Af Atzr
=011
J1411)

COMPUTING

)\
)\

THE A

PAPERCLIP

“The * I Best Selling Word Processing
Package”
— BILLBOARD’S computer software chart

“... by far the best word processor ever
available for the Atari” — ANTIC

® [diting features include Block Move,
Copy and Delete, Global Search and
Replace

® [nter repetitive words, sentences, or
paragraphs instantly with Macro Command
® [dit two files simultaneously and
transfer text between documents using
Dual Text Windows

® Automatic Page Numbering, Table of
Contents, Headers and Footers

® Editing screen extends up to 130
columns wide and scrolls in any direction
® Print Preview displays formatted text
exactly as it will be printed

® Automatically saves files as you write
NEW! SPELL PACK FOR THE 130XE
WITH A 36,000 WORD DICTIONARY
WITH ON SCREEN WORD SEARCH.

B/GRAPH
“Graph-generating and statistical analysis
... we recommend B/Graph! — INFOWORLD

® graph up to three factors with 100 data
points each

= choose pie charts, line and area graphs,
2 and 3 dimensional bar charts and more
® convert instantly between graph types
without re-entering data

® full screen editor, multiple grid and
graph scaling, automatic labelling,
overlays, “slide show” capability

B statistical analysis functions include
standard deviation, variance, Chi-square,
regressions, plotting and many more

® reads and writes to VisiCalc DIF — use
VisiCalc files with B/Graph and vice-versa
® compatibile with most popular printers,
printer cards, interfaces

R
X0
AT

BATTERIES
INCLUDED

Complete with printar tiles
for il major printers
Auwomutically genaratas

&Tuble of Contonta ‘

RATERIES BN INCLUDED
n~

A BDI:‘(HIM Wnlmml.
Froctiieg ot
G LOAS)N {rm"ﬁ]
W PILING SYSTEM
Enplesh santences

BATTERIES INCLUDED, an I'TM company, 30 Mural Street, Richmond Hill, Ontario, Canada, L4B 1B5 (416)881-9941, Customer Information (416)881-9816.
If you can't find this product at your local retailer, you may order it direct from us at the full suggested list price plus $5.00 for postage and handling. For
product orders please call 1-800-387-5707 (U.S. only). For most Batteries Included products you can always have the latest version of your program by
returning the original disk and $10.00. Write to us for our full color catalog of products for the APPLE, APPLE MACINTOSH, ATARI, ATARI ST,

COMMODORE, COMMODORE AMIGA, AND IBM SYSTEMS.

1986 Batteries Included. APPLE, APPLE MACINTOSH, ATARI, ATARI ST, COMMODORE, COMMODORE AMIGA, AND IBM are registered trademarks
respectively of APPLE COMPUTERS INC., ATARI CORPORATION, COMMODORE BUSINESS MACHINES INC., AND INTERNATIONAL BUSINESS MACHINES INC.

Some features may vary with computer system used.

*AS COMPILED FROM NATIONAL RETAIL SALES REPORTS FOR WEEK ENDING JANUARY 5, 1985

ORCE

HOMEPAK

“... inexpensive, powerful, integrated
software. As such, HomePak is the winner of
InfoWorld’s Best Buy Award.”

— INFOWORLD MAGAZINE

“...quite simply, the best ... the highest
rating possible.” — ANALOG COMPUTING

Three easy-to-use programs on one disk:

1. HOMETERM TELECOMMUNICATIONS
® Puts you in touch with bulletin boards,
public databases and on-line services

® Powerful user-defined Macro facility —
log on to your favorite service or bulletin
board with just one command

® Store up to 10 macros per document
® X-Modem protocol, the virtual on-line
standard

® Download files of any virtually any
length

® Flexible data handling — save incoming
text to disk, edit it, print it

2. HOMETEXT WORD-PROCESSOR

® Over 20 full-screen editing and
formatting features: move & copy,
word-wrap, justification, automatic paging
and many more

® What You See Is What You Get
(WYSIWYG) — screen is an exact
representation of the printed page

® Supports most major printer functions
including boldface, underlining and
extended characters

3. HOMEFIND DATABASE MANAGER

® Natural English-language data
entry/retrieval system for simplified
electronic filing

® [ncludes the key search/sort functions,
flexible queries, easy output commands
and sophisticated Report Composer

All three HomePak programs reside in
memory together — it’s easy to transfer
data between them and perform integrated
tasks.

Integral
Solutions

An Atari 8-bit
Extra

from

The publishers of

N COMPUTING

1987

ANALOG Computing Worcester, Massachusetts

This volume, from the publishers of ANALOG
Computing, is dedicated to 8-bit Atari

users everywhere, and to the readers who have
contributed so much to our success and to the
Atari Adventure.

Copyright-© 1987 ANALOG 400/800 Corp.

All rights reserved.

No portion of this book may be reproduced in any form without the written permission of the
publishers. Most programs are copyrighted and are not public domain.

Printed in the United States of America.
ISBN #0-914177-01-X

ANALOG Computing magazine (ANALOG 400/800 Corp.) is in no way affiliated with Atari. Atari is a trademark of Atari Corp.

APPLICATIONS

GENERAL

GRAPHICS

TUTORIALS

UTILITIES

15

27

31

37

43

49

53

63

65

69

75

81

91

93

107

113

121

125

129

CONTENTS

MIL EAIfOT oo srossmpnesrsosssmmmmansessonnmmons Clayton Walnum

The machine language typing checker for use with programs in this volume.

Hi-Score Display Kevin Peck

Here's a handy program to record your scores for posterity.

Create-a-base C.F. Fogarty, Il

The perfect “groundwork” for you to design databases to fit your own needs.

SQUEEZE David Plotkin

Keep the advancing bricks from taking over in this fast Action! game.

SUFACE BURN 5 sre ss vammmen s s 658 enaammm s s ¥ fe6nne David Plotkin
This tutorial-and-game will help you see what Action! can do for your programs.

Spy Plane Il Mark Comeau

Takes our original one step further. Can you save the world this time?

Reversi Paul T. Sprague
This Action! strategy game lets you choose from three modes of play.

LEWHINOWEE oo oo csmmms s s a3 d008#4E 56 oDl 6E & Paul Tupaczewski
Keeping Atariville neat isn't easy. You'll need land mines just to keep ahead.

TrVia . Jan lverson
This how-much-esoterica-do-you-know? game lets you design your own versions.

Invasion Il Jerry Lemaitre
As an Anthort, you'll use mystic Fyreballs to keep your planet from alien destruction.

Dragon Chase David Huff

Quick reflexes won't be enough to win your lady; dig into your inner resources.

Kiehs ferfioVal ;s issnsssncoemmmmisseasésampmas s su Chuck Rosko
You must scrub the reactors clean of fission-inhibiting krebs.in time to avoid meltdown.

Integer BASIC Barry Green
This program teaches your XL BASIC integer math, for more speed.

Tactics. Dave Pettit
The compleat resource: how to become a Star Commander Class 1.

PEASIEIS 7 1.5 2001 & e e s s 1 o0 8 8 o) 2 POENTIRE 8 2 8 BOEVUIRT 4 David Plotkin
This Action! program will mesmerize you with its ever-changing pastel tints.

CGM . David Castell

Castell's Graphic Manager—windows, icons and trackers in a GEM-like interface.

Display List Mod, Mark Andrews

How to use more than one graphics mode on-screen, plus a demo title screen.

A Pointed Note Barbara Donovan
Tailored file management programs are easy, with this POINT and NOTE tutorial.

PassWord Jim Ehninger

Here's a simple-to-use way to bar most unwelcome visitors from your files.

DU TOZDY . o 515 im0 0 1 s il o 580 4 8 D0 0D o 6 Donald E. Glover

A screen dump routine for the Atari 1020 printer and examples of its use.

Easy Type Gary Heitz

Programmable and programmed keys, to make typed-in listings more accurate.

UTILITY

M/L Editor

For use in machine language entry

by Clayton Walnum

M/L Editor provides an easy method to en-
ter our machine language listings. It won't al-
low you to skip lines or enter bad data. For
convenience, you may enter listings in mul-
tiple sittings. When you're through typing a
listing with M/L Editor, you'll have a com-
plete, runnable object file on your disk.

There is one hitch: it’s for disk users only.
My apologies to those with cassette systems.

Listing 1 is M/L Editor's BASIC listing.
Type it in and, when it’s free of typos, save
a copy to disk, then run it.

On a first run, you’'ll be asked if you're
starting a new listing or continuing from a
previously saved point. Press S to start, or
C to continue.

You'll then be asked for a filename. If you're
starting a new listing, type in the filename
you want to save the program under, then
press RETURN. If there's already a file by that
name on the disk, you'll be asked if you wish
to delete it. Press Y to delete the file, or N
to enter a new filename.

If you're continuing a file, type in the name
you gave the file when you started it. If the
program can't find the file, you'll get an er-
ror message and be prompted for another file-
name. Otherwise, M/L Editor will calculate
where you left off, then go on to the data en-
try screen.

Each machine language program in ANA-
LOG Computing is represented by a list of
BASIC data statements. Every line contains
16 bytes, plus a checksum. Only the numbers
following the word DATA need be con-
sidered.

M/L Editor will display, at the top of the
screen, the number of the line you're current-
ly working on. As you go through the line,
you'll be prompted for each entry. Simply
type the number and press RETURN. If you
press RETURN without a number, the default
is the last value entered.

This feature provides a quick way to type
in lines with repetitions of the same number.
As an added convenience, the editor will not
respond to the letter keys (except Q, for
“quit”). You must either enter a number or
press RETURN.

4 ANALOG COMPUTING

When you finish a line, M/L Editor will
compare the entries’ checksum with the
magazine’s checksum. If they match, the
screen will clear, and you may go on to the
next line.

If the checksums don’t match, you'll hear
a buzzing sound. The screen will turn red,
and the cursor will be placed back at the first
byte of data. Compare the magazine listing
byte by byte with your entries. If a number’s
correct, press RETURN.

If you find an error, make the correction.
When all data’s valid, the screen will return
to grey, and you'll be allowed begin the next
line.

Make sure you leave your disk in the drive
while typing. The data is saved continuously.

You may stop at any time (except when you
have a red screen) by entering the letter Q for
byte #1. The file will be closed, and the pro-
gram will return you to BASIC. When you've
completed a file, exit M/L Editor in the same
way.

When you've finished typing a program,
the file you've created will be ready to run.
In most cases, it should be loaded from DOS
via the L option. Some programs may have
special loading instructions; be sure to check
the program’s article.

If you want the program to run automati-
cally when you boot the disk, simply name
the file AUTORUN.SYS (make sure you have
DOS on the disk).

That’s M/L Editor. Use it in good health. &

The two-letter checksum code preced-
ing the line numbers here is not a part
of the BASIC program. For further in-
formation, see the BASIC Editor II, in
issue 47.

Listing 1.
BASIC listing.

AZ 18 DIM BF (163 ,NS(4),A8¢1) L,BS (1) ,F$(15)
LF i1 DIN MO

MODS (4)
BN 28 LIME= 1880 :RETRN=155:BACKSP=126:CHKS
6:? "Htart or

UM=8:EDI
38 GOSUB 450:POSITION 16

4
@ontinue? *;:GOSUB 500!4 CHRS (A)

ZH
ac

HZ 560 OPEN 11
:RETURN

gepsosx;gou 10 B" “FILENAME*'; :INPUT F
EB IFGhEI(FS)(l THEI POSITION 28,10:?

40
68 IF FS(I 2)()"D " THEN F1$="D:":F1$(
3) FS

F
80 IF CHRS (A) =*'5" IHEN 120
98 TRAP 430:0PEN 4,0,F15:TRAP 118
168 FOR X=i TO lg:GET H2,A:NEXT H:LINE

2, 9 9,F1$:60T0 170
,8,F15:GOSUB 448
:? "FILE ALREADY EXISTS

6
130 POSITION 10,12:? “E ﬁSE IT? *;:605
UB 5e0:P0 752,1:? CHR

149 IF CHRS(Q)‘"N" OoR CHRS(“)'"D“ THEN
CLOSE #2:GOT
150 }§QCHRS(°)()"V“ AND CHRS (A) Ovy" 1

HEN
160 CLOSE #2:0PEN nu2 F15

170 GOSUB 450:P0SI TTIoN’ 16 ERINOH ON |
" LINE:CHKSUN=8

180 L1-5iC0R Hoi 10 16: POSITION 13X
1) +12% 012 9) , K42 : POKE 752, YTE

PN3": "M iGOSUB 318

%382}F EDXT AND L=8 THEN BYTE=BF (X):60

2080 BYI ‘U L (NS>

261 MO

210 POSITIOI 22,K+2:? BYTE;" *

220 BF () =BYTE : CHKSUM=CHKSIMtBYTEXK: IF

CHKSHH)9999 THEN CHKSUM=CHKSUHW-1808@
NEXT H:CHKSUM=CHKSUMtLINE:IF CHKSU

N 9999 THEH CHKSUM=CHKSUN-18008

240 POSITION 12,K+2:POKE 752,0:? "“CHEC

KSUM: :L1=4:GOSUB 310

250 IF EDIT AND L=0 THEN 276

268 C=VAL (NS)

278 POSITION 22,K+2:? C;* 4

288 IF C=CHKSUM THEN 308

290 GOSUB 440:EDIT=1:CHKSUM=0:G0T0 18@

300 FOR =1 TO 16:PUT #2,BF (K) :MEXT X:

LINEZ-LINE+10:EDIT=0:G0T0 176

310 L=0

320 GOSUB 598 IF A=ASC("Q") AND K=1 AN

D NOT THEN 42

330 IF a()REYRI AND A{YBACKSP AND (A4

OR _a> HEN 328

331 IF RETRN NS="" THEN N$=MODS
335 IF QZRETHN AHD L=8 AND X>1 YNEN 35

340 IF ((A-RETRN AND NWOT EDIT) OR Q=B
ACKSP) GND L=8 THEN 320

350 IF A=RETRN THEN POKE 752,1:? " 'R
ETURN

368 IF A{>BACKSP THENW

370 IF L)1 THEN N5= NS(I L 1) :60T0 398
380 NSzt

3908 ? CHRS (BACKSP);:L=L-1:GOT0 328

408 L-L+1:XIF L)L1 THEN A=RETRN:GOTO 35

[}

410 NS(L)=CHRS(A):? CHRS(A); :GOTO 328
420 GRAPHICS @:END

430 GOSUB 440:POSITION 16,18:? "NO SUC
H FILE!":FOR K=1 TO 1808:MEXT X:CLOSE

#2:G070 39

440 POKE 710,48:S0LND 8 100 12 8:FOR X
=1 TO SO:NEXRT X:SOUND :RETURN
450 GRRPHICS 23 PGKE 16 i PDKE 53774
»112:POKE OKE

460 DL= PEEK(568)0256*?EEK(561)+4 POKE

DL-1,78:POKE DL+2,6

470 FOR X=3 T0 39 STEP 2:POKE DL#X,2:H

EXT X:FOR X=4 TO 40 STEP 2:POKE DL#X,8

:NEXT
um POKE DL+41,65:POKE DL#42,PEEK(568)
POKE DL"S PEEK(SEI) POKE 07
490 POSITION 2,8:2? “analog ml editor™:
POKE 5%59,34: RETURI
»4,0,"K:":GET #1,A:CLOSE n1

ATARI 8-BIT EXTRA

48K Disk

by Kevin Peck

I play a lot of games on my Atari. [used to keep a sheet
of paper at the computer desk, to jot down my high scores.
When things got crowded, I would write the current high
scores on a new paper and keep that one, until it too be-
came nearly impossible to read. Not anymore. I stopped
playing games long enough to write a custom database for
my high scores, one that will print out a clean list any time
I wish. It's a lot easier to read now.

To use Hi-Score Display, you’ll need to type in Listing
1, then check it with the BASIC Editor II (see ANALOG
Computing issue 47). Listing 1 will create four strings con-
taining the machine language routines used in the pro-
gram. Save the program to disk before running it, because
it will erase itself from memory, leaving the newly creat-
ed lines. These will be the only lines in memory. Enter
BASIC Editor II into memory and type in Listing 2. After
you've finished, you’ll have the complete Hi-Score pro-
gram. Save it to disk at this time.

You'll need nineteen free sectors in single density, or
ten in double density, to run the program. These sectors
are necessary for the actual game data. The size of the data
file, GAME.DAT, will never change. It’s set up to hold a
maximum of forty-two games, with three scores per game.
You’ll never have to worry about booting the program
without enough disk space to add new scores.

When you first run the program, it will create the blank
file GAME.DAT on the disk. This will take a few moments,
and will only occur the first time you run the program.
After the data file is created, the main menu will appear.

Next to the words OPEN and USED are two numbers.

ATARI 8-BIT EXTRA

APPLICATION

The number beside OPEN will be 42, and the number next
to USED will be 0. This means that no scores have been
entered; all forty-two are unused. The number next to
OPEN will decrease as you add games to the list; the num-
ber next to USED will increase. These two numbers ad-
ded together will always equal 42, the maximum number
of games per disk that the program can handle.

At this point, you're presented with six options. Right
now, we have no games in our list, so we need to add
some. We press the 1 key, for “Add New Games and
Scores.”

After pressing 1, you'll see the score entry screen. You'll
be asked to enter the program name, which may be up to
fourteen characters long. If you accidentally pressed 1
while in the main menu, and you really don’t want to add
any games to the list, then press RETURN to get back to
the main menu.

Back to adding games and scores. . .enter the program
name, then press RETURN. You may use any characters
you want, but the name must fit between the two arrows
above your typing area. If you try to type beyond the
fourteen-character limit, the program will ignore all ex-
tras. Of course, the name can be less than fourteen
characters.

After typing the program name, you’ll be asked for the
score. You're allowed three scores per game, and you may
enter them in any order. The program will sort them after
you've entered all three. Scores may be up to six digits
long, which allows for scores in the hundred-thousands.
I know of few games that go into millions of points, so
this should be more than adequate. The program will al-
low no more than six numbers for this entry, ignoring non-

ANALOG COMPUTING 7

- ®
E Hl—SCOI’e continued

numeric characters and commas, which it places automa-
tically.

The next data item is the game level at which you ob-
tained the score. Not all games have levels, so you may
just press RETURN to leave this field blank. You're allowed
two characters for the level, and only numbers are allowed.

Next, you'll be asked to enter the name of the person
who attained this score. The name is limited to five charac-
ters, but they may be whatever you wish. Five characters
allows for two initials, the ampersand (&) and two more
initials, for those times when two players cooperated to
get the score (five also happens to be the length of my first
name). You don’t need to enter all five characters. You may
want to stick to three, as most arcade games do.

You must enter at least one score per game. Hi-Score
will then prompt you to enter the second score. If you don't
wish to enter a second, press RETURN. If you do enter
the second score, you'll be prompted for the third.

Now that you've entered all the data for this game, you
have three choices. You may press the O key if all infor-
mation is okay. You may press A to abort this game. When
you hit A, you'll be asked if you're sure you want to abort.
If you press Y, this game won't be added to the list, and
you'll be asked if you have other games to add.

If you decide some of the information is incorrect, press
the C key, to correct the errors. The numbers 1-4 will ap-
pear on the right edge of the screen, indicating various
pieces of information. If you don’t wish to correct any of
the information, press the 0 key; otherwise, press the
number (1-4) that corresponds to the area you want to cor-
rect. If you do correct one of the scores, you’ll have to en-
ter all three pieces of data for that score. Press the 0 when
finished, and the scores will be sorted.

After pressing either the A or the O, you'll be asked if
you have more entries. If you do, press the Y, and the
screen will clear for your next entry. If you're done enter-
ing games, press the N key. All games will be sorted by
game name, then saved to disk. When this is done, you’ll
return to the main menu.

Now that we have some games in our data file, we can
explore some of the other options on the main menu. Let’s
go through the rest of the options, in the order they ap-
pear on the screen.

Option 2 allows you to update the scores of any games
on file. After pressing 2, you'll be presented with the game
selection screen. All games currently on file will be list-
ed to the screen. If you have more than twenty-one games,
they’ll appear in two columns. Valid keystrokes are shown
at the bottom of the screen. Press the X key if you wish
to return to the main menu without making any changes.

To select a game to update, move the arrow to the prop-
er name by pressing the arrow keys without holding down
the CTRL key.

When you've selected the game you wish to update,
press RETURN. The game selected will appear at the bot-
tom of the screen, and you’ll be asked to verify your
choice. Remember, you may press X at any time during
the selection process, to abort the operation and return
to the main menu.

8 ANALOG COMPUTING

Once you've verified your choice, a new screen will ap-
pear, showing the game’s current scores. You’ll be asked
for the new score. If you decide not to update the scores
after all, press RETURN. The new score doesn’t have to
be a new high score, but it must be greater than the third
score on the list. If there is no third score, any score will
be accepted.

After entering the new score, the Hi-Score program will
check to be sure it’s eligible. If not, you’ll be asked if you
want to re-enter the score or abort the update process.
Press the letter of your choice.

If the score is valid, you must enter the level and the
name of the person who obtained the score.

After entering the information, you’ll have three op-
tions: O for okay, R for re-enter and A for abort. If you
abort, you'll be asked to confirm with a Y or an N.

When the new score is correct, press O for okay. Hi-
Score will ask if you have more scores to update. If you
do, press Y. If not, press N. The new information will be
written to disk, then you’ll return to the main menu.

Option 3 allows you to delete a game from the list. ~ Af-
ter selecting the game to delete, you'll be shown the scores
on the screen. Type the word DELETE at the prompt. Any
other entry, including a RETURN alone, will abort the de-
letion process. If you delete the game, you’ll be asked if
you have more to delete. If not, the disk file will be up-
dated, and you'll return to the main menu.

Option 4 on the main menu allows you to view your
scores, six games at a time. The game names will be in
inverse video, to set them apart from the scores. There are
three valid keystrokes at this point. They are: M for menu,
P for previous screen and N for next screen.

If you're viewing the first screen of data and have more
than six games on file, the N will appear on-screen, in-
forming you that there’s more data in the file. You may
press the N key to view the next screen of scores.

The P key option will never appear on the first screen
of data—there’s no previous screen. It will appear on the
second screen of data and beyond. The N will disappear
on the last screen. Press the M key at any time to return
to the main menu.

Option 5 on the main menu presents you with a new
menu of four options. All options from this menu will send
output to the printer.

The program will ask if you're using a 40- or 80-column
printer. I added this option for ease of use with the Atari
1020 plotter. Most users will press E, to select 80-column
print. All printed reports will fit on a single 8Y2x11-inch
sheet of paper.

The next screen will show you the function selected and
ask you to check the printer. To cancel the option, hit A
for abort. If you're ready to print, press P. After the print
is complete, you'll be returned to the print menu. You may
choose another print function, or return to the main menu,
where the final option is “Exit Program.”

Technical notes.
I wrote four machine language routines for use in Hi-
Score Display. One changes a string of characters to in-
verse video. One fills lines on the screen with a chosen

ATARI 8-BIT EXTRA

character. The third pulls game names from the main data
string for fast display on the select game screen. The fi-
nal routine is a general-purpose, multi-key sort program.
I used the CIO routines presented in ANALOG Comput-
ing’s issue 13 for the high-speed disk reads and writes.
I also wrote a custom input routine for use throughout this
program.

The only place the screen colors are altered is in Line
10, so you may use any colors you like by changing the
POKE values. Since Hi-Score has custom input routines,
there’s no keyclick on any of the inputs. If this bothers you,
you’ll have to add some SOUND statements to the input
routines in Lines 20-200.

I've been using Hi-Score for over a year, making im-
provement as I went along. I hope you'll enjoy it. @

Kevin Peck is currently in studying Computer Science.
He’s been working on Ataris for four years, and is in the
process of reading every book on Atari machine language
he can get his hands on, in the hope of writing an all-
machine-language game.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

X 19 GRAPHICS O:POKE 82,2:PDKE 718,145

SP 28 7 1?7 17 “"NEW":? :7?

MB 38 7 ""I730 LFS‘“'CHR$(34),

BC 40 FOR I=1 TO 59%:READ A:? CHR5(27);CHR

. 5([AY;:!NEKRT I:? CHR5(34)

Us 58 7 "3748 SPS$="';CHRS$(34);

XJ 68 FOR I=1 TO 86: REnD 9'9 CHR%$ (273 ;CHR

. S(A);:MENXT I:? CHRS(

F5 78 7 3750 5P$(81)'"'CHR$(34)'

IL 88 FOR I=81 TO 165: REﬁD a:? CHR$(27) C

~ HRS5(A) ; :NEXT I:? CHR5(34)

¥C 98 7 "“"I768 RUS=';CHRS$(34);

£h 1886 FOR I=1i TO Z1:READ A:? CHRS$(27);CH
R5CA)Y ; :NEXKT I:7? CHR$(34)

OF 118 2 "3I778 MKS55="";CHR5(34);

F5 115 FOR I=1 TO 88:READ A:? CHR$(2?) CH

: R5(A) ; :NEXT I:? CHR%(34)

HO 128 7 “3I788 MKS5(81)="';CHR5(34);

U5 138 FOR I=81 TO 168:READ A:7 CHR$(27);
CHRS () ; :NEXT I:? CHR$(34)

ZI 148 2 “"I798 MKS5(161)=";CHRS(34);

IF 1560 FOR I=161 TO 19Z2:READ A:7 CHR$(27)
JCHR5 (€AY ; :NEXT I:? CHR%(34)

UB 160 ? "POKE 842,12:GR.B:L."

M5 176 POSITION 6,0:POKE 842,13:5T0P

NA 20600 DATA 1064,1064,101,89,133,2067,24,18
4,101,88,133,206,144,2,230,2087

TJ 2618 DATA 104,1064,170,164,1084,133,203,
104,1064,133,2064,104,104,133,2065,168

by 26206 DATA ©,165,205,145,206,2600,196,28
4,2068,249,202,208,1,96,24,165

RC 2038 DATA 266,161,203,133,2606,144,232,
230,207,208,228

LN 28640 REM ¥ 59 BYTES

ATARI 8-BIT EXTRA

0€ 1560 IF n(48 OR A

PZ 36080 DaTA 164,1064,133,206,1064,133,265,
164,104,133,208,1064,1061,89,133,204

Iz 3010 DATA 24,184,181,88,133,203,144,2,

230,264,104,104,133,207,104,164

K5 3620 DaTa 133,269,104,104,170,160,0,24

. 2177,2085,201,244,176,24,261,168

AF 3638 DATA 176,17,201,128,176,8,281,96,
176,12,2061,32,176,5,24,1085

HH 3848 DATA 64,144,3,56,233,32,145,2683,2
88,196,209,208,218,202,2068,1

XI 3658 DATA 96,24,165,205,161,208,133,26
5,144,2,230,206,24,165,2603,101

LE 3060 DATA 207,133,203,144,1%2,236,2064,

.. 208,188

.?J;KG?B REM ¥ 185 BYTES

ZX 4000 DATA 164,104,133,213,104,133,212,
. 160,0,177,212,9,128,145,212,2008

RR 4616 DATA 192,16,208,245,96

FZ 4020 REM * 21 BYTES

566868 DATA 216,104,1064,133,206,1064,133,

. 2065,104,133,215,104,133,214,1064,1084

5616 DaTA 133,2083,1064,104,133,2087,24,1
01,263,133,216,104,104,133,2068,1684

PP 5020 DATA 104,133,224,24,1061,2068,133,2
. 089,104,104,133,204,104,1064,133,225

HT 50636 DATA 165,215,133,1,56,165,214,229
. ,204,133,0,176,2,198,1,24

HT 5840 DATA 165,286,133,21%,165,2085,181,

. 204,133,212,144,2,230,213,164,2067

IV 5056 DaTA 177,205,209,212,240,4,144,53

,176,28,200,196,216,2068,241,165
P® 5666 DATA 208,240,46,164,224,177,285,2
. 99,212,240,4,144,32,176,7,200

1Y 5070 DATA 196,289,208,241,248,27,165,2

25,2088,23,1608,0,177,2085,72,177
' 5080 DATA 212,145,265,164,145,212,2680,
. 196,204,208,241,240,4,165,225, 208
5090 DATA 233,24,165,212,101,204,133,2
2+ 12,165,213,165,08,133,213,197,215

ZK 5100 DATA 288,172,165,212,197,214,208,

. 166,24,165,205,1061,204,133,2085, 165

. 5116 DaTA 266,165,0,133,2086,197,1,208,
1 134,165,265,157,06,268,128,96

AV 5120 REM ¥ 192 BYTES

Listing 2.
BASIC listing.
Mii 10 GOSUB I700:POKE 7069,CO:POKE 710,156

. 'POKE 82,C2:POKE C752,C1:POKE 712,144:
~ GOTO 3498

JB 20 PP=C1:A$=" ":ASC14)=" “:a5(C2)=A5:7

o ||) ‘.II-

AF 38 PDKE 782,C64:POKE 694,CO0:GET HC1,A:
"IF A>98 AND n(>126 AND n<)155 THEN 30

BT 48 IF A<32 OR (A=32 AND PP=C1i) THEN 38

£O0 50 IF A=155 THEN ? " ":A$=A$(C1,PP):RE
 TURN

IW 68 IF A=126 AND PP{DC1 THEN ? " &&_¢&v;
_ iPP=PP-C1:A%(PP,PP)=" ":GOTO 30

RB 70 PRINT CHRS(Q)'" €3 i AS(PP,PPY=CHRS(
A) :PP=PP+C1:IF PP)L THEN 26

SH 86 GOTO 306

0V 90 GET #C1,a:IF A<{>126 AND a<{>155 THEN

28

MR 188 IF A=126 THEN 68

KU 118 A$=AS(C1,L) :RETLRN

pu i2z8 PP=C1: Ns—u L4 ||> (-""DS‘".l"'

 DZvAL(DS)
¥G 130 GET #C1,A:IF A=155 THEN N$=N$(C1,P
Py:? u u;RETURN
FO 140 IF A=126 AND PP{)C1 THEN 2 " €&_¢n
. JiPPZPP-C1:NS(PP,PP)=" ";GOTO 130
$57 THEN POKE 694,C0:P

. DKE 7062,C64:G0TO0 136

ANALOG COMPUTING 9

’ [T =) °
) Hl-SCOI‘e continued

B 168 PRINT CHR&(A) ;" _€'";:NS(PP,PP)=CHR$
- (A :PP=PP+C1:IF PP>L THEN 180

188 GET #C1,4:IF A{>126 AND A<{>155 THE
N 186
198 IF A=126 THEN 148
260 RETURN

2106 I0=16%¥I0:I0CB=832+I0:POKE TOCB+2,1
 1:ADRHI=INT(ADDRES5/256) : ADRLO=ADDRESS
. “ADRHI*Z256
226 POKE IOCB+4,QDRLD:POKE IOCB+5,ADRH
I:HIZINT(BYTES/256) :LO=BYTES—-256%HI
- 230 POKE IOCB+8,L0:POKE IOCB+9,HI:I=US
R(ﬁDR("hhthUﬂ") I0):CLOSE 310/16 RETU
RN
240 JO=16¥IO0:TRAP 278:I0CB=832+I0:POKE
TOCB+Z,7:ADRHI=INT (ADDRESS5/256) : ADRLO
- —ADDRESS—-ADRHI¥Z56
F 258 POKE IDCB+4,ADRLO:PDKE IOCB+5,ADRH
- I:HIZINT(BYTES/256) :LO=BYTES—-256¥HI
- 260 POKE IOCB+8,LO0:POKE IOCB+3,HI:I=US
._.R(ﬁDR("hhthUﬂ") I0)
IR 2706 CLOSE HIO/16:RETLURN

¥B 2808 NS=NS(C1,PP-C1):TEMPS=N$

R 296 IF LEN(N§)>C3 THEN TEMPS$=N$(C1,LEN
(NSY-C3) : TEMPS(LENC(TEMPS)Y +1) =", "'TEMP5
e (LEN(TEMP$)+01) NS (LENIN$)-C2Z, LEN(NS))
¥Z 3060 RETURN
PC 318 ZZ-USR(LF,C40%YP+XP,LC,C406,C40,FB)
~ {RETURN

328 ZZ-USR(LF,C40%YP+XP,LC,C406,BL,FB):
RETURN
338 ZZ=USR(5P,TP,C56,YP*C40+XP,C40,14,
21) :RETURN
348 FILES="D:GAME.DAT"
- 358 SCRSS=" ":S5CRS5%(2352)="" ":5CR55(C2Z
):gCRSS:IDZZ:BYTES:2352:QDDRESS=QDR(SC
R5%)
366 ? '""KRi+iReading Data File....'":0PEN
. HC1,C4,CHO,"K:"
378 TRAP 386 OPEN #iCZ,C4,C8,FILES:GOSU
B 240:CLOSE HCZ:TRaAP 49886 GDTD 4008
386 7 "¥d¥iData File does not exist.":?
. "dCreating new Data File."
BI 396 CLOSE HCZ:TRAP 46600:0PEN HCZ,C8,C
8,FILES:GOSUB 218:CLOSE HC2

IM 460 FOR I=C1 TO 2352 STEP C56:IF SCRS%
C(I,I)='" " THEN NXKGM=I:POP :GOTO 420
: 410 NEHXT I:NHKGM=I
¥U 420 NHGM=INT (NHGM/CS6]
LU 438 7 'K HIGH SCORES -—
R Ill‘) III I-ISE

. [OPEN |'": TRAP 3618
ZW 440 2 " m il
o “:POSITION C3+(NKGM{C16),1:7 NXG

 M:POSITION I1+(4Z-NHGM<{18),1:? 4Z2-NXGM
JH 458 7 "didd fAidd New Games and 5c
. oresd"iz v Update Scores+'":POKE

. 16,112:POKE 53774,112

BN 468 7 IEM Delete Game from Filed':

N W View Scores on Screend':? "

. EEM Print File Menud"

g 47 7 M M Exit Program" :POSITION 2

.. ,28:7 “"Enter number of your choice >J*

s ’

‘DT 480 POKE 694,CO:GET #C1i,Aa:IF a<48 OR A
. >»54 THEN 488

AW 490 ON A-48 GOTO 5108,2280,2778,1540,30
38,5060

KN 508 7 "KRemove disk and store in a saf
e place.":POKE C752,CO:POKE 16,192:P0OK

E 53774,247:CLR :END

FI 518 IF WNXGM{42 THEN 58@

GG 520 7 "KiiUnable to add any more Games
- to list. There are no open areas.J"
‘¥YHM 536 ? "You have two options open to yo
u now. 1. Copy the Main Program onto a

nother disk and start a new '";

10 ANALOG COMPUTING

"JH 548 7 "list or 2. Deletesome of the Ga

558 ? " free up space. +é4m:2 vpress [|
[to return to Main Menu."
HR 560 IF PEEK(C?764)<{>18 THEN 560
RL 570 POKE C764,C255:G0TO0 438
D% 588 7 "R NEW GAMES TO LIST
":POSITION 13,5:7 RGO G GG A (C
G 1):69:n(CZ)=CB:ﬁtcx):CB:TLEUEL s "
598 POSITION 6,9:7 "EEALISE LEVEL

":SLEUELSZ“ i TNAMES=" ":S5SNAM
ES=" ":TSCORES$=" ":55CORES$=" "
ND 6060 YP=18:XP=0:FB=0:LC=6:GOSUB 3I18:P0S5
~ ITION 15,18:7 "k Een

KU 6065 POSITION 2Z,22:7? "Press RETURN only
... to Exit"
616 POSITION 2,19:? "Program Name ';:L

=14:GO5UB 28:GAMES= AS:IF AS=" " AND UP
"FLAG=8 THEN 1248
Ha 628 IF A%$="" " THEN POP :GOTO 1248

XM 638 POSITION C28-(LENCA%)/C2),C7:? AS
FU 648 FOR I=1 TO NXGM¥CS56 STEP CS56:IF a$
: =SCRSS(I,I+LENCAS)-C1) THEN POP :GOTO
- b6a

X 658 NEXT I:GOTO 736

660 GOSUB 3I10:POSITION 8,16:? "“This ga
me exists on file.":? "“"If you wish to

... update the ';

CH 678 ? "scores, use option 2 from the m
~ain Menu.4":? "Press M to Abortv:? u
n to Re-enter with new name."

688 IF PEEK(C764)<>63 AND PEEK(C764) {>

48 THEN 68@

290 IF PEEK(I(C764)=63 AND UPFLAG=C1 THE

; POP

PP 788 IF PEEK(C764)=63 AND DOWRITE=CS® TH

EN POKE C764,C255:G0TO 438

#J 718 IF PEEK(C764)=63 THEN POKE C764,C2

... 55:GOTO 130608

;nD§?28 POKE C764,C255:G0T0 516

PK 738 IF UPFLAG=C1i THEN RETLRN

GG 7406 GOSUB I10:POSITION 2,22:7 “Enter N
_umbers only. No comMmas."

Up 750 POSITION 14,18:7 "E3 E€":pPOSI
TION 2,19:7 "Enter Score '";:L=6:GOSUB
- 1206: SCORE$—N$ IF N$=" " THEN 7580

gGB ACLY=VAL (N5) :GOSLB 2808:S5CORES=TEMP
ﬂlég?ﬂ POSITION 13-LENCSCORES),11:? SCORE

'MF 786 GOSUB 3I16:POSITION 2,22:7 “Press R
: ETURK only if nDne.“'POSITION 14,18:?
: llﬁ:.; E(.u

790 POSITION 2,19:7 "Enter Level ";:L=
2:G05UB 128: LEUELS N$:IF N§=m v THEN L
,';EUELS_" 1]

RE 290 POSITION Z21-LENCLEVEL%)Y,11:? LEVEL

WY 810 GOSUB 310:POSITION 13,15:? nES
E€n;pOSITION 2,19:7 “Enter Name "j:L=
_5:GOSUB 28:IF TR e THEE Bi6
820 NAMES=AS:POSITION 27,11:? NAMES:IF
 "UPFLAG=1 THEN RETLRN
GM 830 GOSLUB I10:POSITION 2,22:7 “Optiona
.1 Information'":? “RETLURN only to leave

. blank";
UDp 840 POSITION 14,18:7 "k E€'":pOST
TION 2,19:7 "Enter Score ";:L=6:GOSUB

1201 SSCORES‘NS

SK 858 IF N$=" ' THEN SLEVELS=" ":S5NAMES=
" "iA(C2)=CB:IF UPFLAG=C1 THEN RETURN
N 868 IF N$='" " THEN 1878

Cﬁia?g ACC2I=VALCNS) :GOSUB 288:5SCORES=TE

- mp

IN ggg POSITION 13I-LENC(SSCORES%),13:? 55C0

KD 890 GOSUB 3I16:POSITION 14,18:7 "E» k¢

ATARI 8-BIT EXTRA

_ “:POSITION 2,23:? “RETURN only to leav

YK
UH

e blank';

900 PUSITIDN 2,19:? “Enter Level ";:ilL=
2:G05UB 126: 5LEUEL$ N$:IF NSz n THEN

SLEVELS$=" "

91g POSITION Z1-LEN(SLEVELS%),13:? SLEV
EL

920 GOSUB I10:POSITION 13,18:7 "k
E€":POSITION 2,19:7 “Enter Nawme ";:L=

 5:G0OS5UB 26

uy

~ IF UPFLAG=1 THEN RETLURN

GR
XL
vﬂ“

o

[hﬂ
oL
cB
-CH
up

YL
GT

PD
aG
aRr
HX

EZ
ER
oR
M
MN
ZT
5E
RU
M

CF
Ya

938 IF A%=" " THEN 920
948 SNAMES-AS:POSITION 27,13:? SNAMES:

958 GOSUB 3I16:POSITION 2,22:7 "Optiona

1 Information':? "RETURN only to leave

blank';

260 PDSITIDN 14,18:7 "k3 E€":POSI
~TION 2,19:7? “Enter Score ";:L=6:GOSLB
120: TSCORE$ N$
9708 IF N$=" ' THEN TLEVELS$='" '":TNAMES$=
v W A(C3II=CO:IF UPFLAG=C1 THEN RETURN

988 IF NS$='" " THEN 1670

290 A (CII=VALCNS) :GOSUB 280:TSCORES=TE
WP
1060 POSITION 13-LENCTSCORE$),15:7 TSC

ORE$
1016 GOSUB 3I18:POSITION 14,18:7? "k &

. €";POSITION 2,23:7 “RETURN only to lea
- ye blank';
By

: =2:G0SUB 120:TLEVELS=NS$:IF NS$=" ' THEN

18626 POSITION 2,19:? "Enter Level '";:L

TLEVELS$=" ©

183g POSITION 21-LENCTLEVEL%),15:? TLE
VEL
1646 GOSUB 3I18:POSITION 13,18:7 "k

E€":POSITION 2,19:7 “Enter Name "yl
=5:G0O5UB 26
1858 IF A%S=" ' THEN 108480

1860 TNAMES=A%:POSITION 27,15:7 TNAMES
:IF UPFLAG=1 THEN RETURN

1878 GOSUB I18:IF ACC1)>ACC2) AND A(CZ
I>ACCI) THEN 1216

1886 IF ACC1)>A(CC3I) THEN 1116

1898 T=A(C1):ACCLI=ALCI)I:ACCII=T:TEMPS
=TNAMES : TNAMES=NAMES :NAMES=TEMP %

1188 TEMP$=SCORE$:SCORE$=TSCORES:T5COR
ES=TEMPS: TEMPS=LEVELS:LEVELS=TLEVELS%:T
LEVEL$=TEMP%

11168 IF ACC1)>ACC2) THEN 1148

1128 T=ACC1):ACCLI=ALC2) :ALC2I=T:TEMPS
=SNAMES : SNAMES=NAMES : NAMES=TEMP %

1138 TEMP$=SLEVELS$:SLEVELS=LEVELS:LEVE
LS5=SLEVELS: TEMP$=55C0ORE$:55C0RES$=5CORE

- 5:SCORES=TEMPS

1148 IF ACC2)>ACC3) THEN 1178

1158 T=A(CC2):ALC2)=AC(CII :A(CII=T:TEMPS
=SNAMES : SNAMES=TNAMES : TNAMES=TEMPS
1168 TEMP$=SLEVELS%:SLEVELS=TLEVELS:TLE
VELS=TEMP%:TEMP$=55CORE%:55CORES=TSCOR

 ES:TSCORES=TEMPS%

1176 YP=11:GO05UB 3I10:YP=18:POSITION i3

-LEN(SCORES),11:? SCORES:POSITION 21-L

EN(LEVELS) ,11:? LEVELS

1180 POSITION 27,11:7 NAMES:POSITION 1

I-LEN(SSCORE$) ,13:? S5S5CORES:POSITION 2

1-LENC(SLEVELS) ,13:? SLEVELS

1156 POSITION 27 13:? SNAMES:POSITION

13-LEN(TSCORES%), 15'9 TSCORES$:POSITION

21—LEN(TLEUEL$J,15:? TLEVELS

12608 POSITION 27,15:7 TNAMES

12106 POSITION 2,19:2 " all Ok | C]

B correct Errors":? :7? " Abort"

1228 POKE C782,C64: POKE C694,CO0:GET #HC

i1,68:IF a{>C65 QND n<>?9 AND n()s? THEN
1228

1238 IF a<{>C65 THEN 12908

1248 GOSUB I10:POSITION 2,18:7 '""Ready

to ABORT'":? :? "Are you sure (Yes/No)

ATARI 8-BIT EXTRA

2 2 II-
1258 POKE C782,C64:POKE C694,CO0:GET HC
1,0:IF a{>C89 nND n()C?B THEN 12586
1268 IF A=C78 THEN YP=18:XP=-8:LC=6:FB=
8:G05UB 310:GOTO 1216
1276 IF DOWRITE=CHO THEN 438
1288 POSITION 2,18:7? "This entry aAbort
ed.":GOTD 140686
1290 IF a<{>79 THEN 1430
1368 YP=19:LC=5:G0S5UB 3I16:YP=18:LC=6:P
 OSITION 2,28:7 " Any more entries (Ye
5s/No)? ';
1316 POKE C7062,C64:POKE C69%4,CO:GET HC
1,8:IF a{>C89 AND A<{>C78 THEN 1318
"1328 I-NHGM*C56+C1:5CRSS(I,I+13)=GAMES
1SCRS5(I+21-LEN(SCORES), I+28) SCORES:S
CRS5$(I+23-LEN(LEVELS%), I+22) =LEVELS
1338 SCRSS(I+23,I+27)=NAMES:SCRS5(I+35
-LEN{S55CORES), I+34) =55CORES5:SCRS55(I+37
—LEN(SLEVELS%) ,I+36)=SLEVELS
1348 SCRSS(I+3? I+41)=5NAMES
1358 SCRS$(I+49 LEN(TSCORES) ,I+48)=T5C
ORES:5CRSS(I+51-LENCTLEVELS) ,I+50)=TLE
VEL$:5CRS5(I+51,I+55)= TNQMES
13608 NHGM‘NHGM+01 DOHRITE=C1
1378 IF a{>C89 THEN 1400
1388 IF NXGM{42Z THEN 51i6
1398 YP=19:LC=5:G05UB I10:YP=18:LC=6:P
DSITION 2,17:7 "All 42 spaces filled."
1486 POSITION 2,19:7 '"Saving all Chang
es t0o DiSk.....":? "X :DPOHRITE=08
1418 ZZ=USR(MKS5S,ADR(S5CRS5%5) ,ADR(SCRS5)+
NXGM*¥56,14,8,08,0,56,8)
14726 OPEN #82,8,0,FILES:BYTES=2352:ADDR
ESS:QDR(SCRS§):IO:Z:GDSUB Z18:TRAP 4068
BB:GOTO 436
1430 GOSUB I10:POSITION 2,18:7 "Hhich
to Correct 2 ":? :7? "pPress ICM if all
are correct.'";
14406 POSITION 33,7:7 “E¢ 1":POSITION 3
. Z,11:7 k€ 2":POSITION 3I3,13:? “k¢ 3
. POSITION 33,15:7 NEE 40

1456 POKE 0694 CO:GET HC1,a:IF A48 OR

- A>52 THEN 1450
1468 A=A-48:IF A=CO THEN 1878
1470 FB=B:YP=18:FB=08:G05UB 318
- 1480 UPFLAG=C1:XP=06:LC=1:FB=6:0N A GO5
U 1508,1516,1526,1536
| 14986 UPFLAG=CO:GOTO 1430
Ip;lSBO YP=7:G0S5UB I106:YP=18:LC=6:GOTO 68

YP=11:GOS5UB I10:YP=18:LC=6:GO0TOD 7
YP=13:GO5SUB 3I10:YP=18:LC=6:GOTOD 8
YP=15:GOSUB 318:YP=18:LC=6:GOTO 9

1540 7 "KR'":POSITION 16,08:7 "ENYETEN
SCDRES "} IF NHGM()CB THEN 1586

B 1559 ? "“44NO games on file to see.':?
}Press Il to continue"
B 1560 IF PEEK(C764)<>18 THEN 1568

1576 POKE C764,C255:GOTO 438
.. 1580 NX=C6:PR=C@a
1596 N=CB:POSITION 16,22:7 "l Henu';:I
E :Ké!HGM THEN POSITION 2,22:7 "I Mext
1698 PS5=C8:IF PR>C8 THEN POSITION 29,2
. 2:7 "EMrevious":P5=C1

} 1618 IF NX>NKGM THEN NH=NXGM

”iéggg H=C2:Y=C3I:FOR I=PR TO NX-Ci1:P=IX5
MM 1638 TEMPS=" " GAMES=SC
. RSS(P,P+13):!FOR Z=14 TO C1 STEP -C1
ZG?lgggBIF GAMES(Z,Z){>" " THEN POP :GOTO
MU 1650 NEXT Z
K¥ 16608 Q=C9-INT(Z/C2):TEMPS(Q,R+Z-C1)=GA

ANALOG COMPUTING 11

- e
)| Hl-SCOI'e continued

 ME$:U=USR(RV,ADR(TEMPS))

16708 POSITION X,Y:? TEMPS:POSITION X,Y

T +2:7? SCRSS(P+14,P+28) ;" ";5CRS55(P+21,P
- 4223 ;v “ISCRS5S(P+23,P+27)

1688 POSITION X,Y+3:? SCRS%({P+28,P+34)

' Y SCRSS(P+35,P+36) ;' '";SCRS5S(P+37,P

HD 1690 POSITION H,Y+4:? SCRS5$(P+42,P+48)

v VA SCRSS(PH49,P+58) ;" '} SCRSS(P+51,P
.. +55)

UR 1708 IF X=C2 THEN H=21:GOTO 17286

‘OF 1718 Y=Y+C6:K=C2Z

FJ 1728 NEXT I

IR 1730 POKE C702,C64:POKE C624,C0:GET HC

IF N=C8 AND A=C78 THEN 1738
oy IF P5=CB AND A=86 THEN 1738
GL 1760 IF A=77 THEN 438
GE 1770 IF N=C1 AND A=C78 THEN PR=NHX:NH=P
_ R¥C6:GOTO 1798
1788 IF PS5=C1 AND A=88 THEN MNX=PR:PR=P
R-C6:GOTOD 1798
1798 7 “K":POSITION 168,0:7 "N E0TEN
(T TS : GOTO 1528
1866 ? "K":POKE C752,C1:POSITION 8,8:7
. FO ST Tl ; TEMPS ; '
"

3 1816 XKP=CB:YP=CO:LC=23:FB=C128:BL=C1:G
.. 05UB IZ20:XP=3I9%:G0OS5UB 328

TV 1828 IF MNHGM{>C8O THEN 1878

HG 1838 ? "44No Games on file. LUse Option
.1 on the Main Menu to add games and s
- cores to file."

Wo 1848 2 "44Press ANl to Continue®

M 1850 POKE C702,C64:POKE C6%4,CB8:GET HC
. 1,8:IF a<{>67 THEHW 1858

K 1860 GN=CO:RETURN

GH 1878 HP=C4:YP=C1:TP=-ADR{SCRS%) :GOSUB 3

. Z8

Wil 18880 KP=2Z:TP-ADR(SCRS5%)+1176:G0SUB 33
o

B% 1898 HP=0:YP=22:LC=2:GOSUB I16:POSITIO

L yAralarrow Keys Move Pointeril
1968 POSITION 6,23:7 "RETURNEEEGES-T U1
o YN T cK=CZ2:¥Y=C1l:DX=CZ:DY=C1
B 1918 POSITION H,Y:? “z=3©v
{4 1928 POKE C7082,C64:POKE C6%4,C8:GET HC
- 1,08:IF A=88 THEN GH=CO:RETURN
RI 1938 IF A=155 THEN 26934
J¥ 1940 IF A=45 THEN DY=Y-C1:GOTO 20626
IF 1958 IF A=61 THEN DY=Y+Cl1:GOTO Z865a
£X 1968 IF A=42 THEN DX=C28:G0TOD 1398
NO 1970 IF A=4% THEN DXE=CZ:GOTO 1998
11 19806 GOTO 1926
> 1998 IF DX=CZ8 AND NHGM{ZZ THEN DH=CZ
286808 IF DX=CZ0 AMD Y>HHGM-CZO THEN DY=
HNHGM-21
' 206106 GOTO 2080
% 2828 IF DY{C1 AND X=CZ8 THEN DY=NXGM-2Z
e pl
R 2838 IF DY{C1i AND HX=CZ AND NHGM>Z1 THE
.. H D¥Y=Z1
' 2048 IF DY{C1 AND X=CZ THEN DY=MNXGM
20508 IF DY»>21 THEN DY=Ci
I 206080 IF DY>NXGM THEN DY=C1
2878 IF K=C20 AND DY>NXGM-Z1 THEN DY=C

1
2080 POSITION X,Y:? " '":X=DX:Y=DY:GOT
0 1919
0 2898 GN=Y:IF K=C20 THEN GN=GN+21
. 2180 TEMP$=SCRS5S((GN-C1)%C56+C1, (GN-C1
I%C56+14) :TEMPS(15)=" " :U=USR(RV,ADRC
TEMPS))
2110 XP=0:YP=22:LC=2:GOSUB 3I10:POSITIO
. N Z,22:7 "EEETIVIEITN'; TEMPS;
6P 2128 POSITION 0,23:2 "
. AT TYEE"; :POSITION 10,10:7
UM 2136 POKE C702,C64:POKE C694,C0:GET HC

12 ANALOG COMPUTING

" 1,A:IF a{>Cc78 AND A<>C89 THEN 2i30

2148 IF A=C89% THEN RETLURN

C 2150 YP=22:LC=2:XP=@:FB=128:G05UB 318:
POSITION 8,23:% "r Ll Select Differen
t Game

n e
7160 POSITION 10,10:7?
2170 POKE C702,C64:POKE C694,CO:GET HC

1,8:IF a{>*C65 AND A{>83 THEN 2170

P 2180 IF A=C65 THEN GH=CB:RETURN

HE 2190 POSITION X,Y:? " '":GOTO 1898
2280 TEMPS="{I:

'"":6GO05UB 18686:IF GH=

.. CO AND DOWRITE=CO THEM 438
22108 IF GN=CO THEN 14660
2220 GN=(GN-C1)*C56+C1
2238 GAMES=SCRS%(GN,GN+13) :SCORES=SCRS

S(GN+14,GN+28) : LEVELS=5CRS5(GN+21,GN+2

o 2):NAMEngCRSSKGN+23,GN+2?)
. 2248 SS5CORES=S5CRS5$(GN+28,GN+34) :SLEVEL

$=S5CRSS(GN+3I5,GN+36) : SHAMES=S5CR55 (GN+3
7,GN+41) : TSCORE$=5CRS$ (GN+42,GN+48)
2250 TLEVELS=SCRSS(GN+49,GN+58) : TNAMES

i:SCR5$(GN+51,GN+55J:TEMP§ZSCORE$(1 3

TEMPS (4)=SCORE5({5,7) :A(1I=VAL(TEMPS]

2260 TEMP$=SSCORE§(1,3):TEMP$(4):SSCDR

E5$(5,7):IF TEMPS="
g

" THEN TEMPS="

(X 2278 ACCZI=VALCTEMPS) :TEMP$=TSCORES(C1

sC3II i TEMPS(C4)=TSCORE$(C5,C7) :IF TEMPS
= " THEN TEMPS$="'@"
2280 ACCII=VALCTEMPS):? "R":POSITION 1

. 3,8:7 “Update Scores"
2298 TEMPS="

""IFOR Z=14
TO C1 STEP -C1:IF GAMES(Z,ZY{>" " THE

~H POP :GOTO 2316

2308 HNEXT Z

:u.2318 Q=C9-INTIZ/C2) :TEMPS(Q,Q+Z-C1I=GA
- ME$:U=USR(RV,ADRCTEMPS1)

2328 POSITION 12,2:7? TEMPS:POSITION 12

;417 SCORE%;"™ ";LEVELS;" ";NAMES

2330 POSITION 12,6:7 SSCORES;"™ “;SLEVE
L& ";SNAMES

Q0 2340 POSITION 12,8:7 TSCORES;"™ '';TLEVE

L%;'" '"; TNAMES

- 2358 POSITION 3,1z:? "“"EEHEALTSE | N
2360 HP=0:YP=Z0:FB=8:LC=4:G0SUB I16:P0O

SITION 2,22:7 “Press IJAMTTTN only to
exit"

2376 POSITION 2,28:7 "Enter Score ';:L
=6:G05UB 128:IF PP=Ci AND DOMWRITE=C8 T

.. HEN 43@
2388 IF PP=C1 THEN 2768
. 2390 ALC4I=VALINSI:IF ALC4)>ALCI) THEN

2468

24080 YP=20:LC=4:GOSUB I10:POSITION 2,2

@:7 “"Score "“;N5;" to low to be entered
1
Z418 POSITION 2,22:7 “"HGM Re-enter [|

M abort";

24728 POKE C702,C64:POKE C694,C0:GET HC

1,a:IF A{>C65 AND A<{>BZ THEN 2420

2438 IF A=C65 AND DOWRITE=CH8 THEN 430

U
H 24408 IF A=C65 THEN 2760

2458 GOTO 2368
2460 GDSUB 2808:USCORES=TEMPS:POSITION

__6,14:7 USCORES
Y 2470 GOSUB I16:POSITION 2,22:7 "Press
AT only to leave blank"'™

2488 POSITION 2,28:7 "Enter Level ";:L
=2:GOSUB 128:ULEVELS=N$:IF NS$=" ' THEN
ULEVELS%=" m

5 2490 POSITION 22,14:7 ULEVELS
25808 POSITION 2,20:GOSUB 318:7 "Enter

M;1L=5:G05UB 28:IF A%=" " THEN 25
UNAMES=A%:POSITION Z2,14:7 UNAMES

GOSUB 3I10:POSITION 2,28:7 "IN al
Il Re-enter":? :? “WM abort®

ATARI 8-BIT EXTRA

BR
GG
PE
PX
an

HI

MN
PG

IN
JL
™
BU

01
LH
HI
EI
GL
EH
Li

DH

HP
Zn
PD
Na
Le
SH
HE
BR
BZ
WT

'5538 POKE 7062,64:POKE 694,8:GET #1,a:TI

F A=65 AND DOWRITE=8 THEN 438
2548 IF aA=C65 THEN 2768
2558 IF A=82 THEN 2236

25608 IF A=79% THEN 2586

2578 GOTO 2536

25808 DOWRITE=Ci:IF A(C4){A(C1) THEN 26
18

2598 TSCORES=SSCORES:TLEVELS=SLEVEL%:T

NAMES=SNAMES:55CORES=5CORES: SLEVELS=LE
VELS:SNAMES=NAMES

2608 SCORES=LUSCORES:LEVELS=ULEVEL%:NAM
E$=UNAME%:GOTD 2640

2618 IF A(C43<A(C2) THEN 2638

2620 TSCORE$=SSCORES:TLEVELS$=SLEVELS:T
NAMES=SNAMES$:SSCORES=USCORES:SLEVELS=U
LEVELS:S5NAMES=UNAMES:GOTD 2648

2630 TSCORES=USCORES:TLEVELS$=ULEVELS:T
NAMES=UNAMES

2648 I=GMN:SCRSS(I,I+13)=GAMES:SCRSS(I+
21-LEN(SCORES%) ,I+28)Y=5CORE%$:5CRS55(I+23
-LENCLEVELS%),I+22)=LEVELS

2658 SCRS5(I+23,I+27)=NAME%:SCRS$(I+35
~LEN(5SCORES) ,I+34)=55CO0RE$:S5CRS5(I+37
-LEN(SLEVELS$) ,I+36)=SLEVELS%

2668 SCRSS(I+37,I+41)=SNAMES

26708 SCRSS(I+49-LEN(TSCORES),I+483=T5C
ORE$:S5CRSS(I+51-LENC(TLEVEL%) ,I+58)=TLE
VELS:SCRSS(I+51,I+55)=TNAMES

2680 KP=0:YP=4:LC=19:FB=0:GO5UB 316
2690 POSITION 12,4:? SCRS5$(I+14,I+28);
" N SCRSS(I+21,I4+22) ;" V;SCRSS(I+23,I+
27)

27806 POSITION 12,6:? SCRSS({I+28,I+34);
"N SCRSS (I35, I+36) ;" M;S5CRSS(I+37,I+
41)

2718 POSITION 12,8:7 SCRSS(I+42,I+48);
" MSSCRSS(I+49,I4508) ;" Y;SCRSS(I+51,I+
591

2726 POSITION 2,206:7 "Other Games to U
pdate (Yes/No) '';

27306 POKE C782,C64:POKE C624,CO:GET HC
1,68:IF a{>Cc89 AND A{>C78 THEN 2738
2740 IF A=C89% THEN 2260

2750 GOTO 1468

2760 XP=0:YP=18:LC=6:G0OSUB 3I16:POSITIO
N 2,18:7 "aborted.'":GOTO 2720

2778 TEMPS="[IJTATM":GOSUB 18808:IF GH=
CO AND DOWRITE=CO THEN 438

2780 IF GN=CO THEN 30628

2790 GH=(GN-C1)*C56+C1

2800 GAME$=SCRS$(GN,GN+13) :5CORE$=5CRS
S(GN+14 ,GN+28) :LEVELS=5CR55(GN+21,GN+2
2):NQME§=58R5$(GN+23,GN+2?)

2818 SSCORE$=S5CRSS$(GN+28,GN+34) :SLEVEL
$=SCRSS(GN+35,GN+36) : SNAMES=S5CRS5 (GN+3
7,GN+41) : TSCORES=5CRS5%(GN+42,GN+48)
2820 TLEVELS=SCRS55(GN+49,GN+58) : THAMES
=SCRS$ (GN+51,GN155)

2836 7 "“KR'":POSITION 13,8:7? '"Delete Gam
ell

28408 TEMPS=" '"":FOR Z=14
T0 C1 STEP -C1i:IF GAMES(Z,Z){>" " THE
N POP :GOTO 28680

2850 NEXT Z

2868 Q=C9-INT(Z/C2):TEMPS$(Q,R+Z-C1i)=GA
ME$:U=USR(RV, ADR(TEMP 53)

2878 POSITION 12,2:? TEMP$:POSITION 12
4:? SCORES;" '";LEVEL%;'" '"';NAMES

4

28808 POSITION 12,6:7 SSCORES;'" '";SLEVE
L&;" "';SNAMES

2890 POSITION 12,8:7 TSCORES;'™ ";TLEVE
LS " “;TNAMES

29608 POSITION 2,17:7 "“Type full word D

ELETE to delete this"
298% 7 “*‘game from the list.
lse willabort the process."

Anything e

ATARI 8-BIT EXTRA

TF
z0

Yd
JT
IT

| 2910 POSITION 2,21:L=6:GOSUB 28:IF AS5{

>"DELETE'"™ AND DOWRITE=CO® THEN 438

- 2928 IF A%<{>"DELETE" THEN 3620

2938 IF GN=2297 THEN 2956

29408 S5SCRS5(GN,2296)=SCRS55(GN+56,2352)
2958 TEMPS="

"iSCRS55(2297
;2318 =TEMP%

2968 SCRS5({2311,2324)=TEMPS%:5CR55(2325
;233BI=TEMPS:5CRS5$(2339,2352I=TEMPS:NX
GM=NKGM-1:DOMWRITE=1

2978 YP=17:LC=C7:FB=8:G0SUB I18:POSITI
ON 2,17:7 "Game Deleted."

2380 POSITION 2,21:7 '"Any more games t
o Delete (Yes/Nol) 7 ';

2990 POKE C782,C64:POKE C6%4,C0:GET #HC

1,a:IF A{>C78 AND A<{>C89 THEN 2998
FI
jzt

308668 IF A=C89 THEN 2770
3016 DOWRITE=CH:POSITION 2Z,21:7? “[Upda

_ting Disk File...":GOTO 1428

FC

30268 YP=17:LC=C7:FB=CO:G05UB 3I18:POSIT

. ION 2,17:7 "JProcess aAborted.'":GOTO 29
§o

ur
NO
co
vu
E

: 12 N

LK

Zy

IBIB ? "R":POSITION 15,8:7 "HIGH SCORE

":POSITION 14,2:7 44"

3048 7 "W all Games with Scoresdd":?
"I all Games with Top Score onlydd"

3050 72 "JEM List of Game Nawmes Onlydd"

IEW Return to Main Menu"

3066 POSITION 2,21:7 "“Press number of

your choice >H';

3078 POKE C694,CO:GET HCL1,a:IF a{49 OR
A>52 THEN 30760

3080 F-A—-48:IF A=52 THEN 438

3896 POSITION 2,21:7 “[ME@Mourty or IEH

_ighty Column Printer';

Ev

HH
QL

KL
EN

31668 POKE C782,C64:POKE C694,C8:GET HC
1,0:IF a<>78 AND A<>69 THEN 100

31168 CLM=80:IF A=70 THEN CLM=48

3128 ? "R":POSITION 12,8:7? "Function 5
elected'":0N F GOTO 3136,3146,3156

3136 POSITION 7,2:7 "Print All Games w
ith Scores":GOTO 3166

3148 POSITION 3,2:7 "Print All Games w

ith Top Score 0Only'":GOTO Ii66

3156 POSITION 4,2:7 "Print List of Gam

e Names On File"

3166 POSITION 2,6:7 "Please be sure pr

. inter is ON-LINE and ready to print."

BA
E;Gc.,ION §,13:7 "MW aAbort print"

3176 POSITION 8,11:7 "M Print":POSIT

3186 POSITION 2,17:7 "Press Letter of

Choice >N';

NK

HH

PL

BY
BT

KI
EOQ

32680 GAMES=S5CRSS$(P
1 STEP -C1:IF GQME§(Z,Z)()" '"" THEN POP

- 3278 NEXKT Z:POP

31%0 POKE C7082,C64:POKE C694,C0:GET HC

1,A:IF A{>C65 AND A<{>88 THEN 3190

3286 IF A=C65 THEN 3836

3218 TRAP 3I520:0PEN HC4,C8,CO,"P:":TEM
ps=n ":POSITION 2,17:7
"OPrinting...."

32286 ON F GOTO 3238,33708,3478

3238 5=112:51=C1:? HC4;TEMPS(C1,C6);:

- F CLM=88 THEN ? HC4;TEMPS;TEMP5(C1,C4)

;3 195=224:51=C3
3248 ? HC4;'"LIST OF ALL GAMES WITH 5CO

. RES5":? HC4:7? HCA

32568 FOR I=C1i TO NHKGM*CS56 STEP S:FOR MW

. =CO TO S1:P-WXCS56+I:IF P>2352 THEN POP

1?7 HC4:GO0TO 298
P+13):FOR Z=14 TO C

:GOTO 3280

1?7 HC4:GOTOD 3296

32806 TEMPS=" "iQ=C9-INT
(Z/C2) :TEMPS(Q,R+Z-C1)=GAMES:? HC4;"
Y";TEMPS; i NEXRT MW:? HC4

3298 FOR MW=CO TO S1:P-WX*C56+I:IF P>235
2 THEN POP :7 HC4:GOTO 3316

3386 7 HC4;" ":SCRS55(P+14,P+C208) ;"
iSCRSS(P+21,P+22) ;" "“;SCRSS(P+23,P+27)

ANALOG COMPUTING 13

- [
b Hi-Score continued

tNEXT H:? HCA4

310 FOR W=CO TO S1:P-WXCS56+I:IF P>235
2 THEN POP :? HC4:GOTO I3I30

3328 7 HC4;" HiSCRSS(P+28,P+34) ;" v
SCRSS(P+35,P+36) ;" ";SCRSS(P+37,P+41);
. tNEXT MW:? HCA4

3338 FOR MW=CB TO S1:P=WX*C56+I:IF P>235
.2 THEN POP :? HC4:GOTO 3350

3348 7 HC4;" MiSCRSSI(PH42Z,P+48) ;" v
SCRS5(P+49,P+58) ;" ";SCRSS(P+51,P+55);
- INEXT H

3350 7 HC4:7 HC4:NEXKT I:? HCA

- 33608 CLOSE HC4:GO0TO 0830
- 3378 5=112:51=C1:7 HC4;" m::IF CLM=
80 THEN ? HC4;" L
- 5=224:51=C3

3388 7 HC4;'"LIST OF ALL GAMES HWITH TOP
SCORE':? HC4:7? HCA

398 FOR I=C1 TO NXGM*CS6 STEP S5:FODR H
CO TO S1:P=WXC56+I:IF P>2352 THEN POP
1?7 HC4:GOTD I430

 I400 GAMES=SCRSS$(P,P+13):FOR Z=14 TO C
21 STEP -C1:IF GQMEg(Z,Z)()" " THEN POP

~ 1GOTO 3426
3410 NEKXT Z:? HC4:POP :GOTO 34306
3428 TEMPS=M "iQ=3-INT(

Z/C2):TEMPS(Q,RQ+Z-C1)=GAMES:? BC4;"

M TEMPS; :NEXT W:? HC4

- 3430 FOR MW=C8 TO S1:P-WXC56+I:IF P>235

2 THEN POP :GOTO 3458

- 3448 7 HC4;" ":SCRSS5(P+14,P+C208) ;"

JSCRSSCP+21,P+22) ;" "“;5CRSS(P+23,P+27)

.3 *NEXKT H

456 ? HC4:7? HC4:NEXT I:? HC4

- 3460 CLOSE HC4:GOTO 3IB3I0

3470 5=112:51=C1:7 HC4;"

~LM=88 THEN ? HC4;"

W:15=224:51=C3

3480 7 HC4;"LIST OF GAME NAMES ON FILE

17 HC4:7 HCA

3498 FOR I=C1 TO NXGM*CS6 STEP S:FOR W

=C8 TO S1:P-WXCS56+I:IF P>2352 THEN POP

: :GOTO 3518

DM 3500 7 HC4;" "iSCRSSIP,P+13); :NEXT W

i '? HC4:7 BC4:NEXT I:? HC4:CLOSE HC4:GO0

TO X836

35106 7 HC4:7 HC4:NEXKT I:? HC4:CLOSE HC

4:G0TO 3636

3520 A=PEEK(195):7? "“K4+J4ERROR kK23 ";Q:7?

.+ 17 (CLOSE HCA4

3538 ? "“The Printer is not responding.

, tBe sureit is on and in an on-line sta

i e-ll

RH 3548 IF aA<>1308 AND Aa<{>138 AND A<{>139 T

~ HEN ? :?7 “This error wmight not be the
printers fault. Check program."

EL 3556 ? :? “Error occured in line ";PEE
K(186) +tPEEK(187)%C256

‘WF 3568 7 :? “HIM Main Menu IEE Print M

i enu'’

UI 3578 ? :? "“"Press letter of choice >H';
‘POKE C764,C255

TJ 3580 IF PEEK(C764)=Ci8 THEN POKE C764,
C255:GOTO X8I0

RU 3590 IF PEEK(C?764)=37 THEN POKE C764,C

i 255:G0TO 436

UG 3660 GOTO 3586

Wl 3618 A=PEEK(195):? "“"K44ERROR E3';

i N LINE ";PEEK(186)+PEEK(187)%C256

tPOKE C752,CO:POKE 16,192

€M 3628 POKE 53774,247:IF a<>138 aAND a{>1
38 aND a<>13% aND a<{>140 aAND Aa{>142 AN
D A{>143 aND a<{>144 THEN 36486

UN 3638 ? "The problem seems to be with t
he disk drive. It is not responding pr

: operly. Check drive.":END

WX 3648 IF A=169 THEN ? "The directory on

the disk is full. No room for the dat

w3 iIF ©

a;" I
1? 1?

.
?
2

14 ANALOG COMPUTING

JH

50
PD

a file.":END
3658 IF A{>162 THEN 3686

{P 3660 ? “There is not enough room on th
e disk

6y

for the data file. You need at
least 19 free sectors in 5ingle ";

3678 7 “or 16 free sectors in Double

DPensity.'":END

3680 IF A=167 THEN ? "The data file is
locked. I am unable to update the inf

ormation.":END

36908 ? "Please Check manual for explai

nation of error.":END

3768 DIM USCORES(?7),ULEVELS5(2),UNAMES(

"5),D$(1)§SCR5$(2352),SCORE$(?) GAMES (1

D&

4) ,LEVELS(2) ,NAME$ (5) n$(14),N§(6)
3716 DIM FILES(lB),RU§(22),TNAMES(S),T
EMP$(16) ,A(4) ,55C0RES(7) ,TSCORES(7),5L

. EVEL%$(2) ,TLEVEL$(2),5NAMES (5)

MM
0y

3728 DIM SP5(185) ,LF5(61) ,MKS55(192)
3808 RVU=ADRCRVS5) :SP=ADR(SPS$) :LF=ADR(LF

- $) :MK5=ADR (MK5%)

b
256:C42=-42:C694=-69%94:C702=7062

ou

Ba

3818 CO=0:C1=1:C2=2:C3=3:C4=4:C5=5:C6h=
6:C7=7:C8=8:C9=9:C18=108:C255=255:C256=

3820 C16=-16:C208=20:C764=764:C56=56:C65

. T65:C82=82:C89=89:C78=78:C64=-64:C40=40

1C752=752:C128=128
3838 RETURN

ATARI 8-BIT EXTRA

48K Disk

by C.F. Fogarty, III

Create-a-base is a versatile file and retrieve program that
allows you to easily define your own personal databases.
It has facilities for creating databases, adding new records
to a database, updating records already on your database,
searching on multiple key fields, and simple reporting.

Before we go into explanations of how to use Create-a-
base, here’s a quick overview of some common database
buzzwords.

A byte or character, is the smallest piece of data that
Create-a-base deals with. It's a single character, like the
letter A.

A field is a collection of bytes and usually contains data
pertaining to a single subject or item, like a name or ad-
dress.

A record is a logical collection of fields. For instance,
a record in a database called Phone Book, might contain
the following fields: name, street, city, state, zip code and
phone number.

A file (in this case, the database) is a collection of
records.

A database is merely a collection of related data, usually
in multiple files. Large mainframe databases can share
data between files, avoiding the need to enter all the fields
for each record or entity. However, this type of data shar-
ing is beyond the scope of Create-a-base. Remember, most
of us (I have an Atari 800) have only 48K of RAM built
into our computers. It's this fixed amount of memory that’s
the main limitation when working with a database.

ATARI 8-BIT EXTRA

| APPLICATION

1)

Limitations.

The input area for each record is limited to a single
graphics 0 screen. You can enter up to sixteen fields per
record, and each field can be up to 31 bytes long. This
gives you a maximum record size of 496 bytes.

31 bytes X 16 fields - 496 bytes
field record record

The size of each database is limited only by the capaci-
ty of your disk drive and a single disk. A 1050 drive using
DOS 2.5 will hold a database one and one-half times the
size that an 850 drive will hold. It’s also important to note
that, the smaller you define your records, the more records
you can fit on a disk.

Typing Create-a-base.

The instructions below should be followed exactly to cre-
ate your copy of Create-a-base.

Type in Listing 1, using the BASIC Editor II (in issue
47 of ANALOG Computing) to verify your work. Be sure
to save a backup copy.

Place a disk containing DOS in drive 1, and run the pro-
gram created from Listing 1. Two files, ML1.LST and ML2.
LST, will be written to your disk. Leave this disk in drive
1 until all the steps below have been completed.

After clearing your computer’s memory, type in Listing
2 using the BASIC Editor II to verify your work. Be sure
to save a backup copy. Run the program created from List-
ing 2. Two files, AUTORUN.SYS and CHSET.PMG, will
be written to your disk.

After clearing your computer’s memory, type in Listing

ANALOG COMPUTING 15

i)
) | Cl‘eate-a-base continued

3 using the BASIC Editor II to verify your work. Save a
copy to disk.

Load the program created from Listing 3 into memory
and merge the file ML1.LST by typing ENTER “D:ML1.
LST” and pressing RETURN. Save the resultant program
to disk under the filename CREATEAB.ASE.

After clearing your computer’s memory, type in Listing
4 using BASIC Editor II to verify. Save a copy to disk.

Load the program created from Listing 4 into memory
and merge the file ML2.LST by typing ENTER “D:ML2.
LST” and pressing RETURN. Save the resultant program
to disk under the filename SORT.

Getting started.

Once you’ve typed in all the listings (no simple task)
and created a master disk, boot your system with the
Create-a-base master disk in drive 1. The main program
loads automatically and prompts you to insert your data-
base disk. Since this is your first time using Create-a-base,
remove the master disk and insert a blank disk (no need
to format it first). Once you’ve done this, press START,
and Create-a-base will inform you that this isn’t a valid
database disk. Press Y to format it.

Now you can define your first database. Here’s an exam-
ple everyone can use. At the prompt for Database Name,
type Phone Book and press RETURN. Note: remember to
press RETURN after all entries, or Create-a-base will ig-
nore that input. Next, it will ask you for a LABEL; enter
NAME. Now Create-a-base will ask you to define the size
of the field for NAME, enter 25. This gives you an input
area of 25 bytes for NAME. When you press RETURN
Create-a-base does some processing on your input and
prints the label NAME to the screen, followed by twenty-
five underline characters. Meanwhile, you're prompted in
the status window. Press OPTION to define the next field,
or press START when the whole record is defined. This
time, press OPTION and use the following list to complete-
ly define your Phone Book record:

LABEL FIELD SIZE CONSOLE KEY
STREET 25 OPTION
CITY 25 OPTION
STATE 2 OPTION
ZIP CODE 5 OPTION
PHONE# 16 START

Once you've pressed START, Create-a-base does some
processing and writes to the disk. When it’s done, you’ll
have a database disk called Phone Book and Create-a-base
will go into the “add records” mode.

The next time you boot the Create-a-base master disk,
insert this database disk at the prompt, and Create-a-base
will go directly to the add records mode.

Using the edit screen.

To add records to the database, simply type in the per-
son’s name and press RETURN. The cursor automatically
moves down to the street field and so on. . . When you've
entered all the data for the first record, press START and
you've written the first record to your Phone Book!

Advanced editing.
Pressing RETURN alone, without typing any text, moves
the cursor down to the next field and leaves that field

16 ANALOG COMPUTING

blank. However, if any text was on that line (as in update
mode), it will be erased. Pressing SELECT allows you to
move the cursor to the next field without erasing any text.

The OPTION key changes modes. There are five modes
—add, search, update, report and create. By pressing OP-
TION five times, you can cycle through each mode. In all
modes except create, the screen looks exactly the same,
except for the “mode” in the status window. In create
mode, pressing OPTION will bring you back to the add
mode, while pressing START takes you to where you de-
fined your database. If you accidentally press START,
when you meant to press OPTION in create mode, press
ESCape to return to the edit screen. Normally, while edit-
ing, you press START only when you're done editing the
record on the screen. It tells Create-a-base to process your
input.

Searching a database.

To search the database for a certain record, press OP-
TION until you're in search mode. Then type in the in-
formation you want to search for. Remember to press
RETURN dfter each field you enter, and press START to
begin the search. For example, if you wanted to search for
Charles Fogarty, you could enter Charles Fogarty, Fogarty,
or even F.

Create-a-base will search the database until it finds a
match or comes to the end-of-file. If it finds a match, the
record prints to the screen and prompts you to Continue
(Y/N). Pressing Y continues the search, and any other key
brings you back to the edit screen (still in search mode).
You can then search for different records. By the way, if
you don’t type in any information for Create-a-base to
search with before you press START, it defaults to all
records, so everything’s a match.

