N Gaoi T o e SR it

ADVANCED
PROGRAMIING TECHNIQUES

INCLUDING ERAPEIGS & VOICE PROGRARS

BY LINDA M. SCHREIBER

ADVANCED
PROGRAMMING TECHNIQUES

o ATARIL

INCLUDING GRAPHICS & VOICE PROGRAMS

Also by Linda Schreiber from TAB BOOKS:

No. 1485 ATARI Programming . . . with 55 programs

ADVANCED
PROGRAMMING TECHNIQUES

o ATART'

INCLUDING GRAPHICS & VOICE PROGRAMS

BY LINDA M. SCHREIBER

TAB TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION
FIRST PRINTING

Copyright © 1983 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
Advanced programming techniques for your ATARI
including graphics and voice programs.

Includes index.

1. Atari computer—Programming. 2. Computer graphics.
3. Speech synthesis. |. Title.
QA76.8.A82S367 1983 001.64'2 82-19340
ISBN 0-8306-0145-7
ISBN 0-8306-1545-8 (pbk.)

To my family for their continuing support.

Contents

Program Listings
Introduction

Working with Numbers

Binary System—Understanding Hex

Working with the Display List
The Purpose of ANTIC—Finding the Display List—ANTIC's Instruction Set—Combining Graphics
Modes—The Fourteen Modes— Text Modes— Color Text Modes.

Graphics

Character Set Make-Up—Restructuring the Set—The Invisible Modes

Principles of Animation

Characters with a Purpose—Scenes and Movement—Setting the Priorities

Looking at BASIC

The Token Commands—File Structures—BASIC Tables—Speeding Up a Program

Tricks with Strings

Machine Language Subroutines—Relocating the Strings— Strings and Player/Missile Graphics

Display List Interrupts

Handling an Interrupt—Writing Service Routines—Precise Timing—Player/Missile Enhancements

Scrolling
Course Scrolling—Fine Vertical Scroll—Playfield Widths—Fine Horizontal Scroll—Player/Missile
Graphics

Page Flipping

Displaying Two Screens—Creating Slides

vii

ix

25

45

79

91

107

121

133

10

1

12

13

14

Sound Generators
The Audio Channel Control—Direct Access

Interpreting the Keyboard
Keyboard Code—Reading the Keyboard

Understanding the Screen Editor
Get/Put Characters—Control Characters—Other Memory Locations

Disk Use

Disk File Manager—Special Functions—Disk Handler—File Management System— File Directory
Format—Booting Your Own Disk

Cassette Use
The Cassette Handler—Booting Your Own Cassettes—Using the Cassette with Sound

Index

153

161

171

177

195

205

Program Listings

1-1. Conversions 3 7-4A. Precise Timing—Second
2-1. Mixed Modes Program 13 Method 115
2-2. ANTIC 3 17 7-5. Moving Players b7
2-3. ANTIC 4 and 5 21 8-1. Course Vertical Scroll 121!
2-4. Color Artifacting 23 8-2. Course Horizontal Scroll 123
3-1. Data for Exclamation Point 26 8-3. Fine Vertical Scroll 126
3-2. Character Set Editor 2 8-4. Fine Vertical Scroll: Down 127
3-3. Multicolor Characters 37 8-5. Fine Horizontal Scroll 129
4-1. Simple Animation 48 8-5A. Fine Horizontal Scroll—
4-2. Simple Animation—Second Second Method 131

Method 53 9-1. Screen Flipping 133
4-3. Animation in the Text Mode 55 9-2. Simple Page Flipping: Two
4-4. Carousel 60 Different Modes 135
4-5. Carousel—Animated 64 9-3. Simultaneous Page Flipping—in
4-6. The Bird 70 ' BASIC 137
5-1. BASIC Tables—Variable Name 9-4. Simultaneous Page Flipping—

Table 82 Two Modes 137
5-1A. BASIC Tables—Variable Value 9-5. Simultaneous Page Flipping:

Table 83 Machine Language Subroutine 138
5-1B. BASIC Tables—String-Array Area 84 9-5A. Simultaneous Page Flipping:
5-1C. BASIC Tables— Buffer 85 Machine Language
5-1D. BASIC Tables—Statement Table 86 Subroutine — Horizontal Blank 138
6-1. The Farmer and the Duck, Fox 9-5B. Simultaneous Page Flipping:

and Grain Puzzle 91 Machine Language
6-2. Move Character Set 100 Subroutine— Vertical Blank 141
6-3. Move Player/Missile Up/Down 100 9-6. Slide Editor 145
6-4. Player/Missile Strings 102 9-7. Slide Show 148
7-1. Color Service Routine 109 10-1. Sounds 154
7-2. Double Character Sets 112 10-2. Sounds with Attack and Decay 155
7-3. Mirror Images Routine 113 10-3. Sounds with Attack and

7-4. Precise Timing 114 Decay— Vibrations 155

10-4.
10-5.

11-1.
11-2.
11-3.
11-4.
12-1.

Variations on Tones

Music: Machine Language
Subroutine

Read the Keyboard

Tiles

Keyboard Conversion

Letter Attack

Locate, Poke, and Peek

157

157
161
163
167
169
171

12-2.
13-1.
13-2.
13-3.
13-4.
13-5.
14-1.
14-2.

Printing Control Characters
Directory Listing

Print from Disk

Calendar

Displaying Sectors
AUTORUN.SYS

BASIC Boot Load

Listen and Spell

174
178
180
181
185
190
197
201

Introduction

This book was written for the person who wants to get the most out of his or her ATARI computer.
If you have a good understanding of BASIC but want to know how to get more special effects, more
sounds, and more graphics from your computer, this book is for you. Every program is explained
in detail so that after you enter the program and understand how it works, you can use this
knowledge in writing your own programs.

All the programs will run on any ATARI personal computer. The ATARI BASIC cartridge
CXL4002 and ATARI DOS (for disk programs) were used in creating them.

Memory locations that are used by the Operating System are presented. Explanations are
given on how to change their values for different programming effects. The chapters on the disk
explain the file structure to give you control over the drive. Everything is included here to make
you an Advanced Programmer!

There is a chapter on creating your own character sets, mixing graphic modes, using the
player/missile graphics, and flipping screens. You will even learn how to enter a machine-
language subroutine to play music while a BASIC program is running!

Xi

Note: Because many of the listings in this book use graphics characters and/or reverse video, the
following codes have been used in the listings:

* + clear * Press the escape key and the shift/clear key. This clears the screen.

« +characters or letters ' Press the control key and the letter indicated between the brackets. All
characters or letters between the brackets '+ are graphic characters.

» Underlined characters or letters are in reverse video.

|II
5
NI

n

L N

s

I:'"lll
R
i

i
al)
II

o F
A SLET

-};;:w1| .

:?..l-

L L :'l.', 1

o

|II

B EIP--

—

: ". ___ 1:'-"'?""4' ::. .

-Ilﬂll

ST

-

=

.:'!;r
o

=

-I-'

:ﬁ

|

£

i

IlH

i
s

) ‘llI

ul

l-'-:'l-
h
Il
-|‘
=
[

L
r

S

-
L
o

o

Chapter 1

Working
with Numbers

Ever since man had the need to know how many items he had in his possession, how much grain he
needed, or how many days since the last rain, he has had to devise counting systems. It is believed
that some ancient tribes used the base two, or three for counting. There is some evidence that
base twenty was used by a few early tribes, since their handiest counting device was their fingers
and toes.

With numbers came the need to do simple calculations. Soon the problems were no longer
simple, and man quickly learned that if he marked the numbers in the dirt or on a tablet he could
compute much faster. Stones were probably used much the way we use poker chips today with
each type of stone representing a different group of numbers—ones, fives, tens, etc. The figures
themselves evolved from crude lines and shapes to the forms we are familiar with today.

The abacus is the oldest, and yet the simplest, adding machine invented. The principle of
moving the beads on rods has survived the test of time. Many people consider the abacus to be the
first type of computer.

BINARY SYSTEM

As with the abacus, the computer uses its own number system—binary. If you think of a light
bulb, a candle, a lock, or a trap, each item has only two states. It can be either on or off, open or
closed, set or sprung. The computer operates in the same manner. Each memory location in the
computer can be either on or off.

The memory in your computer can hold a charge. This is represented by the number one.
When a location has no charge, it is represented by a zero. The computer, then, uses binary or
base 2 as its number system.

In our decimal system, each number position is a multiple of ten. The position to the left of
the decimal is the unit position. In the binary system, each position is a multiple of 2 with the
position to the left of the decimal the unit position. In the decimal system, there are ten numerals,
0 through 9. In the binary system, only the numerals 0 and 1 are used. The binary number 10110 is
22 in decimal. To convert a binary number to decimal, we add the places that containa 1 and ignore
the place values where there is a zero.

© 0 N -
oo
o w
e

83421
0110

In our example, 10110, there is a 1 in the 16's column, a 1 in the 4’s column and a 1 in the 2's
column. If we add 16+4+2, we arrive at 22, the decimal equivalent of 10110. Most computers
have 8 positions in each memory location. This means that each location can contain a number
from 0 to 255.

The number that is stored in each memory location is called a byte. Each one or zero in the
byte is referred to as a bit. The ATARI computer is an 8-bit computer. There are some 4-bit and
16-bit computers also. Each byte can also be divided into two 4-bit nybbles.

Although it seems confusing at first, using the binary system in computers conserves on
space and increases speed. If a switch with ten different settings were used, the computer would
first have to determine whether or not the switch was set; and then determine which setting it was
pointing to. In binary, there are only two possibilities, a 1 or a 0. It takes only 8 bits or switches to
count to 255. By adding 8 more, any number up to 65535 can be displayed. Work the following
examples to practice converting binary numbers to decimal.

. 01100001
10110111
11001000
00111001
01110010
00111100
00011110
11011000
01111010
10. 11110001

The decimal equivalents are: 1-97; 2-183; 3-200; 4-57; 5-114; 6-58; 7-30; 8-216; 9-122;
10-241

© oI G = 02 e

UNDERSTANDING HEX

Although the binary system increases the computer’s speed, most of us cannot readily
convert a string of 1s and Os into a number that we can understand. To help us, most programmers
and manuals reference the memory locations and the numbers stored in them in hex. The
hexadecimal system uses the base 16. The numbers after 9 are represented as the letters A-F. To
convert a binary number to hex, we first divide the byte into two nybbles. If, for example, we
needed to convert 11001101 into hex, we would divide it into two nybbles: 1100 and 1101. Each
nybble consists of four bits. Now we treat each nybble as a separate number. By adding the place
values of the first nybble, 8+4, we get 12. Twelve is not a one digit number, so we use the letter
C. The next nybble is 84+4+1, or 13. One number higher than C is D. Our hex number for
11001101 is CD.

Let’s try that again with another binary number: 10010111. Divide this 8-bit number into 2
nybbles: 1001 and 0111. The first nybble is 841 or 9, the second is 44+2+1 or 7. The hex number
for 10010111 is ‘97'.

There are times when you will want the decimal equivalent to a hex number. When you are

working in BASIC and want to poke a location with a number, both the location and the number
that you are poking must be in decimal. Often the manual you are using will provide only the hex
addresses to be poked or the hex values that should be entered. To convert a hex number to
decimal is fairly easy. Since each number/letter represents a value from one to 15, each place
value in hex is a multiple of 16. If the hex number has only two place, for example, B3, you should
multiply the number in the second position from the end by 16 and add the value in the rightmost
position. B is equal to 11 decimal, 11x16 is 176. Add 3 and the decimal value of hex B3 is 179.
Since the computer can access over 64000 memory locations, the hex number will often contain
four places. To convert C253 hex to decimal we would multiply the C (decimal 12) by 4096, the 2
by 256, the 5 by 16 and add 3.

(12x4096) +(2x256) +(5x16)+3=49747

To convert a decimal number to hex, you should divide the number by the largest place value
feasible; the quotient is the value for that place. Then divide the remainder by the next place
value, and continue until there is a remainder less than 16. That number is the last number of the
hex number. If, for example, the decimal number is 21013, we would divide the number by 4096.
The first or leftmost value of the hex number thenis a 5. The remainder is 533. When this number
is divided by 256, the next quotient is a 2 with a remainder of 21. 21 divided by 16 is 1 with a
remainder of 5.

Therefore, the hex equivalent of 21013 is 5215.

------ 5 - -15
4096) 21013 256)533 16)21
—20480 ~512 =16
533 21 5

The following program will convert a decimal number to hex or binary, and a binary or hex
number to decimal.

Listing 1-1. Conversions

1O REM LISTING 1.1

20 REM BY LeMSCHREIRER FOR TABR BOOKS

30 KREM CONVERSTONS

A0 DIM ASCEY TREM MOST FOSITIONS IN & B
THARY NUMBER

5O GRAFHICS OIFORE FE52e0 37 "FOLEARM" P

ORE 710y LOOIFORE 712 100ICOLOR 1L&IFLOT
PeR2iDRAWTO 3302307 Zea4iNRAWTD 3404

SO FEM FRINT cntrl-R bto make bthe tos a
rch ottom of bhokx.

20 FOSITION &¢237% "1"2POSITION 3

Q287 "HUNIREM entrl-Ryesc-cntrl-

COWMS T T OW Yy E =ephrl-backarrowsy s Fbs
80 REM cntrl-Rysnift=yontrl-d & onbrk-
Feasmift=vyorntrl-o wilth down-asrrow & Dae

Listing 1-1. Conversions (continued from page 3).

ELarrow Lo make lefl & righh sides

GO PFOSITION 317 "Please enter & sele

chiand"”

LOG % % (v o Le Decimal to Mes"iRE

M oescTAal

O I A S Decimal Lo Bimsry® IRE

M oeacTAl

L2 v ¢ Feo MHewx Lo Decimal"iREM @

seTAaRl

Lot ¢ oy " S Bimarwe Lo Decimsl"iFD

KE 729 GIREM esoTAR
LA40 TRAF 1403F0STTION
TRFUT NIREM TWO 10

Aok arrows - @rase § Freviouns answer
LEG TF Nl OR mNed THEN L40IREM CHECK F
OR CORRECT INFLUT

LSO ON N GOSUER 2005006700500

170 GOTO BG

190 REM ROUTINE TO CONVERT DECITMAL NUM
BERS TD HEX

200 7 "FCLEARIFLEASE ENTER THE DECIM
Al NUMBER TO BE CONVERTED TO HEX,"t5% "
NUMBER CANNOT EXCEED &5534."

2085 REM CLEAR SCREENy 2 esce-cornbrl down

200 7 7 "TO EXIT THIS ROUTINEy STMPLY
FRESS THE RETURN KEY." 35 &7

220 TRAF 50

230 INFUT N

2350 IF Nx&3GHIEH OR NSO THEN 200

260 NI=NIREM STORE THE NUMBER ENTERED

FOR THE CONVERSITION ROUTINE

270 F=li=q0R6tREM IS THE MEX FOSITI
ON - I IS EQUAL TO THE VALUE OF THE HE
X FOSITION

280 GOSUR ZAQ0iREM USE THE SUBROUTINE T

HAT GETS THE FIRST FOSITION

290 P=2il=20461REM P I8 THE NEXT FOSITI
ON -~ I IS THE ValUE OF THAT FOSITION

300 GUSUR 390

310 F=3i0=1&REM P IS5 THE THIRD FOSITI

ON - I IS THE VALUE OF THAT FOSITION

320 GOSUR 390

330 Fe=dg =]

Lyl g v "§g
. -

) aae-cerntr

] A

4

340 GOSUR 400
3E0 7 7T O"THE HEX EQUIVALENT OF "§Ns"
IS "ing
3460 GOTO 210
IB0O REM THIS ROUTINE DOQES THE aCTuUAL
ONVERSTON
390 IF NL<ID THEN A$CFeFY=8TRECO) SRETUR
N
400 H=INT(NL/DYIREM DIVIDE THE NUMRBER
BY THE VaLUE OF THE FOSTITION
410 NLI=NL-HXDEREM STORE THE REMATINDER
FOR THE NEXT CONVERSTON
420 TF M=% THEN @ Py Py a=CHRSE CH-ASE) SRET
LURN
430 ABCF o P a=STRS CH Y 2RETURN
A0 REM CONVERT & DECTM&L NUMBER INTU
A BINARY NUMBEFR -~ OIVIDE THE NUMBER RBY
EACH FPLACE Yal g
500 P "FCOLEARIFLEASE ENTER THE DECITM
AL NUMEBER TO RBE CONVERTED TO BINARY.":
T NUMBER PﬁNNUl EXCEED 255"
50% REM CLEAR SUCREENy 2 esc-orbel down
510 07 T O"TO OEXIT THIS ROUTINEs STMFLY
FRESS THE RETURN KEY."2%® 37
S520 TRAF S0
G330 INFUT N
550 IF N=25% 0R N0 THEN 5H00
5650 NL=NIREM STORE THE NUMBER ENTERED
FOR THE CONVERSLION ROUTINE
S570 P=lil=1283REM M IS5 THE RBINARY FOST
TION - I IS EQUAL TO THE VaLUE QF THE
BINARY FOSITION
580 GOSUR 390iREM USE THE $SUBROUTINE T
HAT GETS THE FIRST FOSLITION
990 F=230=64REM 1S THE NEXT FQSITIO
N = It I8 THE VALUE OF THAT FOSITION
400 GOSUR 390
610 P=310=32:606UE 390
H20 = 4 N=1631605UB 390
630 P=50=81608UR 390
640 6.“«4 GOSUR 390

[

J

Je

!F 'x

450 P=7 t0=21G05UR 390
A0 P=gil=11G08UR 400

Listing 1-1. Conversions (continued from page 5).

G707 1 OUTHE BINARY EQIVALENT OF "iNg

TOUTES "FAECLy4d 5" "IABCEHYED

&80 GOTO 510

700 7 "FCLEARIFLEASE ENTER THE HEX N
UMEBER TO RBE CONVERTED T0O DECIMAL."3% ©
NUMEBER CANNOT BEXCEED FFFF.®

Z10 7 37 "TO EXIT THIS ROUTINE, SIMFLY
FRESS THE RETURMN KEY." &% 37

720 N=0IINFUT A%

730 TF A=t THEN S0

740 F=LENCAE) SREM FIND OUT HOW MaMdy PO
SITIONS

750 1IF P4 THEN 200

FEO FOR sl 7O P2 CaaBD oAy DY 2 1F 07

O THEN 200iREM TRVALITD LETTER/GHARATTE

[

F70 C=C-S5500F G100 THEN C=UalbCAR i)
SREM IF IT98 NOT A LETTER THEN GET THE
VAL UE

780 ON F-It1 GOTD 820,810,800y 790

790 N=CX40PEENEXT T

BOO N=N+CH2LSINEXT 1

BLO N=N+CKL&INEXT T

820 N=N+C

830 7 P UTHE OECTMAL EQUIVALENT OF "3

Ags 3T " TE "N

840 GOTO 710

00 7T "FOLEARMFLEASE ENTER THE BINAR

Y ONUMEER TO BE CONVERTED TO DECIMAL "
TOUONUMBER CANNOT EXCE 1k 115 8 R
L0 7 7 "TO EXIT THIS ROUTINE. STMPLY
FRESS THE RETURN KEY."3% 27

P20 N=OIINFUT A%

@30 IF Ag="" THEN S0

P40 F=LENCASY SREM FIND OUT HOW MANY PO
SITIONS

PEO IF P8 THEN 700

P60 TRaF P00:FOR D=1 TO FC=VAL Cad e
3

Y70 IF Cx1 THEN 900 IREM INCORRECT ENTR
v :

Y80 IF C=1 THEN ON F-D+L GOTO 10800105

0v1040y10309 10201010y 1000990

8O NEXT I

6

Q0 N=CXLIEBINEXT D
1000 N=N+CHES ENEXT D
LO10 MNaNACRIZINEXT I
L1020 NaNACKLSTNEXT D
LOJO Ne=NSCRBIMEXT I
1040 Na=N+OX4ATNEXT D
LTOGD NapN+CHZ2INEXT D
LO&O NN+

LOZ0 v v "THE DECIMAL EQUTVSLENT OF ¢
sABLT IS "HN

1080 GOTO 910

1090 END

Line 40 sets the string space used for the binary or hex numbers.

Line 50 removes the cursor, clears the screen, changes the color of the background and
border to violet, and draws the top and bottom of the box. To use the plot and DRAWTO
commands, you must specify the graphics mode. The color 18 is a control R.

Line 70 draws the right and left side of the box for the on-screen display. Use a control Q,
shift =, and a control Z for the left side of the box; and a control E, shift =, and a control C for the
right side. Use a down arrow and a backspace between each character.

Lines 90-130 place the menu on the screen. Keep it neat by using an extra print and a tab in
each line.

Line 140 uses the trap command. If a letter or character is entered instead of a number, the
program will not crash. The two spaces and backspaces will clear any input that was incorrect.

Line 150 checks the input. If the number entered is incorrect, the program goes back to the
previous line and waits for the correct entry.

Line 160 directs the program to the correct routine. The program will return to the menu in
line 170.

Lines 200-210 clear the screen and place the directions on the screen.

Line 220 is another trap. If you enter a letter or simply press the return key, you will return
to the main menu. When writing a menu driven program, it is a good idea to give the user a way out
in case the wrong selection was made.

Lines 230-250 get the number to be converted and check to make sure that the number is
within the specified range. If it is not, the program will go back to the beginning of this routine.

Line 260 stores the number entered in another variable, N1. The number in this variable will
be converted to a hex number.

Lines 270-340 convert the number into a hex number. The variable P is the position that is
being converted. When converting numbers from decimal to hex or binary, we start with the
leftmost position and work to the right. The value of the first hex position in a four digit hex
number is 4096. This number is stored in the variable D. The program then uses the subroutine
that begins with line 390 to convert the number. Each time we return from this subroutine, the
value in P is increased by one to reflect the next place in the number and the value of D changes to
the value of the place. In line 340 we GOSUB to line 400 since this is the last or one’s position and
the value here will most likely be larger than the value of D.

Lines 350-360 display the number entered and its hex equivalent. The program goes back to
line 210 and waits for another number or a return.

Lines 390-430 do the actual conversion of a decimal number to hex or binary. First the
number is compared to the place value. If the number is less than that value, a zero is stored there.
Next the number is divided by the place value. The integer or whole number is stored in the
variable H. To get the remainder, we multiply the place value by the whole number and subtract it
from the number. The new number or remainder is now stored in N1 and will be used when we
continue to convert the number. Line 420 is used for decimal to hex conversions. The number is
checked to see if it is greater than a 9. If it is, it must be converted into a letter (A-F). This is done
by adding 55 to the number. If the number is less than 10, that number is placed into the string. In
either case, the routine returns to continue the conversion.

Lines 500-680 convert a decimal number to binary. Again, we trap the input so that pressing
the return key will return you to the main menu. The number is tested and stored in N1. Lines
570-660 keep track of which position is being converted and the value of that position. The same
subroutine that was used to convert the decimal number to hex is used to convert the decimal
number to binary.

Lines 670-680 display the results of the conversion and go back to the beginning of this
subroutine.

Lines 700-840 convert a hex number to decimal. This time we are using a string for the input.
If the string is empty, the program will go back to the main menu. The program checks the length
of A$. If more than 4 letters or numbers have been entered, the program will go back to the
beginning of this subroutine. The ASCII value for each number/letter is stored in C. If the value of
C is greater than 70, the letter entered is invalid and the program goes back to the beginning of
this subroutine. If it is a valid letter/number, 55 is subtracted from it. If C is less than 10, that
position contains a number and its value is placed in C. If the position contains a letter, the value of
that letter is obtained by subtracting 55 from its ASCII value. The value in C is multiplied by the
place value of its position and added to any previous conversion value. The new conversion value
is stored in N. Once the hex number has been converted into its decimal equivalent, both numbers
are displayed on the screen. This subroutine continues until the return key is pressed.

Lines 900-1080 use the same principle to convert a binary number to decimal. Since the
program is expecting only 1s and Os, a trap is placed in line 960 for any letter/character. The value
of each position is stored in C, one at a time. If this value is greater than 1, the program returns to
the beginning of this module. If C is 1, the value of that position is added to the value in N. This
number will be the decimal equivalent of the binary number.

Chapter 2

Working with
the Display List

All microcomputers have one thing in common—a CPU or central processing unit. It is the brains
or workhorse of the system depending on how you look at it. Whether it is a 6502, 8080, Z-80, or
some other processor, it is what keeps the machine going. The ATARI, however, has three
special-purpose LSI (large-scale integrated) chips to take some of the burden off the 6502. They
are called ANTIC, CTIA, and POKEY. This chapter will discuss the purpose of ANTIC and how to
make use of its capabilities.

THE PURPOSE OF ANTIC

ANTIC is a microprocessor that is dedicated to updating the screen display. It is a true
microprocessor because it has its own instruction set, a program, and data. It operates simultane-
ously and in conjunction with the 6502. ANTIC uses the same bus and memory locations that the
6502 does. In order to operate, ANTIC must stop or halt the 6502, get its information, and then let
the 6502 continue its work. Both must operate without missing a step.

ANTIC’s job is to keep the screen updated with the current information. A television screen
is normally updated 60 times a second. Since ANTIC must stop the 6502 each time it does its job,
the higher the resolution that is displayed on the screen, the more often the 6502 will be
interrupted. If you turn off the ANTIC chip completely, the 6502 will operate at maximum
efficiency.

The ATARI computer and many other personal computers like the Apple and the TRS-80
have memory mapped screen displays. This means that the information that you see on the screen
is also stored in a specific portion of the computer’s memory. The higher the graphics resolution,
the more memory is needed to store this information. The upper left corner of the screen is the
lowest memory address, and the lower right corner is the highest memory address. The address
of each location in between follows the first address sequentially. In most other computers, you
have a choice of one or two graphic modes, or text. It is not always possible to mix the types of
graphics modes. The ATARI offers 14 different modes with its CTIA graphics chip. Each mode
can be displayed individually or mixed with the others. This is the reason for the ANTIC chip. It
has its own program just above the memory set aside for the screen. This programis really a list of
the graphics modes that we are using in our program. ANTIC checks this list for the mode of the
line, and sends this information along with the data that will be displayed on this line to the CTIA

9

(or GTIA) chip. This chip is the television interface chip. It in turn converts the information that it
receives into the signal that we see as a picture or text on the screen. If each line is a different
mode, ANTIC tells this to the CTIA (GTIA) chip, and it translates the signal accordingly.

FINDING THE DISPLAY LIST

Just before the memory set aside for the screen display is the display list that ANTIC uses.
The address of the display list is stored at memory locations 560 and 561. To obtain the address of
the display list enter this command.

PRINT PEEK(560)+PEEK(561)+256

The number that appears on the screen is the starting address of the display list. In graphics mode
0, the display list is 32 bytes long. To see the list type:

10 DLIST=PEEK(560)+PEEK(561)*256
20 FOR X=DLIST TO DLIST+31:? PEEK(X):NEXT X

Your list should look like:
112

112

112

66

64 may

156 differ
9 —
-
2 — (23 twos)
g
9

65

32 may

156 differ

Before interpretting the display list, you must understand your screen. If you look very

closely at the screen, you will see that each character is made up of tiny dots. The picture that you
see on the screen is actually many rows of dots stacked from the top of the screen to the bottom of
the screen. You do not actually see the complete picture on the screen. The parts of the picture
that are above, below, or to the sides of the screen are called overscan. The picture that is
transmitted from the networks contains information on the lines above the actual picture. You
never see this information because it is in the overscan area.

Now look at the display list again. The first three numbers tell ANTIC to display three blank
lines that are 8 rows high. This makes sure that the text or picture will be on the screen and not in
the overscan area.

The next number, 66, is a two part instruction. A 64 tells ANTIC that the following two bytes
contain the address of the beginning of the screen display area. The 2 added to the 64 is the
ANTIC mode of the first line of the screen. Any number from 2 to 15 can be added to the 64. The
number added is always ANTIC’s value for the graphics mode. We will discuss the fourteen

10

graphics modes and their ANTIC values later in this chapter. For now, your screen is in graphics
mode 0, which is ANTIC mode 2.

If you multiply the sixth number in the display list by 256 and add the fifth number of the
_ display list, you would know the exact memory location of the first location in the first line on the
screen, or position 0, 0. If you poked this location or any location after this one with a value, you
would see characters on your screen. This is a memory mapped screen display. The contents of
the memory locations set aside for the screen are visible on the screen. When you use the locate
command in BASIC and you tell the computer LOCATE 5,6,B, the computer calculates the
memory location of the fifth column and the sixth row based on the mode that we are using and
sets the variable B to the value in that memory location. If your screen display begins at memory
location 40000 (40K system), and you are in graphics 0, you can use the locate command to find out
what is stored on the screen at any location. The command in this example is LOCATE 5,6,B. The
computer multiplies the row number by the number of characters in the row, in this case 40, and
adds the column number: 6 times 40 plus 5 equals 245. This number is added to the first memory
location for the screen. The computer examines that memory location and changes the value
found there to ATASCII. This value is stored in B, and the computer can tell you the value of
location. Now that you know how it’s done, you can use either the locate command, or the peek
function for yourself.

Going back to the list of numbers that make up the display list, you see that there is a string of
23 twos before you come to any other numbers. In graphics mode 0, there are 24 rows on the
screen. ANTIC knows from the display list that the first row is in graphics mode 0. It also knows
where the beginning of the screen display is. The next 23 numbers tell ANTIC that the next 23
rows will all be in graphics mode 0 or ANTIC mode 2. The next number after all the twos is a 65.
This again is a two part instruction. The 64 tells ANTIC that there is an address in the next two
bytes that it should jump to, and the 1 tells ANTIC to wait for a vertical blank before jumping.

When the last number in this list is multiplied by 256 and then the number just before it is
added to this product, the total is equal to the beginning address for this display list. Thus ANTIC
will repeat these same instructions over and over again until they are changed. It will start at the
beginning of the display list, look at the mode the first line is in, take the information from the
screen display area, and transfer this information to the CTIA chip for the actual screen display. It
goes to the next line, looks at the mode, gets the next lines information, and transfers it. The
process is repeated until it reaches the 66, where it waits for a signal called a vertical blank and
goes back to the beginning of the display list.

What's a vertical blank? The picture that you see on your television screen, whether it’s
generated by a computer or comes from the main television station, is “painted” on your screen
line by line. A beam called a raster scan starts at the left side of the screen (as you look at it), and
paints a picture by turning on the correct color beams in that row. When it reaches the end of the
row, the beam shuts off, retraces the line, steps down a row, and turns itself back on to paint
another line on the screen. The line that has been painted is called a horizontal scan line. The time
that the beam is shut off to retrace the line is called a horizontal blank. When the beam reaches the
last row on the screen, it not only has to come back to the left side of the screen, but also has to go
back to the top of the screen. This period of time, while the beam is shut off and going back to the
top side of the screen, is called the vertical blank. If the computer was not synchronized with the
television, the display would appear jittery and distorted. By waiting for the vertical blank before
beginning the display list again, ANTIC is sure that the display will appear correctly on the
screen.

11

ANTIC'S INSTRUCTION SET

Looking at the display list again, you see that ANTIC does have a set of instructions that it
follows. A blank line can be inserted anywhere in the display list. This blank line can be from one
to eight pixels tall. In the display list, the first three numbers were 112, 112, 112. In hex this
translates to 70, 70, 70. When you want to tell ANTIC to send a blank line, you use an instruction
that only uses the left nybble of the byte. Table 2-1 shows the values used to issue a blank line
from one to eight pixels high.

ANTIC is also capable of jumping. At the end of the display list, it has the instruction 65. In a
jump instruction, the second nybble of the byte is always set to 1. The first nybble can be either 0
or 4 hex. If the instruction is 1, ANTIC will jump to the address indicated in the next two bytes,
and continue there. If the instruction is 65 or 41 hex, ANTIC will wait for the vertical blank before
jumping. The jump instruction, 1, is used when the display list must cross a 1K boundary in
memory. ANTIC cannot calculate past 255, so it must be told to jump to the next location. This
jump should be placed just before the boundary. The two bytes after the jump instruction should
contain the low order and then the high order address of the location that ANTIC should jump to.

ANTIC also has display instructions. This time the instruction byte is divided into its
individual bits. The last four bits of this byte tell ANTIC which display mode to use. ANTIC's
display modes are 2 - 15. If bit 4 is set to 1, then ANTIC can do a horizontal scroll. If it is 0, it
cannot. Bit 5is set to enable the vertical scroll and when bit 6 is set, ANTIC will use the next two
bytes as the beginning of the screen memory. See Fig. 2-1.

COMBINING GRAPHICS MODES

Looking at the ATARI manual, you see that there are eight graphics modes, one for normal
text, two for color text, and five for graphics. Yet, looking at ANTIC’s instruction set, you can see
that there are fourteen different modes. Six of these modes cannot be accessed by BASIC with the
graphics command. They can, however, be used with BASIC when you create your own display
lists.

Combining the different graphics modes and creating your own display list takes a little
imagination and the ability to add to 192. Why 192? Think back to the television screen and the
horizontal scan. The beam that paints a picture on the screen does so row by row. Every row is the
same height. Therefore, every picture has the same number of scan lines. When you count the
number of pixels used in a character in graphics mode 0, you see that the character stands 8 pixels
or rows high. There are 24 rows in mode 0. 24 x 8 = 192. Multiply the number of rows for any
other mode time the number of pixels used in one row. The answer will always be 192. Therefore,

Tabhle 2-1. Values to Issue Blank Lines.

blank hex decimal
lines value value

1 00 0

2 10 16

3 20 32

4 30 48

5 40 64

6 50 80

7 60 96

8 70 112

12

bt# 7 6 5 4 3 2 1 0

set bit instruction
7 display list instruction interrupt Fig. 2-1. Set bits for display list.
6 load memory scan with next two bytes
5 vertical scroll
4 horizontal scroll

3-0 display mode

when you create a new display list, you want the number of rows used in each of the modes to total
192.

To create amulti-mode screen, you must first decide what you want your screen or display to
look like; which graphics modes are best suited for the display; and how you want to organize the
general layout of the screen. Once you decide how the screen should look, you are ready to create
a new display list. As an example you are writing a program that involves some text, some
prompting from the program, and a score that is kept on the screen. The main part of the program
will be done in graphics mode 7. The first thing that you have to decide is how many lines you need
for the text. This program will only need two lines for text: one line at the top and one line near the
bottom. This leaves the rest of the screen for the graphics. In a full screen (no text window),
graphics mode 7 has 96 rows, each 2 pixels high (96 x2=192). For this program you will use
graphics mode 2 at the top and graphics mode 1 near the bottom. To calculate the number of rows
that will be in graphics mode 7, you must first determine the number of rows of pixels the other
two modes will use. The characters in graphics mode 2 are 16 rows high. The characters in
graphics mode 1 are only 8 rows high. This means that 24 rows of the screen will be used by these
two modes (8+16=24). By subtracting this number from 192, you can calculate that there are 168
rows left for graphics mode 7 (192—24=168). Since each row of graphics mode 7 uses two rows of
pixels, there will be 84 rows of graphics mode 7 on the screen (168/2==84). The following
program, which draws a baseball diamond, creates a new display list for your program.

Listing 2-1. Mixed Modes Program

10 REM LISTING 2.1

20 REM MIXEDI MODES
30 REM RY LM SCHREIRER FOR TAE BOOKS
1982

A0 DIM M$ (20 IGRAFHICES 23 IREM HAVE COM
FUTER SET DISFLAY LIST FOR GRAFHICS 7
WITH NO TEXT WINDOW

50 DLIST=FEERK(SS0)+PEER(SSL %2046

S0 ANTIC=PEER(SS)Y TREM GET THE ValUE I
N THE SHADOW FOR hNH[“:’C“ STATE

70 FOKE S%9y0¢REM SHUT OFF ANTIC FOR I
ITSFLAY LIST CHANGES

80 FOKE DLISTH3»71IREM MAKE THE FIRST

13

Listing 2-1. Mixed Modes Program (continued from page 13).

LINE GRAFHICS 2
20 FOKE DLISTHE?yHIREM MAKE THE ROTTOM
ROW GRAFHICS 1
100 FORE OLISTHRO» SIREM MOVE THE JUMF

110 FORE DLISTH?Ly PEERKCES0)

120 FORE OLISTHR2yFEENK{ESE1)

130 FORE SS9y ANTICIREM TURN ANTIC BACK
ON TO IT78 PREVIOUS STATE

140 MEMORY=PEERK (DLISETH4+FEERK(DLIST+HE)
X206

180 ME="0RA33R(AZ/20 4" IREM ITNVERSE 0
FEN FARENTHESTS - FIRST ONLY

L& BOTTOM=MEMORY+2

170 FOR X=ROTTOM TO BOTTOMALEN(MS) -1 EF
ORE Xy ASC M CCX-BOTTOMAL 2 » (X-ROTTOMA12
YYINEXT X

18O Meb="25, 3EEERE2E 3" IREM LAST FOUR

CHARACTERS ARE INVERSE

1920 BOTTOM=8%%404+MEMORY +22

200 FOR X=ROTTOM TO BOTTOM+LENMCME) L F

ORKE XS0 MS CCX-BOTTOMAL1L) ¢ (X-BOTTOM+1)
PIINEXT X

210 COLOR LIFLOT Oy LIDRAWTO &0+40 8 0RAW

TO O0sBOIFLOT 1EYQIDRAWTO 99y 39 NRAWTO
15979

230 GOTO 250

Line 40 sets M$ to 20. This string will be used to store the characters for the message that
will appear, on the screen. The graphics mode is set to 23, which is graphics mode 7 without the
text window. Of the three modes that will be used, graphics 7 mode uses the most memory, so it is
advantageous to set the mode to 7. The computer will calculate the amount of screen memory
needed and move the display list above it. This leaves you with less to figure out.

Line 50 finds the address for the beginning of the display list.

Line 60 stores ANTIC’s state in the variable ANTIC. The value in this memory location
varies depending on what control the program will have. It determines the width of the playfield
and the resolution of players and missiles, and enables the use of player/missile graphics.

Line 70 turns off ANTIC while the display list is changed. If ANTIC was left on, it would be
using the values in the display list while it was being changed. This could cause the program to
crash.

Line 80 changes the first row on the screen from graphics mode 7 to graphics mode 2.
Remember, you must add the display instruction to the graphics mode in this location.

Line 90 changes the last row on the screen to graphics mode 1. You must add 89 to the display

14

list to arrive at the position of the last row of the screen in the display list 89 is obtained in the
following manner:

1. The total number of rows on the screen, calculated in terms of graphics mode 7, are
tabulated. This number is 96. (Each row is two pixels high.)

2. The total number of rows, calculated in terms of graphics mode 7, done in modes 1 and 2 are
calculated. Row 1, which is in mode 2, is 16 pixels or 8 mode-7 rows high. The last row,
which is in mode 1, is 8 pixels or 4 mode-7 rows high. The total (8+4) is 12.

3. The 12 from item number two is subtracted from the 96 obtained in item one: 96— 12=84.
These are rows 0-83 in terms of graphics mode 7. We know that the first three bytes of the
display list (0-2) are for the overscan. The fourth byte (3) sets the first row on the screen,
and the next two bytes (4 and 5) indicate the memory location of the screen. 83+5=88—
therefore the 89th row in the display list is set for graphics mode 1.

Lines 100-120 move the jump and the address of the beginning of the display list into the
correct position.

Line 130 turns ANTIC back on to its previous state. Now it can execute the new display list.

Line 140 finds the location of the screen memory in the display list and stores it in the
variable MEMORY. We will use this value when we display the message on the screen.

Line 150 places the message in M$. The first open parenthesis is in inverse video. If you
have been replacing the character set in your ATARI with a new character set in RAM, you have
probably discovered that the character set does not follow its ATASCII or decimal values.
Because we have set the graphics mode to 7, the computer will not print a message as such on the
screen. Graphics mode 7 means: “use only two bits from every byte; add four 2-bit combinations
together and store them in a memory location on the screen.” If we told the computer to
PRINT“PRESS” on the screen, it would use only the last two bits of each letter between the
quotation marks. The PRES would be combined for one character, the S would be the second.
The character on the screen would be the character that was in that location of the ATARI
character set. In the next chapter we will redesign a character set.

Line 160 stores the value of MEMORY + 2 in the temporary variable BOTTOM.

Line 170 is a for . . . next loop that pokes each character of M$ into the memory that is
reserved for the screen. Now the ATASCII value of each character of M$ is stored directly on the
screen.

Line 180 stores a new message in M$. This is the message that will appear on the bottom of
the screen. Once again, the message that appears on the screen is not the same as the characters
between the quotes.

Line 190 calculates the memory location of the last row on the screen.

Line 200 pokes this message directly into the screen memory.

Line 210 draws the diamond on the screen. This can be done with the simple plot and
DRAWTO commands. Notice that the position PLOT 0,1 is actually the center of the screen
rather than the left side. All the positions are shifted over by 80. This often happens when
different modes are mixed. Our first row on the screen is in graphics mode 2. ANTIC took the first
80 bytes for this row because it was set for graphics mode 7 which uses 4 bytes for every location
on the screen. It knew, though, that graphics mode 2 only needed 20 locations on the screen
(20x4=80). Graphics mode 7 uses 160 bytes for every line. The next 160 bytes are displayed on
the next row on the screen. The computer thinks that the first 80 bytes belong to the previous
row. When the computer calculates the memory position for PLOT 0,1, though, it does not look at
the display list to see if any of the rows have more or less bytes in them than the present mode

15

calls for. It simply multiplies the row number by the number of bytes in a row. Because this is a
graphics mode, before it adds the column, it divides by the number of bytes used to display one
byte (in this mode, 4) and then adds the column divided by 4. Every row on the screen will be off
center because of this method of calculation.

Line 250 loops back on itself. You can stop this program by pressing the system reset key.

THE FOURTEEN MODES

One of the features of the ATARI that has not been widely publicized is that the number of
graphics modes is not 9 but 14 with the CTIA chip. When we are working with BASIC, we have 9
choices, Graphics modes 0-8. Graphics mode 9-11 are reserved for the GTIA chip. Any other
number will give us an error message. However, when we work directly with the display list, we
learn that ANTIC will set the screen for any graphics mode from ANTIC 2 to ANTIC 15. Table 2-2
shows us the different modes and the unique features of each mode. ANTIC modes 2-7 are all text
modes. ANTIC modes 8-F are graphics modes. ANTIC gives you three additional text modes and
two additional graphic modes.

TEXT MODES

There are two 2-color text modes available: the standard text mode referred to as Graphics
mode 0, and ANTIC mode 3. ANTIC mode 3 has ten scan lines or rows for each character. This
feature allows for true descenders on the letters q, y, p, j and for subscripts and superscripts.
Because each line in this mode uses ten scan lines or rows on the screen, the display will be two
rows shorter than a normal display (10x19=190) or eight rows longer (10x20=200).

When you redefine a character set for use in this mode, you do not need to add two blank
bytes either before the character or after it. When the computer reads the bytes for the characters
from the character set, it will add the two blank bytes automatically to the character. For all the
characters, numbers, and uppercase letters, the two blank bytes will be added to the bottom of the
letter. Lowercase letters are treated differently. The computer takes the first and second byte of
the character and places it in the ninth and tenth row of the character on the screen. It places 2
blank lines in the first and second row and then places the rest of the bytes in the correct position.
This can cause some problems if you are using this mode with the character set in ROM.

In the following program, the display list will be changed to use ANTIC 3. A message will be
printed on the screen using the character set from ROM. Notice the distortion in the letters 1, j,
and k. There is no distortion in any of the capital letters, numbers, or graphics because they are
not the last 32 characters/letters of the character set.

value in two

bits of color
graphic byte register
00 0 (background) ,)
Fig. 2-2. Color register codes.
01 1
10 2
11 3

All four color registers are used in GRAPHICS 3, 5, 7.
Color registers 0 and 1 are used in GRAPHICS 4 and 6.

16

Listing 2-2. ANTIC 3

10 REM LISTING 2.2

20 REM ANTIC X

F0 REM BY LM SUHREITRER FOR TABR BOOKS
40 7 "Fas Bbh Co Dd Ee Ff Gg Hb Tdi
Kl L1 MmN Oo Pe Qo Re S Tt Uu Vv W
WX Yw Zxo w8 VEEXEIZBROIY0ON

S0 DT FEER (5SSO0 +HPEERSHL I X2ESHCANTIC

sPEERCSS) TREM GET THE VALUE IN THE SH
ANOW FOR ANTICS S STATE

HO PORE S89y01REM SHUT OFF ANTIC FOR T
ITSRPLaY LIST CHANGES

Z0 FOKE DLISTH3s 67 IREM MARKE THE FIRST
LINE ANTIC 3

8O FOR X=é& TO 243F0KE DLISTHX» IENEXT X
SREM CHANGE LIST FOR ANTIC 3

Q0 FORE DLISTH2S &5 REM MOVE THE JUMF
1O POKE DLISTH2Es FEEKCE460)

LLO PORE DLISTHEZyPEEREE1D

120 PORE S5 ANTICIREM TURN ANTIC RBRACK
O TO IT78 PREVIOUS STATE

130 A=PEERCLOS) -8 NE=AX2GSIREM FLACE C

HARACTER SET 2K BEFORE END OF MEMORY -
STORE VALUE TN NE

140 Che CCFEEIKRBEITH=CREX=THIREM CH
ARAGCTER SET TN ROM

190 FOR LC=0 TO LLIFOKE NEReFEERKOX4H7)IN
BaNBEAL I FOR X=TH TO TH+4EFORE NByPEERKOX
PENBE=ENERLENEXT XITH=THAE X=THINEXT LG
160 FOR >$TH TO THYZ2iFORKE NEsFEEK(X) SN
BasNBS L INEXT XETH=XEREM SaME

120 FOR LG TO 24HIFOKE NBEy PEEROXE) 3

£

NE=NESLEFOR X=TH TO THHSTPORE NEy FEER(C
Xy IR NU\I»NIX[AYTH=THHE8 I X=THINEXT LG
LEHO FOR X=TH TO THY? IFORKE NEyFEEKIX)IN
T X ETH= x*llN Shﬁr

Frasid B+ 1§ N
1w0 FiR
NE=NEE LD FOR b3
KDY IME=NESL ENEXT X:THwTH+83XmTH.NhXT L
200 FOR LC=46% TO ?291F0R X=TH TO TH+7IF
ORE NEsF h(x:.NU NFEA L ENEXT X ETH=XINEX
T LOCIRE
210 FOKE NByF KOXA70 ENB=NRBALIFOR X=TH
TO THE& §FOL FEER CX) ENB=NRSL ENEXT
XETH=THH8 E X=THIREM F

17

Listing 2-2. ANTIC 3 (continued from page 17)

220 FOR LC=81 TO 20iFOR X=TH TO TH+7iF

OKE NEyFEEK (X INE=NRE+L INEXT X3TH=XINEX

T LCSREM SAME

230 FOR LC=91 TO 1233F0OKE NEyPEEK(X+7)
INRB=NBEHLIFOR X=TH TO TH+6FOKE NEsFEEK
(X INB=NRELINEXT XITH=THHEIX=TH

240 NEXT LG

2E0 FOR X=TH TO TH+ZIFOKE NEyFEERK(X) IN

BeaNBALINEXT XITH=XIREM SAME

260 PORKE NE« PEERCXHZ) SNEB=NE+LIFOR X=TH
TO THH&IFORKE NEeFEER X SNRB=NE+L INEXT

KITH=THH8 ¢ X=THIREM F

270 CR=AX25464+103%X8IFOKE CB+LyFPEERKCCE) S

REM MOVE RBYTE DOWN ONE

280 POKE CRyPEEKCCESZ) IREM REFEAT LAST
BYTE

290 CR=AX2546+106XBIFORKE CRHLyFPEEK(CE) ?
REM MOVE BYTE DOWN ONE

300 POKE CEyPEERCCES?) TREM REFEAT LAST
BYTE

310 CEB=AX2546+112%X8FORKE CBHLyFEEKCCER) S
FREM MOVE BYTE DOWN ONE

320 POKE CRyPEEKCCRBH7)Y IREM REFEAT LAST
BYTE

J330 Ch=AXRG6HLL3XREIPORKE CRELyPEERKCCR) 2
REM MOVE BYTE DOWN ONE

340 FOKE CEyPEERCCEREZ I IREM REFEAT LAST
BYTE

G50 CR=AK2GHH1L21XBLPORKE CRHLyPEERKCCER) 2
REM MOVE BYTE QO0WN ONE

360 PORKE CRyFEERKCCEY?) IREM REFEAT LAST
BYTE

FE0 FOKE 75&08

Line 40 is the line that will be printed on the screen. It clears the screen and prints each letter
of the alphabet in both upper and lowercase. It also prints some numbers, symbols, and graphics

on the screen.

Line 50 stores the beginning location of the display list in DLIST and the display status in

ANTIC.

Line 60 shuts off ANTIC so that we can change the display list.
Lines 70-110 change the display list from ANTIC mode 2 to ANTIC mode 3. The jump
command is moved up since there will be fewer display lines in this mode. The beginning address

of this display list is also moved up.

Line 120 turns ANTIC back on with the same value or status that it had before we changed

the display list.

18

Line 130 subtracts 8 from the amount of memory available in our computer. This value is 2K
less than the amount of memory in our computer. We will leave the top 1K for the screen display
and the display list. The second 1K will be used for the character set. We will store the actual
decimal address in NB.

Line 140 stores the address of the character base in ROM in the variable CB. We also want to
store this value in two more variables. Now we can manipulate the address without losing it.

* Lines 150-260 move the character set from ROM into RAM. If you look at your screen while
the character set is being moved, you will see the distortion in several of the lower case letters.
You will also see that the letters with descenders are no different in this mode than they are in
mode 0. Line 150 transfers the characters from the space to the plus sign from ROM into RAM.
When we transfer these characters, we want to take the last byte of the character and place it into
the first byte for the character in RAM. The rest of the character will remain the same. Now the
character will appear one scan line lower on the screen. The next character is the comma. We do
not want to move its last byte first because the comma uses its last byte for data. The other
characters that we just transferred do not. If we moved the comma the same way that we moved
the other characters, the character would be distorted on the screen when it was printed because
the data that it needs for the last row would be in the first row. The 13th through 26th characters
will move down one scan line when they are moved. What we are doing in these lines is lowering
all the characters one scan line so that the lower case characters that use the second byte for data
will not be distorted on the screen (1,j,k,d,b,f,i,t). The characters that use the 8th byte for data, the
graphic characters, the comma, and the semicolon are moved into RAM exactly the way they
appear in ROM.

Lines 270-330 move the data that is in the first byte for these letters into the second byte and
repeat the data from the eighth byte into the first byte. These are the letters that have
descenders. By adding one more byte of data to these letters, they will appear on the screen with
true descenders.

When the program is finished, move the cursor over some of the letters on the screen. You
will see that the uppercase letters are centered and the letters with descenders are aligned with
the last two rows of the cursor.

The only letters or characters that place the first two bytes in the last two rows on the screen
are the characters from the heart to the end of the character set. By replacing some of the
lowercase letters/characters with numbers, you could create superscripts and subscripts. If you
are not using any of the lowercase letters, you do not have to transfer the character set the way we
did in this program. As long as you are using uppercase letters, numbers, and graphics, you can do
a direct transfer of the characters, then create your own characters that would occupy the area
normally used for the lower case letters.

