The
First
ATARI ST

' % a :

A Data Becker
Book from
First Publishing
Limited

WYl SR

\

)

FIRST PUBLISHING LTD

PRESENTING

the

ATARI ST

By L. English and J. Walkowiak

A DATA BECKER BOOK

Published by

1

St

FIRST PUBLISHING LTD

All instructions, technical instructions and programs contained in this
book have been carefully worked out by the authors, i.e., written and run
under careful supervision. Every effort has been made to include
complete and accurate information. However, First Publishing assumes
no responsibility for its use. The authors will always appreciate receiving
notice of subsequent mistakes.

Printed in U.K. Translated by Greg Dykma
Edited by Jim D’Haem
Drawings by Russ Taber
Copyright © 1985 First Publishing Ltd
Unit 20B Horseshoe Rd.
Horseshoe Park
Pangbourne, Berkshire
England.
Copyright © 1985 DATA BECKER GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany
Copyright © 1985 ABACUS Software, Inc.
P.O. Box 7211
Grand Rapids, MI 49510

This book is copyrighted. No part of this book may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without
the prior written permission of First Publishing Ltd or DATA BECKER,
GmbH.

ISBN 0948015-950

TABLE OF CONTENTS

1. INTRODUCING THE 16-BIT PROCESSORS.......c.cociviiiinienn 1
1.1. THE TRUE 16-BIT PROCESSORS.....ccccccovviniiinninne 7
1.2. THE 68000 PROCESSOR.......ccoviiiiiiiiiiiiniiicn 9
1.3. THE 68000 INSTRUCTION SETccocviniiiiiinnccnnee 15
1.4. ADVANCED FEATURES OF THE 68000...........ccccccoevo. 27

2. THE ARCHITECTURE OF THE ATARI ST.....ccccoovininnen. 31
2.1. ATARI ST INTERFACES.....cccoiiiiriiiii 35
2.2. FLOPPY DISK INTERFACE......ccccoccoiiiimimnniine 37
23. THE HARD DISK .., 39
2.4. HIGH SPEED THROUGH DMA ..ot 41
2.5. THE PRINTER INTERFACE......ccccccoooiiiiiiiiiiniiininnne 43
2.6. THE SERIAL INTERFACE.......cccciiiiiiiis 45
2.7. THE MFP 68901 . it 51
2.8. SOUND CAPABILITIES OF THE ATARI ST.................. 57
2.9. THE MIDI INTERFACE......ccciiiiiiiiiiiiienns 61
2.10.THE ATARI ST KEYBOARD.........cooiiiiiiiiiiiiens 63
2.11.THE ATARI ST VIDEO INTERFACE.......c..cccccooeniinn. 67

3. THE ATARI ST OPERATING SYSTEM.....cooviiniinnnins 75
3.1 THE CP/M OPERATING SYSTEM......ccooviniiinnninnns 81
3.2 BDOS FUNCTIONS. ..ot 91

3.3 THE BIOS OF THE ATARI ST ..o 101

4. TOWARDS A USER-FRIENDLY COMPUTER........... pvreeens 109
4.1 THE TRADITIONAL OFFICE..........ccccceovveevreerannn.. 111

43 THE MOUSEcccooiimmmiiiiiiiiiiiee e, 115
4.3.1 WORKING WITH THE MOUSE..........cc.c.......... 117

5. WORKING WITH GEMcccooiivviiiinieiiiiee e, 119
5.1 MENUS..... e, 121
5.2 WINDOWS UNDER GEM.....c.c.oovvvvviieeeeaeeennn. 129
5.3 THE DISK DIRECTORY........cc.cooovviviieaeceieeerenan, 133
5.4 WORKING WITH FILES UNDER GEM...................... 137
5.5 INSIDE GEM.....c.oiiiiiiiiiiiiiiniiieeee e, 143
5.6 VIRTUAL DEVICE INTERFACE........cccccoovuveennne. 145
5.7 APPLICATION ENVIRONMENT SERVICES 149

6. COMMUNICATION BETWEEN MAN AND MACHINE......... 151

6.1. COMPUTER LANGUAGES..........ceevevvrreeriernnenn.. 153
6.3. PROBLEM-ORIENTED PROGRAMMING LANGUAGES. 157
6.4 INTERPRETIVE LANGUAGES..........cocuvvviveereannnn.. 161
6.5 HIGHER-LEVEL PROGRAMMING LANGUAGES........ 163
T. LOGO. ..ot 167
7.1 PROCEDURES IN LOGO.....ccccooeeerirmirrniiririieeneeene, 171

LIST OF FIGURES

1-1: 68000 BLOCK DIAGRAM......c.oovmievereeeeeseeeeeeeeeereensnenn 7
1-2: 68000 PIN LAYOUT...ovoeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenanenns 8
1-3: 6502 REGISTER SET...oeoioeeieeeeeeeeeeeeeeeeseeeeeeeeeeeenes 10
1-4: 68000 REGISTER SET...oveveveueereeeeeereeerereeesereeeeeennene 11
1-5: 68000 OPERANDS.....eoueetieeeeeseeeeeeeeereeeeeeeeeeeeeeeenenns 14
2-1: MEMORY MAP......iioioeoeeeeeeeeeeeeeeeee e 32
22: /O ASSIGNMENTS....ooueoeeeeeeeeeeeereeeeeeseerreeeeeeeens 34
2-3: BLOCK DIAGRAM of the ATARI ST......ooooovereereereenen. 36
2-4: SERIAL TRANSMISSION.....coooueeiereeeeeeeereseeeeeeeeenns 46
2-5: KEYBOARD LAYOUT...cooioeoeeeeeeeerereeeeeereeeeenen. ... 64
2-6: BIT-MAPPED GRAPHICS........ooveveeeeeereeereereeeeereeeaens 68
2-7: ATARI ST SCREEN PHOTO......cooeveoeerereresereeeeesernens 73
2-8: ATARI ST SCREEN PHOTO.......cooeveoeeeeeeerererererernnes 74
4-1: USER INTERFACEcimeeeoeeeeeeeeeeeeeeseeeerereeen. 116
51 GEM WINDOW LAYOUT...ocooiiooimeeeeeeeeeeeeeereeenn. 131
5.2 GEM MENU DIAGRAM....cocooimememmoreeeeeeeeeeerereeeenn. 132

1-1:

2-1:

2-3:

LIST OF TABLES

THE 68000 INSTRUCTION SET...ccooiiiiiiiiniiinnnnnn

MFP 68901 INTERNAL REGISTERS..............

MFP68901 INTERRUPT PRIORITY.....cccccovviiiiiniiiinnne

INTERRUPT STRUCTURE OF THE ATARI ST

Preface

A new era is beginning in the world of computers. The line which
separates the home from the business computer is becoming less distinct as
machines such as the Atari ST appear. These new super-machines carry a
price tag aimed at the home user - especially those who want to upgrade
from their present 8-bit home computer. But because of the high
performance capabilities these new computers, they can also be used for
serious business, scientific and engineering applications.

Although the Atari ST comes to the market at a price which is extremely
attractive, its specifications and capabilities set totally new standards.

* The 16/32 bit Motorola 68000 microprocessor offers very
powerful processing capabilities found only in considerably more
expensive business and scientific computers.

* The 512K of RAM is very adequate for most users and
applications.

* GEM, the new graphic oriented user interface, enables novices to
quickly become productive with the computer.

The ingredients of Atari's ST are already found in other computers. By
themselves these features are not so spectacular, the real innovation,
however, lies in the low price at which the whole package is offered.

Ford's Model T was no great technical innovation. But the efficient
production techniques and the marketing strategy made the Model T very
affordable to the consumer. That made the Model T so successful for Ford.
So says Atari of their ST.

Innovation here, represents a leap in the price to performance ratio of
home computers. This kind of innovation is a tradition for one of the most
significant "movers" in the computer world, Atari Chairman Jack Tramiel.

His first success in home computers was the PET 2001, one of the first
out of the box and ready-to-run machines. It's popularity proved so great
that enthusiasts had to wait months to buy one, after it was introduced in
1977. But the PET's success was soon overshadowed by that of the
VIC-20. The VIC-20 was a smashing success owing to its fine color
graphics, sound synthesis capabilities, available peripherals and most of all
its affordable price. Millions were sold. To prove that he was not spoiled by
success, Tramiel revealed his second masterpiece, the Commodore 64. The
'64 remains the most successful home computer to date. More than four
million owners are convinced that at such an attractive price, the '64 is the
computer that meets their needs.

Now Atari is hoping that the ST will be Tramiel's third masterpiece. At
the original price of the Commodore 64, the ST offers very exciting
performance features of much more expensive computers. To the general
public, the ST offers a new spectrum of very ambitious computer
applications that were previously unavailable because of price

ii

considerations. Home computer users can tap completely new areas with the
ST, while business users may quickly find that they can replace
considerably more expensive computers with the Atari ST and thereby save
a good deal of money too!

The goal of this book on the Atari ST is not only to provide the reader
with a summary of the capabilities and features of this fascinating new
machine. It should also serve as a good source information for prospective

buyers. Additionally, we hope that it will suggest potential uses for this
powerful new computer.

The information in this book is book is derived from hands-on
experience which the authors received during their work with prototypes of
the new Atari ST. As you are aware, computer development is a creative
and on-going process. For this reason, the production models and the
accompanying software may deviate slightly from the information presented
in this book.

We wish to thank the Atari Corporation for making the ST available to
the authors and for their technical assistance. Good luck, Atari!

il

First Publishing The FIRST ATARI ST BOOK

1. INTRODUCING THE 16-BIT PROCESSORS

Eight-bit microprocessors appeared on the market in the middle of the
70's. It wasn't long before these processors became the basis for the first
home computers. Among the first were the PET 2001 (from Commodore),
the Apple (from Apple Computer) both of which used the 6502 processors,
and the TRS-80 (from Tandy) which used the Z-80 processor. These
micros had from 4K to 16K of memory, a monochrome screen that
displayed 25x40 or 16x64 characters and a built-in BASIC interpreter. They
were priced at about one thousand dollars.

Now, for less than one-fourth of the price, you can get a computer with
64K of memory, built-in BASIC, high-resolution color graphics and
excellent sound capabilities. This highlights the incredible improvement in
performance and price that has taken place in such a short time. These were
made possible mainly through advances in semiconductor technology.

For example, in the late 1970’s increasing the memory capacity of an 8K
PET to 32K cost well over £300. Today, 64K of RAM costs less than £25.
The prices of peripherals have also fallen dramatically. In 1980, a printer
could hardly be bought for less than £750. Today, for about £250, you can
select from a wide variety of printers with far-superior features and
performance than was available only a few years earlier. This also holds true
for mass storage devices. A dual disk drive with a 340K capacity cost £1200
three years ago. Today, for about £600, you can buy 2 megabytes of mass
storage.

First Publishing The FIRST ATARI ST BOOK

Why does it seem that we always need more and more storage capacity?
In the past, mainframe computers typically had main memory capacities of
from one-half to several megabytes. Using these computers, it was
possible to execute computation intensive mathematical programs, usually
written in the FORTRAN programming language, or to perform data
intensive commercial tasks, most often written in the COBOL programming
language. The compiler alone often required as much as 100K to run in
such installations. If in 1975 you asked if FORTRAN programs could be
run on a home computer, the answer was definitely: "NO". But by 1980,
FORTRAN and COBOL compilers were available for some
microcomputers. The capabilities of these compilers was somewhat limited,
but is was possible to use the huge base of existing FORTRAN and
COBOL programs (these programming languages have been around since
the fifties) on a microcomputer. But in so doing, the limitations of micros
also became clear.

The execution speed of compiled programs is considerably greater than
interpreted languages such as BASIC. Therefore complex problem
solutions which require a few minutes on a mainframe often take several
hours on a micro. Even when speed of execution is not a concern, the
limited amount of memory - 64K - often prohibits the use of micros for
some applications. To understand why 64K bytes represents the limiting
boundary for most 8-bit microprocessors, we'll take a brief excursion into
the hardware end of microprocessors.

First Publishing The FIRST ATARI ST BOOK

When a microprocessor wants to access memory, it must determine
which data it wants to read. To do this, each location in memory is
referenced by a number or address. The processor has 16 address lines,
each of which can assume one of two different conditions. Therefore you
can select two different memory locations with each address line. If there
are two lines available, then there are four different combinations for
selecting or addressing the memory. With the sixteen address lines
available, 216 = 65536 different memory locations can be addressed. Since
210 = 1024 addresses represent one kilobyte (K), 65536 is 64K. Since an
8-bit processor has eight data lines, each address can contain one of 256
(28) different values. A collection of eight bits is called a byte.

To go beyond these boundaries with an 8-bit processor requires some
tricks. If you need more than 64K of memory for a program and/or data,
then a section of memory not being used at that moment can be saved to a
mass storage device, such as a disk, and reloaded later when required. The
disadvantage of this procedure is that it is considerably slower than
accessing the data directly in memory. The processor can access a memory
location in mere microseconds (millionths of a second) while disk drive
access (to retrieve the saved data) requires much more time and slows the
execution of the program.

Another method of accessing more than 64K or memory is by
bank-switching. Here, several memory banks each containing 64K are
used. Using a software-controlled switch, you can select between the
different banks and thus gain access to more than 64K. This technique is

First Publishing The FIRST ATARI ST BOOK

certainly faster than the previous method, but complicates data access since
the software must be specially written to switch between the memory banks.

For these reasons, people soon started looking for ways to improve the
efficiency and capability of microprocessors. There were two major

concerns: greater processing speed and the access of more memory.

A first step in the direction of greater memory access resulted in an
improvement of the bank-switching technique. Switching between different
memory banks was assigned to the processor instead of special software
routines. The improvement uses a segment register. For example the 8086
and 8088 processors contain four segment registers. Using these registers,
a 64K segment can be moved in main memory, which can amount to One
million bytes (1M). Following each address, a segment register specifies
the actual memory access: the code segment register determines from which
segment the program instructions are to be fetched; the data segment register
specifies the segment where the data is to be found. The stack segment
register specifies the location of the stack and an extra segment register can
point to an additional 64K segment. The disadvantage of this method is that
only 64K can be accessed in one pass. The appropriate segment register
must be reloaded in order to access memory outside of this range.

To increase the execution speed of the processor, the internal registers
were widened from eight to sixteen bits. This allows operations, such as
addition and subtraction, in the processor to be carried out on sixteen bits at
atime. To retain this advantage during data transmission, the data bus was

First Publishing The FIRST ATARI ST BOOK

also widened from eight to sixteen bits in the case of the 8086. The 8088 is
the low-cost version of the 8086. Accordingly, the data bus was retained at
a width of eight bits. This permits a smaller size chip and reduces the
number of other components, such as bus drivers, required on the board.
The penalty is the reduced throughput, since sixteen-bit data must now be
transferred with two sequential eight-bit transfers. Viewed in this manner,
the 8088 no longer offers much advantages over an eight-bit processor,
apart from an improved instruction set. This is why a BASIC program on
the IBM PC runs only slightly faster than on many CP/M computers which
have an 8-bit Z-80 processor.

First Publishing The FIRST ATARI ST BOOK

1.1. THE TRUE 16-BIT PROCESSORS

Based on these considerations, the engineers at Motorola started the
development of a sixteen-bit processor which would overcome these
limitations. The goals were: a larger address range, greater data throughput,
and a powerful instruction set which is both easy to learn and easy to use.
The result of this development was the 68000, samples of which were
already available as early as 1979. The 68000 is considered by many as the
most capable of the sixteen-bit processors. It has already become the
standard in many industrial applications. Because it forms the heart of the
Atari ST, we'll examine the 68000 in greater detail in the next section.

Fig. 1-1: 68000 BLOCK DIAGRAM

Timing Address Lines
Inputs

Processor Data Lines
Status

Peripheral Bus Lines
Lines

Interrupt DMA - Lines
Lines

First Publishing The FIRST ATARI ST BOOK

Fig. 1-2: 68000 PIN LAYOUT

D4 {16 ~—/ 64 DS
D3 = 2 63 [= D6
D2 = 3 62 = D7
D1 = 4 61 = D8
DO =5 60 B D9
AS o6 59 = D10
ADS = 7 58 = D11
DS = 8 57 P D12
R/M o9 56 = D13
DTACK = 10 55 = D14
BG = 11 54 B DIS
BGACK = 12 S3 = GND
BR = 13 52 = A23
Uee S 14 51 B A22
CLK = 15 50 = A21
GND = 16 49 B Uee
AALT 3 17 48 = A20
RESET = 18 47 b A9
UMA = 19 46 = A18
_E o 20 45 = A17?
UPA o 21 44 B A16
BERR = 22 43 B A5
PL2 o 23 42 =2 A4
PLT = 24 41 B A13
[PLO = 25 40 B A2
FC2 o 26 39 B A10
FC1 = 27 38 P A9
FCO = 28 37 P A8
Al = 29 36 P A7
A2 = 30 35 B A6
A3 = 31 34 B AS
A4 = 32 33 = A4

First Publishing The FIRST ATARI ST BOOK

1.2. THE 68000 PROCESSOR

In this section, we'll look closely at the makeup and operation of the
68000 processor. This will give you a better idea of the capability of the
Atari ST. We'll also compare its operation to conventional eight-bit
processors.

If you take a look at the circuit board in the Atari ST, you cannot
overlook the 68000. It is the largest integrated circuit and is housed in a
64-pin dual-inline package. Why does the 68000 need so many "legs"
(pins)? As previously mentioned, in order to transmit data at high speeds,
the data must be sent in parallel, not in two sequential portions. Since the
68000 is a 16-bit processor, we need sixteen data lines. In order to address
a large address range, the 68000 requires 24 address lines. This allows 224
memory locations to be addressed. This is equivalent to 16,777,216 or 16
Mbytes, which is 256 times as much memory as a normal eight-bit
processor can address. This huge address space is adequate for most any
applications implemented on a microprocessor. As a comparison, a huge
mainframe computer of the IBM System/370 can directly address 16
Mbytes.

So we find that 40 pins are needed just for the address and data lines.
The remaining 24 pins are used for bus control, for the DMA access, for
interrupt control, to output the processor status, and for peripheral control.
A power source (only +5V) and the clock input are also required. The
diagram in Figure 1-1 represents this graphically.

9

First Publishing The FIRST ATARI ST BOOK

The effectiveness with which the processor can be programmed
depends on the capability of the instruction set and on the number and type
of internal registers available to the programmer. A register is a memory
location within the processor which can be accessed at extremely fast speeds
and in which most of the operations which the processor can perform are
carried out. This explains why the efficiency of a processor increases with
the number and size of its registers. To compare the 68000 processor to
conventional eight-bit processors, Figure 1-3 shows the register set of the
6502 while Figure 1-4 shows the register set of the 68000. As you can see
the 68000 has many more registers than the 6502. Additionally all of the
68000's registers are wider than 8 bits and can therefore process more data
per operation.

Fig. 1-3: 6502 REGISTER SET

bits
7 0
AC Accumulator
7 0
[ITTIT]] XR X - Register
7 (1]
[IITITTI] YR Y - Register
7 0
[IITTTTT] SP stack Pointer
15 0
U”H”[””Hﬂ PC Program Counter
7 0

[IIITIT]] SR Status Register

10

First Publishing The FIRST ATARI ST BOOK

Fig. 1-4: 68000 REGISTER SET

31 16 15 87 0 bits
D0 —
D1
D2

D3 | paTa

D4 REGISTERS
D5
D6
D7 —

31 0

A0 —
Al

A2
A3 | ADDRESS

A4 REGISTERS

A5
A6 —

31 0

System Stack Pointer SSP
User Stack Pointer _USP_ |/~ STACKPOINTER

31 2423 0

[I | Pc PROGRAM
15 87 0 COUNTER

I I | SR STATUS
REGISTER

11

First Publishing PRESENTING the ATARI ST

As you can see, all of the registers in the 68000 are 32 bits wide. The
register set is divided into eight data registers and eight address registers.
Register A7 is available for two tasks and has a special significance. More
about this later. The program counter is also 32 bits wide, although only the
lowest 24 bits can be used. The program counter (PC) always points to the
next instruction to be executed. The status register is sixteen bits wide and is
divided into a user byte and a system byte.

As shown in the Figure 1-5 the data registers are all 32 bits wide too.
But they can also be used as either sixteen or eight bit registers. If the
contents of two data registers are to be added, for instance, you can specify
whether the instruction will operate with eight, sixteen, or 32 bits.

When performing eight-bit processing, only the lowest eight bits are
used; bits 8 through 31 remain unchanged and are not affected by the
operation. If you use the 16-bit or word version of the instruction, only the
lowest 16-bits are included in the operation and the upper 16 bits (16-31)
are not affected. The 32-bit or long-word instruction uses the entire
register.