You can also search on multiple fields. So, if you want-
ed to find everyone with a last name of Fogarty, who lives
in Hartford, with a zip code of 06118, you could enter that
information in the appropriate fields (name, city and zip
code), and then press START. Only those records match-
ing all three fields will show up on the screen.

Reporting.

Report mode works exactly like search mode, except all

the output goes to the printer.

Updating records.
Update mode also works like search mode, until it finds
a matching record. Once it finds a match, you can make
any changes to that record displayed on the screen. Press
START and the new, updated record is written to the data-
base. The old record is written over by the new one. To
delete a record completely, press CTRL-D.

Creating new databases.

Create mode was used to create your Phone Book data-
base. You define labels and fields to create new and differ-
ent databases. Remember, you can only put one database
on a disk. If you try to create a new database on the same
disk as Phone Book, it will erase the old Phone Book data-
base and start a new one. You may, however, create as
many different databases as you want, as long as they're
on separate disks.

ATARI 8-BIT EXTRA

Other functions.

Pressing CTRL-P with a printer attached will print out
the data currently displayed on the screen. This is some-
times called a “screen dump.”

Pressing CTRL-S (for Sort) will prompt you to press OP-
TION to resume editing, or press START to sort the data-
base. Remember to insert the Create-a-base master disk
before pressing START, because the sort program is sepa-
rate from the editor.

Once the sort program’s running, it will read the whole
database, sort it, and write it out to a new disk. So, after
the sort, you'll have two copies of that particular database,
the original and the sorted version. This gives you a back-
up copy, in case of any problems during the sort (like a
power outage). The sort also gets rid of any “deleted”
records and recovers lost disk space. These ‘“deleted”
records are still taking up space on the disk, even though
they don’t show up when you search.

A small database (one that can be sorted completely in
RAM), takes a minute or two. The disk I/O takes consider-
ably longer than the sort itself. Sometimes a large data-
base won't fit into RAM all at once (only 48K), so I tried
to use the available memory as efficiently as possible.

After reading and writing the database in blocks (ap-
proximately 25K on my system), Create-a-base reads the
database a second time. This time it notes the position
of each record on the disk and keeps only the sort field
and pointers. Then it sorts the pointers and reorganizes
the file on the disk. This pointer sort allows you to sort
files much larger than your main memory could possibly
hold. The sort program will also scale down the length
of the sort field, to accommodate a very large database.
What this means is, if the number of records multipled
by the sort field length is greater than the number of
records that will fit in RAM, the sort will systematically
make the sort field 1 byte smaller, until all the records fit
into RAM. A worst case would be that the sort field was
only 1 byte long. The records would still be sorted in al-
phabetical order, only with less precision.

The following is a list of possible databases:

Phone Book Bowler Stats Sports Stats

NAME 25 TEAM 25 TEAM 25
STREET 25 NAME 25 NAME 25
CITY 25 DATE 8 NUMBER 3
STATE 2 SCORE#1 3 etc...

ZIP CODE 5 SCORE#2 3

PHONE# 16 SCORE#3 3

Articles Disk Catalog Home Inventory
MAGAZINE 25 DISKNAME 25 LOCATION 25
TITlE 31 FILENAME 12 SERIAL# 25
AUTHOR 25 TYPE 10 DATE 8
MONTH 9 AUTHOR 25 DESCRIPT 31
YEAR 4 COMMENTS 31 VALUE ¥
PAGE# 4

DESCRIPT 31
Subroutines.

Create-a-base has a number of relocatable machine lan-
guage routines which can be used in other BASIC pro-
grams.

MATCH$S checks if two BASIC string variables are equal.
Call it with: X=USR(ADR(MATCH$), ADR(the first vari-
able), ADR(second variable), LENGTH(to compare). It com-

ATARI 8-BIT EXTRA

(1-51)
(52-64)

(52-91)

SCHEMAS$

boot program.

to check for valid

cb disk.

display

for accidental

boot.

(92-106) database name
15 characters
(107-108) number of
fields in
use.
MAX. 16
(109-140) length of corresponding
field.
MAX. 31
SECTOR #2
1 2 3 4 5 6 7 8
1l]A A B B CC DD
olE EF F 498
7|L ABE L # 0 1
25(L A B E L # 0 2
33|L ABEL # 0 3
41|L A B E L # 0 4
49|L A B E L # 0 5
57|L AB E L # 0 6
65|L A B E L # 0 7
73|L ABE L # 0 8
8L A B E L # 0 9
89(L A B E L # 1 0
97|L A B E L # 1 1
05(L A B E L # 1 2
1M13|L A B E L # 1 3
21|L A B E L # 1 4

SECTOR #1
1 2 3 4 5 6 7 8
1
9
17 boot
o5 program
33
41
49 r: -
57)e - s e
65 (9 8
7315 € . F F o
81|g a r t vy [
89| I Yol g gy
97(5 6 7 8 8 ABGC
105(D E 16 0 0 1 1
113|2 2 3 8 4 4 5 5
21|16 6 7 7 8 8 9 9
(141-143) record size
MAX. 496 bytes
(145-272) label for each field
8 bytes each.
MAX. of 16 labels
SECTOR #3
12 3 4 5 6 7 8
1lL ABEL # 1 5
9/L A B E L # 1 6
17
25
33 reserved
4 fuft?Jrre
49 expansions.
57
65
73
81
89
97
105
113
121
ANALOG COMPUTING 17

e
3 Create-a-base continued

pares from left to right and returns 0 if they’re equal, or
1 if they don’t match.

Note: it considers underline characters as wildcards (al-
ways a match).

MOVEMEMS$ moves memory. Call with: X=USR(ADR
(MOVEMEMS$),FROM,TO,number of bytes to move, ADR
(CONVERTS$)). ADR(CONVERTS$) is optional —if used, it
converts ATASCII to screen display code (what you see on
the screen).

PARSES$ checks for valid input. Call with: X=USR
(ADR(PARSES$),IN,TYPE) where: IN is an ATASCII value
(like GET #1,IN); TYPE = ASC(‘A”) checks for alpha-
numeric; or TYPE = ASC(“N”) checks for numeric. The
values returned in X are: 0 = invalid input; 1 = backspace
was pressed; 2 = RETURN was pressed; and 3 = valid
input.

SCANKBS$ scans the keyboard and console keys. Call
with: X=USR(ADR(SCANKB$)). It exits to BASIC when
a key is pressed. The values returned in X are: 1 = a key
was pressed; 2 = OPTION was pressed; 3 = SELECT was
pressed; and 4 = START was pressed.

SECTORIOS$ reads/writes disk sectors. Call with: X=USR
(ADR(SECTORIO$),sector number,operation, ADR (buffer)),
where sector number is any valid sector, and operation is
ASC(“R”) for read or ASC(“W”) for write; the buffer must
be at least 128 bytes long.

SORTS$ is a bubble sort in machine language. It’s not the
best sort in the world, but it will sort 25K in about one
minute. It sorts on one key field, which can be a maxi-
mum of 255 bytes long. The records can be any size. Call
with: X=USR(ADR(SORTS$),ADR(file),number of records
to sort,record length,sort-field length,starting position of
the sort-field within a record). It returns 0 for success, or
nonzero when invalid parameters are passed to it.

STRIP$ strips trailing underline characters from a string
variable. Call with: X=USR(ADR(STRIP$),ADR(string),
LEN(string)-1)). The string must be at least 2 bytes long.
It returns the position of the last nonunderline character
in X.

Well, that’s it. Go forth and Create-a-base. &

C.F. Fogarty worked in OP operations at Aetna for six
years and is now a software programmer trainee. He
bought his Atari 800 in 1982, and his CompuServe 1.D. is
74206,3453. He'’s married, has a son and enjoys trout fish-
ing and trail riding.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

28 GRAPHICS 8: PDKE 718,8:7 “PLACE FORM
 ATTED DISK IN DRIVE":? "THEN PRESS RET

18 ANALOG COMPUTING

LURN":INPUT L5:0PEN 8#1,8,08,"D:MLL.LST"
30 L£S1780 CONVERTS=':LS (LENCLS) +1)=CH
R5(3I4) :N=29:G05UB 2108:G0SUB 220

40 L$-9798 DLIS="":LSC(LENC(LS$)+1) =CHRS(3
4) :N=24:G0OSUB 210:GOSUB 220

58 L5="'795 MATCHS=":L$(LEN(L5)+1)=CHRS$
(I4) ;N=4Z:GOSUB 218:G05UB 228

68 L5="'868 MOVEMEMS=":L5(LEN(L5)+1)=CH
R5(34) :N=99:GOSUB 218:G05UB 228

708 L5="885 MOVEMEMS(188)=":LS(LEN(LS)+
1)=CHR5(I4) :N=19:GOSUB 2108:G05UB 228
88 L5="828 PARSES=":LS{LEN(L5)+1)=CHRS
(34) :N=57:G0OSUB 210:G0SUB 220

98 L5="'858 SCANKBS=":LS(LENIL5)+1)=CHR
$(3I4):N=35:G05UB 210:G0SUB 228

188 L5="855 SECTORIOS=":LS{LENCLSY+13=
CHR5(34) :N=31:G0S5UB 2108:G0SUB 220

116 L5="868 STRIPS='":L%$(LENCLS)+1)=CHR
$(3I4):N=30:G0OSUB Z18:GOSUB 220

120 L5="1858 SCHEMAS=":LS (LENCLS) +1)=C
HR5(Z4) :N=74:GOSUB 210:GOSUB 228

138 CLOSE H1:0PEN #1,8,08,"D:ML2.L5T"
140 L$="585 SORTS=":L% (LENCLS)+1)=CHRS
(I4) :N=74:G0OSUB 210:G0S5UB 228

150 L$="518 SORTS(75)="":L5 (LENCLS)+1)=
CHRS(34) :N=?5:G0SUB 210:GOSUB 228

168 L$=""515 SORTS(150)="":LS(LENCLS) +1)
=CHR$(34) :N=75:G05UB Z218:G0OSUB 228

178 L5$="528 SORTS$(225)="":LS(LENILS)+1)
CHR$(34) :N=75:G0SUB 218:G0OSUB 228

188 L5=""525 SORTS(3I00I=":LS(LENILS5)+1)
CHR$({34) :N=29:G0SUB 210:GOSUB 220

198 L5="535 SEARCHS=":LS(LEN{L$Y+1)=CH
R$(X4) :N=77:G0OSUB 218:G0SUB 228

280 RESTORE 440:L5="580 SECTORIOS=":L$5
(LENCLS)+1)=CHRS$(34) :N=31:GOSUB 218:G0
SUB 2Z0:END

218 FOR X=1 TO N:READ A:M5(X)=CHRS5(A):
NEXT X:RETLURN

228 LS(LENCLSY+1)=MS:LSC(LENILS)+1)=CHR
$034):7 B1;LS:MS="":RETURN

230 REM 3¥006% CONVERTS ¥363606%

240 DATA 24,201,32,144,12,201,96,144,1
6,201,128,144,15,201,160,176,4,105,64,
208,7,201,224,176,%,56,233,32,96

258 REM 00003 DLIS 306G

268 DATA 72,138,72,169,176,162,44,236,

11,212,144,2,169,161,141,106,212,141,24
,208,104,170,104,64

278 REM 3¥068608¢ MATCHS ¥0000%

288 DATA 184,104,133,204,104,133,203,1
04,133,206,1604,133,265,160,0,132,212,1

32,213,162,1,104,104,240,14

298 DATA 133,2067,177,2083,209,205,208,6
,2008,196,207,208,245,202,134,212,96

300 REM 39606606 MOUEMEMS 0

310 DATA 1084,133,214,201,4,2406,4,261,3
,298,93,194,133,294,164,133,293,194,13

%,206,104,133,205,104,133

¥28 DATA 268,104,133,207,165,214,2061,4
,208,13,169,76,133,214,104,133,216,104
,133,215,24,144,4,169,96

y 330 DATA 133,214,160,0,166,207,240,24,

132,2087,177,2083,32,214,0,145,285,2368,2
83,208,2,230,204,230,205

348 DATh 208,2,230,206,202,208,234,166
»208,2408,9,202,134,208,162,255,230,207
,208,221,166,207,208,269,134

358 DATA 212,134,213,96,170,240,5,164,
164,202,208,251,134,213,232,134,212,96
360 REM 300600 PARSES 006k

378 DATA 104,104,104,133,203,1684,1064,1
33,204,162,0,134,212,134,213,232,3169,1
26,197,2083,240,32,232,169,32

380 DATA 197,203,2408,25,232,169,78,197
,284,240,6,169,31,160,123,208,4,169,32
,1606,592,197,263,176,56

398 DATA 196,203,144,2,134,212,96

ATARI 8-BIT EXTRA

4088 REM ¥066% SCANKBS 330d6¢

418 DaTA 104,166,0,132,213,162,1,173,2
52,2,2081,255,208,18,232,173,31,2688,20601
13,2408,10,232,201,5

.ZZBSDATQ 2409,5,232,201,6,2088,229,134,2
- 12,96

. 438 REM 33063#¥ SECTORIOS 33

i 448 DATA 104,104,141,11,3,1064,141,18,3
,1084,104,141,2,3,104,141,5,3,104,141,4

460 DATA 104,104,133,2604,1604,133,203,1
04,104,133,205,169,0,133,213,164,2605, 1
77,2083,201,95,268,3,136,208
'K 478 DnTh 247,2680,132,212,96
ZM 480 REM 3663%% SCHEMAS MM36Hx
T 498 DpaATA ©,3,0,7,6,7,162,0,1606,126,189
,50,7,201,32,144,12,201,96,144,16,201,
1 128,144,15
580 DATA 201,160,176,4,1085,64,208,7,20
1,224,176,3,56,233,32,145,88,200,232,2
24,56,2088,218,24,0
518 DATA 32,195,242,229,225,244,229,17
3,225,173,226,225,243,229,32,40,99,41,
 32,49,57,56,53,32
. 5728 REM 3¥¥M¥ SORTS MMM
R 538 DATA 216,162,1,134,231,202,134,232
,134,209,104,201,5,240,12,178,240,5, 10
4,104,202,208,251,232,134

- 5560 DaTa 164,133,230,104,133,229,1064,5
6,233,1,133,228,165,229,233,08,133,229,
©169,225,2088,6,165,224,2061
568 DAThA 2,144,201,165,227,208,6,165,2
26,201,1,144,191,165,230,2601,1,144,185
- +24,165,228,101,236,133
578 DATA 214,165,229,165,0,133%,215,165
 4227,197,215,144,166,165,226,197,214,1
44,160,165,207,133,205,165, 208
o868 DATA 133,206,24,165,205,101,226,13
' 3,2087,165,206,161,227,133,2088,24,165,2
. 85,101,228,133,214,165,206,101
9968 DATA 229,133,215,24,165,267,101,22
8,133,216,165,2068,101,229,13%,217,168,
,177,216,209,214,144,75,268
88 DATA 5,200,196,230,208,243,24,165,
231,185,1,133,231,165,232,165,0,133,23
2,165,231,197,224,208,175
6108 DATA 165,232,197,225,268,169,166,2
'89,240,36,134,231,202,134,232,134,209,
165,263,133,207,165,204,133,208
628 DATA 56,165,224,233,1,133,224,165,
225,233,0,133,225,208,135,165,224,201,
- 1,2068,129,96,208,188,165
630 DATA 226,133,212,165,227,133,213,1
65,2085,133,214,165,2086,133,215,165,287
. ,133,216,165,208,133,217,166,806
648 DATA 166,212,240,27,132,212,177,21
4,72,177,216,145,214,1064,145,216,2308,2
- 14,208,2,230,215,2306,216,208
650 DATA 2,230,217,202,208,231,166,213
. ,240,9,202,134,213,162,255,2306,212,2088
. ,218,166,212,208,206,232,134
8 668 DATA 289,208,175
. 670 REM 36600360% SEARCHS 3303063
680 DATA 164,164,133,204,104,133,2863,1
. P4,133,206,104,133,205,104,104,133,207
- ,169,0,133,212,13%,213,162,1
M 696 DAThA 24,165,2063,101,267,133,2683,16
' 5,204,1065,0,133,2064,24,165,212,1685,1,1
- 33,212,165,213,165,6,133
780 DATA 213,224,1,208,8,202,24,165,20
7,185,3,133,207,160,0,177,203,209, 285,
© 208,216,200,192,3,208, 245,96

ATARI 8-BIT EXTRA

Listing 2.
BASIC listing.

16 GRAPHICS @
28 7 "CREATE-A-BASE MASTER DISK MAKER"
38 ? :? "USE A FORMATTED DISKETTE WITH
D053.5Y5 AND DUP.SYS5"
48 7 :? "PRESS [START] TO CONTINUE..."
58 IF PEEK(53279)<{>6 THEN 50

68 7 ;? "HRITING AUTORLN.S5YS..."

166

86 READ A:IF A=-999% THEN z88

28 PUT #1,A:G0OTO 86

. 168 DATA 255,255,160,6,162,6

- 181 paTaA 76,175,6,175,6,251

iez pAThA 6,160,11,185,0,228

163 paATA 153,163,6,136,16,247

164 pATA 169,222,141,167,6,169

i85 DbATA 6,141,168,6,172,178

le6 DATA 6,174,169,6,232,268

187 DpaTa 1,200,142,246,6,1408

- 188 DATA 247,6,169,163,141,33

- 16% pATA I,169,6,141,34,3

118 DbATA 96,172,08,6,208,10

1i1 paTA 169,0,141,33,3,169

11z paAThH 228,141,34,3,1485,1

- 113 DpATA 6,206,08,6,72,32

1i4 paTA 251,6,104,160,1,96

115 baTA 253,6,255,6,108,258

‘116 DATA 191,68,2,68,2,0

117 DATA 9,0,9,0,1,226

1i8 DATA 2,227,2,1608,6,224

119 baTh 2,225,2,253,6,08

1?28 paThA 6,19,6,18,155,69

1z1 DaATA 83,65,46,66,65,69

122 paTha 84,65,69,82,67,58

123 DATA 68,34,78,85,82

124 DATA -399

200 CLOSE #1:0PEN #1,8,0,"D:CHSET.PMG"

‘RESTORE 16686

218 ? :? "WRITING CHSET.PHMG..."

228 READ A:IF A=-999 THENK 2498

238 PUT H1,A:GO0TO 226

248 FOR X=1 TO 510:PUT H1,8:NEXT X:PUT
Hi,155

258 ? :? "DON'T FORGET TO PUT FILES:':

? “"CREATEAB.ASE & SORT.":? "ON THIS DI

SK.II

ie668 pATHA 6,0,8,0,0,0

1681 DATA 0,0,0,24,24,24

1082 DATA 24,0,24,0,0,162

1883 pATA 102,1062,0,0,0,08

0 16064 DATA ©,102,255,162,182, 255

B 18065 DATA 1062,0,24,62,96,60

I 10066 DATA 6,124,24,0,0,182
1887 DaTA 168,24,48,162,70,0

1688 DATA 28,54,28,56,111,162

1889 DATA 59,0,0,24,24,24

. 1616 DpaATH ©,0,08,0,0,14

1611 paTa 28,24,24,28,14,08

1812 DATA ©,112,56,24,24,56

1613 baATA 112,0,08,1062,60,255

1614 DATA 60,102,0,0,0,24

1815 DATA 24,126,24,24,0,0

- 1016 DATA ©,0,0,0,0,24

. 1817 pATA 24,48,0,0,0,126

1618 baThA 6,0,0,0,

1619 DbaATh 6,0,0,24,24,0

1626 DATA 0,6,12,24,48,96

iez1 paATh 64,0,08,60,182,110

1622z paTA 118,162,60,0,0,24

1823 DATA 56,24,24,24,126,0

1624 DATA 0,60,102,12,24,48

1625 baTaA 126,08,0,126,12,24

1026 DaTA 12 60,0,08,12

- 1827 DATA 28,60,168,126,12,8

~
[N
@
[

-

ANALOG COMPUTING 19

ﬁ
-‘ CreatE'a'base continued

DaTh
DaTA
DATA
DATA
DATA
DATA
pATA
DaTaA
DATA
DATA
DATA
DATA
DATA
DATA
DaTa
DaTa
DATA
DAaTA
patTha
DATA
DaTa
DATA
DaTAa
DATA
DaTha
DAaTA
DATH
DATA
DaTh
DaTh
DaTha
DaTha
DaTa
DATA
paTh
DATA
DAaTA
DaTA
DATA
DAaThH
DaTa
DAaTa
DATA
DATA
DaTh
DaTa
DATA
DaTA
DATA
DaTa
DaTa
DaTa
DaTh
DATA
DATA
DaTa
DATA
DATA
DATA
DATA
DATA
DATA
DaTA
DATA

DaTA
DaTa
paTh
DATA
DATA
DaTh
DATA
DATA
DATA
DAaTA
DATA
DATA
DaTA

DATA B,8,

8,126,96,124,6,102
60,08,0,60,96,124
i62,182,60,08,0,126
6,12,24,48,48,8
0,60,102,60,1082,102
60,0,0,608,1082,62
6,12,56,0,0,0
24,24,0,24,24,0
0,08,24,24,0,24
24,48,6,12,24,48
24,12,6,0,8,8
126,8,0,126,8,8
96,48,24,12,24,48
96,08,0,68,1682,12
24,0,24,8,0,60
162,110,116,96,62,8
8,24,668,102,1682,126
182,8,0,124,102,124
182,1082,124,08,0,60
182,96,96,182,68,8
0,120,108,182,182,108
128,6,08,126,96,124
96,96,126,0,8,126
96,124, 96,96, 96,0
8,62,96,96,110,102
62,8,08,182,102,126
182,182,102,08,8,126
24,24,24,24,126,0
8,6,6,6,6,182
608,08,0,1687,168,120
126,168,102,0,0,96
96,96,96,96,126,0
6,99,119,127,187, 99
99,8,8,182,118,126
126,118,182,0,8,60
182,102,1082,102,60,0
B,124,182,1687,124,96
96,8,8,60,102,102
182,188,54,08,0,124
i82,1082,124,108,102,8
8,608,96,60,6,6
68,0,0,126,24,24
24,24,24,0,8,1682
182,1027,182,102,126,0
B,102,182,182,162,60
24,8,8,99,99,1687
127,119,99,08,0,182
182,68,608,1682,182,0
0,102,102,60,24,24
24,0,08,126,12,24
48,96,126,08,0,30
24,24,24,24,36,0
0,64,96,48,24,12
6,0,8,1208,24,24
24,24,126,08,8,8
28,54,99,0,0,0
0,08,0,8,0,8
255,8,127,192,135,132
132,135,192,127,255,8
119,37,38,37,9,255
254,3,65,65,65,113
3,254,24,24,24,248
248,0,9,08,24,24
24,248,248,24,24,24
0,248,248,24
24,24,127,192,135,133
133,135,192,127,255,80
119,82,114,66,8, 255
255,08, 93,85,85,93
8,255,254,3,33,161

97,33,3,254,127,192

135,132,129,135,192,127
255,0,116,100,68,119
8,255,255,0,119%,1068
68,119,0,255,254,3
113,33,33,33,3,254
127,192,135,134,132,135
192,127,255,8,119,68

20 ANALOG COMPUTING

G 1186 DATA

)5 11687 DATA

1188 DaTA
1183 DaTA

WY 1118 DaTa
B 1111 DATA

G 1117 paTh
F 1113 DATA
‘B 1114 DATA
{ 1115 DATA
1116 DATA

RU 1117 DATA

{ 1118 DATA
> 1119 DATA

RN 1178 DaTA

| 1121 DATA

0@ 1122 DATA

1123 DATA
1124 DATA
1125 DATA
1126 DATA
1127 DATA
1128 DATA
P 1129 DATA

. 1138 DATA
¥ 1131 DATA
1132 DATA
1133 DATA

J5 1134 DATA

i 1135 DATA
. 1136 DATA
7 1137 DATA
B 1138 DATA
. 1139 DaTA

BY 1148 DATA

. 1141 DaTa

Hp 1142 DATA

M 1143 DATA
30 1144 DATA
T 1145 DATA
1146 DATA
1147 DATA
1148 DATA
1149 DATA
1158 DATA
1151 DATA
1152 DATA
1153 DATA
1154 DATA
1155 DATA
1156 DATA
1157 DATA
1158 DATA
1159 DATA
1168 DATA
1161 DATA
) 1162 DATA
N 1163 DATA
L 1164 DATA
P 1165 DATaA
1166 DATA
1167 DATA
1168 DATA
1169 DATA
1178 DATA
1171 paTh

0 1 REM [EELL
72 REM [(AIBE

3 REM g3
‘H3 4 REM

28,119,8,255,255,08
32,85,119,84,0,255
8,0,0,31,31,24
24,24,8,08,08,255
255,0,0,0,254,3
11%,97,65,113,3,254
8,8,60,126,126,126
68,8,0,0,0,0
255,255,255,255,127,19%2
131,1368,128,131,192,127
255,0,185,18,147,146
8,255,255,08,59,169
1?27,169,08,255,254,3
129,1,1,1,3,254
24,24,24,31,31,8
8,0,126,96,1208,96
126,24,30,0,0,24
68,126,24,24,24,08
8,24,24,24,126,608
24,0,0,24,48,126
48,24,68,0,0,24
12,126,12,24,0,8
8,24,60,126,126,6808
24,08,08,08,60,6
62,182,62,0,0,96
96,124,162,102,124,48
B,8,68,96,96,96
68,8,08,6,6,62
iez,182,62,08,8,0
68,162,126,96,60,08
8,14,24,62,24,24
Z4,08,8,8,62,182
1ez,62,6,124,8,96
?6,124,102,1682,182,8
8,24,08,56,24,24
GB,B,B,G,B,B

2 P
i82,62,12,128,0,0
126,12,24,48,126,0
0,24,60,126,126,24
60,0,24,24,24,24
24,24,24,24,0,126
120,124,118,162,6,8
8,24,56,128,56,24
8,08,16,24,28,30
28,24,16,8,68,0
-9939

Listing 3.
BASIC listing.

-a-base
85 C.F.Fogarty III
82, 1985

pn 3.1 Nov.

ATARI 8-BIT EXTRA

GU 10 POKE 1664,184:POKE 1665,64:P0OKE 566
- ,128:POKE 567,6
RO 160 GOTO 745

PC 185 REM
RP 110 TRAP ERRORHANDLER
PP 115 KBIPS=""_":KBIPS(RECSIZE)="_":KBIPS

(1+(RECSIZE>1))=KBIPS:DISKIPS=KBIPS:FI
ELD=NUMFIELDS
KZ 120 X=USR{MOVEMEM, ADR(KSCRN%) ,SCREEN, 2
- 68, CONVERT)
I0 125 GOSUB SELECT:GOSUB 200
Ux‘iga KBIPS(FX(FIELD-1)+1,FX(FIELD})=THP
2
PF 135 GOTO 125
XU 140 REM [y&] & ¥4
J4T 145 IF START=648 THEN POINT #2,S5ECT,CH
AR:GOTO 155
HG 150 IF I0=12 THEN NOTE H2Z,5ECT,CHAR
QC 155 ICBLH=INT({RECSIZE/256) :ICBLL=RECSI
ZE-ICBLH¥256
T4 1680 POKE 866,ICCOM:POKE 872,ICBLL:POKE
. 873,ICBLH:POKE 868,ICBAL:POKE 863%,ICB
_ AH

TR 165 H=USR(CID,32):IF PEEK(867)=136 THE

.. N 186

FUU 176 IF PEEK(867)>3 THEN POP :GOTO ERRO
RHANDLER

AA 175 RETURN

AR 186 SOUND ©,50,18,10

FD 185 K= USR(MOUEMEH ADR (PROMPT$(161)),5C

. REENt+720,498, CONUERT) CLOSE H2:0K=0

fif 196 FOR H:l TO SO:NEXKT X:SOUND 6,8,0,0
. iFOR X=1 TO 200:NEXT X

KP 195 POP :GOTO PROCESS

CR 260 REM

EC 205 TEMPS="'"

G0 216 POKE KEYBD,255:X=LUSR(5CANKB)

TH 215 ON X GOSUB KEYPRESS,O0PTION,SELECT,
_ START

MG 226 GOTO 2186

RP 225 REM

230 GET #1,IN:IF IN=27 THEN POP :POP :

 CLOSE #2:0K=8:GOTO PROCESS

NG 235 X=USR(PARSE,IN,TYPE):ON X GOTOD BAC
- KSPACE,EOL,LEGALIP

EF 240 IF IN=19% THEN GOSUB 1325

OF 245 IF IN=16 THEN GOSUB 650:REM SCREEN

DUMP

YE 250 IF NOT (IN=4 AND START=640) THEN

i 280

LR 255 KBIPS='{":KBIPS(RECSIZE)="{":KBIPS%

. (1+(RECSIZE>1))=KBIP%

L€ 260 SOUND 6,160,108,186

¥M 265 X=USR(MOVEMEM, ADR(PROMPTS(2081)),5C
~ REEN+7206,408,CONVERT)

ZX 270 FOR X=1 TO SO0:NEXT X:S50LUND 6,8,0,08

. iFOR H=1 TO Z00:NEXT X

EU 275 GOTO START

EZ 280 POKE_762,64 :POKE 694 ,8:RETURN

Ml 285 REM [[IIH #1443

UK 2980 TEMP=LEN(TEMP%) :IF TEMP{2Z THEN TEM

. P$=""":GOTO PRTTOSCREEN
T4 295 TEMPS=TEMPS(1,TEMP-1):GOTO PRTTOSC
. REEN

AN 300 REM

CN 305 POP :GOTQ PRTTOSCREEN

@Y 310 REM MATIRS¥A3

I 310 FEMPCLENCTEMPS) :IF TEMP=MAX THEN R
" ETURN

II 320 TEMPS(TEMP+1)=CHRS (IN)

Ib 325 REM (IO IElE-Id:1d]]
M II0 TMP2S5=TEMP5:IF LEN(TEMP5) {MAX THEN
. THMP2S(LENCTMP25)+1,MAX)—LUNDERLINES

52 335 K=USR(MOVEMEM, ADR(TMP2%) , SCREEN+LO
 C,MAX,CONVERT)

ZH 340 RETURN

57 345 REM HEANEA]

DX 350 X=USR(MOVEMEM, ADR(OFFS5) ,PMBASE, 256

ATARI 8-BIT EXTRA

I

FP 355 FIELD=FIELD+1:IF FIELD>NUMFIELDS T

 HEN FIELD=1

Bl 360 X=LSR(MOVEMEM,PLAYER,PMBASE+40+FIE
LD*8,8) :POKE 53277,3

FM 365 LOC=49+FIELD¥*48:TEMPS=""

Mll 376 MAX=FL (FIELD)

#C 375 RETURN

DO 386 REM (AR

0J 385 CLOSE #2:0K=8

IC 396 OX=OX+1:IF OX>4 THEN 0X=0

MB 395 X=LSR(MOVEMEM, ADR (OPTABLES (OX¥6+1)
3, ADRCKSCRNS (76733 ,6) :DSCRNS=KSCRNS

KY 480 X=LSR (MOVEMEM, ADR (KSCRNS) , SCREEN, 9
68, CONVERT)

T 465 FIELD=NUMFIELDS:GOSUB SELECT

PH 418 IF OK=4 THEN X=LSR(MOVEMEM, HINDOW,

 SCREEN+680, 286, CONVERT) : 0K=1

ZE 428 RETLRN

¥I 425 REM BN

KT 438 POP :POP :IF OK THEN 455

YY 435 I0=4:IF OK=6 THEN I0D=9

YA 448 IF OX=2 THEN I0=12

BH 445 CLOSE #2:0PEN #2,I0,0,"D1:DATABASE

i [1]

£0 450 OK=1

YP 455 ON OH GOTO 495,495,495,955

584 460 REM [T0W

£K 465 ICCOM=11:ICBAH=INT{ADR(KBIPS$)/256)

. tICBAL=ADPR(KBIPS$)-ICBAH¥256:IF KBIP$<{>

. DISKIPS THEN 4886

RM 470 SOUND 06,260,108,10:X=USR{MOVEMEM, AD

i R(PROMPT$(241)) SCREEN+?26 48, CDNUERT)

RO 475 FOR X=1 TO 56 NEXT X: SOUND 8,08,08,0
:GOTO 485

T8 486 GOsSUB 146

EF 485 OK=0:CLOSE HZ:GOTO PROCESS

KY¥ 490 REM HEIETI MDY Y TFIT

FU 495 ICCOM=7:ICBAH=INT(ADR(DISKIPS) /256

) :ICBAL=ADR(DISKIPS$)-ICBAH*256

SM 500 GOSUB 1406

ED 505 REM COMPRRE
HWHW 518 IF DISKIPS(1,1)="4{" THEN 588

HMH 515 NG=0:AMATCH=1

. 526 FOR I=8 TO NUMFIELDS-1:TEMP$=KBIPS%

 (FR(I)+1,FHCI+1)3:IF TEMPS(C1,1)="_" TH

EN 545

525 IF LENITEMP$)=1 THEN PTR=1:GOTO 53

: 9

R 5380 PTR=USR{S5TRIP,ADRITEMPS) ,FL{I+1)-1
:%éIF PEEK(764)=28 THEN POP :GOTO PROCE

535 FOR J=1 TO FL(I+1)-PTR+1:NG=LS5R(MA

TCH, ADR(DISKIPS(FXK(I)+J)),ADRCTEMPS) ,P

TR :IF NG=8 THEN J=FL({I+1)+1

12;68NEHT J:IF NG THEN I=NUMFIELDS:AMAT

545 NEHKT I:IF NOT AMATCH THEN 5886

- 5560 REM [(MNIM)]

555 X=-USR(MOVEMEM,SCREEN, ADRCTSCRN5),9

8) :REM S5AVE SCREEN

968 FOR I=8 TO NUMFIELDS-1:X=I¥48:DSCR

S(90+K,89+X+FLCI+1))=DISKIPS(FX(I)+1,

H{I+1)) :NEXT I

65 X=USR(MOVEMEM,ADR(DSCRNS$) ,SCREEN,?

- 68, CONVERT)

78 IF OX=Z THEN 605:REM UPDATE-CONT

75 IF OXK=IZ THEN GOSUB 656:GOT0 435:RE

M REPORT-CONT

580 H=USR{MOVEMEM, ADR{(PROMPTS) , SCREEN+

_?20,49,00NUERT):REM CONTY/N

. 989 POKE 702,64:P0OKE 694,0:GET #1,IN

598 IF IN:= ﬂSC("Y") THEN H USR(MOUEMEM,

- ADRC(TSCRNS) ,SCREEN, 968) :GOTO 495

595 IF IN=16 THEN IN 8: GOSUB 6568:G0TO

: 6008 OK=0:CLOSE H2:GOTO PROCESS
Up 6065 REM [LITNWIEFHTEI

ANALOG COMPUTING 21

—
= Create-a-base continued

WZ 618 X=USR(MOVEMEM,ADR(PROMPTS(41)),5CR
 EEN+720,40,CONVERT) :REM CHANGE IT Y/N
JH 615 POKE 702,64:POKE 694,0:GET #1,IN
NH 628 IF IN{>ASCC"Y") THEN 580
» 625 REM
630 X=USR(MOVEMEM, ADR(PROMPTS (81)),5CR
 EEN+720,40,CONVERT) :REM CHANGE OR CTRL
/D
635 TIP$=KBIP$:KBIP$=DISKIPS:FIELD=NUM
 FIELDS5:START=640:0PTION=348:GOTO PROCE
55420
pU 6406 POP :POP :ICCOM=11:ICBAH=INT(ADR(K
 BIP$)/256) :ICBAL=ADR(KBIPS) -ICBAH¥256:
 GOSUB 148:5TART=425:KBIP$=TIP$
LB 645 OPTION=385:G0TO 580
IT 650 REM [IEJAGdLNI
ON 655 TRAP 690
NL 660 CLOSE H7:0PEN #7,8,0,"P:"
UN 665 FOR I=8 TO NUMFIELDS-1:IF PEEK(KEY
_ BD)=28 THEN POP :GOTO PROCESS
WO 670 IF IN=16 THEN ? #7;SCHEMAS(145+I%8
,152+I%8) ;"> ;KBIPS (FRCI)+1,FR(I+1)) G
. 0TO 680
IN 675 ? 17;SCHEMAS (L45+I%8, 152+IX8) ;'")";
 DISKIPSCFRCIY+1,FR(I+1))
XTI 650 NEKT I:? #7:CLOSE #7:TRAP ERRORHAN
DLER
AaH 685 RETURN
OH 696 REM (IR
ab 695 K=LISR(MOVEMEM, ADR (PROMPTS (121)),5C
REEN+728,48, CONVERT)
HP 700 REM (LLILLLLINEES
KJ 7085 SHS="

: Il Error & occurred on 1i

: ne # o

¥B 7180 SHS«(s81)="|

» 11 ﬂress | 4 to Recover

LY 715 TEMP=PEEK(195) :TEMP$=STRS(TEMP) : SH
$(56,49+LEN(TEMPS)):TEMPS

¥5 720 TEMP=PEEK(186)+PEEK(187)%256:TEMPS
gﬁTRS(TEMP):SNS(?Z,?1+LEN(TEMP$)):TEMP

WK 725 X=LSR(MOVEMEM, ADR (5KW%) , SCREEN+768,
166,CONVERTY

aY 730 IF PEEK(53279)<{>6 THEN 730

L0 735 CLOSE #Z:CLOSE H7:0K=8

06 740 GOTO_PROCESS

RW 745 REM [{I[{]:@Iﬂj
FU 750 DIM BLANKS(48) ,CI05(7),CONVERTS(29

),DISKIP$(496),DLI§(24),D5CRN$(9BB)

pZ 755 DIM FLI16),FX(16]

RX 760 DIM KBIPS5(496) ,KSCRN%({960) ,MATCHS(
42) ,MOVEMEMS (118) ,0FF$(256) ,0PTABLES (I
8) ,PARSES (573 ,PLAYERS (8) ,PROMPTS(280)

NG 765 DIM SCANKBS(35),5CHEMA$(3I84),5ECTO
RIOS (313 ,STRIP5(30) ,5H5(160) , TEMPS (48)
,TIP$(496),TMP2$(4B),TSCRN$(969)

MC 778 DIM LUNDERLINES (48, HINDOMWS (288)

EM 775 BLANKS=" "“:BLANKS(468)=" ":BLANKS(2
I=BLANKS:CIOS="hhhgLVE"

¥¥ 785 DISKIPS="_":DISKIP5{496)="_":DISKI
PS5 (2)=DISKIPS

JO 810 OFFS="#":0FF5(256)="%":0FF5{2)=0FF

. g
¥Z 815 OPTABLES="[TT] SearchlpdateReport
"

FW 825 PQRSES(ZS,ZS):CHR5(15S):PQRSE$(44,
- 44)=CHRS$(34)
PR 830 PLQYER$:CHR$(255):PLAYERS(B):CHRS(
2553 :PLAYERS$ (2)=PLAYERS%
AL 835 PROMPTS="
/WD i 17
(Y/H) ey 1!
54 846 PROMPTS(81)="'p—% Make changes or ¥
~ F|l&p to delete, ¥— p——¥X Printer
not online ¥ f——————
5l 845 PROMPTS(i61)=""p ¥¥% End-of

continue? Yy
¥¥ Change it?

22 ANALOG COMPUTING

| -File xxx 1r %% DE
LETED, % —
846 PROMPTS (241)=" *%% Empty
L1}

. Record 6

PL

o

AN

RD
RH

oa
LK

uz

UK
NK

P
EE

XJ

EO

BH
HN
RG
Iu
BM

Wt

HWT
OH
no

SH
RZ

EE
up

Zv
OR
5X

NL

¢y

} 865 UNDERLINES:"_":ﬁNDERLINES(46)="_":

UNDERLINES (2) =UNDERLINES
870 MWINDOMS=''y

1II LI]

n
1
875 NINDONS(Bi):"llPress |4 to ||
Press /\dy to use create a NEW -or
= the CURRENT "
880 NINDONS(iBi):"I database. |1

'database. =l

885 NINDON$(241)="'I

890 CIO=ADR(CIOS) : CONVERT=ADR (CONVERTS
3 :MATCH=ADR (MATCHS) : MOVEMEM=ADR (MOVEME
M$) : PARSE=ADR (PARSES)

895 PLAYER=ADR (PLAYERS) : SCANKB=ADR (5CA
NKBS) : SECTORTIO=ADR (SECTORIOS) : STRIP=AD
RCSTRIPS)Y : HINDOW=ADR CHINDOMWS)

900 KEYBD=764:KEYPRES5=230:BACKSPACE=2
90:EOL=305:LEGALIP=315:PROCES5=105:PRT
TOSCREEN=338

905 OPTION=380:SELECT=350:5TART=425:ER
RORHANDLER=705 .

TR INIT . CHSET & PMG.

915 PM=PEEK(106)-8:CHSET=PM%256:P0OKE 1
86,PM: GRAPHICS 0:POKE 756,PM

920 CLOSE #1:0PEN $#1,4,08,"D:CHSET.PMG"
925 POKE 853,PM:POKE 852,0:POKE 857,6:
POKE 856,0:POKE 850,7:K=LISR(CIO,16)
930 CLOSE #1:0PEN #1,4,0,"K:"

935 PMBASE=CHSET+1024:POKE 704,212:POK
E 559,62:POKE 623,1:POKE 53256,3:POKE
54279,PM:POKE 53248, 48

940 X=USR(MOVEMEM, ADR (DLIS)Y , 1536,24) :D
L=PEEK (568) +256%PEEK (5613 : POKE DL+6,13
8:POKE DL+22,130:POKE 512,80

945 POKE 513,6:POKE 54286,192:POKE 710
2

550 REM MO YIS

955 GOSUB 1225:X=L5R C(MOVEMEM, ADR CKSCRN
&) ,SCREEN, 960, CONVERT) : POKE 53277,0
960 sWS="| Insert database diskette i
nto 11 N Disk Drive #1,

965 SHS81Y="]
11 and press |4 to ¢
ontinue... "

970 X=USR{MOVEMEM, ADR {5H5) ,SCREEN+768,
160, CONVERT)

975 IF PEEK(53279)<{>6 THEN 975

980 TRAP 10625

985 SCHEMAS="'%":SCHEMAS (3843 =""9":5CHEM
A5 (ZY=SCHEMAS

996 REM [T EEIHIE

995 FOR I=06 TO Z2:X=USRC(SECTORIO,I+1,82
,ADR(SCHEMAS (I*128+1))) :NEXT I

1080 IF SCHEMAS$(52,64) OVHErilm iy
" THEN 1825

1885 IF HNOT RESTART THEN RESTART=1:GO
SUB 1285:0X=5:G0OSUB OPTION:GOTO PROCES

=

1018 SH5="]| This is a Create-a-base di

skette. i

1015 SH5(41)="|] The database name is _
"

16286 H:USR(MOUéMEM,ADR(SCHEMQ$(92)),QD
R(5N$(6433115):GDT0 1636

1825 SHS=" Not a Create—-a-base dis
kette.
n
1838 SHS(8131="]
1 Format it?
(Y/N) =

ATARI 8-BIT EXTRA

1835 X=USR{MOVEMEM, ADR(SH5) ,SCREEN+7608

,160,CONVERT) !:GET H1,IN:IF IN=27 AND R

ESTART THEN GOSUB 1Z85:GOTO PROCESS

1048 IF IN{>ASC(“Y") THEN 968

1645 CLOSE #Z:XIO0 254,1#12,0,0,"D1:* X"

& 1055 SCHEMAS(75)=""C.F.Fogarty III ©i2

. 3456789ABCDPE1666112233445566778899AABB

~ CCDDEEFFA496%"

LA 1060 SCHEMAS(3I84)="¥":S5CHEMAS(1453=5CH

. EMaSti144)

16865 SKS="| Enter your database name
|| tup to 15 Characters) __

n

AT 10670 SWS(81)="|

W 1675 X=USR(MOVEMEM, ADR(5H5) ,S5CREEN+768
~ ,166,CONVERT)

PK 1680 NUM=0:RECSIZE=0:0PTION=348:5ELECT
. ZOPTION:START=O0PTION:TYPE=ASCC('A'") :MAX
- =15:L0C=824:G05UB 2806

P 10685 SCHEMAS(92,186)=TMP25

18908 SWS5="| Enter a label:

(Up to 8 characters) ___

(1]

RT 1095 SH$(81)="|

RJ 1186 X=USR{(MOVEMEM, ADR(S5HS) ,SCREEN1+768
~ ,160,CONVERT)
¥1. 11865 TYPEz=ASC{''A') :MAX=8:L0C=823:G0SUB
: 200 : TEMP=LEN(TEMPS)
‘M3 1116 IFSTEMP(MQH THEN TEMPS(TEMP+1, MAX
.)=BLANK
fiP 1115 SCHEMAS (145+NUM¥*8, 144+ (NUM+1) %83 =
 TEMPS:NLUM=NLUM+1:TEMPS=STRS (NUM)
®0 1120 IF LENC(TEMPS$)=1 THEN TEMP$(2)=TEHM
. PS:TEMPS(1,1)="B"
NO 1125 SCHEMAS(1087,188)=TEMPS
¥YP 1136 SHS="| Enter size of field for
- e | (Maximum size is 31
bytes) j=
IT 1135 SH5(27,41)=THMP25: H=U5R (MOVEMEM, AD
R(S5W5) ,SCREEN+760,166,CONVERT)
{15 1148 TYPE=ASC(“N''):LOC=796:MAX=Z2:GOSUB
i 200:TRAP 1138:TEMP=VAL(TEMPS) :IF TEMP
»>31L OR TEMP{1 THEN TEMPS$=""I1":TEHMP=31
BF 1145 TRAP 955:RECSIZE-RECSIZE+TEMP:IF
" TEMP{18 THEN TMPZ5=TEMPS$:TEMPS$="8":TEM
PS(2)=THMP2%
KH 1150 TEMP=189%+ (NUM-1)%2:5CHEMAS(TEMP, T
EMP+1)=TEMPS
TP 1155 TEMPS$=STRS(RECSIZE)
KM 1168 IF LEN(TEMPS5) {3 THEN TMP25=TEMPS:
TEMPS="8": TEMP5(2)=TMP25:G0TO 1168
LU 1165 SCHEMAS (141, 143)Y=-TEMPS
OR 11708 GOSUB 1285:IF NUM=16 THEN 12686

Ha 1175 SHS="]| Press /\dg to define anoth
er field | -0R-
n

AB 1188 S5W5(81)Y="| Press |+ after defin
ing your LaAST || field (Ma
" Ximum 16 fields).|"
TB 1185 K=USR {MOVEMEM, ADR (5H5) ,SCREEN+760
. ;168,CONVERT)
A 1190 IF PEEK(5327%)=3 THEN 1698
ZY 1195 IF PEEK(53279)<{>6 THEN 1158
LD 12606 REM [LIST3ETH TS
KC 1285 FOR I=8 TO 2:X=USR(SECTORIO,I+1,8
 7,ADR(SCHEMAS (I*128+1))) :NEXKT I
CN 1218 CLOSE #2:0PEN #2,8,8,"D1:DATABASE
v ":CLOSE HZ
HUY 1215 OPTION=3808:SELECT=358:5TART=425:R
ESTART=6:TYPE=ASC('A')
MR 1228 GOTO 985

CH 1225 REM ['IEEEIF:EHH
W 1238 KSCRNS=" Create-a-base (c) 1985 C
.F.Fogarty III "

ATARI 8-BIT EXTRA

oy
GJ

Ka

Lu
iF

S
BR

ON

PK 1235 KSCRNS(41)="
9
HI
1Y
ze

1248 KSCRN$(728)=" ":KSCRN$({82)=KSCRN%
(81)
1245 KSCRN$(721)=""

n

1250 KSCRNS(761)="]/\d s IXELL mode.
v} 1&5-50rt db. "

1255 KSCRNS(801)="|L™™ Field to EDIT.
¥F |&P-Printout. |"

1268 KSCRNS$(841)="]|| +=4 Hhen DONE Edit
ing.{DPATABASE MNAME>|"

1265 KSCRNS$(881)="| %4+ CANCEL Operati
(1}

on.
1278 KSCRN$(921):"']
n

1275 SCREEN-PEEK (88)+Z56%PEEK (83)

1286 RETURN

1285 GOSUB 1225:NUMFIELDS=VAL (S5CHEMAS(
167,108)):FL(B)=B:FX(B)=0

1296 FOR I=8 TO NUMFIELDS-1

1295 K=I®*40:KSCRNS(B81+X,88+XI=5CHEMAS(
145+I%8,152+I%8) :KSCRNS(89+X,89+Ky=1>n
13060 IN=109+IX2:IN=VAL(SCHEMAS(IN,IN+1
)):KSCRN$(90+H,89+H+IN)=UNDERLINE§:FL(
I+1)ZIN:FR(I+1)=FX(I)+IN

1385 NEXT I:KSCRN5(985,919)=5CHEMA$(32Z

;1863 :DSCRNS=KSCRNS$: TSCRN$=KSCRN%

1 131080 RECSIZE=VAL (SCHEMA$(141,143))

IF 1315 H:USR(MOUEMEM,QDR(KSCRN§),SCREEN,

960, CONVERT)

AL 1328 RETLRN
) 1325 REM

A N

1338 5N$="i Insert Create-a-base Maste
r disk and || Press |+ to SORT datab
"

ase,
1335 SHS(B1I=""] - 0OR -

Il Press /Ads to use cU
RRENT database. |"
1340 X=USR(MOVEMEM, ADR(S5WS) ,SCREEN+768

- ;168,CONVERT)
1345 IF PEEK(53279)=3 THEN RETURN
. 1358 IF PEEK(53279)<>6 THEN 1345

1355 POP :RUN "'D:SORT"

Listing 4.
BASIC listing.

REM for Create-a-base
REM 31985 C.F.Fogarty III
Jid.@version 3.4 August 9,198%5
REM

- 166 POKE 1066,PEEK(166)+8:POKE 53277,0

1685 GOSUB 475:GOTO0 215

118 REM [nd&] @ ¥4

115 ICBAH=INT(ICBAL/K256) :ICBAL=ICBAL-
ICBAH¥K256:POKE 8508,ICCOM:POKE 852,ICB
AL:POKE 853,ICBAH:POKE 856,ICBLL

128 POKE 857,ICBLH:X=USR(CIO,Ki6):IF P
EEK (8513 >K3 AND PEEK(8513<>136 THEN 5T
op

125 RETLRN

- 1386 REM

135 7 #6:7 #6;"Kreorg in Progress...':
CLOSE H1:0PEN H1,K12Z,K8,"D1:DATABASE":
PTR=ZLENGTH+K1:PTR2Z=-FX+K1:EOF=CTR:K=K1
1480 S=ASC(BUFRS(PTRI)+ASC(BUFRS(PTR+K1
JIXKZ256 :C=ASCIBUFRS(PTR+K2)) :POINT HK1
2 5,C:ICCOM=K7:ICBAL=TEMP:GOSUB 115
1;5FPPSETION K8,4:7 HKG;"COUNTDOMWN..."
;EOF ;"

1586 IF BUFRS(PTR,PTR+KZ)=BUFRS(PTRZ,PT
RZ+K2Z) THEN 185

155 S52=ASC(BUFRS(PTR2))+ASC(BUFRS(PTR2Z
+K1))%256:C2=ASC(BUFRS(PTRZ2+2)) : POINT

ANALOG COMPUTING 23

p—
-, Cl‘eate-a-base continued

H#1,52,C2:ICCOM=K7:ICBAL=TMPZ:GOSUB 115
* 160 IF BUFRSCPTR-K1,PTR-K1i)='4|'" THEN 1

85
165 POINT HK1,52,C2:ICCOM=K11:ICBAL=TE
© MP:GOSUB 115:BUFRS(PTR-K1,PTR-K1)="j]'":
_ EOF=EOF-1
PH 170 I-USRCSEARCH,ADR(BUFRS),ADR(BUFRS(
. PTR2)),LENGTH) :PTR=I¥(LENGTH+K3)-K2:TE
. MP5=TMPZS$:PTRZ-FH+K1i+ (I-K1)*K3I
fid 175 GOTO 145
TP EECH:I4.BFIND NEXT UALID TABLE ENTRY
MR 185 OK=KO:IF BUFRS(PTR-K1,PTR-K1) {>"j]"
" THEN BUFRS$(PTR-K1,PTR-K1)="}]'':EOF=EOF
- -K1
198 FOR I=K TO CTR:J=I¥(LEMGTH+K3I)-KZ:
IF BUFRS CJ-K1,J-K1)<{>"]'"" THEN PTR=J:PT
 RZ-FRAK1+(I-K1)¥KI:K=I:I=CTR+KL:0K=K1
195 NEKT I:IF OK THEN 140
JI. 200 CLOSE HKL
. 205 FH=41:GOSUB 448:TRAP 265:RUN "D1i:C
. REATEAB.ASE"
T 216 END
215 REM HAEEIIMFENY
220 FX=K1:GOSLUB 440:I10=82:G0OS5UB 425:IF
 SCHEMA$(52,64) OO HIFi{r R YHI" THEN
2 CHRS$(253):G0TO 215
NU 225 J=VUAL(SCHEMA$(1067,188)):7 HKG6;"Ks0
. rt on which field?"
DZ 230 FOR I=K® TO J-K1:? HK6;I;' *;SCHEM
. AS(145+I%8,152+I%8) :NEKT I
Eif 235 TRAP 235:7 "What is your choice";:
~ INPUT K:TRAP 40000:IF K>J-K1 OR K<8 TH
. EN ? CHRS$(253):G0T0 235
KH 240 TOO=KB:FOR I=KS TO K:TEMP=109+I%K2
 !LENGTH=VAL (5CHEMAS (TEMP, TEMP+K1)) : T0O
. —TOO+LENGTH:NEXT I
J& 245 FROM=TOO-LENGTH+K1:RECSIZE=VAL(SCH
. EMAS(141,143))
CI 250 DIM TEMPS(RECSIZE),TMPZ5(RECSIZE):
 ICBLH=INT(RECSIZE/K256) :ICBLL=RECSIZE-
 ICBLH¥*K256
KE 255 TEMPS="#":TEMPS(RECSIZE)="%":TEMPS
(K2)=TEMPS:TMP25=TEMPS : TEMP=ADR (TEHP$)
i THP2=ADRCTMP25)
YN 260 T=—INTC(FRE(K8)-512)/RECSIZE):BUFSI
. ZE-IXRECSIZE:DIM BUFRS(BUFSIZE) :BUFRS$=
. nnK-K@:EOFZK@
¥N 265 REM MW H4
MB 270 CLOSE H#K1:0PEN #K1,K12,K8,"D1:DATA
 BASE"“:7? #1K6;"Kcondensing database":CTR
. ZKe
58 275 ICCOM=K7:ICBAL=TEMP:GOSUB 115:IF P
EEK(851)=136 THEN CLOSE H#K1:EOF=K1:GOT
.0 300
RZ 280 IF TEMPS(K1i,K1)="{' THEMN 275
XS 285 BUFRS(LEN(BUFR$)+K1)=TEMP$:CTR=CTR
 +K1:POSITION K6,K3:? HKG;"READING RECO
RD #';CTR
pD 298 IF LEN(BUFR$)=BUFSIZE THEN K=K+1:G
0SUB 308
SF 295 GOTO 275
EEGEECTS I HRITE NEW DATABASE
BL 065 7 #K6:?7 BKG6;"HolWtHnl] rBcfrfls.. . "X
=USR (ADR(SORTSY , ADR (BUFRS5)Y , LEN CBUFRS) /
. RECSIZE,RECSIZE,LENGTH,FROM)
ZC 318 FR=21:IF LENCBUFRS$)=K8 THEN GOSUB
458:GOTO 350
0L 315 IF FORMATTED THEN GO5UB 445:GOT0 3
. 35
NO 320 7 BK6:;"K>>>>) warning! <{<{<{<{{ .
i Jets formattediPedad) 3
HO 325 GOSLUB 4560:7 HK6;"FORMATTING...":CL
05E HKZ:XI0 254,HKZ,K0,K8,"DL:%* %" 1LET
. FORMATTED=1:I0=87:GOSUB 425
RR 330 CLOSE #K2:0PEN HKZ,8,K8,"DL1:0UTPUT

0Z 335 ? HKG6;"Kwriting new database":IF
. NOT EOF THEN ? HKG6;"BLOCK #';K

24 ANALOG COMPUTING

P 348 ICBAL=ADR(BUFRS$) :ICBAH=INT(ICBAL/K
. 256) :ICBAL=-ICBAL-ICBAH*KZ56:POKE 866,K
11:POKE 868,ICBAL:POKE 869,ICBAH
345 POKE 873 ,INT(LEN(BUFRS5)/K256) :POKE
872, LEN(BUFRS) -PEEK(873)¥%K256: X=USR(C
. I0,32):IF PEEK(867)>K1 THEN 5TOP
MU 358 BUFRS="":IF NOT EOF THEN FX=K1:GO
. TO 445
Wl 3I55 CLOSE #K2:HIO0 3I2,HKZ,K8,K8,"D1:0UT
- PUT,DATABASE"
gl 368 IF NOT K THEN 288
GN 365 REM [T IIEE
MO 3780 FE=-CTR¥(LENGTH+K3) : J=CTR*¥KI:IF BUF
. SIZE>=FX+J THEN 385
i 379 LENGTH=LENGTH-K1:TOO=TOOD-K1:IF KO
. T LENGTH THEN STOP
388 GOTO 378
I85 PTR=K1:PTRZ=-FK+K1i:BUFRS="#":BUFRS5(
FE+JI="9":BUFR5 (K2)=BUFRS$:CLOSE HK1:0P
. EN #K1,K1Z,K8,"D1:DATABASE"
fiN 398 7 HK6:"KRreading pointers..."
395 FOR I=ZK1 TO CTR:POSITION K8,K3:?
K6 ;"RECORDS TO GO..,.";CTR-I;" "
- 4008 NOTE HK1,S5,C:X-INT(5/K256) :P$=CHRS
,,f(S-H*KZSG):Pé(KZ):CHRS(H):PS(K3)=CHR$(
. CY:ICCOM=K?7:ICBAL=TEMP:GOSUB 115
405 BUFRS(PTR,PTR+LENGTH-K1)=TEMPS (FRO
M, TOO0) :BUFRS (PTR+LENGTH,PTR+LENGTH+K2)
—P5:BUFRS(PTRZ,PTR2+K2)=P5
418 PTR=PTR+LENGTH+KI:PTRZ=PTRZ+K3I:NEX
T I:7 HK6:7? HK6;"HoEtAnf pRidtArH..."
415 K=USR(ADR(S0RTS$),ADR(BUFRS) ,FX/ (LE
NGTH+K3I) ,LENGTH+K3I,LENGTH, K1)
428 GOTO 136

¥ 425 REM [TETEILFE ST

430 FOR I=KO TO KZ:X=USR(ADR(SECTORIOS
)iI+K1,IO,nDR(SCHEMQS(I*128+K1))):NEHT
ZYU 435 RETURN

RR 440 REM

PU 445 GRAPHICS K1:POKE 710,K8

P35 450 POSITION 7,5:7 HKG;'insert":? HK6:

. ? HKG6;TABLES(FX,FX+19):2 HKG6;"
. disk":? HK6:7 HKGE
- 455 ? BKG6;"into disk drive Hi'":7? HK6:7?
. HK6;'"and press [¥IHi1 to':? HKG6;'con
tinue..."
460 IF PEEK(53279)<{>K6 THEN 460
465 7 HKG6;"R';
478 RETURMN
5 475 REM
'H 480 KO=9:K1=1:K2=2:K3=3:K6=6:K7=7:K11=
0 11:K12=-12:K16=16:K256=256

Sq 485 DIM CIOS(K7),P5(K3),SECTORIOS (31),

SCHEMAS (384) ,50RT$(328) , TABLES(608) ,5EA
 RCHS(?7)
OX 498 SCHEMAS="'%"':5CHEMAS (3843 ="9":5CHEM
. AS(K2)=5CHEMAS
gﬁ 495 CIOS$=""hhhgL Vf"
M

538 TABLES="
. ICTTRTITRY
HZ 540 CIO=ADR(CI

database
createfagbase masterf
05) : SEARCH=ADR (SEARCHS)

ZY 545 RETURN

ATARI 8-BIT EXTRA

32K Cassette or Diék

Listing 1.
by David Plotkin Action! listing.
Squeeze is a fast-action game written in Action! Your MODULE; SQUEEZE by David Plotkin

objective is to control the gun in the center of the screen
and keep the advancing rows of multicolored bricks from
meeting in the middle.

The bricks grow faster and the action speeds up in the
upper levels. You can choose your own level of difficulty
and which score will end the game (your goal).

CHECKSUM DATA

[0 B7? 4C F7 52 58 X1 F9
48 I8 55 8D C3I 54 96 ZB
48 28 7F 1B 24 55 57
8a 61 51 8F 9F 58 F4 4B
B6 B4 BS E? 1

L R
o=
E-Y

The gun moves up and down under joystick control. BYTE Eg;gfgg;;gﬁi"g"iE'EE;‘ng:?'lg:__?52
Pushi.ng thg stigk left and right aims the. gun in .the ap- GUNX=[191 ,&u:yi [121, lgsg'E§] ?" g
propriate direction. And, of course, pressing the fire but- Loud=[81,D1y=C31,Hard=[1]
ton unleashes a st of bullets to obliterate the bricks.

= t“ eal.s - fsbr‘?al?“ : ﬂu : A " CARD Scrn=88,Ram5et,HiMen=$2E5,

wo lines of bricks in the same row manage to mee Score=[81,Target

in the center of the screen, the game is over. So keep the

lines of bricks from reaching the center—especially tough CARD ARRAY Linept(Z4),L1(38)

because the line lfrom the opposite side will grow faster BYTE ARRAY Charset,Shotstatus(3e),
to try and meet its partner! S5hotx({3I0) ,5hoty(3I6) ,EndL (24},
Each PROCedure is commented to tell what it does. Each EndR(243, B
level is 1000 points foaPElanle i)
e“ P : [164 288 2088 213 Z1I 288 208 184
Good luck! & i8 8 rd 87 87 7 7 i8
- 255 25% 255 25% 255 255 255 255
David Plotkin has his Masters in Chemical Engineering é;ﬂ 1;0 176 178 178 178 170 170
! : £\ 8 85 85 85 85 85 85
and works as a Design Lngmeer. for Chevron U.S.A.jHe 87 87 87 87 87 87 87 87
owns a 130XE and a 520ST, and is currently a heavy Pas- 175 175 175 175 175 175 175 175
cal user on the ST. His interests (on computers) lie in 178 255 178 255 178 255 178 255
programming, games and tutorials. gg igg gg i?g gg igg gg i?g]

ATARI 8-BIT EXTRA ANALOG COMPUTING 27

@ Squeeze continued

PROC Download()}

15tep back HiMew and wove the
;Character set into RAM
RamSet=({HiMem—-5408) &5FCO6;1K boundary
ChrBase=-Ram5et RSH 8

HiMem=RamSet

MOVEBLOCK tRamSet,57344,16824)
Charset=Ram5et

RETURHN

PROC GreInitd)
;5et up the address of each screen
;line and initialize
CARD xXx
GRAPHICS (83 CursIn=1 PRIMWHT({" ')
FOR xx=8 TO 23
111
Linepti{xx)=5crnt+{40%xx)
EndL (xx3=8 EndR({xx)Y=39
1]+]
FOR xx=8 TO 29
DO Shotstatus({xx)=0 Shotx{xx)=@
Shotyixx)=8 L1{xXxX)=xXx¥1060
0D Bkgrnd=@
RETURN

PROC PlotBI(BYTE X,Y,ch)
jPlot a char at location X,y
BYTE ARRAY line
linezLinepti(y) linei{x)=ch
RETURN

PROC Modifyi)

;Modify the RAHM character set

CARD xx

FOR xx=8 TO 79

DO
Charset(xx+8)=ShapeTable (xx3}

oD

RETURN

PROC UpdateScore()

iPrint the score and Level
POSITION(1,23) PRINT("EHILTE'")
POSITION(S8,23) PRINTC({Score)
POSITIONL16,233) PRINT("[MATTEW{'")
POSITION(Z23,23) PRINTB({Level)
POSITIONC27,23) PRIHT("Targ: ')

POSITIONC33,23) PRINTCI(Targetl
RETURN

PROC Noise(}

;the explosions when a block is hit
IF Loud=8 THEN RETLURN FI

Loud==-2 SO0UND(1,98,8,Loud)

RETURN

PROC NewLevel ()
;set up a more difficult level
BYTE time=2Z8,1p
SO0UNDCL,8,8,8) PUT(125) Level==+1
POSITIONC9,12)
PRINT ("New (MITIWH"Y POSITION(Z0,12)
PRINTB{Levell tiwme=8
DO SOUNDIB,time,18,4)
LUNTIL time>i88
oD
PUT(125) SOUND(IB,8,08,8)
UpdateScorel
FOR 1lp=8 TO 29
b0 Shotstatusilpl=8 0D
FOR 1p=8 to 23
D0 EndLE{lp)=8 EndRI{1p)=32 OD
IF Level?»8 THEN Dly=1 ELSEIF Level}3
THEN D1y=2 ELSE D1ly=3
FI Loud=8
RETLURHN

28 ANALOG COMPUTING

PROC Choice ()

jchoose the difficulty level

BYTE 1p=[1]1,time=28,trig=644,s5tick=632
POSITIONCLZ,13)

PRINT("Select Difficulty with Joystick')

POSITIONCZ, 14)

PRIMT("Then press EETTH'")
POSITIONCZ,16)

PRINT("1. [£XI7 - Goal 80868 points™
POSITIONCZ,17)

PRINT("2. [JXHT - Goal 12008 points™
POSITION(Z,18)

PRINT("3. [(ETX] - Goal 14088 points')
DO Plot@(s,1p+1i5,8)

IF stickZ14 AND 1p>1 THEN 1p==-1
ELSEIF stick=13 AND 1p<3 THEN
1p==+1

FI Plot8(5,1p+15,84)

time=8 DO LNTIL time=28 0D

UNTIL trig=e

0D Hard=1lp
IF 1p=1 THEN Target=8080 ELSEIF
1p=2 THEN Target=120860 ELSE

Target=i1468688

FI
RETLRN

PROC Introfl
;The introduction
BYTE time=20,1p,xx
BYTE ARRAY hello(B)=I[51 4% 53 37 3I7
I7 37 58 X7 1 1 11
POSITIONC(Z,5)
U ANALANALOG PRESENTSED!
FOR 1p=8 TOe 11
DO Ploto(lp+9,8,hellollpll
SOUND(B,hello(lp) LSH 1,18,4)
time=8 DO UNTIL time=9 0D
0> SOUNDC(OG,8,8,8) POSITION(Z,9)
PRINT("written in ACTION'")
POSITION(?7,18)
PRINT(""by David Plotkin'J}
Choice ()
FOR 1lp=8 TO0O 11
DO xx=1pt9
DO PlotBi{xx,8,08) xx==-1
IF xx{1 THEN EXIT FI
Plot8(xx,8,hello(lpl)
SOUND (B ,xx LSH Z,16,4)
time=8 DO UNTIL time=1 OD
oD
0 SOUND(6,8,08,8) PUT(1Z5)
RETLRN

PROC EndGame ()
;the game over routines
BYTE time=20,1p,trig=-644,xx,yy
BYTE ARRAY gameover(8)=L[3I9 97 189 1i0i
8 47 118 161 1141
PUT (125) SOUND(1,6,06,8)
FOR 1p=68 TO 8
DO PlotB(lp+7,12,gameover{lpl) OD
IF Score»=Target THEN POSITION(S,7)
PRINT ("'You met your ELER!I! ')
FI Updatescorell
time=8)
DO SOUNDCB,time,18,8)UNTIL tiwme=-68 0D
S50UND(B,8,8,8) Choice() Level=-a
FOR 1p=8 TO 8
DO xXx=1p+7 yy=12
b0 PlotB(xx,yy,B8) xx==+1 yy=-=-1
IF (xx»39 or yy<{1) THEN EHXIT FI
PlotB(xx,yy,gameover(1pl)
SOUND(O,xx LSH I,18,4)
tTime=8 DO UNTIL tiwme=1 0D
oD
o0p Score-8 NewLevel()
RETURN

ATARI 8-BIT EXTRA

PROC Moveguni)

;jRead joystick and move the gun

BYTE stick=632

PlotBiGunx,Guny,B8);;erase the gun

IF stick=14 THEN;this is a stick up
Guny==—1 ELSEIF stick=13;stick down
THEN Guny==+1

FI

IF stick=7 THEN Ps=1 ELSEIF stick=11

FITHEN Ps=2;stick right(i) or left(2}

IF Guny{li THEN Guny=1 ELSEIF;out of
IGuny 21 THEN Guny=21; Bounds

F

Plote(Gunx,Guny,Ps);redraw the gun
RETURN

PROC Testcol (BYTE wh)
;jsee if bullet wh hit anything
BYTE qq9
qq=5hoty {wh)
IF Shotstatusi{wh)=1 THEN
IF EndR{qq)<{=Shotx(wh) THEN
PlotB(5hotx(wh),5hoty(wh),b 8}
Shotstatusi(wh) =8
EndR(qq)==+1 Loud=6 Score-=+2
FI ELSE
IF EndL{qq)>=5hotx{wh) THEN
Plot8(5hotx(wh) ,Shoty(wh),B8)
Shotstatus(wh) =90
EndL{qq)==-1 Loud=6 Score=-=+2
FI

FI
IF Score>Ll(Level) THEN NewLevel() FI
RETURN

PROC Shoot()

;check the trigger and fire if pushed
BYTE trig=644,1p

IF trig=1i THEN RETURN FI

FOR 1p=8 to 29;find an empty shot

Do
IF Shotstatus({lp)=8 THEN;got one
IF Ps=1 THEN;gun facing right
Shotstatus(lpl=1
Shotx(lp)=Gunx+1l ELSE
Shotstatus(lpl=2
Shotx(lp)=Gunx-1
FI Shoty(lpl=Guny
PlotB(Shotx(1lp),Shotydlpl,84)
Testcol(l1p) EXIT
FL
oD
RETLURN

PROC MoveShots ()
;jmove the fired bullets

BYTE 1p
FOR 1p=8 TO 29; for each shot
Do

IF Shotstatus(lpl)=1 THEN;going right
PlotB(Shotx(1p),Shoty(lpl,8)
Shotx(lp)==+1

ATARI 8-BIT EXTRA

IF Shotx(1p)=39 THEN
Shotstatus(lpl)=8 ELSE
PlotB(Shotx(1p),Shoty(lp), 4]
Testcol(1lp)

FI

FI
IF Shotstatus{lp)=2 THEN;going left

PlotB{(Shotx(1p),S5hoty(lp),B]

Shotx(lp)==-1

IF S5hotx(l1p)=8 THEN
Shotstatus(lp)=68 ELSE
PlotB(Shotx(1lp),Shoty(lpl,84)
Testcol (1p)

FI

FI
oD
RETLURN

PROC GrowHalls()
jgrow squares from both sides

BYTE 1vl,1p,dum,y
BYTE ARRAY 1more(24),rmore(24)
FOR 1p=8 TO 23
DO 1more(lp)=6 rmore(lpl=8 OD
IF Level>18 THEN

1v1=18 ELSE lvi=Level
FI
FOR 1p=1i to lvl+Hard
DO

IF Fate»218-1vl LSH 2 THEN;grow
duM=RAND (8)+3 yY-—RAND(Z1)+1
IF Fate>128 AND EndR({yl>28 AND
rmore(yy=8 THEN rmoreiy)=i
EndR{y)===1 PlotB(EndR(Yy),y,dumd
ELSEIF EndL(ty) {18 AND
1more{y)=8 THEN 1more(y)=1
EndL(y)==+1 PlotB{(EndL(y),y,dumld
FI
FI
oD
FOR 1p=1 to 22
PO IF EndL{1p)=18 AND EndR({(1p)=Z8
THEN EndGame () EXIT FI
oD
IF Score=Target THEN EndGame({) FI
RETURN

PROC Main @)

BYTE time=2Z@8

GroInitd) Introd)

Download()

Modi fy() UpdateScore()

D0 HMovegun() GrowHalls()

Shoot() MoveShots() Noisel()

time=8 POSITIONCS8,23) PRINTC(Scorel
DO UNTIL tiwme=D1ly OD OD

RETURN

ANALOG COMPUTING 29

/POKE ADDRESSES

;;;;;

ROR MESSAGES

GV e

THE
COMPLETE POCKET
PROGRAMMING AID

ONLY $7.95 ea.

e G 4
TING MAGAZING 03 e b
ANAL%Gp\ccgs“QPE‘é MASSACHUSETTS 016 s s
W § o

pO BOX 23 e,
tor

Sy,

your

Unlock
| Atari

ERROR CODES
INTERNAL CODES

PEEK & POKE LOCATIONS
MACHINE LANGUAGE AIDS
GRAPHIC MODE SPECIFICATIONS

BASIC COMMANDS WITH ABBREVIATIONS

ANALOG COMPUTING
PO. BOX 23, WORCESTER, MA 01603
(617) 892-3488 ® (617) 892-9230

THE #1 MAGAZINE FOR ATARI COMPUTER OWNERS

v B COMPUTING
PO. BOX 23, WORCESTER, MA 01603

SNE\ DG

YES' Please send me ANALOG
. Computing Pocket Reference Cards.

| am enclosing $795 per copy.

[JCASH [CHECK [CHARGE
Name Card #
Address Exp. date
City State Zip Signature

48K Cassette or Disk

by David Plotkin

Action!, the high-speed, high-level language from OSS,
is a really excellent tool for game writing. In fact, once
you've learned its structured approach (and some of its
idiosyncracies) and tasted its dazzling speed, you may
never go back to the (normally) slow crawl of BASIC.

Surface Run, included at the end of this article, is a sam-
ple of what Action! can do. It’s also the first game I've ever
written where too much speed was a significant problem.
Of course, it’s a lot easier to get rid of excess speed than
to add it.

I've found that there are two ways to program in Action!.
The first way can be thought of as “high level,” using the
many functions and keywords that Action! provides. While
this is straightfoward, and even allows for pseudo-trans-
lation of BASIC programs (many of the commands or key-
words are the same in both Atari BASIC and Action!), it
suffers from some loss in speed. An example is found in
high-resolution graphics.

PLOT and DRAWTO are available in Action!, but use
the Atari's CIO routines, the same ones BASIC uses. This
is not to say that even “high level” Action! isn’t fast. . .
compared to BASIC, it’s fast indeed. Still, there are ways
to considerably increase the speed of slower Action! func-
tions, to a point approaching true machine speed. This
is what I refer to as “low level” Action!. What you do is
write your own special routines to do the job. This gener-

ATARI 8-BIT EXTRA

ally involves direct byte manipulation to the screen, use
of shifts instead of multiply/divide, and construction of
tables in the program initialization phase, so that results
of complex calculations can simply be looked up.

An example is seen in the graphics routines in Surface
Run. To fill a graphics 7 screen with color using PLOT
takes about 27 seconds. Use of my procedure PLOT?,
which does some complex direct byte manipulation (bit
twiddling?), takes about 4.25 seconds.

The reason that even this procedure still takes so long
is that there’s a fair amount of math going on before each
2-bit pair is modified. If you can define your picture ahead
of time and just place the bytes on-screen using a proce-
dure like FASTDRAW, the process takes about two jiffies
(or /30 second). In the latter part of this article, we'll talk
about some of the more interesting procedures included
in Surface Run, and what purposes they serve.

Surface Running.

To play Surface Run, punch in the listing that follows.
Before you run it, save it to disk or cassette (SHIFT CTRL-
W, followed by the filename or C: for cassette), then enter
the monitor (SHIFT CTRL-M) and compile (C). When the
computer beeps at you, plug your joystick into port 1 and
run the program by pressing R.

You're in control of a space fighter, zooming low on pa-
trol over the scrolling surface of Stripes, your home plan-
et. Pulling back on your joystick causes you to climb;
pushing foward makes you dive toward the planet’s sur-

ANALOG COMPUTING 31

é Surface le continued

face, although your flight computer won't let you crash (at
least, not into the surface).

Pressing the joystick left and right will cause the fight-
er to respond in the appropriate direction. It will also re-
spond to diagonals, for added maneuvering.

And you're not defenseless. Pressing the fire button un-
leashes missiles which emerge from your wingtips and
converge in the distance. You may have up to four mis-
siles on the screen at any one time.

The enemy is a massive “mother ship,” which emerges
from hyperspace with a roar and moves rather unpredict-
ably about the screen, launching tracking fireballs at you.
You must neutralize all these fireballs with your missiles,
while destroying the mother ship—by first shooting out
the left engine, then the right, and, finally, the main cen-
ter one.

Strategy is something of a problem: to destroy the moth-
er ship, you must move in close, but the fireballs are more
dangerous if you do. You start out with four ships. The
number of ships left and your score are kept in the win-
dow at the bottom of the screen. My high score is about
7000, so good luck and good hunting!

The real Action!

Some of the PROCedures used in Surface Run are quite
interesting, and they enhance the speed of the program
considerably. Let’s touch on some of these programming
techniques.

(1) The use of the DEFINE statement to equate assem-
bly code statements (such as RTI or PHA) to the actual hex
codes that represent these instructions make the listing
more readable and understandable.

(2) SAVETEMPS and GETTEMPS are found whenever
an interrupt (such as VBI or System Timer) is used, to save
and retrieve the temporary math variables needed by the
main program. Thus, the interrupt doesn’t change these
variables, which could cause some unpredictable results
in the main program. The line of hex codes is two short
machine language routines to do the job.

(3) PROC DLINT is a display list interrupt (DLI) rou-
tine written in Action! Note the use of the assembly code
blocks DEFINEd earlier to save the accumulator, and the
X- and Y-registers during the interrupt. We did not use
SAVETEMPS and GETTEMPS, because there isn’'t enough
time, but it seems to work okay. The DLI changes the back-
ground color by displaying a hue taken from the byte ar-
ray CLRS.

