ARITHMETIC

CHAPTER 1

1.1.

Input and output of numbers

 When working with numbers one often wants to input and output them via the screen. The following programs show how th is can be done with hexadecimal as well as decimal numbers.

1.1.1.
Hexadecimal input

 This program allows you to enter hexadecimal numbers using the keyboard. The number entered is displayed on the screen. The input stops if a character different from the hexadecimal numbers (0.. F) is entered.

The program first deletes memory locations EXPR and EXPR+1. This ensures a result equal to zero, even if an invalid number is entered. Next, the program reads a character and checks whether or not it is a hexadecimal number. If it is, then the upper bits of the number in the accumulator are erased and the lower bits are shifted up. Now, these four bits can be shifted to EXPR from the right. The preceeding number in EXPR is shifted to the left by doing so.

 If you enter a number with more- than four digits, only the last four digits are used.

 Example : ABCDEF => CDEF

HEXINPUT ROUTINE

EXPR

EQU $80.1

SCROUT
EQU $F6A4

GETCHR
EQU $F6DD

ORG $A800

A800:
A2 00

HEXIN

LDX
#0

A802:
86 80

STX
EXPR

A804:
86 81

STX
EXPR+1

A806:
20 2C A8
HEXINI
JSR
NEXTCH

A809:
C9 30

CMP
'0

A80B:
94 1E

BCC
HEXRTS

A80D:
C9 3A

CMP
'9+1

A80F:
90 0A

BCC
HEXIN2

A811:
C9 41

CMP
'A

A813:
90 16

BCC
HEXRTS

A815:
C9 47

CMP
'F+1

A817:
80 12

BCS
HEXRTS

A819:
E9 36

SBC
'A-10-1

A81B:
0A

HEXIN2
ASL

A81C: 0A

ASL

A81D: 0A

ASL

A81E: 0A

ASL

A81F:
A2 04

LDX
#4

A821: 0A

HEXIN3
ASL

A822:
26 80

ROL
EXPR

A824:
26 81

ROL
EXPR+1

A826: CA

DEX

A827:
DO F8

BNE
HEXIN3

A829:
FO DB

BEQ
HEXINI ALWAYS !!

A82B: 60

HEXRTS
RTS

A82C:
20 DD F6
NEXTCH
JSR
GETCHR

A82F: 20 A4 F6

JSR
SCROUT SHOW CHARAC'.

A832: 60

RTS

PHYSICAL ENDADDRESS: $A833

*** NO WARNINGS

EXPR
$80

GETCHR
$F6DD

HEXIN1
$A806

HEXIN3
$A821

NEXTCH
$A82C

SCROUT
$F6A4

HEXIN

$A800 UNUSED

HEXIN2
$A81b

HEXRTS
$A82B

1.1.2.
Hexadecimal output

 The next program explains the output process of the calculated numerals.

 You will recognize, that the portion of the program which controls the output is a subroutine. This subroutine only displays the contents of the accumulator. This means that you first have to load the accumulator with, for example, the contents of EXPR+1, then jump into the subroutine where first the MSB (EXPR+1 in our case) and then the LSB (EXPR) will be printed.

Subroutine PRBYTE independently prints the most significant bytes of the accumulator first and the least significant bytes second.

HEXOUT PRINTS 1 BYTE

EXPR

EPZ
$80.1

SCROUTE
EQU
$F6A4

ORG
$A800

A800:
A5 81

PRWORD
LDA
EXPR+1

A802:
20 0B A8

JSR
PRBYTE

A805:
A5 80

LDA
EXPR

A807:
20 A8

JSR
PRBYTE

A80A:
60

RTS

* THE VERY PRBYTE ROUTINE

A80B:
48

PRBYTE
PHA

A80C:
4A

LSR

A80D:
4A

LSR

A80E:
4A

LSR

A80F:
4A

LSR

A810:
20 16 A8

JSR
HEXOUT

A813:
68

PLA

A814:
29 0E

AND
#$00001111

A816:
C9 0A

HEXOUT
CMP
#10

A818:
B0 04

BCS
ALFA

A81A:
09 30

ORA
'0

A81C:
D0 02

BNE
HXOUT

A81E:
69 36

ALFA

ADC
'A-10-1

A820:
4C A4 F6
HXOUT

JMP
SCROUT

PHYSICAL ENDADDRESS:$A823

*** NO WARNINGS

EXPR

$80

PRWORD
$A800 UNUSED

HEXOUT
$A816

HXOUT
$A820

SCROUT
$F6A4
PRBYTE
SA80P
ALFA

$A81E

1.1.3.
Decimal input

 When you calculate with numbers you probably prefer decimals over hexadecimals. The following program can be used to read decimal numbers and convert them into binary numbers readable by computers.

 The program first checks, to see if the input is a decimal number (0..9) or if the input has been. terminated by another character. EXPR and EXPR+1 are erased. If a digit is accepted then the upper bits are erased. Next the contents of EXPR and EXPR+1 are multiplied by 10 and the new number is added. In the end the MSB is in location EXPR+1 and the LSB is in location EXPR.

 Numbers greater than 65535 are displayed in modulo 65536 (the rest which remains after deduction of 65535).

DECIMAL TO 1 WORD CONVERSION

EXPR

EQU
$80.1

SCROUT
EQU
$F6A4

GETCHR
EQU
$F6DD

ORG
$A800

A800:
A2 00
DECIN

LDX
#0

A802:
86 80

STX
EXPR

A804:
86 81

STX
EXPR+1

A806:
20 26 A8
DEC1

JSRN
EXTCH

A809:
C9 30

CMP
'0

A80B:
90 18

BCC
DECEND

A80D:
C9 3A

CMP
'9+1

A80F:
B0 14

BCS
DECEND

A811:
29 0E

AND
#$00001111

A813:
A2 11

LDX
#17

A815:
D0 05

BNE
DEC3

ALWAYS TAKEN ! !

A817:
90 02

DEC2

BCC
*+4

A819:
69 09

ADC
#10-1

A81B:
4A

LSR

A81C:
66 81

DEC3

ROR
EXPR+1

A81E:
66 80

ROR
EXPR

A820:
CA

DEX

A821:
DO F4

BNE
DEC2

A823:
F0 E1

BEQ
DEC1

ALWAYS ! !

A825:
60

DECEND
RTS

A826:
20 DD F6
NEXTCH
JSR
GETCHR

A829:
20 A4 F6

JSR
SCROUT

A82C:
60

RTS

PHYSICAL ENDADDRESS: $A82D

*** NO WARNINGS

EXPR

$80

GETCHR
$F6DD

DEC1

$A806

DEC3

$A81C

NEXTCH
$A826

SCROUT
$F6A4

DECIN

$A800 UNUSED

DEC2

$A817

DECEND
$A825

1.1.4.
Decimal output

 The next program allows you to display decimal numbers.

 The program works as follows:

 The X-register is loaded with the ASCII equivalent of the digit 0. This number is then incremented to the highest potency of 10 (10000) and is displayed on the screen.

 The same procedure is repeated for 1000, 100, and 10. The remaining is converted into an ASCII number, using an OR-command, and is displayed.

 You might want to change the output routine so that it avoids leading zeroes.

2 BYTE BINARY NUMBER TO 5 DIGITS DECIMAL CONVERSION WITH LEADING ZEROES

DECL

EQU
$80

DECH

EQU
$81

TEMP

EQU
$82

SCROUT
EQU
$F6A4

ORG
$A800

A800:
A0 07
DECOUT
LDY
#7

A802:
A2 30
DECOUT1
LDX
'0

A804:
38

DECOUT2
SEC

A805:
A5 80

LDA
DECL

A807:
F9 2E A8

SBC
DECTAB-1,Y

A80A:
48

PHA

A80B:
88

DEY

A80C:
A5 81

LDA
DECH

A80E:
F9 30 A8

SBC
DECTAB+1,Y

A811:
90 09

BCC
DECOUT3

A813:
85 81

STA
DECH

A815:
68

PLA

A816:
85 80

STA
DECL

A818:
E8

INX

A819:
C8

INY

A81A:
DO E8

BNE
DECOUT2

A81C:
68

DECOUT3
PLA

A81D:
8A

TXA

A81E:
84 82

STY
TEMP

A820:
20 A4 F6

JSR
SCROUT

A823:
A4 82

LDY
TEMP

A825:
88

DEY

A826:
10 DA

BPL
DECOUT1

A828:
A5 80

LDA
DECL

A82A:
0930

ORA
'0

A82C:
4C A4 F6

JMP
SCROUT

A82F:
0A 00
DECTAB
DFW
10

A831:
64 00

DFW
100

A833:
E8 03

DFW
1000

A835:
10 27

DFW
10000

PHYSICAL ENDADDRESS:
$A837

*** NO WARNINGS

DECL

$80

TEMP

$82

DECOUT
$A800 UNUSED

DECOUT2
$A804

DECTAB
$A82F

DECH

$81

SCROUT
$F6A4

DECOUTI
$A802

DECOUT3
$A81C

1.2.

16-bit arithmetic without sign

1.2.1.
16-bit addition

 The 16-bit addition is well known, but it is shown here one more time, together with the subtraction.

16 BIT ADDITION UNSIGNED INTEGER

EXPR : = EXPR1 + EXPR2

EXPRl

EPZ
$80.1

EXPR2

EPZ
$82.3

ORG
$A800

A800:
18

ADD

CLC

A801:
A5 80

LDA
EXPR1

A803:
65 82

ADC
EXPR2

A805:
85 80

STA
EXPR1

A807:
A5 81

LDA
EXPR1+1

A809:
ó5 83

ADC
EXPR2+1

A80B:
85 81

STA
EXPR1+1

A80D:
60

RTS

PHYSICAL ENDADDRESS: $A80E

*** NO WARNINGS

EXPR1

$80

EXPR2

$82

ADD

$A800

UNUSED
1.2.2.
16-bit subtraction

16 BIT SUBTRACTION UNSIGNED INTEGER

EXPR : = EXPR1 - EXPR2

EXPR1
EPZ
$80.1

EXPR2
EPZ
$82.3

ORG
$A800

A800:
38

SUB

SEC

A801:
A5 80

LDA
EXPR1

A803:
E5 82

SBC
EXPR2

A805:
85 80

STA
EXPR1

A807:
A5 81

LDA
EXPR1+1

A809:
E5 83

SBC
EXPR2+l

A80B:
85 81

STA
EXPR1+1

A80D:
60

RTS

PHYSICAL ENDADDRESS: $A80E

*** NO WARNINGS

EXPR1
$80

EXPR2
$82

SUB

$A800
UNUSED

1.2.3.
16-bit multiplication

 The multiplication is much more complicated than addition or subtraction. Multiplication in the binary number system is actually the same as in the decimal system. LPt's have a look at how we multiply using the decimal system. For example, how do we calculate 5678*203?

 5678

 203 *

 17034

 00000

 11356 =

 1152634

 With each digit the previous number is shifted to the right. If the digit is different from zero the new interim results are added. In the binary system it works the same way. For example:

1011

1101 *

1011

 0000

 l0ll

 l0ll =

 10001111

.

 As you can see it is simpler in the binary system than in the decimal system. Since the highest possible number for each digit is 1 the highest interim results is equal to the multiplicand.

 The following program in principle does the same as the procedure described above, except that the interim result is shifted to the right and the multiplicand is added, if required. The results are the same.

 Six memory locations are required. Two of these (SCRATCH and SCRATCH+1) are used only part of the time, while the other four locations keep the two numbers to be multiplied (EXPR1 and EXPR1+1, EXPR2 and EXPR2+1). After the calculations the result is in locations EXPR1 (LSB) and EXPR1+1 (MSB).

16 BIT MULTIPLICATION UNSIGNED INTEGER EXPR := EXPR * EXPR2

EXPR1
EPZ
$80.1

EXPR2
EPZ
$82.3

SCRATCH
EPZ
$84.5

ORG
$A800

A800:
A2 00

MUL

LDX
#0

A802:
86 84

STX
SCRATCH

A804:
86 85

STX
SCRATCH+1

A806:
A0 10

LDY
#16

A808:
D0 0D

BNE
MUL2 ALWAYS !!

A80A:
18

MUL1

CLC

A80B:
A5 84

LDA
SCRATCH

A80D:
65 82

ADC
EXPR2

A80F:
85 84

STA
SCRATCH

A811:
A5 85

LDA
SCRATCH+1

A813:
65 83

ADC
EXPR2+1

A815:
85 85

STA
SCRATCH+1

A817:
46 85

MUL2

LSR
SCRATCH+1

A819:
66 84

ROR
SCRATCH

A81B:
66 81

ROR
EXPR1+1

A81D:
66 80

ROR
EXPR1

A81F:
88

DEY

A820:
30 04

BMI
MULRTS

A822:
90 F3

BCC
MUL2

A824:
B0 E4

BCS
MUL1

A826:
60

MULRTS
RTS

PHYSICAL ENDADDRESS: $A827

*** NO WARNINGS

EXPR1
$80

EXPR2
$82

SCRATCH
$84

MUL

$A800
UNUSED

MUL1

$A80A

MUL2

$A817

MULRTS
$A826

1.2.4.
16-bit division

 The division of two numbers actually is just the opposit of the multiplication. Therefore, you can see in the program below, that the divisor is subtracted and the dividend is shifted to the left rather than to the right. The memory locations used are the same as with the multiplication, except that locations SCRATCH and SCRATCH+1 are named REMAIN and REMAIN+1. This means the remainder of the division is stored in those locations.

16 BIT DIVISION UNSIGNED INTEGER

EXPR1 : = EXPR1 OVER EXPR2

REMAIN : = EXPR1 MOD EXPR2

EXPR1
EPZ
$80.1

EXPR2
EPZ
$82.3

REMAIN
EPZ
$84.5

ORG
$A800

A800: A2 00
DIV

LDX
#0

A802: 86 84

STX
REMAIN

A804:
86 85

STX
REMAIN+1

A806:
A0 10

LDY
#16

A808:
06 80
DIV1

ASL
EXPR1

A80A:
26 81

ROL
EXPR1+1

A80C:
26 84

ROL
REMAIN

A80E:
26 85

ROL
REMAIN+1

A810:
38

SEC

A811:
A5 84

LDA
REMAIN

A813:
E5 82

SBC
EXPR2

A815:
AA

TAX

A816:
A5 85

LDA
REMAIN+1

A818:
E5 83

SBC
EXPR2+1

A81A:
90 06

BCC
DIV2

A81C:
86 84

STX
REMAIN

A81E:
85 85

STA
REMAIN+1

A820:
E6 80

INC
EXPR1

A822:
88

DIV2

DEY

A823:
D0 E3

BNE
DIV1

A825:
60

RTS

PHYSICAL ENDADDRESS: $A826

*** NO WARNINGS

EXPR1
$80

EXPR2
$82

REMAIN
$84

DIV

$A800
UNUSED

DIV1

$A808

DIV2

$A822

STRINGOUTPUT

CHAPTER 2

2.1.

Output of text

 With most programs it is necessary to display text (menues etc.).

 The following program allows you to display strings of any length at any location you desire. The output command can be located at any place within your program.

 How does that program work ?

 As you know the 6502 microprocessor uses its stack to store the return address if a JSR-command is to be executed. The number that is stored on the stack actually is the return-address minus one. The trick used in this program is, that the string to be printed is stored immediately after the JSR-command and the last character of the string is incremented by 128. The subroutine calculates the start address of tie string, using the number on the stack, and reads the string byte by byte, until it finds the byte which has been incremented by 128. The address of this byte now is stored on the stack and an RTS​command is executed. 8y doing so, the string is jumped and the command after it is executed.

STRINGOUTPUT FOR VARIOUS

 LENGTH

AUX

EPZ
$80

SCROUT
EQU
$F6A4

ORG
$A800

*
EXAMPLE

A800: 20 16 A8
EXAMPLE
JSR PRINT

A803: 54 48 49

ASC \THIS IS AN EXAMPLE

A806: 53 20 49

A809: 53 20 41

A80C: 4E 20 45

A80F: 58 41 4D

A812: 50 4C C5

A815: 60

RTS

*

THE VERY PRINTROUTINE

A816:
68

PRINT

PLA

A817:
85 80

STA
AUX

A819:
68

PLA

A81A:
85 81

STA
AUX+1

A81C:
A2 00

LDX
#0

A81E:
E6 80
PRINT1
INC
AUX

A820:
D0 02

BNE
*+4

A822:
E6 81

INC
AUX+1

A824:
A1 80

LDA
(AUX,X)

A826:
29 7E

AND
#$7F

A828:
20 A4 F6

JSR
SCROUT

A82B:
A2 00

LDX
#0

A82D:
A1 80

LDA
(AUX,X)

A82F:
10 ED

BPL
PRINTI

A831:
A5 81

LDA
AUX+1

A833:
48

PHA

A834:
A5 80

LDA
AUX

A836:
48

PHA

A837:
60

RTS

PHYSICAL ADDRESS: $A838

*** NO WARNINGS

AUX

S80

SCROUT
$F6A4

EXAMPLE
$A800
UNUSED

PRINT
$A816

PRINT1
$A81E

INTRODUCTION TO CIO

CHAPTER 3

 The CIO can handle up to 8 devices/files at the same time. This happens via so called Input Output Control Blocks (IOCB). This means that there are 8 IOCB's starting from $0340. Each of the IOCB's is 16 bytes long.

