

(<-UihriL J

ABCs
of

Atari
Computers

ABCs
of

Atari
Computers

By
David E. Mentley

Illustrations by
Peter Wickman

~ DATAMOST;-
20660 Nordhoff Street

Chatsworth, CA 91311-6152
[818J 709-1202

~DATAMOSli
ISBN 0-88190-367-1

Copyright © 1984 by DATAMOST, Inc.
All Rights Reserved

This manual is published and copyrighted by DATAMOST, Inc. All rights are reserved
by DATAMOST, Inc. Copying, duplicating, selling, or otherwise distributing this pro­
duct is hereby expressly forbidden except by prior consent of DATAMOST, Inc.

The word Atari® and the Atari logo are registered trademarks of Atari, Inc. Atari, Inc.
was not in any way involved in the writing or other preparation of this manual, nor
were the facts presented here reviewed for accuracy by that company. Use of the term
Atari should not be construed to represent any endorsement, official or otherwise, by
Atari, Inc.

Printed in U.S.A.

DEDICATION

To my mom and dad, with love.

ACKNOWLEDGEMENTS

I would like to thank Joe Decuir for his careful review of this book and historical
perspectives on the Atari hardware. Thanks to Roy Wolford and Michael Moore for
their thorough review and suggestions. Also, thanks to Pete Goodeve for answering
many questions at all hours of the day or night.

FOREWORD

The Atari Home Computer is the most powerful personal computer in its class. Like me,
you probably did not know this when you made your purchase. You probably brought
your new toy home, plugged it in, and said, "OK computer, entertain me." It probably
didn't respond. Computers are not good for anything unless you know how to make
them do what you want. This means that you have to provide some instructions. You
can buy some software at your local computer retailer, get some public domain
software from your local user group, or, for the ultimate exhilaration, write your own
programs. The very things that make the Atari computer powerful also make it com­
plex. You have to know the basics of the way the hardware is put together and also the
way that the Operating System works if you want to control your machine yourself.
And we do want to control the machine. My theory is that the success of home com­
puters and video games is due to the fact that WE CONTROL the television picture
instead of just watching it.

What makes the Atari computer so powerful? It was designed over six years ago. This
should make the hardware obsolete by today's standards. The new XL line uses
basically the same architecture as the original Colleen (800). The secret to the success
is flexibility. Try to do a custom display list on a Commodore 64 or an Apple II. Try to
make some four voice music on an Apple II. Try some high speed player motion on an
Apple II. These features were put in place by the designers who had visions of the
potential of a flexible machine. With the microprocessor bus available to be tapped on
the new line, I expect to see some add-on peripherals that will allow the Atari line to
compete against personal computers priced between $2,000 and $3,000.

This book is designed as a guide to take you from being a beginner to being an inter­
mediate user. I did not see a need for another book on "How to Write BASIC Utilities
for the Home" or "2,000 Games for Your Atari." What I did see a need for was a com­
pilation of the tips, tricks, and lore for the Atari computers. As president of a large
users' group, I was exposed to a constant flow of fascinating discoveries that probably
only 1% of Atari owners could know about. These are usually expressed in the numerous
club newsletters which criss-cross the country monthly. Some of these tips are only for
the brave. You may not want to open up your computer and start cutting and soldering,
but then again, you may. I have included some of my favorite public domain programs.
When possible, I have given credit to the author. After all, that is part of the appeal of
writing software for the public domain. Some of these have been around so long and
have been modified so much that the author is not known. Please let me know if you can
help here.

7

Although this book has consumed a good chunk of my life, and I swore I wouldn't type
another word, I would like to keep it up to date. If you have an unusual discovery or a
favorite utility or demonstration program which looks appropriate, please send it to me
at the address below. You will be given appropriate credit.

If you are a vendor and you think that you have a truly useful product for the Atari com­
munity, I would be happy to review your hardware or software.

8

Happy Hacking,

Dave Mentley
P.O. Box 325

El Cerrito, CA 94530
May, 1984

A

ABCs of Atari Computers

A - Short for ACCUMULATOR in assembly language mnemonics like LDA, STA,
PHA, etc. The ACCUMULATOR is the workpiece for the central microprocessor (the
6502 chip) in which addition and bit manipulation is performed.

A - The A command from the Atari DOS 2.0S menu initiates a directory listing of the
floppy disks in the drive or drives connected. A directory entry consists of a filename of
up to eight characters and an extender of up to three characters. To get a directory of
the disk in drive 1, just type: A<Return> <Return>. Drive 1 is the default drive,
meaning that you need not specify "D1:" in order to read the directory. To read the
directory of drive 2, type: A<Return> D2:<Return>. To print a directory, type:
A<Return> ,P:<Return> while the printer is attached and ready to print To print
only directory entries which end in a specific extension, type: A<Return>*.EXT
<Return>. The asterisk (*) is a wildcard which can be used to indicate all filenames
and extensions.

ABS - ABS is a BASIC command which generates the ABSolute value of a number.
This command simply drops the hyphen (-), which represents a negative or minus
operator, from a number.

EXAMPLE: ABS(-99)= 99

ABSOLUTE ADDRESSING MODE- The6502microprocessorcanretrievedata
in several ways. ABSOLUTE MODE addressing is a technique for specifying the
address in the processor's memory space where it is to look for data ABSOLUTE
ADDRESSING is a three byte instruction. The OPCODE is given first, followed by the
low order and high order bytes specifying the address which contains the data of
interest. Programs written in the ABSOLUTE mode cannot be relocated to other parts
of memory. Instructions which can be used in the ABSOLUTE mode are: ADC, AND,
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, LDX, LDY, LSR, ORA,
ROL, ROR, SEC, STA, STX, and STY.

9

ACCUMULATOR

Location Contents
1 __ ---------=------- AA09 ~ 9F

LDA$AA09

This means: Go to absolute location $AA09, get the data, and put it in the accumulator.
This is equivalent to

A=PEEK(43529) in BASIC.

43529 is the decimal equivalent of $AA09.

ACCUMULATOR - The ACCUMULATOR is the register in the 6502 processor in
which most of the data modification is done. The ACCUMULATOR acts as the work­
piece where numbers are added, compared, shifted, and so on. The data byte in the
ACCUMULATOR can be acted upon with an arithmetic operation or the results of an
operation can be stored there. Data is fetched from memory and placed in the
ACCUMULATOR for further operating. The data must always be put into the
ACCUMULATOR before the operation is started. The mnemonic STA takes the value
in the ACCUMULATOR and copies it out to a memory address. The LDA mnemonic
loads the value of a memory address into the ACCUMULATOR. PLA pulls the con­
tents of the memory pointed at by the stack register (plus 1), and puts this value into the
ACCUMULATOR.

ACE - Atari Computer Enthusiasts. This name is recommended for user groups by
Atari Users Group Support. ACE of Eugene, Oregon was probably one of the larger
groups to adopt this name. An excellent newsletter and many fine public domain disks
are available to members. The address is ACE, 3662 Vine Maple Drive, Eugene, OR 97405.

ACTION! - ACTION! is a language from OSS, Inc. available on cartridge. ACTION
is a structured language which features a very powerful editor and a fast compiler. It
has properties of C, Pascal and ALGOL.

10

ACOUSTIC COUPLER
--

ACOUSTIC COUPLER - One method of connecting a modem to the Atari com­
puter is through an ACOUSTIC COUPLER. The coupler consists of a speaker and a
microphone which allows the telephone handset to be used to transfer data. The signal
is transmitted by a combination of high and low frequencies which carry the stream of
data. An acoustically coupled modem is subject to interference from a stereo or televi­
sion if the music or volume is too loud. A DIRECT CONNECT modem is not subject to
this interference.

AD ASTRA - To the Stars - Atari Microcomputer Net Amateur Radio Operators
Group publishes a newsletter containing many tips for the hardware enthusiast, par­
ticularly for the HAM radio operator with an Atari computer. Subjects covered in the
newsletter include such things as disk drive modifications, interfacing hardware to
your Atari, and making your own cables. The NET organization meets on the air on a
regular schedule. The National Net is at 14.325 Mhz at 1600Z on Sundays, with
WD8BNG running the show. Ad Astr, 4749 S.R. 207 N.E., Washington Court House,
OH 43160.

ADR - In Atari BASIC, the ADR statement returns the starting address in memory of
a string named in the ADR statement. The string, once created, is always stored some­
where in the computer's memory. The ADR command pinpoints its location. This
address can be the starting address for the machine language program. A string may
be a subroutine which performs some activity. A USR jump can then be done to enter
the subroutine from BASIC. The use of ADR is as follows.

1. Create string (X$ for example) by using machine language opcodes and
addresses.

2. Find the address of the string by using the statement Y=ADR(X$)
3. You can then jump to the routine by using the statement Z= USR(y)

ADDRESS - An ADDRESS is similar to a post office box number. One byte can be
stored at each ADDRESS. There are 64K (65,536) separate ADDRESSes in the Atari
computer, so the computer contains 64K bytes of memory. See MEMORY.

------ --- -- - - --=--.\

11

ADVENTURE GAME

ADVENTURE GAM E - The original computer adventure game was developed by
and for systems people who worked on mainframes and minicomputers. The original
adventure used text only, was very restrictive in terms of vocabulary, and was a com­
plex journey to the netherworlds. As a traveler, you were constantly making decisions
about which tools to pick up and use, which troll to kill; which room to enter, and which
trail to take. Adventure games implemented on Atari computers often have helpful
graphics and accept standard English commands. Scott Adams' Adventure Inter­
national, Infocom, and Sierra Online produce many of the currently available adven­
ture games. Adventure games are for garners who like to strategize, while arcade
games are for those with fast reflexes who like action in real time.

AFTER - In Microsoft BASIC II, the AFTER statement is a delay statement which
will allow you to wait a certain number of JIFFIES (l/60ths of a second) before going to
a certain line number. The format is:

AFTER(6000)100

(After 6000 jiffies (100 seconds) go to line number 100.)

ALPHANUMERIC- Characters which are either numbers or letters. This excludes
graphics characters and control characters.

AMIS - AMIS is the Atari Message Information Service. MACE (Michigan Atari
Computer Enthusiasts) developed AMIS and donated it to the public domain. Atari
Users Group Support modified the program somewhat and distributed it to users
groups. Many clubs use AMIS as their BBS although many modifications are develop­
ing. This means that not all of the commands below are found on all bulletin boards and
some may have extra commands. For example, one system operator (SYSOP) found
that callers often pressed Y to answer questions while the menu was displayed. As you
see below, the Y option calls for the SYSOP. He changed this option to Z to allow him
and his wife more sleep at night AMIS is very easy to use. Once you get familiar with
the basic stucture, you will be able to talk on many Atari BBSs around the country. The
most common options are:

A ASCII to ATASCII toggle
B Bulletins put here by the operator
C Callers file to list previous callers
D Download files to your computer
E Enter message into the system
F File directory for downloading
G Goodbye, adios, hang-up
H Help for using AMIS
K Kill messages which you have left
L Line feed switch
Q Quick summary of messages
R Read full messages
S Scan subjects
T Time of day and date
U Upload files from your computer

12

W Welcome message
X eXpert user mode for frequent callers
Y Yell for SYSOP
? Short list of functions

Control X - Stop transmission
Control S - Pause transmission
Control Q - Resume transmission

AMODEM

AMODEM - AMODEM is a versatile public domain terminal program written by J.
Steinbrecher. AMODEM features the ability to transfer binary files, access and down­
load CP/M bulletin boards, save files to cassette, and also includes the XMODEM
Christensen error checking file transfer protocol. Version 4.3, which is included here,
supports autodialing with the Hayes Smartmodem. Put your favorite BBSs in DATA
statements 0 through 8. You can also use Mel or Sprint service by putting your access
and code in the string in line 917. If you have an XL series computer, you must use the
translator program to use the XMODEM protocol.

When the program is RUNning, you will at first be in the terminal mode. When the border
is blue, you are in the ATASCII (eight bit) mode. When it is black, you are in the ASCII
mode. You will be able to connect with any BBS. Hit the SELECT key when you see a
menu similar to the following menu. This will give you the list of control options:

OPTION
SELECT
START
S FILE

TOGGLE MEMORY SAVE
(B,C, W,M,D,R,S, T,U,H,X)
START TRANSMISSION
D:FILE2SND

To download a file, type R for receive. You must then assign a filename for YOUR file
which will be on your disk (or use C: for cassette). When your BBS tells you it is ready to
send its file, hit the start key and transfer will begin. To upload, type S for Send, and
provide the name of your file which you want to send. When prompted to begin sending,
hit the START key.

The menu options in AMODEM are:

B Change Baud rate to 300, 600 or 1200
C Capture all data sent to you
W Write captured memory to a file
M Get a directory listing (menu) of the disk
D Full or Half duplex toggle
R Receive a file with XMODEM verify
S Send a file with XMODEM verify
T ASCII-ATASCII toggle
U Uploads with no XMODEM verify
H Hayes autodial from listing in lines 0-8
X Expert mode (no help messages)

13

AMODEM

o DATA ABACUS----,5878062
1 DATA BBS 2-----,1234567
2 DATA BBS 3-----,1234567
3 DATA BBS 4-----,1234567
4 DATA BBS 5-----,1234567
5 DATA BBS 6----- , 1234567
6 DATA BBS 7-----,1234567
7 DATA BBS 8-----,7654321
8 DATA BBS 9-----,5555555
10 REM AMODEM4.BAS:VER 4.3; 12/28/82
15 DIM NUM$(25),TMP$(10),X$(1),PRMT$(2
5)
16 PRMT$="(B,C,W,M,D,R,S,T,U,H,X)"
20 GOTO 10000
900 GOSUB 13000:RESTORE O:TRAP 999
902 ? #MODEM; "ATZ":? CHR$ (125)
904 ? " NUMBER LIST":? CHR$
(29):? CHR$(29)
906 FOR T9=0 TO 8:READ TMP$,NUM$
908? " ";T9;"--";TMP$;"-----";NUM$
:NEXT T9
910 ? CHR$(29):? CHR$(29):? "Enter 0-"
;T9-1;:INPUT A9:IF A9>=9 THEN GOTO 900
912 RESTORE A9:READ TMP$,NUM$
913? "USE MCI (Y/N)";:INPUT X$
914 ? CHR$(125):? "Dialing-";TMP$:IF X
$="Y" THEN ? " USING MCI "
915 IF LEN(NUM$)<10 THEN 918
916 IF X$<>"Y" THEN? " USING BELL ":?

#MODEM;"ATDT1";NUM$:GOTO 999
917 ? #MODEM;"ATDTXXXXXXX",XXXXX";NUM
$:GOTO 999
918? #MODEM;"ATDT";NUM$
999 ? #MODEM:TRAP 40000:GOTO MENU
1000 TRAP 1000:GOSUB 13000:? :? " OPTI
ON = TOGGLE MEMORY SAVE"
1010 ? " SELECT = (B,C,W,M,D,R,S,T,U,
H,X)"
1020 ? "START = START TRANSMISSION"
1030 SET COLOR 2,7,2:C$=CHR$(SRFLAG):IF

SRFLAG=ZERO THEN C$=" ":FILE$=C$
1040 ? C$;" FILE = ";FILE$:?
1042 IF NOT TRN THEN? "*** ASCII";
1044 IF TRN THEN? "*** ATARI";
1046 ? " TERMINAL MODE ***"
1050 ADDR=USR(ADR(IO$),ADDR,LEN(BUFF$)
+ADDR-l)
1055 C=PEEK(706):IF C=8 THEN PUT #MODE

14

M,19:? "*** BUFFER FULL ***":GOTO 1700
1200 IF C=6 THEN 5000
1210 IF C=5 THEN 6000
1220 IF C<>3 OR SRFLAG<>67 THEN GOTO T
ERM
1230 MSAVE=WON-MSAVE:POKE 704,MSAVE:?
:? "Capture ";
1240 IF MSAVE THEN SETCOLOR 2,0,2:? "0
n " ;
1250 IF NOT MSAVE THEN SETCOLOR 2,7,2
:? "Off ";
1260 ? ADDR-BUFF;" BYTES"
1270 IF PEEK (CON) =3 THEN 1270
1280 GOTO TERM
1500 ? :? "*** NEW CAPTURE FILE ***"
1510 ? "*** SELECT W WILL SAVE IT!***u
1520 ADDR=BUFF:GOSUB 13000
1530 SETCOLOR 2,0,2:POKE 766,1
1540 MSAVE=l:POKE 704,MSAVE:GOTO TERM
1700? :CLOSE #MODEM:IF ADDR<=BUFF THE
N ? U*** BUFFER IS EMPTY ***u:GOTO 176
o
1710 TRAP 1760:? U*** SAVING MEMORY **
*"
1720 OPEN #FILE,8,ZERO,FILE$
1730 OBJ=l:IF TRN THEN OBJ=O
1740 POKE 1536,OBJ
1750 C=USR(1610,BUFF,ADDR)
1760 MSAVE=ZERO:POKE 704,MSAVE:ADDR=BU
FF:L$=uU
1790 SRFLAG=ZERO:GOTO MENU
2000 TRAN=32:GOSUB IO:A=NAK:POKE 766,1
2010 SETCOLOR 2,4,2:BLOCK=ZERO
2020? :? "*** RECEIVING ";FILE$;U ***
"
2300 POKE 77,ZERO:FOR TRY=WON TO ERRTR
Y-WON
2310 ? :? "*** GETTING SECTOR u;BLOCK+
WON;"/";TRY;" ***"
231~ IF PEEK(CON)-~ THEN A-CAN
2320 PUT #MODEM,A:A=ACK
2330 GET #MODEM,SH:SUM=SH:IF SH=EOT OR

SH=CAN THEN 2380
2340 GET #MODEM,C:SUM=SUM+C:GET #MODEM
,C:SUM=SUM+C
2350 ADDR=BLOCK*128+BUFF:FOR BLK=O TO
127:GET #MODEM,C:POKE ADDR+BLK,C:? CHR
$(C);:SUM=SUM+C:NEXT BLK

15

AMODEM

AMODEM

2360 GET #MODEM,C:SUM=ASC(CHR$(SUM»:I
F C=SUM THEN 2380
2370 CLOSE #MODEM:A=NAK:FOR C=WON TO 4
OO:NEXT C:GOSUB IO:POKE 766,WON:GOTO 2
390
2380 TRY=ERRTRY
2390 NEXT TRY:BLOCK=BLOCK+l
2500 IF SH=EOT AND A=ACK THEN 2800
2510 IF SH=CAN OR A<>ACK THEN 2900
2530 GOTO 2300
2800 PUT #MODEM,ACK:? :? "*** SAVING F
ILE ***":TRAP 2860
2805 C=PEEK(ADDR+127)
2810 FOR A=ADDR+C TO ADDR+127:IF PEEK(
A><>C THEN C=128
2812 NEXT A:ADDR=ADDR+C:CLOSE #MODEM
2820 OBJ=ZERO:A=PEEK(BUFF):IF A>ZERO A
ND A<255 THEN OBJ=WON
2825 A=ZERO:IF FILE$(l,l)="C" AND OBJ=
ZERO THEN A=128
2830 IF TRN THEN OBJ=ZERO
2840 POKE 1536,OBJ:POKE 195,WON:? "***

";ADDR-BUFF;" BYTES"
2850 OPEN #FILE,8,A,FILE$:C=USR(1610,B
UFF,ADDR)
2860 GOTO 2990
2900 ? :? "*** UNABLE TO RECEIVE FILE"
:A=NAK
2910 PUT #MODEM,CAN
2990 SRFLAG=ZERO:GOTO MENU
3000 TRAN=32:GOSUB IO:POKE 766,1
3010 SETCOLOR 2,WON,2:BLOCK=ZERO:BYTE=
BYTES
3020 ? :? "*** SENDING ";FILE$;" ***"
3300 POKE 77,ZERO:FOR TRY=WON TO ERRTR
Y
3310 ? :? "*** SENDING SECTOR ";BLOCK+
WON;"/";TRY;" ***"
3320 PUT #MODEM,SOH:SUM=ZERO
3330 PUT #MODEM,BLOCK+WON
3340 PUT #MODEM,254-BLOCK
3350 ADDR=BLOCK*128+BUFF:FOR BLK=O TO
127:C=PEEK(ADDR+BLK):PUT #MODEM~C:? CH
R$(C);:SUM=SUM+C:NEXT BLK
3360 SUM=ASC(CHR$(SUM»:PUT #MODEM,SUM
3370 GET #MODEM,A:IF A=CAN OR PEEK(CON
)=5 THEN 3900
3380 IF A<>ACK THEN 3400

16

3390 TRY=ERRTRY
3400 NEXT TRY:BLOCK=BLOCK+l
3500 IF A(>ACK THEN 3900
3510 BYTE=BYTE-128:IF BYTE>ZERO THEN 3
300
3800 PUT #MODEM,EOT:PUT #MODEM,ZERO
3810 ? :? "*** TRANSFER COMPLETE ***"
3820 GOTO 3990
3900 ? :? "*** UNABLE TO SEND FILE ***
"
3910 PUT #MODEM,CAN
3990 GOTO MENU
4000 ? :CLOSE #MODEM
4010 FOR C=49 TO 52
4020 L$="Dl:*.*":L$(2,2)=CHR$(C)
4030 TRAP 4060:0PEN #FILE,6,ZERO,L$:?
L$:TRAP 4050
4040 INPUT #FILE;L$:? L$:GOTO 4040
4050 PRINT
4060 TRAP 4065:CLOSE #FILE
4065 IF DR=WON THEN 4080
4070 NEXT C
4080 DR=ZERO:L$="":GOTO MENU
4500 POKE 766,WON:SETCOLOR 2,2,2:? :?
"*** UPLOADING ";FILE$;" ***"
4510 FOR I=BUFF TO BUFF+BYTES-129+BYTE
4520 PUT #MODEM,PEEK(I):IF PEEK(CON)=5

THEN? :? "*** ABORTED ***":GOTO 4550
4530 STATUS #MODEM,C:BLK=PEEK(747):IF
BLK THEN FOR A=WON TO BLK:GET #MODEM,C
:? CHR$(C);:NEXT A
4540 NEXT I
4550 FOR 1=1 TO 100:NEXT I
4560 STATUS #MODEM,C:IF PEEK(747) THEN

GET #MODEM,C:? CHR$(C);:GOTO 4560
4570 ? :? "*** UPLOAD COMPLETE ***":80
TO MENU
5000 IF SRFLAG=67 THEN 1500
5010 IF SRFLA8=82 THEN 2000
5020 IF SRFLA8=83 THEN 3000
5030 IF SRFLA8=85 THEN 4500
5040 ? :? "*** MUST SELECT FIRST! ***"
5050 IF PEEK(CON><>7 THEN 5040
5060 80TO TERM
6000 ? CHR$(125):? " FUNCTI
ON MENU": IF XP=l THEN? CHR$(29):? "

";PRMT$:GOTO 6012
6001 ? "Baud---------Change baud rateS

300,600,1200"

17

AMODEM

AMODEM

6002 ? "Capture------Captures anything
to you" sent

6003

6004

-4"

? "Write--------Writes memory to
specified device"

? "Menu---------Displays disk one
files or enter 1

6005 ? "Duplex-------Switches from
full or half dupl

ex"
6006 ? "Receive------Xmodem transfer u
sing the Christensen p
rotocol"
6007 ? "Send---------Sends a file usin
g XMODEM transfer"
6008 ? "Translation--Switches from ATA
SCII to ASCII and back
"
6009
th
6010
ber
ing"

? "Upload-------Uploads a file wi
no verify"

? "Hayes--------Goes to phone num
menu for autodial

6011 ? "Xpert--------Expert user mode"
6012 CLOSE #MODEM:? :? "What function?
";:GET #KEY,C:C$=CHR$(C):? C$
6013 IF C$="H" THEN 900
6014 IF C$="B" THEN 9900
6015 IF C$="C" THEN 7000
6020 IF C$="W" THEN 1700
6025 IF C$="U" THEN 8000
6030 IF C$="M" THEN 4000
6035 IF C$="R" THEN 7000
6040 IF C$="S" THEN 8000
6042 IF C$="X" AND XP=O THEN XP=l:GOTO

MENU
6044 IF C$="X" AND XP=l THEN XP=O:GOTO

MENU
6045 IF C$="T" THEN TRN=32-TRN:IF SRFL
AG)82 THEN SRFLAG=ZERO
6050 IF C$="D" THEN PLX=i-PLX:POKE 705
,PLX
6055 DR=O:IF C)48 AND C<53 THEN DR=WON
:60TO 4020
6060 GO TO MENU
7000 SRFLAG=ZERO:MSAVE=ZERO:? :? "***
RECEIVE FILESPEC ";
7010 INPUT L$:IF L$="" THEN 7090

18

7015 TRAP 7000: IF L$(2,2)<>":" THEN IF
L$(3,3)<>":" THEN? "SPECIFY DEVICE!"

:GOTO 7000
7020 FILE$=L$:IF L$(l,l)<>"D" THEN 708
o
7030 TRAP 7080:0PEN #FILE,4,ZERO,FILE$
7040 ? :? "*** HAVE FILE ";FILE$
7050 ? "*** Type (Y) to ERASE ";FILE$; ,
7060 GET #KEY,A:? CHR$(A):IF A<>89 THE
N L$="":GOTO 7090
7070 CLOSE #FILE:XIO 36,#FILE,ZERO,ZER
O,FILE$:XIO 33,#FILE,ZERO,ZERO,FILE$
7080 SRFLAG=C:ADDR=BUFF
7090 TRAP 40000:GOTO MENU
8000 SRFLAG=ZERO:? :? "*** SEND FILESP
EC ";:INPUT L$:IF L$="" THEN 8090
8005 TRAP 8000: IF L$(2,2)<>":" THEN IF
L$(3,3)<>":" THEN? "SPECIFY DEVICE!"

:GOTO 8000
8010 A=ZERO:IF L$(1,2)="C:" THEN A=128
8014 SRFLAG=C:? "*** LOADING INTO BUFF
ER ***":OBJ=O
8015 ADDR=BUFF:TRAP 8080:FILE$=L$:OPEN

#FILE,4,A,FILE$
8020 IF TRN THEN 8050
8030 GET #FILE,A:POKE ADDR,A:ADDR=ADDR
+l:IF A>ZERO AND A<255 THEN OBJ=l
8050 POKE 1536,OBJ
8060 C=USR(1537,ADDR):BYTES=C-BUFF:BYT
E=«BYTES/128)-INT(BYTES/128»*128
8065 IF PEEK(195)<>136 THEN? "*** ERR
OR ";PEEK(195):GOTO 8085
8070 FOR A=C TO C+127-BYTE:POKE A,BYTE
:NEXT A:C=A:BYTES=C-BUFF:GOTO 8090
8080 ? CHR$(253);"*** FILE NOT FOUND *
**"
8085 SRFLAG=ZERO:L$=""
8090 TRAP 40000:GOTO MENU
9000 TRM=32-TRM
9010 GOSUB IO:GOTO MENU
9900 BAUD=BAUD+l:IF BAUD>10 THEN BAUD=
8
9910 IF BAUD<10 THEN? 300*(BAUD-7);
9920 IF BAUD=10 THEN ? 1200;
9930 ? " BAUD":GOTO MENU
10000 C=FRE(0)-400:DIM BUFF$(C),IO$(17
O):BUFF=ADR(BUFF$):ADDR=BUFF

19

AMODEM

AMODEM

10005 ZERO=0:WON=1:S0H=1:EOT=4:ACK=6
10010 BEL=7:BS=8:LF=10:VT=11:CR=13
10020 NAK=21:CAN=24:EOF=26:EOL=ZERO
10030 KEY=1:FILE=2:PTR=3:MODEM=4
10040 DIM C$(1),FILE$(15),L$(130)
10050 MENU=1000:TERM=1050:PLX=0
10060 ERRTRY=10:CON=53279:IO=14000
10070 OPEN #KEY,4,ZERO,"K:"
10080 BAUD=8:GRAPHICS ZERO:?
10120 XIO 34,#MODEM,192,ZERO,"Rl:"
10130 XIO 36, #MODEM, BAUD, ZERO, "Rl:"
10180 BUFF$(l)=" ":BUFF$(C)=" "
10190 BUFF$(2,LEN(BUFF$»=BUFF$
11000 7 " ATARI MODEM VER. 4.3"
11010 7 " COPYRIGHT (C) 1982 JIM STEINB
RECHER"
11020 7 " 37220 TRICIA DRIVE"
11030 ? " STERLING HTS MI. 48077
"
11040 7 :?" BUFFER= ";C;" BYTES, ";1
NT(C/128);" SECTORS":?
11050 7" WITH WARD CHRISTENSEN~S X
MODEM"
11060 7 "
"
11070 7 "
TEMS"

FILE TRANSFER PROTOCOL

FOR USE ON ASCII CP/M SYS

11080 7 :7" ATARI TO ATARI FILE TR
ANSFER"
11090 7 " AND SELECTED ATARI SYSTE
MS"
12000 RESTORE 15000:FOR C=1536 TO 1736
:READ A:POKE C,A:NEXT C
12010 FOR C=l TO 152:READ A:IO$(C)=CHR
$(A>:NEXT C
12020 POKE 704,MSAVE:POKE 705,PLX
12030 GOTO MENU
13000 TRAP 13000:TRAN=TRN
14000 CLOSE #MODEM:CLOSE #PTR:CLOSE #F
ILE
14005 XIO 36,#MODEM,BAUD,ZERO,"Rl:"
14010 XIO 38,#MODEM,TRAN,ZERO,"Rl:"
14020 OPEN #MODEM,13,ZERO,"Rl:"
14030 XIO 40,#MODEM,ZERO,ZERO,"Rl:"
14040 POKE 712,TRN*4.1:POKE 707,0:POKE
766, ZERO

14050 TRAP 40000:RETURN
15000 DATA 1,104,104,133,213,104,133,2

20

12,162~32,169,7,157,66,3,169,0,157,72,

3
15010 DATA 157,73,3,32,86,228,48,40,16
0,0,145,212,173,0,6,201,1,208
15020 DATA 20,177,212,201,155,208,14,1
69,13,145,212,230,212,208,2,230,213,16
9,10,145
15030 DATA 212,230,212,208,2,230,213,2
4,144,196,132,195,96,74,68,83
15040 DATA 104,104,133,204,104,133,203
,104,133,206,104~133,205,162,32,169,11

,157,66,3
15050 DATA 169,0~157,72,3,157,73,3,160

,0,173,0,6,201,1,208,26,177,203,201
15060 DATA 13~208,20,160,1,177,203,201
,10,208,12,160,0,230,203,208,2,230,204
,169
15070 DATA 155,145,203,160,0,177,203,3
2,86,228,230,203,208,2,230,204,165,203
,197,205
15080 DATA 208,187,165,204,197,206,208
,181,96
15090 DATA 169,13,157,66,3,76,86,228,1
69,7,32,189,6,76,86,228
15100 DATA 168,169,11,32,189,6,152,76,
86,228,157,66,3,169,0,157,72,3,157,73,
3,96
16000 DATA 104,104,133,213,104,133,212
,104,133,215,104,133,214
16010 DATA 162,64,32,163,6,173,235,2,2
01,0,240,68,162,64,32,171,6
16020 DATA 172,200,2,192,0,208,16,201,
7,208,2,169,253,201,8,208,2,169,126
16030 DATA 201,32,144,20,172,192,2,240
,10,162,0,129,212,230,212,208,2,230,21
3,162,0,32,179,6
16040 DATA 165,215,197,213,208,190,165
,214,197,212,208,184,169,8,141,194,2,9
6
16060 DATA 240,176,173,252,2,201,255,2
40,41,162,16,32,171,6,172,193,2,192
16070 DATA 0,240,5,162,0,32,179,6,172,
200,2,192,0,208,12,201,253,208,2
16080 DATA 169,7,201,126,208,2,169,8,1
62,64,32,179,6,173,31,208,201,7
16090 DATA 16,199,141,194,2,96

21

AMODEM

A.N.A.L.O.G. COMPUTING

A.N.A.L.O.G. COMPUTING - ANALOG is a fast growing magazine for Atari
computer owners. It was named Atari Newsletter And Lots Of Games, hence the
acronymn ANALOG. The Atari computers are digital. The programs in the magazine
are available on disk form. Some excellent public domain, machine language games
can usually be found in ANALOG as well as useful utilities and critical reviews.
ANALOG Computing.

ANALOG I N PUT - The Atari computer can be used to make measurements such as
temperature, humidity, light intensity, or resistance. These inputs are ANALOG as
opposed to DIGITAL, meaning that they can vary continuously over a range. The input
is made through the paddle ports on the front of the 400 and 800 computers. There are
eight paddle ports which go directly to ANALOG to digital converters in the computer.
An input device which changes resistance with changes in external conditions is
required. For temperature, this would be a thermistor, for light - a photocell, and for
humidity - a hygrometer. Memory locations 624 through 631 (decimal) are the
shadow registers which hold a value proportional to the resistance measured. The
value ranges between 0 and 228, with the higher values generated by higher resistances.
The range of resistances that can be measured is 100 to 100,000 ohms. In order to con­
vert the resistance to a standard value, two measurements should be made at known
points (such as boiling water and ice water). Use a PEEK(624) to measure the resis­
tance at the paddle port. The register is updated every sixtieth of a second.

AN D - In BASIC, the logical operator AND is used to construct a conditional state­
ment which is true only if both sides of the AND statement are true.

EXAMPLE: IF A=65 AND 8=66 THEN 100

The program will go to line 100 only if A equals 65 AND B equals 66. Otherwise, the
next line number will be executed.

On a bit level, the logical AND compares the bits which make up two,different bytes. If
the bits of one byte are set (equal to 1) AND if and only if the bits of the other byte are 1
then the result is a 1. Otherwise, the result is a o.

EXAMPLE: FIRST BYTE
SECOND BYTE

Result of AND

00001111
11111000

00001000

ANSWER MODE - When a modem is set in the ANSWER MODE, it emits an aud­
ible tone (at2025 or2225 HZ) while it is waiting for an originating signal. When you dial
a bulletin board system and hear the high pitched squeal from the other end, you are
hearing a modem in ANSWER MODE.

ANTIC - From AlphaNumeric TV Interface Chip and also a device which exhibits
ANTICS as in video ANTICS. This custom integrated circuit allows your Atari com­
puter to control your television to a much greater degree than any currently available
on other home computers. The ANTIC is responsible for the mixed screen modes and
colors used in many games.

22

ANTIC

ANTIC - ANTIC is a magazine for Atari users featuring reviews, comparisons of
applications software, hardware, and BASIC programs for Atari computers. Emphasis
is given to helping new users with hardware or software problems. Product reviews
cover the products and the advertisements are a good source of information about the
latest products.

APPLI CATION PROG RAM S - An APPLICATION PROGRAM is software which
allows your computer to do some useful function such as word processing, home budget
keeping, or financial analysis. The programs are applied to a number of useful
activities.

ARG U M E NT - Variables usually found in parentheses or brackets in a demonstration
of a function or command. For example, LOA 0" 0: FILES P EC. BAS" is the method for
loading a program from a disk. FILES P EC. BAS is the argument in this demonstration.

ARMUDIC - ARMUDIC is a bulletin board system for Atari computers. ARMUDIC
is not a public domain system. The name ARMUDIC is derived from the original
telephone number for the system in Washington, DC (202-276-8342). The following
options are available when you call an ARMUDIC system.

A Activate message files
S Send message
G Get message
E Erase message
D Download files
L Leave message for system operator
Q Quit
U Upload files
Control S - Pause
Control Q - Continue
Control C - Return to option menu

ARRAY - An ARRAY is a one dimensional set of elements. For example, a series of
numbers stored in memory or a string of characters. A matrix is a two dimensional set
of elements. Atari BASIC supports one or two dimensional numerical arrays. The
array must be initialized with a DIM statement before it can be used. You can use
arrays in BASIC XL without DIMming the variables. Atari BASIC will not let you use
two dimensional string arrays; you must use BASIC XL, Microsoft BASIC or BASIC
A+, or else simulate the string array.

ARTI FACTS - ARTIFACTing is the separation of colors often found in high resolu­
tion graphics. This separation is due to the large size of the color" dots" which make up
the television screen compared to the pixel size. ARTIF ACTing is usually manifested
by blue and orange colors found on black backgrounds. ARTIF ACTing is possible in
ANTIC modes 2, 3, and 15 because the pixels are V2 of a color clock wide. (In BASIC,
these modes are called mode 0 for ANTIC mode 2, and mode 8 for ANTIC mode 15.
ANTIC mode 3 is not accessible through BASIC). There are 160 visible color clocks
across a scan line of the TV. A clock is a cycle of the signal that contains the information

23

ARTIFICIAL INTELLIGENCE

on color, brightness, synchronization, blank, and overscan. In GR.7 a pixel is the same
width as a color clock. In GR.O and GR.8, a clock is comprised oftwo pixels (each pixel is
'12 of a color clock). Depending on the background color and the horizontal position of
the pixels on an odd or even location, up to four different color combinations can be
generated in a two color mode such as GR.O or GR.8. Some games use ARTIF ACTing to
produce special effects and these effects will not appear on a high resolution monitor
such as the Commodore 1701/2 nor on a PAL system.

ARTIFICIAL INTELLIGENCE - One area of study in computer science is
ARTIFICIAL INTELLIGENCE. The computer can be called intelligent when it can
adapt itself to any novel situation by reasoning, understanding relationships, dis­
tinguishing truth from fiction, and discovering new meanings. Clearly this is a formid­
able task for any machine, let alone the humble Atari computer.

ASC - This BASIC function looks at a string and generates the ATASCII code in
decimal for the first character in the string. A NULL STRING generates a decimal 44.
The format for using ASC is ASC(STRING$).

ASC II - American Standard Code for Information Interchange. ASCII is a standard
technique for representing characters with eight bits of data (Is or Os). Only 128 of the
characters are officially assigned. With eight bits, there are 256 different characters
possible. Half of the 256 characters are inverse video copies of the other half. ASCII
is used to communicate with other computers through modems; however, the Atari
computer uses a modification of standard ASCII called ATASCII.

ASM - A program in the Atari Assembler/Editor Cartridge to begin assembly of a
source program. The assembler takes the source program (which is written in assembly
language) and converts it into machine code. The machine code is processed directly by
the 6502 processor in the Atari computer. Besides the ASM program, the Assembler/
Editor has an editor program (EDIT) and a debugger (BUG) used in the preparation of
assembly language programs.

ASSEMBLER - An ASSEMBLER is a program which takes programs written in
assembly language and produces machine language files. The machine language code
can be executed directly by the microprocessor in the Atari computer. The ASSEM­
BLER is actually a language which acts like a word processor to produce SOURCE
files which can be converted to machine langua:ge. Assemblers available for the Atari
computer are: Synassembler by Synapse Software; EDIT 6502 by LJK Enterprises;
Assembler/Editor by Atari; MAC/65 by Optimized Systems Software; Atari Macro
Assembler.

ASSEMBLY LANGUAGE - ASSEMBLY LANGUAGE is a computer language
developed to provide an easier way of giving instructions to a microprocessor.
ASSEMBLY LANGUAGE is used to fetch data from memory and put it in the
ACCUMULATOR, to operate on data in the ACCUMULATOR, and to stick data back
into memory. There are several ways to load data into the accumulator. The following
BASIC analog example will explain. Assume that the BASIC variable ACC is the
ACCumulator.

24

ASYNCHRONOUS TRANSMISSION

ASSEMBLY BASIC MODE FUNCTION

LOA #$FF ACC=255 Immediate Load ACC with the value 255
LOA $FF ACC=PEEK Absolute Load ACC with number in location 255

[255)
LOA $FF.X ACC=PEEK Absolute. X Load ACC with number in 255 + X

[255+X)
LOA [$FF.X) ACC=PEEK Indirect,X Load ACC with number pointed to

[PEEK in location 255 + X
[255 + X))

To store the data in the ACCUMULATOR into memory, we use the STA form in
ASSEMBLY LANGUAGE.

ASSEMBLY BASIC MODE FUNCTION

STA $FF POKE 255. Absolute Put value in ACC into location 255
ACC

STA $FF.X POKE 255+ Absolute, X Put value in ACC into 255+ X
X.ACC

STA[$FF.X) POKE PEEK (Indirect,X) Put value pointed at in 255+ X in ACC
[255+X).ACC

STA[$FF).Y POKE PEEK (Indirect),Y Put value + Y for the pointed at
[255)+Y.ACC location in 255 into ACC

Note that this is actually simplified because the locations pointed at must be two byte
locations, unless they are in the zero page.

ASYNCHRONOUSTRANSMISSION-Intelecommunications(usingamodem
to connect computers), the dialogue between computers can be very structured and
coordinated (synchronous) or it may be randomly interactive (asynchrounous). In
ASYNCHRONOUS TRANSMISSION, the time intervals between characters may be
of unequal length and characters are separated by start and stop elements or bits at the
beginning and end of each character. This is the only type of communication possible
on the Atari computer.

ATARI KEY - Special key on the Atari 400 and 800 computer keyboard which sets
the highest of eight bits when the keyboard is used to generate characters. On the XL
series, this key is in the lower right corner and has the legend and a box with a diagonal
through the box. The effect of pressing this key is to add 128 to the normal ATASCII
value and the character set is displayed in inverse video (dark character on light back­
ground.) These characters are ATASCII numbers 128 to 255. Inputs to some BASIC
programs may not expect an inverse character and may crash when an inverse charac-

25

ATARI WRITER

ter is sent. This key is also used to kill the type-ahead buffer in Letter Perfect V.3.x.
This key is also called the FUJI key because it looks roughly like Mount Fuji in
Japan.

ATAR I WR ITE R - Atari Writer is a powerful word processorforthe Atari computer
series. All of the Atari printer models are supported and most of the popular printers
(Epson, Gemini, Oki, NEC 8023A, etc.) can be driven with an additional printer driver
package available on disk from APX. Printer commands can be inserted in text by
using a CTRL 0 followed by the decimal equivalent of the character string code you
want to include.(See your printer manual for these codes or look under PRINTER
CODES). There is an 80 column print preview which scrolls left and right to show you
what your final hard copy will look like. Atari Writer is contained in a Cartridge so it is
ready to go as soon as you plug it in (but you must load DOS. SYS if you are using the
disk drive). Files can be saved on cassette.

ATASCII- ATAri Standard Code For Information Exchange. A version of ASCII
which has identical codes for alphanumeric characters but differs in the first 32 charac­
ters (the control characters) and in characters 123 through 127. A translation is
required when transferring ATASCII code through modems or the control characters
may be interpreted in a way such that transmission will be stopped. The difference is
an artifact of the way that the Atari Operating System authors attempted to work
around the way that the ANTIC chip handles characters. In high resolution character
modes, the right seven bits of the byte are used to generate the character graphics
address and these match ASCII codes. When large character modes are used (GR. 1 or
2), only six bits are used for the character and the other two specify colors. If ASCII
codes were used, this would allow either upper and lower case OR graphics characters
and numbers, but NOT upper case and numbers. AT ASCII swaps lower case and num­
bers to allow uppercase and numbers simultaneously in large character modes.

ATN - in BASIC, ATN returns the arctangent of the argument in parentheses. The
answer is expressed in radians unless the DEG statement has been executed.

ATR8000 I NTE R F AC E - This interface is getting rave reviews from the hardcore
Atari users' community. The ATRBOOO includes all functions of the 850 interface but it
allows the Atari computer to connect to many of the most popular peripherals available
for other computer systems. Provided on the ATR are: a parallel port for a printer, an
RS-232 serial port for a modem or other serial device, an intelligent disk drive con­
troller, and a 4K printer buffer (expandable to 48K). The intelligent disk controller will
support single or double sided, single or double density 51;4" or 8" disks. This is quite a
combination and allows you to use any of the low cost drives on the market. The inter­
face is controlled by a Z80 microprocessor and can load CP/M so that the Atari thinks
the CP/M is in charge and you can actually run CP/M programs. The drives will read
almost any format disk: Heath, Osborne, Kaypro, TRS, etc. The ATRBOOO is very
expandable in both RAM and processor. You can add up to a total of 64K RAM. It is
possible to add an 8088 processor and run the 16 bit CP/M-86 or MSDOS and upgrade
to 256K of RAM. This makes a very powerful Atari, equivalent to a loaded IBM PC.

26

10 REM ** AUTORUN.SYS BUILDER **
20 REM ** FILE: ARSMAKER.BAS
30 REM ** ABCS OF ATARI COMPUTERS
40 REM
50 GRAPHICS O:DIM A$(128),B$(12)

ATR800lNTERFACE

60 ? "THIS PROGRAM WILL CREATE A FILE"
70 ? "ON THE DISK CALLED AUTORUN.SYS."
:?
80 ? "FOR EXAMPLE BY ENTERING THE FILE
NAME"
90 ? " 'MENU', IT CREATES A PROGRAM WH
ICH"
100 ? " AUTORUNS ANY FILE CALLED 'MENU
~ II:?
110 ? :? "ENTER FILE NAME TO AUTORUN";
: INPUT B$
120 A$ <1,6) ="RUN 0:": A$ (4, 4) =CHR$ (34) :
A$(7,7+LEN(B$»=B$:A$(7+LEN(B$»=CHR$(
34)
130 OPEN #1,8,0, "0: AUTORUN. SYS"
140 PUT #1,255
150 PUT #1,255
160 PUT #1,0
170 PUT #1,6
180 L=123+LEN(A$)-1
190 PUT #l,L
200 PUT #1,6
210 FOR 1=1 TO 123
220 READ 0
230 IF 1=64 THEN PUT #l,LEN(A$)-l:GOTO

250
240 PUT #1,0
250 NEXT I
260 FOR I=LEN(A$) TO 1 STEP -1
270 PUT #l,ASC(A$(I,I»
280 NEXT I
290 PUT #1,255
300 PUT #1,255
310 PUT #1,226
320 PUT #1,2
330 PUT #1,227
340 PUT #1,2
350 PUT #1,0
360 PUT #1,6
370 CLOSE #1
380 END
390 DATA 162,0,189,26,3,201,69,240,5,2
32

27

ATTRACT MODE

400 DATA 232,232,208,244,232,142,105,6
,189,26
410 DATA 3,133,205,169,107,157,26,3,23
2,189
420 DATA 26,3,133,206,169,6,157,26,3,1
60
430 DATA 0,162,16,177,205,153,107,6,20
0,202
440 DATA 208,247,169,67,141,111,6,169,
6,141
450 DATA 112,6,169,10,141,106,6,96,172
,106
460 DATA 6,240,9,185,123,6,206,106,6,1
60
470 DATA 1,96,138,72,174,105,6,165,205
,157
480 DATA 26,3,232,165,206,157,26,3,104
,170
490 DATA 169,155,160,1,96,0,0,0,0,0
500 DATA 0,0,0,0,0,0,0,0,0,76
510 DATA 0,0,0

ATTRACT MOD E - In order to prevent overworking and overheating of the mask
and phosphors of the color television hooked to your Atari computer, a technique called
ATTRACT MODE is implemented. ATTRACT MODE is activated when location 77
($4D) contains a value of 127. This location is incrementally POKEd every four seconds
until after about nine minutes the maximum of127 is reached. You can reset the attract
timer by doing a POKE 77,0. Every time you hit a key on the keyboard, it is reset on the
theory that you are changing the screen by typing characters. Using the joystick or
trigger does not reset the attract mode. While the colors are rotating, the brightness is
lowered to further prevent damage.

AUTO - In Microsoft BASIC II AUTO Start, Increment enables the AUTO line num­
berer with the first line number as defined in Start and the steps between line numbers
as given in Increment.

AUTO LI N K - AUTO LINKing is a technique by which files to be printed by a word
processing program can be automatically loaded into memory and then printed without
intervention. You can AUTOLINK files with the Atari Writer, Letter Perfect, and Text
Wizard. In Letter Perfect, the technique is to use CTRL V "sample. In Text Wizard, the
command is CTRL V D: SAMPLE, where SAMPLE is the name of the next file to print.
In the Atari Writer, the command is CTRL V D: SAMPLE. The next file loaded in will be
printed with the format directed by the commands contained in the file.

AUTO.SYS - AUTO.SYS was used in the original Atari DOS (Version 1) to set up
system parameters, such as the left and right margins. DOS 1 is very rarely found these
days. When the system is powered up with a disk drive connected, it will first load in

28

AUTO DIAL

DOS.SYS and then try to run any AUTO.SYS file on the disk. The AUTO.SYS file must
be constructed with the first six bytes of the file supplying the following information.
(Note that this is for DOS 1 ONLY.)

BYTE HEX

1 $84
2 $09
3 LO
4 HI
5 LO
6 HI

FILE DATA FOLLOWS

DEC

132
9

LO
HI
LO
HI

Meaning

DOS lID
DOS lID
Starting memory address (low byte)
Starting memory address (high byte)
Ending memory address (low byte)
Ending memory address (high byte)

AUTO DIAL - If you have a Hayes Smartmodem or another brand capable of
automatic dialing, you can use your keyboard to dial your favorite BBS. The command
to AUTODIAL with the Hayes is ATDT 5551234 where 5551234 is the phone number
you want to call. The command ATDT is given while the terminal program is running
and is in the terminal mode. The" AT" puts the modem at" ATtention" and the "DT"
stands for "Dial Tone". The AMODEM program listed here can do auto dialing.

AUTORUN.SYS - AUTORUN.SYS is the name of a file which DOS 2.0S version
disks will attempt to load and run before turning control over to you. The file must be a
"binary load" file with certain parameters set up according to the following format.
The Starting address is found in the third and fourth bytes of an AUTORUN.SYS file.
(Bytes 1 and 2 are $FF and $FF, the hexadecimal equivalent of 255). The starting
address is the location in memory where the file is to begin loading. Bytes 3 and 4 of the
AUTORUN. SYS file are the Ending address in memory where the file should stop load­
ing. The difference between the ending address and the starting address is the length
of the file in bytes. At the end of the file the RUN address is loaded into the RUNAD
vector at locations 736 and 737 ($2EO and $2E1). This passes control of the system
through this vector to the starting address of the binary file. If an IN IT address is
loaded into locations 738 and 739 ($2E2 and $2E3), then this program will begin
executing immediately as the data is loaded into that memory. This might be used for
music or an introduction during loading.

AUTORUN.SYS BUILDER - The Atari Operating System looks for DOS.SYS
when the computer is powered up (coldstart) and then it looks for a file called
AUTORUN.SYS. The AUTORUN.SYS file is a machine language program which may
be used to run a BASIC program. It can also be a self-contained machine language pro­
gram (such as a game), which will run if the INIT and RUN addresses are appended.
The following BASIC program will build an AUTORUN.SYS for you. The program is
designed to create a RUN" 0 : fi lespec" command where all you have to do is enter the
filespec. You can have only one AUTORUN.SYS file on a disk. Multiple files will be
ignored.

29

AUTORUN.SYS BUILDER

10 REM ** AUTORUN.SYS BUILDER **
20 REM ** FILE: ARSMAKER.BAS
30 REM ** ABCS OF ATARI COMPUTERS
40 REM
50 GRAPHICS O:DIM A$(128),B$(12)
60 7 "THIS PROGRAM WILL CREATE A FILE"
70 7 "ON THE DISK CALLED AUTORUN.SYS.":?

80 7 "FOR EXAMPLE BY ENTERING THE FILENA
ME"
90 ? II 'MENU', IT CREATES A PROGRAM WHIC
H"
100? " AUTORUNS ANY FILE CALLED 'MENU'"
:?
110? :7 "ENTER FILE NAME TO AUTORUN";:I
NPUT B$
120 A$(1,6)="RUN D:":A$(4,4)=CHR$(34):A$
(7,7+LEN(B$»=B$:A$(7+LEN(B$»=CHR'(34)
130 OPEN #1,8,0, "D:AUTORUN.SYS"
140 PUT #1,255
150 PUT #1,255
160 PUT #1,0
170 PUT #1,6
180 L=123+LEN(A$)-1
190 PUT #1,L
200 PUT #1,6
210 FOR 1=1 TO 123
220 READ D
230 IF 1=64 THEN PUT #l,LEN(A$)-l:GOTO 2
50
240 PUT #1,0
250 NEXT I
260 FOR I=LEN(A$) TO 1 STEP -1
270 PUT #1,ASC(A$(I,I»
280 NEXT I
290 PUT #1,255
300 PUT #1,255
310 PUT #1,226
320 PUT #1,2
330 PUT #1,227
340 PUT #1,2
350 PUT #1,0
360 PUT #1,6
370 CLOSE #1
380 END
390 DATA 162,0,189,26,3,201,69,240,5,232
400 DATA 232,232,208,244,232,142,105,6,1
89,26

30

AUTOTAB

410 DATA 3,133,205,169,107,157,26,3,232,
189
420 DATA 26,3,133,206,169,6,157,26,3,160
430 DATA 0,162,16,177,205,153,107,6,200,
202
440 DATA 208,247,169,67,141,111,6,169,6,
141
450 DATA 112,6,169,10,141,106,6,96,172,1
06
460 DATA 6,240,9,185,123,6,206,106,6,160
470 DATA 1,96,138,72,174,105,6,165,205,1
57
480 DATA 26,3,232,165,206,157,26,3,104,1
70
490 DATA 169,155,160,1,96,0,0,0,0,0
500 DATA 0,0,0,0,0,0,0,0,0,76
510 DATA 0,0,0

AUTOTAB -The Bit 3 Full View 80 column board for the Atari 800 has an automatic
column tabulator. All data PRINTed to the screen with a comma (,) after the variable to
be printed will be lined up in regular columnar fashion.

31

B SLASH (~)

B
B SLASH (~) - Older program listings often use the B-SLASH symbol to indicate a
blank space in a statement. This reduces confusion as to how many spaces are intended
or whether or not a space is required.

BACKGROUND- The BACKGROUND is the part of the screen inside the borders
and behind the text, if any. The color of the background is set by using a SETCOLOR
2,C,L command in BASIC where C is the color (from 0 to 15) and L is the brightness or
luminance (from 0 to 14). The register at location $02C6 (710) (COLOR2) is the back­
ground register in graphics modes 0 and 8. Register $02C8 (712) (COLOR4) is the back­
ground register for GR. 1,2,3,4,5,6 and 7.

BAD SECTOR - This was a commonly used disk copy protection technique. A bad
sector can be made by physically damaging a disk or by writing data to a sector in a
slowed down mode or with a weak write current. Program code is then used to read a
bad sector and if an error is not produced, the program terminates. It is not possible to
write a bad sector to your disk without modifying the 810 disk drive hardware, hence it
is a copy protection scheme. This modification involves slowing down the speed of the
drive motor or changing the voltage to the write head.

BANDWIDTH - BANDWIDTH is the range of frequencies assigned to a channel;
for example, the video monitor input. It is the difference in Hertz (cycles per second)
between the highest and lowest frequencies of a band. CRT monitors have more infor­
mation on display at anyone time and need more data/second to fill the screen than
televisions so they operate at a higher BANDWIDTH, or data rate. A television
receiver cannot accept data at this rate and so it is either blurry or does not work at all.
Monitors usually have a BANDWIDTH of 18 to 25 MHz.

BANK STREET WRITER - This is a word processor program designed for sim­
plicity and ease of use. A tutorial on the flip side of the program disk is really all the
documentation you need to use this package. Once you know the structure of the sys­
tem, you will be able to use the ever-present prompts at the top of the screen. Although
Bank Street Writer has plenty of editing features and is truly easy to use, the penalty is
the lack of versatility. Formatting of printed files is very limited. For example, it is vir­
tually impossible to change to double spaced lines or to narrower margins within a
document. You will not be able to control all of the fancy features on a versatile printer,
either. A small kid just learning to write should be able to use this word processor
without trouble. Even older computer users will have little difficulty.

BAN K SE LECT ME M ORY - An extra4K of RAM can be addressed without mod­
ifications to the operating system of the 400 and 800 Atari computers. This 4K block
starts at $COOO and is used by the Operating System in the XL series. This means that
52K of memory can be addressed in a contiguous block. By installing a board with 16K
of memory in addition to the regular 48K in a 400 or 800, the extra 4K can be BANK
SELECTED. Since it can be switched on by writing to a special location, the4K block of

32

BASIC

memory can be switched in and out by a technique called BANK SWITCHING. If this
memory is used to store screen data, then pictures can be flipped very quickly. It could
also be used for player/missile data or alternate character sets. Unfortunately, most
commercial software does not support Bank Switching. The Mosaic 64K RAM Select
board allows this technique.

BASIC - BASIC is the most universally used computer language for beginners. It is
easy to write short utility programs in BASIC. Atari BASIC is available on an 8K ROM
cartridge for the 400, 800, and 1200 models and is built into the XL series computers.
BASIC is a programming language which is entered through memory location $AOOO
(40969 decimal). The program converts English-like statements into a series of tokens
which are then translated into machine language instructions. All of this interpreta­
tion is what slows down the execution of BASIC. Machine language programs do not
need these intermediate steps. Alternatives to Atari BASIC are: Microsoft BASIC
from Atari, BASIC XL from OSS and BASIC A + from OSS.

BASIC COMMANDER - BASIC COMMANDER is a machine language routine
that loads into just4K of memory and becomes a hidden helperforthe BASIC program­
mer. Several features which are missing from the BASIC cartridge from Atari are now
available. Block deletions of unwanted line numbers are possible through the Com­
mander. Auto renumber also works very fast and takes care of all GOTOs and GOSUBs.
An auto line numberer is also included to save a few keystrokes while writing in
BASIC. Three user definable keys can be made to enter a commonly used command.
CTRL-1, for example, could be defined to enter a command such as AU N" 0: TESTE A":
X=USR[5481 8). Every time CTRL-1 was pressed, the command would be executed.
Commonly used lines such as LOAO"O:_ and RUN"O:_ are built in to the code. The
latest version takes OAK less memory and does not disappear when System Reset is
pressed.

BASIC DEBUGGER - This utility allows you to trace a BASIC program by step­
ping through it or by getting reports of line numbers and variables as it executes. A
split screen allows you to view the program and to look at the reports as the debugging
proceeds. A cross reference function prints a list of variables and the line numbers in
which they occur.

BAU D - A unit of signal speed used in communications, particularly with modems
and terminal programs for personal computers. The term BAUD is derived from the
last name of J.M.E. Baudot, a nineteenth century Frenchman who developed the
Baudot code for telegraph transmission. BAUD is the number of discrete signal events
per second, usually meaning the number of bits per second. Transmission at 300 BAUD
is roughly equivalent to 37 characters per second. There are eight bits per ASCII or
ATASCII character with a stop bit and a start bit to separate characters. The most
commonly used baud is 300, although 1200 baud modems are becoming less expensive
and more popular.

BAUD RATE - See BAUD. BAUD RATE is actually redundant since BAUD is a
rate.

33

BCD - BINARY CODED DECIMAL

BCD-BI NARY CODED DECI MAL - This system is a hybrid of the binary digit
system and the decimal number system. Numeric constants in ATARI BASIC are
stored in memory as six BYTE BCD numbers. Each byte is composed of two digits,
each of which is made of four bits.

decimal 17 = binary 0001 0001 = BCD 0001 0111

In binary, the eight places of the byte are used to build a numberfrom 0 to 255 with each
column from right to left representing a higher power of2. In the BCD system, the byte
is broken down into two four-bit nibbles with values from 0 to 9. Actually, the nibble
could hold up to 16 values but since we are dealing in DECIMAL, only 0 through 9 are
used. In Atari BASIC the six byte BCD value can have up to ten significant places. One
byte is used for the decimal point and sign. The number 12,345 (decimal) would be rep­
resented in BCD as follows:

12,345 = BCD 20 01 23 45 00 00

BE NC H MAR K - To compare the processing speed of different computers and com­
puter languages, a BENCHMARK program is used. A typical BENCHMARK pro­
gram will find all the prime numbers between 0 and 100,000 and measure the time to
completion. The test is subject to the language used. BENCHMARKs are easily dis­
torted by subtleties and should not be rigorously adhered to.

BG ET - In BASIC XL, BGET is used to" get" a specified number of bytes through an
OPENed channel and store them at a specified location in memory. The format for
using BGET is:

BGET =#=iocb, addr, numbytes

where =#= iocb is the channel which is OPENed or a string address, addr is the location in
memory where you want to store the bytes you get, and numbytes is the number of
bytes to get.

BIAS - A recording tape is recorded with a certain voltage applied to the recording
head. Different magnetic media require different voltages which are usually selectable
via a BIAS switch. Chromium dioxide, iron oxide, and metal tapes will not play back
properly if they are recorded with the wrong BIAS. Inexpensive conventional iron
oxide tapes will work fine on the Atari 410 and 1010 Program recorders.

BI NARY - A BINARY system has only two states. This is the simplest of all numeri­
cal systems, as the element can only be on or off. In a decimal system each element can
be valued from 0 to 9. The major drawback of binary is that many positions or locations
are required to represent larger numbers or to perform activities. Many computers
provide 524,288 (65,536 multiplied by 8) bits in which to do this. A number is processed
in groups of eight bits which can represent a number from 0 to 255. Binary digits make
up bytes in the following fashion. Each column in the byte is raised to an increasing
power of2.

34

7 6
COLUMN

543

VALUE OF COLUMN

BINARY LOAD

210

2X64=128 2X32=64 2X16=32 2X8=16 2X4=8 2X2=4 2XI=2 1

A binary eight bit number with all numbers "ON" (allIs) would be the sum of all the
column values:

Binary 11111111 = 255

lX128 + IX64 + lX32 + IX16 + IX8 + IX4 + IX2 + IXI = 255

If any of the digits were zero (0), then that column would not be added to the total for
the value of the byte.

BINARY LOAD- As a verb, to load a file from a disk directly into the memory of the
computer. The data comes in as a series of bytes made up of eight bits each which are
stored in various parts of the memory map. An examination of the disk sectors of a
binary load file would show very few or no recognizable English or computer words,
just a series of ATASCII characters. A RUN address and an INIT address are used to
turn over control of the system to the binary load program after loading. The INIT
address is the location in the computer's memory where the file data starts. If no RUN
address is found at the end of the file, nothing will occur after loading. Binary loads are
implemented from the DOS menu by using the L option. After L is pressed, the filename
of the file to be loaded is requested.

The following program will check the starting address, ending address, length in
bytes, and the DOS version of a BINARY LOAD FILE. Type in this program, save it to
a disk file, and RUN it. To analyze a BINARY LOAD file, just type in the name of the
file when prompted. Do not forget to type the D:.

10 REM **ABCS OF ATARI COMPUTERS
20 REM ** PROGRAM NAME: BLCHECK.BAS
30 REM ** BY PETE GOODEVE
40 REM
50 DIM FILES(20)
60 ? CHRS(125);" Binary Load Address
Check"
70 ? :? :? "Enter Device:Filename";:IN
PUT FILES
80 OPEN #1,4,0,FILES
90 ? :? :GET #l,DUMMY:GET #1,DUMMY2:GO
SUB 160
100 GET #l,Sl:GET #1,S2:GET #l,El:GET
#1,E2:START=Sl+S2*256:FINISH=El+E2*256
110 ? "Starting Address---";START
120 ? "Ending Address-----";FINISH
130 ? "Length-------------";FINISH-STA
RT+l

35

BINARY LOAD FROM BASIC

140? " "; «FINISH-S
TART)+1)/1024;"K"
150 END
160 IF DUMMY=255 AND DUMMY2=255 THEN ?

liDOS 2.0 Binary Load Format":RETURN
170 IF DUMMY=132 AND DUMMY2=9 THEN? "
DOS 1.0 Binary Load Format":RETURN
180 ? "Not a Binary Load File":POP :EN
D

BINARY LOAD FROM BASIC - Binary Load files are normally loaded in by
using the L option in the DUP.SYS part of Atari DOS. The routine to load and run the
files is in the FMS (File Management System) which resides in memory. As long as the
program does not interface with BASIC and it has IN IT and RUN addresses, the file
will run. Put the name of the file to run in the FILENAME.OBJ string in this program
and type RUN.