(4) PROC INIT7 does the program initialization. The
real purpose is do some drawn out math to find screen
addresses, then store the results in an array—because it’s
much faster to look those results up than to calculate them,
which would slow down program execution. Thus, the low
byte of the address of each screen line is stored in array
YLOCL, and the high byte in array YLOCH. The array
RSH2 holds which of the 40 bytes on the line is actually
referred to by the X-coordinate range from 0 to 159. There's
a little trickiness going on here, to break up the 2-byte ad-
dress held in SCREEN into the two 1-byte numbers need-
ed by YLOCL and YLOCH. By making CARD SCREEN
have the same address as BYTE LOW1, each time SCREEN

32 ANALOG COMPUTING

is changed, LOW1 and HIGH1 are also automatically
changed. This is sneaky, but very fast.

(5) PROC DLSETUP modifies the display list, to turn
on the high byte of each instruction on each line where
a DLI is required. The instruction VDSLST=DLINT in-
stalls the DLI.

(6) PROC ROTATE is a routine executed each time the
system timer interrupt is called (more on this later). It ro-
tates the elements of the array CLRS, so that the colors dis-
played by the DLI appear to move down the screen.

(7) INT FUNCs HSTICK and VSTICK are used to read
the joystick. They're taken directly from the Programmer’s
Aid Disk (PAD).

(8) PROC DRAW? allows you to plot a point on the
screen in any of the graphics 7 colors. This is much quicker
than using the PLOT function. You pass the x- and y-
coordinates, and the color number to the procedure.
There’'s some major speed enhancement here. First, note
the BYTE variable declarations. When byte variables are
passed to a procedure, they are passed on page 0 in loca-
tions $A0 to $AF. So, declaring byte variable X1 to reside
at location $A1 equates it to the passed variable X. But,
because it's a 0 page quantity, operations using X1 will
be faster. Note also that the variables LOW and HIGH are
equated to the proper element of YLOCL and YLOCH.
This automatically moves byte array LINE to the proper
line on the screen, because the variables LOW and HIGH
reside in the memory location that defines where byte ar-
ray LINE will be (see the MODULE statement at the be-
ginning of the program). The last line of this procedure
looks pretty horrendous, but what it does is directly
manipulate the proper screen byte by punching a 2-bit hole
in the byte with a bit mask (array BM), then filling in the
hole with the proper color via a color mask (array CM).

(9) PROC FASTDRAW is the fastest of the drawing rou-
tines. It takes data contained in a byte array and places
it directly on-screen, byte by byte. The variables WIDTH
and HEIGHT determine the limits for picture drawing, and
XX and YY are the position to draw the picture on the
screen. The drawback to using this procedure is that you
have to figure out how to draw a picture and convert it
to a string of bytes. FASTDRAW is set up to use a picture
drawn with DrawPic, from Artworx. When you construct
a picture with DrawPic, you can save the image to disk
as BASIC program lines containing a string of bytes. Draw-
Pic also automatically saves the width and height. It is
then simple to enter these program lines into an Action!
program and modify them to the proper format. The byte
arrays SHIP, NOLEFT and NOENG declared at the begin-
ning of the program are constructed in just this manner.

The rest of the procedures are fairly straightforward,
PMGRAPHICS, PMCLEAR, and PMADR are from the
PAD, although PMGRAPHICS is a cut-down version of the
general routine provided on PAD.

ERASESHIP removes the mother ship from the screen
and increments the difficulty each time you triumph over
one. WINDOW draws the text window at the bottom of
the screen. UPDATE prints the new score, while UPDATE-
SHIP keeps track of the number of ships you have left.

ATARI 8-BIT EXTRA

TESTHIT checks to see if your missiles have hit the
proper spot on the mother ship. SHIPFLY moves your lit-
tle space fighter in response to the joystick. MISSILEFIRE
fires off a missile (don't you just love descriptive names?)
when you press the fire button, provided there aren't four
missiles on-screen already. MISSILEMOVE converges the
missiles in the distance. The distance the missile has trav-
eled from its original Y-coordinate is used to determine
the X-coordinate.

SHIPDRAW places the mother ship on the screen, while
SHIPMOVE bounces it around. DARKEN checks to see if
the background is lit up from an explosion. It progressively
darkens the area, so the explosions can continue while oth-
er things happen.

SHOOTBACK causes the mothership to launch any un-
used fireballs at your fighter. ALIGN determines the direc-
tion the fireballs have to move to reach your ship and how
far they will move each time (based on the difficulty lev-
el). BALLMOVE moves fireballs in the appropriate direc-
tion. HITBALL figures out which fireball was hit and
removes it from the screen, making an explosion and light-
ing up the background.

ENDGAME displays the end-of-game message and
restarts the game when you hit the fire button. BLOWNA-
WAY checks to see if a fireball has hit your fighter and
blows it apart if one has.

Finally, MAIN does the initial setup and calls each of
the other procedures as needed. One popular misconcep-
tion is that the “driving” PROC must be called MAIN. This
is not true; the procedure may be called anything. What's
different about MAIN is that it is the PROCedure which
calls all the others.

Action! is a very nice midpoint between BASIC and
assembly—and, as you can probably tell, I'm a big fan.
Programming in Action! is more fun than in BASIC, with
far better results. And it's much easier than learning as-
sembly language. &

Listing 1.
Action! listing.

CHECKSUM DATA

[E9? 58 29 34 ES BE ED 98
; CO 79 81 BC 27 CZ 39 B1

48 8B 36 1C 52 FF 63 21

11 AE 88 3a 75 2B E8 7D
52 23 D2z 71 86 924
D& DS 1D E1 65 68 86 47
D9 64 A% 76 Al ZF BC 97
F6& 96 64 7D 8B 76 C? E@
54 32 97 68 28 1a 37 FB
5Aa 59 1

MODULE; SURFACE.RLUN
DEFINE RTI="%$48",

-t e e e e el
EN
=~
=]
=

PHA="548",
PLA="$68",
TRA="$8a",
Tax="%aa",
TYya="%598",
Tay="%a8",

SAVETEMPS="[5a2 7 $BS 5A8 548
sca %18 SFaAl1",

ATARI 8-BIT EXTRA

GETTEMPS ="[$AZ B 568 %95 $5SA8
SE8 SE® 8 5DO SF81“

CARD OLD,SDLST=568,VUDSLS5T=512,
SCRLUC 88, CDTMUZ $21a,
CDTHMAZ= 5228 HIMEM=%2ES,
PM_BASEADR, nDRES ADRESE,
SCORE=LB1]

INT SHK=[11,5Y=L1]1

INT ARRAY BXDR=I8 8 8 81,
BEYDR=L[6 8 8 81

BYTE NMIEN=$D48E,COLBK=5D814a,T=5Da,
VUCOUNT= $D4BB WSYNC= $DdBﬂ,
COUNT=[8]

PHMHITCLR= gDBiE DMACTL=%22F,
GRACTL=5DB1D, PMBQSE 0487,
PRIORITY= SZEF HO,Y0,COLWND=5D018,
SHIPX, SHIPY, SHIPSTnT [el,
PCLROB=7084, PCLRM—?li COLRB=788,
COLR1=7069,CO0LR2=718,C0LR4=712,
FATE= 53?79 NLUMSHIP= [4] CURSH=752,
THTROW=656, TKTCOL=657, LUL [ie1,
LVL1=[18]1, SNDl $D286F, SNDZ $p208

BYTE ARRAY DLIST,YLOCL(88),
YLOCH(808), RSHZ(lBB),
PMHPOS (8) = SDBBB,
PMUPOS(8)=-[60 6 6 6 6 B B8 B]1,
PM_HIDTH(5)=5DpB88,PLPTR
PM_MISMQSK(4]—[$FC SF3I gCF $3F1,
BALL1=-[6 6 6 B 165 928 3I6 98 908 36
26 165 6 8 8 81,
PCOLR(4)=704,
BALLZ=[6 68 8 6 %98 165 219 165 165
219 165 %86 6 6 8 81,
B5TAT=[6 6 6 61,
BX=-[8 6 8 8]1,BY=I[6 B8 8 81,
BLANK=[6 6 6 6 6 O 6 0 6 6 B 08 @
a8 8 81
BYTE ARRAY CLRS(8)=[64 66 68 78 7Z 74
64 66 68 780 72 74 64 66 68 70 72
74 64 66 68 70 7Z 74 64 66 681

BYTE ARRAY BM(B)=L5C8® 538 5C 531,
CHM(BI=L[$8 $55 5aa 5FF1,
SHIPSHAPE(B)=L[6 6 B8 B 66 3I6 24 165
231 165 24 36 66 0 B
a8 81,
MSTATUS(B)=[6 6 B 81,
MK (B)=[6 6 8 81,
MY(B)=[6 B8 68 061,
MXOLD(B)=[8 6 6 81,
MYOLD(B)=L6 B 8 81,
5HIP(199):
[''9'Y'9'g'plypiyptyipipia
ll. §! .lelpl.llm El.lll.lvl’lnlalul
lul.}lﬁl’l'lwlml 'l}l] l} Ivl*l“lml'
l}lml l}l I'I’IAI Iul?l TRE A N. B8 AN ANT]
TP lml .' FI' 'IEI'Iq nlxlllvlbl’
b ak At A A AL I 21
;BYT=10:LIN=18
NDLEFT(lBB)‘

['$'9' '@ Qi@ V'*'*'V'I'H'H'!'V
ll.l' WU g lml g 1 I’l,l*l,‘ Ty Im
TH' 3" g i g |§] l}lE]l'l*l’l.llj
I}lmll}l I'IQl'lrlul [{rU'3'a' g ¢ @
I,I'Il E|E| lFl'l'l'l'lqlanI.l'lFI’
be. d e & 9'0'9'*" v'¥l,
;BYT=18:LIN=18

NOENG(168)=

['$' 9 QI QI PIPIPIPIPIPIPIpIgr Ill le!l’
TRIPI I PI g g |m| |,|’|'|’|v|.||ul lm
TH'D 'Yy ke g |m| I.}I'I’I’I’I*IJ
l}lml IJ‘LI'I’I’I'IrluI?I THID "9 191 g1 @
|Q|.|E|mlnlg‘u'l'|'|'|'| IHIHIII'I'I'

ANALOG COMPUTING 33

é Surface Rlln continued

AL AL AL AR AL A0 AL AR AR 3

BYTE ARRAY LINE
BYTE LOMW=LINE,HIGH=LINE+1

PROC DLINT()

BYTE DUM

[PHA THA PHA TYA PHA]
IF VCOLUMNT>9%4 THEN
WSYNC=1

COLBK=8 COLWHND=8
ELSE DUM=CLRSC(COLNTI
HWSYNC=1

COLBK=DUM

FI

COUNT=COLNT+1

IF COUNT=27

THEN COLNT=8

FI

[PLA TaAY PLA TAX PLA RTII

PROC INITZ()

BYTE LOW1i,HIGHL, I
CARD SCREEN=LOH1
GRAPHICS(?7)
COLRB=44 COLR1=1862
COLRZ2=52 COLR4=8
SCREEN=SCRLOC

I=8

WHILE I<{86 DO
YLOCLCIY=LOWL
YLOCHC(IX=HIGH1
SCREEN=S5CREEN+48
I=I+1

oD

I=8

WHILE I{i68 DO
RSHZ({IX=I RSH 2
I=I+1

oD

RETURN

PROC DLSETUP ()

BYTE I

INIT?7 ()

NMIEN=%548

DLIST=5DLST
UDSLST=DLINT

FOR I=36 TO 4@

DO DLIST(I)=141 OD
FOR I=42 TO 54 STEP 2
DO DLIST(I)=141 0D
FOR I=57 TO 72 STEP 3
DO DLYIST(I)=141 OD
FOR I=76 TO 84 STEP 4
DO DLIST(IX>=141 OD
NHMIEN=5C8

RETURN

PROC ROTATE)

BYTE HOLD,CTR,CNTR
[PHA TXA PHA TYA PHAI
SAVETEMPS
HOLD=CLRS(26)

FOR CTR=@ TO 25

DO CNTR=25-CTR
CLRS(CHTR+1)=CLRS(CNTRY OD
CLRS (83 =HOLD

CDTMVZ=2

GETTEMPS

[PLA TaY PLA TAX PLA]
RETURHN

INT FUNC HSTICK(BYTE PORT)

BYTE ARRAY PORTS(4)=%278

INT ARRAY VALUE(4)=[8 1 $FFFF 8]
RETURN (VALLUEC(PORTS(PORTI&SC) RSH 23

INT FUNC VSTICK(BYTE PORT)

34 ANALOG COMPUTING

BYTE ARRAY PORTS(43=5278
INT ARRAY VALUEC4)=L[8 1 5FFFF 81
RETURN (VALUE(PORTS({PORT)&3I))

PROC DRAW7 (BYTE K,Y,CLR)

BYTE ®i=5A8,Y1i=%al,CLRi=%A2

LOHW=YLOCL (Y1)

HIGH=YLOCH(Y1)

T=R3HZ (X1}

LIHNECTI=CC{BM(K1&II ! SFFI&LINELTI} Y
(BMC(X1&3) &CMICLR1)))

RETURN

PROC FASTDRAWIBYTE ARRAY PICTURE
BYTE WIDTH,HEIGHT,XX,YY)

BYTE LCTR1,LCTRZ

CARD LCTR3

FOR LCTR1=8 TO HEIGHT-1

DO LOW=YLOCL(YY+LCTR1) HIGH=YLOCHIYY+
LCTR1)

LCTRZ=XKX+HWIDTH

LCTRI=Z(LCTR1+1)¥HIDTH-1

DO

LINE(LCTR2)Y =PICTURE(LCTR3)

LCTRI==—-1

LCTRZ2==-1

UNTIL LCTRZ=XX

oD
0D RETURN

PROC PMGRAPHICS ()

ZERO (PMHPD5,8) ZERO(PMVPOS, 8]
ZERO (PM_HIDTH, 5)

DMACTL=%$3E
PM_BASEADR=C{HIMEM-5868) &5F800
PMBASE=-PM_BASEADR RSH 8
HIMEM=PM_BASEADR+768
PRIORITY==&5C8%17 GRACTL=3
RETURN

CARD FLUNC PMADRC(BYTE N}
IF N>=4 THEN N=8 ELSE N==+1 FI
RETURN(PM_BASEADR+768+ (N¥51883)

PROC PMCLEAR(BYTE NJ)

CARD CTR

BYTE ARRAY PLAYADR
PLAYADR=PHMADR (N)

IF N{4 THEN ZERO(PLAYADR,$188)
ELSE N==-4

FOR CTR=8 TO $i88-1

DO PLAYADRC(CTRI==&PM_MISMASKIN) OD

FI

RETURN

PROC ERASESHIPI)
BYTE LOOPX,LO00PY,LL
LL=SHIPX LSH 2
FOR LOOPY=SHIPY TO SHIPY+i8
Do
FOR LOOPX=LL TO LL+Z9
DO DRAWZ C(LOOPX,LOO0PY,8) OD
op
LYL==+2 IF LVUL>28 THEN LVL=28 FI
LVL1==+5 IF LVL1>Z88 THEN LVL1=288 FI
RETURN

PROC WINDOHMC)

BYTE LOOPS

TETROW=0 THXTCOL=8 CURS5H=1

PRINT (" 3
PRINT ("= 11}

FOR LOOPS5=1 TO Z DO

THKTROW=LOOPS THKTCOL=8 PRIMNTC"[')
THTCOL=38 PRINT("|™)

0D THTROW=3 TKTCOL=8

PRINT ('L "
PRINT ("] 11}

ATARI 8-BIT EXTRA

THTROW=1 THXTCOL=5 PRINT("SCORE: ')

THKTCOL=12 PRINTC(SCORE)

THTCOL=26 PRINT("SHIPS LEFT: '

FOR LOOPS5=1 TO 5 DO THTCOL=ZI1+LOOPS

IF NUMSHIP>=LOOPS THEN PRINT (&'}
ELSE PRINT(" ')

FI 0D

RETLURN

PROC UPDATEQ

BYTE LOOPS

THKTROW=1 THKTCOL=12 PRINTC(SCORE)
RETLURN

PROC UPDATESHIPQ

BYTE LOOPS

THTROKW=1

FOR LOOPS=1 TO 5 DO THTCOL=Z1+LOOPS

IF NUMSHIP>=LOOPS5 THEN PRINT("'4')
ELSE PRINTC(" ')

FI OD

RETURN

PROC TESTHIT(BYTE MISSLL3}
BYTE MISSLY,MISSLK,HSHIP
IF SHIPSTAT=8 THEN RETURN FI
MISSLY=(MY {MIS5ULY-38) RSH 1
MISSLK=MK (MISSLL)-48
XKSHIP=SHIPX LS5H 2
IF MISSLY{SHIPY+4 OR
MISSLY>SHIPY+7 THEN RETURN FI
IF SHIPSTAT=1 THEN
IF MISSLX>KSHIP+9 AND
MISSLX{XSHIP+15
THEN SHIPSTAT=2 COLR4=14
SCORE==+28
UPDATE €3
BT
RETURN
FI
IF SHIPSTAT=Z THEN
IF HISSLK>HSHIP+31 AND
MISSLK{KSHIP+3?7
THEN SHIPSTAT=3 COLR4=14
SCORE==+28
UPDATE ()
FI
RETLRN
FI
IF MISSLX>KSHIP+28 AND
MISSLE{XSHIP+26 THEMW
SHIPSTAT=08 SCORE==+58
COLR4=14 SOUND(1,COLR4 LSH 4,8,4)
S50UNKD (2,6,08,08) ERASESHIPO)
UPDATE (3
FI
RETURN

PROC SHIPFLY ()

BYTE STCK=632

S50UKD (8,Y6,8,2)

IF STCK=15 THEN RETURN FI
KO-KB+HSTICK(6) LSH 1
YO-YBIUSTICK(63 LSH 1

IF X8>198 THEN K8=198 FI
IF ¥8<{58 THEN X8=58 FI

IF Y82>178 THEN ¥8=178 FI
IF Y8<{58 THEN Y08=58 FI
ADRES=PMADR (B) +Y0O
MOVEBLOCK (ADRES, SHIPSHAPE, 17}
PHMHPOS (B) =K@

RETLURN

PROC MISSILEFIREC)

BYTE TRIGGER=644 ,INDX,MASK

IF TRIGGER=1 THEN RETURN FI
JTRIGGER IS NOT 1, S0 [@LIF!
FOR INDX=6 TO 3 DO

ATARI 8-BIT EXTRA

IF MS5TATUS(INDX)=8 THEN
MSTATUS (INDX)=1 MYCINDX)=YO+6
MYOLD (INDX) =MY CINDX)
MH C(INDX) =H@
IF INDX=1 OR INDX=3 THEN

MK (INDK)=K8+15 FI

MHOLD (THDX) =MX CINDX)
MASK=PM_MISHMASK ({INDX) !5FF
PLPTR (MY (INDX)J)==¥MASK
PMHPOS (INDX+4)=MK (INDX)
EXIT

FI 0D RETURN

PROC MISSILEMOVE ()
BYTE INDX,MASK,DELTA
FOR INDX=86 TO I DO
IF MSTATUSCINDX)=1 THEN
PLPTR (MY (INDX)] ==&PM_MISMASK (INDX)
MY (INDK) ==-2
MASK=PM_MISHASK CINDHX) ! 5FF
IF MYOLD C(INDX)-MY({INDKX)>44 THEN
MSTATUS (INDX) =6 SOUND (2,8,8,8)
ELSE PLPTR(MY(INDX))==YMASK;REDRAW
DELTA=(MYOLD (INDX)-MY(INDKXI3I/6
IF INDXK=0 OR INDK=2 THEN
MK (INDX) =MKOLD (INDX)+DELTA
ELSE MK (INDXI=HMKOLD (INDX)-DELTA
F
PMHPOS (INDX+4) =MK (INDX)
S0UND(Z,DELTA LSH 2,18,4)
TESTHITC(INDK)
FI
FI 0D RETURN
PROC SHIPDRAMWL)
BYTE TIME=28
IF SHIPSTAT{>8 OR FATE{258@
THEN RETLURN FI
SHIPSTAT=1
COLRO=14 COLR1i=14 COLRZ2=14 COLR4=14
SHIPK=RAND {Z24)+2 SHIPY=RAWD(3IB)+2
FASTDRAWCSHIP,16,18,5HIPX,S5HIPY]

TIME=6 DO SOUNDC1,160,8,12-TIME RSH 13

IF TIME=4 DR TIME=8 OR TIME=12Z THEN
SHIPFLY () MISSILEMOVE)

FI

UNTIL TIME=16 OD

WHILE COLR42>8

DO COLR4==-1 COLRZ=RAND (258)
COLROG=RAND {2568) COLR1=RAND(Z586]
TIME=8 DO UNTIL TIME=Z OD
SOUND €1,COLR4 LSH 4,8,4)
SHIPFLY) MISSILEMOVE()

oD

COLRB=44 COLR1=18Z COLRZ=52
SOUND(1,08,08,8)
RETURN

PROC SHIPMOVE()

IF SHIPSTAT=8 THEN RETURN FI
SHIPK==+5H SHIPY==+53Y

IF SHIPX{Z OR SHIPKX>28 THEN SX=-5X

ELSEIF FATE> {255-LVL) THEN SK=-5XK FI

IF SHIPY<{Z OR SHIPY>55 THEN SY=-5Y
ELSEIF FATE{LVL THEN 5Y¥=-53Y FI

IF SHIPSTAT=1 THEN
FASTDRAWCSHIP, 168,168, 5HIPX, SHIPY)
ELSEIF SHIPSTAT=2Z THEN
FASTDRAWC(NOLEFT,168,168, SHIPX, SHIPY)

ELSE FASTDRAWC(WOENG,16,18,5HIPX,S5HIPY]

FI
RETURN

PROC DARKENI()

IF COLR4=8 THEN RETURN FI
COLR4==-1 SOUND({1,COLR4 LSH 4,8,43}
IF COLR4=8 THEN SOUND(1,6,08,8) FI
RETURN

ANALOG COMPUTING

35

é Surface Run continued

PROC SHOOTBACK ()

BYTE LLP

IF SHIPSTAT=6 OR FATE}>LVL1
THEN RETURN FI

FOR LLP=1 TO I DO

IF BSTATC(LLP)=8 THEN
BSTAT(LLP)=1
BHC(LLPY=(SHIPX LSH 2)+68
BY (LLP)=(SHIPY LSH 1)+34
PCOLRC(LLP)=RAND (15) LSH 4;RND COLOR
PCOLRC(LLP)==+16; LIGHTEN COLOR
ADRESB=PMADR(LLP)+BY(LLP)
MOVEBLOCK (ADRESB,BALL1,16)
PMHPOSCLLPY=BX(LLP)
EXIT

PROC ALIGN()
BYTE LLL,CLUNK=LO]
IF LVUL1>58 THEN CLLUNK=1
ELSEIF LVUL1>156 THEN CLLUNK=2
FI
FOR LLL=1 TO 3 DO
IF BSTAT(LLL){>8 THEN
IF BXR(CLLL)) (X8+4) THEN
BXDRCLLL) =-2-CLUNK
ELSEIF BHILLLY {(H8+4) THEN
BXDRILLLY=2+CLUNK
ELSE BXDR(CLLLY=0
FI
IF BYCLLL)>(Y8+4) THEN
BYDRCLLL)=-2-CLLUNK
ELSEIF BY(LLL) {(Y8+4) THEN
BYDR(LLL)Y=2+CLLNK
ELSE BYDR(CLLL)=96
FI

PROC BALLMOVEQ)

BYTE LLP

FOR LLP=6 TO 3 DO

IF BSTATC(LLP){>8 THEN

IF BSTAT(LLP)=1 THEN BSTATCLLPI=2
ELSE BSTAT(LLP)=1

FI

BH(LLP)==+BXDR(LLP)

BY (LLP)==+BYDR(LLP)

ADRESB=PMADR(LLP)+BY (LLP)

IF BRC(LLP){5686 OR BX(LLP))>198 OR
BY(LLP) {34 OR BY(LLP)>182 THEN
BSTATC(LLP) =8
MOVEBLOCK C(ADRESB,BLANK, 16)

FI

PMHPOS (LLPY=BX (LLP)

IF BSTAT(LLP)=1 THEN
MOVEBLOCK (ADRESB,BALL1, 16)
ELSEIF BSTAT(LLP)=2 THEN
MOVEBLOCK CADRESB,BALLZ, 16)

FI
oD
RETLRN

PROC HITBALL Q)
BYTE ARRAY MISCOL(3I)=5D06S
BYTE IND,PLY,DUMMI
FOR IND=6 TO I DO
IF MISCOLCIND)>1 THEN MSTATUS(IND)=8
PLPTR{MY (IND)I==&PM_MISMASK CIND)
DUMMI=MISCOL CIND)
IF (DUMMI&2)=2 THEN PLY=1
ELSEIF (DUMMI&4)=4 THEN PLY=2
ELSE PLY=3

FI
ADRESB=PMADR (PLY) +BY (PLY)
MOVEBLOCK (ADRESB, BLANK, 16)
COLR4=16 SOUND(1,COLR4 LSH 4,8,4)
BSTAT(PLY)Y=0 PMHITCLR=1
SCORE==+18 UPDATEQ)

FI

36 ANALOG COMPUTING

0D RETLURN

PROC ENDGAME ()

BYTE TRIGGER=644

ERASESHIP ()

THTROW=2 THTCOL=2

PRINT ("GAME OVER..PRESS [@{I3 TO PLAY')
PRINT (" AGAIN')

DO UNTIL TRIGGER=6 0D

NUMSHIP=4 SCORE=06 TXTROMW=2Z THTCOL=2
LVUL=16 LVL1=18 SHIPSTAT=0

PRINT ("' '
PRINT (" "

THTROW=1 THTCOL=12 PRINT (" "y
UPDATEC(Y UPDATESHIP ()

RETURN

PROC BLOWNAKAY ()

BYTE ARRAY SHIPH(B)=53268

BYTE LQ, TIMER=20

IF SHIPH(8)=0 THEN RETLURN FI

PM_HIDTH(0) =0

FOR LQ=06 TO I DO

IF MSTATUSCLQ)=1 THEN MSTATUSI{LRI=0O
PLPTR (MY (LQ)I==&PM_MISMASK(LQ)
S0UND (2,6,0,0)

FI

PMCLEARCLQ) BSTAT(LQI=1 BX(LQ)=H@

BY (LQ)=Y0 ADRESB=PMADR{LQ)+BY (LQ)

MOVEBLOCK (ADRESB,BALL1,16)

PMHPOS (LQ)=BY (LQ)

BCULR(LQ)ZRAND(15) L5H 4+186

D .

COLR4=14 SOUND(1,COLR4 LSH 4,8,8)

BKDR(B)=2 BYDR(B8)=2 BXDR(1)=2

BYDR(1)=-2 BHDR(2)=-2 BYDR(2)=2

BHDR(I)=—-2 BYDR(3)=-2

DO

IF 85STAT(O)Y=0 AND BSTAT(1)=8 AND
BSTAT(2)=68 AND BSTAT(3)=8 THEN
EXIT

FI

BALLMOVE (3

TIMER=0 DO LUNTIL TIMER=3 0D

oD

COLR4=06

50UND(1,08,08,8) PMHITCLR=1 NUMSHIP==-1

UPDATESHIPC)

IF NUMSHIP=0 THEN ENDGAME() FI

H8=128 YO6=170

PM_HWIDTH(B)=1 PCOLR(O)=170

ADRES=PMADR(O) +Y0

MOVEBLOCK CADRES, SHIPSHAPE, 17}

PMHPOS (0) =HO

RETURN

PROC MAINC)

BYTE XX,COUNT,TIMER=20

SND1=3 SND2=0

DLSETUP ()

PMGRAPHICS ©)

FOR XKX=8 TO 7 DO PMCLEARCKXK) OD
¥8=120 X0=1206 PCOLR(6)=178 PCLRM=14
ADRES=PMADR (8) +Y8 PLPTR=PMADR(4)
MOVEBLOCK (ADRES, SHIPSHAPE, 17)
PMHPOS (8) =HO PM_HWIDTH(O)=1
WINDOMWC)

CDTMAZ=ROTATE

CDTHYU2=2

DO

SHIPDRAKWC)

SHIPMOVE() SHOOTBACK ()

ALIGN Q) BALLMOVE (3

FOR COLUNT=1 TO 3I

DO

TIMER=6 DO UNTIL TIMER=1 OD

SHIPFLY () MISSILEFIRE() MISSILEMOVE Q)
DARKEN () HITBALL () BLOHNAHAY ()

op

oD

RETURN

ATARI 8-BIT EXTRA

48K Cassette or Disk

by Mark Comeau

Mission #2, should you choose to accept it, is to stop
the production of the enemy’s killer satellites. They’re be-
ing manufactured at this moment, in the secret enemy base
in the Commodore mountains. If production doesn’t stop,
they’ll be launched —and demolish the Earth for sure. The
coordinates for the base are listed in your secret agent
handbook. Land your Spy Plane immediately and get to
work!

On your last mission, the enemy had somehow managed
to photocopy plans to your top-secret satellites. Cases and
cases of the plans will be found now in the caverns of the
base. Confiscate as many as you can, but don'’t let that deter
you from your main mission.

Once inside the caverns, look for some small portals.
Inside are the factories producing the enemy satellites.
Drop a radio-controlled robot into them and maneuver it
with your hand-held spy computer. To disable the factory’s
machines, just unplug them and turn off the water sup-
ply. After all the machines have been sabotaged, an exit
will appear in the lower right-hand corner.

As part of their protective system, the factories have
tubes which emit radioactive mist. The mist is dispersed
in straight lines, at irregular intervals. The caverns also
contain mist portals, but, here, once the mist hits the
ground it spreads out a little. The mist causes death on
contact. Avoid it at all costs!

ATARI 8-BIT EXTRA

In the caverns are empty tubes which you can use to
travel up and down. Do not travel off the top of the tubes.

On the first level of Spy Plane II, you can use your spy
jump boots. These will let you “fall” down to lower sur-
faces without injury. After the first level, though, the boots
will become useless. Any fall will result in death.

There are two factories on each cavern screen. When
you’ve sabotaged the first, it will blow up and disappear.
Both of the factories must be destroyed before an exit
appears.

Each level of the game has four cavern screens, all of
which must be completed before the satellites are pro-
duced. On the first level, there’s a 500-second time limit.
In every succeeding level, the time it takes to produce
satellites is decreased by 50 seconds. If the factories are
not destroyed and your exit accomplished in time, you’ll
see the satellites launch and destroy the Earth. When the
Earth is destroyed, you lose a life.

The fate of the world rests heavily upon your shoulders.
You have only four lives in which to complete your mis-
sion, so live them with care.

Running and playing the game.

Type in Listing 1 exactly as it appears. Be careful with
the data statements.

Type RUN, and the screen will go blank for about 30
seconds. Then the Spy Plane will land, and your man will
get out. After that, the familiar Spy Plane logo will ap-
pear. Press the fire button to start the game.

ANALOG COMPUTING 37

é Spy P lane II continued

After you press the fire button, the score display will
appear. Press the fire button again to get to the first screen.
During the score display, if you press START, the computer
will end the game.

On the first screen, your man will automatically climb
out of the plane and down a tube. Cases of plans (worth
10 points) are located all around him. Each screen is worth
100 points. The destruction of a factory will win you 100
points, while the sabotage of each plug or faucet inside
is good for 20 points.

Programming tips.

When the program is run, it turns the screen display
off, reading and initializing all the necessary stuff. “Why
in the world would you want to turn the Atari’s superb
graphics display off?” you may ask. Because the initiali-
zation process takes a while—anything that can make it
speed up is A-OK. When the screen is turned off, the com-
puter is freed from graphics—everything else speeds up.

To do this, just POKE 559,0. I even use it to turn the
screen off when displaying screens. Instead of a flicker,
you get a split-second of black, then a quick display.

If you look at the Spy Plane II program, you’ll see that
every number from 0 to 20 has a C in front of it. This is
done to conserve memory. The computer has an easier time
handling variables than numbers. I saved 2263 bytes by
using constants on this program. The variables are defined
with an unusually large read-data combination. Look at
Lines 2510 and 2520.

With the kind of character-set/player-missile graphics
used in this game, everything is displayed in 8 *8 squares,
in order to make things manageable enough for BASIC.
But you’ll notice that the man moves around pretty
smoothly. If moved in steps of 8, he would skip around
and wouldn’t look too good. Instead, he moves in steps
of 2 until he gets to the 8th pixel, because he has to match
the character set graphics display.

The trick is to set two variables to the joystick position
to determine the direction of the player. Each direction has
a variable X- and Y-step, which is either 2 or -2. A
FOR. . .NEXT loop from 1 to 4 displays the player/mis-
sile character each time, adding the X- and Y-step values.
Whoa! Did you catch all that?

Each direction the spy may go must have a bit-mapped
graphic stored in a string array. This is so that the play-
er/missile graphics routine can display it nice and quick-
ly. The only drawback is that each graphic has to have a
different string. “But that’s a little too slow for BASIC,”
you say. Fear not.

The way to get arcund it is to put all your player/mis-
sile graphics into one string. Use a variable for the string
pointer of your intended graphic. It goes in steps of 8, be-
cause each character should take up 8 bytes. The pointer
is set to whichever graphic you want. All of the data for
your player/missile can be read in with one FOR. . . NEXT
loop, as in Line 2580.

If you were to have an IF. . . THEN statement for every
joystick position, your player/missile wouldn’t go very fast
at all. I use what’s called Boolean algebra. What the heck
is that? Well, it’s really simple. Here’s an example. . .

38 ANALOG COMPUTING

100 S=STICK(0):5X=(S=7 AND X <456)* 2—(S=11 AND X >304)*2

If the conditions inside the parentheses are met (S=7
and X <456), then the value will be a 1. If the conditions
are not met, the value will be a 0. If the stick position is
a 7 and X is not too high, then it will be multiplied by
2. This particular expression will give a result of either
a2or-2.

The other Boolean expression used is in Line 110. It’s
only purpose is to determine what the pointer for the play-
er/missile array will be.

Program breakdown.

Lines 10-70 — A little credit, please!.

Line 80 — Branch to initialization.

Lines 90-230 — Main loop. Movement, etc.

Lines 240-270 — Vaporize case. Make it blow up!

Lines 280-400 — Fall down and/or figure out if it is a
fatal fall.

Lines 410-430 — Death. Figure out if it is the last man.

Lines 440-510 — Emit radiation.

Lines 520-530 — Next screen and see if it is the last.

Lines 540-700 — Display score, then display screen and
go to main loop.

Lines 710-770 — Walk out of plane.

Lines 780-940 — Small init for factory.

Lines 950-1020 — Main loop for factory.

Lines 1030-1180 — Display factory radiation.

Lines 1190-1200 — Check to see if RC robot is stepping
on something harmful.

Lines 1210-1250 — Make RC robot die.

Lines 1260-1290 — Unplug machines.

Lines 1300-1330 — Go back to main loop.

Lines 1340-1510 — Launch satellites and destroy Earth.

Lines 1520-2070 — PRINT #6 values for your graph-
ics screens.

Lines 2080-2230 — Display title screen.

Lines 2240-2350 — Land the Spy Plane, and then dis-
play the logo.

Lines 2360-2470 — GAME OVER message with high
score and last score.

Lines 2480-2520 — Start initializing.

Lines 2530-2560 — P/M mover — by Tom Hudson.

Lines 2570-2590 — Set up data for radiation and exits.

Lines 2600-2660 — Character set initializer — created
by Steven Pogatch.

Lines 2670-2690 — Character set init DATA.

Lines 2700-3010 — Character set graphics DATA.

Lines 3020-3060 — P/M mover DATA.

Lines 3070-3120 — P/M graphics DATA.

Lines 3130-3180 — Radiation DATA.

Lines 3190-3200 — Exit DATA.

Okay, the game’s up. I hope you get hours of fun from
Spy Plane II. &

Mark Comeau is a self-taught BASIC programmer from
Piscataway, New Jersey. This is his fourth program pub-
lished by ANALOG Computing. The original Spy Plane
appeared in issue 21. His interests include graffiti art, rock
& roll music, Atari and video games.

ATARI 8-BIT EXTRA

WI 348 A=USR(MOVE,CO,PMB,PMD+C16,X,Y,C8)

gor e S SIS 00 350 NEXT Y:Y=Y-C1:SOLUND C@,C0,C8,C0:50

G i wwasnesuspss ATASCI!I value of the character that the player is on. Lu."' ggg gé%gaiggl ce

D ssvsenannsans ATASQII value of the character the player is Zﬂ” 3780 FOR Y=Y TO 134

- §?m£?§;mfw W 388 A=LSR(MOVE,CO,PMB,PMD+C1i6,X,Y,C8)

GTM””:MY::..Timge fimit. ’ 0¥ 396 SO0UND CO,Y+121,C14,Ci4

[SRR GR. 2 horizontal position of player. 53 :gg :EnT-Y 322?3-00 ce,ce,co

(€}, GRS GR. 2 vert'icle position of player. HY 420 WK=—C1:WKZ2=—C1:TM=CO:MEN=MEN-C1:IF

Wasscunssasnss For READing IT. MEN{C8 THEN 23786 '

| 3 1 (P All the DATA for the radiation. PG 438 GOTO 558

MEN o s 455455 Numbgr of men left. o WF 448 REM FIRE LAZERNEEE

MNSoo00s Graghlcs data for player/missile. N% 450 IF TM>GTM THEN 1358

EMD: < v sssnnes Positiorn of JH In. aymoty: KY 460 T=CCINTCRNDCCO)¥L CSC))I*CII+L(SC+C

8 5 55 i STICK value. 4]

S TemE BRRN ik EG 470 LE=L(T):LYSL(T+C1) :LN=LCT+C2) :T=CO

--------- = - 5Z 480 COLOR 107:GOSUB 510:50LUND C6,C2,C4

T o w oot Cpunter for radiation. . ,c14

o s TG ieft 10 Ghipieies a6igen, HN 490 LOCATE GX,GY,C:IF C=187 THEN 378

WX 5550 ms0i Horizontal position of factory portal. TI 560 COLOR C20+C1Z2:GOSUB 510:SO0UND CB,C

- PP F Hori;ontal gosition of player. 8,CH,CO:T=CO:RETURN ¢
L ¥ enrmansmsss Vartical pasition of playsr M5 518 PLOT LX,LY-LN:DRAWTO LX,LY:DRAWTO

LEX-C1,LY:DRAWTO LX+C1,LY:RETURN

FT 526 REM HEENEXT SCREENEEE
UN 530 TM=CO:HWX=—-C1l:WX2=-C1:5C=SC+C1:IF 5

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

C=CS5 THEN 5C=C1:5C0=5C0+1088:DF=C1:FL=C
1:GTM=GTM-508:G05UB 550:G0TO0 728

540 REM HEMGOTO SCREEN
558 POKE 77,C0:? HC6;CHRS(125) :POSITIO

N C7,C3:? HC6;5C0:COLOR 168:PLOT C7,C5
:DRAWTO C7+MEN,CS:POSITION CH,CH

Listing 1. EP 568 A=LUSR(MOVE,C8,PMB,PMD,C8,CH,C0)
BASIC listin FE 578 7 HCG6;"'NNNNNNN=>Z?0UNNNNNNNN'';
g FY 586 2 HC6;"UUUUUULUUTUUULULLLUU}
WE 18 REM Z0 596 POSITION CO,C18
NB 28 REM SPY PLANE PP 608 7 HC6;" ";
UH 38 REM II 0G 6168 2 HC6;" "y
HR 48 REM NI 628 IF PEEK(53279)=Cb THEN 2370
H¥ 50 REM BY : BB 630 POKE 788,RNDICO)¥*255:POKE 710,RND(

CO)Y#*Z255:IF STRIGI(CO)I=C1 THEN 628

(tN 640 POKE 708,52:P0KE 718,164 :P0OKE 559,
CO:POSITION CO,CO:0N S5C GOSUB 15368,167
9,1810,1950:COLOR 32

Cl 66 REM FOR: A. N A.L.0.G
WK 70 REM
KT 86 GOTO 25186
¥V 98 REM HEMAIN LooPHEN

AG 1088 S=STICK(CO) :SX=(S5=C7 AND X<{456)%C2 DK 650 IF MX>-C1 THEN PLOT WX, WY
- —(5=C11 AND H>3ID4)%C2Z WEC 6608 IF WX2>-C1 THEN PLOT WX, MY
MF 118 PS=(5=C7)®*CO+(5=C11)¥C8+(5=C15) %P5 GN 670 HWX-HX:HWXZ-WXZ
¥5 128 SY=CB:IF C=236 THEN 5Y=(5=C13 AND 0T 688 IF WX{CO OR WX2{CO THEN PLOT D((S5C
. Y{184 aND D<{>71 AND D{>72)%C2-(5=C14 A . —C1I¥C2) ,DC(S5C-CLYXC2+C1)
ND Y>C16)¥*CZ:PS5=C1i6 AW 698 IF SF=C1 THEN SF=CB:RETURN
WI 138 FOR IT=C1 TO Cc4 P5 700 POKE 559,46:G0T0 106
44 148 R-R+SK:Y=Y+5Y:A=LUSR (MOVE,C8, PMB,PHM 55 710 REM HEEWALK 0UT OF PLANENN
~ D+P5,X,Y,C8) @ 728 POKE 559,46:Y=32:FOR X=368 TO 383
PP 150 NEXT IT KB 738 A-USR(MOVE,CO,PMB,PMD,X,Y,C8)
EG 1680 TM=TM+Cl:GX=(X-3B84)/CB:GY=(Y-C16)/ LZ 740 HNEKT X
C8:LOCATE GX,GY,C NB 758 FOR ¥=32 TO 55
NI 176 IF C=217 THEN GOSUB 258 Wi 760 A=USR(MOVE,C8,PMB,PMD+C16,X,Y,C8)
E5 188 IF C=71 OR C=72 THEN 378 I6G 778 NEKT Y:GOTO 168
BM 198 IF C=122 THEN 538 KF 780 REM HEEFacTORYIN
HL 2668 IF C=185 THEN 798 WC 798 POKE 559,CH:POSITION CO,CH
YT 210 LOCATE GX,GY+C1,D:IF D=32 AND C{>2 KY 888 7 ncs'"eeeeeeeeeeeeeeeeeeee“'
38 THEN 298 TR 818 ? HC6:"e [JHAHN HIHHE e}
WY 2286 T=T+RND(COI®*C2:IF T>C18 THEN GOSUB AM 820 7 HC6;"e CCPCC LCPCC en;
. 4508 OF 838 ? HCG;"eg Wy [HH He (HH e';
LN 230 GOTO 160 NA 848 ? HCE;"e : ; en;
HX 240 REM IEEVAPORIZE casElEN PP 850 7 HCG6;'ew e"n;
WF 258 SC0=5C0+C16:COLOR 283:PLOT GX,GY ‘PR 868 ? 1C6;"ew e;
YR 260 FOR IT=C14 TO CO STEP -C1:S50LND C8 HO 8708 7 fice6;"e [ILTD Q0RO
,IT,CO,IT:NERT IT 0P 880 7 HC6; " eRHN HHT CCHCCR
Z€ 270 COLOR 3I2:PLOT GX,GY:SOUND C8,C8,C8 Bfi 898 7 HC6;"ef{yHHJIHH CCpCCR
~ ,CO:RETURN T4 %68 7 nc&-"e ICCCCC |CCCCCREN-EH
Zt 286 REM HNFaLLIEN KW 218 7 ncs'"eeeeeeeeeeeeeeeeeeee"-
RX 298 IF DF=C1 THEN 379 8% 928 POKE 559,46
IK 308 FOR IT=GY TO C11:LOCATE GX,IT,C RE 930 FOR I=CO TO C3I:SOUND I, (RNDICO)*CS
AM 318 IF C{>32 AND C<>217 THEN 338 3J+C16,C8,C2:NEXT I
MR 328 NEXT IT:GOTO 70 PL. 940 RX=448:RY=96:P=CO:IT=C8
PM 3308 IT=IT-C1:FOR Y=Y TO IT*CB8+C16:S50LN BD 950 REM JIRC ROBOT MOVEMENTIEE
D CO,Y,C14,C4:50UND C1,Y+C1,C14,C4 ZR 960 5=STICK(CO) :RK=RK+(S=C7)X*C8-(5=C11

ATARI 8-BIT EXTRA ANALOG COMPUTING 39

é Spy Plane II continued

IXCBIRY=RY+(5=CLIIHCE- (S=C14) %8
978 A=USR(MOVE,C®,PMB,PMD+24,RH,RY,C8)
980 GH=(RX-304)/CB:GY=CRY-C16)./C8:L0OCA
TE GX,GY,C

998 IF C=185 THEN 1318

1806 IF C=243 THEN COLOR 239:PLOT GX,G
Y:GOSUB 12786

1816 IF C=248 THEN COLOR 237:PLOT GX,G
Y:50UND IT,CO,CO,CO:IT=IT+CL1:GOSUB 127
8

1020 THM=TM+C1:IF C{>3I2 THEN 12806
10308 REM -Rnbxmmn-
1040 B=B+RND(CO)%C1:IF B{C18 THEN 968
1058 B=CO:T=INTC(RND(CB)*CG6)+C1:S50LUND C
8,C14,Cc2,Cc14
16608 IF T=Ci THEN LX=CZ:MK=C18:LY=C5:M
¥Y=C5
1878 IF T=C2 THEN LX=CZ:MK=C18:LY=CG:M
¥Y=C6
1688 IF T=CI THEN B=C1i:LX=C3
1090 IF T=C4 THEN B=C1:LX=C6
1168 IF T=CS THEN B=Ci:LX=Ci2Z
1118 IF T=C6 THEN B=C1:LX=Ci15S
1126 COLOR 187:IF B=C8 THEN PLOT LX,LY
DRAWTO MK, MY
1138 IF B=C1 THEN PLOT LX,CS5:DRAMWTO LX
,C6:DRAWTO LHX+C1,C6:DRAWTO LX+C1,C5
1140 LOCATE GX,GY,C:IF C=187 THEN 12Za
1158 COLOR 3I2:IF B=CO THEN PLOT LX,LY:
DRAWTO MK, MY
1160 IF B=1 THEN PLOT LX,CS5:DRAWTO LX,
C6:DRAWTO LX+C1,C6:DRAWTO LX+C1,C5
1170 SOLND CO,CH,CH8,C8:IF IT=CO THEN 5
OUND CO,C4,C8,C2
1180 GOTO 966
1196 REM HEErEATH? I
1700 IF C=243 OR C=248 OR C=237 OR C=Z
39 OR C=242 THEN 968
1216 REM HECEATHIE
12206 FOR IT=Cci TO C3:SOUND IT,CO,C8,CO
NEXT IT:SF=C@
1230 FOR IT=C8 TO CO® STEP —-1:POKE 712,
RND (CO)X*255:POKE 707,RND(CB8)*255:50UND
CO,RND(CO)*255,C4,C14
1248 A=USR(MOVE,CO,PMB,PMD+24,RH,RY+CS
-IT,IT)
1258 NEXT IT:SOUND CH,CH,CO0,CH8:POKE 71
2,CO:POKE 707,C14:WX=-C1:HK2=-C1:GO0TO
428
1260 REM HEEPLUGS OR FAUCETSHEN
1278 FOR U=CO TO C16:SOUND CO,V,CH,V+C
4 :NEXT V:SOUND CO,C8,CH0,CH
: 12808 SCO=S5CO0+C20:P=P+C1:IF P=C8 THEN C
OLOR 185:PLOT Ci3,Cia
12968 RETURH
1360 REM HGO BacKIN
1310 RX=X:RY=Y
1328 H-RH:Y-RY:WHZ-HWH:HYZ=WY:S5F=C1:G0OS
UB 558 :K-RH:Y=RY:WH=(X—-3I04)/C8:HY=CY-C
_ 163/C8
1338 COLOR 2Z17:PLOT MWH,HY:POKE 559,46
5C0=5C0+1686:G0TO 1886
{ 1346 REM MEEPESTROY EARTHEEE
1358 7 HC6;"K":POSITION CO,C9
1368 ? HC6:"B aAB i
. 1378 ? HC6;"CB AB ABABACCBAB';
13808 ? ucs-"ccsnccsnsncccccccccc"-
13%8 A=USR(MOVE,C8,PMB,PHD,CH,CH, toy
1400 FOR IT=CO TO C15:50UND ca RND (CB)
*255,C8,IT
11416 FOR X=288 TO 186 STEP -C18:S0UND
Ci,X,C14,IT:NEXT X
1428 NEXT IT:SOUND Ci,C8,CH8,CH
1438 FOR IT=CO TO Ci19:H=RND(COIXC19:CO
LOR 187:PLOT X,C9:PLOT X,C8
1448 FOR Y=C8 TO CO STEP -C1l:COLOR 248
!PLOT H,Y:COLOR 3IZ2:PLOT X,Y+C1:50UND C
. B,Y+C4,C0,Y+C4

40 ANALOG COMPUTING

114568 NEHT Y:!NEKT IT

14668 FOR IT=C8 TO S56:K=RND(C8)®C13:50U

NP CB,CO,C8,CO0:LO0CATE X,CH,C

1478 IF C=248 THEN SO0UND C8,C3,C4,C14:
COLOR 167:PLOT X,Ci1:DRAWNTO K,C11:COLOR
3Z2:PLOT K,C1l:DRAWTO X,C1ii

1488 NEXT IT

1498 SOUND CO,C8,CH,C8:FOR I=Cid4d TO C8
STEP —C1:H=RND(CB)*Z55:P0OKE 71Z,X:P0OK
E 718,I:50UND CO,H,C8,C14

- 15608 NEKT I

1518 POKE 712,C8:50UND CO6,CH,CH6,CH:G0T

0 428

1520 REM ESCREEN #i1N

15368 ? HC6;"B ABAB A';

1548 ? HCG6;"CB AB ACCCCBAC"';
. 1558 ? ﬁCE'"CCBQCCBd QCCCCCCCC";
1568 7 ncs-"ccccccceee CCCCCCCCC";
1578 7 nCB'"HGHGJHGHGH HGHGHGHGH" ;
is586 ? ncs;" IYRYRY! "3
? Hee;" GHG GHGHGHGHGJHG "

? BCG" e

? Hee; " HJGHGHG GG G "

? HCe; " HGHGH" ;

4 ncﬁ-ll ﬂ mzn;

2 uCB'"GHGHGHGHGHGHG GHGHGH";

[YHY|
HGJHGH" ;

7 1
2 HGJE“'
? "
? nc&-" GHGHGHG GHGJHG oy
? HCE;" G HG'";
g ncs-" GHG '“
2 ncs-" HHHGHG 'ﬂ
2 nc&-" G HGHGHGR";
? ncs-" GEEGGG G i e
? ncs-" GHGH'';
g ncﬁlll m mu.
2 ﬂCB'"HGHGH GHGHGHGHGHGHGH"';
K=328:Y=C16:RETURN

REM -SCREEN tMT

? nee; G Oild [G z W f
? HCG;"|GGGG [jGGGGG GGGGE";
i f VY ¥ Yl fif
? HCGE;"HGJG GG GGGJGE GGR{'';
? HC6;" my
? HCG;" GGG GG GGGGG Gij'';
7 HC6;" o
7 HCe;" GG GGGGGGG GEi'';
7 HC6;" m iy
7 HCGE;" GJGG GGJGGG GGEj'';
? HC6;" Y £
2z nCE'"GGGGGGGG GGGGGGGGGGG";

H=312:Y=C16:RETURN

REM -TITLE SCREENIIN

GRAPHICS Ci8:POKE 559,C08:POKE 756
,PEEK(166)+C1:POKE 704,C14:P0OKE 708,C08
:POKE 769,C15:POKE 718,C0:POKE 711, 52
ziee ? ﬂCB'"NNNNNNN)°GUNNNNNNNN"'
nCB'"UUUUUUUUUTUUUUUUUUUU"'

2
2128 7 ﬂCﬁ;" '
2138 7 HCG ;" L
- 2148 7 HCG;"NNNNNNN=?>?RUNNNNHHNNN";

ATARI 8-BIT EXTRA

ap
ZL

GR

2360 REM
- 2376 IF HI
- 2380 A=USR(MOVE,CO,PMB,PMD,CB,CH,CH8)
- 2398 GRAPHICS 18:7 HCe;" e

~§igg 3 gcg'"UUUUUUUUUTUUUUUUUUUU"
3 ? c llll Lllj l“ l b .l'l
7170 7 Hog ;PSSR
. 2188 7 3306;"---.. abacCCciH
: 2198 ? uCB;"IIIII. aCCCCCCln
2288 7 ﬂCB"'----- E CCCCCCRH
2218 *? ﬂCB'“-- C EEEE CCCCCCR

2228 POKE 559 46 B=C18:Y=Ca
2238 IF STRIG(CB) ca OR 9=8.1 THEN 227

8
2240 REM EEELaNDEEN

2258 FOR I=CO TO 3I3:B=B¥08.91:Y=Y+B:A=U
SR{MOVE,CH,PMB,PMD+32,3608,Y,C8)

2260 SO0UND CO,Y*2.6,C14,C14:50UND C1,Y

*2.6,C14,C14:50UND C1,Y,C8,C14:NEXT I
2270 COLOR 168:PLOT C7,C10:A=-USRIMOVE,
ce,PMB,PMD,CH,CH,C0)

2288 S0UND Ci1,CH,CH,CO0:50UND CO,CH,CH,
ca

22906 FOR I=CO TO 188:NEXKT I

23806 SOUND C6,188,C13,C14:50UND CO,CH,

. CO,CO:COLOR 168:PLOT C8,C16
. 2316 FOR I=CO TO Ci4:POKE 768,I:POKE 7

16,I:FOR B=CO TO C1O:NEXT B:NEXT I:IT=

. CB:i5=8.1

1l 2328 POKE 708,RND(B)¥255:POKE 716,RND(
. CBY*255

2336 IF STRIGI(CBY=C8 THEN 2440
. 2340 IT=IT+C1i:IF IT>2568 AND SC>CO THEN

GAME OVERIEN
5C0 THEN HI=S5CO

1?7 HC6:? HCH;" score':? HCG;"
":;5C0:7 HC6:? HCGE;" high score"
2488 7 HCG6;" ":HI:IT=CO:POKE 789,

Ci14:POKE 788,168
2418 IT=IT+C1:POKE 710,RND({CB)*255
2420 IF STRIG(CB)=CO OR IT>166 THEN 28

2438 GOTO 24186

2448 IF STRIGI(COY=COG THEN 2448

POKE 7068,52:POKE 718,164:P0OKE 711
SC=C1iHX=-C1:WXZ=HH:S5CO=CO:MEN=C3Z

. iDF=CO:5F=C1:THM=CO:GTM=500

2470 GOSUB 550:G0TO 728
2480 REM HEMINITALIZATIONEEN
- 2490 REM

25608 REM P/H MOVERIEM
2518 REaD Co,C1i,C2,C3,C4,C5,C6,C7,C8,C

~9,cie,c11,c12,Cc1%,C14,C15,C16,C17,C18,

ci3,Cc20
2526 baTh 6,1,2,3,4,5,6,7,8,9,16,11,12

0 ,13,14,15,16,17,18,19,208
2530 DIM PHMMOVS(160) ,MN5(40) ,XFR$(38],

L{583,D(C7)

- 2548 POKE 559,CO8:POKE 712,52:MOVE=-ADR(
PHMMOUS) :RESTORE 30638:FOR B=C1i TO 1688:R

EAD IT:PHMMOUS(BY=CHRS(IT):NEXT B
2550 FOR B=C1i TO 40:READ IT:MNS(B)=CHR

 S(ITY:NERT B

BH

2560 PMBASE=INT ((PEEK(145)+C3)/C4)%*4:P

. DKE 54279,PMBASE:PMB=PMBASE¥256:PMD=AD

Jo
g

1

R (MN$) :POKE 53277,C3
2576 REM HllvaTa SETUPHEE
2588 RESTORE 3140:FOR B=C1 TO S508:READ

- IT:LIBY=IT:NEXT B

2598 FOR B=C® TO C7:READ IT:DI(B)=IT:NE

. KT B

He

2668 REM HHEMChar.Set INITHEN
2618 POKE 712,190:POKE 166,PEEK(166)-C
5:5TART=(PEEK(186)+C1)*¥256:POKE 756,5T

 ART/256

IR

2620 RESTORE 2686:FOR B=C1 TO 3I8:READ
IT:XKFRS(BY=CHRS(IT) :NEXT B

ATARI 8-BIT EXTRA

PU 2630 A-USRCADRC(HFRS)) :B=232:READ IT
- 2640 IF IT=-Ci THEN 2698
26586 FOR Y=CO TO C7:POKE B+Y+S5TART,IT:
READ IT:NEXT ¥
U 2660 B=B+CB8:GO0TO 2640
J6 2670 REM HEDATA?Char.S5et InitHl
- 26808 DATA 104,169,0,133,2683,133,205,16
. 9,224,133,266,165,106,24,185,1,133,2604
. ,1608,8,177,2065,145,203,200, 208
T1 26908 DATA 249,230,204,230,206,165,206,
201,228,208 23? 96
PL Z?BB REM iChar‘ Set SHAPE DaTAlN
.gu.fgia DAThA 126,248,195,242,122,27,251,2
5C 2720 DaTh 0,0,172,172,172,188,24,24
uy 2738 DATA 120,168,169,189,121,97,97,97
EK 2740 DATA 0,08,157,149,149,157,213,213
EJ 2758 DaTA 8,5,5,23,23,95,95,255
FI 2760 DaTh B,64,192,208,248,250,254,255
MY ggga DATA 255,255,255,255,255,255,255,
WK 2786 DATA ©,8,08,192,118,63,112,152
EZ %?98 baTa 255,17,255,136,255,17,255,13
W 2860 DaTa 129,129,195,195,129,129,195,
195
i 2818 DATA 255,153,255,255,239,1706,34,8
ik 2820 DATA 255,153,255,255,221,213%,63,08
TE 2830 DATA B8,0,24,60,52,60,60,60
DaTaA 255,153,255,255,219,24,126,1

bATh 84,130,37,74,145,36,808,9
baTa 24,52,24,58,92,24,16808,706
paTA 96,32,112,255,255,112,6,08
paThA 6,0,0,0,8,0,255,255

paATA O8,56,252,63,63,252,56,0

paTA 129,90,60,126,126,60,90,123
paTA 126,126,24,219,255,255,153,2

paTA 6,08,08,255,255,08,8,0

DaThA ©,224,248,255,255,240,224,8
paATA ©,126,126,36,36,36,126,126
paATA B8,255,255,0,0,0,0,0

DaTA B,0,215,214,215,246,119,119
baTA 128,240,131,255,255,131,240,

paTA 48,32,112,255,255,112,0,0
DATH ©,0,0,60,36,126,126,126

paTH 60,231,66,195,66,195,66,195
DATA -1

REM EEEDATA FOR P/M MOVEREEN
DATAH 216,104,104,104,133,213,104,
24,105,2,13%,206,104,133,205,104,133,2
P4,184,1%3,203,164,104,133,208

BM 2048 DATA 104,104,133,209,104,104,24,1
81,209,133,207,166,213,240,16, 165,205,
24,105,128,133,205,165, 206,105

3958 DATA O,133,206,202,208,248,160,0,
162,0,196,209,144,19,196,207,176,15,13
2,212,138,168,177,203,164

3060 DATA 212,145,2085,232,169,0,240,4,
169,0,145,205,200,192,128,208,224,166,
213,165,208,157,0,208,96

3070 REM EEMP/M SHAPE DATANEN

pATA 24,52,24,58,92,24,100,70
DATA 24,44,24,92,58,24,38,98

DATH 24,36,24,60,90,24,36,102
pata 4,i32,100,164,80, 126,165,126
pATA ©,8,192,118,6%,112,192,0

REM -LAZER DATA

pATA 3,4,3,4,9,18,38,39

DATA 2,10,1,4,7,2,16,8,1

paATA B,2,0,15,2,0,8,7,3,15,10,4
DaTA §,5,3,12,18,6,17,6,4

DATA 2,10,6,4,10,0,11,10,0,13,4,0

REM ‘EHIT nnm“

baThA 19,16,16,16,5,9,15,0

ANALOG COMPUTING 41

- the
connection!

ANALOG Computing
on Delphi
puts you on-line
with the world.

ANALOG Computing,
the #1 magazine for Atari

owners, brings you the Atari
Users’ Group on Delphi. We offer
a message forum and an extensive
database for up- or downloading—all from
as little as 10 cents per minute from most U.S.
cities, with no additional telephone charges and no
extra charge for 1200 or 2400 bps. We'll use the group’s
conference feature for electronic meetings with well known
Atarians and, of course, ANALOG staff. Bring on your toughest
questions!

Special rates

Subscribers to ANALOG Computing or ST-Log may join without charge, and will receive
a free lifetime Delphi membership, a Delphi Command Card and $5.00 of line-time credit
applicable to their account. If you purchase the Delphi Handbook—the highly detailed
manual on using the whole Delphi system—for $29.95, you will get an additional $20.00 of
line-time credit. And you can subscribe to either ANALOG Computing or ST-Log directly,
while on-line, to be eligible for these bonuses.

How to connect

First, select a data communications network: Telenet or Tymnet (in the U.S.), or
DataPac (in Canada). In the Boston area, dial Delphi direct (617-576-0862). To
determine your local Telenet number, dial 800-TELENET or 703-689-5700 (in
Alaska, 907-264-7391). To obtain a Tymnet number, call 800-386-0149. If you. have
difficulty, call Delphi at 800-544-4005 (in Massachusetts, 617-491- -3398). Current .
'subscrlbers to ANALOG COmputlng or ST-Log should type JOINA'MHI when .

|||||\|x|x»

..\\‘

‘on-line, full-service
rk, offers news and
the Assbcnated Press,
weather reports, movie reviews,

shopping services, travel
mformation, and more.

.THE #1 MAGAZINE FOR ATARI COMPUTER OWNERS

COMPUTING mm

P.O. BOX 23, WORCESTER, MA 01603

48K Cassette or Disk

by Paul T. Sprague

Reversi is a strategy game written in Action!, a won-
derful language from OSS. It’s not only very fast in com-
pilation and execution, but also has the best editor I've
ever seen. Action! makes it possible to write games such
as this one in a high-level language—and yet still be able
to realize the speed of assembly language (or very close
to it).

The rules of Reversi are quite easy to grasp. The board
starts out with two white pieces and two black pieces in
the center (as you'll see when you start up the program).
White moves first, then black, then white, etc. . . .until all
squares are taken up, or neither player can move.

A move consists of placing your piece on an empty
square, thereby capturing all your opponent’s pieces be-
tween your played piece and another piece of your color.
Your pieces must be flanking those of the opponent, with
no squares left empty between the pieces.

These captures may take place horizontally, vertically,
or diagonally. Also, you may capture pieces in more than
one direction in a single move (even in all eight direc-
tions).

The pieces thus taken become your color; so ends your
turn.

One important point: you must capture at least one
piece in order to make a legal move. If you can’t do this,
you must pass and allow your opponent to move again.

ATARI 8-BIT EXTRA

The winner is the player with the most pieces of their
color on the board when the game ends.

That’s all you need to know to play Reversi. The rules
may seem quite simple, but, the more you play, the more
strategies you find which are important for good play.

The fine points.

This Reversi program allows for three different modes
of operation. A menu of these appears after the board has
been drawn at the beginning of the game.

The computer will ask you to choose a playing mode:
1 for computer vs computer, 2 for human vs computer and
3 for human vs human. Pressing either 1, 2, or 3 at this
point will select the appropriate mode. Note that you don't
need to (nor should you) press RETURN after entering the
number.

In mode 1 (computer vs computer), you’ll be asked to
select the strategy level for the white and black sides. The
game will then begin, and you’ll see white and black ex-
changing moves on-screen until the game’s over. This prob-
ably isn’t really helpful in learning game strategies, but
it is quite interesting to watch.

Mode 2 (human vs computer) first prompts you to se-
lect the color (white or black) you wish to play. To do this,
simply press W for white or B for black. (The computer
automatically plays the opposite color; it never argues—
well, almost never.) Once colors are selected and you
choose the skill level of the computer (more on this later),
play begins. If you're white, you’ll go first. Otherwise, the

ANALOG COMPUTING 43

é ReverSi continued

computer will make the first move. Regardless of which
color you pick, you’ll always use joystick 1 in this mode.

Mode 3 (human vs human) allows you to play against
a friend. In this mode, joystick 1 is the white player and
joystick 2 is the black.

To move, you must have a joystick plugged into the cor-
rect port. The cursor appears on-screen and may be moved
around via joystick. Place the cursor on the square to
which you wish to move and press the fire button. If the
square is a legal one for your move, a piece of your color
will appear there, while all pieces which your move cap-
tured will be changed by the computer. If you have no le-
gal move, then you must forfeit your turn by pressing P
(Pass) on the keyboard.

At the end of each game, the computer will ask wheth-
er or not you'd like to play another game. If you want to
play again, press the Y key. This will cause the game board
to be reinitialized and the starting menu to appear.

As mentioned above, in each case where the computer
plays one or both sides, it will ask you to select a skill level
for each color. Here are the basic strategies for each level.

Good: The second level, using the least strategy of
the three, plays simply for capture of the most pieces.
This is the way most beginners play. Soon, however,
it becomes evident that more thought is necessary.

Better: The second level combines the previous
method with a knowledge of which squares are bet-
ter to hold. The map of numbers you see at the be-
ginning of the program (Listing 1) accomplishes this.
However, in this level the map is static (it doesn’t
change as the game progresses).

Best: Our third level also uses the map, but has map
updates in special cases, to account for possible
changes in the strategic value of a square. Although,
in play against humans, this level seems quite a bit
better than the second, when the two levels are played
head-to-head, the difference is not particularly evi-
dent. The third level seems to win a majority of the
time—but not a large majority, by any means. Another
interesting change in this level’s strategy is that, for
the first part of the game, it doesn’t try to capture the
most pieces, but the least! This may seem backwards,
but usually plays well. See if you can figure out why.

Here'’s a quick summary of each function and procedure
in the program.

SET__CHIP: Places a piece of the current color into
the board array at XC,YC.

TEST__SQR: Returns the value of the square XC,YC
in the board array.

PLACE__CHIP: Places a piece of the current color
into the board array at XC,YC and draws it on the
screen board.

PSCORE: Switches inverse lettering to the current
player color and prints the score.

GET__LEVEL: Inputs strategy level.

INITIALIZE: Sets up screen and array board, gets
mode and levels, sets initial score and prints it.

FLIPPER: If FLIP__FLAG=0, then count the num-
ber of chips captured by the move XC,YC. If FLIP__

44 ANALOG COMPUTING

FLAG=1, then actually capture the chips for the move

XC,YC.

UPDATE__VALUES: If a move is made to a corner,
then make the squares adjacent to the move valuable.

COMPUTER: Get a computer move.

PLAYER: Get a human player move.

MAKE_MOVE: As the name implies. . .

MAIN: The primary game loop, with end-of-game
checking.

I hope that some of you will look at the code, figure out
how the strategies work and try to come up with stronger
ones. It really is fun to program a strategy, then pit it
against one of the other strategies. If you come up with
a really good one, or you have any questions or comments,
please write to Reader Comment in the pages of ANALOG
Computing.

Good luck. Hope your life is filled with lots of Action! &

Paul T. Sprague has his bachelor of science degree in
Electrical Engineering and works as an Associate Engineer
of Design and Development for Raytheon. He’s had his
Atari 800 for seven years and Action! for two and one-half.
They make a great pair!

Listing 1.
Action! listing.

REVERSI in aAction!
Written by Paul T. S5Sprague

CHECKSUM DATA
F6 7E 6B 8B
6D 82 1D FB F3I 4% a6 2a
ci E1 EI 44 28 9% F5 58
X8 D& BI E9? B? 83 64 6D
97 61 DA 34 AD BE 84 5B

bAa 61 EB 1

BYTE WHITE_SCORE,BLACK_SCORE,
KEY=$2FC,CURS0R=%2F8,ATTRACT=77,
PRO_COLOR,OPP_COLOR,

HOVEHX , HOVEY , MOVE, JOYX, JOYY

BYTE ARRAY FRESH_BOARD (12Z8) =

L R Gy Sy e o o
™
b3
=}
b=
=]

L is 8 6 6 6 6 8 15
8 & 1 1 1 1 8 @8
6 1 4 2 2 4 1 &
6 1 2 &8 B8 2 1 &
6 1 2 8 B8 2 1 6
6 1 4 2 2 4 1 6
g 8 1 1 1 1 8 8
is 8 6 6 6 6 8 15
is 8 6 6 6 6 8 15
8 8 1 1 1 1 & 8
6 1 4 2 2 4 1 &
6 1 2 8 @8 2 1 &
6 1 2 8 B8 2 1 &
6 1 4 2 2 4 1 &
a8 8 1 1 1 1 8 @8
i 8 &6 6 6 6 8 15 1,
VALUE_BOARD (128) ,
LEVEL (2} ,

BOARD (64) , HB(2)
WHITE="[T&IE" , BLACK="[ENIH3"
PROC SET_CHIP(BYTE XC,YC)

BOARD (HC+YC*8)=PRO_COLOR
RETURN

ATARI 8-BIT EXTRA

BYTE FUNC TEST_SQR(BYTE KC,Y¥C}
RETURMN (BOARD (XCH+YC*8))

PROC PLACE_CHIP({(BYTE XC,YC)
SET_CHIP(XC,YC)
HC=(XC+2)#*4+17 YC=(YCH1)*4
COLOR=PRO_COLOR*1
PLOT(XC,YC) DRAWTO(XKC+2,YC)
DRAWTO(XC+2Z,YC+2) DRAWTOLXC,YC+2)
PLOT (XC,YC+1) PLOTC(KC+1,YC+1)

RETURN

PROC PSCORE()
PRINT("4+4')
IF PRO_COLOR=1 THEN

PRINT (" WHITE "3
PRINTE ("'BLACK"')
ELSE
PRINT (" HWHITE "3
PRINTE ("[[EIH1'")
FI
PRINTF (" 7B /B YZE"
,HWHITE_SCORE, BLACK_S5CORE)
RETLURN

PROC GET_LEVEL € CHAR ARRAY
COLOR_STR , BYTE TEMP1 3
BYTE CHOICE
DO

PRINT("KPRESS NUMBER TO SELECT')
PRINTF (" XS5 LEVEL:ZE",COLOR_5TR3}
PRINTE(" [l - GOOD')
PRINTE('" i — BETTER')
PRINT (' K - BEST')
CHOICE=GETD (7]}
LUNTIL (CHOICE>$38)AND(CHOICE{$34)
oD
LEVEL {TEMP1) =CHOICE-%38
RETURN
PROC INITIALIZEC)
CHAR TEMP
BYTE I,J,CHOICE
JOYK=38 JOYY=17 KEY=25%5
CLOSE(7) OPEN(7,"K:',4,8)
GRAPHICS (5) SETCOLOR(4,12,5)
SETCOLOR(2,8,8) SETCOLORC1,6,12)
S5ETCOLOR(6,8,8)
FOR I=6 TO 63 DO
BOARD (I) =8
on
FOR I=6 TO 127 DO
VALUE_BOARD (I)=FRESH_BOARD (I}

oD

COLOR=1

FOR I=24 TO 56 STEP 4 DO
PLOT(I,3) DRAWTO (I, 35)

PLOT(25,I-21) DRAWTO(SS5,I-21)
oD
PRO_COLOR=1
PLACE_CHIP(3,3) PLACE_CHIP({4,4)
PRO_COLOR=2
PLACE_CHIP(Z,4) PLACE_CHIP(4,3)
Do
PRINTE("'KPRESS NUMBER TO SELECT:')
PRINT(" [l - Computer vs. ')
PRINTE('"'Computer')

PRINT (' F - Human vs, ")
PRINTEC('"'Computer')
PRINT ¢'* K - Human vs, ")
PRINT ("'"Human "3

CHOICE=GETD (7)
UNTIL (CHOICE>S$I8)AND(CHOICE{$34) 0D
IF CHOICE=%$31 THEN
WB (8)=2 WB(1)=2
GET_LEVEL € WHITE , @)
GET_LEVEL € BLACK , 1)
ELSEIF CHOICE=$33 THEN
WB (B8] =8 WB(1)=1

ATARI 8-BIT EXTRA

ELSE

0
PRINT("K WHICH COLOR DO YOU'")
PRINT (" WANT [W/B1 7'}
TEMP=GETD (7
UNTIL (TEMP='W)OR(TEMP='B} OD
IF TEMP='H THEN
WB(B)=8 HWB(1)=2
GET_LEVEL € BLACK , 1)
ELSE
WB(B8)=2 HB(1)=8
GET_LEVEL € WHITE , 8)
FI
FI
PRINT ("K'} CURSOR=1
WHITE_SCORE=2 BLACK_SCORE=2
PRO_COLOR=1 OPP_COLOR=2

PSCORE 02
RETURN
BYTE FUNC FLIPPER(BYTE XC,YC,
FLIP_FLAG])
BYTE TMPX,TMPY,FLIPS,COLUNT,FLAG, TEMP
INT I,J
FLIPS5=8

IF TEST_SQR(XC,YC)=8 THEN
FOR J=—-1 TO0 1 DO FOR I=-1 TO 1 DO
IF (IH6)O0ORCJHO) THEN
THMPH=KC THRYZ=YC
COLUNT=8 FLAG=8
DO
TMPK==+I THMPY==+J
IF (TMPK{8)ANDI(TMPY{8) THEN
TEMP=TEST_SQR(THPX, THPY])
IF TEMP=8 THEN
FLAG=2
ELSEIF TEMP=OPP_COLOR

ELSE FLAG=2Z
FI
UNTIL FLAGHS OD
IF FLAG=1 THEN
FLIPS==+COUNT
IF FLIP_FLAG=1 THEN
TMPH=XC THPY=YC
FLAG=@
Do
THPH==+I TMPY==+J
TEMP=TEST_SQR(THMPX, TMPY)
IF TEMP=OPP_COLOR THER
PLACE_CHIP(TMPX.TMPY)

ELSE
FLAG=1
FI
UNTIL FLAGHO OD
FI
FI
FI
op op

FI
RETURN (FLIPS)

PROC UPDATE_VALUES)
IF (MOVEXKY”MOVEY)=8 THEN
VALUE_BOARD C{PRO_COLOR-1)*¥654+1)=8
VALUE_BOARD ({PRO_COLOR-1)*¥64+8)=8
VALUE_BOARD ((PRO_COLOR-1)%64+9)=8§
ELSEIF (MOVEX=6)AND (MOVEY=7) THEN
VALUE_BOARD ({PRO_COLOR-1)¥*¥64+48)=8
VALUE_BOARD C{PRO_COLOR-1)%*64+493=38
VALUE_BOARD C (PRO_COLOR-1)*64+571=8
ELSEIF (MOVEX=7)AND (MOVEY=8) THEN
VALUE_BOARD C{PRO_COLOR-1)*64+6)=8
VALUE_BOARD ((PRO_COLOR-1)*64+14)=8

ANALOG COMPUTING 45

é Rever Si continued

VALUE_BOARD ((PRO_COLOR-1)*64+15)=8
ELSEIF (MOVEX=7)AND{MOVEY=7) THEN
VALUE_BOARD ((PRO_COLOR-1)%*64+54)=8
VALUE_BOARD ((PRO_COLDR-1)*64+55)=8
FIUQLUE_BOQRD((PRD_COLDR-i)*64+62):8
RETURN

PROC COMPUTER ()
BYTE BEST,SCORE,COUNT,XC,YC, TEMP
BYTE ARRAY CHOICEX(19)
BYTE ARRAY CHOICEY(19)
BEST=0 COUNT=8
FOR YC=8 TO 7 DO FOR HC=8 TO 7 DO
SCORE=FLIPPER (HC,YC,8)
IF SCORE>8 THEN
IF LEVEL(PRO_COLOR-1)=2 THEN
SCORE==+VALUE_BODARD (
(PRO_COLOR-1)%64+YC¥B8+XC)
ELSE%FNLEUEL(PRO_CDLDR-l):3
E
IF ?:éIE_SCORE+BLnCK_SCORE(38
SCORE=(25-SCORE} /3+
VALUE_BOARD ((PRO_COLOR-
1) ¥64+YC*E+XC)
ELSE
SCORE==+VALUE_BOARD(
- (PRO_COLOR-1)¥64+YCH¥8+KXC)

IF VALUE_BOARD C((PRO_COLOR-1)%
64+8%YC+HCI=8 THEN
SCORE=1
FI
FI
IF SCORE=BEST THEN
CHOICEX (COLNT) =XC
CHOICEY(COUNTI=YC
COUNT==+1
ELSEIF SCORE>BEST THEN
COUNT=1
CHOICEX (B) =XC
CHOICEY(B)=YC
BEST=5CORE
FI
FI
op oD
IF BES5T=8 THEN
MOVEXK=8 MOVEY=8
ELSE
TEMP=RAND (COLNT)
MOVEX=CHOICEX (TEMP)
JOYX=(MOVEX+2)®4+18§
MOVEY=CHOICEY (TEMP)
JOYY=(MOVEY+1)¥4+1
IF LEVEL(PRO_COLOR-1)=3 THEN
UPDPATE_VALUES)
FI
FI
RETURN

PROC PLAYER(BYTE STICK_NUM)
BYTE TEMP,S5X,5Y,FLAG,R,I,.J
KEY=255 TEMP=-LOCATE(JOYX, JOYY)
IF TEMP=8 THEN
COLOR=1
ELSE
COLOR=S-TEMP

FI
PLOTCJOYH,JOYY) SH=JOYX SY=JOYY
Do

R=STICK(STICK_NLM)
IF (R&58)=0 THEN JOYX==+4 FI
IF (R&54)=0 THEN JOYX==-4 FI
IF (R&%52)=8 THEN JOYY==+4 FI
IF (R&51)=8 THEN JOYY==-4 FI
IF RH#15 THEN

IF JOYX{26 THEN JOYX=54

46 ANALOG COMPUTING

ELSEIF JOYX>54 THEN JOYX=26

F
IF JOYY{5 THEN JOYY=33
FELSEIF JOYY>33 THEN JOYY=S

POSITIONCSX,5Y) PUTD(6,TEMP)
SH=JOYX SY=Joyy
TEMP=-LOCATE(JOYX, JOYY)
IF TEMP=8 THEN

COLOR=1

ELSE

COLOR=5-TEMP
FI

PLOTC(JOYX,JOYY)

50LUND(B,2606,168,8)

FOR I=86 TO 2686 DO FOR J=8 TO 10
po oD OD

SNDRST (2

FOR I=8 TD 266 DO FOR J=8 TO 50
po OD OD

FI

FLAG=8
IF STRIG(STICK_NUMI=8 THEN
MOVEX=(JOYX-18)/4-2
MOVEY=(JOYY-1)/4-1
IF FLIPPER(MOVEX, MOVEY,B8)>8 THEN
FLAG=1
FI
FI
IF KEY=18 THEN
FLAG=2
FOR I=86 TO 7 DO FOR J=8 TO 7 DO
IF FLIPPER(I,J,8)>8 THEN
FLAG=@
I=7 J=7

FI
UNTIL (FLAGHO) 0D
POSITION(SX,S5Y) PUTDI6,TEMP)
KEY=25%5
RETLURN

PROC MAKE_MOVE(BYTE XC,YC)
BYTE NF
CARD I
NF=FLIPPER (XC,YC,8)
IF PRO_COLOR=1 THEN
WHITE_SCORE==+NF+1
BLACK_SCORE==-NF
ELSE
BLACK_SCORE==+NF+1
WHITE_SCORE==-NF
FI
NF=FLIPPER(XC,YC, 1)
PLACE_CHIP (XC,YC)
50UND (0, 86,168,8)
FOR I=6 TO 866 DO OD
50UND(B,08,8,8)
ATTRACT=8
RETLRN

PROC MAINCD)
BYTE PAS5S
CHAR TEMP
DO
INITIALIZE ()
PSCORE O
DO
IF WB(PRO_COLOR-1)=2Z THEN
COMPUTER O
ELSE
PLAYER C(WB (PRO_COLOR-13)
FI
IF MOVEX=8 THEN

ATARI 8-BIT EXTRA

PASS==+1
ELSE
PASS=@
MAKE_MOVE (MOVEX, MOVEY)
FI
PRO_COLOR=0PP_COLOR
OPP_COLOR=3-0PP_COLOR
PSCORE ()
UNTIL (WHITE_SCORE+BLACK_SCORE=64)
OR(PASS5=2) OD
PRINTE (" ')
IF WHITE_SCORE>BLACK_SCORE THEN

PRINT("HWhite wins!,..")
EL5S5EIF BLACK_SCORE>WHITE_SCORE
THEN
PRINT("Black wins!...")
ELSE
PRINT("Tie!...")

