
STRINGS

Strinq variables enable a programmer to store and
Manipulate words in a E'-ASIC program* In this Module campers
will experiment with the various string handling features of
the Atari* Upon completing this module, campers will be able
to write a program that converts English to Pig Latin*

were originally introduced in the
If you feel you need to brush up on
to read the following materials*

Inside Atar i BASIC t pp* 40 - 44
Your Atar i Computer I pp 64 - 65
Atar i 40 0/80 Q E'-ASIC Reference Manual t pp* 37 - 40

If you feel that any of your campers are unsure of how
to dimension strings* you can use the accompanying worksheet
entitled* "String Variables Worksheet*" to review
initializing string variables*

When you are discussing any type of variable* we
recommend that you encourage your campers to use descriptive
variable names* For example* NAME$ is much more meaningful
to the reader than N$* Also* encourage your campers to
reserve ample space for their strings in order to account for
the largest conceivable input that may need to be stored in
the string* String variables can be as large as you wish* as
long as they will fit in the computer's memory*

IE r-i <d >=c ± r-i <3 S t- ± r~i <3: ss

Indexing strings enables you to extract or change a

portion of a string* Isolating a portion of a string becomes
particularly useful when strings are used to hold data*

Explain the format and procedure for accessing a
portion of a string using an index* Campers should
understand the following concepts*

1* One index in parentheses sets up a substring that
includes the indexed element of the string to the last
elemert of the original string* An example of using a single
index is listed below* The program prints M LF"' on the
screen*

Copyright Atari* Inc* 1983* All rights reserved*
1

-

String variables
module on variables*
strings* you may want

INDEXING STRINGS
< Continued

)

DIM WORD$(10)
WORD$ = "HELP"
PRINT W0RD$(3)
LP

2* Two indices in parentheses can be used to isolate any one
element, or a group of elements, in a string* A ssnple
program using two indices is listed below*

DIM WORD$<20>
WORD* = "ATARI CAMP
PRINT W0RD$<2,9>
TARI CAM
PRINT WORD$(7*10)
CAMP
PRINT W0RD$<2,4)
TAR

Acti vi ty 1

1 « Have the csnpers type In the following progran* Canpers
should insert their own nawe in quotes on line 40* Discuss
what happens to the substring that is printed on the screen
each tine the index in parentheses is incremented

10 REM * INDEX TO A STRING
- 20 REM

30 DIM NAME$<30)
40 NAME$ = "GEORGE WASHINGTON
50 PRINT NAME$ (1

)

60 PRINT NAME*<2)
70 PRINT NAME$ (3

)

2* Have the campers change the index* so that only the last
letter in their name is printed on the screen*

xxx Leave the NAMES program in memory for the next activity*

Copyr ight Atari* Inc. 1983* All rights reserved*

INDEXING STRINGS
(Continued

)

Activity *2

This progran exenplifies how to isolate 3 substring by
using two indices*

1* Edit the NAME* progran currently in nenory by typing in
the three additional lines listed below* Ask the canpers to
predict what will be printed on the screen*

2* Have the canpers edit the progran to print their
initials*

Act i v i ty *3

1# A variable can be used in the place of an index to a
string* For exanple* the variable COUNT represents an index
of three in the program below*

Using a variable enables you to change the index without
repeating the string statement* This is particularly useful
when you W3nt to ex tract one element of a string at a tine*
In the progran below* canpers will print their name in big
letters on the screen* By using a variable index* they will
be able to print one letter of their nane at a tine* A delay
loop holds the current letters on the screen before the next
letter is printed* Without the delay loop it would appear as
though all the letters were printed on the screen at the sane

50
60
70

PRINT NAME* (1*1)
PRINT NAME*<1*3>
PRINT NAME$<5*5)

COUNT = 3

NAME$ = "ROBERT"
PRINT NAME$(C0UNT*6)
BERT

Copyright Atari* Inc* 1983* All rights reserved*
3

INDEXING STRINGS
(CONTINUED

)

tine* Note that the counter (LETTER) to the FOR Next
loop is also used to increment the position of where the next
letter will be printed* Have the canpers type in the program
listed below* Be sure that they insert their own nane on
line 140 and the number of letters in their nane on line 150*

100 REM * VARIABLE INDEX
110 REM *

120 GRAPHICS 2+16
130 DIM NAME*<20>
140 NAME* = "JOHN JONES"
150 LENOFNAME = 10

160 FOR CHAR = 1 TO LENOFNAME
170 POSITION CHAR+3*5
180 PRINT *6;NAME$(CHAR,CHAR)
190 FOR DELAY = 1 TO 500 * NEXT DELAY
200 NEXT CHAR

2* Have the caMpers experinent with printing their full nane
on the screen, printing their nane on a diagonal • etc*
Challenge the canpers to print the letters of their nane in
the reverse order* This can be done by using the following
FOR NEXT loop on line 160*

FOR CHAR = LENOFNAME TO 1 STEP -1

Activity *4

1* It is also possible to alter a portion of s* string by
using indices* In the example below* new letters are being
assigned to the 10th through the 13th elenent of the SOUP AND
SALAD string* Ask the canpers to predict what the program
listed below will print on the screen* before to typing it
into the computer* Have then RUN the progran to test their
hypotheses

10 REM * A SUBSTRING SWITCH
20 REM x

30 DIM LUNCH*(2Q>
40 LUNCH* = "SOUP AND SALAD"
50 PRINT LUNCH$
60 LUNCH* < 10 , 13) = "BREA"
70 PRINT LUNCH*

Copyright Atari* Inc 1983* All rights reserved*
4

INDEXING STRINGS
< Continued

)

2 Ask the canpers to edit the progran to print SOUP A LA
CARTE* They will need to change the indices, as well as the
substring in line 60*

Copyright Atari, Inc. 1983* All rights reserved*

G c:> r* «{.::: o 1:, €E* r~n -fc. il i~i <"jfc S "t i c~b «cj <b

EI ; plain w h a t concatenatiori me a n s « W h e ri s t r i n 9 s are
conca tena ted * they are linked together* Explain how two
strings can be concatenated together* Discuss how it is
possible to change a portion of a string or concatenate one
string to another string by using indices*

Activit y

1* The following program is an example of how two strings
can be concatenated to output a longer string* Call the
campers' attention to the fact that both strings are being
dimensioned by one DIM statement on line 30* Have the
campers type in the program listed below* RUN the program to
see what is printed on the screen*

10 REM * STRING CONCATENATION
20 REM *

30 DIM PREFIX* (10) ,ROOT*< 10

)

40 PREFIX* = "TELE"
50 ROOT* = "VISION"
60 PRINT PREFIX*; ROOT*

2* Now have the campers edit the program to print
TELECOMMUNICATIONS* TELENETWORK* or TELEGRAM

Activity *2

1* To see how two strings can be concatenated using indices*
have the campers type in the program listed below*

10 REM * CONCATENATE A SUBSTRING
20 REM *

30 DIM ORIGINAL*< 10) *EXTENSION*(10

)

40 ORIGINAL* = "TELEPHONE"
50 EXTENSION* - "GRAPH"
60 ORIGINAL* (5, 9) = EXTENSION*
70 PRINT ORIGINAL*

Copyright Atari* Inc 1983* All rights reserved*
6

1 EZ M

Introduce the "LEN" string function The length
function counts the nunber of characters in a string,
including any spaces and synbols*

Activity i 1

1* Review the fact that a string can be assigned its
contents fron within a program or fron a progran user ' s

input Have the students type in the progran listed below in
order to experiment with the LEN function*

10 REM * THIS PROGRAM DEMONSTRATES
20 REM * THE LEN FUNCTION
30 REM *

^0 DIM WORD*<20>
50 PRINT "TYPE IN A WORD" \

60 INPUT WORD*
70 PRINT "THERE ARE " J LEN (WORD*)

J
" LETTERS IN YOUR WORD*

2» The canpers should be able to explain why there are
seni-colons used in line 70, and why there is a space
enclosed in quotes following the word "are" and before the
word "letter". RUN the program*

3* Have the students RUN the progran a second tine* This
tine, type 5 spaces and then type the word* Use the sane
word both tines* Ask you canpers if the progran reported the
sane nunber of letters for the word both tines*

xxx Leave the progran in nenory so that it can be edited in
the next activity*

Copyright Atari* Inc* 1983* All rights reserved*
7

Explain how to compare strings in BASIC* Emphasize the
fact that the strings being compared must be identical »

Upper and lower case letters do not natch* YES followed by a

space does not natch a YES response with no spaces before or
after it*

Activity i

1

1* The students should edit the LEN function program by
typing in the following lines*

20 REM * STRING COMPARISON
40 DIM WQRD$<20) , ANSWER$(3)
80 PRINT "WOULD YOU LIKE TO KNOW HOW LONG
90 PRINT "ANOTHER WORD IS"

J

10 0 INPUT ANSWERS
110 IF ANSWER*="YES" THEN GOTO 50

2* Have the students RUN the program and experiment with the
following responses*

NO* Yes* YES * and MAYBE

3* One way to avoid errors or confusion on the part of the
user giving a response is to dimension ANSWERS with one
character and ask for a "Y" or "N" response* Then the
comparison will be made with the first letter of the response
regardless of what the user types in* YES* YEP* and Yes will
all be treated as "yes*" Note how ANSWERS is dimensioned to
one character in the following program*

Activity |2

1* Now use indices* substrings concatenation* and LEN to
write words in Pig Latin* Pig Latin takes the first letter
of a word, moves it to the end of the word and adds an "ay"
on the end* The students should fill in the missing
information in the program listed below and type it into the
comp uter

Copyright Atari* Inc * 1983* All rights reserved*
8

10 REM * FIG LATIN

2 0 rem *

30 DIM WORD* < 20) * ANSWER** < 1) » GUAR* (1

)

40 PRINT " TYPE IN A WORD" J

50 INPUT

55 PRINT

60 LEINGTH (WORD*)

70 CHAR* = WORD*(,) I REM CHAR* IS ASSIGNED THE FIRST ELEMENT
OF WORD*

80 PRINT "THERE ARE " }" LETTERS IN YOUR WORD."

85 PRINT

90 PRINT WORD*(2)J ,M AY IS YOUR WORD IN PIG LATIN."

95 PRINT

100 PRINT "WOULD YOU LIKE TO KNOW ANOTHER WORD"

110 PRINT "IN PIG LATIN? (TYPE Y OR N.)"

115 PRINT

120 INPUT

130 IF ANSWER* = "Y" THEN GOTO 40

Copyright Atari. Inc. 1983. All rights reserved.
9

I R O O R A M M X N! 13 C II I_ I E M G E S U S3 IC M G
s t i 3: m s

1 Write an entire Message in Pig Latin* Have a user type
in a Message in English and you print the Message in Pig
Latin* E'.e sure to reserve enough space in a string to input
a very long Message, in case the user is extrenely verbose*
Starting with the first letter of the Message, cOMpare each
eleMent of the string to a space in order to find the break
between each word* Each tine you encounter a space* convert
the previous word to Pig Latin* print in on the screen* and
read on* The following EiJASIC code May prove to be useful to
you