BLOCK #
ADDRESS

IOCB #0
$0340

IOCB #1
$0350

IOCB #2
$0360

IOCB #3
$0370

IOCB #4
$0380

IOCB #5
$0390

IOCB #6
$03A0

IOCB #7
$03B0

 A single IOCB has the following internal scheme:

NAME
ADDRESS

ICHID
HANDLER ID

ICDNO
DEVICE NUMBER

ICCMD
COMMAND

ICSTA
STATUS

ICBAL

ICBAH
BUFFERADR

ICPTL

ICPTH
PUTADR

ICBLL

ICBLH
BUFFERLEN

ICAX1
AUX1

ICAX2
AUX2

ICAX3
Remaining

4 bytes

ICAX4

ICAX5

ICAX6

 There are just a few locations which are important to the user:

- The commandbyte which contains the command to be executed by the CIO.

- The bufferaddress wh ich contains the address of the actual databuffer.

The bufferlength which contains the number of bytes to be transferred (rounded up to a variety of 128 bytes for the cassette device)

- And there are two auxiliaries which contain device-dependent information.

 There are also locations which will be altered by CIO such as:

- The handler-ID is an offset to the devicetable. This table contains all devicenames and pointers to the device specific handlertable.

device name
one entry

handler table

address

other

entries

zero fill to

end of table

 A handlertable looks like:

OPEN-1

CLOSE-1

GETBYTE-1

PUTBYTE-1

GETSTATUS-1

SPECIAL-1

JMP INIT

& 00

The CIO is thus quite clear to the user. It is easy to add new devices by adding just 3 bytes to the devicetable and to make a specific handlertable for this device. You can also change the handlerpointer of an existing device and let point it to a new handler. Later we will describe how to add or change devices.

- The devicenumber shows us which subdevice is meant. (e.g. Disknumber or RS232 Channel).

- After calling CIO the status will be altered. A 1 means a successfull operation while a value greater than 128 means an error has occurred.

- PUTADR is used internally by the CIO

- If there have been less bytes transferred than desired, because of an EOL or an error, BUFLEN will contain the actual number of transferred bytes.

The standard CIO commands:

- OPEN opens a file.

 Before execution the following IOCB locations have to be set:

COMMAND = $03

BUFFADR points to, device/filename specification (like C: or D: TEST. SRC) terminated by an EOL ($98)

AUX1 = OPEN-directionbits (read or write) plus devicedependent information.

AUX2 = devicedependent information.

After execution:

HANDLER ID = Index to the devicetable.

DEVICE NUMBER = number taken from device/f filename specification

STATUS = result of OPEN-Operation.

- CLOSE closes an open IOCB

 Before execution the following IOCB location has to be set:

COMMAND = $0C

 After execution: HANDLER ID = $FF

STATUS = result of CLOSE-operation

- GET CHARACTERS read byte aligned. EOL has no termination feature.

 Before execution the following IOCB locations have to be set:

COMMAND = $07

BUFFERADR = points to databuffer.

BUFFERLEN = contains number of characters to be read. If BUFFERLEN is equal to zero the 6502 A-register contains the data.

 After execution:

STATUS = result of GET CHARACTER-operation

BUFFERLEN = number of bytes read to the buffer. The value will always be equal before execution, only if EOF or an error occurred.

- PUT CHARACTERS write byte aligned

 Before execution the following IOCB locations have to be set:

COMMAND = $0B

BUFFERADR = points to the datab~ffer

BUFFERLEN = number of bytes to be put, if equal to zero the 6502 A-register has to contain the data.

 After execution:

STATUS = result of PUT CHARACTER-operation

GET RECORD characters are read to the databuffer until the buffer is full, or an EOL is read from the device/file.

Before execution the following IOCB locations have to be set:

COMMAND = $05

BUFFERADR = points to the databuffer.

BUFFERLEN = maximum of bytes to be read (Including EOL character)

After execution:

STATUS = result of the GET RECORD​operation

BUFFERLEN = number of bytes read to buf fer this may less then the maximum length.

- PUT RECORD characters are written to the device/file from the databuffer until the buffer is empty or an EOL is written. If the buffer is empty CIO will automatically send an EOL to the device/file.

Before execution the following IOCB locations have to be set:

COMMAND = $09

HUFFERADR = points to databuffer.

BUFFERLEN = maximum number of bytes in databuffer.

After execution:

STATUS = result of PUT RECORD-operation.

In addition to the main-commands, there is also a GET STATUS ($0D) command, which obtains the status from the device/file​controller and places these four bytes from location $02EA (DVSTAT). Commands greater than $0D are so called SPECIALS and devicehandler-dependent.

GET STATUS and SPECIALS have an implied OPEN-option. Thus the file will be automatically opened and closed if it wasn't already opened.

 How to link the CIO with machine language?

 First we have to modify the IOCB before calling CIO.

 The offset to the IOCB (IOCB# times 16) has to be in the X-register. The STATUS will be loaded in the Y-register of ter returning from CIO. It is not necessary to explicitly check the Y-register (Comparing with 128) because loading the status into the Y-register was the last instruction before leaving CIO with an RTS. We simply jump on the signflag (BMI or BPL). The sign flag is set if an error occurred. In the next section we will discuss it in more detail with an example.

 How to read or write data in machine language?

To describe the writing of data to a device/file we will take the cassette​device as an example. We can also use any other device because CIO is very clear-cut (see introduction).

Before discussing the program, some conventions must be discussed.

The user has to put the address of his databuffer into the locations BUFFER ($80.1) and the bufferlength into the locations BUFLEN ($82.3). Then the program should be called as a subroutine. The description of this subroutine follows.

First we have to open the cassette, so we load the IOCB-offset in the X-register, store the OPEN-command in ICCMD, and let the BUFADR (ICBAL and ICBAH) point to the device/filename specification. We have to store the write-direction in ICAX1 and the tape-recordlength (128) in ICAX2, just call CIO ($E456). The Signflag indicates if an error occurred.

After a correct opening of the file for writing data, bit 3 is set because AUX1 contains a $08 (bit 2 is readbit).

W
R

 AUX1

7
6
5
4
3
2
1
0

ICCMD will be changed into the PUT CHARACTERS-command ($0B), BUFFADR points to the User-Databuffer (contents of BUFFER) and BUFLEN (ICBLL and ICBLH) will contain the number of bytes to write (the user stores this value BUFLEN ($82. 3)). Next CIO will be called, and after successfull operation, the file will be closed (ICCMD=$0C).

If, during any of these three CIO-calls, an error occurs, the file will be closed and both the ACCUMULATOR and Y-register will contain the STATUS (errorcode).

By changing the string at CFILE in for instance “D:TEST.TST” the program will write the buffer to the specified diskfile.

The second listing shows you a program that reads from a device, only two bytes are different, so the program is self​explaining.

WRITE BUFFER TO CASSETTE

BUFFER
EPZ
$80.1

BUFLEN
EPZ
$82.3 - BUFLEN ROUNDED

 UP TO 128 BYTES

ICCMD

EQU
$0342

ICBAL

EQU
$0344

ICBAH

EQU
$0345

ICBLL

EQU
$0348

ICBLH

EQU
$0349

ICAX1

EQU
$034A

ICAX2

EQU
$034B

OPEN

EQU
3

PUTCHR
EQU
11

CLOSE
EQU
2

WMODE
EQU
8

RECL

EQU
128

CIO

EQU
$E456

EOL

EQU
$9B

IOCBNUM
EQU
1

ORG
$A800

*

OPEN FILE

A800:
A2 10

LDX
#IOCBNUM*16

A802:
A9 03

LDA
#OPEN

A804:
9D 42 03

STA
ICCMD,X

A807:
A9 08

LDA
#WMODE

A809:
9D 4A 03

STA
ICAXI,X

A80C:
A9 80

LDA
#RECL

A80E:
9D 4B 03

STA
ICAX2,X

A811:
A9 56

LDA
#CFILE:L

A813:
9D 44 03

STA
ICBAL,X

A816:
A9 A8

LDA
#CFILE:H

A818:
9D 45 03

STA
ICBAH,X

A81B:
20 56 E4

JSR
CIO

A81E:
30 29

BMI
CERR

* PUT BUFFER IN RECORDS TO CASSETTE

A820:
A9 0B

LDA
#PUTCHR

A822:
9D 42 03

STA
ICCMD,X

A825:
A5 80

LDA
BUFFER

A827:
9D 44 03

STA
ICBAL,X

A82A:
A5 81

LDA
BUFFER+1

A82C:
9D 45 03

STA
ICBAH,X

A82F:
A5 82

LDA
BUFLEN

A831:
9D 48 03

STA
ICBLL,X

A834:
A5 83

LDA
BUFLEN+1

A836:
9D 49 03

STA
ICBLH, X

A839:
20 56 E4

JSR
CIO

A83C:
30 08

BMI
CERR

*

CLOSE CASSETTE FILE

A83E: A9 0C

LDA
#CLOSE

A840: 9D 42 03

STA
ICCMD,X

A843: 20 56 E4

JSR
CIO

A846: 30 01

BMI
CERR

*

RETURN TO SUPERVISOR

A848: 60

RTS

* RETURN WITH ERRORCODE IN ACCUMULATOR

A849:
98

CERR

TYA

A84A:
48

PHA

A84B:
A9 0C

LDA
#CLOSE

A84D:
9D 42 03

STA
ICCMD,X

A850:
20 56 E4

JSR
CIO

A853:
68

PLA

A854:
A8

TAY

A855:
60

RTS

A856:
43 3A
CFILE

ASC
"C:"

A858:
9B

DFB

EOL

PHYSICAL ENDADDRESS: $A859

*** NO WARNINGS

BUFFER
$80

BUFLEN
$82

ICCMD

$0342

ICBAL

$0344

ICBAH

$0345

ICBLL

$0348

ICBLH

$0349

ICAX1

$034A

ICAX2

$034B

OPEN

$03

PUTCHR
$0B

CLOSE

$0C

WMODE

$08

RECL

$80

CIO

$E456

EOL

$9B

IOCBNUM
$01

CERR

$A849

CFILE

$A856

READ BUFFER FROM CASSETTE

BUFFER
EPZ
$80.1

BUFLEN
EPZ
$82.3
 BUFLEN ROUNDED

 UP TO 128
BYTES

ICCMD

EQU
$0342

ICBAL

EQU
$0344

ICBAH

EQU
$0345

ICBLL

EQU
$0348

ICBLH

EQU
$0349

ICAX1

EQU
$034A

ICAX2

EQU
$034B

OPEN

EQU
3

GETCHR
EQU
7

CLOSE
EQU
12

RMODE
EQU
4

RECL

EQU
128

CIO

EQU
$E456

EOL

EQU
$9B

IOCBNUM
EQU
1

ORG
$A800

*

OPEN FILE

A800:
A2 10

LDX
#IOCBNUM*16

A802:
A9 03

LDA
#OPEN

A804:
9D 42 03

STA
ICCMD,X

A807:
A9 04

LDA
#RMODE

A809:
9D 4A 03

STA
ICAXI,X

A80C:
A9 80

LDA
#RECL

A80E:
9D 4B 03

STA
ICAX2,X

A811:
A9 56

LDA
#CFILE:L

A813:
9D 44 03

STA
ICBAL,X

A816:
A9 A8

LDA
#CFILE:H

A818:
9D 45 03

STA
ICBAH,X

A81B:
20 56 E4

JSR
CIO

A81E:
30 29

BMI
CERR

*

GET BUFFER IN RECORDS FROM CASSETTE

A820:
A9 07

LDA
#GETCHR

A822:
9D 42 03

STA
ICCMD,X

A825:
A5 80

LDA
BUFFER

A827:
9D 44 03

STA
ICBAL,X

A82A:
A5 81

LDA
BUFFER+1

A82C:
9D 45 03

STA
ICBAH,X

A82F:
A5 82

LDA
BUFLEN

A831:
9D 48 03

STA
ICBLL, X

A834:
A5 83

LDA
BUFLEN+1

A836:
9D 49 03

STA
ICBLH,X

A839:
20 56 E4

JSR
CIO

A83C:
30 0B

BMI
CERR

*

CLOSE CASSETTE FILE

A83E:
A9 0C

LDA
#CLOSE

A840:
9D 42 03

STA
ICCMD,X

A843:
20 56 E4

JSR
CIO

A846:
30 01

BMI
CERR

*

RETURN TO SUPERVISOR

A848: 60

RTS

*

RETURN WITH ERRORCODE ACCUMULATOR

A849: 98

CERR

TYA

A84A: 48

PHA

A84B: A9 0C

LDA
#CLOSE

A84D: 9D 42 03

STA
ICCMD,X

A850: 20 56 E4

JSR
CIO

A853: 68

PLA

A854: A8

TAY

A855: 60

RTS

A856: 43 3A

CFILE

ASC
"C:"

A858: 9B

DFB
EOL

PHYSICAL ENDADDRESS: $A859

*** NO WARNINGS

BUFFER
$80

BUFLEN
$82

ICCMD

$0342

ICBAL

$0344

ICBAH

$0345

ICBLL

$0348

ICBLH

$0349

ICAX1

$034A

ICAX2

$034B

OPEN

$03

GETCHR
$07

CLOSE

$0C

RMODE

$04

RECL

$80

CIO

$E456

EOL

$9B

IOCBNUM
$01

CERR

$A849

FILE

$A856

INTRODUCTION TO THE DISK CONTROLLER

CHAPTER 4
 We already know how to handle any device/file via CIO, including handle a diskfile. Included on a disk is also a sector-IO which allows you to address a single sector for a read or write ​handling. Sector-IO doesn't need any file on the disk. The disk has only to be formatted.

 A floppy disk with the ATARI drive has 720 sectors and each of them is fully addressable.

 How does the sector-IO function?

 The disk controller has a simplistic design containing a single IOCB like Data Control Block (DCB). This DCB is described in the following scheme.

DCBSBI
Serial bus ID

DCBDRV
Disk drive #

DCBCMD
Command

DCBSTA
IO Status

DCBUF LO

DCBUF HI
Buffer IO address

DCBTO LO

DCBTO HI
Timeout counter

DCBCNT LO

DCBCNT HI
IO Buffer length

DCBSEC LO

DCBSEC HI
IO Sector number

· Instead of a handler-ID there is a BUS​ ID (DCBSBI) to address a particular diskdrive via the Serial-Bus of the ATARI.

· Also a logical drivenumber (DCBDRV)

· A commandbyte (DCBCMD), which is similar to an IOCB, and 5 commands for sector-IO, which will be described later.

· The statusbyte for error detection after, and data-direction previous to execution of the command ($80 is write, $40 is read).

· The DCBBUF locations (L and H) to point to the databuffer.

· DCBTO (L and H) is a special word containing the maximum time for executing a command, so called timeout.

· DCBCNT (L and H) is a device specific word which contains the sector length (128 for the 810-drive or 256 for the double density drives).

· DCBSEC (L & H) contains the sector number to do IO on.

The DCB-commands

Prior to executing any DCB-command, the following DCB-entries must be set.

DCBSBI has to contain the bus-ID of the drive:

DRIVE 1 = $31 = '1

DRIVE 2 = $32 = '2

DRIVE 3 = $33 = '3

URIVE 4 = $34 = '4

DCBDRV has to contain the logical drive number (1..4).

DCBTO the timeout (normally 15; lowbyte=$0F highbyte=$00).

· READ SECTOR reads one sector specified by the user

 DCBCMD = $52 = 'R

 DCBBUF = points to databuffer

 DCBCNT = contains sector length

 DCBSEC = number of sector to read

 After execution:

 DCBSTAT = result of HEAD SECTUR-operation

· PUT SECTOR writes one sector specified by the user without verify.

 DCBCMD = $50 = 'P

 DCBBUE' = points to databufter

 DCBSEC = number of sector to write

 After execution:

 DCBSTAT = result of PUT SECTOR-operation

· WRITE SECTOR writes one sector specified by the user with automatic verify.

 DCBCMD = $57 = 'W

 Further like PUT SECTOR.

· STATUS REQUEST obtains the status from the specified drive.

 DCBCMD = $53 = 'S

 After execution:

 DCBSTAT = result of STATUS REQUEST​operation

The drive outputs four bytes end the controller puts them to $02EA (DVSTAT).