10 DIM FNS (16)
20 FNS="D:FILENAME.OBJ"
30 FNS(LEN(FNS)+1)=CHRS(155)
40 POKE 5534~0:POKE 5534~192
50 X=ADR(FNS)
60 Y=INT(X/256)
70 POKE 853,Y:POKE 852,X-256*Y
80 X=USR(ADR("hL) "»:REM String is lowe
r case h~ capital L, INVERSE SHIFT-O, CO
NTROL-U

The USR call is PLA, JMP $15A9 and it goes into the subroutine for the DOS L
command.

Note: From Indianapolis Atari Users' Group, May 1983, Vol. 3, No.5.

B I NARY SAVE - To save data from the memory of the computer into a disk file. The
K option on the DOS menu initiates the BINARY SAVE function. The data between
two addresses in memory are copied out through the serial bus to the disk drive and
placed on the disk as a series of bytes representing the file. The K option puts six bytes
as a header on the file you create.

BYTE DEC HEX MEANING

1 255 $FF DOS2 ID
2 255 $FF DOS2 ID
3 LO LO Starting Memory Address (Low byte)
4 HI HI Starting Memory Address (High byte)
5 LO LO Ending Memory Address (Low byte)
6 HI HI Ending Memory Address (High byte)

36

BIT

You must supply the starting address of the data you want to place in the file from
memory. Also include the ending address, and the name of the file to which the data will
be saved. You will then need to append a RUN address to the end ofthefile if you want
to have it run automatically when you do a binary load. Otherwise, you will load the file
into memory and then you will have to use the M option to "RUN at address" to get the
program to run.

BIT - A bit is the smallest unit of information that can be stored in a computer
memory. Bits are stored on disks, cassette tapes, in RAM, on ROM cartridges, and in
other types of memory. In order to have a bit, there must be a two state situation: on/
off, high/low, black/white, and so on. One state is defined as a 1 and the other as aO. The
Atari computer uses bits to build larger information units called bytes. Bits are used as
digits in a binary numbering system which will be described here. Instead of the
familiar decimal system where each subsequent digit in a number (moving from right
to left) is 10 raised to a power, the binary system uses 2 raised to the next power.

Decimal column

8 7 6 5 4 3 2 1 0

100.000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1

Binary column

8 7 6 5 4 3 2 1 0

256 128 64 32 16 8 4 2 1

A number such as 6,789 can be broken down by multiplying the value in each column by
the number corresponding to that place and adding the components.

6 X
7 X
8 X
9 X

1000
100

10
1

6000
700
80

9

6789 TOTAL

A binary number, such as those used in the Atari computer, can be evaluated the same
way. Binary numbers are stored as eight digit or eight bit numbers. Let us look at the
number 00110101.

0 X 128 0
0 X 64 0
1 X 32 32
1 X 16 16
0 X 8 0
1 X 4 4
0 X 2 0
1 X 1 1

53 TOTAL

37

BIT 3 BOARD - FULL VIEW 80

Thus, the binary number 00110101 is equal to 53 in the decimal system. With eight bits
we can represent any number between 0 and 255. By having various bits turned on or
off in each of the memory locations in the computer, the Atari constructs a series of
numbers each between 0 and 255, and each has a unique meaning. The individual bits
are never visible to the user. The smallest visible information unit is the byte which is a
collection of eight bits. The byte is represented by a character, conveniently numbered
from 0 to 255. By looking up the character on an ATASCII chart and translating the
decimal equivalent into binary digits, you can determine which bits are Is and which
bits are Os. See BYTE.

BIT3 BOARD- FULL VIEW 80 - This 80 column option card plugs into the third
slot in the back of the Atari 800 and allows representation of a full 80 columns of24 lines
on a CRT monitor. A regular television is not workable with this card because the TV
has too narrow a bandwidth to process all ofthe information. The monitor must present
560 pixels across the screen and a TV can only resolve about 320. A 32K board must be
installed in slot 2 if a fu1l48K system is required, because the BIT 3 board takes the last
slot. The output from the DIN plug on the side of the 800 is fed into the board and an
RCA socket on the rear is used to connect to a monitor. A TV can be used simultaneously
when not in the 80 column mode. In other graphics modes besides Mode 0, the BIT 3
board is not noticeable. BASIC programs can use the 80 column capability by software
switching through a USRjump such as X=USR[54818J. This will switch the screen
to the 80 column mode. A POKE 1276.80 is required to enable Microsoft BASIC to
operate in 80 columns. This peripheral is the first requirement for making the Atari 800
a serious computer. Letter Perfect and Data Perfect are written in versions which sup­
port the BIT 3 board.

BIT BLiTTING - The Atari computer has the capability of moving images around
the screen by simply changing a few registers (memory locations). This is the technique
of player movement. Other computers (like the Apple II) require moving large amounts
of data through RAM in order to get movement. Animation requires rewriting the data
to get images to change on the screen. Since a high resolution screen can use over 8K,
this activity can be quite slow. This technique of changing large amounts of screen
memory during a program operation is called BIT BLITTING. Many programs trans­
lated from Apple to Atari code use this technique. A rippling effect is often seen if large
images are scrolled across the screen.

B IT MAP - A BIT MAP is a representation of a graphical image in the memory of a
computer. The display is comprised of picture elements (pixels), which are the smallest
addressable units on a screen. Bit mapping is a technique where one bit (binary ele­
ment) can be on or off in memory and the corresponding pixel on the monitor will be on
or off respectively. The Atari uses different amounts of memory for the screen depend­
ing on the resoultion of the graphics mode used. The address of the start of the screen
memory bit map can be found in locations 88 and 89 ($58 and $59). The location found in
this address is the start of screen memory which maps out to the upper left corner of the
screen. The end or top of screen memory depends on the resolution which determines
the number of bytes used.

38

BLINKING CURSOR

B LI N KI N G C U RSO R - A machine language program which will cause the cursor
and any inverse characters to blink is printed below. The program fits into page 6 (loca­
tion 1536) and is initialized by a USR[1536] statement. This program is taken from
the Portland Atari Club newsletter.

100 FOR X=1536 TO 1567
110 READ Y
120 POKE X,Y:NEXT X
130 DATA 104,162,6,160,11,169,6,32,92,
228,96,165,20,110,243,2
140 DATA 110,243,2,106,106,106,106,46,
243,2,46,243,2,76,95,228
150 ? USR (1536)

BOLDFACE - Many printers have the option to emphasize print by double striking
or overlapping dots while printing. The BOLDFACE type will appear darker or
heavier than normal type in order to draw attention. See the printer conversion tables
in the appendix for your printer code.

BOOKKEEPER - This software package from Atari is suitable for a very small
business provided you are familiar with basic accounting principles. Journal entries
are required and balance sheets and income statements can be generated at appropriate
intervals. Since the program is written for one disk drive, a lot of disk swapping is
required to fully use this package. Atari, Inc.

BOO LEAN 0 PE RATO RS - Atari BASIC uses a logical operation developed in the
19th century by mathematician George Boole. The Boolean is a statement or com­
parison set off by parentheses, which, if true, takes the value of one. If the comparison
is not true then it takes the value of zero. You may have seen some BASIC programs
with Booleans and assumed that they were typos. Documentation on Boolean operators
is very skimpy in the Atari BASIC Manual. The following example will help clarify
their usage.

Assume that a variable called FLAG has a current value of 1.

FLAG = 1

To test the value of FLAG, you can use a BASIC statement such as:

IF FLAG =1 THEN 100

The Boolean test is true if FLAG equals one (1), so you do not need the "= I"
component.

IF FLAG THEN 100 is equivalent.

A.nother more practical use is to read the joystick. The STICK command returns a
value which depends upon the position of the joystick when the command is executed.

39

BOOT DISK FORMAT

You can use Boolean logic to read the STICK and to increment or decrement some other
value accordingly.

10 A = STICK(0)
20 B = B + [[A=6)+[A=7)+[A=5))-[[A=10)+[A=11)+[A=9))
30 C = C + [[A=10)+[A=14)+[A=6))-[[A=9)+[A=13)+[A=5))

Moving the stick down and right will give a value of 5 to A. In this case the values of B
and C will be:

B=B+(0+0+1)-(0+0+0)=B+1
C=C+(0+0+0)-(0+0+1)=C-1

In this case, B is left and right, and C is up and down. The cursor will be moved one to
the right (+1) and one down (-1).

BOOT DISK FORMAT - When you turn on your Atari computer with your disk
drive on line, the operating system looks for a BOOT DISK FORMAT. The OS looks for
the BOOT SECTORS and then for either an AUTORUN.SYS file or it goes to look for
the data called for in the BOOT SECTORS. The AUTORUN.SYS file may call in a
BASIC program to run. A BINARY LOAD file may be renamed AUTORUN.SYS and it
will boot automatically when it is present on a disk with DOS.SYS and the IN IT and
RUN addresses are appended.

BOOT ERROR - BOOT ERROR is the message you will get if you try to start up
your Atari system with your disk drive turned on and connected and either NO
DOS.SYS on the disk in the drive OR without a properly set up auto boot disk in the
drive. Most commercial games use an auto boot format. (See BOOT SECTORS.) One
other possibility is that your drive has been physically damaged by a fall and it is out of
alignment. If you suspect that this is the case, try to boot up a disk which you are sure
has a proper boot sector format. You can usually recover a DOS disk which gives a
BOOT ERROR by using the H option on the DOS menu. This will rebuild the boot sec­
tors and allow DOS to find the other files on the disk through the directory.

BOOT FILE - A BOOT FILE is a disk or cassette file which loads directly into
memory on power-up of your system. A BOOT FILE does not need DOS to begin load­
ing in as the routines are contained in the OS ROM to start loading. The BOOT FILE
does not need a directory entry as does a DOS file. You cannot copy a BOOT FILE with
DOS nor can you load in the file using the L option from DOS. See BOOT SECTORS for
a description of how the boot record is constructed.

BOOT SECTORS - DOS 2.0S uses three boot sectors. When the computer is turned
on (the disk drive must have been turned on previously) the first sector on the disk is
read and several bytes are sought. Byte 0 is a flag. A zero (0) in byte 0 means that this is
a boot file. Byte 1 contains the number of sectors to load. Bytes 2 and 3 contain the
address of the boot code. Bytes 4 and 5 are the initial address of the program to be
loaded. This can be anywhere except where a conflict with the Operating System may
occur. Byte 6 is a machine code to be executed after the boot is loaded. The OS contains

40

BOOT-UP PROCEDURE

the program to read these bytes so this instruction comes from the OS ROM. Since byte
1, the number of sectors to read, is limited to the range 0 to 255, only 255 X 128 bytes
(32K) can be booted from this boot program. This means that an additional program is
needed to load in longer code. After sector 1 is read, sectors 2 and 3 can be read giving
additional instructions on where to go to find the application program. On an Atari
DOS disk, sectors 2 and 3 contain information needed to go find and load the DOS. They
could be pointed to a game or a word processor.

SECTOR 0 BOOT RECORD

BYTE DESCRt PTION

o Flag-O= Boot file
1 Number of sectors to load for boot
2 LO address of place to start loading file in memory
3 HI address of place to start loading file in memory
4 LO address of initialization (SYSTEM RESET jumps here)
5 HI address of initialization

BOOT-UP PROCEDURE - The Atari computer initializes when you turn on the
power. The program coding for the initialization procedure is in the Operating System
ROM and cliln be called from software as well as by turning the power off and back
on again.

A RESET interrupt is started by bringing the RESET pin on the 6502 to a low state.
This causes control to go to the initialization subroutine. The RESET goes through
locations 65532 and 65533 ($FFFC and $FFFD) to the address of the subroutine (58487
of$E477). This is the start of the initialization code (finally). There are several ways to

41

BORDER

simulate turning the switch off and on to start a BOOT-UP. Usually though, you need it
when the program has crashed and you do not have the ability to enter data. To do
a BOOT-UP:

1. In BASIC, type? USR(58487)
2. In DUP.SYS, use M (run at address) and type E477 for the address
3. In Assembler/Editor, G E477

You can do a hard RESET by modifying your 800. This operation is only for real
hardware hackers. Atari originally planned for this reset switch, but it was never
implemented. Take your 800 apart and look at the motherboard. In the center of the
board you will find a row of resistors. The last one is marked R156. There are two empty
solder through-holes next to R156, and this is where the reset switch goes. Get a small
momentary switch and a 1/4 W 47 ohm resistor and put them in series across these two
empty holes. This is the hardware reset which will bring you out of any crash. All
memory will be wiped out, just as in a coldstart.

o 0

47 ohms switch

BO R D E R - The area around the playfield near the edge of the television screen is the
BORDER. The color of the BORDER is usually controlled by color register 4 in location
712 ($2C8). The BORDER is set to black upon power-up. Players and missiles cannot
move into the BORDER.

BOU N DARY - Some procedures require that all data remain within certain limits or
a discontinuity will exist. For example, the character set is contained in 1K of memory,
consisting of four pages of 256 bytes. The character set data must start on a 1K boundary
if it is a full 128 character set. This means that the high byte of the address for the
character set must end in a 0, 4, 8, or C. There is no low byte for the character set
address since a 1K boundary will not have any component in the 0 to 255 range (just
1024, 2048,).

BPUT - In BASIC XL, BPUT is used to output a specified number of bytes from a
specified address through an OPEN channel and device. The bytes which comprise the
screen memory can be saved to disk by using BPUT. The format for using BPUT is:

SPUT =IF iocb, addr, len

where =IF iocb is the OPEN channel, addr is the starting address in memory of the data,
and len is the length of the block to transfer.

42

BRANCH

BRAN C H - BRANCHing is the transfer of the program flow to another part of the
program based on the outcome of some test. In BASIC, IF and ON commands will
BRANCH to another line number if some condition (such as a Boolean operation) is
true. These are called conditional BRANCHes. GOSUB and GOTO send the program
to another line number under any condition and are called unconditional BRANCHes.

In machine language there are eight different branch instructions which can go for­
ward or backward in memory by a number of location steps. The BRANCH instruc­
tions are: BCC-Branch on Clear Carry; BCS-Branch on Carry Set; BEQ-Branch on
result EQual to zero; BMI-Branch on result MInus; BNE-Branch on result Not Equal
to zero; BPL-Branch on result PLus; BVe-Branch on oVerflow Clear and BVS-Branch
on oVerflow Set.

BREAK - Pressing the BREAK key interrupts the program being executed unless
the BREAK key has been specifically disabled. In a BASIC program, typing CONT
(RETURN) for CONTinue will usually resume operation unless the program has mod­
ified itself by deleting lines. The display screen will probably be disturbed by the STOP
and CONT messages. If no valuable data will be lost you can start over by typing RUN
to rerun the program. The following subroutine can be used to disable the BREAK key.
Several things will re-enable the BREAK after you do this once, so it is best to make
this routine a subroutine, and GOSUB to it often. A GRAPHICS command, OPENing a
S: or E: device, SYSTEM RESET, or PRINT to the Screen will require re-disabling.

o REM ** BREAK KEY DISABLE SUBROUTINE
2 REM ** USE BOSUB 32000
4 REM
32000 BRKDIS=PEEK(16)-128
32100 IF BRKDIS<O THEN RETURN
32200 POKE 16,BRKDIS
32300 POKE 53774,BRKDIS:RETURN

B U F FER - A section of memory used for temporary storage of data. The buffer can be
written to and read from. An external buffer can be used as a printer spooler. The
spooler is a device which will accept data headed for the printer. The spooler reads very
rapidly and can output at a rate nearer to the print speed 30 to 160 characters per
second. The computer can output characters at 1,920 characters per second.

BUG - The command in the Atari Assembler/Editor cartridge to enter the debug
mode is BUG. The response on the screen to the BUG command will be DEBUG at
which time you can begin tracing, stepping through, and testing the program.

43

BUGS

BUGS - A bug is an error in logic or structure of a program. The BASIC cartridge
and 10K Operating System cartridge are programs which reside in ROM and can only
be changed or debugged by changing the ROM chips. Atari, Inc. has provided a Revi­
sion B set of ROMs for the Operating System and the Rev. B corrects a few of the bugs.
The BASIC cartridge has a few known bugs which may affect your programming. A
new Revision C of the BASIC cartridge should fix most of these bugs.

1. LOG(0), CLOG(0), LOG(1), / and CLOG(1) will produce erroneous results.
Almost all higher level functions will produce an approximation only
because of the polynomial expansion algorithm in the floating point program.

2. The BASIC cartridge sometimes locks up during line editing.

3. A string of exactly 256 bytes will sometimes end up in a location not expected
if it is moved.

4. An INPUT without a variable does not return an error when interpreted.

5. PRINT X=NOT Y will surrender control of the keyboard (lockup!).

6. Loops with LPRINT commands cannot be interrupted by BREAK.

7. A blank is usually not a problem in Atari BASIC line except when placed
between a DIMmed variable and the parentheses containing the array
dimension.

8. Control-R and Control-U print out as a semicolon.

The OS has a few bugs. The most bothersome is the" going to sleep" problem found in
older machines with the Revision A OS chips. During disk input or output and printer
output, the system will often take a nap which lasts from five seconds up to many
minutes. It will then wake up and continue where it left off. Hitting the BREAK key will
often wake up the machine unless it has been disabled. Part or all of a printed line may
be reprinted when the computer wakes up.

Another bug involves the RS 232 handler and the DOS. Normally, output can be sent to
any output device: E:, D:, P:, S:, C:, or R:. For example, while using the DUP.SYS menu
part of the DOS, directories can be sen t to the screen or printer. The R: device should be
able to accept output also but a bug makes the DUP.SYS wipe out the RS 232 handler
when it is loaded. Therefore, no output to the R: device is possible from the DOS
menu.

44

BULLETIN BOARD

BU LLETI N BOARD - A revolution is sweeping the country because of the avail­
ability and low prices of computers and communications devices. BULLETIN BOARDs
are a major part of this revolution. A BULLETIN BOARD is a computer with a
BULLETIN BOARD program, auto-answer modem, and a telephone line. Many users
groups have set up BULLETIN BOARDs as a central exchange for ideas and public
domain software. Messages are typed in by callers and are stored on the BBS disk to be
read by one or all of the future callers. Other uses are for uploading or downloading
programB. Uploading involves sending a BASIC LISTed program to the BBS for others
to read or receive. Downloading involves taking a copy of the program through the
telephone line and modem and saving it on tape or disk at your own location. There are
over 1,000 BULLETIN BOARDs around the country and the number is growing fast.
One caution, turnover is high on the BULLETIN BOARD telephone numbers and if a
number is reassigned to an innocent non-computer person, many deep slumbers may
be broken by phone calls with only a high-pitched squeal on the calling end. Try to be
careful and verify your numbers. See AMODEM and AMIS.

BUSY LlG HT - The upper light on the Atari 810 disk drive is the BUSY LIGHT. The
light indicates that the motor is turning. A disk which is removed before the BUSY
LIGHT goes out can be damaged by not closing any open files or updating the VTOC. It
is also possible to scratch the recording media by removing a disk while the BUSY
LIGHT is on (but everybody does it anyway!).

BYE - This little used BASIC command sends you on a trip to the MEMO PAD mode
in which no processing can be done. SYSTEM RESET will return control to BASIC.
One use for the BYE and MEMO PAD mode is to use a screen dump utility, such as
Printwiz from Allen Macroware. Screens can be made up using the keyboard editor in
the MEMO PAD mode without getting ERROR messages. The Screen dump can then
be activated to print out the screen for a quick label maker.

BYTE - A single group of eight bits is a byte. The Atari computer memory is
organized as a series of bytes numbered from 0 to 65,535. Some of these locations will
not be useable, depending on the amount of RAM you have installed. Disecting a byte
we find eight bits traditionally designated DO through D7.

BYTE (BIHARY)

N l68lf (8INRR'()

OECIJ"IAL
tlDlDECIMAL

BYTE 156
100~ 1101

....... ,/ /
1001 1101

q 13
q D

- "-

45

\

,

BYTE

D7 D6 D5 D4 D3 D2 D1 DO

Each of the eight locations may contain a 1 or a o. If all the locations contained a 1 then
the byte would have a valueof255 (128+64+32+16+8+4+2+ 1). See the discussion of
BIT. When the value of a particular byte is displayed or printed, it appears as a hex­
adecimalpairofnumbers. The hexadecimal system has 16 digits-O, 1, 2, 3, 4, 5, 6, 7,8,9,
A, B, C, D, E and F. Each of these hex digits can be represented by four bits.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A number which is represented by FF in hexadecimal would be 11111111 in binary.
(Hexadecimal is traditionally preceded by a dollar sign.) Here are some more examples
of hex to binary conversions.

11111110
11110000
10001000
00010001

$FE
$FO
$88
$11

254
240
136
17

Each of the 65,536 bytes which makes up the memory of the Atari must have an address.
Conveniently, two bytes will serve as an address for each of the bytes. Since each byte
can have one of 256 values, two bytes will address 256 X 256 bytes or 65,636 bytes. A
two byte address is represented in a format such as FF FF. The leftmost part is called
the high byte or MSB (most significant byte). The rightmost byte is the the low byte or
LSB (least significant byte). To get the decimal value, the MSB must be multiplied by
256 and added to the LSB. This is commonly done to find the value of an address stored
in two locations. To find the value corresponding to the address of the start of the dis­
play list, for example, try DLiST = PEEK[5612l] + 256 * PEEK[561]. Unfortunately,
the values are usually stored LSB then MSB, but we read them MSB then LSB.

46

BYTE COUNT

BYTE COUNT - In the BASIC NOTE and POINT commands, the BYTE COUNT
determines the position of the pointer within a sector of a formatted disk. The BYTE
COUNT can range from 0 to 124.

c
C - C is a high level, structured programming language. Bell Laboratories produced
C and it is renowned for being the language in which the UNIX operating system is
written. Atari Program Exchange offers a C Compiler called Deep Blue C Compiler
which is an implementation of Small C. A text editor is required to produce source code.
Another C implementation is C/65 from OSS.

CABLE - CABLEs for printers and modems are a constant source of irritation and
frustration to computer users. A CABLE is used to allow electrical signals to flow from
your computer to another device such as a printer, modem, or monitor. Since most
brands of computers are different from each other, you will need a special CABLE for
your Atari computer. You will probably be too excited to take time to read your manual
thoroughly to find the information to make your CABLE. It is usually not obvious
exactly how to do it. Instead of paying $40 to $50, you can make one for about $10 (in
most cases). Just connect the pins from the 850 interface or 5 pin DIN socket to the cor­
rectly numbered pins on the printer or modem. Use an ohmmeter to be sure you have
continuity. Make sure to check your printer manual to be absolutely sure before you
make the connections, because you could do some damage if you connect the pins
incorrectly.

For Centronics interface (Epson, NEC, Okidata, Gemini, Prowriter) to the 850 parallel
port, use a 15 pin "D" connector or D15, such as a Canon DB-15-P or AMP 205-206-1
and twelve conductor wire (don't make it over six feet long or you can mess up the
signal timing), and an AMP Champ-36 connector or a 57 -3036036 pin connector to the
Epson. Connect pins as follows:

850 interface pins

1 2 3 4 5 6 7 8 11 12 13 15

EPSON MX 80, GEMINI and MOST CENTRONICS INTERFACE PRINTERS

1 2 3 4 5 6 7 8 16 32 11 9

NEC

1 2 3 4 5 6 7 8 14 32 11 9

For a Hayes SmartModem to the 850 interface, use the following connections. Note
that the modem connects to serial port :# 1 on the 850 and uses an 8 pin "D" connector

47

CALCULATION HIERARCHY

instead of the 15 pin as on the parallel port The important modem connections are the
signal in, signal out, and ground. Unless you are doing auto-answer or fancy "hand­
shaking," you can probably get started with these three pins alone.

850 INTERFACE HAYESSMARTMODEM ANCHOR MARK 7
pin fn. dir. pin fn. dir. pin fn. dir.
1 DTR (out)
2 CRX (in) 26
3 RXD (in) 2 TXD (out) 2 TXD (out)
4 TXD (out) 3 RXD (in) 3 RXD (in)
5 Signal Ground 7 GND 7 GND
6 DSR (in) 22
7 RTS (out) 25 CPC
8 CTS (in)

To connect a monitor to your 800 or 800XL, make up a cable using a 5 pin DIN plug
according to the following model. You will get the highest possible quality with this
arrangement. Note that there are two types of 5 pin DIN plugs. One type has the pins
arranged around a 180 degree arc. The other type spreads around 270 degrees. You
want the 180 degree type.

r---------RCA Plug

Audio Luminance
----+---------RCA Plug

Chroma -----,. --t---Composite Video
-----------RCA Plug

o Ground

DIN Jack looking AT the computer

You must run the ground to each of the RCA plugs. The ground is the bottommost pin
and all can be connected together. For an 800 XL, use the Composite video and the
Audio outputs and run them to the FRONT jacks of the Commodore 1701 or 1702 mon­
itor. The quality will not be as high as the separate chroma and luma set-up, but it will
be higher than a regular TV receiver. This is necessary because the chroma output is
not connected to the DIN jack.

CALCU LA TI 0 N HE I RARC HY - Operators within algebraic expressions in Atari
BASIC statements must be arranged or separated properly to give correct results.
Expressions arranged within parentheses are said to be "nested." Expressions within
the nested function are evaluated from left to right if all operators have the same prece­
dence (like + and -), otherwise a specific order is followed. The order of precedence for
the operators in algebraic statements is:

48

Relational operators such as <, >, =, <>, >=, <=
Minus sign (-)
Exponentiation (1\)
Multiplication and division (*,/)
Addition and subtraction (+,-)
Unary operator (NOT)
Binary operators (AND and OR)

How would you evaluate an expression like:

3 * 4 + 2

CAPS LOWR DISABLE

It could be 12 + 2 = 14 or 3 * 6 = 18. The rules above say that your computer would do
the multiplication first and then the addition, so 14 is correct.

CAPS LOWR DISAB LE - PO KE 702,64 prevents the accidental switch to lower
case characters. This is important as some programs will actually crash irrecoverably
with an input of a lower case character.

CARRY FLAG - The Processor Status Register of the 6502 processor is an eight bit
register with a series of flags. The flags contain values of 1 or 0 when certain conditions
are met. There are seven flags, and the rightmost one, bit 0, is the CARRY FLAG.

N = Negative
V = Overflow
* = Unused
B = Break Command
D = Decimal Mode
I = Interrupt Disable
Z = Zero
C = Carry

I Z C

The CARRY FLAG is set (the value is one) when the ACCUMULATOR has a value
greater than eight bits can hold (greater than 255). Two branches can be made when
the CARRY FLAG changes: BCC and BCS. BCC is a Branch on Carry Clear which will
branch to another part of memory when the CARRY FLAG is O. BCS will branch to
another part of memory when the CARRY FLAG is set to 1. The Assembler/Editor car­
tridge can be used to monitor the Processor Register Status in the TRACE mode.

CARTR I DG ES - The Atari 800 has two slots for plug-in ROM (Read Only Memory)
CARTRIDGEs. All other Atari computers have one slot. The ROM CARTRIDGEs con­
tain machine language programs which reside in memory. The left CARTRIDGE (Car­
tridge A) occupies 8K of memory between 40960 and 49151 ($AOOO to $BFFF). If no
CARTRIDGE is inserted, this memory is free for other use. The left slot is most often
used. The right slot uses memory between 32768 and 40959 ($8000 and $9FFF). A
single 16K CARTRIDGE can use this area in combination with the area for the left slot

49

CASSETTE BOOT FILE

by bank selecting the addresses from the left slot. This is the technique used by OS, Inc.
for BASIC XL. At the top end of the CARTRIDGE memory, there must be six bytes to
tell the OS where to jump and where the program loads. These six bytes define
four items:

ITEM

Run address
Cartridge-in byte
Cartridge option
Initialization address

DATA STORED AT LOCATIONS

LEFT CART

$BFFA,B (49146,7)
$BFFC (49148)
$BFFD (49149)
$BFFE,F (49150,1)

RIGHT CART

$9FF A,B (40954,5)
$9FFC (40956)
$9FFD (40957)
$9FFE (40958,9)

To jump into BASIC with the cartridge installed from DOS, for example, type M from
the DOS menu. For the address, type BFF9 < Return > which is the INIT address
contained in memory locations $BFFE and $BFFF on the CARTRIDGE. This is the
same as using the B option, or RUN CARTRIDGE from DOS.

CASSETTE BOOT FILE - This BOOT FILE is designed to load directly into
memory and to begin execution upon loading without any keyboard entries required. A
CASSETTE BOOT FILE is loaded by holding the START key while turning on the
computer.

CHAINING PROGRAMS - One BASIC program can be used to run another by
including a statement such as RUN"D: NEXTPROG.BAS" in the first program. When
the statement is executed, NEXTPROG.BAS will be LOADed and RUN and the
original program will be erased from memory.

CHARACTER GRAPHICS - The character set in the Atari computer is change­
able. A built-in set is available and is used by the system on start-up. See CHARAC­
TER SETS. The character set is used for graphics modes 0, 1, and 2. Although these
modes are often called text modes, character modes is more descriptive. The other
graphics modes can only display blocks or pixels. The character set can be redefined as
figures or objects and can even be changed during the program operation to achieve
animation. Many famous games such as Shamus by Synapse and Space Invaders by
Atari use constantly redefined characters for animation.

The operating system goes to a certain location in memory to look for the data to print a
character on the screen. The beginning address of the character set data is stored in
location 756 ($02F4). The normal start of the character set data is location 57344
($EOOO). Four pages (1K) of memory are required for a GR.O character set. Two pages
(512 bytes) are needed for GR.1 and GR.2 character sets because no lower case is used.
You can flip between character sets by POKEing CHBAS with the address of the new
set. Each character is comprised of eight bytes of eight bits each.

50

Memory location 756
Contents = EO-----,

'---~~ EOOO 00
Points to E001 06

CHARACTER SETS

Each character is comprised of 64 bits of information which tell every one of the pixels
in an 8 x 8 block whether to be on or off. The pointer in 756 points to the first byte ofthe
character set data and every eighth byte is the start of a new character. You can change
the memory to which the pointer points by POKEing location 756 with another number.
Try the following experiment in BASIC. Type PO KE 756.0. This will make the data in
page 0 become the character set data. The screen will be filled with some pattern which
is not the character set page 0 is used for the Operating System. Type the double quote
sign (") and see what happens. This character happens to be composed of some of the
memory locations which include the internal clocks (18,19 and 20). The character will
sparkle and blink. SYSTEM RESET will return the computer to normal.

To build your own characters you must reserve a part of RAM exclusively for your
character set The best way to do this is to find the top of free RAM and back it down a
few pages. The value of RAMTOP is stored in location 106. This is the location of the
first location of memory which is ROM of the Operating System. The memory for the
screen is directly below the top of RAM and the display list is directly below this. You
can find the address of this memory boundary and set the RAM TOP 1K lower to save
room for the new character set The easiest way to build the actual characters is to use a
commercial utility such as Instedit from APX. The following program will copy the
resident character set into an area below the normal RAM TOP. RAMTOP is actually
moved by the first line of the program.

100 RT=PEEK(106):POKE 106,RT-4:REM Look
at RAMTOP and reduce it by 4
110 GRAPHICS O:LET NEWSET=256*(RT-4):REM
Define NEWSET as address of new charact

ers
120 FOR x=o TO 1023:REM Start loop to co
py set
130 POKE NEWSET+X,PEEK(57344+X):REM Get
old characters
140 NEXT X:REM End loop
150 POKE 756,NEWSET/256:REM Point charac
ter pointer to new data

CHARACTER SETS - Custom character sets can be used on Atari computers.
Many high quality commercial games use redefined character sets to achieve high
speed, high resolution animation. Characters are made up of blocks of8X8 pixels. Each
line of pixels is represented by an eight bit byte. See De Re Atari, page 3-4, for a de­
scription of this format. A full character set is comprised of 256 characters, but half are
simply inverse characters of the lower half. The inverse video function is set by putting
a 1 in the high bit of the character byte. Since there are 128 unique characters and we
need eight bytes for each, a character set requires 8 X 128 or 1024 bytes. The built in

51

CHBAS

Atari character set is in ROM starting at page 224 ($EO). This corresponds to memory
location 57344 ($EOOO). A new set can be used by setting aside 1024 bytes of your own
memory, copying or modifying the Atari set into this area, and changing the pointer to
the set The pointer points to the high byte (page number) of the chatacter set. The
pointer is at 756 ($2F4). Insteditfrom APX, Graphics Generator (see The Next Step) by
Datasoft, and other utilities are available to help you design your own character sets.

CH BAS - This pointer is the CHaracter BASe register and it is located at memory
location 756 ($2F4). It contains the page number (high byte) of the start of the charac­
ter set data. On starting up the system, CHBAS contains a 224 ($EO) pointing to the
character set data from location 57344 on. Four pages (1024 bytes) are needed for a full
character set. This means you must reserve at least 1 K of memory for a new set and the
data must reside with 1K byte boundaries (that is, not spread over five pages).

C H E C KS U M - A CHECKSUM is a technique for error checking whereby a series of
numbers are added and the total compared against a known correct value. This is often
done to verify typing in published BASIC programs. The TYPO program used by Antic
Magazine uses a CHECKSUM technique. Tokenized values for a small range of line
numbers are added and compared against a those of a program which is known to run
correctly. The cassette recorder uses a checksum byte which is the sum of all of the
bytes in a record. This byte is recorded on the tape and it is calculated by the computer
when data are received. If the two sums are different an error is generated. The error
may come from defective tape, noise or hardware malfunction.

CHI P - CHIP is an informal way of referring to an integrated circuit such as a micro­
processor. The6502 is a CHIP. The actual CHIP is a small slab of silicon which has been
processed to facilitate very tiny electrical devices on the surface. The devices process
data by retrieving, shifting, and sending signals out to other chips. RAM, ROM,
EPROMs, EAROMs, POKEY, ANTIC, and PIA are all CHIPs. The devices are actually
very delicate and sensitive to the environment and they must be packaged in a sturdy
housing. The familiar black plastic packages with metallic leads (similar to a cen­
tipede) are called Dual Inline Packages or DIPs. A tip for those with a computer
malfunction is to open up your system and examine every CHIP. Sometimes they work
loose from their sockets and cause trouble. If a CHIP is not seated firmly in its socket,
press it firmly back into place.

52

CHR$

CHR$ - This BASIC command is used to send an ATASCII character to a device
(screen, printer, etc.) when the equivalent decimal value is given. Do not forget to add
the dollar sign ($) to the CHR. If you do forget, your BASIC program will just be using
another variable. This common error is very difficult to track down. To see what the
uppercase letter set looks like, RUN the following program:

10 FOR X=65 TO 90: PRINT CHR$(XJ : NEXT X

Type in the program and then type RUN.

CHR$(125) - The "CLEAR SCREEN" symbol is an inverse upward-left curving
arrow in double quotes and it is often printed out as a bracket on many printers. A
clearer way of including a CLEAR SCREEN command in your BASIC program is
to substitute:

PRINT CHR$(125J;

for the Escape Shift-Clear key sequence.

CIO - Central Input/Output. The CIO is the routine contained in the Operating Sys­
tem which sends all input and ouput data to the correct device handler and then gives
control to the HANDLER. This involves control ofthe computer at the very lowestlevel
such as reading a key from the keyboard, finding a character for the key, and sending it
to the monitor or screen for presentation to your eye (and brain).

CLEAR - In Microsoft BASIC II, CLEAR resets all variables, arrays, and strings.
This is the same as the CLR function in Atari BASIC.

CLEAR DECI MAL FLAG - One of the most frustrating bugs a programmer runs
into is the CLEAR the DECIMAL FLAG bug. The 6502 Processor Status Register has
seven flags. One of them is the DECIMAL FLAG. When you are doing arithmetic in
binary (or hexadecimal), you are in the HEX mode. When you are doing floating point
arithmetic in BASIC, you are in the decimal mode (the flag is set or D=l). If you have a
machine language routine in a BASIC program, and the machine language program
must do arithmetic, and it expects HEX numbers, your program will crash - some­
times. The best way to prevent this is to start your ML routine off with a CLD instruc­
tion to CLEAR the DECIMAL mode FLAG.

CLEAR SCREEN BEFORE NEXT PRINT STATEMENT - POKE 87,1 will
CLEAR THE SCREEN BEFORE the NEXT PRINT STATEMENT is executed.

CLEAR STAC K - In Microsoft BASIC II, CLEAR STACK resets all time dependent
entries, such as AFTER.

CLOAD - CLOAD will transfer a CSAVEd BASIC program from cassette tape into
the BASIC free memory area. A LISTed program will not work with CLOAD.

53

CLOG

CLOG - CLOG returns the log base 10 of the argument in parentheses.

EXAMPLE: PRINT CLOG(100) will print a 2.

CLOSE (CL.) - CLOSE is the command to close an IOCB which has been OPENed
for input or output by a previous statement. If you try to OPEN a particular channel
which is already OPENed, you will get an error message. The format to CLOSE an
IOCB is simply: CLOSE =#= X, where X is the OPENed IOCB. An END statement
CLOSEs all OPENed channels.

CLR - The CLR command in BASIC does not clear the screen. It is used to clear the
values of all numeric variables. It also frees up the memory used by DIMensioning strings
and arrays. The names of the variables remain in the VARIABLE NAME TABLE.
CLR also executes a RESTORE command which sets the pointer to the DATA state­
ments to the beginning.

COARSE SCROLL! NG - COARSE SCROLLING is the movement of data across
the screen by shifting it one byte at a time. By adding or su btracting 1 from the address
specified in the Load Memory Scan instruction in the display list, the screen data will
move horizontally or vertically one character or byte at a time. This contrasts with
smooth scrolling where the image is moved one bit at a time. Horizontal and vertical
scroll enable registers must be enabled for smooth or fine scrolling.

CODE - CODE is the program which comprises a software package. CODE is com­
puter jargon for the program written in some non-English language.

CODE (verb) - To CODE a program is to write it in computer language.

CODE CONVERSIONS - The following table is used to convert decimal to hex­
adecimal or binary. Also included are the keying sequences to produce the character
which represents the value. The assembler instructions for all addressing modes of the
6502 processor are also included. This table is a valuable reference tool for machine
language programming and for examining and changing register values. The lower
case c means CTRL, the s means SHIFT, and the hyphen (-) indicates an inverse
character generated by the ATARI (FUJI) symbol key. The e indicates an ESCAPE
key sequence.

DEC HEX

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

CODE CONVERSION TABLE

BINARY

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111

KEY

c,
cA
cB
cC
cD
cE
cF
cG

54

Assembler

BRK
ORA ind X

ORAOpg
ASLOpg

CODE CONVERSIONS

DEC HEX BINARY KEY Assembler

8 8 00001000 cH PHP
9 9 00001001 cI ORAimm
10 A 00001010 cJ ASL ace
11 B 00001011 cK
12 C 00001100 cL
13 D 00001101 cM ORA abs
14 E 00001110 cN ASL abs
15 F 00001111 cO
16 10 00010000 cP BPL reI
17 11 00010001 cQ ORA ind Y
18 12 00010010 cR
19 13 00010011 cS
20 14 00010100 cT
21 15 00010101 cD ORAOpgX
22 16 00010110 cV ASLOpgX
23 17 00010111 cW
24 18 00011000 cX CLC
25 19 00011001 cY ORA absY
26 lA 00011010 cZ
27 IB 00011011 ee
28 lC 00011100 ec-
29 ID 00011101 ec= ORA abs X
30 IE 00011110 ec+ ASL abs X
31 IF 00011111 ec·
32 20 00100000 SPA JSR abs
33 21 00100001 AND ind X
34 22 00100010 "
35 23 00100011 :#

36 24 00100100 $ BITOpg
37 25 00100101 % ANDOpg
38 26 00100110 & ROLOpg
39 27 00100111
40 28 00101000 (PLP
41 29 00101001) ANDimm
42 2A 00101010 • ROL ace
43 2B 00101011 +
44 2C 00101100 BIT abs
45 2D 00101101 AND abs
46 2E 00101110 ROL abs
47 2F 00101111 /
48 30 00110000 0 BMI reI
49 31 00110001 1 AND ind Y
50 32 00110010 2
51 33 00110011 3
52 34 00110100 4
53 35 00110101 5 ANDOpgX
54 36 00110110 6 ROLOpgX

55

CODE CONVERSIONS

DEC HEX BINARY KEY Assembler

55 37 00110111 7
56 38 00111000 8 SEC
57 39 00111001 9 AND absY
58 3A 00111010
59 3B 00111011 ,
60 3C 00111100 <
61 3D 00111101 AND absX
62 3E 00111110 > ROL abs X
63 3F 00111111 ?
64 40 01000000 @ RTI
65 41 01000001 A EORindX
66 42 01000010 B
67 43 01000011 C
68 44 01000100 D
69 45 01000101 E EOROpg
70 46 01000110 F LSROpg
71 47 01000111 G
72 48 01001000 H PHA
73 49 01001001 I EORimm
74 4A 01001010 J LSR ace
75 4B 01001011 K
76 4C 01001100 L JMP abs
77 4D 01001101 M EOR abs
78 4E 01001110 N LSR abs
79 4F 01001111 0
80 50 01010000 P BVC reI
81 51 01010001 Q EOR ind Y
82 52 01010010 R
83 53 01010011 S
84 54 01010100 T
85 55 01010101 U EOROpgX
86 56 01010110 V LSR OpgX
87 57 01010111 W
88 58 01011000 X CLI
89 59 01011001 Y EOR abs Y
90 5A 01011010 Z
91 5B 01011011 s,
92 5C 01011100 s+
93 5D 01011101 s. EOR abs X
94 5E 01011110 s* LSR abs X
95 5F 01011111 s-
96 60 01100000 c. RTS
97 61 01100001 a ADC ind X
98 62 01100010 b
99 63 01100011 c
100 64 01100100 d
101 65 01100101 e ADCOpg

56

CODE CONVERSIONS

DEC HEX BINARY KEY Assembler

102 66 01100110 f ROROpg
103 67 01100111 g
104 68 01101000 h PLA
105 69 01101001 ADCimm
106 6A 01101010 j ROR ace
107 6B 01101011 k
108 6C 01101100 I JMP ind
109 6D 01101101 m ADC abs
110 6E 01101110 n ROR abs
111 6F 01101111 0

112 70 01110000 p BVS reI
113 71 01110001 q ADC ind Y
114 72 01110010 r
115 73 01110011 s
116 74 01110100 t
117 75 01110101 u ADCOpgX
118 76 01110110 v ROROpgX
119 77 01110111 w
120 78 01111000 x SEI
121 79 01111001 Y ADC abs Y
122 7A 01111010 z
123 7B 01111011 c;
124 7C 01111100 s=
125 7D 01111101 es< ADC absX
126 7E 01111110 eBS ROR abs X
127 7F 01111111 eTAB
128 80 10000000 -c,
129 81 10000001 -cA STA ind X
130 82 10000010 -cB
131 83 10000011 -cC
132 84 10000100 -cD STYOpg
133 85 10000101 -cE STAOpg
134 86 10000110 -cF STXOpg
135 87 10000111 -cG
136 88 10001000 -cH DEY
137 89 10001001 -cI
138 8A 10001010 -cJ TXA
139 8B 10001011 -cK
140 8C 10001100 -cL STY abs
141 8D 10001101 -cM STA abs
142 8E 10001110 -cN STX abs
143 8F 10001111 -cO
144 90 10010000 -cP BCC reI
145 91 10010001 -cQ STA ind Y
146 92 10010010 -cR
147 93 10010011 -cS
148 94 10010100 -cT STYOpgX

57

CODE CONVERSIONS

DEC HEX BINARY KEY Assembler

149 95 10010101 -cU STAOpgX
150 96 10010110 -cV STXOpgY
151 97 10010111 -cW
152 98 10011000 -eX TYA
153 99 10011001 -cY STA abs Y
154 9A 10011010 -cZ TXS
155 9B 10011011 RET
156 9C 10011100 esBS
157 9D 10011101 es> STA abs X
158 9E 10011110 ecTAB
159 9F 10011111 esTAB
160 AO 10100000 -SPA LDYimm
161 Al 10100001 -! LDA ind X
162 A2 10100010 " LDXimm
163 A3 10100011 -#
164 A4 10100100 -$ LDYOpg
165 A5 10100101 -% LDAOpg
166 A6 10100110 -& LDXOpg
167 A7 10100111
168 A8 10101000 -(TAY
169 A9 10101001 -) LDAimm
170 AA 10101010 * TAX
171 AB 10101011 -+
172 AC 10101100 LDYabs
173 AD 10101101 LDA abs
174 AE 10101110 LDX abs
175 AF 10101111 -/
176 BO 10110000 -0 BCS reI
177 B1 10110001 -1 LDA ind Y
178 B2 10110010 -2
179 B3 10110011 -3
180 B4 10110100 -4 LDYOpgX
181 B5 10110101 -5 LDAOpgX
182 B6 10110110 -6 LDXOpgY
183 B7 10110111 -7
184 B8 10111000 -8 CLV
185 B9 10111001 -9 LDA abs Y
186 BA 10111010 TSX
187 BB 10111011 ,
188 BC 10111100 -< LDYabsX
189 BD 10111101 -- LDA absX
190 BE 10111110 -> LDX abs Y
191 BF 10111111 -1
192 CO 11000000 -@ CPYimm
193 C1 11000001 -A CMP ind X
194 C2 11000010 -B
195 C3 11000011 -C

58

CODE CONVERSIONS

DEC HEX BINARY KEY Assembler -- --
196 C4 11000100 -D CPYOpg
197 C5 11000101 -E CMPOpg
198 C6 11000110 -F DECOpg
199 C7 11000111 -G
200 C8 11001000 -H INY
201 C9 11001001 -I CMPimm
202 CA 11001010 -J DEX
203 CB 11001011 -K
204 CC 11001100 -L CPYabs
205 CD 11001101 -M CMP abs
206 CE 11001110 -N DEC abs
207 CF 11001111 -0
208 DO 11010000 -P BNE reI
209 D1 11010001 -Q CMP ind Y
210 D2 11010010 -R
211 D3 11010011 -S
212 D4 11010100 -T
213 D5 11010101 -u CMPOpgX
214 D6 11010110 -V DECOpgX
215 D7 11010111 -w
216 D8 11011000 -X CLD
217 D9 11011001 -Y CMP abs Y
218 DA 11011010 -z
219 DB 11011011 -8,

220 DC 11011100 -8+

221 DD 11011101 -8. CMP abs X
222 DE 11011110 -8· DEC abs X
223 DF 11011111 -8-

224 EO 11100000 -c. CPXimm
225 E1 11100001 -a SBC ind X
226 E2 11100010 -b
227 E3 11100011 -c
228 E4 11100100 -d CPXOpg
229 E5 11100101 -e SBCOpg
230 E6 11100110 -f INCOpg
231 E7 11100111 -g
232 E8 11101000 -h INX
233 E9 11101001 -i SBCimm
234 EA 11101010 -J NOP
235 EB 11101011 -k
236 EC 11101100 -I CPX abs
237 ED 11101101 -m SBC abs
238 EE 11101110 -n INC abs
239 EF 11101111 -0

240 FO 11110000 -p BEQ reI
241 F1 11110001 -q SBC ind Y
242 F2 11110010 -r

59

COLD START

DEC HEX

243 F3
244 F4
245 F5
246 F6
247 F7
248 F8
249 F9
250 FA
251 FB
252 FC
253 FD
254 FE
255 FF

BINARY

11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

KEY

-s
-t
-u
-v
-w
-x
-y
-z
-c;
-s=
ec2
ecBS
ec>

Assembler

SBCOpgX
INCOpgX

SED
SBC abs Y

SBC abs X
INC abs X

Based on article in San Diego ACE Newsletter, June 1982 by Ron Miller.

COLDSTART - A COLDSTART is just like turning on the computer for the first
time. This can be done while the system is operating by jumping to memory location
58487 ($E477) by a? USR(58487) from BASIC, or using the M option in DOS and typ­
ing E4 77<Return>. The Operating System is initialized and any program in memory
is lost and any AUTORUN.SYS program on the disk will be booted in. A warmstart is
like pushing the SYSTEM RESET button and does not wipe out the program in
memory. The OS is initailized. A warmstart is entered at 58484 ($$E474).

Another way to do a COLDSTART is to PO K E 580.1 and press SYSTEM RESET. You
could put this at the beginning of your BASIC program and prevent listing of the file.
You must also disable the BREAK KEY to prevent BREAKing and LISTing.

Still another way to do a COLDSTART is to yank on the 6502 RESET pin. The
hardware is in place on the Atari 800. See BOOT-UP for the COLDSTART switch
installation procedure. This modification requires soldering and drilling on your
computer.

COLLISIONS - Players and Missiles - One of the most important things that a
good shoot' em up space game must do is react quickly and accurately to the joystick
trigger. When you shoot a missile from your space ship you expect to see the appro­
priate explosion and consequent destruction (when you are on target). This is the job of
the COLLISION REGISTERS. There are 15 registers used for detecting up to 54 com­
binations of collisions. Everytime a player or missile touches a playfield or each other,
one of the registers will be set. By reading the registers and checking the contents,
some other activity can be started (such as an explosion). Location 53278 is used to
clear all of the collision registers. See COLLISION REGISTER.

COLLISION REGISTER- A COLLISION is an event in which a player, missile, or
playfield overlap or collide. The Atari computer uses hardware registers to monitor
collisions. The COLLISION REGISTERs are located between 53249 and 53259 ($DOOI

60

COLLISION REGISTER

and $DOOB) in system memory. By checking the contents of the register, your program
can tell exactly what kind of collision has occurred. These registers are used in the
READ mode for collisions. For writing, they are used as horizontal position registers.

Location

53248 $DOOO

53249 $D001

53250 $D002

53251 $D003

53252 $D004

53253 $D005

53254 $D006

53255 $D007

53256 $D008

53257 $D009

COLLISION REGISTER USAGE

Collision

Missile 0 to Playfield 0
Missile 0 to Playfield 1
Missile 0 to Playfield 2
Missile 0 to Playfield 3
Missile 1 to Playfield 0
Missile 1 to Playfield 1
Missile 1 to Playfield 2
Missile 1 to Playfield 3
Missile 2 to Playfield 0
Missile 2 to Playfield 1
Missile 2 to Playfield 2
Missile 2 to Playfield 3
Missile 3 to Playfield 0
Missile 3 to Playfield 1
Missile 3 to Playfield 2
Missile 3 to Playfield 3
Player 0 to Playfield 0
Player 0 to Playfield 1
Player 0 to Playfield 2
Player 0 to Playfield 3
Player 1 to Playfield 0
Player 1 to Playfield 1
Player 1 to Playfield 2
Player 1 to Playfield 3
Player 2 to Playfield 0
Player 2 to Playfield 1
Player 2 to Playfield 2
Player 2 to Playfield 3
Player 3 to Playfield 0
Player 3 to Playfield 1
Player 3 to Playfield 2
Player 3 to Playfield 3
Missile 0 to Player 0
Missile 0 to Player 1
Missile 0 to Player 2
Missile 0 to Player 3
Missile 1 to Player 0
Missile 1 to Player 1
Missile 1 to Player 2
Missile 1 to Player 3

61

Register Value

1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8

COLLISION REGISTER

Location Collision Register Value

53258 $DOOA Missile 2 to Player 0 1
Missile 2 to Player 1 2
Missile 2 to Player 2 4
Missile 2 to Player 3 8

53259 $DOOB Missile 3 to Player 0 1
Missile 3 to Player 1 2
Missile 3 to Player 2 4
Missile 3 to Player 3 8

53260 $DOOC Player 0 to Player 0 1
Player 0 to Player 1 2
Player 0 to Player 2 4
Player 0 to Player '3 8

53261 $DOOD Player 1 to Player 0 1
Player 1 to Player 1 2
Player 1 to Player 2 4
Player 1 to Player 3 8

53262 $DOOE Player 2 to Player 0 1
Player 2 to Player 1 2
Player 2 to Player 2 4
Player 2 to Player 3 8

53263 $DOOF Player 3 to Player 0 1
Player 3 to Player 1 2
Player 3 to Player 2 4
Player 3 to Player 3 8

62

COLOR

COLOR - The value following COLOR (in the BASIC command) sets up the color
register for use in the next DRA WTO or PLOT command. You must use a COLOR
statement. Ifnot, the PLOTting and DRAWingTO will be done in the background color
and will not be visible. This is IMPORTANT! The color registers for playfields are
located between 708 and 712 ($2CA and $2C8). In non-graphics (text) modes 0,1 and 2,
the COLOR statement plots characters from the data in the color registers in the XY
position specified by a PLOT statement Registers use different numbers for COLOR
for different graphics modes.

COLOR REGISTER NUMBER

0 1 2 3 4

LOCATION (dec.) 708 709 710 711 712

GR. Modes

3, 5 & 7 1 2 3 0
4, 6 1 0
0, 8 (LUM.only) 1 0
1, 2 Color of

L.C. chars
10 (704=BCKGRND) 0

NUMBER TO BE USED IN COLOR STATEMENTS
FOR DIFFERENT GRAPHICS MODES

CO LO R C LOC K - The Atari computer chip set uses the NTSC (N ational Television
Standards Committee) standard color modulation frequency to generate all master
timing. This frequency is 3.579545 (5 X 63/88) Megahertz. The period of this frequency
is 280 nanoseconds. The Atari computer uses 228 of these cycles, or COLOR CLOCKS,
to generate one horizontal line in the wide playfield mode. In the standard width
playfield only 160 COLOR CLOCKS are visible. In GR.8 there are two pixels per
COLOR CLOCK.

COLOR REGISTERS - There are nine COLOR REGISTERs for Atari computers.
COLOR REGISTERs are memory locations which accept tint and brightness values
and indirectly (but very quickly) change the player, playfield, or background of the
screen. The COLOR REGISTERs are actually in GTIA hardware starting at location
$DOI2 but the are changed by writing to the "shadows" at 704 through 712 ($2CO
through $2C8). (See COLOR and SETCOLOR). The following chart describes the
COLOR REGISTERs.

63

COLOR REGISTERS

OBJECT

PLAYER 0
PLAYER 1
PLAYER 2
PLAYER 3
PLAYFIELDO
PLAYFIELD 1
PLAYFIELD2
PLAYFIELD3
BACKGROUND

COLOR REGISTER SHADOWS

ADDRESS BASIC COMMAND to set the color

704
705
706
707
708
709
710
711
712

SETCOLOR 0 UPPER CASE IN GR.1&2
SETCOLOR 1 ALSO LOWER CASE IN GR.1&2
SET COLOR 2 ALSO INVERSE/UPPER CASE
SETCOLOR 3 ALSO INVERSE/LOWER CASE
SETCOLOR 4 BORDER

Colors numbered for 0 to 15 can be put into the register shadows listed above. Lumi­
nancevalues from 0 to 14 (even numbers only) can be added to the color values. This is
done in BASIC through the SETCOLOR command. The COLOR command uses the
color and luminance of the register to PLOT or DRA WTO in graphics modes.

COLOR REGISTER INDIRECTION - INDIRECTION is the term for the ability
of the hardware to control the color, position, character set data, etc., by simply chang­
ing the value of one byte in one register (see REGISTER). The COLOR REGISTER is
like a switch or control box which determines the color of all the screen data in a par­
ticular playfield. This is much easier and faster than changing all of the individual pixels
or bits which represent the information in that screen data.

COLUMN - The characters on the television or monitor screen are arranged in
COLUMN s and rows. There are 40 COLUMNs across the screen. The Atari computer
is set up to start writing in the second COLUMN giving, in effect, a 38 COLUMN wide
screen. To widen the screen to a full 40 COLUMNs, type in POKE 82.0. Memory loca­
tion 82 holds the number of the starting COLUMN. Location 83 holds the data for the
right-hand COLUMN limit.

COM - Undocumented BASIC command which works just like DIM.

COMMAND - A COMMAND is a statement in BASIC which performs some
function.

COM MON - In Microsoft BASIC II, COMMON allows you to keep variable names
and values the same in two different programs. COMMON works like DIM except the
Variable Name Table is apparently maintained when another program is loaded in.

COMPILER - A COMPILER is a program which takes a high level language pro­
gram, such as a BASIC program, and converts it through a series of steps to a machine
language program. A machine language program is written so that the central micro­
processor receives instructions directly. It is just a series of characters which look
unintelligible to the novice, but which actually contains very simple and specific
instructions for accomplishing some task. COMPILERS often take three orfourpasses
through a program in order to completely compile the source program into machine

64

COMPOSITE VIDEO

language. An additional program called a "run time package" is added to the original
program during compilation to provide some additional instructions for the micro­
processor. This will increase the length of short BASIC programs substantially. The
benefit of a COMPILER is that the program can be written in BASIC, and it will run
much faster, up to 100 times faster in some cases. Not every BASIC program can be
compiled. Special care must be taken during programming to make the program as
simple as possible.

COM POSITE VI DEO - The signal which comes out of the 5 pin DIN plug on the
Atari 800 is a COMPOSITE VIDEO. The COMPOSITE VIDEO signal contains the sum
of the horizontal sync signal, the vertical sync signal, the luminance signal, and the
color carrier (3.58 Megahertz, phase modulated). This signal is also added to the audio
carrier (4.5 Megahertz, frequency modulated) which is used to modulate the amplitude
of a radio frequency carrier at approximately 60 Megahertz (channel 2 or 3 on your TV)
and is sent out the rear cable of the Atari computer to the antenna inputs on your home
TV receiver. See CABLES for a diagram showing how to connect a monitor to your
computer.

COM PUTE! BOOKS - A division of COMPUTE! magazine, Small System Services,
Inc. publishes some useful books for Atari users. Some of the books are reprints of
articles from COMPUTE! magazine, while others are new and unpublished material.
Some of the current books in print are:

Inside Atari DOS. Bill Wilkinson. Source listing of the Atari DOS with useful com­
ments. Not for beginners.

COMPUTE/'s First Book of Atari. Mostly reprints. 1981

COMPUTE/'s First Book of Atari Graphics. New Material. 1982

COMPUTE/'s Second Book of Atari. New material. 1982

Mapping theAtari by Ian Chadwick. This is by far the best memory map of the Atari
computer. Locations are discussed in numerical order from the bottom of the OS RAM
to the top.

BASIC Source Book by Bill Wilkinson. Source code listing of Atari BASIC.

COM PUTE! - Compute! Magazine often prints fairly substantial programs and
articles about the Atari computers. Unfortunately, the space must be shared with
Commodore and Apple computers. Back issues make excellent references to problems
or undocumented items. Prior to 1982, Compute! had an entire section dedicated to
Atari. Now, articles from all computers are mixed throughout the magazine.

CONCATENATE - Strings can be joined together to make a longer string by CON­
CATENATION. In order to CONCATENATE, you must find the length of the first
string by using a LEN statement and add the next string to the place one element
beyond the length of the old string. A string can be up to 32,767 characters long. By

65

CONDITIONAL BRANCH

CONCATENATEing strings, one can build long machine language programs and
place them in memory. By jumping to the beginning address of the string, the program
can be run. Here is an example of CONCATENATION.

10 DIM FIRST$(10),SECOND$(5)
20 FIRST$="HOWDY"
30 SECOND$="DOODY"
40 FIRST$(LEN(FIRST$)+l)=SECOND$
50 PRINT FIRST$

The second string, "DOODY", was CONCATENATEd onto the first string, creating
a ten byte string, "HOWDYDOODY".

To CONCATENATE a machine language program or a BASIC LISTed program to
another, use the C option in DOS 2. After typing C < return>, type the filespec of the
program you want to append, a comma, the name of the program you want to append
to, and then / A.

C <Return>
COPY-FROM. TO?
FILESPEC.APPENDEEIA < Return>

This will append FILESPEC to the program called APPEND EE. Do not try to append
BASIC SAVEd programs or the Variable Table will be placed in the middle of the file
and will not be readable.

CONDITIONAL BRANCH - There are two types of CONDITIONAL BRANCHES
in ATARI BASIC, IF/THEN and ON-GOSUB. A CONDITIONAL BRANCH will send
the program pointer to another line number depending on the value of a named vari­
able. IF/THEN statements can be used to branch if a variable has certain values. A
GOTO is implied after each IF/THEN statement and therefore does not need to be
stated.

CONSOLE KEYS - The OPTION, SELECT, and START keys are hardware con­
trols for special user input. The way the CONSOLE KEY works is that the program
must be sent to a special hardware register to see if a key is being pressed. You cannot
store a pressed console key. It must be depressed while the program is looking at it. The
location of this register is 53279 ($DOIF). The three rightmost bits (DO to D2) are reset
while a key is pressed. Bit DO is reset to 0 while the START key is pressed. Bit Dl is
reset while SELECT is pressed. Bit D2 is reset while OPTION is pressed.

LOCATION 53279

BIT DO
BITDl
BITD2

CONSOLE KEY

START
SELECT
OPTION

66

CONSTANT

CONSTANT - A CONSTANT is a number or group ofletters used in a program and
which do not change during the program. N umbers used in a program such as 1,2,3,10,
20000, etc. are CONSTANTs. Strings ofletters such as "TEST", "stringsample", etc.
are CONSTANTs if they are not assigned as values to a variable name. Each CON­
STANT requires six bytes of memory in Atari BASIC plus one for an identification
regardless of the magnitude of the number. Every time the CONSTANT is used it
requires another seven bytes. For this reason you can save memory by assigning the
value of the CONSTANT to a variable, such as, Xl =1, and using Xl instead of 1. Each
recurrent use of Xl will take only 1 byte instead of 7 . CONSTANTs cannot have a value
greater than 32,767.

Atari Microsoft BASIC uses two bytes for each CONSTANT in single precision mode.
You can specify a double precision mode by putting a D at the end of the mantissa,
before the exponent. Double precision CONSTANTs are stored in eight bytes and are
accurate to 16 decimal places.

CO NT - A program which has been stopped due to a BREAK key or a programming
error can be restarted on the next line following the stoppage by typing CONT (while in
the immediate mode). The address of the next line number in the program is stored in
an area of memory called the "run time stack." After a BREAK or error, the CONT
command will find the address of the next line number and begin execution at that line.
If the halt occured in a line with multiple statements, none of the statements after the
stoppage will be executed.

CONTROL BYTE - In a cassette record, the CONTROL BYTE is the third of the
132 byte record. It must have one of three values: $F A, $FC, or $FE. The $F A byte
means that the record is the last one in the file and is followed by 128 zeros. The $FC
byte simply signals that the record contains a full 128 data bytes. A$FE means that the
record is partially full and that the number of bytes in the record can be found in the
next to the last byte of the record.

CASSETTE FILE STRUCTURE

MARKER 1

MARKER 2

CONTROL BYTE

DATA
128

BYTES

NUMBER OF BYTES
IF PARTIALLY FILLED

CHECKSUM BYTE

67

CONTROL CHARACTERS - PRINT ONLY

CONTROL CHARACTERS· PRINT ONLY - To use the control characters as
characters only (not to perform their editing functions) , POKE 766,1.