FL
PRINT (“'play again?'")
TEMP=GETD (7)
UNTIL TEMP='N OD
RETLRN

ATARI 8-BIT EXTRA ANALOG COMPUTING 47

‘Back Issues

. Eheey
. SAues
ta
* " Ratyg
: Mightyy?

L Moy

A“ baCk ISSUE 30 e Loan Shark e Z-Plotter ® BASIC Burger ¢ ANALOG TCS Guide
Boulder Bombers

|SsueS ISSUE 31 e Unicheck ® ROTO. e Lunar Patrol @ ATASCII Animation e Lazer Type
e Atari Clock e Personal Planning Calendar
are rlced ISSUE 32 e Supereversion ® DOS Il to DOS 2 conversion e Color the Shapes
e Home-made Translator e Cosmic Defender e 520ST

at $4 OO each ISSUE 33 e An Intro to MIDI e Note Master e Syntron e BASIC Bug Exterminator
. . Assemble Some Sound e CCOM e Mince (ST)

ISSUE 34 e Dragon’'s Breath e Multiple Choice Vocabulary Quiz e Elevator Repairman
Assemble Some Sound Part 2

Send yOUr CheCk or money Order to ISSUE 35 (also on disk) @ Hide and Seek e Printers Revisited ® Bonk e Turtle 1020 e G:
ANALOG Computing BaCk |Ssues, ISSUE 36 '(ilsli cl);o\cj(iﬁ]ke) : gr;cf-:}zl:t;\gicnk e Maze War e Nightshade e Solid Gold

P’ O BOX 625’ HOlmeS, PA 19043 ISSUE 37 (also on disk) e Speedski e Index to ANALOG Computing (15-36) e Master
Mastercard and V'SA OrderS, Disk Directory e Halley Hunter @ Bank Switching for the 130XE

Ca” 1 ‘800'345'8112 ISSUE 38 ﬁéscc;;);l .dlssk_l)_ Eoﬁjc:lcgagl‘lgnment Generator @ Incoming! e DLI Maker e Air
(|n Pennsyivanla, 1-800—662-2444) ISSUE 39 (also on disk) ® Super Pong e Unicheck (updated) ® C-Manship Part 1

e Program Helper e Adventurous Programming Part 1 e ST Software Guide

ISSUE 40 (also on disk) e Clash of Kings e Micro-Mail e Koala Slideshow Program
e Adventurous Programming Part 2 e Mouser

ISSUE 44 e RAMcopy! e The 8-Bit Parallel Interface e Arm your Atari e Blast!
e D:CHECK in Action! e ST-Log 4

ISSUE 45 e Stencil Graphics e Roll 'Em! @ RAM DOS XL e LBASIC
e Using BASIC XLs Hidden Memory e ST-Log 5

ISSUE 46 e Magic Spell eMoonlord e Soft Touch eLa Machine e June CES
e Launch Code e ST-Log 6

ISSUE 47 e DLls: A minute to learn e Deathzone e BASIC Editor Il e
e The ANALOG Database e DiskFile e ST-Log 7

ISSUE 48 e M-Windows e Cosmic Glob e DLIs - Part 2 ¢ Modem Chess
e Status Report e ST-Log 8

ISSUE 49 e The Atari 8-bit Gift Guide e Brickworks e TechPop
e Fortune-Wheel e Smiles and other facial wrinkles ® ST-Log 9

ISSUE 50 e Krazy Katerpillars e Atari Picture Storage Techniques e Trails in Action!
e Scroll-It e Screen Scroller

Issues 12, 14, 15, 16, 17. 18, 19, 20, 21 and 22 are also still available

THE #1 MAGAZINE FOR ATARI® COMPUTER OWNERS

EINEA LS

COMPUTING
PO. BOX 23 WORCESTER, MASSACHUSETTS 01603

Back issues on 5Vs-inch disk
$1295 each, plus $3.00 shipping and handling.
Issues 35 and up are available in this format.

48K Cassette or Disk

by Paul Tupaczewski

In the game of Lawn Mower, you're Tommy, a boy hired
to mow lawns all around the town of Atariville. Since you
have signed contracts with the people you're going to mow
for, you can’t escape the dangers that crop up while trim-
ming the greens.

The object of Lawn Mower is to clear the screen of grass.
Whenever you go over a strip of grass, it turns darker to
show it’s been cut. There are also trees impeding your way.
If you hit a tree, you’ll bounce back.

On board 1, the Joneses house, you must avoid Hi-
Leggers. These creatures move from side to side, while ran-
domly bouncing up and down. If they hit you, you lose
one of your three lives. When you've lost all of your lives,
the game ends.

On board 2, Cursor Park, holes suddenly appear! These
are made by gophers who are afraid to show themselves.
If you fall into one of the holes, you lose a life.

Board 3, the golf course, introduces the Mad Planter.
He's a little orange man who plants grass where you've
already mowed. The only way to get rid of him is either
to run him over, or to plant a land mine—and make him
run into it. This will make him disappear. . . for a while.

To plant a land mine, you simply press your joystick but-
ton. An explosive which you’ve buried in the ground will
look just like a piece of mowed lawn. The number of land
mines is shown at the bottom of the screen. You get an
extra mine every time you clear a board, with a maximum
of five. If you run into a mine, you won't be killed, but

ATARI 8-BIT EXTRA

you will destroy the charge, rendering that mine useless
against the enemy.

In the final board, John’s orchard, the Mad Planter reap-
pears. And there’s also a new problem. The orchard is
separated into two parts by a superhighway. You must get
across this road to travel from one side of the orchard to
the other.

If you run into a car while crossing, you'll lose a life.
Also, you can’t plant land mines on the road. If you mow
all of this board, you’ll go back to board 1, but at a harder
level.

Scoring is as follows: mowing a piece of lawn=250
points; making the Mad Planter run into a land mine=250
points; running over the Mad Planter=500 points; and
mowing all of a board=500 points times the level at which
you played.

Your score is shown in the upper left on the screen. The
level is in the upper right, and your number of lives re-
maining is shown by the number of circles next to the level
number. The number of mines can be seen at the bottom
of the screen.

I used Tom Hudson’s excellent player mover subroutine
from issue 10 and found it very easy and fast. I hope you
have as much fun with Lawn Mower as I did. &

Paul Tupaczewski attends school in Boonton, New Jer-
sey. He’s had his Atari 400 for three years, with an Indus
disk drive and an Epson RX-80 printer, which he received
as a Christmas present.

(Listing starts on next page)

ANALOG COMPUTING 49

é Lawn Mower continued

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

REM SE3E 0 e b0 3 B3 pE 033 0300

REH * Lawn Mower *

REM #* by Paul Tupaczewski ¥

REM #* ANALOG Computing *

REM b b 3P0 R 3

DIM LOCKLS)
KO=6:K1=1:K2=K1+K1:KI=KZ+K1:K4-KZ+K2Z
PKS-KZHKI i KE-KI+HKI 1 K7-K4+K3 1 KB-K4+K4
16 GOSUB 815:GOSUB 728:GO0O5SUB 875

15 LIV=K3I:SC-KO:LEV=K1:LEVZ=-K1:MIN=K5:
HARD=K®8

28 GRAPHICS KI®¥KG6:DL=-PEEK(568)+PEEK (56
1)#256+K4 :POKE DL-K1,78:POKE DL+12,6:P
OKE DL+KZ,6:POKE 709,216:POKE 623,K1
25 PMBASE=INTC(I{PEEK({145)+K3I)/K4)*K4:PO
KE 54279%,PMBASE:PMB=PHMBASEX*Z56:POKE 55
9,46:POKE 53277,K3:POKE 756,5T/256

I8 POKE 788,124

35 POKE 704,148:MIN-MIN+K1:IF MIM>KS T
HEN MIN=KS

48 POKE 785,252:POKE 706,160:POKE 787,
54

45 POSITION Ki,K8:7 #16;"HIIg"; CHRE (15
4) ;5C:POSITION 13,K8:FOR R=K1 TO LIV:?
H6;CHRS (138) ; :HEXKT R

58 POSITION 17,K8:7? HG6;LEV:POSITION K&
;11:7 HE;" "'} MIN

55 FOR R=KZ TO K3®¥KI:COLOR KI:PLOT K2z,
R:DRAWTO 17,R:NEHXT R

68 POSITION K5¥KZ,K5:7 H6;"H'":GRA=-KS
65 DN LEVZ GOSUB 438,456,475,5080

67 GOSLB 2186

70 H-o128:Y-KIXKE¥K2Z:HI=KS5+K5:Y1=-KS M=K
1:THHT=KB:KI=KS+KS: ¥I=KZ i MYI=K3I*¥KE: MKI
=128

75 A=USR{MOVE,K8,PMB, ADR (M% (MXKE—-K7, M¥
K833 ,X,Y,K8)

88 OX=H:0Y=Y:DH1=Ki:0Y¥i=¥1

85 POKE 53278,K1

986 OW LEVZ GOSUB 195,285,240,258

95 IF PEEK(764)<{>33 THEN 115

166 PODKE 764,255

185 IF PEEK({7643<>33 THEN 185%

118 POKE 764,255

115 IF STRIG(BI=K8 AND MIN>K8 AND LEVZ
>K2Z AND LEVZ{KS THEN GOSUB 565

128 S5=STICK(KB]) :KAD=(5=K7)—-(5=113:¥AD=
(5=133-(5=14)

125 X-H+HADHKB:Y=Y+YADXKI i H1=-Hi+HAD Y1
=Yit+vab

138 IF XAD=-K1 THEN M=K2Z

135 IF HaAD=K1i THEN M=Kl

148 IF yYaAD=—-Ki THEN M=K3

145 IF YAD=K1 THEN_ M=K4

1568 IF H1{K2 OR X1>17 OR Y1{KZ OR Y1>?9
. THEN R1=0XH1:Y1=0Y1l:X=0H:Y¥=0Y

SN aRANED

50 ANALOG COMPUTING

JZ 175 IF GRA=GRS THEN 685

188 IF LOC=32 AND LEV2<{>K4 THEN 525
185 GOTO 75

195 GOSUB Z18

280 RETURN

285 TMHT=TMHT+K1:IF THMWT=25 AND HARD<{>
K1 THEN 228

218 IF THMWT=18 AND HARD=K1 THEN 228
215 RETLURN

220 TMHT=KO:R=INT(RND (B)*14)+KI: T=INT(
RND (6} ®*K5)+KI:LOCATE R,T,Z:GOSUB 336:1
F FG=1 THEN 228

225 IF Z=32 THEN 228

238 IF Z=K3I THEN GR5=GRS5-K1

235 POSITION R,T:? HG6;' '":50UND K8,K8,
K8,K6:FOR R=K1l TO KS:NEXT R:S50UND KB8,K
8,K8,K8:RETURN

2;33TMHT=TMHT+K1:IF THMWT>55 THEN GOSUB
245 RETURN

258 A=USRI{MOVE,K1i,PMB,ADRICL%),CX1,56,
Eg;:n:USR(MDUE,KZ,PHB,QDR(CRS),CHZ,?B,

K 255 CH1=CK1-K4-HARD*K4:IF CX1{65 THEN

CH1i=184

HZ 268 CHZ-CKZ+KG+HARD®*K4:IF CK2>184 THEN

CHZ=69

”'265 IF PEEK({532608)=KZ OR PEEK(532608) =K

4 THEN 288

ZH 270 TMWT=TMWT+KL1:IF THWT)>68 THEN GOSUB

398

::2?5 RETURN

286 FOR R=15 TO K8 STEP -8.2:POKE 7084,
R:50UND K8,100,K0,R:NEXT R

285 FOR R=K1l TO 188:NEKT R

298 POSITION 1Z+LIV,K8:7 H6;'" ":LIV-LI
U-K1i

- 295 FOR R=15 TO K& STEP -K1:50UND K&,1

21,18,R:NEXKT R

i I8 IF LIV=K8 THEN 595

'ty 65 FOR R=K1 TO 100:NEXT R:CHi1=1Z8:CHZ
. —“BS5S:POKE 7064,148:G0T0 78

{U X180 A-USR{MOVE,K1,PMB,ADRIGTS],MK1, MY1

K83 :A=USRI{MOVE,KZ,PHB, ADR(GTS) , MXZ, HY
2,K8) :OMY1=MY1l:0MYZ=-MY2Z

. 315 MH1-MX1+K4+HARD*K4:IF MX1i>184 THEN

ME1=64

0 320 MX2=MHZ-K4-HARD¥K4:IF MKZ{64 THEN

MHZ=184

! 325 ADD=INT (RND (B} ¥KII-K1:ADD=-ADD* (KI+
- HARD) :MY1=MY1+ADD:IF HMY1<Z4 THEN HY1=2Z

dq

338 IF MY1i>88 THEN MYi=8@

3IZ5 ADD=INT(RND (B)*K3I)-K1i:ADD=-ADD*(KI+
HARD) :MYZ=MYZ+ADD:IF MYZ2<{24 THEN MYZ=2Z
4

48 IF MY2>88 THEN MYZ=88

345 IF PEEK(53268)=K2 OR PEEK({53268)=K
4 THEN 355

250 RETLRN

355 FOR R=15 TO K8 STEP -8.Z:50UND K8,
100,K8,R:POKE 704,R:NEXT R

368 FOR R=K1 TO 188:HEXT R

I65 POSITION 12+4LIV,K8:7 H6;" ":iLIV=LI
U-K1

378 FOR R=15 TO K8 STEP -1:50UND K8,12
1,18,R:NEXT R

375 IF LIV=K8 THEN 595

380 FOR R=K1 TO 180:NEHT R:POKE 784,14
8:G05UB 680:POKE 53278,K1

385 MH1=64:MKZ=184:MY1=48:MYZ=48:G0TO

78

398 A=USR{MOVE,K3I,PMB,ADRCPLS) , MX3,MY3

K8) :OXI=HI:0OMHI=MXI:LOCATE X3I,¥3,ZZ
395 IF ZZ=36 THEN SC=SC+258:GO0S5UB 598:

 GOTO 425

88 IF ZZ=35 THEN POSITION X3,¥3:? H6;
CHRS (K3) : GRA=GRA-K1

ATARI 8-BIT EXTRA

Jg

ZE
S0

MH

aF

5¢
RY

CE
GG
BL
ZF
TE
RY

Py
vp

Mo
N5
PX
5a
I8
5B
EE
QK

T

RV
¥H
Yu
JH

ON

405 Y3I=Y3I+K1:MYI=MYI+KB8:IF MY3I>86 THEN
TMHT=KO:A=USR (MOVE,3,PMB, ADR(''¥'") ,8,8
1) :K3I=16:YI=KZ:MK3I= 128 MYK 24 RETURN
410 ADD=INT (RND (B)¥*K3I)-K1:XI=KI+ADD:MX
I-MKI+ADD*KS8:IF HI{KZ OR K3I>17 THEN X3

ZOKI: MXI=0MKZ

415 IF PEEK(53260)=K8 THEN 5C=5C+5806:G

0SUB 598:FOR R=15 TO KO8 STEP —-K3:S50UND
K0,200,10,R:NEXT R:MY3I=20:GOTO 485

420 RETURN

425 POSITION X3I,¥3:7 H6;"H":FOR R=15 T

0 K@ STEP —-1.5:50UND KO,200,K8,R:NEKRT
R:MY3I=90:G0TO 465

430 GRS=115:COLOR K7:PLOT K3I,K3:PLOT K
3,K4:PLOT K4,KI:PLOT K3I,K8: PLOT K3,K?7:
PLOT Kd4,K8: MHl 64:MKZ2= 184

435 PLDT 15,K3:PLOT 16,K3:PLOT 16,K4:P

LOT 15,K8: PLOT 16,K8: PLDT 16,K7: MYl 48
:MY2=4B

440 POSITION K4,Ki:? #16;"NITTHFANDITEIS"

445 RETURN

450 GRS=109:COLOR K7

455 PLOT K3,K8:DRAWTO K8,K3:PLOT 11,K3
:DRAWTO 16, K8

466 PLOT K8 K8:PLOT 9,K7:PLOT 16,K7:PL
0oT 11,K8: PLDT K3,K3: PLOT 16,K3

465 PDSITION K5, Kl" L CHACLIRSOR PARKE
470 RETURN

475 POSITION K5,K1i:7 36 ;" [INEITESE":
KI=18:YI-KZ2:MYI=24 :MX3I=128:COLOR K7
480 FOR R=K1 TO 15

485 A=INT(RND(B)*¥16)+KZ2:B=INT (RND (8] %K
7)+KZ:LOCATE A,B,C:GO5UB 920:IF FG=1 T
HEN 485

498 IF C=K?7 OR (A=16 AND B=KS) THEN 48
5

495 PLOT A,B:NEXT R:GRS5=11Z:RETURN

508 POSITION K3, Ki:? 46 ;" "NILTTEANTIEIT
1}

5685 COLOR K7:FOR R=K3 TO 17 STEP 2Z:FOR
T=K3 T0O 9 STEP KZ:PLOT R, T

518 MEXT T:MEXT R:GRS=55:CK1=-120:CK2-6
9

515 COLOR 3Z2:PLOT KZ,K8:DRAWTO 17,K8:P
LOT K2,K6:DRAWTOD 17,K6:COLOR 45:PLOT K
2,K7:DRAWTO 17,K7

5280 RETLURN

525 A=USR(MOVE,K8,PMB,ADR (M5 (K1,K83) ,X
Y,K82

éXé FOR R=15 TO K8 STEP -8.1:50UND K8,

60— (R¥K2) ,10,R:POKE 704,R:NEXKT R
535 FOR R=K1 TO 108:NEXT R

540 POSITION 12+LIV,K8:? HE6;'" ":LIV-LI
U-K1
545 FOR R=15 TO K8 STEP —-K1:50UND K6,1

21,10,R:NEXT R

550 IF LIV=K8 THEN 595

555 FOR R=K1 TO 100:NEXT R:POKE 784,14
8

568 GOTO 78

565 POSITION X1i,Y1:7 #6;" 5" :MIN-MIN-K1
tPOSITION 12,11:7 H6;MIN:FOR R=15 TO K
8 STEP -K1i

570 SOUND K6,25,10,R:NEXT R:RETURN

575 SOUND KO6,2008,8,6:FOR R=K1 TO0 KI:KNE
HT R:SOUND KO6,K0,K0,K0:RETURN

586 SOUND KO6,1060,K0,10:FOR R=K1 TO K3:
NEXT R:SOLUND KO,K08,K0,K08:RETURN

585 FOR R=16 TO K8 STEP -2Z.5:50UND K8,

ik-R,KB,R:NEHT R:S0OUND KO ,K8,K08,K8

596 POSITION K7,K0:7 H6;S5SC:RETURN
595 GOSUB 688:POSITION K6,K5:7? #6;"FELL
1

6606 RESTORE 6706

605 REaAD 0,P,DLY:IF 0=-Ki THEN 615

618 FOR R=15 TO K8 STEP -DLY:SOUND K8,
0,18,R:50UND K1,P,18,R:NEXT R:GOTO 665
615 FOR R=K1l TO 188:NEXKT R:? H6;"K':PO

ATARI 8-BIT EXTRA

RU
BE
Mo
ue
YF
KG

&z

IE
INW

HB
MR
56
Ya
Wa
EJ

GY
bP

SITION KZ,K3:7 86 ;" [TITaEIEIds"; CHRS (15

. 4);sC

628 POSITION KZ,K5:? H6;"high score';C

' HR$(26) ;HS:FOR R=K1 TO 400:NEXT R

625 IF S5C{=HS THEN 655

638 FOR R=-K1 TO K4:POSITION KZ,K3I:? HE
;''your SCOPe"‘CHR$(26) POSITIDN K2Z,K5:

? He;" "'CHR$(154)

635 FOR T:15 TO K8 STEP -1.5:SO0LND K8

60,106, T:NEXKT T:POSITION KZ,K3:? ﬂG;"m&

1";CHRS (154)

640 POSITION K2,K5:? H6;"high score';C
HR$(26) :FOR T=15 TO K8 STEP -1.5:50LND
K6,121,10,T:NEXKT T:NEKT R

645 FOR R=K1 TO 2Z00:NEXT R:FOR R=HS TO
5C STEP 58

658 POSITION 13,K5:7 H6;R:POKE 5327%,K
B:NEXT R:HS5=SC:POSITION 13,K5:7 H6;HS
655 POSITION K5,K08:7? H6;"PRESS start':
POSITION K4,K1i: 7 H6;"TO PLAY AGAIN"
668 IF PEEK(53279)< K6 THEN 668

665 LIV=KI:S5C=KO:LEV=K1:LEVZ=K1:MIN=KS
‘HARD=KB8:? #6;"K":GOTO 30

676 pATA 121,96,1,96,81,1,168,91,1,%1,
72,1,96,81,1,72,60,1,72,60,5,81,64,5
675 paATA 91,72,5,96,81,5,1688,21,5,121,
96,1,-1,06,808

680 FOR R=K8 TO KI:A=USR(MOVE,R,PMB,AaD
RC'¥'") ,KO,K8,K1) :NEXT R:RETURN

685 RESTORE 715

698 READ O0,P,DLY:IF 0=—-Ki THEN 700

695 FOR R=15 TO KO STEP -DLY:SOUND K@,
0,18,R:50UND K1,P,10,R:NEXT R:GOTO 698
?BB LEVZ= LEU2+K1 IF LEUZ)K4 THEN LEV2=
K1:HARD=K1

785 SC=SC+500¥LEV:ILEV-LEV+K1

718 FOR R=KO TO K3I:A=LUSR(MOVE,R,PMB,AD

CRC"¥'") ,KO,KB8,K1) :NEXT R:GOTO 20

HY
F1
PC
MU
0K

TO
NS
ZN
s
IF

IZ

715 DATA B81,64,1,91,72,3, 96 81,1,1088,9
1,3,121,96, 1 60 4? 1, 1 B

729 DIM PMMOUS(lBB) MOUE QDR(PMMOUS) R
ESTORE 755

725 FOR X=K1 TO 188:READ N:PMMOVS$(X)=C
HRS (N) : NEXT X

730 DIM M$(32),PL5(K8),CLS(K8),CRS(KS8)
,GTS(K8)

735 FOR R=K1 TO K8:READ D:CLS$(R)=CHRS(
D) :NEXT R:FOR R=K1 TO K8:READ D:CRS(R)
:CHR$(D):NEHT R

740 FOR R=K1 TO K8:READ D:GT$(RI=CHRS(
D) :NEKT R:FOR R=K1 TO K8:READ D:PLS$(R)
=CHRS (D) :NEKT R

745 FOR R=K1 TO IZ:READ D:M%(RY=CHR&(D
JiNEKT R

758 RETURN

755 DATA 216,164,104,164,133,213,1084,2
4,185,2,133,206,104,133,205,104,133,20
4,104,133,203,1064,104,133,2068

7680 DaTa 104,104,133,209,1064,164,24,108
1,28%,133,207,166,213,2408,16,165,285,2
4,165,128,133,265,165,2686,185

765 DATA ©,133,266,202,208,240,160,0,1
62,8,196,209,144,19,196,207,176,15,132
+212,138,168,177,203,164

770 DaTa 212,145,205,232,169,08,2408,4,1
69,0,145,2065,2060,192,128,208,224,166,2
13,165,268,157,0,2068,96

77% DAThA ©,14,18,34,127,127,54,54

7808 DATA 0,112,72,68,254,254,1088,168
785 DaTha 28,42,54,28,20,26,208,54

738 DATA 130,68,56,84,108,56,40,108
795 DaATA 0,96,96,240,236,226,71,98

g§ee pbaTA B8,6,6,15,55,71,226,78

865 DAThA 64,224,80,16,8,190,254,56

8ie paThA 28,127,125,16,8,10,7,2

815 POKE 1086,PEEK(1066)-K5:GRAPHICS K@:
ST=(PEEK(1686) +K1)¥256:P0KE 756,5T/256:
POKE 752,K1

ANALOG COMPUTING 51

é LaWII Mower continued

' 820 RESTORE 948:DIM XFR5(38) :FOR R=K1i

TO 3I8:READ D'HFR$(R R)‘CHRS(D):NEHT R

825 Z= USR(QDR(HFﬂs)) RESTORE 845

830 POSITION 14,12:7 "Initializing"

- 835 READ X:IF H:-Kl THEN RETURN

. 848 FOR Y=-KO TO K7:REaAD Z:POKE H+Y+5T,
ZiNERT Y:GOTO 835

‘245 bDaTA 24,255,255,259,255,255,255,25
255

gsgsgﬁTﬂ 32,255,255,255,255,255,255,25
2

ggg bATA 56,255,199,163,21,65,171,199,

860 DATA 40,0,24,24,24,0,0,0,08

865 DATA 80,0,0,28,62,62,62,28,0

: 876 DaTA -1

879 GRAPHICS 17:DL=PEEK(568)+PEEK(561)

#*#256+K4 :POKE DL-K1,71:POKE DL+KZ,K7:PO
KE DL+K3I,K?

880 COLOR 138:PLOT K4,K8:DRAWTO 15,K8:
PLOT K4,KZ:DRAWTD 15,K2

885 POSITION K4,K1:? #6;CHRS(138) ; "[ET

"'CHR$(138)

P5 890 POSITION 2,12:7 #H6;"BY'":POSITION K
. 3,14:7 ﬂﬁ;"PnUL TUPACZEWSKI"

Y 895 POSITION KS,18:7 #6;"HEFEH start"
G 960 IF PEEK(53279)()K6 THEN 5086

- 985 RETLURN

216 FOR I=-K8 TO 12:LOCATE I,K5,Z:LOC(I

-K7)=Z:NEXKT I:POSITION K&,KS5:? H6;'"REA

DYII

215 FOR I=K1 TO 200:NEXT I:FOR I=K8 TO
12:POSITION I,KS:? #6;CHRS(LOCCI-K?))
NEXHT T:RETURN

220 FG=0:FOR I=A-Ki TO A+K1 STEP K2:FO
R J=B-K1 TO B+K1 STEP KZ:LOCATE I,J,Z:

IF Z-K7 THEN FG=1

225 NEXT J:NEXT I:RETURN

2380 FG=B:FOR I=-R-Ki TO R+K1 STEP KZ:FO
R J=T-K1 TO T+K1i STEP KZ:LOCATE I,J,P:
IF P=32 THEN FG=1

935 NEKT J:NEXT I:RETURN

948 DATA 104,169,0,133,2063,133,205,169
,224,133,2086,165,1606,24,1085,1,133,204,
1606,0,177,2085,145,203,200,208,249

945 DaTA 236,204,230,206,165,206,201,2
28,208,237,96

52 ANALOG COMPUTING ATARI 8-BIT EXTRA

48K Disk

by Jan Iverson

Trivia seems to be a “hot” item nowadays. There are
board games on the market shelves and even some games
on the more popular computers.

With the program in Trivia, you can generate a ques-
tion and four possible answers. Use the second listing as
a sample of a game you may create. If you wish to create
your own game, do so; the generator will assist you in set-
ting up your trivia database.

The uses are only limited by your imagination. You
could reserve a disk each for sports, TV, movies, science,
history, the Bible, etc.; the list can go on and on.

Question-and-answer generator.

The main menu contains four options: “create,” “edit,”
“play” and “print.”

The create menu has four options: “continue,” “edit,”
“print” and “menu.”

After typing in your question, four answers and the cor-
rect number corresponding to the answer, press RETURN
if you wish to continue entering. This will clear the screen,
and you may enter a further trivia question with its an-
swers. If you need to correct any of the data just entered,
use the ARROW keys and page over to the edit option.
Hit RETURN, and you may change any line.

If you're finished and want to print what you have in
the database, you need not go back to the main menu. Just
page over to the print option and press RETURN. This will

ATARI 8-BIT EXTRA

save all the data you've entered thus far, so you'll be able
to view it. Paging over to the menu option and pressing
RETURN will take you back to the main menu, after
you've saved the database just entered.

Our Trivia game is limited to 200 items. A count at the
top of the screen indicates how many items you’re enter-
ing and how many remain.

If you need to edit any item in your trivia database, use
the second option from the main menu.

You'll be allowed to enter the question as a search item,
or, if you wish to step through the file, use the asterisk
(%), and each item on the database will be displayed.

The edit section has four options: “change,” “delete,”
“next” and “menu.”

When the item in question appears on-screen, press RE-
TURN if you want to change any line. This routine will
allow you to alter a line as many times as you wish. When
finished, press OPTION to return to the edit menu. If you
used the asterisk option to step through your database and
want to see additional items, use the ARROW key to page
over to the “next” option. The next item on the database
will appear on-screen. The delete option will allow you
to remove a single item from the database if you typed
in the question name as a search message. If you used the
asterisk option, it will delete the item and await your next
request. When you're finished, page over to the menu op-
tion. All changes will be saved and you’ll return to the
main menu.

If you have enough questions to run the Trivia game,

ANALOG COMPUTING 53

@ Trivia continued

use the play option. The screen will inform you that the
game is loading.

The print menu has four of its own options: “screen,’
“printer,” “both” and “menu.”

Using the screen option allows you to view two com-
plete items on your database at a time, with record num-
bers. Press START to continue viewing. Press ESC to
terminate the operation. When you've looked at the com-
plete database, you'll be prompted to press SELECT to re-
turn to the main menu.

You also may send the database to a printer. Page over
to the printer option and press RETURN. A hard copy of
your database will be printed. If you wish to see the data-
base on-screen as it’s printing, use the “both” option.

Paging over to the menu option will return you to the
main menu.

The Trivia game.

When saving Listing 2, use the name D:TRIV.BAS. The
game question generator looks for this name when you use
the play option from the main menu.

The game program reads your database into an array
with a limit of 200 items. When completed, the game will
begin.

Questions are selected through a random number al-
gorithm beginning on Line 1110. The same questions and
answers will not be used again in your session. When the
questions are exhausted, a session will terminate, and
you'll be asked if you wish to play again. Pressing START
will allow the database to be loaded for another session.
The program has some sounds built into it, but, because
we want enough questions and answers loaded into the
array, the program is much simplified.

If you select an incorrect answer, a buzz will sound
while the correct number flashes for a few seconds. If you
choose the correct number, a nice “beep-beep” sound will
play. At the end of each question and answer, you'll be
asked to either press START to continue, or OPTION to
finish.

A timer at the top left will count down from 10 to 0.
If you don’t answer the question in 10 seconds, the buzz
will sound and a wrong answer will result. If the correct
answer is given, the remaining seconds are transfered to
the right-hand score. The screen will clear, and the run-
ning total of right and wrong responses will be printed
at the top. The running total will always print at the end
of each question/answer routine.

When the OPTION key is pressed, results will be print-
ed at the top of the screen, an appropriate message will
be printed, and a few bars of “The Entertainer” will play.
If your current score is higher than the high score, it will
be transfered to the HI-SCORE area. This way, you may
compete against another person—or against your previ-
ous best score. You'll then be given the option to either
end the session or play again.

Use the question-and-answer generator to update your
database. My family has played the game a number of
times, and —just when they think they’re getting good at
it—I put some new questions in and take out some old
ones. It keeps them on their toes.

54 ANALOG COMPUTING

I have a number of trivia databases I've developed, in-
cluding sports, TV, movies, commercials and ads, and
general trivia. Have a happy Trivia hunt. &

Jan Iverson is an applications programmer with Chev-
ron Corp. He'’s been working with computers for eighteen
vears and is program chairman for his local user’s group
(DACE). He lives in Antioch, California with his wife and
three children.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor 11,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

HY 10 REM 3333t bbb b33 30000 0300

ZR 20 REM *

TR 30 REM *

5K 40 REM *

MG 58 REM *

ZU 66 REM *

IE 768 REH 30660300000 E00000E

BF 806 REM

UK 96 KO=0:K1=-1:K2=2:K3I=3:K4=4:K5=5:K6=6:
K7=7:K8=8:K?=9:K16=18:K11=-11:K12=12:K1
I=13:K14=14:K15=15

MU 186 K16=16:K17=17:K18=18:K19=19:K26=20
tK21=21:1K22=22 K23=-231K24=-24 1K25=25:K2
6=26:K28=28:1K29=29:K308=30:K31=31

FI 110 K708=708:K709=709:K7106=710:K711=71
1:K712=712:K764=764 :K752=752 1 K155=155:
KZ255=2551K54286=-54286:K64=-64 :1K152=152

EL 128 KS53761=53761:K45=45:K126=126:K5327
9=53279:1K125=-125:K132=-132:K196=196

0Z 136 K1729=1729:K1730=1730:K1731=1731:K
1732=1732:1K1733=1733:K152=-152:K132=-132
tK32=32:K52=52:K198=198

RH 146 INIT=KO:COLUNT=KO:PR=K8:MAX=280:CNT
—KO8:RHMAIN=K®

DX 156 DIM AN(28),Q(38),n5(28) ,CRI2),C5(2
},055(38)

LL 168 DIM QUESTS(3I0),AN515$(28),ANS525(20)
,ANS35(20) ,AN545(28) ,ITS$ (1) ,ARRS(111),
FILE15¢15) ,FILE25(15),05(38)

Up 178 FILE1S:=" UiFILEZS="

mn

NR 180 FILEiS$="Di:GAME.DAT":FILEZS$="D1i:GA
ME . THP"*

B&i 190 OPEN HK4,K4,K8,"K:"

DY 208 GOSUB 49Z0:POKE 3I9976,K6:POKE 39937
7,K11:POKE K752,K1:POKE 53774,K64:POKE
112,K64

YN 210 POSITION K7,K0:7 "lUse {ESC>» to exi
t program'"

Pl 226 POKE 1729,4:FOR I=1 TO 18:NEXT I:P
OKE 1738,4:FO0R I=1 TO 18:NEXT I

CH 236 POKE 1731,4:FOR I=1 TO 168:NEXT I:P
OKE 1732,4

X5 2406 POKE 1733,132

ME 258 POKE K768,218

J5% 260 POSITION Ki,K3:7 "4 TRIVIA QUIZ GaA
MEII

AY 276 POSITION KiZ,K6:? "By Jan Iverson"

Nl 280 POSITION Ki8,K8:7 "For Analog Comp
uting"

BG 296 POSITION K2,K10:?""

ZC 300 POSITION K1i1,Kid:? "Use the k¢ k3
keys"

GAME GENERATOR

by
Jan Iverson

%R KK K

ATARI 8-BIT EXTRA

316 POSITION KB8,K1i6:? "to make your se
lection"

320 POSITION K11,K18:? "then press [I3]
!I;]:ll

336 POSITION Ki,Kz2:? “"HSITNIN"

346 POSITION K11,K22:7? " EDIT "

356 POSITION K21,K2Z2:? " PLaY

3660 POSITION K31,K22:? ' PRINT "

378 POKE K764 ,K255

388 POSITION Ki,K22:7 “"HLITNE"

398 IF PEEK(K764)=K6 THEN POSITION Ki,
K22:7? " CREATE ":GOS5UB 6568:G0T0 586
400 IF PEEK(K764)=K7 THEN POSITION K1,
K22:? " CREATE ":GOSUB 650:GOTO0 4406
416 IF PEEK(K764)=K28 THEN GRAPHICS 8:
END

42060 IF PEEK(K764)=K1Z THEN 6606

436 GOTO 3906

448 POKE K764,K255

450 POSITION K1i1i,K22:7 "ENIJ34N"

460 IF PEEK(K764)=-K6 THEN POSITION Kii
,K22:7 " EDIT '":GOSUB 656:G0TO0 376
470 IF PEEK(K764)=K7 THEN POSITION Kii
,K22:? ' EDIT '":iGOSUB 658:GOTO 518
480 IF PEEK(K764)=K28 THEN GRAPHICS 6:
END

490 IF PEEK(K764)=Ki2Zz THEN 1538

560 GOTO 460

5186 POKE K764 ,K255

526 POSITION K21,K2Z:7? "X VAN

5380 IF PEEK({K764)=-K6 THEN POSITION K21
,K2Z2:2 ' PLAY '":GOSUB 650:GOTO 448
540 IF PEEK(K764)=K7 THEN POSITION K21
;K222 " PLAY ":iGOSUB 658:G0OTO 586
558 IF PEEK(K764)=K2Z8 THEN GRAPHICS 8:
END

560 IF PEEK(K764)=-K1iZz THEN 4860

578 GOTO 538

586 POKE K764,K255

598 POSITION K31,Kk22:7 "I CTEN"

6080 IF PEEK(K764)=K6 THEN POSITION K31
,K22:7 ' PRINT '":GOS5UB 656:G0OTO 518
616 IF PEEK(K764)=K7 THEN POSITION K31
yK22:7 " PRINT ":GOSUB 6560:G0TO0 378
6268 IF PEEK(K764)=KZ& THEN GRAPHICS 8:
END

630 IF PEEK({K7643)=-K1Z THEN 310686

648 GOTO 600

650 SOUND 0,45,108,8:FOR I-K1 TO K3I:NEX
T I:50UND 8,0,8,8:RETURN

660 POKE K1733,K4:? CHR$(K125)

67080 POKE K768,K15Z2:POSITION K6,K3:? '"C
REATE"

686 POSITION K2Z,K1:? "Max = ";MAX:POSI
- TION Ki5,K1:? "Curr = ":POSITION K2Z9,K

1:7 "Rem = ":CNT=K8:RMAIN=K®O

698 POKE K1733,196:CH=1

788 POKE K54286,K64
718 POSITION Ki16,K168:7 "Reading file..
"

720 CLOSE BK1:CLOSE HKZ

730 TRAP 760:0PEN BK1i,K4,K8,FILE1S:TRA
P 406000

740 OPEN HK2,K8,K0,FILEZS

- 758 GOTO 860
766 CLOSE HK

1:0PEN HK1,KB,K8,FILELS
el MR 77722272222222222222772227)
zzzZ]}

780 7 BK1;QUESTS$:? HK1;ANS15:? HK1;ANS

25:7 HK1; QNS3$'7 HK1; QN54$'7 HK1; ITS

798 CLOSE HK1:GOTO ?26

800 INPUT HK1,QUESTS,ANS51%,AN525,AN535

,ANS45,ITS

R Y 7 7727227722222 222222222 2]
'* THEN 850

820 ? BKZ;QUESTS:? HKZ2;ANS15:? HKZ;ANS

25:7 HKZ; QN53$'9 HKZ; ANS4$'° HK2; IT$

825 POSITION K22z,K1: it ":pOSITION 3

ATARI 8-BIT EXTRA

FT
ON
ae
Wi

UI
J5

5,Ki:7 " e8
830 CNT=CNT+1:POSITION K22,K1:? CNT:RM
ATIN=MAXK-CNT:POSITION 35,K1:? RMAIN
846 GOTO 8§00
850 POKE K54286,K19%2
8606 POSITION Ki6,Kie:? "
"n

870 POSITION Ki,K8:? "Create your own

questions and answers"

880 GOSUB 440686

896 POKE K1732,K52:FOR I=K1 TO K18:NEX

T %:POKE K1731,K52:FOR I=K1 TO K16:NEX

T

960 POKE K1736,K52:FOR I=K1 TO K10:NEHX

T I:POKE K1729,K52

918 GOSUB 44708:G05UB 47608

920 POKE K764 ,K255:X=-K8:Y=-K6:POSITION

H,Y:? ll.ll

92368 GOSUB 3806

9408 IF LEN(Q5) {K38 THEN QS(LENCQS$)+1)=

" MIGOTO 246

958 IF as$="

''* THEN 328

968 QUESTS$=0$%

970 Q5(I0)=UerinS(2y=" vips=t »

980 POKE K764,K255:X-K18:Y=-K8:POSITION
H,Y:? u.u

998 GOSUB 3958

1606 IF LEN(A%){KZ8 THEN ASCLENC(ASI+1)
= ":GO0TO 160686

1818 IF A%=" "' THEN
2806

1820 ANS15=A%

1630 ASc(ze)=erAS(2YI=" Mips=t

1048 POKE K764,K255:K=K10:Y=K108:POSITI
ON X,Y:? “J"

1856 GOSUB 39558

1060 IF LEN(A$)I<{K28 THEN ASC(LEN(AS)+1)
=" ":GOTO 1060

1878 IF as=" '" THEN
1048

1080 aANS25=A%

1696 ASC(zeY="eiAS(2Y=" MripSs=t n

11660 POKE K764 ,K255:X=K108:Y=K12:POSITI
ON H Y:2? Il.ll

1116 GOSUB 3256

1128 IF LEN{ASI{K28 THEN AS(LEN{A5)+1)
=t ":GOTO 11286

1138 IF as=" "' THEN
1168

1148 ANS3IS=AS

11568 aSczey="er:ias(2)=r a5 n

1168 POKE K764 ,K255:H=-K108:Y=K14:POSITI
ON X,Y:? "H"

1178 GOSUB X958

1188 IF LEN(A%){K2Z8 THEN AS{LENI{A5)+1)
= ":GOTO 1188

1198 IF as$=" "' THEN
1168

1280 ANS45=A%

1218 AS(zeY)="eriAS(2)= v a5t »

1228 POKE K764,K255:XK=-K16:Y=K16:POSITI
ON X,Y:? "H"

1238 GOSUB 4116

1248 IF LENCCS5){K1 THEN CS(LENICS)+1)=
"o GOTO 1246

1258 IF C%='" " THEN 1228

1268 ITS=C5(1,1)

1276 CS(Z)_"V"'C$(2)‘" Wapo=u W

1288 POKE K764,K255

1285 PDSITION K22 Ki:? ":POSITION
I5,K1:7 ™

1290 CNT= CNT+1.POSITION K2Z,K1:? CNT:R
MAIN=MAX-CNT:POSITION 35,K1:? RMAIN

13080 POKE K764 ,K255:POSITION K1,K22:7?
CONTINLUER

13186 IF PEEK({K764)=K6 THEN POSITION Ki
;K22:7? "CONTINUE'":GOSUB 6506:G0TO0 1478

ANALOG COMPUTING 55

@ 'Ii'ivia continued

1326 IF PEEK(K?764)=K7 THEN POSITION K1
;K22:7 "“CONTINUE":GOSUB 658:G0TO 1350

- 1336 IF PEEK(K764)=K1Zz THEN POKE K5428

6,K64:G05UB 4260:POKE K54286,K12Z2:605U
B 4400:G0TO0 928

1348 GOTO 1316

1350 POKE K764,K255

1368 POSITION Kii,Kz2:? "EEIY§E"
1376 IF PEEK(K764)=K6 THEN POSITION K1

1,K22:? " EDIT '":GOSUB 650:GOTO 1286
1386 IF PEEK(K764)=K7 THEN POSITION K1
1,K22:? ' EDPIT '":GOSUB 656:G0TO 1416

1398 IF PEEK(K764)=K1iZ THEN 2Z1886

1466 GOTO 13786

1416 POKE K764 ,K255

1426 POSITION K21,Kz2Z:7 "HLICIE"
1436 IF PEEK(K764)=K6 THEN POSITION K2
1,K22:7 " PRINT '":GOSUB 650:G0TO 1356
1440 IF PEEK(K?764)=K?7 THEN POSITION K2
1,K22:7 " PRINT ":GOSUB 656:G0T0O 1478
1456 IF PEEK(K?764)=-Ki1Z THEN POKE K5428
6,K64:G0SUB 4266:G0S5UB 42806:POKE KS5428
6,K192:GOTO I168

1466 GOTO 1436

1470 POKE K764 ,K255

1480 POSITION K31,K2Z:? “"HEELETTEN"
1496 IF PEEK(K764)=K6 THEN POSITION K3
1,Kz2:7 " HMENU '":GOSUB 650:GOTO 1418
1560 IF PEEK(K764)=K7 THEN POSITION K3
1,Kzz:7 " MENU ":GOSUB 658:G0OTO 1286
1516 IF PEEK(K764)=K1Z THEN POKE K5428
6,K64:G05UB 4260:G05UB 4280:P0OKE KS5428
6,K192:7? CHRS5(125):GOTD 210

1528 GOTO 1496

1536 POKE K1733,Kd4:? CHRS(K125)

1546 POKE K768,706:POSITION K7,K3:? “ED
ITII

15560 FOUND=K®B8:CH=2

1568 POKE K1733,K32 — e Eb B &
1576 POSITION K2 K@ : se e

eys then press m

15808 GOSUB 44060

1598 POKE K1732,Ki13Z2:FOR I=K1 TO Ki8:N
EXT I:POKE K1731,KiIZ:FOR I=K1 TO Ki@:
HEXT I

1666 POKE K1730,K13Z2:FOR I=K1 TO Ki6:N

 EXT I:POKE K1729,K132

56

1616 GOSUB 45006:G0SUB 4606
1626 POSITION KO ,K6:7? "Ekpv
1636 POKE K764 ,K255:X=K8:Y=KG6:POSITION
K,Y:? II.II
1646 GOSUB 3800
1650 IF LENC0S5) {K3IB THEN Q5 (LEN(QSI+1)
=t ":GOTO 16586
1668 IF Q%=
" THEN 1636
1678 055=0%
1686 Q§(IQ)I=reQS2I=" "
16980 POKE K54286,K64
17808 CLOSE HK1:CLOSE HKZ
1718 OPEN HK1,K4,K8,FILEL$:0PEN HKZ,K8
,KB,FILEZ2S
1728 INPUT #K1,0QUESTS,ANS15,ANS2Z%5,ANS3
$,ANS45,ITS
1738 IF QUESTS="
'"" THEN 2128
1740 IF 055¢1,1)="%" THEN FOUND=1:GOTO
1788
1750 IF 055=QUESTS THEN FOUND=1:GOTO 1
7886
1768 7 HKZ;0QUESTS:? HKZ;ANS1%:7 HKZ;AN
52517 HKZ; nN53$" HKZ; nns4$-9 HKZ; IT$

Qs:llll

- 1778 GOTO 1728

1780 POSITION K8,K6:? RUESTS:POSITION

 K16,K8:7 ANS1%:POSITION K16,K18:7 ANSZ
$

. 1796 POSITION K18,K12:? ANSIS:POSITION

K18,K14:7 ANS45:POSITION K16,K16:7 IT

ANALOG COMPUTING

. &

18068 POKE KS4286,K192

18108 POKE K764,K255

1828 POSITION Ki,K22:? “"EAITIHE"

| 1830 IF PEEK(K764)=K6 THEN POSITION Ki

,KZZ2:? " CHANGE '":GOSUB 6508:G0OTO 2688
1840 IF PEEK(K764)=K?7 THEN POSITION K1
,K22:? " CHANGE ":GOSUB 650:G0TO 1878
%ggg IF PEEK(K764)=K1iZ THEN CH=2:GOTO
1868 GOTO 1836

1876 POKE K764 ,K25%

1886 POSITION Ki1i,K2Z:? "HIINIW"
1896 IF PEEK(K?764)=K6 THEN POSITION K1
1,K22:? ' DELETE ":GOS5UB 658:G0TO0 1810
1988 IF PEEK(K764)=K7 THEN POSITION Ki
1,K22:? " DELETE ":GOSUB 658:G0TO0 1946
1916 IF PEEK(K764)=K1Z AND Q55(1,1)<{>"

- #¥'"" THEN POKE K54286,K64:G0T0 2080

1926 IF PEEK(K764)=K12Z AND 0Q55(C1,1)="*
'" THEN POKE K54286,K64:POSITION K1i1i,K2
2:? " DELETE '":GOTO 1728

1936 GOTO 18986

1946 POKE K764 ,K255

1956 POSITION K21,Kzz:? "I IEN"
1966 IF PEEK(K764)=K6 THEN POSITION K2

1,K22:7 "™ NEXT '":GOSUB 6508:G0T0 1876
1578 IF PEEK(K764)=K7 THEN POSITION K2
1,K22:2 " NEXKT ":GOSUB 656:G0TO 20888

1980 IF PEEK(K764)=K12 AND Q55(1,1)="*
'"" THEN POSITION K21,K22:7 ' NEXT '":P
OKE K54286,K64:G05UB 20660:GOTO0 1720
1998 GOTO 1968

20008 POKE K764,K25%

2016 POSITION K31,Kz2:? “"ELETEM"
2020 IF PEEK(K764)=K6 THEN POSITION K3
1,K22:7? ** MENU ":GOSUB 650:GOTO0 1946
2838 IF PEEK(K764)=K7 THEN POSITION K3
1,K2z2:? ' MENU '":GOSUB 658:GOTO0 18i8
2046 IF PEEK(K764)=K1Z THEN POKE KS5428
6,K64:G05UB 2660:G0TO 2080

2858 GOTO 2026

© 2060 7 BK2;QUESTS:? HK2;ANS15:? HKZ;AN

525:7 HK2Z; QN53$" HKZ; QNS45:? HKZ; ITS
2878 RETURN
28808 INPUT HK1i,QUESTS,ANS1i%,AN525,ANS53
$,ON545,ITS
2099 IF RUESTS="'

'"" THEN 2126
21008 ? BKZ;QUESTS:? HKZ;ANS15:7? HKZ;AN
525:7 HK2;ANS3%:7 HKZ;ANS45:? HK2;ITS
2118 GOTO 26806
2128 IF FOUND=K8 THEN GOSUB 4368
2138 ? HKZ;QUESTS:? BKZ;ANS15:? HKZ;AN
525:7 BK2Z;ANS3IS:7 HK2;ANS45:7 BKZ;ITS
21406 CLOSE HK1:CLOSE HK2Z
2158 HIO 3I3,HK1,K6,K8,FILELS

2160 HIO I2,HK1,K08,K8,"D:GAME.TMP,GAME

DAT"

2178 POKE K54286,K1%2:7 CHRS(K125):GOT
0 210

2180 POKE K1733,K4

2196 GOSUB 4810:POKE K1729,K4:GO05UB 48
20:POKE K17308,K4

22808 GOSUB 4830:POKE K1731,K4:G0SUB 48
40:POKE K1732,K4

22186 GOSUB 4650

222060 POKE 1757,K6:POKE K1733,KZ:POSITI
ON K12Z2,K22:? "OPTION=RETLRN"

2230 POKE K1732,K198:FOR I=K1 TO KS:NE
KT I:POKE K1731,K198:FOR I=K1 TO KS:KNE

- XT I

3 2240 POKE K17306,K198:FOR I=K1 TO KS:NE
 MT I:POKE K1729,K198

- 2258 GOSUB 4556
- 2260 POKE K764,255

2278 POSITION KB K6:2 “Epm

2288 IF PEEK(K?64) K14 THEN POSITION K

ATARI 8-BIT EXTRA

1B
Re

BP

QH
BK

CR

3D
5P

- 2648 IF AS=w

B,K6:7 " ":GOSUB 650:GO0TO0 2368
2298 IF PEEK(K?764)=K15 THEN POSITION K
8,K6:? " ":GOSUB 656:G0TO 2488

2360 IF PEEK(KS53279)=K3 AND CH=KZ THEN
GOSUB 4718:POKE 1757,12:POKE K1733,K3
Z2:G0TO 1818

2318 IF PEEK({KS53I279)=K3I AND CH=K1 THEN
GOS5UB 4660:POKE 1757,12:POKE K1733,K1

96:G0OTO 13686

2328 IF PEEK(K764)=K1Z THEN GOTO 2348

2338 GOTO 2286

2348 POKE K764 ,K255:K=-K8:Y=K6:POSITION
K8,K6:7 "....ovvvnernnsnnsansnnsnnss
"I GOSUB 3808

2350 IF LEN(Q5){K38 THEN R$(LEN{QS)+1)
= MiGOTO 2350

2368 IF Q&%=

"" THEN GOTOD 23486

2378 QUESTS=0%

2380 Q5(II=" ":ipS(2y=" vrps=me

2398 GOTO 2268

2480 POKE K764,255

2418 POSITION KG K8:7 “Ep"

2428 IF PEEK(K764) K14 THEN POSITION K
8,Kg§:? " ":GOS5UB 656:G0T0 2268

2438 IF PEEK(K764)=K15 THEN POSITION K

8,K8:7 " ":GOSUB 650:G0T0 25486

2440 IF PEEK(KS53279)=K3 AND CH=KZ THEN
GOSUB 4716:POKE 1757,1Z:POKE K1733%,K3

Z2:G0TO 1816

2450 IF PEEK(KS53279)=K3I AND CH=K1 THEN
GOSUB 4660:POKE 1757,1Z:POKE K1733,K1
96:G0TO 1368

2460 IF PEEK(K764)=K12 THEN GOTO 2486

- 2470 GOTO 2426

2480 POKE K764,K255:K=-K18:Y=K8:POSITIO

N Ki8,K8:7 "H...:cveinessenssaaa"iGOSU

B 39506

2498 IF LENCASI{KZ8 THEN AS(LEN(AS)+1)

=t ":iGOTO 24958

2588 IF as=" '"" THEN
GOTO 2488

2516 ANS15=aA%

2528 AS(28)=" ":as(2)="

2536 GOTO 240608

2540 POKE K764,255

2556 POSITION KB Ki@:? "E)

2568 IF PEEK(K764) Ki4 THEN POSITION K

8,Ki8:? " ":GOSUB 650:GO0TO0 2460

2578 IF PEEK(K764)=K15 THEN POSITION K

8,K18:?7 " ":GOSUB 6508:G0TO 2680

2580 IF PEEK(K53273)=K3I AND CH=KZ THEN
GOSUB 4710:POKE 1757,12:POKE K1733,K3

2:G0TO 1818

2590 IF PEEK(KS53279)=KI AND CH=K1 THEN
GOSUB 4660:POKE 1757,12:POKE K1733,K1
96:G0TO 13066

2660 IF PEEK(K764)=K12 THEN GOTO 2628

2616 GOTO 2560

2628 POKE K764,K255:XK=-K18:Y=K168:POSITI

ON Ki16,K18:7 "i...................":GD

SuUB 3950

2630 IF LEN(AS)<{K28 THEN AS(LEN(AS)+1)

=" ":GOTO 2630

as:llll

'"" THEN
GOTO 2620

2650 ANS25=A%

26608 AS(28)=" '":AS(2)=" vps-un

2676 GOTO 2548

26868 POKE K764,255%

2690 POSITION K8,K12:7? "“Ep"

2788 IF PEEK(K764)=Ki4 THEN POSITION K

8,K12:7 " ":GOSUB 650:G0TO0 2548
2716 IF PEEK(K?764)=K15 THEN POSITION K
8,K12:? ' ":GOSUB 650:G0TO 2820

2728 IF PEEK(KS3279)=K3 AND CH=KZ THEN
GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:G0TO 1816

ATARI 8-BIT EXTRA

CRr

UM
ET

2738 IF PEEK(KS53279)=K3 AND CH=K1 THEN
GOSUB 4660:POKE 1757,12:P0OKE K1733,K1
96:G0TO 13066

- 27408 IF PEEK(K764)=K12z THEN GOTO 2768

27568 GOTO 27068
2760 POKE K764 ,K255:X=K108:Y=K12:POSITI

ON K10,K12:7 "B, ' e veesnnernnnsnsesiGO
SUB 3950

27708 IF LENCAS$) {K28 THEN AS$(LENCAS)+1)
Su'n;GoTo 2770

2780 IF as=" " THEN
GOTO 2760

2790 ANS3IS=as

2800 AS(20)=" “;AS(2)=" U
28108 GOTO 2680

2820 POKE K764,255

2830 POSITION KO,K14:7 VEpn

2840 IF PEEK(K764)=Ki4 THEN POSITION K
8,K14:? " “:GOSUB 650:GOTO 2688

28568 IF PEEK(K764)=Ki5 THEN POSITION K
8,K1412 " “:GOSUB 6508:G0TO 29608

2868 IF PEEK(K53279)=K3 AND CH=K2 THEN
GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:GOTO 1818

2870 IF PEEK(K53279)=K3 AND CH=K1 THEN
GOSUB 4660:POKE 1757,12:POKE K1733,K1
96:GOTO 13006

2880 IF PEEK(K?764)=Ki2 THEN GOTO 29600
28908 GOTO 2840

2908 POKE K764,K255:K=K108:Y=K14:POSITI
ON K10,K14:27 "H. .. s enssrnnennseaiGO
SUB 3950

2918 IF LENCAS$) {K20 THEN A% (LEN(AS$)+1)
i GOTO 2918

2920 IF A%=" " THEN
GOTO 2908

2930 ANS45=as

2948 AS(20)=" ":as(2)=" vipsmun

2950 GOTO 2820

72960 POKE K764,255

29708 POSITION K8,K16:7 VEpu

2980 IF PEEK(K764)=Ki4 THEN POSITION K
8,K16:2 " “:GOSUB 658:GOTO 2820

2598 IF PEEK(K764)=K15 THEN POSITION K
8,K16:2 " “:GOSUB 650:GOTO 2260

3000 IF PEEK(K53279)=K3 AND CH=K2 THEN
GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:GOTO 1810

3018 IF PEEK(K53279)=K3 AND CH=Ki THEN
GOSUB 4660:POKE 1757,12:POKE K1733,K1
96:GOTO 1300

3020 IF PEEK(K764)=Ki2 THEN GOTO 3040
3038 GOTO 2980

3040 POKE K764,K255:K=K16:Y=K16:POSITI
ON K16,K16:7 “l":GOSUB 4118

3050 IF LENCCS){K2Z THEN CS5(LEN(CS)+1)=

ng:uu

"M GOTO 3650

38668 IF C%='"" " THEN GOTO 3640
3878 ITS=C%

3886 CS(2)="" "icS(2y=" micS=mm

3898 GOTO 2968

3160 POKE K1733,K4:? CHR$(K125)

3110 COLUNT=8

3120 POSITION K4,K8:7 "lUse {CTL> & 1 k
ey to stop print"

- 3130 POKE K708,K15Z:POSITION K7,K3:? "

PRINT"

3146 POSITION K1Z,K6:? "Printer Option

Sll

31568 POSITION K2,Ki@6:7 "
(1]

X160 POSITION Ki11i,Kid4:? "Use the k¢ k3
keys"

31786 POSITION K8,K16:7 "to make your s
election"

31860 POSITION Kii,Ki8:7 "then press [[I3
TURNG

3198 POKE K1729,K4:FOR I=K1 TO K10:NEX

ANALOG COMPUTING 57

@ Ti‘ivia continued

- 3240 POSITION K21,K22:7 ™

TII:POKE K17308,K4:FOR I=K1 TO K18:NEXT

326080 POKE K1731,K4:FOR I=K1 TO Ki0:NEX
T I:POKE K1732,K4

3216 POKE K1733,38

3226 POSITION Ki,K22:7 "I

3236 POSITION K11,K2Z:? “PRINTER ™

BOTH *
3256 POSITION K31,K2zz:? " MENU ™
3268 POKE K764,K255
3278 POSITION Ki,K22:? "EEIETH"
3288 IF PEEK(K764)=K6 THEN POSITION Ki
2K2Z:? " SCREEN '":GOSUB 650:G0TO0 3440
32968 IF PEEK(K764)=K7 THEN POSITION K1
2K22:7 " SCREEN ":GOSUB 6568:G0T0 3320
336060 IF PEEK(K764)=K1Z THEN 3500
3316 GOTO X280

£ 33206 POKE K764,K25%5
E 3336 POSITION Kii,K2z:7? "CLRMCRIAE"
- 3340 IF PEEK(K764)=K6 THEN POSITION Ki

1,K22:? "PRINTER ":GOSUB 650:G0T0O X260

3358 IF PEEK(K764)=K7 THEN POSITION Ki

1,K22:? "“PRINTER '":GOSUB 650:G0TD 3380

3%60 IF PEEK(K764)=K12 THEN PR=K1:GOTO
5680

3376 GOTO 3340

33860 POKE K764,K25%5

3390 POSITION K21,K22:? "EINCEN"

3400 IF PEEK(K?764)=K6 THEN POSITION K2

. 1,K22:? " BOTH ":GOSUB 650:GOTO 3320
3410 IF PEEK(K764)=K7? THEN POSITION K2
- 1,K22:? " BOTH ":GOSUB 650:GOTO0 3448

3420 IF PEEK(K764)=K12Z THEN PR=KZ:GOTO
3500

34360 GOTO 3400

3440 POKE K764,K25%5

3450 POSITION K31,K22:7 "SI

3460 IF PEEK(K764)=K6 THEN POSITION K3

1,K22:? ' HMENU ":GOSUB 650:GO0TO 3386
34708 IF PEEK(K764)=K7 THEN POSITION K3
1,K22:? " MENU ":GOSUB 650:GOTO IZ68

3480 IF PEEK(K764)=K1Z THEN POKE 1733,

4:7 CHR$(125) :GOTO 218

3498 GOTO 3460

35608 GOSUB 4340:POKE K54286,K64

3516 X1=K3:Y1=KS

3528 OPEN HK1,Kd4,K8,FILELS

3538 INPUT HK1,QUESTS,ANS1S,ANSZS,ANS3

$,AN54%5,ITS

3548 D NN 7 77777272222 2222222222]
'"" THEN 3730

3550 COUNT=COLNT+1

3568 IF PR=K1 THEN GOS5UB 3I658:G0TO0 353

a

3578 IF PR=KZ THEN GOSUB ZI656

3586 POSITION Xi,Y1:? "[IXT g BLITLIYTeH

'"";COUNT

3596 Yiz=Yi+i

3600 POSITION X1,Y1i:? RUESTS:Yi=Yi+i:p
OSITION X1,Y1:? ANS1$:Y1i=Y1+1:POSITION
Hi,¥1:? QNSZS Yiz=yYit+1l

3618 POSITION Hi,¥1:? ANSIS:Yi=Yi+1:PO
SITION H1,Y1:7? QNS4$ Y1=Y1+1:POSITION
Hi,Y1:7? 175

K 3620 Yiz¥it+l

3638 IF ¥1>Ki6 THEN POSITION KZ,v1i:? ©

. Press HLE to continue, [FEY to end":P

OKE K54286,K19%Z:G0T0 3776
36406 GOTO 3536

2658 LPRINT '"Record Number:
36668 LPRINT QUESTS

3678 LPRINT ANS1%

3688 LPRINT ANS2%

3698 LPRINT ANS3S

37688 LPRINT ANS4%

" COLNT

3718 LPRINT ITS

3726 RETLRN

BY 3738 CLOSE #K1:POKE K54286,K132

58

ANALOG COMPUTING

3740 POSITION K4,Y1i+1:7? "Press EdNIH|
to return to MENU"

2758 IF PEEK(KS53I279)=KS5 THEN ? CHRS$(1i2
5):GOTO 216

3768 GOTO 3756

3778 IF PEEK(53279)=K6 THEN GOSUB 4348
:¥Y1=5:POKE K54286,K64:G0T0 3640

. 378080 IF PEEK(K764)=K28 THEN CLOSE HK1:

? CHR$(125) :GOTO 218

3796 GOTO 3770

38068 E1=K@

3818 FOR I=K1 TO K31

3828 IF I>K3IB8 THEN I=I-Ki1:POSITION X,Y
7 M O MIKSH-K1:E1-K1

3836 IF I{K1 THEN I=I+K1:POSITION X,Y:
? % MIK=H+K1:POSITION X,Y:7 "N

3848 GET #H4,0

38568 IF 0=K126 THEN 3I870:Ei1=K0@

38668 IF 0=K155 THEN 3938

3870 IF 0=K126 THEN POSITION X,Y:? . "
éH:H—Kl:PDSITION X,¥:? "H":I=I-K1:E1:=K
3888 IF I{K1i THEN 3836

38980 IF Q=K126 AND I>K8 THEN Q$¢Id)=" "
:GOTO 3830

39686 POSITION X,Y:? CHRS(Q)

3916 IF I>K8 THEN Q$(I)=CHRS(Q)

3920 H=-K+K1:POSITION X,Y:? "H'":NEKT I

3936 IF E1=K1i THEN RETLRN

- 3940 POSITION H,Y:? ".":RETURN
- 39568 E1=Ke
- 3960 FOR I=K1 TO K21

3978 IF I>K28 THEN I=I-K1:POSITION X,Y
7 " MiHCSH-KL1:EL=K1

8 IF I{K1i THEN I=I+K1:POSITION X,Y:

) 398
2 0 wiN=K+K1:POSITION X,Y:? "

3998 GET #H4,AN

4000 IF AN=K126 THEN 40630:E1-K06

4810 IF AN=K155 THEN 4698

4820 IF I=KZ1 THEN I=I-K1:POSITION X,Y
12 1 MiK-K-K1:POSITION X,Y:? “"H'":GOTO

3998

46830 IF AN=K126 THEN POSITION X,Y:? ™.
"iH=K-K1i:POSITION X,Y:? "N':I=I-K1i:Ei=
K8

} 4048 IF I{Ki1i THEN 3388

4858 IF AN=K126 AND I>K8 THEN AS(Ii="
":GOTO 3986

40608 POSITION X,Y:? CHRS$(AN)

4678 IF I>K8® THEN AS(I)=CHRS(AN)

40808 X=H+KL1:POSITION X,Y:? “"H'":NEXT I
4096 IF Ei1=Ki THEN RETURN

- 4166 POSITION X,¥:? ".":RETLURN
. 4116 FOR I=K1 TO KZ
4128 IF I>KZ THEN I=I-K1:POSITION X,Y:

7 " MIHSH-KL

4136 IF I{K1 THEN I=I+K1:POSITION H,Y:
2 " MiH-K+K1:POSITION X,Y:? "N

4148 GET #4,CR

41568 IF CR=K126 THEN 41386

- 4168 IF CR=K155% THEN 4248

4165 IF CR<4% OR CR>52 THEN POSITION X
Y:? "H":GOTO 4148

. 41?6 IF I=KZ2 THEN I=I-K1i:POSITION X,Y¥:

7 1 M H-H-K1:POSITION X,Y:? "I"'GOTO 4
148

4188 IF CR=K126 THEN POSITION X,Y:? "

" H=K-K1:POSITION X,Y¥:? "H':I=I-K1:GOT
0 4138

4198 IF I{K1 THEN 4138

4288 IF CR=K126 AND I>K8 THEN C$(I)="
'":GOTO 4138

POSITION X,Y:? CHRS(CR)

IF I>K8 THEN C5CI)=CHRS (CR)
HK=H+K1:POSITION X,¥:? “"H':NEXT I
IF I{K3 THEN POSITION R,¥s7 m M
RETURN

? HKZ;QUESTS:? HKZ;ANS15:7 HKZ;AN

ATARI 8-BIT EXTRA

BB
213

BU
5H
FD
AR
YP
Y3
ou

HF

Qu
MK

525:7 HKZ;ANS35:7 HK2;ANS545:7 HKZ;ITS
4278 RETURN

A NN E777722222222222222222222Z

4250 7 HK2;QUESTS:? HKZ;ANS515:7 HKZ;AN
525:7 HK2; QNSSS" HKZ; QNS4$'7 HKZ; ITs
43008 CLOSE HK1:CLOSE nxz

4316 KIO 33,”K1,K0,KO,FILE1$

4320 XIO 32,HK1,K6,K6,"D:GAME.TMP,GAME
DaT"

4338 RETURN

4340 FOR I=K5 TO KZ8:POSITION Ki,I:? "

"":NEXT I:RETLURN

4350 POKE K1736,K5Z:FOR I=Ki TO K18:NE
HT I:POKE K1729,K52

43680 FOR I=K1 TO K1i0:POSITION KO,K8:7
n

":FOR J=K1 TO K18:NEXT J
4376 POSITION KO,K8:? "
NOT FOLND ":FOR K=K1 TO K18:NEKT

K

4380 NEXT I

4398 RETLURN

44088 POSITION Ki,K6:7 "Quest?
n

4416 POSITION Kl K8:? "aAnswer 1

4428 POSITION Kl Ki18:? “answer 2z
4433 POSITION Kl Ki12:? "answer 3

4440 POSITION x1 K14:? “answer 4

4450 POSITION Kl Ki16:7 "Correct number

4466 RETURN
4470 POSITION KZ,Ki8:7 "Input Question
, aAnswers & CDPrect No.'"
4480 POSITION K6,K20:? "lUse k¢ E¥ keys
- press [RITI]"
4490 RETURN
4568 POSITION KB8,K18:7 "Input the Ques
tion to locate the record"
4516 POSITION KB,K19:? "or use an "'
to step through the file."
4520 POSITION KB,K28:7 '"Use the OPTION
5 below when the record"
4530 POSITION KO6,Kz1:? '"is found.
s HAWMT] when changed b
4548 RETURN
45508 POSITION K1,Ki8:7 "Use the k4 k¢
keys to page up and down"
4560 POSITION K1,K19:? "until you find
the line you wish to"
4570 POSITION K1,K28:? "change. Make
the change and press the"
4580 POSITION Ki,K21:? "[3UTT] key. P
ress {OPTION> when done"
45968 RETLURN
46608 POSITION Ki1,K22:? " CHANGE "
4616 POSITION K11i,K22:? " DELETE *
4620 POSITION K21,K22:7? " NEXT "
4636 POSITION K31,K22:7 " MENL "
4640 FOR I=K6 TO K16:POSITION K&,I:? "
"":NEXT I:RETURN
4650 POSITION KB8,K22:7
"":RETURN
4660 GOSUB 4810:POKE Ki729,K4:G0OSUB 48
20:POKE K1736,K4
4670 GOSUB 4830:POKE K1731,K4:G05UB 48
40:POKE K1732,K4
4680 POKE K1732,KS52:FOR I=K1 TO KS:NEX
TII:POKE K1731,K52:FOR I=K1 TO KS5:NEXT

4698 POKE K1730,K52:FOR I=K1 TO K5:NER

T I:POKE K1729,K52
4768 GOSUB 4470:G05UB 4650:G0OSUB 4760:

Pres

ATARI 8-BIT EXTRA

RECORD

IH
JY
10

RETURN

4718 GOSUB 4810:POKE K1729,K4:GOSUB 48
20:POKE K1738,K4

47208 GOSUB 4836:POKE K1731,K4:GOSUB 48
40:POKE K1732,K4

47368 POKE K1732,K132:FOR I=-K1l TO KS5:NE
KT I:POKE K1731,K132:FOR I=K1 TO K5:NE
KT I

4740 POKE K1730,K13I2:FOR I=K1i TO K5:NE
HT I:POKE K172%,K132

4750 GOSUB 4580:G0SUB 4650:G05UB 46068:
RETLURN

4760 POSITION K1,K22:7 "CONTINUE"

4776 POSITION Kii,K22:7 ' EDIT ™
47808 POSITION K21,K22:7? " PRINT "
4798 POSITION K31,K22:7 ' MENU "

4860 FOR I=K6 TO K16:POSITION K8,I:? "
":NEXT I:RETURN
4818 POSITION KO,Kig:7 "

"":RETURN
4820 POSITION KO,K19:7? "

""!RETURN
4838 POSITION KO,Kz8:7 "

"":RETLURN
4840 POSITION KO,Kz1:7 "

'"":RETURN

4858 FOR I=K18 TO KZ1:POSITION K6,I:?
11}

":NEXT I:RETURN

48680 GRAPHICS K1:POKE K718,K08:POKE K75
2,K1:POKE K7088,148:PDKE K764 ,K255

4878 POSITION 9,4:7 #6;"a"

4880 POSITION K7,K8:7 H6;"trivia"

4590 POSITION K8,K12:7 #6;"FELL3"

4988 2 " Please wait - program is loa
ding"

4918 RUN "D:TRIV.BAS"

4920 INIT=INIT+K1:IF INIT>Ki THEN 58186
4938 GRAPHICS O:POKE K752,K1:POKE K718
,K8:POSITION K16,Ki1i8:7? '"18 Seconds ple
ase,.."

4948 RESTORE S156:FOR N=0 TO 99%:READ X
:POKE 1664+N,HX:NEXT N

4958 COLTAB=1712:LUMTAB=COLTAB+24

4968 REM START COUNTER AND RESET EVERY

UBI

4978 H=US5R(1693)

4988 REM TELL ANTIC MWHERE DLI CODE IS
4998 POKE 512,128

5688 POKE 513,6

5018 REM NOW SET INTERRUPT BITS
56268 DSTART=PEEK(568) +Z256%PEEK(561)
5838 FOR N=DSTART+6 TO DSTART+28
5048 POKE N,138
5858 NEXT N
3269 REM SET INTERRUPT BIT ON FIRST LI
5678 POKE DSTART+3,19%4
5888 REM ENABLE DLI
58986 POKE 54286,192
51808 PRINT CHRS$(125)
5118 REM HANDLE LINE 6 45 BACKGROLND
5128 POKE 716,PEEK(COLTAB)
5136 POKE 789,PEEK(LUMTAB)
5148 RETURN
2150 pATA 72,138,72,174,156,6,189,176,
,141
51686 DATA 16,212,141,24,268,189,2608,6,
141,23
51706 DATA 208,238,156,6,104,176,104,64
,1,164
5186 pATA 169,7,160,168,162,6,32,92,22
8,96
51%8 pATA 169,1,141,156,6,76,98,228,8,
4

5200 DATA 4,4,4,4,4,4,4,4,4,4
5210 DATA 4,4,4,4,4,4,4,4,4,4
5220 DATA 4,4,0,12,12,12,12,12,12,12

ANALOG COMPUTING 59

é 'Ii'ivia continued

WB 5238 DATA 12,12,12,12,12,12,12,12,12,1
5 B
UY 5240 DATA 12,12,12,14,14,14,8,0,0,0

Listing 2.
BASIC listing.