· FORMAT formats the specified disk.

 DCBCMD = $21 = '!

 DCBTO = has to be larger than 15 due to more time taken by the FORMAT-command. You can ignore the error, but this will be risky.

 After execution:

 DCBSTAT = result of the FORMAT-operation.

 How is the disk controller invoked?

Because the disk controller is resident, this is a simple process. You don't have to load DOS, nor anything similar. You just have to call the SIO (Serial IO $E459) instead of the CIO. Therefore, you can see that it is quite easy to link the Diskcontroller with machine language.

How to write a sector to disk

The first program writes a specified sector from a buffer to diskdrive#1. There are a few conventions to call this program as subroutine. The user has to put the buffer address into the pointer locations labelled BUFFER and the sector number into the locations labelled SECTR. The program also needs a RETRY-location, to serve as a counter so the program is able to determine how of ten it will retry the IO.

The next paragraph describes the subroutine.

At first we built the DCB, special we move a $80 (BIT 3 the write bit is set) to DCBSTA and we retry the IO 4 times. SIO does, as well as CIO, load the STATUS into the Y-register so you only have to check the signflag again. After an error occurence we decrement the retry value and set DCBSTA again, then try again.

By using this program, you only have to look at the signflag after returning for error detection (signflag TRUE means error, otherwise success).

The second program reads a sector instead of writing it. The only two bytes which are different are the DCBCMD and the DCBSTA ($90 for read) .

WRITE A SECTOR TO DISK

SECTR
EQU
$80.1

BUFFER
EQU
$82.3

RETRY
EQU
$84

DCBSBI
EQU
$0300

DCBDRV
EQU
$0301

DCBCMD
EQU
$0302

DCBSTA
EQU
$0303

DCBBUF
EQU
$0304

DCBTO

EQU
$0306

DCBCNT
EQU
$0308

DCBSEC
EQU
$030A

SIO

EQU
$E459

ORG
$A80 0

A800:
A5 82
WRITSECT
LDA
BUFFER

A802:
8D 04 03

STA
DCBSUF

A805:
A5 83

LDA
BUFFER+1

A807:
8D 05 03

STA
DCBBUF+1

A80A:
A5 80

LDA
SECTR

A80C:
8D 0A 03

STA
DCBSEC

A80F:
A5 81

LDA
SECTR+1

A811:
8D 0B 03

STA
DCBS EC+1

A814:
A9 57

LDA
'W

REPLACE "W" BY A "P" IF

A816:
8D 02 03

STA
DCBCMD
 YOU WANT IT FAST

A819:
A9 80

LDA
#$80

A81B:
8D 03 03

STA
DCBSTA

A81E:
A9 31

LDA
'1

A820:
8D 00 03

STA
DCBSBI

A823:
A9 01

LDA
#1

A825:
8D 01 03

STA
DCBDRV

A828:
A9 0F

LDA
#15

A82A:
8D 06 03

STA
DCBTO

A82D:
A9 04

LDA
#4

A82F:
85 84

STA
RETRY

A831:
A9 80

LDA
12 8

A833:
8D 08 03

STA
DCBCNT

A836:
A9 00

LDA
#0

A838:
8D 09 03

STA
DCBCNT+1

A83B:
20 59 E4
JMPSIO
JSR
SIO

A83E:
10 0C

BPL
WRITEND

A840:
C6 84

DEC
RETRY

A842:
30 08

BMI
WRITEND

A844:
A2 80

LDX
#$80

A846:
8E 03 03

STX
DCBSTA

A849:
4C 3B A8

JMP
JMPSIO

A84C:
AC 03 03
WRITEND
LDY
DCBSTA

A84F:
60

RTS

PHYSICAL ENDADDRESS: $A850

*** NO WARNINGS

SECTR
$80

BUFFER
$82

RETRY
$84

DCBSBI
$0300

DCBDRV
$0301

DCBCMD
$0302

DCBSTA
$0303

DCBBUF
$0304

DCBTO

$0306

DCBCNT
$0308

DCBSEC
$030A

SIO

$E459

WRITSECT
$A800
UNUSED
JMPSIO
$A83B

WRITEND
$A84C

READ A SECTOR FROM DISK

SECTR
EQU
$80.1

BUFFER
EQU
$82.3

RETRY
EQU
$84

DCBSBI
EQU
$0300

DCBDRV
EQU
$0301

DCBCMD
EQU
$0302

DCBSTA
EQU
$0303

DCBBUF
EQU
$0304

DCBTO

EQU
$0306

DCBCNT
EQU
$0308

DCBSEC
EQU
$030A

SIO

EQU
$E459

ORG
$A800

A800:
A5 82
READSECT
LDA
BUFFER

A802:
8D 04 03

STA
DCBSUF

A805:
A5 83

LDA
BUFFER+1

A807:
8D 05 03

STA
DCBBUF+1

A80A:
A5 80

LDA
SECTR

A80C:
8D 0A 03

STA
DCBSEC

A80F:
A5 81

LDA
SECTR+1

A811:
8D 0B 03

STA
DCBS EC+1

A814:
A9 52

LDA
'R

A816:
8D 02 03

STA
DCBCMD

A819:
A9 40

LDA
#40

A81B:
8D 03 03

STA
DCBSTA

A81E:
A9 31

LDA
'1

A820:
8D 00 03

STA
DCBSBI

A823:
A9 01

LDA
#1

A825:
8D 01 03

STA
DCBDRV

A828:
A9 0F

LDA
#15

A82A:
8D 06 03

STA
DCBTO

A82D:
A9 04

LDA
#4

A82F:
85 84

STA
RETRY

A831:
A9 80

LDA
#128

A833:
8D 08 03

STA
DCBCNT

A836:
A9 00

LDA
#0

A838:
8D 09 03

STA
DCBCNT+1

A83B:
20 59 E4
JMPSIO
JSR
SIO

A83E:
10 0C

BPL
READEND

A840:
C6 84

DEC
RETRY

A842:
30 08

BMI
READEND

A844:
A2 80

LDX
#$80

A846:
8E 03 03

STX
DCBSTA

A849:
4C 3B A8

JMP
JMPSIO

A84C:
AC 03 03
READEND
LDY
DCBSTA

A84F:
60

RTS

PHYSICAL ENDADDRESS: $A850

*** NO WARNINGS

SECTR
$80

BUFFER
$82

RETRY
$84

DCBSBI
$0300

DCBDRV
$0301

DCBCMD
$0302

DCBSTA
$0303

DCBBUF
$0304

DCBTO

$0306

DCBCNT
$0308

DCBSEC
$030A

SIO

$E459

READSECT
$A800
UNUSED

JMPSIO
$A83B

READEND
$A84C

HOW TO MAKE A BOOTABLE PROGRAM

CHAPTER 5

 What is a bootable program ?

 A bootable program is a program which will be automatically loaded at powering up the ATARI, and directly after loading be executed.

 A bootable program needs a header with specific information about the program, such as the length and the start address. The header of a bootable program looks like the following scheme:

Byte
Destination

1
unused (0)

2
of 128bytes sectors

3
Store

4
Address

5
Initialization

6
Address

7

:

:
boot

continuation

code

· The first byte is unused, and should equa1 zero.

· The second byte contains the length of the program, in records (128 bytes length), (rounded up).

· The next word contains the store​ address of the program.

· The last word contains the initialization-address of the program. This vector will be transferred tb the CASINI-vector ($02.3).

 After these 6 bytes there has to be the boot continuation code. This is a short program, the OS will jump to directly after loading. This program can continue the boot process (multistage boot) or stop the cassette by the following sequence

LDA
#$3C

STA
PACTL ; $D302

 The program then allows the DUSVEC ($OA. e) to point to the start address of the program. It is also possible, to store in MEMLO ($02E7. 8), the first unused memory address. The continuation code must return to the OS with C=0 (Carry clear). Now OS jumps via DOSVEC to the application program.

 So far we know what a bootable cassette looks like, but how do we create such a bootable tape?

 If there is a program, we only have to put the header in front of it (including the continuation code) and to save it as nornml data on the tape. We can use the later described program to write the contents of a buffer on the tape or the boot generator.

 If the program is saved, we can put the tape in the recorder, press the yellow START-key, power on the ATARI and press RETURN. Now the program on the tape will be booted.

The next listing shows us the general outline of a bootable program.

GENERAL OUTLINE OF AN

BOOTABLE PROGRAM

PROGRAM START

ORG
$A800

(OR AN OTHER)

*

THE BOOTHEADER

PST
DFB 0

SHOULD BE 0

DFW
PND-PST+127/128 # OF RECORDS

DFW
PST

STORE ADDRESS

DFW
INIT

INITALIZATION ADDRESS

*

THE BOOT CONTINUATION CODE

LDA
#$3C

STA
PACTL

STOP CASSETTE MOTOR

LDA
#PND:L

STA
MEMLO

LDA
#PND:H

STA
MEMLO+1
SET MEMLO TO END OP PROGRAM

LDA
#RESTART:L

STA
DOSVEC

LDA
#RESTART:H

STA
DOSVEC+1
SET RESTART VECTOR IN OOSVECTOR

CLC

RTS

RETURN WITH C=0 (SUCCESSFULL BOOT)

*

INITIALIZATION ADDRESS

INIT

RTS

RTS IS THE MINIMUM PROGRAM

*

THE MAIN PROGRAM

RESTART
EQU *

THE MAIN PROGRAM ENDS
HERE

PND

EQU *

NEXT FREE LOCATION

 How to make a bootable disk?

 Making a bootable disk is in fact the same as for the cassette. The only exceptions are as follows.

 The program (including the header) must be stored up from sector one. The boot cont​inuation code doesn't need to switch off anything such as the cassette motor.

 How to create a bootable disk?

 This is only a bit more complicated than the cassette version. We need our write​sector program we described earlier. Then we have to write, sector by sector, to disk. You can also make a bootable cassette first and then copy it directly to disk with the later discussed program.

HOW TO MAKE A BOOTABLE CARTRIDGE

CHAPTER 6

 Preparing the program.

 Most of the games and some other programs written in machine language are stored in a cartridge. Booting a program, the OS recognizes the cartridge and starts the program.

 What do you have to do when you want to make a bootable cartridge of your own program ?

As an example we will make a cartridge with a program for testing the memory. The bit pattern

10101010 = $AA

01010101 = $55

00000000 = $00

11111111 = $FF

is written in every memory location starting above the hardware stack at address $200. First the content is saved, then the bit pattern is written into and read from the memory location. If there is any difference in writing and reading the program prints an error message : ERROR IN <~R> . Then the program waits in an endless loop. If the error message is ERROR IN A000, the RAM is ok because $A000 is the first address of the ROM in the left cartridge.

 The address range for the left cartridąe ranges from $A000 to $BFFF and $8000 to $9FFF for the right cartridge. As starting address for our memory test prograM we choose $BF00. This is the last page of the left cartridge. The software for the EPROM burner is also stored in a cartridge. Therefore the object code generated by the assembler is stored at $9000.

Like a bootable program the cartridge has a header. The following scheme shows the outline of this cartridge header.

CARTRIDGE

START ADDRESS
$BFFA or $9FFA

00
-

OPTION BYTE
-

CARTRIDGE INIT

ADDRESS
$BFFF or $9FFF

 The header for the right cartridge starts at $9FFA, for the left cartridge (the more important for us) at $BFFA.

· The first two bytes contain the start address of the cartridge.

· The third byte is the cartridge-ID. It shows the OS that a cartridge has been inserted. It must be 00.

· The fourth byte is the option-byte. This byte has the following options:

BIT-0 = 0 don't allow diskboot 1 allow diskboot

BIT 2 = 0 only initialize the cartridge 1 initialize and start the cartridge

BIT 7 = 0 Cartridge is not a diagnostic cartridge

 1 Cartridge is a diagnostic cartridge

before OS is initialized the cartridge takes control

· The last two bytes contain the cartridge initialiZation address.

 The initialization address is the starting address of a program part which is executed in advance of the main program. If there is no such a program this address must be the address of an RTS instruction. In our example the low byte of the starting address $BF00 is stored in location $BFFA, the high byte in location $BFFB.

 The option byte in location $BFFD is 04.

 The program in the cartridge is initialized and started, but there is no disk boot. The initializing address is $BF63, an RTS instruction within the program.

 After assembling and storing the object code the burning of an EPROM can start.

GENERAL OUTLINE

OF A CARTRIDGE

*

THE CARTRIDGE START (LEFT CARTRIDGE)

ORG
$A000

$8000 FOR RIGHT CARTRIDGE

*

THE INITIALIZATION ADDRESS

INIT

RTS

*

THE MAIN PROGRAM

RESTART
EQU
*

*

THE CARTRIDGE HEADER

ORG
$BFFA

$9FFA FOR RIGHT CARTRIDGE

DFW
RESTART

DFB
0

THE CARTRIDGE ID SHOULD BE ZERO

DFB
OPTIONS
THE OPTION BYTE

DFW
INIT

THE CARTRIDGE INITIALIZATION ADDRESS

Sample program for a cartridge:

MEMORY TEST

AUXE

EPZ
$FE

TEST

EPZ
$F0

OUTCH
EQU
$F6A4

ORG
$BF00,$9000

BF00:
A9 7D

START

LDA
#$7D

BF02:
20 A4 F6

JSR
OUTCH

BF05:
20 64 BF

JSR
MESS

BF08:
4D 45 4D

ASC
\MEMORY TEST\

BF0B:
4F 52 59

BF0E:
205445

BF11:
53 D4

BF13:
A0 00

LDY
#00

BF15:
84 F0

STY
TEST

BF17:
A9 02

LDA
X02

BF19:
85 F1

STA
TEST+1

BF1B:
B1 F0
TEST1

LDA
(TEST),Y

BF1D:
85 F2

STA
TEST+2

BF1F:
A9 AA

LDA
#$AA

BF21:
20 59 BF

JSR
TST

BF24:
A9 55

LDA
#$55

BF26:
20 59 BF

JSR
TST

BF29:
A9 00

LDA
#00

BF2B:
20 59 BF

JSR
TST

BF2E:
A9 FF

LDA
#$FF

BF30:
20 59 BF

JSR
TST

BF33:
A5 F2

LDA
TEST+2

BF35:
91 F0

STA
(TEST),Y

BF37:
E6 F0

INC
TEST

BF39:
D0 E0

BNE
TESTl

BF3B:
E6 F1

INC
TEST+1

BF3D:
18

CLC

BF3E:
90 DB

BCC
TEST1

BF40: 20 64 BF
FIN

JSR
MESS

BF43: 45 52 52

ASC
\ERROR IN \

BF46:
4F 52 20

aF49:
49 4E A0

BF4C:
A5 F1

LDA
TEST+1

BF4E:
20 86 BF

JSR
PRTBYT

BF51:
A5F0

LDA
TEST

RF53:
20 86 BF

JSR
PRTBYT

BF56:
4C 56 BF
FINI

JMP
FINI

BF59:
85 F3
TST

STA
TEST+3

BF5B:
91 F0

STA
(TEST),Y

BF5D:
B1 F0

LDA
(TEST),Y

BF5F:
C5 F3

CMP
TEST+3

BF61:
D0 D0

BNE
FIN

BF63:
60

FRTS

RTS

BF64:
68

MESS

PLA

BF65:
85 FE

STA

AUXE

BF67:
68

PLA

BF68:
85 FF

STA
AUXE+1

BF6A:
A2 00

LDX
#0

BF6C:
E6 FE

MS1

INC
AUXE

BF6E:
D0 02

BNE
*+4

BF70:
D6 FF

INC
AUXE+1

BF72:
A1 FE

LDA
(AUXE,X)

BF74:
29 7F

AND
#$7F

BF76:
20 A4 F6

JSR
OUTCH

BF79:
A2 00

LDX
#0

BF7B:
Al FE

LDA
(AUXE,X)

BF7D:
l0 ED

BPL
MS1

BF7F:
A5 FF

LDA
AUXE+1

BF81:
48

PHA

BF82:
A5 FE

LDA
AUXE

BF84:
48

PHA

BF85:
60

RTS

BF86:
48

PPRTBYT
PHA

BF87:
4A

LSR

BF88:
4A

LSR

BF89:
4A

LSR

BF8A:
4A

LSR

BF8B:
20 91 BF

JSR
HEX21

BF8E:
68

PLA

BF8F:
29 0F

AND
#$OF

BF91:
C9 0A
HEX21

CMP
#9+1

BF93:
B0 04

BCS
BUCHST

BF95:
09 30

ORA
'0

BF97:
D0 03

BNE
HEXOUT

BF99:
18

BUCHSST
CLC

BF9A:
69 37

ADC:
'A-10

BF9C:
4C A4 F6
HEXOUT
JMP
OUTCH

ORG
$BFFA, $90FA

BFFA: 00 BF

DFW
START

BFFC: 00

DFB
00

BFFD: 04

DFB
04

BFFE: 63 BF

DFW
DRTS

PHYSICAL ENDADDRESS: $9100

*** NO WARNINGS

EPROMBURNER FOR THE ATARI 800 / 400
 With this epromburner you can burn your EPROMS. It is possible to burn four different types. The four types are the 2532(4k), the 2732(k),the 2516(2k) and the 2716 (2k). The burner uses the game ports 1, 2 and 3.