FOR LETTER 1 TO LENGTH
CHAR* = MESSAGE* (LETTER* LETTER)
IF CHAR* <> M 11 THEN WORD* (INDEX * INDEX) CHAR*
INDEX = INDEX + 1

NEXT LETTER
PRINT WORD* (2) J * * *

2* Devise your own secret code* Write a prograM that
converts a Message typed into the coMputer into your secret
code* One technique for writing a secret code is to switch
letters for other letters in the alphabet* For exaMple* all
the "A's" could be converted to "Z's*" Be creative*

3* Write a prograM that juMbles up the letters in a word*
The juMbled word is printed on the screen* The user is asked
to guess what the word is and type the letters of the word in
their correct order* Give the user additional guesses for
incorrect responses*

Copyright Atari Inc* 1983* All rights reserved*
10

S T Ffc X IM G S
CAMPER COPY

oxo String Indexing Prograns «no

10 REIM * INDEX TO A STRING
2 0 REIM

30 DIM NAME:$(30)
40 NAME* = 11GEORGE WASHINGTON"
50 PRINT NAME$<1)
60 PRINT NAME:* (2)
70 PRINT NAME$<3)

50 PRINT NAME$< 1,1)
60 PRINT NAME$(1,3)
70 PRINT NAME$(5,5)

100
110
120
130
140
150
160
170
180
190
200

REIM * VARIABLE INDEX
REIM *

GRAPHICS 2+16
DIM NAME* (20)
NAME* = "JOHN JONES"
LENOFNAME = 10
FOR CHAR = 1 TO LENOFrNAME
POSITION CHAR+3,5
PRINT *6JNAME$(CHAR, CHAR)
FOR DELAY - 1 TO 500 : NEXT DELAY
NEXT CHAR

10 REM * A SUBSTRING SWITCH
2 0 REM *

30 DIM LUNCH$(20)
40 LUNCH$ = "SOUP AND SALAD"
50 PRINT LUNCH*
60 LUNCH* CIO ,13) = "BREA"
70 PRINT LUNCH*

Copyright Atari, Inc* 1983*
11

All rights reserved*

S T R 31M G S3
Canper Copy Continued

xxxxx Concatenation ProgrsMS xxxxx

10 REM x STRING CONCATENATION
20 REM x

30 DIM PREFIX* (10), ROOT* (10)
40 PREFIX* = "TELE"
50 ROOT* = "VISION

"

60 PRINT PREFIX* J ROOT*

10 REM x CONCATENATE A SUBSTRING
20 REM x

30 DIM ORIGINAL*(10) , EXTENSION* (1 0

>

40 ORIGINAL* = "TELEPHONE"
50 EXTENSION* » "GRAPH"
60 0RIGINAL*<5,9) = EXTENSION*
70 PRINT ORIGINAL*

xxxxx LEN Function Prograns xxxxx

10 REM x THIS PROGRAM DEMONSTRATES
20 REM x THE LEN FUNCTION
30 REM x

40 DIM WORD*(20)
50 PRINT "TYPE IN A WORD" i

60 INPUT WORD*
70 PRINT "THERE ARE " J LEN (WORD*)

J
" LETTERS IN YOUR WORD,"

Copyright Atari, Inc. 1983. All rights reserved.
12

S T r C I! t i G S
Cstiper Copy G o n t i ft u e

d

xxxxx CoMp3ring Strings xxxxx

20 REM x STRING COMPARISON
80 PRINT " WOULD YOU LIKE TO KNOW HOW LONG"
90 PRINT "ANOTHER WORD IS"

J

100 INPUT ANSWER*
110 IF ANSWER*="YES" THEN GOTO 50

xxxxx Pig Latin Program xxxxx

10 REM * PIG LATIN

20 REM *

30 DIM WORD*(20) ,ANSWER*(1) ,CHAR*(1

)

40 PRINT "TYPE IN A WORD"

J

50 INPUT

55 PRINT

60 LENGTH = (WORD*)

70 CHAR* = WORD*(, KREM CHAR* IS ASSIGNED THE FIRST ELEMENT
OF WORD*

80 PRINT "THERE ARE "J '," LETTERS IN YOUR WORD."

85 PRINT

90 PRINT W0RD*<2>; J "AY IS YOUR WORD IN PIG LATIN."

95 PRINT

100 PRINT "WOULD YOU LIKE TO KNOW ANOTHER WORD"

110 PRINT "IN PIG LATIN? (TYPE Y OR N .
)

"

115 PRINT

120 INPUT

130 IF ANSWER* = "Y" THEN GOTO 40

Copyright Atari, Inc. 1983. All rights reserved.
13

TRING VARIABLE REVXEWWORKSHEET

String variables Must first be dimensioned with a DIM
instruction* The dimension statement determines the maximum
number of characters which can be held in the string*

1« Type in the following program and RUN it to see what
happens

10 REM x A PROGRAM TO DEMONSTRATE
20 REM x THE DIM FUNCTION
30 REM *

40 DIM FRUIT*<5)
50 FRUIT* = "APPLE"
60 PRINT FRUIT*

2* Note that the word being assigned to the string must be
in quotes* If you change APPLE to BANANA * what will be
printed on the screen? \ Try it and see*

3* A string variable can contain any combination of letters*
numbers* spaces* and symbols* Also* the contents of a string
can be assigned from within a program or from input* Type in
the following program*

10 REM x THIS PROGRAM DEMONSTRATES
20 REM x THE VARIOUS POSSIBLE ELEMENTS
30 REM x OF A STRING FROM INPUT*
40 REM x

50 DIM TIME$(40)
60 PRINT "WHAT TIME IT IT";
70 INPUT TIMES
80 PRINT "IT'S M

J TIME$J 41
! I'M LATE! BYE*"

3* When you are asked what time it is, type in 10:30 am* and
RUN the program*

5« What would be printed out if your typed in ten-thirty?

Try it and see*

Copyright Atari* Inc* 1983* All rights reserved*
14

r> nr & #.

This nodule introduces three BASIC statements* READ*
DATA* and RESTORE enable 3 programmer to assign values to
variables More efficiently than the individual variable
assignments presented thus far* Reading and storing data ar
explained* and campers can experiment with various types of
data* After completing this module* campers should be
familiar with how to write versatile programs that
systematically read data and check for the last data entry*

Before participating in the activities in this module*
campers must understand the difference between a numeric and
a string variable* The participants also must have had
experience programming SOUND on the Atari*

If you are unfamiliar with the READ* DATA* or RESTORE
statements* they are explained in the following books*

Inside Atari BASIC pp* 60-63
Your Atar i Computer * pp* 76-78

Re-a=dl and Data

1* In order to familiarize campers with the READ and DATA
statements* start by writing a simple program on the board
like this one*

10 REM * READ DATA DEMO
20 REM *
30 DIM DAY*<20>
40 NUMOFDAYS = 7
50 PRINT
60 FOR DAYOFWEEK = 1 TO NUMOFDAYS
70 READ DAY*
80 PRINT DAY*
90 NEXT DAYOFWEEK
100 DATA SUNDAY* MONDAY* TUESDAY
110 DATA WEDNESDAY* THURSDAY* FRIDAY
120 DATA SATURDAY

2* Explain the format and function of the READ and the DATA
statements* A READ statement enables a programmer to
retrieve values from a list of data*

Copyright Atari* Inc* 1983* All rights reserved*
1

FcEI^O biD DATA
(Continued

)

The DATA st3tefient allows the programmer to store large
quantities of data ef f iciently Note that each elenent of
data is separated by a comm3* Even though we are assigning a
word to the string variable DAY*, no quotation Marks are
needed in the list of data*

3* Explain that the READ statement looks for the first
•unread" eleMent of data* The concept of a "pointer" should
be explained here* The conputer Maintains a pointer that
points to the next data iteM to be READ* Each tine an
eleMent of data is read* the pointer is advanced to the next
eleMent of data*

4* READ stateMents are custoMarily used in a loop* In this
exaMple* we are using a FOR NEXT loop* When a FOR
NEXT loop is used* the nunber 'of tiMes the loop is to be
executed Must correspond to the quantity of data* If a READ
statenent is executed and all of the data has been read* you
will get an error Message*

5* Step through the prograM and execute each instruction
just as the coMputer would* Write each DAY* on the board as
you execute the PRINT DAY* instruction* Each tiMe an eleMent
of data is read* the "pointer" is advanced to the next data*
Use your pencil to point to the data to be read as you step
through the prograM* Call the caMpers' attention to the fact
that data can appear on More than one line* The coMputer's
pointer autoMatical ly advances to data on the next line*
DATA lists are always read in the order of their line nuMber

*

froM the lowest to the highest*

Activity *1

1* Have the caMpers type in the days of the week prograM
listed below*

•

10 REM * READ DATA DEMO
20 REM x
30 DIM DAY*<20>
40 NUMOFDAYS = 7
50 PRINT
60 FOR DAYOFWEEK = 1 TO NUMOFDAYS
70 READ DAY*
80 PRINT DAY*
90 NEXT DAYOFWEEK
100 DATA SUNDAY, MONDAY, TUESDAY
110 DATA WEDNESDAY, THURSDAY, FRIDAY
120 DATA SATURDAY

Copyright Atari, Inc. 1983. All rights reserved.
2

FC EI iAiD At M D DATA
(Continued

)

2« Cafipers should RUN the progran to see what is printed on
the screen* Have the campers change the NUMQFDAYS assignment
to NUHOFDAYS m 2* RUN the program again to see what happens*
Then have the campers assign 8 days to the NUMOFDAYS
variable* Once again* RUN the program to see what happens*

Activity * 2

1* A conditional statement* such as IF THEN* also can be
used to set up a loop to read data* A GOTO* intructs the
computer to re-execute a set of instructions until the IF *

THEN condition is met* The IF THEN statement searches
for the "flag" at the end of the list of data* The flag is
an unlikely element of data that has been placed at the end
of the data list to indicate that there is no more data* The
IF THEN statement checks each element of data that is
READ and when the flag is encountered* the loop is
terminated* In the following activity* the word "FINISH" has
been placed at the end of the list of days to serve as a
f lag*

210 DATA SATURDAY * 7TH * FINISH

When FINISH is READ* the program ends* You may want to
take this opportunity to point out to the campers that using
a conditional statement with a "flag" makes a program more
versatile* The data can be changed or replaced with another
set of data* and the program will still work* as long as the
flag is the last element of data*

2* More than one variable can be READ from a list of data*
The program below shows how two string variables can be
assigned values from the same DATA statement* Explain to the
students that the pointer continues to advance to the next
element of data each time a READ instruction is executed*
regardless of which variable is being assigned a value* Have
the campers type in the program listed below in order to
experiment with the instructions* This time* a conditional
loop is used with a flag*

Copyright Atari* Inc* 1983* All rights reserved*
3

t^t-to r> x
(Cont i nued

)