These examples affect only two registers. To transfer data from a
register to memory or from memory to a register, you can also specify the
processing width. Since the processor has 16 data lines, transferring a
single word (16- bits) is the easiest to accomplish. If only one byte (8- bits)
are to be transferred, only data lines DO to D7 are used. The processor
informs the rest of the hardware via the bus control signals that only 8 bits

12

First Publishing The FIRST ATARI ST BOOK

will be transferred and that the contents of data lines D8-D15 is irrelevant.
This means that it takes the same amount of time to transfer one byte of data
as it does to transfer one word of data. But to transfer 32-bit data, it is no
longer possible to transfer a single long-word in one move. First the
processor transfers the most-significant word (bits 16-31); the address is
automatically incremented; and then the least-significant word (bits 0-15) is
transferred. The processor does this all automatically. To the user it looks as
if he is working with a 32-bit processor. In this sense, the 68000 can be
called a 32-bit processor by the same justification that the 8088 is said to be
a 16-bit microprocessor.

The long-word transfer takes more time than the transfer of a 16-bit

word, but it is faster than if you had to program the transfer of two words
separately. Figure 1-5 clarifies the transfer methods.

13

First Publishing The FIRST ATARI ST BOOK

Fig. 1-5: 68000 OPERANDS

7 0
8 Bit
S
Byte - Operand B
15 0
16 Bit
L | 1
Word - Operand W
31 0
32 Bit
L | J
Long Word - Operand L

14

First Publishing: The FIRST ATARI ST BOOK

1.3. THE INSTRUCTION SET OF THE 68000

To make full use of the 68000 hardware features, we need a capable
instruction set. And to insure widespread use, this instruction set should be
as easy as possible to learn.

These goals are achieved firstly by having a relatively small number of
basic instructions. Secondly, most of these have slight variations to work
with byte, word, or long-word data. So the programmer needs to learn
only a few instruction mnemonics. These mnemonics, may be appended
by ."B" for byte, ".W" for word, or ".L" for long-word. The result is a
simple, flexible instruction set. The operation codes for these instructions
are each sixteen bits long. While this theoretically allows for up to 65536
(216) different instructions, this is clearly unpractical. The following table
lists the mnemonics for the 68000 instructions.

15

First Publishing The FIRST ATARI ST BOOK

Table 1-1: THE 68000 INSTRUCTION SET:
ABCD Add Decimal with Extend

ADD Add

AND Logical And

ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
Bce Branch Conditionally

BCHG Bit Test and Change
BCLR Bit Test and Clear

BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine

BTST Bit Test

CHK Check Register Against Bounds
CLR Clear Operand

CMP Compare

DBcc Decrement and Branch Conditionally
DIVS Signed Divide

DIVU Unsigned Divide

EOR Exclusive Or

EXG Exchange Registers

EXT Sign Extend

JMP Jump

JSR Jump to Subroutine

LEA Load Effective Address
LINK Link Stack (reserve stack area)
LSL Logical Shift Left

LSR Logical Shift Right

MOVE Move Source to Destination
MULS Signed Multiply

MULU Unsigned Multiply

NBCD Negate Decimal With Extend
NEG Negate

NOP No Operation

NOT One's Complement
OR Logical Or
PEA Push Effective Address

RESET Reset External Devices

16

First Publishing

ROL
ROR
RTE
RTR
RTS
SBCD
Sce
STOP
SUB
SWAP
TAS
TRAP
TST
UNLK

The 68000 recognizes the following conditions ("cc” in the instruction set):

The conditions marked with a * apply to two's complement arithmetic.

EQ
NE
MI
PL
GT*
LT*
GE*
LE*
HI
LS
CS
CC
VS*
VC*
T

F

Rotate Left without Extend
Rotate Right without Extend
Return from Exception
Return and Restore

Return from Subroutine
Subtract Decimal with Extend
Set Conditional

Stop processor

Subtract

Swap Data Register halves
Test and Set Operand

Trap

Test Byte

Unlink (free stack area)

equal

not equal

negative

positive

greater than

less than

greater than or equal
less than or equal
higher than

lower than or equal
carry set

carry clear
overflow

no overflow
always true

always false

17

The FIRST ATARI ST BOOK

First Publishing The FIRST ATARI ST BOOK

So the 68000 instruction set contains no more mnemonics than a
processor such as the 6502. This simplifies learning its machine language.
The special capability of the 68000 lies in the numerous addressing methods
as well as the power of the individual instructions. As you can se¢ from the
table, the 68000 has instructions for multiplication and division. These
instructions are found in very few 8-bit processors. In order to briefly show
you the different addressing modes, we'll illustrate them using what is
probably the most universal instruction, MOVE.

The 68000 generally operates as a two-address machine. This means
that a source (where the data comes from) and destination (where the data or
result is placed) must be specified for each instruction.

The following instructions use the syntax of the 68000 assembler and
demonstrate the different addressing modes.

002000 3200 MOVE DO,DI

This instruction copies the contents of register DO to register D1. This
instruction and those that follow, operate on a 16-bit word.

002002 323C0007 MOVE #3$0007,D1
This instruction loads the constant hexadecimal $0007 into data register

D1. As you see, this instruction is two words long. The opcode is
$323C,followed by the constant $0007.

18

First Publishing The FIRST ATARI ST BOOK

002006 7207 MOVEQ #1,D1

This instruction has the same effect as the previous one. The "Q"
appended to the mnemonic stands for "quick." As you see, this instruction
fits in only one word. It is limited to one-byte constants. The operand (07)
is built into the opcode and makes the instruction shorter and faster to
execute.

002008 3208 MOVE A0,D1

In this example, the contents of address register AO are copied to data
register D1. Data registers and address registers can be treated similarly.

00200A 32381000 MOVE $1000,D1

In this example, the contents of memory location $1000 are loaded into
data register D1. Since the address can be represented as a 16-bit value, we
speak of short addressing, similar to zero-page addressing on the 6502
processor.

00200E 31C11000 MOVE D1,$1000

In this example, the contents of data register D1 are placed at address
$1000. This is, in contrast to the previous example, and transfers data from
the processor to memory.

19

First Publishing The FIRST ATARI ST BOOK

002012 3080 MOVE D0,(A0)

In this example, we are using indirect addressing. The contents of
register DO is stored at the memory location whose address is contained in
address register AO. This again is a one-word instruction.

002014 31400032 MOVE D0,50(A0)

In this example, the addressing mode is similar to the previous one. The
address at which the contents of DO are stored is the sum of the contents of
the address contained in register AO plus the constant 50. You may think of
AQ as containing the starting address of a table in which the 50rh items is

accessed.
002018 31801032 MOVE D0,50(A0,D1)

In this example, the addressing mode is further modified. The
destination here is the sum of the contents of AQ and D1 and the constant
50.
00201C 33C000100000 MOVE D0,$00100000

In this example, we return to the absolute addressing mode. This time
the address cannot be represented as a 16-bit word, so an additional word is
needed. This addressing mode is called absolute long.

20

First Publishing The FIRST ATARI ST BOOK

002022 303A000A MOVE 10(PC),D0

Here, the program counter's relative addressing permits you to write
relocatable programs. The address of the code to be executed is calculated
from the current contents of the program counter plus the offset, here 10.
The advantage of this mode is that no changes are necessary if the program
is moved in memory; the tenth byte following the contents of the program
counter is always accessed.

002026 30CO MOVE DO0,(A0)+

This addressing mode is very useful for working with tables. After the
contents of DO are stored at the address in A0, the contents of AQ are
automatically incremented by 1, 2, or 4, depending on whether a byte,
word, or long word was transferred. Afterwards, the next execution of the
instruction automatically accesses the next table element.

002028 3100 MOVE DO0,-(A0)
This operation of this instruction is similar to the operation of the
previous one. Here, however, the contents of the address register is

decremented prior to execution of the instruction. Stack structures can be
easily implemented with these two instructions.

21

First Publishing The FIRST ATARI ST BOOK

00202A 32D8 MOVE (A0)+,(A1)+

This example shows indirect addressing with post-incrementation of
both operands. The contents of the memory location contajned at address
register A0 is moved to the memory location contained in address register
Al. Afterwards, both registers AO and Al are incremented. This allows
you to transfer entire memory blocks simply. Note that the contents of a
memory block are transferred directly to the destination address without

having to be loaded into a register in the 68000.
00202C 48ET7F7F8 MOVEM.L D0-D3/DS5-D7/A0-A4,-(A7)

This instruction is unique to the 68000. Here the contents of registers
D0-D3, D5-D7, and A0-A4 are placed on the stack with a single command.
Address register A7 functions as the stack pointer. This instruction can
replace up to 16 individual instructions for saving register contents on the
stack, as is often required at the start of subroutines or interrupt service
routines. The next instruction fetches the registers from the stack again.

002030 4CDF1FEF MOVEM.L (A7)+,D0-D3/D5-D7/A0-A4
In order to give a concrete demonstration of the capability of this
processor, let's perform the same task first with a 6502 processor and then

with a 68000. As an example, we will copy a 4K block of memory from
address $3000 to $4000.

22

First Publishing

The FIRST ATARI ST BOOK

; 6502 EXAMPLE
3000 SOURCE = $3000
4000 DEST = $4000
1000 NUMBER = $1000 ;4KBYTE
00FO AD1 = $F0 ;POINTER TO SOURCE
00F2 AD2 = $F2 ;POINTER TODEST

*= $2000

2000 A9 00 LDA #<SOURCE
2002 85 FO STA AD1
2004 A9 30 LDA #>SOURCE
2006 85 F1 STA AD1+1 ;INITIALIZATION
2008 A9 00 LDA #<DEST
200A 85 F2 STA AD2
200C A9 40 LDA #>DEST
200E 85 F3 STA AD2+1
2010 A2 10 LDX #NUMBER/256 ;OUTER LOOP COUNTER
2012 A0 00 LDY #0 ; INNER LOOP COUNTER
2014 B1 FOLOOP LDA (AD1),Y ; SOURCE BYTE
201691 F2 STA (AD2),Y ; COPY TO DEST BYTE
2018 C8 INY
2019 DO F9 BNE LOOP
201B E6F1 INC AD1+1 ; INCREMENT POINTER
201D E6F3 INC AD2+1
201F CA DEX ; OUTER LOOP
2020 DO F2 BNE LOOP

23

First Publishing The FIRST ATARI ST BOOK

Calculating the time that this 6502 program takes to execute, we find
that it requires 65541 clock cycles. With a standard clock frequency of 1
MHz, this is 65.54 ms (milliseconds). Now let's "translate” the program
into 68000 code.

003000 SOURCE = $3000
004000 DEST = $4000
001000 NUMBER = $1000

002000 207C00003000 MOVE.L #SOURCE,A0 12

002006 227C00004000 MOVE.L #DEST,Al 12
00200C 303C1000 MOVE.W #NUMBER,DO 8
002010 12D8 1LOOP MOVE.B (A0)+,(Al)+ 12*4096
002012 51C8FFFC DBRA DO,LOOP 10*4096
Total 90144

Even if you don't understand all of the details of the program, you can
easily see that the 68000 program is shorter, in both the initialization and the
actual program loop which performs the transfer. Since the 6502 only has
an 8-bit register, a loop which is to be executed 4096 times is performed
with two nested loops. Even loading the pointers with their starting values
must be done in two steps on the 6502.

On the 68000, only one load command is required to initialize the
registers for source, destination and number of iterations. The loop itself
consists only of two instructions: the first copies a byte from the source to
the destination address and automatically increments both pointers; the

24

First Publishing The FIRST ATARI ST BOOK

second decrements the loop counter and jumps back to the start of LOOP, as

long as the counter DO has not been decremented to zero.

The time to execute the individual instructions follows each instruction.
We find that it takes 90144 clock cycles. With a 68000 driven at a standard
clock frequency of 8 MHz, this takes 11.27 ms. This is already 5.8 times
faster than the 6502. But we have not yet exhausted the power of the
68000. The above example transferred 4096 individual bytes.

But a 16-bit processor for such a task isn't very sensible. In the next
example, we'll transfer 16-bit words in a single pass. This allows us to cut
the number of loop iterations in half.

003000 SOURCE = $3000

004000 DEST = $4000

001000 NUMBER = $1000

002000 207C00003000 MOVE.L #SOURCE,AQ 12

002006 227C00004000 MOVE.L #DEST,A1 12

00200C 303C0800 MOVE.W #NUMBER/2,D0 8

002010 32D8 LOOP MOVE.W (AO)+,(Al)+ 12*2048

002012 51C8FFFC DBRA DO,LOOP 10*2048
Total ---> 45088

Now, we need only 45088 clock cycles or 5.64 ms to execute. This is
about 11.6 times faster than the 6502. But the 68000 can work with long
words, too. It-naturally takes longer to transfer a long word than to transfer

25

First Publishing The FIRST ATARI ST BOOK

a word, but not as long as it takes to transfer two individual words. In
addition, we can halve the number of loop iterations again. Here's the code:

003000 SOURCE = $3000

004000 DEST = $4000

001000 NUMBER = $1000

002000 41F83000 LEA.LL SOURCE,A0 8

002004 43F84000 LEA.L DEST,A1 8

002008 303C0400 MOVE.W #NUMBER/4,D0 8

00200C 22D8 LOOP MOVEL (AO)+,(Al)+ 20*1024

00200E 51C8FFFC DBRA DO,LOOP 10*1024
Total 30744

Now we need only 30744 clock cycles or 3.84 ms. This makes our
68000 program about 17.1 times faster than the 6502. In this example we
used the LEA (Load Effective Address) instruction for initializing the
- address registers. This instruction is faster than the MOVE instruction and
also requires fewer bytes. The processing width of the instructions in these
examples were indicated by appending ".B", ".W", "L". In general, we
can say that the 68000 is about 10 to 20 times faster in program execution
than most popular 8-bit processors. In addition, the programs are usually
shorter and easier to read thanks to the powerful and highly orthogonal
instruction set. In special cases, the speed advantage over 8-bit processors
can be still larger. This is the case when certain tasks must be performed
where there are already commands on the 68000 which the 8-bit machines
lack, such as multiplication or division.

26

First Publishing The FIRST ATARI ST BOOK

1.4. ADVANCED FEATURES OF THE 68000

The 68000 can be operated in two modes. The first is the user mode
and the second is the system or supervisor mode.

This permits a strict separation between the operating system and user
programs. Some instructions are not allowed in the user mode--they are
privileged. If an attempt is made to execute these instructions anyway, the
68000 branches to an exception handling routine similar to an interrupt.
This routine, which is part of the operating system, can then react
accordingly, by outputting a message, for instance. Privileged instructions
include the STOP command which halts the processor, and the RESET
command which resets the peripheral devices.

In general, these privileged instructions are reserved for operating
system functions that protect important computer resources. For example, if
valuable data is kept in a computer system, you may want to secure it from
being read. If all of the facilities of the operating system are available to a
user, then he may be able to overcome the security. But if some
instructions are not available to him, then it is possible to keep him from
accessing the data. This is one of the main purposes of privileged
instructions.

As you can see from the register assignments, there is a different stack
pointer, A7 for user and supervisor. They are referred to as the USP (user
stack pointer) and SSP (system stack pointer). The operating system stack
pointer cannot be changed by a user program, only from supervisory mode.

27

First Publishing The FIRST ATARI ST BOOK

Similarly, interrupt priorities can be changed only from the supervisory
mode. The 68000 has seven interrupt priorities. If the interrupt priority is
zero, then all interrupts are permitted. Under the highest interrupt priority,
only the non-maskable interrupt is permitted. If the interrupt mask is set to
3, for example, only interrupts 4 to 7 are permitted. If an interrupt occurs,
the priority is automatically set to the value of this interruption during the
execution. In this way, an active routine servicing an interrupt cannot be
interrupted by the occurrence of one with lower or equal value. The
processor is automatically switched to supervisory mode when an interrupt
occurs.

Another feature of the 68000 is the CHK instruction. This instruction
continuously checks the contents of an address register and if it falls outside
of a desired address range, causes an interrupt. This is used in multi- user
applications for example, to make sure that each user accesses only his
assigned area of memory. If not, the CHK instruction can branch to an
operating system routine which can then react accordingly.

Another use for this instruction is for high-level language compilers.
Here, the instruction can be used to check if the index of an array remains
within the declared limits and to output an error message if it does not.

The 68000 has a hardware feature which branches to an exception
routine if an attempt is made to access an address range not installed on the
computer. Since the 68000 can indicate if it is in the supervisor mode or
user mode via the status lines, you can create a simple circuit if the

processor attempts to address a certain area in user mode. This is done in

28

First Publishing The FIRST ATARI ST BOOK

the Atari ST. So it's not possible to access the stack area of the supervisor
or the peripherals from the user mode. If an attempt is made, the bus error
routine of the operating system is activated.

The 68000 has features to support high-level programming languages in
which recursive calls are used. The LINK instruction can be used to
reserve a data area to save the subroutine's local variables on the stack. The
stack area can be freed again after subroutine is finished with UNLK
instruction.

Since systems with a few hundred kilobytes of memory such as the
Atari ST generally use only disk operating systems (DOS), the user
programs are loaded into RAM. If several programs or program modules
are combined, it can no longer be guaranteed that programs are always
loaded at the address for which they were originally written. To do this one
needs either a linker--a program which recalculates the absolute addresses of
a program for another memory area--or a program which can run anywhere
in memory. Such a program is said to be relocarable. The 68000 is ideally
suited for writing such programs because it has program-counter relative
instructions for subroutine calls, branches, and data accesses.

In conclusion, we can say that the 68000 is excellently suited for larger
microcomputer systems with lots of memory. It supports the demands
which are placed on such a system today. It offers separation between
operating system and user programs. So it is well-suited for multi-user
applications as well as for the implementation of modern high-level
languages.

29

First Publishing The FIRST ATARI ST BOOK

2. THE ARCHITECTURE OF THE ATARI ST

Now that we have learned a few fundamental things about the 68000
CPU, let's look at the layout of the Atari ST in more detail.

Let's begin with the ST's memory layout. As you already know, the
68000 can address 16 MB of memory. In the Atari ST 520, 512K or
one-half megabyte of RAM is available. This is only 1/ 32nd of its available
address range. The RAM area starts at address 0 and goes to address
$OTFFFF or decimal 524,287. The Atari ST 130 has 128K of RAM which
ranges from address O to $01FFFF or decimal 131,071. One-half megabyte
is eight times as much memory as an 8-bit computer with 64K. On the Atari
ST, almost all of this memory is available to the user, as we will see later.
On other 16-bit computers with 128K of RAM, more than half of the
memory is often taken up by the operating system so that often no more
than 32K is available for the user.

Not so with the Atari ST. Here, almost all of the operating system is in
ROM. This ROM area is large, 192K, and lies from address $FC0000 to
$FEFFFF (decimal 16,515,072 to 16,711,679). This ROM contains the
BIOS, the actual operating system and GEM (more about this later). Only
the scratch-pad memory needed by the operating system and the screen
storage lie in RAM.

31

First Publishing

Fig. 2-1: MEMORY MAP

$FF FCOO

$FF FAOO

$FF 8800
8600
8400
8200

$FF 8000

S$FE FFFF

$FC 0000

$FA 0000
$07 FFFF

$O1 FFFF

$00 0000

I/0 - Area

192 K
System ROM

128 K ROM
Expansion Cartridge

512 K RAM

128 K RAM

32

The FIRST ATARI ST BOOK

16776192

162775680

16746496
16745984
16745472
16744960
16744448

16711679

16515072

16384000
524287

ATAR] 52081

131071

ATARI 130ST

0

First Publishing The FIRST ATARI ST BOOK

The fact that the operating system is built into ROM has several
advantages. For one, the operating system does not have to be loaded from
disk. For another, it does not occupy any RAM, which results in more
available RAM for the user. With an address range of 16M, the space
consumed by the ROM can be ignored since it is just one percent of the total
address range allowable.

For those not satisfied with this, the address range from $FA0000 to
$FBFFFF (decimal 16,384,000 to 16,515,071) is reserved for ROM
cartridges. User programs as well as operating system expansions such as
additional languages can be placed in this 128K range. The advantage over
loading from disk is again clear: the loading procedure is avoided and no
RAM is consumed.

The range from address $FF8000 (decimal 16,744,448) to the end of
the physical address range is reserved for peripherals. 512 bytes is set aside
for each device. This is a total of 32K for peripherals, 0.2% of the total
address range. The diagram on the next page shows how the I/O area is
divided.

Of the 128K or 512K (depending on the model), only 32K is required
for the screen RAM. This RAM contains the bit map which serves for the
representation of the picture on the monitor. The -screen area can lie
anywhere in RAM, thereby making it possible to switch between several
screens, for instance.

