(I,J)=A

50 NEXT I

60 NEXT J

70 DATA 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11,
12

80 END

Each of the programs in Exercises 7-10 contains an error. Find it.

7. 10 DIM A(5)
20 FOR J=1 TO 5
30 READ A:A(J)=A
40 NEXT J
50 DATA 1, 2, 3, 4
60 END

8. 10 DIM A(5)
20 FOR J=1 TO 4
30 READ A:A(J)=A
40 NEXT J
50 DATA 1, A, 2, B
60 END

9. 10 DIM A$(10)
20 READ A,AS$
30 PRINT AS$,A
40 DATA AVERAGE,79
50 END

10. 10 DIM A$(10),B$(10),C$(10),0$¢10)
20 READ A$,BS$,C$,D$
30 PRINT BS$,D$
40 DATA AVERAGE, HIGH SCORE, LOW SCORE

ANSWERS TO TEST YOUR UNDERSTANDINGS 1
and 2

1: 10 DIM AC6):FOR J=1 TO 6
20 READ A:A(J)=A
30 NEXT J
40 DATA 5.1, 4.7, 5.8, 3.2, 7.9, 6.9
50 END

2: A=10, B$="DOOR"

108 4 / Working With Data

4.3 Generating Data at Random

One of the most interesting and useful features of your com-
puter is its ability to generate events whose outcomes are random.
For example, you may instruct the computer to “throw a pair of
dice” and produce a random pair of integers between 1 and 6. You
may instruct the computer to “pick a card at random from a deck
of 52 cards.” You may also program the computer to choose a
two-digit number “at random.”

The source of all such random choices is the random number
generator. We will begin by explaining what the random number
generator is and how to access it. We will then give a number of
interesting applications involving computer-assisted instruction
and games of chance.

You may generate random numbers using the ATARI BASIC
function RND. To explain how this function works, let us consider
the following program:

10 FOR X=1 TO 500
20 PRINT RNDCO)
30 NEXT X

40 END

This program consists of a loop which prints 500 numbers, each
obtained by RND(0). Each of these numbers is greater than or
equal to O, but less than 1, that is,

0 <= RND(0) < 1

Each time RND(0) is called (as in line 20 in the preceding pro-
gram), the computer makes a “random” choice from among the
numbers in the indicated range, so it is extremely unlikely that any
two of the 500 numbers printed by the above program would be
the same. Notice we used 0 in RND(0). We could replace 0 by any
other positive number. However, some number (or numeric
expression, like A) must appear inside the parentheses.

To obtain a better idea of what we are talking about, you should
generate some random numbers using a program like the one
above. Unless you have a printer, 500 numbers will be too many
for you to look at in one viewing. The following program will gen-
erate 30 random numbers, two on each line:

10 FOR J=1 T0 15

20 FOR K=1 T0 2
30 PRINT RND(O),
40 NEXT K

4.3 Generating Data at Random 109

50 PRINT:REM -Skip to the next line-
60 NEXT J
70 END

What makes these numbers “random” is that the procedure the
computer uses to select them is “unbiased,” with all numbers hav-
ing the same likelihood of selection. Moreover, if you generate a
large collection of random numbers, numbers between 0 and .1
will comprise approximately 10 percent of those chosen, those
between .5 and 1 will comprise approximately 50 percent of those
chosen, and so forth. In this sense, the random number generator
provides a uniform sample of the numbers between 0 and 1.

TEST YOUR UNDERSTANDING 1 (answer on
page 115)

Assume that RND is used to generate 1000 numbers.
Approximately how many of these numbers would you
expect to lie between .6 and .9?

The function RND generates random numbers lying between 0O
and 1. In many applications, we will require randomly chosen
integers lying in a certain range. To obtain them, you may treat the
output of the random number generator as you would any other
number. In particular, you may perform arithmetic operations on
the random numbers generated.

Suppose we wish to generate random integers chosen from
among 1, 2, 3, 4, 5, 6. Let us multiply RND(0) by 6, to obtain
6*RND(0). This is a random number between 0 and 6 (not includ-
ing 6). Next, let us add 1 to this number, getting 6*RND(0)+1, a
random number between 1 and 7. To obtain integers from among
1, 2, 3, 4, 5, 6, we must “chop off” the decimal portion of the
number 6*RND(0)+ 1. To do this, we use the INT function. If X is
any number, then INT(X) is the largest integer less than or equal to
X. For example,

INT(5.23)=5, INT(7.99)=7, INT(100.001)>=100

For a positive number X, INT(X) is just the number you would get
by chopping off X at the decimal point, as in the above examples.
Be careful in using INT with negative X. The definition we gave is
correct, but unless you think things through, it is easy to make an
error. For example:

INT(-7.4) = -8

110

4 / Working With Data

since the largest integer less than or equal to -7.4 is equal to -8.
(Draw -7.4 and -8 on a number line to see the point!)

Let us get back to our random numbers. To chop off the decimal
portion of 6*RND(0)+1, we compute INT(6*RND(0)+1). This
last expression is a random number from among 1, 2, 3, 4, 5, 6.
Similarly, the expression

INTC100*RNDC0)+1)

may be used to generate random numbers from among the inte-
gers 1,2, 3, .., 100.

occur?

TEST YOUR UNDERSTANDING 2 (answer on
page 115)

Generate O or 1 at random. (This is the computer analogue
of flipping a coin: 0 = heads, 1 = tails.) Run this program to
generate 50 coin tosses. How many heads and how many tails

Example 1. Write a program which turns the computer into a
pair of dice. Your program should report the two numbers rolled
on each roll as well as the sum of the two numbers.

Solution. We will hold the value of die #1 in the variable X
and the value of die #2 in variable Y. The program will generate
values for X and Y at random, and print out the values and the
total X+Y.

10 DIM A$(1), B$(1)

20 GRAPHICS 0: REM -Clears screen-

30 LET X=INTC6*RND(O)+1)

40 LET Y=INT(6*RNDCO)+1)

50 PRINT "LADIES AND GENTLEMEN, BETS
PLEASE!"

60 PRINT "ARE ALL BETS DOWNCY/N)";

70 INPUT AS

80 1IF A$="N" THEN 50

100 PRINT "THE ROLL IS "X, Y

110 PRINT "THE WINNING TOTAL IS ";X+Y

120 PRINT "PLAY AGAINCY/N)";

130 INPUT B$

140 IF B$="Y" THEN 20

200 PRINT "THE CASINO IS CLOSING. SORRY!"

210 END

4.3 Generating Data at Random 111

Note the use of computer-generated conversation on the screen.
Note also how the program uses lines 120-140 to allow the player
to control how many times the game will be played.

TEST YOUR UNDERSTANDING 3 (answer on
page 115)

Write a program which flips a “biased coin.” Let it report
“heads” one-third of the time and tails two-thirds of the

time.

You may enhance the realism of a gambling program by letting
the computer keep track of bets as in the following example.

Example 2. Write a program which turns the computer into a
roulette wheel. Let the computer keep track of bets and winnings.
For simplicity, assume that the only bets are on single numbers,

Solution. A roulette wheel has 38 positions: 1-36, 0, and 00. In
our program, we will represent these as the numbers 1-38, with 37
corresponding to 0 and 38 corresponding to 00. A spin of the
wheel will consist of choosing a random integer between 1 and 38.
The program will start by asking the number of players. For a typ-
ical spin of the wheel, the program will ask for bets by each
player. A bet will consist of a number (1-38) and an amount bet.
The wheel will then spin. The program will determine the winners
and losers. A payoff for a win is 32 times the amount bet. The
amount of a loss is the amount bet. Each player has an account,
stored in an array A(J),] = 1, 2, 3, ... # of players. At the end of
each spin, the accounts are adjusted and displayed. Just as in
Example 1, the program asks if another play is desired. Here is the
program:

10 PRINT "NUMBER OF PLAYERS";

20 INPUT N

30 DIM ACN), B(N), C(N), R$(1)

40 FOR J=1 TO N:REM -Initial Purchase of
Chips-

50 PRINT "PLAYER ";J

60 PRINT "HOW MANY CHIPS";

70 INPUT A:AC(J)=A

80 NEXT J

100 PRINT "LADIES AND GENTLEMEN! PLACE YOUR
BETS PLEASE!"

112

4 / Working With Data

110 FOR J=1 TO N:REM -Place Bets-

120 PRINT "PLAYER ";J

130 PRINT "NUMBER, AMOUNT"';

140 INPUT B,C:B(J)=B:C(J)=C

150 NEXT J

200 LET X=INT(38*RND(0)+1):REM -Spin the
wheel-

210 PRINT "THE WINNER IS NUMBER "X

300 REM -Compute winnings and lLosses-

310 FOR J=1 TO N

340 IF X=B(J) THEN 400

350 PRINT "PLAYER ";J;" LOSES."

360 LET AC(J)=A(J)I-C(J):REM -Subtract amount

lost
370 GOTO 420
400 PRINT "PLAYER '";J;" WINS ";32%C(J);

" DOLLARS"

410 LET ACJ)=ACJ)I+32*C(J):REM -Add
winnings-

420 NEXT J

430 PRINT "PLAYER BANKROLLS'":REM -Display
game status-

440 PRINT

450 PRINT "PLAYER', "CHIPS"

460 FOR J=1 TO N

470 PRINT J, AQJ)

480 NEXT J

500 PRINT "DO YOU WISH TO PLAY AGAINCY/N)";

510 INPUT R$

520 GRAPHICS 0:REM -Clears screen-

530 IF R$="Y" THEN 100:REM -Repeat game-

540 PRINT "THE CASINO IS CLOSED. SORRY!"

600 END

You should try a few spins of the wheel. The program is fun as
well as instructive. Notice that the program lets you bet more
chips than you have. In the exercises we will ask you to add in a
test that checks whether there are enough chips to cover the bet.
You could also build lines of credit into the game!

Notice we left a gap in the line numbering from 310 to 340. The
reason is that the roulette program may be extended to incorpo-
rate the bets EVEN and ODD. If a player bets even, the player
wins if the wheel stops at an even number between 2 and 36. Simi-
larly, if a player bets odd, the player wins if the wheel stops at an
odd number between 1 and 35. In either of these cases, a winning
player wins the amount of his or her bet. We can easily extend the

4.3 Generating Data at Random 113

roulette program to allow for even and odd bets. We only have to
incorporate a way to make such a bet and a way to compute the
winnings and losses for them. Let’s handle the first problem by
letting 39 stand for an odd bet and 40 an even bet. To make these
choices clear let’s add the line

90 LET ODD=39:LET EVEN=40

Thus player] bets odd if B(J)=ODD and player] bets even if
B(J)=EVEN. Now we only have to take care of the winnings and
losses for even and odd bets. To do this we will put in lines 320
and 330 (in the gap we left) to check for even and odd bets. When
one is discovered, the computer will branch to line 1000 or 2000 to
compute the winnings and losses, after which the computer will
return to line 420 and go on to the next player. Notice that a player
betting odd will lose if X =37 (corresponding to 0), if X = 38 (corre-
sponding to 00), or if X is even. A player betting even will lose if
X=37, if X=238, or if X is odd. How can we test whether X is even
or odd? If X is even, then X/2 is an integer, so that INT(X/2)=X/2.
But if X is odd, then X/2 is not an integer, so that INT(X/2)<<X/2.
Now we have everything we need for the program. Here are the
lines we add to the previous roulette program:

90 LET ODD=39:LET EVEN=40

320 1IF B(J)=0DD THEN 1000

330 IF B(J)=EVEN THEN 2000

1000 IF INT(X/2)=X/2 OR X=37 OR X=38 THEN
1500:REM -In these cases player J
loses.-

1010 PRINT "PLAYER ";J;" WINS ";
C(J);" DOLLARS"

1020 LET ACJ)I=ACJI+CCYI)

1030 GOTO 420

1500 PRINT "PLAYER ";J;'" LOSES ";
C(J);" DOLLARS"

1510 LET AC(J)=ACJ)-CCJ)

1520 GOTO 420

2000 IF INT(X/2)<X/2 OR X=37 OR X=38 THEN
1500:REM -In these cases player J
loses.-

2010 GOTO 1010

Exercises (answers on page 258)

In Exercises 1-8, write an expression involving RND that gener-
ates random numbers of the given type.

114 4 / Working With Data

Numbers from 0 to 100.

Numbers from 100 to 101.

Integers from 1 to 50.

Integers from 4 to 80.

Even integers from 2 to 50.

Numbers from 50 to 100.

Integers divisible by 3 from 3 to 27.

Integers from among 4, 7, 10, 13, 16, 19, and 22.

Modify the dice program so it keeps track of payoffs and
bankrolls, much like the roulette program in Example 2.
Here are the payoffs on a bet of one dollar for the various

LN W

bets:

OUTCOME PAYOFF
2 35

3 17

4 11

5 8

6 6.20
7 5

8 6.20
9 8

10 11
11 17
12 35

10. Modify the roulette program of Example 2 to check that a
player has enough chips to cover the bet.

11. Modify the roulette program of Example 2 to allow for a
$100 line of credit for each player.

12. Construct a program which tests one-digit arithmetic facts,
with the problems randomly chosen by the computer.

13. Make up a list of ten names. Write a program which will
pick four of the names at random. (This is a way of impar-
tially assigning a nasty task!)

4.3 Generating Data at Random 115

ANSWERS TO TEST YOUR UNDERSTANDINGS 1,
2,and 3

1: 30% (or 300)

2: 10 FOR J=1 to 50
20 PRINT INT(2*RND(0))
30 NEXT J
40 END

3: 10 LET X=INT(3*RND(O)):REM X will be
0, 1, or 2.
20 IF X=0 THEN PRINT "HEADS":GOTO 40
30 PRINT "TAILS"
40 END

Using Peripherals

5.1 The Cassette Recorder

In this chapter we will explain how to use the cassette recorder,
the disk drive, and the printer. We will also talk about the modem.

The cassette recorder (also called tape recorder or program
recorder) allows you to save data (such as programs) on a standard
audio cassette (sometimes called a tape). See Figure 5-1 for pic-
tures of a cassette recorder and a cassette.

At this point, we suggest you plug the cassette recorder into the
computer. On the 400 and 800, plug it in on the right side of the
computer. On the 600XL, 800XL, and 1200XL, plug it into the back
of the computer. For more specific details, refer to the manual for
the cassette recorder. Once you have the recorder plugged in your
computer, plug the power cord of the cassette recorder into a
power receptacle.

Since we will actually be saving and retrieving programs, we
suggest you get a blank cassette and insert it into the program
recorder. You can use a cassette which already has recordings on
it, but the more interference (music, static, and so forth) there is on
the cassette, the less chance you have of getting your data back
after you save it.

Rewind the cassette and press the counter button to reset the
counter to 0. This counter helps you keep track of where your
program is. On most cassettes, there is a blank portion at the
beginning of the tape, called the leader, where nothing can be
recorded. Be sure to advance the tape beyond the leader to ensure
that your data will be recorded. Usually, advancing the tape until
the counter reaches 5 will be sufficient.

Before we can save a program, we must type one in. For pur-
poses of illustration we will use this program:

10 PRINT "HELLO"

20 PRINT "NICE DAY, ISN'T IT?"
30 6oTO 10

40 END

117

118

5 / Using Peripherals

Figure 5-1. A cassette recorder and a standard audio cassette.

Type in the program. After you have typed all the lines, type
LPRINT

If you do not have a printer attached, you will get an error number
138. Ignore this error message. We are about to save the program
on cassette and LPRINT will increase the chances for a good save.
Therefore, we recommend you always use the LPRINT command
before saving a program on cassette. Now, type

CSAVE

and hit RETURN. The computer or TV should beep twice. This
tells you the computer is ready to save your program. Press the

5.1 The Cassette Recorder 119

PLAY and RECORD buttons on your cassette recorder simultane-
ously. They should stay depressed. Now hit RETURN again. The
cassette recorder should start turning and you should hear strange
sounds coming from your TV set. After a little while, the cassette
should stop spinning and the noise will stop. This means the com-

puter is finished saving,

We will now try to load the program back into the computer
from the cassette. Type NEW to erase the memory of your com-
puter. Rewind the cassette until the counter returns to the value of
the starting point of the program, in this case 5. Now type

CLOAD

and hit RETURN. The computer should beep at you once. This
means the computer is ready to load the program from the cas-
sette. Press PLAY on the cassette recorder and hit RETURN. The
computer should be making strange noises as it did when you
were saving. After a few seconds, the READY prompt should
appear and the program should be in memory.

To verify this, type LIST and hit RETURN. If you got an error
while loading, try typing the sample program in again, saving it,
and loading it back again. The cassette recorder is not very relia-
ble, so it is a good idea to save a program on two different places
on the cassette. This will increase the chances of getting your pro-
gram back.

There are other ways of saving and loading a program from cas-
sette. These commands are used to save:

CSAVE
LIST "C:"

These commands are used to load:

CLOAD
ENTER "C:"
RUN "C:"

Programs saved with the CSAVE command can be loaded either
with the CLOAD command or with the RUN “C:” command. The
RUN “C:” command instructs the computer to run the program
immediately after it has been loaded. To see this in operation, type
NEW, rewind the cassette, and type the following;:

RUN "C:"

The program should have loaded into memory and started run-
ning immediately.

We will now explain how to merge separate programs together
to form one large program. Type in the following program:

120 5 / Using Peripherals

30 PRINT

40 PRINT "THIS IS THE END OF THIS PROGRAM"
50 END

Next save this program on the cassette, but use the LIST “C.”
command, not the CSAVE command. The LIST “C:” command is
different from the LIST command you use for listing programs on
the screen. It saves your program on the cassette in a way that
allows you to merge it with another program. To save the pro-
gram, advance the cassette counter to 20, and type the following:

LIST "C:"

Now, type NEW and load the first program into the computer. List
the program to make sure you loaded the right one. Now, advance
the cassette to 20 again and type

ENTER "C:"

This will merge the second program with the first. List the program
and behold the finished product! Notice that line 30 of the first pro-
gram was replaced by line 30 of the second program. This is because
the second program has “priority” over the first program. You could
now merge a third program if there were another one saved on the
cassette by LIST “C.”. Here are the steps for merging any two
programs:

1. Type in the first program.

Save it on cassette.

Type NEW.

Type in the second program.

Save it at a different place on the cassette, using LIST “C:"”.
Load the first program into the computer.

Load the second program into the computer, using ENTER
/IC:II.

NSO pwN

Since the computer deletes any program already in memory when
you CLOAD another program, you need not type NEW between
steps 5 and 6 above. Remember, the ENTER “C:” statement adds a
program onto the one in memory. Now you know how to store
any program on cassette which you might want to keep.

5.2 The Disk Drive

The disk drive (sometimes called the diskette drive) allows you
to save data (such as programs) on a disk (sometimes called a
diskette). See Figure 5-2 for pictures of a disk drive and a disk.

5.2 The Disk Drive 121

At this point, we suggest you plug the disk drive into the com-
puter, while everything is turned off. On the 400 and 800, plug the
disk drive in on the right side of the computer. On the 600XL, 800XL,
and 1200XL, plug it in on the back of the computer. For more specific
details, refer to the manual for the disk drive. If you have more
peripherals (such as a printer or modem) the method of connection
may differ. Once you have the disk drive connected to the computer,
plug the power pack of the disk drive into a power receptacle.

Since we will actually be saving programs, we suggest you have
a disk handy while reading this section. Also, make sure you have
an ATARI master diskette. Before the computer can access the
disk drive, it must have the disk operating system (DOS) loaded
into it. DOS has been recorded on the master diskette.

Now let’s get started. Turn on the disk drive with no disk
inserted. After the BUSY light goes off, insert the master diskette
into the disk drive. Remember to close the door to the disk drive
after you put anything in or take anything out of the disk drive.
This prevents dust from collecting inside the disk drive.

Figure 5-2. A disk drive and a disk.

122

5 / Using Peripherals

Turn on the computer with the BASIC cartridge inserted if you
have an ATARI 400, 800, or 1200XL. The disk should spin, the BUSY
light should light up, and you should hear beeping sounds coming
from your TV. This means the computer is retrieving information
from the disk drive. The computer is now loading DOS. After a few
seconds, the READY prompt should appear. Type

DOS

and hit RETURN. The disk should spin again and a selection
menu should appear on the screen. It should look something like
this:

DISK OPERATING SYSTEM II VERSION 2S
COPYRIGHT 1980 ATARI

A. DISK DIRECTORY I. FORMAT DISK

B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE

D. DELETE FILE(S) L. BINARY LOAD

E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SAV
G. UNLOCK FILE 0. DUPLICATE FILE
H. WRITE DOS FILES

SELECT ITEM OR FOR MENU

Newer or older versions may differ slightly, but it should be gen-
erally the same. We will not explain all the options in detail here,
but we will tell you a little about what they are for. A disk cannot
be used unless it is formatted. This prepares the disk for use.

WARNING: Formatting a disk erases any data stored on it.
Be sure it does not contain any program you wish to keep.
Don’t format your master diskette. It is already formatted.

To format your disk, insert it into the disk drive, type the letter
I, and hit RETURN. The computer should respond with

WHICH DRIVE TO FORMAT?
At this time, hit 1. (If you have more than one disk drive, type the

number of the drive that contains the disk to be formatted.) This
tells the computer you want it to format the disk in drive one.

5.2 The Disk Drive 123

Once you hit RETURN, the computer should display something
like

TYPE "Y" TO FORMAT DISK 1

This is a precautionary step to avoid accidental formatting and to
allow you to change your mind about formatting a disk. If you
type N and hit RETURN, the formatting process will be aborted. If
you type Y and hit RETURN, your disk will start spinning and the
computer will format your disk. After it is finished formatting the
disk, the computer will print

SELECT ITEM OR FOR MENU

on the screen. Now the disk is ready for you to write information
on it.

The first information you might like to put on your disk is a copy
of DOS. The advantage of having DOS on the disk is that you will
not have to use the master diskette every time you want to use your
disk. Whenever you put your disk into the drive and turn on the
computer, DOS will automatically load into the computer’s memory.
Now, hit RETURN. The screen will clear and the DOS menu will be
printed on the screen. To write DOS files on your disk, type H and
hit RETURN. The computer should respond:

DRIVE TO WRITE DOS FILES TO?

When you type 1, the disk will spin and the computer will write
DOS on your disk. Now hit RETURN to get the DOS menu back
on the screen.

To verify that DOS has been put on your disk, type A and hit
RETURN twice. This prints out a directory of all the programs on
the disk. It also will print out how long each program is in sectors.
A sector is a part of the disk. Each sector can hold a set amount of
information. At the bottom of the list of programs, the computer
will tell you how many free sectors are left on the disk. After you
have finished looking at the list, hit RETURN. You should see the
DOS menu printed out again. Type B for RUN CARTRIDGE and
hit RETURN. You should now be back in BASIC, and you should
see the READY prompt.

You are now ready to write a program and save it on the disk.
For purposes of illustration, we will use this program:

10 PRINT "HELLO"
20 PRINT "NICE DAY, ISN'T IT?"
30 END

Type in the program. Then type

124

5 / Using Peripherals

SAVE "D1:HELLO"

and hit RETURN. The disk will spin and you should hear beeping
sounds from your TV set or monitor. The above command tells
the computer you want to save your program on the disk in drive
1 under the name HELLO. If you want to save or load a program
from drive 1, you need not type D1, merely D. This is a shortcut
which is commonly used. You could have substituted other names
for HELLO, but you must follow certain rules:

1. The name can be up to 8 characters long, plus an optional
three-character extender, which you separate from the main
part of the name with a period (.). Here are some examples:

HELLO

Qb1

A1B2
TELETYPE.DAT
TELETYPE.BAS

2. The name must follow the same rules as a variable. To see
these rules, review Section 2.4.

We will now try to load the program back into the computer
from the disk. Type NEW to delete the program you have in
memory. Type LIST to check if there is a program in memory or
not. Now type

LOAD "D:HELLO"

and hit RETURN. You should hear beeping noises as you did
before and almost immediately the program will be loaded into
the computer from the disk. Try typing LIST to verify this.

There are other ways of saving and loading a program from
disk. These commands are used to save:

SAVE "D:<FILENAME>.<EXTENDER>"
LIST "D:<FILENAME>.<EXTENDER>"

These commands are used to load:

LOAD "D:<FILENAME>.<EXTENDER>"
ENTER "D:<FILENAME>.<EXTENDER>"
RUN "D:<FILENAME>.<EXTENDER>"

Programs saved on disk with the SAVE command can be loaded
either with the LOAD command or the RUN command. The RUN
command used with the disk drive instructs the computer to run a
program immediately after loading it. To see this in operation,
type NEW and then type the following:

5.2 The Disk Drive 125

RUN "D1:HELLO"

The HELLO program should have loaded into memory, and it
should have started running immediately.

We will now explain how to merge separate programs together
to form one large program. Type the following program in:

30 PRINT

40 PRINT "THIS IS THE END OF THIS PROGRAM"
50 END

Save this program on the disk, using the LIST command with the
form LIST “D:<FILENAME>.<EXTENDER>". This command
is different from the LIST command you use for listing programs
on the screen. It will save your program on the disk in a way
which allows you to merge it with another program. Here is what
you should type:

LIST "D:HELLO2"

Type NEW and load the first program (HELLO) in with the
command

LOAD '"D:HELLO"

Type LIST to make sure you loaded the right program. Now, type
ENTER "D:HELLO2"

This will merge the second program with the first. List the pro-
gram and behold the finished product! Notice line 30 of the first
program was replaced by line 30 of the second program. This is
because the second program has “priority”” over the first program.
We could now merge a third program if there were another one
stored on the disk. Here are the steps for merging any two
programs:

1. Type in the first program.

2. Save it on disk.

3. Type NEW.

4. Type in the second program.

5. Save the program on disk using the command
LIST “D:<FILENAME>.<EXTENDER>. Be sure to
save it with a different filename than the first program.
Load the first program into the computer.

7. Load the second program into the computer using the
ENTER command.

o

Since the computer deletes any program already in memory when
you load another program, you need not type NEW between steps

126 5 7 Using Peripherals

5 and 6 above. Remember, the ENTER command adds a program
onto the one in memory.

Now you know how to store on diskette any program which
you might like to keep. Always remember to start your system by
turning on the disk drive, inserting a disk with DOS on it, and
then turning on the computer with the BASIC cartridge inserted.

5.3 The Printer

We will not go into much detail about printers because there are
so many that can be used with ATARI computers. Many non-
ATARI printers require the ATARI 850 INTERFACE MODULE to
be used with ATARI computers. The method of connecting the
components of your system together depends upon what hardware
you own and what type of printer you have. If the manual doesn’t
explain how to connect the computer system together, just connect
it any way it will fit, and it will probably work out. After you have
your system connected, make sure you have all the components
plugged into a wall socket. When starting up the computer system,
remember to turn on the computer last.

You must use special commands to send information to the printer.
To have any kind of text printed by your printer, use the LPRINT
command. To see the effect of this command, type the following:

LPRINT "HELLO"
The printer should have printed HELLO on the printer paper. You

can use the LPRINT command in programs as well as in the direct
mode.

TEST YOUR UNDERSTANDING 1 (answer on page
127)

Write a program to have the printer print the following:
Dear COMPUTER INFORMATION magazine:

I am interested in having a year’s subscription of your
magazine. I understand the cost is $15.95 per year. My check
is enclosed.

Sincerely,
Mark Ellis

5.3 The Printer 127

Often you want a printed copy (or hardcopy) of a program. If
you want to list a program that is in memory onto the printer, type

LIST "P:"

and hit RETURN. Try listing this program onto the printer using
LIST “P:":

10 PRINT "HELLO"

20 FOR A=1 TO 5

30 PRINT "NICE DAY...ISN'T IT??7?"
40 NEXT A

50 END

Suppose you have a program that prints something on the screen,
but you would like to have it printed on the printer? If you type

POKE 838,166: POKE 839,238

any text that would normally be printed on the screen will be
printed on the printer. To “undo” this, simply type

POKE 838,244: POKE 839,241
Now, type in this program:

10 PRINT "LINE 10"

20 FOR A=1 T0 10

30 PRINT "LINE 30"

40 NEXT A

50 PRINT "LINE 50"
60 END

Run it and watch the screen. Now, add these lines to the program:

5 POKE 838,166: POKE 839,238
55 POKE 838,244: POKE 839,241

Run the program again, but this time watch the printer. Line 5
instructs the computer to send to the printer everything that would
normally be printed on the screen. Line 55 returns everything to
normal.