HHX 18 REM & TRIVIA GAME BY Jan Iverson
AZ Z8 REM
BL 30 KO=ZO:K1=1:KZ2=Z:K3=3:K4=4:K5=5:K6=6:
- K?7=7:K8=8:K9=9:K16=18:K11=11:K12=12:K1
o I=1TK14=14:K15=-15:K16=16:K17:=17
KN 48 K18=18:K19=-19:K20=20:KZ21=21:K22=22:
K29=29:K38=30:K34=3Z4:K49=-49:K50=50:K52
=52Z2:K68=68:K921=91:K160=-188:K288=-2008
KX 58 K752=752:K35=35:K45=45:K53=53:K64=6
4:K81=81:K926=96:K128=128:K548=548:K532
79=53279:K764=764:K255=255
IE 686 DIH n$(39) BS€28),C5(208),D5(20) ,ESC
283 ,F5(1) HS[i) R (3]
HT 78 DIH nlé(ﬁﬂﬂﬁ) B15(4000) ,C15C40800),D
- 15t4008) E1$(4BBB) F1$(ZBB) FILE1$(15)
#J 80 FILE1:=n HIFILELS="D:
. GAME.DAT":SCORE=K8:HSCORE=K®8
P 90 A-KO:B-KB:C-KO:D-K8:Al=-KO8:P=KB8:0=K@
. IREKB:CNT=KB:CT=-KO:HK=-KB:HKX=-KB8
J0 188 CLOSE HK1:O0PEN HK1,Kd4,K68,FILEL15:0P
. EN HK4,K4,K0,"K:":GOSUB 1350:POKE 5377
- 4,K64:POKE K16,K64
#¥M 118 GOSUB 1580:POKE K75Z,K1:G0SUB 760
Dl 126 POSITION K2,K2Z2:? "START=PLAY AGAI
N OPTION=END SESSION":POKE 53774,K64:
POKE K16,K64:55=45:L1=K?%
AN 130 POKE 54286,192:G05UB 1150:GO0S5UB 11
. 78:GOSUB 11986
148 POSITION K5,KIZ:? AS:SOUND KO,K45,K
. 10,K8:FOR I=ZK1 TO K15:NEKT I
© 158 POSITION Ki18,K9:? BS:S50UND KO,K53,
K18,K8:FOR I=ZK1 TO Ki5:NEKT I
HO 166 POSITION K10,K11:? CS5:SOUND KO,K64
. sK18,K8:FOR I=K1 TO Ki1i5:NEKT I
I0 176 POSITION K18,K13:? D5:S0UND KB,K81
. ,K18,K8:FOR I=K1 TO Ki5:NEXT I
IC 1808 POSITION K18,K15:7 E5:SOUND KO,K96
. ,K18,K8:FOR I=K1i TO KiS5:NEKT I:S0UND K
. B,K0,KB8,K8
aa:1ee POSITION Kﬁ Kig:z »
: 4
288 TH=-K18:POKE K764 ,K25%5
P 2186 GOSUB 1928
®¥ 220 GET HK4,ANS
. 238 IF nNS<K49 DR ANS»>»KSZ THEN POKE K7
64 ,K255:G05UB 1926:G0TO0 2Z@
249 H$=CHRS% (ANS)
258 IF HS5=F% THEN S0UND KO ,K45,K18,K12
:FOR I=K1 T0O KIB:NEXT I:S5S0UND KB,K52,K
. 16,K12:FOR I=K1 TO KI8:NEKT I
.-268 IF H5=F% THEN GOSUB 788:G0T0 428
278 GOSUB 718:GOTO 4486
3 280 GOSUB 736
290 POSITION KiB6,K3:? "RIGHT ";B;" H
.. RONG '";C
PT 306 PDSITIDN K6, K19'7 ""Choose one of t
_ he options Ed
MH 316 POSITION K2 K22'° RN POSITION
 TK28,K22:7 “IERLL]T
. 320 FDR I-K1 TO K38
338 IF PEEKIKS3IZ792)=-KI THEN POSITION K
2,K22:? “"START'":POSITION K28,K22:7 "OP
TION":GOTO 898
340 IF PEEK(KS53I279)=K6 THEN POSITION K
Z2,K22:7 “"START":POSITION K2Z8,K22:7 "“OP
. TION":GOSUB 7306:GOTO 136
GD 350 NERT I
¢J 360 POSITION K2Z,K2Z:? "“"START":POSITION

Select 1

60 ANALOG COMPUTING

FT

oM

{8 770 POSITION KB8,K5:7 "}

K20,K2Z:? "OPTION"

376 FOR I=-K1 TO K38

388 IF PEEK(K53279)=K3 THEN POSITION K
Z2,K22:? "START":POSITION KZ08,KZz:? “OP
TION":GOTO 828

398 IF PEEK({KS532793=K6 THEN POSITION K
Z2,K22:7? "“"START":POSITION K26,K2Z:? "OP
TION'":GOSUB 730:GOTO 136

- 480 NEKT I

418 GOTO 318
428 B=B+K1:SO0UND KO,K0,K8,K8

. 436 GOSUB 2856:G0TO0 286
440 C=C+K1:SOUND KO,K91,K12,K16:FOR DE

LAY=K1 TO KZ80:NEHT DELAY:SOUND K6,K8,
K8,Ka

458 IF F5="'1" THEN GOSUB 588

468 IF F5="'2" THEN GOSUB 558

478 IF F$="3" THEN GOSUB 6688

488 IF F5='"4" THEN GOSLUB 658

498 GOTO 286

586 FOR I=K1 TO K4

516 POSITION K7,K9:7 "['":SOUND K6,K96
,K18,K8:FOR DELAY=K1 TO KS50:NEXT DELAY
528 POSITION K7,K9:7 "i.":50UND KO6,K8,
K8,K8:FOR DELAY=K1 TO KS8:NEXT DELAY
938 NEKT I

948 RETLURHN

558 FOR I=K1l TO K4

- 560 POSITION K7,Kii1:? "F":SOUND K8,K?

6,K18,K8:FOR DELAY=K1 TO KSO0:NEXT DELA
Y

» 978 POSITION K7,Kii:? "Z.'":50UND KO6,K@

JK8,K8:FOR DELAY=K1 TO KSO8:NEXKT DELAY
5806 NEKT I

598 RETURN

600 FOR I=K1 TO K4

618 POSITION K7,KiZ:? "E¥':SOUND K8,K9
6,K18,K8:FOR DELAY=K1 TO KS58:NEXKT DELA
Y

3’628 POSITION K7,Ki3:? "'I.":S0UND KO,Kd

;K8,KB:FOR DELAY=KL1 TO KSO0:NEXT DELAY
638 NEKT I

640 RETURN

658 FOR I=K1 TO K4

6608 POSITION K7,K15:7 "[W':SOUND K@&,K?
6,K18,K8:FOR DELAY=K1 TO K58:NEXT DELA
b

678 POSITION K7,Ki5:7 "4.'":50UND KO6,K8

- ,K8,K0:FOR DELAY=K1 TO KS8:NEXT DELAY
680 NEXKT I

696 RETURN

7008 POSITION 36,K15:7 “LI'":RETURN
- 718 POSITION 36,K15:7 "M

"IRETURN
728 POSITION KS,K2:7 "
":POSITION K7,K13:7

""IRETURN
POSITION K3,K3:7? "
":POSITION Ki8,K3:7?
n

POSITION KiBG,Ki1:? "
“:POSITION K16,K13:7 "
"

758 POSITION Ki8,Ki5:7 "
":RETURN
760 FOR I=K® TO KZ1:POSITION K@,I:? “|

|"":NEXT I

788 POSITION K8,K17:7 "!'
798 POSITION KO,K21:7? "':
mn
800 POSITION KO,K8:7 "y
mn

810 POSITION KizZ,Ki:? “[IRCELTRSITTE ¢4
820 POSITION Kii,K6:7 "[[l|Gpd W+, [1h{d3
i

ATARI 8-BIT EXTRA

FH
ND

HD
5K

HP

836 POSITION 35,K1z2:7 ™ '
840 POSITION 35,K13:7 "j..|[|"
850 POSITION 35,Ki4:7 " o,
860 POSITION 35,Ki5:? " 1
876 POSITION 35,K16:7 ™ =
880 RETURN
390 POKE 54286,192:G0SUB 1186:G05UB 11
a
900 POSITION K3I,K3:? "
11

. 916 POSITION K16,K3:? “RIGHT ";B;" W
RONG ";C
9268 P=B+C:Q=B/P:0Q=-0%*1886

938 IF SCORE>HSCORE THEN HSCORE=5SCORE:
POSITION 34,K7:? HSCORE

940 IF Q{K56 THEN POSITION K7,K%:7 "YO
U HEED a4 TRIVIA CLASS":GOTO 1868

9568 IF 0»=75 THEN 978

968 IF 0>=K5S8 THEN POSITION K39,K3:7 "P
RETTY GOOD, STUDY MORE ":G0TO 1060
978 IF 0»=928 THEN 9290

9808 IF 0>=75 THEN POSITION K32,K2:7 "GR
EAT — ALMOST PERFECT ":G0TO 1668
998 IF 0>=98 THEN POSITION K5,K3:7 "GR
EAT!!! GO TO HEAD OF CLASS5"™

1666 GOSUB 1760

1816 POSITION K7,K13:? "DO YOU WISH TO
PLAY AGAIN'"

1620 POSITION K2,K22:7 "ERGIAI":POSITIO
N K26,Kz22:7 " i

1836 FOR I=K1i TO K58

1648 IF PEEK(K53279)=K3I THEN GRAPHICS
B:END

1656 IF PEEK({K53279)=K6 THEN GOSUB 1i3Z
B:GOSUB 728:B=K68:C=K8:GOSUB 1186:GOSUB
1330:G05UB 1498:G05SUB 13568:GOTO 138

1868 NEXT I

1678 POSITION KZ,K2Z2:? "START":POSITIO

N KzZ8,K2Z:7 "OPTION"

1886 FOR I=K1 TO K58

1696 IF PEEK(K53279)=K3I THEN GRAPHICS
B:END

11868 IF PEEK({K53279)=K& THEN GOSUB 1i3
8:G05UB 7368:B=K0:C=K08:GO5UB 1186:GOSUB
1330:G0OSUB 14908:GOSUB 1356:GOTO 136
1118 NEXT I

1128 GOTO 16286

1136 POSITION K2Z,K22:7 "START":POSITIO
N K28,K22:? "OPTION":RETURN

1146 GOTO 1138

1156 POSITION K7,K9:% "1.":POSITION K7

JK1L:7 M2,

1166 POSITION K7,Ki13:? "3J.":POSITION K

7,K15:7 "4 ,":RETLURN

1176 FOR I=K? TO KiS5:POSITION K3,I:% "
"iRETURN

1188 FOR I=K?% TO K15:POSITION K3,I:? "
":NEXKT I:RETLRN

1198 CT=INT(RND (KB)¥CNT)

1286 IF CT=K8 THEN 1198

1218 IF HXX=CNT THEN 838

1228 IF HX=CNT-KL THEN CT=CHNT:KKX=CNT
1238 IF Fi5$(CT,CT)="H'" THEN 1198
1248 AS=AL1S(CT*KIB-K2Z29)

12508 BS=B1S(CT*K20-K19)
1268 CS=C15(CT*K20-K19]
1278 DS=D1S(CT*KZ28-K191

11280 ESCEL1S$(CT*K26-K19)

1298 FS$=F1$(CT,CT)
1388 F15(CT,CT)="K"
1318 HH=KX+K1

1326 RETURHN

- 1330 A=KOB:B=KB:C=K0:D=K8:Al-K8:P=KB8:0Q=

KB8:R=K8:CT=K8
134686 RETURN
Ki,a5,B5,C5,D5,ES,F§

1356 INPUT #
IRt N Y 777777 72222222222222222222)

[#¥#F4'* THEN 1468

ATARI 8-BIT EXTRA

1378 CHT=CHT+K1

13886 IF CHNT=2686 THEN 14606

1398 ALSI(CNT*KIB-K291=AS

1400 B1S(CHT*K28-K19)=B%

14168 C1S5(CHNT*K28-K19)=C$

1420 D1S(CHT*K28-K19)=D%

14368 E1S(CHT*K2B8-K19)=E$

1446 F1S(CNT,CNT)=F$

14568 GOTO 1356

1466 SCORE=K®:POSITION K3I4,K&6:7 "

- ":pPOSITION K34,KG:? "a"

1476 CLOSE HK1

1486 RETURN

14906 POKE 54286,64:CT=0:CNT=0:XK=-K08:KK
K=KB8:CLOSE HK1:0PEN HK1,K4,K8,FILEL15:R
ETURN

1508 GRAPHICS K8:POKE 752,K1:POKE 718,
K6:POSITION Ki6,K18:? "28 Seconds plea
se..."

1516 FOR N=K8 TO 99:READ H:POKE 16G64%N
;R iNEXKT N

1526 COLTAB=17i2:LUMTAB=COLTAB+24

1538 H=USR(1623)

- 1548 POKE 512,128

1558 POKE 513,K6
1560 DSTART=PEEK(560)+Z56¥PEEK (561}
1570 FOR N=DSTART+K6 TO DSTART+Z§

1580 POKE N,1386

1598 NEXT N

16668 POKE DSTART+3,194
16168 POKE 54286,132
1628 PRINT CHR5(125)

1636 POKE 718,PEEK(COLTAB)

16408 POKE 709,PEEK (LUMTAB)
1656 RETURN
16668 DATa 72,138,72,174,156,6,189,176,

- B,141

1670 DaTA 16,212,141,24,208,189,2808,6,
141,23

- 1680 DATA 208,238,156,6,1064,170,1064,64

,18,164
i696 paTa 169,7,160,168,162,6,32,92,22

- 8,96

17868 pATaA i69,1,141,156,6,76,98,228,14
4,144

1718 paTa 144,144,144,144,196,196,196,
196,196,196

1720 DATA 196,196,196,196,196,64,64,64
64,64

i?Ké paTa 2,08,12,12,12,12,12,12,12,12

v,é?dﬂ paTA 12,12,12,12,12,12,12,12,12,1

1758 DATA 12,12,12,12,6,6,0,6,8,08
1768 RESTORE 1886

1776 FOR I=K1 TO 24

17868 REaD PO,P1,PZ,P3,DUR

1798 POKE K548,DUR

1§86 SOUND KO,P06,K18,KiZ

1816 SOUND K1,P1,K16,K1Z

1826 SOUND KZ,PZ2,K18,K1Z

18368 SOUND K3I,P3,K18,K1Z

. 1848 IF PEEK(K548) {>K8 THEN 1848

1858 MNEXT I

1868 SOUND KB,K8,K6,K0:50UND Ki,K0,K8,

KB8:50UND K2,K0,K8,K0:50UND K3,K8,K8,K8
1878 RETURN

1888 DATh 168,8,0,6,108,1062,8,8,0,10,96
 ,24%,08,8,106,60,121,162,06,208,96,0,0,0,1

8,60,162,8,8,20,96,121,136,08,28

1898 bATA &O,0,08,0,20,60,182,08,08,20,60
,121,144,08,26,60,193,8,0,108,668,193,06,08
;16,5%,121,162,0,18,50,121,162,06,106
i%e8 paTh 47,162,06,0,106,606,162,08,0,108,
53,96,121,8,106,47,96,121,08,16,47,162,0
,8,18,64,162,0,0,106,53,91,128,08,208
1918 DATA 60,96,121,0,20,60,162,0,08,20
,8,243%,08,08,38

: 19206 POSITION K3,K6:? "TIME=":POSITION

ANALOG COMPUTING 6t

é Trivia continued

28,K6:2? "SCORE=":POSITION 25,K7:? “HI
 -SCORE=":POSITION K8,K6:% TM
1938 POKE K546,K68
U 1940 IF PEEK(K548)=K8 THEN THM=TM-KL1:POD
 SITION K8,K6:? " ":pPOSITION K8,K6:7 T
_ M:SOLND K8,K128,K18,K16:G0TO 1980
¥ 1950 IF PEEK(K764)<5K255 THEN 1998
KJ 1960 IF TM=K8 THEN 2618
UF 1970 GOTO 19486
| 1986 FOR J=Ki TO KZ:NEKT J:SOUND K0,K®
~ ,K8,K8
KK 19986 IF PEEK(K764)<>K255 THEN ANS=PEEK
_ (764) :RETURN
SG 2808 GOTO 1938
5B 2010 SOLUND K8,K96,K18,K12:GOSUB 2030:4
 N5=53:POSITION K8,K6:7 " “:POP :GOTO
240
4G 2628 RETURN
JR 2030 FOR K=K1 TO K3B8:NEXT K
HH 2048 SOLUND K8,K0,K0,K0:RETLURN
EF 2058 IF TM=K8® THEN RETLRN
ZY¥ 2060 TM=TM-K1:POSITION K8,K6:7 " ":pp
_ SITION K8,K6:7 TM:SOLND K8,K128,K10,K6
:FOR I=Ki1 TO K3I:NEXT I
55 2070 SOLUND KO8,K8,K0,Ke
FY 2080 FOR I=KLi TO K18:MNEHT I
MB 26908 SCORE=SCORE+K1:POSITION K34,K6:?
_ SCORE:SOLUND K0,162,K18,K6:FOR I=K1 TO
 K3I:NEKT I:SOLND KO,K0,K8,Ke
FP 21006 FOR I=K2 TO K1iB:NEXT I
P5 2110 GOTO 2858
AL 2120 RETURN

62 ANALOG COMPUTING

ATARI 8-BIT EXTRA

48K Cassette or Disk

by Jerry Lemaitre

In this game, you're the lowly Anthort, struggling to de-
fend your planet against the evil Zorcron empire. If the
rock-eating Zorcrons manage to penetrate your defenses,
they’ll gobble up your entire planet. To prevent this, you're
armed with the mystical Fyreballs, which ignite anything
in their path. You may have three of these flying at one
time, but shoot carefully!

You're not the only one with weapons, though. The Zor-
crons have discovered machinery! There are three types
of machines that they build with the iron ore they can’t
digest.

Their Eggbarge is a bulky space vessel which incubates
Zorcron eggs during flight. When it reaches its destina-
tion, the newly hatched Zorcrons help to replenish the
fighting troops.

A Whizzer is a warp-speed vessel which transports and
launches the most deadly Zorcron offense of all—the Zing-
bomb. You'll know the Zingbombs when you see them.
These menaces head straight for your planet at incredible
speeds. On impact, they create a shock wave that will pul-
verize your delicate Anthortian insides.

ATARI 8-BIT EXTRA

Now, don’t get me wrong. This isn’t just another one-
dimensional shoot-em-up. Constantly changing colors and
totally animated characters add to the visual appeal. You
can move your Anthort in eight (count 'em, eight) direc-
tions. There’s also horizontal wraparound, so you're not
confined by the sides of the screen.

Even though Invasion III is written in BASIC, there can
be as many as twenty-three characters on-screen at a
time—at speeds that’ll make you sweat! Enjoy! &

Jerry Lamaitre has owned his Atari 400 for four years.
He’s very interested in robotics and artificial intelligence,
and sells his own programs and accessories as a small
mail-order business.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,

in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

‘UK 156 GOSUB 576
‘MP 118 5C=K8:MEN=KZ:GOSUE 720

ANALOG COMPUTING 63

é InvaSiOIl III continued

fAE 120 POKE P+5CR,K2:IF STICKC(KB)Y=K1i5 AND

. STRIGCK®) THEN 128

Qb 1308 FOR Z=K8 TO0 K1S5:P1=P:S5=MI{STICK(K8)

'P=P+5:P=P-5%(P>439 OR P<{408)

14%Kc —INT (KS*¥RND (K0)) :SETCOLOR C,Z,K8%

(Cc{K4)

PN 15080 CH= NOT CH:POKE 756,CHCCH) :L=PEEK(
'P+5CR) :POKE P1+5CR,K8:POKE P+SCR,K2:IF

, L AND L{>KZ THEN 418

%V 160 L=KB8:IF NOT STRIG(KO) THEN GOSUB

. 338

ZZ 170 FOR A=K® TO K2:Fi=Fi{a)

RJ 188 IF F1 THEN POKE F1+5CR,K8:Fi1i=F1-K2
8:FL=PEEK(F1+5CR) :IF FL THEN F=F1:F1izK
8:GOS5UB 350

EB 198 IF F1 THEN POKE Fi1+5CR,132

‘57 200 FCAY=F1:MNEXT A

58 218 IF ZP(Z) THEN ZPi=ZP(Z):ZP(Z)Y=ZP(Z

J+INT(KIXRND(KB)+19) : L=PEEK({ZP(Z)+5CR)

 !PDKE ZP1+SCR,K0:POKE ZP({Z)+S5CR,195

WB 226 IF L THEN GOSUB 468

ZB 230 IF NOT E THEN IF RND(K8)<{8.81 THE

. N E=K28:EM=K1:50UND K1 E 1Z2,K8:IF RND(C

. K8){8.5 THEN E=39:EM=-

QG 248 IF E THEN E=E+EM: POKE E+SCR,K6:POK

. E E-EM+SCR,K8:IF E-K28 OR E=39 THEN PO

" KE E+5CR, K8:E=KO:SOLND K1,K0,K8,K0
ZN 250 IF E THEN IF E>21 AND E<{38 THEN IF
» NOT ZP(E-22) THEN ZP(E-Z2)=E+K20:P0OK

. E ZP(E-22)+5CR,195:50UND K1,E,1Z,K8

268 IF W=K8 THEN IF RND(K8Y<{8.81 THEN

. H-KZ208:WM=K1:50LUND K2Z,HW,10,10:P0KE 77,K

. B:IF RNDCKBI{B.5 THEN W=39:MWM=—K1

KN 270 IF W THEN W=W+WM:POKE W+S5CR,13I3:P0O

. KE HW-WM*5CR,K8:IF W=K28 OR MW=39% THEN P

. DKE MW+SCR,KB:W=KB:50UND KZ,K8,K0,K0

UH 288 IF W THEN IF NOT B AND RND(K8)<{8,

86 THEN B=W+KZ20:S50UND K3,B,K4,12

ML 290 IF B THEN SO0UND K3,B,K4,1Z:B=B+K20
:BL=PEEK(S5CR+B) : POKE SCR+B,71:POKE SCR
+B-K20,K0

XN X080 IF B THEN IF BL=KZ OR B>43% THEN 5

. OLUND K3I,K0,K0,K0:POKE SCR+B,K8:B=K8:GO

. TO 418

FZ 310 IF B THEN IF BL=13Z THEN FL=71:G0S5

uB 398

320 NEXT Z:GOTO 136

330 FOR J=K8 TO K2:IF NOT FCJ) THEN F

OR I=KO® TO I1:POKE 53761,I:NEXKT I:F(J)

=P-K20:RETLURN

ME 340 NEXT J:RETLRN

¢ 350 IF FL=195 THEN FOR I=K8 TO K15:IF
 ZP{IY=F THEN 5C=S5C+25:GOSUB 530:Z=I:GO0

~ 5UB 4680

YZ 368 IF FL=195 THEN NEXT I:RETURN

UN 3780 IF FL=133 THEN S5SC=5C+1808:G0S5UB 53

. P:OQ=H:W=KO:SOUND K2Z,KO0,K8,K0:G0TO0 550

FH 380 IF FL=K6 THEN SC=5C+1680:G0S5UB 530

. 'Q=E:E=KO:S0UND K1,K8,K0,K08:G0TO0 550

NL 396 IF FL=71 THEN SC=5C+500:G0SUB 530:
QR=B:B=K0:S50LUND K3,K8,K0,K0:G0T0 558

Zf 4060 RETURN

EH 410 POKE P+5SCR,K8:FOR I=Ki TO K20:S50LN

. D KI%*RND(KDO),ZOORNDCKO) ,12,KB:NEXT I

ZY 420 MEN=MEN-K1:POKE P+SCR,9:FOR I=K1 T
0 Kz8

¥C 430 SOUND KZ2¥*RND(KO) ,200%RNDIKO),12,K8

. 'NEXT I:FOR I=KO TO K3I:S50UND I,K0,K8,K

. BINERT I

®.J 440 POKE P+5CR,K8:FOR I=K8 TO 186:S5ETC
OLOR K4¥RHND (K8 ,K15¥RND (K0) , K15¥*RND (K@
Y:NEXKT I:IF MEN{K® THEN 500

£Y 450 GOSUB 720:GOTO0 128

¥L 468 IF ZP(Z)=K® OR L=195 THEN RETURN

NX 470 IF L=74 OR L=75 DR L=KZ THEN 4106

Gl 480 POKE ZP(Z)+SCR,2088:FOR I=K6 TO K15
:SOUND KB,K0,K4,I:NEXT I:POKE ZP(Z)+5C
R,201

64 ANALOG COMPUTING

Fu

ZX
K@

AB
TK

| 496 FOR I=K® TO K15:SOLUND KO,K8,K5,I:N
- EXT I:POKE ZP(Z)+5CR,K@8: ZP(Z3) =KD :RETUR

N

588 GOSUB 728:POSITION KS,K6:7 HKG;"Ga
DUG@'"'POSITIDN K5, K817 HKG; "P[H3s5
rE":POKE 17+5CR,K6

. 918 IF STRIG(K8) THEN 516
- 526 GOTO 118

530 POSITION K4,23:7 HK6;5C:IF SCYHSC

 THEN_HSC=SC:POSITION 14,23:? HK6;HSC
. 540 RETLRN
. 558 SOUND K2,34,10,18:FOR I=K8 TO 16:F

OR J=K8 TO K1:POKE SCR+Q,K8+J:50LUND K1

s I+J,108,11+J:NEXT JINEKT I

568 POKE SCR+Q,K0:S50UND K1,K8,K8,K8:50

EL-unn K2,K8,K0,K8:RETLURN
 1K15-15:K20=28
YN

570 K1=1:K2=2:K3=3:K4=4:K5=5:K6=6:K8=8

588 GRAPHICS 18:POSITION K4,K2:? HKG6;"
In(Td5i0T]]1[]"'POSITION 9,K9:7? ﬂKG'"by"
iPOSITION K3,7

598 7 ﬂKB;"JERRY LEMAITRE":COLOR 138:P
LOT KB,K8:DRAWTO 19,K68:DRAWTO 19,11:DR
AWTD KB,11:DRAWTO KB8,K8

6088 DIM CH(K1) ,M(K15),ZP(K15),F(K2),J5
(32) MIKS) =21 :M(K6)=-19:M(7)=K1:M(9)=1
F:MI18)=-21:M(11)=-K1:M(13)=K28

6180 M(14)=-KZ20:M(K15)=KO8:FOR I=Ki TO 3
9:READ A:JSCII=CHRS(A) :NEXT I

615 DATA 164,104,133,215,104,133,214,1

 04,133,217,104,133

Ly

bR
KW

HA
HY
QK

0T

o0

628 DATA 216,104,133,218,1064,170,168,0
2177,214,145,216,2060,208,4,2308,215,230
,217,202,208,242,198,218,16,238,96

638 CH(KB)=-PEEK(186)—-K8:CHIK1)=CH(K8)-

K8:I=USR(ADR(J%) ,57344,CHIKB)*256,511)

640 A-CH(KB)X256:FOR I=K8® TO 95:READ B
:POKE A+I,B:FOR J=K8 TO K3I:SETCOLOR J,

K15%¥RND (K8) , J+J+K4 :NEXT J:NEXKT I

25g1}§U5R(QDR(J$),CH(KGJ*ZSB,CH(Kl)*ZS
?

660 A-CHI{K1)*¥256:FOR I=16 TO 63:READ B
iPOKE A+I,B:NEXT I:RETLRN

678 DATH 6,0,0,0,0,0,0,0,7,15,308,56,48
,98,192,192,129,90,60,219,126,36,72,144
,129,129,165,219,126,606, 36,36

688 DATA ©,20,8,20,8,0,8,0,255,129,189
,181,181,181,133,253,60,1082,255,24,255

2171,255,126
o
-8,1084,22,40,68,0,65,34,0,192,3,08,

698 DATh B,14,24,24,24,60,60,24,0,34,2

68,13
8,0,16,608,127,255,255,255,68 !
7088 DATA 0,0,65,225,251,255,255,8,66,9
9,606,219,126,36,18, 6 36,90,255,189

5,153 153,0,8,20,8, 0 8
M

716 DATA 191 161 173 1?3 173,189,129,2

- 55,60,162, 255 24,255,213,255,126,0, 112

QK

Ip

,24,24,24,69,68,24

728 GRAPHICS 17:POSITION KO,K8:? HKG6;'
"":POSITION K1,23:7

'";5C:POSITION 16,23

";HS5C:POKE 756,CH(K8):F

HKG6 ;"
738 7 HKe;"

- DR I=ZK8 TO 19:COLOR INT(KZX*RND(K8)+10)

cK
zo

748 PLOT I,22:S5O0UND KO,I+I+I,10,10:NEX
T I

7508 SOUND KO,K8,K8,K0:5CR=PEEK(88)+256
HPEEK (89) :P=350:FOR I=K8 TO K15:ZP(I)=

 KO:NEHT I:IF MEN THEN POKE 17+SCR,130

ZF

ca

7608 IF MEN=KZ THEN POKE 18+5CR, 1386
770 B-KO:W-KB:E-KZ8:EM=-K1:F (K68)=K@8:F (K
13=KB8:F(K2)=KB8:RETURN

ATARI 8-BIT EXTRA

48K Cassette or Disk

by David Huff

The game of Dragon Chase depends more on a sharp
mind than on quick reflexes. The object here is to rescue
the princess before an evil dragon can reach her.

In order to save the princess, you must remove the black
castle which surrounds her. To accomplish this feat, you
must find certain objects—such as diamonds, swords and
rings. Unfortunately, these items are hidden from view un-
til you move over them. And, if the dragon reaches your
fair lady, the game is over.

The game rules.

You begin each level in the lower left corner, marked
by a square pink cursor. As you move with the joystick,
objects hidden below become visible. A row of the things
you must find is seen at the upper left, and you must un-
cover the objects in the order shown. When you locate one,
stay over it until its color changes, then move on to find
the next one. After you've retrieved all the required items,
the castle is automatically removed. To rescue the prin-
cess and advance to the next level, move your pink cur-
sor over her.

Also hidden are various objects which can help or hin-
der you. The squares can make the whole field visible for
a few seconds, giving you time to locate other needed
items.

Wild cards are also randomly hidden. These are marked

ATARI 8-BIT EXTRA

with a W. Finding one is the same as locating the next
object you were searching for.

Also hidden are dragons. If you hover above one, your
movement is stopped—and the dragon takes another step
toward the princess. A tombstone marks this event. Some-
times the dragon may be sleeping, in which case you can
step right over him.

For help in finding things, a scanner is provided. Press
the fire button to activate it, and a portion of the screen
around you becomes visible. Using the scanner costs you
10 points and advances the dragon one step.

Each round of Dragon Chase has five levels. On higher
levels, the dragon moves faster—while you must find more
objects.

Scores are tallied as follows. You receive 200 points for
saving the princess, or 100 points for finding an object.
You lose points in this way: 50 off for finding a dragon,
5 are subtracted for advancing the dragon, and using the
scanner eats up 10.

About the program.

Dragon Chase takes advantage of Atari’s character col-
or assignment in graphics mode 2. The same character is
easily displayed in different colors, and there are sixty-
four characters in the graphics 2 character set. You have
a choice of four colors. In choosing one, a specific num-
ber is added to the character number, as shown in Figure 1.

To display a character, POKE its number into the dis-

ANALOG COMPUTING 65

é Dl‘ agon Chase continued

play memory,-adding the indicated amount to choose a col-
or register. Character numbers are shown on page 55 of
Atari’s BASIC Reference Manual.

Figure 1.
COLOR REGISTER
Character No. 708 709 710 m
D268 cvnvssuassuasvivsnvansens +0 +64 +128 +192

Dragon Chase uses a redefined character set at Line
1000. Line 340 pokes random characters into display mem-
ory. Their number has 192 added to it, specifying color
register 711.

Similarly, Line 280 randomly selects the characters for
you to find; by adding 128 to them, color register 710 is
chosen.

The princess awaits your help. &

David Huff, a D.D.S., is currently studying for a specialty
degree in Orthodontics. He’s had his Atari 1200XL for
three years and is currently working on a program for or-
thodontic x-ray analysis.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor 11,

in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

18 REM DRAGON CHASE

.15 REHM DAVID E. HUFF

28 GRAPHICS 18:PMBASE=-PEEK{1686)-16:CHS5
ET=256% {(PMBASE+8)

25 DIM E5(58)

. 30 DM=PEEK (88) +256¥PEEK (89) :DL=PEEK (56
B)+256%PEEK(561]

- 40 PP=-PMBASE®*256+512:P1=PO+1Z28:P2-P1i+1
Z28:P3I=PZ+128

58 POKE 54279,PMBASE:POKE 53277,3:POKE
559,46

68 PﬁKE 53257,1:POKE 53258,1:POKE 3325

. 2,3
,?6 POKE 712,26:POKE 7089,12:POKE 708,28

8
80 POSITION 4,5:7 #6;"dragon chase"

. DL+17,7:POKE DL+18,65
1286 POKE DL+13%,PEEK({5668) :POKE DL+28,PE

- 148 REM INITIAL VALUES

158 DIF=58:5CORE=0:LEVEL=8:FIELD=2Z:R=1
168 REM START NEW LEVEL HERE

176 CLEAR=USR{ADRIES) ,PMBASE¥256)

188 LEVEL=LEVEL+1:FIELD=FIELD+1:IF FIE
LD=8 THEN GOSUB 2488

198 POSITION 8,08:7% HG6;"R"

200 POSITION 1,11:? H6;"ROUND ";R;"
LEVEL ";LEVEL

216 REM COLORS

220 POKE 623,8:POKE 785,08:PDKE 7686,88:
POKE 787,34:POKE 788,12

66 ANALOG COMPUTING

MB 2360 POKE 709,280:POKE 7108,120:POKE 711
. ,28:POKE 712,12

JU 258 REM SET UP FIELD

._1§$BIF0R I=Z28 TO 219:POKE DM+I,1+192:NE
IH 278 FOR I=8 TO0 FIELD-1
[280 POKE DM+I¥Z,INTC(RND(B)*18)+2+128
. 298 NEXT I
1E 308 FOR I=-8 TO 68
OU 316 RP=INT(RND(B)¥*Z2808)+20

0I 326 RC-INT(RND(B)*12)+2+192

XF 3368 S0UND 2,RP,10,4

5% 346 POKE RP+DM,RC

Gl 350 NEXT I

WU 3668 S0UND 2,8,8,8

NE 370 FOR I=1 TO 18:RPD=INT(RND(B)*288)+
. 20:POKE DM+RPD,15+192:NEXT I

PR 380 FOR I=1 TO I:RPW=INT(RND(B)*2808)+2
. B:POKE DMiRPH,Z0+192:NEXKT I

TB 390 POKE 712,208:REM HIDE CHARACTERS

‘Up 488 GOSUB 1968

17T 418 GOSUB 1766

IM 450 COUNT=8:CHR=PEEK (DM+COLNT)-128
Ch 4680 DRAGON=6G:HID=0

15 478 GOS5UB 2500

JZ 5606 REM START MAIN PROGRAM LOOP

Ub 565 POKE 53278,1

MU 5106 POKE 1799,1

XU 515 IF PEEK(53261)=4 THEN 2088

HN 528 MEM=DM+26+28/8%(PEEK(283)-23)+(PEE

. K{285)-48)/8

IL 525 CHRI=PEEK{MEM)-192

ZF 536 IF CHR1=CHR THEN GOSUB 7886

Zp 535 IF CHRi1=286 THEN GOSUB 708

BW 548 IF CHR1=15 THEN GOSUB 8068

Jd 545 IF CHR1=-174 THEN GOTO 5068

EZ 550 IF CHR1=12 THEN POKE 712,16:FOR I=
. B TO 3I58:50UND 6,356-I,18,10:NEXT I:PO
KE 712,20:POKE MEM,12+128

U 555 IF STRIG(BY=8 THEN GOSUB 2108

Ll 560 LOOP=LOOP+1:POKE 77,0

HT 578 IF LOOP{DIF THEN 5i5

CP 5860 LODOP=0:G0OSUB 668

@4 598 GOTO 515

HY 608 REM MOVE DRAGON

KY 616 FOR I=15 TO 17:POKE DM+2Z8+DRAGON,I
iFOR J=8 TO 15:50UND 2,100,12,108:NEXT

~ JISOUND Z,100+I,12,20-I:NEXKT I

YR 628 FOR I=16 TO 15 STEP —-1:POKE DMt28+
DRAGON,I:FOR J=8 TD 15:50UND 2,188,12,

. 1B:NEHXT J:SOUND 2,160+I,12,26-I

GC 630 NEXT I

RHW 640 FOR I=8 TO 15:NEXT I

BC 650 SCORE=SCORE-5:GOSUB 25688:50UND 2,8

~ ,8,0
RM 660 POKE DM+20+DRAGON,19:POKE DM+Z1+DR
_ AGON,15
QU 670 DRAGON=DRAGON+1
NT 680 IF DRAGON=18 THEN POP :GOTO 2268
Zil 698 RETLRN
HD 700 REM YOU FOUND ONE
M 718 IF CHR+64<@ THEN RETLRN
YL 728 SOUND @,18,16,18
en:gia POKE DM+COLINT,CHR+64:POKE MEM,CHR+

COUNT=COLNT+2

MU 750 CHR=PEEK (DM+COLNT)-128
iG 755 GOSUB 2568

PK 768 FOR I=8 TO 28:NEXT I

HY 778 SCORE=SCORE+180:G0SUB 2588:SO0LUND @

8,06,08

PR 780 HID=HID+1:IF HID=FIELD THEN GOSUB

18060

ZU 798 RETURN

Up 800 REM YOU FOUND & DRAGON

MI 816 POKE 1796,8

JR 8206 FOR I=15 TO 17:POKE MEM,I:FOR J=8
0 TO 15:50UND 2,100,12,168:NEXT J:SOUND 2

ATARI 8-BIT EXTRA

,180+41,12,20-I:NEXKT I

825 GOSUB 668

830 FOR I=16 TO 15 STEP -1:POKE MEM,I:
FOR J=8 TO 15:SO0LUND 2,1088,12,108:NEXT J
!S5O0UND Z,180+T,12,20-T:NEXKT I

850 FOR I=8 TO 15:NEKT I

860 SCORE=SCORE-58:G05UB 2508

8706 POKE MEM,14:50UND 2,08,0,0

886 POKE 179%8,1

§96 RETURN

986 REM YOU SAVED PRINCESS

916 POKE 1796,08

926 FOR I=1 TO 16:50UND ©6,16%I,18,I
936 FOR K=1 TO S5:NEXT K:POKE 712,28
940 FOR J=14 TO 8 STEP -1

950 S0UND ©6,16,16,J

960 SOUND 1,14,16,J+Z:NEXKT J

978 POKE 712,12:5CORE=SCORE+28:G0SUB 2
500 :NEXKT I

986 SOUND ©0,8,08,08:50UND 1,06,06,0

996 GOTO 168

995 REM REDEFINED CHRACTER SET

16006 FOR I=6 TO S11:POKE CHSET+I,PEEK(
57344+1I) :NEXKT I

1616 POKE 756,CHSET/256

1626 READ N:IF N=—-1 THEN RETURN

16386 FOR I=8 TO 7:READ D:POKE CHSETHHN¥*
8+I,D:NEXT I:GOTO 1626

1635 paAThA 0,0,0,0,0,6,0,0,0

10846 DATA 1,0,0,0,24,24,08,0,08

1656 DaATA 2,06,126,90,126,126,36,60,0
1066 DATA 3,73,42,28,119,28,42,73,0
10786 DATA 4, 165 66 165 24 24 165 66 16
5

iese pATA 5,0,24,60,126,126,60,24,0

1690 DATA 6,9,24 36,66, 66 36 24 o

iiee paTa 7,0,2,4,8,80,32,80,0

1116 DATA §,0,54, 127 12? 62 28 8,0

11286 DATaA 2,195, 195 36 24 24 36 195 19

5

1136 DATA 106,0,224,160,255,255,170,234
LS

1148 bATA 11,606,126,219,255,96,162,60,

8

1156 pATA 14,60,66,153,189,153,153,129
2595

i168 paATA 15,112,268,255,170,213,127,0

i170 paTa 16,112,208,255,234,128, 213, 1
1140 pata 17,112,208,255,234,128,208,1
1266 pata 18,60,60,24,126,24,24,36,66
1710 DATA 19,24,60,127,255,255,254,68,
3520 DATA 12,126,129,153,165, 165,153, 1
£246%0ata 13,90,189,90,231,231,90, 189,

1240 pATA 26,08,195,195,21%,255,231,195

1256 pATA 21,0,0,0,240,152,240,176,152
1268 DATA 22,0,0,0,234,170,234,138,142
1276 paTA 23,0,0,0,138,2600,170,154,138
1288 paThA 24,06,0,0,8,0,0,0,0

12%6 pATA 25,0,0,134,135,126,126,16808,6

1366 DATA -1
1495 REM VBLANK ROUTINE
1560 FOR I=6 TO 256:READ D:POKE 1536+I

1516 SOUND 2,D,10,4:NEXT I

1515 FOR I=1 TO 4Z2:READ D:E$(I,I)=CHRS
(D) :NEXT I

15286 FOR I=3 TO 15

1538 SOUND 2,166,12,I

1546 FOR J=15 TO 17

1556 POKE DM+1086+I,J:FOR N=8 TO 18:50U

ATARI 8-BIT EXTRA

55

BL

LY

PR

FX

5K

CB

HY

5H

PL

ND 1,2688,12,8:NEXT N
1568 POKE DM+106+I,19:S0UND 1,0,8,0
1578 NEXT J:NEXT I

1586 SOLND Z,8,8,0

1598 RETLURN

16688 DAaTA 216,169,08,141,3,218,173,13,2
08,208,8,173,255,6,240,6,206,255,6,76,
98,228,169,15,141

1618 DATA 255,6,173,254,6,248,243,174,
170,2,224,7,240,14,224,11,248,24,224,1
4,240,37,224,13,248

1628 DaTA 50,2088,222,165,2605,201,280,2
40,216,24,165,205,165,8,76,76,6,165, 20
5,201,48,240,2082,56,233

1630 DATA 8,133,205,141,2,288,76,138,6
,165,283,201,15,240,185,32,123,6,56, 16
5,283,233,8,76,115

1640 DATA 6,165,263,201,95,2408,168,32,
123,6,24,165,263,165,8,133,203,32,128,
6,76,138,6,169,0

1658 DATA 76,130,6,169,2408,160,8,145,2
03,136,208,251,96,169,168,141,3,210,16
9,96,141,2,216,76,19

1666 DATA 6,104,104,133,204,164,133,20
3,104,104,133,265,1064,133,2087,184,133,
266,230,2088,165,206,201,13,268

1678 paTA 12,169,213,168,5,145,206,24,
185,1,136,2068,248,160,0,162,6,169,7,76
,92,228,72,169,26

16868 DaTA 141,18,212,141,26,288,169,21
§,141,8,2,169,6,141,1,2,184,64,72,138,
72,169,224,162,200

1690 DATA 141,16,212,141,9,212,142,24,
208,142,26,208,169,197,141,0,2,169,6,1
41,1,2,104,170,1084,64

1695 DATA 1084,184,133,2087,164,133,266,
162,4,169,0,166,145,206,136,208,251,23
0,207,202,208,246,96

1696 DATA 104,1084,133,204,104,133,203,
164,104,160,0,145,203,200,192,2268,208,
249,96

1768 REM CASTLE DATA

1718 Y1=17:!FOR I=6 TO 16:READ D:POKE P
1+I+Y1,D:NEKT I

17208 RESTORE 1738

1738 DaTa 24,153,153,153,255,195,129,1
29,129,129,129,129,129,129,129, 255,255
1748 POKE DM+38,18:POKE 53249,188

17568 RETLRN

1866 REM REMOVE CASTLE

1816 FOR I=6 TO 40:NEXT I

18768 FOR I=16 TO @ STEP -1

1838 POKE P1+I+Y1,0

1848 SOUND 8,16,18,I

1850 SOUND 1,12,16,I+1

1868 SOUND Z,14,160,I+2

1876 FOR J=8 TO S5:NEXT J:NEKT I

18868 FOR I=6 TO 2:SOLUND I,8,8,8:NEXT I
18968 RETURN

1966 REM INITIAL PLAYER POSITION

1918 Y=95:K2=48:POKE 53250, X2

1976 FOR I=1 TO 8

1930 POKE PZ+I+Y,Z2408:NEXT I

1940 D=USR(1687,P2+Y,K2,DM+210)

19568 RETLURN

2600 REM PLAYER TOUCHES CASTLE

28108 POKE 17960,0

2626 FOR I=6 TO 80:SOUND 2,127-I,8,6
2830 POKE P2+I,8:NEXT I

2640 GOSUB 19606

2856 SOUND 2,0,8,0:G0TO 560

2188 REM SCANNER

2118 POKE 53251,PEEK(205)-12:Y3I=PEEK(2
83)-16

2126 FOR I=8 TO 36:POKE P3+I+Y3,255:50
UND ©6,X,10,8:NEXT I

21368 SOUND 8,0,0,0

2146 GOSUB 600

ANALOG COMPUTING 67

& DI’ agOIl Chase continued

68

2156 FOR I=8 TO 15:NEXT I:S5CORE=S5CORE-
5:G05UB 2500

216060 FOR I=06 TO 3I0:POKE P3I+I+Y3I,06:50LN
D 8,36-I,16,10:NEXT I

- 2165 POKE 53278,1:RETURN
22080 REM DRAGON GETS PRINCESS

2218 POKE 1798,8:CLEAR=USRCADRIES) ,PMB

ASEX*Z256)

2228 GOSUB 2360:POSITION 1,11:7 H6;"
PRESS5 FIRE u

2230 FOR I=8 TO 3I5:IF STRIG(B)=6 THEN

POP :GOTO 148

2248 NEXKT I

2268 GOSUB 23080:GOSUB 2568

2276 FOR I=8 TO 3I5:IF STRIG(B)Y=O8 THEN

POP :GOTO 1406

2288 NEKT I

2298 GOTO 2226

2366 FOR J=15 TO 17

2316 SOUND 3,186+J,16,6:50UND Z,185+J,

18,6

2328 H=USRCADRCES)+2Z,DM,.)d

2340 FOR I=8 TO 2Z5:NEXKT I:NEXT J

2358 SOUND 3,0,08,0:50UND 2,0,0,06

2368 RETURN

2408 REM NEXT ROLND

2418 DIF=DIF-18:IF DIF{i68 THEN DIF=18

2420 FIELD=3:LEVEL=1

2436 POSITION 8,11:7 H6;"R"

2446 POSITION 2,11:7? H6;'"ROUND ":R;"™ C

OMPLETE":FOR I=6 TO 2808 STEP 2

2456 SOUMD 08,254-I,10,8:50UND 1,252-I,

18,8

2460 SOUND 2,250-I,18,8:50UND I,248-I,

16,8

2478 NEHT I
2480 FOR I=8 TO I:50UND I,0,08,8:NEXT I
2498 R=R+1:RETLRN
25608 REM PRINT SCORE
2518 IF SCORE{8 THEN SCORE=8
2526 POSITION 1,11:7 He;"
"iREM 17 SPACES
25386 POSITION 4,11:7 H6;"SCORE '";S5SCORE
2546 RETURN

ANALOG COMPUTING

ATARI 8-BIT EXTRA

32K Cassette or Disk

by Chuck Rosko

The nuclear industry is looking for an adventurous in-
dividual who's willing to tackle a high-risk job. Surprise!
That'’s you. Your task is to remove the krebs located in the
reactor cores of the Nittany Memorial Power Plant. A kreb,
of course, is a uranium pellet which is no longer radioac-
tive. The krebs inhibit fission, so they must be removed
and replaced with new radioactive uranium.

Your joystick (port 1) controls your atomic core scrub-
ber. Move over each kreb (in green), and your scrubber
will remove it, replacing it with a radioactive uranium pel-
let (in red). If you run into any of the radioactive pellets,
your scrubber will be destroyed. The big spenders of the
industry are paying you $5.00 for every kreb removed.

At the bottom right-hand side of the screen is a readout
of the amount of energy in your scrubber. You must re-
place all the krebs before your energy runs out, or—
again—your scrubber will be annihilated.

You'll start work on each successive core with less ener-
gy. After you've restored two cores, you’ll have to avoid
the deadly hudnall. This creature, who's trapped inside
the core, is attracted to the noise of your scrubber and will
attack it whenever possible. Avoid the hudnall at all costs.

Whenever your scrubber is destroyed, a chain reaction
takes place—causing a reactor meltdown. The game (or
rather, your job) is over after three meltdowns.

ATARI 8-BIT EXTRA

How it works.
Here’s a description of the Krebs remeoval program.

Lines 78-85 — update your energy usage.

Lines 98-100 — the sound routine, heard when you
hit the core wall.

Lines 108-120 — scoring routine.

Lines 198-285 — moves the hudnall. The logic rou-
tine is a modified version, adapted from the Basic
Training series (this one was in issue 18).

Lines 288-640 — reads the joystick and moves the
scrubber, first checking what the scrubber will hit,
then going to the appropriate subroutine.

Lines 748-770 — the scrubber is destroyed; the core
melts down; and the number of scrubbers decreases.

Lines 773-795 — game-over message. Returns you
to the title page.

Lines 798-820 — core-is-secured routine. Allotted
energy decreases, so the difficulty level increases.

Lines 848-860 — plot the scrubber’s initial position
(random).

Lines 998-1040 — plot 30 krebs (random).

Lines 1098-1150 — plot 10 uranium pellets (ran-
dom).

Lines 10000-10030 — initialize, then start game.

Lines 29098-30060 — draw main screen.

Lines 30198-30260 — draw title screen and initial-
ize variables.

ANALOG COMPUTING 69

@ Kl‘ebS I‘emoval continued

Lines 31098-32239 — redefines two character sets.

Lines 32000-32040 — move character set from ROM
to two different locations in RAM.

Lines 32050-32230 — read in data for the first
character set.

Lines 32231-32239 — read in data for the second
character set.

Table 1.

LIST OF VARIABLES

BXBY . uiswnans Hudnall’'s X- and Y-position

BUG . cossqntau Flag; if less than 5, hudnall moves.

CLOCK......... Timer; used to determine when to decrease
energy level.

EN .. Scrubber's energy level.

LEVELAmount of energy you initially enter the core
with.

PC Flag; indicates the number of krebs cleared.

SC Score.

SCRUB:: v iurxss Number of scrubbers or lives.

XVYVHolds direction hudnall is to move.

XY oo Scrubbers X- and Y-position.

Krebs removal was written without player/missile
graphics, and with only two short machine language rou-
tines. One routine is used to move the character set from
ROM to RAM; the other produces the rainbow effect when
the core melts down.

[did this in order to show that you can make a relative-
ly fast game primarily out of BASIC. I'm not saying that
player/missile graphics and machine language routines
aren’t helpful. In fact, they're very useful, and can enhance
a game tremendously. I just wanted to write a game with-
out them.

I did, of course, redefine the character set. In fact, 1 rede-
fined two character sets. Each contains a different view
of the scrubber, krebs, radioactive pellets and hudnall. All
you have to do to animate them is quickly flip between
the two character sets. This technique is useful when you
want to animate a large number of the same objects (i.e.,
krebs and radioactive pellets), regardless of where they
are on-screen.

Since I was using the technique for krebs and pellets,
I also used it for the scrubber, hudnall and title page. To
see what Krebs removal would be like without this tech-
nique, change Line 290 to read] = STICK(0). One note, if
you redefined a character but don’t want it animated (like
the core walls), you must put the same view in each
character set.

The routine which moves the hudnall towards the scrub-
ber was taken (and slightly modified) from issue 18’s Ba-
sic Training. I highly recommend that you read these
articles. They contain many valuable programming tips.

Another way to pick up some knowledge is to analyze
other people’s games. So take a look at Krebs removal.
Maybe you’ll find something you can use in your next
game. A

Chuck Rosko is a microbiologist from Pittsburgh, Penn-
sylvania, the proud father of a baby boy. His interests in-
clude his wife and son, hockey, and writing educational
programs.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

WU 1 REM KREBS REMOVAL

0P 2 REM M AH (14 {1 (]

QG 10 K1=1:K2=2:K3=3:K5=5:K6=6:K18=10:K15
=15:K18=18:K508=50:K255=255:P0OKE 559,K8

~ 1GOTO 106668

fRF 78 REM [N SNE T T STEYTT S8

YP 80 ENZEN-K5:POSITION 16,23:7 HKG;EN;"
":IF EN{=K8 THEN 758

YN 85 CLOCK=K18:GOTO 2958

IOyl HITTING WALL SOLND

YL 168 POKE 716,K15:50UND KO6,125,12,K6:F0

R C=K1 TO KS56:NEXT C:SO0UND K6,K0,K0,K8

. ‘POKE 716,148:G0TO0 258

YK 168 REM EETLTSCTITRE{TS

EE 118 S5C=S5C+K5:POSITION K1,23:? HKG6;5C:5

- OUND KB8,75,K16,K108:50UND KO ,K8,K08,K8:P

. C=PCHK1:Z({K2)=Z(K1):IF PC=36 THEN 80686

PP 126 GOTO 296

KN 198 REM ILDITSNGTTITTNN

TX 200 COLOR 924:PLOT X,Y:SOUND K8,25,K16,
K6:50UND K8,K8,K8,K8:M=K1-HM

¥.J 218 CLOCK=CLODCK-8.2:IF CLOCK<{=K8 THEN
80

KL 228 IF LEVEL>44 THEN 298

¥N 2409 BUG=INT(RNDC(K8)*LEVEL):IF BUG>4 TH

- EN 298

GM 260 XU=SGN(H-BX) :YU=S5GN(Y-BY)

HJd 265 LOCATE BX+XV,BY+YV,Z1:TEMP1=Z1

70 ANALOG COMPUTING

0f 270 COLOR TEMPZ:PLOT BX,BY:BXK=BX+XV:BY
=BY+YV:COLOR 226:PLOT BX,BY:IF Z1=94 T
HEN 7508

A5 285 TEMPZ-TEMP1

MW 288 REM AT IRTTERS{H

JG 296 J=STICK(KO) :POKE 756,PEEK{186)+Ki+
MtM:C=KD (J) :IF C=K5 THEN 266

LJ 3006 LOCATE X+XM(C),Y+YM(C),Z:IF Z>185
AND Z<192 THEN 1686

ML 316 COLOR Z(K2):PLOT X,Y:X=K+XM({C):Y=Y
+YMIC) :COLOR 94:PLOT X,Y:M=K1-M

50 328 IF Z=14 THEN Z(K1)=255:GOTO 118

¥Jd 338 IF Z{>255 THEN Z(K2)=168:GOTO 2i8

sl SCRUBBER DESTROYED

MD 750 POSITION K3I,K8:7? HKG6;" MELTDOMWN
":FOR Z-K6 TO K3I:SOUND Z,255-Z,14,K5
NEXT Z

N 752 U=USRCADR(RB%)) :P=PEEK(566) :FOR Z=
K8 TO K3I:SOUND Z,K8,K8,K0:NEXT Z
KY 753 FOR C=K1 TO K15:FOR Z=K8 TO KI:R=I
NT (RND (6)¥30) :POKE 712,PEEK(537768):P0OK
E 5608,P+Z:S0UND KB,R,8,14 :NEXT Z
HR 754 NEXT C:POKE 560,P:BX=-K10:BY=K106:TE
. MP2=191

UK 760 SCRUB=SCRUB-K1:COLOR 1606:PLOT 7+5C

 RUB+5CRUB, 22:POKE 559,K0:POKE 712,14
N5 762 FOR Z=K1 TO K106:S5SO0UND KO,K16%Z,K10
-Z,K18-Z

ATARI 8-BIT EXTRA

by

5N
PN
N}F
RA
0T

FEC

LC
ca
ap
NG

oo

15
HZ
SH

Py
v

FF
vy
UK
Gl

765 FOR C=K1 TO K1i8:NEXT C:NEXT Z:POKE
712,K8:POKE 559,46:G0SUB 30601

770 IF SCRUB THEN CLOCK=K18:EN-LEVEL:P
C=K@8:GOSUB 10600:G0OSUB 850:G0T0 296

773 REM

775 POSITION K3,K6:? HK6;"JOB TERMINAT

ED'":POSITION K3,14:2 #K6; " [IIEL IS ;

sc

780 FOR Z=K@ TO K3:SOUND Z,K255-Z,14,K

5:NEXT Z:U=LSR C(ADR(RBS))

798 FOR Z=K® TO K3:SOLUND Z,K8,K8,K8:NE
KT Z:? #K6;CHRS(125) :GOSUB 30200

795 GOSUB 30008:GOSUB 1000:GOSUB 850:G
0T0 290

Y14 8 COMPLETED CORE ROLTINE

8pe pSs=" ALL KREBS CLEARED C]
ore is secured ":BX
=K10:BY=K10:TEMP2=191

865 FOR Z-K1 TO K5:50UND K0,75,K10,K10
{POKE 717,14 :FOR C=Ki TO K58:NEKT £:50

UND K8,156,K10,K10:POKE 712,K0

807 FOR C=K1 TO K50:NEXT C

818 NEXT Z:FOR F=Ki TO 45:POSITION K1
517 HK6;PS5(KL,K18) :05=PS(K2) :05 (LEN (05
y+K1)=p5:ps-ad:SouUND Ko,206,11,14

815 FOR Z=KL1 TO K10:NERT Z:50LUND K0,K8

~ ,KB8,KB:NEXT F:PC=KO:LEVEL=-LEVEL-KS5:IF

LEVEL{38 THEN LEVEL=36

828 EN=LEVEL:Z(K1)=160:Z(K2)=1608:G0O5UB
I80085:G05UB 1000:CLOCK=K18:G05UB 858:
GOTO 2906

GEE A INITIALIZE SCRUBBER

858 X=INT(RND(KO)*K18)+K1:Y=INT(RND (K8
I*K18)+K2:LOCATE X,Y,Z

852 IF (Z>185 AND Z{192) OR Z=14 OR Z=
64 OR Z=K255 THEN 8586

860 COLOR 94:PLOT X,Y:RETURN

998 REM NI

1666 FOR CC=K1 TO 38

1885 A=INT(RND (KO)*K18) +K1:B=INT (RND (K
8)*K18)+K2:LOCATE 4,B,Z

1018 IF (Z>185 AND Z<{192) OR Z=14 OR Z

—64 THEN 18865

1840 COLOR 14:PLOT A,B:NEXT CC

1698 REM M AN RATY]

1168 FOR CC=K1 TO K1ie

1165 A-INT(RND (K8)*K18)+K1:B=INT(RND (K
B)*K18)Y+K2:LOCATE A,B,Z

1118 IF €Z>185 AND Z<{192) OR Z=14 OR Z
—64 OR Z=K25%5 THEN 1165

1156 COLOR K2Z55:PLOT aA,B:NEXT CC:POSIT
ION 16,23:7 HKG6;EN;'" ":RETLURN

100068 DIM ZZ5(32),Z(K2):G05UB I2888:GR
APHICS 17:POKE 756,PEEK(186)+K1:G05UB
38280:G05UB 30000

18818 DIM HD(K15),P5(65),05(65) :FOR X=
KS TO K15:KD(HI-ZKS:NEXT H:KD(7)=K2Z:KDI(
11)=4:X¥D(14)Y=-K1:KD(13I=K3I

16626 DIM KM({4) ,YM(4) :RESTORE 186838:F0
R I=K1 TO 4:READ X,Y:XM(IX=H:YM(I)X=Y:N
EXT I

i8e3¥6 DATA B,-1,1,8,0,1,-1,8

166406 DIH RB§(21):RE5TDRE 18856:FOR I=
K1 TO Z1:READ H:RBS(C(IDX=CHRSC{X):NEXT I
186508 DATA 1064,169,0,13F,260,133,19,165
,1,232,142,22,208,142,16,212,197,19,20
8,245,956

166660 GOSUB 16668:G0S5UB 8506:GOTO 2956
29698 REM [LTTIEIA:TEE]]

30000 POSITION KO0,22:7 HK6 ;"IN 1T LIS
I energys"

300081 POSITION K3,K0:? #K6;"[{ILH [OdI
OVALR

30005 POSITION KO,K1:? HKG6;'" E]m
2223l eeee)] geeeeeee
geeo';

ATARI 8-BIT EXTRA

30010 7 uxs;"eea ﬂeeeg
e s
36020 7 HK6;" ;
. LI
G 30030 7 HK6;" > 7] !
SR i
IN 30040 7 HK6;" j
- LN
BG 30050 7 HK6;"e eeeq
- Heecoog eea’;

W 30060 7 HK6;''eeeeg Heeee

A ''; RETURN

EUIETITAN DRAW INITIAL SCREEN

36200 SC=KO0:S5CRUB=K3:EN=K50:CLOCK=K10:
PC=KO:LEVEL=K50 :BX=K18:BY=K18: TEMP2=19
1:Z(K1)=160:Z(K2)=160:P0OKE 559,34

D 30205 POKE 710,148:POKE 709,282:POKE 7
~ 08,54:POKE 711,70

NU 30210 POSITION KO,4:? BK6;“Z Z ZZZ ZZZ

ZZ% %Z% Z E Z ZZ ZZ2Z ZZZ Z Z
€ 36212 72 nKB;ﬁZZ ZZZ ZZZ ZZ ZIZZ IZ Z
X Z Z Z ZZ Z Z ZZ ZZz Z "

30214 ? HK6;"Z Z Z Z ZZZ ZZZ ZZZ
e REMOVAL "

- 30240 POSITION K3I,14:7 HK6;"[@] chuck r
- 0Sko":!POSITION K8,21:7 HKG6;"to apply p
. ress ¥
AK 30250 IF PEEK(53273)=K6 THEN 7 HKG6;CHR
. 5(125):RETURN
Ji 30260 POKE 756,PEEK(1i86)+K1+M+M:M=K1-M

!5S0UND KO6,200,K10,K108:50LUND KO,K0,K8,K
. B:GOTO 362506
CR 1698 REM I3 {TFE LTI TS S
KA 32080 RESTORE 3I2018:FOR I=-K1 TO 3IZ:REA
D A:ZZS(IY=CHRSC(AY:NEXKT I
BR 32610 DATA 164,104,133,204,164,133,263
. ,164,133,206,104,133,2085,162,4,1608,0
QU 328620 DaATA 177,283,145,205,136,208,249
. ,236,2064,230,206,202,208,240,96
0N 32630 POKE 106,PEEK(166)-K5:GRAPHICS 1
- 7:!START=(PEEK(166) +K1)*256:P0OKE 75Z,K1
KPp 32835 POSITION 4,K18:7 HKG6;"PLEASE HaA
ITII

Fp 32040 A-USR(ADR(ZZS5),57344,S5TART) :A=US
R(ADR(ZZ5),57344,5TART+512)

BYU 320650 READ X:IF X=—-K1 THEN 323080

HY 32660 FOR Y=-K8 TO 7:READ Z:POKE X+Y+5T
ART,Z:NEXT Y:GOTO I26586

EZ 322806 DATA 208,0,0,0,0,8,0,0,255,216,2
$9,0,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2
32,128,128,128,128,128,128,128,128

IZ I2218 DATA 240,1,2,4,8,16,32,64,128,24
8,128,64,32,16,8,4,2,1

#G6 322208 DATA 496,24,608,1082,1595,195,1682,6
8,24,504,0,60,126,126,126,126,60,0

RZ 32225 DATA 112,68,126,15,252,63,240,12

g,58,256,255,129,129,129,129,129,129,2

5

£S5 32238 DATA 464,255,195,195,195,195,195

,%25,255,486,36,24,165,126,126,126,189
-1

L4 ?

T4 32300 READ X:IF X=-K1 THEN RETURN

MT 32316 FOR Y=K8 TO 7:READ Z:POKE X+Y+ST
ART+512,Z :NEXT Y:GOTO 32300

FK 32328 DATA 208,9,8,08,8,8,08,0,255,216,2
55,08,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2

. 32,128,128,128,128,128,128,128,128

JK 32338 DATA 240,1,%,4,8,16,32,64,128,24

. 8,128,64,32,16,8,4,2,1

DP 32346 DATA 496,8,8,24,60,60,24,0,0,504
,608,126,255,255,255,255,126,60

RW 32358 DATA 112,68,126,240,63,252,15,12
gé59,255,255,129,129,129,129,129,129,2

CI 323608 DATA 464,255,255,255,255,255,255
;255,255,480,1062,24,165,126,126,126,18
9,153,-1

ANALOG COMPUTING 71

'NO
PROGRAMMING

Since issue 1, ANALOG Computing’s
disk subscriptions have eliminated the need for you to
spend hours typing in programs from the magazine.
in the magazine are on the disk version.
,) Ye-year (6 issues) is $59.00.

All of the prograr
A 1-year sub
 To subscribe on
~ DISK St
- For fast service, call

ssues) is $105.00

ur check o 1 g0
)N, PO. BOX 625, HOLMES, PA 19043.
ur toll-free U.S. order line: 800-345-8112 (in PA, call 800-662-2444).

0

XL Machines Only

by Barry Green

This program was developed quite unintentionally. I was
busy hacking away on a new machine-language animation
system for the Atari, that works with BASIC. One evening,
I actually got around to testing it with Atari BASIC. The
program worked flawlessly and made animation feasible
from BASIC, but it was still pitifully slow.

After hours of poring over the code, trying to trim and
streamline it to make it run faster, I realized the fault was
not with my program at all. It was working as fast as it
could. Still, I thought, there has to be a better way! One
evening when I was reading through my Atari BASIC
Sourcebook, the dim light in my brain flickered on for a
moment.

The incredible slothfulness of BASIC—from a game
programmer’s point of view—could be traced to the fact
that no provision for integers had been made. Only
floating-point math was supported, and it’s very slow. In-
teger math is very fast, so somehow my Atari had to be
made to understand integer math. This was, of course,
much easier said than done.

And how?
One very underexplored feature of the Atari 800XL and
1200XL (and the expanded 600XL) is that the operating

systems can be placed in the upper 16K bank of memory
and modified to no end.

ATARI 8-BIT EXTRA

This was my chance. I could load the OS into RAM, then
replace the old floating-point math package with a much
faster integer package. Every operation BASIC did, from
POKE to FOR-NEXT, would run faster.

That’s what I did. The following program places the OS
in RAM, then replaces the old math package with a much
more efficient integer math package. I've run some BA-
SIC test programs, to show the speed gained by using in-
teger math instead of floating point.

Typing it in.

Listings 1 and 2 are the BASIC data to create your co-
pies of Integer BASIC. Please refer to the M/L Editor on
page 4 for typing instructions. You should create the pro-
gram in Listing 1 under the filename INTBASIC.OB]J. Cre-
ate the program in Listing 2 under the filename INT
BASI2.OB]J.

The test.

Is Integer BASIC that much faster? To prove that it is,
I devised three very simple BASIC programs to test the
speed difference. Each was run in both languages, and the
jiffy-count was printed next to each.

Floating-Point Integer ©9Faster

FOR-NEXT 1459 1044 30%
MATH TEST 947 510 46%
SCREEN FILL 3754 1869 51%

The source listings for Integer BASIC follow this arti-
cle. As you can see, the Integer BASIC can be up to 50%

ANALOG COMPUTING 75

Y
A Integel' BASIC continued

faster. That's a serious improvement for something so eas-
ily accessible.

The side benefit: those of you using an Integer BASIC
compiler might consider how handy it would be to be able
to interactively debug your own programs.

How to integrate it.

Here are instructions for using the INTBASIC integer
math package for 64K Atari XL computers.

To use this package, just load the INTBASIC.OB]J file
from DOS menu item L, or from OS/A+ type in LOAD INT-
BASIC.OBJ. Your computer will now be in Integer BASIC.
Do this only if no BASIC program is in memory at the time.

The INTBASIC package has been tested, with no bugs
found. However, some knowledge of integer math is re-
quired to use the package effectively. Since the numbers
being dealt with are integers, BASIC will no longer recog-
nize a decimal point as valid. Only numbers in the range
of 0-65535 or, in version 2, - 32768 to +32767 will be ac-
cepted. This also means that division is treated slightly
differently. In integer math, the expression 10/3 evaluates
into 3, not 3.3333. . . All numbers are rounded down; the
digits past the decimal point are simply dropped.

This means that special care must be taken in using the
built-in functions such as COS(X) and RND(0). Math func-
tions like COS(X) will simply not work correctly. RND(0)
should not be used, because it now only returns a value
between 0 and 3. It’s a better idea to use PEEK(53770) to
get a random number.

Negative numbers in version 1 are different. They are
now expressed in 65536-X terms. This means that a nega-
tive number is subtracted from 65536 and the result is
printed. Therefore, when printing a negative 1 (-1) on the
screen, you will get 65535 (65536-1). Negative numbers
are fully usable; they just print differently from what you'd
expect.

One last restriction: BASIC programs developed under
the integer math package cannot be loaded into the float-
ing-point BASIC; nor can floating point programs be load-
ed into Integer BASIC.

The solution to transferring programs from one format
to the other is simply to LIST them onto disk or cassette,
then ENTER them into the other version of BASIC. When
transferring programs from floating-point BASIC to in-
teger, remember that decimal points will be flagged as er-
rors, and you must fix all RND(0) usage.

Have fun with Integer BASIC and enjoy its refreshing
speed. H

Barry Green of Out of the Blue Associates bought his
first Atari (an 800) in 1982 and taught himself BASIC and
assembly language. Since then, he’s worked on many con-
versions and originals for various companies. His main in-
terest lies in system software and utilities.

Listing 1.

ie68 DATA 255,255,0,6,161,6,32,70,6,17
7,203,145,2085,200,208,249,1480
1616 DATA 230,204,230,206,202,224,48,2

76 ANALOG COMPUTING

88,3,32,91,6,224,08,208,233,8696

1828 DaTa 120,169,0,141,14,212,169,254
s141,1,211,32,78,6,177,285,7512

1638 DATA 145,2063,200,208,249,230,204,
230,206,202,224,48,2088,3,32,91,502
1848 DaTa 6,224,0,208,233,88,169,64,14
1,14,212,96,169,08,133,2683,8047

i858 paTa 169,192,133%,2084,169,8,133,20
5,169,64,133,2086,162,64,168,08,7732
ie66 DaTA 96,166,8,238,204,230,2006,202
,136,208,248,96,226,2,228,2,1480

ie7e paTn 6,6,96,0,216,78,216,32,161,2
1%,169,64,133,212,169,06,8184

1888 paTa 133,213,133,214,133,215,56,8
164,242,177 ,243,2061,48,144,52,341
ie9%e DaTa 201,58,176,48,408,24,8,41,15,
72,165,214,133%,215,165,213,8715

1iee DaTA 16,38,215,16,38,215,24,101,2
13,133,213,165,215,101,214,133,1444
1iie DaTA 214,6,213,38,214,1084,24,1081,
213,13%,213,144,2,2308,214,230,2251
1128 DaTA 242,76,17,216,468,96,236,216,
21,217,32,81,218,165,213%,13%,1323

1136 pAThA 226,165,214,13F,221,160,8,16
2,8,165,213,217,87,217,165,214,2888
1148 DATA 249,82,217,144,19,165,213%,56
1 249,87,217,133,213,165,214,249,5171
1156 DATA 82,217,133,214,232,76,245,21
6,138,9,48,145,243,200,192,5,499

1168 DATA 208,213,136,177,243%,9,128,14
5,243,160,0,177,243,201,48,208,2167
1178 DATA 4,2060,76,39,217,132,222,165,
243%,56,229,222,133,218,165,244,57939
1186 DaATA 233,0,133,219,177,243,145,21
§,200,192,5,208,247,165,228,133,56816
1i%8 paTA 213,165,221,133,214,96,39,3,
8,0,0,16,232,1060,10,1,9645

172806 DaATA 176,217,183,217,166,212,164,
213,169,64,133,212,134,213,132,214,447
1

1218 DATA 24,96,210,217,219,217,165,21
3,133,212,165,214,133,213,24,96,2487
1226 DpaTa 96,218,98,218,76,117,218,182
;218,146,218,165,213,24,1081,225,2362
1236 paTA 133,213,165,214,101,226,133,
214,24,96,165,213,56,229,225,133,2628
1246 pATh 213,165,214,229,226,133,214,
6,212,165,214,108,162,212,165,213,3024
1256 DAThA 5,214,208,2,133,212,24,96,21
9,218,2,219,169,08,13%,219,9685

1266 DaTA 133,218,162,16,268,13,24,165
,219,101,225,133%,219,165,218,1061,20686
1276 pATA 226,133,218,70,218,1082,219,1
02,214,102,213,202,48,4,144,243,1188
17280 DATA 176,228,24,96,40,219,86,219,
165,225,5,226,2408,3%,169,8,8939

1296 DpaTA 133,219,133,218,166,16,6,213
;,38,214,38,219,38,218,56,165,8328

1366 DATA 219,229,225,176,165,218,2293,
226,144,6,134,219,133,218,230,213,5973
1316 pATA 136,208,227,24,96,56,96,137,
221,151,221,134,252,132,253,160,4240
13206 paTA 2,177,252,153,212,0,136,16,2
48,96,152,221,166,221,134,252,3994
1336 DATA 132,253%,160,2,177,252,153,22
4,0,136,16,248,96,167,221,181,2625
1346 paTA 221,134,252,132,253,160,2,18
5,212,08,145,252,136,16,248,96,6067

1356 DATA 182,221,193,221,166,2,185,21
2,06,153,224,0,136,16,247,96,8467

1366 DATA 224,2,225,2,228,2,0,0,0,08,0,
6,0,06,0,0,3423

Listing 2.
ise8 paTA 255,255,8,6,101,6,32,70,6,17

ATARI 8-BIT EXTRA

7,263,145,205,200,208,249,1488

1018 Dth 230,284,230, 286 202,224,48,2
88,3,32,9%1,6, 224 ﬂ 208 233 8696

1029 DnTh 128 169 8,141,14,212,159,254
,141,1,211,32,78, 6 177,285,7512

1038 DQTQ 145 283 288 288 249 236,264,
236,266,202, 224 48 298 3, 32 91 592
1046 DﬁTA 6,224,090, 288 233 88 169 64,14
1,14,212,96,169,0,133,283, 8647

1658 DATQ 169 192 133,204,169,0,133,20
5,169,64,133, 286 152 64 160 e, 7732
1869 DQTQ 96,160,8, 238 284 238 206,202
,136,2068,248,96, 226 z, 228 2 1480

16786 DATA a8, 6 96 a8, 216 78, 216 3z,161,2
19,169,64, 133 212 169 B 8184

1088 DQTA 133,213,133, 214 133,215,56,8
,164,242,177, 243 281 48 144 52 341
1698 DQTQ 201 58,176,48,48, 24 8 41,15,
72,165,214, 133 215 165 213 8715

1190 DATA 18 38 215 10,38, 215 24,181,2
13,133,213, 165 215 181 214 133 1444
1110 DﬁTa 214,6 213 38,214,104,24,1081,
213,133,213,144,2, 230 214 238 2251
1128 DATQ 242 ?6 17 216 48 96,230,216,
132,217,32,81, 218 165 213 133 1692
1136 paTA 220 165,214,13%,221,16,29,16
5,213,73,255, 24 185 1,133, 213 8108
1140 DQTQ 165 214 ?3 255 165 ;133,214
,160,8,169,45,145, 243 238 243 2604
1156 DATA 208 z, 238 244 160 0,162,08,16
5,213%,217,128, 217 165 214 249 4825
1160 DQTQ 123,217,144,19, 165 213 56,24
9,128,217,133,213, 165, 214 249 123 4897
11?8 DQTQ 217,133,214,232,76, 28 21? 13
§,9,48,145, 243 288 192 5, 208 109

1180 DQTQ 213,136,177,243,9,128,145,24
3,166,08,177,243,201,48,2088,4,9712

1196 DATA 200,76,70,217,132,222,165,24
3,56,229,222,133,218,165,244,233,7675
1260 DATA ©,133,219,177,243,145,218,28
8,192,5,288,247,165,220,133,213,57060
1218 DATA 165,221,133,214,16,8,165,243
,208,2,198,244,198,243,96,39,1337

i22e pATA X,0,0,0,16,232,100,10,1,178,
217,183,217,166,212,164,716

1238 DATA 213,169,64,133,212,134,213,1
32,214,24,96,210,217,219,217,165,4448
12406 DATA 213,133,212,165,214,133,213,
24,96,96,218,98,218,76,117,218,1165
1258 baTA 102,218,146,218,165,213,24,1
31,225,133,213,165,214,181,226,133,356

1260 DATA 214,24,96,165,213,56,229,225
,133,213,165,214,229,226,13%,214,6544
1278’ DaTh 6,212,165,214,18,102,212,165
,213,5,214,208,2,13%,212,24,8786

1288’ DATA 96,219,218,2,219,169,0,133,2
19,133,218,162,16,208,13,24,6991

1290 DATA 165,219,101,225,133,219,165,
218,101,226,133, 218,78, 215,102,215, 421
1300 DATA 102,214,102,213,202,48,4,144
,243,176,228,24,96,40,219,86,8678

1310 DATA 219,165,225,5,226,248,39,169
,8,133,219,13%,218,160,16,6,7494

13%0 DATA 213,%8,214,38,219,38,218,56,
165,219,229,225,170,165,218,229, 6048
1336 DATA 226,144,6,134,219,133,218,23
8,213,136,208,227,24,96,56,96,9978
1348 baTA 137.221,151,221,134,252,132,
253,168,2,177,252,153,212,08,136,1950
1350 DATA 16,248,96,152,221,166,221,13
4,252,132,25%,160,2,177,252,153, 4501
1360 DATA 224.8,136,16,248,96,167,221,
181,221,134,252,132,253,168,2,2836
13706 paTa 185,212,0,145, zsz 248 16,248
,96,182,221,193,221,160, 2, 185, 2568
1386 paTa 212,0,153,224,0,136,16,247,9
6,226,2,227,2,228,2,8,4969

[]

ATARI 8-BIT EXTRA

Listing 3.
BASIC listing.

5 POKE 19,8:POKE 28,8

18 FOR H=1 TO 100666

28 NEXT X

I8 PRINT PEEK({19)%256+PEEK(28)

Listing 4.
BASIC listing.

POKE 19,8:P0OKE 28,80

J=5

FOR X=1 TO 1668
JoJ¥Z L IZNAZ

HEXKT X

PRINT PEEK(19)%*Z56+PEEK (28}

Listing 5.
BASIC listing.

EEK(83)
28 POKE 19,8:POKE 286,08

KT X
8 UVU-PEEK(12)®*256+PEEK(28)
98 GRAPHICS 8:PRINT WV

Listing 6.
Assembly listing.

SAVE #Ds INTBASIC.ASH
ABM, , D1 INTBASIC.OBJ
by Barr Green
Out of {h. Blue Associates
This is & math package designed
to replace the floating-point
package in the ATARI 64K XL
computers. This package is
entirely integer—-based so it
is much faster. Its internal
representation of numbers is
still referred to as Floating-
goint. merely for convenience.
his representation differs
from standard 63502 integers in
that there is an exponent byte
of 840 added to it. Integers can
still be used in FPI and IFP
because these routines restore
the numbers to proper order.
This version will andle numbers
in the range of 0-655335. Any
number above 32767 will be
treated as a negative number in
any mathematical computations
but is valid as_a number for
such things as FOR-NEXT loops
and so forth. Any number that
is INPUTted or so forth with a
minus sign in front of it will
be converted to this Our-lt,
which is simply &635536-X

«+OPT NO LIST
sD4A

CE 2

45 40 90 20 39 40 35 00 90 90 30 50 30 40 49 48 4 4% % 29 99 09 99 95 98 39 4% 8 4%

FRO - D
FRE - $DA
FR1 - SEO
INBUFF - sF3
CIx = SF2
BKIP.BLANKS = S$DBA1
INTLBF - SDAS1
LBUFF - 80580
FLPTR -]

8 MOVES THE XL 08 TO RAM

8 THIS CODE I8 BASED ON THE

% OFFICIAL RELEASE FROM ATARI INC.
8 AND WAB WRITTEN BY THEM.