COPY PROTECTION - Most commercially available programs for the Atari com­
puter are COpy PROTECTED. This usually involves writing the disk in such a way
that an Atari 810 disk drive cannot reproduce all of the data (exactly). Experience with
other microcomputer systems has demonstrated that COpy PROTECTION techniques
change constantly, evolving as those enthusiasts inclined to circumvent the protection
schemes become more experienced. There is probably no end to the competition.

CP/M - CP/M (Control Program for Microcomputers) is an operating system for
microcomputers built around the80 series (ZSO or8080) microprocessor. CP/M handles
disk reading and writing and is a standard used by many software manufacturers. The
fact that CP/M was the first widely distributed standard disk operating system has
made it into one of the most supported systems for microcomputers (at least until the
IBM PC came along). There are over 10,000 public domain programs available in CP/M
format. A huge number of commercial business software packages use CP/M. Although
graphics is supported in the newer versions, very little graphics oriented software is
available and the quality is not even close to the high speed and resolution of the
Atari computer.

Atari has announced a CP/M hardware addition. The addition is essentially another
computer based on the Z80 microprocessor. The console and keyboard of the Atari
computer will be used basically as a terminal to access the CP/M computer. Additional
hardware options to give CP/M compatibility are the ATR-8000 by SWP, MF-1681 by
MicroMainframe, and the Critical Connection by USS Enterprises of San Jose, CA.

C PI- Characters Per Inch. Standard single spacing on typwriters and line printers is
10 CPr. Dot matrix printers often use a condensed mode of 16.7 CPI to include more
information in a small space. Double width printing expands the character so that only
five CPI are produced. Some printers are capable of proportional spacing in which the
number of CPI varies to fill an entire line with evenly spaced words and characters.
Proportional spacing is more attractive to the reader as there are no large gaps bet­
ween words when the right hand margin of the page is aligned (right justified).

CPS - Characters Per Second. Although the data rate for output from the Atari com­
puter can be up to 2,000 CPS, most printers operate at less than 200 CPS. The newer
model printers are capable of a speedy 160 CPS. Daisy wheel printers, especially the
lower cost types, operate at around eight CPS which translates to about five minutes
per double spaced page. Speed is a serious consideration for someone trying to use a
printerfor business or literary work. A more expensive daisy wheel printer will work at
35 to 45 CPS and is worth the extra cost to a heavy user. (See BUFFER.)

CPU - Central Processing Unit. The 6502 microprocessor is the CPU for the Atari
computer. This device is one of a family of similar microprocessors developed by MOS
Technology, Inc. The Atari 810 disk drive contains a CPU called the 6507 which is a
member of the same family as the 6502. The Apple] [and Commodore PET are built

68

CR

around similar CPU's. The 6502 processor is a byte oriented processor and data comes
in, goes out, and is processed in a path consisting of eight parallel lines. This makes it
an eight bit processor.

CR - The CR symbol is the ASCII name for carriage return. A CTRL-M will generate
this character (which is often useful when connected to a bulletin board system via a
modem). A distinction must be made between the CR and the character generated
when the RETURN key is pressed. RETURN generates an ATASCII 155 (an End-Of­
Line character) which is interpreted as a carriage return and a line feed. This resets the
cursor to the first column and moves it down to the next line.

C RC - Cyclical Redundancy Check. A CRC is a checksum. This means that incoming
data (usually from a floppy disk) is added up and the sum is compared against a num­
ber which is known or assumed to be correct. This technique is used on Atari disk files
to insure accuracy of data tranfers. There are four CRC bytes between sector and track
identification which you cannot read or examine, but which the disk drive floppy disk
controller uses. If you have "The Chip" or a Happy Enhancement with the Archiver,
you can read and modify CRC bytes.

CRASH - CRASH is computer jargon for a program interruption and failure. Some­
times a CRASH will cause you to lose control of the computer so that the only way to
regain control is to switch the computer off and back on (chip reset). This type of
CRASH can occur when ajump is made to a non-operable program area in memory. A
voltage fluctuation can also cause such a CRASH. Simple CRASHes which generate an
error can usually be fixed by DEBUGGING the program.

CRT - Cathode Ray Tube. This is the technology used to display images in televisions
and computer terminals. The principle is nearly 100 years old and the tubes are very
inexpensive. Very simply, a beam is made to scan the faceplate inside the tube and as
the beam hits the phosphor coated face, the phosphor glows. A video controller mod­
ulates the beam to form characters or graphics. Other technologies known as flat pan­
els are not as bulky as CRT's and will allow much more compact portable computers
within five years.

CSAVE - CSAVE SAVEs the tokenized BASIC program in memory to a cassette
file.

CTIA - The CTIA is the processor chip which was replaced by the GTIA in all Atari
400 and 800 computers.

CURSOR - The cursor is a character (inverse space) which is used to indicate the
position of the next character to go on the screen. The cursor can be turned off by
POKEing a number (any number except zero) into location 752. The cursor is normally
transparent. That is, if you back up over a character it will show through (in inverse
mode). The cursor can be made opaque by POKEing a 2 into location 755. See BLINK­
ING CURSOR.

CURSOR OFF - You can turn off the cursor in BASIC by typing the statement
POKE 752,1 <Return>.

69

CURSOR ON

CURSOR ON - You can turn your cursor back on by typing POKE752.0 <Return>.

eye LE STEAL! N G - CYCLE STEALING is the process in which the ANTIC chip
interrupts the 6502 processor from its activity to grab some data from memory for dis­
play on the screen. The cycles are "stolen" in that no other accumulator activity can
occur during this interruption.

D
DATA - In Atari BASIC the DATA statement is used after a line number to identify a
series of string or numeric variables. The data in a DATA statement can be loaded by a
READ statement The data should be processed or acted upon after it is read. When
you see programs with READ-DATA routines that have many numbers or hexadeci­
mal digits, the program is placing the OPCODES for a machine language program into
memory. After the program is put into memory, it must be run by jumping to the RUN
address via a USR statement If a READ statement tries to go past the last piece of
data in a DATA statement, an ERROR 6 will result If there are more data elements
than are read by a READ command, a pointer will remain on the next piece of data to be
read. RESTORE or CLR will set the pointer back to the first DATA statement Most
errors found in typing in machine language ATASCII strings (all numbers) are caused
by typing 0 instead of 1 and by leaving out a comma. Copy and run the following pro­
gram. The program employs a READ-DATA routine.

10 REM * ABCS OF ATARI COMPUTERS
20 REM ** SHOPPING LIST MAKER
30 REM ** PROGRAM: SHOPPING. BAS
40 REM **
50 SETCOLOR 4, 1, 4: SETCOLOR 0,14,10:SET
COLOR 1, 12, 0: SETCOLOR 2,7,8
60 POKE 82,2:POKE 752,1:? CHRS(125)
70 OPEN #1,4,0,"K:"
80 :?

100 ?
110 ?" THIS PROGRAM WILL PRODUCE A P
RINTED"
120 ?" LIST OF ITEMS TO ASSIST YOU I
N YOUR"
130 ?" WEEKLY TRIP TO THE SUPERMARKE
T"
140 ? :?
150 ? II

NTER"
BE SURE TO TURN ON YOUR PRI

70

160 ?
170 ?" TO ADD A NEW ITEM TO YOUR LIS
T,":?" TYPE THE ITEM IN THE DATA STA
TEMENT"
180 ?" STARTING AT LINE 640"
1 90 POSITION 2,22:?" HIT hHY;::'"K;~~~~e;
P~OCEED ":GET #l,B
200 POKE 752,1
210 DIM IT$(200),I$(200),A$(50),N$(50)
,D$(20),G$(20)
220 TRAP 630
230 ? CHR$(125):? "GROCERY LIST HRKER"
:?
240 ? "TODAY~S DATE";: INPUT D$
250 LPRINT "GROCERY LIST FOR ";D$
260 LPRINT
270 TRAP 32767
280 ? :? ".y. TO PRINT AN ITEM"
290 ? "N TO MAKE AN ADDITIONAL NO
TE"
300 ? "R TO ADD AN ITEM NOT ON LI
STu
310 ? "RNY KEY TO SKIP AN ITEM":POKE
82,8:?
320 TRAP 530
330 FOR E=l TO 200
340 READ IT$
350 IF IT$="END" THEN GOSUB 550
360 I$(E)=IT$
370 POSITION 8,14
380 ? CHR$(156);CHR$(156)
390? CHR$(156);CHR$(156)
400? CHR$(156);CHR$(156)
410 ? CHR$(156);CHR$(156)
420 ? CHR$(156);CHR$(156)
430? CHR$(156);CHR$(156)
440? CHR$(156);CHR$(156)
450 POSITION 8,14:? CHR$(156)
460 ? IT$
470 GET #l,R
480 IF R=89 THEN LPRINT I$(E)
490 IF R=78 THEN GOSUB 540:LPRINT I$(E
),"=)";A$:GOTO 520
500 IF R=65 THEN GOSUB 550:LPRINT N$
510 REM
520 NEXT E
530 ? "END OF LIST":GOTO 550
540? "ADDITIONAL NOTE";: INPUT A$:RETU

71

DATA

DATA

RN
550 POSITION 8~14:POKE 752,0
560 ? "ITEMS NOT ON THE LIST"
570 ? " :::}E TO END":? " ::: >R TO RETURN
TO LIST": INPUT G$:IF G$<>"E" AND G$<>"
R" THEN LPRINT G$
580 POSITION 8,17:? CHR$(156)
590 IF G$="E" THEN GOTO 620
600 POKE 752,1:IF G$="R" THEN GOTO 330
610 POKE 752,1:GOTO 550
620 POKE 82,2:END
630 ? " TURN ON PRINTER ";:? " TUR~ ';,QIf+

Iji;fjl£~;'fiT Ell" ; : GOTO 630
640 DATA APPLES,ARTICHOKES
650 DATA BREAD,BUTTER,BEANS,BANANA~BRE
AD CRUMBS,BRUSSEL SPROUTS,BAGELS
660 DATA CRACKERS,CHEESE,COOKIES,CEREA
L~CHICKEN,CREAM CHEESE
670 DATA CELERY, CORN, CARROTS, COTTAGE C
HEESE, COFFEE, CHILI
680 DATA DISH SOAP
690 DATA ENGLISH MUFFINS
700 DATA FLOUR,FIGS,FISH
710 DATA HONEY
720 DATA ICE CREAM
730 DATA JELLY, JUICE
740 DATA KETCHUP
750 DATA LAUNDRY SOAP, LUNCH MEAT~LASAG
NA NOODLES, LETTUCE
760 DATA MILK,MUSHROOMS~MAYONNAISE,MUS
TARD,MEAT
770 DATA NAPKINS~NUTS
780 DATA OYSTERS,ONIONS,OIL,ORANGES,OR
ANGE JUICE
790 DATA POTATOES,POTATO CHIPS,PRETZEL
S~PORK ROAST,PEARS,PEACHES,PASTA,PICKL
ES,PEANUT BUTTER
800 DATA RICE,RICE-A-RONI
810 DATA SOAP,SHAMPOO,SOUP,SPICES,SOUR
CREAM~SPAGHETTI,SPINACH

820 DATA TOFU,TUNA,TORTELLINI,TACOS,TO
ILET PAPER,TEA,TOMATO PASTE
830 DATA WINE,WATERCRESS
840 DATA ZUCCHINI
850 DATA END

72

DATABASE MANAGERS

DATABASE MANAGERS - A DATABASE MANAGEMENT program is an
organizational tool which facilitates using your computer and disk drive or cassette
recorder to maintain records. A cassette recorder is not recommended because of slow
access to stored information and because of the lack of random access to any record on
file. DATABASE programs are designed in two types. One type loads all data into com­
puter memory and the information is pulled out, sorted, and searched very quickly. The
limitation is the amount of memory in your system. Even a full48K or 52K system is not
really suitable for business use. The other type maintains an abbreviated marker or
pointer (actually, an index) in memory, and all data is stored on the floppy disk. Many
more records can be stored, but access is slower, and in some cases, every item must be
searched to find a specific piece of data.

Typical applications for DATABASE programs are mailing lists, inventories, personal
collections (such as record albums), membership rosters, product marketing informa­
tion, test results, and so on. Data Perfect by LJK, Filemanager+ and Syn-file by Synapse,
File-fax by TMQ, and CCA DBMS by Custom Electronics are examples of relatively
large DATABASE MANAGERS. Smaller systems are APX Data Base Report, Home
Filing Manager by Atari, APX Data Management System, and MMG File Manager.

DATA PER FEeT - DATA PERFECT is a very compact and versatile database pro­
gram. Its major shortcoming has been its documentation. The intermediate user may
need to spend four to eight hours wading through the manual to build a small database
file. Utilities are very powerful, but are also very difficult to master. Even printing a
report requires extensive experimentation unless one is familiar with IBM's RPG
language. While the program is not menu driven, keyboard options are represented in
an option line at the top of the page. The exact function of each option is not intuitively
obvious and will require many referrals to the manual.

Screens are defined for each application and data entry is made using the screen as a
mask. The actual record entry process is very easy once the screen is defined. Par­
ticular thought and care should be given to screen layout as changes are possible but
difficult. Math functions are supported for totals, formulae, etc. For example, quantity
* (times) unit price + (plus) 6% could be a computed line. Files up to 80 records or so can
be manipulated totally within memory in a48K system so searching on any field is fast.
A key is stored in memory and is used to access a random record on disk. Searching for
a non-key item on a large disk file requires sequential reading of all records, which,
depending on the length of the file, can be a slow process. Only one database is stored
on a disk. Multiple report programs can be stored on a disk. DATA PERFECT uses the
LJK DOS; a DOS which is not directly compatible with Atari DOS. (See LJK DOS).

DATA SEPARATORS - Atari 810 disk drives manufactured before September 1,
1981 do not contain an external DATA SEPARATOR circuit. This circuit helps the
Floppy Disk Controller chip (1771) to process weak or distorted signals picked up from
the floppy disk. Early drives may have trouble reading data from inner tracks. The
DATA SEPARATOR circuit will decrease the incidence of these errors. The Happy
Enhancement (for the 810) has its own DATA SEPARATOR. DATA SEPARATORs
are available as add-ons from Percom. The price for the D ATA SEPARATOR board is
around $30. Percom's telephone number is (214) 340-7081 or (800) 527-1222.

73

DeB HANDLERS

DeB HAN DLERS - The Device Control Block HANDLERS control the stream of
data moving through the serial bus. These handlers are short machine language
routines in the Operating System which handle all of the details of data transferral.

DeB - Device Control Block - The DCB is the area of memory in which the serial
input and output for the disk drives, printer, and RS232 ports is controlled. The DCB is
located between 768 and 779 ($300 and $30B).

DE RE ATARI - This book, which is primarily about graphics, is a collection of
writings by Chris Crawford. It also includes material about sound and the operating
systems. A wealth of information is presented in DE RE ATARI, but a lack of continuity
is the book's major drawback. There is no index to find specific entries.

DEBUG - Bugs are errors which cause a program to do something other than the
original intention. The process of correcting the errors, usually one step at a time, is
called DEBUGging. DEBUGging in BASIC can be done with a utility, such as BASIC
Debugger by MMG or by adding lines to print out signals or variables at certain mile­
stones in the program. In Microsoft BASIC or BASIC XL, you can use the TRACE func­
tion, which will print out the line number of each successfully completed line.
DEBUGging in assembly language can be done with the BUG program; however, this
is only good for correcting syntax errors. Gross logical errors require flowcharting or
some macroscopic DEBUGging technique.

74

DEF

DE F - In Microsoft BASIC II, on the extension disk. DEF is the command to DEFine
a mathematical function which can be called any time thereafter. You might DEFine a
geometric mean by the command- DEF GEOM(X,y)= SQR(X*Y). For example, every
time you wanted the mean of two numbers you could use GEOM(2,3).

DE F AU L T - The D EF A ULT value is a number or symbol which is supplied when the
user does not specify otherwise. For example, in specifying a drive number, D: refers to
drive 1, not drive 2, 3, or 4, because no number was specified, and 1 is the DE­
FAULT drive.

DEFDBL - In Microsoft BASIC II, DEFDBL DEFines the variables starting with
the letters given in the DEFDBL command as DouBLe precision real variables. Double
precision numbers are represented in memory by eight bytes, seven for the mantissa
and one for the exponent

DE FI NT - In Microsoft BASIC II, DEFINT defines the variables starting with the
letters given after the DEFINT statement as integer variables.

DEFSNG - In Microsoft BASIC II, DEFSNG DEFines the variables starting with
the variables given after the DEFSNG command as single precision real variables.
Single precision real numbers are stored in four bytes, three for the mantissa and one
for the exponent.

DE FSTR - In Microsoft BASIC II, DEFSTR is a command used to DEFine a STRing
by using the starting letter for that string.

DEG - In Atari BASIC, DEG is the command to switch the processing of trig­
onometric functions between DEGrees and radians.

DE L - In Microsoft BASIC II, on the extension disk, DEL is the command to DELete
a range of BASIC lines. DEL can be used to delete up to a certain line number, after a
certain line number to the end, or within a range of line numbers.

DELAY LOOP - To slow down a statement in a BASIC program, you can insert a
DELAY LOOP. This would be useful, for example, when displaying instructions on the
screen. To make sure the instructions are read and enough time is allowed, a D ELA Y
LOOP is placed before the next statement to be executed. The loop is simply a FOR­
NEXT loop with nothing to do except count. (FOR TIME=1 TO 100:NEXT TIME).
This technique cannot be used for reliable timing. The duration of the loop depends
upon the line numbers of the loop routine. Try the following example:

10 PRINT "READ THIS"
20 FOR X=1 TO 1000:NEXT X
30 PRINT CHR$(125)

DE LETE - Atari BASIC does not support extensive file editing. Often it is necessary
to DELETE large blocks of statements. There are three ways to DELETE. You can
LIST the file out to a disk file, copying only the desired line numbers. The fonnat is

75

DELIMITER

LIST"D:TEST",100,200. This will save lines 100 to 200 in your program to a LISTed
file called TEST. Another way is to type in the line numbers you want to DELETE with
no statement for that line. This way is tedious. Another way is to use a deletion utility.
BASIC commander and BASIC XL have a built-in block DELETEr as does the Monkey
Wrench. The following program will also do the deletion. Type in the program and
LIST it to a disk or tape file. When your own program is in memory, ENTER the
DELETER program and type GOTO 32121121121 to DELETE blocks of lines.

o REM ** PROGRAM LINE DELETER
1 REM ** FILE: D:DELETER.LST
2 REM ** USE AS A SUBROUTINE AT END
3 REM ** ABCS OF ATARI COMPUTERS
4 REM
32000 GRAPHICS 0
32001 TRAP 32001:POKE 84,11:? "ENTER F
IRST LINE # TO DELETE";:INPUT F:? "ENT
ER LAST LINE # TO DELETE";: INPUT L
32002 IF INT(F)<>ABS(F) OR INT(L)<>ABS
(L) OR L>32000 OR L<F THEN? CHRS(253)
:GOTO 32001
32003 GRAPHICS O:? :? :? F:F=F+1
32004? "CONT":POSITION O,O:POKE 842,1
3: STOP
32005 POKE 842,12:IF F<=L THEN 32003
32006 GRAPHICS O:? "DELETION COMPLETE!
":END

DELIMITER - The mark used to stop a process is called a DELIMITER. In word
processors, for example, a block of text is often moved to a buffer or deleted. All text
after the cursor can be moved, but a DELIMITER is needed to tell the program where
to stop taking text The DELIMITER is placed exactly at the end of the block to move
and the cursor is placed at the beginning. The cursor is moveable and the DELIMITER
is stationary.

DEMOPACS - There are eight DEMOPACS produced by Atari Product Support
The DEMOPAC is a tutorial and demonstration of some aspect of Programming Atari
Computers. The subject of the DEMOPACS are: Strings and Formatting, Data File
Processing, Programming Examples, Atari Color Graphics, Advanced Graphics, and
Advanced System Features.

DESTINATION DISKETTE - During the copying of a diskette with DOS option J
or any other utility. you will be asked for a source diskette and a DESTINATION
DISKETTE. The source is the original disk which you want to duplicate. You should
have a write protect tab on this disk to make sure you do not inadvertantly destroy it
The DESTINATION DISKETTE is the one on which the copy will be written. This disk
should be formatted and must not be write protected or you will get an ERROR 144. If
your source is not write protected nor labeled, you risk copying blank data over your
original files. This could be very disappointing.

76

DEVICE

DEVICE - The DEVICE is an input, input/output, or an output entity controlled by
the CIO. The DEVICEs are: P: (printer; output only) ; K: (keyboard; input only); D:
(disk; input/output); C: (input/output); E: (display editor; output); S: (screen; input/
output) and R: (RS232, input/output). New DEVICEs can be defined and used if an
entry is made in the Handler Address TABleS (HATABS) at locations 794 to 831 ($31A
to$33F) and the handler routine is written. Resident handlers are P:, C:, E:, S:, and K:.
If DOS is booted, aD: DEVICE is added to the table. If the RS232 handler is booted in,
the R: DEVICE is added.

DEVICE HANDLER - A DEVICE HANDLER is a routine (a program) in the
Operating System software that controls the functions of the peripheral device (printer,
RS-232, cassette, disk drive, screen, etc.) See HANDLER.

DEVICE TIMEOUT - An attempt to access a device on the serial bus which does
not respond will give a DEVICE TIMEOUT error (ERROR 138). This occurs because a
timer called CDTMVI in locations 536 and 537 ($218 and $219) counts down from 255
starting from the time the command to access the device is given. If the device does not
respond by the time the timer reaches 0, a DEVICE TIMEOUT error results. This time
is between four and five seconds. Check to see if the drive or printer is plugged in and
turned on, and that all cables are connected to remedy the problem.

DIM (01.) - In Atari BASIC, DIM is used to reserve memory space in the string!
array area of memory for strings and arrays. DIM is not required in Microsoft BASIC.
If you try to use a string variable without first DIMensioning it, you will cause an
ERROR 9.

DIRECT ADDRESSING - In assembly language for the 6502 processor there are
several methods or modes of addressing. Addressing is calling the memory location of
the operand for the next assembly language instruction. Addressing requires three
bytes unless it is done in the DIRECT ADDRESSING mode. The three bytes consist of
one byte for the opcode (instruction) and two bytes for the address. In DIRECT
ADDRESSING, the address is found only within the first page (locations 0 to 255), so
only one byte is needed to specify the address because the 0 page (high byte) is implied.
Page 0 contains OS RAM, some BASIC RAM, some floating point RAM, and various
other free bytes. Direct addressing to 0 page RAM can be done very quickly, but it is
limited to only 0 page locations.

01 RECTORY - The disk DIRECTORY occupies sectors 361 to 368 on every DOS
2.0S disk. The DIRECTORY is read by the A function in the DUP.SYS menu. Each
DIRECTORY entry uses 16 bytes. There are 128 bytes per sector, allowing eight
DIRECTORY entries per sector. Eight entries per sector multiplied by eight sectors
for the DIRECTORY allows a maximum of 64 files per disk (DOS 2.0S). The first 16
bytes of the entry are used to represent the name and status of the file.

77

DIRECTORY

BYTE 0

BYTE 1
BYTE 2

BYTE 3
BYTE 4

BYTE 5
BYTE 6
BYTE 7
BYTE 8
BYTE 9
BYTE 10
BYTE 11
BYTE 12

BYTE 13
BYTE 14
BYTE 15

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Open file flag
DOS 1 flag
?
Unused
Unused
Locked File
Valid file
Deleted file flag

Total number of
sectors in the file (LSB/MSB)

F
I
L

Number of the sector
for the file (LSB/MSB)

E FILENAME
N
A
M
E

E
X EXTENSION
T

78

EHENSION

DISABLE KEYBOARD

DISABLE KEYBOARD - POKE 16,255 to completely DISABLE the KEY­
BOARD. This will prevent mischief by those you wish to keep away from your
programs.

DISABLE BREAK KEY - See BREAK KEY

DISK DETECTIVE - This package is one of the simplest disk utilities available.
Essentially, the components are a sector viewer and writer. Also included is a disk map
maker which checks to see if sectors are good or bad, used or empty. This map takes a
full three minutes to build. There are better routines available. Produced by Datasoft.

DISK FIXER - DISK FIXER is distributed by Atari Program Exchange and was
written for development purposes inside Atari. The documentation and cosmetics of
the program reflect this. It is a very useful and efficient utility, but you should be aware
of several points. All numbers used, file numbers, sector numbers, bytes, etc. are in
hexadecimal. This may take some time for those of you who think only in decimal. The
directory starts in $169, not 361. Secondly, you can do some major damage to a disk by
changing directory entries, sector links, and bit maps. There is not much verification
before the data is changed, so be sure you have a backup of your damaged disk before
you start hacking on it. The options available on DISK FIXER are:

A. Directory entries - list entries, starting sector, number of sectors and
status.

B. Trace Sector Chain - follows the links between sectors in a file which you
specify. This is the way to find broken links.

C. Modify Directory Entry - change the name, status, start or number of sec­
tors. You must be careful with this option.

D. Check Allocation Map - Builds a bit map from the disk files and compares it
to the VTOC bit map. You can write the new one in if you want.

E. Modify Sector Link - You can reconnect broken files by this option. You
will probably lose some data but the file will usually load and you can
edit it.

F. Set Drive Number - for up to eight disk drives.

G. Exit to DOS - quits DISK FIXER.

H. Dump Sector - Writes the contents of a sector to the screen.

1. Edit Sector - You can edit the hex bytes of a sector and write the changes
back to the disk. Without a search feature this has very limited value.

79

DISK, FLOPPY

DISK, FLOPPY - The FLOPPY DISK is a type of magnetic recording media for
semi-permanent data storage. The DISK stores data in the same manner as recording
tape. An oxide material suspended in a resin binder is coated on a plastic substrate to
form a smooth layer. The oxide material can be magnetized during the writing stage
which polarizes the material magnetically. When the read/write head is passed over
the spot again (in the READ mode), the head picks up the polarization switches and
interprets them as highs or lows (Os or Is).

DISK FILES- By looking at the first two bytes of an Atari DOS file, one can make an
educated guess as to what type offile it is, such as BASIC LISTed, object code, etc. The
following chart is only intended as a guideline; a data file may, for instance, have the
same structure as a binary load object file.

FILE TYPE

Atari BASIC-SAVEd
Atari BASIC-LISTed
BASIC A + - SAVEd
BASIC A + - LISTed
Microsoft BASIC SAVE
Microsoft BASIC LIST
Assembler/Source
Machine/ Object DOS I
Machine/Object DOS II
Machine/Object .COM

FIRST BYTE

o
NOT 0

o
NOT 0

o
155

NOT 0
134
255
255

SECOND BYTE

o
NOT 0

o
NOT 0
NOT 0
NOT 0
NOT 0

9
255
255

Machine language .COM files should run if binary loaded through the L option of DOS.
This is because they have the RUN and INIT addresses appended to the end of the file.
Otherwise, you would have to trace through to the end of the file to look for the
addresses and even then expect some difficulty deciphering them from instructions. To
examine bytes of a sector, use a short BASIC program such as: 1 OPEN #2.4.0.
"D:FILESPEC" and 2 FOR X=1 TO 4:GET #2.A: PRINT A: NEXT X. This program
will print out the first four bytes of the file named in FILESPEC.

The following program will analyze a binary file for the RUN and IN IT addresses.
There may be several modules to a program and these will be listed when you run the
program. The second part of this program will convert HEX numbers to Decimal and
vice versa. Do not forget to use D: for the filename.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** PROGRAM NAME: BINAN.BAS
30 REM ** BY PETE GOOD EVE
40 REM
50 DIM NAME$(40)
60 TRAP 70:DIM HEX$(12),HXX$(1)
70 TRAP 32767

80

80 ? CHR$ (125)
90 ? :? "FILE TO BE ANALYSED: "
100 ? " USE D: FOR FILENAME ";
110 INPUT NAME$
120 IF NAME$="" THEN END
130 TRAP 360
140 OPEN #1,4,0,NAME$
150 TRAP 390
160 GOSUB 300
170 ADDR1=HADR
180 GOSUB 300
190 ADDR2=HADR
200 BLKSIZ=ADDR2-ADDR1+l
210 IF ADDR1=736 THEN 280
220 IF ADDR1=738 THEN 290
230 FOR KK=1 TO BLKSIZ
240 GET #l,X
250 NEXT KK
260? " ___ "," __ - II

270 GOTO 160
280? " ••• RUN ADDR: •• ":GOSUB 300:GOTO

160
290? " ••• INIT ADDR: •• ":GOSUB 300:GOTO

160
300 GET #l,X:GET #1,Y
310 HADR=X+256*Y
320 GOSUB 430
330 IF HADR=65535 THEN? " ••• HEADER •••
":GOTO 300
340
350
360
370
380
390
400
410
420
430
440
450

? HADR,HEX$(I, 12)
RETURN
? "BAD FILENAME"
CLOSE #1
GOTO 90
? II _____________ II

CLOSE #1
GOTO 540
GOTO 90
X=HADR:I=12
XD=X:X=INT(X/16):XD=XD-X*16
IF XD<10 THEN HXX$=STR$(XD)

460 IF XD>9 THEN HXX$=CHR$(ASC("A")+XD
-10)
470 HEX$(I,I)=HXX$:I=I-1
480 IF X=O THEN 510
490 IF 1=0 THEN HEX$ (1,1> =")": GOTO 510
500 GOTO 440
510 I = I + 1 : REM? "= Hex: ,. ; HE X $ (I , 12)

81

DISK FILES

DISK PEEPER

520 RETURN
530 TRAP 540:DIM HEX$(12),HXX$(I)
540 TRAP 550
550 ? "INPUT HEX OR DEC (OR QUIT>";: IN
PUT HXX$
560 IF HXX$="H" THEN 710
570 IF HXX$="D" THEN 600
580 IF HXX$="QII THEN GO TO 90
590 GOTO 540
600? "DEC #:";:INPUT X:I=12
610 IF X=O THEN 550
620 XD=X:X=INT(X/16):XD=XD-X*16
630 IF XD<10 THEN HXX$=STR$(XD)
640 IF XD)9 THEN HXX$=CHR$(ASC("A")+XD
-10)
650 HEX$(I,I)=HXX$:I=I-l
660 IF X=O THEN 690
670 IF 1=0 THEN HEX$ (1 ~ 1> =")": GOTO 690
680 GOTO 620
690 I = I + 1 :? , II = Hex: " ; HE X $ (I , 12)
700 GOTO 600
710? "HEX #:";:INPUT HEX$:X=O
720 IF LEN(HEX$)=O OR HEX$="O" THEN 55
o
730 HXX$=HEX$(I,l):IF LEN(HEX$)=1 THEN

HEX$="":GOTO 750
740 HEX$=HEX$(2)
750 IF HXX$<="9" THEN XD=VAL(HXX$)
760 IF HXX$>="A" THEN XD=ASC(HXX$)-ASC
("A")+10
770 X=X*16+XD
780 IF LEN(HEX$»O THEN 730
790? ,"= Dec: ";X
800 GOTO 710

DISK PEEPER - DISK PEEPER is a low cost utility sold by license from Home
Software to user groups. This utility is written in Forth and is basically an editor of
disk based data. You must know your way around the disk in order to make full use of
this package.

DISK UTILITIES - DISK UTILITIES are programs required by Atari computer
users and programmers to help correct or repair damage to disks which can result from
extensive use, program bugs, hardware errors, or general abuse. DISK UTILITIES
can also be used to modify machine language programs, or more specifically, to modify
any data written on a floppy disk. Additional utilities included in some DISK UTILI­
TIES are: various searches for ASCII or hexadecimal strings, machine language dis-

82

DISK WIZARD

assemblers, directory rebuilders, VTOC rebuilders, file tracers, link and next sector
utilities, and bad sector disk map builders. DISK UTILITIES can create much more
damage than they can repair if one is not thoroughly familiar with the architecture of
the Atari floppy disk. For this reason, one must work on an exact replica of the
damaged disk. A sector copier can usually be used to make the back up replica. Descrip­
tions of all DISK UTILITIES currently on the market are presented here.

DISK WIZARD - This package is a collection of utilities for disk repair and main­
tenance. The primary feature of this utility is the search routine which can find a series
of up to 32 bytes on a disk. This might be useful for changing or personalizing a machine
language program; for example, by putting your name on the title screen. DISK
WIZARD also works on double density formats.

DISKED - v.1 .12 - DISKED is a very comprehensive collection of disk utilities and
it comes with excellent documentation. Many examples of how to correct real disk
problems are included. Also included are a disassembler and a machine load address
finder. You can show the addresses of a machine language file after you specify the
origin address. Duped is a sector copier which will read sectors from one disk and write
to another. CSBOOT and DSKBOOT allow transfer of files from non-DOS disk files to
short IRG cassette files. DSKMAP builds a map of occupied, empty, and bad sectors.
RECOVER is a unique utility that will rebuild a Variable Name table that has been
altered to prevent listing. Amulet Enterprises.

DIS KED IT - D ISKED IT contains the usual disk tools such as a sector copier, sector
editor, arithmetic mode, bad sector finder, and search routine. The most notable fea­
ture is the disassembler which works from memory. If you know the address of a binary
load or boot file, you can disassemble the object code into assembly language (without
labels, of course.) Soft Unlimited.

DIS K EY - D ISKEY is the most powerful collection of utilities available for the Atari
on one disk. Unfortunately, the documentation is cryptic. If you can decipher the book
which comes with the program, you probably will be able to do all of your disk main­
tenance and repair with DISKEY. The program is not menu driven so you will need the
manual almost every time you use DISKEY. There are over 50 single commands; this
makes memorization very difficult. Sometimes a single letter command takes on two
meanings. X means exit in File mode and exclusive -or in non-File mode. The best
features are the file tracing capability, the VTOC rebuilder, the search for up to 10
bytes and the calculation of the location in memory where a file will load. Some of the
copy routines need two disk drives to operate. Adventure International.

DISKSCAN - DISKSCAN was one of the earliest disk utilities. It is basically a sim­
ple editor with search and disassembly subroutines. You can toggle the display of the
sector between hexadecimal and ATASCII by hitting the T key. Also included is the
capability of making a binary load file from sectors on a disk. The program is written in
BASIC and documentation is included on the disk. David Young.

DISK WIZ 11- DISK WIZ II offers extensive repair capabilities. You can find bad
sectors, edit sectors, duplicate sectors, print, disassemble, and more. Allen Macroware.

83

DISPLAY LIST

DISPLAY LIST - The ANTIC is a custom microprocessor common only to Atari
computers which controls output to the television or monitor. The ANTIC does not
receive instructions via assembly language or BASIC, but rather from a program
called the DISPLAY LIST. The DISPLAY LIST is written into RAM by the 6502
processor every time a GR. command is made. Only three things are specified in the
DISPLAY LIST: where (in RAM) the displayed data can be found (the LMS or Load
Memory Scan), which display modes to put the screen into (up to 16), and special
options (interrupt, vertical scroll and horizontal scroll). The display list is a series of
numbers which specifies all of the modes and data which the ANTIC processes. By
changing graphics modes on the screen, some attractive title screens or game playfields
can be designed. This is what is happening when you see large and small text mixed on
the same screen. The memory address of the D ISPLA Y LIST is found at the addresses
560 and 561. (PEEK(560) + 256 * PEEK(561) will point you to the address of the DIS­
PLAY LIST.) A custom DISPLAY LIST can be created and the address of the new
DISPLAY LIST placed in locations low address 560 ($230) and high address 561 ($231).

DISPLAY MODE - The DISPLAY MODE is the technique used by the ANTIC
processor for interpreting data from RAM for presentation on the screen. In BASIC
there are are 12 modes called graphics modes (0 through 11). (The CTIA only supported
nine modes.) The ANTIC supports 17 graphics modes. The modes are set by the bytes
comprising the display list. ANTIC modes can be from 02 to OF, which covers BASIC
modes 0 through 8 (except for five modes which are not accessible through BASIC).
GTIA modes 9, 10, and 11 are accessed by setting bits 6 and 7 in the priority register at
623 ($26F). In ANTIC mode F, setting bit 6 enables GR.9, setting bit 7 enables GR.I0,
and setting both 6 and 7 enables GR.ll.

DISTORTION - In the SOUND statement in Atari BASIC, the DISTORTION ofthe
voice is controlled by the third expression after the SOUND statement. The DISTOR­
TION expression can be an even number between 0 and 14, with 10 and 14 producing
pure tones. The eight values (0,2,4,6,8,10,12 or 14) set three bits in each of four
hardware registers (called AUDCl through AUDC4). These resistors are at locations
53761 ($D201), 53763 ($D203), 53765 ($D205) and 53767 ($D207). The three bits for the
DISTORTION are bits 7,6 and 5, the leftmost bits. The DISTORTION is actually a
form of noise as certain pulses are deleted from the computer generated square waveform.

DLI- The Display List Interrupt gives the 6502 processor a signal during which some
registers relating to the screen can be changed on a regularly timed basis. The DLI is
only a tool by which the interrupt routine can be timed with the vertical blanking. The
activity to be performed must be programmed by the user.

The signal to begin the DLI is found in the display list which is the set of instructions for
the ANTIC chip. When an instruction with the high bit set (128 added) is found, the
ANTIC continues processing the display until the last line is drawn. Then it checks
NMIEN in location 54286 ($D40E) to make sure that it contains 192 for a DLI enable. If
the DLI is not enabled, the ANTIC continues on with its regular business. If the DLl is
enabled, the program looks at locations 512 and 513 ($200 and $201) to find the address
of the routine to execute during the DLI. This routine could change a color register or
the horizontal location of a player. Page 6 is a convenient place to locate the DLI

84

DLI VECTOR

routine. Only display related registers should be changed in the DLI routine, or else all
kinds of trouble could result. At the end of the routine the program should return con­
trol to the 6502 with an RTI.

DLI V ECTOR - The Display List Interrupt VECTOR is located at512 and 513 ($200
and $201). The address of the routine to be run during the interrupt must be placed in
this vector. The non-maskable interrupt enable at 54286 ($D40E) must be poked with
$CO for an interrupt. Bit 7 of the display list instruction must be set (add 128) at the
place where the interrupt is to happen.

DMA· Oi rect Memory Access - This is the technique whereby the ANTIC micro­
processor steals memory cycles from the 6502 microprocessor in order to fetch infor­
mation from memory. The types of information the ANTIC retrieves are: 1) its own
display list instructions; 2) lists of characters or memory map graphics; 3) character
graphics and moving object graphics (players and missiles) pointed at in PM BASE
(54279 or $D407).

You can speed up the 6502 so that it is dedicated only to calculations, not graphics, by
disenabling the DMA. Of course your TV screen will go black. You can do this by
POKEing location 559 with a zero. Be sure to PEEK at 559 first to find out what is there
before you change it or you will never be able to see the results of your calculations.
Actually, you should save the contents of 559 in location 733 ($2DD) where it can
remain undisturbed (at least in the XL series). Calculations will be sped up by about
30 percent

DMACTL - This register at 54272 ($D400) controls the Direct Memory Access
(DMA). The shadow for this register is 559 ($22F). All values should be written into this
location. The DMA can be turned off by POKEing a zero (0) into 559. This allows the
6502 to devote all of its time to number crunching. The narrow playfield is enabled by
setting bitO to zero in 559. The standard playfield is obtained by setting bit 1 in 559. Bit
5 must be one (1) for the ANTIC to fetch data through DMA.

DOCU M E NTATI 0 N - Depending on the program type, the documentation can be
the most important part of the package. Many types of application software programs
are too complex or obscure to be easily comprehended. Buyers should look for clear,
simple, yet very thorough documentation when spending money for new software.
Unfortunately, much software is not well documented because ofthe lack of interest by
the programmer (or lack of resources).

DOS (DO.) - In BASIC, the DOS command is used to load in the DUP.SYS package.
DOS can be used in immediate mode or in a program.

DOS VECTOR - When you type DOS in BASIC, a pointer is followed to a routine
which loads in the DUP.SYS package of utilities. You can borrow this vector for your
own use. The location of the DOS vector is in RAM at locations 10 and 11 ($OA and $OB).
Since they are in RAM in page 0, you can change them to point anywhere you want. You
~~\l\d point it at the start of BASIC (40960) or at a subroutine you loaded into memory.
Remember, all you have to do to enter the routine once you have changed the vector is
type DOS.

85

DOS SUPER

Mter you set 10 and 11 they will be reset when you press SYSTEM RESET unless you
do the following. Locations 5446 and 5450 ($1546 and $154A) contain the value that the
warmstart routine places back into 10 and 11. So if you POKE your DOS VECTOR loca­
tion into 5446 and 5450 (LO-HI), you will keep your new pointer until you turn off
the power.

DOS· SUPER - An enhanced version of Atari DOS 2.0S. Five additional features
are included in the DUP.SYS package. A total of 76 sectors are required for the
DUP.SYS. The additional functions are:

P. Copy Sectors. A range of sectors can be copied from one drive to another.
Prompting is supplied.

Q. Check Sectors. Sectors can be examined for integrity within a specified
range.

R. Radix Conversion. A built-in Hexadecimal to Decimal and Decimal to Hex­
adecimal converter is supplied.

S. Drive Speed. A disk drive speed checker.

T. Write Verify. This is a toggle to turn off the write verify feature of Atari
DOS. This speeds up writing by a factor of 2.

The J option performs a sector copy as opposed to a linked file copy. The options do not
require a <Return> after the letter is chosen.

DOS· HIDDEN FUNCTIONS - There are many undocumented tricks you can
use in Atari DOS (actually DUP.SYS). These are several of the more useful functions
which you can call up while you have the DOS menu on your screen:

1. Examine contents of a file. Use the "C." option of DOS and you can observe the con­
tents of nearly any file with a directory entry. After you hit C you will be prompted
with COPY-FAOM, TO and then type in the filespec followed by",E:" (do not type
the quotes). This will send your file to the screen. If you want to print the file out, use
",P:" instead. If it is a machine language program, you may waste a lot of paper as
there are probably many commands for TOP OF FORM which will reel off the
paper.

2. Build a file. You can enter a BASIC program or build a text file without using
BASIC. Use the C option, only this time send the output from the screen to the file.
The format after you press C and get COpy - FA 0 M, TO is E:, D: FILESPEC. After
pressing Return, the drive will spin as it opens the file and makes an entry in the
directory for the FILESPEC. You can now enter the file or program one line at a
time. You must press Return at the end of each line, and lines must be correctly
retyped once they are Returned. Use CONTROL-3 to exit this entry mode and your
file will be complete on the disk. The BASIC program can be ENTERed from BASIC
and then RUN.

86

DOUBLE DENSITY

3. Warmstart and Coldstart from DOS. Use the "M." option to simulate switching the
machine off and back on (coldstart). When you get the prompt "RUN FROM WHAT
ADDRESS", type F125 and Return. The system will clear memory and reboot To
do a warmstart, type F128 and your program will be saved. Remember though, all
values will be reset and the cartridge in the left slot (if any) will take over. This is like
hitting the "SYSTEM RESET" key.

DOUBLE DENSITY - The term DOUBLE DENSITY refers to the placement of
data on a floppy disk. DOUBLE DENSITY disks are written with the same number of
tracks and sectors (40 and 720) as single density disks, but the number of bytes placed
in each sector is increased to 256 from 128. A modified DOS is required to read and
write disks in DOUBLE DENSITY. Up to 180,000 bytes of data can be stored on a
DOUBLE DENSITY disk. It may be necessary to use diskettes certified to DOUBLE
DENSITY, but it is not a requirement as this is still a relatively low data density. The
new line of Atari disk drives for use with DOS 3 are not DOUBLE DENSITY but are
dual density. In this system the number of sectors is increased to 1,023 but the number
of bytes per sector remains at the standard 128.

DOUBLE LINE RESOLUTION - Players are set up so that each byte is written
with two horizontal scan lines on the television screen. To enable the single line resolu­
tion, bit 4 must be set in the DMACTL by adding 16 to the value in location 559.

DOWN LOAD - The communicating abilities of an Atari computer with a modem
and proper terminal program allow you to copy programs from other computers into
your own and save them to a disk or cassette. This process is called DOWNLOADing. A
commercial terminal program will allow you to DOWNLOAD with relative ease.
Jonesterm, which is a public domain terminal program, is capable of DOWNLOADing.
The opposite of DOWNLOAD is UPLOAD, which is sending a program or file to
another computer.

DOWNWARD COMPATIBILITY - Compatibility is important for computers.
Software and hardware can be compatible or incompatible. If a new computer is
compatible with old software, one can say that the software has DOWNWARD
COMPATIBILITY.

DRA WTO (D R.) - In BASIC, DRA WTO is the command to draw a straight line from
the last point PLOTted to the X,Y coordinate named in the DRAWTO statement.

EXAMPLE: PLOT 0,0: DRAWTO 20,30

DRIVESPEC - This term refers to the disk drive involved in your input or output
operation. This could be Dl, 02, D3, or D4. If no number is specified after D, then the
default drive is always D1. Drives are configured by the hardware switches on the back
of the Atari 810 Disk Drive. Two switches, white and black, are positioned in one offour
combinations to define the DRIVESPEC number of that drive.

DU P. SYS - D UP. SYS is the name of the file which contains the Disk Utilities Package.
These utilities are the routines for locking files, copying disks, duplicating files, delet­
ing files, etc. The DUP.SYS file must be present on a disk for you to load in these
utilities, but it is not required for you to boot in DOS. The DOS.SYS file is the File
Management System required for booting DOS. Without DOS. SYS in DOS 2.0, a BOOT
ERROR message will appear on the screen unless a proper boot file exixts on the disk.

87

DURATION

DURATION - In Atari Microsoft BASIC, the SOUND statement operates like the
Atari BASIC statement with the addition of a DURATION expression. This expres­
sion is optional and it will specify the amount of time a tone will sound off in seconds/60.
The expression is the fifth after the SOUND statement:

SOUND N,v,F.D.T

where N is the voice Number, V is the Volume, F is the Frequency, D is the Distortion,
and T is the DURATION in 1/60ths of a second. With no DURATION expression, the
sound remains on until an END or RUN statement is encountered.

DYNAM IC RAM - DYNAMIC RAM is a type of Metal-Oxide-Semiconductor (MOS)
memory used for computer memories. DYNAMIC RAM is often abbreviated DRAM.
This type of memory must be refreshed every few milliseconds by internal refresh cir­
cuitry. DRAMs are very inexpensive and prices are dropping even more as chip
capacity increases and competition heats up.

Static RAMs, in contrast to dynamic RAMs, are not refreshed continuously and thus
run cooler and require less power. They are more expensive and are not usually used in
home computers.

E
EBCDIC - EBCDIC stands for Extended Binary Coded Decimal Interchange Code
and it was developed by International Business Machines Corporation for use on their
System/360 and 370. EBCDIC is an eight bit code for characters similar to ASCII and
ATASCII, but it is not compatible with either. See ASCII.

EIGHT BIT MACHINE - All computers based on the 6502 microprocessor from
MOS Technology, Inc., such as the Atari home computer line, are known as eight bit
machines. This terminology derives from the way the data is handled by the processor
and the way memory is allocated in the computer. Data is processed in bytes which con­
sist of eight parallel bits. In other words, the smallest operation that can be performed,
and the largest for that matter, is the handling of eight bits at a time. Eight bit words,
or bytes, are loaded into the accumulator of the 6502 and worked on by the program. In
order to address all 65,536 bytes of memory, two bytes are used to address each
memory location. The fact that only eight bits can be processed while many operations
call for 16 bit addresses limits the speed somewhat, because two bytes must be used to
indicate every address. The largest number that can be operated upon in anyone
instruction is 255. Sixteen bit machines are generally faster than eight bit machines
when doing number oriented operations. For text processing in general, eight bit
machines are as good as 16 bit machines.

810 DISK DRIVE MODI FICATION - If you have an 810 Drive with an analog
speed control board, it is possible that you have had some problems writing and for­
matting disks. The cause of these problems may be insufficient current to the read/

88

ELECTRONIC SPREADSHEET

write head during write operations. This problem is probably the result of an improper
component installed on the analog board. You could make the correction yourself if you
are moderately handy with a soldering iron and the warranty has expired on your
drive. It is likely that all drives with this problem are beyond warranty periods by now.
You might consider the modification if you have frequent recurrence of the following
symptoms:

1. Difficulty writing to disks formatted by another disk drive.
2. Trouble formatting your own disks.
3. Abundance of ERRORs 138, 144, 163, and 173.

This modification is only possible if you have an analog board in your drive. The analog
board is a small printed circuit board which sits up over the head mechanism. The cure
is to replace one resistor (R218). The value of the installed resistor is 2,000 ohms. If you
replace it with one of 1,400 or 1,500 ohms, you will increase the current through the
writing head which will alleviate the problems listed above. Radio Shack sells the 1,500
ohm resistor for about 15 cents. Be careful with the soldering iron because you can
overheat and destroy a transistor which is near the resistor. Also, be aware that you
are doing this modification at your own risk, so be careful.

Another revision you should check for if you have an 0lder810 is the version of the ROM
on the 810 sideboard. Drives made after May 1982 should have the C version, not the B
version. The part number of the ROM is C011299C. The Revision B ROM is C011299B.
The new version formats disks with the "fast" format. See SECTOR NUMBER for an
explanation of fast format.

ELECTRON IC SPR EADS HE ET - VisiCalc (TM VisiCorp) was the first commer­
cial implementation of an ELECTRONIC SPREADSHEET. This program sets up a
matrix in the computer's memory. The matrix is made of variables and constants which
can be interrelated. By changing one constant, all variables related to it will be
automatically updated. Syncalc by Synapse Software, Inc. is another spreadsheet pro­
gram for the Atari computers.

END - In BASIC, the END command is optional. Most programs will END them­
selves or will be ENDed when the machine is powered down. In the immediated mode,
END is useful to turn off SOUND statements which will not be shut off with a BREAK.
END also CLOSEs all channels which may have been OPENed.

END 0 F FI LE - The END OF FILE message usually signifies that a disk read error
has occurred. The end of a file is detected by several events. In the last byte of a sector,
byte 127, the first seven bits are a representation of the number of bytes in the sector.
This number in a full sector is normally 125 or7D in hexadecimal. In the lastsectorofa
file, this number is often less than 125 as the sector may not be full. In this case the last
bit of byte 127 will be a 1, meaning that the sector is not filled up. The next sector link,
which is 10 bits in bytes 126 and 125, should also be 0 if the sector truly contains the
END OF FILE. If a mix-up occurs and the disk drive tries to read a different file during
the reading of the current file, an END OF FILE error will occur. This usually signifies
that some extensive damage has been done to the data disk and a disk utility must be
used to correct it.

89

END OF LINE

ENDOF LlNE- See EOL.

----- -

SECTOR q
TRACK 3

E NTE R (E.) - In Atari BASIC, ENTER is used to transfer a LISTed program from a
disk or cassette tape into memory. The lines from the ENTERing program will be
merged with any BASIC program resident in memory. This is handy for adding a sub­
routine utility to the end of a BASIC program, but it can make a mess if the two pro­
grams have common line numbers. Remember that the line numbers will be merged, so
the ENTEREd program should have very high line numbers (like 32000) if it is to go on
the end of the program in memory. Variables are added to the variable name table if
any new ones are encountered.

ENTRY POINTS - An ENTRY POINT or VECTOR is the starting location in
memory of a routine which does a certain task. The ENTRY POINT may be a fixed
location in memory, or it may be specified by a program which was loaded in by the
user. A USR statement can be used to jump to the address of the ENTRY POINT to
begin the routine there. The routines may be for a floating point operation, a warm
start, etc. Control is jumped over to the entry point address and things happen from
there. The address must be between 0 and $FFFF in the Atari and most 8-bit com­
puters. There are legal and illegal ENTRY POINTS. Legal ENTRY POINTS are
recommended and documented by Atari documentation for programmers. Illegal
ENTRY POINTS will often work until a revision is made in the Operating System, such
as the Rev. A to Rev. B conversion which occurred recently. The Atari 1200XL Operat-

90

EOF

ing System and the XL series Operating Systems contain several changes which will
render some previously existing software incompatible. An illegal ENTRY POINT is
often in lower memory where a programmer finds some unused RAM and which may
be interfered with by new programs written for a new OS.

EOF - In Microsoft BASIC, the EOF(n) command is used to detect an end of file byte
transferred through the serial bus in the last reading through IOCB n. EO F(n) acts as a
flag variable where true is 1 and false is O.

EOl - The EOL character (End Of Line) is generated by hitting the RETURN key.
This is ATASCII character 155 ($9B). The EOLcharacterforces a carriage return and
line feed.

EOR - Exclusive OR. EOR is a logical operator that compares two numbers and
generates a result. EOR actually compares the byte (comprised of eight bits) which is
the number in hexadecimal notation. In each respective bit, one number is compared to
a bit in the other number. For each position in which ONLY a single 1 appears, a 1 is
produced in the result

Exclusive OR: 00111100 $3C
With: 01010101 $55
Results in: 01101001 $69

EPROM - Erasable Programmable Read Only Memory devices are used for low cost,
usually prototype quantities of program storage. EPROMs are semiconductor devices
which can be programmed with a special device. The program may be a game, applica­
tion, device instruction, or other piece of code which may be changed by the writer at
some time. EPROM programmers are relatively inexpensive as are the actual devices,
especially when compared to custom integrated circuits. The device package has a
clear quartz window in its lid which allows the chip inside to be exposed to high inten­
sity ultraviolet light and erase the program in memory. The chip can then be repro­
grammed and used again as if it were brand new.

ERl - In Microsoft BASIC II, ERL takes on the value of the line number where the
last error occurred.

ERR - In Microsoft BASIC II, ERR takes on the value of the number of the last
error generated.

ERROR - In Microsoft BASIC II, ERROR X causes the program to generate the
ERROR designated by the variable X. Why would anyone want to include errors in the
program? ERROR can be used for debugging or error handling investigation and they
should be removed for the final program version.

E R RO RS - You may generate an ERROR in the Atari computer system in a variety
oi ways. By checking the ERROR code against a table of explanations of the ERRORS,
you can start to find the cause of the trouble. Codes between 2 and 21 refer to problems
with a BASIC program or trying to load a BASIC program. These codes are generated

91

ERRORS

by the BASIC cartridge program. Program ERRORS coded between 128 and 171 are
CIO STATUS ERRORS and are related to input and output faults to and from disk
drives, printers, cassette recorders, or RS232 devices. These codes are actually gen­
erated by the CIO when an operation is not completed properly. Unless a $01 byte is
returned from the device after a CIO call, an ERROR is generated. The following
explanations will help in tracking ERRORS.

CODE PROBLEM

2 Insufficient memory for statement, new variable, or string dimension. Go
through program and free up memory by using memory conservation tech­
niques. For example, use variables for numbers used more than three times,
use multiple statements on each line, and use short variable names.

3 Value Error such as a result outside the range of +/-10 to the 97th power (or to
the 127th power with the Newell Fastchip).

4 Too many variables. A maximum of 128 variables can be assigned. LIST pro­
gram, type NEW, and ENTER program to remove unused variables. If you
merely SAVE the program, all of the unused variable names will also be saved.
This does not occur when you LIST and ENTER a program.

5 String Length Error. Check the string DIMension. You probably have a string
which is longer than the DIM statement allows.

6 Out of DATA caused by a READ loop or statement trying to read past the end
of a DATA list. Check the FOR/NEXT loop or see if you left our some data.

7 Number Greater than 32767. Integers must be less than 32767.

8 Input Statement Error. Make sure INPUTS for floating point numbers do not
contain any alphabetic characters.

9 Array or String DIM Error. Make sure all strings or arrays are DIMensioned.
DIMensions cannot exceed 32767. Variables cannot be DIMmensioned twice.

10 Argument Stack Overflow. Results from too many nested levels. It is very hard
to generate this error unless you write a very complex program.

11 Floating Point Overflow. Usually results from trying to divide by zero.

12 Line not Found. GOSUB, GOTO or THEN must be followed by an existing line
number. This error may occur if you renumber a program which has state­
ments such as LI N E=500: GOTO LI N E.

13 Non-matching FOR. The variable in the FOR statement must have a matching
variable in a NEXT statement

92

ERRORS

CODE PROBLEM

14 Line Too Long. Use colons or break up statement into shorter lines. You cannot
use more than 128 characters per line. The editor will not let you type in more
than 120, so you must abbreviate (LP., GOS., etc.) if you really want to pack in
the statements.

15 GOSUB or FOR deleted. Cannot find the corresponding GOSUB or FOR for a
RETURN or NEXT command.

16 RETURN Error. Program found a RETURN before processing a GOSUB
command.

17 Syntax Error. BASIC found a defective line in the program. Since syntax is
checked when the program is LOADed or ENTERed, this means either you
POKEd some garbage into the BASIC program area of memory or you have
some defective RAM in the program area.

18 VAL Function Error. The string in a VAL command must be a numeric
value.

19 LOAD Program too Long. Shorten BASIC program, or if you do not have 48K,
get a RAM upgrade. If you are LOADing a cassette program, try LOADing
without DOS booted in.

20 Device Error Number. Device number must be between 1 and 7. Channel 0 is
not available.

21 LOAD file Error. LOAD is used for tokenized BASIC files only. This error is
generated when you try to LOAD a binary load file, a LISTed file, or a CSA VEd
file. Try to use the conventional extender (.BAS) for SAVEd programs, and
.LST for LISTed programs. This should cut down the number of errors.

The next group of errors (CIO errors) are caused by input/output faults to the
printer, disk drive, cassette, or 850 interface.

CODE PROBLEM

128 BREAK Abort. Caused by hitting the BREAK key during input/ output opera­
tion. On Revision A Operating System computers, the system would often go to
sleep during I/O. Hitting BREAK is a non-fatal cure for this symptom.

129 IOCB Already Open. The device channels can only be OPEN ed once or an error
will result. Don't put OPEN s in a loop. Graphics statements use 6. Channel 7 is
also used to stick to 1 through 5.

130 Non-existent Device. The device (D:, P:, R:, E:, etc.) must be present in the
handler table (located at 794-831 in RAM). New devices can be added. Note
that R: is not added unless the 850 interface is on during start-up of the com-

93

ERRORS

CODE PROBLEM

puter. Also make sure there is a "D:" in front of the disk file you are trying
to access.

131 IOCB Write Only. The channel through which the activity is being tried is
OPENed for writing only. No reading is permitted (GET or INPUT in BASI C).

132 Illegal Handler Command. The CIO has received an invalid command. The XIO
command structure is probably defective.

133 Device/File Not Open. Make sure the syntax of the 0 PEN statement is correct.
An END statement will CLOSE all channels. BREAK or ERROR will not.

134 BAD IOCB Number. Use only channels 1 through 7, preferably 1 through 5.

135 OPEN ed for READ Only. The channel through which activity is being tried is
OPENed for READing only. No writing (PRINT or PUT) is allowed.

136 End of File. The program either tried to input from a file which had run out of
data or else started reading from a file that was not opened. This usually is a
sign of a bad sector link. Use a disk utility, such as Diskey, to trace the file
in question.

137 Truncated Record. This error occurs when the record being fetched is longer
than the maximum length specified by the CIO call. This occurs when using a
record based command (INPUT) on a file created with a byte oriented struc­
ture (PUT).

138 Device Timeout - Serial bus error. The device receiving the command did not
respond within the time allowed (about four seconds). In most cases the disk
drive or printer is not switched on and ready. Check all cable connections.
Check device number, especially the black and white slide switches on the back
of the 810.

139 Device NAK (Serial Error) Device cannot respond due to bad set-up parameters
(baud rate, word size, bad sector, etc.) Check the cables to the device being
accessed.

140 Serial Frame Error. (Serial Error) Device is sending garbled data back. Bit 7 is
SKSTAT (53775) is set. If it happens often have your computer checked out.

141 Cursor Out Of Range. Happens when you try to plot or draw off of the coor­
dinates of the screen. Put a chopping routine to stop at the limits for your
graphics mode.

142 Serial Bus Frame Overrun. (Serial Error) System did not respond fast enough
to the input interrupt. Bit5 in SKSTAT (53775) is set. If it happens often have
your computer checked out.

94

ERRORS

CODE PROBLEM

143 Checksum Error. (Serial Error) Checksum sent by the peripheral is different
from that calculated by the computer. Recording media could be defective.

144 Device Done Error. (Serial Error) Device cannot complete a valid command.
Usually means you have a write protect tab on a disk to which you are
trying to write.

145 Illegal Screen Mode. Occurs when editor is OPENed in illegal graphics mode
number. Also-Read After Write Compare Error. Disk drive notes difference
between what was written and what came in for writing.

146 Function Not Supported By Handler. Occurs when you try to input to an out­
put only device or vice versa. Keyboard is input only, printer is output only.
Does not occur with D:.

147 Insufficient RAM. Graphics B requires over 8K just for the screen memory.
Add memory or use a lower graphics mode to solve problem.

148 No Error Assigned.

149 No Error Assigned.

150 Port Already Open (RS232 Error). An attempt was made to open a serial port
through another channel while it was already OPENed. An RS232 serial port
can only be accessed through a single channnel at a time.

151 Concurrent Mode I/O Not Enabled (RS232 Error). A serial port must be
OPENed for concurrent I/O with an XIO 40 command using an odd number
task.

152 Illegal User Supplied Buffer (RS232 Error). Inconsistent user supplied buffer
length and address were specified in the Start Concurrent Mode I/O command.

153 Active Concurrent Mode I/O Error (RS232 Error). Results from attempts to
conduct I/O to RS232 port while concurrent mode I/O is active. System usually
crashes and you never see the error message.

154 Concurrent Mode I/O not Active (RS232 Error). Concurrent mode I/O must be
active to perform GET or INPUT commands over the R: device.

160 Drive Number Error. Drive numbers can only be in the range of 1 to 8. Check
location 1809 ($710) to see how many buffers are allocated for drives.

161 Too Many OPEN Files. You can have a maximum of three files OPEN at any
time. There are three sector buffers of 128 bytes each assigned by DOS. To
OPEN more, POKE the number you want (up to 7) into location 1801 ($709)
and write the DOS back to disk with the H. option.

95

ERRORS

CODE PROBLEM

162 Disk Full. Occurs when the VTOC indicates no free sectors are available. This
may not be the case in reality due to errors in closing files or writing the map
back to sector 360. You can usually just delete the filename and regain your
sectors back. Sometimes the VTOC will get scrambled and all of the good files
must be transferred to another disk.

163 Unrecoverable Systems VO Error. DOS version or copy has a bug or defect.
Use a new copy of DOS.

164 File Number Mismatch. Sector links between sectors of a file are inconsistent.
This could happen in any number of ways and it usually does. If you save and
delete many times to a single disk, you are bound to find this error sometime. It
is very educational to try to correct this error. The forward sector reference
points to a sector which is part of another file number. Sometimes it is a matter
of using a disk utility to patch the forward references to the next sector on the
disk. If data has been written after the original miswriting occurred the
damage is probably extensive. Get out Diskey or Disk Fix and try to recover,
otherwise, reformat the disk.

165 Filename Error. Illegal Characters in the filename. Probably put in by a disk
utility program.

166 POINT Data Length Error. Byte count in the POINT call was greater than 125
(or 253 for double density disks).

167 File Locked. Occurs when you try to delete or change a filename, or write to a
locked file. Unlock the file from DOS.