ANSWER TO TEST YOUR UNDERSTANDING 1

1:

10 LPRINT "Dear COMPUTER INFORMATION
magazine:"

20 LPRINT

30 LPRINT " I am interested in having
a year's subscription”

40 LPRINT "of your magazine. I
understand the cost is $15.95"

128 5 / Using Peripherals

50 LPRINT "per year. My check is
enclosed.”

60 LPRINT

70 LPRINT " Sincerely,"

80 LPRINT " Mark ELLis"

90 END

5.4 The Modem

A modem (short for modulator/ demodulator) makes it possible
for one computer to talk to another computer. The ATARI 830
modem can be used only if you have an ATARI 850 INTERFACE
MODULE. Many other modems are available for ATARI
computers.

Modems send special computer code over telephone lines. The
computer on the other end of the line can understand these codes,
and thus the computers “talk” to each other. Modems can be used
to swap programs, get stock market reports, or do anything having
to do with information exchange. You could even have a conversa-
tion with another person not by talking over the telephone line,
but by typing information on the keyboard. In fact, special bulle-
tin boards are set up so people can talk to each other, leave
messages for each other, swap programs, and so forth.

Modems can be difficult to program, so we suggest you buy a
telecommunications program for use with your modem. Such a
program is available in any good computer store. The manual with
the program should have proper instructions on how to use the
modem with the program.

Computer Graphics and
Text

6.1 Introduction

So far we have displayed only normal, small-sized text on the
screen. However, it is possible to display text in large letters and
even to draw pictures on the screen. In this chapter, we will learn
how to create such effects by using the various display modes
available on ATARI computers.

A display mode is any mode you can enter that lets you somehow
put something on the screen (such as text or pictures). You are
already familiar with one display mode, the one in effect when the
computer is first turned on, and in which you have small light letter-
ing on a blue background. In this chapter, we will explain the other
display modes. You will learn how to display many sizes of text in
various colors using certain display modes called text modes.

When you draw pictures, graphs, etc. on the screen, you are
using graphics. ATARI computers have some of the best graphics
capabilities of all home computers. You create graphics by causing
the computer to enter a graphics mode. There are several graphics
modes. Each one has its own advantages and disadvantages. Some
have more colors than others, some are capable of greater detail
than others, and some use less memory than others. We will not
discuss memory because you probably will not get into programs
which will “overflow” the memory.

Many ATARI computers have a special graphics chip called the
GTIA. It allows three additional graphics modes. All ATARI XL
computers and most 400s and 800s sold after January, 1982, have the
GTIA chip. We will show you how to find out whether your ATARI
has a GTIA chip when we discuss the special graphics modes. Here
is a list of all the display modes on the various computers:

ATARI 400 or 800 without GTIA
Graphics modes 3, 4, 5,6, 7, 8
Text modes 0, 1, 2

129

130

6 / Computer Graphics and Text

ATARI 400 or 800 with GTIA
Graphics modes 3, 4, 5,6, 7, 8, 9, 10, 11
Text modes 0, 1, 2

ATARI 600XL, 800XL, and 1200XL
Graphics modes 3, 4, 5, 6, 7, 8, 9,10, 11, 14, 15
Text modes 0, 1, 2, 12, 13

The Screen

Turn your computer on and observe the screen. Notice there is a
blue background surrounded by a black border. (On some TV
sets it may be difficult to distinguish the border from the back-
ground.) The READY prompt appears in light blue on top of the
background. It is part of the foreground, as would be any text or
graphics. Any picture that you draw on the screen in a graphics
mode would also be part of the foreground. The border, back-
ground, and foreground are different colors, which makes it possi-
ble for us to tell them apart. As we will explain later, it is possible
in most modes to control the color of the border, background, and
foreground in order to create various effects. In some modes, the
border must be the same color as the background. In effect, the
border has been eliminated in these modes.

Foreground display (text or graphics) can be placed anywhere
on the background. In all graphics modes, the background is
divided into small rectangles, each called a pixel (“picture ele-
ment”). In mode 8, for example, there are 320 columns and 160
rows of pixels. The columns are numbered from 0 to 319 and the
rows are numbered from 0 to 159. The other graphics modes have
different numbers of columns and rows.

In all text modes, each letter, number, or symbol on the screen
is called a character. In mode 0, for example, there are 40 columns
and 24 rows of characters. The columns are numbered from 0 to
39 and the rows are numbered from 0 to 23 (see Figure 6-1). The
other modes have different numbers of columns and rows,

Let us explain the method for referring to pixel and character
locations on the screen. In each mode, the columns are numbered
from left to right, starting with 0 on the left. The rows are num-
bered from top to bottom, starting with 0 at the top. (The number-
ing system for mode 0 is shown in Figure 6-1.) Since each pixel or
character lies in a column and a row, we can specify its location by
giving its column and row number.

SN RN R Ny)

n
12
13
14
15
16
7
18
19
20
2
2
23

6.2 Graphics Commands 131

0 123456 7 891011121314 15161718192 20222425262 28293031 32333353%38H

Figure 6-1. A grid illustrating the resolution of graphics mode 0.

The column number is usually called the X coordinate, and the
row number is usually called the Y coordinate. Together the col-
umn and row numbers are called the coordinates of the pixel or
character. The X coordinate (column number) is always given first.
For example, in mode 0 the character with coordinates 17,5 lies in
column number 17 and row number 5 (see Figure 6-2). However,
remember that the numbering of columns and rows begins with 0,
so column number 17 is actually the eighteenth column from the
left and row number 5 is the sixth row from the top. The more
columns or rows there are, the smaller the pixels or characters are.
The numbers of columns and rows determine the resolution of
the mode. For example, the resolution of mode 0 is 40 X 24.

6.2 Graphics Commands

Before we discuss the individual display modes, we will explain
the commands which control the display on the screen. The most
basic command is PRINT, which you already know. Other com-
mands choose the display mode, control color, draw lines on the

132

6 / Computer Graphics and Text

0123456 78Sll]ll12131415IE1718192[]21222324252527282930313233303536373839

@~ BN -

w

=

=

o

ES

&

&

=

&

]

=3

o

3

~N
1>

Figure 6-2. The coordinates of a character in mode 0.

screen, or serve some other purpose related to display. Let's look
at the commands one at a time.

GRAPHICS

In order to enter into any of the display modes, including text
modes, you must use the command

GRAPHICS X

where X is the number of the desired mode. The command may be
given in the direct mode or in a program. For example, the command

10 GRAPHICS 8

at the beginning of a program will cause the computer to enter
into display mode 8. You can then continue the program and
instruct the computer to draw a specified design in the display
mode. “GR.” is an abbreviation for “GRAPHICS” . Thus, the fol-
lowing two statements have the same meaning;:

GRAPHICS 8
GR. 8

When the computer enters into a graphics mode, the screen will
clear. Then, in all modes except 9 through 11, a portion of the screen
four lines high will appear at the bottom of the screen where text can
be written. This is called the text window. Try typing this:

6.2 Graphics Commands 133
GRAPHICS 3

The screen should have turned black and there should be a blue
text window 2t the bottom of the screen. The READY prompt will

be visible in the text window. You can enter commands in the

direct mode whenever the text window is present. To get rid of the
text window at the bottom of the screen in any graphics mode
(except 9-11) to have more room for pictures, just add 16 to the

graphics mode number. For example, to eliminate the text window
from GRAPHICS 3, give the command

GRAPHICS 3+16
or

GRAPHICS 19

If, while in the direct mode, you try to enter into graphics modes
9-11 or any graphics mode without a text window, the screen will
flash and return to mode 0. This happens because these modes do
not have text windows. The computer tries to display READY on
the screen, but because there is no place to write it, the computer
must go back to mode 0. So, if you want to use a mode without a
text window, do it in a program.

Mode 0 is the default mode; that is, the one that is in effect
when you first turn on the computer. When you enter into a dif-
ferent mode, you will no longer be in mode 0, and thus all the text
and information on the screen will be erased. Programs will stay in
memory no matter what mode you are in. It is not necessary to
give a GRAPHICS command if you wish to use only mode 0
because it is default. However, the command GRAPHICS 0 auto-
matically clears the screen, so you can use this command in a pro-
gram to have the screen cleared.

SETCOLOR

The SETCOLOR command has the format
SETCOLOR A,B,C

where A, B, and C are integers. The number A must be one of the
numbers 0, 1, 2, 3, or 4. These five numbers refer to five color
registers in the memory. The color register determined by the
number A records the numbers B and C, which (in most cases)
refer to hue (color) and luminance (brightness of the color). The
use of the various registers varies somewhat from mode to mode,
so we will explain it in detail with each mode. Basically, in each
mode, the number A specifies what is to be colored. For example,

134

6 / Computer Graphics and Text

you might wish to specify the color of the background of the
screen in mode 0. The value of A for this is 2. That is, in mode 0
the hue and luminance stored in color register #2 will determine
the hue and luminance of the background. If you type in

SETCOLOR 2,12,4

the background will turn to a shade of green. (The exact shade will
vary from TV set to TV set.) If you replace 2 with 4, the border of
the screen will turn green because color register #4 controls the
hue and luminance of the border in GRAPHICS 0:

SETCOLOR 4,12,4

The number B represents hue and can be any integer from 0 to
15. To see the various hues available, type in and run this pro-
gram, which turns the background every possible hue (but not
every possible luminance of the hue), one at a time:

10 FOR B=0 TO 15

20 PRINT "COLOR ";B

30 SETCOLOR 2,B,6

40 FOR D=1 TO 500:REM -DELAY-
50 NEXT D

60 NEXT B

The number C represents brightness (luminance) and can be any
even integer from O to 14. The larger C is, the brighter the color.
To see how C controls luminance, alter the preceding program so
it becomes

10 FOR B=0 TO 15
20 PRINT "COLOR ";B
25 FOR C=0 TO 14 STEP 2

26 PRINT "LUMINANCE ";C
30 SETCOLOR 2, B, C

40 FOR D=1 TO 250

50 NEXT D

55 NEXT C

60 NEXT B

Essentially, B selects the color, and C selects the shade of that
color. Table 6-1 lists the hues each value of B refers to (the color
may vary for your TV set).

There are default values of B and C for each register. This
means that if you do not give a SETCOLOR command, the com-
puter will use the default values of B and C in all the color regis-

6.2 Graphics Commands 135

TABLE 6-1. SETCOLOR numbers.

0 gray 8 medium blue
1 light orange 9 light blue
or gold
2 orange 10 turquoise
3 red-orange 11 green-blue
4 pink 12 green
5 lavender 13 yellow
6 blue-purple 14 orange-green
7 purple-blue 15 light orange

ters. The following table lists the default values and the actual
hues corresponding to B. They are the same for all modes.

A B C COLOR

0 2 8 orange

1 12 10 light green

2 9 4 dark blue

3 4 6 pink

4 0 0 black
COLOR

The COLOR command, which is different from SETCOLOR, is
used to select a color from one of the color registers. Its form is

COLOR X

It is useless unless used in conjunction with other commands. For
example, suppose you wanted to draw a line on the screen. (Don’t
worry about how to do it. We will explain that shortly.) Before
giving the command for drawing the line, you would first specify
the hue and luminance of the line by giving a COLOR command.
If you gave the command

COLOR 2

the line would be drawn with the hue and luminance stored in the
register that controls COLOR 2. You will become more familiar
with the COLOR statement as we introduce more commands, but
for now let us try to point out the difference between SETCOLOR
and COLOR.

The SETCOLOR command is used to store hues and luminances
in the color registers. It actually changes the values in the color reg-

136

6 / Computer Graphics and Text

isters. It can change the hue and/or luminance of the background,
border, or foreground (a picture, for example) of the screen.
Although you have a wide choice of which hues and luminances to

store, only those that have been stored (by you or by default) can
actually be used at any particular time. There is a definite limit to
the number of colors you can use in a picture or diagram.

In contrast, the COLOR command is used to select from among
the hues and luminances stored in the registers. It can’t change the
color of anything already on the screen. Instead, it selects a color
register whose hue and luminance are to be used with subsequent
PLOT and DRAWTO statements, which we will explain next.

CAUTION: COLOR 1 may not pertain to SETCOLOR 1.
The same applies to the other COLOR numbers.

PLOT

The PLOT command is used in graphics modes to “plot a point”
on the screen. We do this by coloring a pixel. We have to tell the
computer which color to use and which pixel to color. The color is
selected by using a COLOR statement, and the pixel is then speci-
fied by a PLOT statement. The form of a PLOT statement is

PLOT X,Y

where X and Y are the coordinates of the pixel (see Section 6.1).

Now let us put everything together and actually plot a point on
the screen. Let’s use mode 3. According to Table 6-2, mode 3 is a
four-color mode with a text window and a resolution of 40X 20.
COLOR 1 selects the hue and luminance stored by SETCOLOR o,
whose default color is a shade of orange (2,8).

Let’s plot the point with coordinates 20,10 (near the center of the
screen) in the default color. Here is the program:

10 GRAPHICS 3:REM -Enter mode 3-

20 COLOR 1:REM -Select color (hue and
luminance) of register 0-

30 PLOT 20,10:REM -Plot point in selected
color-

Now suppose we wanted to plot a pink point with medium lumi-
nhance at 20,10. According to Table 6-1, the number of pink is 4.
Let’s use 8 for the luminance. We first store the hue and lumi-
nance using SETCOLOR 0 and then plot as before:

6.2 Graphics Commands 137

10 GRAPHICS 3:REM -Enter mode-

20 SETCOLOR 0,4,8:REM -Store pink in register
0_

30 COLOR 1:REM -Select color stored in
register 0-

40 PLOT 20,10:REM -Plot point in the selected
color-

You could change the hue or luminance of the pixel by changing
the second and third numbers in line 20. You could change where
the point is plotted by changing the numbers in line 40. The fol-
lowing program plots points at random places on the screen with
random hues and luminances:

10 GRAPHICS 3

20 LET B=INT(16*RND(0))

30 LET C=2*INT(8*RND(0))

40 SETCOLOR 0,B,C

50 COLOR 1

60 LET X=INT(40%RND(0))

70 LET Y=INT(20*RND(0))

80 PLOT X,Y

90 FOR DELAY=1 TO 200:NEXT DELAY
100 6oTO 10

Notice that at line 40 the program stores a random hue and lumi-
nance in register zero, and at line 80 plots a point at a random
location with the stored hue and luminance. Also notice that line
100 sends the computer back to line 10, where it encounters the
command GRAPHICS 3. This command automatically clears the
screen, so the point that was just plotted is erased. Then a new hue
and luminance are stored and another point is plotted at a random
location with the newly stored hue and luminance, and so forth.
Now change the program so line 100 becomes

100 GoTO 20

Now the computer no longer encounters the GRAPHICS 3 com-
mand after plotting each point, so the screen is not cleared. This
means that once a point is plotted, it stays on the screen, and the
number of plotted points gradually increases.

When you run the new program, you will notice that each time
a new point is plotted, all the plotted points will change to the new
color. This is due to the fact that the hue and luminance of any-
thing plotted with COLOR 1 is controlled by a single color regis-
ter. As soon as the hue or luminance stored in that register is
changed, the computer automatically changes everything plotted

6 / Computer Graphics and Text

138

(00) oeIg

(9'%) quig

(¥'6) @nig >yreq
(01°21) waa1) Jy8r]

I0[03 19piog

3511 ON

MOPUIM }x3} JO IO0[0D ‘I10[0D punoIdydeyg
MOPUIM }X3) UI }x3} JO dUBUIWN] ‘T I0[0D)

duUBUIWN] T MOPUIM O/M 76T X 0Z€

(87) 3a8ueap 35N ON IO[0D T MOpUIM/M Q9T X 0ZE 8

(0°0) 3oerg I0[03 13p10q “I0[0> punoIdyoeq ‘§ 100

(7°9) uid 35N ON

(¥'6) anjg >req MOPUIM }x3] JO IO[0D ‘¢ I0[0D)

(01°21) usarny 181y MOPpUIM X3} UT JX3) JO 8dUeUIWN] ‘7 IO[0)) MOPUIM O/M 96 X 09T

(8'¢) a3ueiQ I 10[0D ¥ MOpUIM/M 08X 09T £

(0°0) oerg I0]03 Iap10q “I0[0D punoidx3deq ‘g I0[0)

(9'7) quid 35N ON

(¥'6) anig >yreq
(01°Z1) waa1n) Jy3r]
(8°7) ?8ue1p

MOpUIM }X3} JO JO[OD)
MOPUIM 1X3} UI X3} JO durUILNT]
1 10[0D)

MOpUIM O/M 96 X 09T
¢ mopum/m 08 X 091 9

(0'0) >oerg

(#9) qug

(¥'6) ang 3req
(0121) Wd2ID) B
(87) ?8uerp

10[0d 19pI10q “I0[0d punoidydeq ¥ I0[0)
451 ON

MOPpUIM IX3} JO JO[OD ‘¢ 10[0D)

MOPpUIM X3} UT 3X3} JO ddueUIN] ‘7 I0[0D)
I 10[0D)

mopuIm o/m gy X 08
L4 mopum /M OF X 08 S

(0°0) oeIg

(9'%) quig

(¥'6) anig req
(01°Z1) uaarny y3ry
(8'7) ?8ueip

10[0J I19p10q ‘I0[0D punoIdsydeq 'z I0[o)
351 ON

MOPUIM X3} JO 10[0D)

MOPUIM JX3) UI JX3} JO IdUBRUIWNT

1 10[0D)

MOpUIM O/M g% X 08
[4 MOpUIM/M OF X 08 14

(00) Yoe[g

(¥9) qug

(¥'6) an[g >req
(01"21) Usa1) Y317
(87) 98ueip

I0[03 I5pI0q "I0[0> punoIdsdeq F 100
SN ON

MOpUIM }X3} JO 100D ‘g I0[0))

MOPUIM }X3} UI 3X3} JO dUBUIWN] ‘7 O[O
1 10[0D)

O NN HO—NOHO~N N O N FHO—ANM O~ N g f

MOpUIM O/M F2Z X OF
i4 MOpUIM/M 0T X OF €

mpya ynvfaq

»N # JOT10013S

540100 fo # uoN[0say PO

"sapowr sopydern) *z—9 a[qe.

139

6.2 Graphics Commands

(0°0) ey

(¥'9) yuig

(¥'6) ang dreQ
(01°21) W31 JY31]
(8'7) 98uea

J0[0d I3pI0g ‘10]0d punoidydeq ‘§ 10[0D)

150 ON

MOPUIM }X3} JO IO[OD ‘€ I0[0D)
MOPUIM }X3) UI }X3) JO ddUBUTWN] ‘7 J0[07)

1 10[0D)

(0'0) >Pelg

(¥'9) >yurg

(¥'6) anig >preq
(01°21) U319 Y317
(8'7) ?8uei

10[0D Iaploq “I0[0d punoIdydeq ‘g 10[0)

35N ON
MOpUIM 3X3} JO I0[0D)

MOPUIM]X3] UI X3} JO adueuruun-y

1 10[0D)

(0'0) erg

(¥'9) Syuig

(¥'6) anig yreq
(o1'21) W31 Y317
(8'7) ?Buerp

SIO[03 [[e JO @dU'UIWN] ‘I0[0D I13pioq
‘punoidspeq jo (sdueurwinj Jou 3ng) I10[0D)

151 ON
35N ON
151 ON
3501 ON

(0°0) >Pelg

(#'9) yuid

(¥'6) anig yreq
(01"21) waa) Y317
(8'7) 38ue1

g 10[0)
/£ I0]0D)
9 10[0D)
G I10[0D)
¥ J0[0D)

(0'0) >erd

(¥'9) quid

(¥'6) anig Sreq
(0121) U931 JY3r]
(8'7) 3Bue1

[eads + I10[0d IapIoq 10]0d punoidydeyg

451 ON
3510 ON
35N ON
351 ON

4

€

(4

I MOpUIM O/M T6T X 09T

0 ¥ mopumm/m 091 X 091 ST
14

€

4

T MOPUIM O/M T6T X 091

0] ¢ MOpuUM/M Q9T X091 VI
14

€

(4

1 3dueurwnj I

0 sany 91 761 X 08 IT
14

€

4

L

0 6 61 X08 0L
14

€

7 S9dueUIWN]

I 91

0 oany 1 761 X 08 6

amgva ynvfaq

3N # YOTODLIAS s40102 fo 3

uON|OSIY IPOIA

*(panunuod) sapow synydern) ‘z—-9 ajqe]

140

6 / Computer Graphics and Text

with COLOR 1. The only way to get different colors on the screen
at the same time is to use different color registers.

As we said, GRAPHICS 3 is a four-color mode. This is due to
the fact that there are four color registers available to you in that
mode. Now refer to Table 6-2 again. You see, for example, that the
color register corresponding to SETCOLOR 4 controls COLOR 4,
the background, and the border. Therefore, the background, the
border, and anything plotted with COLOR 4 will all have the same
hue and luminance. Three other color registers can be set using
SETCOLOR with 0, 1, or 2, and these control COLOR 1, COLOR
2, and COLOR 3, respectively. Notice that SETCOLOR 3 has no
use in mode 3.

Now let’s write a program which plots in four different colors.
Let’s use the default colors in the registers so we won’t have to use
SETCOLOR. We will choose COLOR 1, 2, 3, or 4 at random and
plot a point at a random location:

10 GRAPHICS 3

20 LET C=INT(4*RND(0))
30 COLOR C

40 LET X=INT(40*RND(0))
50 LET Y=INT(20*RND(0))
60 PLOT X,Y

70 FOR D=1 TO 200:NEXT D
80 GOTO 20

When you run this program, you will sense only three colors plot-
ting on the screen. The reason is that one of the plotting colors is
the color of the background, so a point plotted in that color cannot
be distinguished from the background. Occasionally you will see a
point change color or seem to “disappear.” This occurs when a
point is replotted with a new hue or luminance. Whenever a point
is replotted with the background color, it seems to disappear.

If you use a graphics mode other than mode 3, the same ideas
apply, but the use of the color registers, the number of colors
available, the resolution, etc. may be different. You will find it con-
venient to refer to Table 6-2 when using an unfamiliar mode.
With it, you should be able to use each mode effectively.

DRAWTO

The DRAWTO statement is used to draw a line on the screen.
There are three things you need to tell the computer (assuming a
graphics mode has already been selected): the color of the line, the
starting point of the line, and the finishing point of the line. Of

6.2 Graphics Commands 141

course, the color is specified by a COLOR statement. The starting
point is specified by a PLOT statement, and the finishing point by
a DRAWTO statement. The form of the DRAWTO statement is

DRAWTO X, Y

where X and Y are the coordinates of the finishing point of the
line. For example, the following program draws a red-orange (3,8)
line in mode 3 from the point 0,0 to the point 39,19:

10 GRAPHICS 3

20 SETCOLOR 0,3,8
30 COLOR 1

40 PLOT 0,0

50 DRAWTO 39,19

Because mode 3 has such large pixels (low resolution), diagonal
lines do not appear to be very smooth.

If you wish to draw several lines in succession, each starting
where the previous one ends, you need only one PLOT statement
(for the first point). Here is an example:

10 GRAPHICS 8

20 SETCOLOR 2,0,0
30 COLOR 1

40 PLOT 0,0

50 DRAWTO 100,0
60 DRAWTO 100,100
70 DRAWTO 0,100
80 DRAWTO 0,0

90 END

DRAWTO may be abbreviated to DR. (The period is neces-
sary.) For example, the following statements are equivalent:

DRAWTO 0,0
and
DR. 0,0

PRINT

When you use a graphics mode with a text window, you can use
the PRINT statement in the usual way to print in the text window.
The following program is an illustration. It draws the “same” fig-
ure on the screen in each of the modes 3-8. Because of the differ-
ent resolutions of the various modes, the size of the figure will
vary. In the text window the program will print the mode currently
in use.

142 6 / Computer Graphics and Text

10 FOR M=3 T0 8

20 GRAPHICS M

30 IF M=8 THEN SETCOLOR 2,0,0:REM -Turn
screen black in mode 8-

40 COLOR 1

50 PRINT "MODE '";M

60 FOR H=0 TO 16 STEP 4

70 PLOT O,H

80 DRAWTO 16,H

90 NEXT H

100 FOR V=0 TO 16 STEP 4
110 PLOT Vv,0

120 DRAWTO V,16

130 NEXT V

140 FOR D=1 TO 1000
150 NEXT D

160 NEXT M

Remember the text window can be eliminated by adding 16 to
the mode number. In that case, the part of the screen available for
graphics is increased by several rows of pixels. For example, mode
3 is 40X 20, whereas mode 3+ 16 (mode 19) is 40X 24. Try chang-
ing some of the plotting programs so they will plot on the entire
40X 20 background in mode 3+ 16. If you use a PRINT statement
in a graphics mode without a text window, the computer will

return to mode O, clear the screen, and print whatever is called for
by the PRINT statement.

6.3 Graphics Modes

In this section we will discuss all the graphics modes, one by
one. Table 6-2 on page 138 contains all the pertinent information
about the various graphics modes you will need for this section.

Modes 3-7

These modes all have text windows and use the same color for
the border and the background. They fall into two general groups,
two- and four-color modes. Modes 4 and 6 are two-color modes,
with COLOR 2 being the color of the background and border,
while modes 3, 5, and 7 are four-color modes, with COLOR 4
being the color of the background and border.

The advantage of modes 4 and 6 is that they conserve memory.
Since most of your applications or needs will probably not exceed

6.3 Graphics Modes 143

the memory of your computer, it might be better to use only the 4
color modes, modes 3, 5, and 7. The resolutions of these three
modes are 40X 20, 80X 40, and 160X 80, respectively. Therefore,

the area of each pixel in mode 3 is four times the area of each pixel
in mode 5, which in turn is four times the area of each pixel in
mode 7. To see the effect this changing resolution has, type in and
run the following program, which draws two diagonal lines in
each of these modes without a text window:

10 FOR N=0 TO 2

30 GRAPHICS 3+2*N+16:REM -Mode 3, 5, or 7
without text window-

30 COLOR 1

40 PLOT 0,0

50 DRAWTO 40*2/~N-1, 20%2AN-1:REM -The
coordinates of lower right corner-

60 COLOR 3

70 PLOT 0, 20%2AN-1:REM -The coordinates
of the lower left corner-

80 DRAWTO 40*27AN-1, O0:REM -The coordinates
of the upper right corner-

90 FOR D=1 TO 2000:NEXT D

100 NEXT N

Notice there are no SETCOLOR statements in the program, so we
are using default colors and luminances. One diagonal is drawn in
COLOR 1, which is orange, and the other in COLOR 3, which is
dark blue. The background (COLOR 4) is black.

TEST YOUR UNDERSTANDING 1 (answer on
page 149)

Alter the the last program so that the first diagonal is
drawn in light green (12,10) and the other in gold (1,6).

Mode 8

This mode is quite different from modes 3-7. It has two colors
and very good resolution, so it is good for detailed picures that do
not need more than two colors. The background and border may
be different colors. The background hue and luminance are con-
trolled by color register 2, and the hue and luminance for the bor-
der are controlled by color register 4. COLOR 2 has the hue and
luminance of the background, so it can be used to “erase” from

144

6 / Computer Graphics and Text

the screen. COLOR 1 uses the same hue as the background, but
the luminance from color register 1. The hue in color register 1
plays no role in mode 8. Therefore, to set the luminance for
COLOR 1, you can use the command

SETCOLOR 1,X,Y

where Y is the desired luminance number and X can be any number.

We will illustrate mode 8 with the following program which
generates a “random walk.” We start by plotting a point in the
center of the screen. Then, at random, we will draw a line (walk)
in one of four directions: up, down, right, or left. This step will be
repeated until the program is stopped. The direction of the walk
will be determined by choosing one of the numbers 1(up),
2(down), 3(right), or 4(left) at random. We will use A,B for the
coordinates of the moving point. The length of each move will be
10 pixels. To move up, we decrease B by 10. To move down, we
increase B by 10. To move right or left, we increase or decrease A
by 10. Of course, we will have to check to be sure the line doesn’t
go off the screen. Here is the program:

10 GRAPHICS 8+16

20 SETCOLOR 2,0,0:REM -Turns the background
black-

30 COLOR 1

40 LET A=180:LET B=98:REM -Coordinates of
starting point-

50 PLOT A,B

60 LET D=INT(4*RND(0))+1: REM -Choose 1,2,3,
or 4 at random-

70 IF D=1 AND B>9 THEN LET B=B-10

80 IF D=2 AND B<182 THEN LET B=B+10

90 IF D=3 AND A<310 THEN LET A=A+10

100 IF D=4 AND A>9 THEN LET A=A-10

110 DRAWTO A,B

120 GOTO 60

130 END

When you run this program, you will observe that the horizontal
lines are drawn in one color, and the vertical lines are drawn in a
different color, even though there is only one COLOR statement
in the program. The “fake coloring” of lines in this way is called
artifacting. It occurs in mode 8 only and is caused by the way the
TV handles color. There are specific rules (which we will not dis-
cuss) about how to achieve certain colors. If you know how to use
artifacting to your advantage, you can create fantastic multi-color
pictures such as this:

6.3 Graphics Modes 145

10 GRAPHICS 8+16:SETCOLOR 2,0,0:COLOR 1
20 FOR A=0 TO 40 STEP 2

30 PLOT A,0:DRAWTO A,191

40 NEXT A

50 FOR A=21 TO 61 STEP 2

60 PLOT A,0:DRAWTO A,191

70 NEXT A

80 FOR A=0 TO 80 STEP 2

90 PLOT 80,A:DRAWTO 160,A+40
95 PLOT 200,A:DRAWTO 280,A+40
100 NEXT A

110 FOR A=20 TO 120 STEP 2

120 PLOT 101,A:DRAWTO 181,A+40
125 PLOT 221,A:DRAWTO 301,A+40
130 NEXT A

140 FOR A=80 TO 182 STEP 2

150 PLOT A,0:DRAWTO A,191

160 NEXT A

900 GOTO 900

999 END

Here is another program using mode 8:

10 GRAPHICS 8+16

20 SETCOLOR 2,0,0

30 COLOR 1

40 FOR A=0 TO 191 STEP 5
50 B=A*1.67

60 PLOT O,A

70 DRAWTO B,191

80 DRAWTO 319,191-A

90 DRAWTO 319-B,0

100 DRAWTO O,A
110 NEXT A

120 SETCOLOR 2,0,1
130 SETCOLOR 1,0,0
140 GOTO 140

150 END

Try to make your own high-resolution pictures using mode 8.
You'll be surprised at what you can accomplish.

