v

This book is an independent production of Ing. W. HOFACKER
GMBH International. It is published as a service to all ATARI
personal computer user worldwide.

All rights reserved. No part of this book may be reproduced by
any means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable
effort has been made to ensure accuracy throughout this book,
but neither the author or publisher can assume responsibility for
any errors or omissions. No liability is assumed for any direct, or
indirect, damages resulting from the use of information contained
herein.

First Edition

First Printing

1983 in the Federal Republic of Germany

© Copyright 1983 by Winfried Hofacker

Cover design by Franz Berthold

ISBN 3—88963—-172—X

Reference is made to ATARI throughout this book. ATARI is a trademark of ATARI
Inc., a division of Warner Communications Company.

Publisher:
Ing. W. HOFACKER GmbH, Tegernseerstr. 18, D-8150 Holzkirchen, W.-Germany

US-Distributor:
ELCOMP Publishing, Inc., 53 Redrock Lane, Pomona CA 91766

PREFACE

Since more and more users of the ATARI personal computers
write programs in machine language, more and more ““workhorse’’-
routines, performing standard tasks, are required.

This book contains a variety of programs for the real computer
“"Hacker’’ and the machine language programmer.

All the programs have been fully tested and a complete source
code is provided.

| extend my thanks to Franz Ende for the translation and Karl
Wagner for his proofreading.

Munich, Spring 1983 H. C. Wagner

IMPORTANT NOTICE

This book is written for the experienced ATARI Personal
Computer owner. To run the programs you need a symbolic
Editor/Assembler or the ATAS/ATMAS from ELCOMP Publishing.
For details please refer to the OS-Manual from ATARI.

CONTENTS

CHAPTER 1
1-1 Input and output of numbers 1
1-1-1 Hexadecimal input i, 1
1-1-2 Hexadecimal OULPUL < «s v s vt i s s mmuos amanns s opws 2
1-1-3 Decimal inputttt 5
1-1-4 Decimaloutputciiiiiiirnnennnn. 6
1-2 16-bit arithmetic withoutsign 8
1:2-1 16-bit AddItions..:s5wscicmvassswisios vos s 8
1-2-2 16-bitsubtraction ., 10
1-2-3 16-bit multiplication, 10
1524 VO-DICAIVISTON. . ciiaie s wonn wmsais 500 500 & 5 8508 50000 B 5 13
CHAPTER 2
STRINGOUTPUT . pwe s sammes somen sesamet sas 15
217 . OUIPULIOF TEXT & . i o v s oo e e s s 5 15
CHAPTER 3
INTRODUCTIONTOCIO ...t i i 18
The standard CIO commands 21
How to read or write data in machine-language 24
CHAPTER 4
INTRODUCTION TO THE DISK-CONTROLLER .. 31
The DCB-commandscoviiiiiinnnnnn. 32
How to write asectortodisk 34
CHAPTER 5
HOW TO MAKE A BOOTABLE PROGRAM 39

How to make a bootabledisk 42

CHAPTER 6

HOW TO MAKE A BOOTABLE CARTRIDGE 43

Sample program for a cartridge: MEMORY TEST ... 47

EPROM-BURNER for the ATARI 800/400 50

Hexdump of the EPROM BURNER software 59

Using the EPROM board Kit from Hofacker 65
CHAPTER 7

HOW TO ADD OR CHANGE ADEVICE 67
CHAPTER 8

A BOOTABLE TAPE GENERATOR PROGRAM ... 75
CHAPTER 9

A DIRECT CASSETTE TO DISK COPY PROGRAM 89
CHAPTER 10

HOW TO CONNECT YOUR ATARI WITH

ANOTHER CONMPUTER' ;. swswi o omssnis sasessi 98
CHAPTER 11

300 Baud serial interface via the Atari joystick ports 103
CHAPTER 12

Printer INterface . o, cowws o os o s e smon wme s s 106

Differences between the ATAR!| Editor/Assembler
cartridge and ATAS-1 and ATMAS-1 115

ARITHMETIC

CHAPTER 1

1-1 Input and output of numbers

When working with numbers one often wants
to input and output them wvia the screen.
The following programs show how this can
be done with hexadecimal as well as
decimal numbers.

1-1-1 Hexadecimal input

This program allows you to enter
hexadecimal numbers using the keyboard.
The number entered 1is displayed on the
screen. The input stops 1f a character
different from the hexadecimal numbers (0..
F) is entered.

The program first deletes memory locations
EXPR and EXPR+1. This ensures a result
equal to zero, even if an invalid number
is entered. Next, the program reads a
character and checks whether or not it 1is
a hexadecimal number. If it is, then the
upper bits of the number in the

accumulator are erased and the lower bits
are shifted up. Now, these four bits can
be shifted to EXPR from the right. The
preceeding number in EXPR 1is shifted to
the left by doing so.

If you enter a number with more than four
digits, only the last four digits are used.

