Courtesy to all ATARI 8 Bit Users

PROGRAMMING
LANGUAGE

Tutorial Manual

Copyright © 1985
by
Kyan Software
1850 Union Street, Suite 183
San Francisco, CA 94123

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

Kyan
Dear Friend:

Thank you for purchasing Kyan PASCAL. We believe you will find it to be the most powerful and complete
PASCAL implementation available for the Apple Il and ATARI family of computers. This manual is intended to help you learn
the PASCAL language and master the many features and functions of your Kyan PASCAL compiler.

Kyan PASCAL includes all the sophisticated PASCAL functions needed to develop professional quality programs.
The built-in assembler, linking/chaining functions, and other advanced features enable you to write very large PASCAL pro-
grams and run them at the maximum speed possible on the Apple / ATARI 6502 microprocessor. We believe you will find
that KyanPASCAL can satisfy all of your programming needs.

Kyan PASCAL is not copy-protected and we recommend that you make and use back-up copies of the software.
We also allow you to copy and use Kyan's PASCAL library in any software you develop with no fee or separate license
agreement. The only requirement is that you acknowledge Kyan's copyright on this software on your magnetic media and in
your documentation. This is all explained in more detail by the enclosed license agreement.

Thanks again for purchasing this software from Kyan. If you have any questions or suggestions for improvement,
please let us know. We are always striving to improve our software and we welcome comments (both good and bad) from

our customers. We hope to hear from you.
~ elyégzé?w/m\

TEE/sk

Thomas E. Eckmann President Kyan Software

kyan software 1850 union street #183 san francisco, california 94123 (415) 775-2923

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 2

Kyan PASCAL Version 1.0

LICENSE AGREEMENT

When you purchase and use Kyan PASCAL, you acknowledge that:

A. Kyan Software Inc. has a valuable proprietary interest in this Program and documentation; you are receiving a limited,
non—exclusive license to use the Program and documentation; and, Kyan Software Inc. retains title to the Program and
documentation.

B. You may not copy or reproduce the Program or documentation for any purpose other than to make backup copies as
provided for under U.S. Federal Copyright Law.

C. You, your employee and/or agents may not distribute or otherwise make the Program or documentation available to any
third party.

D. If the Runtime Library or any other portion of this Program is merged into or used in conjunction with another program, it
will continue to be the property of Kyan Software Inc. However, Kyan Software Inc. hereby grants you a non-exclusive
license to merge or use portions of the Program in conjunction with your own programs provided that you acknowledge
Kyan Software's copyright and ownership of these portions in a prominent location on the magnetic media and in the written
documentation for your software. (Please contact Kyan Software Inc. for more information).

E. This license is effective until terminated. You may terminate it at any time by destroying the Program and documentation
with all copies, modifications and merged portions in any form. It will also terminate if you fail to comply with any term or
condition of this Agreement. You agree upon such termination to destroy the Program and documentation together with all
copies, modifications and merged portions in any form.

COPYRIGHT NOTICE

Kyan Software believes you should be aware of your rights under the U.S. Federal Copyright Law. We quote for you the
provisions of Section 117 of the Copyright Law, which contains limitations on the rights of copying and adaptation given to
owners of computer programs:

"Not withstanding the provisions of Section 106, it is not an infringement for the owner of a copy of a computer program to
make or authorize the making of another copy or adaptation of that computer program provided:

(1) that such new copy or adaptation is created as an essential step in the utilization of the computer
program in conjunction with a machine and that it is used in no other manner, or

(2) that such new copy or adaptation is for archival purposes only and that all archival copies are destroyed
in the event that continued possession of the computer program should cease to be rightful.

Any exact copies prepared in accordance with the provision of this section may be leased, sold, or
otherwise transferred, along with the copy from which such copies were prepared, only as part of the
lease, sale, or other transfer of all rights in the program. Adaptations so prepared may be transferred
only with authorization of the copyright owner.”

SUBJECT TO THOSE LIMITATIONS, KYAN SOFTWARE GRANTS THE PURCHASER OF THIS PRODUCT A LICENSE
TO USE THIS SOFTWARE UNDER THE TERMS DESCRIBED IN THE FOLLOWING LICENSE AGREEMENT.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 3

PREFAGCE ...ttt ettt ettt ettt et 7
INTRODUGCTION ...ttt ettt sttt nne e .8
EDITOR AND COMPILER INSTRUCTIONSooiiiiiiiieicsereee s 9
Creating a File, an Example 9
End of Editing........cccocvviviiiiiiie ... 10

Files, Pathnames, and File Namesccoooiiiiiiiiei e
CUISOr MOVEMENT ...ttt et ettt e et e e e enbe e e e neeeens
Delete COMMEANGSccuviiiiiiie ettt e e e e et e e s nnee e e neeeesnneeeenneeas
Search For and Search/Replace
EditatLine - N.......cocovirnienne
INCIUAING @ Fle...ciii e
BloCk MOVE COMMEANGScoviiiiiiiiiie ettt
Editing HELLO, an Example ...
Compiling a Filecccceeveeneee.
Apple Compiler Options....
ATARI Compiler Optionsccccceeeviueenne
Running Files and File Name EXtensionscccocieiiiiiiiiiiiicieceseeee

Printing @ Programcooeei ot 14
Compiler Error Messages, an EXample ... 15
To Halt a Program While It Is Running ...
Apple RAM diskKccooccuviereeeiiiiiieeees
ATARI RAM disk

List of Compiler/Assembler Commands .
Assembler/Compiler Options — ATARL........coiiiiiiii e
Other COMMANGSccooiriiieiiiieee et

PART | : SAMPLE PROGRAMS ... 20

EGO PROGRAM......otittiiitiitiee ettt bttt ettt sa et st nbesaeen
Program Statement and Reserved Words .
Declaration and Program BOdYcooiiiiiiiiiiiiiee e
ANAIYSIS OFf EQO ..ttt

CONSTRUCTION PROGRAM ..ottt sttt st 21
Analysis of Construction ..
Algorithm........c.ccoeeenene
Identifiers........ccoocvevienincenn. e 21
Write and Read COMMANGAScooouiiiiiiiiiiee e 22
Input, Output and Printing the OULPULcociiiiii 22
ReadIn

PROGRAM TO FIND THE AVERAGEoooeie et 23
ReadIn and Writeln 23
Real and Integer Data Types ..
Trunc, Round and Maxint

ArthMEtic OPEratorsooiiiiii e 25
SOCIAL SECURITY PROGRAM,
Relational OPEratorscooiii i
The IF-THEN Statement
The Assignment Statement
ALPHABETIZE PROGRAM ...ttt e e sne e nneeneen 26
FirstWord Algorithm
StriNg @Nd Char TYPES ..cooueiieiiiee ettt e e s ennee e saneeas 27
WHILE ettt ettt et e te e e s et ene e e e sbeeneeneenne 28
FACTORIAL PROGRAM ...ttt ettt 28
ANAIYSIS Of PrOGramcoceiiiiiiieiiiceeee et 28
For Loops and Loop Control Variables............ccccuiieeiiiieiiiie e see e 29
BOOLEAN PROGRAM 29
Boolean Data Type 29
Div and Mod Operators . e 29
B00IEAN OPEIAtOrScccuiiieeiiiee ettt e et e e e e et e e e sra e e e naeeeanaeaeennaaeanns 30

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

OPErator PrECEAEBNCEocuiiieeeiie ettt et e et e e saneeeeteeeenneeeennees 30

MULTI-DIGIT HEXADECIMAL CONVERSIONoooiiiiiiiiiiieiirieeeeeseee e 30
AlGorithm ..o
REPEAT UNTIL....ooiieiinieieneceeeeee
Scalar Types and Boolean Variables ..
Subrange TYpesccccvevvveeneeneenenenn

PROCEDURES ...ttt ettt ettt et e et e st e e seesseeenseeseesnneenseenseenns
Declaring and Executing Proceduresccoouiiiiiieiiiieeiiee e
Parameter Lists, Actual and Formal
Variable and Value Parametersccoouiiiiiiieiiiie et seee e
Correspondence Between Actual

and FOrmal Parameterscoooouiiiiiie ettt 36
Functions
Declaring FUNCHIONSooiiiiiiiiie et 36
The FUNCHON Oddooooeiiiiee et e e e e e et e e e e s enarees 37
Global and Local Variables 37
Nesting of Functions and Procedures .
Global and Local Typescccceevveeennee e 39
Forward References 39
Unconditional Branch: GOTOccociiiiiiieccie et 40

ARRAY'S ettt ettt et
Arrays of Arrays and Multidimensional Arrays..
Adding Two Multidimensional Arrays
The Array As @ Parameteroocuiiiiiiiiiiiee e
Program EXamPIETooo i
Program Example2
End of LiN€ ..oooveeiiiieeieeeee e
Recursive Functions and Procedures

(07070} V7o IV = TSP

RECORDS ...ttt et r et r e s e e e nrenee e e nre e 46
CoPYING @ RECOM ...ttt e e e s e e e e e nee 46
Program Absolute..........
Program ElapsedTime...
Arrays of Records 48
WITH e
Variant RECOIScouiiiiiiiiii 49

Operations 0N Setscccceevvvieiiiieevie e
Using Sets to Examine the Members of an Array

FILES .ottt et r e 52
File Declaration 52
Writing to a File....... . 53
Program Store(List) 53
Reading a File 53

Text Files 54
FilesS Of RECOIAScccuviiiiiiee ettt e e e e s eneaeenree e e 55
RANAOM FlES ..ot e e e e e e e e s e saneeeeas 55

INCLUDE ...ttt ettt e et e et sae e e aeee et esaeen e e e neeeneeeennes 59
How to Include Procedures and Functions from other Filesc.cccocoiiiiiiiiiene 59
Including Files, Other AppliCations...........coocuiiiiiiiii e 60

THE ASSEMBLED PROGRAM AND ITS USES..

Assembly Language Routines
ASSEMDIEr DIFECHVESooiiiieeeiie et e
How to Use Assembly Language Routines to Modify PASCAL Variables................. 61

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

Predefined Labels...........c.ooo it 62
Passing Parameters through Chainccoociiiiiiiiiii e 62
How to Chain Source Code Filescccooiiiiiiiiiiiie e 62

GRAPHICS (APPIE 11 ONIY)..etiiiiiiie ettt 63
High Resolution GraphiCscooiiiiiiii e 63
LiNg SEGMENTSoiiiiiiiiiii e 63

STRING MANIPULATION ...ttt ittt sttt 64
RS (13T [TP U SR PPPTPTRRPPROP 64
Length.... ... 64
CONCAL ...ttt 65
Index......... 65
T8 o1 4T o OO PR PR UROPRPR 65

APPENDIX A

COMPILER, ASSEMBLER AND RUN-TIME ERROR MESSAGES...........cccccenininierennn. 66

APPENDIX B

QUICK GUIDE TO KYAN PASCAL ..ottt 69

APPENDIX C

SPECIFICATIONSttt ettt nr e ene e 71

WARRANTY ettt ettt ettt et e ettt e et eae e e s e ee e emeesaeene e e neeeneeeenees 73

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

Kyan PASCAL Version 1.0

PREFACE

PASCAL, A Programming Language provides beginning programmers with a step-by-step introduction to PASCAL, and
advanced programmers with a convenient reference to the language.

The first chapter, EDITOR AND COMPILER INSTRUCTIONS, explains how to enter, edit, and compile a PASCAL
program. This material must be read prior to actual programming.

Readers with no previous experience with PASCAL should read the chapters in order. It is recommended that the example

programs be entered, compiled, and run. It is not essential that every line be duplicated from these programs. In fact,

rewriting the example programs not only is instructive but also can improve them.

Programmers who are already familiar with PASCAL need only read the sections on topics they wish to review. Appendix B
provides a quick review of PASCAL vocabulary.

Addition by the Re-Editor

This manual is brought to you in the intention to keep the knowledge about a great product from former kyan software within
the ATARI community.

Even after more than 20 years it is fascinating to discover the power of the language and the machine in a setting which
matches a state of the art home computer set in the mid eighties of the 20" century.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 7

Kyan PASCAL Version 1.0

INTRODUCTION

The history of PASCAL goes back to the late 1960s, when Niklaus Wirth, a professor of computer science, decided that a
new approach -- a new language -- was needed for teaching programming. Wirth introduced PASCAL as a formal language
in 1971.

The two principal aims of PASCAL are "..to make available a language suitable to teach programming as a systematic
discipline based on certain fundamental concepts clearly and naturally reflected by the language.." and "to develop
implementations of this language which are both reliable and efficient on presently available computers" (Jensen and Wirth,
"PASCAL User Manual and Report").

PASCAL has become a widely used language for both elementary and advanced programming. Its popularity derives from
the clarity of programs written in it and the efficiency with which it can be implemented within the computer.

Kyan PASCAL is especially efficient in this regard, because the run time code and the compiler itself are written in assembly
language, the language of the microprocessor integrated circuit. Unlike some other compiled languages, Kyan PASCAL
includes the necessary tools for advanced programmers who wish to include assembly language routines in their PASCAL
programs.

PASCAL is a self-documenting and self-structuring language. Top-down programming and modulization are natural
outgrowths of its features. These features include, among others, user-defined functions and procedures of which modules
are built.

Separation of the declaration section from the program body also enforces good programming technique. All the information
on constants, types of variables, and names of variables and constants appears, in a single section rather than being spread
throughout the program.

Kyan PASCAL provides features that help the programmer to find the syntax errors that account for over 90% of the errors
in programming. Over 30 error messages for syntax are in the compiler. These not only tell the programmer what types of
errors were made but also on which lines the errors occurred.

Kyan PASCAL does not stop looking for errors or lose synchronization when an error is found. Instead, although compilation
halts, error detection continues and all the errors are displayed at one time.

One final reason for using PASCAL is its portability. PASCAL, one of today's most popular languages, is implemented on
nearly every computer on the market. Kyan PASCAL is compatible with standard PASCAL. Programs and program modules
written in Kyan PASCAL (using standard procedures and functions) will run on a multitude of computers: a programmer can
develop software on a home computer, transport it to many other machines, and run the programs immediately.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 8

Kyan PASCAL Version 1.0

EDITOR AND COMPILER INSTRUCTIONS

Kyan PASCAL consists of two programs: the editor program (ED) and the compiler/assembler program (PC). When your
Apple' (ATARI)? is booted (to boot the ATARI, push the <OPTION> key during power-up) with a KyanPASCAL disk in the
drive the following will be displayed:

KYANPASCAL VERSION 1.0 COPYRIGHT

1985 BY KYANSOFTWARE

1850 UNION STREET, SUITE 183

SAN FRANCISCO, CA 94123
>

If you have an Apple Il, to transfer the editor program from the disk to memory, type.ED:
>ED
followed by <RETURN>. Striking the <RETURN> key tells the computer that you have completed your command.
If you have an ATARI, to transfer the editor program from disk to memory, type D1:ED:
>D1:ED
followed by <RETURN>. All commands that require disk access on the ATARI, must have the prefix "D1:—" which stands for
disk drive #1. If you have more than one disk drive, this prefix can change to D2, D3, etc.
The prompt symbol (>) is a signal from the program, in this case from Kyan PASCAL that the computer is waiting for your

command. Unless instructed otherwise, you should always press <RETURN> when entering commands into the computer.

Your Apple [ATARI] computer will search for the editor and load it. When loading is completed the following message will be
displayed:

PATHNAME?
[FILE NAME? if your computer is an ATARI)

Addition by GoodByte: Using a different DOS capable of handling subdirectories will also require a pathname. Please
keep this in mind while studying this manual.

Creating a File,, an Example
Suppose the name of your program is TRIAL enter:

PATHNAME? TRIAL

[FILE NAME? D1:TRIAL if your computer is an ATARI]
Because the program trial is new the editor will prompt:
FILE NOT FOUND. PRESS ANY KEY

When you press any key the screen sill become blank. Notice that there is no prompt. All entries that you make will become
part of your program file (TRIAL) just as you see them on the screen.

Enter a string of six X:
XXXXXX

Follow the instructions in the next section to save TRIAL.

1 Trademark of Apple Inc.
2 Trademark of ATARI Inc.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 9

Kyan PASCAL Version 1.0

End of Editing

The first step in ending editing is to press the <ESC> key. This will put you in a mode in which you can use the "special
editor functions.” A help menu will be displayed. To leave this mode and resume normal editing press. the <ESC> key
again.

If you wish to save TRIAL (the example program above) type <ESC> S. This is one of the three ways to end editing:
<ESC>S (Save and Resume)
<ESC>Q (Quit without Save)
<ESC> X (Save and Exit)

If you typed <ESC> S you saved the program you were editing and have returned to the editor so that you could add more
lines.

If you typed <ESC> Q none of the changes or entries you did were saved. You just quit and left the file in the state it was
before you started editing.

If you typed <ESC> X the prompt (>) reappeared because you saved your changes, left the editor to edit a different program
(or to compile).

Remember before creating or saving programs, you should make backup copies of your KyanPASCAL disk.
If you own an ATARI, you can re-enter the editor by typing "!I" and (Return> after the prompt.

Files, Pathnames and File Names

Programs such as the TRIAL program above are stored in separate files. Each program added to the disk must have its own
path or file name. An Apple pathname consists of 64 or fewer letters and/or characters. An ATARI file name consists of DI:
followed by an 8 character name followed by a 3 character extension (e.g., D1:XXXXXXXX.YYY). Spaces are not permitted
within either pathnames or file names.
PASCAL names, i.e., names of variables, types, etc., in. a PASCAL program are not the same as ProDOS pathnames or
DOS 2.5 file names!
To change the name of the file you are working with, type <ESC> P and computer will prompt:

PATHNAME:

[FILE NAME: if your computer is an ATARI]
Enter the new name, e.g. "Account’, of the file followed by a carriage return and <ESC>:

PATHNAME: Account <RETURN> <ESC>

FILE NAME: D1:Account <RETURN> <ESC> [ATARI Version]
It should be noted that the new file name will be entered immediately after <RETURN>, whether or not the final <ESC> is
typed. The final <ESC> causes the computer to leave the special functions mode.

Cursor Movement

Kyan PASCAL includes an easily learned, full-screen, insert mode editor. Anywhere you move the cursor, a letter, a
number, a space, or even a new line break may be added. This greatly facilitates editing your program.

All cursor movement commands are a combination of the [CNTL] key (Note: # is a shorthand notation for [CNTL] so [CNTL]-
S is the same as 7S), and another key. The combinations are:

S move the cursor back 1 space (left)

D move the cursor forward 1 space (right)
AE move the cursor back 1 line (up)

AX move the cursor forward 1 line (down)
A move the cursor back 1 word (left)

AF move the cursor forward 1 word (right)
AR move the cursor back 20 lines (up)

AC move the cursor forward 20 line (down)
AT move the cursor to the top of the file

AV move the cursor to the bottom of the file

Many Apple and ATARI computers have cursor (arrow) keys. You may also use these to move the cursor right or left one
space and up or down one line.

