m dilithium Press

sharon Boren ¢ Larry Hovey“- Kathleen Hovey

ids

For K

®

An ATARI

...'.qg—

AN ATARI®
FOR KIDS

AN ATARI®
FOR KIDS

Sharon Boren

Larry Hovey

Kathleen Hovey

dp

dilithium Press
Beaverton, Oregon

© 1984 by dilithium Press. All rights reserved.

No part of this book may be reproduced in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval system without
permission in writing from the publisher, with the following exceptions: any material may be
copied or transcribed for the nonprotit use of the purchaser, and material (not to exceed 300
words and one figure) may be quoted in published reviews of this book.

Where necessary, permission is granted by the copyright owner for libraries and others regis-
tered with the Copyright Clearance Center (CCC) to photocopy any material herein for a base
fee of $1.00 and an additional fee of $0.20 per page. Payments should be sent direcily to the
Copyright Clearance Center, 21 Congress Street, Salem, Massachusetts 01970.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging in Publication Data

Boren, Sharon, 1956-
An Atari for kids.

Includes index.

Summary: Teaches beginning programmers how to program the Atari or other microcom-
puters in the BASIC computer language.

1. Atari computer—Programming—Juvenile literature. 2. Basic (Computer program lan-
guage)—Juvenile literature. (1. Atari computer—Programming. 2. Microcomputers—Program-
ming. 3. Basic (Computer program language) 4. Programming (Computers) 5. Computers) 1.
Hovey, Larry. II. Hovey, Kathleen. III. Title.

QA76.8.A82B67 1984 001.642 83-25269

ISBN 0-88056-123-8 (pbk.)

Printed in the United States of America

Cover and art by Marty Urman

dilithium Press

8285 S5.W. Nimbus

Suite 151

Beaverton, Oregon 97005

Acknowledgements

We dedicate this book to:

Alan Boren

Leonard and Bernice Hovey
Nick and Elefteria Gartelos
Lenny and Nikki Hovey
Jerry Willis

Andto allthe young computer wizards and brave teachers for whom An Atari for
Kids and An Atari in the Classroom were written.

INTRODUCTION

COMPONENT ONE

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

We Have an ATARI in our Classroom!

The microcomputer and its basic parts—keyboard,
screen, cassette tape recorder or disk drive, and brain
(internal circuitry)

ATARI's Keyboard
ATARI's keyboard and its functions

Turning On the ATARI
Tuming ATARI on and off; BASIC, ATARI's language:; initial
information on the screen

Using ATARI’s Special Keys
ATARI's special keys including SHIFT and CTRL (control)

Fixing Typing Mistakes
Screen editing to correct mistakes

Becoming a Programmer
Definition of a program; loading programs into ATARI; the
NEW program statement

COMPONENT TWO

Chapter 7

Chapter 8

Teaching ATARI Simple Tricks

Statements preceded by line numbers make programs;
PRINT, GOTO, and END program statements; the RUN
command

Loading and Saving
Loading and saving programs; the LIST command

10

12

15

20

21

22

29

Chapter 9

Chapter 10

Chapter 11

Teaching ATARI to Do Your Homework
BASIC symbols for arithmetic operations

ATARI as a Calculator
Solving arithmetic equations in Direct Mode

Arithmetic with Many Numbers

The order of arithmetic operations; an abbreviation for
PRINT

COMPONENT THREE

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

What Else Can ATARI Do for Me?
Other operations besides arithmetic

Flow Diagramming
Using algorithms; using flow charts

More About Flow Charts
Single altemative decision steps in flow charts

Double Detours
Double alternative decision steps in flow charts

Loop de Loop
Using loops in programs

Putting It All Together
From algorithm to flow chart to program

Printing Whole Equations
Programming ATARI to print whole equations

A Different Way
Using commas and semicolons; print zones

COMPONENT FOUR

Chapter 20

ATARI’'s Memory
Memory; numeric variables; the LET program statement

viii

38

39

40

45

46

47

83

55

61

61

67

69

73

74

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Using Variables
Variable address and variable contents; printing
variable names and contents

Using Variables in Equations
Using variables to print and solve arithmetic equations

Important Information
Using LET and PRINT statements in proper order

A Shortcut
Using commas and colons to shorten programs

What Types of Numbers Does ATARI Like?
Using numbers that ATARI can use; E notation numbers

COMPONENT FIVE

FOR-NEXT Looping
Using FOR-NEXT loops

Stepping
The STEP program statement

A Counter
Using counters in programs

A Clean Trick
Clearing the screen; FOR-NEXT time loops; Using colons
with FOR-NEXT statements

Blinkers
Programming blinking output

Special Commands

BYE and CONT commands; the STOP program statement;

Using Memo Pad and Testing Mode

Debugging
Types of computer errors; getting rid of errors

76

79

82

86

87

89

@0

96

99

102

106

109

112

COMPONENT SIX

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Chapter 38

Chapter 39

Strings
String variables; the DIM (dimension) program statement

Input
Interactive programming; the INPUT program statement

IF-THEN
BASIC signs for comparisons; the IF-THEN program
statement; the complement of a question

Alphabetizing
Programming ATARI to alphabetize

Remarks
The REM (remark) program statement for documentation

READ-DATA
The READ-DATA program statements

Problem-Solving Programming
Programming to solve problems

COMPONENT SEVEN

Chapter 40

Chapter 41

Chapter 42

Chapter 43

Chapter 44

Conversions
Programs that convert (change) information

Random Numbers and Integers
The RND (random number) and INT (integer) functions

Making Sounds
The SOUND program statement

Graphics
The GRAPHICS, COLOR, PLOT, and DRAWTO program
statements

More Graphics
The SETCOLOR program statement; graphics without the
text window; combining graphics and sounds

114

116

117

121

128

130

132

140

148

149

152

156

160

170

Chapter 45 Writing Game Programs
Writing user-friendly computer games

Chapter 46 You Are aCreative Programmer!
Programming as a creative experience

EPILOG

APPENDICES

Appendix A BASIC Commands, Statements, and Functions
(with abbreviations)

Appendix B Error Messages

Appendix C Game Controllers

GLOSSARY

INDEX

174

178

179

180

180

182

185

186

193

INTRODUCTION

An ATARI for Kids is part of a three-book set designed to teach children and
beginning programmers how to program a microcomputer in the BASIC com-
puter language. Although this book is geared specifically for the ATARI micro-
computer, it can be easily adapted for use with other microcomputers as well.

Written at approximately a fourth grade reading level, An ATARI for Kids
consists of seven components of approximately six chapters each. You become
familiar with the keyboard and ATARI operation in the first components, and
leam how to write your own BASIC programs as you progress through the book.
By the time you have completed the last component you will have the skills
needed to write game programs, simple graphics, teaching programs, and
programs that solve problems. All programming techniques introduced can be
easily understood by the average sixth grade student.

How to use this book: Read through the chapters and try the examples on your
computer. At the end of some chapters there are notes on worksheets ''to do.”’
(For example, you'll see ''to do: Programmer’s Pastime #11.’") Sometimes these
activity worksheets are included at the end of chapters so you may try your hand
at writing your own programs. Otherwise, you’ll find all these programming
worksheets in the second book of the set, An ATARI in the Classroom: Activity
Workbook. Solutions to the activities can be found in the Teacher’s Guide (the
third book in the set) which also contains lesson plans for each chapter and addi-
tional information and ideas for using this material as a computer programming
curriculum. An ATARI for Kids is the student text in this set. Both the Activity Workbook
and the Teacher’s Guide can be ordered from the card at the back of the book.

CHAPTER 1

We Have an ATARI

in Our Classroom! 4
CHAPTER 2

ATARI's Keyboard 5
CHAPTER 3

Turning on the ATARI 10
CHAPTER 4

Using ATARI's Special Keys 12
CHAPTER 5

Fixing Typing Mistakes 15
CHAPTER 6

Becoming a Programmer 20

(CHAPTER 1) Ciossoomt 11 o
Classroom!. ..

It's not a new student, or an animal. It’s not some-
thing to eat or sit on. It's bigger than a shoebox
and smaller than a car! It's an ATARI!

What ‘s an ATARI? It's a microcomputer made
by Atari, a Warmner Communiccations company.
We will be seeing more and more microcom-
puters in homes and classrooms in the future, and
now we have an ATARI in our classroom.

What is a microcomputer? It is a small portable
computer that anyone can leam to use. Micro-
computers can teach us lessons in school, help us
with hard assignments, or even be our partner in
playing a game. It is a fun and valuable ma-
chine to have in a classroom.

Our ATARI microcomputer has four basic parts:

l. a keyboard (punch keys with letters, num-
bers, and signs)

2. ascreen

3. acassette tape or disk drive unit

4. abrain (its insides)

Let’s leam about the parts of ATARI so we can
use it in our work and play!

(CHAPTER 2) ATARI’'S Keyboard

DIFFERENT KEYBOARDS

ATARI has sold various models with keyboards
that differ slightly. On the older models, the control
key looks like this: [e=] . On the newer XL models
it looks like this: . If you have a newer model,
push when this book tells you to push [em],
Also, on the older models, the reverse field key
looks like this [JIL]. On the newer XL models, and
in this book, it looks like this P”|. Whichever
keyboard you have, you are ready to learn more
about using the ATARI in your classroom.

CAUTION

It's a good idea to protect your ATARI from dust
by covering it with a piece of plastic when it is not
being used. Also, NEVER bring drinks or food
around ATARI. Anything spilled inside the com-
puter can cause real problems!

Here is the ATARI XL computer keyboard:

006000000006 CIE
EYDWOEOOWOOEEE (=) [
000000000000 cNE=
@ED@@@@@@@)Q =

ATARI has a keyboard much like a typewriter.
You can punch:

1. letters
2. numbers
3. function keys
([smn I , [RETURPTJ , | BREAK I , andmore)
4. graphics
(V. +.1,andmore)
5. special symbol keys

(+.-.%.,8, =, and more)
6. cursor control keys
3 E D
- looks
like I'm going
10 have 1o
learn how fo
type!
L

LETTERS

006000000006 CI=

(o] sev
TAB

...... o =

@@ @ L

Letter keys on ATARI's keyboard are in the
same places as letter keys on a typewriter. To
type a letter, press the key.

SYSTEM
RESET

3000 0000000aacaE
E30000000000CaaN=
@ED@@@@@@Q o

Number keys are found on the top row of the
keyboard. To type a number, press the key.

FUNCTION KEYS

HOOOOOOOOOOLE
LWOOOOOOOBOE
WEOOOOOOOOOEEE
B000000000

Each FUNCTION key does something special.
They are very important keys. You will learn
more about these keys later.

GRAPHICS

.@@@.@..'.'@ﬁﬁ.

SELECT

START

SYSTEM
RESET

The GRAPHICS keys are one way you can
make pictures and borders on ATARI's screen.
(Later you will learn another way to make graph-
ics.) The graphics symbols are not shown on the
keyboard. To find the key locations you will have
to refer to the above picture when you use the
computer. There are 29 ditferent graphic sym-
bols. Totype a graphic, press the [« | key first and
hold it down. Then type the graphics key.

OPTION

SELECT

START

SPECIAL SYMBOL KEYS

B ()

....... &)
lﬂ@?@@ﬂ@@” ()

)

the key.

CURSOR CONTROL KEYS

000000000006 s~-o

SELECT

START

ATARI has many SPECIAL SYMBOL keys. They
are used for doing math as well as punctuating
sentences that we write. Some special keys are
used as shortcuts in operating ATARI. If the special
symbol is on the top of a key, you must press the
SHIFT key and symbol key at the same time. If the
special symbolis on the bottom of akey, just press

SYSTEM
RESET

@9@@@@@@@% 4

down to move more rapidly.

SELECT

START

CURSOR CONTROL keys let you move around
ATARI’s screen and type wherever you like. To
move about the screen, you must hold down the
key and press the key with the arow in the
direction you want to move, or they can be held

(CHAPTER 3) Turning on the ATARI

1.

w N

Flip the ON-OFF switch on ATARI's right side to
ON. You can tell when ATARI is on, because
the red light on the right hand side of the key-
board comes on.

. Turn on the television.

The T.V. screen should say:

READY

A 7

7 N

READY means that ATARI is ready for you to tell
it what to do. But before we can tell it what to
do, we must learn how to speak to ATARI in a
language that it can understand.

ATARI doesn’t understand English, but it does
understand several different COMPUTER LAN-
GUAGES. The language that we will speak to
ATARI in is called BASIC. BASIC is short for
Beginner’s All-purpose Symbolic Instruction
Code.

10

6. The white square :D\ below the READY is
called the CURSOR. The cursor shows you
where the letters and the other symbols will
appear on the screen when you type on the
keyboard.

7. If you turned ATARI on and something went
wrong, just turmn off the switch and start over
again.

11

CCHK.PTER 4) Using the ATARI’s Special Keys

00000000000 e=CIE
WWHEOOWOOEEO®E) [
0000000000 aCNE
18000000006 -

line, and puts what you have typed into ATARI's
memory. It also tells ATARI to put the cursor on the
nextline.

ALWAYS press when you are done typing a
line.

(SPACE BAR) Pressing the SPACE BAR leaves a blank space.
This key is not labeled. It is the long bar at the
bottom of the keyboard. You must press this key
after you type a word or a number.

Otherwiseyourtypingwilllooklikethis!

SHIFT HOLD THE SHIFT KEY DOWN as you press another
key and ATARI will print the symbol on the top or
top right of the key, or it will carry out the function
labeled at the top of certain keys.

or TR Hold this key down while pressing the keys with
hidden graphic symbols (see following chart).
Graphics, not letters, will appear on the screen.
The key is also used with the CURSOR CON-
TROL (arrow) keys to move the cursor around the
screen. (On some of the older models, and in this
book, the control key looks like this)

12

000000000006l
G (DEE)E) @) @ (&)@ ®E)E) () [
E=HEDON@OO®@EE)E L=
@E@@@@@@@@O e

51 surr |+ CLEAR
S | BREAK
7. !l or JIL

Press SHIFT and hold it down. Then press .This
will erase the screen, and send the cursor to the
HOME position in the upper left comer of the
screen.

Use this key when you want ATARI to STOP what it
is doing. ATARI tells you where the program
stopped by printing a BREAK message like this:

390
% % % READY * % %

When you use the BREAK key, ATARI will show
you the line where the program has stopped (in
this example, at line 390). '

Pressthiskey before youtype, and ATARI will print
in REVERSE FIELD. The words will appear in dark
characters on a white background instead of
white characters on a dark background. Touch
[O]againto end the reverse tield. (On some of the
older models, the REVERSE FIELD key may look

like this[u] .)

13

f@@% Pressing the key will cause ATARI to print

with only lowercase (small) letters. To get back to
capital letters, hold [s | and press . During
programming, ATARI uses only capital letters.
The computer cannot understand lowercase let-
ters within a program, and will give an Error Mes-
sage if it finds one.

CR e The key allows the cursor to be moved sev-

eral spaces at one time. Push this key and the
cursor will jump several spaces. The jump posi-
tions can be set by holding [s« | and pressing this
key. The jump positions can be erased by hold-
ing and pressing this key.

ESC The | = | key and the SYSTEM KEYS (System Reset,
Option, Select, and Start), are used with commer-

cially made programs and for other purposes.

Remember

To get to the bottom symbol on a key, just press
the key. For example, press forthe < symbol.

To getthe top symbol or function on a key, press
and the key. For example, press[s« |and [
for the CLEAR function (clears the screen).

To get graphics, press and the hidden

graphics key. For example, press [« | and [- | to
get .

to do: Exploring ATARI's Keyboard #1

14

(CHAPTER 5) Fixing Typing Mistakes

If we type something wrong, ATARI won't under-
stand. That’s why it’s important to correct typing
mistakes.

ATARI lets us know when it doesn‘t understand.
If we misspell a command, or forget to speak in
BASIC, ATARI will let us know by printing an error
message on the screen:

ERROR

7 N

This is ATARI's way of saying, ''Idon‘t understand
you. Please try again.””

Sometimes the error message is followed by a
number:

(ERROR— 12 ATLINE 10

This gives us more information about the error—
what kind it is, and where it is located. You can
look in Appendix B to see what the error numbers
mean.

Lucky for us, ATARI has a special fecture called
screen editing which allows us to fix typing mis-
takes. This helps to keep us from getting so many
error messages.

16

Here’s how screen editing works. First we must
move the cursor to where the error is located. This
can be done by holding the key while press-
ing the Cursor Control (arrow)key for the direction
we want. By doing this we can move the cursor
anywhere on the screen without erasing any of

our writing.

[em] + moves the cursor down.

Lem | + [] moves the cursor up.

[om] + [-41] moves the cursor to the right.
+ moves the cursor to the left.

After the cursor is moved to the location of the
mistake, there are several ways to cormrect it:

1. Pressthe Space Bar to erase the mistake.

2. Type over the mistake.

3. Usethe key. DELETEmeansto erase. Press
this key and ATARI will erase the letter on the
left side of the cursor. Now type in the correct
letter. Sometimes you may want to erase an
entire line. This can be done by holding the
key and pressing :

4. Use the key. INSERT means to put in. It is
handy to use if you forgot to type something.
Press| «n |and [*™ |and ATARI will add a space
to the right of the cursor. Now you can type
whatever you forgot the first time. Press
and and ATARI will add a new line.

DELETE | [INSERT |
means erase | | means add

16

After you have made the needed changes,
and the entire line is as you want it, you must press
the key. If you forget ., ATARI may tool
you. Sometimes it is possible to change only what
is printed on the screen through screen editing,
and not change the information that has gone
inside the computer. If the inside information is
not changed, it could cause an error in your
program.

Now that you know how easy screen editing is,
you don’t have to be afraid to make mistakes!
With a little practice, you can easily correct them.

to do: Exploring ATARI's Keyboard #2, #3, #4, #5,
#6, #7

17

EXPORI ATARI Keyboard #2

1. Turn ATARI on.

2. Press :
What did the cursor do?

3. Press (It's the long unlabeled bar at the
bottom.) What did the cursor do this time?

4. Press[s~ |and together.
What did the cursor do?

5. Type your name (first, middle, and last).
6. Hold | |and press|-, \]five times.
Which way did the cursor move?

Did anything happen to the writing on the
screen?

Now you know how to move the cursor
around the screen without erasing any of the
writing.

7. Hold and press the various cursor control
keys (those with arrows [][_ 1| [-.Y] [-7]).
Notice how the cursor moves around the
screen without changing the writing.

8. Use the and cursor control keys (with ar-
rows) to move the cursor to the first letter of

your middle name.
9. Press the space bar two times.
What happened?
10. Pressthe key five times.
What happened?
11. Hold[s~]| while pressing :
What happened?

18

EXPLORING Atarr'sReyboard #4

1. Tum ATARIon.
2. TypelLIKE YOU ATARI
3. Press[% |five times.

What happened?

4. Hold[s~]and press five times.
What happened?

5. Hold [|and press five times.
What happened?

6. Hold[s« |and press :
What happened?

7. TypeILOVE YOU ATARI

8. Hold and press [-. ‘| until the cursor is on
the Y of YOU.

9. Hold []and press four times.
What happened?

10. Hold[wm |and press four times.
What happened?

11. Type YOU back in the new space.

12. Ifyouhavetime, try typing some lines of your
own, and use the various keys to do some
screen editing.

19

(CHAPTER 6) Becorhing A Programmer

To learn how to play a new game you must fol-
low a set of directions. The same is true for ATARI.
ATARI cannot play with you, or even talk with
you unless it has directions to follow.

We call the set of directions ATARI uses a
PROGRAM. Computer programs are written by
people called PROGRAMMERS. As you work
through this book, you will learn how to program
ATARI and become a computer programmer.

ATARI learns programs in two ways:

1. The programmer types the program on the
keyboard. ATARI then copies the program in
its memory in order to understand and re-
member it.

2. ATARI listens to either a cassette tape recorder
or a disk drive on which the program is re-
corded. ATARI copies the program from the
tape or diskette (which looks like a 45 rpm rec-
ord)to its memory where it willremember and
understand the program.

For now, ATARI will be working with only one
program at a time. Every time you want to do a
different program on ATARI, you must first erase
the old program from ATARI's memory. Then you
can LOAD the new program. You erase ATARI's

memory by typing NEW and pressing .

NEW

to do: Component 1 Fun Page
Evaluate yourself

20

CHAPTER 7

Teaching ATARI Simple Tricks
CHAPTER 8

Loading and Saving
CHAPTER 9

Teaching ATARI to Do Your

Homework
CHAPTER 10

ATARI as a Calculator
CHAPTER 11

Arithmetic with Many Numbers

21

22
29

38
39

40

(CHAP;I'ER 7) Teaching ATARI Simple Tricks

Ifyou canteach your pet dog or pet alligatorto do
tricks, you can certainly teach ATARI tricks. When
you teach ATARI a trick, you are actually writing
a simple computer program in the BASIC com-
puter language. Let’s learn how!

1.

Type NEW. Typing NEW is done to make sure
ATARI's memory is cleared or erased. You
must clear ATARI's memory before each
new trick, or program. (Don't forget to press

after you finish typing a line.)

. ATARI's screen should say:

READY
NEW
READY

7 N

There are usually many steps in a program.
ATARI knows in what order to do each step
because at the beginning of each line you
place a number called a LINE NUMBER. Be
sure to number each step in the order you
want them to go. If the steps are not in the
correctorder, ATARImay notbe abletorun the
program and will give an error message.

Lines are usually numbered in steps of 10 like
this:

10
20
30

22

5. It we forget to put in a step, there are nine
numbers in between each line that we can
use to add the missing step—like this:

10
20
30
15

We use 15 for the missing step if the step needs
to come second in the program. It's OK to put
step 15 last because ATARI sorts through all the
line numbers later and puts them in order—
like this:

10

15

20

30

23

Trick #1: Saying Hello
This trick teaches ATARI to say hello to you!

Type the program below:.
10 PRINT “*HELLO " (Type your name in
20END the blank.)
RUN

REMEMBER: Press after typing each line.

