ATARI

- PROGRAMMING
WITH 55 PROGRAMS

A learn-by-doing guide to BASIC programming techniques!

BY LINDA M. SCHREIBER

ATARI

PROGRAMMING
WITH 55 PROGRAMS

ATARI

PROGRAMMING

WITH 55 PROGRAMS

BY LINDA M. SCHREIBER

TAB

TAB BOOKS Inc.
BLUE RIDGE SUMMIT, PA. 17214

This book is dedicated to my husband Allen, who introduced me to computers; to my son Stephen,
who helped test the programs in this book; and to my daughters Karen and Jacquelyn for their
support.

FIRST EDITION

FOURTH PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein. ’

Copyright © 1982 by TAB BOOKS Inc.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
ATARI programming—with 55 programs.

Includes index.

1. Atari computer—Programming. 2. Basic (Computer
program language) |. Title. II. Title: ATARI program-
ing—with fifty-five programs.

QA76.8.A82S37 1982 001.64'2 82-5856
ISBN 0-8306-1385-4 AACR2
ISBN 0-8306-1485-0 (pbk.)

Contents

10

11

Program Listings
Introduction

What Is a Program?
Program Possibilities—Program Sources—Program Differences

The Making of a Computer

Memory Types—Mass Storage— Accessories

The Keyboard

Graphics— Special Function Keys

Organizing Your Program
Parts of a Program— Flowcharts— Putting the Program on Paper

Commands and Statements
Direct Commands— Program Statements— Editing—Line Numbers— Error Messages

Storing the Program
CLOAD/LOAD—CSAVE/SAVE—ENTER “C:"/LIST “C:"—RUN “C:"

Understanding the Screen
Displaying the Program—FRE(X)—Printing to the Screen—The Position Command

Getting the Answers
String Variables—LEN—INPUT

Storing Related Information
DIM—READ/DATA—RESTORE—Clearing an Array—Using Strings

Repeating Part of the Program
Uses for Loops—GOTO—For . . . Next Loops— Stepping

Making Decisions
If ... Then—Exits—Else—On . .. Goto

vii

10

14

20

26

29

46

63

75

92

12

13

14

15

16

17

18

19

20

Reusing Part of a Program
GOSUB . . . Return—On . . . GOSUB/Return—POP

Arithmetic Functions
INT—ABS—SQR—RND—SGN

Working with Strings
ASC—CHR$—STR$— VAL

Finding and Trapping Errors
Trap—Testing for Errors—Playing Computer

Sights and Sounds
Modes—Color—SETCOLOR—Plot—DRAWTO—XIO (FILL)—Position—Sound— Mixing
Sound and Graphics—Accessories— Stick—STRIG—Paddle—PTRIG

Special Functions
PEEK—POKE—Console Keys—Eliminating the Return Key—Get—Put—Locate—Using

The Clock—Light Pens—Just for Fun

Advanced Programming Skills
USR—Antic and the Screen— Getting More Color—Player/Missile Graphics— Creating a Player

Using Disks

DOS—Using Disks with BASIC—Open— Print—Input—Put—Get—Note—Point—RUN “D: pro-

gram”

Putting It All Together

Index

106

120

132

146

149

174

189

217

233

242

Program Listings

7-1.

7-2.
7-3.

8-1.

8-2.

8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.
8-10.
8-11.
9-1.
9-2.

. Clearing an Array.
9-4.
9-5.
10-1.
10-2A.
10-2B.
10-3.

10-4.
11-1.

11-2.

12-1.
12-2.

Print Command Demonstration.

Love Program.
Position Command
Demonstration.

Assigning Values to Variables.

Changing Values of Variables.
String Variables.

Fielding String Variables.
Fielding Strings, Version 2.
Finding the Middle.
Reappear.

Reappear, Version 2.
Ticker-Tape Program.
Sales Tax Program.

Sales Tax, Version 2.
Mileage.

Colors.

Spanish/English color Test.
Spelling Test.
Zodiac Program.
Answer.

Answer, Version 2.
Target.

Shulffle.

Ball.

Selective Branching
Demonstration.
Days.

Dice.

33
36

40
47
48
50
53
54
55
56
57
59
60
62
65
67
69
70
72
77
84
84
87
90
93

99
107
111

12-3.
13-1.
13-2.
13-3.
13-4.
14-1.
14-2.
15-1.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7A.
17-7B.
17-8.
17-9.
18-1.
18-2.
18-3.
18-4.

Trap 300.

Change.

Bounce.

Random Numbers.
Negative Numbers.
Student Test Scorekeeper.
Alphabet.

Trap.

Graphics Demonstration.
Four Colors.

Flash.

Plots.

Lines.

Fill.

Prelude.

Menu.

ROM-to-RAM.

Console Keys.

Console Keys, Version 2.
Music Keys.

Paths.

Timer.

Attract, Version 1.
Attract, Version 2.
Paddle Draw.

Paddle Music.

Move Character Base.
Display List.

Changing the Display Listing.

Adding Colors.

115
121
124
128
131
133
144
147
151
152
153
155
157
159
161
171
176
178
179
180
182
184
185
186
186
187
194
197
199
201

Vil

18-5.
18-6.

18-7.

18-8.

19-1.

viii

Player/Missile Graphics.
Player/Missile

Graphics, Version 2.
Player/Missile

Graphics, Version 3.
Player/Missile

Graphics, Version 4.
DOS from BASIC.

204

205

207

211
219

19-2.
19-3.
19-4.
19-5.

20-1.
20-2.

Mailing List.

Mailing List, Version 2.

PUT Deomnstration.
READ Subroutine
Demonstration.
Character Base.
Towers Puzzle.

224
228
231

232
235
236

Introduction

This book is designed to give you a hands-on experience with your ATARI computer. It assumes
you have access to an ATARI computer complete with BASIC cartridge CXL4002. You do not
need any previous knowledge of computers. If you can turn your system on, you are ready to
begin.

The first chapters will acquaint you with your computer and the different accessories that
can be attached to it. You will be introduced to new terms gradually. After you are thoroughly
acquainted with your system, you will begin to program.

Each chapter introduces a few related commands. An explanation of each command is
followed by an example of the way to use the command. The programs included with the chapter
further illustrate the use of the new command. Each program is accompanied by a detailed
explanation.

Sound, color, and graphics are included in several programs. The different graphics modes
are explained along with a program that moves and rearranges the character base. A complete
explanation of the error codes is also included. Chapter 15 shows you how to make your programs
crash-proof, as well as how to find and correct errors in an existing program.

Once you have mastered the skills presented here, you will find that this book will serve as a
handy reference guide.

Note: Because many of the listings in this book use graphics characters and/or reverse video, the
following codes have been used in the listings:

@) clear)Press the escape key and the shift/clear key. This clears the screen.

@)characters or letters}-Press the control key and the letter indicated between the brackets. All
characters or letters between the brackets}- >are graphic characters.

® Underlined characters or letters are in reverse video.

Chapter 1

What Is
a Program?

Computers . . . the information age . . . a new and fascinating experience for anyone and everyone.
Using computers can be fun, but exploring what can be done with them is pure delight!

Programming a computer requires only logical thinking and the spirit of adventure. You have
been programmed and reprogrammed throughout your life. When you teacher gave you instruc-
tions, she was programming you. Your parents, bosses, and friends have all programmed you in
some way. Think about the last time you went to the store. Did you count your change
immediately after the clerk handed it to you? Why or why not? Habit— or preprogramming? You
probably program your children, too: change your clothes, brush your teeth, say your prayers,
then get into bed. Carrying out a task in a logical sequence is an important element of good
programming.

Computers need programs (software) to operate properly. A program is a set of instructions
the computer follows. It is written in a language the computer understands. We will be writing
programs in BASIC for the ATARI computer throughout this book.

Programs can be very simple or very complex depending on their purpose.

10 REM A DEMONSTRATION OF A PROGRAM
20 PRINT “HELLO, I AM AN ATARI PERSONAL COMPUTER”,
30 GOTO 20

This is a very simple program that will display
HELLO, | AM AN ATARI PERSONAL COMPUTER

over and over again on your television screen or video screen. Your computer will continue
forever if you let it. It will also follow any instructions in the order they were given. It will not
correct your spelling (unless it is programmed to), or tell you that your formula is incorrect.

The accuracy of a program depends upon the programmer. Errors occurring within a
program are a result of human errors and are referred to as bugs. It is the programmer’s
responsibility to make the programs as bug free as possible. This book will show you where bugs
are most likely to appear, how to test for them, and how to correct them.

PROGRAM POSSIBILITIES

Games are a large portion of the software market. Arcade games are very popular; these
programs offer the same thrills and challenges without the cost of a real arcade. The ATARI
computer is capable of duplicating most current arcade games because its special built-in features
allow smooth continuous movement of objects. You can program your computer so you may play
pinball, space games, or a shooting arcade on it.

Your computer can also be programmed for traditional family games. The graphics on your
ATARI allow you to duplicate card games, board games, or games of skill'and strategy easily.

The paddles and joysticks that are available for this computer help improve hand-eye
coordination.

Educational

Educational computer programs are steadily becoming more popular. In the home or
classroom, the computer can be a powerful and valuable instructor. It can be programmed to
provide drill exercises in repetitive subjects such as math tables, states and capitals, or spelling.
Your computer can also be used as a tutor for self-paced instruction.

Another effective method of learning with a computer is through simulation. A .good
simulation program can train a person in weeks to do what would normally take a lifetime to learn,
providing the experience of normal and extreme situations. Games can stimulate the mind as well
as the imagination.

Your computer can be programmed to compose tests, store grades on a cassette or disk, and
average the grades later, generating report cards.

Home Applications

Your ATARI computer can be used effectively throughout your home. It can store informa-
tion or help plan and organize your activities. It can be your secretary or security guard, librarian,
or accountant.

A program could act as a dietician and select menus for the week or month, generating a
shopping list for the meals you will prepare. While you're at it, you may want to program the
computer to recall your coupons and refunds.

Your computer is an ideal librarian. It can keep track of all your books, records, and tapes.
Your program can store valuable information about anything you own.

If you have been trying to decide whether it's better to save for an item or take out a loan,
write a program to show you the amount of interest your savings account would earn versus the
interest on a loan over the same period of time. Take into consideration the inflation rate and the
price of the item once you have saved enough for it.

If you are buying a house, your program can show you what your mortgage payments would
be over different lengths of time with varying down-payments.

And, of course, you will want to program your computer to balance your checking account.

Your program can also store your deductions for income tax records while it is balancing your
checkbook.

In the area of health and safety, a program can help you learn first aid. With its graphics
capabilities, it can teach you where the pressure points are for bleeding or how to splint a broken
bone.

You can write a program for your flower or vegetable garden to help you plan your garden,
estimate the yield of your crops, compare it to your family’s needs, and show you a layout for your
garden.

Darkroom enthusiasts can use a computer program to time the development of their films or
store processing information.

With a special device called a modem and your telephone, you can call and connect your
computer into large message centers called networks. Some of these networks serve as electronic
mail boxes where you can leave a message for another person who also belongs to this network.
Others are giant data banks that offer UPI news, stock market reports, airline schedules, and
other information.

These are some of the programs possible for your computer. Sample programs are included
throughout this book. As you become more familiar with your ATARI, you will continue to
discover more ideas and uses for it.

PROGRAM SOURCES

Programs for your ATARI are available from a wide variety of sources. Several software
firms produce well-written programs for many different applications. These programs are usually
available on a cassette or disk and come with some instructions (documentation) on how to use the
program. Your local computer store should be able to demonstrate these programs for you.
Others are available only through mail-order firms. Most software firms offer a catalog describing
their programs and the amount of memory necessary to use them.

Another source of programs are books. Programs in books give you the opportunity to read
through a program before you type it in. The best way to learn to program is by studying the
programs others have written. The disadvantage of programs published in books is the time you
need to type the programs into the computer. If you make a typographical error, you will have to
find and correct your mistake before the program will work correctly.

Magazines are a third source of programs. There are many good articles containing pro-
grams or routines that explain the inner workings of a computer. However, unless the magazine is
written strictly for the ATARI, you may find some programs won’t work on the ATARI unless you
rewrite them.

PROGRAM DIFFERENCES

Even though most popular computers on the market today are programmed in BASIC, each
manufacturer chooses a slightly different dialect of BASIC. If you find a program written for
another computer and the program is fairly simple, you should have no problem rewriting it for
the ATARI. You must also take into account the graphics the program uses. Color generation,
plotting points, and animation differ from one computer to another. Once you are familiar with
your ATARI and how the BASIC language works, you should be able to translate many programs
written for other computers.

Most computers can also accept programs written in many other languages, such as
PASCAL, LISP, PILOT, and assembly language. Each language varies from one computer to
another. Each language is designed differently and has its own advantages. For most applications,
the programs you will want to write can be written very efficiently in BASIC. When timing
becomes important, as with arcade games, you will want to learn assembly language.

Whether you purchase programs from a software firm or copy them from a magazine or book,
you may find the program almost fits your needs. By learning how to program, you will be able to
change the program to suit yourself.

Chapter 2

The Making
of a Computer

The most vital part of a computer is its central processing unit (CPU). Often no bigger than a dime,
it controls and maintains the computer and many devices attached to it.

The CPU can be thought of as the brain of the computer. All instructions are read and
interpreted by it. It sends the correct commands to different parts of the computer and ensures
the program is followed. If you own a microwave oven, programmable video recorder, or
programmable calculator, you have already worked with a CPU. The difference between the one
in your computer and those in your appliances is its internal design. Your computer can be
programmed for multiple uses; your microwave can only be programmed to start and stop and
cook at the correct temperature.

Every computer contains at least one CPU. The type of CPU used by each manufacturer
differs. This means that the manner in which the CPU follows instructions and the way that
instructions are written are different.

The ATARI, Apple, Kim, and Pet microcomputers all use the same CPU, the 6502. The 6502
has some advantages over other CPUs.

The language the computer uses is called machine language. We understand it as groupings
of numbers the CPU can translate into executeable instructions. When we write a program in
assembly language, the assembler, the part of the computer that reads and assembles the program
into a form the machine can use, translates our program into machine language. One advantage of
programs written in machine language is that if a routine is written for a particular CPU, it will
work (within certain limitations) on all computers containing that CPU. Most people don'’t try to
program in assembly language until they have mastered BASIC.

MEMORY TYPES

Memory is used to store programs. Programs consist of instructions and useful information
(data). The amount of memory your computer has is measured in byfes. Some instructions use one
byte of memory, others occupy more. Each letter or number of data occupies one byte of memory.
The longer your programs are, the more memory you need. Memory capacity is measured per
thousand (K) bytes. Thus, a 32K machine contains 32768 bytes of RAM.

There are two types of memory in your ATARI, RAM and ROM . RAM means random-access

memory. It is sometimes called read/write memory. Program data can be placed anywhere in
RAM (writing to RAM) or your program can get information from any byte in RAM (reading from
RAM). RAM should never be used for permanent storage since it can’t retain information once the
power is shut off. It is needed for programming because it can be changed by the user or through a
program.

Static RAM is used in some computers. This type of RAM is stable. Once an instruction is
placed into it, it will retain the instruction until it is changed or the power is shut off.

Dynamic RAM is used in most computers, including the ATARI. After an instruction is
placed in this type of memory, the CPU must constantly refresh (remind) the memory of the
information placed there. This makes the CPU run slower than it would with static memory, but
for most applications, this is not crucial. Some devices cannot run properly with dynamic
memory, but they are few. Dynamic RAM is much less expensive than static RAM.

Memory from different manufacturers may have different access times, the amount of time
the CPU has to retrieve an instruction from memory. Space becomes an important factor if your
program must do many different calculations before arriving at the answer. In most programs, you
will not notice the difference in speed.

ROM means read-only memory. Your ATARI also contains a 10K ROM cartridge. The
program on this cartridge (the ATARI operating system) has been permanently fixed on the
memory chips and will remain there whether the unit is turned on or off. The ATARI operating
system contains the routines used by BASIC, Editor/Assembler, and other ROM program
cartridges. The operating system also uses some RAM to store information. As you use this book,
you will become more familiar with their locations and uses.

Your ATARI uses a BASIC ROM cartridge that plugs into the left slot on your ATARI 800.
The ROM in this cartridge is very similar to the ROM in the operating system. The BASIC
cartridge is permanently programmed. Once you plug the cartridge in, you do not have to wait for
the computer to load (read into memory) BASIC from a cassette or disk. Turn on your computer
and BASIC isready for use. All ATARI ROM cartridges have the program permanently fixed onto
the ROM in the cartridge. Each will also use some RAM for values that change during the
program.

If you remove the cover from your ATARI 800, you will see four slots. This section is called
the mother board. When you want to add more memory to your system, you will plug in the
memory boards here. The ATARI 800 memory may be expanded to 48K of RAM. It is possible to
expand it further if you purchase memory cards from other manufacturers with compatible
memory systems. For most applications, 24K RAM is adequate. If you plan to add a disk to your
system, you will need 32K to 40K of RAM.

MASS STORAGE

Once you have written a program, you will want to save it for future use. Cassette recorders
are an inexpensive and easy-to-use way to store programs or data. Once a program is placed on
the cassette it will stay there until it is erased or recorded over. The computer records the
program on the tape by generating two tones. These tones represent the instructions in the
program. This can be done because the most basic instructions used by the computer, called
machine code, is a binary code consisting of combinations of 1's and 0’s. The computer loads a

program from the cassette by listening to the tones and translating them into the corresponding
binary digits.

Cassettes are inexpensive, easy to use, and, because they are in a plastic case, easily
handled by children. They can be shipped or stored with minimum precautions.

Cassettes save and load programs very slowly, and you cannot access the information on
them easily. If you purchase inferior tapes, or tapes that are too thin, you run the risk of having
your program destroyed by the recorder. If you do not wish to purchase tape designed for
computer use, you may use recording tape, but don’t use the long-playing (45 to 120 minutes) tape
which is too thin.

A more efficient way of storing programs is with a disk drive. There are two different disk
drives available for the ATARI—the single ATARI 810 and the double density ATARI 815 Dual
Disk Drive. A double density drive stores twice as much information on a disk as a single density
drive.

A floppy disk (sometimes called diskette) is a thin Mylar circular medium similar to a record,
covered with a thin jacket. There is a slot cut out on both sides of the jacket exposing the surface of
the disk (Fig. 2-1). Touching this surface could damage the disk. Programs are stored on disks by
electrical impulses that magnatize the surface. Because the disk spins rapidly inside the drive,
the computer can save or load a program much faster on it than with a cassette. Also, the disk has
tracks much like a record has grooves, so any part of the disk can be accessed at any time.

Disks are very vulnerable to static charges. An electrical charge, even a mild one produced
by walking across the carpet, can destroy the programs on the disk. The jacket on the disk is for

Q \ Fig. 2-1. Cut-away view of a disk.

protection against dust and dirt. If the disk is bent, it will not spin properly, and the computer will
not be able to read a program or data stored on it.

Since both disks and cassettes store information magnetically, you should not place them
near a magnetic field such as the top of a speaker, a motor, or a television. A strong magnetic field
could destroy your program. -

In addition, Corvus Systems Inc. has introduced a system for the ATARI. The main
difference between a floppy disk and a hard disk is speed and storage capacity. The ATARI 810
disk drive can store 88K bytes of data, the ATARI 815 dual disk drive can store 178K bytes of data
on each disk. The average hard disk can store 5, 10, or 20 megabytes of data. That is 5to 20 million
bytes of data.

ACCESSORIES

Many other accessories, or peripherals, are available for and compatible with the ATARI.

Although available cassette, disk drive, or certain printers can be connected directly to the
ATARI, you would have to change the connections to use each unit. A simpler solution is the
ATARI 850 Interface Module. The interface acts as a go-between for the computer and peripher-
als. Several peripherals can be attached to the interface at the same time. There are four outlets,
or ports, on one side of the interface, one on the front, and two on the third side. The four ports are
RS-232C compatible. One is designed for a modem and one for a 20 milliamp current loop. They
are programmable for easy output to any serial device. The single port is a parallel port for use
with the ATARI 825 printer. The ATARI computer connects to one of the ports in the set of two.
Your cassette or disk drive can be connected to the other. If you connect your disk drive toit, your
cassette can be connected to the drive.

ATARI manufactures three printers. The ATARI 820 is a 40-column impact printer. It will
print a copy of your program 40 characters wide. The print is dot matrix; each letter is made up of
dots rather than a continuous line like typewriter letters. Most printers are dot matrix; continu-
ous line printers are called letter-quality printers. The ATARI 820 can be plugged into the
interface or directly into the computer.

The ATARI 825 printer is a dot-matrix impact printer. It is more versatile than the 820 and
can print lines that are 80 characters long. It can also space the letters at 10 characters per inch,
16.7 characters per inch, or print double-width characters. It requires the ATARI 850 Interface
Module and uses the single parallel port. The third printer is the ATARI 822 Thermal Printer.
This printer is also a 40-column dot matrix printer and uses a special heat-sensitive paper. The
printer connects to the interface or directly to the computer.

Many other fine printers are available that can be connected to your ATARI through the
interface. Terminals, such as a Teletype or DECWriter, can be connected by using the fourth port
on the interface.

The ATARI 830 Acoustical Modem can connect your ATARI to the outside world. The word
modem means modulator-demodulator. That is, it can change the signals you send from your
computer into signals that can be transmitted over telephone lines. Demodulate means it changes
the signals it receives from the telephone line into signals your computer can understand. There
are several network services available that can provide you with up-to-the-minute stock market
reports, UPI transmissions, or software for your computer. The modem will allow you to connect

with these message centers that serve as electronic mailboxes in certain areas of the country.
Often a computer club will host such a message center.

Your computer can speak through an electronic speech synthesizer such as the Type-'n-Talk
from Votrax. This device connects to the RS-232C port on the interface. It translates text (words)
sent to it into electronic speech.

Your ATARI can be connected to your color television or a color monitor. A monitor is
essentially the same as a television without a receiver. A color monitor will provide you with a
clearer, crisper picture than a television set, but for most applications, a television screen will do
fine.

Using the keyboard to play arcade games just doesn’t feel quite right. These games need a
quick response from the player who shouldn’t be fumbling with a keyboard. Along the front edge
of your ATARI are four more outlets or ports. You can add up to four joysticks or eight paddles to
these ports. You can even use joysticks and paddles together for the same game (use a different
port for each). The joystick is a rectangular box with one stick and a button on it. This stick sends
signals to the computer. Your program can determine if you are moving the stick in any of eight
directions, or pressing the red button.

Thepaddle has a dial you can turn and a button on its side. The numerical signal the computer
reads from it increases or decreases depending on which way the dial is being turned. It is readily
adaptable for games that would be speed controlled, such as a road race. The computer can also be
programmed to check if the red button on the paddle’s side has been pressed.

You can also attach a light pen to the ports on the front edge of your ATARI. By bringing the
tip of a light pen to the television screen, the computer can determine the location of the
information you are pointing to. You can use it as an electronic paint brush, a menu selector, or to
indicate the correct answer in a multiple-choice test.

Chapter 20 has programs that use these controllers.

Chapter 3

The
Keyboard

The best way to learn about your ATARI is to use it. Remove the BASIC cartridge (or any other
cartridge in your ATARI), turn on your television or monitor, and turn on your computer. The
screen should say ATARI MEMO PAD in the upper left corner. The white square
on the left of your screen is a cursor. It marks the position that the next character will occupy.

The keyboard is laid out in standard typewriter fashion. Your ATARI supports both upper-
and lowercase letters. The lowercase does not have true descenders, the parts of letters that
normally appear below the line, so a p or q would appear p or q on your screen.

The large key on the right of the keyboard labeled return acts as a carriage return. It moves
the cursor down one line and to the left side of the screen. Beneath the return key is a key labeled
caps/lowr. This is your shift-lock key. By pressing the shift key and the caps/lowr key, you will
lock the computer into using capital letters. Press the caps/lowr key to unlock the shift/caps,
letting you type in upper- and lowercase. The number and symbol keys do not work like a
typewriter; you must press the shift key for the symbols above the numbers, the comma or
period, or the other character keys. Most programmers use capital letters exclusively (BASIC
doesn’t recognize lowercase commands) so the shift/caps key is usually set. It would be
cumbersome to have to unlock the shift key for the numbers.

GRAPHICS

Your ATARI comes with a set of built-in graphic characters (Fig. 3-1). You display these by
pressing the left-hand key marked control and any letter. Try this on your ATARI while it is in the
Memo Pad mode:

Press the return key five times,

Press the space bar 10 times, control N, control N, space, control N, control N, return;

Press 11 spaces, control V, space, control B, return;

Press 11 spaces, press the inverse video key (the key with the ATARI logo on it), shift, space,
shift, inverse video key, return;

Press 11 spaces, inverse key, control K, space, control L, inverse key, return;

Press 11 spaces, inverse key, space, control M, space, inverse key, return;

Press 12 spaces, inverse key, space, inverse key, return;

10

r =l 0o 9

=

=9 . = ;
= - - x
. - :
A b ,
L

Fig. 3-1. Control characters and corresponding keys.

Press 9spaces, control H, inverse key, five spaces, inverse key, control], return;

Press 9 spaces, inverse key, space, inverse key, control B, inverse key, space, control T, space,
inverse key, control V, inverse key, space, inverse key, return;

Press 9 spaces, inverse key, space, inverse key, control B, inverse key, space, control T, space,
inverse key, control T, space, inverse key, control V, inverse, space, inverse key, return;

Press 9spaces, inverse key, space, inverse key, control B, inverse key, three control G’s, inverse
key, control V, inverse key, space, inverse key, return;

11

Press 9 spaces, control comma, control B, inverse key, three spaces, inverse key, control V,
control comma, return;

Press 10 spaces, control B, inverse key, space, inverse key, space, inverse key, space, inverse
key, control V, return;

Press 10 spaces, control B, inverse key, space, inverse key, space, inverse key, space, inverse
key, control V, return;

Press 10 spaces, inverse key, two spaces, inverse key, space, inverse key, two spaces, inverse
key, return;

Press 10 spaces, control Z, control X, space, control X, control X, control C, return.

You should have a drawing similar to the one in Fig. 3-2 on your screen. You can design your
own characters with any combination of graphic keys and the letters, numbers, and symbols.

You can also control your cursor with the arrow keys. By pressing the control key and one of
the arrow keys, you can move your cursor up, down, left, or right. Try to redraw the character on
your screen by using the cursor and control keys rather than the return key and spaces.

SPECIAL FUNCTION KEYS

The upper left key on your keyboard is marked ESC. This key will allow you to “escape” the
normal function of the key and give you additional control. Press the escape key twice. The
second time you press it, a strange character will appear on the screen. Pressing the escape key,
then the control key with the clear, insert, delete, or any arrow key will make the computer print
different characters. These keys and functions will be very useful when you edit your program or
have messages printed on the screen.

Like any good typewriter, your ATARI can set and clear tabs. The key in the second row, left
side has clr, set, and tab on it. Pressing the key will move the cursor across the screen. There are
five preset tab positions. To clear the tab position, simply press the tab key until it stops at the
character you want to remove, then press the control key and the tab key at the same time. To set
a tab position, move the cursor to the correct location, press the shift key and the tab key
simultaneously and the new tab will be set.

The key to the right of the shift key has the ATARI symbol on it. When you press this key, the
computer will print the letters, numbers, symbols, or graphics characters in reverse video
(characters and screen switch color). This feature lets you highlight important words in messages
or instructions. Pressing this key again returns you to normal type.

The break key lets you interrupt a BASIC program. When you interrupt your program, you
can usually continue it from the place where it stopped.

To erase the contents of the screen, simply press the clear key with the shift key. Since it
erases the screen quickly, you will use it often during a program requiring a clear screen.

Along the far right of the keyboard are four yellow keys. These keys are in this location so
they will not be confused with the keyboard. The top key is marked System Reset. It is shielded
by plastic strips so it can’t be pressed accidentally. If it is pressed, you will have to rerun the
program, which may destroy some values you set. The three keys under it are used by cartridge
games. They can also be used in any BASIC program and their use depends on the programmer.

There are four accessory ports along the front of your keyboard. The joysticks, paddles, and

12

Fig. 3-2. Screen display using control characters with ATARI memo pad.

light pens can be connected to your ATARI in any of these location. Each port is independent of
the other three, so you can use all four in any program.

Along the right hand side of the computer is the peripheral jack to which the cassette
recorder, disk drive, interface, or serial printer can be connected. Just before that jack is the
monitor jack.You can connect a color monitor or video tape player to this jack. These can be used
in addition to the color television, so you can display your program on two monitors— great for the
classroom—or record a program while you are using it. The tape can be played back later to
analyze your moves in a chess game or to record a student’s progress.

13

Chapter 4
Organizing
Your Program

No matter how creative a program appears, the rudiments of programming are the same. Very
few programmers can conceive anidea, sit down at the keyboard, and enter the program without a
plan or guideline. Good programs are carefully thought out and developed. Consideration is given
to the parts of the program the computer will perform, the information the user will provide, and
the information stored in the program.

Let’s say you would like to write a program that will determine the cost of the floor covering
for a room, complete with a cost comparison of the different floor treatments possible. This
program would consist of several small programs, or routines. This chapter develops a portion of
that program. The program computes the area of the floor in square feet and square yards.

PARTS OF A PROGRAM

The computer will compute the area of the floor, the amount of floor covering needed, the
price of the floor covering, and the cost per year, determined by the average life of the floor
covering. To do this, the computer must be given the essential facts: the measurements of the
room, the price of the floor covering, and what flooring is being considered. This information is
provided by you, the user. The computer also needs information about the expected life of floor
coverings, the conversion from square feet to square yards, and the pricing formula. All these
figures remain constant and can be stored in the program.

The set of instructions the computer will follow regardless of the information entered is
called the algorithm. The answers to the questions the program asks are user imput and will
change from person to person depending on the questions and the circumstances. Many errors (or
bugs) are generated if the user enters incorrect information. The information stored in a program
and used to perform calculations is the data base. If the data is incorrect, the outcome of the
program will also be in error.

FLOWCHARTS

A flowchart is an outline of a program that the programmer uses to develop the program. It
serves as a guide, showing the parts of the program that must be included for it to function

14

correctly. To program without a flowchart would be like trying to take a trip to an unknown region
without a map. It can be done, but it can also be a waste of time and energy.

Every programmer develops a personal style of flowcharting. There are several well-known
types, including Warner-Orr diagramming, data-flow diagrams, structure charts, and structured
pseudocode. Throughout this book, the standard symbols, shown in Fig. 4-1, are used.

The terminal symbol is used to indicate the beginning and ending of the program. Input/
output indicates where the user must provide information, the program will “read” its own data
base, or information will be printed to the screen or printer. The decision symbol indicates where
the computer will have to determine which set of instructions to follow. Predefined process is the
sequence of program statements (instructions) the computer will follow regardless of what has
been entered by the user. The connector is used to show that the flowchart continues on another
part of the page, or even to another page. The connecting connectors will be the same number.

When you flowchart a large program, you may find it helpful to divide it into several small
modules before you draw a detailed flowchart.

Figure 4-2 is a block diagram of the different parts of the program. The first block indicates
the routine that determines the size of the room. The next three modules determine the different
treatments being considered, the price (in cost per yard), and the user’s preference. The program
computes the cost of the treatments in terms of the overall price and price per year over the
expected life. The program would show the user the most expensive treatment, the least
expensive treatment, and the cost of the treatment the user prefers. A good program would give
the user the option of changing some of the treatments or adding new ones. The end result would
be the amount of material needed to cover the floor and the approximate cost. Each of these
modules can be flowcharted with a very detailed flowchart. Figure 4-3 is a flowchart containing
the routine for the first module of the program.

PUTTING THE PROGRAM ON PAPER

Jot down your program idea after you've thought it out, using the block diagram. Now think
.. what is the best way to handle the details of the program? Look again at Fig. 4-3. The first thing

PREDEFINED

PROCESS
INPUT/OUTPUT
Q CONNECTOR

DECISION

Fig. 4-1. Standard flowchart symbols.

15

GET WIDTH
AND LENGTH;
FIND AREA

v

GET FLOOR
TREATMENTS

!

GET PRICE
PER SQUARE
FOOT OR YARD

* Fig. 4-2. Flowchart indicating main routines of a program.

GET USER
PREFERENCE

Y

CALCULATE
COST ON
ALL CHOICES

!

DISPLAY
COSTS

the program does is ask the user for the dimensions of the room. The program needs this
information. Provide it first, not after information about whether the user will tile or carpet the
floor. Any information vital to the program should be provided as soon as possible. The message
written on the side of the flowchart is a remark, a reminder to the programmer why this command
should be included in the program, or an explanation of how this part of the program should work.
The more remarks you make, the clearer your program will be.

The next part of the flowchart requests the type of flooring and the cost per square foot. The
diamond reading “any more” indicates a decision the computer will make. If the user says there
are more types of floorings to be entered, the program will go back to the step asking for the type
of flooring. If there are no more entries, the program will continue.

The computer will determine if more than one entry was made. If so, it requests the user’s
preference, then computes the cost of each type of flooring and determines the initial cost and the
cost per year. The last part of the program shows the user the cost of the preferred treatment, the
most expansive treatment, and the least expensive treatment. It also indicates the best way based
on the average cost per year.

The size of the room, the types of flooring, and their cost are data the user inputs. The

16

BEGIN

NO

Fig. 4-3. Detailed flowchart for Listing 4-1.

CLEAR
SCREEN
PROMPT
#1
GET ASK FOR LENGTH IN FEET
LENGTH
NO MORE CHECK
‘ T*jAvN ENTRIES
PROMPT '
#2 —»—¢ YES
GET ASK FOR WIDTH IN FEET
WIDTH GET
USER IN NUMBER
4 / PREFERENCE
CALCULATE Y
AREA IN
SQUARE YES
YARDS
NO
DISPLAY SHOW SQUARE FEET
AREA AND SQUARE YARDS CALCULATE
COST OF
FLOORINGS
GET
TYPE OF
FLOORING CALCULATE
COST PER
E =
DISPLAY INITIAL
RESULTS COST PER
YES YEAR
‘ IS THIS THE LAST ENTRY?
END

17

squares in the flowchart are the algorithms or instructions the computer will follow to reach an
answer. The data base is not easily discovered from the flowchart. When the program computes
the cost per year, it will use figures stored in its data base. This information must be accurate if
the program is to be accurate.

The program starts at the top of the flowchart, and works its way to the bottom. It rarely
backtracks. This is good programming practice; if your program jumps from one routine to
another, you will become confused writing it, and if a bug should appear, it will take much longer
to correct it. If you divide your program into small routines, you will write cleaner programs with
less chance of errors.

Listing 4-1 is the BASIC listing of the first flowchart routine. The remarks in the program
correspond with the instructions in the flowchart.

Lines 10 through 30 are remark lines.
Line 40 clears the screen. Keep your programs neat—clear the screen to get rid of old
information.

Listing 4-1

10 REM LISTING IV~-1

20 REM COMFUTE SQUARE FEET AND SQUARE YAR
ns

20 REM L.M.SCREIRER FOR TAR ROOKS

40 FRINT ">CLEARY"IREM CLEAR THE SCREEN
S50 FOSITION S5y23FRINT "What is the lendgth
of the room (in feet)"s

60 INFUT LENGTH!IREM STORE LENGTH IN THE V

ARIARLE ‘LENGTH’

70 FOSITION SyS5i1FRINT "What is the width

of the room (irn feet)"s

80 INFUT WIDTH!REM STORE THE WIDTH IN THE
VARIARLE WIDTH

20 AREA=WIDNTHXLLENGTH:REM THIS IS THE SQUA

RE FEET

100 SQAYARD=AREA/9 {REM NOW WE HAVE THE SQU

ARE YARIS TOO

110 SQYARD=INT(SQYARD+O.35) tREM ROUND TO N
EAREST SQUARE YARID

120 FOSITION Sy10!(FRINT "The area of the
room is —"

130 FOSITION Sy11iFRINT AREAS " sauare fee
t []

140 FOSITION Se12!FRINT SQYARDF" square u
ards"”

150 END

18

Line 50 prints a question on the screen. The program would like the length of the room in
feet.

Line 60 waits for the user to enter the length. The amount entered will be stored in the
length variable.

Line 70 prints the next question; the program would like the width of the room in feet.

Line 80 waits until the width is entered. The program stores this number in the width
variable.

(The numbers entered in lines 60 and 80 will change with each person using the program.)

Line 90 computes the area of the room in square feet.
Line 100 changes the square feet into square yards.

(These two algorithms, Lines 90 and 100, remain the same no matter what size the room is.)

Line 110 rounds the square yards to the nearest square yard.
Line 120 prints a message on the screen.

Line 130 prints the area of the room in square feet.

Line 140 prints the area of the room in square yards.

Line 150 tells the computer the program has ended.

19

Chapter 5

Commands
and Statements

There are two ways you can communicate with your ATARI. You can type an instruction, press
the return key, and the computer will execute it, or you can enter a series of commands in a
program. In the first example, the instruction you are giving the computer is a direct command. In
the second example, the lines of a program contain the instructions. These are indirect commands
or program statements.

DIRECT COMMANDS

Most commands can be used as direct commands. Many direct commands can be used in a
program. When you type RUN to start a program, you are giving the computer a
direct command. An entire line of a program can be entered as a direct command. Try this:

Type: FOR X=1 TO 10:PRINT X:NEXT X
Press the return key

Your screen should display the numbers from 1to 10 along the left side. You could also type:

10 FOR X=1 TO 10:PRINT X:NEXT X (return)
Type: RUN (return)

The results should be the same.

New

One direct command that should be used sparingly is NEW which removes the
program in the computer’s memory. It can be used as part of a program, but it is best used when
and only when you have finished a program, saved it, and want to enter another program. If you get
into the habit of using this command, you may find that you have just wiped out two or more hours
of hard work.

The New command does have its advantages, however. Since it clears a program out of
memory, you can begin typing another program and not have lines leftover from the last program.
You do not have to enter the New command before loading a program from a cassette or disk
because this will be done automatically by the computer.

20

Bye

Another direct command is BYE . Type this when you want to use the ATARI
Memo Pad. The Memo Pad is the ideal place to leave messages or try out an idea using the
graphics characters. Pressing the system reset key returns you to BASIC with your program
intact.

PROGRAM STATEMENTS

The instructions in the lines of a program are program statements. They are entered when
you type in a program or load a program from cassette or disk. The computer stores these
statements in its RAM. It will follow these instructions when the program is run.

Each program statement must begin with a line number. Most programmers start with 10
and number the lines with multiples of ten. This lets you easily add lines to your program without
reorganizing the entire routine.

Program statements can be any length. Your ATARI will let you enter a line three video
screen lines long or of 114 characters (including the line number). This is not a good programming
practice; lengthy lines can confuse the programmer and are sometimes impossible to debug.

There are times, however, when you will need to put two program statements on the same
line, for example, when you want the program to make a decision. Place a colon between the end
of the first statement and the beginning of the second; the colon tells the computer not to go on to
the next line, but to look at the rest of this line. The line you typed at the beginning of this chapter
is an example of a line with multiple statements.

There is one program statement the computer will always ignore, but it is very useful to the
programmer. That is the REM (remark) statement. Use the REM as a reminder to yourself about
what the routine does, why you did it, when it will be used, etc. Often a good routine without
remark statements is extremely confusing after any time has elapsed.

EDITING

Editing program lines is something that all programmers learn to do sooner or later (usually
sooner). Typing errors, the need to change values, errors in the program, commands, or errors in
the operation, the need to delete unnecessary instructions or to add instructions use the editing
features. The ATARI has very good editing features.

A unique feature of the ATARI computer is that it checks each line as it is typed in for syntax
or usage errors. If you use a command incorrectly, spell it wrong, or use a non-existent command,
the ATARI will not accept that line. It will print the line with, ERROR , Im-
mediately following the line number. It will also display the first character of the portion it can’t
understand in reverse video. On the other hand, if you tell the computer to print a word wrong on
the screen, the program will do so.

Programs are easily edited with one of seven keys plus the control or shift keys. To move the
cursor up, press the control key and the up arrow key simultaneously. To move it down, press the
control key and the down arrow key. Once the cursor is over the row needing editing, press the
control key and left arrow until the cursor is over the area needing editing. If you are correcting
the spelling of a word and do not need to insert or delete spaces, simply type the correct letters
over the wrong letters and press return.

21

To add letters to a line, move the cursor over the place you want to add spaces and press the
control key and the insert key at the same time. The letters to the right of the cursor will move to
the right each time this combination of keys are pressed. To delete letters or characters from a
line, press the control key and the delete key at the same time. The letters to the right of the
cursor will be removed from the line. Always press the return key after editing a line; this tells
the computer to store the corrected version.

Using the shift key with the insert or delete key will move entire lines on the screen.
Shift-insert will move the line the cursor is on and all the lines below it down one line. Pressing
the shift with the delete key will remove the line the cursor is over and the lines below that line
will move up one line. Pressing shift with clear will erase the screen and place the cursor in the
top left corner of the screen. Pressing Shift-clear while editing a line will not alter the line; you
will have to list and edit the line again. Only the return key will correct the line in memory.

LINE NUMBERS

Change the line numbers in the same way you edited other lines. Place the cursor over the
numbers, type the new numbers and press return. If you list your program, you will see the old
lines are there also. Changing the numbers did not remove the lines; to delete them, simply type
the line number and press return. The line will be removed from the program. A note of caution:
sometimes if you delete too many lines, the ATARI will lock up and the only way for a BASIC
programmer to unlock it is to turn off the computer, turn it back on, and reload the program. To
avoid this delete a few lines, list a few lines, delete a few more lines, etc. This will usually keep
the computer from locking up.

ERROR MESSAGES

Unfortunately, ATARI BASIC gives its error messages as numbers. Often you will find
yourself staring at strange numbers on the screen and an aborted program. The following is an
explanation of the error numbers and what steps to take to correct the error.

Error Message and Correction

2 Memory insufficient. There is not enough RAM to run the pro-
gram. If you are writing the program, check your dimension state-
ment. You may be setting aside more memory than you need to. The
program may be too long for the amount of memory in your system.
Try to chain parts of the program together. If it is a purchased
program and you have the amount of memory the package calls for,
turn off your disk drive and/or interface and turn the computer on
again. Many software firms do not take a drive or interface into
consideration when they arrive at the amount of memory needed to
run a program.

3 Value error. The computer cannot use the value the program has
given it to perform the instruction. This is a common problem in

22

Error

Message and Correction

graphics mode when the character is being moved on the screen and
the routine calculating where the character should be displayed
produces a negative number. Check the routine carefully to find out
why it is generating negative numbers or set a trap for the routine.

Too Many Variables. The ATARIlimits the number of variables a
program can use to 128. If you get this error number, go over the
program and delete variables.

String Length Error. Youare trying to place informationin a string
that hasn’t been dimensioned, or you are trying to place information
beyond the point the string was dimensioned to. Redimension the
string length and run the program again, or correct the instruction to
store or access the string correctly.

Out of Data. The lines of the program that contain data don’t have
enough data for the program, or, you want to access the same data
and didn’t restore the data pointer.

Number Greater Than 32767. The value of an integer cannot be
greater than 32676. Go over the statement and see why your
program is generating such a large number.

Input Statement Error. The program needs anumber but a letter
or character was entered. If a letter or character is supposed to be
entered, change the variable to a string variable. Catch wrong
inputs for variables with a trap.

Array or String DIM Error. A string or array cannot be dimen-
sioned to a size larger than 32676. The program is trying to access
information beyond the area that has been dimensioned, or the
program is trying to access a string or array that has not been
dimensioned, or the program is trying to dimension an array that has
already been dimensioned. Check the size of the array and the value
of the variables trying to access it. Correct the routine(s) that
determine the area of the string or array to be accessed, or enlarge
the string or array to store the additional information. A string or
array can only be dimensioned once in a program. Remove any lines
that try to redimension an array or string.

23

24

Error

10

11

12

13

14

15

16

17

18

Message and Correction

Argument Stack Overflow. The program contains too many
GOSUB commands without any corresponding return commands.
Consolidate subroutines as much as possible.

Floating Point Overflow/Underflow Error. The program at-
tempted to divide by 0 or the number it is trying to store is too large
or small. Check and correct routines for correct computations.

Line Not Found. A GOSUB, GOTO, or Then command referred to
aline not in the program. Correct the line by adding the correct line
number or add the missing line to the program.

No Matching FOR Statement. The Next part of a For . . . Next
loop could not find the matching For. Check for incorrect variables
after Next, and for incorrectly nested loops.

Line Too Long Error. The line is too long for BASIC to under-
stand. Shorten the lines.

GOSUB or FOR Line Deleted. The correct line for a return or
the Next command has been deleted since the program was run.
This deletion occurred during the actual running of the program.
Check your program to make sure that you are not POKEing values
where they do not belong.

Return Error. A return command cannot find the matching
GOSUB. If you place your subroutines at the end of your program,
be sure there is an end statement before the first subroutine. Make

sure the program is not using a GOTO where there should be a
GOSUB.

Garbage Error. The instructions that the computer tried to exe-
cute could not be understood. This could be caused by POKE
statements, or it could be a hardware problem. Type,

NEW ,or shut off the computer, then turn it back on.
Try the program without POKE statements.

Invalid String Character. A string does not contain a number,
yet the program is trying to get the value of the string. Check the
string contents.

Error Message and Correction

129 IOCB Already Opened. The program is using the same block of
memory for two different functions. Use a different IOCB or file
number.

130 Nonexistent Device Specified. The program is trying to access

a device not attached to the computer. Check to make sure the
interface is on or the device the program is trying to access is
connected. If your are using the disk drive, make sure it was turned
on before the interface and the DOS contains the routines to in-
itialize the interface. Turning on the devices in the wrong sequence
can cause the computer to ignore them.

141 Cursor Out of Range. The program is trying to plot or draw to an
area out of range for the mode the computer is in. Check the
routine(s) that determine the points to be plotted, or change the
graphics mode.

147 Insufficient RAM. The program is trying to use a graphics mode
that uses more memory than the computer has. Use a lower
graphics mode.

These are the most common errors you can get from a BASIC program. There are other
errors related to the use of the disk drives, printers, and other accessories.

25

Chapter 6

Storing
the Program

Programs can be stored on cassettes or floppy disks. This chapter discusses ways to store and
load programs from the cassette recorder.

CLOAD/LOAD
To get a program from a cassette tape into the computer, place the cassette into the
recorder, make sure it is properly positioned, type CLOAD and press return. One

tone will sound. Press the play button on the recorder and press the return key again. The
computer will listen to the tape and convert the tones that it hears into instructions. If the tape
loads successfully, the screen will display READY . Type RUN and
begin the program.

If the load was not successful, an error message will be displayed. Sometimes this means the
tape has a defect init. Other times you may have placed the wrong or blank tape in the recorder, or
did not position it correctly. Most often, it will mean the heads on the tape recorder are dirty and
should be cleaned.

Some tapes may have instructions to use the LOAD “C:” command. This command is usually
used for loading a program from disk, but can be used with the cassette. The C in quotation marks
tells the computer to load the program from the cassette.

Both the LOAD*“C:” and CLOAD command, erase the old program from the computer’s
memory and replace it with the new program. If an error occurs during a load, the computer will
reset all its pointers and erase whatever it loaded.

CSAVE/SAVE

Once you have typed a program into the computer, you will want to store it before shutting
off the machine. The CSAVE command will place the program in RAM onto a cassette. First
type LP and press return. Sometimes, when the system reset key has been pressed
while the program is running, the computer will not reset the buffers correctly. This will not
affect running the program, but it can cause the computer to transfer garbage or nothing at all to
the cassette. Use the LP command before saving a program to cassette whether you pressed the
system reset key or not.

26

Another way to save a program is to type SAVE “C.” and press return. This
command is used when you want to chain programs or parts of programs together.

The program is saved the same way for both commands—the computer converts the
instructions into tones and sends these tones to the recorder. The tones represent binary
numbers the computer converts into instructions. If you listen to the program as it is being saved,
you will hear longer gaps between the sets of tones when you use SAVE “C:”.

For most purposes you will use CSAVE when you want to save your programs to cassette.

ENTER “C:"/LIST “C:"

There may be times when you will want to add or change lines ina program but keep the main
part of the program intact. There may also be parts of the program you will want to save without
saving the entire program. Since the CSAVE and CLOAD commands save or load entire pro-
grams, and CLOAD or LOAD will also erase the old program, you’ll need a command that will
merge two or more programs. The ENTER “C:” and LIST “C:” commands can be used for this
purpose.

Let’s say you have just finished this routine and expect to use it in several other programs.
You can save only the lines of the routine by typing LIST “C:", (line number), (line
number) . Be sure both keys are pressed on the recorder. Press the return key after you
hear two tones. Now the lines of your routine are being stored on the tape; you can retrieve them
any time and merge them with an existing program. You can also LIST “C.” an entire program to
tape if you like.

The list command does not save the instructions of the program in a numeric or tokenized
form. It sends the information to the tape in the same form it would send it to the screen or printer
when you tell it to list aprogram. It is slower than a CSAVE or save command and uses more tape.

When you want to load a program that has been listed to the cassette, you will
type ENTER “C:” and press return. When you hear one tone, press the play button
on the recorder and press return again. When the computer listens to the tape, it will take the
instructions from the tape and place it in the computer as if the program were being typed in from
the keyboard. If there is a program in memory at the time you are entering a program from the
cassette, the computer will replace the lines in the old program with the lines being entered if
they have the same line numbers. The rest of the program will remain intact. This merges the two
programs into one program.

This is a good feature to use in a program that uses lots of data. A spelling program could
have a master program with interchangeable spelling words. The words could be stored on a
separate cassette and entered into the program as needed.

RUN “C:”

What if the program uses more memory than you have and you can’t or don’t want to get more
memory for your computer? Divide the program into two or more parts and chain the parts
together.

The ATARI BASIC has a command— RUN “C:”—that can be used as a direct command or as
a statement in a program. If you use it as a direct command, it will load and run the program from
the cassette. As a program statement, it will do the same thing under program control.

27

A lengthy program can be divided into several smaller routines. The first part should do the
computation. When it is finished, the program will load the second part of the program and
continue. The only drawback is, like CLOAD, the RUN “C:” command destroys the old program
before it loads the new one. If you want to return the old program, you will have to reload it.

To use the RUN “C:” command, you must save the program with the SAVE “C:” command.
Use the following procedure when writing a program in two or more parts.

1. Be sure the last line to be executed in the first part of the program is RUN “C:”.
2. Save the first part of the program on a cassette. Use either the CSAVE or SAVE “C.”
command.

3. Do not rewind the cassette.
4. Enter the second part of the program into the computer.

5. If there is another part of the program following this routine, be sure this part ends with
RUN “C:” also.

6. Use the SAVE “C:” command to store this part of the program on tape.
7. Repeat steps 3-6 until the entire program has been stored on tape.

To load a chained program, simply load the first part of the program with CLOAD or RUN
“C:”, depending on how you saved it. Be sure the play button on the recorder is pressed down. Do
not press the stop button after the first part of the program is loaded. When the second part of the
program is ready to be loaded, the computer will signal you, with one beep, to press the return
key. The computer will load and run each additional part of the program this way.

28

Chapter 7

Understanding
the Screen

When you are writing a program not requiring graphics or large letters, you will use mode 0, or the
text mode. This is the mode the computer uses automatically when it displays
READY . You can print 40 letters or characters across the screen and 24 lines of

text on the screen. Because some screens cannot show all 40 characters, the BASIC cartridge
changes the left margin and gives you 38 characters across the screen. You can still place
information in any of the 40 positions across the screen, but you will have to specify this in the
program.

Since you have an area of 40 characters by 24 lines, the resolution of the screen in mode 0 is
40 x 24 and requires 960 bytes of memory. Figure 7-1 shows the memory requirements and
resolution of all the graphics modes.

When you are writing and editing a program, you will use mode 0.

DISPLAYING THE PROGRAM

Once you load a program into memory, you may want to look at it to see what commands are
used, or to change instructions in the program. You can look at the program by typing
LIST and pressing return. The entire program will be printed on the screen. If the
program is longer than 20 lines, the first lines will scroll off the top of the screen. Unless you can
speedread, stop the program listing at any time by pressing the control key and the numeral 1 key
at the same time. Press the control key and number 1 again to continue the listing.

You may also tell the computer to list only the lines you would like to read LIST
10,50 tells the computer to start with line 10 and list the program statements up to and
including line 50. If there are more lines than can fit on the screen, the first lines will scroll off.

To tell the computer to execute the program in memory, type RUN and press
return. The computer will start with the first line of the program and complete the instructions in
that line, proceed to the next line and follow those instructions. Should you want to stop a
program, you can press either the break key, or the system reset key. The system reset key will
clear the screen when it stops the program, the screen will not clear when you press the break
key. The break key is the last key in the top row of the keyboard.

If, after you press the break key, you want to continue the program, type

29

Memory
Graphics Required
Mode (RAM)

993
513
261
273
537
1017
2025
3945
7900

Fig. 7-1. RAM requirements for the graphics modes.

oOoNOOO P~ WN—=2O

CONT and press return. The computer will start with the line it was on when it was
interrupted and continue with the program. Sometimes, however, if the program uses different
graphics modes, the CONT command will produce an error it would not have encountered if the
program had not been interrupted. Even so, the break key with the CONT command are very
useful when testing and debugging a program.

FRE(X)

Ever wonder how much memory a program uses, or how much room (free RAM) you have
left? Type PRINT FRE(X) and press return to find out how much memory (RAM) is
left. To find out how much memory a program uses, type PRINT FRE(X) before you
load a program. This will tell you how much memory the computer can use for a program. Figure
7-2 is a listing of the free RAM for the RAM the computer contains. The BASIC cartridge uses
about 4000 bytes. After you load and run the program, type PRINT FRE(X) and
subtract this number from the first number to arrive at the amount of memory the program uses.

Available Memory
(no disk or
Fig. 7-2. Amount of RAM available when using Amount of RAM) interface)
the BASIC cartridge and graphics 0. 16K 13393 bytes
24K 21515 bytes
32K 29707 bytes
40K 37899 bytes

30

Always run the program to get the true amount of free RAM because the program may set aside
some of the memory for storage, not evident until you run the program.

PRINTING TO THE SCREEN

The video screen is the primary visual display for your program. Even though you can use a
printer, voice synthesizer, or other accessories with your ATARI, you will present most
programs on the video screen. You should try to keep unrelated information off the screen when
you are running your program. After your remark lines, clear the screen. The format for clearing
the screen during a program is:

PRINT “(escape key) (control key & clear key)”
50 PRINT CHR$“125”

This will remove any garbage on the screen. Directions can be printed on the screen for the user
to read while the computer is setting up the program.

In mode 0, displaying words or characters to the screen is accomplished with the print
command.

PRINT “ANYTHING YOU WANT”
60 PRINT “ANYTHING YOU WANT”

The computer places whatever is between the quotation marks on the screen. There must be
quotation marks before and after the words you want printed on the screen. If there are several
lines in a program to be printed, each new line will be displayed under the previous one.

There may be times you will want several different items printed on the same line with or
without spaces between them, for example, columns with headings above each column. Two
characters will hold the cursor in the same line—the comma and the semicolon. The semicolon
will not advance the cursor after the last character of a print statement has been printed. The first
character of the next print statement will occupy the next position on the screen.

60 PRINT “THIS IS THE FIRST SENTENCE";
70 PRINT “THIS IS THE SECOND SENTENCE!”

If you run this two-line program your screen should display:
THIS IS THE FIRST SENTENCETHIS IS THE SECOND SENTENCE!
There is no space between the last E in “sentence” and the T in “this.” Now try these lines:

60 PRINT “DATE”,
70 PRINT “PLACE”,
80 PRINT “TIME”

Run these lines; the display should read:

DATE PLACE TIME

There are three distinct columns on the screen (Fig. 7-3). You do not need a comma on line
80 if it is the last word you want printed on that line. The next print statement would place the

31

Saeae

S

B
o

=

.

i
G

SEae

Fig. 7-3. Screen display using commas to separate words.

information under the heading date unless the program instructed it to print elsewhere. You can
also use the tab feature with a print statement; you can set the tab and place it in a print statement.
Use the tab key with the escape key when you use it in a print statement.

If you are using the other graphics modes, the print statement needs an additional piece of
information. Print, by itself, tells the computer to place information in the text window. In mode 0,
the text window is the entire screen. In the other modes, the text window is the last four rows on
your screen. If you want information placed in the graphics window, you must tell the computer by
placing 6; after the print command. Using the semicolon will place the information

in the next position after the cursor. Using a comma will shift the information to about the middle
of the screen.

60 GRAPHICS 2
70 PRINT #6; “THIS IS PLACED HERE”
80 PRINT #6, “THIS IS MOVED OVER”

Add these lines to your program and run it. You should see a small text window at the bottom
of the screen and the two statements near the top of the screen.
Now change line 60 to a different graphics mode:

60 GRAPHICS 5

32

Run the program and the letters will no longer appear. A line of colored squares will replace them.
The different modes are discussed in detail in Chapter 16.

The computer also recognizes a symbol for the print command. A question mark (?) can be
used interchangeably with the print command. The computer will print anything that appears
after the question mark as if it had received the print command.