Example : ABCDEF => CDEF

A80O0:
AB802:
A804:
A806 :
A809:
A80B:
A80D:
A8OF:
A811:
A813:
A815:
A817:
A819:
A81B:
A81C:
A81D:
A8lE:
A81F:
A821:
A822:
AB824:
A826:
AB827:
A829:
A82B:

A82C:
A82F:
A832:

kkkkkkKhkhkkhkkkkhkhkkhkhkhkhhkhhhkhhkdhkhhhrhhdd

*

*

* HEXINPUT ROUTINE *

*

*

kkkkkrkhkkkhkhhhhkhkdhhhdhhkhhhhkhkkhhrhhkddk

EXPR

SCROUT
GETCHR

A200 HEXIN
8680

8681

202CA8 HEXIN1
€930

901E

C93A

900A

C941

9016

C947

B012

E936

0A HEXIN2
0A

0A

0A

A204

0A HEXIN3
2680

2681

ca

DOF8

FODB

60 HEXRTS

20DDF6 NEXTCH
20A4F6

60

EQU

EQU
EQU

ORG

LDX
STX

STX
JSR

CMP
BCC
CMP
BCC
CMP
BCC
CMP
BCS
SBC
ASL
ASL
ASL
ASL
LDX
ASL
ROL
ROL
DEX
BNE
BEQ
RTS

JSR
JSR

RTS

$80.1

SF6A4
SF6DD

$A800

#0
EXPR

EXPR+1
NEXTCH

'0
HEXRTS
1941
HEXIN2
'A
HEXRTS
‘P4l

HEXRTS
'A-10-1

#4

EXPR
EXPR+1

HEXIN3
HEXIN1 ALWAYS

GETCHR
SCROUT SHOW CHARACTI

PHYSICAL ENDADDRESS: $A833

*** NO WARNINGS

EXPR $80

GETCHR SF6DD

HEXIN1 SA806

HEXIN3 $A821

NEXTCH SA82C

SCROUT SF6A4

HEXIN SA800 UNUSED
HEXIN2 SA81B

HEXRTS SA82B

1-1-2 Hexadecimal output

The next program explains the output
process of the calculated numerals.

You will recognize, that the portion of

the program which controls the output is a
subroutine. This subroutine only displays

the contents of the accumulator. This
means that you first have to 1load the
accumulator with, for example, the

contents of EXPR+1, then Jjump 1into the
subroutine where first the MSB (EXPR+1l in
our case) and then the LSB (EXPR) will be
printed.

Subroutine PRBYTE independently prints the
most significant bytes of the accumulator
first and the least significant bytes
second.

A800:
A802:
A805:
A807:
A8OA:

AB80OB:
A80C:
A80D:
ABOE:
A80OF:
A810:
A813:
A8l14:
A816:
A818:
A81A:
A81C:
A8lE:
A820:

PHYSICAL ENDADDRESS: S$A823

khkkkhkkhkkhdhhkhhdhhkhhdhdhkhdrhddhhdhdhihhdhdx

*
*

*

HEXOUT PRINTS 1 BYTE

*

*
*

khkkhkkkkhkkhkkkhkhkkkkhkhkkhkhkhkhkhkhkhkkhkhkhkkhkkkkxk

A581
200BAS8
A580

200BAS8
60

48
4A
4A
4A
4A
2016A8

68
290F

C90A
B004
0930
D002
6936
4CA4F6

EXPR

SCROUT

PRWORD

*

PRBYTE

HEXOUT

ALFA
HXOUT

¥%* NO WARNINGS

EXPR
PRWORD
HEXOUT
HXOUT

$80
SA800

$SA816
SA820

EPZ
EQU

ORG

LDA
JSR
LDA

JSR
RTS

THE

PHA
LSR
LSR
LSR
LSR
JSR

PLA
AND

CMP
BCS
ORA
BNE
ADC
JMP

UNUSED

$80.1
SF6A4
SA800

EXPR+1
PRBYTE
EXPR

PRBYTE

VERY PRBYTE ROUTINE

HEXOUT

#%00001111
#10

ALFA

'0

HXOUT
"A-10-1
SCROUT

SCROUT
PRBYTE
ALFA

SF6A4
SA80B
SA81E

1-1-3 Decimal input

When vyou calculate with numbers you
probably prefer decimals over hexadecimals.
The following program can be used to read
decimal numbers and convert them into
binary numbers readable by computers.
The program first checks, to see 1if the
input is a decimal number (0..9) or if the
input has been terminated by another
character. EXPR and EXPR+1 are erased. If
a digit is accepted then the upper bits
are erased. Next the contents of EXPR and
EXPR+1 are multiplied by 10 and the new
number is added. In the end the MSB is in
location EXPR+1 and the LSB is in location
EXPR.
Numbers greater than 65535 are displayed
in modulo 65536 (the rest which remains
after deduction of 65535).
Akhkhhkhhkhhhhhhhhkhhhhkhkkhhkhhkhhhhkhdkdk

*
*
* DECIMAL TO 1 WORD :
*
* CONVERSION *
* *

EXPR EQU $80.1

SCROUT EQU SF6A4
GETCHR EQU $F6DD

ORG $A800
A800: A200 DECIN LDX #0
A802: 8680 STX EXPR
A804: 8681 STX EXPR+1
A806: 2026A8 DEC1 JSR NEXTCH
A809: C930 CMP '0
A80B: 9018 BCC DECEND
A80D: C93A CMP '9+1