168 Device Command Invalid. Illegal XIO command.

169 Directory Full. Only 64 entries are allowed in the directory. This is a rare
error.

170 File Not Found. Occurs during an attempt to access a file not listed in the
directory.

171 Point Invalid. Attempt to POINT to a byte in a file not OPENed for an append.
Look at the parameters of the IOCB which OPENed the file.

172 Illegal Append. Attempt to OPEN a DOS 1 file for append with DOS 2. File
must be copied to a DOS 2 diskette for append operation.

173 Bad Sectors during Format. Drive could not format some sectors during FOR­
MATting. If this occurs often, you may need work on the read/write part of
the drive.

96

ESCAPE CODES

ESCAPE CODES - The ESCape key on the upper left hand corner of your keyboard
is a remnant of the old Teletype terminal keyboards. ESCape is used by many
applications programs (such as Letter Perfect) to return back to the menu of options.
Some other key could have arbitrarily been chosen. In BASIC, ESCape is used to
decontrol the editing keys on the Atari so that the ATASCn characters can be put into
strings without doing the editing work on the screen. Suppose you wanted to place an
UP ARROW or the ATASCII 28 character in a string. By hitting the ESC key, then
CTRL, and then plus sign (+), the up arrow would be placed on the screen. By using
ESC, one does not get the editing function of moving the cursor up one line.

EXP - In BASIC, EXP is the function which raises" e" to the number supplied in parenthe­
ses after the EXP expression. The "e" is Euler's number, which is 2.718281828 ...

EXECUTE - A command or statement is EXECUTEd when it is sent through the E:
device to the Central Input/Output utility. An entire logical line is sent for execution
when the cursor is on the line and the RETURN key is pressed. If the line is set up so it is
suitable for proper execution (no ERRORs in BASIC, for example), and the program is
ready to accept input, then the line will be executed. If a line number is in front of the
statement, BASIC will not EXECUTE the line immediately. If there is no line number,
BASIC will assume the statement is for the immediate mode and will try to EXECUTE
upon the pressing of RETURN.

EXPONENTIATION - EXPONENTIATION is the mathematical operation of
raising a number to a power. Two to the power of three is 2 /\ 3 (2 X 2 X 2 or 8). To
EXPONENTIATE a number, use the symbol" /\ ". Other languages use two asterisks
to indicate EXPONENTIATION. To EXPONENTIATE e to the power of a number,
use the BASIC comand EXP. The format for EXP is: GROWTH = EXP(VARIABLE).
In Atari BASIC, EXPONENTIATION is very slow. You can speed up EXPONENTIA­
TION by multiplying your numbers instead (A /\ 3 = A * A * A).

EXPRESSION - A mathematical EXPRESSION is a combination of operators and
operands that calculates a new value. An operator is used to conduct some activity,like
add (+), subtract (-), multiply (*), divide (/), exponentiate (/\), etc. The operand is a
variable or constant which is operated upon by the operator: 2+2, VAR1 + V AR2,
LOG(2), etc. The statement which may contain many operators and operands is an
EXPRESSION. EXPRESSIONS which contain> and < symbols are called relational
expressions because one operand is related or compared to the other.

F
FAN FOLD PAPER- Many of the low cost dot matrix printers for use with personal
computers such as the Atari use FAN FOLD PAPER. There are advantages and disad­
vantages to this type of paper. The advantage is that the paper is very low cost, about
$25 for 3,000 sheets. The paper is usually very light weight and all sheets are connected

97

FASTCHIP

on the top and bottom edges. There are perforations on the sides used for pin feeding
through the printer's tractor mechanism. When these perforations are torn off, the
paper is left with a ragged edge. This is fine for rough drafts and informal letters.
Unless your printer has the tractor feed mechanism to keep the FAN FOLD PAPER
aligned during printing, you will probably have some shifting and misalignment after
printing more than a few pages.

FASTCHIP - Newell Industries has designed a ROM chip which fits into the 10K
Operating System cartridge for the Atari 800. The chip has a revised floating point
routine which speeds up multiplication and higher order math functions by about 30
percent This chip expands the range available for scientific notation numbers from +/-
97 to +/-127. This upgrade is worthwhile if you are doing extensive number crunch­
ing, plotting, or graphics with your Atari.

FETCH - This term is a verb meaning to go to a specific memory location and retrieve
a value or data from that location. This is what the ANTIC chip does during DMA
(Direct Memory Access). FETCH is a standard FORTH word which is written "@".

FIELD - A FIELD is an area within a larger collection of information. In a database
manager, a FIELD is an entry within a record such as the address, last name, or ZIP
code. In an assembly language source listing, a FIELD is the address, opcode, or com­
ment part of a statement.

FILE - A FILE is a collection of data which can be saved on magnetic media (disk or
tape) and loaded into RAM. A disk FILE is made of a series of sectors of 125 bytes of
data and three bytes of linking information. An entry is made in the disk directory for
each FILE on the disk. A cassette FILE has a 20 second leader of steady tone at 5,327
Hertz followed by a series of 132 byte records and then an End Of File (EOF) record. A
cassette FILE record is comprised of two markers, a control byte, 128 data bytes, and a
checksum byte.

FI LE TYPES - There are several TYPES of FILEs used to save and load data into
your Atari computer. There are cassette files and disk files. Cassette files can be
SAVEd, LISTed, or autoboot type (see FILE-CASSETTES). Autoboot cassette files
load directly into the computer when you turn on the switch with the START button
depressed with the play button on the program recorder on. Disk files can be of many
different types. See DISK FILES. The following list describes some of the disk file
types.

NAME

AUTORUN.SYS
BASIC-SAVEd
BASIC-LISTed
BINARY
DATA
DIF

DOS.SYS
DUP.SYS
TEXT

DESCRIPTION

Machine language program which is run on starting up.
Tokenized BASIC file.
BASIC program which has been LISTed to a disk file.
Machine language Binary Load file.
Strings of data for a database program.
Used by VisiCalc to format the spreadsheet data for
interchange.
The Disk Operating System program.
The utilities package for DOS.SYS.
Strings of alphanumeric data created by word processing
programs.

98

FILE UTILITY

FILE UTILITY - Letter Perfect uses a proprietary DOS which is not directly com­
patible with the Atari DOS. The directory starts in sector 363 in LJK DOS instead of in
sector 361 as with Atari DOS. The VTOC starts in 362 instead of 361 as in Atari DOS.
The FILE UTILITY by LJK is a translation utility which will allow you to make Atari
DOS text files from Letter Perfect files. LJK Enterprises.

FI LE· CASSETTE - A CASSETTE FILE is comprised of three parts: a 20 second
leader, the data blocks, and the End Of File marks. The leader is a steady tone which
gives the SIO time to synchronize with the data. The data blocks are made of 128 bytes
each except for the last one which mayor may not be shorter. The End Of File (EOF)
block tells the system that all data has been transferred. A cassette data file must be
OPENed in order to read or write data. In BASIC, a statement such as OPEN
#2,8,0,"C:" will open IOCB #2 for output from the computer; in other words, write to
the cassette. A 4 in place of the 8 in the preceding statement will READ data from the
cassette. A cassette file cannot be OPENed for reading and writing at the same time
(unlike a disk file), because you must push the RECORD button to write to the cassette.
Every file which has been OPENed must be CLOSEd by a statement such as CLOSE
#2, END, or RUN. If you try to OPEN an already OPEN channel, an error will
occur.

FILE· 0 IS K - DISK FILES, like cassette files, must be OPEN ed for input or output.
The format for OPENing a disk file is OPEN #2,n,0,"D:". In addition to reading and
writing, disk files can be opened for appending (using a 9 for n), read and write or
updating (using a 12 for n), or to read the disk directory (using a 6 for n). Any OPENed
channel (#2) must be CLOSEd in order to use the channel again. Data sent through an
OPEN channel to the disk is sent through a buffer of 128 bytes. Only 125 bytes can be
uc;:;ed and when the buffer is full, the contents are dumped out to the disk file. The con­
tents of the disk buffer are also dumped when the channel is closed. Data can be printed
to the disk file, just as to a printer using a statement such as PRINT #2;X. This

99

FILE- DISK

assumes that #2 has been OPENed as a disk file for writing. An End-Qf-Line (EOL)
character, which is ATASCII character 155 (inverse ESCape), is placed at the end of a
string sent to a disk file. A comma separating the strings or variables will insert nine
blank spaces with no EOL character. A semicolon will append the data with no spaces
or EOL's. To force an EOL between data, use a CHR$(155) or separate print statements
for each item. A PUT statement from BASIC can be used to send an individual AT ASCII
character (0 to 255) to a disk file. No EOL is generated after the PUT character. A GET
statement from BASIC is the opposite of PUT. It is used to read data from a file,
byte by byte.

When a file is OPENed for output, it must be rewritten entirely. To add data to
the end of a file, or to append to it, the file must be OPENed for a number 9 mode opera­
tion. The file name must be represented in the directory or an ERROR 170 will be
generated. All data sent out in mode 9 will be added to the end of the file. A file can be
OPENed for updating (reading and writing) by using mode 12. Data is read and can be
replaced within a sector when updated information is available.

There are two types of data files, random access and sequential. Random access files
are controlled through NOTE and POINT commands in BASIC. These commands need
an OPEN channel. Specify an absolute sector number on the disk and a character
within the sector. DOS files use a linking technique whereby the last three bytes of a
sector tell the DOS where the next sequential sector is to be found. Out of the 128 bytes
per sector, bytes 125, 126 and 127 are those containing the link of information. There
are eight bits in each byte and the following discussion describes the protocol used.

BYTE 125

7 6 5 4 3 2 I 1 0
NEXT SECTOR (MSB) FILE NUMBER

Bits 0 and 1 are the Most Significant Bits in the next sector reference. Either a 0, 128, or
256 is added to the number found in byte 126 depending on whether aO, 1, or2 is found
in bits 0 and 1. The last six bits define the file number. Up to 2 raised to the 6th power
(~=64) files can be on an Atari DOS 2.0S disk.

7 6 5 4

BYTE 126

3

NEXT SECTOR (LSB)

2 1 o

The number in byte 126 is between 0 and 255 (decimal). This number is added to the
number found in bits 0 and 1 in byte 125 times 256 to get the next sector reference. Byte
126 and the two bits in 125 are 0 if the sector is at the end of the file.

BYTE 127

7 6 5 4 3 2 1 o
NUMBER OF BYTES IN SECTOR

100

FILE MANAGEMENT SYSTEM - FMS

Byte 127 is the number of bytes in the sector. Since most sectors have 125 (128 minus 3),
we find a $7D in this place most of the time.

FI LE MANAG EM E NT SYSTEM - FMS - The part of Atari DOS which handles
the reading, writing, and updating of files is the FMS. This part is booted in if the
DOS. SYS file is present on the disk when the computer is turned on. The FMS boot
record is in sector # 1. The activities which are supported by the bootable FMS are:
OPEN FILE, OPEN DIRECTORY, CLOSE, GET CHARACTERS, GET RECORD,
PUT CHARACTERS, PUT RECORD, GET STATUS, NOTE, POINT, LOCK, UNLOCK,
RENAME, and FORMAT. Up to four disk drives can be accessed with the FMS. DOS
files of 128 bytes are numbered from 1 to 720 by the FMS.

FILE POINTER - In order to use random access to any data stored on an Atari
DOS disk, a FILE POINTER is used. Random access is an information locating tech­
nique which finds a piece of information (sector and byte number), and goes directly to
that data without reading every piece ahead of it. The NOTE and POINT commands in
Atari BASIC allow one to go directly to a specific sector and read any byte from 0 to 124
within that sector. Bytes 125, 126, and 127 are used for linking sectors and not for writ­
ing user information. The NOTE and POINT commands work through an IOCB or
channel which has been OPENed. The format for a NOTE command is:

NOTE #1, X, Ywhere #1 is an OPENed channel, X is the sector number from 1 to 719
and Y is the byte within the sector from 0 to 124.

NOTE checks the sector and byte locations for the current FILE POINTER. These
values should be saved and associated with some record which can be recalled by
POINTing back to this same location and INPUTting the data. The DOS maintains the
values for NOTE and POINT in memory locations 44, 45 and 46 ($2C, $2D and $2E).
Locations 44 and 45 contain the low and high bytes of the sector number. Location 46
contains the byte number within the sector.

POINT changes the FILE POINTER to a specified sector and byte by using the same
format as in the NOTE statement Data can then be written at any location on the disk.

FILE N AM E - The eight letter character string used for file identification in the
Atari DOS directory is the FILENAME. Identical filenames can be used if the extender
is different.

FILENAME ENHANCER - You can modify DOS by changing the range of
character that will be accepted as valid filename characters. The normal usable
characters are the numerical and uppercase characters (ATASCII 48 to 57 and 65 to
90). By doing a POKE 3818,33 and POKE 3822,123 in Atari BASIC, you can
extend the range from the exclamation point (!) through all lowercase characters
(ATASCII 33 through 122). If you go back to DOS and write the DOS out to a disk using
the H option, your new DOS will be modified to accept this range in filenames. Files
with these lowercase letters in their names will not be acknowledged by a normal,
unmodified DOS.

101

FILENAME EXTENDER

FILENAME EXTENDER - Up to three characters can be appended to the eight
characterfilename in Atari DOS files. A period (.) is used to separate the filename from
the extender. A suggested standard format for uniformity is to use .BAS to identify
BASIC programs, .SRC to identify source listings, and .OBJ to identify machine
language code. Additional suggestions which have circulated through users' groups
are: SAP-Saved BASIC A+, LAP-Listed BASIC A+, 5MB-Saved Microsoft BASIC,
LMB-Listed Microsoft BASIC, DAT-General DATa file, and COM-Object code with
RUN and INIT addresses appended.

FILESPEC - The filename and the filename extension comprise the FILESPEC.
Typical representation is FILENAME. EXT.

FI LL - In Microsoft BASIC II, FILL is the BASIC implementation of the XIO 18 com­
mand. FILL works with a line scanning from left to right and fills the area inside a group
of plotted lines.

FINE SCROLLING - The Atari computer has hardware capabilities for FINE
SCROLLING. FINE SCROLLING is the movement of graphic images bit by bit across
the screen. This contrasts with coarse scrolling which moves an entire character at a
time across the screen.

There are two bits which must be enabled for FINE SCROLLING. Bit 5 of the Display
List instruction is the vertical fine scroll enable bit (add 32 to the Display list instruc­
tion). Bit4 is the horizontal fine scroll enable bit (add 16 to the Display list instruction.)
Then the number of clocks or scan lines to be scrolled must be stored in the appropriate
scrolling register. The horizontal scrolling register location 54276 ($D404). The verti­
cal scrolling register is 54277 ($D405). FINE SCROLLING will only work for 16 color
clocks or scan lines. Then coarse scrolling must be used to bring in new scre~n data. See
section six of De Re Atan for the full treatment of scrolling.

In the XL series, FINE SCROLLING is enabled by POKE 622.255 and typing a
G R.13. The GR.O issues an OPEN command for the screen editor. This routine starts at
$026E or FINE. Using POKE 622,0 will disable the fine scrolling and revert back to
coarse scrolling. A new display list is generated when a GR.O or OPEN screen editor
command is given and the FINE location contains a 255.

FIRMWARE - This term indicates a computer program which has been stored on a
medium such as a ROM (Read Only Memory) chip or an EPROM (Erasable Programm­
able Read Only Memory). It is identical in function to software but exists in a more dur­
able form. FIRMWARE is programmed into the ROM and it will remain even when
power is removed. It is available to the computer almost instantly as it is either loaded
in during boot-up or is part of the computer's memory. Software stored on floppy disks
is not called FIRMWARE.

FLAG - A FLAG is a simple marker in memory which is switched on or off according
to some event occurring. A FLAG is usually one bit in a byte. For example, the last bit of
the last byte of each sector on an Atari DOS file is a flag. If there is a 1 in this bit, then
the FLAG is up and it signals that the sector contains less than the full number of bytes.
If there is aO in the flag bit, then the sector contains the full 125 bytes. A flag can be pro­
grammed to indicate any kind of two state situation.

102

FLOATING POINT ARITHMETIC

FLOATING POINT ARITHMETIC - Computers can operate on integers (num­
bers without decimal points) much easier than on FLOATING POINT numbers. With
a decimal point, care must be taken to always put the point in the right column or the
answer will be wrong. This problem does not exist when you deal only with integers.
The Atari computer dedicates around 3K of the memory in the BASIC cartridge, the OS
ROM, and in RAM, just to minding the decimal points for floating points. The SIN,
COS, arctangent, and SQR functions are in the BASIC cartridge. Other routines are
stored in the OS ROM in locations between 55296 and 57343 ($D800 to $DFFF). The
F ASTCHIP from Newell Industries has a rewritten version of the floating point mathe­
matics routines which speeds up some of the higher level operations. FLOATING
POINT numbers must be within the range of -9.99999999E+97 and 9.99999999E+97.

FLOWCHART - Some programmers use a schematic diagram of the operation of
their program during the programming cycle. The schematic is a model of what the
program will do at various branching points and loops. The FLOWCHART is drawn on
paper using well defined symbols for decision points, processes, activities and events,
such as input, output, IF/THEN, compare, calculate, and END. While programming
with a flowchart is still popular with large programs for large computers, very few hob­
byists actually take the time to develop a FLOWCHART.

FMS - See FILE MANAGEMENT SYSTEM.

FONT - The design of a character is referred to as a FONT. A FONT is formed by
individual pixels within a block. The Atari character FONTs are formed in an 8 X 8
block of pixels. For example, the built in FONT set can even be redesigned into fancy
designs for adventure games.

FO R - In BASI C, FOR is the mandatory first part of a FOR/NEXT loop. FOR sets the
variable apd the range for the loop. If NEXT is not found with the same variable, an
ERROR 15 will be generated.

FORCED READ MODE - It is possible to GET characters from the screen without
using the RETURN key to initiate a reading. The FORCED READ mode will get all of
the characters from the logical line where the cursor resides. The cursor will then be
moved to the start of the next 10 gicalline. The FO RCED READ mode is enabled by set­
ting bit 0 of the AUXI byte (right after the Device ID and Command byte sent in the
serial bus command frame). You can do this by doing a PO KE 842.1 3 and putting the
cursor above the screen characters to read. You will need to return the command back
to normal with a POKE 842.12.

FOREGROUN D - The playfield is sometimes called the FOREGROUND. Charac­
ters or mapped data can be used to construct the FOREGROUND. See PLAYFIELD.

FORMAT - The Atari 810 disk drive uses soft sectored diskettes. This means that all
of the sector identification and timing marks are set up randomly around the tracks.
There is no timing hole requirement as the sector marks are set up during the FOR­
MATting process. When a diskette is FORMATted, several data are written to the disk.
"roe boot file is written to sector 1. The VTOC (Volume Table Of Contents) is set up in
sector 360, and the Directory is started in sector 361. Zeros are written to all other sec-

103

FORMATTED DISK

tors. A disk can be FORMATted through the "I" option of the DOS menu. From Atari
BASIC, FORMATting can be done by a XIO,:JI:254 ,:JI:1 ,4,0,"D:"<return> in the
immediate mode.

Besides the obvious initial data which the FORMATting process writes on the diskette,
there are other items which are important but are not visible nor accessible. These are
the intersector identification marks. The810 disk drive uses these marks to find sectors
on a track, but there is no way to change or read these marks. In addition to the 128 byte
sectors, there are three other fields of data: a pre-sector gap (six bytes of zeros-$OO), an
ID field and a post-sector gap (nine zeros-$OO and three ones-$FF). The ID field con­
tains: one ID address mark, a $00 denoting sector size equal to 128, two cyclical redun­
dancy checks, seventeen zeros, and a one byte data address mark. The Western Digital
Corporation FD1771 floppy disk formatter/controller chip takes care of putting all of
these marks between sectors. (See SECTOR NUMBER for a description of the sector
layout written during the FORMAT operation.)

FORMATTED DISK - See FORMAT. A FORMATTED DISK is a disk that has
been prepared to accept data for storage by a series of markers and control informa­
tion. A FORMATTED DISK does not necessarily have the DOS file written on it, so
even though a disk has been FORMATTED, it may not be able to boot the system. You
must first prepare a blank disk for writing by using the master Atari DOS diskette and
formatting with the I option. After formatting, you may want to put another copy of
DOS on your new disk by using the H option to write new DOS files.

FORTH - FORTH is an interactive, threaded, interpreted language. Interaction is
the job of the "outer interpreter." It takes commands, called words, from the input
stream (usually the keyboard) and executes these commands. The words (or programs
or commands) which are available for execution are contained in the FORTH dic­
tionary. Most of the memory taken by a FORTH system is used by the dictionary.

Programming in FORTH is done by defining new words in terms of existing words. The
FORTH words: and; (colon and semicolon) are used to define new words.

: SAMPLE action1 action2 ;

The above definition adds SAMPLE to the dictionary. This new dictionary entry con­
tains pointers to the dictionary entries of the FORTH words action1 and action2. When
SAMPLE is executed, the words action1 and action2 will be executed. The word SAM­
PLE is now available to use in defining other words. It is now part of the FORTH sys­
tem. Notice that this aspect is quite different from BASIC, or any other language for
that matter.

Threading is the job of the "inner interpreter." When a word is executed, the inner
interpreter threads through the pointers which make up that word. In SAMPLE
(above), the first pointer points to actionl. This word may also bemade up of pointers to
other words as action1 may have been defined in the same manner as SAMPLE. Even­
tually the inner interpreter reaches a primitive word. A primitive is not made up of
pointers, but of directly executable machine code. After the primi ~;ive is executed, con­
trol is returned to the inner interpreter which continues threading until it reaches the
end of SAMPLE. The CONTROL is then passed to the outer interpreter.

104

FRAMING ERROR

Several characteristics distinguish FORTH from other programming languages. Flex­
ibility is the most important of these. FORTH is written in FORTH, so the user is free to
redesign even the most fundamental features to suit a particular application. There are
standards called FIG 79 and FIG 83 for FORTH Interest Group 1979 and 1983. These
standards help users with different types of computers to transfer programs among
themselves by using standard words. This is always an issue since any user can define
new words.

FORTH is compact and runs fast. When pure FORTH is not fast enough, a FORTH
assembler can be used to write machine language words. These words will still be com­
patible with the rest of the FORTH system.

FORTH's unified dictionary means that new programs can be built upon, and share
code with, other applications. One major use of this feature is use as an operating sys­
tem. The user can borrow OS routines, resulting in shorter and more unified code.

FORTH is in the public domain and several free versions are available through users'
groups and FORTH groups. Commercial versions are enhanced and include custom
utilities. Caverns of Mars was written in FORTH. PNS FORTH by Pink Noise Studios,
Val-FORTH by Valpar, Extended fig- FORTH by APX, QS FORTH by Quality Software,
FORTH by Elcomp, ECS/MVP-FORTH by Mountain View Press. Thanks to Stephen
Malinowski and John Peters.

FRAMING ERROR - A FRAMING ERROR (ERRORS 140, 142, or 143) occurs
when the timing of the response to data input or output is not correct. These errors only
occur on devices connected to the serial bus (the disk drive, cassette, or interface).
Mter data is sent in or out of the computer, it expects to see a COMPLETE signal. If
something interferes with the data transmission and the operation is not complete, a
FRAMING ERROR message will be generated. This is usually an indication of a
hardware problem.

FRE - The BASIC command FRE returns the amount of free memory available in
bytes. Free memory can be used for construction of BASIC programs or storage of
strings in memory. FRE takes the value stored in MEMLO at locations 743 and 744
($2E7 and$2E8) and subtracts this value from that ofMEMTOP{iocations 741 and 742
($2E5 and $2E6)}. This difference is the amount of free RAM available for BASIC
programming minus any buffers or handlers you have loaded in. The amount will
change depending on the graphics mode, whether or not DOS is booted, or the amount
of RAM you have installed in your system.

FROGG ERG E N R E - A multitude of games have appeared based on the theme of a
small animal trying to cross a busy thoroughfare without getting crushed. The original
game was called Frogger and the theme was a frog crossing a freeway. Some other
games based on this theme are: Chicken-public domain, Preppie I and II -Adventure
International, and Pacific Coast Highway-Datasoft.

FSK - Frequency Shift Keying - Another term for FSK is Frequency Shift Signal­
ing. This is the technique used in modem communications. It is a type offrequency mod­
ulation where the frequency of the transmission is changed from instant to instant

105

FULL DUPLEX

according to whether 0 or 1 is being transmitted. During transmission, 0 will be rep­
resented by a signal at 1070 Hz in the originate mode and a 2025 Hz signal in the
answer mode. During transmission, a 1 is represented by a signal at 1270 Hz in the
originate mode and a 2225 Hz signal in the answer mode. By shifting between signals
at 1070 and 1270 Hz, the modem sends a stream of ones and zeros through the
telephone line to the other modem and computer.

FULL DUPLEX - FULL DUPLEX refers to simultaneous two-way independent
transmission of data in both directions. Modems are usually set up for FULL DUPLEX
transmission. Half duplex transmission works in both directions, but not simultaneously.
Use the FULL DUPLEX made when communicating with another modem to echo
characters back to your own screen.

G
GET (GE.) - The Atari BASIC command GET is used to retrieve one byte of data
through an OPENed channel. GET can be used as an alternative to INPUT when no
question mark (?) prompt is desired. When a program encounters a GET statement
OPENed for the keyboard, it will halt execution until a key is pressed. An example of
the use of GET is:

10 OPEN #1,4,0,"K:"
20 GET #l,KEY
30 PRINT KEY , CHR$(KEY)
40 CLOSE #1

GET retrieves the AT ASCII value code from the key pressed. You must use an AT ASCII
conversion chart to find the value if you want to branch out from the GET input. GET
can also be used to read single bytes from the cassette or disk devices. The cassette or
disk buffer is filled with data bytes (128 or 125), with the first GET, and then the series
of bytes in the buffer is read sequentially. At the end of the buffer the next sector or
block is read in. GET can also be used to read a character from the location of the cursor
on the screen (E: or S: device).

GLITCH - A GLITCH is a little bug which interferes with the intended operation of
some software or hardware.

GOSU B - A BASIC program can contain subroutines which perform some activities
out of the main flow of the program. The subroutine is identified by a line number as are
all BASIC statements and it is ended by a RETURN statement. To enter a subroutine,
include the GOSUB XXX statement in the main program and control will switch to line
number XXX. Unless there is a RETURN, the program will continue processing
sequential line numbers until the end of the program or until an ERROR results. A
RETURN without a GOSUB will always cause an ERROR 16.

GOTO - In Atari BASIC, a GOTO causes the program to begin execution at the line
named in the GOTO command. An ERROR 12 will result if the line number called does
not exist. The GO TO command can use a variable as its line number expression. This

106

GRAPHICS CHARACTERS

makes reading and debugging much easier but it will usually cause problems in compil­
ing or renumbering by using a utility program. An example of a variable used as a line
number is:

10 START=10
20 PRINT :PRINT "ENTER 1, 2 OR 3"
30 INPUT A
40 IF A=l OR A=2 OR A=3 THEN GOTO A*100
50 GO TO START
100 PRINT "ONE":GOTO START
200 PRINT "TWO":GOTO START
300 PRINT "THREE":GOTO START

GOTOs and GOSUBs can easily make a program very complicated and are scorned by
most hard-core hackers.

GRAPHICS CHARACTERS - The ATASCII characters between numbers 0 and
27 comprise the graphics set. These characters are generated by pressing the
CTRL key plus an alphabetic character key. To see a list of the GRAPHICS CHARAC­
TERS on your screen, try to RUN the following BASIC program.

10 FOR X=O TO 26
20 PRINT X, CHR$(X)
30 NEXT X

GRAPHICS - The Atari BASIC GRAPHICS (GR) command sets the GRAPHICS
mode in any mode from 0 to 11. The format for the statement is GRX, where X is a num­
ber from 0 to 11. When the GRAPHICS command is executed, the screen is normally
cleared. Modes 1 through 8 also have a four line text window at the bottom of the
screen. The screen clearing and text window options can be turned off. By adding 16 to
the number after the GRAPHICS command, the text window is eliminated and the
screen is extended by 64 scan lines. By adding 32, the clear screen feature is eliminated
when the GR command is executed. By adding 48 to the number after the GRAPHICS
command, both the text window and clear screen are eliminated.

GRAPH ICS UTI L1TI ES - One of the most popular software genres is the GRAPHICS
UTILITY. These programs allow you to draw on the TV screen using a joystick or
tablet. Some programs allow you to save the images onto a disk file or to a printer. Some
of the popular graphics packages are:

Graphics Master
Graphic Generator
Fun With Art
Microillustrator
Micropainter
PM Animator
Paint

Datasoft, Inc.
Datasoft, Inc.
Epyx
Koala
Datasoft, Inc.
Don't Ask Software
Atari, Inc.

107

GTIA

GTIA - The GTIA processor replaces the older CTIA chip which was installed in most
machines built before 1982. The GTIA is the Graphics Television Interface Adaptor
(also called George's TIA after George McLeod who designed the chip for Atari). It
handles graphics processing, specifically in these areas: priority control-overlapping
objects on the screen, color-luminance control of all objects on the screen, players and
missiles size control and horizontal position, collision detection between objects, and
the keyboard switches and joystick triggers. The GTIA converts digital signals from
the ANTIC to analog television signals. The registers for the GTIA are located between
53248 and 53279 ($0000 and $DOIF) in the 400 and 800. They are in the range of 53248
to 53503 ($DOOO to $DOFF) in the XL series.

The GTIA functions the same as the older CTIA except for the addition of three new
graphics modes. These modes are called modes 9, 10 and 11, or GTIA modes 1, 2, and 3.
All three of these modes have the same resolution, 80 pixels across by 192 pixels down.
In Atari BASIC, the SETCOLOR and COLOR commands are used to implement
graphics designs in modes 9, 10, and 11. In mode 9, the luminance value must be zero
and the COLOR command is used to vary luminances. The value in the COLOR state­
ment in mode 9 must be between 0 and 15 inclusive giving a total of 16 luminance
possibilities. In mode 10, there are a possible nine colors in any hue and luminance com­
bination. The COLOR command is used for switching colors (between 0 and8). Mode 11
is like mode 9 with a possible sixteen hues of one luminance.

H
HACKER - Slang term for a person who has given up most of their normal interac­
tion with society to play around with computer hardware or software for fun.

108

HALF DUPLEX

HALF DUPLEX - In modem communications, HALF DUPLEX refers to two way
transmission of data which does not occur simultaneously. Most bulletin boards are set
up for full duplex operation. If you modem or modem program is set up for HALF
DUPLEX and you call a system which is on full duplex, you will see two copies of each
key you hit; one from your computer and one which is bounced back from the remote
system. Just switch your modem or program to full duplex to fix this situation.

HAN DLERS - Device handlers are used to perform input or output operations
through the Atari peripheral devices. Your program must call for some input or output
through an IOCB (e.g., OPEN #1,4,O,"D:"). This call goes through the Central Input/
Output (CIO) utility. The CIO then looks in a table of the available devices. The table
has the device name and a list of addresses where the various utilities required for I/O
are found. If necessary, the Serial bus I/O (SIO) is then used to communicate with the
device. The table is called HATABS and is located at 794 ($31A). The table is 38 bytes
long and can have up to 12 devices listed. Five device entries are loaded in from the OS
ROM on power-up. These devices are: Cassette (C:), Display Editor (E:), Keyboard
(K:), Printer(P:), and Screen (S:). Ifthe850 interface is on-line during start-up, theRS-
232-C (R:) entry will be loaded into the table. Other devices can be loaded optionally by
the user. HATABS is comprised of three bytes per device entry. The first byte is the
ATASCII letter for the device name (P for printer, C for cassette, etc.). The next two
bytes are the address pointing to the table of I/O routines. The routines listed in the
table are: OPEN, CLOSE, GETBYTE, PUTBYTE, GETSTAT, SPECIAL, and JMP
(initializing code). HATABS and the vector table look like this:

HATABS Vector Table

ADDRESS BYTE NOTE ADDRESS BYTE FUNCTION
--

031A 45 (E:) ~E400 LO OPEN Vector
031B 00 Address E401 HI
031C E4 E400 E402 LO CLOSE Vector
031D 43 (C:) E403 HI
031E 40 E404 LO GETBYTE Vector
031F E4 E405 HI

E406 LO PUTBYTE Vector
E407 HI
E408 LO GETSTAT Vector
E409 HI

The Vide080 program in the April 1983 issue of Compute! magazine adds a new handler
device called "V:" to the table. This entry points to a vector table which gets characters
from a table different than the standard Atari character set table and puts them on a
graphics 8 screen. Since you are not using the E: (editor), you do not have full use of the
cursor keys and other editing functions. When System Reset is pressed, the entire table
is reentered from ROM and the new handler entry in the HATABS is lost.

109

HAPPY ENHANCEMENT

HAPPY EN HANCEM ENT - The HAPPY ENHANCEMENT is a hardware mod­
ification of the Atari 810 disk drive which upgrades the original drive in four ways. A
track buffer is used whereby an entire disk track (18 sectors) is read in just 1.05
revolutions. This translates to about 0.2 seconds. The original 810 requires about three
or four revolutions in order to read an entire track because no data is buffered. A new
ROM program is provided which improves upon the new FAST FORMAT CHIP. This
involves reading interleaved versus contiguous sectors for faster reading. An enhanced
data! clock separator circuit is provided eliminating many of the errors found on inner
tracks where data in compressed. Finally, the HAPPY ENHANCEMENT is guaran­
teed for five years to back up any commercially available software package sold on
floppy disk for your Atari computer.

Several accompanying software packages provide additional features to the HAPPY
ENHANCEMENT. A diagnostic program checks the circuitry of the enhancement
board. A "Slow It Down" program is provided to convert your enhanced810 back to the
identical condition of an unmodified 810. This prevents any software manufacturer
from trying to mischieviously lock out Happy modified drives. A compactor program
allows packing of multiple single boot disks on one disk. All protection is maintained
and the compacted programs will only run on a Happy modified drive. A customizer
program is available to allow you to create your own custom protection schemes using
bad sectors, missing sectors, bad CRC sectors, unreadable tracks, tracks which con­
tain more than one sector with the same number but having different data and non­
standard data marks. A multidrive system is available to permit fast copying by
virtually simultaneous reading and writing from one drive to another. A "Warp Speed"
DOS is available which speeds up the SIO transfer rate by about three times to over40,-
000 baud. Happy Computers.

HARD DISK - A HARD DISK (also called a Winchester drive) is a mass storage
device used to store and rapidly retrieve many millions of bytes in memory. The record­
ing medium is a ferromagnetic material coated very smoothly on a polished aluminum
plate. The medium is very sensitive to contamination so the entire assembly is sealed in
an air filtered container. The medium is usually not removable from the drive. It must
be backed up for reliability on tape or floppy disks. A small HARD DISK about the size
of an Atari 810 may hold 10 million bytes of data. You can use a HARD DISK with your
Atari 800 by buying a Corvus HARD DISK and using the Integrater board as an inter­
face. Corvus Systems and ADS.

HARD SECTORED DISK - Some disk drives (not the Atari types) use a hard sec­
tor format These disks are identified by the 13 or 16 holes punched around the center
hub which are visible through the tiny timing hole in the floppy disk cover. These holes
are used to mark sectors as they are read by a light source shining through the holes.
Atari computer based drives do not use these holes, but these disks can be used with
Atari drives with no problems.

HATABS - This label refers to the locations in memory of the Handler Address
Table. This table contains the device letter (ATASCII code) and the address vector to
the handler routine. The table consists of 38 bytes located between locations 794 and
831 ($31A and $33F). The devices are loaded in from the OS ROM on start-up and the
P:, C:, E:, S:, and K: devices are represented. Other devices can be loaded. See
HANDLERS.

110

HEADS

HEADS - The part of the cassette recorder/player and the disk drive which reads
and writes the data to the magnetic medium. The HEAD is capable of generating a
fluctuating field which magnetizes the recording medium during writing. It can also
detect the fluctuations when it is passed over the medium during reading. The media
(floppy disks and cassette tapes) contain a small amount of lubricant to reduce friction
as the HEAD rubs over the media. After many years, the HEADs will wear and require
replacement. Proper cleaning and maintainence will delay replacement beyond the life
of your computer.

HELP - In the XL series of computers, the HELP key can be used as another console
key, as well as to perform some rudimentary internal diagnostics during power-on. The
HELP key is like the BREAK key in that when it is typed, no ATASCII character is pro­
duced, but a database variable is changed. The HELP key uses locations 732 ($02DC or
HELPFG) for a database variable and 764 or $02FC to look for the last key pressed. In
BASIC, you can check (or poll) location 732 by using a PEEK(732). The normal default
value is 0, or 17 ($11) if the HELP key alone is pressed. To clear the HELP flag, type
POKE 732,0. To check if a Shift and HELP key are simultaneously pressed, look for
an 81 ($51) in 732. To check for a CTRL and HELP key, look for a 145 ($91) in 732. After
the HELP flag location is used, it must be cleared by writing a zero to it. This is not done
automatically. HELP is used in the internal diagnostic programs as a menu choice.

HERRINGBONE PATTERN - The HERRINGBONE PATTERN on the screen
sometimes results from RF interference with the television signal. The source of the
interference may be the computer itself if there is a leak or defect in the RF modulator.
The interference can usually be cured by rearranging the RF cable to the television so
that the interference cancels itself.

HEXADECIMAL-TheHEXADECIMALnumberingsystemisbasedonl6charac­
ters: 0,l,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. It is customary to represent HEX numbers
with a dollar sign ($) preceeding the number to distinguish it from a decimal (base 10
number). Each column from left to right is a higher power of 16. The columns are
valued: 1, 16, 256, 4096, etc .. All bytes stored in memory and on disk and cassettes are
HEXADECIMAL numbers. Two HEX numbers make up a byte. It only takes four bits
to represent any of the 16 HEX digits, so an eight bit byte comprises two HEX
digits.

HI RES - HI RES is short for HIGH RESOLUTION. This term refers to the graphics
modes, usually of some software based game. HI RES is usually considered GRAPHICS
8 or ANTIC mode "F". Most BASIC games are not written in HI RES because ofthe
enormous amount of data which must be manipulated for animation. Machine language
programs are required to do fast action in HI RES.

H 1- RES - HI-RES is a magazine published by Compupress, Inc. with articles of spe­
cial interest to all Atari computer owners. Magazines such as this one offer some of the
best means of learning to use your computer.

HOME - To HOME the cursor is to send the cursor to the upper left corner of the
screen. This occurs when the CLEAR screen operation is done.

111

HORIZONTAL BLANK

HORIZONTAL BLANK - The time interval starting when the electron beam turns
off on the right side of the screen until it turns on and begins writing on the left side of
the screen is the HORIZONTAL BLANK. The amount of time required for HORIZON­
TAL BLANKing is 14 microseconds.

HORIZONTAL SCAN LINE - A television set operates by scanning a beam of
electrons inside a tube over the inside face of the front plate. The beam starts at the top
left and moves across to the right. This line is called a HORIZONTAL SCAN LINE. As
the beam travels across the horizontal line, it is turned off and on, brighter and dimmer
according to the information it receives from the control circuits. At the end of the
screen, the beam is stepped down one trace and another line is drawn. The entire screen
is drawn in less than 1/30 of a second. The beam then turns off and starts at the top left
again. This time interval when the beam is off is the vertical blanking interval. There
are 525 lines generated on an interlaced television screen (NTSC) every 1/30 of a
second, but the computer generates 262 non-interlaced lines in 1/60 of a second. The
ANTIC hardware uses 22 lines for the vertical blank leaving only 240 for display. The
OS graphics firmware uses 192 to leave a neater margin on the top and bottom of the
screen. The display list is used to control the structure of the screen.

HORIZONTAL SCROLLING - Scrolling is the movement of data across the
screen. In order to scroll horizontally, one must organize the data for the screen
memory such that the screen area can be moved over it. The display list is then written
to load the screen data from the reorganized data. To begin scrolling, the address of the
first byte of screen memory is changed incrementally to move horizontally. Notice that
this technique is different than moving the data past the screen. The screen is moving
over the data. See FINE SCROLLING and COARSE SCROLLING.

HORIZONTAL SCROLL ENABLE - The register called HSCROL, located at
54276 ($D404), is the HORIZONTAL SCROLL ENABLE byte. The number of color
clocks you want to scroll is put into this register. The number ranges from 0 to 16 (16 for
coarse scrolling). In order to do smooth scrolling, you must also set bit D4 of the display
list instruction (LMS, etc.). This means adding 16 to the instruction.

HORIZONTAL POSITION REGISTER - There are four memory locations
which hold the value of the horizontal player position on the screen. These registers
(HPOSPO-3) are located at 53248 through 53251, corresponding to players 0 through 3.
Similar registers exist for missiles at locations 53252 through 53255. The HPOSP regis­
ter can take a value from 0 to 227 and the corresponding player will appear on the
screen at that location. The value of the register must be rewritten to move the player.
It is reset to 0 immediately after it is written. Some positions will be too far off the
screen and typically values between 40 ($28) and 220 ($DC) will make a player visible.
See PLAYER.

HUE - HUE is half of the COLOR definition. The luminance is the other half. There
are 16 HUES (they are often thought of as colors - orange, green, blue, etc.) and each
HUE can can have eight luminances or brightnesses. This makes 128 possible colors. In
GTIA GR. 9 with a few display list interrupts, it is possible to get 16 HUES with 16
luminances for a total of 256 colors.

112

1/0

The HUE is set by the left four bits of the color register. The luminance is set by the next
three bits, and the last bit (bit 0) is unused. Color registers (the shadows) are located
from 704 to 712 ($2CO to $2C8). The registers are actually at 53266 to 53274 ($D012
to $DOIA).

I

&:ZIiZ':J
~
iZIlZ!
~
Ii1lZl
~
~

~
IllD
~
cuz;;I
~
Im=I
~

I/O - Input/Output - This term refers to the process or results of communicating
with the computer. Without I/O the computer would serve no purpose. All peripheral
devices are used for I/O. These include disk drives, cassette recorders, CRTs, modems,
joysticks, paddles, trackballs, amplifiers, printers, graphics tablets, and anything else
you can get to communicate with your Atari computer. The main external method of I/O
is through the SIO (Serial Input Output). This is the trapezoidal plug which con­
nects most peripherals. The controller jacks and the connectors for the RAM cards and
OS boards also facilitate VO. Internal VO is handled by the Central VO (CIO), which is
a program in the Operating System.

Ie - Integrated Circuit - The IC is the basis for all microcomputers. The IC is a device
made from silicon which processes signals. The term" integrated" is used because each
Ie (chip) combines transistors, capacitors, and resistors in one tiny device instead of
having each device in its own discrete package. Older four function calculators made
rrom non-integrated electronics were several times larger than an Atari computer and
only did basic arithmetic. The 6502, ANTIC, GTIA, Pokey, and all of the memory chips
in the Atari computer are Integrated Circuits.

113

IF

IF - IF is a part of a BASIC statement used for testing (IF/THEN or IF/THEN/ELSE
statements) .

IF/THEN - BASIC conditional branching statement. IF tests an expression, and IF
it is true, the expression or command after the THEN is executed. If a number is sup­
plied after the THEN, it is assumed to be a BASIC line number. Multiple IF/THEN s
can be placed on a line. Boolean operators are easier to use than multiple IF/THEN s.

10 IF A=l THEN IF 9=2 THEN IF C=3 THEN I
F D=4 THEN 100

0

10 IF A=l AND 9=2 AND C=3 AND D=4 THEN 1
00

IF/THEN/ELSE - Microsoft BASIC Term. This BASIC statement looks at an
expression and IF it is true, then the clause after THEN is executed. IF the expression
is not true, the clause after the ELSE is executed. This can be a conditional branch.

IMMEDIATE MODE - IMMEDIATE MODE is a term which refers to the way in
which the program counter (PC) in the 6502 processor points directly to data. IM­
MEDIATE MODE operations do not involve addresses of data to be loaded in or stored
out. They use direct or immediate numbers. This is different than the other addressing
modes, absolute and indirect. In the absolute or zero page mode, the PC points to the
address of the data. In the indirect mode, the PC points to the address of the address of
the data.

IMMEDIATE MODE- In BASIC, IMMEDIATE MODE refers to the processing of
a statement without a line number. A valid BASIC statement is typed on the screen and
the RETURN key is pressed. If the statement is valid, it will be processed in the
IMMEDIATE MODE. You can use BASIC as a calculator if you are in a pinch. Get the
READY prompt on the screen and type? 123 + 456 <Return>. You should see the
result (579) displayed below the IMMEDIATE statement.

INDIRECTION - This term refers to the way a microprocessor obtains data to
process. One way which is very direct is to just feed it a number in the immediate mode,
LDA # $FF. This loads $FF (255) into the accumulator. This is very simple. A more
indirect way to load the accumulator is to specify an address and go out to a memory
location and grab a byte from that location. See ABSOLUTE MODE. Every time you
do this there may be a different number in that location. LDA$0600 goes to the start of
page 6 ($0600 or 1536) to find the byte to load into the accumulator. The most indirect
way (and the big advantage Atari computers have over most competitors) is to use a
register to POINT to the address of the real data you are concerned with. This is called
the indirect mode. This is done in the COLOR registers and the character set. The
CHBAS pointer in location 756 points to the location in memory that is to be the base of
the character set data. By changing this pointer you can change the entire character
set in an instant by pointing to a different set of data.

114

INDIRECT ADDRESSING

INDIRECT ADDRESSING - Using the program counter (PC) ofthe6502 processor
to point to the address of the address where the data is found.

INITIALIZE - Setting up all of the color registers, character set data, and sub­
routines needed to run a program. Initialization may also consist of writing zeros to
every position in a string in order to "erase" the old data. If hundreds of bytes are
changed at the start of a BASIC program, and the changes are done by POKEing the
data, the INITIALIZATION process can require several minutes of time. This is
usually dead time and one may wonder if the program has crashed.

IN KEY$ - Microsoft BASIC II command. INKEY$ returns the character corre­
sponding to the last keystroke. Similar to a CHR$(PEEK(764».

I N PUT . . AT - Microsoft BASIC II command. This command is used to read a byte
from a sector through a channel OPENed for input. It assigns the byte to a variable
name. It can also read bytes from the screen.

I N PUT (I.) - BASIC command. INPUT halts a program while it waits for a string or
numerical variable to be assigned a value through the keyboard. You must press
RETURN to enter the value. A question mark (?) prompt is generated by the INPUT
command. In Microsoft BASIC II, the prompt can be supplied after the INPUT com­
mand. This makes for easier programming. Alternatives to INPUT for one byte entries
are GET and PEEK(764) routines.

INPUT ALTERNATIVES - In Atari BASIC you can cause your program to stop
and wait for input by using the INPUT command. INPUT will present you with the
question mark (?) prompt whether you are asking for a numeric or string input. You
must also press RETURN after entering the value. There are alternatives to INPUT. A
very neat way is to use the GET command. GET waits for a single character. You must
know the ATASCII value of the character you are looking for and also you must OPEN
the keyboard for input. The BASIC subroutine is this:

115

INPUT LINE BUFFER

10 ? "HIT 'c' TO CONTINUE!"
20 OPEN #1,4,0,"K:"
30 GET #1~A:REM ** PROGRAM WAITS HERE FO
R A KEY
40 IF A<>67 THEN 30:REM ** LOOP UNTIL 'c
• IS HIT
50 CLOSE #1:REM ** DON'T FORGET TO CLOSE

Another method is to PEEK at location 764 to find out the last key struck on the
keyboard. This technique is very simple but again it requires you to know the keycode
for each key. The keycode is not the same as the ATASCII value. See the KEYCODE
table for the keycode to ATASCII conversions.

10 ? "HIT 'c' TO CONTINUE!"
20 IF PEEK(764)<>18 THEN 20:REM CYCLE HE
RE UNTIL 'c' IS HIT

Another form of INPUT is to use an INPUT through an lOCB. This will not give the
question mark (1) prompt nor will it print the variable you type on the screen, unless
you want it to. Again, you must OPEN the lOCB and you must also DIM the variable
you decide upon.

5 DIM X$(30)
10 ? "TYPE A LINE, PRESS 'RETURN'"
20 OPEN #1,4,0,"K:":REM ** OPEN IOCB 1 F
OR THE KEYBOARD READ
30 INPUT #l,XS:REM ** WAIT HERE FOR X$ T
o BE ASSIGNED
40 CLOSE #1
50 PRINT X$

INPUT LINE BUFFER - The INPUT LINE BUFFER is used by BASIC as the
place where it goes to get data to tokenize for interpretation. The buffer is the 128 bytes
between 1408 and 1535 ($580-$5FF). The data comes into this buffer through the CIO
from a handler device.

INSTR - This is a Microsoft BASIC II command derived from the term INSTRing.
INSTR uses three arguments in the format: INSTR(n,X$,Y$), where n is a number
(integer), X$ is a short string, and Y$ is a longer string. INSTR searches the longer
string (Y$) for the shorter string (X$) starting from the nth position in the string. The
value of the starting position of the short string is returned.

INSTRUCTION SET- Every microprocessor has an INSTRUCTION SET to tell it
what to do. The 6502 has 151 different opcodes (operation codes) in its instruction set.
These are listed in the code conversion table. The ANTIC chip has only four opcodes in
its instruction set. The opcodes control the flow of bytes in and out of the memory and
registers of the 6502, as well as conversion or shifting of bytes in the processor
registers.

I NT - BASIC function. INT provides the greatest integer value that is less than the
argument given. INT(123.456) becomes 123 and INT (-7.23) becomes-8.

116

INTERFACE MODULE

INTERFACE MODULE- The850 INTERFACE MODULE is a conversion device.
The INTERFACE MODULE takes the high speed serial data from the computer and
converts it to a parallel bit signal for printers and also a controllable speed serial bit
signal for modems and other devices (RS 232). In order to use the 850 interface, you
must have it turned on and connected WHILE you boot up your computer. Note that it
must be on BEFORE the computer is turned on. The reason is that a handler program
contained in ROM in the 850 is loaded into the Atari computer. You will hear a loud and
steady tone letting you know it is successfully loaded. See the RS232 booter program
listing in the RS232 section. This program starts the process of booting the RS232
handler through an AUTORUN.SYS program. This file must be on any disk which
loads in a modem program, such as AMODEM.

INTERNAL CHARACTER SET - The Atari computer hardware does not use
AT ASCII characters for its internal operations. ATASCII characters are translated
according to the following chart as data is input or output.

ATASCII CODE
RANGE

$00 to IF
20 to 3F
40 to 5F
60 to 7F
80 to 9F
AO to BF
CO to DF
EO to FF

INTERNAL CHARACTER
SET RANGE

$40 to 5F
00 to IF
20 to 3F
60 to 75

CO to DF
80 to 9F
AO to BF
EO to FF

You can make your own transformation table by taking the ranges of codes in the
ATASCII range and transforming them to the INTERN AL CHARACTER SET range
as listed above. When you use the WINDOW. BAS program in the MEMORY section,
you are viewing the INTERNAL CHARACTER SET codes.

INTERNATIONAL CHARACTER SET - The XL series computers contain an
additional set of characters to allow use of Atari computers with most western Euro­
peanlanguages. To enable the INTERNATIONAL SET, type POKE756.204. To use
the characters, you must use CTRL in combination with the key chart layout provided
in the owners' guide. Note that these characters will NOT print out on your printerjust
because they appear on your TV screen. The printer uses its own character set.

The data for the INTERN ATION AL CHARACTER SET is stored in ROM beginning
at location 52,224 ($CCOO). Poking 756 with 204 sets the character set base pointer
(CHBAS) to page $CC (204).

To print the INTERNATIONAL CHARACTER SET on the Atari 1025 and 1027
printers, send an ESCape CTRlrW (27 23 ATASCII) to the printer. International
characters are represented by the 26 CTRL keys (RANGING form AT ASCII 0 to 25).
See the XL owners' manual for the keychart defining the characters. An ESCape
CTRlrX turns off the international mode.

117

INTERPRETER

INTERPRETER - The Atari BASIC cartridge contains a program which is an
interpreter. This program takes words and numbers you compose as a BASIC program
and converts or interprets them into a tokenized code which is used as instructions for
the 6502 microprocessor.

INTERRUPTS - An INTERRUPT is an event which causes a microprocessor to
stop what it is doing and begin something else. When the other task is complete, the
microprocessor can take up where it left off on the original task. INTERRUPTS can be
used to make sound, move players, change colors, and change data. Tasks are pro­
grammed in machine language and can be executed very quickly during the INTER­
RUPT time. The vertical blanking time can be used for an INTERRUPT of up to 1400
microseconds in length. The vertical blanking occurs every 1/60th second and many
exciting activities can be performed during this time. The vertical blank INTERRUPT
(VEl) can be performed before the Operating System begins its updating of all of the
registers, or it can be done afterwards. If it is done before, it is an immediate mode VBI,
and can consist of a program up to 840 machine cycles in length. If it is done afterward,
itis a deferred mode VEl and can consist of up to 1,470 machine cycles. SeeDeReAtari
for an advanced treatment of INTERRUPTS.

INVERSE CHARACTERS - The Atari character set resides in ROM starting at
address 57344 ($EOOO) and takes up 1,024 bytes. There are only 128 characters in the
table, or eight bytes per character. You see the inverse character by pressing the Atari
Key (or inverse key) which sets the highest bit (D7). This essentially adds 128 to the
ATASCII value. Note: This key is often hit accidentally which causes any program
designed to accept alphanumeric characters to be disrupted.

I RG - InterRecord Gap - A record in a cassette tape file consists of 132 bytes. There
are 128 data bytes, two markers for speed, a control byte, and a checksum. Between
records there is a gap called the InterRecord Gap. This gap can be short or long
depending on the mode set when a file is opened. In the normal IRG mode the tape stops
after each record to process the data. This stop is usually so short that the speed fluc­
tuation is not observable. In the short IRG mode, the data is loaded straight into
memory (RAM) without stopping. CSAVE and CLOAD use the short IRG mode.

IRQ - Interrupt ReQuest. Location 53774 is the Interrupt Request Enable register.
Setting various bits in this register enable interrupts; for example, the BREAK
key interrupt.

IOCB - Input/Output Control Block. lOCB's are sometimes referred to as channels.
All input from and output to devices is done through the lOCB' s which allows you to use
the ClO (Central Input Output). The eight channels are defined ° through 7 and are
available through Atari BASIC in a format such as OPEN =#= X,4,0, "D:" where X is the
channel number from ° to 7. Channel ° is permanently reserved for the E: device, the
Editor, and channels 6 and 7 are used for some graphics outputs. Channels 1 through 5
are always available to use in BASIC programs. A channel must be OPENed for use
and then CLOSEd by a CLOSE, END, or RUN statement.

An lOCB is a 16 byte long block of data. They start at $340 for =#= ° and repeat at $350,
$360, $370, $380, $390, $3AO, and $3BO. The 16 bytes which hold the information to
direct I/O are specified as follows. Note that the OPEN command from BASIC fills in
the data for these locations.

118

NAME

ICCOM
ICBAL
ICBAH
ICBLL
ICBLH
ICAX1
ICAX2

OFFSET

IOCB+2
IOCB+4
IOCB+5
IOCB+8
IOCB+9
IOCB+10
IOCB+11

CONTENTS

Command
Buffer address, low
Buffer address, high
Buffer length, low byte
Buffer length, high byte
Aux 1 byte (read/write)
Aux 2 byte (GR. mode)

JIFFY

After all of the parameters are filled in, the call can be executed. The offset of the start
of the IOCB ($00, $10, $20, etc.) which you are using must be put into the X register, and
the CIOV ($E456) must be entered.

J
JIFFY - JIFFY is a measure of time equal to about 1/60th of a second. This time inter­
val is derived from the timing of the vertical blanking interval for the CRT rewriting.
The duration of the SOUND statement in Microsoft BASIC II is controlled in JIFFIES
by the optional fifth parameter given after the SOUND statement.

JONESTERM - JONESTERM is a public domain modem program with many
powerful and easy to use features. It was written by Frank Jones. JONESTERM
(JTERM) is available through most bulletin boards as a download program, or you can
type it in from COMPUTE!, January 1983, p.202. JTERM has undergone extensive
revision; version 35 is popular at this writing. Many users groups have enhanced
JTERM to the point of it being of commercial quality. JTERM uses a series of menus to
set up the terminal parameters. The console switches are also used in the following
ways: OPTION is used to select full or half duplex; SELECT is used to turn on and off
the MEMSTORE feature (this is like a recorder which dumps all transmissions into
available memory.); START is used to exit the terminal mode and bring back the menu.
The menu (of which there are many versions) usually asks whether you want to upload,
download, or automatically dial. If you hit U for upload, you will need to supply a files­
pec to load in for uploading. If you hit D for download, you will be asked about transla­
tion and parity checking. Translation can be either Light or None. Light translation
interprets some characters for more aesthetic viewing on the screen. No changes are
made to stored or received characters. Parity checking is a method for verifying the
integrity of each transmitted byte by adding up all of the bits. Most bulletin boards do
not support parity checking, so none is needed.

JUSTIFICATION - JUSTIFICATION is the process of aligning text on a page. The
left edge of text is normally justified or aligned. The right-hand side can be aligned
with most word processing programs. This feature is implemented in software which
looks at the determined length of the line and divides the number of spaces among the
individual words. A printer must have proportional spacing capability if it is to print
evenly spaced, right justified text. The display screen in GR.O will not support propor­
tional spacing, but it will support right hand JUSTIFICATION.

119

K

K
K - From KILO. One of the most commonly used buzzwords in computerdom is K.
Common usage of the term K refers to a thousand. Engineers often refer to their annual
salary in terms of K dollars. In computers, K is defined as 2 to the 10th power, or 1,024.
This is 24 more than the typical interpretation of K, and this often results in confusion.
64K is actually 64 times 1024 (65,536), not 64,000.

KDOS - A powerful, feature-packed disk operating system for those who want to
look deeper into the Atari architecture. KDOS resides in memory and takes up 14K. To
be useful, some of the utilities require a 32K system. A machine language monitor
allows you to Run, Load, Save, Go, Proceed, Examine, Alter, and Register. A map of
records loaded can be displayed on the screen as a file is loading. A file can be loaded
and not run while the monitor tells you what the INIT address is. Memory locations can
be altered and the memory can be dumped back out to a disk file. This can help you
cheat on those high scores if you can find the location of the score display. KBYTE.

KEY CLICK - In the XL series, you can turn off the KEY CLICK. This click is
delivered through the TV speaker as opposed to through an internal speaker (as it is on
the 400 and 800). To disable the KEY CLICK, POKE 731.255. To enable the KEY
CLICK, POKE 731.0.

KEY REDEFINITION - You may REDEFINE the KEYboard of the XL series
computers. There is a pointer to a table of characters which will be generated when you
strike a key. By changing the pointer to a custom table which you generate, you can
REDEFINE the KEYboard. The pointer to the table is in locations $79 and $7 A (121
and 122, LO byte AND HI byte). The table is 192 bytes long with the lowest 64 ($40)
bytes for the lowercase, the middle 64 bytes for the shifted (uppercase) and the top 64
bytes for the CTRL keys. Any keys between $80 and $91 (128 and 145) will be treated as
a special editing key. The following table shows the structure of the three 64 byte
blocks described above. These are hardware generated codes.

KEYBOARD CODES
$O-F $10-lF $20-2F $30-3F
1-15 16-31 32-47 48-63

X 1X 2X 3X

0 L V , 9
1 J HELP SPACE
2 C 0
3 F1 F3 N 7
4 F2 F4 BACKS
5 K B M 8
6 + X / <
7 * z)I~ >
8 0 4 R F
9 H

120

KEY REPEAT

$O-F $1O-1F $20-2F $30-3F
1-15 16-31 32-47 48-63
X IX 2X 3X

A P 3 E D
B U 6 Y
C RETURN ESC TAB CAPS
D I 5 T G
E 2 W S
F 1 Q A

KEY REPEAT - In the XL series Operating System, you can control the KEY
REPEAT DELAY and RATE by changing two OS variables. These options are not
available on the 400 and 800 computers. To change the KEY REPEAT DELAY, POKE
location 729 ($02D9) with the number of jiffies (1/60 second intervals) you want the
keyboard to wait before it starts repeating the typed key. The default value is 48 (48/
60) or .8 seconds.

To change the KEY REPEAT RATE or the number of jiffies, the keyboard waits to
repeat characters after the DELAY is passed (POKE 730 ($02DA» with the number of
jiffies. The default value is 6 (.1) seconds between repeats.

KI LL - KILL is used in Microsoft BASIC II to delete a file, usually one stored on
a disk.

KLU DG E - This term (which rhymes with huge) is used to denote, in a somewhat
cynical manner, an intricate assembly of hardware or software which has the appear­
ance of being pieced together by a hobbyist You would not normally buy a KLUDGE,
but you might make one from spare parts in your spare time.

KOALA PAD - The KOALA PAD is an input device for the Atari and other brands of
computers. It is a touch sensitive board that uses the paddle ports to generate values
from 0 to 255 according to the x and y position of a stylus or finger pressing on the sur­
face. Though not really useful for most games, it is a nice graphics tool. The software
provided with the KOALA PAD is Micro Illustrator. Screens created with the Micro
Illustrator can be saved to disk files and used for other activites. The files are stored in a
non-standard format, but you can make the program write them in a standard format
by pressing INSERT while the picture is on the screen. The image will be stored as a
file called D:PICTURE. Any image file called PICTURE can be recalled by pressing
CLEAR.

121

LABEL

L
LAB E L - A LABEL is used in an assembly language statement as a marker for a par­
ticular line number. The LABEL is the second field in a statement and it must be
separated from the statement number and opcode mnemonic by one space. If no
LABEL is used, two spaces must be placed between the number and mnemonic. Dis­
assembled source code usually does not reconstruct the LABEL.

LADDER GENRE GAMES - During 1982 and 1983, a series of games using the
ladder climbing scenario were introduced. Some of these games were: Miner 2049' er,
Canyon Climber, Donkey Kong, Jumpman, Jumpman Jr., Mr. Robot, Hardhat Mack,
and Mountain King.

LANGUAGES - Although BASIC is now built in to the Atari computers, you have
your choice of many different computer languages. BASIC is fine for composing quick
utilities and demonstrations, but assembly language is required for high performance
games and financial programs. FORTH is available to give you total control over your
computer. A list of languages available for Atari computers follows.

LANGUAGE

Action!
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
Assembler
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
C
C
C
FORTH
FORTH
FORTH
FORTH

NAME

Action!
Atari Assembler/Ed.
Atari Macro Assembler
MAC/65
EASMD
ATAS (ed/assem)
ATMAS (macro)
Synassembler
MAE
ASSM/TED
Edit 6502
DATASM
Cassette Assembler
Atari BASIC
BASIC A+
BASIC XL
Microsoft BASIC II
OSS BASIC 400
The BASIC Compiler
C/65
Deep Blue C
TinyC
FORTH
Team FORTH
PNSFORTH
Extended fig-FORTH

122

PUBLISHER

OSS, Inc.
Atari, Inc.
Atari, Inc.
OSS, Inc.
OSS, Inc.
Elcomp Publishing
Elcomp Publishing
Synapse
Eastern House Software
Eastern House Software
LJK Enterprises
Datasoft, Inc.
Quality
Atari, Inc.
OSS, Inc.
OSS, Inc.
Atari, Inc.
OSS, Inc.
Datasoft, Inc.
OSS, Inc.
APX
OSS, Inc.
Elcomp Publishing
Public Domain
Pink Noise Studios
APX

LEFT$

LANGUAGE NAME PUBLISHER

FORTH valFORTH ALP AR International
FORTH ECS/MVP-FORTH Mountain View Press
FORTH QS FORTH Quality Software
LISP InterLISP Datasoft, Inc.
LOGO Atari LOGO Atari, Inc.
Pascal Atari Pascal APX
PILOT Atari PILOT Atari, Inc.
WSFN Which Stands For Nothing APX

LE FT$ - In Microsoft BASIC II, LEFT$(X$,n) returns n characters from the left side
of the string X$.