THE POSITION COMMAND

With the position command, you can specify which row and column your print statement
should begin at. Change your program to this:

70 POSITION 4,8: PRINT “4th column - 8th row”
80 POSITION 10,15: PRINT “10th column - 15th row”

Before you run this version, be sure line 60 has been deleted. You should see both lines on
your screen, each in its correct position, indicated by the two numbers following the word
position. The first number indicates vertical placement, the second, horizontal placement (the
screen prints 40 characters across and 24 lines down, remember). If you tell the computer to print
something in an out-of-range position, for example, position 80,4, you will get a 141 error: cursor
out of range.

The following programs will give you some ideas on how to use the print and position
commands. The commands not yet introduced will be covered later in this book.

Listing 7-1 (see Fig. 7-4) prints a message on the screen. The entire program consists of
print commands. You can use upper- and lowercase as well as reverse video and graphics in your
print statements.

Listing 7-1. Print Command Demonstration

10 REM LISTING VII-1

20 REM FRINT FOSSIRILITIES

30 REM L.M.SCHREIRER FOR TAR ROOKS

40 FRINT "Xclear>"!{REM CLEAR SCREEN

50 FOSITION 2y&6FRINT "JWWWWWWWWWWWNWWWWW
WWHWWWWWWWWWWWWWWWWY " tREM 36 CONTROL W's

60 FOSITION 1498:FRINT "INSTRUCTIONS®

70 FOSITION &y10tFRINT "I CAN RE IN CAFIT
AL LETTERS"

80 FOSITION 10y12:FRINT "or in small lett
arsg. "

90 FOSITION 7y14IFRINT "I_CAN_ERE_IN_REVER
SE.MIDEQS®

100 FOSITION 2s16FRINT "XFXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXY " SREM 36 CONTROL X7

-3

110 END

33

BEGIN

CLEAR
SCREEN

Y

PRINT
GRAPHIC
BORDER

b

PRINT IN
UPPER
CASE

Y

PRINT IN
LOWER
CASE

Y

PRINT
WITH
REVERSE
VIDEO

Y

PRINT
GRAPHIC
BORDER

Fig. 7-4. Flowchart for Listing 7-1.

END

Lines 10-30 are the remark statements that name this program. Always include some

remarks at the beginning of your programs.
Line 40 clears the screen. We don’t want any distractions on the screen.
Line 50 starts printing at the second column in the sixth row. This character ends just before

the end of the screen.
Line 60 sets the position of this print statement at the fourteenth column and the eighth row.

The words in this statement are in capital letters.
Line 70 shows another print statement that uses capital letters.

34

Line 80 prints the message in lowercase letters after it sets the print position at the 10th
column and the twelfth row.

Line 90 prints its message in capital letters, but this time the letters are in reverse video.

Line 100 prints another row of graphics characters.

The program ends with line 110. If there were program statements after line 110, the
computer would not execute them unless it was told to.

Listing 7-2 (see Fig. 7-5) displays the Love graphic (Fig. 7-6). This is created by erasing
characters from the screen rather than printing them. After the remarks in lines 10-30 the
computer does the following:

Line 40 clears the screen and removes the cursor. If you type POKE 752,1 as
a program statement, the computer will make the cursor invisible.
Lines 50 through 290 print a continuous LOVE across the screen. Each line

begins with the next letter in the word love. (There is an easier way to fill the screen. See if you
can figure it out when you have finished this book.)
Lines 310-410 erases the letters that form the final letter L. The position command tells the

computer where to place the cursor. There are spaces between the quotation marks to erase the
letters on the screen.

START

DISPLAY
“LOVE"

ACROSS
SCREEN

Fig. 7-5. Flowchart for Listing 7-2.
SHIFT

LETTERS
TO LEFT

ERASE SOME
LETTER FOR

S QY Y

AND “E".

=

LOOP UNTIL
BREAK KEY
IS PRESSED

35

Listing 7-2. Love Program

10 REM LISTI
20 REM LOVE

30 REM L+M+SCHREIRER

40 FRINT
CREEN-REMOVE
30 FOSITION
VELOVEL"®

60 FOSITION
ELOVELO"

70 FOSITION
L.OVEL.OV®

80 FOSITION
OVEIL.OVE"

0 FOSITION
VELOVEL?®

100 FOSITION
VELOVELO"
110 FOSITION
EL.OVELOUV®
120 FOSITION
L.OVELLOVE™"
130 FOSITION
OVELOVEL."
140 FOSITION
VELOVELO®
150 FOSITION
VELOVELOV*®
170 FOSITION
EL.OVEL.OVE"®
180 FOSITION
LOVELOVEL"
120 FOSITION
OVELOVELO"
200 FOSITION
VELOVELOV*®
210 FOSITION
EL.OVELOVE®
220 FOSITION
LOVELOVEL"
230 FOSITION

36

NG VIT-~

"Ielear)® tFPOKE

CURSOR
byQI?

byli®

69387

by4: 7

by HLT

bvbHLTP

69787

b6y8T

byPLT

691037

6y1137

621287

691337

691407

Hy15L7

by16:7

691737

‘%
a.

FOR TAR

plt)

PR o

BOOKS
v 1IREM CLEAR S

"LOVELOVELOVEL OVELOVELOD
"OVELOVELOVELOVELOVELQOV
*VELOVELOVELOVELOVELQOVE
"EL.OVELOVELOVELOVELOVEL

"LOVELOVELOVELOVELOVELO

"OVELOVELOVEL.OVELOVELO

"VELOVELOVELOVELOVELOV

‘ELOVELOVELOVELOVELOVE

"LOVELOVELOVELOVEL OVEL

“OVELOVELOVELOVELOVELO

"VELOVELOVELOVELOVELO

"ELOVELOVELOVELQOVELOV

"LOVELOVELOVELOVELOVE

"OVELOVELOVELDOVELOVEL

"VELOVELOVELOVELOVELO

TELOVELOVELOVELOVELOV

"LLOVELOVELOVELOVELOVE

"OVELOVELOVELOVELOVEL

OVELOVELO®
240 FOSITION
VELOVELOY"
250 FOSITION
ELOVELOVE "
260 FOSITION
LOVELOVEL "
270 FOSITION
OVELOVELO®
280 FOSITION
VELOVELOY®
290 FOSITION
ELOVELOVE"
300 REM MAKE
310 FOSITION
320 FOSITION
330 FOSITION
340 FOSITION
350 FOSITION
360 FOSITION
370 FOSITION
380 FOSITION
390 FOSITION
400 FOSITION
ES
410
ES
420
430
ES
440
ES
450
’? L]
460
'? n
470

FOSITION

REM MAKE
FOSITION

FOSITION

FOSITION

"IREM
FOSITION

" IREM
FOSITION
T " IREM
480 FOSITION
o " IREM
490 FOSITION
" " IREM

61837

byl

by2037

by 2137

by2237

by2317
AN 7L
10187
10,287
11337
11,437
11587
11637
119287
11,887
11,927
111087

11e1137

AN ‘07
23y127 "

23207

21337 "
REM 2
2le43® "
REM 2
21G5F
REM

21s6:7 "

REM 2 SETS

2177 "

REM 2 SETS

SETS

SETS

2 SETS

"IREM
" IREM

" IREM
"INEM
" IREM
"IREM

"IFOSITION

OF 4

"IFOSITION

OF 4

"IFOSITION

OF 4

"IFOSITION

OF 4

"I{FOSITION

"VELOVELOVELOVELOVELD
"ELOVELOVELOVELOVELOV
"LOVELOVELOVELOVELQVE
"OVELOVELOVELOVELOVEL

"VELOVELOVELOVELOVELO

"ELOVELOVELOVELOVELOV

4 SFACES

4 SFACES
SFACES
SFACES
SFACES
SFACES
SFACES
SFACES
SFACES
tREM 7 SFAC

=PRI R

"IREM 7 SFAC

"IREM 8 SFAC

"IREM 8 SPAC

SFACES

SFACES

SFACES

SFACES

OF 4 SFACES

37

Listing 7-2. Love Program (Continued from page 37).

300 FOSITION 21.,8:7 °® "IFOSITION 29,88
& "IREM REM 2 SETS OF 4 SFACES

910 FOSITION 21,937 * "IFOSITION 29,98

T "IREM REM 2 SETS 0OF 4 SFACES

920 FOSITION 23,1087 " "IREM 7 SFAC

ES"

930 FOSITION 23,1187 ¢ "IREM 7 SPAC

ES®

540 REM MAKE A V7

990 FOSITION Bs1337 * "IFOSITION 1951337
O MIREM 2 BETS OF 2 SFACES

960 FOSITION 8s14:7 ° "IFOSITION 18s14:

(i " {REM SETS OF 3 SFACES

370 FOSITION 9»15:7 " "I(POSITION 18,15:7%
" "IREM 2 SETS OF 2 SFACES

980 FOSITION 10,1637 * "IFOSITION 17-16¢

" "IREM 2 SETS OF 2 SFACES

5920 FOSITION 10s127:7 " "IFOSITION 17+173

oYY IREM 2 SETS OF 2 SPACES

600 FOSITION 11,1837 " “IFOSITION 165188

" OYIREM 2 SETS OF 2 SFACES

610 FOSITION 1151927 " “IFOSITION 16+192

ot "IREM 2 BETS OF 2 SFACES

620 POSITION 12,2087 " "IROSITION 15,202

P " "IREM 2 SETS OF 2 SFACES

630 FOSITION 12,217 ° "IFOSITION 15,2138

Tor O O"IREM 2 SETS OF 2 SFACES

640 FOSITION 13,2217 * "!REM 3 SFACES

650 POSITION 13,2337 ° "i tREM 3 SFACES

660 REM MAKE AN ‘E”Y

670 FOSITION 22,1387 "IREM 11
SFACES

4680 FOSITION 22,1487 " "IREM 11
SFACES

690 FOSITION 24,1587
¢ " "IREM 3 SFACES
700 FOSITION 24,1627
T "IREM 3 SFACES
710 FOSITION 2441737
720 FOSITION 24,1827

38

®E = Q¢ = QC =

"IFOSITION 31+15
2 SFACES
"IFOSITION 31s16
SFACES
"{REM 3 SFACES
"{REM 9 SFACES

28]

730 FOSITION

740 FOSITION
T " "IREM 2
750 FOSITION
T " "IREM 2
760 FOSITION
ACES

770 FOSITION
FACES

24,19:7

245207
SETS OF
24,2117
SETS OF

24,2207

2492307

* "IREM S SFACES

" "IFOSITION 31,20

3 SPACES

" "IFOSITION 31,213
3 SFACES
. "IREM 9 SF

L "}IREM 9 S

780 GOTO 780:REM DON’T ENDI THE FROGRAM ST
AY HERE UNTILL RBREAK IS FRESSED

Fig. 7-6. Screen display for LOVE program.

39

Lines 430-530 form the letter O. Since there are two sides to an O, there are two position
commands in several of the lines. There is no need for a comma or semicolon after the print
command since the position command places the cursor in the proper place before each print
command.

Lines 550-650 erase letters to form a V.

Lines 670-770 erase letters to form an E.

Lines 650 and 770 end with a semicolon. Without a semicolon at the end of these print
statements, the computer would move the cursor one row down. Line 23 is the 24th line on the
screen (the first line is line 0), so the entire screen would scroll up and we’d lose the first lines of
the program

Line 780 does not end the program with END which would tell the computer to
display READY on the screen and we would lose part of the display. Instead, we
give the computer a GOTO command, returning it to the beginning of this line. This is the only
command on this line, so the computer continues to go to line 780 until you press the system reset
or break key.

Listing 7-3 demonstrates the position command. The letters are printed in a specific
location, erased, and reprinted in a new position (see flowchart, Fig. 7-7). Entire words can be
moved across the screen this way.

Listing 7-3. Position Command Demonstration

10 REM LISTING VII-3

20 REM SIMFLE ANIMATION

30 REM L+M.SCHREIRER FOR TAE BOOKS

40 ? "Yclear)"!FOKE 752y1!REM CLEAR SCREE

N-REMOVE CURSOR

50 FOR X=0 TO 10IREM THIS COMMAND SAVES M

EMORY & TYFING

60 FOSITION XySiREM CHANGE THE COLUMN EBUT
NOT THE ROW

65 7 " M°®

70 NEXT X:{REM DO IT 10 TIMES

80 FOR X=0 TO 11

90 FOSITION Xs46iREM NOW DO IT ONE ROW LOW

ER
100 7 " 0F
110 NEXT X

120 FOSITION 12+6:7 * "IREM ERASE IT
130 FOSITION 12,587 "0"tREM MOVE IT UF
140 FOR X=0 TO 12

150 FOSITION X»4

160 7 * V"

40

170 NEXT X

180 FOSITION 13,437 * *

190 FOSITION 13,587 "yU*

200 FOR X=0 TO 13

210 FOSITION Xes6

220 7 I

230 NEXT X

240 FOSITION 149637 ° "

250 FOSITION 14,5:7 "I°

260 FOR X=0 TO 14

270 FOSITION X»4

280 7 " N°

290 NEXT X

300 FOSITION 15,437 * "

310 FOSITION 15,517 °"N"

320 FOR X=0 TO 15

330 FOSITION Xvé

340 7 " G"

350 NEXT X

360 FOSITION 169607 *

370 FOSITION 1637 "G*

380 FOR X=1 TO 20:REM MOVE IT ACROSS
3920 FOSITION X»2

400 7 " WORDS*®

410 NEXT X

420 FOSITION 21,237 ° "IREM BRING IT
DOWN

430 FOSITION 21+3:7 "WORDS®
440 FOSITION 21,3:7 ° *
450 POSITION 21,47 "WORDS®
460 FOSITION 21,4:7 °* .
470 FOSITION 21+5:7 "WORDS*
480 FOKE 752y0!REM TURN CURSOR BACK ON
490 ENI

Lines 10-30 remarks about the program.

Line 40 clears the screen and removes the cursor. A cursor in this program would distract
from the letters moving on the screen.

Line 50is the beginning of a For . . . Next loop. This command saves memory and typing. The
X will refer to the column in which the computer will be printing.

Line 60 is the position at which we want a letter printed. The X is after position and before 5.
Each time the computer comes to this line the value of X will be different.

41

Fig. 7-7. Flowchart for Listing 7-3.

A

BEGIN

CLEAR
SCREEN
REMOVE
CURSOR

CALCULATE
STARTING
ROW AND
COLUMN

CALCULATE
NEXT
POSITION

CALCULATE
ROW AND
COLUMN

CALCULATE

NEXT
POSITION

DISPLAY

IN CORRECT
ROW AND
COLUMN

¥

CALCULATE
NEXT ROW
AND COLUMN

S

42

CALCULATE
NEXT
POSITION

NO

DISPLAY

IN CORRECT
ROW AND
COLUMN

Y

CALCULATE
NEXT ROW
AND COLUMN

CALCULATE
NEXT

POSITION

DISPLAY

IN CORRECT
ROW AND
COLUMN

Y

CALCULATE
NEXT ROW
AND COLUMN

CALCULATE
NEXT
POSITION

|

CORRECT
COLUMN
2

43

DISPLAY

IN CORRECT
ROW AND
COLUMN

Y

CALCULATE
NEXT ROW
AND COLUMN

CALCULATE
NEXT
POSITION

IN
DISPLAY
CORRECT CALCULATE 1 i
COLUMN NEXT WORDS
POSITION
IN
NO CORRECT

DISPLAY COLUMN
IN CORRECT 2
ROW AND A YES
COLUMN

; DISPLAY

IN CORRECT

CALCULATE ROW AND
NEXT ROW COLUMN
AND
COLUMN

| END

Line 65 prints a space and the letter M on the screen. This line works in conjunction with the
last line. In the last line, the value of X increases by one each time the computer comes toit. This
moves the cursor over one column. Before the computer prints an M in this line, it will print a
space. This space will erase the M that was printed in the position. The two lines working
together give the illusion of an M moving across the screen.

Line 70 finishes the loop. The computer will do lines 50 to 70 eleven times before it goes on

to the next line.

44

The computer will do lines 80 to 110 in the same manner. This time it will repeat the loop 12
times.

Line 90 tells the computer to print the letter O one line below the M.

Line 120 erases the O from position 12,6.

Line 130 prints the O in the twelfth column of the fifth row. This places it immediately after
the M.

Lines 140-170 make the letter V appear to move across the top of the letters MO.

Line 180 erases the letter from the thirteenth column of the fifth row.

Line 190 prints the V after the MO.

Lines 200-370 follow the same pattern of printing a letter on the left side of the screen,
erasing it, and printing it one column over.

Lines 380-410 move an entire word across the screen. Again, the first position of the letters
between the quotation marks is a space. This space erases the letter w in the word previously
printed. If there were no space, a line of w's would be printed across the screen.

Lines 420-470 erases the entire word, then reprints it one row lower.

Line 480 turns the cursor back on.

Line 490 ends the program. The message MOVING WORDS should be on the
screen, along with the ready prompt.

Although this program only moved letters across the screen, using this technique of printing
and erasing you can make graphics created with graphics characters move across the screen.

45

Chapter 8

Getting
the Answers

At times a value the program needs will change each time the program is run. Sometimes a new
value will be entered by the computer user, other times the programmer wants the computer to
use a different value that the computer arrives at from prior computation The computer needs to
be able to keep track of the value by storing it in a place in memory so the computer canrecall the
value when it needs to. To accomplish this, the program would store the value as a variable. A
variable is a letter, group of letters, or word that represents a value. If you were to enter

20 A=10

the computer would substitute the value 10 each time it encounters the variable A in a program. If
the program contained

30 B=A+5

it would add 10 to 5. The variable B would become 15. If you have a program in your computer,
type NEW and then type in Listing 8-1 (see flowchart in Fig. 8-1).

Line 50 makes the variable A equal to 10.

Line 60 makes the variable B equal to 15.

Line 70 makes the variable C equal to 20.

Line 80 prints all three variables on the same line.

As you can see, when the computer is told to print a variable, it will print the value stored in
that variable. Your screen should display:

10 15 20

The value of a variable can be changed and reused throughout the program. A variable can
also be used instead of a number for an arithmetic operation. Type NEW and enter
the program shown in Listing 8-2 (see flowchart Fig. 8-2).

Line 50 assigns the length variable the value of 30 and width variable the value of 7. Names
can also be used as variables.

Line 60 prints a message on the screen. Since the value of the variable will be used on the
same line, a semicolon is placed after the quotation mark. A space is placed before the quotation

46

Fig. 8-1. Flowchart for Listing 8-1.

BEGIN

[S5/

SET
VARIABLES
TO 10, 15,
AND 20

DISPLAY
CONTENTS
OF

VARIABLES

Listing 8-1. Assigning Values to Variables

10
20
30
40
50
60
70
80

REM LISTING VIII-1
REM ASSIGN VARIAEBLES
REM BY L.M.SCHREIBER
? "Yclear}"!REM CLEAR
A=10¢tREM THE VARIAELE
B=15tREM THE VARIAELE
C=20!REM THE VARIAELE
? ArByCIREM THE COMMA

ALLUES ON THE SAME LINE

?0

ENII

VALUES
FOR TAE
SCREEN
‘A’ WILL EBE 10
‘B’ WILL RE 15
‘C’ WILL BE 20
WILL KEEF THE V

ROOKS

8

mark so a space will show between the word length and the value stored in length. We want the
computer to continue with the message in the next print statement, so place a semicolon after the

length variable.

Line 65 finishes the message started in the preceding line. There is a space after the
quotation mark so the word and will be one space from the value of the length variable.

Line 70 performs the formula that determines the perimeter of the room. The answer is
stored in the variable perimeter.

Line 80 contains two print statements. The first is not followed by a message; brings the
cursor down one line so the message printed in the second part of the line will be one row below

47

SET VARIABLES
TO LENGTH
AND WIDTH

DISPLAY
MESSAGE

CALCULATE
PERIMETER

DISPLAY
PERIMETER

SET VARIABLES
TO NEW
LENGTH AND
WIDTH

Fig. 8-2. Flowchart for Listing 8-2.

DISPLAY
MESSAGE

CALCULATE
AREA

DISPLAY
AREA

48

Listing 8-2. Changing Values of Variables

10 REM LISTING VIII-2

20 REM CHANGE VARIARLES VALUES

30 REM RBY L.M.SCHREIBER FOR TAER ROOKS

40 7 "Yclear}"!REM CLEAR SCREEN

30 LENGTH=30!WINOTH=7{REM NAMES CAN RE VAR
IARLES

0 7 "I will now comrute the rerimeter of
a room that has a8 length "FLENGTH?" and
a8 width of "FWINTH

70 FPERIMETER=2XWIDTH+2XLENGTHIREM FORMULA
FOR FERIMETER

80 7 :? "THE FERIMETER IS "$FERIMETER

0 LENGTH=27 1WINTH=14{REM CHANGE THE VALU

ES OF THE VARIABLE

100 7 % "Now I will calculate the area o

& room whose width is "SWIDTH? Y and
whose length is "§LENGTH

110 AREA=WINTHXLENGTH!REM FORMULA FOR ARE
A

120 7 ¢? "THE AREA IS "7AREA

130 ENI

the last message. A print statement by itself skips a line on the screen. The message will be
printed on the next line of the screen.

Line 90 changes the values of the variables length and width. Whenever possible, the same
variables should be reused in a program. This saves memory and is time efficient. Each time a
variable is assigned a new value, it forgets the old value.

Line 100 skips a line, then prints another message on the screen. The extra spaces between a
and room allow for the wrap-around of the message. The semicolons keep the variable on the
same line as the message.

Line 105 continues the message.

Line 110 calculates the area of the room and stores its answer in the area variable.

Line 120 skips a line on the screen, then prints the message containing the area of the room.

It is important to note there must be a semicolon or comma between the message and the
variable in the print statements. Without semicolons, BASIC will not accept the line. To print the
value of the variable on the next screen line, use a colon and another print in the line.

STRING VARIABLES

Numeric variables store numbers; stving variables can store numbers, letters, or characters.
String variables can’t do any computation. Before you can use a string variable, you must let the
computer set aside memory for it by using a dimension statement:

40 DIM VARIABLES$(##)

49

Listing 8-3. String Variables

10 REM LISTING VIII-3

20 REM STRING VARIARLES VALUES

30 REM BY L.M.SCHREIBER FOR TAE BOOKS

40 ? ">clear)"IREM CLEAR SCREEN

50 DIM NAME$(20) yANDRESS$ (15)yCITYS(H) # ST
ATE$(2)»yZIF$(9)

60 NAME$="J.Q.FURLIC"IREM STORE NAME IN S
TRING

70 ADDRESS$="123 MAIN STREET®"IREM STORE A
DORESS

80 CITY$="NEWTON":REM THIS IS THE CITY

20 STATE$="MI"!{REM USE THE TWO LETTER AEE
REVIATION

100 ZIF$="43201"IREM ZIF CODE

110 FOSITION Sy2:7 "THE ADDRESS INFORMATI
ON IS:*:REM SHOW WHAT IS STORED IN THE ST
RINGS

120 FOSITION 7+4:7 NAMES$

130 FOSITION 756:7 ADDRESS$

140 FOSITION 7+8:7 CITY$

150 FOSITION 17,887 STATES

160 FOSITION 17,1037 ZIF$

170 ENI

By placing a $ at the end of a variable name, you are telling the computer this
is a string variable. The number in the parenthesis indicates the number of characters to be stored
in this string. You can store less than you allow for, but never more.

20 DIM NAME$(10)

This statement sets aside 10 bytes of memory for the name string, and can contain up to 10
letters or numbers.

Listing 8-3 (see flowchart, Fig. 8-3) demonstrates how strings can be used in a program. It
uses five strings to store information.

Line 50 sets aside memory for each string. NAMES$ sets aside 20 bytes,
ADDRESS$ 15 bytes, CITY 6, STATES$ 2, and
ZIP$ 9. By assigning a name indicative of the information the string will contain

helps you keep track of what you are doing in the program.

Line 60-100 store information in each string. The letters, numbers, or characters that are
placed in each string variable must be enclosed in quotation marks.

50

SET ASIDE
STRING
SPACE

Fig. 8-3. Flowchart for Listing 8-3. +

PLACE
INFORMATION
INTO STRINGS

DISPLAY
CONTENTS
OF STRINGS

Lines 110-160 print the information in each string on the screen. There are no commas or
semicolons after the strings, so each is printed on a separate line. If any of the string variables
were assigned information exceeding the number of bytes set aside for that string, the computer
would store and print only the amount of information it had room set aside for.

Like numeric variables, string variables hold the contents until they are changed by the
program.

ATARI BASIC stores a string as a long line of characters, each with its own identifiable
location. Figure 8-4 shows you how the computer sees a string. NAMES$ is 20
characters long. The numbers under each letter indicate the location of that letter. If you want to
print only part of the string, type PRINT NAMES$ (starting location, ending location).

PRINT NAMES$ (1,3) would result in J.Q. The computer prints the contents
of NAME$ beginning with the first character and ending with the third. If you want
to print only one character from the string, both numbers must be the same:

NAME$(6,6)

The string can be dimensioned to any length you need for the proper operation of your
program. Listing 8-4 increases the amount of space reserved for NAME$ and adds
three strings. Notice that numbers can be used with letters as a variable name.

Line 50 dimensions five string variables. Several strings can be dimensioned on the same
line if you place a comma between their names.

51

Line 55 is a string of 52 spaces. This string (S$) will be used to clear the other variables.

Line 57 clears every string in line 50. If we did not clear every string before using it, we may
find garbage in the bytes we didn’t fill with information from the program.

Lines 60-90 place names in each string.

Lines 100-130 place an address in each NAME$. Notice that each address
begins with the twenty-first byte of NAME$

Lines 140-170 place a city in each string. Each city begins in location 36.

Lines 180-210 store the state in each string. The state is the two-letter abbreviation, so we
only need two bytes in each string for the state.

Lines 220-250 store the zip code for each address. The zip code ends in location 48. The
extra bytes were placed in the program for nine-digit zip codes.

Lines 270-300 print each string on the screen. If you study the contents of each printed string
you will see that every name starts in location 1, every address location 21, every city location 36,
every state location 42, and every zip code location 44.

When each string contains the same information in the same locations, we say that the
strings are fielded. By fielding a string you know exactly where the information is stored, and you
can have the program print only the parts of the string you need. Add the lines shown in Listing
8-5. When you rerun the program, lines 310-350 will label each part of the string as it is being
printed. Since the strings have the same fields, you could just as easily have

NAME2$ or NAMES3$ printed on the screen.

The part of a string that contains specific information is called a substring. In a program that
prints address labels, a routine can check each string for a particular state or zip code. It would be
looking for a substring.

LEN

There are times you need to know the length of a string, for example, if the title of your new
program to be centered on the screen with the instructions printed under it. Your program would
look like Listing 8-6.

Line 50 sets aside the string space needed for the title of the program.

Line 60 places the title of the program in the string.

Line 70 uses the command LEN to find the length of the string. It places this
information in the variable L.

Rl it P oA S 10—0 (Characters the string contains)
(Position of characters in string)

Fig. 8-4. Position of characters in a string.

52

Listing 8-4. Fielding String Variables

10 REM LISTING VIII-4

20 REM FIELDING A STRING

30 REM BY L.M.SCHREIBER FOR TAR ROOKS

40 7 "Yclear}"

50 DIM NAME1$(52) s NAMER2$(52) y NAME3$ (52) s N
AME4$ (52) 84 (52) tREM SET UF FOUR STRINGS
FOR FIELDING

B OGS (L)=" "I15$(52)=" "i184(2)=8%$IREM SET
THE STRING T0 BLANKS

57 NAME1$=5%INAME2$=5¢% I NAME3$=0% I NAME44$=5
$IREM CLEAR THE GARRBAGE FROM THE STRINGS
60 NAMEL1$(1y10)="J, B, SMITH"

70 NAME2%(1,12)="M5, ROWLINGS"

80 NAME3$(1y10)="R.J. JONES"

90 NAMEA4$ (1y11)="MARY GREENE*"

100 NAME1$(21y37)="1731 CHEROKEE RD.,*"

110 NAME2$(21,42)="11542 MAIN ST. AFT. 295

120 NAME3$(21+3%5)="7 ROTUNDA DRIVE"®

130 NAME4$(21y33)="1654 W. ADAMS"

140 NAMEL1$(36y41)="RROOKS"

150 NAME2%(36y39)="N,Y,."

160 NAME3$(36741)="CANTON"

170 NAMEA$(346y39)="WEST"

180 NAMEL1$(42y43)="NJ"

190 NAMEZ24$(42+43)="NY"

200 NAME34$(42,43)="MI"

210 NAME44$(42,43)="TX"

220 NAMEL$(44,48)="12094"

230 NAME24(44,48)="10021"

240 NAME3$(44,48)="48034"

250 NAMEA4$(44,48)="746043"

260 REM FRINT THE STRINGS

270 7 17 NAMEL$

280 7T 7T NAMEZ2$

290 7 7 NAME3%

300 7 17T NAMEA4%

310 END

Line 80 divides the length of the title in half. Since the program is in mode 0, we know the

center of the screen is location 20. If we subtract half the length from 20, we will know where we
should start to print the title.

53

Listing 8-5. Fielding Strings, Version 2

10 REM ILISTING VIII-S

20 REM FIELDING A STRING

30 REM BY L«M.SCHREIRER FOR TAR ROOKS

40 7T "Yclearr”

50 DIM NAMEL$(S52) yNAME24 (52) y NAME3$(52) ¢ N
AMEAS (52) 5% (32) IREM SET UF FOUR STRINGS
FOR FIELDING

59 S (L)y=" "18$(H52)=" "184$(2)=6$IREM SET
THE STRING TO ELANKS

57 NAME1$=S5% INAME2$=5% INAME34$=5% ! NAME44$=5
$tREM CLEAR THE GARRBAGE FROM THE STRINGS
60 NAMEL$(1s10)="J, R SMITH"

70 NAMER2#%(1y12)="M85, ROWLINGS"

80 NAME3I$(1s10)="R..J. JONES"

20 NAME4$(1s11)="MARY GREENE"

100 NAMEL1$(21+37)="1731 CHEROKEE RD."
110 NAME2$(21542)="11542 MAIN ST, AFT.25"
120 NAME3$(21y35)="7 ROTUNDA DRIVE"

130 NAMEA4A$ (21y33)="1654 W. ADAME"

140 NAMEL1$(36¢41)="RROOKS"

150 NAME2$ (34659y39)="N.Y."

160 NAMEZ$ (34641)="CANTON"

162 NAMEA$(346y39)="WEST"

180 NAMEL$(42y43)="NJ"

190 NAMEZ2$(42+s43)="NY"

200 NAME3$(42y43)="MI"

210 NAME4$(42+s43)="TX"

220 NAMEL1$(44,48)="12094"

230 NAMEZ24$(44,48)="10021"

240 NAME3I$(44,48)="48034"

250 NAMEA44$(44,48)="746043"

260 REM FPRINT THE STRINGS

270 7 17 NAMELS$

280 7 17 NAME2%

290 7 17T NAME3$

300 7T 1T NAMEAS$

310 FOSITION S1487 NAMEL$(1y20)

320 FOSITION S5¢15:7 NAMEL$(21,35)

330 FOSITION Sy16t7 NAMEL$(36+41)

340 FOSITION 24,1617 NAME1$(42,43)

350 FOSITION 24-17:17 NAMEL$(44,48)

54

Listing 8-6. Finding the Middle

10 REM LISTING VIII-6&

20 REM FINDING THE MIDDLE

30 REM RY L .M.SCHREIRER FOR TAR RBOOKS

40 * "Yclear)"

S0 DIM TITLE$(20)

40 TITLE$="MORE SFACE WARS"IREM GIVE THE
FROGRAM A TITLE

70 L=LEN(TITLE$){REM FIND OUT HOW LONG TH
E STRING IS

80 F=20-1./2tREM GET HALF 0OF THE LENGTH AN
I SUBRTRACT IT FROM THE MIDDLE OF THE SCRE
EN

Q0 FOSITION Fy4:? TITLE$IREM ‘F’ 1S THE S
TARTING FOSITION OF THE STRING

100 # t7# * This dame recuires dgood ha
nd eve coordination. You are the comman
der of a8 srace shis, It as Yy

110 7 "heing drawn toward another =lanet.

120 GOTO 120:REM 8TAY HERE UNTIL EBREAK OR
SYSTEM RESET IS FRESSED

Line 90 sets the cursor in position P,4. P is the position we arrived at in line 80. The four
places the title in the fifth row on the screen.

Lines 100-110 begin the instruction for this program.

Line 120 is a loop that makes the computer wait until the break key or system reset key has
been pressed.

If a program repeats itself, and you do not want to use the old information, clear the previous
information from the string by setting it equal to (two quotation marks with
nothing between them). This, in effect, is setting the length of the string to 0. However, if you
place a character within the string, the old character, up to the location of the new character, will
appear. Try the program in Listing 8-7.

Line 50 sets aside 20 bytes for S§$.

Line 60 places the message in S$.

Line 70 gets the length of S$.

Lines 80-90 print the contents of S$ and its length.

Line 100 sets S$ equal to two quotation marks. If a string contains no spaces, is it empty?

Line 110 gets the new length of S$.

Lines 120-130 print the contents of S$ and its length. We can see on the screen that nothing
has been printed and the length of S$ is 0.

Line 140 places the letter p in the fourth byte of S$.

55

Line 150 gets the length of S$ now a letter has been placed in it.

Lines 160-170 print the contents of S$ and its length. Since the letter p was placed in the
fourth byte of S$, the length of S$ is now four. Also, the letters that were originally stored in S$
reappear, up to the new letter.

The word hello has been printed as help. Remember, S$ was dimensioned to 20, so you can
place a letter or character in any location up to and including the twentieth. The computer will
print all characters in the string up to the last position that had a character stored in it. If you
change the letter in the fourth position and a letter in the second position, the computer will still
print all four characters. Place a character in the string after the fourth position and it will become
the last position in the string to be printed. Add the lines in Listing 8-8 (see flowchart, Fig. 8-5).

Line 190 changes the h in the first location of the string from a lowercase h to a capital H.

Line 200 gets the length of S§.

Lines 210-220 print the new contents of S$. We can see the length of S$ has not changed by
changing the contents of the first byte.

Line 230 changes three bytes of S$ to a space and me.

Listing 8-7. Reappear

10 REM LISTING VIILI.7

20 REM REAFFEAR

30 REM RY L.M.SCHREIRER FOR TAR ROOKS

40 * "Yclear>”

50 DIM S$(20) tREM SFACE HAS REEN SET ASID
E

HO S$="HELLD THERE"{REM FLACE LETTERS IN

THE STRING

70 L=LEN(S$)IREM FIND THE ILENGTH OF THE S
TRING

80 T {7 "STRING CONTAINS —"35%

90 * 17 "ITS LENGTH IS ="}l

100 S$=""{REM NO SFACES - CLEARS A STRING
»

110 L=LEN(S$)IREM GET ITS LENGTH - FROVE

IT IS EMFTY

120 P ¢7 7 "STRING CONTAINS-"38%

130 ? 7 "ITS LENGTH IS -"sL

140 S$(454)="F"{REM FLLACE A 'F’ IN THE 4T
H FOSITION OF THE STRING

150 L=LEN(S$)IREM NOW GET ITS LENGTH

160 7 7 17? "STRING CONTAINS —-"#S5%

170 T 3% "ITS LENGTH 18=":L

180 REM ALL THE CHARACTERS UF T0O THE NEW

ONE REAFFEAR

56

Listing 8-8. Reappear, Version 2

10 REM LISTING VIII.8

20 REM REAFFEAR

30 REM RY L+M.SCHREIEBER FOR TAE ROOKS

40 * "Yeolear>"

50 NIM $$(20) tREM SFACE HAS REEN SET ASID
E:

460 S$="hello there"!REM FLACE LETTERS IN

THE STRING

70 L=LEN(S$)IREM FIND THE LENGTH OF THE S
TRING

BO P 17 "STRING CONTAINS —-"3S%

O 7 P "ITS LENGTH 1% —~"sL

100 S$=""{REM NO SFACES ~ CLEARS A STRING

?

110 L=LEN(S$) {REM GET ITS LENGTH - FROVE
IT IS EMFTY

120 7 37 17 "STRING CONTAINS-"55%

130 2 §7 "ITS LENGTH IS =*iL

140 S$(454)="r"IREM FLACE A ‘F’ IN THE 4T
H FOSITION OF THE STRING

150 L=LEN(S$) IREM NOW GET ITS LENGTH

160 7 17 17 "STRING CONTAINS —-"3S%

170 7 1% "ITS LENGTH IS-"sL

180 REM Al.l. THE CHARACTERS UF TO THE NEW
ONE REAFFEAR

190 S$(ly1)="H"IREM MAKE THE FIRST LETTER
CAFITAL

200 L=LEN(S%$)IREM SEE IF THE LENGTH HAS C
HANGED

210 7 1?7 17 " STRING NOW CONTAINS-"384%
220 7 17 "ITS LENGTH IS~"jlL

230 5%(5s7)=" me"REM CHANGE THE LETTERS
ON THE Sth - 7th FOSITIONS

240 L=LEN(S%)

2H0 P 17 17 "STRING NOW CONTAINS-"7S4

260 7 17 "ITS LENGTH IS-"sL

270 END

Line 240 gets the new length of S§$.
Lines 250-260 print the contents of the string. As you can see, changing the fifth to seventh
characters in the string lengthened the string. The new characters replace the old ones.

57

GET
STRING
SET ASIDE LENGTH
STRING
SPACE
; DISPLAY
STRING &
PLACE LENGTH
INFORMATION
IN STRING
* CHANGE
LETTER IN
GET STRING
STRING
LENGTH ‘
GET
STRING
DISPLAY LENGTH
STRING

Fig. 8-5. Flowchart for Listing 8-8. AND

LENGTH

DISPLAY
STRING &

LENGTH
PLACE NO
INFORMATION
IN STRING SHARGE
+ OTHER LETTERS
IN STRING
GET
STRING &
LENGTH SET
STRING
LENGTH
DISPLAY

STRING &

Ss s DISPLAY
STRING &
LENGTH
CHANGE

LETTER IN
STRING

When you work with strings, use the double quotation marks only if you will replace
characters in the string sequentially, starting with the first character of the string. If you will be
placing characters in the string randomly, and you will be printing the entire string, replace the
characters in the string with that number of spaces before setting the string to the double
quotation marks (if S$ was dimensioned for eight bytes, we would clear it by making it equal to
eight spaces- S$=" "

Listing 8-9 shows you how to move letters around in a string.

Line 35 sets aside 60 bytes for A$ and one byte for B$. B$ will be used as a buffer or
temporary storage area.

Line 40 sets the computer to graphics mode 18. This is mode 2 without a text window.

Line 50 sets A$ to the message we want printed.

Line 60 places the cursor at the left-most edge of the screen in row 5.

Line 70 prints the message to the screen. Since we are printing to the graphics window,

use 6; after PRINT . Graphics mode 2 only allows 20 characters on the
screen in one line. Instruct the computer to PRINT A$ from location 1 to location 20
inclusive.

Line 80 places the first character of A$ into B$. This is the temporary storage location.
Line 90 moves the remaining characters up one position in A$. Now the first character in A$

Listing 8-9. Ticker-Tape Program

10 REM LISTING VIII-9

20 REM TICKER TAFE

30 REM L.M.SCHREIBRER FOR TAR ROOKS

35 DIM A$(60)yRB$(1)IREM STORE THE MESSAGE
HERE

40 GRAFHICS 18:!REM GRAFHICS 2 WITHOUT TEX
T WINDOW

S0 A$="THE DOW_JONES report at 12 noon is
atidt ur 3 roints e een

60 FOSITION 0ySiREM FLACE THE CURSOR AT T
HE CORRECT FOSITION

70 T ¥63A$(1y20)IREM FRINT THE FIRST 20 L
ETTERS OF THE STRING

80 RB$=A%(1,1)IREM SAVE THE FIRST LETTER
20 A$(1,52)=A%(2y60) IREM MOVE THE LETTERS
UF ONE FOSITION

100 A$(460+60)=R$IREM FUT THE FIRST LETTER
LAST

110 FOR T=1 TO SO0INEXT T!:REM TIMING LOOF.
+ +CHANGING THE 50 MAKES IT FRINT FASTER 0

R SLOWER

120 GOTO 60

59

Listing 8-10. Sales Tax Program

10 REM LISTING VIII.1O

15 TRAF 300

20 REM SALES TAX

30 REM BY L.M.SCHREIRER FOR TAER EBOOKS

40 7 "Ycleard"

50 7 "WHAT IS THE SALES TAX FOR YOUR STAT
E NUMBER ONLY» NO LEADING DECIMALS OR
FERCENT SIGNS"#

60 INFUT TAX

70 TAX=TAX/100!REM CHANGE NUMEER ENTERED
TO A DECIMAL

80 T 7 "WHAT IS THE COST OF THE ITEM(S)*®

y

20 INFUT COST

100 STAX=INT((COSTXTAX+5.0E~03)%100)/100:
REM ROUND TO NEAREST CENT AFTER MULTIPLYI
NG COST RY TAX

110 FRICE=COST+STAXIREM TOTAL FRICE IS TH
E COST FLUS THE TAX

120 7 7 *THE COST OF THE ITEM":!? *INCLUD
ING SALES TAX IS-%$"3FRICE

300 END

has been replaced by the second, etc. If we left it this way, the fifty-ninth and sixtieth position
would contain the same character.

Line 100 places the character stored in B$ into the last or sixtieth position of A$.

Line 110 is a timing loop. This causes the screen display to hesitate, giving us a chance to
read the message on the screen. If we want the message to move slower, increase the 50 to a
higher number, like 100. To speed the message up, change the 50 to a smaller number.

Line 120 sends the computer back to line 60. The process is repeated again.

The result of this program is a message that moves across the width of the screen. It will
continue until the break key or system reset key is pressed.

INPUT

So far our variables and string variables have been assigned a value. However, you don’t
always know the values ahead of time. Listing 8-10 will compute the amount of sales tax to be
added to an item and give the total purchase price. The program stops throughout and waits for
you to enter an amount.

Line 50 asks for the sales tax. The program does not want leading decimals or percent signs.
If the sales tax in your area is four percent, simply enter 4 and press return.

Line 60 will wait until the number has been entered. The input command tells the computer

60

not to go on until a number is entered. The number has to be stored somewhere. Our program
stores the number entered in the tax variable. The input command places ? on the
screen to prompt you.

Line 70 divides the amount stored in the tax variable by 100. This converts the number to a
decimal.

Line 80 asks you for the cost of the items purchased. The semicolon at the end of the print
command holds the cursor on that line.

Line 90 contains an input. The computer will wait until the number has been entered. Since
we are asking the user for the cost of the item, we will store the number entered in the cost
variable.

Line 100 computes the tax on the item. The state tax is the cost of the item times the tax.
Since we are dealing with money, we will want the purchase price rounded to the nearest penny.
To do this add .005 to the tax. 5.0E-3 is the way ATARI BASIC represents the
number .005. We then multiply the number by 100. This shifts the decimal point two places to the
right. If the tax came out to .473, adding .005 would change it to .478. Multiplying it by 100 would
move the decimal to the right. The number would be 47.8. If we take the integer of that
number—that is, take only the whole number and ignore the decimal— we would have 47. Divide
this by 100 and we have the tax of .47.

Line 110 adds the state tax to the cost of the item and stores it in the price variable.

Line 120 skips a line and prints the total cost of the item.

Each time you want the total cost of an item you could run this program.

If you are using the program in a store where items would be entered frequently, you would
not want to rerun the program each time. You would not want to have to reenter the sales tax for
your state each time, either. Change the program using Listing 8-11.

By adding the position statements to lines 80 and 120, the program does not scroll off the top
of the screen. To erase the old answer, add four spaces and four backspaces to these lines. If you
find that four spaces aren’t enough, add a few more. Just be sure you have one backspace for each
space. Tell the backspace in a print statement by pressing the escape key before you press the
control key and the back-arrow key. The escape key must be pressed before each control key
back-arrow sequence.

Line 130 prompts you with a question.

Line 140 will wait until you enter the answer. This time we are storing the entry in a string.

Line 150 checks the entry for a Y. If the first letter of A$ is a Y, the program will go back to
line 80. This eliminates the need to reenter the sales tax for your state. The program would also
go back to that line if you answered any word beginning with Y, since the program only checks the
first letter of the entry.

Line 160 checks the first letter of ANSWERS$ for an N. If it is not an N the program will go
back to line 130. If it is an N, the program will end by wishing you a nice day.

When you reuse a string or numeric variable with an input statement, the variable will take
on the new entry each time it is used. Pressing only the return key will clear a string variable and
produce an error message if the program is looking at a particular location in the string. Clearing
the string by pressing the return key sets its length to zero so the computer can’t look at any of the
characters in the string.

61

Listing 8-11. Sales Tax, Version 2

10 REM LISTING VIII.11

15 TRAF 300

20 REM SALES TAX VERSION 2

30 REM BY L.M.SCHREIRER FOR TAER ROOKS

35 DIM ANSWERS (5)

40 * "Yclear)"

50 7 "WHAT IS THE SALES TAX FOR YOUR STAT
E NUMBER ONLYs NO LEADING DECIMALS OR
FERCENT SIGNS"5

60 INFUT TaAX

70 TAX=TAX/100:REM CHANGE NUMEER ENTERED
TO A DECIMAL

g0 ® 1? "WHAT IS THE COST OF THE ITEM(S)®
y

20 INFUT COST |

100 STAX=INT((COSTXTAX+S5.0E-03)%100)/100%
REM ROUND T0O NEAREST CENT AFTER MULTIFLYI
NG COST RY TAX

110 FRICE=COST+STAXIREM TOTAL FRICE IS TH
E COST FLUS THE TAX

120 7 7 "THE COST OF THE ITEM®":7 "INCLUD
ING SALES TAX IS-4"sFRICE

130 ? %7 "D0O YOU HAVE ANOTHER SALE "%

140 INFUT ANSWER$%

150 IF ANSWER$(1y1)="Y" THEN 80

160 IF ANSWER$(1y1)=>"N" THEN 130

170 * 7 "HAVE A NICE DAY®

180 END

300 ENI

Pressing only the return key for a numeric variable will also produce an error message.
Inputs can look cluttered and/or generate the wrong answers if they are not treated
properly. In the last program, we added spaces and backspaces to remove the old answer from the
screen. You should use this procedure whether you have a string or numeric variable. It will keep

your programs clean and eliminate confusion.

62

Chapter 9

Storing
Related Information

Anarray is a set of locations used for storing and/or retrieving information. With ATARI BASIC,
only numbers can be stored in an array. Figure 9-1 shows how an array is arranged. If a teacher
wants to record the grades for her class and she knows there are 25 students and there will be
eight tests in this quarter, to record this information, she would need an array 25 rows by 8
columns. Each element would hold one grade. The grades of each child would be stored in his or
her own row and every test would have its own column.

In another program the array could hold a predetermined value for plotting points on the
screen or determining various statistics. An insurance program could have an array that would
contain various ages and the rate of insurance for each age group.

In the last chapter, the dimension statement was used to tell the computer how long a string
would be. The dimension statement is also used to tell the computer how large an array you will
be using. The format is: DIM A(4,8), B(7) . The 4 in the A array is the number of
rows the program will need and the eight is the number of columns. The next array is a
one-dimension array. There are seven rows, but only one column.

Listing 9-1 (see flowchart, Fig. 9-2) is an example of a program using a one-dimension array.

Line 35 dimensions an array to seven elements, one for each day of the week.

Lines 50-70 print a message on the screen.

Line 80 skips a line, then asks the person using the program for the number of miles driven
on the first day. The third statement in this line waits for the user to enter a number.

Line 90 places the number entered into the first element of the array.

Line 100 asks the user for the number of miles driven on the second day.

Line 110 stores this number in the second element of the array. Throughout this program,
the number of miles driven will be entered into the miles variable.

Lines 120-210 repeat the same procedure: the user is asked for the miles driven on a specific
day and the program waits for the number to be entered. The number is then stored in the correct
element of the array.

Line 220 clears the total variable.

63

14 | 207 8 0 4 0 156 | 37 49

Fig. 9-1. Elements of an array.

E(1) E@) E@Q) E@4) E®) E®) E(7) E@®) E©9)

Lines 230-250 total the number of miles driven for the week. The variable X will increase
from one to seven as the program passes through the loop.

Line 260 finds the average number of miles driven each day. By adding .5 to the number of
miles driven after the total has been divided by seven, we can round the miles to the next highest
integer.

Line 270 clears the screen one more time.

Lines 280-290 print the total number of miles driven on the trip and the average number of
miles driven each day.

An array can be erased from a program with a CLR (clear) statement. If you try
to obtain information from an array after the clear statement has been executed, you will get an
error message and the program will stop. If you want to use the array again, you will have to
redimensionit. The clear statement will also set all the variables to zero and erase all the strings.
The strings would have to be redimensioned also, if they were to be reused in the program. You
would use a clear statement when you would be redimensioning an array in a program because of
new data or information received from the user.

READ/DATA

The read and data commands are used together in a program. They do not have to be next to
each other as program statements, but you cannot read something if you do not have data, and
conversely, data is useless without a read statement. You can read numbers, characters, or
letters. Data can be numbers, characters, or letters (words).

As with input, variables can only read numbers. String variables can read numbers, letters,
or characters.

Listing 9-2 demonstrates how the computer can read and use data.

Line 35 dimensions C$ for twelve letters or characters. This is as many letters that this
string can store. The computer will store the names of the colors in this string.

Line 50 reads the data from lines 140-150. The first time the computer gets to this line, it will
read the first two pieces of information in the data lines. The variable C will hold the number, and
C$ will contain the name of the color.

Line 60 sets the color of the screen to the new color. The variable C contains the number of
the new color.

Line 70 gets the length of C$.

Line 80 finds the center of the word, and subtracts that amount from the center of the screen.

Line 90 prints the color stored in C$ on the center of the screen.

Line 100 is a timing loop. By making the computer loop in this line 250 times we give the
person using the program a chance to see what is printed on the screen.

Line 110 removes the line of print from the screen.

64

Listing 9-1. Mileage

10 REM LISTING IX~-1

20 REM MILEAGE

30 REM L.M.SCHREIRER FOR TAE ROOKS

35 DIM M(7)!REM WE WILL BE STORING NUMEER

S FOR 7 DAYS

40 ? "Fclear>"iREM CLEAR SCREEN

S0 FOSITION 39287 "This rrodram will calc

ulate the"

40 FOSITION S5+3:7 "averadge number of mile

s driven"

70 FOSITION S5¢4:7 "on a8 7 daw trie,"

80 7 7 " HOW MANY MILES WERE DRIVEN ON T
HE FIRST DAY"# ¢ INFUT MILES

20 M(1)=MILESIREM FLACE THE MILES DRIVEN

IN THE FIRST ELEMENT OF THE ARRAY

100 P ¢7 * SECOND DAY'5 ¢ INFUT MILES

110 M(2)=MILES

120 7 7 " THIRD DAY" 5 PINFUT MILES

130 M(3)=MILES

140 7 7 " FOURTH DAY"# P INFUT MILES

150 M(4)=MILES

160 7 7 " FIFTH DAY"5 P INFUT MILE

170 M(E5)=MILES

180 7 (7 " SIXTH DAY"s5 ¢ INFUT MILES

190 M(6)=MILES

200 7 1?7 " GEVENTH DAY" 3 PINFUT MILES

210 M(7)=MILES

220 TOTAL=0tREM CLEAR THE VARIARLE

230 FOR X=1 T0O 7

240 TOTAL=TOTAL+M(X) {REM Al THE DAYS

250 NEXT XiREM IO IT SEVEN TIMES

260 AVERAGE=INT(TOTAL/74+0.3) tREM FIND THE
AVERAGE~-ROUND T0O THE NEXT MILE

270 7 ">F"IREM CLEAR THE SCREEN AGAIN

280 FOSITION 5910:7 "THE TOTAL MILES ORIV

EN WERE "sTOTAL

290 FPOSITION S¢14:7 "THE AVERAGE MILES DR

IVEN IN A IaY WERE °iAVERAGE

300 ENI

65

Fig. 9-2. Flowchart for Listing 9-1.

SET ASIDE
SPACE FOR
NUMERIC
ARRAY

GET
MILEAGE
FIRST DAY

STORE IN
FOURTH
ELEMENT

GET
MILEAGE
FIFTH DAY

STORE IN
FIRST
ELEMENT

STORE IN
FIFTH
ELEMENT

STORE IN
SECOND

ELEMENT

GET
MILEAGE
THIRD DAY

GET

MILEAGE
SIXTH DAY

STORE IN
SIXTH
ELEMENT

GET
MILEAGE
SEVENTH
DAY

STORE IN
THIRD
ELEMENT

STORE IN
SEVENTH
ELEMENT

!

CLEAR
VARIABLE
FOR TOTAL

TOTAL
SEVEN
ELEMENTS

!

GET
DAILY
AVERAGE

DISPLAY
AVERAGE
MILES

66

Listing 9-2. Colors

10 REM LISTING IX-2

20 REM COLORS

30 REM L.M.SCHREIRER FOR TAER ROOKS

35 DIM CsC12)

40 7 "Xclear}"FOKE 752y1!REM CLEAR SCREE

N-REMOVE CURSOR

90 READ CyC$IREM GET THE COLOR OF THE SCR

EEN AND THE COLOR

60 SETCOLOR 25CryS5IREM CHANGE THE COLOR OF
THE SCREEN

70 L=LENCC$) IREM GET THE LENGTH OF THE CO

L.OR
80 F=20-L/2I{REM GET THE CENTER OF THE WOR
It

90 FOSITION F»20:7 C%

100 FOR X=1 TO Z250INEXT XIREM LEAVE IT ON
THE SCREEN FOR A WHILE

110 FOSITION 02087 ""IREM REMOVE THE LI
NE. OF FRINT-SHIFT DELETE

120 IF C=135 THEN RESTORE !REM START ALL O
VER

130 GOTO S0

140 DATA OrGRAYy1,GOLY»2yORANGE»3yREDNs4yF
INKy 6y FURFLE 7y RLUE» 8y RLUE AGAINy?»LIGHT
RLUE

150 DATA 10y TURQUOISE»11sBLUE-GREENy12yGR
EENs 13y YELLOW~-GREENy 14y ORANGE » 15y LIGHT OR
ANGE

160 ENID

Line 120 checks the value stored in the variable C. When the computer has read the last
number in the data lines, the value of C will be 15. When this happens, we want the computer to
start reading the data from line 140 again. By having the restore statement in that line, the
computer will set its pointer back to the first line containing data. If we did not check the value of
C but simply had a restore command on that line, the computer would reset its pointer every time
it came to this line and the program would only display the color gray.

Line 130 sends the computer back to line 50. This program will not end on its own. The only
way to end it is by pressing the break or system reset key.

Lines 140-150 contain the data this program uses. The computer starts with line 140 and
reads the information on that line. It will then go on to the next data line and continue to read the

67

information on that line. If there were program statements between the lines of data, the
computer would skip those lines, and look for the lines of data. If you tell the computer to read and
there is no more data in the program, you will get an error message. If you have a remark on a line
where there is data, and the program has to read past the last piece of information on that line, you
will get an error message.

When you mix numbers with letters or characters, as this program has done, be sure that all
the dataisin the correct order. The C$ can read a number, but C cannot read a letter or character.

The information in the data line is read sequentially. The program will always start with the
color gray and end with orange.

RESTORE

In the preceeding program we used the restore command to tell the computer to start again
with the first piece of information. In this version of BASIC, you can also use the restore command
to tell the computer which line you want it to start with by placing a number or a variable after the
restore command.

CLEARING AN ARRAY

ATARI BASIC does not clear the values from an array when you run a program. If it did, the
merge and chain features would be useless. A program can load and run a second program
segment and use the values calculated in the first part of the program. The drawback is that each
array element will have some information in it, much like the string arrays. If your program will be
accessing information from an element of an array that may or may not have had information
stored in it, you could crash (cause it to stop abruptly) your program. It is best to clear that array
by setting each element of it to zero before you use it. Listing 9-3 shows you what can be stored in
an array before you clear it.

Line 40 dimensions the array A to 12 elements. There are three rows and four columns.

Line 60 prints the contents of one element of the array. We chose the second row and the
fourth column. You can change these to any you want within this array. If you have just turned the
system on, or if the last program you ran was shorter than this program, no strange numbers will
appear on the screen.

Lines 70-110 clear the elements of the array. The X variable will begin with one and
increment to two, then three. The Y variable will begin with one and increment by one until it
reaches four. Because of the way that this loop is set up, Y will do this three times. Line 90 sets
the A element to 0. The location will be determined by the values of X and Y.

Lines 100-110continue this loop until all the locations or elements of the array have been set
to 0.

Line 120 prints the contents of the same location on the screen, leaving nothing in that
element.

When you enter a new program the computer will still contain remnants of the old program.
Using the clear command and redimensioning an array will not remove the old information from
the computer’s memory.