100 REM * TWO STRING VARIABLES
110 REM *

120 DIM DAY*<15> ,ORDER*<10>
130 PRINT
140 READ DAY*
150 IF DAY* 5*" FINISH" THEN END
160 READ ORDER*
170 PRINT DAY*?" IS THE "

i ORDER* J " OF THE WEEK."
180 GOTO 140
190 DATA SUNDAY, 1ST, MONDAY, 2ND. TUESDAY, 3RD
200 DATA WEDNESDAY, 4TH, THURSDAY, 5TH, FRIDAY, 6TH
210 DATA SATURDAY, 7TH, FINISH
220 END

If the campers' output from this prograM looks odd,
remind then to check their spacing on line 170*

Note that when DAY* was compared with the FINISH flag on
line 150, FINISH was in quotes* When a string is compared
with a word, the word Must appear in quotes* Have the
campers type " .FINISH" at the end of line 190* Line 190
should look like this after it has been edited*

190 DATA SUNDAY, FIRST, MONDAY, SECOND, TUESDAY, THIRD, FINISH

Ask then to predict what the program will print before
RUNing it* Then insert a space before the word FINISH on
line 190 and see what happens*

190 DATA SUNDAY, FIRST, MONDAY, SECOND, TUESDAY, THIRD, FINISH

t

Ask the campers to explain why "FINISH" did not end the
program this time*

Copyright Atari, Inc. 1983* All rights reserved*

FCEI^O AND DAT"A
< Continued

)

Activity *3

READ stateMents can be used to assign values to nuneric
variables as well* In fact, one DATA list can hold both
nuweric and string data* Ask the canpers to type in the
prograM listed below* Each canper should list the nanes of
each Member in his or her family and the person's age*
separated by coMhas* on line 190-200*

Since there is no way of knowing how Many people there
are in each caMper's fanily and therefore no way of knowing
how Much data will be listed on lines 190-200* a different
kind of loop for reading the data is used* This tine the
TRAP instruction is used. Before to beginning the READ
DATA loop, a TRAP is set to avoid an M 0UT OF DATA 11 error
Message* When the READ stateMent on line 150 is executed* if
there is no data left* ordinarily the prograM would stop and
you would get an error Message* By using the TRAP 210
instruction* we can trap that error and redirect the coMPuter
to continue with the instruction listed on line 210* Explain
this third Method of reading data, and have the caMpers
experiMent with the prograM listed below*

100 REM x TRAPPED DATA
110 REM *
120 DIM PERSQN*<20>
130 PRINT
140 TRAP 210
150 READ PERSON*
160 READ AGE
170 PRINT PERS0N$; M IS *JAGET* YEARS OLD 11

180 GOTO 140
190 DATA MARGIE * 47 * JOHN 50 BETH * 12
200 DATA
210 END

Copyright Atari* Inc* 1983* All rights reserved*
5

RESTORE

Activity *1

READ and DATA statements are commonly and quite
conveniently used to play music on the Atari The values for
the voice, pitch, distortion, and/or loudness of the note can
be stored as DATA and read as the tune is played* In this
activity the RESTORE command is introduced in a program that
plays music* Campers will use the RESTORE instruction to
reset the pointer to the beginning of a list of SOUND data,
so that the tune will be replayed*

Explain the RESTORE instruction to the campers* RESTORE
resets the data pointer back to the first element of DATA
listed in the program* (It is also possible to give a line
number in the RESTORE instruction in order to redirect the
pointer to a specific set of DATA* This will be discussed in
the next activity*)

You also may need to briefly review the four components
of the SOUND command* In the following program four values
are being READ from DATA: PITCH, DISTORTION, LOUDNESS, and
TIME* TIME indicates the length of the delay between each
note* The voice is always zero* A minus one is used as a
flag at the end of the DATA*

Have the campers type in the program listed below*

100 REM * MUSIC
110 REM *

120 READ PITCH, DISTORT, LOUD, TIME
130 IF TIME - -1 THEN GOTO 210
140 SOUND 0, PITCH, DISTORT, LOUD
150 FOR DELAY = 1 TO TIME t NEXT DELAY
160 GOTO 120
170 DATA 121,10,10,40,91,10,10,37
180 DATA 0,0,0,3,91,10,10,40,108,10,10,28
190 DATA 0,0,0,2,108,10,10,10,91,10,10,30
200 DATA 108,10,10,10,121,10,10,80,0,0,0,0,-1
210 END

Note that the three variables being read can be listed
with one READ instruction on line 120* RUN the program to
hear the little tune*

Copyright Atari » Inc« 1983* All rights reserved.
6

restore:
(Continued

)

Explain how to insert the RESTORE instruction on line
130 in order to repeat the tune* The edited fornat for line
130 appears below*

130 IF TIME = -1 THEN RESTORE: GOTO 120

RUN the edited program* To stop the prograM and turn
off the sound* you Must press SYSTEM RESET because the
progran is in an infinite loop* After this activity* you nay
never want to teach the READ* DATA* and RESTORE instructions
using Music in a classrooM with 12 coMputers again*

Activity *2

This next activity gives the caMpers an opportunity to
experiwent with a More lengthy prograM that uses the READ*
DATA* and RESTORE stateMents*

Explain to the caMpers that READ and DATA stateMents can
go anywhere in a prograM* If the prograM is quite short* or
if there is only one set of data used repeatedly froM various
places in the prograM* we reconnend that the DATA be placed
at the end of the prograM* Otherwise* the DATA should follow
soon after the READ stateMent for prograM clarity*

Giving the DATA line nunber in the RESTORE coMMand
enables the prograMMer to dictate which part of the data the
pointer will be restored to* So if a RESTORE instruction
reads* RESTORE 400* the data pointer is reset to the first
eleMent of data appearing on line 400*

The following prograM is the beginning of an interactive
art show* The person using the prograM selects froM a list
of snail pictures to Make a scene on the screen* The prograM
uses the READ and DATA stateMents to draw the little pictures
on the screen* The coordinates for each iMage are stored in
separate DATA lists* The READ stateMent reads each set of
coordinates to be used by the DRAWTO instruction on line
270* This is a very efficient way of storing coMputer
illustration data* The RESTORE instruction is critical in
this prograM* Once a shape has been selected by the prograM
user* the RESTORE instruction is used to set the data
pointer to the specific set of coordinates needed to draw the
shape *

Copyright Atari* Inc* 1983* All rights reserved*
7

F"CESTO FxE
(Continued

)

Note how the RESTORE command is used to control which
list of data is being READ*

Since the READ statement on line 250 reads both X and Y,
two flags are required at the end of the list of DATA*
Otherwise the READ statement on line 250 will continue to
look for DATA for Y before it will check for the flag on line
260* If there is no More DATA left, you will get an Out of
DATA Error*

Ask the campers to explain why a TRAP instruction cannot
be used to end the READ loop in lines 230 or 280* Have the
campers predict what would happen if the line numbers were
removed from the RESTORE commands in lines 150-170

Copyright Atari, Inc* 1983* All rights reserved*
8

RESTORE
(Continued)

100 REM x ART SHOW
105 REM x
110 MENU=90 0:REM MENU LINE NUMBER
115 GRAPHICS 7 t COLOR 3
120 REM x
125 REM xxxxx MAIN LOOP xxxxx
130 GDSUB MENU
140 INPUT RESPONSE
150 IF RESP0NSE<1 OR RESPONSES THEN 140
160 IF RESPONSES THEN RESTORE 500
170 IF RESP0NSE=2 THEN RESTORE 600
180 IF RESPONSES THEN RESTORE 700
190 IF RESPONSES THEN RESTORE 800
200 REM x
210 REM xxxxx DRAW ROUTINE xxxxx
220 REM x
230 READ X,Y
240 plot x,y:rem PICTURE START POINT
250 READ X,Y:REM GET DRAWTO DATA
260 IF X=-l THEN 130JREM THE FLAG?
270 DRAWTO X,Y
§GOTO 250JREM GET MORE DATA

REM x
REM xxxxx MOUNTAIN xxxxx

510 REM x
520 DATA 0,26,12,20,20,23,30,18,35,12,42,13,45, 10,58,6
530 DATA 62,3,70,1,82,3,90,8,102,20,112,26,120,23
540 DATA 130,38,135,36,150,43,-1,-1
550 REM x
600 REM xxxxx BARN xxxxx610 REM x
610 REM x
620 DATA 43,50,43,46,47,46,47,50,40,50
630 DATA 40,44,45,41,50,44,50,50,40,50,-1,-1
64 0 REM x
700 REM xxxxx STAR xxxxx
710 REM x

720 DATA 128,10,127,11,126,11,127,12,126,13,127,13,128,14,129,13
730 DATA 130,13,129,12,130,11,129,11,128,11,128,14,-1,-1
740 REM x
800 REM xxxxx HORSE xxxxx
810 REM x
820 DATA 52 , 47 , 54 , 46 , 54 , 45 , 54 , 50 , 54 , 48 , 57 , 48 , 58 , 47 , 57 , 48 , 57 , 50 , -1 , -1
90 0 REM x
910 REM xxxxx MENU xxxxx
920 REM x
930 PRINT
940 PRINT "1. MOUNTAIN 3. STAR"
9Mk PRINT "2. BARN 4. HORSE"

PRINT "WHICH PICTURE (1, 2, 3, OR 4) "J

970 RETURN

Copyright Atari, Inc. 1983. All rights reserved.
9

PROGRAMMING CHALLENGES U <3 HIMGREAD * OATA #. AMD RESTORE

It Write 3 progrsM that lists the necessary values for a
song in DATA statements* Use the RESTORE command to repeat
the chorus of the song in between the verses*

2. Add pictures to the ART SHOW program*

3* Set up a PLOT subroutine like the DRAWTO subroutine in
the ART SHOW program* Add a plotted image to the list of
pictures one can put on the screen* For example* offer to
draw stars and PLOT tiny dots in the sky using READ and DATA
statements*

Allow the user to draw the shapes anywhere on the screen*
For example* when a person selects the barn* ask for the
coordinates of the cabin's location on the screen* Be sure
to tell the user the range of possible coordinates when
asking for INPUT* Then add the person's coordinates to the
DATA coordinates in the DRAWTO statement (DRAWTO
X+XCOQR* Y+YCOOR) This way the person can put as many barns
on the screen as he or she wants as well as put them anywhere
in the picture*

5* Draw the shapes in different colors* Store the color of
the shape as the first element of the shape data* READ the
value into the COLOR instruction before drawing the image*

6* Experiment with combining different graphic modes*
colors* sounds* etc* into a little show using the READ* DATA*
and RESTORE statements*