Line 10tells ATARI to print whatever is inside the
quotation marks. Line 20 tells ATARI that the pro-
gram has ended. (It is not necessary to use END.
ATARI will assume that the program is over ifthere
are no more line numbers and program state-
ments. However, it is good programming tech-
nique to use END as the last statement of your
program, and you should always try to do so.)

RUN tells ATARI to execute, or do, the program.
ATARI will do the program once each time you

type RUN and press .

Whatever ATARI prints is called OUTPUT. The
OUTPUT for the above program would be:

HELLO (your name)

Asyou probably can guess, whatever goesinto
ATARI is called INPUT. Input is fed into ATARI by
typing on the keyboard, or by loading informa-
tion from the cassette tape recorder or disk drive.

24

Trick #2: Drawing Pictures

This trick (program) uses graphics and teaches
ATARI to draw . Type:

NEW

I0PRINT"___*'; (Type your favorite
20GOTO 10 graphics in the
RUN blank.)

PRINT tells ATARI to write on the screen. ATARI
will print whatever you put inside quotation
marks.

GOTO tells ATARI to go to line 10 over and over
again. This program never ends.

When you are tired of watching this program
run, push . This will cause the program to
stop running. You can now type RUN to start it up
again, or retype line 10 with a different graphic,
or turn off ATARI for now.

25

Remember!!!

1.

Every step in your program must begin with a
LINE NUMBER.

2. Press when you are done typing aline.
3.
4. Type RUN when you want ATARI to do (ex-

Put "' ” around what you want ATARI to say.

ecute) a program.

Press BREAK when you want ATARI to stop run-
ning a program.

Type NEW betore you do a new program. This
Clears ATARI's memory by erasing the old
program.

todo: Programming Your ATARI #1, #2, #3, #4, #5

26

Programming Your ATARI #2

Speaking Nonstop

1. Write a program that tells ATARI to print your
name over and over again!
2. RUN your program on ATARI.

Use this format

10PRINT "' " (Type your name inside the quotes.)
20GOTO 10

Write your program here

27

Programming Your ATARI #3

Top Secret

1. Your mission is to write a program that tells
ATARI to print a top secret message in a secret
code. Use the graphic symbols on the keys as
your code. For example, if we wanted a word
in our message to say SAW, the code would be
+ + T because these graphic symbols appear
onthe S, A, and W keys.

2. Give your program to a friend. Have your
friend RUN it on ATARI and try to decode the
secret message.

Your success as a secret agent depends on this
program. Good luck! (This page will self-destruct
in two days if your program is not finished.)

Write your program here

28

(CHAPTER 8)Loading and Saving

Learming to write your own programs can be fun,
but sometimes you may want to use a program
written by someone else. Or, you may want to
save a program you have written to use at a later
time. To do either, you will have to learn to use the
cassette tape recorder or disk drive that goes with
the ATARI computer.

ATARI's cassette tape recorder probably looks

like the tape recorder you may have at home or
at school.

ENATARIZT®

PROGRAM RECORDER
REC PLAY REVIND ADYANCE STOYE! PRSE

29

A regular cassette tape is used to store the pro-
grams. Any cassette tape can be used, but the
short ones are best. Long tapes require a lot of
rewinding time when you use both sides of the
tape.

Rather than a cassette recorder, your ATARI
might have a disk drive unit.

ATARI Cassette Recorder and Disk Drive

The disk drive stores information on something
that looks like a 45 rpm record, called a diskette.
Either the tape unit or the disk drive will work well
with the ATARI computer. The disk drive works
quite a bit faster, but it is also a lot more
expensive.

Let's see how the tape recorder and disk drive
work with ATARI. We'll start with the tape re-
corder. (If your ATARI has the disk system, you
may want to skip this section and go on to the disk
drive one.)

30

Cassette Tape Recorder

Although cassette recorders for ATARI may
vary slightly, most have the following button

controls:
REC

PLAY

REWIND

ADVANCE

STOP/EJ

PAUSE

This is the record button.
REC and PLAY pushed
down together allow pro-
grams to be stored on the
tape.

This allows programs to be
read from the recorder to
the computer.

This winds the tape rapidly
backward.

This moves the tape rap-
idly forward.

Pushed once, this button
causes the recorder to stop.
Pushed a second time the
recorder door opens so the
cassette can be taken out
or put in. On some ma-
chines there are two but-
tons instead of one.

Some recorders have this
button which allows the
machine to be stopped for
a moment while still in the
record or play position.

31

e 2 o
= 44 [P > | B

L'“—-b

Let’s learn to use the cassette recorder with the
computer.

1. Write a program on the computer. Let’s use the
one from the last chapter as an example.

10 Print " ;
(Type your favorite graphics in
the blank).

20GOTO 10

2. Push the STOP/EJ button on the recorder and
place a blank or unwanted tape in the re-
corder. (If the tape has previously been used,
the new program you save is recorded over
the top of the old).

3. Locate the beginning of the tape by pressing
the REWIND button. When the tape is com-
pletely rewound and stopped, press the STOP/
EJ button. (Notice that when you press the but-
ton once, the recorder stops. Press twice and
the tape ejects.)

4. Type CSAVE on the keyboard and press .

Youwillheartwo beeps. (The “*C’’in “'CSAVE"

stands for cassette.)

Push RECORD and PLAY at the same time.

Press on the keyboard. (If the volume on

the T.V. is turned up, you should hear various

tones as the program is copied.)

7. When the tape stops, the screen will say
READY, which means the program has been
copied on the cassette tape. (It's a good prac-
tice to make a back-up. or second copy of
important programs.) Push the STOP button.

o o

32

You should now have a copy of your program on
the tape. Let’s load it back into the computer to
see. To do that, first get rid of the program that is in
memory by typing NEW. Then, clear the screen
by holding and pressing . Now make
sure the program is gone by typing RUN. Nothing
should happen. Now put the program back in
ATARI's memory with the following steps:

1. Putthe tape in the recorder.

2. Locate the beginning of the tape by pushing
REWIND. After the tape stops, push STOP/EJ.

3. Type CLOAD on the keyboard and press
. You will hear one beep.

4. Push PLAY on the recorder, and press on

the keyboard.
5. When the recorder stops, the screen will say

READY, and the stored program will be in
ATARI's memory. Push the STOP/EJ button.

To see if the program has been successtully
loaded back into memory, type LIST. LIST is a
command that tells ATARI to show on the screen
any program that is in memory. Now try out the
program by typing RUN.

You've now extended your programming ca-
pabilities by knowing how to save and load pro-
grams with the cassette tape recorder. This skill
will become more important as you write longer
programs, and as you want to use programs that
someone else has made.

33

It's easiest to use short tapes and store one pro-
gram at the beginning of each side. However,
you can store several programs on one side of the
tape by using the counter on the top of the re-
corder. Here's how. Start by rewinding the tape
completely. Reset the counter to 000, then wind
the tape forward to at least 10 counts past the end
of the last program on the tape. Always write
down the first and last counter numbers of a pro-
gram so you know where to start the next one.
When you want to read back a program, rewind
the tape completely, set the counter to 000, then
wind it forward to the number of the program you
want. Sometimes it's a little difficult to have sev-
eral programs on one tape, but with a little prac-
tice it's workable.

CAUTION—the leader (the nonusable begin-
ning of the tape) can be no longer than 9 sec-
onds. This is because ATARI ignores the first 9
seconds of a tape before it begins recording a
program. If the leader is too long, ATARI will try to
place and read the program on the leader. This
will cause an error message.

Disk Drive

Some ATARI systems have a disk drive rather
than a tape recorder. The disk drive is easy to
operate and has only a few control buttons and
lights as shown below.

JIL

e BUSY

* PWR

ON
PWR
OFF

1
).

34

The diskette is loaded through the door (1),
which is opened by pushing the rectangular but-
ton (2) beneath it. (Some disk drives are opened
by pulling on the door rather than pushing a
button.) The drive unit is turned on with the power
switch (3). When the machine is turned on, the
power light (4) will show red. The busy light (5) will
show red when the disk drive is doing a job.

NEVER use the disk drive while the busy light
shows red. Another important thing—the disk
drive must be turned on BEFORE you use the key-
board to write a program.

Here are the steps to follow when using the disk
drive:

1. Turn on the television.

2. Tum on the disk drive. Be sure to wait until the
busy light goes off. (It will make some sounds
at this time.)

3. Open the disk drive door by pressing the rec-
tangular button beneath it.

4. Insert the diskette so that the notched out
space is on the left hand side. Most diskettes
have an indicator arrow to show you how to
insert them into the drive.) Close the drive
door.

5. Turn on the computer. It will make some more
sounds. When they stop, the busy light goes
off, and the screen says READY, you can use
ATARI and the disk drive.

35

Once ATARI and the disk drive are turned on

propeily, you can learn the steps for saving a
program on a diskette:

l.

Using the ATARI keyboard, write your pro-
gram. Be sure the disk drive is properly turned
on before you begin writing the program. Let's
use the program from the last chapter as an
example:

10 Print ’; (Type in your
favorite graphic.)

20GOTO 10
Type SAVE “‘D:. filename’’. Be sure to use the
quotation marks. (The filename can be any
name you want, up to eight letters and num-
bers, but must begin with aletter.)
Press . The disk drive will make a sound
as the program is moved from ATARI's mem-
ory to storage on a disk. Wait until the sound
stops, and the red busy light goes off.

It's just as easy to reload the program from the

disk into ATARI's memory. After the disk drive and
computer are properly turned on, type LOAD*‘D:
filename’’. The busy light will show red and the
disk drive will make a sound while the program is
being loaded back into ATARI. When the screen
reads READY, and AFTER the busy light goes off,
You can work with the program. (Be sure to write
down the names of your files so that you can use
them later. If you forget the name, your teacher
can refer to the Disk Drive Manual for information
on how to use the Disk Operating System (DOS)
and find your file name again.)

36

CAUTION! Be careful when handling the disks.
Never touch exposed surfaces, or hold a disk with
a finger through the middle hole. Hold it only by
its black sealed envelope. Put the disk back in its
storage envelope when it is not being used. Also,
keep it away from magnetic sources and exces-
sive heat. When writing on a diskette label, do it
gently with a felt tip pen.

to do: Using a program from your teacher, or a
simple one you have written, practice
loading and saving with the cassette tape
recorder or disk drive system.

37

(CHAPTER9) Firiaivn ™™

AL

addition
subtraction
multiplication
division
powers

square root

Have you ever dreamed of having a computer
that could do your homework for you? It is possi-
ble! You can teach ATARI to do your math assign-
ments for you. ATARI can figure out math and
give the comrect answers about a billion times
faster than you can!

Here are six kinds of arithmetic that ATARI can
do for you:

Our Symbol ATARI's Symbol Example
+ + 2+2
- - 4-2
X * 2%2
< / 4/ 2
102 A 10A2
V25 SQR() SQR(25)

When ATARI writes zero it uses a 0 with a /
through it, like this: 0. This way, ATARIwon'tget O
(oh) and 0 (zero) mixed up.

Computers are not pertect! They can make mis-
takes! Most computers have certain strong points,
and certain weak points. One weakness with
older ATARI models, is that when you use powers
the computer does not give an exact answer. For
example, ATARI prints 2 A 2 =3.9999998, when the
answer redlly is 4. The new X-L models have been
updated to give the correct answer of 2A 2=4.

38

(CHAPTER 10) ATARI as a Calculator

You can use ATARI like a calculator to do the six
kinds of arithmetic we just learmned about. This is
easy to do. Instead of typing PRINT, you type a
question mark (?) for a shortcut.

1. To add 678+789, you type: ? (the same as

PRINT) 678+789 :
ATARI will print the answer on the next line.

To multiply 5% 50+ 500 type: ? 5% 50 500 [s | .
To subtract 800-5-2 you type: ? 800-5-2
4. Toftind the square root of 49 you type: ? SQR(49)

When you use ATARI as a calculator, you are
using DIRECT or IMMEDIATE MODE program-
ming. ATARI gives you the answer immediately
after you press RETURN.

SRS

39

CHAPTER 11) yany numbers
Many Numbers

ATARI does arithmetic in a certain order. Let’s
look at an equation with many numbers to see
what that order is. (It is OK to put more than one
arithmetic operation in the same equation.)

Equation: 5x(6—2)+9/3A2 What ATARI does
1. PARENTHESES are done first. 6—2=4
2. POWERS are done next. 3N2=9

(Asmentioned in Chapter 9, older ATARI mod-
els have a limitation when doing powers, and
do not give an exact answer.)

3. MULTIPLICATION and DIVISION 5*4=20+9/9
are done together. (The numbers at the left are
done first, then the numbers to the right.)

4. ADDITION and SUBTRACTION are done last. 20+1=21
They are also done together. (The numbers at
the left are done first, then the numbers to the
right.)

NOTE: Any square roots are done third with multi-
plication and division.

Important

Ifthere is more than one thing done at the same
time, ATARI always does the thing at the left first.

40

For example, in the equation 2+3+4

ATARI adds 2+ 3first (2+3=5)
ATARIthen adds 5+4 (6+4=9)

Example:
5%(6—2)+9/3A2 PARENTHESES are done first.
first
5% 4 +9/3A2 POWERS are done next,
second
5%« 4 +9/9 then MULTIPLICATION and DIVISION.
third fourth (leftto right)
20 +1 ADDITION (and SUBTRACTION) is last.
last
answer=21
Another Shortcut. . .

Here is a fast way to get the answers to many
short equations. You want answers to:

1. 99%x66
2. 74+47
3. 89-78
4. 402

Youtype: ?99%66,74+47 ,89—78, AN2[rewm |

IMPORTANT! Use commas to separate each
equation.

When using one ? statement, you may type as
many equations as will fit on three lines of ATARI's

scCreen.

to do: Programmer’'s Pastime #1, #2, #3, #4
Component 2 Fun Page
Evaluate yourself

4]

PROGRAMMER’S PASTIME #2

What order does ATARI follow in doing arith-
metic for equations with many numbers?

are done first.

are done second.

and are done third (left to right).
and are done last (left to right).

Use your mental powers and write the answer
that ATARI would give for these equations. Re-
member to do the arithmetic in the same order
that ATARI would!

2%3+1
2+8%2x1
3x3+9+20
1144%3
22+8+12x%x1

Try some more:

1. 8/2-3

2. 20/4+6-5
3. 30—-10/2

4. 50-20/10+3
5

6

Qb wd =

. 16/2—-8/2
. 14/2+4/2—-6

42

PROGRAMMER’S PASTIME #4

Cowboy Clyde typed in the following equa-
tions, but ATARI wouldn't give him answers. Do
you know why?

Find out what’s wrong with the way his equa-
tions are typed. Write the correct way in the
blanks. :

1. ?262+4x20

2. 23/4x6

3. ?75QR 16

4, 80/4+2x3%SQR 25

43

CHALLENGE

It there’s some arithmetic in a long equation
that you want to be done first, put parentheses
around it. (ATARI always does what's in paren-
thesesfirst.) Let's say you want 4+ 3% 2to equal 14.
It you type: 4+3%2 ATARI will give you 10 be-
cause multiplication is done before addition.

4+3%2

first
4+ 6
10

It you want 4+3%2 to equal 14, you must use
parentheses like this: (4+3)% 2.

first
7 *%2=14

Rewrite each equation below and put paren-
theses around what ATARI should do tirst in order
to make the equation TRUE. (HINT: You might
have to use two sets of parentheses for some
equations.)

Example: 7%3+2=35 7%(3+2)=35

[—

OCOVX®PNOO A WN—

9/2+1=3

6%2+2=24

3A3-1=9

4+2-1%5=9
12-3+6/3=9
20—-10A4+2=10002
12/4+2=2

9-5A2=16
50+10/18+10+2=2
10+4-7A2%1+3-3=193

44

CHAPTER 12

What Else Can ATARI Do for Me?

CHAPTER 13

Flow Diagramming
CHAPTER 14

More About Flow Charts
CHAPTER 15

Double Detours
CHAPTER 16

Looping
CHAPTER 17

Putting It All Together
CHAPTER 18

Printing Whole Equations
CHAPTER 19

A Different Way

45

46
47
53
55
59
61
67

69

CHAPTER 12) ;' tise Can ATARI

that BASIC
mBean'sners
egin
An_gpurp_ose
Symbolic
Instruction

Code ?

Did you know |

In Chapter 10 you learned how to teach ATARI to
do your math. This is fine as long as your home-
work is simple arithmetic, but you may be ask-
ing, ""What else can ATARI do for me?’’

Computers deal mainly with numbers. They
were invented to do long and tedious arithmetic
for people in less than a second. In this way,
computers have saved people hours of time.

Computers can help us in other ways as well.
Computers can, for example:

1. compare numbers Is 97 bigger than 987

and letters. Does X come before Y in
the alphabet?
2. make adecision If X=""YES'’ then PRINT
and then do the “"HELLO”’
right task.
Computers can also learn to do creative things.
You can teach ATARI to.
1. draw a picture;
2. make agame;
3. play asong.

The tricks that you will teach ATARI to do may
be very short and simple or very long and com-
plicated. You must first learn how to write the
instructions (the PROGRAM) that tell ATARI what to
do. You will need to learn how to do some more
PROGRAMMING in the BASIC language.

46

(CHAPTER 13) Flow Diagramming

When you learn how to play a new game, you
must read a set of instructions. These instructions
are written in a clear and orderly step-by-step
manner. If the instructions are mixed up and out
of order, you won't understand how to play the
game.

The same is true for ATARI. When you write a
program to teach ATARI a trick or to solve a prob-
lem, the instructions in your program mustbe in a
clear, step-by-step order. If you don't plan your
steps carefully, ATARI will not understand your
program.

There is a process you can use when you write
a computer program that will help you write your
steps clearly and in the correct order. This process
is called FLOW DIAGRAMMING.

An ALGORITHM (al gor ith m) is a step-by-step
method you use to solve a problem. Every prob-
lem has a certain algorithm that you can use to
solve it. For example:

Problem Algorithm

Your front door is 1. Find your key.

locked. 2. Putthe key into the door.
3. Tumthe key.

4. Openthe door.

47

By following the algorithm, you can solve the
problem of being locked out of your house.

When we do flow diagramming, we show how
our algorithms work by putting them into FLOW
CHART form. Here is how we would write our al-
gorithm in a flow chart.

C START)
l

Find your key

i

Put the key
into the door

i

Turn the key

i

Open the door

i

(“sTor)

Aflow chartis a diagram which shows all of the
steps of an algorithm in the cormect order. The
arrows in a flow chart show how the steps are
connected.

48

Below is a flow chart that shows an algorithm of
how to brush your teeth. Think about which steps

at the side of the flow chart would fit in the blank
boxes.

Missing Steps
(START

Brush your teeth
G : Wet your brush
et out your ew tooth
toothbrush Unscrew toothpaste cap
and toothpaste
!
J
!
Put toothpaste
on your
toothbrush
!

]

r

The Orrowé;
show which
steps you

must go To

next. B

49

Notice that the boxes in a flow chart have differ-
ent shapes. What shape are the START and STOP
boxes? We usually begin a flow chart with a
(swr) instruction and end with a (5w) instruction.

The boxes that tell you to do something are
shaped like rectangles. They are called PRO-
CESSING BOXES.

SHAPE

C) START and STOP box

PROCESSING box

Let’s practice writing algorithms and putting
them into flow chart form.

to do: Programmer’s Pastime #5, #6, #7

50

PROGRAMMER’S PASTIME #5

For each flow chart, fill in the blank boxes with
the step you think would fit. Make sure your steps

are in the right order.
ALGORITHM / FLOW CHART #1
HOW TO FEED YOUR PET ELEPHANT
(> Missing Steps
STOP
{ Call your pet elephant
START
Get out the peanuts
!
Put the peanuts
in the bowl

i

51

ALGORITHM / FLOW CHART #2
HOW TO WASH YOUR PET SKUNK

D

!

i

Carefully
Put skunk
intub

i

!
Soap up
skunk
and scrub

i

Missing Steps

Get skunk wet

STOP

Rinse skunk

Fill tub with warm water
START

Dry skunk

52

(CHAPT ER 14) More About Flow Charts

Sometimes we will have a step in our algorithm
that asks a question. In a flow chart, a question is
written in a diamond-shaped box. Thisis called a
DECISION box.

Example:

ALGORITHM / FLOW CHART
ON HOW TO WATCH A TV PROGRAM

C START >
i

Find out which
channel the
program is on

i

Turnon TV

{

No
Change
| Yes channels
Watch your) |
program

!

C STOP)

83

In this flow chart, we have to make a decision.
The DECISION box asks us a question: ‘'Isthe T.V.
on the correct channel?”’

If the answer is YES, we will stay on the main
path of the flow chart. If the answer is NO, we will
take a detour in our flow chart and follow a differ-
ent path. During our detour, we must do a task—
change the channel. Notice how the detour
comes back to the main part of our flow chart
before we stop.

When there is one detour from a decision box in
a flow chart, the flow chart is said to have a
SINGLE-ALTERNATIVE DECISION STEP.

SHAPE

DECISION box

to do: Programmer’s Pastime #8, #9, #10

54

Sometimes a flow chart will have a decision box
that has a detour for both the YES and NO an-
swers. If the answer is YES, we do a certain task. If
the answer is NO, we do a different task.

ALGORITHM / FLOW CHART
ON HOW TO FLY A KITE

START

{
Tie kite
string to
kite

{
Take kite
to a big
open field

!
Hold the
kite
downwind

{

Hold the string
and let go
of the kite

Run No Let out
intothe |«+— more
wind string

|

55

2 DETOURS from g
DECISION BOX is a
DOUBLE ALTERNATIVE
DECISION STEP

Our flow chart asks the question: ''Is the kite
going up in the air?’’ If the answer is YES, we take
adetour that tells us to *'Let out more string.’* If the
answer is NO, we take a different detour that tells
us to ''Run into the wind.”’

Whenever there are two detours from a deci-
sion box in a flow chart, the flow chart is said to
have a DOUBLE-ALTERNATIVE DECISION STEP.

to do: Programmer’s Pastime #11, #12

56

PROGRAMMER'’S PASTIME #11

For each flow chart, fill in the blank boxes with
the step you think would fit. Make sure your steps
are in the right order.