68

Listing 9-3. Clearing an Array

10 REM LISTING IX~-3

20 REM CLEAR AN ARRAY

30 REM BY L.M.SCHREIBRER FOR TAE ROOKS

40 DIM A(394) IREM DIMENSION AN ARRAY

50 7 "Yeleard”

60 FOSITION 3,537 "THE CHOSEN ELEMENT CON
TAINS "3A(2y4) IREM SHOW WHAT IS IN THAT E
LEMENT

70 FOR X=1 TO 3:REM THERE ARE 3 ROWS

80 FOR Y=1 TO 4iREM THERE ARE 4 COLUMNS
20 A(XyY)=0IREM CLEAR THAT ELEMENT

100 NEXT YIREM DO ALl 4 COLUMNS

110 NEXT X:REM DO ALL 3 ROWS

120 FOSITION 3787 “NOW IT HOLDS "5A(2:4)
tREM SHOW THAT IT IS CLEARED

130 END

USING STRINGS

Strings cannot be dimensioned into two-dimensional arrays. This can pose a problem if you
want a list of words to choose from, or if you want to store words for later use. In the first example,
you can use data lines to store the words. In Listing 9-4 we will use data lines as a two-
dimensional array. The first word in each data line is a color written in English, the second word is
its Spanish translation. Both words are read into two different strings. One string is printed on the
screen. The program checks your answer with its answer in the other string.

Line 40 dimensions three different strings. E$ will contain the English word, S$ will contain
the Spanish word and A$ will get the answer from the user.

Line 55 reads the English word and the Spanish word from the first data line—line 150.

Lines 60-70 print the color on the screen in English.

Lines 80-90 prompt the user to enter the Spanish word.

Line 90 contains eight spaces and eight backspaces. This will remove the previous answer
from the screen.

Line 100 waits for the person using the program to enter a word.

Line 110 compares the entered word with the word the program has in S$. If the two springs
are not the same, the computer will go back to line 90, erase the answer, and wait for the user to
enter another word.

Line 120 checks E$ for the word yellow. If E$ contains that word, the program will end.

Line 130 will send the computer to line 50 where the screen will clear and the routine will be
repeated.

In another program, you may want the student or teacher to enter spelling words. Since it
would be cumbersome to have to keep changing data lines, you would want the person using the
program to be able to enter the words directly. Listing 9-5 (see flowchart, Fig. 9-3) uses a

69

two-dimensional array to keep track of the start and end locations of the words in the string. As
the words are entered, they are added to the string.

Line 40 dimensions two strings and one array. WORD$ will be used to store all the words
that will be entered. I$ is the temporary storage string for each word, and W is the array that will
store the beginning and ending location of each word in the string WORDS.

Line 50 clears the screen and the variables LL and FL. LL will represent the Last Letter
location, and FL will be the location of the First Letter of the word being placed in the string.

Lines 60-70 print the instructions on the screen. In this program, we give the user two ways
to end the routine by entering twenty words into the program, or entering the code XXX to
indicate you are done.

Lines 80-170 contain the routine for entering the new words. Line 80 uses the variable X to
indicate which word is being entered. X will be equal to 1, but will not accept more than twenty
words. It also prompts the person using the program to enter a word.

Line 90 prints the number of the word being entered, performs fifteen spaces and fifteen
backspaces, and then waits for a word to be entered. The word entered will be stored in I$.

Listing 9-4. Spanish/English Color Test.

10 REM LISTING IX—4

20 REM SFANISH COLORS

30 REM BY L .M.SCHREIRBER FOR TAR RBOOKS

40 DIM E$C10)vyS$C10)vyASC10)

50 P "relear)”

58 READ E$+S$tREM READ THE WORDS IN THE &
AME ORDER AS THE DATA LINES

60 FOSITION 3887 "ENGLISH WORD IS *

70 FOSITION S10:7 E%$

80 FOSITION 23+s8:7 "SFANISH WORD IS®

20 FOSITION 251037 " "R

EM 8 SFACES -~ 8 BACKSFACES

100 INFUT A%

110 IF A%$+<>8% THEN 90:REM TRY AGAIN IF WR

ONG

120 IF E$="YELLOW®" THEN END (REM LESSON C
OMFLETE

130 GOTO SO0:REM YOU GOT IT RIGHT

140 ENID

150 DATA REDROJO

160 DATA RLUEsAZUR

170 DATA GREENsVERIDE

180 DATA RBLACKyNEGRO

120 DATA WHITEsRLANCO
200 DATA YELLOWsyAMARILLO

70

SET ASIDE
MEMORY
SPACE

CLEAR
VARIABLES

DISPLAY
MESSAGE

DISPLAY

DISPLAY
MESSAGE

CALCULATE
BEGINNING
STRING
POSITION

'

CALCULATE
ENDING
STRING
POSITION

Fig. 9-3. Flowchart for Listing 9-5.

STORE
WORD IN
STRING

!

STORE
POSITIONS
IN ARRAY

DISPLAY
REMARK

DISPLAY
CORRECT
WORD

DELAY
PROGRAM

DISPLAY
MESSAGE

CLEAR
SCREEN &
DISPLAY
WORD

MESSAGE

DELAY
PROGRAM

DISPLAY
MESSAGE

71

Listing 9-5. Spelling Test

10 REM LISTING IX-3

20 REM SFELLING

30 REM BY L.M.SCHREIRER FOR TAE ROOKS

40 DIM WORD$(205) yW(209y2)»I$(15) IREM MAKE
ROOM FOR 20 WORDS

90 7 "Ycleary"iLL=0!FL=0:REM CLEAR THE SC
REEN & VARIARLES

60 POSITION Sy5:7 "This srodgram will a3llo

w wou to enter ur to twenty srelling
words, "
70 ? * TYFE - M4 when €ou have no more

words to enter and the last word isg
rnot the twentieth."

80 FOR X=1 TO Z20:FOSITION S5s15:7 "FLEASE
ENTER YOUR WORD®

20 FOSITION 51737 "#"5X5"

"FLINFUT I$IREM 15 SFACES

& 15 BACKSFACES

100 IF LEN(I%$)>10 THEN FOSITION 55197 "F
LEASE LIMIT THE WORD TO 10 LETTERS"I:GOTO
BOIREM CHECK THE LENGTH OF WORD

110 IF I#$="XXX" THEN 180:!REM TEST FOR ENI

120 FL=1+LLIREM GET THE NEXT FOSITION ON
THE STRING

130 LL=LL+LENC(I$)IREM FOSITION ON THE LAS
T LETTER

140 WORD$(FLyLL)=I$IREM FLACE THE WORD IN
THE STRING

150 W(Xy1)=FLIREM STORE THE FOSITION OF T

HE FIRST LETTER OF THE WORD

160 WXy 2)=LLIREM STORE THE FOSITION OF T

HE LAST LETTER OF THE WORD

170 NEXT X

180 REM NOW FOR THE TEST

190 7 "}3>"IREM CLEAR SCREEN AND RING REL
L TWICE

200 7 " FPRESS RETURN WHEN YOU ARE READY
TO START" 7 L INFUT I$

210 FOR Z=1 TO X-1:REM SURBRTRACT 1 FROM X
TO GET THE CORRECT NUMEER OF WORDS ENTERE
I

72

220 FOSITION S,10:7 "XESCAFE 2" WORDS (W(

Zrl)sW(Zs2))5

230 FOR T=1 TO 200:NEXT T!REM TIMING LOOF
FOR A CHANCE TO READ WORD

240 7 ">"!REM REMOVE THE WORD

250 FOSITION 5,10:7 "ENTER THE WORD":FOSI
TION 5912 &

260 INFUT I$:FOSITION Sr14

270 IF I$=WORD$(W(Zs1)yW(Zs2)) THEN 7 "VE

280 7 "WRONG - - THE WORD WAS®

290 7 WORDS(W(Zy 1)y W(Zy2))

300 FOR T=1 TO 200INEXT TIREM ANOTHER TIM
ING LOOF

310 7 "F"INEXT Z

320 FOSITION 4,127 "YOU HAVE FINISHED TH
IS LESSON®

330 END

Line 100 tests the length of I$. If the word entered contains more than ten letters, the
computer will be instructed to print a message to the user and go back tg line 90.

Line 110 tests the word entered for the ending code. If the contents of I$ were equal to XXX,
then the computer would go to the next part of the program. The computer is directed to line 190.
The line above it is the remark line for the routine. Do not send a program to a remark line.

Line 120 finds the position of the first letter of the word in WORDS. If is the first word being
entered, the variable LL would be equal to zero, and adding one to it would make the variable FL
equal to one, which is the first location in WORDS$. If the first word has already been entered, LL
would contain the position of the last letter in the previous word in WORDS$. Adding one to it
would point to the location or position immediately following that word.

Line 130 makes the variable LL equal to the last position in WORDS$ that the entered word
will occupy. We know how long the word entered is; we add its length to the last location the
previously entered word occupied and we know where this word will end.

Line 140 places the entered word into WORD$ using the starting and ending locations it
calculated in the two previous lines.

Line 150 places the location of the first letter of the word into one element of the array. The
variable X is set to the word number that has been entered. It will store the logation of the letter in
the corresponding element of the array.

Line 160 places the ending location of the word entered into the other element of the array.
This location will also correspond with the number for the word entered.

Line 170 tells the computer to repeat this routine until the variable X is greater than 20.

Line 190 clears the screen and rings the bell on the computer twice to attract your attention
to the screen.

73

Line 200 prints the message on the screen and waits until the return key has been pressed. I$
will not be checked after this input, so you do not have to enter anything.

Line 210 begins the test routine. It subtracts one from X to get the number of words that have
been entered. If the program came to this line through line 170, X would be equal to 21. If the
computer came to this line because the user entered XXX , X will be equal to one
more than the number of words entered. In either case, we must subtract one to arrive at the
actual number of words entered.

Line 220 rings the bell on the computer and prints the word in the fifth column of the tenth
row. The first time the computer executes this routine, the Z variable will be set to one. The
computer will look at the W array and take the values placed in the first two parts of the array.
These values tell the computer where the word begins and ends. The computer can now print the
word from WORDS$ using these values.

Line 230 is a timing loop to give the person using the program a chance to view the word. If
the word is not on the screen long enough, change 200 to a higher number. Changing 200 to a
smaller number will cause the word to flash on the screen.

Line 240 clears the screen, removing the word.

Line 250 prompts the user to enter the word that was just flashed on the screen.

Line 260 waits for a word to be entered. The second part of this statement moves the cursor
to a predetermined location on the screen. The program is ready for the next print command. This
eliminates the need for two position commands, one for the correct answer and one for the wrong
answer.

Line 270 checks the word the user has entered. If the word was spelled correctly, the
computer will print VERY GOOD on the screen and go on to line 300.

Line 280 prints the response for an incorrect entry.

Line 290 prints the correct spelling of the word on the screen.

Line 300 is another timing loop.

Line 310 clears the screen for the next entry. The program will continue until all the words
entered have been shown.

Line 320 tells the user that the program is over.

The technique used in this program—placing all the words continuously in one string—is
called packing a string. You will have to decide which method, fielding or packing, is best suited
for your programs.

74

Chapter 10

Repeating Part
of the Program

You will often find parts of your program repeating themselves. To type the same instructions
over and over again is tiring for you and a waste of memory for the computer. Bytes disappear
very quickly even in the most memory-efficient programs.

One way to conserve memory is to place an instruction or set of instructions the computer
will be repeating in aloop. A loop tells the computer to return to a certain set of instructions any
number of times. In the past few chapters, you have used loops for timing routines and input,
keeping the size of the programs down considerably.

USES FOR LOOPS

The computer can process information with remarkable speed. If the computer is also asked
to print information on the screen as it processes it, chances are the computer’s speed will be too
fast for you to read the information. Sometimes listing a program is too fast.

If you are printing instructions for the user on the screen, or presenting a problem you want
the user to read before it is removed, you will need to slow the computer down. A timing loop was
used for this purpose in the Ticker Tape program and the Spelling program. Timing loops tell the
computer to stay at a particular place in the program and do nothing but count from one number to
another. The numbers are not displayed on the screen but serve to slow the printing process
down to allow the user to read information on the screen.

Another loop was used in the Spelling program when the user was asked to enter the words.
Without it, the program would have to contain twenty input commands, twenty prompt lines, and
twenty decision lines, using memory needlessly. A series of inputs can usually be obtained most
efficiently by using a loop.

Beware of looping to infinity! When you construct a loop you must design an exit from the
loop, or you may wait forever for the computer to complete a calculation, read information, or
time an activity, only to discover (after pressing the break key, of course) that the computer hasn’t
passed line 30! A loop with no exit is called an endless loop; they are useful in demonstration
programs, where you want the same program to be repeated all day, or at the end of a program you
want to end without the READY prompt appearing on the screen. The only way to
exit an endless loop is by pressing the break key or system reset button.

75

55 GOTO 55:REM WAIT HERE FOREVER

GOTO

The GOTO command can be used in a loop. The number following the GOTO command s the
line number the computer will process next. The line number can be an actual number, a variable,
or an arithmetic equation.

30 GOTO 100

Following this command, the computer would execute program lines up to 30, then skip all
the lines between 30 and 100. Line 100 is the next line the computer would execute, and unless it
was directed back to the lines it skipped, the computer would never execute those lines.

30 GOTO QUESTION

QUESTION is a variable. The computer will branch to the line the variable is equal to. If
Question has not been set to a value it would be equal to zero. Unless you have a line 0, you will
get an error message.

30 GOTO ANSWER+55

This situation arises when you want the program to branch to a routine dependent on the
answer entered, or on some other calculation. The routines the computer could branch to start
with line 55. The value in the answer variable will be added to 55 and the program will branch to
the line whose sum is ANSWER+55 . Again, if that line does not exist, you will

receive an error message. Using this variation of a GOTO requires some planning and
forethought.

Listing 10-1 (see flowchart Fig. 10-1) demonstrates the three ways the
GOTO command can be used:

Line 40 sets the Question variable to 50.

Lines 45-47 dimension the strings used in this program. Each string contains the maximum
number of bytes it will need.

Line 48 sets up an array with the number of days each month can contain. The data for this
array is the last line of the program.

Line 50 begins the program. After the screen is cleared, the program asks for the month (by
number) you were born in.

Line 55 waits for you to enter this number. It will be stored in the month variable.

Lines 60-65 check this variable. If you entered a number greater than 12, or less than one the
computer will be sent back to line 50.

Line 70 asks for your date of birth.

Lines 75-80 check the date entered for a valid input. If the date is invalid the computer will go
back to line 70. The Month variable contains the number of the month entered, array D contains
the correct number of days for each month in the correct order.

Line 85 checks the number stored in the Date variable one more time. If the date entered is
greater than 20, the program will add one to the Month variable because this user was born under
the next sign.

76

Listing 10-1. Zodiac Program

10 REM LISTING X-1

20 REM ZODIAC

30 REM RY L.M.SCHREIRER FOR TAE ROOKS

40 QUESTION=350!REM LINE THAT FROGRAM REGI
NS

42 SIGN=1500:REM LINE THAT FRINTS INFORMA
TION ON THE SIGN

4% DIM SIGN$(11) s SYMEBOL$ (D) »yCNTRL$ (235) s FL
ANET$ (7)) yCOLOUR$(14) ySTONE$(10)

47 DIM ELEMENT$(3)yA%(1)»D(12)

48 FOR X=1 TO 12:READ DATE:D(X)=DATEINEXT

X
50 7 "YelearY"IFOSITION $910:7 "ENTER THE
NUMEER OF THE MONTH THAN YOU WERE EOR
N IN "$IREM GET MONTH

35 INFUT MONTHIREM STORE IT IN MONTH

60 IF MONTH=>12 THEN GOTO QUESTIONIREM CHE

CK FOR A CORRECT NUMEER

65 IF MONTH=1 THEN GOTO QUESTION

70 FOSITION $y15:7 "ENTER THE DATE OF YOU

R RIRTH "FIINFUT DATE

7% IF DATE<1 THEN 70:REM CHECK FOR A GOOD
DATE

80 IF DATE>D(MONTH) THEN 70

8% IF DATE:>20 THEN MONTH=MONTH+1:REM BORN
UNDER NEXT SIGN

20 IF MONTH=13 THEN MONTH=1:!REM WRAF AROU
NI THE CALENDER

95 GOTO MONTHX100:REM CALCULATE THE LINE
FOR THE SIGN

100 SIGN$="CAFRICORN®" :SYMBOL$="GOAT"

110 CNTRL$="KNEES"

120 FLANET$="SATURN" :STONE$="RURY"

130 COLOUR$="REDI-RLUE-GREEN"

140 ELEMENT$="EARTH"

150 GOTO SIGN

200 SIGN$="AQUARIUS" :SYMROL$="WATER EROY"
210 CNTRL$="LEGS"

220 FLANET$="URANUS" ISTONE%$="GARNET"

230 COLOUR$="DARK RED®"

240 ELEMENT$="AIR"

77

Listing 10-1. Zodiac Program. (Continued from page 77.)

250
300
310
320
330
340
350
400
410
420
430
440
450
500
51,0
520
530
540
550
600
610
620
630
640
650
700
710
720
730
740
750
800
810
820
830
840
850
900
910
920

78

GOTO SIGN
SIGN$="FISCES" { SYMBOLS="FIGH"
CNTRL $="FEET "

FLANET$="NEFTUNE" {STONE$="AMETHYST "
COLOUR$="FURFLE"

ELEMENT$="WATER"

GOTO SIGN
SIGN$="ARIES" { SYMBOL$="RAM"
CNTRL$="HEADl & FACE"
FLANET$="MARS" { STONES$="AQUAMARINE*
COLOURS$="RED~GREEN"
ELEMENT$="F IRE "

GOTO SIGN
SIGNS="TAURUS " $ SYMEOL $="RULL *
CNTRL$="THROAT & NECK®
FLANET$="VENUS" t STONE$="SAFFHIRE *
COLOURS$="RILUE"

ELEMENT$="EARTH"

GOTO SIGN

SIGN$="GEMINI* $SYMEOL$="TWING"
CNTRL$="SHOULDERS» LUNGS & ARMS*
FLANET$="MERCURY* { STONE $="EMERALD "
COLOUR$="GREEN"

ELEMENT$="AIR"

GOTO SIGN
SIGN$="CANCER" $ SYMROL $="CRAR"
CNTRL $="STOMACH"
FLANET$="MOON" $ STONES$="AGATE "
COLOUR$="RLENDS

ELEMENT$="WATER"

GOTO SIGN

SIGN$="LEQ* $SYMROL$="LION"
CNTRL$="HEART "
FLANET$="SUN" $ STONE$="TURQUOISE *
COLOUR$="RLUE~RED"

ELEMENT$="F IRE "

GOTO SIGN

SIGN$="VIRGO" $SYMEOL$="VIRGIN®
CNTRL$="INTESTINES®
FLANET$="MERCURY" ¢t STONE$="FERIDOT "

930 COLOUR$="RED-BROWN"

240 ELEMENT$="EARTH"

250 GOTO SIGN

1000 SIGN®="LIRRS" iSYMROL$="GCALES"

1010 CNTRL$="LOING"

1020 FLANET$="VENUS" ISTONE$="CHRYSOLITE"
1030 COLOUR$="GREEN-RLUE"

1040 ELEMENT$="AIR"

1050 GOTO SIGN

1100 SIGN$="SCORFIO" :SYMBOL$="SCORFION"
1110 CNTRL$="GENERATIVE ORGANS"

1120 FLANET$="MARS" iSTONE$="RERYL "

1130 COLOURS$="RLENDS"

1140 ELEMENT$="WATER"

1150 GOTO SIGN

1200 SIGN$="SAGITTARIUS" :SYMROL$="ARCHER"

1210 CNTRL$="THIGHS"

1220 FLANET$="JUFITER" iSTONE$="TOFAZ"
1230 COLOUR$="GOLD"

1240 ELEMENT$="FIRE"

1500 7 "3°

1510 FOSITION 22:7 "YOUR SIGN IS - "3SIG
N$

1520 POSITIUN 2y4:? "IT IS SYMROLIZED IN

THE - "3SYMEOL$
1530 FOSITION 2467 "TAKE CARE OF YOUR "5
CNTRL.$

1540 FOSITION 2,8:7 "YOU ARE RULELD RY "3F
LANET$

1550 FOSITION 2y10:17 "YOU SHOULD WEAR CL.O
THES THAT ARE *":7 COLOURS$

1560 FOSITION 2,12:7 "AND GEMS OF "3iSTONE
$

1570 FOSITION 2,14:7 "YOUR ELEMENT IS "3E
LEMENT$

1600 FOSITION 251717 "FRESS RETURN TO CON
TINUE "3 INFUT A%

1610 GOTO QUESTION

1700 DATA 31529531930, 31+30+31+31+30,31+3
031

79

(START)

SET
VARIABLE
SET ASIDE
MEMORY

CLEAR
SCREEN
DISPLAY
MESSAGE

GET
MONTH
OF BIRTH

GET
DATE
OF BIRTH

CHANGE
TO NEXT
MONTH

CALCULATE
LINES FOR
SIGN
INFORMATION

'

PLACE SIGN
INFORMATION
IN STRINGS

Y

DIRECT
TO DISPLAY
ROUTINE

REM: 12 SETS OF
SIGN INFORMATION

DISPLAY
SIGN

/

.Y

\ I YES

CHANGE TO

I

Fig. 10-1. Flowchart for Listing 10-1.

INFORMATION7

80

Line 90 checks the value of the Month variable. By adding one, a person born on December
27 would end up with a 13 stored in this variable. If this is the case, the variable will be reset to a
one, for January. This is called a wrap-around routine.

Line 95 calculates the lines containing information for a person born under this sign. Each
sign starts at a line number that is a multiple of 100. By multiplying the number stored in the
Month variable by 100, the program can direct the computer to the correct set of lines.

Lines 100-150 contain information for the sign Capricorn. Pertinent information for this sign
are stored in the strings dimensioned at the beginning of this program. Each string name refers to
the information stored in it. We used the English spelling of colour because

COLOR is a BASIC command. When all the strings have been set, the program
directs the computer to line 1500.

All twelve sets of information are essentially the same. The string variables will contain
information about that sign when the computer proceeds to line 1500.

Line 1500 clears the screen.

Lines 1510-1600 print the information stored in the strings:

SIGN$ is the sign of Zodiac.

SYMBOL$ is the symbol usually designating that sign.

CNTRL$ is the area of the body the sign is said to control.
PLANETS is the planet that rules the sign.

COLOUR$ is the colors best suited for a person born under this sign.
STONES$ is the gem or stone for the sign.

ELEMENT$ is the element of nature ruling the sign.

Line 1600 waits for you to press the Return key. A timing loop here could be too long or too
short, since the user may want to write down the information on the screen. An Input command
leaves the information on the screen for any length of time.

Line 1610 sends the computer back to line 50 since that is the value stored in this variable.

FOR . . . NEXT LOOPS
A For . .. Next loop repeats a set of lines a given number of times.

20 FOR T=1 TO 100:NEXT T

This loop would start setting T to 1. The second command is NEXT T . The
program tells the computer to start with the number one, then add one to the value of T and return
to the FOR statement. It continues to go back and forth between For and Next until
T is equal to 100. When T equals 101, it has exceeded the second value and goes on to the next
program line.

If we place FOR T=1 TO 100 on one line and NEXT T on
another line, the program would execute any and all lines between the For and the Next.

In the above example, we started with T equal to one and ended when it was equal to 100.
Any variable and any starting and ending numbers can be used.

One common error when using the For . . . Next loop is to set a variable to 0 within the loop
instead of before the computer starts the loop. An example of this would be a program where you
give the user three tries to answer a problem. The variable that counts the number of wrong

81

answers must be cleared before each question. If this variable is cleared within the loop, the
program will never know when the three tries are up. Listing 10-2A demonstrates the use of For
. Next loops (see Flowchart, Fig. 10-2).

Line 50 dimensions the strings used in this routine.

Line 60 prints the question on the screen.

Line 70 places the answer in ANSWERS.

Line 80 begins the For . . . Next loop. X will be equal to one, then two, then three, for the
tries the user is given.

Line 90 clears the W variable. This variable tells the user how many tries it took to get the
right answer.

Line 100 adds one to the number of tries. The program waits here for an input.

Line 120 checks the answer entered against the correct answer. If they do not match, the
computer will print a message.

Line 110 checks the answer again. This time if the answer entered matches the answer
stored in ANSWERS$, the program will direct the computer to line 150.

Line 130 sends the computer back to complete the For . .. Next loop. After the loop has been
completed, the computer will print the answer on the screen.

Line 140 routes the computer around line 150 when the user does not answer the question
correctly, and the program would continue with line 160.

Line 160 ends the program.

Listing 10-2B is essentially the same as Listing 10-2A except in lines 80 and 90 (see
flowchart 10-3). In Listing 10-2A, the For . . . Next loop began with line 80. Line 90 set the W
variable to zero. Each time the loop was executed, this variable was reset to zero. If the user
answered the problem correctly on the first or the third try, the results were the same:

VERY GOOD
YOU GOT IT IN 1 TRIES

The second listing changes these two lines. W is set to zero only once; it correctly counts the
number of tries the user needed to answer the question correctly.

For ... Next loops can also be used within each other. This is called nesting. An example of
nesting loops is the Spelling program (Listing 9-5). The timing loop was nested within the loop
that showed the word to be spelled. Listing 9-2B also nested one loop within the other when the
array was cleared. Figure 10-1 shows the proper structure of nesting loops. Note that the inner
loop is completed before the outer loop can go on to the next value. The inner loop is also
completed each time the outer loop is executed. If you do not nest the loops properly, you can
cause the program to crash, or give erroneous answers.

STEPPING

AFor...Nextloop does not have to add one to the variable every time it completes the loop.
You can have the variable incremented by any amount by adding STEP to the
command.

40 FOR Z=10 TO 100 STEP 5

82

SET ASIDE
STRING
SPACE

DISPLAY
QUESTION

STORE
ANSWER

=

CLEAR
“WRONG"
VARIABLE

DISPLAY
ANSWER

it l— iy
Fig. 10-2. Flowchart for Listing 10-2A.
INCREMENT
“WRONG”
VARIABLE

DISPLAY

e e]

83

Listing 10-2A. Answer

10 REM LISTING X-2ZA

20 REM ANSUWER

30 REM RY L.M.SCHREIRER FOR TAE ROOKS

40 ? "Yclear}"

S0 DIM ANSWER$(7)sA%(7)

60 FOSITION 2,5:7 "WHAT IS THE CAFITAL OF
MONTANA*®

70 ANSWER$="HELENA®"

80 FOR X=1 TO 3

20 W=0!REM NUMERER OF WRONG ANSWERS

100 W=W+1INFUT A%

110 IF A$=ANSWER$ THEN 1350

120 7 "TRY AGAIN"

130 NEXT X:? "THE CAFITAL OF MONTANA IS *
s ANSWER$ "

140 GOTO 160

150 7 "VERY GOOD®*:? *"YOU GOT IT IN "sWs"
TRIES®

160 END

Listing 10-2B. Answer, Version 2

10 REM LISTING X-2R

20 REM ANSWER

30 REM RBY L.M.SCHREIBER FOR TAR BOOKS

40 7T "Yclear>"

S0 DIM ANSWER$(7)yA$(7)

60 FOSITION 2+5:7 "WHAT IS THE CAFITAL 0O
MONTANA® %

70 ANSWER$="HELENA"

80 W=0!{REM NUMBER OF WRONG ANSWERS

90 FOR X=1 TO 3

100 W=W+1INFUT A%

110 IF A$=ANSWERY$ THEN 150

120 ? "TRY AGAIN"

130 NEXT X!? "THE CAFITAL OF MONTANA IS
s ANSWERS

140 GOTO 160

150 7 "VERY GOOD®":? "YOU GOT IT IN "sWs"
TRIES®

160 ENI

84

Fig. 10-3. Flowchart for Listing 10-2B.

SET ASIDE
MEMORY

v

SET ROW
AND COLUMN
VARIABLES
TO 1

el

CLEAR
ARRAY
ELEMENT

!

INCREMENT
COLUMN
VARIABLE

RESET
TO 1

Y

REM: ARRAY SIZE 3x4

INCREMENT
ROW
VARIABLE

85

50 c.
60 NEXT Z

The Z variable will be equal to 10 the first time the computer executes line 40. When it
comes to line 60, five will be added to the variable, making it 15. The program will continue adding
five to Z every time it gets to line 60 until Z is greater than 100.

If you want the computer to count backwards, use a negative number after the Step
command.

50 FOR G=TO 50 STEP —5

The computer will make Q equal to 150 the first time it executes the line. The second time Q
will be 145, etc. When Q is less than 50, the computer will continue with the next line of the
program.

Listing 10-3 contains examples of For . . . Next loops.

Line 40 dimensions T$ to five characters. This string holds the target that will fly over the
top of the screen.

Lines 41-45 print the directions on the screen. Once again, the directions will be left on the
screen until the person using the program presses the Return key. At this point, T$ is empty.

Line 50 places some characters in T$. This combination of characters (an asterick, two
slashes and a hyphen) is the target. The screen is also cleared in this line and the cursor is
removed.

Line 55 places hits and misses on the screen. The variables H and M are set to zero at this
time. When these scores have been updated, this line will print the new score.

Line 60 sets the Y variable to 19. This is the column number on the screen for the position of

the rifle. The program then tells the computer to GOSuUB line 600. A
GOSUB command is similar to a GOTO , but the program will tell
the computer to return to this location automatically with a GOSuB (discussed in

detail in Chapter 12).

Lines 70-100 contain nested For . . . Next loops. The first loop begins with line 70. The
variable P1 will be the position of the target on the screen. We will move the target from right to
left. The screen location on the right is 34. The columns decrease as we move to the left. We
use STEP -1 to decrease the value of P1 every time the computer executes this
loop.

Line 80 prints the target, T$, on the screen. The column changes but the row number
remains the same.

Line 90 is a timing loop that also checks the keyboard to see if a key has been pressed. The
computer will remain at line 90 counting from 1 to 25. Every time it adds one to TL, it will check
location 764 in its memory to see if a key has been pressed. The variable K will store the number
the computer has in that memory location. It will then check the variable K against 255. If K is not
255, a key has been pressed, and the computer is directed to the subroutine at line 500. After it

returns to this line, it will GOTO line 100. If a key has been pressed, we want the
computer to exit this For . . . Next loop.
Line 95 continues the For . . . Next loop the computer began in line 90.

86

Listing 10-3. Target

10 REM LISTING X-3

20 REM TARGET

30 REM RBY L .M.SCHREIRER FOR TAR EQOOKS

40 DIM T$(5)

41 7 "FUIPOSITION 79717 "TARGET SHOOT is
a rifle dame. FRESS the RIGHT ARROW
to move the rifle to the"s

42 7 * ridght. FRESS the LEFT ARROW to
move the rifle to the left. FPRESS the SFA
CE BAR () to shoot."

43 FOSITION 1621307 "GOOD LUCK!I!®

4% FOSITION 2y16:7 "FRESS RETURN TO CONTI

NUE® 7 $ INFUT T4%

50 Té="%//~ "17? "Yeclear)"iFOKE 752y+1

55 FOSITION 2,017 "HITS "SsHIFOSITION 250
17T O"MISSED "M

40 Y=19:G0OSUR 400

70 FOR F1=34 TO 0 STEF ~1:REM TARGET WILL
MOVE FROM RIGHT TO LEFT

80 FOSITION F1s5t7 T$s5 tREM DRAW THE TARGE

T ON THE SCREEN

0 FOR TL=1 T0 2H5IK=PEEK(764)IF K<:>285 T

HEN GOSUER 500:GOT0O 100:REM CHECK IF THE F

LAYER FRESSED A KEY

@5 NEXT Tl

100 NEXT F1

110 GOTO S0

500 FORKE 76452558 1IF R=6 0OR K=7 THEN 503
501 IF K=33 THEN 700

502 RETURN

503 IF Y3 AND K=6 THEN RETURN

504 IF Y>34 AND K=7 THEN RETURN

505 FOR P=20 TO 23:F0OSITION YsF:? °® .
NEXT FIREM CLEAR OLD GUN

510 IF K=6 THEN Y=Y-1:{GOTO 350

520 Y=Y+1

550 IF Y42 0OR Y>35 THEN RETURN

400 FOR F=20 TO 23:FOSITION YsF:? "B} >V
FUSINEXT FPIRETURN (tREM ‘Y’ WILL NOT CHANG
E FLACE IT OQUTSIDE THE LOOF

700 FOF (REM THIS ROUTINE WILL NOT RETURN

~-r
*e

87

Listing 10-3. Target. (Continued from page 87.)

705 FOR B=22 TO 5 STEF -1:!REM COUNT RACKW

ARDS UFP THE SCREEN

707 FOSITION Y+LleEB+13:% * "5 IREM ERASE LAS
T RULLET

710 FPOSITION Y+1sB:7? "3TH*5 ¢REM FLACE THE
CONTROL ‘T7 INSIDE THE GUN AND SHOOT AT
TARGET

715 NEXT B

719 REM COMFARE THE FOSITION OF THE LAST
RULLET WITH THE FOSITION OF THE TARGET-SC
ORE 1 FOR A HIT

720 IF Y+1ix=F1 AND Y+1<=F1+3 THEN FOSITIO
N F1yS5:7 "XKXX"(H=H+1:G0TO 7350

725 REM ADD ONE TO THE MISSES

730 FOSITION F1-1»3:7 "MISSED" iM=M+1

750 FOR Tl=1 TO 100INEXT TL:GOTO S50

Line 100 continues the For . . . Next loop that began in line 70. Notice that as P1 decreases
from 34 to 0, the For . . . Next loop in lines 90-95 will be executed at every value of P1.

Line 110 sends the computer back to line 50. The target has moved across the screen and the
user chose not to shoot at it.

Line 500 is the beginning of the subroutine line 90 can send the computer to. Lines 50-110
are one loop. There is no way the computer can get to this line of the program unless it is directed
to it from line 90. This line resets memory location 764 to 255. It has now cleared the key value
fromits memory. This line also checks the value of the K variable for a six or a seven. If K contains
either, the computer will branch to line 503. If K does not contain those values, the computer will
continue to the next line.

Line 501 checks the value of K for 33. If K is 33 the space bar has been pressed, and the user
has fired at the target. The computer is directed to line 700 for the fire routine.

Line 502 sends the computer back to line 90 if the key pressed was not one of the arrow keys
or the space bar.

Line 503 begins the routine for the arrow keys. This line checks the left side of the screen if
the arrow key left has been pressed. The Y variable stores the column position of the rifle. Since
we do not want the rifle to go off the screen, or Y to have a negative value, we send the computer
back (Return) if the left arrow key has been pressed and the rifle is in the second column.

Line 504 checks the right side of the screen if the right arrow has been pressed. Again, we do
not want a cursor out of range error, so we tell the computer to Return if the rifle is printed in the
35th position on the screen.

Line 505 clears the rifle from the old position on the screen before the rifle can be printed in
the new position.

Line 510 once more checks the value of K. If the left arrow key has been pressed, the value of
Y will be decreased by one, and the computer will be directed to line 550.

88

Line 520 increases the value of Y by one. Since the only way the computer could go to these
lines is if the value of K is six or seven, we do not have to retest K in this line. In the last line we
tested K for a six. If the computer got thus far the value of K must be seven.

Line 550 tests Y once more for values too large or too small. If the value of Y is out of range,
the program will direct the computer back to the line that it came from.

Line 600 draws the rifle in the new position and then returns to the line it came from.

Line 700 pops the line the program would return to off its stack. A stack is a place in the
computer's memory where it remembers the line it came from. This routine will not let the
program return to the line that sent it. We do not want an error 10 - argument stack overflow
error, so we pop the line number off the stack. We will discuss stacks and POP

commands in detail in Chapter 12.
Line 705 begins another For . . . Next loop. This time we place the bullet on the screen. It will

start at the bottom of the screen and continue up to the line the target is on. The rows on the
screen decrease as we travel up the screen, so this loop will count backwards.

Line 707 erases the last bullet. The first time through this loop, there will be no bullet to
erase. The next times through the loop there will be a bullet to erase. The Y variable is increased
by one before the bullet is erased. The variable holds the place of the rifle on the screen. The
bullet would be in the next position, between the two lines that create the rifle. B is the row. We
start with 22, which is one row off the bottom of the screen. When we add one to B we are in the
bottom row. Use a semicolon whenever you print in the bottom row of the screen, or your picture
will scroll.

Line 710 prints the bullet on the screen. We will use the graphics character, control
T for the bullet.

Line 715 continues the For . . . Next loop.

Line 720 compares the position of the target with the position of the bullet. P1is the position
of the target. The target is four characters long. If the position of the bullet, which is one more
than Y, is equal to the position of the target, or is not greater than the last character of the target
(P1plus 3) we have hit the target. The target will be replaced with four asterisks. The H variable
will be increased by one and the computer will be sent to line 750.

Line 730 will be executed if the bullet is not within the range specified for the
target. MISSED will be printed above the target and the variable M will be in-
creased by one.

Line 750 contains another timing loop. The computer is directed back to line 50.

Listing 10-4 is a routine for shuffling cards. You may want to use it in any program where you
will be using information, numbers, or words randomly, and do not want to repeat the same one
twice.

This method replaces the item chosen with the last one in the stack, takes the last one and
places it in the location chosen, then decreases the number of items the computer can choose
from. The locations that the information is moved to cannot be disturbed because the computer
will not be allowed to choose those locations.

Line 40 dimensions CARD$ to 13. The numbers and letters that appear on the cards will be
stored here. Card is a one-dimensional array that stores all 52 cards by number.

89

Listing 10-4. Shuffle

10 REM LISTING X~4

20 REM SHUFFLE

30 REM RY L.M.SCHREIERER FOR TAR ROOKS

40 DIM CARD$ (13) s CARD(E2)

50 CARD$="AR2345467890JQK"

60 FOR X=1 TO S2ICARDX)=XINEXT XIREM NUM

RER THE CARIS

70 REM ‘C” IS A TEMFORARY STORAGE VARIARL

E.

80 FOR X=52 TO 1 STEF -1

20 Cl=INT(RNDC(L)XX)+1:tREM CHOOSE A CARD F

ROM 1 TO THE NUMERER LEFT IN THE DECK

100 C=CARD(C1) IREM SWAF THE CARIS STORE T

HE CARD IN LOCATION C1 IN THE VARIARLE C
110 CARD(C1)=CARI(X) !REM TRANSFER THE CAR

[N FROM LOCATION X TO C1

120 CARD(X)=C¢REM FLACE THE CARD REMOVED

FROM C1 INTO LOCATION X

130 NEXT X

140 7 "}elear} " tREM FRINT THE FIRST S CAR

0g

150 FOR X=1 TO 5

160 C=CARD(X) 1C1=CARD(X) IREM GET THE CARD
& THE FLACE IN THE STRING

165 IF C1:x13 THEN C1=C1-13:G0T0O 165

170 IF C1=10 THEN % "1°"5

175 7 CARD$(CL»C1) 5 IREM FRINT THE VALUE 0O

F THE CARD

180 IF Cx13 THEN 200:REM IT’S NOT A DIAMO

NI

190 7 "3."1G0OTO 260

200 IF Cx26 THEN 220iREM IT’S NOT A HEART

210 7 "X F"IGOTO 260
220 IF Cx39 THEN 240!REM IT’S NOT A SFADE

230 7 ">5F"iGOTO 260

240 7T ")XFI"IREM IT’S A CLUR
260 NEXT X

270 END

90

Line 50 places the numbers and letters of the cards into the string. The Ace is the lowest card
and the king is the highest.

Line 60is a For . . . Next loop. The computer will count from 1 to 52. Each time it will place
the value of X into the Card array. Every element of Card will contain a number from 1 to 52.

Line 80 starts the For . . . Next loop that will shuffle the cards. We want to start with a full
deck, so make X equal to 52 and count backwards.

Line 90 picks one of the cards. The computer will be allowed to choose one number from one
to the value of X. The first time the computer executes this line, it can choose any of the 52 cards,
the second time any of 51, etc. The number of the card the computer picks is stored in CI1.

Line 100 places the value of Card at location C1 into the variable C. We will use C as a
temporary storage variable.

Line 110 takes the card at the bottom of the pile and places it in the location we just removed
a card from. X will always represent the bottom of the pile. The first time, the card is taken from
location 52, the second time from 51, etc. Since X is always decreasing, we will not take a card
twice.

Line 120 transfers the card in the C variable to the bottom of the pile. Again, X will be
decreasing, so the number placed in the last element of the array cannot be chosen or replaced
once X has decreased.

Line 130 tells the computer to continue this routine until all the cards have been moved.

Line 140 clears the screen.

Line 150 begins another For . . . Next loop. This time we want only the first five cards in the
array printed on the screen.

Line 160 takes the value of the X element of the array and placesitin Cand C1. C1 will be the
number or letter of the card.

Line 165 checks C1.If C1is greater than 13, C1 will be decremented by 13 until it is less than
or equal to 13.

Line 170 checks the value of C1 again. If it is 10, the computer will print a one on the screen,
and use a semicolon to hold the cursor there for the rest of the card. CARD$ can only contain one
letter or number for each card—the ten card is an exception to the number/suit pattern.

Line 175 prints the number or letter of the card on the screen. Use the semicolon here, also,
to keep the cursor on the same line so the computer can print the suit symbol.

Lines 180-240 test the value of C. This number will indicate which suit should be printed on
the screen. If C is greater than 13, the suit is not a diamond, so the computer will continue with
line 200. If C is less than or equal to 13, we tell the computer to print the diamond. The lines
continue to test Cfor its value in increments of 13 until it prints the correct card symbol. After the
symbol has been printed, the program directs the computer to line 260.

Line 260 continues the For . . . Next loop until five cards have been dealt.

This routine can be changed for any number of elements in the array. It can also be used in
routines that will shuffle the words to be displayed, as in a Spelling program.

91

Chapter 11
Making
Decisions

Programs are not always straightforward calculations of accumulated information. When we
figured out the area of a room, or placed names in our directory, the program ran from start to
finish without any consideration of the information entered by the user. It processed everything in
the order it was instructed.
Some of the programs we've seen so far did take into consideration the entries. The Spelling
program (Listing 9-5) allowed the user to stop the first routine by entering XXX
. When the computer must choose between different program paths, we are talking about
logic or decision making statements . The computer must decide which path to take. This decisionis
determined by information that has been entered, or calculated in the first part of the program.

IF...THEN

The very simplest decision-making statement is an If . . . Then statement. If the first part of
the statement is true, Then the program continues with the statement. These statements are
often used after an input statement to check the answer entered for erroneous answers. Other
times it is used after a computation to decide on the path the computer must take in the program.
Listing 11-1 shows an example of If . . . Then statements (see flowchart, Fig. 11-1).

Line 40 sets the vertical and horizontal locations. The V variable is the vertical location, or
the column. The H variable is the horizontal location or the row.

Line 50 clears the screen and erases or turns off the cursor.

Line 60 prints the ball in the center of the screen. Use control T for the ball.

Line 70 looks at a location in the computer’s memory. This location stores the value of the
key that has been pressed. If no key has been pressed, the number 255 will be stored there. The
computer will not go past this line if no key has been pressed. If this location contains a number
other than 255, the first part of the statement would be false and the computer would go on to the
next line.

Line 80 places the number stored in memory location 764 into the variable K.

Line 90 resets memory location 764. If we did not reset this location, the number placed in K
would remain there also. The computer does not place 255 in that location if a key is not being

92

Listing 11-1. Ball

10 REM LISTING XI.1

20 REM EALL

30 REM RY L.M.S5CHREIRER FOR TAE EROOKS

40 VU=121H=20tREM SET THE VERTICAL AND HOR
IZONTAL LOCATIONS

50 7 "YclearX"!FOKE 752y1!REM CLEAR SCREE
N AND TURN CURSOR OFF

60 FOSITION HyV!? "3T>"IREM FLACE THE BAL
L. INTO THE CENTER OF THE SCREEN

70 IF FEEK(764)=255 THEN 70!REM LOOF ERACK
TO THIS LINE IF A KEY HAS NOT REEN FRESS
ED

80 K=FEEK(764):!REM GET THE KEY FRESSED

20 FOKE 764y255!REM CLEAR THE KEY

100 IF K=6 THEN 200:!REM MOVE THE RALL TO
THE LEFT

110 IF K=7 THEN 250!REM MOVE THE BALL TO
THE RIGHT

120 IF K=14 THEN 300!REM MOVE THE ERALL UF

130 IF K=15 THEN 350!REM MOVE THE RALL IO

WN

150 GOTO 70:REM NOT A VALID ENTRY

200 H=H-1!IF H<2 THEN H=2!REM CHECK FOR T
HE EDGE OF THE SCREEN

210 FOSITION H+1,V:7? * "5 IREM ERASE THE O
LI RALL

220 GOTO 400:REM FRINT THE EBALL ROUTINE
250 H=H+1!IF H=40 THEN H=39!{REM 39 IS5 THE
RIGHT EDGE

260 FOSITION H-1,V:? " "3!REM ERASE THE O

l.I' RALL

270 GOTO 400

300 VU=U-11IF VU=-1 THEN V=0!REM -1 IS OFF

THE SCREEN

310 FOSITION HeV+1:7? " "!REM ERASE THE OL

Il RALL

320 GOTO 400

350 V=U+1:IF V=24 THEN VU=23!REM 23 IS THE
LAST LINE

93

Listing 11-1. Ball. (Continued from page 93.)

360 POSITION HsV-1:7 " "IREM ERASE THE OL
I RALL

400 FOSITION HyV:I? "2T>"3IREM FRINT THE N
EW ONE

410 GOTO 70:REM GET THE NEXT KEY

pressed. It is just a location that stores the number of the last key pressed. Your program must
reset the location to 255.

Line 100 tests the value of K for six. Six is the number for the left arrow key. If the left arrow
key has been pressed, the program will direct the computer to line 200.

Line 110 tests the value of K for seven. Seven is the number for the right arrow key. If the
right arrow key has been pressed, the program will direct the computer to line 250.

Line 120 tests the value of K for 14. This is the number for the up arrow key. If the up arrow
key has been pressed, the program will direct the computer to line 300.

Line 130 tests the value of K for 15. 151s the value of the down arrow key. If this key has been
pressed, the program will direct the computer to line 350.

Line 150 sends the computer back to line 70. If the key pressed was not an arrow key, the K
variable will contain a value other than those tested for in the previous lines. Since we want to use
only the four arrow keys, we will send the computer back to line 70 and let it wait there until
another key has been pressed.

Line 200 begins the routine that moves the ball left. One is subtracted from H. The computer
checks the value of H and if it is less than two, it is reset to two. This way, the ball will not be
placed off the screen.

Line 210 erases the old ball. In the last line we subtracted one from H. To erase the old ball,
add one to H and print a space. The V variable is not affected by moving the ball to the left.

Line 220 directs the computer to line 400.

Line 250 begins the routine that moves the ball right. By adding one to H we will be able to
print the ball in the next location in that row. The value of H1is tested for 40. 39is the last column
of the screen. If the variable contains a 40, it must be reset to 39.

Line 260 erases the ball from its previous position on the screen. Since we calculated the
new position by adding one to the value of H, the computer will subtract one from H to determine
where the ball was last printed. V will not change when the ball is moved to the right.

Line 270 directs the computer to line 400.

Line 300 begins the routine that moves the ball up the screen. V tells the computer which
row to print the ball in. To move the ball up subtract one from V. The computer then tests V for a
negative one. The top row on the screen is zero. If V is less than zero, it will be reset to zero,
keeping the ball on the screen.

Line 310 erases the ball from its old position. This time one is added to the value V and H
does not change.

Line 320 directs the computer to line 400. Line 350 begins the routine to move the ball down.
One is added to V. V is tested for 24. The last row on the screen is 23. If V contains 24, it will be
reset to 23.

94

Line 360 erases the old ball from the screen. Again, V is adjusted for the old position and H
does not change.

Line 400 prints the ball in the new position. All the routines direct the computer to this line.

Line 410 sends the computer back to line 70 where it waits for another key to be pressed.

Because the values of the variable are tested, there is no way the ball can be directed off the
screen. The program also ignores the wrong keys.

In the last program, the If . . .Then statements checked the contents of variables. Strings can
also be tested in a similar way.

The Then part of an If . . . Then statement can be a variable or an arithmetic equation. It can
also be another program statement.

50 IF V=3 THEN 540:REM SEND COMPUTER TO A LINE NUMBER.

50 IF V < > 3 THEN PRINT “WRONG”:REM ANOTHER PROGRAM STATE-
MENT.

50 IF V=6 THEN GOTO PLACE:REM PLACE IS A VARIABLE. YOU MUST
HAVE A ‘GOTO’ BEFORE IT.

50 IF V=7 THEN GOTO A+B:REM A*B IS AN ARITHMETIC EXPRESSION THE
PRODUCT WILL BE THE LINE NUMBER THAT THE COMPUTER WILL
GOTO.

When you use a variable or an arithmetic expression as the line number, be sure the variable
has a value assigned to it, and that the program will not compute a line that does not exist. The
program must also have a GOTO command between the Then and the line number.

EXITS

Another use for If . . . Then statements is to exit a loop. Two examples where you would use
If ... Then as an exit are:

When you are getting information from the user, but do not determine ahead of time the exact
number of entries the user will enter. In the Spelling program (Listing 9-5), the user could enter
up to 20 words, but it is possible to enter only one word. The code XXX signifies the
end of the word list. The program checks each entry to see if it is the final entry. When the code is
entered, the program will leave the routine it is in and direct the computer to the spelling routine.

In another program you may have data you want the computer to read. The amount of data
will vary. A similar code can be used to signify the end of that group of data.

ELSE

ATARI BASIC does not allow the use of an Else command in an If . . . Then statement. In
other BASIC formats, Else is used to direct the computer to follow one instruction if the first part
of the statement is true, and another if it is false.

For example, in a program that will show the tax imposed on your income if your earnings are
above a certain level, where incomes below $25,000 are taxed at 15 percent, and incomes above
$25,000 are taxed at 17 percent, other BASIC formats allow:

215 IF A$="Y" THEN T=.15 ELSE T=.17

95

(START)

SET VARIABLES
FOR HORIZONTAL
& VERTICAL
POSITIONS

CLEAR
SCREEN &
REMOVE
CURSOR

DISPLAY
BALL

GET KEY
VALUE &
CLEAR
REGISTER

IR

SUBTRACT
ONE FROM
HORIZONTAL

RESET
HORIZONTAL
VARIABLE

|

ADD ONE
TO
HORIZONTAL

EDGE
OF SCREEN

YES

RESET
HORIZONTAL
VARIABLE

Fig. 11-1. Flowchart for Listing 11-1.

96

SUBTRACT
ONE FROM
VERTICAL

RESET
VERTICAL
VARIABLE

ADD ONE TO
VERTICAL

RESET
VERTICAL
VARIABLE

DISPLAY
BALL

97

but this must be done in ATARI BASIC as:
215 T=.17:IF A$="Y" THEN T=.15

This, in effect, works the Else part of the statement before the If . . . Then statement. The
variable is set for the higher tax. Should the income be less than $25,000, the variable will be
reset to the lower tax. GOTO is not necessary because T will be properly set in either case and
the program will continue with the next line.

Since the program can use variables as line numbers, the same principle can apply to GOTO
statements. If there are two possible routines that can be used, each dependent on an entry or
calculation, you can set the variable to one of the routines, check the entry, and change the
variable if the computer should use the other routine. The GOTO statement would send the
computer to the correct routine.

400 ANSWER =500: IF C=3 THEN ANSWER=450
410 GOTO ANSWER

ANSWER contains the line number the program will branch to. It will be changed
only if C is equal to 3.

ON ... GOTO

In some programs you may have several routines that can be used, but all will never be used
at the same time, or in the same order. When we want the computer to go to a routine only when
certain conditions are met, we are using selective branching. One example is a program containing
several games or learning modules. When the program is run the screen contains a menu from
which the user can choose a program or unit. (Listing 11-2; see also flowchart in Fig. 11-2).

Line 40 dimensions the strings used in this program. A$ holds the answer, STATES$ holds
the names of the states, PR$ holds the answers to the questions, AN$ is the temporary storage
area for the answer, TS$ holds the state printed on the screen, and Q$ is used in the question
printed on the screen.

Line 50 clears STATES. Since this string has been fielded, we don’t want any garbage
between the states.

Line 60 begins a For . . . Next loop. A$ holds the name of the state when it is read from the
data line.

Line 70 gets the length of the state and places the state into STATES. The For . . . Next loop
was started with O for a purpose; each state field is 14 bytes long. By multiplying X by 14 and
adding 1 we get the location for the first character of that state in STATES. By starting with 0, we
get 1for the first location (1 X 14 + 1 = 1). Multiplying X by 14 and adding the length to it gives us
the last location for that state.

Line 80 continues the For . . . Next loop.

Line 85 clears the string holding the answers for all units of this program. This line also
clears out the old answers from the unit completed in the course of the program.

Line 90 clears the screen and prints the first line of the menu.

Lines 100-130 print the units you can choose from. Line 130 prints four spaces and
backspaces before waiting for an input. The number entered will be stored in the A variable.

98

Listing 11-2. Selective Branching Demonstration

10 REM LISTING XI.Z2

20 REM SELECTIVE EBRANCHING

30 REM RBY L.M.SCHREIEER FOR TAE EOOKS

40 DNIM A$(20)»STATE$(700) yFR$(1000) yANS (2
0)sTS$(14)y Q4 (12)

S50 STATE$(1)=" "ISTATE$(700)=" "ISTATE$(2
)=STATE$

40 FOR X=0 TO 49iREAD A$!REM GET THE STAT
ES

70 L=LEN(A$):STATES
FUT THEM IN THE ST
80 NEXT X

85 FR$(1)=" "IFR$(1000)=" "I{FR$(2)=PR$!?
"Feleark"

20 FOSITION 4510:7 “"FLEASE CHOOSE A UNIT
FROM 1 TO 3°

100 FOSITION 8»12:7 "1) STATES & CAFITALS

(X¥14+1yXX14+L)=A%IREM
RING

110 FOSITION 8+14:7 "2) STATE AREBREVIATIO

NG *®
120 FPOSITION 8s16:7 "3) STATE FLOWERS®
130 FOSITION 19,1817 * "FLINFUT Al

REM 4 SFACES & RACKSFACES

140 ON A GOTO 2005300s400

150 GOTO 130:REM INCORRECT RESFONSE
199 REM STATES & CAFITALS

200 RESTORE 1100:Q¢="CAFITAL"

210 GOTO 410

299 REM ABRRBRREVIATIONS

300 RESTORE 1200:Q$="ARBREVIATION"
310 GOTO 410

399 REM FLOWERS

400 RESTORE 1300:Q$="FLOWER"

410 FOR X=0 TO 49:!READ A%

420 L=LEN(A%) IFR$ (XX20+1 9y X%k20+L) =A%
430 NEXT X

450 C=0tFOR X=50 TO 1 STEF -1:S=INT(RND(1
YRXDH13TS$=8TATE$ ((S5-1)%14+1,5%14)
455 AN$=FR$((S5-1)%20+1y5%20)

460 T """

470 FOSITION 3,57 "What is the "3Q%

99

Listing 11-2. Selective Branching Demonstration. (Continued from page 99.)