33

First Publishing The FIRST ATARI ST BOOK

Fig. 2-2: /O ASSIGNMENTS

J
SFFFCO0 2ACIA’s 6580
MFP 68901
$FFFA00
SOUND AY-3-8910
$FF3800
DMA /WD 1770
$FF8600
RESERVED
$FF8400
VIDEO CONTROLLER
$FF8200
DATA CONFIGURATION
$FF3000

34

First Publishing The FIRST ATARI ST BOOK

2.1. ATARI ST INTERFACES

On the next page is a block diagram of the Atari ST. Using this as a
starting point, we'll examine the peripheral interfaces and devices.

As an overview, we first list the major interfaces:
* TWO 3 1/2" DISK DRIVES

* DMA INTERFACE FOR CONNECTION OF A HARD
DISK WITH 10 MB STORAGE CAPACITY

* CENTRONICS PARALLEL INTERFACE
FOR CONNECTION OF A PRINTER

* SERIAL RS 232 INTERFACE FOR CONNECTION
OF DEVICES SUCH AS A MODEM OR A PRINTER

* MIDI INTERFACE FOR CONTROL OF
EXTERNAL MUSIC SYNTHESIZERS

* 2 JOYSTICK PORTS, ONE FOR CONNECTION OF
A MOUSE

* VIDEO CONNECTIONS FOR RF (TELEVISION),
B/W MONITOR, AND RGB FOR COLOR MONITOR

* CONNECTION OF AN INTELLIGENT KEYBOARD

35

The FIRST ATARI ST BOOK

First Publishing

Fig. 2-3: BLOCK DIAGRAM of the ATARI ST

128K

: Exp. ROM
1 V| 6850
512K |, . 192K
m:Z 68099 System ROM Mw
Single Chip
Processor
L4
pma | | CRT mm_________u._ MFP 68901 Ec_ﬁa 6850

Tt ;

Hard
Disk

[Video|[Centronics|[RS 232] [Floppy |

1

[

m

—

36

First Publishing The FIRST ATARI ST BOOK

2.2. FLOPPY DISK INTERFACE

The most important peripheral device for a microcomputer is the mass
storage device. The Atari ST allows up to two floppy disk drives to be
connected, both of which use 3 1/2" diskettes. Atari uses the more compact
3 1/2" disk instead of the more common 5 1/4" disks. They offer several
advantages. Even though they have about the same storage capacity, they
are smaller than the 5 1/4" floppies. The diskettes are also less sensitive to
mechanical damage since they are contained in a hard plastic case and so the
magnetic surface is better protected. The opening for the read/write head on
the diskette is also protected by a metal shutter which moves aside when the
disk is inserted in the drive. In place of a write protect notch of the
minifloppies, the 3 1/2" diskettes have a slide to protect the diskette from
being written to. The smaller drives allow a smaller physical package and
reduced cost.

The Atari ST has a built-in controller for operating the disk drives (WD
1770 from Western Digital). No special interface is necessary to connect the
drives--a simple cable suffices. The disk controller receives its commands
from the processor. The disk controller does not get the data to be written to
and later read back in from the processor, but from a DMA component. The
next section about the hard disk will further explain the DMA.

The disk controller is responsible for the way in which the individual
bits are written to the diskette and for reading them in again later. The
processor gives the disk controller commands such as "read sector” or
"write sector”. The disk controller can also format diskettes. The processor

37

First Publishing The FIRST ATARI ST BOOK

supplies the data which specifies the desired format of the diskette: how
many tracks are used; how many sectors per track; how many bytes per
sector; etc.

In addition, the disk controller is responsible for data integrity. To
detect read errors, the disk controller creates a checksum called CRC (Cyclic
Redundance Check) bytes, which are written to the disk following the data.
Later, these CRC bytes are compared with the value calculated when the
data is reread. If these two values are not identical, then the disk controller
tells the processor via its status register that an error occurred.

The floppy disk has been the standard mass storage device for a
microcomputer, and can be used for storing programs and data.

38

First Publishing The FIRST ATARI ST BOOK
2.3. THE HARD DISK

If you work with an Atari ST 520 and a 500K disk drive, you'll know
that the diskette has roughly the same capacity as the RAM capacity of the
computer. If you use the computer for word processing, or you want to
save entire graphic pages of 32K each on diskette, you quickly reach the
storage capacity of the diskette. The hard disk is a way to overcome this
limitation. Atari will offer a hard disk for the ST with 10 MB capacity.

What are the major differences between a hard disk and a floppy?

The most spectacular difference for the user is the enormous storage
capacity. The 10 MB hard disk offered for the ATARI ST holds 20 to 40
times as much data as will fit onto a floppy. How is this possible?

In contrast to a floppy, a hard disk consists of a hard, rigid platter,
usually made of aluminum and covered with a thin magnetic layer. The
diameter of the platters on the Atari drives is the same as the floppys--3
1/2". The data can be written to the rotating platter or read back with a
magnetic head, as with a floppy drive. |

The essential difference between the hard disk and a floppy is that the
hard platter rotates at 3000 RPM instead of 300 revolutions per minute.

Another difference is that the read/write head in the hard drive never
touches the platter but "flies” over it at the very low altitude of half a
micrometer (0.0005 mm). Such a method naturally requires a great deal of

39

First Publishing The FIRST ATARI ST BOOK

mechanical precision. A dust or smoke particle that comes between the head
and the platter can damage the platter and result in subsequent data loss. For
this reason, the platter is enclosed in a hermetically sealed case and cannot
be changed like a normal diskette.

Coupled with higher quality components and increased speed of
rotation, the track density of a hard disk is more than 800 tpi (tracks per
inch) while the recording bit density is over 8000 bits per inch. The
corresponding track density for a 3 1/2" floppy is typically 135 tpi.

As a result of the denser track layout, the hard disk also reduces the
time the head needs to move from one track to another. This results in faster
access time. A more important factor in performance is the data transfer
rate. Because the platter rotates ten times faster than the floppy and is
recorded at a higher density, the hard disk can deliver the data with a speed
of about one megabyte per second. With a floppy, the data can be read at a
speed of "only" about 25K per second.

In order to transfer data from a storage medium to the computer, or the
other way around, peripheral interfaces are normally used to execute these
tasks. To read external data, the processor reads the contents of the ports of
the interface and then writes the value into memory. The /O interface
informs the processor via special registers when the next byte is ready and
can be fetched by the processor. This method has proven itself and works
quite well. Depending on the processor, transfer rates up to 100K per
second can be obtained.

40

First Publishing The FIRST ATARI ST BOOK

2.4. HIGH SPEED THROUGH DMA

In order to make full use of the transfer speed another method has be
devised. The method is called "Direct Memory Access” or DMA for short.
What's this all about? Our goal is to transfer data from mass storage to the
memory of the computer. A way has been found to do this directly without
involving the processor. There is a special component for this task, the
DMA controller. This device has the job of bypassing the processor and
writing the data coming from the hard disk directly into the memory. of the
computer. The DMA controller can also do the reverse when writing to the
hard disk--the data is read from memory and sent directly to the hard disk.

The DMA controller is a custom IO component for the processor. To
send data to the hard disk, for instance, it must program the DMA controller
appropriately. Among other things, the DMA controller must know the
address range which is to be sent to the hard disk. When it has received the
appropriate command, the DMA controller informs the processor via certain
control lines that it now wants to access the data and address lines. The
processor frees the bus and goes into a wait state. Now the DMA controller
can access the entire memory range, read the data and send it to the hard
disk. This occurs at the same high speed which the processor reads data
from the memory. When the transfer is done, the DMA controller frees the
bus and the processor can continue. On the Atari ST, a data transmission
rate to and from the hard disk of 1.33 MB per second is possible. This
allows the entire contents of the memory to be send to the hard disk in less
than half a second!

41

First Publishing The FIRST ATARI ST BOOK

For the sake of fairness we want to explain the disadvantages of a hard
disk. For one, we cannot change the platter. This makes a hard disk
unsuited for exchanging data between similar computers. The second and
more important limitation involves the security of the data. If the hard disk
should ever become defective, more than 10 MB of data may be destroyed.
This can happen if a dust particle gets between the head and the platter, for
instance. When something like this happens it is called a "head crash”. In
connection with the data integrity issue, there is often no simple way of
backing the entire hard disk up. There are tape drives sold for this purpose,
but they are frequently more expensive than the hard disk.

Since one usually works with one floppy and one hard disk in practice,
the most important data should be copied from the hard disk to floppy
diskettes at regular intervals. Hard disks today have quite a high quality
standard and such errors rarely occur.

42

First Publishing The FIRST ATARI ST BOOK

2.5. THE PRINTER INTERFACE

So that you can get things down in black and white, the Atari ST has a
printer interface. With a printer you can reproduce documents. More
interesting though is the possibility to output graphics as hardcopy. Because
(as you will see) the screen of the Atari ST is always represented as
graphics, the resolution in monochrome mode is 640 points horizontally by
400 points vertically, it is possible to output the contents of any desired
screen to paper with a dot-matrix printer capable of graphics.

To connect a printer to a computer, both must have compatible
interfaces. The Centronics parallel interface is considered the standard
interface which printers and computers use. The Centronics interface is a
parallel interface in which the data is transmitted byte by byte. Each
character, such as a letter or digit, is represented in the computer with
something called an ASCII code. In this code, each character is denoted
through one byte or 8 bits. This makes it possible to represent a total of 256
different characters. For example, the letter A is represented by the ASCII
code 65. When a character is to be transferred from the computer to the
printer, the printer must be sent the corresponding byte of the ASCII code.
With the Centronics interface, each bit has its own line and two handshake
lines are used so that the computer and printer can agree on the time of the
transfer.

If the computer wants to send a character to the printer, it places the data
on the interface lines and puts a low signal on the STROBE line for a brief
time (about one microsecond). This tells the printer that a character is ready

43

First Publishing The FIRST ATARI ST BOOK

and can be read from the interface. The BUSY line is required so that the
computer knows when the printer has accepted the byte so it can send the
next byte. As long as the printer is busy with the accepting and processing
of a character, it makes the BUSY line high. The computer need only wait
until the BUSY line goes back to low before it sends the next byte with a
STROBE pulse.

Here are the lines and the data directions.

COMPUTER PRINTER
PSG PORT A6 STROBE ==>
PSG PORT B0 D0 ==
PSG PORT B1 DI =
PSG PORT B2 D2 =
PSG PORT B3 D3 ==
PSG PORT B4 D4 ==>
PSG PORT BS5 DS ==>
PSG PORT B6 D6 ==>
PSG PORT B7 D7 ==>
MFP 10 <== BUSY

GND

PSG=Programmable Sound Genarator
MFP=Multi-Function Peripheral

44

First Publishing The FIRST ATARI ST BOOK

2.6. THE SERIAL INTERFACE

In contrast to parallel data transfer, which has a line available for each
bit, only one line is required for the data with serial transmission. When a
byte is to be transferred, the bits are transmitted one after the other over the
same line. When sending such a bit stream, the receiver must know with
which bit transmission of a new byte starts.

Two procedures have been developed to solve this problem. The first is
called synchronous transmission. Here the sender and receiver are supplied
with the same clock so that they, as the name implies, operate synchonously
and can assign the bits received to the bytes properly. Since this method
requires a coupling between sender and receiver, it is seldom used.

Much more widely used is the asynchronous method. Here the sender
and receiver need only be connected to each other over one data line and a
common ground line. This data line is at a specific condition in the wait
state. If the sender wants to send a byte, it first sends a start bit by placing
the data line low. Now the receiver knows that a data byte follows and can
prepare to receive it. The individual bits are now transmitted over the data
lines with low or high signals depending on their value. After the transfer
the sender sends one or two stop bits, which at the same time correspond to
the rest state. When the next byte is to be transferred the whole thing starts
over from the beginning. The Figure 2-4 should clarify the matter.

45

First Publishing The FIRST ATARI ST BOOK

Fig. 2-4: SERTAL TRANSMISSION

1121314(5|6/7/8] T !

Start- Data Bits Lor2
Bit Stop Bits

With this method any amount of time may pass between the individual
bytes. A prerequisite of this procedure is that the receiver must constantly
watch the data line so as not to miss the start bit. After a start bit is received
it "collects” the data bits and puts them together into bytes. In order to
inform the processor that a data byte has arrived, it generates an interrupt
which causes the processor to get the complete byte from the peripheral
component and write it to a buffer for later processing, for example. But let
us take another look at the actual transmission.

The individual bits after the start bit have a set length. The sender and
receiver must agree on this length before the transmission is attempted
because the receiver has no way of determining this length. In our example,
8 bits are used. Specific values have been established for the times of each
bit. The shorter the time for each bit, the greater the transmission speed. The

speed is measured in bits per second. The name baud has been es:ablished
for this.

46

First Publishing The FIRST ATARI ST BOOK

BAUD RATE BIT LENGTH (MS)

500 20.00
110 9.09
150 6.67
300 3.33
600 1.67
1200 0.83
1800 0.56
2400 0.42
3600 0.28
4800 0.21
7200 0.14
9600 0.10
19200 0.05

These are the baud rates at which the Atari ST can send data. While the
Centronics interface is designed only for sending information, the serial
interface is suited for receiving data as well. A second data line is used for
this which the Atari ST uses as a serial data input. This input can be
programmed for the same transmission speeds.

This serial transfer method is usually called the RS-232 standard. It
functions faultlessly as long as the receiver processes the data as quickly as
the sender transmits it. If the receiver is busy processing earlier data when
the next byte arrives, the incoming data is lost without the sender even being

47

First Publishing The FIRST ATARI ST BOOK

aware. To prevent this loss of data several techniques termed handshaking
are used. One method employs hardware and two additional lines, the
"Clear To Send" or CTS line and "Request To Send" or RTS line. When the
receiver is ready to receive a byte, it signals this through an appropriate
signal on the RTS line. The sender first checks the line before making a
transmission and waits as long as required until the receiver can accept the
next byte. This procedure is often used when connecting terminals or
printers. The disadvantage is that additional lines are required.

The Atari ST supports the following handshake lines for the RS-232
interface:

PIN ABBR. SIGNIFICANCE I/O COMPONENT
4 RTS REQUEST TO SEND PSG PORT A3
5 CTS CLEAR TO SEND MFP 12

8 DCD DATA CARRIER DETECT MFP 11
20 DTR DATA TERMINAL READY PSG PORT A4
22 RI RING INDICATOR MEFP 16

Another method which has been gaining more and more use is data
transmission over the telephone. Here the individual bits are co;werted into
different tones, transmitted over the phone lines, and converted back into
voltage signals by the receiver. Devices which make such a conversion
possible are called modems. When using the telephone, however, we have
only one line running in each direction. The hardware method of
handshaking described above is therefore impossible. A software method
has been devised that allows handshaking over the phone lines. If the

48

First Publishing The FIRST ATARI ST BOOK

receiver wants to halt the transmission, it sends the character XOFF. This
character has the ASCII code 19 and can be entered as a Control-S. Once
the receiver is ready again to accept more data, it lets the sender know this
by sending it XON which has the ASCII code 17 and can be entered as
Control-Q.

The Atari ST supports the RS-232 interface through the operating
system. The baud rate, number of data bits to be transmitted, and the type of
handshaking can be programmed through the appropriate calls.You choose
between no handshake, RTS/CTS, or XON/XOFF protocol. In addition it
is possible to check the bytes transmitted with a parity bit.

49

First Publishing The FIRST ATARI ST BOOK

2.7. THE MFP 68901

So farin this chapter we have talked about the peripheral components
which are responsible for transferring data between the computer and the
outside world. As an example of such chips, we want to take a closer look
at the MFP 68901.

MFP is an abbreviation for "Multi-Function Peripheral". The name
implies that this chip can perform several tasks. The MFP 68901 is a
relatively new I/O component in the 68000 family.

These are the chip specifications:

* 8 individually programmable input/output lines with interrupt
capability

* Interrupt controller for 16 interrupt sources with individual
masking

* Four timers, two of which have multiple functions

* The timers can be used as baud-rate generators for the serial
channel

* One channel synchronous and asychronous serial
input/output (USART, Universal Synchronous/Asynchronous
Receiver/Transmitter)

The registers of a peripheral component are addressed by the processor

in exactly the same way as memory locations. The MFP 68901 has 24
internal registers, the significance of each is shown in TABLE 2-1:

51

First Publishing

The FIRST ATARI ST BOOK

Table 2-1: MFP 68901 INTERNAL REGISTERS
REGISTER ABBR.

1

o NN W

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

GPIP
AER
DDR
IERA
IERB
IPRA
IPRB
ISRA
ISRB
IMRA
IMRB
VR
TACR
TBCR
TCDCR
TADR
TBDR
TCDR
TDDR
SCR
UCR
RSR
TSR
UDR

DESIGNATION

GENERAL PURPOSE I/O REGISTER
ACTIVE EDGE REGISTER

DATA DIRECTION REGISTER
INTERRUPT ENABLE REGISTER A
INTERRUPT ENABLE REGISTER B
INTERRUPT PENDING REGISTER A
INTERRUPT PENDING REGISTER B
INTERRUPT IN-SERVICE REGISTER A
INTERRUPT IN-SERVICE REGISTER B
INTERRUPT MASK REGISTER A
INTERRUPT MASK REGISTER B
VECTOR REGISTER

TIMER A CONTROL REGISTER
TIMER B CONTROL REGISTER
TIMER C AND D CONTROL REGISTER
TIMER A DATA REGISTER

TIMER B DATA REGISTER

TIMER C DATA REGISTER

TIMER D DATA REGISTER
SYNCHRONOUS CHAR. REGISTER
USART CONTROL REGISTER
RECEIVER STATUS REGISTER
TRANSMITTER STATUS REGISTER
USART DATA REGISTER

52

i K
First Publishing The FIRST ATARI ST BOO

Since the MFP has an 8-bit data bus, the individual registers are
numbered by two's. With the help of these registers, the processor can
control the operating mode of the MFP, supply it with data to be output, and
get input data from it.

A peculiarity of the MFP 68901 is the 16-channel interrupt controller. It
can manage 16 interrupt sources and permit or mask (prohibit) them
individually. These interrupts are prioritized, meaning that the interrupt
sources have varying weights. The MFP 68901 can generate a unique
vector number for each of these interrupts, so a separate interrupt service
routine is available in the 68000 for each of the interrupts. The interrupt
priorities are all the same as far as the 68000 is concerned; the prioritizing is
taken care of in the 68901. The 68901 uses the highest level of maskable
interrupt in the 68000, namely six.

The vertical sync interrupt resides at interrupt level four and the
horizontal sync interrupt is at level two. These interrupts work as
auto-vector interrupts which means that the vector number is determined by
the 68000. The Atari ST uses only the top two of the three interrupt-level
inputs, resulting in the fact that only levels 2, 4, and 6 can be used. Level 7,
with the highest priority represents the NMI (non-maskabie interrupt).

The MFP 68901 can manage 8 internal and 8 external interrupt sources
which have the following priority:

53

First Publishing

The FIRST ATARI ST

Table 2-2: MFP68901 INTERRUPT PRIORITY

PRIORITY CHANNEL

HIGHEST

LOWEST

15
14
13
12
11

-
[—}

o N W R AR

DESCRIPTION
EXTERNAL INTERRUPT 7
EXTERNAL INTERRUPT 6
TIMER A

RECEIVER BUFFER FULL
RECEIVER ERROR

SEND BUFFER EMPTY
TRANSMISSION ERROR
TIMER B

EXTERNAL INTERRUPT §
EXTERNAL INTERRUPT 4
TIMER C

TIMER D

EXTERNAL INTERRUPT 3
EXTERNAL INTERRUPT 2
EXTERNAL INTERRUPT 1
EXTERNAL INTERRUPT 0

54

BOOK

17
I6

15
14

13
12
I1
10

First Publishing The FIRST ATARI ST BOOK

Each of these interrupt sources can be enabled or disabled by
programming the MFP 68901. The eight external interrupt sources use the
data lines of the 8-bit port as inputs. If all of the lines are not used as
interrupt inputs, the rest can be used as normal port lines. Internal interrupt
sources can be the timers A through D, which can be used in different
operating modes. They can create delay times, measure pulse widths,
generate square waves, Or count events.

In addition, two of the timers can be used as baud rate generators for
serial transmission. The 68901 can generate an interrupt when an entire byte
has arrived serially. The byte can then be input from the USART data
register by an appropriate routine. The MFP 68901 can call an interrupt
routine, using interrupt channel 10, which places the next byte at its
disposal when it has output a complete byte.