ROA - $CB
RAM - ROM+2
OSROM - acooo

ANALOG COMPUTING

. 10 GRAPHICS 8+16:5CREEN=PEEK (88) +256%P

8 FOR HK=0 TO 7673:POKE S5CREEN+X,255:N

77

E Integel’ BASIC continued

78

OGERAM
NMIEN
PORTB

MOV1

Mov2 LDA (RAM),Y
BTA (ROM),Y

BNE MOV2
INC ROM+1
INC RAM+1

P i i e i e S
% INITIALIZE PAGE ZER
¥ FOR ADDREGSES OF RA
: USED FOR INDEXING

1

PAGE ZERO VARIA
P THE HARDWARE R

-

i s e
¥ BET THE INIT ADDRES
% ALL THE PREVIOUS CO
3 EXECUTED AND THE RE
% PROGRAM WILL LOAD I
% 16K AND REPLACE THE
: PACKAGE.

3= S02E2

«WORD BTART

THI8 JUST RETURNS C

: DOB AFTER THE INTEGE

PACKABE HABS BEEN LO

3 FOLLOWING ARE THE A

8 ROUTINES WHICH LOAD RI

: TOP OF THE OLD ONES

SET POINTERS
MOVE THE ROM
INTO RAM

SKIP 1/0

DISABLE THE
INTERRUPTS

FLIP ROM OUT

MOVE THE 0S8
BACK INTO THE
RIGHT ADDRESSES

RE-ENABLE THE
INTERRUPTS AND
RETURN.

0 VARIABLES

M AND ROM

BLES TO
EGISTERS

8 TO DOS 8O0
DE WILL BE
8T OF THE
NTO THE_TOP
OLD MATH

ONTROL TO
R MATH
ADED IN.

CTUAL MATH
GHT ON

¥= 8D80OO

JBR BKIP.BLA
#840

8TA FRO

LDA #3800
B8TA FRO+1
8TA FRO+2
BTA FRO+3

AND #8OF

-

NKS8

BAVE THE DIGIT.

LDA FRO+2
8TA FRO+3
LDA :R0+l
ROL FRO+3

A
ROL FRO+J

ANALOG COMPUTING

MULTIPLY THE
NUMBER BY 10
BEFORE ADDING
IN THE NEW
DIGIT.

¥ CONVERTS INTEGERS INTOD ASCII
l CHARACTER STRINGS.

JBR INTLBF

LDA FRO+1

BTA FRE+2

LDA FRO+2

Q0
-N
r
o
>
-
-
L=
o

FRO+1

CHP LD.B;TES,V

BBC HI,BYTES
i

BCC NEXT.DIG
LDA FRO+1

8BC LO.BYTES,Y

6TA FRO+1

LDA FRO+2

8BC HI.BYTES,Y

8TA FRO+2

INX

JMP 101
NEXT.DIGIT

TX

LDY Q.OO
(INBUFF),Y
CHMP @'0
BNE 104

JHP 103
104 BTY FRE+4
LDA INBUFF

8BC FRE+4
FRE

LDA INBUFF+1
#8800

BTA FRE+1

105 LDA (INBUFF),Y
8TA (FRE),Y

¥ THE FOLLOWING ARE TﬁBLEB USBED
¥ IN CONVERTING NUMBERS TO
1 ABCIX CHARACTER BTRINGB.

I.BYTES .BYTE >10000
IBYTE >1000, >100
LBYTE >10, 51
LO.BYTES .BYTE <10000
'BYTE <1000, <100
i LBYTE <10, <1
8= ®D9AA
IFP
3 THIS ROUTINE WILL CONVERT AN
$ INTEGER TO FLOATING POINT
3 WHICH 18 BIMPLY LOW BYTE-HIGH
¥ BYTE FORMAT WITH AN EXPONENT.
LDX FRO
LDY FRO+1
LDA #840 JEXPONENT
8TA FRO
FRO+1
8TY FRO+2
cLC
RTS
, ———————————————————————————————
3= $D9D2
FPI
3 THEBE ROUTINES WILL CONVERT A
& FLOATING POINT NUMBER BACK TO
¥ INTEGER FORMAT.
DA FRO+1
8TA FRO

x
'

THESE ROUTINES WILL ADD AND
SUBTRACT INTEGERS.

THIS ROUTINE WILL MULTIPLY
THE CONTENTS OF FRO BY THE
CONTENTS OF FR1 AND STORE THE
PRODUCT BACK INTO FRO.

8 ROUTINE HILL DIVIDE THE
TENTS OF BY FR1 AND
RE THE REEULT INTO FRO.

oz~

CANNOT
DIVIDE
BEQ ;ERRDR BY ZERO
B8TA FRE+1
FRE
LDY @16
2 ASL FRO+1
ROL FRO+2
ROL FRE+1
ROL FRE

LDA FRE+1
8BC FR1+1

LDA FRE
B8BC FR1+2

i1
BTX FRE+1
BTA FRE
INC FRO+1

)4
BNE 12
Cc

ATARI 8-BIT EXTRA

FLPTR
B8TY FLPTR+1
FLDOP
#802
1F1 LDA (FLPTR),Y
8TA FRO,Y

TERS.
% OR FLD1P HILL LOAD IT FROM THE
: CURRENT ADDRE88 OF FLPTR.
BTX FLPTR
8TY FLPTR+1
FLD1P

#9802
IF3 LDA (FLPTR),Y
8TA FR1,Y

¥ THIB ROUTINE WILL BTORE FRO

% INTO THE ADDRESS POINTED TO

¥ BY THE 6502 X,Y REGISTERS.

% OR F8TOP WILL BTORE IT_INTO THE
¥ CURRENT ADDRESS OF FLPTR.

¥

FLPTR
FLPTR+1
#802

FRO, Y
(FLPTR) , ¥
tFé4

¥ THIS8 ROUTINE WILL MOVE THE
l CONTENT8 OF FRO INTO FR1.

¥= S02EQ
«WORD CONTINUE

Listing 7.
Assembly listing.

SAVE #Di1INTBASI2.ASM
ABM, , #D:1 INTBASIC.OBJ

by Barry Grean

Out of the Blue Associates
package designed
floating-point
ATARI 64K XL
computers. package is
entirely integer-based o it

is much faster. Its internal
representation of numbers is
stil]l] referred to as Floating-
golnt. merely for convenience.
his representation differs
from standard 6502 integers in
that there ie an exponent byte
of $40 added to it. Integers can
still be used in FPI and IFP
because these routines restore
the numbers to proper order.
This version accepts integers
in the range of -32768 to 32767.
Any number entered which is
greater than 32767 will be

the same value
as what was entered they just
grlnt out as negati
or example, if the r ent
FOR X=30000 to 65535 and t
LISTed that line, it might Y
FOR X=30000 to -1. It will work
exactly as you wanted, it Just
prints out as a negative.
Stat ents such as POKE 53248,0
are still perfectly lcgn they
Just may look differen thqn
what you expected.

FRO - $D
FRE - SDA
FR1 - $EO
INBUFF - $F3
X - 8F2

ATARI 8-BIT EXTRA

¥ MOVES THE XL 08 TO
$ THIS CODE I8 BABED
¥ OFFICIAL RELEABE F
¥ \AND WAB WRITTEN BY

BCC 12 IF NOT, THEN

CHP @’9+1 BRANCH_TO

BCB 12 THE RETURN.
P

PHA BAVE THE DIGIT.

R
LDA FRO+1 BEFORE ADDING
A E NEW

ROM = SCB
RAM = ROM+2
0BROM = $C000
0BRAM = 94000
NMIEN = SDAOE
PORTB = 8D301
JSR INIT BET POINTERS
MovV1 LDA (ROM),Y MOVE THE ROM
BTA (RAM),Y INTO RAM
INY
BNE MOV1
INC ROM+1
INC RAM+1
DEX
CPX #830
BNE 1M1
J8R BKIP BKIP 1/0
CPX
BNE
LDA #800 DISABLE THE
BTA NMIEN INTERRUPTS
LDA #9FE
8TA PORTB FLIP ROM OUT e
i JeRr INIT 3 CONVERTS INTEGERS INTO ABCII
Mov2 LDA (RAM),Y ;235 I:E 0$ - : CHARACTER STRINGS
8TA (ROM),Y
INY '’ RIGHT ADDREBSES JBR INTLBF
BNE MOV2 LDA FRO+1
28 FRe:s
525 RAN+ BTA FRE+3
CPX #830 BPL 100 jERE
BNE 1M2 LDA FRO+1 1513
JSR 8KIP EOR #8FF PEEE
M2 CPX #800 gbg aii ::::
fmmm e PNE e e BTA FRO+1 1513
cLI LDA FRO+2 PERE
LDA #s40 RE-ENABLE THE EOR #9FF 13
8TA NMIEN INTERRUPTS AND g$g :;822 ::::
________ 0 L. i L. T tg; :'oo ;:::
% INITIALIZE PAGE ZERO VARIABLES Y [
% FOR ADDRESSES OF RAM AND ROM ?;g §£SS¥F";!.£"'
F HBED FOR NN s BNE 100 "7 jarr
M 1y
L L?“ :o<UBH° [LDY #%00
LDA # >OSROM 102 LDX #800
BTA ROM+1 LDA FRO+1
LDA # <OBRAM CMP LO.BYTES,Y
BTA RAM LDA FRO+2
LDA # >OSRAM 8BC H1.BYTES,Y
§TA RAM+1 BCC NEXT.DIGI
LDX #840 528 FRO+1
Y #8
k?a 00 S8BC LO.BYTES,
' LDA FRos2
¥ BET PAGE ZERO VARIABLES TO
§BC HI.BYTES,Y
S R R R N §TA FRO+2 =
SKIP LDY #%08 INX
SKIP1 INC ROM+1 JMP 101
INC RAM+1 NEXT DIGI;XA
355 ORA #830
BNE BKIP1 STA (INBUFF),Y
RTS INY
_______________________________ CPY #%05
ET THE INIT ADDRESS TO DOB B8O gge 102
LL THE PREVIOUS CODE WILL BE DY CINBUFF ¥

ROGRAM WILL LOAD INTO THE TOP

® B
A
¥ EXECUTED AND THE REST OF THE
¥ P
¥ 16K 222 REPLACE THE OLD MATH

¥= S02E2

l THIS JUST RETURNS CONTROL TO
* DOS AFTER THE INTEGER MATH
¥ PACKAGE HAS BEEN LOADED IN.

3
CONTINUE 104
RTS8

WING ARE THE ACTUAL MATH
NES WHICH LOAD RIGHT ON
F THE OLD ONES.

==

AFP 105

JBR SKIP.BLANKS
#8840

6TA FRO

LDA #800
8TA FRO+1
8TA FRO+2
STA FRO+3

CIX 06
LDA (INBUFF) !
#'0 is IT A DIGIT"

#880
8TAR (INBUFF),Y

#8800

LDA (INBUFF),Y
#'0

BNE 104

JMP 103

8TY FRE+4

LDA INBUFF

8BC FRE+4
FRE

LDA INBUFF+1
#8900

8TA FRE+1

LDA (INBUFF),Y

8TA (FRE),Y

CPY #805

BNE 103
LDA FRE+2

¥
¥ THE FOLLOWING ARE TABLES USED

ANALOG COMPUTING 79

=
A Integel‘ BASIC continued

¥ IN CONVERTING NUMBERS TO
t ABCII CHARACTER BTRINGS.

Hl BYTES .BYTE >10000

BYTE >1000, >100

BYTE 310, 51
LO.BYTES .BYTE <10boo

BYTE <1000, <100
. LBYTE <10,

$= $D9AA

¥ THIS8 ROUTINE WILL CONVERT AN
¥ INTEGER TO FLOATING POINT,

: WHICH I8 SIMPLY LOW BYTE-HIGH
¥

BYTE FORMAT WITH AN EXPONENT.

t THESE ROUTINES WILL CONVERT A
¥ FLOATING POINT NUMBER BACK TO
3 INTEGER FORMAT.

%

¥
8 THESBE ROUTINES WILL ADD AND
: BUBTRACT INTEGERS.

80 ANALOG COMPUTING

LDA FRO+1 IF RESBULT
ORA FRO+2 18 ZERO_ THEN
BNE 11 ZERO OUT THE
B8TA FRO EXPONENT.

1 CLC
RTS8
¥= SDADB

MUL

THIS ROUTINE WILL MULTIPLY
THE _CONTENTS8 OF FRO BY THE
CONTENT8 OF FR1 AND STORE THE
PRODUCT BACK INTOD FRO.

¥= $DB28

THIS ROUTINE WILL DIVIDE THE
CONTENT8 OF FRO BY FR1 AND
BTORE THE RESULT INTO FRO.

FROM THE ADDRESS POINTED TO

BTX FLPTR
8TY FLPTR+1

LDY #8802
1F1 LDA (FLPTR),Y
8TA FRO,Y

Y
BPL 1F1
8

¥ THIS ROUTINE WILL LOAD FR1

¥ FROM THE ADDRESS POINTED TO

% BY THE 6502 X,Y REGISTERS,

% OR FLD1P WILL LOAD IT FROM THE

¥ CURRENT ADDRESS8 OF FLPTR.

B S R TR D it o i e i e
8TX FLPTR
8TY FLPTR+1

#802
1F3 LDA (FLPTR),Y
8TA FR1,Y

Y
BPL 1F3
]

¥ THIS ROUTINE WILL STORE FRO
% INTO THE ADDRESS POINTED TO
8 BY THE 6302 X,Y REGISTERS.,
% OR FBTOP WILL STORE IT INTO THE
: CURRENT ADDRESS OF FLPTR.
8TX FLPTR
B8TY FLPTR+1

LDY #8302
A FRO,Y
A (FLPTR), Y
BPL 1F4
8

¥ THIS ROUTINE WILL HDVE THE
l CONTENTS OF FRO INTO FR1.

¥= S02EO
«WORD CONTINUE

ATARI 8-BIT EXTRA

by Dave Pettit

Having played Atari’s Star Raiders for
years, ['ve learned a few interesting ways
to play it faster and more accurately. Some
of my strategies are extensions of what the
instruction manual says; some are applica-
tions of other people’s strategies; and still
others are unwritten facts of how the game
progresses. [hope these ideas will help all
players, from Novice to Commander.

The facts here have been grouped by
topics, arranged in alphabetical order—
except for “Miscellaneous Strategies” and
specifics about the Commander Mission,
which are placed at the end. Ideas are ar-
ranged within a category so that practical-
ly anyone can use the beginning sugges-
tions, while more able navigators will see
uses for the later concepts. When an idea
involving damaged or destroyed equipment
is given, it’s placed at the section’s end.

You can read this article through or use
it as a reference. Say you want to find out
what you can do to locate a starbase when
both your Tracking Computer and Long-
Range Scan are damaged. You should look
under each section—Starbase, Tracking
Computer and Long-Range Scan. You'll
probably find just what you need in one.

Aft view.
1. When in aft view, the joystick direc-
tions are reversed from those of the front

ATARI 8-BIT EXTRA

view. An easier way to learn this: the con-
trols are the same as for hyperwarp in PI-
LOT and higher missions (push left and go
right; pull back and go down).

2. Don’t use the strategy that some take
—turning your starship around to get a pur-
suing enemy. That takes too much time, and
you may get hit in the process.

3. If you must turn around (say, to pur-
sue a distant enemy behind you), turn to
the left or right, up or down, so the horizon-
tal or vertical direction indicators (theta and
phi) become larger in absolute value. For ex-
ample, if you turn so the indicator changes
from -350 to 0 and then from 0 to +475
(at which time, the Tracking Computer goes
to front view), you'll have wasted a lot of
time. It’s better to go from - 350 to —-475
first. Keep turning to 0, once in front view,
to center the enemy.

4. When turning around from aft to front
view, an enemy can be as much as 40 me-
trons farther away.

5. If an enemy is pursuing you in aft view
and your engines are on, you can slow way
down (say, from 6 to 4) and keep firing as
they approach. If they don't get hit, they’ll
probably pass you by. But, as they pass and
your screen changes to the front view, you
can speed back up to 6 or 7 to match their
speed. This keeps them close to you, so you
can shoot them when they least expect it.
A very effective strategy, this does use a lot
of energy (see “Engines,” #1, below).

Engines.

1. Don't rely on your engines too much
in finding the enemy; if they go out, you're
practically stranded. Conserve fuel as much
as possible and wait for the enemy to come
to you.

2. William Colsher wrote in the Novem-
ber/December 1980 issue of Compute! that
saving energy is one of the most important
ways to increase your rating. He's right. But
new players should chase and shoot at the
same time, so they can practice aiming.
This will keep most of the enemy in close
range, where they’ll be larger and easier to
hit. Speeds of 5 or 6 are recommended
here. In time, players will learn when to
shoot and when to wait, based on where
the enemy is on the screen.

3. Mr. Colsher does not emphasize
enough that some enemy ships do not at-
tack you—you have to go after them. The
need for this can be determined by center-
ing them in the Attack Computer Display
and observing the range indicator. If the
range is getting larger or staying constant,
you'll have to chase them down with a
speed of 6 or 7. If the range is getting smal-
ler, wait them out.

4. Most enemies travel at 0 or 6. If you're
chasing one at 6 and the range doesn't
change (or if you don't catch them soon),
they’re playing cat and mouse with you. In-
crease your speed to 7 if you really want
to catch them.

5. Sometimes you notice in the Long-

ANALOG COMPUTING 81

—
&=

Range Scan (or with the Tracking Compu-
ter) that one enemy is pursuing you from
the back, while another is standing still,
dead ahead. By pressing a 4 or 5, you can
head for the forward enemy and allow the
other one to catch you. Then blast the one
you see first and the other soon after. That
saves a little time and, probably, some
energy.

6. Practice moving at speeds of 7, 8 and
9. Try going this fast and shooting meteors.
It’s tough, but will improve your steering
and aiming abilities.

7. Sometimes—at high speeds—it’s im-
possible to turn around and face in anoth-
er direction with the Tracking Computer
on. You must stop all your engines, turn
around, then turn on the engines again.

8. If you need to destroy your starbase
or an enemy starship quickly, don’t hesitate
to use a speed of 8 or 9. The loss of energy
is small when weighed against the loss of
a starbase to Zylon ships.

9. A speed of 9 with damaged engines
is the same as a speed of 7 with normal en-
gines. Use this factor to catch a fleeing
enemy.

10. If your engines do get destroyed while
your enemy is 300 metrons away and not
approaching you, you can catch the ship
using your Long-Range Scan and hyper-
warp. Simply set up the enemy directly in
front of you with the Long-Range Scan (see
“Long-Range Scan,” #6). Then press the H
key and steer toward that ship, so that it re-
mains in front of you till it’s in the first
third of the screen in front of your location
(you're still in Long-Range Scan). Now
press any number key and the F key. The
enemy should be within visual range. This
will cost you only about 100 mergs (units
of energy), the same amount you'd use with
your engines working to take out an ene-
my at the same distance—but this method
is considerably faster. You’ll have to experi-
ment with this to get it to work for you.

11. Use the above technique, but, instead
of pressing a number key to coast toward
the enemy, time the pressing of the num-
ber key so that the enemy will pass by you
a bit and have to catch up later. This may
avoid your getting blasted from the front.

12. If your engines and Long-Range Scan
are both destroyed, you can use hyperwarp
in short bursts to catch an enemy or to get
closer to a starbase. Be sure to keep an eye
peeled for a passing Zylon starship or star-
base. Be careful, or this can waste a lot of
time and energy.

13. Destroyed engines operate at a nor-
mal speed of about 5 when any key from
5 to 9 is pressed. Keys from 1 to 4 produce
speeds just smaller than your normal 1 to
4 speeds.

Galactic Chart.

1. The enemy will move on Star Dates in
x.00 and x.50, except 0.50 and for 100 cen-
tons after surrounding a starbase. It's help-
ful to know this when you're starting a new

82 ANALOG COMPUTING

b TaCtiCS continued

game or wiping out the enemy around a
starbase—they (and all other Zylon star-
ships) sit and wait for 100 centons, even if
the starbase is no longer surrounded!

2. Normally, when beginning a hyper-
jump, it takes about 8 centons to complete.
Thus, the Star Date should not be in the
ranges of x.42 to x.49 or x.92 to x.99. How-
ever, it's possible to speed up your travel
time by remaining with the Galactic Chart
on-screen for a few seconds. This can re-
duce travel time by 1 or 2 centons, but be
careful in missions above Novice—you may
not be able to recenter the target marker
quickly enough to get to the proper sector.

3. Enemy starships line themselves up
horizontally and vertically, with a starbase
first. They then move in a straight line to-
ward the base to surround it. They seldom
move diagonally (see “Galactic Chart,” #11).

4. Enemy ships do move diagonally when
traveling around a starbase.

5. Zylon starship sectors of 1 or 2 enemy
ships (patrol groups) usually move every 50
centons. Use this to predict their travels.
You decide if you’ll have time to destroy a
4-Zylon sector. You might decide to aim for
a blind sector if your Sub-Space Radio is
out, or if you didn’'t watch the clock well
(refer to “Galactic Chart,” #2, above).

6. If the enemy seems to be converging
on a starbase on the left and the Zylon star-
ships are on the right, most patrol groups
will move toward the base in a horizontal
or vertical line. Thus, you can predict the
enemy’s next sector. Use this information
to plan your next move when the Star Date’s
about to change (“Galactic Chart,” #2, a-
bove), or while waiting for a distant Zylon
starship in your sector (see “Galactic Chart,”
#8, below; also see #11 for the reason why
and the movement of Zylon starships in the
other direction).

7. The enemy will most often move to-
ward a group of starbases, rather than a lone
one. But that doesn’t mean that they never
go for the lone bases.

8. If you're waiting for the final Zylon
ship in a sector to approach and attack, use
the Galactic Chart to plan and position your
next move. After destroying the Zylon star-
ship—and if the Star Date permits (see
“Galactic Chart,” #2)—you can hyperjump
without looking at the chart again. This can
save time and energy.

9. When you've been in a sector for a
considerable amount of time, consider up-
dating the Galactic Chart. You can do this
quickly by typing GF. The fraction of a sec-
ond that the chart is on will be enough to
update it. You won't miss too much action,
and you'll be able to avoid problems should
your Sub-Space Radio go out.

10. Also, type a quick GF when a star-
base is first surrounded and you choose to
finish clearing the sector you're already in.

11. The Zylon starships in the Galactic
Chart are positioned from the left side of
the top row. Each sector is placed or left

alone, through to the last sector in that row.
Each row is positioned in this way, with the
sector in the lower right located last. If a
series of enemies is traveling toward a star-
base on the right, the leftmost Zylon star-
ship sectors will move diagonally. If the
Zylon starships are clumped to the right,
moving toward a starbase on the left, all
sectors could move as a group.

12. When you've eliminated most enemy
sectors and enemy ships are grouped, use
the rook-mate strategy of chess—don't al-
low any enemy to pass a chosen horizontal
or vertical line in the chart. Slowly elimi-
nate the closest enemy first, eventually
moving through all enemy sectors.

13. Groups of four enemy starships are
slower and don’t move often. They're good
bets for remaining stationary when your
Sub-Space Radio is out, or when you've for-
gotten to check the Star Date before select-
ing hyperwarp.

Hyperwarp.

1. When in hyperwarp, the directions say
that it’s necessary to keep the target mark-
er in the center of the cross hairs. This is
true only at the critical moment of enter-
ing hyperspace —that is, when the veloci-
ty reaches 99 metrons/second. Knowing
this will allow you to scratch your nose,
make a quick check of the Galactic Chart
or do practically whatever you want—and
still reach the sector you aimed for.

2. Use as many of your senses as you
can. Listen to the sound of your engines at
the moment before entering hyperwarp. If
you can learn what that volume is, keep-
ing the target marker in the right place at
the right time will be easier.

3. Using jerky wiggles of the joystick is
the easiest way to steer. Also, better con-
trol can be obtained by holding the top of
the stick, rather than the middle.

4. Mr. Colsher is generally correct in his
rule about not jumping more than four sec-
tors at one time. The cutoff point actually
occurs when the hyperwarp energy requir-
ed changes from 260 to 500 mergs. Use two
jumps, rather than a single energy-wasting
one, to get to the desired sector.

5. If you must use 260 mergs in a hyper-
jump, be sure to steer carefully, or you may
go off course by enough to use 500 mergs.
If in doubt, either set up 250 mergs while
on the Galactic Chart, or aim back from the
center of the cross hair a little bit (see
“Hyperwarp,” #8).

6. Mr. Colsher’s rule (“Hyperwarp,” #4,
above) ought to be amended further —don't
hyperjump too far except in an emergency.
The emergency might be a surrounded star-
base or a lack of photons or shields. Just
don’t do it often in a game.

7. Be extra careful when hyperjumping
to a sector on the edge of the Galactic Chart.
A small error in navigation may put you on
the wrong side of the galaxy, not to men-
tion causing a huge energy loss.

8. A little experimentation will show that

ATARI 8-BIT EXTRA

the book is right: if you position the hyper-
warp target marker a little off center, you
can hyperjump to a neighboring sector from
the one set in the Galactic Chart. This might
be helpful if your shields go down, or if the
enemy moves just as you press H. It can
also be used when you know (or can bet)
that the enemy will move from where you
last saw them. Simply aim the target marker
off center by one or more widths of the
marker for each sector that you wish to
move (see Figure 1). You should be able to
move up to four sectors away with only a
modicum of experimenting. You could, for
example, display the Galactic Chart, find a
nearby enemy or starbase, and hyperjump
there without doing any positioning on the
chart. This really speeds up the game. You
should try this in Novice level first; it’s
much easier there.

Figure 1.

If no aim is given, the target marker (+) is posi-
tioned off of a normal Galactic Chart aim, or away
from your present sector—either by two sectors
to the left (A) or by three sectors to the right and
one up (B).

9. Not only can’t you shoot in hyperwarp,
but you can't be shot at. At least, you can't
be shot at as long as you’ve reached a mini-
mum speed.

10. When entering an enemy or starbase
sector, or when seeking out a distant Zy-
lon ship, use the Attack Computer Display
and your own hyperjump momentum to
help steer the ship to the desired location.
If the target is right or left of center in the
display, push the joystick in that direction.
If the target is high, pull back (called “nose
up”); if low, push forward (called “nose
down™). It's possible to steer yourself to
within sight range of a starbase more often
than not by using this method.

11. Use hyperwarp within a starbase sec-
tor to get to your goal faster. This is espe-
cially handy with distant starbases and/or
destroyed engines. Use your engines for
docking maneuvers as needed.

12. In hyperwarp, the range indicator will
work for distance to a starbase in your sec-
tor, but not for distance to an enemy.

13. During hyperwarp, the Sub-Space Ra-
dio doesn’t update the Galactic Chart. If a
starbase is surrounded because of poor tim-
ing, you will have to change course (see
“Hyperwarp,” #8), do a quick check of the
Galactic Chart (see “Pause Key,” #2), or can-
cel the hyperwarp.

14. If your Tracking Computer goes out,
steering to another sector in hyperwarp can
be difficult. The center of the screen—
where the tarket marker is supposed to be
—is the point at which no stars appear. You

ATARI 8-BIT EXTRA

can see this easily in Novice level by start-
ing hyperwarp and turning your Tracking
Computer off. The target marker will be
positioned correctly.

Long-Range Scan.

1. Another way of centering an enemy, in-
stead of the Attack Computer Display, is the
use of the horizontal and vertical displays
on the Long-Range Scan screen. By adjust-
ing them both to 0, you'll find the target
is straight ahead (see “Long-Range Scan,’
#6, below).

2. On the Long-Range Scan, little orange
rectangles represent the Zylon starships and
a “dummy starship.” Which is which? The
one that disappears and reappears occasion-
ally is the dummy, so go after the other one.

3. The orange rectangles that shoot or
move rapidly are the enemy.

4. When in a starbase sector, the rectan-
gle changes to a starbase shape.

5. When you've no better clues as to
which rectangle is the dummy (and your
Tracking Computer is out) go from L to G
or F, and then back to L. If one of the rec-
tangles moved drastically and isn't moving
much now (or has disappeared), it is prob-
ably the dummy.

6. If your Tracking Computer is destroy-
ed, it’s still possible for you to get closer
to a starbase or the enemy. As soon as
you've entered the sector, press L. What-
ever you're searching for will come into
view on the Long-Range Scan screen. Po-
sition it in the top half of the screen, direct-
ly in front of your ship by pushing the joy-
stick left or right. Then move the stick for-
ward and backward to “stretch out” the
target—to get it to its maximum distance
from you. (This is the same as being in the
center of the Attack Computer Display in the
front view.) As soon as the target is close
to the center of the Long-Range Scan, go
to the front view and dock or shoot, what-
ever is appropriate.

7. Apparently, it's not possible for both the
Tracking Computer and Long-Range Scan
to be destroyed together. At least one will
be usable to locate an enemy or a starbase.

8. Of course, a destroyed Long-Range
Scan won't tell you where the enemy ships
are, but it will tell if there are none, one,
or (at least) two of them in your sector. Just
count the little orange rectangles. One is a
dummy; any others are Zylon starships.

Manual Target Selector.

1. In a sector with more than one Zylon
ship, don't be tricked, while waiting for one
enemy, into ignoring another. Use the M key
and the range indicator to see if another
enemy is approaching— and to find out
which one will get to you first.

2. When entering an enemy sector where
a large distance must be traveled to catch
an enemy, use the Manual Target Selector
to see if a second enemy is closer. If less
than 400 metrons away, an enemy can
usually be caught with hyperwarp momen-

tum (mentioned earlier; “see Long-Range
Scan,” #6).

3. Sometimes you can cause an enemy
to approach you by using the M key. It’s as
if they realize that they’re being “scanned’
so they decide to attack.

4, When all Zylon starships in a sector
are killed, the Manual Target Selector will
switch to two different values. Don't be con-
fused and start looking for non-existent
enemies.

Pause Key.

1. You can use the pause key (P) to tem-
porarily stop the game action and plan an
attack strategy. However, some purists may
find this a form of cheating.

2. Use this key if you've just entered
hyperwarp, then received notice of a sur-
rounded or destroyed starbase. To do this,
type GP quickly and don't touch the joy-
stick. Determine what your move should be,
realizing that the Galactic Chart hasn't been
updated since you saw it last (see “Hyper-
warp,” #13). Plan on using offset navigation
of the target marker (see “Hyperwarp,” #8),
then press the F key before moving the
stick, so you can start steering as soon as
you disengage the pause. Of course, if you
decide to cancel hyperwarp, press a num-
ber key and move the joystick.

3. If you pause long enough, the enemy’s
strategy may change. Many times a Zylon
ship that won't pursue you when your en-
gines are out will pursue you after several
minutes on pause. This may only be a coin-
cidence (it doesn’t happen every time), but
it's been observed after many unplanned in-
terruptions.

Photons—yours and theirs.

1. You can't hit an enemy often by just
shooting. You need to steer with the joy-
stick, then fire. It takes a coordinated ef-
fort, frustrating many beginning players.

2. Zylon starships can shoot only one
photon at you at a time. You, however, can
shoot photons two at a time.

3. It’s best to shoot in bursts of two. With
the photons coming out of alternate tubes,
you may forget which one will fire next.
By shooting twice, you can guarantee that
the tube you want to fire will.

4. Many times an enemy is destroyed just
after they've shot at you. Don't get caught
by that last shot. Either get out of the pho-
ton’s way or shoot it down, too.

5. The cross hairs in the front and aft
views are set for distant shots. The closer
the enemy, the lower the ship must be in
the view screen for you to hit it directly
with a photon. Seldom can an enemy be
hit above the horizontal cross hair (but see
“Photons,” #12). You can check this by fir-
ing two shots very quickly and freezing
them with the P key. You can continue to
release and freeze them by alternately mov-
ing the joystick a small amount and then
pressing P again.

6. When an enemy keeps matching you

ANALOG COMPUTING 83

p—
=

with photon after photon, only to have them
both explode, there are two ways to hit that
ship. First, wait for the enemy’s photon to
come very close to you—but low enough
so that it will pass without damage. Then
fire away. The photons will pass each oth-
er, with yours striking the enemy.

7. The second way to get around this pro-
blem is to turn your ship to the left or right,
so the other photon tube can be used to hit
the enemy ship. It's as if the enemy keeps
blocking your right jabs, then gets punched
with your left hook!

8. A long, distant shot coming toward you
(especially in Command level) can be hard
to avoid or destroy. Normal reaction for a
high photon is to pull back on the joystick,
going nose up. Instead, do the reverse: push
forward after shooting your photon. If you
time it right, your shot will float up and
strike the enemy’s photon.

9. The only time a photon of yours will
curve up by itself is when the enemy is dead
center and very close, called “lock-on” in
the manual. Both photons fire in this con-
dition. Don't try to create this condition. In-
stead, learn how to kill an enemy with
single shots when you're ready, rather than
waiting for the ship to reach the right po-
sition.

10. One time that lock-on is effective and
frequent is in combatting an enemy at point-
blank range. Usually, each single shot blocks
one of the enemy’s. When double shots are
sent out, one usually blocks an opponent’s
shot, while the other takes out the starship.
Sometimes, when a shot misses the enemy,
this process requires three or more pairs
of shots.

11. When shooting the enemy at long
range, give your photons enough time to
reach the Zylon starships before shooting
again. With the game only being able to
keep track of two photons—one from each
photon tube—at a time, you don’t want to
waste a perfect shot by shooting again. You
can see this in the Long-Range Scan by fir-
ing twice, waiting a few seconds and fir-
ing again. The farthest photon will dis-
appear first.

12. It is even possible to steer a photon
after it has been fired! You can prove this
by firing a photon and then moving the
joystick to the right or left. If you hold the
stick this way long enough, you’ll see the
photon cross to the opposite side of the
screen! By causing a nose-down action in
front view (joystick forward), you can make
a photon go above the horizontal cross hair.
With practice, you can direct shots to hit
enemy starships at great distances—and on
opposite sides of the screen. Using this will
save time and energy by destroying the ene-
my more quickly.

13. Here's how to shoot and steer upon
entering a sector. First, use the Attack Com-
puter Display for initial steering (see “Hy-
perwarp,” #10). Then, watch the range to
the enemy. When it is less than 200 me-

84 ANALOG COMPUTING

) Tactics continued

trons, shoot two shots. If you can see the
enemy, steer one of the shots toward them.
But don’'t waste your time and energy fir-
ing ten or twenty times at nothing.

14. Don't try to hit an enemy in Long-
Range Scan. You won't be successful often
enough to make it worth your while.

15. Shooting at an enemy farther away
than 120 metrons may put them into attack
mode. They will then come to get you. Try
this in front view and in Long-Range Scan,
too.

16. If a Zylon starship shoots and is de-
stroyed, but your Tracking Computer chan-
ges views, you may need to avoid the
enemy photon. To do this, turn away from
the photon hard! After you’re sure the pho-
ton has passed you, you may continue your
attack on the next starship.

17. If you listen carefully, you may notice
a slightly different sound when you fire a
photon after your photons have been dam-
aged. The sound has a slightly deeper pitch.

18. If in a heavy battle, where new dam-
age to your ship has just occurred, fire one
or two photons to make sure they're still
working. Don’t wait for the damage report
and a Zylon ship to start attacking.

19. If your photons are damaged, it can
be difficult to destroy a close Zylon star-
ship on the same side as the damaged pho-
ton tube. What you need to do is keep the
enemy low on the screen, as you move your
ship to position enemies on the other half
of the screen. Usually, they’ll still be shoot-
ing in the same direction as they have been.
As soon as they shoot, and when they’re
right in front of the working photon tube,
blast away!

Shields.

1. You're always two shots or less from
death: one for your shields and one for you.
Be prepared to go into hyperwarp quickly
when your shields go out, or you may die
trying.

2. If your shields go out, press H as
quickly as possible. Don't worry about view-
ing the Galactic Chart. Just get out of there!
When you have more time to think, move
to a starbase with the help of the chart, and
get your shields repaired. (Also, see “Pause
Key,” #2.)

3. If your shields are destroyed and you're
not being blasted by a close enemy, you
might want to stay put and clear the sec-
tor. When that’s been done, or if a more haz-
ardous situation develops, by all means get
out fast.

4. If your shields are destroyed and you
choose to play more, turn them off. It makes
the screen easier to read and stops wast-
ing valuable energy. Getting hit with no
shields is the same as getting hit with de-
stroyed shields. Just remember to turn them
on when docking is over.

5. If your shields are out, don’t use your
engines unless you're in front view. A me-
teor may destroy you.

6. Before leaving a sector with no shields,

type F and the H, rather than the other way
around. You may be able to avoid a meteor
on your move. If the aft view appears, your
forward path should be clear.

Starbases.

1. Games in which all the starbases are
grouped together are easier to win than
those in which they're spread out. After try-
ing to surround one starbase and failing, the
enemy will move to another that is, in this
case, close by. Some players may consider
this cheating, but it’s a good temporary
strategy.

2. You need to get close to a starbase to
dock, but how close? When you see three
windows on each side of the starbase, stop
your engines and move the joystick until the
Docking Completed message appears.

3. It takes 16 centrons to complete repairs
after docking. Use this and the time to en-
ter and exit (8 centrons each) to decide
when to destroy a surrounded starbase
yourself, when to stay docked, or when to
attempt a docking. There’s also a varying
amount of time to locate a starbase and
dock with it.

4. Docking too often wastes time and
energy. Use the following priority list for de-
cisions on docking: (1) photons destroyed;
(2) shields destroyed; (3) Sub-Space Radio
destroyed; and (4) other problems. (See
“Shields,” all paragraphs, and “Sub-Space
Radio,” #7, for more details and suggestions.

5. While waiting for repairs at a starbase,
use the Galactic Chart to plan your next
move. Then hyperwarp as soon as docking
is completed.

6. There are no meteors in a starbase sec-
tor, so turn your shields off when in these
sectors to save energy. After docking, re-
member to turn them back on.

7. To save energy when docking, turn off
the Tracking Computer, as there’s no need
for it once the starbase is in sight. After
docking is over, be sure to turn it back on.

8. It’s possible to steer your ship with the
momentum of hyperwarp directly to your
starbase. If your range to the starbase upon
entering the sector is 300 to 400 metrons,
you can usually do it (see “Hyperwarp,”
#10). Practice.

9. If your hyperwarp momentum appears
to be too fast and the starbase too close to
dock, you can add some traveling distance
by porpoising. This is done by making your
ship go up and down several times very
quickly. Do this by pushing forward and
back on the joystick, quickly. In Figure 2,
you can see that your starship will climb
and drive to add the needed distance and
avoid passing the starbase.

10. If a starbase is about to be totally sur-
rounded, you can attack early. By entering
a sector next to that starbase, you can be
destroying the enemy before the starbase
is surrounded. You will then have a little
less than 100 metrons to destroy the now
stationary Zylon sectors.

11. When a starbase is surrounded, go

ATARI 8-BIT EXTRA

N STARBASE
. PAT
\W
PATH 2

Figure 2.

The side view of your entering the sector from
the left demonstrates two paths: Path 1 shows nor-
mal entry and passing the starbase; Path 2 shows
porpoising action to shorten overall travel dis-
tance, to keep the starbase in front of your ship
and, possibly, to complete docking maneuvers.

after the groups of three or less Zylon star-
ships. You need to be very skilled and have
a lot of time to take out a group of four.

12. If you have just barely cleared a sec-
tor around a surrounded starbase and need
to dock for repairs, it may be to your ad-
vantage to wait for the next Zylon starship
movement at star date x.50 or x.00. By your
staying there, the Zylon starships can't
completely surround that starbase on that
move. This will give you at least 150 me-
trons to hyperwarp, dock, hyperwarp
again, and destroy another enemy sector
before the starbase could be surrounded
again and destroyed.

13. If a starbase has been surrounded for
too long and its destruction is inevitable,
do it yourself.

14. It’s possible for more than one star-
base to be surrounded at one time. This
can happen when the two starbases are
close together and several enemy have con-
verged on the area. To prevent a double
loss, destroy the Zylon starships in an in-
tersecting sector as in Figure 3, below.

=£
-+
Tt
Figure 3.

Two starbases (S) are surrounded. To save them,
attack either common sector with three Zylon
starships.

15. Suppose your starship is badly
damaged: your Long-Range Scanner and
Tracking Computer are out, so navigation
is difficult. You decide to go to a starbase,
but have always had trouble finding them.
Don’'t worry! Most of the time you’ll come
within visual range of a starbase after a
hyperjump.

16. When all starbases have been de-
stroyed, the enemy stop moving. Use your
last Galactic Chart as a guide. All will not
be lost now if your radio goes out, but you
won't make Star Commander this way.

ATARI 8-BIT EXTRA

Sub-Space Radio.

1. If a starbase is surrounded or destroy-
ed just before you receive some damage
or hyperjump into an enemy sector, the
sound (and, sometimes, the word mes-
sages) about the starbase will be bypassed
for the new message.

2. If your Sub-Space Radio is damaged,
it still functions but doesn’t update the
Galactic Chart. Simply move through the
chart with the joystick and watch the num-
ber of targets indicator. As long as it’s zero,
keep searching.

3. Although you can find enemy sectors
with a damaged radio by using the targets
indicator, a lot of time can be wasted. Also,
you don’t get the big picture of enemy
movement.

4. With a damaged radio, you must be
careful. You won't be able to see if any star-
base is about to be surrounded or de-
stroyed. Of course, you will be notified by
word message and beeps, when one is af-
fected.

5. If a starbase is surrounded while your
radio is damaged, you can use the Galac-
tic Chart and still find which one. Watch
the targets indicator while searching the
sectors around each starbase. If any sec-
tor has no enemy, look around another star-
base. And if the starbase is adjacent to a
second starbase, make sure the second
one’s not surrounded, as well (see “Star-
bases,” #14). If it is, attack any sector of
common enemy Zylon starships, no mat-
ter how many there are, or you'll lose one
or both starbases.

6. With a damaged radio, you won't
know of starbases that have moved since
the last chart update. Otherwise, assume
that they're as shown on the chart.

7. If your radio gets blasted, go ahead
and get some more enemy before docking.
But don't wait too long or get too greedy —
you may discover that one or more star-
bases have been surrounded or destroyed
while you were fighting!

Tracking Computer.

1. Turning on your Tracking Computer
will help in shooting and in locating ene-
my Zylon starships. Use the crosshairs as
a guide in aiming your shots.

2. The instruction book does not recom-
mend the use of the Tracking Computer in
Novice level, probably to reduce player
confusion and because the enemy won't at-
tack from behind you. When used at this
level, however, you can shoot at the ene-
my in the aft view whenever possible. This
can be helpful, as they can't block your
shots in this view. (See “Zylon Starships,”
#2 and #4).

3. The automatic tracking system of the
Tracking Computer doesn't use any extra
energy. It will change the screen to front
or aft view, to show the direction of the
enemy who fired last. The only shortcom-
ings occur in a crossfire (see “Zylon Star-
ships,” #19, #20, and #21) or when one

enemy shoots and gets killed, but their
shot still hits after your view switches (see
“Photons,” #16).

4. You don’t need to center an oncom-
ing enemy with the Attack Computer Dis-
play. For the most part, Zylon starships are
“self-centering” on the attack —they sel-
dom go for your blind sides.

5. Don’t look at the Attack Computer Dis-
play when the enemy is in visual range;
look at the enemy directly. The display
should be used when searching out distant
enemies (see “Tracking Computer,” #6,
below).

6. If a distant enemy or your starbase
goes off the screen, steer in the direction
of the Attack Computer Display. If the im-
age is in the lower left, for example, push
the joystick to the front and left. Your ship
will start pointing toward its object and,
eventually, face the centered and/or visi-
ble target.

7. Don’t pursue a distant enemy totally
through the use of the Attack Computer
Display. You may ignore a meteor or a sur-
prise attack by a second Zylon starship.

8. By using the Attack Computer Display
with a damaged Tracking Computer, you
can still get to a target, but you won't be
able to use the number displays at the bot-
tom of the screen. Instead, try to get the
target centered in the Attack Computer
Display. Then (or even while centering) use
your engines to get to the target (see “En-
gines,” #4 and #9). Practice helps.

9. When your Long-Range Scan is de-
stroyed, you can still find an enemy or
your starbase with a partly or fully func-
tional Tracking Computer (see “Tracking
Computer,” #10, below). If the Tracking
Computer is working, position the target
in front of you (front view screen and a
positive distance away). Then position it
to the center of the Attack Computer Dis-
play and, with the horizontal and vertical
indicators on the screen set to about 0, en-
gage your engines (or Hyperwarp as
described in “Engines,” #12), and steer
with the target centered.

10. When your Tracking Computer is de-
stroyed and you're waiting for an enemy
to attack, be sure to occasionally flip back
and forth between front and aft views, or
you might be surprised by another Zylon.

11. If your Tracking Computer is destroy-
ed, it has to be turned on again after be-
ing repaired at a starbase. This is the only
device that needs action when destroyed
and repaired.

Zylon Starships.

1. Know how many Zylon starships are
in a sector when you enter and count them
as they’re killed, so you won't get hit by
surprise or exit too soon.

2. If you’re playing at Novice level, you
don't have to pursue the enemy in the sec-
tors—they’ll come to you all of the time.

3. Most of the enemy will come to you
in the other missions, too, if you give them

ANALOG COMPUTING 85

- ®
‘ TaCthS continued

a chance. If the numbers are getting closer
to 0 in the range indicator, then sit back
and wait.

4. If the enemy were visible on-screen
at one time in Novice level (and sometimes
in other missions), but can’t be seen now,
do not move to find them. Stop all move-
ment with the joystick and engines (press
0 to stop engines), and let the enemy come
into view. They’ll become visible again in
either front or aft view, unless you've out-
run them.

5. Some enemy will seem to be coming
toward you and ready to attack. At a range
indicator value of about 150 and 450 me-
trons, they stop and reverse directions.
Now you must pursue them at a speed of
7 Or more.

6. When an enemy is centered in the At-
tack Computer Display, it will be visible in
the view screen at about 120 metrons, us-
ing the range indicator.

7. When an enemy first appears on the
screen, it will show up as a yellow dot (just
smaller than a white star) that usually
moves against the background of stars.
This is most evident when you're not mov-
ing, but it can be detected at any speed or
time (including Hyperwarp deceleration,
even if the screen is flashing red and blue
—watch carefully). Many players don't
concentrate enough to see this.

8. Before some ships appear on the
screen, a meteor is seen. This is like a de-
coy. Don't attack it; you may be caught by
surprise by the Zylons. Instead, just sit
tight and get ready to shoot at the correct
target.

9. Don't always shoot at the meteors.
They can indicate that an enemy’s near-
by; when a Zylon starship shoots a pho-
ton, all meteors disappear.

10. Many of your distant shots can get
blocked by an enemy shot, and a cloud of
debris hides the enemy. Don't let these fool
you. The enemy will stay hidden as long
as possible, attacking when (and from
where) you least expect it. This cloud can
also be created by blasting one enemy, only
to have another hide in the dust. If you
have the Tracking Computer on, there'll be
little doubt of killing the enemy—the
Tracking Computer will automatically
switch to the opposite view screen if the
enemy was blasted and a second enemy is
in the other direction.

11. With practice, you can predict a Zy-
lon starship’s path before he makes it!
Many times they’ll move right into your
shots after you’ve made them. For exam-
ple, if a Zylon starship is hovering for a
long time in the top half of the screen, his
next move has to be down. By shooting
first (before he crosses the middle of the
screen), most times you’ll destroy him
through his own navigation.

12. Some Zylon starships enter high on
the screen and shoot before crossing the
horizontal line in the crosshairs of the

86 ANALOG COMPUTING

Tracking Computer. The solution? Let
them cross that point when off of center
so that their shot will miss you. Then, re-
position them below the horizontal line
and blast away. Or go after the shot first,
then the enemy.

13. Basestars can be destroyed at close
range, usually with one shot. Getting them
into position is hazardous at times, as well
as difficult. A conservative way of destroy-
ing them is to keep firing and hitting them,
even though they're too far away. It’s as if
their shields weaken with repeated attacks,
until they're finally destroyed with what
seems the weakest of hits.

14. Another time that lock-on is effective
(see “Photons,” #9 and #10) is on first ap-
proach of a Basestar in Novice through
Warrior missions. Their first attack is
straight down the center. That will be their
last attack, if you wait patiently to time it
right. In Commander level, they fire soon-
er, making it a little more complicated —
you may get them or their shot, but sel-
dom both.

15. Basestars can also be positioned for
destruction very nicely. Shoot while chas-
ing them at speeds of 6 or 7. It does take
some practice to steer while moving at
such speeds. Try working up to those
speeds and higher by practicing with 4
and 5. (However, see “Engines,” #1 and
#2.)

16. Another way of blasting a Basestar
is by hitting their photon just as they fire
it. The combination of both photons ex-
ploding so close is too much for their
shields. However, this is a strategy of coin-
cidence and luck.

17. Shoot at enemy Basestars at long
range, even if there’s little chance of kill-
ing them. You will at least keep them “in
your sights” and also be blocking their
shots, when made.

18. Enemy ships have various strategies,
including the following:

(a) Pursue you at all cost (see “Zy-
lon Starships,” #3 and #4);

(b) Avoid you at all cost (see “En-
gines,” #3 and #4);

(c) Remain stationary and out of
range (see “Engines,” #3);

(d) Travel back and forth at a dis-
tance from you (see “Engines,” #3 and
#4);

(e) Attack when centered with the
Attack Computer Display or when
scanned using the M key (see “Manual
Target Selector,” #3);

(f) Sit under your nose at about 15
metrons distance and wait for 1 sneak
attack;

(g) Always attack in front view;

(h) Always attack in the aft view;
and

(i) Two enemy in a crossfire (see the
next three entries).

19. The Tracking Computer can be dis-
asterous in a crossfire, if you aren't care-

ful. There are several things that you can
do to get out of a crossfire. First, turn off
the Tracking Computer and concentrate on
one enemy. When they've been blasted,
turn the Tracking Computer back on and
blast the other one.

20. Second, press 8 or 9 and get out of
there! After a few seconds, press 0. Sit and
wait for them to catch you in aft view —
they almost always will—and blast them
as they show up.

21. Third, concentrate on one of the pair
of enemy, but leave the Tracking Computer
on. Avoid getting hit by the other Zylon
starship, but don't attack them. Whenever
facing the chosen enemy, concentrate on
its destruction. The problem in a crossfire
is that so much time is wasted in reposi-
tioning for each player that it’s too late
when the enemy’s finally in your sights. At
that time, the other enemy usually fires,
causing the Tracking Computer to change
views and mess up your aim.

22. If a mass of enemy is moving toward
a distant starbase on the opposite side of
the Galactic Chart, you can use one of two
strategies. The first is to attack the slowest
sectors and gradually destroy all of them.

23. The second is to attack the fastest
and forward-most sectors. By always de-
stroying the leaders, you keep the enemy
nearer to you and avoid a surrounded star-
base. This method works best with either
a slow-moving or small group of enemy.

24. If a starbase is surrounded and
you're on the other side of the galaxy, you
need to get there fast—but efficiently. Us-
ing the small-jump method (see “Hyper-
warp,” #4 and ‘“Zylon Starships,” #25) with
the shoot-and-fly method (see “Hyper-
warp,” #10 and “Miscellaneous Strategies,”
#2), you can reduce (and sometimes elim-
inate) the enemy in other sectors as you
go, and still have time to save your star-
base.

25. Use checkerboard-type jumping to
move across the galaxy (see Figure 4, be-
low). This will work in destroying isolat-
ed sectors of Zylon starships and in hurry-
ing to save a distant starbase (see “Zylon
Starships,” #24).

26. Sometimes an enemy on one edge
of the Galactic Chart moves to the other
edge. This is a problem if all of the enemy
are on one side of the Galactic Chart—
you'll eventually have to travel the length
of the galaxy to get them. (Too bad you
can't just go over the edge for as little ener-
gy as a single sector.) The solution is to get
them before they can move. When you
have a choice, get the enemy on the edge
of the galaxy rather than the enemy one
or two sectors in from the edge.

27. If you're having a hard time catch-
ing or blasting an enemy, it’s possible to
get a different enemy (or enemy strategy)
by leaving the sector and coming back im-
mediately, or later in the game. Some pur-
ists may find this a form of cheating. Use

ATARI 8-BIT EXTRA

it at your own discretion, and realize that
you will use extra energy to do it.

28. Don't get blasted with less than three
sectors of Zylon starships. Sure, no star-
bases can be destroyed, but you can be!
You're always two shots or less away from
destruction— one for your shields, and one
for you.

R I B

|

L e E G T

Figure 4.

Using checkerboard jumping, you can get to the
other side of the galaxy and clear several sectors,
too. Do it in this example by traveling left to right
(toward the starbase in the upper left), through the
nearby sectors with 4, 3, 2, 4, and 3 Zylon star-
ships.

Miscellaneous Strategies
and Variations.

1. Various strategies for destroying all
enemy sectors on the Galactic Chart can be
used. Generally, start in one area and try
to eliminate all sectors. Then, gradually
move through other enemy sectors while
travelling toward the starbase that will ap-
parently be surrounded. Of course, if the
base is surrounded, a more defensive strate-
gy is needed to save it (see “Commander
Mission,” #1 for a specific application.)

2. Change a 4-enemy sector to a 3- or 2-
enemy sector, to help them move together
faster if you don’t have time to clear the sec-
tor. Generally, kill only the one or two Zy-
lon starships that first appear. Don’t wait too
long for them to get to you.

3. Learn the keyboard positions by feel,
rather than by sight. Do this at least for the
F, G and H keys, as they’re used most often.

4. Learn to steer with the joystick using
one hand, so your other hand can work the
keyboard. This will help in positioning in
the Galactic Chart, Long-Range Scan, and,
sometimes, in front and aft views. It
shouldn't be necessary to do this for very

ATARI 8-BIT EXTRA

much of a game—just some parts of it.

5. If the Galactic Chart is poorly arranged
or your ship is damaged very quickly, you
can always press START. This may be con-
sidered a form of cheating, but we all tend
to do better with positive feedback and
success.

6. If a series of consecutive games is quite
hard to win, little change in enemy strate-
gies or destructive resistance will occur
upon pressing START or SYSTEM RESET.
You may have to turn off the computer for
a few seconds and try again that way.

7. If you get tired of regular play, try some
variations in game play and goals. Can you
complete a Novice game without any
shields? Can you earn more than a Lieu-
tenant Class 1 this way? And how many
enemy can you destroy in the other levels
without dying?

8. Once you've made Star Commander
Class 1, you can try for the most games in
a row with that rating. Can you triumph
in fourteen consecutive games without quit-
ting in the middle or getting destroy-
ed?

9. The game can be made into a 2-play-
er game. One player uses the joystick and
calls out commands for the other to carry
out on the keyboard. The commands could
be “Galactic Chart,” followed soon by “Hy-
perwarp—front view.” This is good train-
ing for an inexperienced player, who can
control the keyboard while watching and
learning.

10. Reread the instruction manual. You'll
probably learn many more details that you
missed in your first reading.

Commander Mission.

1. In Commander level, an effective
strategy is to destroy all the four-Zylon-
starship sectors you can before a starbase
is surrounded. This works well because
the other enemy will move more easily to
surround the starbases. But four-Zylon-
starship sectors move so seldom that they’ll
almost always be in the same general area
where they started. By eliminating them
early, you'll make many parts of the gal-
axy free and clear, and the enemy will be
grouped for easy travel from sector to sec-
tor on little energy.

2. It's possible to earn Star Commander
Class 1 and have a starbase destroyed by

you or the enemy. Don't give up after one
is lost, but don’t plan on the top rank after
the loss of two!

3. It’s also possible to complete a game
without docking. Your energy level can get
very low, so be careful. You're almost as-
sured a top ranking this way.

4. It is possible to be destroyed and earn
a Star Commander Class 1 rating. Very few
enemy are usually left alive, and your
shooting during the game was otherwise
superb.

5. The last sector is usually the most dif-
ficult to clear. It may take several attempts
at Commander level just to complete.
Sometimes there will only be one ship left
to destroy before your own demise.

Conclusion.

If you seem to be in a rut in an advanced
mission and can't get any high scores, try
an easier mission! By practicing in the low-
er games, you can improve some of your
skills. On returning to the harder levels,
you’ll probably do better. And don’t think
that you'll still be as good next month as
you are now. You're going to have to warm
up or keep practicing to maintain your
skills and ratings.

Don't be afraid to experiment. After all,
Star Raiders is only a game. And, unless
you have a winning streak going, it’s okay
to try some of these ideas and incorporate
them into your overall game play. Or, per-
haps you want to see if you can improve
your aim in aft view, or make some im-
provements in docking by going back and
forth between starbases. If you get blown
up or run out of energy, press START and
keep flying! &

ANALOG COMPUTING 87

Attention
Programmers!

ANALOG Computing is interested in programs, articles, and software review sub-
missions dealing with the Atari home computers. If you feel that you can write as well
as you can program, then submit those articles and reviews that have been floating
around in your head, awaiting publication. This is your opportunity to share your knowl-
edge with the growing family of Atari computer owners.

All submissions for publication, both program listings and text, should be provided
In printed and magnetic form. Typed or printed copy of text is mandatory and should
be in upper and lower case with double spacing. By submitting articles to ANALOG
Computing, authors acknowledge that such materials, upon acceptance for publica-
tion, become the exclusive property of ANALOG Computing. If not accepted for pub-
lication, the articles and/or programs will remain the property of the author. If submissions
are to be returned, please supply a self-addressed, stamped envelope. All submissions
of any kind must be accompanied by the author’s full address and telephone number.

For those of you who are sincerely interested in the rules and regulations for publica-
tion, we've taken this opportunity to print our guidelines for authors. See page 128 of
this book for everything you'll need to know.

Send your programs and articles to:
Editor, ANALOG Computing
PO. Box 23, Worcester, MA 01603.

il o

Y

48K Cassette or Disk

by David Plotkin

Pastels is fun to look at. It’s relaxing, putting fifteen pas-
tel colors on-screen at once, in ever-changing patterns.

As detailed below, several special PROCedures were
used to speed up the graphics. Action! has become the
language of choice for many serious programmers, being
considerably easier than machine language, and outstrip-
ping BASIC’s performance.

Pastels is written in graphics 11, the 15-color mode avail-
able only with the GTIA chip. To understand how the spe-
cial routines work to speed up the display, you must know
something about how colors are displayed in graphics 11.
Each byte on the screen is broken up into two halves (or
nibbles), with one half containing the lower 4 bits (0
through 3), and the other half containing the upper 4 bits
(4 through 7).

The 4 bits in each nibble can make up a total of sixteen
different on/off combinations, thus creating the sixteen
colors. Further, since each byte is broken into halves, the
first byte on each line corresponds to the screen’s x-coor-
dinates 0 and 1, with the second byte holding 2 and 3,
and so forth.

Byte array colors contains sixteen numbers, which cor-
respond to the sixteen bit-patterns available in each nib-
ble, from all bits off (0) to all bits on (255). Seventeen, for
example, is the smallest bit in each nibble (0 and 4) on;
all others off.

ATARI 8-BIT EXTRA

GRAPHICS

PROC Gr11Init reads the starting address of each screen
line into an array of cardinal numbers (CARD), for later
reference.

PROC Plot11 actually plots points on the screen much
faster than does the system PLOT. This is because the first
is a specialized routine, which will essentially only work
in graphics 11. Three byte arrays are declared, and they're
all important.

The first, tline, will be equated to the y-element of CARD
array Line, thus pointing tline to the on-screen line we
wish to change.

We have mask and mask2 as bitmasks. The first element
of mask corresponds to all the lower nibble bits being on,
and the higher nibble bits off. The second element is just
the reverse (all high nibble bits on, all lower nibble bits
off).

The bitmask mask2 just reverses the order of mask’s ele-
ments. In the equation at the end of this PROCedure, the
tline(x RSH 1) term determines which byte on the chosen
line corresponds to the chosen x-coordinate. Remember:
each byte contains two x-coordinates, so it’s necessary to
divide x by 2, to see which byte to modify.

The RSH operation divides by 2 much faster than does
the built-in divide routine. The first term— (= = &mask
(x&1)) — takes the byte in question and turns off all bits
on the half of the byte to be modified, by ANDing the byte
against the mask element.

The element of array colors containing the color you

ANALOG COMPUTING 91

lﬁl Pastels continuea

wish is then ANDed against the mask2 element, to turn
off all bits in the color byte in the half of the byte which
is not being modified.

Finally, these 2 bytes (each with an empty half) are ORed
together, to produce the modifed byte.

The balance of the PROCedures don’t do anything par-
ticularly remarkable, so I won't expand on them. But look

over this short demonstration of Action!’s power for your-
self. &

David Plotkin, with his Master’s degree in Chemical En-
gineering, is a Project Engineer for Chevron U.S.A. He pur-
chased his Atari in 1980 and is interested in programming
and game design, as well as word processing.

Listing 1.
Action! listing.

CHECKSUM DATA
'[4D D7 45 F1 31 EC 1

MODULE; PASTELS by David Plotkin

; written in ACTION! from 055
BYTE ARRAY Colors=[8 17 34 51 68 85
182 119 136 153 1768 187
284 221 238 2551
CARD ARRAY Line(192)

PROC GrilInit()
;jInitialize Graphics 11
CARD loop,scrn=88

GRAPHICS(11)

FOR loop=8 to 1921

$21]
Linetloop)=scrntd46¥loop

oD

RETURN

PROC Plotii{BYTE xX,y,clr)

;Plot a point using color masks and

jarrays

BYTE ARRAY tline,mask=[15 2481,
maskz=[248 151

tlinezLinef{y)

tline(x RSH 1)==&mask(x&1)%
tcolorsiclrl&maskz (x&11)

RETLURN

PROC Drawli¢(BYTE x1,yi,x2,clr)

:braw a line in Graphics 11

BYTE 11,xx1,xx2

IF x1»xZ then xXxXZ=x1 xx1=x2
ELSE xXxX1=X1 Xx2=Xx2

FI

FOR 11=xx1 to xx2Z

DO
Plotiifll,yi,clr)

oD

RETLURN

PROC Main ()
;The main driver
BYTE z=I[81,i,y=[8]1,atrct=77
GrilInitQ
p0 atrct=a
FOR i=1 TO 79
DO z=z+1
IF z>15 THEN z=1 FI
DPrawliti,y,?79-I,z)
DPrawii(i,1%98-y,79-1i,2)
y-y+i
IF y>198 THEN y=8 FI

92 ANALOG COMPUTING

oD
FOR i=1 TO 79
DO z=z+1
IF z»15 THEN z=1 FI
COLOR=z
PLOIl(i,y) DRAWTOD (79-1,1%8-y)
=y
IF y>196 THEN y=8 FI
oD
oD
RETURN

ATARI 8-BIT EXTRA

48K Disk

by David Castell

CGM—Castell’s Graphic Manager—is similar to the
ST’s GEM, in that it acts as an interface between the
programmer and the operating system (OS), enabling the
programmer to access such features as windows, icons and
trackers. One of the many differences is that GEM works
with a bit-mapped screen (similar to graphics 8), but CGM
is designed to work with the standard graphics 0 screen.

Typing it in.

Listing 1 is the BASIC data used to create your copy of
CGM. See the M/L Editor on page 4 for typing instruc-
tions. You should create the CGM file under the name AU-
TORUN.SYS.

To load CGM, insert the disk containing the AUTO-
RUN.SYS file into drive 1. Turn your computer off and then
back on again. After CGM loads in, a message indicating
it'’s in memory appears at the top of the screen.

Listings 2, 3, 4 and 5 are examples of BASIC programs
using the features of CGM. Listing 2 demonstrates the use
of windows and overlaying.

Listing 3 is an icon editor. Move the hand tracker within
the large rectangle and press the joystick button to turn
a blank square white, or vice versa. Two icons, one nor-
mal and one reversed, are displayed to the right of the edit-
ing square. Press the START key at any time to display data
that can be used to create an icon or tracker. When you
return to the editor, the editing square will be blank again.

ATARI 8-BIT EXTRA

GRAPHICS

Listing 4 is actually a subroutine that starts at Line
30000. It can be incorporated into any of your own pro-
grams that use a graphic 0 screen. This subroutine is ac-
tually a mini-DOS that will let you: get a directory, delete
files, lock/unlock files, rename files and format disks. This
program shows how windows and trackers can be integrat-
ed to make menu selection a lot easier.

Listing 5 is an advanced memo pad. The features of
CGM make using it enjoyable and easy. The icons have
been placed in windows, so they can be moved around
or removed without disrupting the contents of the screen
(memo pad). All these icons were created with the icon
editor (Listing 2). The first is a clock. If you select this
option, a menu will pop up, giving you the option of set-
ting the clock or displaying it. If you display it, all activi-
ty stops so you can see the time. When you're finished
with the clock, press the joystick button to go on.

The second icon is a calculator. If you select this, a cal-
culator pops up. It’s very simple and performs calculations
in the order they’re entered, not the order they “should”
be in (i.e., multiplication before addition). Just move the
hand over the keys and press the joystick button to hit a
key.

Most of the keys are self-explanatory. The X is the OFF
key. When you're finished with the calculator, press OFF
to remove it. The R is the square root key; the C clears
the number currently displayed on the calculator’s screen;
and the A is All Clear. This clears the display, operation
and memory. The % key is designed to work a special way.

ANALOG COMPUTING 93

|ﬁ' CGM continued

If you enter 5+7%, the answer will be 5.35. It’s useful for
figuring sales tax. If you enter 7%, the answer will be 0.07.

The third icon is a disk, for a disk loader routine. When
you select this option, a large window is displayed, show-
ing the names of all files on the disk. Move the hand over
the one you want to load and press the button. It will be
loaded and run automatically. This routine will only load
programs that have been saved to disk.

In the fourth window is the word MEMO (I honestly
couldn’t think of an icon to represent this function). If you
select this option, a menu will pop up. You may choose
to edit, load, save or print the memo. The editing func-
tion removes all icons, leaving you the whole screen to
edit with normal editing keys.

To exit the editing function, simply press the ESC key.
The memo print function is not very advanced. It doesn’t
support any of Atari’s special graphics characters (which
is just as well, because most of them are redefined as icons
and trackers).

At any time during the operation of the last two pro-
grams, you may point the tracker to the top corner of the
window you're currently selecting from and press the but-
ton. The border of that window will turn to a color. Now,
move your tracker to any spot on-screen and press the but-
ton again. The window will instantly be moved to this new
position, and the border will appear white again.

The MAC/65 source code of CGM is available on the disk
version of this book.

Windows.

A window is an area of the screen with a border around
it, that you can print and input information to and from.
CGM supports up to five independent windows, which can
overlap to maximize space. When you print to a window,
it automatically overlaps the other windows.

Creating a window.

When you first create a window, it will appear as a thick
white border around a blank area. The contents of the
screen underneath the window are stored in memory and
restored when the window is removed. To create a win-
dow, type in A =USR(39936,N,X,Y,C,R) —where: N is the
number of the window (from 1 to 5); X is the column of
the top corner of the window; Y is the row of the top cor-
ner of the window; C is the number of columns in the win-
dow; and R is the number of rows in the window.

Removing a window.

Always be sure to remove a window before you create
another with the same number. To remove a window, type
A =USR(39939,N)—where: N is the number of the win-
dow you wish to remove.

Moving a window.

At some point, you may want to move a window and
its contents to another position on-screen. Instead of re-
moving the window, creating it at another position and
reprinting the contents, you can use this special window-
moving routine. A = USR(39942,N,X,Y)— where: N is the
number of the window you wish to move; and X,Y is the
new position of the top corner of the window.

Overlapping.

Creating, removing, or moving a window does not af-

94 ANALOG COMPUTING

fect the position or contents of other windows, but does
affect the order in which they overlap. After executing one
of these three commands, the windows will now overlap
in the order of their creation, with the first window on
the bottom of the stack and the last on the top. The ex-
ception is the move function, in which the window moved
always appears on top.

Using a window.

After creating the window, you're faced with using it.
It’s actually very easy: after creating a window, you have
a new device Wn:, where n is the number of the window
(1 to 5). As with all other devices, you must use the OPEN
command to read or write. OPEN #aexp,aexp2,0,”Wn:" —
where: aexp is IOCB number (1-4) and aexp2 is a code
number to determine input or output operation (4=input,
8=output, and 12=input and output).

The OPEN command sets the window input/output po-
sition to the top corner. After input or output you should
use the CLOSE command (CLOSE #aexp).

As normal, your input/output commands are:

PRINT #aexp — e.g., PRINT #1;”OPTION 1”. This
prints “OPTION 1" at the current window I/O po-
sition.

INPUT #aexp — e.g., INPUT #1;A$. This inputs all
characters from the current window I/0 position to
the end of the row.

PUT #aexp — e.g., PUT #1,65. This sends charac-
ter 65 (A) to the current window I/O position.

GET #aexp — e.g., GET #1,A. This gets the num-
ber of the character at the current window /0 posi-
tion and stores it in the variable A.

Note that PRINT causes the window to be instantly
redrawn to show the change in its contents, but this is not
the case with the PUT command. With PUT, the window
is redrawn when the RETURN character (155) is sent to
the window.

If you print more rows than are available in a window,
the contents will scroll up one line. If you INPUT past
the end of the window, you will get an error 136 (End of
File). Each line sent to the window should end with a RE-
TURN, because it won't wrap around to the next line with-
out one. For example, if you send a 15-character line to
a 5-character wide window, only the first 5 characters are
displayed; the rest are ignored. Therefore, if you INPUT
that row, only the 5 characters actually displayed will be
entered.

If you want to have the contents of a window in a string,
so you can send it all with one print statement, you'd run
into the problem. There’s no way you can put the RETURN
character in the middle of the string, without going into
complex string manipulation. Here, you can use CTRL-
PERIOD instead of RETURN in the string.

WINS="ROW 14ROH Z&ROH 3"
PRINT #1;HWINS

CGM keeps track of what row and column within the
window the next character will be read from or written
to. I've referred to this as the “current window 1/O posi-
tion.” Since INPUT reads from the current character to the
end of a row, you'll need a way to position this pointer

ATARI 8-BIT EXTRA

to the spot you want to read from (or, in the case of PRINT,
write to). You're able to do this, and more, through the
XIO command. It can be used like the Position X,Y state-
ment in BASIC. The difference is that, in the case of the
XIO command, positioning to point 0,0 would be the top
corner of the window, not the screen.

There are actually three different XIO functions. All of
them change the window I/O pointer, but two perform ex-
tra functions.

XIO C,#D,X.Y,”Wn:”—where: D is the channel number
(1-4).

(1) Position for next I/O to window—where: C <
100 and C = 12; X=column of window; Y=row of
window; and N=number of window (1-5).

As an example, XIO 50,#1,0,0,”W: " indicates that the
next string of characters sent to window 1 (no n means
1) will start at the top corner of the window.

(2) Position for next I/O with window and redisplay
the contents of window. Normally, the only way to
cause an overlapped window to overlap the other win-
dows is to send data to it. Unfortunately, this may
cause unwanted scrolling of text in the window. How-
ever, this XIO command is similar to the first, except
this one will redisplay the contents of window n, caus-
ing it to overlap the others.

Where: C = 100 and C < 200; X=column of win-
dow; Y=row of window; and N =number of window
(1-5). So, if window 2 is overlapped by other windows,
XI10 100,#1,0,1,”W2:” will cause window 2 to overlap
other windows. The next I/O with window 2 will start
at the second row, first character.

(3) Redisplay contents of a window, position for next
I/O with window (see 2, above) and reverse (black
print on white square) all of the characters in a desired
row—where: C = 200 and C < 256; X=column of
window (reversing always starts from the beginning
of a row, regardless of the value of X); Y=row of win-
dow; and N=number of window (1-5).

XIO 200,#1,1,1,”W2:” — the characters in row 2 of
window 2 are reversed. The next I/O with window
2 will start at the second row, second character.

Note that the characters are reversed only on the screen
display. Therefore, when the window is redrawn (by
PRINT, Create Window, Remove Window, Move Window,
XIO 100-199, XIO 200-255), the row is returned to nor-
mal. Also, if you INPUT a row that’s reversed on-screen,
the string input is not reversed.

Also, PUT, GET, INPUT, OPEN, CLOSE, XIO 12-99 do
not erase the reversed row.

Take the following window as an example:

ABC 123
DEF 456
GHI 789

(1) OPEN #1,12,0,"W:"” — Sets up for input/output
to window 1. The window I/O position is set to top
corner.

(2) XIO 250,#2,4,1,”W:" — Reverses the second row,
sets window U/Q position to column 5, row 2.

ATARI 8-BIT EXTRA

(3) INPUT #1,A$ — Inputs from window I/O posi-
tion to end of row. A$ now contains 456.

(4) XIO 150,#2,0,2,“W:” — Redraws the window,
causing the second row (which was highlighted in the
second step) to be returned to normal. The window
I/O position is set to the column 1, row 3.

(5) PRINT #1;”XYZ"” — The “XYZ” prints over top
of “GHI".

(6) PRINT #1 — The top row ABC 123 scrolls off
the top of the window, and the last row of the win-
dow is blank.

(7) CLOSE #1 — You should always close a channel
when you're done with it.

Note: XIO commands cannot use a channel already open
for I/0. That’s why the XIO commands in steps 2 and 4
use channel #2.

Icons.

To CGM, an icon is just a picture two characters wide
by two characters high. A call to CGM will put the data
of the four characters of the icon into the RAM character
set used by CGM, starting at the character you select
(ATASCII character value). You should probably choose to
put your picture where the Atari special graphics charac-
ters normally are (characters 0-31), leaving the letters and
numbers alone. However, the tracker uses characters 0-8,
so you should also avoid these if you're using the tracker
routines.

For example, if you chose character 9, your icon will be
made up of characters 9-12. Characters 9 and 10 will be
the top half of the icon, and characters 11 and 12 will be
the bottom half. Therefore, to print your icon on the
screen, print characters 9 and 10 (CTRL-I and J) on one
row, and characters 11 and 12 (CTRL-K and L) on the line
below.

The data for each character of the icon consists of eight
numbers, the binary representations of each row of the
character. The data is set up the same way as the icon is
drawn—the top two characters, followed by the bottom two
characters. If you're familiar with creating character sets,
this set-up isn’t new. But, even if you don’t understand how
to set up character data for the character set, you can use
the icon editor program (Listing 3) to automatically cre-
ate data statements (or strings) that can be used with calls
requiring icon or tracker data.

To put an icon into the character set, enter A=USR
(39951,N,ADDR), where ADDR is the address of the icon
data. If your icon data was in a string (such as ICONS$),
ADDR would be ADR(ICONS).

N is the number (ATASCII character value) of the first
of the four characters whose character data will be replaced
by the icon data.

Tracker.

A tracker is actually a movable icon, used mostly as a
pointer. You’re probably most familiar with the arrow
tracker moved by a mouse on both the ST and the Macin-
tosh, or maybe the hand moving around in the “Construc-
tion Set” series from Electronic Arts.

The default tracker built into CGM is a hand, but you

ANALOG COMPUTING 95

|ﬁ| CGM continued

can change this if you want. The pointer that points to the
location of the default tracker can be found at 39962 and
39963. For example, add the following line to the Memo
Pad program (Listing 5):

85 TRACKHI=INT(ADR(CLOCKS%)/256) : TRACKL

0=ADR(CLOCKS)-TRACKHI¥256:POKE 39962, T
RACKLO:PDKE 39963, TRACKHI

This causes the clock to be used as the pointer, instead of
the hand.

Built-in tracker routine.

The built-in tracker routine works independently of the
BASIC program. This routine reads joystick 1 and moves
the tracker in the corresponding direction on-screen. To
start the tracker, enter A=USR(39954).

After you start the tracker routine, your program really
doesn’'t have to do anything but wait. If you wish to check
where the tracker is at any given time, try: X=PEEK (4),
then Y=PEEK (5).

If you wish to disable joystick control of the tracker, lo-
cation 39960 is the tracker mask. POKE 39960,1 disables
joystick control, and POKE 39960,0 enables control.

If you're finished with the tracker routine and wish to
stop it: A=USR(39957). This will stop the routine and re-
move the tracker. If you wish to put it back, you can just
do another A=USR(39954), and it will appear at the same
spot it was removed from.

The following program is a sample implementation of the
tracker routine:

18 GRAPHICS B:POKE 752,1:? CHRS5{125)
Z8 A=USR(I{3I9954)

38 IF STRIG(B)Y THEN I8

48 A=USR{3I2957) : X=PEEK(4) : Y=PEEK (5)

56 COLOR 168:PLOT X,Y
60 GOTO 2@

This routine will allow you to use the joystick to move
the tracker around. Line 30 waits until the joystick button
is pressed. When it is, the tracker’s removed and a reverse
square is placed at the spot where the tracker was point-
ing. You must remove the tracker before altering the screen
under it. Otherwise, when the tracker moves again, the
screen beneath the tracker will return to the way it was
before the tracker was moved over it.

Your own tracker.

As mentioned above, if you wish to use this same track-
er routine with your own tracker, just change the pointer
at location 39962 and 39963 to point to your tracker.

However, if you wish to create your own tracker
routine—or use the tracker for something else (such as a
controlled cursor, like the RENAME function of Listing 4,
or the SET CLOCK function of Listing 5)—here are a few
calls you can use.

To position a tracker: A=USR(39945,addr,x,y), where
addr is the address of the tracker data (set up in the same
manner as icon data); x is the horizontal position of the
tracker (0 to 318); and y is the vertical position of the tracker
(0 to 190).

Note that CGM has built-in roll-around routines. If the
tracker goes off the screen, it appears on the other side.

Also, the tracker automatically removes itself from its
old position before locating itself to a new position. There

96 ANALOG COMPUTING

fore, this is the only call you need to make inside a loop
that moves the tracker.

Avoid altering the contents of the screen near the tracker.
If characters are printed over the tracker, these will dis-
appear when the tracker is moved.

If you wish to use the built-in hand tracker, just don’t
include addr within the USR call. For example: A=USR
(39942,x,y) will position the hand at coordinates x,y.

You can also use this Move Tracker routine to position
the tracker being run by the built-in tracker routine called
by A=USR(39954) within your program. For example, in
the mini-DOS example (Listing 4), when entering the new
name of a file to rename, the tracker mask is set (POKE
39960,1) and A=USR(39942,x,y) is being used to control
the movement of the hand, so it can be used as a cursor.
When the name is entered, the tracker mask is cleared
(POKE 39960,0), and the joystick once again takes con-
trol of the tracker.