Modes 9-11

These modes can be used only on computers with the GTIA
chip. All ATARI XL computers have this chip, and most of the
400s and 800s sold after January, 1982, have it. Here is a program
to test whether you have the GTIA chip:

146 6 / Computer Graphics and Text

10 GRAPHICS 9

20 FOR C=0 T0O 16

30 FOR L=0TO 16
40 SETCOLOR 4,A,B
50 NEXT L

60 NEXT C

70 GOTO 20

80 END

When you run this program, colors will flash on the screen. If you
have the GTIA chip, the border will always be the same color as
the background. If you do not have the GTIA chip, the border will
have a different color from the background and hence it will be
clearly visible.

Modes 9-11 are perhaps the most unusual modes on the ATARI
computers. You can create multi-colored or shaded pictures with
these modes. All of these modes have no text window, and all
have 80X 192 resolution. Mode 9 has one hue and sixteen lumi-
nances (or brightnesses of the hue). You control the color of the
background, border, and COLOR 0 with SETCOLOR 4. Each of
the 16 luminances is a “shade” of the hue of the background. Here
is a program illustrating the effect of shading in mode 9:

10 GRAPHICS 9

20 FOR €=0 TO 15

30 COLOR C

40 PLOT C+25,0:DRAWTO C+25,191
50 PLOT 56-C,0:DRAWTO 56-C,191
60 NEXT C

70 FOR A=0 TO 15

80 SETCOLOR 4,A,0

90 FOR D=1 TO 500

100 NEXT D

110 NEXT A

120 END

Here is an even better display of the 3-D shading capabilities of
mode 9:

10 GRAPHICS 9

20 LET S=0:LET X=68:LET C=1
30 FOR A=S TO S+15

40 COLOR C

50 LET C=C+1

60 PLOT O,A:DRAWTO X,A
70 NEXT A

80 LET C=15

90 FOR A=S+15 TO S+30

100
110
120
130
140
150
160

170

180
190
200
210
220
230
240
250
260
270

6.3 Graphics Modes

COLOR €

LET C=C-1

PLOT O,A:DRAWTO X, A
NEXT A
LET X=X-28:LET C=1
FOR A=X+1 TO X+15

COLOR ¢

LET C=C+1

PLOT A,30-C:DRAWTO A,191
NEXT A
LET €=15
FOR A=X+16 TO X+29

COLOR C

c=C-1

PLOT A,C-1:DRAWTO A,191
NEXT A
GOTO 260
END

147

Mode 10 has nine independent colors (each with a hue and
luminance). It is a very special mode in that not all the color regis-
ters can be set using SETCOLOR commands. Instead, the registers
are set by means of POKE statements (review Section 3.6). The
memory locations which contain the color values are 704-712.
Here is a list of what each register controls in mode 10:

REGI
704

705
706
707
708
709
710
711
712

STER USE

COLOR 0, BACKGROUND COLOR,

BORDER COLOR
COLOR 1

COLOR 2

COLOR 3

COLOR 4 and 12
COLOR 5 and 13
COLOR 6 and 14
COLOR 7 and 15
COLOR 8, 9, 10, and 11

You poke these registers in memory by multiplying the hue (B) by
16 and adding the luminance (C) you would use in a normal
SETCOLOR statement. Here is an example:

SETC

because
5%x16

OLOR 2,5,4 = POKE 710,84

+4=84

Here is a program that uses mode 10 and “rotates” the colors:

148 6 / Computer Graphics and Text

5

10
20
30
40
50
60
70

80
90
100

110

120
130
140
150
160
170
180
190
200

PRINT "TYPE 8 NUMBERS SEPARATED BY
COMMAS"
INPUT Q, W, E, R, T, Y, U, I
GRAPHICS 10
FOR A=1 T0O 8
POKE 704+A,16*A+8
NEXT A
LET D=79:LET G=79:LET H=191:LET K=191
TRAP 130:REM -If an error occurs, GOTO
line 130-
LET C=C+1:IF C=9 THEN LET c=1
COLOR C
PLOT A,S:DRAWTO D,F:DRAWTO G,H:DRAWTO
J,K:DRAWTO A,S
LET A=A+Q:LET S=S+W:LET D=D-E:LET
F=F+R:LET G=G-T:LET H=H-Y:LET J=J+U:LET
K=K-1I
GOTO 80
LET A=PEEK(705)
FOR B=705 TO 711
POKE B,PEEK(B+1)
NEXT B
POKE 712,A
FOR A=1 TO 20:NEXT A
GOTO 130
END

Mode 11 has sixteen hues and one luminance. It is ideal for
making multi-colored pictures. SETCOLOR 4 controls the lumi-
nance for the 16 hues. Here is a program illustrating the multi-
colored nature of mode 11:

10
20
30
40
50
60
70
80
90
100
110
120
130
140

GRAPHICS 11
LET C=0:8=1
FOR A=0 T0 191
C=C+S
COLOR C
IF C>16 OR C<1 THEN LET S=-S:GOTO 40
PLOT O,A:DRAWTO 79,A
NEXT A
FOR A=0 TO 15
SETCOLOR 4,0,A
FOR D=1 TO 250
NEXT D
NEXT A
END

6.4 Text Commands 149

Modes 14-15

These modes can only be used on the ATARI XL computers.
Both modes have text windows. Mode 14 is a two-color mode,

while mode 15 is a four-color mode. Mode 15 is the four-color
mode with the best resolution. It is probably the best mode for
making highly detailed color pictures. You can think of mode 14
as mode 6 with 160 X 160 resolution instead of 160 80, and you

can think of mode 15 as mode 7 with 160 X 160 resolution instead
of 160 X 80.

ANSWER TO TEST YOUR UNDERSTANDING 1

1: Replace lines 30 and 60 with:

30 SETCOLOR 0,12,10:COLOR 1
60 SETCOLOR 2,1,6:COLOR 3

6.4 Text Commands

In this section we will discuss the commands used in conjunc-
tion with the text modes. These modes are modes 0, 1, 2, 12, and
13. Each of these modes can display only characters. The PLOT,
DRAWTO, and COLOR statements can be used with these
modes, but they have different meanings and uses than they do
with graphics modes. Here are the statements we will explain in
this section:

COLOR
DRAWTO
PLOT
POSITION
PRINT #6

Before we go into these statements in detail, let's consider Table
6-3.

The PLOT and DRAWTO statements are used much as they
are with graphics. They can plot “points” and draw “lines,” but
instead of coloring pixels, they print characters. The COLOR
statement is used to select which character will be used. Type this
while in the direct mode:

(0’0) >peIg 1002 13pI10q “I0[0D punoidydeyg 1%
(9%) uig [eradg €
(¥'6) ang >yreq [erads + ‘mopuim 3xa3 jO J10[0D) Y
(01'71) U931y y3r] [eads + ‘MOPUIM JX3) UI JX3} JO dUeUTWINT 1 MOPUIM O/M TT X OF
(82) 8ue1Q [erads 0 v MOpUIM/M 0L XO0F €I
(0°0) ¥oeig 1002 19p10q ‘10]0d punoidxyoeyg v
(9%) Juid [erads € _
(¥'6) anig j1eQq [enads + ‘mopuim 3x3) Jo 10[0D) Y4
(01°2T) usa1ny WBr] [eads 4 ‘MOpUIM 1X3} UI 1X3] JO dURUILNT 1 MOPUIM O/M ¥7 X OF
(87) a8ue1Q [ewadg 0 ¥ MOpumM/M OZX0F 71
(0°0) >oerg 100D 1api10q ‘10]0d punoidxoeyg ¥
(9'%) Syuid SST—¥HTT# PUe 6ST—8TI # I0]0d JO I0[0D) € g
MOpUIM :
(¥'6) anig reQq X3} JO I0[0d ‘€€7—09T # IO[0D JO 10[0D) 7 i
m MOPUIM }X3} Ul X3} JO duUBUTWNT
~ (0121) PRI Jy3r] L7196 # pue T€—0# I0]0D JO 10[0D) I mopuim 0/m ZT X 0T
= (8'7) 98ue1 S6—7E # 10[0d JO I0[0D) 0 4 MOPUIM/M QT X0Z ¢
8§ (0’0) yoeIg 10702 13pI0q “10[0> punoidxyoeq 1%
8 (9'%) yuid SST—VTIT# PuUe 661871 # I0[0d JO I0]0D) €
= mopum
3 (¥'6) anig yreq X3} JO 10[0d ‘€€7—091 # I0[0D JO I0[0D) v
3 MOPUIM }X3} UT JX3} JO adUeUIWNT
5 (0121) wsarn) y3r] L7196 # pue [£—0# I0[0D jO I0]0D) I MOPUIM O/M FZ X 0T
8 (82) a8ue1p G6—C€ # 1002 JO 10[0D) 0 4 MOpUIM/M 07 X0Z T
m. (0°0) orIg 10]0D IapIog ¥
S (9'7) Suid 350 ON €
Q I0[0d punoidxoeg
~ (¥'6) anig yieQq 1x31 JO (SdURUTWN] OU ING) JO[0D) T
° (01'Z1) w91y 3ry x93} JO ddUBUTWN] 1
(8'7) 38ueiQ 35N ON 0 Pdueununy | PIX0r 0 :
ampva Jnvfoq 3N # JOTODLIS #x3} fo sio100 # UOYN0s3Y IPOJAl ?

‘Sapoul 3x3) [YVLV €9 d]qeL

150

6.4 Text Commands 151

GRAPHICS O
COLOR 65
PLOT O0,0:DRAWTO 20,20

The computer should have drawn a line made not of colored pix-
els, but of the character “A”.

Each character you could have used to draw with has its own
number to be used in a COLOR statement. The number used is
called the ATASCII number of the character. The AT stands for
ATARI and ASCII stands for American Standard Code for Infor-
mation Interchange. Table 6-4 lists the ATASCII numbers and the
characters they refer to. Figure 6-3 shows the graphics characters
displayable by pressing CONTROL and a letter key.

Notice that in mode 0 the ATASCII number of an ordinary
uppercase letter is between 65 and 90. The ATASCII number of
the corresponding lowercase letter can be obtained by adding 32.
Look at the characters in Table 6-4 with ATASCII numbers 0-31,
96, 123, and 125-127. With the exception of the ones numbered
27, 126, or 127, they are typed by pressing CTRL in conjunction
with another key. They are called control characters.

If you add 128 to the ATASCII number of a character, you get
the ATASCII number of the same character in inverse video; that
is, with the colors of the foreground and background of the char-
acter interchanged. You obtain a character in inverse video by first
pressing (but not holding down) the ATARI key and then pressing
the key. The ATARI key is located at the left of the second SHIFT
key on the 400 and 800, to the left of the BREAK key on the
1200XL and at the bottom right of the keyboard on the 600XL and
800XL. After typing in inverse video, press the ATARI key once
again to return to normal. You cannot type in programs in inverse

Figure 6-3. ATARI characters displayable using CONTROL.

152

6 / Computer Graphics and Text

Table 6-4. ATASCII codes.

e &
- =5 $.s - =3 £.s
&S 2 & g€ &S <8 fe€
0 E] CTRL-, 21 @ CTRL-U
1 E CTRL-A 22 [D CTRL-V
2 E’ CTRL-B 23 E] CTRL-W
3 E] CTRL-C 24 E CTRL-X
4 E’ CTRL-D 25 ID CTRL-Y
5 E’ CTRL-E 26 E] CTRL-Z
6 CTRL-F 27 IE l ESC\ESC
7 CTRL-G 28 ’ ESC\CTRL--
8 E] CTRL-H 29 ’ ESC\CTRL-=
9 E} CTRL-I 30) ESC\CTRL-+
10 E’ CTRL-J 31 * ESC\CTRL-*
11 EI CTRL-K 32 D SPACE BAR
12 E CTRL-L 33 E\ SHIFT-1
13 E] CTRL-M 34 Eﬂ SHIFT-2
14 Q CTRL-N 35 @ SHIFT-3
15 l;] CTRL-O 36 SHIFT-4
16 E} CTRL-P 37 SHIFT-5
17 E CTRL-Q 38 SHIFT-6
18 IEI CTRL-R 39 D SHIFT-7
19 CTRL-S 40 SHIFT-9
20 @ CTRL-T 41 SHIFT-0

153

6.4 Text Commands

Table 6-4. ATASCII codes (continued).

FEIR] 311 fg)
dnpoid
0} SINOI)SAIY

SHIFT-/
SHIFT-8
A
B
C
D
E
F
G
H

I
J
K
L
M
N
0
P

hUﬁU'h'ﬂ-U n m n . . n - @ - . - < — & 2
H F I W R Hid I °e 3) 1] HEQ R D
IHOSVILV
Po) for) <t w0 ~ 00 o) =) — o~ S v o o~ %0 o o — o~ o
[ewiag o o \O O o =] O ~ ~ (o ~ ~ ~ o~ ~ ~ ~] 00 -] o0
nPwiIvYy) e
PdPNnpoig »* + ' - © —_ ~ o < w0 o~) o m -V A
7

0] SNOIISAIY

meviy | HHHEHNEIH P B R]] A
mmaeg| S 0% ¥ 9 % S ¥ 2 R ¥ 43T R 8 5 % % 8 T O

154

6 / Computer Graphics and Text

Table 6-4. ATASCII codes (continued).

2 e
=5 .5 =5 .5
1 - Y - - O = Y -
£ . ? % 2% g X 25T
§3 =2 £33 £3 =2 £33
ot
aco <0 Ao a0 <O ¥ &0
84 T 105 (LOWR) 1
85 @ U 106 I:II (LOWR) J
86 A 107 (LOWR) K
87 w 108 (LOWR) L
88 X 109 ™M (LOWR) M
89 Y 110 IE] (LOWR) N
90 A}' Z 111 O (LOWR) O
9] SHIFT- , 112 (LOWR) P
92 SHIFT- + 113 q_ (LOWR) Q
93 SHIFT- . 114 E (LOWR) R
94 SHIFT- » 115 (LOWR) S
95 l:l SHIFT-- 116 1, (LOWR) T
9% @ CTRL-. 117 IE (LOWR) U
97 (LOWR) A 118 (LOWR) V
98 (LOWR) B 119 @ (LOWR) W
99 (LOWR) C 120 (LOWR) X
100 (LOWR) D 121 H (LOWR) Y
101 (LOWR) E 122 A (LOWR) Z
102 (LOWR) F 123 @ CTRL-;
103 3 (LOWR) G 124 m SHIFT- =
6 ESC\CTRL-<
104 @ (LOWR) H 125 IE or
ESC\SHIFT-<

6.4 Text Commands 155

Table 6-4. ATASCII codes (continued).

b]

2 5f | .3 | 3 5E | E.3
8d <8 X &0 &3 <3S % &5
126 @7 ESC\BACK S 147 (N) CTRL-S
127 E]E ESC\TAB 148 u (A) CTRL-T
128 u (AN) CTRL-, 149 E (A) CTRL-U
129 n (M) CTRL-A 150 m (M) CTRL-V
130 m (A\) CTRL-B 151 n (A) CTRL-W
131 n (M) CTRL-C 152 n (A) CTRL-X
132 n (A) CTRL-D 153 u (M) CTRL-Y
133 ﬂ (M) CTRL-E 154 n (N CTRL-Z
134 (A) CTRL-F 155 EOL’® ;)‘E\)TURN
135 (A) CTRL.G 156 E° | ssosuer
136 ﬂ (M\) CTRL-H 157 ” ESC\SHIFT->
137 H (N) CTRL- 158 '2 TS CTRL
138 ™N (M) CTRLJ 159 EY’ | soswrn
139 n (A) CTRLK 160 . (S)'l:?\CE BAR
140 u (AN) CTRL-L 161 n (M) SHIFT-1
141 i (N) CTRL-M 162 n (A) SHIFT-2
142 ! (N) CTRL-N 163 m (A) SHIFT-3
143 ﬂ (N) CTRL-0 164 & (N) SHIFT4
144 n (M) CTRL-P 165 A (A) SHIFT-S
145 n (N) CTRL-Q 166 (M) SHIFT-6
146 = (M) CTRL-R 167 - (M) SHIFT-7

156

6 / Computer Graphics and Text

Table 6-4. ATASCII codes (continued).

2 2
£s | 2% | 285 | By | 2f | 5i¢
a3s =5 < &5 &3 <5 < &5
168 (M) SHIFT-9 189 a (A) =
169 (M) SHIFT-0 190 (A) >
170 2) * 191 i (A) SHIFT-/
171 N+ 192 {2 (A) SHIFT-8
172) 193 &) A
173 H N - 194 m (M B
174 B Iy 195) C
175 A | 196 M D
176 (N0 197 m (M E
177 n n 1 198 m N F
178 (N2 199 NG
179 (M) 3 200 m (M H
180 (N 4 201 T | M1
181 (R S 202 3
182 N6 203 (N K
183 w7 204 m (N L
184 N 8 205 (MM
185 b (A 9 206 MN
186 (M SHIFT-, 207 no
187 N 208 m (N P
188 (A) < 209 (N Q

6.4 Text Commands 157

Table 6-4. ATASCII codes (continued).

))
A -
55 .5 =35 .5
] Vg c 8% w ¢ g °c 8%
E o z 8 35 Ee Z28 2388
g3 - ¢ ol g3 - v 22
ac <O >N Qo <O % &0
210 [« (MR 233 n (N) (LOWR)
1
211 (NS 234 (N (LOWR)
J
212 n nNT 235 (M) (LOWR)
K
213 (MU 236 n (N (LOWR)
L
214 Y (M Vv 237 m (N (LOWR)
M
215 (MW 238 m (N (LOWR)
N
216 (M) X 239 (M) (LOWR)
o
N
217 i NY 240 m (N) (LOWR)
P
218 M Z 241 (AN) (LOWR)
Q
219 n (M) SHIFT-, 242 n (A) (LOWR)
R
220 (N) SHIFT-+ 243 g3 (N) (LOWR)
S
221 u (A) SHIFT-. 244 m (A) (LOWR)
T
222 (M) SHIFT-#* 245 (M) (LOWR)
[11] L
223 ! (M) SHIFT-- 246 (M) (LOWR)
v
224 n (M) CTRL-. 247 (A) (LOWR)
w
225 8 A 248 b4 A) (LOWR)
it (@S} (LOWR) (A (L
226 (N (LOWR) 249 (A) (LOWR)
B Y
227 A) (LOWR 250 A) (LOWR
B () wown) 7 () wown)
228 m (A) (LOWR) 251 n (M) CTRL-:
D
229 (A) (LOWR) 252 n (M) SHIFT- =
E
230 (M) (LOWR) 253 m“ ESC\CTRL-2
F
15
M aowry | 254 | 4 I Ch
p .
t “’ W
232 (N) (LOWR) 255 l]
H ESC\CTRL->

158

6 / Computer Graphics and Text

Table 6-4. ATASCII codes (continued).

Notes

The character (& represents a control character. In most cases, this control character does nothing;
CHR$(27) is generally a nondisplaying character. However, if the next character displayed is a
control character with ATASCII codes 27, 28, 29, 30, 31, 125, 126, 127, 156, 157, 158, 159, 253,
254, or 255, the control process does not take place. Instead, the representative character itself
appears.

*The character represents the control character which moves the cursor up one row. If the
character displayed just before this was ATASCII code 27, the character [+ displays; the cursor does
not move.

3The character (¥] represents the control character which moves the cursor down one row. If the
character displayed just before this was ATASCI code 27, the character (¥) displays; the cursor does
not move.

“The character represents the control character which moves the cursor one column left. If the
character displayed just before this was ATASCII code 27, the character displays; the cursor does
not move.

5The character (3] represents the control character which moves the cursor one column right. If the
character displayed just before this was ATASCII code 27, the character (2] displays; the cursor does
not move.

®The character (%) represents the control character which clears the screen and moves the cursor to
the home position. If the character displayed just before this was ATASCII code 27, the character [N
displays; the screen is not cleared.

"The character 4 represents the control character which moves the cursor one column left and
replaces the character there with a blank space. If the character displayed just before this was
ATASCII code 27, the character 4 displays; the cursor does not move.

®The character 3J represents the control character which advances the cursor to the next tab stop. If
the character displayed just before this was ATASCII code 27, the character (¥ displays; the cursor
does not move.

*The ATASCII end-of-line character.

“The character 3 represents the control character which deletes the line on which the cursor is
located. If the character displayed just before this was ATASCII code 27, the character B3 displays;
the deletion does not occur.

""The character represents the control character which inserts a line above the one on which the
cursor is located. If the character displayed just before this was ATASCII code 27, the character EJ
displays; the insertion does not occur.

The character represents the control character which clears the tab stop (if any) at the current
cursor position. If the character displayed just before this was ATASCII code 27, the character
displays; no tab stop is affected.

3The character represents the control character which sets a tab stop at the current cursor
position. If the character displayed just before this was ATASCII code 27, the character displays;
no tab stop is set.

“The character [J represents the control character which beeps the built-in speaker; nothing is
displayed. If the character displayed just before this was ATASCII code 27, the character
displays; the speaker remains silent.

>The character K1 represents the control character which deletes the character to the right of the
cursor, shifting the remainder of the logical line one space to the left. If the character displayed just
before this was ATASCII code 27, the character £} displays; no deletion occurs.

'*The character [3 represents the control character which inserts a blank space to the right of the
cursor, shifting the remainder of the logical line one space to the right. If the character displayed just
before this was ATASCII code 27, the character a displays; no insertion occurs.

6.4 Text Commands 159

characters, but you can include inverse characters in a program,
such as in REMs and PRINTs. When you press the ATARI key

and then the space bar, a symbol resembling the cursor will

appear. This symbol is not the cursor, just an inverse space
character.

There are different characters which can be displayed in mode 0
and modes 1 and 2. In modes 1 and 2, any uppercase letter and
many other characters can be in 4 colors. The characters available
in these modes are listed in Table 6-4.

There are two commands that are related to ATASCII numbers.
The ASC function gives the ATASCII number of a character. The
format for this command is

PRINT ASC("X'")

where X is any character. Here are some examples:

PRINT ASC("A'")
PRINT ASC('"p'")
PRINT ASC("4'")
PRINT ASC("#'")

The opposite of the ASC function is the CHR$ function. It returns
the character of a specified ATASCII number. Here are some
examples:

PRINT CHR$(65)
PRINT CHR$(112)
PRINT CHR$(52)
PRINT CHR$(16)

The POSITION command is used to put the cursor at a specific
place on the screen. Remember, the location of the cursor is the
place where the next piece of text will be written. Therefore, we
could easily tell the computer to print HELLO in the middle of the
screen. Here is the program to do that:

10 GRAPHICS 0

20 POSITION 17,11
30 PRINT "HELLO"
40 END

With graphics modes 1, 2, 12, and 13, you use PRINT only to
print text in the text window. To print text on the screen but not in
the text window, you would use the command PRINT #6 instead
of PRINT. Here is the program to print HELLO in the middle of
the screen in mode 1:

160

6 / Computer Graphics and Text

10 GRAPHICS 1

20 POSITION 7,9

30 PRINT #6;"HELLO"
40 END

Notice we put a semicolon after #6 in line 30 of the above pro-
gram. (Either a semicolon or a comma is necessary with a PRINT
#6 statement.) If we would have used a comma, the computer
would have skipped 10 spaces before starting to print.

With modes 1 and 2, letters can be displayed only in uppercase.
The letters may have any of the four colors stored in registers O, 1,
2, and 3. When you type in a program, you must instruct the com-
puter which of the four colors to use for each letter to be printed
by PRINT #6. It would be much too complicated to use a COLOR
statement for each letter. Instead, you type each letter in either
uppercase or lowercase, regular or inverse video. Here is how to

select the color for an uppercase letter printed by PRINT #6 in
modes 1 and 2:

For the color in register: Type the letter in:
0 Uppercase
1 Lowercase
2 Uppercase in inverse video
3 Lowercase in inverse video

The same sort of procedure is used for numerals, punctuation
marks, and other symbols, but since there are no lowercase for
these, only color registers 0 and 2 may be accessed with them (by
typing just the symbol or the symbol in inverse video).

However, there is a way to display these symbols in four colors,
Let’s explain how to get the other two colors. Suppose you wanted
to print an exclamation mark in the other two colors. If you look
near the beginning of Table 6-4 you will find the exclamation
mark in the second line. To the left of it, you will see the control
symbol you should use to obtain the character. To the right of it,
you will see that color register 1 is used to display it. If you key in
the control symbol in a PRINT # 6 statement with mode 1 or 2, an
exclamation mark with the hue and luminance in color register 1
will be printed. The table gives you the keystrokes necessary,
namely, CTRL-A (CONTROL-A on the XL computers). If you key
the control character in inverse video, the exclamation mark will
be displayed with the hue and luminance of color register 3. Of
course, the color in any color register may be set using

SETCOLOR.

6.5 Text Modes 161

6.5 Text Modes

The text modes are modes 0, 1, 2, 12, and 13. Modes 12 and 13
are available for the ATARI XL computers only. Table 6-3 on page

150 shows the resolution, number of colors, and the use of the five
SETCOLOR numbers for each of these modes.

Mode 0

You are already familiar with this mode since it is the default
mode. However, it can be used for more than printing ordinary
text. In fact, mode O will be used in Chapter 8 for our games. For
now, let’s illustrate the possibilities of mode 0 by moving an arrow
across the screen:

10 GRAPHICS O

20 POKE 752,1:REM -Turns cursor off-
30 FOR X=1 TO 38

40 POSITION X,11

50 PRINT "->":REM -Print arrow-
60 POSITION X-1,11

70 PRINT " ":REM -Erase old tail-
80 FOR D=1 TO 45:NEXT D

90 NEXT X

100 GRAPHICS O

110 POSITION 17,11

120 PRINT "THE END"

130 END

In mode 0O, the color of the background is controlled by
SETCOLOR 2. The text has the same hue as the background, but
its luminance is controlled by SETCOLOR 1.

Mode 1

This mode differs in many ways from mode 0:

1. The text can be multi-colored and the colors are indepen-
dent of the background color.

2. The characters are twice as wide.

3. There is a text window.

The following program illustrates how color can be used in mode
1 to create the illusion of motion:

162

6 / Computer Graphics and Text

10 GRAPHICS 1+16:A=1
20 PRINT #6;"JB*JB* B 0% 0% 0+ "

30 PRINT #6;"* m"
40 PRINT #6;"R *!!
50 PRINT #6;"J J"
60 PRINT #6;"* happy birthdayl- *"
70 PRINT #6;'"m *'
80 PRINT #6;"J J"
90 PRINT #6;"* ar
100 PRINT #6;"& *"

110 PRINT #6;"J*By*Ry*G)*GJ+0J Q)"
160 SETCOLOR 0,2,8

170 SETCOLOR 1,0,0

180 SETCOLOR 2,9,4

190 FOR D=1 TO 75:NEXT D
200 SETCOLOR 1,2,8

210 SETCOLOR 2,0,0

220 SETCOLOR 0,9,4

230 FOR D=1 TO 75:NEXT D
240 SETCOLOR 2,2,8

250 SETCOLOR 0,0,0

260 SETCOLOR 1,9,4

270 FOR D=1 TO 75:NEXT D
280 GOTO 160

290 END

Mode 2

The only difference between modes 1 and 2 is that the charac-
ters in mode 2 are twice as tall as in mode 1. To see the the effect
this can have, change line 10 of the preceding program so it
becomes

10 GRAPHICS 2+16

and run the new program.