The MFP 68901 is housed in a 48-pin case and is connected to the
asychronous bus of the 68000. The timers can be supplied with a clock
independent of the clock frequency of the processor. In the Atari ST the
68901 serves as the serial interface and works as interrupt controller. The
16 interrupt levels of the 68901 are assigned as follows:

55

First Publishing

The FIRST ATARI ST BOOK

Table 2-3: INTERRUPT STRUCTURE OF ATARI ST

PRIORITY CHANNEL

HIGHEST 15

14
13
12
11
10

9

8

LOWEST

SIGNIFICANCE

I7 MONOCHROME MONITOR
DETECT

16 RS-232 RING INDICATOR

TIMER A, SYSTEM CLOCK

RS 232 RECEIVER BUFFER FULL

RS 232 RECEIVER ERROR

RS 232 SENDER BUFFER EMPTY

RS 232 TRANSMISSION ERROR

TIMER B, HORIZONTAIL LINE
RETURN

I5 FLOPPY DISK CONTROLLER

14 ACIA 6850, KEYBOARD AND

MIDI

TIMER C

TIMER D, RS 232 BAUD RATE
GENERATOR

I3 GPU OPERATION DONE

12 RS 232 CLEAR TO SEND

I1 RS 232 DATA CARRIER DETECT
10 CENTRONICS BUSY

56

First Publishing The FIRST ATARI ST BOOK

2.8. THE SOUND CAPABILITIES OF THE ATARI ST

The Atari ST contains a built-in sound generator of type AY-3-8910 from
General Instruments or a replacement type YM 2149 from Yamaha.

The 40-pin chip has the following specifications:

* three independently programmable tone generators

* a programmable noise generator
outputs which are completely software controlled
programmable mixer for tone and noise

15 logarithmic volume levels

programmable waveforms

*

two bi-directional 8-bit ports

The programmable sound generator AY-3-8910, abbreviated to PSG, is
constructed as follows:

Three tone generators A, B, and C create the square waves for each
channel. A noise generator produces a square wave with a random pulse
width. Three mixers can mix the outputs of the tone generators with the
noise generator.The D/A converter can be controlled with either the
amplitude control or the waveform generator. The programmable wave
form generator can modulate the tone outputs into different wave forms.
The D/A converter creates 16 different volumes determined by the

amplitude control.

57

First Publishing The FIRST ATARI ST BOOK

The PSG has 16 registers which can be programmed by the processor:

Registers RO through RS serve to determine the pitch of the
three channels A, B, and C. Registers RO and R1 control channel
A, R2 and R3 are responsible for channel B, and R4 and R5 for
channel C. The value for the period of the tone is written to this
registers as a multiple of the clock frequency of the PSG divided by
PSG. Since the PSG in the Atari ST is driven at 2 MHz, the basic
value for the period duration is 8 microseconds. Only twelve bits of
the 16 bits in the two registers can be used; the top four bits are
ignored. What frequencies can be created? We can write values
between 1 and 4095 to the registers and we get the following
values:

1*8=8 microseconds => 125,000 Hz
4095 * 8 = 32760 microseconds => 30 Hz

We can therefore create frequencies which far exceed the
audible range.

Register R6 sets the basic frequency of the noise generator.
Here only the 5 lowest bits are used.

Register R7 selects the signals of the tone generators and noise
generator. With six bits you can specify which channels of the tone
generator are to be switched to the corresponding outputs and to
which channels the noise generator are to be be added. Bits 6 and 7
are responsible for the data direction of the two 8-bit ports.

58

First Publishing The FIRST ATARI ST BOOK

Registers 8 thru 10 are the amplitude control. Registers 11 and
12 are used for programming the waveform. The remaining
registers are used for the I/O ports. The 8-bit port B of the PSG
(register 15) is used in the Atari ST for the Centronics interface.
Port A (register 13), which can only be used as output, delivers the
handshake signals for the serial and parallel interfaces. Three bits of
port A are also used for the floppy interface to select the drives and
heads.

ADSR control is possible with the programmable waveform. This is an
abbreviation for Attack-Decay-Sustain-Release. This allows the attack time,

decay time, sustain time, and release time of a tone to be set.

The Atari ST operating 'system contains procedures for passing the
appropriate parameters to the PSG.

59

First Publishing The FIRST ATARI ST BOOK

2.9. THE MIDI INTERFACE

Another feature of the Atari ST is the built-in MIDI interface. MIDI is
the abbreviation for "Musical Instrument Digital Interface" and is a
standardized interface for synthesizers, sequencers, home computers,
rhythm devices and so on. Devices equipped with this interface can be
operated together. Thus it is possible to control synthesizers with a MIDI
interface from a computer such as the Atari ST.

From a hardware standpoint, the MIDI interface consists of a sender
and a receiver for asynchronous serial transmission similar to the RS-232
interface. The MIDI transmission takes place at 31.25Kbaud with one start
bit, eight data bits and one stop bit. This device therefore requires 320
microseconds to transfer these 10 bits, which corresponds to 3125 bytes per
second. This high data rate is required so that real-time applications are
possible.

Communication over the MIDI interface takes place with multi-byte
messages. The first byte is a status byte. The status byte is denoted by a set
seventh bit. The lower 4 bits select one of 16 channels to which the message
applies. It is also possible to send messages to all connected devices.

The Atari ST has connections for MIDI IN and MIDI OUT for receiving

and sending MIDI information. The optional MIDI THRU connection can
be performed through software.

61

First Publishing The FIRST ATARI ST BOOK

Operating system procedures are available to service the MIDI interface.
These functions can output data to and read data from the MIDI interface.

The actual data input and output is interrupt controlled and is carried out
by a 6850 ACIA circuit (Asychronous Communications Interface Adapter).
Another operating system function returns the status of the MIDI interface.
This allows us to determine if data is present at the MIDI interface or if it is
ready for data. An operating system call can also be used to set the size and
address of a buffer for temporary storage of the MIDI data received.

62

First Publishing The FIRST ATARI ST BOOK

2.10. THE ATARI ST KEYBOARD

A serious computer needs a solid and reliable keyboard. Factors that
determine the suitability of a keyboard include the number of keys, the
layout of the keys and the ergonometric organization of the keyboard. The
keyboard must not be too high and must be at the proper angle. Only when
these things are correct is it possible to work at the computer for a long time
without fatigue.

The keyboard on the Atari ST is divided into four sections. The first
and largest section is a typewriter keyboard. Two large shift keys switch
between lower and upper case or special characters. The control key in
combination with other keys creates the non-printable control characters
from O to 31. There is also an ESC (escape) key and an ALTernate key.
This makes it possible to create any desired ASCII code. After the ALT key
is depressed, three digits representing the ASCII code may be entered. The
upper case letters can also be obtained without the shift keys by using the
CAPS LOCK key.

The second section of the keyboard is the cursor pad. This consists of
four cursor-control keys arranged in a T- shape. The HOME/CLEAR key
places the cursor in the upper left-hand corner of the screen or, if used with
the shift key, also erases the screen. A character can be inserted at the
current cursor position with the "INSERT" key. The keys "HELP" and
"UNDOQ" are also part of this section.

63

The FIRST ATARI ST BOOK

First Publishing

5: KEYBOARD LAYOUT

Fig. 2-

E.

64

First Publishing The FIRST ATARI ST BOOK

The numeric keypad is located on the right side of the computer. It
allows fast entry of numerical data. In addition to the numerals and decimal
point, the numeric keypad also has the keys "+", "-", "*" and "/" for the
standard arithmetic functions, "(" and ")" and an "ENTER" key for
terminating the input.

The Atari ST has ten function keys designated F1 through F10 located
above the typewriter section. These keys can be assigned special purposes
through software.

From a hardware standpoint, the keyboard actually appears to be an
"intelligent” peripheral to the 68000 processor. The keyboard has a
single-chip microcontroller, the HD63P01M1 from Hitachi, which has 29
I/O lines, a 16-bit timer and a serial interface built in. This CMOS processor
also contains 128 bytes of RAM on the chip. In the prototype of the Atari
ST, this processor has a 4K "piggy back” EPROM which contains the
operating system for the keyboard processor. In production versions, the
processor with a built-in ROM (HD63P01V 1) will replace the EPROM.

This single-chip controller frees the 68000 from the task of decoding
the keyboard matrix. It is well suited for this task since its has 29 I/O lines.

Communication from the HD63P01M1 takes place over a serial
interface already intergrated into the controller. The 68000 uses a 6850
ACIA (Asynchronous Communications Interface Adapter) as its peripheral
component. The data transmission takes place at a rate of 7800 baud.
Because the serial interface is designed for both input and output, you can

65

First Publishing The FIRST ATARI ST BOOK

"program" the keyboard by sending data to the controller to perform such
functions as CAPS LOCK.

The advantage of an intelligent keyboard lies in the fact that special
functions can be achieved easily without having to burden the main
processor. The 68000 gets the code of the key which is pressed just by
requesting it from the controller.

This single-chip controller also handles input from the joysticks and/or
mouse. The I/O lines that are not used for polling the keyboard are used for
this. Two connectors on the right side of the Atari ST are used to attach the
joysticks or the mouse. One port is used for the mouse. The four directions
and the fire button on the joystick can be polled while the mouse sends the
direction of movement or button press. The single-chip processor sends the
keyboard, joystick, and mouse data to the 68000 via the serial interface.
Since the data causes an interrupt at the 6850, it is made immediately
available to the 68000. The character can then be read from the single-chip
controller by the interrupt service routine.

The HD63P01MI1 is an eight-bit CMOS processor which can be
equipped with a 4 or 8K EPROM. It has an instruction set which is upward
compatible to the 6800 and 6801. In addition, it has bit-oriented instructions
which are useful for polling individual I/O lines.

66

First Publishing The FIRST ATARI ST BOOK

2.11. THE ATARI ST VIDEO INTERFACE

Since the Atari ST does not have a built-in monitor, it must be
connected to a video display terminal for operation. The simplest output is
to connect the ST to a colour or black-and-white television set. The Atari
ST has a built-in RF modulator to produce the necessary signals for the
television receiver. But because of its limited screen resolution, a television
set is not the optimal output device. Let’s look at the other options for

screen display.
The Atari ST uses only the graphics mode for text and graphics output.

When creating a video picture, the screen is divided into individual
points which can be separately set or cleared. On the screen, a set point
appears white and a cleared point black. This assignment can be changed,

however. Different colours can be assigned to these two states, for example.

For the sake of simplicity, let's start with the monochrome mode on the
Atari ST. In this mode, the screen resolution is 640 points horizontally by
400 points vertically. This gives a total of 256,000 points which can be set

or cleared independently of each other.

Each screen point can have one of two different states. In memory, one
bit also has two possible conditions: zero or one. This suggests that each
screen point be assigned to a bit in memory. In order to achieve the
resolution mentioned before, we need 256,000 bits or 32K bytes. This is

67

First Publishing The FIRST ATARI ST BOOK

Fig. 2-6: 640 x 400 BIT-MAPPED GRAPHICS

66¢

[3=]

66¢

68

First Publishing The FIRST ATARI ST BOOK

referred to as bit-mapped graphics. This 32K must be placed somewhere in

RAM. With 512K of RAM, however, this is only one sixteenth of the total
RAM.

The ST can do more than monochrome display. In addition to the
high-resolution single-color mode with 640x400 screen points, the ST has
another mode in which four colors can be displayed simultaneously on the
screen. The resolution in this mode is now 640x200 points. How can we
display four different colors with only half as many points? To answer this,
we must consider how the colors are stored in the 32K of graphics RAM.

When one bit is used for a screen point, this bit can take on one of only
two conditions, just as the corresponding screen point can be either set or
unset. In the colour mode, these two bits are used for representing a single

screen point. These bits can contain four different values.

00 =>0
01 =>1
10 =>2
11 =53

A colour can be assigned to each of these four values. The video
controller is responsible for the assignment and creation of the screen
signals as is often referred to as a CRTC (Cathode-Ray Tube Controller).

69

First Publishing The FIRST ATARI ST BOOK

In addition to the four-colour mode which provides 128,000 points of
resolution, there is a multi-colour mode in which it is possible to display 16
different colours at the same time. By simply extending the methcd used for

the four-colour mode, we can use four bits per point to represent 16 colours:

0000 =>0
0001 =>1
0010 => 2
0011 =>3
0100 =>4
0101 =>5
0110 =>6
0111 => 7
1000 => 8
1001 => 9
1010 =>10
1011 =>11
1100 =>12
1101 =>13
1110 =>14
1111 =>15

Since we have 256,000 bits of memory and we need four bits for each
point, we can control 64,000 points. This gives us a resolution of 320
points horizontally and 200 vertically.

70

First Publishing The FIRST ATARI ST BOOK

So the ST can display either four or sixteen colours at a time. These
colours may be any one of 512 colours. These colours are combinations of
the primary colours red, green and blue. Each of these primary colours can
be used in one of eight brightness levels. This results in 8 * 8 * 8 = 512
combinations. With these colours available, practically all colour grada-
tions can be represented. White results from of a superimposition of all
three primary colours. If the primary colours are used only in brightness
levels, corresponding grey levels are produced. The combination of red and
green gives yellow, red and blue make purple (magenta), and blue and
green make cyan. All other colours can also be formed with a partial mix of

two primary colours.

To achieve the bes? picture quality, you should use the RGB output.
RGB is an abbreviation for RedGreenBlue. With this interface, the signals
for the individual colors are available separately and can be used directly for
controlling the cathode rays in the monitor. The Atari ST has such an RGB
interface for direct connection of an RGB monitor.

In order to connect a simpler monitor, the ST also has a composite
video interface. Here, the three colour signals are mixed together into one
video signal. The monitor later separates this signal back into the three
colours, but this results in a loss of picture quality when compared to the
RGB output. Another loss in quality happens if you connect it to a
television set through the RF output. Here the video signal is first
modulated into a high-frequency signal and then demodulated in the

receiver. The signal must be further divided into the three primary colours.

At

First Publishing The FIRST ATARI ST BOOK

In addition, televisions are not designed to display pictures with as high
a resolution as the Atari ST generates.

The Atari ST also has a connection for a high- resolution monochrome
monitor in order to make full use of the high-resolution in the single-colour

mode.
With its four video interfaces, the Atari ST offers something for
differing tastes in quality and price range. Atari will offer a high-resolution

12" monochromg¢ and-a 12" RGB color monitor for the ST.

Figures 2.7 and 2.8 show screen photos of the Atari ST which
demonstrates the high resolution of 640x400 points.

72

First Publishing The FIRST ATARI ST BOOK

Fig. 2-7: HI-RES ATARI ST SCREEN PHOTO

73

First Publishing The FIRST ATARI ST BOOK

Fig. 2-8: HI-RES ATARI ST SCREEN PHOTO

74

First Publishing The FIRST ATARI ST BOOK

3. THE ATARI ST OPERATING SYSTEM

Now that we've become a bit more acquainted with the hardware of the
Atari ST, let's turn now to the operating system. First let's clarify what an
operating system is, what tasks it has to perform, and what demands are
placed on a modern operating system.

The capable hardware of the Atari ST is of no use without a program to
direct the processor and peripheral components. The operating system is the
"director". The operating system makes it possible for the computer to
recognize a press on a key; to construct a command from multiple key
presses; to carry out the commands that are entered; to send data to and
receive data from peripheral devices that result from these commands and
other functions as well.

For any computer, the primary input and output devices are the
keyboard and the display screen. They make it possible to work with the
computer interactively - the computer responds immediately to keyboard
input with results on the screen. If the results are to be documented, the
output can be routed to a printer. The operating system controls the printer
so that it produces the desired results.

The Atari ST can support two joysticks and a mouse as additional input
devices. The mouse is an input device which can simplify the input of data
between the user and computer. To make such devices easy to use, the
operating system must provide procedures to service these devices.

75

First Publishing The FIRST ATARI ST BOOK

In order to exchange data with other computers, you can use a
telephone, a modem, and a computer with a serial interface. Using this
configuration you can connect to almost any computer in the world. These
may be simple home computers or complex mainframes which manage huge
data banks. Controlling the ST's serial interface also falls to the operating
system.

The disk drive is a necessity for most computers. Recently hard disk
drives, such as the 3 1/2" drives from Atari, have become available at a
price which makes them a reasonable alternative to floppy drives. In most
instances, the operating system is contained in the computer's memory
while user programs such as word processing, data management, or
high-level programming languages are kept on the mass storage and loaded
into memory by the operating system when needed. After the program is
loaded, the operating system passes control to the user program. Later,
when the program is done, it returns control back to the operating system.

An important task of the operating system is that of moving programs
and data between the computer and the mass storage. Often the operating
system itself is stored on the mass storage device and is loaded into the
computer when it is turned on. The name "Disk Operating System”, or DOS
for short, is used to name an operating system whose main task is the
management of the disk drive.

But an operating system does more than simply load programs from the

mass storage devices and then start them. It must also perform the input and
output operations for user programs.

76

First Publishing The FIRST ATARI ST BOOK

In the hardware description of the Atari ST we became acquainted with
the peripheral components responsible for data input and output. If a user
wishes to output text to a printer from within a program, the computer must
know exactly which peripherial component the printer is connected to. Even
if this is known, it is not enough to simply send the data to the peripheral
component; the data that is output to the printer must also follow a certain
protocol. In the description of the printer interface we saw that this is done
with the STROBE and BUSY lines.

In general, a protocol is a set of rules which determines how data is sent
between two devices. There is a protocol for serial interfaces too, such as
the XON/XOFF protocol described earlier. Since input and output is
performed by every program, it doesn't make sense for the user to program
these things over and over again for each program. Furthermore, to
program at this level requires that the programmer have a very detailed
knowledge of both hardware and machine languagé.

So the operating system performs most of these tasks. The operating
system contains ready-to-use routines called input/output routines. By
using these routines you can output text to the screen, read characters from
the keyboard, send or receive data over the serial interface, produce
hardcopy on the printer or read data from or write data to a diskette.

To use these functions, the user simply calls the appropriate operating
system routine. Since the operating system usually has to input or output
data, the user must inform the operating system the location of the data and
the type of transfer that is desired.

77

First Publishing The FIRST ATARI ST BOOK

How should an operating system routine be designed?

Before answering this question, let's pause a few minutes to talk about
the early days of small computers.

When the first personal computer appeared on the market ten years ago,
its price was determined largely by the cost of the hardware. The cost of
memory for example, was relatively expensive. This was the reason that
most of the early computer had small amounts of memory - either 4K or 8K
of RAM. Many users couldn't afford to buy more. But advances in
production techniques and volume sales have reduced the cost per kilobyte
to less than 20 pence. Within a year 1M (million) bit chips will most

likely be available and most personal computers will have at least
IM-bytes of RAM. By replacing 256K-bit chips with 1M-bit chips the
Atari ST can reach its 2M-byte memory limit.

Similarly, advances have been made in the manufacturing of mass
storage devices that have reduced the prices of both floppy and hard disk
drives.

In the past, the cost of the hardware components accounted for 80 to
90% of the price of a personal computer. As a result of this tremendous
drop in component cost, the prices of the more recent computers have been

steadily sinking.

There are some differences between the software and hardware costs.

Developing software has been and still is labour intensive. As such, the

78

First Publishing The FIRST ATARI ST BOOK

many man-months or man-years that it takes to develop complex software
is expensive. In order to maximize the software development investment,
most developers try to design their software so that it can run on as many

computers as possible.

One operating system which was developed with the idea of being used
on many different computers, is called CP/M (Control Program for
Microcomputers). Developed by a company named Digital Research to
work on the Intel 8080 processor, it was later adapted to work with the
Zilog Z-80 processor. It is written in such a way as to be able to work on
computers developed by different manufacturers.

79

First Publishing The FIRST ATARI ST BOOK

3.1 THE CP/M OPERATING SYSTEM

To make it easy to adapt one operating system to the differing computer
hardware, CP/M was divided into three software components, each
functionally separate from one another. These components are:

BIOS BASIC INPUT OUTPUT SYSTEM
BDOS BASIC DISK OPERATING SYSTEM
CCP CONSOLE COMMAND PROCESSOR

The BIOS, or basic input output system, performs the actual interfacing
to the hardware. This part of the operating system includes the routines for
screen output, reading the keyboard, printer output and reading and writing
individual sectors on floppy or hard disk.

The BIOS is hardware specific and must be rewritten to implement
CP/M on a new computer. The BIOS has a preset number of simple input
and output operations to perform. At the beginning of the BIOS program is
a jump table for all of its operations. This table contains the memory
location of the routine which performs a given operation. The routines
themselves are adapted specifically for each different computer.

The BDOS, or basic disk operating system, is responsible for the
logical organization of mass storage data. It manages data at the file level.

One of its main jobs is to manage the disk storage space. When you
create a new file, for example, the BDOS searches for unused space on the

81

First Publishing The FIRST ATARI ST BOOK

disk. It selects the track and sector at which the data is stored. The user only
needs to know the name of the file. To help manage the disk space, the
BDOS use a directory containing the file names, type, size and location of
the file. So when you later want to access the data in the file, the BDOS
knows where to find it.