If you hold the cursor keys pressed down the cursor movement will be repeated until you release the keys.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 10

Kyan PASCAL Version 1.0

Delete Commands

To delete a letter, word or line use the following commands:

G delete the letter coincident to the cursor
Q delete the letter to the left of the cursor
AY delete the line in which the cursor is positioned

The delete key , if present, accomplishes the task as *Q.

ind String and Change String (Search and Replace)

A string is a combination of characters (letters, numbers, and symbols) and spaces. A string may be a certain word or a
group of words.

Sometimes you may wish to find a certain string within a program. Or you may wish to replace a string with another string:

<ESC> enter the special editor functions

A set "A" (designate the string to be found)

B set "B" (designate the replacement string)
C change "A" string to "B" string

AW search from cursor forward to end of file.
4 search from cursor back to beginning of file

To find the occurrence of any string enter <ESC> A and the editor will prompt:

A
Next enter the string to be found. For example, if "look out" is to be found, enter "look out" followed by a carriage return:
A:look out <RETURN>
The final two steps are to leave the special editor functions mode by typing the <ESC> key and then typing "W or *Z. The
cursor will go to the first occurrence of "look out" ahead of the present cursor position. To find the second occurrence, enter
AZ again. This process can be repeated until all occurrences of "look out" have been found.
Maximum string size is 40 characters.
To substitute a new string for any string both the old ("A") string and the new ("B") string must be designated. Use the "A"
and "B" commands listed above. The "A" string consists of the words or lines the way they are before the substitution. The
"B" string consists of the new words or lines that will take their place.
When both strings have been set, type the "C" command. The editor will prompt:
CHANGE ALL STRINGS OR SOME (A/S/Q)?
Choose "S" to have the editor stop at each possible string and question whether or not to make that substitution.
Choose "A" to replace all strings in the file. Choose "Q" to quit without making any substitutions.

Substitutions always start at the top of the file and continue to the end.

To replace the string "first" with the string "# 1" everywhere in the file follow these steps:

1. Type: <ESC> A

2. Prompt appears: A:

3. Type: first <RETURN>

4. Type: B

5. Prompt appears: B:

6. Type: #1 <RETURN>

7. Type: C

8. Prompt appears: CHANGE ALL STRINGS OR SOME (A/S/Q)?
9. Type: A

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 11

Kyan PASCAL Version 1.0

Edit at Line - N
To edit a specific line use the command:
<ESC> G

When the editor will prompts "LINE NUMBER" enter the number of the line, which you wish to change. For example, if the
compiler indicates that you have an error in line 3, enter 3 after the prompt:

LINE NUMBER: 3 <RETURN>
Remember, if you add or delete lines before the one you are searching for, then the line number of that line will be
increased or decreased, accordingly.
Including a File
If you wish to include one file in another use the <ESC> | command. When you enter <ESC> | the editor will prompt:
PATHNAME OF FILE TO INSERT (BLANK TO QUIT)
FILE NAME OF FILE TO INSERT (BLANK TO QUIT) (ATARI Version]
If you enter the pathname [or file name] of an existing file it will be inserted into the file you are editing. ATARI users,

remember to include disk prefix.

Block Move Commands

You may take any section of the program, and save it as a block. To mark a block: 1) Move the cursor to the character or
space that is at the beginning and type *O. Notice how the entire block is displayed in inverse video as you move the cursor.
2) Go to the last character or space in the block. Type O to mark the end of the block.

Then entire block will seem to disappear. Actually, it is saved in memory so that it can be moved to any location you choose.

Move the cursor to the position where you wish the block to be inserted.

Type P and the block will be "pasted" in the new position. These commands are sometimes called cut and paste. As many
copies as you wish may be pasted.

The block move commands are:

first AO marks the start of block
second “O marks end of block and puts block into memory (cut)
AP insert the block (paste)

Editing HELLO, an Example

Enter: ED
PATHNAME?HELLO
or: D1:ED
FILE NAME?HELLO [ATARI Version]

Next enter the following program: PROGRAM HELLO;
BEGIN
WRITELN('Hello, world")
END.

Follow the instructions in the following two sections to run the program, HELLO.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 12

Kyan PASCAL Version 1.0

Compiling a File

Before a PASCAL program can be run, it must be compiled and translated into machine language. Compiling the file is the
first part of this process. The second part is called assembling. The result of compiling your PASCAL (source code) file is
called the assembly code file. This must further be translated into numerical code by the assembler and its result is called
the object code. These terms will be used below.

To compile and assemble a program, exit the editor using <ESC>X. Enter the compiler/assembler program by typing PC
followed by <RETURN>:

>PC <RETURN>
[>D1:PC <RETURN> if your computer is an ATARI]
The disk drive light will go on and when the compiler/assembler program has been loaded the PC> prompt will appear:

PC>

Apple Compiler Options

Kyan PASCAL features several options which can be selected when you are ready to compile your program. The format for
selecting these options is:,

PC> ProgramName-L-Sn-O (RETURN>

The "-L" option tells the computer that you want a listing of the assembly language program. If you omit the "-L", an
assembly language listing will not be generated. If you do specify a listing, it will be sent to the same location as the error
message listing (see next paragraph).

The "-Sn" option tells the computer where you want the error list and/or the assembly language listing to be sent. (Errors are
syntax problems in your program, which must be corrected before the program will run; the compiler automatically counts
and lists these errors). The "n" refers to the slot number on the Apple Il (slot numbers are fully explained in your Apple Il
owners manual). Slot 0 is used to send the listing to the monitor.

The "-O" option allows you to omit the generation of an object file or to specify a new pathname. If you specify "-O", an
object file will not be generated. If you do not specify "-O", an object file with be generated with the same pathname as the
source file (with a .O after the name to designate object file). If you want to assign a new pathname to the object file, then
specify "-O pathname". Remember, an object file is necessary if you want to run the program.

When the <RETURN> key is pressed, the compiler/assembler goes to work.
If there are no errors, an object file will be generated and the prompt will reappear on the screen. If errors are detected, a
listing will be generated and sent to the location you have specified.

To illustrate the compiler options, let's compile the HELLO program, generate an object file, and send the assembly
language listing (or a listing of any syntax errors) to the printer in slot #1.

1.Prompt: >

2.Type: PC

3.Prompt Appears: PC> (* Wait for Compiler to Load *)
4. Type: HELLO-L-S1 RETURN

Assuming no errors have been detected, you can now run the HELLO program by following the instructions on the next
page.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 13

Kyan PASCAL Version 1.0

ATARI Compiler Options

Enter the name of the PASCAL program you wish to get ready to run followed by the compiler options you choose:
PC> D1:ProgramName-L-E-O <RETURN>

The "L" option tells the computer whether you want a listing of the assembly language program and where it is to go. If you
do want an assembly language listing you must use "L" or "LP." When L is chosen the listing will go only to the CRT screen.
If LP is chosen the listing will go to the screen and printer.

The "O" option allows you to not generate an object file or to specify its name. 1) If you do not specify "-O" the object file will
be generated with the same file name as the source file. 2) If you want a different file name than the source file specify "-O
file name." 3) The object file will not be generated, if the "O" option is included without a name. An object file is necessary if
you wish to run the program.

The "E" option tells the computer where you want the list of errors to be sent. Errors may occur, for example, when you
leave off some necessary PASCAL punctuation. If there are errors, they will be counted and listed, and the program cannot
be run.

When the <RETURN> key is typed, the compiler/assembler will start working. If there are no errors and an object file was
generated, then the program can be run immediately after the prompt (>) appears signaling the end of compilation and
assembling.

Compile HELLO and save the results on your floppy disk. As an example of using compiler options, suppose you wished to
send the assembly code and error listing to ATARI slot #1, which is the usual slot for the printer:

1. Prompt: >

2. Type: D1:PC

3. Prompt appears: PC>

4. Type: D1:HELLO-L-E <RETURN>

Follow the instructions in the next section to ATARI, you can re-enter the compiler by typing compiler exit prompt.

Look at the file directory; if you have followed the instructions in the examples it should now include HELLO and HELLO.O.
The PASCAL file is HELLO, and HELLO.O is the object code file which is also the system file. You may now make copies of
HELLO.O and run these using your Apple without Kyan PASCAL.

Enter the pathname or file name if you have an ATARI computer) of the program with the object code extension after
compilation and assembly.

>FileName.O [> D1:FileName.O for ATARI]

A system file is also a stand-alone file in that a compiled and assembled PASCAL program can be run without using the
Kyan PASCAL disk. There is one important precaution: If you have an Apple |l the Kyan PASCAL library file "LIB" must be
in the same subdirectory as the file you are going to run. If you have an ATARI, "LIB" must be in the same directory as the
file you are going to run.

Run the program from the last example, "HELLO.O:"

?HELLO.O [> D1:HELLO.O for ATARI] The result should appear on your screen:

Hello, world

Printing a Program

Any PASCAL source code file may be printed using PRINT.O. *For example, to print the program HELLO enter:
>PRINT.O [> D1:PRINT.O for ATARI]

When PRINT.O has loaded, the computer will prompt PATHNAME? [FILE NAME? for the ATARI]. Enter the name of the file
to be printed.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 14

Kyan PASCAL Version 1.0

Compiler Error Messages, an Example

Use the cursor control keys to go to the end of the line "WRITELN('Hello, world')." Then add a period to the end of the line.

Now move the cursor to the space after Hello, in the same line. Next enter the special command <ESC> I. Add the file
called TRIAL created earlier (Creating a File, an Example):

1. Type: ESC I
2. Prompt Appears: PATHNAME: [File Name: for ATARI]
3. Type: TRIAL <RETURN> [D1:TRIAL for ATARI]

Notice that the string of six X (from TRIAL) has been added: WRITELN('Hello, XXXXXXworld').
You have now entered two changes in the program HELLO and are ready save the new version.
4. Type: <ESC> X

Try to compile and assemble the edited version of HELLO.
PC>HELLO <RETURN>
[PC>D1:HELLO <RETURN?> if you have an ATARI computer]

Because of one of the changes you made, there will be an error. The error listing will appear on the screen:
0001 WRITELN('Hello, XXXXXXworld").
(1)";" OR "END" EXPECTED

The line with the error is displayed with its line number. The "1" underneath the line indicates where the error occurred. A
description of the error is also displayed.

Sometimes, a single error in a program (such as a missing semicolon after a VAR declaration) will generate multiple errors
following it.

There may be too many errors to display at one time on the screen. To see them all, send the error listing to the printer.
Go back to the edit mode and correct the error you introduced. Try compilation again. Now there should be no error

message. (However, a program with no errors on compilation may still be faulty. For example, programming the area of a
circle to be "r*r" instead of "3.14*r*r" is an error the compiler will not detect.)

—

Halt a Program While It Is Running

If a program is in an endless loop or if you simply want to stop it --
For Apple Il computers

Press <CTRL> in combination with <RESET>.
For ATARI computers:

Press <BREAK>. The stack containing the return addresses will be displayed followed by the processor
status and the accumulator contents.

Apple RAM Disk

128K Apple computers include a 64K RAM disk. Because this area of memory appears to the operating system as a disk
drive, it may be used to store the files you will be using during compilation and assembling. The main reason to move these
files from floppy disk to RAM disk is that it will greatly increase the speed of compilation and assembling.

The RAM disk volume name is preset by the ProDOS operating system as "RAM". Thus, any time you want to copy a file to
or from RAM disk, you must use the prefix "/RAM".

You can store files (e.g.: ED, E80, LIB) from the Kyan PASCAL disk or your own source code files on the RAM disk. To
move files from the Kyan PASCAL disk to the RAM disk, you can use the Load and Save commands in the Kyan Editor or
the "Copy File" procedure in the ProDOS Filer. (Note: if you want to run your object code programs which are stored in
RAM, be sure to also copy the Library file (LIB) and any "included" files onto the RAM disk.

Since, you will be operating with files that are stored in the RAM disk, you may want to use the ProDOS Filer to change the
default prefix to "/RAM".

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 15

Kyan PASCAL Version 1.0

However, since the Kyan compiler and assembler are still on the floppy disk, you must now enter a full pathname when you
call them. For example, instead of typing "PC" to call the compiler/assembler, you must now type "/Kyan.PASCAL PC"
<RETURN> .

CAUTION: When you are through programming, don't forget to copy back to disk the last version of your source and
object code files.

ATARI RAM Disk

ATARI XE computers include a 64K RAM disk. Because this area of memory appears to the operating system as a disk
drive, it may be used to store the files you will be using during compilation and assembling. The main reason to move these
files from a floppy disk to RAM disk is that it will greatly increase the speed of compilation and assembling.

The DOS disk number is D8: (Addition by GoodByte: And even D9: or more with some DOSses). It can be used as any
other disk except it can contain only 64K bytes of data and data is lost on power down.

To move your source code from a disk file to the RAM disk, use the COPY command. You can also move the library file
(LIB), Compiler, and editor file (ED) to the RAM disk. (Remember, to execute your program from the RAM disk, there must
be a copy of the LIB file in D8.) When you are ready to compile, your files will be on Device 8.

(Caution: Don't forget to copy back to disk the last version of your program source and object files.)

ProDOS

Kyan PASCAL for Apple Il computers includes ProDOS, a powerful operating system developed by Apple for use with the
Apple Il +/e/c. (Please refer to the warranty section for limitations of the use of this licensed copy of ProDOS.)

ProDOS commands may be used at any time the prompt (>) is present. While it is beyond the scope of this manual to
describe all the features of ProDOS, we encourage you to utilize the ProDOS tutor on the disk and consult your ProDOS
manual. To access the ProDOS “Filer and Tutor follow these steps:
1. Boot the Kyan PASCAL disk.
2. Type ""FILER" and press <RETURN>. The ProDOS menu will appear. You be asked to choose one of the
following options:

? - Tutor F - File Commands V - Volume Commands
D - Configuration Defaults Q - Quit

To obtain information about ProDOS from the tutor, press "?".

ProDOS: How to make a back-up copy of Kyan PASCAL

Note: Please refer to the enclosed Copyright Notice and License Agreement for a description of the limitations on the use of
back-up copies.

1.Type ""FILER" and press <RETURN>.

2.Press "V" (for Volume Commands).

3.Press "C" (for Copy a Volume).

4.Assuming your Apple Il is configured in the standard way, accept the slot/drive defaults by pressing <RETURN>
four times. Otherwise, consult the on-disk ProDOS tutor or the ProDOS User's Manual.

5.Put the source (Kyan PASCAL) and destination (new) disks in the appropriate drives and press <RETURN>.
WARNING: Be sure that the write-protect tab is in place on the Kyan PASCAL disk 'to prevent accidental erasure.
6.(If you have a one-drive system, put your volume in your disk drive and be ready to do quite a bit of disk swapping.
Messages at the bottom of the display will tell you when to switch disks.)

7.Press <RETURN>. The blank diskette will automatically be formatted and assigned the volume name -- Kyan
PASCAL.

8.When the copy is complete, remove your Kyan PASCAL source disk and store it in a safe location.

ProDOS: How to Format a Disk

1.Type ""FILER" and press <RETURN>.

2.Press "V" (for Volume Commands).

3.Press "F" (for Format a Volume).

4 Place the blank diskette in any available drive. If you have a one-drive system, remove the Kyan PASCAL
diskette.

5.Assuming your Apple Il is configured in the standard way, accept the slot/drive defaults by pressing <RETURN>
two times. Otherwise, consult the on-disk ProDOS tutor or the ProDOS User's Manual.

6.Type a name for the volume or accept the default name. Press <RETURN>.

7.When the format is complete, remove the disk and label it with its new volume name.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 16

Kyan PASCAL Version 1.0

ProDOS: How to List a Disk Directory

1.Type "FILER" and press <RETURN>.

2.Press "AF" (for File Commands).

3.Press "L" (for List ProDOS Directory).

4 Place the volume (disk) into any available drive. If you have a one-drive system, remove the Kyan PASCAL disk.
5.Type the pathname of the directory you want to list (see ProDOS User's Manual for a complete discussion of
pathnames), or type "=" and press <RETURN>.

ProDOS: How to Make a Directory

1.Type "FILER" and press <RETURN>.

2.Press "F" (for File Commands).

3.Press "M" (for Make Directory).

4 Place the volume (disk) into any available drive. If you have a one-drive system, remove the Kyan PASCAL disk.
5.Type the pathname of the directory you want to create and press <RETURN>.

6.The FILER checks to make sure there is room on the disk and in the directory for you new directory. If there is,
and if the disk is not write protected, you will get the message: "Make Directory Complete."

DOS 2.5

Kyan PASCAL for ATARI computers includes DOS 2.5, a powerful operating system developed for use with ATARI 6502
based personal computers. (Please refer to the warranty section for limitations of the use of this licensed copy of DOS 2.5.)

DOS 2.5 commands may be used at any time the prompt (>) is present. To access DOS 2.5 type "DOS" after the prompt.
The DOS 2.5 menu will appear.

To exit DOS 2.5, first type "L" followed by a carriage return; then type "D1:B" followed by another carriage return.

To make a backup copy of Kyan PASCAL (duplicate a disk), enter DOS 2.5 and select option "J" from the menu. Then,
simply follow the instructions on the screen. (Note: DOS 2.5 will automatically format the disk.)

To convert files from DOS 2.5 to DOS 3.0, use the convert utility on the DOS 3.0 disk. All Kyan PASCAL program will run
under DOS 3.0 when converted using this utility.

Recommendation by GoodByte: For more advanced programming mass storage like hard drive, flash disk, etc. are
needed. If you intend to upgrade your system like that SpartaDOS is the best choice.

Kyan PASCAL uses the DOS 2.5 load facility but we have moved it to a new location to conserve user program space. The
new location is from $480 to $6FF. This load facility automatically loads the Kyan PASCAL library files when required by the
PASCAL object files.

To build programs in AUTORUN.SYS format, it is necessary to append the Kyan PASCAL library to the program. DOS 1.0,
DOS 2.5, and DOS 3.0 contain a COPY command with an append option which enables you to do this. When chaining
programs in an AUTORUN.SYS environment, only the first program loaded needs the library appended (this greatly speeds
the chaining process during execution).