ALGORITHM / FLOW CHART
HOW TO TEACH YOUR PET BULL TO COME WHEN
YOU CALL

Missing Steps
Hold out handful of hay.
Climb out of cornal.

(START > START

1 Gently getbull’s
attention by calling his
name.

Pet bull. Quickly give
him the hay.

Say ""COME TORO'’ over
and over.

Turn and run as fast as
you can.

STOP

l Climb into corral.

Approach bull
carefully.

1 Isthe bull charging at
you?

No Yes

DOUBLE-ALTERNATIVE
DECISION STEP

57

ALGORITHM / FLOW CHART
HOW TO BAKE COOKIES

C START)

i

Wait 3 min. No

then turn off — _—

oven

DOUBLE-ALTERNATIVE
DECISION STEP

Missing Steps

Wait 10 min. then open
oven.

STOP

Are cookies done?
Gobble the cookies.
Mix ingredients
according to recipe.
Cool 5§ minutes.

Put cookie sheets in hot
oven.

Remove cookies from
oven.

Put dough on cookie
sheet.

START

Turn off
oven

58

(CHAPTER 16) Loop de Loop

Sometimes we will use an algorithm that repeats
a certain step over and over. When we write the
flow chart for the algorithm we use a LOOP arrow
to show that the step is repeated.

ALGORITHM / FLOW CHART
HOW TO TIE YOUR SHOES

(START)

i

Put on
both shoes

l

Make sure
laces PE—
are straight

i

Tighten up
laces

i LOOP

Tie laces

{

Gotoothershoe | ————

C ST(;P)

After we have tied one shoe, we are told to go
to the other shoe. Then the loop arrow takes us
back up to the second step. Now we repeat the
steps as we tie the other shoe.

59

Using a loop helps
do the same
Thing over and over.

LOOPING is handy because it helps us to keep
our flow chart short. Imagine how long this flow
chart would be if we didn‘t use a loop.

Looping also works nicely with a decision step.
We can improve our flow chart by using a single-
alternative decision step.

START

!
Put on
both
shoes

l

Make sure
laces are —
straight

l

Tighten

voor

Goto
other
shoe

We go through the flow chart twice. Once to do
one shoe, and again to do the other shoe. The first
time through, the answer is NO and we follow the
loop detour. The second time through the answer
is YES., and we are done.

to do: Programmer’s Pastime #13, #14

60

(CHAPTER 17) Putting it all Together

Now that you know how to change an algorithm

into a flow chart, let'slearn how to change a flow

chart into a program that ATARI can understand.
Let’s tell ATARI to print over and over:

COMPUTING IS FUN
I AM A PROGRAMMER

The algorithm and flow chart will look like this:

< START >

i
PRINT
“Computing —
is fun”

—

i LOOP

PRINT
“lama —_
programmer”’

Because we want ATARI to print something over
and over again, we will need to use a loop.
Notice that this flow chart never stops. The loop
goes on forever. (Also notice that a[__] box is
used in a flow chart to mean PRINT.)

61

Here is how you program the algorithm/flow

chart in BASIC.:

10? "COMPUTING ISFUN"’
207 "' AM A PROGRAMMER’ (COMPUTING IS FUN
30GOTO 10 I AM A PROGRAMMER
(Remember, the question mark COMPUTING IS FUN
(?) is a quick way to write PRINT.) I AM A PROGRAMMER

COMPUTING IS FUN

I AM A PROGRAMMER

Notice how the loop from the flow chart is repre-
sented in the BASIC program. Line 30is where the
loop happens. The command to loop is GOTO.
After the word GOTO is the number of the line that
you want ATARI to go back to.

Thus, we have programmed ATARI to print the
information on lines 10 and 20. Then on line 30,
we have told ATARI to go back to (GOTO) line 10
and start over again. (Notice that we did not type
an END command. By including a loop in our
program we told ATARI to print the same thing
over and over without end. Therefore we did not
need an END command.)

ATARI operates in two different ways, or
MODES. In Chapter 10, we learned about the di-
rectorimmediate mode. If we want ATARI to print
"'Computing is fun’’ in the immediate mode, we
type: ? "COMPUTING IS FUN"" . When we
press . ATARI immediately does what we
told it to do—it prints "*COMPUTING IS FUN. "’

62

? "COMPUTINGISFUN"’
COMPUTING IS FUN
READY

7 N

When you type line numbers, this tells ATARI
you are making a program. ATARI will know to
use the PROGRAM MODE. When you type a PRINT
statement with a line number, nothing happens

when you press .

10?7 “"COMPUTING IS FUN"

7 N

Nothing happens because ATARI knows to
switch to the program mode. In the program
mode, you must type RUN to make ATARI do the
program.

(10? "COMPUTING IS FUN"’
RUN

COMPUTING IS FUN
READY

o

7 N

Whenever you print a line number in front of a
statement, ATARI takes that statement and stores
itin memory.

63

Every time you type RUN, ATARI will remember

to type the statement, “'‘Computing is fun’’ be-
cause it is stored in ATARI's memory.

s

10?7 "COMPUTING IS FUN"’
RUN
COMPUTING IS FUN

READY
RUN
COMPUTING IS FUN

READY
RUN
COMPUTING IS FUN

READY

A 7

7 N

This program stays in ATARI's memory until you

clear the memory by typing NEW, or turn off
ATARI.

Remember

1.

NOoO,LD

Begin every line in a program with a line
number.

?tells ATARI to PRINT.

Put™ “ around what you want ATARI to say.
GOTO tells ATARI to loop to a certain line.
Type RUN to see ATARI do the program.

Press when you want the program to end.

[___Jisused in aflow chart to mean PRINT.

to do: Programmer’s Pastime #15, #16

PROGRAMMER'’S PASTIME #15

For each flow chart, write a BASIC program in
the space below. (HINT—Pressing and [] will
give atree-like graphic.)

1. (START)
¥

PRINT
““Save our trees’’| «————

/_—h
3
PRINT
I

2. (START)

i

PRINT
“My favorite
friend is”’

i
PRINT

“You!” —
|

3. (START)

1

PRINT
“4%400="

_,/l’—'

PRINT
4x400

o

!

C STOP)

65

4.<: START j>

PRINT
“10n2

PRINT
10n2

PRINT
“10A3

PRINT
10A3

STOP

66

(CHAPTER 18) Printing Whole Equations

ATARI can give us answers to equations. ATARI
can also print the whole equation AND give us
the answer. This simple trick is done by using
quotation marks (** ‘).

Let’s write a program that tells ATARI to print:

10%10=100

over and over. Since we want ATARI to do it more
than once we will need to use a loop.

Flow chart Program
(> 10710%10="
START 207 10%10
! 30 GOTO 10
PRINT
“10%10=" —
/'
!
PRINT LOOP
the answer to
10%10
I
Line 10tells ATARI to print the equation. 10%10=
Line 20 tells ATARI to print the answer. 100
Line 30tells ATARI to loop to line 10 and 10%10
repeat the steps. 100

67

If we want ATARI to do the problem only once,
we use the (»») instead of the loop for our flow
chart.

We use the END statement instead of the GOTO
statement for our program.

Here is what the algorithm/flow chart and
program would look like if we wanted

(10x10= tobe printed only once:
100

Q START) 102" 10%10="
T 207 10% 10
PRINT 30END

“10%10="
/‘
i

PRINT
the answer to
1010

¢

C STOP)

Important!

1. When you use " ** ATARI will print what's
inside.

2. When you print the equation without ** **
ATARI will print the answer.

to do: Programmer’s Pastime #17

68

(CHAPTER 19) A Ditterent Way

In the last chapter you leamed how to program
ATARI to print a whole equation.

For this program ATARI would print
10?60x6=""
20?7 60%6 60k 6=
30END 360
READY

s N

Our equation appears on two separate lines on
ATARI's screen. Why? Because we have two
PRINT statements in our program (line 10 and line
20). Each PRINT statement tells ATARI to print on a
new line. This is why 60x6 = is on one line and
360 is on the next line.

Can we make ATARI print the equation al-
together on one line? Yes! For this simple trick, we
will use either a COMMA (,) or a SEMI-COLON (;).

ATARI's screen is divided into PRINT ZONES or
FIELDS. Each print zone can hold 10 characters.

] 1
1 23 45 6 7 8 910 1 23 4567 8 910 1 23 456 7 8 910 1 2 3 425267 8 910
1 I

IstPRINTZONE | 2ndPRINTZONE = 3rd PRINTZONE = 4th PRINT ZONE

69

For this program

10?760k 6="", 60%6
20END

For this program

10?7"60%6=""; 60%6
20END

For this program

10?760%6=B"", 60%6
20END

If we use a COMMA in our equation, the answer
will be printed in the next print zone.

ATARI would print

[Tz[s[«[s[s[7[e]s[o][" [2[s[«]5]s]7 e o [w
6|0[%(6]|= 316|0

(lstPrintZone) (2nd PrintZone)

60*6= was printed in the first print zone be-
cause itis at the beginning of the PRINT statement.
The answer, 360, was printed in the second print
zone because of the comma before it.

A comma tells ATARI to go to the next print zone
and then begin printing. (Two commas tell ATARI
to move over two print zones.)

This comma method, however, makes our
equation look too spaced out. Let’s learn a differ-
ent method that uses a semi-colon.

It we use a semi-colon in our equation, the an-
swer will be printed in the next space.

ATARI would print

1123|4567 |8|a|w0ff1|2]|3(4]|5]|86]7

6|0|x(6|=|3|6]0

™
w©
-
=)

(1stPrintZone) (2nd Print Zone)

Notice that space 6 in the first print zone is used
by the 3. If a space is wanted between the = sign
and the following number, a blank space must
be left inside the "' ** marks. For example: 10 ?
"60x6=pB"". The P symbol is used to represent a
blank space.

ATARI would print

12345 |8fj7|8]e]wo]j1|2|3|4]s5]6]j7]{s8]|9]w0

610|x|6{=| [3!6]0

(IstPrintZone) (2nd Print Zone)

70

Using a comma or semi-colon is good because:

1. It makes our equation get printed on one line.
2. It makes our program shorter.

A PRINT statement with nothing after it leaves a

blank line.

For this program ATARI would print

10?"4%4%2=""; 4%4%x2 7

20’) 112 |3|4]s|sf7isfejw)1f2f3]ajs]|efj7]|8]jo]|r0
307"4+4+2="",4+4+2 Al*141%121= (3]

40 END 4|+{4]+|2]= 1/0

(1stPrint Zone) (2nd Print Zone)

Please Remember

1. A COMMA tells ATARI to go to the next PRINT
ZONE and then begin printing.

2. A SEMI-COLON holds the cursor at the end of
the last thing printed. Then it prints after the
next PRINT command.

to do: Programmer’s Pastime #18
Component 3 Fun Page
Evaluate yourself

71

72

CHAPTER 20
ATARI's Memory
CHAPTER 21
Using Variables
CHAPTER 22
Using Variables in Equations
CHAPTER 23
Important Information
CHAPTER 24
A Shortcut
CHAPTER 25
What Types of Numbers Does
ATARI Like?

73

74
76
79
82
86

87

(CHAPTER 20) ATARI's Memory

ATARI has a memory in its “'brain’’ just like you
do. Without a memory, ATARI would be no more
than the average calculator. Memory is what
allows ATARI to do many of the special tricks that
we teach it.

The memory of ATARI's brain is much different
from the memory of your brain. While the mem-
ory of your brain is made up of human tissue and
nerves, ATARI's memory can be thought of as
ELECTRONIC MAILBOXES. Each mailbox has its
own ADDRESS, and can store one piece of
information.

You, the programmer, decide what is to be
stored in ATARI's memory. In the programs you
write, you tell ATARI what information to re-
member, and in which mailbox, or MEMORY
CELL, to store that information. The trick for doing
this is very simple:

10LET X=54

The LET statement tells ATARI to pick a mailbox
initsmemory and callit X. Thus, X is the address of
the mailbox or memory cell.

« address

This LET statement also tells ATARI to put the
number 54 into the memory cell or mailbox. Thus,
54 is the CONTENTS of memory cell mailbox X.

X +« address
54 < contents

We can use many different letters, or even let-
ters and numbers together, as the address of a
memory cell mailbox. For example, we can say:

B « address

10LET B=32 [32 | <« contents

__I_D_ + address
20LETP=0 | 0 « contents

74

QZ\ <« address

30LETQZ=14 14 « contents

~— address
40LET S2=100 « contents

Because an address can have many various
names, it is called a VARIABLE. In the program
above, B, P, @Z, and S2 are all variables. Each
variable stores a number value as the contents of
its memory cell mailbox.

We will use a different type of variable to store a
letter or word as the contents of a memory cell
mailbox. We'll learn about these special vari-
ables later.

There are several rules that must be followed
when writing variables for the ATARI computer.

1. Variables can include both letters and num-
bers, but must begin with a letter.

2. Only capital letters may be used.

3. Upto 120 letters and numbers may be used.

Even though 120 characters may be used, vari-
ables are usually written as single letters (X, Y, A),
double letters (AA, DE, XY), or as one letter and
one number (Al, Z5, G8).

Rules for Writing Variables

1. Begin with a letter.

2. Use only capital
letters.

3. Numbers can be
used.

4. Upto 120 characters
can be used.

5. Usually only one or
two characters are
used.

a. Singleletter A
b. Two letters AB
c. Single letter
and a single
number Ab

to do: Programmer’s Pastime #19

75

(CHAPTER 21) using Variables

Variables are very handy to use in a program.
They allow us to store information or DATA and
then REFER back to it later in the program. For this
reason, you will be using a lot of variables when
you write programs.

Example:

I10LET X=5

20LETY=7

307X

40 ? "'IS THE CONTENTS OF X"’
50?Y

60 ? "'ISTHE CONTENTSOF Y
70END

In line 10, § is the number assigned as the con-
tents of memory cell mailbox X.

Inline 20, 7 is assigned to Y.

In line 30, ATARI is asked to reter back to X and
PRINT the contents.

Inline 40, ATARI is told to PRINT a phrase.

In line 50, ATARI is asked to reter back to Y and
PRINT the contents.

Inline 60, ATARIis told to PRINT a different phrase.

Inline 70, the program ends.

Whatever ATARI prints is called OUTPUT. The
output for the above program would be:

(

)
IS THE CONTENTS OF X
7
ISTHE CONTENTSOF Y
READY

O

7 X

Ifwetell ATARIto: ?X (PRINT X)

ATARIwill print: 5§ because 5 is the con-
tents of memory cell
mailbox X.

76

If we tell ATARIto: ? "'X"' (PRINT "'X'")
ATARIwill print: X because Xisinside the
quotation marks.

Let’s use commas and semi-colons to change
how the OUTPUT would look for our program.

Program Output
10LET X=56 =
20LETY=7 5 IS THE CONTENTS OF X
307X, 7 ISTHE CONTENTSOFY
gg Z Y?IS THE CONTENTS OF X 133 .{\DY
60 ? 'PIS THE CONTENTSOF YY"’ B
70 END
Let’s change our program to make our output
easier to read.
Program Output
10LET X=56 r
20LETY=7 51S THE CONTENTS OF X
307X, 7 ISTHE CONTENTSOFY
;18 ’; “*‘BIS THE CONTENTS OF X’ 13]3 f*DY
607?7Y; H
702 “'PBISTHE CONTENTSOF YY"’
80END

to do: Programmer’s Pastime #20, #21

77

PROGRAMMER’S PASTIME #21

Read each program. Then write what ATARI
would print as the output. If you can, check your
answers by running the programs on ATARI.

Program Output

1. 10LETRB4=40
20LET RB5=50
30LETRB1=10
40 ?7RBS5; "'BISB";
S50?RBI1; "“"BMORE"’;
60? ""THANDP''; RB4
70END

2. 10LETT=5
20LET V=25
30 ? “'THE SQUARE
ROOT OFB’’;
40?7V, "pBISB""; T
SOEND

. 10 ? MY FAVORITE
NUMBER ISB*;
20LETD=333
30?D
40 GOTO 30

. 10 ? "MY FAVORITE
NUMBER ISE";
20LET D=333
307?D;
40 GOTO 30

78

(CHAPTER 22)using Variables in Equations

We can use variables to help us calculate math

equations.
For example:

Program

10LET A=5
20LETB=6
30?A+B
40END

We can use quotation marks and a semi-colon

to make ATARI print the whole equation.

Program

I10LET A=5
20LETB=6

30?7 A+B=""; A+B
40END

Program

10LET A=5
20LETB=6

307A;"+";B:"=""; A+B

40END

Notice in line 30 how the semi-colons (;) are
used. It is OK to mix variables (A and B) with
symbols for arithmetic propcesses (+ and =), but
they must be separated by semi-colons. If you
forget to do this, ATARI will give you an error

message.

79

Output

11
READY

7 N

Output

A+B=11
READY

4N

Output

5+6=11
READY

7N

Using variables in equations can be very help-
ful, especially if we need to do many equations
with the same numbers.

For example:

Program

10LETX=3
20LETY=9
30LETZ=12
40? "' X+Y+Z="
S0?"Z2-Y-X="
607 " X*%Z/Y="
70END

T X+Y+Z
“Z2-Y-X
' XxZIY

It we wanted ATARI to print each equation
using the number values instead of the variables,
we would use the quotation marks differently:.

Program

10LET X=3

20LETY=9

30LETZ=12

407?X;" b+b ;Y b+b Z ‘B=p"; X+Y+Z
50?Z; - Y =X =" 2-Y-X

60?2V K, w2 " X%ZIY

70END

(Notice how the output for lines 50 and 60 is
spaced differently than the output for line 40.
Blank spaces (B) must be used inside the quota-
tion marks to get additional space.)

80

Output

X+Y+Z=24
Z-Y-X=0
X%xZ/Y=4

READY

AN 4

7N

Output

r3+9+12=

12-9-3=0
3x12/9=4

24

We have learmed that a variable can have a
number value.

J_
I10LET J=16 16
A variable can also have another variable’s
value IF the other variable has already been in-

troduced by a LET statement in the program.

10LET @=30 Q> R
20LETR=Q 30 | - [30

A variable can also have an equation as its

value.
F
10LETF=7+8 15
OR
I0LETW=10 V-
20LETV=W+5 10 | 10+5— | 15
Remember!

The LET statement assigns a value to a variable.
? X" will print X
?X will print the value of X

to do: Programmer’s Pastime #22, #23

81

There are some important things to remember
about using the LET statement.

1 The variable must always come before the
value (number) in the LET statement.

10LET S=40 is correct.

10LET 40=S is wrong. ATARI will not under-
stand this statement.

In a program, we must always put our LET
2 statement before the statement that tells

ATARI to print the variable.
10LET S=40
207S is correct.
10?8
20LET 40=S is wrong. ATARI's output
will be 0.

It ATARI sees a variable in a program that has
not been introduced by a LET statement, ATARI
will automatically give that variable a value of
Zero.

In the second program, line 10 tells ATARI to
print S. Since there was no LET statement before
line 10 to introduce S, ATARI gave S a value of O.
Even though we tell ATARI that S=40 in line 20,
ATARI will print 0 because the PRINT statement
comes before the LET statement.

82

Program Output

I10LETU=10

20LETV=20 30

30?2U+V is correct. IgE 1}DY
ID\

Program Output

10?2U+V

20LETU=10 0

30LET V=20 iswrong. READY

7 N

When you introduce the same variable
3 more than once in a program, ATARI will
always remember the last thing you told it.

Program Output
I0LETK=1

20LETK=2 2
307K READY

A 7

N

We used a LET K statement two times. ATARI
only remembers that K=2 because it was the last
LET statement. We told ATARI to change the value
ofKfrom 1 to 2.

Program Output
10LETK=1 -

207K |
S3O0LETK=2 2
407K READY

N 4

7N

In this program we told ATARI to print the first
value of Kin line 20 before we changed the value
ofKinline 30.

to do: Programmer’s Pastime #24, #25, #26

83

PROGRAMMER’S PASTIME #24

Read each program. Then write what ATARI
would print as the output. Check your answers by
running the programs on ATARI.

Program Output
1. 10LETPJ=17

20LET J2=34

30LET J4=PJ+J2

407 J4

50END

. 10LETB=2
207B
30LETB=100
407?B
S0END

. 10LETX1=2
20LET X2=X1%5
30LET X3=X2/X1

407 X3

S50END

. 10LETE6=3

20LETE7=12

307? “'PRODUCT"’,
“"QUOTIENT"’

40?E6%E7,.E7/E6

50 END

. 10LETHI=16

20LETHJ=HI+4

30?HJ+10

40 END

. 10LETM=16

20LETN=14

30?M+N

40LETN=12

50?M+N

60 END

84

7. 10LETZ1=8
20LET Z2=Z1-2
30?22+71/2
40END

8. 10LETT1=6
20LETT1=7
307?TI
40 GOTO 30
SO0END

9. 10LETJ=11
20LET K=22
30LET J=17
40?K+J
SO0END

85

(CHAPTER 24) A shoricut

As computer programmers, we are always look-
ing for helpful shortcuts that will make our pro-
gramming easier.

We can use colons to shorten our program
when we use LET statements.

10LET A=6:LETB=7: LETC=8. LET D=9

We can use commoas to shorten our use of PRINT
statements.

207A.B.C.D

Both the LET and PRINT statements can be as
long as three lines on ATARI's screen. As you ap-
proach the end of the third line, ATARI will make
a ‘'squawking’’ sound. You must press
before the end of the third line or ATARI will give
an error message.

Using these shortcuts, you can take a long pro-
gram like this:

10LET S=66
20LETT=33
30LET U=99
407?S+T
50?T+U
60?U+S
70END

And shorten it to this:

10LET S=66: LET T=33: LET U=99
20?S+T,.T+U,U+S
30END

Or, line 10 can be written without the LET
statement.