To reiterate, the BIOS is in charge of the physical management of the
peripheral devices while the BDOS is responsible for the logical
management of the disk drive. With help from the BDOS, programs and
data can be stored on the disk and read back again.

The third component of the CP/M operating system, is the CCP or
console command processor. It is the part of the operating system that is
responsible for handling the main line of communication between the user
and operating system from the keyboard. When CP/M starts up, the CCP
responds with the following output on the screen:

A>

The A means that the first disk drive is selected. Under CP/M the drives
are designated with letters which range from A to P. Therefore it is possible
to connect up to 15 drives. The character > indicates that the operating
system is now waiting for the user to input a command. We can now send a
command to the CCP. To do this, we type the command on the keyboard.
The characters are echoed on the screen as the user types them. When a
command has been entered and terminated by pressing the RETURN-key,
the CCP analyzes it.

82

First Publishing The FIRST ATARI ST BOOK

Using CP/M, there are two types of commands: resident and
non-resident. Resident commands are part of the operating system and are
always available for use in memory.

The CCP recognizes the following resident commands:

DIR

This command displays the directory screen. The directory is a
listing of the files stored on the selected disk drive. To display the
directory of a different disk drive, add the letter designation of the
drive followed by a colon. For example:

DIR B:
This displays the directory of drive B on the screen.

TYPE fname

This command displays a text file, named fname, on the screen.

TYPE TEXT.TXT

This displays the file TEXT.TXT. In CP/M, filenames consist of
two parts separated by a . (period). The first part of the name may
contain up to eight characters. The second part of the name, called a
file type or extension, may contain up to three characters.

ERA fname
This command deletes (erases) a file from the disk. The name of the
file to be deleted is fname.

83

First Publishing The FIRST ATARI ST BOOK

ERA TEXT.TXT
This deletes the file TEXT.TXT.

CP/M also offers the option of erasing several files at once. To do
this, you use wildcard characters. By replacing a character in fname
with ?, you are referring to all filenames which match the remaining
characters and which have any character in place of the ?. For
example, TEXT?.TXT can refer to the following files:

TEXT1.TXT
TEXT2.TXT
TEXTE.TXT

The ? can be used in the first part of the name as well as the file
type or extension. A second wildcard character is * (asterisk). The
* matches all subsequent characters. So a file designation of
TEXT.* refers to all files with a first part of TEXT and any
extension. The question mark and asterisk can be combined, for
example:

TEXT?.*

This refers to all files whose first part start with TEXT, are five
characters long and may have any extension. If we enter the
command: ‘

84

First Publishing The FIRST ATARI ST BOOK

ERA **
all files on the disk will be erased.

REN nfname=ofname

This command renames an existing file from ofname to nfname. To
rename our TEXT.TXT file to TEXTNEW.TXT, we can use the
following command:

REN TEXTNEW.TXT=TEXT.TXT

USER uarea

This command selects from among the different user areas on a
floppy or hard disk. If you have a large capacity floppy or hard
disk, you can group your files together in one user area.

USER 1

This command selects user area 1. An advantage of user areas is
that a directory listing will show only those files in a particular user
area. They may also be used to separate various application areas
from each other. So when working with a hard disk which may
contain dozens of files, you have immediate access to only those
which are needed for a specific purpose.

SAVE blks fname

This command saves the current contents of memory to a file. With
CP/M 2.2, this memory starts at address 100H (hexadecimal),
through the start of the operating system which lies at the upper end

85

First Publishing The FIRST ATARI ST BOOK

of the memory. The parameter blks is the number of 256-byte
blocks to be written to the file whose name is fname.

SAVE 10 NAME.EXT

This command writes 10 256-byte blocks to disk with a file named
NAME.EXT. The range of memory written is from 0100 hex to
0BOO hex.

As previously mentioned, the CCP also recognizes non-resident
commands. If you enter a command at the keyboard which is not one of the
resident commands, then the operating system looks for a file on the disk
with this name. The file must have an extension of .COM. For example, if
you enter:

testcmd

the CCP looks for a file with the name testemd.COM. If it finds one, then
the program is loaded into memory and starts as if it were a resident
command.

Part of the CP/M operating system includes several non-resident
commands. The most important of these are:

STAT
The STAT command displays and permits altering the disk or file
parameters and the logical assignment of input and output devices.

86

First Publishing The FIRST ATARI ST BOOK

PIP

The PIP command (peripheral interchange program) is a universal
copy and input/output program. Using PIP, you can copy files
from one drive to another, combine several files into one, output
files on the screen or printer or transfer data from a serial interface
to a file. The data can be manipulated during the transfer. The line
and page format of text data output to a printer can be determined,
for example, or the output lines can be numbered.

ED

The ED command is a simple line-oriented editor for creating and
editing text files. It can be used to create source files for assemblers
and compilers, for example.

ASM
The ASM command is the assembler for the 8080 processor. It is

used to convert assembly language source programs into machine
code.

DDT
The DDT command (dynamic debugging tool) is used to test
machine language programs.

How does this discussion of CP/M relate to the Atari ST?

87

First Publishing The FIRST ATARI ST BOOK

The CP/M operating system is the most wide-spread operating system
for eight-bit computers. Because it is a proven and solid system, it has been
adapted to modern 16-bit computers as well. The first adaptation was CP/M
86, for the 8086 and 8088 processors. But from Atari's standpoint, the
adaptation for the 68000 processor was more important. This version is
called CP/M 68K.

Atari is using an operating system for the ST which offers the functions
of CP/M 68K. In order to take the most advantage of the ST's features,
BIOS functions were added to CP/M 68K to support all of then new
hardware capabilities. This expanded CP/M 68K has the name TOS
(Tramiel Operating System).

TOS operates very similarly to CP/M 2.2 for the eight-bit computers. It
is also divided into the three components: the BIOS, BDOS and CCP. But
there are a few major differences:

* The maximum memory size for CP/M 2.2 is 64K but for TOS
the limit is 16MB.

* For CP/M 2.2, the operating system is loaded into memory from
diskette when the computer is turned on. On the Atari ST,
however, the TOS is stored in ROM. This has several
advantages. It is available immediately after the computer is
turned on since it does not have to be loaded from disk first.
Second and more importantly, the user loses no memory space
to the operating system.

88

First Publishing The FIRST ATARI ST BOOK

* For CP/M 2.2, the operating system is always placed at the end
of memory. The CP/M 68K operating system may be placed
anywhere in memory.

CP/M 68K recognizes the same transient commands as CP/M 2.2.
The DIR command has been expanded.

DIR

This command displays only non-system files.

DIRS
This command displays system files on the diskette. The operating

system is no longer stored on reserved tracks of the disk but uses
files of type .SYS.

SUBMIT

The SUBMIT command permits batching of commands. By
placing a sequence of commands in a file, you can perform them in
series as if they were entered from a keyboard.

89

First Publishing The FIRST ATARI ST BOOK

3.2 BDOS FUNCTIONS

The following are the BDOS and BIOS functions available under CP/M
68K.

A user program can communicate with the peripheral devices via BDOS
calls. Logical input and output devices are defined in the BDOS which are
first assigned to physical devices in the BIOS. The following input devices
are supported by the BDOS:

CON: STANDARD INPUT, USUALLY KEYBOARD
AXI: AUXILIARY INPUT, USUALLY SERIAL INTERFACE

Three output devices are available:

CON: STANDARD OUTPUT, USUALLY SCREEN
LST: LIST DEVICE, USUALLY PRINTER
AXO: AUXILIARY OUTPUT, USUALLY SERIAL INTERFACE

If a service is required of the BDOS by a user program, the BDOS is
accessed with a TRAP instruction. The TRAP instruction causes the 68000
to execute an exception handling routine. When the 68000 encounters this
instruction, it branches to a routine for handling this condition. Since the
BDOS has many functions available, the number of the BDOS function is
passed in register DO of the 68000. Based on this number, a branch is made
to the routine which performs the desired function. The additional registers
of the 68000 are used to pass parameters for the functions. If a character is

91

First Publishing The FIRST ATARI ST BOOK

to be output to the screen, for instance, it is passed in‘rcgister D1. On the
other hand, if a character is to be read from the keyboard, a call to this
BDOS returns the character in register DO.

Here's an example. To print the character X on the screen, a call to the
appropriate BDOS function (number 2) might look like this:

002000 123C0058 MOVE.B #X',D1 ; CHARACTER
002004 303C0002 MOVE.W #2,D0 ; BDOS #
002008 4E42 TRAP #2 ;CALL

An area called the I/O-byte is defined in the BIOS. It's purpose is to
assign logical devices to the physical devices. The I/O-byte is divided into
four sets of two bits each. Each of these four groups is associated with a
logical device.

1/0-Byte
deva devb devc devd
bit 01 23 45 6 17

Four physical devices can be assigned with these two bits. The bit
pattern "00" selects the standard device while a different bit pattern selects
an alternate device. This makes it possible to redirect output from the screen
to the printer, for example. In the same manner it's possible to reroute input
from the serial interface, perhaps through a modem, instead of the
keyboard.

92

First Publishing The FIRST ATARI ST BOOK

In order to give you an overview of what functions can be executed by
the BDOS, we will list them individually. In each case the function number
is placed in register DO before calling BDOS.

NUMBER FUNCTION

0 SYSTEM RESET
This function is used to return control back to CP/M 68K. This
is normally at the end of a machine language program.

1 CONSOLE INPUT
This function inputs a character from the console. Control
characters such as CR (carriage return) or LF (line feed) are also
returned. This function waits until a character is entered at the

console. The device from which the character actually comes is
determined by the I/Obyte for CON: in the BIOS.

2 CONSOLE OUTPUT
This function outputs a character to the console. The ASCII
code for the character to be output is placed in register D1. The
device to which the character is sent is determined by the I/Obyte
for CON: in the BIOS.

3 SERIAL INPUT
This function is like function 1 except that the character is input
from the serial channel. This function also waits until a character
is received. The device from which the character actually comes
is determined by the I/O-byte for AXI: in the BIOS.

93

First Publishing The FIRST ATARI ST BOOK

4 SERIAL OUTPUT
This function is similar to function 2 except that the character is
output to the serial port. The ASCII code for the character to be
output is placed in register D1. The device to which the character
is sent is determined by the I/O-byte for AXO: in the BIOS.

5 LIST OUTPUT
This function outputs a character to the logical device LST:. The
ASCII code for the character is placed in register D1. This
device is normally assigned to the Centronics parallel interface,
to which a printer is connected.

6 DIRECT CONSOLE INPUT/OUTPUT
This function is intended for special purposes where the normal
BDOS functions do not work. Using this function, output to the
screen cannot be stoppd with CTRL-S and cannot be redirected
to the printer with CTRL-P.

7 GET I/O-BYTE
This function is used to examine the current contents of the
1/O-byte.

8 SET I/O-BYTE

This fuction is used to change the current contents of the
I/O-byte.

94

First Publishing The FIRST ATARI ST BOOK

9 OUTPUT STRING
This function is used to output a string of characters. The string
may be stored anywhere in memory. Register D1 contains the
address of this string. The end of the string is terminated with a
$ (dollar sign).

10 READ CONSOLE BUFFER
This function reads an entire input line from device CON:. The
BDOS waits until the input is terminated with a RETURN. This
function returns the number of characters entered and the
memory address at which the characters are stored.

11 GET CONSOLE STATUS
This function informs the caller if a character has been input
from the console. If a character has been entered, ff (Hex) is
returned, otherwise zero is returned.

12 GET OPERATING SYSTEM VERSION NUMBER
This function returns the version number of the operating
system. This can be examined from within a program.

13 RESET DISK
This function resets all disk functions and selects drive A.

14 SELECT DISK
This function selects a drive. The drive number is passed to the
BDOS in register D1.

95

First Publishing The FIRST ATARI ST BOOK

15

16

17

18

19

20

OPEN FILE
This function opens a disk file. The address of the file's FCB
(file control block) is passed to the BDOS in register D1.

CLOSE FILE
This function closes a disk file. The address of the FCB is
passed to the BDOS in register D1.

FIND FIRST MATCHING ENTRY IN DIRECTORY
This function searches the directory for the first matching entry.
The address of the FCB is passed to the BDOS in register D1.

FIND NEXT MATCHING ENTRY IN DIRECTORY
This function searches the directory for the next matching entry.
This is used if a wildcard is used in a file name. The address of
the FCB is passed to the BDOS in register D1.

DELETE FILE
This function deletes a file from the directory. The address of
the FCB is passed to the BDOS in register D1.

READ SEQUENTIAL

This function reads the next record (128 bytes) of an open file
into a buffer. The address of the FCB is passed to the BDOS in
register D1.

96

First Publishing

21

22

23

24

25

26

WRITE SEQUENTIAL
This function writes the current contents of a buffer to an open

file. The address of the FCB is passed to the BDOS in register
D1.

MAKE FILE (WITHOUT OVERWRITE)

This function creates a new file. It is similar to function 15,
except no check is made to see if a file with the same name
already exists on the disk.

RENAME FILE

This function renames a file. The address of the FCB which
contains the old and new names is passed to the BDOS in
register D1.

RETURN LOGIN VECTOR
This function returns the information about the currently selected
drive.

RETURN CURRENT DISK
This function returns the current default drive.

SET DMA ADDRESS

This function sets the address of the buffer in which the data
from the disk will be written.

97

The FIRST ATARI ST BOOK

n

First Publishing The FIRST ATARI ST BOOK

27

28

29

30

31

32

33

34

UNUSED
This function is not used by CP/M 68K.

WRITE PROTECT DISK
This function protects a disk by prohibiting further writing to it.

GET R/O VECTOR
This function returns information about drives designated as
"Read Only."

SET FILE ATTRIBUTES
This function is used to change file attributes. For example, you
can designate a file as "read only".

GET ADDRESS DISK PARAMETER

This function returns the address of the disk parameter block. It
contains information about the drive such as the number of
tracks, number of sectors per track and the disk capacity.

GET/SET USER CODE

This function examines and changes the user number of a file.

READ RANDOM
This function allows you to read a specific block on a file.

WRITE RANDOM
This function allows you to write a specific block to a file.

98

First Publishing The FIRST ATARI ST BOOK

35 COMPUTE FILE SIZE

This function returns the number of data records contained in a
file.

36 SET RANDOM RECORD
This function passes the record number to be read or written
with functions 33 and 34.

37 RESET DRIVE
This function resets the disk drive.

40 WRITE RANDOM WITH ZERO FILL
This function is similar to function 34, but the contents of the
data record are set to zero values.

The following functions are found only in CP/M 68K.
46 GET FREE DISK SPACE
This function calculates the amount of free space available on the

disk.

47 CHAIN TO PROGRAM
This function loads and executes the next program.

48 FLUSH BUFFERS
This function writes the file buffers to disk.

99

First Publishing

50

59

61

62

63

DIRECT BIOS CALL
This function enables you to directly call the BIOS from the
BDOS.

PROGRAM LOAD

This function loads a program into memory without executing it.

SET EXCEPTION VECTORS ,
This function sets the 68000 exception handling vectors to the
users routines.

SET SUPERVISOR STATE
This function actives the supervisor mode of the 68000.

GET/SET TPA LIMITS
This function examines or changes the starting address of user
memory (TPA, transient program area).

100

The FIRST ATARI ST BOOK

First Publishing The FIRST ATARI ST BOOK

3.3 THE BIOS OF THE ATARI ST

The BIOS for the Atari ST has additional functions which support the
special hardware attributes of this machine. The standard BIOS calls have
numbers starting from zero. The extended functions have numbers starting
from 128.

Normally user programs do not use BIOS calls. Instead they use the
logical functions provided by the BDOS.

The following listing contains a brief description of the BIOS calls.
NUMBER FUNCTION

-1 INITIALIZATION

The computer is completely reset by a call to this function.

0 WARM START
The warm start function of the BIOS is called when a
program returns control to the operating system.

1 CONTROL STATUS
This function has the same task as the corresponding
BDOS call. A value of ff (Hex) is returned in register DO if
a character is ready, otherwise a zero is returned.

101

First Publishing The FIRST ATARI ST BOOK

2 CONSOLE INPUT

A character input from the console device is returned in
register DO.

3 CONSOLE OUTPUT
The ASCII code contained in register D1 is sent to the
console.

4 PRINTER OUTPUT
The character in register D1 is sent to the printer.

S SERIAL OUTPUT
The character in register D1 is output to the serial interface.

6 SERIAL INPUT
A character is input from the serial port and returned in
register DO.

7 FIND TRACK ZERO

The read/write head of the selected drive is placed over
track zero.

8 SELECT DISK
The drive number to be selected is passed to this function
which returns the address of the disk parameter header.

102

First Publishing The FIRST ATARI ST BOOK

9 SET TRACK NUMBER
The track number is selected by the contents of register D1.

10 SET SECTOR NUMBER
The sector number is selected by the contents of register
D1.

11 SET DMA ADDRESS
The address of the DMA buffer for disk data transfer is
passed in register D1.

12 READ SECTOR
The sector set by previous BISO functions 9 and 10 is read
from the disk. The contents of register D1 contains zero if
the sector was read without error and -1 if an error was
encountered.

13 WRITE SECTOR
The sector set by previous functions is written to the disk.
The contents of register D1 must be set to 0, 1 or 2
depending on whether a write, a write to a directory sector
or a write to a previously unwritten sector is to be
performed. Following the call, register D1 contains an
error code.

103

First Publishing The FIRST ATARI ST BOOK

14

15

16

17

18

19

20

PRINTER STATUS
This function indicates if the printer is ready to accept the
next character.

SECTOR CONVERSION
This function converts logical sector numbers to physical
sectors.

UNUSED
This function is unused in CP/M 68K.

GET MEMORY RANGE
This function returns the starting address and length of the
area available to the user.

GET I/O-BYTE
This function examines the I/O-byte.

SET 1I/0-BYTE
This function changes the assignments of the I/O-byte.

EMPTY BUFFERS

This function writes the contents of the disk buffers to the
disk.

104

First Publishing The FIRST ATARI ST BOOK

21 SET ADDRESS FOR EXCEPTION HANDLING
This function sets up the 68000 vectors for exception
handling.

On the next pages you find the extended BIOS functions, denoted by
function numbers over 127. They are used for handling the special features
of the Atari ST hardware.

NUMBER FUNCTION

128 CONFIGURE SERIAL INTERFACE
This function sets the baud rate, handshaking method,
number of bits per character, start and stop bits, and parity
protocol of the RS- 232 interface.

129 BUFFER FOR SERIAL TRANSMISSION
This functions sets the size and address of the buffer for
the RS-232 interface. If -1 is passed instead of new values,
the current parameters are returned.

130 RS-232 STATUS
This function is used to determine if a character is available
on the serial port, similar to the console status function.

131 MIDI IN

This function gets a character from the MIDI interface and
returns it in register DO.

105

First Publishing The FIRST ATARI ST BOOK

132

133

134

135

136

137

138

MIDI OUT
This function outputs the character contained in register D1
to the MIDI interface.

MIDI STATUS
This function is used to determine if a character has arrived
over the MIDI interface.

MIDI BUFFER
This function sets the size and address of the buffer for the
MIDI interface.

KEYBOARD OUTPUT
This function sends a character to the single-chip processor
which controls the keyboard.

MOUSE
This function is the interface between GEM and the mouse.

TIMER
This function is the timer interrupt function for GEM.

HARDCOPY
This function outputs the contents of the screen to a
graphics printer.Colour hardcopies can be created with a

colour matrix printer.

106

First Publishing The FIRST ATARI ST BOOK

139

140

141

142

143

144

145

146

JOYSTICK

The status of joysticks O and 1 is returned in registers DO
and D1.

GET TIME
This function returns the current clock time.

SET TIME
This function is used to set the clock time.

SET COLOUR

This function assigns an actual colour to a colour number.

SET COLOUR PALETTE
This function resets thecolour palette which consists of a

maximum of 16 simultaneously displayable colours.

GET SCREEN ADDRESS
This function returns the current address of the screen
memory and the current display mode.

SET SCREEN ADDRESS
This function changes the display screen parameters.

SOUND
This function is used to program the PSG for sound
output.

107

First Publishing

147

148

149

150

151

152

INTIALIZE DISKETTE
This function positions the read/write head at the starting

position and the assigned buffer is cleared.

READ SECTOR
This function reads a physical sector. A physical sector is
1K large on the Atari drives.

WRITE SECTOR
This function writes a physical sector to the disk.

READ TRACK
This function reads an entire track from the disk to a buffer
of the appropriate size.

WRITE TRACK
This function writes an entire track from a buffer to the
disk.

FORMAT DISKETTE

This function formats a diskette.You must specify the
number of tracks, the number of sectors per track, and the
number of sides of the disk. This function also allows you
to create a RAM disk.