Modes 12 and 13

These are four-color modes with text windows. The characters
in mode 12 have the same size as those in mode 0, and the charac-
ters in mode 13 are twice as high. In these modes, it is possible to
display up to four colors in one character. This makes these two
modes especially suitable for animation. Since advanced program-
ming techniques are required for animation, we will not pursue

6.6 More Commands 163

the topic. For more information about this subject and others, a
good reference book is DE RE ATARI by Chen et al.

6.6 More Commands

In this section we will discuss the XIO and LOCATE commands,

which are useful commands in conjunction with the display
modes.

The XIO Command

Although the XIO command has many uses, we will discuss
only its use to fill in a portion of the screen. In graphics modes, it
fills in with pixels; in text modes, it fills in with characters. The
XIO command for filling parts of the screen is always the same:

XI10 18,#6,0,0,"s:"

However, the command must be used in conjunction with other
commands. After some PLOT and DRAWTO statements have
been given to determine the right boundary of the region to be
filled, the format is

POKE 765,N
POSITION X,Y
XxI10 18,#6,0,0,"s:"

Here N is the color number of the “filling.” In a graphics mode, it
determines the color of the region to be filled. In a text mode, it is

i,y

N
Last Plotted Point

Figure 6-4.

164

6 / Computer Graphics and Text

the ATASCII number of the character used to fill in the region. X
and Y are the coordinates of a point.

Here is what happens: Imagine a straight line that joins the last
plotted point to the point X,Y. That line is the left boundary of the
region to be filled in. Starting at the last plotted point and moving
along the left boundary toward XY, the computer fills in along
horizontal lines from the left boundary to the right boundary (see
Figure 6-4). If any of these horizontal lines fills all the way to the
right edge of the screen without hitting the right boundary, it will
wrap around to the left side of the screen and continue until it hits
the right boundary of the region or returns to its starting point.

For our first example, let’s fill in a triangular region in mode
8+16 (mode 8 without a text window):

10 GRAPHICS 8+16

20 SETCOLOR 2,0,0:REM -Turn screen black for
better visibility-

30 COLOR 1

40 PLOT 310,10

50 DRAWTO 310,181

60 POKE 765,1

70 POSITION 10,10

80 XI10 18,#6,0,0,"s:"

90 GOTO 90

100 END

Notice we used the same color number for filling and plotting (see
lines 30 and 60). If we insert the line

55 PLOT 10,181

the last plotted point before the XIO command will be on the lower
left of the screen, and the filled in region will be a rectangle. Add line
55 to the program and run it again to compare the two regions.

Now let’s fill in some regions which are more complicated. The
following program uses two XIO statements to fill in a region that
resembles a house:

10 GRAPHICS 8+16

20 SETCOLOR 2,0,0

30 COLOR 1

40 PLOT 310,78:DRAWTO 310,181
50 PLOT 10,181

60 POSITION 10,78

70 POKE 765,1

80 XxIo 18,#6,0,0,"s:"

90 PLOT 310,78:DRAWTO 160,10
100 PLOT 10,78

6.6 More Commands 165

110 POSITION 160,10
120 X10 18,#6,0,0,"s:"
130 GOTO 130

140 END

We can add two windows and a door to the house by using five
XIO statements:

10
20
30
40

50
60
70

80
90
100
110

120
130
140
150
160
170
180

190
200
210

220
230
240

250
260

GRAPHICS 8+16

SETCOLOR 2,0,0

COLOR 1

PLOT 135,180:DRAWTO 135,150:REM -Draw
door-

PLOT 80,100:DRAWTO 80,120:REM -Draw first
window-

PLOT 200,100:DRAWTO 200,120:REM =-Draw
second window-

PLOT 310,78:DRAWTO 310,181:REM -Draw
right wall of house-

PLOT 10,181

POSITION 10,78

POKE 765,1

X10 18,#6,0,0,"S:":REM -Fill in most of
house-

PLOT 310,78:DRAWTO 160,10:REM -Draw roof-
PLOT 10,78

POSITION 160,10

X10 18,#6,0,0,"S:":REM -Fill in roof-
PLOT 165,180

POSITION 165,149

X10 18,#6,0,0,"S:":REM ~Fill in right of
door-

PLOT 100,121

POSITION 100,99

XI10 18,#6,0,0,"S:":REM -Fill in part
between windows-

PLOT 220,121

POSITION 220,99

X10 18,#6,0,0,"S:":REM -Fill in right of
2nd window-

GOTO 250

END

When filling in complicated figures (like the house with windows
and a door), it is necessary to use several XIO commands. To sim-
plify writing the program, you can write a program with the first

166

6 / Computer Graphics and Text

XIO command, and run that program to see how things look.
Then add another XIO command to fill in another part of the
screen. By repeating this procedure, you will eventually have a

program which fills exactly what you want.

We have provided two programs to illustrate how flexible the
XIO command is. The programs allow you to draw a highway
using either a joystick or paddle. If you are not familiar with joy-
sticks or paddles yet, come back to these two programs when you

finish Chapter 7.

Joystick version:

10
20
30
40
50
60
70
80
90
100
110
120

130
140
150
160
170
180
190

GRAPHICS 8+16
SETCOLOR 2,0,0
COLOR 1
LET X=135
FOR Y=0 TO 191
S=STICK(0)
IF S=15 THEN 60
IF S=11 THEN X=X~1
IF S=7 THEN X=X+1
PLOT X,Y
PLOT X+50,Y:DRAWTO 319,Y
IF Y/2=INT(Y/2) THEN PLOT
X+24,Y:DRAWTO X+26,Y
NEXT Y
PLOT 0,0
POSITION 0,191
POKE 765,1
X10 18,#6,0,0,"s:"
GOTO 180
END

Paddle version:

10

GRAPHICS 8+16
SETCOLOR 2,0,0
COLOR 1
FOR Y=0 T0 191
FOR D=1 T0 50
NEXT D
X=228-PADDLE(Q)
PLOT X,Y
PLOT X+50,Y:DRAWTO 319,Y
IF Y/2=INT(Y/2) THEN PLOT
X+24,Y:DRAWTO X+26,Y

6.6 More Commands 167

110 NEXT Y
120 PLOT 0,0

130 POSITION 0,191

140 POKE 7651

150 XI0 18,#6,0,0,"s:"
160 GOTO 160

170 END

With a little practice you should be able to use either of these
programs to create the illusion of a highway on a hilly terrain.

The LOCATE Command

Using the PRINT or PLOT command, you can put a character or
a pixel on the screen. The LOCATE command allows you to
“examine” a location on the screen to discover what character or
color is in that location. It assigns a number to a variable specified
by you in the command. The form of the statement is

LOCATE X,Y,C

where XY are the coordinates of the location to be examined and
C is the variable specified by you. The value assigned to C is the
color number of the pixel or character. In a four-color graphics
mode, C will be 0, 1, 2, or 3. In a two-color graphics mode, C will
be 0 or 1. In a text mode, C will be the ATASCII number of the
character (see Table 6-4 on page 152).

As a simple example, we will print the letter] (whose ATASCII
number is 74) at 10,12 in GRAPHICS 1 and then use the LOCATE
statement to have the computer find the ATASCII number of the
character at 10,12 and use it to print out the character. Of course,
we know the result will be 74, but the program is for illustration
only.

10 GRAPHICS 1

20 COLOR 74

30 PLOT 10,12

40 LOCATE 10,12,C

50 PRINT "THE CHARACTER AT 10,12 IS ";CHR$(C)
60 END

For a more complicated example, consider the following program:

168 6 / Computer Graphics and Text

10
20
30

40

210
220
230
240

250
260
270
280

290
300

GRAPHICS 0
POKE 752,1
PRINT " A" (SKIP 16 SPACES
BEFORE A.)
PRINT " ACA" (SKIP 15
SPACES BEFORE ACA...ETC.)
PRINT " ACCCA"
PRINT " ACCACCA"
PRINT " ACCACACCA"
PRINT " ACCACACACCA"
PRINT " ACCACACACACCA"
PRINT " ACCAACACACAACCA"
PRINT " ACCCCCCCCCCCCCA™
PRINT " ACCCCCCCCCCCCCA”
PRINT " ACCAACACACAACCA"
PRINT " ACCACACACACCA"
PRINT " ACCACACACCA"
PRINT " ACCACACCA"
PRINT " ACCACCA"
PRINT " ACCCA"
PRINT " ACA"
PRINT " A"
FOR Y=0 TO 17
FOR X=11 TO 25
LOCATE X,Y,C
IF CHR$(C)="A" THEN POSITION
X,Y:PRINT CHR$(16)
IF CHR$(C)="B" THEN POSITION
X,Y:PRINT CHR$(20)
IF CHR$(C)="C" THEN POSITION
X,Y:PRINT CHR$(160)
NEXT X
NEXT Y
POKE 752,0
END

In the first part of the program we create a picure, using the letters
A, B, and C. Then, with the help of the LOCATE and IF . .. THEN
commands, we change the letters A, B, and C to other characters to

obtain a design.

The LOCATE command is often used in simple games to deter-
mine whether your “ship” hit a wall or some other object.

Using Sound and Game
Controllers

7.1 Using Sound

ATARI computers have one of the best sound chips available
for home computers. You can synthesize many sounds such as
waves, explosions, and “pure” tones. You can produce 4 different
sounds at the same time. Each sound is called a voice. For
instance, you could have 2 voices playing a song and the other two
producing breaking waves in the background.

To produce sounds on the ATARI, you use the SOUND state-
ment. It has the following form:

SOUND <VOICE>, <NOTE>, <TONE>, <VOLUME>
Example: SOUND O, 121, 10, 10

Let us explain VOICE, NOTE, TONE, and VOLUME. As we
already stated, you may produce up to four individual sounds, or
voices, simultaneously. These are numbered 0, 1, 2, and 3. If you
wish to produce a single sound, you may use any of these num-
bers for VOICE. If you wish to make several sounds, you give a
separate SOUND statement for each, and use different numbers
for VOICE. Once a voice is turned on, it will stay on until you turn
it off by another SOUND statement with the same voice number
or by an END statement. For example, SOUND 1,0,0,0 turns off
voice 1.

NOTE can range from 0 to 255. It determines the pitch of the
sound produced. Table 7-1 shows the musical notes certain NOTE
numbers produce:

Table 7-1. The musical notes produced by NOTE

numbers.

NOTE number Musical note
29 C

31 B

169

170 7 / Using Sound and Game Controllers

33 A# or Bp
35 A

37 G# or Ap
40 G

42 F# or Gp
45 F

47 E

50 D# or Ep
53 D

57 C# or Dp
60 C

64 B

68 A# or Bp
72 A

76 G# or Ap
81 G

85 F# or Gp
91 F

96 E

102 D# or Ep
108 D

114 C# orDp
121 Middle C

128 B

136 A# or Bp
144 A

153 G# or Ap
162 G

173 F# or Bp

182 F

193 E

204 D# orEp
217 D

230 C# orDp
243 C

TONE can be any even number from 0 to 14. It represents the
amount of distortion of the sound. The numbers 10 and 14 pro-
duce pure tones.

VOLUME can also be any even number from 0 to 14. It deter-
mines the loudness of the sound. 14 is loud and 0 is off. 8 is an
average number.

Now type in and run the following program:

10 FOR NOTE=0 TO 254
20 SOUND O,NOTE,10,10

7.1 Using Sound 171

30 NEXT NOTE
40 END

The above program uses only one voice and changes only the
pitch. It does not change the distortion or volume. Here is a pro-
gram that changes only the volume:

10 FOR VOLUME=14 TO O STEP -2

20 SOUND 0,121,10,VOLUME

30 FOR DELAY1=1 TO 350

40 NEXT DELAY1

50 SOUND 0,0,0,0:REM -Turns off sound
60 FOR DELAYZ2=1 TO 150

70 NEXT DELAYZ2

80 NEXT VOLUME

90 END

This program changes the volume of a certain note. Notice the
delay loops. If they were omitted, the sound would change so fast
you couldn’t hear the individual sounds very well. Here is a pro-
gram that changes only the distortion:

10 FOR DISTORTION=0 TO 14 STEP 2

20 SOUND 0,10,DISTORTION,10

30 FOR DELAY1=1 TO 350

40 NEXT DELAY1

50 SOUND 0,0,0,0:REM -Turns off the sound-
60 FOR DELAY2=1 TO 150

70 NEXT DELAY2

80 NEXT DISTORTION

90 END

The preceding program does not produce very pleasant sounds,
but it does illustrate what different distortions can do.

TEST YOUR UNDERSTANDING 1 (answers on
page 173)

In the statement
SOUND A,B,C,D

which variable stands for volume, which for pitch, which for
voice, and which for distortion.

Here are some programs that produce some interesting sound
effects:

172 7 / Using Sound and Game Controllers

BREAKING WAVES

10 FOR NOTE1=5 TO 20
20 SOUND O,NOTE1,0,14

30 FOR DELAY1=1 T0 100

40 NEXT DELAY1

50 NEXT NOTE1

60 FOR NOTE2=20 TO 5 STEP -1
70 SOUND 0,NOTE2,0,10

80 FOR DELAY2=1 TO 75

90 NEXT DELAY2

100 NEXT NOTE2

110 END

BOUNCING BALL

10 TIME=500

20 SOUND 0,15,2,10

30 FOR DELAY1=1 TO 10
40 NEXT DELAY1

50 SOuND 0,0,0,0:REM =Turn off sound-
60 FOR DELAY2=1 TO TIME
70 NEXT DELAYZ2

80 TIME=TIME/1.5

90 1IF TIME<1 THEN END
100 GOTO 20

110 END

DROPPING BOMBS

10 FOR PITCH=50 TO 255

20 SOUND O,PITCH,10,4

30 NEXT PITCH

40 FOR VOLUME=14 TO O STEP -0.1
50 SOUND 0,255,0,VOLUME

60 SOUND 1,10,0,VOLUME

70 SOUND 2,150,2,VOLUME

80 NEXT VOLUME

90 END

EMERGENCY BROADCASTING SYSTEM

10 SOUND 0,28,10,10
20 SOUND 1,32,10,10
30 GO0TO 30

40 END

7.2 Using Joysticks 173

PINBALL MACHINE

10 FOR NOTE1=0 TO 15

20 SOUND 0,NOTE,2,10
30 FOR DELAY=1 TO 10
40 NEXT DELAY

50 NEXT NOTE1

60 FOR NOTE2=14 TO O STEP -1
70 SOUND 0,NOTE2,2,10
80 FOR DELAY=1 TO 10
90 NEXT DELAY

100 NEXT NOTE2

110 END

With a little practice you will be able to produce sound to go
along with your own programs.

ANSWER TO TEST YOUR UNDERSTANDING 1

1: D stands for volume
B stands for pitch
A stands for voice
C stands for distortion

7.2 Using Joysticks

A joystick is used for most arcade games and can be used with
ATARI computers, too. The standard ATARI joystick is shown in
Figure 7-1.

Frequently, a joystick is used in games to move something
around on the screen. The direction you push the lever on the joy-
stick determines the direction of motion on the screen. If you have
an ATARI joystick, it should be held in such a way that the red
button is in the upper left corner.

In this section, we will explain how to use joysticks. The ATARI
400 and 800 have four jacks (numbered 1-4) for connecting joy-
sticks (see Figures 7-2 and 7-4, respectively). The ATARI 600XL
and 800XL have two jacks, numbered 1 and 2, on the right side of
the computer (see Figures 7-3 and 7-5, respectively). The ATARI
1200XL has two jacks, numbered 1 and 2, on the left side of the
computer (see Figure 7-6).

For this section we suggest you plug your joystick in jack 1 of
your computer. Then, type in this program:

174

7 / Using Sound and Game Controllers

Figure 7-1. A standard ATARI joystick.

10 PRINT STICK(O)
20 GOoTO 10

Notice the 0 in STICK(0). It refers to the joystick in jack 1. When-
ever the computer refers to a joystick, it always uses the number
that is one less than the number of the jack into which the joystick
is plugged. Now type RUN and start moving the joystick around.
Whenever you push the lever on the joystick in any direction, the
computer will print a number corresponding to the direction.
When you are not pushing the lever on the joystick in any direc-
tion or there is no joystick plugged in, the computer will print out
the number 15. There are eight positions in which you can push
the lever: left, right, up, down, and the four diagonal directions.
When the computer encounters the statement

PRINT STICK(O)

in a program, it will return a value depending upon the direction
in which you are pushing the lever on the joystick in jack 1. Figure
7-7 shows the top view of an ATARI joystick with the numbers an
ATARI computer associates with the various directions the lever
can be pushed. We will call these the direction numbers.

7.2 Using Joysticks 175

Figure 7-2. The jacks on the ATARI 400.

If a joystick is in jack 1, STICK(0) gives the direction number of
that joystick. STICK(1) gives the direction number of the joystick
in jack 2, and so on. Naturally, it is possible to use more than 1
joystick in a program. Shortly, we will present a program that

Figure 7-3. The jacks on the ATARI 600XL.

176 7 / Using Sound and Game Controllers

Figure 7-4. The jacks on the ATARI 800.

Figure 7-5. The jacks on the ATARI 800XL.

illustrates how the joystick can be used. But, first, let us point out
that you can assign a variable to STICK(0) as follows:

10 LET D=STICK(O)

Then you could use D throughout a program for the direction num-
ber. Of course, you could use any other variable in place of D and
make the assignment on any other line of the program, if you wished.

Here is our program. It will allow you to move a plus sign
around the screen. Of course, you don’t have to type the REM
statements in. :

10 GRAPHICS O:REM -Clear the screen-

20 POKE 752,1: REM -Turn off cursor-

30 LET X=20:REM -Initial horizontal position
of plus sign-

40

50

60
70
80
90
100

110
120
130
140
150
160
170
180
190

7.2 Using Joysticks 177

LET Y=12:REM -Initial vertical position
of plus sign-

LET D=STICK(O):REM -Direction of joystick
#1

IF D=11 THEN LET X=X-1:REM -move left-

IF D=7 THEN LET X=X+1:REM -move right-

IF D=14 THEN LET Y=Y-1:REM -move up-

IF D=13 THEN LET Y=Y+1:REM -move down-

IF D=10 THEN LET X=X-1:LET Y=Y-1:REM -
Move up and left-

IF D=6 THEN LET X=X+1:LET Y=Y-1:REM -Move
up and right-

IF D=9 THEN LET X=X-1:LET Y=Y+1:REM -Move
down and left-

IF D=5 THEN LET X=X+1:LET Y=Y+1:REM -Move
down and right-

IF X<O THEN LET X=0:REM -Stop at left
margin-

IF X>38 THEN LET X=38:REM -Stop at right
margin-

IF YO THEN LET Y=0:REM -Stop at top
margin=-

IF Y>21 THEN LET Y=21:REM -Stop at bottom
margin-

IF X<>0X OR Y<>0Y THEN POSITION
OX,0Y:PRINT " ":REM -Erase last position
POSITION X,Y:PRINT "+":REM -Print new
plus sign-

(eoeoceoeeennnd

Figure 7-6. The jacks on the ATARI 1200XL.

178 7 / Using Sound and Game Controllers

200 LET OX=X:LET OY=Y:REM -Remember current
position-
210 GOTO 50:REM -Loop-

Figure 7-7. The top view of an ATARI joystick.

Type in the preceding program and run it. Plug a joystick in
jack 1 and move your plus sign around. Let us explain briefly what
the individual parts of the program do:

® Lines 30-40 set the the initial position of the plus sign to the center
of the screen.

® Line 50 detects the direction in which the lever on the joystick is
pushed.

® Lines 60-130 determine the coordinates of the position to which the
plus sign is to be moved (according to the joystick).

® Lines 140-170 ensure that the plus sign doesn’t go off the screen.

7.2 Using Joysticks 179

® Line 180 erases the plus sign from the old position (if the new posi-
tion is different from the old position).

® Line 190 prints a plus sign at the new position.
® Line 200 “remembers” the current position of the plus sign.
® Line 210 takes us back to line 50 and the process begins again.

Make sure you understand how this program works. You may
have to read this section a few times, but you should be able to
grasp it.

At this point, you have probably noticed a small red button at
the top left corner of your joystick. This is called the trigger or fire
button. In games, it is most commonly used much like the trigger
of a gun. When you press the trigger, you will shoot bullets, drop
bombs, launch rockets, etc.

You detect whether the button is pressed much as you detect
whether the lever on the joystick is pushed in a certain direction.
Try typing this while holding down the button of your joystick:

PRINT STRIG(O)

The computer should have printed “0” on the screen. When you
type PRINT STRIG(0), the computer will either return a 1 or 0. 1
means the button is not being pressed and 0 means it is. We can
detect whether the trigger of a joystick plugged in any jack is
being pressed by typing

PRINT STRIG(X)

where X is one less than the jack number. We will now add some
line numbers to the previous program. Type in each of these lines:

205 IF STRIG(0)=0 THEN GOSUB 220: REM -If
trigger is pressed, jump to the
subroutine at Lline 220-

220 POSITION 0,22:PRINT D I S

230 POSITION 5,22:PRINT "Y=";Y;" "

240 FOR A=0 TO 30

250 SOUND 0,A,10,10

260 NEXT A

270 SOUND 0,0,0,0

280 RETURN

290 END

Now run the program with the changes. Try pressing the joy-
stick trigger. You will see the X (horizontal) and Y (vertical) coor-
dinates of your plus sign. You will also hear a sound if the volume
on your TV is turned up. Make sure you understand this program.
If you don't, reread this section.

180 7 / Using Sound and Game Controllers

TEST YOUR UNDERSTANDING 1 (answers on
page 180)

a. Write a program that prints the direction the lever on a
joystick in jack 2 is being pressed.

b. Write another program that detects whether the trigger
on a joystick in jack 2 is being pressed.

ANSWERS TO TEST YOUR UNDERSTANDING 1

1. a. 10 LET D=STICK(1)
20 PRINT "THE DIRECTION IS ";
30 IF D=14 THEN PRINT "UP"
40 IF D=6 THEN PRINT '"UPPER RIGHT"
50 IF D=7 THEN PRINT "RIGHT"
60 IF D=5 THEN PRINT "LOWER RIGHT"
70 IF D=13 THEN PRINT "DOWN"
80 IF D=9 THEN PRINT "LOWER LEFT"
90 IF D=11 THEN PRINT "LEFT"
100 IF D=10 THEN PRINT "UPPER LEFT"
110 G010 10
120 END

b. 10 LET S=STRIG(1)
20 IF S=0 THEN PRINT "THE TRIGGER IS
BEING PRESSED."
30 IF S=1 THEN PRINT "THE TRIGGER IS
NOT BEING PRESSED."
40 GOTO 10
50 END

7.3 Using Paddles

In this section, we will explain how to use an ATARI paddle,
another kind of game controller. If you have not read Section 7.2,
please do so now. This section will be much easier to comprehend
if you understand joysticks. A set of standard ATARI paddles is
shown in Figure 7-8.

Paddles plug into the same ports as joysticks. We will assume you
have a paddle plugged into jack 1. Notice there are 2 paddles for 1

7.3 Using Paddles 181

Figure 7-8. A set of standard ATARI paddles.

connector. The one on the left is paddle 0. The other one is paddle
1. We suggest you put a piece of tape on paddle 0 so you can find
it easily. The paddles in jack 2 are paddles 2 and 3, and so on.

Paddles in arcades are usually used for moving an object along a
specific path. For instance, in the game called BREAKOUT, you
use a paddle to move a small barrier along the bottom of the
screen.

Try typing in and running this program:

10 PRINT PADDLE(O),

20 PRINT PADDLE(1)

30 6oTO 10

40 END

If you turn the knobs on the paddles all the way to the left, 228
will be displayed. If you turn the knobs on the paddles all the way
to the right, 0 will be displayed.

You detect whether the trigger on the paddle is pressed much as
you detect whether the trigger on the joystick is pressed, but
instead of using PRINT STRIG(0), you use PRINT PTRIG(0). The

182

7 / Using Sound and Game Controllers

number 1 means the trigger is not being pressed and 0 means it is.
Type in the following program and run it:

10 IF PTRIG(0)=0 THEN PRINT "TRIGGER PRESSED"
20 GOTO 10
30 END

When you press the trigger on paddle 0, the computer should
print TRIGGER PRESSED on the screen until you release the trig-
ger. If you are not pressing the trigger, the computer will not dis-
play anything. Here is a program that illustrates how a paddle can
be used:

10 LET R=228/39.99
20 LET P=PADDLE(OQ)
30 LET X=INT(P/R)
40 POSITION X,23
50 PRINT "+"

60 GOTO 20

70 END

Since PADDLE(0) can be as large as 228, the number P/R will be
between 0 and 39.99. Therefore, X will be an integer between 0
and 39. Lines 30 and 40 will print a plus sign on the bottom line of
the screen according to how far the dial on the paddle is turned.
Each time something is to be printed on the bottom line of the
screen, the computer automatically “scrolls” the screen upward to
make room for a new line. The top line is pushed off the screen,
the second line is pushed to the top, and so forth. To see this
effect, plug a paddle into jack 1, run the program, and turn the
knob on paddle 0.

Games

8.1 How to Make Your Own Games

In the last few chapters we learned about graphics, sound, joy-
sticks, paddles, and so forth, but we haven’t really applied them to
making a good program that might impress someone. In this chap-
ter we will explain how to make a game, and even provide some
games you can type in and play.

If you have ever visited a computer store or read a computer
magazine, you probably know how popular and well advertised
computer games are. Most games are also costly, to say the least.
The average price of a game is about $29.95. If you are good at
programming, you could make your own games and, perhaps, sell
them.

When making a game, there is one thing you must never forget:
ORGANIZATION. Without some kind of organization, it is very
difficult, if not impossible, to make a game. Before you do any-
thing, you must think of a game you want to make. You could
modify an existing game, or create a totally new one. Once you
have your game idea, make a list of everything that moves in the
program. This can include non-living objects, such as trains, rocks,
and so forth.

For example, imagine a game in which you are a frog. You chase
flies, and snakes chase you. The list of moving objects would be:

1. You (the frog)
2. Snakes
3. Flies

After you make this list, imagine the game in play. Think about
what the computer must do to make the game work correctly.
Think about the order of the movements of the objects in the table
above. Think about what each one does while it moves. Make a
general outline including these facts. Here is an example of such a
general outline:

183

184 8 / Games

I. Move the frog
A. Check if it is on a log
1. No, end game
II. Move snakes
A. Check if any snake collides with frog
1. Yes, end game
III. Move flies
A. Check if frog collides with a fly
1. Yes, add 10 to nutrition
2. No, subtract 1 from nutrition
B. Check if nutrition is below 0

1. Yes, end game
IV. GOTO step 1

This list will help you to form the general structure of your
program.

The first list was intended to help you make the second list.
Now that you have the second list down, you should make a varia-
ble list. This is a list which tells you what variables are going to be
used in your program. You may want to add to this list while writ-
ing a program. This is perfectly fine.

VARIABLE USE

A General purpose variable
D Delay loops

N Nutrition

FX X-coordinate of frog

FY Y-coordinate of frog
FLX(30) X-coordinate of flies
FLY(30) Y-coordinate of flies
$X(10) X-coordinate of snakes
SY(10) Y-coordinate of snakes

If your program will contain many subroutines, write down each
subroutine’s line number and use in a table like this:

SUBROUTINE LINE USE

1000 Make a jumping sound

2000 Make a crunching sound when you get
a fly

3000 “Kill” frog

4000 Set up screen color, draw logs, etc.

This will help you keep track of where to go for a specific
subroutine.

8.2 Tic Tac Toe 185

Now that you have completed this table, you have two choices:
either make your program right now or make a very specific out-
line (or flowchart). We discussed flowcharts earlier in the book. It
will help beginners, but if you think you are good enough at pro-
gramming to skip this step, go ahead. The choice if yours, but
make sure you pick the option which will help you most.

After you complete all these tables and lists, you are ready to sit
down at your computer and start programming. A good idea is to
save the program on disk or cassette every page or so of writing.
This is to prepare for sudden “black outs” of the computer. This
happens once in a while. If you follow all the steps provided, your
game will probably work with only minor debugging. Here is a
summary of the steps involved in making a game:

Think of a topic.

Make a list of everything which moves.

Make a general outline of your program.

Make a variable list.

Make a table of the subroutines in your program.

Make a flowchart of your program (optional).

Write the program on the computer, remembering to save
the program occasionally.

8. Debug the program if necessary.

NSO r v

NOTE: NEVER use your computer during a storm unless
you have a power surge protector that protects your com-
puter from surges and dips in electricity, often caused by
lightning. Make sure there isn’t too much static electricity in
the room. Even a small spark can erase and destroy your
computer’s memory forever!