Copyright Atari* Inc* 1983* All rights reserved*
10

Fv FZ AO , DATA ^ AND RESTORE
CAMPER COPY

xxxxx Read DATA Deno xxxxx

10 REM * READ DATA DEMO
20 REM x

30 DIM DAY*<20>
40 NUMOFDAYS = 7
50 PRINT
60 FOR COUNTER = 1 TO NUMOFDAYS
70 READ DAY*
80 PRINT DAY*
90 NEXT COUNTER
100 DATA SUNDAY, MONDAY, TUESDAY
110 DATA WEDNESDAY > THURSDAY, FRIDAY
120 DATA SATURDAY

xxxxx READ Two String Variables xxxxx

100 REM x TWO STRING VARIABLES
110 REM x
120 DIM DAY*<15) ,ORDER*<10>
130 PRINT
140 READ DAY*
150 IF DAY*="FINISH" THEN GOTO 220
160 READ ORDER*
170 PRINT DAY* J " IS THE "J ORDER* J" OF THE WEEK."
180 GOTO 140
190 DATA SUNDAY, FIRST, MONDAY, SECOND. TUESDAY, THIRD
200 DATA WEDNESDAY, FOURTH, THURSDAY, FIFTH, FRIDAY, SIXTH
210 DATA SATURDAY, SEVENTH, FINISH
220 END

190 DATA SUNDAY, FIRST, MONDAY, SECOND, TUESDAY, THIRD, FINISH

190 DATA SUNDAY, FIRST, MONDAY, SECOND, TUESDAY, THIRD, FINISH

T

Copyright Atari, Inc. 1983. All rights reserved.
11

READ ^ DATA* AND RESTORE
CAMPER COPY CONTINUED-

xxxxi Trapped DATA xxxxx

100 REM * TRAPPED DATA
110 REM *
120 DIM PERSON* (20)
130 PRINT
140 READ PERSON*
150 TRAP 210
160 READ AGE
170 PRINT PERSON* J " IS " > AGE J " YEARS OLD,"
180 GOTO 140
190 DATA MARGIE, 47, JOHN, 50, BETH, 12
200 DATA
210 END

xxxxx Music xxxxx

100 REM x MUSIC
110 REM x
120 READ PITCH, DISTORT, LOUD, TIME
130 IF TIME -1 THEN GOTO 210
140 SOUND 0, PITCH, DISTORT, LOUD
150 FOR DELAY = 1 TO TIME 5 NEXT DELAY
160 GOTO 120
170 DATA 121,10,10,40,91,10,10,37
180 DATA 0,0,0,3,91,10,10,40,108,10,10,28
190 DATA 0,0,0,2,108,10,10,10,91,10,10,30
200 DATA 108,10,10,10,121,10,10,80,0,0,0,0,-1
210 END

Copyright Atari, Inc. 1983. All rights reserved.
12

FC E: t-'-i O , O/^TA^ t^t It H> RESTORE
CAMPER COPY CONTINUED

100 REM x ART SHOW
105 REM x

no menu=?oo:rem menu line number
115 GRAPHICS 7 * COLOR 3
120 REM x

125 REM xxxxx MAIN LOOP xxxxx
130 GOSUB MENU
140 INPUT RESPONSE
150 IF RESP0NSE<1 OR RESPONSES THEN 140
160 IF RESPONSES THEN RESTORE 500
170 IF RESP0NSE=2 THEN RESTORE 600
180 IF RESP0NSE=3 THEN RESTORE 700
190 IF RESPONSES THEN RESTORE 800
200 REM x
210 REM xxxxx DRAW ROUTINE xxxxx
220 REM x
230 READ X,Y
240 PLOT X,Y:REM PICTURE START POINT
250 READ X,Y:REM GET DRAWTO DATA
260 IF X=-l THEN 130 J REM THE FLAG?
270 DRAWTO X,Y
4B0 GOTO 250 : REM GET MORE DATA

|0 REM x

00 REM xxxxx MOUNTAIN xxxxx
510 REM x
520 DATA 0,26,12,20,20,23,30,18,35,12,42,13,45,10,58,6
530 DATA 62,3,70,1,82,3,90,8,102,20,112,26,120,23
540 DATA 130,38,135,36,150,43,-1,-1
550 REM x
600 REM xxxxx BARN xxxxx610 REM x
610 REM x
620 DATA 43,50,43,46,47,46,47,50,40,50
630 DATA 40,44,45,41,50,44,50,50,40,50,-1,-1
640 REM x
700 REM xxxxx STAR xxxxx
710 REM x

720 DATA 128, 10 ,127, 11 , 126, 11 , 127 , 12 , 126 , 13 , 127 , 13 , 128 , 14 , 129 , 13
730 DATA 130,13,129,12,130,11,129,11,128,11,128,14,-1,-1
740 REM x
800 REM xxxxx HORSE xxxxx
810 REM x
820 DATA 52,47,54,46,54,45,54,50 ,54,48,57,48,58,47,57,48,57,50,-1
90 0 REM x
910 REM xxxxx MENU xxxxx
920 REM x
930 PRINT
940 PRINT "1. MOUNTAIN 3* STAR"

tO PRINT "2, BARN 4. HORSE"
0 PRINT "WHICH PICTURE (1, 2, 3, OR 4) "}

970 RETURN

Copyright Atari, Inc. 1983. All rights reserved.
13

fZT" III" jHS. "'v" CZt

Arrays enable s progranfier to store and Manipulate large
quantities of information systematically and efficiently*
Arrays are one of the more complex features of Atari BASIC*
and it may take some practice for your campers to fully
understand them* You may find that you need to spend time
drawing representations of arrays and stepping through
programs on the board more than you have in previous modules*
One objective of this module is to help campers to recognize
programming problems that are well-suited to using an array*
In this module the campers will use an array to reverse the
order of a list of numbers and to write and store a musical
tune*

To do this module you will need a chalk board or large
pieces of chart paper and felt tip pens to map out arrays*

If you feel unsure of how to use an array in a program
or you would like to see more examples of arrays* you may
want to look over the following references*

ATARI 4Q0/80Q E'.ASIC Reference Manual: pp* 3* ^1-^3
Inside Your Atari* pp* 66-7^
Your ATARI Computer* pp 65-67

An array can be thought of as a series of boxes* each of
which holds one numeric value* The following is an example
of an array*

i i

I 2 I

l_„l
161 |

r?~i
i„_i
133 I

l„_l
I 0 |

An array is a group of numeric variables that have
something in common* The values in the array* for example*
can be students' scores on a test or the number of raffle
tickets each teacher sold for the school bake sale* Once you
have stored the values in an array* you can do all kinds of
calculations on the numbers*

Copyright Atari* Inc» 1983* All rights reserved*
1

ARRAYS
(Continued)

An array of swiMMers' tines in a race could be called
SWIMMER* Each nunber in the SWIMMER array is called an
"element" of the array* An index is used to identify which
elefient of the SWIMMER array or which swinMer you are
referring to* For exaMple* in the array below* SWIMMER(l)
swan the race in three Minutes* SWIMMER(^) took five
Minutes

SWIMMER(l)

SWIMMER(2)

SHIMMER (3

)

SWIMMERS)

I 3 |

I I

I 4 I

I I

I 6 |

I I

I 5 |

Just as we Must reserve space in MeMory for a string*
MeMory Must be reserved for an array* You use the DIM
stateMent to dimension the ma x i mu m nuMber of boxes or
elenents your array could possibly need* DIM SWIMMER<25)
enables the prograMMer to store up to 25 eleMents or swiM
tines in the SWIMMER array*

DIM SWIMMERC25)

SWIMMER(l)
SWIMMER < 2

)

SWIMMER (10

)

SWIMMER(20)

SWIMMERC25)

As long as there is sufficient rooM in MeMory* there i

no restriction on the size of an array that can be stored*

Copyright Atari, Inc* 1983* All rights reserved*

ARRAYS
< Continued

)

Values are stored in an array by specifying the nawe of
the array and the index of the element* For example
SWIMMER<1)=3 assigns a value of 3 to the first element of the
SWIMMER array or swinner nunber one* SWIMMERC3) = 6 assigns
a 6 to the third element of the SWIMMER array, swinner nunber
three

SWIMMER(l)

SWIMMER(2)

SWIMMER(3)

SWIMMERS)

I 3 |

I I

I 4 I

I I

I 6 |

I I

I 5 I

The index to an array can contain a numeric value or
variable nane* For exanple* the third element of the SWIMMER
3rray is assigned a 6 in the code below as well*

NUM 3

SWIMMER<NUM)=6

Using a variable index is particularly useful when a FOR
NEXT loop is used to initialize an array* To

inititial ize an array you usually want to fill it with zeros*

FOR ELEMENT = 1 TO MAXELEMENTS
SWIMMER (ELEMENT) - 0

NEXT ELEMENT

Activity *1

1« Begin by explaining an array as a series of boxes, as was
Just explained in the introduction to this Module* Drawing
the boxes on the board is helpful when arrays are being
introduced* Explain what an index is and how it is used to
identify one element of an array* The fornat for the DIM
statement of an array also will need to be explained*

Copyright Atari, Inc* 1983* All rights reserved*
3

ARRAYS
< Continued)

2* Draw an array on the board that will hold five nufibers*
like the one below*

NUMBER < 1) =25 > NUMBER (1

)

NUMBER(2)=11Q > NUMBER (2)

NUMBER (3)

NUMBER (4

)

NUMBER < 5)

Ask cahpers to suggest the numbers to be stored in the
array* Assign the value to the element of the array
(NUMBER(3)=98) before filling the box in the array*

3* Ask the cawpers how they night go about printing one of
these values in the array on the screen* Write out the
cownand on the board as it is given* For example* PRINT
NUMBER (1) or PRINT NUMBER < 2) Be sure the csMpers understand
the difference between PRINT 2 and PRINT NUMBER < 2)

Explain that a variable nane can be used as an index to
an array* as was explained in the introduction to this
Module* Denonstrate the use of a variable as an index when
using a FOR NEXT loop to PRINT out all of the elements of
an array* A sanple listing of the code appears below*

MAXNUMS = 5
FOR ELEMENT = 1 TO MAXNUMS
PRINT NUMBER (ELEMENT)
NEXT ELEMENT

Write this subroutine on the board alongside a series of
boxes holding the elements of the NUMBER array* Step through
the subroutine t printing each nunber on the board as the
PRINT NUMBER (ELEMENT) statement is executed*

Copyright Atari, Inc* 1983* All rights reserved*

25

110

ARRAYS
(Continued

)

5* Given the FOR NEXT loop above to PRINT the numbers on
the screen, ask the calipers how they could program the
computer to PRINT the numbers in the reverse order* A FOR

NEXT loop like the following should evolve from the campers
suggestions*

FOR ELEMENT = MAXNUMS TO 1 STEP -1

PRINT NUMBER (ELEMENT

)

NEXT ELEMENT

Encourage the campers to use descriptive variable names*
Again* step through the program* PRINTing the numbers that
would be output on the board*

If you think your campers are catching on to arrays and
variable indices* proceed with the next activity* Otherwise*
review the previous examples* using a different Brra^ name
and new data*

Copyright Atari* Inc* 1983* All rights reserved*

ARRAYS
(Continued

)

Activity *2

1. In this activity the campers will gradually enter a
program that INPUTs five numbers* stores them in an array*
PRINTs them on the screen* and then PRINTs them in the
reverse order* Note that the variable MAXNUMS can be used to
DIMension the array* Have the campers type in the following
program

100 REM * ARRAY OF NUMBERS
110 REM *

120 MAXNUMS = 5 . REM MAXIMUM NUMBERS WHICH CAN BE INPUT
130 DIM NUMS(MAXNUMS)
140 REM *
150 REM * FILL ARRAY
160 REM *

170 FOR COUNT = 1 TO MAXNUMS
180 PRINT "TYPE IN A NUMBER",
190 INPUT VALUE
200 NUMS(COUNT) = VALUE « REM STORE INPUT VALUE IN ARRAY
210 NEXT COUNT

Ask the campers to add a line at the end of the program
to PRINT the first element of the array* Add another line
that PRINTs the last number in the array* using MAXNUMS as
the index to the NUMS array.