108

The FIRST ATARI ST BOOK

First Publishing The FIRST ATARI ST BOOK

4. TOWARDS A USER-FRIENDLY COMPUTER

Over the years, a large number of operating systems have been
developed for computers. In general, the newer systems have included
many new features and improvements over their predecessors.

In summary the major tasks of an operating system are:

* handling the commands entered by the user;

* loading user programs into the appropriate area of memory in response to
the commands;

* giving these user programs access to the computer (execution);

* coordinating several user programs in a multi- user environment;

* managing the memory that is allocated for working storage;

* controlling and monitoring the flow of data among the different peripheral
devices;

* resetting the normal state of the computer after the user program ends.

Most of these tasks are performed without the user even noticing that
they are taking place. However, one area which has been particularly
confusing to many users is the management of the peripheral devices.

Here the user is confronted by the rigid rules and procedures of the
operating system. The procedures do work, but often presume that the user

has in depth knowledge of the operating system. The user must be familiar
with terms such as:

109

First Publishing The FIRST ATARI ST BOOK

formatting
file
directory

erase file

- backup or copy
- stat

Terms such as these often frighten or confuse the novice computer user.

To make the computer easier and more friendly for the user, operating
system designers have tried to simplify the way in which the user enters
commands into the computer. The goals of these approaches are to make it
possible for the user to perform productive work without extensive training
or reference to volumes of technical handbooks.

Drawing from years of in depth study at Xerox Corporation's PARC,
researchers observed that office employees do not want to give up their
typewriters, filing cabinets and erasers in exchange for new technology.
Instead they want to continue working in a familiar environment. So one
approach to automation is to simulate this environment and its tools with the
computer.

110

First Publishing The FIRST ATARI ST BOOK

4.1 THE TRADITIONAL OFFICE

Some analyses found that the teacher in his study, the secretary in the
reception room, the journalist in his open office and the business executive

all work with similar equipment.

If we ignore the telephone, the list of equipment looks similar to this:

- desk

- typewriter

- blank paper

- correspondence

- file folders and portfolios

- several pens for notes and drawings
- an eraser for corrections

- a waste bin for hopeless cases
and more:

- a calulator for basic arithmetic operations

- a clock so that he/she knows when lunch break starts
or as a reminder of other important appointments

- a copy machine so that important papers are not
accidentally lost and forgotten.

Let's put ourselves at the desk of an office manager. A typical workday
begins with the employee sitting down at his clean desk. His first

111

First Publishing The FIRST ATARI ST BOOK

assignment is to produce a sales report for the past month. He turns to his
typewriter, inserts a piece of paper and types a few introductory lines. Next
he looks through the sales folder containing last months records and spreads
the daily sales logs out over his desk in order to get a better look at them.
Next he types the daily sales totals. Then he reaches for his adding machine
to calculate the monthly total. Everything seems to be going all right until he
discovers that he overlooked several days sales because one sheet of paper
obscured another.

So he inserts another sheet of paper into his typewriter, retypes
everything, but this time not forgetting to include the missing day's sales.
Now he can throw the first sheet of paper into the trash can and send the
new report off to the boss. One further thing: he needs to make a photocopy
of the report for the accounting department.

So to make the transition from a traditional office to an automated office
as easy as possible, the work process should look the same when the office
worker uses the computer. In addition, the worker's interaction with the
computer should be easy to learn and understand.

112

First Publishing The FIRST ATARI ST BOOK

4.2 PREREQUISITES FOR A FRIENDLY COMPUTER

A "friendly computer" must be blessed with a certain set of technical
capabilities.

Due to the rapid advances in the micro-electronics field, new intergrated
circuits have been developed that have enabled manufacturers to produce
very capable computers, which the everyday user can afford. Likewise,
software technology has made great strides: software for microcomputers
has become more reliable, affordable and creative.

This advanced technology has enabled ATARI to create the ST with a
resolution of 640x400 points at such an affordable price. This high
resolution is suitable for representing objects on the screen -- objects such
as a file cabinet, sheets of paper or even a waste bin. These objects have

come to be known as icons.

A software innovation known as windowing has started to be widely
used. On a computer screen, windows simulate several sheets of "paper” --
one on top of another. The user can "flip" through these sheets and display
a specific page by selecting the appropriate window.

To be able to easily select a specific work task, or to select from among
the different windows, a hardware innovation called a mouse was chosen. It
is the use of this mouse as an input device that the Atari hopes to
revolutionize the home computer market. While it is true that computers
such as the Apple Macintosh use these same techniques, Atari has been able

113

First Publishing The FIRST ATARI ST BOOK

to do the same at such an affordable price. No longer is this exciting
computer technology the privilege of a few. Instead the Atari ST makes it
possible for the masses to afford a computer that can be operated through

graphic oriented displays.

114

First Publishing The FIRST ATARI ST BOOK

4.3 THE MOUSE

The mouse is a small input device,that houses a small ball whose
rotation in two axes can be measured, either mechanically or optically. If
you turn a mouse on its back, you can see that it's a variation of the more
familiar trackball used in many video games. With a trackball, the user
rotates the ball in the desired direction with short movements of the palm of
the hand. With a mouse, the user moves it in a desired direction over a flat
surface.

The operating principle of a mouse is based on a coordinate system
where a movement in a given direction represents a given x and y value. If
the flat surface over which the mouse is moved is said to correspond to the
computer's display screen, then each point on the screen can be assigned an
x-y coordinate pair. Thus a movement by the mouse represents a
corresponding movement on the screen.

If software is written to support a mouse, then it's possible to replace
the keyboard for many tasks. One method is to display a menu of choices
on the screen. The mouse is used to position an arrow or cursor to the
desired choice and a button on the mouse is pressed. This is called clicking
the mouse. So you can select a function with two simple steps: moving the
mouse and clicking it. You might even think of the mouse as an extension
of your finger where you point to the symbols displayed on the screen. The
Atari ST is designed to be used with a mouse.

115

First Publishing The FIRST ATARI ST BOOK

FIG. 4-1 USER INTERFACE

oNsi|
sl Lewvel 2

‘| Level 1

Level O

Level 4
Z

Level 3

(o /
Level 2

‘| Level 1

ARD WARE //% Level 0

First Publishing The FIRST ATARI ST BOOK

4.3.1 WORKING WITH THE MOUSE

How is the mouse used to perform various tasks?

The ST's impressive hardware is not very useful without appropriate
software. Let's see how we can do productive work with the ST.

Before using a blank diskette, it must be formatted. One of the
functions of the CP/M 68K (or TOS if you prefer) operating system is
formatting a diskette.

With most other computers, the user must know the name of the
command (FORMAT) to perform a desired function. As is the case with
many of these commands, one or more parameters must be entered as part
of the command. So the user must also know how many parameters are
required and the order and syntax of these parameters. Only then can he
enter the full command at the keyboard.

One alternative to entering the command at the keyboard is to display a
list of functions on the screen. Then using the mouse you can click to the
desired function. The user needs only remember the correct command, but
not a complicated syntax. Although simpler to perform than typing the

command, the method is a long way from the automated office.

Now let's introduce a slightly different concept. In place of the list of
functions, why not represent them as icons (graphic symbols) on the
screen? The Atari ST does just this by using an operating system called

117

First Publishing The FIRST ATARI ST BOOK

GEM. GEM (Graphics Environment Manager) is a graphics oriented
operating system from Digital Research. In practice, GEM is not really a full
operating system. Rather it is an interface between the user and the
operating system. It's purpose is to simplify the communication between
the user and the TOS operating system.

Figure 4-1 illustrates how the hardware and software components of the
ST fit together.

At the lowest level is the hardware. It is not directly controllable by the
user. Instead, the operating system at the next level controls the hardware.
The user at level 3 communicates with the operating system through
programming languages, utilities or application programs at level 2.

By introducing another level of communication we can reduce the
amount of knowledge that the user requires in order to interact with the
language, utilities or application programs. So move the user interface up to
level 4 and place GEM at level 3. Now, the only way to use the ST is
through the GEM interface.

118

First Publishing The FIRST ATARI ST BOOK

S. WORKING WITH GEM

After turning on the ATARI ST, the screen displays a pictorial
representation of a desktop. It is divided into the working surface of the
user and the system menu lists.

Icons appear on the desktop along the right side of the screen. These
icons are figures of the peripheral devices connected to the ST. For
example, two light coloured diskettes represent the two ST floppy disk
drives - one called A: and the other B:. At the lower right hand of the screen

is an icon of a waste bin.

A small black arrow appears in the middle of the screen representing the
position of the mouse. This is called the mouse pointer or arrow. The
mouse is the main input device that the ST uses under GEM.

There are two fundamental operations that can be performed with a
mouse: selection and dragging.

To select an object that appears on the screen, simply move the arrow
across the screen with the mouse until it is positioned over the desired icon
and then click the mouse button. The selected icon is then displayed in
reverse on the screen, in black.

To move an object from one location to another on the screen, you must
drag it. To drag an object, move the arrow across the screen with the
mouse until it is positioned over the desired icon, press and continue to hold

119

First Publishing ‘ The FIRST ATARI ST BOOK

the mouse button, and then reposition the icon on the screen by moving the
mouse. When the icon is in the desired position, release the mouse button.
As long as you continue to press the button, the icon can be moved from

. place to place on the screen.

120

First Publishing The FIRST ATARI ST BOOK

5.1 MENUS

As already mentioned, GEM uses both icons and menus. When the ST
is first turned on the following menu is displayed at the top of the screen:

DESK FILE VIEW OPTIONS

Now if you position the arrow over one of the menu choices, press and
continue to hold the mouse button, a pull-down menu will appear. A
pull-down menu works like a common household window-blind. The blind
may be pulled down when needed or retracted if not needed. If needed, a

pull-down menu displays a further set of choices.

So by positioning the arrow over the DESK menu selection and
pressing the mouse button, the following pull-down menu appears and
display a set of functions that you may use on your automated desktop:

DESK FILE VIEW OPTIONS
DESK TOP INFO

BREAKOUT
CALCULATOR

121

First Publishing The FIRST ATARI ST BOOK

The pulldown menu for FILE contains all the functions for
manipulating files, whether the file is a program, document, or the data file:

DESK FILE VIEW OPTION

OPEN

SHOW INFO
NEW FOLDER
CLOSE FOLDER
CLOSE WINDOW
FORMAT

TO OUTPUT
QUIT

The pull-down menu for VIEW displays the contents of ST's disks.
You can display the files in a variety of ways. The contents may be
displayed as icons or as lists. In addition, they may be arranged by name,
date, size or type. The pull-down menu looks like this:

DESK FILE VIEW OPTIONS

SHOW AS ICON
SHOW AS TEXT
SHOW BY NAME
SHOW BY DATE
SHOW BY SIZE
SHOW BY TYPE

122

First Publishing The FIRST ATARI ST BOOK

The pull-down menu for OPTION allows you to set system-specific
parameters:

DESK FILE VIEW OPTIONS

INSTALL DISK DRIVE
INSTALL APPLICATION
SET PREFERENCES

The install functions are used to adapt peripheral devices or other
programs to GEM. Other miscellaneous system parameters can be changed
with SET PREFERENCES.

GEM is designed to be as user-friendly and forgiving as possible.
Therefore, confirmation is always requested before a copy or deletion is
performed. For example, when deleting a file a dialog box appears on the
screen that looks similar to this:

CONFIRM DELETE: YES
NO

At his point, the user can cancel the operation by clicking NO on the
dialog box.

123

First Publishing The FIRST ATARI ST BOOK

By using these four pull-down menus and the icons, you can perform
all of the usual operations such as formatting diskettes, deleting or copying
files, viewing the directory of a disk, and more, without ever once having to
use the keyboard.

Here's an example:

Select a disk drive by positioning the arrow over the disk icon and

pressing the mouse button. The icon now appears in reverse.

Suppose you want to know which files are on the disk in this drive.
Position the arrow to FILE and press the mouse button without releasing it.
A pull-down menu appears. Drag the arrow to the OPEN choice and
release the button.

Immediately, the pull-down menu disappears and a new window
appears (the window is said to have opened) displaying the contents of the
diskette on the screen as icons.

To show the contents as text instead of icons, position the arrow to
VIEW and press the mouse button without releasing it. Another pull-down
menu appears. Drag the arrow to SHOW AS TEXT and release the
button. Again, the pull-down menu disappears and the contents of the
window is rearranged. The disk files are now displayed as text instead of

icons.

124

First Publishing The FIRST ATARI ST BOOK

Now let's take a closer look at the GEM windows.

A GEM window is made up of several elements: a border surrounds a
light background; arrows are in the corners of the windows; a black
rectange is found in the upper left and lower right corners.

The arrows are used to scroll the screen. If when displaying information
on the screen, it will not all fit within the window dimensions, ybu can use
the arrows to scroll the information within the window. To scroll
downwards, for example, you would position the mouse arrow over the

125

First Publishing The FIRST ATARI ST BOOK

down scroll arrow located along the right-hand edge of the window and
click the mouse button. The information on the screen will then scroll
downwards.

To display more information on the screen, you can also change the size
of the window. Do this by dragging the window's size-box located in the
lower right-hand corner of the window to a new location. As you drag the
size-box, you can see how the dimensions of the window change. The
maximum size of a window is determined only by the size of the work
surface available. The window may be enlarged to cover even the TRASH
icon for example.

126

First Publishing The FIRST ATARI ST BOOK

As you can see, the menu titles remain displayed at the top of the
screen.

If you have completed using a window, you should CLOSE it. Do this
by clicking the close box in the upper left-hand corner of the window. The
window disappears and any information that was hidden by the window is
again visible.

While all of this is taking place on the screen, the processor is
performing many tasks. In order to restore a screen when a window is
closed requires that the previous contents of the screen be saved. If multiple
windows are superimposed on the screen, they too must be saved. To do
this the operating system must have a lot of memory available to use and
must work quickly since the user does not want to wait long for the new
screens.

In the picture on the next page, you can see that a section of the border
is cross-hatched. This means that only part of the available information can
be displayed within the window. To display the rest of the information, you
can scroll the window using the scroll arrows.

You'll also notice that the icon for a file called DESK1.ACC. It
appears in reverse, meaning that it is selected.

127

First Publishing The FIRST ATARI ST BOOK

Instead of selecting an icon and then going to the FILE menu to
OPEN a file, you can position the mouse arrow to an icon and click the
mouse twice in quick succession (called double clicking). Double clicking is
a shortcut to opening a file. By double clicking the icon for
DESK1.ACC, we can begin executing that program.

128

First Publishing The FIRST ATARI ST BOOK

5.2 WINDOWS UNDER GEM

A window consists of a border surrounding the viewing field. At the
top of the window is the title box displaying the name of the file or disk.
Beneath the title box is a box displaying the amount of storage space that the
files contain. It looks like this:

216704 bytes used in 11 files

A window currently in use contains a close box. A window that is
overlayed by another does not have a close box.

On occasion you might want to enlarge a window to make as many
objects as possible visible at one time. On the other hand, you might want to
reduce the window size in order to see a partially covered window
underneath. To change the size of the window opening, drag the size box
until the window is of the desired dimensions and then release the mouse
button.

You can also relocate an entire window on the screen. To do this, drag
the title line of the window to the new location and then release the mouse
button. You'll note that as the window is being dragged to a new location,
only an outline of the window is moved. The window itself is not relocated
until the mouse button is released. See the picture on the next page.

129

First Publishing The FIRST ATARI ST BOOK

At any given time, only one window may be active. To make a window
active, you simply move the mouse arrow to the window's border and press
the button. GEM moves this window on top of any other papers in the
stack. When you complete your work on this window, you can active
another window in the same way: clicking the new window's border.

130

The FIRST ATARI ST BOOK

First Publishing

Fig. 5-1 GEM WINDOW LAYOUT

Sui[joiog [eIVOZIIOY

ozig ¥V v
“ 50 ‘
A
< Mopurp jo
e 9AROY
Surqorog
TeonIaA

$3[1J Jo j Ul pasn sNhg

Xod anLL u

A

xXo0g] 330[D

131

The FIRST ATARI ST BOOK

First Publishing

Fig. 5-2 GEM MENU DIAGRAM

DESK FILE FILE OPTIONS
Install Disk Drive
Open Show As Icons o
Desk Top Info Show Info... Show as Text Install >§=nag.4
Breakout New Folder Sort by Name Set Preferences
Close Folder Sort by Date
Calculator Close Window | Sort by Size
Sort by Type
Format..
To Ovutput..
Quit

132

First Publishing The FIRST ATARI ST BOOK

5.3 THE DISK DIRECTORY

You can display the directory of a diskette by using the VIEW option
on the desk. By default, the directory is displayed as icons as in the
following picture.

The amount of disk storage that is occupied is displayed in addition to
the file names and types.

133

First Publishing The FIRST ATARI ST BOOK

Among the different file types are:

* folders
* programs
* data

The icon for program or data files is a sheet of paper.

The icon for a folder is a symbol that looks like a familar manila file
folder. The folder icon is a way to group an arbitrary number of program or
data files. By grouping these files in a folder, the user can more easily
organize the information on the disk. To see the contents of a folder, you
merely open the folder (by either double clicking or by seiccting; and then
OPENing it).

As an alternative to displaying the directory as icons, you may also
display the contents alphabetically by file name; alphabetically by file type;
chronologically by creation date; in descending order by file size.

You can select individual files by using the mouse arrow. In addition to
information about the individual files or the folders, you can also call up
data on the status of a diskette. The operation SHOW INFO in the
pull-down FILE menu is used for this purpose.

134

The FIRST ATARI ST BOOK

First Publishing

K wx £5 e xR e

g e R niy e e o

135

First Publishing The FIRST ATARI ST BOOK

In this case, drive A: contains no data at all. You should notice that the
number of files and folders, the amount of unused space on the disk and the
name of the diskette are displayed.

After viewing this information, click the OK field in the dialog box to
return to the previous window.

¢ GRIOnE

First Publishing The FIRST ATARI ST BOOK

5.4 WORKING WITH FILES UNDER GEM

Backing up files is one of the most fundamental file operations. Using
GEM, it is also one of the easiest operations to perform.

Let's see how we would back up a file using the Atari ST. The source
files are on drive A: and we will copy them onto a disk in drive B:.

The first step is to select drive B:. Do this by clicking the icon labeled
FLOPPY DISK B:. If the diskette in this drive is blank, format it by
selecting clicking FILE from the menu and dragging the arrow until the
FORMAT operation is selected by releasing the mouse button. Since GEM
is user-friendly you'll see the following message on the screen:

STOP

Formatting will ERASE any
information on the disk in
drive B:.

Click on OK only if you don't
mind losing this information.

'If you've made a mistake, you can leave this procedure by moving the
mouse pointer to CANCEL. By clicking OK the formatting begins.

When the light on the drive goes out, we're ready for the next step.

137

First Publishing The FIRST ATARI ST BOOK

WWWBWWM W__-‘
154 mﬁ‘ .? LuT U : ;

=
To copy a file, simply drag the icon for the the desired file until it is

positioned over the icon of the destination drive and releasing the mouse
button. Copying begins immediately.

You can also manipulate multiple files as a group. To do this, the icons
for the individual files must be displayed on the screen next to each other.
To select the group, it's necessary to form an imaginary rectangle around
the desired icons. First, position the mouse arrow to one of the two
diagonals of the rectangle and press the button. Now drag the arrow to the
opposite corner of the rectangle. As you are dragging the arrow, a dashed
line appears on the screen to show you the icons which have been selected.
When all of the desired icons have been selected (are within the dashed
rectangle) release the mouse button. All selected icons will now appear in

reverse.

138

First Publishing The FIRST ATARI ST BOOK

By moving one of the selected icons, all of the icons appear to move
together. The selected group of files are displayed as outlined icons as they
are dragged. To copy these files to a backup disk, drag the icon of one of
the group of files until it is positioned over the destination disk drive and
release the button. The selected files are copied to the backup disk one at a
time.

This method of manipulating files is very easy to learn and very
powerful as well. It can prove dangerous too since it's possible to toss
many files at a time into the TRASH.

So we've seen a very convenient way to group files together. Now let's
look a another way. Go the the FILE option, drag the mouse arrow to
NEW FOLDER and release the mouse button. A new window appears
on the screen. Now you'll have to resort to the keyboard to enter a name
for the file folder. A folder name consists of up to eight characters with an
optional three character extension. When you have typed in a file folder
name, click the OK box.

To place a file into this folder, drag its icon until it is positioned over an
empty folder and then release the mouse button. The file icon immediately
disappears from the screen. The file has been placed into the folder.
Naturally, you can place as many documents to the file folder or create as
many folder as necessary to achieve your desired degree of organization.