1) THE HARDWARE

 The circuit of the epromburner is shown in FIG.1.The data for the burner is exchanged via game port 1 and 2. The control signals are provided by game port 3. The addresaes are decoded by two 7 bit counters 4024. The physieal addressesss for the EPROMS are always in the range of 0000 to 07FF for 2k and 0000 to 0FFF for 4k. This counter is reset by a signal, decoded from PB0 and PB1 via the 74LS139. PB2 is used to decide if a 2532, or a 2716 has to be burned.

[image: image1.png]userz

usery

UL TEERRLEE

(L(LA(LA(LA A(LA(LA (LA

LEE LR

IRRRY

LLPbbltE |

Q)

 Not all signals for the different types of EPROMS are switched by software. A three pole, double throw switch is used to switch between the different types. The software tells you when you have to set the switch into the correct position. For burning, you need a burn voltage of 25 Vo1ts. This voltage is converted from the 5 Volts of the game port to 28 Volts by the DCDC converter DCP528. This voltage is limited to 25 Volts by two Zener diodes in serie (ZN24 and ZN1). Three universal NPN transistors are used to switch between low level voltages and the high level of the burning voltage.

Fig.1 Eprom burner schematic

3) THE SOFTWARE

The software for the burner is completely written in machine code. It comes on a bootable diskette. To load the program, insert the disk and REMOVE ALL CARTRIDGES. Turn on the disk drive and the ATARI. After a short moment, you will see the first menue:

[image: image2.png]a3

ARRANANEANRAY

=

&3
EEN
=o1=—c2 Ra
ot oz
L00uF G04s 1cap
aoie Took
Fw=t)
TosF
- LF .
a1 - o3 2n3904
Ri G04s
| a1
arok

WHICH EPROM DO YOU WANT TO BURN?

A) 2532

B) 2732

C) 2716, 2516

WHAT:

 You are asked what type of EPROM you want to burn. After typing the apriopriate character, you get the message to set the switch to the correct position and insert the EPROM. This is shown in the following example:

[image: image3.png]g1

s PorTs
Strose |4 :
55 = =
= =,
S e 1
8
= =
8
2 2
B %
52
s %
e
SHEY
oaPEd
e
B
i rorra
&8 :
e =
e =,
&N 2
ERTRONLCs =
%
=
£
a) os) es) a7 es
G VA T

a1 - o8 2n390s

WHICH EPROM DO YOU WANT TO BURN?

D) 2532

E) 2732

F) 2716, 2516

WHAT:

SET SWITCH TO POSITION 2532

NOW INSERT EPROM

 PRESS SPACE BAR

-

Then, pressing the space bar, you see the main menue:

[image: image4.png]g1

s PorTs
Strose |4 :
55 = =
= =,
S e 1
8
= =
8
2 2
B %
52
s %
e
SHEY
oaPEd
e
B
i rorra
&8 :
e =
e =,
&N 2
ERTRONLCs =
%
=
£
a) os) es) a7 es
G VA T

a1 - o8 2n390s

R)EAD EPROM

W)RITE EPROM

E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

WHAT:

 First we want to R)EAD an EPROM. Type R and then the addresses FROM and TO. The physical addresses of the EPROM are always in range between 0000 and 0FFF. You can read the whole EPROM or only a part of it. Next you to type the address INTO which the content of the EPROM is read. All addresses which are not used by the system or the burner software (A800 to AFFF) are accessible. By typing Y after the question OK (Y/N), the program is loaded. There is a very important key, X key. This key cancels tlhe input and leads back to the main menue. An example of reading an EPROM is shown in the next figure:

[image: image5.png]IReNsiIT peta)

anp.

i
(LA(LA A(LA

GaME RORT 3

R)EAD EPROM

W)RITE EPROM

E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

WHAT:

 EPROM FROM:0000

 TO :0FFF

 RAM INTO:5000

 OK. (Y/N)

 To verify that the content of the RAM is identical the content of the EPROM, type V. After specifing addresses for the EPROM and the RAM and typing Y, the contents are compared. If there are any differences you get an error message, such as the following:

[image: image6.png]|l el
SLEeTeelelelelele ool

R)EAD EPROM

W)RITE EPROM

E)PROM ERASED

V)ERIFY PROGRAM

M)EMORY DUMP

 R)AM

 E)PROM

S)ET EPROM TYPE

WHAT:

 EPROM FROM:0000

 TO :0FFF

 RAM INTO:5000

 OK. (Y/N)

 DIFFERENT BYTES FF 00 IN 5000

 PRESS SPACE BAR

 You may then make a memory dump. Type M for M)EMORY, either R for R)AM or E for E)PROM, and the address range. There is a slight difference in memory dumps. With the memory dump of RAM, , the bytes are printed, if a is possible, as ASCII characters.

 Burning an EPROM begins by testing as to whether or not the EPROM is erased in the address range you want to burn. Type E and the address range. You will get the message EPROM ERASED when the assigned address range has been erased, or the message EPROM NOT ERASED IN CELL NNN.

 For writing the EPROM, type W, the address range in RAM, and the starting address in EPROM. After hitting Y, you have to wait two minutes for burning 2k and four minutes for burning 4k. Don't get angry, the program will stop. After burning one cell the program does an automatic verify. If there is a difference you receive the error message EPROM NOT PROGRAMMED IN CELL NNN and the burning stops. Otherwise if all goes well the message EPROM PROGRAMMED is printed.

 For changig the type of EPROM you want to burn, type S. The first menue is shown and you can begin a new burning procedure.

PARTS LIST.

IC1

74LS139

IC2,IC3
4024

IC4

4016

IC5

4049

T1,T2,T3

UNIVERSAL NPN TRANSISTOR 30V, 0.3W (2N3390 – 2N3399)

Rl

470K
RESISTOR

R2,R3

10K
RESISTOR

R4,R5

33K
RESISTOR

Z1

1V
ZENER DIODE

Z2

24V
ZENER DIODE

Ml

DCP528
DCDC CONVERTER ELPAC POWER SYSTEMS

C1,C2

100nF
CAPACITOR

C3

10uF
TANTAL CAPACITOR

S1

3P2T
SWITCH

1

24PIN TEXTOOL SOCKET

3

14PIN
IC SOCKET

2

16PIN
IC SOCKET

3 FEMALE PLUGS, ATARI GAME CONNECTORS

5) STEP BY STEP ASSEMBLING.

1.
Insert and solder sockets.

*
Component side showss the text EPROMBURNER.

2.
Insert and solder resistors.

3.
Insert and solder Zener diodes.

*
The anodes are closest to the transistors.

4.
Insert and solder transistors.

5.
Insert and solder capacitors.

*
The + pole of the tantal is marked.

6.
Mount the DCDC converter module.

7.
Turn the board to the soldering side.

8.
Insert from this side the TEXTOOLL socket.

*
The knob shoulld be in the upper right corner.

*
Solder the socket.

9.
Make the connections on the switch. (FIG.5)

*
Connect switch and board via a 7 lead flatband cable.

l0.
Connect the plugs to the board. (FIG.5)

11.
Insert the integrated circuits. (FIG.2)

12.
Turn off the ATARI. Insert the plugs.

*
Insert the diskette and turn on the ATARI.

HEXDUMP of the EPROM BURNER software

A800
2076A9204CA82078

 v) L(x

A808
A8006885EE6885EF

(@hEnhEo

A810
A200E6EED002E6EF

"@fnPBfo

A818
A1EE297F20A4F6A2

!n) $v"

A820
00A1EE10EDA5EF48

@!nPm%oH

A828
A5EE4860A5FD2940

%nH'%)@

A830
F006A5FE0901D004

pF% IAPD

A838
A5FE290E8D01D348

%)NMASH

A840
68AD00D348A5FE8D

h-@SH% M

A848
01D36860A90085F0

ASh')@Ep

A850
85F185F8A9308D03

EqEx)0NC

A858
D3A90F8D01D385F5

S)OMASEu

A860
A9348D03D3A9FF85

)4MCS) E

A868
F4A9B085F9A9028D

t)0Ey)BM

A870
01D360A99B4CA4F6

AS')[L$v

A878
A97D20A4F6A90585

) $v)EE

A880
54A90A8555A90085

T)JEU)@E

A888
56200AA852294541

V J(R)EA

A890
44204550524FCD20

D EPROM

A898
73A8A90A8555200A

s()JEU J

A8A0
A857295249544520

(W)RITE

A8A8
4550524FCD2073A8

EPROM s(

A8B0
A90A8555200AA845

)JEU J(E

A8B8
2950524F4D204552

)PROM ER

A8C0
415345C42073A8A9

ASED s()

A8C8
0A8555200AA85629

JEU J(V)

A8D0
4552494659205052

ERIFY PR

A8D8
4F475241CD2073A8

OGRAM s(

A8E0
A90A8555200AA84D

)JEU J(M

A8E8
29454D4F52592044

)EMORY D

A8F0
554DD02073A8A90D

UMP s()M

A8F8
8555200AA8522941

EU J(R)A

A900
CD2073A8A90D8555

M s()MEU

A908
200AA8452950524F

 J(E)PRO

A910
CD2073A8A90A8555

M s()JEU

A918
200AA85329455420

 J(S)ET

A920
4550524F4D205459

EPROM TY

A928
50C52073A82073A8

PE s(s(

A930
A90A8555200AA857

)JEU J(W

A938
484154BA20F0AE48

HAT: p.H

A940
20A4F668C952D003

 $vhIRPC

A948
4C30ACC957D0034C

L0,IWPCL

A950
10ADC945D0034C8B

P-IEPCLK

A958
ACC956D0034C2DAF

,IVPCL-/

A960
C953D0034C76A9C9

ISPCLv)I

A968
4DD0034CFBADA9FD

MPCL{-)

A970
20A4F66C0A00A97D

 Sv1J@)

A978
20~A4F62073A8200A
 $v s(J

A980
A857484943482045

(WHICH E

A988
50524F4D20444F20

PROM DO

A990
594F552057414E54

YOU WANT

A998
20544F204255524E

 TO BURN

A9A0
20BFA9088554A90A

 ?)HET)J

A9A8
8555200AA8412920

EU J(A)

A9B0
323533B22073A8A9

2532 s()

A9B8
0A8555200AA84229

JEU J(B)

A9C0
20323733B22073A8

 2732 s(

A9C8
A90A8555200AA843

)JEU J(C

A9D0
2920323731362032

) 2716,2

A9D8
3531B62073A82073

516 s(s

A9E0
A8A90A8555200AA8

()JEU J(

A9E8
57484154BA20F0AE

WHAT: p.

A9F0
4820A4F66885FCC9

H $vhE|I

A9F8
41D006A90085FDF0

APF)@E p

AA00
12C942D006A98085

RIBPF)@E

AA08
FD3008C943D078A9

 0HICPx)

AA10
C085FD2073A82073

@E s(s

AA18
A8200AA853455420

(J(SET

AA20
5357495443482054

SWITCH T

AA28
4F20504F53495449

O POSITI

AA30
4F4EA0A5FCC941D0

ON %|IAP

AA38
0A200AA8323533B2

J J(2532

AA40
18901EC942D00A20

XP^IBPJ

AA48
0AA8323733B21890

J(2732XP

AA50
10C943D032200AA8

PICP2 J(

AA58
3237313620323531

2716,251

AA60
B62073A82073A8A9

6 s(s()

AA68
0A8555200AA84E4F

JEU J(NO

AA70
5720494E53455254

W INSERT

AA78
204550524FCD20D7

 EPROM W

AA80
AB208FAA4C03A8A9

+ O*LC()

AA88
FD20A4F64CEDA920

 $vLm)

AA90
73A8A90A8555200A
s
s()JEU J

AA98
A850524553532053

(PRESS S

AAA0
50414345204241D2

PACE BAR

AAA8
20F0AE602073A8A9

 p.' s()

AAB0
0A8555200Ą.A84F4B
JEU J(OK

AAB8
2028592F4EA920F0

 (Y/N) p

AAC0
AE4820A4F668C94E

.H $vhIN

AAC8
F003A90060A90160

pC)@')A'

AAD0
484A4A4A4A20DBAA

HJJJJ [*

AAD8
68290FC90AB00409

h)OIJ0DI

AAE0
30D0031869374CA4

0PCXi7L$

AAE8
F6A90085F285F385

v)@ErEsE

AAF0
FEA90485FC20F0AE

)DE| p.

AAF8
48C99BF00320A4F6

HI[pC $v

AB00
68C9303025C94710

hI00%IGP

AB08
21C93A3007C94130

!I:0GIA0

AB10
191869090A0A0A0A

YXiIJJJJ

AB18
A0042A26F226F388

 D*&r&sH

AB20
D0F8A98085FEC6FC

Px)@E F|

AB28
D0CB60A9308D02D3

PK')0MBS

AB30
A9FF8D00D3A9348D

) M@S)4M

AB38
02D360A9308D02D3

BS')0MBS

AB40
A9008D00D3A9348D

)@M@S)4M

AB48
02D3602073A820FD

BS’ s(

AB50
AEA90A8555200AA8

.)JEU J(

AB58
46524F4DBA20E9AA

FROM: i*

AB60
A5FE300DA5F120D0

% 0M%q P

AB68
AAA5F020D0AA4C79

*%p P*Ly

AB70
ABA5F285F0A5F385

+%rEp%sE

AB78
F12073A8A90A8555

q s()JEU

AB80
200AA8544F2020BA

 J(TO :

AB88
20E9AAA5FE300DA5

 i*% 0M%

AB90
F520D0AAA5F420D0

a P*%t P

AB98
AA4CA4ABA5F285F4

*L$+%rEt

ABA0
ASF385F5A5FB302E

%sEu%{0.

ABA8
2073A82015AFA90A

 s(U/)J

ABB0
8555200AA8494E54

EU J(INT

ABB8
4FBA20E9AAA5FE30

O: i*% 0

ABC0
0DA5F920D0AAA5F8

M%y P*%x

ABC8
20D0AA4CD6ABA5F2

 P*LV+%r

ABD0
85F8A5F385F960A9

Ex%sEy')

ABD8
0185FEA90385FCA9

AE)CE|)

ABE0
0985FFA5FD1021A9

IE % P!)