8.2 Tic Tac Toe

In Section 8.1, we discussed how to make a game. In this and
the next section, we will actually provide games you can type in
and play. We will provide all the tables and lists we used for mak-
ing the games.

In this section we provide a version of the popular tic tac toe
game. The program is written so that two people play the game.
The computer makes sure you don’t cheat (putting a mark in an
already occupied square) and it tells you when someone has won

186 8 / Games

the game. You specify which box you want to put your mark in by
giving a number from 1-9. There is a small table next to the tic tac
toe board that shows what each number means.

Here are the tables and lists involved in the program.

General outline:

L. Draw tic tac toe board
II. Ask players’ names
A. Ask first player’s name
B. Ask second player’s name
III. Determine which player moves first
IV. Ask for move of player up next
V. Check for validity of move
VI. Plot X or O in square
VII. Check if person won
Yes—ask if another game should be played
Yes—GOTO step I
No—end game
No—GOTO step IV

Variable list:

variable use
A General purpose

B General purpose

D Delay

F Tells whose turn it is

M Number (coordinate) of person’s move

A% General purpose string

P1$ Name of player 1

P2$ Name of player 2

G(3,3) Stores characters which are in the tic tac toe grid

Subroutine list:
line # use
650 Flash arrow
770 Delete unwanted text

The descriptions of the various lines in our program are as
follows:

® Lines 50-170 draw the grid and the numbers associated with it.

® Lines 180-290 ask for the players’ names.

® Lines 310-350 determine who goes first.

® Lines 370-540 ask for the player's move, draw the X or O, and
record the move in the subscripted variable.

® Lines 550-620 check for a win.

Here is the program:
10 GRAPHICS 0:POKE 752,1

20 SETCOLOR

30 CLR :DIM P1$(20),P2$(20),A%$(1),6(3,3)

2,0,0

8.2 Tic Tac Toe

187

40 FOR A=0 TO 3:FOR B=0 TO 3:G(A,B)=0:NEXT

B:NEXT A
50 COLOR 124
60 PLOT 5,0:
70 PLOT 9,0:
90 COLOR 18
100 PLOT 2,3:
110 PLOT 2,7:
120 COLOR 19
130 PLOT 5,3:
140 PLOT 5,7:
150 POSITION
160 POSITION
170 POSITION
180 POSITION
190 PRINT "PL
200 PRINT "WH
210 GOSUB 650
220 POSITION
230 INPUT P1$%
240 GosuB 770
250 PRINT "PL
260 PRINT "WH
270 GosuB 650
280 POSITION
290 INPUT P2%
300 GosuB 770

DRAWTO 5,10
DRAWTO 9,10

DRAWTO 12,3
DRAWTO 12,7

PLOT 9,3
PLOT 9,7
15,4 :PRINT
15,5:PRINT
15,6:PRINT
2,12

AYER 1"

AT IS YOUR

25,13
AYER 2"
AT IS YOUR

25,13

ll1 23"
"456"
"789"

FIRST NAME?"

FIRST NAME?"

310 LET F=INT(2*RND(1))+1
320 IF F=1 THEN PRINT P2%;
330 IF F=2 THEN PRINT P1$;
340 PRINT " WILL GO FIRST"
350 FOR D=1 TO 500:NEXT D

360 REM -Main
370 GosuB 770
380 F=F+1:IF

390 IF F=1 TH
400 IF F=2 TH
410 PRINT "'S
420 IF F=1 TH
430 IF F=2 TH

Loop-

F=3 THEN F=
EN PRINT P1

1
$;

EN PRINT PZ2$;

TURN";
EN PRINT "
EN PRINT "

o)
)"

440 PRINT "WHAT IS YOUR MOVE";:INPUT M

188

8 / Games

450 IF M<1 OR M>9 THEN GOSUB 870:GOTO 440

460 IF M<4 THEN IF G(M,1)<>0 THEN GOSUB
870:G0TO0 440

470 IF M>3 AND M<7 THEN IF G(M-3,2)<>0 THEN
GOSUB 870:GO0TO 440

480 IF M>6 THEN IF G(M-6, 3)<>0 THEN GOSUB
870:G0TO0 440

490 IF F=1 THEN A$="X"

500 IF F=2 THEN A$="0"

510 POSITION 4*M-1-12*%INT((M-1)/3),
INTC(M=-1)/3)*%4+1:PRINT A$

520 IF M<4 THEN G(M, 1)=F

530 IF M>3 AND M<7 THEN G(M-3,2)=F

540 IF M>6 THEN G(M-6,3)=F

550 IF G(1,1)=F AND G(1,2)=F AND G(1,3)=F
THEN 790

560 IF G(1,1)=F AND G(2,2)=F AND G(3,3)=F
THEN 790

570 IF G(1,1)=F AND G(2,1)=F AND G(3,1)=F
THEN 790

580 IF G(3,1)=F AND G(2,2)=F AND G(1,3)=F
THEN 790

590 IF G(3,1)=F AND G(3,2)=F AND G(3,3)=F
THEN 790

600 IF G(1,2)=F AND G(2,2)=F AND G(3,2)=F
THEN 790

610 IF G(1,3)=F AND G(2,3)=F AND G(3,3)=F
THEN 790

620 IF G(1,2)=F AND G(2,2)=F AND G(3,2)=F
THEN 790

630 GOTO 370

640 REM -Flash arrow-

650 POKE 752,1

660 FOR B=1 TO 3

670 POSITION 11,12

680 PRINT ''<-="

690 FOR D=1 TO 50:NEXT D

700 POSITION 11,12

710 PRINT " "

720 FOR D=1 TO S50:NEXT D

730 NEXT B

740 POKE 752,0

750 RETURN

760 REM -DELETE TEXT-

770 POSITION 2,12:PRINT CHR$(156) ;CHR$(156);

780 RETURN

790 GOSUB 770:IF F=1 THEN PRINT P1$;

800
810
820
830
840
850
860
870

880
890

8.3 CHASE 189

IF F=2 THEN PRINT P2$;

PRINT " WINS!!I"

PRINT

PRINT "WANT TO PLAY AGAIN (Y/N)";
INPUT AS$

IF A$="Y" THEN 10

IF A$="N" THEN END

SOUND 0,15,2,10:FOR D=1 TO 100:NEXT
D:SOuUND 0,0,0,0

POSITION 2,13:PRINT CHR$(156);
RETURN

8.3 CHASE

CHAGSE is made totally in text mode 0. In the game, you are a
circle that you control with joystick #1. You are being chased by a
strange-looking monster. Your quest is to eat the cauliflower,
which you do by running into it. The cauliflower moves around
the screen randomly. The screen is surrounded by a wall of
inverse space characters. If you hit this wall, you immediately get
repositioned 10 spaces away from it. But, the wall is deadly to the
monster and cauliflower, so they will not touch it. If you are being
chased by the monster, you can move toward the wall and get
“hyperwarped” 10 spaces away. When you play the game, you
will see what we mean.

Here are the tables and lists involved with the program.

Moving objects:

1.
2.
3.

Person (Control-T)
The monster (Inverse control-S)
The cauliflower (Control-L)

General outline:

L

II.

L.

Move Person
A. Check for collision with wall
Yes—Move person 10 spaces
B. Check for collision with cauliflower
Yes—Person wins game
Move monster
A. Check for collision with person
Yes—person loses game
Move cauliflower

IV. GOTO step I

190 8 / Games

Variable list:

variable use

A General purpose

PX X-coordinate of you

PY Y-coordinate of you

MX X-coordinate of the monster
MY Y-coordinate of the monster
CX X-coordinate of the cauliflower
CYy Y-coordinate of the cauliflower

OPX Old X-coordinate of you

OPY Old Y-coordinate of you

OMX Old X-coordinate of the monster
OMY Old Y-coordinate of the monster
OCX Old X-coordinate of the cauliflower
OCY Old Y-coordinate of the cauliflower

S Value of STICK(0)

R Random direction of cauliflower
D Delay variable

A% Want to play again? (INPUT A$)

Subroutine list:

line # use
690 Make 3 sounds if you hit a wall

Here is the program:

10 GRAPHICS 0: CLR

20 DIM A$(1):POKE 752,1: REM -Turn off
cursor-

30 SETCOLOR 2,0,0

40 REM -Draw screen-

50 COLOR 160: REM -ATASCII value for an
inverse space-

60 PLOT 0,0

70 DRAWTO 38,0

80 DRAWTO 38,22

90 DRAWTO 0,22

100 DRAWTO 0,0

110 PLOT 0,0

120 REM -Set position of everything-

130 LET PX=INT(37*RND(1))+1

140 LET PY=INT(21*RND(1))+1

150 LET MX=INT(37*RND(1))+1

160 LET MY=INT(21*RND(1))+1

170 LET CX=INT(37*RND(1))+1

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

8.3 CHASE 191

LET CY=INT(21*RND(1))+1

LET OPX=PX

LET OPY=PY

LET OMX=MX

LET OMY=MY

LET 0CX=CX

LET OCY=CY

IF PX=MX AND PY=MY THEN 130

IF PX=CX AND PY=CY THEN 130

IF MX=CX AND MY=CY THEN 130

REM -Move person-

S=STICK(Q)

IF $=6 OR S=10 OR S=14 THEN LET PY=PY-1
IF S=5 OR S$=9 OR S=13 THEN LET PY=PY+1
IF $=9 OR S=10 OR S=11 THEN LET PX=PX-1
IF S=5 OR S=6 OR S=7 THEN LET PX=PX+1
REM -Hit wall?-

IF PX<1 THEN LET PX=10: GOSUB 690

IF PX>37 THEN LET PX=28: GOSUB 690

IF PY<1 THEN LET PY=10: GOSUB 690

IF PY>21 THEN LET PY=12: GOSUB 690

IF OPX<>PX OR OPY<>PY THEN POSITION
OPX,OPY: PRINT " "

POSITION PX,PY: PRINT CHR$(20)

LET OPX=PX: LET OPY=PY

REM -Collision with cauliflower-

IF PX=CX AND PY=CY THEN 790

REM -Move monster-

IF MX<PX THEN LET MX=MX+1

IF MX>PX THEN LET MX=MX-1

IF MY<PY THEN LET MY=MY+1

IF MY>PY THEN LET MY=MY-1

POSITION OMX,OMY: PRINT " "

POSITION MX,MY: PRINT CHR$(147)

LET OMX=MX: LET OMY=MY

REM -Check for collision with person-
IF MX=PX AND MY=PY THEN 860

REM -Move cauliflower-

LET R=INT(8*RND(1))+1

IF R=1 OR R=2 OR R=8 THEN LET CY=CY-1
IF R=4 OR R=5 OR R=6 THEN LET CY=CY+1
IF R=6 OR R=7 OR R=8 THEN LET CX=CX-1
IF R=2 OR R=3 OR R=4 THEN LET CX=CX+1
IF CX<1 THEN LET CX=1

IF CX>37 THEN LET CX=37

IF CY<1 THEN LET CY=1

IF CY>21 THEN LET CY=21

192 8 / Games

640 IF CX<>0CX OR CY<>O0CY THEN POSITION
0CX,0CY: PRINT " "

650 POSITION CX,CY: PRINT CHR$(16)

660 LET OCX=CX: LET OCY=CY

670 GOTO 290

680 REM -Hit wall, make 3 sounds-

690 FOR A=1 T0 3

700 SOUND 0,1,2,14

710 FOR D=1 TO 10

720 NEXT D

730 SOUND 0,0,0,0

740 FOR D=1 TO 5

750 NEXT D

760 NEXT A

770 RETURN

780 REM -You won-

790 POSITION 14,10: PRINT "GREAT JOB!"

800 FOR A=200 TO O STEP -1

810 SOUND 0,A,10,10

820 SOUND 1,A+1,10,10

830 NEXT A

840 GOTO 910

850 REM -You lost-

860 POSITION 14,10: PRINT "I'M SORRY!"

870 FOR A=0 TO 200

880 SOUND 0,A,10,10

890 SOUND 1,A+1,10,10

900 NEXT A

910 sounp 0,0,0,0: SOunD 1,0,0,0

920 POSITION 7,11: PRINT "WANT TO PLAY AGAIN
(Y/N)'";: INPUT A$

930 IF A$="Y" THEN 10

940 IF A$="N" THEN GRAPHICS 0O: END

950 GOTO 920

Data Files

9.1 Introduction

One of the most important applications of computers is data
processing. In many situations it is necessary to store and retrieve
large quantities of data.

For example, a personnel department would keep a file of per-
sonal data on each employee containing name, address, age, social
security number, date employed, position, salary, and so forth. A
warehouse would maintain an inventory for each product, with the
following information: product name, supplier, current inventory,
date of last shipment, and so forth.

Files like these are called data files. They may contain hundreds,
thousands, or even hundreds of thousands of entries. Because of
the great speed and the enormous storage capacity of disks, the
computer is well suited to handle data files.

ATARI computers communicate with peripheral devices
through any of eight channels. The channels are numbered 0
through 7. Channels 0, 6, and 7 are used by the computer, so you
should restrict your use to channels 1 through 5, although it is
possible to use 6 or 7 in certain situations. You will learn how to
use the channel numbers when we introduce commands in the
next section.

When you send information to a peripheral device, you write
to that device. You can write to the screen, printer, cassette
recorder, or disk drive. When you receive information, you read
from the device. You can read from the keyboard, screen, cas-
sette recorder, or disk drive.

When you use data files with a disk drive, it is necessary to
name the files. The legal names are exactly the same as for pro-
grams (see Section 5.2). Here are some examples of legal names
for data files:

PAYROLL
SALES1
EMPLOYEE.DAT
GRADES.83

193

194 9 / Data Files

9.2 Commands With Data Files

In this section we will introduce some of the commands used in
conjunction with data files. They will be explained further in Sec-
tion 9.3.

OPEN and CLOSE

In order to read or write to a file, you must first “open” a chan-
nel to the appropriate peripheral device, just as you must open a
filing cabinet to put something in or take something out. For
example, if you want to retrieve a data file from a disk, you must
open a channel to a disk drive. We open a channel with an OPEN
statement. Its form is

OPEN #cC,T,0,"Z"

where Cis a channel number, T is a number representing the kind
of task or tasks to be performed, and Z is a letter representing a
peripheral device. If you are using a disk drive, the name of a data
file must follow D (see below for an example). The number C will
usually be 1, 2, 3, 4, or 5, but may be 6 or 7. For our purposes, T
will be 4, 8, 9, or 12, according to the following scheme:

4 Read from file only

8 Write to file only

9 Append to file

12 Read from or write to file

Some of the letters used for the peripheral devices are:

Cassette recorder

Disk drive

Keyboard

Printer

Screen

Editor (generally used in place of screen)

ML RGO

Here are some examples:

OPEN #1,4,0,"K"

OPEN #2,8,0,"E"

OPEN #3,12,0,"D:PAYROLL.NOV"

To “close” a channel, we use the CLOSE statement. Its form is

CLOSE #C

9.2 Commands With Data Files 195

where C is a channel number. Once a channel has been opened to
a device, it must be closed before it can be opened again to a dif-
ferent or even the same device. If there is any part of a file that is
in the memory waiting to be output to a device, it will be output

when the CLOSE command is given. NEW, END, and RUN auto-

matically close all channels except channel 0, which is used by the
computer for communicating with the screen and keyboard.

PUT and GET

The PUT statement lets you send a numeric value through a
channel which has been opened for writing. Its form is

PUT #C,X

where C is a channel number and X is a number or an expression
(like A +48) that has a numeric value. If X is not an integer, it will
be rounded off. If the resulting integer is not between 0 and 255, it
will be replaced by the remainder that results from division by
256.

When a PUT statement is used with a cassette recorder or disk
drive, the value of X is merely stored. When a PUT statement is
used with the screen, the character with ATASCII number X is
displayed on the screen (see Table 6-4 on page 152). When used
with a printer, the PUT statement causes a character to be printed.

The GET statement is essentially the reverse of the PUT state-
ment. Its form is

GET #C,X

where C is a channel number and X is a variable chosen by you.
Channel #C must be open for reading. This statement assigns an
integer value between 0 and 255 to the chosen variable. When
used with a cassette or disk drive, it merely reads a stored value
and assigns it to X. When used with the screen or keyboard, it
assigns to X the ATASCII number (see Table 6-4 on page 152) of a
character on the screen or from the keyboard. When the computer
encounters a GET statement for the keyboard, it waits for a char-
acter to be keyed in.

PRINT and INPUT

The PRINT and INPUT statements used with data files are simi-
lar to, but not the same as, the standard PRINT and INPUT state-
ments. The PRINT statement allows you to send a string through a

196 9 / Data Files

channel which has been opened for writing. When used with the
screen or printer, it causes a string to be printed on the screen or
by the printer. When used with a cassette recorder or disk drive, it
merely stores the string. The form of the PRINT statement is

PRINT #C;"Xx"
or
PRINT #C;X$

where “X” is a string enclosed in quotes, and X$ is a string varia-
ble. Here are two examples:

PRINT #1;"HELLO"
PRINT #1;A$

The INPUT statement is essentially the reverse of the PRINT
statement. Its form is

INPUT #C;X$

where Cis a channel number and X$ is a string variable chosen by
you. Channel C must be open for reading. Here is an example:

INPUT #1;A$

When used with a cassette recorder, disk drive, screen, or key-
board, an INPUT statement “reads” a string and assigns it to the
chosen string variable. When the INPUT statement is used with
the keyboard, the computer waits for you to type a string and hit
RETURN before it proceeds. It will not prompt you with a ques-
tion mark and will not display on the screen what you type. You
may not use an INPUT statement to read a numeric value stored
by a PUT statement.

9.3 Examples of Data Files

In this section we will provide examples of data files and the
related commands. There is a program for each of the common
peripheral devices, namely, the screen, keyboard, printer, cassette
recorder, and disk drive.

Screen

For an illustration of using the screen, we will write a program
that does the following: First it instructs the computer to list the
program on the screen (in mode 0). Then it examines every loca-
tion on the screen and stores the contents of the location in a sub-

9.3 Examples of Data Files 197

scripted variable. Afterwards, it clears the screen and reprints the
old contents of the screen using the information in the subscripted

variable. Whenever the computer encounters a GET or PUT state-

ment for the screen, it reads or prints at the current location of the
cursor and advances the cursor one space. At the end of a line the
cursor is advanced to the beginning of the next line. If the cursor is
advanced from the lower right corner of the screen, an error 141
results.

By using a loop, we will have the computer examine every loca-
tion. We will use the POSITION statement to place the cursor at
the upper left corner of the screen to begin the process. In mode 0
there are 40%24=960 locations on the screen, so our loop will
repeat 960 times.

Here is the program:

10 OPEN #1,12,0,"S:":REM -Open channel #1
for both reading and writing to the
screen-

20 POKE 82,0:REM -Left screen margin-

30 DIM S(960)

40 LIST:REM -It is possible to use direct
commands such as NEW, RUN, and LIST in a
program-

50 POSITION 0,0

60 FOR A=1 TO 960

70 GET #1,B:REM -Examine contents of

current location-

80 LET SC(A)=B:REM -Store contents of

screen location-

90 NEXT A

100 GRAPHICS 0:REM -Clears screen-

110 POKE 752,1:REM -Makes cursor disappear-

120 FOR A=1 TO 960

130 PUT #1,SCA):REM -Put data back on the

screen-

140 NEXT A

150 END

Keyboard

The following program allows you to type at the keyboard and
have whatever you type displayed on the screen in mode 0. At
the end of a display line, the cursor will advance to the beginning
of the next line, as usual. However, you may have the cursor
advance to the beginning of the next line at any time by hitting

198

9 / Data Files

RETURN, just as you can on an ordinary typewriter. Also, the
computer will not display any error messages when you hit
RETURN (as it ordinarily would if what you type is unintel-
ligible to the computer). We have added sound effects for each
time a key is pressed. Notice that the computer always waits for
a character to be pressed at line 30 before it goes on to line 40.
Here is the program:

10 GRAPHICS 0

20 OPEN #1,4,0,"K"

30 GET #1,A

40 PRINT CHR$(A);

50 FOR A=14 TO O STEP -2
60 SOUND 0,A,2,A

70 NEXT A

80 GOTO 30

90 END

Printer

The following program lets you type on the keyboard and have
what you type be printed by the printer and displayed on the
screen. The screen displays each character as it is typed, but many
printers print in bursts. They store characters in their own mem-
ory, called a buffer, until the buffer is full, you hit RETURN, or
you close the channel to the printer. At that time, it prints every-
thing in its buffer. Some printers have enormous buffers, which
can store entire programs before they are printed!

10 GRAPHICS O

20 OPEN #1,4,0,"K"
30 OPEN #2,8,0,"P"
40 GET #1,A

50 PRINT CHR$(A);
60 PUT #2,A

70 GOTO 40

Cassette Recorder

Below are two programs for a cassette recorder. The first allows
you to record on tape a message that you type on the keyboard.
The second allows you to take the message from the tape and dis-
play it on the screen.

9.3 Examples of Data Files 199

Record message:

10
20
30

40
50
60

GRAPHICS O

DIM A$(120)

PRINT "TYPE MESSAGE TO BE RECORDED ON
TAPE"

INPUT AS$

PRINT

PRINT "PREPARE TAPE, HIT RETURN WHEN
READY"

OPEN #1,8,0,"C"

PRINT #1;A$

CLOSE #1

100 END

Display message:

10
20
30

40
50
60
70
80

GRAPHICS O

DIM A$(120)

PRINT "PREPARE TAPE, HIT RETURN WHEN
READY"

OPEN #1,4,0,"C"

INPUT #1;A$

PRINT A$

CLOSE #1

END

Disk Drive

For the disk drive we will give a more complicated example.
The program allows you to compile a mailing list; that is, a list of
names, addresses, and telephone numbers. When the program
runs, you are shown a menu containing three options. You may
create a file, add to the existing file, or print the existing file. The
reason for having the first option is that you cannot append to an
empty file. The CREATE file merely puts an “A” in the file. Then
you can use the ADD DATA option to enter as many entries as
you would like. If you use the CREATE option when a file already
exists, the file will be erased. The PRINT option allows you to
print all the entries on the screen.

10
20
30
40
50
60

DIM Q$(1),A$(40)

GRAPHICS 0

SETCOLOR 2,0,0

POSITION 2,6

PRINT " 1. CREATE FILE"
PRINT " 2. ADD DATA"

200 9 / Data Files

70
80
90

100
110
120
130
990
1000
1010
1020
1030
1040
1050

1060
1070
1990
2000
2010
2020
2030

2040
2050
2060
2070
2080
2090

2100
2110

2120

2130
2140
2990
3000
3010
3020

PRINT " 3. PRINT DATA"
PRINT

PRINT " ENTER NUMBER (1/2/
3)";

INPUT NU

IF NU<>T AND NU<>2 AND NU<>3 THEN 20
GRAPHICS 0:SETCOLOR 2,0,0

ON NU GOTO 1000,2000,3000

REM -Create file-

PRINT "CREATING A FILE WILL ERASE ANY"
PRINT "EXISTING ENTRIES ON DISK"
PRINT

PRINT "ARE YOU SURE (Y/N)";

INPUT Q$

IF Q$=""Y" THEN OPEN
#1,8,0,"D:MAILLIST.DAT":PUT #1,65
CLOSE #1

GOTO 20

REM -Add data-

TRAP 10000

CLOSE #1

OPEN #1,9,0,"D:MAILLIST.DAT"

PRINT "NAME ";:INPUT A$:PRINT
#1;A%

PRINT "ADDRESS ";:INPUT AS:PRINT
#1;A%

PRINT "CITY ";:INPUT A$:PRINT
#1;A%
PRINT "STATE ";:INPUT A$:PRINT
#1;A%
PRINT "Z1IP ";INPUT AS$:PRINT
#1;A%

PRINT "AREA CODE '";:INPUT A$:PRINT
#1;A%

PRINT "PHONE # ";:INPUT A$:PRINT
#1;A$

PRINT

PRINT "DO YOU WANT TO ENTER MORE
DATA";:INPUT Q%

IF @$="Y" THEN GRAPHICS O0:SETCOLOR
2,0,0:G0T0 2030

CLOSE #1

GOTO 20

REM -Print data-

PRINT "DO YOU WANT TO PRINT ON..."
PRINT

PRINT " 1. SCREEN"

9.3 Examples of Data Files 201

3030 PRINT " 2. PRINTER"
3040 PRINT

3050 PRINT "ENTER NUMBER (1/2)";

3060 INPUT NU

3070 IF NU ><1 AND NU><2 THEN GRAPHICS
0:SETCOLOR 2,0,0:G0TO 3000

3080 GRAPHICS 0:SETCOLOR 2,0,0

3090 TRAP 10000

3100 OPEN #1,4,0,"D:MAILLIST.DAT"
3110 GET #1,A

3120 FOR A=1 TO0 7

3130 TRAP 3190

3140 INPUT #1;A$

3150 IF NU=1 THEN PRINT A$
3160 IF NU=2 THEN LPRINT A$
3170 NEXT A

3175 IF NU=1 THEN PRINT

3176 IF NU=2 THEN LPRINT

3180 GOTO 3120

3190 CLOSE #1

3200 PRINT

3210 PRINT "FILE COMPLETE"
3220 FOR D=1 TO 500

3230 NEXT D

3240 GOTO 20

10000 PRINT '"AN ERROR HAS BEEN ENCOUNTERED!"
10010 sounp 0,20,2,10

10020 FOR D=1 TO 100

10030 NEXT D

10040 sounp 0,0,0,0

10050 FOR D=1 TO 500

10060 NEXT D

10070 GOTO 20

10080 END

Computing and
Mathematical Functions

10.1 Mathematical Functions in ATARI BASIC

In performing scientific computations, it is often necessary to
use a wide variety of mathematical functions, including the square
root, the natural or common logarithm, the exponential, and the
trigonometric functions. ATARI computers have these and several
other functions “built-in.” In this section we will describe these
functions and their use. This chapter deals with technical material.
If you wish to skip it, you may do so.

All mathematical functions in ATARI BASIC work in a similar
fashion. Each function is identified by a sequence of letters (SIN
for sine, LOG for natural logarithm, and so forth). To evaluate a
function at a number X, we write X in parentheses after the func-
tion name. For example, the natural logarithm of X is written
LOG(X). The computer will use the current value of the variable X
and will evaluate the natural logarithm of that; if X is currently 2,
the computer will calculate LOG(2).

ATARI BASIC lets you evaluate a function at any numeric expres-
sion. Thus it is perfectly acceptable to call for calculations such as

SIN(XA24YA2=-3%X)

The computer will first evaluate the expression XA2+YA2-3+X
using the current values of the variables X and Y. Then it will
compute the sine of the resulting number. For example, if X=1
and Y=4, then XA2 + YA2-3+*X=1+16-3=14. So SIN(X~2 +
Y72-3*X) will be evaluated as SIN(14). The value the computer
will return for SIN(14) is 0.9906071858. We will now examine the
functions available in ATARI BASIC.

The Square Root Function

In ATARI BASIC the square root of a number X is denoted by
SQR(X). The number X must be positive or zero. For example,

203

204

10 / Computing and Mathematical Functions

SQR(4)=2. If you attempt to take the square root of a negative
number, the computer will display the error message

ERROR- 3

Example 1. Write a program that prints the square roots of the
first 100 positive integers.

Solution.

10 PRINT "X","SQR(X)"

20 PRINT: REM -Skips a line-
30 FOR X=1 TO 100

40 PRINT X,SQR(X)

50 NEXT X

60 END

Notice in line 40 that we do not use any quotation marks in print-
ing out SQR(X). We want the computer to treat SQR(X) as a
number, not a string.

Example 2. Write a program that accepts the area of a circle
from an INPUT statement and computes the radius of the circle.
Write the program so it will end if a negative area is input, but will
continue to ask for more data as long as non-negative values are
input.

Solution. The area A of a circle of radius R is pi times RA2,
Since the keyboard does not have a symbol for pi, we will use the
approximate value 3.14159265

Thus
A=3.14159265%RA2
which means
RA2=A/3.14159265
or
R=SQR(A/3.14159265)
Here is our program:

10 PRINT "WHAT IS THE AREA OF THE CIRCLE
(ENTER NEGATIVE NUMBER TO QUIT)"

20 INPUT A

30 IF A<O THEN END

40 PRINT "THE RADIUS IS ";SQR(A/3.14159265)

50 G010 10

60 END

10.1 Mathematical Functions in ATARI BASIC 205

Another way to compute the square root of a number X is to use
A In fact, XA.5 and XA(1/2) are theoretically the same as SQR(X)
(although the computer might return slightly different values for
these expressions). We recommend you use SQR for all square
roots. The other notation is convenient for other roots. For exam-
ple, the cube root of a number X can be computed using XA(1/3).