105=66:T=33: U=99

Remember:

1. Put all of your LET statements on 1 line.
2. Put all of the things you want to print with 1
PRINT statement.

to do: Programmer’s Pastime #27

86

CHAPTER 25) 115, (hes of Numbers Does

E

So far, we have asked ATARI to deal mainly with
WHOLE NUMBERS (0, 1, 2, 3...). We know that
ATARI can also handle NEGATIVE NUMBERS (— 1,
-2,-3...).

ATARI can also work with decimals (.09, 1.23)
and simple fractions (Y. ¥2), but cannot under-
stand compound fractions (112, 21). If you need
to have ATARI do some math with compound
fractions, you will need to change the fractions to
their decimal equivalents, either by dividing
them yourself, or by using the PRINT (?) statement.
After you have changed the fractions to their
decimal equivalents, add them to the whole
numbers.

For example:

5
For 1%, change % by 2)1.0=.5 ortyping ? 1/2.
1%=1.5

.25
For 1%, change % by 4)1.00=.25 or typing ? 1/4.
2¥%4=2.25

If you want to use numbers that are very large
or very small, ATARI will change them into some-
thing called E NOTATION or FLOATING POINT
NOTATION. For example, if you wanted to use a
number that has 12 digits, like 420000000000,
ATARIwould printitas4.2E+ 11. TheE+ 11 means
that the decimal point belongs 11 more places to
the right.

Notice that we do not use commas with large
numbers. We write 42000000 not 42,000,000.
Commas used inside numbers will confuse ATARI
and cause an error message.

If you wanted to use .0000009876 ATARI would
print 9.876E—07. The E—07 means that the deci-
mal point belongs 7 more places to the left.

Don’t get worried about E notation because
you'll only have to use it when you are dealing
with very small or very large numbers.

87

If you are using decimails like .041, ATARI will
switch to E notation if there are two or more zeros

atter the decimal point.
Example ATARI prints
.041 .041

.0041 4. 1E-03
.00041 4 1E-04

.000041 4.1E-05

to do: Programmer’s Pastime #28
Component 4 Fun Page
Evaluate Yourself

-
E Notation stands
for "Exponentigl
Notation. It 1s &
helpful shortcut you
can learn fo use.

S

88

CHAPTER 26
FOR-NEXT Looping
CHAPTER 27
Stepping
CHAPTER 28
A Counter
CHAPTER 29
A Clean Trick
CHAPTER 30
Blinkers
CHAPTER 31
Special Commands
CHAPTER 32
Debugging

89

102
106
109

112

(CHAPTER 26) For-NEXT Looping

Another type of loop we will use in our program-
ming is called a FOR-NEXT LOOP. We use it to
create COUNTER-CONTROLLED LOOPS in a pro-
gram. These loops allow us to repeat program
instructions a certain number of times. For

example:
Flow chart Program Output
IOFORT=1TO 5 —— loop
C START) 207T isdone {1
y 30NEXTT——— | 5Stimes. 2
FOR 40 END 3
T=1TO5 — 4
] 5
READY
PRINTT loop ‘O
i
NEXTT E—

i
(STOP)
Let’s trace the program to see how it works!

Line Contents
Number What Happens of T

10 Tells ATARI to start counting from 1 to 5.
20 Tells ATARI to print T (which s 1).
30 Tells ATARI to go back to line10.

|
1
1
10 Tells ATARI to count to the next number. 2
20 Tells ATARI to print T (which is now 2). 2
30 Tells ATARI to go back to line 10. 2

This looping continues until T=5 and ATARI has
printed the numbers 1, 2, 3, 4, and 5. Then the
program goes to line 40 and ends.

90

The FOR-NEXT steps make ATARI count from 1
to 5. Because the PRINT statement in line 20 is
between the FOR and NEXT statements, it is in the
middle ofthe loop. T will be printed each time the

loop isdone.
New example:
Flow chart Program Output
C) 100FORZ=1TO 7 ~
START 20 ? ““HI THERE!"* HI THERE!
‘ 30 NEXT Z HI THERE!
FOR 40 END HI THERE!
Z=1TO7 — HI THERE!
l HI THERE!
HI THERE!
PRINT loop HI THERE!
“Hithere!” is done
| 7 times. READY
l rd A Y
NEXT Z —_—

{

G

ATARI is told to count to 7 and print *'Hi there!”’
each time. The variable Z in line 10 is called a
COUNTER. Line 10 starts the counter, Z, at 1. Each
time ATARI comes to line 30, it counts the next
number until it has reached 7. If the counter is
already 7 when the computer comes to line 30,
the computer will go on to line 40 and END. Thus,
the counter controls how many times the loop is
done.

Important

Every FOR statement must have a NEXT statement
after it somewhere in the program.

Any statements in between the FOR statement
and the NEXT statement are in the BODY of the
loop. These statements will be done each time
the loop isun.

91

Flow chart

C START)

i

FOR
L=1TOS5

i

PRINT
L; “Feetis’’;
L*.3048;

“meters”

i

NEXT L

—

A FOR-NEXT loop is handy to use in a program
that CONVERTS or changes one type of measure-
ment into another. The following program con-

verts feet into meters.
Program
I0FORL=1TO5
207L, "} FEETISB""; } loop
L+.3048; “BMETERS" J body
30 NEXTL
40END

Output

r 1 FEETIS .3048 METERS
2FEETIS .6096 METERS
3 FEETIS .9144 METERS
4 FEET IS 1.2192 METERS
S FEET IS 1.524 METERS

READY
L]

¢ N

do

Using a loop helps

the same

Thing over and over.

92

A FOR-NEXT loop can also allow a program to
do arithmetic, using a new number eachtime the
loop is done. The loop in the following program
causes the numbers 5, 6, and 7 to be printed,
multiplied by 5, and divided by 5.

Flow chart Program
() 100FORM=5TO 7
L 307M%5 rpom
40?7M/5
FORM=5TO7 | «— 50 NEXT M
) 60END
PRINT
M
M*5
M/5 ,
/
!
NEXTM —_

(o)

to do: Programmer’s Pastime #29, #30, #31

93

Output

PROGRAMMER’S PASTIME #29

Read each program. Then write what you
think ATARI would print as the OUTPUT. Run the
programs on ATARI to check your answers.

Program Output
1. IOFORQ=2TO6
207Q
3O0NEXT @
40END

2. IOFORQ=2TO 4
20?7"Q=p";Q
30NEXT Q
40END

3. IOFORA=1TOS5
207 “'HELLO FRIEND!"*
307? "HOW ARE YOU?’
40 NEXT A
S0END

4. I0FORD=1TO 3
207D
30?D+10
40 NEXT D
S0END

5. 10LETP=3
20FORQ=1TO 3
SOOP, ”+”; Q; ‘\=“; P+Q
40 NEXT @
S0END

6. IOFORB=1TO5
20?B”, "'B+B’’, "'B%B’"
307?B. B+B, BB
40 NEXTB
S50END

94

7. 107? "MULTIPLICATION TABLE
FOR 7"
20FORK=1TO 12
307?K; "TIMES 7=B""; K*7
40NEXTK
S0END

8. 10FORG=1TO 10
20?7Q”
30NEXT G
40END

9. IOFORG=1TO 10
20779,
30NEXT G
40END

10. 100FORS=1TO 10
20LET S=S*S
3078, S/S
40 NEXT S
S0END

Can you explain how this program works?

95

(CHAPTER 22) Stepping

Program

10FORZ=0TO 25STEP 5
2077

30NEXT Z

40END

I10FORZ=1TO 25STEP 5
2072

30 NEXT Z

40END

When you were younger you learned to count in
patterns

like: 5, 10, 15, 20. . . (by fives),

or: 10, 20, 30, 40, 50. . . (by tens).

ATARI can learn this trick too. If you want ATARI
to count in a certain pattern, use the STEP state-
ment. For example,

STEP & would tell ATARI to count by fives and
STEP 10 would tell ATARI to count by tens.

The STEP statement goes on the same line as the
FOR statement. Study the following programs:

Output

(o

5
10
15

20
25

96

How are the two programs different? If you want
ATARI to count by fives, you must make the FOR
statement say: FORZ=0TO 25 STEP §

In the second program, ATARI started counting
with 1 and added 5 to it to get 6. In this program
ATARI is not counting "‘by fives,’’ but adding 5 to
each number—beginning with 1. The last
number printed was 21. Because 21+5=26,
which is more than 25, ATARI won't print 26.

ATARI can also count backwards.

Program Output
10FORR=5TO 1 STEP -1 -
207R 5
30NEXTR 4
40END 3
2
1
READY
/D\

R starts counting at 5. The STEP of —1 makes R
count backwards, subtracting | each time.

You can write some fun programs by using the
STEP statement.

Program Output
10? "*'STAND BY FOR BLAST OFF"’ -
20FORD=5TO 1 STEP —1 STAND BY FOR BLAST OFF
307?D; “"BSECONDS"’ 5 SECONDS
40 NEXT D 4 SECONDS
50 ? “'BLAST OFF!”’ 3 SECONDS
60END 2 SECONDS
1 SECONDS
BLAST OFF!
READY

97

Backward stepping can also be used to print
words a certain number of times.

Program Output
10FORP=20TO 5 STEP -5 r
20 ? "GOING BACKWARDS GOING BACKWARDS
30 NEXTP GOING BACKWARDS
40END GOING BACKWARDS
GOING BACKWARDS
READY
ID\

"'Going backwards’’ is printed four times be-

cause it takes four runs of the loop to go from 20 to
Sin steps of —5.

to do: Programmer’s Pastime #32, #33

98

(CHAPTER 28) A Counter

Sometimes it is handy to use a counter in your
program to help you keep track of how many
times you have done aloop. For example:

Program Output
I10LETN=0 —
207 “'BUZZ OFF"”’ BUZZ OFF
30?N 0
40 GOTO 20 BUZZ OFF
0
BUZZ OFF
0

This program has a never ending loop that
prints “‘Buzz off’* over and over. If we could get

ATARI to print:

(" BUZZ OFF
1
BUZZ OFF
2
BUZZ OFF RUZZ OFF
3 RUZZ OFF
) BUZZ OFF
) RUZZ OFF

we would know how many times ATARI has done
the loop and printed "'‘Buzz off.”’ In order to do this,
you must put a counter in your program. N is the
counter variable in the following program.

Flow chart Program Output

C) 10LETN=0 —
START 20 ? “'BUZZ OFF"" BUZZ OFF
! 30LETN=N+1 1
407N BUZZ OFF
LETN=0 50 GOTO 20 2
BUZZ OFF
: 3
PRINT BUZZ OFF
“BUZZ OFF”’ < 4
/ .
'—o LETN=N+1 —/ | PRINTN
__/_‘
PROGRAM TRACE
Line Contents
Loop Number WhatHappens of N
| 10 Nisintroduced at 0 0
| 20 ATARI prints ‘*BUZZ OFF"’. 0
1 30 COUNTER adds 1 to N. 1
| 40 ATARI prints N (which is 1). 1
1 50 ATARI goes back to line 20.
2 20 ATARI prints *'BUZZ OFF'’. 1
2 30 COUNTER adds 1 to N. 2
2 40 ATARI prints N (which is 2). 2
2 50 ATARI goes back to line 20. 2
3 20 ATARI prints ‘*BUZZ OFF"’. 2
3 30 COUNTER adds 1 to N. 3
3 40 ATARI prints N (which is 3). 3
3 50 ATARI goes back to line 20. 3
The statement that makes N increase by 1 each
time the loop is done is:
30LETN=N+1
It must be in the loop body. This statement is
called a counter.

When we push [=]to stop the program, we will
know how many times ATARI has done the loop
and printed “‘Buzz off.*

We can also use a counter in a FOR-NEXT loop.

100

Flow chart Program Output

10LET C=0
(START) 20 FOR G=1TO 100 (" TERRIFIC
v 307 “TERRIFIC”’]
40LETC=C+1 TERRIFIC
LETC=0 502C 9
. 6ONEXT G TERRIFIC
70 END 3
FOR)
G=1T0 100)
l *
TERRIFIC
PRINT 100
“TERRIFIC”
READY
—/ ID\
l N
LETC=C+1
l
PRINTC .
l
NEXT G

(e)

We must be careful when we use two different
variables in a program. In the previous program,
the variable C stands for the counter. The vari-
able G stands for the FOR-NEXT loop. It is impor-
tant to keep these variables separate so we can
better understand what our program is doing.

A GOOD IDEA

1. Use the variable C to stand for COUNTER.

2. Use the variable FL to stand for a FOR-NEXT
loop.

to do: Programmer’s Pastime #34

101

(CHAP_'_I'ER 29) A Clean Trick

Program

10?2 [ee] [wwr] [527]

20? "“WATCH ME RUN"

30GOTO 20

A good trick to teach ATARI is how to clear the
screen betore, after, or during a program.
When you clear the screen you press [s« | and

hold it down while you press . Thismakes the
screen blank.

To teach ATARI how to do this in a program, a
step must be included as part of the program:

What appecrs on
Program the screen

107" (] [am] [F]" "N

Notice that first you use a PRINT statement and
quotation marks. Next you press @ , and then
hold down while pressing the key. ATARI
puts an arrow (») on the screen to let you know
that you have typed the statement correctly.

This trick can be used to clear the screen before
a program is run. In this case, the step must be the
very first line of the program. For example:

Output

(screen is cleared)

WATCH ME RUN
WATCH ME RUN
WATCH ME RUN
WATCH ME RUN

102

You can also use this frick to clear the screen in

the middile of a program run. For example:

Program

107" [[oo [[02" "
20?7 "*"MY NAME IS ATARI
307" [es | [smer][22 "

40 ? ““WHAT'S YOURS?"’
S50END

Output

ﬁ(screen is cleared)

MY NAME IS ATARI
(screenis cleared)

WHAT'S YOURS?
READY

A Y b4

V)

When you run this program, you will notice that

ATARI writes "My name is ATARI’* and then clears
the screen so fast that you cannot read it.

What can you do to slow ATARI down? Add a
FOR-NEXT TIME LOOP in line 25 to use up time
and make ATARI wait. For example:

Program

102" [ec] [omr] [°2%]

207 “"MY NAME IS ATARI

25 FORT=1TO 1000: NEXT T
307 [w][ser][]

407 “WHAT'S YOURS?"’

50 END

Output

(screen is cleared)

MY NAME IS ATARI
(ATARI counts to 1000)
(screen is cleared)

WHAT'S YOURS?
READY

A} 14

)

In line 25 the program stops running while
ATARI counts to 1000. When ATARI is through
counting, the program continues.

We used a shortcut to write both the FOR and
NEXT statements on the same line. There must be
a colon (:) between the two statements to keep
them separate.

103

Program

107" [i] [om] 2]

20? "TOPLINE"’

107" [ae] Lo] [727]

207

307

407? "'TOPLINE"’
SO0END

It you want ATARI to wait longer, change 1000
in the FOR-NEXT time loop to a larger number. It
you want ATARI to clear the screen more quickly,
change 1000 to a smaller number.

This clean trick can also be used to clear the
screen at the end of a program, although this is
not often done. In this case, you would put the
? [statement at the end of the pro-
gram-right before the END statement.

There is another trick in which ATARI is told to
print on a lower line. ATARI will always print on
the NEXT available line unless you program it
differently. For example:

Output

r(screen is cleared)
TOP LINE
READY

A s

4 N

After the screen was cleared, ATARI printed
"top line’’ on the first available line, which was
the top line.

It you want ATARI to print on a lower line, you
can use the PRINT (?) statement. Each time ATARI
comes to PRINT or ?, it will skip a line. For exam-
ple, you can move the top line program down
like this:

(screenis cleared)

TOP LINE

READY
O

N

104

The more PRINT (?) statements you use, the more
lines ATARI skips.

Here’s a shortcut. You can put several PRINT
statements on one line by using colons (:) to sepa-
rate them, like this:

107" [e] o] 2] — _
207:72:2:2:? (screen is cleared)
30?7 "TOPLINE"
40END
TOP LINE
READY

7N

to do: Programmer’'s Pastime #35, #36

105

(CHAPTER 30) siinkers”

We can use the FOR-NEXT time loop to make
things blink on and off ATARI's screen. For

example:

Program Output
10?2 [| [oun][9] n .
157 WOW
20FORT=1TO 100: NEXT T 7 *
30?7 ""WOW”’

40GOTO 10

The secret to the blinking is in lines 20 and 40.

In line 20, FOR T=1 TO 100 makes ATARI's count-
ing/waiting period briet.

Inline 30, ““WOW'"' is printed.

In line 40, ATARI goes back to line 10 and clears
the screen. Then ATARI will count very
quickly again in line 20 before printing
“"WOW* inline 30.

BLINK OFF: Line 10 and line 20 :|
BLINK ON: Line 30 and line 40

In order to make something blink, you must
have a FOR-NEXT time loop and a GOTO state-
ment in your program.

You can make something blink faster by
changing 100 to a smaller number. You can
make something blink more slowly by changing
100to alarger number.

to do: Programmer’s Pastime #37

AL LT XX XX T I XTI XXX LY)
e o . so%0e, o " N
<! ‘.) . & s . »
| . s s * .]
s L % £ T]
| O I se 8 2 7 e
® Ly e s % ®|
o ’!* %’ RN T ¥ o
] 4 [- | i
q] &Q gﬁ [~ * ‘
@ * lc}

106

PROGRAMMER'’S PASTIME #37

Write a program for each flow chart, then run
your programs on ATARI to make sure they work.

Flow chart Program

T
!

CLEAR
SCREEN

i

FOR-NEXT
TIME LOOP

i

PRINT
“OFF ANDON" | —

L__/_—‘
This is the basic algorithm for making something
blink.

2(START)

i

CLEAR
SCREEN

l

FOR-NEXT
TIME LOOP

{

PRINT
“WOWSERS” | —

Pt

—

107

Use your expertise and imagination to write two
of your own programs that make something
blink. You can even make graphics or pictures
blink! Don't be afraid to experiment.

Flow chart Program
1.

108

(CHAPTER 31’ Special Commands

You have learned to tell ATARI to do many differ-
ent things by using commands such as NEW,
RUN, END, LOAD, and SAVE. Here are a few more
commands that you may find useful.

You know that you may stop a program while it
is running by pushing the key. When the
program stops, the screen will give you a BREAK
message:

“'STOPPED AT

1

A
the line number at which you
stopped the program

If you want to start the program again, contin-
uing from where the break occurred, type

CONT [ww] .

If you want to re-run the program from the very
beginning, type RUN .

You can also cause a program to stop by in-
cluding a STOP statement in the program. It's
sometimes useful to use stop within long pro-
grams so that smaller protions of the program can
be checked for errors. The program can be
started again by typing CONT and pressing :

109

Sometimes it isnecessary to have ATARI display
allthe lines of a program in its memory. To do this,
type "'LIST.””

TYP@ LIST [e

The LIST command is especially helpful when
You are writing a program yourself. As you test
your program, you can list the whole program or
just parts of it to see how it looks.

To list just one line of a program type:

UST__ []
T

A
’ the line number
You wish to list

Forexample, 'LIST 100"’ would list only line 100 of
your program.
To list sections of your program type:

UST__ [ew)
T

A
r the first and last line numbers of the D
section you wish to list,

separated by a comma

Forexample: “'LIST 100,300’ would list only those
lines between and including lines 100 and 300.

It you are listing a long program, and you want
the display on the screen to stop, press and
together. Press the same two buttons a second
time to get the listing to continue.

110

You may find one other special command
useful in programming. You can leave BASIC
and go to the MEMO PAD MODE by using the BYE
command on the older Atari models. Using this
command, you can experiment with the key-
board or leave a message on the screen without
changing any program in ATARI's memory. You
use BYE differently on the newer XL Atari models.
On these, you use it to enter a testing mode and
check how well ATARI's memory keyboard and
audiovisual systems are working. To get back to
your BASIC program, press . Then you will
need to run or list your program again.

111

CHAPTER 32) pebugging

Writing a computer program can be a long pro-
cess. It often takes many tries before we get a
program to work properly. This is because there
can be BUGS in your program. No, there aren’t
little insects climbing around inside the com-
puter. Bugs are mistakes that you, the program-
mer, can make when you write a program.
Some examples of bugs might be:

1. forgetting to type a punctuation mark;
Example: Typing ? “'HI instead of ? ‘*HI’*

2. spelling a command wrong;
Example: Typing “"REN’’ instead of “'RUN"’

3. putting the steps of your program in the wrong
order.

It is very important to check your program for
bugs before you try running it. Even once you
start running the program you may come across
more bugs that need to be cormrrected. The best
way to do thisisto take turns running the program
and listing it. Once you find your mistake in the
program listing, use ATARI's edit features to insert
or delete to correct the mistake. Youmay change
an entire line, if need be, by retyping it at the end
of the listing. You can delete an entire line by
typing the line number and pressing RETURN. For
example:

110 [rem |

erases line 110 from the program. There is no
longeraline 110.

112

The entire process of getting rid of program
bugs is called DEBUGGING.

There are three types of errors you may run
across as you work with computers. Sometimes
ATARI will tell you what your error is. Other times
you will have to figure out yourself what the error
is and where it is. The three types of errors are:

USER ERRORS

A user ernror happens when you make a
typing mistake or fail to communicate
with ATARI in BASIC.

PROGRAM ERRORS

A program error occurs when there are
bugs in your program. You will have to
debug your program to comrect the errors.

COMPUTER ERRORS

3

A computer error could happen it the
computer’s equipment is not hooked up
properly. These errors can be very com-
plicated, but they rarely occur.