480 7 "of "iTS%
490 FOSITION 101087 °
"$LINFUT A%
495 L=LEN(A$) IFOR Z=L+1 TO 203A$(ZyZ)=" "
CNEXT Z
500 IF A$=AN$ THEN FOSITION 15,1537 °“VERY
GOOD®*:C=C+1:GOTO S15
510 FOSITION 15,157 "NOy IT’S "5ANS$
9135 FOR ZZ=1 TO S00!INEXT ZZ
920 PR$C(S-1)I%X20+1ySX20)=FR$((X~1)%k20+1sX
X20) IFR$((X-1)%20+1 y XX20) =ANS$
930 STATE$((S~1)X144+1»5%14)=5TATE$ ((X~1)X
14+1 yXX14) :STATES$ ((X-1)%14+1yXX14)=TE%
940 NEXT X
G600 T "YelearX" IFOSITION S.1587 " YOU GOT
"5Cy" CORRECT."
570 GOTO 85
580 ENID
1000 DATA NERRASKASOUTH DAKOTAsNORTH DAK
OTAsMINNESOTAs KANSASy IOWAYyMISSOURT
1010 DATA TEXASy OKLAHOMA Yy ARKANSAS y ALARAMA
yMISSISSIFFIyLOUISTIANAY TENNESSEE
1020 DATA NEW MEXICOyARIZONA»UTAHy IDAHO,C
OLORATIO s MONTANAy WYOMING » NEVADA
1030 DATA WASHINGTONyHAWAIIL»OREGONy CALIFO
RNIAyALASKAy MAINE y VERMONT » KENTUCKY
1040 DATA RHODE ISLANDsNEW HAMFSHIRE »MAGS
ACHUSETTS» CONNECTICUT » DELEWARE
1050 DATA NEW YORKyMARYLANDyNEW JERSEYyFE
NNSYLVANIAYWEST VIRGINIAsFLORIDA
1060 DATA NORTH CAROLINASVIRGINIAySOUTH C
AROLINAYyGEORGIAYyMICHIGANy WISCONSIN
1070 DATA ILLINDISy INDIANAyOHIO
1099 REM CAFITALS START HERE
1100 DATA LINCOLNsyFIERREsBISMARKST. FAUL
s TOFERKAYDES MOINESy JEFFERSON CITY
1110 DATA AUSTINs OKLAHOMA CITYsLITTLE ROC
Ky MONTGOMERY » JACKSON» BATON ROUGE
1120 DATA NASHVILLESANTA FEyFHOENIX»ySALT
LAKE CITYsEROISEyDENVERsHELENA
1130 DATA CHEYENNEyCARSON CITY»OLYMFIAsHO

100

NOLULUs SALEMy SACRAMENTO » JUNEAUyAUGUSTA
1140 DATA MONTFELIERy FRANKFORT s FROVIDENCE
yCONCORIIy BOSTONs HARTFORD y DOVER y ALBANY
1145 DATA ANNAFOLISy TRENTONsHARRISERURG»CH
ARLESTONy TALLAHASSEE s RALEIGHy RICHMOND
1150 DATA COLUMBIAATLANTAYLANSINGyMADISO
NySFRINGFIELDy INDIANAFOL ISy COLUMRBUS

1199 REM ABBREVIATIONS START HERE

1200 DATA NEsySUyNOyMNyKSy IAYMOy TXyORKyARYA
LyMSs LAy TNy NMyAZyUT sy INsCOrMTyWY s NV

1210 DATA WASHIsORyCAYAKyMEsVTyKYyRIsyNHy M
AryCTyDEsNYs MOy NJsFAYWVUYFLYyNCsVA»SC

1220 DATA GAyMI»WIsILsINyOH

1299 REM FLOWERS

1300 DATA GOLDENRODyFASQUEFLOWER»yWILD FRA
IRIE ROSEsLADY SLIFFPERySUNFLOWER

1310 DATA WILD ROSEyHAWTHORNy BLUEBONNET »y M
ISTLETOEyAFFLE ERLOSSOMy CAMELIA

1320 DATA MAGNOLIAYyMAGNOLIAYyIRIS»YUCCA FL
OWER s SAGUARD y SAGO LILY s SYRINGE

1330 DATA COLUMBINEYRITTERROOTy INDIAN FAI
NTEBRUSH» SAGEBRUSH s RHODODENDIRON

1340 DATA HIRBISCUSyOREGON GRAFE»GOLIDEN FO
FFYsyFORGET-ME-NOTyFINE CONE

1350 DATA RED CLOVERyGOLIDENRODYVIOLETyFUR
FLE LILACYyMAYFLOWERyMOUNTAIN LAURIEL

1360 DIATA FEACH BLOSSOMyROSE s RBLACK-EYED §
USANSVIOLETyMOUNTAIN LAUREL

1370 DATA RHODODENDRONy ORANG ELOSSOMyFLOW
ERING DOGWOOLy AMERICAN DOGWOOD

1380 DATA CAROLINA JESSAMINEyCHEROKEE ROS
EsAFFLE BLOSSOMyVIOLET»VIOLETFEONYsSCARL
ET CARNATION

Line 140 uses the On . .. GOTO command. There are three different line numbers after
GOTO. If A is one, the computer will choose the first line number and goto line 200. If A is two,
the computer will go to line 200. If A is three, the computer will go to line 400. If A is 0 or anumber
greater than three, there are no line numbers the computer proceeds to the next line. The line
following an On . .. GOTO command should return the computer to the beginning of the program,
the menu, or to the input line. Otherwise, it will continue with whatever instructions are on the
next line.

Line 199 is a remark to tell us what the next routine will do. Never send a program to a

101

e SET POINTER
S & STRING]
SPACf FOR CAPITOLS
g#gf\NF‘G SET POINTER
S & STRING
FOR ABBREV.
i "
CALCULATE
LENGTH &
STRING SET POINTER
4 | POSITION o
‘ FOR FLOWERS
PLACE - B
STATE :
IN STRING e
SELECTED
V INFORMATION
CALCULATE
LENGTH &
) STRING
POSITION
PLACE
INFORMATION
IN STRING
DISPLAY
MENU &
GET

NUMBER

Fig. 11-2. Flowchart for Listing 11-2.

102

CLEAR VARIABLE
FOR NUMBER
CORRECT

_’_t

CHOOSE A
STATE

Y

STORE
STATE &
ANSWER

CLEAR
SCREEN
DISPLAY
QUESTION

DISPLAY
“GOOD
WORK"

DISPLAY
CORRECT
ANSWER

ADD ONE
TO NUMBER
CORRECT

[

3

MOVE STATE
& ANSWER
TO END

oo

\

CORRECT

103

remark line. Delete the line if you run out of memory, but you will then have to search through the
entire program to find the GOTO’s statements for that line. A remark can be deleted at any time.

Line 200 restores the data line to 1100. This is the line the first capital appears on. This line
also places the capital in Q$. The routine that asks the questions will use this string.

Line 210 sends the computer to line 410.

Lines 299-310 are similar. Line 1200 is restored and the abbreviation is placed in Q$.

Lines 399-410are for the third routine. This time Line 1300 is restored, and flower is placed
in Q$. Each time the computer comes to the restore command, it points its data pointer to that
line. Each set of answers begins at a particular line, so we can restore the data depending on which
unit was chosen.

Line 410 begins the For . . . Next loop. This time the computer will read from whichever line
the data was restored to. A$ will temporarily hold the answer.

Line 420 gets the length of A$ and places the information into PR$ with a routine similar to
the one used with the states.

Line 430 continues the For . . .Next loop.

Line 450 begins the testing routine. The C variable is used to store the number of correct
answers. The For . . . Next loop begins with 50 and steps backwards. This routine is very similar
to the card-shuffling routine in Chapter 10. The S variable will contain a random number up to the
number of X. TS$ will hold the state the computer picks. To get the correct state, subtract one
from the value of S, then multiply by 14 and add one. S-1is placed in parentheses so the computer
will do that math operation before multiplying S by 14.

Line 455 places the answer into AN$. Again, the value of S is used to determine where the
answer falls in the string.

Lines 460-470 clear the screen and print the question. The user could pick any one of three
programs. We must have a way of identifying which question should be answered. Q$ contains
either capital, abbreviation, or flower. This will tell the user which answer should be entered.

Line 480 prints the state.

Line 490 will accept the answer. There are twenty spaces and backspaces printed on the
screen before the input.

Line 490 puts the length of the answer in A$. The For . . . Next loop which follows pads the
string with spaces. The answer was taken from a string that had been cleared with spaces. Each
answer taken from that string is taken as the complete field of twenty characters. If we did not add
spaces to the entered answer, the computer would be comparing a string twenty characters long
with one that might be only two or eight characters. The two strings would never match and the
user could never get the right answers.

Line 500 compares the answer entered, A$, with the correct answer, AN$. If the answer is
correct, the computer will print: VERY GOOD on the screen, add one to the value
of C and go to line 515.

Line 510 prints the correct answer if the user entered an incorrect answer.

Line 515 is a timing loop to give the user a chance to read what is on the screen.

Line 520 takes the last answer in the string and places it in the location just shown. The
answer for this question is placed in the last location of this string. Since X is decreasing each time
this loop is executed, the last location will always be one less than it was the previous time. Since

104

the computer can only choose a number up to the value of X, it will only choose each state and
answer once.

Line 530 does the same thing for the state. The state just chosen will be replaced with the
last state in the string. The last state will be replaced with the state just chosen.

Line 540 continues the For . . . Next loop.

Line 560 prints the number of questions the user answered correctly.

Line 570 sends the computer back to the menu. Since line 85 clears the PR$, and this takes
some time; we do not need a timing loop before going back.

Line 580 is a precautionary measure. Since the entire program is a closed loop, we do not
need an end statement, but it is better to include one to separate the program from the data.

Lines 1000-1380 contain the data used in the program. Lines 1000-1070 contain the states.
The program uses these lines when it reads the states into STATES.

Lines1100-1150 contain the capitals of all the states. If these capitals are in the wrong order,
or one is missing, the program will generate wrong answers.

Lines1200-1220 contain the two-letter abbreviations for all the states. Again, be sure these
are entered correctly.

Lines 1300-1380 contain the state flowers for all the states. This data must be entered
accurately for the program to work correctly.

The data in the last three sets can be reused as many times as the user chooses the routine
utilizing that data.

105

Chapter 12

Reusing Part
of a Program

In Chapter 11 we discussed routines used selectively by the program. These routines could be
used more than once, but only after the entire routine was completed and the program had
displayed the menu. What happens if we have a routine used by several parts of the same
program? If this routine will be used by the main part of the program, and we expect to come back
to the point we left, we will need some way to keep track of where we are and where we are going.
This could be done by setting a variable to a line number and returning to that line when you have
finished the routine. You could also set a series of If . . . Then statements, or list the routine in
memory wherever you needed it. Each of these methods waste time and memory.

GOSUB . . . RETURN

The best way to handle a routine you will call often is to replace the routine with one
subroutine. A subroutine is part of the program that can be used at any time in the program. When
the computer finishes with the subroutine, it returns to the part of the program it came from.

You will often use a timing routine at several points in your program. You can use one timing
routine as a subroutine and use it from any point in your program. If, for example, you have a
routine that plays a certain melody, and you want to use this routine several times in your
program, you would make the music routine a subroutine.

When the computer finds a GOSUB command, it remembers its line number by placing it in
an area of memory called a stack, and goes to the line number indicated after the GOSUB. It
executes the lines in the subroutine until it encounters a Return command which tells the
computer to go back to the line it came from and continue with the program. Try Listing 12-1 (see
flowchart, Fig. 12-1).

Line 40 clears the screen and prints a message on the screen.

Line 50 contains a GOSUB. The computer will go to line 800, complete that routine, then
return to this line. When the computer RETURNS, it will proceed with the other statement on
this line and print the message on the screen.

Line 60 asks for the number of the month and stores this number in month variable.

Line 70 goes to the subroutine first. When it returns, the computer prints the
prompt: DATE on the screen and waits until the date has been entered.

106

Listing 12-1. Days

10 REM LISTING XII.1

20 REM DAYS

30 REM BY L.M.SCHREIBER FOR TAE ROOKS

40 7 "Yclear>"IFOSITION 4547 "THIS IS A
DEMONSTRATION OF A SURROUTINE"

90 GOSUER 800:7 "FLEASE ENTER TODAY’S DATE

60 T "MONTH (NUMBER ONLY) "3 :INFUT MONTH
70 GOSUR 800:7 "DATE "#:INFUT DATE
80 GOSUER 800:7T "YEAR "5 !INFUT YEAR
20 TDAYS=0!REM CLEAR TOTAL NUMEER OF DAYS

95 IF MONTH=1 THEN 1350

100 FOR ADl=1 TO MONTH-1

110 READ DAYS

120 TOAYS=TDAYS+DAYS

130 NEXT AD

140 IF YEAR/4=INT(YEAR/4) THEN IF MONTH=2
THEN THDAYS=TDAYS+1iREM CHECK FOR LEAF YE

AR

150 THAYS=TDOAYS+IATE

160 GOSUEB B8O00:FOSITION 2,15:7% "TODAY IS T

HE "sTDAYS:"th DAY OF THE YEAR.®

170 ENDI IREM DON‘T LET THE FPROGRAM RUN IN

TO THE DATA

200 DATA 31+28+31930s31+30,319y31530+31+30
vy 31

800 FOR X=10 TO 100 STEF 10

810 SOUND OyXy12y10:REM MAKE THE SOUND

820 FOR Z=1 TO SO0INEXT ZiREM HEAR THE S0U

NI

830 SOUND 0s0»0s0:REM TURN IT OFF

840 NEXT X

850 RETURN :(REM GO EACK TO THE LLINE YOU C

AME FROM

Line 80 uses the same subroutine and then waits for the user to enter the year.

Line 90 clears the TDAYS variable. This variable adds the number of days that have passed
during the current year, and we want to make sure we start with 0.

Line 95 checks the month variable for a one. If it equals one, the computer skips the lines of
the program that total the days in the months, because no months have passed.

107

CLEAR
SCREEN
DISPLAY
MESSAGE

YES

MUSIC
SUBROUTINE

DISPLAY
PROMPT A
MESSAGE

MUSIC
SUBROUTINE

GET
DATE

Y

MUSIC
SUBROUTINE

CLEAR
TOTAL DAYS
VARIABLE

o

Fig. 12-1. Flowchart for Listing 12-1.

ISIT

JANUARY
?

GET DAYS
FOR PAST
MONTH

ADD TO
TOTAL DAYS

MUSIC
SUBROUTINE

MAKE
SOUND

A DELAY
PROGRAM

RETURN

ADD ONE
MORE DAY

ADD THIS
MONTHS
DAYS

Y

MUSIC
SUBROUTINE

DISPLAY
DAY OF

THE YEAR

108

Line 100 begins the For . . . Next loop that totals the number of days that have passed. The
program stops one month before the month that has been entered, because all those days have not
passed.

Line 110 reads the value into the days variable. The corresponding data line contains the
number of days each month has.

Line 120 totals the number of days that have passed. The value of the DAYS variable is added
to TDAYS.

Line 130 continues the For . . . Next loop.

Line 140 checks for a leap year by dividing the year by four. If the year is a whole number, it is
a leap year. The statement checks to see if we have passed February. If the month entered is
greater than two, the computer will add one to the total number of days.

Line 150 adds the value of the Date variable to the total number of days that have passed.

Line 160 uses the subroutine in line 800. The second part of this statement prints which day
of the year today is.

Line 170 ends the program.

Line 200 contains the number of days for each month.

Lines 800-840 form the subroutine for the sound. The computer will count by ten’s starting
with ten.

Line 810 sends the value of X to the sound generator.

Line 820 is a timing routine so we can hear the sound.

Line 830 turns the sound off.

Line 840 continues this For . . . Next loop.

Line 850 tells the computer to return to the line it came from.

A variable used in the main program should not be used in any subroutine unless you know
for certain you will not need the value stored in that subroutine later in the program. If you are
using a variable for a counter within a subroutine, it should be reset to zero as you enter the
subroutine. If it is not reset each time it will continue to count from the last number it counted to.

ON ... GOSUB/RETURN

Like the On ... GOTO command you can selectively branch to a subroutine from the main
program. With an On . .. GOSUB command, the subroutine you enter is determined by the value
of the variable. The computer remembers the line the GOSUB was on, executes the subroutine,
and returns to the next instruction.

Be sure all subroutines end with a return statement, or the computer will continue with the
lines following the subroutine until it comes to the end of the program, finds another return, or
crashes. Also, if you place your subroutines at the end of the program, be sure an end statement is
between the end of the program and the subroutines. If the program does not end, it will continue
into the subroutines until it finds a return statement. At that point, it will crash with an
error— 16—return error.

POP

There are a few occasions when you will want to exit a subroutine without returning to the
line you came from. You may find it necessary to go to another line or routine.

109

Each time the computer begins a GOSUB routine, it places the location of the line it is
leaving in an area of its memory called a stack. When the computer comes to a return command, it
checks the last address on its stack, removes it, and goes to that line. If you leave a subroutine
without using a return statement the computer will not remove the address from its stack. If you
constantly send the computer to subroutines and exit them without return statements, you will
confuse the computer and cause errors or crash. You may also run out of stack space.

When you must go to another subroutine rather than return to the main part of the program,
use the POP command to remove the address from the stack. We used POP in Chapter 10 in
Listing 10-2B. POP is also demonstrated in Listing 12-2.

Line 40 dimensions A$ to 1, and SC to two elements. A$ will be used for the input. SC will
store the scores for two players.

Line 45 sets P to two, the number of players; the roll variable is set to 500, the line number
where the subroutine that rolls the dice begins. Both elements of the SC array are set to zero. We
will print the contents of these elements before placing any numbers in them, so we need to clear
them.

Line 50 clears the screen and prints both players on the screen. The two tabs between the
number 1 and the second player space the words on the screen properly.

Line 55 adds the value of TS to the value stored in the P element of the array. It then prints
the scores of both players on the screen. P will always be a one or a two. This is the line the
program sends the computer to after a person stops rolling the dice or loses.

Line 56 tests the values of both elements of the array to see if either player scored over 500
points. The game ends when one player’s score is more than 500.

Line 60 sets the P variable for the other player. To alternate two numbers in a program,
subtract one of the numbers from the sumof the two numbers you want to alternate. The result
will always be the other number. This line also sets the TS variable to zero. This variable stores
the total score for the player who is rolling the dice. The next command places the number of the
player on the screen.

Line 62 waits for the return key to be pressed. A$ will not be checked after the return key is
pressed.

Line 65 removes any message printed for the last player on the screen.

Line 70 tells the computer to go to the subroutine stored in the roll variable: line 500.

Line 80 is the line the computer returns to. It asks the player if he wants another turn. The
computer waits here until something is entered.

Line 90 checks the contents of A$. If it contains the letter Y the computer is directed to line
70. Since A$ was dimensioned for one character, the user could enter any word beginning witha Y
and be given another turn.

Line 100 checks the contents of A$ for an N. If the letter entered was not an N, the computer
returns to line 80. This loop will be continued until A$ contains either an N or a Y.

Line 110 sends the computer to line 55. The person playing this game has decided to stop
rolling the dice, so the program directs the computer back to the line that totals the score.

Line 120 ends the program. By placing and end statement between the program and the
subroutine, the program can’t continue into the subroutine without being directed there.

110

Listing 12-2. Dice

10 REM LISTING XII.2

20 REM SNARKE-EYES

30 REM BY L.M.SCHREIBRER FOR TAEB ROOKS

40 DIM A$(1)»SC(2)

45 F=21ROLL=50035C(1)=0238C(2)=0!REM CLEAR
THE ARRAY RBREFORE ADIDING ANY SCORES

50 7 "YclearX"iFOSITION 35387 "FLAYER #1

FLAYER #2°

55 SC(FP)=SC(F)+TSIFOSITION S5,5:7 SC(1)s"

"IFPOSITION 25,5:7 8C(2)5" "y

56 IF SC(1)x500 OR SC(2)*500 THEN 700

60 F=3~FiT8=0¢FOSITION 3,9:7 "FLAYER #"iF
(FOSITION 3410

62 7 "FRESS RETURN TO ROLL THE DICE®:INFU
T A e

65 FOSITION 2,197 ""!REM 4 ESCAFE SH
IFT=DELETES

70 GOSUER ROLL

80 FOSITION 2,20:7 "FLAY AGAIN (Y-N)"3 1IN

FUT A%

?0 IF A$="Y" THEN 70

100 IF A$<:"N" THEN 80

110 GOTO 35

120 END

500 FOSITION Ss15:7 *"DICE= "
REM & SFACE & 6 BACKSFACES

510 D1=INTC(RNDC(L)X&)+1iN2=INT(RND(1)X6)+1

13
+

-

$15 FOSITION 11,1537 D1s* s 02

520 IF Di=1 AND D2=1 THEN FOF (FOSITION 2
y 2017 "SNAKE-EYES YOU LOSE®:(SC(F)=0:TS=0?

GOTO SS5tREM NO MORE TURN

525 IF Di=1 OR D2=1 THEN FOF (FOSITION 2»
20:7 "ONE EYE —~ LOSE THIS TURN":!TS=0:GOTO
SHIREM LOSE THIS TURN

G530 TS=TS+D1+D2

540 FOSITION 517:7 "RUNNING SCORE

"$17 TSIREM 6 SFACES & & RACKSFACES

550 RETURN

700 FOSITION 10,22:7 "GAME OVER!!!!"JEND

111

Fig. 12-2. Screen display for Listing 12-3, cups program.

Line 500 begins the dice rolling subroutine. This line prints: DICE and erases
the previous roll.

Line 510 picks a random number for each die. The number can be any number from one to six,
inclusive.

Line 515 prints both dice on the screen.

Line 520 checks the dice for a one. If both contain a one, you have snake-eyes, and lose your
total score and everything you have gained in the game. The contents of your element is set to
zero, and the TS variable is set to zero. The stack is POPped because the person playing will not
be given the option of rolling again. The computer is directed, instead, to line 55 where the scores
for both players are displayed.

Line 525 checks for a one on the dice. If you roll a one, only the accumulated points for that
roll are lost. The stack is POPped because the turn is over, and the TS variable is set to zero. The
computer is directed to line 55 where it can print the scores of both players on the screen.

Line 530 adds the points on both dice to the accumulated points for this turn.

Line 540 prints the total score on the screen. The previous number of points are erased with
spaces and backspaces before the new score is printed.

112

Line 550 returns the computer to the line it came from.

Line 700 is the end of the program. The computer is directed to this line when one score is
more than 500.

Listing 12-3 demonstrates selective subroutines.

Line 40 dimensions the strings used in this program. Try to reuse strings whenever possible
to save memory.

Lines 50-90 print the menu on the screen. This program contains three games for the user to
choose from.

Line 100 directs the computer to one of three subroutines depending on the value of A. If A is
greater than three or less than one, the computer will go on to the next line.

Line 110 directs the computer to line 90 for a new entry. This part of the program continues
to loop until the user has entered a valid number.

Line 150 begins the first game—cups. The menu is removed from the screen.

Lines 160-180 print the directions on the screen.

Line 190 removes the cursor from the screen, and places the graphics for the cup into C$.
S1$ contains three spaces to erase the cup from the screen.

Line 200 draws the three cups on the screen.

Line 210 erases the first cup, draws it one row higher, and places the ball under it.
Use control T for the ball. The TT variableis set to 100 and the computer is sent to a
subroutine beginning at line 1000. TT is used in the subroutine which will be accessed by all three
games. The length of time the computer spends in that subroutine depends on the value stored in
TT.

Line 220 places the cup over the ball. This simulation is done by erasing the cup inrow 14 and
redrawing it in row 15. When the cup is redrawn, the ball will be erased and it will appear the cup
was placed over the ball.

Line 230 chooses a number from one to three. This number determines which cup the ball is
under.

Lines 240-270 contain the For . . . Next loop that erases and redraws the cups on the screen
ten times.

Line 280 turns the cursor on and asks the user which cup the ball is under. The computer
waits until a number is entered before going on to the next line. The number entered is stored in
variable B.

Line 285 checks the value of B. If it is less than one or greater than three, the program sends
the computer back to the previous line.

Line 290 checks the value of B. If it is equal to C the user has chosen the correct
cup. THAT'S RIGHT is printed on the screen. The computer is directed around the
next line.

Line 300 tells the user which cup the ball was under if the number entered was not correct.
Both this message and the previous message will be printed in the same position. This position
was set in the last line.

Line 310 asks the user if he wants to play again. The question asks for a Y or N entry.

Line 320 checks the first position of C$ for the letter Y.

Line 330 checks the first letter of C$ for an N. If the first character is not an N, the computer

113

returns to line 310 and waits for another entry.

Line 340 returns the computer to the line that sent it to this subroutine. The menu will
reappear on the screen.

Line 350 begins the subroutine for the hurky game.

Lines 360-380 print the directions for this game on the screen.

Line 390 chooses a number for the column and row hurky will be hiding in. H is the column
and V is the row. Hurky can be in any column or row from one to ten.

Line 400 places the row of dots in DOT$. Make the dots with control T . The
OH and OV variables contain the values for the old row and old column. When the program starts,
the values are set to one.

Lines410-430 draw the grid the hurky is hiding in. The GT variable is the column where the
grid starts.

Lines 440-460 place the numbers across the bottom of the grid. GT is the column the
numbers will be printed on.

Lines 465 place the directions on the screen.

Line 470 clears the bottom three rows on the screen.

Line 475 prints a message and waits for the column number and row number to be entered.
Both numbers can be entered with one input statement. Enter one number, a comma, then the
second number. The computer stores the first number entered in HH and the second number in
HV.

Line 477 clears the symbol from the old location. The first time the computer comes to this
line, the OH and OV values are one. The dot will be placed in that location on the grid. By
multiplying the values of OV and OH by two and adding eight, the program determines the
location on the grid guessed last.

Line 480 places a cross in the location the user guessed. The same formula is used to
determine the placement of the marker on the grid.

Line 490 clears the last hint from the screen and starts to print the message.

Line 485 checks the variable for the column HH and the variable for the row HV with those
where the hurky is hiding. If the user has guessed the exact location, the program directs the
computer to line 600.

Lines 500-530 print the direction the user should move to find hurky.

Line 560 stores the values of HH and HV in OH and OV so the marker can be erased after the
next guess. The program directs the computer back to line 475 and another guess.

Lines 600-605 print a message on the screen. By printing the message, going to the timing
subroutine, erasing the message and going again to the subroutine, we are able to flash the
message on the screen.

Line 610 gives the user the option of playing again.

Lines 620-640 check the first character in C$ for a Y or an N. A Y repeats the game, and N
returns the user to the menu. Any other letter repeats the question.

Line 650 begins the game for flipping a coin. The screen is cleared, and directions are
printed.

Line 660 erases the cursor for cleaner graphics and animation.

114

Listing 12-3. Trap 300

10 REM LISTING XII.3

15 TRAF 300

20 REM GUESS

30 REM BY L.M.SCHREIRER FOR TAR ROOKS

40 DIM C$(3)»DOT$(19) sy HEC(L7)»S$(17)9514(1
0)yS24(3)»TH(17)

90 7 "Yclear}"!FOSITION 4,10:7 "FLEASE CH

OOSE A UNIT FROM 1 TO 3°

60 FOSITION 12,12:7 "1) CUFPS"®

70 FOSITION 12,14:7 "2) HURKY"

80 FOSITION 12,167 "3) FLIF®

90 FOSITION 19,18:% * "FLINFUT A

tREM & SFACES & 9 BACKSFACES

100 ON A GOSUE 15053509650

110 GOTO S0

150 ? "Yclear}"!REM REMOVE THE MENU

160 7 "HERE ARE 3 CUFS. I WILL FLACE A E

ALL UNDER ONE OF THEM» AND MIX THEM UF.
YOU WILL TELL ME WHERE THE®"S

170 ? "RALL IS."

180 ? 7 "READY??? GOODL...LET’S GO!!*®

190 FOKE 752y11C%=">QRE}":S1¢=" :

200 FOSITION 15,1587 CHIFOSITION 2051587

CHIFOSITION 25,1587 C%

210 FOSITION 15,1537 S1$IFOSITION 15,1487
CEIFOSITION 16,157 "XTX":TT=100:GOSUE 1
000

220 FOSITION 15,1437 S1$IFOSITION 15,1587
Cs

230 C=INT(RNDC(L)%3)+1tREM GET THE NUMERER
OF THE CUF

240 FOR X=1 TO 10

250 FOSITION 15,1537 S1$I1FOSITION 2051537
S1$IFOSITION 25,1537 8§14

260 FOSITION 15,1537 C$IFOSITION 2091537
CHIFOSITION 25,1537 C%

270 NEXT X

280 FOKE 752»01F0SITION 10,2087 "WHERE IS
THE BALL(1+2y3) "3:INFUT BIREM 2 SFPAC
ES & 2 RBRACKSFACES

115

Listing 12-3. Trap 300. (Continued from page 115.)

285 IF B<1 OR R»3 THEN 280
290 FOSITION 10s21:IF B=C THEN ? "THAT’S
RIGHT! ! 1*3G0OTO 310
200 P "IT WAS UNDER CUF "sC
310 FOSITION S.22:7 "DO YOU WANT TO FLAY
AGAIN (Y-N)"5IINFUT C4$
320 IF C$(1s1)="Y" THEN FOSITION 1,207 °®
"1GOT0O 190:REM FRINT 3 ESCAFE-SHIFT-DE
LETEs
330 IF CHs(ly1)<="N" THEN 310
340 RETURN
350 ? "Yeoleart"
360 7 "HURKY IS VERY SHY. HE LIVES IN A
10 X 10 GRID. TRY TO FIND_HURKY RY

ENTERING THE COLUMN AND ROW "5
370 T "NUMERER WHERE YOU THINK HE IS LI
KE THIS =~ 3y4.IF YOU DID NOT GUESS WHERE
HUERKY ISy YOU WILL RBE TOLD "3
380 T "WHICH WAY TO GO.*
320 H=INT(RNDCLIYX10)+1IV=INT(RNDC1)X10)+1
tREM H IS THE COLUMN AND V IS THE ROW
400 DNOT$="XT T T T T T T T T T>":0H=1:0V=
LIREM DH IS FREVIOUS COLUMN - 0OV IS THE
410 GT=10:FOR X=9 T0O 18:FOSITION GT-3sX:7

11-(X-8)IREM Start in the 2th row and su
t the dgrid on the screen.
420 FPOSITION GTyX:7? DOTS
430 NEXT X
440 C=11FOR GT=10 TO 29 STEF 2!REM Fut th
e numbers alondg the bottom too.
450 FOSITION GTeX3:? CsiC=CH+1
4460 NEXT GT
4465 FOSITION 19837 *N"F1FOSITION 451387
"WEFIFOSITION 3191387 "E"5:FOSITION 195X+
137 *S*"3IREM directions
470 FOSITION 22137 ""IREM clear the b
ottom three rows-3 ESCAFE-SHIFT-LELETEs
475 FOSITION S5,2137% "Where am I hiding

"§ 1INFUT HHyHVIREM det the colum

n and row in one INFUT
477 FPOSITION OHX24811-(0QV-8):7 "3TX>"5IRE

116

M CLEAR THE LST GUESS
480 FOSITION HH%X248s11~-(HV-8):7 "3>S)>"5RE
M SHOW THE NEW GUESS
485 IF HH=H AND HV=V THEN 600:!REM chechk f
or a8 match
490 FOSITION Se23:17 ° "5 IF0S
ITION S923:7 "GO "5 !REM CLEAR THE CLUE LI
NE
495 REM COMFARE WHERE HURKY IS AGAINST TH
E ANSWER AND GIVE THE NEXT CLUE
500 IF V<HVU THEN 7 "S0OUTH *5#
510 IF V=HY THEN 7 ®"NORTH "3
920 IF H<HH THEN 7 “"WEST"j
930 IF HxHH THEN 7 “"EAST"§
9460 OH=HH:OV=HVIGOTO 4735 :REM STORE THE FO
SITION JUST ENTERED ANDIN TRY AGAIN
995 REM FLLASH THE MESSAGE
H00 TT=100:FOR TLi=1 TO SIFOSITION 5,237
"YOU FOUND ME!!I1*"33:G0OSUR 1000
605 FPOSITION S5923:7 "510
OSUR 1000:NEXT TL1
610 FOSITION 2217 "L0 YOU WANT TO FLAY
AGAIN (Y—-N) "$LINFUT C$
620 IF CH(1ly1)="Y" THEN 390
630 IF CH(1lsl)=»"N" THEN 610
640 RETURN
650 7 ">i7 "I WILL FLIF A COIN. YOU MUST
GUESS WHAT IF WILL BE. ENTER AN ‘H’
FOR HEADS - A ‘T’ FOR TAILS "
660 FOKE 73241
670 N=INT(RND(1)%X2)+1iREM THINK OF A NUME
ER - 1=HEAIS 2=TAILS
680 H$=" H *i15¢="
"1S1%=" "IG24="
"iTd=" T "
481 REM H$ IS XFMGY ESCAFE~-CNTRL-DOWNARRO
W- 3 BACKSFACES >V)> H »BY ESCAFES-CNTRL-D
OWNARROW 3 BACKSFACES XGNFX
4682 REM 5% IS XFMG) ESCAFPE~-CNTRL-DOWNARROD
W- 3 BACKSFACES X>GNFY ESCAFE-CNTRL-DOWNAR
ROW 3 SFACES

117

Listing 12-3. Trap 300. (Continued from page 117.)

683 REM S1¢ IS 3 SFACES ESCAFE-CNTRL-DOWN
ARROW 3 BACKSFACES >UUUY ESCAFPE-CNTRL~-DOW
NARROW 3 RBACKSFACES 3 SFACES

684 REM S2¢ IS }UUUY IN REVERSE VIDEO

685 REM T¢ IS FFMG} ESCAFE-CNTRL-DOWNARRO
W- 3 BACKSFACES >V} T XRY ESCAFES~CNTRL-D
OWNARROW 3 BACKSFACES GNFY

690 TT=10iFOR X=1 TO 5

700
710
720
730
740
730
760
770
780
790
800
F00

"FIINFUT C$IIF Ce=="T"

FOSITION
FOSITION
FOSITION
FOSITION
FOSITION
FOSITION

FOSITION:

FOSITION
FOSITION
FOSITION
NEXT X

FOSITION

N 9200
DOT$=T$IF N=1 THEN DOT$=H$
FOSITION 101027 DOT%

205
?10
915
920
925
230
250

IF N=1 AND
IF N=2 AN

GOTO 950

10,1087
1051087
10s10¢7
10211387
10,107
101087
10,1087
10,1087
1011237
10,10:7

1091527

FOSITION 10,20:7

FOSITION

AGAIN (Y-N)

960 IF Cé="Y"

2?70 IF CHL="N"

280
290

1000 FOR TL=1 TO TTINEXT TLIRETURN

RETURN
END

e

POA QAFOaR 4

CH="H"
Ce="T"

H$:GOSUR 1000
S4:GOSUR 1000
S14:GOSUR 1000
524 :GOSUR 1000
54 :GOSUER 1000
T$IGOSUE 1000
S$:GOSUR 1000
S1$:GOSUR 1000
524:G0OSUR 1000
S$:GOSUR 1000

"WHAT IS IT (H-T)
ANDN CH<x"H" THE

THEN 930
THEN 930

"VERY GOODO! 11"

DO YOU WANT TO FLAY

"FLINFUT C$

THEN FOSITION 10s152:7 °®
"16G0TO 670:REM FRINT 9 ESCAFE-SHIFT-D
ELETESs

IMING SUBROUTINE

118

THEN 9350

SREM T

Line 670 picks a random number. If the computer chooses a one, the coin will flip to heads, if
it chooses a two, the coin will flip to tails.

Line 680 places the graphics characters into the correct strings. These strings will be
printed when the coin is flipped.

Line 690 begins the For . . . Next loop that prints the coin while it is being flipped.

Lines 700-790 print a string, then go to the subroutine, giving the user enough time to view
the coin while it flips. The TT variable is set to ten. Try changing its value to see the effect a
larger or smaller number will have.

Line 900 waits for the user to call the coin. H should be entered for heads, and T for tails.

Lines 905-910 print the correct side of the coin on the screen. Here is an example of setting a
string to a set of characters then comparing a value. If the value of N is one, the contents of DOT$
will be changed.

Lines 915-920 check the entry in C$ against the face value of the coin (1=heads, 2=tails). A
correct entry sends the computer to line 930.

Line 925 sends the computer to line 950. The answer entered was wrong since it did not
match on the two previous lines.

Line 930 prints the appropriate praise.

Line 950 gives the user the option of playing again or returning to the menu.

Lines 960-980 check the contents of C$. If a Y was entered, the game continues. If an N was
entered, the menu will be printed on the screen. An incorrect entry repeats the question.

Line 1000 is the timing loop. In this program, the second number of the loop can be changed
to any number by setting the TT variable before the program sends the computer to this
subroutine.

119

Chapter 13

Arithmetic
Functions

ATARI BASIC can perform any standard arithmetic function: addition, subtraction, multiplica-
tion, division, raising to a power, etc. When the computer solves an equation, it follows these
priority rules:

1. parentheses

2. raising to a power

3. multiply and/or divide

4. addition and/or subtraction.

If you want a subtraction operation completed before multiplication, you must place the
numbers and/or variables in parentheses. Below are some examples of the way the computer
would solve various types of equations.

442+3—-8=2
8#(53—8)+9=369
47— 2°+(4+5)=63.00000004

As you can see ATARI BASIC does not raise numbers to a power correctly. The correct
answer to the last equation is 63.

In any equation, variables can be substituted for the numbers. If a value has been assigned to
the variable, the computer will use that value. If no value has been assigned, the computer will use
a zero.

INT

In this chapter we will discuss the five most frequently used special functions. When you
want a whole number without the fractional part (the numbers after the decimal point), you will
use the INT (integer) command. This command ignores any numbers following the decimal point
and the variable becomes a whole number, E.g., X=INT(10/3). X would be equal to 3.

Program Listing 13-1 uses the INT command to figure the number of coins to be given as
change.

Line 40 clears the screen and tells the player the computer has $5.00.

Line 50 asks the user how much money will be spent, and waits for an input. The amount
spent will be stored in the Spend variable.

120

Listing 13-1. Change

10 REM LISTING XIII.1

20 REM CHANGE

30 REM BY L.M.SCHREIRER FOR TAR ROOKS

40 ? "Yclear}"!FOSITION 2,57 "YOU HAVE $

5.,00"
S50 FOSITION 2,7:7 "HOW MUCH IO YOU WANT T
0 SFEND "FLINFUT SFEND

60 IF SFEND:>S THEN SO!REM DON’T SFEND MOR
E THAN YOU HAVE
70 CHANGE=S-SFEND!REM GET THE AMOUNT LEFT

80 7 17 "YOU HAVE $"3CHANGE? ! IF CHANGEX10
=INT(CHANGE/0.1) THEN 7 "0"5

89 T * LEFT"

90 CHANGE=CHANGEX100:REM MAKE IT ALL FENN
TES

95 DOLLARS=INT(CHANGE/100) !REM GET THE NU
MEER OF DOLLARS

100 IF DOLLARS<>0 THEN CHANGE=CHANGE-DOLL
ARSX100tREM REMOVE THE DOLLARS

110 QUARTERS=INT(CHANGE/25) {IF QUARTERS
O THEN CHANGE=CHANGE-QUARTERSX25

120 DMES=INT(CHANGE/10)!IF DIMES<>0 THEN C
HANGE=CHANGE ~IIMESX10

130 NICKEL=INT(CHANGE/S){IF NICKEL<X>0 THE
N CHANGE=CHANGE-NICKELXS

140 FENNIES=CHANGE

150 7 7 DOLLARSS " DOLLAR(S) ® s QUARTERSS *
QUARTER(S) "7 DMESs* DIME(S)"yNICKELS " NI
CREL(S)":? FENNIES" FENNIES"

Line 60 checks the amount entered. If more than $5.00 has been entered, the computer is

sent back to line 50.

Line 70 subtracts the amount spent from $5.00 and stores it in the Change variable. This is
the amount of change the user would receive.

Line 80 tells the user how much change the user has. If the cents ended with a zero, like
$1.20, the computer would print only 1.2 as the amount in Change. The program checks the value
of ten times the amount in Change (moves the decimal one place to the right) against the integer of
Change times 10. If the number ends with a zero the result of multiplying the number times ten
will be the same as taking the integer of the number multiplied by 10.

Line 85 prints the last word in the message.

121

CLEAR
SCREEN
DISPLAY
MESSAGE

NO

CALCULATE
THE
CHANGE

|
DISPLAY
THE
CHANGE

v

MAKE IT
PENNIES
CALCULATE
THE DOLLARS

ARE
THERE

DOLLARS
?

SUBTRACT
THEM FROM
THE CHANGE

CALCULATE
THE
QUARTERS

O

ARE

THERE

QUARTERS
?

YES

SUBTRACT
THEM FROM
THE CHANGE

]

W

CALCULATE
THE
DIMES

SUBTRACT
THEM FROM
THE CHANGE

_)_d’

CALCULATE
THE
NICKELS

NO

ARE

THERE

NICKELS
?

YES

SUBTRACT
THEM FROM
THE CHANGE

____9—‘{
DISPLAY
THE
CHANGE

END

Fig. 13-1. Flowchart for
Listing 13-1.

122

Line 90 multiplies the amount stored in Change by 100. This converts the amount to pennies.

Line 95 stores the amount of dollars in the Dollars variable. The dollar value is the amount of
change divided by 100. The integer command stores only the dollars in the variable.

Line 100 tests the value of dollars for a zero. If it is a zero, we will know no dollars have been
removed and the amount stored in Change is less than a dollar. In this case the computer goes to
the next line. If dollars have been removed, the computer must reduce the amount stored in
Change by that amount. Multiplying the value of Dollars by 100 and subtracting that amount from
Change removes the dollars from Change.

Line 110 finds the number of quarters in Change by dividing the value stored there by 25.
The next statement in the line tests the value of Quarters for the amount of quarters removed. If
there were quarters in the change, the program removes them from the value stored in Quarters
by multiplying that value by 25 and subtracting the result from the value stored in Change.

Line 120 finds the number of dimes in Change by dividing the value stored in DMES by 10.
This variable cannot be DIMES because it contains the DIM command. By changing it to DMES
we do not confuse the computer. The next statement in the line tests the value stored in DMES to
see if any dimes have been removed. By multiplying the value stored in DMES by ten and
subtracting that number from the value stored in Change, we arrive at the amount of change left.

Line 130 finds the number of nickels by dividing the value stored in Change by five. The line
further tests the Nickel variable to see if any nickels were removed. The computer removes the
number of nickels by multiplying the number of nickels removed by five and subtracting that
amount from the amount stored in Change.

Line 140 takes the remaining Change and stores it in the Pennies variable.

Lines 150-160 print the amount of change you would receive in dollars, quarters, dimes,
nickels, and pennies.

Notice that in every line the value stored in Change was divided by a value, the computer was
told to take the integer of the value.

ABS

The ABSolute command gives the value of a number without the sign. The absolute of —3
and of +3is 3. It is used when you need to know the difference between two numbers without
regard to the sign. Listing 13-2 is a good example of the absolute command. The program tells a
child user how many spaces a marble is away from a hole without telling the child if the number
should be bigger or smaller.

Line 40 clears the screen and erases the cursor.

Line 50 draws a straight line across the screen. Use control N for the line.
Line 60 draws the sides of the holes. Use control B, space, and control \Y;
for the holes. The For . . . Next loop spaces the holes evenly on the screen.

Line 70 numbers the holes. The C variable increases and is used to number the holes. X
increases by three in the For . . . Next loop, so it would be impractical to use it to number the
holes.

Line 80 chooses a random number from one to twelve. This number will be used in the
example.

123

Listing 13-2. Bounce

10 REM LISTING XIII.Z2

20 REM BOUNCE

30 REM BY L.M.SCHREIRER FOR TAR BROOKS

40 7 "Jclear}"iFORKE 7521

90 FOR X=0 TO 32:FOSITION X»10:7 "XFN}"7:IN

EXT XIREM DRAW THE GROUND

60 FOR X=2 TO 3% STEF 3:iFOSITION Xs11:7 °®

YE VUF"INEXT XIREM DRAW THE HOLES

70 C=1I1FOR X=2 TO 33 STEF 3iFOSITION X+1v
1237 CIC=C+1INEXT XIREM NUMRBER THEM

80 H=INT(RNDC(1)X12)+1IREM THINK OF THE MA

GIC HOLE

20 C=1:FOR X=2 TO 3% STEF 3!FOSITION X+1y

PI7 "XITF"IGOSUR SOOIFOSITION X+1,987 " 3

IF C=H THEN 120:!REM RALL DOWN

100 FOSITION X42y5:7 "X}T>":GOSUR S00!REM

EOUNCING UF

110 FOSITION X+2+5:7 ® "iC=C+1iNEXT XIREM
COUNT THE HOLE IT IS OVER

120 FOSITION X+1,10:7 * 2XT>"I1GOSUR S500:F

OSITION X+1,10:% * "IREM DROF IT IN-SFACE
ESCAFE-CNTRL~RACKARROW >T3

130 FOSITION X+11037 ">NX>"3IREM COVER IT
OVER

132 REM NOW START TO FLAY

135 H=INTC(RNDC1)X12)+1IREM THINK OF THE M

AGIC HOLE

137 REM LET HUMAN GUESS WHICH HOLE WILL O

FEN

138 FOSITION 2,937 "

"IREM CLEAR ALL RALLS

140 FOSITION 2,157 "THE RALL CAN ONLY FA

LL THROUGH ONE OF THESE HOLES. GUESS WHIC

H ONE "FLINFUT G

145 REM ROUNCE TO THAT HOLE

150 C=13FOR X=2 TO 3% STEF 3:(FOSITION X+1
p P17 "XTX"IGOSUR SO0IF C=G THEN 180

160 FOSITION X+1,92:7 * "(FOSITION X+2+5:7
"}TX>":GOSUR 500

170 FOSITION X+2,5:7 " "3C=C+1INEXT X

180 IF G<*H THEN 250!REM CHECK THE GUESS

124

- TRY AGAIN IF IT IS NOT RIGHT

185 FOSITION X+1,9:7 * *
190 FOSITION X+1,10:7 " 2T2X"{GOSUR S00:F
OSITION X+110:7% * "IREM IT’S RIGHT-LET T
HE RALL IN-SFACE ESC~CNTRL-EKAR
200 FOSITION X+1s10:% "2XNX}"5
205 FOSITION 5,207 ""IREM CLEAR THE LIN
E BEFORE FRINTING THE MESSAGE-ESCAFE-CNTR
L-DELETE
210 FOR TL=1 TO S:FOSITION 5,20:7 "YOU GO
T IT*!GOSUR SO0IFOSITION 5,207 °

"IGOSUR S00INEXT TL

220 GOTO 135iREM GO THINK OF ANOTHER NUME
ER
250 N=ARS(H-G)REM SUBTRACT THE GUESS FRO
M THE HOLE

260 FOSITION S,20:7 "YOU ARE "#N3" SFACES

AWAY " 1GOTO 140:REM TELL HUMAN HOW FAR AW
AY - RUT NOT WHICH WAY

500 FOR ZZ=1 TO SOINEXT ZZIRETURN (REM LE
AVE IT ON THE SCREEN

Lines 90-110 bounce the ball across the screen. C is used to count again, after being set to
one before the For . . . Next loop. The loop counts by three, keeping the ball consistent with the
holes. Use control T to print the ball. Adding one to the value of X will place the ball
over the hole. After the ball is printed, the program directs the computer to the liming subroutine.
This gives the user a chance to see the ball in each position on the screen. The ball is erased from
that position and C is compared to the number chosen in the previous line. If both numbers are the
same, the computer goes to line 120. If the two variables are not equal, the computer continues
with the next line. That line prints the ball four rows above the line, and goes to the timing
subroutine. The next line erases the ball, adds one to the counter and continues the loop. The ball
needs to be printed only in the two positions to give the illusion of bouncing. If you change the
length of time in the timing loop, the ball will bounce faster or slower.

Line 120 erases the top of the hole and places the ball in that position. After the timing
subroutine, the ball is erased and the program continues.

Line 130 prints the cover of the hole in the position the ball was in. This creates the illusion
of the ball falling into the hole.

Line 135 begins the part of the program where in the user guesses where the next hole is.
The computer chooses a number from one to twelve.

Line 138 prints a row of spaces above the line. This clears all the balls from the previous
game.

125

CLEAR

SCREEN
REMOVE
CURSOR

J

DRAW
GROUND &
HOLES -
NUMBER
HOLES

4

CHOOSE A
NUMBER

—

BOUNCE
THE
N BALL

OVER
THE NUMBER
?

DROP IN
HOLE

CHOOSE
ANOTHER
NUMBER

T
CLEAR
BALLS
LEFT

)i =

§

GET A
NUMBER

———]

BOUNCE

BALL

YES

Y

SUBTRACT

NUMBER FROM

CORRECT
NUMBER

v

DISPLAY
THAT
NUMBER

4
DISPLAY
MESSAGE

Fig. 13-2. Flowchart for Listing 13-2.

DROP IT
IN

Y

DISPLAY
MESSAGE

®

126

Line 140 prints a message on the screen and waits for a number to be entéred. Be sure to
include the four spaces and backspaces. This line will be reused throughout the game. The last
number entered must be erased from the screen.

Lines 145-170 bounce the ball across the screen. The ball always starts above the first hole
and stops over the number of the hole entered. This routine is similar to the one used in the
demonstration, however, instead of comparing the count to the random number, the count is
compared to the number entered. If both variables are equal, the program directs the computer to
line 180.

Line 180 compares the number entered to the number the computer chose. If the numbers do
not match, the computer goes to line 250.

Lines 185-200 drop the ball through the hole. Lines 190 and 200 are identical to lines 120 and
130. These lines could be made into one subroutine.

Line 205 clears any message on row 20.

Line 210 flashes the message YOU GOT IT on the screen.

Line 220 sends the computer back to line 135 for another game.

Line 250 uses the absolute command. The user’s guess is subtracted from the number the
computer chose. Since we only want the program to state the number of holes the user is away
from the correct hole, and not let the user know whether the guess was high or low, we have the
computer disregard the remainder’s sign, and only print the absolute value of the variable.

Line 260 prints this information on the screen and goes back to line 140 for another guess.

Line 500 is the subroutine used as a timing loop throughout the program.

SQR

The SQuaRe command finds the square root of a number or variable. Unlike its counterpart,

this command does compute the correct value. Its format is:
100 X=SQR(V):REM THE SQUARE ROOT OF V' IS STORED IN ‘X’

RND

RND is the most frequently used special function. It has been used in every program
choosing a random number. The number the computer chooses is between the values of zero and
one. Try Listing 13-3 (see flowchart in Fig. 13-3).

Lines 40-70 choose and print a random number. The numbers printed on the screen are
always less than one, but always greater than zero. Each time that the program is run, a different
set of numbers will be printed.

Lines 90-120 print a number greater than zero. Line 100 multiplies the number by five. The
number printed is now more than zero, but less than five, because the computer is multiplying a
decimal value that is less than one by five.

Lines 140-170 print the integer of the number chosen. The integer command is usually used
with the RND command. It is very rare to need a number with the decimal in a program. The
numbers printed in this routine will be from zero to four.

Lines 190-220 add one to the number chosen. By adding one to the number, we will get a
number from one to five. Any value can be added to the random number. The value added will

127

DISPLAY
MESSAGE

Q)

DISPLAY
MESSAGE

)|

CHOOSE A
NUMBER

L

DISPLAY
IT

DISPLAY
MESSAGE

Y

i
CHOOSE A
WHOLE
NUMBER

y

DISPLAY

IT
10TH
NUMBER

DISPLAY
MESSAGE

CHOOSE A
NUMBER
LESS THAN 5

DISPLAY
IT

10TH
NUMBER

Fig. 13-3. Flowchart for Listing 13-3.

CHOOSE
WHOLE
NUMBER
BETWEEN 1-5

DISPLAY
IT

10TH

NUMBER
?

128

Listing 13-3. Random Nuinbers

10 REM LISTING XIII.3
20 REM RANIIOM

30 REM RBRY L.M.SCHREIBER FOR TAE EROOKS

40 7 "RANDOM"(FOR X=1 TO 10!REM GIVE 10 &
AMFLE NUMBERS

90 N=RNL(1):REM GET A RANDOM NUMEER

40 ? Ny iREM SHOW IT

70 NEXT X

80 REM NOW SHOW IT WITH A MULTIFLE

20 7 7 "MORE THAN O":I!FOR X=1 TO 10

100 N=RNID(1)%5

110 7 NyIREM IT’S MORE THAN O RUT LESS TH
AN 5

120 NEXT X

130 REM NOW WITH THE INTEGER COMMAND

140 7 17 "INTEGER®":!FOR X=1 TO 10

150 N=INT(RNDC(1)%5) IREM ANY NUMRER RETWEE
N O AND 4

160 7 Ny

170 NEXT X

180 REM NOW ALID 1

1920 ® 37 "AID 1 TO NUMBER":!FOR X=1 TO 10

200 N=INT(RNDC(L)XS)+1IREM ANY NUMERER RETW
EEN 1 AND 5 INCLUSIVE

210 7 Ny

220 NEXT X

230 END

increase the number by that value. The numbers from zero to one less than that number will never
be chosen, e.g., X=INT(RND(1)*20)+5 will only return numbers from five to twenty-four.

SGN

The SiGN command sets a variable to — 1 if the variable it checks is negative, and to zero if
the variable is positive. It can be used when you are not interested in the actual value, but are
checking for a negative or positive result. An example is a checking account program that would
need to know if the balance in the account is above zero.

Listing 13-4 checks temperatures for a month and finds the warmest and coldest days of the
month.

Lines 50-70 store the number of the month in the Month variable, then reads the number of
days in each month until it comes to the month entered. The number of days in that month are
stored in the Days variable.

129

CLEAR
SCREEN
DISPLAY
MESSAGE

|

GET
MONTH

L

GOOD
MONTH

‘

GET
DAYS
IN MONTH

Fig. 13-4. Flowchart for Listing 13-4.

|
m ‘
—

ONE DAY'S
TEMPERATURE
YES STORE AS
HIGH AND
LOW
J
YES STORE DISPLAY
NEW LOW > NEW LOW

STORE DISPLAY
NEW NEW
HIGH HIGH
]
MORE
DAYS
END

130

Listing 13-4. Negative Numbers

10 REM LISTING XIII.4
20 REM NEGATIVES

30 REM BY L.M.SCHREIRER FOR TAE BOOKS

40 ? "Yclear)"

S0 7 "ENTER THE NUMEBER OF THE MONTH
"TINFUT MONTH

60 FOR X=1 TO MONTH!READ DAYS!REM READ TH
E NUMEER OF DAYS

70 NEXT X

80 FOR X=1 TO DAYS

20 FOSITION 2+10:7 "WHAT WAS THE TEMFERAT
URE":? " FOR "sMONTHs"-"3Xs" "3 LINF

UT TEMFI!REM 3 SFACES & BACKSFACE

100 IF X=1 THEN LOW=TEMFIHIGH=TEMF{REM FI
RST DAYS SET THE RECORDS

110 IF SGN(TEMP-LOW)=-1 THEN FOSITION 10y
207 "NEW LOW TEMFPERATURE "sTEMFs" "3:LO
W=TEMF

120 IF SGN(HIGH~TEMF)=-1 THEN FOSITION 10
y22¢7 "NEW HIGH TEMFERATURE "STEMPs" "33
HIGH=TEMF

130 NEXT X

150 END

500 DATA 31+28y315309y319309y319y31+y30,31y30
y31¢e DAYS IN THE MONTH

Lines80-130 get the temperature for each day of the month. Line 100 sets the Low and High
variables to the same value on the first day.

Line 110 uses the Sign command. The value stored in Low is subtracted from the value in
Temp. If the difference is a negative number, there is a new low temperature. We are not
concerned with how many degrees colder it was, just the fact that it was colder. The new low
temperature is printed on the screen, and that temperature is stored in Low.

Line 120 subtracts Temp from High. Again, if the result is negative, the new high will be
printed on the screen and the value of Temp will be stored in High.

131

Chapter 14

Working
with Strings

Storing information in a string gives you easy access to the information, lets you move the
information around within the string, and lets you use only the parts of the string you need.

As you learned in Chapter 9, a string is made up of consecutive characters. Each character
occupies one byte of memory. All strings must be dimensioned before they can be used in a
program. One of the features of ATARI BASIC is that the string can be dimensioned to any length
needed for a program as long as you have enough memory to support the string. The program we
will develop in this chapter allows a teacher to enter the names of students in a class and scores
for each student’s tests. The program will also total the scores and print the report card markings
for each student on the screen. The program assumes that the first and last names of the students
will not exceed 20 characters. Listing 14-1 uses many of the techniques presented in the previous
chapters.

Lines 100-120 print the menu on the screen. The user can choose to enter the names of the
students, enter the test scores, or print the students’ scores. The N variable stores the number of
the unit entered.

Lines 125-130 check the value of the variable. If the number entered is too large or too small,
the program directs the computer back to line 120.

Line 135 uses selective branching. The number entered determines the routine the com-
puter goes to.

Line 150 begins the routine to enter the students’ names. The SC variable is cleared. SC
holds the number of each test being entered. Since we are setting up a new class, the number of
tests entered are zero. The S variable holds the number of students in this class.

Line 155 checks the amount of free memory. F holds the amount of free memory. Since we
are allocating 20 bytes of memory per student for the name, we must be sure we have enough
memory to handle all the students. If there is insufficient memory, that message will be printed
and the program will return to line 150.

Line 160 dimensions the amount of memory needed for the students names. We can use this
command more than once in a program if the variables being dimensioned are different.

Line 165 clears student$. The names of the students will not occupy every byte in the string,
so the string must be cleared before it can be used.

132

Listing 14-1. Student Test Scorekeeper

10 REM LISTING XIV.1

20 REM STUDENTS TESTS

30 REM ERY L.M.SCHREIRER FOR TAER EBOOKS

100 CLR (DIM A$C(20)»CLASH(20)37 "X "IFOSIT
ION 4,5:7 "FLEASE ENTER A NUMERER"

105 FOSITION 46+8:7 "1, ENTER NAMES OF ST

ULDENTS ®

110 FOSITION 6,107 "2, ENTER TEST SCORE
Sl

115 FOSITION 69127 *3. FRINT STUDENTS §
CORES"

120 FOSITION 10y14:7 " "3 LINFUT N2

REM 4 SFACES & BACKSFACES

125 IF N<1 THEN 120

130 IF N»*3 THEN 120

135 ON N GOTO 15055005700

150 SC=017 "Yclear> "{FOSITION 3,10:7 "HOW
MANY STUDENTS IN THIS CLASS"s 1INFUT S
155 F=FRE(S)!IF F<5%20 THEN 7 °"INSUFFICIE

NT MEMORY":GOSUR 1200:60T0 150

160 DIM STUDENT$(S%20)IREM SET ASIDE MEMO

RY FOR THE STUDENTS

165 FOR X=1 TO SX20!STUDENT$(XyX)=" "INEX

T XIREM CLEAR OUT THE STRING

170 FOSITION 3,127 "HOW MANY TEST SCORES
WILL YOU RE ENTERING FOR EACH STUDE

NT "$LINFUT TS

175 F=FRE(S)!IF F=TS%X3%S THEN 7 7 "INSUF
FICIENT MEMORY FOR THAT NUMEBER OF STUDENT
S*16G0SUR 1200:G0TO 170

180 DIM TEST$(TSX3XS) IFOR X=1 TO TSX3%8:T
EST$(XyX)="Xs " INEXT XIREM CLEAR THIS STR
ING TOO

1920 7 "X"IFOSITION 4,3:7 "FLEASE NAME THI
8 CLASS"5{INFUT CLASS

200 FOR X=1 TO S!FOSITION 4,6:7 "STUDIENT
"X

205 FOSITION 4,817 ""i(FOSITION 4,8:7 "NA
ME "3 1INFUT A$IREM FRINT ESCAFE~CNTRL-DEL
ETE

210 STUDENT$(XX20-19yXX20)=A%

133

Listing 14-1. Student Test Scorekeeper. (Continued from page 133.)