COLOR TEXT MODES

As you can see in Table 2-2, ANTIC modes 6 and 7 correspond to graphics modes 1 and 2.
These modes are capable of producing text in four different colors, plus a background color. The
difference between these two modes is the size of the characters. Graphics mode 1 characters are
just as high as graphics mode 0 characters, but they are twice as wide. Graphics mode 2 characters
are both twice as high and twice as wide as graphics mode 0 characters. If you are writing a
program where you need colorful letters, numbers, or characters of your own creation, it is much
wiser, in terms of memory use to use one of these modes with a redefined character set than to
use a higher resolution mode that uses more memory.

19

Table 2-2. All Display Modes Available with CTIA.

COLORS

1

1 3 i ! 3 i
1 o ' L | |
(1. & . -
1 1 ! '
] S] 1 3 1
1 ot i i S i
! = B I F 3 ave o . 1 -
51 ¥ 1 i 1
1 d 1 1 A i
1 1[1 i g 1
e o1k il o
1 1 1 i
i 1 i 1 A i
1 d 1 ! gl i
i o 0~ 5 1 oo o ¥ caa
e 1 1 '
i ‘ 1 . i [y 1

H & i 1 i & i

1 evraonentevon snsa dusiissiconns s sinsoansionss e <4 saneon o d e
HEpep 1 ! H
1 S8y i) i (5 1
i rd 1 %, ! wd '
15 . i . . t - . ! .
! i | '

1 ") 1 % 1 | i
1 o ' 2 | ¥ '
L. o b T a
1 | i I
1) i ! oy t
i Y 1 £ I 1
i i i i
1 s ! [! A !
1 1 i wd 1 . i
(B o 4 = & e s |
i i | i
| . 1 i 3 1
1 I i i ' 1

I 5 s § s s b s 3 s
1 1 1 1
1 ' i 3 i
i L. 1 i . '
[a4 o s il N
1 i | i
1 i i) ! £ !
i i i s i 7 i
i = JF o X e e X
v 1 1 i
i o i i A '
i E 1 1 1 1
! i b sy ook s A T iea watarasesiseoimssscessvrasssresnn-sins ave MeEass i
1 1 1 i
1 = i oy 1 i
i i o i [

i ! ' t
1 o f T T ———— [

There are two more text modes between graphics mode 0 and graphics mode 1. These are
ANTIC 4 and ANTIC 5. Both of these modes are unique in that they support multicolored text.
They can also be used when you want to produce redefined characters that give the illusion of high
resolution graphics using only a fraction of the memory.

Normal text cannot be used in either of these modes because unlike graphics modes 1 and 2,
these modes produce both the color and the shape of the character from the data in the character
set. Normal text is illegible in these modes. The following program changes the display list to
illustrate these ANTIC modes.

20

Listing 2-3. ANTIC 4 and 5
10 REM LISTING 2.3
20 REM ANTIC 4 & %
ACOREM BY LM SCHRETBEER FOR TAR ROOKS
AG T OUFDLEARM"SREM CLEAR THE SCREFN
S50 M.IST= ERCHSHOIHPEER{SSLIXZESHIREM
THD THE BEGINMNING OF THE DISFLAY LIST
SO XmPEERKDMLLISTH3 2y FORKE DLISTH3 e X420 RE
THE FIST ROW TO ANTIC 4
DLTSETHS TO DLITSTH2BIFORE Xe4¢
CHAMGE AlL THE ROWS EXCERT
INE TO ANTIC 4
SREM LLIST THIS FROGRAM ON THE
TO SHOW THE MULYTTCOLOR MODE
el TO SO0 INEXT XIREM WASTE TIM

CERDLTETH3) SPOKE DLISTHE e X+ 1 IR
EM CHANGE THE FIST ROW TO ANTIC 4

110 FOR X=DLIST+S TO DLISTHIBIFORKE X5
FMEXT G MoCHANGE &, THE ROWS EXCERT
THE FTRST ONE TO ANTIC %

6 S SREM LIST THIS FROGRAGM ON THE
SUREEN T SHOW THE SMULTICOLOR MODE

When this program is run, the listing is shown in vivid yellow and blue. It is nearly
impossible to read because the letters blur into each other. ANTIC 5is nearly the same as ANTIC
4. The only difference is the letters/characters are larger.

If you look again at Table 2-2 you will see that there are four different modes that support four
colors, three character colors plus the background color. The fourth mode is sandwiched between
graphics modes 7 and 8. With this mode, ANTIC E, each point on the screen is only one scan line
high, but two pixels wide. It’s height is half that of a point in graphics mode 7, but it is just as wide.
To use this mode, you would set the screen for graphics mode 8, then change every row in the
display list from 15 to 14. This is the highest graphics resolution that is available with color.

In this table, you will also see an additional mode for two color graphics. It is located between
graphics modes 6 and 7. This ANTIC mode is identical to ANTIC E except for the number of
colors that it supports. With this mode, you can only set one color plus the background color.

Graphics mode 8 is listed as a two color mode. In actuality, it is like graphics mode 0. The
second color depends on luminance or brightness rather than being a true second color.

Each of the modes from ANTIC 8-F uses more memory than the text modes. With the text
modes, each memory location is one character. If our screen display is 40 characters wide by 24
rows, we are using 960 bytes for the screen display. The size of each character is 8x8 pixels.
Which pixels are on and which are off is determined by the information in the character set. Each
character uses 8 bytes of information stored in the character set. If the ATASCII value of the
character is less that 128, the character will appear in normal video. If the ATASCII value is
greater than 127, that is, if the high order bit is set, the character will appear in inverse video on
the screen. The same holds true for ANTIC mode 3.

21

In graphics modes 1 and 2, which are both text modes, the character on the screen will be
either 8x16, or 16x16. Each row on the screen is 20 bytes long. Graphics mode 2 with no text
window uses 480 bytes of memory (24 x20). Graphics mode uses 240 bytes of memory (12 x20)
for the screen display. Both of these modes use only the last 6 bits of the internal value of the
character on the screen. The first two bits determine which color is used. This is why only half of
the character set can be displayed at one time. (If you have redefined characters, you will know
that the order that the characters appear in the ROM character set is not according to their
ATASCII value.) By using the first two bits of each byte, the computer can choose one of four
colors for the character that will be displayed on the screen.

00 (character) = color 0
01 (character) = color 1
10 (character) = color 2
11 (character) = color 3

The background color is set with color 4.

The nontext modes do not follow this pattern. Graphics modes 3, 5, 7, and ANTIC mode E
are four color modes. The character blocks on the screen can be one of three colors, the
background is the fourth color. Each point that appears on the screen is not a byte. It is, rather,
part of a byte. All the modes that are not text modes use only one or two bits per byte to determine
the color that will appear on the screen.

Graphics mode 3 displays 10 bytes in each row. With no text window there are 24 rows. 240
(10x24) bytes of memory are used for screen display in this mode. Let’s say that we tell the
computer to plot a point on the screen in position 0,0. We want the point to appear orange, so we
will use COLOR1. The computer will determine where in memory the first byte of the screen is
located. This address is found in the display list. When the computer looks at the value of this
byte, it should see 0000 0000 because there is nothing on the screen in this location or the next
three locations. After the orange point is on the screen, the value of this byte of memory will be
64. The binary value of this memory byte is 0100 0000. The first two bits now tell the computer to
use the color in color register 1. The next three positions are left empty. If we wanted to use
green, the color in the second color register, the value of this memory byte would be 128 decimal,
or 1000 0000 binary. When a color is plotted in the next position, the computer changes the values
in the next two bits of the memory byte. Refer to Fig. 2-2 for the color values and to Fig. 2-3 for a
sample point.

Graphics modes 5 and 7 are nearly the same. Graphics mode 5 uses 20 bytes in each row, and
graphics mode 7 uses 40. Because of the way that the ATARI stores the color information, only
three colors plus a background color can be displayed in these modes. If the computer used 4 bits
per byte to display color, we could have 16 colors on the screen. Of course, the computer would
need twice as much memory for the screen display.

The number of pixel rows per graphic row will depend on which mode we have chosen.
Graphics mode 3 is 8 pixels high, Graphics mode 5 is 4, and graphics mode 7 is 2. ANTIC E also
displays three colors plus the background color. It uses one row of pixels per row.

Graphics modes 4 and 6 can display only one color in addition to the background color. Each
bit in the byte of memory on the screen determines whether or not that point will be on. If there is
a 1, the color in color register 0 will appear on the screen. If there is a 0, that point will appear
blank. Mode 4 is the same resolution as mode 5, but because each memory byte in mode 4

22

Fig. 2-3. Screen byte.

'
1
1
i
1
1
'
1
i
1}
1
t
|
1
!
1
1
1
i
i
1
1
|

* The four points on the screen are one byte. The color of each point is determined by two bits. In graphics mode 3,
if the byte is 00 01 00 11, then the four points would be: off (or background), orange, off (or background),
blue.

represents one point on the screen, it uses half as much memory for screen display as mode 5.
Graphics mode 4 displays 10 bytes in every row on the screen. Each point is 4 pixels high.
Graphics mode 6 uses 20 bytes in each row. Each point is 2 pixels high. The ANTIC mode C also
displays one color plus the background color. It displays 20 bytes in each row. Each row is one
pixel high.

Each of the graphics modes described above is as many pixels wide as it is high. Each point
appears as a square on the screen. The two ANTIC modes are both two pixels wide, but only one
pixel or scan line high.

Graphics mode 8 is the only mode where each pixel can be individually controlled. Each row
onthe screenis 40 bytes. Each bit of each byte controls one pixel on the screen. If the bitis a 1, the
pixel will be on. If it is a 0, it will be off. Unfortunately, the color of the on pixel is set by the
luminance or brightness of the color in color register 1, but the actual color is the same as the
background color. Graphics 8 uses the same amount of memory as ANTIC E.

Remember the first program in this chapter where we poked values onto the screen? The
computer thought that we were in a graphics mode. Each character that it was given to print on the
screen was treated as a graphics character. That is, it took the last two bits of the character and
stored them in a byte for the screen display. It took the last two bits of the next character and
stored them in the next two bits of the memory byte. By poking the data directly into the screen
memory, we were able to trick the computer into printing the characters that we wanted on the
screen. The characters also had to be the hardware value for the characters that we wanted
displayed rather than the ATASCII value. We will go into the differences between the hardware
value of a character and its ATASCII values in Chapter 12.

Listing 2-4.. Color Artifacting

R
[FACTING

TRETRER FOR TAR BOORKS

1O REM LISTING
20 REM COLOR A
A0OREM BY oMot
AQ GRAFHITE B
90 Tkl FERCESGHPEER CS&1Y K26
GO CsPEERCOLTSTHI Y SFOKE DLTSETH3y T

23

Listing 2-4. Color Artifacting (continued from page 23).

0 Ked

SO ITF PEEKCOLISTHX 2=15 THEN FOKE DLIST

+Xe 14

QO IF PEERKNLISTAX =0 THEN FORE DLIST+

XelC—1

106G Xed L0 TF XE200 THEN 120

110 GOTO 80

120 COLOR LIFOR R=0 T0O 9:FO0R C=0 TO 15
FIFLOT CyRENEXT CINEXT R

130 COLOR 1IFOR R=10 TO 193FOR C=1 TO
159 STERF 2FLOT CyRENEXT CINEXT R

140 FOR R=20 TO 29IF0R C=0 TO 158 STER
QUPLOT CyRINEXT CINEXT R

LS50 STOR

This program changes the display list to ANTIC E. Using only one color register, it paints
different colors on the screen.

24

Chapter 3

Graphics

Once we have decided on which mode or modes we will be using for our program, we can decide
whether or not the standard character set will be suitable for our program. If it is, we can start
working on the program. More than likely, if we have a particular design to our program, we will
want to construct our own character set. We may want to redesign all the letters for special
effects, or we may just want to recreate a few of the graphics characters for our particular
application. Before we can redesign the characters, we must understand the size and structure of
the character set.

CHARACTER SET MAKE-UP

As we determined in the previous chapter, each character in graphics 0 is 8 pixels or one byte
wide and 8 rows or bytes high. The information to create one character on the screen occupies 8
bytes in the character set. The entire character set uses 1K or 1024 bytes of memory. This
information is stored in ROM beginning with location 57344.

The characters in the character set are not in ATASCII order. In order to implement the
color text modes (graphics modes 2 and 3), ATARI chose to change the order of the characters. On
any computer, the ASCII value of A is 65. This is true on the ATARI computer. The change occurs
internally. When the character set is stored in ROM, the first character is the space. It is followed
by the exclamation point, quotation marks, etc. These hold the ATASCII values 32, 33, 34. What
has happened is that the characters from 32 - 95 have been shifted up. These are the numbers,
symbols, and uppercase letters. The graphic characters which appear to occupy the first 32
positions in the character set are moved to the area just past the uppercase letters and just before
the lowercase letters as shown in Table 3-1. Now when you work in graphics modes 1 or 2, you
can select either uppercase letters with numbers and symbols, or lowercase letters with
graphics.

Each character in the character set uses 8 bytes. To find the set of bytes for a particular
character, we multiply its place in the character set by 8 and add the product to 57344. Let’s look
at the construction of the exclamation point. It is the second character in the character set, but
since the first character is in the zero position, the exclamation point’s place is 1.
1x8+57344=57352. The data to place an exclamation point on the screen begins in this memory
location. Use the following program to PEEK at this information.

25

Listing 3-1. Data for Exclamation Point

10 REM LISTING 3.1

20 REM DATA FOR EXCLAMATION FOINT

IO OREM BY LINDA M. SCHREIBER FOR TAR R

O0KS
40 CR=572441REM BEGINNING ADDRESS FOR
CHARACTER SET IN ROM

50 FEF=1k84+CRIREM MULTIFLY THE LOCATION
OF THE CHARACTER RBY 8 AND ADD THE RBEG
INNING ADDRESS OF CHARACTER SET

SO 7 "FCLEARYTIREM CLEAR THE SCREEN

20 FOR X=EF TO EP4+7IREM GET THE INFORM

ATION

8O 7 PEERKOXIIREM FRINT THE INFORMATION

G0 NEXT X

The following number should appear on your screen:

0
24
24
24
24

0
24

0

This information determines which pixels will be turned on to form the exclamation point as
shown in Fig. 3-1.

Because the character set is located in ROM, it is fixed. This character set cannot be
changed. But . . . there is a pointer in RAM that tells the computer where the character set begins
(location 756 decimal). By changing the value of this location, we can point to a new character
set—one that we have created and stored in RAM. The only limitation we have is that the
character set must begin on an even 1K boundary if we are using 1024 bytes or the entire
character set. It must begin on an even 2K boundary if we are using the color text modes. The
color text modes display only half of the character set at a time, so we do not need the entire
character set in RAM. The character set developed and stored in RAM can be placed in any
convenient location. Of course, it should not be in the way of the screen display, display list, or
BASIC program. The best place for it is just before the display list. This way it is high enough in
memory to be out of the way of our program, but it will not interfere with the screen in any way.

RESTRUCTURING THE SET

There are several programs on the market today to help you restructure or edit your
character set. What these programs essentially do is move the character set from ROM into
RAM, then display the character that you want to edit in a large form on the screen. You turn on or

26

decimal character

code

32 space

33 !

34

35 #

65 A

66 B

67 C

Table 3-1. Position of Characters in Character Set.

0 (cn'tl)
1 (contl A)
2 (cntl B)

97 a

98 b

99 c

off the pixels that make up the character. When you are satisfied with the character, you can store
it in the character set. When you are finished creating new characters, you can store the new
character set on disk or cassette.

Another way to create a new character set is to move the character set into RAM, design
your new characters on graph paper, set the decimal value of each of the eight rows that make up
the character, and then poke these values over that character that you intend to replace.

Obviously, it is much easier to create new characters with the aid of a program than it is with
paper and pencil. If you are redesigning most of the characters in the set, you would want to use
the first method. To redesign a few characters, you could use the pencil method. The following
program will allow you to redesign the character set and save the new character set to disk or
cassette. This set can then be used by any BASIC program.

clecdmeal

]
A
o 43

Fig. 3-1. The exclamation point.

27

Listing 3-2. Character Set Editor

10 REM LISTING 3.2

20 REM CHARACTER SET EOLTOR

30 REM BY LeMs SUMHREIRER FOR TaAR BOOKS

40 DIM BECLOY QU7 ¢ 7y o NAMES CE Y y NAME (LA
Yy FLEC20)

S0 DATA Ty v 1 by oy EDITyLETTER

989 REM DATA 'y CTRL-QREy + e CTRIL-ZRE
y EDNITyLETTER - CONTROL CHaRATTERS FOR

M ROX

60 GRAFHICS QI{FORE 752¢013% "CTRL E

TO EDIT A& CHARACTER" ™ "CTRL & - TO &

TOF EWIT™

20 ' "CTRL B ~ SAVE SET T0O LSK*3d °

CTRL L - LOAD SET FROM DISK":? "CTRL

Q - QurrT"

B0 FOR X=1& TO 2I1F0R C=4 TO L3FOSITI

ON XsCO3? "U"INEXT CINEXT X$IREM MARKE AN
88 DISFLAY WITH CTRL~T

SO0 READ BEIFOR X=9 TO L3IREAD RBSIFOSITT
TON 2y X317 BSEINEXT X

100 A=FEERCLIO&) -B8INCE=AX256 IREM FLACE

NEW CHARACTER SET 2K BEFORE END OF MEM

ORY

110 FOKE 204yAIF0ORE 208y 224 5REM STORE

THE NEW CHARACTER SET ADDRESS AND THE

ROM ANURESS

L20 FOR X=1 TO Z20iREAD BIFLE X X)) =0HRE
(B NEXT XIREM MACHINE LANGUAGE SURROU

TINE TO MOVE CHARACTER SET

125 DATA 104y16249 1600l 7792081452

03¢2005208¢2499 2300206230204 2029208
y 242996y

130 Q=USRANRFLSE)Y)y REM USE MACHINE LA

NGUAGE FROGRAM WITH THE USR FUNCTION

140 FOKE 7%5&6yBIREM NOW WE CAN USE THE

SET IN RAM

150 POSITION Fv18iFOR X=0 TO 2687 CHRS
(XD FINEXT XIFOR X=27 TO 31&7 CHR$(27)
CHR$ X 5 sNEXT X

1460 FOSITION 3919 F0R X=32 TO 6317 CHR
FOXT 3 INEXT X

170 FOSTTION 3+200F0R X=&64 TO QG877 CHR
XY 5 ENEXT X

180 FOSITION 3y2LF0OR X=94 TOQ 12437 CH

28

b (X0 5 ENEXT XIFOR X=12%5 TO 12787 CHR%C

279 5 CHRS (XD § INEXT X

190 OFEN #4y4y0s "K$" tREM OFEN KEYBOARD

FOR A READ

200 FOSITION 3v16:7 "READY FOR ENLT
"IE=Q!X=l610us IREM FOSITIO

N OF FIRST CHARACTER ENIT LETTER *

210 GET #$4yBITF B=5 AND E=0 THEN E=110

OTO 400$REM ENIT CHARACTER

220 IF B=19 AND E=l THEN E=03GOSUB 800

IGOTO S00IREM DONE WITH THAT CHARACTER

230 IF E=4 AND E=0 THEN 1640 1REM SAVE

CHARACTER SET

240 IF E=17 AND E=0 THEN FOKE 75é&»2241

FOKE 752,087 *3"(END $REM DONE WITH CH

ARACTER SET

250 IF B=12 AND E=0 THEN 16901REM GET

NEW CHARACTER SET

260 REM USE THE NEXT % FOR TO EDIT A ©

HARACTER

270 IF E=1 AND B=d42 THEN &503REM GO RI

GHT

280 IF E=1 AND E=43 THEN &703REM GOT L

EFT

290 IF E=1 AND B=45 THEN 6901REM GO UF

OO0 IF E=1 AND B=&L THEN Z10sREM GO 00

WN

1O TF R=32 AND E=l THEMN 280REM CHANG

E RIT

320 GOTO 210

400 FOSITION 3y1ét7 "PRESS LETTER TO E

OIT"GET 41

410 IF (R:=246 AND B<323 OR (R:124 AND R

128 THEN FOSITION 11y108% CHRECZZ)0

HRG (R IGEOTO 4460

420 TF B=1L27 THEN 4350

440 FOSITION 111037 CHRES(RBIZGOTO 460

450 FOSITION Se1787? "CANNOT EDLIT THAT

CHARACTER" $E=03FOR TL=1 TO 100INEXT T

460 FOSITION Jelbed "
CIROSITION Sel73® "

"EIF E=O THEN 210
470 AS=RITF R:x31 AND B<94 THEN A&G=k-332

29

Listing 3-2. Character Set Editor (continued from page 29)

sGOTO 490

480 IF B<32 THEN AS=R+64

490 CP=NOREASKSIREM FOSITION OF CHARAD

TER IN CHARACTER SET

500 FOR Q=0 TO Zi0CVU=PEEKQECF) SREM GET
THE VALUES FOR THE CHARATTER

510 CVC0y Q=08 IF CV=127 THEN CUCOyQ) =1
FCV=CV-128

520 CVUCLyQy=081F OV=4F THEN CUCLy Q) =13
CV=(CVU-464

30 CV(2yQy=00TF CVEEL THEN CVI2eQ=1¢

CVY=CV-32

G40 CVE@y=0220F CVELES THEN CVCEs Q=13
CV=CU-16

SEH0 CV 4y Q=02 0F CVEZ THEN CU4y Q=130
V(Y-8

G460 CUCEy Q=00 IF CV:Z THEN CVIEyQi=120
Vwm(ZY—4

S70 DUCAEyQY=0TF CVEL THEN CUC&yQr=130
Ve (G2

G800 CV7y Q=00

G990 NEXT W

HOO K=l S 0= 3F0R Q=0 TO ZiFOR QL=0 TO
FIFOSTITION X4QLy O+ ""TF CUIRLy Q)=
I THEN FOSITION X+QleO40Q87 " "

ALO MEXT QLINEXT QLOCATE XyCeCHIFOSTT
TON Xy C3TF CH=L28 THEN 7 "k"IG0TO $30
G20 T 'k

630 TF E=1 THEN FOSITION Je1&87 "USE A
RROW KEYS TO EDLT"

440 GOTD 210

SUC FOSITION XeC37 CHR$ECDHY EX=X4HLETF X
223 THEN X=14

4660 GOTO 720

G700 FOSITION X032
“léb THEN X=23

680 GOTD 720

490 FOSITION Xy(03
=h THEN O=13

700 GOTO 720

710 FOSITION Xs(C2
=13 THEN C=6é

720 LOCATE XeCoCHIFOSITION Xy CELIF CHEL
Q7 THEN 7 "X":GAT0O 740

TOOHRE COHY $X=X- 18 TF X

T CHR$(CHY $C=C~L2IF C

TOCHRECCHY SC=04+1 0 TF ©

30

730 7 "k

740 GOTO 210

750 LOCATE XeCeCRILF CE51328 THEN CTH=

PO2=0R-12810VX-1&y Q& a=08GOTO 270

760 CH=160302=0241281 00 (X~1&sy Cmd =1

270 FOSITION XeC% CHRECC2YGEOTO 210

800 IGTTION 3 la T "EILT FINISHED
"EREM FHhNUI MESSAGE

BLlO CV=0iR=128F0R Q=0 TO ZFOR @1l=0 T

0 73IREM LUNULhT THE 1 & 075 TO DECIMAL

G20 IF YLy Q=1 THEN CU=CUHR

B30 B=RAZINEXT QLIREM REDUCE B FOR EAC

H FOSTITION

840 FORE CP4+QyCVIREM CHANGE THE BYTE I

N THE CHARACTER SET

850 CV=01B=128 0 REM RESET THE VARTABLES
FOR NEXT BYTE

BHG NEXT QEREM FINISH THE CHARATER

G70 CP=NCRIFOSITION 1Le0037 " " IRETURN
FREM RESET TO CLEAR THE CH&SRACTER FRO

M SCREEN

1640 NAMEG:=" "IFOSTITION 3.
14687 "ENTER NAME FOR FILE"$TINFUT NAME

$3IIF NAME$="" THEN 200

16G0 NAMB Ly 20 =" " INAME (30 1O =NAMES TN

AMBCL Ly 14" CHE EREM CODE FILE FOR CH

ARACTER EASE

1660 TRAF 174030FEN #2y8y 0y NAMEIFOR Q=

NCE TO NCBE+LOZ2ZIICV=PEEKCQ)Y SREM GET THE
VALUES FOR THE CHARACTER SET

1670 FUT #2yCUINEXT QIREM FUT THE Val.l

ES ONTO DISK

1680 CLOSE #2:60TO 200

1690 NAM$=" "IFOSITION 3y
1687 "ENTER NAME FOR FLLE"S CINFUT NAME

$31F NAME$="" THEN 200

L1700 NAME(Ly2)="12" INAME () =NAMES I NAME
(LEN(NAME$)+3) =", CHE" IREM CODE FILE FO

R CHARACTER RASE

1710 TRAF 17400FEN #2445 0eNAMSIFOR Q=

NCE TO NCRBR+HLOZIIGET #2yCVUIREM GET THE

VALUES FOR THE CHARACTER SET

1720 FORKE QyCVINEXT QREM FUT THE Vall

31

Listing 3-2. Character Set Editor (continued from page 31)

ES ONTO DISK

1730 CLOSE #2:607T0 200

1740 ER=FEERCLSE) ICLOSE #21REM GET THE
ERROR NUMBER & CLOSE FILE

1750 IF ER=170 THEN FOSITION 3yl637F "F

TLE NOT FOUNI TLEOTO 18
COIREM GIVE ERROR MESSAEE

1760 IF ER=142 THEN FOSITION 3y1637 "I
IT8SK FULL PLGOTO 1B
00

1770 IF ER=169 THEN FOSITION 3v1l&3T "D
IRECTORY FULL - GET NEW DIGK ":GOTO 18

GO
1780 FOSITION Fel&37 "WEVE GOT A FROR
.EM ;

1800 FOR X=1 TO 1GOINEXT XiGOTO 200

Line 50 is the data needed to draw the box on the screen to show what letter/character is
being edited. Be sure that this data line is entered exactly as follows: an exclamation point, a
space cntrl-Q centrl-R entrl-C, space shift-equals space shift-equals, space cntrl-Z cntrl-R cntrl-Z,
space EDIT, LETTER.

Lines 60-70 set the graphics mode to 0, erase the cursor, and print the control codes on the
screen. : .

Lines 80-90 print the grid and box on the screen. Use the cntrl-T to make the 8x8 grid.

Line 100 finds the end of memory and calculates the address that would be 2K before the end
of memory. This leaves 1K for the character set and 1K for the screen display and display list.

Line 110 pokes the new character set address and the old character set address into RAM.
These two values will be used in the machine language subroutine that moves the character set
from ROM into RAM.

Line 120 contains the machine language subroutine to move the character set from ROM into
RAM. P1$ must be exact if the routine is to work correctly. The data for the subroutine is in line
125. Be sure that these numbers are entered correctly. If they are not, the program will crash.

Line 130 uses the USR function to call the machine language subroutine. The Q is a dummy
variable.

Line 140 changes the address of location 756 from the character set in ROM to the character
set in RAM.

Lines 150-180 print the entire character set on the screen. In order to print some codes, the
escape key must be entered first. When we are printing characters using the CHR$ command, we
can issue an escape code by printing CHR$(27) just before the character. In this way we can
display all the characters in the character set.

Line 190 opens the keyboard for reading. When editing the character set, we will use only
one key stroke commands.

32

Line 200 prints the prompt under the square and grid. There are 15 spaces after the T to clear
out any previous message. We will be returning to this line after several of the subroutines in this
program. The variable E will be our flag to let the computer know whether or not we are editing a
character. When it is set to 0, we can use the control codes to begin an edit, load a character set,
save a character set, or quit. When the E is set to 1, we can stop an edit or edit a character using
the arrow keys. The variable X is the row that the cursor is in on the screen, and C is the column.

Line 210 gets the keystroke from the keyboard and checks it for a control-E. If it is a
control-E and we are not in the edit mode, the variable E will change to 1 and the program will go
to line 400.

Line 220 checks the variable B for a control-S. If the program is in the edit mode, and the
control-S is pressed, the program will leave the edit mode and go to the routines that will restore
the grid and erase the character in the box. The variable E is also reset to 0.

Line 230 checks for a control-D. When a control-D is pressed and the program is not in the
edit mode, the program will save the character set displayed on the screen. This program stores
the character set to disk. It can be changed to store the characters to cassette by opening the
cassette instead of the disk. You do not need a name for the file if you are using a cassette.

Line 240 will end the program when a control-Q is pressed. Before ending, the program will
restore the ROM character set, restore the cursor, and clear the screen. Whenever an alternate
character set is used in a program, it is good programming practice to reset the pointer to the
ROM character set. Loading anew program with an alternate character set could confuse the next
user.

Line 250 will direct the program to the routine that loads a new character set from disk or
cassette when a control-L is pressed.

Lines 270-310 will direct the program to the lines that alter the character set when the
variable E is set to 1 and an arrow key or space bar is pressed.

Line 320 will loop back to line 210 if the key pressed is not one of the control keys used in this
program. :

Line 400 begins the edit mode. The prompt under the grid is changed and the program waits
for a key to be pressed.

Lines 410-460 check the key that has been pressed. If it is one of the screen function keys,
clear screen, line up or down, etc., the program will not allow it to be edited, and will print a
message to that effect on the screen. If it is a character that can be edited, it will be printed in the
box on the screen.

Lines 470-480 check the value of B and store the actual location in the character set in
variable AS. Bis stored in AS before it is checked. There is no else command in ATARI BASIC, so
we will store the actual value of B in AS. If it is not a character whose location needs to be
changed, AS will be set correctly. If the ATASCII value of the key pressed is greater than 31 and
less than 96, that is any key other than a graphics character or lowercase letter, the program will
subtract 32 from B and store it in AS. These are the characters that have been moved up in the
actual character set. If the value of B is less than 32, a graphics character has been entered and the
program adds 64 to the value of B and stores it in AS. Remember that the graphics characters are
located between the uppercase letters and the lowercase letters in the actual character set.

Line 490 calculates the position of the first byte of the character in the character set. The
position of the character that is stored in AS is multiplied by 8 (each character uses 8 bytes) and
this value is added to the location of the character set. The variable CP contains the location of the
first byte of the character that will be edited.

33

Lines 500-590 convert the decimal value of each byte into a binary value. Each bit is stored in
the array CV. This routine is similar to the routine used in Chapter 1. It takes the decimal value of
the byte and compares it to 127. If the number is greater than 127, then the first bit is a one. The
program subtracts 128 from the value in CV. The next line checks the remaining value to see if the
next bit should be set. Each line continues to check the value of CV against the value of that bit
less one. We use one less than the actual bit value because if that bit were set, and we subtracted
the bit value, the remainder would be zero. There would be no indication that we should get that
bit unless the decimal number was larger than the bit value. By using the bit value less one, we
will get a remainder of one if the decimal value is equal to or larger than that place value. Every
time the program sets a bit to one, it subtracts the value of that place or bit from the decimal value
of the byte. This routine is repeated 8 times; once for each byte that makes up the character set.

Lines 600-620 reset the row and column values for the 8 x8 grid and using the values in the
array CV, draws the character onto the grid. A control-T is printed. Then the value of CV is
checked for a 1. If that element of the array does contain a 1, an inverse-video cursor will be
printed. Once the entire character has been drawn, the program will use the locate command to
find out what has been printed in the upper left corner of the grid. The ATASCII value of this
character will be stored in the variable CH. The asterisk will be our cursor while editing. If the
character in the upper left corner is in inverse-video, an inverse-video asterisk will be printed
there.

Line 630 checks E to see if we are, in fact, in the editing mode. If we are, it prints the prompt
on the screen. This routine then goes back to line 210.

Lines 650-740 move the asterisk cursor in the grid. The character that is stored in CH is
printed in the grid where the asterisk is. If we are moving the asterisk to the right (line 650), the
variable X is incremented. If we are moving it to the left (line 670), X is decremented. Moving the
asterisk up (line 690) decrements C and moving it down (line 710) increments C. After the
variable X or C is changed, the program checks it to make sure that it is not beyond the grid area. If
it is, the variable is reset to the other side of the grid, giving it a wrap-around feature. Once X or C
are correctly set, the program gets the ATASCII value of the character that the asterisk will be
replacing and stores it in CH. Once again, if the character was in normal text, an asterisk will be
printed. If the character was an inverse-video cursor, an inverse-video asterisk will be printed.

Lines 750-770 change the character in the grid from a ball (cntrl-T) to an inverse-video
cursor and back again. When the space bar is pressed, and the program is in the edit mode, it will
be directed to this routine. The locate command gets the ATASCII value of the cursor. If it is in
inverse-video, then the value of the character that was there will be changed to 20 (cntrl-T), and
the asterisk will be reprinted in normal video. Otherwise, the character that was there will be
changed to the inverse-video cursor value, and the asterisk will be printed in inverse-video. When
the value of CH is changed to 160, indicating that we are setting that bit, the value in the array CV
is changed to 1 for the corresponding bit. When we erase a bit from the screen, the value of the
corresponding bit is changed back to 0.

Lines 800-870 are used when we are satisfied with the new character that we have just
created. The new prompt is printed on the screen, and the values stored in the array CV are
converted into decimal. This procedure is simpler than the convert from decimal to binary
routine. The variable CV is cleared. This variable contains the decimal value of the character. The
variable Bis set to 128 - the bit value of the most significant bit in the byte. If the leftmost bit is set
to one, this value will be added to CV. Since each bit is half the value of the preceding bit in a
byte, we divide B by 2 each time we check the next element of the array. Each time an element

34

contains a 1, we add the value of B to CV. After we have checked each of the 8 elements of the
array that represent the byte, we will have the decimal value of that byte. That value will be poked
into the position of that byte in the character set in RAM. The variables CV and B are reset after
each byte. Once the entire character has been moved into the character set, it is removed from the
box on the screen and the routine returns to the main part of the program. Since the entire
character set is displayed on the screen and it is being used for the prompts as well, it would not be
wise to change the uppercase letters or the characters that are being used in the editing modes,
especially the control-T, unless absolutely necessary.

Lines 1640-1680 save the character set that we edited to disk. The string variable NAMS$ is
cleared of the last entry, or garbage that the string contains from the previous program. The name
that you want to call this set is placed in NAMES. If you press the return key without entering a
name, the program will return to the menu. All good programs have an abort code that returns you
to the menu should you enter a routine by mistake. When you enter the name of the character set,
you do not have to enter the D: before the name.

Line 1650 takes the name that you enter and adds the D: before the name. It also appends the
name with .CHB. This will separate the character sets from any other programs or files on the
disk. The program then opens the file and, using the peek command gets every byte of the
character set, and puts in on the disk. When the entire set has been stored on disk, the file is
closed. There is a trap set before the file is opened. If the disk or the directory is full, it will be
reported on the screen.

Lines 1690-1730 get the character sets that we previously stored on the disk. The string
variable NAMS is cleared, and the program asks for the name of the character set that you would
like to bringin. If you press the return key without entering a name, the program will return to the
main menu. Once again, the program will add the D: to the beginning of the character set name,
and .CHB to the end of the name. The trap is set, and the program will bring in the character set.
This routine can be used in any program to bring in a character set that is stored on disk. Instead of
having the program ask for the name of the character set, you could specify it in the program lines.
This way, any character set that is designed with this program can be used with any other
program. Once the character set has been read in, the program will close the file and return to the
menu.

Lines 1740-1800 trap the disk errors. The error number is stored in decimal location 195. By
peeking at this location, we can get the number of the error. If the file was not found, the disk is
full, or the directory is full, this message will appear on the screen. If any other error caused the
program to go to this routine, We've got a problem will be printed on the screen. Normally,
every possible error is tested for, but in this case, the error could be 144, which could be the
result of anything from a bad disk to the disk door being left open. In this program, we'll let the
user know that something has gone wrong, and then return to the menu.

The character sets created with this program can be used in any program that requires a
different character set. It can be used in text mode or the colored text modes. If you have a
cassette recorder, change the following lines.

70 change the word disk to cassette

1640 delete the INPUTSs

1650 delete

1660 change the OPEN command to OPEN #7,8,0,“C:”

35

1680 CLOSE #7

1690 delete the INPUT

1700 delete

1710 change the OPEN command to OPEN #7,4,0,“C:”
1730 CLOSE #7

Lines 1740-1800 can be deleted or changed for cassette errors: error 143 and error 138.

When using the new character set in another program, calculate the location of the new
character set. This will be the first location that the first byte of the character set will be poked in.
Always begin the new character set at least 1K before the display list and the screen display.

THE INVISIBLE MODES

In the last chapter, we looked at all the modes that are available on the ATARI. Some of these
modes are available in BASIC, others can only be accessed by changing the display list. Using the
character editor in this chapter, we could reconstruct the lowercase letters for ANTIC 3, save
them to disk, then read them in for the program. We would not have to move the character set
from ROM. We would have our new set on disk.

Two other modes between graphics mode 0 and graphics mode 1 are ANTIC 4 and ANTIC 5.
Both of these modes are text modes, but they support multicolored characters. Each character in
these modes is eight pixels wide, but the pixels are turned on or off in pairs. The net effect is that
the character is four bits wide.

The color of the character is determined by the bit combination of every pair of bits in the
byte. Look at Fig. 3-2. The first bit pair is 11. The pixels that would be turned on for this part of the
character would be in the color set by color register 3 (peek 711). The second pair of bits, 01, will
be the color of color register 1 (peek 709). The third bit combination, 10, will be the color of color
register 2 (peek 710). The last bit combination is 00. This is the background color, the color of
register O (peek 708).

The characters designed using these modes can be one color, or several colors. In the
following program, we will design a screen that uses ANTIC mode 4. It gives the illusion of being
graphics mode 7 without the memory consumption.

This type of program is called a simulation. It simulates a simple circuit. When the circuit is
complete, the light will light; when it is broken, the light will go out. The bottom of the light and
the wire is the same character. The top of the battery and the wire is also the same character. By
using two different bit patterns in each of these characters, we can create a two-color character.
By using three different bit patterns, we could create a three-color character.

5 S |
1 1

1 O R O Fig. 3-2. Bit pairs for color.
] 1 1
] ¥

Fach sairv of tbits resresents a different color

register,

36

Listing 3-3. Multicolor Characters

1G
20
30
40
S0
EW
Y
&0
HE
M
70
DI
INE
Pav

REM LISTING 3.3

KEM ANTIC 4 - MULTICOLOR CHARACTERS
REM BY LM, SCHREIBER FOR TAR BOORS
DIM FLs o)
A=FEERCL0&) =8 INCR=AXZES IREM FLACE N
CHARATTER SET 2K REFORE END OF MEMO

FORE 204yAIFORE 206y 224 0REM STORE T
NEW CHARACTER SET ADNDRESS AND THE R
ANDRESS
FOR K=10TO Q0TREAD BIFLE (X X =0HREC
NEXT XEREM MACHINE LANGUAGE SURROUT
TO MOVE CHARACTER SET

DATA 104y 146294y 186000 1779200014520

FyR200y 208249y 23052086y 230+20422029208y

242

v P b

SO Q=USROADRFLE))2 "FOLEARY " IREM USE
MACHINE LANGUAGE FROGRASM WITH THE USR

F
70
ET
100G
aT
110

NETITON

OLTST=FEER (SS0)HFEER CHA1 X226 IREM G
THE LOCATION OF THE DISFLAY LIST
FORKE DLISTHE» &8TREM CHANGE THE FIR

LINE TO ANTIC 4

FOR X=DLTST+HS TO OLISTH2B8IREM IN G

RAFHICES O THE DLIST 1§ 32 BYTES LONG

1320

T0
130G
140
185G
160

280

FORE XeddIREM CHANGE Al THEN LINES
ANT TG 4

NEXT X

Febitd CONTERQOQL & -~ UFFER LEFT CORMNER
DaTh 8858484964649 549649 64

REM CONTROL B - TOPF L INE

DaTé B8ESe0eQeQuQeQy e

REM CONTROL C - TOF QF BATTERY
DATE 8Ll 7elZelZe 700170 170170
FEM CONTROL O - UFFER RIGHT CORNER
DaTa S%elelelelvlvlel

FEM CONTROL F - LOWER RIGHT CORNER
UATHE Leylelelelodsl 88

FEM CONTROL Fo- BOTTOM L INE

DATA 0D Qe0s0v0y0y8H

FEM CONTROL G - ROTTOM OF RBULR
DATA S1leSLeSleSlel2y 121285

FEM CONTROL H - BOTTOM LEFT CORNER

—

37

Listing 3-3. Multicolor Characters (continued from page 37)

290 NATH 64v64v64y64v84y64y 64980
300 REM CONTROL I - LEVER UF
JLO UATA OO0y Qe 2vBy32012840
R0 REM OCONTROL J - LEVER FARTWAY DOWN
SROQ DATA CeQeOvQul Q32012850
340 REM CONTROL K -~ LEVER NEARLY DOWN
3460 TATA OvQv0eQev0v 1016040
370 REM CONTROL L -~ RIGHT STOE
A0 DATA 6435496496463 6549649 64
FP0 REM CONTROL M -~ LEFT SITDE
400 DATH Lelvlelelvlelyld
410 REM CONTROL N - LEVER DOWN
420 DATH OeOev0vQedvQvly 170
430 REM CONTROL O - BATTERY BOTTOM
440 [HATA L7009 1700 1700170y 170y 1701701
70
A0 REM CONTROL P~ BULE TOF
AEC TATH QeOe OOyl QdeBleSHleHl
470 FOR X=NORTSEXRE TO NOBRHSLXE8-1LIREM F
TRST BYTE OF CONTROL A
AEO READ BIFOKE XyBRINEXT XIREM REDNESITG
NODONTROL CHASRACTERS
A0 FOKE ZE&« M TREM USE THE NEW CHARAGT
ER SET
SO0 FOETTION 181007 "FABRBRBUBERIY"IFQST
TION $85s318% "Xk MO FMMTIFDSITION

Lawl2d® YELF FHRE P
910 FOSTTION 1821337 '"YHFIFFGFEY®
S0 TL=3016008U8 4003 TL=35
B30 FOSITION 171337 "XAF"G0SUR 610K
EM BRING THE SWITOH DOWN
S40 FOSITION 17y133% "FRI"IGOSUR 610
BEQ FOSITION 17y LELT "HINF"IC=PEEKCZ10)
FFOKE 710918
HHEO TL=301GE06UR H00TL=d
S0 FOSITION 1703877 "HMRI"IFOKE 710903
GOSUR &10
HEO POSITION 171387 ">AX"LG0SUR 610
SO0 FOSITION 17¢138% "XI>X"160TO H20
HOO TF F R{S53279)=6 THEN 400
S10 PORE 27y 00F0OR T=1 TO TLINEXT TIRET
LRN

Line 40 sets P1$ for 20 characters. The machine language subroutine to move the character

set from ROM into RAM will be placed in this string.

38

Table 3-2. Machine Language Listing to Move Character Set From ROM to RAM.

104 L Pl e soocumalator of

Lo

Wi bt .

Lk g 1.0

¥owidth Q.

dLooasd e

PR vl b sooumulator

Wbt e conternts of e

memore Loaostid

conternts of inde:x Y Lo

Lie memors location

corvbents dn Location 2059

LY inboave Lhe roamer L bhe

accumulator dn the

avriven st

soiciing the concbents of

L dmcdes Y Wit Lhe

contents of locations

39

Table 3-2. Machine Language Listing to Move Character Set From ROM to RAM (continued from page 39).

ptio g Iy f Tnoremnent bhe dnoes Y
BN s Rrann 4T bhe dndes Y ds
ot O Dackwsvos & Dubes.

ficioh e Lo Lhe roamiisr dn

atdon

ING 204 Padd one to the number in

o DX iNecvemnert bhe drnoes

BHE Phvanen 4T Lie dncdes X ods

Line 50 subtracts 8 from the number of pages of RAM in your system. This is 2K of memory.
1K is set aside for the screen and display list. The other 1K is for the character set. We will move
it just before the display list. The variable NCB will contain the decimal location of the new
character base. s

Line 60 stores the location of the new character base and the ROM character base in two
temporary locations. These locations will be used by the machine language subroutine.

Line 70 contains the machine language subroutine. The data for the machine language
subroutine is in line 75. Be sure that all the numbers are entered correctly.

Line 80 uses the USR command to execute the machine language subroutine. See Table 3-2
for the assembly language listing of this routine.

Line 90 calculates the beginning address of the display list by multiplying the value of
decimal location 561 by 256 and adding it to 560. The address of the display list is always a 2-byte
figure.

Lines 100-130 change the display list from graphics mode 0 (ANTIC 2) to ANTIC 4. The first
line of the screen is combined with a command that tells the CTIA where the first memory
location of screen data is. To change this line to ANTIC 4, you must add 3 to the first address of the
display list and poke this memory location with 68. Since ANTIC 4 uses the same number of lines
on the screen as graphics mode 0, we know that there are 23 more locations to change from 2 to 4.
By adding 6 to 28 to the address of the display list, we can change the entire screen from graphics
mode 0 to ANTIC 4. .

Lines 140-460 contain the data to change the standard graphics characters to the ones that

40

D
P

<7

P
R

o)
L
-

“—

A)

L6

N
"
N

et

T
o

x]

™

ot

[

[

it

i

23

G
.

o

ko

[Sg

o

&

o
#

O

ool

In circuit.

Fig. 3-3. Character set

41

i 1 1 i 1 ' | I | | ' | : i i 1
1 : ! i i i i i t i i i 1 ' ! i
: i 1 | i i | i i : i : ! 1 : i
! ! i : 1 ! i i i ; I 1 ! I I |
; : i i | 1 : ; i 1 ; | ; : 4 ;
i 1 ' ' 1 : 1 1 ! | ! 1 ' : :
" i)) ' | s 5 o B ggen) | i i i B " o hEY
I i ! : : oamrihrol i Py : R TR W A e
1 H i 4 i i i H 0y ! H ' ! i i i]
i i i : i : 1 1] ! 1 i ! 1) 1%
i 1 i i t %9 i L3 i $ i 1 1 1 1 1
i ! 1 i 1 I : i 1 ! | ! i 1 '
' A ' i i : i : | i ! 1 :
i i A i i 1 i ! i i ') : : i
i | | i ' f | i : ! ' : 1 ! |
i | i : i : i : i ; i i i i
1 ! 1 i ' 1 i [') 1 | 1 1 | 1 }
1 i 1 1 i l I A 1 ! | 1 Il i 1 1 1
| 1 1 | 1 i ! 1o ! | ! ' 1 1 1 1 i
1 i i 1 i i 1 1A i 1 1 1 1 i i ! l
| ' ' 1 ‘ 1 1 U i | 1 i ' 1 1 1 |
1 1 1 ! 1 1 1 [t t | 1 1 1 i !)
t i i) 1 ! I Vet f i 1 1 i P : ' '
! 1 i i 1 | i [1 | | | 1 i 1 1 1
i i ' | 1 i | HAR T s padls spe gy i 1 ! i i i 1 i R, .
I 1 1 ! \ ! ' 1 ¥ coritreoal i 1 i i i 1 1 1 Vocontrol
1 | i | i i 1 IR 1 i i 1 ' ' i i i o
i 1 1 1 | 1 i [i 1 1 i 1 1 1 1 i i i
| 1 1 1 1 i 1 1yt ' | 1 1 1 ! 1 I 1
1 ' 1 | 1 1 i A 1 i 1 1 ! 1 1 i '
1 t i 1 i 1 1 1ol U1 | Fongt v 1
1 ' 1 ' | 1 i P 1A 1A 1A (R 1
Eng R [(IR 1 1 | 1 1 i | ' 1
LA 1A [P 1 1 i 1 1 ! 1 1 i
R [Pas e ! ! 1 1 i 1 | 1 1
L& [A 1A ! i | I i | 1 1 !
1ng T 1 (R ; i 1 i i 1 1 1 1
tA [b t ! P ' ! i I 1 '
TV Lot 1 1 ' i i : i i | ' 1 1
I 1A] [I i ! I ! 1 : i :
J et Pt 1 A 1% i T LTS i 1 1 [T R 1
P A VA 1.5 A T AR 1 ! | AT A |
) 1t 1t 1 ; I i | 1y | R
1 1A] [1 Ll 1 ' A \ S
] Pl 1oae 1w 1 ! : Pone 1 [
A 1A TR [1 i i P 1 VA
' t 1 I i 1 1 1 1 1 1 1 TRV
1 1] 1 ! 1 ¥ 1 14 1 i 1] 1 7% 1] 1 2% 1S

Fig. 3-3. continued from page 41.

will be used in this program. Each character can be one, two, or three colors depending on which
bits are set in each byte. See Fig. 3-3 for a detailed description of each character.
Lines 470-480 read the bytes for each character and poke them into the correct locations.
Line 490 changes the character set used from the one in ROM to the modified one in RAM.
Lines 500-510 print the diagram on the screen. Each letter in the quotation marks should be
entered as a graphics character. Use the control key to enter these characters into the program.
Lines 520-610 make up the body of the program. The variable TL is set to 30. This value will
be used in the timing loop. The program goes to the subroutine in line 600. Here it waits for the
start key to be pressed. The program will continue to loop until the start key is pressed. Once it is
pressed, the program will reset the attract mode, and enter the timing loop in line 610. This
timing loop is needed to smooth the program. Without it, the computer would read that the start
key was pressed before you had a chance to take your finger off the key. After the timing loop, the
program returns to the line that it came from. The variable TL is reset to 5, and the program will
lower or raise the lever. Again, be sure that each letter in the quotation marks is entered as a
graphics character. We will use the timing loop after each time the lever is drawn. If the lever is
being lowered, the light will glow once the connection has been made. If the lever is being raised,
the light will go out as soon as the connection is broken.

42

ANTIC 5 could use the character set that we created in this program. The characters,
however, would be 16 scan lines tall instead of the 8 in ANTIC 4. The display list would be
shortened by 12 bytes. The characters drawn with ANTIC 5 would appear to be in graphics mode

5. Again, we can obtain higher resolution graphics without using large amounts of computer
memory.

43

Chapter 4

Principles
of Animation

Good use of graphics will enhance any program. But graphics alone are like cake without icing. We
all prefer movies to snapshots. Movies, cartoons, television, and most other forms of entertain-
ment rely heavily on movement along with color, sound, and pictures.

In real life, people, animals, and objects move with a particular rhythm. Any movement that
differs from the norm appears unnatural and artificial. Artists try to imitate the natural move-
ments of their characters when they create cartoons. Hundreds of drawings make up one feature
length film. Each drawing is slightly different than the last, so that when they are run together, the
characters move smoothly across the screen.

Using animation in programs is not difficult, but it does take extra planning to create
believable characters that move gracefully on the screen.

CHARACTERS WITH A PURPOSE

If we had a computer with block graphics, and no way to redefine the character set, we could
make a few stick figures and leave the rest to the user’s imagination. But, we don’t. We can change
the characters to create believable figures and characters. We can alter parts of the character so
that when it is printed on the screen, we have true animation.