It is beyond the scope of this manual to describe all the features of DOS 2.5. We encourage you to consult a DOS 2.5
manual for more information.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 17

Kyan PASCAL Version 1.0

Help
Kyan PASCAL includes a help file that may be called by typing:
HELP

[D1:HELP if your computer is an ATARI]

Special Characters Apple Il Only
Some Apple models do not have the brackets "[" and "]" which are necessary in writing PASCAL arrays. To type brackets:

N (* equivalent to left bracket, [*)
<SHIFT>M (* equivalent to right bracket,] *)

List of Editor Commands (Note: * is equivalent to CONTROL Key)

ED enter- the editor program

S move the cursor back 1 space (left)

D move the cursor forward | space (right)

AE move the cursor back 1 line (up)

AX move the cursor forward | line (down)

AA move the cursor back 1 word (left)

AR move the cursor forward 1 word (right)

AR move the cursor back 20 lines (up)

AC move the cursor forward 20 lines (down)

v move the cursor to the bottom of the file

AT move the cursor to the top of the file

Q delete the letter to the left of the cursor

"G delete the letter or keystroke coincident to the cursor
AY delete the line in which the cursor is positioned
AW find string backward direction

4 find string forward direction

e mark/cut block

AP paste block

N type "[" (left bracket) - Apple Il only

<SHIFT>M type "]" (right bracket) - Apple Il only

Special Editor Functions Mode:

A
m
[72]
O
\Y

enter/leave special functions mode
remain in editing with save

exit from editing without save

exit from editing with save
designate string to be found
designate replacement string

set search/replace options

include file

set pathname [or file name if you have an ATARI]
go to line

get help menu

IOU-0OW>»XQOoWm

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 18

List of Compiler/Assembler Commands

PC Enter the compiler and assembler programs

Assembler/Compiler Options - Apple II:

-0 Omit object code
-L Generate assembly language listing
-Sn Send error listing to slot #n

Assembler/Compiler Options - ATARI:

-0 Omit object code

-E Send error listing to screen only

-EP Send error listing to screen and printer

-L Send assembly listing to screen only

-LP Send assembly listing to screen and printer

Other Commands

A<RESET> Stops program during run time -- Apple Only
<BREAK> Stops program during run time -- ATARI Only

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

19

Kyan PASCAL Version 1.0

PART | SAMPLE PROGRAMS

EGO PROGRAM

The first program shows how to print a message.
PROGRAM Ego(Qutput);

BEGIN

Writeln;

Writeln;

Writeln('My name is Sam Smith.")
END.

This program will put the message "My name is Sam Smith" on the screen.

Program Statement and Reserved Words

The name of the program is Ego. It appears after the word PROGRAM. To end the statement, which names the program,
we use a semicolon (;). If we did not use the semicolon, the computer might think that the next statement, "BEGIN," was part
of the program name.

PASCAL has a precise vocabulary. Part of this vocabulary consists of words that cannot be used by the programmer as
names within his or her program. PROGRAM and BEGIN are two such "reserved” words. It would be illegal to use the word
"program" for the name of the program. Reserved words will be written in capital letters when they appear in programs in
this manual.

As a general rule, do not use any of the vocabulary of PASCAL for the name of anything within the program. In addition to
reserved words, this includes predefined words such as Integer, Read, and others whose meaning is consistent from one
implementation of PASCAL to another. In this manual, all predefined words will be written with only the starting letter
capitalized (except EOF and EOLN, which are acronyms for "end of file" and "end of line").

Of course, comments (*which appear between parentheses and asterisks like this*) and literals (‘which appear between
parentheses and single quotes like this') are not restricted.

Declaration and Program Body

Every PASCAL program has two main parts: the declaration and the program body.

The above program begins with a statement of the name of the program. Some programs also include lists of constants and
variables. The naming of the program, constants and variables constitutes the declaration part of the program.

After the declaration is the portion of the program where computations, input, and output can occur. It is denoted by the word
BEGIN and is called the program body. The word END followed by a period lets the computer know where the program body
ends.

The indentation of statements in Ego and other programs in this manual is intended to help clarify the program structure; it is
not recognized by the compiler.

Analysis of Ego

The first statement declares the name of the program, which is Ego.

The next line, BEGIN, tells the computer the following statements are part of the program body.

The third and fourth statements (Writeln, short for "write line") create two blank lines on the screen before the message.
The fifth statement causes the message to appear on the screen:

My name is Sam Smith.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 20

Kyan PASCAL Version 1.0

CONSTRUCTION PROGRAM

The second program we are going to run will calculate the cost of constructing 'an apartment building, given the hours
worked, the rate of pay, and the cost of materials.

PROGRAM Construction(Input,Output);
(*Dollar units are thousands*)

CONST
Material = 325.0;
VAR
Hours, Rate, Labor, Total : Real;
BEGIN
Writeln ("Enter hours worked and rate of pay');
ReadIn (Hours, Rate);
Labor := Hours * Rate;
Total := Labor + Material;
Writeln (‘Labor = $', Labor : 8:3, 'Total = $', Total : 8:3)
END.
Analysis of Construction

The objective of the program is to calculate the Labor cost and Total cost for the construction project. The calculation of
these costs will depend on the Hours worked and the Rate of pay during those hours.

The first part of the program gives the names of the program, the constants, and the variables. In PASCAL, user-defined
names are called identifiers.

The fixed cost of the materials is given by the identifier Material and is $325,000.

Notice how the variables are listed after the reserved word VAR. "Real," although not a reserved word, is predefined and
specifies that all the variables that precede it are Real numbers.

The first statement in the program body writes the following line on the screen:
"Enter hours worked and rate of pay"

The second statement reads the values for Hours and Rate, which the user enters on the keyboard. Once these values are
known, the Labor and Total costs can be calculated by the third and fourth statements in the program body.

The final statement in the program body writes the Labor and Total costs on the screen.

Algorithm

Step 1: Get the values of hours worked (Hours) and rate of pay (Rate).
Step 2: Multiply Hours times Rate to get the cost of the labor (Labor).
Step 3: Add Material to Labor to get the total cost (Total).

Step 4: Output the Labor and Total costs.

Identifiers

An identifier is a name. It can be the name of a PASCAL program or program subsection, or it can be the name of some
quantity that is used in a PASCAL program. Just as in algebra we can define a constant, C = 5, in PASCAL we can say:

CONST
C=5

The rules for constructing an identifier are: (1) it must start with a letter (A - Z or a - z), and (2) any combination of letters and

numbers may follow. Although more than 8 characters may be used; only the first 8 will distinguish one identifier from
another. The compiler does not distinguish between upper- and lowercase letters.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 21

Kyan PASCAL Version 1.0

Write and Read Commands

Write, Writeln, Read, and ReadIn (short for "read line") commands pass information to and from the computer. Read and
ReadIn enter data from the keyboard into the computer; Write and Writeln send data to the screen or printer.

The terms Input and Output should appear in parentheses after the program name to tell the compiler that data will be
transferred into and out of memory.

Input and Output and Printing the Output

After the program "Construction" was named, the two standard PASCAL terms, Input and Output, appeared in parentheses.
Technically the compiler sees these terms as identifying files:

PROGRAM Average(Input,Output);
Files allow information to go to and from places outside the directly addressable memory space of the computer. In this
implementation of PASCAL, information input at the keyboard goes into the Input file, and information output to the CRT
goes into the Output file.
It is also useful to be able to define the output as the printer. The non-standard Kyan PASCAL procedure PR(n) is used with

the Apple Computer while PRON and PROFF are used with the ATARI Computer. Include PR.l which contains these
procedures in the declaration part of the program. For example in the preceding program:

PROGRAM Construction(Input, Output);
CONST Material - 325.0;
VAR Hours, Rate, Labor, Total : Real;
#1 PR.I (*include file to redirect Output*)
BEGIN
Writeln (Enter hours worked and rate of pay');
ReadIn (Hours, Rate);

Labor := Hours* Rate;
Total := Labor + Material;

PR(1); (* redirect Output to Apple slot #1 *)

Writeln('Labor = $', Labor :8:3, ' Total = $', Total :8:3);

PR(0) (* redirect Output back to Apple CRT screen
END.

The last three statements would be written differently if the computer is an ATARI:

PRON; (* redirect Output to ATARI printer *)
Writeln(Labor = $', Labor :8:3, ' Total = $', Total :8:3);
PROFF (* redirect Output back to ATARI CRT screen *)

ReadIn
When data is read from the keyboard using Readln, more than one variable may be input as in:
ReadIn (Hours, Rate);

Data entered at the keyboard must include spaces or <RETURN> to distinguish the variables. In the examples below, Hours
would get the value 10000 and Rate would be set to 14.20:

Example A: 10000 14.20 <RETURN>

Example B: 10000 <RETURN> 14.20 <RETURN>

CONST

Use of constants, CONST, makes programs easier to read and maintain. Suppose next year the cost of materials rises to
$330,000. Also suppose that we had not used the constant, Material, and instead had said the total cost was:

Total := Labor + 325.00
In order to change the materials cost we would have to reanalyze the program, because in many programs a constant

appears more than once. We would have to find every occurrence of 325.00. Then, we would have to make sure each time
that it wasn't some other constant, such as Taxes.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 22

Kyan PASCAL Version 1.0

The declaration of the constant Material 325.00 at the start of the program obeys three rules of good programming: 1) Top-
down structure, 2) provides documentation, and 3) accommodates changes easily.

PROGRAM TO FIND THE AVERAGE

The following program finds the average of two numbers.

PROGRAM Average(Input,Output);
(*Computes the average of two numbers*)

VAR
X1, X2, Average : Real;

BEGIN
(*Read the two numbers*)
Write ('First number =");
ReadIn (X1);
Write ('Second number =");
ReadIn (X2);

(*Compute Average*)
Average(X1 + X2)/2

(*Print Average®)
Writeln (‘Average ="', Average : 9:2)
END.
The following is a sample run of Average:
First number = 12
Second number = 8
Average = 10.00

In this book, data entered on the keyboard will be underlined.

ReadIn and Writeln

"Write ('First number ='")" causes "First number =" to appear on the screen. The user then enters the first number, which in
the above example is 12. If the program had used "Writeln('First number =')," there would have been a <RETURN> and the
user would have had to enter 12 on the line below the prompt.

"ReadIn (X1)" enters data from the keyboard into the computer. The entire line is read, up to and including the <RETURN>.
However, the data that is assigned to X1 depends on what type X1 is. For example, suppose the data entered at the
keyboard is "123 RALPH <RETURN>" and that X1 is Char type. Then X1 equals 1. The remaining characters and
<RETURN> are lost. If X1 is of the type ARRAY[1..9] OF Char, then X1 equals 1,2,3, ,R,A,L,P,H; only the <RETURN> is
lost. Finally, if X1 is of the type Integer, then X1 equals 123, and the remaining characters and the <RETURN> are lost.
(Note: the preceding data types will be fully discussed in later sections of the manual.)

Suppose we wish to assign the input data 123 and RALPH be assigned to two variables, X1 and X2, respectively. Let X1 be
of type Integer and X2 be an array [1..6] of type Char. Then "Read (X1)" followed by "Read (X2)" will accomplish this task.
The Read statement differs from the ReadIn statement in that any input data not of the type of the variable in parentheses is
left over for the next Read or ReadIn statement.

Because the remaining characters up to and including the <RETURN> are not cleared after "Read (X2)" above, the
<RETURN> will be read as the first entry in the next Read or ReadIn statement. In most programs this is not desirable. This
problem could be corrected by changing the statement to "ReadIn(X2)." An alternate method of assigning data to these
variables would be "ReadIn (X1,X2)."

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 23

Kyan PASCAL Version 1.0

Real and Integer Data Types

Real numbers in PASCAL are positive or negative numbers represented in scientific (floating point) or decimal notation.
Examples are 12.8, 3.456E+11, and -2.5555E+4. A number in decimal notation must have at least one digit before and one
digit after the decimal point. Very large or very small numbers are best handled in scientific notation.

The statements following the declaration of the variable Z are equivalent:

VAR

Z : Real;
BEGIN

Z :=-345.55;

Z :=-3.4555E+02
END.

In the program to find the average, X1 and X2 were declared to be of the type Real. The range of values that may be
assigned to X1 or X2 is from +9.9999999999E-99 to +9.9999999999E +99.

Suppose we wish to declare an Integer variable, En. A declaration statement for En would be written as:

VAR
En : Integer;

Integer numbers must be within the range -32768 to +32767.
If arithmetic expressions are formed by mixing Integer and Real types, the result will be expressed as a Real type.

When a Real or Integer number is written, the format specifies how many spaces are reserved for it and other details of how
it will appear in print or on the screen. Notice in the Writeln statement that the size of the space reserved for the Real
number is 9:2. This means that the number is to be printed in decimal notation. If the format were simply 9, the number
would be printed in scientific notation. The format for Integers never needs to be larger than "5" because of the range
limitation.

The format 9:2 reserves nine spaces total. This includes one space for the sign and one space for the decimal point. Finally,
two spaces are reserved for the digits following the decimal.

If a number has fewer digits than the number of spaces reserved for it, the correct number will appear, but the compiler will
fill in the extra spaces with blanks or zeroes. If a number in decimal format has more digits than the number of spaces
reserved for it, a run-time error will occur. Programmers must think ahead when using the decimal format.

Run-time errors also occur when a number is out of range. For example, if X is an Integer that has the value -32800, an
error will occur.

Real numbers are limited to 13 significant digits. Writing a format that reserves more than 13 spaces for a Real number will

not make the number more accurate. The computer will present the correct number, with the digits beyond 13 filled in with
blanks or zeroes. On the other hand, calling for fewer than 13 digits does not take advantage of all the accuracy available.

Trunc Round and Maxint

The truncate function (Trunc) takes a decimal or floating point number and disposes of the non-Integer portion, leaving an
Integer value. Round gives the integer value closest to the floating number by adding 0.5 before truncating. For example:

Trunc(5.9) = 5; Round(5.9) = 6;
Trunc(75.3E-01) = 7; Round(75.3E-01) = 7;

The maximum size of any Integer number is 32767 or -32767. Trunc or Round will cause an error if either operates on a
Real number larger than + 32767.

Maxint is the standard PASCAL constant whose value is the maximum Integer size. In this edition of PASCAL, Maxint =
32767. It will vary with different computers and compilers.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 24

Kyan PASCAL Version 1.0

Arithmetic Operators

PASCAL uses the following arithmetic operators for Real and Integer data:

Add +
Subtract -
Multiply *
Divide /

Multiplication and division are performed before addition and subtraction. For example:

6 +8/2=10,not 7.

SOCIAL SECURITY PROGRAM

The following program calculates the amount of social security tax to be deducted from each paycheck.
PROGRAM SocialSecurity(Input,Output);

CONST
TaxRate = 0.075;
TaxMaximum = 4275.0;

VAR
Hours, Rate, TaxNow, TaxToDate : Real;

BEGIN
(*Read hours, rate, and tax to date*)
Writeln; Writeln;
Write ("Hours worked =").
ReadIn (Hours);
Write ('Hourly rate _ $');
ReadIn (Rate);
Write ('Soc Sec tax paid to date $);
ReadIn (TaxToDate);

(*Compute Soc Sec Tax for this period*)
TaxNow := Hours*Rate*TaxRate;

(*Test: IF TaxToDate + TaxNow is > Tax-
Maximum THEN TaxNow must be recalculated*)
IF TaxToDate + TaxNow > TaxMaximum THEN
BEGIN
TaxNow := TaxMaximum - TaxToDate;
TaxToDate := TaxMaximum
END (*IF true*)
ELSE (*IF false*)
TaxToDate :=TaxNow + TaxToDate;

(*Write Results*)

Writeln (‘Soc Sec Tax This Pay Period = $', TaxNow :8:2);

Writeln ("Soc Sec Tax To Date = $', TaxToDate :8:2)
END.

Relational Operators

There are six relational operators that may be used to decide which of two branches will be taken within a program. One
branch is taken if the relationship is true, the other if it is false. The six relational operators are:

= equal to

<> not equal to

< less than

> greater than

<= less than or equal to
>= greater than or equal to

In the program Social Security, IF the condition is true, THEN the tax for the present pay period, TaxNow, must be
recalculated. Otherwise, the program skips the recalculation steps.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 25

Kyan PASCAL Version 1.0

The |IE-THEN Statement

Notice in the program above that there are two program steps following the IF statement. These are grouped between a
BEGIN-END pair so that both will be performed when the IF statement is true. (Otherwise, only the first statement, TaxNow,
would be associated with IF-true, and the second statement, TaxToDate, would be outside IF-THEN control and would be
performed regardless.)

For program clarity, the comment (*IF true*) has been placed to signify the end of the program branch that will be executed if
the condition is true.

Sometimes it is necessary to include some program statements for when the IF condition is False. These are added after
the reserved word ELSE:

IF TaxToDate + TaxNow > TaxMaximum THEN
BEGIN
TaxNow := TaxMaximum - TaxToDate;
TaxToDate := TaxMaximum
END (*IF true*)

ELSE(*IF false*).
TaxToDate := TaxNow + TaxToDate;

The statement following ELSE will only be executed if "TaxToDate + TaxNow > TaxMaximum" is false.

There is no semicolon after END (*IF true*) above. It is incorrect to terminate the statement preceding ELSE with a
semicolon.

The Assignment Statement

Although the equal sign was listed above as a relational operator, the difference between equal (=) and the assignment
operator (:.) might not be clear. If we examine an assignment statement from another program, the difference becomes
clear:

AgeNow := Birthdays + AgeNow;

This statement is meant to recalculate the variable, AgeNow. The old value of AgeNow is on the right and the new value of
AgeNow is on the left. In general, when the assignment symbol (:=) is used, the result is on the left.

The equal operator is used almost exclusively to determine which of two branches will be taken following a conditional
statement. The only time the equal operator is used like an assignment statement is in a CONST declaration.

ALPHABETIZE PROGRAM

This program illustrates the use of data in the form of words. It finds the alphabetically first word on a list and counts the total
words in the list. Since the size of the list is not known in advance, a signal word, stop, is used to indicate the end of the list.

PROGRAM FirstWord(Input,Output);
(*This program selects the alphabetically first word and counts the total words tested*)

CONST
Signal - '+;

TYPE
String = ARRAY [1..15] OF Char;

VAR
Word, LeastWord : String; LoopCount : Integer;

BEGIN
(*Each time through the loop, increment the counter, LoopCount, and save the least word*)

Write('Enter a word or "+": ');
ReadIn(Word);
LeastWord := Word;
LoopCount := 0;
WHILE Word[l] <> Signal DO
BEGIN
IF Word < LeastWord THEN
LeastWord := Word;
LoopCount : LoopCount + 1;
Write('Enter a word or "+": ');
ReadIn(Word)
END; (*WHILE LOOP¥)
Writeln;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 26

Kyan PASCAL Version 1.0

Writeln;
Writeln(LoopCount:5, ' words were entered.');
Writeln(LeastWord, ' is alphabetically first.")
END.
FirstWord Algorithm
Step 1: Input the first word on the list to be alphabetized.
Step 2: Initialize variables: LeastWord - Word, LoopCount = 0
Step 3: Begin WHILE loop. Exit WHILE loop when Word -
Step 3a: (WHILE loop) Input the next Word.
Step 3b: Increment LoopCount.

Step 3c: IF current Word is alphabetically first, LeastWord = Word.

Step 4: Output LeastWord and LoopCount.

String and Char Types

So far only two types of data have been discussed, Real and Integer. Another type, Char, is a predefined type that denotes
a variable, constant, or other piece of data that is in the form of a single character.

Suppose we define a variable, Digit, to be of the type Char:

VAR
Digit : Char;

This means Digit will always be a single "printable" character. It may be a letter, a number, or a symbol. In addition, it could
be a space or a <RETURN>, but control characters such as "<CTRL> Q" are not allowed.