If you don’t enter any x- or y-coordinates with the
USR(39942), the tracker will be printed at the last x,y-
coordinates (for example, A=USR(39942) will display the
icon at the last x,y-coordinates). So, if you need to alter
the text below the tracker in your own tracker routine, just
remove the tracker, alter the text and use A=USR(39942)
to return the tracker to where it was before removal.

Removing a tracker.

When you're finished with the tracker, you'll probably
want to remove it from the screen. To do so, enter
A=USR(39948).

This is not to be confused with A=USR(39957) men-
tioned earlier, which removes the tracker and stops the
built-in joystick tracker routine.

The only integration between the windows and tracker
consists of the tracker “getting out of the way” while the
window is updated. However, as mentioned earlier, if you
wish to alter the text beneath the tracker, you must first
remove the tracker, alter the text and place the tracker back
on-screen.

Reading tracker position.

Anytime you use the above tracker routines, locations
4 and 5 will contain the tracker’s position on the screen.
Location 4 is the column reading (0-39), and location 5
is the row reading (0-23).

Whatever shape your tracker is, if it’s to be used as a
pointer, its point should be at the top left of the icon, be-
cause the built-in roll around and the values in locations
4 and 5 assume that this is the case.

Here's the same application of the tracker routine shown
earlier. This time, it doesn’'t use the built-in tracker rou-
tine, but a custom tracker routine for the Atari Touch
Tablet.

18 GRAPHICS 18:POKE 752,1:? CHR5({125)

28 IF PADDLE(B8)Y=228 AND PADDLE(13=228

THEN 28

I8 TH=PADDLE(B)*(3IZ28/228) :TY=132-PADDL
EC1)®*(192/228)

48 AZUSRI{I9945,TH,TY)

58 IF STICK(8)=15 THEN 28

60 AZUSR(I9948) :X=PEEK({4) :Y=PEEK (5]}

78 COLOR 128:PLOT X,Y
86 GOTO 26

ATARI 8-BIT EXTRA

To use it with the Koala Pad, just delete the 192- in
Line 30.

Special notes.

Location 39961 contains the character (internal character
set) with which window borders are drawn. The default
is 128, a solid white square. You can change this by POKE-
ing 39961 with any character.

For this very reason, character 123 of the RAM charac-
ter set used by CGM is changed from a “spade” to a solid,
colored square, using artifacting. This color will proba-
bly appear green or blue, but the color varies between sys-
tems. Whichever it is, the reverse of this character (251)
will appear as the other color (blue or green).

Since this character is only in the RAM set, you must
make sure this is the character set being used. The first
tracker or icon routine called automatically selects the
RAM set. However, if you want colored borders before you
make one of these calls (or if your program doesn’t use
trackers), you must perform a POKE 756,152 to use the
RAM character set.

Another special character is character 255. If you POKE
location 39961 with 255, no border will be placed around
the window, causing the contents of the screen around the
window (where the border normally is) to be left “as is.”
Changing location 39961 means that all borders drawn
from that point on will appear with the new character. The
Window Create, Remove and Move routines will cause the
borders of all windows to be redrawn with the new bor-
der character.

If none of these routines are used, only the windows
you PRINT to—or use an XIO (above 100) command on—
will be redrawn with the new character. In the mini-DOS
and Memo Pad programs, when you press the button with
the tracker pointing to the top corner of the window, lo-
cation 39961 is POKEd with a 123 and an XIO 150 is per-
formed.

This only changes the color of the border of the one win-
dow. If the subsequent move window routine was execut-
ed before location 39961 was changed back to 128, all the
windows on the screen would be redrawn with a colored
border, instead of the usual white one.

It should be noted that this same technique cannot be
used with the no border (character 255) option. For the
no border option to be invoked, it must be placed before
a Window Create, Remove or Move command. These three
commands cause the contents of the screen behind the
borders to be restored and then the new borders are
redrawn—or in this case, not drawn.

Whenever a window is created, the contents of the
screen behind the window and the contents of the win-
dow are stored just below the top of memory pointer (lo-
cations 741 and 742). When CGM initializes (after it loads,
or any time SYSTEM RESET is pressed) these pointers are
set to the first free location below CGM.

However, whenever a graphics command or a channel
is opened to device E: or S:, this pointer is set to just be-
low the display list, which is also the end of CGM. This
means that—if you use a graphics command or open to
E: or S:, then create a window —the contents of the win-

ATARI 8-BIT EXTRA

dow and the screen behind the window are stored right
over CGM, causing the computer to lock up.

You’ll probably notice that the two sample tracker rou-
tines shown earlier use a graphics command. Also, the
icon editor opens a channel to S:, so the graphic charac-
ters display properly.

These programs get away with this, because they don't
use any windows. However, if you ran any of these pro-
grams and then ran a program that did use windows, the
computer would lock up. To get around this problem, press
the SYSTEM RESET key when you run a program with
windows. If you wish to use the graphics statement in a
program with windows, just reset the top of memory point-
er after the graphics statement. For example:

%f).! MEMTOPLO=PEEK(741) : MEMTOPHI=PEEK (74

280 GRAPHICS © (or OPEN #1,12,8,"“E:" or

OPEN #1,12,8,'"5:'")
36 POKE 741 ,MEMTOPLO:POKE 74Z,MEMTOPHI

This will solve any problems you might encounter.

Since there’s no real integration between windows and
trackers, the task of integrating these two features in a pro-
gram is yours. However, I've included several all-purpose
subroutines that integrate windows and trackers, to per-
form specific tasks.

The first can be found in the mini-DOS program (List-
ing 4) at Line 31000, and in the Memo Pad program (List-
ing 5) at Line 25000. This subroutine is designed for menu
selection. Before entering the subroutine, you must cre-
ate a window, print the different options to the window,
start the tracker routine and set the following variables:
N =number of the window; X,Y=top corner of the win-
dow; DX =Delta X (number of columns); and DY=Delta
Y (number of rows).

Lines 25030-25050 are the heart of this subroutine. This
loop waits for the user to press the joystick button and
reverses the window row the tracker is on, or erases this
highlight if the tracker is outside the window’s border.

Line 25070 checks to see if the button was pressed at
the top corner of the window. If it was, Lines 25080-25140,
(the Move Window routine) are executed.

When the subroutine is finished, the variables X and
Y will hold the top corner of the window (if the window
was moved, your program might need to know), and the
variable CHOICE will contain the number of the option
selected. This result can be used in statements like: ON
CHOICE GOTO OPTIONT1, OPTION2, OPTIONS, . . .or ON
CHOICE GOSUB OPTION1, OPTION2, OPTIONS, . . .

Another subroutine is the Input String subroutine start-
ing at 30000 in the Memo Pad program. This routine uses
the tracker as a cursor to enter a string inside a window.
The routine is used to set the clock and enter the filename
in the save memo option.

The routine needs IOCB #2 to be opened for input/out-
put (OPEN #2,12,0,”Wn:”) to the proper window. It also
requires that the variables N, X and Y to be set in the same
manner they were in the above subroutine, as well as the
variable LEFT, which should contain the column of the
window the entry should start in.

For example, if the prompt in the window was File-

ANALOG COMPUTING 97

ﬁ' CGM continued

name?, entry should start in column 9, which is the first
column to the right of the question mark; therefore, LEFT
should equal 9.

This subroutine returns the string that was entered in
the variable NAMES$, which should be dimensioned at the
start of your program. If you were to enter a number, you
would use the VAL command (NUM =VAL(NAMES$)), to
get the number into a numeric variable.

Another subroutine worth mentioning starts at Line
10000 of the Memo Pad program. This routine creates a
window the height of the screen, and reads all the names
of files on the disk in drive 1, printing them to the win-
dow. It then uses the subroutine at Line 25000 to allow
the user to select one of the filenames.

It proceeds to get the name into the proper format for
disk I/0O (D:FILENAME.EXT) and returns the final name
in FNAMES$. This subroutine requires that the strings
FNAMES$ and EXT$ be dimensioned at the beginning of
the program.

All these subroutines require certain entry point varia-
bles (CL, OP, TRACKER, etc.) See the first couple lines
of the Memo Pad program for these variables.

Your first step in learning how to use CGM should be
to run the four sample programs, so you can see exactly
what CGM can do. Then look at the listings, to see exact-
ly how we're using CGM to do it.

When you start programming with CGM, use as many
routines from these four samples as possible, as well as
creating your own subroutines to incorporate into other
programs. You’'ll never run out of uses for CGM in your
programs, because it has the ability to make any program
user-friendly. &

David Castell is currently attending the University of
Waterloo in Ontario. Although this is David’s first program
published in a magazine, he’s also written “P.S. Interface”
and “The First XLent Word Processor” for the 8-bits and
“P.M. Interface” for the ST. All three are available from
XLent Software.

The two-letter checksum code preceding the line
numbers in Listings 2 through 5 is not a part of the
BASIC program. For more information, see BASIC
Editor II, in ANALOG Computing’s issue 47.

Listing 1.

1888 DATA 255,255,133,142,128,143,1064,
216,1606,0,104,104,153,169,144,260,9%333
1818 DATA 192,5,144,246,32,235,150,32,
73,143,76,251,156,164,216,104,3749
1626 pATA 104,141,1069,144,32,235,156,3
2,10,146,76,251,150,216,104,32,7629

98 ANALOG COMPUTING

1836 pATA 235,1560,169,0,141,233,145,32
,162,144,164,1064,141,1065,144,141,8511
1648 DATA 210,142,32,137,145,164,1064,1
53,47,145,104,104,153,48,145,32,5692
1656 DPATA 196,144,169,0,141,1069,144,32
,137,145,32,212,143,76,251,156, 9331
18608 DpaTA 36,33,54,41,36,0,35,33,51,52
;37,44,44,7,51,0,5526

ie7e DaTA 167,178,161,176,168,169,163,
é§8,1?3,151,1?4,161,15?,165,178,165,36
1686 DATA 12,141,23,143,165,13,141,24,
143,1606,4,185,219,142,145,88,7666

18356 DATA 280,192,35,144,246,176,3,32,
25%,255,169,22,133,12,169,143,8606
1ie6e paTA 133,13,32,165,150,169,08,168,
4,153,84,148,136,16,250,160,7627

iiie pATA 44,153,55,145,136,16,2568,32,
164,148,169,132,141,229,2,169,8619
1128 paTA 142,141,230,2,169,0,141,118,
144,96,173,118,144,201,45,176,8778
1138 DATA 248,32,58,144,32,8,145,32,71
144 ,173,229,2,56,229,208,7974

1148 DATA 141,114,144,173,230,2,229,20
9,141,115,144,32,8,145,173,114,80818
1156 DATA 144,56,229,208,141,116,144,1
73,115,144,229,209,141,117,144,173,261

2

1160 DATA 116,144,129,143,124,144,56,2
33,1,141,229,2,173,117,144,233,08

1178 pATA 6,141,230,2,32,34,145,173,19
8,146,240,3,76,226,144,173,9911

1180 DaThA 1069,144,141,233,145,32,1866,1
45,32,162,144,76,196,144,32,58,6085
1196 DaTh 144,32,25,144,173,114,144,13
3,2108,173,115,144,133,211,174,113,1384
12608 DaTA 144,160,0,177,208,145,210,20
0,204,112,144,144,246,32,84,144,8306
1210 baThA 32,96,144,202,208,235,76,71,
144,32,58,144,32,25,144,160,5692

1228 DaThA ©,173,25,156,201,255,240,48,
145,2068,200,204,112,144,144,248,4497
12306 pATA 174,113,144,2062,202,32,84,14
4,160,0,173,25,156,145,2068,172,9385
1246 DATA 112,144,136,145,208,262,2068,
237,32,84,144,160,0,173,25,156,8157
12506 DaThA 145,208,200,204,112,144,144,
245,32,71,144,76,192,145,174,111,25
1268 DATA 144,165,88,24,109,110,144,13
3,208,165,89,165,0,133,2069,262,9361
1270 DATA 48,25,165,208,24,1605,40,133,
208,144,244,230,2089,2068,240,238,6582
1280 DATA 112,144,238,112,144,238,113,
144,238,113,144,96,206,112,144,206,264
3

1298 DATA 112,144,2066,113,144,266,113,
144,96,165,268,24,1085,40,133,208,8997
1366 DaThA 144,2,230,2089,96,165,210,24,
109,112,144 ,133,210,144,245,230,3488
1%16 DATA 211,96,0,0,08,0,0,0,0,0,0,0,3
2,58,144,32,5613

1326 DATA 25,144,125,144,1206,145,173,1
14,144,133,210,173,115,144,133,211,2687

1
1330 DATA 174,113,144,160,6,177,218,14
5,208,200,204,112,144,144,246,32,2044
1346 DaTA 84,144,32,96,144,2682,288,235
,76,71,144,1606,0,185,55,145,8693

ATARI 8-BIT EXTRA

1350 DATA 205,233,145,2468,23,1408,1,145
,141,1069,144,32,137,145,32,119,6060
1368 DATA 144,172,1,145,32,2,145,204,1
18,144,144,225,96,160,0,185,8484

1378 DATA 55,145,240,23,140,1,145,141,
169,144,32,137,145,32,169,143,6949
1386 pATA 172,1,145,32,2,145,2064,118,1
44,144,228,160,0,185,55,145,8268

1398 DATA 240,23,1406,1,145,141,169,144
1 32,137,145,32,212,143,172,1,6577

1488 DATA 145,32,2,145,204,118,144,144
1228,96,08,152,24,105,9,168,5524

1418 DATA 96,174,113,144,169,0,133,288
,133,2069,202,48,243,165,208,24,1267
1428 DATA 169,112,144,133,208,144,243,
238,209,208,239,172,118,144,162,8,2796
1436 DaATA 189,109,144,153,55,145,266,2
32,224,9,144,244,140,118,144,96,1068
i448 DATH 0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6,0,1448

1456 DATH 0,0,0,0,0,0,08,0,0,0,0,0,0,0,
8,08,1450

1468 DATA 0,0,0,0,0,0,0,0,06,0,0,0,0,16
8,0,173,6468

1478 DATA 116,144,133,268,173,117,144,
133,2069,169,32,145,208,230,208,208,477
2

1486 DATA 2,230,121,145,116,146,289,16
5,268,2065,114,144,268,239,165,2089,5897
1496 DATA 265,115,144,2068,232,96,160,0
,2064,118,144,176,13,185,55,145,8661
15686 DaTA 2065,109,144,240,8,32,2,145,2
88,238,1608,255,96,162,08,185,269

1518 DATA 55,145,157,169,144,200,232,2
24,9,144,244,96,32,25,144,165,9021
1526 DAThA 268,24,165,41,133,208,165, 26
3,185,0,133,209,96,32,175,145,8552
1536 DATA 173,116,144,133,216,173,117,
144,133,211,174,113,144,160,0,177,479
1548 DaTa 216,32,234,145,145,268,200,2
04,112,144,144,243,32,84,144,32,9313
15568 DATA 96,144,202,2068,232,96,0,141,
1%7,146,41,128,141,8,146,173,8359

1568 DATA 197,146,41,127,201,96,176,12
;201,32,144,5,233,32,76,7,40891

1576 DATA 146,24,105,64,9,8,96,32,137,
145,192,255,246,21,32,119,6961

15868 DATA 144,160,0,185,55,145,205,109
,144,240,9,32,2,145,2064,118,7419

1598 DATA 144,144,240,96,173,118,144,5
6,23%3,9,141,118,144,2088,6,32,6695

16688 DATA 57,143,76,191,146,140,198,14
6,204,118,144,240,87,192,08,208,1686
1618 DATA 15,173,118,144,281,9,169,132
,13%,210,169,142,133,211,2068,15,1162
1628 DATA 185,53,145,56,233,1,133,2180,
185,54,145,233,0,133,211,185,935

1638 DATA 62,145,56,233,1,133,208,185,
63,145,233,6,133,209,1608,0,8456

1648 DATA 177,208,117,146,112,147,145,
210,198,2106,165,210,201,255,208,2,4857
1656 DATA 198,211,198,2088,165,208,201,
255,208,2,198,209,205,229,2,208,5023
1668 DATA 225,165,209,285,230,2,208,21
8,172,198,146,204,118,144,176,9,1940
16768 DATA 185,64,145,153,55,145,200,20
8,242,146,198,146,32,57,14%,172,858
16868 DATA 118,144,32,160,145,32,80,143
,173,118,144,2065,198,146,2608,239,3786
1698 DpATA 169,0,141,198,146,96,0,0, 165
»33,141,1069,144,201,6,144,6134

17688 DATA 4,104,104,1608,164,96,32,199,
146,32,137,145,192,255,2088,3,191

1716 DATA 160,178,96,173,1689,144,10, 16
8,169,08,153,70,148,153,71,148,7556
1728 DATA 166,1,96,189,65,3,133,33,168
,185,83,148,2406,10,169,0,6316

1738 pata 153,83,148,169,155,160,1,96,

ATARI 8-BIT EXTRA

32,140,147,173,83,148,205,113,90894
1740 DATA 144,144,3,160,136,96,160,0,1
77,210,72,236,82,148,173,82, 9583

1756 DATA 148,205,112,144,144,15,238,8
3,148,169,0,141,82,148,164,33,7200
1768 DATA 169,1,153,83,148,32,120,147,
184,96,72,189,65,3,133,33,40836

1776 DATA 32,140,147,173,83,148,265,11
3,144,144,3,32,189,147,1084,2081,93061
1786 DATA 155,240,4,281,96,208,19,32,2
35,158,32,212,143,32,251,158,331

17908 DATA 238,83,148,169,8,141,82,148,
240,15,174,82,148,236,112,144,338

1808 DATA 176,7,113,147,188,148,160,0,
145,210,238,82,148,173,109,144,757
1818 DATa 16,168,173,82,148,153,760,148
,173,83,148,153,71,148,1668,1,7597

1826 DATA 96,165,33,141,1689,144,160,168
,185,70,148,141,82,148,185,71, 8466
1836 DATa 148,141,83,148,32,137,145,17
3,116,144,24,109,82,148,133,2168,9031
1840 DATA 173,117,144,105,0,133,211,17
4,83,148,202,48,65,32,96,144,6828

1850 DATA 208,248,173,116,144,133,208,
173,117,144,133,2089,160,0,146,82, 9851
1866 DATA 148,206,83,148,32,162,147,16
5,208,197,2108,208,6,165,2089,197,4065
1878 DATA 211,240,17,172,112,144,177,2
88,160,0,145,208,236,208,208,231,5876
1880 DATA 238,209,208,227,169,32,145,2
i8,2060,204,112,144,144,246,96,32,1860
1898 DATA 199,146,32,137,145,165,42,20
5,112,144,176,3,141,82,148,165,8935
19608 DATA 43,265,113,144,176,52,141,83
,148,165,34,201,100,144,43,32,6352
1916 DATA 235,150,32,212,143,165,34,20
1,2080,144,28,32,175,145,174,83,9115
1926 DATA 148,262,48,5,32,84,144,288,2
48,168,0,177,208,73,128,145,9894

1938 DATA 268,200,204,112,144,144,244,
32,251,158,76,120,147,8,08,0,5092

1946 pATh ©,0,08,0,8,0,8,0,0,8,0,0,0,0,
212,146,7456

1958 pATa 236,146,241,146,56,147,238,1
46,249,147,76,104,148,160,08,185,702
1968 DATA 26,3,109,148,104,149,2406,5,2
00,200,200,208,246,169,87,153,3858
1978 DATA 26,3,169,89,153,27,3,169,148
,153,28,3,96,216,164,1708,6923

1986 DATA 41,1,288,14,173,26,156,141,1
34,149,173,27,156,141,145,149,9428
1996 DATA 208,8,184,141,145,149,104,14
1,134,149,224,2,144,13,164,141,7619
2000 DATA 20,151,184,141,19,151,104,16
4,141,18,151,173,18,151,2081,192, 9380
2018 DATA 144,13,2081,240,144,4,169,190
,208,2,169,08,141,18,151,173,8059

2020 DATA 20,151,16,12,169,61,141,19,1
51,169,1,141,28,151,2088,21,5370

2830 DATA 201,1,144,17,288,7,173,19,15
1,261,64,144,8,169,0,141,5785

2840 DATA 19,151,141,28,151,173,12,151
,240,3,32,08,149,169,1,141,5065

72850 DATA 23,151,141,12,151,208,23,104
,216,169,0,141,23,151,141,12,5888

2860 DATA 151,173,13,151,133,0,173,14,
151,133,1,76,67,150,169,152,6738

2078 DATA 141,244,2,173,18,151,141,17,
151,173,19,151,133,8,173,26,5270

2080 DATA 151,133,1,162,3,760,1,102,0,7
8,17,151,2082,208,246,165,9053

2890 DATAH ©,141,122,1508,169,46,56,229,
0,141,154,150,174,17,151,142,8588

2100 DATA 126,150,202,48,13,165,0,24,1
05,40,133,0,144,244,236,1,6133

2110 DATA 268,240,165,0,24,101,88,133,
0,141,13,151,165,1,1601,89,4162

2120 DATA 133,1,105,149,160,150,141,14

ANALOG COMPUTING 99

|ﬁ| CGM continued

,151,173,19,151,41,7,141,21 ,3857

2136 DQTQ 151 1?3 18 151,41,7,141,22,1
51,32,133,149,32, 206 149,76, 5376

2140 Dth 67, 159 169,48, 141 1?1 149,24,
1685,8,141, 1?? 149 159 B 141 7239

2150 DQTQ 172,149,1065,0,141,178,149,16
8,08,152,153,0,154,2600, 192 72 9068

2169 DQTA 144 248,162,090, 1?2 22 151,189
,255,255,153,8,154,189,255,255,5928
2176 DATA 153,8,154,232,224,24,176,98,
224,8,208,2,162,16,200,152,9115

2188 DaTA 41,7,2068,227,152,24,1085,16,1
68,208,220,172,21,151,136,48, 8885

2198 DATA 65,162,0,94,0,154,126,8,154,
126,16,154,232,138,41,7,51708

2260 DATA 208,241,138,24,165,16,178,22
4,72,144,232,176,225,141,15,151,1295
2210 DATA 41,127,133,4,169,0,133,5,160
1 3,6,4,38,5,136,208,2252

2228 DaTh 243,165,5,24,1065,152,133,5,1
73,15,151,48,6,169,0,141,3962

2230 DATA 43,150,96,169,255,208,248,14
2,16,151,1408,17,151,32,240,149,725
2248 DATaA 160,0,174,66,150,177,4,73,0,
23,0,154,157,0,154,232,6451

2256 DATA 2060,192,8,144,240,142,66,150
,174,16,151,172,17,151,96,0,6374

2260 DATA 169,64,141,158,150,166,0,148
,66,1508,162,0,177,06,32,136,5179

2276 DATA 150,232,200,192,3,144,245,16
6,40,169,0,141,22,151,177,08,6923

22806 DATA 32,136,101,156,55,151,158,23
2,2008,1592,4%,144,245,160,80,177,2940
22%6 DAThA B8,32,130,150,232,200,192,83,
144,245,169,0,133,4,169,08,7637

2300 DATA 133,5,96,72,17%,23,151,2068,7
,104,189,56,151,145,0,96,6126

2316 DATA 1084,157,56,151,32,26,1508,152
,41,3,201,0,176,4,169,0,3571

23286 DATA 145,0,238,158,1560,926,160,0,1
40,12,151,1408,24,156,140,18,5862

2336 DATA 151,146,19,151,1406,20,151,18
5,0,224,153,0,152,185,0,225,8868

2348 DATA 153,08,153,185,0,226,153,0,15
4,185,08,227,153,08,155,206,9592

23568 DATA 208,229,160,7,169,1768,153,21
6,155,136,16,248,169,128,141,25,599
2368 DATA 156,169,24,141,26,156,169,15
1,141,27,156,96,238,24,156,160,9684
2378 DATa 9,140,23,151,173,12,151,248,
242,76,8,149,160,1,140,23,6613

2386 DaTA 151,173,12,151,2408,3,32,21,1
43,206,24,156,96,0,0,0,1912

23l%8 DbATH 0,0,0,0,0,0,0,0,0,224,112,56
»28,14,15,31,7815

2488 DATA 63,0,0,48,112,96,224,224,224
,63,31,15,08,8,0,0,318

24186 DATA 0,232,216,176,96,192,08,08,08,6
9,151,255,151,1064,216,32,8408

2428 DATA 235,150,104,104,32,234,145,3
z2,240,149,164,133,1,164,13%,8,6372
2438 DaTA 166,31,177,06,145,4,136,16,24
9,169,152,141,244,2,32,251,3

2448 DATA 156,76,121,150,104,216,32,23
8,151,162,151,160,118,169,7,76,9366
2458 DATA 92,228,216,173,24,156,208,16
3,238,128,151,169,08,201,2,144,9933
2468 DATA 24,169,0,141,128,151,173,126
+2,2081,15,240,82,41,12,201,7282

2478 DeTA 4,208,14,173,19,151,24,1685,4
,141,19,151,144,3,238,20,49084

2488 DATA 151,173,120,2,41,12,2081,8, 20
§,14,173,19,151,56,233,4,5542

2496 DATA 141,19,151,176,3,206,206,151,
173,126,2,41,3,201,1,268,589%2

25088 DATA 2,173,18,151,24,1085,4,141,18
,151,173,1206,2,41,3,201,4295

2518 DbaTA 2,208,9,173,18,151,56,233,4,
141,18,151,32,238,151,76,7472

100 ANALOG COMPUTING

2526 DaTA 98,228,169,0,72,76,132,148,1
64,216,169,7,162,228, 166 98 810

2530 DQTA 32 2z, 228 173 12 151 248,3,7
6,08,149,96,0, 156 27,156, 5352

2546 DQTQ ?5 133, 142 76,156,142,76,172
,142,?6,132,148,?6,254,148,?6,398

2558 DATA 6%,151,76,104,151,76,236,151
,8,128,24,151,226,2,227,2,7391

2568 DQTA 254,142,0,0,0,06,0,0,08,0,0,0,
6,0,06,0,30928

Listing 2.
BASIC listing.

216 LIST :POSITION 2,15

.28 0P=39936:CL=39939

- 38 A=USR(OP,1,8,16,20,10):G05UB 268
.48 AzUSR(OP,2,2,2,16,10):GO0SUB 260
- 58 AcZUSR(OP,3,5,5,12,12):G0O5UB 266
68 A-USR(OP,4,24,7,7,5):G05UB 268
.78 A=USR(OP,5,28,0,10,18):G05UB 288
806 LIST "W:":GOSUB 206

: LIST "“W2:":GOSUB 268

LIST "HWI:":GOSUB 2060
LIST ""W4:":GOSUB 2086
LIST ""W5:":GOSUB 268

GOSUB 218
A=USRICL,3) :GOSUB 2688
A=USRCCL,2) :GOSUB 288
A=USRICL,4) :GOSUB 286
A=USR(CL,5) :GOSUB 288
A=USRICL,1) :GOSUB 260

END

FOR N=1 TO 5680:NEXT N:RETLRN
REM 28 RANDOM OVERLAPS

DIM N$(3)

FOR C=1 TO 28
N=INT CRND (8) %5) +1

NS="W :":N$(2,2)=CHRS (N+48)
KIO 150,#1,8,8,N$

GOSUB 288

NEXT C

RETLRN

Listing 3.
BASIC listing.

18 TRACKER=39954:DATTOSET=33351:5TPTRA
CKER=39957:DIM ICON5(32)

28 POKE 752,1:? CHR$(125)

38 FOR N=1 TO 32:ICONSCN,NI=CHRS(0) :NE
KT N

48 GOSUB 138:A=USR(DATTOSET,?,ADRI(ICON
512

58 A=USR{TRACKER)

68 IF PEEK(53279)=6 THEN 358

78 IF STRIG(B) THEN 68

! 880 H=PEEK(4) :Y=PEEK(5)

Z¥ 90 IF X=0 OR H>16 OR Y=8 OR Y>16 THEN

60

‘¥ 168 GOSUB 266

‘DF 118 A=USRIDATTOSET,?,ADR(ICONS))

RE 1206 GOTO 686

IX 138 REM S5ET UP SCREEN

KB 148 MEM=PEEK(88)+256%PEEK(89)

JG 158 FOR N=MEM TO MEM+17:POKE N, 138:POK
. E N+17%40,138:NEXT N

‘¥ 160 FOR N=MEM TO MEM+17%48 STEP 40:P0K

ATARI 8-BIT EXTRA

E N,138:POKE N+17,138:NEXT N

176 POKE MEM+25,73:POKE MEM+26,74:POKE
MEM+65,75:POKE MEMt66,76

188 POKE MEM+30,281:POKE MEM+31,2062:P0

KE MEM+70,283:POKE MEM+71,2084

156 RETURN

280 REM PLOT AND UPDATE -

218 A=USR(STPTRACKER)

220 MEM=PEEK(88)+256¥PEEK(89) tX+40%¥Y:Z

=PEEK (MEM)

236 IF Z=0 THEN POKE MEM, 128

248 IF Z=128 THEN POKE MEM, 8

258 A=USR(I(TRACKER)

268 IF X{=8 AND Y<{=8 THEN CY=Y:CX=8-X
278 IF K>8 AND Y{=8 THEN CY=Y+8:CK=16-

X

280 IF X{=8 AND Y>8 THEN CY=Y+B:CK=8-X

298 IF K>8 AND Y>8 THEN CY=Y+16:CK=16-

o

388 T=ASCCICONS(CY,CY)]

318 IF Z=8 THEN T=INT((T+ZACX)+8.5)

326 IF Z=128 THEN T=INT((T-2ACK)+8.5)

238 ICONSICY,CYI=CHRS(T)

346 RETURN

356 REM SHOW DATA

360 A=USR(STPTRACKER) :0PEN #1,12,8,"5:

":POKE 752,1

376 PRINT #1;"A=-USR({3I3945,ADR(';CHRS (3

4) ;ICONS (1,32) ;CHRS(34) ;") ,K,¥Y)"":?

386 PRINT "'DATA ";:FOR N=1 TO 32:? AS5C

C{ICONSCN,N));","; :NEXT N:? CHR$(126)

398 CLOSE #1
460 OPEN #1,4,08,"K:":GET #1,X:CLOSE H1
416 GRAPHICS B8:GOTO 28

Listing 4.
BASIC listing.

10 0OP=39936:CL=39939:MOVETRACKER=39345

:TRACKER=39954:5TPTRACKER=39957 : TRMASK
=39968

20 BORDERCHAR=39961:MOVEHWINDOKW=33342
38 DIM HWINS(2)

48 GOSUB 30060

58 STOP

30000 X1=0:Y1=0:DX1=11:DY1=6:A=LUSR(OP,
1,X1,Y1,DK1,DY1)

6618 OPEN #5,12,8,"H:"

3980828 PRINT H5;"DIRECTORY"

38838 PRINT HS5;“DELETE"™

30048 PRINT H5;"LOCK/UNLOCK"

38658 PRINT H5;'RENAME"

30068 PRINT HS5;"FORMAT"

2380878 PRINT HS5;'¥ EXIT X'

30088 MAIN=3IB118:DIRECTORY=30490:NAME=
30590:5URE=308750:DIM NAMES(18) ,RENS(31
3, TS$C18) ,K5(3)

30096 DIR=3I0160:L0CK=38228:DEL=306188:F
RMAT=30440:REN=302608

381868 A=USR(TRACKER)

38118 IF NOT STRIG(8) THEN 361186
36128 N=L1:X=K1:Y=Y1:DX=DX1:DY=DY1:GO5U
B 31000 :K1=K:Y1=Y:INDEX=CHOICE

38138 IF INDEX=6 THEN A=USR(CL,1):A=US
R(STPTRACKER) :RETURN :REM EXIT FROM MI
NI-DOS

30140 IF INDEX{>5 THEN GOSUB DIRECTORY
:GOSUB NAME:CLOSE H3I

X8156 ON INDEX GOTO DIR,DEL,LOCK,REN,F
RMAT

38168 REM DIR

38178 GOTO MAIN

361886 REM DEL

36196 GOSUB SURE

30200 XI0 33,H4,0,0,NAMES

36216 GOTO MAIN

ATARI 8-BIT EXTRA

38856 POP

38228 REM LOCK
30238 IF LCK THEN HID 36,H4,08,8,NAMES

302%6 IF NOT LCK THEN HIO 35,H4,6,8,N
AME
38256 GOTO MAIN

306268 REM REN

30265 FOR X-LEN(NAMES) TO 1 STEP —-1:IF
NAMES (K, ®K) =" " OR NAMES$(X,H)=CHR$(155
)} THEN NEXT X

36270 RENS-NAMES (1, H):A=USR(OP,2Z,12,8,
22,1):L-LEN(REN%) :POKE TRMASK,1

36280 OPEN #3,12,8,"HWZ2:'":0PEN #4,4,8,"
Ki'":i¥=9

36298 PRINT #3;'"MEW NAME?"

36360 HIO 160,HZ,X,8,"HZ2:":A-USR(MOVET
RACKER, (X+13)%§,14)

36318 GET H4,N

30320 IF N<>126 THEN 30368

» 30330 X=H-1:IF K< THEN X=9

39348 KIO 50,H2,H,0,"HWZ:":PUT #3,32
30350 GOTO 30360

36368 PUT #3,N:X=K+1:IF N{>155 THEN 38
300

303768 KIO 50,H#2,9,0,"H2:"

30380 INPUT #3,NAMES

30390 RENSCL+1)='',"":RENS (L+2) =NAMES
30408 POKE TRMASK,®:CLOSE H3:CLOSE #4d
30410 IO 3I2,44,0,0,RENS

30428 A=USRCL,2)

30436 GOTO MAIN

38440 REM FORMAT

30458 IF NOT STRIGCB) THEN 384586
38466 GOSUB SURE

- 0470 HIO 254,H4,0,6,"D:"

38480 GOTO MAIN

- 384908 REM DIRECTORY

305688 A=USR(OP,2,12,08,17,22)

36518 OPEN H4,6,0,"D:* %"

38528 OPEN H3,12,8,"HZ:"

30536 CNT=6

30540 TRAP I0550:INPUT #4,NAMES:PRINT
HI;NAMES:CNT=CNT+1:GOTO 308540

. 38550 CLOSE H4
30560 XIO 20,14,0,21,"W2:"

I8576 PRINT #3; " TTHISTILETTEN"
308580 RETURN

38598 REM NAME

386080 IF INDEX{>1 THEN 38638

¥86108 IF STRIG(B) THEN 30618

38620 A=USRICL,2):CLOSE HI:RETLURN
30630 N=Z:iK=12:Y=8:DX=17:DY¥Y=22

- 36646 GOSUB 31668

| 38650 IF (TY-Y)>=CNT THEN A=USR(CL,2}:
. POP
| 38660 XIO0 15,H4,0,(TY-Y)-1,"HZ:"
38678 INPUT #3I,NAMES

:CLOSE H3I:GOTO MAIN

306808 LCK=8:IF NAMES(i,1)="'%" THEN LCK
=1
30698 TS="D:":TS(II=NAMES(Z,18) : H5=NAM

ES(11,13)

38760 FOR N=1 TO 18:IF TS$(N,N)=" " THE
N L=N:N=12

30710 NEXT N:IF N=11i THEN L=1i1

38728 NAMES=TS$:!NAMES(L,L)=".":NAMES(L+

1)=K$:NAMES (L+4)=CHR%({155)

387306 CLOSE #4

38748 A=USR(CL,2) :RETURN
387568 REM SURE

30760 A-USR(OP,2,12,7,3,2)
36776 OPEN #4,8,8,"HZ2:"
30780 PRINT H4;"YES"

30798 PRINT 34 ;''NO"

38860 CLOSE B4

308108 N=2:H=12:Y=7:DK=3:DY=2
38820 GOSUB 31668

308836 A=USR(CL,2)

308408 IF CHOICE=1 THEN RETURN
:GOTO MAIN

ANALOG COMPUTING 101

ﬂ CGM continued

GF
Ma
XU
LK

Ie

aB
MG

31666 REM ¢ ALL-PURPOSE MWINDOW/TRACK
ER INTEGRATER (INCLUDES WINDOW MOVE OP
TION) %

31818 WINS="HW'":HWIH$(2,2)=S5TRS(N):0LDY=
=1

31626 TH-PEEK({4) :TY-PEEK ({5}

31838 IF TY{>O0LDY AND TY>Y AND TY{(Y+D
Y+1) AND TH>X AND THR{(H+DK+1) THEN XIO
250,811,080, TY-(Y+1) ,HWINS:0LDY=TY

31848 IF 0LDY<> 1 nND (TY(¥ OR TY>(Y+
DY) OR TH{=X OR TX>(X+DX)) THEN XIO 15
8,#1,8,8,HINS:0LDY=-1

316568 IF STRIG(6) THEN 310626

31666 IF NOT STRIG(B) THEN 10668
316878 IF TH<>K OR T¥Y<{>Y THEN 31158
31686 POKE BORDERCHAR,123:XIO0O 156,H1,8
,8,HINS

131890 IF STRIG(B) THEN 31869@

31166 IF NOT STRIG(B) THEN 31168
31116 POKE BORDERCHAR,128

31126 X=PEEK (4) :Y=PEEK (5]}

31136 A=USR(MOVEWINDOMW,N,X,Y)

31146 GOTO 31616

31150 IF TY{=Y OR TY>(Y+DY) OR TH{=K O
R TK> (X+DX) THEN 31818

31168 CHOICE=TY-Y

31176 RETURN

Listing 5.
BASIC listing.
10 POKE 82,8:7 CHR5(125)

20 OP=39936:CL=39939:COPY=39951:BCHAR=
29961 : MOVEWINDOW=39%42:5TPTRACK=33957:

 TRACKER=39954 :MOVETRACKER=332245

UK
nre

328 ERASETRACK=39548
48 DIM CLOCKS(32),CALCS(32) DISKE(KZ),

. NUMS(8) ,FLUNCS(4): FUNC$_"

0o

5p
¥YH

s5u

58 DIM NINS(Z) HIN1$(20) HC4) ,Y(4) ,DK(
4) ,DY(4) ,H5(2), MS(Z) 55(2) NGME$(18) E
HT§(4) FNQME5(143 IDCB 848
606 GDSUB 1596

78 HIN1$‘"r‘0LJ":NIN1$(6):" Q1E":NIN1
S =", HINLS (163 ="

80 A=USRICOPY,ASC(" ') ,ADRCCLOCKS)) 1A=
USR(COPY, QSC("-"J QDR(CQLC$JJ A=USR(CO

PY,A5C(" P, QDR(DISK$))
98 FOR KW= 1 TU 4

166 GOSUB 36158
118 A=USRCOP,N,H(N),Y(H) DX (N} ,DY(N)):

 OPEN H1,8,0,HINS: T=N¥5-4:PRINT H1;HIN1
. 5(T,T+4):CLOSE H1

102

1286 NEXT N

138 A=USR(TRACKER)

148 IF STRIG(68) THEN 1486

158 IF NOT STRIG{(B) THEN 158
168 X=PEEK(4) :Y=PEEK(5)

170 FOR N=1 TO 4:IF X{OXINY OR YOYN)

THEN 228

- 186 GOSUB IO156:POKE BCHAR,1Z3I:KIO 156

,H1,0,08, HINS

196 IF STRIG(6) THEN 1958
2060 IF

NOT STRIG(8) THEN 288
210 POKE BCHAR,128:XI0 156,H1,8,08,HINS
tKIN)=PEEK(4) ! Y(N)=PEEK(5) : AZUSR (MOVEH

"INDOMW,N,X(N),Y(N)):POP :GOTO 146
220 NEXT N

230 FOR N=1 TO 4

2408 IF Y>Y(N) AND Y<{=Y(NY+DY(N) AND X>
H(N) AND H{=K(NI+DX(N) THEN POP :GOTO

276

258 NEXKT N

268 GOTO 146

2786 ON N GOTO 660,886,1560,280

286 REM MEMO PAD

298 N=5:H=H(4):Y=Y(4) :DK=10:DY=4:A-USR

ANALOG COMPUTING

(OP,N,X,Y,DX,DY)

QT 360 OPEN n1 8 8,"HWS:"iPRINT H1;“EDIT M
EMO" i PRINT ﬂl'"LOQD MEMO“'PRINT Hi;"sa
VE MEMO"'PRINT H1;"PRINT MEMO'

0G 316 CLOSE Hi: GOSUB 25000

IZ 320 FOR N=1 TO 5:A=USR(CL,N):NEXT N

HL 330 ON CHOICE GOTO 340, 388 438,490

PK 340 OPEN H1,4,8,"K:"

KU 358 GET #1, H IF K=27 THEN X708

cCp 368 7 CHRS(H);:GOTD 356

QK 370 CLOSE H1:GOTO 98

AX 3860 REM LOAD MEMO

JB 398 AZUSR(TRACKER]) :GOSUB 1868668:IF CHOI
CE>CNT THEN 98

GV 468 TRAP 420:0PEN H1,4,08,FNAMES

WI 410 POKE IOCB+2,7:G0SUB 598

NI 420 TRAP 40860:CLOSE H1:GOTO 90

GY 430 REM SAVE MEMO

GA 440 N=S:iX=8:Y=10:A=USRIOP,N,X,Y,24,1):
OPEN H2,12,8,"H5:":PRINT nz;"F1lenane?

- MILEFT= 9

AR 4560 GOSUB 3I0B00:A=USRICL,5):CLOSE H2

I5 460 TRAP 4868:0PEN H1,8,0,NAMES

Z(470 POKE IOCB+2,11:G0OSUB 598

Wl 480 TRAP 40008:CLOSE H#1:GOTO 96

OK 490 REM PRINT MEMO

Cll 5060 DD=PEEK(89)%256+PEEK (88)

JH 518 TRaAP 580:0PEN H1,8,08,"pP:"

U5 520 FOR N=1 TO 24

BX 530 FOR H=DD TO DD+39:CHAR=PEEK (X):IF
CHAR>127 THEN CHAR=CHAR-128

EB 540 IF CHAR>=96 THEN 570

LT SSgaIF CHAR>=64 THEN CHAR=CHAR-64:GO0TO

IP 5606 CHAR=CHAR+32

54 578 PUT H1,CHAR:NEXT X:DD=DD+48:PUT H#1i
+155:NEXT N

HY 586 TRAP 400606:CLOSE H1:GOTO 98

EE 590 POKE I0OCB+4,PEEK(88) :POKE TIOCB+5,P

EEK (89) : POKE IDCB+9 3:POKE IOCB+8, 192'
n= USR(QDR("hhthUE") 16) :RETURN

¥ 60080 REM CLOCK

BY 610 N=5:K=K(1):Y=Y(1):DX=13:DY¥=2

HY 620 A=-USR(OP,N,X,Y,DX,DY)

pI 630 OPEN HZ,12,0,"H5:"

DW 640 PRINT HZ;'"SET CLOCK¢DISPLAY CLOCK"

KE 658 GOSUB 25080:A=USR(CL,N)

Ml 6660 IF CHOICE=Z THEN 7660

FT 670 A=USRCOP,N,X,Y,12,1)!LEFT=6

HL. 688 PRINT ﬂZ'"HDURS’" GOSUB 38668 :HRS5=
VAL (NAMES) @ LEFT 8

HY 6906 XIO 560,H#I,0,0,"HS:"

TJ 7606 PRINT #Z;"MINUTES?":GOSUB 3I000808:MI
N=VAL {(NAMES)

HJ 716 HIO 50,H3,6,0,"HS5:"

QF 728 PRINT H2;"SECONDS?":GOSUB 366606:SE
C=VAL (NAMES)

EL 730 POKE 18,8:POKE 19%,08:POKE 26,0

MZ 748 A=USR(CL,5)

AC 750 CLOSE HZ:GOTO 138

Pl 7680 REM DISPLAY

FX 776 A=USR(OP,5,X(1),Y(1),8,1)

L. 780 OPEN H1,8,0,"HW5:"

LMW 790 T=(PEEK(18)*¥65536+PEEK(19)*256+PEE

-~ K(28))/60+HRS*I600+MIN*608+5SEC

¥0 860 H=INT(T/3600) :M-INT((T-H%*36088)/60)

. tSZINT(T-(HX*I600+M*606))

818 HS=STRS(H) :IF H<{18 THEN H&$="'@":HS5(

. 2)=STRS(H)

if 828 MS=STRS (M) :IF M{18 THEN M&="'a":M5(

 2)=STRS (M)

- 830 S5=STRS(S5):IF 5<{168 THEN 55="'8":55(

2)=5TRS(5)

840 HIO 50,#3,0,0,"WS:":PRINT Hi;HS;'":

IluMs ll-u.sg

-éy,asa IF STRIG(B) THEN 798

FZ 8680 IF NOT STRIG(8) THEN 868
HD 870 CLOSE H1:CLOSE #Z:A=USR(CL,5):GOTO

ATARI 8-BIT EXTRA

988

1840
H 1060

138
880 REM CALCULATOR

890 K=K(2):Y=Y(2):SUM=B:FLUNC=8

9868 A=USR(OP,5,X,Y,16,11)

916 OPEN H2,12,08,"H5:"

920 GOSUB 10156:PRINT H#Z:PRINT #2;" N
"

938 PRINT #2;"[01 & e
| 9408 PRINT HZ:PRINT 82;"{d H n "
. 958 PRINT HZ:PRINT H2;"[3 [1
960 PRINT H2:PRINT #2;'(il E -
978 PRINT HZ:PRINT #2;"[] [L

CNT=1

9968 IF STRIG(6) THEN 338

1668 IF NOT STRIG(6) THEN 1668
1618 THK=PEEK(4) :TY=-PEEK (5)

10208 IF TH{>X OR TY<{>Y THEN 1878

16836

POKE BCHAR,123:XI0 156,H1,0,8,"H>

IF STRIG(6) THEN 16486

1858 IF NOT STRIG(B) THEN 1858

POKE BCHAR,128:X=PEEK(4) :Y=PEEK(5
tA=USR (MOVEWINDOW,5,HX,Y) :GOTO 2986
1876 IF TH{=K OR TH>H+18 OR TY{Y+3 OR

TY>Y+1i1i THEN 998

1086 CK=TH-H-1:CY=TY-Y-3

1098 IF (CY AND INT(CX/2)<{>CK/2) OR IN
TecYs23{>CY/2 THEN 998

11186 IF CNT=2 AND NLUM5=".'" THEN NLUM$(2
o ’ :IIBII

IF CY=8 THEN 1228
NX=(CK-2)/2:NY=(CY-2)/2
IF NX=0 AND NY=3 THEN NLUM=6:GOTO

IF NX=1 AND NY=3 THEN NLUMS$(CNT,CN

TI=",Y:GOTO 1190

11150 IF NX<8 OR NX>Z OR NY<{8 OR NY>Z T

_HEN 1360

1168 NUM=7-3%NY+NX
1176 IF CNT=9 THEN 998

} 11808 NUMS(CNT,CNT)=5TRS (NLM)

1190 IF CNT=1 THEN GOSUB 16158:NUM$(2)
et 111

1200 RIO 50,#1,1,0,"WS:":PRINT #2;NUMS$
1210 CNT=CNT+1:GOTO 996
1220 REM_MEMORY

12380 IF CX=0 THEN A=USR(CL,5):CLOSE H2
:GOTO 146

1248 IF CH=2 OR CX=3 THEN GO5UB 16156:

 PRINT H2;MEM:NUM$=STRS(MEM) :GOTO 380

1258 IF NUMS='"'' THEN 998

126080 IF CK=S5 OR CX=6 THEN MEM=MEM-VALC

NLUMS$) :GOTO 1298
1278 IF CX=8 OR CX=9 THEN MEM=MEM+VAL(
NUMS) :GOTO 1296

1286 GOTO 398
1296 FLUNC=0:XIO0 50,#1,6,0,"HWS:":PRINT

#2;"[":GOS5UB 106156:G0TO 988

[1360 C=(CY-2)/2+1
1318 IF CKX=8 AND C>2 THEN ON C-2 GOTO

1496,1518

1328 IF NUMS="" THEN 998
1330 IF FUNC=8 THEN SUM=VAL (NLUMS5)
1348 IF CX=8 THEN ON C GOTO 1436,1460

13568 IF FUNC THEN ON FUNC GOSUB 1396,1
400,14106,1426:G05UB 16150:PRINT #12;5UM
1368 IF CY=8 AND CK=6 THEN FUNC=8:NUM$
=S5TR$(SUM) :GOTO 988

1378 FUNC=C

11380 GOSUB 10156:PRINT H#Z;SUM:GOSUB 15

368:GO0TO 9886

13968 SUM=SUM/VAL (NUMS) :RETLRN

1480 SUM=SUM*VAL (NUMS) :RETURN

1418 SUM=5UM-VAL (NUM5) :RETLRN

1428 SUM=S5UM+VAL (NLUM$I :RETURN

1436 REM PERCENT

1446 IF FUNC=0 THEN SUM=VAL (NLUMSI/1886:
GOTO 14806

ATARI 8-BIT EXTRA

1456 NUM=SUM% (VAL (NLUMS) /1808) :CY=8:CX=6

. 'NUMS=S5TRS(NUM) : GOTO 1350

1466 REM SQUARE ROOT

1478 SUM=SQR (VAL (NUM5)]

1480 FUNC=8:NUM$=STRS (S5LUHM) :GOTO 1380
1496 REM CLEAR

1560 GOSUB 101568:GOSUB 1538:NUMS=""":GO
TO 2886

1516 REM ALL CLEAR

15268 GOSUB 18156:XI0 56,H1,0,8,"H5:":P
RINT $#2;' ":FUNC=8:5UM=08:MEM=8:NUMS=""
:GOTO 986

1538 REM DISPLAY OPERATION

1548 IF FUNC THEN XIO 56,81,9,0,"H5:'":
PRINT #2;FUNCS(FLUNC,FLNC)

1550 XIO 50,8#1,1,0,"WS:":RETURN

1568 REM DISK LOADER

15708 FOR N=1 TO 4:A=USR(CL,N) :NEXT N:G

0SUB 10000:IF CHOICE>CNT THEN 98

1588 RUN FNAMES

1598 REM GETDATA

1600 CLOCKS="_d\+ccHTXTd0"* /i¢ 4Ly LOve"

T gloLee

1610 CALCS="7p¢)e1¢ 1[I HIHe141014 7240
nlll

1620 DISKS="9¥}h) | vH{EFTII 4 P M A {{ K]
'II

1638 FOR N=1 TO 4:READ X,Y,DX,DY:X(N)=
KiY(N)ZY:DKC(NI=DX:DY(NI=DY:NEXKT N

16468 RETURN

1656 REM WINDOW DATA

i668 baATA 0,0,2,2,10,0,2,2,20,0,2,2,30

,0,4,1

16660 REM DISK SELECTION

16616 HK=13:Y=-0:DX=11:DY=2Z:N=5

18006286 A=USR(OP,N,X,Y,DX,DY)

16630 OPEN H#1,6,0,"D:»*, "

10640 OPEN H2,12,8,"HWS5:":CNT=8

1868568 INPUT #1,NAMES$:IF NAMES(Z2,2)=" "
THEN PRINT #H2;NAME$(3,13) :CNT=CNT+1:G
0TO 1686850

16666 CLOSE #1

1667686 GOSUB 25060
10086 XIO 50,#1,0,CHOICE-1,"HS:":INPUT
H2,NAMES i CLOSE H2

18698 EXTS=".":EXT$({2)=NAMES ()
16166 FOR N=1 TO 8
18118 IF NAMES(N,N)=" " THEN 18138

16128 NEHKT N
181308 NAMES(N)=EXT$:FNAMES="D:'":FNAMES

- (II=NAMES

10148

25060 IF
25070

25890

25138
25148

CLOSE #2:A=-USR(CL,5) :RETURN
16156 REM CLEAR DISPLAY

10166 XIO 50,#1,1,0,"HWS:":PRINT H#2z2;"
n
16178 XIO 56,H#1,1,8,"WS:'":RETURN
25060 REM ¥6%¢ ALL-PURPOSE WINDOW/TRACK

ER INTEGRATER (INCLUDES WINDOW MOVE OP

- TION) ¥

25616 GOSUB 3B156:0LDY=-1

25020 TH=PEEK(4) :TY=PEEK(5)

250838 IF TY{>OLDY AND TY>Y AND TYL(Y+D

¥Y+1) AND THE>H AND TR{(X+DX+1) THEN XIO
250,81,8,TY-(Y+1) ,HINS:OLDY=TY

250408 IF OLDY{>-1 AND (TY¥{=Y OR TY>({Y+

DY) DR TH{=XK OR TH>(K+DX)) THEN XIO 15

8,H#1,8,0, MINS:0LDY=-1

250568 IF STRIG(O) THEN 250828

NOT STRIG(8) THEN 25868

IF TH{>H DR TY<>Y THEN 251586
POKE BCHAR,123:XI0 156,H1,06,0,HI

IF STRIG(8) THEN 250898
25188 IF NOT STRIG(8) THEN 25168
25116 POKE BCHAR, 128

25120 HX=PEEK(4) :Y=-PEEK(5)

A=USR (MOVEWINDOMW,N, X, Y]
GOTO 250616

256886
NS

ANALOG COMPUTING 103

ﬁ' CGM continued

KI 25156 IF TY<{=Y OR TY>(Y+DY) OR TK{(=X 0
R TH) (X+DX) THEN 25010
MI 25160 A=LUSRC(STPTRACK)
25178 CHOICE=TY-Y
25180 RETLRN
I 36006 REM INPUT STRING (NEEDS: LEFT,N,
OPENED IOCBHZ,X,Y)
30010 GOSUB 36170
XM 36028 C=LEFT:0PEN #1,4,08,"K:"
P 30038 KI0 108,H3,C,0,HINS:AZUSR(MOVETR
 ACKER, C(C+X+1)%8), (Y¥8+14))
- 30048 GET #1,CHAR
36050 IF CHAR{Y>126 THEN 30098
36060 C=C-1:IF C{LEFT THEN C=LEFT
36070 XIO 56,H3,C,0,WINS:PUT #Z,32
36080 GOTO 38030
30090 IF C=4 THEN 30038
30106 PUT #2,CHAR:C=C+1:IF CHAR{>155 T
HEN 36838
30118 XIO 50,43,LEFT, 0, WINS
HW 30120 INPUT #2,NAMES:PRINT #2
FN 30130 CLOSE #1:A=USR(ERASETRACK)
30148 RETLRN
38156 REM FIND NAME
T 36160 WINS='W':WINS(2Z,2)=5TRS(N)
30176 RETLRN

104 ANALOG COMPUTING ATARI 8-BIT EXTRA

by Mark Andrews

Your Atari computer has a large selection of text and
graphics modes, and it isn't difficult to switch from one
mode to another in the middle of a program. But using
more than one graphics mode on the same screen at the
same time—well, that’s a little harder. To mix graphics
modes on a screen display, it's necessary to understand
a programming technique called display-list modification.
And that’s our topic.

In a type-and-run program listed at the end of this arti-
cle, I'll demonstrate how to create a screen display that
includes three different modes: graphics 0, graphics 1 and
graphics 2. There’ll be one line of text in each mode, and
each line will be displayed in a different color. The result
will be a good-looking title screen that you can use with
any homemade BASIC or assembly language program.
Once you understand the principles used to design the
display, you can create many kinds of mixed-mode
screens.

The program used for this demonstration was written
in assembly language on a MAC/65 assembler-editor pack-
age from OSS. It’'s a type-and-run program I've named
HELLO. If you own a MAC/65 assembler, you can type,
assemble and run the program as written. If you own an-
other assembler, you may have to make some modifica-
tions in the program. And, if all of this talk about as-
semblers and assembly language is a complete mystery to

ATARI 8-BIT EXTRA

you, you can learn assembly language by reading my book,
Atari Roots: A Guide to Atari Assembly Language, pub-
lished by Datamost in 1983.

Your Atari’s graphics modes.

Before I list the HELLO program and explain how it
works, here’s some background information on how your
Atari generates its screen display.

When you turn on your Atari, it automatically goes into
a screen mode called graphics 0—a standard 40-column
text mode. Bat if you type the statement GRAPHICS 1, or
include it in a BASIC program, your computer will switch
to a special text mode that displays “fat” characters—
characters twice as wide as normal text. The command
GRAPHICS 2 will give you giant characters, twice as high
and twice as wide as ordinary characters. And there are
several other graphics instructions you can use to create
high-resolution graphics displays.

That’s an extraordinarily powerful set of graphics modes.
And, if you know how to program in assembly language,
you can make it even more powerful. With assembly, you
can mix your Atari’s graphics modes in any combination
you like. You can print normal characters, fat characters,
giant characters and even high-resolution graphics—all
on the same screen. Then, you can add fine-scrolling to
any part of the screen you want, for an even more eye-
catching display!

Along with their many graphics modes, Atari computers
also have some other graphics-generating capabilities that

ANALOG COMPUTING 107

ei Display List
Mod continued

are quite sophisticated. In computers less advanced than
your Atari, one block of RAM is usually dedicated to
screen memory. Within that block of memory—often
known as “screen memory” —there’s usually one memo-
ry location for each text character on the screen. When
a certain text character is to be printed in a particular
screen location, a code number representing that charac-
ter is placed in the memory register that corresponds to
its screen location. A character which equates to what-
ever code number was used then appears in the desired
location on-screen.

Atari graphics are a bit more sophisticated than that—
and just a bit more complicated, too. Your Atari uses two
special chips to generate its graphics display: one called
an ANTIC chip and one called a CTIA/GTIA chip. (The
early Ataris were built with a CTIA chip; newer models
use a GTIA.)

The CTIA/GTIA is a nonprogrammable chip that con-
trols colors and performs various other functions. But your
computer’s other graphics chip, the ANTIC, is a real
microprocessor. It has its own miniature instruction set,
and its operations can be controlled with a special kind
of program called a “display list”” So, to create graphics
using the ANTIC chip, you have to know how to use the
ANTIC chip’s instruction set and how to write display-list
programs for the ANTIC microprocessor. And, to under-
stand how ANTIC works, it's necessary to know some fun-
damental facts about the operation of a video display.

Scan lines and mode lines.

The picture on a TV screen is made up of tiny horizon-
tal lines—262, to be exact. Each of these is called a “scan
line.”

These scan lines are produced by an electron gun be-
hind your TV monitor’s picture tube. This electronic pis-
tol fires electrons at the TV picture tube in what’s known
as a “raster scan” pattern—a zigzag pattern that begins
at the upper left-hand corner of the screen and ends in
the bottom right-hand corner.

There are 262 horizontal scan lines on a video tube, and
the whole 262-line display is replaced by a completely new
display sixty times each second. Between each of these
lightning-fast scenery changes, there’s an extremely brief
interval —called a “vertical blank” period —in which the
whole screen goes blank.

Dot-matrix characters.

Look closely at a computer-generated text display on a
TV screen, and you may be able to see that each charac-
ter on the screen is made up of tiny dots. If you could look
closely enough at the screen text graphics generated by
your Atari—while your computer is in its normal 40-
column by 24-line text mode—you’d be able to see that
each letter is made up of sixty-four dots, arranged in a ma-
trix eight dots wide and eight dots high.

Because of a picture-tube design technique called “over-
scan,” however, not all of the 262 scan lines available for
a TV picture appear on-screen; some fall off the edges and
are never seen. So computer programs that generate vid-
eo displays don’t usually make use of all of those lines.

108 ANALOG COMPUTING

Your Atari, for example, uses only 192 of the 262 scan lines
available.

Atari BASIC supports four text modes, each of which
produces letters of a different size. But, no matter what
text mode you’re in, and no matter how large the letters
on your screen are, each line of text in an Atari display
is always called a “mode line” In your Atari’s normal
40-column by 24-line text mode —the mode referred to in
Atari BASIC as “graphics 0” —each letter in a mode line
is eight dots high, and each of those dots equates to one
scan line.

In BASIC’s graphics 0 mode, therefore, one mode line
is equal to eight scan lines.

There are two other text modes in Atari BASIC—
graphics 1, in which the characters on-screen are the same
height as graphics 0 characters but twice as wide; and
graphics 2, in which the characters are twice as high and
twice as wide as standard graphics 0 characters. When
your computer is in its graphics 1 mode, each mode line
is made up of eight scan lines—the same number of scan
lines used in a mode line in graphics 0. When your Atari
is in its graphics 2 mode, however, each mode line equates
to sixteen scan lines.

Antic mode 3.

There’s another text mode, called “ANTIC mode 3,” that’s
not supported by BASIC. In ANTIC mode 3, each mode
line is made up of ten scan lines. You can find out more
about ANTIC mode 3 by reading the Atari programmer’s
manual De Re Atari, or by consulting the Atari 400/800
Technical Reference Notes published by Atari.

In addition to their four text modes, Atari computers
have numerous graphics modes—either ten or thirteen of
them, depend on what kind of graphics hardware came
installed in your model. (The number of graphics modes
offered by Atari computers varies, with which chip is in-
cluded, CTIA or GTIA).

In the non-text graphics modes, the number of scan lines
per mode line can range from one (in high-resolution
graphics) to eight (in low-resolution). The number of colors
available also differs from graphics mode to graphics mode.

Table 1 shows the graphics modes available to Atari
programmers. You may notice that there are differences
between the ANTIC and the BASIC designations of these
modes, and that ANTIC supports more modes than Atari
BASIC does. And this table doesn’t include the special
modes available to owners of GTIA chips, since programs
using those modes won’'t work properly on all Atari com-
puters. If you want to use them anyway, you can find out
how in De Re Atari.

Customizing your Atari’s screen display.

Two steps are needed to custom design an Atari screen
display. First, you have a special kind of program called
a “display list.” Then you have to tell your computer how
to use the display list you've designed.

A display list is made up of a series of 1-byte instruc-
tions that can be placed almost anywhere in your com-
puter’s available RAM. Anytime you want to see what a
display list looks like, you can find one by using your as-

ATARI 8-BIT EXTRA

Table 1.

Atari Text and Graphics Modes

ANTIC BASIC Scan lines No. of
mode mode per mode line colors
2 0 8 2
3 None 10 2
4 None 8 4
5 None 16 4
6 1 8 5
7 16 5
8 3 8 4
9 4 4 2
A 5 4 4
B 6 2 2
C None 1 2
D 7 2 4
E None 1 4
E 8 1 2

sembler’s debugging utility to peek into your computer’s
memory.

When you turn on your computer, it automatically goes
into its graphics 0 mode, and the address of the display list
it uses to generate that mode is always stored in two loca-
tions—specifically, memory addresses $230 and $231.
Memory register $230 always holds the low byte of the start-
ing address of your computer’s display list, and memory
register $231 always holds the high byte of the display list’s
starting address. So, once you know the contents of mem-
ory registers $230 and $231, you'll be able to locate the dis-
play list your computer’s currently using.

Once you locate your computer’s graphics 0 display list,
you'll find that it looks something like this:

70 78 76 42 28 7C BZ B2
B2 B2 82 B2 B2 B2 BZ BZ

82 B2 B2 B2 B2 B2 BZ B2
BZ 862 82 62 82 41 EO 7B

As you can see, a display list is a pretty strange-looking

program. Let’s examine it, byte by byte, right now:
BYTES 1 — 3
$78 578 578

Each byte in a display list has a specific meaning to the
ANTIC chip. Within each byte, each nybble—that is, each
hexadecimal digit—also has a specific meaning. For ex-
ample, this display begins with three bytes that hold the
same hexadecimal value: $70. In the programming language
of the ANTIC chip, the value $70 tells ANTIC to display
one blank mode line—which in BASIC graphics 0, equates
to eight blank scan lines.

This, as it turns out, is the standard way to start a dis-
play list for a graphics 0 display. Because of the overscan
characteristic of a TV screen, it’s standard practice to kick
off a graphics 0 display with three blank mode lines—or,
in ANTIC language, with three $70s. That will pull the be-
ginning of your graphics 0 display down to the top of your
TV'’s picture tube, where you can be pretty sure your com-
plete display will be visible on-screen.

BYTES 4 - &
$4z 528 §7C

ATARI 8-BIT EXTRA

After three blank mode lines have been displayed, we
get to the first actual display byte on our sample display
list: the hexadecimal number $42. In ANTIC language, the
value $42 is what's known as a “load memory scan” (LMS)
command. After all necessary blank lines have been taken
care of, the first display byte in a display list is always a
load memory scan command, and an LMS command is al-
ways a 3-byte instruction. In the display list we're examin-
ing, the load memory scan instruction is made up of the
3 bytes $42, $20 and $7C.

The first nybble in this instruction—the digit 4—alerts
ANTIC that this is an LMS instruction.

The second nybble in the LMS instruction—the digit
2—tells ANTIC to display an ANTIC mode 2 line. Consult
the table on graphics modes presented a few paragraphs
back, and you’ll see that, in ANTIC language, mode 2 is
the same as BASIC mode 0.

The next 2 bytes of the LMS command —the bytes $20
and $7C—provide ANTIC with the address at which screen
memory will begin. ANTIC interprets these 2 bytes low-
byte first, in standard 6502 fashion. When ANTIC encoun-
ters the LMS instruction $42 $20 $7C, therefore, the first
byte displayed on your Atari’s video screen will be what-
ever byte is stored in memory location $7C20.

When you write a display list, you can put your screen
memory in just about any convenient, available block of
RAM. And you can fill that RAM up with whatever you
like—codes that equate to text, display screens drawn with
the help of a graphics program, or character graphics creat-
ed with a graphics-generator program. Once you have a dis-
play created, you can tell your display list where to find
it, by placing its starting address in the 2 bytes that follow
your display list’s LMS command.

BYTES 7 - 29
The byte 582, repeated 22 tiwes

As explained above, the first LMS command in a dis-
play list tells ANTIC two things: the address at which
screen memory begins, and the graphics mode to use to
display the first mode line of text or data that will be found
starting at that address.

After ANTIC has been presented with this information,
it must be told what graphics mode to use to generate each
subsequent mode line that will displayed on-screen.

In the display list we're examining, every mode line on
the screen is an ANTIC mode 2 line. Therefore, the next
twenty-three instructions in this display list are all the
same; each will tell ANTIC that the next line on the screen
will be an ANTIC mode 2 line.

What would happen, you may ask, if all these instruc-
tions were not the same? Well, if they weren’t, then more
than one graphics mode could be displayed on-screen
simultaneously. Text of various sizes could be displayed on
the same screen, and text and graphics modes could be in-
termixed as desired. This is a very powerful—and quite
unusual —capability of Atari computers. You’ll get a chance
to see exactly how it works before you finish this article.

BYTES 38 - X2
541 SEB S7B

ANALOG COMPUTING 109

‘/i Display List
S Mod continued

Every display list must end with a 3-byte command
called a JVB (jump on vertical blank) instruction. The first
byte in a JVB instruction is always the value $41. The next
2 bytes always combine to form a jump address. The des-
tination of the jump is always the beginning of the dis-
play list in which the jump is contained.

As it happens, the display list we're looking at starts at
memory address $7BEO0. So that’s the address that follows
(low byte first) the JVB instruction $41.

When ANTIC encounters the JVB instruction $41 in a
display list, it jumps back to the beginning of the display
list, waits for the next vertical blank period between raster
scan displays, then jumps to the address that follows the
JVB instruction. And, since this address is the address of
the beginning of the display list, what the JVB instruction
really does is run the display list again.

Running a display list.

As I've pointed out, a display list can be placed in al-
most any convenient spot available in your computer’s
memory. Screen memory can be placed just about any-
where in RAM, too. Once you've created a display list and
a block of data to be used as screen memory, all you have
to do to put your custom-designed display on your TV
screen is write a simple program that tells your computer’s
operating system (OS) where your display list is.

To direct your computer to your custom display list, you
simply store new values into a pair of OS memory loca-
tions known as “shadow” locations. Shadow addresses are
used often in Atari programming, so I might as well ex-
plain what they are right now.

In your computer’s memory, there are some very useful
hardware registers not normally accessed by user-written
programs. But sixty times per second, the data in each
of these memory locations is updated. During this updat-
ing process, the value stored in each register is replaced
by data that’s been stored in a corresponding shadow reg-
ister. And shadow registers are in user-accessible RAM.
So, by changing the value in a shadow register, you can
also change the value of its corresponding hardware reg-
ister. For most intents and purposes, therefore, a shadow
register works just about like any other OS register situat-
ed in RAM.

Three shadow addresses that are often used in display-
list programs are $22F, $230 and $231. Address $22F is
an Atari OS memory location called SDMCTL (Shadow
Direct Memory Access Control). Addresses $230 and $231
are OS locations called SDLSTH (Shadow Display List
Pointer - Low) and SDLSTL (Shadow Display List Pointer
- High).

To write a program that will put a custom display list
on your Atari’s screen, all you have to do is follow these
three steps:

(1) Turn your computer’s ANTIC chip off by stor-
ing a 0 in $22F (SDMCTL).

(2) Store the starting address of your custom dis-
play list in $230 and $231 (SDLSTL and SDLSTH).

(3) Turn your computer’s ANTIC chip on again by
storing the value $22 in $22F (SDMCTL).

110 ANALOG COMPUTING

Doing it.

Now that you know how to do all of this, we're ready
for action. The following program, together with the arti-
cle you've just read, should provide you with all of the
information you’ll need to start designing your own cus-
tomized display lists and creating your own mixed-mode
screen displays. A

Mark Andrews is the author of Atari Roots (Datamost:
1984), the top-selling book on Atari assembly language
programming. He is also a frequent contributor to many
computer magazines. This is the first article he’s written
for ANALOG Computing.

Listing 1.
Assembly listing.

'"HELLO': MIKED MODE SCREEN DISPLAY

e tem e

.OPT OBJ
®= 63000
JMP INIT
SDMCTL = $022F
SpLSTL = 58238
SDLSTH = 58231
COLOR® = $82C4 ;05 COLOR REGS
COLORL = $82C5
COLORZ = 582C6
COLORI = $02¢C7
COLOR4 = 5p2C8
PDISPLAY LIST DATA
START
LINEL .SBYTE " FROM "
“SBYTE "8.N.fA.L.0.G.:"
LINEZ .SBYTE " a title "
. 9BYTE "'screen L]
LINEZ .SBYTE " "
.SBYTE " By (Your Name)"
.SBYTE " "
LINE4 .SBYTE " PLEASE "

.SBYTE "STAND BY "
iDISPLAY LIST
;

;3 BLANK LINES
.BYTE %$78,578,570
;MORE BLANK LINES
.BYTE %70,%78,%78,5%78,570
;LMS, ANTIC MODE 6 (BASIC MODE 23
.BYTE %46
JTEXT LINE: "FROM A.N.A.L.O.G.:"
+HORD LINE1L
;MORE BLANK LINES
.BYTE %706,%78,578,578
;jLM5, ANTIC MODE 7
BYTE 547
JTEXT LINE: "a title screen'
. HORD LINEZ
JANOTHER BLANK LINE

ATARI 8-BIT EXTRA

.BYTE %78
jLMS, ANTIC MODE 2 (GRAPHICS 01
.BYTE %542
JTEKT LINE: "By [Your Namel"
« HORD LINEZ
; BLANK LIMES
.BYTE $78,%78,5%78,570
;LM5, ANTIC MODE 6
.BYTE $46
JTEKT LINE: "PLEASE STAND BY"
« HORD LINKE4
35 BLANK LINES
.BYTE %$78,578,578,5708,576
;JUB INSTRUCTION
.BYTE %41
jADDRESS OF DISPLAY LIST
+HORD HLST

RUN PROGRAM

;SHITCHING COLOR REGISTERS
;FOR NICELY COLORED DISPLAY

INIT

LDA COLOR3

5Ta COLOR1

LDA COLOR4

5TA COLORZ
JNOW WE'LL RUN THE PROGRAM

LDA H6
;TURN OFF ANTIC WHILE HWE S5TORE
;OUR NEW LIST'S ADDRESS IN THE
; 05 DISPLAY LIST POINTER.

5TA SDMCTL

LDA HHLST&255

5TA SDLSTL

LDA HHLST/256

5TaA SDLSTH
JTURN ANTIC BACK ON

LDA #5522

5Ta SDMCTL

- e .

RTS

ATARI 8-BIT EXTRA ANALOG COMPUTING 111

ﬂwngn

s COMPUTING messmme?

WANT TO
SUBSCRIBE?

CALL TOLL FREE 1-800-345-8112

IN PENNSYLVANIA 1-800-662-2444
OR USE THE POSTAGE-PAID CARDS IN THE BACK OF THIS BOOK

For the #1 magazine for
Atari computer owners!

by Barbara Donovan

Have you ever wanted a tailor-made file management
program that will allow you to choose exactly the infor-
mation you want to include —and how you want to mani-
pulate it? Have I got a program for you!

The inspiration for this came while I was on a diet. Be-
cause I'm a bit of a health food nut, I wanted to know how
many calories and nutrients various recipes would have.
This seemed like an excellent application for a computer.
After all, they're supposed to be good at numbers —multi-
plying and dividing, and stuff like that. I realized I need-
ed a file with the information I wanted, which could be
accessed selectively.

Sounds simple, doesn't it? Well, I had a database pro-
gram on which I could have set up records for each item
needed. But that meant, every time I wanted to add up
a recipe, I would have to go through all those records and,
by editing them, put a key to indicate which to include.
I would also have to change the multiple for each item
desired. Doing it with pencil and paper would be faster.

After a little thought, I decided what was needed was
a way o choose which items I wanted to include in a par-
ticular calculation (in computerese, that’s an “indexed-
sequential” file). This put me off my stride a little. I had
read that the technique was really complicated. Guess
what? It's not so bad.

ATARI 8-BIT EXTRA

€

Using the Atari’s NOTE and POINT functions, the pro-
gram became relatively simple to write. Pointed Note is
written in a top-down way (this just means everything pos-
sible is in subroutines), so it could be debugged more eas-
ily. Now, if you don’t care how many calories things have,
don’t despair. Pointed Note will work for any type of data
you wish to store, recall, organize and/or manipulate —
calories are just one example. Also, if you save the vari-
ous subroutines by LISTing them, you can easily build an-
other program without a lot of retyping.

There are a few things you should know about data-
bases. Picture a file cabinet with several drawers. That’s
the “database.” Each drawer has a bunch of file folders
relating to the same sort of thing (like bills to be paid).
That’s a “file.” Each file folder has a sheet of paper with
information about a particular member of the file (like the
electric bill). That’s a “record.” And, finally, each sheet
of paper has various entries on it (like your account num-
ber). Those are “fields.” Fields are made up of alphanu-
meric characters.

So, what I want to set up is a file of foods, containing
records for each food with fields of pertinent information.
For the sake of this discussion, we’ll consider the fields
to be: (1) the name of the food; (2) and (3) the number of
base units (i.e., 1 cup—to be treated as 1 and cup—two
fields); and (4) the calories. Please note that the number
and type of fields can easily be modified for any appli-
cation.

ANALOG COMPUTING 113

é P Ointed Note continued

This is a simple matter. I decided the name of the food
could be a maximum of twenty-five characters, number of
units a maximum of three characters, the unit itself fif-
teen characters, and the calories three characters. Why is
it important to decide on this information in advance? Two
reasons: you need to know how large to dimension the
variables; and each record must take up exactly the same
amount of disk space.

That last needs some explanation. When your computer
writes data to the disk, it puts one character after another
until it comes to an end-of-line character (EOL), which it
also puts on the disk to demarcate the end of that field.
When your computer inputs data from the disk, it reads
each characater until it comes to the EOL, then stops.
Therefore, if we want to be able to make any later changes
to our data, each field must always be printed with exact-
ly the right number of characters—or the updates and
previous data may become confused with each other in
the overwriting.

In order to make sure of field length, we must pad any
items less than the set field length with blanks. This is
done in the PADDATA and PADITEM subroutines, before
the data is written to disk.

Now, getting back to that indexed-sequential stuff, we
want to be able to find any record, read its information,
manipulate that information and get results. However, we
don't want to have to read through every record to find
the one we want. In our sample program this wouldn’t be
a big deal, but if each record had, in addition to calories,
Vitamin A, Vitamin B-1, Vitamin E, Calcium, Sodium. . .
well, you get the idea. It would take forever to go through
all of them every time. With this program, we only have
to go through all of them when adding new records.

When we add new records, we'll find out at which sec-
tor and character on disk the record begins and go direct-
ly to that location. This is done by having a separate file
(another drawer in our cabinet), containing a record with
only the name of the item, sector and character. Neat, huh?

Basically, we need two functions to accomplish this.
NOTE tells us where on disk the read/write head is lo-
cated. The form is:

NOTE #(channel no.),SECT,.CHAR

Channel number refers to the line you've opened to the
disk drive, as in: OPEN #1,4,0,”D:DATA.FIL". SECT and
CHAR are variable names which will contain, respectively,
the sector number and character position of the drive head.
Each sector has 128 character positions.

POINT tells the read/write head to move to a specified
position and start operations there. The form is:

POINT #(channel no.),SECT,.CHAR

As you see, it’s similar to the NOTE statement. The sec-
tor and character positions must be given as variables.
(Also, keep in mind that you can only POINT to a posi-
tion in a file which exists and has been OPENed).

The OPEN statement allows you to communicate direct-
ly with peripheral devices, such as disk drives, cassettes,
printers, keyboard, etc. Each device has a letter specifi-
cation. We're only concerned with the disk drive, which
is indicated by “D: (the colon is necessary), and must be

114 ANALOG COMPUTING

followed by an existing filename (with one exception, dis-
cussed below).

In examining the OPEN statement, we’re most con-
cerned with the second specification (i.e., the #4 in OPEN
#1,4,0,”D:DATA.FIL"). There are four modes of communi-
cation available when OPENing to the disk drive: (1) in-
put (mode 4) allows you to read only the data in your file;
(2) output (mode 8) allows you to write only to the data
file—when OPENing in this mode, the drive head will be
at the beginning of the file; (3) append (mode 9) allows
you to add data to the end of the file—the drive head upon
OPENing will point to the end of the file and automati-
cally allot another 128 characters, minimum, of disk space
to that file; and (4) update (mode 12), which allows both
reading and writing to the file—upon OPENing, the drive
head will be at the beginning of the file.

Mode 8 is the only way to create a file. If mode 8 is speci-
fied (write only), DOS will open a file with the name
specified and write data to it, if desired. Modes 8 and 12
will write over and destroy any previous data.