2. Have the campers type in the following lines as a
continuation of the Array of Numbers program* Jhe following
lines PRINT the entire sequence of numbers in the array. RUN
the program.

22
23
24
25
26
27
28
29
30
31
32

PRINT NUMBERS IN ORDER
0 REM *
0 REM *

0 REM *
0 PRINT
0 PRINT
0 PRINT
0 PRINT
0 FOR COUNT = 1 TO MAXNUMS
0 PRINT NUMS(COUNT) ," "* .REM PRINT VALUE
0 NEXT COUNT
0 PRINT

"YOU TYPED IN THE NUMBERS IN THE"
"FOLLOWING ORDERt"

+ SPACES

Copyright Atari, Inc. 1983. All rights reserved.
6

iz> cri"a y dt

(Continued

)

3* E'.ased on what the campers know, ask then to complete the
following lines, which print the numbers in the array in the
reverse order

330 REM *

340 REM * PRINT NUMBERS IN REVERSE ORDER
350 REM *

360 PRINT
370 PRINT 11 YOUR NUME'.ERS IN THE REVERSE ORDER ARE 11

380 PRINT
390 FOR COUNT = TO STEP
400 PRINT <)l" N *

f

410 NEXT
420 PRINT
430 END

The campers should RUN the program to see if it does wha
they intended*

Activity *3

1* This next activity demonstrates additional uses of an
array* Once again, the program INPUTs numbers* This time*
the numbers are used as the PITCH for a SOUND command* The
person using the program can create a little tune* Start by
discussing the program with the campers*

2* First* pose the question* "Suppose you wanted to use an
array to write a tune* What instruction must appear in the
program before the computer will allow you to use an array?"
(Answert DIM TUNE (???)) When you get the appropriate
answer* draw an array of boxes on the board alongside the
dimension statement*

Copyright Atari, Inc* 1983* All rights reserved*
7

ARRAYS
< Continued

)

3* Now explain that as a prograMMer you want to INPUT the
numbers that will serve as the values for the PITCH in the
SOUND cofifisnd* You want to store the PITCH values in an
array in order to play back the tune for the program user
List the following INPUT code and ask the csMpers to explain
what it does*

100 REM * SOUND NITH AN ARRAY
110 REM *

120 DIM TUNE(IOO)
130 XNOTE = 0

140 INPUT PITCH
150 IF PITCH = -1 THEN NUMNOTES = XNOTE GOTO 200
160 XNOTE XNOTE + 1

170 TUNE (XNOTE) PITCH
180 GOTO 140

The Minus one serves as a flag, indicating that the
l3st note of the tune has been entered* Using a flag enables
the user to enter as Many notes as he or she wishes* The
user Must be told to type in a Minus one as a flag for the
last note of the tune* The INPUT instruction is in a loop that
continually checks for the Minus one flag* Explain to the
caMpers that XNOTE is used instead of NOTE because NOTE is a
reserve word* NUMNOTES is assigned the total number of notes
typed in* Step through the INPUT routine a few tiMes and
place soMe INPUT values in the box array you drew beside the
DIM stateMent*

4* Now that the notes are stored in the TUNE ajpray* we need
to write the BASIC routine which will play the tune* The
idea here is to get the caMpers to generate the code froM
your English description of the prograM* To play the tune*
the routine Must use each of the elenents of the array in the
SOUND coMMand* Ask what would be an efficient way to use
each value in the SOUND instruction* Establish a FOR loop
using the sane variable nattes as were introduced in the INPUT
routine*

FOR NUM = 1 TO XNOTE

In this exaMple use voice zero in the SOUND coMMand and
use ten for both the distortion and loudness for all of the
notes* Thus* use the following SOUND coMMand:

SOUND 0*TUNE<XNOTE) *10*10

Copyright Atari* Inc* 1983* All rights reserved*
8

ARRAYS
(Continued

)

You Might give the canpers the SOUND cor-mand* but leave
out the TUNE < XNOTE) and ask the canpers what they would
insert*

In order to distinguish the notes* you need a delay loo
after playing each note*

FOR DELAY = 1 TO 10 t NEXT DELAY

When the loop ends, the SOUND Must he turned off before
leaving the subroutine, < SOUND 0,0,0,0)

200 REM x

210 REM x PLAY TUNE
220 REM x
230 FOR XNOTE = 1 to NUMNOTES
240 SOUND 0,TUNE(XNOTE) ,10,10
250 FOR DELAY = 1 TO 10 J NEXT DELAY
260 NEXT XNOTE
270 SOUND 0,0,0,0

5. Have the campers type in the entire SOUND WITH AN ARRAY
progran which you have just worked through* RUN the prograM
and experinent with different notes*

100 REM x SOUND WITH AN ARRAY PLUS PLAY TUNE
110 REM x

120 DIM TUNE(IOO)
130 XNOTE = 0

140 INPUT PITCH
150 IF PITCH = -1 THEN NUMNOTES = XNOTE. GOTO 200
160 XNOTE XNOTE + 1

170 TUNE(XNOTE) = PITCH
180 GOTO 140
200 REM x

210 REM x PLAY TUNE
220 REM x

230 FOR XNOTE = 1 to NUMNOTES
240 SOUND 0 ,TUNE(XNOTE) ,10,10
250 FOR DELAY = 1 TO 10 : NEXT DELAY
260 NEXT XNOTE
270 SOUND 0,0,0,0

Copyright Atari, Inc. 1983. All rights reserved.
9

ARRAYS
(Continued

)

6* To see how the same BASIC code with 3 Menu and a few
extra PRINT statements can work, have the campers look over
the listing of the SOUNDARY program on their arrays
worksheets* Note how labels have been assigned to the
beginning line numbers of the different subroutines in lines
170-200 Each subroutine is "called" from the main loop*

7* Note that the third option on the menu is "LIST THE
NOTES*" Have the campers look over lines 900*960* This FOR

NEXT loop will PRINT the values stored in the array on
the screen*

The PRINT statement in line 9^0 needs to be given
careful explanation* Have the campers RUN the SOUNDARY
program to see how it works* Take a few minutes to
experiment with entering different tunes*

930
9^0
950
960

FOR XNOTE = 1 TO NUMNOTES
PRINT "TUNE("

J XNOTE J
")

11

J
11

NEXT XNOTE
RETURN

;tune<xnote)

Copyright Atari, Inc* 1983* All rights reserved*
10

100 REM x SOUND ARRAY
110 REM x
120 REM x BOUNDARY
^| REM x INITIALIZE VARIABLES AND ARRAY
^T- REM x

150 DIM TUNE(IOO)
160 XNOTE=0
165 REM x ASSIGN LABELS TO LINE NUMBERS
170 MENU=300
180 VALUES=500
190 PLAY=700
200 NUMBERS=900
210 REM x
220 REM x MAIN LOOP
230 REM x
240 GOSUB MENU
250 INPUT RESPONSE
260 IF RESPONSE=l THEN GOSUB VALUES
270 IF RESP0NSE=2 THEN GOSUB PLAY
28 0 IF RESP0NSE=3 THEN GOSUB NUMBERS
290 GOTO 240. REM REPEAT MAIN LOOP
30 0 REM x

310 REM x MENU
320 REM x
33 0 PRINT
340 PRINT "WOULD YOU LIKE TO:"
35 0 PRINT " 1. TYPE IN A TUNE,"
36 0 PRINT " 2. PLAY YOUR TUNE*"
3^0 PRINT " 3, LIST THE NOTES*"^ PRINT
390 PRINT "TYPE IN A NUMBER"

J

400 PRINT :rem INPUT IN MAIN LOOP
410 RETURN
50 0 REM x
510 REM x INPUT VALUES FOR NOTES
520 REM x
530 PRINT " TYPE IN NUMBERS BETWEEN 0"

540 PRINT " AND 255 TO BE THE NOTES"
55 0 PRINT " OF A TUNE. TYPE ONE NOTE"
56 0 PRINT " PER ?. WHEN YOU ARE FINISHED,"
570 PRINT " TYPE A -1 FOR THE LAST NOTE."
5J>0 INPUT PITCH
59 0 IF PITCH>255 OR PITCHOl THEN 580
60 0 REM x MINUS ONE IS A FLAG FOR THE END OF THE DATA
610 IF PITCH*- 1 THEN NUMNOTES=XNOTE ! RETURN
620 XNOTE=XNOTE+l .REM NOTES COUNTER
630 TUNE(XNOTE)=PITCH
640 GOTO 580
700 REM x

710 REM x PLAY TUNE
720 REM x
730 FOR XNOTE=l TO NUMNOTES
740 SOUND O, TUNE(XNOTE) , 10 , 10
750 FOR DELAY=1 TO 10. NEXT DELAY

. i3 NEXT XNOTE
770 SOUND 0 t 0,0,0
780 RETURN
900 REM x
910 REM x LIST NOTES
920 REM x

930 FOR XNOTE=l TO NUMNOTES Copyright Atari, Inc. 19S3.
940 PRINT "TUNEC'JXNOTE;")";" ";TUNE(XNOTE) 11
OCA MPVT VMHTC

ARRAYS
(Continued

)

Activity

Thus far we have used INPUT to fill the elements of an
array* It is also possible to fill an array by READing DATA
from within a program into an array* For example* music data
could be stored in the program* read into an array* and
sections of the array could be called at given tines in order
to play a verse and then repeat a Melody*

However* be careful with the READ statement* In Atari
BASIC the READ instruction will only accept a simple
variable* not an indexed variable* For example* the computer
will accept the following READ statement*

READ XNOTE

The computer will not accept the following*

READ TUNE (3) or READ TUNE (XNOTE)

Thus* you must READ the DATA into a simple variable and then
transfer that value into the array*

READ NUMBER TUNE(l) = NUMBER

or

READ NUMBER I TUNE (XNOTE) = NUMBER

Have the campers RUN the TUNE program on their BASIC
Utility Disk and look over the program in their^ program
listings* The TUNE program is essentially the same as the
MUSIC program in the READ* DATA* AND RESTORE Module*
However having the data in an array enables you to repeat
any note or sequence of notes in the tune* Have the campers
experiment with changing the values for START and FINISH in
order to make up different tunes*

Copyright Atari* Inc* 1983* All rights reserved*
12

«£% FC Fc& YS
(Continued

)