ABE8
041865FE85FEA904

DXe E)D

ABF0
1865FC85FCA90418

Xe|E|)DX

ABF8
65FF85FFA5FD2940

e E %)@

AC00
F006A5FE290F85FE

pF%)OE

AC08
60A5F085F2A5F185

 %pEr%qE

AC10
F3A5F2D002A5F3F0

s%rPB%sp

AC18
16A5FC8D01D3A5FE

V%|MAS%

AC20
8D01D3C6F2A5F2C9

MASFr%rI

AC28
FFD0E6C6F310E260

 PfFsPb'

AC30
A98085FAA90085FB

)@Ez)@E{

AC38
203BAB204BAB20AC

 ;+ K+ ,

AC40
AAD0F820D7AB2009

*Px W+ I

AC48
ACA000202CA891F8

, @ ,(Qx

AC50
A5F1C5F59004A5F0

%qEuPD%p

AC58
C5F4F019E6F0D002

EtpYfpPB

AC60
E6F1E6F8D002E6F9

fqfxPBfy

AC68
A5FC8D01D3A5FE8D

%|MAS% M

AC70
01D31890D42073A8

ASXPT s(

AC78
A90A8555200AA84C

)JEU J(L

AC80
4F414445C4208FAA

OADED O*

AC88
4C03A8A98085FB85

LC()@E{E

AC90
FA203BAB204BAB20

z ;+ K+

AC98
ACAAD0F820D7AB20

,*Px W+

ACA0
09ACA000202CA8C9

I, @ ,(I

ACA8
FFD039A5F1C5F590

 P9%qEuP

ACB0
04A5F0C5F4F013E6

D%pEtpSf

ACB8
F0D002E6F1A5FC8D

pPBfq%|M

ACC0
01D3A5FE8D01D318

AS% MASX

ACC8
90D82073A8A90A85

PX s()JE

ACD0
55200AA845524153

U J(ERAS

ACD8
45C4208FAAA90085

ED O*)@E

ACE0
FB4C03A82073A8A9

{LC(s()

ACE8
0A8555200AA84E4F

JEU J(NO

ACF0
5420455241534544

T ERASED

ACF8
20494EA0A5F12UD0

 IN %q P

AD00
AAA5F020D0AA208F

%p P O

AD08
AAA90085FB4C03A8

*)@E{LC(

AD10
A90085FB85FA202B

)@E{Ez +

AD18
AB204BAB20ACAAD0

+ K+ ,*P

AD20
F820D7ABA5F885F2

x W+%xEr

AD28
A5F985F32011ACA0

%yEs Q,

AD30
00B1F08D00D320A9

@lpM@S)

AD38
ADA5F1C5F59004A5

-%qEuPD%

AD40
F0C5F4F013E6F0D0

pEtpSfpP

AD48
02E6F1A5FC8D01D3

Bfq%|MAS

AD50
A5FE8D01D31890D7

% MASXPW

AD58
2073A8A90A855520

 s()JEU

AD60
0AA850524F475241

J(PROGRA

AD68
4D4D45C4208FAA4C

MMED O*L

AD70
03A82073A8A90A85

C(s()JE

AD78
55200AA843454C4C

U J(CELL

AD80
A0A5F120D0AAASF0

 %q P*%p

AD88
20D0AA200AA8204E

 P* J(N

AD90
4F542050524F4752

OT PROGR

AD98
414D4D45C4208FAA

AMMED O*

ADA0
4C03A8A0FF88D0FD

LC(HP

ADA8
60A5FF8D01D320A3

'% MAS #

ADB0
AD290E8D01D34820

-)NMASH

ADB8
DDAD6809018D01D3

]-hIAMAS

ADC0
A5FE8D01D320A3AD

% MAS #-

ADC8
203BAB202CA8A000

 ;+ ,(@

ADD0
D1F0F00568684C72

QppEhhLr

ADD8
AD202BAB60A9FF85

- ++') E

ADE0
F6A90B85F7A5F6D0

v)Kew%vP

ADE8
02A5F7F00DC6F6A5

B%wpMFv%

ADF0
F6C9FFD0F0C6F718

vI PpFwX

ADF8
90EB6020F0AE4820

Pk' p.H

AE00
A4F668C952D006A9

$vhIRPF)

AE08
0085FAF012C945D0

@EzpRIEP

AE10
06A98085FA3008A9

F)@EzOH)

AE18
FD20A4F64CFBAD20

 $vL{-

AE20
3BABA98085FB204B

;+)@£{ K

AE28
AB20ACAAD0F820D7

+ ,*Px W

AE30
A82037AE4C03A8A5

+ 7.LC(%

AE38
FA10032009ACA97D

zPC I,)

AE40
20A4F6A90085F620

 $v)@Ev

AE48
73A8A90085F7A5F1

s()@Ew%q

AE50
85F320D0AAA5F085

Es P*%pE

AE58
F220D0AA20DBAEAS

r P* [.%

AE60
FA100620E0AE1890

zPF '.XP

AE68
04A000B1F020D0AA

D @1p P*

AE70
E6F7A5F7C908F00B

fw%wIHpK

AE78
20DBAEE6F0D002E6

 [.fpPBf

AE80
F1D0DCA90085F720

qP\)@Ew

AE88
DBAEA5FA3021A000

[.%z0! @

AE90
B1F2C9209004C97A

1rI PDIz

AE98
9002A92E20A4F6E6

PB). $vf

AEA0
F7A5F7C908F008E6

w%wIHpHf

AEA8
F2D002E6F3D0DBAS

rPBfsP[%

AEB0
F1C5F59004A5F0C5

qEuPD%pE

AEB8
F49006208FAA4C03

tPF O*LC

AEC0
A8E6E0D002E6F1E6

(fpPBfqf

AEC8
F6A5F6C914F0034C

v%vITpCL

AED0
47AE208FAA20D7AB

G. O* W+

AED8
4C3EAEA9204CA4F6

L>.) L$v

AEE0
202CA848A5FC8D01

 ,(H%|MA

AEE8
D3A5FE8D01D36860

S% MASh'

AEF0
20E2F6C958D00568

 bvIXPEh

AEF8
684C03A860A90485

hLC(‘)DE

AF00
55A5FA1009200AA8

U%zPI J(

AF08
4550524FCD60200A

EPROM' J

AF10
A85241CD60A90485

(RAM')DE

AF18
55A5FA1007200AA8

U%zPG J(

AF20
5241CD60200AA845

RAM' J(E

AF28
50524FCD60A98085

PROM')@E

AF30
FAA90085FB203BAB

z)@E{ ;+

AF38
204BAB20ACAAD0FB

 K+ ,*Px

AF40
20D7AB2009ACA000

 W+ I, @

AF48
202CA848D1F8D03E

 ,(HQxP>

AF50
68A5F1C5F59004A5

h%qEuPD%

AF58
F0C5F4F019E6F0D0

pEtpYfpP

AF60
02E6F1E6F8D002E6

BfqfxPBf

AF68
F9A5FC8D01D3A5FE

y%|MAS%

AF70
8D01D31890D02073

MASXPP s

AF78
A8A90A8555200AA8

() JEU (

AF80
5645524946494504

VERIFIED

AF88
208FAA4C03A82073

 O*LC(s

AF90
A8200AA844494646

(J(DIFF

AF98
4552454E54204259

ERENT BY

AFA0
544553A06820D0AA

TES h P*

AFA8
20DBAEA000B1F820

[. @lx

AFB0
D0AA200AA820494E

P* J(IN

AFB8
A0A5F920D0AAA5F8

 %y P*%x

AFC0
20D0AA208FAA4C03

 P* 0*LC

AFC8
A800000000000000

(@@@@@@@

 This hexdump has to be keyed in starting at address A800. This means you need a 48K RAM ATARI and a machine language monitor (ATMONA-1, Editor/Assembler cartridge from ATARI or ATMAS-1). The program starts at address A800 hex.

Using the EPROM board Kit from HOFACKER

 After you burned an EPROM you certainly want to plug it into your ATARI. for this you need a pc-board. You can buy those boards from various vendors (APEX, ELCOMP PUBLISHING).

 The following description shows how to use the EPROM board from ELCOMP PUBLISHING, INC.

 With this versatile ROM module you can use 2716, 2732 and 2532 type EPROMs.

 To set the board for the specific EPROM, just solder their jumpers according to the list shown below. Without any soldering you can use the module for the 2532 right away.

If you use only one EPROM, inxrt it into the right socket.

 If you use two EPROMs, put the one with the higher address into the right socket.

The modul must be plugged into the left slot of your ATARI computer with the parts directed to the back of the computer.

EPROM
2716
2732
2516
2532

1
S
O
S
S

2
O
S
O
O

3
S
S
S
O

4
O
O
O
S

5
O
S
O
O

S = means connected (short)

O = means open

HOW TO ADD OR CHANGE A DEVICE

CHAPTER 7

 If you want to add your own device, you first have to write a handler/controller (interface). You have to submit the handler on the following design decisions.

· There has to be an OPEN routine, which opens the device/file and returns with the status of these operations stored in the Y​-register of your 6502.

· You also need a CLOSE routine, which unlinks the device and returns the status as the OPEN-routine does.

· Further needed is a GETBYTE routine, which receives the data from your device and returns the data in the A-register and the status in the Y-register. If your device is a write only device (such as a printer) you have to return with errorcode 146 (not implemented function) in the Y​register.

· A PUTBYTE routine, sends a byte (which will be in the A-register) to your device, and returns, as the other routines do, the status. If your device is read only, then return the 146 errorcode.

· A GET STATUS routine stores the status of your device (max. 4 bytes) at DVSTAT ($02EA. D). If the GET STATUS function is not necessary, you have to leave the dummy routine . with 146 in your Y-register (error).

· A SPECIAL COMMAND routine is required, if you need more commands than previous. If not, return with Y=146.

 OS will load the X-register with the IOCB number times 16 so you are able to get specific file information out of the user IOCB.

 These 6 entries have to be placed in a so called handlertable. The vectors of these have to be one less than the real address, due to OS requirements.

OPEN vector - 1

CLOSE vector – 1

GETBYTE vector – 1

PUTBYTE vector – 1

GETSTAT vector – 1

SPECIAL vector - 1

 Now you have to add the device to the device table. A device entry needs 3 bytes. The device name, which is usually character that indicates the device (first character of the full devicename) is first. Second, a vector that points to the devicehandler.

device name

[image: image7.png]| Ll L2, lelalel s elalels
leBl7 Bl Elo BB LA R

i
st

L LelfeL s
3tz Ela

SlololsIBIEIETe oIS I8

[image: image8.png]. [elalelslelalels
e Elo IR

2
g

L Lel e lslclal L4
o [hlzfe{s e s e[Sl

SlololsIBIEIETe oIS I8

handler table

address

 If you only want to change the handler of a device to your own handler, you only have to scan the devicetable (started from $031A) and let the vector point to your handler table.

 If 'it is a totally new device, you have to add it, at the next free position of the device table (filled with zero).

 The first listing shows you a handler for a new printer device. Calling INITHAN will install the new handler-table. Now you can connect a printer with centronics interface at gameport 3 & 4 (see connection scheme). After each SYSTEM RESET you have to initialize the device again. For program description see program listing.

 The second listing is a listing of an inexpensive (write only) RS232 interface for your ATARI. Just call INITHAN and the new device will be added to the device table. It is now possible to use it like any other device. The RS232 output is on gameport 3 (see connection scheme). It is not our intention to describe detail the working of the RS232 interface. The comments in the program should help a bit though.

CENTRONICS PARALLEL INTERFACE

PRTENTRY
EQU$031A

STANDARD ENTRY BY SYSTEM

TRIG3
EQU
$D013

PACTL
EQU
$D303

PORTA
EQU
$D3C1

EOL

EQU
$9B

CR

EQU
$0D

LF

EQU
$0A

ORG
$0600, $A800

*

THE HANDLERTABLE

0600: 0F 06
HANDLTAB
DFW
OPEN-1

0602: 23 06

DFW
CLOSE-1

0604: 26 06

DFW
GETBYTE-1

0606: 29 06

DFW
PUTBYTE-1

0608: 26 06

DFW
STATUS-1

060A: 26 06

DFW
SPECIAL-1

060C: 00 00 00

DFB
0,0,0,0
FILL REST WITH ZER0

060F: 00

*

THE OPEN ROUTINE

OPEN

EQU
*

0610:
A930

INIT
LDA
#$30

0612: 8D 03 D3

STA
PACTL

0615: A9 FF

LDA
#$FF

0617: 8D 01 D3

STA
PORTA

061A: A9 34

LDA
#$34

061C: BD 03 D3

STA
PACTL

061F: A9 80

LDA
#$80

0621: 8D 01 D3

STA
$D301

0624: A0 01
SUCCES
LDY
#1

0626: 60

RTS

*

THE CLOSE DUMMY ROUTINE

*

ONLY RETURN SUCCESS IN Y (1)

CLOSE
EQU SUCCES

0627: A0 92
NOTIMPL
LDY
#146

0629: 60

RTS

*

THE POLLOWING COMMANDS ARE

*

NOT IMPLEMENTED SO GET ERROR

*

CODE 116

GETBYTE
EQU
NOTIMPL

STATUS
EQU
NOTIMPL

SPECIAL
EQU
NOTIMPL

*

THE PUTBYTE ROUTINE 1

062A: C9 9B
PUTBYTE
CMP
#EOL

062C: D0 07

BNE
NOEOL

*

IF EOL THEN CRLF TO PRINTER

062E: A9 0D

LDA
#CR

0630: 20 3B 06

JSR
PARAOUT

0633: A9 0A

LDA
#LF

0635: 20 3B 06
NOEOL
JSR
PARAOUT

0638: A0 01

LDY
#1

063A: 60

RTS

*

TBE PARALLEL OUT

0636: AC 13 D0
PARAOUT
LDY
TRIG3

063E: D0P B

BNE
PARAOUT
WAIT IF BUSY

0640: A0 80

LDY
#%10000000

0642: 09 80

ORA
#%10000000

0644: 8D 01 D3

STA
PORTA STROBE ON AND PUT DATA ON BUS

0647: 297F

AND
#%01111111

0649: 8D 01 D3

STA
PORTA

STROBE OFF

061C: 8C 01 D3

STY
PORTA

CLEAR BUS

061P: 60
RTS

*

PUT NEW ADDRESS IN HANDLER VECTOR

0650: A9 00

INITHAN
LDA
#HANDLTAB:L

0652: 8D 1B 03

STA
PRTENTRY+1

0655: A90 6

LDA
#HANDLTAB:H

0657: 8D1C03

STA
PRTENTRY+2

'

065A: 4C1006

JMP
OPEN

PHYSICAL ENDADDRESS: $A85D

*** NO WARNINGS

PRTENTRY
$031A

TRIG3

$D013

PACTL

$D303

PORTA

$D301

EOL

$9B

CR

$0D

LP

$0A

HANDLTAB
$0600

OPEN

$0610

INIT

$0610
UNUSED

SUCCES
$0621

CLOSE

$0624

NOTIMPL
$0627

GETBYTE
$0627

STATUS
$0627

SPECIAL
$0627

PCTBYTE
$062A

NOEOL

$0635

PARAOUT
$0638

INITHAN
$0650
UNUSED

For more information about the parallel interface refer to Page 70.

RS 232 SERIAL INTERFACE

COUNT
EPZ
$1F

RSENTRY
EQU
$032C
NEXT FREE POSITION IN

DEVICE TABLE

PACTL
EQU
$D303

PORTA
EQU
$D301

NMIEN
EQU
$D40E

DMACTL
EQU
$D400

EOL

EQU
$9B

CR

EQU
$0D

LF

EQU
$0A

K

EQU
150
110 AND 300 BAUD

L

EQU
6
300 BAUD

*L

EQU
18
110 BAUD

ORG
$0600,$A800

0600: 0F 06
HANDLTAB
DFW
OPEN-1

0602: 29 06

DFW
CLOSE-1

0604: 2C 06

DFW
GETBYTE-1

0606: 2F 06

DFW
PUTBYTE-1

0608: 2C 06

DFW
STATUS-1

060A: 2C 06

DFW
SPECIAL-1

060C: 00 00 00

DFB
0,0,0,0 JUST FILL WITH ZERO

060F: 00

*

THE OPEN ROUTINE

OPEN

EQU
*

0610: A9 30
INIT

LDA
1530

0612: 8D 03 D3

STA
PACTL

0615: A9 01

LDA
#%00000001

0617: 8D 01 D3

STA
PORTA

061A: A9 34

LDA
1534

061C:
8D 03 D3

STA
PACTL

061F: A9 00

LDA
1500

0621:
8D 01 D3

STA
PORTA

0624: 20 85 06

JSR
BITWAIT

0627: 20 85 06

JSR
BITWAIT

062A: A0 01
SUCCES
LDY
#1

062C: 60

RTS

*

THE CLOSE ROUTINE IS A DUMMY

*

BUT Y#1 (SUCCESSFULL CLOSE)

CLOSE
EQU
SUCCES

062D: A0 92
NOTIMPL
LDY
#146

RETURN WITH Y=116

062F: 60

RTS

*

THE FOLLOWING COMMANDS ARE NOT IMPLEMENTED

GETBYTE
EQU

NOTIMPL

STATUS
EQU

NOTIMPL

SPECIAL
EQU

NOTIMPL

*

THE PUTBYTE COMMAND

*

DATA IN ACCU

*

STATUS IN Y (=1)

0630: 48

PUTBYTE
PHA

0631: C9 98

CMP
#EOL

0633: D0 07

BNE
NOEOL

*

IF EOL GIVE CRLF TO DEVICE

0635:
A9 0D

LDA
#CR

0637:
20 43 06

JSR
SEROUT

063A:
A9 0A

LDA
#LF

063C:
20 43 06
NOEOL

JSR
SEROUT

063F:
68

PLA

0640:
A0 01

LDY #1

0642:
60

RTS

*

SERIALOUT FIRST REVERSE BYTE

0643:
49 FF

SEROUT
EOR
#%llllllll

0645:
8D A2 06

STA
BUFFER

*

DISABLE INTERRUPTS

0648:
78

SEI

0649:
A9 00

LDA
#0

0648:
8D 0E D4

STA
NMIEN

064E:
BD 00 D4

STA
DMACTL

*

SEND STARTBIT

0651:
A9 01

LDA
#%00000001

0653:
BD 01 D3

STA
PORTA

0656:
20 85 06

JSR
BITWAIT

*

SEND BYTE

0659:
A0 08

LDY
#8

065B:
84 1F

STY
COUNT

065D:
AD A2 06
SENDBYTE
LDA
BUFFER

0660:
BD 01 D3

STA
PORTA

0663:
6A

ROR

0664:
BD A2 06

STA
BUFFER

0667:
20 85 06

JSR
BITWAIT

066A:
C6 1F

DEC
COUNT

066C:
D0 EF

BNE
SENDBYTE

*

SEND TWO STOPBITS

066E:
A9 00

LDA
#%00000000

0670:
BD 01 D3

STA
PORTA

0673:
20 85 06

JSR
BITWAIT

0676:
20 85 06

JSR
BITWAIT

*

ENABLE INTERRUPTS

0679:
A9 22

LDA
#$22

067B:
BD 00 D4

STA
DMACTL

067E:
A9 FF

LDA
#$FF

0680:
BD 0E D4

STA
NMIEN

0683:
58

CLI

0684:
60

RTS

*

THE
BITTIME ROUTINE FOR AN
EXACT BAUDRATE

0685: A2 96
BITWAIT
LDX
#K

0687: A0 06

LOOPR
LDY
#L

0689: 88

LOOPL
DEY

068A: D0 FD

BNE
LOOPL

068C: CA

DEX

068D: DO FB

BNE
LOOPR

068F: 60

RTS

*

ROUTINE FOR INSTALLING THE RS232 HANDLER

0690: A9 52

INITHAN
LDA
'R

DEVICE NAME

0692: BD 2C 03

STA
RSENTRY

0695: A9 00

LDA
#HANDLTAB:L

0697: 8D 2D 03

STA
RSENTRY+1

069A: A9 06

LDA
#HANDLTAB:H

069C: 80 2E 03

STA
RSENTRY+2

069F: 4C 10 06

JMP
OPEN

BUFFER
EQU
*

ONE BYTE
BUFFER

PHYSICAL END ADDRESS: $A8A2

*** NO WARNINGS

COUNT

$1F

RSENTRY
$032C

PACTL

$D303

PORTA

$D301

NMIEN

$D40E

DMACTL
$D400

EOL

$98

CR

$OD

LF

$0A

K

$96

L

$06

HANDLTAB
$0600

OPEN

$0610

INIT

$0610
UNUSED

SUCCES
$062A

CLOSE

$062A

NOTIMPL
$062D

GETBYTE
$062D

STATUS
$062D

SPECIAL
$062D

PUTBYTE
$0630

NOEOL

$063C

SEHUUT
$0643

SENDBYTE
$065D

BITWAIT
$0685

LOOPK

$0687

LOOPL

$0689

INITHAN
$0690
UNUSED

BUFFER
S06A2

A BOOTABLE TAPE GENERATOR PROGRAM

CHAPTER 8

 The following program allows you to generate a bootable program on tape. This generator must be in memory at the same time as the program.