Although digits such as '1' (single quotes are used to denote Char values) may be of this type, they are not the same as
Integers and ordinary arithmetic may not be performed on them.

Another type of data is called String. Any string of characters and spaces, such as "is alphabetically first," constitutes a
string. When string data are entered on the keyboard, the end of the string is signaled by <RETURN>.

In Kyan PASCAL, the following statement declares a String:

String = ARRAY [1..15] OF Char
Since String is user defined, any number of characters may be specified, although 15 characters are used in "FirstWord."
When a word with fewer than 15 letters is entered in this program, ReadIn will fill in the remaining places with blanks. If a
word with more than 15 letters is entered, the extra letters will be ignored.

When String and Char values are assigned in a program statement, quotes are used:

VAR Word : String;
Letter : Char;

BEGIN
Word :='Help "
Letter :="A";

The number of characters in a String must be correct. Thus, there are 11 blanks in Word, which is defined as a 15—
character String. Char is always a single character.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 27

Kyan PASCAL Version 1.0

WHILE

The WHILE loop is repeated as long as the specified condition is true. If there is more than one statement in the loop,
BEGIN and END must be used to mark the boundaries. Usually indentation is used to clarify the boundaries of the loop
(although indentation has no significance to the compiler).

A program would never exit from the following loop, because Ex1 will never equal or exceed the test value:

PROGRAM Never;

CONST
Alpha = 4.6; Pi = 3.14;
VAR
Ex1,Ex2 : Real;
BEGIN
Ex1 := Alpha;
WHILE Ex1 < 5.432 DO
BEGIN
Ex1:= Ex1-1.00;
Ex2 := Ex1*Pi
END (*WHILE*)
END.

FACTORIAL PROGRAM

The following program calculates the factorial function of a given number. The factorial function is used quite frequently in
analysis of probabilities.

PROGRAM CalcFact1(Input,Output);
(*This program computes n! where n Integer*)
(*The result is an Integer*)

VAR
Number, LoopCount,Factorial : Integer;

BEGIN
Writeln;
Writeln;
Writeln("This program calculates the factorial')
WriteIn('of an Integer, N.");
Write('Enter a value. N =");
ReadIn(Number);

Factorial := 1;
FOR LoopCount := 1 TO Number DO
BEGIN
Factorial := Factorial*LoopCount
END;(*FOR*)

Writeln;Writeln;

Writeln('N! = ',Factorial : 6)
END.

Analysis of Program

If a number is equal to zero or one, its factorial is defined as one. In all other cases n! = 1*2*3*...*(n-1)*n.
1. Input N (Number).
2. Initialize N! (Factorial) = 1.

3. Begin FOR loop. Start with LoopCount = 1.
Increment LoopCount until

Loop Count = N (Number).
For each pass through the loop, calculate a new value for Factorial:

Factorial = Factorial*LoopCount.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 28

Kyan PASCAL Version 1.0

4. Output N! (Factorial).
FOR Loops and Loop Control Variable

CalcFactl uses the FOR loop, whfch increments a loop control variable from some initial value to some final value. Although
the loop control variable is an Integer, in other uses of the FOR loop it- might be an alphabetic character (Char).

The FOR loop may also decrement the loop control variable if written in the following form:

FOR LoopCount := Number DOWNTO 1 DO

BOOLEAN PROGRAM

PROGRAM DivLesn(Input,Output);

VAR X,W,Z : Integer;
Ans : Char;
Correct : Boolean;

BEGIN
Ans :="Y";
WHILE Ans - 'Y' DO
BEGIN
Write('Enter an Integer ');ReadIn(X);
Write('One of the factors is ');ReadIn(W);
Write(X : 3, 'divided by',W : 3, 'is);
ReadIn(Z);
Correct := (X MOD W = 0) AND (X DIV W 2);
IF Correct THEN
BEGIN
Write('Correct! Another? Enter Y or N ');
ReadIn(Ans) END(*IF THEN*)
ELSE
BEGIN
Write('Incorrect. Try again? Enter Y or N'');
ReadIn(Ans) END (*IF ELSE*)
END (*WHILE*)
END.

Boolean Data Type

Boolean is a predefined type. Boolean type expressions, variables, and constants are always in one of two states: they are
either in the True state or the False state.

In the program above, the IF statements are executed only when Correct equals True. Correct is a Boolean variable 'which
is true when both of the parenthetical statements following it are true (see DIV and MOD operators below).

The AND operator means that both equalities in parentheses must be True; otherwise, Correct will be false and the next two
statements will be skipped.

DIV and MOD Operators

The DIV and MOD operators give the quotient and the remainder of a division problem when the divisor and dividend are
both of the type Integer. The general form is:

Integer1 DIV Integer2 (* - quotient*)
Integer1 MOD Integer2 (* - remainder*)

For example, if Integerl - 14 and Integer2 - 4, then 14 DIV 4 - 3 and 14 MOD4=2.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 29

Kyan PASCAL Version 1.0

Boolean Operators

Up to this point we have discussed only the manipulation of Real and Integer type data. This included the add, subtract,
multiply and divide operators. There are also Boolean operators:

NOT
OR
AND

Boolean operators follow the rules of formal logic and can be diagramed in truth tables.

NOT: False = NOT True
True = NOT False

An example of NOT: A coin is flipped. If itis NOT heads (True), it is tails (False). If it is NOT tails (False), it is heads (True).

OR: True = True OR False
True = False OR True

True = True OR True

False = False OR False

An example of OR: Two cars are racing. The race is over (True) whenever car A crosses the finish line OR car B crosses.
Only one condition has to be True for the result to be True.

AND: False = True AND False
False = False AND True

True = True AND True

False = False AND False

An example of AND: The environment is clean (True) only. when both the air AND water are clean. .Both conditions have to
be. True for the result to be True. AND is also illustrated by the program DivLesn.

Operator Precedence

Operations within parentheses are performed first. For example: 4*(5+1) = 24, while (4*5)+1 = 21. If parentheses are nested,
the operation within the innermost pair is done first: 3*(2+(6/2)) = 15.

However, it is not always necessary to use parentheses, because operator precedence is predefined: operations of higher
precedence are performed before operations of lower precedence. If the levels are equal, it does not matter which is
performed first.

The five levels of precedence in PASCAL are:

1st-Highest Precedence: 0

2nd-Level of Precedence: NOT

3rd-Level of Precedence: *, 1, AND, DIV, MOD
4th-Level of Precedence: +, -, OR

5th-Lowest Precedence: =, <=,>=, >, <, <>

MULTI-DIGIT HEXADECIMAL CONVERSION

The following program converts a hexadecimal number into a decimal number.

PROGRAM Hexadecimal(Input,Output);
(*Hexadecimal to base ten*)

TYPE
YesNo = (Yes,No);

VAR
Digit, Signal : Char;
Number, OldNumber : Integer;
Answer : YesNo;
Continue : Boolean;

BEGIN
OldNumber := 0;
Write('Enter the most significant (far-left) digit ');
ReadIn(Digit);

REPEAT
CASE Digit OF

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 30

Kyan PASCAL Version 1.0

'0" : Number := O0;
1" : Number := 1;
'2' : Number := 2;
'3" : Number = 3;
'4" . Number := 4;
'5' : Number := 5;
'6' : Number := 6;
'7" : Number = 7;
'8" : Number := 8;
'9" : Number = 9;
'A" : Number := 10;
'B' : Number := 11;
'C' : Number = 12;

'D' : Number 13;
'E' : Number : 14;

'F' : Number := 15
END (*CASE*);
OldNumber Number + OldNumber*16;

(*The more significant digit (OldNumber) is a power of 16 times greater than the next digit
(Number) *)
Writeln('ls there another digit');
Write(‘after this one (Yes/No)? ');
ReadIn(Signal);
IF (Signal ='Y') OR (Signal ='y') THEN
Answer := Yes

ELSE
Answer No;

IF Answer = Yes THEN
BEGIN

Continue := True;
Write ('Enter the next digit ');
Readin (Digit)
END (*IF Answer true*®)
ELSE
Continue : = FALSE;
UNTIL NOT(Continue);

Writeln;Writeln;

Writeln("'The decimal equivalent is ', OldNumber : 6)
END.

Algorithm

1. Initialize OldNumber := 0
2. Input the most significant Digit
3

REPEAT
3a. Convert Digit to decimal Number
3b. OldNumber Number + OldNumber*16

3.c Is there another digit?
3ca. IF NOT(Continue) = False, input the next most significant digit
4. UNTIL NOT(Continue) = True
5. Output base ten number (OldNumber)

REPEAT UNTIL

The REPEAT UNTIL loop is very much like the WHILE loop discussed earlier. The statements in the loop are repeated
until the specified condition becomes True. (The WHILE loop continues until the condition becomes False.) It is
important to note that the REPEAT UNTIL condition is tested at the end of the loop rather than at the beginning like the
WHILE condition.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 31

Kyan PASCAL Version 1.0

Scalar Types. and Boolean Variables

In the program above, Hexadecimal, Answer is a scalar variable. Scalar variables are used when there is a short list of
names, words, numbers, or other legal identifiers that the variable might be. A "scalar type," which
is user defined, gives the possible values of a scalar variable. Listed below are two scalar types:

TYPE
DaysWeek = (Mon,Tue,Wed, Thur,Fri,Sat,Sun);
PayRate = (Regular,Overtime);

The scalar variables below may take on any of the values listed in the type declaration, but no others.

VAR
Day : DaysWeek;
Rate : PayRate;

The following declaration of PayNames is illegal because the values in a scalar type cannot be defined in terms of any other
type. Because quotes are used, 'A' and 'B' are of the type Char, and 'Other' is a string. Without quotes they are simply
identifiers, and are therefore acceptable. Characters or strings cannot be used, nor can integers or real numbers.

TYPE PayNames : ('A', 'B', 'Other");
The only exception to this rule is explained below in the definition of a scalar type sub range.
A Boolean variable is much like a scalar variable where the type would be:

TYPE
Boolean = (True, False);

In the program above, the variable Continue can be either True or False. Whether Continue is true or false is determined by
the assignment statement where Continue is (:=) True when Answer is (=) Y ory.

Subrange Types

The subrange type is a form of the scalar type where only the first and last value or item within the range have to be
specified. For example, if the variables Component, IC, and Resistance are to take on a range of values and each of the
possible values is known from the beginning of the program, then they might be declared as follows:

TYPE
CompType = (Resis,Cap, Trans,Diode,OpAmp, Rgltr,Osc,GateArray, Trnfr,Coil);
ResRange = 1..100;
ICrange =OpAmp..GateArray;

VAR
Component : CompType;
Resistance : ResRange;
IC : ICrange;

Both ResRange and ICrange in this example are subrange types. (CompType is a scalar type.) ResRange is a subrange of
the Integer type. ICrange is a subrange of CompType declared before it.

Although ResRange is an example of a subrange of the type Integer, scalar types of the type Integer are not permitted. This
restriction precludes the inadvertent redefining of a predefined type.

CASE OF
Sometimes, especially in programs that use scalar type variables, a series of IF..THEN tests may need to be employed. To
take the place of these tests, the CASE OF statement may be used. The following are equivalent:

CASE Digit OF
'0" : Number := 0;
1" : Number := 1 END;

IF Digit ='0'. THEN
Number :=0 ELSE

IF Digit ='1' THEN
Number :=1;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 32

Kyan PASCAL Version 1.0

The Functions Ord, Pred, Succ, and Chr

Scalar type variables are declared in a particular order, or scale. Often the order of these items is of significance and can be
used in a program. This is made possible by the functions Ord (order) and Pred '(preceding), and Succ (succeeding). One
example is the days of the week:

TYPE
DaysWeek - (Sun,Mon,Tue,Wed, Thur,Fri,Sat);

The items in the list are called the values. Each item is an identifier (i.e., it must start with a letter followed only by letters or
numbers).

The first value in the type Days is Sun. The seventh value is Sat. Thus both these statements are true:

Ord(Sun) - 0;
Ord(Sat) - 6;

The day succeeding Sun is Mon, and the day preceding Fri is Thur. Both these statements are true:

Succ(Sun) - Mon;
Pred(Fri) - Thur;

If two scalar types are declared, some of the items in the two lists will have the same ordinal value. For example, if the days
of the week and the months of the year are declared, both Tue and Mar will have the ordinal value 2.

There is an ASCII character corresponding to every Integer from | to 128. The function Chr (Character) gives the ASCII
character corresponding to an Integer specified in parentheses, e.g., "Chr(2)." This Integer may be the ordinal value of a
scalar element. (However, Chr is not the inverse function of Ord.)

Chr(2) = STX;
STX is a nonprintable ASCII character used in some compilers to mark the start of a text file. The ordinal values
corresponding to the characters 'A’, 'B', '1', and '2' are shown below. The quotes around the characters denote that they are
of the type Char and are not undefined variables or Integers.

Chr(65) = 'A’; Chr(66) = 'B; Chr(49) = '1; Chr(50) = '2;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 33

Kyan PASCAL Version 1.0

PART Il

PROGRAMMING TECHNIQUES

PROCEDURES

The following section explains a technique for breaking down long programs into simple and easy to understand modules
called procedures. With a little rewriting, any procedure can be made into a program by itself.

Procedures may or may not communicate with the main program or other procedures. If they do, a list of parameters is
generally declared. In the following example, the parameters are X1 and X2.

PROCEDURE ExchgVal(VAR X1,X2 : Real);
(*Values of X1 and X2 are exchanged*)

VAR
Y : Real;

BEGIN
Y :=X1;
X1 :=X2;
X2:=Y
END;

Declaring and Executing PROCEDURES

The following outline lists the steps necessary in using the procedure ExchgVal in a program, Demo. The program is divided
into three main sections:

The first section, the declaration part of the program, was discussed earlier.
The second section is the declaration of the procedure (or procedures).
The third section is the body of the program, where the procedure is actually used.
1. Declaration section of main program, Demo.
1a. Declare program name.

1b. If there were program constants or types to declare, they would be in this section.
1c. Declare program variables, A, B.

2. Declare procedure, ExchgVal.
2a.Declare procedure name and parameters.
2b.If there were local constants or types to declare, they would be in this section.
2c.Declare procedure local variable, Y.
2d.Procedure body: the executable statements are declared here, but not executed.

3. Main program body.
3a.Enter two numbers from keyboard: A, B.
3b.Exchange A and B by executing procedure, ExchgVal.
3c.Output numbers, A and B, to the screen.

PROGRAM Demo(Input,Output);
(*Shows result of procedure ExchgVal*)

VAR A, B : Real;

PROCEDURE ExchgVal(VAR X1,X2 : Real);
(*Values of X1 and X2 are exchanged®)
VARY : Real;
BEGIN

Y :=X1;

X1 :=X2;

X2:=Y
END(*Procedure ExchgVal*);

BEGIN (*Demo*)

Write ('Enter two numbers: ');

ReadIn (A,B);

ExchgVal (A,B);

Writeln;

Writeln ('Now first =",A: 7:2, ' and second =",B : 7:2)
END.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 34

Kyan PASCAL Version 1.0

Suppose the values to be exchanged are 5.8 and 11.15. The screen will show the following (user entries are underlined):
Enter two numbers: 5.8 11.15

Now first = 11.15 and second = 5.8

Parameter Lists, Actual and Formal

Because a procedure is a program within a program, there must be a way of getting data into and out of the procedure. In
the above example, the variables X1, X2, A, and B provide this means. These variables are examples of parameters.
Parameters may be variables, constants, and even other parameters.

When parameters are listed in parentheses after the procedure name in the declaration part of the program, as are X1 and
X2, they are part of the formal parameter list.

PROCEDURE ExChgVal(VAR X1,X2 : Real);

When parameters such as A and B appear in parentheses after the procedure name in the body of the program, they are
part of the actual parameter list.

ExChgVal(A,B);

Obviously, the formal parameters X1 and X2 are variables of the type Real, as are the actual parameters, A and B. Real
numbers such as 4.3 and 6.7 may also have been used. Actual and formal parameters must match.

Although the formal parameter list is written within parentheses, it can be arranged to look more like the declaration section
of a program. The following are identical:

PROCEDURE Calculate(A, B : Real; VAR X : Real; Y : Integer);

PROCEDURE Calculate(
A, B : Real;

VAR

X : Real;
Y : Integer);

Variable and Value Parameters

Notice that in the following formal parameter list, only some of the parameters are preceded by VAR. These are the variable
parameters (i.e., X1, X2, Y). Variable parameters are used for both input to the procedure and output from the procedure. A
value parameter, such as Z, is formal parameter that is not preceded by a declaration such as VAR, and can be used only to
input data to the procedure:

PROCEDURE OtherVal(VAR X1, X2 : Real; Z : Real; VAR 'Y : Integer);
Although Z may change value during the execution of the procedure, the new value of Z is not communicated to the main
program.

The following statements might occur within the body of the program when the procedure OtherVal is to be executed:

OtherVal(A, B, 5.0, D);
OtherVal(C, B, A/10.0, E);

Notice that arithmetic operators and values (such as Integers) can appear in a list of actual parameters if the corresponding
parameter is a value parameter. An error is generated if the corresponding parameter is a variable one.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 35

Kyan PASCAL Version 1.0

Correspondence Between Actual and Formal Parameters

The following rules must always be obeyed:

1) The number of actual parameters in each set of parentheses must be exactly the same as the number of formal
parameters.

2) The parameter types must be consistent. Thus, the main program (which uses the procedure OtherVal) may declare:

VAR
A,B,C : Real;
D,E : Integer;

The names of the variables in a procedure may be the same as names used in other procedures or in the main program.

Functions

Functions are similar to procedures in that both use parameters, but different in that a function takes the values input (viz.,
the parameter values) and returns a single value which is identified by the function name. For example, the function Sqr(X)
returns the value of X squared when given some value of X. Thus, when X equals 12, Sqr(X) equals 144.

A few of the most commonly used mathematical functions are included in KyanPASCAL (X is a Real number or Integer):

Abs(X) = Absolute value of X

Sar(X) = The square of X Sqrt(X) = The square root of X

Sin(X) = The sine of X (X is in radians)

Cos(X) = The cosine of X (X is in radians) Arctan(X) = The arctangent of X (result is in radians)
Ln(X) = The natural logarithm of X

Exp(X) = e raised to the power X

Additional functions can be defined by the user.

Declaring. Functions

A user-defined function is a simple procedure that uses only value parameters. The elements of a function are illustrated
below. They include the function name, Cosine Law (CsLaw), the formal parameter list (A, B, Theta : Real), the result type
(Real), the local declaration (VAR C : Real), and the function body (BEGIN...END).

PROGRAM Trig(Input,Output);
VAR
E,H1,W1,Ang1,AngX : Real;

FUNCTION CsLaw (A, B, Theta : Real) : Real;
(*Returns the length of side, C, opposite the angle Theta*)

VAR

C : Real;
BEGIN

C:=A*A +B*B;

CsLaw := C - 2.0*A*B*Cos(Theta)
END;(*PROCEDURE?*)

BEGIN

ReadIn(H1,W1,Ang1,AngX);

E 1.0 + CsLaw(H1,W1,Ang1)*Sin(AngX)
END.(*PROGRAM Trig*)

Like value parameters in procedures, the parameters of a function do not change their values outside the function. The

function returns only a single value, the result (CsLaw), whereas a procedure may return as many values as there are
variable parameters listed.