Trigonometric Functions

ATARI computers have the following trigonometric functions
available:

SIN(X) =the sine of the angle X
COS5(X) =the cosine of the angle X

Here the angle X is expressed in terms of radian measure. In this
measurement system, 360 degrees equal two pi (approximately
6.283) radians. This means that one degree equals approximately
01745 radians and one radian equals approximately 57.30
degrees. If you want to calculate trigonometric functions with the

angle X expressed in degrees, you must first give the command
DEG.

Example 3. Write a program that computes and prints the val-
ues of the sine of angles between 0 and 90 degrees in steps of one
degree.

Solution.

10 DEG

20 PRINT "X(DEGS)","SIN(X)"
30 PRINT: REM -Skips a line-
40 FOR X=0 T0 90

50 PRINT X,SIN(X)

60 NEXT X

70 END

Once the DEG command has been given, the computer will con-
tinue to use degrees until it encounters the command RAD, which
instructs the computer to begin using radians again. In the direct
mode, SYSTEM RESET will return the computer to the use of
radians.

There are no special symbols in ATARI BASIC for the other
trigonometric functions, namely, the tangent, cotangent, secant,
and cosecant. They may be computed from the formulas

206

10 / Computing and Mathematical Functions

TAN(X) = SIN(X)/COS(X)
COT(X)=COS(X)/SIN(X)
SEC(X)=1/COS(X)
CSC(X) =1/SIN(X)

For example, to compute the tangent of 29 degrees, you could use
the program

10 DEG
20 PRINT SIN(C29)/C0S(29)
30 END

TEST YOUR UNDERSTANDING 1 (answer on
page 210)

Write a program that calculates and prints the sine, cosine,
and tangent of 450 degrees.

The Inverse Tangent Function

ATARI BASIC has one of the inverse trigonometric functions,
namely, the arctangent (inverse tangent). The arctangent of a
number X is denoted ATN(X). This expression returns an angle
whose tangent is X. The angle returned is expressed in radians
(unless the DEG command has been given and is still in effect) and
is between negative one-half pi(-1.57079632) and one-half pi
(1.57079632).

For example, since the tangent of one-fourth pi radians (45
degrees) is 1, the arctangent of 1 is one-fourth pi. If we give the
DEG command and then call for ATN(1), the computer will
return the value 45.00000033, which is pretty close to the true
value of 45.

Incidentally, since ATN(1) is one-fourth pi (assuming the DEG
command is not in effect), it follows that 4*ATN(1) equals pi. If
you need the value of pi (for the area of a circle, for example) and
can’t remember its value, you can use 4*ATN(1) for its value. But
remember the DEG command must NOT be in effect.

If you need to compute the arcsine (inverse sine) of a number,
you may use the formula

ASN(X)=ATN(X/SQR(1-XA2))

10.1 Mathematical Functions in ATARI BASIC 207

Logarithmic Functions

ATARI BASIC lets you compute both common logarithms
(those to the base 10) and natural logarithms (those to the base e,
which is approximately equal to 2.71828183). The symbol for the
common logarithm of a number X is CLOG(X), and the symbol for
the natural logarithm is LOG(X). For example, CLOG(10)=1,
CLOG(100)=2, CLOG(1000)=3, LOG(e)=1, LOG(e*2)=2, and
LOG(er3)=3. (NOTE: Even though we have written LOGf(e), the
computer does not recognize the symbol “e” as the number e. In a
program we would write 2.71828183 in place of “e”.) In CLOG(X)
or LOG(X), X must be a positive number. If you attempt to use one
of these with X negative or 0, the computer will give you the error
message

ERROR- 3

You may calculate logarithms to any positive base b (except 1)
using the formula

LOG, (X)=LOG(X)/LOG(b)

Example 4. Write a program that computes and prints the natu-
ral logarithms of the numbers .01, .02, .03, ..., 100, where the
numbers increase by .01.

Solution. Here is such a program:

10 PRINT "X","LOG(X)"

20 PRINT: REM -Skips a line-
30 LET X=.01

40 PRINT X,LOG(X)

50 IF X=100 THEN END

60 X=X+.01

70 GOTO 40

80 END

In our program we used the IF... THEN statement in line 50 to let
the computer decide when it had printed enough information. We
could have used a FOR... NEXT statement with STEP .01.

Example 5. Carbon dating is a technique for calculating the age
of ancient artifacts by measuring the amount of radioactive car-
bon-14 remaining in the artifact, as compared with the amount
present if the artifact were manufactured today. If R denotes the
proportion of carbon-14 remaining, the age A of the object is cal-
culated from the formula

A=-(1/.00012)*L0G(R)

208

10 / Computing and Mathematical Functions

Suppose a papyrus scroll contains 47 percent, of the carbon-14 of
a piece of papyrus just manufactured. Calculate the age of the
scroll.

Solution. Here R=.47. So we use the above formula with
R=.47:

10 LET R=.47

20 LET A=-(1/.00012)*LOG(R)

30 PRINT "THE AGE OF THE PAPYRUS IS ";A;"
YEARS"

40 END

The computer would print the value 6291.85502 for A. We con-
clude that the scrolls are about 6292 years old.

The Exponential Function

In Chapter 1 you learned how to use A to raise a number to a
power (exponent). In many situations it is necessary to raise the
number e, the base of the natural logarithmic function (approxi-
mately 2.71828183), to an exponent. ATARI BASIC has the func-
tion EXP to do this for you. Thus EXP(X) returns the value eAX. If
we take X=1, then EXP(X)=EXP(1)=e~1=e. Therefore, one way
of having the computer give you the value of e is to have it print
EXP(1). If you need to use the number e several times in a pro-
gram, you might give the command

LET E=EXP(1)

and then use E any place in the program where you need the
number e.

TEST YOUR UNDERSTANDING 2 (answer on
page 210)

Write a program that evaluates SIN(X)/(LOG(X) + EXP(X))
for X=.45 and X=7.

The Absolute Value and Sign Functions

The absolute value of a number X is X itself if X is positive or 0,
and equals -X if X is negative.lt is denoted ABS(X). For example:

10.1 Mathematical Functions in ATARI BASIC 209

ABS(9.23)=9.23

ABS(0)=0

ABS(-4.1)=4.1

Just as the absolute value of X “removes the sign” of X, the

function SGN(X) throws away the number and leaves only the
sign. For example:

SGN(3.4)= +1
SGN(-5.62)=-1
SGN(0)=0

The Greatest Integer Function

The greatest (largest) integer less than or equal to X is denoted
INT(X). For example, the largest integer less than or equal to
5.46789 is 5, so

INT(5.46789)=5
Similarly, the largest integer less than or equal to -3.4 is -4 (on the
number line, -4 is the first integer to the left of -3.4). Therefore:
INT(-3.4)=-4
Notice that the INT function throws away the decimal part of a
positive number, although this description does not apply to nega-

tive numbers. If X is an integer, then INT(X)=X. For example,
INT(3)=3.

Exercises (answers on page 261)

In Exercises 1-14, write a program that computes and prints the
given quantity. Use the functions of this section.

=

The square root of 4.619

The square root of 5/16

The natural logarithm of 58

The common logarithm of .0000975

The sine of 3.7 radians

The cosine of 43 degrees

The tangent of 21 degrees

The secant of 1 radian

The inverse tangent (expressed in radians) of 1.5.
The inverse tangent (expressed in degrees) of 2
e to the power -2.376

The absolute value of 3862/56-8901/139

VRN O BN

[
N RO

210 10 / Computing and Mathematical Functions

13. The sign of 3862/56-8901/139

14. The greatest integer less than or equal to 3862/56-8901/
139

15. Write a program that computes and prints the values of
the exponential function at -5.0, -4.9, ..., 0, 1, ..., 5.0.

16. Write a program that calculates and prints the values of

3%LOG(5*X)+EXP(1.8*X)*TAN(X)

for X = 1.7,3.1,5.9, 7.8, 8.4, and 10.1.

17. Write an expression for the fractional part of a number X.
(The fractional part of X is the portion of the decimal
expansion of X which lies to the right of the decimal point.)

ANSWERS TO TEST YOUR UNDERSTANDINGS 1
and 2

1: 10 DEG
20 PRINT "SIN(450)="; SINC450),
"C0S(450)="; COS(450), "TAN(450)=";
TAN(450)
30 END

2: 10 DATA .45,.7
20 FOR N=1 T0O 2
30 READ X
40 PRINT SINCX)/(LOG(X))+EXP(X)
50 NEXT N
60 END

10.2 Using the Computer to Graph Functions

You can use your computer to draw the graph of a function on
the screen. The idea is to plot several points on the graph and to
connect adjacent points by a straight line. This can be accom-
plished by means of the PLOT and DRAWTO statements. In
effect, you are approximating the graph by a polygonal line. In
order to make your graph a good approximation to the true graph,
you should plot many points. For this reason, you should use a
high-resolution mode, like mode 8.

Since we have the trigonometric functions available to us, let us
graph Y=S5IN(X) for X between 0 and 6.28, which is approxi-
mately equal to 2 pi. This will give us one complete cycle of the

10.2 Using the Computer to Graph Functions 211

sine curve. We will start with X=0 and increase X by .04 each
time we plot a point. Recall that mode 8 + 16 (no text window) has
resolution 320x192. Since SIN X assumes values between -1 and 1,
we will draw the X axis through the center of the screen from 0,96
to 319,96. Here is the program:

10 GRAPHICS 8+16

20 SETCOLOR 2,0,0:REM ~Turns screen black-

30 COLOR 1

40 PLOT 0,96:DRAWTO 319,96:REM -Draw X axis

50 LET X=0:REM -Initial value of X-

60 PLOT 50%X,96-95*SIN(X):REM -Plot point on
graph-

70 LET X=X+.04:REM -Increase value of X-

80 DRAWTO 50%X,96-95*%SIN(X):REM -Connect
adjacent points-

90 IF X=6.28 THEN 90:REM -Freeze the screen
when x=6.28-

100 GOTO 70

110 END

In lines 60 and 80 we multiplied X by 50 and SIN(X) by 95 just to
stretch the graph out to fill the screen. The 96 appears because we
placed the X axis along the horizontal line Y =96. The minus sign
was used because Y values increase down the screen instead of up,
as it is in conventional graphing.

If you wish to graph any function Y=F(X) in mode 8+ 16 with
the X axis through the middle of the screen, you can plot points of
the form

X,96-F(X)

and connect adjacent points with a line. If the graph goes off the
screen or does not fill the screen, you can multiply X or F(X) by a
number, as we did in the preceding program, to fit the graph to the
screen.

Exercises (answers on page 262)

In Exercises 1-8, write a program to draw the graph of the given
function for the given range of X.

1. Y=COS(X) for X from O to 6.28
2. Y=ABS(X) for X from -2 to 2
3. Y=INT(X) for X from -3 to 3
4. Y=LOG(X) for X from .001 to 2
5. Y=EXP(X) for X from -1.5 to 1.5

212

10 / Computing and Mathematical Functions

6. Y=X-X»2 for X from -1 to 2
7. Y=TAN(X) for X from -1.5 to 1.5
8. Y=X-INT(X) for X from -2 to 2

10.3 Rounding Numbers

It is frequently desirable to round numbers. This can be accom-
plished by using the INT function introduced in Section 10.1.

Let’s begin by considering the problem of having the computer
round a number to the nearest integer. If you examine the first
digit after the decimal point in a number and if that digitis 0, 1, 2,
3, or 4, then you round down. But if that digitis 5, 6,7, 8, or 9, you
round up. For example, 291.496 is rounded down to 291, whereas
291.596 is rounded up to 292.

Notice that if the first digit after the decimal pointis 0,1, 2, 3, or
4, and we add .5 to the number, the first digit after the decimal will
be 5, 6, 7, 8, or 9. If we then take the greatest integer in the result-
ing number, we will, in effect, have rounded the original number.
For example, 291.496 + .5 = 291.996; the greatest integer in
291.996 is 291.

On the other hand, if the first digit after the decimal point is 5,
6,7,8,0or9, and we add .5, we will have to carry. So when we take
the greatest integer, we will, in effect, have rounded the original
number up. For example, 291.596 + .5 = 292.096; the greatest
integer in 292.096 is 292.

From this discussion, it follows that we can round a number X
on the computer by having it calculate

INT(X+.5)

If you would like to check this out, run the following program a
few times and see if the computer rounds correctly:

10 FOR N=1 TO 20

20 LET X=1000*RND(0)

30 PRINT "THE COMPUTER ROUNDS ";X;" TO ";
INT(X+.5)

40 NEXT N

50 END

In dealing with dollar amounts, it is sometimes necessary to
round to the nearest penny. For example, we round $56.324 to
$56.32 and we round $56.326 to $56.33. To reduce this problem to
the preceding one, we multiply by 100 (moving the decimal two

10.3 Rounding Numbers 213

places to the right), round the resulting number, and divide by 100
(moving the decimal point back where it belongs). The formula is:

INT(100*X+.5)/100

In Example 3 of Section 3.2 (page 58), we computed the monthly
balances for a $7000 loan. We obtained balances like
$4195.597013. If we had used the above formula, we could have
rounded each balance to the nearest penny. All we would have to
do is to insert

85 LET B=INT(100*B+.5)/100

in the program on page 59. Run the program with line 85 inserted
and compare the old and new outputs.

11

Where to Go From Here

11.1 Word Processing

Microcomputers are currently causing an office revolution. As
microcomputers are becoming cheaper and easier to use, they are
finding their way into every aspect of business. Nowhere does the
revolutionary impact of microcomputers promise to be greater
than in the area of word processing.

In brief, a word processor is a device made by combining the
traditional typewriter with the capabilities of the computer for
editing, displaying, printing, storing, and retrieving information. In
fact, this entire book was written on the ATARIWRITER word
processor.* It is no exaggeration to say that the traditional type-
writer is now as obsolete as a Model T. Over the next decade or so
the typewriter will be completely replaced by increasingly sophis-
ticated word processors.

The basic concept of a word processor is to use the microcom-
puter as a typewriter. Instead of using paper to record the words,
we use the computer’s memory.

First the words are stored in RAM. When you wish to make a
permanent record of them, you store them on disk as a data file.
As you type, the text can be viewed on the video display. This part
of word processing is not revolutionary. The true power of a word
processor doesn’t come into play until you need to edit the data in
a document. Using the power of the computer, you can perform
the following tasks quickly and with little effort:

® Move to any point in the document to add words, phrases,
sentences, or even paragraphs.

® Merge data files to create one large document.

® Selectively change all occurrences of one word (say, “John”) to
another (say, “Jim”).

® With a good printer, control how many copies the printer prints,
center text, make double-print text, make condensed print, have
subscripts and superscripts, underline text, etc.

*ATARIWRITER is a trademark of Atari, Inc.

215

216

11 / Where to Go From Here

® Move or duplicate parts of a document to another place in the same
document.

® Delete large blocks of the text.

® Have ragged right or blocked print.

® Have headers and footers at the top or bottom of every page.

® Load a BASIC program into the word processor and edit it VERY
easily.

As you can see, a word processor is quite useful.

You may construct your document in as many sessions as you
wish. When the document finally meets your satisfaction, you may
give the computer an instruction which saves a copy of it on disk.
You may also have the printer print your finished, error-free docu-
ment. At a future time, you may recall the document and make
any changes you would like.

As of this writing, there are at least four word processing pro-
grams commercially available for the ATARI computers, all with
sufficient horsepower to handle all but the most demanding tasks.
You should consider adding one of them to your program library
as soon as possible. If you don’t, you will be missing out on one of
the most powerful applications of your computer.

11.2 Buying Software

In this book, we have concentrated on writing programs to per-
form various tasks. But, as you have probably observed by now, it
often takes a considerable investment in time, wit, and dogged
determination to write a suitable program. In addition, to create
the more complicated programs takes a considerable amount of
technical expertise in using the various features of the computer.

Most people do not have the time or the inclination to write the
necessary programs. For these people, there is a growing collection
of programs (or, in computer jargon, software) available through
computer stores and mail order houses. In recent years there has
been a virtual explosion in the number of commercially available
programs. There are already several thousand programs which can
be purchased for ATARI computers, and more are coming onto
the market every day.

There are commercially available programs for almost every
conceivable need. These programs include computer games; word
processing systems; inventory control systems; appointment and
record-keeping systems for professionals (doctors, dentists, law-
yers); bookkeeping systems for small, medium, and large busi-
ness; educational programs; and many more. Unfortunately, the

11.3 Other Languages 217

rapid introduction of new products and the large number of avail-
able programs has made the purchase of software quite a chore.

Here are some questions which you should ask yourself as part
of any software purchase:

1. Will the program run on my computer?

Does my computer have enough memory for the program?
Will the program do what I want it to?

Is the program overpriced?

Is the manual complete?

Can I see a demonstration of the program before I buy it?

IS o

If you ask yourself the questions provided, you will be much
happier in the long run with your software purchases.

11.3 Other Languages

So far in this book we have dealt almost entirely with BASIC. In
this section we will touch on some other languages.

If you feel you want to learn more about computers, you have
two major options: To continue on with BASIC, or to learn a new
language. BASIC is interesting and easy to learn, but it has one
disadvantage: It is very slow. Many languages are much faster
than BASIC, but it seems the easier a language is to understand,
the slower it goes. BASIC is actually a program in a complicated
language called machine language.

Here is a list of languages that you might want to consider
learning:

PILOT/LOGO
Advanced ATARI BASIC
Microsoft BASIC
FORTH

C

Pascal

Assembly language
Machine language

These languages are all available for ATARI computers. You could
consider learning a language for a different computer. If you
counted all the languages ever made for computers, you would
definitely come up with more than 100!

Common Error Messages

Error #
2

3

10

11

12
13
14

15

16

Meaning of error

Out of memory. All the available memory of your comput-
er is used up.

Bad value. A value expected to be a positive integer is neg-
ative or a value expected to be within a specific range is not.
Too many variables. A maximum of 128 different variable
names is allowed.

String length error. A string variable has a length larger
than the allowed amount specified by a DIM statement.
Out of data. The computer encountered a READ statement
when there was no more data included in a DATA state-
ment. You may get this error when you hit RETURN with
the cursor on a READY prompt. This occurs because the
computer interprets READY as READ Y.

Number greater than 32767. A value is not a positive inte-
ger or is greater than 32767.

INPUT statement error. A non-numeric value was given
when the computer expected a numeric value.

Dimension error. A DIM size is greater than 32767, or an
unDIMensioned variable was used, or a DIM statement
was given to an already DIMensioned variable.

Task too complex. There are too many GOSUB statements
without RETURN statements or an expression with too
many parentheses was encountered.

Numeric overflow/underflow. The computer was asked to
divide by O or reference was given to a number larger than
10798 or smaller than 10/-99.

Line not found. A GOSUB, GOTO, or THEN statement
referred to a line which does not exist.

NEXT without FOR. A NEXT statement was encountered
without a matching FOR statement.

Line too long. A line is too long or complex for BASIC to
handle.

FOR or GOSUB statement missing. A NEXT or RETURN
statement was encountered and the corresponding FOR or
GOSUB was deleted.

RETURN without GOSUB. A RETURN statement was en-
countered without a matching GOSUB statement.

219

220

Common Error Messages

Error #

17

18

Meaning of error

Undecipherable statement encountered. A POKE state-
ment or defective memory changed a program line to
meaningless, jumbled “garbage.”

Invalid string character. The computer tried to convert a
non-numeric string into a numeric value with the VAL
statement.

The following error messages result only when using
peripherals such as printers, disk drives, program recorders,
modems, and so forth.

Error #
19
20
21

128

129
130
131
132
133
134
135

136
137

138
139

140

Meaning of error

Program too large. A program being loaded is too large for
the computer’s memory.

Bad channel number. The computer was told to use chan-
nel O or a channel greater than 7.

Not LOAD format. The computer tried to load a program
but found data not in the LOAD format.

BREAK abort. The BREAK key was pressed while the com-
puter was in the middle of an I/O (Input/Output) opera-
tion.

Channel already open. The computer tried to open a chan-
nel number which was already open.

Nonexistent device. The computer was instructed to use a
nonexistent device.

Input with write-only device. A GET or INPUT statement
was used with a device opened for output only.

Invalid command. A command was used which is invalid
for the device used.

Channel closed. The computer tried to read or write to a
closed channel.

Bad channel number. A program can only use channels
1,2,3,4,56, and 7.

Output with read-only device. A PUT or PRINT statement
was used with a device opened for input only.

End of file. The computer has reached the end of a data file.
Truncated record. The computer tried to read a record
longer than 256 bytes.

Device does not respond. A peripheral does not respond
when 170 (Input/Output) is attempted.

Device malfunction. A peripheral device malfunctioned or
could not perform a command.

Serial bus error. The cassette or diskette may be defective.

Error #

141

142
143

144

145

146
147
150
160
161
162
163
164
165
166
167

168

169
170

171

Appendix A 221

Meaning of error

Cursor out of range. The cursor is out of the given bounda-
ries of the screen. This may occur when using PLOT,
DRAWTO, POSITION, LOCATE, or PRINT #6.

Data frame overrun. Cassette or diskette may be defective.
Data frame checksum. Bad recording on or reading from a
cassette or diskette. It may be defective.

Device done error. A diskette may be write-protected. If
the notch on the side of a diskette is covered, the diskette is
write-protected.

Data comparison error or bad screen handler. The diskette
drive checks what it just saved to ensure a perfect copy.
The copy was different than the original. Or, there could be
something wrong with the screen handler.

Function impossible. The computer attempted to write to
the keyboard, read from the printer, or some such impossi-
ble task.

RAM insufficient for graphics mode.

Serial port already open. Each serial port can be open to
only one channel at a time.

Drive number unknown. A drive number was provided
which the computer did not recognize.

Too many files open. Only 3 files can be open to diskette
drives at any time.

Disk full. There is no more available room on the diskette
you are using.

Unrecoverable system error. The computer encountered an
error which it could not recognize nor recover from.

File number mismatch. The disk might be messed up or
the diskette file pointer is not positioned in an open file.
Bad file name. A bad file name for a disk file was used (see
page 40 for legal names.)

Point data length error. The computer instructed the disk-
ette file pointer to move to a nonexistent part of a diskette.
File locked. The diskette drive was told to write to, delete,
or change the name of a locked file.

Command invalid. The computer tried to use a command
which does not exist or is not defined for the peripheral
being used.

Disk directory full. The diskette directory can hold only 64
file names.

File not found. A specified diskette file name is not on the
diskette directory.

POINT invalid. The diskette drive was told to read a disk-
ette sector which was not part of an open file.

Sound Table

Number

29
31
33
35
37
40
42
45
47
50
53
57
60
64
68
72
76
81
85
91
926
102
108
114
121
128
136
144
153
162
173
182
193
204
217
230
243

Note

C
B
A# or Bp
A
G# or Ap
G
F# or Gp
F
E
D# orEp
D
C# orDp
C
B
A# orBp
A
G# or Ap
G
F# or Gp
F
E
D# orEp
D
C# orDp
Middle C
B
A# orBp
A
G# or Ap
G
F# or Bp
F
E
D# orEp
D
C# or Db
C

223

C

Text and Graphics Modes

225

Text and Graphics Modes

226

(¥'6) anig dreq
(o172T1) Ud9215) Y81y

MOPUIM }X3} JO JO[0D “I0[0D punoidspeg
MOPUIM }X3} UT }X3} JO dUBUTWIN] ‘T I0[0D)

dUBUNIN] T MOPUIM O/M Z61 X 0ZE

(8'2) a8uea 350 ON I0[0D T MOPUIM/M 09T X 0Z€ o)
(0’0) 3oeIg I0[0D 13pi0q ‘10[0> punoiddeq ‘§ I0joD)
(#"9) uig 45N ON

(¥'6) anig >req
(01'21) Wdars) 3]
(8'2) aduer

MOPUIM }X33 JO JO[0D ‘€ I0[0))
MOPUIM 3X3} UT JXd} JO dueUTWN| ‘7 I0[0))
1 10100

MOpUIM 0/M 96 X 09T
¥ MOpum/m 08 X 091 4

(0°0) ¥oeIg

(9'%) yuig

(¥'6) anig sreq
(0121) w9a1n) Y317
(8'7) a3ue1n

10]0) 13pI0q “I0[0d punoiddeq ‘gz 10[0D)
3451 ON

MOpUIM }X3] JO 10[0D)

MODPUIM]X3} UI }X3} JO 3dueuruny
110100

MOpUIM 0/M 96 X 091
¢ MOopum/m 08 X091 9

(0°0) ¥oerg

(¥79) quig

(¥'6) angg yreq
(01°21) wda1) y3r7]
(g82) ?8ue1

10702 13pI0q ‘I0[0D v:sewv_umn ¥ 10100
4501 ON

MOPUIM }X3} JO I0[0D ‘¢ I0[0D)

MOPUIM JX3) UI 31X3} JO ddUBUIWN] ‘T I0[0D)
T I0[0D

MOpUIM O/M 8} X 08
v MOpUIM /M 0F X 08 S

(0°0) yoerg

(9%) Juig

(¥'6) anig y1eQq
(0121) a1 y3r]
(8'2) 38uei

10[02 19pI0q ‘I0[0D v::o.ﬂwxumn T 10]0D)
451 ON

MOPUIM X3} JO I0[0D)

MOPUIM }X3} Ul }X3} JO dduURUIWINT]

1 10]0D)

MOpUIM O/M 8% X 08
[4 MOpUIM/M 0F X 08 4

(00) peig

(¥*9) uig

(¥’6) anig sreq
(01721) WsaIn) Y31
(8'2) ?8uei

I0[0) 19p10q ‘I0]0d punoidspeq % I0[0D)
3501 ON

MOPUIM }X3) JO IO[OD ‘€ 10[0D)

MOPUIM 1X3} Ul X3} JO dUBUIWN] ‘Z JO[0D)
1 10[0D)

O NI O=RNOF O-NOF [O~NOF O~NOFH | O

MOPpUIM 0/M FT7 X 0¥
14 MOPUIM /M 0T X OF €

myva ynvfaQq

N # JO10013S

540102 fo uoynyosay o

‘sapouwt sorydern) ‘-0 ajqe]

227

Appendix C

AO\OV Jyoerg I0]0D 13pI0q “10[0D _uc:o.ﬁmxumg ¥ 10100 74
(¥79) Jyuig 15N ON €
#'6) anig yreq MOPUIM 3X3} JO 10[0D ‘¢ I0[0D) Z
(0121) waain) 31 MOPUIM 3X3} UI 3X3} JO ddUBUIWN] ‘Z IO[O)) I MOPUIM O/M 76T X 091
Ysr] P 3 I 1
(877) 3duei T 1010D 0 ¥ MOpuUmMm /M 09T X 091 ST
(0°0) oeIg 10[0J 13p10q ‘10[0d punoidydeq ‘g 10[0D) ¥
(¥°9) uig 35N ON €
(#‘6) =onig syreq MOPUIM }X3} JO I10[0D) 4
(o1'21) U=arn y3r MOPUIM IX3} UI 3X3} JO dUBUTUINT 1 MOpUIM O/M Z6T X 09T
(872) a3ue1p 1 10[0D 0 T Mmopum/m 09T X 09T 41
SIYIO0 [[E JO SdUeUIWN] ‘IO[0D ISPIO]
(00) oeig ‘punoi3dxdeq Jo (dueUTWIN] JOU ING) I0[0D) ¥
(¥°9) yuid 350 ON €
(¥’'6) anig yreq 45N ON <
(01'21) U=31n) Y81 35N ON I 2duewwny [
(872) 28uei0 asn ON 0 sany 91 T6IX08 1T
(0°0) yoerg g 10[0D) i
¥9) ug £ 10[0D) €
(#’6) =anig jyreq 9 10[0D) 4
(o1'Z1) U231 WS3r] S 10[0D) I
(872) ?8ue1 ¥ 10]0D 0 6 Z61X08 O
(00) oe1g [ewads/ + ‘10[0D 1apI0q ‘10[0> punordsoeq ¥
(¥°9) yug 350 ON €
(¥'6) 2nid preq 35N ON ¢ sddueununy
(0121) U319 Y3r7] 151 ON I 91
(872) d8ueip 35N ON 0 any | 761X 08 6
(00) MoeIg 10]02 19piog ¥
(9'%) Suig 35N ON €
mywa ynvfoq N # YJO10D13S 540107 fo % UoOHNI0SIY IPoJN

*(panurjuod) sapow soydern) ‘-7 djqe .

Text and Graphics Modes

228

(0°0) oeIg

(9F) quig

(¥'6) @nig YreQq
(01°21) W21 JY3r]
(g'2) a8ue1p

10[0D IapI0q ‘10[0d punoIdsydeg

[eadg

[epads + ‘MopuIM }x3} JO 10[0D)
[erads + ‘MOpUIM 3X3} UT X3} JO dduUBUTLNT]

Tewadg

MopuIM 0/M ZT X OF
MOpUIM/M 0T X OF

€1

(0°0) >PeIg

(97) quig

(¥'6) anig xreq
(0121) U331y IY3r]
(g'7) ?8uer

JIO[0D 13pI0q “I0[0D punoidydeg

[eadg

[ewads + ‘MOpUIM }X3} JO 10[0D)
[eads 4 ‘MOpUIM 3X3] UT }Xd} JO ddUBUIWINT]

[ewadg

MOpUIM O/M $T X OF
MOpUIM/M 0T X OF

(4!