215 NEXT X

220 L1=LEN(CLAS$) (L2=THEX3I%S

230 GOTO 1100

S00 GOSUR 1000

3935 SC=SC+1IF SC>TS THEN ? "ALL TESTS HA

VE BEEN ENTERED®"::GOSUER 1200:G0OTO 100

340 SE=S5CX3:SE=8E-2!REM OFFSET FOR STARTI

NG & ENDING LOCATIONS FOR THE TEST

945 FOR L=1 TO SIFOSITION 5,107 STUDENTS

(LX20-19yL%X20)

990 FOSITION S5y1237%7 "TEST SCORE (NUMBRERS)
"3 LINFUT SCORE

99% IF SCORE>100 OR SCORE+<0 THEN S5S50!REM

CHECK IF SCORE IS LEGAL

960 TE=(L-1)XTSXIIA$=8TR$(SCORE) ! TEST$(TE

+8Ey TR+SE) =A% INEXT L

969 L2=TE5X3%5:60T0O 1100

700 GOSUR 1000:IF SC=0 THEN 100

703 7 "Yelear}"i? "DIO YOU WANT TO GET A C

LASS AVERAGE OR THE STUDENTS AVERAGES (C-

8) "FUINFUT A%

710 IF S%(1y1)="C" THEN 730

715 IF A$(1s1)<3"8" THEN 705

720 TB=0IFOR L=1 TO S!FOSITION $,8:7 STUD

ENT$(LX20-19sL%X20)

725 TOTAL=0IFOR X=1 TO SC!SE=XX3:!SR=8E~-2!

TOTAL=TOTAL+VAL(TEST$(TE+SRy TR+5E)) INEXT

XITB=TR+TS5%3

730 AVE=TOTAL/SC+0.5AVE=INT (AVE)

733 FOSITION S+10:7 "AVERAGE IS

"FAVEIREM S SFACES & RACKSFACES

740 7 "FRESS RETURN FOR NEXT AVERAGE"§ 1IN

FUT A%

745 NEXT L7 "YclearX}"i? "DO YOU WANT THE

CLASS AVERAGE (Y—-N) "§5!INFUT A$:IF A%

(1»1)="N" THEN 100

750 7 "Yelear>"!? "WHICH TEST D0 YOU WANT

A CLASS AVERAGE OF (1-"38Cs") "§1INFU

TT

755 IF T>S8C THEN 750

760 SE=TX3!SR=8E-2:TOTAL=0IFOR L=1 TO S:T

134

B=(L-1)XTS8X3:TOTAL=TOTAL+VAL(TEST$ (TE+SRy
TER+SE)) ¢NEXT L

765 AVE=TOTAL/S54+0.53AVE=INT (AVE)

770 7 "THE CLASS AVERAGE FOR TEST #*5Ts"
IS*3AVE

775 7 "0 YOU WANT ANOTHER CLASS AVERAGE
(Y-N) "FLINFUT A%

780 IF A$(ls1)="Y" THEN 730

785 IF A$(1s1)<="N" THEN 7535

790 GOTO 100

1000 ? "Yelear}"iFOSITION 2,407 "FLACE TH
E FROFER CASSETTE IN THE®

1002 7 "RECORDER AND FRESS THE FLAY RBUTTO
N ANII RETURN®

1005 OFEN #7+4509"C3"

1010 GET #7sL1IGET #7,5IGET #7yTSIGET #7»
SCI:CLOSE #7

1015 DIM STUDENT$(SX20) » TESTH (TEXIXG)
1020 L2=TSX3%XSI0FEN #7450, 03"

1025 FOR L=1 T0O L1:GET #7+VICLAS$(LsL)=CH
R$ (V) ENEXT L

1030 FOR L=1 TO SX20:GET #7»VISTUDENTS (L y
L)=CHR$ (V) INEXT L

1035 FOR L=1 TO L2:GET #7yVITEST$(LyL)=CH
R&(VI INEXT LICLOSE #7

1040 FOSITION 2+8:7 "TAFE FOR "3iCLASS%
1042 7 "IF WRONG TAFEy ENTER ‘W’ "7 "ENTE
R ‘R’ FOR RIGHT TAFE "5 iINFUT A%

1045 IF A$="W" THEN FPOF :GOTO 100

1050 IF A$<:="R" THEN 1040

1055 RETURN

1100 7 "Yclear)"!? "REWIND THE CASSETTE":
P "FRESS BOTH BUTTONS ON THE RECORDER®
1105 OFEN #7+8,0s"°C1"

1110 FUT #75L1IFUT #7ySIFUT #75TSIFUT #7»
SCICLOSE #7

1115 OFEN #7+850y"°C2 "

1120 FOR L=1 TO L1:FPUT #7yASC(CLAS$(LyL))
FNEXT L

1125 FOR L=1 TO S%20:FUT #¥7yASC(STUDENT$(
LeL))INEXT L

135

Listing 14-1. Student Test Scorekeeper. (Continued from page 135.)

1130 FOR L=1 TO L2:FUT #7yASC(TEST$(LyL))
INEXT LICLOSE #7
1135 GOTO 100

1200 FOR ZZ=1 TO 200INEXT ZZIRETURN

Line 170 enters the number of test scores that will be entered for each student. The number
of tests are stored in the TS variable.

Line 175 checks the amount of free memory available. If there is not enough, a message will
be printed and the program will direct the computer to line 170. Fewer tests will have to be
entered for this class.

Line 180 dimensions TESTS$ to allow three bytes per test per student. The For . . . Next loop
places a character in each byte when it clears the string. When this program stores the
information in the string on tape, it will stop at the last character. It is important that there is a
character in every byte of the string. Use control comma for the character to fill in
bytes.

Line 190 places the name of the class into CLAS$. This way, a teacher could have a tape for
each subject or class taught.

Lines 100-215 place the name of each student into STUDENTS$. The name of each student is
temporarily stored in A$. The part of the string that will contain the student’s name is computed
by multiplying the student’s number (X) by 20, and subtracting 19. This is the first byte of the
string segment that will contain A$. By multiplying the student’s number by 20, the computer
knows where the last byte is for the name.

Line 220 stores the length of CLAS$ in the L1 variable, the length of TEST$ is stored in L2.

Line 230 sends the computer to the line that will save these names onto a cassette.

Line 500 begins the routine to enter the scores of the students. This routine starts with a
subroutine. If you look at Fig.14-1, you will see that the second and third routines need to load the
names of the students before continuing with the rest of the routine. Both routines use the same
subroutines to save memory.

Line 535 adds one to the number of tests stored. If the number is more than the number
entered when the tape was set up, there is no more room in the string for the test scores. A
message will be printed and the program will return to the menu.

Line 540 computes the location in the string where the first character or number of the score
will be placed, and the last place it could be stored. The location in the string is dependent on
which test is being entered. SE contains the ending position and SB the beginning.

Lines 545-560 are the For . . . Next loop that prints the name of each student on the screen,
the test number, and waits for the test score to be entered. The score will be stored in the Score
variable. The score entered will be checked to make sure it is not greater than 100 or less than 0.
If the teacher allows scores greater than 100 (extra credit on tests, etc.), this number will have to
be adjusted to allow for those exceptions. The student’s position in the string is calculated by
multiplying the number of test scores that could be entered by three times one less than the
student’s number. The value of Score cannot be stored in a string as a variable. It is converted into

136

astring with the STR$ command, and stored in A$. The first location and last location of TEST$ is
calculated by adding the displacement values, SB and SE, to the student’s location in TESTS$. The
score can now be stored in TESTS.

Line 565 sets L2 to the length of TEST$. The program directs the computer to the routine at
line 1100 so the scores entered can be stored on tape.

Line 700 begins the routine that displays the scores of the students. First the program
directs the computer to the subroutine that gets the scores from the cassette tape. It checks to
see if there are scores on the tape. If there were no scores entered (SC=0), the program returns
to the menu.

Line 705 clears the screen and asks the user to enter an S or a C. An S should be entered for
the student’s averages; a C to receive the class average for a particular test.

Lines 710-715 check the letter entered, and direct the computer to the proper routine.

Line 720 sets TB to zero. This variable is used to reference the test scores in TESTS$. The
For ... Next loop prints the name of the student. Again, we use a formula to find the name of each
student in the string.

Line 725 sets the Total variable to zero. This variable will be used to total the scores for the
student. The For . . . Next loop in this line is used to add the scores together. SC is the total
number of scores that have been entered. SE is the last location of the test scores for this test. By
subtracting two, the first place of the test score is calculated. Remember: there are three places
for each test. Total is equal to the previous total for this student plus the VALues of TEST$ from
the first location of this test score to the last location. This loop continues until all the scores have
been totalled. TB is incremented by the number of tests that had spaces reserved times three.
Now TB is the reference point for the test scores for the next student.

Line 730 finds the average for the student. The Total is divided by the number of scores
entered, plus 0.5. Adding .5 to a number rounds the number to the next value. Since we want the
average to be a whole number, we take the integer of the average.

Line 735 prints the average on the screen.

Line 740 waits until the return key has been pressed. This holds the information on the
screen until the user is ready to go on.

Line 745 continues the For . .. Next loop. After this loop is completed, the screen clears, and
the user is given the opportunity to ask for a class average. Entering N returns the program to the
menu.

Line 750 begins the second part of this routine. After the screen clears, the user is asked
which test he wants the class average for. Since SC contains the number of tests entered, the
program will always print the number of tests entered.

Line 755 checks the number entered against the number of tests recorded. If a number
greater than the number of tests is entered, the program will repeat the question.

Line 760 adds one test from each student together. SE is the end position for the test score.
By subtracting two, the first position of that test score is calculated. The value of Total is set to
zero.IntheFor . .. Next loop, TB is the reference point for the position in the string for the score
for each student. By subtracting one from the student number and multiplying that number times
the number of tests that could be entered by three, we arrive at the starting location for that
student’s scores. By adding the beginning position to TB and the ending position to TB, we can

137

CLEAR
SCREEN
DISPLAY
MESSAGE

SET ASIDE
MEMORY GET
SPACE NUMBER

OF STUDENTS

CLEAR
SCREEN
DISPLAY
MENU

IS
THERE ENOUGH
MEMORY

NO / pispLAY
MESSAGE

SET ASIDE
STRING
SPACE

{

CLEAR
STRING
SPACE

ISIT
BETWEEN
1&37

Py

4

GET
NUMBER
OF TESTS

ENOUGH
MEMORY
?

DISPLAY
MESSAGE

SET ASIDE
STRING
SPACE

!

CLEAR
STRING
SPACE

r—

Fig. 14-1. Flowchart for Listing 14-1.

138

GET
NAMES
SUBROUTINE

DISPLAY
STUDENT'S
NAME

TOTAL
THE SCORES

Y

CALCULATE

THE AVERAGE

MORE
STUDENTS
?

NO

DISPLAY
MESSAGE

DISPLAY
“ANOTHER
AVERAGE"

CLASS

AVERAGE
?

CLEAR
SCREEN
DISPLAY
MESSAGE

GET
TEST
NUMBER

GOOD
NUMBER

TOTAL
THE
SCORES

Y

CALCULATE
THE
AVERAGE

DISPLAY
AVERAGE

FOR TEST

139

DISPLAY
MESSAGE

OPEN
BUFFER

PUT DATA
ONTO
TAPE

Fig. 14-1. Continued from page 139.

GET
NAMES
SUBROUTINE

DISPLAY
MESSAGE

/

OPEN
BUFFER

GET
INFORMATION
FROM TAPE

SET ASIDE
STRING
SPACE

GET
/ INFORMATION

DISPLAY
CLASS

RETURN

140

i

CLEAR GET

NAMES
SCREEN
DISPLAY SUBROUTINE

MESSAGE

GET
NAME OF
STUDENT

DISPLAY
STUDENT'S
NAME

\ PLACE IN
STRING

MORE

STUDENTS
?
NO
CALCULATE PLACE IN
STRING STRING
LENGTH

(®) -
NO

141

get the score for that particular test. The loop continues until all the students’ scores have been
totalled.

Line 765 divides the Total by the number of students, and adds .5. Again, we add .5 to round
the average. The average is the integer of the average.

Line 770 prints the class average for a particular test.

Lines 775-790 allow the user to request another class average or return to the menu.

Lines 1000-1002 print a message on the screen. This is the subroutine that gets the data from
the cassette tape. The screen clears and you are instructed to place the correct cassette into the
program recorder and press the play button.

Line 1005 opens the port to the cassette for reading. The number seven indicates which
buffer will be used, the four means the computer will be reading the information from the tape, the
zero is a dummy value, the “C:” means the information will be coming from the cassette.

Line 1010 gets the information from the tape. The GET command tells the computer it will
be receiving information. The number seven is the buffer it will be coming through, and each
variable will contain the number the computer received. CLOSE 7 tells the
computer to stop listening.

Line 1015 dimensions STUDENTS$ to the number of students times 20 and TEST$ to the
number of tests times three times the number of students.

Line 1020 sets L2 to the length of TEST$. Buffer 7 is opened again. The computer will read
more information on the cassette. The computer can only listen to one byte at a time.

Line 1025 contains the For . . . Next loop that gets the name of the class stored on the
cassette. It places the character of the number it received into the string. The command CHR$
converts a number into the character it represents.

Line 1030 gets the names of the students in the same manner. Each number the computer
receives will be converted into the letter or character it represents.

Line 1035 gets the test scores for all the students. The buffer is closed and the tape recorder
will shut off.

Lines 1040-1055 prints the name of the class just entered on the screen. If the wrong tape
was entered, the computer will POP the return address off the stack and go back to the menu. If
the correct tape was entered, the program will return to the routine it came from.

Line 1100 is the subroutine that puts the information on the cassette. You are instructed to
rewind the cassette and press both buttons on the recorder. Follow the directions that came with
your program recorder for the proper location for starting your tape.

Line 1105 opens buffer 7 to move the information to the tape. The eight means the computer
will be writing to the tape. The zero is a dummy value, and “C:” tells the computer to write to the
cassette. '

Line 1110 puts the information stored in these variables onto the cassette tape. Notice that
line 1010 is nearly identical to this line. The variables must be stored on the tape in the same
order they will be READ from the tape. Close the buffer and the computer stops writing to it.

Line 1115 opens the buffer again. The values are put on the tape in two separate routines
because the program must close the buffer and dimension STUDENTS$ and TEST$ when it reads
the tape.

Line 1120 puts the name of the class onto the tape. The computer cannot store a string on the

142

tape; it can only store numbers. Each letter in the string has an ASCII value, which is stored on the
cassette. The computer takes each letter and places its ASCII equivalent on the tape.

Lines 1125-1130 use the same method to put the students’ names and test scores on the tape.
After all the information is put on the tape, the buffer will be closed.

Line 1135 directs the computer back to the menu.

Line 1200 is the subroutine the program uses when it pauses.

This program shows you how to manipulate strings. The routines let you enter names and
test scores by combining the old information in the string with the new information being entered.
The routine that prints the averages shows you how to split strings and use only the information
you need. The program also uses four very important string functions: CHR$, VAL, ASC, and
STRS.

ASC

One of the features of ATARI BASIC is its ability to store information on a cassette tape.
This is very handy if you have files you want to use and keep for a program, but you don’t have a
disk drive. The computer can, however, only place numbers on the cassette tape. It cannot place
strings or letters onto a tape.

Look again at lines 1120-1130. These lines put the name of the class, the names of the
students, and their scores on the cassette. This information was in a string. In each case, the
program found the length of the string before it entered this subroutine, and, starting with the first
letter of the string, converted the letter to its ASCII value before putting it on the tape. ASCII is a
numeric equivalent of a character. Every number, character, letter, and graphic has an ASCII

value. The command for getting the ASCII value of a character is ASC(charac-
ter). The character must be a string. If you want to get the ASCII value of just one letter or
character, place that character in quotation marks, e.g., A=ASC(“C") . A would
become 67.

CHR$

Now that we have all the information transferred to the tape, we will want to be able to get it
back into the computer. To put the information back into the string, we reverse the process. Look
at lines 1025-1035. When we get the information from the cassette, we place it into a variable. To
put it back into the string, we convert the value in the variable to its letter or character by getting
the character for that value. CHR$(7) is the command to get the character of a value. The
information in the ASCII table is used in reverse. Note: every number from zero to 255 has a
corresponding character.

STR$

When you entered the test scores, you entered each score into the Score variable. This is a
numeric variable. We wanted to store this value in TEST$. The command
TEST$=SCORE would cause an error message, since a string cannot equal a variable.
Line 560 shows you how to convert a variable into a string. The command STR$ takes the value of
the variable and makes it a string. Now we can place the test score into TESTS.

143

VAL

When we want to add the test scores we cannot use the strings. The computer cannot add
TEST$(1,3) + TEST$(4,6). To the computer, anything in a string is a character that may or may
not be a number. Characters cannot be added, subtracted, multiplied, or divided. Line 725
converts the characters in the string into numbers with the VALue command. This command
looks at the contents of the string; if it is a number, it places the value of the string into a variable,
or treats the value of the string as a variable. If the string contains a number and letters, the
computer will only return the numbers, provided that the numbers were first in the string:

C$="“14 MAIN ST.”
A=VAL(C$)

The variable A would become 14. If the street name was first, an error message would have been
generated.

Listing 14-2. Alphabet

10 REM LISTING XIV.2

20 REM ALFHARETIZE

30 REM RY L.M.SCHREIRER FOR TAER BOOKS

40 DIM WORDG(110) »WH (10D

50 P "FUIFOR X=1 TO 110:WORD$(XsX)=" "INE
XT XiREM CLEAR THE GARBAGE

60 FOR X=1 TO 110 STEF 10:REM FIRST LOCAT
ION OF EACH WORD IN THE STRING

70 READ W%

80 WORD$(XyX+P)=W$

20 NEXT X

100 FOR X=1 T0O 100 STEF 10!REM ALFHARETIZ

E THE WORDS

105 FOR X1=X+10 TO 110 STEF 10IREM SECOND
WORI

110 IF WORD$ (X1 X14+9)<WORDS (XyX+9) THEN W

$=WORDS (X1 s X149) IWORD$ (X1 s X149)=WORDIS (Xy X
+9) IWORDE (X X+9)=WE

120 NEXT X1iNEXT X

130 FOR X=1 TO 110 STEF 10

140 7 WORD$ (X X+9)

150 NEXT X

160 END

200 DATA MONOFOLY »DETECTIVEyEXECUTIVE,FOS
SESSIVEyRESTRICTy SELECTIVEy COMEDTIAN

210 DATA >»>sLIBRARIANyERASUREyBIOLOGY

144

T$="3 Tablespoons”
T=VAL(T$)*3
In this example T would become 9.

In addition to changing strings to numbers, characters, etc., there is one instance when the
computer can view the string numerically. In Listing 14-2, the computer will arrange a group of
words alphabetically. We do not have to change the strings to ASCII code to do this, and when
comparing strings, the computer does not stop at the first letter. This routine could be incorpo-
rated in the first program to alphabetize the names of the students.

Line 40 dimensions WORD$, and W$. All the words that will be alphabetized are stored in
WORDS$. There are eleven words, each ten characters long. W$ is a temporary buffer for the
words.

Line 50 clears the screen and clears the random characters from the string.

Lines 60-90 read the words from the data lines. X is increased by increments of ten during
this loop. Because X is increased by ten, it will also point to the first location in WORDS for the
word that has been read.

Lines100-120 contain two nested For . . . Next loops. The first word in WORD$ is compared
to every word in the string. If any word is less than the first word, it is placed in W$, and the two
words exchange places. The second word is compared in the same way, however, it is not
compared to the first word, since that comparison has already occurred. The loop continues until
every word in WORDS$ is compared to the remaining words in that string.

Lines 130-150 print the words in alphabetical order on the screen. The two hearts in the data
line are first, because their ASCII value is less than any letter. If two words begin with the same
letter, the second letter of that word will be compared.

145

Finding
and Trapping Errors

The most necessary steps in programming are testing and debugging your program. When you
write a program, you are familiar with its functions, what answers or input are expected, and how
the program is supposed to work. The best test for a program is to let someone who is unfamiliar
with the program sit at the computer and try it. It's amazing how many errors can appear when
someone else is using your program. Of course, there are some errors the program cannot check
for. If you enter 50 instead of 5, you would not expect the program to ask, ARE YOU
SURE? after every question. On the other hand, there are ways to check for errors before
or after they happen, have the program recover from the error and avoid having the user
experience an error at line 100 message.

TRAP

The trap command does exactly what it sounds like: it traps an error and allows the program
to recover fromit. Go back through some of the programs in this book. One very common error is
to type a letter instead of a number when the program asks you for an input. In Listing 15-1, the
program is looking for the the number that represents a month rather than the name of the month.
The trap command at the beginning of line 50 returns the program to this line if a number is not
entered. Try to enter JUNE instead of 6 . The program will not crash,
but go back to line 50 and wait for a correct input.

Trap is placed at the beginning of Line 50 because it needs to be reset after each use. If it
were on Line 45, the program would repeat line 50 only once. If a word was entered the second
time, the program would crash.

If your program needs to trap another input later in the program, you will need to reset the
Trap command at that point in the program. Otherwise, the program will go to the line number in
the last Trap command it encountered. Also, the Traps should not be set until after all the other
parts of the program have been debugged. If you set a Trap for an input, and somewhere in the
program you have a cursor out of range error, the computer only knows that when it comes to an
error it should go to a particular line number, so it will go there.

If, for example, you have Trapped all your input, and feel you do not need to use the Trap in
the remaining routines, you can stop it by setting it to 40000.

146

550 TRAP 40000
Any errors that occur after this line will be prominently displayed on the screen.

TESTING FOR ERRORS

As you write your program, you should test every routine and subroutine as they are added
to the program. Every possible situation should be taken into account, and, since this is not
always possible, try to test for the extreme situations: the largest value you expect, then a larger
value, the smallest value that should be entered, then an even smaller value. Decimals, negative
numbers, and letters should be Trapped or checked in the program. Check that the For . .. Next
loops exit when and where they should. If there is another exit from the loop, does it branch to
the correct routine? Does the GOSUB command return to the correct line, and if a program goes
toa subroutine because of an If . . . Then statement, is the program correctly branched around the
unnecessary lines?

If you are testing a routine that is not working correctly, you should first try setting the break
points at the line you think is causing the error. Also set a break point before you enter the
routine.

A break point is set by placing STOP in the line. Check the variable for
accuracy before the program enters the routine by printing it as direct statements.
Type CONT . When the program stops again, check the variables. If the variables
were correct when the program entered the routine, and now are incorrect, the error is occurring
somewhere between the two stop commands. Set a new break point befween the two in the
program and try it again. Keep dividing the area between the correct line and the incorrect line
until you can pinpoint the error. Of course, if at the second stop the variables were correct, the
error occurs after this line. Move the break point to the end of the routine and try again. After you
correct the error, remove all stops. It is a good practice to remove only one or two breakpoints at
a time and continue to check the program for accuracy.

Sometimes the program is operating correctly, but it is not running smoothly. It is taking too
long to arrive at the answer, the screen does not look clean, the messages are garbled. These are
weak points of the program. If it appears the program is running too slow, try to tighten the code

Listing 15-1. Trap

10 REM LISTING XV.1
20 REM TRAF

30 REM BY L.M.SCHREIRER FOR TAE EOOKS
40 7 "Yclear)}"i!? "THIS DEMONSTRATES THE

TRAF” *
50 TRAF S0:FOSITION 3,5:7 "ENTER THE NUME
ER OF THE MONTH THAT YOU WERE BORN™IN™

" A
y

60 INFUT MONTH
70 END

147

or instructions by placing more than one statement on a line. (Watch out for If . . . Then and
GOSUB statements. They can cause problems when tightening code.) Place subroutines near the
top of the program. ATARI BASIC starts at the top of the program and works its way down when
looking for a line number. It will find line 10 much faster than line 1000.

PLAYING COMPUTER

Sometimes the best way to find an error that does not readily appear by using the previous
methods is with a pencil and paper. Make a list of the variables being used. Write down the line
number you are starting with and the value of the variables at that time. As you work each line of
the program, change the variables the way the computer would. Calculate the equations and check
the lines the program would direct the computer to. When you go to a subroutine, mark the line on
the paper, work the subroutine, and return to that line. Many errors are made by reusing a
variable in a subroutine you are using in the main program. The program returns to the main part
of the program with a different value and causes an error later in the program. Othertimes, you
find the program has been directed to another line and never returns to the original line at all! By
working the program as the computer would, it is easy to spot such mistakes. This method can
also alert you to routines used within the program that could be made into subroutines.

148

Sights
and Sounds

The best feature of the ATARI computer is its graphics and music capabilities. No other
microcomputer on the market today can match the built-in functions of this computer. When used
to fullest potential, they enchance any program you may write.

MODES

Most computers have only one or two graphics modes—text and graphics, or text, high
resolution graphics, and low resolution graphics. These can sometimes be mixed, but on some
systems they cannot. The ATARI has 14 modes, nine easily accessible from BASIC. The other
five can also be accessed from BASIC if you have a good understanding of the computer’s
operating system. This chapter will deal with the modes that can be set with BASIC.

If you look very carefully at your screen, you will see that every character is made up of tiny
dots (Fig.16-1). These dots are calledpixels. The fewer pixels turned on at one time, the finer the
resolution and the better the graphics.

Mode 0 is the text mode. Each character is made up of an 8 x8 dot matrix. You can place 40
characters ina line and have 24 lines of text on the screen. This mode can use the built-in graphics
characters discussed in the earlier chapters. It is a crude, but very acceptable, way of mixing text
with graphics.

Mode 1 provides a larger color print. The letters are larger because each character uses a
16x8 dot matrix. Four differently colored letters or characters can appear on the screen. By
changing the characters between the quotation marks to lower and/or reverse video you change
the color of the character on the screen.

Mode 2 has even larger print. These characters use a 16 x 16 dot matrix. As with mode 1, the
characters can appear in any four colors by changing the format in the print statement. The larger
letters in these two modes are easier to read, and are especially good when designing programs
for young children. The only drawback is that the lowercase letters cannot be used with the
uppercase letters. (The solution is in the next chapter!)

Mode 3 is a low-resolution graphics mode. Up to four colors can be displayed on the screen.
One of these four colors will be the background color. Each point is an 8 X8 dot matrix. No text can
be displayed on the screen except for the lower four lines in the text window.

149

Fig. 16-1. Pixels or dots used to form the letter Q.

Modes 4 and 5 offer slightly higher resolution. Each point is a 4 x4 dot matrix. You can have
80 points on a line and 40 or 48 lines on the screen. In mode 4 you can only display two colors,
where mode 5 lets you use four colors. If you do not need four colors, mode 4 is the better choice
since it uses less memory.

Modes 6 and 7 are higher resolution. Each point is a 2x2 dot matrix, giving you 160 points
on a line and 80 or 96 lines on the screen. This is a good mode for many graphics applications.
Again, mode 6 uses less memory than mode 7 because it supports only two colors while mode 7
has four.

Mode 8 is the highest resolution available on the ATARI. Each point can be turned on or off.
There are 320 points on a line and 160 or 192 lines on the screen. This mode uses the most
memory and line mode 8 can only display one color and luminance.

Each mode except for mode 0 offers you the use of a text window—four lines of mode 0—at
the bottom of your screen. If you prefer to use the entire screen for your graphics, add 16 to the
mode number:

10 GRAPHICS 20:REM MODE 4 WITH NO TEXT WINDOW

Occasionally you may hear of a reference to modes 9-11. These modes do not appear as
legitimate modes on the earlier ATARI computers. They can be made available through the GTIA
chip. This chip can be purchased from your local computer store.

Once you have decided on the graphics mode that will best suit your program, you will want
to place the characters or designs on the screen. If you are working in mode 1 or 2, the easiest and
the most direct way is to print the characters on the screen. If you print in these modes you will
see your message at the bottom of the screen.

The computer must be told to print the message in the graphics area, or it will print in its
most logical place—the text window. Where else should text go?

The ATARI computer has eight Input/Output Control Blocks (IOCBs) used for storing and
transferring information. Some of these blocks are reserved by BASIC for a particular operation.
IOCB 6 is used to transfer information to the graphics portion of the screen. Run Listing 16-1.

150

Listing 16-1. Graphics Demonstration

10 REM LISTING XVI-1
20 REM GRAFHICS DEMO

30 REM RY L.M.SCHREIEBER FOR TAR BROOKS

40 GRAFHICS 2:REM NO NEED TO CLEAR THE SC
REEN - SETTING THE GRAFHICS DOES IT

50 FOSITION S,1:7 #6535 "HELLO®

60 END

Line 40 places the computer in graphics mode 2. This mode displays large colored letters
and leaves a text window at the bottom of the screen. There is no need to clear the screen when
the program changes modes. The screen is cleared automatically.

Line 50 uses the position command to place the message in the fifth column, first
row. #6 tells the computer to transfer the message through this buffer. This buffer
has been reserved by BASIC for the graphics screen. The message appears in yellow on the
screen. Try displaying the message using reverse video, lower letters, and reverse lower letters.
The message will appear in a different color each time.

Try the same program with different graphics modes. You will notice that the graphics
modes 4 through 7 display either a yellow and blue block or two yellow blocks. As the resolution
gets finer, the blocks move to the top and left of the screen. In order to see anything on the screen
in mode 8, the position has to be changed to 25, 11. Instead of yellow or blue blocks, only two
white dots appear on the screen.

The graphics command automatically opens the screen editor to IOCB 6.

COLOR

The value following the color command determines what will be plotted on the screen. In
modes 1and 2, the value will produce a character in one of four colors. Any number from 0 to 255
can be used in this mode. However, since the computer only recognizes 64 characters in these
modes, the character will be dependent on which character set you are using at the time—the
uppercase letters and numbers or lowercase letters and graphics (see Listing 16-2).

Line 40 sets the computer to mode 1, the smaller colored letters.

Lines 50-80 plot the character specified after the color command in four different locations.
In each line the number after Color is different.

When you run this program, you should see a diagonal line of A’s in four different colors.
Add POKE 756,226 to line 40.

40 GRAPHICS 1:POKE 756,226

Now the screen will display a diagonal line of lowercase a’s on a screen filled with yellow
hearts. POKE 756,224 restores the uppercase letters, or press the system reset
button.

Modes 3-8 are not text modes. The computer will recognize only two or four colors in these
modes. The color value will be 0-3. If the value is larger, the computer will reduce the number to a

151

Listing 16-2. Four Colors

10 REM LISTING XVI-2

20 REM SHOW AN ‘A’ IN FOUR DIFFERENT COLO
RS

30 REM BY L.M.SCHREIBER FOR TAE EROOKS

40 GRAFHICS 1:!REM NO NEED TO CLEAR THE SC
REEN -~ SETTING THE GRAFHICS DOES IT

90 COLOR &SIFLOT 595

60 COLOR 97:FLOT 646

70 COLOR 193:FPLOT 7.7

80 COLOR 225!FLOT 8.8

90 END
number within the range. The color shown on the screen will be determined by the value stored in
the color register. COLOR tells the computer which color register to use.
SETCOLOR

The command SETCOLOR changes the color in a particular color register.

The color registers store a value that corresponds this to a particular color. This command works
with the Color command. There are five color registers (0-4). Each color register can be set to
any one of sixteen colors and eight different brightnesses. The format for this command is:

SETCOLOR 0, 8, 10

where 0 is the color register, eight is the color and ten is the brightness. The Table 16-1 shows
which color registers are used in the various graphics modes, and the colors with their corre-
sponding numbers.

The luminance or brightness increases with its value. A zero value is almost black, and 14 is
nearly white. The brightness number must be an even number.

When a new value is placed in a color register, everything on the screen drawn or printed
with that color register changes colors to reflect the new value in that register. This includes the
background color as well as the characters or drawings on the screen (see Listing 16-3 and Fig.
16-2).

Line 40 sets the computer to graphics mode 2 with no text window. The X variable will be
used later in the program to change the color in a color register.

Line 50 prints the message to the graphics portion of the screen. Even though there is no
text window, the program still needs the 6 to print to the screen. The message will be displayed in
three different colors.

Line 60 checks to see if the start button has been pressed on the computer. When it is
pressed, the location 53279 will hold a 6. If that location does not hold a 6, the computer will
subtract the value of X from 15, use the new value of X when it changes the color in the color
register, and proceed to the timing loop. This line will be repeated until the start button has been
pressed. Each time this line is executed the value of X will alternate between 5 and 10. This will
make the word continue flash on the screen. When the start button is pressed, the computer will
proceed to the next line.

152

Table 16-1. Default Colors for Graphics Modes/Decimal Values for Colors Used in SETCOLOR.

Graphics Color : Decimal
M't))de Default Setcolor Register Color Value
0 light blue Setcolor 1,x,x character white/
dark blue Setcolor 2,x,x background black 0
black Setcolor 4,x,x border gold 1
orange 2
1and 2 orange Setcolor 0,x,x character red/orange 3
green Setcolor 1,x,x character pink 4
blue Setcolor 2,x,x character lilac 5
red Setcolor 3,x,x character purple 6
black Setcolor 4,x,x character dk. blue 7
It. blue 8
36,7 orange Setcolor 0,x,x point plotted turquoise 9
green Setcolor 1,x,x point plotted pale blue 8
blue Setcolor 2,x,x point plotted blue-green 10
black Setcolor 4,x,x background, border green 11
green/
4 and 6 orange Setcolor 0,x,x point plotted yellow 12
black Setcolor 4,x,x background, border yellow/
green 13
8 light blue Setcolor 1,x,x point plotted orange/
dark blue Setcolor 2,x,x background green 14
black Setcolor 4 ,x,x border pale
orange 15
Line 70 clears the screen.
Line 80 prints the message THE END on the screen in different colors. If there

was a program, the program would start here.
Line 90is an endless loop. It keeps the message on the screen until the system reset button

is pressed.

Listing 16-3. Flash

10 REM LISTING XVI-3

20 REM FLASH

30 REM RY L.M.SCHREIRER FOR TAE ROOKS

40 GRAFHICS 18:X=5IREM NO TEXT WINDOW

50 FOSITION 2:5:7 %63 "FPRESS start TO
CONTINUE®

60 IF FEERK(S53279) <6 THEN X=15-X!SETCOLOR
29Xy 43FOR ZZ=1 TO 2003INEXT ZZ:GOTO &0

70 GRAFHICS 18:REM CLEAR SCREEN

80 POSITION 2+5:7 #65"THe erl"

20 GOTO 90:REM LOOF UNTIL SYSTEM RESET IS
FRESSED

153

SET
GRAPHICS
MODE

|

SET
VARIABLE
TO OTHER
COLOR

\

DISPLAY
MESSAGE

Y

START

PRESSED
?

CALCULATE
ALTERNATE
COLOR

CHANGE
COLOR

REGISTER

DELAY
PROGRAM

~

Fig. 16-2. Flowchart for Listing 16-3.

DISPLAY
NEXT
MESSAGE

<

WAIT FOR
SYSTEM A
RESET

Y

>
Z

REMARK—CHANGE COLOR
FOR ONE WORD ON SCREEN

154

If you do not choose a specific color for each register, ATARI BASIC will assign the
following colors to the five color registers:

Color Register Default Color
0 orange
1 green
2 dark blue
3 red
4 black

PLOT

This command displays a point in a particular place on the screen, The screen is layed out
like a grid, with 0,0 being the upper left-hand corner and the highest number of columns, the
highest number of rows in the bottom right-hand corner. In graphics mode 4, this would be 79,39.
Remember: the columns and rows start with 0 and must end with one less than the total number of
points. The plot command uses the color set in the last color command it executed. Try Listing
16-4:

Line 40 sets the computer to graphics 5—medium resolution in four colors. There will be a
text window at the bottom of the screen.

Line 50 sets color register 0 to light orange, color register 1 to light violet, color register 2 to
medium turquoise, and color register 4 to medium blue. Color register 3 is not used in this mode.

Line 60 takes the color stored in color register 0 and plots a point in the eighth column and
eighth row. The register the computer looks at is one less than the number following color.

Listing 16-4. Plots

10 REM LISTING XVI-4

20 REM FLOTS

30 REM RY L.M.SCHREIERER FOR TAER ROOKS
40 GRAFHICS S

90 SETCOLOR 0¢2y10:SETCOLOR 1+6510:SETCOL
OR 4y8s4:SETCOLOR 251046

60 COLOR 1:FLOT 8,8

70 FLOT 10+5

80 FLOT 12,9

20 COLOR 2:FLOT 16,10

100 FLOT 24-5

110 PLOT 30,27

120 COLOR 3:FLOT 77,30

130 FLOT 34,40

140 FLOT 65,2

150 COLOR O:FPLOT 26913

160 END

155

Lines 70-80 plot two more points with the color stored in register 0—light orange.

Line 90 changes the color the computer will use when plotting the next points. The computer
will now use the color stored in register 1—violet.

Lines 100-110 use the same color. The computer will continue to use violet until it receives
another color command.

Lines 120-140 change the color the computer uses to the color stored in color register
2—medium turquoise. This color will also be used as the background color in the text window.

Line 150 plots a point in the 26th column and the thirteenth row. It uses the color stored in
color register 4. Since this is the background color for the graphics display, this point will not
show up on the screen.

DRAWTO
The DRAWTO command is used with the plot command. The plot command

places a color in one location on the screen. The DRAWTO command draws a line from the point
specified in the plot command to the point indicated in the DRAWTO command. If the row or
column is the same in both commands, the line will be straight. If both row and column are
different, the line will be jagged. The higher the resolution, the less jagged the line will appear.

Listing 16-5 generates designs on the screen using the plot and DRAWTO commands(see
Fig. 16-3). Try it in different modes and compare the design differences.

Line 40 begins a For . .. Next loop. The value of S tells the computer how much to increment
or add to the value of X in the next For . . . Next loop. The smallest value S can be is 2, the largest
is 10.

Line 50 chooses a random number for the color used in the design. The color can be any value
from 0 to 15. The color register 0 will be set to that color. The luminance or brightness of the color
will remain the same throughout the program. COLOR 1 tells the computer to plot
with the color stored in color register 0.

Line 55 chooses a random point on the screen. P will be the column. It can be any number
from 0 to 159 (there are 160 columns in graphics mode 7). P1is the row; it can be any number from
0 to 95 (there are 96 rows with no text window in graphics mode 7). The new point will be picked
each time the computer starts to draw a new design.

Lines 60-90 draw the design from the random point to the top and bottom edges of the
screen. The number of points skipped between each line is determined by the value of S. To give
the illusion of the design being drawn with one sweeping movement, the second line that draws
the lines across the bottom of the screen subtracts the value of X from 159. In lines 70 and 80 the
lines start with the random point, and end at the edge of the screen. The first number following
DRAWTO is the column, the second is the row.

Lines 100-130 draw the design from the random point to the left and right edges of the
screen. The lines are drawn from top to bottom along the right side of the screen, and from bottom
to top along the left side. This completes the design on the screen.

Line 1401is a timing loop. Without it, there would not be enough time to see the design on the
screen.

Line 150 completes the first For . . . Next loop. Another design will be drawn on the screen.
This time there will be larger spaces between the lines.

156

Listing 16-5. Lines

10 REM LISTING XVI-3

20 REM LINES

30 REM RY L .M.SCHREIRER FOR TAE ROOKS

40 FOR $=2 TO 10

4% GRAFHICS 23:REM GRAFHICS 7 WITH NO TEX
T WINDOW

950 C=INT(RND(1)X16):ISETCOLOR 0+C»4:COLOR
1:REM FICK A COLOR FOR EACH FATTERN

59 P=INT(RND(1)X1460) IF1=INT(RNI(1)%X?6)IRE
M START IN A DIFFERENT FOSITION EACH TIME

60 FOR X=0 T0O 159 STEF SIREM THE WIDTH OF
THE SCREEN - STEF RBY NUMBER IN 40

70 FLOT FsFLIDRAWTO XryO:REM DRAWTO ACROSS
THE TOF

80 FLOT FPyF1IDRAWTO 159-Xy95¢REM AND ACRO

55 THE ROTTOM

90 NEXT X

100 FOR X=0 TO 9% STEF S

110 FLOT FesFLIDRAWTO 159y XIREM DRAWTO THE
RIGHT EDNGE

120 PLOT FyFPLIDRAWTO 09 95-XIREM AND UF TH

E LEFT

130 NEXT X

140 FOR ZZ=1 TO S00INEXT ZZIREM VIEWING T
IME

150 NEXT SIREM MAKE THE LINES FURTHER AFA
RT

160 GOTO 40:REM KEEF AT IT UNTIL SOMEONE
FRESSES THE EBREAK KEY

Line 160 makes this program an endless loop. By sending the computer back to line 40, the
program will continue until someone presses the break key.

This program uses only one color. The color was randomly chosen in line 50. By adding one
more line to this program, you can have the design drawn in two colors.

XIO (FILL)

95 C=INT(RND(1)*16):SETCOLOR 1, C, 4:COLOR 2

The plot and DRAWTO commands are fine for single lines, but it could be very time-
consuming if you want an entire area filled with one color. The XIO command will fill an area with

157

START

\]

SET
VARIABLE

FOR SPACING

!

V
SET

MODE

GRAPHICS

!

CHOOSE

REGISTER

COLOR-SET

CHOOSE
STARTING
POSITION

|

START
LOOP FOR
SCREEN
WIDTH

i

DRAW LINE
TO TOP
OF SCREEN

|

CALCULATE
BOTTOM
POSITION

NO

e

START
LOOP FOR
SCREEN EDGE

F>—F

DRAW LINE
TO RIGHT
EDGE

)

CALCULATE
POSITION
FOR LEFT
EDGE

l

DRAW LINE
TO LEFT
EDGE

DESIGN
DONE
?

ALL
NINE
SPA(’;INGS

DRAW LINE
TO BOTTOM
OF SCREEN

Fig. 16-3. Flowchart for Listing 16-5.

158

one color if you give it the outline of the area you want filled. The following procedure must be
followed for the command to work properly.

1. Plot the bottom right corner.

2. DRAWTO the upper right corner.

3. DRAWTO the upper left corner.
4. Position the pointer (cursor) to the bottom left corner.

5. POKE 765 with the color register number you want used.
6. X10 18, #6,0,0,"S:”
Let’s use this in Listing 16-6.
Line 50 changes the color in color register 0 to dark blue. COLOR 1 tells the

computer to use this color with the plot statements.

Line 60 follows the first step. The point in the bottom right corner is plotted.

Line 70 is the second step. A line is drawn from the first point to the point indicated in this
line.

Line 80 is the third step. Another line is drawn from the last point to the new one. When a
DRAWTO follows another DRAWTO command, the computer does not need another plot
command. The point indicated in DRAWTO will be the starting point for this line.

Line 901is step 4. The position command places the cursor at the twentieth column in row 30.
Nothing will appear on the screen at this point.

Line 1001is step 5. This command places 1at memory location 765. The computer checks this
location to determine which color register to use. A different color register can be used to outline
the shape and to fill in the shape.

Line 110is step 6 and completes the shape. X018 tells the computer to fill in
a shape. #6 indicates the graphics display, the two zeroes are dummy values,
and S: is the device the computer will fill.

As you can see, the computer filled the screen within the area defined with our selected
color. To be used properly, the command can only color an area that has not been colored. The
computer starts on the left and continues to place the selected color in each pixel until it reaches a

Listing 16-6. Fill

10 REM LISTING XVI-é

20 REM FILL

30 REM BY L.M.SCHREIRER FOR TAE EROOKS
40 GRAFHICS 7

90 SETCOLOR 0+824:COLOR 1
60 FLOT 50530

70 DRAWTO 60515

80 DRAWTO 20515

90 FOSITION 20530

100 FOKE 765»1

110 XID 18+s#6,0+0,"G2¢"

159

pixel containing a color. It returns to the left and starts again. It will continue until it reaches the
row the cursor was positioned in. The computer will stop filling the area at this point. If no points
have been colored on a line, the program will loop continuously. Press the break key or system
reset button if you suspect this has happened.

POSITION

The position command places the cursor at a location on the screen. In the graphics modes
this command works just as it does in the text mode, however, there is no visible cursor. As we
saw earlier, the print command can be used with the position command in modes 1 and 2 to print
text onto the screen. In other modes, it will only print colored squares.

SOUND

The ATARI is equipped with four separate and distinct sound generators. Each voice or
sound generator requires its own sound statement. The format for producing sound is:

SOUND 0, 150, 10, 12

The first number is the voice, register, or channel used in producing the sound. It can be any
number from 0-3. The second number is the pitch of the sound. Any number from 0-255 can be
used. The smaller the number, the higher the sound. The ATARI is capable of producing tones
from lower C to high C, over three octaves. The third number is the distortion of the tone. Any
even number from 0-14 can be used. A 10 gives the purest tone and is usually used for music.

Other numbers produce buzzing, crackling, and explosion sounds. Of course, if the tone or
pitch is set very high, the buzz may sound more like a ring. The fourth number sets the volume.
One is the softest and 15 is the loudest. Zero will turn the sound generator off. If you are using
more than one sound generator, it is not recommended that the total of the volumes used exceed
32,

This sound system gives you the ability to have the computer play four-part harmony as well
as produce several unrelated sounds simultaneously. Listing 16-7 plays a prelude by J.S. Bach.

Line 40 sets the graphics mode to 0 and erases the cursor. The graphics mode is set in this
program because it will be using the plot and DRAWTO commands. The graphics command opens
the screen for these commands. Without it, we would receive an error 133 message.

Line 50 dimensions the four strings that hold notes for this prelude. Although the sound
command needs numbers, it is much easier to store the music in a string.

Lines 60-70 put the title page on the screen. In line 70 the color is 42. This is the ASCII value
of the asterisk. The plot and DRAWTO commands make a frame of asterisks on the screen.

Line 90 places 35in the TL variable. TL is used as the duration or length of time the note will
be held. To shorten the time, make the value of TL less. Increasing its value lengthens the
duration of the notes.

Lines 100-107 place characters in the four strings. Each character represents a note. These
characters must be entered exactly, or the music will not sound right.

Line 108 directs the computer twice to the subroutine at line 1000. This subroutine plays the
notes stored in the four strings. Executing this subroutine twice will play the strings twice.

Lines 120-165 repeat the last procedure. The strings are filled with the notes, and the

160

Listing 16-7. Prelude

10 REM LISTING XVI.7

20 REM MUSIC

30 REM RY L.M.SCHREIERER FOR TAE ROOKS

40 GRAFHICS O

S50 DIM S0%(192),514(1922)y524(192)983$(192

)
60 FOSITION 51087 "1.FPRELUDE AND FUGUE I
N C MAJOR®

70 COLOR (42):FL.0T 2y2:NRAWTO 38y 2 DRAWTO
3821 1 DRAWTO 2y 21 IDRAWTO 242

20 TL=35

100 S04$="=@<Q=@< " =R<Q=@<HL " Lwl [
1585HSSCRUALAURN /5/@ /S5 /7 HLHYHLH=UMU=U U@

QueeauAEedM1I Y@ML YHUNUHU MU

101 S04%(979y192)="HlwlHIw1Q*1*Q*1*QrrQrr

UlrlULlrlQUALIHQHIEHERL=R- 15933555/ (S5((R(H

HHHEE- 5@ HHHRAQRAQ "

102 S1%="ugy"uu" """ "yuyyuy

0 e 0 S 9 3 s |

1lluyyugyuyy®

103 S14$(975192)="

'.-II\UQBB. Il

1111111113111 "

104 S2%="Yrrrrvrvvvrvrvvvrvvvsrvyrrvvryyry
PIY Y YV Y Y I I I Y IIYYIYYY YR YIY Y I YYIIYIIIYIYYY
yYyYPYYYYVPPIYIIYYYYYYOYYYPY Y S

105 524(92791922)="

URHRRQAAQAAAARAR

QUMUUQAAHHRR®

106 S3%$="0AAA""

e YY

107 S3$(979192) =" —-—=" " P UAAAA

BN EYYYY RNy N e iE ANy

108 GOSUR 1000:GOSUE 1000

110 S0%="<R<QR<HHHHERHRL@HRLLLL
HY1'H'1'L1glLlglHY1IYH Y1 '@CLULCLUL=<RA<55@
CHHEE < HHLLHH@@LL >

111 S0%$(27+1922)="CCHHLLLHHHHH/S/@/ 5/

161

Listing 16-7. Prelude. (Continued from page 161.)

S=(F(~-(/=@= Q=@M M IRCQTRIH
E EHE [5SH3<5RAUARQUQA/S/@/ S5/
112 S1$="Yvrrovvve vy XLLCLvvsrvvvrvovvvrvyy
T E Y Y Y I I Y I I Y I Y Y Y Y Y I YYIYYIYYIIIIYYIYIIYYY
yryyyeyvyervyvvyrrvyyvvyyy rHH"
113 S1%8(9723192)y="LLY Y Y ¥¥YErtAY
AR Y S TN P N Y
wuwlllllllllssssrre
114 S246="""""4A656A66666AYAAYA
gyygyyyyAS L YANI Y Y -]
1-1"1AvbuAubeY "
115 S24(9791922)="11vuyyyyy
Allllugyyyy "y rreres
116 S34$="AAAAY sy v rsorrss s XYYYY rvrrrvryy
Y I Y P I I YI Y Y Y Y Y I Y I Y Y Y YIS YIYIEYIYIYYYY
yyervrvvvryyyyyryy YAAAA vy v 9 "

117 834$(975,192)="A
Aruwe

120 GOSUH 1000:IF TP=1 THEN 130

121 S04%= "HLH"HLH}}(—(u(*(/(/(*#-#S*S—/(
/GG B QM@ CRRRE Ty v 3"

122 S1¢=" }070’070!}QGGG}’!}GG}"!!77!!!!!
yryyryryryyyry rl1110QQQQQQQQQLCEAAAAY yy 99"

123 S2%="ulyrude Xy FXuly>1111xyy>11lul.>ul
o}B[BE}!}l}!}l}ro!oF}B}P}H}P}l}P}l"""'
-.......-SB},}B ‘_"A..

124 GaBT Sy v s r s s r oo rrrssssssrssrssrsyy
yyyyyryryyyyyy e rluwllllllllYeseeryyel”

125 GOSUR 1000:TFP=1:GOTO 110

130 S0%="<HLH~ HLH}!}(—(J(“(/(/(GG/ (
/S-S~ BAHE el @@ B @

131 81$*'}oro!oror}QGQQ}rr}GQ}rvvv99!!!!7
yyryyyryyyryyyrl1110QQQQQRAQRAQALLAARAARAR"
132 S2%="ulyXulsFulsyrulrsy>XLl111xsysyX1l1lul.ul
e =T T e O T e SR b e O B Bl
'....-...SSSSSSSS

133 S3%="Fvrvrvrvrvvvrvrvvvvrevrsrsvvrryvrnrvy

162

srrsrrrrrrrrrredlullllllll¥eeeeceeed”
135 GOSUR 1000

5555 CRRRRHR =S5/ /////HHSG<5R<R55555
S5SQQ=CECHEH@ << RARE "

141 S0$(975192)=" /5 /9QRQ-G555//////7/
H@RHE- <« <5555555 5 << DIHHHHHHHERRRRRHHA
QARQAARQAHHHHAARA "

142 S14="QQAAAQAAAQ

QAAHHHHAQLLCLC Y CQRAAAL Y
MMMIMCEwlYHQHLC DY 1QQACLE”"

143 S14$(97y192)="" QL QAL *QAHAHRRRRER* *HHQAH
UQUAHHHHHHEHAHAC*CLYLCQAQQAQLN1CLLLE

glwl > Y M1M1IMNCOCCMUMULL ML

144 S24="G88G68655 9 r vy sy sy sy s sy yrysersyyyry
XA R R R R R R R R R E R R R R E R RN
y9yyvYryrryYsYYYYYYYOYOYY YY"

145 S2$(975192)="uuu ***llugyyy

111 1wwwluwl MY M 1 1wlewwlllll

1" "uguwyuywygl 11lyluyyg®

146 S3%5="F e s o s v s e e sy sy yryryvyvsvryryyy
Y P P Y Y Y Y Y PRI Y I Y Y I Y Y I YIS YYIIIYIYYY
yIYYYPYIYIYIYIYYYIYYYYYYPDYOYL"

147 S3%$(97,192)="

148 GOSUR 1000

150 SO04$="QAHAUUUARQSSS/// /S5 <@
9339 IRRRRHE QA NS IRRRR L/ 5/ 50
~@<5988//// 775 /HRHR "

151 S0%(97,192)="3085559-5QHAHRRRRHCHE
@R5/5/ < 55CRAHHHHH

LLLS /B @IGHIFAL"

152 S14="111111wy=21111Q0QQQHHHHAQ
CCCCYECRAAQRLCC Y M1M1111QQACE *QARAR
G[EEE\\\\UU\\\\I

153 814(97,192)="1111"11**UU**UU
LLe@* > YA Y HHHERRRHHA
G\EQHQE\\\\\\\\\\HHHHQH'

154 S2¢="

163

Listing 16-7. Prelude. (Continued from page 163.)