To find out what certain errors mean, turn to
Appendix B at the back of this book.

to do: Component 5 Fun Page

Evaluate yourselt

113

CHAPTER 33
Strings
CHAPTER 34
Input
CHAPTER 35
[F-THEN
CHAPTER 36
Alphabetizing
CHAPTER 37
Remarks
CHAPTER 38
READ-DATA
CHAPTER 39
Problem-Solving Programming

114

115
117
121
128
130
132
140

-

Until now, the variables we have been using in
our programs have had numbers as their values.
For example:

X=42

A variable like X is called a NUMERIC VARI-
ABLE because its value or contents is a number.
We learmed that there are rules to follow when
using a numeric variable safely in a program:

1. Use up to 120 letters and numbers. (It's best to
only use one or two letters or numbers.)

2. Use only capital letters.

3. Always begin with a letter.

We are now ready to store numbers and letters,
words, special characters, and even whole sen-
tences in a variable. This type of variable is
called an ALPHANUMERIC or STRING VARIABLE.
A string variable can be written by using any
legal variable name (up to 120 characters—cap-
ital letters and numbers—beginning with a letter),
but the variable must be followed by a DOLLAR
SIGN (S). For example:

10LET AS="HEY YOU"”’

Before we can use string variables, we must set
aside a certain number of locations in the com-
puter’'s memory to be used for the string. We do
this by using a DIMENSION (abbreviated DIM)
statement. For example, if AS is a string that is to
hold the word ''‘hello,”” we would have to dimen-
sion, or reserve, at least 5 spaces before we can
use AS. We would do so like this: DIM AS (5).

If you do not know for certain how many
spaces will be needed, then you have to guess,
and dimension an extra large amount. For ex-
ample, if N$ is to be used for someone’s name,
and you don‘t know how long the name is, sim-
ply dimension more spaces than you think could
be possibly used—DIM N$(40).

116

It there are several strings in a program, they
can all be dimensioned on a single line at the first:
of a program by using commas to separate them:

10 DIM AS$(20), B$(10), CS(15)

The contents of a string variable must be en-
closed in quotation marks, and cannot have
more than three screen lines of characters. Let-
ters, punctuation marks, numbers, graphics, or
blank spaces may make up the message, and
each is counted as one character.

We assign values to a string variable the same
way we assign values to a numeric variable—
with a LET statement. The only difference is we
must put quotation marks around the contents of

a string variable.
This program shows how you can use strings in
programming.
Flow chart Program Output
10 DIM A$(20). BS(20), CS$(20) -

C START D 20LET A$="1SAW 4" ISAW 4

y 30 LET BS="RUBBER BABY "’ RUBBER BABY
DIMENSION 40LET C$ ="BUGGY BUMPERS"’ BUGGY BUMPERS
VARIABLES S50?7AS:?BS:?CS HOW MANY

T 60? "HOW MANY"’ RUBBER BABY

Y " 70?BS:?CS$ BUGGY BUMPERS

::g Sg - “::‘SUABWBéR 807?"'DID YOU SEE?*’ DID YOU SEE?

BABY”’ 90 END
LET C$="“BUGGY READY

BUMPERS” | g

{
PRINT
A$
B$
C$

{
ng"v-\r, MANY”’ to do: Programmer’s Pastime #38, #39
B$:C$
“DID YOU SEE?”

i

C STOP)

116

CHAPTER 34) input

In our interaction with ATARI so far, we have
typed our program on ATARI's keyboard and
then sat back and watched it run. The only time
we have given information or INPUT to ATARI is
while we were typing in the program. (Input is
anything we put into the computer—either
through the keyboard, the cassette tape, or disk
drive.)

By using an INPUT statement in your program,
you can interact with the program while it is run-
ning. The INPUT statement lets you type in INPUT
or data for your program on the keyboard while
the program is running. When you use the INPUT
statement, the program becomes an INTERAC-
TIVE PROGRAM because you can interact with
the computer.

Put an INPUT statement in your program at a
point where you want ATARI to stop the program
and ask for data or information. When the pro-
gram isrun, ATARI will stop at the INPUT statement
and print a ? on the screen to prompt you to
answer. At this point you must type the data be-
fore ATARI can continue running the program.

An INPUT statement looks like this:

10INPUT A

A isthe variable where the input numbers will be
stored. If the input is to be a word or other alpha-
numeric data, a string variable must be used:

10INPUT AS

“"REMEMBER—If ALPHA-
NUMERIC data (STRING
VARIABLES) are used,
the variable must be DI-
MENSIONED before IN-
PUT can be accepted.”’

117

When you develop a flow chart for a program
with an INPUT statement, you will use a new

shape:
You must write the word
INPUT “INPUT” inside the box
because the box is also
used for another state-
ment, which we will
leam about later.
This is how an INPUT statement works in a
program:
Flow chart Program Output
C 10 DIM A$(50) -
START 207 “"HOW ARE YOU?"" HOW ARE YOU?

4 30INPUT AS ? (you type FINE)
DIMENSION 40?7 I'M GLAD YOU'RE"’, AS I'M GLAD YOU'RE FINE
VARIABLE S0END 13]3 J}DY

l ID\

PRINT
“HOW ARE
YOU?”

l

/INPUT
A$

|
PRINT
“I'M GLAD
YOU'RE”, A$

i

C STOP)

In this program, ATARI stops at line 30 and prints
a ?. After you type in your answer ("'Fine’’), the
program continues running.

118

Notice that there are two question marks
printed—one after ""How are you’’ and another
for the INPUT statement. By taking away the ?
after *'‘How are you'’ and using a ; we can make
only one question mark appeat:

Program Output

10 DIM AS(50) —

207 "HOW ARE YOU"’; HOW ARE YOU ?

30INPUT AS (you type TERRIBLE)

40?7 'T'M GLAD YOU'RE"”, AS I'M GLAD YOU'RE TERRIBLE
50END RE {\DY

An INPUT statement will cause a ?to be printed.
That is why we don‘t need to put a ? at the end of
our sentence. In the program above, only one ?is
printed, and it is printed on the same line as our
question. This is because the ; holds the print zone
at the same line as "'"How are you’’ and prints the
?onthatline.

When we are printing something inside quota-
tion marks and we want it o be followed by the
contents of a string, we must be very careful.
Using a ; does not leave the first space blank.

Look at this program:

Program Output
5DIMPS(10)

10LETP$S="JOE"’ HIJOE
207 'HI""; PS

30END I\QS{\DY

7N

Using a semicolon made the words run
together.

119

If you use a comma, the words will be printed

farther apart.
Program Output
SDIMPS(10)
10LETPS="JOE"’ HI JOE
207 “'HI”, P$
Y
30END READ
So how do we get the words to be printed with
one space in between? There are two ways:
Leave a blank space at the end of the
1 string or phrase to be printed. ¥ means
blank.
Program Output
SDIMPS(10)
10LETP$S=""JOE" HI JOE
20? “HIB''; P$S
30END READY
Create a new variable which contains a
2 |blank.
BS="p".
Program Ouftput
SDIM PS(10), BS(2)
10LETPS="JOE"’ :LETB$="" “ HI JOE
207 'HI'*; BS; P$
30END RéADY
You get a B (blank space) by pressing the

SPACE bar on the keyboard.

Another shorticut! The INPUT and PRINT state-
ments may be combined
into one statement:

10 ? “"What is your name?”’
to do: Programmer’s Pastime #40, #41 INPUT NS

120

(CHAPTER 35) rr-Tuzn

In Chapter 12 you learned that computers can do
things other than printing numbers and letters
and performing arithmetic operations. Comput-

ers can:

1. compare numbers Is 12 greater than 4?
and letters Does A come before C?

2. make a decision IF A=5THEN PRINT A
and then do the
right task:

You have the skills to set up a flow chart for
these types of problems. Now you are ready to
write the programs.

You must first understand the signs ATARI will
use in making a comparison. Here is a list of the
signs and what they mean:

Sign Meaning Example

= equal 4+5=6+3 A0¢

> greater than 88>2 > <Li~§
< less than 6<46

> = greater than or equal to 33>=32 &
<= less than or equal to 4<=4 '
<> not equal to 65< >800

We use the IF-THEN statement when making a
compadarison in a program. For example:

IF-THEN Statement Meaning

IFA>BTHEN? A If the value of A is greater
than the value of B, then
print A.

IF AS < =SS THEN 20 If the contents of AS are
less than or equal to the
contents of S$, then
GOTO line 20in the
program.

Notice that the IF and the THEN are written in the
same statement on the same line.

Let’s see how the IF-THEN statement can work
for us in a program:

121

— | boy?”’

Flow chart
Q START)
i

DIMENSION
VARIABLES

{

PRINT
“Areyou a

“Type yes or
no’!

/

INPUT B$

i No

PRINT

‘“Are you a
girl?”

“Type yes or
no”’

—
/

INPUT G$

Program

5 DIM BS(3), GS$(3)

10?7 “"ARE YOU A BOY?"
20?7 “'TYPE YESORNO""
30 INPUT BS
40[FBS=""YES THEN 110
50?7 ""ARE YOU A GIRL?"’
60? “'TYPE YESORNO"”’
70INPUT G$
80IFG$S="NO’' THEN 10
90 ? "I LIKE GIRLS!"’
100 GOTO 120
1107 “'ILIKE BOYS!"
120END

Output

[ARE YOU A BOY?

TYPE YES OR NO
? (you answer YES)
I LIKE BOYS!

OR

ARE YOU A BOY?
TYPE YESORNO

? (you answer NO)
ARE YOU A GIRL?
TYPE YESOR NO

? (you answer YES)
I LIKE GIRLS!

GOTO
STOP

122

Notice that we changed the question in a decision box to an IF-THEN state-
ment. For example:

Flow chart Program
IF A=4THEN
IFZ> =66 THEN
Study another program:

123

Flow chart

C START
i

DIMENSION
VARIABLES

i

PRINT
“Do you like

i

golf? Yes or No”’

ﬂNPUT G$

PRINT
“I like golf

i

GOTO STOP

i

PRINT
“l don’t like
golf either”

Program
5 DIM GS$(5)

10?7 "'DO YOU LIKE GOLF?

YESORNO”’

20INPUT G$

30IFG$="NO"' THEN 40
407? “'1LIKE GOLF TOO"’

50 GOTO 70

607? “"TDON'T LIKE GOLF

EITHER"’
70END

Output

-

— Q STOP)

124

DO YOU LIKE GOLF?
YESORNO

?(you answer YES).
I LIKE GOLF TOO

OR

DO YOU LIKE GOLF?
YESORNO

? (you answer NO)

I DON'T LIKE GOLF EITHER

Sometimes we may have to write the COMPLEMENT, or opposite, of the ques-
tion. In this case, we would write the sign that has the opposite meaning. For
example:

Flow chart Complement in the Program

[FE< >FTHEN

IF QS > =D$ THEN

Y$="NO" I[FYS< >"NO' THEN

?

125

Flow chart Program
() 5DIM GS$(5)
_START /' 107"'DO YOU LIKE GOLF?
{ YESORNO"’
DIMENSION 20 INPUT G$
VARIABLES 30IFGS$ < > "'YES’' THEN 60
T 40 ? "I LIKE GOLF TOO"’
PRINT 50GOTO 70
Do you like 60 ? ' DON'T LIKE IT EITHER"’
golf? Yes or No”’ 70END
I
/
INPUT G$
Is
G$= No
llYes!’
?
| Yes
PRINT
“| like golf
too!!
/
!
GOTO STOP
PRINT
““| don’t like it —
either”
|
L

Q STOP)

to do: Programmer’s Pastime #42, #43, #44, #45

126

Ouiput

7

DO YOU LIKE GOLF?
YESOR NO

?(you answer NO)
IDON'T LIKE IT EITHER

PROGRAMMER’S PASTIME #42

Write each equcation as an IF-THEN statement.
Question IF-THEN Statement
Example: Is A equal to C? IF A=CTHEN

1. IsLS equalto "MAYBE''?

2. IsFl not equal to FZ2?

3. Is GH greater than HI?

4. Is SS$ less than or equal to FS?

5. Is Xtimes Bless than P times Q7?

6. Is T divided by W greater than or
equal to Wtimes B?

7. IsP$ greater than M$?

8. Isthe square root of Y equal to D?

9. IsGS notequalto ""NO'"?

10. Is 10 divided by 5 less than 14
divided by 27?

11. Is Y$ equal to the square root of
64?

12. Is A plus B greater than D$?

S

127

(CHAPTER 36) Alphabetizing

Did you know that ATARI has the ability to com-
pare letters in string variables and alphabetize
the words? ATARI already understands that:
"AY<UBY<CT L <Y e N2

A" is less than “'B’* which is less than “'C*’
which is less than "'D,"’ and so on, all the way to
“Z.” Inother words, "'A’’ isthe smallest letter, and
"'Z" is the largest letter in the alphabet. A word
that begins with “'A’ is smaller than a word that
begins with “'Z.””

Keeping this in mind, we can write a short pro-
gram to alphabetize two words. For example:

Flow chart Program Ouiput
5DIM AS(10), BS(10) —
C START) 10LET A$ ="LOVED"" GREAT
! 20LET B$ ="“'GREAT" LOVED
DIMENSION 301F A$ <BS THEN 60
VARIABLES 407BS$.7 AS I%f‘DY
; 50 GOTO 70 i
L eT 60?7 AS . ?BS
A$ =“LOVED” 70END
B$ =“GREAT”
l
Is
A$ <B$ Yes
?
1 No We program ATARI to print the word that comes
PRINT first in the alphabet before the other word.
B$: A$
R
! l
PRINT
GOTO STOP AS:BS (STOP)

|

128

ATARI can dlso alphabetize words that have
the same letters—like Paula and Paul. Both words
begin with P-A-U-L, but Paula has an extra letter
at the end. The rule for this situation is that the
shortest word comes first. ATARI knows this rule

too. For example:
Flow chart

C START)
i

DIMENSION
VARIABLES

i

LET
A$="“PAUL”
LET

B$ ="PAULA”

!

Is
A$ <B$
?

! No

PRINT
B$: A$

i

o

—— | GOTOSTOP

PRINT
A$: B$

i

R

—»C STOP

)

Program Output

5 DIM AS(10), BS(10) —
10LET AS="PAUL"”’ PAUL
20 LET BS="PAULA"" PAULA
30 IF AS <BS THEN 60
407?BS :?AS ISSADY
50 GOTO 70 s
60?AS:?BS
70END

Using this type of algorithm, it is only worth-
while to alphabetize two words. If we needed to
alphabetize more than two words, we would
have to use a different type of algorithm, which
will be considered later.

to do: Programmer’s Pastime #46

129

As you begin writing more complicated pro-
grams, you will want to make sure they can be
easily read and understood by others who may
read them. Writing your programs so they are
easy to read is good programming STYLE.

One style technique is the use of REMARK state-
ments in your program. This is also called
DOCUMENTATION, which means noting what is
happening in your program. For example:

10REM ADD TWO NUMBERS ~ REM stands tor
' REMARK.

20LETD=4.1LETC=5

30?D+C

40END

Each REMARK statement describes the purpose
of the statements following it. Lines 20 and 30 in
the program add two numbers, so the REMARK
statement in line 10 should say:

REM ADD TWO NUMBERS.

When the program is run, ATARI will ignore the
REM statement. REM tells ATARI to ignore what is
written after it and to go on to the next line
number.

REMARK statements will not show up when you
run the program because they are ignored. The
REM statements only show up when you list the
program.

Use REMARK statements at the beginning of
your program to tell the name of the program or
what it does. You can also add that you are the
author of the program. For example:

10REM SPACE ATTACK
20 REM TRY TO SHOOT DOWN THE ALIENS
30 REM WRITTEN BY JOE COQL, 1980

130

It is also helpful to use REMARK statements to
describe each main section of your program. For

example:

Program

10 REM MATH PROGRAM
20 REM WRITTEN BY CHARLIE
BROWN, 1981

30 REM MULTIPLICATION
40?7 "'5%6="";

S0 INPUTM

60 IF M =25 THEN 90

70 ? "WRONG. TRY AGAIN"
80 GOTO 40

90 ? "RIGHT!"’
100 REM DIVISION
1107?80/10="";
120INPUT D
130IF D=5 THEN 160
140 ? ""WRONG. TRY AGAIN"
150GOTO 110
160? “"RIGHT!"
170 END

Output

(5% 5= ?(you answer 22)

WRONG. TRY AGAIN
5x5= ?(you answer 25)
RIGHT!

50/10= ?(you answer 12)
WRONG. TRY AGAIN
50/10= ?(you answer 5)
RIGHT!

READY
O

7 X

In the above program, we used REM statements REM

to.

1. introduce the program:;

stands for

REMARK

2. show the beginning of the mulhphccmon sec-

tion of the program:;

3. show the beginning of the division section of

the program.

Be careful that you don‘t use too many REMARK
statements in your programs. Too many can clut-
ter up the program and make it more difficult to
read. They could also waste space and use up

ATARI’'s memory.

As you practice writing programs, you will be-
come more aware of where REMARK statements

should be placed.

to do: Programmer’'s Pastime #47

131

(CHAPTER 38) READ-DATA

Flow chart

PRINT
A+B+C+D

{

___/J

(STOP

)

Another programming trick which can save you
and the computer time is the use of READ-DATA
statements.

The READ statement and the DATA statement
go together in a program. These two statements
make it possible for you to place data in your
program as you type it on the keyboard, or even
while you are running the program.

This is handy because you can use the same
program many times. Instead of writing and typ-
ing the program over again for different data,
you merely change the information in the DATA
statement. This program adds four numbers:

Program Output
I10READA,B,.C.,D
20DATA6,7,8,9 30
30?A+B+C+D

40END READY

It you want to use the same program to add four
different numbers, just change the DATA state-
ment in line 20:

20DATA 10,11, 12,13

READ The READ box in our flow
or chart looks just like the
INPUT INPUT box. You must la-

bel the box as READ
or INPUT so it is not
confused.

132

You can also add more data to the DATA

statement:
Flow chart Program Output
5 DIM AS(10), BS(10).
(START > C$(10) (1 LKE YOU
{ 10READ AS$,B$,C$ YOURE MY FRIEND
DIMENSION 207 AS, BS, CS _
VARIABLES 30 GOTO 10 %E!ISOR 6 ATLINE 10
: 40 DATA “'I'", “'LIKE"", s
“YOU”, “YOU'RE",
READ “MY*’, “FRIEND"
A3, B8, C3] 50END
)
PRINT
A$, B$, C$
/
|
GOTO —

l

(sTOP)

Inline 10, ATARI is told to READ enough data to
fill up the three variables AS, BS, and CS. SO
ATARI looks for a DATA statement in the program
and finds one in line 40. It “'gobbles up’’ the first
three pieces of data it finds ("'’*, “'LIKE”*, "*'YOU"")
and assigns them to AS$, BS, and CS.

10READ AS, BS, Cs$

AS) (BS) (C3
40DATA "I, “LIKE” ., “'YOU” || [LKE] [You

-

You can think of this data as being used up.

In line 20, ATARI prints the contents of AS, BS,
and CS. Line 30 tells ATARI to go back to line 10
and read three new pieces of data. The Apple
finds “'YOU'RE’, "MY"’, “"FRIEND"' in the DATA
statement and again assigns them to AS, BS, and
CS$. These are the new values of AS, BS, and CS.
T, "LIKE”, and "'YOU’' have been erased from
ATARI's memory.

133

I10READ

40DATA. ..

AS,

\\YOUIREII

BS, Cs$

A$ B$ Cs$
YOU'RE MY FRIEND

"MY"”" |, “FRIEND”

In line 20, ATARI prints the new contents of AS,
BS. and CS. Line 30 tells ATARI to GOTO line 10.
Since there is no more *'fresh’’ data in the DATA
statement, ATARI will print

ERROR—6 AT LINE 10

at the end of the output. This is ATARI's way of
saying, "'There’s no more data to read into AS,
BS. and CS!"’ (See Appendix B.)

A DATA statement may be up to three screen
lines long. This means that it can have up to 112
characters (including spaces, commas, and the
word DATA itself). If you have more datathan can
fit in three screen lines, you will need to use more
than one DATA statement.

ATARI treats all of the data in a program as
one big list. The READ statement has a *‘pointer’”
that goes through this data list and *‘gobbles up*”
any new data.

)

134

The DATA statement can be placed anywhere
in a program. There is only one thing you must
watch out for. You must have the data in your
DATA statement in the comnrect order. For exam-
ple, if you want the program to print:

HI THERE PAL
the data "HI’’, “"THERE"’, and "PAL’" must be in

this order in the DATA statement. If they are out of
order, this is what might happen:

Program Output
5DIM LS$(10), MS(10). NS(10)
10READLS, MS, NS PAL THERE
207LS.MS, NS
30DATA "'PAL"’, "'THERE'’, ""HI" lggé\DY
40END a

You must also make sure that the data in your
DATA statement is separated by commas. Any
data not separated by commas will be lumped
together as one piece of data by ATARI. Also, be
sure to dimension your variables if you are using
alphanumeric data.

If you have three variables to READ, ATARI will
“'‘gobble up’’ data in groups of three. Any left-
overs will not be printed. For example:

Program Data used Output

I10READX,Y,Z Isttime: 2,4, 6 -

20?X.Y.Z 2nd time: 8, 10, 12 2 4 6
30GOTO 10 leftover: 13, 14 8 10 12

40DATA 2,4, 6, 8,10, 12,13, 14
S0 END

if +he data in
your DATA

statement 1S MO
in order, i can >
really mess up

yoor program. _

ERROR—6 ATLINE 10

7 N\

135

Flow chart

C START

——

i

READQ, U

GOTO

PRINTQ, U

C

STOP) e ————

You may ask, "'Is there any way I can get the
program to end without printing the ERROR—6
message?’’ The answeris *'Yes!’’ You need to:

1. Put some DUMMY data at the end of your
DATA statement. (Dummy data is data you
want ATARI to read as a signal that the pointer
is at the end of the data list.)

2. Use an IF-THEN statement which directs ATARI
to the end of the program as soon as it READS

the dummy data.

Program Output

10DATA 48, 6, 8.5, 9, e
—999,-999 48 6

20READQ,U 8.5 9

30IF Q= —-9999 THEN 60

407Q,U RSADY

S0 GOTO 20 7

60END

Yes

In the program we used —999 as our durmmy
data. When you choose your dummy data, se-
lect something you know you probably won't be
using for data. For example, itis very unlikely that
~999 would be data that we would want to use in
a program.

The IF-THEN statement in line 30 of the program
asks, "'Does Q= —999?"" after each ‘‘gulp’’ of data
is read. When Q=-999, ATARI is directed to the
END of the program.