100 REM x TUNE ARRAY
110 REM x
120 DIM PITCHC50) ,DISTORT(50> ,LOUD<50> ,TIME<50)
130 INIT=500:REM INITIALIZATION LINE*
140 play=3oo:rem play tune routine
150 MAXNOTES=ll
20 0 REM x

210 REM xxxxx MAIN LOOP xxxxx
220 REM x

230 GOSUB INIT
240 start=i:finish=5:gosub PLAY
25 0 START=6tFINISH=ll t GOSUB PLAY
260 START=1 J FINISH=4 : GOSUB PLAY
270 END
300 REM
^^0 REM xxxxx PLAY xxxxx

REM x

330 REM x PLAYS A SEQUENCE OF NOTES USING DATA ARRAYS.
340 REM x INDICES DETERMINED BY VALUES OF START AND
350 REM x FINISH IN MAIN LOOP
360 REM x
370 FOR XNOTE=START TO FINISH
380 SOUND 0 » PITCH (XNOTE) , DISTORT (XNOTE) , LOUD (XNOTE

)

370 FOR DELAY=1 TO TIME (XNOTEK NEXT DELAY
400 NEXT XNOTE
410 RETURN
420 REM x
50 0 REM xxxxx INIT ARRAY xxxxx
510 REM x

520 FOR FILL=1 TO MAXNOTES
530 READ PITCH, DISTORT, LOUD, TIME
54 0 PITCH < FILL) =PITCH : DISTORT (FILL) =DISTORT : LOUD (FILL) =LSUD : TIME < FILL) =TIME
550 NEXT FILL
560 RETURN
57 0 DATA 121,10,10,40,91,10,10,37,0,0,0,3,91,10,10,40,108,10,10,28
58 0 DATA 0,0, 0,2, 108, 10, 10, 10, 91, 10, 10, 30, 108, 10, 10, 10, 121, 10, 10, 80, 0,0, 0,0

Copyright Atari, Inc. 1983. All rights reserved.
13

ARRAYS
(Continued)

Activity *5

A Group Discussion*

In each of the programs where an array was used, all the
data needed to be stored before you could do anything with
it* For example* in the first program* you needed to know
all the numbers before you could print then in the reverse
order* In the SOUNDARY program* all the pitch values needed
to be stored before they could be played back as a tune*
Arrays are especially useful whenever you need to have access
to all of the data before any thing is done with it* Ask the
campers to think about each of the following programing
problems and explain why using an array is or is not a good
idea in each case*

Find the average of five numbers that are INPUT by the
program user* (Answer* No* because the numbers can be added
together as they are INPUT into the computer and then divided
by the number of values typed in*)

SUM = 0

FOR COUNT = 1 TO 5
INPUT NUM
SUM = SUM + NUM
NEXT COUNT
AVERAGE SUM/5

Given a list of numbers which numbers are larger than
the average of the numbers* (Answer J Yes* All the numbers
must be saved in order to look back and see which are greater
than the average*) Ask campers to try to solve this without
an array* What if you knew there would only be five numbers?

Can you think of some more examples?

Copyright Atari* Ir.c* 1983* All rights reserved*
14

F" R: O GR A M M XM& CHALLENGES USXNGARRAYS

1* Store your own tune data in the SOUNDARY progran* READ
it into an array and play different sequences of notes from
the nain loop*

2* Give the person using your program the option to edit his
or her tune, one note at a tine* Ask the person which note
he or she wants to change and use that number as the index to
your array* Then ask what the new note value will be*
Change the array element accordingly and return to the menu*

3* Write a program which INPUTs a series of numbers* and
then lists those numbers which are larger than the average of
all the numbers which were typed in* Use an array to store
the values which the person types in*

4* Use two different arrays* HUE(IOO) and LUh(lOO)* to
create a light show* Your program should contain a statement
like the following onet

SETCOLOR 0*HUE(COUNT) *LUM(COUNT)

Copyright Atari* Inc* 1983* All rights reserved*
15

ARRAYS
CAMPER COPY

10 0 REM x ARRAY OF NUMBERS
110 REM x

120 MAXNUMS = 5 {REM MAXIMUM NUMBERS WHICH CAN BE INPUT
130 DIM NUMS(MAXNUMS)
140 REM x
150 REM * FILL ARRAY
160 REM *
170 FOR COUNT = 1 TO MAXNUMS
180 PRINT "TYPE IN A NUMBER";
190 INPUT VALUE
200 NUMS(COUNT) - VALUE {REM STORE INPUT VALUE IN ARRAY
210 NEXT COUNT

220 REM *
230 REM x PRINT NUMBERS IN ORDER
240 REM x

250 PRINT
260 PRINT "YOU TYPED IN THE NUMBERS IN THE"
270 PRINT "FOLLOWING ORDER

"

280 PRINT
290 FOR COUNT = 1 TO MAXNUMS
30 0 PRINT NUMS (COUNT

)

}" "{ {REM PRINT VALUE + SPACES
310 NEXT COUNT
320 PRINT

100 REM * SOUND WITH AN ARRAY
110 REM x
120 DIM TUNE(IOO)
130 XNOTE = 0

140 INPUT PITCH
150 IF PITCH = -1 THEN NUMNOTES = XNOTE{GOTO 200
160 XNOTE = XNOTE + 1

170 TUNE < XNOTE) PITCH
180 GOTO 140

Copyright Atari, Inc. 1983. All rights reserved.
16

Ft Fi YS
CAMPER COPY CONTINUED

200 REM x

210 REM x PLAY TUNE
220 REM x

230 FOR XNOTE = 1 to NUMNOTES
240 SOUND 0 , TUNE (XNOTE) , 1 0 , 1

0

250 FOR DELAY = 1 TO 1 0 NEXT DELAY
260 NEXT XNOTE
270 SOUND 0,0,0,0

100 REM x SOUND WITH AN ARRAY PLUS PLAY TUNE
110 REM x

120 .DIM TUNE(IOO)
130 XNOTE = 0

140 INPUT PITCH
150 IF PITCH « -1 THEN NUMNOTES = XNOTEJGOTO 200
160 XNOTE = XNOTE + 1

170 TUNE (XNOTE) = PITCH
180 GOTO 140
20 0 REM x

210 REM x PLAY TUNE
220 REM x

230 FOR XNOTE = 1 to NUMNOTES
240 SOUND 0 ,TUNE(XNOTE) ,10,10
250 FOR DELAY = 1 TO 10J NEXT DELAY
260 NEXT XNOTE
270 SOUND 0,0,0,0

Copyright Atari, Inc. 1983* All rights reserved*
17

ARRAYS
CAMPER COPY CONTINUED

100 REM x SOUND ARRAY
110 REM x
120 REM x SOUNDARY
130 REM x INITIALIZE VARIABLES AND ARRAY
14.0 REM x
150 DIM TUNE(IOO)
160 XNOTE=0
165 REM x ASSIGN LABELS TO LINE NUMBERS
170 MENU=300
180 VALUES=50O
190 PLAY=700
ZOO NUMBERS=90 0

210 REM x
220 REM x MAIN LOOP
230 REM x

240 GOSUB MENU
250 INPUT RESPONSE
260 IF RESPONSES THEN GOSUB VALUES
270 IF RESP0NSE=2 THEN GOSUB PLAY
280 IF RESP0NSE=3 THEN GOSUB NUMBERS

0 GOTO 24 0: REM REPEAT MAIN LOOP
0 REM x

310 REM x MENU
320 REM x
330 PRINT
34 0 PRINT "WOULD YOU LIKE TOt"
350 PRINT " 1. TYPE IN A TUNE."
360 PRINT " 2. PLAY YOUR TUNE."
370 PRINT " 3. LIST THE NOTES."
380 PRINT
390 PRINT "TYPE IN A NUMBER"

*

100 PRINT :REM INPUT IN MAIN LOOP
410 RETURN
500 REM x
510 REM x INPUT VALUES FOR NOTES
520 REM x
530 PRINT " TYPE IN NUMBERS BETWEEN 0"

54 0 PRINT " AND 255 TO BE THE NOTES"
550 PRINT " OF A TUNE. TYPE ONE NOTE"
560 PRINT " PER ?. WHEN YOU ARE FINISHED,"
57C PRINT " TYPE A -1 FOR THE . LAST NOTE."
SCO INPUT PITCH
59 0 IF PITCH>255 OR PITCHOl THEN 580
£0 0 REM x MINUS ONE IS A FLAG FOR THE END OF THE DATA
610 IF PITCH=-1 THEN NUMNOTES=XNOTE : RETURN
S20 XNOTE=XNOTE+i:REM NOTES COUNTER

0 TUNE(XNOTE)=PITCH
GOTO 580

Copyright Atari, Inc. 1983. All rights reserved.
18

ARRAYS
CAMPER COPY CONTINUED

TUNE

REM X TUNE ARRAY
110 REM x
120 DIM PITCH<50> ,DISTORT<50> ,LOUD<50> ,TIME<50>
130 init=soo:rem INITIALIZATION LINE*
140 PLAY=300:REM play tune routine
150 MAXNOTES=ll
200 REM x
210 REM xxxkx MAIN LOOP xxxxx
220 REM x
230 GOSUB INIT
240 START=1 * FINISH=5 J GOSUB PLAY
250 start=6:finish=ii :gosub PLAY
260 start=i:finish=4:gosub play
270 END
300 REM

32TT REM x .

330 REM x PLAYS A SEQUENCE OF NOTES USING DATA ARRAYS.
34 0 REM x INDICES DETERMINED BY VALUES OF START AND
350 REM x FINISH IN MAIN LOOP
360 REM x
370 FOR XNOTE=START TO FINISH
380 SOUND 0 , PITCH (XNOTE) , DISTORT (XNOTE

)

, LOUD < XNOTE

)

390 FOR DELAY=1 TO TIME < XNOTE) : NEXT DELAY
40 0 NEXT XNOTE
410 RETURN
420 REM x
50 0 REM xxxxx INIT ARRAY xxxxx
510 REM x

520 FOR FILL=1 TO MAXNOTES
530 READ PITCH, DISTORT, LOUD, TIME
54 0 PITCH (FILL)=PITCH: DISTORT < FILL)=DISTORT: LOUD (FILL)=LflUD: TIME (FILL)=TIME
550 NEXT FILL
560 RETURN
57 0 DATA 121, 10, 10, 40, 91, 10, 10, 37, 0,0, 0,3, 91 , 10, 10, 40, 108, 10, 10, 28
58 0 DATA 0,0,0,2,108,10,10,10,91,10,10,30,108,10,10,10,121,10,10,80,0,0,0,0

REM xxxxx PLAY xxxxx

Copyright Atari, Inc. 1983. All rights reserved.
20

MATRICES

An even more complex and more powerful array is called a
"Matrix" or a "two dimensional array*" A matrix is an array
of arrays* which is best explained with diagrams* The
activities in this module take the campers through the steps
required to write a battleship game that uses a matrix*

If you would like to read about two dimensional arrays,
or review some applications for matrices, you may want to
look through the following references* (These are the same
resources that were listed in the Arrays Module*)