Yuy "

IAA__I__.II

155 S24(979192)="YY""""A-A-""nu_n_»
"fuyu C[CLCCMY1111wln

‘Ul MM luywwyyy Y1111

156 834="YYYYYYYY" """

5554

AAAYY"

157 834%(97,192)="

159 GOSUER 1000

160 SO0$="0ry Y@}y FRAH@ <<=y y FRQHH@ @
@R

161 S1$="QRAAQYy vy X11Q>yXQF s XQALQALLCLLCQAAQRY » ¥
QRAAQQAYy» XQAQAQQAQRQQ"

162 S2¢%="1111%rs>Xlluyvuyylryy>Xlluwlll.s..>11
111ACCFensseeost"

163 S3E="Frrrrrrvr v s vy syryvysosvsesryrsvyyy
yresssssss”

165 GOSUR 1000

170 END

1000 FOR T=1 TO LEN(S0%$)ISOUND OrASC(S0%(
TY)e10y10:SOUND 1yASCIS1I$(T))y10y8:S0OUND

2yA8C(824(T)Y))r 1056

1001 SOUND 3yASC(S3$(TI)s10s6FOR W=1 TO

TLINEXT WINEXT T

1002 RETURN

1050 REM THE FOLLOWING LINES REFEAT THE I
ATA LINE LISTED AROVE - CHARACTERS OR LET
TERS THAT AFFEAR RBETWEEN } ¥

1051 REM ARE GRAFHIC CHARACTERS. USE THE

CONTROL KEY TO ENTER THOSE CHARACTERS OR

LETTERS

1100 REM LINE 100 >y><PRQ<@Fesesrvvyyyral@
SRE@CHLY «FLLY FL1SCSHECSRAUALAURY . X /5/R/S
/< HLHY « YHLH=UU=U> XURQUAR

1101 REM LINE 100 con‘t QUQEY.X>1).3@X>.>1)
¢ FHUX . JUHU> . U

1102 REM LINE 101 HlwlH1glQXF12X.3Q>¢>1%,

164

YArpXrQrdyyrUlrlUlrl1QUARIHAHLICHRL <@15555
5S>y XES5/(S5 (S (@ (HHHHY » » >@E -

1103 REM LINE 101 corn’t S@<HHHAQAQRAQYy»rys v s
yyyyyyyl

1104 REM LINE 102 Yvyrvyyrpodudyd ulyruy®’
S rrrdudeduuuudrry s FFFFy 9 X139 31111 srsr s
Iy e reesaryyyXlyexllyl

1105 REM LINE 102 con’t XeX13eX12s¥1ls>1l’

y X1y e XuX e rutsdudesrure rude rudyruletule >

Uulyyerrdr " "1111xy e 31 eX13e21

1107 REM LINE 103 corm’t »e31113s311113ss>y
yYYYYYYOYOYLY)

1108 REM LLINE 105 Yysrevvvvvvvvrreoryrysny
yyyvvvvyyvyrvevvyyvyrvryeyyyy FUQRHRY»>XQ)y2>QQ
ARAAQRQAQAAUY . YUURARHHAR

1109 REM LINE 1035 con’t Yyyvvrsvssssvrvesy
yyyel

1110 REM LINE 106 Yvrrsvsvvvvyryryy YAAAAY
ry X IFPFFFy sy =y s FFy vy s vy sy YYYYr vy 9
wudyyrr sy FyFsFesFyrrroyyrod

1111 REM LINE 106 con’t "Xs3 "Xy "Xsy3 dyey
PYPIP LY

1112 REM LINE 107 —=XsXd=FsF=FpXd=FsF"Fv}" ">y
Y e X e XA XA XAY v FAY v X e XYy d vy =D ¥
...._________}',,,}_____.__.IIII

1113 REM LINE 107 conm’t rvvrvvvvvrvswvrywy
yp X P RYYYY Ry P Y -y X6 ANY

1114 REM LINE 110 >y >F<R<Q«<@<HHHHY s »»»FCH
CLERHRLLLLYy yy y JHY « X123 o XHY o 213 X1yl 1w lH}
o F1X e XHY LY XRLULCLUL =@

1115 REM LINE 110 cont @<<35CCFHHEE-= < HHILLH
HERILLY ¢ ¢ e

1116 REM LINE 111 @CHHLLLHHHHHYy sy }/5/0
VAT TR S Gl Gl el G 1 Bl A - ot S PP I I
@uRE@CHLY YLHL> o XX v ¥

1117 REM LINE 111 comn’t 3<5HS<SCQAUARAURY
Y/ E/Q/5/

1118 REM LINE 113 LLYyreer v s 00029209 evey

F P e e s s P Y Y I Y YYYYYIYYIYIYISIPIYIYYYYYYY FUSYY)y

165

Listing 16-7. Prelude. (Continued from page 165.)

y Ul Xuly Xyt FulkyFudy}

1119 REM LINE 113 con’t 1111%ss31ls31¥sX>1l}
,}1.}‘!}1}7'0007!00

1120 REM LINE 114 """"3yyrysv26Rb656866666)
!!yvr}QYA}v}QYA}v}H}!)B) YusyukysFrrrFyy
}B}v}s}y}u}y}sé} Y1) }_} >1

1121 REM LINE 114 con’t . PeXsBid—1"1~14]
AubUALESYFryr s vy}

1122 REM LINE 113 1luwXysssyduuuddrrrryryy
2y vy FYFPAFYFX1X v X1 v X139 X1 vy ruuugydys sy s 3y
Yaduludyyutt iy 30"

1123 REM LINE 115 con’t YEsPesFyFyFFFEFy s FF
IR ERER X ERERE RN,

1124 REM LINE 117 Yrvrrrvyy s EYPIAXFYFY Yy
I!iy!EIE}Q}FYPyviylyil}"t:)!!rrvv!!!77!!
VYV Y YT I I I YYYIYYIYIIIYYYYYY Y

1125 REM LINE 117 conm’t Yeryervsrvrrsvsl
1126 REM LINE 140 <«a<asaaY e eFaFre>aroF<ry
Y//777Fy e YOGy XYy P ARIGEG5 Yy y FUI@Y vy @Yy ¥
CRHE=SS5//////HHSS SRR

1127 REM LINE 140 con’‘t H555559QQ<<@<HAHE-

1128 RFM LINE 141 <=/5</54@<Q5385////7///
ZHRHE - 555555 55 << OIHHHY » YJHHHHRERERRE
HHQQRQRY » >QAQQAHHHH
1129 REM LINE 141 con’t Yrrevrevsryryvovryy
FRRQRQ"

1130 REM LINE 142 QAQQQAQQQYsvryrrsvverrrvyy
yyyvvryyvvryyyryyyyyy Yy Q) y Q¥ vy FHHHHY » » >
QALY y FC>y XLLX . XLAAAR

1131 REM LINE 142 con’t YseXLLYesev e 12,
FCCwlY> FHQHLCC> . X1QQCE"

1132 REM LLINE 143 ¥»..>QCY.>QLY . >QHQHCRRER
@Y.+ + YHHQHUQUAHHHHHHEHAHQRLY « XL XLRQAQAQAY v v »
yryyy 1.l

1133 REM LINE 143 con’t >eXLLLLXrvevrvyv
SlylFeo e e F1>e P13 XLLCLY XU ULLY 1"
1134 REM LLINE 145 Fyedulsdulsdulresserrtl
ludsXudeduudrdullllderdusdrrrrryysrulull,

166

0000+FF}11‘31}!}B}Y}

1135 REM LINE 145 con’t @wl1l1111°% "uudydule
yFy }usuull}s}l}slllluluukil}ulL}

1136 REM LINE 147 Yvsvvvvvrvvvvovrvrvvyry
Y P Y P I YYY I YISV YYIYIYYYIYYIIPYY YN
1137 REM LINE 147 con’t Yvvyvvvvrrvvvvevy
YPIIYIYYIYIYIYYIIYEIYPYY

1138 REM LINE 130 GﬂHQUUUGQGu}r}S}y}S}r}/
L7y v XEG :}7}"37}"' -.""'*"}yv) TRy @Yy YRR
HE-= = QQ-a G- RRERE

1139 REN LINE 150 Con’t eSS T LA TR ATl
/7S /HRHE

1140 REM lTNL 1851 S8HSE55CHQHAHPRRRHEHE
SRIRS/S5/CID0RCEHHHHHY sy vy vy vy vy vy vy v v v v 3
1141 REM LINE 192 11111)w=llllYyevyeyQ
QX XQQHHHHY » » XQQL» v XCX e MLL > e}LUGQG.yy}LE}
er e oo X1 F11LIQQCES . « 3Q

1142 REM LINE 1352 con’t X»y3QXsXQXe>Q)Yy Q)
!}[:[:[:[:}OQooP?!!)‘U}i}U}!oﬁoo}

1143 REM LINE 153 L1111Y>syvvvevavrllXe Uty
}U}’OO}UUL}!}L.}!99}@@:}'000900090000!‘7?9!’9}
HY» s XH>» XHY»» YRRE

1144 REM LINE 133 con’t @)ey HHQQY ., FLQAHQAL
}0!070!0!9000!!00}H}P}H}7}HHQH.

1145 REM LINE 154 YFFFFFFFFyysvyvovvpyppy
VY Y Y Y Y YV Y Y YV YV Y P Y S IYIPYYYIYYYYYYIYPYYYYY
yyy Xy

1146 REM LINE 154 JFrduldsFuleX 2P} 3Prrrsy
S YAAFPPPP ="~ }FFFFY

1147 REM LINE 155 FPPRIYY"""04-A-"R8 8N N0
FEFFYFYFy s 32 "3FFEFFYYYYXuud e v ey o v FLELED v v o
A S o |

1148 REM LINE 155 conm’t »e3llwulleduld. >
FeXluudysyvrrruwuulry e o FL111Yv vy e o>

1149 REM LCINE 156 YYYYYYYY" """ }yyyuvysyrypy

I T XS E R RN TN ES S ERS S HE S EEEFEEES S ESESEEES S

vy y
1150 REM LINE 1356 con’t XsX»v)s)sy¥sky>AAAA
FeryXYYrvvvrvryvervrrer ey}

1151 REM LINE 157 Fr vy Iy Yy P I YT Y Y I EYYIYTIEYY

77,!,77!77”’!!7777997!999!7?979!97?!}

167

Listing 16-7. Prelude. (Continued from page 167.)
1152 REM LINE 137 com’t Yvsvosvsvvsvvevry

YYYYIIYIYYSIIYIYYYYIYYYL)

computer plays the notes. One of the sections has two endings. The first time the computer plays
lines 100-117, it plays the notes in lines 121-124. The second time it plays the notes in 130-133.
The value of TP indicates which time the computer is playing the section. After the entire piece
has been played, the four sound generators are shut off by the end statement in line 170.

Lines 1000-1002 are the subroutine lines that play the music. The For . . . Next loop begins
with 1 and continues for the length of S0$. The computer takes the ASCII value of each character
in the four strings for the second value in each sound statement. Sound 0 uses S0$, sound 1 uses
S1$, sound 2 uses S2%, and sound 3 uses S3$. The nested For . . . Next loop holds the tone played
for the length of time specified by TL. After the entire string has been played, the computer
returns to the main program for the next set of characters.

As you can see, the entire piece can be packed into strings. Each element of the string
corresponds to one unit of the beat. A quarter note would be written four times, since the shortest
note is a sixteenth. Numbers are not used to produce the notes. Each note played has a
corresponding character. The Table 16-2 shows you the corresponding character for each note
the ATARI is capable of generating.

Sound effects can be produced in a similar manner. The tones can be placed in a string and a
sound routine can be called whenever you want the program to make a particular sound.

MIXING SOUND AND GRAPHICS

Once you start to add sound to your programs, any other silent program will seem dull in
comparison. Sound can be used to prompt the person using the program, or it can be used in
response to an answer. Most programs will give a bell sound to signal you to respond to a question
on the screen. Many programs play a short tune when the correct answer is entered, and another
tune for the wrong answer. The ultimate use of sound, however, is to combine it with animation.
The early pong games made a sound each time the ball was struck with the paddle, adding realism
to the program.

ACCESSORIES

Built into ATARI BASIC are commands for reading the positions of the joysticks and
paddles. The keyboard is a good way to enter information, but a joystick or paddle can make a
program easier to use. If you have ever played an arcade-type game that used the keyboard to
move characters, you will understand why the joystick is a better choice. The user has no chance
to press the wrong key and then wonder why the character isn’t moving in the direction expected.
Also, because there are fewer directions than keys, you do not have as many inputs to check for. A
joystick can even be used to select a routine from a menu.

STICK
To determine which direction the joystick is pointing, let a variable equal the stick number,

168

Note Decimal Character
Value
A# 33 !
A 35 #
G# 37 %
G 40 (
F# 42 *
F 45 s
E 47 /
D# 50 2
D 53 5
C# 57 9
C 60 <
B 64 @
A# 68 D
A 72 H .
G# 76 L Table 16-2. Decimal Values and Characters for Notes.
G 81 Q
F# 85 U
F 91 left bracket
E 96 diamond (control period)
D# 102 f :
D 108 |
C# 114 r
C 121 y
B 128 heart reverse video
A# 136 control H reverse video
A 144 club (control P) reverse video
G# 153 control Y reverse video
G 162 " reverse video
F# 173 — reverse video
F 182 6 reverse video
E 193 A reverse video
D# 204 L. reverse video
D 217 ¥ reverse video
C# 230 f reverse video
c 243 S reverse video
eg., X=STICK(0) . The number in the parentheses corresponds to the joystick

being checked minus one.

If you look at the front of your computer, you will see four plugs or ports the joystick can be
plugged into. Subtract one from the number of the port you are plugging your joystick into. This is
the number you would place into the parentheses.

When the stick on the joystick is not being moved, the value of the variable will equal 15.
Figure 16-4 shows the value of each direction.

STRIG

When the red button on the joystick is pressed, the value of STRIG# will change. The
value of STICK# does not reflect whether or not the red button has been pressed. STICK# only
checks the direction, STRIG# checks the red button. Again, a variable must equal STRIG#. The

169

14

Fig. 16-4. Values for Joystick Directions.

11 7

13

number in parentheses is the same number you are using in STICK#. When the variable that
equals STRIG# is one, the button has not been pressed. When the variable equals zero, you know
the button is pressed. The variable will equal the condition of the button when the computer
checked it.

Listing 16-8 illustrates using the joystick to make a selection from a menu (see Fig. 16-5). As
you can see, there is no possibility the user can enter the wrong number. The arrow can only
move up and down becuase it is under program control—it can only point to the numbers on the
screen.

Line 40 dimensions P$ for two characters. The arrow will be stored in this string.

Lines 45-50 erase the cursor and place an arrow into PS$.

Lines 60-110 clear the screen and place the menu on the screen. There are five units the user
can choose from.

Line 120 begins the routine that moves the arrow up or down on the screen. The SP variable
will contain the row the arrow will be printed in. Each item on the menu is four rows from the
other. This makes it easy to move the arrow from one to another.

Line 130 prints the arrow in the tenth column of the specified row. When the program is first
run, the arrow will be pointing to the first unit. The timing loop is necessary to slow the computer
down. If it were not there, the arrow would move too fast up and down on the screen making it
almost impossible to make a selection.

Line 135 checks to see if the red button has been pressed on the first joystick. This program
will work only if the joystick is plugged into the first port of the computer. If the reading from the
trigger is zero, the computer will go to the part of the program specified by that unit number.
Instead of going to another routine, you could have the computer compute the line number of the
routine based on the unit it is pointing to.

Line 140 records the direction the stick has been moved in. Since the difference between the
values indicating up and down is only one, the program subtracts 12 from the value it received. If

170

the joystick is moved down, the value of X will be one; if the joystick has been moved up, the value
will be two. By using selective branching, we can direct the computer to the correct lines.
Line 145 checks the value of X. If the joystick was moved in any direction other than up or
down, the value of X would be negative. The computer cannot go to a negative line number, and
the program would crash. This line sends the computer back to line 140 if the value of X is

negative or zero.

Line 150 uses selective branching to send the computer to the correct line. The value of X
can only be 1, 2, or 3 at this time.

Listing 16-8. Menu

10 REM LISTING XVI.8

20 REM MENU

30 REM RY L.M.SCHREIRER FOR TAR EBOOKS
40 DIM F$(2)

435 FOKE 75241

S50 Pém=t—int

60 7 “Felear>"

70 FOSITION 13y4:7 "1, NUMRBERS"

80 FOSITION 158237 "2, LETTERS"

90 FOSITION 151237 "3, COLORS"

100 FOSITION 151687 "4, SHAFES®

110 FOSITION 15,2037 "%H. SIZES®

120 SF=4!REM ROW OF THE FOINTER

130 FOSITION 10,8F:7% F$IFOR ZZ=1 TO 100N
EXT ZZIREM FAUSE RETWEEN MOVES

135 IF STRIG(O)=0 THEN 200:REM SELECTION
HAS REEN MADE

140 X=STICK(0)X=X~-12!REM SURTRACT 12 FOR
SELECTIVE RRANCHING

145 IF X<1 THEN 140:REM DON‘T LET IT CRAS
H ON A NEGATIVE NUMRER

150 ON X GOTO 180y160

155 GOTO 135

160 FOSITION 10,8F7 " "18F=8F-41IF SF:4
THEN SF=4!REM DON’T ALLOW IT AROVE #1
170 GUTO 130

180 FOSITION 10sSFI7 " "1S5P=8F+43IF SP:2

O THEN SF=20IREM DON’T ALLOW RELOW #95

190 GOTO 130

200 REM GO NOW TO THE UNIT SELECTED

210 ENI

171

NO

SET ASIDE
STRING ERASE
SPACE POINTER
SET ARROW
CLEAR CALCULATE
SCREEN NEXT
DISPLAY POSITION |jp
MENU
M
SET
VARIABLE NO
FOR
POINTER
I YES
v
DISPLAY RESET
POINTER POINTER
T VARIABLE
SO SRS
DELAY
PROGRAM @
TRIGGER ggﬁNSTEER
PRESSED
NO
CALCULATE
GET NEXT
JOYSTICK POSITION
POSITION DOWN
CALCULATE
DIRECTION
YES
IS IT
DOWN RESET
? POINTER
o VARIABLE
VES

Fig. 16-5. Flowchart for Listing 16-8.

C

CONTINUE
WITH
PROGRAM

172

Line 155 sends the computer back to line 135 to check the red button if the value of X is 3.

Lines 160-170 move the arrow up. First the arrow is erased from the position it is currently
placed, and four is subtracted from SP because the next unit is four rows above this location. The
value of SP is checked for a number less than four. If it is less than four, SP is reset to four, keeping
the arrow on the screen. The computer goes back to the line that prints the arrow on the screen.

Lines 180-190 move the arrow down. Since the rows increase as you go down the screen,
four will be added to the value in SP. This value is checked for a number larger than 20. Twenty is
the last row a unit number is on. If SP is greater than 20, it will be reset to 20. Now the arrow can’t
go off the screen. The computer goes back to the line that prints the arrow on the screen.

Line 200 contains the routine that sends the computer to the unit selected. In this example,
the program ends here.

PADDLE

Sometimes a joystick is not the best choice for a program. You may want the character on the
screen to move in two directions, but where it moves needs to be calibrated in some way. The
paddle sends a number from 1 to 228 to the computer. This means you can divide the screen into
228 different locations, and, depending on the number received by the computer, place the
character in the desired position. Getting the number from the paddle is similar to using the
joystick: V=PADDLE(#) . The number in the parentheses can be any number from
zero to seven depending on which port you are using.

PTRIG
The red button on the paddle operates exactly like the red button on the joystick. A variable
equals PTRG#,e.g., X=PTRIG(#) . Again, the number within the parentheses can

be any number from zero to seven depending on the paddle the program is using. If the button is
pressed, the value of X will be zero, otherwise it will be one.

For both joystick and paddle, the value of the variable will be set when the computer
executes that line. Therefore, if you press the button on the paddle or joystick and the computer is
not watching for the trigger, it will not register. If you want to use the button, be sure your
program continues to loop until the button has been pressed. Also, the joystick will send a 15if it
is not moved in a direction when the computer checks the joystick. The program receives that
value from the joystick at the time it checks directions.

If the entire game is played using the joystick or paddle, be sure any subroutines used to
update the score and/or sounds are short. Otherwise, you will see a time-delay as the program
executes each subroutine.

173

Chapter 17
Special
Functions

Only a few of the programs we wrote in previous chapters took into account any values the
computer, itself, may have stored in various memory locations. When you turn the computer on,
the video screen is blue. This color value is set by the computer’s operating system. In Chapter
16, you learned how to change the color values stored in the computer’s memory to suit your
needs. Table 17-1 contains decimal locations or addresses for other values you can change.
Every memory location in your computer, whether it is RAM or ROM, has its own address.
The first addressis 0 and the last is 65535. If you have 40K RAM and the BASIC cartridge plugged
in, every address will have some type of information in it. RAM addresses 0to 1792 are reserved
by the operating system, and store values for the screen width, the amount of RAM available to
the system, buffer addresses, memory available for the program, the position of the cursor,
routines for floating point arithmetic, etc. Most programs do not use any of the memory locations
the operating system uses, but there are times when you may need to know the value the
computer has stored, or place your own value there to make the computer do something.

PEEK

To find out what value the computer has stored in a particular location, we need to be able to
ask the computer what is being stored. We can do this by PEEKing at a location. The format is:

40 X=PEEK(106)

X will now be equal to the number stored in location 106. If you multiply the value of X by 256, you
will know how much RAM your system has. PEEK at location 82:

X=PEEK(82):? X

and you will see the left margin of the screen is set to two. You can use the PEEK command as a
line statement or a direct command.

Since the number stored in one location cannot exceed 255, we need a way to store or locate
addresses or numbers larger than 256. The display list the computer uses to place information on
the screen usually starts in RAM located just before the screen area. This will obviously have an
address greater than 255.

174

Decupal Comment /Explanation
Location
14,15 Highest byte in RAM used by BASIC.
18, 19, 20 Use these locations as a clock.
65 POKE a zero to quiet data being sent to
cassette.
77 When this register is 128, screen begins to Table 17-1. Decimal
change colors. . Locations of RAM that can be
82, 83 Left and right margins. Value POKEd here will Changed under Program Control.
limit number of characters printed on the screen
line (BASIC sets to 2,39).
106 Value in this register is the amount of RAM
in machine. Multiply by 256 for actual bytes.
694 Value is 0 in normal text, 128 for reverse video.
752 Cursor control: POKE 0 to turn cursor on; 1 to
turn cursor off.
764 PEEK at this location for the last key pressed.
53279 Console keys. PEEK at this location to see
which key (yellow) has been pressed.

The computer stores numbers larger than 255 in two consecutive memory locations. The
first location is called the low-order address and the second is called the high-order address.
When you multiply the number stored in the second location by 256 and add the contents of the
first address, you will get the address or number larger than 255. In the direct mode, try this:

? PEEK(741)+PEEK(742)+256

The number printed on the screen is the last memory location your program can use. If you try to
use memory past this location you will be writing into the computer’s display list and the area of
memory used to display information onto the screen.

POKE
To give the operating system a different value, POKE that value into a memory location. If
you type:
POKE 82,5

into the computer as a direct command, you would change the left-hand margin on your screen.
When you use a POKE command, the first number after POKE is the address or location where
you want to store the new value. The number after the comma is the value you want placed in that
location.
POKE 751,1 turns the cursor off, a nice feature when your program is printing

instructions on the screen, or any time a cursor would be a distraction.

POKE 755,4 turns the characters in each line of the screen upside down.

Do not POKE values into unknown locations. The wrong value in an address can cause the
system to crash.

Listing 17-1 will show you how to use POKE and PEEK to find out how much memory your
system has, and use this information to move the character set stored in ROM into RAM. By

175

Listing 17-1. ROM-to-RAM

10 REM LLISTING XVII~-1

20 REM ROM-TO-RAM

30 REM RBRY L.M.SCHREIRER FOR TAER ROOKS

35 GRAFHICS 2

40 CHBAS=756 tRAMTOF=106

90 ROMSET=FEEK(7546)%2546IREM THIS IS THE T
OF OF THE CHARACTER SET IN ROM

60 TOF=FEEK(RAMTOF)!REM THE END OF RAM

70 TOF=TOF-8!REM START THE NEW CHARACTER
SET HERE

80 RAMSET=TOFX256 IREM HERE’S THE NEW RASE

120 RMCHR=768!{REM ‘a8’ BEGINS HERE IN ROM

140 FOR X=0 TO S11:!REM THERE ARE %512 RYTE

S TO BRE TRANSFERRED

150 C=FEEK(ROMSET+X) !FOKE RAMSET+XsCIREM

GET THE RYTE AND TRANSFER IT

160 NEXT X

170 FOR X=8 TO 2146!REM THERE ARE 208 RYTE

S TO RE TRANSFERRED

180 C=FEEK(ROMSET+RMCHR+X) {FOKE RAMSETHXy

CIREM GET THE RYTE AND TRANSFER 1T

190 NEXT X

200 FOKE CHRASsTOF

210 FOSITION 2,517 #6463 "UFFER AND »/7%2
¥13%"

220 END

storing the lowercase characters in the area normally used by the numbers and symbols, both
upper- and lowercase letters can be displayed in modes 1 and 2.

Line 35 sets the graphics to mode 2. Always set the graphics mode first. The computer’s
operating system sometimes changes values in memory locations after the mode has been set.

Line 40 sets the variable CHBAS to 756 and RAMTOP to 106. These numbers are the
memory locations for the address of the character set the computer will use, and the address for
the amount of RAM in the system.

Line 50 takes the number stored in memory location 756 and multiplies it by 256. The
variable ROMSET now holds the address for the beginning of the character set the computer is
using. This number should be 57344.

Line 60 finds the end of available RAM by PEEKing at RAMTOP. We will not multiply this
number by 256 because it will be much easier to work with this number.

Line 70 subtracts 8 from the value stored in TOP. We know the operating system needs

176

about 1K, or 1024 bytes, of memory for the screen display and its display list. This is the last 1024
bytes of RAM. We want to move the character set just in front of this RAM. The character set is
another 1K of memory. If we had multiplied TOP by 256, we would have to subtract 2048 from this
value to arrive at the memory location the character set should be moved to: eight times 256 is
2048. Since we did not multiply TOP by 256, simply subtract eight from its value. Whenever
possible, we do not multiply a value by 256, because it can result in needless converting and

reconverting.
Line 80 multiplies the new value in TOP by 256. This is the value BASIC will use when it is

moving the character set. The new value is stored in RAMSET.

Line 120 stores the value 769 in RMCHR. Each character in the character set needs eight
bytes of memory. After moving the numbers and capital letters to RAM, the computer needs to
know how far into the character set the lowercase a is. There are 97 characters before the a in the
character set. The first character is considered location zero, so we can subtract one. Since there
are eight bits for each character, 8 times 96 equals 768.

Lines 140-160 move the first 512 bytes of the character set into RAM. We can move only 512
bytes because modes 1 and 2 can display only 64 characters. In line 150, C holds the number the
computer gets from the location stored in ROMSET plus X. Remember: the value of ROMSET is
the first byte of the character set. By adding the value of X to it, we can get every byte in the
character set. That byte is then placed into RAM by POKEing it into the memory location
computed by adding X to the value of RAMSET. Again, the value of RAMSET will remain
constant. By changing the value of X, the entire first 512 bytes of the character set will be placed
in the correct positions.

Lines 170-190 move the lowercase character set from ROM into RAM. If the program were
to stop before these lines, the new character set would only contain numbers and uppercase
letters. We want to replace the numbers with lowercase letters. The first eight memory locations
in the character set (0-7) are correct. They are used for the space. The next 26 characters are the
lowercase letters. We will start moving the bytes from the ROMSET location plus RMCHR plus
the value of X. By adding the values stored in these variables, we obtain the first byte for the
lowercase letters. As in the prior routine the value is POKEd into RAM. The memory location for
the new character is computed by adding the value of X to the value of RAMSET. When this
routine is completed, the numbers and symbols will be replaced by lowercase letters.

Line 200 stores the value of TOP in memory location CHBAS. If we had multiplied TOP by
256 earlier in the program, we would have to divide by 256 here because you cannot POKE a
number greater than 255. The computer no longer looks at the character set in ROM. It considers
the character set we just moved into RAM as the correct character set.

Line 210 prints a message on the screen. Enter the line just as it is shown here. The
computer will interpret the numbers and symbols as letters with the new character set. When you
run this program, the message will appear in both upper- and lowercase letters in two different
colors. Press system reset to return to the normal character set.

CONSOLE KEYS

The three yellow keys on the ATARI are called the console keys. The computer does not
check these keys as it does the keyboard keys. PEEK at location 53279:

177

? PEEK (53279)

It should be 7. Run Listing 17-2. Press the console keys one at a time. You will see the keys
correspond to the following values:

Start = 6
Select = 5
Option = 3

Start and Option = 2
Select and Option = 1
Start and Select = 4

Press the break key or system reset to stop the program. Use these keys when you want to
be able to continue the program, as when there are directions or instructions, or some other
message on the screen. You can direct the player to press start to begin, press option for a
different level, select for one of several programs, or two players instead of one. Each key can be
used to set up a game level, or as part of the program.

In the last chapter we used an arrow and the joystick to make sure the person using the
program made the correct entry by eliminating the keyboard. Listing 17-3 shows you how to use
the console keys to give the player choices, but not allow the player to enter incorrect answers.
These keys can also eliminate the many questions programs often start with (how many players,
which level, etc.).

Lines 40-50 set graphics mode 2, make the CONSOL variable equal to 53279, P equal to one,
L equal to one and B equal to zero. P indicates how many players will be playing, L indicates which
level will be played. B indicates which console key has been pressed.

Lines 60-110 print a welcome message on the screen. Notice that line 90 prints the level held
in the variable L. Line 100 prints the correct variation of player. If there are two, line 110 will be
printed.

Line 120 checks to see if one of the console keys has been pressed. B contains a value from
1-7 depending on which key has been pressed.

Line 130 sends the computer to line 200. The main program starts here.

Line 140 changes the level if the option key has been pressed. By subtracting the value
stored in L from three, the variable L will fluctuate between one and two.

Line 150 changes the number of players when the select key is pressed. The same formulais
used to compute how many persons will play.

Line 160 is a timing loop. If it were not there, the computer would get the key pressed too
fast, and you might never set the game up properly.

Listing 17-2. Console Keys

10 REM LISTING XVII-2

20 REM CONSOLE KEYS

30 REM BY L.M.SCHREIRER FOR TAER ROOKS
40 CONSOL=53279

50 7 FPEEK(CONSOL)

60 GOTO S50

178

Listing 17-3. Console Keys, Version 2

10 REM LISTING XVII~-3

20 REM CONSOLE KEYS

30 REM BY L.M,SCHREIRER FOR TAE ROOKS
40 GRAFHICS 2

50 CONSOL=53279F=1!L=11k=0

60 FOSITION 7»1:7 #é3"welcome"

70 FOSITION 9,217 #63"T5" "7~

80 FOSITION 7,37 #63'CIRCUS"

90 POSITION 7,57 %63 "LEVEL *jL

100 POSITION &y7¢IF F=1 THEN ? #65F;"' FLA
YER ":GOTO 120

110 ? #63Fi* FLAYERS®

120 B=FEEK(CONSDL)

130 IF E=6 THEN 200

140 IF B=3 THEN L=3-L

150 IF E=5 THEN F=3-F

160 FOR X=1 TO 75!NEXT X:GOTO 90

200 REM MAIN FROGRAM STARTS HERE

210 STOF

ELIMINATING THE RETURN KEY

In Listing 17-3 the player was given choices, but possible answers were limited by changing
the choices each time a console key was pressed. When the correct combination was on the
screen, the player pressed start and the program began. There are times you want the player to
use the keyboard, but you do not want the answers on the screen, or you may want to check the
entry before it is printed on the screen. Using the input command places any letters or characters
typed by the user on the screen as soon as the key is pressed. The program cannot check the
answer until the return key is pressed.

GET

You can get the value of any key pressed before the computer prints it on the screen. The get
command takes the information requested from the device we request it from—in this case the
keyboard—and stores it in a variable. It is used with the open command. Before we can check
which key is pressed, we must open the keyboard.

OPEN #2,4,0, “K:”

This tells the computer to open a buffer (or area of memory where information can be stored) and
call it #2. The 4 means it will receive the information (read it), the 0 is a dummy value, and the
“K:” means the computer will receive the information from the keyboard. A buffer is opened once

in a program. Do not open the same buffer again unless it has been closed. Once a buffer has been
opened for the keyboard:

179

80 GET #2,A

The get command tells the computer the program should wait until it receives some
information or values. In this case it is waiting for a key to be pressed. When a key is pressed, the
computer will store it in the variable A. The contents of A can be checked. If it is correct, the
computer can continue with the program. If not, the program loops back and gets another entry.
The pressed key does not have to be displayed on the screen. Since every key is converted to a
value, it doesn’t matter if numbers or letters are pressed. The program will check each key as it is
pressed.

Listing 17-4 uses the number keys 1-8 to play tones.

Line 40 dimensions KEY$ to eight. This program will play eight notes.

Line 50 places the characters that represent the notes into the string.

Line 60 opens the keyboard.

Line 70 gets the value of the key pressed and stores it in A. The program will not advance
until a key has been pressed.

Lines 75-90 test the value of A. If it is 48, then a 0 has been pressed and the computer is
directed to line 140. If A is less than 49, the computer is told to ignore the key and go back to line
70. If the value is greater than 56 the computer will also ignore the key. The computer will only
continue with the program if the correct key has been pressed.

Line 100 turns the last note off and subtracts 48 from A. This tells the computer which key
has been pressed.

Line 110 finds the ASCII value of the character in KEY$. A determines which character in
KEY$ will be chosen. T contains the ASCII value of that character.

Line 120 plays the sound, which will continue until another key or 0 has been pressed.

Listing 17-4. Music Keys

10 REM LISTING XVII-4

20 REM MUSIC KEYS

30 REM RBY L.M.SCHREIBER FOR TAE BOOKS
40 DIM KEYS$(8)

50 KEYS$="ul).>LQHE:"

460 OFEN #2440y "K:"

70 GET #2yA!REM GET A VALUE FOR THE KEY F
RESSED

7% IF A=48 THEN 140

80 IF A<49 THEN 70

?0 IF Ax56 THEN 70

100 SOUNIDI 0s0y0s0tA=A-48

110 T=ASC(KEYS4$(AYA))

120 SOUND OsTs10510

130 GOTO 70

140 END

180

Line 130 sends the computer back to line 70 to get another note.
Line 140 ends the program. The end command also turns off the sound.

PUT

The put command is the opposite of the get command. This command sends data to a device.
Most commonly it is used to send data to a cassette or disk, but it can also be used to put
characters on the screen. Used with the position command, you can direct the cursor to arow and
column, and put a value at that position. The computer will print the character corresponding to
the value in that position; e.g., in the direct mode, type:

GR. 2
POSITION 5,2: PUT #6,65

A yellow A should appear on the screen.

LOCATE

This command lets you examine the location on the screen under program control. It can be
used when you need to know what is in a particular location on the screen. For example, in an
arcade-type game, a laser is fired and moves across the screen. Your program can check the next
location to be plotted to see if the object that was fired upon is there. Use the following format for
the locate command:

50 LOCATE 40,50,X

The two numbers after locate indicate the column and row you are examining. It is similar to
the plot or position command. The variable will hold the value of the location. This value can be
checked to see if it is a hit or a miss. Listing 17-5 relies on the locate command to determine
whether to move to the next location.

Lines 50-60 set the graphics mode and the color. By typing COLOR 1 ,the
color stored in SETCOLOR 0 will be used to draw lines.

Lines 70-90 draw a square spiral on the screen. The first point is plotted on the screen. Each
DRAWTO command following draws a straight line from the last point drawn to the point
indicated in the command.

Lines 100-120 change the color to be plotted, set the variables X and Y to the column and row
the point will be plotted in, and plot a point. The user will move this point.

Line 130 gets the direction of the stick. The variable S holds one of nine different numbers.

Lines 140-210 check the value of S. If it is 15, the stick has not been moved and the program
directs the computer to check again in line 130. If it is 14, the user wants to move up. Subtract one
from the oldrow to arrive at the new one. A 13 means the user wants the point to move down. Add
one to the row to move down. A 7 indicates a move to the right. This time 1 is added to the column.
An 11is amove to the left. One is subtracted from the column to move it. The program directs the
computer to line 240 after the row or column has been adjusted.

Line 230 sends the computer back to line 130 for another value. The joystick must have been
moved on a diagonal and the program does not handle diagonal moves.

181

Listing 17-5. Paths

10 REM LISTING XVII-3

20 REM FATHS

30 REM RY L.M.S5CHREIRER FOR TAE ROOKS

40 REM USES FORT #1

30 GRAFHICS 7

60 SETCOLOR 0s5,8:COLOR 1

70 FLOT OsOIDRAWTO 159201 NRAWTO 159y 7910R
AWTD 32y 7210RAWTO 399 L2 IDRAWTO 1199192 DRA
WTO 11252 IDRAWTO 59559

80 DRAWTO S9y29:NRAWTO 9929 I0ORAWTO 99549
INRAWTO 462549 :DRAWTO 469y 34 1TRAWTO 8953410
RAWTO 89s44

0 DRAWTO 7454410RAWTO 74539 10RAWTO 84,39
tDRAWTO 84540

100 COLOR 2

110 X=19:1Y=70

120 FLOT X»Y

130 8=8TICK(O) IREM GET THE DIRECTION

140 IF 8=1%5 THEN 130iREM NOT REING MOVED
150 IF S=14 THEN Y=Y-1:1G0TO 240

170 IF 8=13 THEN Y=Y+1:GOTO 240

190 IF 8=7 THEN X=X+1:GO0TO 240

210 IF S=11 THEN X=X-1:G0TO 240

230 GOTO 130:REM STICK IS DIAGONAL

240 LOCATE XsYsRBIIF RB=1 THEN 300

250 IF X=0 AND Y79 THEN 120

260 IF X=0 THEN X=1

270 IF Y=79 THEN Y=78

280 GOTO 130

300 C=73FOR ZZ=1 TO &6!S0UNDI OsCk10510,102
SETCOLOR 45Cs8iFOR Z=1 TO 100INEXT Z:C=10
—CINEXT ZZISOUND 0205050

310 GOTO 50

Line 240 uses the locate command to find out what is on the screen in the new location. If B

contains a one, the wall has been hit. The computer is sent to line 300.

Lines 250-280 check the values of X and Y. If both X and Y are on the screen, the program will
send the computer to line 120 so the new point can be plotted. The values the program checks are
the left edge of the screen and the bottom. If X is a 0, the point is too close to the left edge. By
resetting X to 1, the point can’t go off the screen. Again, if the value of Y is 79, the point is too close

182

to the bottom of the screen, and is reset to 78. The program goes back to line 130 for another input
from the joystick.

Lines 300-310 flash the screen and make a sound when the wall is hit. The program resets
itself for another game by going to line 50.

USING THE CLOCK

The ATARI has a clock built in its operating system. This clock is used to set the attract
mode and start changing the colors on the screen whenever a key has not been pressed for about
eight minutes. It can also be used by a program to limit the amount of time a user has to play, or to
keep track of how long it takes a user to answer a question. The clock is in locations 18, 19, and 20.
PEEK at location 20. This address is updated 60 times a second. Each time this memory location
is reset to 0, the contents of location 19 are increased by 1. The contents of address 18 are
increased by one each time location 19 is reset to 0.

Sometimes it is easier to PEEK at the values in one of these memory locations when you
need a timing loop rather than using a For . . . Next loop.

To start the clock for your own purposes, POKE a 0 into any or all of the memory locations
starting with 20 and ending with 18. Listing 17-6 gives you five seconds to answer each problem.

Line 35 opens the keyboard. The program will check which key has been pressed before it is
displayed.

Line 40 sets the graphics to mode 2 without the text window.

Line 50 sets N1 to a random number between zero and nine. This will be the first number
displayed on the screen.

Line 60 subtracts the random number the computer has just chosen from 10. The largest
answer this program will accept is a nine, by subtracting the first number from 10, we know the
upper limit for the second number.

Line 70 chooses the second number for the equation. It will be stored in N2.

Line 80 computes the answer by adding the value of N1 to N2.

Line 90 prints both numbers on the screen with the plus sign between them.

Line 100 clears two of the clock locations. Always clear the more frequently updated location
first.

Line 120 checks memory location 764. If a key has been pressed, the location will not contain
255. The computer must go to line 150 to find out which key has been pressed.

Line 130 checks location 19. If it is a one, about five seconds have passed and the program
will send the computer to line 170.

Line 140 sends the computer back to line 110 to check for a key if no key has been pressed
and the time is not up.

Line 150 gets the value of the pressed key. This value must have 48 subtracted fromit for the
true number of the key. 255 is POKEd into location 764 to reset that memory location. Memory
location 764 can only change when it is reset, or another key has been pressed.

Line 160 compares the pressed key with Answer. If both are the same, a message will be
printed on the screen, and a tone will sound. The computer is directed to line 180.

Line 170 prints the answer if the incorrect key was pressed, or time ran out. Another tone
will sound when the correct answer is printed on the screen.

183

Listing 17-6. Timer

10 REM LISTING XVII-é

20 REM TIMER

30 REM RY L.M.SCHREIBER FOR TAE EROOKS

35 OPEN #2450, "Ki"tREM OFEN THE KEYROARD
FOR INFUT

40 GRAFHICS 18:!REM SET GRAFHICS MODE

50 N1=INT(RNIDC(1)>X%10)REM FIRST NUMEBER I%

RETWEEN O AND 9

60 N=10-N1:REM GET LARGEST NUMEBER THAT 8SE
COND NUMERER CAN RE

70 N2=INT(RNDCL)XN) tREM GET THE SECOND NU

MRER

80 ANSWER=NI1+N2

90 FOSITION 8,517 #63N1s" + "iN2IREM FRIN
T THE FROELEM ON THE SCREEN

100 FOKE 20s0:FOKE 12y0!REM CLEAR TWO CL.O
CK REGISTERS

110 A=FEEK(764) !REM CHECK FOR KEY

120 IF A<>255 THEN 1350!REM KEY HAS REEN F
RESSED

125 IF FEEK(19)=1 THEN 1460IREM TIME’S UF
130 IF FEERK(19)=1 THEN 1460iREM TIME’S UF
140 GOTO 110

150 GET #2yAIFOKE 764y2055:REM CLEAR THE K

EY

160 IF A-48=ANSWER THEN FOSITION G737 #6
s "VERY GOOD":SOUND 0520,10,10:G0TO 180
170 FOSITION 9»7:7 #65ANSWERISOUND 05128y
10v10

180 FOR ZZ=1 TO 200:iNEXT ZZISOUND 0505050
190 GOTO 40

Line 180 is a timing loop to give the user time to read the message or the answer on the

screen. It can be adjusted for any length.

Line 190 sends the computer back to the beginning of the program for another problem.

The routine to change the colors on the screen when the computer is left unattended is also
dependent on the clock. The value in location 77 is increased by one every time location 20 is
reset. When location 77 reaches 128, the attract mode begins and the screen changes colors. This
can be very annoying in a game that does not use the keyboard. To stop the computer from going
to the attract mode, POKE 77 with 0 regularly during the course of a game. When you do disable
the attract mode, be sure to POKE the 0 after a move has been made rather than in the main loop.

184

Listings 17-7A and 17-7B are two examples of turning off the attract mode.

Lines 40-90 represent the main part of the program.

Lines 100-250 contain the subroutine that checks the joystick. The value in location 77 is
changed toa 0. This disables the attract mode. Line 120 determines the direction the joystick has
been moved. Lines 130 and 140 direct the computer to the correct lines if the joystick has been
moved up or down. Line 150 sends the computer back to line 110 if the joystick has not been
moved. Lines 190-250 are the routines for moving a character up and down on the screen.

The computer will always start at line 110 and disable the attract mode. If the program were
left unattended, the attract mode could never begin and the screen could be damaged.

Listing 17-7B is nearly identical to Listing 17-7A with one exception: line 110 has been
removed. The attract mode will still be disabled, but only after the joystick has been moved. Line
130 and 140 POKE location 77 only after the joystick has been moved. This is the correct way to
disable the attract mode. If the computer were left unattended the computer would be able to
begin the color cycle. However, once a joystick has been moved, the color cycle would stop.

LIGHT PENS

The light pen is another peripheral device that can be attached to the ATARI. The pen is
pointed at the screen and the location it is pointing to is stored in memory locations 564 and 565.

Listing 17-7A. Attract, Version 1

10 REM LISTING XVII-7A

20 REM ATTRACT

30 REM RY L. .M.SCHREIRER FOR TAE ROOKS

40 REM USES FORT #0

90 REM THIS IS THE MAIN FART 0OF THE FROGR

AM

60 REM USE THIS AREA TO SET THE VARIARLES
AN

70 REM THE DISFLAY ON THE SCREEN

80 REM

?0 REM

100 REM THIS IS THE ROUTINE TO CHECK THE
JOYSTICK

110 FOKE 7750

120 5=8TICK(O)

130 IF S=14 THEN 200

140 IF S=13 THEN 250

150 GOTO 110

120 REM ROUTINE TO MOVE UP

200 GOTO 110

240 REM ROUTINE TO MOVE IDOWN

250 GOTO 110

185

Listing 17-7B. Attract, Version 2

10 REM LISTING XVII-7E

20 REM ATTRACT

30 REM BY L.M.SCHREIRER FOR TAR ROOKS

40 REM USES FORT #0

30 REM THIS IS THE MAIN FART OF THE FROGR
AM

60 REM USE THIS AREA T0O SET THE VARIARLES
ANI

70 REM THE DISFLLAY ON THE SCREEN

80 REM

20 REM

100 REM THIS IS THE ROUTINE TO CHECK THE
JOYSTICK

120 S=8TICK(O)

130 IF S$=14 THEN FOKE 77,0:1G0T0 200
140 IF $=13 THEN FOKE 77,0:G0T0 250
150 GOTO 110

190 REM ROUTINE TQ MOVE UF

200 GOTO 120

240 REM ROUTINE TO MOVE DOWN

290 GOTO 120

Listing 17-8. Paddle Draw

10 REM LISTING XVIT.8

20 REM RBY L+M.SCHREIRER FOR TAR ROOKS

30 REM FADDLE DRAW

40 DIM AECL)

5O P "FTHIS FROGRAM WILL DEAW A FICTURE
IN GRAFHICS 7 USING TWO FANDDLES. ONE®
60 P FADDLE WILL DRAW THE LINES UF AND X
OQWNTHE OTHER FADDLE WILL DRAW RIGHT TO

LEFT."

70 7 T CUSE THE NUMBERS 1 2y AND X3 TO ©
HANGE THE COLOR, "

go 7 7 "PRESS RETURN TO BEGIN"S

20 INFUT A%

100 GRAFHICES 2320FEN #2+4.0y "KI" IREM OFEN
KEYROARD FOR READ

186

110 A=1IREM START WITH COLOR 1

120 R=FADDLECO)/Z2IREM GET STARTING FOINT

0OF ROW

130 C=FARDLE CLY3IF CH159 THEN C=159:REM O

ET STARTING FOINT OF COLUMN

140 Ri=R3R=FALNDLECOY IREM THE ROW I8 REAI

FROM THE FIRST FADDLE

150 Cl=C:C=FADDLE (L) IREM THE COLUMN I8 RE

Al FROM THE SECOND FADDLE

160 R=INT(R/2)IIF R=9%5 THEN R=935IREM KEEF
LINE ON SCREEN

170 IF Cx1%9 THEN C=159tREM CHECK FOR RIG
HT MARGIN

180 IF PEEK(764)=208% THEN 210:REM NO KEY

FRESSET

1920 GET #2yATF A<49 OR AXS51 THEN 210IREM
CHECK FOR GOOD ENTRY

200 A=A-48IREM GET NUMBER FRESSED

210 COLOR (A IFLOT CyRIDRAWTO CleRLIREM F
LOT THE DOT

220 GOTO 140:REM DRAW SOME MORE

Listing 17-9. Paddle Music

10 REM LISTING XVIT.9

20 REM RBY LeMSCHRERIER FOR TAR ROOKS

30 REM FADNLE MUSIC

40 P "IThis srogam will sroduace music ba

ased on Lhe values of two Faddles. The"

5O "wadodles mast bhe in the first sort.”

A0 T "Preass START to bestin.”

20 OTF O PFEER(S3279Y006 THEN 70

QO GRAFHICS 23iREM GRAFHICS 7 WITH NO TEX
T WINDOW

0 COLODR ZIREM BLLUE

100 FLOT Os48L0RAWTO 15948 REM DRAW THE
CENTER L INE

110 FPlL=0IREM START AT THE LEFT OF THE $SCR
EEN

187

Listing 17-9. Paddle Music. (Continued from page 187.)

120 S=PANDLECOY G L=FANDLE CL) tREM GET THE

VALUES TO RBE SOUNDED OF BOTH FALDDLES

130 P=PADOLECO) 752 L=FADDLE CLY Z8REM GET

THE VaALUES T0O RE FLOTTED

140 SOUNID OsSe 10y LOIEOUND 1LeS1e10s LTOIREM

MAKE BOTH SOUNDES

150 COLOR 1EREM YELLOW

160 FLOT FLy4BINRAWTO FLA248-FIORAWTO FIL.
4 484FINRAWTO P48y 48

170 COLOR 2(REM GREEN

180 FLOT FLeABITIRAWTO FLA2y48+F 1L IDRAWTO F
L4+7248-F1IIRAWTO FL+8548

190 FlL=FLA@IF FLLSL THEN 120

200 6GOTO 80

The value stored would be equivalent to the row and column for the print or position commands.
By checking these values when the trigger on the pen is pressed, the program can determine
whether the person playing the game was pointing to the right location.

At the time of this writing, light pens from ATARI are not available. Light pens are available,
however, from other hardware manufacturers and are compatible with the ATARI microcom-
puter.

JUST FOR FUN

Listings 17-8 and 17-9 combine graphics with the paddles. Listing 17-8 uses the paddle in
port 1 as a drawing tool. Change the color on the screen by pressing keys 1, 2, or 3. Listing 17-9
uses the values of the paddles to produce tones. These tones are interpreted and drawn on the
screen. To end either program, press the break key. To stop the sound in Listing 17-9,
type END

188

Chapter 18

Advanced
Programming Skills

Now that you are confidently programming on your ATARI, you may want to give your
programs a more professional look. Routines may be taking too long; other programs could use
more color or graphics. By working directly with the 6502 microprocessor through a BASIC
program, you can have the best of two worlds. BASIC can access small machine-language
programs that will enhance or speed up your program. You can still write the main part of your
program in BASIC.

Before writing a machine language subroutine you must have knowledge of the instructions
the microprocessor follows. Figure 18-1 lists the entire 6502 instruction set with a brief
explanation of each code.

Each instruction can be used by itself or with addresses or numbers. For example—LDA
means to load the accumulator with a number. We can enter computer LDA $56
This tells the computer to load the accumulator with the hex number 56. The pound sign tells the
computer to use this number, the dollar sign stands for a hexadecimal number. We could
enter LDA $7A which means the number to place in the accumulator is found in
memory location hex 7A. LDA $E002 tells the computer to load the accumulator
with the contents of memory location hex E002. Each of these operations has a different code or
number to differentiate one from the other. Figure 18-2 lists the codes for these commands.

It would be tedious to write large programs with these codes. When you are ready to work in
machine code, you will use an editor/assembler to help you. The editor understands the
mnemonic or instruction code, and the assembler converts these instructions into machine code.

It s possible to write short machine language subroutines directly in machine code and
POKE these instructions into memory with your BASIC program. Your program would access
the machine language subroutine through a BASIC statement, execute it, then return to the
BASIC program.

USR

In Chapter 17 we moved the character set normally in ROM into RAM. Using BASIC, we
PEEKed at a location, then POKEd that value into RAM. This can be accomplished much faster
with a machine-language subroutine.

189

The machine-language subroutine must be placed in an area of RAM where it will not be
touched by BASIC or the operating system. There are 256 bytes of memory, beginning with
memory location 1536, set aside for this purpose. You can place a short machine-language
subroutine there and know it will not be touched unless you POKE another value into that
location. All the machine language subroutines in this chapter will be located in this area of RAM.
Listing 18-1 moves the character set from ROM into RAM by using a machine-language
subroutine.

Line 40 PEEKSs at location 106. The amount of available memory is stored here. Eight is
subtracted from this amount. This will be the starting location of the RAM-based character set.
We need to save this value, so POKE it into location 204. We also store the beginning location of
the ROM character set in location 206.

Line 50 begins the For . . . Next loop that moves the machine language subroutine into
memory. The decimal equivalents to the instructions the computer will follow are in line 200.
Location 1536 is the first memory location where this routine will start. The program will read the
data, then:

Line 60 POKESs it into memory and continues until the entire routine has been moved.

Line 80 uses the USR instruction. Q is a dummy variable. The number in the parentheses is
the first location of the machine language subroutine. The program sends the computer to this
address to complete the routine. If there is no routine at this location, the system could crash.

Line 90 POKEs the new character-base address into location 756. Now the computer will
use this character base.

Line 200 contains the machine-language subroutine the program is using.

Figure 18-3 lists the assembly-language version of the machine-language subroutine used in
this program. When you are using a machine-language subroutine accessed from BASIC, the
routine must first pull a number off the stack. This number was placed there when the computer
went to the routine. If it is not removed, the routine will not return to BASIC properly.

The next command tells the computer to load its X index with the number 4. Then it will load
the Y index with a 0. This resets the index. We will use this to count with when we move the
character base.

The 6502 can add a number stored in one of its indexes to an address to obtain a new
address. LDA 205,Y tells the computer to add the value stored in Y to the address
stored in memory locations 205-206. Location 205 stores the low order address, location 206
contains the high order address. We POKEd the beginning address of the ROM character base to
this location in the BASIC program. Once the computer adds the contents of Y to this address, it
will get the value stored at this new address and place it into the accumulator.

The computer has to store this number somewhere. 204 is the location of the new character
base. The computer adds the value stored in Y to the address stored in memory locations 203-204
and stores the number in its accumulator in the new location.

INY tells the computer to add 1 to the value of the Y index and store it in index Y. Both the X
and Y index registers can count up to 255. If they are incremented past 255, they will reset to zero.
When this happens, a flag or bit will be set in another register indicating the index has been
zeroed.

190

Fig. 18-1. 6502 microprocessor instructions.

ADC
AND
ASL

BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLv
CMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JMP
JSR

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA

PLP

ROL

ROR

RTI
RTS
SBC

SEC
SED
SEI

STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Add memory to Accumulator with Carry
'AND' Memory with Accumulator
Shift Left one bit in memory or
Accumulator

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Result not Equal to Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One
‘Exclusive-Or' Memory with Accumulator
Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location

Jump to New Location but save return
address

Load Accumulator with Memory
Load Index X with Memory

Load Index Y with Memory

Shift Right One BIt in Memory or
Accumulator

No Operation

‘OR' Memory with Accumulator
Push Accumulator on Stack

Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Stack
Rotate One Bit Left in memory or
Accumulator

Rotate One Bit Right in memory or
Accumulator

Return from Interrupt

Return from Subroutine

Subtracts Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index S to Stack Pointer
Transfer Index Y to Accumulator

191

Instruction Assembly Hex Decimal i Assembly Hex Decimal
ns Language Form Code Code Instruction Language Form Code Code
ADC ADC #nn 69 105 CMP aaaa CD 205
ADC aa 65 101 CMP aaaa,X DD 221
ADC aa,X 75 117 CMP aaaaY D9 217
ADC aaaa 6D 109 CMP (aaX) C1 193
ADC aaaa,X 7D 125 CMP (aa),Y D1 209
ADC aaaa,Y 79 121 CPX CPX #nn EO 224
ADC (aa,X) 61 97 CPX aa E4 228
ADC (aa),Y 71 113 CPX aaaa EC 236
AND AND #nn 29 41 CPY CPY #nn co 192
AND aa 25 37 CPY aa C4 196
AND aa,X 35 53 CPY aaaa e 204
AND aaaa 2D 45 DEC DEC aa Cé6 198
AND aaaa,X 3D 61 DEC aa,X D6 214
AND aaaa,Y 39 57 DEC aaaa CE 206
AND (aa,X) 21 33 DEC aaaa,X DE 222
AND (aa),Y 31 49 DEX DEX CA 202
ASL ASL A 0A 10 DEY DEY 88 136
ASL aa 06 6 EOR EOR #nn 49 73
ASL aa,Y 16 22 EOR aa 45 69
ASL aaaa 0E 14 EOR aaX 55 85
ASL aaaa,X 1E 30 EOR aaaa 4D 77
BCC BCC aa 90 144 EOR aaaa,X 5D 93
BCS BCS aa BO 176 EOR aaaa,Y 59 89
BEQ BEQ aa FO 240 EOR (aa,X) 41 65
BIT BIT aa 24 36 EOR (aa),Y 51 81
BIT aaaa 2C 44 INC INC aa E6 230
BMI BMI aa 30 48 INC aa,X Fé 246
BNE BNE aa DO 208 INC aaaa EE 238
BLP BLP aa 10 16 INC aaaa,X FE 254
BRK BRK 00 0 INX INX E8 232
BVC BVC aa 50 80 INY INY Cc8 200
BVS BVS aa 70 112 JMP JMP aaaa 4C 76
CLC CLC 18 24 JMP (aaaa) 6C 108
CLD CLD D8 216 JSR JSR aaaa 20 32
CLI CLI 58 88 LDA LDA #nn A9 169
CLV CLV B8 184 LDA aa A5 165
CMP CMP #nn C9 201 LDA aaX B5 181
CMP aa C5 197 LDA aaaa AD 173
CMP aaX D5 213
Fig. 18-2. Decimal and hex codes for instruction set.

BNE means branch not equal. If the Y index has not been reset to 0, the computer will goback

to the

LDA 205,Y

. The number following the BNE instruction tells the computer

how many bytes to branch and whether to go backwards or forwards. If the number is less than

128, the computer branches forward; if the number is greater than 128 the computer branches
backward. Subtract the number following BNE (249) from 255 to find out how many bytes
backward the computer will branch.

192

. ci . Assembly Hex Decimal
Instruction La,::us:;;b::{,,m éio%xe D:;,,'(;neal L) Language Form Code Code
LDA aaaa,X BD 189 ROR ROR A 6A 106

LDA aaaa,Y B9 185 ROR aa 66 102

LDA (aa,X) A1 161 ROR aa,X 76 118

LDA (aa),Y B1 177 ROR aaaa 6E 110

LDX LDX #nn A2 162 ROR aaaa,X 7E 126
LDX aa A6 166 RTI RTI 40 64

LDX aaY B6 182 RTS RTS 60 96

LDX aaaa AE 174 SBC SBC #nn E9 233

LDX aaaa,Y BE 190 SBC aa E5 229

LDY LDY #nn A0 160 SBC aaX F5 245
LDY aa A4 164 SBC aaaa ED 237

LDY aaX B4 180 SBC aaaa,X FD 253

LDY aaaa AC 172 SBC aaaa,Y F9 249

LDY aaaa,X BC 188 SBC (aa,X) E1 225

LSR LSR A 4A 74 SBC (aa),Y F1 241
LSR aa 46 70 SEC SEC 38 56

LSR aa, X 56 86 SED SED F8 248

LSR aaaa 4E 78 SEI SEI 78 120

LSR aaaa,X 5E 94 STA STA aa 85 133

NOP NOP # EA 234 STA aaX 95 149
ORA ORA #nn 09 9 STA aaaa 8D 141
ORA aa 05 5 STA aaaa,X 9D 157

ORA aaX 15 21 STA aaaaY 99 153

ORA aaaa 0D 13 STA (aa,X) 81 129

ORA aaaaX 1D 29 STA (aa)Y 91 145

ORA aaaa,Y 19 25 STX STX aa 86 134

ORA (aaX) 01 1 STA aaY 96 150

ORA (aa),Y 11 17 STA aaaa 8E 142

PHA PHA 48 72 STY STY aa 84 132
PHP PHP 08 8 STY aa,X 94 148
PLA PLA 68 104 STY aaaa 8C 140
PLP PLP 28 40 TAX TAX AA 170
ROL ROL A 2A 42 TAY TAY A8 168
ROL aa 26 38 TSX TSX BA 186

ROL aaX 36 54 TXA TXA 8A 138

ROL aaaa 2E 46 TXS TXS 9A 154

ROL aaaa,X 3E 62 TYA TYA 98 152

If the Y index has been reset to zero, the computer will continue with the program. First it
will add one to the number in memory location 206. It will then add one to the number in memory
location 204. The computer accesses the next 256 bytes of ROM, then subtracts one from the
number stored in index X. If X has not been reset to zero, the program will cycle back to the LDA
205,Y command. Each time this routine is completed, the computer moves 256 bytes from the
character set in ROM to the new location in RAM. Completing this routine four times will move

193

Listing 18-1. Move Character Base

10 REM LISTING XVIII.1

20 REM MOVE CHARACTER RASE

30 REM RY L.M.SCHREIRER FOR TAR BOOKS

40 A=FPEEK(106)-8!F0OKE 204yAIFOKE 206,224

90 FOR X=1%36 TO 15535IREAD VIREM GET THE

MACHINE CODE IN DECIMAL

60 POKE XyVIREM FUT IT INTO MEMORY

70 NEXT XI{REM MOVE THE ENTIRE ROUTINE INT

0 MEMORY

80 Q=USR(1536) {REM NOW RUN IT

20 FOKE 7%6vyAtREM TELL THE COMPUTER WHERE
THE CHARACTER SET I8

100 7 "YelearXNOW WE ARE USING THE CHAR

ACTER RASE IN RAM"IREM FRINT 2 ESCAFE-~C

NTRL-DOWNARROW AFTER CLEAR

110 END

200 DATA 1045162945160 051779205v1459203y

200920892495 230y206v2309204y202208924249

é

the entire character set. Once the X index reaches zero, the routine returns to BASIC (see Fig.
18-4).