LEFT-HANDED JOYSTICK - You can convert an ordinary Atari joystick to a
lefty model by merely unscrewing the base and transposing a few connectors. The but­
ton will be on the top right side when you are finished and all of the direction labels on
the front should be changed for consistency. The top will become the right side. When
you take the bottom off the case, you will see a column of colored connectors. Use the
chart below to transpose the wires and put your lefty model back together.

Right Left

brown blue
white brown
black black
blue green
green white
orange orange

LEGAL - A LEGAL operation is one that will not generate an error during inter­
pretation by the BASIC interpreter.

LE N - In BASIC, LEN returns the value of the number of characters in a string. The
format is LEN(STRING$).

LET - This BASIC command is usually superfluous. It is used for the assignment of
values to variables, as in LET X=l. The same assignment can be done by X=l.

LETTER PERFECT - LETTER PERFECT is a high powered word processor for
use on Atari computers. This entire book was written on the LETTER PERFECT text
editor. LETTER PERFECT uses its own version of DOS and is not compatible with
Atari DOS 2.0S. There is a special utility program for conversion of files between the
two. The directory begins in sector 362 in LJK DOS, as opposed to 361 in Atari DOS
2.0S. Version 3.X of LETTER PERFECT offers substantial improvements over Ver­
sions 1 and 2. Version 1 actually had several fatal bugs which are entirely remedied in
Version 3. There is an 80 column version of 3.X on the flip side of the program disk, and
this allows 80 character by24 line editing with the Bit 3 80-column board and a monitor.
The program is also available on a ROM cartridge for a premium. File merging into let­
ters is possible with LETTER PERFECT.

123

LIGHT PEN

Database files prepared with LJK's Data Perfect database manager, or lines entered
manually with LETTER PERFECT can be merged with form letters. A separate printer
editor allows easy custom modification of printer codes so that any printer can be used
with LETTER PERFECT. This feature makes it the most versatile text editor on the
market as far as printer interfacing is concerned. The printer codes are stored in sector
1 and can be copied to any LJK formatted disk with a sector copier such as SCOPY. A
large variety of control characters are used for word processing commands. A system
of crude mnemonics is used to help memorization. Control-E is used to move the cursor
to the end to the text file in memory. Format lines are used in the body of the text to con­
trol printing of the text. A Control-F followed by w60 will set the WIDTH of the printed
page to 60 columns. See LJK DOS for a program to list the directory of LJK disks.
LJK Enterprises.

LI G HT PE N - A LIGHT PEN is a peripheral device that can tell the computer where
the user is pointing on the CRT screen. Since it is usually shaped like a pen or pencil,
you can literally point to images on the screen, push a button, and make changes, pro­
vided you have the proper software. The Atari OS has two registers designed for a light
pen through the joystick ports. These are LPENH for the horizontal position value in
location 564 ($234) which is a shadow from location 54284 ($D40C). The horizontal
value is determined by the triggering on of the phototransistor in the LIGHT PEN
which in turn puts the horizontal color clock count into location 564. This ranges over
228 possible values. You can use a PEEK(564) to identify the actual numbers for your
TV. The vertical position register is in location 565 ($235) which is a shadow for 54285
($D40D). Only 96 vertical lines are resolvable. The resolution of a LIGHT PEN is often
degraded by extraneous light which enters the lens on the phototransistor. Careful
design will eliminate much of this optical noise.

LI N E I N PUT - In Microsoft BASIC II, LINE INPUT reads an entire line from the
keyboard into a string variable, up to the carriage return. This differs from INPUT in
Microsoft BASIC II, which ignores any data after a comma or semicolon.

LI N E I N PUT .. AT - In Microsoft BASIC II, LINE INPUT .. AT is used to enter a line
of data from a disk providing that the device has been OPENed for LINE INPUT.

LI N E - There are two types of LINEs in BASIC. A physical LINE is the 38 or 40
characters you see across the screen in normal default mode. The 40 character LINE
buffer for a LINE is located between 583 and 662 ($247 and$26E). A logical LINE con­
sists of up to 120 characters. A logical LINE is what follows a line number and is ter­
minated by a RETURN (EOL or ATASCII 155). The BASIC LINE must fit into the 128
byte input buffer and also in the 256 byte BASIC output buffer after tokenization.

LI N E FEE D - LINE FEED is the scrolling of the screen data or paper in the printer
by one character line. A LINE FEED is executed by sending an ATASCII character
number 10 (CTRL-J) to the handler device. A RETURN is a combination carriage
return and LINE FEED.

LINE NUMBERS - BASIC programs use line numbers to order the processing of
lines and statements. Lines can be entered in any order but they will be numerically

124

LINE MAKER

arranged after they are tokenized for interpretation. A renumber utility may be used to
spread out lines logically if there is no room left to insert new lines.

LI N E MAKE R - You can generate DATA statements automatically by writing the
statement on the screen and letting the program PRESS RETURN. The following pro­
gram will do this for you. LIST the line numbers you want to save to a file by using the
format LlST'D:TEMP.LST".1.1 00. This example saves the firs tl 00 DATA statements
to a temporary file.

20000 REM ** ABCS OF ATARI COMPUTERS
20010 REM ** PROGRAM: DATAGEN.BAS
20020 REM ** GENERATES DATA STATEMENTS
20030 REM ** AUTOMATICALLY. YOU JUST
20040 REM ** TYPE IN NUMBERS AND COMMA
S.
20050 REM **
20060 CLR :POKE 82,2:POKE 83,39:POKE 7
52,0:? CHRS(125):RESTORE 20180
20070 FOR A=1536 TO 1589:READ B:POKE A
,B:NEXT A
20080 ? CHRS(125):? :? "ENTER FIRST LI
NE #, INCREMENT": INPUT B,A
20090 B=INT(B):A=INTCA):IF B(1 OR B)29
999 OR A(1 OR A)9999 THEN 20080
20100 CLOSE #1:POKE 702,0:OPEN #1,4,0,
11K"
20110 ? CHRS(125):? :? :? B;" DATA ";
20120 GET #1,C:IF C=155 THEN 20150
20130 IF C=127 THEN POKE 702,64:GOTO 2
0080
20140 D=USRC1536,C):? CHRSCD);:GOTO 20
120
20150 ? :? "CONT":POSITION 2 , 0:POKE 84
2,13:STOP
20160 POKE 842, 12:B=B+A:IF B(30000 THE
N 20110
20170 CLOSE #1:STOP
20180 DATA 162,13,104,104,104,221,26,6
,240,10,202,16,248,133,212,169,0,133,2
13,96,189,40,6,76,13,6
20190 DATA 32,109,106,107,108,117,105,
111,98,110,103,104,116,121,48,48,49,50
,51,52,53,54,65,66,67,68,69,70
20200 CLOSE #1:? CHRS(125):? :? :FOR C
=31000 TO 31013:? C:NEXT C:? 32000:? 3
2001
20210? "CLR:POKE 842, 12:?CHRS(125)":P
OSITION 2,0:POKE 842, 13:STOP

125

LINK

LI N K - Disk files created under Atari DOS 2.0S and OS/ A + 2.X are linked files. At
the end of each sector in the file are three bytes which are used for control information
as to where to find the next sector in the file, the number of bytes in this particular sec­
tor, and the file number of this file according to the directory. The link is found in two
bytes of any sector, byte 126 and part of byte 125. There are 720 numbered sectors on
the disk so 10 bits are required to represent the sector number (eight in byte 126 and
two in byte 125). Nine bits would allow only 512 sectors to be addressed (2 to the 9th
power). Ten bits allow up to 1,024 sectors to be addressed (2 to the 10th power). Since
each byte is composed of eight bits, we must use two bits from another byte to get a
total of 10 bits. Of the 128 bytes per sector (256 in double density), three are used for
housekeeping; these are 125, 126, and 127. Bytes 125 and 126, located at the end of
every DOS file sector, are used for the link.

7 6

BYTE 125
BIT#:

543 2

FILE NUMBER (0 to 64)

1 o

MSB

7 6

BYTE 126
BIT#:

5 4 3 2

NEXT SECTOR - LSB

1 o

The next sector pointer is broken into two parts residing in two separate bytes. The
LSB (Least Significant Byte) is byte 126. This is a number between 0 and 255. An
ATASCII character representing the number will be found in this location when you
use a sector viewing utility such as Diskey or Diskscan. The MSB (Most Significant
Byte) is found in the two rightmost bits of byte 125. These two bits can represent the
numbers 0, 1, 2, or 3 by holding a 00,01, 10, or 11. The number in these bits is multiplied
by256 resulting in 0, 256, 512, or768. This number is added to the LSB number in byte
126 to get the next sector. Actually, there is no need for a 11 or 768 in the MSB because
the largest sector number is 720. Byte 125 still contains six other bits which are used for
a file number.

LIST (L.) - In BASIC, LIST is the command to print the program from memory to the
screen in the order of line numbers. Programs can be LISTed to other devices such as
the printer by using the format LIST"P:". A range of line numbers can be LISTed by
typing LIST" P:", 1 ,100. The range ofline numbers can be saved to another file by using
LlST"D:TEST",1, 100. The LISTed file is not saved as a tokenized file, but rather, as a
text file. The variable table is NOT saved when you LIST a program so this is a good
way to discard unused variable names.

LJ K DOS - Letter Perfect application software uses a DOS which is not compatible
with Atari DOS 2.0S. The disk layout is different which means that a conversion must
be done to interchange LJK files with Atari compatible files (Text Wizard, Atari
Writer, LISTed BASIC files, etc.). LJK DOS uses 128 bytes per sector with no sector
links. Sector 1 is used for the printer set up information. You can set this file up on one
disk and make multiple copies to other disks by copying only sector 1. Sectors 8 to 55
are ignored on a disk. The VTOC on an LJK file disk is on sector 362 as opposed to 360 on
an Atari DOS disk. The directory is located between sectors 363 and 371. LJK has a
conversion program file utility which allows you to load files from either Atari DOS
disks or LJK DOS disks and translate them into the other type.

126

LJK DOS

The following program will print out a listing of the directory of an LJK DOS disk.

100 REM ** ABCS OF ATARI COMPUTERS
110 REM ** BY DAVE MENTLEY * JAN. 1984
120 REM ** PROGRAM * LJKDIR.BAS
130 REM
140 DIM SECT$(44),A$(128),DIR$(512),Q$
(1)

150 TRAP 200
160 FOR B=l TO 44
170 READ C
180 SECT$(B,B)=CHR$(C)
190 NEXT B
200 ? CHR$(125):? "LETTER PERFECT DIRE
CTORY LISTER"
210 ? :? "INSERT DISK AND PRESS <RETUR
N>";:INPUT Q$
220 W=0:DIR$(1)=
230 FOR SECT=363 TO 368
240 REM
250 FOR 0=1 TO 128:A$(D,D)=" ":NEXT 0
260 REM ++ READ EXAMPLE ++
270 X=USR(ADR(SECT$),ADR(A$),SECT,O)
280 REM
290 DIR$(1+W)=A$(6~13):DIR$(9+W)=A$(22
~29):DIR$(17+W)=A$(38,45):DIR$(25+W)=A

$(54,61):DIR$(33+W)=A$(70,77)
300DIR$(41+W)=A$(86,93):DIR$(49+W)=A$
(102,109):DIR$(57+W)=A$(118,125)
310 REM **
320 REM ** PRINT
330 REM **
335 TRAP 395
340 W=W+64:NEXT SECT
350 LPRINT " LETTER PERFECT FILE 0
ISK":LPRINT
360 FOR 1=0 TO 511 STEP 32
370 LPRINT DIR$(1+I~8+I),DIR$(9+I,16+I
),DIR$(17+I,24+1),DIR$(25+I,32+I)
380 IF DIR$(26+I~28+1)=" II THEN 200
390 NEXT I
395 RUN
410 DATA 104,104,141,5,3,104,141,4,3,1
04
420 DATA 141,11,3,104,141,10,3,104,104
,201
430 DATA 1,208,7,169,87,141,2,3,208,5
440 DATA 169,82,141,2,3,169,1,141,1,3
450 DATA 32,83,228,96

127

LOAD MEMORY SCAN

LOAD M EMORY SCAN - One of the important registers in the ANTIC chip is the
"Memory Scan register." This register points to lists of characters or bit mapped
graphics data in memory. This register is written only by the ANTIC's own DMA. Very
simply, the LMS tells the ANTIC where in memory to go to find the data to write to the
screen. The LMS instruction requires two more bytes to specify the memory starting
point. In the display list, the LMS is enabled by setting the sixth bit of the LMS instruc­
tion. This is equivalent to adding 64 (decimal) to the instruction or specifying a $40 as
the first nibble of the instruction byte. The second nibble is used to specify the graphics
mode. For example, the portion of display list instructions listed below:

42, 00, 80 (HEX) or
66, 0, 128 (DECIMAL)

means LOAD MEMORY SCAN with the address that follows, and set up for ANTIC
mode2 (BASIC GR.O). Get screen data from memory location starting at $8000 (32768).

LOAD (LO.) - In BASIC, LOAD is the command used to transfer tokenized (SAVEd)
BASIC programs into the computer's memory. Programs can be LOADed from the
disk drive or cassette recorder. The format for using LOAD is LOAD"D:FILE" or
LOAD"C:". The long IRG mode is used with cassette LOADs.

LO BYTE/H I BYTE - The LO BYTE/HI BYTE technique for specifying memory
locations is sometimes confusing to the new user. The 6502 processes addresses in the
LO/HI format but the natural way of looking at a number is HI/LO. To understand the
difference, we must.look at the way hexadecimal numbers are used to denote addresses
in memory.

By using two 8 bit bytes for an address location we have a possible 65,536 different
locations. This number is derived from 2 to the 16th power. Since each bit can be 0 or 1,
and the address is composed of a series of16 bits, 2 to the 16th is the number of different
locations available. This number, 65,536, can also be represented by 256 x 256. A byte
(eight bits) can represent from 0 to 255 numbers for a total of 256. If we use two bytes
(16 bits), we can again address 65,536 different locations.

BITS
15 14 13 12 11~ 10 9

~ I
7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1

BYTES
F F I F F

DECIMAL
255 I 255

A simple example of the HI/LO format is as follows. Page 6 is the area of memory where
BASIC will not usually erase or overwrite your data. Page 6 is the sixth block of 256
bytes from the bottom of memory. This area starts at location 1536 (6 x 256). In hex-

128

LOCATE

adecimal, this location is $0600. The two bytes comprising the address are 06 and 00.
The first byte (06) is the HI BYTE and the second byte (00) is the LO BYTE. To get the
decimal value, multiply the HI BYTE by 256 and then add the LO BYTE. For page
numbers, the LO BYTE is always 00 or 0, so there is no addition. The confusion comes
with the way the 6502 processes addresses. Instead of 06 00, the addresses are pro­
cessed in the order 00 06, or LO BYTE/HI BYTE.

LOCATE - In Atari BASIC, LOCATE is the functional equivalent of a POSITION
followed by a GET command. LOCATE positions the cursor at a specified x,y coor­
dinate on the screen and assigns the value of the byte for that data to a specified vari­
able. The format is LOCATE X,Y,var where X is the horizontal pixel location on the
screen, Y is the vertical pixel location, and "var" is the variable name you assign. A
number between 0 and 255 is returned in GR. 0, 1, and2. Getting data from the screen in
this way can change the data you are examining. Another way of getting data from the
screen is to find the beginning of screen memory (just below PEEK(106)*256), calcu­
late the position of the character position you want to get, and PEEK it.

LOCK - In Microsoft BASIC II, the LOCK command performs the same function as
the Lock File command in Atari DOS. The LOCKed file cannot be deleted unless of
course the disk were erased or formatted.

LOCKED FILE - The F option in Atari DOS is used to LOCK a file. The LOCK
inhibits the DOS from deleting or rewriting data to the file. You cannot SAVE a file
with the same name as a LOCKED FILE. In Microsoft BASIC II, the LOCK command
will lock a file. Even a LOCKED FILE will be destroyed during the formatting of a disk.
From Atari BASIC, the XIO command XIO 35,#1,0,0,"D:FILE" will LOCK the file
called FILE.

LOG - In BASIC, LOG returns the natural logarithm of a positive number.

LOGICAL LINE - A LOGICAL LINE in BASIC consists of up to 128 characters
which fill an input buffer used by the BASIC cartridge. Around three physical lines
comprise a LOGICAL LINE. By using abbreviations (such as SE. for SETCOLOR),
you can exceed three physical lines (120 characters) in a program and still safely con­
struct a very long LOGICAL LINE.

LaM EM - The locations 128 and 129 ($80 and $81) comprise a pointer to an area of
memory at the bottom of BASIC's memory and at the top of the OS RAM. This area is a
token output buffer of 256 bytes in length. Without DOS booted, LOMEM contains
1792 ($0700). With DOS booted, the value is 7420 ($1CFC). Other buffers and handlers
increase the value in LOMEM. You can lift up LOMEM and put your own programs
here so that they will be safe from destruction. The RS232 device handler and the disk
drive buffers raise LOMEM and take away from free memory.

LOMEM - In BASIC XL, LOMEM allows you to reserve memory below the normal
BASIC program area. In most cases, it is more desirable to use the top of memory as a
reserved area. The LOMEM command will wipe out any program in memory.

129

LOUDNESS

LOUDNESS - The volume of a sound generated by the SOUND statement is
specified in the fourth argument in the statement. SOUND V,F,D,L is the format where
L is the LOUDNESS value which ranges from 0 to 15. If the sum of all four VOLUME
values for the four voices is above 32, distortion will result. The LOUDNESS is con­
trolled by the low four bits of the A UDCl through A UDC4 registers located from 53761
to 53767 ($D201 to $D207).

BIT NUMBER

7 6 5 4 3 2 1 o

DISTORTION VOL LOUDNESS

LPR I NT (LP.) - LPRINT is used to send results or variable values to the P: device
(the printer). If no printer is attached and working when an LPRINT command is
executed, an ERROR 138 will result An LPRINT statement will clear the cassette buf­
fer before the cassette recorder is used. Ignore the error which is generated.

When you use LPRINT, you send out a full 40 characters, even if only one character is
being sent The rest of the characters are blanks. In order to send or PUT just one
character, you must OPEN an IOCB and PRINT the character to the channel. For
example, OPEN =ll=7,4,0,"P:":PRINT =ll=7,X will send the value of X to the printer
(P: device).

LSB - Least Significant Byte. Memory addresses need two bytes to include all avail­
able locations in the Atari system. Just as decimal numbers have more significant
digits and less significant digits, hexadecimal addresses have more and less significant
parts. In a decimal number such as 123, the 3 is the least significant digit Increasing
the 3 to a 4 only adds 1 to the value of the number. The 1 in the number 123 is the most
significant digit. Increasing the 1 to a 2 adds 100 to the number (223).

Hexadecimal addresses are comprised of two bytes, a high byte and a low byte. The
high byte is the most significant part. The low byte is the least significant part. Let us
look at a number like $0600. This commonly seen in reference to page 6. The high byte
or MSB is 06 and the low byte or LSB is 00. To convert to decimal we must multiply the
high byte by 256 and add the result to the low byte. $0600 is 06 X 256 plus 00 or 1,536 +
0= 1,536. Each byte can be expressed as a number from 0 to 255 by using hexadecimal
digits 00 to FF. A confusing issue regarding hexadecimal addresses is that we look at
them and read them "high byte, low byte," but most programs and assemblers call for
the addresses by "low byte, high byte."

LS 1- Large Scale Integration. This term refers to the number of devices that are built
into a single silicon chip, such as a microprocessor. LSI refers to chips with between 100
and many thousands of logic gates per chip. Higher degrees of integration are referred
to as Wafer Scale Integration (WSn or Ultra Scale Integration (USn. Medium Scale
Integration (MSn and Small Scale Integration (SSn were the precursors of LSI.

130

LUMINANCE

LUMINANCE - LUMINANCE or brightness of a playfield is determined by the
four rightmost bits of the color registers, 708 -712 ($2C4 - $2C8). Brightness, technical­
ly, is the way your eye and brain interpret L UMIN AN CE, however the terms are often
used interchangeably. LUMINANCE is a part of color and the other part, the hue is
determined by the four leftmost bits. LUMINANCE can be any even number between 0
and 14 (eight choices), with 14 being the brightest. The value of LUMINANCE can be
added to the value for the hue multiplied by 16, and the result POKEd into the color
register. The SETCOLOR command uses a value for LUMINANCE in its third argu­
ment (SETCO LO R R, H, L where R is the color register from 0 to 4, H is the hue from 0 to
15, and L is the LUMINANCE, an even number from 0 to 14.

D7 D6

HUE

COLOR REGISTERS
D5 D4 D3 D2 D1

LUMINANCE

DO

NA

LVAR - In BASIC XL, LVAR generates a list of all variables in a BASIC program.
The line number on which the variable is used is also listed. The output can be sent to
any device or filespec (P:, E:, D:filename). This is similar to the V function in the Mon­
key Wrench cartridge by Eastern House and also to the variable lister program in the V
section of this book.

M
MACE - Michigan Atari Computer Enthusiasts. MACE is one of the largest Atari
Computer users groups in the world. MACE publishes a newsletter/journal which is
somewhat like a magazine. The MACE Journal is usually over 30 pages of critical
hardware reviews, programs, software reviews, and Atari world news. The MACE
library has many disks of public domain software available only to members (journal
subscribers). The address is: Michigan Atari Computer Enthusiasts, P.O. Box 2785,
Southfield, MI 48037.

MAC HI N E CO D E - The 6502 processor in the Atari computer takes its instructions
in machine code. Machine code is usually generated by an assembler, such as the
Assembler/Editor cartridge, but you can program directly in machine code if you like.
The instructions are comprised of an opcode (operations code) and an address. The
opcodes work on the registers which are called the Accumulator, the X register, and the
Y register. Programs simply load numbers into the registers, jump to certain locations
in memory, change the value in the register, or compare two numbers. The following
summary describes some of the basic opcodes and their actions.

OPCODE

20 LO HI

FORM

JSR oper -Jump to SubRoutine at location HI LO and start execu­
tion. Once at the subroutine at HI LO, occurrence of the opcode 60
will return to the main program. Uses three bytes and six machine
cycles.

131

MACHINE CODE

OPCODE

60

FORM

RTS - ReTurn from Subroutine described above. Uses one byte
and six machine cycles.

CA DEX - Decrement the value in the X register by 1. Uses one byte and
two machine cycles.

E8 INX - Increment the value that is in the X register by 1. Uses one
byte and two machine cycles.

various LDA - LoaD the Accumulator with memory. The number which is to
be loaded into the Accumulator can be an immediate number or it
can come from a memory location. If LDA is used from memory, it
can be from the Zero Page, absolute locations, or from a location
indicated by pointers. Uses two or three bytes and two to six
machine cycles.

various LDX - LoaD the X register with the memory. All numbers loaded
into the registers must be in hexadecimal. Works like LDA, but
without the indirect modes. Uses two or three bytes and two to four
machine cycles.

4C LO HI JMP - JuMP to new location HI LO and start program execution
there. There must be a workable program located at HI LO for this
JuMP to work. JMP can also be used in the indirect mode where the
location is pointed at. This mode must be used for relocatable code.
Uses three bytes and three machine cycles (five in indirect mode).

various LO HI STA - STore the contents of Accumulator into memory location HI
LO. HI LO can be any writable location in the computer in zero
page, absolute, or indirect mode. Uses two or three bytes and three
to six machine cycles.

AA TAX - Transfer the Accumulator to the X register. Uses one byte
and two machine cycles.

8A TXA - Transfer the value which is in the X register to the Accumu­
lator. Uses one byte and two machine cycles.

vanous CPX - ComPare the value of the number in the X register with
memory. Memory can be an immediate number, a zero page byte, or
an absolute memory location. The result of the comparison will be
that the value is either equal or not equal to the compared number.

DO YY BNE - Look at the previous test (CPX). Branch back YY locations if
the results were not equal. Uses two bytes and two machine cycles.
If branch is to the same page, add one extra machine cycle. If branch
is to another page, add two machine cycles.

132

MACHINE CYCLES

MACHINE CYCLES - The 6502 processor in the Atari computer executes its
instructions one step at a time. The processor is timed by a clock which pulses 1.79
million cycles (two color clocks) per second. Depending on the type of addressing
required, each instruction requires several cycles of the processor to complete. Two
cycles are used if no branch is taken (if the instruction is in the load IMMEDIATE
mode). Three cycles are used if a branch is taken to fetch or store data in the ZERO
page. Four cycles are used if the instuction is an ABSOLUTE mode requiring a two
byte address and use of the X or Y register. Five cycles or more are used for an
INDIRECT mode instruction in which an address for read/write is found in another
address. The steps occur as instructions in the microprocessor are executed. See
MACHINE CODE. There are less than 28,558 machine cycles per frame displayed on
the screen. At least another 1,130 cycles are used for DMA refresh (getting the data
called for by the display list, getting player or missile data, etc.) This gives a total of
29,868 cycles perframe. In GR.O, 8,672 cycles are needed to fetch the screen data to put
the character data up.

MAPPING THE ATARI by Ian Chadwick. This memory map and guide to the 400
and 800 computers is a very complete and accurate source for the curious programmer.
N early every memory location is described, and many applications are provided to
experiment with changes in the system. COMPUTE! Books.

MARK - In modem telecommunications, the term MARK is used to designate a low
signal. The low (as opposed to high) is interpreted as a logical "1". The lows and highs
are derived from the shifting of frequencies by the modem in response to data coming
from the computer.

MASK - A MASK is a technique for inputting data into a program in which you are
only allowed to type in certain fields on the screen or in which you can only type certain
characters, such as numbers, etc. MASKing helps make a better user interface between
the program and the operator. You can build a screen MASK by using POSITION and
INPUT statements.

MATRIX - A matrix is a multidimensional array of numbers. Atari BASIC supports
only a two dimensional matrix. Variables in a two dimensional matrix are arranged
logically in rows and columns. The value of the element stored at each row and column
intersection is identified by a double subscript, such as ITEM(A,B). The following is an
example of a hypothetical matrix of numbers:

MACHINE NUMBER
1 2 3 4 5 6 7

D 1 23 34 34 45 34 34 55

0 2 33 23 44 34 23 43 44
L
L 3 33 54 43 43 33 22 43
A
R 4 11 22 32 33 43 11 21
S

5 54 43 32 23 11 23 44

5 X7 MATRIX

133

MAZE GAMES

MAZ E GAM ES - One of the most popularfads to hit the home computer market was
the maze game. Pac-man, Serpentine, Jawbreaker, Taxman, Ms. Pacman, and Ghost
Hunter are a few examples of these games in which the theme is to chase around a maze
while" eating" dots.

MEDIA - In computer terms, MEDIA usually refers to magnetic storage MEDIA.
These are floppy disks, cassette tapes, or stringy floppies. The MED IA are plastic films
coated with a film of iron oxide particles which can be magnetized, thus enabling them
to store data. The head of the storage device (disk drive or cassette deck) reads and
writes the data as the MEDIA is moved past the head. Magnetic MEDIA will retain
data for many years if they are not subjected to intense magnetic fields, such as from a
speaker magnet or motor, but they will eventually wear down from abrasion and thus
should be backed up.

MEGAH ERTZ - One MEGAHERTZ is a unit of measurement for frequency equal
to one million cycles per second. A signal, such as the clock signal to the microprocessor
or the signal to the television, is made to vary at several MEGAHERTZ.

MEM.SAV - The MEM.SAV (pronounced mem-save or mem-dot-save) file is a file
name reserved for disk files which store the contents of the Atari program memory
when the DOS utility or DUP.SYS package is called in. The MEM.SAV file must be on
the disk (listed in the directory) in order to use this utility. The N option in DOS 2.0
creates MEM. SA Von the disk. The data in the MEM. SA V file will be transferred back
into computer memory when you leave the DUP menu. This is a time consuming
process.

MEMO PAD MODE- The Atari 400 and 800 computers have aMEMO PAD MODE
which allows you to type on the keyboard and leave messages on the screen. No other
input or output is allowed. This feature is useful for testing the editor or for a demon­
stration for small children. The screen dump utility called Printwiz (from Allen
Macroware) makes use of the MEMO PAD MODE by allowing screens to be built-up
without the ubiquitous ERROR messages from BASIC, and then permitting a dot for
dot dump of the screen. Typing BYE (while in BASIC) gets you into the MEMO PAD
MODE. The XL series uses BYE to enter the diagnostics mode, and does not have the
MEMO PAD MODE.

MEMO RY - MEMORY, or RAM, is the part of the computer which stores programs
and allows them to RUN. Much of the computer's memory is used for things such as
procedures for what to do when a key is pressed, how to add numbers, how to take the
square root, etc. Other parts are used for handling disk drives and modems. The
interesting part is the FREE RAM which varies with the amount of memory chips you
have installed. If you have 48K installed, you will get a chunk of memory about 37K
bytes long into which you can load and run your programs. Memory is assigned by two­
byte values from 0000 to FFFF (hex) or 0 to 65,535 (decimal). The lower and upper
memory locations remain the same for all computers but some parts in the middle differ
depending upon: how much RAM you have installed, which graphics mode you are in,
whether or not DOS is loaded in, or whether or not the RS-232 handler is booted in. See
a memory map to get an idea of the structure of the Atari memory.

134

MEMORY

Memory is organized into "pages" which are blocks of 256 bytes each. There are 256
pages of 256 bytes. The page number is the first byte of the address. For example, the
location $08 FF would be located in page 8. Location $9F 33 would be located in page
9F. Page 6 which is located between locations $06 00 and $07 00 (1536 and 1792
decimal) is one fairly protected area where the user can place strings and short
machine language routines. The following program is designed to allow you to PEEK
at the contents of memory. Use the joystick to page through. The trigger resets you
back to page O. Moving right or left moves one byte at a time. The keyboard can also be
used to move through memory in this program. Use the period (.) to reset to page O. The
less than «) and greater than (» keys move through the pages and the hyphen (-) and
equal sign (=) keys move a byte at a time.

10 REM *****************************
20 REM *** MEMORY WINDOW ***
30 REM *** ABCS OF ATARI ***
40 REM *** COMPUTERS ***
50 REM *** PROGRAM: WINDOW. BAS ***
60 REM *****************************
70 GRAPHICS O:TRAP 270:POKE 16,64:POKE

53774,64:POKE 82,0:POKE 83,30
80 POKE 752,1:POKE 559,33
90 FOR A=1536 TO 1563:READ B:POKE A,B:
NEXT A
100 DLST5=1540:DLST6=1541
110 SCRLO=PEEK(88):SCRHI=PEEK(89)
120 POKE DLST5,SCRLO:POKE DLST6,SCRHI
130 POKE 1552,SCRLO:POKE 1553,SCRHI
140 MEM=SCRHI*256+SCRLO
150 POKE 560,0:POKE 561,6
160? CHR$(125):? II current mem
ory=u:? MEM;u TO u;MEM+256
170? II PAGE= U;INT(MEM/256)
180 IF STRIG(O)=O OR PEEK(764)=34 THEN

MEM=O:POKE 764,0
190 IF STICK(0)=14 OR PEEK(764)=55 THE
N MEM=MEM+256:POKE 764,0
200 IF STICK(0)=13 OR PEEK(764)=54 THE
N MEM=MEM-256:POKE 764,0
210 IF STICK(0)=7 OR PEEK(764)=14 THEN

MEM=MEM+l:POKE 764,0
220 IF STICK(0)=11 OR PEEK(764)=15 THE
N MEM=MEM-l:POKE 764,0
230 IF MEM<O OR MEM)65280 THEN MEM=652
80
240 MEMHI=INT(MEM/256):MEMLO=MEM-256*M
EMHI
250 POKE DLST5,MEMLO:POKE DLST6,MEMHI
260 GOTO 160

135

MEMORY MAP

270 RUN
280 DATA 112,112,112,66,0,0,2,2,2,2,2,
2,2,0,0,71,0,0,0,2,7,7,7,2,6,65,0,6

M EMORY MAP - A MEMORY MAP is a listing of important memory location and
their functions. Atari memory is laid out in a linear format with 65,536 locations num­
bered from 0 to 65,535. Some of the locations are not used, especially if you have less
than 48K of RAM installed in your computer. The locations are grouped into certain
blocks for very specific functions. Each location within the computer is important.
Atari, Inc. has not published a comprehensive memory map, but several maps are
available from outside sources. The best by far is a book called MAPPING THE
ATARI, by Ian Chadwick (published by Compute! Books). You must have a good
MEMORY MAP in order to write machine language programs. The BASIC language
relieves you of most of the trouble of understanding the memory layout but it also pro­
hibits you from taking advantage of some of the excellent features of the Atari
computer.

MEMORYTESTER- A MEMORY TESTER is a program which writes some data
into each available bit of free memory and reads and checks it to make sure that it will
hold the correct data. While semiconductors such as the RAM chips in personal com­
puters are very rarely known to fail if they pass their first burn-in, it is a good idea to
test your memory if you get persistent program failures. The following program is a
simple MEMORY TESTER you can type in to check your free memory. This program
runs very slowly, so let it run while you go and do something else.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** PROGRAM: MEMTEST.BAS
30 REM ** FROM PORTLAND ATARI CLUB.
40 REM
50 DIM HEX$(2):APPMHI=256*PEEK(15)+PEE
K(14)+32:SDLSTL=256*PEEK(561)+PEEK(560
)

60 ? CHR$(125);"MEMORY TEST":?
70 ? "YOU CAN TEST BETWEEN LOCATIONS "
:? APPMHI;" AND ";SDLSTL:?
80 ? "ENTER LOW ADDRESS, HIGH ADDRESS"
:? : INPUT LO~HI:SEED=-85
90 IF (LO<APPMHI) OR (HI>SDLSTL) THEN
?
100 FOR TEST=1 TO 4:SEED=SEED+85:A=SEE
D:GOSUB 210:? :? "WRITE ALL $";HEX$
110 FOR ADDR=LO TO HI:POKE ADDR,SEED:N
EXT ADDR:? "READ AND VERIFY ... ";
120 FOR ADDR=LO TO HI:A=PEEK(ADDR):IF
A<>SEED THEN GOSUB 210:? ADDR,HEX$;CHR
$(253)
130 NEXT ADDR:? " OK":NEXT TEST
140? :? II WRITE $55 AND $AA ... "

136

150 FOR ADDR=LO TO HI STEP 2:POKE ADDR
,85:POKE ADDR+1,170:NEXT ADDR:? "WAIT •
•. ";:FOR 1=1 TO 10000:NEXT I
160 FOR ADDR=LO TO HI STEP 2:A=PEEK(AD
DR):IF A<>85 THEN GOSUB 210:? ADDR,85,
HEX$; CHR$ (253)
170 A=PEEK(ADDR+l):IF A<>170 THEN GOSU
B 210:? ADDR+1,170,HEX$;CHR$(253)
180 NEXT ADDR:? "MEMORY OK":? CHR$(253
);:FOR 1=1 TO 200:NEXT I:? CHR$(253)
190? "MORE";: INPUT HEX$:IF HEX$="Y" T
HEN 60
200 END
210 B=INT(A/16)+48:IF B>57 THEN B=B+7
220 C=A-INT(A/16)*16+48:IF C>57 THEN C
=C+7
230 HEX$(1.1)=CHR$(B):HEX$(2,2)=CHR$(C
) : RETURN

MEMTOP

MEMTOP - MEMTOP is the name of the memory pointer which holds the value of
the top of the BASIC memory area. MEMTOP is located at $90 and $91 (144 and 145
decimal). Try PRINT PEEK(144) + PEEK(145)*256 to find the value ofMEMTOP
after you have loaded in a program.

MEN U - A MENU is a program which gives a user several choices of action, each
chosen by either a number, a letter, or a small number of keypresses.The following
MENU is a very fast running program which you can use for your Atari DOS disks. It
will load and run a program from disk if it is aBASIC SA VEdfile. Use the AUTORUN.SYS
maker program to make an auto-booting loader for the MENU by calling this file
MENU and typing D:MENU as the file to run when prompted.

200 REM ** PROGRAM NAME: MENUFAST
210 REM ** ABCS OF ATARI COMPUTERS
220 REM ** PUBLIC DOMAIN PROGRAM
230 REM
240 GRAPHICS O:OPEN #2,4,0,"K"
250 DIM FILENAME$(23*17),FILE$(17),F$(
20)
260 OPEN #1,6,0,"D:*.*"
270 TRAP 440
280 FOR X=l TO 64
290 INPUT #l,FILE$
300 IF FILE$(5,16)="FREE SECTORS" THEN

330
310 ? CHR$(64+X);" ";FILE$:FILENAME$(
(X-l)*16+1, (X-l)*16+16)=FILE$
320 NEXT X
330? :? "TYPE LETTER"

137

MERGE

340 GET #2,A:A=A-64
350 FILE$=FILENAME$«A-1)*16+3, (A-1)*1
6+13)
360 F$="D:"
370 FOR X=l TO 8
380 IF FILE$(X~X)=" ,. THEN 410
390 F$(LEN(F$)+l)=FILE$(X,X)
400 NEXT X
410 F$(LEN(F$)+l)="."
420 F$(LEN(F$)+1)=FILE$(9,11)
430 RUN F$
440 END

ME RG E - In Microsoft BASIC, MERGE is the equivalent of ENTER in Atari
BASIC. Only LISTed programs can be called from disk ortape to be MERGEd with the
program in memory. Existing line numbers will be overwritten. New line numbers will
be placed in order in the new program listing.

MERGE (MAIL MERGE) - MAIL MERGE is a term borrowed from MicroPro,
creator of Wordstar, the top selling word processing program for CP/M computers.
MAIL MERGE refers to the process of taking a mailing list of names and addresses
and creating a series of form letters with customized addressees from the list. LJK's
Letter Perfect and Data Perfect are capable of doing this on the Atari computer.

MERGE FILES- In BASIC, files can be merged by LOADing, ENTERing, ortyp­
ing in one program, and then ENTERing another BASIC program on top of it. Dupli­
cate line numbers will be replaced and new one will be ordered. In LJK'S Letter
Perfect, the MERGE function actually appends a file to the one in memory. It is not a
true MERGE utility.

MICRODOS - Short (two sector) utility which resides in page 6 and allows many
functions of the DUP.SYS without loading in DUP.SYS. It was originally published in
the July 1982 edition of Compute!. DOS is modified so that DOSVEC points to page 6
instead of its normal location. Anytime you type DOS from BASIC, you will get the
MicroDOS without loading a file from disk. Utilities included are Lock, Unlock, Delete,
Rename, Format, Menu (Directory), DOS (real DOS), and BASIC.

MICROSOFT BASIC - The first implementation of BASIC on a microcomputer
was done by William Gates of Microsoft, Inc. Microsoft has become a widespread stan­
dard on TRS-80s, Apples, and other popular micros. Atari has licensed a version of
Microsoft for Atari Home Computers called Microsoft BASIC II. While there are some
very useful features in Microsoft BASIC, there are some drawbacks. On the positive
side, strings are handled very easily. Some of the DOS functions are implemented by
keyword commands. Some utilities, such as renumbering, are implemented. On the
negative side, the Microsoft BASIC II cartridge does not check for syntax errors when
you press RETURN as does Atari BASIC; you have to wait until you RUN the program
or else trace it for errors; the 16K cartridge is not large enough to handle all of the
features necessary, so an additional disk is needed to load in some routines.

138

MID$

Microsoft BASIC will allow you to type in and run programs (with little modification)
written for other computers. If the program uses extensive custom graphics screens, it
will be a difficult jo b to make the modifications, but if the program is a financial or busi­
ness program, there should be a minimal number of discrepancies.

M I D$ - In Microsoft BASIC, MID$ pulls out a substring from a larger string and
assigns its value to a new variable. The original string, the first character position, and
the number of characters desired must be specified. EXAMPLE: X$=MID$(Y$,4,6)
will pull out the fourth through the ninth characters of string Y$ and assign them to a
string called X$.

M 1551 LE - A missile is a two bit wide image in memory which can be controlled and
made to collide with the playfield and players for animation, particularly for shoot' em­
up games. There are four missiles which can be combined to form a fifth player by set­
ting bit 4 (adding 16) to memory location $26F (623). Missiles have their own position,
collision, and color registers, just as the players do. The main difference is that instead
of being eight bits wide as the players are, missiles are only two bits wide.

M 1551 LE - In BASIC XL, the MISSILE statement sets up the position and height of
a missile. The format for the statement is MISSILE player#:, exp1, exp2, where
player#: is the number of the parent player which is to shoot (1 to 4), exp1 is the vertical
position from the top of the screen for the missile, and exp2, is the vertical height of
the missile.

MODE LINE - AMODE LINE is a group of scan lines on the TV screen. Depending
upon the graphics mode, a mode line varies in composition from 1 to 16 scan lines per
mode line. The display list sets up the composition of the screen.

ANTIC BASIC Scan Lines/
MODE MODE Mode Line

2 0 8
3 10
4 8
5 16
6 1 8
7 2 16
8 3 8
9 4 4
A 5 4
B 6 2
C 1
D 7 2
E 1
F 8 1

MOIRE PATTERN - In high resolution graphics modes 7 and8, a pattern of curved
interference lines is generated from closely drawn lines on the screen. Sometimes extra
colors from artifacting will be seen. This pattern is called a MOIRE PATTERN.

139

MONITOR

MON ITOR - A television monitor is a CRT which displays the image generated by
the computer for your eye to receive and your brain to interpret. A monitor is a televi­
sion without the receiver, but it is typically able to accept much more information, more
quickly than a TV. The 5 pin DIN plug on the Atari 800 allows you to connect the com­
positevideo signal to a color monitor (such as the Commodore 1702). The XL series also
has the 5 pin DIN plug, but the chrominance signal is not connected, so your color
monitor can only be used in a black and white mode.

MONITOR - A machine language MONITOR is a program which can display and
modify memory locations. A MONITOR can often disassemble a program resident in
memory, sometimes even while the program is running (or very recently shut off). The
Monkey Wrench by Eastern House, Atmona by Elcomp, Omnimon by David Young,
KDOS by KByte, Atari Assembler/Editor by Atari, Synassembler by Synapse, MAC
65 by OSS, and Action! by OSS are, or contain, MONITOR routines.

MOVE - In Microsoft BASIC, MOVE is used to transfer the contents of a block of
memory to a new location in memory. The format to use MOVE is:

MOVE FIRSTADR.2NDADR.NUMBYTES

where FIRSTADR is the decimal address of the start of the block to be moved,
2NDADR is the address to which the block is to be MOVEd, and NUMBYTES is the
number of bytes to be moved. This command is designed to move players vertically on
the screen.

MOVE - In BASIC XL, the MOVE statement will move any number of bytes to any
address at machine language speed. You could move important data into an area
where it will be no good or you could mess up the Operating System memory and crash
the system. The format for MOVE is:

MOVE STARTFROM. STARTTO. NUMBYTES

where startfrom is the starting address of the block you want to move, startto is the
starting address of the place you want to move to, and numbytes is the length of the
block to move. If numbytes is negative, the block will be transferred from the top down
as opposed to from the bottom up.

MSB - Most Significant Byte - The MSB of an address is the first byte or the page
number. This corresponds to the leftmost part of the address. For example, in the
address $0700, the MSB is 07. In the address $FF AB, the MSB is FF. Many assemblers
and machine language routines use the format LSB, MSB which may be confusing to
the beginning programmer. This is intuitively opposite of the way we normally think of
numbers. The notation LSB/MSB or LO/HI is often used to remind you of the order.

140

MI,JS!CPROGRAMS

MUSIC PROGRAMS - One of the superior features of the Atari computer is its
music making capabiltity. The first software to demonstrate this power was the Music
Composer cartridge from Atari. It has complex editing commands and produces only
square wave tones. This limits its attractiveness. The Advanced Music System from
APX is truly more advanced. Its range is 5Y2 octaves, and the attack and decay of the
notes can be adjusted. The Music Construction Setfrom Electronic Arts promises to be
the easiest music system to use to date.

N
NAM E ... TO - In Microsoft BASIC, the NAME .. TO function is the equivalent of
the rename option in Atari DOS. It is available only on the extension disk.

141

NARROW PLAYFIELD

NAR ROW PLA YF IE LD - The NARROW PLA YFIELD is only 32 characters wide.
It is useful for formatting certain types of utilities or games. (See the Memory Window
program under MEMORY for an example.) The NARROW PLAYFIELD is enabled by
setting bit 0 and 1 with a zero (0) in $22F (559 decimal). POKE 559,33 will enable the
NARROW PLAYFIELD in BASIC. Bit 5 must be set in order to see the screen,
therefore you must always add 32 to your POKEs to location 559. Only 128 color clocks
are used on a scan line in the NARROW PLAYFIELD mode.

NESTING - DO loops, FOR-NEXT loops, and parentheses can be nested. NEST­
ING refers to the placement of a loop inside of another loop so that completion of the
inner loop is required for the outer loops to be completed. Nested loops slow down even
simple programs and can be used for timers. Try this example of a nested loop:

10 FOR OUTER=1 TO 50
20 PRINT OUTER
30 FOR INNER=1 TO 50
40 PRINT OUTER+INNER
50 FOR TIME=1 TO 1000:NEXT TIME
60 NEXT INNER
70 NEXT OUTER

Lines 10 and 70 constitute the OUTER loop. Lines 30 and 60 comprise the INNER loop.
Line 50 is a nested dummy loop which just burns up time, slowing down the program.

NEW - In BASIC, the NEW command deletes any BASIC program resident in RAM.
All variables are deleted from the variable name table and all sounds are shut off.
Machine language routines which may have been stored in memory are usually not
affected.

NEXT (N.) - In BASIC, NEXT is the required second half of the FOR/NEXT loop.
NEXT is used to increment the variable named in the FOR statement. For every FOR
there must be a NEXT and vice versa. An ERROR 13 will be generated if there is no
FOR to pair with every NEXT.

N M 1- N o,n Maskable Interrupt. ANon Maskable Interrupt is an interrupt call which
must be processed by the 6502. The only way the 6502 can ignore an NMI is if the non­
maskable interrupt enable bit (NMIEN) is 0 (see NMIEN). In the Atari 800, the NMI
pin on the 6502 processor is connected to the ANTIC chip and it can be pulled by the
NMIEN bit on the ANTIC. ANTIC generates Vertical Blank and Display Instruction
NMI's and the SYSTEM RESET button on the console feeds through ANTIC to this
pin as well when a W ARMSTART is forced. The Display List Interrupt and the Verti­
cal Blank Interrupt are NMls; that is, they must be executed when the 6502 encounters
a call to the interrupt. See De Re Atari for a good explanation of interrupts.

NMIEN - Location $D40E (54286 decimal) is the Non-Maskable Interrupt Enable
byte. Only bits 5, 6, and 7 are used in this byte. Setting bit 7 (adding 128) will enable the
Display List Interrupt. Setting bit 6 (adding 64) enables the Vertical Blank Interrupt.

142

NORMAL PLAYFIELD

Setting bit5 (adding 32) enables the RESET key interrupt. The DLI and VBI bits must
be set to 1 after each reading for the interrupt to occur.

NORMAL PLA YFI ELD - Location 559 ($22F) controls the width of the playfield.
Setting bit DO to zero (0) and bit D1 to one (1) will return to the normal 40 character
playfield. The default value of location 559 is 34. That is 32 for enabling the DMA fetch
and 2 for NORMAL PLA YFIELD. The sum is 34, which is the default value on power-up.

Try these POKEs:

POKE 559,33 for a Narrow Playfield
POKE 559,34 for a Normal Playfield
POKE 559,35 for a Wide Playfield

10 IF PEEK (53279) =3 THEN POKE 559,33
20 IF PEEK (53279) =7 THEN POKE 559,34
30 IF PEEK (53279) =6 THEN POKE 559,35
40 GOTO 10

Type in this short program and then type RUN. Press the START, SELECT, and
OPTION console keys to see the different playfield widths. PEEK(53279) looks for a
console key depression.

NOT - NOT is a Boolean operator in BASIC. Boolean algebra works only on 1 sand
Os. NOT 0 will produce a 1. NOT (A=B) will produce a 0 if A=B (if it is true that A
equals B). The same expression will produce a 1 if A is not equal to B. There are several
bugs in Atari BASIC associated with NOT. PRINT A = NOT B will send your computer
to N ever-Never land.

NOTE (NO.) - In Atari BASIC, NOTE is used to retrieve the sector and byte num­
bers pointed to by a POINT statement. This information can be used to go to a specific
location (sector) on a disk and retrieve specific bytes (byte count). NOTE works
through a channel called an IOCB which must be OPENed for use.

NOTE - In Microsoft BASIC, NOTE is used to store the sector and byte values for the
location of the file pointer into a variable named in the command. The NOTE routine
must be loaded in from the extension disk. No POINT statement is used in conjunction.

NOTE AN D POI NT - The NOTE AND POINT scheme is a method of manipulating
a pointer to a specific sector and byte on a disk. The position of the pointer is the place
where the next byte or bytes will be read from or written to. POINT is used to position
the pointer and NOTE is used to find out where it was positioned by the last POINT
st atement. NOTE AND POINT allows true random access to a disk. If the values for
NOTE AND POINT are stored along with a keyword index, you can build a powerful
data base manager.

143

NTSC

NTSC - National Television Standards Committee. NTSC refers to a standard for
sending data to a television receiver. It defines the frequencies and signal stucture of
the data used to produce color images on a television. NTSC is used for all broadcasts in
the United States, Canada, Mexico, the Western part of South America, Japan, and
Korea. The Atari computers sold in the U.S. are NTSC versions. NTSC specifies 525
scan lines per screen and 30 frames per second. Western European Ataris are designed
to work with the PAL (Phase Alternation by Line) standard and these standards use
625 lines per screen at 25 frames per second. The clock for the 6502 runs faster so that
PAL systems' machine cycles are at a 2.217 MHz rate. France and Eastern Europe use
a SECAM standard which is also different In the XL series, location 98 ($62) is used as
a flag to signal NTSC or PAL operation. In the 400 and 800, location 53268 ($D014) is
the read only register to determine if is computer is set up for PAL or NTSC. IF bits 1, 2,
and 3 are zero (0), then the computer is a PAL system. When these bits are one (1), the
computer is an NTSC system.

MEMORY LOCATION 53268 ($D014)

D7 D6 D5 D4 D3 D2 Dl DO BIT #
NTSC
PAL

00001 1 1 1
000 0 0 001

Also check location $FFF8(65528) and $FFF9(65529) in Atari 400s and 800s. Compare
against the following chart.

Value in $FFF8 Value in $FFF9 Revision and TV type

$DD (221) $57 (87) NTSC Revision A
$D6 (214) $57 (87) PAL Revision A
$F3 (243) $E6 (230) NTSC Revision B
$22 (34) $58 (88) PAL Revision B

The XL series uses a routine to check the type of GTIA (which adjusts the display list
according to the type installed).

NULL STRI NG - A string variable with nothing assigned to it is a NULL STRING.
It is possible to check for a NULL STRING by comparing it to an empty quote ("").
Note that there is not even a space between the quotation marks. A NULL STRING
results if no value has been assigned to a stringvariable; for instance, if no key has been
hit during an operation.

N U M - In BASIC XL, the NUM statement calls the automatic line numbering
routine. The format for using NUM is:

NUM start, inc

where start is the starting line number and inc is the increment between line numbers.

144

OBJECT CODE

o
OBJECT CODE - OBJECT CODE is produced from an assembly language file.
OBJECT CODE is machine language comprised of a series of eight bit bytes. The bytes
are instruction codes for the 6502 microprocessor to perform specific activites. A dis­
assembler can reproduce some of the assembly language program which is used to pro­
duce the OBJECT CODE. See MACHINE CODE.

OCTAL - An OCTAL number system is one based on eight symbols (three bits). The
OCTAL system uses only digits 0 through 7. Each column from right to left is a higher
power of eight. The first column is the 1 s column, then 8 s, 64 s, 512 s, etc. The OCTAL
system is very rarely used in eight bit computer systems like the Atari. The hex­
adecimal system, which is based on sixteen symbols, is much more convenient.

Decimal Octal Binary Hexadecimal

0 0 000 0
1 1 001 1
2 2 010 2
3 3 011 3
4 4 100 4
5 5 101 5
6 6 110 6
7 7 111 7
8 10 1000 8

16 20 10000 10
32 40 100000 20

128 200 10000000 80
255 377 11111111 FF

OFFSET - OFFSETs are used by the BASIC cartridge program to tokenize state­
ments in a line. The OFFSET is the number of bytes into the line where a new statement
begins. This occurs after a colon (:) is encountered within a BASIC statement. See
TOKENIZATION.

ON ... GOTO - In BASIC, ON ... GOTO is a conditional branching expression in
which control is transferred to another line number depending on the value expression.
The statement is used like this:

ON RESULT GOTO 100,110,120,130,140,150

If the variable RESULT has a value of 1 then the program goes to line 100. If RESULT
equals 2 then the program goes to 110, and so on. ON .. . GOTO is often used to transfer
control from a menu to a subroutine in a program.

OPCODE - In assembly language, the OPCODE is the one byte code generated by
using a mnemonic command (JSR, LDA, etc.) in one of the various addressing modes.
There are 151 OPCODEs for the 6502 processor used in the Atari computer. See the

145

OPEN (0.)

MCS6500 microcomputer family Programming Manual by MOS Technology, Inc. for
the ultimate resource for writing in 6502 machine language. Some examples are:

MNEMONIC OPCODE

BNE DO
DEX CA
INX E8
JSR 20
RTI 40

See KEYCODES for the full list of OPCODEs.

OPEN (0.) - OPEN is the BASIC command used to prepare an IOCB (channel) for
input or output. Without an OPEN command, the channel cannot be used. See IOCB.

OPERAND - An OPERAND is an object upon which an operator operates. In the
operation SQR(49) which produces the square root of 49 in BASIC, SQR is the operator
and 49 is the OPERAND.

OPERATOR - An OPERATOR is a device which performs some function on another
object. There are arithmetic, trigonometric, Boolean, logical, and assembly language
OPERATORs. See OPERAND.

OPE RATO R STAC K - Memory between locations 256 and 511 (page 1) is known as
the STACK OPERATORs are placed in this memory during processing and the results
are returned to variables and to the screen if requested. See STACK .

OPERATING SYSTEM - The OPERATING SYSTEM (OS) is the program which
controls all of the functions of the computer. The OS is physically located in a 10K byte
Read Only Memory (ROM) cartridge in the 400 and 800 systems. The XL series has a
14K byte OS. The OS loads or transfers some of its program information into the Ran­
dom Access Memory (RAM) which can be read and written. The OS uses most of the
bottom part of page zero RAM which is located from 0 to 128. Most of the memory
located above 53247 is also used by the OS.

The OS handles all of the serial input and output activites to disk drives, printer, cassette,
and RS232 devices. It also handles the interrupts and Central Input/Output (CIO). A
detailed manual describing the OS is available in the Atari Technical Reference Notes
package. The source code for the OS is also available. At least four revisions of the OS
have been produced. To check the version OS you have, use the following PEEKs. In
BASIC, type:

PRINT PEEK(65527)
PRINT PEEK(65528)

NTSC Version

400/800
REV. A

221 ($DD)
87 ($57)

400/800
REV.B

243 ($F3)
230 ($E6)

146

PAL Version

400/800
REV. A

230 ($E6)
87 ($57)

400/800
REV. B

34 ($22)
88 ($58)

PRINT PEEK(65521)
PRINT PEEK(65527)

1200XL

1
Y

OPTION BASE

600XL/800XL

X (X=PRODUCT CODE)
Y (Y=Internal Revision for OS)

This information is important for software developers. By examining these locations,
the programmer can determine what type of Atari computer the user has and can make
changes or jumps to different routines accordingly. See REVISION B OS.

OPTION BASE - In Microsoft BASIC, OPTION BASE is used to specify the first
subscript in an array. The value can be either a zero (0) or a one (1). The command
OPTION BASE 0 will start numbering at 0, while OPTION BASE 1 will start at 1.

OPTION CH R - In Microsoft BASIC, the OPTION CHR command reserves orfrees
up memory needed by the character set data. OPTION CHR1 reserves the normal 1,024
bytes for character set data. OPTION CHR2 reserves 512 bytes for the uppercase only
character set as in text modes 1 and 2. OPTION CHRO leaves no memory reserved for
the character set. If you use OPTION CHRO you must load in a new character set and
point at it in location $2F4 (756 decimal).

OPTION PLM - In Microsoft BASIC, OPTION PLMO-2 reserves 0,640 or 1,280
bytes respectively for players and missiles construction. You must still POKE 53277
with 3 to enable the player-missile graphics and also POKE 559 with 46 or62 for double
or single line player resolution.

OPTION RESERVE - In Microsoft BASIC, OPTION RESERVE X will reserve X
bytes for your own machine language routine. Use VARPTR(RESERVE) to return the
starting address of the X bytes which you have reserved.

OPTION - The OPTION key is located right below the SYSTEM RESET key on the
Atari 400,800 and XL series, and above the 7 key on the 1200 XL. Location $D01F
(53279 decimal) is the console key register which is scanned to detect the pressing of a
console key. Bit2 is assigned to the OPTION KEY. BitO is for the START key and bit1
is for the SELECT key. By PEEKing at the value of 53279, one can determine which key
or combination of keys has been pressed. The values are not stored in this register and
thus should be scanned regularly for fast action.

VALUE IN 53279 ($001 F)

000000000
100000001
200000010
300000011

CONSOLE KEYS PRESSED

OPTION, SELECT and START
OPTION and SELECT
OPTION and START
OPTION

ORIGINATE MODE - A modem in the ORIGINATE MODE is ready to begin talk­
ing to another modem in the answer mode. The modem in the answer mode will begin
making a high pitched signal. The modem in the ORIGINATE MODE will begin
transmitting when it hears the 2025 to 2225 Hz tone at the other end. Most modems
switch automatically between answer and originate.

147

OS/A+

OS/ A+ - Disk Operating System for Atari computers (also for Apple) published by
Optimized Systems Software, Inc. OSS wrote Atari DOS 2.0S and Atari BASIC.
OS/ A + comes in Version 2 and Version 4. Version 2 is suitable for drives accessing less
than 256K bytes per disk. This includes Atari 810's and Percom double density drives.
Sectors are linked via two bytes at the end of each sector. A file may start at sector 100,
go to 110, jump to 200, continue through 205, jump to 300, and then end. Version 4 uses a
file mapped system similar to CP/M. Operation of CP/ A + VA is in fact functionally
very close to CP/M by Digital Research, Inc. Sectors are linked only when a previously
defined block is filled up.

OS/ A + uses a Console Processor (CP) after it is booted from disk. CP is similar to the
File Management System (FMS) used by Atari DOS 2.0S. A wide variety of utilities are
supplied with the system, but many must be loaded from disk. Resident commands
available from the CP when you see the D1: prompt are: DIRectory, PROtect, UNPro­
tect, ERAse, REName, LOAd, SAVe, RUN, and CARtridge. Optimized Systems
Software, Inc.

OUTPOST ATARI - This monthly column in Creative Computing magazine is a
good source of information about the Atari computer. The topics are aimed at begin­
ners and intermediate users. Unfortunately for us Atari users, this column is often the
only Atari specific information in the magazine.

OVE R LAYS - A technique borrowed from the old days when computer memory was
very expensive, can be used to run large programs in very limited memory. The tech­
nique is called OVERLAYing. It is used by Wordstar to pack many more features than
would normally fit into a 64K computer. OVERLAYing in BASIC can be done by
organizing your program into discrete blocks which perform different functions and
have grouped line numbers. Lines 0 to 100 could be initialization, 101 to 1000 could be
data, 1001 to 5000 could be the main area, 5001 to 6000 function # 1, 6001 to 7000 func­
tion # 2, and so on. The OVERLAYS will be brought in by ENTERing the OVERLAY
subroutine from the main program. This means that the OVERLAY program must be
in the LIST format, not SAVEd, and there must be a non-numbered statement at the
end of the OVERLAY program. The non-numbered statement will prevent the pro­
gram from stopping when the OVERLAY is loaded in because it will be executed in the
immediate mode. The non-numbered statement should be something like GOTO 100 or
some type of jumping statement. An easy way to construct this type of file is to use an
Atari DOS word processor such as Text Wizard or Atari Writer. Other OVERLAYS
can be swapped in and out of the same line number area allowing a large program to be
simulated in as little as 16K of RAM.

OV E RSCAN - The beam of a television tube is scanned beyond the edges of the tube
face. This OVERSCAN leaves no margin on the screen. Televisions and receivers
operate differently and some software may actually show some very untidy behind­
the-scenes operation on the sides of the screen. The Operating System sets the margins
in BASIC to start at column 2 in order to compensate for any overscan effects. The
register to control this margin is in location 82. Try POKE 82,0 to set the left margin to
O. POKE 83,37 will set the right margin to 37.

148

OVERSTRIKE

OVERSTRIKE - On a printer, the ability to back up and print another character
over one which has been already printed is called OVERSTRIKE. This technique is
often used on legal documents, but it has limited uses otherwise. Some foreign lan­
guages require overstrike on English characters to print properly.

p

PADDLE - The PADDLE controllers are hand held devices with rotatable knobs for
input to the Atari computers. The controllers are actually potentiometers which can be
adjusted from about 3 to 750,000 ohms by turning the knob. An analog to digital con­
verter in the Atari computer translates the knob position into a number and puts it in
the paddle registers. There are eight PADDLES. They can be read by using the BASIC
command PADDLE(X) where X is a number for the paddle between zero and seven.
The XL series has only four paddle ports because PORT B is taken over for Operating
System duties. The value read from the paddle results in an integer between 1 and 228
depending upon the rotated position of ,the knob.

The PADDLE registers, called POTO to POTI, are located from 53760 ($D200) to 53767
($D207). These registers, which are shadowed in locations 624 to 631 ($0270 to $0277),
can be read with a PEEK to find the PADDLE position between 0 and 228. Hook up a
pair of paddles to port 1. Type and run the following program.

10 ?PEEK[624].PEEK[625]:GOTO 10

Turn the knobs and watch the values change.

PAGE - A PAGE is the term used to describea256 byte block of memory in the Atari
computer. There are 256 PAGES of 256 bytes each. The most important ones are:
PAGE 0 - which is used for the operating system; PAGE 1 - which is the stack;
PAGES 2,3, and 4 - which are used by the Operating System; PAGE 6 - which is user
RAM; and PAGES CO through CF - which are unused by the current Operating
System.

PAG EO - The area of memory from 0 to 255 ($00 to $FF) is special to the 6502 pro­
cessor. All instructions which reference PAGE 0 (zero page instructions) are faster
(require fewer machine cycles). The lower half, 0 to 127 ($00 to $7F), is used by the OS.
The upper half is available for use except for$D4 to $FF, which is reserved for the float­
ing point processing routines.