Good graphics and good animation does not come easily. Each character that is drawn on the
screen must be carefully thought out. We have several different graphic modes available to us.
Before designing the character set, we must decide what type of program we are designing, how
much animation or movement will be involved, and how the screen will be laid out for good color
and movement.

Once we have decided on the type of program, we can begin to design the characters. By
using graph paper, we can set a good idea of what the character will look like on the screen.

The first program that follows uses a very simple form of animation. As the keys 1-8 are
pressed, a note floats up from the corresponding pipe and a tone sounds. The note does not appear
all at once. Figure 4-1 shows the parts of the note that appear on the screen. Once the entire note
is on the screen, it floats to the top of the screen. Four more characters are used to give the
illusion of movement on the screen. When the note reaches the top, it does not disappear from the
screen all at once. One row of the note is removed at a time until the entire note is gone. As you
can see from the drawings, several characters had to be redefined to give the notes the different

45

b

s

e

4

e

vy
R

b
e
A

ne
Su

ed

Fig. 4-1. Character set for notes.

46

g
S

>

>
s

SN
ST

b

B

-,

P

>

S
ot et
A,
e
R
o~ i H

47

st

o
s
R

L
gt
3
o e
-, 20

X4
2
A i
PN P

»C

Lol

s

Fig. 4-1. continued from page 47.

forms that they need. Each note is just slightly different than the others. This keeps the
movement of the notes smooth as they appear and disappear. If the notes were drastically

different, their movement would be choppy and artificial looking.

Listing 4-1. Simple Animation

BOOKS

THR

R

TRER

HRE

8C

eMe

REM RY

30

48

A0 DIM NTES8) yFLEC20)

50 A=PEERKLO&) -8 CR=AX2GAIREN FLACE CH
ARACTER SET 2K BEFORE END OF MEMORY

60 FORE 204y ALFORE 206y 224 REM STORE T
HE NEW CHARACDTER SET ADURESS AND THE R
OM ADDRESS

70 FOR X=1 TO 20IREAD BIFLH Xy X)) =CHRE(
BYINEXT XIREM MACHINE LANGUAGE SUBROUT
INE TO MOVE CHARACTER SET

75 DATA 104y 162v A4y 160p 0177220014520
FTyR005208y249 923052069 230204,202208y
24296

80 Q=USKROATRPLE)) SREM USE MACHINE LAN
GUAGE FROGRAM WITH THE USSR FUNCTION

90 FOR X=8 TO 17%9iREAD CIFOKE CB+X»CiN
EXT X

100 DATA Byl2s10:8s8s 10424896

110 DATA 4»&eHePe8r 104248996

120 DATA O0y2e3pHe Py 104613448

130 DATA 8y12y 1084y 521324y 48

140 DATA 11219232 16»8248y112+96

150 0ATA 121088y 1042489640

160 TATA 1088y 1042480945504 0

170 DATA 8yB8y104v248y 96902040

180 IATA 81042248994y 0502040

190 DATA 104,248y 98y Qv 0Oy 0r0v0

200 NATAH 248396020y 0s 000

210 DATA 96909000y 0v0sQe0

220 DATA 0v0pOsOsQv Qe

2O LATA OvOv0rOrQeOyEeld

240 DATA GyQrQeQs0v8y 1210

250 NATA CGeOeQrOeBy 2o 108

260 DATA Ov0rOrBe 12y 1088

D0 NATAH Ov0yBy 121 0eByEy 104

2BO DATA Ge8yl12y 10881042248

290 DATA 255258 255y 255
FO0 NATA 205y 255y 125y 196y 205 » 205y 2HH 2
h

340 GRAFHICS 17IREM USE LAaRGE COLOR TE
XT MODE

30 FOKE 7346y ATREM NOW WE CAN USE THE

SET IN RAM

3460 RZ=9IFOR R=10 TO 2QOLFOR X=2 T0O 16

ST T
e A

y Ay BEHB Y 2

P

49

Listing 4-1. Simple Animation (continued from page 49)

STEF 23F0SITION XyREIREM MAKE THE FIFES

370 IF R-X<:R2 THEN # 4#65"4"GOT0 3904%

REM MAKE THE FIFE SO0LID

IB0 T FEHF"E" TR2=RE-LIREM MAKE THE AILR

HOLE

390 NEXT XINEXT R

400 NTES="gl *LQAHE" IREM CHARACTER OF T

HE NOTES-4l diamond left-bracket QHE

410 OFEN #4y450y "K3"IREM OFEN THE KEYR

0ARD FOR A READ

420 FOKE 7643255 16GET #4,CH1F Cx127 THE

N C=C-128F0KE 694y 0iREM GET THE KEY P

RESSED

430 IF Cu49 OR G856 THEN A208REM NOT A
NUMEE R

440 CLOSE #4:REM GOT THE NOTE

450 C=C-48iREM FLACE OF NOTE

4460 X=0X2i1R=9SREM COLUMN FOR THE NOTE

ON THE SCREEN

470 SOUND OvASCINTESCC3) v 10 LOTREM &

OQUND OF THE NOTE

ABO FOR Ril=1 TO Z3FOSITION XeRET &6 CH

R$C444RL SREM FPRINT FART OF THE NOTE

490 GOSUR BOOTREM TIMER ROUTIMNE

500 NEXT RLIIREM GET THE WHOLE NOTE OUT

SO POSTTION Xeli? 468" P EHOSUR 8003 X2

m¥ tR2=RERL=RIREM LAST FOSITION OF NOTE

H520 FOR R=RI1 TO O STEF -1iREM MOVE UF

THE SCREEN

HRO Xl=INTORNOCOI X2 EX1=X+X1L i REM UHE 0

NE OF TWO FOSITIONS

540 Na=INTRNDCO YRS) IN=33+NIREM GET A N

OTE DISFLAY

HEO FOSITION XLeR:7? S5 CHREONY SREM FRIT

NT THE NOTE

SHO FOSTITION X2eR2:T &8 " " EX2mX] L RE=R
TG0SUR BOOTREM ERASE THE LasT NOTE & R

EMEMBER THIS ONE

570 NEXT RIREM ALl THE Way UF THE SCRE

EN

580 FOSITION XLeOo7 A& " SREM RIGHT T

HE NOTE

50 FOR R=0Q TO &IFOSITION XlLeQ3%F $&550H

i)

50

R C2EHR IGOEUR 800 TREM MAKE THE NOTE D

ISAFFEAR

600 NEXT R

10 FOSITION X1e037% #&65" "IREM ERASE I
-

420 SOUND 020y 0y 0IREM TURN OFF THE $0U
NI

430 GOTO 410

640 ENI

BO4 FOR T=1 TO LOINEXT TIRETURN

Line 40 dimensions two strings. NTE$ will contain the characters whose ATASCII values
represent the tones C-C. P1$ will contain the machine language subroutine to move the character
set from ROM to RAM.

Line 50 subtracts 2K from the amount of RAM in the computer. The decimal address of the
first location of the character set in RAM is stored in CB.

Line 60 pokes the high order address of the memory location of the RAM character set into
204 and the location of the ROM character set in 206. These addresses will be used in the machine
language subroutine that moves the character set from ROM into RAM.

Line 70 places the machine language subroutine into P1$. The data is read from line 75 and
placed in P1$. Be sure that the numbers in the data line are correct.

Line 80 calls the machine language subroutine.

Line 90 reads the data from lines 100-300 and replaces the characters in the character set
from the exclamation point to number five. The variable X is first set to 8. The first 8 locations in
the character set (0-7) contain the data for the space. If the information is changed, the screen will
not be clear. By adding the value of X to CB, we will change the next 21 characters after the space.

Line 340 begins the program. The graphics mode is set to 17—large color print with no text
window.

Line 350 pokes 756 with the value of A. The variable A contains the high order address of the
RAM based character set. By poking this location, you can change the character set.

Lines 360-390 draw the pipes on the screen. To place the air hole in the correct position in
each pipe, R2is set to 9. When the difference between the pipe’s row and its column is equal to R2,
the air hole will be drawn instead of the solid pipe. After the air hole is drawn, R2 is decreased by
1. Each air hole will therefore be slightly lower than the previous one.

Line 400 places one character for each note into NTE$. Be sure that this line is entered
correctly, or you will hear some strange tones. It is—y1 control period left bracket QHe <

Line 410 opens the keyboard with the read command.

Line 420 clears location 764. By setting it to 255, you guarantee that the next key pressed
will be the tone that you want. If you didn’t clear it, the last key pressed would be stored in that
location. It could be a key that you pressed by accident. Now the program will wait until a key is
pressed. The ATASCII value of the key will be stored in the variable C. If the value of C is greater
than 127, it means that the inverse key was accidentally pressed. The program subtracts 128 from
the value of C to get the correct value of the key pressed. By poking location 694 with a 0, the
inverse flag is reset. The next key pressed will have a value less than 128.

51

Line 430 checks the value of C to make sure that it is a number between 1 and 8. If it is not,
the program goes back to line 420 to wait for another key value.

Line 440 closes the keyboard.

Line 450 calculates the key that was pressed. Since the ATASCII value of 1is 49, we can set
the correct value of the number keys by subtracting 48 from C.

Line 460 calculates the column of the pipe that the note will appear above. The pipes are all 2
columns apart. The value of C is multiplied by 2. R is the row that the note will be printed in.

Line 470 turns on the sound. We use the ASCII of the character located in position C of
NTE$. Remember, Cis the key pressed. If a 2 was pressed, the tone would be the ASCII value of a
lowercase 1. This value corresponds to the tone of D.

Lines 480-500 print the note above the correct pipe. Each time the note is printed, it is the
next note in the sequence of characters that make up the notes. First the tip of the note shows,
then a little of the stem, etc., until the entire note appears on the screen. The characters used for
the notes come one after another in the character set. By adding the value of R1 to 44 (the
character just before the first note), we can print the entire sequence of notes easily.

Line 510 prints the entire note above the correct pipe. The position of this note is stored in
the variables X2, R2, and R1. These locations will be used in the next routine.

Lines 520-570 give the illusion that the note is floating to the top of the screen. Each note is
printed either in the same column as the pipe, or one column to the right of the pipe. Line 530
chooses either a 0 or a 1. Add this value to the value of the pipe column (X) in order to calculate the
column for the next image of the note. Line 540 chooses one of the five variations that the note can
have. The value of N is added to 33 to arrive at the note that will be printed. Line 550 prints the
chosen note in the correct column and row. The last note is erased, and the values of the new note
are stored in X2 and R2.

Line 580 prints the note one last time before it begins to disappear off the top of the screen.

Lines 590-600 erase the note slowly from the screen. This time the characters that make the
note disappear one row at a time will be used. These characters are also placed sequentially in the
character set. By adding the value of R to 38, each character for the note will be printed.

Line 610 erases the last row of the note.

Line 620 turns off the sound.

Line 630 sends the program back to 410 to open the keyboard and wait for another key to be
pressed.

Line 800 is the timing routine. The program uses it everytime a note is printed on the screen.
Without it, the characters would be printed too fast on the screen.

In the next two programs, the character set for an airplane is redesigned. The plane will
travel from right to left across the screen. Listing 4-2 uses graphics mode 2 without the text
window. Listing 4-3 uses the text mode. In both programs, the plane shows some hesitation. The
movement is not as smooth as in the previous program. This is because more than one character is
moving on the screen at the same time. In the previous program, only one character was moving at
any particular time. BASIC was fast enough to erase one character and replace it with a new one.
In these programs, the five characters that create the plane are moving at the same time. There
are three characters that must be erased while the plane is being drawn in the new position.
BASIC is too slow to erase and draw this many characters at one time.

52

Listing 4-2. Simple Animation—Second Method

10 REM LISTING 4.3
20 REM SIMPLE aNIMATION

30 REM BY LMo SCHREITBER FOR TAR ROOKS

A0 DIM PLNECA) 9 FPNLEC3 I s PN2ECI) o 1L (20)
S0 0" RCLG&E Y- 0E=AX28S LREM FLACE CH
ARACTER SET 2K BEFORE END OF MEMORY

SO FORE 204y 1F0OKE 206y 224 3REM STORE T
HE NEW CHARACTER SET ALDRESS AND THE R
OM AlDRESS

0 FOR X=1 T0O 20IREAD BIFLHCXe XI=CHREC
By iNEXT XEREM MACHINE LANGUAGE SURROUT
IHE TO MOVE CHARACTER SET

A 0ATH 104y la&2v 4y 1E0e Qv L7205 145920
's 200208y 249y 33020692309 204202208y
242y 04

0 Q=USROADRLEY » FREM USE MACHINE LAN
GUAGE FROGRAM WITH THE USSR FUNCTION

QO FOR X=8 TO &I3TREAD CIPOKE CREXeCINE
XT X

TGO DAaTaH Ge8eBelley Pyl 1l

L1O DATA QeQe8ylley7vlle8yv0

120 DATA GeQovOvlleZvlls0v0

L3I0 OATEH OvQeQevOrlZ2v30e30y30

140 IaTA ;Uv BOw 30y, HJ'JP: By QNG y 30y 30
LEHG DAaTa 30y x"() ¥ l;k) v J)U vy 12y0v00Q

1&HO DAT ﬁ] A

L7200 GRAF

s ’Unyy&
I\hmh COLOR TEXT
180 ; Sy

1S IINI"""’ CEPNL g E T IPNS e &
200 FOR X=18 TO O STEF —-1iREM FROM RIG
HY T LEFT atROsSsS THE SCREEN

210 IF X/4=INT{(X/4) THEN PLN$(LeLy="1"
FEOTO 2F0IREM USE LONGEST FROF ONCE OU
T OF 4

! FLMECL e Lr=CHRECIA) ETF X 4-TNT (X 4)

w0 S THEN FLNECLy L= TREM USE SHORTE
ST FROP ONCE QUT OF 4

GOFDETTION XelODF ESHIPNLEIFOSITION X
&7 valLNT’IHHLTI(N Xplde7 fH5FNIY
) 3 PESNEXT T

LJLJ ALl THE WAY ACROSE

53

ot N
o T A
e
. W DB M A L 4
- - Nt S W ot et
= 3 ¥ b2 gL

-

e e

g
24 s

= dmw - T e Tt e T T T s e

Fig. 4-2. Character set for airplane.

54

Line 40 dimensions 4 strings. P1$ will be used for the machine language subroutine that
moves the character set from ROM into RAM. The other three strings will store the characters
for.the airplane.

Line 50 subtracts 2K from the amount of RAM in the system. The variable CB will hold the
decimal address of the first memory location of the new character set.

Line 60 pokes the address of the new character set into location 204 and the address of the
ROM character set into location 206. These two locations are used by the machine language
subroutine.

Line 70 places the machine language subroutine in P1$. Be sure that the data line is entered
correctly.

Line 80 sends the program to the machine language subroutine. When the program returns to
BASIC, the ROM character set will be in RAM.

Line 90 reads the data in lines 100-160 to change seven characters in the RAM character set.
See Fig. 4-2 for the characters that will be replaced.

Line 170 changes the graphics mode to 17—large color letters with no text window.

Line 180 tells the computer to use the new RAM character set.

Line 190 sets each string so that it will form a particular part of the airplane. The plane uses
three rows on the screen. The main body of the plane is stored in PLNS$. This is the propeller, the
body of the plane and the tail. PN1§$ is the top wing; PN2§ the bottom. There is one space after the
characters in each string. This space is needed to erase the character that was drawn in that
position previously.

Lines 200-250 move the airplane across the screen. The variable X is the column that the
plane will be drawn in. By starting with 15 and counting backwards to 0 (step —1), we will be
moving the plane from right to left. Lines 210-220 will determine which propeller to use. One out
of every four positions will use the longest propeller. When the variable X divided by 4 is equal to
the integer of X divided by 4, the computer will use the longest propeller, which is a redefined
exclamation point. If this propeller is used, the program will be directed to line 230. In line 220,
the middle size propeller is placed into the string. It is the redefined quotation mark. Since BASIC
will not allow a quotation mark within quotation marks, the ATASCII value must be used for this
character. This propeller size will be used twice in every spin. Now the variable X is checked to
see the shortest propeller. The longest propeller is used when X can be evenly divided by 4. The
shortest propeller is used when the remainder of X divided by 4 is .5, or half-way between
numbers. When the remainder is .5, the propeller will be changed to the character that replaces
the pound sign. Otherwise, the propeller is already set to the correct length. Line 230 prints the
plane in the three rows on the screen. The column is set by the value of X. Line 240 is a short
timing loop. Without it, the plane would move too fast across the screen.

Line 260 sends the program back to line 170 to repeat it again and again. To stop this
program, press the system reset key.

Listing 4-3. Animation in the Text Mode
1O REM LISTING 4.3
20 REM ANIMATION TN TEXT MODE
30 REM BY L.Me SCHREIRBRER FOR TAR ROOKS
O UIM FLN$C20) o FNLIE () o PN2SC3) o PLE (20
)
HOOA=PEENCLOS) 81 0R=AX2H6IREM FLACE CH

55

Listing 4-3. Animation in the Text Mode (continued from page 55)

ARACTER SET 2K BEFORE END OF MEMORY
HO FOKE 204383 F0ORKE 206y 2245REM STORE T
HE NEW CHARACTER SET ADDRESS AND THE R
UM ADNRESS

70 FOR X=1 TO Z20IREAD BIFLE(XsX)=CHREC
BYSNEXT XEREM MACHINE LANGUAGE SURROUT
INE TO MOVE CHARACTER SET

75 DATA 104v1862v4v 1600177 y205y 145420
320092082499 23092086y230920492025208
24204

GO QA=USKROADRFLEY Y IREM USE MACHINE LAN
GUAGE FROGRAM WITH THE USSR FUNCTION

20 FOR X=8 T0 &3IREAD UIFOKE CR+XyCINE
XT X

LOO DATA O0vyBeBylle7vl1ly8s8

110 DATA OesQe8elle?sllevBe0

120 0ATA Ov0vOQelle?elly(vQ

L3O 0ATA O0v0v0rQp 123030030

140 DATA 30y30v 30258255y 285030930
LSO DATAE 30y30v30s30e12¢050¢0

L&HO NATE Ovdy7e 24y 255254798

L7077 "FUIPOKE 723261 tREM ERASE CURSOR
180 FOKE 735&8y8

190 FLN$="1%% & < "

200 FOR X=33 TO 1 STEPF «13iREM FROM RIG
HT TO LEFT ACROISS THE SCREEN

210 IF XA4=INT(X/4) THEN FLN$C(Lelym=n i
GEOTO 230 TREM USE LONGEST PROF ONCGE QU
T OF 4

220 FINS Lo L)=CHRS(34) $IF X/4-TINT(X/4)
w0 THEN FLNGCLy L) 4" IREM USE SHORTE
ST PFROFP ONCE OUT OF 4

AEC FOSITION Xy lODT FLNGD SREM USTNG A

240 FOR T=1 TO JOINEXT T
290 NEXT XIREM G0 ALl THE WAY ACROSS
2&E0 T TR LEOTO 200

This program is essentially the same as the previous one. It is, however, done in the text

mode. The two lines that are different are 40 and 190.

Line 40 dimensions two strings. This time PLN$ is dimensioned to 20 to accommodate the

entire plane.

Line 190 stores the entire plane in PLN$. This string should read—exclamation point,
percent sign, escape up-arrow, escape back-arrow, dollar sign, space, escape down-arrow, escape
down-arrow, escape back-arrow, escape back-arrow, and sign, space, escape up-arrow, escape

56

—— e me mm e md = -

o s
T e T O S 0
- e e
o i o
5 LR B
o 2T e et e T et
O or ot ot 8 e
St P N PN o TN e
R i B e)

Fig. 4-3. Character set for carousel.

57

>, o i Y .
PSR 5] S o i
e o Y, T S St o
BaaR; ke POSERC O S SO
PR it I i A S i B

P SRV Y R R Tt o SR B B e SR e

S W T S S el S T Db SO S N, % Y
= 5 i H £ S 0w i HE R R e
T T T, St St TP S Tt T s By
Sl R & S S A W P R S g i]

S S S N T e ise S O T S - SN s 5

s ——] :
— B e T
o= s a z
— et 0Tn AT ATE e e e
ey 2 o~
— ot e T O R L e
Coar B b TR i o
b TR et e ammd I et et g T el o e TR et e - — a3
] < ™ d = =
. T P] -, i~ &
T A A N T R R T W Red A TR TS T
o~ . . 2o s . . o~ 5 o gk . N . s s
s e, 2wy e -, ~ o~
- T D R T B B R S QU

. next loops are left in the program, but

you can see the propeller spin on the plane. It

’

Up to now, the programs that we created made very limited use of the character sets. The

characters were simply created and the animation or movement was there, but there was very

The new spaces must follow the upper and lower wings and the tail to erase the characters
little in the way of a scene.

that were previously drawn in those locations.
Both programs display some animation. If the for . .

the position of the plane in line 230 is made constant

Fig. 4-3. continued from page 57.

is very difficult to see it spin when the plane is moving across the screen.

back-arrow, apostrophe, space.

SCENES AND MOVEMENT

58

R A A A A I FEY
i 1 ' 1 i 1 § [1y i 1 1 i R
1 i 1 1 t 1 R | ' 1 ! 1 1
O T I U
T A N A LY
T T A A A A o R
(N T A O A oo DI
D A A O O A A CERET R d1 I
ERRRE R SRR RS REN BB B

o

o
S IR O T N T ol TRTRIRIRIRTRY
T o SRR v W, o 3 o 1 %
RO T T O I N O I I A B RARTRIRTRIRD
' ' i g W 5 3 o 1k ” o g g
A N O A A ¢ I A S o RTRTRIR R R
1 ! 1 ! ' ! 1 1 | i ! ' ' i i 1 ' 1
i I ! i i 1 ' ' ! | 1 1 1 1 1 1 1 1
A A A A T CEIED O 0
0 A I A A A SR I A I S R R
thEt v s i aEsy A PEITRIBEIRIBIRED D
HED A A A A N R B RITRIRIRBEIBE IR

&=

T

Scenes need two parts, the background or picture, and the characters that will move. The
ATARI uses the term background to indicate the color of the screen. This color will show through
any character, letter, or number that has any bits that are not turned on. If you print the letter O on
the screen in graphics 2, the O would appear orange. The center of the O would have the
background color showing through. Try this in the direct mode:

GR. 2:POSITION 2,2:? #6;“0”

The background color in all modes except the text mode is stored in decimal location 712.

Playfield characters are either the characters that can be printed on the screen in graphics
modes 0-2, or the lines that are drawn on the screen with the plot and drawto commands in the
other graphics modes. In the last three programs, the playfield characters were notes, pipes, and
pieces of an airplane.

The playfield characters can be numbers, letters or graphic characters. The next program
will draw a carousel on the screen using redefined characters. ANTIC mode 5, which will produce
large multicolored characters, will be used in this program.

In ANTIC modes 4 and 5, characters are colored by setting one or two bits in every two bit
set to indicate the desired color. Both pixels are turned on to that color. The characters appear to
be 4x8. In contrast, in the text mode or in graphics modes 1 and 2, each bit that was set in the
character turned on the corresponding pixel. An 8x8 grid contained one character.

In Fig. 4-3, the characters that replace the ROM characters are drawn. Instead of an X in the
location of a pixel that is turned on, a 1 or a 0 is in that bit position. Next to it is the decimal code
that will be used in the program. Next to that is a drawing of how the character will look on the
screen. The B pixels will appear blue on the screen, the R will be red and the Y yellow.

59

Listing 4-4. Carousel

1O REM LISTING 4.4

20 REM CARQUSEL

A0 REM BY L.M. SCHREIBER FOR TaAR BOORKS
40 OIM FPLECEO)

50 A=PEER (L&) ~-8I0CR=AK2T36 IREM FILLACE CH
ARACTER SET 2K BEFORE END OF MEMORY

&0 FOI 204y H1F0OKE 208y 224 1REM STORE T
HE NEW CHARACTER SET ANDRESS AND THE R
OM ANDRESS

FOOFOR X=1 TO 203READ BIFLs Xy X) = (O HR %
BYINEXT XIREM MACHINE LANGUAGE SURBRQUT
ITHE TO MOVE CHARACTER SET

'.'7'";' Ilﬁrﬁ ’l(749'| t")f_’ 4#'] ()()9()9 'I ""7)-1"0'"1'y'|4"31"(30

.2443

80 Q= U SROADRCFLE YD) TREM USE MACHINE AN
GUAGE FPROGRAM WITH THE USSR FUNCTION

20 FOR X=24 T0O 9HIREAD CIFORE CRB+XsCIN
EXT X

LOO UATH QeI lIyA3v 2558 255,255,204

LLO NATa 205 285y 255 255, D55, D55, 255, 2
04

LT20 0AaTa Qvl®2y 2400282y 255255y 255,204
130 DATA PvdySebyPedySe

140 DATA 1449946809805 144s96:804+80

LTE5G DATA 144926y 80s80v 1449969 255, 255
L&HO TATA PedyHefe @ véwﬁ';l.lh divi

180 DATH o229 2 v 18 v A3 0255, 255

190 DATAH 21v84y20L v 0y 192y 240 252252
200 GRAFHIGCS 17

210 DLIST=PEEKCSSQOIHPEEK (S4&1) X256 FREM
FIND THE BEGINNING OF THE DISFLAY LIST
220 POKE DLISTH3: 49

230 FOR X=& TO 280F0KE DLISTHX y S ENEXT
XEREM CHANGE FENTIRE DISFLAY LIST TO AN
TI1C &

240 PORE 7%5&6¢i

250 POSTITION 176287 #&5"KE"SREM FLAG O
NOTORF

SEQ FOSTITION Zeai® $d5 "FSbbsbsbESbbs b
b P P PR R R P

2FCQ FOR X=& TO 18 STEF 25F0SITION 77X
Tok&y " & & G FUINEXT XIRE
MR NT THE FOLES

60

FOSTTION 7yX3% 65 "3NF) PNNNNNF) NN
MR CFNNNRND O
290 GOTO 290

Lines 40-190 are the same as in the last program. In this program only one string is
dimensioned. Otherwise, the machine language subroutine to move the character set from ROM
to RAM is the same. The data lines replace the characters from the pound sign to the plus sign.
These characters will draw the carousel on the screen.

Line 210 calculates the beginning of the display list. As mentioned before, this program will
use ANTIC 5, which will produce multicolored characters.

Line 220 changes the first row on the screen from graphics mode 0 to ANTIC 5.

Line 230 changes the rest of the display list from graphics mode 0 to ANTIC 5.

Line 240 tells the computer to use the RAM character set.

Lines 250-280 print the new characters on the screen. The #+ is the flag on the top. The roof
has 20 dollar signs ($) between the pound sign (#) and the percent sign (%). Line 270 draws the
poles. There is one space, the and sign (&), five spaces, the and sign (&), six spaces, the
apostrophe ('), five spaces, and another apostrophe (). The last line prints the bottom. It uses the
same spacing as the poles, CTRL N, close parentheses {)}, five CTRL Ns, close parenthesis {)},
six CTRL Ns, open parenthesis {(} five more CTRL Ns, one last open parenthesis {(}, and a final
CTRL N.

Line 290 loops back to itself.

To add animation to this scene, we will use the player/missile graphics. Players and missiles
are terms used by ATARI for special characters that can be created and stored in memory. They
are unlike the character sets because each player is only 8 bits or 1 byte wide. The player is,
however, as tall as the display screen—using 255 bytes in the single line resolution or 128 bytes
in double line resolution. Each player can be thought of as a band that extends from the top of the
screen to the bottom. The character is drawn on this band. It can be moved from side to side, and
up or down.

Because the players are stored in an area of memory other than the memory used for the
screen display, their image seems to be superimposed onto the background and playfield
characters.

In this program, we will create a horse for the carousel. To make it look realistic, we will use
two players side-by-side. The horse can move up and down while it is going around on the
carousel. Figure 4-4 shows how the horse is created.

Figure 4-5 shows the amount of memory needed for player/missile graphics. There are two
different modes for player/missile graphics: single resolution and double resolution. In the single
resolution mode, each byte is one row or pixel high on the screen. Each player and missile has 256
bytes of memory set aside for it. The area of memory set aside for the players and missiles must
begin on an even 2K boundary. This means that the first byte of the memory must be evenly
divisible by 2048. An easy way to find the boundary is to subtract 4 from the end of memory for
every 1K. Memory location 106 contains the amount of memory available in the computer. In a
40K system, the amount stored in this memory location is 160. Multiply 160 by 256 and you get
40960—the amount of actual RAM available. Each time you subtract 1 from the number, you are

61

i

P A
e sl
DA

g

P

L L e
7

o e ol 5

>3
N
W B

i
s

Fig. 4-4. Player graphics for carousel.

actually subtracting 256 bytes. By subtracting 4, you will subtract 1K from the amount of available

RAM. Since the operating system uses 1K of RAM for the screen display and display list in mode

0, you cannot use the last 1K of RAM for the player/missile graphics. If you subtracted 8 from the

amount in memory location 106, you would have an even 2K boundary, but you would be using the
same memory that the screen and display list were using. When you are using single line

resolution for our player/missile graphics, we subtract 16 from the amount of RAM available.

62

LA s el

e

=] auey

P

L
1

+

K bouncary

cowiale Line v Lot i

Lrirclms of mSmosraendos

14

1024
DI bouaricie e

For sinsle Line
i LeE s

Fig. 4-5. Memory map for player/missile graphics.

63

This leaves 2K for the screen and display list and gives us an even 2K boundary to begin our
graphics.

The second mode for player/missile graphics is the double resolution mode. This mode
draws each byte on the screen twice as high, or uses two rows for each byte. Since it draws each
byte twice, it uses only 128 bytes for each player or missile. The entire mode uses 1K of memory.
To set aside memory for player/missile graphics that are double resolution, we need to start on an
even 1K boundary. We can subtract 8 from the amount of RAM available. This will give us 1K for
the player/missile graphics and 1K for the screen and display list in the text mode.

In addition to the two modes, the players and missiles can be in any of three sizes. When we
set the mode to single or double resolution, we do it for all the players and missiles. Each player
and/or missile can be in one of three sizes independent of each other. If the size is not set, the
players and missiles will default to normal size. Each bit in the byte will be one pixel wide. Double
size makes each bit two pixels wide and quadruple size makes the figure four times as wide as a
normal one. Note: These figures refer to the width of the player. The resolution determines the
height of the character.

By adding a few lines to the previous program, we can add a horse to the carousel. The
following program uses double width and double line resolution.

Listing 4-5. Carousel—Animated

10 REM |
20 REM
A0 REM RY
A0 DIM P

oM BUHRETBER FOR Tak BOOKS
120 o UP l>' 03y DOWNE C200

oA ER¢1LO6)-8iC QUG IREM FLACE CH
ARACTER SET 2K REF UI\ L END OF MEMORY
&0 PO 2040 A TFORKE 208 224 TREM STORE T

HE MNE hl CHARACTER SET ADNDRESS AND THE R
O AUDRESS

AOOFOR X=1 TO 20IREAD 1'? P L CXy X =R
BY DMNEXT XIREM MACHINE LANGUAGE SSURBROUT
INES TO MOVE CHARACTER SET

'? G 0ATA 103y 123 e LAQe Qv 1779208145620
Jy "0(1 p 208249 230 206y 2F0 2040202, 208y
(]

)_ﬂ“;u
80 SROADRCFLE Y Y SREM USE MACHINE LAN
GUAGE FPROGRASM WITH THE SR FUNCTION

GO FOR =24 TO 9EIREAD CIFOKE CR4XeDIN
EXT X
1OG DaTA
LLO TATH
(4

L2320 DaTa Oyl“qv?40v?”p'
L3O DATA PedySefePode S
140 DATE 14496 80v800 19498080480
L3O DATA 1349480805144 096 ¢ 255, 255

2EH 2554204

64

TaTA
JiFE R
OiETa
RE®M I
L

'nh‘"‘ﬂll
FOOMDe THE ¥

IINNINU 0F

i 3
S I W 1

FOROE DL TETHE e 69
R T POFORKE OLITSTHX e 5 INEXT
ERTIRE DISFLAY LIST TO AN

CHAMNGE

240 FOKE 74580/
2EQ FOSTTION 17137 "db"SREM FlLAG ON T
aF
AE0 FDSETTION Ze@3® "dSbb bbb e bbb bbhbe s
£ A
2PGOFOR X=X TO 9IFOSITION 7yX3® " &
& ’ SUIMEXT KEREM PRINT THE
FOLES
280 POSITION FeX T "FNFIFNNNNNYIFNNNNN
NFCFNNNNNY (N
290 REM DRAW THE HORSE WSING PLAYERAMI
EHTLE GRAFHICS
300 al=A-43REM FLAOYER/MISSTLE
ARE LK AROVE THE CHARATTE
10 PladlX20&HE12 0P 2=l 4 128 R ROCA o B
Fraw=pP 341283 REM FIRST MEMORY LODATION €
FlLAaYERS
320 FOR X=PF1 TO AX25&4-10POKE Xy QINEXT
XIREM (thh OuT THE MEMORY
330 FOR : T L4279 READ CIPORE X
v CINEXT XiREM GET DATS FOR THE HORSE
240 FOR X=R24+39 T0 PRRASGIPORE X 128 INE
XT XiFOR X=P2+46s TO P2H78IRE
XeCINEXT XEREM OTHER H&LF OF
350 FOR X=P2+4729 TO P2ELO2PORKE Xy 128N
EXT X3REM 8T OF THE POILE
360 FOR X=P3+E58 T0 PE3FZ0IREAD CIFOKE X
s CINEXT X
A70 FOR X=P4+31 TO P4+&LEFORE Xe 1283 NE
XT XiFOR G442 TO P47 L EREAD CIPORE
Xy CIMEXT X
IR0 FOR Ms=pPd447
AT XEiREM REST
390 FOKI
TION FOR

GRAFHTCE

-

L9 23

LD Fa+@a i POKE Xe 128 INE
P OTHE PRLE
hIH UOWELE LITNE RES0LLU

F

65

Listing 4-5. Carousel—Animated (continued from page 65)

400 FOKE S327733FOKE 54279 Al iREN ENA
BLE F/M GRAFHICE

410 FOKE &23vA4IREM SET PLAYF:
CTERS FRIORITY OUER F /0
ABLE FIFTH FLAYER
420 POKE 704y 1183FOKE 70%, 118§ FOKE
s 116 POKE 707116 tREM HORBE OF @& DI
RENT COLODR

430 FUKE 5

CHE R
N

440 HLI=108IH2=121L FOKE S3:2 2
T249 ¢ HZIREM FUT HORSE ON THE SCREE
450 NATA 15v3Led3v A7 42429100 1834608
460 DATA 13214201899 1921251 v240y22402
A0y 168y 1682000144160
470 NATA 32y 1122882020223 v 15731620
y Qv 189994
480 NATA 252y 204y 255 28X 149y 149 148 1
44913794
500 FOR X=1 TO L3TREAD BIUPE X X)=CHRE
CRYINEXT XIREM MACHINE LANGUAGE SURRQU
TINE FOR UF
G100 0ATE LO4y 1600 e 200177 ¢ 200 135y 1A%
y 20T 920002080247 9% 6
520 FOR X=1 TO 13IREAD BIDOWNE Xy X)=(0H
RECRY ENEXT XIREM MACHINE LANGUAGE SUBR
OUTINE FOR DOWN
G300 DATH 104y LS00 258y L34 177y 208¢ 20041
Ay 2089 13692080247 098
940 FOLI=INT(FL/258) P02 (P L~TINT (L2568
IXR2ESHYIFO3=INT(FPIA256) PO (PI-INT O3S
211(‘))*"""'63 FREM H l LD ANDRESS OF HORSES
SEHO TRAF S0 TRESTORE u’}"/elll 23 “
4G I HP2-B3349 1 FOKE 2046 FOLIPOKE 208
FREM MOVE TO THE RIGHT - FLAYERS U‘ T
H560 FOR X=1 TO @iM=USRAOORCUPE) IEOS Ul’
HG7OINEXT XIiGOSUER AOQQ0
G770 FORE 208 FO1IFORE 205 F
2 OTHEN FORKE 2068 M(Fe Y ()4
580 FOR X=1 TO 9iM=USKATRS Illll«ll!‘l PriGog
Ul"f GAZOINEXT XIGOGEUE &S00160T0 Ha60
G0 REM HORSE MOVING ROUTINE - DIR IS
P U STTIVE - HORSE MOVES T0O RIGHT - IR

a

66

IS NEGATIVE HOI MOVES LEFT

SO0 HI=HLAOTRIHZ=HZ+D TR

10 TF (DIR=Z AND H2=14&1 OR (DTR=-7
NIV HLCZ20 THER PORE MHPLyQIFORE HFZ2s0OIH
FolaHP LD TR HP 2P 24D TR DT R0 R

G20 PORE HFL«HLEPORE HF HE s RETURM

30 REM MUSTE FOR THE CaROUSEL

&40 DATA 121121108y 1089481 oA 120y
1&H2y 120 v 121 0 108! : #1321

G0 TATA 121108 108y P&y 81 e P& 1217200
p LGB Ly FEy L2100

6HO TRAF S&GIRESTI EA0ITREM RESTORE M
USTC ON OQUT-0F-DaTs ERROR

G0 TF (X420 3=INT COXH20
GIEOUNT Op&e 10010

HB0 TF XA3=INTIX 3 THEM S0UNMD QeGe 0
RO RETURMN

v

E3THEM REATD

Line 300 subtracts 1K from the beginning of the character set. The character set begins on an
even boundary, so subtracting 4 (or 1K) from its beginning yields an even boundary for our
players.

Line 310 calculates the beginning address for each player. The first player (P1) begins 512
bytes after the beginning address for the player/missile graphics. The next player and each
subsequent player begin 128 bytes after the previous player. We have already decided that these
players will use double line resolution, so we know how much memory should be set aside for
each player.

Line 320 clears the memory that will be used for the players. When the computer is turned
on, or after a program has been run, there can be garbage in the memory area that we will be using.
This line removes any data that may have been left there.

Lines 330-380 draw the horse in the player/missile area of memory. Player P1 is the back
portion of the horse going to the right. Player P2 is the front of the horse and the pole. Player P3is
the front portion of the horse going to the left and player P4 is the back and the pole. The data to
draw the horse is read from lines 450-480.

Line 390 pokes memory location 559 with 46. This sets the player/missile graphics to double
line resolution.

Line 400 enables the player/missiles by poking 53277 with a 3 and tells the computer where
the player/missiles begin by poking 54279 with the value stored in A1. Now the computer knows
where the graphics are stored, and what the resolution of the graphics should be. If location 53277
is not poked with a 3, the player/missile graphics will not be enabled. Using player/missile
graphics in a program requires both location 559 to be set and 53277 enabled.

Line 410 sets the priority levels of the players and characters on the screen. In this program,
the characters that are printed on the screen will have higher priority than the players. This will
make the horse appear to go behind the poles of the carousel.

Line 420 sets the colors used in the four players. The first two locations are for the first two

67

players. This is the horse as it is going from left to right. The next two locations are for the third
and fourth players. This color is a little darker than the first color. The horse will be going from
right to left. The darker color will give it the illusion of being further away.

Line 430 sets the size of the horses. By poking each of these locations with a 1, we will make
each of the four players double the normal size.

Line 440 places the horse that is facing the right on the screen. Locations 53248 and 53249
set the first two players on the screen. To remove them from the screen, poke these locations
with a 0.

Line 500 is the machine language subroutine that moves the horse up. Be sure that the data in
line 510 is entered correctly. If it isn’t, the horse will not move up correctly.

Line 520 is the machine language subroutine that moves the horse down. The instructions for
this machine language subroutine are in line 530.

Line 540 calculates the beginning address of the first and third player. The machine language
subroutines move 256 bytes up or down. The first horse uses the first two players, which add up to
256 bytes. The second horse uses the third and fourth players or the next 256 bytes. This line
stores the high and low order address of the players in the variables P01, P02, P03, and P04.

Line 550 uses the trap command to test for the end of data.

Lines 640-650 contain the melody that the computer will be playing while the horse is going
around. This melody will be played over and over. When the computer runs out of data it will come
up with an error. The trap will direct the computer to Line 660. This line will reset the trap and
restore the data. The DIR variable is the amount that will be added or subtracted from the position
of the horse on the screen. When DIR is positive, the horse will move from left to right. When DIR
is negative, the horse will move from right to left. HP1 and HP2 are the registers that are poked
with the position of the horse on the screen. Memory locations 205 and 206 are poked with the
memory location of the first player. Two bytes are needed for this location because the memory
address is greater than 255.

Line 560 moves the horse up nine rows. The music subroutine is accessed every time the
horse moves up one row. After the horse is moved up, the subroutine that moves it to the right or
left is accessed.

Line 570 reinitializes the memory locations that are used in the machine language sub-
routines to the player that is being moved. If DIR is positive, the location of the first player will be
stored in locations 205 and 206. If DIR is negative, the positions of the third player will be stored
in these locations.

Line 580 uses the machine language subroutines to move the horse down. Again, the music
subroutine will be accessed each time the horse is moved down one row. The subroutine to move
the horse to the right or left will be used after the horse is moved down nine rows. These three
lines will be repeated over and over again until the system reset key is pressed.

Line 600-620 contain the subroutine that moves the horse to the left or right. The value of
DIR is added to the position stored in H1 and H2. If DIR is positive, two will be added to this value.
If DIR is negative, two will be subtracted from this value. (Adding a negative number is the same
as subtracting a positive number.) This line also checks the position of the horse on the screen. If
the horse is at the end of the carousel, the value of DIR is reversed, the horse that is on the screen
is removed, and the registers that control the position of the other horse are placed in variable
HP1 and HP2. The other horse is then placed on the screen and the program returns.

Line 660 reinitializes the music routine. The program goes to this line when it runs out of

68

Fig. 4-6. Player/missile priority order.

H %]

LI G

FOHE

69

data. The trap is reset, the pointer for the data is restored to line 640. The program continues with
the next line.

Line 670 reads a note every third time that this routine is accessed. We can calculate every
third time beginning with the first time by adding 2 to the value of X and dividing it by 3. If it is a
whole number (a number without a remainder) a new note will be read and played.

Line 680 turns the note off every third time that this routine is accessed. This time we simply
divide X by 3. If it is a whole number, then the note will be turned off. The program will return to
the main program.

SETTING THE PRIORITIES

In the last program, the horse seems to move behind the poles. The pole that the horse is on
moves up behind the roof of the carousel and appears above it.

When the player/missile graphics are initialized, we can set priorities for the players,
missiles, and the characters. The players can appear to move in front of the characters, behind the
characters, or in front of some and behind others. Figure 4-6 illustrates the order of priority and
the value that must be poked into decimal location 623. The playfield refers to the playfield
characters, the characters that are printed on the screen or drawn on the screen with the plot and
drawto commands. The players are the characters formed by the player/missile graphics. Player 5
is the fifth player or the missiles as a group. Note: The missiles can be used as four characters,
each two bits wide, or as a fifth character eight bits wide. To enable the fifth player, poke 623 with
16 + the priority code.

As shown in Fig. 4-6, the top player or playfield has the highest priority. This character will
appear on the screen in front of any other. Player 0 always has the highest priority followed by
players 1, 2, and 3.

In the next program, which is a simple bird and fish game, we will set the priority code to 8.
The players will move behind the playfield characters 0 and 1, but in front of playfield characters 2
and 3.

Some of the clouds are drawn using the color in playfield character 0, others use the color in
playfield character 2. The water is made up of three different waves. Depending on the playfield
color used, the fish will or will not be seen.

Listing 4-6. The Birds

Lo REM LITSTING 4.4
20 REM THE BIRD
FOOREM BY LM

SUHRETRER FOR TaAk RODKS
GO v DOWNE (200

(35) AR EESEREM PLACE CH

T2 BEFORE END OF MEMORY

&0 [)l l. ’(J e EFORKE 2086 224 8REM STORE T

HE MEW CHARSTTER SET ALDRESS AND THE R

OM AllRESS

0 FOR X=1 T 2W0OIREAD BiIF J‘Bk)(v,\l S

H PINEXT XPREM MACHINE LANGUAGE SURRQUT

NE T MOVE CHaSRACTER SET

DaTe 104 1&S v S e 180y 0y 177y 205 14520

FeR200e 20802499230 206y 23092045202 208y
SAZYRE

GO @=USROADR P LEY y P REM USE MACHINE LAN
GLIEGI ROGRAM WEITH THE USSR FUNCTION

GO FOR X=24 TO LOIIREAD CIFORE CR4Xe (3
MEXT X

1O
11O
1320
130
143G Ilr\fn
LSO DaTa
1 &Q UﬁTﬁ
""" Unl

5 b i
HEX e 12793258y

el 9292400
Qu&0y 1269255 2.;1‘ y]. i PR K v I .,
G 124 e 2 Sy L2y 2GN T
Pl @7 e HE 12Ty 250G 990
"yiﬁ‘dv 14004

” e ey
g ‘4 L ¥l

VPUVII”

17 P POKE T
MEW fHﬁlnl

FOB LAIPORE 70%y 18O 1 pagE 7100
‘ﬁ*PﬁrF 7129 L5

leldUlIl(lOl 3
IEE LT 'IN[&X/”3 THEN C=04+1328
230 'f(Fﬁdm‘ CIF C=0 OR Cs=d THE

2EOFOR K=0 TO 19I0=INT (RNOCL)X3) 3F06T
TION Xe LHLF XA3= lelXJJ) THEN U=04+128
A0 T & FUHRS CHH0) 8 ENEXT X

270 FOR X=1 TO 817 #65"FLLLLLLLLLLLLLL
Lol 5 S NEXT X
280 Al=A-S P Ll=al k2541024 0P8 I4+25635F3
=P242546 LREM FIRST MEMORY LOCATION OF P
LAYERS-2K ABOVE CHARATTER |

290 FOR X=P1L TD PL4AL0Z3 EFOKE
XIREM CLEAR QUT THE MEMORY
00 REM SET UF FLaYERS - RBIRD & FI&H
FLO PORE 559y &2 IREM STNGLE LINE RESOLU
TION FOR FAM GRAFHICS

H2OOPORE SI277231F0OKE S4279yALIREM ENA
BLE FAM GRAFHICS

AJF0 PORKE SZIv8IREM SET PLAYFIELD CHARA
CTERS FRIORITY UUEI Fom GRAFHICS —~ EN
ABLE FIFTH FLAYER

Xp QUNEXT

71

Listing 4-6. The Birds (continued from page 71)

A0 PORKE 704, 23P0KE 7052000 F0OKE 708462
QOIREM COLOR BIRD & FISH

360 RESTORE 3IQ0:FOR X=F24+152 TO FR+1E59
PRESD CIPFORE XeCINEXT XEREM URAW FILSH

= bJ THMIMNG

AP0 FOR Xl 52 TO F34+1LE52IREAD CIFORE
HeDINEXT M DRAW FLISH SWIMMING

A0 NATE Oed8e 121y 25525050 12104840

I90 DaTa S0vy249e 249600 1269 126960024

PO DmIHNTORNDCL Y3 SRESTORE 4014+CIFOR

. L4H60 TO PLASESIRESD CIFORE XyUINEXT

AIREM GET DATA FOR THE BIRD

A0L 0ATH Qe ad v 1a&S e 240)

SO2 DETa Orl2%edde 3de 24
A3 UaTa Us-(ly(ls' Fhe POy 129

460 FOR K=1 T0O | LAl BIUFS (e X =0HRE
CEYINEXT X MMIHINI LanGUAGE SUBRKROU
TINE FOR U

AF0 UATA 104 LE0e Q2009 177200501360 14%
y 20200 208247028

480 FOR X=1 TO L3SREAD BIDOWNE (Xe X =0H
R (R INEXT XIREM MACHINE LANGUAGE SURBR
OUTINE FOR UF

490 DATA 104y 140y 255y 1362 1779205200041
A% e 200 1 3&y 208 » 24 ’9‘;/‘“

SO0 POL=INT (L2546 PF02= 0P L-INT(FL/2856
YE2ESHIIPOI=INTIFIA2586) LFO4= (FE3-TINT (F3/
SEHAVHKD2ESYIREM HIZLD ALORESS OF FLAYERS

10 VaINTRNDCLYXL00+50 1V L=2000U=40LF
ORE 2086y POLEFORE 205y PO2GEOSUR P20 IREM
‘If Uhhlﬁhlk¢ FOR FLAYERS

HALFGLGIPORE G3249,V10V1=V1-1

L2 THEN V1200

A hUHUH &30

GSAOQ PORE SE248, M2 C=INTORNOCLIXI) TRESTO
RE A004+CIFOR X=P1L4+U0 TO FLAUFSEREAD CIP
ORE Xy CINEXT X

5460 IF PEERK(332460)
=149 THEN ITF
}H+I>UU>UU

S AND (V1=200 0OR U
m.NT(UJ "4 THEN FISH

G320y VIBIRD=RITR

Py PO TR X

fls P EQ=USROAIIR CODWNE)
O RTRD EATS FISH

POy QIFOR LA U

BRI

ERASE
500

) AND U400 THEN Q=USK
J-LIRETURN $REM MOVE RBIRD

b

CATIR LSS o 3L
LI

o TFOSTICK OO =13 AND U149 THEN Q=US

FoOATIR TG 3 3 3 =040 SRETURN SREM MOVE X
IR DOWN

4650 IF STICKCO)=7 AND V1190 THEN U=yl

6460 IF STICKCOY=11 AND V=53 THEN V=U-1

670 RETURN

710 REM ROUTINE FUTS SCORE ON SCREEN

720 FOSITION 22,2207 #465 "RIRD"IFOSITION
1452237 #6535 "FLIEH" IFOSTTION 392337 b5

BIRD SFOSITION 1552307 H#65FISHS

730 IF FISH=100 AND RIRID-LOO0 THEN RETU

RN

740 FOSITION 251087 &8 "GAME OVER" IFOS
ITION 151287 #4635 "FRESS START TO FLAY"
750 IF FEERK(S3279)<x6 THEN 740

760 FISH=0IRIRD=GIFOF $FORKE S324803F0
KE 532495 01F0KE S53250y00F0F $GOTO 2002
REM CLEAR VARIARLES

Lines 40-190 are the same as the past few programs. In this program they will dimension the
strings used for the three machine language subroutines. The machine language subroutine to
move the character set from ROM to RAM is the same. The data lines replace the characters from
the pound sign to the plus sign. These characters will draw the clouds and the water on the screen.
See Fig. 4-7 for these characters.

Line 200 sets the mode that will be used: large color characters with no text window. Poking
756 with the value of A changes the character set.

Line 210 changes the colors of the characters. There will be two colors used for all the
characters: white and green. The background will be changed to light blue.

Lines 220-240 place the clouds on the screen. The position for the clouds is chosen
randomly. No two screens will look the same. If the first or fifth cloud is chosen, the program will
add the second half of the cloud. Half of the clouds on the screen will be drawn with the characters
in the normal character set. The other half of the characters will be drawn as if they were printed
in inverse video. The color will be the same, white, but the priority will be different.

Lines 250-260 print the top of the water on the screen. This time every third will be printed
as a inverse video character.