136

It is important to have dummy data for each
variable that ATARI will read. For example, if you
have five variables in your READ statement, you
must have five pieces of dummy data at the end
of the DATA statement. Each variable must have
data READ into it every time or ATARI will print the
ERROR—6 message at the end of your program's
output.

Another way: If you don’t want to use dummy
data in your program, you can use a FOR-NEXT

loop.
Flow chont Program Output
(> 10FORN=1TO 3 —
START 20READP. Q 0
T 307P%Q 24
40NEXTN 80
FORN=1TO3 | = 50DATA0.2,4.6,8, 10 READY
l 60END o
READP Q
1
PRINT PxQ
1
NEXTN

{

(STOP)

The FOR-NEXT statements cause the program
to loop three times. During the first loop, 0 and 2
are READ into P and Q.. In the second loop, ATARI
READS 4 and 6, and during the third loop 8 and 10
are READ. Since the loop is only done three times,

the computer goes to line 60 and the program
ends.

137

Two More Things

1

It’s OK to have both numeric and string vari-
ables in the same READ statement. Just
make sure any data in the DATA statement
that go with the string variables are in the
correct order, and that they have been
dimensioned.

Example: 5DIM Ds(20), F$(20)

I100READ C, Ds, E, F$
20DATA 10 ,KEN , 3 , MITSY

If you try to put alphanumeric data in a nu-
meric variable, you will get an ERROR—8 state-
ment. However, you will not get an error it you put
numeric data in an alphanumeric (string)
variable.

2

You can't have an equation like 5+2 as
data in a numeric variable or ATARI will
print an error message. You can, however,
list an equation such as 5+2 as part of al-
phanumeric (string) data.

to do: Programmer’s Pastime #48, #49, #50, #51,

#52

138

PROGRAMMER'’S PASTIME #50

READ-DATA statements can help you write
shorter programs. Rewrite each program using
READ-DATA statements to shorten them. Try to
write each program so you don't get an ermror
message.

Long Program Short Program
1. 10? "MULTIPLYING 2 NUMBERS"’

20LET P=60

30LET Q=129

40LETR=410

S50LET S=.6

607?P, Q PxQ

70?R, S, R%S

80END

2. 5DIM AS(10), B$(10). C$(10), DS(10), ES(10)
10? “'TEST SCORES"’
20? "NAME"’, ""'SCORE"’
30LET AS="JOE"”
40LET A=98
50LET BS="TOM"’
60LET B=52
70LET C$="KRIS"
80LETC=95
Q0LET D$="GAIL"

100LETD=75
110LETES="BOB"
120LETE=72

1307 AS. A
1407?BS. B
1507CS.C
1607?DS,D
1707ES.E
180END

139

CHAPTER 39) propiem Solving

By now you have discovered that ATARI is a
friend who can keep you company when you
are bored, entertain you, and help you do your
work. The most important thing ATARI can do for
you, however, is to help you solve difficult
problems.

So far you have learned how to program ATARI
to do many things. You have learned most of the
BASIC commands and algorithms necessary to
write problem-solving programs. In this chapter,
you will leamn how to put all of these valuable
tools to use in order to teach ATARI to solve some
difficult problems.

Before ATARI can give you the answer to a
problem, there are many things that you must
plan for in writing a good program. For example:

Problem

Joe went to the store to buy some goldfish. He
has $4.83 to spend. The fish bowl costs $2.25.
Sand for the bottom of the bowl costs 49¢ a bag.
Fish food is 60¢ for 4 ounces. The goldfish cost 80¢
a piece or two for $1.35. If Joe buys all of the
supplies, how many fish can he afford to buy?

1. THINK about the problem

a. What exactly is the problem?
Can Joe buy 1 or 2 goldfish?

b. DoIunderstand the problem?

Cc. What kind of answer do I want?
The answer should be 1 or 2 goldfish.

d. What do I need to know in order to find out
the answer?
I need to know how much money Joe will
have left over after buying the supplies.
Then I'will know how many fish he can buy.

140

2. Make a DATA TABLE
a. What variables will I need to use in the

b.

program and what will they stand for?
INPUT VARIABLES are variables that you al-
ready know the value of.

Data Table
Input Variables

T=total $ that Joe can spend =4.83
FB=cost of fish bowl =2.25
S=cost of sand = 49
FF=cost of fish food = .60
Gl =cost of 1 goldfish = .80
G2=cost of 2 goldtish =1.35
OUTPUT VARIABLES are the answers that

ATARI will give you.

Output Variables
TC=total cost of FB+S+FF
L=money left after buying the
supplies

. PROGRAM VARIABLES are any other vari-

ables that are used in the program to do
other things.

There are no PROGRAM VARIABLES in this
program.

3. ALGORITHM

a.
b.

Break the problem into smaller parts.

Figure out the step-by-step process you will

use to solve the problem. Decide what op-

erations you will use (+,—,/, and so on).

1. Find outthe TC by adding FB+S+FF.

2. Find out L by subtracting T-TC.

3. Find out if L is enough to buy one or two
goldfish. Ask:

IsL>=GI?
IsL>=G2?

4. Tell how many goldfish Joe can buy and
how much money he would have after
buying both the supplies AND the
goldfish.

141

4. Flow chart: Q START >
{

a. Write the algorithm in flow chart form.

LETT=4.83
l
PRINT
“Joehas” T
' l
LET FB=2.25
LETS = 49
LETFF= .60
l
LETTC=
FB+S+FF
l
PRINT
“Fish supplies
cost” TC
i
LETL=T-TC
!
PRINT
“Joe has’’ L
“left over”’
PRINT “Joe can y
buy 2 goldfish’’

—— | PRINT “Joe will Yes LETG1= .80
have’ L-G2 LET G2=1.35
‘‘dollars left”

PRINT ““Joe can Yes
buy 1 goldfish” —

—— { PRINT “Joe will
have” L-G1
‘“dollars left’’ No

PRINT
“*Joe can’t afford
any fish”’

ﬁQ STOP)

142

5. CODING
a. Write a BASIC program for the flow chart.

10LET T=4.83
207 “JOEHASY'"; T; " PDOLLARS"
30LET FB=2.25 : LET S=.49 . LET FF=.60
40LET TC=FB+S+FF
50 2 “*FISH SUPPLIES COST"*; TC
60LETL=T~-TC
707 “JOEHASY"; L; “'BLEFT OVER"
80LET G1=.80:LETG2=1.35
90IFL>=G2 THEN 130
100IFL> =G1 THEN 150
1107 " JOE CAN'T AFFORD ANY FISH"*
120 GOTO 160
1302 "'JOE CAN BUY 2 GOLDFISH'" : ? " AND
HAVER"’; L~G2; " BDOLLARS LEFT"’
140 GOTO 160
1507 *'JOE CAN BUY 1 GOLDFISH'" : ? "AND
HAVER"'; L—~G1; “BDOLLARSLEFT"’
160 END

6. DEBUGGING
a. Pretend you are a computer. Follow the
directions in your program to make sure it
works. This is called TRACING the program.
b. Run the program on ATARI to check for

bugs.
c. Does the program do what you wanted it
to do?
— %w p

T thnk T
see a bug

7. REVISING

a. Isthere abetter or shorter way to write your
program?
Yes. We can write the program using READ~
DATA statements.

b. Can you use better programming style?
Yes. We can use REMARKS.

c. Can you design your output better?
Yes. We can clear the screen and leave
spaces between the printing.

10 REM CALCULATING PURCHASE OF
GOLDFISH & SUPPLIES
207" [&] g
30READT, FB, S, FF, Gl, G2
40 DATA 4.83, 2.25, .49, .60, .80, 1.35, 99,
99, 99, 99, 99, 99
S50 IF T=99 THEN 60
60? “"JOEHASPE"’; T; “'‘BDOLLARS"’
70 LET TC=FB+S+FF
807
90 ? “'FISH SUPPLIES COSTB’’; TC
100LETL=T-TC
1107
1207 " JOEHASE"’; L; "' BLEFT OVER"
130IFL>=G2THEN 170
140IFL>=G1 THEN 190
1507 *'JOE CAN'T AFFORD ANY FISH""
160 GOTO 200
170? "' JOE CAN BUY 2 GOLDFISH AND HAVE
B':L-G2; "BDOLLARS LEFT"’
180 GOTO 200
1907 JOE CAN BUY | GOLDFISH AND HAVE
B";L-Gl; "BDOLLARS LEFT*
200END

144

Using the READ-DATA statements may be the
best way to write this program. Why? If the price
of goldfish or supplies goes up, you can change
the DATA statement and the program will be
updated.

You can write good probleme-solving programs
for ATARI to solve if you follow these 7 steps:

1. THINK about the problem.

2. Make a DATA TABLE for input, output, and pro-
gram variables.

Create an ALGORITHM—"'How can I solve the
problem, step by step?”’

Make a FLOW CHART.

CODE the flow chart into a BASIC program.
DEBUG.

REVISE the program to make it the best!

w

NOoos

to do: programmer’s Pastime #53
Component 6 Fun Page
Evaluate yourselt

145

oa’ PASTIME #53

Use the problem-solving approach to get ATARI
to solve the following problems.

Problem 1

The teacher gave your class a test on program-
ming the computer. The test scores were:

Jill Jarvis 73%

Katie O’Keefe 98% Your teacher
Tommy Templeton 67% needs to know
Susie Sunbeam 82% the average
You 90% test score.

Write a program that tells ATARI to calculate
and print the average score. (HINT: To find the
average of 5 numbers, add them together and
divide by 5.)

1. THINK about the problem.
2. Make your DATA TABLE here.
3. Write the ALGORITHM (steps and equations)

4. FLOW CHART 5. CODE the program

146

Problem 2

You are the new manager of the *‘Peppy Pizza’’
restaurant and you need the help of a computer.
Write a program that will allow you to INPUT the
number of small, medium, and large pizzas sold
during aday.

Have ATARI print out the total number of pizzas
sold and how much money you made.

(OUTPUT HINT: HOW MANY PIZZAS:

(SMALL, MEDIUM, LARGE) Prices:
? , , small $4.30
THEREWERE ____ PIZZAS SOLD TODAY. medium $5.50
“PEPPYPIZZA”"MADES__) large $7.25
1. THINK about the problem.
2. DATA TABLE
3. ALGORITHM
4. FLOW CHART 5. CODE the program
6. DEBUG

7. REVISE

147

CHAPTER 40

Conversions 149
CHAPTER 41

Random Numbers and Integers 152
CHAPTER 42

Making Sounds 156
CHAPTER 43

Graphics 160
CHAPTER 44

More Graphics 170
CHAPTER 45

Writing Game Programs 173
CHAPTER 46

YOU are a Creative Programmer! 174

148

(CHAPTER 40) conversions

ATARI can be especially good at running a pro-
gram which helps you CONVERT one thing to
another. CONVERT means to change, so a
CONYVERSION is changing information to a differ-
ent type. For example, we can convert:

inchesto feet decimals to fractions
feet to meters miles to kilometers

You can program ATARI to make the conver-
sion, or change, and then print atable that shows
how the two types of conversions are equal to
each other. For example:

Flow chart Program
10 REM CONVERTING
ST’IRT INCHES TO FEET
I) AR Y rr AR Y 1t
PRINT THE 20 ? INCHES'’, “'FEET
HEADING 307
40FORI=1TO 24
i 50?1,1/12
USE A FOR-NEXT | 40 NEXTI

LOOP TO MAKE
—| I(inches)START | /OEND

WITH 1 AND GO
TO 24

!
PRINT

I (inches)
1/12 (feet)

149

Output
-
INCHES FEET
1 0.083333
2 0.16666666
3 0.25
4 0.333333
5 0.41666666
o) 0.5
7 0.583333
8 0.66666666
9 0.75
10 0.833333
11 0.91666666
12 1
24 2
READY

7N

The output of this program shows how inches
compare to feet. You can tell from the program
that:

linch =0.083333 of a foot

3 inches=0.25 or % of a foot

6inches=0.5or 2 of a foot
12 inches=1 foot

Line 20 prints the HEADING for the output. The
heading of a program is usually printed first in the
output. It explains the meaning of the numbers
that follow. The heading in our program is:

INCHES FEET

It tells us that the numbers listed under “'INCHES’
are inches, and the numbers listed under “'FEET"’
are feet,

Conversion programs are very easy to write.
They are short because they use a FOR-NEXT
loop. The most important part of the program is
the CONVERSION EQUATION. This equation tells
ATARI how to convert from one thing to another.
The conversion equation in our inches-to-feet
program is I/12. This tells ATARI that to find feet,
ATARI must divide the number of inches Oby 12.

To write a good conversion program, re-
member to include:

1. a I‘EADNG,

2. aFOR-NEXT loop that decides which numbers
to start and end with on the conversion output
and how many times the program will loop:;

3. A CONVERSION EQUATION.

to do: Programmer’s Pastime #54, #55, #56

150

PROGRAMMER'’S PASTIME #55

Write a conversion program for each problem.
Make sure your program has a heading, a FOR-
NEXT loop. and a conversion equation. Run your
programs on ATARI to check for bugs.

Problem Program

Problem Program

1. Convert 1-20 inches to centimeters.
CONVERSION EQUATION:
Centimeters=1%2.5

2. Convert 1-20 kilometers to miles.
CONVERSION EQUATION:
Miles=K/1.6

3. Convert 1-20 pounds to grams.
CONVERSION EQUATION:
Grams=P*454

4. Convert 1-10liters to quarts.
CONVERSION EQUATION:
Quarts=L/3.8

5. Conver 0° to 100° Fahrenheit to ° Celsius
CONVERSION EQUATION:
°C=5%(F-32)/9

6. Convert 1-100 pounds to kilograms
CONVERSION EQUATION::
Kilograms=P* .45

1581

CHAPTER 4]) cnainiagerr ™

between O and |

}RND() 50
random number

A SIMULATION is a
‘redl life* game. -
imrates Something
the way it would

really ha

The word RANDOM means “having no pattern or
special purpose.’’ Therefore, RANDOM NUMBERS
would be a list of numbers that are not in any
particular order. An example of a list of random
numbers would be: 7, 43, -6, .7, 413. There is no
order or number pattern in this list, and the num-
bers listed have no special purpose or meaning.

Random numbers are used in two types of com-
puter programs:

1. teaching programs—also called CAI (Com-
puter-Assisted-Instruction);

2. games and simulations (A SIMULATION is a
“'real-life’* game. It imitates something the way
it would really happen).

In programming, there are certain operations
done automatically which are called functions.
We use the RND function to create random num-
bers in a program. For example:

10 REM CREATE A RANDOM NUMBER BE-
TWEEN O AND 1

20FORL=1TO 10

30LET X=RND(1)

407X

S50 NEXT L

60END

The program we just saw tells ATARI to print any
random number between 0 and 1 ten times.
ATARI will pick any number it wants each time.
There will be no order to the numbers. Each time
you run this program, ATARI will print a different
list of numbers.

n

152

If you want ATARI to print a list of random num-
bers between 0 and 10, you would change the
RND function to:

LET X=10%RND(1)

If you want ATARI to print a list of random num-
bers between 0 and 100 you would change the
RND function to:

LET X=100%RND(1)

If you are writing a game program, you will not
want 0 to be a random number—especially if the
game is simulating the roll of a die. To print any
random number between | and 101, change the
RND function to:

LET X=100%RND(1)+1

This causes the lowest possible number to be
1.0000 and the highest possible number to be
100.9999.

An INTEGER is a whole number. Numbers like
.25 and 6.32 are not whole numbers, they are
decimals. We use the INT function to create
whole numbers or integers in a program. For
example:

We CHOP OFF 23
becavse it is fo
the right of the
decimal point.

Program Output
10 REM CONVERTING DECIMALS TO r
INTEGERS DECIMAL INTEGER

207 "'DECIMAL"’, "INTEGER"’ | 1

30FOR X=1TO 5 STEP .5 1.5 1

407 X, INT(X) 2 2

50NEXT X 2.5 2

60END 3 3
3.5 3
4 4
4.5 4
5 5
READY

Notice that the integer for the decimal 1.5is 1.
The integer for the decimal 2.5is 2, and so on. The
INT function rounds the decimal down to the
nearest integer.

Sometimes you will want ATARI to print random
numbers which are only integers. To do this, use
both the RND and INT functions. For example:

10FORL=1TO 10

20 LET X=INT(6%RND(1)+1)
307X

40 NEXTL

S0END

This program tells ATARI to print a random
whole number or integer between 1 and 6. The
smallest possible number would be 1 and the
highest possible number would be 6.

Let’s say you want ATARI to print a random
whole number between 2 and 12. The INT and
RND function whould say:

LET X=INT(11°RND(1)+2) The smallest
number that can
“be printed
To create random integers between and includ-
ing 50 and 85, use:

LET X=INT(36%RND(1)+50)

85-50=35 ~ The smallest number
35+1=36 to be printed.
The formula for creating random integers be-
tween A and B (where A is the smallest integer
and Bis the largest) is:

INT((B—(A+1))%RND(1) +A)

To create random integetrs between 26 and 77,
use the formula like this:

INT((B (A+ 1))*RND(1)+A)
INT((77 (26+ 1))*RND(1)+26)
%__J

INT(50*RND(1)+26)

154

Here is an example of how to use the INT and
RND functions in a CAI teaching program which
gives the student practice in adding.

Program

10LET A1 =INT(100%RNID(1)) A random integer for Al is created.
20LETA2=INT(100%RNIX(1)) A random integer for A2 is created.

3072Al1; "+ A2; =", The equation is printed for the student.
40INPUT S The student types his/her answer.
50LETT=A1+A2 ATARI calculates the answer to the equation.
60IF T=STHEN 90 The student’s answer is compared to T.
70?2 ""NOPE. TRY AGAIN"’ If the answers are equal, GOTO 0.
80GOTO 30 If they e not, print the equation again.
90 ? “'RIGHT ON!"’ Tell the student they are right.

100GOTO 10 GOTO the beginning of the program, pick new

random integers, and start all over again.

Run this program on ATARI to see how it works.

IMPORTANT

The placement of parentheses in RND and INT
functions is very important.

If the parentheses are in the wrong places, the
program won't work propeily.

to do: Programmer’s Pastime #57, #58, #59, #60,
#61, #62, #63

165

(CHAPTER 42) Making sounds!

One of ATARI's fun features is its ability to make
sounds and music. The program statement used
to do this is SOUND (50.). (Notice that the short-
ened form—S50.—is always followed by aperiod.)
Try running this program on ATARI.
1050.1, 121,10, 8
20 GOTO 20 (That's right, GOTO 20)

As this program is running, adjust the volume
on the television or monitor so that it is comfort-
able for you and others around you. To stop this
program from running, you must press the
key. type END, and press ,

Youmay be wondering about line 20. This s the
firsttime we have had a GOTO statement goingto
itsownline. Try this. Use only line 10 SO. 1,121, 10,
8 in a program. Listen very carefully when you
run it. (You may have to turn up the sound vol-
ume of the T.V.) Run it several times and you
should hear a very rapid “"beep’’ each time.

Here’s what is happening. Line 10 produces a
sound, but it is done very rapidly. With no other
lines in the program, ATARI assumes the program
is over and ends it. When line 20 GOTO 20 is
inserted, ATARI does not assume the program has
ended, so the sound from line 10is drawn out,

In the line statement—10 SOUND 1, 121, 10, 8—
the four numbers together tell ATARI to make one
sound. Each numbers tells ATARI a different thing
about the sound. (If any of the numbers is left out,
you will get an error message.) What are these
four things that the computer must know in order
to make sounds? ATARI must know what VOICEto
use, what NOTE to play, what TONE to choose,
and how LOUD to play. It is also important that
each component be placed in the proper order,
like this:

10 SOUND, VOICE, NOTE, TONE, LOUDNESS

Let’s learn about each component in the
SOUND statement.

156

VOICE: Just as every student in your class hasa
different voice, ATARI also has different voices,
numbered 0, 1, 2, and 3. Run this program to hear
ATARI’s different voices:

10FORV=0TO 3
20SOUNDV, 121, 10, 8
30FORT=1TO 1000: NEXT T
40 NEXT V

SOEND

In this program V is a variable that represents
Voice. Rather than set the number we want for
Voice, we are letting the machine play a variety
of voices. Therefore, we use "'V’’ to indicate the
voice variable. Line 20 is the part of the program
that produces the sound. It has the variable for
Voice, as well as numbers that set the Note, Tone,
and Loudness. Lines 10 and 40 are a FOR-NEXT
loop that causes Voice to move through all four of
its levels—0 to 3. Line 30 is a FOR-NEXT loop that
slows down the sound. Without it the sound would
be made so fast that it would be hard to hear. (Try
taking line 30 out and see what happens.)

NOTE: When you sing, play, or write music, you
use a wide variety of musical notes. ATARI also
has a wide variety of notes—from O (the highest
pitch) to 255 (the lowest pitch). Use the following
program to hear some of ATARI's notes:

10 FOR N=0TO 255 STEP 20
20SOUND O, N, 10, 8
30FORT=1TO 1000: NEXTT
40 NEXTN

S0END

Look carefully at this program and see if you
can understand how it can produce a variety of
ATARI's notes. Notice how line 10 causes only
every twentieth note to be sounded. Could you
change the program so more or less notes would
be sounded?

The following diagram will give you some idea
how the numerical values of ATARI's notes are
related to the piano keyboard and musical scale.

187

‘? ,-\()6
o (D a__ X
I\OV . ol .-
o~ A 2) | 1 B
1) S b . - o
S s o — 117
e S L bty oo
l.g o e e i i
?I 2 2 | i L 2 3 Il
A 1 1 | 1 LI | | | | | |
5 [a N [2 » I a) | 2 M . 2
1 ' || | I | 1 I 1 LA | I 1 1
lI|,|||||||l||||||||||
|||||||||||I||||||||||
by r e bbby np g 1
|l|||||||||l||||||||||
l230l20¢ | 1173 iB3li36] | 14 J102) 18517]eal I571501 142 I37133] |

o] | TR | PLIEL | et el | [l ted] T T T

I o ct " |& cH Ip e |
CDEFGABCDEFGABCDEFGABC
2431217)193]182] 162} 144 | 128] 121 | 108] 96 | 91 | &3 | 72| 64 | 60] 53 474540135 |31 | 29

\MIDDLEC

TONE: ATARI can produce eight Tones—the
even numbers from 0 to 14. When you use the
odd numbers, ATARI will not make sounds. (There
Is no particular reason for just even numbers, it's
simply the way ATARI was set up.) Run the follow-
ing program to hear ATARI’s Tones:

10FORS=0TO 14
20SOUNDO, 121,8, 8
30FORT=1TO 1000: NEXTT
40 NEXT S

SO0END

(Note that we can‘t use "'T" for the
Tone variable because it is being
used for the timer variable in line 30).