(0°0) eIg
(9'%) Juid
(¥'6) anig yreq

(o1°21) WBRIS) JY3r]
(8'7) ?8ue1p

JO[0J 13p10q ‘10[0d punoidydeg

SST—VTT# PUB 6ST—8CI # I0[0D JO I0[0D)

MOPUIM 3X3} JO IO0D ‘€€7T—09T # I0[0d JO I0[0D)
MOPUIM }X3) UI JX3) JO dUBUIWN]

‘LTT—96 # pue T€—0# IO[0d JO 10[0D)

S6~7€ # 10]0D JO I0[0D)

NOH O~ ANNDK | O N <K

MOpUIM 0/M ZT X 02
MOpUIM/M QT X 0¢C

(0°0) Yoeig
(9'%) qug
(¥'6) anig req

(0121) uda15) Jy8r]
(8°7) 23ueip

10]02 Iap10q ‘10[0d> punoidsoeg

SST—HTT# PUe 6GT—8TL # I0[0D JO I0[0D)

MOPUIM 3X3} JO 100D ‘€€7—09T # JIO[0D JO I0[0))
MOPUIM }X3} UI }X3) JO ddueUIWIN]

‘L7196 # PUue T¢—0# JO[OD JO I0[0D)

G6—7E # 10[0D JO I0[0D)

N <K O

MOpUIM O/M F7 X 0C
MOpUIM /M 0T X 0T

(0°0) eIg
(9'%) yuid

(¥'6) anig yreq
(01"21) W3aIn) 3]
(87) a8ue1p

10[0D 13pIog

3500 ON
10]0D> punoidyoeg

“JX33 JO (ddUBUIWN] OU JNd) I0[0D)

3X93 JO dUBUTWIN]
151 ON

< O

Jdueulwun| 1

YexXoy

0

mqva ynvfacy

N # YOT0O1L3S

x93 Jo 540107 #

uoynjosay IpojN

'S9pow 1x3) [YV.LV "7-D 3[qeL

ATASCII Codes

b4 e
_ = f.3 - =% $.5
% v e IR T ¢
8¢ | % | f&C | EE | =& | &if
0 E CTRL-, 21 [;_] CTRL-U
1 EI CTRL-A 22 ID CTRL-V
2 lj’ CTRL-B 23 E CTRL-W
3 E CTRL-C 24 lE' CTRL-X
4 E CTRL-D 25 ID CTRL-Y
5 E] CTRL-E 26 E CTRL-Z
6 CTRL-F 27 [E l ESC\ESC
7 CTRL-G 28 ’ ESC\CTRL--
8 @ CTRL-H 29 ? ESC\CTRL-=
9 lzl CTRL-I 30 4 ESC\CTRL-+
10 IE CTRL-J 31 * ESC\CTRL-#
11 E] CTRL-K 32 D SPACE BAR
12 E] CTRL-L 33 m SHIFT-1
13 [j CTRL-M 34 E] SHIFT-2
14 I;_] CTRL-N 35 4 SHIFT-3
15 [I CTRL-O 36 SHIFT4
16 E'] CTRL-P 37 SHIFT-5
17 E CTRL-Q 38 SHIFT-6
18 E CTRL-R 39 D SHIFT-7
19 CTRL-S 40 SHIFT-9
20 E CTRL-T 41 SHIFT-0

229

ATASCII Codes

230

ATASCII codes (continued).

13108184
aanpoid
0) SINOIISAIY

SHIFT-

SHIFT-8

nPeIey)
IIDSVLYV

- -, 1. P o s . - -,
EFEEEEREEEEEEEEREREE

3apo)
[rwag

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

13)0818Y)
dnpoag
0) SMOIISAIY

SHIFT-;

B HH.BE!@“EEHEHHEH@HHBH
HJOSVLV
Ppo) o~ - < w0~ © o < — I N« v 0 ~ 0 o o = o
[swa(<t <t <t <+ < < <t <r [vy vy vy (e} v vy ["a vy ["a el o O

ATASCII codes (continued).

Appendix D

231

8 L4
=5 f.5 K ¢ .5
P, | BF | B | % 2% | Bl
%3 s 2 33 g% s 2 $2d
Q0 <0 g AQ QAo <0 A0
84 T T 105 (LOWR) |
85 @ U 106 E (LOWR) J
86 \% 107 (LOWR) K
87 w 108 (LOWR) L
88 X 109 (LOWR) M
89 Y 110 @ (LOWR) N
90 V4 Z 11 (LOWR) O
91 [SHIFT- , 112 (LOWR) P
92 SHIFT- + 113 (LOWR) Q
93 SHIFT- . 114 EJ (LOWR) R
94 SHIFT- # 115 (LOWR) S
95 IZ‘ SHIFT-- 116 (LOWR) T
96 E CTRL-. 17 @ (LOWR) U
97 (LOWR) A 118 (LOWR) V
98 (LOWR) B 119 @ (LOWR) W
99 (LOWR) C 120 (LOWR) X
100 (LOWR) D 121 (LOWR) Y
101 & (LOWR) E 122 v (LOWR) Z
102 T (LOWR) F 123 [E] CTRL-;
103 £ (LOWR) G 124 m SHIFT- =
6 ESC\CTRL- <
104 @ (LOWR) H 125 El or

ESC\SHIFT-<

232

ATASCII Codes

ATASCII codes (continued).

2 2
=5 .5 =5 .5
b - P - = (S D -
g ? 3 223 g 5 3 223
£F | Z&2 | BEE | 3 | 23 | Bif
U])
Qo <T % & O o <0 ¥ &0
7
126 " ESC\BACK S 147 (M) CTRL-S
8
127 E] ESC\TAB 148 n (A) CTRLT
128 _ u (M) CTRL, 149 E (MN) CTRL-U
129 n (M) CTRL-A 150 u (A) CTRL-V
130 I] (A) CTRL-B 151 ﬂ (A) CTRL-W
131 u (M) CTRL-C 152 = (M) CTRL-X
132 n (MN) CTRL-D 153 u (M) CTRL-Y
133 ﬂ {(N\) CTRL-E 154 n (N) CTRL-Z
9 (A)
134 (M) CTRL-F 155 EOL RETURN
10
135 (M) CTRL-G 156 + ESC\SHIFT-
11
136 ﬂ (N) CTRL-H 157 ESC\SHIFT>
12
137 ! (M) CTRL-I 158 'Tiig\CTRL'
13
138 M | wemrw 159 ESC\SHIFT-
N}
139 n (A) CTRL-K 160 . SPACE BAR
140 n (AN) CTRL-L 161 n (M) SHIFT-1
141 i (A) CTRL-M 162 n (A) SHIFT-2
142 ! (N) CTRL-N 163 m (N) SHIFT-3
143 u (M) CTRL-0 164 4 (M) SHIFT4
144 E (N) CTRL-P 165 i (M) SHIFT-5
145 ﬂ (M) CTRL-Q 166 (M) SHIFT-6
146 = (M) CTRL-R 167 - (M) SHIFT-7

233

Appendix D

ATASCII codes (continued).

—~ o0
- -
)8y ™ .
= T
oosvmzh A B B € om0 A W kO T = om xS Z O MmO
0) SIJOIISA? ~ ~— ~ ~ ~ o~ o~ o~ o~ o~ —_ —_ ~—~ —~ — o~ —~ ~ —~
) saxonsAay < < <& < €< € < < <€ I & € < 2 R T 2% 2 =2 < <
N’ N’ N’ S’ N’ e’ N’ N’ N’ N’ S’ -’ N’ N e’ S N’ N’ N’ N’ S’
ey HASE EEEEAEEEEEEEEEAE
. - S’ e . Samens” P - — e s . o
IIDSVLV
— — o o g o0 (=)
O | 2 2 3 8 3 ¥ 2 88 5 8 8 8 5 £ 83 % 885 88
swnq — — — — — — — — — — — P & & &
T <
[= -
nPvILY) =t = =
T T
anpoidg b I - + . . . - o —_ ~ o <) o) ~ 00 o % .. \%
sA9 — — —_ —_~ _~ — —_ o~ — — —_ —~ o~ S~ —_ —~ —_ o~ P
0} saAONSAIN 2 2 2T d T T < <€ & & €& < < & 2T =2 2T < 2 <2 <
N N’ S e S’ S’ S’ A N S A N S’ S’ o’ e N’ N’ N N’ N’
wee| EEDORNIENOEEECEENEERRD
IIDSVLV
Ppo) 0 @& © ~—~ &N ©o * »n v ~ 0 o o |- N -
[swaCy L 2 BF =2 5 B B 5 =2 & B B X ® o© ® ® o ®K % X

234

ATASCII Codes

ATASCII codes (continued).

©]
- -
-y a T b=ty g S
3 C & $sd 3 S % 2t3
g 17/ E S«] 7 =» -l
K- < s 238 & o <& 28 &
- - v o= 33 - .8 -
ac <O % a0 Qo <0 % A&C
210 F¢ (MR 233 n (N (LOWR)
1
211 NS 234 u (N (LOWR)
J
212 n nNT 235 (A) (LOWR)
K
213 (MU 236 n (N (LOWR)
L
214 \ (N V 237 (N (LOwR)
M
215 MW 238 m (A (LOWR)
N
216 \‘: (M X 239 (M) (LOWR)
o
217 ' NY 240 m (A) (LOWR)
P
218 Nz 24] (N (LOWR)
Q
219 m (M) SHIFT-, 242 n {(A) (LOWR)
R
220 (N) SHIFT-+ 243 (MN) (LOWR)
A L
221 m (A) SHIFT-. 244 (M) (LOWR)
] L
222 N (M) SHIFT-# 245 (M) (LOWR)
7] m U
223 ! (M) SHIFT-- 246 (M) (LOWR)
v
224 {A) CTRL-. 247 Ll (A) (LOWR)
4]] :
N A 248 e A) (LOWR)
225 i ()(kowm (ON] v
226 m (M) (LOWR) 249 .2 (A) (LOWR)
B v
227 A) (LOWR 250 E A) (LOWR
m) (C) N} (Z)
228 A) (LOWR) 251 (MA) CTRL-;
B | v B
229 M) (LowR) 252]| (A) SHIFT- =
E
230 (A) (LOWR) 253 EM ESC\CTRL-2
F
15
(N) ESC\
231) (GovR 254 n CTRL-BACK S
\.. 16 7N
232) (LowR) 255 u ESC\CTRL->

Appendix D 235

ATASCII codes (continued).

Notes

"The character €] represents a control character. In most cases, this control character does nothing;
CHRS$(27) is generally a nondisplaying character. However, if the next character displayed is a
control character with ATASCII codes 27, 28, 29, 30, 31, 125, 126, 127, 156, 157, 158, 159, 253,
254, or 255, the control process does not take place. Instead, the representative character itself
appears.

*The character (1] represents the control character which moves the cursor up one row. If the
character displayed just before this was ATASCII code 27, the character [+] displays; the cursor does
not move.

3The character #] represents the control character which moves the cursor down one row. If the
character displayed just before this was ATASCII code 27, the character (¥ displays; the cursor does
not move.

“The character (€] represents the control character which moves the cursor one column left. If the
character displayed just before this was ATASCII code 27, the character €] displays; the cursor does
not move.

*The character (3] represents the control character which moves the cursor one column right. If the
character displayed just before this was ATASCII code 27, the character displays; the cursor does
not move.

®The character (W) represents the control character which clears the screen and moves the cursor to
the home position. If the character displayed just before this was ATASCII code 27, the character (W)
displays; the screen is not cleared.

"The character 4] represents the control character which moves the cursor one column left and
replaces the character there with a blank space. If the character displayed just before this was
ATASCII code 27, the character 4. displays; the cursor does not move.

8The character ! represents the control character which advances the cursor to the next tab stop. If
the character displayed just before this was ATASCII code 27, the character ¥ displays; the cursor
does not move.

*The ATASCII end-of-line character.

®The character £} represents the control character which deletes the line on which the cursor is
located. If the character displayed just before this was ATASCII code 27, the character £ displays;
the deletion does not occur.

""The character represents the control character which inserts a line above the one on which the
cursor is located. If the character displayed just before this was ATASCII code 27, the character I}
displays; the insertion does not occur.

2The character represents the control character which clears the tab stop (if any) at the current
cursor position. If the character displayed just before this was ATASCII code 27, the character
displays; no tab stop is affected.

3The character rcpresents'lhe control character which sets a tab stop at the current cursor
position. If the character displayed just before this was ATASCII code 27, the character displays;
no tab stop is set.

"The character [represents the control character which beeps the built-in speaker; nothing is
displayed. If the character displayed just before this was ATASCII code 27, the character 3
displays; the speaker remains silent.

>The character Kl represents the control character which deletes the character to the right of the
cursor, shifting the remainder of the logical line one space to the left. If the character displayed just
before this was ATASCII code 27, the character K displays; no deletion occurs.

The character [J represents the control character which inserts a blank space to the right of the
cursor, shifting the remainder of the logical line one space to the right. If the character displayed just
before this was ATASCII code 27, the character 1 displays; no insertion occurs.

Statements, Commands,
Functions, and Their
Abbreviations

Reserved Word Abbreviation Summary

ABS Returns the absolute value of a giv-
en number.

AND An expression formed by joining
two subexpressions by AND is true
only if both subexpressions are
true.

ASC Returns the ATASCII value of a
single string character.

ATN Returns the inverse tangent of a
given number.

CHR$ Returns a single string character
from an ATASCII number.

CLOAD CLOA. Loads a program saved on cassette
with CSAVE.

CLOG Returns the common logarithm of a
given positive number.

CLOSE CL. Used to close a file opened with the
OPEN statement.

CLR UnDIMensions all strings and ar-
rays and sets all variables to 0.

COLOR C. Used with graphics. Chooses a col-

236

or register to plot with.

Reserved Word Abbreviation
CON.

CONT

CSAVE

DATA

DEG

DIM

DOS

DRAWTO

END

ENTER

EXP

FOR

GET

GOSUB

DE.

DI

DO.

DR.

GE.

GOS.

Appendix E 237

Summary

Causes the computer to continue
execution on the next line following
use of the BREAK key or encoun-
tering a STOP.

Saves the program in memory on a

cassette in a format which can be

read back into memory with the
CLOAD statement.

Contains numeric or string infor-
mation which can be read back by
use of READ.

Instructs the computer to carry out
all trigonometric functions in de-
grees instead of radians (default =
radians).

Reserves space in memory for
strings and numeric arrays. All
strings and arrays MUST be DIM-
ensioned before use.

Causes control of the computer to
go to the DISK OPERATING SYS-
TEM.

Draws a straight line between two
points on the screen.

Stops program execution, turns off
all sounds, and closes all open files.

Used to load programs saved with
LIST.

Returns the value of the exponen-
tial function at a given number.

Used with the NEXT statement to
create loops.

Used with data files to input a
numeric value from a device to a
variable.

Causes the computer to branch to a
subroutine in a program.

238

Statements, Commands, Functions, and Their Abbreviations

Reserved Word Abbreviation

GOTO

GRAPHICS

IF

INPUT

INT

LEN

LET .

LIST

LOAD

LOCATE

LOG

LPRINT

NEW

NEXT

G.

GR.

LE.

LO.

LOC.

LP.

Summary

Causes the computer to uncondi-
tionally branch to another part of a
program,

Causes the computer to enter the
computer into a display mode.

Used with THEN to cause condi-
tional branching or execution of a
statement on the same line.

Causes the computer to “ask” for
input from a device (usually the
keyboard).

Rounds a given number down to
the nearest interger.

Returns the length (number of
characters) in a string.

Assigns a value to a variable (op-
tional).

A command used to list the pro-
gram in memory to the screen. Also
used to save a program to disk in
such a way that it can be merged
with another program via ENTER.

Loads a program saved via the
SAVE command.

Stores the value of a location on the
screen in a variable.

Returns the natural logarithm of a
given positive number.

Prints data on a line printer.

Erases any program in memory,
turns off all sound, unDIMensions
all strings, and closes all data files.

Causes the computer to continue
with execution or loop back to the
line with the matching FOR state-
ment.

Reserved Word
ON

OPEN

OR

PADDLE

PEEK

PLOT

POKE

POSITION

PRINT

PTRIG

PUT

RAD

READ

REM

RESTORE

Abbreviation

PL.

POK.

POS.

PR. or?

PU.

REA.

R. or
[SPACE]

RES.

Appendix E 239

Summary

Used in conjunction with a GOTO
or GOSUB statement to branch to
other lines depending upon the
value of a given variable.

Opens a file for input or output op-
erations.

An expression formed by joining
two subexpressions by OR is true if
either subexpression is true.

Returns a number between 0 and
228 depending upon the position of
a specified paddle controller.

Returns a number from 0 to 255
pertaining to the contents of a given
memory location (RAM or ROM).

Causes the computer to turn on a
pixel or character.

Puts a number into a memory loca-
tion (works with RAM only).

Places the cursor at a specified
point on the screen.

Used to send strings to a specified
device or used to print on the screen.

Returns a O if the trigger button on
the specified paddle is being pressed.

Used with data files to send a single
numeric value to a device.

Instructs the computer to carry out
all trigonometric functions in radi-
ans instead of degrees (default =
radians).

“Reads” string or numeric values
from DATA statements.

Allows comments to be inserted in
a program.

Allows data in DATA statements to
be read more than once.

240

Statements, Commands, Functions, and Their Abbreviations

Reserved Word Abbreviation
RET.

RETURN

RND

RUN

SAVE

SETCOLOR

SIN
SOUND

SOR

STEP

STICK

STRIG

STOP
THEN

TO

TRAP

Xio

RU.

SE.

SO.

STO.

Summary

Sends the computer back to the
matching GOSUB statement.

Returns a random number from 0
to 1.

Executes a program. Sets all vari-
ables to 0. UnDIMensions all
strings and arrays.

Saves a program in a format so it
can be retrieved with LOAD.

Stores hue and luminance values in
a color register.

Returns the sine of a given angle.

Causes the computer to make
sound.

Returns the square root of a given
non-negative number.

Used with a FOR..NEXT loop to
set the amount of increase or de-
crease of the loop variable.

Returns a value pertaining to the
direction a specified joystick is be-
ing pushed.

Returns a 0 if the button on a speci-
fied joystick is being pressed.

Stops program execution.

Used with IF. If the condition is
true, the statements after THEN are
executed. Otherwise, the computer
continues with the next line.

Used with a FOR..NEXT loop to
separate the beginning and end val-
ues of the variable.

Sends the computer to a specified
line number if an error is encoun-
tered.

Used to fill regions of the screen.

Glossary

Acoustic modem

Artifacting
ATARI key

ASCII
ATARI BASIC

ATASCII
BASIC
BBS
Buffer

Bulletin board system

Cassette recorder

Character

Color registers

Command

Control character

CPU

A device that facilitates the exchange of information be-
tween computers by means of telephone lines. An
acoustic modem requires a phone to be used.

The technique of creating multi-color images in mode 8
using only one color.

The key that switches the characters from regular to in-
verse and vice versa.

“American Standard Code for Information Exchange.”

A version of BASIC for ATARI computers. See also BA-
SIC.

A variation of ASCII adopted by ATARI including the
control and inverse characters.

“Beginner’s All-purpose Symbolic Instruction Code.” A
commonly-used computer language.

“Bulletin board system.” See also BULLETIN BOARD
SYSTEM.

A part of memory reserved for storing data waiting to
be processed.

An information exchange center operated by a comput-
er and accessible through the use of a modem. Many
bulletin board systems are free to the general public.

A device capable of storing and receiving data on or
from a cassette at the request of the computer.

A letter, number, or any other symbol.

A group of memory locations that store information
controlling output of color to the screen.

An instruction to the computer.

A character printed by pressing CONTROL and a key
with a letter on it.

“Central Processing Unit.” The “brain” of a computer.

241

242 Glossary

CRT
CTIA chip
Cursor

Data
Data file

Debugging

Direct connect modem
Direct mode

Disk (diskette)

Disk drive

'Display mode

DOS

Editing

Error message

Fire button

Flag

Flowchart
Formatted disk
Game controller

Graphics

“Cathode ray tube.” The fancy name for the picture
tube in a TV set.

The graphics chip in all ATARI computers made before
January of 1982.

A symbol used to indicate to the user where the next
character typed will appear on the screen.

Information.
A file on a disk or cassette used for storing data.

The process of finding and removing errors in a pro-
gram,

A modem that connects directly into a telephone line
and does not require a telephone.

The mode in which you can enter instructions to the
computer to be executed immediately.

A disk-shaped object, contained in a square sleeve, on
which computer output is stored by a disk drive.

An electronic device capable of storing computer infor-
mation on disks (diskettes).

Any mode used for displaying text or graphics. See also
GRAPHICS MODE and TEXT MODE.

“Disk Operating System.” A program for controlling a
disk drive.

The process of making corrections or changes in a pro-
gram or the display on the screen.

A message from the computer that indicates an error
has occurred.

See TRIGGER.

Usually a number in a DATA statement signifying the
end of data.

A diagram that indicates the order in which the com-
mands in a program will be executed.

A disk that has been “formatted”; that is, prepared to
receive data from the computer.

A joystick or paddle. These are usually used to control
games, thus their name.

Pictures that can be displayed on the screen.

Graphics mode

GTIA chip

Hard copy

Hardware

Immediate mode

Infinite loop

Input

Input device

Interface module

Inverse character

170
Jack

Joystick

Language

Loop

Luminance
Memory
Modem

Monitor

Appendix F 243

Any of several modes for displaying graphics on the
screen.

The graphics chip in most ATARI computers sold after
January of 1982. This chip adds modes 9, 10, and 11.

An output of data on paper.

The machinery of a computer system as opposed to
software, which refers to the actual programs. The com-
puter, disk drive, cassette recorder, printer, and so forth,
are all hardware.

See DIRECT MODE.

A loop that would be executed without end when the
program is run.

Information or data supplied by the user or a peripheral
to a computer.

A device (such as a keyboard, disk drive, or game con-
troller) capable of supplying information to a computer.

A device used to “interface” (allow the exchange of in-
formation between) a computer and a peripheral device.

A character with the foreground and background colors
interchanged.

“Input/output.” See also INPUT and OUTPUT.

A receptacle used for plugging in peripherals or game
controllers.

A device usually used with games to move an object in
any of eight directions.

A program in machine language which allows you to
give instructions to a computer. BASIC is an example of
a program in machine language.

A command or group of commands repeated for a
number of times. See also INFINITE LOOP and
NESTED LOOP.

Brightness.
The part of a computer that stores information.

“MOQOdulator/DEModulator”, a device that facilitates the
exchange of information between computers by means
of telephone lines.

Another word for “screen.”

244 Glossary

Nested loop
Nested subroutine
Output

Output device
Paddle

Peripheral
Pixel

Port
Printer

Program

Program mode

RAM

Random number

Ready prompt

Resolution
ROM
Screen editing

Sector

Software
Statement
String

String variable

Subroutine

A loop contained “inside” another loop.

A subroutine contained “inside”” another subroutine.
Data from the computer handled by another device.
A device which can receive data from the computer.

A device usually used with games to move an object
along a specific path.

Any device other than game controllers that can be con-
nected to the computer.

“Picture element.” The smallest region of the screen
you can control in any graphics mode.

See JACK.
A machine which prints data supplied by the computer.

A set of commands the computer executes upon instruc-
tion from the user to do so.

A mode in which the computer executes programs.

“Random Access Memory.” User can write and read
data to or from this kind of memory.

An arbitrary number chosen by the computer.

The word “READY” printed on the screen used to in-
form the user that the computer is ready to accept com-
mands or program lines.

A measure of the number of pixels in a graphics screen.
“Read Only Memory.” User cannot write to ROM.
See EDITING.

A part of a diskette on which up to 128 characters can
be stored.

Programs.
An instruction to the computer.
A group of characters (usually non-numeric).

A symbol or group of symbols, ending in a dollar-sign,
which represents a string.

A part of a program to be executed during the operation
of the main program. See also NESTED SUBROUTINE.

Subscripted variable

Text mode

Trigger

Variable

Voice

Word processing

Appendix F 245

A symbol or group of symbols, followed by an appro-
priate number in parentheses, used to represent a group
of numbers.

Any display mode which allows you to display text.

A button on a joystick or paddle usually used to “trig-
ger” some computer event, such as causing a gun to fire
in a game.

A symbol or set of symbols used to represent a number
or string. See also STRING VARIABLE and SUB-
SCRIPTED VARIABLE.

Each voice of the computer can make a sound or se-
quence of sounds. ATARI computers have four voices.

Using the computer to write and manipulate text.

Answers to Selected

Exercises

SECTION 2.2 (page 30)

PRINT 31+62

PRINT 456-278

PRINT (45-23)/3

PRINT 5*(45-(658+968))

PRINT "576+527=",;576+527

PRINT "23+67=";23+67

PRINT "17/2=";17/2

PRINT "(34-19)*23=";(34-19)*23

1

0D an O

)
3. a. 56-23+45
@@
b. 4+5%6
@ @
c. (4+5)%6
D2 G @ ®©
d. (24/3%4)7(4+7-6)%2
D @03 @6
((5-3)%17+6)/2+6
9.58436589
0.357152794
4690000000
0.0000000001234

2.45367E+08
5.72E-12

SECTION 2.4 (page 43)

5% has not been DIMensioned.
The program calls for division by zero.
NAME should be enclosed in quotation marks.

T$ has length 11 but has been DIMensioned only for length
10.

SECTION 3.1 (page 50)

1. Order: 10, 20, 200, 210, 40, 50, 30
2. Order: 10, 20, 50, 60, 40
Output: 50

m

Tp ooy

LN

247

248 Answers to Selected Exercises

3. Order: 10, 20, 200, 210, 220, 20, 300, 310, 320, 20, 400, 500
4. It prints an unending sequence of horizontal lines of ones.
5. a. 10 PRINT "A"
20 GOTO 10
b. 10 PRINT "A";" A"
20 GOTO 10

SECTION 3.2 (page 63)

1. 10 LET s=0
20 FOR N=12 TO 252 STEP 10
30 LET S=S+N
40 NEXT N
50 PRINT "12+22+32+...+252=";$
60 END
2. 10 LET s=1
20 FOR N=.5 TO 5 STEP .5
30 LET S=S+N
40 NEXT N
50 PRINT "1+.5+1+1.5+2+...45=";§
60 END
3. 10 LET S=0
20 FOR N=13 TO 103 STEP 10
30 LET S=S+N
40 NEXT N
50 PRINT "13+23+33+...+103=";S
60 END
4. 10 LET s=0
20 FOR N=1 TO 100
30 LET S=S+1/N
40 NEXT N
50 PRINT "1+1/2+1/3+...+1/100=";S
60 END
5. 10 PRINT"N","'NA2",""NA3","NAG"
20 PRINT:REM -Skip a Lline-
30 FOR N=1 TO 12
40 FOR J=1 TO 4
50 PRINT NAJ,
60 NEXT J
70 PRINT
80 NEXT N
90 END
6. 10 PRINT "MONTH","BALANCE"

20
30
40
50
60

70

80
90
100
10
20
30
40
50

60

70
80
90
10
20
30
40
50

60
70

80
90

Answers to Selected Exercises 249

PRINT:REM -Skip a line-
LET B=4000:REM -Initial balance-

LET P= 125.33:REM -Monthly payment-
FOR M=1 TO 12

LET I=.01*B:REM -Compute monthly
interest-
LET B=B+I-P:REM -Compute new
balance-
PRINT M,"$";B

NEXT M

END
PRINT "YEAR",''BALANCE"

PRINT:REM -Skip a line-

LET B=1000:REM -Initial deposit-

FOR Y=1 TO 15:REM Y=year
LET I=.1*B:REM -Compute interest
earned-
LET B=B+I:REM -Add interest earned to
balance-
PRINT Y,B

NEXT Y

END

PRINT "YEAR", '"SALES", "PROFIT"

LET $=35000000:REM -Initial sales-

LET P=5540000:REM -Initial profit-

FOR Y=1 TO 3:REM Y=year
LET S=S+.2*S:REM -Add 20% increase in
sales-
LET P=P+.3*P:REM -Add 30% increase in
profit-
PRINT Y,S,P

NEXT Y

END

SECTION 3.3 (page 76)

1.

2.