73

Tt et
O 4
A
b ” o o et
W
i T4
&S .
g
- P o et et
W i P
N N
DU S
et
EaN

Fig. 4-7. Character set for birds.

74

o

oyl 1 i [1 1
o I 1 P A 1 1
1 1y | 1 R 1
1 D 1 1 RO 1
' 1y Pt IR i
i e VA [P t
a1y AR R 1
A S AT AL A |
RV I IR I R I IV
IO D S A S
o 1A 1A D8 LA 18 1o d
IS G S I G
R R IV I I IV |
AT A TA T AT AT A AN
A/ 13 1y I 1A N 1N
AP SR SD SIS SN
]
L
| 1 | 1 ' 1 ' 1 1 i PN A | 1
1 i T i ! i ' i I P 1 i
1 IRV TR 1 1 i i 1 1 RV ' 1 '
1 1A A 1 i | | i i L 1S i i i
Py LA N L 1 tag 1 ' i BRE i ' 1
AT AT A A i P 1 1 1A i ! 1
R IR N Y IV I I 1 1 F' oy NF A | 1
PATATAT AT A AT A ' i SRS 1 1
PS8 LN 1A T8 % 1% I 1 B AR RN 1
PAT AT AT AT A LA A 0 I bAoA 1
R Y | IR 1 ' R I '
A AT A A i 1A 1 1 P A A I
' [V V] 1 ' i 1 1 i Pong st 1 |
| 1A A 1 i 1 i ' i P A A i 1
1 | i | i ' ' i 1 1 F e P 1 !
1 I i 1 i | ' i 1 i A i | |
i :
Frdsaen Feory Tiosn

1 1 1 1 1 1 | t Pt 1 | : ! 1 §AE 1 ' ' i 1 T : '
1 1 i i 1 ' i ' A 1 ! | i i VoA I | 1 | i 1 ' i i
1 TR i R i i s 1 i 1 Pag 1 1 i 1 1 ' ' 1 1 '
IR 1 !] 1A I i 1A I i I A ' 1 | i 1 | | 1 : |
1 1l ' [1t 1 | P ' T i 1 1 1 [T | [' 1
1 [1 1A VS i i P 1 1A |] 1 ' 1A 1 A i 1
1 1 IR I | ' ' 1 : | RV | 1 i | Eong IR (IR 1
1 i A A I 1 1 ') : 1A A 1 1) I (A AT AT 1 A i
1 ' T ' | 1 ' ! 1 ! ' ' i | i | K] i 1 ' 1 1 R
1 1 [| 1 i i i ! | 1 [! i | 1A : i |] 1 VoS

¥y A Loy it e, g

o 0 T

Line 270 colors the bottom of the screen with water.

Line 280 calculates the beginning of the player/missile graphics area. In this program we are
using the single resolution character set so the player/missile graphics must begin on an even 2K
boundary. By subtracting 8 (2K) from the beginning of the character set, we know where to begin
the player/missile graphics. The first player begins 1024 bytes from the beginning of the memory
set aside. The second and third players are 256 bytes apart.

Line 290 clears the area of memory that will be used for player/missile graphics. This
memory could contain data from a previous program or garbage. This would show up on the
screen in the player/missile area.

Line 310 pokes 559 with 62. This tells the computer that we are using single resolution for
these players.

Line 320 enables the player/missile graphics. If a 3 were not poked into 53277, the
player/missile graphics would not be enabled. Poking 54279 with the value of Al tells the
computer where the player/missiles begin.

Line 330 sets the priorities of the players and characters. The characters that would be

75

printed as normal characters have a higher priority than the player/missile graphics. The
player/missiles have a higher priority than the characters that are printed in inverse video.

Line 340 sets the color for the players. The bird will be black and the fish are green.
Remember, there are two fish images as players, one that is swimming and one that is caught.

Lines 360-390 first restore the pointer to line 380. This is the first line of data for the fish.
The first time that the program is run, there is no problem having the computer read the correct
data for the fish. If the program is played again, without rerunning it, the pointer will be pointing to
one of the lines of bird data. After the pointer is set to line 380, the program reads the data into the
player/missile graphics area that is set aside for the second and third players.

Line 400 chooses a number from 0 to 2. There are three different ways that the bird can be
drawn on the screen. The program chooses one, restores the pointer to that line, then reads the
data into the area set aside for the first player.

Line 460 places the machine language subroutine that will move the player up into UP$. Be
sure that the data is entered correctly.

Line 480 places the machine language subroutine that moves the players down into DOWNS$.

Line 500 finds the first memory location of the first player. This location is greater than 255,
so it occupies two bytes. The high order address, that is, the whole number of the address, is
stored in the variable PO1. The low order address, the remainder, is stored in P02. This address is
used by the machine language subroutine.

Line 510 chooses a random number for the vertical position of the bird. The bird will always
be the same distance from the top of the screen, but it can appear in any column on the screen.
This number is stored in V. V1 is the vertical position of the fish on the screen. The beginning
address of the first player is placed in memory locations 205 and 206. The program is then
directed to the subroutine in lines 720-730. This places the words BIRD and FISH on the screen
along with a score (0) for each.

Line 520 clears the hit register. In the ATARI computer, there is one memory location that
registers when a player hits a missile, characters, or another player. This register must be
cleared before it can be read. By poking location 53249 with the value stored in V1, we place the
fish on the screen. One is subtracted from V1. The next time the program executes this line, it will
move the fish over one to the left. If the value in V1 becomes equal to 20, the fish is nearly off the
screen. The value of V1 is reset to 200. .

Line 530 sends the computer to line 630. The computer will check the joystick to see if it has
been moved. When the computer returns to this part of the program, the bird may have moved up
or down, or the value in variable V may have changed indicating that the bird has moved either to
the right or the left.

Line 540 moves the bird to the right or left by poking the value of V into register 53248. The
computer then chooses a random number to change the wings on the bird. The number is added to
400 and the pointer for the data is restored to this line. The computer reads the new data for the
bird and pokes it into the area of memory in the player/missile graphics area that the bird
occupies. The variable P1 is the beginning of the first player’s area of memory. The variable U is
the offset for the first byte of the bird. It increases and decreases as we move the bird up and down
on the screen.

Line 560 checks the register that will record whether or not the bird (player 1) has hit the fish
(player 2). If the bird has not hit the fish (PEEK(53260)< >2) and the fish has been placed back on
the right side of the screen, (V1=200) or if the bird is resting on the water (U=149) and the fish
has moved four places, the fish will be given a point. This keeps the player from landing the bird on

76

the water and waiting for the fish to come by. The subroutine in line 720 updates the score and the
computer continues the program with line 520.

Line 570 sends the computer back to line 520 if the bird has not hit the fish.

Line 580 removes the swimming fish from the screen. The computer will execute this line if
the value in register 53260 is 2. The swimming fish is replaced by the hanging fish. The score for
the bird is increased by one.

Line 600 pokes the beginning address for the third player, the hanging fish, into memory
locations 206 and 205. The machine language subroutines to move the fish up and down are
executed ten times. The fish never really moves up and down. This gives the effect of the fish
wiggling while the bird tries to eat it.

Table 4-1. Machine Language Listing to Move Players Up/Down.

Dreioma 1

Rl 2

Lodosscb dorest

eminl e L

or off the
Wi kv mero

Fri.éy Pl L bhe
LI kD v Lo

TNy s lmeremnant bLhe

LO& 208y Y

cor Wi b bhe value
i location 205 ;

E

ok meroe s

Frowtine Lo move

il

Lator off
=

Wi b

(2002

value dn the 2
Tocation sodmtecd o

mot o meros o

Rowtine Lo move character dowrn

77

Line 610 erases the bird. The bird will be redrawn in the player area of memory. If we don’t
erase the bird, we will have two birds in that area when we only want one.

Line 620 updates the score and sends the computer to line 500 where the bird is repositioned
on the screen and you are given another chance to try to catch a fish.

Lines 630-670 check the joystick to see if it has moved. If it has been moved up or down, the
computer will use the correct machine language subroutine to move the bird. The variable U1 will
be changed to reflect the new position of the bird on the screen. If the joystick has been moved to
the left or right, the variable V will change.

Line 720 updates the score on the bottom of the screen.

Line 730 checks the score to see if either the bird or the fish has over 100 points. If neither
does, the computer will return to the same.

Line 740-760 ends the game when either the fish or the bird passes 100. The computer
checks location 53279 to see if the start key has been pressed. When the value of this location is 6,
the start key has been pressed, and the program can continue. The scores are cleared, the players
are removed from the stage and the program goes to line 200 to begin the game again. Since this
was entered as a subroutine, the return address is popped off the stack. If the return address for a
subroutine is not popped off the stack, it will stay there. If more and more addresses are placed on
the stack and never removed, the stack could run out of space, causing the program to crash.

Table 4-1 contains explanations of the machine language subroutines that are used to move

the players up and down. Each machine language subroutine that is to return to BASIC must pull
the last byte off the stack. If it doesn’t, the subroutine will not return.

78

Chapter 5

Looking
at BASIC

By now, writing programs in BASIC is almost as natural as writing letters in English. But, did you
ever wonder how the computer interprets the commands that you type in? Or how it knows that
the line that was just entered contains an error? Just what does the computer do with a program?

THE TOKEN COMMANDS

Each time that you see a variable in a line or command, BASIC looks it up in its Variable
Name Table. Each variable is assigned a number in the order that it was entered. This numberis a
token that represents the variable name in the line or command. If the variable appears in the
table, BASIC assigns its token for the variable. If it doesn’t appear in this table, it is added to the
table. Up to 128 variables can be used in one BASIC program.

The BASIC commands are converted into token commands. A number or token represents
every command that BASIC knows. A one number token uses less memory than a four or five
character word. As you enter a program line, BASIC converts the line into a string of numbers or
tokens. This makes it easy for BASIC to execute the program.

The line numbers that you enter are converted into two byte numbers and stored in the area
that BASIC sets aside for the program. Why two bytes? BASIC will accept line numbers up to
32767. When this number is converted to hex, it becomes 7FFF, the largest positive sign number
possible. Any number in hex 8000 or larger is considered a negative number, BASIC does not
allow negative line numbers.

By changing the line number that we entered into a two byte number, every line in BASIC
will have two bytes set aside for line numbers. This makes it easy for BASIC to manipulate the
lines.

Once the line number has been converted into a two byte number, a dummy number will be
placed into the line. This number will contain the offset, or the number of bytes in this line. Right
now, BASIC does not know how many bytes are needed for this line. The next number is how
many bytes are in this statement. Since there can be more than one statement on each line, BASIC
must keep track of both the line length and the statement length. This number will also be a
dummy number until the entire line is checked.

Now that BASIC knows that this is a program line, it looks for a command. The entire list of

79

Tahle 5-1. BASIC’s for Tokens Commands.

TOE M COrFMAND
(i I
& s T
2 THFUT
COLOR

L0
CLOSE

CHF R
L L T
SAVE

possible commands is in ROM. If the first command following the line number is not in this list, an
error message will appear on the screen.

If the command is found in the table, it will be converted into a code or token value.
Depending on the command, BASIC will check the next part of the statement to make sure that it
is accurate. For example, the print command must be followed by double quotes, a variable, or a
string variable, FOR must be followed by a variable that is equal to a number, the next part of the
command, TO, and another number, TRAP must be followed by a line number or a variable, etc. If
any element of the statement is missing or otherwise incorrect, BASIC will stop checking the
line, reprint it on the screen, with the word ERROR, and highlight the possible problem area.
Once BASIC has determined that the statement is correct, it will replace the dummy numbers
with the correct figures and wait for the next statement or line to be entered.

A complete list of commands and their BASIC tokens are listed in Table 5-1. Each command
has its own numerical token. When you enter a BASIC statement into the computer and you do not
type the entire word out; for example, GR. 1 instead of GRAPHICS 1, and you list the program,
BASIC will expand the command and print it correctly. When entering a BASIC program, you only

80

27 NOTE
26 FOTNT
KT

{1

FOKE
FRINT
R
REAT

TR
GET
BT
Gl AR T S
FLOT

FOSTTION

EOUNT
LFFTNT
VE
CLOAT
! CTRFLTEDD

AN

save keystrokes, not bytes, when you use the abbreviated forms of the commands. The command
will use the same amount of memory no matter which way it was entered. The same is true about
spaces. On certain other computers, you can save memory by eliminating the spaces in the
statements. ATARI BASIC will automatically place spaces between the commands when it lists
the program on the screen.

FILE STRUCTURES

When we store a value in a variable, string, or array, BASIC must be able to reference the
variable and to store or retrieve the information. First, it must be able to identify the type of
variable. Then, it must have memory set aside for it.

Each time we use a new variable in our program, we use eight bytes of memory. A string and
anarray uses the eight bytes plus the size of the string or the array. The names of the variables are
stored in a table. A second table stores the value of the variable or the location in memory that
stores the string or array information. Because of the amount of memory that is used by variables,
strings, and arrays, we try to reuse variable names whenever possible.

81

However, it is better to use variables than numbers in a program if you will be using the
number often. For example, if you will be going to a line for a timing routine from different parts of
the program, it saves memory to make the line number for timing routine equal to a variable, and
then GOSUB the variable.

BASIC TABLES

The first table that BASIC uses is called the Variable Name Table. Every variable used in a
program is assigned a number from 0 to 127. If you try to use more than 128 variables in a program
you will set an error message.

Listing 5-1. BASIC Tables—Variable Name Tahie

10 LISTING H=1
20 F BASBTC Takl
JO REM BY LoeMs SHRETEER FOR TAR ROOKS

A0 TTM ACLO v
G0 TABLE=PFEEK
&HOOFOR
(XD IMEXT X

&
B CPEER

If you enter the program without any errors, your screen should display -
A(STRING$TABLEX

and some other characters. The underlined characters appear in inverse video on the screen.

Look at the listing. Each variable appears in the order that it was entered into the program. If
an error was made, for example, PRRK was typed in line 50 instead of PEEK, BASIC would have
treated PRRK as a variable and placed it in the table even if you corrected it before the program
was run!

Each type of variable is stored differently in the table so that BASIC can tell which are
variables, arrays, and strings. If it is a variable, its last character is stored with the most
significant bit set. This makes the character appear in inverse on the screen. The E in the variable
table is in inverse. The X is only one character long, so it is in inverse video.

If the variable is an array, the character after the variable is an open parenthesis with the
most significant bit set. The first variable in our table is an array.

If the variable is a string variable, the first character after the variable will be the $ with the
most significant bit set. STRING$ has the most significant bit of the $ set.

As new lines are typed in for a program, BASIC checks this table to see if each variable has
been used before. If it has, BASIC assigns its token for the variable. If it doesn’t appear in this
table, it is added to the table and its token is used in that line.

Because each variable is stored in this table, shorter variable names will, of course, use less
memory. But, because each variable has its own token in a BASIC line, you only save memory in
the variable table. The program will use the same number of bytes whether the variable is one
character long or 10 characters long.

Once the variables have been stored in the Variable Name Table, BASIC has the token
number for that variable. The first variable is 0, the second 1, etc. Information for each variable is

82

stored in the Variable Value Table. Each variable is listed in this table in the order that it is listed
in the Variable Name Table. Let’s add these lines to our program.

Listing 5-1A. BASIC Tables—Variable Value Table

10 REM LISTING H-14

20 REM BASIEC TABLES
30 REM BY LM SCHRETBER FOR TAR BOOKS
40 DIM ACL0«2) v GTRINGS 10D

50 TABLE=FEEK (L3I0 +FEERKCLIL»%X2E54

O FOR X=TARLE T0O TABLE42037? CHR$ (FEEK
CXD0 8 DNEXT X% (REM SHOW THE VARIARLES
ING THE TARLE

FO VLUE=FEEKCL34)HFEER CLIS) X286 TREM AD

DRESS OF THE VARIARLE VALUE TARLE

80 F=0IF0R X=VLUE TO VLUE+ILIREM SHOW

INFORMATION FOR FIRST 4 VARIARLES

PO FRINT FPEEKCX)y $P=R4LETF P=q4 OR P=8

THEN FRINT $IF F=8 THEN FRINT F=0

10O NEXT X

The numbers that appear on your screen tell the computer what kind of variable each one is
and supplies information on its contents. Your screen should look like this:

65 0 0 0
11 0 3 0
129 1 198 0
0 0 10 0
0 2 65 118
118 0 0 0
0 3 65 119
37 0 0 0

The first eight bytes (numbers) contain information for the first variable A. The 65 indicates
that it is a dimensioned array. The 0 is the variable number. A is the first variable entered in this
program. The next two bytes are added to the beginning of the string/array area to find the
beginning of the data for the array. In this case, A is the first variable dimensioned, so its data will
not be offset from the beginning of the string/array area. It will be contained in the first 198 bytes.
The next two numbers, the 11 and the 0 are a two byte value for the first dimension of the array.
Our array is dimensioned to 10,2; the first dimension is 10. The first dimension of the array is
always one greater than the value in the dimension statement. The last two numbers, the 3 and 0
is the second value of the array. Again, this value is one greater than the value in the DIM
statement.

83

Table 5-2. Variable Value Table.

hule | 2 i
1 1
riLim i Vil ik
il Rl ' ! ! ! !
Brrau | [VE Vlet DIM4EL T 2maliM4t1 0
1 1 1 1 1 1 1
' VE ! H [y !
]] e ¥ ! v ilGesioass I
ol 4 s U s e 3 ! ! '

The second group of numbers is the information for our string, STRING$. The first byte is
129. This means that this variable is a dimensioned string. The next byte is the variable number.
STRINGS is the second variable in the table. The next two bytes contain the offset that is added to
the beginning of the string/atray area to find out where the data for the string is stored. The
contents of the first byte is added to the contents of the second byte after it is multiplied by 256. In
this case, the second byte is zero. So we know that the information stored in STRING$ begins 198
bytes after the beginning of the string/array area. The next two bytes contain the length of
STRINGS$. We have not stored anything in this string, so its length at this time is zero. The last
two bytes in this group tell the computer how many bytes to set aside for this string. We
dimensioned STRINGS$ to 10, so the first of the two bytes is 10, the other is zero.

The next group of bytes contain the information for the variable TABLE. This variable was
not dimensioned. It was the next variable that was entered into the computer. The first byte for
this variable is a zero. This means that it is a numeric variable. Only one number can be stored in
this variable. The next byte is the variable number. This is the third variable in this program, so
its number is 2. The next six bytes contain the value of TABLE. Since only one number can be
stored in a numeric variable at a time, the computer stores this information right in this table. It
uses six bytes because it stores the number as a Binary Coded Decimal. This format differs from
the format used when the computer stores a number using two bytes. At this point it is not
necessary to understand how or why the computer uses this format, just that it does.

The last group of bytes contain the information for the variable X. Again, this is a numeric
variable as indicated by the zero. It is the fourth variable used in this program so its number is 4.
The value stored in X is represented in the next 6 bytes. Table 5-2 is a chart showing the different
ways the variables can be represented in the Variable Value Table.

The area set aside for the strings and arrays is called the String/Array area. The address for
the beginning of this area is stored in memory locations 140 and 141. Let’s add the following lines
to our program.

Listing 5-1B. BASIC Tahles— String-Array Area

1O REM LISTING S.1R

20 REM BASIC TABLES

30 REM BY .M. SCHREIBER FOR TAR BOOKS
AQ NITM ACLOe2) vy ETRINGSE CLO

S0 TARLE SR CL3OIHFPEER G131 2 %254

&0 FOR X=TARLE TO TARLESZ0IT CHRS$ CFEEK

84

(XD 3 ENEXT X377 &% (REM SHOW THE VARIAR
lm{I E

LES IN THE

200 VL UE:=] LEAPHPEERCLISIRZ2ESCREM AD
ik VAR TaBLE VAl UE YﬁMLE

G0 P=QIFOR X=ULUE TO VLUE+SILIREM SHOW

INFORMATION FOR FIRST 4 VARLIARLES

GO OPRINT FEEKCKI» (PRl L 0F P=d DR F=d

THEN "“*TF Fagh THEMN FRINT $F=03REM

FRINT ESC-CTRL-UFARROW TF 4 OR 8

LGO NEXT K

IIU STRINGS="HL THERE"

: ULUEAS TO VILUEGLSST FPEEK(X)

H STOTREM SHOW THE CH&SNGE TN THE

“thAUII Vil L TARLE

LCLA0HFERERCLAL %256 $REM

LAO STAR EE
FOND THE BEGINNING OF THE STRINGSARRA
TAREA

140 MESSAGEE=8TAREATLPEIREM FIND THE &T
l TG

l l'"i l"\ 3‘(=

ik TO MESSEAGEHLEN{STRIN
TO END (0 TRINGS
LK Y3 AREM FPRINT THE CHA
LUES TN THITS AREA

n

180 7 87 TETRING:" s STRINGSE

The fifth group of bytes is nearly identical to the second group. This is the information for
STRINGS. The only byte that is different is the fifth byte. It contains an eight because the
message in STRINGS is eight characters long. The next line prints the contents of STRING$ by
peeking at the area in memory where STRINGS is stored. Finally, STRINGS is printed to show
that the message is the same.

By knowing this information, it is possible to trick the computer into looking at memory that
was not originally set aside as a string by the computer. In the next.chapter you will learn how to
manipulate this information.

Another area of memory that BASIC uses is the Output Buffer. When a BASIC line is entered
into the computer, the entry must be stored somewhere while it is being tokenized and checked
for the proper structure. The area set aside for this is stored in memory locations 128 and 129.
This area or buffer is 256 bytes long.

Listing 5-1C. BASIC Tahles—Buffer
1O REM LISTING $.1C
20 REM BASIC TaBLES
IO REM BY ..M. SCHREIBER FOR TAR ROOKS
A0 DITM ACLOy2) vy STRINGE C1LO)
50 TARLE=FEER CL30)+FEER C131)%256
A0 FOR X=TARLE TO TARLE4A20:7T CHR$ (FEEK

85

Listing 5-1C. BASIC Tables—Buffer (continued from page 85)

(X)) 3 eNEXT X337 17 JREM SHOW THE VARIAR
LES IN THE TARLE

70 VLUE=PEERK (L34 +HFEER (135 X256 IREM AD
DRESS OF THE VARIARLE VALUE TARLE

80 F=0IFOR X=VLUE TO VLUE+31iREM SHOW
INFORMATION FOR FIRST 4 VARIARLES

0 FRINT FEEK(X)s iF=F+13IF F=4 OR F=8
THEN 7 ""¢IF F=8 THEN FRINT 3F=Q0iREM
FRINT ESC-CTRL-UFARROW TIF 4 OR 8

106G NEXT X

110 STRINGE="HL THERE"

120 FOR X=ULUE+E TO VLUE+HLSE? FEERK(X) s
SNEXT X&7 SREM SHOW THE CHANGE IN THE
VARTARLE VALUE TARLE

FINDG THE BEGINMING OF THE STRING/ARRA
Y AREA

140 MESSAGE=STAREA+LIY8IREM FIND THE T

RITNG

150 FOR X=MESSAGE TO MESSAGE+LEN(STRIN

GHI)-LIREM START TO END OF STRINGS

160 7 CHRE (FEERKIX))8 TREM FRINT THE CHA

RACTER OF THE VALUE IN THIS AREA

170 NEXT X

180 7 37 "HETRING="§STRINGS

190 BUFFER=FEER(L28)+PEERCL29) X256 tREM
BEGINNING OF THE RUFF

200 FOR X=RUFFER TO BUFFER+SLES0T CHRS$(

FEERCKY Y s TREM FRINT THE CONTENTS OF TH

E BUFFER

210 NEXT X

The contents of this buffer will vary from program to program depending on what has been

entered into the computer.

Once the lines of the program have been tokenized and placed in the program, BASIC has to
know where in memory the program begins. The address of the beginning of the BASIC program
is stored in the Statement Table in memory locations 136 and 137. By adding a few more lines to

the program you can see the tokenized BASIC program.

Listing 5-1D. BASIC Tables— Statement Table

1O REM LISTING 5,
20 REM BASIE TA
30 KREM BY LM« 8BC

I
A
IRETRER FOR TAR ROOKS

86

A0 NIM ACLOy @) o BTRINGE CLO)

a0 ThHBLE K< 130)4F L3 R2US

Q0 FOR X BlLE TD TABLESZOST CHRS CFEER
CXDI I8 INEXT X327 7 fREM SHOW THE VARIAR

LES IN T TaRLE
F “I LIt EROLEA)HPEERK CL35) X256 TREM Al
VAL UE TARLE

OF THE VARTABLE

BO F=0FOR X=ULUE TO VLUE+313REM SHOW

INFORMATION FOR FIRSET 4 VARIARLES

GO FRINT FEEKOX) » iF=P4LiIF Fsg OR F=8

THEN 7 ""¢TF Ps@ THEN FRINT §F=0§REM
HU-DTRL-UFARROW TF 4 OR 8

LGO NEXT X

DL STRIMGE="HT THERE"

120 FOR LUE+E T VLUE+SLE: T PEERKX)
ERTOXITOIREM SHOW THE CHANGE TN THE

BLE MalUE TAaBLE

FERCLAO) HFERERK LA L) %256 TREM

BEGINNING OF THE STRINGZARRA

130
F LN
T ARE
140 MESS

RING

AGE=STAREAHLSEIREM FIND THE ST

150 FOR X=MESSAGE T0 MESSAGE4HLENCSTRIN

GE =1 REM ART O TO ERND OF STRINGS

P&O % CHRE CPEERCEY 3 TREM FRINT THE CHA

FRACTER OF THE UalUE TN THIS aREA

170 MEXT X
180 7 7 "BTRING="3ETRINGSE

190 BUFFER=PFEERCLZE)FPEER CL29IX2EHIREN
BEGINHNING OF THE BUF

200 UFFER BUFFER+LS0CT CHR$EC

PREM PRI PJ TOTHE CONTENTS OF TH

s R LSS Y FERER CLE? b 284 CRE

TO PROGRAMALL002T TN
KOREM PFRINT THE TOKE

The remarks are perfectly readable. The rest of the listing should look like code. It is. Every
command is converted to one of the token values (Table 5-1). The variables have their own
tokens. It would be very hard for you to try to read this listing.

In order for BASIC to keep track of where it is when executing the program, it sets aside two
bytes of memory to use as a pointer. Memory locations 138 and 139 contain the address of the
current statement. When BASIC is not executing a program, this buffer points to the beginning of

87

the immediate line mode, which is the area that the next command will be placed if it is not a
BASIC line, but an immediate command.

When BASIC is executing a program, it also needs an area set aside for return statements
and for . . . next loops. This is called the Run Time Stack. When BASIC executes a GOSUB, it
must know where to return to. Four bytes are used for every GOSUB. One byte indicates that the
next address is a return address for a GOSUB. The next two bytes contain the line number to
return to. The fourth byte is the offset in the line, so that BASIC will continue with the next
statement on that line.

Afor...nextloop uses 16 bytes of memory in the stack: the last number that the variable can
count to (6 bytes), the step of the for . . . next loop (6 bytes), the variable name of the variable that
is counting, the line number (2 bytes), and the offset of the for statement. The first two numbers
use the Binary Coded Decimal format.

Incorrect use of the for . . . next loop or GOSUBs without RETURNSs and/or POPs can cause
a program to crash. Table 5-3 is a chart that shows the addresses that BASIC uses to store this
information.

SPEEDING UP A PROGRAM

Now that we have an understanding of how BASIC stores a program and the pointers that it
uses to keep track of the program as it runs it, we can use different techniques to speed up a
program and to use memory effectively. A well written program should run smoothly and use only
as much memory as necessary. Having a computer with 48K in it does not mean that you should
not try to conserve memory. If your short programs are written loosely, and you do not get into
the habit of trying to write the program as tightly as possible, you will run out of memory very
quickly when you try to write a large program.

Sometimes the only way to shorten a program is to recode it. If the program was not flow
charted or modifications were added to the program after it was written, you may find that the

Table 5-3. Table of Addresses for BASIC Tables.

clescrdma L Ll e

B e P

|y 128 Drbeut oot fer

&0 150 Variashle Name Tabhle
L34 LES Wavdaihle Yalus Table
L3s v 137 Sltatement Table
1382139 Courvrerh Statomant
LTa4Ge 141 Strimng/arraw asrea
LAZel 43 Rurm bime stack

88

program has several routines that are the same. These routines can be made into subroutines, and
several lines of code can be removed from the program. You may also find a subroutine that is only
called once. Move that routine to the main program. GOSUBs and RETURNSs waste bytes if the
routine is only used once.

Use a variable instead of a number if the number is used more than once. Each time a number
is placed in a BASIC line, it uses 7 bytes. If the same number is used twice, that’s 14 bytes.
Assigning a number to a variable uses 10 bytes. Each time the variable is used in a line, the
variable’s token is placed in the line. This is one byte. Assigning a number to a variable, then using
that variable twice uses only 12 bytes. Obviously, the more frequently the number will be used in
the program, the more bytes will be saved.

Place the most frequently called subroutines at the beginning of the program. BASIC begins
at the beginning of the program and works its way down looking for lines. If the line is at the
beginning, BASIC doesn’t have to look very far.

If one subroutine calls another subroutine and then returns to the main program, have the
first subroutine GOTO the second subroutine so that it will return to the main program from the
second subroutine.

Example 1
100 GOSUB 500
110
120
490 ...
500 TL=10:PRINT“Let’s try that again”:GOSUB 600
510 RETURN:REM this return is unnecessary -

Example 2
100 GOSUB 500:REM the correct way
110
120
490 ...
500 TL=10:PRINT“Let’s try it again.”:GOTO 600

In the first example, line 500 contains a GOSUB. BASIC will go to that subroutine, then
return to line 510. Line 510 contains a return. So, in effect, the computer is returning to a return.
In the second example, the GOSUB is replaced with a GOTO. Line 600 is still a subroutine, it still
has a RETURN at the end of it, but because the program went to the subroutine as a GOTO, when
it comes to the RETURN, the address on the stack will be the next line in the main program. This
method saves both time and memory.

Use POKEs instead of SETCOLOR. This will save about 8 bytes. POKEs can also be used
for the sound command.

Use logic instead of comparison if possible. One way is to set a variable to 0 if the condition is
false and to 1 if it is true. Then instead of an |IF X= statement, you can use an IF X THEN. For
example, you may have a program that has a printer option. The prompt DO YOU WANT A
HARD COPY? appears. If the user answers yes, a variable is set to 1 (PRTR=1). If the user
answers no, the variable is set to 0 (PRTR=0). Now, when you get to the part of the program that
will print either to the screen or the printer, instead of a line that reads:

89

1200 IF PRTR$="YES” THEN LPRINT “REPORTS”
your line will read:
1200 IF PRTR THEN LPRINT “REPORTS”

If PRTR is one, the statement is true and the word REPORTS will be printed on the printer.
If the variable PRTR is 0, the statement is false and the computer will go on to the next line.

Use assembly language subroutines when possible. The assembly language subroutine to
move the character set from ROM to RAM is shorter and faster than the BASIC routine.

Place short lines together on one line. Each new BASIC line uses three more bytes than the
same statement placed in an existing line. Be careful here with GOSUBs, and if . . . next
statements.

Many of the programming techniques used in commercial programs are not programming
tricks, but good programming practices.

90

Chapter 6

Tricks
with Strings

In the past few chapters, we have created animated scenes with various graphics modes and the
player/missile graphics. In most of the programs, we printed the characters on the screen. With
the player/missile graphics, we were able to move the character to the left or right by poking a
register; we used a machine language subroutine to move the character up or down. Sometimes
the movement was smooth, at other times it wasn't.

By placing the characters that form the graphics into strings, the animation that we are trying
to create on the screen can often be simplified. The following program uses strings to move the
graphics on the screen. It is an animated version of the classic puzzle of the farmer with a fox, a bag
of wheat, and a duck. He must take all three across the river, but his boat can only carry one item in
addition to himself at a time. If he leaves the duck with the fox, the fox will eat the duck. If the duck
is left with the wheat, the duck will eat the wheat. To place the fox in the boat, press the f; press
the w for the wheat, and the d for the duck. If you want the farmer to row alone, just press the space
bar.

Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle

1O REM LISTING &.1

20 REM FaRMER AND THE DUCKy FOXs ANID GR
ALN FUZZILE

FOREM BY LM BOHRETRER FOR TaAR BOOKS
40 DIM WEC28) y WLk (28w CE 20 » TEMP$ (28
S0 A=PEEKCLOA) -8 FORKE 204y A3 F0KE 204y
2A4TREM STORE THE BEGINNING OF THE NEW
& 0OLD CHARACTER SETS

SO FOR X=1 TO 200READ BICE X X =0HRSG (1
PINEXT XKIREM MACHINE LANGUAGE SURROUTI
NE TO MOVE THE CHARASCTER SET TO RAM

70 DATA 1049162y 4y 1E0e Q17720014520
Fy200: 2082495230y 2069230204y 202,208
242,96

91

Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle (continued from page 91)

GO A=USROATRCCSE Y Y TREM MOVE THE CHARACT
ER SET

LOO CR=AX2GSHIFOR (=24 TO 175IREAD CIF0
KE Q+CEy CINEXT QIRE M MOVE THE MEW CHAR
ACTERS INTO RaAM

1 IO DATA 255,205 2505,y 205 255, 250,255 2

j:

UATA QeQel P2 240252 VR BT SR
OATA QOvQoQeQyOel¥2e2340170
DATA QeQe0eQv Qe 130170
OATH OvOseQyi y(‘)ﬁvl ;9| 20
UATA OQeQoeQe (e 2855
OATA 20220y lx)h’()y
DaTh Qe Qe
UATA OvQuOvDy i v 2
] I‘;’ LATH ()v()v()v()p()v"'}'\"l'
120 NATA ()9()96)3?-5:-::“
121 waTa
L232 DaTa
123 DATA
L24 DATA
125 UaTA
70

L26 DATA GeOeDeQo20v20e20920
127 DATA QvQeOeQeQeleiel
128 UATA QeQvOvQodyB4ebed
130 DLIST=PEERK 40+ l FERCSESL 258

140 FOKE DLISTHIy &9 TREM ANTIC MODE 5
150 FOR Q=7 TO 281F0K I TMLISTHRe S INEXT
RIFORE DLISTHSy SIREM CHANGE THE DISFLA
Y LIST TO ANT 'I' CoMOnE 5

160 FORKE 709 1528F0ORE 710« 128IFORE 711
y 203F0ORE &2y 0

170 FOKE 7S5&edd® "X"IFOSITION 20887 "
Bl b2 ERERERE R B ERBRERERERERER Ky Il
gl

Z| 80 l"' U l"\ l"»'l ?‘ T ['1

-
'~

PR EE

5
=

[N

il

ok Bt Rt peb e ek Bed gt

o
(S8

ONL‘.)\ N

190 We="EEER8&EERGEREREREREREE (I HLE" 2
REM FaARMER UFRIGHT

200 Wih="R8 RS8R RRERRRERRERE KRR
TREM LEANTING FORWARID

210 POSITION Oyl % "TARE ol FOX wHEA

@

92

ToIREM SHOW UPTTUV“

220 CE=" R S S I o T O I N P R O O U

=03 FOSTTION déPS*i W §REM FRINT FakM

FRe-SET VaRIakLES

DIO FOSITION 21787 CHOl o2 iFQGITION 1

GeBE® CHCAedYOPEN #lede Oy "KI"IREM FRI

NT FOSTITIONS OF DUCK-WHEAT-FOX

240 GET dLeBIIF BH127 =

E 94v0+hlh hLbTUhl FRO M E S

.......] k) || S8R Be=l00r THEN CHS

. ORI B R GC PR R S (5 i]
0= GEATO 4 i DUCK

ﬂ&o IF F AN O o OFR Bl 02y THEN CEOd
vy Wk \ .’. HeRG = IR IF =L I0R Ly 12
W"'"ihUT” 2908 FOX

,¢U ll i ﬁN“ { 7O0R B=l119) THEN CE5
PRSP E U h R AN WOl CE 2220

ﬂ"ﬂ"’&U](
AV T N I

280 GOTO

290 POSITIO
LTH (2525 1 m

TRING :

ZO0 FOR Q=1 TO LLiFOSITION 268587 WLE:S

FEM MOVE THE BOAT

FLO TEMPS=WE e 20 §Wh=Wd CEy 28 U (2728
YaETEMPE REM MOVE THE BOAT TO THE |...h.| T

TR0 POSITION 26807 WS

IR0 TEMPS=WLECL 2 SWLh=lWLE CEe 28y FWLECE

PR) =TEMFE

I40 NEXYT Q3LF FL aND DL AND Wl THEN FO

SITION Qel i " YOU GOT IT I "GO

TO &40

IHC IF F O AND I THEN FOSTTION Gel 27 "

FOX EATS DUCK!! PEEOTO H40

AHC TF 0 AND W THEN FOSITION OeL3® "

DUCK EATS WHEAT "iGOTO H40

F70 WE Ay grm X" SWLE e 3p=" k" IFOSTITION

DHBIT WHIFOSITION 21717 CHCLe 3 0FEN
frledeQy"KE"

380 GET #LeRBITF B=127 THEN B=R-1283F0K

E &4y OREM RESTORE FROM INVERSE

290 T D1 AND (B=&68 0OR B=100) THEN CH(C

FeZyam® "IWG (A d)="0" 0B (S by="4 " PNL=02

¥ ‘) } e

THEMN 290

ST UH CA4r & ECLASE & 'I W
MOFUT TN DTHER &

93

Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle (continued from page 93)

D=1 GOTO 4303 REM DUCK

400 TF Fil AND (B=20 OR B=102) THEN CH(
Tolde "3CH Ay A ="S" IWECAp)= " F 102
F=1 tGOTO 430REM IT/8 THE FOX

410 IF WL AND (RE=87 DR B=119) THEN C#(
Qo2 "ICHE(He S =B IWE Ay 4amt SN LWL =03
Wl 3GOTO 430

418 TF RB=32 THEN 430

420 G070 380

430 FOSITION 21287 CHECL» 3 CLOGE #13UW
14 ¢33 =WE (494 IREM FUT IN OTHER STRIN
(G

440 FOR Q=1 TO LIIFOSITION 260837 WHiR
i MOVE THE BO&T

AS0 TEMPE Ly 2= SEIITEMPECE

WidhCLe2a) SWLS=TEMP® I REM MOVE BOAT

LGHT

460 POSITION

70 TEMPS CLe @ dmld C2Fy 28 ITEMP S O3y 28 =W

$ L e 28 TWE=TEMP ¢

480 NEXT Q

ASO TF FL AN DL THEM FOSTITION 0«17 °
FOX EaTsS UGk TREOTO H40

SO0 IF DL aND Wl THEN FOSITION OsL:® "
DUCK EATS WHEAT " SGE07T0 540

G310 PO ; Yo) DWW (S

TR IWLE G m g SPOSTITION 26807

G300 GATO 23

S5A4Q FOR Q=L TO LO00INEXT QIGEOTO 170

¥

2 Y

R

Line 40 dimensions four strings. The W$s will be the boat in the water. C$ is the machine
language subroutine to move the character set from ROM to RAM. TEMP$ contains temporary
information for the strings.

Line 50 finds the top of memory available on your system and subtracts 2K from it. This is
where the RAM character set will begin. This location is poked into memory location 204. The
beginning of the ROM character set is poked into location 206. These two memory locations will
be in the machine language subroutine.

Line 60 is the machine language subroutine that moves the character set from ROM to RAM.
Be sure that the data in line 70 is entered correctly. It must be typed in exactly or it won’t work.

Line 90 uses the machine language subroutine to move the character set from ROM to RAM.

Line 100 reads new characters into the character set. We will be replacing the characters
from the pound sign (#) to number 5. See Fig. 6-1 for the new characters. To get the decimal
location of the first byte in the RAM character set, we multiply the value of A by 256. Since we
want to begin the new characters with the fourth character, we multiply 8 (bytes per character) by

94

3 (characters to skip). We will begin replacing the characters with byte 24.

Lines 110-128 contain the data used to change the characters. Each line is a different
character.

Line 130 finds the beginning of the display list. We will be changing the display list to work in
ANTIC 5. ;

Line 140 changes the fourth byte of the display list to 69. This is the instruction that tells the
computer that the next two bytes indicate where the screen memory begins, and the mode of the
first line on the screen.

Line 150 changes the rest of the lines in the display list to ANTIC mode 5. The seventh line of
the display list is changed to ANTIC 6 (graphics mode 1). This line will contain text.

Line 160 changes the colors that will be used in the program. Location 82 is poked with a zero
to change the left margin on the screen. All the lines on the screen are 40 characters wide except
the second line. This line is 20 characters wide. This places the margin in the center of the screen.
If we don’t change the left margin to zero, the computer will skip the screen area that would
normally be the left margin. Because it is now in the middle of the screen, there would be a
strange empty line down the middle of the screen.

Line 170 pokes location 756 with the new character set location. The screen is cleared and
the shore lines and water are printed on the screen. Notice that the shore begins on the left side of
the screen and extends to the right margin, but the program tells the computer to begin the print
with position 20. All the lines after the second one are 20 characters off.

Line 180 fills the bottom of the screen with blue.

Lines 190-200 place the waves and the farmer in the boat into the two strings. In W$, the
farmer will be upright; in W1$, the farmer will appear to be leaning forward.

Line 210 prints the options on the screen. The D in duck, the F in fox and the W in wheat are
different colors; these are the keys that will be pressed to place that object into the boat and row it
across.

Line 220 places three spaces and the numbers 534 into C$. C$ will not be used any more in
the program, so rather than use a different variable, we are reusing C$. The 5, 3, and 4 are the new
characters for the fox, the wheat, and the duck. The next six variables will indicate where the fox,
the duck, and the wheat are. F, W, and D will be set to 1 when the fox, the wheat, and the duck are
on the right side of the screen. The F1, W1, and D1 will be set to one when the fox, the wheat, and
the duck are on the left side of the screen. The farmer in the boat is printed on the screen.

Line 230 prints the items on both sides of the screen. When the program begins, the first
three elements of C$ will be empty. The fourth through sixth will contain the fox, the wheat, and
the duck. The keyboard is opened for input.

Line 240 gets a value from the keyboard. This value will be an ATASCII value for the key
pressed. If the value of B is greater than 127, the inverse key has been accidentally pressed. By
subtracting 128 from this value, it will be restored to the correct value. By poking location 694
with a zero, the flag is reset for normal characters.

Lines 250-270 check the key that has been entered for one of the three characters. If the
variable for that character is a one, the first part of the if . . . then statement is true. We do not have
toenter IF D=1, IF D serves the same purpose. If the D is one, the computer will go on the second
part of the statement and check to see if the D or d key has been pressed. If it has, the duck is
placed into the boat. The redefined character for 0 is the duck. When the boat is on the right side of
the screen, that part of the boat is the 26th position in the string. The third character in C$ will be
the duck. This element is replaced with the 4, the duck on the ground. The variable for the left side

95

by

ot -
b A 22,
e

s

0
S

ot
o
e
A

et Tt

A

=

o
P

o

-

P
5

o

~
-
P

>

>

o
-,

S

S

P

B

s

/
>
o
R

>

>
5,

e
P

o
B

Ped

o
A

P

.
>t

et
P

>

Fig. 6-1. Character set for farmer, duck, fox and grain.

96

=

S

e
2

et
ECa Y

»

LY

ot

>4

e
2%

>
>

e
e
s
pad
"
>

e

f
:
5
>
<

Ty

o
Ea

S~

pod
pas

*

>,

>
>
>

e
SR

e

0

>

st

5,

P

~,
P2

i

>

>

ped

a7

>

e

AL

3

97

N

b4

3

e

S R

T
N SN

-
R
-~

b4

Fig. 6-1. continued from page 97.

of the screen is changed to a 1 and the variable for the right side of the screen is set to zero. The
program goes on to line 290. The other two lines are the same. They use the redefined characters
for the fox and wheat.

Line 275 checks for the space bar. If the space bar is pressed, the program will go on to the
next part of the routine and row the boat across the screen. Only press the space bar when you
want the farmer to row the boat with nothing in it.

Line 280 sends the computer back to line 240. The key that has been pressed is not one of the
four correct keys, or the character that you are trying to take across the river is already on the
other side.

Line 290 reprints the fourth through sixth characters of C$ on the screen. The character that
is in the boat will be removed from the shore. The keyboard is closed and the character that is in
the boat in W$ is placed in W1$. The boat is one character to the left in W1§.

Lines 300-340 form a for...next loop to move the boat from the right to the left. W1$ is printed
on the screen. This is the string with the farmer leaning forward in his boat. The oar is in a slightly
different position also. The first two characters of W$ is stored in TEMPS$. These two characters
will end up at the end of W$. The rest of W$, from the third position to the end is placed in W$.
This, in effect, moves the characters up two places. The characters stored in TEMPS$ is placed in
the last two places of W$. W$ is printed on the screen. The same procedure is repeated with W1,
except it is not printed on the screen. W1§$ is printed when the routine is repeated. When the loop

98

ends, W$ will be on the screen. The computer will check the values of F1, D1, and W1. If they are
all 1, all three characters are on the left and the game is over. The winning message is printed on
the screen.

Line 350 checks the variables F and D. If both of these are a 1, then the fox and duck are
together. Since they cannot be together, the message FOX EATS DUCK appears on the screen.

Line 360 checks the values of D and W. If both of these are a 1, the duck and the wheat are
together. The message DUCK EATS WHEAT appears on the screen.

Line 370 restores the boat to normal in both strings, prints the empty boat on the screen, and
prints the first three characters of C$ on the shore. The character that has been brought over on
the boat will now appear on the land.

Line 380 gets a new key from the keyboard. Again, the value is checked to see if the inverse
key has been set. If it has, 128 will be subtracted and the flag reset.

Lines 390-410 check the key that has been pressed against the values in the variables. If the
correct key has been pressed, but the corresponding variable is a zero, then that character is on
the other side of the river and the boat must be rowed back before the character can be placed in it.

Line 415 checks for the space bar. If it has been pressed, the program will go on the routine
that moves the boat back across the water.

Line 420 sends the computer back to line 380 for a new input. The key pressed was not an F,
D, or W or the space bar.

Line 430 prints C$ on the shore. The character placed in the boat will be removed. The
character is placed into W1$. Again, because W1$ is offset by one character, the character that
was placed in the boat is placed one position to the left in W1.

Lines 440-480 move the boat back across the screen. The lines are similar to the ones that
moved the boat across the screen the first time. This time the last two characters are placed in the
first two positions of TEMP$. The first through 26th characters of W1§$ are placed in the 3rd
through 28th elements of TEMPS$. Then the contents of TEMP$ are placed in W1$. The same
procedure is used to move the boat in W$.

Lines 490-500 check to see if the fox is left with the duck, or the duck is left with the wheat.

Line 510 prints the fourth through sixth characters of C$ onto the shore. The new character
will appear here now. The boat will be restored, and the empty boat will be printed on the screen.
The program continues until the characters are all on the left side of the screen.

Line 540 is a timing subroutine. It is used to give you a chance to read the message on the
screen.

To restore the screen, press the system reset key.

MACHINE LANGUAGE SUBROUTINES

Until now, you have placed machine language subroutines into a string by setting a position
of the string equal to the character string of a number. Every program that moves the character
set to RAM, or moves a player/missile up or down used the same machine language subroutine.

The following two programs place a machine language subroutine in a string. The program
then prints the string on the screen with a line number in front of it. By moving the cursor over the
line and pressing return, we place the new line with the subroutine into the program. This line can
then be stored on disk for future use. When you want this subroutine in a program, you do not have
touse afor .. .next loop with the data lines. The line with the characters already in the string can
be used.

99

Listing 6-2. Move Character Set

1O REM LISTING &.2

20 REM MOVE CHARACGTER SET

A0 REM BY LM, SCHRETEER FOR TAER RBOOKS
A0 DM CH 200

S0 FOR X=1 TO 20READ BICE Xy XD =CHRE (R

PINMEXT X

SO DATA LOAv 1628y 140 Q177205014520
FeR200y208 249 2300206230204 2029208y
24296

FOOFRINT "FU"e508" Ce="iCHR$(E4)5CHs CHR
BERAP T HOIT FO

Line 40 sets aside 20 bytes for the machine language subroutine.

Line 50 reads the data into the string. When it finishes, each byte of the string w111 be an
instruction of the subroutine.

Line 70 clears the screen. The number 50 and the string will be printed on the screen. The
numbers 60 and 70 will also be printed on the screen.

Now move the cursor to the top of the screen and press the return key three times. Line 50
will be replaced with the string that contains the subroutine. Lines 60 and 70 will be erased. To
use this subroutine, subtract 2K from the amount of memory available in your system
(A=PEEK(106)—8). Store the value of A in location 204 (POKE 204,A). Store the beginning
address of the ROM character set in location 206 (POKE 206,224). To execute the subroutine
use the USR command—Q = USR(ADR(C$)). This subroutine will move the ROM character
set into RAM.

Listing 6-3. Move Player/Missile Up/Down

1O REM LISTING &.3
AMISETLE UF/TDOWN
CFOR TaR ROOKS

20 REM MOVE PLAYE
EO0OREM BY LM SCHRETRI
40 DIM UFHCLE) « DOWNECLE)

SOOFOR ¥=1 TO L3IREAD BIUFE X X =CHRE
BYENMEXT X

GO DNATA 104y 1&0y0v200y 17
BONe200, 20834796
POOFOR X=1 TO L3TREAD BIDOWNS CXy XD =CHR
FCRYINEXT X

80 DATA 104y 160285y 1361772002000 1 4
R0 1 BSH 208247 094

g T "HEL l AR SH0F " Pk i OHREC34 5 310

PPeR20% 9136y 1AGy

Fe Xm0 TO 13387 CHRECABCUPE Ny X))) ¥ INEX
T XET CHRE CE4)
100 % 408" DOWNE="FOHRE (F4) 5 SFOR X=1 T

0 132 TF ASCODOWNS (X X)) =252 THEN 7 CHR
FLRTF Dy

100

116G 7 CHR$ASCCNOWNE (X e XD Y2 8 INEXT X7

CHIRECEAY 2T 08T BOITT P07 10037 110

Line 40 sets aside 13 bytes each for the two machine language subroutines.

Line 50 reads the data from line 60 into UP$. UP$ will contain the machine language
subroutine to move the players up.

Line 70 reads the data from line 80 into DOWNS$. This is the machine language subroutine to
move the players down.

Line 90 clears the screen and prints the two strings on the screen with line numbers before
them. The numbers 70, 80, 90, 100, and 110 also appear on the screen. Move the cursor to the top
of the screen and press the return key 7 times. Lines 50 and 60 will be replaced with the new lines
that contain the machine language subroutines. Lines 70, 80, 90, 100, and 110 will be erased from
the program.

To use these subroutines, store the high order address of the player to be moved in location
206 and the low order in location 205. Executing either subroutine with the USR command will
move the player up or down.

When storing a machine language subroutine in a string, make sure that the subroutine
contains relative branches. That is jumps that depend on a byte count instead of a firm address.
The string can be placed anywhere in memory. The location of the string will vary from program
to program. If the machine language subroutine contained a set jump, for example, jump to address
2048, the program would always jump to that address. If the correct instruction was there, the
routine would work properly. If it wasn’t, the program would crash. By using a relative jump, for
example, Branch Not Equal, the program will be directed to a location by bytes (forward 8 bytes,
backwards 3 bytes, etc.). This routine could be located anywhere since the same instruction will
always appear 8 bytes after or 3 bytes before the current instruction.