ANTIC AND THE SCREEN

Most microcomputers on the market today use the same CPU to handle instructions and
commands and also display information on the screen. Some systems offer choice of text, text
with limited graphics, or high-resolution graphics. The ATARI microcomputer has a video
microprocessor called Antic which handles the screen display. It has its own set of instructions
that are different from the 6502 instructions, its own program, and data. This makes it possible to
display several different modes on the screen at the same time. By using interrupts, you can
display more colors than BASIC normally allows.

To understand the graphic capabilities of the Antic chip, you must first understand how a
television screen works. An image is drawn on the screen by means of araster scan: A beam starts
at the upper left corner of the screen, and moves across the top of the screen. When it reaches the
right side of the screen, it is turned off and returns to the left side of the screen. It is also lowered
one line below the line just traced. It continues this pattern until it reaches the bottom of the
screen. The beam will shut off and return to the upper left corner of the screen. The period of time
it takes the beam to return to the left side of the screen is called the horizontal blank. The time
needed to return to the upper left corner is the vertical blank.

194

The ATARI displays information using 192 scan lines. Each mode uses from 16 to 1 scan
line(s). In mode 0 there are 24 rows on the screen. Each character stands eight scan lines high
(8x24=192 scane lines).

The Antic chip must be able to determine which modes are used in a program. To do this, it
uses a display list. In direct command, type: ? PEEK(560)+PEEK(561)*256 . This
location (560-561) is a two-byte address that stores the beginning address of the display list. Run
Listing 18-2.

The numbers printed vertically on your screen are instructions for the Antic chip. The
numbers should read:

112
112
112 Decimal Code Assembly Language Listing
66* 104 PLA ;Pull the accumulator
64* may vary off the stack
156* may vary 162 LDX #4 ;Load the index X with 4
4
160 LDY #0 ;Load the index Y with 0.
0
177 LDA (205),Y ;Load the accumulator
205 with the contents of the

memory location that is
arrived at by adding the
contents of index Y to
the memory location
contains in location

205-206
145 STA (203),Y ;Store the number in the
203 accumulator in the

address arrived at by
adding the contents of
the index Y with the
contents of locations

DO DD DD DD DN DN DD DN DD DD DN DN DN DN NN

203-204
200 INY ;Increment the index Y
208 BNE ;Branch if the index Y
249 is not 0 backwards 6 bytes.
230 INC 206 ;Add one to the number in
206 location 206.
230 INC 204 ;Add one to the number in
204 location 204
202 DEX ;Decrement the index X
208 BNE ;Branch if the index X
242 is not 0 backwards 13 bytes.
96 RTS ;Return to BASIC
65 Fig. 16-3. Assembly Language Listing for Moving Character Set from

32* may vary ROM to RAM.

156* may vary

195

Fig. 18-4. Flowchart for assembly
language subroutine that moves
character set from ROM to RAM.

PULL THE

ACCUMULATOR

'

PUT 4
IN INDEX X

'

PUT 0
IN INDEX Y

_>__*

GET ONE
BYTE FROM

ROM ADDRESS

Y

STORE IT
IN RAM
ADDRESS

v

INCREMENT
Y INDEX

o b

YES

ADD ONE TO
ROM HIGH-

ORDER ADDRESS

i

AR

ADD ONE TO
RAM HIGH
ORDER ADDRESS

Y

DECREMENT
INDEX X

o

YES

RETURN

¢

This display list contains 32 bytes. The first three numbers (112) are blank lines. Because
there is an overscan on most television sets, the first 24 scan lines are blanked out. The next

196

Decimal Code Assembly Language Listing
72 PHA ;Push the contents of the
accumulator on the stack.
169 LDA #88 ;Load the accumulator with
88 88.
141 STA 54282 ;Store the contents of the Fig. 18-5. Assembly Language Sub-
10 accumulator in this location routine that adds more colors to
212 - wait for horizontal sync. screen.
141 STA 53272 ;Store the contents of the
24 accumulator in the color
208 register.
104 PLA ;Put the number that was
stored on the stack back
into the accumulator.
64 RTS ;Return

number, 66, is a combination of two numbers. 64 tells the Antic chip to load its memory scan
counter with the following two numbers. By adding two to it, we tell it to use graphics mode 0.
The next two numbers may vary, and contain the starting location of the screen. The first number
is the low order address, the second number is the high order address. This address should be
followed by 23 twos. Each two represents one row on the screen in mode 0. The 65 is another
combination instruction. 64 means to jump to the location in the next two bytes when there is a
vertical blank. Add one for a jump address. The next two numbers are the address the Antic chip
will jump to—the beginning of the display list. Antic will continue with this display list until it is
changed.

There are two important features about this display list. Because you can POKE numbers
into it, you can change your screen display for any area of memory. You can even alternate
between two screen display areas for animation or special effects. Also you can change the mode
of one display line or several display lines and create multi-mode displays.

If you have less than 192 scan lines, your screen display will be shortened by that number of
lines. Display lists must not cross a 1K boundary. If you have no choice but to cross a boundary,
you must use a jump instruction or the Antic chip could get confused and never access the last part
of your display list. One other problem arises with BASIC. If you try to print on the screenin a

Listing 18-2. Display List

10 REM LISTING XVIII.2

20 REM DISFLAY LIST

30 REM RY L.M.SCHREIRER FOR TAR ROOKS

40 DISFLAY=FPEERK(S60)+FEEK(561) %256 IREM FI
NI THE REGINNING OF THE DINISFLAY LIST

50 FOR X=DISFLAY TO DISFLAY+31:7? FEEK(X):
NEXT X:REM FRINT THE DISFLAY LIST

197

position that would normally be out of range for the cursor, BASIC will refuse to print there.
Mixing 20 column modes with 40 column modes will move the position locations also.

Listing 18-3 mixes three modes to give you a varied print in the display message.

Line 40finds the beginning of the display list. The display list address, a two-byte address, is
stored in locations 560 and 561. Multiply the second byte by 256 and add it to the first byte to
arrive at the address.

Line 50 saves the screen address. Since we will be using mode 0 for most of the screen
display, we do not have to recalculate the screen area. The fifth and sixth numbers in the display
list are the screen address.

Line 60 shuts off the Antic chip (since the Antic chip is constantly accessing the display list,
we cannot change values in it while the chip is on). Memory location 559 tells Antic whether it
should be working or not.

Lines 70-190 change the display list. We want to display one line in mode 1 and one line in
mode 2. First decide which lines to change. The numbers in the display list must reflect this
change.

Line 70 POKEs 112 into the first three memory locations of the display list. (Remember, the
display list address is the first memory location, so the first three locations are 0 to 2.)

Line 80 POKEs the command that tells Antic the next two bytes contain the screen address
and the mode the first line on the screen is in.

Line 90 POKEs the screen address. This program will reuse the address previously stored
there.

Lines 100-110 POKE a 2 into the next six locations. This tells Antic to use mode 0 for these
lines of the display.

Line 120 POKEs a 6 into the next location. The eighth line on the screen is now in graphics
mode 1.

Lines 130-140 POKE a 2 into the display list for seven more lines in mode 0.

Line 150 POKEs a 7 into the next location. This makes the sixteenth line on the screen mode
2.

Lines 160-170 POKE a 2 into the remaining locations in the display list. The rest of the
screen will be in mode 0.

Line 180 POKEs a 65 into the next location. This instruction tells Antic to jump to the
address contained in the next two memory locations and start the display list instructions again
after a vertical blank.

Line 190 POKEs the display list address into the next two memory locations. Since we did
not move the display list, we can reuse the address in locations 560 and 561.

Line 200 turns the Antic chip on by POKEing a 34 into location 559.

Line 210 turns the cursor off and sets the background color for mode 0 to black.

Lines 220-230 clear the screen and print a message in the two lines in modes 1 and 2.

Line 240 loops until the break key or system reset is pressed.

If you press the break key and list the program without pressing the system reset key, the
screen display will be the same as it is for the program. Your listing will appear in three different
modes and the sections of the screen between mode 1 and mode 2 will appear off. Instead of the
lines starting at the left side of the screen, they will begin in the middle of the screen, because the

198

Listing 18-3. Changing the Display Listing

10 REM LISTING XVIII.3

20 REM CHANGING THE DISFILLAY LIST

30 REM RY L.M.SCHREIRER FOR TAE BOOKS

40 DISPLAY=PEEK(S60)+FEERK(S61) %256 IREM FI
NIl THE BEGINNING OF THE DISFLAY LIST

90 SCL=FPEEK(LISFLAY+4) :SCH=FEEK(DNISFLAY+S
JIREM SAVE THE SCREEN ADDRESS

60 FOKE 53590:REM SHUT OFF THE ANTIC CHIF

70 FOR X=DISPLAY TO DISFLAY+2IFOKE X»112%
NEXT X3KEM BLANK LINES

80 FOKE DISFLAY+3,66!REM MODE O AND SCREE
N ADDRESS FOLLOWS

90 FOKE DISFLAY+4ySCLIFOKE DISFLAY+5ySCH
100 FOR X=DISFLAY+é6 TO DISFLAY+11!REM THE
RE ARE 6 MORE MODES O LINES

110 FOKE X»2iNEXT X

120 POKE DISFLAY+12+6!REM THIS LINE I& MO
DE 1

130 FOR X=DISFLAY+13 TO DISFLAY+19tREM 7
LINES OF MODE ©

140 POKE X»s2iNEXT X

150 FOKE DISFLAY+20,7:REM MODE 2

160 FOR X=DISFLAY+21 TO 27!REM THE REST I
S MODE 0

170 FOKE X»s2iNEXT X

180 FOKE DISFLAY+28y653REM JUMF AND WAIT
FOR VERTICAL ELANK

190 POKE DISFLAY+29yFPEEK(560) {FOKE DISFLA
Y+30sPEEK (561)

200 POKE 5595343REM TURN ANTIC BACK ON
210 POKE 752y13POKE 710y0!REM TURN OFF CU
RSOR AND SET COLUR TO EBLACK

220 7 "YclearX>*tFOSITION 2+7:7 "CHANGING®
230 FOSITION 29,1417 "modes"

240 GOTO 240

computer thinks the entire screen is displayed in mode 0. The lines in mode 0 are 40 characters
long. When we changed the eighth line to mode 1, the computer will still count to 40 when
displaying that line. This causes a wrap-around to the next line. Every line following is off by 20
characters. The situation rights itself when we change the sixteenth display line to mode 2. Also,

199

because of this wrap-around effect, the first position in line 16 is not 0, but 20. BASIC will also
produce the display on that line as if it was row 14 rather than 15.

Once you have a good idea of how the screen will be displayed when the modes are mixed,
you can develop some interesting effects.

GETTING MORE COLOR

Changing the graphics modes in the display list is just one of the features of the display list.
Since the Antic is a true microprocessor, the display list instructions can be interrupted, another
routine can be performed, and the list can be continued. The trick is to do it without disturbing the
screen display.

Let’s say the program you are writing requires five colors in large letters. Graphics mode 2
can display only four colors at once. Solution—interrupt the display list, use a machine language
subroutine to change the color in one of the color registers, then continue the program. This
subroutine would have to be accessed each time the screen is updated, which is about 60 times a
second. It must also be very short and to the point. The computer must read and execute in line in
the time it takes for the scan to come back to the left side of the screen.

Listing 18-4 displays a message in mode 2 with the standard colors on the top part of the
screen. The message on the lower half of the screen, however, is in a fifth color.

Line 50 sets the graphics mode. The mode you are going to use must be set before you
change the display list, because the computer changes the display list each time the mode
changes.

Line 80 finds the beginning of the display list and adds 10 to it. This will give us the seventh
line of the screen.

Line 90 POKEs this location with 128 plus the number already there. This will not change
the mode. By adding 128 to the mode code, the Antic chip will know there is an interrupt routine it
must complete after it completes this line.

Line 100 reads the data in line 120 and POKEs it into memory. This data is the machine-
language subroutine that will add another color to this graphics mode.

Line 110 POKEs the address of the machine-language subroutine into locations 512 and 513.
Location 512 contains the low-order address and 513 contains the high-order address. This
subroutine is POKEd into locations 1526-1551. By dividing 1536 by 256 we arrive at the
high-order address. Since there is no remainder, POKE 0 into the low-order address. By
POKEing 192 into 54286 the computer knows there will be an interrupt during the display list.

Lines 150-190 display a message on the screen. The second color and the fifth color look the
same in the listing. Both use reverse video—uppercase. However, when the program is run, the
second color appears blue on the screen while the fifth color is pink.

Line 200 loops until the break key or system reset is pressed.

To understand why we can change the color in a color register without affecting the color the
first time it is displayed, we should look at the assembly-language program (Fig. 18-5).

Because we are not using the USR function from BASIC to access this subroutine, we do not
have to do a PLA. Instead, since we are changing the value in the accumulator, we will first save
the value in the accumulator by pushing it on the stack. Next we will load the accumulator with 88.
This number produces pink. Store this number in the hardware register that waits for the

200

Listing 18-4. Adding Colors

10 REM LISTING XVIII-4

20 REM ADDING MORE COLORS

30 REM BY L.M.SCHREIBER FOR TAE BOOKS

50 GRAFHICS 18

80 DL=FEEK(S5460)+FEEK(561)%256:DL=DL+10¢RE
M FIND THE MIDOLE OF THE SCREEN

20 FOKE DLyFEEK(DL)Y+128:KREM ADD THE INTER
RUFT CODE TO THE MODE CODE

100 FOR DL=1536 TO 1546:READ Q!FOKE DLsQ¢
NEXT DLIREM FOKE THE MACHINE LANGUAGE FRO
GRAM

110 FOKE S12503F0KE 513y6!F0KE 54286,192¢
REM FOKE THE ADDRESS OF THE MACHINE LANGU
AGE SURROUTINE

120 DATA 72+169+889141510+212y1415245208y
104564

150 FOSITION 2,1:7 #65 "FIRST COLOR"{REM C
AFITAL LETTERS

160 FOSITION 2,37 #6464+ "SECOND COLOR" {REM

CAFPITAL LETTERS/REVERSE UIDEO "~~~

170 FOSITION 2,5¢7 #65"third color"{REM L
OWER CASE LETTERS

180 FOSITION 2y7:7 #65"fourth color® {REM

LOWER CASE/REVERSE VIDED =~
AFITAL LETTERS/REVERSE VIDED
200 GOTO 200

horizontal sync. We do not want to change the color until the beam is turned off and returning to
the left side of the screen. Certain hardware addresses can have values stored in them when we
work in machine language. You could not do this in BASIC because it is too slow. By the time
BASIC POKEd a value into a hardware location, the operating system would write over it and it
would not register on the screen. The operating system replaces this number with the original
color number (blue) during the vertical blank. That is why the second color never changes to pink.

When the Antic chip starts from the top of the display list, it has blue in that location. When it
gets to the seventh line, and the horizontal sync occurs, the interrupt program will put pink into
that location. Once the horizontal sync occurs, 88 can be placed into location 53272. This is the
equivalent of the SETCOLOR register 2 command in BASIC. After the new color has been placed
into the correct register, the routine will pull the value off the stack and place it into the
accumulator and return to the display list. Everytime Antic comes to this line in the display list, it
will wait until this routine has been completed.

201

When the beam reaches the bottom of the screen and the vertical blank occurs, the original
color (blue) will replace the new color (pink). One note of caution: the way this routine is written,
the color in this register will not cycle when the rest of the screen does. This could cause damage
to the screenif it is left on for a period of time and defeats the attract mode. This can be changed by
using the following data line and changing 1546 in line 100 to 1550. The 69 exclusive ors the value
in location 79 with the 88 and ANDs it with the value in 78. Now all the colors on the screen can
cycle.

120 DATA 72,169,88,69,79,88,78,141,10,212,141,24,208,104,64

PLAYER/MISSILE GRAPHICS

In addition to the five color registers for the background and characters, the ATARI also has
four color registers for its players and missiles. If you want to draw a character with any other
microcomputer, then move the character across the screen, you would have to erase the old
character and redraw the new one. The players in the ATARI computer are characters you can
create and move instantaneously anywhere on the screen. The character is eight bits or points
wide, but it can be in one of three sizes. It can also be only one line tall or as tall as the screen. You
may imagine it as a band that fits over the screen from top to bottom. This band can be moved from
left to right and back again. The character is within the band and can be moved up or down.

CREATING A PLAYER

Since a player can only be eight bits or points wide, it’s a good idea to draw the character on
graph paper first. Maybe you're writing a space program and would like to design a ship. Figure
18-6 is an example of a space ship that can be used as a player. It is eight points wide and seven
lines high. Using binary to compute the numbers, each line of the ship has the following values
(from top to bottom): 15,2,226,66,66,255

Now we have a player, we have to be able to tell the computer we want to use player/missile
graphics in this program and draw the player in memory to use and reuse. The area of memory the
characters for the player/missile graphics occupy must be in a single 1K (1024 bytes) or 2K (2048
bytes) of continuous memory. The beginning address of the character block must be divisible by
1024 with no remainder.

For Listing 18-5 we will use the single line players that use 2K of memory. In the second
program we will use the same players in 1K of memory. Each number will display two lines on the
screen.

Line 50 POKEs values into the color register for the first player (address 704) and changes
the background color to black.

Line 60 finds out how much memory is available and subtracts 16. This value will be more
than 2048 bytes above the display list. We need 2K of memory for the player/missile graphics, but
if we simply subtract 2048 from the display list, we could cross a boundary line somewhere in
memory. This would confuse Antic, so instead, subtract an even 4K from the amount of memory in
the system. This leaves 2K for the screen display and display list and 2K for the player/missiles.

Line 70 POKEs the address the player/missiles will begin at into location 54279. This is a
hardware register. Now Antic knows where the characters will be located. By multiplying that
number by 256 we have the decimal location of the beginning of the player/missile display.

202

™ — o <+ « —|BIT VALUES

15
2

226 Fig. 18-6. Bit values for player in
Player-Missile graphics.
66

66
255

Line 80 POKEs location 559 with a 62. In a previous program we POKEd that location with 0
to turn Antic off, then POKEd it with a 34 to turn it back on. Now POKE it with 62 to tell it we will
be using the player/missile with single-line resolution.

Line 90 POKEs memory location 53277 with a 3. The player/missile graphics are now
enabled. If we told Antic to use player/missile graphics (previous line), but never enabled them,
they would not be displayed on the screen. POKEing 75into location 53248 moves the player onto
the screen. This number can be changed to any number from 0 to 255. Numbers less than 50 or
greater than 200 will place the character off the screen.

Line 100 clears the memory the player will occupy. The first player starts 1024 bytes below
the address we calculated. It uses 256 bytes of memory. We are clearing enough memory for two
different players.

Line 110 places the character we created into the memory set aside for the player. Placing it
70 bytes from the top of that player’s area is just one area the character could occupy. The
character can be placed in any area from 1024 to 1274. Again, if you place your character too close
to the top or bottom of the area, it will not be displayed on the screen.

When you run this program, the screen should clear and after a few seconds, a small ship will
appear in the upper left corner of the screen. If you list your program, the space ship will not
move. It will not scroll up with the program listing nor will it disappear if you press the shift and

203

Listing 18-5. Player/Missile Graphics.

10 REM LISTING XVIII-5
20 REM FLAYER/MISSILE GRAFHICS

30 REM RY L.M.SCREIRER FOR TAR EROOKS

40 7 "}*

S50 FOKE 704y124:F0OKE 710s0!REM CHANGE THE
COLORS

60 A=FEEK(106)~16tREM GET 2K AROVE THE DI
SFPLAY LIST

70 FOKE S54279yA!FMBASE=AX256 IREM TELL ANT
IC WHERE THE FLAYERS WILL BEGIN

80 FOKE 355962IREM SINGLE LINE RESOLUTION
ON THE FLAYERS

90 FOKE 53277y3iFOKE 53248y75IREM LET THE
FLAYERS SHOW

100 FOR X=FMRASE+1024 TO FMEASE+135346F0OKE
XyOINEXT XIREM CLEAR OUT THE GAREBAGE

110 FOR X=FMRASE+1094 TO FMRBASE+1099IREAD
FIFOKE XyFINEXT XIREM DRAW THE CHARACTER
120 DATA 1529226966966 2055

clear keys. Player/missiles act independently of the other characters on the screen. Let’s add
another character to Listing 18-6.

Line 140 POKEs a color (yellow) into the color register for the second player. 53249 is the
register for the second player’s position on the screen. If a 75 were POKEd into this location, the
second ship would appear under the first ship.

Line 150 reads the numbers that create the second ship and POKEs them into the memory
set aside for the second ship.

Now we have defined the two players we must be able to move them around and fire at each
other. Moving them horizontally is very easy. Changing the value in register 53248 moves the
first ship, changing the value in register 53249 moves the second ship. Moving the ships
vertically requires some planning; each ship occupies seven continuous memory locations. To
move the ship up, each byte would have to be moved up one memory location and the last byte
erased. To move the ship down, each byte would have to be moved down one location and again,
the first one erased. This can be done slowly in BASIC, or quickly with a machine language
subroutine.

Figure 18-7 shows the machine-language subroutine needed to move the space ship in
Listing 18-7.

Line 210 reads the data from line 220 and POKEs it into memory locations 1536-1548. This
is the routine to move the ship up.

Line 230 sets the up variable to the beginning of this routine.

Line 240 reads the data from line 250 and POKEs it into memory locations 1552-1564. This
is the routine that moves the ship down.

204

Line 260 stores the beginning location of this routine in the down variable.

Line 270 stores the positions of the ships in four variables. RKT1H is the horizontal position
of the first ship. RKT1V is the vertical position of the first ship. RKT2H is the horizontal position
of the second ship and RKT2V is the vertical position of the second ship. These variables will
change as we move the ships around the screen.

Lines 280-330 check the joystick for the first ship. The joystick must be plugged into port 1
on the front of the keyboard. If the stick has not moved, the computer will go to line 330 to check
the fire button. If the stick has moved to the right or left, RKT1V will be increased or decreased
accordingly. If the stick has moved up or down, RKT1H will be increased or decreased.

In any event, the trigger or red button on the joystick will also be checked. If it has been
pressed, a missile will be placed into the area set aside for player/missile graphics. The missile
area begins 768 bytes below the area set aside for player/missile graphics. The beginning
location of the ship is added to this number and 11 more bytes, so the missile will appear at the
lower edge of the ship. A 3is POKEd into this memory location. The 3 sets the last two bytes, the
only two that are allowed for missile 0. The program now GOSUBs to line 600.

Listing 18-6. Player/Missile Graphics, Version 2

10 REM LISTING XVIII-é

20 REM FLAYER/MISSILE GRAFHICS

30 REM RBY L.M.SCREIRER FOR TAER BOOKS

40 FOKE 7352+1:t7 "Ycleark®

S50 FOKE 7045124:F0KE 710y0:REM CHANGE THE
COLORS

60 A=FEEK(106)-16tREM GET 2K AROVE THE DI

SFLAY LIST

70 FOKE S54279yAIFMBASE=AX256tREM TELL ANT
IC WHERE THE FLAYERS WILL EREGIN

80 FOKE S99%9y462¢REM SINGLE LLINE RESOLUTION
ON THE FLAYERS

?0 FPOKE S3277s3:F0OKE 53248y735IREM LET THE
FLAYERS SHOW

100 FOR X=FMBASE+1024 T0O FMBASE+1536:{F0OKE
XyOINEXT XIREM CLEAR OUT THE GARBAGE

110 FOR X=FMEBASE+1094 T0 FMEBASE+1099iREAD
FIFOKE XyFINEXT XIREM DIRAW A CHARACTER
120 DATA 1592922696666y 255

130 REM ADD ANOTHER SFACE SHIF

140 FORKE 705y30:F0OKE S53249y154IREM GIVE T

HE 2nd SHIF COLOR AND A FL.ACE

150 FOR X=FMEASE+1380 T0 FMRASE+1386:READ
FIFOKE XyFINEXT X:!REM DRAW THE SECOND CH

ARACTER

160 DATA 130y146518692545186y1465130

205

Decimal Code Assembly Language Listing

104 PLA ;Pull the accumulator off
the stack

160 LDY #0 ;Load the index Y with zero

0

200 INY ;Increment the index Y

177 LDA (205),Y ;Load the accumulator with

205 the value of the address in
location 205-206 offset by Y

136 DEY ;Decrement the index Y

145 STA (205),Y ;Store the value in the

205 accumulator in the memory

locations pointed to by
205-206 offset by Y

200 INY ;Increment Y
208 BNE ;If the index Y is not zero,)
247 go back 8 bytes Flg. 18-7. Assembly language list-
96 RTS ‘Return to BASIC ings to move players up and/or
Routine to move character up down.
104 PLA ;Pull the accumulator off
the stack
160 LDY #255 ;Load the index Y with 255
255
136 DEY ;Decrement index Y
177 LDA (205),Y ;Load the accumulator with
205 the value of the address in
location 205-206 offset by Y
200 INY ;Increment Y
145 STA (205),Y ;Store the value in the
205 accumulator in the memory

location pointed to by
205-206 offset by Y.

136 DEY ;Decrement Y
208 BNE :If the index Y is not zero,
247 go back 8 bytes

96 RTS ;Return to BASIC

Routine to move character down

Lines 350-400 operate the same way, but for the second ship. This time port number 4 must
be used for the joystick. If the fire button is pressed (line 400), the beginning of the second rocket
ship is added to the lcoation for the player/missile graphics.

Lines 410-470 move the rocket ships. In line 410, the variable is checked for the edge of the
screen for the first ship. If it would go off the left or right edge of the screen, the computer is
directed to a subroutine that corrects the situation. Line 420 checks the second ship. Line 430
checks how high or low the ship is on the screen. Again, if the ship would go off the screen, the
computer is sent to a routine that will correct the variable. Line 440 checks the second ship. When
all the variables have been checked, the vertical values are POKEd into the locations that move
the ships to the left or right. If these variables have changed, the ship will move in that direction.
Lines 460 and 470 check the variables DIR1 and DIR2 to see if the ship should move up or down. If

206

Listing 18-7. Player/Missile Graphics, Version 3

10 REM LISTING XVIII-7

20 REM FLAYER/MISSILE GRAFHICS

30 REM BRY L.M.SCREIERER FOR TAR ROOKS

40 FORKE 752187 *l}clear}”

50 FOKE 704y124:FOKE 710y0iREM CHANGE THE

COLORS
60 A=FEEK(106)-16REM GET 2K AROVE THE DI
SFLAY LIST

70 POKE S4279yAIFMBASE=AX2546IREM TELL ANT
IC WHERE THE FLAYERS WILL BEGIN

80 POKE S959y462!REM SINGLE LINE RESOLUTION
ON THE FLAYERS

90 FORKE $5327731F0OKE 53248y 75 1REM LET THE
FLAYERS SHOW

100 FOR X=FMEASE+768 TO FMEASE+15346:FOKE

XyOINEXT XIREM CLEAR OUT THE GARRAGE

110 FOR X=FMBASE+1094 T0O FMERASE+1099:REALD
FIFORKE XyFINEXT X

120 DATA 1592226966966 255

130 REM ADD ANOTHER SFACE SHIF

140 FOKE 705y30¢F0OKE 353249y 154¢REM GIVE T

HE 2nd SHIF COLOR AND A FLACE

150 FOR X=FMRBASE+1380 TO FMBASE+1384IREAD
FIFOKE XyPINEXT X

160 NATA 130+y146718692549186y1465130

200 REM MOVE THE SHIPS

210 FOR X=1536 T0O 1348!READI FIFOKE XsFINE
XT X{REM ROUTINE TO MOVE UF

220 DATA 104+16050920051779205+1369145520
5920092089247 +96

230 UF=1536

240 FOR X=1%552 T0O 1364:READ FIFORKE XsPINE
XT XIREM ROUTINE TO MOVE IDOWN

250 DATA 104160925591 369177920592005145y
20591365208, 247+96

260 DOWN=1552

270 RKT1IH=60!RKT1IV=753tRKT2H=100tRKT2V=154

280 IF 8STICK(0)=13 THEN 330!{REM JOYSTICK

NOT MOVEL
290 IF STICK(0)=7 THEN RKT1V=RKTI1V+1:G0OTO

207

Listing 18-7. Player/Missile Graphics, Version 3. (Continued from page 207.)

330tREM MOVED TO THE RIGHT

300 IF STICK(O)=11 THEN RKT1V=RKT1V-1:6G0T

0 330:REM MOVED TO THE LEFT

310 IF STICKC(O)=14 THEN RKTIH=RKT1H-1:0IR

1=UF:GOTO 330:REM MOVED UF

320 IF STICK(O)=13 THEN RKTiH=RKT1H+1:DOIR
1=DOWNIGOTO 330:REM MOVED DOWN

330 IF STRIG(O)=0 THEN FOKE FMBASE+768+RK
TiH+11y3:1G0OSUR S00tREM FIRE RBUTTON FRESSE

I

340 REM NOW CHECK FLAYER 2

350 IF STICK(3)=1%5 THEN 400:!REM JOYSTICK

HAS NOT MOVED

3460 IF STICK(3)=7 THEN RKT2VU=RKT2V+1:G0OTO
400 tREM MOVED TO THE RIGHT

370 IF STICK(3)=11 THEN RKT2V=RKT2V-1:60T

0 400:REM MOVED TO THE LEFT

380 IF STICK(3)=14 THEN RKT2H=RKT2H-1iDIR

2=UF{G0TO 400iREM MOVED UF

3920 IF STICK(3)=13 THEN RKT2H=RKT2H+1iIIR

2=NOWN:GOTO 400:REM MOVED RIGHT

400 IF STRIG(3)=0 THEN FOKE FMRASE+7468+KK

T2H+Sy1216G05UR 650IREM FIRE RUTTON FRESSE

I

410 IF RKT1VL50 OR RKT1V=200 THEN GOSUR S

O0tREM IT’S OFF THE SCREEN

420 IF RKT2V=50 OR RKT2V:=200 THEN GOSUR 5

20

430 IF RKT1H=40 OR RKTIH>200 THEN GOSUR 3

40tREM TOO HIGH OR TOO LOW

440 IF RKT2H<40 OR RKT2H=200 THEN GOSUR 35

60

450 FOKE S3248yRKTIVIFORKE 53249 yRKT2VIREM
MOVE THE SHIFS LEFT OR RIGHT

460 IF DIR1<x0 THEN FOKE 206yA+4:1Q=USRDI
R1)IDIR1I=0{REM MOVE SHIF 1 UF OR DOWN

470 IF DIR2-:0 THEN FOKE 206yA+5:Q=USKRDI
R2){DIR2=0{REM MOVE SHIF 2 UF OR DOWN

480 GOTO 280:REM GET NEW DIRECTION

500 IF RRKT1V=50 THEN RKT1V=50!:RETURN

510 IF RKT1V:>200 THEN RKT1V=200!:RETURN

208

520 IF RKT2V=50 THEN RKT2V=350!RETURN

530 IF RKT2V:200 THEN RKT2V=200:RETURN
540 IF RKT1H<40 THEN RKT1H=40:!DIR1=0:RETU
RN

550 IF RRKT1H:>200 THEN RKT1H=200:DIR1=0:RE
TURN

560 IF RKT2H<40 THEN RKT2H=40iDIR2=0IRETU
RN

970 IF RRKT2H>200 THEN RKT2H=200!N0IR2=0IRE
TURN

280 RETURN

600 FORKE S53252yRKTIV+10IM1=RKT1V+10

610 FOR X=M1 TO 250:FOKE 53252y X:S0UND Oy
Xvy62103IF FEER(S53256) <0 THEN 700

620 NEXT X:SOUND 0s0»0»0FOKE FMBASE+768+
RKT1H+11,0

630 RETURN

650 POKE S53253yRKT2V-10:M2=RKT2V-10

660 FOR X=M2 TO 10 STEF -1:FOKE 53253yX:85
OUND O9Xy69102IF FEERK(S32U7)<>0 THEN 700
670 NEXT X:SOUND 0»0y0»0:FOKE FMBASE+768+
RKT2H+590

680 RETURN

700 S$=100:C=80IFO0R ZZ=1 TO &6:S0OUND 0+5+10
»10:FORE 710yCIFOR Tl=1 TO JHOINEXT TLIG=1
S50-81C=75-CINEXT ZZ

710 SOUND 0+0+0y0:FOKE 71090

720 FORE $32852y0:F0KE H32530:F0OKE 53278y
0

730 FOKE FMEBASE+768+RKT2H+5y0!FOKE FMRASE
+7684+RKT1H+11,0:RETURN

these variables have been set, the program will POKE the starting location of the memory area
that contains that ship into location 206 (the high order byte). Then it executes the machine
language subroutine and resets DIR1 or DIR2 to 0. If the first ship is to move, the high order byte
is POKEd with a 4 because the first ship starts 1024 bytes below the area set aside. A contains the
beginning of the area set aside for the player/missile graphics. If the second ship is to move, 5is
added to the value in A because the second ship is located 1280 bytes below the beginning of the
area set aside for player/missile graphics.

Line 480—once the ships have moved, the program directs the computer to line 280 and
checks the joysticks once more. The break key or system reset must be pressed to stop this

209

Lines 500-580 reset the variables when they are beyond the value set for the edge of the
screen. Once the variable has been reset, the program returns to the main routine.

Lines 600-680 move the missile across the screen.

Lines 600-630 move the missile for the first ship. Location 53252 is POKEd with the vertical
location of the ship plus 10. This moves the missile out from under the ship. This value is then
stored in M1. Lines 610-620 move the missile from the ship towards the right edge of the screen.
Each time it moves the missile, it checks location 53256 for a value other than 0. This is a hit
location for this missile. Rather than check if the vertical and horizontal location of the missile is
the same as the location of the ship it is trying to hit, a very long and time consuming project,
ATARI BASIC can check one memory location to see if the missile that has been fired has hit
anything. If it has, the value in that location changes. If the missile has hit the ship, the computer is
directed to line 700. If it has not, the missile will continue to move across the screen until it goes
out of sight. Lines 660-680 move the missile for the second ship to the left across the screen. It
checks location 53257 after each movement to see if the other ship has been hit. In both routines
the missile is removed from the player/missile area by POKEing the location that contained the
missile with a 0.

Lines 700-730 contain the routine that flashes the screen when the missile hits the ship. Line
720 moves the missiles off the screen. By POKEing 53278 with 0, we clear the hit register. Now
we can return to the program and check for hits again. If this register is not cleared after each hit,
it will continue to show a hit whether or not one has been made. Line 700 erases the missiles in
the player/missile area and returns to the part of the program that called it.

In addition to checking for missiles hitting players, the ATARI has registers that can check
players hitting players, players hitting the playfield and missiles hitting the playfield. The
playfield characters are the characters placed on the screen with print or plot and draw to
commands. Players refer to the characters created and stored in the player/missile area. The two
ships in the preceding program are players. The missiles (characters that are two bits wide) are
referred to as missiles.

The size of the characters in the player/missile graphics area can be changed two different
ways. In line 120, each number represented one line on the screen. Line 80 set the resolution for
the player/missile graphics to one line. This mode uses 2K of memory. By making a few changes
in the program, each number in lines 120 and 160 can be represented in two lines on the screen.

Listing 18-8 is nearly identical to Listing 18-7. Line 80 POKEs 46 into location 559. So each
number in the data lines will be displayed as two lines on the screen. Because this mode uses only
1K of memory, the player/missile area starts nearer to the area set aside for it.

Line 60 subtracts 8 from the amount of memory available. This sets aside 1K for the screen
and display list and 1K for the player/missile.

Line 100 is changed to reflect the area the characters will occupy. The missiles begin 384
bytes from the area set aside instead of 768 in the single resolution mode.

Line 110 starts placing the character into the 547th byte of the area. Since the players use
two lines on the screen for every number entered, the area set aside for their display is half as
long as when they use one line for every number.

Line 150 changes the second ship’s location to 690.

Line 210 adds two numbers to the area where the machine language subroutine will be
stored.

210

Listing 18-8. Player/Missile Graphics, Version 4

10 REM LISTING XVIII-8

20 REM FLAYER/MISSILE GRAFHICS

30 REM RY L.M.SCREIRER FOR TAE BOOKS

40 FOKE 7952,1:7 "Xclearl}"

50 FOKE 704,124!FOKE 71050

60 A=FEEK(106)~8tREM GET 1K AROVE THE DIS

FLAY LIST

70 FPOKE $4279sAIFMBASE=AX256IREM TELL ANT
IC WHERE THE FLAYERS WILL REGIN

80 FOKE 559s46!REM TWO LINE RESOLUTION ON
THE FLAYERS

20 FOKE S53277y3:FOKE S3248y75I1REM LET THE
FLAYERS SHOW

100 FOR X=FMERASE+384 TO FMRASE+7468I1F0OKE X
yOINEXT X!IREM CLEAR OUT THE GARRBAGE

110 FOR X=FMRASE+547 TO FMBASE+S52IREAD F
tFORKE XsoFINEXT X

120 DATA 15y2s226+66966255

130 REM ADID ANOTHER SFACE SHIF

140 FOKE 705»30:FOKE 53249s154:REM GIVE T
HE 2nd SHIF COLOR ANDI A FLACE

150 FOR X=FMRASE+4690 TO FMRASE+696IREAD F
tFORKE XsFINEXT X

160 DATA 13091465186+ 254,18B671465130

200 REM MOVE THE SHIFS

210 FOR X=1536 T0O 135350:IREAD FIFOKE XsFINE
XT X!REM ROUTINE T0O MOVE UF

220 DATA 10451605092009177520551365145,20
S5r200,1925,128,208,245,96

230 UF=1536

240 FOR X=1352 TO 13564IREADI FIFOKE XsFINE
XT XIREM ROUTINE TO MOVE IDOWN

250 DATA 1045160128136 177y205+2009145y
209,136,208y 247596

260 DOWN=1552

270 RKTIH=33{RKT1V=75IRKT2H=530IRRKT2V=154
280 IF STICK(0)=15 THEN 330:iREM JOYSTICK
NOT MOVED

290 IF STICK(0)=7 THEN RKTIV=RKT1V+1:G0TO
330:REM MOVED TO THE RIGHT

300 IF STICK(0)=11 THEN RRKT1V=RKT1V-1:G0T

211

Listing 18-8. Player/Missile Graphics, Version 4. (Continued from page 211.)

0 330!REM MOVED TO THE LEFT

310 IF STICK(O)=14 THEN RKT1H=RKT1H-1:DIR
1=UFIGOTO 330!REM MOVED UF

320 IF STICK(0)=13 THEN RKT1H=RKT1H+1:!{DIR
1=DN0WN:GOTO 330:REM MOVED DOWN

330 IF STRIG(O)=0 THEN FOKE FMERASE+384+RK
TIH+5,3:1GOSUR 600:REM FIRE RUTTON FRESSED

340 REM NOW CHECK FLAYER 2

350 IF STICK(3)=15 THEN 400!REM JOYSTICK
NOT MOVED

360 IF STICK(3)=7 THEN RKT2V=RKT2V+1:160TO
400REM MOVED TO THE RIGHT

370 IF STICK(3)=11 THEN RKT2V=RKT2V-1:G0T
0 400!REM MOVED TO THE LEFT

380 IF STICK(3)=14 THEN RKT2H=RKT2H-13IDIR
2=UFIGOTO 400:REM MOVED' UF

3920 IF STICK(3)>=13 THEN RKT2H=RKT2H+1!DIR
2=DOWNIGOTO 400!REM MOVED DNOWN

400 IF STRIG(3)=0 THEN FOKE FMBASE+384+RK
T2H+2,121G0SUR 4S50IREM FIRE EBUTTON FRESSE

I

410 IF RKT1V<50 OR RKT1V:200 THEN GOSUR
O0IREM IT'’S OFF THE SCREEN

420 IF RKT2V<50 OR RKT2V:200 THEN GOSUR 5
20

430 IF RKT1H<15 OR RKT1H>100 THEN GOSUR %

40:REM TOO HIGH OR TOO LOW

440 IF RKT2H=13% OR RKT2H>100 THEN GOSUR 3
60

450 POKE 53248yRKT1VIFOKE 53249 yRKT2VIREM
MOVE THE SHIFS LEFT OR RIGHT

460 IF DIR1<>0 THEN FOKE 206yA+2IF0OKE 205
»0:Q=USR(DIRL) :DIR1=0:REM MOVE SHIF 1 UF
OR DOWN

470 IF DIR2<:0 THEN POKE 206yA+2:F0OKE 2
y125:Q=USR(DIR2) INIR2=0¢:REM MOVE SHIF 2
F OR DOWN

o

i

05
u

480 GOTO 280
500 IF RKT1V<H50 THEN RKT1V=50!RETURN

212

510 IF RKT1V>200 THEN RKTiV=200!RETURN
520 IF RKT2V<S50 THEN RKT2V=350!RETURN

530 IF RKT2V:>200 THEN RKT2V=200:!RETURN
540 IF RKT1H<1% THEN RRKTIH=135:DIR1=0IRETU
RN

550 IF RKT1H:>100 THEN RKT1H=100:DIR1=0:!RE
TURN

560 IF RKT2H=1% THEN RKT2H=13:DIRZ=0IRETU
RN

570 IF RKT2H:>100 THEN RKTZ2H=100IDIRZ=0IRE
TURN

980 RETURN

600 FORE S32592yRKT1V+10IM1= RKT10+10

610 FOR X=M1 TO 250:F0OKE S3232yXIS0UND Oy
Xyb6r101IF FPEEK(I53256)=2 THEN 700

620 NEXT X:SOUND 00505 0:FOKE FMEBASE+384+
RRKT1H+S5,0

630 RETURN

650 FORE 53253 yRRKT2V-10IM2=RKT2V-10

660 FOR X=M2 TO 10 STEF -~-1:FOKE 53253,X:S
OUND O0sXs»69108IF FEERK(S53257)=1 THEN 700
670 NEXT X:iSOUND 0+0,050:FOKE FMBASE+384+
RKT2H+25y0

680 RETURN

700 S=100:C=50IF0OR ZZ=1 TO &6:SOUNDI 0s&5s10
y10:FOKE 710yCiFOR TL=1 TO SOINEXT TL:IS=1
S50-8iC=75~-CINEXT ZZ

710 SOUND 0s0+020:FOKE 71050

720 FOKE 53252y01FOKE 53253y0:F0OKE 332785
0

730 FOKE FMBASE+384+RKT2H+2y0:FOKE FMRASE
+384+RKT1H+5s 0 tRETURN

Line 220 adds two numbers to the list of instructions. Since there are only 128 bytes to be
moved, the computer must check the value of index Y against 128. If it moves 256 bytes, both
ships will move on the screen when you want only the first ship to move. Add 192 and 128 after the
second 200.

Line 270 changes the horizontal position of the ships. Again, this number is less because
these characters are occupying less room.

Lines 330 and 400 are changed so the missiles will appear in the correct locations.

213

Address Poke Value Resuit Address Poke Value Result
560 low order Low order address of the 53260 O normal size missile 0
display list 1 twice normal size -
561 high order High order address of the missile 0
display list 3 four times normal size -
704 color Color register player 0 missile 0
705 color Color register player 1 add 4 twice normal size -
706 color Color register player 2 missile 1
707 color Color register player 3 12 four times normal size -
708 color Color register playfield 0 missile 1
709 color Color register playfield 1 16 twice normal size -
710 color Color register playfield 2 missile 2
711 color Color register playfield 3 48 four times normal size -
712 color Color register playfield 4 missile 2
756 high order High order address of the 54272 6 : :
character set being used. * Lwice normal size -
53248 position Horizontal position 192 m|SS|[e 3 "
player 0 1;2;13;:;2125 normal size -
53249 position ;g;;?qtal position 32 ANTIC can now use.
53250 position Horizontal position pla_iyer/mlssng graphics
player 2 add 16 1 Il_ne resolut[on
53251 position Horizontal position or 0 2 line resolution
player 3 53277 add 8 playgrs enabled
53252 position Horizontal position add ;i missiles enapled
missile0 53278 add 1 narrow playfnel_d
53253 position Horizontal position 54279 Ok 2 st.andard playﬂeld
riissile 1 or 4 wide playfle[d
53254 position Horizontal position 3 Player/missiles can now
missile 2 " alppeahrAton screen
4 - 1 clear hits
$ad05 Reman :(i);lsz“c;ngal el high order High ordgr gddress Qf the
53256 0 Player 0 normal size player/missile graphics
1 Player 0 twice normal size display area
Player 0 four times normai
size
53257 0 Player 1 normal size
1 Player 1 twice normal size
3 Player 1 four times normal
size
53258 0 Player 2 normal size
1 Player 2 twice normal size
3 Player 2 four times normal
size
53259 0 Player 3 normal size
1 Player 3 twice normal size
3 Player 3 four times normal

size

Fig. 18-8. Addresses to POKE or READ values for display list and player/missile graphics.

214

Address

Read Value

Result

Result

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

RN L OPN—-OAN - OPAN -2 ORARN 2 OPN =2 OAN 2 ORN 2 OAN 2 ORARN2OAN =2®O®AN

Missile 0 hit playfield O
Missile 0 hit playfield 1
Missile 0 hit playfield 2
Missile O hit playfield 3
Missile 1 hit playfield 0
Missile 1 hit playfield 1
Missile 1 hit playfield 2
Missile 1 hit playfield 3
Missile 2 hit playfield 0
Missile 2 hit playfield 1
Missile 2 hit playfield 2
Missile 2 hit playfield 3
Missile 3 hit playfield O
Missile 3 hit playfield 1
Missile 3 hit playfield 2
Missile 3 hit playfield 3
Player O hit playfield O
Player O hit playfield 1
Player 0 hit playfield 2
Player 0 hit playfield 3
Player 1 hit playfield O
Player 1 hit playfield 1
Player 1 hit playfield 2
Player 1 hit playfield 3
Player 2 hit playfield 0
Player 2 hit playfield 1
Player 2 hit playfield 2
Player 2 hit playfield 3
Player 3 hit playfield O
Player 3 hit playfield 1
Player 3 hit playfield 2
Player 3 hit playfield 3
Missile 0 hit player O
Missile 0 hit player 1
Missile O hit player 2
Missile O hit piayer 3
Missile 1 hit player O
Missile 1 hit player 1
Missile 1 hit player 2
Missile 1 hit player 3
Missile 2 hit player 0
Missile 2 hit player 1
Missile 2 hit player 2
Missile 2 hit player 3
Missile 3 hit player 0
Missile 3 hit player 1
Missile 3 hit player 2
Missile 3 hit player 3

Address Read Value
53260 2
4
8
53261 1
4
8
53262 1
2
8
53263 1
2
4

Note: playfield refers to the graphics or characters
on the screen displayed with a print or plot and

draw to command.

Player 0 hit player 1
Player 0 hit player 2
Player 0 hit player 3
Player 1 hit player 0
Player 1 hit player 2
Player 1 hit player 3
Player 2 hit player 0
Player 2 hit player 1
Player 2 hit player 3
Player 3 hit player 0
Player 3 hit player 1
Player 3 hit player 2

215

Lines 430 and 440 change the upper and lower screen limits.

Lines 460 and 470 change the values POKEd into 206 and 205. Since the characters begin
512 bytes below the area set aside, a 2is added to the beginning value. In the low-order address, a
0 is POKEA for the first player (512/256=2). The second player begins 128 bytes lower— 640
bytes after the beginning address. 128 must be POKEd into the low-order address (205) because
640 divided by 256 equals 2.5. 128 is half of 256. Now the computer can figure out where the two
players are.

Lines 540-570 reset the upper and lower limits if the player moves past them.

Lines 620, 670 and 730 erase the missile from the player/missile area.

There is another way to make the characters larger and smaller. Each player has a size
register. This register is set to the normal size. You can make the player on the screen twice as
wide or four times as wide as it would normally be under program control. Add this line to the
program:

85 POKE 53246,3:POKE 53247,1

Run the program. The first ship appears very elongated, the second ship is also larger. Because
each player has a size register, you can control the size of each player individually. One can get
larger while the other gets smaller.

Figure 18-8 contains the locations that have been used in this chapter and the values that
must be POKEd into them, or the information that can be read from them.

216

Chapter 19
Using
Disks

Sooner or later you'll find the cassette is too slow for you, or your programs need the random-
access capabilities of the disk. The programs and directions listed in this chapter use DOS II,
currently available from ATARI. Some of the applications may not work with DOS 1.

DOS

DOS is the Disk Operating System. It is a program that makes disk operations available to
the user with easy instructions and minimal configurations. To boot or load DOS from disk, you
must first turn the disk on before you turn on your computer. The disk contains its own
microcomputer chip and has a small routine that initializes the drive. If you have an interface, turn
it on after the drive. Place your disk into the drive and turn on the computer. The busy light will go
on and you will hear the drive making noises. You will also hear sounds comjng from the speaker
on the television set. The sounds are similar to the sounds of a cassette loading, only faster. This
is the operating system being loaded into the computer. If you have DOS II, the videoscreen
should say READY . You are in BASIC and the computer is ready for the next
command. If you type DOS, the screen will go blank and you will hear another program being
loaded. A menu will appear on the screen.

If you had a program in your computer, you just lost it. When you initialize your disks for the
first time, there is a way to save your program automatically:

1. Place your master disk into the drive.

2. Turn on the computer.

3. Type DOS

4. When the menu appears on the screen, remove the master disk.

5. Insert a new disk.

6. Press I - to format the new disk.

7. Press H - to write DOS to the new disk.

8. Now Press N and a file called MEM.SAV will be created on the disk.

9. Place the master disk into the drive and copy the AUTORUN.SYS program to the new
disk.

217

(The AUTORUN.SYS program is available on DOS II and automatically initializes the
interface.)

Now, because you have the MEM.SAV file on the disk, the program you are working on will
be saved to disk every time you type DOS, and reloaded when you return to BASIC.

USING DISKS WITH BASIC
The commands to save and load programs to and from the disk are similar to cassette

operations. To save a program, type: SAVE “D:PROGRAM”

D: must precede the program name. This tells the operating system the program
should go to the disk. The same holds true for loading a program: LOAD “D:PRO-
GRAM” . A program can also be listed to the disk with LIST “D:PRO-
GRAM” and re-entered with ENTER “"D:PROGRAM”

Some of the DOS operations can also be accomplished from BASIC. These include getting
the directory, deleting files, renaming files, locking and unlocking files, and formatting disks.
Listing 19-1 can be saved on disk with the save or list commands. If you use the save command
you will have to run the program and it will erase any program you have in memory. If you list the
program to disk, you can merge it with any program you have in memory with the enter command,
use it, and then delete it if you want. Your original program will remain intact provided you do not
reuse these lines. It is placed above the line numbers used in most programs.

Lines 30040-30070 print a menu on the screen and wait for the letter to be entered.

Line 30080 checks for a valid letter. If the letter entered is not correct, the menu will repeat
itself.

Line 30090 subtracts 64 from the ASCII value of the letter entered. This value will be used
later in the program.

Line 30100 checks for the value of 2. This would be BASIC and the program ends, returning
you to BASIC.

Line 30120 opens the disk files for reading the directory. The open command is similar to the
one used when we opened the keyboard to read the pressed keys. The number 2 buffer is opened.
The 6 indicates a read directory. Since we want to be able to read the entire directory,
use “Dat . D with no number following it defaults to drive 1. If we wanted to read
the directory on another drive, we would have to insert the drive number after D and before the
colon. The asterisks are wild cards. They tell the computer not to match the program name with
one on the disk, but to show us every program listed in the directory. We use the asterisk before
and after the period because we are not interested in searching for a particular program name or
extender.

Lines 30130-30140 use the input statement to get the directory from the disk. The program
name and sectors are printed on the screen, and the first character in the string is checked for a
number. If it is a number, the end of the directory has been reached. Two lines are used so the
directory can be placed in two columns. ‘

Line 30150 closes the buffer and directs the computer to a line number dependent on what
was chosen from the menu.

Line 30160 waits for the return key to be pressed. It will return the program to the menu.

218

Listing 19-1. DOS from BASIC

30000 REM LISTINGXIX.1
30010 REM NOS FROM RBASIC

30020 REM EY L.M.SCHREIRER FOR TAE EOOKS
30030 DIM FILE$(30)sFUNC$ (1) sFIL1$(12)
30040 7 "}clear) N0OS FUNCTIONS*:? $7 °
A. DIRECTORY":? *E. BASIC®

30050 ? "I, DELETE FILE(S)":? "E. RENAME
FILE(S)*$? "F. LOCK FILE(S)®

30060 ? "G. UNLOCK FILE(S)"$? "I. FORMAT
DISK®

30070 7 17 "ENTER THE LETTER"$:INFUT FUNC
$

30080 IF FUNC$<°"A" OR FUNC$:>"I" OR FUNC$=
"* QR FUNC$="H" OR FUNC$="C" THEN 30040
30090 KEY=ASC(FUNC$)-64

30100 IF KEY=2 THEN ENI

30110 ? "Yclear}PROGRAM ON FILE ARE:":TR
AF 30900 tREM SET TRAF FOR EMFTY DISK-ESC-
CNTRL-DOWNARROW AFTER CLEAR

30120 OFEN #2:4,0, "Nt K, X" IREM OFEN THE DI
SK TO READ THE DIRECTORY

30130 INFUT #2yFILE$:? FILE$$:IF ASC(FILE
$(151))x47 THEN 30150 ¢REM CHECK FOR NUMEE
R

30140 INFUT #2,FILE$:? * *3FILE$SIF ASC(
FILE$(1y1))<47 THEN 30130

30150 CLOSE #2:0N KEY GOTO 30160y30160s30
1605301705,30230,3034053040053016030460
30140 7 ¢7 "PRESS RETURN FOR MENU"$$INFU
T FUNC$:GOTO 30040:REM RETURN TO THE MENU
~ESC-CNTRL-DOWNARROW AFTER 7

30170 ? ¢? 'ENTER THE FILE TO EE DELETED
"$INPUT FIL1$:REM GET THE FILE NAME-ESC-C
NTRL-DIOWNARROW AFTER FRINT

30180 IF FIL1$="" THEN 30040!REM NOTHING
30190 ? 37 "VERIFY - DELETE FILE ~*3FIL1%$
5" Y/N"3 $INFUT FUNC$S:REM DELETE IT?

gofgo IF FUNC$="N" THEN 30040:REM DON‘T I
30210 L=LEN(FIL1$)$FILE$(3sL+2)=FIL1$(1sL
YIFILE$(1y2)="Dt"SFILE$=FILE$(1,L+2) REM

219

Listing 19-1. DOS from BASIC. (Continued from page 219.)