 After you have jumped to the generator, a dialogue will be started. First, the boot generator asks for the address where your program is stored (physical address). After you have entered start and end​ address (physical), you will be asked to enter the address where the program has to be stored during boot (logical address). The generator further asks for the restart address (where OS must jump to, to start your program).

 There is no feature to define your own initialization address. This address will be generated automatically and points to a single RTS.

 Also given is the boot continuation code, which will stop the cassette motor, and store the restart address into DOSVEC ($0A.B).

 So, you just have to put a cassette in your recorder, start the generator, and the dialogue will be started.

 The generator puts the boot information header in front of your program, so there have to be at least 31 free bytes in front of the start address (physical & logical).

The generator program will not be explained here, but after reading the previous chapters you should have the knowledge to understand it. There are also some helpfull comments in the program.

BOOT – GENERATOR

STOREADR
EPZ
$F0.1

ENDADR
EPZ
$F2.3

PROGLEN
EPZ
$F4.5

JMPADR
EPZ
$F6.7

EXPR

EPZ
$F8.9

LOGSTORE
EPZ
$FA.B

HEXCOUNT
EPZ
$FC

DOSVEC
EPZ
$0A

MEMLO
EPZ
$02E7

ICCOM
EQU
$0342

ICBAL
EQU
$0344

ICBAH
EQU
$0345

ICBLL
EQU
$0348

ICBLH
EQU
$0349

ICAX1
EQU
$034A

ICAX2
EQU
$034B

OPEN

EQU
$03

PUTCHR
EQU
$0B

CLOSE
EQU
$0C

OPNOT
EQU
8

SCROUT
EQU
$F6A4

GETCHR
EQU
$F6DD

BELL

EQU
$F90A

CIOV

EQU
$E456

PACTL
EQU
$D302

CLS

EQU
$7D

EOL

EQU
$9B

BST

EQU
$1E

CR

EQU
$0D

IOCBNUM
EQU
1

ORG
$A800

A800: A9 7D
START
LDA
#CLS

A802: 20 A4 F6

JSR
SCROUT

*

PRINT MESSAGE

A805: 20 00 AA

JSR
PRINT

A808: 0D 0D

DFB
CR,CR

A80A: 42 4F 4F

ASC
\BOOTGENERATOR FROM HOFACKER\

A80D:
54 47 45

A810: 4E 45 52

A813: 41 54 4F

A816: 52 20 46

A819: 52 4F 4D

A81C: 20 48 4F

A81F: 46 41 43

A822: 4B 45 D2

*

GET
STOREADDRESS

A825:
20 00 AA

JSR
PRINT

A828:
0D 0D

DFB
CR,CR

A82A:
53 54 4F

ASC
\STOREADDRESS :$\

A82D:
52 45 41

A830:
44 44 52

A833:
45 53 53

A836:
20 3A A4

A839:
20 28 AA

JSR
HEXIN

A83C:
89 F0

STY
STOREADR

A83E:
85 F1

STA
STOREADR+1

*

GET ENDADDRESS

A840:
20 00 AA

JSR
PRINT

A843:
0D 0D 0D

DFB
CR,CR,CR

A846:
45 4F 44

ASC
\ENDADDRESS :$\

A849:
41 44 44

A84C:
52 45 53

A84F:
53 20 20

A852:
20 3A A4

A855:
20 28 AA

JSR
HEXIN

A858:
84 F2

STY
ENDADR

A85A:
85 F3

STA
ENDADR+1

*

GET LOGICAL STORE

A85C:
20 00 AA

JSR
PRINT

A85F:
0D 0D 0D

DFB
CR,CR,CR

A862:
4C 4F 47

ASC
\LOGICAL STOREADDRESS :$\

A865:
49 43 41

A868:
4C 20 53

A86B:
54 4F 52

A86E:
45 41 44

A871:
44 52 45

A874:
53 53 20

A877:
3A A4

A879:
20 28 AA

JSR
HEXIN

A87C:
84 FA

STY
LOGSTORE

A87E:
85 FB

STA
LOGSTORE+1

*

GET JUMP

A880:
20 00 AA

JSR
PRINT

A883:
0D0D0D

DFB
CR,CR,CR .

A886:
4A 55 4D

ASC
\JUMPADDRESS :$\

A889:
50 41 44

A88C:
44 52 45

A88F:
53 53 20

A892:
20 20 20

A895:
3A A4

A897:
20 28 AA

JSR
HEXIN

A89A:
84 F6

STY
JMPADR

A89C:
85 F7

STA
JMPADR+l

*

CALCULATE NEW STORE

A89E:
A5 F0

LDA
STOREADR

A8A0:
38

SEC

A8A1:
E9 20

SBC
#(HEADEND-HEAD)+1

A8A3:
85 F0

STA
STOREADR

A8A5:
B0 02

BCS
*+4

A8A7:
C6 F1

DEC
STOREADR+1

*

CALCULATE LOGICAL STORE

A8A9:
A5FA

LDA
LOGSTORE

A8AB:
38

SEC

A8AC:
E9 20

SBC
#(HEADEND-HEAD)+1

A8AE:
85 FA

STA
LOGSTORE

A8B0:
B0 02

BCS
*+4

A8B2:
C6 FB

DEC
LOGSTORE+1

*

MOVE HEADER IN FRONT OF PROGRAM

A8B4: 20 F5 A9

JSR
MOVEHEAD

*

CALCULATE LENGTHE OF PROGR.

A8B7:
A5 F2

LDA
ENDADR

A8B9:
38

SEC

A8BA:
E5 F0

SBC
STOREADR

ABBC:
85 F4

STA
PROGLEN

ABBE:
A5 F3

LDA
ENDADR+1

A8C0:
E5 F1

SBC
STOREADR+1

A8C2:
85 F5

STA
PROGLEN+1

A8C4:
B0 03

BCS
*+5

A8C6:
4C DA A9

JMP
ADRERR

*

ROUND UP TO 128 RECORDS

A8C9: A5 F4

LDA PROGLEN

A8CB: 18

CLC

A8CC:
69 7F

ADC
#127

A8CE:
29 80

AND
#128

A8D0:
85 F4

STA
PROGLEN

A8D2:
90 02

BCC
*+4

A8D4:
E6 F5

INC
PROGLEN+1

*

CALCULATE NUMBER OF RECORDS

A8D6:
0A

ASL

A8D7:
A5 F5

LDA
PROGLEN+1

A8D9:
2A

ROL

A8DA:
A0 01

LDY
#RECN-HEAD

A8DC:
91 F0

STA
(STOREADR),Y

A8DE:
A0 02

LDY
#PST-HEAD

A8E0:
A5 FA

LDA
LOGSTORE

A8E2:
91 F0

STA
(STOREADR),Y

A8E4:
A5 FB

LDA
LOGSTORE+1

A8E6:
C8

INY

A8E7:
91 F0

STA
(STOREADR),Y

A8E9: A0 04

LDY
#PINITADR-HEAD ABEB: 18 CLC

A8EC: A5 FA

LDA
LOGSTORE

A8EE: 69 1F

ADC
#PINIT-HEAD

A8F0:
91 F0

STA
(STOREADR),Y

A8F2:
C8

INY

A8F3:
A5 FB

LDA
LOGSTORE+1

A8F5:
69 00

ADC
#0

A8F7:
91 F0

STA
(STOREADR),Y

A8F9:
A0 0C

LDY
#PNDLO-HEAD

A8FB:
A5 FA

LDA
LOGSTORE

A8FD:
18

CLC

A8FE:
65 F4

ADC
PROGLEN

A900:
91 F0

STA
(STOREADR),Y

A902:
A0 11

LDY
#PNDHI-HEAD

A904:
A5 FB

LDA
LOGSTORE+1

A906:
65 F5

ADC
PROGLEN+1

A908:
91 F0

STA
(STOREADR),Y

A90A:
A0 16

LDY
#JUMPADRL-HEAD

A90C:
A5 F6

LDA
JMPADR

A90E:
91 F0

STA
(STOREADR) ,Y

A910:
A0 lA

LDY
#JUMPADRH-HEAD

A912:
A5 F7

LDA
JMPADR+1

A914:
91 F0

STA
(STOREADR),Y

*

BOOTTAPE GENERATION PART, GIVE INSTRUCTIONS

A916:
20 00 AA

JSR
PRINT

A919:
0D 0D

DFB
CR,CR

A91B:
50 52 45

ASC
"PRESS PLAY & RECORD"

A91E:
53 53 20

A921:
50 4C 41

A924:
59 20 26

A927:
20 52 45

A92A:
43 4F 52

A92D:
44

A92E:
0D 0D

DFB
CR,CR

A930:
41 46 54

ASC
\AFTER THE BEEPS 'RETURN'\

A933:
45 52 20

A936:
54 48 45

A939:
20 42 45

A93C:
45 50 53

A93F:
20 27 52

A942:
45 54 55

A945:
52 4E A7

*

OPEN CASSETTE FOR WRITE

A948: A2 10
OPENIOCB
LDX
#IOCBNUM*16

A94A:
A9 03

LDA
#OPEN

A94C:
9D 42 03

STA
ICCOM,X

A94F:
A9 08

LDA
#OPNOT

A951:
9D 4A 03

STA
ICAXI,X

A954:
A9 80

LDA
#128 ,

A956:
9D 4B 03

STA
ICAX2,X

A959:
A9 F2

LDA
#CFILE:L

A95B:
9D 44 03

STA
ICBAL,X

A95E:
A9 A9

LDA
#CFILE:H

A960:
9D 45 03

STA
ICBAH,X

A963:
20 56 E4

JSR
CIOV

A966:
30 28

BMI
CERR

*

PUT PROGRAM ON TAPE

A968:
A9 0B
PUTPROG
LDA
#PUTCHR

A96A:
9D 42
03

STA
ICCOM,X

A96D:
A5 F0

LDA
STOREADR

A96F:
9D 44 03

STA
ICBAL,X

A972:
A5 F1

LDA
STOREADR+1

A974:
9D 45 03

STA
ICBAH,X

A977:
A5 F4

LDA
PROGLEN

A979:
9D 48 03

STA
ICBLL,X

A97C:
A5 F5

LDA
PROGLEN+l

A97E:
9D 49 03

STA
ICBLH,X

A981:
20 56 E4

JSR
CIOV

A984:
30 0A

BMI
CERR

*

CLOSE IOCB

A986: A9 0C

 CLOSIOCB
LDA
#CLOSE

A988: 9D 42 03

STA
ICCOM,X

A98B: 20 56 E4

JSR
CIOV

A98E: 10 24

BPL
SUCCES

*

IF ERROR OCCURS SHOW THE ERRORNUMBER

A990:
98

CERR

TYA

A991:
48

PHA

A992:
A2 10

LDX
#IOCBNUM*16

A994:
A9 0C

LDA
#CLOSE

A996:
9D 42 03

STA
ICCOM,X

A999:
20 56 E4

JSR
CIOV

A99C:
20 00 AA

JSR
PRINT

A99F:
0D 0D

DFB
CR,CR

A9A1:
45 52 52

ASC
\ERROR- \

A9A4:
4F 52 2D

A9A7:
A0

A9A8:
68

PLA

A9A9: AA

TAX

A9AA: 20 88 AA

JSR
PUTINT

A9AD: 20 00 AA

JSR
PRINT

A9B0: 8D

DFB
CR+128

A9B1: 4C A2 AA

JMP
WAIT

*

IF NO ERROR OCCURS TELL IT THE USER

A9B4: 20 00 AA
SUCCES
JSR PRINT

A9B7: 0D0D

DFB CR,CR

A9B9: 53 55 43

ASC "SUCCESFULL BOOTTAPE GENERATION"

A9BC: 43 45 53

A9BF: 46 55 1C

A9C2: 4C 20 42

A9C5: 4F 4F 54

A9C8: 54 41 50

A9CB: 45 20 47

A9CE: 45 4E 45

A9D1: 52 41 54

A9D4: 49 4F 4E

A9D7: 0D8D

DFB CR,CR+128

*

BRK-INSTRUCTION TO TERMINATE THE PROGRAM.

*

MOSTLY A JUMP INTO THE MONITOR-PROGRAM FROM

*

WHERE YOU STARTED THE PROGRAM. INSTEAD OF THE *

'BRK' YOU ALSO CAN USE THE 'RTS' THE RTS

*

INSTRUCTION, IF THIS PROGRAM WAS CALLED AS A

*

SUBROUTINE.

A9D9: 00

BRK

*

IF ERROR IN THE ADDRESSES TELL IT THE USER

A9DA: 20 00 AA
ADRERR
JSR
PRINT

A9DD: 0D0D

DFB
CR,CR

A9DF: 41 44 44

ASC
\ADDRESSING ERROR\

A9E2: 52 45 53

A9E5: 53 49 4E

A9EB: 47 20 45

A9EB: 52 52 4F

A9EE: D2

A9EF: 4C A2 AA

JMP
WAIT

*

THESE 2 CHARACTERS ARE NEEDED
TO OPEN

*

A CASSETTE IOCB.

A9F2: 43 3A
CFILE

ASC
"C:"

A9F4: 9B

DFB
EOL

*

ROUTINE FOR MOVING THE HEADER

*

IN FRONT OF THE USER-PROGRAM

A9F5: A0 1F
MOVEHEAD
LDY
#HFADEND-HEAD

A9F7: B9 A8 AA
MOVELOOP
LDA
HEAD,Y

A9FA: 91 F0

STA
(STOREADR),Y

A9FC: 88

DEY

A9FD: l0F8

BPL
MOVELOOP

A9FF: 60

RTS

*

THIS ROUTINE PRINTS A CHARACTERS

*

WHICH ARE BE POINTED BY THE

*

STACKPOINTER (USING THE 'JSR'

*

TO CALL THIS ROUTINE) .

*

THE STRING HAS TO BE TERMINATED

*

BY A CHARACTER WHOSE SIGNBIT

*

IS ON.