RELOCATING THE STRINGS

In the last chapter, tables for the variables, their names, and the string/array area were
listed. Knowing where the computer looks to find out where a string is located enables us to be
able to relocate strings to areas that are more suitable for our program needs.

The two tables that we will be using in the next program are the variable value table and the
string/array area. By changing the offset values in the variable value table, we can make the
computer “think” that the string is located elsewhere in memory. By changing the values in the
fifth and sixth locations in the variable value table, we can change the length of the string.

In effect, we can make the screen one string, and manipulate it as such. We could even store a
program in a string if we had reason to. One example of relocating the strings is in the next
program.

STRINGS AND PLAYER/MISSILE GRAPHICS

The player/missile graphics have provisions for moving the player/missiles to the right or
left with a simple poke command. But, in order to move the players up or down, we have torely on
machine language subroutines. If the player was extremely long (tall), the movement could look a
little jumpy. In the next program, which simulates a slot machine, we will move the players up by
manipulating a string.

101

Listing 6-4. Player/Missile Strings

10 REM LISTING 6.4

20 REM PLAYERAMISSTLE STRINGS

IOOREM BY LM SCHRETRER FOR TAR ROOKS
40 0IM PLLIECLY o PLEBCLY o PLIB L) » TEMFE (L
Yy JURF TS (8)

0 GRAFHICES 430LTST=REEK (5400 HPEER (G561
IHRDESIREM GET THE DISFLAY LIST

GO FORE DLISTHAS ZOSFOKE DLISTH48y & EF0
KE DLISTHAYy &FORE DLISTHE0» &IREM CHAN
GE TEXT WINDOW TO GR. 1

70 COLOR 1LIPLOT S50y373NRANTO S0y HINRAW
TO 24y 5IF0STITION 24y 37 1F0OKE 765y 1 1XT0
18y S QeQy "SI IREM DRAW S1L.OT MACHINE
GO COLOR OIFOR X=L10 TO 133FLOT 26y XIDR
AWTO 32y XFPLOT 34 XTORAWTD 40, XIFLOT 4
SeXINRAWTO 48y XENEXT XIREM MAKE WINDOW
PO VART=PEEK CLIA) HPEER L3S X204 18T TAR:=
FEERCL40)HFEEK CLA1) X2B4&IREM GET THE VA
RIABLE & STRING TARLES

LOO FOKE S5%9y4&TREM SET FOR DOURLE LLIN
A yOLUTITON

110 P FEEKCLOS) -8 EFOKE S4279y FMRA
GESRED FA GRAFHTCS 2K ABOVE END 0

OF FAM GRAFHT
L30 X=01F0R =512 TO 748 STEF 128IREM
BEGINNING OF E&ACH FLAYER
LAG STROFFSET=FMBASE+FZ-STTARIREM CHANG
EOTHE DFFSET VaLUE FOR THE STRINGS
LEO STRVALI=INT S TROFFSET /256 IREM HIG
HoOORDER AL 5] : &

L0 STRUALA=GTROFFSET-258XSTRVAL S T REM

LOW DROER R85 OF OFFSEY

170 FORKE VARTH2+X s STRVAL 4 CREM THIRD RY
TE FOR STRING UVaRITABLE TN VARTARLE TAR
LE

180 POKE VARTHI4FXy STRVALIIREM FOURTH I
YTE FOR STRING VARIABLE TN VARTIAELE TA
BLE

190 FORKE VARTH4+X s 128 IREM MAKE STRING

128 BYTES LONG

200 FORKE VARTHE4+X 0

210 FORKE VARTH&EX v L2BTREM SET LENGTH T

102

0 12¢

220 FORE VARTHZ4+X v Qi X=X4+8IHNEXT ZIREM 1

NCREMENT X FOR NEXT STRING

DIO FLIBCL ="y ¥ LML |‘|>(L8 sy " 2L 1E

(2)=P L Ls s REM CLEAR THE STRING

240 XaZ&FOR Z=1 TO S4IREAD BIFLLIE(XeX
=OHRG (R X=Xt LENEXT ZEAURFTE=FL 1S (73

80 YIREM GET SYMBOLS

230 TATA 258y 0v32v1& el b v 40y 108108 O

2650 NATA 2 p Qv 2deb0r 2606092400

270 NATA 288yQu0v0v&0v 12609600000

280 OATAH : lv()yf'“% By 2460y 1260 &0 0

290 NATA & Qe OOyl 28y 13&v e

F00 NAaTA 2850y l)9](‘151 By 12y 124 12450

310 FL2%=FLLEs s PLEE=r 1%

320 FORKE S3277 . §'| DRE &23 v TREM ENARLE
FrM GRAFPHICS - ESTARLISH FRIORITIES
AFO FORKE 704y 908FORKE 205y 1201F0OKE

JOFORE 7 () Qe LHOTREM SET DOLORS

340 MONEY l()()’l DIE S3248 1043 PORKE SH3324

Gy l1@FOR |... BI2H0 e LIGIREM FILL THE WIND

OWs - MOVE TF II'" FLAYERS ON THE SCREEN

IH0 P "FOLEARIYOU HAVE $"iMONEY T "FRE

S8 anw KEY"§3i l'i FEM FRINT THE MESSHGEE

360 IF FPEEK(Z&4) EECOTHEN B&GIREM WALT
FOR A KEY TOQ I:'- Eo P RESSED

IO MONEY= i"i[]l\! EY-13FORE 7&4e 2858 T=INTIR

NOCLYRLS 45 EREM FPICK NUMBER OF SFING F

ROM & - 14

IR0 FOR Xl TO TS ITEMP =

(3L 38 =P L3¢ (' I74B9IIFLAGCE
ROTATE THE STRIMGS

390 FOR Z=1 TO 2ITEMPS=FLIG 036 dPLEECE

Sy 88 =FLA2E (A7 v B I IPLES (8P y=TEMPS SNEXT

4
£

400 FOR Z=1 TO JeTEMPS=FLLECESY IFLLIECE

HyBE)=FLLS (789 IFLLECRY Y =TEMPS INEXT

ZINEXT X

410 T=INTORNOCLYHS) S TREM FICK NUMBER

OF TURNS FROM L - &

420 FOR X=1 TO TX9ITEMP&=FL2E(36) IPL2%

(3Evy BB =P L2 CE7y 8 FIOFL2% CBY) =TEMPS 3 REM
ROTATE THE FI l" 3T TWO STRINGS

430 FOR =1 TO 2% Tl MP =Ll s R4 2P LS (3

=4

L34 C360 TPL3Y
Py TEME S §REM

103

Listing 6-4. Player/Missile Strings (continued from page 103)

HEHO T "PRESS ANY KEY TO FLAY AGATN"S IR

EM NEXT FLAYER

H5EOOTF PEERCZ&4)=2080 THEN S&OIREM WALT
FOR & KEY

SP0 GOTO F402REM PRESS SYSTEM RESET TO
END GiAME

GeBEI=FLLS (3782 PFLLECBY = TEMFS S NEXT

LINEXT X

440 T=INTORNOCLY XS S CREM FLICK NUMEBER

OF TURNS FROM 1 - &

450 FOR X=1 TO TkPITEMFE=FLLECSS) (FLLE
(36 8B =PLLS(EF 89 SFLLECED Y= TEMP G I NEX
T XIREM LAST STRING

A5 REM CHECK FOR FAYOFF

460 IF PL3ECI?» 440 =P L2 37 v 440 AND FL3

37944 =PLLd (37 v 440 AND ILJb JORFPTS T
HEN MONEY=MONEY+30038=752060T0 510

470 IF FLI$CI7 v 44)=PL2ECI7v 440 AND L3

G379 44) =P L1 (379 44) THEN MONEY=MONEY -
LO0IG=1002GOTO H10

480 IF lLlﬂ(?7v44)“Pl’b(77944l THEN MO

NEY=MONEY 4502 =125 6070 H510

490 IF PLJ$(3/944)“|L$1(J v 44 THEN MO

NEY=MONEY 45 S= 18056070 510

G000 8=2008REM NO WIN

510 SOUNIN 0s859 10 LOFOR X=1 TO MONEYIN

EXT XISOUND Op Qe Qe OIREM MaKE SOUND TO
INDICATE WINNING

20 IF MONEY>0 AND MONEY1000 THEN 350
CREM CHECK FOR END OF GAME

H30 7 "FOLEARY"SIF MONEY=0 THEN 7 "wou
lose"160TO SHOIREM LOST YOUR SHIRT
540 IF MONEY=1000 THEN 7 "YOU WIN"IREM
BROKE THE BANK

S350 7T "FRESS ANY KEY TO FLAY AGAIN"j IR

EM NEXT FLAYER

60 IF FEEK(764)=285 THEN S60IREM WAILT
FOR A KEY

970 GOTO 340iREM FPRESS SYSTEM RESET TO
END GAME

Line 40 sets aside one byte for the strings that will be used for the players. TEMP$ will hold
one byte during the string manipulation. JCKPT$ is the jackpot character. In order for this
procedure to work correctly, PL1$, PL2$, and PL3$ must be the first three variables in the

104

variable name table. Before typing this program in, turn off the computer; then turn it back on.
Begin typing in this program. If the computer is given a variable before the PL strings, it will store
that variable in the table. This will set the PL strings off and the program will not work correctly.

Line 50 sets the graphics to 4. We will only need two colors for the slot machine, the
background color and the machine’s color. The beginning of the display list is stored in DLIST.

Line 60 changes the text window from graphics mode 0 to graphics mode 1. When we are
using a graphics mode with a text window, the display list will have another load command after
the proper number of mode commands. This command tells the computer to start a new screen
display in graphics mode 0. We will change that to graphics mode 1 by poking it with a 70. The
three lines that would display graphics mode 0 are changed to graphics mode 1 by poking three
more locations in the display list with a 6. (Graphics mode 1is ANTIC 6.) Now the text window in
the program will have large print.

Line 70 uses the XIO command to draw a slot machine on the screen.

Line 80 uses color 0 (black) to erase part of the slot machine for the windows.

Line 90 stores the location of the variable table in VART and the address of the string/array
are in STTAB. These two values will be used to relocate the strings.

Line 100 sets the player/missile for double line resolution.

Line 110 sets the player/missile graphics 2K before the end of memory. The top of memory
is stored in location 106. By subtracting 8 from it, we are subtracting 2K of memory. The
beginning of the player/missile area is stored in 54279.

Line 120 multiplies the beginning address by 256 to arrive at the decimal location of the
player/missiles. The number that is stored in PMBASE before it is multiplied is the high order
address.

Lines 130-220 relocate the three strings that will be used for the player/missile graphics.
The variable X is set to 0 (zero). This is the variable number or location in the variable table. The
first player is 512 bytes past the address of the beginning of the player/missile area. Each player
is 128 bytes apart, so the for . . . next loop uses a step 128. The string offset is stored in the
variable STROFFSET. This is the value that the computer will add to the address of the
string/array area to arrive at the location of the string. When the strings are not being relocated,
the first string will have zeros as the offset since the first string will begin at the first byte of the
string/array area. The second string’s offset will be one more than the length of the first string.
The string should begin with the first byte of the player. The value of Z will be added to PMBASE.
This is where the player begins in the player/missile graphics area. The value of STTAB must be
subtracted because the computer will “add” this value back when it is looking at the string. The
value that you arrive at is the new offset for the string. This value is greater than 255, so it will
have to be divided into two bytes. The high order address is the integer (whole number) of the
offset divided by 256. The low order address is arrived at by subtracting the high order integer
times 256 from the address. These two bytes are stored in the third and fourth bytes of the
variable table for that string. The next two bytes in the variable table indicate the amount of
memory set aside for the string. We want 128 bytes for each string, so the low order is poked with
128 and the high order with a 0 (zero). The last two bytes set the length of the string. We want the
string to be 128 bytes long, so these two locations will be poked with a 18 and 0 (zero). The
variable X is incremented by 8 because the information for the next string will begin 8 bytes down
from the beginning of the information for this string. This routine is repeated two more times.
When it is finished, the first three strings in the variable table will be 128 bytes long and their
location will be the player/missile graphics area.

105

Line 230 clears the first string.

Line 240 reads the data in the next 6 lines and stores it in the string. This data will draw the
cherry, orange, lemon, apple, gold bar, and bell into the player/missile graphics are. The string
JCKPT is set to the 5th character in the string.

Line 310 sets the other two strings.

Line 320 pokes location 53277 with a 3 to enable the players, and location 623 is poked with a
4. This establishes the priorities of the players and the graphics on the screen. If the priorities
were not set, some of the players would appear over the machine instead of inside it.

Line 330 sets the colors of the slot machine and the three wheels.

Line 340 sets the variable MONEY to 100. This is the amount of money you have to start the
game. The three players are moved on the screen by poking their locations into the correct
registers.

Line 350 prints a message in the text window.

Line 360 checks location 764 for a value other than 255. When the value of this location
changes, then a key has been pressed.

Line 370 subtracts one dollar from the amount of money left. The key location is cleared, and
a random number from 5 to 19 is chosen. This number determines the number of times the
rightmost wheel will spin.

Lines 380-400 make the wheels spin. This works on the same principle as the boat in the first
program of this chapter. The top character of the string (in this case it’s in the 36th location) is
removed from the string and stored in a temporary location. The rest of the string is moved up one
byte. The character that is being stored in the temporary location is moved to the end of the
string. Each of these strings is a different player. The rightmost wheel is rotated once, the middle
one twice and the leftmost three times each time the program executes the loop. This gives the
illusion of the wheels spinning at different speeds.

Lines 410-450 spin the middle and leftmost wheel after the right wheel stops. Each wheel is
spun a few more times after one wheel stops.

Lines 460-500 check for a payoff. If all three characters shown on the machine are the same
and they are the bars, the jackpot is won. 500 is added to the amount stored in MONEY. If the
three are the same, but not the jackpot, 100 is added to the amount stored in MONEY. If the first
two characters are a match, 5 is added. If there are no matches, nothing is added to the amount in
MONEY.

Line 510 makes a sound to indicate the win. The variable S is set to a different value
depending on the amount of MONEY won. This line generates the sound.

Line 520 checks the variable MONEY to see if you can still play.If there is no MONEY, or
the value of MONEY is greater than 1000, the game ends.

Line 530 clears the screen and prints you lose if you have no money left.

Line 540 prints you win if the amount in MONEY is greater than 1000.

Line 550 prints the message on the screen.

Line 560 waits for a key to be pressed. The program will loop here until a key is pressed, if
the system reset key is pressed, the program will end.

Line 570 sends the program back to line 340 to play again.

106

Display
List Interrupts

Aninterrupt is a subtle way to get the computer to do a task while it appears to be doing something
else. When you are working on a program with your ATARI, the computer looks like it is just
sitting there waiting for you to enter your new line or command. What is actually happening is the
computer is very busy maintaining several areas. The ANTIC chip keeps the information on the
screen; the clock keeps time; and the computer keeps checking to see if it’s time to start the active
mode. When you press a key, you are interrupting the 6502. It now checks which key was pressed,
and sends that information over to the ANTIC chip so that it can be displayed on the screen.
Because of the speed at which the computer works, this appears to be done instantaneously. The
computer is capable of handling more functions if it is interrupted at the proper times.

HANDLING AN INTERRUPT

One of the best times to interrupt the computer is when it is drawing on the screen. To draw
an image on the screen, the computer must be synchronized with the raster scan of the television
set. This happens within the computer and we do not have to be concerned with it. When the
raster scan begins to draw a picture on the screen, it begins with the upper left corner and goes
across the screen to the upper right corner. When it is finished with the line, it shuts itself off,
retraces its line, then drops down one line and turns itself back on. It continues to draw lines, turn
itself off, retrace, drop down, and turn itself back on until it reaches the bottom of the screen.
There it will shut itself off and return to the top of the screen, where it will begin to draw all over
again.

The period of time during which the raster is turned off and is retracing the line is called a
horizontal blank. The period of time needed for the raster to go back to the top of the screen is
called the vertical blank. During this time we can interrupt the computer and have it do something
that we want it to do: something that may not be possible in BASIC or machine language alone.

There are certain registers or memory locations in your ATARI that seem to have a double in
ROM. The color registers are one set of these registers. There are 9 different locations to store
the color values in RAM. There are also 9 color locations in the ROM or Operating System. If you
poked a value into the RAM locations, you would change the color of the character on the screen.
If you poked a value into the corresponding ROM location, nothing would happen.

ANTIC draws characters on the screen based on the colors in the ROM locations (these

107

Table 7-1. Hardware Registers and Shadows.

BT
SR A T

.l e P

Sl

Charachey moos GARFE

Character bhase mamal

Color bag

{) : 208
1 : A0

i : 210
Calor 3 I A Zd.1

Coloy resdelawer O
Colovr resSelawer 1

A&

Coloy reg/elawer

Dolor resdelawer 3 BI26Y FOF
List high HA2TE Hal

Thiselaw List Low aaRdia &

locations are also called the hardware registers). Each time the vertical blank occurs, 60 times
every second, the computer looks at the colors in the RAM locations and stores them in the
hardware registers. If you poked a color value into a hardware register, it will be replaced within a
60th of a second! Table 7-1 shows a list of hardware registers. The second location is called the
shadow register. This is the register that contains the value that will be placed in the hardware
register by the computer during the vertical blank.

There is a way to change a value in the hardware register without interference from the
shadow register: interrupt the display list and change the value during a horizontal blank.

WRITING SERVICE ROUTINES

During the period of time that the raster scan is retracing itself, the computer is free to do
other things, like change colors, character sets, or other images on the screen. To do this,
however, the computer must be told to watch for an interrupt. In the following program, the

108

computer is told that there will be a display list interrupt. The correct bit is set for an interrupt at
the end of a line, and the colors in color registers are changed.

The only problem with using a display list interrupt to change the color value is that the
character will always be one color above the line and the other color below the line. If the
character travels above the line it will be changed to the original color.

Listing 7-1. Color Service Routine

10 REM LISTING 7.1

20 REM COLOR SERVICE ROUTINE

FO REM BY L.M:SCHREIRBRER FOR TAR RBOOKS
S50 GRAFHICES 18

SO DNL=FEER (GH0)HPEER(SA1 X256 DL =DL+10
SREM THE STH LINE ON THE SCEEN

20 FORE DLy FPEER(OLYHFLI28IREM set the 8t
hobit bo 1 obw adding 128 to the seek o
Fothat location

80 FOR ML=153¢% TO L1HS4IREAD QIFOKE MLy
FINEXT MLEREM FORKE THE MACHINE LANGUAG
ESUBROUTINE INTO FREE RaM

GO FORE S12yQF0OKE S513v61FDKE 54286619
SIREM ALDDRESS OF MACUHINE LANGUAGE SURR
OUTINE - ACTIVATE ITNTERRUPT

LOO IaTa 72y 138y 7218207291862y 100e 140y
Bolad@eB8y1lALe 10212141y 2420814223y
208y 14022y 208y 104y 1881040 170104064
L20 FOSITION 200187 65 "BLUE" ¢ "drean"
L3O POSTITION 29387 s "ved"y "YELLOW"
L&HO FOSTITION 29737 & "FPINK" y "rurele"?
FOSTTION 78 0% $H8 "GREY"

1720 GoTo 170

Line 50 changes the graphics mode to 18—mode 2 without the text window.

Line 60 stores the beginning of the display list in variable DL. The address of the beginning
of the display list is stored in locations 560 and 561. To arrive at this address, the contents of
memory location 561 must be multiplied by 256 and the contents of memory location 560 must be
added to this product. Add 10 to this address to point to the middle of the display list.

Line 70 changes the display list. By setting the high order bit of a display list value to 1, we
tell ANTIC that after it draws or writes this line onto the screen, there will be an interrupt. Since
we may not be sure what the value might be at this particular location, the simplest way to set the
bit is to add 128 to the value of this location.

Line 80 reads the data from line 100 and pokes it into the free RAM beginning at location
1536. See Table 7-2 for the assembly language listing of the subroutine.

Line 90 stores the address of the beginning of the interrupt routine at memory locations
512-513. The address, in this case 1536 is divided by 256. The high order address is the integer
part of the quotient. 1536/256=6. There is no remainder. The 6 is stored in memory location 513.

109

Table 7-2. Service Routine to Change Colors.

decimal oo

s hator on bhe

R (TR

e FPreom dead

L T s Tyvansfer index ¥ Lo scoumulator.

b P sPusn seoumalator on shaclk

{oontarnts Forom drciexs Y

Ty

1&a LI 100G shoosd

Predees ¥ owibi 100,

100

1La&G LY R slooasad dndes 7 with 8.

1 &% LIS kg Plomao scoumnulator witn B8,

Store the contents of Lhe

@i

1 acoumulator alt bivis addrs

If there was a remainder, it would be stored in location 512. Since there is none, a zero is stored
there. Memory location 54286 is poked with 192. This is a hardware address that can enable the
interrupt for the display list interrupt and the vertical blank interrupt. If it is not enabled, ANTIC
would ignore the code in the display list that tells it that this is the place where it should execute
the interrupt routine.

Lines 120-160 print on the screen. The first four words—blue, green, red, and yellow use the
colors that are preset by the operating system. Be sure that BLUE is in uppercase and inverse,
and red is lowercase inverse. Each word will appear in its color. The three words on the bottom
will appear in new colors. PINK is uppercase inverse, and appears pink on the screen. Purple and
GREY were previously green and YELLOW. The interrupt routine changed the color code in the

110

P s wadh Tor the hovisonhal o swno.

141 ST PShare dn color res

S tore dncdex X oin colaor vesister.

AP
s

AOoiStove dncde: Y odin color vesiister.

140 STy

L 1. PlRemove value From s

1&g T FTvamsfer ih Lo dndes Y.

104 Pl Flemose snothe e wslioue Prom staok.

| F T it o dede
104 P fRemove valoae From s
& RTL ffetuirn From drharrust.

hardware register during a vertical blank. The operating system replaced the color with the color
code from the RAM shadow address during the horizontal blank. Everytime something is printed
on the top half of the screen, it will appear in the color set by the operating system, or the color
that was placed in the shadow registers under program control. The colors on the bottom half of
the screen will be the colors forced into the hardware registers during the interrupt.

End this program by pressing the system reset key.

Changing the colors in a program is only one possible use of interrupts. Any feature that has
both a shadow or RAM address and a hardware address can have multiple uses with the interrupt.
In the next program we will use two character sets in the same program. The standard character
set will be displayed at the top of the screen, and the new characters will be used at the bottom.

111

Listing 7-2. Double Character Sets
1o REM LISTING 7.2

20 REM DOURLE CHARACTER SETS

BOOREM BY LeMSCHRETBER FOR TAR BOOKS
A0 GRAPHICE O

50 FBW EFK(lOé)wB:POKE 204y CRIPORE 206
y 2240 FLACE NEW CHARSUTERS 2K ABOVE
LN UF MEMORY ’

SO FOR ML=13346 TO 1535 IREAD QIFOKE MLy

QENEXT ML IREM MOVE THE MACHINE CORE IN

TO RaM

20 Q=USROCLISISHY IREM NOW RUN LT

B0 DATA 104y 16229 150900 1779208y 14520

FpR200920892499 230206230y 2040202y208y

242496

0 Cl= (B*?h“§?ﬁ3§FUR X=01L TD CL+207RE

AL QIFORE XyQINEXT X

LOO DATA 09Jhuyl0”u|0%ul”s»103y1o y 102
LOL DATA Qel24y102y102¢124010201020124

LOZ2 DATA Qvl24y100e9699&0 10021005124

LOZ UATH Oyl24102v1020 10251021029 124

LO4 DATH Orl24:1000P286y 1209601000124

LOE VATE: Ovrl24y 10096y 1209986960112

LO& TATA 0124y 1009691080 100y100y 124
L)' DATA QelO2e LO2v 102y 128102102102

8 UAaTh 0ed0p2ae 242492424960

GOUATAE Qe30vl2vl2v]2e7év7h0 1324

1O TIATA 0u109y1009lulu|’49l029l0 v 102

TL DaTa Oel200 48 A48y 4885000y 1246

Lz TAaTa ovﬁﬁu“ﬂu“ou“f GO @0 Q0

13 NATA 054102102102y L0O2y 102102

T4 TATa QedDel02e 102y 102102210260

15 NATA Oyl24e102v 10201249960 96996
|
|
L
|

Ta AT Qv LO2v 102102 118y 110102
L7 DaTa U"l’QVI“\y|03v1349103v1039103
T8 DATA Oy124» 100 Pae]l 24y 12 7Fde 124

16 TATA Ovl24e 908023032424y &0

NATA Qe lD2v L0202 102 1021021268
DaTd QvlO2y LOZ2p 102 102y LO0 104112
OAaTa 0y POy PQe Y0y R0 Y0 108

DATE Oel22eP0Qe P22y HB8B094

ODaTa Oy102e 103 Ele&vl‘”vu01’1
DaTa Ovl24y 70 p 2y GO e PR 24

DLs=FEEK (CS5&0)+PEER (SAL X256 1 DL =D+ 1

SERVICE ROUTIME IN MIDDLE OF
. TST

Ol PEERKCDL 2128 REM SET BIT F
OR - TNTERRUPT
18O FOR ML=1535E

TO 1544 Q2 FOKE M.
s QENEXT M. fl ORE 15380 .:3! I f'i I ORE THE M
ACHINE LANGUAGE SUBROUTINE TNTO RéaM
190 FORKE 512y 03FORKE S13.SIPORKE H542 3\:- v 1
GRAIREM ADDRESS OF MACHINE LANGUAGE SUR
ROUTINE - ACT ll«'n"\"l" S N TERRUPT

200 DATA 72y1869y 152141y 102120141992
12910464

210 FOSTTION 207 "STANDARD CHARACTER
t:; "

220 FOSTTION 13¢1527 "ROLLD FACE"

SO0 GAOTO 300

One of the first tricks that everyone learns is how to turn the screen upside-down by poking
755 with a 4. (If you've never tried it, do it now with the direct command:

POKE 755,4

(If you have a program listed on the screen, it will look most impressive!)

This is fine if you want everything to be upside down. But, maybe, you want just one or two
lines in the middle of the screen turned for a mirror effect. Again, the interrupt routines can be
used to do it right on cue!

Listing 7-3. Mirror Images Routine

TLHG 7.3
RO TMAGES ROUTINE
" lae Mt SIRER FOR TAk BODKS

WESR o LS L S
N
YEREM sel the

SGOIFFEER (5&1)X
i UI‘! ”Il

Al DEFOKE ML
FAUHINE LaMGUAG
- RAM
FeHTPORE H9428
C L AaNGUAGE
TIWVeTE L f] ..: [RYEN UI" T

s L&P v Al Al e 10121411212

Gy 19

SURR

113

Line 40 sets the graphics mode to 0. This command will make the computer reset the entire
display list. By having the display list reset, we can run this program several times. If the display
list was not reset, line 70 would produce an error message.

Line 50 finds the beginning of the display list and stores this address in the variable DL. We
add 15 to this address so that we will be working with the middle of the display list.

Line 70 sets the eighth bit of the byte in the display list. By adding 128 to the value found at
this location, we set only one bit without disturbing the original value.

Line 80 reads the machine language subroutine that inverts the letters.

Line 90 pokes the address of the machine language subroutine into memory locations 512 and
513. 192 is poked into location 54286 to tell the computer that an interrupt will be generated.

Run the program. Now list the program. The listing on the top half of the screen will be
correct. The listing on the bottom half of the screen will be inverted. Press the system reset key
to turn the screen back to normal.

PRECISE TIMING

Another use for a service routine is for precise timing. The routing will be executed every
time the computer comes to that line in the display list. Since the display list is synchronized with
the raster scan on the television, the routine will be executed every 1/60th of a second. By placing
a counter in the routine, a character can be moved, a sound can be made, or a color changed
precisely on schedule.

In the following program, the neon sign is kept flashing with an interrupt service routine.

Listing 7-4. Precise Timing

7
TIMING
¢ FOR TAE BOOKS

tr itk
80 FOR Al RIFOKE M.y
CHINE LANGUAG

ANID TATEH

TEOM O .-“-, A & “f OLOR 42807 3
' Gy lBINRAWTO S

Tl OO
FabTo Gl ®

Ide ATNRAWTD 34919310
HREWTO 34y 4

130 COLOR 425R.07 s SITRAWTO 359.’.?.031]|:1f
AWTO Fe 208 Hlu"l W SIORAWTD 3ol

130 F TTION 131037 “"RELDDY--BY I’il] TEL

114

1TAG POSTTION 10y 1287 "COLOKR TV - WATER
BEO

LEG POSTTION 185« 1437 "L0OW FRICE"

Lwn PORE S12e0IFORE S13eH60FOKE 54284841
GRIREM ALDDRESS OF MACHINE LANGUAGE SUR
ROUTINE = ACTIVATE TNTERRUPT

200 DATE P2y 168e 19240 L&y 1Py 250y L33y
Ly lEE e E@0&E ey Lo TEIv 20860 1AL v 1022020141y
Le2l@e 10444

AL0 G0TD 210

Line 40 sets the grapics mode to 0. This must be done at the beginning of the program
because you will be adding a value to an existing value in the display list. By setting the graphics
mode at the beginning of the program, the computer reinstates the original value into the display
list. If this wasn’t done, and the program was rerun, the computer would be adding a value to the
value that was changed in the previous run. Poking 752 with a 1 removes the cursor from the

screer.
Line 50 finds the beginning of the display list and sets the variable DL to the 2nd line or the

7th value in the display list.

Line 70 gets the value from the display list and adds 128 to it. The new value is poked back
into the display list. This is the line that the graphics were set back to zero for.

Line 80 reads the machine language subroutine into memory. This is the routine that the
computer will execute during the interrupt.

Line 90 pokes the memory location 206 with a zero. We will be using this location as a
counter for this program.

Line 100 and 120 use the position command to erase the cursor that was left there by the
graphic 0 command. The plot and DRAWTO commands draw a rectangle on the screen. The 42
after COLOR is the character that will be drawn. In this case, it will be an asterisk (*).

~ Line 110 draws another rectangle between the first and second rectangle.

Lines 130-150 print the message inside the sign. The words COLOR, WATER, and LOW
PRICE are in inverse video.

Line 190 tells the computer where in memory the service routine is located and tells the
computer that there will be an interrupt.

Line 200 contains the data for the machine language subroutine. This subroutine uses the
clock to find out when the words should be turned on and off. See Table 7-3 for the assembly
language listing for this program.

To end this program, press the system reset key.

Listing 7-4A. Precise Timing—Second Method

10 MNE 740
200 REM PRECTSE TIMING
SO OREM BY LM 8CHF

A0 GRAFH]
RO NI B PGSO YA EER ¢S
REM THE 2N LTNE ON

20 FORKE DLy PEERILY 128 RE

115

Table 7-3. Service Interrupt to Flash Inverse Characters.

cdoma L

woie

A

el Larsiu

FHA

[

LT

oAt ds zero

LIS tor wit

1%

1T

Live @oc

corile ol

DR §0R e conbent

Wit 1

sore e acoumals

ST shore the scoumulatar sl

st wail Tor hore

Lt 4.0

ST

Marcweare oo Foe oha
i .

1. L o bie s

off hie

T L iReturr From i

samulator with b

Lor with bthe

L TaETET
[W R Y

[

Lhiis

Pl

I

raeher

[RIRTT TR

116

Listing 7-4A. Precise Timing— Second Method (continued from page 115)

ot bo 1w asoddins 128

BOOFOR ML=1834 TO LHEEBIREAD QIFOKE ML
BEMEXT MLSF FORE S THE MaCHTHE LaNGUAG
EooSUBROUT LiME TNTH F R [

QO PORE 208 GIREM SET CONTER AN DaTa
T O

LOO FOSITION G037 " "IC0LOR 421F.0T 3
Fe W IORAWNTD X3 L8 I0RAWTO S LEIDRAWTD S
ﬂﬁHRﬁMT' 3

l ‘J ‘m 4

1l Iu nbl"l" 340910
X /; v e

Sdedy

K .Ul\r-) L'J i L] "..‘, v "
PREDDY - BY MOTEL "
CCOLOR T - WETER
BEDIY
1E0
180 FOKE
A TREM ATTR

I... AL GE
LT
AOv L he 169 255

AR P A

This listing is nearly identical to the previous one. The difference is in the data line. In the
first program, the value in location 206 was “or’d” with 1. The value was stored in 54273. By
alternating this value between a 1 and a 0, we turn on the characters that were printed in inverse
video. In the second program a zero is stored in this location. Now the computer will print the
same characters in inverse video, then normal video.

PLAYER/MISSILE ENHANCEMENTS

In a previous chapter, the player/missile graphics were described as a band that fit over the
screen. This band could be moved to the right or left by poking a location with a value. In the next
program we will use the service routine to continually move a player on the screen.

Listing 7-5. Moving Players

1o RERM

LISTING 7.5
MOVING PLAYERS
2y Me BCHRETEER FOR TAR BOOKS

.\.n-',(u FREERCHSL P R2ES DL =014+ 61
0 LINE ON THE SCEEN
FEER DL L2883 REM set the 8t

117

Listing Listing 7-5. Moving Players (continued from page 117)

8] hll Lo L by osadding 128 Lo Lhe reel o

PO AP EER Itm) A TREM 2K ABOVE DISFLAY
LIGY

1G0 PORE 4279 APMBASE=AX284REM TELL
ANTIC WHERE PLAYERS WILL BEGIN

110 PORE 559y &2 HPORKE S327735REM STNGL

ELTNE RESOL Ul III

120 FOR -

+1024 TO PMEASE+HL280F

ORE Xy O3INEX Y }(3 l\l... M OCLEAR OUT THE GARRBA
lJl

J LA0IFOR X=0 TO 10IREAD QIF
TRE FRBASESLLO44X s QN I'"*('T X

LAG DATA &4y 120 R4y U P4 1200640 649 255
sl 2E &0

i FORE 704y A0 CFOKE 53248y 0IFPORKE 205y
U*l DORE 10y 0

TG FOR ML=153E TO 1548 TREAD QLFORKE M.
SRTOMLSREM POKE THE MACHINE LANGU®S
GE SURROUTT N EooTNTO FREE RAaM

1RG FORKE S12»00POKE S513y60FPORE 54288y 1
GRYREM Al OF MaCHINE LANGUAGE SUR
FlT 'I"*'I:.' L LNTERRUFT

S0 SE 205y 14110212

vl AL e e 208

1y
210 Garg 21 .;')

Line 50 sets the graphics mode to 0. This is done at the beginning of the program because a
value will be added to an existing value in the display list. By setting the graphics mode at the
beginning of the program, the computer reinstates the original value into the display list. If this
wasn't done and the program was rerun, the computer would be adding a value to the value that

was changed in the previous run.

Line 60 finds the beginning of the display list and sets the variable DL to the 2nd line or the

7th value in the display list.

Line 70 gets the value from the display list and adds 128 to it. The new value is poked back
into the display list. This is the line that the graphics were set back to zero for.
Line 90 finds out how much memory is in the system and subtracts 2K fromit. This places the

player/missile graphics before the display list.

Line 100 pokes the beginning location of the player/missile area into 54279. That amount is
multiplied by 256 to get the actual location of the beginning of the player/missile area.
Line 110 sets the resolution to single line resolution and tells the computer to enable the

players/missiles.

Line 130 clears out the memory area that will be used by the player. If this memory is not

118

cleared, the player could contain random bits or the data from a previous program. This clutter
would appear on the screen when the player is moved onto the screen.

Line 130 reads the data that makes up the boat into the player/missile graphics area.

Line 140 is the data for the boat.

Line 150 sets the color of the boat, the background color of the screen, and sets the location
of the boat on the screen to zero. Memory location 205 will be used as a shadow location for 53248.
The value in 205 will be changed by one each time the computer executes this subroutine. This
value will then be stored in location 53248 by the service routine. Every time this value changes,
the boat will move on the screen.

Line 170 reads the values for the machine language routine and stores them in RAM.

Line 190 tells the computer where in memory the service routine is located and tells the
computer that it will have an interrupt.

Line 200 is the data for the machine language subroutine.

To end this program press SYSTEM RESET.

When you use any service routine in program, keep in mind that the computer will execute
the routine continually until the system reset key is pressed. If it is used with a BASIC program,
the program can be processing information, waiting for an input, or drawing on the screen while
the service routine performs its functions. In effect, you are running two programs at the same
time.

119

o . S .—|. -
. “ﬁm = a-.-."'f""' ‘ h=:i""'-.' IR
- SRERCLr I!-_ --..%I:.

-:.r'q.l- n 'I'.I"'" . = .‘_'_:"_P-r, | s B e e -EI-'-".I',U'
. . s L et

Chapter 8

Scrolling

Scrolling is a technique that moves the contents of a screen up, down, left, or right. When the
screen appears to move up or down, the movement is referred to as vertical scrolling. When it
moves left or right, the movement is referred to as horizontal scrolling. Either the entire screen
or selected lines can move.

Text adventure games usually scroll the bottom part of the screen, while the top part
remains the same. The text appears to disappear just under the dotted line. Space games often use
both horizontal and vertical scrolling. The entire galaxy moves to the left or right, up or down,
depending on the direction of the joystick. This gives the illusion of a larger playfield and adds
realism to the game.

There are two methods of scrolling on the ATARI computer. The course vertical scroll
moves information up or down one line at a time. The entire screen moves up or down. If there is a
lot of information on the screen, the movement could appear jumpy. The course horizontal scroll
moves every line to the left or right one byte. Again, moving the entire screen could make it
appear to roll. It does not look smooth.

Fine vertical scrolling moves the line up or down by one pixel. As each line moves up, the
line beneath it also moves up. The movement is much smoother than the course scroll. The fine
horizontal scroll moves the line to the left or right by one pixel.

COURSE SCROLLING

In a previous chapter we looked at the display list. The fifth and sixth bytes of the display list
tell the computer where the screen memory begins. If this value were changed, the screen display
would be different. In the next program, you will print a message on the screen. The message is
too long to be displayed on the screen all at one time. You could print part of it, have a timing loop
in the program, and then print the rest of it, but in this program the entire message is printed on
the screen slowly. The message scrolls from the bottom of the screen to the top. It is not difficult
to read, although it is a bit jumpy.

Listing 8-1. Course Vertical Scroll

Lo REM LISTING 8.1
20 REM COURSE VERTICAL SCROLL

121

Listing 8-1. Course Vertical Scroll (continued from page 121)
30 REM BY LM SCHREITBER FOR TAR BOOKS
AQ GRAFHICS O

GO DLIST=PEERK(SA0 P HPEER (SS1 %2848 IREM G
ET O THE BEGINMING OF THE DISFLAY LIST
&0 FORE Ull“l§uvlllh(ull)lr37.d

20 FOR X=& TO 28IPOKE DLISTHXy FINEXT X

g0 7 Al WL

PO 7 ol O THE™
100 % "blhllNo IT 1Is"

1107 "MUCH TOO LONG TD"

120 7 "RE SHOWN ald. AT"

130 % "ONCE - 0 your

146 7 "ONLY SEE PART OF"

LEO 7 "THE MESHAGE AT A"

160 % YTIME."

170 % "wnmr YOU DansTe
180 7 "SE IS IN THE FaRrT"

Lo "0F M!iﬂ'xY THAT I&"

200 7 "NOT DISFLAYED ON"

210 7 "THE SCREEN."

22007 "THE COURSE SCROLL

230 7 "MAKES THE ENTIRE"

240 T "MESSAGE SGHOW!DY

300 SCRLOW=FEEK COLTETH4 SBCRM I =FEER (L.

I8T+E)

F10 FOR X=1 T0 11LiS5CRLOW=SCRLOWH40:REM
ADTE TO THE YALUE TO MOVE TWO LINES URF
ON THE SCREEMN
20 FOR Y1 TO SOOINEXT YIREM TIMING L

OOF FOR F'fhhﬁI’H L

330 IF 8§ ; & THEN SCRLOW=SCRLOW-2

G6THEURH sREM GOTO THE NEXT Fa
sk OF Ml

340 POKE Tebad e SORLOWE P ORE

CRHISREEM DISPLAY MEW SCREE

350 NEXT XIREM SHOW ENTIRE MESSAGE

LLISTHE 8

Line 40 sets the graphics mode to 0. This is done because you will be poking a value based on
the peek of a location in the display list. If the value has already been changed and the program is
run again, the results on the second run may not be the same as on the first run.

Line 50 finds the beginning of the display list.

Line 60 changes the value of the fourth byte of the display list (the first byte is DLIST+0). It

will now be graphics mode 2.

Line 70 changes the rest of the display list to graphics mode 2. This mode uses 16-pixel rows

122

instead of 8-pixel rows like modes 0 and 1. Since only 12 rows will be displayed on the screen at
one time, half of the display list will not be seen.

Lines 80 - 240 print the message on the screen. There are 17 rows of text. Since we changed
the mode by changing the display list, the computer will try to place 40 characters on a line. Each
line that we are printing is less than 20 characters. The text will appear double spaced on the
screen. All 17 rows of text will be placed in the area of memory set aside for the screen display.

Line 300 finds the beginning of the memory set aside for the screen. The two bytes are
stored in variables SCRLOW and SCRHI

Lines 310 - 350 scroll the message on the screen. Line 310 begins the for . . . next loop that
will move the beginning byte of the screen display area 11 times. 40 is added to the value in
SCRLOW. This is the low order byte of the beginning of the screen display area. We add 40 so that
we can move 2 screen rows at the same time. Line 320 contains a timing loop. If we did not slow
down this routine, the lines would be printed so fast that we could not read them! Line 330 checks
the value of SCRLOW. If it is greater than 255, it will be reduced by that amount, and SCRHI will
be increased by 1. If we didn't increase SCRHI by 1 every time SCRLOW reached 255, the
computer would stay on the same page of memory. Line 340 changes the beginning of the screen
memory by changing the contents of the memory locations that ANTIC looks at to start displaying
information on the screen. Line 350 continues the for . . . next loop.

To return to the text mode, press the system reset key.

The next program prints every character that the computer is capable of printing in the color
text mode. Every line contains all 256 characters, but only 20 characters can be displayed on the
screen at one time. How can every line contain 256 characters? Remember that the fourth
instruction in the display list tells ANTIC the mode of the top line and that the next two bytes
contain the beginning of the screen memory. If we change the display list so that every line starts
its own screen memory, we can make the lines as long or as short as we need. Each line can be ina
different mode, or they can all be in the same mode. The next listing prints all the characters in the
same mode. The one following it uses mixed modes.

Listing 8-2. Course Horizontal Scroll

1 O REM LISTI B3
S0 REM HORTZONTAL SCEROLIL.
FOOREM BY LM SCHRETEER FOR TAR RBOOKS

40 FORKE S55%.01 l’i'l“'i"i TURN OFF ARTIC
RKLLOS =12 REM THE SCREEN
W Ill S8 FROMOTHE ENIDD OF ME
MORY
HO NLIST=S
ITHFLAY LTS

START THE D
L I\l...l...N

THE 8
T0 :

70 FOR X=0 (II I‘,T H vl

XeREM FIRST 'T‘I--IIR‘ISEIIEEZ BYTES OF o

T

g0 FOR =1 TO LZIREM TWELVE LINES DISH

LAYED ON THE S\l FEE N
20 POKE DLISTHIRX ZL2REM MODE 2

123

Listing 8-2. Course Horizontal Scroll (continued from page 123)

10O FORE DLISTHIK4AL»0IREM LOW ORDER A

DORESS OF EFREEN L. ENE

11O FORE DLISTHINEEy BORE

HITGH ORDER ﬁﬂhhl 35 O0F SCRELE

120 NEXT X

130 FORKE DLISTHE » S5 EREM JUMP INSTRUC

TION T BEGINNING OF DISFLAY LIS

140 DLHT=THT COLTET /288 DLLO=0LTET -

HIR2EE)

LSO FORE DLLTSTAHXES L DL

160 FORE DLISTHXHIH20 DLHT

L7200 FPORE 580y DLLOSPORE S&1» DM

T THE MEW DISFL&Y T ATDRESS

8§ REGLETERS

l‘i() FORE 88y 0EFOKE 8%
LOOPERATING SYSTEM

N (X1 TREM
N THE

{1

LyREM PU
ITWmo IT

WM TELL
THE SCREEN

(1

Sy A4 LREM TURN ANTIC
) ¢ RER 0F

STaRT aT THE

Ou
THE SCREE 11
200 e v
220 DI Ak (E5a7
230 FOR X=1 TO 288 A% K e XY=U0HREX-1IIN
EXT X
240 FOR 2=0 TO 1L3DISPLAY= (SUREENSZ YRS
S&IFOR X=0 TOQ T:leIUhl DISPL&T+AyﬁLL(m
SOXHLeXH1LIYINERT X XT Z
2HO FOR =0 TO 2
EAVE 20 CHARAC
LINES ON SUREIED
280 FORE DLISTHXKI+HL v £ ERE
Fro MARGIN INTO THE LOW ORIER
ORESS FOR EACH ROW
270 NEXT X iNE ZEREM DO ENTIRE SCREEN
280 FOR Z=23% TO O STEP ~13iFOR 1 TO
T2IREM DO 1T BACKWARDS
20 PORKE DLISTHXRI+ L ZIREM FOKE THE LE
FT MARGIN INTO THE LOW DROER SCREEM AD
DRESS FOR EaACH ROW
300 NEXT XNINEXT Z:iR
Z10 GOTO 2EB0IREM KEEF

TH L2tREM L
SLCREEN -~ 12

FONE THE LE
SUEREEM Al

EM D0 ENTIRE SCREEN
E TENG T

Line 40 turns off ANTIC. Since we are making major changes to the display list, it is a good
idea to turn off ANTIC. Otherwise we could confuse or lock up the computer.

124

Line 50 finds the amount of memory available in the system and subtracts 12 from it. This
will give us 12 pages or 3K of memory for the screen display.

Line 60 subtracts 50 bytes from the beginning of the screen area. That should be enough for
the display list.

Lines 70 - 160 set up the new display list. Line 70 pokes in the values for the first three bytes
of the display list. Lines 80 - 120 set up the main body of the display list. There will be 12 lines on
the screen. Instead of poking in the value for that line of the display list, we need to do more.
First, we will offset the value of X by multiplying it by 3. Three is used because there are 3 values
that must be poked in for every line. The first value is 71; this is the same value that would
normally be placed in a display list for mode 2. It means that the line is in mode 2. The next 2 bytes
indicate the beginning of the screen display area. The next value to be poked in is a zero. Every
line will begin on an even page of memory. The next value is the high order byte for the screen
display area. The line number minus one is added to the value of screen. The jump instruction for
ANTIC is poked into the end of the display list along with the two byte address for the beginning of
the display list. Now ANTIC will know where to jump when it gets to the end of the display list.
The new values for the location of the display list are placed in memory locations 560 and 561.
ANTIC is turned back on and the left margin of the screen is changed to 0.

Line 210 clears the screen.

Line 220 sets aside 256 bytes for A$. This string will be displayed in every line on the screen.

Line 230 places the character for every value from 0 to 255 into AS$.

Line 240 calculates the beginning of the screen display area for the line by multiplying the
value of SCREEN plus Z by 256. The ASC (ATASCII) value of every character in A$ is poked into
this memory area.

Lines 250 - 270 change the value in the low order byte of the screen display area for every
line. This makes the rows on the screen appear to move to the left.

Lines 280- 300 reverse the process. By subtracting one from the low order byte of every row
displayed, the screen will shift to the right.

FINE VERTICAL SCROLL

The fine vertical scroll is achieved by moving the characters on a line up or down one pixel at
atime. After the first line has been scrolled as far as possible, the scrolling to the next line is done
the same way it was done in the course scroll program.

Once again, the display list plays an important part in the fine scroll. The sixth bit of the byte
that tells ANTIC what mode the line is must be set in order to scroll that line. An easier way is to

i 2 3 4 & & 7

Fig. 8-1. Scroll values.

125

add 32 to the mode. If the screen is mode 0, the display list has 2 for the mode. Change the 2 to 34
and that line can scroll vertically.

Of course, the line will not scroll all by itself. The computer must be told when to scroll that
line and how far to scroll it. 54277 is poked with a value from 0 to 7. A zero holds the character in
the position that it would be in if there was no scroll. A seven moves the character up seven pixels.
It is almost in line with the correct position for the line just above it. Figure 8-1 shows the
character position from 0 to 7.

The following program uses the fine scroll with the course scroll to move a message up on
the screen.

Listing 8-3. Fine Vertical Scroll

Lo REM L ISTING &8
20 REM ! l\'l "I'"I'i‘"l" : l""f"ll
30
A
50
ET Tk B

O PORE DLLIST+H3002
20 F l]lx Mady VO 2EIPONE DLISTHXy 3EINEXT

SCROLL
FOFOR TAlR BOOKS

EECEALYRDEHSIREM G
ODISFLAY LIST

80 FOSTTION 298

TOCNTHIE SCROLLING"

TS EASTER TO READT

TONTHAN THE COARSE"

TOUMETHOD "

TOUYOU CAN MaRrE"

TONLT OBCROLL FAST"

TOUOR OSLOW WITH®

oA TIMING LOOF."

HUERLOW=PEER COLTET+4 3 §B0RH L= EEK (L.

LST+5

A0 FOR Xl TO @8IESCRLOW=SCRLOWA20 TREM

AL T THE VALUE TO MOVE TWO LINES UF

ON THE SCREEN

FLOIF SCRLOW=284 THEN SCRLOW=SCRLOW-2

ST GERHT H AL EREM GOOTO THE NEXT FaA

i OF MESSAGE

y LN O

Py TO FIFORKE G427y ZIFOR Y=

AT YINEXT ZIiPOKE $54277+0

S QIFORE S4277y QIFOKE DLIST
FODLTETHEy BORHIIPORKE 559y

LA REW S BUREEN

4 N : TOOLOINEXT YINEXT XIREM &H

UH IMIIII kS EAGE

126

Line 40 resets the display list every time the program is run.

Line 50 finds the beginning of the display list. Every byte that tells ANTIC the mode of the
line must be changed. The 6th bit of the byte must be set to 1.

Line 60 sets the top line of the screen for the scroll. This byte also tells ANTIC that the next
two bytes are where the screen memory begins.

Line 70 sets the rest of the bytes in the display list for the vertical scroll.

Line 80 sets the position on the screen where the message will begin to be printed.

Lines 170 - 240 print the message on the screen. The entire message will not be printed on
the screen since this is graphics mode 2. The display list is as long as it would be in mode 0, so part
of the message will be printed out of the screen area.

Line 290 sets the variable SCRLOW to the low order address of the screen and SCRHI to the
high order address of the screen.

Lines 300 - 350 scroll the message on the screen. Line 300 begins the for . . . next loop. 20 is
added to the value in SCRLOW because there are only 20 characters displayed in a line on the
screen. If the value of SCRLOW exceeds 255, the value is reset by subtracting 255 fromit, and 1 is
added to the value of SCRHI. This will give ANTIC a new page to display on the screen. If SCRHI
was not incremented, ANTIC would only display 1 page of screen memory over and over again.
Line 330 begins the fine vertical scroll. A value from 0 to 7 is poked in memory location 54277.
After each poke, there is a timing loop. This will slow down the process of scrolling and make the
text more readable. Once the lines are scrolled up as high as they can go, we shut off ANTIC, poke
54277 with 0 to reset the scroll or put the line back to normal, and poke the display list with the
new screen values. This is the course scroll. Because ANTIC is shut off, it will be a smooth scroll.
ANTIC is turned back on and after another timing loop, the program continues with the original
for....next loop.