When a function is used in a program, a separate statement to call it up is not required. For example, CsLaw can be called
up by relational or arithmetic statements such as the following:

E 1 + CsLaw(H1,W1,Ang1)*Sin(AngX);

A procedure, however, does require a separate statement [e.g., OtherVal(A,B,C,D);]. This is because the identifier of a
function has some value, viz., the result, but the identifier of a procedure does not have a value.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 36

Kyan PASCAL Version 1.0

The Function Odd

The function Odd(parameter) returns the value True when the parameter is odd or the value False when the parameter is
even. It is important that the parameters used with Odd be of the type Integer.

For example, if the variable Number equals 3, then:
Odd(Number) = True

Thus, this function turns Integer data into Boolean data.

Global and Local Variables

When a variable is declared in the main program, it is called a global variable. When a variable is declared within a
function or procedure, it is called a local variable. Parameters are neither local nor global variables, although they are
used to pass values of global variables to and from the procedure.

PROGRAM Alpha(Input,Output);
VAR A1 : Real;
A3,A4 : Char;

PROCEDURE Other (VAR AA1:Real; AA3:Char);
VAR BB1:Integer;

BEGIN
A4 =YY (*A4 is global*)
BB1 :=5; (*BB1 is local*)
AA1:=15.3
END;(*Procedure*)
BEGIN
Other(A1,A3); (*A1,A3 are parameters*)
IF A4 ="Y' THEN

WriteIn('A4 is global');
IF A1=15.3 THEN
Writeln('AA1 is a formal parameter’)
END.(*Program Alpha*)

The statements in the body of a function or procedure manipulate a variety of variables and parameters. Variables must be
appropriately defined in order for the program to function properly:

1) They can be declared in the global declaration section.
(VAR A1:Real; A3,A4:Char;)

A variable that has been declared in the main program may be used in a function or procedure in a global manner. The
variable A4 is used in this way:

A4 ="Y"

Every time the procedure Other is called, A4 is given the value 'Y' and the statement in the main program, A4 ="'Y",
becomes true.

2) They can be declared in the local declaration section.
(VAR BB1 : Integer;)

A variable declared only in the procedure may be used. The variable BB1 is used locally in the program:
BB1 :=5;

Because BB1 was not declared in the main program, if the statement "BB1 = 5". were to appear in the main program, it
would make no sense and the compiler would generate an error message.

3) They can be listed in the formal parameter section.
[Other (VAR AA1 : Real; AA3 : Char);]

Passing values through global variables is not recommended because it makes it difficult to keep track of incoming and
outgoing data: it is better to use actual and formal parameters.

The following section extends the preceding definitions of global and local to more general cases where a variable is
relatively global or relatively local. This occurs when there are several functions and procedures sharing variables.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 37

Kyan PASCAL Version 1.0

Nesting of Functions and Procedures

Functions and procedures may be nested within other functions or procedures. The declaration section of a program is
illustrated below with nested boxes to represent the concept called "scope." The innermost box, Phase1 is within the scope
of both CsLaw and PhaseDis, while CsLaw is only within the scope of the main program, PhaseDis.

Because of the top-down structure of PASCAL, the procedures or functions declared first have greater scope than those
declared later. Identifiers (of variables and types) in the outer boxes are global relative to the inner boxes. Identifiers that are
declared in procedures of greater scope are global relative to procedures of lesser scope.

Thus, values of variables may be passed from a procedure of greater scope to one of lesser scope either by parameters or
by global variables of the procedure of greater scope.

PROGRAM PhaseDis;
VAR Height1, Width1, Angle1, Angle2, Dist : Real;

FUNCTION CsLaw(A,B, Theta : Real) : Real; VAR C : Real;

PROCEDURE Phase1(H1,W1,Ang1,AngX: Real; VAR D : Real);

VAR E Real;
BEGIN
E:=1+ CsLaw(H1,W1,Ang1)*Sin(AngX);

D:=1.22*C

END ; (*Phase Declaration %)

BEGIN
C := A*A + B*B;
CslLaw := C — 2*A*B*Cos(Theta)

END;(*CsLaw Declaration *)

BEGIN

END. (*PhaseDis*)

Notice how the scope of a variable is determined the moment it is declared and remains in effect until the end of the
procedure, function or main program in which it was declared.

The scope of the variables can be represented more clearly by. Showing only the declaration sections of the program,
functions, and procedures:

program: PhaseDis
variables declared: Height1, Width1, Angle1, Angle2, Dist

function: CsLaw
variables declared
(formal parameters): A,B,Theta
(local variables): C

procedure: Phase1
variables declared
(formal parameters): H1, W1, Ang1, AngX, D
(local variables): E

In this example, C is global to Phase1. The new value for C is passed to Phase1 as soon as CsLaw is executed. Use of
global variables in this way is not recommended. Values should be passed to and from functions and procedures only
through parameters.

Compare the following version of the program PhaseDis to the previous one. The procedure Phase1 is no longer nested

within CsLaw. C is no longer global relative to Phase1 because CsLaw no longer has greater scope than Phase1. The
statement using C in Phase1 had to be dropped, because it would no longer be syntactically correct.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 38

Kyan PASCAL Version 1.0

It is possible, and often desirable, in a long program to reuse names in several places but with different meanings. As long
as the scope of one definition of such a name does not not encompass another definition, there will be no conflict.

PROGRAM PhaseDis;

VAR Height1, Width1, Anglel, Angle2, Dist : Real;

BEGIN
C := A*A + B*B;
CsLaw := C - 2*A*B*Cos(Theta)

END;(*CsLaw Declaration *)

FUNCTION CsLaw(A, B, Theta : Real) : Real; VAR C : Real;

VARE : Real;
BEGIN

PROCEDURE Phase1(H1,W1,Ang1,AngX : Real);

E =1+ CsLaw(H1,W1,Angl)*Sin(AngX)

BEGIN

END. (*PhaseDis*)

Global and Local Types

User-defined types such as scalar types may be local or global. The same rules of scope apply.

Forward References

Calling, i.e., executing, a procedure or function before it has been defined is called a forward reference. Whenever a forward
reference is used in a PASCAL program, it must be declared as shown in the third line of the following program:

PROGRAM Compute(Input,Output);
VAR X : Integer; Y : Real;

FUNCTION Factor(Z : Integer) : Integer; FORWARD;

PROCEDURE Bisect(Alpha : Integer; Beta : Real);

BEGIN
Beta := Beta + Alpha*Factor(Alpha)
END;(*PROCEDURE*)

FUNCTION Factor;
CONST LargeNum = 12345;
BEGIN
Factor := “argeNum MOD Z
END;(*FUNCTION*)

BEGIN
Write('Enter an Integer ');ReadIn(X);
Write('Enter a decimal number '); ReadIn(Y);
Bisect(X,Y);
Y := Factor(X)*Y;
Writeln;Writeln("Answer is Y)

END.

The procedure Bisect is able to execute the function Factor because the latter is declared as a forward reference before
Bisect is declared. Notice that' the forward reference declaration includes the formal parameter list; later, when Factor is

fully declared, the parameters and the FORWARD declaration are not repeated.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

39

Kyan PASCAL Version 1.0

Unconditional Branch: GOTO

Although it is not ordinarily done, PASCAL statements may be labeled to allow unconditional branching, such as from a
REPEAT UNTIL loop.

A label (i.e., statement number) in PASCAL is an Integer followed by a colon and placed before a statement in a program.
The-maximum size of a label.. is four digits. Labels must be declared just like variables and constants. The following
statements might occur in a program with a forward jump:

PROGRAM Example(Input,Output);
LABEL 22, 35;
VAR A : Integer;

BEGIN
A:=0;
22: WriteIn(A="A :4);
A= A+

IF A<5THEN GOTO 22 ELSE GOTO 35;
WriteIn('Skip Me');
35: WriteIn('The End')
END.

The unconditional jump, which may be either forward or backward in the program, is written as follows:
GOTO label;

Labels used in a function or procedure must be declared locally. GOTO jumps can be used to jump forward or backward
within a function or procedure, or to leave a function or procedure to enter the main program, but cannot be used to jump
from the main program to enter a function or procedure.

ARRAYS

Most of the types of data that have been discussed so far are limited to single values. (Integer and Real both imply a single
number; Char 'implies a single character; and Boolean is either the value True or False.)

However, some kinds of data are not conveniently divided into components. This is the case with words or strings, which
were discussed previously. A string, such as "butter" is actually a collection of characters. This is the identifying
characteristic of an array: an array is always a collection of one of the simpler data types.

A vector, such as the direction of a spaceship in flight, is another example of an array. The clearest and most correct way to
handle such data is to put parentheses around the components (X, Y, Z) to clarify that they represent a single direction.

Arrays are declared in PASCAL as follows:
Array Type = ARRAY [Subscript Type] OF Element Type

1. Array types are always user defined.

2. The subscript type specifies the size of the array and assigns a number to each of the elements of the array.
See examples below.

3. The element type may be any standard or user-defined type. All the elements in an array must be the same

type.

The amount of memory space allocated for an array is determined by the subscript type. If an array of characters is not filled
because the input is smaller than the array size, the remaining spaces are set to blanks. However, unused array spaces of
other types are not determined.

Example Program:

PROGRAM Graphic;

TYPE
String - ARRAY[1..15] OF Char;
CoordnType - (X,Y,Z);
VectorType - ARRAY[CoordnType] OF Real;

VAR
Vector : VectorType;
Word : String;
BEGIN

Vector[X] := 3.0;

Vector[Y] := 5.0;

Vector[Z] := 4.0;

Word := 'First Point
END.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 40

Kyan PASCAL Version 1.0

The first array, String, may be used to handle words or phrases that have 15 characters, including blanks. Integers (1 to 15)
identify the elements of the array.

The second array declares that each vector consists of 3 numbers. (Each one is a direction in three-dimensional space.)

The elements of this array are identified not by Integers, but by CoordnType, a user-defined type. Any scalar type may index
an array.

Arrays of Arrays and Multidimensional Arrays

If we wished to represent a paragraph that contained up to 50 words, we might define it as an array of String (i.e., an array
of an array):

TYPE
String = ARRAY[1..15] OF Char ;
Paragraph = ARRAY[1..50] OF String;

Use of the array Paragraph could prove to be a wasteful programming technique because it reserves a lot of memory space
for what might turn out to be a short paragraph.

The array Paragraph is an example of a multidimensional array. The array MatxType below is also multidimensional.
MatxType is a two-dimensional array of numbers. (It is not necessary for the dimensions of the matrix to be the same size,
although in this one they are, 3 elements each.)

Two ways of declaring MatxType are:

TYPE
Row - ARRAYT[1..3] OF Real;
MatxType ARRAY[1..3] OF ROW;
(*Each element of MatxType is a row*)

TYPE
MatxType = ARRAY[1..3, 1..3] OF Real;
(*Subscripts are row number, column number*)

It is important to recognize which subscript refers to which dimension in such arrays. The significance of this is illustrated by
the following example, in which a name, i.e., a string, is copied from a list:

TYPE
String = ARRAY[1..14] OF Char;
TableType = ARRAY[1..100]] OF String;
VAR
Table : TableType; Name : String; | : Integer;
BEGIN
FOR1:=1TO 14 DO
Table[2,]] := Name[l]
(*Name is written into the second row of table*)
END.

One way to remember which subscript is first is to rewrite the declaration of the array type. The first subscript type in the
declaration below gives the first subscript, S, in Table[S,P]; the second subscript type gives the second subscript, P.

TYPE
TableType ARRAY[1..100] OF ARRAY[1..14 OF Char;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 41

Kyan PASCAL Version 1.0

Adding Two Multidimensional Arrays

The following program adds two 3 X 3 matrices. To find the sum of two matrices, the corresponding elements (those with
identical row and 'column subscripts) are added to form the elements of the sum matrix. In this program, the first matrix is
entered in matrix form into the computer's memory. The elements of the second matrix are then added, one at a time, to the
elements of the first matrix. Thus, the sum matrix is formed without the computer's ever having "seen" the second matrix.

PROGRAM AddMatrix(Input,Output);
TYPE
MatxType . ARRAY[1..3,1..3] OF Real;

VAR
Matrix MatxType;
SubSRow, SubSCol : Integer;
(*Subscripts of the matrices™)
AddEle : Real;
(*Elements of 2nd Matrix*)

BEGIN
FOR SubSRow :=1 TO 3 DO
FOR SubSCol := 1 TO 3 DO
BEGIN
Write('Matrixl element ',.SubSRow : 3, SubSCol : 3, 'is ReadIn(Matrix[SubSRow,SubSCol]);
(*Inputs the elements of first Matrix*)
END;(*FOR¥)
FOR SubSRow :=1 TO 3 DO
FOR SubSCol :. 1 TO 3 DO
BEGIN
Write('Matrix2 element ',SubSRow : 3, SubSCaol : 3, 'is ReadIn(AddEle);
(*Inputs the elements of second Matrix*)
Matrix[SubSRow,SubSCol] := AddEle + Matrix[SubSRow,SubSCol]
END;(*FOR loops*)
Writeln;WriteIn(The sum of the two matrices is:');
Writeln;
FOR SubSRow :=1 TO 3 DO
BEGIN
Writeln;
FOR SubSCol := 1 TO 3 DO
Write(Matrix[SubSRow,SubSCol] : 7:3)
END;(*FOR¥)
END.

The Array As a Parameter

In the procedure below (ShOrder), an array (SubArry) is used as a variable parameter:
PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);

If SubArry were to be passed as a value parameter, VAR would be deleted. (But this would take twice as much memory
space, because an extra copy of the array would be set up for use in the procedure.)

Individual elements of an array may also be passed as parameters, such as the third element of Vector, viz. Vector[Z]:

PROCEDURE CheckPoint (Vector[Z] : Real);

Program Example1

This program is used to order a small subset of a list of up to 1.50 numbers. Beyond six numbers in the subset, the
procedure becomes inefficient.

The ordering of the subset is accomplished by the procedure ShOrder, which works as follows: pairs of elements in the
subset are compared, starting with the first and second elements. If the first element is greater than the second, they are
exchanged. This is repeated for the second and third elements, etc. As long as any exchanges have taken place anywhere
in the list, this procedure will repeat again for the entire list. When no exchanges have taken place, the list is in order.

PROGRAM Example1(Input,Output);

CONST MaxNumbs = 150;

TYPE NumbArray = ARRAY[1..MaxNumbs] OF Real;
VAR First, Last, Subscript: Integer; BigArry: NumbArray;

PROCEDURE Exchg(VAR A,B: Real);
VAR C: Real;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 42

Kyan PASCAL Version 1.0

BEGIN (*Procedure Exchg*)

C:=A;
A:=B;
B:=C

END;(*Procedure Exchg*)

PROCEDURE ShOrder(First, Last: Integer; VAR SubArry: NumbArray);
(*Orders a list of numbers, subset of full list*)
VAR Numblndex : Integer;
Exchanged : Boolean;
BEGIN
REPEAT
Exchanged := False;
FOR Numblndex := First TO (Last-1) DO
IF SubArry[Numblindex] > SubArry[Numblindex+1]
THEN BEGIN (*Exchange if out of order*)
Exchg(SubArry[Numbindex],SubArry[Numbindex+1]);
Exchanged := True
END;(*Exchg, THEN*)

UNTIL Exchanged = False (*If one of the elements was exchanged,
the test must be repeated until all elements are in order &
Exchanged remains False*)

END;(*Procedure ShOrder*)

BEGIN(*Main Program*)
WriteIn('Enter a list of numbers to be ordered.");
Writeln('After each number press the return key.);
Writeln('After last number enter 0 and press');
Writeln('return to stop.');
Subscript := 0;
REPEAT
Subscript := Subscript +l;
Write('Entry Number ', Subscript: 3, is);
ReadIn(BigArry[Subscript])
UNTIL BigArry[Subscript] = 0.0;
Writeln(Between which "Entry Numbers" should');
Writeln(this list be ordered? First :');
ReadIn(First); Writeln(Last :");
Readin(Last);
ShOrder(First,Last,BigArry);
Writeln;
FOR Subscript := First TO Last DO
WriteIn(BigArry[Subscript]: 7:3, ',Entry Number'
END.

PROGRAM Example2

In the following program, the procedure ShOrder is modified to sort a two-dimensional array. The new procedure ShAlph, is
used to alphabetize a list of 6 words, each of which has no more than 15 letters. The procedure Exchg exchanges the
position of two consecutive words in the array.

The two-dimensional word array used in this program can be visualized as follows:

help
program
difficult
easy
should
be

The first subscript gives the horizontal position of a letter; the second subscript gives the vertical position. Thus, the "r" in
"program" would be subscripted (2,2), the "d" in "should" would be subscripted (6,5), etc.

PROGRAM Example2(Input,Output);
CONST MaxLetters = 15; MaxWords = 6;
TYPE String = ARRAY[1..MaxLetters] OF Char;
WordArray = ARRAY[1..MaxWords] OF String;
VAR WordMatrix: WordArray; WordIndex: Integer;
PROCEDURE Exchg(VAR WordMatrix: WordArray; WordIndex: Integer);

VAR C: String;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 43

Kyan PASCAL Version 1.0

BEGIN
C := WordMatrix[WordIndex];
WordMatrix[Wordindex] := WordMatrix[Wordindex+1];
WordMatrix[WordIndex+1] := C

END;(*Procedure Exchg*)

PROCEDURE ShAIph(VAR WordMatrix: WordArray);
(*Alphabetize word list <= 6 words*)
VAR WordIndex: Integer; Exchanged: Boolean;

BEGIN
REPEAT(*Until all words are in order*)
Exchanged := False;(*All words are in order if none need to be exchanged®)
FOR WordIndex := 1 TO (MaxWords - 1) DO
IF WordMatrix[Wordindex] > WordMatrix[Wordindex + 1]
THEN BEGIN (*FOR Loop, Test all in WordMatrix*)
ExChg(WordMatrix, WordIndex);
Exchanged :E True;
END;(*IF*)
UNTIL Exchanged = False
END;(*Procedure ShAIlph*)

BEGIN(*Main Program*)
Writeln('Enter six words, each with a maximum of');
Writeln('15 letters. After each word press the');
WriteIn('RETURN key. ');
WordIndex := 0;
REPEAT
WordIndex := WordIndex + 1;
Write('Word number ', WordIndex :3,"is ');
ReadIn(WordMatrix[WordIndex])
UNTIL WordIndex - MaxWords;

ShAlph(WordMatrix);

Writeln;

Writeln('Alphabetized Words: ');

FOR WordIndex := 1 TO MaxWords DO

BEGIN

Writeln;
WriteIn(WordMatrix[WordIndex[);

END (* for *)

END.