AA00:
68

PRINT

PLA

AA01:
85 F8

STA
EXPR

AA03:
68

PLA

AA04:
85 F9

STA
EXPR+1

AA06:
A2 00

LDX
#0

AA08:
E6 F8
PRINTI
INC
EXPR

AA0A:
D0 02

BNE
*+4

AA0C:
E6 F9

INC
EXPR+1

AA0E:
A1 F8

LDA
(EXPR,X)

AA10:
29 7F

AND
#%01111111

AA12:
C9 0D

CMP
#CR

AA14:
D0 02

BNE
NOCR

AA16:
A9 9B

LDA
#EOL

AA18:
20 A4 F6

NOCR
JSR
SCROUT

AA1B:
A2 00

LDX
#0

AA1D:
A1 F8

LDA
(EXPR,X)

AA1F:
10 E7

BPL
PRINTI

AA21:
A5 F9

LDA
EXPR+1

AA23:
48

PHA

AA24:
A5 F8

LDA
EXPR

AA26:
48

PHA

AA27:
60

RTS

*

HEX INPUT ROUTINE WAITS FOR CORRECT FOUR

*

DIGITS OR 'RETURN'

AA28:
A9 00
HEXIN

LDA
#0

AA2A:
85 F8

STA
EXPR

AA2C:
85 F9

STA
EXPR+1

AA2E:
A9 03

LDA
#3

AA30:
85 FC

STA
HEXCOUNT

AA32:
30 31
HEXINI
BMI
HEXRTS

AA34:
20 DD F6

JSR
GETCHR

AA37:
48

PHA

AA38:
20 A4 F6

JSR
SCROUT

AA3B:
68

PLA

AA3C:
C9 9B

CMP
#EOL

AA3E:
F0 25

BEQ
HEXRTS

AA40:
C9 58

CMP
'X

AA42:
F0 96

BEQ
ADRERR

AA44:
C9 30

CMP
'0

AA46:
90 22

BCC
HEXERR

AA48:
C9 3A

CMP
'9+1

AA4A:
B0 08

BCS
ALFA

AA4C:
29 0F

AND
#%00001111

AA4E:
20 75 AA

JSR
HEXROT

AA51:
4C 32 AA

JMP
HEXIN1

AA54:
C9 41

ALFA

CMP
'A

AA56:
90 12

BCC
HEXERR

AA58:
C9 47

CMP
'F+1

AA5A:
B00E

BCS
HEXERR

AA5C:
38

SEC

AA5D:
E9 37

SBC
'A-10

AA5F:
20 75 AA

JSR
HEXROT

AA62:
4C 32 AA

JMP
HEXINI

AA65:
A4 F8

HEXRTS
LDY
EXPR

AA67:
A5 F9

LDA
EXPR+1

AA69:
60

RTS

*

IF WRONG DIGIT RINGS THE BUZZER

*

AND
PRINT BACKSTEP

AA6A: 20 0A F9
HEXERR
JSR
BELL

AA6D: A9 1E

LDA
#BST

AA6F: 20 A4 F6

JSR
SCROUT

AA72: 4C 32 AA

JMP
HEXIN1

AA75: C6 FC
HEXROT
DEC
HEXCOUNT

AA77: 08

PHP

AA78: A2 04

LDX
#4

AA7A: 0A

ASL

AA7B: 0A

ASL

AA7C: 0A

ASL

AA7D: 0A

ASL

AA7E: 0A

HEXROTl
ASL

AA7F:
26 F8

ROL
EXPR

AA81:
26 F9

ROL
EXPR+1

AA83:
CA

DEX

AA84:
D0 F8

BNE
HEXROTI

AA86:
28

PLP

AA87:
60

RTS

*

THE RECURSIVE PUTINT FOR PRINTING ONE BYTE

*

IN DECIMAL FORM

AA88: 48

PUTINT
PHA

AA89: 8A

TXA

AA8A: C9 0A

CMP
#10

AA8C: 90 0D

BCC
PUTDIG -IF A<10 THEN STOP RECURSION

AA8E: A2 FF

LDX
#-1

*** WARNING: OPERAND OVERFLOW

AA90: E9 0A
DIV

SBC
#10

AA92: E8

INX

AA93: B0 FB

BCS
DIV

AA95: 69 0A

ADC
#10

AA97: 20 88

JSR
PUTINT - THE RECURSION STEP

AA9A: 18 CLC

AA9B: 69 30
PUTDIG
ADC
'0

AA9D: 20 A4 F6

JSR
SCROUT

AAAO: 68

PLA

AAA1: 60

RTS

*

WAIT FOR ANY KEY

AAA2: 20 DD F6
WAIT

JSR
GETCHR

AAA5: 4C 00 A8

JMP
START

*

THE BARECODE FOR THE HEADER TO PUT IN FRONT

*

OF PROGRAM'

*

THE DUMMY HEADER DUMMY EQU 0

AAA8: 00

HEAD

DFR
0

AAA9: 00

RECN

DFB
DUMMY

AAAA: 00 00
PST

DFW
DUMMY

AAAC: 00 00
PINITADR
DFW
DUMMY

*

THE BOOT CONTINUATION CODE

AAAE: A9 3C

LDA
#$3C

AAB0: 8D 02 D3

STA
PACTL

AAB3: A9 00

LDA
#DUMMY

PNDLO
EQU
*-1

AAB5: 8D E7 02

STA
MEMLO

AAB8: A9 00

LDA
#DUMMY

PNDHI
EQU
*-1

AABA: 8D E8 02

STA
MEMLO+1

AABD: A9 00

LDA
#DUMMY

JUMPADRL
EQU
*-1

AABF: 85 0A

STA
DOSVEC

AAC1: A9 00

LDA
#DUMMY

JUMPADRH
EQU
*-1

AAC3: 85 0B

STA
DOSVEC+1

AAC5: 18

CLC

AAC6: 60

RTS

HEADEND
EQU
*

AAC7: 60

PINIT
RTS

PHYSICAL ENDADDRESS: $AAC
8

STOREADR
$F0

ENDADR
$F2

PROGLEN
$F4

JMPADR
$F6

EXPR

$F8

HEXCOUNT
$FC

MEMLO

$02E7

ICBAL

$0344

ICBLL

$0348

ICAX1

$034A

OPEN

$03

CLOSE

$OC

SCROUT
$F6A4

BELL

$F90A

PACTL

$D302

EOL

$9B

CR

$0D

START

$A800

PUTPROG
$A968
UNUSED

CERR

$A990

ADRERR
$A9DA

MOVEHEAD
$A9F5

PRINT

$AA00

NOCR

$AA18

HEXINI
$AA32

HEXRTS
$AA65

HEXROT
$AA75

PUTINT
$AA88

PUTDIG
$AA9B

DUMMY

$00

RECN

$AAA9

PINITADR
$AAAC

PNDHI

$AAB9

JUMPADRH
$AAC2

PINIT

$AAC7

LOGSTORE
$FA

DOSVEC
$0A

ICCOM

$0342

ICBAH

$0345

ICBLH

$0349

ICAX2

$034B

PUTCHR
$0B

OPNOT

$08

GETCHR
$F6DD

CIOV

$E456

CLS

$7D

BST

$1E

IOCBNUM
$01

OPENIOCB
$A948 UNUSED

CLOSIOCB
$A986 UNUSED

SUCCES
$A9B4

CFILE

$A9F2

MOVELOOP
$A9F7

PRINTI
$AA08

HEXIN

$AA28

ALFA

$AA54

HEXERR
$AA6A

HEXROT1
$AA7E

DIV

$AA90

WAIT

$AAA2

HEAD

$AAA8

PST

$AAAA

PNDLO

$AAB4

JUMPADRL
$AABE

HEADEND
$AAC7

A DIRECT CASSETTE TO DISK COPY PROGRAM

CHAPTER 9

 If you have a bootable program on cassette, and you want to have it on a bootable disk, the following program will help you.

 This program is easy to understand if you have read the previous chapters. It allows you to copy direct from tape to disk, using a buffer.

 When you start your program from your machine language monitor, you must put the cassette into the recorder and the formatted disk into the drive (#1). After the beep, press return, and the cassette will be read. After a succesful read the program will be written on the disk. If, during one of these IO's an error occurrs, the program stops and shows you the error code.

 Now, power up the ATARI again and the disk will be booted. Sometimes the program doesn't work correctly. Just press SYSTEM RESET and most of the time the program will work.

 The copy program will not be described, but it has helpful comments, and you possess the knowledge of the IO.

 It is important that the buffer (BUFADR) is large enough for the program.

DIRECT CASSETTE TO DISK

COPY PROGRAM

SECTR
EPZ
$80.1

DBUFFER
EPZ
$82.3

BUFFER
EPZ
$84.5

BUFLEN
EPZ
$86.7

RETRY
EPZ
$88

XSAVE
EPZ
$89

DCBSBI
EQU
$0300

DCBDRV
EQU
$0301

DCBCMD
EQU
$0302

DCBSTA
EQU
$0303

DCBBUF
EQU
$0304

DCBTO
EQU
$0306

DCBCNT
EQU
$0308

DCBSEC
EQU
$030A

ICCMD
EQU
$0342

ICBAL
EQU
$0344

ICBAH
EQU
$0345

ICBLL
EQU
$0348

ICBLH
EQU
$0349

ICAX1
EQU
$034A

ICAX2
EQU
$034B

OPEN

EQU
3

GETCHR
EQU
7

CLOSE
EQU
12

RMODE
EQU
4

RECL

EQU
128

CIO

EQU
$E456

SIO

EQU
$E459

EOUTCH
EQU
$F6A4

EOL

EQU
$9B

EOF

EQU
$88

IOCBNUM
EQU
1

ORG
$A800

*

OPEN CASSETTE FOR READ

A800:
20 A7 A8
MAIN

JSR
OPENCASS

A803:
30 63

BMI
IOERR

*

INITIALIZE BUFFERLENGTH & BUFFER POINTER

A805:
A9 56

LDA
#BUFADR:L

A807:
85 84

STA
BUFFER

A809:
A9 A9

LDA
#BCFADR:H

A80B:
85 85

STA
BUFFER+1

ASOD:
A9 80

LDA
#128

A80F:
85 86

STA
BUFLEN

A811:
A9 00

LDA
#0

A813:
85 87

STA
BUFLEN+1

*

READ RECORD BY RECORD TO BUFFER UNTILL EOF

*

REACHED

A815:
20 C8 A8
READLOOP
JSR
READCASS

A818:
30 10

BMI
QEOF

*

IF NO ERROR OR EOF INCREASE THE BUFFERPOINTER

A81A:
A5 84

LDA
BUFFER

A81C:
18

CLC

A81D:
69 80

ADC
#128

A81F:
85 84

STA
BUFFER

A821:
A5 85

LDA
BUFFER+1

A823:
69 00

ADC
#0

A825:
85 85

STA
BUFFER+1

A827:
4C 15 A8

JMP
READLOOP

*

IF EOF REACHED THEN WRITE BUFFFR TO DISK

*

ELSE ERROR

A82A:
C0 88

QEOF

CPY
#EOF

A82C:
D0 3A

BNE
IOERR

A82E:
20 E9 A8

JSR
CLOSCASS

A831:
30 35

BMI
IOERR

*

INIT POINTERS FOR
SECTOR WR1TE

A833:
A9 01

LDA
#1

A835:
85 80

STA
SECTR

A837:
A9 00

LDA
#0

A839:
85 81

STA
SECTOR+l

A83B:
A9 56

LDA
#BUFADR:L

A83D:
85 82

STA
DBUFFER

A83F:
A9 A9

LDA
#BUFADR:H

A841:
85 83

STA
DBUFFER+1

*

WRITE SECTOR BY SECTOR BUFFER TO DISK

A843:
20 06 A9
WRITLOOP
JSR
WRITSECT

A846:
30 20

BMI
IOERR

*

IF BUFFER IS WRITTEN THEN STOP PROGRAM

A848:
A5 82

LDA
DBUFFER

A84A:
C5 84

CMP
BUFFER

A84C:
A5 83

LDA
DBUFFER+1

A84E:
E5 85

SBC
BUFFER+1

A850:
B0 15

BCS
READY

*

INCREASE BUFFER AND SECTOR POINTERS

A852:
A5 82

LDA
DBUFFER

A854:
18

CLC

A855:
69 80

ADC
#128

A857:
85 82

STA
DBUFFER

A859:
A5 83

LDA
DBUFFER+1

A85B:
69 00

ADC
#0

AB5D:
85 83

STA
DBUFFER+1

AB5F:
E6 80

INC
SECTR

A861:
D0 02

BNE
*+4

A863:
E6 81

INC
SECTR+1

A865:
D0 DC

BNE
WRITLOOP
JUMP ALWAYS!!!

*

THE BREAK FOR RETURNING
TO THE CALLING MONITOR

A867: 00

READY
BRK

A868: 98

IOERR
TYA

A869: 48

PHA

A86A: A208

LDX
#LENGTH

A86C: 86 89
ERRLOOP
STX
XSAVE

A86E: BD 84 A8

LDA
ERROR,X

A871: 20 A4 F6

JSR
EOUTCH

A874:
A6 89

LDX
XSAVE

A876:
CA

DEX

A877:
l0F3

BPL
ERRLOOP

A879:
68

PLA

A87A:
AA

TAX

A87B:
20 8D A8

JSR
PUTINT

A87E:
A9 9B

LDA
#EOL

A880:
20 A4 F6

JSR
EOUTCH

*

THE
BREAK FOR RETURNING TO THE CALLING MONITOR

A883: 00

BRK

*

TEXT FOR ERROR MESSAGE

A884: 20 2D 52
ERROR
ASC
" -RORRE"

A887: 4F 52 52

A88A: 45

A88B: 9B 9B

DFB
$9B,$9B

LENGTH
EQU (*-1)-ERROR

*

RECURSIVE PRINT FOR DECIMAL ERRORCODE

A88D: 48

PUTINT
PHA

A88E: 8A

TXA

A88F: C9 0A

CMP
#10

A891: 90 0D

BCC
PUTDIG

A893: A2 FF

LDX
#-1

*** WARNING: OPERAND OVERFLOW

A895: E9 0A
DIV

SBC
#10

A897: E8

INX

A898: B0 FB

BCS
DIV

A89A: 69 0A

ADC
#10

A89C: 20 8D A8

JSR
PUTINT
RECURSION STEP

A89F: 18

CLC

A8A0: 6930

PUTDIG
ADC
'0

A8A2: 20 A4 F6

JSR
EOUTCH

A8A5: 68

PLA

ABAG: 60

RTS

*

THE WELL KNOWN CASSETTE READ SECTION JUST A LITTLE

*

MODIFIED

A939:
8D 08 03

STA
DCBCNT

A93C:
A9 00

LDA
#0

A93E:
8D 09 03

STA
DCBCNT+1

A941:
20 59 E4
JMPSIO
JSR
SIO

A944:
10 0C

BPL
WRITEND

A946:
C6 88

DEC
RETRY

A948:
30 08

BMI
WRITEND

A94A:
A280

LDX
#$80

A94C:
8E 03 03

STX
DCBSTA

A94F:
4C 41 A9

JMP
JMPSIO

A952:
AC 03 03
WRITEND
LDY
DCBSTA

A955:
60

RTS

BUFADR
EQU
*

PHYSICAL ENDADDRESS: $A956

SECTR

$80

BUFFER
$84

RETRY

$88

DCBSBI
$0300

DCBCMD
$0302

DCBBUF
$0304

DCBCNT
$0308

ICCMD

$0342

ICBAH

$0345

ICBLH

$0349

ICAX2

$034B

GETCHR
$07

RMODE

$04

CIO

$E456

EOUTCH
$F6A4

EOF

$88

MAIN

$A800
UNUSED

QEOF

$A82A

READY

$A867

ERRROOP
$A86C

LENGTH
$08

DIV

$A895

OPENCASS
$A8A7

CLOSCASS
$A8E9

CFILE

$A903

JMPSIO
$A941

BL!FADR
$A956

DBUFFER
$82

BUFLEN
$86

XSAVE

$89

DCBDRV
$0301

DCBSTA
$0303

DCBTO

$0306

DCBSEC
$030A

ICBAL

$0344

ICBLL
$0348

ICAX1

$034A

OPEN

$03

CLOSE

$0C

RECL

$80

SIO

$E459

EOL

$9B

LOCBNUM
$0l

READLOOP
$A815

WRITLOOP
$A843

IOERR

$A868

ERROR

$A884

PUTINT
$A88D

PUTDIG
$A8A0

READCASS
$A8C8

CERR

$A8F6

WRITSECT
$A906

WRITEND
$A952

HOW TO CONNECT YOUR ATARI WITH ANOTHER COMPUTER

CHAPTER 10

 The following programs make it possible to communicate between an ATARI and a PET/CBM. The output ports are referenced as PORTA and DATABUS between the two computers. Bit 0 on the ATARI PORTB is the 'hand' of the ATARI and bit 7 on the same port is the 'hand' of the CBM. Now a handshake communication between both can be started. The routines PUT and GET are, in this case, dummies. Further, you need a stop criterium to stop the transfer. See these routines merely as a general outlines and not as complete transfer programs.