When the entire message has scrolled up the screen, the program will end. Press the system
reset key to return to the text mode.

When you want a message or characters to move down on the screen, the process must be
reversed. The characters must be brought down one line by the course scroll, scrolled all the way
up to the top of that line, then slowly scrolled down on the screen. A downward scroll is not always
as smooth as an upward scroll.

Listing 8-4. Fine Vertical Scroll: Down

FEM LITSTING 8.4
FEM FIME VERTICAL
N BY oMo SCHRET
I 0
ROS&OIHPEER(SHLIX2GEIREM G
TRMIHG OF THE DISFLAY LIST
T8TH+3v 102

TO 28IPORKE DLISTHXy 3B INEXT

SEROLL ~ DOWN
iEROFOR TAR BOOKS

FOSTTION 2.8
SAATEORMI=FEER (OLIETHE) SFORE
(W

127

Listing 8-4. Fine Vertical Scroll: Down (continued from page 127)

T "THIE SCROLLING®

OIS EASTER TO READT

TONTHAN THE COSREGE"

[1 (O

OO DA MAaRE"

T LT SCROLL. FasT®

TONOR SLOW WITH®

ARG T s TIMING LOOF . "

OO FOR K=1 T0 8I8CRLOW:
k

SORLOW-20 ¢ REM

SUBTRACT TO MOVE TWO LINES DOWN ON THE
GUREEN
4 Ay BORLOW S FOR

30 FOKE
4 HESy FAIREM DISFLA

= LIFORE 5422732

YINEXT XIREM SH

O ERTIRE FME

Line 40 resets the graphics to mode 0. This restores the display list to its original contents.

Line 50 finds the beginning of the display list.

Line 60 sets the fourth byte of the display list for the vertical scroll and graphics mode 1.

Line 70 sets the rest of the lines in the display list for graphics mode 1 with the bit set for the
vertical scroll.

Line 80 begins printing the message on this line.

Line 90 sets the variable SCRLOW to 244. This figure was calculated by printing the value of
SCRLOW at the end of the last program. The variable SCRHI should remain the same value as the
high byte address in the display list. Change the display list low order byte for the screen address.

Lines 170 - 240 print the message on the screen. This time the entire message will be visible
on the screen.

Lines 300 - 350 scroll the message down on the screen. This time 20 is subtracted from the
beginning of the screen memory. By subtracting 20, ANTIC starts to display the screen area 20
bytes before the point where the message begins. This pushes the message down one line on the
screen.

Line 330 shuts off ANTIC while the new screen memory values are poked into the display
list. ANTIC is turned on and the screen displays the message one line lower. By poking memory
location 54277 with 7 to 0, we start the scroll with the lines scrolled up as high as possible. They
are then slowly lowered on the screen. The timing loops keep the scrolling smooth. Every time
the line is in the correct position, ANTIC is shut off, and the line is moved down one with a course
scroll, but it is immediately scrolled up after ANTIC is turned on. A scroll down is not always as
smooth as a scroll up.

PLAYFIELD WIDTHS
The width of the playfield is the number of columns that you can place information in. Up until

128

now, no matter which mode we worked in, the width of the screen was always the same - 40
columns or 320 pixels. The width of the playfield does not have to remain constant. There are
three different playfield widths that you can choose from. Try this in the direct mode:
POKE 559,33

Look at the screen! It is much smaller now. It is only 32 columns, or 256 pixels wide.
Everything that is on the screen looks like it is in the wrong place. ANTIC doesn’t look to see how
wide the screenis. It will still try to put 40 characters in a line. If the line is too short, it will put the
rest in the next line.

Now try this - POKE 559,35

There is no margin on the left and right sides of the screen. Again, the information on the
screen is not in the right place. This is the wide playfield. It is 48 characters or 384 pixels wide.
The screen information will not be in the right place, because the information appears on the
screen sequentially. If the line is longer than 40 characters, the information from the next line is
placed on this line. To get back to the normal width, poke 559,34 or press the system reset key.

These playfields can be used to create special effects. The wide playfield is used with the fine
horizontal scroll.

FINE HORIZONTAL SCROLL

The fine horizontal scroll is very similar to the fine vertical scroll. Every character in the line
that is to be scrolled is moved to the right approximately 2 pixels. Clear the screen and try this in
the direct mode:

X = PEEK(560) + PEEK(561) * 256 + 7:POKE X,18

This sets one line of the display list for the horizontal scroll. When you press the return key,
the ‘X="will move to the left and seem to disappear off the screen. READY will appear under the
8 and the left margin will seem to be on the right side of the screen. Now enter this:

FOR Y=0 TO 15:POKE 54276,Y:NEXT Y
The third line moves to the right and the entire line can be read. If you reverse the command:
FOR Y=15 TO 0 STEP —1:POKE 54276,Y:NEXT Y

the line will move back to the left. The rest of the screen is offset because this line is 8 characters
or bytes longer than the other lines on the screen. READY is on the next line because the first 8
bytes of the fifth line are now on the fourth line. Every line after that is offset by 8 bytes. If enough
lines are set for the horizontal scroll, the offset will work itself back to the left margin.

The next two programs are variations on a ticker tape routine. The first program performs
the horizontal scroll using the same technique as was used with the vertical scroll. Notice that in
addition to scrolling to the left, the message is also scrolling up the screen! Press the system
reset key before the message goes too far. The second program shows a solution to this program.

Listing 8-5. Fine Horizontal Scroll

10 LISTING 8.5

20 FLURE HORIZOMT &L SCROLL

E0OREM BY LMo SDHRETIBER FOR TaAR BOODKS
AG DIM A% 480

90 GRAFHICS QIFOKE 82y 05 FOKE 252« 1 IREM

SET LEFT MaRGIN

129

Listing 8-5. Fine Horizontal Scroll (continued from page 129)

60 DLIST
WasFEER (L
M DISFLAY LIST AND

70 FORE TLISTS 100 PERER T
GET LT UF FiR HO OMT AL
GO fAd=tGT '1"(TURE @ LM

AGE N
93 FORE
FrLGHT

OGO FOSTTION G527 A%
1 J') FOR X=18 T0 QO)]I I =l
: O T Y INEXT XIREM

ST SCROLL TO THE

‘.; R H] [-
130 FOKE FFORKE TLIST4E:8
CRHT
140G FOR =1 T0O 10:MEXT 726070 110

Line 40 sets aside 48 bytes for the message. This is the number of characters that will fit on
one line when the screen is set for the wide playfield.

Line 50 clears the screen, sets the left margin to 0, and removes the cursor from the screen.
If we did not set the left margin to 0, the computer would leave two bytes blank on the screen in
the line that the message is printed in. These two bytes are where the left margin is for a normal
playfield width.

Line 60 finds the beginning of the display list and places the screen memory address in
variables SCRLOW and SCRHI.

Line 70 sets the sixth row of the screen for the fine horizontal scroll. The fine horizontal
scroll is set by adding 16 to the value in the display list.

Line 80 places the message into A$. Be sure to add the space after the last word, computers.

Line 90 pokes 15 into memory location 54276. This will scroll the line all the way to the right.

Line 100 prints the message on the sixth line of the screen. (The first line is 0.)

Line 110 begins the horizontal scroll. The for...next loop decreases from 15 to 0, moving the
message from the right to the left.

Line 120 adds 4 to the low byte of the screen memory area. Scrolling from 15 to 0 moves 4
characters off the screen.

Line 130 pokes the new values into the display list and completes the scroll.

Notice that the message spirals on the screen. Four characters at a time appear on the line
above the scrolling line. This line is not set to scroll, so the characters stay there until the next
course scroll. We are moving the screen display area, so éven though we are moving the
characters across on the line, we are also moving them up in the screen memory.

The next program tries to correct this situation. When the words are scrolled to the left, the
letters are removed and placed at the end of the line. The screen is still spiralling up the display,

130

but because the letters are constantly being removed from the beginning of the line and added to

the end, it gives the illusion of remaining on the same line.

Listing 8-5A. Fine Horizontal Scroll—Second Method

D HORTZONTAL SCROLL
oo BOHRETRER FOR TAk BOORS

G2y 0IFOKE 752 L EREM

T AL
I

CLTHES) SROKE

PLAYER/MISSILE GRAPHICS

(
L&

THPORTANT

Many applications for using horizontal and vertical scrolling come to mind when you consider
adding player/missile graphics. A map of the United States or the world could be drawn on the
screen. To keep it at a reasonable size, you would not have to fit the entire map on the screen. A
player could be used as a cursor. Moving the joystick would move the cursor up, down, left, or
right on the map. When the red button on the joystick is pressed, the screen would scroll in the

direction indicated by the joystick, exposing other parts of the map.

131

Chapter 9

Page Flipping

In the display list there are two bytes set aside to tell ANTIC where the beginning of the screen
memory is. If we were to change these bytes, we would get some strange displays on the screen.
It could be garbage, or it could be a clear screen. It all depends on what is in the memory area that
ANTIC is trying to display. Try this in the direct mode:

DLIST=PEEK(560)+PEEK(561)*256:POKE DLIST+5,6

What do you see on your screen? This is the area of memory that we usually store machine
language subroutines in because the operating system doesn’t use it.

DISPLAYING TWO SCREENS

By adjusting the memory that will be used by the screen, we can set aside memory for more
than one screen display. We can then flip back and forth between the two screens. The new
picture or message will immediately appear on the screen. If speed is critical, or you do not want
the user to see the image being drawn, screen flipping is the answer. It does, however, use up a lot
of memory. In the text mode, figure another 1K of memory for each additional screen that you
want displayed. If you are using a high resolution graphics mode, the memory cost is even more!

The following program shows two messages that are displayed on two different screens.

Listing 9-1. Screen Flipping

TAR

B0 RE ROOKS
40 GRAFH
500 1L s
Lol 4TI H
NSUIET
§0 FORE
WoOUR LK
F0OGRAFHICS OTREM RESET THE DISFLAY LI

MOVE SCREE

133

Listing 9-1. Screen Flipping (continued from page 133)

ol
20

UI LogsPEER CSE0) *TII H u l\(\u‘ﬂ)

”u PR F ‘ "lHI MESSAGE 1S ON

PGl 2w "wILlLL. YOU @Al READING TT 7
T WRTTING ON SCREEN 2"

100 FORKE 88y 8CR1IPOKE 89y SCRZIREM LET

THE COMPUTER WERITE ON THE OTHER SCREEN

Pl e B GOOIr WORDD" EREM 2 ESTC-D0

WN ARROWS — FIVE SPACES

120 PORE 88y8CLIPORKE 8%y5C230C=087
Iom re s v any kew! "IREM 2 DOWN

ErR R O

130 IF THEN 130

140 POKE CLEAR THE REGISTE
I

1350 FOKE D2+ #'." p BORLIFDKE DLE2HES SORDTRE

M OSHOW SCREE
L& FOR =1 T0 I.f.’.(.‘: QENEXT YIREM TIMING L
I

165 P "FOLEARF*ILF C THEN 180

lfu TOo'This was erinted while wou
wabohidns the oblher soreer.”

SO EREM 4 DOWNARROWS

8o 7 poars lemw " TREM DOWMARROW
L O BOLEPORE DL24H5 SE2 T REM
kbl) I"H BOREEN

2000 GOT0 1 X a

Line 40 sets the graphics mode to 0. This line also removes the cursor and clears the screen.
This will be considered page 1. It is ready for something to be written on it.

Line 50 finds the beginning of the display list. The location of the screen memory is stored in
the fifth and sixth bytes of the display list. These values are stored in the variables SC1 and SC2.

The first byte of the screen is stored in the variable SCR.

Line 60 subtracts 4 from the value in memory location 106. This memory location tells the
computer how much memory (RAM) is available for it to use. It will count backwards from this
location when setting aside screen space and the display list. By poking 4 less than the total
number of pages of memory available, we are saving 1K of memory of the screen and display list

that we just initialized.

Line 70 resets the display list and screen. Because we chariged the amount of memory that
the computer thinks it has, the first display list and screen display memory is intact. The screen
memory and display list that the computer set in this line are lower in memory than those

134

established for the preceding screen. We now have two display lists and screen memories in the
computer’s RAM.

Line 80 calculates the new display list and the location of the new screen memory. This is the
second display list and screen in RAM.

Line 90 removes the cursor and prints a message on the screen. This message appears on the
screen that you are looking at.

Line 100 pokes the memory location of the first screen into memory locations 88 and 89. This
is where the computer looks to see where the screen display area is. If we change these bytes to
the location on the first screen, the computer will print or draw in that memory area. This will not
affect the display that we are looking at.

Line 110 is the message that the computer will print on the screen. This message will not
appear on the screen that we are looking at because locations 88 and 89 have been changed.

Line 120 sets the variable C to 0. C is used as a flag in this program. When it is 0, a second
message will be printed on the second screen. When it is 1, the message will not be printed. The
message between the quotes will be printed after C is set to 0. Before printing any message,
memory locations 88 and 89 must be changed. If they were not changed back to the screen
memory of the screen that we are looking at,’we would not see this message.

Line 130 checks memory location 764. When its value is not 255, a key has been pressed. The
program will loop here until a key is pressed.

Line 140 clears memory location 764 by resetting it to 255. If this location was not reset
when the program looped back to line 130, it would think that a key had been pressed whether one
was or not.

Line 150 pokes the values for the first screen memory into the display list. Now the message
that was poked into that memory area will be displayed on the screen.

Line 160 is a timing loop to give you a chance to read the message.

Line 165 clears this screen. This will not clear the screen that you are looking at! This will
clear screen 2. If C is set, the program will go on to line 180.

Line 170 prints a message on the screen and sets C to 1. This message is not printed on the
screen that you are looking at, but at the other screen.

Line 180 prints the rest of the message.

Line 190 resets the screen by poking the screen memory area for the second screen into the
display list.

Line 200 sends the computer back to line 130 to repeat the program.

To end the program press the system reset key. This will reset the display list and all the
registers. If you press the break key, you will only stop the program but not reset any of the
registers.

This method of screen flipping can be used with other modes as well. In the next program,
the screen will flip between mode 0 and mode 1.

Listing 9-2. Simple Page Flipping: Two Different Modes

FLIFFING = TWO DIFF

Fe SUHRETRER FOR TaR BOOKS

135

Listing 9-2. Simple Page Flipping: Two Different Modes (continued from page 135)

GO DL =FE I'EI\(l’m'u SOLHL=RPEER{S&1) H'II 1
Juck I’rIIIIII‘{”" i 7 I H 3 GORE =
OO 1453 ¢

SO FOKE 1Gé8y FEE
NOUF LK

20 GRAPHICE OIREM RESET THE DISFLAY LI
8T

I (I(“' - lxl M MOVE SCREE

|__L s .

nl”*U) u(BOER SESUTY

0 FORE ,:’Ui’v.l.i’s CTHIS MESSAGE I&5 ON

FaGE 2" "WHILE YOU ARE READING IT":7
CTOM O WRITING ON SCOREEN 1"

100 FORKE 88ySCRLIIFUORE 82ySCRIIFORE 87y

1

110 % &5 "EOOU WORRKR®Y

120 FORE 88y5C1IFOKE

=@y " Iim resdw s sy law "

L30 IF PEERC?&EG =258 THEN 130

140 FORKE 7642551 REM CLEAR THE REGISTE

[

LEG PORE S&Ge ULLLEFOKE S&1LyDLHLEREM SH

DW sC L

160 FOR Y=1 TO 200INEXT YIREM TIMING L.

G

165 7 *"FCLEARZ"IIF O THEN 180

170 %® "This g oprinted wnile wou

WETE watohidnsg Lhe obher SCreen.

CETFORE 8708

LEG T Upress Bnw Pwu"
190 POKE 5¢ EFOEE &Ly DLHE T REM RE
SET THE SCHKRE

200 GOTO

Line 40 sets the display list for mode 1 without the text window. The rest of the listing is
identical to the previous one with one exception.

Line 150 changes the display list that the computer is using for the second screen to the
display list for the first screen.

Line 190 resets the display list for the second screen.

By changing memory locations 560 and 561 for the different display lists, you can flip
between screens that are in different modes.

What if you want to display two screens simultaneously? It can be done. But with all the
capabilities of the ATARI with one screen display, is there really a need to display two screens at

136

once? The next four programs illustrate different approaches that can be taken to display two
screens at the same time. In all cases, there will be some flickering.

Listing 9-3. Simultaneous Page Flipping—in BASIC

FLIFPING
FOR Tak BOOKS
L3 "AOLEARY"
SR CESLY DL L=
1+4) 1 SCR2=FEE

S0 lll\nl HI]
SO DL L =PERER
LA LD
G L) 4
A0 POKE 106
(W W
A0 GR&FHT
T ARGTH

"5mﬁ*|lm MOVE SCREE

THE DISFLAY LIST

Gl

B Ul FrooZ0Ey LePDELT HHJ Dy 3T OUTHIS CAN

-y

&%

Il S FQNE ety HCR2 O

D248 QUE2LEOTO 120

LLSTIMNG 9.4
SIMUL TANEOLS FatE FLIFFING
SHEETRER FOR TR BOOKS

J0
A0 (nlull |H [
500D L=
Lo L0l
KOO L4503 ;
SO FOKRE 108 FE
TR W T S 1

SO E DL H L= EER CSEL Y YT L =10
SERCILL44) L SORREFEE
SOREH2G6

G4 s REM MOVE SCREE

4

GRAFHTCS 18SREM SET THE DISPLAY LIS
g MHI'II:'E.'
'-J}oI” 2

') FOSTTION 2y3:87 &5 "THIS CAN CREATE®
100 POKE 88y8CR1IFORKE 89y SCRIIFORKE 875
1
110 7 #&3VINTERESTING EFFECTS"

137

Listing 9-4. Simultaneous Page Flipping—Two Modes (continued from page 137)

130 IF PEERK (7464) =]
L4G PORKE S60.01.0.13
1&0 FORKE S&0yDLL2 EFORE

130G
Julvﬂlﬂl
61y NLH2160TO 1

Listing 9-5. Simultaneous Page Flipping: Machine Language Subroutine

10 REM LISTING 9.9

20 REM STHULTANEOUS FAGE
CHINE LANGUAGE SUBRDUT TN
B0 RENM BY L. SCHRETE

40 GRAFHIDS 03POKE

50 DL 1)
LL DL M k2

KOO 445 3 .

40 PORE 106y FEEK (1064 i REM
WOUF LK

7O GRAFHICS
T ANOTHER MODE

BO DLLZ=FEER (G0 §DLH2

LL2HILH2KRG6 601 -

D25) 8 e ;

90 FOKE 75251 tFOSITION 2,917 "THIS CAN
CREATE"

100 FOKE 88 SCR1 {FOKE
110 7 "INTERES CFFECTS

120 FOKE 203, CRL{FOKE 204, 8CR2EFOKE 2

05y GULIFOKE 206y 8CRIRENM ADURESS OF BOT

H SCREENS

130 FOKE 208 0LH2 §FOKE

WHERE SCREEN ANNRESS °
140 FOR X=0 TO
INEXT X

150 DATA 1045160505165, 20:

TFFING - MA

CyOLEARY
EIRACSGL) I

O L4 PECRE)

MOWE SCREE

skkEM BEYT THE BDLSFLAY LIST

4 3 REM

207 v L2

1EESEN

OO?luuv;)qum
L&O DaTa 201,258
170 Q=USKROLES K\ b]

Listing 9-5A. Simultaneous Page Flipping: Machine Language Subroutine—Horizontal Blank
1o M LISTING 2.50

el i1
A0 REM SIMULTANEQUS PAGE FLIFFING - Ma

138

CHINE LANGUAGE SURROUTINE
30 REM BY L.MeSCHRETRER FOR TAR BOOKS
40 GRAF 0§ FOKE N
500 Tl s
Lol LT L%
(AR ESS
G0 POKE
NOLF LK
O GRAFHIDS
TE ANOTE

CRCEG L Y I

\(.. !
44 1 BOR2=FEE

FOVE SEREE

M OSET O THE DISPLAY LLST

R CEAL Y P2

LERIDEL
TIOM 2e58% "THIE CAN

F T

s Rl CRRIE 1

A e DLLHE S PO
WHERE SORELR

R T O 3

e LAl (e e 104y &

vy L& 2

SLE S TROKE S4dEde]
GO 190

These four listings are nearly identical.

Line 40 sets the mode to 0 (except in listing 9-4 where it is set to 17, which is mode 1
without a text window), removes the cursor, and clears the screen. The display list is now set for
the first screen.

Line 50 finds the beginning of the display list, and the location of the screen memory for this
mode. These values will be used later in the program.

Line 60 moves the end of RAM 1K. This protects the display list when we reset the graphics
mode.

Line 70 sets a new display list by setting the graphics mode. This new display list will be
located before the old one. The screen display area for this mode will also be located before the
other screen. The other display list is protected because 106 was poked with a number that was
1K less than the actual amount of memory in the system.

Line 80 finds the new display list and the screen memory locations for the second screen.

139

Table 9-1. Machine Language Subroutine to Flip Screen.

decimal code ausembly lansusse Listing
104 1 i sl s number From bhe
140 LI kG dloosd dndex ¥ with O,

0

148 T ilooscd the acoumulstor with the
203 value in locstion 203,
145 STa (207yeYiltore 4ibh in meamory 1mﬁ3timm
207 207 wlus the value of index Y.
200 LY Lo remert dnodex Y.
16 LXé 204 Lhe secumnulastor with tLhe
204 value dn locasbion 204,
14% ST (207 yYiltore it im memorw location
207 WOV owlus bhe value of dndex Y.
13& Y sleoremaent dndes Y.
L&E L0 2085 flooad the scoumualator wilth the
205 value i Lo .

Line 90 prints a message on the screen that we are looking at.

Line 100 sets locations 88 and 89 for the first screen memory. In listing 9-4, location 87 is set
for mode 1. This will place the message in the correct position on the screen.

Line 110 prints the message on the screen. This message will appear on the first screen, not
the screen that we are looking at.

Line 120 is a loop in listing 9-3. The screen memory location in the display list is constantly
changed between the first and second screen. Although both messages appear on the screen,
there is noticeable flickering.

In listing 9-4, line 130 waits for a key to be pressed. Each time one is pressed, the address of
the display list is changed back and forth between the first display list and the second. This
program flips the screens by changing the entire display lists because they are in two different
modes.

Listing 9-5 uses a machine language subroutine to flip the screens. See Table 9-1 for the
assembly language listing of this subroutine. Once the machine language subroutine is poked into
memory, the computer uses a USR command to access it. The screen will continue to flip until a
key is pressed. There is less flickering with this method than the previous one, but it is still

140

145

207

200

206

145

207

201

240

249

G &

SThd (207):Yi8tore it i memorws locabion
207 wlus the valoue of dndex Y.

LTNY plmeremernt dndex Y.

LA 206 il.oad the scoumulstor wilth bhe
value dn location 206

STa (207)eyYe&8ltore it din memorw locs tion
207 wlus the value of dndex Y.

LEY slecremerct dndex Y.

L0 7é&4 dl.oad the scoumulator Wit the

value From location 764

CMP 255 Phee LT & lew was

BEQ 229 iRvarnch LT no kew was sressed

hackwsrds 27 bhulbes.

RTS PReturn to BABTC 4 kew was

noticeable. Lines 120 and 130 poke the addresses of both screens and the address of the display
list where the screen memory should be placed—in memory locations that are not used by BASIC
or the operating system.

Listing 9-5A uses a display list interrupt to change the screens. Table 9-2 shows the
assembly language listing for this routine. By using a display list interrupt, the screen is flipped
every time ANTIC comes to that line in the display list. This method causes the least amount of

flickering.

Listing 9-5B. Simultaneous Page Fllpplng Machine Language Subroutine—Vertical Blank

FLIPPING - MaA

l ‘IIN]Z l.. nl!llllnhl

Lo s

Tak BOOKSE
"y
EERCEG L) DL

L L4 P G0R2

141

Listing 9-5B. Simultaneous Page Flipping: Machine Language Subroutine—Vertical Blank (con-
tinued from page 141)
RELHL A5t S
FORE 1
Uk 1K

[SR S e

A

=3

MOVE SOREE

THE DISFLAY LIST

BT OUTHIS CAN

;ff)Iflﬁl:fll:i’IgffffiEi OF ONE &0
TO 21 PREAD CIFORKE 1536+4XyC

2+ 0
15 &

FEv1&EPy ey 209y 13302091652

Yol Ol w209 141 v 1021201400009 1047
KL L SHEG T LEZLIREAD CeFOKE XU

ol 04y 1HEy 104y 1041700 1

LA0 DéETa 108 1
p L Od e FhH e YR
GO Q=USRO1LEC
SO0 GnTn 1eo

i
LS

Hedi)

Listing 9-5B uses a slightly different method of screen flipping. The machine language
subroutine is accessed on the vertical blank. Every 60th of a second, the raster scan reaches the
bottom right corner of the screen. When it shuts itself off to go back to the top-left corner, there is
a vertical blank. By flipping the screen at this time, each screen is displayed for 1/60th of a second
30 times in one second. Theoretically, you should not see any flickering here because the eye
detects movement at 1/20th of a second. This is the most reliable way to display two screens at
the same time.

The machine language subroutine used here is executed during the vertical blank. The
computer has certain routines that it must perform during this period. There is time, though, to
insert your own code for the computer to execute in addition to its own. The trick is to steal the
vector or address location for your own use. In this program we are using the immediate vertical
blank vector for our routine. Any time that a machine language subroutine is executed during an
immediate vertical blank, it should end with a jump to 58463. A machine language subroutine can
also be used during the deferred vertical blank. This routine should end with a jump to 58466.
These addresses contain the routines that the computer needs to perform during the vertical

142

Table 9-2. Machine Language Subroutine—Horizontal Blank.

decimal code aesembly landusde listing

FEH A st the value in bhe

secumulator on the staclk.

149 LI k4 §l.c

4 obhe scocoumulator with 4.

209

OR it with the

209 contents of location 209.

133 STi 200 sGtore the result dm locstion
209 209,

1&8 Lo 208 dlooad the accoumulastor with bthe
206 value in 2068

24 LLG iGlear the csrrw.

101 ALL 209 shcod with carvry the valus in

ration 209,
141 STa 54282 iStore it - wail for

13 morizontal swno.

141 ST 0 iGtore 4t dm location Q.

104 F1. A sGet the value bhack from the

sltack,

T PReturn from the interreust.

O~
&S

143

blank. As the name implies, an immediate vertical blank routine is performed as soon as the
blanking period begins. A deferred vertical blank is executed after other routines are completed.

The routines that you want executed should be fast and to the point. There is a time limit for
these routines. If they are too long they could cause problems with the display by changing
registers while the scan is turned on. Routines performed during the immediate vertical blank
should not exceed 300 machine cycles. Routines using the deferred vertical blank can be about
25,000 machine cycles. Remember, a machine language instruction is not a machine cycle long.
Some instruction can use up to 7 machine cycles.

The USR routine passes the address of the machine language subroutine that the vertical
blank will use to another machine language subroutine. ATARI has a routine in its operating
system to set up immediate and deferred vertical blank routines. To set the address for the
routine, you must call a routine at location 58460. When this routine is called, the address of your
machine language subroutine must be stored in the Y (low order address) and X (high order
address). A 6 must be in the accumulator if it's an immediate vertical blank routine; a 7 if it’s a
deferred. The machine language subroutine at location 1560 accomplishes this. See Fig. 9-3 for
the assembly language listings for these routines.

CREATING SLIDES

With some screen flipping and a disk drive, an entire presentation can be displayed. Slides,
pictures, or graphs can be prepared ahead of time and stored on disk. Then, under program
control, the slide could be loaded into the computer’s memory. While one picture is on the screen,
another could be loaded into another part of memory. By pressing a key, the computer would ‘flip’
to the other picture and load a new picture into the screen memory that is not being shown any
longer. The following program will allow you to create slides that will be stored on disk. The
program after it will retrieve those slides in any order than you want.

Table 9-3. Machine Language Subroutine for Vertical Blank.

76 JMP 58463 ;Jump to this address to
95 computer's routines.
228

replace the return from interrupt with this jump to complete the vertical interrupt routines.

decimal code assembly language instructions
104 PLA ;Get value from stack (?)
104 PLA ;Get value from stack (0)
104 PLA ;Get value from stack (0)
168 TAY ;Transfer it to index Y.
104 PLA ;Get value from stack. (0)
104 PLA ;Get value from stack. (6)
170 TAX ;Transfer it to index X.
104 PLA ;Get value from stack (0)
104 PLA ;Get value from stack (6)
76 JMP 58460 ;Jump to address to set up
subroutine to run during
92 vertical blank.
228

— change for machine language subroutine Boot routine to set up subroutine during vertical blank.

144

Listing 9-6. Slide Editor

LIEBETING 9.6

SLTDE EDITOR

3y Me SCHRETRER FOR TAR BOOKS

LTO LS48IREAD BIFOKE XeBR3

15 e HASTREM ROUTINE TO MOVE UF

l?ﬁ-‘% (ln iy 10491 (10 s OeR00e 1779205913601 45y

205200220 P

Ao FOR ¥ I TOLEASIREAD BIFORKE XeIR2

NEXT XIif0WN=15521REM ROUTINE TO MOVE I

(i

EE ODATH 104r 180255l 3&v 1772059200014

By 20N 1l B& s 208 9247996

A0 DLE NAMES (.I.4)val (8)

SO MAMES (L= "INAMES CLZ =" T INAMES T2

M AMEE P NaMEE=" 0" FREM CLE lfll THE STRING

&G T YFCLE JLEASE ENTER THE NAME O

FoorHe FLIOCTURE™ S TNFUT N$GSNAMES (3 =NG SNA

MEECLL e 1A= G ORW ETF Ng="" THEN S0

; GRAPHICS 20IREM SET DISFLAY FOR GRA

FHIGCS MO NO TEXT WINDOW

SO Pl KOLO&)=8IFORE S4279«FMIFPORE 2

Oy QFORE 208 v PME23FM=PFMX2S6 I REM BEGIN

NIRNG OF FLAaYER

85 MLIS8T=FEER(SSOIHPEER (G681 3%256

GO FORE SS9« A& TREM 2L INE RESOLUTION F

O FLAYER

LOO FOK SRRy IIREM ENABRLE PLAYERA/MIS

STLE GREFHICE

LLo FOR X=PM+S12 70 FMYS40 3 F0ORE Xy O INE

OMEMORY FOR PLAYER

e L3OIFOR Ks=PMbS2% 7O PMEEI2

'(" FORE Xy BINEXT XIREM MaAKE CURSHO

ll) FeE i
20 REM
S0 I\l |‘1

Q-

e \o'\l” i

130 DATA 24,224,224 ﬂ31p23192av?4u"4
140 FOKE 704y 1 i COLOR FLAYER WHITE
150 H; UT=0EX=] Ym0 Cm
160 248y HZ
I E THEN 220
180 B=FEEK K=l THEN C=R3GOT
0 220
190 IF B=0 THEN C=RIG0TO 220
200 IF B=-4 THEN C=3360T0 220
210 IF B=-§ THEN Cw
220 FOKE 7642551 1F FEEK(53279)=6 THEN

145

Listing 9-6. Slide Editor (continued from page 145)

230 IF STRIGOO=0 THEN COLOR CIFLOT Xy

240 TF STICKCO =185 THEN 170

20 TF STICKCQY=7 AND X279 THEN X=X+13
HZ=HZA2FORE S3248 MZ1GOTO 170

260 IF STICKCO =11 AND X:L THEN Xs=X-13
HZ=HZ -2 FORE S3248y HZIGOTO 170

Q70 LF STICKCOY=13 AaND Y47 THEN Y=Y+l
TR=USRCOOWNY $W=USRODOWNY 260T0 170

280 IF STICKCOy=14 AND Y:0 THEN Y=Y-13
A=USROUF)Y $R=USRUFIIEAOTO 170

290 IF STICKCO =& AND X729 AND Y0 THE
N KXl ST A2 TFORKE 53248y HZ Y=Y -1 Q=
USRCURF Y $Q=U8RCUPY GOTD 170

J00 IF STICK AN X759 AND Y247 TH
EN XX+l dHE=HZA2 0 POKE 53248y HZIY=Y+1 10
=UJHERCDOWND $Q=USRODOWNY $GOTO 170

I10 IF BTICKCO =% AND X1 AND Y47 THE
N KXol SHZ=HE -2 FOKE 53248y HZ Y=Y+ 1 1Q=
USRODOWNY Qe=USRODWNY $6G0TO 170

320 IF STICK(O)=10 AND XH1 AND Y>0 THE
N X1 T H {Z-20FORE S3248y HZ3Y =Y -1 3 (=
USSR CUP Y T Q=LER CUF)

330 6GOTO 1720

340 REM SAVE SCREEN TD DISK

50 SCRB=PEEK (DLISTHA Y HFEEK (DL ISTHE) K2
S63G0E CRE4+95Y

FEO OFEN #Ey 8o Ov NAMES

70 FOR X=GCRRE TO SCREIFUT $2y PEERCK) S
NEXT XICLOSE 42

380 FOKE S3248, 016070 50

Line 32 places into memory the machine language subroutine that moves the cursor up. This
subroutine will be located on the 6th page of memory. This page is left blank by ATARI for
program routines or other uses that you may have for particular memory locations. The contents
of this memory will not be changed by pressing the system reset key. The variable UP is set to the

first address of this routine.

Line 36 moves the machine language subroutine from line 38 into the memory locations that
follow the up routine. This machine language subroutine will move the cursor down. The variable
DOWN is set to the address of this routine. It is important that the numbers in these data lines are
copied exactly as listed here. The wrong number could cause the program to crash.

Line 40 sets aside string space for the name of the picture that will be drawn on the screen.

146

Line 50 clears the string and sets the first two bytes of the string to D:. This will be the string
that will place the name of the screen into the disk directory.

Line 60 clears the screen and asks you to enter the name of the picture. This name is stored
in N§$. It is then transferred to NAMES beginning with the 3rd position. The string will end with
the extender .DRW. If you tag an extender to all files created by a particular program, you can
retrieve them just by looking at the extenders. This line also checks to see that a name was
actually entered. If one hasn'’t been, it will repeat itself until one has.

Line 70 sets the graphics mode to 5 with no text window. We could actually use any mode for
this program. However, since 5 is neither the highest nor lowest resolution, we will use it in this
program.

Line 80 sets the beginning of the player/missile graphics area 2K below the end of memory.
This value is poked into 54279. Now the computer knows where the player/missile area begins.
Memory location 205 is poked with a 0, and location 206 with the beginning of the player/missile
area plus 2. We will be using the first player for this program. We will also be using the 2-line
resolution for the player. This means that the first player will begin 512 bytes after the beginning
of the player/missile area. 512 is 2 pages of memory (512/256=2). This is the value placed in 206.
The memory locations 205-206 are used by the machine language subroutine to move the player
up and down. It needs to know where in memory the player begins. The value PM is then
multiplied by 256 to get the actual decimal value for the beginning for the player/missile area.

Line 85 stores the beginning address of the display list in the variable DLIST.

Line 90 pokes memory location 559 with 46. This enables the player/missile graphics for
2-line resolution.

Line 100 pokes 53277 with 3. This enables the player/missile graphics. If this location is not
poked, the players will not be displayed.

Line 110 clears the memory for the first player. This is done because there could be data in
those bytes from a previous program or garbage from power-up. This would be displayed on the
screen along with our cursor.

Line 120 tells the computer where the information to draw the cursor will begin. The data
from the next line is read and stored in the first player area.

Line 140 places the color in the color register for the first player. We will be using white.
This number can be changed for any color.

Line 150 sets the variables that will be used in moving the cursor and drawing the colors on
the screen. The variable HZ is the horizontal position of the cursor. Position 47 places the cursor
along the left side of the screen. It is equivalent to the graphics position for the first column. The
variable X is the column for the plot command; the Y is the row. The variable C is used for the
color. The program begins with the color set to 2.

Line 160 pokes the value of HZ into location 53248. Now the cursor will appear on the screen.

Line 170 checks location 764 to see if a key has been pressed. When a key has been pressed,
the value of this location will not be 255. The computer will move directly to line 220 if no key has
been pressed.

Line 180 tikes the value in location 764, subtracts 30 from it, and stores it in the variable B.
The value at location 764 will not be the ATASCII value of the key pressed. It is a hardware value
for that key. If B is 1 (the hardware value was 31), then the 1 key was pressed, and the variable C
will be 1. The color in color register 1 will be drawn on the screen.

Line 190 will set the value of C to 2 if key number 2 was pressed. The color in color register 2
will now be used to draw on the screen.

147

Line 200 sets the value of C to 3 if key 3 was pressed. The color in color register 3 will be
used.

Line 210 sets the color value to 4. There is no color value 4 since mode 5 uses three colors
plus the background color. This value will have no color value and can be used to erase the lines
that were drawn.

Line 220 resets the value in location 764 go 255. This clears the location for a new input.
Whenever the keyboard is read this way, the program must reset that register. Then the
computer checks to see if the start button has been pressed. If this button has been pressed, the
computer will be directed to the part of the program that saves the screen onto disk.

Line 230 checks to see if the red button on the joystick is pressed. This is the only way to
draw on the screen. If the red button is not pressed, the cursor may be moved without drawing
lines on the screen.

Lines 240-320 check the position of the joystick. If it has not moved, the program repeats
itself with line 170. If the joystick has been moved, the program checks to see if the cursor can
move. The highest numbered column on the right side of the screen is 79. If the variable X is less
than 79, then the cursor can move to the right. The lowest value that X can be is 1. The 0th column
does not show up on all screens. Only when the value of X is greater than 1 can the cursor be
moved to the left. The top of the screen is row 0. If the variable Y is greater than 0 then the cursor
can move up. The bottom row on the screen is 47. The cursor can move down as long as Y is less
than 47. Even though the variables X and Y have only 1 added to them whenever the cursor moves,
the horizontal and vertical positions must be moved by 2. One row or column in mode 5 is two
rows or columns for the player. Every time the horizontal variable (HZ) is changed, the new value
must be poked into 53248. To move the cursor up or down, execute the machine language
subroutine to move the cursor twice. To move the cursor on a diagonal, both the machine
language subroutine and the horizontal register must be used. The lines to move the cursor
diagonally (290-320) check two edges of the screen before moving the cursor. The routine ends by
sending the computer back to line 170. It continues this loop until the start button or the system
reset key has been pressed.

Lines 350-380 save the screen to disk. The variable SCRB is set to the first byte of the
screen. The ending byte is calculated by adding 959 to the first byte. (The screen only uses 960
bytes of memory in mode 5.) Line 360 opens the buffer to write a file to the disk. The name of the
file is contained in NAME$. The for....next loop in line 370 peeks at every screen memory
location from the first byte to the last and stores the bytes on the disk. When the entire screen has
been saved to disk, the buffer is closed. The player is moved off the screen and the program
returns to line 50. If you want to draw another screen, you can enter its name. If you want to quit,
you can press the system reset key.

Listing 9-7. Slide Show

148

DIREM RESET NEW BCREEN AND

SO GRAFHIT
TESELAY LI15T

FOONIM NAMES 140 o NE (B v BCRSB LA IREM R

oM FOR L0 SCREENS

PECONAMEECL s ENARES L0 s INAMES 2

yaNaMEE S BCRE ‘J;"H"ll MBS URE

SCF "HOW MANY STREENS "SLINFUT &8

TREM THREE SFaC :: AN BACIKE l ACES

GO TF O THEM SO3REM NO MORE THAN 10
GUREEMNS

1 (ZJ(.‘ F (Hx .3\'.' =1 TO 1% "ENTER "iXi" SCREEN

" ? I h!l UT NEIREM GET THE NAMES OF THE &

BFemXRl -1 EINAMES (SR =t U PUINAMEE G
I + &) N ENAMES CSPELO =" JTORW" SREM EN
NAME
NEXT X
Gl LGS
0Ll
I (88)
SN AREA
150 F=QiFOR Xe=1 TO SIREM NOW GET THE &
CRERNS
140 BF
MoNGA H
170 8

AN BUREEN
(S5)K25468 60

SECONTT SCR lf'.

tMT(X!QD THEN &
RIGHT SCREEN

R N X)l\J A (J l__ ‘ P

£ FRIREM GET SCR
BN F l\Ul’i OISK add FUT I MEMORY

200 1K 2O THEM Fel

210 IF F O THEN GOSUR Z00IREM WalT FOR 8
Tnh !

RET l”\l‘
FORE DLLTST-H4» 81 IPOEE DLISTHE 52
RETURMN

Line 40 subtracts 4 from the amount of RAM shown in location 106. This 1K of memory will
be set aside for one screen. The variable S2 is the high order byte of the screen memory, S1is the
low order byte.

149

Line 50 changes the value in 106 by poking it with the value that was there less 4 (1K). Now
the computer thinks that it has 1K less of memory and will not touch the memory past this
address.

Line 60 resets the display list and screen. Since there is less memory for the computer to
use, the display list and screen are relocated.

Line 70 sets aside string space for the names of the screens that will be shown. NAMES$ will
contain the names of all the screens that will be shown. Each screen name needs 14 bytes or
character spaces. There is room for 10 titles as the program stands. Increase the amount of string
space by adding multiples of 14 to 140.

Line 75 clears all the strings. There can be data in the strings that can interfere with the
program. The easiest solution is to clear out strings that have been fielded.

Line 80 asks for the number of screens that you are planning to display. After the word
SCREENS come three spaces and three backarrows. This will clear out a previous entry if it was
more than 10. The number of screens that you plan to show are stored in variable S.

Line 90 checks S to see if it is greater than 10. If it is, line 80 will repeat. If you changed
NAMES$ for more than 10 titles, change the 10 in this line to reflect the number of screens that can
be entered.

Lines 100-120 allow you to enter the titles of the screens that you want displayed. Be sure to
enter the names correctly. There is no trap in this program for wrong titles. The titles should be
entered exactly as you entered them when you saved them in the previous program. The
computer will add the D: to the beginning of the name and the .DRW to the end.

Line 130 sets the screen for mode 5 with no text window. This is the mode that the pictures
were drawn in, so this is the mode that they must be shown in.

Line 140 finds the beginning of the display list and the beginning of the screen memory for
this display list. In addition to the fifth and sixth locations in the display list, the beginning location
of the screen memory area is also stored in decimal locations 88 and 89.

Line 150 starts the loop that loads the screens into memory. The loop will be repeated the
number of times that S is set for.

Line 160 extracts the name of the first screen from NAMES. The variable SP will be the first
byte for the name of the screen. The value of X will be multiplied by 14 (there are 14 bytes for each
name) and 13 will be subtracted from that answer. That points SP to the first letter of the name of
the screen. Since D: was added to every name, SP should be pointing to a D. The string SCR$ will
hold the name of the screen. The next 13 bytes after and including the byte that SB is pointing to
will be stored in SCRS.

Line 170 stores the value of SCR2 in SCREEN. SCR2 is the first byte of the second screen.
Then the variable X is checked to see if it is even or odd. If X is even, X/2 will be equal to the
INT(X/2). The even screens are displayed on the first screen. The variable SCREEN will be
changed to the first byte of the first screen. Now the screens will load, alternating between the
first and second screen.

Line 180 opens the buffer to read the file from the disk. If SCR$ contains the wrong
information, the program will crash.

Line 190 gets the bytes from the disk and stores them in memory from the first byte of the
screen to the last. After the entire file is read to the screen, the buffer is closed. You will be able to
watch the first picture being drawn on the screen.

Line 200 checks the value of X. If it is greater than 1, then the computer will go to the
subroutine that waits for the start button to be pressed.

150

Line 210 finishes the loop. If there are more screens to be loaded, the computer will loop
back and load the next screen. This time, the picture will be loaded on the screen that is not being
displayed.

Line 220 loops until the system reset key is pressed.

Lines 300-330 changes the screen that is being viewed. While one screen is displayed, the
computer loads in another screen. When the start button is pressed, the computer compares the
value of location 88 with the value of the screen in the display list. If these are not the same, the
first screen is being displayed and the computer loads the values of locations 88 and 89 into the
screen display in the display list. Now the second screen is displayed, and the routine returns to
the main program. If the second screen is being displayed, the computer places the first screen
address into the display list.

This method of page flipping can be used for any number of screens. The only thing to
rememberis—DO NOT PRESS START UNTIL THE DRIVE HAS SHUT OFF. The program can
also be designed to show a series of slides without any human intervention. Every slide ends with
a .DRW. The program can load in the files by checking every entry on the disk for the .DRW. Use
the * for the name of the program and .DRW for the extender. The computer will only choose
those files that end in .DRW. A timing loop will leave the pictures on the screen long enough to be
viewed without getting monotonous.

With a little ingenuity, the program can load entire display lists as well as the pictures so that
the slides can use multimode resolutions and alternate character sets.

151

Chapter 10

Sound
Generators

All sounds are generated by the same mechanism—the movement of air. How fast, how long, and
with how much force this vibration occurs will govern the sound that we hear. A kitten’s purr is
quite distinguishable from a lion’s roar!

By careful manipulation of the sound registers, a variety of sounds and effects can be created.
The four sound or voice channels that the ATARI'has can be used alone or in combination with
each other. Each channel can be set for a different distortion. This can be used to create strange
sound effects for programs.

THE AUDIO CHANNEL CONTROL

Every sound has the same characteristics—attack, decay, sustain, and release. The actual
tone depends on the frequency or number of pulses generated in a given time period. The higher
the frequency, the higher the note or tone.

In the sound command four different options must be set: SOUND v,p,d,1.

v=voice. There are four different voices or sound channels that can be used. Each is set by
using the numbers 0-3. Each voice must be set with a separate sound statement.

p=pitch. This is the frequency of the tone. Any number from 0-255 can be used. The higher
the number, the lower the tone. A zero will produce no tone—just a clock from the speaker. The
actual sound of the tone will depend on which distortion setting is used.

d=distortion. The distortion here means the noise content of the sound that will be
generated. The distortion value will tell the computer how to generate the pulses that will
become sound. Only values of 10 or 14 will produce pure tones.

I=loudness or volume. The tones can be loud or soft. Each voice channel can be set
independently. The only restriction is that the sum of the volume of the voices used cannot exceed
32.

The following program demonstrates how the tone (p) can vary depending on the level of

distortion (d). The number of the pitch as well as the distortion will be printed on the screen while
you listen to the tone.

153

Listing 10-1. Sounds

10 REM LISTING 10.1

A0 REM S0UNDS

FOOREM BY LM SCHREEIRER FOR TAR BOOKS
A0 FOR P=S TD 255 STEP S37 Py IREM STERF

THE HOTES BY 5
HOOFOR D=0 TO 14 STER 207 De tREM CHANG
EoOTHE DISTORTION - WUSE ONLY EVEN NUMRE
SO BOUND CePpDe L OEFOR Yl TO 200 8NEXT
YIREM LISTEM TO THE SOLND
POONEXT DETOREM GO THROUGH ALL THE $0
UmMOG ~ THE PFRINT LETS THE NEXT FITCH 8
TERET ON & NEW LINE

EOOMEXT P

Line 40 begins the for . . . next loop to change the pitch that the sound register will use. The
number of the pitch will be printed on the screen.

Line 50 begins the for . . . next loop to change the distortion of the sound register. Only the
even numbers from 0-14 can be used for the distortion. Each pitch or tone will be heard in all 8
distortions.

Line 60 plays the sound. The value of the pitch and/or distortion will be different each time
this line is executed. The for . . . next loop here gives you time to listen to the sound created.

Lines 70-80 complete the loops.

As you can hear, some of the distortions of a pitch are very similar to others in the same pitch.
Others have no sound at all. The only pure tones are generated by distortions 10 and 14.

The volume of the sound can be used to enhance the sound created. Too often the sound is a
“set it and forget it” function. Listen again to the sounds generated by the last program. Each
sound came on and went off. True sounds do not occur this way. Listen to a piano key being struck,
then a drum, and finally a horn (wind instrument) being blown. Each instrument produces its own
unique sounds. Although both an organ and a piano are keyboard instruments, they have their own
sound qualities. The time that a tone takes to reach its amplitude (height of sound) is called attack
time. The decay time is the time it takes for the sound to start to fade, the sustain time is the length
of time that the tone is heard (still vibrating). At the release time, the tone has faded away
completely. The piano is the best example of these four factors. When you strike the key, you
immediately hear the tone. It is loud and clear. This is the attack time. That loudness does not
continue for an extended period of time. Very quickly the tone starts to fade. This is the decay
time. The tone does not die away comp)etely. The length of time that you can still hear the tone is
the sustain level. When the tone finally fades completely, it is the release time.

The following program creates an interesting effect when attack, delay, sustain, and release
time are inserted into the program.

154

Listing 10-2. Sounds with Attack and Decay

10 REM LISTING 10.2

S0 REM SOUNDE-WITH ATTACK & DECAY

S0 REM BY LM BCHRETIRBER FOR Tak ROOKS
A0 FOR X=1 TO 1A4TREAD PIREM GET THE TO
NE VALL

GOFOR V=0 T 14 STEF 2380UND OyFyl0sV
SFOR Y= TO LOENEXT YINEXT VIREM ATTAC
I

HC FOR V=14 TO 8 STEF -2380UND OeFel0s
VEFOR Y=10 TO Z0ONEXT YINEXT VIREM DECA
y

FOOFOR Ye=1 o TO 1LOOINEXT YIREM SUSTAIN
g0 FOR V=& TD O STEF —-23850UNDI QsFs10sV
MEXT VIFOR Y=1 TO LOINEXT YIREM RELEA

AVREM DO EMTIRE S0OMG

PoHrPEe 108 108120

Line 40 reads the pitch values from the data line. These are the tones that the computer will
play.

Line 50 simulates an attack. The volume begins at 0 and gradually works its way up to 14. At
each level, a timing loop holds the tone and volume level.

Line 60 is the decay. The volume gradually decreases. The timing loop is longer here so that
it will take a longer time for the sound to fade.

Line 701is the sustain. This is the length of time that you will hear the sound. The volume will
remain the same.

Line 80 reduces the volume of the sound to 0. This is the release time. The timing loop here
gives each tone generated its own time. If there was not a clean break between the tones, the tone
would appear to run into each other.

Line 90 completes the loop.

The sound created by this program gives the effect of an accordian. You can almost hear the
bellow opening and closing with each attack and decay. The next program uses a slightly different
technique to create attack and decay. There is a very definite vibrato to the melody.