ATARI ^00/800 BASIC Reference Manual: pp*3* ^1-^3
Inside Your Atari* pp* 66-7^
Your ATARI Computer t pp* 65-67

Suppose you had a list of swimmers 7 times from three
different swim meets* And* suppose you wanted to compare
each swimmer's time for the butterfly in each of the three
meets* A matrix is especially well-suited to Just such a
problem* The following diagram illustrates how the swimmers'
data can be stored in a matrix*

SWIM MEETS

SWIMMER #1

SWIMMER #2

SWIMMER *3

SWIMMER M

25

31

28

37

8

30

^2

8

35

TIMES

The swim times for each meet are stored in separate
columns* The swimmers are listed in the rows of the matrix*
Swimmer number one swam the race in the second meet in 28
seconds* In BASIC* this is written in the following way*

Copyright Atari* Inc 1983*
1

All rights reserved*

MATRICES
(Continued

)

SWIMMER < 1 #2) = 28
/ \

ROW COLUMN
SWIMMER* MEET*

Two indices are used* One holds the row value, which is
the SWIMMER number* The second index is the colunn value,
which in this case is the swim meet nunber* Swinner nunber
three's slowest tine was in the second Meet*

SWIMMER<3*2) 30
/ \

ROW COLUMN
SWIMMER* MEET*

Activity *1

1* Any data which conveniently fits into a grid or Matrix
format* is well-suited to a two dimensional array in a BASIC
program* Describe some programming examples in which you
might use a two dimensional array* Explain the format of the
indices for accessing an element of the matrix* Draw a

matrix similar to the SWIMMER matrix on the board* Give the
campers an opportunity to practice with indices by presenting
some sample statements to complete* like the following
examples*

SWIMMER(3*1) =

SWIMMER(2,1) = 4

SWIMMER(3*_) = 26
SWIMMER<_, 1) = 28

2* The format of a DIM statement for a matrix is shown
below*

DIM SWIMMERS, 3.)

/ \
Maximum * Maximum *
of rows* of columns

\ /
In the matrix called

SWIMMER*

Copyright Atari* Inc* 1983* All rights reserved*

Activity *2

1* The next prograhMing activity involves developing 3 BASIC
progran for 3 "battleship" qawe* It May be helpful for the
canpers to be 3ble to sinulate the progran on the board
first* Draw 3 four by four Matrix on the boards like the one
below

COLUMNS

12 3 4

1 X LOCATION < 1 ,2)
R
0 2
WS3

4

In the prograMt the randoM number function will be used
to secretly position 3 host on the hoard* For now* play the
gane on the blackboard* Ask one canper to secretly decide
where the boat will be hidden on the battleship gane board*
Then have the other canpers guess where the boat is by giving
the matrix nane and the indices of the guessed location*
List the guesses on the board beside the Matrix and place an
"X" on the Matrix for each incorrect guess* Do this until
the boat is found* You M3y want to play the gaine a couple of
tines in order to give the canpers practice with using two
indices

Copyright Atari* Inc* 1983* All rights reserved*
3

(Continued

)

Activity *3

1 * To program this probleM^ first we Must be sure that the
battleship board is cleared to zero, so that no extraneous
data in Menory interferes with the game* This is called
initializing the array* Explain that variables can be used
as indices to a matrix* For example, BOARD < ROW * COLUMN) = 0 *

will place a zero in the specified location in the matrix*
Ask the campers to suggest how they might initialize the
BOARD matrix, using two nested FOR loops (like the example
listed in number 2 below)* Record the initialization routine
on the board* as the campers plan it* Draw a ^X^ matrix on
the board* like the one above* and step through the loop
routine, placing zeros in the matrix everytime a zero is
assigned to a location*

2 Have the campers compare their code with the
initialization routine listed below* Ask the campers to type
in the following subroutine* Note that a variable can be
used to dimension the matrix*

130 REM x

140 MAXL0CATI0NS=4
150 DIM BOARD (MAXLOCATIONS*MAXLOCATIONS)
160 COLUMN=0 :ROW=0
200 REM *

210 REM * INIT MATRIX
220 REM x *

230 FOR ROW * 1 TO MAXLOCATIONS
240 FOR COLUMN = 1 TO MAXLOCATIONS
250 B0ARD < ROW f COLUMN > * 0 REM STORE A 0

260 PRINT LOCATION<ROW*COLUMN>
270 NEXT COLUMN
2S0 NEXT ROW

Line 260 prints the contents of each element of the
matrix* RUN the program to confirm that each element of the
matrix got a zero as planned* E'.e sure the campers understand
how the nested FOR loops work in lines 230 and 2^0 by
"playing computer" and filling in a matrix on the blackboard
in the order the computer does it*

100
110
120

REM *

REM x

REM x

BATTLESHIP

INITIALIZE VARIABLES

Copyright Atari, Ino 1983* All rights reserved*

(Cont i nued

)

3* Now the ship nust be hidden* Two randoh numbers Must be
generated, one for the row value and one for the colu«n value
in order to hide a ship in the matrix* A one is placed in
the natrix in the location of the hidden ship in order to
distinquish it from the empty spaces (zeros) on the board*
Go over the following routine with the campers* Explain why
and how the random numbers were used for the ship's location*
Discuss why a one is put in the location of the ship* Ask
campers what they think BOARD < SHIPROW , SHIPCQL > = 1 will do*
Have the campers add the following code to their program
which initializes the battleship matrix*

^00 REM *

410 REM X PLACE SHIP
420 REM x

430 SHIPROW INT (RND (0) *40* 1 t REM A RANDOM NUMBER
440 SHIPCQL " INT (RND (0 > +4) + 1 *REM BETWEEN 1 AND 4
450 BOARD (SHIPROW f SHIPCOL) * 1 *REM ONE IS ASSIGNED TO RANDOM LOCATION

4* To play the game you must INPUT the user's guess and see
if there is a "one" stored in that location* If the contents
of the guessed location is one* the ship has been found* If
not* let the user guess again* Explain* in English* the
sequence of steps the program must take in order for someone
to play the game* Have the campers come up with the BASIC
code* Record the campers suggestions on the boardt as they
are given*

1* First* get the user's INPUT for the ROW value*

print u row; ";: input rowguess

Get the COLUMN value*

PRINT ''COLUMN: "
J INPUT COLGUESS

3* Check to see if the location in the matrix guessed
by the program user holds a ship* If so* PRINT "YOU FOUND
IT!"*

IF BOARD < ROWGUESS , COLGUESS) « 1 THEN PRINT "YOU FOUND IT!"*END

Copyright Atari* Inc* 1983* All rights reserved*

MATRICES
(Continued

)

4, Otherwise PRINT "TRY AGAIN" and go back to the line which
INPUTS the ROW value.

Conpare the canpers' listing with the gane play routine
below

700
720
730
7^0
750
760
770
780
790
800
810
820
83 0

840

1

1

TYPE IN THE COORDINATES OF"
"YOUR GUESS » THE NUMBER MUST

"

BE BETWEEN 1 AND1

1

REM * PLAY
REM x

PRINT
PRINT
PRINT
PRINT
PRINT "row:
INPUT ROWGUESS
PRINT "COLUMN:
INPUT COLGUESS
IF BOARD (ROWGUESS, COLGUESS)=1 THEN PRINT
PRINT
PRINT "TRY AGAIN"
GOTO 770

1 1

ll

f

"YOU F
r OUND IT !

» t END

Have the csnpers type in the PLAY routine* Renefiber
the Matrix is only a ^X*t Matrix* Rewind campers that if they
type in a coordinate for the ship which is less than one or
greater than four the program will bonb*

Act i vity 4-4

1« To see how the sane code can be dressed up with a few
PRINT statements, RUN the SHIP program on the BASIC Utility
Disk*

Copyright Atari* Inc* 1983* All rights reserved*
6

PROGRAMMING CHALLENGES USIENGMATRICES

1* Place nore than one ship on the battleship board in 3
randon location for the user to find*

2* Make the ship larger so that it takes up two or three
locations on the grid of elements in the Matrix* Give the
outer limits of the ship different values than the middle of
the ship* This way* you can give the player feedback on his
or her guess* (eg* "You hit the front of the ship*")

3* Give the player hints in response to his or her guesses*
For example* if the program player's guess for the row
position is one away froM the ship, PRINT "YOUR ROW GUESS IS
HOT!" If the next row guess is nore than one away from the
ship's location* PRINT "YOUR ROW INDEX IS GETTING COLDER

"

Do the sane for the column values*

^* Place friendly ships and enemy ships on the game board*
Give the friendly ships one value and the enemy ships another
value in order to differentiate the two* Keep score for the
player* When an enemy ship is encounter ed * the player gains
points* When an allies ship is hit* the player looses
points *

5* Experiment with different graphics nodes* drawing a grid*
and displaying the actual ships on the screen*

Copyright Atari* Inc* 1983* All rights reserved*
7

MATRICES
Csnper Copy

xxxxx BATTLESHIP xxx*x

100 REM * BATTLESHIP
110 REM X

120 REM * INITIALIZE VARIABLES
130 REM *

140 MAXL0CATIGNS=4
150 DIM BOARD < MAXLOCATIQNS f MAXLOCATIONS

)

160 COLUMN=0 :ROW=0
200 REM x

210 REM * INIT MATRIX
220 REM x

230 FOR ROW = 1 TO MAXLOCATIONS
240 FOR COLUMN = 1 TO MAXLOCATIONS
250 BOARD(ROW,COLUMN>=0
260 PRINT LOCATION(ROW, COLUMN)
270 NEXT COLUMN
280 NEXT ROW

xxxxx PLACE SHIP xxxxx

400 REM x

410 REM * PLACE SHIP
420 REM *

430 SHIPROW = INT(RND< 0)*40+l ! REM A RANDOM NUMBER
440 SHIPCOL * INT (RND < Q) +4) + 1 5 REM BETWEEN 1 AND 4

450 BOARD<SHIPRQW,SHIPCQL)=l :REM ONE IS ASSIGNED TO RANDOM LOCATION

Copyright Atari, Inc. 1983* All rights reserved*
8

Cshper Copy Continued

xxxxx PLAY xxxxx

70 0 REM * PLAY
720 REM *
730 PRINT "TYPE IN THE COORDINATES OF"
740 PRINT "YOUR GUESS THE NUMBER MUST"
750 PRINT "BE BETWEEN 1 AND
760 PRINT
770 PRINT "ROW t "J
780 INPUT ROWGUESS
790 PRINT "COLUMN: "

\

80 0 INPUT COLGUESS
810 IF BOARD(ROWGUESStCOLGUESS)=l THEN PRINT "YOU FOUND IT!":END
820 PRINT
830 PRINT "TRY AGAIN"
840 GOTO 770

Copyright Atari, Inc* 1983* All rights reserved*
9

MATRICES
Canper Copy Continued

10 0 REM * BATTLE SHIP
110 REM x

120 REM x

130 REM x INITIALIZE VARIABLES
140 REM *

150 MAXL0CATI0NS=4
160 DIM BOARD (MAXLOCATIONS* MAXLOCATIONS

)