139

First Publishing : The FIRST ATARI ST BOOK

The final example, is the copying of entire diskettes. This is how you
copy an entire diskette:

Use the mouse arrow to select the source disk drive, drag the icon until
it positioned over the destination drive and release the mouse button. You'll
see the following message appear on the screen:

Copying disk A: to disk OK
B: will ERASE any
information on disk B:. CANCEL

Click on OK only if you don't
mind losing this information.

140

First Publishing The FIRST ATARI ST BOOK

Before leaving our discussion of GEM, we want to quickly point out a
few other features.

When working at a desk, you occasionally need to use a pocket
calculator for number work. By dragging the DESK option to
CALCULATOR, the ST will reveal a built-in calculator. It has a standard
calculator that includes percent, square root and several memories. So the
Atari ST desktop is ready to serve even more of your needs.

141

First Publishing The FIRST ATARI ST BOOK

When you find yourself bored at your Atari ST desktop, you can find
diversion with the BREAKOUT arcade game. By dragging the DESK
option to BREAKOUT, a game board will appear on the screen. By using
the mouse, you can play the classic Atari in vivid color.

142

First Publishing The FIRST ATARI ST BOOK

5.5 INSIDE GEM

GEM is an acronym for Graphics Environment Manager. The
complete GEM software package is a graphics-oriented user interface
designed to simplify the operation of the computer.

There are two major components to GEM. They are the VDI (Virtual
Device Interface) and the AES (Application Environment Services).

The Atari ST was designed with this simplicity in mind. To make
working with the ST as easy as possible, all user interaction with the
operating system and application are meant to be handled in an identical
fashion. This considerably shortens the training time to learn to use a new
application, since the basic operations of using the mouse, icons, pull-down
menus and windows remains the same. In addition, software designed for
GEM works independent of the computer hardware configuration. So if the
hardcopy device for the ST is changed from a dot matrix printer to a more
expensive plotter, the output is easily produced.

This compatability is achieved through the virtual device interface. The idea

behind this is a software driver which is responsible for the output of data to
hardware periperal.

143

First Publishing The FIRST ATARI ST BOOK

All input and output for the ST are sent to the VDI and not directly to
the operating system. The VDI accepts incoming data and reproduces it on
the screen, on the printer, on the plotter, etc.

Another component of GEM is AES or application environment
services. The AES monitors the input devices such as reading the keyboard,
evaluating the movement of the mouse, and checking the mouse button. The
AES also controls output formatting such as windows, pop-down menus

and icons.

These two parts of GEM, the VDI and the AES, along with the TOS
form the block of system-specific software. Imbedded in this system is the
DESKTOP which can call the various utility programs, the TOOLS. These
might include an icon editor with which you could create your own icons.

144

First Publishing The FIRST ATARI ST BOOK

5.6 VIRTUAL DEVICE INTERFACE

The VDI itself, consists of two parts: namely the GDOS, an operating
system for controlling the graphics-oriented output devices, and the driver
which contains the information concerning the character sets (or fonts) to be
used.

This differentiation suggests one essential difference between GEM and
earlier operating systems. On conventional computers, there are two types
of screen displays: a TEXT mode and a GRAPHICS mode. In the TEXT
mode display, one byte of the screen memory is interpreted as a character
according to the assignments of the ASCII codes. In the GRAPHICS mode,
on the other hand, when between 50,000 and 200,000 points are addressed,
a single bit represents only one of these points.

As a result, the size of the screen memory is dependent on the screen
display mode. Further, trying to combine text and graphics on the same
display are made more difficult.

Using GEM, there are no provisions for a pure TEXT mode; the
information is always displayed in the GRAPHIC mode.

To display an alphanumeric character at a specific location, the bits in
the corresponding screen memory are set to the pattern of the desired
character. This is called biz-mapped character representation. Since any
pattern can be displayed, the user is free to use any set of alphanumeric

145

First Publishing The FIRST ATARI ST BOOK

patterns. Such a set of patterns is called a character set. Different character
sets may be stored on diskette and used in place of a standard character set.
A common use for user-defined character sets is to display foreign
characters or to substitute a new font. Thus alphanumeric characters are
handled just like graphic patterns in a bit-mapped system.

Here's another example of the drawback of a separate TEXT and
GRAPHIC display mode. Suppose you want to display a square box and a
perfect circle on the screen and then get a hardcopy of them on the
computer's dot matrix printer. Using most computers, the square is
reproduced as a rectangle and the circle as an ellipse. This is due to the
differences in point representation on the screen and the printer.

The VDI can overcome this problem. The VDI recognizes two different
coordinate systems, namely:

* NDC - Normalized Device Coordinates, and
* RC - Raster Coordinates.

Raster coordinates correspond exactly to the physical capabilites of a
display device. For the Atari ST display screen, this is either 320 X 200 or
640 X 400 points.

Normalized device coordinates correspond to an idealized screen
surface. Using normalized coordinates, a quadrilateral that appears square
on the screen is made to look square when printed as hardcopy. For a
coordinate system of say, 600 x 200, the height to width relationship

146

First Publishing The FIRST ATARI ST BOOK

between the coordinates on the screen is 1:1.8. That is, one screen pixel in
the horizontal direction has the same dimensions as 1.8 pixels in the vertical
direction.

With the VDI, a software device driver carries out the necessary
conversions for NDC. The output appears in the same proportions on all
peripheral devices.

To do this, GEM use meta-files. These files contain information
required to exchange data among peripheral devices and individual GEM
applications. In a meta-file, the physical size of the output device and the
coordinate system for the data to be transmitted is defined.

147

First Publishing The FIRST ATARI ST BOOK

5.7 APPLICATION ENVIRONMENT SERVICES

The AES is composed of several components. The most important are
the dispatcher, the screen manager and the subroutine library.

The dispatcher is responsible for handling multiple applications that are
able to run simultaneously. Since the 68000 processor is so fast compared
to the eight-bit processors, it is possible for the ST to perform more than
one task at a time. This is called multitasking. Later versions of GEM may
support multitasking.

The subroutine library contains the appropriate routines for

manipulating the windows, handling the mouse, and so on. The screen
manager assumes control of the mouse once it is outside of a window.

149

First Publishing The FIRST ATARI ST BOOK

6. COMMUNICATION BETWEEN MAN AND MACHINE

We've talked quite a bit about the Atari ST from both the hardware and
software standpoint.

But many of us are interested in nitty-gritty techniques of using the ST.

How do you control the sophisticated chips in the ST? How do you use
the fantastic sound synthesizer that is built-in?

How do you set and reset the individual pixels on the display screen?

Just as we communicate with each other using the English language,
you can communicate with the ST using a variety of languages.

151

First Publishing The FIRST ATARI ST BOOK

6.1. COMPUTER LANGUAGES

There are a wide variety of computer langauges. Hopefully, each
different language serves a certain user need.

A computer language must first of all be unambiguous. Each individual
language element must have an exact defined syntax and meaning; ambigous
interpretations are not allowed.

To the casual user, the computer is an intelligent machine. But the fact
is, even the fastest, most expensive computer is only a simple machine.
Without the correct instructions, it is incapable of performing any useful
work.

This short example shows that even a simple addition requires a
program to tell the computer how to proceed:

1. Get the first number
2. Get a second number and add it to the first
3. Display the sum of these two numbers

Even though it's easier to perform the addition in your head or on a
pocket calculator, here's a sample solution on a computer. We must know
some facts before we proceed, for example, from where do we get the two
numbers?

153

First Publishing The FIRST ATARI ST BOOK

Two memory locations may be designated as the source of these
numbers. The instruction sequence might look like this:

1. Load the first number into the accumulator
from memory location 1.

2. Get the second number from memory location
2 and add it to the number in the accumulator.

3. Write the sum (the number in the accumulator)
to memory location 3.

The 68000 processor could follow this algorithm, but not before we
have made sure that the two numbers are actually in the appropriate memory
locations. Furthermore, we must be able to examine the contents of location
3 to find the result of the calculation.

You might want to write this program in machine language or assembly
language. Here you would use the instruction set of the processor which we
introduced earlier.

If you take a look at an assembled program, you'll see a series of
numbers in the printed listing. These numbers are the hexadecimal
representation of the machine language. If you can imagine the hexadecimal
numbers as a bit pattern containing only O's and 1's, then you'll see the
actual machine language program as the 68000 processor sees it.

154

First Publishing: - The FIRST ATARI ST BOOK

ASSSEMBLED 68000 PROGRAM

HEX CODE SOURCE CODE
1 00000000 .text
2 * This program adds the first
3 * three integers and stores the
4 * result in memory
5 00000000 303900000000 start: move.w a,d0 Load first number
6 00000006 D07900000002 addw b,d0
7 0000000C D07900000004 addw ¢,dO
8 00000012 33C0O0000000A move.w d0,d Store answer
9 00000018 4E75 s Return to CP/M
10 00000000 .data
11 00000000 0001 a dec.w 1 Numbers to add
12 00000002 0002 b: .dew 2
13 00000004 0003 c de.w 3
14 00000006 0000 d: de.w 0 Answer goes here
15 00000008 .end

It is this series of O's and 1's that the processor receives during
execution. Supppose for a moment, that you had to communicate with the
68000 by using only these binary numbers. You would have to know the
series of numbers for each different instruction and also the series of
numbers for the location of the data which the processor required. Needless
to say, programming a processor using binary machine code would be very
error prone and time consuming.

Assembly language is a great step forward in programming. The bit
patterns for each instruction are replaced by easy to remember mnemonic
abbreviations. It's easier to remember a mnemonic such as LD (fof LoaD)
or LDA (for LoaD Accumulator) instead of a cryptic bit pattern.

155

First Publishing The FIRST ATARI ST BOOK

To summarize machine and assembly language programming:

1. The instructions perform relatively fundamental operations such
as data manipulation and basic arithmetic. For this reason a
program must be broken down into a large number of individual
instructions. In doing so, the program becomes very long.
Increasing the number of instructions also increases the
liklihood of errors.

2. Machine or assembly language programs are rather difficult to
read and change. Therefore program maintentance is slow and
expensive.

3. The mnemonic instructions depends on the processor used and
architecture of the computer system. Exchanging programs
among different computers is therefore very costly or
impractical.

4. The programmer must be very familiar with the operation of the
computer and all peripheral devices. He must know how to
access, the keyboard, screen, printer, disk drive, etc.

We don't want to downplay the use of assembly language
programming. An assembly language program can take full advantage of the
processor. Each of the instructions is available to the assembly language
programmer where he may hand-tailor the software for highest execution
speed. He has total control over the memory used for the program and data.

156

First Publishing The FIRST ATARI ST BOOK

6.2 PROBLEM-ORIENTED PROGRAMMING LANGUAGES

As computers became more widely used, the base of people using them
became wider as well. Not only were the physicist and mathematicians
using the computer but others from other disciplines were using them as
well.

The physicist and mathematician were fairly well-suited to learning
computer programming. They found the transition from hand-written
algorithms to computer algorithms rather straight-forward.

Others, however, found the transition much more difficult.
Furthermore, it was too expensive to describe a problem to a programmer
so he could write a program to solve it. For this reason, new artificial
languages were developed so that the user could program a solution to his
problem in a more familiar terminology.

The first major language to appear was called FORTRAN, for
FORmula TRANslator. It was highly mathematical in nature and was
developed mainly to suit the mathematical needs of scientists and engineers.

Many other languages followed, a few of which came to fame and
wide-spread use, while others which ran on only a few individual

computers lasted only a short time.

Languages such as COBOL, the COmmon Business Oriented
Language, were written especially for use in business data processing.

157

First Publishing The FIRST ATARI ST BOOK

These two languages were designed as compiled langauges. The
compiler checked the language syntax and grammar for correctness and
converted the individual statements into equivalent machine language
instructions. Finally, this resulting program was executed.

The advantages of this procedure are obvious:

* The programmer can describe his problem in terms that he is
familiar.

* The compiler can translate these terms into the machine language of
the computer. In fact, a compiler can be written to translate the
problem- oriented language into the machine language of any
computer. In this way, the compiler and not the programmer need
be concerned with the hardware- dependent features of the
computer.

The program runs or executes quickly since it is now translated to
machine language.

There are of course disadvantages to compiled languages:
Compiling a program is a multi-step process. The user-written

program (called the source program) is entered and written as a file.
This source file is then passed to the compiler.

158

First Publishing The FIRST ATARI ST BOOK

If the compiler detects an error in the source program - perhaps a
syntactical error - then the source program must be corrected and
recompiled.

If after a program is compiled, an error is discovered during
execution, the source program must be corrected and recompiled.

During the writing and testing of these programs, many hours

might elapse going through these procedures. One alternative to the
compiled programs was the development of interpreted languages.

159

First Publishing The FIRST ATARI ST BOOK

6.3 INTERPRETIVE LANGUAGES

An interpretive language is one where the language elements are
translated immediately into the machine language of the computer and
executed. If a statement like PRINT 3+5 is entered, the language
interpreter would first check the syntax of the expression and then carry out
the command step by step.

The command PRINT tells the interpreter that something must be
displayed on the screen. If the something is a constant (literal), the
interpreter knows that a quotation mark must follow the PRINT keyword.
But if a mathematical expression follows the keyword, then the quotation
mark will not be there.

The above example causes the interpreter to first calculate the sum of 3
and 5, and then display the result on the screen. The interpreter then
proceeds to process any subsequent commands.

By using an interpreted language, the programmer can check his work
at any time. This is in contrast to compiled languages where he has to first
write the source file, compile it and then test it.

Because of the way that an interpreted language works, an interpreted
program can never be executed as quickly as a compiled program can. But
an interpreted language is considered a better alternative for the program
developer.

161

First Publishing The FIRST ATARI ST BOOK

His choice of language is based on a combination of the elements which
a given language provides and the ease with which he can communicate
with the computer.

162

First Publishing The FIRST ATARI ST BOOK

6.4 HIGHER-LEVEL PROGRAMMING LANGUAGES

We have already seen that a number of programming languages have
been developed in the course of the last twenty years. The purpose of a new
language is either to open a new area of application for the computer, or to
make the computer and its language more human.

There are languages, which are used to easily control machine tool
operations. It would be impossible to write a bookkeeping package or even
a video game in such a language, however.

The development of an all-purpose language was necessary for ease of
learning, so BASIC, developed in 1964 at Dartmouth College, allowed
beginners an easy introduction to programming. BASIC stands for
Beginner's All-purpose Symbolic Instruction Code, which was an
accurate description back when the set of commands consisted of only a few
dozen instructions. But today, where commands are necessary for
controlling graphics and sound processors, in addition to various methods
of accessing files and even instructions for creating structured programs,

the name "beginner's language" is no longer appropriate.

FORTRAN, BASIC and all other languages developed before 1971 are
line-oriented programming languages. Each language statement is written on
an individual line with an identifying line number. To use a routine of a
program from more than one place in that program, you could use a GOTO
instruction to the desired line number. As many programming textbooks
maintain, the result was always something called "spaghetti code" - a very

163

First Publishing The FIRST ATARI ST BOOK

complex and chaotic execution path that makes editing and correction very

difficult, if not impossible.

Niklaus Wirth put an end to this by developing the programming
language Pascal as a structured, easily readable and manageable language.
He argued against "spontaneous” program development. In the Pascal
language, the programmer must first define the variables and subroutines
he will use. Pascal has been very successful as a teaching language at many
American and European universities and schools, but has not met with the

same success in industry.

The primary reason that Pascal has become so popular is that it has
become available for almost every microcomputer. Likewise, the language
Forth has also enjoyed wide success on microcomputers.

Forth is already available for the Atari ST series. See the following
picture that displays this Forth's vocabulary.

The standard vocabulary is supplemented with words like PIECHART
and BARCHART for easy implementation of business graphics. Other
extensions such as SETFREquency, TEMPO, and BANJO make music
and sound synthesis extremely simple.

164

First Publishing The FIRST ATARI ST BOOK

B (L0t MILTITASK LN MEADING [Y 7% RWARGI
: o TRMEK BDRRESS o PAUSE KILL SToRY FIND-To5K TAS&E
TRSLLIST WAL TASKS ~ WRITE REQD FORMOTHD WODELS MODES moyex
18 BMOMES RSENSE WO8: ENDOMG REDL SEL MINSKI mm
T GRAYSCALE PAINTLINE PILPOS PICH BARCHART Bamust
5‘%&?&&5 PIECHART PIEDELAY SHOWIN SHOWOUT SHMXT
M OSHIFTLOPY WAKECOPY PUTLE PUTWI PIE COPYBLOLK - RSHIFY
B PTR SOUIRAL INCIT WONE SETPOS PEMDOWN BENUP LEFT
T SETHERBING - BACKNGRD - FORMRED BCX FW SETH o WYSELF
S30I1 - B DMERTY. FONT k%% alaml 4374 ?ﬁﬁ LE T
BT MY FORMAT MAKETRACK MKESECTOR DATA TAIL MEAD FILigE
GUFFE PRELDOP STUFFE CHAPO CMPI DSWO SUPERN USERN . SSpe
0 mERE OSP4 CLS CURSOR-OFF CURSOR-ON WIPE pSPadR? boeabyr
OB B MY FCIRCLE (FCIRCLE) CIRCLE (CIRCLE) ORGMLINE
PLAT O WIRES SURE 40COL 0COL TEXTOLS SCALE WIDISLY
BLAYBACK RECORD RECORON OLOCLOCK FTR TUME PREVIN
T2 8J0 SANJOSE ROWPLOY PREVIND EVITAZ BANJOZ SeMOSEZ
¥ SZ{E&Q{Z PLAYB2Y (PLAYDY MIDIPAGE (RLAY) TEWPD SEIFEES
STRTINE MCE BICIGN WOFF NN MIBI KEVEP WeTE
Mg B 1081 TIME? TIME SETIIME
mam SELeY SYSTIN TIMER TIGRS! TIOKSD IS sise
(DR ODESELECT GRIVEL DRIVER OBRESET LASTRLnenw
WL WL L M FLIC pMY ms e
HEE O OMME O ok ine '

These high-level languages can be divided into problem-oriented
languages and procedure-oriented languages. Languages belonging to the
first category give the programmer the ‘means by which to solve speciat
problems in terms that are familiar to the user. Members of the second
category cover a broader spectrum of applications, where the programs are

made up of a series of incremental procedures that solve the problem.
In the past few years, another group of languages has emerged which

are growing in importance. These are the list-oriented programming
languages; languages that work less with numbers and more with objects.

165

First Publishing The FIRST ATARI ST BOOK

The most well-known of these languages is LISP for LISt Processor.
LISP has been used especially in the area of artificial intelligence. This
branch of computer science is concerned with describing human models of
behavior to computers, to make them think and act like humans.

166

4

First Publishing The FIRST ATARI ST BOOK

7. LOGO

Logo works with lists and is quite similar to LISP, which is why it is
described as a subset of LISP by many researchers. As with Forth, it works
with a stack and can be expanded with user-defined keywords. Like Pascal,
procedures can be defined and variables can be declared as either global or
local.

It's greatest advantage is the ease at which you can learn it. You can
work with Logo after learning just three commands. You do not need to
have a thorough overview of language to use it. Logo is therefore an ideal
language for beginners although this does not mean that complex
applications are not possible with Logo!

Digital Research has created a version of Logo for the IBM PC. Dr.
Logo is one of the standard programs of the Atari ST computers!

Dr. Logo represents the most comprehensive implementation of this
language available up to this time.

In the late 1970's, Logo caught the attention of the public with its turtle
graphics. It was at this time that Dr. Seymour Pappert at the Massachusetts
Institute of Technology developed turtle graphics to teach children about
computers. Not only was he able to teach five and six-year olds about
computers, but turtle graphics also enabled them to program the computer.

167

First Publishing The FIRST ATARI ST BOOK

How else except with the help of a game could he win the interest of
these children?

A child places himself in the middle of a room, and the other
participants in classroom direct him using verbal commands so that he can

trace mathematical figures with his movements.
A square might look like this:

go forward five steps
turn one quarter turn right
go forward five steps
turn one quarter turn right
go forward five steps
turn one quarter turn right
go forward five steps

By using a piece of chalk to mark the path he travels, a square is drawn.
The result of the experiment can be discussed with the children and
additional “games” of this type can follow. So the children can learn

geometry by an entirely new method.

In the next step, the room is replaced by a computer screen and the
subject is replaced by a graphic representation of a turtle. This makes it
possible for children to duplicate actions in their real world on the
computer--and since children like to draw, the computer becomes nothing
more than an easy-to-use drawing instrument.

168

First Publishing The FIRST ATARI ST BOOK

The picture of the square from the practice room can be immediately
created on the monitor by every member of the group:

forward 50
right 90
forward 50
right 90
forward 50
right 90
forward 50

These children were able to see the result of their work. Their learning
was reinforced by the immediate feedback provided by turtle graphics and
Logo. Logo is extremely interactive. Instead of displaying cryptic error
codes or a brief error message, it tells you exactly what you did wrong in a
friendly way.