Listing 10-3. Sounds with Attack and Decay—Vibrations

1o LISTING 103

20 UTERATIONS

A0 EBY LM BCHRETRER FOR TAR BOOKS
AG g CLE D

155

Listing 10-3. Sounds with Attack and Decay— Vibrations (continued from page 155)

G0 Ak=TS7RVETAGAT4N

SO FOR X=1 TO L4IREAD PIREM GET THE TO
NE WAl
F0 FOR T=1 TO JZIFOR Z=1 TO 123V=UnL (A%
(v) i80UNT Qe l O VINEXT ZINEXT T

80 FOR Y=1 TO LOINEXT YIGOUNI 0000
20 NEXT X

LOG DaTa 1201218181y 72y 72»81991Ls%1y
PhHeyPhHe 108y LOE 121

7

Line 40 dimensions A$ for the volume settings.

Line 50 sets the volume sequence in A$.

Line 60 reads the pitch from the data line at the end of the program.

Line 70 contains the timing loop and the sound statement. This time the entire range of
volumes will be changed rapidly a number of times rather than changing the volume and holding it
for a period of time. The volume sequence will be used three times. The variable V will contain
the volume. As Z is increased from 1 to 12, the correct volume will be removed from A$.

Line 80 holds the last volume of the sound for a few seconds, then turns it off.

Line 90 completes the loop.

DIRECT ACCESS

Like most commands in ATARI BASIC, there are hardware registers for the sound
generators that can be set by poke commands. For each voice that you want to set, there are two
addresses that must be poked.

Voice Frequency Audio
Register Control
0 53760 53761
1 53762 53763
2 53764 53765
3 53766 53767

The frequency register can be poked with any value from 0-255. This has the same effect as
the P variable in the sound command.

The audio control register is a combination of the volume variable (V) and the distortion
variable (D). To find the number that should be poked here, multiply the distortion value by 16 and
add the volume.

By knowing where these register are, it is possible to use only the register that youneedin a
program. This will make it execute the sound changes faster because the one register will be set
directly, and BASIC will not have to reset registers that are already set; for example, if the
volume and distortion are set, and you have no reason to change them, you can poke the frequency
register with the pitch or tones. If you use the sound statement, BASIC will recompute the
distortion and volume each time it executes the sound command.

There is one more control register for the audio. This register can change the way that the
tones are generated. In the previous examples, we used one sound generator. We could easily

156

change the program to use two, three, or all four generators. For an actual tune, this would
generate some harmony. For sound effects, a second or third sound register will add to the
realism of the sound. It is also possible to use two registers together to form a 2-byte tone
generator. This will increase the range of sounds that the computer can generate.

In the next program, address 53768 is poked with 16. This will couple sound register 0 with
1. Register 0 is the low order byte and register 1 is the high order byte. As the tones begin, you
will notice that as long as register 11is set to 0, the tones sound the same as those generated with a
single sound register. Once the value of register 1 changes, the tones become deeper, until they
become so very deep that they do not seem to change their pitch.

Listing 10-4. Variations on Tones

TING

104
3OON TONES

IRETEER FOR Tak BOOKS
THIREM LINK VOICES O % 1

30
40
50
40
I REGISTER 1="
70 FOR FLl=0 TO |
187 Fis

80 FOR
HO NEXT

P FORE G3VER PTG OUN

STER SIFOKE S3240F

QIMEXT YIREM TIMER

IZZ'

Line 40 pokes location 53768 with 16. This joins sound registers 0 and 1 into one register.

Line 50 pokes location 53761 with 170. This is equivalent to a distortion of 10 and a volume of
10.

Line 60 begins the for . . . next loop that changes the pitch content of register 1. This register
will increase in value once every time the register 0 reaches 255.

Line 70 begins the for . . . next loop to change the pitch value in register 0. Every time this
register cycles from 0 to 255, register 1 will be increased by 1.

Line 80 is a timing loop to give you a chance to hear the tones being generated.

Line 90 continues the loop until all the tones have been generated.

Knowing where the tone generator registers are located is very helpful if you want to write a
machine language subroutine for the sounds and/or music that you need for your program. Some
of the arcade games play music while the program is running. It is possible to write a machine
language subroutine that uses the vertical blank to produce music. The procedure is very similar
to the one used in the last chapter to display two screens at the same time.

Listing 10-5. Music: Machine Language Subroutine

10 REM LISTING 19:5
20 REM MUSTO - MADHINE LANGUSGE SURROLU
TIMNE

O REM BY LM SCHRETRER FOR TAR BOORS

157

Listing 10-5. Music: Machine Language Subroutine (continued from page 157)

40 A=PEERCLOS) 13 REM SAVE 28546 BYTES
S50

LTO&yATREM MOVE EVERYTHING l..l P2

m\m R () REM RESET THE SCREEN AND
LAy L1S

70 FPORKE 208y .I. SFRORE Oe203REM SET THE LE
NGTH OF THE NOTE FLay

FORE 207y 0SREM OFF

ETOFOR S THE NOTE

K 203y 0FORE 204 ATREM AUDRESS Q

R NI"]'I"I'" 5

EARSHSOFF =19 L I REM BEGINNING QF

AND LENGTH

L1O FOR X=RUF TO BUF+OFFIREASD CiFORE X

e CINEXT XIPOKE 2089 0FFIREM READ IN THE
NOTES

LLd TATS Q0vb0vbav&0s8Leb00 689609980121

ylﬁBlelvl&ﬁvl”lyl’ v 12

T12 0aTe 1é vc‘;f)h;(&un()vul v SV G GOy 72 ¥

lygéyVIVT”TNQIVV&P

L13 DATA L0B8y3Xy&0e 53y 7203360530648

188y RL108:81 8581

114 DATA Yé&ea7 v 53047 v 84047 v 53047 050072

vy 7hy PRy PG FE v FHy 72

LLES DATA &QeBE Y () y§ 3'; GOy BNy PE» B v &4 8

vOHyBLvEA By EBEHL

116 DATA &4y 960108y P4 vE4yP6v L0By P& 72y

BEv P26y BEy7208H Y68

117 0aTH 72108121108y 7201081210108

281y @byl O‘i y PHyB1Ly¥Ey 108y ‘.)-..)

LLE DaTa 8Ly l1av L2381l 1481114, 128v114

s BE5 L0814y 'l 0{' Py EEy 108y 114,108

LS NATAS 81Ly85v81Ls108v72vy81Ly72v108v64y

29649108y <3() y x‘; Ged0e 108

120 0aTa H3e8598L v 720840640539 53047 040

v GZp 40604005440 '

L2 TATA Z2v 728825085 eBE A v &4y A0 53

vELy Qe P2 BBy PR B

LR22 UATA Ble8lvE1Ly

yQvOoOeQu(e()

130 FOR K= TO JIFIREAD CIFOKE L185364+X 0

sMEXT X

140G NATA 72y 149y |';'f)) Ta4lel o210y l”‘*u

20820y 1S vOu L33 v 20860 L&A 207 v 177 v 203 l

Bls81,819s81+81:81.81

158

PhHy 20852082y LA0y 20Ny 200 132y 207
LEO DaTA 14102000 104 7 &
L&O FOR W=l 8700 T LEELEREAD
sNEXT X

LZ0 naTa 104 104y 104y LaEE 104 1041700 1
QA4 104 s 7 é :
180 Q=UsRCL
1RO 7 PEERKCZOZ)8 "QFFSET" » PEERK (20463 § " 00
LIMT R R

200 GOTD 190

AOvedHodd

Line 40 moves the end of memory down by 256 bytes. This is the area that will be our buffer
for the music. The music buffer can be as large or small as needed. This program will restrict the
length of the melody to 256 bytes.

Line 50 pokes this new end of memory value into location 106. Now the computer will not use
the last page of memory.

Line 60 resets the screen and the display list using the value in 106 as the end of memory.

Line 70 pokes a 1 into location 206. This location will be used as the timer or duration of the
note being played. We set it to a 1 to begin with as a dummy value. Location 0 will hold the
duration value. Location 206 will change while the program is being executed. Every time it
counts down to 0, the computer will have to restore the duration value for the next note. Location
0 will not change when the program is executed.

Line 80 uses location 207 as the offset for the buffer. This location will increment every time
anote is played. By adding the number in this location to the beginning address of the buffer, the
computer will always know where the next note is.

Line 90 sets locations 203 and 204 to the buffer address. Location 203 is set to 0 because we
know that the music buffer begins on an even page. Location 204 is set to the high order byte of
the beginning of the music buffer. Since we set the last page of memory aside for the music buffer,
this value is poked into location 204.

Line 100 computes the decimal address of the first byte of the music buffer by multiplying the
value of A by 256. The variable OFF is set to one less than the number of notes that will be played.

Line 110is the for. . . next loop that moves the data on the next 12 lines into the music buffer.
Each number in the data lines represents one note.

Line 130 reads the machine language subroutine into page 6 of the computer’s memory. This
is the routine that will be executed everytime the vertical blank is executed. Be sure that the data
in lines 150 and 160 are entered correctly. If there is an incorrect number in the routine the
system will crash or lock up.

Line 160 places into memory the machine language subroutine that will initialize the routine
that runs during the vertical blank. Again, it is important that the line of data is entered correctly.

Line 180 executes the second machine language subroutine. The beginning address of the
vertical blank routine and the type of routine is passed to the machine language subroutine with
the USR command.

Line 190 simply prints the offset value from location 207 and the counter or duration value
from location 206. Every time the number in 207 changes, the note will also change. Once it

159

reaches the 191st note of the melody, it will reset to 0. The counter shows how long the note is
being held. Every time it reaches 0, a new note is pointed to by location 207.

To stop this program, you must press the system reset key. If you press only the break key,
you will only stop the BASIC program. The machine language subroutine running in the vertical
blank will not be affected.

By experimenting with different distortions, durations, and frequencies, you can change the
entire effect of the melody.

160

Interpreting
the Keyboard

There are times when a simple input statement is not the best way to get information from the
keyboard: the program may not lend itself to question marks on the screen; you may want single
key input; or you may want the program to continue with its task and the keyboard to be read only
when a key is actually pressed. (This is sometimes called reading it on the fly.)

When you use the input command to retrieve information from the keyboard the program
stops and a question mark appears on the screen. The entry is placed in either a string or a
variable. If letters or other characters are entered into a numeric variable instead of numbers, an
error will result. This can be resolved by using strings for all inputs. The input can be checked
only after the return key has been pressed. Using this command is the simplest way to get
information. It is used most often.

The second method of getting an entry is with the get command. Although the program must
still stop to get the input, this method is much faster than the previous way. The characters
entered can be screened immediately. If the character is not correct, the program can disregard it
and wait for another entry to be made. The buffer length can be set for any length, and when full,
the program can continue without waiting for the return key. The keys pressed do not have to
appear on the screen.

The following program is a useful routine that can be used in any program that needs a
read-keyboard routine.

Listing 11-1. Read the Keyboard

FOR TaAk BOORS
CLOG

LEF "FOLOPEN #2040 "KI" IR
EER OFEN KEYROARD FOR A

TO 10iREM BUFFER IS 10 CHAR

AUTERS LONG

161

Listing 11-1. Read the Keyhoard (continued from page 161)

FOOGET #2eBIREM WaIT FOR & KEY TO BE F

RESSED AT i IN B

G0 IF L AT A O IRE

I N LKk 2 U RESET

Pz Ak 70 THEM X VEIFORKE 702y &4 TREM
MakE I
100 IF BC&S THEN POIREM LT & NOT & LET

LG BUFE O r=0MEECB SRENM PUT TT IN THE
STRING

oI ® DHRE (R INEXT X

Line 40 sets the buffer length—(BUF$) to 10 characters.
Line 50 removes the cursor, clears the screen, and opens the keyboard for a read.
Line 60 begins the for . . . next loop that will accept keyboard input without using a return

key.

Line 70 waits for a key to be pressed. The keyboard must be opened before the get command
will work. The ATASCII value of the key pressed will be placed in the variable B.

Line 80 checks the value of B. If it is greater than 127, the ATARI or inverse key was
accidentally pressed. Correct this by poking 0 into location 694. Subtract 128 from the value of B
to get the normal code for the key pressed.

Line 90 checks the value to see if it is upper or lowercase. If the caps/lower key was pressed,
all the inputs would be in lowercase. Rather than check each key against 2 values, it is easier to
subtract 32 from the value in B and reset the keyboard for uppercase by poking location 702 with
64.

Line 100 now checks the value of B to make sure that it is a letter. If the ATASCII value is
less than 32, it is not a letter, and the program goes back to line 70 to wait for another input. The
key that was pressed is disregarded completely. It is not displayed on the screen and it is not
stored in the buffer.

Line 110 places the letter for the key pressed into BUF$. As each correct key is pressed and
entered, the value of X will increase. This will point to the next vacant position in BUF$.

Line 120 places the letter on the screen. The row is set, the column position will increase
with X.

Line 130 prints BUF$ on the screen under the letters that were printed as they were
pressed. BUF$ contains exactly what was printed on the screen. If any numbers or control
characters were pressed, they were ignored by the program.

Line 140 closes the keyboard.

In the next program, we will use this input routine for a tile game. This game is based on the
5x5letter tile game. Each tile can only slide to a vacant spot. Try to arrange the letters correctly.

162

Listing 11-2.

Tiles

LG REM LISTING 112
20 i TILE“
FOOREM BY L
A0 TlE UUI” J
00 R RG] ?“IJKIMNIIHR\TUUNX "IRE
MoFLAl ALl THE T G OIN A STRING
&0 th Gl TOOSEFOR XK=L TO 25 0R=INT (RN
PRI IREM PICK A& LETTER

'“LH'ﬂi(f'u(i3 cRBUFS Ry R =RUF$ (26X
WF$ (26X 2H-X0 =TEMP S REM MOVE
TERS QRUUNU

HANEXT TIREM DO OIT SEVERAL TIM

TAR BOORS

O GRAFPHICES L18IREM MOOE 2 WITHOUT TEXT
WD
160 ;

) =4 T geFOR C=7 T0O 11:F08
TTION CyRIT A&

UFE X o X0 TREM FRINT THE

I

CHLTNERXT CINEXT RIREM FRINT THE
RIMG

FEaAD THE KEYROARD

] LTION Lel 37 #65 "wrese a8 letter®

SOFEDN 2 Qo "KM IRENM QFEN THE KEYROAR

o QR READ

LA40 GET 42 BCLOSE $#25REM GET o KEYSTR

19

FLEE THEN B=R-1271FP0OKE &%4+01R
THE TMUERSE FLAG
SO0 THEMN Bs=R-320F0KE 702641 RE
FOR URFER CASE ONLY
1 BRSSOkl THEM L30T REM TRY A
Gali - WOT A GOOU LETTER
18O FOR X=1 T0O 2821F ASCIRUFE(XeX) 3=R
THEM 200
I Q)

: FEOTH LI0IREM NOT THERETT
HﬁJNllf“ L3784 i REM COMPUTE THE R

(1]

S10 Cs (- (R-4YES4SEREM THIS I8 THE 0O
LU

220 DFEN Tl TO 2150UN
I UyMOyIU\IUAth fwm T LGIMEXT Y IEOUN
I Geide Qe R Y

2R0 POSTITION

an arrow'

163

Listing 11-2. Tiles (continued from page 163)

H l;l T o2y BICLOSE #23REM GET THE KEYSTRO

T ARROW
LEFT ARROW
UF ARROW
PREM DOWN ARROW
A MOVE KEY
LETTER CAN MOVE

285G hUTU
290 REM
F00 IF Xw= 1 | K do

305 TF BUF ‘J (X4 I ¥ \’ ALyt R XAEsINT (X
ZEHY OTHEN 130

SLO POSITION CeRIT &
yRIT OESIBUFE X X2 I BUFE (X4

pXIIBUFE (e X "GE0TO 130

J20 IF X=1 THEN 130

I TF (-1 A8=INT -1 375y OR BUFS (X~
L1300 THEN L3I0

IR0 Pl TION CyRITF #&5 " "IFOSITION C-1
v T fhHsBLF L(ni! y ‘\IH g X0 ow XLy = BUFE (X
y X IBUF$ Iy Xom EOTO L3I0

340 TF R4 THERN 13
485 TF BUFE K5
IEHO FOSTITION CeR
=13 RSP RBUFE (e X :-'
y XD ERUFE (X y K ym?
3&0 1F Ix a T HEMN 13
365 IF BUFE (X485 X4+H) 00 II X0

S0 L [Nl ' e " SITION CoR
FL3T FSFBUFE (X y X FBUFS ({8 X4 'J YuRLFE X
v XD IRUFE Oy K=" " IGEOTO 130

) j::- s l II N 130
iF TION CeR
s R (X

Line 40 sets aside 25 bytes for the letters (BUF$) and one byte for a temporary storage

(TEMPS).

Line 50 places the first twenty-four letters of the alphabet into BUF$. The twenty-fifth letter

is the space.

Lines 60-80 shuffle the letters. A random letter (R) is picked. That letter is placed in TMP$.
The last letter minus the value of X is placed in the random position. The letter in TEMP$ is
moved to the position that was just vacated. The loop continues until all the letters have moved
five times. This method ensures that all the letters in the string will be thoroughly mixed.

Line 90 sets the screen for graphics mode 2 with no text window.

Line 100 places all the letters in BUF$ in a 5%5 grid on the screen. The variable X will point
to the letter in the string. R is the row and C is the column. To center it on the screen we begin

with the 4th row and 7th column.

Line 110 increments X each time a letter is printed. This moves the pointer up one letter.

164

The loop continues until all the letters have been printed.

Line 130 prints the direction on the screen. First a letter must be pressed. The keyboard is
opened for a read.

Line 140 sets the value of the key pressed and closes the keyboard.

Line 150 checks the value of B. If it is greater than 127, then the inverse or ATARI key has
been pressed. 127 must be subtracted from this value and location 694 must be poked with a zero
to set it back to normal.

Line 160 checks to see if the value is for a lowercase letter. If it is, 32 is subtracted from the
value and location 702 is poked with a 64. The keys pressed now will be returned as upper case.

Line 170 checks the value of B. If it is not a letter between A and X the program will return to
line 130 for another input.

Line 180 finds the position of the letter pressed in BUF$. The value of X will be its position.

Line 190 sends the program back to line 130 for another input if the letter is not found.

Line 200 calculates the row of the letter. The value of X minus 1 is divided by 5. The integer
of the result is added to 4. Since there are 5 letters in each row, dividing X by 5 will give the row
number. However, the fifth letter in each row would be put in the wrong row. By subtracting one
from X, the resulting integer is the correct row (the first row is counted as row 0). Since we began
printing the letters in position 4, this number is added to the result. Now we know which row on
the screen the letter is in.

Line 210 calculates the column. 4 is subtracted from the value of X to give the true row. This
answer is multiplied by 5 (there are 5 letters in each row) and the result is subtracted from the
position that X is pointing to. This answer is added to 6 because it will be in the range of 1-5. The
columns on the screen begin with position 7. Now that we know where the letter is located on the
screen, we can get a keystroke for the direction that the letter should be moved.

Line 220 opens the keyboard for a read. A short tone will indicate that the program is ready
for another input.

Line 230 prints the new message on the screen. This time the program wants an arrow key to
be pressed. When a key has been pressed, the computer will close the keyboard.

Lines 240-270 will send the computer to the correct routine depending on whether the up
arrow, down arrow, right arrow, or left arrow was pressed. Actually, the code that the program is
comparing the inputs to are for the asterisk, the minus sign, the equals sign, and the plus sign. By
using these codes instead of the control-arrow codes, the program is truly a one keystroke
program.

Line 280 sends the program back to line 220 if an arrow key was not pressed.

Line 300 checks to see if X is pointing to 25. If it is, then it is at the end of the buffer and the
letter cannot be moved to the right. The program will send the computer back to line 130 for
another letter input.

Line 305 checks to see if the next place in the buffer is empty. It also checks to see if this
letter is in the fifth column on the screen. If either of these conditions are true, then the letter
cannot move to the right, and the computer will go back to line 130 for a new letter.

Line 310 erases the letter from its position on the grid and moves it over one to the right.
Then it moves the letter up one space in the buffer. The position that the letter was occupying
becomes a space. The program continues with line 130.

Line 320 checks to see if X is the first position. This routine moves the letters to the left. If
the letter to be moved to the left occupies the first position in the string, it cannot be moved to the
left. The program returns for another letter input.

165

Line 325 checks to see if the letter occupies the first column of the grid. It also checks the
position just before it in the buffer. If this position is full the letter cannot be moved to the left. If
the letter cannot be moved because of either of these conditions, the program waits for another
input at line 130.

Line 330 uses the same procedure, but in reverse, to move the letter to the left. The letter is
first erased from the screen, and then reprinted in the new position. The letter is moved down one
position in the buffer and the old position becomes a space.

Line 340 checks to see if the row (R) is 4. If it is, then the letter is in the top row. This routine
moves the letter up one row. A letter in the first row cannot be moved up.

Line 345 checks the buffer five positions before the position of the letter that will be moved.
The letter will move up one row. The square that it is moving to is five positions before its
position. If that position is not empty, the program will go back and wait for a new command.

Line 350 erases the letter from the grid and reprints it one row up. It then moves the letter up
five positions in the buffer and replaces it with a space.

Line 360 checks the value of the row (R) to see if it is the last row of the grid. This routine
moves the letter down one row. The letters cannot be moved past the last row.

Line 365 checks the buffer five positions past the letters position to make sure that it is a
space. If it is not, the program will go back to line 130 for another entry.

Line 370 erases the letter and prints it one row down. It then moves the letter over five
positions in the buffer. The letter’s original position becomes a space.

This entire game is played with single keystroke entries. There are actually two entries for
each move, but each is treated separately. If the first entry is correct, the program will ask for the
second. Inputs that are not considered legal are ignored.

KEYBOARD CODE

The third method of entry from the keyboard is to read the keyboard on the fly. This means
that the computer is busy running the program, but it keeps checking to see if a key was pressed. If
it was, then it will process that information. If no key was pressed, it will continue with the main
program.

This method could be used in a game where the computer is working out some possible
moves. If the player had to wait for the computer to make its move after the player made his/her
move, the game could be excessively long. If, however, the computer could do its thinking while
the player did, the time that the computer needed for its moves would appear to be shortened. A
chess game is a good example of a situation where you would want the computer to think while the
player did.

The keyboard code is not ATASCII. It does not seem to follow any pattern. The only
exception is that there is one bit set in the code if it's an uppercase letter, or if the control key has
been pressed. Table 11-1 shows the hardware key code and the corresponding key. Try the
following one line program:

10 ? PEEK(764),:GOTO 10

There will be a stream of 255s on the screen until a key is pressed. Once a key has been
pressed, that value will be printed on the screen until another key has been pressed. This is the
hardware code for the keys. To convert the keycode into ATASCII so that you would know which
key was actually pressed could be done with all the possible characters in a string buffer. There is

166

no need to do duplicate work. Beginning with memory location 65278, all the ATASCII codes are
listed according to keycode.

The following program will show you the internal or hardward code of the key and the
character.

Listing 11-3. Keyhoard Conversion

FOR Tabk BOOKS

Pe LIREM CLEAR &0

ANY KEY
T OTHE

l:' ".I/ "! H

TOLRENM MO EEY

il
HW

i PR

INHKE))

LG GOTO

Line 40 sets the variable CONVERSION to the first byte of the ATASCII values. This
location is the ROM or the operating system.

Line 50 clears the screen and removes the cursor.

Line 60 asks you to press any key with the exception of the break key.

Line 70 loops until a key has been pressed. When a key has been pressed, the value of
location 764 will not be 255.

Line 80 stores the value of location 764 in variable KC. Location 764 is poked with 255. This
clears it for another input.

Line 90 prints the internal or hardware code for the key that was pressed. Be sure to enter
six spaces and five escape control-backarrows in the print line. This will erase the previous code
from the screen.

Line 100 adds the keycode to the first byte of the table in ROM. The program then prints the
character of the peek of that location. This character will be in lowercase unless the shift key or
control key was pressed for the input.

Line 110 loops back to line 60 for another entry.

Because of this table in ROM, it is very easy to convert keycode into the actual ATASCII
values for a program.

167

1% 4 4 Table 11-1. ATASCII and Hardware Values.

168

READING THE KEYBOARD

The following program is an example of how the keyboard can be read while the computer is
executing a main program. This simple keyboard program will keep letters flying across the
screen. If you press the correct letter, the letter will stop and you will be awarded points. The
entire time that the letters are moving across the screen, the computer is checking location 764 to
see if a key has been pressed.

Listing 11-4. Letter Attack

LO REM LITSTING 1L1.4

20 REM LETTER ATTALK

30 REM BY HEETRER

A0 CONVERS IO gé

G0 GRAFHICE 1748

T WINDOW.

SO R=TMTORNDICLIR24 065 TREM GET ATASLLL
VAaLUE FOR CHARACTER - DONTT USE A SPA

LE

0 FOSITION 2007 k45 "soore” s B0

GO R=INTORNICL Z234+1L EREM FICK A& RANDD

M OROW FOR THE LE K¢

0 FOR X=1 TO L19IFOSTTION X-LeRET fbHe"
ECHRSE (RO

100 FOR T
114 TF ¥

EY HAS

FOR Tak BOOKS

MOTHE 2 NOTEX

1LT0 TL

K764 =255 THEN 1403REM NO K

FRESSED

120 KCa=f KOZEAYTPORE 784y 2HHIREM SAVE
THE 0 CLEAR THE LOCATION

T30 IF FEERKCCONVERSTONSRC) -32=K THEN §

CaSU+20-X3T=TL i X=19

140 NEXT T

150 NEXT XIFOSITION 19eR3T &5 "
160 IF SCL000 THEN &G

LZ0 IF SCx=1000 THEN GRAFHICE 17I1P0S5IT
TON 4487 $&5"YOU MADE TIT"IFOSITION 49

GG S "soore - "EH0

LEO 7 &5 "FLAY AGAIN"IOFEN #2y4eQp "R
L0 GET #2«BICLOSE #211F B= OR B=121
THEN Tla=TL-8 GRAFHTCS SOTD &0

i

=

(=4

8]

174

Line 40 sets the variable CONVERSION to 65278. This is the first byte of the ROM table to
convert the internal or hardware code into ATASCII.

Line 50 sets the screen to mode 2 with no text window. The variable TL will be used in the
timing loop. It can be changed to any number to make the letters move faster or slower.

Line 60 chooses a number for the letter that will fly across the screen. It chooses a number

169

from 0-25 because there are 26 letters in the alphabet. This number is added to 65. The letter A is
ATASCII 65.

Line 70 prints the current score on the screen. This line will update the score after every
letter.

Line 80 picks a random row for the letter to travel on. The letter cannot be on the Oth line
because that’s where the score is printed.

Line 90 begins the for . . . next loop that moves the letter across the screen. The letter begins
on the left side of the screen and continues across to the right.

Line 100 begins the timing loop. If there was no timing loop, the letter would travel across
the screen too fast to be read.

Line 110 checks location 764 for a value other than 255. If no key has been pressed, the
computer is directed to line 140 to continue the timing loop.

Line 120 stores the value of location 764 in the variable KC. The location is cleared by poking
it with 255.

Line 130 checks the key pressed with the letter that is being displayed. The program looks at
the peek of the keycode added to the first byte of the ROM table. Since this is the lowercase
ATASCII code for the letter, 32 must be subtracted from the code. If this result is equal to the
value of KC, the correct key has been pressed. A new score is calculated by adding 20 (20-X) to
the old score. X is the horizontal position of the letter at the time the correct response key was
pressed. The variables T and X are set to their highest values and the for . . . next loop continues.
Since T and X are at their limit, the program will continue with line 160. If the letter reaches the
edge of the screen, it will be erased from the screen. If the correct key has been pressed, the
letter will stop on the screen and remain there until another letter erases it.

Line 160 sends the computer back to line 60 for another letter if the score is less than 1000.

Line 170 will end the game if the score reaches or surpasses 1000. The screen will clear and a
message will appear. The ending score will also be printed.

Line 180 asks if you want to play again. The keyboard is opened for a read.

Line 190 gets an input from the keyboard and closes it. If the letter Y has been pressed, the
program will subtract 5 from the counter and go to line 60 for another game. Each time a new game
is played, the letters will fly faster on the screen. If any other key is pressed, the program will end.

170

Chapter 12

Understanding
the Screen Editor

Everything that you see on your screen is processed by the screen editor. It keeps track of where
the cursor is, where the screen memory begins, whether or not there is a text window, the tab
locations, the mode the screen is in, the right and left margins, etc. This chapter will list most of
the memory locations that the screen editor uses and the function of each location. These
locations can be changed by the program. If they are changed correctly, they can add features to
your program. If they are not, the program could crash or produce results that are less than
desirable.

GET/PUT CHARACTERS

When the program contains the locate command, it is getting a character from the screen.
This command contains the row and column that you want looked at. It returns the ATASCII value
of the character at that location.

Listing 12-1. Locate, Poke, and Peek

LISTIMNG 13
LOCETEy FORE

ANDE FEER

A0 Lo M SUHRETRER FOR TAR BOOKS
A0 OREM CLEAR THE SCREEN
aQ GHT KL MNOF QRS TUVWX Y 2

TTION 2037 CHRECRD
VaL.UE AN FUT CHA

&G Lo Ee Qe BIPC
sREM GET THE ATASCLT
C BACK

IGTTION SeHe® "THE aTAaSCTIL OF "sCH

: S 5 CREM SHOW ATASCITL VALUE

i RO 256 TREM REGIN

MEMORY

SV EREM SAME LOCATION
FOURFOSTITION TN CHARAC

T ELIREM SHOW VALUE

KE MEMA42y BLIREM MOVE IT DOWN ON

e
o0 el

GO BlsPE CHE
100
TEFR

{01

171

Line 40 sets the graphics mode and clears the screen. The graphics command must before
using the locate command.

Line 50 prints the letters of the alphabet across the screen.

Line 60 uses the locate command to get the ATASCII value of the character in location 2,0.
The value will be stored in variable B. Immediately after using the locate command, the character
must be printed back into that location. When the location is examined for its contents, the
location becomes blank. To reinstate the character, the print command must be used.

Line 70 shows the ATASCII value of the character at the location 2,0.

Line 80 calculates the beginning address of the screen. This address is stored in locations 88
and 89.

Line 90 uses the peek command to look at that memory location. This time the result is not
the ATASCII value, but the position of the character in the character set.

Line 100 prints this value on the screen.

Line 110 pokes this value back into memory. The location that will be poked is 40 more than
the address that was peeked at. This will move the character down one line.

As you can see, you can get different results depending on which commands you use to look
at a character on the screen. The locate command is the easiest to use since it calculates the
screen position, and returns the ATASCII value of the character. There may be times, though,
when the program that you are writing will work better with pokes and peeks.

CONTROL CHARACTERS

There are sixteen control codes for the ATARI computer. Each of these codes has its own
ATASCII value. They can be printed to the screen within a string, within quotes, or with the
CHR$ command. The following list gives the ATASCII code for the control codes and their
function.

ATASCII code Command and function
(decimal)
AT Escape: The character following this code will be treated as data. This means

that if the next character you want is a control character (for example, clear
screen), pressing the escape key first will display the character rather than
clearing the screen. Use the escape key when there are control characters in a
string or line that will be printed on the screen.

28 Cursor up. The cursor is moved up one line on the screen. If the cursor is on
the top line, it will appear on the bottom of the screen. This key is used in
editing. Under program control it could space messages that are printed on the
screen without using the position command.

29 Cursor down. This code moves the cursor down one line on the screen. If the
cursor is on the bottom line, it will move to the top of the screen. Again, this can
be used instead of the position command, when you are printing text on the
screen.

30 Cursor Left. This code moves the cursor one position to the left. If the cursor
is at the left side of the screen, it will move to the right side of the screen, but
remain in the same screen line. This character is often used to clear a previous
input to the same prompt. If the previous line prints three or four spaces, then

172

ATASCII code
(decimal)

31

125

126

127

155

156

157

158

159

253

254

Command and function

printing one fewer cursor-left character will clear any information that was on
the line, and the question mark will appear in the correct position for the next
entry.

Cursor Right. This code moves the cursor one position to the right in the
same line. If the cursor is at the right edge of the screen, it will move to the left
edge in the same line.

Clear. This code represents one of the most frequently used control charac-
ters. It clears everything from the screen and homes the cursor. The home
position of the cursor is the upper left corner of the screen.

Backspace. This code moves the cursor back one space. If the cursor is at the
left margin, and this line is the beginning of a logical line, the cursor will not
move any further. If this line is the continuation of a previous line, the cursor
will move to the right edge of the screen one line higher. (There are three
screen lines to one logical line.) When the cursor moves to the left, it removes
or deletes the characters on the screen.

Tab. This code moves the cursor several positions to the right. The tab
positions are set when the computer is turned on. They can be reset under
program control. The computer considers three screen lines to be one logical
line for the tab function.

End of Line. This code ends the logical line for the computer. It is also used to
indicate that the return key has been pressed to enter an input. When the
screen editor receives an end-of-line (EOL) it returns the cursor to the left side
of the screen, one line down. Printers usually use this code to issue a carriage
return and line feed. Disks and cassettes use it to indicate the end of a record.
Delete Line. This code removes all the information that is on the line that the
cursor is on. This line is cleared on the screen. If there is text printed below the
line, all the lines move up one line.

Insert Line. This code adds a blank line in the line that the cursor is in. If there
is information in this line, it and any text below it are moved down one line. Any
information on the last line of the screen will be moved off the screen.
Clear Tab. This code removes the tab indicator from the point that the cursor
is at. If the tab was not set at this location, nothing happens. There is no
clear-all-tabs command, but this function can be accomplished with pokes.
Set Tab. This code places a tab indicator at the location of the cursor. Since the
tabs can be set for three screen lines, it is important to know exactly where the
cursor is.

Bell. This code makes a tone using the speaker on the computer. This sound is
more like a squawk than an actual bell. This character has no effect on the
display.

Delete Character. This code removes the character “under” the cursor. If
there are characters in the line to the right of the cursor, they will move one
position to the left. If the logical line is longer than one screen line, the contents
of the lines below the line with the character that is being deleted will move up
also.

173

ATASCII code
(decimal) Command and function

255 Insert Character. This code adds one position to the line. A space is inserted
at the position of the cursor. The character under the cursor and any characters
to the right of the cursor are moved one position to the right.

In some programs, it is possible to place machine language subroutines into strings. Ifitis a
relocatable subroutine, this is a good place to store it since it can be accessed by using the
USR(ADR(STRING$)) command. But, very often, some of the codes for the subroutine are the
control codes listed above. If you try to print the string, you may find that you cannot see all the
characters in it because the control characters don’t print! The next program shows you which
location to poke to make control characters visible on the screen.

Listing 12-2. Printing Control Characters

1 ASTIMG 188

20 FRINTIMNG CONTROL CHARGCTERS

A0 REM BY LM SCHRETRER FOR TAR BOOKS
AQ DIM Ak (20

SO AR IREM PUT CONTROL CH
ARanTEF TN THIS STRING

S0 FOKE 7841

COMTROL CH&ERATTERS " 8aE

G0 FORE &by 0

E

e

Line 40 sets aside 20 places for characters in A$.

Line 50 places an assortment of control characters into A$. These are - bell, clear, insert
character, delete character, cursor down, cursor up, cursor right, cursor left, tab, insert line, and
delete line. To print these characters within the quotes, use the escape control keys for all but the
last two; use the escape shift keys for those.

Line 60 pokes location 766 with a 1. Anytime this location is not zero, the control characters
will be printed on the screen as characters.

Line 70 prints the contents of A$ on the screen. If you do not clear the screen before running
this program, you will see that A$ is printed exactly as it is set in line 50.

Line 80 resets location 766 with a 0. Now if you try to print A$, you will get the bell, the
screen cleared and all the other control characters executed.

OTHER MEMORY LOCATIONS

The following list of memory locations are used by the screen editor, display handler, etc, to
display information on the screen. They are all located in RAM, so they can be changed under
program control. Some values may be immediately reset by the operating system; others will be
ignored; and changing some can cause strange results, or make the system crash.

Memory Function
Location
88,89 This is the beginning of the screen memory. When the contents of these locations
are changed, the computer will print in memory other than that being displayed on

174

Memory
Location

675

694

702

703

Function

the screen. This location was changed in the program Slide Shows (Chapter 9).
This byte and the next 14 bytes make up the bit map for the tab. Every bit that is
setis atab. For example, input POKE 675,17. Now press the tab key. The cursor
will stop under the E in READY —the fourth screen position, and under the space
after the Y —the eighth screen position. All tabs can be cleared by this statement.

FOR X=675 TO 689:POKE X,0:NEXT X

This location sets or clears the inverse flag. If this location is 128, all the
characters will be treated as inverse characters. It must be set to 0 for normal
characters. This location was used in Chapter 11.

This location is set for lower or uppercase letters. If this location is 64, the
shift-lock has been set and the characters are uppercase. If it is 0, the characters
are lowercase. This location was also used in Chapter 11.

This location can only be 4 or 24. If it is 24, it sets the normal screen size. A 4 sets
the text window at the bottom of the screen. Poke this location with a 4; then list a
program. The entire program will scroll in the bottom four lines of the screen.

By experimenting with these locations, you will learn how to create the effects that you need
or want for your programs.

175

I ,q_j" : e ame £ o el
Fd A S TR AL 24 H e Sare el
e CuasEw - -

fa

s
", or A D
o

. 'ugwiz%, o

(RS '|'.J-El-. = = s

I. N Ll Ll
o -I- B -'-|- - s - - o
e+ re e e il o ek ol S g e
N B - . - - . - ."-‘"I.-.'_ - = =

B -
-, N w -
B i .
B -
B . 1
- P ¥ - . -
-\’.
1
it i)
i -
-
. o " "= s
- N -
N B |
1

Chapter 13

Disk Use

Convenient program and data storage is provided by the floppy disk system available with the
ATARI. By understanding how the computer handles the disks and how the disks themselves are
organized, you can better control and utilize the system.

DISK FILE MANAGER »
The file manager provides the commands that allow BASIC to access the disk drive. Up to
four drives can be accessed with the manager that comes with the ATARI Disk Operating System
(DOS). Throughout this chapter and the next, the ATARI DOS will be used for the examples. If
you are using a different DOS on your system, some of the commands or formats may differ.

10CBs

The ATARI computer has a portion of memory set aside for input and output control. This
area of memory is called the input/output control buffer (IOCB). The memory locations in this
area are set for the device(s) that will be handled. This area is not exclusively for the disk drives.
It can also be used by the screen editor, cassette, or any other device that can access it. It can also
be used under program control.

The IOCB stores information concerning the device that is being used, the process that will
be performed (writing to the device or reading from it) the length of the buffer that will be written
from or read into, and location of the buffer.

CIO Functions

The central input/output (CIO) functions control most of the disk operations. Each disk
operation has its own specific function. Some operations have options that can be accessed by
using the correct auxiliary code.

Open. The open command can be used to create a new file, append an existing file, or update
an existing file. The file can also be opened for a read. To use the open command, you must specify
which drive, the name of the file and the option, for example, OPEN #2,8,0,“D:NAMES”. The
file NAMES would be opened using buffer #2. It is opened for a write only. If a file already exists
with that name, it will be written over. If it does not exist, it will be created. Its name will be added
to the directory.

Using the format OPEN #2,9,0,"D:NAMES" opens the file for an append. The file will not

177

be destroyed. The information sent to it will be placed immediately following the data that is
already there.
If you use the format OPEN #2,12,0,“D:NAMES”, the file will be opened for update. Any
part of it can be changed without affecting the rest of the file if the file was created properly.
You can also use the open command to read the directory from BASIC by using OPEN
#2.6,0,"“D:*.#". In the next program, you can read the directory from BASIC and run any program
by entering that program’s number.

Listing 13-1. Directory Listing
FEM LISTING 131
REM DIRECTORY LIS
FEM BY LoeMs SCHIEI
M DERE (F&EE) e 1l
G ODTRECL =" " IDIRG (768 =" "IOTREG C2)=1

TAR ROOKS

5007 UFCLEARY U IREM CLEAR THE SCREEN
G0 OFEN #2065 0y "Ik, K" IN=1 I X=1 tREM OFE
NOTHE FILE FOR THE I TORY
70 ITNFUT #2e BUFSIREN GET AN ENTRY

$OXo XLy mBUFS 3y 13 tREM FLACE 1

0l ORY BUFFER

SCRUFS Ly 19058 AND ASCCBUFS (L
THEN Nasp-1iCLOSE #2360T0 110
CHLEENENALGOTO 70
SR Xl TO NIFOSITION G
NOT INTCX/100 9 vRET X5% " s ITRS (X121 1
KRLRYIREN FRINT THE FILE
120 CwRa-UiIF C=2 THEN FsRel$REM NEXT
My MEXT ROW
NEXT KEREM FINTSH 0TRE
TTTON 2y

CTORY
TOCENTER NU

J hul i
FROGR &M e INRUT B

N ORF

L

THEMN 140

ol Ar=" " IRUFECE) =R
COETIFOR XsPXLE-L1 TO
p Xm0 THEN 180

Line 40 sets aside 768 bytes for the directory and 14 for the buffer. There is a maximum of 64
files that can be stored on disk. There are 12 bytes fielded for each file.
Line 45 clears the garbage from the string.

178

Line 50 clears the screen.

Line 60 opens buffer #2 to read the directory. The number 6 indicates a directory read. The
asterisks (#) are used for the file name so that all the file names will be read. The variable N will
record the number of files read. X will point to the position in DIR$ that the file name will begin at.

Line 70 gets an input from buffer #2. The contents of this input is stored in BUF$. The
program is reading the entry from the buffer, not from the disk.

Line 80 places the contents of BUF$ into DIR$. All the file names will be stored this way.

Line 90 checks the first character of BUF$. If it is a number, there are no more files in the
directory. One is subtracted from N so that N will be the number of files listed in the directory.

Line 100 adds 12 to the value of X. This moves the pointer up 12 bytes to point to the
beginning of the next field. The variable N is incremented by 1, and the program continues with
line 70.

Line 110 uses the variable R to indicate the row that the file information will be printed on
and the variable C for the column. The for....next loop accesses DIRS to print the names of the
files on the screen. The column position is calculated to keep them straight. When X is greater
than 10, the number (X) must be printed one column to the left to keep the numbers in a straight
line. The logical operation NOT returns a 1 when the integer of C/101is 0. It returns a O whenitisa
number greater than 0. By adding this value to the variable C, we can keep the numbers in a
straight column. The number (X) of the file and the file name are printed on the screen. Again, X is
used to calculate the beginning and ending positions of the file name.

Line 120 recalculates the value of C. The two positions that the column can be are 2 and 22.
By subtracting the value of C from 24, the variable C will be 2 and 22 alternately. Everytime Cis 2,
the variable R is incremented so that the next file name can be printed in the next row on the
screen.

Line 130 continues the loop.

Line 140 asks for the number of the program that you want to run. The line ends with five
spaces and three backarrows. The trap keeps the program from crashing if a letter or other
character is entered instead of a number. The number of the program is stored in the variable P.

Line 150 checks the value P. If it is larger than the number of the last program on the screen,
or less than 1, the program returns to line 140.

Lines 160-180 place the name of the program into BUF$. The first two characters of the
string are set to D:. This is the code that the computer needs to access the disk. The program
looks for the first space. The part of the name from the first character to the character before the
first space is placed in BUF$.

Line 190 places the . after the name of the program. The extender is added to the name.

Disk Buffer

Located in the IOCB is the address of the disk buffer. When the computer inputs information
from the disk, it moves the data into the buffer. When the program uses the get.command or put
command, it goes into this buffer to retrieve or place information. The get and put commands
work with only one byte at a time.

The input command also gets its information from the buffer. All the data up to the end-of-line
code is placed into the string. If the string is not long enough for the information, it will be lost.

The following program will print a hard copy of a program that has been listed to the disk.
The length of the line can be specified. The program uses the data in the disk buffer to print the
listing.

179

Listing 13-2. Print from Disk

LO REM LIST 13.2

20 REM FRINT FROM DISK

SO REM BY LM SUHRETBER FOR TAk BOOKS
A0 T O UFCLEARMENTER THE LENGTH OF & LLIN
E"s S INFUT P

G0 T ENTER THE NUMEBER OF LINES TO A P
AGE" ¥ TINFUT LN

O OFPEN #2088y Qe "R4L"

70 OFEN #Ledy Qe "DILTETING"

0 OZ00VFOR G0 TO L

LOO GET #1eR

110 7 #25CHRE (R $

120 TF B=L155 THEN 140

130 NEXT C3F 25 CHRECLSE D §

140 L=l 4L 2 DF LElN THEN 90

LS50 FOR L=l TO 1087 #2ENEXT LIGOTO 80
00 CLOSE 41 8CLOSE #21END

Line 40 clears the screen and asks for the length of the line. This value is stored in variable
PL. It can be any value. Of course, if your printer can only print 40 characters on a line, a number
larger than 40 would not work.

Line 50 asks for the number of lines to a page. This is the number of lines that you want
printed at one time. After every page, the program will print ten line feeds to separate the pages.

Line 60 opens buffer #2 for the printer. The printer that [use is a serial printer out of port #4
of the interface.

Line 70 opens buffer #1 to the disk drive. The program that you want printed should be listed
to the disk with the LIST “D:LISTING” command instead of being saved. Use the name LISTING
for the program. By listing the program to the disk, it is not saved in the token form, but byte for
byte the way it appears on the screen when it is listed.

Line 80 sets the variable L to 1. This variable will count the number of lines that are printed.

Line 90 sets a trap for line 300. We don’t know how long the program is, so when an error
occurs, we will end the program. The for....next loop to print the program begins here.

Line 100 uses the get command to retrieve a byte from the buffer. The disk will turn on and
256 bytes will be read into the buffer. This command will get each byte from the buffer one at a
time. It keeps track of which byte it got last, so it always gets the next byte. When the end of the
buffer is reached, the next 256 bytes will be read in off the disk.

Line 110 prints the CHR$ of the byte to the printer. The semicolon after the CHR$ keeps
every character on the same line until the carriage return and line feed (EOL) is issued to the
printer.

Line 120 checks the value of B. If it is 155, the EOL has been sent to the printer, and the
printer has returned to the beginning of the line and fed the paper up one line. The program is
directed to line 140 since there will be no more characters printed on this line.

Line 130 continues the loop. After the number of characters specified by PL is sent to the

180

printer, the program sends an EOL to the printer. If there are more characters for this program
line, they will be printed on the next line.

Line 140 adds one to the value of L. This is the number of lines that have been printed. If the
number of lines required for one page have not been printed, the program will go back to line 90.
This will start the for....next loop again.

Line 150 will separate one page from the next. Ten prints will be sent to the printer. This
number can be changed if you want more or less spacing between the pages.

Line 300 closes the buffers and ends the program.

SPECIAL FUNCTIONS

There are some functions that can be accessed both from the DOS and BASIC. Although they
are not supported by one word commands, they can be executed with the XIO command. They
are: lock, unlock, delete, rename, and format. The XIO commands are:

Operation

LOCK XIO
UNLOCK XIO
DELETE XIO
RENAME XI0
FORMAT XIO

Command
35,#1,0,0,“D:name”
36,#1,0,0,“D:name”
33,#1,0,0,“D:name”
32,#1,0,0,“D:name newname”
254,#1,0,0,“D1.”

These commands can be used within a program to access the disk. The following program
includes some of these commands and the note and point functions.

Listing 13-3. Calendar

10
20

M

F ki

LIS :
CALENTER

30 REM BY LoM.SCHREIRER FOR TAR BOOKS
40 DM DAYECIO) s BUFSCR0) » MTHCE) » TEMF$ ¢
25)

50 UROLEARY ' IPOSITION 5237 "FLEASE
CHOOSE S " tFOETTION 5437 "1, FORMAT NE

W OIsK"

&0 FOELTION

7

ThaF ZO0FOSTITION
4

T2 CHECK CALENDER®

WER R

" LINF

LO»H7 "

UT DIREM 2 SPACES & 2 LEFT ARROWS TO ©C
LEAR ENTRY

0 IF Gl OR CxFZ OTHEN Z03REM ONLY ACCE
P Or 2

0 0 O GOTO 100250

LGO PORE 7H2.18F "FCLEARI"IFOSITION 29
Les? "THIS & CTION WILL FORMAT A& DIS
FoOFQOR THE CALENDER FROGRAM. PLACE A"

110

DUSK TNTOE THE DRIVE AND FRE

tREW

181

Listing 13-3. Calendar (continued from page 181)

58 RETURN ANY OTHER KEY WILL RETUR

NOYOU O TO THE MENUT

1.3G L Prﬁh(fuﬂlw?hh THEN 120

D3OG LN=S0ETF P (7640=12 THEN LN=150

140 FORE 764vh"jiﬁDTU L.N

130 XTO0 254e kL0 Oy "IL " IREM FORMAT TH

DTSR

L& FOR Xﬁl TU L2sREAD BUF$EIDAYHECL d="
PANAYHRCE0 =" T INAYS (2 =TAYSI0FEN #2328y

OvPUlf
AOOFOR D=l TO ZLI0AYSECLY=8TRE 0 STAY$

y=t W IPRINT #235DAYSENEXT D

LEG [LR IMEXT O XIREM CREATE THE MON

TH FILES

L83 DATA

U¢InNHnlY:U‘llthnhf9h°Mﬁh(H9
A0 o DS JUNE » D2 JULY » D EAUGUST
FTEMBER D3OCTORER » I3 NOVEM

’IH Illl\ y vOIEOTO BE

250 7T "FOLEARI"IFOSITION 5y1037 "ENTER
THE MOMTH"§ 3 TNFLUT hll

260 TRAF E70IRESTUORE
FREAD BUFE T TF LEN(MTf‘M

ENGCTF BUFS O3y LENOMTS Y 42

270 NEXT YiUUTU 50

280 TRaR 28017 v o0 ENTER THE DaY™" s

IMFUT D

290 TRaF 4000030FEN #2y4» 0y BUFEIFOR K=
LoTO F12NOTE 2S5 o BITNFUT 2y DAY

300 IF VAL(DAYS (L2 000 THEN NEXT X3i0

LOSE #2360T0 50

310 CLOSE $#2

20 7 "YCOLEARY"IT O"DATE REQUESTED - "3

MTEs" "§l

330 7 LT ODaYs

40 7 7 "PRESS K-TO KEEF INFORMATION

\

12
TH
THEN 280

& RETURN - TO MENUY
250 7
i‘q a
S60 T LT O"PRESS D-TO REVIEW ANOTHER A
TE

370 OFEN #2y4y0y "K2"IGET #25CI1CLOSE 42
380 IF Cx127 THEN C=C-1281F0KE &9450
90 IF C=2% OR C=107 THEN 50

TOVPRESS U-TO UFDATE INFORMATIO

182

400 IF C=8%5 0R C=117 THEN 4350

410 TF =468 OR C=100 THEN 250

420 GOTO 370

A0 T LT O"PLEASE ENTER NEW INFORMATION

"

A& TEMFE CL Y= " STEMPS C25 =" " ETEMPS (2
YuTEMFE ¢ TNFUT TEMFS ST LENMCTEMFS) 5325

THEN TEMP$ 2G5)= 0

470 7 "VERIFY - THIS 18 CORRECT (Y/MN)"

480 OFEN #2940y "KI"IGET #2»CI0CLOBE #2

490 IF Cx127 THEN U=C-1281F0KE 69430
00 IF C=8% OR =121 THEN 530

GlO TF C=78 0R C=110 THEN 450

G20 GAOTO 470
GE0 DAYE CAd=TEMPE Y S (30 =" "IREM &8T0
Rk THE MEW THFORMATION

G40 UFEN #2120y BUFESIFOINT $2 5o BIREM
RE-QOFEN THE BUFFER AMI FOINT TO THE @

ECTOR
GEOOT 2y UAYELCLOSE GOIREM &TO

RE THE INFORMATION ON DSE

Line 40 sets aside space for the strings. DAY$ will hold the day’s activity. BUF$ is used as a
buffer for the disk file name. MT$ is the month and TEMP$ holds information temporarily.