PAG E 1 - This area of memory from 256 to 511 ($100 to $1FF) is the 6502 hardware
stack. These 256 bytes are used by instructions and interrupts which must store some
data temporarily to which they must come back. The assembler instruction JSR, for
example, writes to this stack the location to which it must return. When the RTI
\'1\<;;truction is encountered, the address is removed from the stack. On power up, the
stack pointer points at the top of the stack (511 or $1FF). As it is filled, the pointer
moves down towards the bottom (256 or $100).

149

PAGE 6

LsB
01. 0)" 03 0'1

PAG E 6 - The area of memory called PAGE 6 is generally useable for short machine
language routines which you may call from BASIC programs. This area is located be­
tween $0600 and $0700 or 1536 and 1792 in decimal. Programs placed here will not be
deleted when SYSTEM RESET is pushed nor will BASIC write over them. The area is
not invulnerable, however. Any input from disk, cassette or keyboard which exceeds
the usual buffer length of 128 bytes will overflow into the bottom half of PAGE 6 and
mess up your program or data. Thus, memory between $0600 and $067F is NOT safe
but the area from $0680 to $06FF is safe to use. This is your best bet for scrounging 128
free bytes which are protected from system use.

PAGINATION - PAGINATION refers to the breaking up of a text file into pages
during the printing or formatting stage. If you are using tractor feed paper with per­
forations, it is very important that your word processing software be able to do
PAGINATION.

PAL - Phase Alternation by Line is a television receiver standard used in Europe,
China, Australia, and South America. The NTSC standard is used in the United States.
For computer users, the type of television receiver is important. NTSC televisions in
the U.S. use 525 scan lines per frame with 30 frames per second. PAL televisions use
625 scan lines per frame at 25 frames per second. PAL sets do not have tint controls.
The operating system must know these details for timers and interface requirements.
You can check which version of Atari computer you have, PAL or NTSC, by looking for

150

PARALLEL PORT

a label stuck on the top. It will be labeled DOM or P for PAL. If the label is not there,
check the OS cartridge. It will be labeled CX81O-P if it is a PAL version. The" -P" will
be missing if is an NTSC version. You can also try ?PEEK(58383); if you get a 249,
you have a PAL version of the Operating System. Location 53268 ($D014) is also an ID
for PAL systems. If the value in this location is not 14 ($E) or higher, it is a PAL system.
See NTSC.

PARALLE L PO RT - The 850 interface module has three different kinds of sockets:
the SIO sockets (2) which connect to the computer, disk drive, or cassette drive; the
serial ports of which there are four; and the parallel port. The parallel port differs from
the serial port in the way that the data is transmitted. In a serial port, data is sent in the
form of an eight bit byte in a series of high and low signals representing the appropriate
ASCII characters. In the parallel port the data is sent over eight lines simultaneously.
This is the way most printers receive data. See the figure.

DATA-.1~0~1~0~1~0~0~1

Serial Transmission - Single Data Line

DATA-.

1 Line 1
o Line 2
o Line 3
1 Line 4
o Line 5
1 Line 6
o Line 7
1 Line 8

Parallel Transmission - 8 lines

PARALLEL

A strobe signal is used to time the pulses so that all are sent on time and regularly. The
850 needs a +5V signal on Pin 12 to operate. This voltage must be supplied from the
'Pnnter or the interface will not work. If no +5V source is available, Pin 12 can be con­
nected to Pin 9 to supply a constant +5V source. The pins of the parallel port have the
following functions:

151

PARAMETER

PIN 8
o

7
o

6
o

5
o

4
o

3
o

2
o

o 0 0 0 000

PIN 15 14 13 12 11 10 9

Parallel Port Connector on 850 Interface Module

1 Data Strobe 9 +5V Pull up
2 Data Bit 0 10 Not used
3 Data Bit 1 11 Signal Ground
4 Data Bit 2 12 Fault
5 Data Bit 3 13 Busy
6 Data Bit 4 14 Not Used
7 Data Bit 5 15 Data Bit 7
8 Data Bit6

You can make your own cable for your printer by using the proper DB15 male connector
and multi-conductor wire. See CABLES.

PARAM ETE R - A PARAMETER is a piece of information, usually a number, which
is required by a function or utility so that it can do its job.

PARITY CHECK - In modem communications, a PARITY CHECK is a routine
which adds all seven of the bits which makes up an ASCII character (byte) and com­
pares the result to a known outcome. The sum of the bits will be either 1 orO, depending
upon the character. One bit may be reserved to check whether the sum is truly the 1 or 0
that it is supposed to be. An error due to line noise may have caused a bit to be trans­
mitted incorrectly and a PARITY CHECK can help identify such errors. A parity error
can be signaled with a flag, such as an inverse X. Note that it is still possible to have an
error in transmission and not have a PARITY CHECK error. Atari to Atari com­
munications usually do not use the PARITY CHECK since all eight bits may be used
for ATASCII characters.

PASS PARAMETERS - The USR function, for example, has facilities to PASS
PARAMETERS to transfer control to another program or routine. The USR function
needs several parameters in order to pass them. The memory location of the machine
language routine is mandatory for use of a USR. After that, parameters such as vari­
able values, strings, line numbers, or whatever the routine operates on, are listed in the
USR statement. These parameters are then passed onto an area of memory called the
STACK and used for execution.

PE E K - The most common way to examine memory from a BASIC program is to use a
PEEK statement. PEEK is just what it sounds like. It is a look into computer memory.
There are 65,536 locations to examine, and to look at one just type P R IN T PEE K[X],
where X is the number of the location you want to examine. To look at all of the memory,
try this:

FOR X=0 TO 65535:PRINT PEEK(X):NEXT X < Return>

152

PEN

This will print out a list of the decimal values of all memory locations, many of which
will be 0 (See POKE). To see what the characters are in these locations, change the pro­
gram to:

FOR X=(J TO 65535:PRINT CHR$(PEEK(X));:NEXT X <Return>

PEEK (7)

PE N - In BASIC XL, the PEN function reads the contents of the light pen registers
and returns the value. PEN(O) reads the horizontal position register and PEN(I) reads
the vertical position register.

PERCOM DRIVES - The Atari 810 disk drive is not the only alternative for your
Atari computer. Percom makes drives which can operate in single or double density
mode. Double density allows storage of up to 178K bytes per floppy disk. PERCOM
DRIVES come with a different controller than the 810. You may get a master drive
which will cost $100 to $200 more than the slave, but it will control four drives. Atari
810 s come with a controller in each drive and are all priced the same. Also, it is not
possible to flip Percom disks to use the back side for storage. This is possible on the
810 s because the timing hole near the center of the disk is not used. The PERCOM
DRIVES use these timing holes. Since the holes are asymmetrically placed, the disks
cannot be flipped successfully. PERCOM DRIVES are shipped with a disk speed of 300
RPMs. They should be adjusted down to the normal 288 RPMs for use on Atari
computers.

PERSONAL FINANCE PROGRAMS - One of the classic uses for a personal
computer is to maintain home finances. Several commercial programs are available to
do this for you. Generally, using a program only to balance your checkbook is not worth
the effort of loading the program, entering the data, running the program, and trans-

153

PERSONALITY BOARD

ferring the results. Addition and subtraction are more efficiently done on a calculator.
Input errors and data collection often make checkbook maintenance a self-defeating
effort.

Budgeting and recordkeeping are legitimate and useful activities for the Atari com­
puter. Be aware that you will have to carefully plan to set up your own categories for
expense and income with every program you buy. No software can anticipate everyone's
income from babysitting, lemonade sales, and options trading, nor the even wider range
of expenses. Most packages are limited to a certain number of transactions due to
memory limitations of the computer. For most households, a48K system will handle all
transactions for a year. With a microcomputer, small businesses will begin to feel the
limitations of memory and the number of options. Some of the programs available are:

Money Processor by Luck Software
Financial Wizard by Computari
Family Cash Flow by APEX
Bookkeeper by Atari, Inc.
Home Accountant by Continental Software

PERSONALITY BOARD - The PERSONALITY BOARD contains the Operating
System on ROM chips. This is the cartridge which sits in the front slot inside the case of
the 800. The PERSONALITY BOARD takes up memory between locations $D800 and
$FFFF in the 400 and 800 models. Various upgrades or enhancements to the board are
available. A Fastchip from N ewell will speed up some floating point operations but will
prevent some software from executing. A monitor chip from DCY Computing, called
Omnimon, gives you a machine language monitor, but several programs will not run if
the monitor chip is activated. Revision B ROMs will cure the early problem of serially
connected peripherals going to sleep.

PIA - The Peripheral Interface Adaptor chip handles controllers connected to the
joystick ports. The PIA occupies memory locations between $D300 and $D3FF (54016
and 54271 decimal). Several printer and modem interfaces are now available to plug
into these ports, thus eliminating the need for the 850 interface module.

PINBALL GENRE - Quite a few pinball games are available for Atari computers.
The following list is merely a compilation of those offered at this time.

David's Midnight Magic - Broderbund Software
Raster Blaster - Budge Co.
Pinball Construction Set - Electronic Arts
Night Mission - Sub logic Corporation
Bulldog - Hayden
Zero Gravity Pinball - Avant Garde Creations, Inc.

PITCH - PITCH refers to the number of dots or characters per inch. Standard type­
writers type at 12 PITCH for elite and 10 PITCH for pica type. PITCH can also refer to
the number of pixels per inch on your television display.

154

PIXEL

PIXE L - PIXEL is a derivation oftwo words- PICTURE and ELEMENT. A PIXEL
is the smallest controllable object or resolution element on a display screen. The limit­
ing factor may be the computer or the display. In the highest resolution graphics mode
(mode8), a PIXEL is one scan line high by one-half color clock wide. This is essentially
the resolution of a home television receiver. Each PIXEL requires one bit of memory to
control it in monochrome mode.

PLA YE RS - The PLAYER is Atari's solution to high speed animation of objects on
the screen. In many other types of computers, it is necessary to move large amounts of
data through the area of RAM called screen memory in order to achieve animation. The
image must be drawn, erased, changed, and redrawn for each movement. Since
memory is linear and the image is a two-dimensional map, keeping track of the image
while it is moving and changing is a big job, even for a microprocessor operating at 2 to
3 mHz. PLAYERS are a simple solution to animation. An image is created in a map 128
bytes long (for each of the four PLAYERS). The map can be 256 bytes long if single line
resolution instead of double line resolution is used. (Resolution is set by bit D4 in regis­
ter 54272.) The map is put directly onto the screen over whatever else may be present.
To move the PLAYER vertically, the image is shifted - in one dimension -up or down
in the PLAYER RAM area. Horizontal motion is controlled by a hardware register
called HPOSPO (53248 or $0(00). There are actually four of everything discussed here
to handle up to four PLAYERS. A number between 0 and 255 is placed in the HPOSP
register and the PLAYER is moved to that horizontal location on the screen. Vertical
and horizontal motions can be combined. PLAYERS have their own independent color
registers COLPMO-4 (53266-70 or $D012-$D015) into which color values for the
PLAYERS can be placed.

PLAYERS can have different priorities with respect to each other and the playfield.
Priority refers to the visiblity of one image over another when one passes through the
same part of the screen. The priorities are set in register GPRIOR at 623 ($26F).
PLAYERS can also collide with other PLAYERS, missiles or playfields. There are 15
registers in the GTIA area which are read-only locations in which you can detect
various collision combinations. See COLLISIONS and MISSILES.

For more detailed information see De ReAtari, Section 4; Compute!, Oct. 81, Dec. 81,
Feb. 82 and May 82.

PLA YFI E LD - The PLA YFIELD is the largest part of the display screen. It is the
part on which the text is printed and players and missiles are maneuvered. The
PLA YFIELD can be made narrower or wider by POKEing location 559 ($22F) with a
33 or 35. The color of the PLA YFIELD is controlled by the color registers (708 to 712 or
$2C4 to $2C8). While the large playfield is usually referred to as the PLA YFIELD, the
background, text window, and characters are also technically PLA YFIELDs.

PLOT - PLOT is the BASIC command which puts a dot (pixel) on the screen at the
row and column specified in the PLOT command. PLOT X, Y will put a pixel at column X
and row Y. The color of the dot is specified by the COLOR statement which looks at the
corresponding color register to get the color to plot. If none is specified, the background
color register will be used.

155

PLOTTER

PLOTTER - A PLOTTER is an output device which will draw lines based on
software control from the computer. PLOTTERs can draw in color if they pick up dif­
ferent colored pens as commanded by the software.

PMADR - In BASIC XL, the PMADR function returns the address in memory of any
of the players or missiles. The format is PMADR(exp) , where exp is the player number
(0 through 3) or missile number (4 through 7).

PM BAS E - PMBASE is the register used to hold the page number of the start of the
player missile data. PMBASE is located at $D407 (54279). This data is used to hold the
bit mapped image of the players. One or two Kbytes of memory must be reserved,
usually by lowering RAMTOP, depending upon whether you are in single line or double
line resolution.

PMCLR - In BASIC XL, the PMCLR statement clears (writes Os to) the player mis­
sile data area specified. The format is: PMCLR playnum where playnum is the number
of the player area to clear. If playnum is from 4 to 7, all of the missile data is cleared.

PMCOLOR - In BASIC XL, the PMCOLOR statement works just like the SET­
COLOR command, but for the players and missiles.

PMGRAPHICS - In BASIC XL, the PM GRAPHICS (PMG.) enables or disables
Player Missile GRAPHICS, presumably by reserving memory for the data. PMG.O
shuts off the PM graphics, PMG.1 enables single line resolution, and PMG.2 enables
double line resolution.

PM MOVE - In BASIC XL, PMMOVE allows movement of a player to a location on
the screen. The format is:

PMMOVE playnum,horiz;vert

where playnum is the number of the player to move, horiz is the horizontal position on
the screen to which to move (0 to 255), and vert is the vertical position (-255 to 255).

Note that this statement is much easier to implement than the subroutines required in
Atari BASIC. Horizontal movement is facilitated by a hardware register, but vertical
movement requires shifting data through memory.

PMWI DTH - In BASIC XL, PMWIDTH allows the horizontal resolution of the
players and missiles to be changed. The format is PMWIDTH playnuIl1,exp where
playnum is the player or missile number and exp is 1, 2, or 4 for the number of color
clocks per bit in the horizontal direction.

POI NT - In Atari BASIC, POINT is the command used to set the pointer in a buffer
for reading or writing data from a disk. In the POINT statement, you must specify the
absolute sector number and the byte within the sector. A channel (lOCB) must be
opened in order to use POINT. See NOTE and IOCB.

156

POINTER

POI NTE R - A POINTER is a location in memory, a register, or a variable which tells
the computer WHERE to find another piece of information or a subroutine. It contains
a number which is an address, table position, or a location usually in two bytes. Why
use a POINTER? In order to change an activity, such as what happens when you press
the BREAK key or SYSTEM RESET, you would just have to change the contents of the
POINTER, not the entire program which executes after the key is pressed. It is just like
rotating a sign on a street, pointing you in a different direction; for instance, to a party
on your block instead of on someone else's. This is the basis of the term INDIRECTION.

POKE - POKE is the way to change the contents of memory from BASIC. Unlike
PEEK, which only allows you to look at memory, POKE allows you to write as you
wish. You can POKE safely at any of the free RAM areas. Try this:

POKE 1536,199 <Return>

You have just changed location 1536 from 0 to 199. If you do not believe it, type:

? PEEK(1536) <Return>

and see that there is really a 199 in 1536. If you try to PO KE a location which is assigned
to ROM, you will not be able to change it. Try to POKE a number into 65535. If you then
PEEK at 65535, you will find a 192 regardless of the value you POKEd. That is because
it is a ROM address. If you POKE some critical RAM area which the computer needs for
operation, you can crash the system and you will have to restart the computer to cor­
rect it. Machine language programs perform many POKEs during loading.

:1 ~IW l:j L?
J I~ 11:J5~ 1551 d ISJ ',% I~ 15

58

15115 d ~'~ ~/
I b'lb ~ S:'

1541 ~
~ , 1548

's ,/ /' a
01 ~6 '/' _

15~1

157

POKEY

PO KEY - The POKEY chip is a custom integrated circuit used by Atari computers to
handle various input and output activities. Access to the POKEY routines is gained
through registers located between 53760 and 54015 ($D200 and $D2FF). POKEY han­
dles the keyboard scanning, Serial I/O, interrupt requests, random number genera­
tion, paddle controllers, and sound.

PO P - POP is used to clear the stack of the address used during a loop or branching
statement. It is an abort to get out of a loop or branch without causing an error.
See STACK.

PORT A - The hardware register in the PIA chip (6520) which reads data from the
joysticks or paddles connected to controller jacks 1 and 2. PORT A is at 54016 ($D300).

PORT B - In the 400 and 800 computers, PORT B is the same as PORT A, except for
controllerj acks 3 and 4. In the XL series, there are no controller jacks 3 and 4 and PORT
B is used for completely different applications. During the vertical blank, the OS reads
the PORT A values and writes them in the PORT B shadows (634 forjoystickjack3, 635
for jack 4,640,641, 642, and 643 for paddle triggers 4,5,6, and 7). This means that any
game which used jacks 3 and 4 will work in jacks 1 and 2.

PORT B is located at 54017 ($D301). PORT B is used to:

• Disable/enable the OS ROM
• Disable/enable the BASIC ROM
• Turn on/off LEDs on the 1200XL
• Disable/enable the self test ROM

Bit 0 is used to disable the OS ROM. If bit 0 is one, the OS ROM is enabled. If it is zero,
then the RAM is free and the OS is disabled and a new OS can be loaded in. No new OS's
are available at this writing. The hardware registers for GTIA, POKEY, PIA, and
ANTIC are always located in their usual positions, just because they are hard wired.

Bit 1 is used to disable BASIC. Ifbit 1 is zero, then BASIC is enabled. Ifbit 1 is one, then
BASIC is enabled. Pressing the OPTION button as the power is turned on disables
BASIC.

Bits 2 and 3 turn on LEDs on the 1200XL when the bits are zero. The LEDs turn off
when the bits are one.

Bits 4, 5, and 6 are reserved for future use.

Bit 7 is used to disable the self-test ROM which takes up memory from $5000 to $57FF
when it is enabled. A zero enables the self test and a one disables the self-test,
freeing up this memory.

POSITION - The BASIC POSITION statement is used to put the cursor at a
specified X and Y location on the screen. Text or plotting can then begin there. The cur­
sor need not be visible to use POSITION. The format for POSITION is:

158

POST RECORD GAP

POSITION x,y

where x is the horizontal column number and y is the vertical row number.

POST R ECOR D GAP - On a cassette file, the POST RECORD GAP (PRG) is a sec­
tion of up to one second of miscellaneous data written to separate one record from
another. The POST RECORD GAP is actually between the data of one record and the
Pre-Record Write Tone of the next record.

POWE R-U P - The Operating System performs initial activities whenever the power
to the computer is turned on or a coldstart is called. The activites done by the OS during
POWER-UP are as follows.

1. Find the highest page of free RAM available. Put it in location 6 ($06) and
then transfer it to 106 ($6A)

2. Write zeros to all free RAM.
3. Set up RAM interrupt vectors.
4. Set up the device handler table, HATABS at 794-831 ($31A-$33F)
5. Put screen in graphics 0 mode.
6. Boot cassette if START key is pressed.
7. Check cartridge slots to see if disk should be booted.
8. Boot DOS if drive is on line.
9. Transfer control to cartridge, program in RAM or MEMO PAD.

POWER SUPPLIES - A POWER SUPPLY is an electrical transformer which
takes household voltage at 110 volts and reduces it to between five and nine volts for
use by the personal computer. Although power supplies for the 810 disk drive, the 400
and800 computers and the 850 interface look similar and will appear to be interchange­
able, but they are not. The 810 has the biggest potential problem because it is the device
which uses the most power. All of the power supplies output nine volts AC except for
the XL series power supplies which output five volts DC. The computers and interface
will work from any Atari power supply provided the plug fits in the socket. The 810
needs the larger power supply, rated at 31 watts (it may be labeled 31 VA). The smaller
supplies are rated at 15.3 watts and will result in speed variations when the motor on
the drive calls for more current. Check your system to make sure that the 810 drive is
using the 31 watt power supply.

PRE-RECORD WRITE TONE - On a cassette file, the PRE-RECORD WRITE
TONE is either a three second mark tone (5327 Hz), if the file is in the Normal IRG
mode, or a .25 second mark tone if it is a Short IRG mode file. THE PRWT is used
between all adjacent records (128 bytes) in a file.

PRWT (Pre-Record Write Tone) MARKER
RECORD DATA
PRG (Post Record Gap)
PRWT
MARKER
RECORD DATA
PRG

159

PRINT(PR or?)

PRINT(PR. or?) - PRINT is the BASIC command to send a character or value to a
device. The question mark is a handy abbreviation for PRINT. Characters can be sent
to a disk drive, cassette, printer, or screen though an OPEN channel.

PRI NT USING- In Microsoft BASIC and BASIC XL, PRINT USING is available on
the extension disk. It is a formatting statement used primarily for printing dollar
amounts. A pound sign (#) is used to reserve a place for each digit For example,
PRINT USING "$# # # #.# #" would be used to print dollar and cents values up to
$9999.99 with the cents place always maintained. Substituting an ampersand (&) for
the pound sign (#) would fill all leading blanks with zeros.

PRINTER BUFFER - A PRINTER BUFFER or spooler is a peripheral device
which will accept data bound for your printer at a much higher rate than the printer
could print it. The PRINTER BUFFER then signals your Atari that it is finished and
you can have your computer back for other tasks while the buffer continues to dump its
data to the printer at its normal rate of 20 to 160 characters per second. This is a time
saving tool for users who write a lot

PRI NT ... SPC - In Microsoft BASIC, PRINT followed by SPC(X) will insert X
spaces between the last character printed and the next character to be printed.

PRI NT ... AT - In Microsoft BASIC, PRINT # IOCB, AT(X,y) can be used in two
ways. The first way is if the IOCB is OPENed as the screen, the value of a variable can
be printed at the X and Y location specified. The second way is if the IOCB is OPEN ed
as a disk, the PRINT .. AT statement can be used to write the value of a variable to sec­
tor X and byte starting at Y, providing the sector is included in a file designated
for that sector.

PRINTER TABLES - The huge variety of printers available for personal com­
puters makes translation of software difficult. Although there are some conventions in
printer control codes, there are many differences. The following tables are designed to
allow translation of some codes for the more popular printers. This is signified by an
esc in the table. You can send the decimal codes by using the CHR$(X) statement,
where X is the decimal code listed in the table. Some codes require an ESC to be sent
before the control byte. To do this, you can send a CHR$(27) and then the code or else
hit ESC ESC in order to produce an ESCape character (if you are in BASIC). In LET­
TER PERFECT, you can send the decimal control codes by using the CTRL-V before
the code. In ATARI WRITER, you use a CTRL-O before the code. Almost all codes can
be sent as either CHR$ values which are the decimal equivalents of the ATASCII
character called for or else by sending the AT ASCII string. The string is generated by
placing the character inside the quotes which hold the string. The following charts are
not exhaustive; they are meant to give a common point of reference among the printers
on the market

160

PRINTER TABLES

ATARI PRINTERS

ATARI825 ATARI1025 ATARI1027

FUNCTION Dec Keystrokes Dec Keystrokes Dec Keystrokes

Sound Buzzer -na- -na- -na-
BACKSPACE 8 CTRL-H -na- -na-
HORIZONTAL TAB -na- -na-

-LINE FEED 10 CTRL-J 10 CTRL-J -
VERTICAL TAB -na- -na-
TOP OF FORM -na- -na- -na-
CARRIAGE RETURN 13 CTRL-M 13 CTRL-M 13 CTRL-M
DOUBLE WIDTH ON 2714 esc CTRL-N 2714 esc CTRL-N -na-
CONDENSED ON 2720 esc CTRL-T 2720 esc CTRL-T -na-
CONDENSED OFF 2719 esc CTRL-S 2715 esc CTRI;O -na-
DOUBLE WIDTH OFF 2715 escCTRL-O 2715 escCTRL-O -na-
DP MODE.(200cps) -na- -na- -na-
CORRESPONDENCE -na- -na- -na-
ESCAPE 2727 esc esc 2727 esc esc 2727 esc esc
UNDERLINE ON 15 CTRL-O 2725 esc CTRL-Y 2725 esc CTRL-Y
UNDERLINE OFF 14 CTRL-N 2726 esc CTRL-Z 2726 esc CTRL-Z
LINE FEED = 1/8" -na- 2756 esc 8 -na-
LINE FEED = '1/72"

V;«;:«'< c

-na- -na- -na- .
LINE FEED = 1/6" -na- 2754 esc 6 -na-
ITALICS ON -na- -na- -na-
ITALICS OFF -na- -na- -na-
IGNORE PAPER OUT -na- -na- -na-
ENABLE PAPER OUT -na- -na- -na-
RESET ALL FUNCTIONS -na- -na- -na-
EMPHASIZE ON -na- -na- -na-
EMPHAsIZE OFF -na- -na- -na-
DOUBLE STRIKE ON -oa- -na- -na-
DOUBLE STRIKE OFF -na- -na- -na-
SUPERSCRIPT -na- -na-- -na-
SUBSCRIPT -na- -na- -na-
RESET SUB/SUPER -na- -na- -na-
UNIDIRECTIONAL ON -na- -na- -na-
BI-DIRECTIONAL -na- -na- -na-
PROPORTIONAL SPACE 2717 escCTRL-Q -na-
INTERNATL CHARS ON -na- 2723 escCTRL-W 2723
INTERNATL CHARS OFF -na- 2724 esc CTRL-X 2724 escCTRL-X
64 COLUMN MODE -na- 2783 esc S 2783 escS
80 COLUMN MODE -na- 2776 escL 2775 esc L

NOTE: Documentationfor the 1025 and 1027 printers is scarce.

161

PRINTER TABLES

EPSON PRINTERS

EARLY mx-80 w/GRAFTRAX FX-100
FUNCTION Dec Keystrokes Dec Keystrokes Dec Keystrokes

Sound Buzzer 7 CTRL-G 7 CTRL-G 7 CTRL-G
B -CKSPACE -na- 8 CTRL-H 8 CTRL--H
HORIZONTAL TAB CTRL-I 9 CTRL- I 9 CTRL- -I
LINEFEE:Q CTRL-J 10 C'f'RL-J 19" ;,,,t' CTRL-J
VERTICAL TAB CTRL-K 11 CRTL-K (1"~ CTRL-K
TOP OF FORM CTRL-L 12 CTRL-L 12 CTRL-L
CARRIAGE RETURN 13 CTRL-M 13 CTRL-M 13 CTRL-M
DOUBLE WIDTH ON 14 14 CTRL-N 14 CTRL-N
CONDENSED ON CTRL-O 15 CTRL-O
CON:DEjNSED,OFFi ~.4' CTRL=R _ 1~; CTRJ;R
DOUBLE WIDTH OFF- CTRL-T 20' - CTRL-T
DP MODE (200cps) -na- - -na- -na- ,
CORRESPONDENCE -na- -na- -na-
ESCAPE 2727 esc esc 2727 esc esc 2727 esc esc
UNDERLINE ON -na- 27451 esc CTRL-A 27451 esc CTRL-A
UNDERLINE OFF 27450 esc CTRL-, 27450 esc CTRL- ,
LINE FEED = 1/8" 2748 2748 esc 0 2748 esc 0
LINE-:-FEED =: 7/72,f 27 . 1) 2749 !;lBC 1 2749 esc 1
LINE FEED =1/6'" 2750 2750 esc 2 2750 esc 2
ITALICS ON -na- 27 52 eac4 27 52 esc 4
ITALICS OFF L.. L~ -na- 2752 esc 5 2753 esc 5
IGNORE PAPER OUT -na- 2756 2756 esc 8
ENABLE PAPER OUT -na- 2757 esc 9 2757 esc 9
RESET ALL FUNCTIONS -na- 2764 esc @ 2764 esc@
EMPHASIZE ON 2769 escE 2769 esc E
EMPHASIZE OFF . 2770 escF 2770 escF
DOUBLE STRIKE ON 2771 escG 2771 escG
DOUBLE ST&IKE OFF 2772 escH 2772 eacH eacH
SUPERSCRIPT 27880 esc S CTRL-, esc S CTRL-,
'SUBSCRIPT -na- 27831 esc -8 CTRL-A esc S CTRL-A
RESET SUB/SUPER -na- 2784 esc T 2784 esc T
UNIDIRECTIONAL ON -na- 27851 esc U CTRL-A 27851 esc U CTRL-A
BI-DIRECTIONAL -na- 27850 esc U CTRL-, 27850 esc U CTRL-,
PHOroRTI()1\t :r.; SPACE -na-
DOUBLE WIDTH ALL 27871 escWCTRL-A

162

PRINTER TABLES

OTHER PRINTERS

GEMINI-10 NEC 8023A OKI MICROLINE
FUNCTION Dec Keystrokes Dec Keystrokes Dec Keystrokes

Sound Buzzer 7 CTRL-G -na- -na-
BACKSPACE 8 = CTRL-H
HORIZO~TALTAB CTRL-I
LINE FEED CTRIrj
VERTICA~T~lt ,FR~K
FORM FEED 12 CTRL-L
CARRIAGE RETURN 13 CTRL-M 13 13 CTRL-M
DOUBLE WIDTH ON 14 CTRL-N 14 31 esc CTRL-*
CONDENSED ON 15 CTRL-O 2781 esc Q 28 esc CTRL--
CONDENSED OFF . CTRL-R
10CPI MODE esc 13 CTRU-A
12CPI MODE esc BCTRL-B
17 9.PI M()l)E i,,~~~66~
DOUBLE WIDTH OFF 20
DP MODE (200cps) -na- -na- 2748
CORRESPONDENCE -na- -na- 2749 esc 1
ESCAPE esc esc esc esc 2727 esc esc
UNDERLINE O~> escCTRU A
UNDERLINE OFF
LINE FEED = 118" .
LINE FEED ='7772" ~ esc 1
LINE FEE-D = 176" 2750 esc 2
ITALICS ON 2752 esc 4 -na- -na-
ITALICS OFF 2753 esc 5 -na- -na-
IGNORE PAPER OUT -na- -na-
ENABLE pAPEif6uTf,' "'
RESET ALL FUNCTIONS
EMPHASiZE ONr.
EMPHASIZE OFF
DOUBLE STRIKE ON 2771
DOUBLE STRIKE OFF 2772 esc H -na- 2773
SUPERSCRIPT 27830 esc S CTRL-, -na- 2774 escJ
SUBSCRIPT 27831 esc S CTRL-A -na- 2776 esc L
RESET SUB/SUPER 27 84 escT
UNIDIR~GTIO~AL O~ ,
BI-DIREcTIONAL ';'1>

27 86 L /, esc .u CTRL-A,
i7 850 '

PROP. S~ACE qN

163

PRINTER TABLES

MANNESMAN
SMC TP-1 TALLY

FUNCTION Dec

·na· 20
~. ~.

·na· ·na·
esc esc

·na·
·na· 2772 esc H
·na· 27830 esc S CTRlr,
·na· 2783 1 esc S CTRlrA

€:r: ·z{*~

164

PRINTER ECHO

PRINTER ECHO - The following machine language routine will make your
PRINTER ECHO every line which is sent to the screen. The routine fits in page 6.
There is no way to use the printer as a typewriter (to print each key as it comes from the
keyboard). This is mainly because the E: device gets statements when the RETURN
key is pressed.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** FILE: ECHO. BAS
30 REM ** PRINTER ECHO PROGRAM
40 REM ** TURN ON PRINTER & EVERY LINE
50 REM ** WRITTEN TO SCREEN WILL GO TO
60 REM ** PRINTER ALSO.
70 REM **
80 FOR X=1536 TO 1667: READ Y:POKE X~Y:

NEXT X
90 DATA 160,15,185,0,228,153,131~6,136
100 DATA 16,247,169,131,141,33,3,169,6
,141,34
110 DATA 3,169,74,141,137,6,141,70,3,1
69,6
120 DATA 141,138,6,141,71,3,169,51,141
,135
130 DATA 6,169,6~141,136,6,133~8,108,2
50,191
140 DATA 141,146,6,32,63,6,32~96,6,208
,23
150 DATA 173,5,228,72,173,4,228,72,173
,146
160 DATA 6,96,32,96,6,173,7,228,72,173
,6,228
170 DATA 72~173,146,6,174,147,6,172,14
8,6
180 DATA 96,141,146,6,142,147,6,140,14
8,6
190 DATA 201,32,144,21~173,55,228,72,1
73,54,228
200 DATA 72,173,146,6,201,125,240,4,20
1
210 DATA 156,208,2,169,155,96,32
220 Z=USR (1536)

Another, simpler technique is to change two memory locations so that data is sent to
the printer instead of the screen. This can be done by POKE 838.166 and POKE
839.238. To return to the screen-only mode, POKE 838.175 and POKE 839.242.

PRI NTER UN IT - In the XL Operating System, it is now possible to address one of
eight printers by specifying the device (PI: through P8:). This is due to a change in the
device handler which allows a unit number in the IOCB.

165

PRIORITY CONTROL REGISTER

PRIORITY CONTROL REGISTER - The PRIORITY of a player, missile, or
playfield refers to which image will be visible or which will be hidden when a collision
occurs. Register $026F (623 decimal) is the shadow for $D01B (53275) which controls
these priorities. Six bits (DO through D5) are used for priority control. Two of the bits in
this register (D7 and D6) are used to set GTIA modes 9, 10, and 11.

SETUP

POKE 623,1

POKE 623.2

POKE 623.4

POKE 623.8

POKE 623.16

POKE 623.32

POKE 623.64
POKE 623.128
POKE 623.192

PRIORITY LIST

PLAYERS 0,1,2,3
PLAYFIELDS 0,1,2,3
BACKGROUND

PLAYERS 0,1
PLA YFIELD 0,1,2,3
PLAYERS 2,3
BACKGROUND

PLA YFIELD 0,1,2,3
PLAYER 0,1,2,3
BACKGROUND

PLAYFIELD 0,1
PLAYER 0,1,2,3
PLA YFIELD 2,3
BACKGROUND

Add four missiles to make another player

Overlapping players take another color

Set GR.9
Set GR.10
Set GR.ll

PROG RAM LI BRARY - As a computer hobbyist, you will probably begin to collect
hundreds of short programs in your personal library. As soon as you have more than a
few dozen programs, it becomes difficult keeping track of their whereabouts. PRO­
GRAM LIBRARY distributed by APX and written by Ron and Lynn Marcuse is an
indispensable tool for maintaining a catalog. The program was published in Compute!
in October 1981 and later distributed by APX on disk. Each disk is assigned a code and
an entry is written on the disk in a file called DISK.CAT. Disks containing commer­
cially prepared software should not be written on and can be cataloged manually.
PROGRAM LIBRARY reads the directory of an Atari DOS disk and notes the filespec
and size in sectors. The program then asks for a short description of the file, the date
acquired, and the type of file (game, utility, etc.) All of this data is put into a file and you
can then sort, print reports, search for a program or disk number, and more. The pro­
gram as it comes can handle around 300 records. It can be modified to handle more.

166

PROGRAM COUNTER

PROGRAM COUNTER - The PROGRAM COUNTER (PC) is a register in the
6502 processor. Actually, it is comprised of two 8 bit registers which act as a 16 bit
register. The PC has two parts, the PCL or program counter low (for the low byte) and
the PCH or program counter high (for the high byte). The PC is actually a program
address pointer which is used to address or choose the next memory location from
which to fetch an instruction or data. The number placed in the PC addresses one of the
65,536 eight bit data words (bytes) in the computer's address space. The selected word
is transmitted through the 16 address lines in the processor bus system.

PROM - Programmable Read Only Memory. A PROM is an integrated circuit, or
chip, into which programs or code can be written one time and read out many times. A
PROM is programmed in a device called a PROM burner. The PROM burner actually
melts tiny circuits in the chip so that an irreversible change is made which captures the
program. PROMs are used to make small quantities of read-only programs as the time
to produce one copy is quite long.

PROM PT - A PROMPT is a character orfigure which appears on the display screen,
asking you or waiting for you to input some data. The familiar "READY" in Atari
BASIC is a PROMPT. In FORTH, "ok" is often used as a prompt.

PROPORTIONAL SPACING - PROPORTIONAL SPACING is a technique of
printing text with variable widths between characters and words. The Atari 825 printer
is capable of PROPORTIONAL SPACING if used with the correct software. Most
printers and programs displaying text on the screen do not use PROPORTIONAL
SPACING. Although it is easier to read proportional print, typing programs which are
printed this way is often more difficult.

PROTECT - In BASIC XL, the PROTECT statement is used to lock a file. A PRO­
TECTed file cannot be deleted or rewritten. The file will be erased if the disk is
formatted.

PSEUDO ARRAY - Since Atari BASIC does not handle string arrays, PSEUDO
ARRAYS must be used. (Microsoft BASIC does allow string arrays in multiple dimen­
sions.) A string array is a set of subscripted string variables; e.g., STRING$(I),
STRING$(2), STRING$(3), etc., where each subscripted string variable is different. A
PSEUDO ARRAY divides one big string into multiple, equally sized, substrings
which can be accessed by counting from the first element of the string. All elements
must be the same size.

PTR IG - In Atari BASIC, PTRIG is the command to look at the Paddle TRIGger to
see if it is being pressed. There are eight PTRIG's to look at, one for each paddle (0
through 7). A zero indicates the paddle trigger is engaged, A one means it is open.
PTRIG(X) is the statement to look at paddle X. The PTRIG registers are located at
$027C through $0283 (636 through 644 decimal).

PUBLIC DO MAl N SOFTWARE - Many programmers have written useful utili­
tIes and games which are not usually suitable for commercial distribution but have
some utility. Often these programs are put in the PUBLIC DOMAIN. This means that

167

PUBLIC DOMAIN SOFTWARE

the programs can be freely exchanged unlike copyrighted software. The best place to
find PUBLIC DOMAIN SOFTWARE is in the established user groups. The larger
groups may have 20 to 40 disks or cassettes full of PUBLIC DOMAIN programs. Other
sources are bulletin board systems and magazines. Notable PUBLIC DOMAIN pro­
grams are: Jonesterm, Amodem, the AMIS BBS, and a bug chasing game called
Myriapede.

PU B LI C DOMAI N SO FTWAR E - Many programmers have written useful utili­
ties and games which are not usually suitable for commercial distribution but have
some utility. Often these programs are put in the PUBLIC DOMAIN. This means that
the programs can be freely exchanged unlike copyrighted software. The best place to
find PUBLIC DOMAIN SOFTWARE is in the established user groups. The larger
groups may have 20 to 40 disks or cassettes full of PUBLIC DOMAIN programs. Other
sources are bulletin board systems and magazines. Notable PUBLIC DOMAIN pro­
grams are: Jonesterm, Amodem, the AMIS BBS, and a bug chasing game called
Myriapede.

PUT and GET - GET is the BASIC command to retrieve a byte from a
device through an OPEN channel. The format for GET isjust like PUT except that with
GET, input from the K: device (keyboard) is allowed. Using GET with the program
recorder or disk drive will call in a 128 byte block into an appropriate buffer and each
GET will retrieve a character from the buffer until it is empty. More GETs will call in
the next block of 128 bytes.

R
RAD - In Atari BASIC, the RAD statement sets up trigonometric functions to
evaluate arguments in radians as opposed to degrees. The command DEG switches the
expectation to degrees. Radians is the default mode on powerup.

RAM - Random Access Memory. RAM is a term which commonly refers to a type of
integrated circuit used to store data while a computer is in operation. RAM refers to the
technique of addressing any location in the RAM without searching through all of the
data. A floppy disk is also a Random Access Memory, but it is almost never referred to
as such. A more descriptive term for RAM is Read/Write Memory since RAM can be
cleared by removing the power and new data can be entered and used. RAM comes
packaged in a DIP (Dual In-line Package) which is made of plastic or ceramic. The
RAM circuit may have 8K, 16K, 64K, or 256K bits of memory per chip. In order to get
16K bytes of memory in the Atari, eight 16K bit RAM chips are required.

RAM 0 I S K - Axlon, Inc. makes a peripheral card for the Atari 800 which allows you
to add enough memory to simulate a disk drive. During your sessions, you would store
all files in the 128K RAMDISK. When you finish, you save the contents of the RAM­
DISK to a floppy disk. The advantage is the high speed at which files are stored and
retrieved in RAM. Filemanager 800 + from Synapse is configured to work directly with
the RAMDISK. The RAMDISK is actually organized as eight 16K blocks. Writing a

168

RAMTOP

value to the range $OFCO to $OFFF or to the range $CFCO to $CFFF switches from one
bank to the next. The address bus cannot address more than 64K. An Integrator board
from ADS allows most software to operate with the RAMDISK.

One disadvantage of the RAMDISK is that if software loads into the $OFCO to $OFFF
range, it will crash. The following modification will cause the other range mentioned
above to be the bank switch. Find pin 18 on the edge of the 16K RAM card. This should
go to pin 1 of IC Z501. Connect a 6" piece of insulated wire to this pin by soldering or
sticking the wire in the socket. Connect the other end of the wire to pin 15 of 74 LS133 on
the RAMD ISK board. Now you have to cut one trace. Use the following diagram to find
and cut the trace. With this modification, you will not need to switch out the 128K when
a program crashes with RAMDISK. This modification was developed by David Young
and is included in the Omnimon instruction manual from CDY Consulting.

74LS244

74LS133

o 0

o-X-o 0-0

"------make cut here

RAMTOP - RAM TOP is the name given to the register at location 106 ($6A). The
value stored in this location is the number of pages (256 byte blocks) which are avail­
able for use. A 48K system has RAMTOP set at 160 on power-up for a RAMTOP value
of 40960. The Operating System, hardware registers, and ROM cartridges are located
above RAMTOP. You can forcibly lower RAM TOP by POKEingin a lower number and
saving a few extra pages of RAM for character set data, or player data, or programs.
First read the value in 106 by PEEK(106) and then POKE in the same number minus
the number of pages you want saved. .

TRY: POKE(106).PEEK(106)-4 to save four (4) pages. BASIC will not write into this
four page reserved area.

RAN DOM ACC ESS - RANDOM ACCESS to a storage device means that you can
go more or less directly to some area and read data which is stored there. A disk file can
be accessed randomly and RAM can be accessed randomly. Cassette files, which must
be read serially in order to get to a specific location, are not RANDOM ACCESS. NOTE
and POINT commands are used to randomly access a disk file. RAM can be read by
PEEK in BASIC. LDA in assembly, or @ in FORTH.

RANDOMIZE - In Microsoft BASIC, RANDOMIZE supplies a new seed to the
RND function to ensure that a truly random number results.

RASTER - RASTER refers to the type of cathode ray tube in which the beam is
scanned horizontally across the face of the tube from top to bottom. Other types of
CRT's use vector drawing in which the image is drawn directly with the beam.

169

RCA PLUG

RCA PLUG - The plug at the end of the cable on the Atari 400 and 800 computer
which connects to the TV antenna box. This is the same type of plug used to connect
stereo receivers, amplifiers, turntables, and tape decks together. The cable is usually
coaxially shielded to prevent interference from garbling the signal to the television.
These cables are available at very low prices at your local electronics shop.

READ (REA.) - READ is the BASIC command used to start inputting data from a
series of DATA statements. A READ with no DATA will cause an error.

READY - This is the prompt that tells you that the initialization sequence has been
successful and your BASIC language is ready for use. If the disk drive is on and no DOS
or proper boot sequence is available, then no READY prompt will be given.

REALTIME CLOCK - The Atari computer has a built-in REALTIME CLOCK
which can be used to time events or to delay activities. The clock updates registers
located at 18, 19 and 20 ($12, $13 and $14) once during every vertical blank interrupt.
Actually, location 20 ($14) is incremented every vertical blank until the value reaches
255. Then location 19 ($13) is incremented once. When location 19 passes 255, it resets
to zero and increments location 18. See ANTIC Vol. I, No.4, Oct/Nov 1982 for a pro­
gram by Pete Goodeve which produces a very accurate clock. A continuously running
clock could be used to make a realtime schedule program which would alert the owner
to meetings, appointments, or events.

The following program will put a clock in the upper right corner of your screen. Type it
in, save it as CLOCK.BAS, and then type RUN. Nothing will happen, but you should
type the time as HHMMSS. The colons should appear after HH and MM. When you
finish the SS, the clock should appear and the program will be erased from memory.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** REAL TIME CLOCK IN CORNER
30 REM ** FILE D:CLOCK.BAS
40 REM ** AFTER TYPING RUN , TYPE IN TI
ME
50 REM ** HHMMSS
60 REM
70 TRAP 120
80 FOR A=l TO 300
90 READ MRTC
100 POKE A+1535,MRTC
110 NEXT A
120 X=USR (1536)
130 REM
140 DATA 162,0,32~199,6,24,42~42~42,42
,141,255
150 DATA 6~32,199~6,24,109,255,6,157,2
40,6,232
160 DATA 224,3,240,11,169,58,141,251,2
,32,208,6

170

170 DATA 76,2,6,173,49,2,133,205,173,4
8,2,24
180 DATA 105,63,133,204,144,2,230,205,
169,0,141,14
190 DATA 212,169,79,141,36,2,169,6,141
~37,2,169

200 DATA 64,141,14,212,76,0,160,162,0,
202,208,253
210 DATA 248,14,162,0,173,243,6,105,1,
141,243,6
220 DATA 201,96,144,96,142,243,6,173,2
42,6,105,0
230 DATA 141,242,6,201,96,144,35,142,2
42,6,173,241
240 DATA 6,105,0,141,241,6,201,96,144,-
20,142,241
250 DATA 6,173,240,6,105,0,141,240,6,2
01,18,144
260 DATA 5,169,1,141,240,6,173,221,6,2
08,41,24
270 DATA 162,2,160,8,189,240,6,72,41,1
5,9,16
280 DATA 145,204,104,136,106,106,106,1
06,41,15,9,16
290 DATA 145,204,136,169,26,145,204,13
6,202,16,225,200
300 DATA 169,0,145,204,76,98,228,142,2
54,6,32,226
310 DATA 246,174,254,6,142,254,6,32,17
0,246,41,15
320 DATA 234,174,254,6,96,0,0,0,0,0,0,
(I

RECORD

RECORD- On a cassette file, a RECORD is a group of128 bytes. This is similar to a
sector on a disk file. In a database file, a RECORD is part of the file and it is comprised
of fields.

REDEFINED CHARACTER SET - The normal characters you see when you
type on the keyboard are contained in ROM within the Atari computer. A pointer is
used to tell the Operating System where to go to find the character set data. The pointer
is called CHBAS and is located at 756 ($2F4). By using your own character set data and
changing the pointer to point to your data, you can use a REDEFINED CHARACTER
SET. See CHARACTER SET.

REG I STE R - A REGISTER is a location in memory which may be written to or read
from by the computer. The computer is made of REGISTERs with numbers
assigned from 0 to 65536 in decimal or $0000 to $FFFF in hexadecimal. Each REGIS­
TER is comprised of eight bits. A bit is a digit which can be either a 1 or a o. Bits are
used to compose binary numbers. In order to address 65536 locations, 16 bits must be

171

RELATIONAL OPERATOR

used. This is derived from taking the value of2 to the 16th power (65,536). Some of the
65,536 locations are hardware REGISTERs. These REGISTERs are wired directly to
some devices, such as ajoystick trigger. Other REGISTERs act as storage locations for
data flowing in and out. Since some operations need only one bit as a signal and each
register has eight bits, multiple uses can be gained from registers. REGISTER 54016
($D300) uses four of the eight bits to monitor the paddle triggers. In other com­
binations, the same REGISTER looks for joystick movements and the keypad con­
troller. A memory map, such as the very detailed Mapping theAtari by Compute! Books
will describe the functions of all known REGISTERs.

RELATIONALOPERATOR- RELATIONAL OPERATORs are used for the com­
parison of variables. The RELATIONAL OPERATORS are <, >, =, < >, >=, and
<=. The RELATIONAL OPERATOR sets up a condition which maybe true or false.
Depending upon the condition, a branch or some other activity may occur.

For Example: IF X> Y THEN 100

In this statement, if the value of X is greater than Y, then the program will jump to line
100. If X is not greater than Y, then the next line will be executed.

REM (R. 0 r .) - REM is used only for the purpose of inserting REMarks or commen ts
in a BASIC program. REMarks are intended to give credit to an author or to clarify the
actions of a particular line number in a program. REMs are not needed to run any
BASIC program, but if you delete a REM statement to which a GOTO or other branch is
sent, an error will occur. Be careful when deleting REM statements.

R E N U M BE RE R - BASIC programs often need RENUMBERing for publication in
a newsletter or magazine. Several commercial programs will do this job without the
author having to manually go through the program and change every line number.
These programs will even change arguments hidden in GOTOs and GOSUBs. Some of
the fastest RENUMBERers are included in the BASIC Commander package by MMG
Software, BASIC XL, and the Monkey Wrench. RENUMBERing of even very large
BASI C programs is essentially complete before you get your finger off of the RETURN
key. Other programs by APX, and those in the public domain, are not nearly as fast but
will produce the same end result.

RE NAM E - In BASIC XL, RENAME is a statement which performs the same func­
tion as the E option in Atari DOS 2.0. A DOS file can be REN AMEd with this command.
The format for using RENAME is:

RENAME "D:NEWNAME.BAS,OLDNAME"

In Atari DOS 2.0, the E function for RENAME file asks for the old name first followed
by the new name to be given to the file.

R E N U M - In Microsoft BASIC and BASIC XL, RENUM is a command available on
the extension diskette which will RENUMber your BASIC program. The format for
using RENUM is:

172

RESET

RENUM start.inc

where start is the first line number and inc is the increment between lines.

RESET - To initiate a coldstart, that is, to reboot the disk drive and start the
power-up sequence, POKE 580,1 from BASIC. When SYSTEM RESET is pressed, the
coldstart will occur. Immediately after booting, memory location 8 contains a 0 until
SYSTEM RESET is pressed. Mter RESET is pressed, location 8 contains a 255. This
location is vectored (pointed) to 58484 ($E4 7 4) which handles the warmstart routine. If
SYSTEM RESET is changed to do a coldstart, then the initialization address can be
put in locations 12 and 13 ($OC and $OD) for the next code to execute. See the SYSTEM
RESET CHANGER to RUN a BASIC program from a RESET.

RESIDENT DISK HANDLER- The Resident Diskette Handler is not the same as
the File Management System (which incidentally is resident in RAM). This handler
does not use the CIO utility so it does not have an entry in the device handler table. It is
used by filling in the proper parameters in the device control block (DCB) and jumping
through the DISKINV vector at 58451 ($E453).

RESTORE - The RESTORE command in BASIC resets a pointer which moves
down data in a DATA statement Even if all of the DATA is not read, RESTORE will
reset the pointer to the top of the DATA so that the first piece of data will be read
next

RESUME - In Microsoft BASIC, RESUME transfers control back to a line which
caused an error. RESUME NEXT transfers control to the line after the line which
caused the last error.

RETURN - Mter a subroutine is executed, a RETURN command is needed to send
control back after the GOSUB. The line number to which the RETURN is supposed to
go is left on the stack unless a POP command is executed.

RETURN KEY - The RETURN KEY generates a CHR$(155) code which sends the
cursor to the first column and moves down one line (or moves the text up one line if on
the bottom screen line). The logical line is then sent to an input buffer for processing.

REV. B RO M - The Operating System for Atari computers has been revised several
times. Revision A had several irritating bugs, such as the drive and printer going to
sleep for long, unpredictable periods. revision B of the OS fixed this and several other
bugs. To test the version in your 400 or 800, type the following line while in the
immediate mode.

PRINT PEEK(58383) < Return >

li ~QU get a 0 result, you have REVISION B. If you get a 56, you have REVISION A. If
you get a 249, you have the European PAL version of the OS. See OPERATING
SYSTEM.

173

REVERSE LINE FEED

R EVE RSE LI N E FE E D - The Atari 825 printer is one of the few printers available
which can perform a REVERSE LINE FEED. This means moving the paper back into
the printer instead of out as it normally does. With this feature it is possible to print
double columns and to overstrike characters for foreign language printing.

REVERSE POLISH NOTATION - RPN is a syntax used for mathematical
operation where the arguments are put on a stack and the operators are entered after
the arguments. This differs significantly from regular algebraic notation (a + b). RPN
would use (a b +) for this operation. FORTH uses RPN for its math handling.

RF SWITCH BOX - In order to connect the Atari computer to your television
receiver, you should install your RF SWITCHBOX on the antenna terminals. The
switchbox will allow you to switch to regular television or to the computer without
using a screwdriver to reconnect the terminals.

R F 1- RFI refers to Radio Frequency Interference. RFI is caused by switching signals
inside the computer at radio frequencies. The metallic shielding in all Atari computers
and peripherals effectively prevents most interference with radios and television
broadcasts. Hardware modifications often leave gaps through which interference
signals can leak out. Printers are especially bad for interference because of inadequate
shielding. The interference will not affect the human body other than the irritation it
can cause by obscuring your favorite TV show. The Atari computer is (RFI-wise) the
quietest computer. This is probably because it was designed before the Federal Com­
munications Commission released the Part 15 rules to create separate home and indus­
trial standards (Class A and Class B).

RGB - RED, GREEN, BLUE - This terminology refers to a color monitor which is
capable of a very high graphics resolution. RGB monitors can handle graphics over
1,000 by 1,000 pixels of256 colors. RGB signals are sent such that each color has its own
line and controls an individual gun in the CRT. The Atari computer cannot support
such high resolution graphics because of the limited memory available. Video inter­
faces for the Atari are limited to an NTSC (N ational Television Standards Committee)
signal for a monitor or an RF modulated signal for a home TV receiver.

RIGHT$ - In Microsoft BASIC II, RIGHT$ returns the rightmost characters of a
string according to the number specified.

R N D - The RND command is used in BASIC to generate random numbers. In BASIC
XL, this statement is replaced by RANDOM. The RND statement must be accom­
panied by an argument, as in RND(0), for use in a program. RND(O) is treated just like
a variable in a program. To print a list of random numbers, try this short program:

10 FOR X=l TO 10
20 PRINT INT(100*RND(O»
30 NEXT X

You can also use PEEK(53770) to get random numbers between 0 and 255 much more
quickly than you can through BASIC and RND(O).

174

ROM VECTOR

ROM VECTOR - A ROM VECTOR is a memory location which contains the infor­
mation on the address of a particular routine which is contained in the Operating Sys­
tem Read Only Memory. The ROM VECTOR is used so that Atari programmers can
make upgrades to current Operating Systems and so that existing software will still
work. If programmers stick to using standard ROM VECTORS then the contents of the
vector can be changed but compatibility will remain. This problem is quite serious with
the Operating System used in the Atari 1200XL and the XL series. When programmers
jump right to the routine without using the ROM VECTOR, and Atari has changed the
location of the routine, existing software will not work. (See XL OPERATING SYSTEM.)

ROUN DOFF - A simple technique to round off a number to thenearestls, lOs 100s,
etc. is to add a small increment and then take the integer of the new number. For exam­
ple, to round off 10.14 to the nearest .1, add .05, multiply by 10, take the integer of the
sum and divide by 10. In BASIC, INT«10 * (10.14 + 0.05)))/10 will round off to the
nearest .1.

ROW - A ROW is a horizontal line of characters or pixels on the screen.

RS232C HANDLER - The R: device is not resident in the OS ROM. This means
that when you start up your system, you do not have the ability to use the RS232 port
unless you do several things. First, make sure the 850 interface is connected to the
serial bus via the black cables used for the disk drives and computer. You must have the
850 ON when you boot the system. You will hear a two or three second tone after DOS is
booted in, assuming you have your TV volume turned up. This tone is the signal that the
RS232 handler program has loaded in. Voila, you now have a new device added to the
handler table. A modem, voice synthesizer, or other device can be attached to the serial
port on the 850. Make sure the parameters are set up correctly. See HANDLERS.

The following program will build an RS232 booting file in an AUTORUN.SYS format.
Type in this program and put it on your modem program disk. Run it and hit OPTION
when you have inserted your formatted disk and are ready to write the file onthe disk.
To use it, make sure your 850 interface is on when you boot the RS232 handler loader.
Listen for the tone to tell you it is loaded. You can append another file to this
AUTORUN.SYS file to run another BASIC program such as a menu of Jonesterm. Use
the C option in DOS with the / A for append. See APPEND.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** PROGRAM NAME: RS232.BAS
30 REM ** PUBLIC DOMAIN PROGRAM
35 REM
40 PRINT CHR$(125)
50 PRINT " HITOPTIOH TO WRITE AN "
60 PRINT" RS 232 BOOTING AUTORUN.SYS"
70 PRINT "FILE. "
80 IF PEEK (53279) =3 THEN 100
90 GOTO 80
100 OPEN #1,8,0, "D:AUTORUN.SYS"
110 FOR 1=1 TO 88

175

RTCLOK

120 READ D
130 PUT #l,D
140? D;" ";
150 NEXT I
160 CLOSE #1
170 END
180 REM DATA IS LOADED AT 14336 (DEC)
190 DATA 255,255,0,56,75,56,169,80
200 DATA 141,0,3,169,1,141,1,3,169
210 DATA 63,141,2,3,169,64,141,3,3
220 DATA 169,5,141,6,3,141,5,3,169
230 DATA 0,141,4,3,141,9,3,141,10
240 DATA 3,141,11,3,169,12,141,8,3
250 DATA 32,89,228,16,1,96,162,11
260 DATA 189,0,5,157,0,3,202,16,247
270 DATA 32,89,228,48,6,32,6,5,108
280 DATA 12,0,96
290 DATA 226,2,227,2,0,56

RTCLOK - This is the label for the realtime clock in the Atari computer. It is avail­
able through registers $12, $13, and $14 (18,19 and 20 in decimal). See REAL TIME
CLOCK.

RTI - RTI is the assembly language mnemonic code for ReTurn from Interrupt. An
RTI must be the last instruction in a routine which is run during an interrupt. The RTI
returns the 6502 processor back to the main program.

RU N - The BASIC command RUN will begin execution of any BASIC program which
is in memory. RUN can be used to LOAD and RUN a tokenized (SAVEd) BASIC pr<r
gram from a disk or cassette tape. RUN"D:TESTPROG" will LOAD a program called
TESTPROG from disk and RUN it when it is in memory. This is essentially the same as
typing LOAD" D: TESTPR OG", waiting for the READY prompt, and then typing RUN.
RUN can be used as a command in a BASIC program.

RUN TIME PACKAGE - A RUN TIME PACKAGE is a utility which is loaded and
required for some compiled language programs. The RUN TIME PACKAGE is essen­
tially a language in and of itself which allows the compiled code to run as a more com­
pact and faster program.

RUN TIME STACK - The STACK is a one page long block of memory, located at
page 1 between locations 256 and 511 ($0100 and $OlFF), which is used by the Operat­
ing System, BASI C, and DOS for storage, notes, processing, and so on. A pointer points
to the top of the STACK at $OlFF and the STACK moves downward toward $0100
everytime the program encounters a GOSUB, ON, FOR, JSR or PHA. When the pr<r
gram meets the corresponding GOTO or GOSUB from the ON statement, the NEXT
from the FOR/NEXT, RTS, RTI or PLA, it reads from the top of the STACK. There are

176

RUN ONLY PROGRAM

only 256 bytes available in this STACK, and if more than 256 bytes are written, it will
wraparound starting at $OIFF (511 decimal) again.

STACK

511
510
509
508
507

CONTENTS CONTENTS
at TIME 1 at TIME 2

AA
01 j FF

AA
01

RUN ONLVPROGRAM- A RUN ONLY PROGRAM is one that can only be RUN,
not LOADED, LISTed, or examined in any way. This protection is added by altering
the BASIC Statement Cursor Pointer in locations $008A and $008B (138 and 139
decimal). To get a RUN ONLY BASIC PROGRAM, add the following line to the end of
your program which you want to protect:

32767 POKE PF-EK(138)+PEEK(139)*256+2,O:S
AVE "D:RUNONLY":NEW

Do not RUN this program until you have SAVEd it under another name (Not
D:RUNONLy). Type GOTO 32767 < Return> and you will have your protected ver­
sion saved as D:RUNONLY. You will only be able to RUN this program by the com­
mand RUN"D: RUNONLY". The same technique will work with C: on cassette recorders.

Another simple protection technique for BASIC programs is to change all of the
variables and the statements of a tokenized program. This can be done by adding two
lines to the end of your BASIC program. Be sure to SAVE the program before you RUN
it with these two lines or you will never see it again. The program can only be RUN, not
LISTed or LOADed; however, the program can be copied.

32766 FOR A=PEEK(130)+PEEK(131)*256 TO P
EEK(132)+PEEK(133)*256:POKE A, 125:NEXT A
32767 POKE PEEK(138)+PEEK(139)*256+2,O:S
AVE "D:FILESPEC":NEW

s
SAVE - SAVE is an Atari BASIC command. SAVE will store a BASIC program as a
tape or disk file when executed as SAVE"D:FILENAME.EXT" or SAVE"C:". Files
are stored in a tokenized form. Tokenization is a method of translating BASIC lines
i..uta symbolic format for easier processing. For instance, the BASIC command GOSUB
is tokenized as $OC instead of as the letters G. O. S. U. and B. Numbers are stored as six
byte binary coded decimal numbers, so that programs with many numbers will take up

177

SAVE "5:"

much more disk space if SAVEd than if LISTed. A SAVEd file is comprised of two
parts: a series of pointers which are stored in page 0 and point into the file, and the
tokenized file data. The pointers point to the Variable Name Table, the Statement
Table, String! Array area, RUN stack, and MEMTOP. These pointers are visible when
the SAVEd BASIC program is dumped to a printer or to the screen. None of the normal
BASIC commands are visible if you examine the contents of the disk file because of the
tokenization. See VARIABLE NAME TABLE and TOKENIZATION.

SAVE "S:" - You can usetheSAVE"S:" command to examinethetokenizedBASIC
program which you have in memory. Simply LOAD in a BASIC program, and while in
the immediate mode, type SAVE"S:" <Return>. The screen will clear and the tokenized
program will be listed on the screen.

One further extension of the SA VE"S:" command is to examine the contents of your
Atari's memory by using the screen. You must change the value of the registers which
store the end of the BASIC file. You can then list out all memory to the top of memory
($FFFF). To do this, POKE 140, 255 and POKE 141, 255, then type SAVE"S:". When
this has been done, your program will list, then all free memory, followed by the BASIC
cartridge and the Operating System.

SAV E ... LOCK - In Microsoft BASIC II, the SA VE"D:filename" LOCK command is
used not only to SAVE a BASIC program to a disk file, but it prevents any user from
listing, merging, or examining the file.

SCALAR - A SCALAR is an array of one element. A SCALAR cannot be subscripted
as an array can. A variable such as "X" in LET X = 1 is a SCALAR. See ARRAY.

SCAN LINE - See HORIZONTAL SCAN LINE.

SCIENTIFIC NOTATION - Atari BASIC will convert any number longer than
nine digits or any number whose absolute value is less than 0.01 to SCIENTIFIC
NOTATION. This format consists of a + or-sign, the mantissa or number which may
be a floating point number with up to eight decimal places, the letter E, another + or­
sign for the exponent, and the exponent (a two digit integer). The number 0.00001234
would be converted to 1.234E-05 in SCIENTIFIC NOTATION. The E-05 indicates that
the decimal point should be moved five places to the left to convert to normal algebraic
notation.