170 COLUMN=0 :ROW=0
175 REM ASSIGN NAMES TO SUBROUTINE LINE NUMBERS
180 INITMATRIX=500
19 0 PLACESHIF-7 0 0

200 PLAY=900
210 WIN=1300
300 REM x

310 REM x MAIN LOOP
320 REM x

330 GOSUB INITMATRIX
340 GOSUB PLACESHIP
350 GOSUB PLAY
360 END
50 0 REM x

510 REM x INIT MATRIX
52 0 REM x

530 FOR ROW*l TO MAXLOCATIONS
540 F

r O R COLUMNS TO MAXLOCATIONS
550 BOARD (ROW, COLUMN >=0

560 PRINT BOARD (ROW, COLUMN)
570 NEXT COLUMN
58 0 NEXT ROW
590 RETURN
70 0 REM x

710 REM x PLACE SHIP
720 REM x «?

730 SHIPR0W=INT<RND(Q>*4)+1 :REM RANDOM NUMBER
74 0 SHIPCOL«INT < RNDC Q) *4 > + 1 J REM BETWEEN 1 AND 4

750 BOARD (SHIPROW, SHIPCOL > =1 : REM PLACE SHIP IN RANDOM LOCATION
760 RETURN
90 0 REM x

910 REM x PLAY
920 REM x

930 GRAPHICS 2
940 POSITION 0,0
95 0 PRINT #6

J

1
' columns"

960 FOR NUMBER*! TO 4

970 POSITION 2,NUMBERx2tREM ROW COORDINATES
980 PRINT #6? NUMBER
990 POSITION NUMBERx4,l :REM COLUMN COORDINATES
1 0 0 0 PRINT 4-6 t NUMBER
1010 NEXT NUMBER

Copyrioht Atari, Inc* 1983* All rights reserved*
10

MATRICES
Csnper Copy Continued

1020
10 3 0

1 0 4 Q

1050
10 6 0

107 0

1080
10 9 0

110 0

1 1 1 0

1120
1130
11*0
115 0

1 16 0

117 0

11 30
1190
1300
1310
132 0

133 0

1340
1350
136 0

137 0

138 0

1 39 0

140 0

1410
1420

0,3 {PRINT *61 ,I R*
0,4 J PRINT Ai'VO"
0*5* PRINT *6;"W"
o, 6: print #6; i, s n

type in the coordinates
your guess » the number
be between 1 and 4

••row:

POSITION
POSITION
POSITION
POSITION
PRINT
PRINT
PRINT
PRINT
INPUT ROWGUESS
IF ROWGUESS<i OR
PRINT "COLUMN
INPUT COLGUESS
IF C0LGUESS<1 OR

1

1

1

1

1

1

OF"
MUST "

1

1

1 1

R0WGUESS>4 THEN 1090
it

t

THEN 1120C0LGUESS>4
IF BOARD (ROWGUESS, COLGUESS)=1 THEN GOSUB WIN J RETURN
POSITION C0LGUESSx4rR0WGUESSx2rREM PUT x ON BOARD
PRINT *6r ,,* H

PRINT : PRINT "TRY
GOTO 1090
REM *

REM * WIN
REM x

PRINT

AGAIN"

FOUND IT !

"

PRINT "YOU
FOR CQUNT=1 TO 10
POSITION C0LGUESS*4 t ROWGUESSX2
PRINT #6;" " J REM ERASE X

FOR DELA Y~ 1 TO 75 t NEXT DELAY
POSITION C0LGUESSX4 , R0WGUESS*2
print *6; m *";:rem flash x

FOR DELAY-1 TO 75tNEXT DELAY
NEXT COUNT
RETURN

Copyr iqht Alar i , Inc

*

1933*
11

All rights reserved*

PEEK &ND F>O K EH

In the sane way that human beings have all sorts of
pieces of information stored in their brain like telephone
numbers and lock combinations* the computer also maintains
hundreds of pieces of information When you turn on your
computer the operating system stores all the necessary
information the computer needs to process your programs* The
PEEK instruction enables you to look at the contents of any
memory location. The POKE instruction allows you to change a
value stored in memory*

To read more about the PEEK and POKE instructions* you
may want to consult the following books*

Atari 400/800 BASIC Reference Manual: pp* 35
Inside Atari BASIC pp 132-13?
Your Atari Computer: pp 113* 379* 398

All the information stored in memory is stored in the
form of numbers* Each number is held in a separate location*
Memory can be thought of as a long series of boxes* each
holding one piece of information* a number* There are 65*536
memory locations in a 64K Atari* Each box or memory location
has an address which enables the programmer to identify which
of the memory locations he or she is referring to* When you
use the PEEK or POKE instructions you must specify the
address of the memory location you want*

The PEEK instruction enables us to peer in at the
contents of the specified memory location* For example*
PEEK(82) is the value stored in memory location 82* The
address of the memory box you want to look at in this
example, 82* is listed in parentheses following the PEEK
instruction* Memory location 82 happens to hold the number
of spaces used by the computer to set the left margin on the
screen* To see the number of spaces that the left margin is
currently set to* type the following instruction*

PRINT PEEK (82)

Have you ever noticed that there are two blank spaces on
the left hand side of the screen* This is because the left
margin* memory location 82* is set to 2 by the operating
system* when you turn on your computer*

Copyright Atari* Inc* 1983* All rights reserved*
1

PEEK **MD POKE
(Continued)

The POKE instruction enables you to change a value
stored in Menory* For example* we could use a POKE
instruction to change the left Margin

POKE 82,5

To poke a value into Menory> the address of MeMory is
listed, followed by a comm3 and the new value to be stored in
«e*ory* Have the canpers type in the POKE 82,5 instruction
to see what happens* Experiment with poking the following
values into «enory for the left Margin* Retype the entir
instruction using the values listed below*

5, 10, 20, 39

After poking 3? into nenory location 82, have the
canpers try to Move the cursor to the left or to the right*
Ask the canpers why the cursor will not Move to the left or
right*

It is also possible to use a variable as the value to be
poked into MeMory with the POKE instruction* For exaMple, if
COUNT is 1 then POKE 82, COUNT will store a 1 in MeMory
location 82* Have the campers type in the following routine
that uses a variable in a FOR * * NEXT loop to change the
setting of the left Margin*

10 REM ** POKING THE LEFT MARGIN
20 REM *
30 PRINT
40 FOR LEFTMARGIN - 0 "TO 39 STEP 5
50 POKE 82, COUNT
60 PRINT
70 PRINT "LEFT MARGIN "

80 NEXT LEFTMARGIN

RUN the prograM# Then ask the canpers to LIST their
prograM* Why does everyone's code look so peculiar?
Encourage the canpers to experinent with changing the values
in this routine and running the prograM*

Copyright Atari, Inc* 1983* All rights reserved*
2

PEEK tf=*MD POKE
(Continued)

The value for the right margin is stored in memory
location 83* Have the campers type the following instruction
to see what the right margin has been set to*

*

PRINT PEEK<83)

The right Margin is routinely set to 39 * the last column
on the graphics zero screen* Try poking a 20 into memory
location 83*

POKE 83,20

Have the campers try all sorts of values* If they get
to a point where they are unable to return the margin to a
reasonable setting* press SYSTEM RESET to reset the margins
to their customary setting* Have the campers type in the
following routine and RUN it* The program is simply a loop
which continuously decrements the right margin by 5*

100 REM *xx*x DECREMENT RIGHT MARGIN
110 REM x

120 PRINT
130 FOR RIGHTMARGIN m 39 TO 0 STEP -1
140 POKE 83 RIGHTMARGIN
150 PRINT "RIGHT MARGIN" i

140 FOR DELAY - 1 TO 50* NEXT DELAY
170 NEXT RIGHTMARGIN

Once again* when the program is completed the margins
are so close together that the computer does not understand
any instructions which are typed im Press SYSTEM RESET to
return the margins to normal* Then have the camper LIST the
routine* Typing SYSTEM RESET does not affect the program in
memory*

Now have the campers type in the following POKE
instruction*

POKE 755*6

Copyright Atari* Inc* 1983* All rights reserved*
3

F>EEK AND POK IE
(Continued)

All the letters on the screen should be inverted* To
return the letters to their upright position type the
following POKE instruction*

. .

POKE 755,2

For wore locations to PEEK POKE* and play with* see the
following resources*

Atari Connection* Sunner 1983* pp 31-32
Inside Atari BASIC: pp 132-139
Master MeMory Map

All of these references are available in the caMP
library*

The sunner issue of The Atari Connection has an article
entitled "PEEKS AND POKES* CoMMonly Used and Helpful Mewory
Locations*" This article has lots of fun ideas for
exper inenting with PEEK and POKE and an explanation for each
exanple*

Inside Atari BASIC also suggests various locations to
PEEK and POKE for fun*

The Master Menory Map* produced by Educational Software
Inc** lists all the significant newory locations* their
contents* and what changes you can Make* Encourage the
caMpers to look over the MeMory Map and experinent with
changing the suggested locations* And finally* reassure the
caMpers that it is iMpossible to danage or perManently alter
MeMory* Have fun!

Copyright Atari* Inc* 1983* All rights reserved.
4

PEEK AMD POKEI
CAMPER COPY

xxxxx PEEK AT THE LEFT MARGIN SETTING xxxxx

PRINT PEEK (82)

xxxxx POKE THE LEFT MARGIN WITH A NEW VALUE xxxxx

5, 10, 20, 39

xxxxx POKING THE LEFT MARGIN USING A VARIABLE xxxxx

10 REM xx POKING THE LEFT MARGIN
20 REM *
30 PRINT
40 FOR LEFTMARGIN m 0 TO 3? STEP 5
50 POKE 82, COUNT
60 PRINT
70 PRINT "LEFT MARGIN "

80 NEXT LEFTMARGIN

xxxxx PEEK AT THE RIGHT MARGIN xxxxx

PRINT PEEK (83)

xxxxx POKE THE RIGHT MARGIN xxxxx

POKE 83,20

Copyright Atari, Inc, 1983. All rights reserved

F> EEL EE l-C

CAMPER
AND F-OKE
COPY CONTINUED

xxxxx POKING THE RIGHT MARGIN WITH A VARIABLE xxxxx

100 REM xx DECREMENT RIGHT MARGIN
110 REM x
120 PRINT
130 FOR RIGHTMARGIN - 39 TO 0 STEP -1
H0 POKE 83 f RIGHTMARGIN
150 PRINT "RIGHT MARGIN" i

160 FOR DELAY 1 TO 50 J NEXT DELAY
170 NEXT RIGHTMARGIN

xxxxx INVERTED PRINT xxxxx

POKE 755,6

POKE 755,2

xxxxx REFERENCES WITH MORE IDEAS FOR MEMORY LOCATIONS
TO PEEK AND POKE xxxxx

Atari Connection, SuMner,1983J pp 31-32
Inside Atari BASIC! pp 132-139
Master Mewory Map

Copyright Atari, Inc* 1983.
6

All rights reserved.