Logo is an ideal example of an interpreted language because Logo gives
confirmation of the exectuion of the instruction for each input. You'll be
able to quickly acquaint yourself with this language once you have your
own Atari ST and Logo.

169

First Publishing The FIRST ATARI ST BOOK

7.1 PROCEDURES IN LOGO

In Logo you can construct as many procedures as desired and thereby
create a language tailored to your tastes, and application.

This process is not particularly complicated--you must think of an
appropriate name for your new procedure and append TO to the procedure
name. For example, the procedure SQUARE might look like this:

to square
forward 50
right 90
forward 50
right 90
forward 50
right 90
forward 50
end

To draw a square that is 50 units in length, you can tell the Logo
interpreter to do this by typing the new procedure name: SQUARE.

But what if you want a square of a different size?

You could have the procedure draw a square of any size by using

variables. Here’s the amended procedure:

171

First Publishing The FIRST ATARI ST BOOK

to square :length
forward :length
right 90
forward :length
right 90
forward :length
right 90

forward :length
end

In this case, a variable named length is introduced. The : tells Logo that
it is a variable. Within the body of the procedure, the occurence of :length is
replaced by the parameter that is tacked onto the procedure call. For
example, SQUARE 75 draws a square with a 75 unit side.

In the following pages, we'll take a brief look at the elements and
predefined procedures in Digital Research's Dr. Logo.

172

First Publishing The FIRST ATARI ST BOOK

1. Variables

Variables in Logo are designated by a prefixed quotation mark. Values
are assigned to variables through the keyword make:

make "length 50

Logo recognizes both local and global variables. Local variables exist
only within a procedure in which they are defined; once this procedure is
exited, these variables are no longer accessible. The local variable "length,
for example may be used to represent the number of characters of a word in
one procedure and the dimensions of a square in a second procedure.

The instruction local makes an variable accessible to that procedure
only: >local "length

Another property of Logo s its ability of to view variables as executable
statements. This is very helpful since it's possible for the computer to

program itself.

make "angle (forward 50 right 90 forward 40)
run :angle

The above example shows the method. A sequence of instructions is
assigned to a variable which is then executed later with the run command.

173

First Publishing The FIRST ATARI ST BOOK

2. Arithmetic operators

All programming languages have some method of performing arithmetic
operations like addition, subtraction, multiplication, and division. Dr. Logo
supports the usual operators +, -, * and /.

The usual notation for arithmetic operations is like this: 2+3

Dr. Logo also supports this notation:

Both yield a sum of five. The second notation is called reverse polish

notation.

The functions sin and cos are available, where sine as well as cosine

require as argument an angle given in degrees.
Other functions are:
int
returns the integer portion of a number by truncating it after the
decimal point (the number is not rounded)
random
returns a random number between O and the value given as the

parameter.

Example: random 5 yields a number between O and 4.

174

First Publishing The FIRST ATARI ST BOOK

3. Logical operators

Logical operators are not often used by beginners, but are by more
advanced programmer.

The operators AND, NOT and OR are available. The logical
comparators =, > and < are also available.

With regard to logical operations, Logo resembles Pascal rather than

BASIC. In BASIC, the true condition is represented as -1, while Logo and
Pascal return a TRUE.

175

First Publishing The FIRST ATARI ST BOOK

4. Controlling the program execution

Programming in Logo is based on expanding the standard vocabulary.
But Logo also requires commands for controlling the flow of a program's
execution. In addition to the linear execution of program instructions, loops
and branches are also possible. Here are the most often used:

bye
every Logo session should be ended with this command.

co

this command is an abbreviation for continue and causes a
previously interrupted program to be continued at the point where it
was interrupted

label name

identifies a program line by name. This label may then designate
that line as the destination of a jump by means of go name
statement.

go name

alters the flow of execution of the program; execution is continued
at the line with the label identified as name.

176

First Publishing The FIRST ATARI ST BOOK

if expression command-list-1

command-list-2

evaluates expression and performs command-list-1 if the
expression is true; otherwise perform command-list-2 on following
line.

op
interrupts the current procedure without changing the input value.
This is then returned as the result of the procedure.

repeat n
performs the command list enclosed in parenthesis n times.

E.g. repeat4 (fd 50 rt 90)

run command-list
executes command-list which follows.

stop
halts the execution of a program.

177

First Publishing The FIRST ATARI ST BOOK

5. Graphics commands

With Logo, the user may divide the screen into different windows. The
standard setting uses two windows, one of which is set up as a graphics
window and the other for communication with the user. The size of the two
windows can be changed, allowing the user to limit the field of movement
of the turtle or to make the entire screen available for its movements. He can
also eliminate the graphic screen and use the whole screen for text.

Commands for manipulating the text screen:

ct

erases (clear text) the text window.

pr (list)

prints the individual elements of list to the screen. The outermost
parentheses are removed and the individual list elements are printed
followed by a carriage return.

setsplit

sets the number of lines to be used for the text screen.
show (list)

similar to pr, but the outermost parentheses are not removed with
show; list is displayed as the system sees it.

178

First Publishing The FIRST ATARI ST BOOK

ts

set the screen to pure text mode.

type
similar to pr, but the concluding carriage return is not used.

Here are the commands for manipulating the graphic screen:

CS

clears the graphic screen and sets the turtle to its starting position.

clean
clears (erases) the graphic screen however the turtle remains at its
current position,

dot (x-coord y-coord)

plots a point on the graphic screen coordinates x-coord, y-coord.
The point is plotted in the current color.

fence, window, wrap

One problem in working with computer graphics when plotting a
mathematical function is that a point may lie outside of the drawing
surface. Most computers respond with an error message unless the
program is designed to clip or remove those points lying outside the
addressable coordinates.

179

First Publishing The FIRST ATARI ST BOOK

While it is possible to move the turtle outside the drawing surface,
it can then no longer be seen. The advantage of this is that
instructions like forward 5000 do not cause the procedure to crash.

Wrap causes the turtle reappears on the left side of the screen if it
disappears on from the right side. A movement of forward 400

in the direction north (beyond the top screen edge) brings the
turtle back to its starting position (in the 640x400 display
mode).

Fence restricts the turtle's movement to the actual coordinates. If
the turtle tries to go beyond the edge of the graphics window, the
message "Turtle out of bounds" is displayed.

fs
sets the entire (full screen) screen in graphics mode.

pal colour-number

sets the colour for the drawing pen to colour- number.

setpal
selects a palette of pens from the enormous number of cclour
shades which the Atari ST offers for drawing.

sf
returns information about the graphic screen. Includes window

size, background colour, window status (window, wrap, or
fence).

180

First Publishing The FIRST ATARI ST BOOK

SS

with a split screen, the ss command switches back to a text
window.

Here are the commands for controlling the turtle:

bk - back
fd - forward

these commands, followed by the length of the line in points,
moves the turtle along this line in the current direction.

rt - right
It - left

these two commands, followed by the angle of rotation in degrees,
rotate the turtle at an angle in the appropriate direction.

ht - hide turtle

this command makes the turtle invisible during the drawing
process. This speeds the drawing process since the computer no
longer has to create and then erase the picture of turtle at each
position.

st - show turtle
makes the turtle is visible once again.

181

First Publishing The FIRST ATARI ST BOOK

Since all drawings are not made up of a single continuous line, the
pen in Logo can be raised and lowered. The instructions necessary
to do this are:

pu - pen up
pd - pen down

In addition, the pen can be replaced by an "eraser” in order to erase
parts of the drawing. Do this with:

pe - pen erase

sets the drawing colour to the background colour so that the
drawing can no longer be distinguished from the background. In
addition, Dr. Logo offers a drawing pen which reverses the colour

of the points.

PX - pen reverse

automatically sets the unset points to the current pen colour.
The turtle may be moved to a new position directly:
setpos - set position

this command, followed by the x and y coordinates positions the
turtle to a specific location on the graphic screen.

182

! First Publishing The FIRST ATARI ST BOOK

The direction of the turtle can be reset:

seth - set heading
this command, followed by a direction turns the turtle to an
absolute direction in degrees.

The status of the turtle can be examined:
tf - turtle facts
this command returns information about the turtle. This includes the

turtle’s coordinates, heading, pen status and pen colour and

indication as to whether the turtle is visible or not.

183

First Publishing The FIRST ATARI ST BOOK

6. Primitives for word and list processing

ascii
returns the ASCII value of the first character of the following word.

char
returns the character corresponding to the following ASCII code.

bf - but first
returns all of the characters of the following word, except for the
first character. For example, the function:
bf "ATARI
returns: TARI

bl - but last
returns all of the characters of the following word, except for the
last character. For example, the function:
bl "ATARI
returns: ATAR

first

returns the first element of an expression. The element may be the
first letter of a word or the first member of a list.

184

First Publishing The FIRST ATARI ST BOOK

itemn

returns the nth element of a list. For example, the function:
item 4 "ATARI

returns: R

count

returns the length of an expression. For example, the function:
count "ATARI

returns: §

If the expression is a list, the number of elements in the list would
be returned:

count (monday tuesday wednesday thursday)
returns: 4 ‘

emptyp list
returns either TRUE or FALSE depending on whether or not list is
an empty list.

wordp word

returns either TRUE or FALSE depending on whether or not word
is a word or a number.

185

First Publishing The FIRST ATARI ST BOOK

word list
returns the concatenation of two or more words. For example, the
function:
word "super "computer
returns: supercomputer

list (elements)

returns a list composed of elements including the parentheses.

sentence (elements)
returns a list composed of elements without the outermost
parentheses.

So you can see that Logo offers a large number of built-in procedures
and functions. In addition to all of the pre- defined keywords, Dr. Logo
also offers instructions for controlling the synthesizer chip and for reading
the joystick as well as the mouse input.

An additional command;
.contents

causes Dr. Logo to display its entire vocabulary including
primitives and any extensions the programmer has made.

186

First Publishing The FIRST ATARI ST BOOK

Since the entire working memory can be saved to floppy or on hard
disk, you do not have to redefine the procedures at the start of each
session. By building upon earlier procedures,you can create new enhanced
Logo systems, such as a special games Logo, or a graphics Logo which
might include procedures like BARCHART and FUNCTIONPLOT, or

even an intelligent system which can carry on discussions with the user.

187

First Publishing The FIRST ATARI ST BOOK

7.2 SUMMARY

We hope that these pages have led you to the same conclusion that we
found - that Logo is an excellent language for the beginner as well as for the
advanced programmer.

A good programming language should be easy to learn. A few
easy-to-remember expressions should suffice for simple tasks. You should
not have to first master a large number of rules before defining variables.

The commands of the language should be easy to use. Its friendliness is
enhanced if the it is simple to use the peripheral devices such as the printer
or disk drive.

A truly practicable programming language should be easily expandable,
so that extensions appear to be part of the standard commands. The user
cannot distinguish between built-in and added commands.

A good language should be interactive so that the user can quickly
develop and test new programs. In the event of program errors, it should

display clear and helpful messages to the user.

All of these points speak for Logo. We should be happy that the Atari
ST will offer both Logo and BASIC.

189

First Publishing The FIRST ATARI ST BOOK

INDEX

A

Addressing modes, 18

ADSR, 59

Amplitude control, 59

ASCILA43, 49, 63

Asynchronous, 43,47

Asynchronous Communications Interface Adapter, 62,65,66
Attack-Decay- Sustain-Release, 59

AY-3-8910, 57

B

B/W MONITOR, 35
Bank-switching, 3
BASIC, 2

BAUD RATE, 46 - 49, 51
BDOS, 81, 91

BIOS, 29, 81, 101
Bit-mapped graphics, 68
Bus error, 29

BUSY, 44

C

CAPS LOCK, 63

Cathode-Ray Tube Controller, 69
CCP, 81, 82

CENTRONICS PARALLEL INTERFACE, 35, 43
Checksum, 38

CHK, 28

Clicking, 119

CMOS, 65, 66

COBOL, 2

COLOR MONITOR, 35

Colours, 67

Composite video interface, 71

191

First Publishing The FIRST ATARI ST BOOK

CP/M, 4,72, 79, 83, 88

CP/M 68K, 88

CP/M 86, 88

CRC (Cyclic Redundance Check), 38
CRTC, 69

CTS, 48

Cursor-control keys, 63

D

D/A converter, 57

Data integrity, 42

Data register, 12

Data transmission rate, 40, 41, 65
Dialog box, 123

Digital Research, 79

Disk controller, 37, 38

Disk drives, 37 - 40

DMA, 9, 37, 41, 42,

DOS, 76

E

ENTER, 65

EPROM, 65, 66
Expansion, 33

F

FORTRAN, 2
Four-colour mode, 69
Function keys, 65

G

GEM, (Graphics Environment Manager) , 31, 119

192

First Publishing

H

HARD DISK, 40, 41
HD63P01M1 from Hitachi, 65
HD63P01V1, 65

Head crash, 41

HELP, 65

High-level languages, 2, 163

I

1/O interface, 41

IBMPC, 5

IBM-370, 9

INSERT, 63

Interface, 39

Interrupt control, 7
Interrupt controller, 51, 53
Interrupt priority, 28
Interrupt sources, 55

J

JOYSTICK, 35, 66, 75
Jump table, 75

K
KEYBOARD, 35, 64
L

LEA (Load Effective Address), 26
LINK, 29

Linker, 29

Long-word, 13

193

The FIRST ATARI ST BOOK

First Publishing

M

Mainframe, 2

MFP 68901, 51 - 55
MID], 35, 61, 62
Mnemonic, 15
Monochrome mode, 43, 67
Monochrome monitor, 72
Motorola, 7

MOUSE, 35, 75, 117
Multi-colour mode, 67
Multi-user, 27

N

NM]I, 53
Noise generator, 55, 58
Non-maskable interrupt, 28, 53

0]
Operating system, 27, 75
P

Parallel interface, 43
Program counter, 11
Programmable mixer, 57
Protocol, 77

PSG, 57

R

RAM, 31

Recursive calls, 29
RESET command, 27
Resolution, 67

RGB, 35,71

ROM, 33

ROM cartridge, 31

194

The FIRST ATARI ST BOOK

First Publishing

RS-232,45 - 48
RTS, 48

S

Serial interface, 45 - 48

Sound generator, 57

SSP (system stack pointer), 27
Stack, 27

Status register, 11

STOP command, 25
Superivisor mode 26, 27
Synchronous, 45, 48
SYNTHESIZER, 35
Synthesizers, 61

T

TELEVISION, 35

Timers, 51

Tone generator, 57, 58

TOS (Tramiel Operating System), 84
Tpi (tracks per inch), 40

Track density, 40

Two's complement arithmetic, 17

U

UNDO, 63

UNLK, 29

USART, 55

User mode, 26, 27

USP (user stack pointer), 27

\%

VIDEQ, 35, 67
Volume levels, 57

195

The FIRST ATARI ST BOOK

First Publishing

W

Wave forms, 57, 58
WD 1770 from Western Digital, 37

X

XOFF, 47

XON, 48

XON/XOFF, 77

Y

YM 2149 from Yamaha, 57
Z

Z-80,1,5,79
Zilog, 79

3

3 1/2" disk, 35,37
3 1/2" drive, 76
32-bit processor, 13

5
5 1/4" disk, 37
6

6502, 1, 10, 18, 21, 22, 24

6800, 66

68000, 7, 9, 12, 15, 18, 21- 30, 51
6801, 66

6850, 65

6850 ACIA, 62,66

68901,51

196

The FIRST ATARI ST BOOK

First Publishing The FIRST ATARI ST BOOK

8
8080, 79

8086, 4, 5
8088, 4, 13

197

First there was the fabulously successful VIC-20. Then came
the record-breaking Commodore-64.

Now Jack Tramiel has launched his third home computer, the
ATARI ST.

The ST promises to shatter all existing price- performance
barriers and become a leader in the home-computer market.

This book, PRESENTING THE ATARI ST gives you an in-depth
look at this sensational new computer that promises to bring
you ...”Power without the Price’”’

8.95

FIRST PUBLISHING LTD

	AtariSTfirst1.pdf
	atf0001.pdf
	atf0002.pdf
	atf0003.pdf
	atf0004.pdf
	atf0005.pdf
	atf0006.pdf
	atf0007.pdf
	atf0008.pdf
	atf0009.pdf
	atf0011.pdf
	atf0012.pdf
	atf0013.pdf
	atf0014.pdf
	atf0015.pdf
	atf0017.pdf
	atf0018.pdf
	atf0019.pdf
	atf0020.pdf
	atf0021.pdf
	atf0022.pdf
	atf0023.pdf
	atf0024.pdf
	atf0025.pdf
	atf0026.pdf
	atf0027.pdf
	atf0028.pdf
	atf0029.pdf
	atf0030.pdf
	atf0031.pdf
	atf0032.pdf
	atf0033.pdf
	atf0034.pdf
	atf0035.pdf
	atf0036.pdf
	atf0037.pdf
	atf0039.pdf
	atf0040.pdf
	atf0041.pdf
	atf0042.pdf
	atf0043.pdf
	atf0044.pdf
	atf0045.pdf
	atf0046.pdf
	atf0047.pdf
	atf0048.pdf
	atf0049.pdf
	atf0050.pdf
	atf0051.pdf
	atf0052.pdf
	atf0053.pdf
	atf0054.pdf
	atf0055.pdf
	atf0056.pdf
	atf0057.pdf
	atf0059.pdf
	atf0060.pdf
	atf0061.pdf
	atf0062.pdf
	atf0063.pdf
	atf0064.pdf
	atf0065.pdf
	atf0066.pdf
	atf0067.pdf
	atf0069.pdf
	atf0070.pdf
	atf0071.pdf
	atf0072.pdf
	atf0073.pdf
	atf0074.pdf
	atf0075.pdf
	atf0076.pdf
	atf0077.pdf
	atf0078.pdf
	atf0079.pdf
	atf0080.pdf
	atf0081.pdf
	atf0082.pdf
	atf0083.pdf
	atf0085.pdf
	atf0086.pdf
	atf0087.pdf
	atf0088.pdf
	atf0089.pdf
	atf0090.pdf
	atf0091.pdf
	atf0092.pdf
	atf0093.pdf
	atf0095.pdf
	atf0096.pdf
	atf0099.pdf
	atf0100.pdf
	atf0101.pdf
	atf0102.pdf
	atf0103.pdf
	atf0104.pdf
	atf0105.pdf
	atf0106.pdf
	atf0107.pdf
	atf0108.pdf
	atf0109.pdf
	atf0110.pdf
	atf0111.pdf
	atf0112.pdf
	atf0113.pdf
	atf0114.pdf
	atf0115.pdf
	atf0116.pdf
	atf0117.pdf
	atf0118.pdf
	atf0119.pdf
	atf0120.pdf
	atf0121.pdf
	atf0122.pdf
	atf0123.pdf
	atf0124.pdf
	atf0125.pdf
	atf0126.pdf
	atf0129.pdf
	atf0130.pdf
	atf0131.pdf
	atf0132.pdf
	atf0133.pdf
	atf0134.pdf
	atf0135.pdf
	atf0136.pdf
	atf0137.pdf
	atf0138.pdf
	atf0139.pdf
	atf0140.pdf
	atf0141.pdf
	atf0142.pdf
	atf0143.pdf
	atf0144.pdf
	atf0145.pdf
	atf0146.pdf
	atf0147.pdf
	atf0148.pdf
	atf0149.pdf
	atf0150.pdf
	atf0151.pdf
	atf0152.pdf
	atf0153.pdf
	atf0154.pdf
	atf0155.pdf
	atf0157.pdf
	atf0159.pdf
	atf0161.pdf
	atf0162.pdf
	atf0163.pdf
	atf0164.pdf
	atf0165.pdf
	atf0166.pdf
	atf0167.pdf
	atf0169.pdf
	atf0170.pdf
	atf0171.pdf
	atf0172.pdf
	atf0173.pdf
	atf0174.pdf
	atf0175.pdf
	atf0176.pdf
	atf0177.pdf
	atf0179.pdf
	atf0180.pdf
	atf0181.pdf
	atf0182.pdf
	atf0183.pdf
	atf0184.pdf
	atf0185.pdf
	atf0186.pdf
	atf0187.pdf
	atf0188.pdf
	atf0189.pdf
	atf0190.pdf
	atf0191.pdf
	atf0192.pdf
	atf0193.pdf
	atf0194.pdf
	atf0195.pdf
	atf0197.pdf
	atf0199.pdf
	atf0200.pdf
	atf0201.pdf
	atf0202.pdf
	atf0203.pdf
	atf0204.pdf
	atf0205.pdf
	AtariSTfirst2.pdf