SCOpy 81 0 - This utility from Alliance Software is a very efficient program for
making back-up copies of non-protected data or program disks. An entire disk can be
copied in at most two passes on afu1l48K system. Options allow copying to or from mul­
tiple drives, copying of selected sectors, multiple copies from the same reading, verify­
ing writes or not verifying writes, and the option to format the disk before writing.
When you boot up SCOPY you will see the following menu:

SCOpy
Insert Source Disk

SOURCE DRIVE
DESTINATION DRIVE
STARTING READ SECTOR

178

01
01

001

SCREEN EDITOR - E:

SCOPY
Insert Source Disk

ENDING READ SECTOR 2DO
STARTING WRITE SECTOR 001
NUMBER OF DESTINATIONS 01
VERIFY WRITES? YES
FORMAT DESTINATIONS? NO
WRITE BLANK SECTORS? NO

You can just hit RETURN to set all of the above parameters with the default settings.
When SCOPY finds and tries to copy a bad sector, it will generate an ERROR message.
To continue copying around the bad sector, just hit the START key. SCOPY810 is very
compact which allows the maximum use of RAM for copying. All numbers are dis­
played in hexadecimal. SCOPY 810 is licensed to users' groups and is available only
through these groups. The price is around $10.

SCREEN EDITOR· E: - One of the resident handlers (see HANDLERS) is the
screen editor. This device is a program that accepts characters from the keyboard (K:)
and sends them to the screen (S:). The device vectors for the screen editor start at58368
($E400). The screen editor of the Atari computer is among the best of any available on
personal computers. The most outstanding feature is the ability to place the cursor on a
line and have the entire logical line be sent to the editor when RETURN is pressed.
Many systems require you to run your cursor over the line to the end and then press
RETURN. The E: device accepts 16 special control codes which perform various edit­
ing functions. These control codes are:

FUNCTION HEX CHR$ KEYSTROKES

Escape $lB 27 ESC-ESC
Cursor Up $lC 28 ESC-Ctrl-
Cursor Down $lD 29 ESC-Ctrl =
Cursor Left $lE 30 ESC-Ctrl +
Cursor Right $lF 31 ESC-Ctrl *
Clear (Screen) $7D 125 ESC-Ctrl <
Back Space $7E 126 ESC-Back Space
Tab $7F 127 ESC-Tab
End Of Line $9B 155 Inverse-RETURN
Delete Line $9C 156 ESC-Shift Back Space
Insert Line $9D 157 ESC-Shift Insert
Clear Tab $9E 158 ESC-Ctrl Tab
Set Tab $9F 159 ESC-Shift Tab
Bell $FD 253 ESC-CtrI2
Delete Character $FE 254 ESC-Ctrl Back Space
Insert Character $FF 255 ESC-Ctrl Insert

If any of these characters are sent to the screen from a disk file or through the RS232C
90rt, the appropriate editing function will occur. This will happen typically when you
use the C. function of DUP.SYS to send a binary load file to the E: device. To use these
editing functions in programs you want to list to a printer, use the CHR$ (character str-

179

SCREEN MEMORY

ing) value. For example, use CHR$(125) in a BASIC program listing to clear the
screen.

SC R E E N MEMO RY - The screen memory area is located on the memory map be­
tween MEMTOP and RAMTOP. RAMTOP is the top of BASIC RAM which is $9FFF
(40959) in a 48K system on power-up and the value is found in location $006A (106).
MEMTOP is the top of free BASIC RAM (where your program can go). MEMTOP is
found by looking in locations 741 and 742. In between these markers you will find the
memory which is used to display information on the screen. Locations $0058 and $0059
(88 and 89 decimal) contain the address of the lowest screen memory data which is the
byte that will fill the upper left-hand corner of the screen. By POKEing another
address into 88 and 89, you can change the memory which is accessed by the display.
The Display List uses 88 and 89 for its normal pointer to the display memory.

In GR.O, the value in 88 and 89 on power-up is 40000. If you POKE 40000 with a number
(try 99) you will see the corresponding internal character appear in the upper left cor­
ner of the screen. If you POKE 40000,99 you will see a lowercase letter "c" appear.

SCRIPTOR - Compute! magazine has published a fairly sophisticated word pro­
cessor written in BASIC in the April 1983 issue. The code is over four full pages of
magazine text, so it is very tedious to type in. Also, the program is quite slow because it
is written in BASIC. The editing and formatting commands are quite useful for creat­
ing text files or printing reports. Format lines are implemented roughly as in Letter
Perfect. A mini-DOS is available in the program by hitting the ESC key.

SCRN$ - In Microsoft BASIC II, the SCRN$ statement looks at the position of a
pixel or character on the screen (at an X, Y coordinate) and returns the color number or
character when used with the ASC command. The format for use is: CHAR$= ASC
(SCRN$(X,y» where X and Y are the horizontal and vertical positions of the pixel or
character position in question.

SCROLLING - Almost every personal computer can scroll data across the screen.
Scrolling is what you see when you LIST a program and it begins printing from the top
of the screen to the bottom and then begins rolling off the top. This is known as coarse
scrolling. Fine scrolling involves moving the data one pixel line at a time across the
screen resulting in a very smooth motion. The XL series has a built-in fine scrolling
function in BASIC. To fine scroll, you need only do a POKE 622.255:GR.O <Return>.
All text listed after this statement will be smooth scrolled vertically. Scrolling can be
horizontal or vertical. Vertical scrolling is like the LIST example. Horizontal scrolling
is a sideways motion across the screen. Eastern Front from Atari uses both horizontal
and vertical scrolling. Diagonal scrolling results from a combination of horizontal and
vertical scrolling.

There are two ways to produce scrolling. One is to move the data through the area of
memory (RAM) that is used for screen memory. Since a 40 by 24 character screen has
960 bytes, a lot of memory must be shifted in order to scroll. A graphics 8 screen has
over 8000 bytes of data which would have to be shifted in order to scroll. The short
amount of time needed to shift one byte adds up considerably when thousands of bytes

180

SEARCH

are shifted and the program slows down noticeably. That is why another type of scroll­
ing is used. Instead of moving the data through the window, the data stays put and the
window is moved. Two bytes can be used to specify where the ANTIC is to find the
memory to put on the screen. If these bytes are changed according to ajoystick input or
some other technique, we will get scrolling.

The Display List (Instructions for the ANTIC) contains an instruction called Load
Memory Scan (LMS). This instruction tells the ANTIC where in memory to get the data
to fill the lines which make up the display on the screen. The instruction is really com­
prised of three bytes:

INSTRUCTION * LOW BYTE * HIGH BYTE (of address)

The instruction for an LMS is a simple 64 ($40 hex). The address of memory for
the display lines is in the familiar LO,HI format. After the LMS instruction, the
display list needs a series of numbers to tell it how many lines of which graphics
modes are to be put on the screen. (See DISPLAY LIST). We are interested in
the address for applications to scrolling. If the address in the LMS instruction is
incremented by 1, the entire portion of the screen covered by that instruction will scroll
to the right. If the memory address is decreased by 1, the display will scroll to the left. A
coarse vertical scroll is done by adding the total number of bytes contained in one mode
line (20 or 40) to the address in the LMS.

Fine scrolling is the movement of the screen data by one scan line as opposed to one
character line. Fine scrolls can be done only within the confines of a character block. In
other words, we cannot fine scroll across the entire screen without special preparation.
Two preparations must be made to do smooth scrolling. First, you must set the appro­
priate bits in the LMS instruction. For horizontal scrolling this requires you to set bit 4
(add 16) to the LMS instruction. We used 64 previously, so adding 16 produces 80. The
bits change as follows: LMS instruction 64= 0100 0000 ~ 80= 0100 1000 (bit 4 set)
For vertical scrolling, bit 5 is set (add 32) on the LMS instruction. Then you must also
put the number of clock cycles or scan lines to scroll in the respective hardware regis­
ters. These are 54276 ($D404) for horizontal and 54277 ($D405) for vertical. See the
Hardware Manual, section II and De Re A tan, section 6 for a detailed explanation
of scrolling.

SEARCH - A SEARCH routine is highly recommended for any word processor or
data base program you are considering. A SEARCH by the computer will save your
eyes from the task of reading an entire file and looking for a specific entry. The most
common type of SEARCH is one that looks for a string of characters and stops at the
beginning of the string when it is found. A replace function in combination with a
SEARCH is also very useful for editing. Some word processors, such as Letter Perfect,
will SEARCH for CTRL chararacters and some will not.

SECTOR - On a floppy disk, the data are layed out in concentric rings of formatted
sections. The rings are called tracks and there are 40 tracks on an Atari DOS disk. The
sections are called SECTORs and there are 18 sectors per track. Within each track are
128 bytes of eight bits each. There are timing marks and ID marks between SECTORs

181

SECTOR EXAMINER

which are not visible to the user of an 810 or similar disk drive. The disk is layed
out as follows:

40
18
128
AND
8

TRACKS/DISK
SECTORS/TRACK
BYTES/SECTon

BITS/BYTE

TRACK

BYTE

/

= 720 SECTORS/DISK
= 92,160 BYTES/DISK

= 737,280 BITS/DISK

sECTOR.

',...-6IT

SfCTOR

SECTOR EXAM I N E R The following program will allow you to read the contents of
any sector on an Atari disk. If the sector is a directory sector, the directory information
will be formatted and interpreted as to the length and starting sector of the files.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** EXAMINE SECTOR UTILITY
30 REM ** BY RIC MEARS
40 REM ** FILE EXAMINE. BAS
50 REM
60 REM Equates
70 UNIT=769:ACTION=770:BUFLO=772:BUFHI
=773
BO SECLO=778:SECHI=779:REEDSEC=B2:PUUT
SEC=87

182

90 REM Initialize
100 POKE 83,38:POKE 82,2
110 DIM BUFFERS(128),ZS(1)

SECTOR EXAMINER

120 BUFFERS=u ":BUFFERS(128)=" u:BUFFE
R$(2)=BUFFERS
130 FOR 1=1536+128 TO 1+4:READ A:POKE
I,A:NEXT I
140 DATA 104,32,83,228,96
150 REM Print Titles
160 ? CHRS(125):? " Disk Examin
e Utility":?
170 ?" WRITTEN BY RIC MEARS 4/10/1
981 ":? :?
180? ," NOT FOR SALE"
190 ? " PUBLIC DOMAIN SOFTWARE":?
200 ?" Remove line 350 if examining

a Non-Atari-DOS diskette. "
210 ? :?
220 REM Input Sector to Display
230 ? :? :? U SECTOR or Return for ne
xt "
240? "DIRECTORY IN 361 .•• 368 ";:TRAP

260: INPUT SEC
250 REM Set CIO Parameters & Call
260 POKE UNIT,l
270 POKE BUFLO~ADR(BUFFERS)-INT(ADR(BU
FFERS) 1256)*256
280 POKE BUFHI,INT(ADR(BUFFERS)/256)
290 POKE SECLO,SEC-INT(SEC/256)*256
300 POKE SECHI,INT(SEC/256)
310 POKE ACTION,REEDSEC
320 D=USR(1536+128)
330 REM Check for Exceptions
340 IF PEEK(771)(>1 THEN? CHRS(125);"
Non-existent Sector":GOTO 230

350 IF SEC>360 AND SEC(369 THEN 490
360 REM Display Sector Data
370 ? CHR$(125);" SECTOR ";SEC:LSEC=SE
C
380 ? " ______________________________ _

II. ,
390 FOR 1=1 TO 128:? CHRS(27);BUFFERS(
I, I> ; : NEXT I:?
400 ? " ______________ . ________________ _

" . ------ ,
410 ? "File #";INT(ASC(BUFFERS(126»/4
) ; II II • ,

183

SECTOR FORMAT

420 IF ASC(BUFFER$(128»<127 THEN? AS
C(BUFFER$(128»;:GOTO 440
430 ? 125;
440 ? " BYTES LINK --) ";
450 SEC=ASC(BUFFER$(127»+(ASC(BUFFER$
(126»-INT(ASC(BUFFER$(126»/4)*4)*256
460 ? SEC
470 GO TO 230
480 REM Display Directory Data
490 ? CHR$ (125)
500 ? " DIRECTORY Sector ";SEC:?
510 ? "STATUS # FILENAME #SEC S
TART"
520 ? " _____ _

"
530 FOR 1=1 TO 8
540 L= (1-1) *16
550 IF BUFFER$(L+l~L+l»CHR$(158) THEN

? "Deleted ";:GOTO 580
560 IF BUFFER$(L+l~L+l»CHR$(O) THEN?

"Active ";:GOTO 580
570 .., " ";
580 K=ASC(BUFFER$(L+l»
590 K=K-INT(K/64) *64: IF K)=32 THEN? "
* ";:GOTO 610
600 ?" ";
610 K= (SEC-361> *8+I-l:? K;" ";: IF K< 10

THEN? " ";
620 ? BUFFER$(L+6~L+13);".";BUFFER$(L+
14,L+16);
630 POSITION 28~I+4:? ASC(BUFFER$(L+2)
)+256*ASC(BUFFER$(L+3»;
640 POSITION 34~I+4:? ASC(BUFFER$(L+4)
)+256*ASC(BUFFER$(L+5»;
650 ? :NEXT I:? :? :SEC=SEC+l
660 GOTO 230

SECTOR FORMAT - The Atari disk drive contains its own microprocessor. The
drive is actually a small computer with 4K of addressable memory. It contains the 6810,
6532, 2316, and FD1771 floppy disk formatter/controller chips. The 6810 addresses
drive memory from $0080 to $OOFF. The 6532 addresses $OOlB to $OlFF. The 2316
addresses are $0800 to $0 FFF. The microprocessor takes care of writing all of the data
necessary to make and mark the sectors on the floppy disk during formatting. These
data, which are between the standard 128 bytes which you can read, are listed below.
You need special hardware to read or modify these bytes.

184

SECTOR NUMBER

NAME OF FIELD # BYTES # USAG E VALUES

Pre-sector gap 6 Marker $OOs
ID Field 1 ID Address Mark
Track Number 1 Contains Track =#= $00 to $27
Zero Marker 1 Marker $00
Sector Number 1 Contains Sector =#= $01 to $12
Sector Size 1 $00 means 128 bytes/sect $00

$01 = 256
$02 = 512
$03 = 1024

CRC 2 Cyclical Redundancy Check $00 to $FF
(Written on formatting)

Pre-data field 17 Data Field Coming Up $OOs
Data Address 1 Data Address Mark
Data Field 128 Sector Data ($FF=blank) $00 to $FF
CRC 2 Cyclical Redundancy Check $00 to $FF

(Written after write)
Post Sector Gap 9 Marker $OOs (Os)
Post Sector Gap 3 Marker $FFs (Is)

The Cyclical Redundancy Check (CRC) is a type of checksum which adds the data pre-
ceding it to provide a number for comparison. If a discrepancy is found, the sector or
write operation is flagged as defective.

SECTOR NUMBER - Atari disk drives format disks with 720 individually num­
bered sectors. Sector 0 is not readable. Sector 720 is readable, but cannot normally be
written to. NOTE and POINT make use of the absolute SECTOR NUMBER for read­
ing and writing data to a disk. Sectors are not laid out sequentially on around the tracks
on a disk. They are interleaved to allow for faster reading. An early format, called the
slow format, laid out the sectors on a track as follows:

1,8,15,4,11,18,7,14,3,10,17,6,13,2,9,16,5,12
SLOW FORMAT

The faster format, which is contained in a newer ROM "c" (Part =#= C011299C in all
units made after May 1982), formats disks so that the sectors are laid out as follows:

1,3,5,7,9,11,13,15,17,2,4,6,8,10,12,14,16,18
FAST FORMAT

The only difference is the speed at which data loads into the computer. For very high
data loading rates, see the Warp Speed by Happy Computing.

S E CTO R READ - The following routine will read any sector from an Atari disk and
put the data in that sector into a string called A$. You can then use the string data any
way that you wish. See Antic Magazine, May 1983, Vol. 2, No.2 to use this routine to
hide ID information in sector 720. The original program and article were written by

185

SECTOR TYPES

Chuck McMath. This utility is used in the program called LJKDIR.BAS to print a direc­
tory for LJK DOS disks in the program found in the LJK DOS entry. The program finds
the directory entry and puts it into a string. The appropriate filenames are extracted
and chained to make a printable string.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** PROGRAM: SECTREAD.BAS
30 REM
40 DIM SECTS(44),AS(128)
50 FOR B=l TO 44
60 READ C
70 SECTS(B,B)=CHRS(C)
80 NEXT B
90 ? "TYPE SECTOR # TO READ ";
100 INPUT SECT
110 REM ++ MAKE A BUFFER ++
120 FOR D=1 TO 128:AS(D,D)=" ":NEXT D
130 REM ++ READ EXAMPLE ++
140 X=USR(ADR(SECTS),ADR(AS),SECT,O)
150 PRINT AS
160 GO TO 90
170 END
180 DATA 104,104~141,5,3,104,141,4,3,1
04
190 DATA 141~11,3,104,141,10,3,104,104
,201
200 DATA 1,208,7~169,87,141,2,3,208,5
210 DATA 169,82,141,2,3,169,1,141,1,3
220 DATA 32~83,228,96

SECTOR TYPES - Atari DOS sets up five SECTOR TYPES on a disk. They
are:

1. Boot Sectors
2. File Sectors
3. VTOC
4. Directory
5. Lost Sector

The Boot sectors are sectors 1, 2, and 3. They are read by the Operating System (in
ROM) when the computer is cold started. Ifthr ;sk drive (D: device) responds, the boot
sectors are read and processed. The boot sectorsy load the DOS. SYS, A UTORUN.SYS,
or some other program on the disk (if it is set up as an autoboot file).

File sectors are the major data carrying sectors on the disk. The are usually sectors 4
through 359 and 369 through 719. The last three bytes of a linked file sector contain
information on the next sector, file number, and sector size. Data files usually have no

186

SECTOR TYPES

such information but are a full 128 bytes of data. The following information is con­
tained in the last three bytes of a file sector:

Byte 125 - Next sector (MSB two bits) and File number (six bits).
Byte 126 - Next sector (LSB eight bits).
Byte 127 - No. of bytes in sector (seven bits) and.

Flag for short sector (one bit).

The VTOC or Volume Table Of Contents sector is sector number 360. This sector con­
tains most of the organizational data for the disk. It contains a map (in binary code) of
the disk which represents the active and inactive sectors. It also does the accounting to
keep track of how many sectors are free, unused, and available. If you have a crash,
power failure, or bug while writing to a file, you may not have a current VTOC. This can
result in files being overwritten; the DOS may think some sectors are free because the
VTOC is not current. The best thing to do in case of a crash is to stop using the disk
immediately. Put a write protect tab on it and make a backup copy with a sector copier
such as SCOPY 810. The symptom of a bad VTOC is an ERROR 164. The best way to
correct the damage is to use a VTOC rebuilder such as the routine contained in DIS­
KEY by Adventure International or Disk Fixer by APX. These utilities trace each file
and rebuild the map in sector 360. Depending on the amount of damage, you mayor
may not have success. The VTOC sector is laid out as follows: (Of the 128 bytes in sector
360, only 100 are used.)

SECTOR 360 . VTOC

Byte 0
Bytes 1 & 2

Bytes 3 & 4

Bytes 5 - 9
Bytes 10-99

Flag for DOS 1 or DOS 2. 01=DOS 2, OO=DOS.l
LSB and MSB for total number of free sectors with no
files written on disk (707 nominally).
LSB and MSB for the number of currently free sectors on
the disk.
Unused by VTOC.
Bit map of occupied sectors. one bit per sector.
O=Unused,I=Used.

Directory sectors are found in sectors 361 through 368. As files are added, the directory
entries are added to this group. When you use the" A." option in DOS, you are reading
the information in the directory sectors. Each directory entry uses 16 bytes and there
can be a maximum of64 files and directory entries in DOS 1 and DOS 2 disks. The direc­
tory is constructed as follows:

SECTORS 361 THROUGH 367· DIRECTORY

Byte 0 FLAG byte (described below).
Bit 0 - Open file flag (O=closed, 1 =open).
Bit 1 - Flag for DOS 2 (0= DOS 1, 1= DOS 2).
Bit 2 - ?
Bit 3 - Not used.
Bit 4 - Not used.

187

SELECT

Bit 5 - Flag for locked file (1= Locked, 0= Unlocked).
Bit 6 - Valid file flag.
Bit 7 - Deleted file flag.

Bytes 1 & 2 - LSB and MSB for total number of sectors in file.
Bytes 3 & 4 - LSB and MSB for sector number of start of file.
Bytes 5 - 12- Filename.
Bytes 12- 15- Filename extender.

The lost sector is sector number 720. This sector is not used by DOS because the com­
puter counts from 0 to 719. The DOS has numbered the sectors from 1 to 720. This
means that you can only use sectors 1 to 719. Sector 720 is a good place to hide things;
for instance, identification, error checks, secret messages, etc.

SELECT - The console key labeled SELECT can be monitored by the system by
looking at bitl in location $DOIF (53279 decimal). If bit 1 is zero, then the SELECT key
is being pressed. The following values may be found by PEEKing location 53279 when
the given combination of SELECT and other keys is pressed:

VALUE IN 53279

Decimal
o
1
4
5

Binary
00000000
00000001
00000100
00000101

KEYS PRESSED

SELECT, START, and OPTION
SELECT and OPTION
SELECT and START
SELECT

SERIAL PORT - The Atari 400 and 800 computers use a SERIAL PORT to input
from and output to peripheral devices such as disk drives, cassette recorders, and
printers. The 850 interface is a device which attaches to the serial bus and provides a
parallel output to drive most printers and RS 232 serial ports for modems and similar
peripherals. The serial port operates asynchronously at 19,200 baud. Data is sent out
in eight bit bytes with the lowest significant byte sent first. A start bit, which is a logical
zero (0), is sent before each byte, and a stop bit, which is a logical one (1), is sent after
each byte. A clock line goes high and the data line starts a new byte. Several other lines
are used to control data and signals in the SERIAL PORT. Looking at the trapezoidal
port of the computer, the pins appear as follows:

1
o

2
o

3
o

PIN Function

4
o

5
o

6
o

7
o

8
o

1 CLOCK IN TO COMPUTER

9
o

2 CLOCK OUT FROM COMPUTER
3 DATA IN TO COMPUTER

188

10
o

11
o

12
o

13
o

SERIAL DATA TRANS

4 GROUND
5 DATA OUT FROM COMPUTER
6 GROUND
7 COMMAND LINE goes low when a command frame is sent
8 MOTOR CONTROL for cassette
9 PROCEED

10 +5V READY also 5V, 50mA power supply
11 AUDIO IN from cassette
12 +12 Volt supply- (unknown current rating)
13 Interrupt (not used by present Operating System or peripherals)

SERIAL

SERIAL DATA TRANS - SERIAL DATA refers to the TRANSmission of data
over a single communication line. Data is sent one bit at a time as opposed to multiple
bits at a time as with parallel data transmission. See PARALLEL PORT.

SETCOLOR (SE.) - In BASIC, The SETCOLOR command is used to set the color
registers in locations $02C4 through $02C8 (708 through 712 decimal). After the SET­
COLOR command, you must specify the color register number, the hue, and the
luminance. The color register can be 0,1,2,3, or 4. The hue must be a number between 0
and 15. The luminance must be an even number between 0 and 14.

COMMAND

SETCOLORO

SETCOLOR 1

SETCOLOR2

PLAYFIELDS AFFECTED

Points or lines in graphics modes except 8 (COLOR 0)
Uppercase letters in GR.l and GR.2

Points and lines in GR.3, 5, 7 (COLOR 1)
Lowercase letters in GR.l and GR. 2
Luminance only in GR.O and GR.8

Points and lines in GR. 3,5,7,8 (COLOR 2)
Inverse uppercase letters in GR.l
and GR.2
Character hue and background color
in GR.O
Background color in GR.8

189

SGN

SETCOLOR3

SETCOLOR4

Inverse lowercase characters in GR.1
and GR.2

Border color for all modes
Background color for GR.l,2,3,4,5,6,7
Points and lines for GR.3,4,5,6,7 (COLOR 4)

SG N - The BASIC SGN command checks a number or variable to see if it is positive,
negative, or zero. If it is negative, a -1 is returned. If it is positive, a 1 is returned. If the
number is zero, aO is returned. TheformatforusingSGN is: SGN(X) where X is a num­
ber or numeric variable.

SHADOWI NG - SHADOWING is the technique of using one register or memory
location as an image of another location, usually in the top part of memory in the
Operating System. If you write a number to the shadow, the same number will be
transferred to the shadow location behind it. For example, color register 0 at location
$02C4 (708) is the shadow for $DOI6 (53270). If you POKE 708 with the number 32, the
32 will also be transferred to 53270. This allows for changes in future revisions of the
Operating System because the shadows will remain fixed, but the locations which they
reflect may be changed, and software will still execute properly in a new OS revision.

SHORT IRG MODE - On the Atari cassette recorder, programs stored with
CSAVE and programs loaded with CLOAD use the SHORT IRG (Inter-Record Gap)
MODE. In this mode, the tape does not stop between records. Tokenized files are
loaded directly into computer memory and are not "processed." The SHORT IRG
MODE is characterized by aO.25 second Pre-Record Write Tone and a variable length
Post Record Gap of unknown frequency. The following chart specifies the cassette
timings. (See FILE-CASSETTE, IRG, PRE-RECORD WRITE TONE).

Read IRG delay (Short mode)
Write IRG (Short mode)
Write IRC (Long mode)
Read IRG DElay (Long mode)
Write file leader
Read Leader Delay
Beep Cue Duration
Beep Cue Separation

.16 Seconds

.25 Seconds
3.00 Seconds
2.00 Seconds

19.20 Seconds
9.60 Seconds

.50 Seconds

.16 Seconds

SIG* ATARI- CompuServe has a Special Interest Group which is dedicated to Atari
users. To get to the SIG* ATARI, type GO PCS-132 after you are logged on. This is a
very good place to catch up on the latest rumors and news about Atari computers.

SIGNIFICANT DIGITS- This term refers to the number of places used by anum­
ber. The number 123 has three SIGNIFICANT DIGITS. The number 123.0000000
appears to have 10 SIGNIFICANT DIGITS, but it is wise to question the source of such
a figure as it is very difficult to measure anything to 10 SIGNIFICANT DIGITS.

SI N - The BASIC trigonometric operator SIN returns the SINe of the number placed
in parentheses to the right of the operator. The SINe will be calculated based on
radians (unless the command DEG is first executed).

190

SINGLE LINE RESOLUTION

SINGLE LINE RESOLUTION - The players memory map is extended to 256
bytes long when SINGLE LINE RESOLUTION is specified. To specify SINGLE
LINE RESOLUTION, set bit4 (add 16) of register $022F (559). Each byte will map out
as one eight-bit-wide scan line and the player may use up to 256 of them in SINGLE
LINE RESOLUTION. Double Line Resolution will also use up to 256 lines, but the
lines will be mapped from only 128 bytes, thus giving the player only half of the resolu­
tion. Double line resolution is the normal default situation.

SIO - Serial Input/Output. The SIO is the communication line between the computer,
program recorder, disk drive, and 850 interface (printer and RS232). Operations are
carried over the serial bus in the form of ~ Command frame, Acknowledgement from
the peripheral, Data frame, and Complete signal. The Command frame is comprised of
the device ID, command code, auxiliary bytes for device information, and checksum.
After a Command frame is sent, the device should respond with an ACK for ACKnowl­
edge. If the device is not operating, an ERROR 138 will result. After the checksum of
the frame data, the device should respond with a Complete byte which is sent down the
DATA IN line. The command codes can be for READ, WRITE, STATUS, PUT, FOR­
MAT, READ ADDRESS, READ SPIN, MOTOR ON, and VERIFY SECTOR. See OS
manual page 145.

SIXTEEN BIT MACHINE - While the Atari computers, the Apple, Commodore,
Radio Shack, and most older personal home comuters are called eight bit machines, the
new generation of high end personal or business computers are 16 bit machines.
Instead of processing data in bytes which are eight bits wide, they are capable of handling
data which is 16 bits wide. The advantages are easy to identify. Instead of having to
process an address in two parts (high and low bytes), the whole address can be used in
one operation. An eight bit machine is limited in most cases to a maximum addressable
memory defined by two bytes or 64K. A 16 bit machine can address millions of bytes of
memory by using 16 bits plus 4 more for an offset. IBM PC s are sometimes referred to
as 16 bit machines.

SIXTY-FIVE - OH - TWO (6502) - The 6502 is the central microprocessor chip for
the Atari computer line. This chip does all of the data processing. Data comes in from
the keyboad, disk, joystick, tape, or modem and is used to produce some output to the
screen, printer, disk, or cassette. The 6502 is an eight bit processor. This means that the
data path which the chip processes is eight bits wide. The address bus or path is 16 bits
wide. This means that the 6502 can address 2 to the 16th power or 65,536 bytes. This is
the basis for the 64K of RAM. There is an Arithmetic Logic Unit which does all of the
calculations in the 6502. These operations are done basically by adding, subtracting,
and shifting 1s and Os via the assembly language instructions. A clock running at 1. 79
MegaHertz (cycles per second) sets the pace for these instructions and operations.
Register A (for Accumulator) is the most often used input and output register of the
6502. Other registers called X, Y, and S (for Stack) are used to execute programs. Bytes
or numbers are loaded in from memory (or through memory) and all programs are
processed by the central processor.

SLOW LISTER.;.... If you do not have a printer on line and are trying to debug a
lengthy BASIC program, you may have had troubles stopping or reading from the
screen. This program will help by allowing you to scroll slowly through the listing.

191

SOFTSIDE

Type in this listing and LIST it to disk under the name "D:SLOLlST.LST". Then when
you have your program in memory enter the SLOLIST program by typing ENTER
"D:SLOLlST". Type GOTO 30000 to start SLOLISTing. S (for Slow) will slow the list­
ing speed and F (for Fast) will speed it up. (From Portland Atari Club newsletter,
Nov., 1982.)

1 ? CHRS(125):? "Hit S to slow listing."
:? "Hit F to speed up listing.":STOP
30000 X=PEEK(136)+256*PEEK(137):POKE 764
,255:WAIT=50
30001 LINE=PEEK(X)+256*PEEK(X+1):X=X+PEE
K(X+2):IF LINE)29999 THEN STOP
30002 LIST LINE:FOR TIME=1 TO WAIT:NEXT
TIME:IF PEEK(764)=62 THEN WAIT=WAIT+20
30003 IF PEEK(764)=56 THEN WAIT=WAIT-20:
IF WAIT<O THEN WAIT=O
30004 POKE 764,255:GOTO 30001

SOFTSIDE - Softside is a magazine oriented toward home computer users who
enjoy games and light applications. A disk version is produced each month. Softside
Publications, 6 South Street, Milford, NH 03055 603-673-0585.

SOFT SECTORED DISK - Atari Disk drives use SOFT SECTORED DISKs. This
means that the sectors are divided by timing marks written on the medium during the
formatting process as opposed to using holes punched in the medium. Atari drives can
use hard sectored disks, but they will be used as soft sectored.

SOUND (SO.) - In BASIC, the SOUND command is used to turn on the four voices
in the Atari computers. Since the tones generated are fairly square wave sounds, no
high quality music is really possible using SOUND commands in BASIC. The structure
of the SOUND command is:

SOUND V, P, D, L where:
V is the voice from 0 to 3.
P is the pitch arguement from 0 to 255.
D is the distortion from 0 to 14 (even numbers only).
L is the loudness from 0 to 15.

SOURCE CODE - Most programmers (but not all) who produce machine language
programs use assembly language to write the instructions for the microprocessor. The
listing which is produced in assembly language is referred to as the SOURCE CODE. A
machine language program or routine can be "reverse engineered" to the assembly
language instructions through a disassembler program. The reconstituted SOURCE
CODE is not usually true SOURCE CODE because it often lacks labels and comments
and is very difficult to follow. Ultra Disassembler from Adventure International will
label the source from object files or memory.

192

SOURCE DISK

SOU RCE DISK - In copying or duplicating disks, the SOURCE DISK is the original
which you wish to duplicate. The destination disk is the blank or formatted disk which
will become the copy.

SPACE - In serial telecommunications a SPACE is a high voltage or a low frequency
signal and it translates to a logical zero (0). The mark tone is a high frequency signal
which is interpreted as a logical one (1). In modem communications, the mark and
SPACE are generated by shifting the frequencies which are transmitted over the
phone line. In the originate mode, the SPACE is a 1070 Hz tone. In the answer mode, the
SPACE is a 2025 Hz tone.

SPEAKER - The console SPEAKER is controlled by register $D01F (53279 dec­
imal). This is the same location as for the console keys. To start the SPEAKER clicking,
POKE in a number between 0 and 7. The continuous loop

1 POKE 53279.0: GOTO 1

will generate a continuous humming noise. In the XL series, the SPEAKER noise is
routed to the television SPEAKER.

S PE LL WI ZAR D - Spell Wizard, a utility for identifying and correcting misspelled
words in Atari DOS text files, was created by Datasoft, Inc. for Atari Writer and Text
Wizard word processors. Spell Wizard is menu driven and is very easy to use. When
you run the program, the document is read and the total number of words as well as the
number of unique words is displayed. Only the unique words are checked. This usually
ends up as a number between 300 and 700. The use of a unique word list reduces the
amount of time required to process a document. The unique words are compared to a
33,000 word dictionary. This contains over 90 percent of the words in most non­
technical reports. The proofing operation allows you to leave a word alone if it is tagged
or you may search through the user dictionary for a match. You can make your own dic­
tionary, for example, of orthodontic terms, ceramic engineering terms, celestial me­
chanics terms, etc. You can do a wild card search for the correct spelling of a word if you
know that part of it is correct This is done using an asterisk for the wild part Spell
Wizard recognizes all capitalized letters as lowercase for the purposes of spelling
checking. Datasoft, Inc.

S POO LE R - A SPOOLER is a buffer for temporarily storing data before it is sent to
a final input or output device. It is the same as a printer buffer. A printer SPOOLER is a
handy tool which can accept a file that may be headed to a printer at a much faster rate
than the printer, freeing your computer for other activities. A buffer may be 16K up to
48K in size. The ATR8000 and MicroMainframe systems have built in 16K printer
SPOOLERs which may be expanded to 64K.

SOR - This BASIC operator returns the SQuare Root of a number supplied in
parentheses after the command.

S,. ~CK - The hardware STACK is a block of memory 256 bytes long, located in page
1 (between $0100 and $01FF). The hardware STACK is used for storing parameters
from interrupt and subroutine branches. Parameters are put on the STACK from the

193

START

top ($OlFF) and are pushed downward every time a new one is added. If more than 256
bytes are added, the entries will wraparound, causing all kinds of trouble. When a pro­
gram sees a JSR (Jump to SubRoutine) or a PHA (PusH Accumulator on STACK), it
leaves an address contained in the program counter on the STACK. When the return
command (RTS from a Subroutine or RTI from an Interrupt) is found, the address is
pulled off the STACK and put back in the program counter. The PLA code also reads

. (Pulls the Accumulator) off of the STACK. The processor status register contents can
be pushed onto the STACK with a PHP, or the processor status register can be filled by
a PLP operation (PulL Processor status from STACK).

Another type of STACK is used by BASIC. This is the RUN TIME STACK which keeps
track of the BASIC line number where the program must return from a GOSUB com­
mand. The RUN TIME STACK is pointed to by $008E and $008F (142 and 143
decimal).

START - The START key is a console button whose status is monitored in the CON­
SOL register at $DOIF (53279). The following values will appear in 53279 when the
START key and/or other console keys are pressed.

194

VALUE IN 53279

DEC Binary

o
2
4
6

00000000
00000010
00000100
00000110

STAR RAIDERS

CONSOLE KEYS PRESSED

START, OPTION, AND SELECT
START AND OPTION
START AND SELECT
START

STAR RAI DE RS - Atari's space game on cartridge which combines fast space ship
fighting action with a board game. The TV screen is used as a window of a well armed
space fighter. This game was resposible for the sale of many thousands of Atari 400s
and 800s. This game was written by Doug Neubauer who also designed the
POKEY chip.

STATEMENT - A STATEMENT in BASIC is a complete logical line or sentence
which is part of a BASIC program. STATEMENTs which are tokenized are stored in a
STATEMENT table. In a LISTed program, STATEMENTs are separated by a colon.

STATE M E NT TAB LE - A BASIC program which has been transferred or input­
ted into Atari memory exists in a block of tokenized code called the STATEMENT
TABLE. Accompanying this table is the Variable Name Table and the Variable Value
Table. The tokenized BASIC is a series of codes which can be executed by the computer
through the BASIC cartridge program. The STATEMENT TABLE can be found by
looking up its address in locations $0088 and $0089 (136 and 137 decimal). Any
immediate mode statements which have been tokenized are also stored in the STATE­
ME NT TABLE.

STATU S - STATUS is a BASIC command which will return a code generated by the
last input or output through a specified channel. The value returned is put into a vari­
able which is defined by the user. An example is:

STATUS # 1. ERROR

This statement would be used to check the situation on IOCB (channel) 1. If the value
assigned to ERROR is greater than 128, then an ERROR has occurred. The value rep­
resents the ERROR NUMBER. (See ERRORS). If the value is I, 2, or 3 then no error
has occurred. Location 793 ($319) is also used as a temporary buffer for STATUS and
this location may be checked. A CIO and SIO status byte of 001 means that the last
operation was complete with no errors.

STATUS BYTE - The STATUS BYTE is part of the Device Control Block used for
transferring data over the serial bus (SIO). The Device Control Block is a group offour
bytes located at $0300, $0301, $0302, and $0303. The last one, $0303, is the STATUS
"BTIE. After a call is made to transfer data over the SIO, a status code is put into the
STATUS BYTE address. This is a one-byte code to indicate what has happened after
the transfer. There are seven possible values for a STATUS BYTE:

195

STEP

HEX

$01
$8A
$8B
$8C
$8E
$8F
$90

DEC

001
138
139
140
141
142
144

MEANING

Operation completed and no errors
Device Timeout- No response from device
Device NAK- Negative AcKnowledge
Serial Bus Input Framing Error
Serial Bus Data frame overrun error
Serial Bus Data frame checksum error
Device Done Error

STEP - STEP is used in BASIC to increment a FOR/NEXT loop by a number other
than 1. A FOR/NEXT loop will normally increment by 1 beginning with the number
assigned after the FOR and continue looping up to the number after the TO. By using a
STEP, you can increment (or decrement) by larger or smaller units. For example, FOR
X=O to 100 STEP 5 will count 0,5, 10, 15 ... up to 100. STEP can also be used with a
negative argument.

STICK - In Atari BASIC, STICK(X) reads the register assigned to the joySTICK
ports (where X can be from 0 to 3 for ports 1 to 4). There are only two ports on the XL
series computers. PORTB, which handled 3 and 4, is used for the Operating System
controls. (See PORTB). The joystick registers are located from $0278 to $027B (632 to
635). These are shadowed from the PIA registers $D300 and $D301 (54016 and 54017).
For each of the four STICK registers, there are nine values which can be read. These
are generated as the joystick is moved to open or close switches inside the mechanism.
The values generated are as follows:

14
10 6

~
11 7

/~
9 5

13

VALUES GENERATED BY MOVING JOYSTICKS
READ BY USING STICK(X) WHERE X= 0,1,2, or 3

196

STOP

STO P- When a BASIC program encounters a STOP command, the program will halt
execution at the line where the STOP appears. CONT will CONTinue the program from
that location.

STO P LI STI N G - You can temporarily STOP LISTING a BASIC program or direc­
tory listing from DOS by simultaneously pressing the CTRL and 1 keys. The following
routine will allow you to use the START key to both list and STOP LISTING your
BASIC program. The program fits in Page 6 and will remain there until you shut down
or overwrite the program.

10 REM ** ABCS OF ATARI COMPUTERS
20 REM ** FILE D:STOPLIST.BAS
30 REM ** STOP LISTING WITH START KEY
40 REM
50 FOR X=1536 TO 1791:READ A:POKE X,A:
NEXT X
60 DATA 0,0,169,1,44,31,208,240,27,173
,1,6,201,1,208,17,169,0,141,1,6,173,0,
6,201,1,240,5,169,0,141,255,2,76,95
70 DATA 228,173,1,6,201,1,208,15,169,2
,44,31,208,208,5,169,1,141,0,6,76,95,2
28,169,1,141,1,6,173,0,6,201,1,240
80 DATA 8,169,1,141,255,2,76,95,228,16
9,0,141,0,6,76,95,228,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
90 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,72,138
100 DATA 72,152,72,169,0,141,0,6,141,1
,6,162,6,160,2,169,6,32,92,228,104,168
,104,170,104,104,96,0,0,0,0,0,0,0,0
110 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
120 DATA 0,0,0,0,0,0,0,0
130 T=USR (1696)

STR$ - In BASIC, the STR$ command converts a number or numeric variable to a
STRing. You will also need a string variable name to place the string into if you want to
use it somewhere else. ONE23$=STR$(123) will assign the string "123" to the string
variable 0 N E23$.

STR I G - In Atari BASIC, STRIG(X) looks at the joystick triggers for the sticks con­
nected to ports X=O,l,2, or 3. If the trigger is pressed when the STRIG command is
executed, the value 0 will be returned. If the trigger is not pressed, a 1 will be returned.
The registers for STICK are found from locations $0284 to $0287 (644 to 647). These are
shadows for locations $DOlO to $D013 (53264 to 53267).

197

STRING

STRING - A STRING is a collection of bytes. A STRING has no numerical value
even if it looks like a number. On your screen, a STRING will appear as a line of ATASCII
CHARACTERS. In memory a STRING is stored as a series of hexadecimal bytes. SEE
STRING VARIABLE.

STRI NG VARIABLE - A STRING VARIABLE is one ofthe three types of variables
in Atari BASIC. A STRING VARIABLE must be declared or DIMmed in Atari BASIC
before it can be used in a program. This is not necessary in Microsoft BASIC or in
BASIC XL if the string is less than 40 characters long. All STRING VARIABLE names
must end with a dollar sign ($). When a STRING VARIABLE is DIMmed, BASIC
reserves one byte for each character in the DIM command. For Example, 0 I M X$(1 99)
will reserve 199 bytes of memory in the string table just for the string X$. A quick way
to clear a long string is to use the routine: A$(1)=" ": A$(2)=A$(1). A STRING V ARI­
ABLE can be assigned the ATASCII bytes corresponding to the machine language
instructions for a short program. The string will be located somewhere in memory and
its address can be found by the command ADR(STRING$). By jumping to the address
found (use a USR), the machine language program can be run. Unless there is a proper
exit back to BASIC, you will lose control after the jump.

Strings can be joined together or be broken into substrings. See CONCATENATION
and SUBSTRING.

STRING/ARRAY AREA - The STRING/ARRAY AREA or table is the part of
Atari memory which contains the actual data for the strings and arrays which have
been assigned. When a program comes across a string or array variable, it checks the
VARIABLE NAME TABLE (Start ofVNT=PEEK(132)+PEEK(133)*256) to see
if the name is registered and to get the number which was assigned when the name was
entered. Then BASIC goes to the VARIABLE VALUE TABLE (Start of VVT=
PEEK(134)+PEEK (135)*256) with the number it found in the VNTand it looks up
where it must go to find the STRING/ARRAY AREA. The start of the STRING/
ARRAY AREA is found by looking in locations $008C and $008D (140 and 141). The
variable STARP = PEEK(1412l)+PEEK(141)*256 will take on the start of the
STRING/ ARRAY AREA. Individual strings or arrays are found by looking at memory
at an offset from the start. The offset is also stored in the VVT. See VARIABLE
VALUE TABLE.

SUBROUTINE - A SUBROUTINE is a program, usually shorter than the main
program in which it is contained, which performs some repetitive utility. If a utility is
not needed more than one time, you are better off not placing it in a SUBROUTINE. A
SUBROUTINE is entered by a GOSUB NN where NN is the line number of the start of
the subroutine. The end of every subroutine must have a RETURN to get back to the
main program.

SUBSCRIPT - A SUBSCRIPT is a character, usually in smaller print, which is
printed lower than the main line on which it is printed. The formula for water, H20,
should have a SUBSCRIPTed 2. Many newer dot matrix printers can handle su bscripts
when they are given the proper commands.

198

SUBSCRIPT

SU BSC R I PT - also refers to the element number of an Atari BASIC array. An array
can have one or two dimensions and thus will require one or two subscripts. String
arrays cannot be subscripted in Atari BASIC but they can be subscripted in Micro­
soft BASIC.

SUBSTRI NG - A string can be broken into a shorter SUBSTRING by supplying the
information on which characters are supposed to be the first and last of the new string.
If a string already has an assignment, a SUBSTRING can be created by assigning the
characters to a new string name. If A$=" 0 N E 81 G 5T R 1 N G", the SUBSTRING B$ can
be assigned" BIG" by the command B$= A$(4,6) where the numbers in parentheses are
the first and last characters of the SUBSTRING to be copied. In Atari BASIC, SUB­
STRINGS can be used to simulate string arrays in Atari BASIC.

SUPERSCRIPT - A SUPERSCRIPT is a character, usually printed in smaller
print, which appears above the center of the main line of text in which it appears. The
expression E=J2R includes a SUPERSCRIPTed 2.

SYNC MARK - The SYNC MARK is a "space tone" marker for audio tracks on
cassettes. It is a 3,995 Hz tone.

SYNTAX - SYNTAX is to the BASIC language what grammar is to the English
language. If you make a mistake in syntax, you may not be understood properly. Atari
BASIC checks the SYNTAX of every statement entered when the RETURN key is
pressed. If there are any syntactical errors, you are notified of the location on the next
line. Microsoft BASIC does not check SYNTAX in this way.

SYSTEM DATABASE - Pages 0 through 4 are known as the SYSTEM DATA­
BASE. This part of memory is used exclusively by the Operating System for its vectors,
stacks, buffers and registers. There is very little usable free RAM in this area.

SYSTEM RESET - Pressing the SYSTEM RESET button enables an Operating
System routine which is entered through location $FllB (61723). The SYSTEM RESET
initialization is similar to a warmstart. OS RAM in Pages 2 and 3 is zeroed. RAM be­
tween $0010 and $007F (16 and 127) is also zeroed. User RAM is not erased. DOS is not
booted unless an initialization address is provided in DOSINI at locations $OOOC and
$OOOD (12 and 13). See SYSTEM RESET CHANGER to change the action of the SYS­
TEM RESET key.

SYSTEM RESET CHANGER - This BASIC program will POKE in a machine
language routine which will reset the disk boot pointer to a new program that essen­
tially types "RUN" when you push SYSTEM RESET. This is easy to do for machine
language programs, but is not so clear for BASI C programs. To make machine language
programs restart, put the initialization address in locations 12 and 13 ($OC and $OD).
SYSTEM RESET will just start the program over. To reset and RUN a BASIC pro­
gram, type or load in this routine (it goes in page 6). Then LOAD your BASIC program.
Type POKE 12,0 and POKE 13,6 to run the program when SYSTEM RESET is
pressed. You can put the POKEs in the program if you are not going to have to access
the disk drive in the program. From Novatari, February, 1983.

199

TAB

1 REM ** ABCS OF ATARI COMPUTERS
2 REM ** FILE: CHNGSYS.BAS
3 REM **
10 FOR B=1536 TO 1590:READ A:POKE B~A:
NEXT B
20 DATA 162~0~142,68,2~232~134,9,173,4
8,2,133,203,173
30 DATA 49,2,133,204,160,4,177,203,133
,205,200,177,203
40 DATA 133,206,162,0,160,82,189,52,6,
145,205,232,200,224
50 DATA 3,208,245,169,12,141,252,2,108
,250,191,50,53,46
55 LIST 60,70
60 REM ** BE SURE TO POKE 12,0 AND
70 REM ** POKE 13,6 AFTER TYPING RUN

T
TAB - In BASIC XL, the TAB statement is used to insert a certain number of blank
spaces. TAB can be used on the screen to tabulate a number of spaces, or it may be used
to insert blanks into a cassette or disk buffer. The format is:

TAB -# iocb.space

where iocb is the channel in which you want to insert blanks. and space is the number of
blanks you want to insert.

TAN - In BASIC, the function TAN returns the trigonometric function tangent of the
operand. The format is TAN(X). where X is the number of degrees or radians.

TAN DON - The fast growing maker of disk drives, Tandon. now makes some of the
mechanisms for the the Atari 810 and 1050 disk drives. These units are different from
the early model made by Micro Peripherals, Inc. The manufacturer can be determined
by looking at the door mechanism. If it swings up, it is a Tandon. If it slides straight up,
it is probably a MPI.

TAPE PROBLEMS - The Atari 410 program recorder is the cause of many com­
plaints by users. Some problems arise because of head misalignment. Programs
recorded on one tape deck may not line up for the maximum signal when reading on
another recorder. Adjustments may make the problem worse if you lose the ability to
read all of the cassettes in your library. Prudence is suggested in realigning the
heads.

200

TERMINAL PROGRAM

Other problems may arise from leaving the recorder in the PLAY or RECORD position
for lengthy periods. The capstan presses against the rubber roller and may leave a
long-term depression in the roller. This will give erratic results during loading or sav­
ing of programs.

A software problem with an easy fix is the emptying of the cassette buffer. By typing
LPRINT after you CSAVE a program, the cassette buffer is emptied. An ERROR
message will be generated, but it is not relevant. By emptying the buffer, you will
reduce the chances of a scrambled file during input or output.

TERMINAL PROGRAM - A TERMINAL PROGRAM is a software package
which lets your computer act as a computer terminal. That is, with a modem and the
proper interface, you can communicate over a standard telephone line with other com­
puters (and people). There are several fine public domain terminal programs and some
excellent commercial packages. Jonesterm and AMODEM are in the public domain.
(See AMODEM). Syn-Comm from Synapse, Teletalk by Datasoft, Teletalk by Tronix,
and T.H.E. Smart Terminal and Chameleon by APX are some commercial packages.

TERMINATOR-A TERMINATOR is a symbol or marker which is used to turn off
or denote the end of something. For example, a TERMINATOR would be used to end
the underlining of text. In Letter Perfect, a CTRL-D is used as a delimiter or TER­
MINATOR for text moves or deletes.

TEXT WIZARD - This text processor program is one of the most popular used on
Atari Home Computers. Files are produced under Atari DOS, and any LISTed BASIC
or other file can be edited with TEXT WIZARD. Text Wizard leaves more free RAM
than the Atari Writer. Only the Atari 825 (Centronics 737) and the Epson MX-80 printers
are supported directly by TEXT WIZARD. Printer setup commands are limited to a
few built- in codes such as CTRL+ E for elongated print. There is no way to send custom
commands (such as for subscripting) on the new Epson printers. This is a severe limita­
tion. The program is not menu driven for the save, print, edit, and load routines as are
the Letter Perfect and Atari Word Processors. Files to be printed must be printed in
entirety, as there is no facility for printing specific pages or multiple copies. You can
print from a certain page from the middle to the end of the document, but the printer
control codes will not be sent. Search, move, and replace features make the program
very handy for editing long documents or programs. TEXT WIZARD may be the best
way to debug very long BASIC programs with difficult to read code. Datasoft Inc.

TH E N - This BASIC word is the second part of the IF/THEN branching command.
THEN specifies what action is to be taken if the IF condition is true.

TI M E$ - In MICROSOFT BASIC II, the TIME$ statement returns a string with the
time expressed as HH:MM:SS. You can set the time by using a BASIC statement
TIME$="HH:MM:SS". This clock routine is accurate to within 90 seconds per 24
hours.

"nMERS - There are numerous timers built into the Atari computer. They are used
to synchronize operations in hardware and software. The Real Time Clock and Attract
Mode TIMERS are two which are readily accessible. The Real Time Clock is in three

201

TOKEN

bytes located at 18,19, and 20 ($12, $13, and $14). Location 20 is incremented by 1 every
60th of a second. When the value reaches 255, location 19 is incremented and location 20
starts at 0 again. When location 19 reaches 255, location 18 is incremented.

TIMER LOCATION

20 ($14)
0-255

19 ($13)
0-255

INCREMENTED

Every 65536
VBLANKS

Every 255
VBLANKS

18 ($12)
0-255

Every VBLANK

The incrementation occurs every VBLANK which is approximately every 60th of a
second. Actually it is every 59.92 seconds. You can build a clock using this information.
The clock will lose time, however, during disk access. See Antic, YoU, No.4 for a real
time clock placed safely in the cassette buffer.

The attract mode TIMER is in location 77 ($4D). This register is incremented every 255
VBLANKs, or approximately every 4.255 seconds. When the value in location 77
reaches 127 ($7F), the color and luminance rotation of the screen begins. A 254 is placed
in location 77 until a key is pressed or the value is reset away from 254. Pressing the
trigger will not reset this register to zero. Hitting any key on the keyboard will. You can
experiment with the Attract mode TIMER with the following program. First set the
value of77 to some number, say 120, so you do not have to wait so long for the rotation of
colors to start.

1 POKE 77,120
2 PRINT PEEK(77):GOTO 2:REM ** NOW HIT A

KEY

TOKE N - A TOKEN is a byte which is used by the BASIC interpreter (on cartridge)
to represent part of the BASIC program. BASIC statements are TOKENized during
RUNning, LOADing, or in immediate mode. See TOKENIZING.

TOKE N I ZING - The TOKENIZING process takes a fairly simple BASIC program
and converts it to code which is more readable to the computer. The process is
roughly:

a. Get a line from program or immediate mode
b. Check syntax (FOR must have TO, etc.)
c. Create tokens during syntax check
d. Move tokens to statement table
e. Execute if in immediate mode (no line number)

The BASIC cartridge actually contains a program which is BASIC. This program gets
the statements to TOKENIZE from the screen, E:, disk, or cassette. The Operating
System takes care of getting the statements. As the data is received, it goes into a

202

TOKENIZING

BASIC Input Line Buffer located at $580 to $5FF. The first check is for a line number. If
one is found, it is converted to a two byte integer. These two bytes are the first two in
the TOKENIZED statement. If no line number is found, the statement is assumed to be
in the immediate mode and an $8000 is assigned to these positions. The next two bytes
cannot be completed until the entire line is TOKENIZED. The length of the line is
counted (in bytes) and the number (in hex) is put in the third position. Next, the length
from the start of the line to the start of the next statement is calculated. There may be
many statements per line and they will be separated by a colon. At this time there are
four bytes in the TOKENIZED statement.

BYTE:# 1 2 3
0400 09
Line 4 9 bytes

for line

4
05

5 bytes
for stmt

Mter the housekeeping bytes are produced, BASIC begins looking at the statements
and checking syntax. Words are checked against a Command table in ROM which has
all valid BASIC commands. If a match is made then a code is assigned for that opera­
tion. For example, REM is $00, DATA is $01, INPUT is $02, COLOR is $03, etc. If no
match is found, then the TOKENIZING is aborted and an ERROR at a certain LINE
number is printed. Mter a successful command is found, the next item must be one of
seven possibilities: A variable, constant, operator, function, quotation mark (") ,
another statement, or an EOL character. The next character is checked to see if it is a
number (numeric character). If the test is negative, then BASIC goes to the Variable
N arne Table to see if the characters that follow comprise a variable. If this test is nega­
tive, then BASIC goes to the Operators and Functions tables to see if the characters
form a function or operator (like +, -, > or USR, ADR, EXP, etc.). If this test is nega­
tive, it is assumed that the entry is a new variable. In this case, an entry is made in the
Variable Name Table. Along with this entry, eight bytes in the Variable Value Table
are set aside. The statement FOR X=23 to 88 would be TOKENIZED as follows:

0880 2D OE 40230000000019 OE 40 88 00 00 00 00

08 = FOR
80=X
2D = EQUAL SIGN OPERATOR
OE = Numeric constant
40
23
00
00
00
00

SIX BYTES FOR BINARY CODED DECIMAL 23

19= TO
OE = Numeric Constant
40
88
00
00
00
00

SIX BYTES FOR BINARY CODED DECIMAL 88

203

TOPOF FORM

A $OF and a dummy byte for the string length are written if quotation marks are found
(in BASIC, the characters enclosed within the quotes are recognized as a string). When
the length is determined, the length is written to the dummy byte. Since the maximum
value that can be stored in a byte is 255, the limit to string length for use in BASIC pro­
grams is 255 characters.

An End of Statement character, $14, is placed in the TOKENIZED program every time
a colon is encountered. The offset from the beginning of the line to the next statement is
placed in the dummy byte following the $14. At the end of the line of statements, a $16
or End Of Line character is generated.

The TOKENIZED BASIC program can be unTOKENIZED by looking at the sector of
a disk containing the SAVEd BASIC program and decoding the bytes by using the
COMMANDS, OPERATORS, and FUNCTIONS table of tokens. This should never be
necessary except in case of disk damage to a very valuable and irreplaceable BASIC
disk based program. See SAVE and VARIABLE NAME TABLE.

TOP OF FORM - A printer control code for TOP OF FORM will cause line feeds to
feed paper until the point where the page begins is met The TOP OF FORM is set when
the printer is turned on. This point is normally set at the perforations on form feed
paper. An ASCII 12 or CTRL-L usually generates a TOP OF FORM command.

TRACE - In Microsoft BASIC, the TRON command turns on the TRACE mode.
TRON is available only on the extension disk. As the program executes, the TRACE
mode prints each line number on the screen as it is encountered. TRACE is turned off
by TROFF. The command is called TRACE in BASIC XL, and TRACEOFF turns off
the TRACE function.

TRACK - The concentric rings of data on a disk which contain formatted sections of
polarized magnetic domains are called TRACKs. An Atari DOS disk is set up with 40
TRACKs. The spacing between TRACKs on Atari disks is very large by industry stan­
dards. This means that very low quality disks can usually be used without failure due to
dropouts or head misplacement. You can also usually format and use the backside of
almost any floppy disk without problems. Many disks use 96 TRACKs per inch, while
the Atari 810 disk drive uses less than half this density.

TRACKBALL - A TRACKBALL is a game controller which acts like a joystick
except that it is controlled by a rolling billiard sized ball. A trackball usually works by
sending digital pulses into the joystick ports. This occurs as a beam of light inside the
mechanism is interrupted by a spinning slotted disk.

TRAILING ZEROS - TRAILING ZEROS on the right-hand side of the decimal
point are dropped by Atari BASIC. In order to force TRAILING ZEROS to appear, you
can try two things. First, use Microsoft BASIC with the PRINT USING format This is
on the extension disk. Second, you can convert your numbers to a string for presenta­
tion in Atari BASIC. This is a complex technique.

204

TRANSLATION

TRANSLATION - When using a terminal program such as Jonesterm, you are
often asked whether you want TRANSLATION. TRANSLATION does not affect the
way data are received and stored by your computer. It does affect the way you see the
data if you sent the data to the screen for viewing. The reason that TRANSLATION is
necessary is that many of the control characters perform editing functions on the
screen and these may also be part of some machine language code. If you are receiving
data from a computer sending ASCII code, your Atari will not be able to respond to a
carriage return, BELL, or backspace without TRANSLATION. The translator in
Jonesterm does this:

ASCII 13 (CR) is translated to ATASCII 155 (EOL)<Return-inverse>
ASCII 07 (BEL) is translated to ATASCII 253 Bell <Esc-CTRlr2>
ASCII 08 (BS) is translated to ATASCII 126 Delete/Backspace<ESC-BackSpace>

Other characters can be translated if necessary.

The 850 interface module is also capable of doing TRANSLATION. Atari computers
use bytes which are capable of representing a256 element character set This includes
inverse (high bit set), uppercase, and lowercase characters. Not all computers handle
this number of characters. Some systems use only seven bit words which usually means
there is no inverse set. Other systems may use six bit words, eliminating the lowercase
characters. The 850 will make eight bit words (bytes) out of the incoming data if you set
it up correctly. It will also translate the End Of Line, Carriage Return, and Line Feed
characters. The 850 interface can be set up in a No TRANSLATION, Light TRANS­
LATION, or Heavy TRANSLATION mode. No TRANSLATION is used for talking
between two Atari computers and all characters are sent and received as is. In Heavy
or Light TRANSLATION, some characters are transformed. The ATASCII EOL
character (155 decimal, $9B hex or inverse-RETURN) is converted to ASCII CR (13
decimal, $OD hex, or CTRlrM) in both Heavy and Light modes. There is an option
available to append a LF (line feed) to the CR translated character. This option is
activated by adding a 64 to the first aux argument in the XIO 38 command.

Light TRANSLATION strips away the high bit. That is, it removes the inverse charac­
ters for input and changes the CR to an EOL. Output characters are left in inverse and
the EOL is changed to a CR. All other characters are left alone.

Heavy TRANSLATION effects more changes. The high bit is again stripped away as
in Light TRANSLATION and the CR is changed to an EOL on input Only characters
which are the same in both ASCII and AT ASCII are transmitted. These characters are
numbered 32 to 124 ($20 to $7C). Control characters (those below 32) and graphics
characters (those above 124) are set to a "won't translate" character on input This is
nominally a 0, but can be set to any character. For output, no character will be sent if it
is not translatable.

In BASIC, TRANSLATION is set up by the XIO 38 command according to the follow­
ing format:

XID 38. #chan. aux1. aux2. "R:"

205

TRANSLATOR

where :#: chan must be an OPEN channel between 1 and 5, and aux1 is a number between
o and 255. Add the following increments to get appropriate features.

aux1 Additions
o Light TRANSLATION
16 Heavy TRANSLATION
32 No TRANSLATION
64 Append LF after CR

Aux2 is also a number between 0 and 255. This is where the "won't translate" character
is found. The ATASCII equivalent of the "won't translate" character is put in this
argument.

ATASCII No TRANS. Light TRANS. Heavy TRANS.
EOL 155 ($9B) EOL 155 ($9B) CR 13 ($OD) CR 13 ($OD)
EOL 155 ($9B) EOL 155 ($9B) CR + LF * CR + LF *
o to 255 SAME 0 to 127 only 32 to 124 same

* With Line feed Append Option in the XIO 38 command.

TRANSLATOR - There are several changes in the XL series operating system
which makes certain programs crash if the programmer violates the documented rules
provided by Atari. Atari has provided a TRANSLATOR disk which essentially replaces
the XL Operating System (600XL, 800XL and 1200XL) with the Revision B OS from the
400 and 800. This is possible because of the special register which allows you to disable
all of the OS ROM and use it as RAM. See PORT B.

There are two versions, one being a more thorough translation than the other. To use
the TRANSLATOR, you must boot in the disk provided and wait for the prompt. If you
do not need BASIC to run the program, you must hold down the OPTION key when you
boot the TRANSLATOR and the cartridge will be de-selected. When you get the prompt,
put the disk you want to load in the drive and press SELECT. The computer should do a
coldstart and run the program.

TRAP - TRAP is an ERROR handling device in Atari BASIC. TRAP sets up a
specified line number as the place to which program control goes when an ERROR(any
ERROR) occurs. For example, if you place the statement TRAP 100 in a BASIC pro­
gram and the program tries to print while your printer is turned off, your program will
jump to line number 100. TRAP must be undone by the command TRAP 40000 (Actual­
ly, any number between 32768 and 65535 will do.) Merely hitting BREAK will not reset
a TRAP. Debugging with a TRAP set can be confusing, because the TRAPs stay set
until you release them. You must set the TRAP before the line where you expect
the ERROR.