When this program is run, there is a pause be-
tween each of the eight tones. Do youknow why?
Could you change the program to eliminate the
pause? (HINT: add something to line 10).

Notice how the upper Tones (10-14) give a
"pure’’ sound. The lower Tones produce a vari-
ety of buzzing and scratching sounds, which are
good for sound effects in some of your creative
programs.

168

LOUDNESS: ATARI can produce a range of
Loudness from 0 (no sound) to 8 (about normal) to
15 (the loudest). As you run the following pro-
gram, you may have to lower the sound volume
of the T.V. so you will not disturb others around
you.

I10FORL=0TO 15
20S0OUNDO, 121, 10, L
30FORT=1TO 1000: NEXT T
40 NEXTL

S0 END

COMBINING VOICES: ATARI can combine up to
four voices. Try the following:

10SOUND 1, 121, 10, 8 (the middle C note)
20 SOUND 2, 96, 10, 8 (the E note)

30 SOUND 3, 83, 10, 8 (the G note)
40FORT=1TO 1000: NEXT T

When you combine voices, be sure that the
voice variable is different (0, 1, 2, and 3) for each
statement. When different voices are combined,
achord is played.

to do: Programmer’s Pastime #64, #65

189

@HAPTER 43) Graphics

We are all familiar with the many video arcade
games run by computers. One of the most eye-
catching features of most games is the graphics
they have. As a beginning programmer you will
not be able to program your ATARI to make the
graphics of arcade games, but the next two
chapters will give you a start at programming
some fun and creative graphics.

One of the first programming statements you
need to know is GRAPHICS (GR.). Note the neces-
sary period with the shortened (GR.) form. ATARI
allows you to work in one of nine different graph-
ics modes, numbered from 0 to 8. In fact, you
have been working in one of the graphics modes
for some time now. Graphics mode 0 makes the
regular ATARIscreen that we have been using all
this time.

There are also two other graphics modes that
allow you to work with text material. GRAPHICS 1
causes letters to be twice their normal width. This
is how ATARI would look in Graphics 1.

ATAIRI
GRAPHICS 2 causes letters to be both twice the

width and twice the height. This is how ATARI
would look in Graphics 2.

ATARI

160

Try out these modes with the following
program:

10GR. 1
207 " ATARI"
30END

Notice when you run the above program, the
television or monitor screen splits into two parts.
There is the upper graphics screen, and the lower
TEXT WINDOW. The text window allows you to
write four lines of text material to go with the
graphics. When you use the PRINT statement (20 ?
" ATARI'") in graphics mode 1 or 2, the material is
printed in the text window . If you want material to
be printed on the graphics screen., you must
change the statement to read:

20 7#6; V' ATARI"’

Now change line 20, run the program, and
note the size of the letters. Then change the
graphics mode by changing the first line to:

I100GR. 2
and see what happens.

IMPORTANT

g

IMPORTANT:

You can leave the graphics screen in two
ways—either type GR. 0 and press , OI press
the button. Either way, you will return to
the regular (GR. 0) screen, where you can list,
alter, run, or erase the program.

161

We will not work very much with modes 1 and
2, but will focus more on Graphics 3 through 8,
which allow you to create a wide range of graph-
ics while changing color and the thickness of
lines.

Theline thickness is an important factor in mak-
ing a variety of graphics. How thick or thin a line
can be is dependent upon the number of points
that can be placed upon the screen. This in turm
varies with the number of (horizontal) rows and
(vertical) columns on the screen for each graph-
ics mode.

For example, the GRAPHICS 3 screen has 40
rows and 20 columns, which can produce 800
(40x 20) points. On the other hand, the GRAPHICS
7 screen has 160 rows and 80 colunns. This screen
can therefore produce 12,800 (160x80) points.
Because the points are smaller and more numer-
ous in the Graphics 7 mode, you can draw much
finer lines than with Graphics 3.

This is somewhat confusing, but maybe the tol-

lowing example will help. Use ATARI to run the
following:

10GR. 3
20COLOR 1
30PLOT 5,5

40 DRAWTO 39, 5
S0END

Run this program and you should produce a
line going across most of the top of the screen.
Notice the thickness of the line. Now, change the
graphics mode by changing the first line to:
10 GR. 7. Run this program and see what hap-
pens. You should again have aline, but it should
be much thinner and shorter now. This is because
the Graphics 7 screen has many more, but
smaller points than does the Graphics 3 screen.

162

As you change modes, it takes a different
amount of ATARI’'s memory to produce the differ-
ent screen ssizes. For example, it takes 273 bytes of
memory to make the Graphics 3 screen, but 3945
bytes to make the Graphics 7 screen. This dif-
ference becomes very important when writing
long programs. Therefore, in choosing a graphics
mode you will need to consider a variety of fac-
tors—the number of points that can be placed on
ascreen, the amount of memory being used, and
the number of colors available. The following
chart provides a summary of this information:

GR. Mode #of Memory

Mode Type Rows Cols. Colors Bytes
0 text 40 24 2 993
1 text 20 20 5 513
2 text 20 10 5 261
3 graphic 40 20 4 273
4 graphic 80 40 2 537
5 graphic 80 40 4 1017
6 graphic 160 80 2 2025
7 graphic 160 80 4 3945
8 graphic 320 160 1 7900

As you may have noticed in the last program,
there are several statements which are important
when programming graphics. As you probably
guessed, the COLOR (C.) statement allows you to
change the color of the graphics you make. De-
pending on the graphics mode you are using,
you may have from one to five colors to use. (In
the next chapter, you will learn some advanced
graphics techniques which will allow you to pro-
gram several more colors for the graphics, screen
background, and text window.)

163

The following chart may help you with using
the various colors:

Graphic Color

Mode Number Color

3.5.7 0 same as background
1 orange
2 light green
3 blue

4,6 0 same as background
1 orange

8 0 same as background
1 blue

Note that COLOR 0 in the chart is the same as
the background color of the screen. Thisis handy,
for it allows you to go back and erase graphics
that you do not want. Also notice that your televi-
sion or monitor may not give the exact colors as
listed. This usually can be corrected by adjusting
the color control on your television. Also, on those
graphic screens where the points are very small
(E.g. 7. 8), itis often difficult to distinguish the vari-
ous colors. Furthermore, colors tend to change on
diagonal and vertical lines.

PLOT (PL.) is another programming statement
for graphics. This statement allows you to place a
point wherever you want on the graphics screen.
Try this program:

I10GR. 3
20COLOR1
30PLOT 2,2
40 END

You should get an orange point at the upper left
hand comner ofthe screen. Add anotherline tothe
program:

32PLOT 2,18.

You should now have another point, but this one
isin the lower left hand comer. Add one more:

34 PLOT 38,2.

This will give an upper right hand corner point.
Let’s see how it works.

164

You know that in Graphics Mode 3, the screen is
divided into 40 vertical columns and 20 horizon-
tal rows. Although you can‘t see it, ATARI has
numbered each of the columns and rows starting
with the 0 column and O row in the upper left
hand corner. If you could see the numbered
screen, it would look something like this:

Graphics 3 Screen
Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3B I

Rows

B N P s W N - O

o

=3

~

@

=

o

>

b1

@

©

0y

TEXT WINDOW

8 R

When you use the PLOT statement, the first
number tells you the column number, and the
second one specifies the row. Another name for
the column number is the X-COORDINATE. The
row number is called the Y-COORDINATE.

The X-coordinate or column number is always
given first, with the Y-coordinate or row number
second. So PLOT 5,10 would cause a point to be
placed in the fifth column and tenth row as in the
following chart. Also note where PLOT 10,5: PLOT
39,0: AND PLOT 39,19 would be located.

165

Rows (Y)

® NP G e W N = O

RBIaI3asramad o

23

Graphics 3 Screen
Columns (X)

01234567891011121314151817181920212223242528272029313132333435&373839

,DJ

(1p.5

810

TEXT WINDOW

Try this program:

I0GR. 3
20COLOR 1
30PLOT 15,23
40END

When you run this program, no point shows on
the graphics screen. This is because row 23 is part
of the text window, and the point is hidden. Now
change line 30 to PLOT 15,24. When this is run,
ATARI gives an ERROR 141 message. This is be-
cause row 24 is completely off the Graphics 3
screen. If you now change line 10 to GR. 7 and
run the program, you no longer get an error mes-
sage because PLOT 15,24 is well within the larger
GR. 7 screen.

The final programming statement for this chap-
ter is DRAWTO (DR.). Notice that if you use the
longer form, DRAWTO is one word. If you leave a
space, ATARI will give an error message. Also
note that the shorter form (DR.), has a period.

166

As you might guess, DRAWTO does what it
says—it draws a line from one point to another
point. For example:

10GR. 3
20COLOR 1
30PLOT 10,6

40 DRAWTO 20.6
SO0END

In this program, line 30 causes a point to be
placed at position 10,6. Line 40tells ATARI to draw
a line to position 20,6. When the program is run,
you should get an orange line (COLOR 1 from line
20)in the following position:

Graphics 3 Screen
Columns (X)
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 38 37 3B I
Rows (Y) |
2 TEXT WINDOW
Add to the program as follows:
50COLOR 3

60 DRAWTO 20,16

When run, your output should now include a
blue line (COLOR 3) going down to position 20,16.

167

Now add these:
70 COLOR 2
80 DRAWTO 10,6
Graphics 3 Screen
Columns (X)

012345678910111213141516171819202122232425262728293)3132333435%373039

Rows (Y)

L R -]

©

o

-
=

~

@

=
S

o

B

-
&

=
@

- {

TEXT WINDOW

N

8

When executed you get a green (COLOR 2)line
back to the original point 10,6. Notice how the
green diagonal line looks like a staircase. This is
because each GR. 3 point is large.

Go to Graphics 7 by changing line 10, and see
what happens. Youstill have a *'staircase’”’ effect,
but the points are much smaller, and the diago-
nal now looks more like a straight line.

SHORTCUT: You can save time by placing sev-
eral PLOT and/or DRAWTO statements on the
same line by separating them with a colon (»).

30PLOT 20,10: PLOT 20,15

40PLOT 15,5: DRAWTO 15,10
S50 DRAWTO 5,15: DRAWTO 5,10

to do: Programmer’s Pastime #68

168

PROGRAMMER’S PASTIME #68

One enjoyable aspect of graphics is anima-
tion—causing the graphics to move. Following is
a program for some simple animation.

10 GRAPHICS 3

20 COLOR 1

30 FOR X=0TO 39 STEP 3
352 #6; ™ [[eo | [] [*2%]
40PLOTX,7

50 DRAWTO X, 10

60 DRAWTO X+3,10

70 DRAWTO X+3,7

80 DRAWTO X,7
85FORT=1TO 100: NEXT T
87 IF X> =36 THEN GOTO 10
90 NEXT X

Here's what the program does. Lines 40 through
80 make a simple square graphic. The X-coordi-
nate is not specified in these lines, but rather it is
set as a variable X. Lines 30 and 90 identify the X-
coordinate as every third number between 0 and
39. These lines, along with 10 and 20, which de-
termine the graphics mode and color, are the
main part of this program. However, notice that
the program was improved by adding some
more lines after the program was first written. Line
85 is a '‘timer’’ so that the graphic remains mo-
mentarily on the screen. (Try changing this line
for different effects.) Line 87 causes the program to
repeat once the graphic has moved completely
across the screen. Line 35 causes the screen to be
cleared as the graphic starts again. (Remember,
#6 must be used with a PRINT statement for the
graphics screen!)

1. Run this program, and then modity some line
statements to see how you can change the
graphics and animation.

2. Use dll the graphic techniques that you have
learned to this point to make your own ani-
mated graphics.

169

@HAPTER 44’ More Graphics!

Up to this point, you have only worked with a
graphics screen with a text window at the bot-
tom. Text windows are useful when you want to
include words with your graphics. However, you
may want to create graphics with no text. ATARI
has a simple way to eliminate the text window—
just add 16 to the graphics mode number. For
example, if you want to use Graphics Mode 3
without the window, you would use the state-
ment, GRAPHICS 3+ 16. (This also can be written
GRAPHICS 19.)
Try this program:

10 GRAPHICS 3+ 16

20COLOR 1

30PLOT 10,10

40 GOTO 40

When this program is run, you have an orange
point on a graphics 3 screen, but no text window.
Notice how line 40 is a GOTO statement to itself.
Run this program without line 40 and see how the
screen rapidly changes from the normal one, to
the graphics one, and back again. In order to
hold the graphics screen without the text win-
dow, you must have a GOTO statement such as
that in line 40. Also notice that when this program
is executed with line 40 in place, it is running
continuously. In order to stop the program, you
must press the key.

170

At this point, you have learned to make a vari-
ety of graphics with one to three colors, with or
without the text window. The SETCOLOR (SE.)
statement will give you a much greater variety of
options for color graphics with ATARI. In fact, the
variety is so great that it is difficult to explain all
that SETCOLOR can do.

Let’s use the following program to try to under-
stand how the SETCOLOR statement can help you
make interesting graphics.

10 GRAPHICS 3
20COLOR 1
30FORX=0TO 15
40?:7:?X
50 SETCOLORO. X, 2
60PLOT 5.5
70 DRAWTO 25,5
80FORT=1TO 600: NEXT T
QONEXT X

100END

As you run this program, you will notice how
the graphics bar changes sixteen times from gray
through several shades of different colors. (Re-
member, the colors on your screen may not be
quite the same as those described here due to the
color adjustment on your television set.)

Now change line 50 to SETCOLOR 2, X, 2 and
see what happens. (Don’t forget, you can
change patrts of line statements by using the cur-
sor control keys and the screen editing functions.
Be sure to press RETURN after you have made
changesin aline.)

When this program is run, the graphics bar re-
mains the same color, but the text window goes
through 16 color changes.

171

You can see another variation with SETCOLOR
by changing line 50 one more time:

S50 SETCOLOR 4, X, 2

This time both the graphic bar and text window
remain the same, but the screen background
color changes 16 times.

Let’s change both line 30 and 50 this time:

10 GRAPHICS 3
20 COLOR 1
30FORX=0TO 14
407:2.7X
S0 SETCOLOR 4, 4, X
60PLOT 5,5
70 DRAWTO 25,5
80FORT=1 TO 600: NEXT T
90 NEXT X

100 END

Notice that now the X variable in line 30 only
goes to 14. Also, the position of the X variable
in line 50 is changed to the last SETCOLOR
component.

When this program is run, “‘brightness’’ be-
comes the factor that changes. This brightness
factor is somewhat difficult to use, and probably
won't be changed as often as the other SET-

COLOR components.

172

Now you have a general idea of what the SET-
COLOR statement can do for ATARI's graphics.
The first listed component of SETCOLOR controls
where the changes take place—0 changes the
displayed graphics, 2 affects the text window,
and 4 the background of the graphics screen.
The second component of the statement causes
16 different color changes—from 0 to 15. The last
component controls 8 brightness variations—
using the even numbers from Oto 14.

Unfortunately, SETCOLOR's effects will change
when the other graphics statements are varied—
particularly when color is altered. One way to
familiarize yourself with SETCOLOR is to use it only
with Color 1, then gradually experiment with
changing other factors.

One way to increase your enjoyment of writing
graphics programs, is to add sound. Try this
program:

10FOR X=1TO 8: GRAPHICS 7

207 :? "' ATARI'S LIGHT AND SOUND SHOW*'

30SETCOLOR 1, 2%X, 8: COLOR 2

40FORY=0TO 80STEP X

50PLOT 0,0: DRAWTO 100,Y

60FORZ=210TO 30 STEP —30

70SOUNDO, Z, 10, 8

80 NEXT Z: NEXT Y: FOR T=1 TO 100: NEXT T:
NEXT X

90END

Atfter you have run the program, try to figure out
what each line of the written program does.
(Notice how several statements are combined on
single lines by using colons.)

to do: Programmer’s Pastime #69, #70

173

CHAPTER 45 Writing Game Programs

Playing computer games can be an enjoyable
Iecreational experience. One of the rewards of
learning how to program a computer is being
able to write a game program.

There are basically three types of computer
games:

1. Mathematical games: games involving
numbers and/or solving arithmetic or mathe-
matical problems.

2. Recreational games: Many different games
could fall in this category. I think of **Space
Invaders’’ and *‘Dungeons and Dragons.

3. Simulations: games which imitate real-lite
situations.

In writing a game program, you must be sure
the program will be USER FRIENDLY. This means
that the program is easy for anyone to use.

A program that is user friendly should.

1. give clear directions;

2. have easy-to-read screen output;

3. be free of bugs and not be “‘broken’’ easily
during the run;

4. have fun or interesting graphics;

5. and communicate with the players (tell the
players how they are doing through messages
OI SCores).

You have learned all of the programming tech-
niques needed to write a good game program.
Study the following game program to getanidea
of how a user friendly game should be written.

174

Flow chart Data Table

() Program Variables
START
T N=random number
NSION Input Variables
DIMENSIO — G=number guessed by player
VARIABLES) _
QS =player’s answer to the question,
y “Play again?’’
Pick a random :
number, N, No Output Variables.
between 1
and 100.
]
PRINT

game heading
and directions

i

PRINT
ask player to
make a guess
!
/INPUTG
)
Yes
! No
PRINT
_Yes | “Try again.]
Too high”’
| No
PRINT
Yes | «Try again. |
Too low.”
{ No
-—— | Clear screen

PRINT “You
.| arefantastic!
You guessed
it! Try again?”’

— | INPUTQS$

PRINT
(STOP)<_ “Thanks for
playing”

175

Program
5DIM QS(15)

10 REM * % GUESS A NUMBER GAME s %
20 REM * % CHOOSE A RANDOM NUMBER s *

30 LET N=INT(100%RND(1)+ 1)
407" [e] [owm] o2]

50 REM * * BEGIN GAME s s
60? “GUESS A NUMBER GAME"’
70 FORT=1TO 1000: NEXT T

807" [a] [om][]

90 ? ""GUESS A NUMBER BETWEEN 1 AND 100"

100 INPUT G

110IF G=NTHEN 140

120 IF G>N THEN ? “HIGH, TRY AGAIN
100

130 IF G<N THEN ? “LOW, TRY AGAIN
100

140 REM % x CORRECT GUESS

1507 -

1607 *'YOU ARE FANTASTIC!""

17077

180 ? "'YOU GUESSED IT!"”

190FORT=1TO 1000: NEXT T

2007 :

2107 “"WANT TO PLAY AGAIN"’,

220INPUT QS

230IF Q$="YES'' THEN 30

2407 .?

250 ? "THANKS FOR PLAYING! "’

260 END

": GOTO

" GOTO

Does this program have the five elemenits of a

good game program?
1. Clear directions: Lines 60, 90,

120, and 130

2. East-to-read output: Lines 170 and 240 space the output.

Lines 40, 80,

150, and 200 clear the screen.

Lines 70 and 190 slow down the output.

3. Free of bugs: There is one

bug. Look at lines 200-220.

176

If the user types ''YES'’ the game will start over
again. If the user types '"NO"’ or even a positive
answer like "'SURE,’’ the program will end. The
program should be written so that if something
other than “"YES"' or "'NO" is typed, ATARI will go
back to line 210 and print the question, ""WANT
TOPLAY AGAIN'’' another time, instead of ending

the program.
4. Fun, interesting This cound be improved by adding sounds or
graphics or sounds: graphics when the correct answer is found—per-

haps a high musical note when the guessistoo high,
and a low note when the guess is too low.

5. Messages to the player: Lines 120 and 130 tell the player if the guess is too
high or too low.

Lines 160 and 180 congratulate the player for guess-
ing correctly.

Line 210 asks the player if he/she wants to play
again.

Line 250 thanks the player.

Run this program to see first hand how it works.
Maybe you will have some suggestions on how to
make the program even better!

to do: Programmer’s Pastime #71

177

(CHAPTER 46) rogrammen

You have leamed how to use ATARI as a cal-
culator and as a problem-solving tool. You know
that ATARI can also help you with your creative
projects. Now that computers are available with
a color screen, it's a sure thing that we will see
more and more people using the computer for
Creative purposes. ‘

Another creative outlet for computers is anima-
tion and sound generation. Did you know that
not only can you program computers to make
music, you also can program them to talk?

Now that you know how to create visual pic-
tures and designs, ATARI hopes you will continue
to learn more about computer animation and
sound. The possibilities of what you can do with a
computer are endless!

Use your imagination. . .explore. . .try new
things. . .| Your computeris a friend, atool, and a
key to your future!

to do: Component 7 Fun Page
Evaluate yourself

178

Congratulations!

You are now a veteran computer programmer!
You've come along way!

You now have the skills needed to write pro-
grams in BASIC to control a computer. You know
how to use the computer to solve your problems
(problem-solving programming) and to entertain
yourself and others (recreational programming).
The skills you have leamed enable you to create
designs, sounds, and new ideas on the computer
(creative programming). You should be very pro-
ficient at programming the computer to do just
about anything!

Sure, there are still many more BASIC program-
ming techniques to learn. Some of them are com-
plicated, but others are shortcuts which will make
your programming easier!

Once you are a ‘‘pro’’ at communicating in
BASIC, there are other computer languages wait-
ing for you—including PASCAL, LOGO, PILOT,
and FORTRAN, just to name a few.

The world of computers is certainly exciting
and fascinating. It is the world of the future. Don’t
you feel lucky to be a part of it now?

179

APPENDIX A

BASIC Commands, Statements and Functions

Command,
Statement,
or Function

BYE (B.)