Now we get to the simple part. All we have to do to add
data to our file is specify mode 9 (append), give the data
to the computer, and have it added to the end of our file.
Then, to find out where it is on the disk so that we can
index it, we OPEN for a read (mode 4), NOTE the posi-
tion of the head, read a record, write the name of the rec-
ord and its position to the index, NOTE the position of
the head again, read the next record, etc. . .until the end
of the file.

Now, when we want the info back, all we have to do
is search our shorter index file, find the location of the
item we're looking for, and have the read/write head
POINT there and start inputting.

Let’s look at the program—a lot easier than trying to ex-
plain all this. The beginning merely dimensions the string
variables needed, fills BLANK$ with spaces and assigns
line numbers to variables. This way, when I call a subrou-
tine, I have an idea what it does (instead of seeing a
meaningless number).

And, if I renumber a subroutine, I just change one vari-
able to point to that subroutine from any part of the pro-
gram. Also, Line 82 identifies an end character, so the
computer knows when we're finished adding, updating,
or using data.

Lines 100-260 are the main menu.

Lines 300-391 form the routine to find a particular rec-
ord, show you the basic unit, ask for a multiple, and print
the number of calories for that food item. As you can see,
most all it does is call on subroutines. This simplifies writ-
ing the program since the same procedures are used in
the other main routines. For example, ITEMIN, merely asks
for the name of the food you want, has it padded with
spaces in the PADITEM subroutine so it's the required
twenty-five characters long, and returns.

Data is padded by converting all nonstring variables to
string variables, checking variable lengths, and adding
blanks if necessary to fill the allotted space.

FINDITEM locates the item in the index file and reports
back. Next, the data is read—RDDATA subroutine—by

ATARI 8-BIT EXTRA

POINTiIng to the correct position on the disk file and read-
ing the information.

The UNITIN subroutine gets the multiple (i.e., you're
using two apples in a recipe and the base unit is 1).

Then FIGCAL and CALPRNT, as their names imply, fig-
ure out the calories, print them out, and return.

Once the last item is indicated by a CTRL-E entry, the
program calls subroutine TOTPRNT, to print out the to-
tal number of calories for all items and quantities speci-
fied, then returns and waits for you to hit RETURN, to
go back to the main menu.

Lines 400-450 are the main routine to add new records
to the file. Notice that this opens a channel to mode 9 (ap-
pend). This routine calls subroutines already found, such
as I'TEMIN.

WRITEDATA prints on disk all the data fields (i.e.,
name, number, unit and calories) and waits at the end of
the file for any more additions.

If CTRL-E is entered, signalling no more additions, the
channel to the data file is closed, and the program calls
the INDEX subroutine. It OPENs two channels, one to read
the data file and NOTE the position of each record, and
one to write a new index file (mode 8) over any old one
still there. When finished, it returns to the main menu.

Lines 500-570 are the update main routine, to easily alter
a record (old record:Banana,1,medium,101/new record:Ba-
nana,1,large,116). This is the reason we've been padding
our data fields. Even though a new field may have more
or less characters than the old, it won't change the disk
position of the record.

The only new subroutines are: NWDATA, which gets
the changes you want to make; and WRITNW, which then
POINTSs to the beginning of the old record and writes over
it with the new data.

Finally, the TRAP statements send the program to
ERROR1. This is an easy way to handle end-of-file. When
the end is reached and the computer’s asked to read more,
an error occurs, and program execution halts. By using an
error handler routine to check which error had occurred,
the program may continue—even though an item is not
found. Control is returned to the correct portion of the
program by assigning each main routine a number con-
tained in the variable TEST.

All that's left is to create the files to be used. This is
done in immediate mode (when the screen says READY).
Just key OPEN #1,8,0,”D:DATA.FIL” and press RETURN.
Then CLOSE #1 and RETURN. The same should be done
to create the index file: OPEN #1,8,0,”"D:INDEX.FIL". To
start your file, run the program and hit 2 to enter the ADD
routine. Now, key the information asked for, and it will
be written to the data file and index file, appropriately.

Three useful expansions of this type of program would
be a directory, a multiple file routine and a hard-copy
subroutine.

The directory could print out either all names of the
records or all the records in their entirety, by accessing
the index file or the data file, respectively, and sequen-
tially listing their contents.

A multiple file would be used to remember a certain

ATARI 8-BIT EXTRA

combination of records, such as a recipe. By putting in
the name of a food item and its unit multiple, another file
can be added to, with records containing: (1) recipe name,
(2) number of items, (3) list of sector/character locations
with a HOWMANY unit multiplier. By setting up a
FOR/NEXT loop based on field (2), you could quickly
POINT to each item included and figure the multiple for
that particular recipe.

You'll notice that I've used arrays for SECT and CHAR
to facilitate this type of application. The arrays will con-
tain sector/character positions for each item. When the
FFOR/NEXT loop is entered, the loop index is used as the
array index, and the correct data will be written or read
for the assigned number of items.

Simplest of all, to obtain hard-copy, insert a question
al the beginning of a routine—such as, Do you want a print
oul? Then, based on the INPUT answer, a variable (i.e.,
PO$) is set. If the answer is yes, a hard-copy subroutine
is called from a main routine.

As I mentioned, this program is easily adapted to other
uses: inventories, student test data, bills paid and pay-
able, etc. I would be interested in hearing of other appli-
cations. A

Barbara Donovan, a native New Yorker, lives in Virginia
with her writer-husband and their three children. She is
now laking courses and plans to seek a Ph.D. in Computer
Science in the near future. She’s been a computer hobbyist
since 1979 (starting on a TRS-80, which was destroyed in
a fire) and, since 1983, has been a loyal Atari owner.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

AE 10 REHM 300000000333 000006

MF 11 REM ¥ FILE MANAGER *
MB 12 REM * BY *
DK 13 REM ¥ BARBARA DONOUVAN *
AaM 14 REM
BY 15 REM

IM 17 REM 3% DIMENSION AND 3600000

RJ 18 REM % INITIALIZE VARIABLES 3¢

NR 20 DIM ITEMS(25),UNITS$(15),NAMES(25),C
$(3),LASTITEM$(25) ,5ECTS (33 ,CHARS (3 ,N
UMS (3 ,CALS () ,BLANKS(25) ,TEMPS(3)

ME 25 DIM CHAR(15),5ECT(15)

PZ 26 BLANKS='" ":BLANKS$(25)=BLANKS:BLANKS
(Z)=BLANKS

ZB 30 ADDITEM=40808:CALPRNT=13568:CLEARSCR=1
480 :COUNTCAL=300:ERRORLI=1500:FIGCAL=13
B0:FINDITEM=10850:INDEX=1600

WU 63 PADITEM=1950:PADSECT=1980:PADDATA=2Z
B48:ITEMIN=1600:IUPDATE=500:MENLU=100:N
HWDATA=18088:RDPDPATA=1150: TOTPRNT=1458

HM 74 LUNITIN=1256:HRITEDATA=1700:HRITNK=1
850

WZ 82 LASTITEMS(CL,1)="9":LASTITEM5(Z,25)=
BLANKS

CHN 97 REM 36000 MAIN MENL 368G

(M 160 PRINT "“'R“

TZ 118 POSITION Z,Z:PRINT “TO":POSITION 2

.. B,Z:PRINT "PRESS:"

ANALOG COMPUTING 115

é POinted N Ote continued

126 POSITION 2,4:PRINT “COUNT CALORIES
:POSITION 20,4:PRINT "1 <{RETLRN>"

136 POSITION 2Z,6:PRINT '"ADD AN ITEM':P
OSITION 28,6:PRINT "2 {RETURN>"

1406 POSITION Z2,8:PRINT "UPDATE ITEM'":P
OSITION 26,8: PRINT "I {RETLURN>"

TRAP 279 REM /0NLY TAKE NUMBERS/
POSITION 2,2Z:PRINT "HWHICH";:INPUT

ON C GOTO COLUNTCAL,ADDITEM,IUPDATE
GOTO 198:REM /NO.BETWEEN 1-6 ONLY
REM 39066%% CALORIES FOR 1 3060660k
REM 336063%% OR MORE ITEMS M6
PRINT "K":TOTAL=8:P=8:TEST=316:I=1
TRAP ERRORL

GOSUB ITEMIN

IF ITEMS=LASTITEMS THEN 398

GOSUB FINDITEM

GOSUB RDDATA

GOSUB UNITIN

GOSUB FIGCAL

GOSUB CALPRNT

GOSUB CLEARSCR:GOTO 316

GOSUB TOTPRNT

POSITION 2,23:PRINT "PRESS RETLRN
MENL'; : INPUT C$:GOTO MENU

REM 366%% ADD NEMW ITEM 3M3666%
PRINT "K":TEST=4108:TRAP ERRORL
OPEN #1,9,0,"D:DATA.FIL"

GOSUB ITEMIN

v IF ITEMS=LASTITEMS THEN CLOSE H1:G
_0SUB INDEX:GOTO MENLU

YD 438 GOSUB WRITEDATA

GOSUB CLEARSCR:GOTO 418

REM 366% LPDATE DATA FILE 30666k
PRINT "'K"

TEST=518:TRAP ERROR1

GOSUB ITEMIN

IF ITEMS=LASTITEMS THEN GOTO MENLU
GOSUB FINDITEM

GOSUB RDDATA

GOSUB NWDATA

GOSUB WRITNM

GOSUB CLEARSCR:!GOTO 510

W REM 306606%% ENTER ITEM/NAME 306360636%
1688 POSITION 2,2

1010 PRINT “({CTRL}'E'<{RET>=STOP)";

1626 PRINT “ENTER ITEM:":INPUT ITEMS:L

=LEN (ITEM$)

GOSUB PADITEM

RETURN

REM 3%¥% FIND ITEM LOCATION %%
OPEN #1,4,0,"D:INDEX.FIL"

TRAP ERRORL

INPUT #1;NAMES

INPUT #1;SECTS:SECT CI)=VAL(SECTS)
INPUT #1;CHARS:CHARCII=VAL (CHARS)
IF NAMESZITEM: THEN CLOSE #i:RETU

GOTO 1878

REM ¥ READ IN DATA FOR ITEM 36
OPEN H1,4,06,"D:DATA.FIL"

POINT 81,5ECT(I),CHAR(I)

INPUT H1;NAMES

JZ 1247 REM 3% GET NUMBER OF LINITS %%
06 1258 POSITION Z,4:PRINT "LNIT:';VAL (NU
. M5Y ;" UGUNITS
NC 1268 POSITION Z,6:PRINT "HOW MANY LNIT
 5U; rINPUT HOWMANY

Y 1278 RETLRN
LF 1297 REM %% FIGURE NUMBER CALORIES %
WS 1388 ICAL=VAL(CALS)

00 13085 ICAL=ICAL¥HOWMANY

116 ANALOG COMPUTING

1318 TOTAL=TOTAL+ICAL

1326 RETLURN

1347 REM % PRINT NUMBER OF CALORIES ¥
1358 RP=2

1366 POSITION RP,P:PRINT ITEMS$(1,LI):R
P=RP+LI+2

1365 NUM=VAL [NUMS)

137686 POSITION RP,P:PRINT MUMXHOWMANY;'"
" UNITS

13808 POSITION 32,P:PRINT ICAL

1396 P=P+1:RETURN

1397 REM ¥ CLEAR INPUT AREA b6k
1406 POSITION 2,2: PRINT

1485 POSITIOH 2,3.PRINT o
1410 POSITION 2,4iPRINT "
1412 POSITION E,S:PRINT i
1415 PRSITION Z2,6:PRINT "
1417 POSITION ﬁ,?:PRINT e

1428 RETURN

1447 REM 0% PRINT TOTAL CALORIES 3¢

1456 POSITION 2,21:PRINT “TOTAL CALORI

E5:',TOTAL

1466 RETURN

1497 REM 3066¢ ERROR HANDLER #H1 ¥666¢

1568 ERR=PEEK(195):CLOSE H1:POP

1565 GOSUB CLEARSCR

1518 IF ERR=136 THEN POSITION 2,Z:PRIN

T “"ITEM NOT FOUND'":GOTO 1538

1511 IF ERR=8 AND TEST=318 THEN POSITI

OTSZ,Z:PRINT ""NUMERIC INPUT ONLY":GOTO
38

' 1512 IF ERR=8 AND TEST=418 OR TEST=518

THEN POSITION 2,2:PRINT "SEPARATE NLUM

. BER AND LUNIT BY A COMMA":GOTO 1536

1528 POSITION 2Z,Z:PRINT “UNEXPECTED ER
ROR H'";ERR

1538 POSITION 2,3:PRINT "ANYKEY=CONTIN
UEII

1535 POSITION 2,4:PRINT "{CTRL>'E'=HMEN
ull

1546 OPEN #2,4,8,"K:":GET B2Z,C:CLOSE #
2

1558 IF C=5 THEN GOTO MENU

BL 1560 GOSLUB CLEARSCR:GOTO TEST
- 1597 REM %% RECORD INDEX LISTING 3%

1668 TRAP 1675

1685 GOSUB PADSECT

FK 1616 OPEN #1,8,0,"D:INDEX.FIL"

1626 OPEN #2,4,08,"D:DATA.FIL"

#i 1638 NOTE H2,5ECT,CHAR
I 1635 INPUT H2;NAMES

1646 INPUT H2Z;HNUMS
1645 INPUT HZ;UNITS
1656 INPUT H2Z;CALS
1655 PRINT Hi;NAMES
16608 PRINT H1;SECT

> 1665 PRINT #1;CHAR
1678 GOTO 1636

1675 IF PEEK(135)=136 THEN CLOSE #1:CL
- 05E #2

1686 RETURN

- 1697 REM ¥6¢ RECORD DATA FOR ITEM 3¢

17868 POSITION Z,3:PRINT "NUMBER,UNIT:"
; tINPUT MNUM, UNIT$ NUMS= STRS(NUM)

1718 POSITIDN 2,4:PRINT "CAL:'; :INPUT
CAL:CAL5=5TRS (CAL)

1728 PRINT Hi;ITEMS

1725 GOSUB PADDATA

1738 PRINT #1;NUMS

1746 PRINT #1;UNITS

17568 PRINT H1i;caALS

1755 NOTE #H1,5ECT,CHAR

ATARI 8-BIT EXTRA

BF 1760

BB 1797 REM ¥¥¥¥ GET NEW DATA FOR ITEM ¢

QF 18066

RETURN
POSITION 2Z,4:PRINT "NUMBER,UNIT=

" UAL CNUMS) ' " UNITS

05 18186

POSITION 2,5:PRINT "CHANGE TO:';:

INPUT NUM,UNITS:NUM$=5TRS (NLUM)

ZA 1826 POSITION Z,6:PRINT "CALORIES= '";V
aLcALS)

YU 1825 POSITION 2,7:PRINT "CHANGE TO: ';
:INPUT CAL:CALS=STRS(CAL)

@AY 1830 RETURN

"JE 1847 REM 0¥ WRITE REVISED DATA 36X

0p 1856 OPEN #1,12,8,"D:DATa.FIL"™

UN 1860 POINT #H1,5ECT(I),CHAR(I)

KX 18708 PRINT #1;ITEMS

BP 1875 GOSUB PADDATA

RB 1880 PRINT H1;NUM$

Uy 18968 PRINT Hi;UNITS

WX 1988 PRINT Hi;CALS

PW 1916 CLOSE H1:RETURN

DX 1947 REM 36066¢ pAD ITEM FIELD 666¢

RB 1958 LI=LEN(ITEMS)

QK 1955 ITEM$(LI+1,25)=BLANKS

‘BJ 1968 RETLURN

DB 1977 REM ¥ PAD SECT/CHAR FIELDS %

RR 1980 LTH=LEMN(SECTS$)

ZR 1985 IF LTH=2 THEN SECT$({2,3)=5ECT%:SE

ATARI 8-BIT EXTRA

2006808
2805

26186
2837

2865
2070

CTS(1,13="'0"

IF LTH=1 THEN SECT%(3,33=5ECT$:5E

IF LTH=2 THEN CHARS$(2,3)=CHARS:CH

ARS(1,1)="g"

IF LTH=1 THEN CHAR%$(3,3)=CHAR%:CH

ARS(1,2)="'Ba"

RETURN

REM ¥6606¢ PAD DATA FIELDS ¥606¢
LU=LEN(UNITS)

UNITS(LU+1, 15)=BLANKS

LTH=LEN {NUM%]

IF VAL CNUMSY {1 THEN GOTO 2878

IF LTH=2 THEN HNUM%(2Z,3)=HLUMS:NLUMS

(1,1)="e"

IF LTH=1 THEN NUM$ (3, 3I=NLMS:NUMSE

(1,z2)="'ae"

LTH=LEN(CAL%)
TEMPS$=CALS:CALS=""888"

IF LTH=2 THEN CAL%(2,3)=TEMPS
IF LTH=1 THEN CALS$(3,3)=TEMP%
CALS=TEMPS

RETURN

ANALOG COMPUTING 117

ULTIMATE STORAGE

Here's the perfect way to organize your ANALOG Computing library—sturdy, custom-made binders
and files in deep blue leatherette with embossed silver lettering. Silver labels are included to index
by volume and year. One binder or a box-style file is all you'll need to accommodate 12 issues (1
year) of ANALOG Computing—all the games, programs, tutorials and utilities that you want handy.

The ANALOG Computing binder opens flat for easy reading and reference. They're economically
priced at only $9.95 each—3 binders for $27.95 or 6 binders for $52.95.

The ANALOG Computing file is attractive and compact, holding 12 issues for easy access. Files
are available for only $7.95 each—3 files for $21.95 or 6 files for $39.95.

Add $1.00 (outside U.S., add $2.50) per case/binder for postage and handling — U.S. funds only.

Call Toll Free 1-800-972-5858 Charge orders only, minimum $15.00

Enclosed is my check or money order in the amount of $:
Please send me: __ ANALOG Computing files ANALOG Computing binders.

PLEASE PRINT.

Name:

Address: (No P.O. Boxes)

City: State:

SIS T S 2 Jesse Jones Industries
DEPT. ACOM, 499 East Erie Ave., Philadelphia, PA 19134

——]
PA residents, add 6% sales tax Satisfaction guaranteed or money refunded.

Zip Code:

48K Disk

by Jim Ehninger

A month ago, a friend of mine was having problems
with his disks. His little brother was playing his games
without permission; his sister was reading his AtariWriter
files, and his dad replaced one of his BASIC files with a
program that said, “Happy April Fool’s Day.” He came to
me for help.

1 created a short AUTORUN.SYS file that required a cer-
tian keypress before you could run DUP.SYS. But they
could still get in by booting another disk, then reading
the directory from there. “Give me time,” I said. A week
later, PassWord was created.

So what will it do?

Type in Listing 1 (the BASIC listing). Do not type in
the assembly language source code; this is for advanced
programmers to look over. Save the program. Insert a blank
disk (or a disk that may be formatted) and execute the pro-
gram, using item P at the first prompt. The current DOS
in memory will be written to the disk, then the program
will ask you for a password. A hint: use a short, one-word
password that’s easy to type in, easy to remember, and isn’t
too obvious.

After the program is through, it will reboot and let you
try out your new, protected disk. I won't guarantee it will
work for people like Tom Hudson or Kyle Peacock, but it
will probably keep your family and friends out.

ATARI 8-BIT EXTRA

UTILITY

Any questions?

The following are some questions you may have about
PassWord. First, how does it work? The program works
by moving the disk directory (normally sector 361) to a
different location. When you try to boot another disk and
read the directory, you don’t see a list of the files on that
disk. Therefore, we have the protection we want.

Can someone else boot their PassWord disk and “get
into” my disk? No, I thought of that, too. On almost all disks
the directory is in a different place. The odds of two Pass-
Word programs being the same are about 1 in 256.

Sounds good. How can I transfer DOS files to my Pass-
Word disk? There are two methods I've found: (1) use the
COPY+ 4.0 program supplied in Listing 1; or (2) type
POKE 1955,89:POKE 1956,228 to toggle DOS access, load
the file, then POKE 1955,0:POKE 19564 to return to Pass-
Word access, and save the program.

Great! You've just given away the secret. No, they still
have to boot up your disk before those POKEs will work.
And please be careful when using these POKEs.

COPY+ 4.0.

The subroutine at the end of Listing 1 is a utility that
enables you to copy any DOS file to your PassWord disk,
and vice versa. You must boot your PassWord disk up to
run this program. Otherwise, your computer will lock up
and take a short trip to the Twilight Zone.

The COPY + 4.0 program (yes, there were four versions)

ANALOG COMPUTING 121

Pas SWOI‘d continued

and the PassWord program should be saved as one pro-
gram. It’s best to copy this program onto your PassWord
disk if you're going to be doing a lot of copying (say, us-
ing it as a programming disk). Please specify this at the
prompt.

If you have any questions about PassWord or COPY +
4.0, or if you make up some new utilities for PassWord,
write to the Reader Comment section. Users with 300-
baud modems can leave me a message on StarGate Earth
Bulletin Board System: (801) 272-1518, 10 p.m. to 7 a.m.,
seven days a week, ATASCII and full duplex. Have fun
with your PassWord. &

Jim Ehninger has owned an Atari 800 since 1982. Jim
enjoys telecommunications and programming 6502 ma-
chine language and BASIC. He enjoys more cerebral games
and is a remote SYSOP of Wally World BBS, 801-255-9345.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

REM P/W - BY: JIM EHNINGER

REM FOR ANALOG COMPLTING

OPEN #12,12,0, " E: "

GRAPHICS B:SETCOLOR 2,0,0

OPEN #3,4,8,"K:":DIM D0OSSC128) ,PHS(
303 ,D5(10088) ,DSKINVS (5),BS (128, AS (255
Y, N05¢€128),Péc2) , MES C10)

55 2 “(P)/W program, or (G)o to COPY+
4.0 :";:INPUT #2,P$:IF PS=''G" THEN GOS
UE 1008:END

60 K1=PEEK(58404)+1:K2=PEEK (58405) :P1=
PEEK (58374) +1:P2=PEEK (58375) : PS=CHRS (P
13 :P$ (2 =CHRS (P2}

70 FOR 4=1 TO 128:NOSCAY=CHRS (8) : NEXT
a

88 ? “P/M DISK BOOT MAKER — BY JIM EHN

INGER"

98 7 "“(c) 1985 ANALOG COMPLTING"

188 ? "“"INSERT i DISK INTO DRIVE 1.4"

118 ? "[TITBCIE-THIS WILL ERASE ALL CON

TENTS"

128 7 "ON THAT DISKI4"

138 ? "PRESS RETLRN:"';

148 GET #3,D:IF D<{}155 THEN 148

7 156 7 “"QFORMATTING DISK...";

(P 168 XI0 254,H#1,0,8,"D:"

E 1768 ? “[JCREATING SPACE...";

G 186 OPEN #1,8,8,"D:SPACE.PH"

198 FOR A=1 TO 386:PUT #1,8:NEXT A:CLO

SE #1

288 7 "[QWRITING DO0S.5YS...";

218 OPEN #1,8,8,"D:D05.5Y5":CLOSE H1:?

211 ? “WOULD YOU LIKE OTHER FILES ON T

. HE":? “THE DISK BESIDES DOS5? {i.e. DUP

. .5Y5,":7 “AUTORUN.SYS, etc.) {Y/N>";

W5 212 INPUT #2Z,PW5:IF PWS="N'" THEN 220

5N 213 SGE=1:GOSUB 1600:5GE=0

UM 228 ? "[JWHAT WOLULD YOU LIKE YOUR PASSH

~ ORD"™:? "TO BE?":? “28 CHARACTERS MAX.'"

WF 238 ? “NO CONTROL CHARACTERS OR INVERS
CEL4M

EP 248 ? “"PASSWORD:"; :INPUT H#2Z,PH$

250 IF LENCPWS)>26 THEN 7 “¢IEIYIYHIS

HIGOTO 240

260 FOR A=1 TO LEN(PK5)

122 ANALOG COMPUTING

PO 2708 IF ASCIPWS(A,A))>31 AND ASCIPHS(A,
n33<{125 THEN NEXT A:GOTO 2986
Piaav 1 I aREND CONTROL CHARACTERS OR INVERS
":GOTO 248

MI 296 ? “YOUR PASSHORD IS:";PW$:? "IS TH
IS5 CORRECT? ";:INPUT nz,né:IF asc1,13¢
. uyn THEN 220

AW 386 ? “"KPLEASE S5TAND BY — INITIALIZING
. DATA..'":RESTORE :5E=0

AR I10 FOR A=1 TO 442

JN 3280 READ D:SE=SE+D:DS{AY=CHRS$ (D) :NEXT
_ A:FOR A=1 TO 78:D5(442+A)=CHRS (0] :NEXT

2]
UT 330 D5(14,15)=P5:D5(191,192)=P5:D5(206
. ,287)=P5:D5(225,226)=P5:D5(259,260)=P%
. 1D5(313,314)=P$:D5(352,353)=P%
% 340 D5(158,158)=CHRS(K1):D$(159,159)=C
. HRS(K2)
358 IF SE{>42148 THEN 7 "ERROR IN DATA
STATEMENTS.'" :END
¥ 360 FOR A=1 TO LEN{PHS$):D5({229+A,229+4
. J=CHRS5(ASC(PHS(A,AIIX2Z) NEXT A
- 370 NS-INT(RNDC(1)%245)+8:D5(427,427)=C
HRS (NS)
388 7 "JHRITING PROGRAM..."
4 398 DSK=768:5E=4:TT=1:RH=87
I 400 DSKINVUS="h S[le"
- 418 POKE DS5K+1i,1
- 420 BS=DS(TT,TT+127):GOSUB 440:TT=TT+1
28:5E=SE+1:IF SE{8 THEN 426
438 GOTO 666
i 440 AD=ADR(B%) :POKE DS5K+2,RH
MZ 458 HIGH=INT(AD/256) :LOW=AD—-(HIGH*256)
J 460 POKE DSK+4,LOW:POKE D5K+5,HIGH
3% 470 SHI-INT(SE/256) :S5L0O=SE-(5HI¥*256)
- 480 POKE DSK+16,5L0:POKE DSK+11,S5HI
490 A-USRCADR(DSKINVS)) :IF PEEK(DSK+3)

{*1 THEN ? "[J5TATUS ERROR- ";PEEK(DSK+
- Z):GOTO 448
5688 RETLURN
518 pATA 162,6,142,198,2,189,162,8,240
;21,134,255,32,164,246,162,16,1606,06,13
6,208,253,202,208,248,166,255
528 DaTa 232,76,133,8,76,23,9,125,808,4
 7,87,32,45,32,408,99,41,32,49,57,56,53,
. 32,65,78,65,76,79,71,32,67,79
e 538 DaATn ?7,806,85,84,73,78,71,155,806,8
. 2,79,71,82,65,77,32,66,89,58,32,74,73,
. 77,32,69,72,78,73,78,71,69,82
BG 546 DATA 155,80,65,83,83,87,79,82,68,5
... 8,30,30,306,36,30,30,30,30,306,255,255,2
 5%,255,255,157,157,157,157,157
HR 556 DATA 157,157,157,157,157,29,29,29,
29,29,29,29,29,29,29,31,31,31,31,31,31
o 431,31,31,31,31,31,31,31,68,08
JU 5668 DaTA 169,0,141,22,9,32,226,246,201
- ,155,240,86,201,126,240,46,24,2061,32,1
 44,240,201,125,176,236,141,21
Ca 570 DaTha 9,24,173,22,9,201,20,144,8,16
9,253,32,164,246,76,28,9,173,21,9,174,
. 22,9,157,2,1,32,164,246,238,22
GK 5808 DaTaA 9,76,28,9,173,22,9,240,194,26
. 6,22,9,169,126,32,164,246,76,28,9,32,3
. 2,32,32,32,32,32,32,32
GL 598 DaATHA 32,32,32,32,32,32,32,32,32,32
o ,32,169,155,174,22,9,157,2,1,32,164,24
-~ 6,162,0,24,126,101,9,232
UL 600 DaATA 224,21,208,247,162,08,189,101,
9,221,2,1,208,4,232,76,145,9,183%,1681,9
,201,16,208,16,189,2,1,201,155
4 616 DATA 208,3,76,213,9,162,0,189,192,
9,240,249,134,255,32,164,246,166,255,2
32,76,176,9,155,2%3,126,80,65
HL 6286 DATA 83,83,87,79,82,68,32,63,569,78
;,73,69,68,33,155,0,162,0,189,231,3,246
+28,134,255,32,164,246,166,255
51 638 DATA 232,76,215,9,155,66.11,141,1

ATARI 8-BIT EXTRA

16,165,110,163,32,68,79,83,46,46,46,15
5,0,169,4,141,164,7,169,0,141
648 DATA 163,7,162,0,189,18,168,157,08,4
,232,224,40,208,245,76,20,7,24,173,18,
- 3,201,165,144,28,201,112,176
650 pATA 24,173,11,3,201,1,268,17,24,1
73,10,3,105,0,141,16,3,173,11,3,1865,8,
¥g141 11 3 3z, 89 228 96

668 SE= 361 RN-BZ GOSUB 448:LET DOS5=BS
tRHW=87
670 B$=N0%:5E=361:G05UB 4408
680 FOR J=3I61+NS TO 3I68+NS:SE=J:BS5=NOS
:GOSUB 448
690 NEXT J
700 SE=361+5N:B5=D055:G0S5UB 440
710 BS=NO$:FOR A=1 TO 128 STEP 16:B5(A

;A ="B" :NEXT A
720 B5(6,16)="This Disk ":B$(22,32)="
has been ":BS$ (38, 48) ="[IN{HH{d] ':B
$(54,64)=""By: P/MWII!Il ©
7308 BS(?O geay=" ":B5(86,96)=
{c) 13985 ":B5(1682,112)="By: ANALOG
: ":BS(llB)'"COMPUTING "
740 SE=361:GOS5UB 446
758 B5(6, 16)‘"£—————————ﬂ"‘8$(22,32):"
Program by:":B5(38,48)=""J. Ehninger'":B
- 5(54,64)="
- 760 B$(?B LD P LEASE ":B$(86,96)=
 REBOOT ":B5(1062,128)=""
B ALAALALALALLLS A
. 770 S5E=362:GOSUB 448
780 BS5=D0S55:BS(1,1)="["":SE=361+N5: G050
B 440
. 790 SE-1:RW=82:GOSUB 448:RW=87:B%(2,2)
 =CHR$(?):B5(8,9)="[L4":G05UB 4408:GOSLB
. 830
HZ 866 ? "0K! YOU ARE ALL READY! REMEMB
" ER'":? "“YOUR PASSWORD: ";PW5:?

816 ? “PRESS RETURN TO BOOT P/HW DISK:"
. 3'GET #3,D:IF D{>155 THEN 810

828 ANALOG=USR(58487)
830 SE=360:RW=8Z:G05UB 448
> 840 A=56+(NS/8) iMES="¥¥":BS5(A,A+1)=MES
¥ 850 B5(4,4)=CHRS(ASC(B5(4,4))-16)

- 860 SE=3I60:RW=87:G0SUB 440:RETURN
16606 REM P/W COPY+ VERSION 4.0
1610 REM BY JIM EHNINGER 4/7/85
1620 D1=PEEK(1955) :DZ=-PEEK(1956)
1640 GRAPHICS BO:5ETCOLOR 2,8,8:DIM BUF
:"gERS(FRE(O)-SBO),NON$(3B),FN§(38) KITE
o %018)

. 1656 ? “"KP/H COPY+ 4.8 - BY JIM EHNING
~ ER":TRaAP 1298
£V 10660

7 “{c) 1985 ANALOG COMPUTING':?
JR 18786 ? "“hA. DOS to P/W"
OM 1886 ? '")B. P/H to DOS"
A0 1685 7 “lC. EXRIT TO P/W':?
KZ 16896 ? "PSELECT:"; :INPUT BZ,KITES

KC 1166 IF KITES<{"A" OR KITES$>'"C'" THEN ?

P : GOTO 16980
RO 11168 ? "IFILE:'"; :INPUT #Z,HOHS:FN5="D1

 1"™IFN$(4)=HOKW%

RJ 1126 ? "INSERT SOURCE DISK, HIT RETURN

~ WIINPUT H2, HOWS

QB 1125 IF SGE THEN 1158

WR 1138 IF KITE$="A" THEN POKE 1955,89:P0
KE 1956,228

AZ 1140 IF KITES$="B'" THEN POKE 1955,8:P0K

E 1956,4
HX 1150 OPEN H1,4,8,FNS
X¥ 1160 ﬁ$(255)_" "‘BUFFER$’""

DH 1170 TRAP 1175:XI0 7,H#1,4,08,A5:BUFFERS
(LEN(BUFFER$)+1)=Q$:GOTO 11?9

EE 1175 IF PEEK(195)=5 THEN ? "PROGRAM TO
0 LARGE.™:END

IJH 1188 IF PEEK(195)¢>136 THEN 1298

RG 1190 TRAP 129%6:IF PEEK(856) THEN BUFFE
RS (LEN{BUFFERS$)+1)=A%(1,PEEK (856))

ATARI 8-BIT EXTRA

cT

G
Az
an
UN

IR

™

1288 CLOSE #1
1218 ? "INSERT DESTINATION, HIT RETURN

. “:INPUT 212, HOMWS
PZ

1215 IF SGE THEN 12486

1228 IF KITE$=""B'" THEN POKE 1955,89:P0
KE 1956,228

1236 IF KITE$="A" THEN POKE 1955,08:P0K
E 1956,4

1248 OPEN #1,8,08,FN5
1258 7 ﬂl;BUFFERg :CLOSE #1

1268 7 “'COPY+ COMPLETE!":? "{a)nother
copy or (EXXit:";:INPUT #Z,WOW$:IF WOMW
$¢1,1)=""A" THEN 18590

1276 POKE 1955,D1:POKE 1356,D2

12806 TRAP 40000:RETURN

1298 7 "“COPY+ ERROR- " ;PEEK(155):END

Listing 2.
Assembly listing.

8188 .OPT NOLIST

8118 **=5880

8126 ;

B138 ; FeemrseamEEseS e +
8148 ; |P/H ASSEMBLY LISTING
8158 ; By: Jim Ehninger
8168 ; |USES ASM/EDITOR (tM)
8178 ; t————me e ——————
ais8a ;

8198 ; 05 EQUATES!

6200 ;

8218 GETKEY =5F6EZ

82280 COLORZ =5%82C6

8230 PRINTCHR=5F6A4

82406 DOSVEC =%$87A2

8258 CHARS =$08182

8260 BDOTDOS =58714

8276 ;

8288 LDX #5080 ;jGet rid of
8298 S5THK COLORZ2 ;that color!
8308 PRINT ;Read the
8318 LDA DATA,X jwelcome

8328 BEQ STARGATE
8338 STR SFF

8348 JSR PRINTCHR
8358 LDX #5106

;jmMmessage, and
iprint it to
}the screen.
jPut in a delay

BI60 HHE ;50 it looks
8378 LDY #5080 jneat.

83868 HHY ;Isn't this
8¥9%8 DEY }just like

84808 BHNE MWHY ;jHarGames?

8416 DEX ;jAre we through

8426 BNE WHH ;jdilly—-dallying

8438 LDX SFF jaround?

8440 INXK jcheck...

8456 JMP PRINT ino, keep going
84608 STARGATE s YES! lets get
8476 JMP 0TAY ;jstarted...
84808 DATA ;jData for M5G
08490 .BYTE 125,"P/H - "

8500 .BYTE "(c) 1985 ANALOG "

85186 .BYTE "COMPUTING',155

8528 .BYTE "PROGRAM BY: “

85306 «BYTE "JIM EHNINGER'", 155

8540 .BYTE ""PASSHORD:"

8550 « BYTE ™ a
8560 +i BYTE ** s

8578 TEMP BRK
85868 NUMS BRK
8598 ;

66068 0TAY

8618 LDa HS500
8628 5TA NUMS
86306 JIMCO

;Tewp location
;# of chars.

Put zip into
the number
count location

e S

ANALOG COMPUTING 123

PaS SWOI‘d continued

0640
8650
68660
8670
0680
86926
6760
0716
87206
8738
8746
87508
87606
87786
0780
87950
0806
0816
6826
0830
0846
8858
08606
86876
0886
0896
890686
8916
6320
093a
8946
8958
8966
8978
08986
89986
1066
1616
1028
1638
1648
16586
10686
1e67a
iaga
1896
iiee
1iie
11278

JSR
CHP
BEQ
CHP
BEQ
CLC
CHMP
BCC
CHP
BCS
5ThA
CLC
LDA
CHMP
BCC
LDaA
JSR
JHMP

GETKEY
H59B
HEDONE
BS7E
GETDOHN

H526
JIMCO
BE7D
JIMCO
TEMP

NUMS
#5514
LESS528
BSFD
PRINTCHR
JIMCO

LE5528

LDA
LDX
5ThA
JSR
INC
JMP

TEHP
NUMS
CHARS, X
PRINTCHR
HLUMS
JIMCO

GETDOWN

LDA
BEQ
DEC
LDA
JSR
JHP

NUMS
JIMCO
NUMS
HS7E
PRINTCHR
JIMCO

HISPH
.BYTE ™
HEDONE

LDA
LDX
5ThA
JSR
LDX

H598
NUMS
CHARS, X
PRINTCHR
H500

CHANGE

CLC
ROR
INK
CPH
BNE
LDX

HISPH, X

#5515
CHANGE
#5008

ouTTA

LDdA

HISPH, X

124 ANALOG COMPUTING

jGet a key.

3is it RETURN?
}YES-Check P/H
;jis it BACK 57
JYES-Decrement!
jClear the way!
jis it { 327
ES! Branch!
is it »1247
ES! Leave!
t's DK.

;Kill the FLAG!
et the amount
is it over 287
if not, branch
ES! Scream

t him! CTRL-2Z
nother key...
t is ok, add
he key onto

R

Pl e

x
1]
—
=]

n
-+
=]
-

eys already
ntered, print
it, and INC!
et another...
ressed BACK 5
s he { 87

E5! get key..
own baby!
rase the
istake.

et keY...u.4.
is Passwordi

DT At HD O L

L S TSI YISy MRy Sy

ressed RETURN
rase all the
1d entries

e wanted
rased.

ecode the
es55age S0 we
an decipher
hat is trying
0o say!

e through?
o—keep going!
ow let's see
if the mWan

t the keys

MHEEZEFAENITOITIOMT ITAIMOT<HTUO

L T T T T

1138
1ide
1i56
1i68
1170
1ige
1158
12060
1218
1226
1236
1246
1256
1266
1276
1z86
1298
1366
1316
1326
1338
13406
1350
1368
1376
1388
1398
14606
1416
1420
1438
1440
1456
1460
1476
1486
1496
15086
1516
1526
1536
1548
1558
1566
1578
1586
1598

CHMP CHARS,H iwon the prize!

BNE LATER jif not, later.
INX ;keep going...
JHMP OUTTA jCheck it!
LATER jLet's see

LDA HISPH,X ;where we ended
CHMP HSFF jup. Is it FF?
BNE YELL JNO! A FAKE!
LDbA CHARS, X }mabye s50..

CHMP $59B ;The RETURN!
BNE YELL ;Impersonator!
JMP ITSHIH ;YES! Helcome!
YELL ;Allright, so
LDX H500 jyou are the
SCREAH jintruder?

LDA BALLOUT,X ;S5cream at him!
BEQ YELL ;15hoot him at
5TH 5FF ;dawn! Attack
JSR PRINTCHR ;men! Two ARMS,
LDX 5FF iTwo Legs!

INX ;JSCREAM AT HIW!
JMP SCREAM ;jDon't let him
BALLOUT ;jescapelll

.BYTE 155,253,126

.BYTE "PASSHORD '

BYTE "DENIED!",155,8
ITSHIM ;Hey guy!

LDX #5080 jLet's insure
HELLO ;him by telling
LDA WELCOME,X ;him we are

BEQ BOOTDOS ;booting up the

S5TH 5FF iDisk.

JSR PRINTCHR ;He is waiting
LDX SFF ;for the

INK JREADY prompt..
JMP HELLO ;Keep printing!
HELCOME ;The data:
.BYTE 155,"Booting "

BYTE "D0OS...",155,8
BOOTDOS ;Change DO0OS to
LA HS00 3 jump to our
5TA DOSVEC+1 ;routine every
LDA #5064 itime!

5Ta DOSVEC ;and we boot!
JMP BOOTDOS ;L8R days...

jHModems call:

END . ;(881) 272-1518

ATARI 8-BIT EXTRA

32K Cassette or Disk

by Donald E. Glover

When I purchased my Atari 1020 printer/plotter, I was
disappointed that no program was provided to plot on pa-
per screens drawn in the standard Atari graphics modes.
The Dump1020 gives you such a screen dump routine
(DUMP1020), written in BASIC. This article includes in-
structions for the program and examples of its use with
programs published in ANALOG Computing.

Program logic.

(1) The graphics mode is determined by a variable
set by the user.

(2) The user is given the option of just outlining
(fast) or completely filling (slower) pixels not set to
background color (color 0).

(3) An appropriate frame is drawn.

(4) Each pixel of each row on the screen is tested
for a non-background color. If a non-background col-
or is found, the pixel is outlined or filled on paper,
depending on the decision made in (2), above. Note
that the screen is completely scanned once for each
color. This is more efficient than scanning the screen
once and checking for all three colors, because of the
length of time required to change pens.

A BASIC screen dump.

After entering Dump1020 (Listing 1), it should be LISTed
to disk or tape. It can then be merged with a main pro-
gram by using the BASIC command, ENTER. Dump1020,
by starting at Line 32000 and using variable names which

ATARI 8-BIT EXTRA

UTILITY

begin with ZZ, is designed to be merged into most BA-
SIC programs without conflict. (Dump1020 can be easily
renumbered by a renumber utility, or the RENUM com-
mand in BASIC XL, if the main program has line num-
bers within its range.)

The picture on the TV screen is plotted on paper by call-
ing the plotting subroutine (GOSUB 32013) from the ap-
propriate part of the main program. Before you make this
call, the variable ZZFILL must be set to 1 if you desire
to fill the pixels, or 0 if you do not. Next ZZMODE should
be set to a legal BASIC screen mode (3-8, 19-24, 15 or 31).
Note that mode 15(7+) is supported, even on non-XL com-
puters (see the example below).

Finally, the initialization subroutine (GOSUB 32087)
must be called prior to the plotting subroutine. This call
should be made at the beginning of the main program.
If the initialization routine is called at some other point,
it may move BASIC arrays which the main program as-
sumes are fixed. This could cause problems, if the main
program is to continue running after the plot has finished.

Examples.
The BASIC version of Dump1020 is demonstrated us-
ing the program Space Assault, found in issue 13. After
you’'ve loaded Space Assault, add the following lines:

i858 GOSUB 320887
1335 ZZMODE=7+16:ZZFILL=1:GOSUB 32813

Now, merge Dump1020 with the Space Assault program
by using the ENTER command, then run the program.
When the joystick trigger is pressed to shoot an enemy
ship, the screen (including the “fission beam”) will be fro-

ANALOG COMPUTING 125

Dlnnp1020 continued

zen and dumped to the 1020 plotter. The player shapes
will, of course, not be plotted.

The program from the article Graphics 7+ Handler
(from issue 11 of ANALOG Computing is used to demon-
strate Dump1020 in graphics mode 15. After loading that
program, add the following lines:

16 GOSUB 32887
418 IF PEEK(764)<{>255 THEN ZZFILL=1:ZZ
MODE=15+16:G05UB IZ813:END

Again, merge Dump1020 with this program and run it.
When you wish to plot the display on paper, hit the SPACE
BAR.

Speeding things up.

BASIC is slow. For example, it will take four to five
minutes before the first pixel is plotted for Space Assault.
However, if the main program doesn’t use Lines 0 through
8 (or if Lines 0-8 are just comments and can be deleted),
the following modifications to Dump1020 will make the
plotting subroutine run much faster.

(1) Renumber Lines 32024 to 32030 of the plotting

subroutine to 1 through 7.

(2) Change the new Line 2 to:

2 IF IF ZZMODE=15 THEN GOSUB 32673
GOTO 4

(3) Add the following lines:

8 GOTD (first line of mWain program
-18088 for SPACE AS5SALLT)

8 RETLURN

3z8z4 GOSUB 1

(4) Delete Lines 32025 through 32030.

The program, as modified here, works in a way identi-
cal to the original. However, the modification moves the
most often executed inner loop of Dump1020’s three nest-
ed FOR loops to the beginning, which greatly speeds up
execution. (With BASIC XL from OSS, the above modifi-
cations are unnecessary. Simply run the program in the
FAST mode.)

Program enhancements.

These routines can be added to any program using stan-
dard graphics modes, but beware of programs that start
with a standard display list, then change it. An interest-
ing modification would have to be Dump1020 switch
graphics modes and screen memory locations as dictated
by the commands in such nonstandard display lists.

Also, if more pen colors were available, the program
could easily be modified to work in graphics modes 9, 10
and 11. The program would have to stop every four colors,
to allow the pens to be changed.

Finally, Dump1020 could be expanded to work in graph-
ics modes 1 and 2. This would require using the data in
screen memory as pointers into the character memory.
With these modifications, the program could be turned
into a generalized plotting routine, which would plot vir-
tually any display created on the Atari. &

126 ANALOG COMPUTING

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

: IZ2000 REM 300000
Y 328681 REM
T 32002 REM
¥ 32803 REM
'K 32004 REM
yJ 32685 REM
H 32806 REM ZZFILL=1--FILL PIKELS
320087 REM ZZFILL=8--NO FILL
32808 REM ZZMODE=3,4,5,6,7,8,15 OR THE
SE MODES+16
. 32089 REM MUST INITIALIZE BEFORE CALLI
NG MAIN PROGRAM LUSING GOSUB 32882
QT 32818 REM ZZ0,ZZN AND ZZ5 ARE THE SAME
A5 DLDCOLOR,NEWCOLOR AND SCREENCOLOR
_IN ACTION! PROGRAM
32811 REM ALL OTHER VARIABLES ARE THE
SAME A5 THE ACTION! UARIABLES PREFIKED
BY ZZ
2 32812 REM EXCEPT FOR ZZA-ZZF,ZZYINCYPD
5 AND ZZXINCKPOS WHICH WERE NEEDED TO
 HOLD INTERMEDIATE CALCULATIONS
EB 32013 REM 366%¥%MATIN PROGRAM-—CALL AS
fi SUBROUTINE M3
K& 32014 GOSUB 3I2185:REM SET UP SCREEN PA
 RAMETERS
PC 32015 GOSUB 32088:REM INITIALIZE PLOTT
ER
MP 32016 IF ZZMODE=15 THEN GOSUB 3IZ118:RE
M GRAPHICS 15(7+) ONLY
IE 32017 GOSUB 32113 :REM DRAMW FRAME
HJ 32618 FOR ZZ5=1 TO ZZNUMCOLORS (ZZMODE}
~ -1i1REM FOR ALL COLORS
KF 32019 IF ZZMODE=15 THEN POKE 89,INT(ZZ
SCREENADD/256) : POKE 88,ZZ5CREENADD-256
¥PEEK (89) :REM GRAPHICS 15(7+) ONLY
W5 32026 PRINT #2;"C";ZZ5:REM PICK PROPER
 COLOR PEN
FK 32021 FOR ZZYP0S=8 TO ZZYMAX:REM FOR A
LL ROWS
GT 32022 IF ZZMODE=15 THEN GOSUB 320877:G0
 TO 32624:REM GRAPHICS 15(7+)
RU 320823 LOCATE 8,ZZYP05,ZZ0
A5 32024 FOR ZZXPOS5=8 TO ZZXMAX-1:REM FOR
 ALL COLUMNS EXCEPT LAST
HG 32025 IF ZZMODE=15 THEN GOSUB 32873:G0
~ TO 32627:REM GRAPHICS 15(7+)
KP 32826 LOCATE ZZKP0S,ZZYPO0S,ZZN
PG 32027 IF ZZN=ZZ5 THEN GOSUB 32841:REM
 THIS IS5 CURRENT COLOR
DB 320628 IF (ZZN{>ZZ0) AND (ZZ0=ZZ5) THEN
GOSUB 320846:REM WE NEED TO DRAW & BOX
¥T 32629 ZZ0=ZZN
UI 32838 NEXT ZZXPOS
TG 32031 REM NOW DO LAST COLUMN WHICH IS
 SPECIAL
32832 IF ZZMODE=15 THEN GOSUB 32873:G0
TO 32034:REM GRAPHICS 15(7+)
32033 LOCATE ZZKMAX,ZZYP0S,ZZN
32034 IF ZZN=ZZ5 THEN GOSUB 32841:REM
_ THIS IS5 CURRENT COLOR
E 32035 IF ZZ0=ZZ5 OR ZZN=ZZ5 THEN GOSUB
32046:REM WE NEED TO DRAW & BOX
32836 ZZO=ZZN
32837 NEXT ZZYPOS
32838 NEXT ZZ5
32639 IF ZZMODE=15 THEN POKE 8%,INT(ZZ
SCREENADD/256) : POKE 88,ZZSCREENADD-256
. ¥PEEK(89) 1 REM GRAPHICS 15(7+) ONLY

DUMP18286
BY DONALD GLOVER

LR T
% KK K

i

ATARI 8-BIT EXTRA

DY

RA

Iv
My
GH
ES
NP
M

Nu

LK
. AL BOR

. 22650 PRINT HZ;"D'";ZZKINCHPOS;",";-ZZY
- INCYPOS

- 32051 PRINT HZ;"D'";ZZKINCXPOS;",";-ZZY

32040 RETURN

32041 REMH 36000005 1IIBROUTINE EXECUTED
IF PIXEL COLOR IS CURRENT COLORMX

k2.3

32042 ZZKINCHKPOS=ZZXKINC*ZZXPOS:ZZYIHCY

POS=ZZYINCXZZYPOS

32843 IF ZZXPD5=8 THEN PRINT H2;"H';8,

MMy —ZZYINCYPOS:IZZKSTART=8

320844 IF ZZ0<>ZZ5 THEN PRINT HZ;"'M';ZZ

KINCKPOS;"," ;—ZZYINCYPOS:ZZKSTART=ZZKI

NC®XZZXPOS

32845 RETLURN

32846 REM 06000000 S5UBROUTINE TO DRA

H B 0 X366 0000000000

32047 ZZHINCHPOS=ZZHINCHZZKPOS5:ZZYINCY

POS=ZZYINCXZZYPOS:ZZA=(ZZN=ZZ5) :ZZB=(Z

ZHXPOS=ZZHKHMAK]

32048 IF ZZB AND ZZa4 THEN GOTO 32853

320649 REM NOT LAST COLUMN 50 DRAW NORM

INCYPOS-ZZYLENGTH

326852 GOTO 32856

32653 REM LAST COLUMN 50 DRAW SPECIAL
BOX

22854 PRINT HZ;"D";ZZXKINCHPOSH+ZZHLENGT

CHEL;M, M —-ZZYINCYPOS
32655 PRINT H2Z2;"D";ZZXINCHKPOS+ZZHLEKGT

Ht1;", " —ZZYINCYPDS-ZZYLENGTH

32856 PRINT HZ;'D";ZZKSTART;",";-ZZYIN

CYPOS-ZZYLENGTH

32857 PRINT HZ;"D";ZZHSTART;",";-ZZYIN
CYPDS

32058 IF ZZFILL=1 THEN GOSUB 3IZ862:REM
FILL PIHKEL IF FLAG SET

32059 PRINT HZ;"M";ZZHSTART;",";-ZZYIN

- CYPOS

320608 RETURN

- 32061 REM 30000000 SUBROUTINE TO FILL

P I X E L 3000000

32862 FOR ZZLINE=8 TO ZZKINC

32863 PRINT HZ;"D';ZZXKSTART;",";-ZZYIN
CYPDOS5-ZZLINE

320664 IF ZZB aND ZZa4 THEN GOTO 32668
32865 REM NOT LAST COLUMN

32066 PRINT HZ;"D';ZZKINCKPOS;",'";-ZZY
INCYPOS—-ZZLINE

32667 GOTO 32078

32868 REM LAST COLLMN

22669 PRINT HZ;"D";ZZKINCHPOS+ZZHKLEKNGT
H+1;","; -ZZYINCYPOS—-ZZLINE

32878 HEXKT ZZLINE

326871 RETURHN

32072 REM b *SPECIAL LOCATE ROUT
INE FOR GRAPHICS 15 (7+)30000000060¢
320873 IF ZZYPOS=ZZCHANGE THEN POKE 88,
ZZLOMOD :POKE 89,ZZHIMOD

32874 LOCATE ZZXPO05,ZZYPOS-ZZCHANGE*(Z
ZYPOS>=ZZCHANGE) ,ZZN

32675 RETURN

32876 REM ¥000EXSPECIAL LOCATE ROUTINE
FOR GRAPHICS 15(7+)-—-ZZKP05=0 ONLY¥%
32877 IF ZZYPOS=ZZCHANGE THEN POKE 88,
ZZLOMOD : POKE 89,ZZHIMOD

32878 LOCATE 08,ZZYP0S-ZZCHANGEX({ZZYPOS
>=ZZCHANGE) ,ZZ0

320679 RETURN

32088 REM 300EO00SUBROUTINE TO INITIA

LIZE PLOTTER IN GRAPHICS MOD E¥ s

';32981 CLOSE HZ:REM JUST TO MAKE SURE
32882 OPEN #2Z,8,08,"P:":REM OPEN CHANNE

L TO 1626

32083 PRINT H2Z;CHR$(27) ;CHRS(7):REM PR
INTER IN GRAPHICS MODE

320684 PRINT HZ;"H":PRINT HZ;"I":REM HO
ME AND INIT PLOTTER

ATARI 8-BIT EXTRA

312885 PRINT #z;"M";8;",";8:REHM HOVE PE

N TO 8,08

FH
NG

ER

32886 RETURN

32887 REM ¥E6E00OOOOOOCKSIIBROUTINE TO I
NITIALIZE ARRAY S r e e a0
32688 DIM ZZMODEXMAX (15),ZZMODEYMAK {15
1 ,ZZMODEYINCC15) ,ZZMODEXINC (15) , ZZNUMC
OLORS(15)

320889 DIM ZZADDFORFULL €15)

32898 REM FILL ARRAYS

32891 RESTORE 32898

- 328692 FOR ZZTHMODE=8 TO 15

320893 REaAD ZZn,ZZB,ZZC,ZZD,ZZE,ZZF

32894 ZZMODEXMAK (ZZTMODE)=ZZA:ZZMODEYI
- NC(ZZTHMODE)=ZZB

32895 ZZMODEYMAK(ZZTMODE)=ZZC:ZZMODEXI
NC(ZZTHMODE) =ZZD

' 32096 ZZNUMCOLORS(ZZTMODE)=ZZE:ZZADDFO
 RFULL(ZZTMODE)=ZZF
32097 NEXT ZZTMODE

320698 REM DATA FOR ARRAYS
32099 pATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
:9,0,8,8

321088 DATA 39,12,19,12,4,4,79,6,39,6,2

. ,8,79,6,39,6,4,8,159,3,79,3,2,16

GB
EM
™
oL
MI

JH
MR

pu
pB

FK
RF
KZ

LY
KJ

32161 DATA 159,3,79,3,4,16,319,1 1
12,32

32182 pATAh ©,6,08,0,08,0,08,0,0,08,0,0,0,0
,6,08,0,08,0,8,0,0,0,0,0,0,0,0,0,0,08,0,0
,0,8,8

32183 DATA 159,2,159,3,4,32

32164 RESTORE :RETLRN

I2105 REM 3OOEEEM¥¥%SLUBROUTINE TO SET
UP SCREEN PARAMETERSM¥EO0000CENRR
321086 IF ZZMODE)>15 THEN ZZMODE=ZZMODE-
16:EZFULL:1:REM CHECK FOR FLLL SCREEN
HOD

321687 ZZKMAX=ZZMODEXMAX (ZZHODE)

32108 ZZYMAX=ZZMODEYMAX (ZZMODE) +ZZFLLL
¥ZZADDFORFLULL (ZZMODE)

32109 ZZCHANGE=(ZZYMAX+1)/Z:REM USED T
0 FIND MIDDLE OF SCREEN FOR GRAPHICS 7
+

321180 ZZXKINC=ZZMODEXINC (ZZMODE) :ZZYINC
=ZZMODEYINC{ZZMODE)

32111 ZZHKLENGTH=ZZXINC-1:ZZYLENGTH=ZZY
INC-1:REM LENGTH OF BOX SIDES

32112 RETURN

32113 REM ¥EEGEGHOEESIIBROUTINE TO DRA
H FRAME 30

32114 PRINT HZ;"C'";8:REM BLACK PEN FOR
FRAME »

32115 PRINT HZ;"M“;6;",";8:PRINT #2Z;"D
U ZZHMARKZZHINCHZZHINC Y, ;8

32116 PRINT HZ;"D'";ZZXKMAK¥ZZKINCH+ZZHIN
C;", " —ZZYMAKXZZYINC-ZZYINC:PRINT HZ;"
D';e;t, " —ZZYHARRXZZYINC-ZZYINC

32117 PRINT #Z;'D'";0;',";0:RETLURN
32118 REM ¥066GOOEEXSUBROUTINE USED TO
FOOL BASIC LOCATE COMMAND FOR GRAPHICS
15 (7+) HOE0O6E0E000E

32119 ZZSCREENADD=-PEEK(88) +256%PEEK (89
p)

32128 ZZMODADD=ZZSCREENADD+ZZCHANGE*40
32121 ZZHIMOD=INT(ZZMODADD/256)

32122 ZZLOMOD=ZZMODADD-ZZHIMOD*Z56
32123 IF ZZMODE=15% THEN POKE 87,7:REH
FOOL BASIC

32124 RETURN

159,

ANALOG COMPUTING 127

ANALOG Computing
Writers’ Guidelines

Make sure your submission
gets the attention it deserves.

Many of the following suggestions are applicable to all computer magazines. They assist us in the typesetting ac-
curacy of your submission and in the speed of publication. ANALOG Computing, a monthly magazine, publishes
new articles, programs and reviews concerning only Atari home computers and their related hardware and soft-
ware. We have published many first-time authors, so by following these guidelines, you may soon find your article
and byline in the pages of ANALOG Computing.

1. The upper left-hand corner of the first page should con-
tain your name, address, telephone number and the date
of your submission. Important: when you submit an article
to us, you must indicate whether or not it is a simultaneous
submission. A simultaneous submission is a photocopied
manuscript submitted to more than one magazine at a time.
Many magazines do not appreciate this practice (we are
among them) and view any photocopied manuscripts wari-
ly. We do accept manuscripts text printed on a word proces-
sor. Your article should also be submitted on disk, along with
any programs which the article requires.

2. The title of the article should be underlined, starting half-
way down the first page.

3. If your article is a product review, please include the fol-
lowing information, in lieu of a title: the product’s official
name; the product’s author (if availabie); the company pro-
ducing and/or distributing it; the company’s address and
phone; memory or hardware requirements; and suggested
retail price.

4. The following pages should be typed normally (double
spaced), except that, in the upper right-hand corner, the ti-
tle of the article should be prominent, along with your last
name and the page number (e.g., Disk/Jones/3).

5. If your article has program listings of between five and
twenty lines, you may include them within the text. Longer
programs should be included with your article, but it is not
essential. However, it is imperative that we have a copy of
the program on disk. The disk should be labeled with the
author’s name and the title of the article or program.

6. It is much easier for our readers to type in your program
if you use CHR$(X) values instead of cursor manipulators
to format your output. In some cases, it may be necessary
to include special control characters to create special dis-
plays. In these cases, control characters are allowable.

7. The printers used for ANALOG's program listings will ac-
cept all Atari control, escape and inverse video characters.
BASIC programs containing machine language subroutines
in string variables should use DATA statements to contain
the machine language numeric values. Authors should avoid
using the assignment of a string variable to a complex ma-
chine language string literal. For example, (ML$="mj+7")
could confuse readers. Authors should provide commented
assembly source code listings for any machine language
subroutines used in their programs. Any machine language
game programs should be located in the lowest possible
amount of memory.

8. Standard manuscript format—rules such as double spac-
ing, one-inch margins all around the text, standard typing
paper and typing only on one side of the paper—should be
followed when submitting an article or review to ANALOG
Computing. The pages of your submission should be pa-
per clipped together, not stapled.

9. The best way to write for us is by studying previous is-
sues. For instance, reviews of hardware and software should
list the information requested in paragraph 3. Your article
should be written in continuity with ANALOG’s style—the
acronym BASIC is always all caps, as are keys like RETURN
and BREAK, while names of other languages are spelled
in various ways (Pascal, FORTH, assembly).

10. ANALOG Computing pays between $25 and $390 for
published articles. The standard rate of pay is $65 per type-
set page, up to six pages total (not including space taken
for advertisements, art and photos). Articles over that length
will be paid the flat maximum fee. If we do determine that
an article may be over eight magazine pages, it may be spiit
into two parts or sent back to the author for editing.

Send all articles, reviews or program submissions to: ANALOG Computing Magazine, Submissions Department,
P.O. Box 23, Worcester, MA 01603.

by Gary Heitz

Some time ago, I was typing in a magazine program.
Upon checking my typing, I found several mistakes. There
had been many variables used which were quite long and
cryptic. Most of the typing errors occurred on these
variables.

I decided I needed a program that would allow for
programmable keys, to help me accurately type these list-
ings. Easy Type is just that—with a few extras.

Easy Type has nine programmable keys and four pro-
grammed keys. The programmable keys are available to
you, to hold a string of any characters you desire, up to
17 characters in length.

When typing, you can access the string you want by
pressing the ESCAPE key and a number. The correct num-
ber is displayed on-screen, along with the contents of the
string. For example, if you programmed key 1 to contain
X=USR(THR32DFP), then hit ESC 1, Easy Type would
print your string on the screen at the current cursor posi-
tion. This only takes two keystrokes, and you don't have
to worry about your accuracy.

Because the key number to press is displayed on-screen
along with the string, all you have to remember is to type
the ESC key first. If you forget, don't go hunting for this
article. The screen reminds you that you should hit the
ESC key and then the number.

As mentioned above, there are four programmed keys.

ATARI 8-BIT EXTRA

B

7/

They are ESC-0 (zero), ESC-A, ESC-I and ESC-D. The in-
structions for each of these are also shown on the screen.

Pressing ESC and 0 will clear the screen and display
Easy Type’s menu.

In the menu, choice number one is “Start DATA state-
ments.” The word DATA will be printed after each suc-
ceeding line number entered if you select this option.
You'll be asked which type of data you're going to enter:
decimal, hexadecimal, or other. If you answer decimal,
what you type will be checked by a machine language
subroutine. It will see that you didn’t accidentally type
a letter, or any other key not appropriate to a decimal data
statement. The editing keys will still function properly.

If you choose hexadecimal, the subroutine will make
sure you're typing only characters acceptable to a hexa-
decimal data statement.

Choosing “other” will result in no checking. The word
DATA will simply be added after each new line number.

Option number two is “Stop DATA statements.” It does
just that. The word DATA will no longer be printed after
each new line number.

The third choice is “Start/Alter line numbering.” If you
pick this option, Easy Type will ask for the starting line
number and the increment used between lines. Type these
in, and all succeeding lines will be automatically num-
bered for you.

Option number four is “Stop line numbering.” Choos-
ing this will cancel the automatic line-numbering feature.

ANALOG COMPUTING 129

Easy Type continued

Choice number five is “Make a programmable key.”
You’ll be asked to input the characters you desire for the
next available programmable key. You don't have to enter
all nine programmable keys at once. You may come back
later and enter more.

Option number six is “Save program.” By using this fea-
ture, you can save the entire program onto tape or disk
without having to BREAK away from the program.

Menu selection number seven is “Exit menu.” Use this
option to leave the menu and continue typing your pro-
gram.

This leaves us with three more programmed keys: ESC-
A, ESC-I and ESC-D.

Let’s say you type in a line and hit RETURN. You then
see that you made a syntax error, or you want to change
or copy part of that line. Press ESC and A, and the last
line will be displayed. Alter the line and/or line number,
then hit RETURN.

The next programmed key is ESC-I. Some magazine
programs are numbered in an orderly fashion, with even
increments between line numbers. Many aren’t. If you've
chosen menu item three (automatic line numbering) and
need to skip some line numbers, type ESC-I and the next
line number will appear.

In the same vein, if your increment is ten, and the pro-
gram you’re entering has a line number whose last digit
is a five, use ESC-D. Your line number will be decrement-
ed. Hit the BACKSPACE a couple of times, hit the num-
ber 5, and be on your way.

That’s about all there is. I hope you find Easy Type not
only easy, but also a time-saving aid to accuracy. There
may be several things you'd like to see added to Easy Type.
Please alter it to your needs. The program is made to work
for you—not you for it. &

Gary Heitz bought his first Atari computer in 1982.
Through ANALOG Computing, he has learned to program
in BASIC and assembly language.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,

in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

. 32000 CLR :C0=0:DIM D5C15) ,P5(1808),TEM
P$(1?),L(11),F$(15):FS‘"mEﬁH"'PSIS) CH
R5(155) :FOR I=C@& TO 9

320818 L{IY=CB:MEXT I:L({1)=5:D5=CHRS$(15
6):D5(15)=D5:D5(2)=D5:GRAPHICS CO:POKE
559,CO0:POKE 718,178:POKE 712,178
3206206 RESTORE 3I2591:FOR I=1 TO 13I3:REA
D IN:POKE 1535+I,IN:NMEXT I:IN=32138:HME
NU=323I70:G0T0 32688

AF 32838 REM m
32840 INPUT TEMPS:IF TEMPS="MENU" THEN

POP :PKEYS=PKEYS5-1:GOTO MENU

32658 PSILENC(PSY+1)=TEMPS:PS(LEN(PS) +1
I=CHRS(155) :L(PKEYS+1)=LEN(P%) :RETURN
32860 PKEYS=PKEYS+1:!:IF PKEYS5>2 THEN PK
EY5=9:G0TD MENU

130 ANALOG COMPUTING

3ze78 7 “ESC-";PKEYS5;" ";:GOSUB 320830:

. X% _CLEAR ¥%x]
Z X2898 7 CHRS5(125):POKE 8Z,C8: PDSITION
.. Cce,5:7 " "'CHR$(2?) GHR$(156)'"
. Ivwmed Keys "'CHR$(2?) CHR$(156),
32168 2?2 " TEE SNl : POSITIO
N C8,C8
32116 TRAP 32146:K=-PKEYS:IF PKEYS»>4 TH
EN H=4
N¥ 32120 FOR I=C8@ TO H:? I;" ";PS(L(I)*+1,
LI{I+1)-1):NEHT I
32136 IF PKEYS>HX THEN POKE 82,20:P0SIT
" ION 20,C0:FOR I=5 TO PKEYS5:? I;" ";pP5(
LEI)+1,L(I+1)-1):NEKT I
FD 32148 TRAP 40000:POKE 82,2:X-USR(1598)
i !LINEZPEEK(10621)+PEEK(1822) %256
B5 32150 CLOSE #1:0PEN #1,4,C8,"K":POSITI
.. ON 2,6:LIS5ST LINE: PUSITION CB 1i:L=C8
" 32150 ? "l“'CHR$(2?) CHRstlm
;ne "'iCHR$(2?) JCHRS (1563 ;"
_ _Jter, use ESC A b
BZ 32170 POSITION 2,12:? :IF NUM THEN 7 5
TART ;'™ ";:START=5TART+INC
HH 32188 IF TYPE AND NUM THEN ? "DATA ';
0% 32198 REM
#D 32280 POKE 559,34:GET H1,KEY:IF KEY=27
. THEN 32238
PK 32218 IF TYPE AND NUM=C8 AND L=C8 AND
 KEY=32 THEN ? " DATA ";:L=1:GOTO IN
322208 IF KEY=155 THEN POKE 552,C8:G0TO
. 322660
32230 IF KEY=28 AND PEEK(84)<14 THEN G
. 0TO IN
RJ 32248 IF TYPE=1 DR TYPE=2 THEN 325806
JM 32250 ? CHRS(KEY);:GOTO IN
50 32260 REM
£C 32276 POSITION 2,208:7 "CONT":POSITION
 COB,11:POKE 842, 13 STOP
55332288 POKE 842,12:POSITION C8,7:7 D5:G
~ 0TO 32140
32296 REM CZXNEITYISESGT
323688 GET #1,KEY:IF KEY=27 THEN ? CHR$
(273 CHRS(Z?);:GDTO IN
'32310 IF KEY=48 THEN START=START-INC:G

THEN 32178
THEN START=S5TART-INC-I

 NC:GOTO 32176
37340 IF KEY=65 THEN POSITION 2,12:iLIS
T LINE:POSITION 2,12:7 :START=LINE+ING

32350 IF KEY{49 DR KEY>PKEY5+57 THEN ?
CHR$ (27 ;:GOTO 32250

32360 TRAP IN:KEY=KEY-48:7 PS{L(KEY)+1
,L{KEY+13—-1);:TRAP 40006:G0T0 IN

32376 REM

32386 POKE 752,1:POKE 281,7:7 CHR5(125

3::IF NUM THEN POSITION ca cg:? "

ESC I to Increment the line numberygH
223980 IF NUM THEN 2 ' ESC D to Decr
ement the line numbery

32406 POSITION 17,2:7 "IDKETTH":? 7 ,“
S5tart DATa statements'

32419 7 :? ,"d Stop DATA statements'":?

"E Star‘t/nlter‘ line numbering':?

12 "E] Stop line numbering"

32428 7 17 ,"E Make a programmable key
1?7 1? ,"E! Save program':? :? ,“H Exit
menu'':POSITION 14,18

3248 7 "Your cholce°“:? :GET #1,KEY:K
EY=KEY-48:IF KEY<{>1 AND KEY<>Z aND KEY
{>4 THEN POKE 752,C8

32448 IF KEY=1 THEN 32548

y 32458 IF KEY=2 THEN TYPE=C8

32468 IF KEY=3Z THEN ? "“Enter START,INC
REMENT";: : TRAP 3I2468:INPUT START,INC:TR
AP 480008:NUM=1

=

ATARI 8-BIT EXTRA

HE 32478 IF KEY=4 THEN NLUM=C@
" 32480 IF KEY=5 THEN ? CHR%(125):7 :7? *

HK
BP
GP
RH

P

cp

QH
AR

Type QAN to go to the MENU.'":? :

 GOTO 32066
K

324908 IF KEY=6 THEN GOSUB IZ2528:CLOSE
#1:5AVE FS:0PEN 11,4,C6,"K"
325688 IF KEY=7 THEN POKE 55%,C8:G0TO 3

2088

32518 GOTO MENU

32528 IF LEN(F$) THEN RETURN

325308 POSITION 2Z,21:7 "DH:Filename.Ext
Wt INPUT F5:RETURN

325468 REM CZiTAGEELL

32558 POSITION 2,268:7 "Is the data in:
uw:2 off pecimal',"Hd Hexadecimal H 0th
erll

32568 GET #1,KEY:TYPE-KEY-48:IF TYPEXL1
OR TYPE>Z THEN ? CHR$(253):GOTO 32558

32570 H=18+(TYPE=2)*6:GO0TO MENL

32580 K=USR(1536,KEY,H) :IF PEEK(Z084) T

-HEN 32258

RM

FN

EH

CH

KU

32598 ? CHRS$(253);:GOTO IN

32591 DATA 104,1084,104,133,263,104,104
,168,169,0,133,204,185,29,6,197,203,24
8,5,136,208,246,240,4,169,255,133
32592 DATA 204,96,0,28,29,30,31,126,25
4,255,44,48,49,508,51,52,53,54,55,56,57
,65,66,67,68,69,768

32593 DATA 169,0,170,141,0,4,141,1,4,1
41,253,3,141,254,3,165,136,133,2683,165
,137,133,264,160,1,177,263

32594 DATA 2601,125,240,46,166,0,177,28
3,141,253,3%,200,177,203,141,254,3,238,
0,4,173,0,4,208,3,238,1

32595 DATA 4,2080,177,203,141,255,3,165
,203,24,1089,255,3,133,2083,144,2068,236,
204,224,0,240,202,164,96

ATARI 8-BIT EXTRA

ANALOG COMPUTING

131

Get the Extra on disk!

A special offer
for Extra
owners. . .

2 DISKS
for

only
$24.95

All
of the
programs

from

An Atari

8-Bit Extra
from ANALOG
Computing.

Ready to run, on two
double-sided disks.

From the magazine that
always gives you something
Extra.

Use the convenient card at the back of this book
to order your disk version.

COMPUTING

Send for it now.’ P.O. BOX 23, WORCESTER, MA 01603

(617) 892-9230

Get the Extra on disk!

A SPECIAL OFFER FOR EXTRA OWNERS
2 DISKS — ONLY $24.95

All the programs from An Atari
8-Bit Extra from ANALOG
Computing, ready to run, on
two double-sided disks.

Yes! Please send me the disk version.

Name [l MasterCard
[VISA
Street
No.
City, State Zip Code Exp. date

[J Payment enclosed. [Bill my Master Card or VISA (right). Sign

I MAGAZINE SUBSCRIPTIONS
l
|
; U1y (12iss)........ $28.00 T yr Q2 1880 s v v 0 s o $28.00 11 yr (12 iss. each) .. .$42.00

02 yrs. (24iss.) $52.00 C2yrs (24 is8) v $52.00 [1 2 yrs. (24 iss. each)..$7800
l 13 yrs. (36iss.)$76.00 [J3yrs. (36iss.) $76.00 [3 yrs. (36 iss. each) .$114.00
! CANADIAN & MEXICAN RATES (First Class)
' 01 yr (1210ss.)........$36.00 A e (T2 088 o 5 s e $36.00 1 yr (12 iss. each) .. .$54.00
I (12 yrs. (24 isS.) $68.00 2yrs. (24 iss.) $68.00 [1 2 yrs. (24 iss. each) .$102.00
| 03 yrs (36 iss.)$99.00 [13 yrs: (B6:168) «u covs $99.00 [J 3 yrs. (36 iss. each) .$149.00
i FOREIGN RATES (Surface)
I O1yr(121ss)........$39.00 I yr (120ss). $39.00 C31 ye (12 §88) ¢ v . v 2S359.00
I 02 yrs (24 iss)$72.00 Cl2yrs. (24 iss) $72.00 [2 yrs. (24 iss. each) .$112.00
I (13 yrs. (36iss.)$104.00 O3 yrs: (86ss) $104.00 [0 3 yrs. (36 iss. each) .$165.00
= _ Check # Bill me. Name B

[! Money Order #
I Address .
| MasterCard I VISA . .
I Exp, date City . . State Zp
1 Card No. PLEASE ALLOW 4 to 6 WEEKS FOR DELIVERY OF FIRST ISSUE.
QR Tre e mer Show smon EET [T ETEGY LMER (TR OSSN EEDN) WD DN FPEY COeSy BROY [DEDY EEWR eI s Eoy DRI SRRR SO SIEE DU DU S Demer GEmay mSA

DISK/MAGAZINE SUBSCRIPTIONS

ANALOG DISK ST-LOG DISK ANALOG and ST-LOG

(1 V2 yr. (6iss.) $59.00 OVeyr (Biss) $59.00 [0 Y2 yr. (6 iss. each) . ..$9500

11 yr (1210ss).......$10500 CI1yr (12iss)....... $10500 [01 yr (12 iss. each) .. $159.00

CANADIAN & MEXICAN RATES (First Class)
LVvayr (Biss)$6900 DYz yr (6iss)$69.00] V2 yr. (6 iss. each) . $109.00

01 yr (12 iss.) $119.00 OF yr (2188 v -5« s « 311900 [J1 yr. (12 iss. each) . .$179.00

FOREIGN RATES (Surface)

Ve yr. (Biss.). .. $74.00 OVeyr (6iss)........ $74.00 O V2 yr. (6 iss. each) . .$114.00
1 yr(12iss).......$126.00 L1y (2 is8) .2 .0 . 512600 Cl1yr (121ss).......%$189.00
Check # - Bill me. Name . e
Money Order #
Address . o
" MasterCard VISA
Exp: date City) State Zip
cadNo. 00 PLEASE ALLOW 4 to 6 WEEKS FOR DELIVERY OF FIRST ISSUE.

ENEL DG
COMPUTING

PO. Box 23 - ¥

Worcester, MA 01603

-——_---—-—__————‘—_——_—_—__——_ﬁ—‘

PLACE STAMP HERE

THE POST OFFICE
WILL NOT DELIVER
MAIL WITHOUT
POSTAGE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 31 WORCESTER, MA

SN\ DG

COMPUTING

P.O. Box 625
Holmes, PA 19043

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 31 WORCESTER, MA

SN\ DG

COMPUTING

PO. Box 625
Holmes, PA 19043

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

e
I_—————-—————-—————————-ﬂ_-———-—————_——————-—_-_—_—————————_——m

Wheait comestoflying fighterplanes

UL,
u{m\m

ecmom

MIG Alley Ace: Thrlllmg head-to-head Sab:&
Jet aerial dog fighting.includes single player
flying mode, as well as two player competmon

Hellcat Ace: Excntmg % dimensional aerial
combat over the Pacific in World War 1.

For one to four players.

Air Réscue: Sensational assault
rescue raids for daring pilo
configuration. For one to ei

' Guts
Stamina
Intense concentration
Fast reflexes
Willingness to take risks
Good eye-hand coordination
L

Fly solo or in team configuration -
" Maneuver m 3-D space

“See and avoid” techniques

Advanced aerobatics: loops, rolls, G

Outfly the enemy

“You'll experience the wind.
face and the intense dog fi
action of some of the world'’s
honored and respected combat
aviators: the onginal snck-and-mdder

fighter pilots!”

:
:

4

	Cover

	Contents
	M/L Editor

	Hi-Score Display

	Create-a-base

	Squeeze

	Surface Run

	Spy Plane II

	Reversi

	Lawn Mower

	Trivia

	Invasion III

	Dragon Chase

	Krebs Removal

	Integer BASIC

	Tactics

	Pastels

	CGM

	Display List Mod
	A Pointed Note

	Password

	Dump1020

	Easy Type