The ATARI - CBM / PET connection-wiring diagram

RECEIVE FOR ATARI

PORTB

EQU
$D301

PBCTL

EQU
$D303

PORTA

EQU
$D300

PACTL

EQU
$D302

PUT

EQU
$3309

ORG
$A800

*

SET BIT 0 ON PORTB AS OUTPUT

A800:
A9 30

LDA
#$30

A802:
8D 03 D3

STA
PBCTL

A805:
A9 01

LDA
#%00000001

A807:
8D 01 D3

STA
PORTB

A80A:
A9 34

LDA
#$34

A80C:
8D 03 D3

STA
PBCTL

*

GIVE YOUR 'HAND' TO THE
PET

A80F: A9 01
RFD

LDA
#1

A811: 8D 01 D3

STA
PORTB

*

WAIT UNTIL PET TAKES YOUR 'HAND'

A814: 2C 01 D3
WAITDAV
BIT
PORTB

A817: 30 FB

BMI
WAITDAV

*

GET DATA FROM BUS & PUT THEM SOMEWHERE

A819: AD 00 D3

LDA
PORTA

A81C: 20 09 33

JSR
PUT

*

TAKE YOUR 'HAND' BACK

A81F: A9 00

LDA
#0

A821: 8D 01 D3

STA
PORTB

*

WAIT UNTIL ‘PETS HAND’ IS IN HIS POCKET

A824: 2C01D3
WAITDAVN
BIT
PORTB

A827: l0 FB

BPL
WAITDAVN

*

START AGAIN

A829: 4C0FA8

JMP
RFD

PHYSICAL ENDADDRESS: $A82C

*** NO WARNINGS

PORTB

$D301

PORTA

$D300

PUT

$3309

WAITDAV
$A814

PBCTL

$D303

PACTL

$D302
UNUSED

RFD

$A80F

WAITDAVN
$A824

SEND FOR PET CBM

PORTB

EQU
$E84F

PBCTL

EQU
$E843

PORTA

EQU
$A822

GET

EQU
$FFCF
USER GET BYTE

*

ROUTINE

ORG
$033A,$A800

*

SET BIT 7 ON PET TO OUTPUT ​

033A: A9 80

LDA
#%10000000

033C: 8D 43 E8

STA
PBCTL

*

GET DATA FROM USER PUT IT ON BUS

033F: 20 CF FF
GETDATA
JSR
GET

0342: 8D 22 A8

STA
PORTA

*

TELL ATARI DATA VALID

0345: A9 00
DAV

LDA
#0

0347: 8D 4F E8

STA
PORTB

*

WAIT UNTIL ATARI GIVES HIS 'HAND'

034A: AD 4F E8
WAITNRFD
LDA
PORTB

034D: 29 01

AND
#%00000001

034F: D0 F9

BNE
WAITNRFD

*

SHAKE 'HANDS’ WITH ATARI

0351: A9 80
DANV

LDA
#%10000000

0353: 8D 4F E8

STA
PORTB

*

WAIT UNTIL ATARI RELEASE HIS 'HAND'

0356: AD 4F E8
WAITRFD
LDA
PORTB

0359: 29 01

AND
#%00000001

035B: F0 F9

BEQ
WAITRFD

*

START AGAIN WITH DATA

035D: 4C 3F 03

JMP
GETDATA

PHYSICAL ENDADDRESS: $A826

*** NO WARNINGS

PORTB

$E84F

PORTA

$A822

GETDATA
$033F

WAITNRFD
$034A

WAITRfD
$0356

PBCTL

$E843

GET

$FFCF

DAV

$0345
UNUSED

DANV

$0351
UNUSED

300 BAUD SERIAL INTERFACE VIA

THE ATARI JOYSTICK PORTS
CHAPTER 11

 The following construction article allows you to build your own RS232 interface for the ATARI computer. The interface only works with 300 Baud and just in one direction (output).

 The interface consists of:

a) RS232 serial interface driver on a bootable cassette or as a SYS file on disk.

b) Two wires hooked up to game port 3 on your ATARI.

 We used this interface with a DEC-writer, a NEC spinwriter, and a Brother HR-15. The DEC-writer worked with just the two wires connected (Transmit DATA and GND).

 The Spinwriter and the Brother needed some jumper wires as shown below:

Receive data on DEC-writer

Receive DATA on Brother HR-15

Receive DATA on NEC Spinwriter

 Depending on the printer you use you will have to make the appropriate wiring according to the instructions in the manual.

The source code for the RS232 driver is listed on a previous page in this book.

This is a sample printout in BASIC:

l0 OPEN #1,8,0,"R:"

20 FOR X=l TO 10

30 PRlNT #l, "ELCOMP-RS232",X

40 NEXT X

50 CLOSE #l

will generate the following printout:

ELCOMP-RS232
1

ELCOMP-RS232
1

ELCOMP-RS232
3

ELCOMP-RS232
4

ELCOMP-RS232
5

ELCOMP-RS232
6

ELCOMP-RS232
7

ELCOMP-RS232
8

ELCOMP-RS232
9

ELCOMP-RS232
l0

The source code for the RS-232 Interface you will find on page 46.

PRINTER INTERFACE

CHAPTER 12

 Screen to Printer Interface for the ATARI 400/800

 Many ATARI users would like to connect a parallel interface to the computer. For many people buying an interface is too ex​pensive. On the other hand, they may not have the experience to build one by their own. Also a lot of software is needed.

 The following instructions make it easy to hook up an EPSON or Centronics printer to the ATARI.

 Only seven of the eight DATA bits are used for a printout.

 DATA 8 is grounded. BUSY and STROBE are used for handshake. There is an automatic formfeed every 66 lines. Thus it is necessary to adjust the paper before starting to print. You may need to make several trials to find the best position of the paper. For a different form-length you may POKE 1768, ... (number of linesl. After system reset the line counter is set to zero, so you have to provide your own formfeed for a correct paper position.

 You can control the length of a line by a POKE 1770,xxx. After doing so, press system reset and enter LPRINT.

 The program SCREENPRINT is called by BASIC thru an USR (16701 and by the assembler with a GOTO $0687.

You may install pnp transistors between the game output and the printer.

 The figure shows the connection of the ATARI game outlets and the connector for the MX-80 printer. This is a so-called Centronics interface and the program can be used with each printer and this interface.

EPSON MX80 - ATARI 400/800 Interconnection Scheme

The next figure shows the program.

UNIVERSAL PRINT FOR ATARI

400 / 800 VERSION ELCOMP

BY HANS CHRISTOPH WAGNER

0600:
00

DFB
0

0601:
02

DFB
2

0602:
00 06

DFW
PST

0604:
6E 06

DFW
INIT

0606:
A9 3C

LDA
#$3C

0608:
8D 02 D3

STA
$D302

060B:
A9 EB

LDA
#PND

060D:
8D E7 02

STA
$02E7

0610:
A9 06

LDA
#PND/256

0612:
8D E8 02

STA
$02E8

0615:
A9 6E

LDA
#INIT

0617:
85 0A

STA
$0A

0619:
A9 06

LDA
#INIT/256

061B:
85 0B

STA
$0B

061D:
18

CLC

061E:
60

RTS

061F: 2B 06 42

0622: 06 3F 06

0625: 42 06 3F

0628: 06 3F 06
HANDLTAB DFW DUMMY,

WRITE-1,RTS1-1,WRITE-1,RTS1-1, RTS1-1

062B: 01

DUMMY
DFB
1

062C:
A9 30

OPEN

LDA
#$30

062E:
8D 03 D3

STA
$D303

0631:
A9 FF

LDA
#$FF

0633:
8D 03 D3

STA
$D301

0636:
A9 34

LDA
#$34

0688:
8D 03 D3

STA
$D303

063B:
A9 80

LDA
#$80

063D:
8D 01 D3

STA
$D301

0640:
A0
01
RTS1

LDY
#1

0642:
60

RTS

0643:
C9 9B

WRIT

CMP
#$9B

0645:
D0 1D

BNE
PRINT

0647:
AD EA 06
CARR

LDA
LINLEN

064A:
8D E9
06

STA
LCOUNT

064D:
CE E8
06

DEC
COUNT

0650:
10 0D

BPL
NOFF

0652:
A9 0C

LDA
#12

0654:
20 64 06

JSR
PRINT

0657:
EE E9 06

INC
LCOUNT

065A:
A9 41

LDA
#65

065C:
8D E8 06

STA
COUNT

065F:
EE E9 06
NOFF

INC
LCOUNT

0662:
A9 0D

LDA
#13

0664:
20 D1 06
PRINT

JSR
OUTCHAR

0667:
CE E9 06

DEC
LCOUNT

066A:
F0 DB

BEQ
CARR

066C:
D0 D2

BNE
RTS1

066E:
A9 1F

INIT

LDA
#HANDLTAB

0670:
8D 1B 03

STA
$031B

0673:
A9 06

LDA
#HANDLTAB/256

0675:
8D 1C 03

STA
$031C

0678:
A9 41

LDA
#65

067A:
8D E8 06

STA
COUNT

067D:
AD EA 06

LDA
LlNLEN

0680:
8D E9 06

STA
LCOUNT

0683:
4C 2C 06

JMP
OPEN

0686:
68

BASIC

PLA

0687:
A5 58

NORMAL
LDA
BASIS

0689:
85 FE

STA
PT

068B:
A5 59

LDA
BASIS+1

068D:
85 FF

STA
PT+1

068F:
A9 17

LDA
#23

0691:
BD E6 06

STA
ROW

0694:
A9 27
ROWLOOP
LDA
#39

0696:
8D E7 06

STA
COLOMN

0699:
A2 00

LDX
#0

069w:
A1 FE
LOOP

LDA
(PT,X)

069D:
29 7F

AND
#$7F

069F:
E9 60

CMP
#$60

06A1:
80 02

BCS
LOOP1

06A3:
69 20

ADC
#$20

06A5:
20 D1 06
LOOP1

JSR
OUTCHAR

06A8:
E6 FE

INC
PT

06AA:
D0 02

BNE
*+4

06AE:
E6 FF

INC
PT+1

06AE:
CE E7 06

DEC
COLUMN

0681:
l0 E8

BPL
LOOP

06B3:
A9 0D

LDA
#13

06B5:
20 0l 06

JSR
OUTCHAR

06B8:
EE E6 06

DEC
ROW

06BB:
10 D7

BPL
ROWLOOP

06BD:
60

RTS

068E:
48 41 4E

06C1:
53 20 57

06C4:
41 47 4E

06C7:
45 52 20

06CA:
32 37 2E

06CD:
37 2E 38

06D0:
31

AUTHOR
ASC
"HANS WAGNER”

06D1: AC l3 D0
OUTCHAR
LDY
$D013

06D4:
DO FB

BNE
OUTCHAR

06D6:
A0 80

LDY
#$80

06D8:
09 80

ORA
#$80

O6DA:
8D 01 D3

STA
$D301

06DD:
29 7F

AND
#$7F

06DF:
8D 01 D3

STA
$D301

06E2:
8C 01 D3

STY
$D301

06E5:
60

RTS

06E6:
17

ROW

DFB
23

06E7:
27

COLUMN
DFB
39

06E8:
41

COUNT

DFB
6S

06E9:
FF

LCOUNT
DFB
255

06EA: FF

LINLEN
DFB
255

PND

EQU
*

BASIS

$58

PT

$FE

PST

$0600

HANDLTAB
$061F

DUMMY

$062B

OPEN

$062C

RTS1

$0640

WRITE

$0643

CARR

$0647

NOFF

$065F

PRlNT

$0664

INIT

$066E

BASIC

$0686 UNUSED
NORMAL
$0687 UNUSED

ROWLOOP
$0694

LOOP

$069B

LOOP1

$06A5

AUTHOR
$06BE UNUSED

OUTCHAR
$06D1

ROW

$06E6

COLUMN
$06E7

COUNT

$06E8

LCOUNT
$06E9

LINLEN
$06EA

PND

$06EB

Program description:

Address

0600-061E
end of the booting start

0610-082b
HANTAB for the ATARI OS

062C-0642
opens the ports for output

0643-066D
printer driver

066E-0685
initialize. Now LPRINT and PRINT “P” use thee printer

driver.

0686-06BD
Label BASIC starting address for a call by BASIC.

Label NORMAL starting address for a call by assembler.

068E-06D0
Copyright notice

06D1-06E5
Subroutine, brings one ASCII character from the accumulator to the printer

O6E6-06EA
values for the various counters

ROW sets the number of horizontal lines to 23.

COLUMN sets the number of characters of one line to 39.

COUNT sets the number of lines between two formfeeds to 65

LCOUNT, LINLEN contains the actual para​meters for the number of characters and lines.

Boot-Routine

PST

EQU
$0600

PND

EQU
$0700

FLEN

EQU
PND-PST+127/128*128

ORG
$6000

6000:
A2 10
BOOTB

LDX
#$10

6002:
A9 03

LDA
#3

6004:
9D 42 03

STA
$0342,X

6007:
A9 08

LDA
#8

6009:
9D 4A 03

STA
$034A,X

600C:
A9 80

LDA
#$80

600E:
9D 4B 03

STA
$034B,X

6011:
A9 4A

LDA
#CFILE

6013:
9D 44 03

STA
$0344,X

60l6:
A9 60

LDA
#CFILE/256

6018:
9D 45 03

STA
$0345,X

6018:
20 56 E4

JSR
$E456

601E:
30 29

BMI
CERR

6020:
A9 0B

LDA
#$0B

6022:
9D 42 03

STA
$0322,X

6025:
A9 00

LDA
#PST

6027:
9D 44 03

STA
$0344,X

602A:
A9 06

LDA
#PST/256

602C:
9D 45 03

STA
$0345,X

602F:
A9 00

LDA
#FLEN

6031:
9D 48 03

STA
$0348,X

6034:
A9 01

LDA
#FLEN/256

6036:
9D 49 03

STA
$0349,X

6039:
20 56 E4

JSR
$E456

603C:
30 0B

BMI
CERR

603E:
A9 0C

LDA
#$0C

6040:
9D 42 03

STA
$0342,X

6043:
20 56 E4

JSR
$E456

6046:
30 01

BMI
CERR

6048:
00

BRK

6049:
00

CERR

BRK

604A:
43 3A
CFILE

ASC
"C: “

604E:
9B

DFB
*9B

PST

$0600

PND

$0700

FLEN

$0100

BOOTB
$6000
UNUSED

CERR

$6049

CFILE
$604A

 If you want to use this program, it has to be bootable. Therefore you must enter both programs and start the boot routine at address $6000. This will create a bootable cassette, you can use afterwards in the following manner, to enter the SCREENPRINT in your comouter.

· turn off the computer

· press the start key

· turn on the computer

· release the start key

· press PLAY on the recorder and

· press RETURN

BASIC or assembler-editor cartridge must be in the left slot of your ATARI computer.

COMMENT:

DIFFERENCES BETWEEN THE ATARI EDITOR/ASSEMBLER CARTRIDGE AND ATAS-1 AND ATMAS-1

 The programs in this book are developed using the ATMAS (ATAS) syntax. In the following I would like to explain the difference of some mnemonics of the ATARI Editor/Assembler cartridge and the Editor/Assembler and ATMAS-1 from Elcomp Publishing.

Instead of the asterisk the ATAS uses the pseudo op-codes ORG. Another difference is that the ATAS is screen oriented (no line numbers needed). Instead of the equal sign ATAS uses EQU. Additionally ATAS allows you the pseudo op-codes EPZ: Equal Page Zero.

There is also a difference in using the mnemonics regarding storage of strings within the program.

 ATARI

 ELCOMP

- BYTE "STRING"
=

ASC "STRING"

- BYTE $

=

DFB $ (Insertion of a byte)

- WORD

=

DFW (Insertion of a word Lower byte,

higher byte)

The end of string marker of the ATARI 800/400 output routine is hex 9B.

In the listing you can see, how this command is used in the two assemblers:

ATARI Assembler:
- BYTE $9B

ATMAS from ELCOMP - DFB $9B

Depending on what Editor/Assembler from ELCOMP you use, the stringoutput is handled as follows:

1. ATAS 32K and ATAS 48K cassette version

LDX # TEXT

LDY # TEXT/256

TEXT ASC "STRING"

DFB$9B

2. ATMAS 48K

LDX # TEXT:L

LDY # TEXT:H

TEXT ASC "STRING"

DFB $9B

There is also a difference between other assemblers and the ATAS-1 or ATMAS-1 in the mnemonic code for shift and relocate commands for the accumulator.

(ASL A = ASL) = OA

(LSR A = LSR) = 4A

ROL A = ROL = 2A

ROR A = ROR = 6A

The ATMAS/ATAS also allows you to comment consecutive bytes as follows:

JUMP EQU $F5.7

$F5 = Label Jump

$F6 and $F7 are empty locations.

This is a comment and not an instruction.

1
44