10
20
30
40
50
100
10

LET N=1

IF N*N>=45000 THEN 100
PRINT N

LET N=N+1

GOTO 20

END

PRINT "RADIUS","AREA"

250 Answers to Selected Exercises

20 LET PI=3.14159
30 LET R=1:REM R=radius
40 LET A=PI*RA2:REM A=area
50 IF A>5000 THEN 100
60 PRINT R,A
70 LET R=R+1
80 GOTO 40
100 END
3. 10 LET X=1
20 IF X~3>=175000 GOTO 100
30 PRINT X
40 LET X=X+1
50 GOTO 20
100 END
4. Change lines 40 and 60 in the solution of Example 5 as
follows:
40 PRINT "WHAT IS THEIR PRODUCT";
60 IF A*B=C THEN 210
5. 10 PRINT "ADDITION (1)"
20 PRINT '"SUBTRACTION (2)"
30 PRINT "MULTIPLICATION (3)"
40 PRINT "WHICH OPERATION DO YOU WISH TO
TEST (1/2/3)";
50 INPUT OPER
60 FOR N=1 TO 10:REM -Loop to give 10
problems-
70 PRINT "TYPE TWO 2-DIGIT NUMBERS'";
80 INPUT A,B
90 ON OPER GOTO 100,200,300
100 PRINT "WHAT IS THEIR SuMm";
110 INPUT C
120 IF A+B=C THEN 500
130 GOTO 400
200 PRINT "WHAT IS ";A;" - ";B;
210 INPUT C
220 1F A-B=C THEN 500
230 GOTO 400
300 PRINT "WHAT IS THEIR PRODUCT";
310 INPUT C
320 1IF A*B=C THEN 500
330 GOTO 400
400 PRINT ""SORRY. THE CORRECT ANSWER IS";
410 IF OPER=1 THEN PRINT A+B

420
430
440
500

510
600
700
710

720

Answers to Selected Exercises 251

IF OPER=2 THEN PRINT A-B

IF OPER=3 THEN PRINT A*B

GOTO 600

PRINT "YOUR ANSWER IS CORRECT!
CONGRATULATIONS!"

LET S=S+1:REM -Increase score by one-
NEXT N:REM -Go to the next problem-
REM -Print score for 10 problems-
PRINT "YOUR SCORE IS '";S;" CORRECT
ouT OF 10"

PRINT " TO TRY AGAIN, TYPE RUN"

1000 END

10
20
30
40
50
60
70
10
20
30
40
50
60
70
10
20
30
40
50

60
70
80
90
100
110
200
300

PRINT "PLEASE TYPE IN THREE NUMBERS"
INPUT A,B,C
LET L=A

IF B>L THEN LET L=B

IF C>L THEN LET L=C
PRINT "THE LARGEST IS ";L

END
PRINT "PLEASE TYPE IN THREE NUMBERS"
INPUT A,B,C
LET S=A

IF B<S THEN LET S=B

IF C<S THEN LET S=C
PRINT "THE SMALLEST IS '";S
END

DIM A$(3)

PRINT "PLEASE TYPE A NUMBER"

INPUT N

LET L=N

PRINT "DO YOU WISH TO INPUT ANOTHER
NUMBER (YES/NO)";

INPUT A%

IF A$=""NO" THEN 200

PRINT "PLEASE TYPE A NUMBER"

INPUT N

IF N>L THEN LET L=N

GOTO 50

PRINT "THE LARGEST IS ";L

END

Change lines 100 and 200 of the answer for Exercise 8 to the
following;:

100

IF N<L THEN LET L=N

252 Answers to Selected Exercises

200 PRINT "THE SMALLEST IS ";L
10. 10 PRINT "WHAT IS THE UNPAID BALANCE";
20 INPUT B
30 IF B<=500 THEN LET I=.015*B
40 IF B>500 THEN LET I=.015%500+.01*(B-
500)
50 LET B=B+I
60 PRINT "THE INTEREST CHARGE IS ";I
70 PRINT "THE NEW BALANCE IS ";B
80 END
11. 10 PRINT "THIS PROGRAM SIMULATES A CASH
REGISTER"
20 PRINT "TYPE IN THE PURCHASE AMOUNTS.
HIT RETURN AFTER EACH PURCHASE.';
30 PRINT "TYPE -1 TO INDICATE THE END OF
THE PURCHASES"
40 INPUT P
50 IF P=-1 THEN 100
60 LET T=T+P:REM T IS THE RUNNING TOTAL
70 GOTO 40
100 PRINT "TOTAL PURCHASES",T
110 LET S=.05*T
120 PRINT "SALES TAX",,S
130 PRINT "TOTAL DUE",,S+T
140 PRINT "WHAT IS THE AMOUNT OF PAYMENT";
150 INPUT A
160 PRINT "CHANGE DUE",A~-(S+T)
200 END
12. 10 PRINT ""CASH ON HAND";
20 INPUT C1
30 PRINT "INPUT AMOUNTS RECEIVABLE DURING
THE MONTH."
40 PRINT "TYPE -1 TO INDICATE THE END OF
THE AMOUNTS RECEIVABLE"
50 INPUT A
60 IF A=-1 THEN 100
70 LET C2=C2+A:REM C2 is the running
total of amounts receivable.
80 GOTO 50
100 PRINT "INPUT AMOUNTS EXPECTED TO BE
PAID DURING THE MONTH."
110 PRINT "TYPE -1 TO INDICATE THE END OF
THE AMOUNTS PAYABLE."

120
130
140

150
200
210
220
230
300

Answers to Selected Exercises 253

INPUT A

IF A= -1 THEN 200

C3=C3+A:REM C3 is the running total of
the amounts payable.

GOTO 120

PRINT "CASH ON HAND",C1

PRINT "ACCOUNTS RECEIVABLE",C?2

PRINT "ACCOUNTS PAYABLE",C3

PRINT "NET CASH FLOW",C1+C2-C3

END

SECTION 3.4 (PAGE 82)

1.

10
20
30
40
50
60
70
80
100

INPUT A _
IF A<O THEN 100
INPUT N

IF N<1 THEN 30
PRINT "J","J*A"
FOR J=1 TO N
PRINT J,J*A
NEXT J

END

254 Answers to Selected Exercises

2.

START

l

LET N=0

l.__

LET N=N+1

Y

LET S=S+1/N

9
IS S<107 YES

NO

PRINT N

'

END

Figure A-1.

Answers to Selected Exercises 255

START

INPUT X

Y

LET S=S+X

'

INCREASE N
BY 1

WANT TO
INPUT MORE
NUMBERS?

YES

NO

LET A=SIN

PRINT A

Y

END
Figure A-2.

256 Answers to Selected Exercises

10
20
30

40
50

60
70
80
90
100

DIM A$(3)

INPUT X

LET S=S+X:REM S is the running total
LET N=N+1:REM N is the number of
numbers being averaged

PRINT "DO YOU WANT TO INPUT MORE
NUMBERS";

INPUT A$ (YES/NO)

IF A$=""YES'" THEN 20

LET A=S/N

PRINT "THE AVERAGE IS '";A
END

SECTION 3.5 (page 87)

1.

oo T

200,

10-100, 1010-1040, 110-130, 40-100, 2010-2050, 110-130

400

500

Next line after 10

Next line after 10

None. The program will stop and an error message
will be displayed.

50

s

40-100, 2010-2050, 110-130, 40-100, 3010

SECTION 4.1 (page 99)

S S

DIM
DIM
DIM
DIM
10
20
30
40
50
60
70
80
90
100

A(5)
A(2,3)
AC3)
AC4)
DIM A(3,3)
DATA 57385.48, 62205.34, 38464.34
DATA 39486.98, 62238.24, 34256.32
DATA 45467.21, 62211.64, 37973.38
FOR N=I TO 3

FOR J=1 T0 3

READ A:A(N,J)=A

NEXT J
NEXT N
PRINT "DATES","STORE #1","STORE
#2" ,""STORE #3"

Answers to Selected Exercises 257

110 PRINT "1/1-1/10", AC1,1), AC1,2),
AC1,3)

120 PRINT "1/11-1/20", A(2,1), A(2,2),
AC2,3)

130 PRINT "1/21-1/30", A(3,1), A(3,2),

AC3,3)
200 END
6. Add the following lines to the program for Exercise 5:
5 DIM T(3)
140 FOR J=1 T0 3
150 LET TC(JI=AC1,J)+A(2,J)+A(3,4)
160 NEXT J
170 PRINT "TOTAL",T(1),T(2),T(3)

SECTION 4.2 (page 105)

1. A(1)=2, A(2)=4, A(3)=6, A(4)=8, A(5)=10,
AC6)=12, A(7)=14, A(8)=16, A(9)=18,
A(10)=20

2. ACD)=1.1, B(0)=2.2, A(1)=3.3, B(1)=4.4,
A(2)=5.5, B(2)=6.6, A(3)=7.7, B(3)=8.8

3. AC0)=1, A(1)=2, A(2)=3, A(3)=4, B(0)=5,
B(1)=6, B(2)=7, B(3)=8

4. AC0)=1, B(0)=2, A(1)=3, B(1)=4, A(2)=1,
B(2)=2, A(3)=3, B(3)=4

5 A(1,1)=1, A(1,2)=2, A(1,3)=3, A(1,4)=4,
A(2,1)=5, A(2,2)=6, A(2,3)=7, A(2,4)=8,
AC3,1)=9, A(3,2)=10, A(3,3)=11,
A(3,4)=12

6. A(1,1)=1, AC2,1)=2, A(3,1)=3, A(1,2)=4,
AC2,2)=5, A(3,2)=6, A(1,3)=7, A(2,3)=8,
A(3,3)=9, A(1,4)=10, A(2,4)=11,
A(3,4)=12

7. There is not enough data in line 50.

All the data in line 50 should be numeric.

9. ATARI BASIC does not allow string arrays, so line 10 will

cause an error.

10. Not enough data in line 40

®

258

Answers to Selected Exercises

SECTION 4.3 (page 113)

VXN O N

100*RND(0)
RND(0)+100
INT(50*RND(0)+1)
INT(77%*RND(Q)+4)

2% INT(25%RND(0)+1)
50*INT(0)+50
3%*INT(9*RND(OQ)+1)
4+3*INT(7*RND(0))
10 PRINT "NUMBER OF PLAYERS'";
20 INPUT N
30 DIM R$(1),A(5),B(5),C(5): REM -At most
5 players-
40 FOR J=1 TO N: REM ~-Initial purchase of
chips-
50 PRINT "PLAYER ";J
60 PRINT '"HOW MANY CHIPS'";
70 INPUT A:A(J)=A
80 NEXT J
100 PRINT "LADIES AND GENTLEMEN! PLACE
YOUR BETS PLEASE!"
110 FOR J=1 TO N: REM -Place bets.-
120 PRINT "PLAYER '";J
130 PRINT ""NUMBER, AMOUNT'";
140 INPUT B,C:B(J)=B:C(J)=C: REM -Place
bet.-
150 NEXT J
200 LET X=INTC(6*RND(0)+1)
210 LET Y=INT(6*RND(O)+1)
220 PRINT "THE ROLL IS ";X;",";Y
230 PRINT "THE WINNING TOTAL IS ";X+Y
300 REM -Compute winnings and losses.-
310 FOR J=1 TO N
320 IF X+Y=B(J) THEN 400
330 PRINT "PLAYER '";J;'" LOSES ";C(J);"
DOLLARS"
340 ACJ)=ACJ)-CJ)
350 GOTO 490
400 REM -Player J wins. First compute
winnings.-
410 IF X+Y=2 OR X+Y=12 THEN LET
C(J)=35%C(J): GOTO 470

10.

11.

420

430
440
450

460
470
480

490
500

510
520
530
540
550
600

620
630
640
650
700

Answers to Selected Exercises 259

IF X+Y= 3 OR X+Y=11 THEN LET
C(J)=17%C(J): GOTO 470

IF X+Y=4 OR X+Y=10 THEN LET
C(J)=11%C(J): GOTO 470
IF X+Y=5 OR X+Y=9 THEN LET
C(J)=8*C(J): GOTO 470
IF X+Y=6 OR X+Y=8 THEN LET
C(J)=6.2%C(J): GOTO 470
LET C(J)=5*%C(J)
LET ACJ)=ACJI+C(J)
PRINT "PLAYER ";J;" WINS ";C(J);
" DOLLARS"
NEXT J
PRINT "PLAYER BANKROLLS": REM -Display
game statistics-
PRINT
PRINT "PLAYER",'CHIPS"
FOR J=1 TO N
PRINT J,ACJ)
NEXT J
PRINT '"DO YOU WISH TO PLAY AGAIN
CY/ND'";
INPUT RS
GRAPHICS 0: REM -Clears screen-
IF R$="Y" THEN 100: REM —-Repeat game-
PRINT "THE CASINO IS CLOSED. SORRY!"
END

Add the line:

145

IF CCJI>A(J) THEN PRINT "YOU DON'T
HAVE ENOUGH CHIPS TO BET ";C(J);"
DOLLARS": GOTO 120

Add the lines:

145
700

720

730

740

750

IF C(JI>ACJ) THEN GOTO 700

PRINT "YOU DON'T HAVE ENOUGH CHIPS TO
BET ";C(J);" DOLLARS. DO YOU WISH TO
BORROW (Y/N)";

INPUT RS

IF R$="N" AND A(J)=0 THEN LET C(J)=0:
GOTO 150

IF R$="N" THEN PRINT "PLACE YOUR BET":
GOTO 120

PRINT ""HOW MUCH DO YOU WANT TO BORROW
(0-100)";

260

Answers to Selected Exercises

12.

760
770

780
790

800
10
20
30
40
100
110
120
130

140
200
210
220
230
240

250
300
310
320
330

340
500

510

530
540
550
560

INPUT B

IF B<O OR B>100 THEN PRINT "YOU CAN
BORROW ONLY BETWEEN O AND 100
DOLLARS.":G0TO 750

LET AC(J)=A(J)+B

PRINT "PLAYER ";J;", YOU NOW HAVE
";AC(J);" DOLLARS. PLACE YOUR BET."
GOTO 130

DIM A$(1): LET X=INT(10%RND(0))
LET Y=INTC(10*RND(0))

LET R=INT(3*RND(0)+1)

GOTO 100*R

PRINT X;" + II;Y;II = ll;
INPUT A

IF A=X+Y THEN GOTO 500

PRINT "SORRY. THE CORRECT ANSWER IS

"IX+Y

GOTO 510

IF Y>X THEN LET L=Y:LET Y=X:LET X=L
PRINT X;" = ";Y;" =";

INPUT A

IF A=X-Y THEN GOTO 500

PRINT '"'SORRY. THE CORRECT ANSWER IS
u; X-Y

GOTO 510

PRINT X;" * ",;y,;" = ";
INPUT A

IF A=X*Y THEN GOTO 500

PRINT '"SORRY. THE CORRECT ANSWER IS
"oXkY

GOTO 510

PRINT '""CONGRATULATIONS! THAT'S
CORRECT!"

PRINT ""DO YOU WISH TO TRY ANOTHER
PROBLEM (Y/N)'";

INPUT A%

IF A$="Y" THEN GRAPHICS 0:GOTO 10
PRINT "THANKS FOR PLAYING! GOODBYE"
END

Answers to Selected Exercises 261

13. 10 DIM R(4),N$(30)
20 FOR J=1 TO 4: REM -Pick 4 different
random integers between 1 and 10-
LET R(J) = INT(10*RND (0)+1)

30
40 IF J=1 THEN B0: REM -Skip check in

lines 50-70-

50 FOR K=1 TO J-1

60 IF R(J)=R(K) THEN 30: REM -In
case of duplication, choose
again-

70 NEXT K

80 NEXT J

90 PRINT "THE NAMES CHOSEN ARE:"

100 PRINT

110 FOR J=1 TO 4: REM -Read names

corresponding to R(1)-R(4)-

120 FOR K=1 TO R(J)

130 READ N$

140 NEXT K

145 PRINT N$

150 RESTORE

160 NEXT J

170 DATA <NAME 1>,<NAME 2>, ... ,<NAME 10>

180 END

SECTION 10.1 (page 209)

15. 10 PRINT "X","EXP(X)"
20 PRINT:REM -Skips a line-
30 FOR X=-5 TO 5 STEP .1
40 PRINT X,EXP(X)
50 NEXT X
60 END
16. 10 PRINT X" ,"3LOG(S5X)+EXP(1.8X)TAN(X)"
20 PRINT:REM -Skips a line-
30 READ X
40 IF X=0 THEN 80
50 PRINT X,3*LOG(5*X)+EXP(1.8*X)*TAN(X)
60 GOTO 30
70 DATA 1.7,3.1,5.9,7.8,8.4,10.1,0
80 END
17. X-INT(X)

262

Answers to Selected Exercises

SECTION 10.2 (page 211)

1.

10
20

30
40

50
60

70
80

90

100
110
10
20

30
40

50
60

70
80

90

100
110
10
20

30
40

50
60

GRAPHICS 8+16

SETCOLOR 2,0,0:REM =Turns screen
black-

COLOR 1

PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

LET X=0:REM -Initial value of X-

PLOT 50%*X,96-95*C0S(X):REM -Plot point
on graph-

LET X=X+.04:REM -Increase value of X-
DRAWTO 50%X,96-95*%C0S(X):REM -Connect
adjacent points-

IF X=6.28 THEN 90:REM -Freeze the
screen when X=6.28-

GOTO 70

END

GRAPHICS 8+16

SETCOLOR 2,0,0:REM -Turns screen
black-

COLOR 1

PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

LET X=-2:REM -Initial value of X-
PLOT 75%(X+2),96-48*ABS(X):REM -Plot
point on graph-

LET X=X+.04:REM -Increase value of X-
DRAWTO 75*(X+2),96-48*ABS(X):REM
-Connect adjacent points-

IF X=2 THEN 90:REM -Freeze the screen
when X=2-

GOTO 70

END

GRAPHICS 8+16

SETCOLOR 2,0,0:REM -Turns screen
black-

COLOR 1

PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

LET X=-3:REM -Initial value of X-
PLOT 50%(X+3),96-32*INT(X):REM -Plot
point on graph-

70
80

90

100
110

10
20

30
40

50
60

70
80

90

100
110
10
20

30
40

50
60

70
80

90
100
110
10
20

30

Answers to Selected Exercises 263

LET X=X+.04:REM -Increase value of X-
DRAWTO 50*(X+3),96-32*INT(X):REM
-Connect adjacent points-

IF X=3 THEN 90:REM -Freeze the screen
when X=3-

GOTO 70

END

GRAPHICS 8+16

SETCOLOR 2,0,0:REM -Turns screen
black-

COLOR 1

PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

LET X=.001:REM -Initial value of X-
PLOT 159*X,96-11*LOG(X):REM -Plot
point on graph-

LET X=X+.04:REM -Increase value of X-
DRAWTO 159*%X,96-11*LOG(X):REM -Connect
adjacent points-

IF X>2 THEN 90:REM ~-Freeze the screen
when X>2-

GOTO 70

END

GRAPHICS 8+16

SETCOLOR 2,0,0:REM -Turns screen
black-

COLOR 1

PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

LET X=-1.5:REM -Initial value of X-
PLOT 100*(X+1.5),96-21*EXP(X):REM
-Plot point on graph-

LET X=X+.04:REM -Increase value of X-
DRAWTO 100*(X+1.5),96-21*EXP(X):REM
-Connect adjacent points-

IF X=1.5 THEN 90:REM -Freeze the
screen when X=1.5-

GOTO 70

END

GRAPHICS 8+16

SETCOLOR 2,0,0:REM -Turns screen
black-

COLOR 1

264 Answers to Selected Exercises

40 PLOT 0,96:DRAWTO 319,96:REM -Draw X
axis-

50 LET X=-1:REM -Initial value of X-

60 PLOT 100%(X+1),96-47*%(X-XA2):REM -Plot
point on graph-

70 LET X=X+.04:REM -Increase value of X-

80 DRAWTO 100%(X+1),96=47%(X-XA2) :REM

-Connect adjacent points-

90 1IF X=2 THEN 90:REM -Freeze the
screen when X=2-

100 GO0TO 70

110 END

7. 10 GRAPHICS 8+16

20 SETCOLOR 2,0,0:REM -Turns screen
black-

30 COLOR 1

40 PLOT 0,96:DRAWTO 319,96 :REM -Draw X
axis-

50 LET X=-1.5:REM -Initial value of X-

60 PLOT 100*(X+1.5),96-6*SIN(X)/
COS(X):REM -Plot point on graph-

70 LET X=X+.04:REM -Increase value of X-

80 DRAWTO 100*(X+1.5),96~-6*SIN(X)/
COS(X):REM -Connect adjacent points-

90 IF X=1.5 THEN 90:REM -Freeze the
screen when X=1.5-

100 GOTO 70

110 END

8. 10 GRAPHICS 8+16

20 SETCOLOR 2,0,0:REM -Turns screen
black-

30 COLOR 1

40 PLOT 0,96:DRAWTO 319,96 :REM -Draw X
axis- ,

50 LET X=-2:REM -Initial value of X-

60 PLOT 79*(X+2),96-96*(X-INT(X)):REM
-Plot point on graph-

70 LET X=X+.04:REM -Increase value of X-

80 DRAWTO 79*(X+2),96-96*(X-INT(X)):REM
-Connect adjacent points-

90 IF X=2 THEN 90:REM -Freeze the screen
when X=2-

100 GOTO 70

110 END

Index

ABS, 208, 209

Arithemetic operations, 27
order of, 29

Array, 96
two-dimensional, 96

Artifacting, 144

ASC, 156

ASN, 206

ATARI BASIC, 15, 23

ATARIWRITER, 215

ATASCII, 151

ATASCII codes, 152-158,

229-235
ATN, 206

Background, 130
BASIC, 23
ATARI, 15, 23
XL, 8,13
BASIC cartridge, 7, 11, 14, 23
Border, 130
BREAK key, 49
Buffer, 198
Bulletin board, 128

CAPS, 15
CAPS LOWR, 16
Cassette recorder, 5, 117-120
Central processing unit (CPU),
3
Channel, 193
Character, 130
control, 151, 159
CHRS, 156
CLEAR, 17
CLOAD, 119
CLOG, 207
CLOSE, 194, 195
CLR, 99
COLOR, 135, 136

Color register, 133
Command(s), 23, 236-240
CONT, 49
CONTROL, 10, 14
Control character, 150, 159
Coordinate(s), 131
X, 131
Y, 131
COS, 205
COT, 206
CPU, 3
CRT, 5
CSAVE, 118
CSC, 206
CTRL, 17
Cursor, 18
movement of, 18

Data
inputting, 100-105
tabular, 95-99
DATA, 100-105
Data file(s), 193-201
legal names of, 193
Debugging, 91-93
DEG, 205, 206
Delay loop, 61, 62
DELETE BACK S, 18, 19
DELETE BACK SPACE, 10, 14,
15
DIM, 41, 97
Direct mode, 23
Disk, 5, 120
Disk drive, 5, 120-126
Disk Operating System, 122
Diskette, 5, 120
master, 121
Display line, 33
Display mode, 129
Direction number, 176
DOS, 121, 122

266 Index

DRAWTO, 140, 141, 149
151

4

e, 208
Editing

program, 34

screen, 17
END, 32, 33
ENTER “C:”, 119
ENTER “D:”, 124-126
Error message(s), 16, 44, 219-222
Error trapping, 90
EXP, 208
Exponentiation, 28

F1, 22

F2, 22

F3, 22

F4, 22

Fire button, 178

Floppy disk, 5

Flowchart, 78

FOR ... NEXT, 51, 52

Foreground, 130

Formatting, 122, 123

Function(s), 203-210, 236-240
absolute value, 208, 209
exponential, 208
graphing, 210-211
greatest integer, 209
inverse trigonometric, 206
logarithmic, 207, 208
sign, 209
square root, 203, 204
trigonometric, 205, 206

GET, 195
GOTO, 47-50
used in the direct mode, 93
Graphics, 129
GRAPHICS, 132, 133
Graphics mode(s), 129, 138, 139,
142-149, 226, 227

GTIA chip, 129, 145, 146

Hard copy, 5

HELP key, 20
Hue, 133-135

IF ... THEN, 66-68
Immediate mode, 23
Input, 5

INPUT, 71, 72, 195, 196
Input device, 5
INSERT, 19

INT, 109, 209, 212, 213
Inverse space, 151
Inverse video, 151

Jack(s), 174, 176, 181
Joystick, 174-179

Keyboard, 5,7, 9, 11, 13, 15

Languages, 217
Leader, 118
LET, 36
Line
display, 33
program, 33
Line number, 32, 33
LIST, 33, 34
LIST “C:”, 119
LIST “D:”, 124, 125
LIST “P:”, 127
LOAD “D:”, 124, 125
LOCATE, 167, 168
LOG, 207
LOG,, 207
Loop(s), 51
applications of, 58-62
nested, 56, 57
Loop variable, 51
LPRINT, 118, 126

Luminance, 133

Machine language, 217
Master diskette, 121
Memory, 3

Microprocessor, 4
Modem, 128
Monitor, 5

Nested loops, 56, 57
Nested parentheses, 30
Nested subroutines, 85
NEW, 34

Null string, 98

ON ... GOSUEB, 86, 87
ON ... GOTO, 73, 74
OPEN, 194, 195
Output, 5

Output device, 5

Paddle(s), 180-182

PADDLE, 181

Parentheses, 30

PEEK, 88

Peripheral devices, 117-128
reading from, 193
writing to, 193

Pi, 206

Pixel, 130, 131

PLOT, 136, 149, 151

POKE, 22, 89, 90

POSITION, 158, 159

PRINT, 24, 37, 141, 142, 195, 196
used with comma, 26
used with semicolon, 25

PRINT #6, 159

Printer, 126-128

Program(s), 32
debugging of, 91-93
editing of, 34

Program line, 33

Index 267

Program mode, 32
Program recorder, 117-120
PTRIG, 181

PUT, 195

RAD, 205

Radian, 205

RAM, 4

Random access memory, 4
Random number generator, 108
READ, 100-105

Read only memory, 4
READY, 7, 8, 11, 14
Ready prompt, 7, 9, 11, 14
REM, 42

RESET, 10, 14, 15
Resolution, 131
RESTORE, 103-105
RETURN, 83

RETURN key, 15, 18
RND, 108

ROM, 4

RUN, 32

RUN “C:”, 119

RUN “D:”, 124, 125

SAVE “D:”, 124, 125

Scientific notation, 29

Screen editing, 17

SEC, 206

Sector, 123

SETCOLOR, 133-135

SGN, 209

SHIFT, 17, 19

SIN, 205

Software, 215-217
buying, 216, 217

SOUND, 169-173, 223

SQR, 203-205

Statement(s), 23, 236-240

STICK, 174

Stop, 92

STRIG, 178, 179

268 Index

String, 27
null, 98
String constant, 27
String variable, 40
Subroutine(s), 83, 84
nested, 85
Subscript, 95

Subscripted variable, 95
doubly, 96

Tabular data, 95-99
TAN, 206
Tape recorder, 117-120
Test
all-tests, 21
audiovisual, 20
keyboard, 20, 21
memory, 20

Text mode(s), 129, 150, 161-163

228

Text window, 132
TRAP, 90
Trigger, 178, 181

Variable(s), 35, 36
incrementing, 39
legal names of, 40
loop, 51
string, 40
subscripted, 95

Video monitor, 5

Word processing, 215, 216

XIO, 162-166
XL BASIC, 8, 13

Now! The Surest Way To Learn BASIC And Graphics
On The Atari 400, 600XL, 800, 800XL, and 1200XL!

BASIC AND GRAPHICS

FOR THE ATARI 400, 600XL, 800, 800XL, AND 1200XL
Mark Ellis, Robert Ellis, and Larry Joel Goldstein

Finally, a text that gives you—the novice, potential buyer, or existing
owner—the fundamentals to BASIC programming and graphics for the
Atari 400, 600XL, 800, 800XL, and 1200XL! Here is the book that takes
you “by the hand” and gives you all the information you need to know
about each version of the machine to become proficient in BASIC pro-
gramming, including where to start . . . what to do . . . and how to write
programs more effectively! You’ll also discover the sound and graphics
capabilities of Atari computers, and learn guidelines for making simple
games for the computer as well!

® a clear, concise outline of what a computer is and how it works

¢ a complete introduction to BASIC language with helpful tips on
easing programming frustrations

¢ immediate applications to business, graphics, games, and word
processing

® comprehensive tables, charts, appendices, and much more!

CONTENTS

Preface ® A First Look At Computers ® Getting Started In Atari
BASIC e More On Atari BASIC e Working With Data ® Using Peri-
pherals ® Computer Graphics And Text ® Using Sound and Game
Controllers ® Games e Data Files ® Computing and Mathematical
Functions ® Where To Go From Here ® Appendices ® Answers to
Selected Exercises ® Index

ISBN 0-89303-323-5

\