End of Line
The character that terminates a line of data on the keyboard is the end of line character, EOLN (<RETURN> key). The
statements

Read (Letter);
IF EOLN THEN

may be used to control input from the keyboard, because the THEN statement will only be executed when a <RETURN> is
entered. EOLN stays True until additional data are entered through a Read or ReadIn statement.

EOLN is used to control data entry below:

Writeln('Enter four words. End each word');
Writeln('with the RETURN key ');
FOR WordIndex := 1 to 4 DO
BEGIN
Letterindex := 0;
WHILE NOT EOLN DO
BEGIN
Letterindex := Letterindex + 1;
Read(WordMatrix[WordIndex,LetterIndex])
END;(*WHILE*)
Writeln('Preceding word had ', LetterIndex :3, 'letters.");
ReadIn
END;(*FOR*)

The above lines allow words to be entered, one letter at a time, into a list. Each EOLN signifies the end of a word, i.e., the

end of a row in the array WordMatrix. If WordMatrix is declared to be of the size [1..4,1..15], when a word has fewer than 15
letters, the unused places will be filled with blanks. If a word is longer than 15 letters, the excess letters will not be saved.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 44

Kyan PASCAL Version 1.0

Recursive Procedures and Functions

A procedure or function that calls itself is said to be recursive. In Progam Example2, it is possible to rewrite ShAlph to make
it recursive. Typical of recursive procedures, ShAlph has fewer statements than before, but in the compiled machine code it
will be longer.

PROCEDURE ShAlph (WordMatrix : Word Array);
VAR WordIndex : Integer;
BEGIN
FOR WordIndex := 1 to MaxWords - 1 DO
IF(WordMatrix[WordIndex}] > WordMatrix[WordIndex+1])
THEN BEGIN
ExChg(WordMatrix,WordIndex);
ShAIph(WordMatrix)
END
END;(*PROCEDURE?)

As rewritten, ShAIph tests the words from the first word to the last. If any of the words are out of alphabetical order, they are
exchanged and ShAlph begins again. When ShAlph is called recursively, the index to the array is reset to the beginning.

There are two uses for recursion: 1) where logical decisions occur repetitively as above, and 2) when computing a function
in the form of some repetitive function, such as NI = N*(N-1)*(N-2)* ...*[N-(N-1)].

Copying Arrays

If two arrays have the same subscript type and element type, the values of one may be copied to the other using a simple
assignment statement. Notice that it is not necessary to specify the subscripts when copying.

VAR Matrix1, Matrix2 : ARRAY[1..3,1..3] OF Real;
BEGIN Matrix1 := Matrix2;

Values may be assigned to string array variables by using single quotes around the characters to be included. This is
illustrated in the example below. Blanks are assigned because the string array size is larger than the word being put into it:

PROGRAM CopyArrays;
TYPE String = ARRAY[1..16] OF Char;
VAR Word1, Word?2 : String;

BEGIN
Word1 :="Initial "
Word2 := Word1;
Word2[8] :='s";
Writeln(Word2)

END.

In this program, Word2 is given the value "Initials" with eight blanks.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 45

Kyan PASCAL Version 1.0

RECORDS

Some kinds of data are most conveniently handled as a mixture of several types. An example of mixed type data is the date:
"January 1, 1987" is a string of characters followed by two Integers. PASCAL allows the user to define mixed data types as
records:

TYPE
DateType = RECORD
Month: ARRAY[1..10] OF Char;
Day: Integer;
Year: Integer
END;(*DateType*)

VAR
DateRec: DateType;

DateType is the identifier of a record type with three fields, and DateRec is the identifier of a variable of the type DateType.
The general form of the declaration of a record and its fields is:

TYPE
Identifier = RECORD
field1: type1;
field2: type2;
field3: type3;
etc.
END;

The last field in a record does not need to be terminated by a semicolon. The three fields in the record DateType are Month,
Day, and Year.

The statement below is one way to refer to a record variable. It uses the form "identifier. field."
Writeln (DateRec.Year: 5:0);
Another way to refer to record variables is to use the WITH statement:
WITH DateRec DO
BEGIN
ReadIn(Month);
ReadIn(Day);
ReadIn(Year)
END; (*WITH DateRec*)

All three record variables are read using the WITH format.

Copying a Record
If two records are of the same type, it is possible to use a simple assignment to transfer the value of one to the other:

VAR
DateRecl, DateRec2: DateType;

BEGIN
DateRecl1 := DateRec2;

This copies all the fields of DateRec2 into DateRec1 without having to list them. In this case, the Boolean comparison below
would have the value True.

DateRec2 = DateRec1

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 46

Program Absolute

Kyan PASCAL Version 1.0

Using data in the form of a record, it is easy to write a program to calculate the absolute value of a complex number. The

formula for the absolute value is the same as that for the distance from a point to the origin.

PROGRAM Absolute(Input,Output);
(*Finds the absolute value of a complex number*)

TYPE
ComplexType = RECORD
RealPart : Real;
ImagPart : Real
END(*ComplexType Record*);

VAR
ComplexNum : ComplexType; Abs : Real;

BEGIN WITH ComplexNum DO
BEGIN
Write('The real part ='); ReadIn(RealPart);
Write('The imaginary part '); Readin(ImagPart);
Abs := Sqrt(Sqr(RealPart) + Sgr(ImagPart));
Writeln; Writeln (‘Absolute Value ="', Abs: 10:2)

END(*With*)
END.

Program ElapsedTime

In the program that follows, the approximate time elapsed since January 1, 1980 is computed. All months are assumed to

be of equal length, 30 days, and all years are 365 days long.

PROGRAM ElapsedTime(Input,Output);
(*Since Starting Time*)

CONST
StartDay = 1;
StartMonth = 1;
StartYear = 1980;

TYPE
DateType = RECORD Day .: 1..31;
Month : 0..12;
Year : Integer

END;(*DateType Record*)

VAR
B: Integer;
DateRec: DateType;
InMonth: ARRAY[1..3] OF Char;

BEGIN
Write (MONTH (upper case, first 3 lett) =");
ReadIn (InMonth);
WITH DateRec DO
BEGIN
Write (‘DAY ="); ReadIn (Day);
Write ("YEAR ="); ReadIn (Year)
END;(*WITH reads DateRec*)
DateRec.Month := 0;
IF InMonth="JAN' THEN DateRec.Month
IF InMonth="FEB' THEN DateRec.Month
IF InMonth="MAR' THEN DateRec.Month
IF InMonth="APR' THEN DateRec.Month
IF InMonth="MAY' THEN DateRec.Month
IF InMonth="JUN' THEN DateRec.Month
IF InMonth="JUL' THEN DateRec.Month
IF InMontn="AUG' THEN DateRec.Month
IF InMonth="SEP' THEN DateRec.Month
IF InMonth="OCT' THEN DateRec.Month
IF InMonth="NOV' THEN DateRec.Month
IF InMonth="DEC' THEN DateRec.Month

SOV NORWN

"
=N
- O

i

=12

B := (DateRec.Day - StartDay)+ 30*(DateRec.Month - StartMonth) +

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

47

Kyan PASCAL Version 1.0

365*(DateRec.Year - StartYear);
IF DateRec.Month = 0 THEN
Writeln('Format error in Month') ELSE
Writeln('Days since Starting Time = ")B: 8)
END.

In this program the record type contains three sets of Integers. Only a subset of the type Integers is used for Month and
Day. In the range of values for Month, 0 is included to check that a three-letter abbreviation is input correctly. Error-checking
statements are always part of a professionally written program.

The record field DateRec.Month could have been the scalar type (JAN,FEB..DEC), but this would not have enabled a direct
comparison with the input, which is in the form of strings: 'JAN', 'FEB'..'DEC'". This is because 'JAN', a string, is not equal to
JAN, an identifier.

Arrays of Records

Suppose the quality control department of a company wished to calculate the failure rate of each of the parts in a gearbox or
some other machine. Although 5000 of these machines were built, only 500 of them have come back for service. The first
step in such a program would be to declare an appropriate array of records.

To construct an array of records, the following format is used:

TYPE
Array Type = ARRAY[Subscript Range] OF Record Type;

VAR
Array Variable : Array Type;

A particular element in such an array can be specified as follows:
Array Variable[Subscript].Field

In the program below, "Failures," the array is a set of records consisting of the serial number (Serial Num), the gear
number(Gear), the date of failure (FailDate) and the date the gearbox was put into service (StartDate).

"Failures" is used to calculate the time between when the unit was placed in service and when a part failed. SurviveTime is
a function similar to the program ElapsedTime, which was previously discussed.

PROGRAM Failures(Input,Output);
CONST
GearCount - 50; (*50 parts in gearbox*)
FailCount = 500;
MachCount 5000;

TYPE
DateType = RECORD
Month: 0..12; Day: 0..31; Year: Integer
END;(*RECORD*)

FailType = RECORD
SerialNum: Integer; Gear: Integer;
FailDate: DateType; StartDate: DateType
END;(*RECORD*)

VAR
Failure: ARRAY[1..FailCount] OF FailType;

FUNCTION
SurviveTime(VAR FailDate, StartDate: DateType): Integer;
BEGIN
SurviveTime := (FailDate.Day-StartDate.Day) +
30*(FailDate.Month-StartDate.Month) +
365*(FailDate.Year-StartDate. Year)
END;(*FUNCTION*)

BEGIN
Writeln("The first gearbox to fail lasted ',
SurviveTime(Failure[1].FailDate, Failure[1].StartDate):
WriteIn('lt was serial #', Failure[l].SerialNum: 9)
END.(*PROGRAM*)

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 48

Kyan PASCAL Version 1.0

The first Writeln statement specifies two fields (FailDate and StartDate) of the first record of the array Failure:

SurviveTime(Failure[1].FailDate, Failure[1].StartDate)
This statement calls the function SurviveTime, which then calculates the time to failure of the first machine.

ITH

Some programs that use records can be made more compact by using the WITH statement to access the fields of the array:
PROGRAM Entry;

TYPE InputType =RECORD
Money: Real; Name: ARRAY[1..15] OF Char;
MonDate, DayDate,YearDate: Integer
END;(*RECORD*)

VAR InputVar: InputType;

BEGIN WITH InputVar DO BEGIN
Money := 25.50; Name := 'Full Moon Inc.
MonDate := 4; DayDate:= 30; YearDate := 1952
END;(*WITH*)

WriteIn(InputVar.Name, ' gave', InputVar.Money: 6:2, ' on',
InputVar.MonDate: 3, '/, InputVar.DayDate: 3, '/',
InputVar.YearDate: 3)

END.

In Kyan PASCAL, the WITH statement should be used with record variables, .such as InputVar in the program above. It
allows the fields of a record to be accessed without repeating the name of the record. The WITH statement should be used
with records with simple identifier names; it should not be used with Arrays.

Variant Records

In many applications of the record type, there are two or more record that have most, but not all, their fields in common. The
variant recor is constructed for such cases.

For example, an auto repair shop owner wishes to keep a record of eac repair in order to bill his customers later. His
customers are either individuals or companies. In both cases, he wants to know the labor ar parts used as well as invoice
number and customer's name and address.] the case of companies, he also wants to know their requisition number The
two records are nearly the same:

TYPE Invoice1 = RECORD
InvoiceNum, Labor, Parts: Integer;
CusName,CusAddr: String;

SocSec: String
END;(*RECORD*)

TYPE Invoice2 = RECORD
InvoiceNum, Labor, Parts: Integer;
CusName,CusAddr: String;

RegNum: Integer
END;(*RECORD*)

For. convenience, these may be combined into a single variant record, named Invoice, by use of the CASE statement:

TYPE

Invoice = RECORD
InvoiceNum,Labor,Parts: Integer;
CusName,CusAddr: String;
CASE Custmr: Integer OF

1 : (RegNum: Integer);

2 : (SocSec: String)
END;(*RECORD*)

Suppose a variable of type Invoice is named Bill:
VAR Bill: Invoice;

Then, to refer to the billing number of either an individual or company, the auto shop would use "Bill.InvoiceNum." To refer to
the requisition number of a company, "Bil.L ReqNum" would be used. The latter number does not exist for individuals.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 49

Kyan PASCAL Version 1.0

SETS

Another type of data that may be declared in PASCAL is the set type. Sets may have up to 256 members. The general
format for the declaration of a set type is:

Identifier = SET OF Base Type;
The base type must be a scalar type (but not Real).

For example, if the numbers from 10 to 25 are the base type, the prime and nonprime numbers from 10 to 25 are two
possible set variables:

PROGRAM ExSetl(Input,Output);
TYPE
NumType = SET OF 10..25;
VAR
Prime, NotPrime: NumType;
N: Integer;

BEGIN
Prime :=1[11,13,17,19,23];
NotPrime :=[10,12,14,15,16,18,20,21,22,24,25];
Write('Enter a number between 10 and 25 '); ReadIn(N);
IF N IN Prime THEN Writeln('That is a prime') ELSE
IF N IN NotPrime THEN WriteIn('Not a prime') ELSE
WriteIn('That is not between 10 and 25)

END.

Notice that the declaration does not specify what numbers constitute the set variables, only that they must be some set of
Integers between 10 and 25. The numbers constituting the variables are assigned in the program as shown.

There are many similarities between a set type and a scalar type. In fact, the scalar type Numbers has the same range of
values for its elements as the elements (members) of the set type NumType:

TYPE

Numbers . 10..25;

NumType = SET OF Numbers;
VAR

Prime : NumType;

NotPrime : NumType;

Prim : Numbers;

NotPrim : Numbers;

Numbers differs from NumType in that the elements in a scalar type are ordered, whereas they are not ordered in a set.
(This allows the declaration of sub ranges of scalar types such as TYPE FirstQt : Jan..Mar, a sub range of TYPE Year.)

The differences between Prime and Prim are twofold:
1. Scalar variables such as Prim can have only one value at a time, whereas set variables can
include 0 to 256 values.
2. The set operations may be applied to Prime but not to Prim.
For example, if all the prime Integers and all the non-prime Integers from 10 to 25 were to be listed, the list would be exactly
all the Integers from 10 to 25. This is equivalent to the PASCAL statement below, where FullSet has been declared to be of
the type NumType:

FullSet := Prime + NotPrime

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 50

Operations on Sets

Kyan PASCAL Version 1.0

There are three basic operations on sets: Union, Intersection, and Difference. Consider the following program:

PROGRAM Assign;
TYPE
Numbers = SET OF 1.. VAR
Prime : Numbers;
Odd : Numbers;
Test : Numbers;

BEGIN
Prime := [1,2,3,5,7];
0dd :=[1,3,5,7,9];

The two sets Prime and Odd may be combined in three ways:

Test := Prime + Odd;(*Union = [1,2,3,4,5,7,9]*)
Test := Prime * Odd;(*Intersection =[1,3,5,7]*)
Test := Prime - Odd;(*Difference =[2]*)

In addition to the three basic set operators, there are seven set relational operators. These result in either a True or a False

output and are exactly parallel to the arithmetic relational operators previously discussed.

Equality Set1 = Set2
Inequality Setl <> Set2
Subset Set1 <= Set2
Superset Set1 >= Set2

SetMembership Setl IN Set2

The set membership operator is True if the element is a member of SETT.

It is not necessary to declare a set type to use sets. The following program uses the set of failing grades : [F,NP].

PROGRAM Finals(Input,Output);
CONST ClassSize = 30;
TYPE
GradeType = (A,B,C,D,F,P,NP,l);
StuGrade = RECORD
StudentID : Integer;
Grade : GradeType
END;(*RECORD*)
VAR

ClassGrades : ARRAY[1..ClassSize] OF StuGrade;

N : Integer;

LettGra : ARRAY[1..2] OF CHAR,;
BEGIN

FOR N :=1 TO ClassSize DO

BEGIN Write('Student ',ClassGrades[N].StudentID,'Enter final grade=");

ReadIn(LettGra);

IF LettGra ='F ' THEN ClassGrades[N].Grade:=F;
IF LettGra = 'NP' THEN ClassGrades[N].Grade:='NP;

IF ClassGrades[N].Grade IN [F,NP] THEN
Writeln('Too Bad') ELSE WriteIn('Good!")
END (*FOR¥)
END.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

51

Kyan PASCAL Version 1.0

Using Sets to Examine the Members of an Array

In the program below, the set operator "IN" is used to examine the members of an array that contains all of the test scores
of a student in a mathematics class. This process is repeated for all of the students in the class.

By outputting the total number of tests failed or postponed by students in the class, the program aids in evaluating overall
class performance.

PROGRAM TestGrades(Input,Output);
CONST ClassSize 30;
TYPE
GradeType = (A,B,C,D,F,|,P,NP);
GradeSet = SET OF GradeType;
StuGrades = RECORD
StudentID: Integer;
Grades: ARRAY[1..25] OF GradeType
END;(*RECORD*)

VAR
ClassGrades: ARRAY([1..ClassSize] of StuGrades;
N,M,I: Integer;
BEGIN
(*Statements would be inserted here to input class grades*)

|:=0;
GradeSet := [F,NP,I];
FOR N :=1 TO ClassSize DO FORM :=1TO 25 DO
IF ClassGrades[N].Grades[M] IN GradeSet THEN
| :=1+1;
WriteIn('In this class ', I:3, 'tests were');
Writeln(‘either failed, not passed or put off')
END.

FILES

In PASCAL, files are the means of input and output of data. A Read or ReadIn statement calls for input; a Write or Writeln
statement produces output. When information is entered at the keyboard, it goes into a PASCAL file called Input. When
information is output to the display, 'it is sent to a file called Output.

Files can also be used by. the programmer as a data type. What programmer-created files have in common with Input and
Output files is that they are sequential and that information is read to them and written from them one element at a time.

Programmer-created files enable data to be stored on magnetic tape or floppy discs: a piece of data assigned to a file
variable can be saved. In contrast, when files are not used, values assigned to variables are stored in the computer's
directly accessible memory, which is lost when the power is turned off.

Since the data in a file is on magnetic tape or a floppy disk, the size of the computer's directly accessible memory is not a
limitation as it is in other data types: files give the programmer a great deal of extra memory to work with. However, working
with files has the disadvantage of slowing the access time. This can become critical in real time programs.

Files are unique in that they are the only completely sequential data type. In fact, data items stored in a file cannot be used
in a program until they are transferred sequentially, one element at a time (first to last), from the file.

File Declaration

Before a file can be used in a program, it must be declared. The first
step in declaring a file is to specify the file (in Apple ProDOS files are referenced by a pathname which may be different than
the PASCAL file name identifier) name in parentheses after the program name:

PROGRAM Store(Input, Output, List1);
This tells the computer that at least some of the data used by the program will come from a file other than Input.
Next, in the variable declaration section, the variable type comprising the file is specified:

VAR List1 : FILE OF Integer;

Here, the elements of the file List1 are Integers. A file may also contain characters or Real numbers. Arrays, sets, and
records made of Integers, characters, or Real numbers are also allowed.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 52

Kyan PASCAL Version 1.0

Writing to a File

In order to store data in a file, we first must open the file for writing. This is done by using the Rewrite statement, which also
clears the file of any data previously stored in it.