TRIGGER, JOYSTICK- The red button on the Atarijoystick is called the TRIGGER.
The TRIGGER is actually a switch which is connected through pin 6 of the ports on the
front of the 400 and 800 models (oron the side of the XL models). When the TRIGGER
button is pressed, the switch closes and it can be used to activate some activity in a

206

TRIGGER, PADDLE

software routine. Pin # 6 (the orange wire) of each of the joysticks is connected directly
to hardware registers called TRIGO through TRIG3 ($D010 through $D013 or 53264
through 53267). The ports are numbered 0 through 3. In Atari BASIC, the TRIGGER
register can be scanned by using a STRIG statement. If the circuit is open the hardware
register will contain a 1. If the TRIGGER is depressed (the switch is closed) the register
will contain a o. The format of a test in BASIC on joystick 0 would be:

IF STRIG(0) = 0 THEN 100

If the button is pushed, then line 100 will be executed next. If the button is not pushed,
the next statement will be executed.

Another way to read the TRIGGER register is to PEEK locations 53264 through 53267
($D010 through $D013). In BASIC, the button can be checked like this:

IF PEEK(53264) = 0 THEN 100

To examine this register in real time, try the folowing short program. Plug the joystick
in port 1 and press the button.

1 PRINT PEEK(53264) :GOTO 1

This is equivalent to the STRIG statement above. To check other joystick buttons, use
the registers 53265 through 53267. In assembly language, the contents of the registers
can be checked for a 1 or O. These registers should be scanned often to make sure the
activity (shooting) reacts quickly to the TRIGGER.

TABLE

Register Address Address OS Shadow OS Shadow
(HEX) (DEC) (HEX) (DEC)

STRIGO DOlO 53264 284 644
STRIG 1 DOll 53265 285 645
STRIG2 D012 53266 286 646
STRIG3 D013 53267 287 647

By setting bit 2 (adding 4) to register #D01D (53277), you can latch the joystick
trigger. This means that instead of the TRIG registers resetting to 1 when the button is
released, the 0 remains after the trigger button is pressed until bit 2 of 53277 is set
to zero.

TRIGGER, PADDLE - The PADDLE TRIGGERs are similar in operation to the
joystick triggers. The paddles come in pairs and each pair shares a controller port. The
BASIC command for monitoring the paddle trigger is PTRIG{X) where X is a number
from 0 through 7. When a PADDLE TRIGGER is pressed the PTRIG statement
returns a o. When a trigger is not pressed the statement returns a 1. The hardware
registers are a bit more complicated than the joystick trigger registers. Location 54016
\~))'2.<}<}) contains the registers for PADDLE TRIGGERs 0,1,2 and 3. Location 54017
handles the PADDLE TRIGGERs for 4,5,6 and 7. When no PADDLE TRIGGERs are

207

TROFF

pressed, location 54016 contains a 255. Each trigger controls one bit in this byte so the
values change with each trigger press. The bits are controlled as follows:

PORT A BYTE 54016 ($D300)
D7 D6 D5 D4 D3 D2 D1 DO BIT
3 2 1 0 PADDLE TRIGGER

The following values are found when various triggers are pressed.

No triggers 255
Trigger 0 251
Trigger 1 247
Trigger 2 191
Trigger 3 127

The same values are found in register 54017 for PADDLE TRIGGERs 4 through 7.
RUN the following program to examine these registers:

1 PRINT PEEK[54016j:GOTO 1

TROFF - See TRACE.

TRON - See TRACE.

TRUNCATION - The BASIC command INT(X) will TRUNCATE all digits to the
right of the decimal from X. Any number printed by Atari BASIC will be TRUN­
CATED to nine digits. TRUNCATED numbers are not rounded up or down to the
nearest digit, the excess digits are just dropped.

TU RTLE GRAPH ICS - The familiar Cartesian coordinate system of drawing uses
notation such as PLOT X,Y and DRAWTO X +5,Y + 10. TURTLE GRAPHICS puts you
in the drivers' seat with statements such as MOVE 10, TURN 90, MOVE 5. The dif-

208

TYPO

ference is that the turtle method is much easier for people, especially small ones, to con­
ceptualize. PILOT, LOGO, WSFN, and some FORTHs use TURTLE GRAPHICS. The
cursor is usually not turtle shaped, although there is no reason not to have one
implemented if one desires. Atari's LOGO does use a turtle shaped cursor.

TYPO - When you type in programs from Atari magazines you are apt to make a few
mistakes in keying in the lines. If you make a syntax error, BASIC will tell you
immediately. If you type a wrong line number or DATA statement you will generally
have some trouble tracing the mistake. Antic magazine and ANALOG both have com­
missioned programmers to provide a typing error detector program. Antic calls their
program TYPO and ANALOGs is CHECK The TYPO program is printed in Antic
Volume 2, :#=1. CHECK is in ANALOG :#=10. These programs basically do a sum of the
tokenized programs after you have typed them in and they compare the sum to known
correct values. Any differences will help you find the line number where the error lies.
One other tip - always SAVE your program before typing RUN, even if you are sure
there are TYPOs. If the computer locks up and you do not have a backup, you will have
to retype all of the code again.

u
UNARY OPERATORS - A UNARY OPERATOR is one that changes or works on
one operand. The minus sign (-) is a UNARY OPERATOR. It takes a number and
changes it to its negative without affecting or comparing it to anything else. The
BASIC operator NOT is a UNARY OPERATOR. It produces the complement or logical
opposite of the operand it works on. AND, OR, =, <>, etc. are binary operators
because they work with two operands.

UNCONDITIONAL BRANCH - A statement such as GOTO or GOSUB sends pro­
gram control to another line number UNCONDITION ALLY. That means the program
must go to that line number no matter what else is true. Conditional branches which
use IF/THEN, ON/GO SUB, and ON/GOTO will branch if some conditions are met.
Conditional branches are necessary to put customization or sophistication in your pro­
grams. Without conditional branches, a program must do the same thing every time it
is run. See CONDITIONAL BRANCH.

UPLOAD - UPLOADing is the process of sending a program or file from one com­
puter to another. The most common application of UPLOADing is sending a program
to a bulletin board system for others to copy and use. A BASIC program should be in
LIST format when you send it. If it is SAVEd, the tokenized file will contain many con­
trol characters which will be translated by the receiving computer in most cases. A
binary load or object file must be sent in ATASCII mode where all characters will be
sent and received as they are stored in the file. A terminal program with XMODEM
\lrotocol, such as AMODEM, should be used to UPLOAD files with control characters.
The bulletin board system will usually prompt you as to whether you need to be in
ASCII or ATASCII mode when UPLOADing.

209

UPWARD COMPATIBLE

U PWAR 0 COM PATI B LE - Compatibility between hardware and software became
an issue when Atari introduced the 1200XL in January of 1983. Despite claims that
existing software would run on the new 600XL, 800XL and 1200XL, changes in the
operating system made much of the existing software base incompatible. This was not
the fault of Atari, but rather, it was the programmers who violated documented
Operating System rules. The TRANSLATOR program makes all of the existing
software UPWARDly COMPATIBLE with the new machines.

USERS' GROUP- A USERS' GROUP is an informal association of individuals who
share the same interest in computers, usually of a particular brand. Atari has not sup­
ported USERS' GROUPs until recently and now they are a major source of information
about the end user. USERS' GROUPs typically meet monthly and discuss hardware,
software, rumors, facts, and Atari, Inc. Often the experts in a group will give classes in
programming or applications software. Many groups publish a newsletter in which one
finds the latest tricks and news. One of the best attractions of a USERS' GROUP is the
library of Public Domain software most USERS' GROUPs maintain. Members can
copy the disks or buy for minimal cost programs which are in the public domain. This
means that the programs are not copyrighted and can be given away or traded freely.
There are hundreds of disks full of known public domain programs for Atari computers.

USR - The USR function is the method you can use to access machine language
routines from BASIC. At least one parameter must be provided with a USR function
(sometimes called a USR jump because it "jumps" into a machine language program.)
The parameter which must be provided is the decimal address in memory of the routine
to be run. Other parameters provided in the function are put on the hardware stack
(Page 1) and used by the machine language routine if necessary. The parameters are
converted to hexadecimal numbers in two bytes and pushed onto the stack, low byte
first, then high byte. The address of the machine language program is not pushed onto
the stack. Mter all parameters are pushed, the number of parameters pushed is then
put on the stack. If none is entered then a 0 is pushed on.

In order to use a USR function, you must load in your routine (page 6 is a likely place).
Then you simply issue the command ?USR[ADDRESS) where ADDRESS is the
address in memory of the start of the program.

UTI LlTY - A UTILITY is a program written to help you program better or to perform
some help routine. UTILITIES are generally available on public domain disks from
users' groups. There is a UTILITY available to do virtually anything you want, from
designing players, to setting up printers, to calculating HEX from DEC codes.

v
VAL - In BASIC, VAL performs the opposite function as STR$. VAL converts a string
which is made of numeric characters to a numerical variable or value. X = V AL(Y$) will
assign the value of 123 to the variable X if Y$ were a string called" 123". If Y$ is an
alphabetic character, an error will result.

210

VARIABLES

VARIABLES- There are several kinds of VARIABLES, scalar VARIABLES, string
VARIABLES, and array VARIABLES. Scalars are undimensioned. String and Array
VARIABLES may be dimensioned or undimensioned. Undimensioned strings and
arrays rarely appear in programs. A maximum of 128 VARIABLES of all kinds can be
used at any time. The VARIABLES are not cleared out after they are used. Typing
NEW will wipe out all existing VARIABLES and allow you to start over. It is wise to
LIST the program to disk or tape before you do this or you will lose VARIABLES and
program together. A scalar variable takes up six bytes of memory regardless of the size
of the number. Each scalar is stored as a six byte binary coded decimal (BCD). This
means it uses 12 four bit nibbles to store each value. Two nibbles are used for the expo­
nent. Arrays, which also store numeric data use six bytes per dimension unit. An array
dimensioned for 1000 elements will take up 6,000 bytes. String variables use only one
byte per DIMensioned element. The following examples will clarify the difference
among the variable types.

SCALAR
ARRAY
STRING

X 6 Bytes- Binary Coded Decimal (BCD)
X(5) 30 Bytes- BCD- Must DIM X(5) first
X$="ABCD" 4 Bytes- Must DIM X$(4) first

All VARIABLES have entries in the Variable Name Table (VNT). The pointer to the
beginning of the VNT is in locations $0082 and $0083 (130 and 131 decimal). The VNT
sits at the bottom of free BASIC memory. VARIABLES are entered in the table in the
order in which they are used. They are numbered from $80 to $FF (this determines the
maximum number of 128 variables). The VNT is recognizable when viewed directly via
a file or memory dump by the inverse characters at the end of each variable name.
Scalar V ARIABLES end in an inverse character. (Same character as in normal name
with bit 7 set). String VARIABLES end in an inverse dollar sign ($). Array VARIABLES
end in an inverse right parenthesis ")".

VARIABLE LISTER - You can check the variable names which have been used in
your BASIC program in BASIC XL simply by typing the LV AR command. Likewise, if
you have the Monkey Wrench installed in the right slot of your 800, you can type> V
and get a list of the variables used. The following utility program can be placed at the
end of your BASIC program and used to give you a list of current variable names used.
This is handy to check for unused names as you are only allowed a maximum of 128
total. Unused variable names are not deleted until you LIST and ENTER a BASIC pro­
gram (otherwise your old VNT is SAVEd). Type in the program and make sure it works
first. You will see a list of the 18 variables in this program (they all start with a V). Then
LIST it to a disk or tape file. Load in your BASIC program and then ENTER the V ARI­
ABLE LISTER program below. By typing GOSUB 32000, you will get a list of variable
names used. Remember to put a: RETURN at the end of the subroutine to return you to
your BASIC program:

32000 REM ABCS OF ATARI COMPUTERS
32010 REM PROGRAM: VLIST.BAS
32020 REM LIST THIS PROGRAM TO DISK.
32030 REM USE IT AS A SUBROUTINE (GOSU
B

211

VARIABLE LISTER

32040 REM 32000) TO LIST OUT ALL VARIA
BLES
32050 REM YOU HAVE USED. NOTE THAT EV
EN
32060 REM WHEN YOU CHANGE THE NAME OF
A
32070 REM VARIABLE, IT REMAINS IN THE
32080 REM VNT UNTIL YOU 'LIST' AND
32090 REM 'ENTER' THE PROGRAM BACK TO
32100 REM DISK.
32110 VNTP=PEEK(130)+PEEK(131)*256:VNT
D=PEEK(132)+PEEK(133) *256
32120 TRAP 32130:DIM VNAM$(1023):TRAP
32767
32130 VNAM$ (1) =" ": VNAM$ (1023) =" ": VNA
M$(2)=VNAM$
32140 V82=PEEK(82):POKE 82,0:PRINT CHR
$(125);" SEARCHING.... "
32150 VK=l:VS=l:VJ=O
32160 FOR VI=VNTP TO VNTD-1
32170 VX=PEEK(VI)
32180 IF VX<128 THEN VNAM$(VS+VJ,VS+VJ
)=CHR$(VX):VJ=VJ+1:NEXT VI:VS=VS+8:GOT
o 32220
32190 VX=VX-128:VNAM$(VS+VJ,VS+VJ)=CHR
$(VX)
32200 VK=VK+1:VS=8*VK-7:VJ=0
32210 NEXT VI
32220 VNAM$(VS)=""
32230 VENT=LEN(VNAM$)/8:? II

"
SORTING.

32240 TRAP 32250:DIM VTX$(8):TRAP 3276
7
32250 VLEN=8:VLEN1=VLEN-1:VMAX=VLEN*(V
ENT-1)+1
32260 FOR VI=l TO VMAX STEP VLEN
32270 VDONE=l
32280 FOR VK=l TO VMAX-VI-VLEN1 STEP V
LEN
32290 VSLEN1=VK+VLEN1:VSLEN=VK+VLEN:VS
LSL 1 =VSLEN+VLEN 1
32300 IF VNAM$(VK,VSLEN1)<=VNAM$(VSLEN
,VSLSL1) THEN 32330
32310 VDONE=O
32320 VTX$=VNAM$(VK,VSLEN1):VNAM$(VK,V
SLEN1)=VNAM$(VSLEN,VSLSL1):VNAM$(VSLEN
,VSLSL1)=VTX$
32330 NEXT VK

212

VARIABLE NAME TABLE

32340 IF VDONE THEN POP :GOTO 32360
32350 NEXT VI
32360 ? :? :?" VARIABLE LISTING
32370 FOR VI=1 TO INT(LEN(VNAM$)/8)
32380 VS=8*VI-7:? VNAM$(VS,VS+7),
32390 NEXT VI

II. " . ~

32400 ? :? :?" NUMBER OF VARIABLES =
"; VENT

32410 POKE 82,V82
32420 REM *************************
32430 REM THIS PROGRAM WILL ALWAYS
32440 REM LIST ITS OWN VARIABLES.
32450 REM *************************
32460 REM VDONE VENT VI VJ
32470 REM VK KSLEN KSLEN1 KSLSL1
32480 REM VMAX V82 VS VLEN
32490 REM VLEN1 VNAM$ VNTD VNTP
32500 REM VX VTX$
32510 REM # VARIABLES = 18
32520 REM RETURN
32530 REM REMOVE REM IN 32520 TO USE T
HIS AS .A SUBROUTINE

Based on program concept in A-MAGIC Report, 2/83, by Mike Hall.

VARIABLE NAME TABLE- TheVARIABLENAMETABLE(VNT) is a list of all
variables which have been created in a BASIC program. The VNT sits right at the bot­
tom of free RAM. Because this location will change depending upon conditions, a pointer
is used to find the VNT. The pointer is in locations $0082 and $0083 (130 and 131
decimal). Use? PEEK(130)+PEEK[131)*256 to find the start of the VNT. The
following short program will list the variables in the VNT. Note that the last character
of each variable name is inverse.

Scalar variables end in an inverse character
Array variables end in an inverse left parenthesis "("
String variables end in an inverse dollar sign ($)

10 LET ONE=1:TWO=2:THREE=3:DIM ARRAY(5),
TWODEE(3,4),STRING1$(3),BIGSTRING$(789)
20 VNTAB=PEEK(130)+PEEK(131)*256
30 FOR CHAR=O TO 50:? CHR$(PEEK(VNTAB+CH
AR»:NEXT CHAR

VARIABLE VALUE TABLE - The VARIABLE VALUE TABLE (VVT) sits
immediately above the VNT and it contains the data on where, what size, and what
types of variables have been created. The pointer to the VVT is in locations $0086 and
$0087 (134 and 135). Eight bytes are assigned to each variable name. The following
information is contained in the VVT:

213

VBI

Variable BYTE
Type 0 1 2 3 4 5 6 7

SCALAR 0 V# SIX BYTE BCD VALVE FOR THE VARIABLE

DIMmed Array 65 V# STARP XDIM+1 YDIM+1
OFFSET LO HI LO HI

unDIMmed Array 64 V#

DIMmed String 129 V# STARP STRING LENGTH DIM
unDIMmed String 128 V# OFFSET LO HI LO HI

The first byte in the VVT entry is a code for the type of variable. Scalars use a 0, arrays
use 64 or 65, and strings use 128 or 129. The second byte is the number of the byte's
entry in the table. The V # can be from 0 to 127. The next six bytes are used as a binary
coded decimal representation of the number for scalar variables. Strings and arrays
use these six bytes for the offset from the beginning of the String! Array area and to
note the DIMensions of the variables. The string/ array area is pointed to by locations
$008C and $008D (140 and 141 decimal). The offset is the number of bytes from the
beginning of this area where the variable data for this variable is stored. The following
program can be used to dump the contents of the VVT so you can better visualize
how it works.

10 LET ONE=1:TWO=2:THREE=3:DIM ARRAY(5) ,
TWODEE(3,4)~STRING1$(3),BIGSTRING$(789)

20 VVTAB=PEEK(134)+PEEK(135)*256
30 FOR VNUM=O TO 10:? "VARIABLE #";VNUM;
II II. ,
40 FOR x=o TO
~";:NEXT X:?
50 NEXT VNUM

7 0" o • PEEK(VVTAB+VNUM*8+X>;"

VBI - Vertical Blank Interrupt. During the vertical blanking time, short machine
language routines can be executed. There are some routines that must be executed by
the Operating System: V pdate hardware registers, read keyboard, change timers, and
set attract mode register. Short routines of about 2,000 machine cycles can be done in
the immediate VEl mode. Longer routines of up to 20,000 machine cycles can be done in
the d'eferred VEl mode. The interrupts are implemented through vectors which are
checked during every vertical blank. The immediate mode vector is at $0222 and the
deferred mode vector is at $0224. If the routines cannot be completed in the cycles they
are allotted, they will interfere with the screen writing and disrupt the display.

VBLAN K - VERTICAL BLANK - A television produces images by scanning an
electron beam across the surface of a phosphor coated faceplate. The beam starts in the
upper left corner and travels left to right, turns off, moves down one line, and continues
scanning until all 525 lines are covered. When the beam gets to the bottom (after 1/60

214

ON
~

VECTOR

second), it is turned off and restarted at the top left. During this time, the OS takes care
of its business. The shadow registers are transferred to hardware registers and other
short programs can be executed. This interval is called the VERTICAL BLANK.

VECTO R - A VECTOR is a memory location which contains the location of the first
byte of a table or subroutine. VECTORs are comprised of two bytes. The low byte is
usually presented first, followed by the high byte (LO-HD. A VECTOR is similar to
a pointer.

VE R I FY - Atari DOS does a read after every write to VERIFY that the data has been
written correctly. This READ routine makes writing time about twice as long as it
would be without the VERIFY. You can eliminate the VERIFY by modifying DOS.
Type POKE 1913,87 in BASIC and then go to the DUP.SYS menu. Write the DOS files
back to disk using the H option. This version of DOS is now modified to NOT do the
VERIFY. To return to standard DOS with VERIFY, you can repeat the procedure by
doing a POKE 1913,80. Generally, very few errors are made during writing, so the
verification is usually not needed.

VERTICAL SCROLLING - VERTICAL SCROLLING is the movement of infor­
mation vertically through the screen window. The LIST command in BASIC does VER­
TICAL COARSE SCROLLIN G. The ANTIC handles VERTICAL FINE SCROLLING.
VERTICAL SCROLLING on the Atari computer is very easy to implement because of

215

VERTICAL FINE SCROLL ENABLE BIT

the Display List. The first requirement for scrolling is to have something in memory.
The object of scrolling is to move the data in memory past the screen. This can be done
by pushing the data past the area of memory which is mapped to the screen, OR by
changing the pointer which tells the screen where to go to find screen data. The latter
approach is much simpler to do. In the XL series, fine scrolling is implemented very
simply by typing POKE 622.255:GR.0 < Return> .
There is an instruction in the Display List which tells the ANTIC chip where to find
screen memory. This is the LMS (Load Memory Scan) instruction. By incrementally
changing the two address bytes of the LMS, you can implement VERTICAL COARSE
SCROLLING. See Section 6 of De Re Atari for a detailed treatment of scrolling. In
order to do fine scrolling, you must set the VERTICAL FINE SCROLLING ENABLE
BIT. See the next entry.

VERTICAL FINE SCROLL ENABLE BIT- In ordertoproperlyimplementver­
tical fine scrolling, bit5 of the Display List instruction must be set. This is done by add­
ing 32 to the decimal value of the instruction or adding $20 to the hex value. To set up
GR.O for vertical fine scrolling, you would use the instruction $62 ($42 + $20) or98
(66 + 32 decimal). In addition to setting bit 5, you must also put the number of pixel
lines you wish to scroll in register$D405 (54277 decimal). Both of these actions must be
done for VERTICAL FINE SCROLLING.

VI DEO 80 - Eighty Column Emulator - COMPUTE! Magazine, AprilI983 pub­
lished a program which defines a new device called "V:" which allows 80 column for­
matting on monochrome televisions or monitors. No special hardware is needed,
however the keyboard editor is not implemented. This program could be merged with a
word processor to create an 80 column utility program.

VIRTUAL MEMORY - VIRTUAL MEMORY or VIRTUAL Storage refers to a
technique of using auxiliary memory (floppy, hard disk, RAM disk) to swap data in and
out of the main memory of a computer. This could give you unlimited or at least very
extensive working memory. This technique is usually implemented on minicomputers
or mainframes but it has not yet been demonstrated on Atari computers.

VISICALC - VISICALC was developed by Personal Software (later called VisiCorp)
and was responsible for an estimated 30-50 percent of pers .:mal computer sales. Atari
recently bought the rights to distribute VISICALC for Atari computers. VISICALC is a
spreadsheet program. This means that it is essentially designed to handle a matrix of
numbers and variables. The matrix is made up of rows and columns. Columns are
labeled A through BK and rows are numbered I through 254. Each cell has a location,
such as Al or BK254. Cells can be added together by using commands such as
+ Al + A2. If the value stored in I were changed then every other cell that referenced
Al would change. Very complex models can be built. Financial statements and budgets
are favorite applications for VISICALC. The limitation of 48K of memory prohibits
very extensive models from being built on Atari computers. The program is so large
that only 2IK is left after the program is loaded in.

VOICE - VOICE is the channel through which the SOUND commands are heard.
Atari BASIC supports four VOICES (0 through 3). The first argument of the SOUND
statement specifies the VOICE number.

216

VOICE SYNTHESIZER

VOICE SYNTHESIZER - A VOICE or SPEECH SYNTHESIZER is a hardware
or software addition to your computer which allows you to output sound similar (in
some ways, at least) to a human voice. This synthesis is accomplished by using the
standard phonemes to modulate waveforms to resemble speech. Most programs now
will take standard English (or other words) and attempt a translation directly into
speech. Often you will have more understandable sound if you use a phonetic spelling,
like, KOM-PEW-TER instead of COMPUTER. S.A.M. (software) by Don't Ask Soft­
ware and the Voice Box (hardware) by the Alien Group are two reliable VOICE
SYNTHESIZERS.

VTOC - Volume Table Of Contents. Sector 360 on Atari DOS disks is the VTOC. The
main feature is the bit map of the sectors in use. Every sector is represented by a bit.
DOS marks the occupied sectors with a 0 and the free sectors with a 1. See SECTOR
TYPES for a full treatment of VTOC.

w
WAIT . .. AN D - In Microsoft BASIC, W AIT ... AND uses an address, a mask byte,
and a compare byte to halt a program until certain conditions are met. When this com­
mand is encountered, execution stops until the compare byte, when logically ANDed to
the mask byte, equals the byte in the memory address specified.

WAR MSTART - A W ARMSTART will reset most registers to their default values.
Pressing SYSTEM RESET does a W ARMSTART. Jumping through location 8 ($8)
will also do a WARMSTART. Programs in memory will not be cleared as they will be
with a COLDSTART. Variables will also remain unchanged. All Operating System
RAM in pages 2 and 3 is set to zero. RAM from $0010 to $007F is also set to zero. The
screen margins and colors are reset to their default values.

WARP SPEED - WARP SPEED is a technique developed by Richard Adams of
Happy Computers which speeds up the input and output to disk drives by about three
times. WARP SPEED works with the Happy Enhancement. All reading and writing
occurs at around 40,000 baud instead of the original 19,200 over the serial I/O port.
WARP SPEED is implemented by a special modification to DOS available from
Happy Computers.

WI DE PLA YFI ELD - By POKEing 559,35 you can enable the WIDE PLAYFIELD.
This mode of display broadens the screen to 48 characters wide (only 40 are visible,
unfortunately). The Atari hardware fetches 192 color clocks for a scan line. However,
the hardware also cuts off the four outside characters (two on each side), which leaves
44 characters in order to meet NTSC standards. If there were more clocks on a line, the
TV would not synchronize. The editor is still set for 40 characters in this mode so colum~
nar output printed to the screen will not line up properly. The WIDE PLAYFIELD will
eliminate unsightly edges on the playfield by placing them outside of the screen area.
The location of the register is $022F (559), and setting bits 0,1, and 5 enables the WIDE
PLAYFIELD. See NARROW PLAYFIELD.

217

WILDCARD

WI LD CARD - A WILD CARD character is a dummy character, such as an asterisk
(*) or a question mark (?), which can take on any value in a name. Wild cards are used in
the DOS utility. For example, the asterisk represents any filename or filename exten­
der. Pressing D and *. * will delete every file on a disk. The question mark is a
WILDCARD for a single character in a filename. Pressing D and? .BAS will delete all
one-character file names ending in . BAS. Pressing D and * . BA? will delete all files with
BAK, BAS, or BA(any character) as its extension. Also, be careful not to use a wildcard
when renaming files or you may end up with multiple identical filenames on a
directory.

WRITE ONLY REGISTERS - Many of the hardware registers in the Atari com­
puter cannot be read. They are WRITE ONLY REGISTERS. Read/Write registers are
also known as RAM. The values written in these registers are transferred to other
locations for other work. Some registers are used for writing, but when read, contain
bytes grabbed from other locations. The Hardware Manual gives a fairly complete list
of read and write functions of all of the registers in Atari computers.

WRITE PROTECT - The square notch near the top right corner of a floppy disk is
the write enable notch. When the hole is covered with an opaque tab, there is no way to
write to, erase, or format a disk in the drive unless your drive suffers from a hardware
failure. This does happen, so be careful when you have difficulty with reading or writ­
ing. Black electrical tape makes an excellent write protect tab if you are short of the
real thing. White adhesive labels are not safe because the photocell which acts as the
interlock can sometimes read through the paper. Almost all disks can be flipped over
and used as double sided floppies. A write enable notch must be punched or cut on the
left side (opposite the existing one) and the disk can be formatted for use. Very few
disks are not useable on the flip side despite their rating as single sided disks due to the
low density of the tracks. One interesting point is that the writing surface is on the
opposite side of the floppy disk as the label. The Read/Write head on the Atari 810 is on
the bottom side of the drive.

WRITE PROTECT OVERRIDE - You can install a switch on the front of your
Atari 810 disk drive to enable yourself to write on the back side of a floppy disk without
cutting a notch or a write enable hole. This operation is not recommended for those not
handy with a soldering iron or components, nor for those with a disk drive in warranty.
Also note that you must attempt this modification at your own risk. It has been known
to affect drive speed and will give unpredictable results with a Happy Enhancement
due to its use of the write enable line.

This technique puts two LEDs on the front face of the drive to indicate whether or not
you can format any disk in the drive (notched or not).

You will need five parts to make this modification.

1. A green LED.
2. A yello1" LED.
3. A DPD'f switch (on-off-on).
4. A 2.2K ohm resistor, 1/4 watt.
5. A 330 ohm resistor, 1/4 watt.

218

X REGISTER

Mount the switch and two LEDs on the front bezel of your 810. This involves some
judgement in drilling the holes. Remove the four screws under the circular tabs on the
top of the drive case and open the top case. Find the side board (with the metal can
shield) and locate the five-conductor connector labeled J101. If you have five wires in
this connector, remove # 2, the red one. If you have only three wires in the connector,
pull the plug out.

Make the connections between the switch, LEDs, resistors, and connector according to
the schematic below.

When everything is connected properly, flip the switch down and the yellow LED
should turn on. You should be able to format adisk with no notch or with a write protect
tab on it. Try it.

Flip the switch up and the green LED should come on. This indicates that you are in the
normal mode. You will need a notch to write (you will not be able to write without one).

With the switch in the center (no lights on), you will not be able to write to any
disks.

J101
~_ --- 0 Ground

o
o

.----__._- 0 +5 V (red wire)

2.2 K

J

Write enable logic (black wire)

./ ~ To photocell on bottom,
3.?9-0' - - - -, - -- - - - ---r ----~ near onloff switch

Yellow
LED

~I 0'

, DPDT on off I on

u-- -----~ -------r-- --!
~~ ~~ ~~~n

x
X REG ISTE R - The 6502 central processor of the Atari computer has several regis­
ters for use by the programmer. The X REGISTER is one of these. It is an eight bit
register used for temporary storage, indexing or incrementing, and as a scratch pad for
machine language operations. The codes LDX, INX, CPX, DEX, STX, TXS, and TAX
use the X REGISTER.

219

XIO

XIO - The BASIC XlO command is a very powerful, yet poorly documented com­
mand. XlO commands provide a structured way of configuring registers or setting bits
without POKEing or using machine language routines. Many DOS (DUP.SYS) func­
tions can be performed through the XlO. All SlO commands can be engaged. A special
graphics fill command is available only through the XlO. The RS232 port can be con­
figured in BASIC only through the XlO series. XlO commands must contain the follow­
ing components:

XlO These three letters
Command No. No. Between 3 and 254
Channel lOCB no. between 1 and 7
Expression 1
Expression 2
Device

Used to set up parameters
Used to set up parameters
Specifies destination or file (D:, E:, C: etc.)

The format is shown in the following example which will delete a file called TEST on
Drive 1.

XID 33,#1,0,0,"O:TEST"

Channel #1 must be OPENed for writing for this command to be executed properly.
The following table describes the available Command numbers in XlO.

COMMAND #
3

5
7
9
11
12
13
17
18
32
33
34
35
36
37
38
40
254

Function
OPEN channel

4=Read
5=Concurrent read (R:)
6= Read Directory
8= Write
9=Write Append

12=Read and Write
13=Concurrent I/O

INPUT line (Read)
GET Character
PRINT line (Write)
PUT Character
CLOSE Channel
STATUS of Channel
DRAWTO
Fill
Rename file on disk
Delete file on disk
Set DTR, RTS and XMT in RS232 serial port
Lock file on disk
Unlock file on disk; set baud, word size, and stop bits
Move pointer in disk buffer
NOTE pointer in disk file; set translation mode in R:
Set up concurent mode I/O in R:
Format disk

220

XL SERIES MEMORY USAGE CHANGES

XLSERIES MEMORY USAGE CHANGES- Several variables in the database
area (page 0 through 4) have been changed in the XL series Operating System. These
changes do NOT conflict with any documented usage of these locations, but are merely
additions. The following list describes the changes.

LOCATION NAME IN REV. B OS NAME IN XL OS USE

Dec. Hex.
0 0000 Reserved LNFLG - for in-house use
1 0001 Reserved NGFLAG - for power-up self test
28 001C PTIMOT-Moved to 0314 ABUFPT - Reserved
29 001D PBUFNT-Moved to 02DE ABUFPT - Reserved
30 001E PBUFSZ-Moved to 02DF ABUFPT - Reserved
31 001F PTEMP- Deleted ABUFPT - Reserved
54 0036 CRETRY-Moved to 029C LTEMP - Loader temporary
55 0037 DRETRY-Moved to 02BD LTEMP
74 004A CKEY -Moved to 03E9 ZCHAIN - Handler loader temp.
75 004B CASSBT-Moved to 03EA ZCHAIN
96 0060 NEWROW-Moved to 02F5 FKDEF-Fn. key table pointer
97 0061 NEWCOL-Moved to 02F6 FKDEF
98 0062 NEWCOL-Moved to 02F7 P ALNTS - P AUNTSC flag
121 0079 ROWINC-Moved to 02F8 KEYDEF - Key table pointer
122 007A COLINC-Moved to 02F9 KEYDEF
563 0233 Reserved LCOUNT - Loader temporary
568/9 0238/9 Reserved RELADR - Loader
581 0245 Reserved RECLEN - Loader
583/618 0247/6A LINBUF -Deleted Reserved
619 026B LINBUF -Deleted CHSALT - Alt. char. set point
620 026C LINBUF -Deleted VSFLAG - Fine scroll temporary
621 026D LINBUF -Deleted KEYDIS - Keyboard disable
622 026E LINBUF -Deleted FINE - Fine scrolling enable
648 0288 CSTAT -Deleted HIBYTE - Loader
654 028E Reserved NEWADR - Loader
668 029C TMPXl-Deleted CRETRY - Moved from 54
701 02BD H 0 LD5-Deleted DRETRY - Moved from 55
713/4 02C9/A Reserved RUNADR - Loader
715/6 02CB/C Reserved HIUSED - Loader
717/8 02CD/E Reserved ZHIUSE - Loader
719/20 02CF/DO Reserved GBYTEA - Loader
721/2 02D1/2 Reserved LOAD AD - Loader
723/4 02D3/4 Reserved ZLOADA - Loader
725/6 02D5/6 Reserved DSCTLN - Disk sector size
727/8 02D7/8 Reserved ACMISR - Reserved
729 02D9 Reserved KRPDEL - Key repeat delay
730 02DA Reserved KEYREP - Key repeat rate
731 02DB Reserved NOCLIK - Key click disable
732 02DC Reserved HELPFG - HELP key flag
733 02DD Reserved DMASAV - DMA state save

221

XMODEM

LOCATION NAME IN REV. B OS NAME IN XL OS USE

734 02DE Reserved PBPNT - Moved from 29
735 02DF Reserved PBUFSZ - Moved from 30
745 02E9 Reserved HNDLOD - Handler loader flag
757 02F5 Reserved NEWROW - Moved from 96
758/9 02F6/7 Reserved NEW COL - Moved from 97/8
760 02F8 Reserved ROWINC - Moved from 121
761 02F9 Reserved COLINC - Moved from 122
782 030E ADDCOR - Deleted JMPERS - Option jumpers
788 0314 TEMP2 - Moved to 0313 PTIMOT - Moved from 28
829 033D Reserved PUPBT1 - Power-up reset
830 033E Reserved PUPBT2 - Power-up reset
831 033F Reserved PUPBT3 - Power-up reset
1000 03E8 Reserved SUPERF - Screen editor
1001 03E9 Reserved CKEY - Moved from 74
1002 03EA Reserved CASSBT - Moved from 75
1003 03EB Reserved CARTCK - Cartridge checksum
1005/ 16 03ED/F8 Reserved ACMV AR - Reserved
1017 03F9 Reserved MINTLK - Reserved
1018 03FA Reserved GINTLK - Cartridge interlock
1019/20 03FB/C Reserved CHLINK - Handler chain

XMODEM - XMODEM is a terminal program used primarily for CP/M based com­
puters. The important feature of XMODEM is the error checking technique which
sends a checksum after each group of 128 bytes is transferred. This is known as the
XMODEM protocol and it allows highly reliable communications between computers.
The AMODEM program listed under AMODEM contains the XMODEM protocol.
Ward Christensen, a prolific public domain CP/M author, is the originator of the
Christensen XMODEM protocol.

y

Y REG ISTE R - The Y REGISTER is used just like the X register in the 6502 processor.
See X REGISTER.

YOUR ATARI COMPUTER - A Guide to Atari 400/800 Personal Computers by
Lon Poole, Osborne/McGraw-Hill. This book is a very extensive reference guide to the
Atari BASIC language and, to a lesser degree, to the DOS and Operating System. A
section on advanced graphics provides a good background for machine language and
player missile programming. Osborne/McGraw-Hill (address).

222

ZERO PAGE

z
ZERO PAG E - Memory locations 0 through 255 ($00 to $FF) are used by the Operat­
ing System, BASIC, and by machine language programmers who want to produce very
fast code. Many OS pointers are in the lower half of page O. BASIC uses the top half of
page 0, and some free user memory is also available. Since many of the bytes in page 0
are used by BASIC in different routines, it is very easy to crash a program by inter­
ference with BASIC. Seven bytes between 203 and 209 are always untouched by
BASIC.

ZERO SLASH - In order to differentiate the letter 0 from the number zero (0),
printers and character set ROMs often use a slashed zero. A zero which has been
interchanged with an 0 is a good place to start looking when debugging a BASIC
program.

Z80 - The eight bit Z80 microprocessor, developed by Zilog, affiliate of Exxon Enter­
prises, was the first commercial computer on a chip. Radio Shack was the first com­
pany to design a personal computer around the Z80 and to mass market computers to
the public. As a result, there is a huge base of software written for the Z80 based
machines and the CP/M Operating System which is used to control these computers.

223

Atari Source List

FIRM ADDRESS PRODUCTS

ACORN SOFTWARE 634 N.CAROLINA AVE. S.E. WASH., DC 20003

ACTIVlSION 3255-2 SCOTT BLVD, SANTA CLARA, CA 95051 GAMES

ADS 9202 CEDAR CREST DR., AUSTIN, TX 78750 INTEGRATER

ADVANCED COMPUTING 5516 ROSECHILD, SHAWNEE, KS 66216

ADVENTUREINTERNATL P.O. BOX 343, LONGWOOD, FL 32750 GAMES

ALIEN GROUP 27 W. 23 ST.,NEW YORK, NY 10010 VOICE BOX

ALLEN MACROW ARE P.O. BOX 2205, REDONDO BEACH, CA 90278 SCREENDUMP S/W

ALOG COMPUTING 1040 VERONICA SPGS., SANTA BARBARA, CA 93105 WORD PROCESS.

ALPHA SYSTEMS 4435 MAPLEPARK RD., STOW, OH 44224 PROTECTION BOOK

ALPHACOM 2323 SOUTH BASCOM, CAMPBELL, CA 95008 PRINTERS

AMDEK 2201 LIVELY BLVD., ELK GROVE VILLAGE, IL 60007 3" FLOPPY DRIVE

AMERICAN SOFTWARE CB MILLWOOD, NY 10546 CHEAP SOFTWARE

AMULET ENTERPRISES P.O. BOX 25612, GARFIELD HTS., OH 44125 DISKED

A.N.A.L.O.G. P.O. BOX 23, WORCESTER, MA 01603 MAG, SOFTWARE

ANCHOR AUTOMATION 5624 V ALJEAN AVE., VAN NUYS, CA 91406 MODEMS

ANTIC 524 SECOND ST., SAN FRANCISCO, CA 94107 MAGAZINE

APOGEE SOFTWARE 9615 FARRALONE AVE., CHATSWORTH, CA 91311

APOLLO INC. 1300 ARAPAHO, RICHARDSON, TX 75081

APPLIED COMPo ALTERN 1500 WILSON BLVD., ARLINGTON, VA 22209 CRAM-90K-400

APX P.O. BOX 3705, SANTA CLARA, CA 95055 SOFTWARE

ARCADE PLUS 5276 HOLLISTER ;;2, SANTA BARBARA, CA 93111

ARTWORX 150 NORTH MAIN, FAIRPORT, NY 14450 SOFTWARE

ASTRA SYSTEMS 5230 CLARK A VENUE, LAKEWOOD, CA 90712 DISK DRIVE,DSDD

ATACOMP RR ;;3, BOX 21, COGGON, IA 56218 COMPILER

ATARI, INC. 1312 CROSSMAN. SUNNYVALE, CA 94086

ATARI P.O. BOX 61657, SUNNYVALE, CA 94086 COMPUTERS

AUSTIN FRANKLIN ASSOC. 43 GROVE STREET, AYER, MA 0143248 KSO-COL BD.

AUTOMATED SIMULATION 1043 KIEL COURT, SUNNYVALE, CA 94086 SOFTWARE

AVALON HILL 4517 HARFORD, BALTIMORE, MD 21214 GAMES

AXIOM CORPORATION 1014 GRISWOLD, SAN FERNANDO, CA 91340 PRINTERS

AXLON 1237 N. LAWRENCE STA, SUNNYVALE, CA 94Q89 RAM BOARDS

BANK INC. 4 EL.M ST, BRAINTREE, MA 02167

BIG FIVE SOFTWARE P.O. BOX 9078-185, VAN NUYS, CA 91409 MINR 20 49'ER

BIT 3 COMPUTER 8120 PENN AVE SO .. MINNEAPOLIS. MN 55431 so COL. BOARD

BIZCOMP P.O. BOX 7498, MENLO PARK. CA 94025 1080 VERSAMODEM

BRAMINC 18779 KEN LAKE PL. NE, SEATTLE. WA 98155 GAMES

BRODERBUND 17 PAUL DR., SAN RAFAEL, CA 94903 GAMES

BUDGECO 423 PALA AVE, PIEDMONT, CA 94610 GAMES

BUSINESS DATA CENTER 6890 KINNE ST, E. SYRACUSE, NY 13057
CA.P. SOFTWARE 69 NEW BOSTON ROAD. YORK. ME 03909 DISK WIZARD
CALIFORNIA MICRO LINK 1237 LAWRENCE ST A, SUNNYVALE, CA 94086 EASY 110
CA V ALlER COMPUTER 1223 CAMINO DEL MAR,DEL MAR, CA 92014 GAMES

CBS SOFTWARE 41 MADISON AVE., NEW YORK. NY 10010 GAMES

CDY CONSULTING 421 HANBEE. RICHARDSON, TX 75080 ONMIMON, OS BOA

CODE WORKS P.O. BOX 550, GOLETA, CA 93116 SOFTWARE
COMPUTER AGE,INC 9433 GEORGIA AVE .. SILVER SPRGS, MD 20910

COMPUTER MAGIC P.O. BOX 2634, HUNTINGTON STA, NY 11745

COMPUTER ALLIANCE 21115 DEVONSHIRE ;;132, CHATSWORTH, CA 91311 BASM COMPILER

COMPUTERCONTROLCTR 5005 CASS ST., SAN DIEGO, CA 92109 SO-COL. SlW

225

FIRM

COMPUSERVE

COMPUTARI

COMPUTE!

6COMPUTE SEEN

COMPUMAX

CONTINENTAL SOFTWARE

CORVUS SYSTEMS

COSMI

CREATIVE COMP.S/W

CREATIVE COMPUTING

D-TECH DATA CORP.

DATABAR CORP.

DATAMOST,INC.

DATASOFT, INC.

DAVID BOHLKE

DILITHIUM PRESS

DISCWASHER

DON'T ASK

DORSETT

DOW JONES SOFTWARE

DRESSELHAUS COMPUTER

DYNACOMP

EATERN HOUSE S/W

ECRL, INC.

EDU-WARE

EDUFUN

EDUSOFT

ELCOMP PUBLISHING

ELECTRONICS ARTS
ELITE DIGITAL

ENGLISH SOFTWARE CO.

ENVIRONMENTAL CTRL S

EPSON AMERICA

FIRST STAR SOFTWARE

FORTH INTEREST GROUP

FUNSOFT

G.A.M.E.&

GAMESTAR

GAMMA SOFTWARE

GEBELLI SOFTWARE

GREENBRIAR MARKETING

HAPPY COMPUTERS, INC.

HARDSEL

HAYES MICROCOMPUTER

HI-RES
HIGH COUNTRY MICROSY

HIGH TECH SOFTWARE

HOFACKER (ELCOMP)

HUMAN ENG. SOFTWARE

IJG INC.

IMAGIC

IN HOME SOFTWARE

INDUS SYSTEMS

INFOCOM
INNOVATIVE SOFTWARE DESN.
INTEC PERIPHERALS
ISLAND GRAPHICS,INC.

JERSEY SYSTEMS

JVSOFTWARE

K-BYTE

KANGAROO

KRELL SOFTWARE

l&S COMPUTERW ARE

LEADING EDGE

LIGHTNING SOFTWARE

LJK ENTERPRISES
LONDON SOFTWARE

LOOKING GLASS SOFTWARE

ADDRESS

2180 WILSON ROAD, COLUMBUS, OH 43228

9607 ATHLONE, DALLAS, TX 75218

BOX 5406, GREENSBORO, NC 27403

3272 E. ANAHEIM, LONG BEACH, CA 90804

BOX 7239, MENLO PARK. CA 94025

11223 S. HINDRY, LOS ANGELES, CA 90045
2029 OTOOLE, SAN JOSE, CA 95131

7031 CRES RD., PALOS VERDES, CA 90274

201 SAN ANTONIO CIR, MT. VIEW, CA 94040

39 E. HANOVER, MORRIS PLAIN, NJ 07950

3251 TECH DRIVE N, ST.PETERSBURG,FL 33702

10202 CROSSTOWN CIR, EDEN PRARIE, MN 55344

20660 NORDHOFF ST., CHATSWORTH, CA 91311

19519 BUSINESS CTR, NORTHRIDGE, CA 91324

192 NORTH LINN, COGGON, IA 52218

11000 SW 11 TH ST. # E, BEAVERTON, OR 97005

1407 N. PROVIDENCE, COLUMBIA, MD 65205

2265 WESTWOOD B1.. # 8-150, LOS ANGELES, CA 90064

BOX 1226, NORMAN, OK 73070

STOCK ANALYSIS

P. O. BOX 929, AZUSA, CA 91702

1427 MONROE AVE, ROCHESTER, NY 14618

3239 LINDA DR .. WINSTON-SALEM, NC 27106

P.O. BOX 387, CANBY, OR 97013

28035 DOROTHY, AGOURA, CA 91303

1100 RESEARCH RD, ST. LOUIS, MO 63132

P.O. BOX 2650, BERKELEY, CA 94702

53 REDROCK LANE, POMONA, CA 91766

2755 CAMPUS DRIVE, SAN MATEO, CA 94403

P.O. BOX 1414, MELVILLE, NY 11747

P.O. BOX 3185, REDONDO BEACH, CA 90277
9319 WILLOWVIEW LANE, HOUSTON, TX 77080

34 15 KASHIWA ST., TORRANCE, CA 90505

22 E. 41ST ST., NEW YORK, NY 10017

P.O. BOX 1105, SAN CARLOS, CA 94070

28611 CANWOOD ST., AGOURA, CA 91301

6626 VALJEAN ST .. VAN NUYS, CA 91406

1302 STATE ST .. SANTA BARBARA, CA 93101

P.O. BOX 23625, LOS ANGELES, CA 90025

1787 TRIBUTE RD .. #6, SACRAMENTO, CA

8225 E. ROVEY AYE., SCOTTSDALE, AZ 85253

P.O. BOX 1268, MORGAN HILL, CA 95037

P.O. BOX 565, METUCHEN, NJ 08840

5835 PEACHTREE CRNRS. E., NORCROSS, GA 30092

933 LEE ROAD, #325, ORLANDO, FL 32810

THE 4TH WORKS, BOX 21147, DENVER, CO 80221

9910 US 395 NORTH, RENO, NV 89506

53 REDROCK LANE, POMONA, CA 91766

150 NORTH HILL DR., BRISBANE, CA 94005

1953 W. 11TH, UPLAND, CA 91786

981 UNIVERSITY AVE., LOS GATOS, CA 95030

2485 DUNWIN DR#8, MISSISAUGA, ON CAN

9304 DEERING AVE .. CHATSWORTH, CA 91311

P.O. BOX 855, GARDEN CITY, NY 11530

920 1ST NAT1.., BANK. LAS CRUCES, NM 88001
906 E. HIGHLAND AVE, SAN BERNARDINO, CA. 92404

P.O. BOX V, BETHEL ISLAND, CA 94511
P.O. BOX 332, EDISON, NJ 08818

3090 MARK AVE .. SANTA CLARA, CA 95051

1705 AUSTIN, BOX 456, TROY, MI 48099

332 SOUTH MICHIGAN, #700, CHICAGO, IL 60604

1320 STONY BROOK RD .. STONY BROOK. NY 11790
1589 FRASER, SUNNYVALE, CA 94087

8624A SPICEWOOD SPGS, BOX 10998, AUSTIN, TX 78766

P.O. BOX 11725, PALO ALTO, CA 94306
7852 BIG BEND RD .. ST. LOUIS, MO 63119

374 WILDWOOD, PIEDMONT, CA 94611

544 FORT LARAMIE DR .. SUNNYVALE, CA 94087

226

PRODUCTS

INFO UTILITY
FINANCIAL WIZ

MAGAZINE

SOFTWARE

WINCH ESTERS

GAMES

MAGAZINE

RAM-$100

BAR CODE PROGRAMS

BOOKS, SOFTWARE

SOFTWARE

ATACOMP-COMPILER

BOOKS

JOYSTICKS

SOFTWARE

EDUC. SOFTWA.RE

SOFTWARE

UTILITY PRODS

52K RAM FOR 400

EDUCATION SOFTWARE

SOFTWARE

EDUCATIONAL SOFTWARE

LANGUAGES, BOOKS

PINBALL SET

LONG CABLES

GAMES
BSR X-10 CRTLR

PRINTERS

GAMES

FORTH DIMENSION

GAMES

GAMES

GAMES

ITALK II SPEECH

DRIVE ENHANCER

MONITOR OUTPUT

MODEMS

ATARI MAGAZINE
RAMPAGE-SHERLOK

CAR DIAGNOSTICS

BOOKS/FORTH

GAMES

UTILITIES

GAMES

LSL 11'1 UTILITIES

DISK DRIVES

ADV. GAMES

GAMES
RAM 48K-32K-16K

RAM
GAMES

SOFTWARE

KIDS GAMES

EDUC. SOFTWARE

GAMES
DISK SYSTEMS

MASTERTYPE
APPLICATION SOFTWARE

EDUC. SOFTWARE

FIRM

LOOKING GLASS MICRO

LUCK SOFTWARE

MACROTRONICS

MANNESMAN TALLY

MASTER CONTROL SOFTWARE

MATTEL M-NETWORK

MAXIMUS

MED SYSTEMS
MICRO SYSTEMS EXCHNG.

MICROTRONICS

MICROGRAPHICIMAGE

MICROBITS PERIPHERAL

MICROPROSE SOFTWARE

MICROPHERAL CORP.

MICROTEK

MICRO MAINFRAME

MILES COMPUTING
MILLIKEN PUBLISHING

MIND MOVERS

MMG MICRO SOFTWARE

MONARCH DATA SYSTEMS

MOS TECHNOLOGY

MOSAIC ELECTRONICS

MOUNTAIN VIEW PRESS

MYOTIS SYSTEMS

NEC

NEWELL SYSTEMS

NEWPORT CONTROLS

NOVIN

NUFEKOP

ODESTA
ON LINE

ORIGIN SYSTEMS
OSBORNE/MCGRAW HILL

OSS

PARKER BROS.

PENGUIN SOFTWARE

PERCOM

PINK NOISE STUDIOS

PRECISION SOFTWARE

PROGRAM DESIGN INC
PROGRAMMERS INSTITUTE

QUALITY SOFTWARE

QUINTECH

RO.M.

RADICAL SYSTEMS

RANA SYSTEMS

RANTOM

RCE
RESTON PUBLISHING

ROMOX

SANTA CRUZ EDU. SOFTWARE

SAR-AN COMPUTER PROD

SAS ELECTRONICS

SCI-TOR

SCREEN SONIC

SCREENPLAY

SENTIENT SOFTWARE
SIERRA ON-LINE
SIM COMPUTER PRODUCTS

SIRIUS SOFTWARE
SOFT SIDE PUBI.

SOFT UNLIMITED

SOFTSYNC, INC.

SOURCE TELECOMPUTING

SOUTHERN SOFTWARE
SPECTRAVISION
SPINNAKER SOFTWARE

ADDRESS

P.O. BOX 508, LOVELAND, CO 80537

1160 NIBLICK ROAD, PASO ROBLES, CA 93446

1125 N. GOLDEN STATE, TURLOCK, CA 95380

8301 S. 180TH ST., KENT, W A 98232

P.O. BOX 26714, SALT LAKE CITY, UT 84126

5150 W. ROSECRANS, HAWTHORNE, CA 90059

6723 WHITTIER AVE., MCLEAN, VA 22101

P.O. BOX 3558, CHAPEL HILL. NC 27514
P.O. BOX 403, CONCORD, CA 94524

BOX 8894, FR COLLINS, CO 80525

9550 FOREST L.ANE #627, DALL.AS, TX 75243

434 W. FIRST ST., ALBANY, OR 97321

10616 BEAVER DAM RD., HUNT VALLEY, MD 21030

2565 152ND AVE. NW, REDMOND, WA 98052

9514 CHESAPEAKE DR, SAN DIEGO, CA 92123

11325 SUNRISE CIR # E, RANCHO CORDVA, CA 95670

7136 HASKELL AVE., #204, VAN NUYS, CA 91406

1100 RESEARCH BLVD., ST. LOUIS, MO 63132

4286 REDWOOD HWY. #245, SAN RAFAEL. CA 94903

P. O.BOX 131, MARLBORO, NJ 07746

P.O. BOX 207, COCHITUATE, MA 01778

950 RITTENHOUSE RD., NORRISTOWN, PA 19401

P.O. BOX 748, OREGON CITY, OR 97045

P.O. BOX 4656, MOUNTAIN VIEW, CA 94040

P.O. BOX 13568, TUCSON, AZ 85732

1401 ESTES A VE., ELK GROVE VILLAGE, IL 60007

3340 NOTTINGHAM LANE, PLANO, TX

15425 LOS GATOS BLVD., LOS GATOS, CA 95030

P.O. BOX 22889, SEATTLE, WA 98122

21255 HWY. 62, SHADY GROVE, OR 97539
930 PINTER EVANSTON, IL60202

10944 NORTH MAY, OKLAHOMA CITY, OK 73120

18100 UPPER BAY RD., #200, HOUSTON, TX 77258

630 BANCROFT, BERKELEY, CA 94710

1173D SARATOGA/SV RD., SAN JOSE, CA 95129

BEVERLY, MA 01915

830 FOURTH AVE., GENEVA, IL60134

11220 PAGE MILL RD., DALL.AS, TX 75243

P.O. BOX 785, CROCKETT, CA 94525

PRODUCTS

INTERFACE 1 $85

MONEY PROCESSOR

SCREEN DUMP

PRINTERS

GAMES

STORIES

GAMES

48K FOR 400-100

KEYBOARD-400

GAMES

MODEM/IJF

GAMES

MODEM/I1F

16K-32K RAM

DRIVES IJF

PAYROLL/ACCNTG

SECRET FORMULA

GAMES/UTILS

UTILITIES

6502 CHIPS

RAM

FORTH PRODUCTS

ROBOT ARM

PRINTERS

FAST CHIP

PROSTICK II

SOFTWARE

GAMES

CHESS
FIN. WIZ

GAMES

BOOKS

SOFTWARE, OS

GAMES

GAMES

DRIVES

PNSFORTH

1173D S. SUNNYVALE-SARATOGA RD., SAN ,JOSE, CA 96129 LANGUAGES

95 E. PUTNAM AVE., GREENWICH, CT 06830 SOFTWARE

P.O. BOX 3191, CHAPEL HILL. NC 27514 LT PEN, SOFTWARE

6660 RESEDA BLVD. #105, RESEDA. CA 91355 SOFTWARE

1271 DUNDEE RD. #44B, BUFFALO GROVE, IL 60090

BOX 252, MAPLE RIDGE, BC CAN V2X 7Gl

2002 COLICE RD., SE, HUNTSVILI.E, AL 35801

21300 SUPERIOR ST., CHATSWORTH, CA 90746

P.O. BOX 5480, AVON, CO 81620

536 NE "E" ST. , GRANTS PASS, OR 97526

11480 SUNSET HILLS RD., RESTON, VA 22090

501 VANDELL WAY, CAMPBELL. CA 95008

5425 JIGGER, SOQUEL. CA 95073

12 SCAM RIDGE CURVE, BUFFALO, NY 14221

3091 NORTH BAY DR., NORTH BEND, OR 97459
710 I.AKEWAY, #290, SUNNYVALE, CA 94086

14416 S. OUTER 40, CHESTERFIELD, MS 63017

P.O. BOX 3568, CHAPEL HILL. NC 27514

P.O. BOX 4929, ASPEN, CO 81612
3675 MUDGE RANCH RD., COARSEGOLD, CA 93614
1100 E. HECTOR ST., WHITEMARSH, PA 19428

10364 ROCKINGHAM DR., SACRAMENTO, CA 95827

6 SOUTH STREET, MILFORD, NH 03055

3546 PILGRIM LN., PLYMOUTH, MN 55451

14 EAST 34TH ST., NEW YORK, NY 10016

1616 ANDERSON RD., MCLEAN, VA 22102

1879 RUFFNER RD, BOX 66398, BIRMINGHAM, AL 35210
39 W. 37TH ST., NEW YORK, NY 10018
215 FIRST ST., CAMBRIDGE, MA 02142

227

UTILITIES

ATARI MAGAZINE

EPROM BURNER

DRIVES

UTILITIES
400 KEYBOARD

BOOKS

GAMES

TUTORIALS

MEMORY/CARTS

SOFTWARE

KEYBOARD

ADV. GAMES

SOFTWARE
CALC PRODUCTS

GAMES

MAGAZINE

DISKEDIT

SOFTWARE

THE CHIP
SURE SHOT STIK
EDUCATIONAL

FIRM

STAR MICRONICS

STARPLEX ELECTRONICS

STRATEGIC SIMULATION

SUBLOGIC

SUPERWARE

SWIITY SOITWARE

SWP MICROCOMPUTER PR

SYNAPSE SOITWARE

SYNCHRO

SYNERGISTICS SOITWARE

T.H.E.S.I.S.

TARA COMPUTER PRODS.

TELECOMMUNICATION

1 TG PRODUCTS

THORN EMI VIDEO

TINY TEK INC.
TMQ

TRAK MICROCOMPUTER

TRANSTAR

TRONIX PUBLISHING

UNITED SOITWARE/AM

UNIVERSITY SOITW ARE

UTOPIA SOITW ARE

VALPAR INT'L

VERSA COMPUTING

VISICORP

VOTRAX
VOYAGER SOITWARE

WALLING SOITWARE

WICO
XLENT SOFTWARE

ZIRCON INTL

ZORK USERS GROUP

ADDRESS

.3 OLDFIELD, IRVINE, CA 92714

E. 23301 MISSION, LIBERTY LAKE, W A 99019

883 STIERLIN ROAD • A·~oo, MT. VW., CA 94043

713 EDGEBROOK DR., CHAMPAIGN, IL61820

2028 KlNGSHOUSE, SILVER SPRINGS, MD 20904

64 BROADHOLLOW RD., MELVILLE, NY 11747

2500 E. RANDOL MILL .125, ARLINGTON, TX 76011

5221 CENTRAL AYE . • 200, RICHMOND, CA 94804

742 HAMPSHIRE RD., IIC, WESTLAKE VILLAGE, CA 91361

830 N. RIVERSIDE, 11201, RENTON, WA 98065

P.O. BOX 147, GARDEN CITY, NJ 48135

107 DELAWARE, STATLER BLVD., BUFFALO, NY 14202

1123 OAKFAIR LANE, HARBOR CITY, CA 90710

1105 SUMMIT .110, PLANO, TX 75074

1370 AVENUE OF THE AMERICAS, NY, NY 10019

P.O. BOX 12609, DALLAS, TX 75225
82 FOXHILL DR., BUFFALO GROVE, IL 60090

1511 OGDEN AVE., DOWNERS GROVE, IL 60515

P.O. BOX C96975, BELLEVUE, WA 98009

8925 S. LA CIENEGA. INGLEWOOD, CA 90301

750 THIRD AVE., NEW YORK, NY 10017

BOX 4544, STANFORD, CA 94305

58 MILLAY RD., MORGANVILLE, NJ 07751

PRODUCTS

GEMINI PRINTERS

WAR GAMES
GAMES

XBASIC EXTENDER

SOITWARE

ATRSOOO

SOITWARE

GAMES

400 KEYBOARD

TRACKBALLS

GAMES

MEMORY

FILE FAX·DBMS

DISK DRIVES

PRINTERS

SOITWARE

SOITWARE

CASSETTE SOFTWARE

PINHEAD

3801 E. 34TH, TUCSON, AZ85713 VALFORTH

3641 OLD CONEJO RD .• 104, NEWBURY PARK. CA 91320 GRAPHICS TABLET

2896 ZANKER ROAD, SAN JOSE, CA 96134 BUSINESS SOITW ARE

600 STEPHENSON WAY, TROY, MI 48084

P.O. BOX 1126, BURLINGAME, CA 94010

7766 E. EVANS .400, SCOTTSDALE, AZ 85260

6400 W. GROSSE PT. RD .. NILES, IL 60648
P.O. BOX 6228, SPRINGFIELD, VA 22160

476 VANNELL WAY, CAMPBELL, CA 96008

P.O. BOX 20923, MILWAUKEE, WI 63220

228

VOICE BOX

SOITWARE

APROM CARTRIDGE

GAME CONTROLLER

GRAPHICS DUMP

ABOUT TH E AUTHOR

Dave Mentley was president of A.B.A.C.U.S., a very active Atari users group in San
Francisco, CA, for over a year and a half. As president of the group, he has had the
opportunity to review thousands of Atari newsletter articles and has worked with
many major software and publishing companies. Despite warnings that it was im­
possible, he has written two books using the Atari computer: Letter Perfect, and The Bit
380 Column Board. He hardly ever plays games on his Atari 800. When he is not com­
puting, he does marketing research in the area of personal computers and he will be
doing a lot of backpacking in the Sierras.

ABCs of
Atari Computers

All the programs listed in ABCs of Atari Com­
puters on one diskette! Save yourself hours of typ­
ing and de- bugging.

Only $15.95 with this coupon!

Available only to readers of this book. Send $15.95
plus $2.00 shipping and handling (California resi­
dents add 6lh% sales tax) to:

mOATAMOSli
20660 Nordhoff Street, Chatsworth, CA 91311-6152

Please RUSH me ABCs of Atari Computers diskette.
Please include $15.95 plus $2.00 for shipping and handling
(California residents add $1.04 for sales tax).

Name

Address
City State Zip'---__

Phone ()

o Check/Money Order
D Master Card 0 Visa
Credit Card # ____________ _

Expires

Signature

	Cover

	Foreword

	A
	B
	C
	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	R

	S

	T

	U

	V

	W

	X

	Y

	Z

	Atari Source List