ADDY DEVICE NAME

30220 XIO 33,#2,0+0yFILE$IGOTO 30040IREM

DELETE THE FILE

30230 ? 17 “"ENTER THE FILE TO RE RENAMEID
"LINPUT FIL1$IREM GET THE OLD NAME

30240 IF FIL14$="" THEN 30040:REM NO NAME

ENTERED

30250 ? “"VERIFY - RENAME FILE -"§FIL1$3s"
Y/ZN"3 PINFUT FUNC$IREM VERIFY THE NAME-ES

C-CNTRL-DOWNARROW AFTER FRINT

30260 IF FUNC$="N" THEN 30040!REM WRONG N

AME

30270 L=LEN(FIL1$)FILE$(3yl.+2)=FTL1$%(1yL
JIFILE$(1,2)="D2"L=l.+2¢!REM ALD DEVICE

30280 7 7 "ENTER THE NEW FILE NAME":!INF

UT FIL1$!REM GET THE NEW NAME-ESC-CNTRL-D

DWNARROW AFTER FRINT

30290 IF FIL1#$="" THEN 30040:REM NO NAME

30300 ? "VERIFY ~ RENAME FILE -*"sFIL1%$:"
Y/N*" 3 LINPUT FUNC$IREM CHECK THE NEW NAME

—~ESC-CNTRL-DOWNARROW AFTER FRINT

30310 IF FUNC$="N" THEN 30280!REEM WRONG

AME

30320 FILE$(L+1)=" *IFILE$(L+2)=FIL1%$!REM
ADD NEW NAME TO OLD NAME

30330 XI0 32+%#25090yFILE$:GOTO 30040:REM

CHANGE THE NAME

30340 ? “"ENTER THE NAME OF THE FILE TO L

OCK®" {INFUT FIL1$:!REM GET THE FILE NAME-ES

C-CNTRL-DOWNARROW AFTER FRINT

30350 IF FIL14$="" THEN 30040

30360 7 "VERIFY - RENAME FILE ~"3#FIL1%%"
Y/N" 3§ P INFUT FUNC4$IREM ESC~CNTRL-IIOWNARRO

W AFTER FRINT

30370 IF FUNC$="N" THEN 30040

30380 L=LENC(FIL1$)IFILE$(3sL+2)=FIL1%(1sL
JIFILE$(1s2)="12"IREM ADD DEVICE TO NAME

30390 XIO 3S5+#25050yFILE$:GOTO 30040:REM

LOCK THE FILE

30400 T "ENTER THE NAME OF THE FILE TO U

NLOCK®" :INFUT FIL1$:REM ESC-CNTRL-DOWNARRO

220

W AFTER PRINT
30410 IF FIL14="" THEN 30040

30420 ? “VERIFY ~ RENAME FILE -"3FIL1%3"
Y/N" i L INFUT FUNC$IREM ESC-CNTRL-DOWNARKOD
W AFTER PRINT

30430 IF FUNC$="N" THEN 30040

30440 L=LEN(FIL1$)!FILE$(3sL+2)=FIL1$C1sL
JIFILE$(1y2)="D"

30450 XIO0 36y#2y0y0yFILE$!GOTO 30040:REM
UNLOCK THE FILE

30460 7 "FLACE A NEW DISK INTO THE DRIVE
AND FRESS RETURN "!INFUT FUNC$:!REM ESC

~CNTRL-DOWNARROW AFTER FRINT

30470 TRAF 30G51030FEN #2v690y"DiX. X" {REM

CHECK FOR FROGRAMS ON DISK

30480 CLOSE #2!7 "THERE IS SOMETHING ON T

HIS DISK FORMAT ANYWAY (Y/N)*

30485 INFUT FUNC$

30490 IF FUNC$="N" THEN 30040:REM DON'T F

ORMAT IT

303500 IF FUNC$<:"Y" THEN 30480

303510 XIO 254,%#1+0y0,"D12"1GOTO 30040:REM
FORMAT THE DISK

30900 7 "NO FROGRAMS ON FILE":GOTO 30040

Line 30170 asks for the name of the file to be deleted.

Line 30180 returns you to the menu if only a return key was pressed.

Lines 30190-30200 ask you to verify the name of the file you want deleted. This gives you a
chance to correct an error in case you mistyped the name of the program.

Line 30210 places the name of the file to be deleted into FILES. The first two characters of
FILE$ must be D: . This tells the computer the file is located on the first drive.

Line 30220 deletes the file specified in FILE$. Through the XIO command. The 33 tells the
computer to delete a program. Number 2 is the buffer number. Once the file has been deleted, the
program will return to the menu.

Lines 30230-30250 begin the routine to rename a file. The file name is stored in FIL1$. You
will be asked again to verify that this is the name of the file to be renamed.

Line 30270 places the file name in FILE$. The string must begin with D: . Two
is added to the length of FILE$ to indicate the last location of a letter in the string.

Lines30280-30310 ask you for the name of this file. You are asked to verify this name also.

Line 30320 places the new name into FILE$. One space is placed between the old name and
the new name.

221

Line 30330 replaces the old program name with the new one.

One note of caution here: whether you use the rename command from BASIC or DOS, do not
rename afile with a name already on the disk. The DOS does not check the directory to see if that
name is already in existence. The old file will be changed to the new name. When you try to load
the program, the computer will load the first program it finds with that name. When you try to
delete it, both programs will be deleted.

Lines 30340-30390 lock the files on the disk. You are asked for the name of the file to be
locked and to verify the file name. The file name is stored in FILE$. Using a 35 after XIO will lock
the file named in FILES$. These files will be displayed with an asterisk in front of their name.

Lines 30400-30450 unlock the files on the disk. Again enter and verify the name of the file
you want unlocked. A 36 after the XIO will unlock the file name stored in FILES.

Lines 30460-30510 format a new disk. Line 30470 opens the directory. If there is a directory,
the program asks you if you want to format the disk anyway. This is a safeguard so you won’t
destroy information on a disk you thought was blank. The 254 after the XIO tells the computer to
format the disk. D1 indicates the first drive. This number can be changed for any drive.

Line 30900 is the trap line for trying to read a directory on a disk that has not been formatted
and therefore has no directory.

OPEN

The open command opens a buffer to the disk. It can be opened for input, output, input/
output, or for the disk directory. In the last program we opened a buffer for the disk directory. The
format for an open statement is:

OPEN buffer number, operation, auxiliary code, file e.g., OPEN #2,4,0,"D:name”

This statement would open buffer number 2 to input from the file specified by name. The
zero is a dummy variable. It is used with certain devices (like a printer) for specific applications.
The operation number tells the computer how to open the file. The operation numbers are as
follows:
input operation
disk directory
output operation

9 end-of-file
12 input/output operation

0 OY >

Opening a file opens an area where information can be passed to and/or from the disk. It will
not, however, pass the information.

PRINT

The print command works the same with disk as it does in graphics mode. The print
command must be followed by the buffer number to send the information to the disk. The
information can be a string, variable, or within quotation marks. The format for print is:

PRINT #2;A$ or

PRINT #2;A or

222

PRINT #2;“HELLO”
The #2 is the buffer number that has been opened for disk operations.

INPUT

The input command gets information from the disk and places it in a variable or string
variable. If a buffer number is not specified, the computer assumes the information will be entered
from the keyboard. By stating the buffer number after the input, the computer will look to the disk
for the information, e.g., INPUT #2,A% . The computer will take the next piece of
information available from the disk. With a For . . . Next loop an entire file can be brought into the
computer.

PUT

The put command places one byte of information onto the disk at a time. If you are storing
numbers or variables on the disk, it will place each number on the disk one at a time. To put a

string on the disk, you must convert each letter or character to its ASCII value first: PUT
#2:A or PUT #2;ASC(A$(1,1))
GET

The information put on the disk can be retrieved with the get command. Again, only numbers
will be brought into the computer from the disk, so a variable is used with the get command. To
convert a number to a string, you must use CHRS.

Listing 19-2 sets up an address list that stores information on the disk.

Line 40 dimensions two strings. NAMES$ will be the string that stores all the information and
places it on the disk, or has the information placed on the disk. NA$ is used to get the entries that
make up NAME$. NAMES$ will contain six fields, each of a specific length or containing a certain
number of bytes. The length of NAME$ will not exceed 91 bytes.

Lines 50-80 contain the menu. On this menu there are only two routines to choose from:
enter names, or print names. If a number other than 1 or 2 is entered, the computer will be
directed to line 50. If a letter or character is entered, the trap set in line 60 will send the computer
to line 50.

Line 90 begins the routine to enter names. The string for the names is cleared.

Line 100 sets up the screen. All the information to be requested is set on the screen at the
same time.

Lines 110-160 set the cursor to the correct position of the entry. The variable B is the
position in the string where the entered information will be stored. C is the column for that entry.
R is the row and L is the maximum length for the entry. Once the variables have been set, the
computer can go to the line requesting the information.

Line 170 sets W to 0. This variable is used as a flag. If it is 0, no corrections have been made.
When it is — 1 the program is in the correction mode. The program asks if the information entered
is correct. Any program that gets information from the keyboard should give the user an option to
correct any entry. If the information was not entered correctly, you would want a way to correct it

223

Listing 19-2. Mailing List

10 REM LISTINGXIX.2

20 REM MAILING LIST

30 REM BY L.M.SCHREIRER FOR TAE ROOKS

40 DIM NAME®(922) yNA$(30)

G0 7 "Yclear>l. ENTER NAMES":!? "2, F

RINT NAMES"IREM 3 ESC~CNTRL-DOWNARROWS AF

TER CLEAR-ESC-TAR EREFORE NUMBERS

60 TRAF 50:7 "FPLEASE ENTER A NUMRER"j I

NFUT NIREM ESC-CNTRL-DOWNARROW/ESC-TAR AF

TER FRINT

70 IF N<O OR N*2 THEN S0

80 ON N GOTO 205400

?0 NAME$(1)=" "INAME$(?2)=" "INAME$(2)=NA

ME %

100 ? "Yclear}l.NAMEI"!7 "2.ADDRESS:":7?
"JLCITYI "7 "4, STATEI "7 "S.ZIFI"I7 "6.F

HONE: " tREM 2 ESC-CNTRL-DARROW

110 B=1:C=10IR=2:L=251608UF 250IREM SET T

HE REGINNING OF FIELDsLENGTHsROW AND COLU

MN

120 E=26iC=13IR=31G0OSUR 250

130 BR=51:L=151C=10IR=41G0OSUR 2350

140 B=66:L.=210C=11R=01G0OSUER 250

150 B=68:L=2iC=2IR=46160OSUR 250

160 B=77:L=13:1C=12¢R=716G0SUR 2350

170 W=0!FOSITION S,10:7 "ARE AlLL ENTRIES
CORRECT (Y/N) "FLINFUT NASIIF NA$C(Ly

1)="Y" THEN 200

180 IF NA$(1,1)<>"N" THEN 170

1920 TRAF 190:FOSITION 2,12

195 7 "ENTER THE NUMRER OF THE INCORRECT
ENTRY"# $INFUT NiW=-13GOTO 100+10%N

200 NAME$(92)=" "I0FEN #1900y "DIDIRECT"?

FRINT #13NAME$ICLOSE #1:!REM FUT NAME AT E

NI OF FILE

210 FOSITION 2-20:7 "ANOTHER NAME (Y/N)*"

$INPUT NA$I!REM CHECK FOR MORE ENTRIES-ES

C-SHIFT-DELETE AFTER FRINT

220 IF NA$"Y' THEN 90

230 IF NA$<:"N" THEN 210

240 GOTO 50

224

2350 FOSITION CyR:7? ® ,
"{REM CLEAR THE LINE

260 FOSITION CyRIINFUT NA$IREM GET THE EN
TRY
265 IF LEN(NA$)>L THEN FOSITION 2y20:7 "F
LEASE LIMIT LENGTH TO X"#Ls"% LETTERS":GO
TO 250
270 NAME$ (B)=NA$!FOSITION 2,207 ""IREM
ESC-SHIFT-DELETE
280 IF W=-1 THEN FOF :GOTO 170
290 RETURN
400 TRAF S590:0FEN #1450y "DINIRECT" IREM O
FEN THE FILE TO READ NAMES
410 INPUT #1yNAMES$
420 7 "JclearXl .NAME!":!? "2,ADDRESS:":7

"ILCITYI 3P "4,.8TATEI "7 "S.ZIFI":? "46.F
HONE: " tREM 2 ESC-CNTRL-DARROW
430 B=1:IC=103R=2:L=25!G0OSUR 550
440 EB=26:1C=13!R=3:60SUR 550
450 E=51:L=15:C=10IR=4:G0OSUR 550
460 B=66:iL=21C=11IR=5!G0SUR 550
470 E=681L=2:!C=P!R=6{GOSUE 550
480 B=77i{L=LEN(NAME$)~-EB+1:C=12IR=7G0OSUR
590
490 FOSITION 2,12:7 "FRESS RETURN FOR NEX
T NAME" I INFUT NA$%
900 GOTO 410
950 FOSITION CyR:? NAME$ (BsB+L~-1) IRETURN

590 ER=FEEK(195)!CLOSE #1:IF ER=136 THEN
S0

595 7 "ERROR -"*3ERIREM FRINT THE ERROR NU
MEER

without having to run the program again. If a Y is entered, the program directs the computer to

Line 180 checks for an N. If it was not entered, the program asks the question again. If it is an
N, the program continues.

Line 190 sets a trap. The program asks for the number of the incorrect entry. If a letter or
character is entered, the line will repeat. If a number is entered, the variable W is set toa—1 and

225

the program will direct the computer to the line asking for that entry. The correct line number is
calculated by multiplying the number entered by 10 and adding it to 100.

Line 200 opens buffer 1 with a 9. This will place the information in NAMES at the end of the
direct file. If we opened with an 8, the information in that file would be written over. The contents
of NAME$ is printed to the disk. Be sure to separate 1 from
NAMES$ with a semicolon. Using a comma would have the same effect as using a comma
with a print statement on the screen: a series of blank spaces would be printed before the contents
of NAMES$. Once the information has been printed, the buffer is closed.

Lines 210-240 ask if you want to enter another name. NA$ is checked for a Y, sending the
program to line 90. If an N is not entered, line 210 will be repeated. Only if an N is entered will the
program return to the menu.

Lines 250-290 contain the subroutine that places information into NAMES. First, the line the
information will be placed on is cleared. Then the information is entered into NA$. If the entry is
longer than the field allows (The maximum number of characters is stored in L), a message will
appear near the bottom of the screen and the program will direct the computer back to line 250. If
the entry does not exceed the field length the entry will be stored in NAME$ beginning with the
first position of that field (value in B). The message line is then cleared. Line 280 checks the flag
(variable W) to see if this is a correction routine. If it is, the stack will be POPped, and the
program will go to line 170 to check if all the entries are correct. If this was not a correction, the
program returns to the line that called it and procedes to get the rest of the information.

Line 400 begins the routine to print the names stored on the disk to the screen. A trap is set
for line 590. The file is opened with a 4. It can then be read. If there is no file by this name the trap
sends the program to line 590.

Line 410 inputs the name from the disk. This is the first file stored on the disk and the first
file read back into the computer.

Lines 420-480 display the information contained in NAME$. Once again, the titles of the
entries are printed on the screen. The same variables are used for the beginning of the
information in the string, the column and row they will be printed in and the length of the field. In
line 480, the length of the last field can change with each entry, so it is calculated by subtracting
the position of the first character of that entry from the last position of the entry and adding 1.

Line 490 waits until the return key is pressed before going back to line 410 for another entry
from the disk.

Line 550 is a one-line subroutine that prints the contents of NAMES$ from the first character
of that field to the last one.

Line 590-595 is the error-trapping routine. If an error occurs during the disk operation, the
computer will be sent to this line. The ER variable stores the number of the error, and the buffer
is closed. If the error is 136, the end-of-file has been reached and there are no more names to be
read. The program will continue to line 50 and repeat the menu. If any other disk error occurs, the
program will print the error number and end.

To use this program, the direct file must be placed on the disk. To do this, in the direct mode
type:

OPEN #1,8,0,“D:DIRECT”
CLOSE #1

226

NOTE

Each name entered in Listing 19-2 was placed on the disk in the next available area. When
the information was read back into the computer, the program started with the first name and
continued until the last name was read. You do not know where this information is on the disk.

There is a way to find out with the note command. This command tells you where the next
information will come from. The format is: NOTE #1,A,B. #1 is the buffer that has
been opened for disk read/write. The variables can be any variables. The first is the sector the
information is stored in. The second is the byte to be read from or written to next.

POINT

The point command uses the information obtained in the note command to tell the disk where
to write the information. By getting the sector and byte numbers with the note command you can
read the information, change it, then write it back to the same place using point.

Another subroutine is added to the address program in Listing 19-3 so the information in the
entries could be changed. Change lines 50-80 to include the new subroutine. Also add a way to end
the program. Whenever possible, the programmer should provide a way for the user to end the
program.

Line 700 asks the user to enter the name of the lisitng that should be changed. The entry
must be typed in the way it was originally entered. If the name was misspelled when it was
entered, you must enter the name with the misspelling.

Line 710 opens the file on the disk to read and/or write. By using 12, you can input from the
disk or print to the disk. The trap is set to line 590 so the program will return to the menu when
the end-of-file is reached.

Line 720 gets the sector and byte of the file before it is read into the computer. These
numbers point to the file that will be read. If we got them after NAME$ was read, they would be
pointing to the next file. After storing the sector and byte numbers in variables S and Y, input the
file into NAMES.

Line 730 compares the name we are searching for with the name in the file just read. This is
why the name entered must be exactly like the name in the file. If the names do not match, the
program will return to line 720 and get the next file.

Lines 740-800 display the information when it finds a matching name. The variables are the
same as those that have been used throughout this program for the fields.

Line 810 asks for the number of the incorrect entry. The trap is set so that if a letter or
character is entered by mistake, the program will repeat the line.

Line 820 gets the number of the correction, checks to make sure the number is good and
either goes to the line for the correction or back to get a valid number.

Lines 830-880 correct the entry that was incorrect.

Line 890 asks if the entries are now correct.

Line 900 gets the input. If the entries are correct, the computer is directed to line 930.

Line 910 sends the computer back to line 890 if an N was not entered.

Line 920 goes to line 810 to get the number of the incorrect entry.

Line 930 uses the values in S and Y to reset the disk head to the sector and byte this file was

227

Listing 19-3. Mailing List, Version 2

10 REM LISTINGXIX.3
20 REM MAILING LIST WITH CORRECT OFTION
30 REM BY L.M.SCHREIRER FOR TAR BOOKS
40 DIM NAME$(92)»NA$(30)
50 7 "JYclear¥l. ENTER NAMES":7? "2,
FRINT NAMES":? "3, CORRECT NAMES":7? "4
+ END*®
55 REM 5 ESC-CNTRL-DOWNARROWS AFTER CLEAR
/ESC-TAR REFORE EACH NUMRER
60 TRAFP 50:7 "FLEASE ENTER A NUMRER"jF:1I
NFUT N
70 IF N<O OR N:>4 THEN S0
80 ON N GOTO 920,400,700+1100
P20 NAME$(1)=" "INAME$(22)=" "INAME$ (2)=NA
ME%$
100 ? "Iclear}l .NAME!"!? "2,ADDRESSI" 7P
"JLCITY "7 "4,STATEI"!7? "S.ZIFI"17? "6.F
HONE: * {REM 2 ESC-CNRTL-DARROWS
110 B=1:C=10tR=2:L=251G0SUR 250
120 BR=26:1C=131R=3:GOSUR 250
130 B=51:L=15:C=10R=41G0SUER 25
140 B=66:1=2:C=11IR=316G0SUER 250
150 R=68:L=91C=9IR=61GOSUR 250
160 B=77:L=15:C=12:R=73G0SUER 250
170 W=0:FOSITION S»10:7 "ARE ALl ENTRIES
CORRECT (Y/N) "FLINFUT NA$IIF NA$(1y
1)="Y" THEN 200
180 IF NA$(1,1)<="N" THEN 170
190 TRAF 120:FOSITION 2,12!7 "ENTER THE N
UMBER OF THE INCORRECT ENTRY" 5 L INFUT
N$W=—~1
195 IF N>0O AND N<7 THEN GOTO 100+10%N
198 GOTO 90
200 NAME$(92)=" "I0FEN #1950y "DIIDIRECT"?
FRINT #1sNAME$:CLOSE #1
210 FOSITION 2,20:7 "ANOTHER NAME (Y/N)*®
v s INPUT NAS$
220 IF NA$="Y" THEN 90
230 IF NA$<>"N" THEN 210
240 GOTO SO
250 POSITION CyR:? "

228

260 FOSITION CyRIINFUT NA%

265 IF LEN(NA$)>»L THEN FOSITION 22,2037 "F

LEASE LIMIT LENGTH TO %"s5Ls "% LETTERS" GO

TO 250

270 NAME$(R)=NA$IFOSITION 2+20:7 **

280 IF W=-1 THEN FOF (GOTO 170

290 RETURN

400 TRAF S90:0FEN #1450y "DIDIRECT®"IREM O

FEN THE FILE TO READ NAMES

410 INFUT #1sNAMES$

420 ? "Yclear>l.NAME:"!7? "2,ADDRESSI"I7
"I.CITY! "7 "4.8TATE!"{? "S.ZIFI*:T *6.F

HONE?® !REM 2 ESC-CNTRL-TARRWS

430 EB=1:1C=103R=2:L=205:6G05UkR S50

440 B=261C=13:R=31G0SUR 550

450 R=51:L=13:C=10IR=4:G0OSUR 350

460 B=66:L=21C=11IR=5:G0SUR 550

470 B=681L=2:iC=92:R=61G0OSUE 550

480 B=77iL=LEN(NAME$)-B+1:iC=12IR=7{G0SUE

550

490 FOSITION 2,127 "FRESS RETURN FOR NEX

T NAME" 3 {INFUT NA%

900 GOTO 410

550 FOSITION CsR:7T NAME$(RyE+L-1) IRETURN

5990 ER=FEEK(193):CLOSE #1:!IF ER=136 THEN

50

595 7 "ERROR ~"sERIEND

700 7 "XclearXENTER THE NAME THAT YOU W

ANT TO CHANGE" 5 : INFUT NA$IREM 2 ESC

~CNTRL-DOWNARROWS

710 TRAF S20:0FPEN #1120,y "DIIDIRECT" IREM

OFEN FOR READ OR WRITE

720 NOTE #18SyYIINFUT #1yNAME$IREM SAVE T

HE SECTOR AND RYTE LOCATION

730 IF NA$<:>NAME$(1sLEN(NA$)) THEN 720

740 7 "Jclear¥l .NAME! "7 "2.ADDRESS:":7T
"JL.CITYI P "4.8TATEI "7 "S.ZIFI®"I7 "6.F

HONE: " tREM 2 ESC-CNTRL-DARROWS

750 B=1IiC=10¢R=21L=25160SUR 550

760 B=261C=13:R=3:{G0OSUR 550

229

Listing 19-3. Mailing List, Version 2. (Continued from page 229.)

770 B=51:L=15:C=10R=41GOSUR 550

780 B=66:L=21C=11IR=51G0SUR 550

790 B=68:L=9:C=9IR=6IG0SUR 550

800 B=77:L=LEN(NAMES)-R+1:C=12IR=71G0SUR
950

810 TRAF 810!FOSITION 2,12!7% "ENTER THE N
UMBER OF THE INCORRECT ENTRY "3

820 INFUT NIIF NxO AND N<7 THEN GOTO 820+
1O%N

825 GOTO 810

830 B=1:iC=10¢R=2!L= QE:GOSUB 1050

840 E=261C=13IR=31G0OSUR 10%

850 B=51:L=18IC=10IR=41 GOqUF 1050

860 B=661L=2!C= R=35360SUE 1050

870 B=681L=9!(C= =61 GOSUR 1050

880 B=77!L=151C=12IR=71G0SUE 1050

890 W=0!FOSITION 2,15:!7 "ARE ALl ENTRIES
CORRECT (Y/N) "

200 INFUT NA$IIF NA$(1ls1)="Y" THEN 930
?10 IF NA$(1y1)<>"N" THEN 890

920 GOTO 810

230 FOINT #1sSyYIFRINT #13iNAME$ICLOSE #13
GOTO SOIREM FUT IT BACK IN THE SAME FLACE

1050 FOSITION CsR:T "

"IFOR X=R TO B+L-1INAME$(XsX)=" "IN
EXT X
1060 FOSITION CyRIINFUT NAS$
1065 IF LEN(NA$)>L THEN FOSITION 22,20:7 *
FLEASE LIMIT LENGTH TO %"sLs"% LETTERS":G
0TO 1050
1070 NAME$ (B)=NA$!FOSITION 2,20:7 ""INAM
E$(92)=" "!REM ESC-SHIFT-DELETE AFTER FRI
NT
1080 GOTO 890
1100 ENID

stored in. Now it can print the information onto the disk in the same space it was in originally. The
file is closed and the program returns to the menu.

Lines 1050-1080 clear the incorrectly entered information and get the correct information.
This new information is stored in NA$ and then transferred to the correct field in NAMES$. B

230

indicates the first location of the field in NAMES$. The program then returns to line 890.

Line 1100 is the end of the program. When option 4 is entered from the menu, the program
directs the computer to this line.

This program uses files set in strings. With the put and get commands the computer can set
up files on the disk that can be used in other programs. For example, the disk can be used as an
extension of memory for data and leave more memory free in the computer for the actual program.
In the last chapter we used a machine-language subroutine in a few programs. This information for
the subroutine was kept in a data line. It could just as easily be stored on disk, and the numbers
read from the disk and POKEd into the memory locations when needed. Listing 19-4 stores the
machine language subroutine on the disk under the file name MOVE. This program can be
changed to store any data under any file name.

Line 40 opens the disk to write information to it. The information will be stored under the file
name MOVE.

Lines 50-70 read the numbers from the data line. These numbers form the machine language
subroutine that moves the character set from ROM to RAM. Each number is read from the data
line and stored on the disk with the put command.

Line 80 closes the file and ends the program.

When you want to move the character set you do not have to include this data in your
program. Listing 19-5 reads the subroutine from the disk and POKESs it into the correct memory
locations. This routine can be added to any program.

Line 40 opens the disk to read the information from it. It opens the same file we just stored
information in.

Lines 50-80 retrieve information from the disk with the get statement. Each byte or number
will be stored in S. This value will be POKEd into the area of memory set aside for the machine
language subroutine. Once the routine has been moved into memory the file is closed.

Line 90 finds the amount of RAM available and subtracts 8 to allow room for the screen
display and the display list. This number is the beginning address of the area of RAM where the

Listing 19-4. PUT Demonstration

10 REM LISTING XIX.4

20 REM MOVE ON DISK

30 REM RY L+M.SCHREIRER FOR TAE BROOKS

40 OFEN #1+8,0y "IIMOVE" tREM OFEN TO WRITE
50 FOR D=1 TO 20

60 READ SIFUT #1,S!REM GET THE INSTRUCTIO
N/FUT IT ON DISK

70 NEXT D

80 CLOSE #1

90 END

200 DATA 1045162y4y160v0v177y2059145+203y
200920892495 2305206923092045202+208+242+9
)

231

Listing 19-5. READ Subroutine Demonstration.

10 REM LISTING XIX.5

20 REM READ SUEBROUTINE FROM DISK

30 REM BRY L.M.SCHREIBER FOR TAR ROOKS

40 OPEN #1y4,0y"DIMOVE" tREM OFEN TO READ
FROM DISK

50 FOR D=1 TO 20

60 GET #1,S!IFOKE 1535+D,S5IREM GET THE INS
TRUCTION/FOKE IT INTO MEMORY

70 NEXT I

80 CLOSE #1

?0 A=FEEK(106)-8!FOKE 204yAIFOKE 20652242
REM SET UF THE NEW CHARACTER SET LOCATION
100 Q=USR(1536) {REM RUN THE MACHINE LANGU
AGE SUBROUTINE

110 FORKE 756+A

120 7 "Yeclear) THIS MESSAGE IS MADE F
OSSIBLE WITH THE NEW CHARACTER RASE.":
REM 3 ESC-CNTRL~-TDIOWNARROWS

130 END

new character set will be moved. It is POKEd into location 204. Location 206 is POKEd with the
beginning address of the ROM character base.

Line 100 calls the machine language subroutine.

Line 110 POKEs the new address of the character set into location 756.

Line 120 prints a message using the new character set.

Once you have moved the character set into RAM, you can change the character set by
POKEing values into the characters’ area.

Put and get can also be used to store the values of a numerical array, or the values used to
draw characters on the screen. Any numbers that would normally be stored in data lines can be
stored on the disk.

RUN “D:PROGRAM”

Several programs can be placed on one disk with a menu program. The menu lists the names
of the programs on the disk. When the user enters the number of the program to be run, the
computer can run that program with RUN*“D:name” . The name of the program
must follow the colon and be entered exactly the way it is stored on the disk.

Use RUN “D:name” format when one program is too large for the amount of memory
available. The program can be broken into several smaller programs. Each mini-program can run
the next program without having the user type in the command and the name of the program. Any
variables needed for the next part of the program can be saved to the disk before the new part of
the program is run. These variables can be re-entered from the disk by the new program.

In all, the disk expands the capabilities of the computer.

232

Chapter 20

Putting It
All Together

Now that you can use multigraphic modes, move character sets and save data onto disk, you are
ready to develop programs that use all these features. The entire character set uses 1K (1024
bytes) of memory. There are 128 different characters in the character set. Each character uses
eight bytes of memory. When you move the character set into RAM, you can change any character
by POKEing values into its area.

Figure 20-1 shows you how a character is constructed. The first character of the set is a
space. Therefore, the first eight bytes of the character set are zeroes. If you were to POKE a
value in the location set aside for the space, your entire screen would display dots in that location.

By knowing how to construct characters, you can replace an existing character with one that
is more suitable for your program. This character set can be stored on disk and read into memory
by another program. Listing 20-1 changes some of the characters in the character set and stores it
on the disk under the name CHARS. It can be read back into memory and used by another
program.

Line 40 opens the disk to read the MOVE file. This is the same subroutine used in Chapter 19
and stored on the disk.

Lines 50-70 POKE the machine language subroutine into the area of memory set aside for
this purpose.

Line 90 places the new character set 2K above the end of available RAM and POKEs this
value into location 204. It also POKEs the starting address of the ROM character set into location
206.

Line 100 tells the computer to use the machine language subroutine at location 1536.

Line 120 calculates the location of the exclamation point in the RAM character set. A
contains the high-order address of the RAM character set. By multiplying this value by 256, we
arrive at the decimal equivalent of the beginning of the character set. The first byte is a space. Add
eight to the beginning address to find the first byte of the exclamation point. We will change this
character and six other characters.

Line 130 POKEs 255 into the eight locations that made up the exclamation point. This will
make a bar or cursor on the screen.

Line 140 POKEs 63 into the eight locations that made up the pound sign. This number will
set the last six bits of every byte, making this bar three-fourths as long as the previous one. We

233

<0
<€-102

<4255
€102 Fig. 20-1. The values of the eight

‘_1 02 bytes that make the pound sign.
<255

<102

<40

did not replace the quotation marks because BASIC uses them for its string functions and you
cannot have a quotation mark within a quotation mark.

Lines 150-190 continue to replace the dollar sign, percent sign, and sign, apostrophe, and
open parenthesis with parts of a bar. These characters will be used in the next program.

Line 210 opens the disk for writing and calculates the beginning of the character setin RAM.

Line 270 writes the new character set to the disk. The entire set is stored on the disk even
though we only changed eight characters. The next time we want to use this character set, we can
read it in from the disk without having to move the set from ROM.

Now we have changed and stored our character set, we can write a program that uses it. This
program can read in the character set and store it anywhere in RAM. This makes it easy to write a
program on a machine with 32K or 40K RAM, but makes it inaccessable to persons with only 16K
RAM.

Listing 20-21is the Towers Puzzle. Init there are nine disks that must be moved from the first
pole to the third. A smaller disk can always be placed on a larger one, but a larger one can never be
placed on a smaller disk. This program uses player/missile graphics and a multi-mode display.
Before we can write the program, the memory that will be used for the character set and the
player/missile graphics must be considered. Figure 20-2 shows a memory map of how the
character set and the player/missile graphics will be stored in BASIC.

We allow 1K (1024 bytes) for the display list and the screen display area. This is more
memory than needed, but since the player/missile graphics must begin on an even 1K boundary,
we will allow this much. The 1K of memory just above the screen and display list will be used for
the player/missile graphics and the character set. We will be using two-line resolution for the
player/missiles. Since we will not be using the missiles in this program, the first 512 bytes of this
area will not be used. We will also be using mode 1. A character set in mode 1 uses half the
standard character set, or 512 bytes of memory. We can, therefore, read the character set into this
area of memory, conserving on the amount of memory needed in a program.

Listing 20-2 uses the joystick to lift the disk from the pole. Place the magnet above the disk
you wanted lifted and press the red button on the joystick. Bring the magnet and disk over the pole

234

Listing 20-1. Character Base

10 REM LISTING XX.1

20 REM CHARACTER EASE

30 REM BY L .M.SCHREIBER FOR TAE ROOKS

40 OPEN #1400y "DIMOVE" {REM OFPEN TO READ

FROM LISK

50 FOR D=1 TO 20

460 GET #1»SIFOKE 133340y SIREM GET THE INS
TRUCTION/FOKE IT INTO MEMORY

70 NEXT DICLOSE #1

80 7 "}clear)>"

20 A=FEEK(106)-8!F0OKE 204yAIFOKE 206y224%
REM SET UF THE NEW CHARACTER SET LOCATION

100 Q=USR(1536)!REM RUN THE MACHINE LANGU
AGE SUBRROUTINE

110 REM CHANGE 8 CHARACTERS IN THE SET
120 B=A%X256+8IREM LOCATION OF !

130 FOR X=0 TO 7:FOKE B+Xs255INEXT XIREM
MAKE INTO A RAR

140 FOR X=16 TO 23!FOKE RB+Xs63iNEXT XIREM

374 RAR

150 FOR X=24 TO 31:!FOKE E+Xy15INEXT XIREM
1/2 BAR
160 FOR X=32 T0 392:!FOKE B+X»3INEXT XIREM
1/4 BAR

170 FOR X=40 TO 47:!FOKE B+Xy1922INEXT XIRE

M LEFT 1/4 EAR

180 FOR X=48 TO 55:FOKE E+X»240INEXT XIRE

M LEFT 1/2 BAR

1920 FOR X=56 TO 63:FOKE EB+X»2352!NEXT X:IRE

M LEFT 374 EBAR

200 REM MARE FSUEDO CHARACTER

210 POKE B+64y60:FORE B+65192IFOKE EB+66y
153{POKE B+67y27{FOKE RB+6B:28:FOKE EB+69y5

6FOKE BR+70,204:FOKE E+71+14

260 OFEN #1+8y0y "NICHARS" I E=AX256 IREM SAV

E THE NEW CHARACTER SET

270 FOR X=0 TO 1024:FUT #1sFEEK(EB+X)INEXT
X

280¢ CLOSE #1

235

Listing 20-2. Towers Puzzle

10 REM LISTING XX.2

20 REM TOWEKS

30 REM BY L.M.SCHREIEKER FOR TAE BOOKS

40 DIM A$(A5)sF$(5) yELS(5) yF (99 3)

50 GRAFHICS 17:A=FEEK(106)~8!REM SET UF T
HE NEW CHARACTER SET LOCATION

60 OFEN #15450y "D CHARS® {E=AX256 REM GET

THE NEW CHARACTER

70 FOR X=0 TO 1024:GET #1,C!REM READ A CH
ARACTER EYTE

80 FOKE B4+XsCiREM STORE IT IN CHARACTER S
ET

90 NEXT X:CLOSE #1:FOKE 756»A

100 A$=" | %1% DJDAG> #!(!!! YEAAAF
FELLL LI THAAAAAY " (g *EL$=F$ I M=0

110 DL=FEEK(S60)+FEEK(S561) %256 REM GET TH
E DISPLAY LIST

120 FOKE IL+6y7:REM CHANGE TO MODE 2

130 FOKE 711+886:FOKE 709244 :F0SITION 4y1
tT #4653 ") towers)"

140 FORE 559+46iREM 2-LINE RESOLUTION

150 FOR X=R+3512 TO EB+1024:1F0OKE XyOINEXT X
tREM CLEAR PLAYER GRAFHICS AREA

160 FORKE S327731F0OKE 623y4:REM ENARLE FL

AYER/MISSILE GRAFHICS & SET FRIORITY

170 FORKE 54279sAtREM TELL ANTIC WHERE F/M
STARTS

180 FOR S$=512 TO 748 STEF 128:F0R X=60 TO
112:FOKE B4S+X»30INEXT XINEXT SIREM DRAW
STICKS

190 FOR §=571 TO 827 STEF 128:!FOKE EB+S5s12
INEXT S

192 FOR X=ER+935 TO EB+940!READ SIFOKE X»S5?

NEXT X

195 DATA 289549999999 99599

200 FOR X=1 TO 192:FOSITION Xsy23:7 %65""5
INEXT Xi{REM DRAW EBASE IN ORANGE

210 POKE 704y202!F0KE 705y44:F0KE 7065108
tFPOKE 707y92:REM COLOR THE FOSTS

220 POKE 53248y71:F0OKE 532495127 1FOKE 532

236

50y 183 1FOKE 5325171 1F5=71
230 FOR X=1 TO 2:F(Xs1)=XIF(Xs2)=0IF(Xy3)
=0 INEXT XIREM FUT DISKS VALUES IN STORAGE

250 FOR X=22 TO 14 STEF ~1:FOSITION 1sX:F
=(X~-14)%5+1:7 #65AB(FyF+4) INEXT XIFL=1IR=
O!REM FUT DISKS ON FOST

260 FOSITION 2,3:7 #6535 "MOVES "M

280 IF STICK(0)=7 THEN GOSUR 400:FOKE 77y
O:REM MOVE TO RIGHT

290 IF STICK(0)=11 THEN GOSUE A450:FOKE 77
yOIREM MOVE TO LEFT

300 IF STRIG(O)=0 THEN GOSUE S00:FOKE 77y
O!REM DROF OR FICK UF DISK

310 FOR X=1 TO SOINEXT X:SOUND 05050y0:G0
TO 260!REM TIMING LOOF/START AGAIN

400 IF FS+183 THEN FS=FS+36iFOKE 53251,F8
tFOSITION FLyR:? #65BLSCFL=FL+7

410 FOSITION FLsR:T #65F%

420 RETURN

450 IF P8>71 THEN FPS=FS-56IFOKE 53251yFS3
FOSITION FLsR!? #63BLSIFL=FL~-7:G0T0 410
460 RETURN

500 C=0!IF FS=71 THEN C=1:!FL=13IREM FIND 0O
UT WHICH FOST IT’S OVER

510 IF FPS=127 THEN C=2:!FL=8

520 IF FS=183 THEN C=3I!FL=135

530 IF C=0 THEN RETURN

9540 IF R=6 THEN &400!REM HOLDING A DISK
550 FOR X=1 TO ?!IF F(XyC)=0 THEN NEXT X:
RETURN !REM FIND THE DISK

560 S=F(XsC)IP=(8-1)XG5+1 F$=A%(FyF+4) IR=X
+13:P(XyC)=0

570 FOR X=R TO 7 STEF —1:FOSITION FL#X2:7
$6FBLEIFOSITION PLyX~-1237 #65FSINEXT XIR=X
$SOUND 0510910910

580 RETURN

600 FOR X=1 TO 9:{IF F(XyC)<S AND F(Xy(C) -
0 THEN RETURN (REM DON‘T DROF ON SMALLER
DISK

610 IF F(XyC)<x0 THEN P=X~-1:1G60T0 630

237

Listing 20-2. Towers Puzzle. (Continued from page 237.)

620 NEXT XiP=X-1

630 FOR X=R TO R+&6+FIFOSITION FLyX3I7? #63R
L$IFOSITION PLsX+1:7 #67FEINEXT XIR=01F%$=
EL$:SOUND 0,250,148 M=M+1

640 P(F»C)=SIRETURN

you want to place the disk on and press the red button again. If that pole does not contain a smaller
disk than the one you are transferring, the disk will drop onto the pole. Try to transfer all nine
disks from pole one to pole three.

Line 40 sets aside the memory needed for the strings and array.

Line 50 changes the mode to mode 1 without a text window. The graphics mode should be set
before the display list is changed or the character set replaced. Every change in the graphics
mode resets the display list and the character set. The variable A contains the high-order address
of the amount of memory available less 8 (2K or 2048 bytes). This is the area of memory used for
the new character set and the player/missile graphics.

Line 60 opens the file saved on disk as CHARS. The variable B contains the first byte that
will be POKEd with the new character set. This is the character set created with the last
program.

PLAYER/MISSILE GRAPHICS | AVAILABLE MEMORY
AREA CHARACTER SET LESS 2K

PLAYER O |+ 512 BYTES

PLAYER 1 |+ 640 BYTES Fig. 20-2. Memory map for player/
missile graphics and character set.

PLAYER 2 |+ 768 BYTES

PLAYER 3 |+ 896 BYTES

+ 1024 BYTES
DISPLAY LIST |+ 1152 BYTES (APPROX.)

SCREEN DISPLAY AREA |LAST 513 BYTES (MODE 1)

238

Lines 70-90 read the bytes from the disk and POKE them into the area of memory set aside
for the character set. Location 756 is POKEd with the high-order address of the character set.
The computer will now use these characters when printing on the screen.

Line 100 contains the elements of A$. This string is the nine disks used in the program. Each
disk is given a field of five bytes. The smallest disk uses only one byte. The next four disks use
three bytes in their fields and the last four disks use all five bytes.

Be sure the string format is exact:

space space reverse ! space space

space % ! & space

space reverse control D reverse control A reversecontrol G

space
space reverse # reverse ! reverse (space
space ! ! | space

reverse control E reverse control A reverse control A
reverse control A reverse control F

reverse § reverse! reverse! reverse! reverse!
#101(

reverse control A reverse control A reverse control A
reverse control A reverse control A

This will generate disks in three different colors.

Line 110 calculates the beginning of the display list. We need this information to change
one of the lines from mode 1 to mode 2.

Line 120 POKEs the seventh byte of the display list with a 7 (DL is the first byte of the
display list). This changes the second line of the screen to graphics mode 2.

Line 130 changes the colors in two of the color registers and prints the title of the
program on the screen. Be sure to include the parentheses on both sides of the wordtower.
This symbol has been changed to a character in the new character set.

Line 140 POKEs location 559 with 46. This sets the player/missile graphics for
two-line resolution.

Line 150 clears any characters that may be in the player/missile graphics area.
Line 160 POKEs location 53277 with 3. This enables the player/missile graphics. POKEing

location 623 with 4 sets the priority of the players. Any character that is printed in the same area
as aplayer will cover the player. If this priority location was not set, the player would appear to be
over the characters printed on the screen. Leave the POKE out and run the program to see the
difference in priorities.

Line 170 POKEs location 54279 with the high-order address of the memory set aside for
player/missile graphics. This is the same address used for the character set.

Line 180 draws the posts in the player area of memory. The posts will start 60 bytes from the
beginning of each player’s area and be drawn in the following 53 bytes. Since each player is given
128 bytes of memory, we can use a For . . . Next loop and step it by 128. 30 is POKEd into the
player/missile area. The posts will only be 4 bits wide.

Line 190 POKEs a 12 in each byte just above the posts. This will give the posts a tapered
look at the top.

239

Lines 192-195 draw the magnet into the fourth player’s area. The data for the magnet is in
line 195.

Line 200 draws the base for the posts. Since we want the base to be orange, we will
use control A as the character to be printed.

Line 210 POKEs a color into the four color registers for the players.

Line 220 positions the three posts and the magnet on the screen. The PS variable will
indicate the position of the magnet.

Line 230 uses the array to keep track of which post has which disks. Each disk is assigned a
value. The smallest disk is a one, the largest a nine. All the disks start on one post. Each element
of the array that represents this post is set to the proper value. The rest of the array is set to
Zeroes.

Line 250 prints the disks on the post. Each disk has a field of five, so the column used to print
the disks does not change. The disks are printed from the bottom to the top. PL stores the print
position for the disks. R stores the set to 0 because no disk is being held by the magnet.

Line 260 prints the number of moves the player has taken.

Line 280 checks the joystick to see if it is moved to the right. If so, it goes to the subroutine
that moves the magnet to the right, then resets the attract mode so the screen will not start
changing colors.

Line 290 checks the joystick to see if it has been moved to the left. If it has, the program
directs the computer to the line that moves the magnet to the left.

Line 300 checks the fire button on the joystick. If it has been pressed the computer is
directed to the subroutine that drops or picks up a disk.

Line 310 contains a timing loop to make it easier to move the magnet across the screen.
Without the timing loop, it would be very difficult to get the magnet to stop over the center post.
The sound is also turned off if it was on and the program goes back to line 260 to update the
number of moves and check the joystick again.

Lines 400-420 move the magnet to the right. If PSis less than 183, the magnet can be moved.
56 is added to the value of PS since the posts are 56 positions apart. The new value of PS is
POKEd into location 53251. The disk in the position below the magnet is erased and seven is
added to its old position value. The disk is reprinted in the new position just below the magnet.
The program returns to the main routine.

Lines 450-460 move the magnet to the left if it is not in the leftmost position on the screen.
Again, the new position of the magnet is POKEd into location 52351. The disk is erased from the
old position and reprinted in the new position under the magnet.

Lines 500-640 raise or lower the disk. C is used to store the number of the post the magnet is
over. The position of the magnet is checked, and the position of the disk (PL) is set accordingly.

Line 540 checks the R variable. If it is a 6, we know the disk is under the magnet and it should
be dropped. The computer is directed to line 600 to drop the disk.

Line 550 looks for a disk. The elements of the array in column C are checked for a value. If all
the values are 0, there are no disks on that post and the program returns.

Line 560 saves the value of the first disk found on that pole in S. P is the first position of the
disk stored in A$. The disk is stored in P$. Since X is the number of the row that has a disk, 13 is
added to it. The tallest any column can be is nine disks high. The ninth or top-most disk is on the

240

fourteenth row of the screen. The disk is removed from the array by storing a 0 in that element.

Line 570 lifts the disk off the pole by erasing the disk and printing it one row higher on the
screen. Once the disk is under the magnet the value of X is stored in R and a sound is made. The
routine returns.

Line 600 checks the elements of the array that represent the pole the disk is dropped on to
make sure the disks are not dropped on a smaller disk. If the disks on the pole are smaller than the
disk held by the magnet, the routine will return.

Line 610 checks to see if there is something in that element. If there is the disk will fall on top
of it. The position the program is looking at less one is stored.

Line 630 drops the disk onto the pole. R is reset to 0 to indicate it is not holding a disk, the
disk in P$ is erased, and a sound is made. The number of moves is increased by one.

Line 640 stores the disk value in the element representing its position in the array and the
program returns.

As you can see, by combining player/missile graphics with the different modes and character
sets, your ATARI can generate colorful games or simulations. You are limited only by your
imagination.

241

Index

A
ABS command, 123
Absolute command, 123
Accessory ports, 12
Access times, 6
Acoustical modem, 8
Addition, 120
Addresses, 174
Algorithm, 14
Antic video microprocessor, 194, 200
Apple microcomputer, 5
Array, clearing an, 68
Arrays, 63
ASC command, 143
ASCII values, 143
Assembler, 5
Assembly language, 5, 195
ATARI disk drives, 7
ATARI 830 Acoustical Modem, 8
ATARI 850 Interface Module, 8
ATARI modes, 149

B
BASIC, different dialects of, 3
BASIC cartridge CXL4002, ix
Binary code, 6
BNE instruction, 193
Branching, selective, 98
Break key, 12
Break point, 147
Brightness, color, 152
Bugs, 1, 14
Bye command, 21
Bytes, 5

c
Caps/lowr key, 10
Cassette recorders, 6, 26
Central processing unit, 5

242

Chained programs, loading, 28
Chaining, 27

Character length, screen, 29
Characters, 144

Character set, 233

CH$ command, 143

Clear key, 12

CLOAD command, 26

Clock, using the, 183

CLR statement, 64

Colon, use of, 21

Color, 9

Color, adding more, 200
Color, filling the screen with, 157
Color command, 151

Color registers, 152

Colors, default, 153
Commands, 20

Commas, use of, 31, 32
Computer accessories, 8, 168
Console keys, 177

CONT command, 30

Control blocks, 150

Control characters, 11

Control keys, 10

Corvus Systems Inc., 8

CPU, 5

Crashing a program, 68, 82
CSAVE command, 26

Cursor, 10

Data, 5

Data base, 14

Data command, 64
Debugging, 146

Decimal instruction set, 192
DECWriter, 8

Dimension statement, 48
DIM statement, 63

Disk, 7, 26

Disk, hard, 8

Disk drives, 7

Diskette, 7

Disk operating system, 217
Disks with BASIC, using, 218
Displaying programs, 29
Division, 120
Documentation, 3

Dollar sign, use of, 50
DOS I, 217

Dot matrix, 8

Drawto command, 156

E
Editing, 21, 29
Editor/Assembler, 6
Else statement, 95
ENTER “C:", 27
Error messages, 22
Errors, program, 1
ESC (escape) key, 12
Exits from loops, 95
Exits from subroutines, 109

F
Flags, 190
Floppy disk, 7, 26
Flowchart, 14
Flowchart symbols, 15
For . . . Next loop, 81
FRE (X) command, 30

G
Games, 2, 168
Get command, 179, 223
GOSUB command, 86, 106

GOTO command, 76

Graphic characters, x, 10
Graphics, 2, 149

Graphics, high-resolution, 150
Graphics, low-resolution, 149

Graphics mode RAM requirements,

Graphics modes, 29
GTIA chip, 150

H
Hex instruction set, 192
Home applications, computer, 2
Horizontal blank, 194

|
If ... Then statement, 92
Input, 14, 60
Input command, 223
INT command, 120
Integer command, 120
Interface module, 8

J
Joysticks, 2, 9, 168

K
Kim microcomputer, 5

L
LDA command, 189
LEN command, 51
Light pen, 9, 185
Line numbers, 22
LISP, 4
LIST “C:" command, 27
LIST command, 29
Load, to, 6
LOAD command, 26
Locate command, 181
LOCBs, 150
Loop, endless, 75
Loop, exiting from a, 95
Loop, For . .. Next, 81
Loop, timing, 60, 75
Loops, 75
Lowercase, 10
LP command, 26

M
Machine code, 6
Machine language, 5, 189
Mass storage, 6
Memo Pad mode, 10, 21
Memory, conserving, 75
Memory locations, 174
Memory types, 5
Menu program, 232

Microprocessor, Antic video, 194,
200

Microprocessors, 5, 194

Missile colors, 202

Modem, 3, 8

Mode 0, 29

Modes, ATARI, 149

Monitor, 9

Mother board, 6

Multiplication, 120

Music, 149, 160, 168, 169

N
Nesting, 82
Networks, 3
New command, 20
Note command, 227
Notes, musical, 160, 168, 169
Number keys, 10
Numbers, random, 127

0
Open command, 222
Operation numbers, 222
On ... GOSUB command, 109
On ... GOTO command, 98, 109

P
Paddles, 2, 9, 168, 173
Parentheses, use of, 120
PASCAL, 4
PEEK command, 174
Peripheral jack, 13
Peripherals, 8, 168
Pet microcomputer, 5
PILOT, 4
Pixels, 149, 150
Player, creating a, 202
Player colors, 202
Players, moving, 204, 206
Plot command, 155
Point command, 227
POKE command, 175
POP command, 109
Ports, 8, 169
Position command, 33, 40, 160
Print command, 33, 222
Printers, 8
Priority rules for calculations, 120
Program, 1
Program, menu, 232
Program accuracy, 1
Program debugging, 146
Program differences, 3
Program display, 29
Program errors, 1, 146
Programming, 1

Program parts, 14

Program possibilities, 2
Programs, writing in two parts, 28
Program sources, 3

Program statement length, 21
Program storage, 26

Program testing, 146

Program writing, 29

PTRIG#, 173

Put command, 181, 223

Q
Question mark, use of, 33
Quotation marks, double, 55, 59

R
RAM, 5
RAM, static and dynamic, 6
Random-access memory, 5
Raster scan, 194
Read command, 64
Read-only memory, 6
Read/write memory, 6
Remarks, 16
Remark (REM) statement, 21
REM statement, 21
Return command, 106
Return key, 10
Return key, eliminating, 179
Restore command, 68
Reverse video, x, 12
RND command, 127

ROM, 5
Routine, wrap-around, 81
Routines, 14

Routines, reusing, 106
RUN command, 29

RUN “C:” command, 27
Run “D:name” format, 232

S
SAVE “C:" command, 27
SAVE command, 26
Screen, clearing the, 31
Screen display, 31
Semicolons, use of, 48
Setcolor command, 152
SGN command, 128
Shift-lock key, 10
Sign command, 128
6502 CPU, 5
6502 instruction set, 189, 191
Software, 1
Sound, using, 168
Sound effects, 168
Sound generators, 160
Special function keys, 12
Speech synthesizer, 9

243

SQR command, 127

Square command, 127

Square roots, finding, 127
Stack, 106

Statement, dimension, 48
Statements, 92

Statements, program, 15, 20, 21
Stepping, 82

Stick#, 169

STR$ command, 143

STRIG#, 169

String, position of characters in, 52
String functions, 153

String length, 52

Strings, fielded, 52

Strings, patching, 74

Strings, using, 69

Strings, working with, 132
Strings, 51

244

String variables, 48
Subroutine, 106

Subroutines, exiting a, 109
Subroutines, selective, 113

Substring, 51
Subtraction, 120
Symbols keys, 10
Syntax, 21

System Reset key, 12

T
Tabs, setting, 12
Teletype, 8
Television screen, 194
Text window, 32, 150
Thermal printer, 8
Trap command, 146
Typing errors, 21

U
Uppercase, 10
USR instruction, 190

v
VAL command, 144
Value command, 144
Values, changing, 46
Variables, 46
Variables, assigning values to, 47
Variables, changing values of, 48
Variables, numeric, 48
Variables, string, 48, 51
Vertical blank, 194
w
Writing programs, 29

X
XIO command, 157

55 SIMPLE ATARI PROGRAMS

If you're intrigued with the possibilities of the programs included in ATARI Programming . ..
with 55 Programs (TAB Book No. 1485), you should definitely consider having the ready-to-run
disks containing each of these software applications. This software is guaranteed free from
manufacturing defects. (If you have any problems, return the disks within 30 days and we’ll send
you new ones.) Not only will you save the time and effort of typing the programs, these disks
eliminate the possibility of errors that can prevent the programs from functioning properly.
Interested?

Available on two 5%" disks for the 16K ATARI 400 and the 16K ATARI 800 at $24.95, plus $1.00
shipping and handling.

.----------_--------------------"

| I'm interested. Send me the disks containing 55 Simple ATARI Programs (6314S) [
Check/Money Order enclosedfor $ _ (include $24.95 plus $1.00 handling |

i and shipping for each set of two disks ordered). =
j — VISA __ MasterCard i
I Acct. No. Expires |
I Name |
= Address |
j Citv State Zip I
I Signature i
I Mail to: TAB BOOKS Inc. I
= Blue Ridge Summit, PA 17214 |
i

I (Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money I
= orders in U.S. dollars. i
i TAB 1485 =
L-------_-------------------------

e

L3

-

ATARI Programming . . . with 33 programs
by Linda M. Schreiber

If you own an ATARI personal computer or are thinking of acquiring one, this
handbook is a must! It's an invaluable resource of operating and programming
information that shows you, step-by-step, how to get the most performance from
your machine, including user-defined high resolution graphics.

Written in easy-to-understand, non-technical language, the book assumes no
prior computer knowledge; all you need is right here, including actual programming
examples. The instructions are designed for an ATARI 800 model with BASIC
cartridge CS14002, but most data also applies to the model 400.

Starting at point “A”, you'll learn what a program is, what types of programs are
available for your machine, and about the architecture of your computer (types of
memory, graphics and special function keys, and available peripherals). The princi-
ples of program organization are covered, including flowcharts and their use, the
difference between direct commands and statements, editing keys and the proce-
dures for using them, and find out about error codes. Program storage and the
how-to’s for merging programs, using PRINT and POSITION to place words and
characters on your screen, and how to use variables and string variables are
covered in easy-to-follow sequence. Then, it's on to creating loops to save memory,
thelF... THEN and ON. .. GOTO commands, and how to use subroutines to save
computer memory space and programming time. Working with strings, finding and
trapping errors, arithmetic functions, graphic modes (including control of colors and
sound) and special computer functions like PEEK, POKE, and LOCATE are all
explained and illustrated with program examples.

For even more graphics action, you find out how to work with the 6502 instruc-
tion set, and learn how to directly command the ANTICS graphics chip to allow more
modes and colors on the screen than is possible with BASIC.

Linda M. Schreiber has been involved with microcomputers since 1976 and is
president and co-owner of a firm which develops educational software for ATARI
and APPLE Il computers.

OTHER POPULAR TAB BOOKS OF INTEREST

Computer Graphics—with 29 ready-to-run programs Machine and Assembly Language Programming (No.
(No. 1276 —$9.95 paper; $15.95 hard) 1389—$9.95 paper; $15.95 hard)

Programming Your Apple 1™ Computer (No. 1394 — 30 Computer Programs for the Homeowner, in BASIC (No.
$9.95 paper; $15.95 hard) 1380—$9.95 paper; $18.95 hard)

TAB BOOKS Inc.

Biue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > s1l4.50 ISBN 0-830k-1485-D

PRICES HIGHER IN CANADA 1395-1082

	Cover

	Contents

	Introduction

	1: What is a Program?

	2: The Making of a Computer

	3: The Keyboard

	4: Organizing Your Program

	5: Commands and Statements

	6: Storing the Program

	7: Understanding the Screen

	8: Getting the Answers

	9: Storing Related Information

	10: Repeating part of the Program

	11: Making Decisions

	12: Reusing part of a Program

	13: Arithmetic Functions

	14: Working with Strings

	15: Finding and Trapping Errors

	16: Sights and Sounds

	17: Special Functions

	18: Advanced Programming Skills

	19: Using Disks

	20: Putting it all together

	Index