Rewrite (List1);

Because Apple ProDOS uses the pathname to call files, Kyan PASCAL has been extended to include an optional pathname
as well as the PASCAL file identifier in Rewrite. The pathname may be a string constant:

Rewrite (List1, 'Dirl/Lst');
[Rewrite (List1, 'D1:Lst'); for ATARI]

or the pathname may be an array of characters:
Rewrite (List1, a);
To actually put data into the opened file, two more statements are necessary:

List1? := J;
Put(List1);

"List1A" (which is identical to "List11") is called a file buffer variable. Before the value of an element can be Put into a file, it
must be temporarily assiged to a file buffer variable. The first statement above assigns the value J to the file buffer variable.

The Put statement is used to write the value J from the file buffer into the file. The first value entered goes to the first
element position. The next value entered goes to the second element position, and so on. It is impossible to read from or
write to a file without starting from the first position.

The only memory space reserved for file variables is for the file buffer variable. (If List1 is a file of Integer, List1”* will be

assigned two bytes.) This is because a file exists outside the memory space of the
computer.

Program Store (List)

The following program stores the Integers 11 to 45 in a file named List1:

PROGRAM Store(Input,Output,Listl);

VAR
List1 : FILE OF Integer;
J : Integer;
BEGIN

Rewrite (List1);
FORJ:-11TO 45 DO

BEGIN
List1” := J;
Put(List1)
END
END.

Reading a File
Before a file can be read, it must be opened for reading. This requires use of the command Reset:
Reset (List1);

Because Apple ProDOS uses the pathname to call files, Kyan PASCAL has been extended to include an optional pathname
as well as the PASCAL file identifier in Reset. The pathname may be a string constant:

Reset (List1, Dir1\Lst");
or the pathname may be an array of characters:
Reset (List1, a);

The first element read is always the first element that was entered: just as a file must be written from beginning to end, it
must be read sequentially. In addition, reading requires that the values of the elements be assigned to a file buffer variable:

J ;= List1%;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 53

Kyan PASCAL Version 1.0

A Get statement must be used to get all elements of the file after the first one. Thus, if J is the first element of the file, K is
the second, and L is the third, the following statements get the first three elements:

J ;= List1%;
Get(List1);
K := List1%;
Get(List1);
L := List12

Usually the number of elements in a file is not known; therefore, to get all the data from a file, the file should be read until
the end of file marker (EOF) is found. The end of file marker is always at the end of the file furthest from the first element.
The following statements write all the elements of the file.

Reset (List1);
WHILE NOT EOF(List1) DO
BEGIN
J = List1#; Writeln(J); Get (List1)
END;

Sometimes a specific element in a file is sought. The following statements find and write all the elements of the file equal to
77 (List1* is the file buffer variable.):

Reset (List1);
WHILE NOT EOF(List1) DO
BEGIN
IF 77 = List1" THEN Writeln(List1 :4); Get(List1)
END;

Text Files

Because files of characters are so frequently used, PASCAL has a. standard type of file, called Text, that is predefined as
"Text = FILE OF Char." To create a file of text, include the file name after the program name and also declare it as a
variable:

PROGRAM WordProc(TextFileName);

VAR TextFileName : Text;

Although the input and output of a text file may be handled in the same way as the input and output of other types of files,
the following simplifications may be used:

Read(TextFileName, Identifier);

can take the place of
Identifier :=TextFileName”; Get(TextFileName);

Also:
Write(TextFileName, Identifier);

can take the place of
TextFileName” :=Identifer; Put(TextFileName);

If no text file name is included in a Read or Write statement, the file accessed will be Input or Output, respectively. (Note:

some PASCAL compilers will give an error message if no text file name is given and Input and Output have not been
declared.)

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 54

Kyan PASCAL Version 1.0

Files of Records
Most files are files of records. In the following example, the status of each truck in a company's fleet is kept in a file called
BigRigFile.

PROGRAM Trucks(Input,Output,BigRigVar);

TYPE

String = ARRAY[1..16] OF Char;
TruckType = Record

NextSrvc : Integer;

ID : String;

Status : (OnRoad, MachShop)
END;(*TruckType*)
BigRigFile = FILE OF TruckType;

VAR
BigRigVar : BigRigFile;
S1 : String;

BEGIN(*Body of Trucks. Program*)
Reset(BigRigVar);
WHILE NOT EOF(BigRigVar) DO

BEGIN
Writeln;WriteIn("Truck #', ID);
IF BigRigVar".Status - OnRoad THEN

S1:='Ontheroad '

ELSE S1:='Inthe shop
Writeln('Status is ', S1, 'Next Service is ', NextSrvc : 7)

Get(BigRigVar)

END (*WHILE LOOP*)
END.

Random_ Files

Although standard PASCAL does not include random access files, there are many instances where a program might wish to
access only part of a file and that part might be in the middle of a file or at the end, making sequential access very slow.

Most files in Kyan PASCAL have been changed from sequential storage to relative storage to allow random access of the
elements in the file. (However please note that files of Char (text) or files of Boolean, remain sequential files.)

The function Seek has been included in Kyan PASCAL to access parts of relative files, called elements that might be in the
anywhere in a file. This procedure is used as follows:

Seek(F,N); (* Position the buffer of file F at the Nth element*)

Put(F) (* Put contents of the file buffer into Nth element*)
(* Either Put or Get follow Seek *)
Get(F); (* Get contents of Nth file element and put in buffer*)

The first element of a file has the element number O. As was stated previously the first element of a file is the first element
put (using the PASCAL procedure Put) into a file. Most often, the elements of a file are PASCAL record types.

PROGRAM SeekDemo;
TYPE String = ARRAY[1..32] OF Char;
VAR F: FILE OF String; C: Char;

PROCEDURE RdRec;
VAR i: Integer;
BEGIN Write('Record Number? '); ReadIn(i);
Seek(F,i);
Get((F);
IF NOT EOF(F) THEN Writeln(F") (* EOF is true if element empty
END;

PROCEDURE WrRec;

VAR i: Integer;

BEGIN Write('Record Number? '); ReadIn(i);
Write('Data? '); ReadIn(F"); (* assign data to file buffer *)
Seek(F,i);
Put(F)

END;

BEGIN

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 55

Kyan PASCAL Version 1.0

Reset(F, Data’); [Reset (F,'D1:DATA'); for ATARI]
REPEAT
WriteIn('R-Read W--Write Q-Quit '); ReadIn(C);
IF C-'R' THEN RdRec; IF C='"W' THEN WrRec;
UNTIL C='Q'
END.

If it were desired to open a file for the first time, or to clean an existing file of all data, the procedure Rewrite is used. Instead
t Next he above program uses the procedure Reset to open the file "Data."

POINTER VARIABLES AND LINKED LISTS

Pointers and Nodes
VAR Count : Integer;
BEGIN Count := 54;

If we could examine the computer's memory, we would find that the above statements put 54 into specific memory locations.
Just for the sake of this discussion, assume that 54 goes into memory locations 12156 and 12157.

Count= 512156
412157.

There is another way to get 54 into memory and that way is to use pointers:
VAR Locate : "Integer;

BEGIN New(Locate);
Locate” := 54;

If we could now examine the computer's memory, we would again find 54 in specific memory locations, perhaps 11343 and
11344. We would also find that the value 11343 is stored in memory:

Locate = 111338
111339
311340
411341
311342
Locate” = 511343
411344

Locate is the group of memory locations that point to the place in memory where 54 is stored. There was no such "pointer"”
in the first example.

Locate is called a pointer variable, while Locate is called stored data or a node. The pointer symbol (" or 1) appears on the
left side of the Type in the pointer variable declaration (Locate : "Integer), but on the right of an identifier for stored data
(Locate := 54).

It is also possible to declare pointer types such as:

TYPE LocateType = *Integer;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 56

Kyan PASCAL Version 1.0

Z

5]

New is the standard PASCAL procedure used to assign memory locations to a pointer variable. Each time the New
statement is executed, a new set of locations is assigned to Locate.

If we deleted the New statement from the example above, the computer might put 54 into memory locations occupied by
other data. This would probably cause run time errors.

e

eek and Poke

Although New allows us to put data into memory, we have no idea where in memory the data is going. Peek and Poke give
us the power to examine or change the data in specific memory locations.

Peek and Poke are most often used with memory locations that have a dedicated function such as specifying a character on
the screen, the color of a character, or a sound emitted from the speaker.

Suppose we wish to check what actually is in memory locations 11343 and 11344:
VAR Locate : *Integer;
BEGIN Assign(Locate, 11343);
Write(Locate?);
Assign(Locate, 11344);
Write(Locate”);

Although "Assign(Locate, 11343)" is not part of standard PASCAL, it is included in Kyan PASCAL. When the Assign
statement is used with a Write statement, the result is a Peek.

In standard PASCAL it is not possible to decide where in memory to store data. The compiler makes that decision. However
the Kyan PASCAL Assign statement allows us to Poke data into a specific memory location as follows:

VAR Locate : AInteger;

BEGIN Assign(Locate, 11343);

Locate” := 5;
Assign(Locate, 11344)
Locate” := 4;

In the Apple Il, lle and lic, location 1024 maps the first character on the screen. The screen is 40 characters wide by 25
characters tall. The following program uses Poke to put the alphabetic characters in the first line at the top of the screen.

Consult your Apple manual for the other memory locations reserved for the screen.

PROGRAM Alphabet;
TYPE Screen = ARRAY[0..1023] of Char;
VAR Charmem : AScreen;

| : Integer;

BEGIN

Assign(Charmem, 1024);

FOR 1:=0 TO 25 DO Charmem[l] := Chr(l + Ord('A"))
END.

In the Poke above, an Integer value (1024) is assigned to a pointer variable (Charmem). This is where in memory
Charmem"[1,1] will be stored. To Poke 'A' into the specified memory location, we assign it to Charmem".

The procedure New is not used with a Poke: the next memory location (1025) is automatically mapped to the next
Charmem" in the loop. Each element in 'the array, Charmem [l], takes one memory space; thus, the entire array is mapped
into memory locations 1024 to 1049.

Suppose Charmem is defined as above, but now we wish to Peek at the character displayed at the upper left hand corner of
the screen:

BEGIN
Assign(Charmem, 1024);
Write(Charmem"[1])
END.

Some memory locations exceed 32767, the maximum Integer size allowed in Kyan PASCAL. In those cases, the equivalent
memory location is a negative number given by the formula:

Equiv. Mem. Loc. = Mem. Loc. - 65536

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 57

Kyan PASCAL Version 1.0

Linked Lists and NIL

In addition to being used with Peek and Poke, pointers are used in linked lists, which allow a database to be of variable size.

Below is a program that has a pointer variable, Appointm, which points to the location of a Record, AppointRec (just as
Locate pointed to the location of an Integer). Each record is an appointment including time and person to meet.

PROGRAM Meetings(Input,Output);

TYPE String = ARRAY[1..15] OF Char;
TimeType = (Hr,Min,Day,Mon,Yr);
AppointRec = RECORD

Person : String;
Time : ARRAY[TimeType] OF Integer
END(*RECORD*);
VAR Appointm : *AppointRec;

BEGIN
New (Appointm);
Appointm”.Person :='Ernie ;
New (Appointm);
Appointm?.Person := 'Bob
New (Appointm);
Appointm?.Person := 'Gina ;
Writeln (Appointm”.Person)

END.

It is important to notice that each time another name is entered, the pointer is moved to a new location:
New(Appointm);

Although the above sequence of statements inputs three names into memory, each with a different pointer, it does not
provide for retrieval of any of the names except the last. When Writeln is executed, "Gina" will be printed.

In the example that follows, a pointer type, Appointer, is declared; and the appointment record includes a pointer, Link, that
will link all the records and thus allow all the data to be retrievable:

PROGRAM Pinter(Input,Output);

TYPE String = ARRAY[1..15] OF Char;
TimeType = (Hr,Min,Day,Mon,Yr);
Appointer = *AppointRec; (*Pointer Type*)
AppointRec = RECORD

Link : Appointer;

Person : String;

Time : ARRAY[TimeType] OF Integer
END;(*AppointRec RECORD*)

VAR
Appointm, Pt : Appointer; (*Pointer Variables*)

BEGIN
Pt := NIL;
New(Appointm);
Appointm?.Person := 'Ernie "
Appointm?.Link := Pt;

Pt := Appointm;

New(Appointm);
Appointm”.Person := 'Bob "
Appointm?.Link := Pt;

Pt := Appointm;

New(Appointm);

Appointm”.Person := 'Gina

Appointm”.Link := Pt
END.

The list of appointments is now retrievable because the "next" pointer (i.e., the linking pointer) is included in each record as
the pointer field, "Link."

The standard PASCAL identifier NIL is used to indicate the last element in the list. Records are linked backward (first in last
out). NIL indicates the last element to be retrieved:

Pointer®.Link := NIL;

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 58

Kyan PASCAL Version 1.0

In the program above, Appointm points to the first name to be retrieved, Appointm”.Link points to the second, and
(Appointm®.Link)".Link (NIL) points to, the third. The following statements output the names contained in the three linked
records:

WHILE Appointm <> NIL DO
BEGIN
WriteIn(Appointm”.Person);
Pt :. Appointm”.Link;
Appointm := Pt
END; (*WHILE*)

Dispose

Dispose(Appointm)

INCLUDE

How to Include Procedures and Functions from Other Files

Kyan PASCAL 'facilitates the inclusion of a user defined library of procedures and functions during compilation time. That is,
procedures and functions that are used in many programs may be declared each in a file of its own and easily included for
use in many programs.

To include a function or procedure in a program use the following format:
#i FileName

A pound sign (#) must appear in column 1 and i (for include) in column two. The name of the file (in which the declaration of
the function or procedure is written) follows.

For example, the program HELLO was discussed in the Editor and Compiler chapter at the beginning of this book. Written
as a procedure the file Hello would be:

PROCEDURE Hello;
BEGIN

Writeln('Hello, world")
END;

The file Hello may be be included in any program by using the format just discussed:

PROGRAM Main;
#i Hello
BEGIN
Hello;
END.

Use the same name for the procedure or function as the file name. Although it is possible to use different names, such
would be poor style.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 59

Kyan PASCAL Version 1.0

Including Files, Other Applications

Files that are included may be any text file, not just procedures and functions. It is important to try to visualize the insertion
of the lines of the included file in place of the #i "FileName" line.

THE ASSEMBLED PROGRAM AND ITS USES

Assembly Language Routines

Kyan PASCAL accepts in-line assembly code, which enables the user to create many powerful routines and not be limited
by the structure of standard PASCAL. In-line assembly routines do have one restriction though: they must appear in the
body of the program, procedure, or function, i.e. they must appear between the BEGIN and END.

Some distinction must be made if the computer is to tell whether or not to interpret the lines that follow as assembly
language or PASCAL. Assembly language lines are simply left as they are during compilation.

If the lines that follow are to be in assembly language they should begin with the pound sign (#) in column 1 and the letter
"a" in column 2. , End the assembly language lines with the pound sign in column 1. For example the procedure Delay is
written with in-line assembly language:

PROCEDURE Delay;

BEGIN
#a
LDY #100 (* IMPORTANT I %)
WLOOP DEY (* LABELS MUST START IN COL. 1 %)
BNE WLOOP (* ONLY LABELS START IN COL. 1 %)
#
END;

It is important not to use labels in the assembly language routines that begin with the letter "L." The compiler uses the lables
Lxxxxx (xxxxx is a number) and if you use lables that begin with L, it is likely to fail.

Assembler Directives

Assembler directives are also known as pseudo-code because they appear in the assembly language listing of a program
but are not part of the language of the microprocessor. Instead they are part of the language of the assembler.
KyanPASCAL has six assembler directives. (They must not start in column 1 because they would be mistaken for labels.)

ORG origin

EQU equate

DB define byte

DW define word

> least significant byte
< most significant byte

ORG is used to tell the assembler that the following code is to start at the specified memory location.

When a label is given a value using the directive EQU that value will be substituted for the label throughout the program
when the program is converted to object code. In other words, EQU defines constants.

DB and DW are used in building tables and strings that reside in certain parts of the assembly code. When the program
executes, the values placed by these directives may be read by setting the index register to the address in program where
the DB or DW statements are, then loading the value at the index register.

When the > and < operators afe used with a label or immediate value in a program, either the least significant byte or most
significant byte is extracted. For example, the following equalities are true:

>$FFO1 = $0001
<$FFO1 = $OOFF

Parentheses are not allowed in assembler directives. Expressions are evaluated from left to right. There is no precedence of
one directive over another.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 60

Kyan PASCAL Version 1.0

How to Use Assembly Routines to Access PASCAL Variables

In the previous example, "Delay", an assembly language routine was inserted into a PASCAL program to cause a delay
every time the program came to the place in which it was inserted. It does not modify any of the values of the variables in
the PASCAL program.

In order to use assembly code to modify PASCAL variables, the location of these variables must be known. These locations
are never absolute, but always relative to a pointer maintained by the compiler called LOCAL. The location of PASCAL
variables may also be calculated relative to the stack pointer (SP).

In the example that follows in-line assembly code puts the value of the PASCAL variable "Cee" into the A accumulator of the
microprocessor:

PROCEDURE Zen(Alt,Bee,Cee : Integer);

VAR
m,n : Integer;
BEGIN
#a
LDY 7
LDA (SP),Y
#
END;

The first line loads the Y accumulator with 7 the distance that Cee is from SP. (The first variable declared is the first one on
the stack and the one furthest from SP.) The offset from SP is calculated by adding 3 to the space taken by variables
following the declaration of Cee:

Offset(of Cee above SP) = 3 bytes + Last-in Stack bytes

Since 2 bytes are required for each integer variable and both "m" and "n" are pushed on the stack after Cee, the total offset
is7=3+2*2.

The second line of the assembly code loads the accumulator A with the value in memory that is stored at where SP is
pointing plus 7:

SP ---- top of stack
n
The stack grows toward lower memory.
m
Bee
Cee
Local ---- Alt bottom of stack

The offset from LOCAL is simply the total space taken by variables preceeding and including the declaration of Cee:
Offset(of Cee below LOCAL) = First-in Stack bytes + Cee bytes

The offset from LOCAL is 6 bytes, due to the Integer variables Alt and Bee which are pushed before Cee and 2 bytes for
Cee itself.

The 3 bytes added to the value in the stack pointer are 3 bytes are preserved at the top of the stack for stack linkage.

The 6502 X register is used by the compiler as a stack pointer. It is very important to save, and restore the X register if you,
need to use it.