Line 50 clears the screen and places the first menu option on the screen.

Line 60 places the second menu option on the screen.

Line 70 places a question mark on the screen and waits for an entry. The trap will keep the
program from crashing as a letter or other character is entered. Two spaces and two left arrows
are printed before the input. This will erase the entry if the program does not accept it.

Line 80 checks the value of C. If it is not a 1 or 2, the program will return to line 70.

Line 90 branches to the correct routine.

Line 100 removes the cursor and clears the screen. It prints part of the message on the
screen.

Line 110 prints the rest of the message on the screen.

Line 120 waits until a key has been pressed.

Line 130 sets the variable LN to 50. This is one of the two lines that the program can be
directed to. If the return key was pressed, the value of LN changes to 150, the other line number.

Line 140 clears the key input and sends the computer to the correct line.

Line 150 formats the disk. It is very important that the disk in the drive does not have
programs that you want to keep on it. When the disk is formatted, all the information on the disk
will be erased.

Lines 160-180 place the files for the months on disk. The X loop goes from 1 to 12. The month
is read into BUF$. The contents of DAY$ are cleared, and the file is opened with the name that is
in BUF$. Line 170 begins the second loop. This loop places a buffer for each day of the month on

183

the disk. The first byte(s) of the DAY$ contains the number of that day. The last byte is set to a
blank space. The entire buffer is printed to the disk. After all the days have been printed to the
disk, the file is closed and the X loop continues.

Lines 190-200 contain the months in the format needed to open files on the disk.

Line 210 puts the cursor back on the screen and returns to the main menu. The disk is now
set up as a calendar.

Line 250 begins the calendar routine. The screen is cleared, and the message to enter a
month is placed on the screen.

Line 260 restores the data line and begins the for....next loop to look for a match between the
month entered, and the months on file. The contents of BUF$ beginning with the third byte is
compared to the contents of MT$ (the month entered). If amatch is found, the computer goes on to
line 280.

Line 270 continues the loop if no match is found. If the month cannot be found because of a
spelling error, the program goes back to the main menu.

Line 280 waits for a day to be entered. All the files are set up for 31 days. The entry here is
not checked for a correct day. If you need more days in your year, here’s your chance to lengthen
February!

Line 290 clears the trap. The file for the month specified by BUF$ is opened for a read. The
loop gets every day from 1 to 31. The program has no way of knowing where in the file the day is
located. The note command places the sector number of the day being read into the variable S.
The first byte of the day is placed in B.

Line 300 checks the day in the buffer against the day entered. The loop continues until the
days match. If no match is made, the file is closed and the program returns to the main menu.

Line 310 closes the file if the days match.

Line 320 clears the screen and prints the month and day entered on the screen.

Line 330 places a blank line on the screen, then prints the contents of DAYS$.

Lines 340-360 print a mini-menu. If you want to keep the information that is on the screen and
return to the main menu, press K. If you want to change the information, press the U. Press D if
you want to check another date.

Line 370 opens the keyboard for a read. When a key is pressed, the keyboard will be closed.

Line 380 checks the value of C. If it is greater than 127, the inverse or ATARI key has been
pressed. 128 must be subtracted from the value of C. A zero is poked into memory location 694 to
reset the flag for normal text.

Lines 390-410 check the value of C. If it is a K, the program will return to the main menu. If it
is a U, the program will continue with line 450. Entering a D will send the computer back to line
250 for another entry.

Line 420 will send the computer back for another entry because the key that was pressed was
invalid.

Line 450 issues a blank line, ang then asks for the new information to be entered.

Line 460 clears any previous information or garbage from TEMPS. It then waits for a new
input. If the length of the input is less than 25, the last character of the string will be set to a space.

Line 470 asks you to verify what you typed.

Line 480 opens the keyboard for a read. Once a key has been pressed, the keyboard will be
closed.

Lines 490-520 check the value of C. Ifa Y or an N was not entered, the program will loop back
for another entry. If an N was pressed, the program will go back to line 450 for a new input. If the

184

entry is correct, the program will continue with line 530.

Line 530 places the information from TEMP$ into DAY$. The last byte of DAY$ is set to a
space. The disk is fielded for 30 bytes per record. If fewer bytes are sent back to the disk, the
pointers would be changed, and we could not retrieve information from the disk.

Line 540 opens the file in BUF$ for read/write or append. The point command is used to set
the pointer to the correct sector and byte. The information in DAY$ must be placed back on the
disk in the exact spot that it was taken from.

Line 550 prints DAY$ to the disk and closes the buffer. After each update, the routine will
return to the main menu.

DISK HANDLER

Another way to access the information on the disk is by using the disk handler. The disk
handler is twelve bytes long and can transfer one sector (128 bytes) of data to or from the disk. In
order to transfer the information, the disk handler must be set up by the program. The disk
handler begins at memory location 768. It must contain the number of the disk drive that will be
accessed, the command byte (get sector, put sector, format, or status request), the buffer
address, and the number of the sector to be accessed.

The next program will load in a specified track from a disk and display it as characters on the
screen. The characters can be changed, and resaved onto the disk. This program will not allow
you to change the data on the disk, just to look at it. It will tell you the status of the track. If the
status is not OK, it is a bad track. Either the information on it got scrambled, or it was made into a
bad track for copy protection purposes.

Listing 13-4. Displaying Sectors

REHM

SECTORS

R FOR Tak ROOKS
y e DROUT S C5)
"°UUI (L 28y=" " IRUF
REM CLEAR THE BUFFER
AT BEDROUTE (X e X)) =OHR

&0 l“' Ok
$C I 'J ii‘ll

; 2286

SR CBUFF lff.l $riREM DECIMAL ADDRE
£ BN

\';l) I“H HLs=THT CalnRA256)Y P REM HIGH ORIDER

) llI LO=AT00R- CRUFHIX2E6) SREM LOW ORDE

RBYTE

1LO0 DOR=Z48IREM DISFLAY CONTROL CHARAC
TERS -~ SET DEVICE CONTROL RBLOCK

110 PORE Bl DIREM DRIVE 41

120G 2y 82 IREM GET SECTOR
130 Fdy BUFLOSREM BEGINNING OF

BUFTFE h i Ulal CRTER ATDORESS

185

Listing 13-4. Displaying Sectors (continued from page 185)

140 FORE DEBRASyBUFHISREM BEGINNING OF
BUFFER - HIGH OQRDER ADDRESS

1&E0 PORE Z&& GITRAR LEOIT "INPFUT SECTO
FooNUMBER" & S THNFUT SECTORIPFOKE 768y 1L IREM
GET "DP MUMEE R
“INT(bhFTUhf‘hﬁ‘ R GET M

s
]

G0k

CHECTORHIHZEE) SREM

ar HIN
CTORLOSREM STORE IT

STORHI

U i.:l\ CADRCTROLITE)) ;‘F'\‘EEI MoGalld. THE 0.
e ROUTIME
SO DETAT=FE I K¢ Ul.:p]l\.!) +I EM GET THE STAT

STaETe DI DETAT=

[

20 IS BTATUS=" S
THEN % " = OK"{GOTO
230 FRINT IR | I FREMT SECTOR ITNFORMATIO
i\'! ”l\ -

2ORUFFERS

Line 40 sets aside space for two strings. BUFFER$ will contain the data in the sector.
DROUT will contain the address of the machine language subroutine in the operating system that
will use the disk handler.

Line 50 clears the buffer.
Line 60 reads the machine language subroutine into DROUTS$. This subroutine is ajump to a

subroutine in the operating system. We need this subroutine to access the operating system
subroutine because we are accessing this subroutine through BASIC. The first thing that the
subroutine must do is pull a byte off the stack. If we accessed the routine directly, it would not
return properly since the byte would not be pulled off the stack.

Line 70 places the decimal address of the first byte of the buffer into the variable ADDR.

Line 80 divides this number by 256. This integer is the high order address of the string
location.

Line 90 subtracts this number from the address. This gives the low order address.

Line 100 sets the variable DCB to 768, the beginning of the device control block, and pokes
location 766 with a 1. Now if there are any control codes in the sector, they will be printed on the
screen.

Line 110 pokes the second byte of the device control block with the number of the drive that

will be read.
Line 120 pokes the next byte with the command byte. 82 is the command to get a sector from

the disk.
Lines 130-140 place the low order and high order byte of the address into the device control

186

block. This address is the beginning of BUFFERS.

Line 150 asks for a sector number. The trap is set for inputs that are not numbers. The sector
number will be stored in the variable SECTOR.

Lines 160-170 divide this number for the low order and high order bytes.

Lines 180-190 place these bytes into the correct addresses of the device control block.

Line 200 calls the machine language subroutine that calls the operating system’s disk
interface routine.

Line 210 checks the status of the sector read.

Line 220 prints the status of that sector. If it is a 1, the sector was read incorrectly.

Line 230 forces a line feed to the screen. There is a semicolon after the status value in line
220. If the status was not OK, the line feed would not occur.

Line 240 prints the sector on the screen. Some sectors look like they are displaying garbage
on the screen. Others are a string of hearts, and still others are perfectly readable.

Line 250 sends the program back to line 150 to get another sector to be displayed.

Press the break key when you are finished displaying sectors. The following list shows
which bytes are used for the DCB and which commands could be used.

Address Function
769 This byte is set to the number of the drive that will be accessed (1-4).
770 This is the command byte. The commands are: 82-get sector; 87-put sector
with verify; 83-status request; 33-format disk.
771 This is the status byte. After a successful read, this byte will be a 1.
772-773 This is the buffer address that indicates where the data will be placed or taken
from.
778-779 This is the number of the sector that the routine will access. The sector could

be written to or read from.

FILE MANAGEMENT SYSTEM

In addition to the disk file manager, there is also a file management system. This governs the
format of the disk, the location of the boot record, the file directory, the volume table of contents,
and any other information needed to keep files on a disk. If any or all of the files that the file
management system (FMS) uses are destroyed, the disk may not boot, copy correctly, or read in
the files. By understanding how the files are structured on the disk, bad sectors can be fixed; the
table of contents can be altered; and files can be deleted or restored without using the disk file
manager.

Track Format

When a disk is formatted, all the data on the disk is erased. There are 720 sectors on the disk.
Every byte inevery sector is set to 0. The first sector of the disk is reserved for the boot record. If
there is no boot record, the disk will not load from a cold start. When DOS is written to the
formatted disk, the boot record is written to the disk along with the DOS and DUP files. When the
disk boots, it brings DOS into the computer.

When a file or record is sent to the disk, it may require one or more tracks. The FMS begins
with the first available sector and stores the program on subsequent available sector. The key
word here is available. If, for example, a program used two sectors for storage; the next program

187

used four; and the third used five. Now, you delete the second program from the disk. Those four
sectors are available for another program. The next program that you write needs 10 sectors. The
FMS uses the first four sectors from the deleted program and the six sectors after the third
program. How does it know where the rest of the program is???

Every sector of every program has its own linking bytes. There are 128 bytes in every
sector. Bytes 1-125 contain the data for that sector. It could be a program listing, a file, or
whatever else was saved to the disk. The 126th byte contains the file number. Every sector that
pertains to this program will have the same file number. If there is a mismatch between file
numbers, an error 164, file number mismatch, will occur.

Byte 127 is the forward pointer. It contains the sector number for the next sector that has
more data for this file. It usually is, but does not have to be, the following sector. This is how the
computer knows where the rest of the program is. If sectors 4-8 are used for a program and the
next available sector is 14, the number 14 will be stored in byte 127 on sector 8. When the
computer finishes reading in the data from sector 8 it will continue on to sector 14 and skip sectors
9-13. If this is the last sector for the file, this byte will be 0.

Byte 128 is the byte count. It contains the number of bytes that should be read in from this
sector. A full sector contains 125 bytes. Anything less than 125 is considered a short sector.

If you use the Displaying Sectors program from this chapter, you can examine the sectors of
the disk and see how the sectors are linked.

Volume Table of Contents

When you want to save a program onto the disk, the computer has to know where there is
room to save it. It can’t sit there and examine every sector on the disk to decide whether or not the
program should be placed there. Sector 360 is the volume table of contents (VTOC). Use the
Displaying Sectors program to examine this sector. Now examine a newly formatted disk.

The VTOC for the disk that has been used should have a string of hearts, with some inverse
insert characters. The disk that was just formatted is almost filled with the inverse insert
characters. This is a bit map that tells the computer which sectors have been used and which ones
are empty. The fourth and fifth bytes of this sector indicate how many sectors are available. On a
new disk these two characters should be an inverse C and a control B. This is a two byte
number: 2#256+195=707 free sectors. On a used disk, this number will vary. If the 4th and 5th
bytes are set to 0, the computer would think that the disk is full. The bit map begins with the 11th
byte or character. On the new disk, this byte will be 15, the character will be a control 0. The next
44 bytes are inverse insert characters (ATASCII 255). The 45th and 46th bytes are a heart and
insert character. The next 43 bytes are inverse insert characters (ATASCII 255). Every time
something is stored on the disk, this sector is checked. If the bit is a 1, then the sector is free and
the information can be placed in that sector. The bit in the bit map is then set to 0. The 45th and
46th bytes are sectors 360-368. These sectors are reserved for this VTOC and the directory. If
the directory sectors are changed to ones, they could be written on. The computer would not be
able to list a directory or load or store programs.

FILE DIRECTORY FORMAT

Beginning with sector 361, the computer keeps the names of the programs on the disk. There
are sixteen bytes used for each entry. Up to eight names can be stored on each sector. There are
eight sectors set aside for the directory. Up to 64 files or names can be stored on a disk. This

188

means that even if there are free sectors on the disk, the disk will not hold more than 64 programs
or files.

Look at sector 361 using the Displaying Sectors program. You should see up to eight file
names. Before each name, there are some characters. The first byte of the file name is the flag
byte. If this character is a B, the file is available. If it is a b, the file is locked. If it is an inverse
heart, the file has been deleted.

The next two bytes contain the sector count. The second byte is the low byte, the third, the
high byte. Multiply the ATASCII value of the third byte by 256, and add the ATASCII value of the
second byte to find out how many sectors are used for the file.

The fourth and fifth bytes contain the sector number at which this file starts. Again, this is a
two byte number with the low byte first and the high byte second. Use the ATASCII values of
these characters to find out which sector the file begins in.

The next eight bytes are the name of the file. The last three are the extender. There is no
period separating the name from the extender. When the directory is read into the computer, the
period is added by the program. If the file name or extender contains more characters than there is
space for in the directory, the extra characters will be ignored. Table 13-1 shows the format of the
file directory.

BOOTING YOUR OWN DISK

When you place a disk into the drive, and turn on the computer, the drive turns on and a
program boots. This program could be the DOS or another program. Most commercially available
machine language programs will boot themselves when you turn the computer on. BASIC
programs are usually loaded into the computer.

AUTORUN.SYS

You may have noticed a program on your ATARI disk called AUTORUN.SYS. If you examine
the disk directory from various software firms, you may find the AUTORUN.SYS is anywhere
from one to three or more sectors long. You may have also found that when you write DOS to a
new disk, the AUTORUN.SYS does not get written to the new disk. It has to be copied.

Table 13-1. File Directory Format.

rwtle 2ERF sechor cournt

muwlte A85 atartbing sector

frwle &-13 foile rmame

fwbe 1414 @rtender

189

The purpose of the AUTORUN.SYS is to give the programmer a way to boot a program or
load a machine language program into the computer during the boot process. Let’s say that you
have a machine language program that will disable the break key. You want this program executed
immediately when the system is turned on. If the program had to be loaded by the user and
executed, chances are it wouldn’t be done. A short routine could be inserted into your BASIC
program to load and execute this routine, but this would take up memory space and time.

When you turn your computer on and DOS is loaded in, it checks to see if there is a program
on the disk called AUTORUN.SYS. If there is, it loads this program and executes it before it turns
control over to the user. The AUTORUN.SYS program must be written in machine language. It
cannot be a BASIC program.

In the following program, you will create your own AUTORUN.SYS. It will change the right
and left margins on the screen, and the background color before BASIC takes over.

Listing 13-5. AUTORUN.SYS

L0 REM LISTING 13:%
20 REM AUTORUM . 5YE

Z0 T RBY LM SCHRETRER FOR TAR
A0 THFEN #2880 "D3AUTORUM . SYE" IR W
NOTHE BUFF T WRITE T H...lAJ ALTORLN

G0 FUT #23
YTES

SO PUT 2« OIFUT 2 SEREM STARTING ADDR
£S5

AOOFPUT B2y LEIFUT 2y & SREM ENDING AUDRE
G

80 FOR B=1 TO LASREAD DIREM GET THE &
Téy FOR CTHE ROUTIHE
SO OFUT dE e DT REM
LGO MEXT Bl L
L1O PUT #2228 30F

GHEPUT 4R 21 M L EADIMEG B

S AL AT

LG PUT 42
THIS ALk
| yu l'l..l'T' P2 OTPUT 2y STREM STARTING &b

FPSRUT PR EREN START FROM

'} '3 (Zi LOSE $2:REM CLOSE THE BUFFER - PR
OUFRAM GOES 7O DS

LTEG END
200 DaTa 1
el 1ALy L9 2PS

Line 40 opens the disk buffer to write to the disk. The name of the program is AUTO-
RUN.SYS. If there is a program by that name on the disk, it will be replaced by this one.

Line 50 puts the first two bytes of this program into the disk buffer. The first two bytes of any
machine language program is 255.

190

Line 60 places the beginning address of the program into the buffer. The machine language
program will begin at memory location 1536 (600 hex).

Line 70 places the ending address of the program into the buffer. The machine language
program is 14 bytes long, so the ending address will be 1549 (60D hex).

Line 80 begins the for....next loop that reads the machine language program into the disk
buffer. There are 14 bytes in this program.

Line 90 puts each byte into the buffer.

Line 100 continues the loop until all the bytes have been read and placed into the buffer.

Line 110 puts the low order address of the autorun routine into the disk buffer.

Line 120 puts the high order address of the autorun routine into the buffer.

Line 130 puts the beginning address of the machine language program into the buffer. This is
the address that will be put into the preceding addresses. For a program to load and run, the
running address must be stored in memory locations 738 and 739.

Line 140 closes the disk buffer. When the buffer is closed, its contents will be sent to the
disk.

Line 200 contains the machine language program that will be run when the disk is booted in.

After you enter this program, run it. Be sure that the disk that is in your drive does not have
an AUTORUN.SYS on it or it will be destroyed. It is best to have a new initialized disk in the
drive. The DOS must be on the disk. When you run the program, the disk will turn on and you can
hear the program being saved to the disk. After it is saved, turn the computer off and then turn it
back on. You will hear the disk boot in. The cursor will move to the right and the screen will turn
black. The word READY will appear in green. If you load in a program and list it, you will see that
your margins have moved. See Table 13-2 for the machine language listing of the program.

Boot Record

The AUTORUN.SYS is one way to load and execute programs. But, what if you are writing
programs in machine language, and you do not want a directory on the disk, but do want the
program to load and run when the disk is turned on?

In the last chapter, we discussed how the disk was structured. The first sector is called the
boot sector. This is the sector that the computer will look at to bring in a program from the disk. If
you copied the DOS on the disk, you have the ATARI boot on this sector. It will bring in the DOS.
If you placed your own boot on this sector, it will bring in whatever program you want it to. This is
not something that can be easily accomplished from BASIC, but that’s not to say that it can’t be
done. If you are ready to place your own boot records on the disks, you must have a good
understanding of assembly language and how the boot process works. In this chapter, we will only
describe the boot process.

The boot sector has its own specific format. The first byte is stored in memory location 576.
It is not used by the boot and should be set to a zero. The second byte tells the computer how many
sectors are in the boot. It should include this sector. This number can be any number from 1 to
255. If it is 256, it will be set to zero. The third and fourth bytes tell the computer where to start
loading the program. This does not have to be where the program begins, just where to start
loading the file. The fifth and sixth bytes tell the computer where the program begins. After all the
sectors for the boot have been loaded, the computer has to know where it should transfer control
to. This address will be the beginning of the program. The third and fourth bytes and the fifth and
sixth bytes are two byte addresses. Be sure that the third and fifth bytes contain the low order
address and the fourth and sixth bytes contain the high order address.

191

Table 13-2. Machine Language Routine for AUTORUN.SYS.

clecimsl code assemnly landustge listing
149 LA S slh.osd the scoumulator with §.
%)
133 8Ta 82 sGtore it din location 82.
82
169 LI 30 vlooad the acoumulator with 30.
30
133 GTh 83 sStore 4t in location 83.
83
1469 ’ LA 208 il.oad the scoumulator with 208.
208
141 STh 710 iSGtore it dim location 710.
198
2
@b RTE sReturn From the routine.

The following is an example of the structure of a boot record. It is not the complete record.

0 ignore

3 number of sectors in boot

0 low order address

7 high order address—place boot here
64 low order address
21 high order address for initialization
76 jump to following address
20 low order byte

7 high order byte

3 27
3
0
124 2
26 2?
1 data—Iloads into the Y register
24

192

125
203 data

172 load the Y index use-next address
14 low order byte for address
7 high order byte for address
240 branch if it’'s 0
54 ahead 54 bytes

This portion of a disk boot shows how the information in the first sector is used. The first
byte (0) isignored. The second byte indicates how many sectors are in this boot. This number is
stored at location 577. The next two bytes are stored at locations 578 and 579. They tell the
computer where this boot should begin. The first six bytes and all the byte following will be
moved to the location in memory beginning with the address specified here. The next two bytes
are the initialization bytes. After the boot is executed, the address in this memory location will be
jumped through. The next instruction in the boot is a jump. Once the three sectors have been
moved into memory the computer will perform a jump subroutine. The address that it will jump to
is the sixth address after the beginning address. In this case it is location 1798 (706 hex). The
instruction at this address is to jump to memory location 1824 (720 hex). At this location, the
computer will load the Y index with the value stored at 1812 (714 hex). If the value is zero, the
computer will move ahead 54 bytes. If we count 15 bytes down in the table, we will see that the
value at that location is a one. The computer will proceed to the next instruction.

The boot process then consists of:

1. Reading the first sector and storing the first six bytes, which indicate the number of

sectors, the load address, and the initialization address.

2. Placing the boot sectors into memory beginning with the location specified in the third

and fourth bytes of the boot sector.

3. Jumping to the subroutine that begins in the seventh location after the beginning of the

boot.
4. Jumping through the subroutine whose address is stored in locations 12 and 13 (fifth and

sixth bytes of the boot record).
5. Transferring control to the program by jumping to the address in locations 14 and 15.
The machine language program loaded into the computer will now be fully operational. If the
addresses are set correctly when system reset key is pressed, the program will restart itself. If
they are not, the drive may turn on and the computer may try to boot the program again, or the
computer will go to BASIC or the memo pad.

193

Chapter 14

Cassette Use

Like the disk, the cassette is a convenient form of storage that can be utilized more effectively
when the way the computer handles it, and its physical structure are understood.

THE CASSETTE HANDLER

The cassette handler is similar to the disk manager. Files can be written to or read from the
cassette. The buffer can be opened for get and put commands. Programs can be loaded using
BASIC or using an autoload command. However, there are some important differences between
the disk and cassette. The cassette can only read and/or write data to the portion of tape under the
recorder head. Files cannot be stored or retrieved from just any position. When a program is
saved to the cassette, it is saved in one continuous stream. There is no positioning of the head.
You cannot specify tracks like you can point to sectors and bytes on the disk. Likewise, you can
only read what is passing under the cassette head. You cannot point to only one section of tape like
you can read in one sector from the disk. The cassette is, however, a fairly reliable way to store
and retrieve information.

Format of Data

If you have a recorder, save a program to it. It doesn’t have to be very long—four or five lines
will do. After the program is saved, rewind the tape and enter these commands in the direct mode:

OPEN #7,4,0,“C:":FOR X=1 TO 128:GET #7,B:? B;* ";:NEXT X:CLOSE #7

This opens the cassette for a read. Now press the play button on the recorder and the return
key on the keyboard. You will hear one tone. Press the return key again. After you hear arecord of
data being read in, you will see numbers being printed on the screen. This is the code for the
program that was saved. The computer is printing it from the cassette buffer, in the same manner
as it was printed from the disk buffer.

Now enter this without clearing the screen:

FOR X=0 TO 130:?PEEK(1021+X);“ ”;:NEXT X

195

The first three bytes that are printed on the screen are different from the first three bytes
that were printed from the buffer. But, if you compare the first byte of the buffer with the fourth
byte, you will see that both number patterns are identical. Memory location 1021 begins the
cassette buffer. The buffer is 131 bytes long.

The first two bytes in the buffer are 85. These two bytes are fixed and are used by the
computer to measure the speed of the cassette. The third byte is the control byte. If this byte is
252, the record is full—128 bytes. A 250 in this position indicates a partially full record and a 254
is an end of file record.

The first bytes after the speed and control bytes for the first record consist of the table
entries. This includes the variable table, the value table, etc. The values are adjusted by the
amount of memory in your machine. This is why a program that requires more storage memory
than your machine has will produce an error message immediately when you try loading it rather
than half way through the load.

The last byte that the computer reads from the cassette is a checksum. When the program
was saved to the cassette, every byte that was sent to the cassette in the 128 byte record was
added to the previous bytes. The two markers are also included in the addition. After the two
markers, the control byte, and the record were sent to the cassette, the sum of the bytes were also
sent. When the records are read in, the bytes are added together again. If the sum of the bytes
match the checksum byte that is read in, then the record is assumed to be correct and the
computer will continue with the loading process. If the two bytes do not match, the load will stop
and an error message will appear on the screen.

Cassette Frames

Each record of 128 bytes is considered a frame. The speed at which the data is sent or
received is called the baud rate. The ATARI uses the baud rate of 600. This means that 600 bits
are sent per second. (Each byte is 8 bits). The two marker bytes are read in by the computer. The
computer determines how long it took to read them in and calculates the correct baud rate for the
tape. It does this with every frame of data that is read in. The input baud rates can be adjusted to
read faster or slower. This adjustment process allows for variations in motor speeds, stretched
tape, etc. It does not, however, allow for alignment problems between the recorder that the
program was originally saved on and the one that it is being read on.

You may have noticed that when you CSAVE a program to cassette, the records seem to be
sent faster than when you use the list command. There are two different modes that the computer
can use when sending records to the cassette. One is called the normal IRG (Inter-Record Gap),
and the other is the short IRG. The computer uses the short IRG for the CSAVE and CLOAD
commands. The computer reads in the record, checks the checksum, places it in RAM, and goes
back for another record. The recorder is running the entire time. The computer must do its work
quickly so that it won’t miss the next record.

When the computer uses the normal IRG for saving records to the tape, the recorder stops
after every record is read into the computer. The information can be processed; then next record
can be read in. The baud rate for saving and reading the data is the same for both modes. It is the
time between records that varies. In the normal mode there is about 3 seconds of tone between
records. In the short mode there is about % of a second of tone time between records.

The IRG is set up by the computer when the save or load command is entered. If the wrong
command is entered for the tape, the program will not load and an error message will be displayed
on the screen.

196

BOOTING YOUR OWN CASSETTES

There are two different ways to make your cassettes load and run automatically. The first
way is with a BASIC program. A short boot program is saved to the tape. Then, without moving
the tape, the second program is saved to the cassette. By using the RUN “C:” command, the boot
program will load, run, and load in the second program. The following program is a short boot
program that will load and run a second program.

Listing 14-1. BASIC Boot Load

0 REM B SROFOR TaR BOOKS
A0 GRAFHITS OFDKE 710y LIGIFORE 712911
4

G0 FORE &5y Q3PONE P83

SO POSITION PTOMcopgrignt 1983

720 POSITION 131087 "Now 1
TLON 1512317 "mrograms® F0

S M e,
w ! [

. Lt SF0ST
1

FTON 1Ldel®
GO FOSITION 151687 "wour mame”

GO COLOR Z3HIPLAOT L0« 7IDRAWNTD 27 71 0RAW
TO 27« LELDORAWTO 10y 18I0RAWTD 10710010
R F2LF T J

100 FORE 7252
11O RUN “"Ci®

FEGe 13

Line 40 sets the graphics mode to 0. The graphics mode must be set before plots and
drawtos. The background color and border colors are changed.

Line 50 pokes 65 with a 0. This will turn off the noise channel and you won'’t be able to hear
the program loading. This line also removes the cursor from the screen.

Line 60 prints the copyright notice on the screen.

Lines 70-80 prints your message on the screen.

Line 90 sets the color to 35. This is the ATASCII value of the pound sign. Using the plot and
drawto commands, a border is drawn around your message.

Line 100 turns the cursor back on and places a carriage return in the location that holds the
last key entered.

Line 110 executes the RUN “C:” command. You won’t have to press the return key because
the code is already poked into location 764.

The program that is saved on the tape after this boot program had to be saved using the
SAVE “C:” command. If it was CSAVE(, this procedure won’t work. If you want the next program
to load in only, and not run, change line 110 to CLOAD, and be sure that the program that you want
to load was CSAVEd to the cassette.

The noise location was set to zero in this program so that music or instructions could be
heard over the television speaker. This command is not needed if you will not be using the second

track on the cassette.

197

Boot Record

If you wrote a machine language program that you want to load in from cassette without using
the editor/assembler, you need to write a boot record as the first record of the cassette program.
The boot record for the cassette is almost identical to that for the disk.

There are six bytes for the first record of the boot. The first byte is ignored. The second byte
contains the number of records that should be initially read. The third and fourth bytes contain the
address where the boot records should be stored. The fifth and sixth bytes contain the address
that should take control of the program after the boot is completed.

The following is the partial coding of a machine language program’s boot record.

0 ignore
32 number of records
191 low order memory load address
11 ° high order memory load address
184 low order initialize address
27 high order initialize address
169 load the accumulator with next byte
60
141 store it in the next address
2 low order address
211 high order address
169 load the accumulator with next byte
3
141 store it in the next address
15 low order address
210 high order address

The computer will ignore the leading zero. The next number, 32, is the number of records
that will be read in. This value will be saved. The computer will begin storing these records at
location 3007. The fifth and sixth bytes will be stored at memory locations 2 and 3. After all the
records are read in, the computer will issue a jump to the subroutine at the seventh byte loaded in.
This byte will load the accumulator with 60 and store this value at location 54018. This shuts off
the cassette recorder. The program continues. When it has returned, the computer will jump
through the initialization routine. The address for this routine was stored in locations 2 and 3.
Once the initialization is complete, the computer will jump through the address at location 14-15
and begin the program.

Although it is possible to write a BASIC program that will load and automatically run a
machine language program, it really should be done using the editor/assembler. The procedure to
load a cassette with a machine language boot on it is:

Turn off the computer.

Hold down the start key and turn the computer on.

When you hear the single tone, press the play button on the recorder and press the return key
on the computer.

The records on the tape must be created using the short mode for it to load properly.

198

USING THE CASSETTE WITH SOUND

In the last program, we used a BASIC boot program to bring in the program. Using the RUN
“C:” command, the computer loaded in the first program and ran it. This program contained the
instruction to either CLOAD or RUN “C:” the next program on the tape. It also poked the
memory location that directed the sound of the data so that the program loaded silently.

The ATARI recorder is a stereo recorder. Most other computers use a monaurial recorder.
With a monaurial recorder, the computer places two tracks of data on the tape, one track on one
half and one on the other. With a stereo recorder, the computer only uses half of the track for data.
A stereo recorder places four tracks on each tape, two on one half of the tape and two on the other.
See Fig. 14-1 for the data tracks.

The other two tracks on the tape are left blank. They can have sound or spoken instructions
on them if you have the facilities to record and duplicate stereo tapes. The procedure is fairly
simple, but it does require some planning and timing.

First, load the BASIC boot program into the computer. Save it to a new cassette using the
SAVE “C:” command. After the BASIC boot program has been saved to the cassette, load in the
program that you want to save. If you have a disk drive, you can load the program in from the disk.
If you have only a cassette recorder, carefully remove the new cassette from the recorder and
place the cassette with the program on it in the recorder and load it into the computer. You want to
handle the cassette with the new program on it carefully because the tape is in position for the
second program. If you rewind the tape, you will be saving the program over the BASIC boot
program. If the tape advances too far, there could be a loading problem.

Once the second program is loaded into the computer, it can be saved to the new tape with
either the SAVE “C:” command or the CSAVE command. If your boot program is using the RUN
“C:” command, then use the SAVE “C:" command and the second program will run immediately
after it is loaded in. If your BASIC boot program uses the CLOAD command, CSAVE your
program to the cassette.

After the second program has been saved, rewind the cassette, type RUN “C:”, press the
play button on the recorder and the return key on the computer twice. If you have not poked

left track

right track -

right track - ¢)

left track - sudio

Fig. 14-1. Track formats on cassette.

199

location 65 with a 0, you will hear the BASIC boot program load in. The screen will change colors
and display your message on the screen. The tone will sound and the computer will begin to load
in the second program. You don’t even have to press the return key. The BASIC boot program did
it all. Now listen to the program load. If you can hear it, you either didn’'t have a POKE 65,0 in the
boot program, have a problem with separation in the cassette recorder, or have very good ears.
The only sounds that should come through the television speaker are the sounds recorded on the
left track. Since we did not place any sounds there, you shouldn’t hear any.

Adding Sounds or Instructions

In order to record sounds, music, or instructions on the left track, you need a stereo cassette
recorder/duplicator. Place the cassette into the recorder and listen to it. First you will hear a pure
tone. Then you will hear the date. Each record is separated by the pure tone. The BASIC boot
program will be about four or five records long. The last record of this program will have a slightly
different sound. After listening to the records several times, you will be able to tell the difference
between the program records and the ending record. After the last record for the first program,
you will hear the pure tone again for a longer period of time before you hear the first record. This
is the tone that the computer sends out before it starts to send the program. It seems longer here
because there is no leader tape between the first and second program. This is where you should
start the music, sound, or instructions on the left track.

Place a new tape into deck B of the recorder/duplicator. Place the tape that you have just
saved the two programs on into deck A. Press the play and record buttons for cassette B and the
play button for cassette A. If you are using a microphone, be sure that it is connected to the left
track. If you will be recording music directly, be sure that your patch cord is plugged in for the left
channel. Listen to the cassette as it is being duplicated from deck A to deck B. When you hear the
tone for the beginning of the second program, you can begin speaking, playing the music, etc. Be
sure to stop recording on the left track just before the last record. Otherwise, the recorder will
stop loading in the program and you will not hear the remaining words or music.

Rewind both cassettes, remove the newly created cassette from deck B and place it in your
programrecorder. Type RUN “C:” and press the return key. This time when the second program
loads into the machine, you should hear your music, instructions, or whatever you recorded on the
left track coming through the television speaker.

Because of the speed variances between recording machines, head alignments, and the
nature of cassettes, you may have to repeat the duplication process before you create a tape that
will load. This process cannot be used with a high speed tape duplicator.

Voice Synchronization

Another use for the cassette recorder is for voice synchronization. Poking memory location
54018 with 52, turns on the motor on the recorder. Poking that location with a 60 turns the motor
off.

The following program turns the recorder on and off at the correct time. It is a spelling
program. To use this program, you will need a recorder with a microphone. First enter this
program into the computer and save it on tape. Either turn the tape over and rewind it so that you
are at the beginning of the back side, or just remove the tape from the program recorder and place
it in the other recorder. Now record the words in the data line onto the tape. Space the words at
five second intervals. Now rewind the cassette to the beginning of the words and run the program.

200

Listing 14-2. Listen and Spell

REM LISTING 14,2
REM LISTEN AN
FEM BY LM SEHEL

DM WORDECLEY v AN
SO MmNt LIT N g
FEM CLEAR THE el f
SO POSITION JFeHi? "LISTEN TO THE WORD®

70 POKE 94018y 852 1REM TURN ON THE RECOR

DEFR

HO FOR T=1 TO 2ZO00INEXT TIREM LET IT R

LN

SO FORE %4018 601REM TURN IT OFF

100 W=0IREAD WORDSE

Lo 7o "WHAT WAS THE WORD"IREM ABK F

QR WORD

120 ITMPUT AN

130 IF WORD$S=ANSE THEM FOSITION 33,2087
SUERY S GOODT EFOR T=L TO S0 EHEXT TIEOT

0 50

140 We=Wtl 3 0F We=3 THEN 110

150 POSITION 3v200% "THE WORD WAS -- "

s WORTE

140 FOR T=1 TO SO0INEXT TiGOTO 50

170 FOSITION 3y 103F "YOU HaVE FINISHED
YOUR SPELLING FOR TODAY e

1806 ENID

200 DATA BOORS: FAVORTITE »FOOTEALL » HOERT

F&e DARMIVAL e MOUNTATN BIONICy FATLURE AT

TLTUDE y SECLURE

FOR Tak BOOKS

Ml THEN 1703

Line 40 sets aside the string space for the word (WORDS$) and the answer (ANS$).

Line 50 adds one to the value in N. This counts the words as they are being given. If the value
is greater than 10, then all the words have been given and the program will go to the end at line 170
after the screen is cleared.

Line 60 instructs the user to listen to the word.

Line 70 turns on the cassette recorder by poking location 54018 with a 52. The play button on
the recorder must be pressed down for this program to work. If that button is not down, you will
hear a click from the television speaker, but no word.

Line 80 is a timing loop. This is set for about five seconds. You may have to adjust this
number for your own program recorder.

Line 90 turns the recorder back off.

Line 100 sets the variable W to zero. This variable will count the number of times the user
tries to spell the word. It also reads the word from the data line. This is the word that was just
spoken on the tape.

201

Line 110 asks the user for the word.

Line 120 waits for an entry to be made.

Line 130 checks the answer entered against the word. If it is correct, a message will be
printed on the screen; the program will pause and then go on to line 50 for another word.

Line 140 adds one to the variable W and checks to see is this was the third try. If it wasn’t, the
program goes to line 110 and asks for the word to be entered again.

Line 150 prints the correct word if the user tried to spell it three times and couldn't.

Line 160 is a timing loop to give the user time to study the word. Then the program continues
at line 50.

Line 170 tells the user that all the words have been spelled.
Line 200 contains the words used in this program.

This program can be a very effective way to learn, but it does have its drawbacks. In this
case, the words must be asked in the same order every time. After a while, the user will know the
order of the words. Since the tape cannot be rewound or fastforwarded from the computer, the
information will always be presented in the same order. If the word was entered wrong, or if you
want to hear it again, the tape cannot be rewound to that word.

On the other hand, if you are presenting a very structured lesson or a story with animation,
there would be no need to rewind or repeat parts of the tape.

202

Index

Index

Abacus, 1

Animation, 45

Animation in the Text Mode program,
55

Animation programs, 48, 53

Animation with strings, 91

ANTIC chip, 9

ANTIC instruction set, 12

ANTIC 3 mode, 17

ANTIC 3 program, 17

Assembly language listing to move
character set from ROM to RAM,
39

AUTORUN/SYS, 189

AUTORUN/SYS, machine language
routine for, 192

AUTORUN/SYS program, 190

B
BASIC, 79
BASIC Boot Load program, 197
BASIC Table programs, 82-86
BASIC token commands, 79, 80
Binary number system, 1
Blank, horizontal, 11, 107
Blank, vertical, 11-107
Boot, cassette, 197
Boot, disk, 189
Boot record, cassette, 198
Boot sector, 191
Buffer, disk, 179

C
Calendar program, 181
Carousel program, 60, 64
Cassette boot, 197
Cassette handler, 195
Characters, hardware values of, 23
Central processing unit, 9
Character set, 16

Character set, editing, 26

Character set construction, 25

Character Set Editor program, 28

Character set moved from ROM to
RAM, 39

Chip, ANTIC, 9

Chip, CTIA, 9, 16

Chip, GTIA, 10, 16

Chip, POKEY, 9

Chips, large-scale integrated, 9

Code, hardware, 168

Code, keyboard, 166

Color Artifacting program, 23

Color Service Routine, 109

Color text modes, 19

Command, DRAWTO, 15

Command, input, 161

Command, locate, 11, 171

Command, open, 177

Commands, BASIC token, 79, 80

Commands, XIO, 181

Control codes, ATASCII, 172

Conversions program, numbers, 3

Counting systems, 1

Course Horizontal Scroll program, 123

Course Vertical Scroll program, 121

CTIA chip, 10, 16

D
Data for Exclamation Point program,
26
Data format, cassette, 195
Decay, 153
Directory, file, 187
Directory Listing program, 178
Disk boot, 189
Disk buffer, 179
Disk file manager, 177
Disk handler, 185
Displaying Sectors program, 185
Display list, 10

Display list interrupts, 107

Display modes, 20

Distortion, 153

Double Character Sets program, 112
DRAWTO command, 15

E
Editing the character set, 26
Exclamation point, 26

F

Farmer, and the Duck, Fox and Grain
Puzzle program, 91

File directory, 187

File management system, 187

File manager, disk, 177

File structures, 81

Fine Horizontal Scroll programs, 129,
131

Fine Vertical Scroll: Down program,
127

Fine Vertical Scroll program, 126

Frames, cassette, 196

G
Gap, inter-record, 196
Graphic modes, 16
Graphics modes program, mixed, 13
GTIA chip, 10, 16

H

Handler, disk, 185
Hardware code, 168
Hardware registers, 108
Hexadecimal number system, 2
Horizontal blank, 11, 107
Horizontal Blank, Machine Language

Subroutine, 143

|
Input command, 161

205

Input/output, central, 177

Input/output control buffer, 177

Instruction set, ANTIC, 12

Interrupt routine to flash inverse
characters, 116

Interrupts, display list, 107

Invisible graphic modes, 36

K
Keyboard code, 166
Keyboard Conversion program, 167
Keyboard interpretation, 161

L
Large-scale integrated chips, 9
Letter Attack program, 169
List, display, 10
Listen and Spell program, 201
Locate, Poke, and Peek program, 171
Locate command, 11, 171
Loudness, 153

M

Machine language listing, moving
players up and down, 77

Machine language subroutine, Hori-
zontal Blank, 143

Machine language subroutine for ver-
tical blank, 144

Machine language subroutines, 99

Memory addresses, screen, 9, 11

Memory locations, screen, 174

Mirror Images Routine, 113

Missiles, 14, 61

Mixed Modes program, 13

Modes, display, 20

Modes, graphic, 16

Modes, invisible graphic, 36

Modes, nontext, 22

Modes, text, 16

Move Player/Missile Up/Down pro-
gram, 100

Moving Players program, 117

Moving players up and down, machine
language listing, 77

Multicolor Characters program, 37

Music: Machine Language Subrou-
tine, 157

N
Nontext modes, 22
Number system, binary, 1
Number system, hexadecimal, 2

0
Open command, 177
Output buffer, 85
Overscan, 10

[

Page flipping, 133
Pitch, 153

206

Pixels, 12

Player/missile graphics, 14, 61

Player/missile priority order, 69

Player/Missile Strings program, 102

Players, 14, 61

Playfield, 14, 128

Pointer, 87

POKEY chip, 9

Precise Timing Programs, 114, 115

Print form Disk program, 180

Printing Control Characters program,
174

Priority order, player/missile, 69

Program, Animation in the Text Mode,
55

Program, ANTIC 3, 17

Program, AUTORUN/SYS, 190

Program, BASIC Boot Load, 197

Program, BASIC Tables, 82-86

Program, Calendar, 181

Program, Carousel, 60, 64

Program, Character Set Editor, 28

Program, Color Artifacting, 23

Program, Color Service Routine, 109

Program, Conversions, 3

Program, Course Horizontal Scroll,
123

Program, Course Vertical Scroll, 121

Program, Data for Exclamation point,
26

Program, Directory Listing, 178

Program, displaying Sectors, 185

Program, Double Character Sets, 112

Program, Fine Horizontal Scroll, 129,
131

Program, Fine Vertical Scroll, 126

Program, Fine Vertical Scroll:Down,
127

Program, Keyboard Conversion, 167

Program, Letter Attack, 169

Program, Listen and Spell, 201

Program, Locate, Poke, and Peek,
171

Program, Mirror Images Routine, 113

Program, Mixed Modes, 13

Program, Move Character Set, 100

Program, Move Player/Missile Up/
Down, 100

Program, Moving Players, 117

Program, Multicolor Characters, 37

Program, Music: Machine Language
Subroutine, 157

Program, Precise Timing, 114, 115

Program, Print from Disk, 180

Program, Printing Control Characters,
174

Program, Read the Keyboard, 161

Program, Simple Page Flipping: Two
Different Modes, 135

Program, Simultaneous Page Flip-
ping: Machine Language Sub-
routine, 141

Program, Slide Editor, 145

Program, Slide Show, 148

Program, Sounds, 154

Program, Sounds with Attack and
Decay, 155

Program, The Birds, 70

Program, The Farmer and the Duck,
Fox, and Grain Puzzle, 91

Program, Tiles, 163

Program, Variations on Tones, 157

Programs, Simultaneous Page Flip-
ping, 137-139

R
Raster scan, 11, 107
Read the Keyboard Program, 161
Register, shadow, 108
Registers, hardware, 108
Registers, sound, 156
Relocating strings, 101
ROM, 16
ROM to RAM, character set moved
from, 39
Routine, deferred vertical blank, 144
Routine, immediate vertical blank, 144
Runtime stack, 88

S

Screen displays, memory mapped, 9

Screen flipping, 133

Screen flipping, machine language
subroutine for, 140

Screen Flipping program, 133

Screen memory locations, 174

Scrolling, course, 121, 123

Scrolling, fine, 125, 129

Scrolling, horizontal, 121, 123, 129

Scrolling, vertical, 121, 125

Service interrupt to flash inverse
characters, 116

Shadow register, 108

Simple Animation program, 48, 53

Simple Page Flipping: Two Different
Modes program, 135

Simultaneous Page Flipping: Machine
Language Subroutine program,
141

Simultaneous Page Flipping pro-
grams, 137-139

Slide Editor program, 145

Slides, creating, 144

Slide Show program, 148

Sound, 153

Sound, direct access too, 156

Sound characteristics, attack, 153

Sound characteristics, decay, 153

Sound characteristics, release, 153

Sound characteristics, sustain, 153

Sounds on tape, 200

Sounds program, 154

Sounds with Attack and Decay pro-
gram, 155

Speeding up a program, 88
Statement table, 86

String/array area, 84

Strings, animation using, 91
Strings, relocating, 101
Subroutines, 89

Subroutines, machine language, 99

T
Text modes, 16

The Birds program, 70

Tiles program, 163

Token commands, 79, 80
Tone generator registers, 157
Track format, disk, 187

')
Variable name table, 79
Variables, 81
Variations on Tones program, 157

Vertical blank, 11, 107

Vertical blank, machine language sub-
routine for, 144

Voice, 153

Voice synchronization, 200

Volume, 153

Volume table of contents, disk, 187

X
XIO commands, 181

207

Advanced Programming Techniques for
Your ATARI ®, including Graphics and Voice Programs

If you are intrigued with the possibilities of the programs included in Advanced
Programming Techniques for Your ATARI ®, including Graphics and Voice Pro-
grams (TAB Book No. 1545), you should definitely consider having the ready-to-run
disk containing the software applications. This software is guaranteed free of man-
ufacturer’s defects. (If you have any problems, return the disk within 30 days and
we'll send you a new one.) Not only will you save the time and effort of typing the
programs, the disk eliminates the possibility of errors that can prevent the pro-
grams from functioning. Interested?

Available on disk for the ATARI 400 or 800, 32K at $29.95 for each disk plus $1.00
each shipping and handling.

lI’m interested. Send me:

disk for Advanced Programming Techniques for Your ATARI @, includ-
ing Graphics and Voice Programs (6313S).

Mail To: TAB BOOKS Inc.

1
|
B
|
|
|
i
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
Blue Ridge Summit, PA 17214 :

i

i

i

: — Check/Money Order enclosed for$_—_____ ($29.95 plus $1.00 each
I for shipping and handling)

I— VISA — MasterCard

i

§ Acct. No. Expires

i

I Name

|

= Address

= City State Zip
= Signature

|

|

i

|

g

(Pa. add 6% sales tax. Orders outside U.S. must be prepaid with international money orders in U.S. dollars.) l
TAB 1545
I N N PR N N N N SN N N S N O N O N N N N N R N N N N N S N

- B B T. =

Advanced Programming Techniques for Your ATARI®
including Graphics and Voice Programs
by Linda M. Schreiber

» Get the most from your ATARI’s sound and graphics capabilities for both

practical and entertainment purposes!

- Master the special techniques that let you write your own advanced programs

for almost any application you can think of!

« Go beyond the limitations imposed by BASIC . . . to become the master of

your machine rather than merely its user!

Here’s a book that shows you how to understand the special characteristics of
your ATARI and how to use them for all sorts of new and exciting sound and graphics
effects. You can create your own character sets . . . mix graphics modes . . . use
player/missile graphics and screen flipping . . . create animated games . . . under-
stand and use interrupts . . . create your own self-booting disk and cassette
programs . . . even enter a machine language subroutine to play music while a
BASIC program is running!

If you have a good understanding of BASIC but want to go beyond the limita-
tions it imposes, this book is the place to begin. You'll learn to manipulate your
machine using professional tips and tricks perfected by an author thoroughly knowl-
edgeable in both program design and the ATARI’s capabilities. Every program is
described in detail so that you'll be able to use the illustrated techniques to begin
writing your own original programs. You'll even find a listing of all ATARI memory
locations used by the operating system, discover how to change their values for
different programming effects, and learn how to use the disk file structure to give you
control over the drive. EVERYTHING you need to become an advanced program-
mer, able to use all of your ATARI’s unique capabilities, is included in this outstand-
ing sourcebook!

Linda M. Schreiber is a professional programmer and expert on microcomput-
ers. She is the author of TAB's ATARI Programming . . . with 55 Programs.

OTHER POPULAR TAB BOOKS OF INTEREST

25 Graphics Programs in MICROSOFT® BASIC (No. Programming Your ATARI® Gomputer (No. 1453 —$10.95
1533—%10.95 paper; $17.95 hard) paper; $16.95 hard)

ATARI Programming . . . with 55 programs (No. 1485— Machine and Assembly Language Programming (No.
$13.95 paper; $21.95 hard) 1389-—$9.95 paper; $15.95 hard)

TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > s14.50 ISBN 0-830k-1545-8

PRICES HIGHER IN CANADA 1395-0783

	Cover

	Contents

	Program Listings

	1: Working with Numbers

	2: Working with the Display List

	3: Graphics

	4: Principles of Animation

	5: Looking at BASIC

	6: Tricks with Strings

	7: Display List Interrupts
	8: Scrolling

	9: Page Flipping

	10: Sound Generators

	11: Interpreting the Keyboard

	12: Understanding the Screen Editor

	13: Disk Use

	14: Cassette Use

	Index