COLOR(C.)
CONT (CON.)

DATA (D.)
DIM (D1.)
DRAWTO
(DR.)

END
FOR-NEXT

F.-N)
GOTO (G.)

GRAPHICS
(GR.)

IF-THEN

INPUT (1.)

LET (LE.)

Used in This Book

(Abbreviations in parentheses)

Purpose

Allows BASIC to be exited and
puts ATARI in Memo Pad or Test-
ing Mode.

Changes color of graphics.

Allows ATARI to continue after
BREAK key has been pressed.

Holds data for the variables in
the READ statement.

Reserves or dimensions the
number of characters for string
variables.

Draws lines in the graphics
modes.

Tells ATARI the program run is
completed.

Creates aloop in the program.

Tells the computertogoto a
different location in the
program. It can create aloop.

Places ATARI in the Graphics
Mode.

Conditional transfer. IF
something, THEN do something

else, or go to a different location

in the program.

Tells the computer to ask the
user to type in input.

Integer function tells ATARI to
print a whole number (integer).

Assigns a value to a variable.

180

Example
BYE

COLOR 3
CONT

DATA 4, -16,'Y"

DIM AS(10)

DRAWTO 15,10
END
FORZ=1TO 10: NEXT Z

GOTO 10

GRAPHICS 3

IFZ=10THEN ? “‘HI"
IFZ=11 THEN 500

INPUT A, BS

?7INT (P)
2INT (4.69)

LETP=100

Command,
Statement,
or Function

LIST (L.)

LOAD (LO.)

NEW

NEXT (N)
PLOT (PL.)

PRINT (?)

READ-DATA
(REA.) (D)

REM (R.)

RUN (RU.)

SAVE(S.)

SETCOLOR
(SE.)

SOUND (SO.)
SQR

STOP (STO.)

Purpose

Tells the computer to list the
statements of a program.

Tells the computer to load a
program from a tape or diskette
into its memory.

Erases unwanted programs from
ATARI's memory.

See FOR-NEXT

Allows a graphics point to be
placed at a specified location.

Tells the computer to print
output.

Tells the computer to use data
from the DATA statement for the
value of certain variables.

Allows remarks or
documentation to be written
into the program without
affecting how the program is
nun.

Random function tells the
computer to pick a random
number.

Tells the computer to start doing
or executing the program.

Tells ATARI to save a program
from memory.

Allows color of screen, text
window, or graphics to be
changed.

Allows ATARI to make sounds
and music.

Allows the square root of a
number to be found.

Used within a program to stop a
program run.

181

Example
LIST

LOAD D (for diskette)
CLOAD (for cassette

tape)
(CLOA.)

NEW

PLOT 10.5
PRINT AS

) “HI'
READZS. X

REM ADDING NUMBERS

LET R=(10%RND(1)+1)

RUN

CSAVE (to cassette tape)
(Cs)
SAVE D (to diskette)

SETCOLOR 2, 10, 6
SOUND 1, 121, 10, 8
SQR (49)

STOP

APPENDIX B

ERROR MESSAGES

ATARI lets you know if it can‘t understand what
You want it to do by giving an ERROR MESSAGE.
This it does in two main ways. Sometimes it will
say "ERROR’’ and place the cursor over the por-
tion of the statement it doesn’t understand. Or
often ATARI will simply say “ERROR,"’ give an
error number, and specify the program line at
which the ermror occurs. Following is a list of some
of the more important error message numbers,
with a brief explanation of their meanings.

2 There isn‘t enough memory space to do
what is asked of ATARI.

3 A numeric value is used that is too large., too
small, or is negative when it should be
positive.

4 Too many variable names have been
used—only 128 are allowed.

5 The number of characters in a string vari-
able is more than have been dimensioned.

6 The READ statement tries to read more data
than is in the DATA statement.

7 Anumberisnegative, or greaterthan 32 767,
when it shouldn't be.

8 Numeric variables must contain numbers
and not letters, graphic characters, punc-
tuation marks, etc.

9 A problem with an array or string dimen-
sion—often when ATARI tries to use an un-
dimensioned string variable.

11 The program tries to divide by zero, or a cal-
culated answer is greater than 1x10%, or
smallerthan 1 x 10~ 99,

12 A line statement such as GOTO, GOSUB,
IF-THEN, etc. asks ATARI to go to a line that
doesn't exist.

13 There is no matching FOR statement for a
NEXT statement (error reported at the NEXT
statement).

182

14 The program statement is too complex or too
long.

15 About the same as #13—a FOR-NEXT
problem.

17 ATARI finds ‘‘garbage’’ (confused or im-
proper data). May be a problem with the
computer itself, or from faulty use of POKE.

18 String variable does not begin with a proper
character.

183

The following error messages are INPUT/OUT-
PUT errors. These happen between ATARI and
external devices (cassette tape recorder, disk
drive, printer, etc.) Often additional information is
provided with the external device.

19 The program being loaded is too long for
ATARI's memory.
21 A program is loaded into a non-load areaq.

128 The BREAK key is pressed while ATARI is in
the middle of an input or output operation.

130 ATARI is asked to output to a nonexistent
device.

131 AREAD command is given to the printer.

132 Aninvalid command is given to a device.

134 Animproper device number is used.

136 The program is directed to read a file that is
not open.

137 ATARI finds a data record longer than 256
characters.

138 A problem with an external device. Check
to make certain all power switches are on,
connecting cables are secure, etc.

139 The cassette tape recorder or disk drive unit
cannot properly perform a command.

140 The cassette tape or diskette may be faulty.

141 A point is plotted off the range of a graphics
screen.

142 Similar to #140—perhaps faulty tape or
diskette.

143 There is a bad recording on the tape or disk-
ette (may be due to faulty tape or diskette).

144 A disk error, often because the disk has been
protected against writing on it by a tab over
the slot.

Although this list is not complete, and some of
the errors are difficult to understand, this does
give you an idea of the most important and com-
mon error messages that you might find while
working with ATARI.

184

APPENDIX C

USING GAME CONTROLLERS

Many games, as well as other programs on
your ATARI, use game controllers as input devices
(usually to control some part of a game, or to
move the cursor). There are three types of control-
lers—paddies, joy sticks, and keyboards.

All three types of game controllers are plugged
into sockets on the lower front of the computer.
Most programs requiring game controllers come
with instructions on how to use the controllers and
where to plug them in. (If not, start with the socket
on the left and see which one works for your
particular program.)

The joy stick controllers have eight different
positions for causing movement on the screen:

T -~
«— O -
< LN
All the controllers are sturdy, but can be
damaged by dropping or abnormal usage. In
patrticular, the joy stick can be worn out with ex-
cessive pressure on the stick as it is pushed and
pulled. The joy stick will work with light pressure
on the control, and will not woik faster or better
with heavy pressure.

185

.A.lgorithm—A step-by-step method used to solve
aproblem.

ATARI—-A microcomputer made by Atari, A
Wamer Communications Company.

Basic. (Beginner’'s All-Purpose Symbolic In-
struction Code)—The most popular language
used with microcomputers, and fairly simple to
use.

Brain—The central processing unit and memory
bank which make up the intemnal circuitry of
the ATARI computer.

BREAK message—The message displayed on the
screen, after the BREAK key is struck, describing
the line location where the program was
stopped.

Bugs—Mistakes that a programmer can make
while writing a program.

BYE—The programming command that allows
BASIC to be exited and puts ATARI in the Memo
Pad Mode (400. 800 models) or in the Testing
Mode (XC models).

Cassette tape recorder—A device used to store
information from the computer memory, or to
send information to the computer memory.

CLOAD-The programming statement used to
load data from the cassette tape recorder into
ATARI's memory.

COLOR-The programming statement that allows
the color of graphics to be changed.

Complement—The opposite of a question or sign.
For example, < isthe complement of > .

Computer-Assisted Instruction (CAI)—Using
computers for teaching purposes.

Computer language—Sets of symbols used to
communicate with the computer.

CONT—The command that allows ATARI to con-
tinue after it has been stopped because the
BREAK key has been pressed.

186

Conversion—Changing one type of information
to another type. For example, changing a
measurement in feet to its equivalent in inches.

Conversion equation—The program equation
used to change one type of information to
another.

Counter—A program technique to keep track
of the number of times a loop has been
executed.

Counter-controlled loop—A programming loop
that can be executed for a specified number of
times.

CSAVE—The programming statement used to
save data from ATARI's memory to the cassette
tape recorder.

Cursor—The square of light appearing on the
television screen marking the location where
data will next appear.

Cursor control keys—The keys which allow the
cursor to be moved around the screen without
erasing what is written on the screen.

Data—Information. Also a programming state-
ment. See READ-DATA.

Debugging—The process of getting rid ot pro-
gram mistakes.

Decision box—The diamond-shaped box in a
flow chart that represents a decision to be
made.

Delete—Tells the computer to erase a character
orline.

DIM—A program statement used to reserve (di-
mension) a specified number of characters to
be used with string variables.

Direct or Immediate Mode—A state of computer
operation in which a statement is executed im-
mediately. (e.g. PRINT 5+ 6 would immediately
print 11 after the RETURN key is pressed.) This
contrasts with a Delayed or Program Mode in
which instructions are not executed until a pro-
gram is run.

Disk drive—A device used to store information
from the computer memory, or to input infor-
mation to the computer memory.

187

Documentation—Using REMARK statemenits to
note and clarity what is happening in a
program. :

Double-alternative decision step—A situation in
a flow chart in which there are two “‘detours””
from a decision box.

DRAWTO—The programming statement used to
draw lines in the graphics mode.

Dummy data—Data that is read as a signal that
the READ-DATA pointer is at the end of the
DATA list.

E (exponential) notation or floating point nota-
tion)—A way of representing very large or very
small numbers.

END—The program statement that tells ATARI a
program run is completed.

ERROR messages—ATARI's way oftelling you that
the computer does not understand what you
want it to do.

Filename—The name given to a program as it is
saved to a storage device, like the disk drive.
The filename can be any combination of eight
letters and numbers, but must begin with a
letter.

Flow chart—A diagram which shows all of the
steps of an algorithm in the correct order.

Flow diagramming—The process of illustrating
program components in a clear, step-by-step
fashion.

FOR-NEXT—A program statement that allows
counter-controlled loops to be made.

FOR-NEXT time loop—A loop using a FOR-NEXT
statement that causes a pause in the printing of
output on the screen.

Function—Certain operations that are done au-
tomatically, like a built-in small program.

Function keys—Keys which control the mechan-
ical operations of the keyboard such as shift,
delete/back space, break, and return.

188

GOTO—The program statement that directs the
computer to jump to a specified line in the
program. :

GRAPHICS—The programming statement that
places ATARI in the Graphics Mode.

Graphics keys—The keys which allow graphics
symbols to be made.

Graphics mode—The state of operation in which
graphics can be produced.

Home—The position in the upperleft cormner otthe
screen where the cursor starts, or returns to un-
der certain conditions.

IF-THEN—A program statement used to make
comparisons and establish conditional
situations.

Immediate or Direct Mode—An operational
state of the computer in which statementstyped
on the screen are executed immediately when
the RETURN is pressed. These statements do not
have line numbers.

INPUT—A program statement that allows data to
be typed into the program while the program is
running. Also, data or information that goes
into the computer from the keyboaid, cassette
recorder, or disk drive.

Insert—Creates space within a line to allow the
addition of new or cornrected material.

INT—The program function used to create whole
numbers, or integers, in a program.

Integers—Whole numbers; without fractions or
decimals.

Interactive program—A program that allows in-
put to be typed into the program while it is
running.

Keyboard—The part of the computer used to
type in information (input) to the computer
brain.

189

Letter keys—The alphabet letter keys.

Line number—Any number from 1 to 32767
which preceeds a program statement.

LIST—The programming command that tells
ATARI to display on the screen any program in
memory.

LOADD:. filename—The programming statement
used to load data from the disk drive into
ATARI's memory.

Loop—A program situation, represented by an
arrow in a flow chart, in which a certain step is
repeated over and over.

Memo Pad Mode—The operating mode that
ATARI enters after the BYE command has been
given (on older models).

Memory—The part of the computer which stores
information for future use.

Microcomputer—A compact portable computer
suitable for school or home use. (Looks much
like a typewriter keyboard.)

NEW—The program command used to erase
unwanted programs from the computer’s
memory.

Number keys—The keys which control the nu-
merals on the top line of the keyboard.

Output—Information put out from the computer
to external devices (television screen, printer,
tape recorder unit, or disk drive unit).

PLOT—The programming statement that allows
a point to be placed at a specified location.

Pointer—An electronic device that marks the lo-
cation of the data being read from a DATA list.

PRINT--The program statement that tells ATAR] to
print something on the screen. The output
printed may be letters, numbers, equations, the
results of arithmetic calculations, etc. (A ques-
tion mark, ?, may be used as an abbreviation
for the PRINT statement.)

190

Print zones or fields—Areas on the screen in
which information is printed.

Processing box—The rectangular shaped box in
a flow chart that represents ‘'something to be
done.”’

Program—The set of directions that tells a com-
puter what to do.

Program or Delayed Mode—An operational
state of the computer in which statements typed
on the screen are placed in the computer’s
memory when RETURN is pressed. These state-
ments must have line numbers, and are stored
in memory as part of a program until ATARI is
given the RUN command.

Programmer—The person who writes computer
programs.

Random numbers—Lists of numbers that are in
no particular order.

READ-DATA —-Two programming statements that
work together making it possible to place data
in a program as it is typed on the keyboard.

READY—The signal printed on the television
screen when ATARI is ready to receive input.

REM—A program statement used to place clarity-
ing notes (rtemarks) throughout a program. Re-
marks are not executed as part of the program.

RUN—-The command that tells the computer to
execute or 'do’’ the program.

SAVE D. filename—The programming state-
ment used to save data from ATARI's memory to
the disk drive.

Screen—A television or monitor used to display
the information from the computer.

Screen editing—Feature of the ATARI which al-
lows you to correct the text on the screen.

SETCOLOR—The programming statement that al-
lows the color of the screen, text window, and
graphics to be changed.

Single-alternative decision step—A situation in
aflow chartin which thereisone “'detour’’ from
a decision box.

191

SOUND—The programming statement used with
ATARI to make sounds and music.

Special symbol keys—These are keyssuch as +,
—. %, =,,;, . etc.

Statement—An expression in the BASIC lan-
guage that tells the computer to do some-
thing (GOTO, PRINT, FOR-NEXT). (*'Com-
mand’’ and ‘‘statement’’ are often used
interchangeably).

STEP—A program statement that allows counter-
controlled loops to be counted in a certain pat-
temn (e.g. by fives, tens, twenties, etc.)

STOP—The programming statement used on a
numbered line within a program to stop a pro-
gram run.

String or alphanumeric variable—A variable
that consists of letters, numbers, or special char-
acters (=, $, etc.).

Style—Using a variety of techniques to develop
easy-to-read programs.

Text window—The lower four lines of the screen
in graphics mode that allows text to be dis-
played with graphics.

User friendly—A program that is easy to use.

X.coordinate—The first number in a PLOT state-
ment that specifies the column position.

Y-coordino:te—The second number in a PLOT
statement that specifies the row position.

192

Addition e 38, 40
Address e e 74
ADVANCE e e 31
Algorithm 47, 141
Alphabetize 128
Alphanumericvariable 116
Animation e 169
BASIC. e e e 10
Blnk e 106
Body e e e 91
Brain e e e 4
Break. e 13, 26
Breakkey e 109
Brightness e 172
Bugs e 112
Bye e 111
Bytes e 163
Calculator e 39
Capslowr e 14
Cassette e e e e e e e 4
Cassetterecorder 29, 30
Cledr e 33
CledrsCreen v v v i vt i e 102
CLOAD e 33
Coding e 143
Colons 86, 103
Color(C) e 163
Commas v 41, 69, 77, 86, 120
Comparenumbers,. 46
Complement 124
Computer errors e 113
Computerlanguages 10
CONTreturn i i 109
Contents 74
Conversion 149
Conversionequation 180
converts e 92
Corrections 16
Counter 34,91, 100
Countervariable. 99
Counter-controlled loops 90
CSAVE e e, 32
CUISOT e e e e 11
Cursorcontrol. e e 12

193

Data 76
Data statement 132, 138
Datatable. 141, 175
Debugging 113, 143
Decimal equivalents 87
Decisionbox 53
Decisionstep 60
Delete 16, 112
Dimension.......... 115, 135
Direct. 39
Diskdrive 30, 34
Diskette 30, 35, 37
Diviston 38, 40
Documentation. 130
Doubledetours. 55
Double-alternative decision step 56
Drawto (DR) 166
Dummy 136
Enotation 87
Electronic mailboxes 74
End 24, 68
Equation. 67
Emrormessage 15
Errornumbers 15
Error-6 135
Emmor-8 138
Errors. ... 113
Fields. 69
Floating-point notation 87
Flowchart. 48
Flowdiagramming 47
For-nextloop 91, 90, 100, 137, 150
Fornexttimeloop 103, 106
PunctionKeys. 8
Games 174
GOTO 25, 62, 68, 106, 156, 170
Graphics. 8. 25, 160
Graphics 1. 160
Graphics2. 160
Graphics3. 162
Graphics 7. 162
Heading 150
Home. 13
Itthen 121, 136
Immediate mode ' 39
Inputbox 132
Inputstatement. 118
Inputvariables 141
Input 25,117,120

194

INT . . e e e 153
Integer e 153
Interactiveprogram o oo 117
Keyboard e 5 6
Let e 74, 86
Letstatements0 0. 81
Letters e 7
Linenumber 22, 26
Linethickness. 162
LIST . . . e e 33,110
Load e 33
LOAD ™D o e e e 36
LOOp e 59, 61, 67
Loud e 156
Loudness. e 158
Lowercase. 14
Makeadecision, 46
Mathematicalgames, 174
Memopadmode 111
MEeMOTY o it e e 12, 16, 63, 74
Memorycell e 74
Microcomputer e 4
Modes e 62
Multiplication, 38, 40
Negative numbers. 87
New e 20, 22, 26
Note e 156, 157
Numbers. e e 7
Numericvariable 115
Onoffswitch 10
Output 25,76
OQutputvariables 141
Parenthesis 40, 44, 155
PAUSE e e 31
PLAY e 31
Plot (PL) e 164
Powers 38, 40
Print. 24, 25, 61, 86, 120
Printzones. 69
Processingboxes. 50
Program e 20
Program errors i e 113
Programmode, 63
Programvariables., 141
Programming. 121
/S 39
Quotationmarks L L 79

195

Randomnumbers 152

Readbox 132
Read statement 132, 138
Readdata. 132
Read-data statements. 144
Ready 10, 32
REC. 31
Recreationalgames. 174
Reload 36
Remark 130, 144
Return, 12, 26, 171
Reversefield 13
Revising 144
REWIND 31, 32
RND 152
Run........ 24, 25, 26, 63
RUNreturn 109
Save 33
SAVE™D 36
SCreen 4
Semi-colon 69, 77.79, 119
Sefcolor 171
Shiftkey 12
Simulation 152, 174
Single-alternative decision step 54
Skipaline........... 104
Sound (SO.) 156, 173
Spacebar. 12
Special symbolkeys. 9
Squareroot, 38, 40
Startandstopbox 50
Stepstatement 96
STOP/EY 31
Stringvariable 115
Style ... 130
Subtraction 38, 40
Systemkeys 14
Textwindow 161
Timer. 169
Tone 156, 158
Tracing, 143
Typingmistakes 15
Usererrors. 113
Userfriendly 174
Variable, 75, 76, 82
Voice. 156, 157
Writing 22
X-coordinate 165, 169
Y-coordinate 165
196

MORE!

An Atari for Kids
Activity Workbook

Complete with 91 tear-out worksheets to go with each chapter of the student text, AN ATARI
FOR KIDS workbook provides practice and reinforcement for skills learned. Most of the activities

can be done as seat work without the computer, and students will need the computer only to check
their work.

ISBN 0-88056-124-6 91 worksheets 216 pages/100illustrations
$5.95

An Atari for Kids
Teacher’s Guide

The teacher’s guide features 91 worksheets, complete with answers. Additional information and
hints for teachers are provided. Information on how to convert the material for other brands of
microcomputers and how to use the curriculum is also discussed.

ISBN 0-88056-109-2 91 worksheets 90 pages
$14.95

NOTE: For every 25
copies of AN ATARI FOR KIDS
student texts ordered, receive
one teacher’s guide free!

—————— ——— i S D S S S i G W S S S S G A S S —— U S S S I S —— SRAS M S S S G G S S S G G S S S S E—— —— S

BILLTO: SHIP TO: (if other than bill to)
Name: Name:
School: School:
Address: Address:
City, State, Zip City, State, Zip
Phone number Date P.O. No.
___ An Atari for Kids, ISBN 0-8856-123-8
Student Text $9.95
An Atari in the Classroom
Activity Workbook $5.95
An Atari in the Classroom
Teacher's Guide $14.95

Check here if your order is over 25
copies of An Atari for Kids to receive
a free copy of the teacher’s guide.

Mail order to: dilithium Press To expedite your order, phone 800-547-1842

P.O. Box 606 or (inside Oregon 646-2713
Beaverton, OR 97075

AN ATARI FOR KIDS is written by teachers who want to
teach school-age kids computer operation and program-
ming in BASIC. Using an individualized, self-paced ap-
proach, this book encourages kids to be creative program-
mers while learning good programming techniques.

Full of illustrations and activities to make the learning
process fun, AN ATARI FOR KIDS is written for the 4th to
8th grade student. It focuses on problem solving, improved
thinking skills and creativity. 18 activity worksheets are
included to make this a fresh, instructive and fun ap-
proach to learning programming.

AN ATARI IN THE CLASSROOM: Activity Workbook and AN
ATARI IN THE CLASSROOM: Teacher’s Guide are available
to accompany AN ATARI FOR KIDS.

216:.1.2.3
0
4507

8700995
ISBN 0-8805k-123-8

i
>>%9.95] dilithium Press
PROGRAMMING