The following table designates how many bytes of memory each type of variable or constant is provided on the stack:

Real 8 bytes
Integer 2 bytes
Char 1 bytes
Boolean 1 bytes
Pointer 2 bytes
ARRAY[1..n] OF Char n bytes
ARRAY[1..n] OF Boolean n bytes
ARRAY][1..n] OF Integer 2*n bytes
Value Parameter(Real) 8 bytes
Value Parameter(Integer) 2 bytes
Value Parameter(Char,Boolean) 1 bytes

Value Parameter
(ARRAY[n] OF Char,Boolean) n bytes
Value Parameter

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 61

Kyan PASCAL Version 1.0

(ARRAY[n] OF Integer) 2*n bytes
Variable Parameters(All) 2 bytes

Variable parameters are the parameters in the parentheses of the declaration of a procedure or function. They differ from
value parameters because memory space is not allocated for the value of the variable but only for a pointer to a variable
outside the procedure or, function. Since each pointer takes two bytes, each variable parameter takes two bytes.

In PASCAL programs all the declarations come before the body of the program, function or procedure thus, the location of
the variables is easily calculated. Always calculate the location of the variables relative to the beginning of the procedure,
function, or program in which they appear.

It is inappropriate and misleading to calculate the stack location of variables based on their relative scope in the program,
i.e. based on variables outside the scope of the ones in—line with the assembly code.

Predefined Labels

The following tables gives the absolute locations of SP, LOCAL, and T. SP and LOCAL contain the addresses of the
bottom and top of the PASCAL variables stack, respectively. T is the start of the temporary registers. There can be up
to 16 temporary labels going from T to T+15.

SP EQU 4
LOCAL EQU 2
T EQU 16

Passing Parameters through Chain

Parameters passed from one executable program to another executable program using Chain are passed by value and are
only passed forward; i.e., to the next file to be run.

The parameters passed are the ones in that match type and position in the declaration section of the program. All
parameters that follow any parameter that does not match cannot pass values through Chain.

PROGRAM Alpha; PROGRAM Beta;
VAR VAR
A,B,C : Integer; D,EF : Integer;
X : Integer; Y : Real;
P : Char; L : Char;

BEGIN BEGIN

If program Alpha calls program Beta through file the values of A, B and C are passed to D, E and F. Y does not match and a
value is not passed. Although L matches P, no value is passed because it follows the mismatch of the parameters Y and X.

How to Chain Source Code Files

Sometimes a program is broken into sections that are to be loaded from the floppy disk when and where they are needed.
This strategy is called chaining.

To chain files together:

PROGRAM MyExample;
BEGIN

Chain('NextOne'); [('D1:NextOne') for ATARI]
END.

The next statement executed will be the first statement in 'NextOne.'

GRAPHICS (Apple Il Only)

High Resolution Graphics

Before the graphics functions can be used the following assembly language code must be used to relocate the PASCAL
program:

#a

ORG $4000
#

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 62

Kyan PASCAL Version 1.0

PROGRAM MyProgram (*start of PASCAL program body*)

The above origin statement must be included before the body of the PASCAL program whenever high resolution graphics
are used. Normally the origin of the PASCAL program is $2000.

Once the program has been moved the graphics procedures can be included. But this is not done automatically. The
following pre—compilation statement must be written in the declaration part of the program, and in particular it must be in
the section for the declaration of functions and procedures:

#a
ORG $4000
#
PROGRAM MyProgram (*start of PASCAL program body*)
#.i. HIRES.I (*in declaration section of MyProgram*)

High resolution graphics functions are used to draw figures in outline, such as would be done by a sharp pencil. The
following statement turns on the graphics:

HGr;

To leave high resolution graphics, use the "Tx" statement: Tx;

Line Segments

To draw a line segment, your Apple computer must be in the high resolution mode. The endpoints of the line must be
determined and input as integers into the function Draw. Suppose you wished to draw a short line of the color blue between
the points (25,50) and (60,70). The following statements would accomplish this task:

BEGIN
HGr;
Draw(25,50,60,70,5);
Tx

END;

The procedure Draw(X1,Y1,X2,Y2,n) selects the color corresponding to n=5, which is blue and draws the line between the
endpoints (X1,Y1,X2,Y2).

In the high resolution mode your Apple monitor is composed of 280 by 192 pixels; which is that the monitor goes from 0 -
192 in Y axes (vertically) and 0 - 280 in X (horizontally). The (0,0) point is in the upper left hand corner.

The entire program would be:

#a
ORG $4000

PROGRAM MyProgram; (* start of PASCAL program body *)
#i HIRES.| (* in declaration section of MyProgram *)
BEGIN
HGr;
Draw(25,50,60,70,5);
For J =1 to 50,000 Do (* forces a pause long enough to draw line *)
Tx
END.

The following are the integers corresponding to the colors available in high resolution graphics:

black
green
purple
red
blue
white

abrwWN-_0O

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 63

Kyan PASCAL Version 1.0

STRING MANIPULATION

String

String is not a predefined PASCAL type; however, in order to use the Kyan PASCAL string manipulation functions and
procedures it must be declared in the programs that use it.

As stated in previous chapters a string is simply an array of characters:

CONST

Maxstring = 10; (* - 10 as. an example *)
TYPE

String = ARRAY][1..Maxstring] OF Char;

Maxstring must also be declared as a constant to whatever value is appropriate to the use of String in the program.

To use string procedures and functions in a program, along with the above declarations, the file containing the specific
function or procedure you wish to use must be included using the #i format in the procedures and functions declaration
section of the program. The three string manipulation fuctions and one procedure are Length, Index, Substring and Concat.
For example, in order to use Substring, include the file Substring:

PROGRAM MyExample;

CONST
Maxstring = 10; (* =10 as an example *)
TYPE
String . ARRAY(1..Maxstring] OF Char;
#i Substring.|
BEGIN

The file containing the string manipulation function or procedure always is appended with .| as above. All the examples that
follow use Maxstring = 10, although any value up to Maxint may be used.

Length

A string ends with the first blank space or the last character in the array. Length, a nonstandard function, returns the length
of a String. For example, suppose:

PROGRAM MyExample;
CONST
Maxstring = 10; (* =10 as an example *)
TYPE
String . ARRAY(1..Maxstring] OF Char;
VAR
S :String;
#i Length.l

BEGIN
s :='abcd
IF (Length(s) = 4) THEN Writeln('This is true');
END.

The Length function can be used in a Write statement as follows to eliminate the trailing blanks in a string appearing in the
output.

Writeln (S:Length(S));

Concat

Concat is an abbreviation of concatenate which means to put two strings together to produce a third. If S1 = 'ANY
and S2 ='BODY , then S3 ='ANYBODY ' where the program calls:

Concat(S1,S2,S3);

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 64

Kyan PASCAL Version 1.0

Index

Index is a function that returns the position of one string within another. If Index is used to find the position of S1:="a in

S2:='baby 'then the following statement is true:
Index(S1,S2) = 2;

If the S2 is not found in S1, then the value of Index = 0.

Substring

Substring extracts part of a string, indicated by its two indices m and n. If a string of length 1 is to extracted from S1
'abcd ' starting at the second position then the value for Substring would be 'b '

Substring(S1,2,1) ='b ' (* This has a true value *)

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 65

Kyan PASCAL Version 1.0

APPENDIX A
COMPILER, ASSEMBLER, AND RUN-TIME ERROR MESSAGES

Compiler Error Messages

1.syntax error

2.unexpected end of input
3.array dimension expected
4.to or downto expected
5.type specification expected
6.ordinal type expected

7.:= expected

8.: expected

9., expected

10.; or end expected
11.compiler directive expected
12.do expected

13.end expected

14.= expected

15.identifier expected

16.[expected

17.constant expected

18.(expected

19.0f expected

20.type identifier expected
21.. expected

22.program expected

23.] expected

24.) expected

25.; expected

26... expected

27 .then expected
28.unsigned integer expected
29.file name expected
30.can't open file

31.illegal file name

32.; or until expected
33.missing end statement(s)
34.extraneous end statements)
35.; or case expected

Run Time Error Messages

1.bad subscript

2.too many active files (Maximum is 5 files)
3.file not active

4.set element out of range

5.heap overflow

6.bad In(arguement)

7.bad exp(arguement)

8.read past eof (End of File)

9.out of memory

10.arithmetic overflow

Assembler Error Messages

1.A addressing mode error

2.L label required with EQU

3.M multiply defined symbol

4.U undefined expression

5.0 unrecognizable opcode

6.S syntax error

7.4 branch address is out of range
8.F symbol table overflow

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 66

APPENDIX A (Cont.)
ProDOS Error Messages

FILE TYPES
file.type Preferred Use
$00 Typeless file (SOS and ProDOS)
« $01 Bad block file
+ S02 PASCAL code tile
+ $03 PASCAL text tile
$04 ASCII text tile (SOS and ProDOS)
« $05 PASCAL data file
$06 General binary file (SOS and "roDOS)
. $07 Font tile
- %08 Graphics screen file
%09 Business BASIC program file
+ $0A Business BASIC data file
- $0B Word Processor file
« SOC SOS system tile
+ $0D, $0E SOS reserved
$OF Directory file (SOS and ProDOS)
+ $10 RPS data file
- $M1 RPS index tile

- $12-BF SOS reserved
$CO-EF ProDOS reserved

$FO ProDOS added command file
$F1-F8 ProDOS user defined tiles 1-8
$F9 ProDOS reserved

$FA Integer BASIC program file
$FB Integer BASIC variable file
$FC Applesoft program file

$FD Applesoft variables file

$FE Relocatable code file (EDASM)
$FF ProDOS system tile

* Apple lll SOS only: not used by ProDOS

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

ProDOS ERROR MESSAGES

$00:
$01:
$04:
$25:
$27:
$28:

$2B:
$2E:

$40:
$42:
$43:
$44:
$45:
$46:
$47:
$48:
$49:

$4A:

$4B:
$4C:
$4D:
$4E:

$50:
$51:
$52:
$53:
$55:
$56:
$57:

$5A:

No error

Bad system call number

Bad system call parameter count
Interrupt table full

1/0 error

No device connected

Disk write protected

Disk switched

Invalid pathname

Maximum number of files open
invalid reference number
Directory not found

Volume not found

File not found

Duplicate filename

Volume full

Volume directory full
Incompatible file format.

also a ProDOS directory
Unsupported storage type

End of tile encountered
Position out of range

F:le access error, also file locked
File is open

Directory structure damaged
Not a ProDOS volume

Invalid system call parameter
Volume Control Block table full
Bad buffer address

Duplicate volume

File structure damaged

67

APPENDIX A (Cont.)
ATARI FILE ERROR MESSAGES

Shown below are the known CIO STATUS BYTE values.
1(001) - OPERATION COMPLETE (NO ERRORS)

80 (128) -- [BREAK] KEY ABORT
81 (129) -- 10CB ALREADY IN USE (OPEN)
(130) -- NON-EXISTENT DEVICE
83 (131) -- OPENED FOR WRITE ONLY
84 (132) -- INVALID COMMAND
(133) -- DEVICE OR FILE NOT OPEN
86 (134) -- INVALID IOCB NUMBER (Y reg only)
87 (135) -- OPENED FOR READ ONLY
88 (136) -- END OF FILE
89 (137) -- TRUNCATED RECORD
8A (138) -- DEVICE TIMEOUT (DOESN'T RESPOND)
8B (139) -- DEVICE NAK
8C (140) -- SERIAL BUS INPUT FRAMING ERROR
8D (141) -- CURSOR out-of-range
8E (142) -- SERIAL BUS DATA FRAME OVERRUN ERROR

8F (143) -- SERIAL BUS DATA FRAME DEVICE CHECKSUM ERROR

90 (144) -- DEVICE DONE ERROR

91 (145) -- BAD SCREEN MODE

2 (146) -- FUNCTION NOT SUPPORTED BY HANDLER
93 (147) -- INSUFFICIENT MEMORY FOR SCREEN MODE

A0 (160) - DISK DRIVE # ERROR

A1 (161) — TOO MANY OPEN DISK FILES
A2 (162) - DISK FULL

A3 (163) - FATAL DISK I/O ERROR

A4 (164) — INTERNAL FILE # MISMATCH
A5 (165) - FILE NAME ERROR

A6 (166) - POINT DATA LENGTH ERROR
A7 (167) - FILE LOCKED

A8 (168) - COMMAND INVALID FOR DISK
A9 (169) - DIRECTORY FULL (64 FILES)
AA (170) - FILE NOT FOUND

AB (171) - POINT INVALID

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

68

APPENDIX B
QUICK GUIDE TO KYAN PASCAL

Predefined Types:
Integer, Boolean, Real, Char, Pointer, (scalar values..)

Predefined File Types:
Input, Output, Text

Compound Types (Reserved Words)
ARRAY]I..] OF.., RECORD OF..
SET OF.., FILE OF..

Predefined Functions with Real or Integer Parameters:*
Abs(Real or Integer), Arctan(Real or Integer),
Cos(Real or Integer), Exp(Real or Integer),
Ln(Real or Integer), Round(Real),
Sin(Real or Integer), Sqr(Real or Integer),
Sqrt(Real or Integer), Trunc(Real)

Predefined Functions with Other Parameters*
(PR, PRON, PROFF are non-standard)
Ord(scalar), Pred(scalar), Succ(scalar),
Chr(Integer), Odd(Integer), EOF(file),
EOLN(Text file), PR(slot number), PRON, PROFF

Predefined File Procedures: (Chain & Pathname are non-standard)
Reset(file, [optional pathname]),
Rewrite(file, [optional pathname]),
Get(file), Put(file), Page(file), Read(..), ReadIn(..),
Write(..), Writeln(..),
Chain(file), Seek(file, element number)

Predefined Pointer Procedures:
New(pointer), Dispose(pointer)

Predefined Non-standard Pointer Procedures:
Assign(pointer, integer)

Predefined Constants:
True, False, Maxint

Value Reserved for Unassigned Pointer:
NIL

Conditional Instructions (Reserved Words):
IF-THEN-ELSE, WHILE-DO, REPEAT-UNTIL,
FOR-TO-DO, FOR-DOWNTO-DO

Operators (Reserved Words):
Arithmetic Operators: DIV, MOD
Boolean Operators: AND, NOT, OR, IN

Kyan PASCAL Version 1.0

* Allowed parameter types appear in parentheses.

Operators (Reserved Characters):
Arithmetic Operators: + - * /
Relational (Comparison) Operators: - < >

Graphics Procedures (Non-standard, Apple Il only):
HGr, Draw(X1,Y1,X2,Y2,n), Tx

Miscellaneous Reserved Characters:
Punctuation: . ,; :" () [1{}
Pointer: * (equivalent to 1)

Grammatical Identifiers (Reserved Words):
CONST, FUNCTION, LABEL, PROCEDURE,
PROGRAM, RECORD, TYPE, VAR,
BEGIN..END, CASE..OF.., GOTO, WITH..DO..

Pre-Compilation Instructions (Non-standard)

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

69

Hioonnen # (include file)
#a........ # (include assembly code)

String Functions and Procedures (Non-standard)
(String and Maxstring must be declared)
Length(string), Concat(string,string,string),
Index(string, string), Substring(string, integer, integer)

Graphics (Non-standard, ATARI only):
Graphics(integer), SetColor(Register,Hue,Luminance),

Plot(Horizontal,Vertical,Color), Position(Horizontal,Vertical),
Locate(Horizontal,Vertical,Data), Drawto(Horizontal,Vertical,Color

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006

Kyan PASCAL Version 1.0

70

Kyan PASCAL Version 1.0

APPENDIX C
SPECIFICATIONS

Integer: Range of -32768 to +32767
Maxint - 32767

Real: Range of -1.00E+99 to +1.00E+99
Precision of 13 decimal digits

Char: Character
Printable and nonprintable ASCII characters
corresponding to ordinal values 0 to 256

Pointer: Represented by 16-bit Integer

SET: Maximum number of members is 256

Requirements: Disk Drive & 64K memory
Maximum Program Size : 36K - Apple 1l/ 29K - ATARI

Significant Identifier Length: 8 characters

Apple Memory Map

0

1 Library *
2 User Program & Data

3

4

5

6

7

8

9

A Stack **
B Library *
Cc

D

E

F

* Library is located from $800 to $2000 and $B000 to $BF00
Stack starts at SAEFF and grows toward low memory.
*** User program is loaded starting at $2000.
However when graphics procedures are included user program should be loaded starting at $4000.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 71

Kyan PASCAL Version 1.0

ATARI Memory Map

0

1 FMS *

2 User Program & Data

3 HEAP

4 1

5 29K

6

7

8 1

9 Stack **

A Library i

B

C

D

E oS

F
* File Management System is located from $800 to $2000 and $9400 to $BF00
> Stack starts at $93FF and grows toward low memory

bl User program is loaded starting at $2000.

However, when graphics procedures are included, user program should be reloaded upward to leave room for
graphics starting at $2000. The HEAP starts at the end of the program and grows upward.

Rk The library is located from $9400 to $BBFF. The screen area and display list are located from $BC00 to $BFFF.

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 72

Kyan PASCAL Version 1.0

SOFTWARE MEDIA LIMITED WARRANTY

Kyan Software warrants to the original consumer purchaser of Kyan PASCAL for a period of ninety (90) days from the date
of purchase that the recording medium, and only the recording medium, on which the software program is recorded will be
free from defects in materials and workmanship. Defective media returned by purchaser to Kyan Software during that ninety
day period will be replaced free of charge provided that the returned media has not been subjected to abuse, unreasonable
use, mistreatment, neglect or excessive wear.

Following the initial ninety-day period, defective media will be replaced for a $9.50 replacement fee. To qualify for
replacement, defective media must be returned postage paid in protective packaging to:

Kyan Software

1850 Union St. #183

San Francisco, CA 94123

Defective media must be accompanied by (1) proof of purchase, (2) a brief statement describing the defect, (3) a $9.50
check payable to Kyan Software (if beyond the ninety day warranty period), and (4) your return address.

THIS WARRANTY IS LIMITED TO THE RECORDING MEDIA ONLY AND DOES NOT APPLY TO THE SOFTWARE
PROGRAM ITSELF WHICH IS PROVIDED "AS IS."

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED.
ANY APPLICABLE IMPLIED WARRANTIES INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS ARE
HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL
DAMAGES RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY
EXCLUDED.

Some states do not allow limitations on how long an implied warranty lasts or do not allow the exclusion or limitation of
incidental or consequential damages, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED D BY SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS
THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

ProDOS are copyrighted programs of Apple Computer, Inc. licensed to Kyan Softw are to distribute for use only in
combination w ith Kyan PASCAL. Apple Softw are shall not be copied onto another diskette (except for archive
purposes) or into memory unless as part of the execution of Kyan PASCAL. When Kyan PASCAL has completed
execution Apple Softw are shall not be used by any other program.

ATARI COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY 0 ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NO
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS THERE MAY BE OTHER RIGHTS
THAT YOU MAY HAVE WHICH VARY FROM STATET STATE.

DOS 2.5 are copyrighted programs of ATARI Computer, Inc. licensed to Kyan Softw are to distribute for use only in
combination with Kyan PASCAL ATARI Software shall not be copied onto another diskette (except for archive
purposes) or into memory unless as part of the execution of Kyan PAscAL. When Kyan PASCAL has

Scanned & Re-Edited by GoodByte in 2005 / (P) 2006 73

	PART I SAMPLE PROGRAMS