A80F: B01l4 BCS DECEND

A811: 290F AND #%00001111

A813: A211 LDX #17

A815: D005 BNE DEC3 ALWAYS TAKEN
A817: 9002 DEC2 BCC *+4

A819: 6909 ADC #10-1

A81B: 4A LSR

A81C: 6681 DEC3 ROR EXPR+1

A8lE: 6680 ROR EXPR

A820: CA DEX

A821: DOF4 BNE DEC2

A823: FOEl BEQ DEC1 ALWAYS !!
A825: 60 DECEND RTS

A826: 20DDF6 NEXTCH JSR GETCHR

A829: 20A4F6 JSR SCROUT

A82C: 60 RTS

PHYSICAL ENDADDRESS: S$SA82D

**%* NO WARNINGS

EXPR $80

GETCHR SF6DD

DEC1 SA806

DEC3 SA81C

NEXTCH SAB826

SCROUT SF6A4

DECIN SA800 UNUSED
DEC2 SAB817

DECEND SA825

1-1-4 Decimal output

The next program allows you to display
decimal numbers.

The program works as follows

The X-register is loaded with the ASCII
equivalent of the digit 0. This number is
then incremented to the highest potency of
10 (10000) and is displayed on the screen.

The same procedure is repeated for 1000,
100, and 10. The remaining is converted
into an ASCII number, using an OR-command,
and is displayed.

You might want to change the output
routine so that it avoids leading zeroes.

kkkkkhkhhkhkkhhkhhkhhhhhkkhkhkkkhhhkkk
2 BYTE BINARY NUMBER
TO 5 DIGITS DECIMAL
CONVERSION

*
*
*
*
*
*
*
* WITH LEADING ZEROS
*

*

*
*
*
*
*
*
*
*
*
I E R E R R R R R R R R AR R IR ST E SRR R LR SR X LR B LK L4
DECL EQU $80
DECH EQU $81
TEMP EQU $82
SCROUT EQU SF6A4

ORG $A800

A800: A007 DECOUT LDY #7
A802: A230 DECOUT1 LDX '0

A804: 38 DECOUT2 SEC

A805: A580 LDA DECL

A807: F92EAS8 SBC DECTAB-1,Y
ABOA: 48 PHA

A80B: 88 DEY

A80C: A581 LDA DECH

AB0E: F930A8 SBC DECTAB+1,Y
A811: 9009 BCC DECOUT3
A813: 8581 STA DECH

A815: 68 PLA

A8l16: 8580 STA DECL

A818: E8 INX

A819: C8 INY

A81A:
A81C:
A81D:
A8lE:
A820:
A823:
A825:
AB826:
A828:
A82A:
A82C:

A82F:
A831:
A833:
A835:

PHYSICAL ENDADDRESS: $A837

DOES8
68 DECOUT3
8A
8482
20A4F6
A482
88
10DA
A580
0930
4CAAF6

0A00
6400
E803
1027

DECTAB

*** NO WARNINGS

DECL $80
TEMP $82
DECOUT SA800
DECOUT2 SA804
DECTAB SA82F
DECH $81
SCROUT SF6A4
DECOUT1 SA802
DECOUT3 SA81C

1-2 16-bit arithmetic without sign

1-2-1 16-bit addition

BNE
PLA
TXA
STY
JSR
LDY
DEY
BPL
LDA
ORA
JMP

DFW
DFW
DFW
DFW

DECOUT2

TEMP
SCROUT
TEMP

DECOUT1
DECL

'0
SCROUT

10
100
1000
10000

UNUSED

The 16-bit addition is well known,

is shown here one more time,
the subtraction.

but

1LE

together with

khkkkkkhkkhkkhkkkkkhkkkhhhkhkhkkhhkkkkkkhkkkkkhkkx

*
*
*
*
*
*
*
*

A800: 18

A801: A580
AB03: 6582
A805: 8580
A807: A581
A809: 6583
A80B: 8581
A80D: 60

PHYSICAL ENDADDRESS: SA80E

16 BIT ADDITION

UNSIGNED INTEGER

EXPR1 :=

EXPR1
EXPR2

ADD

*** NO WARNINGS
EXPR1 $80
ADD SAB00

EXPR1 + EXPR2

EPZ
EPZ

ORG

CLC
LDA

ADC
STA
LDA
ADC

STA
RTS

UNUSED

kkkkkkkkhkhkkkkkkkdhhhkhkkhhhkhkhkkhkkkkhhkdk

$80.1
$82.3

$A800

EXPR1
EXPR2
EXPR1
EXPR1+1
EXPR2+1
EXPR1+1

EXPR2

*
*
*
*
*
*
*
*

$82

10

1-2-2 1l6-bit subtraction

kkkkkkkkkkkkkhkkkhkkhkkhhkhkkkhkkkkkkkhkkkkkkkkk

* *
* 16 BIT SUBTRACTION »
* *
* UNSIGNED INTEGER *
* *
* EXPR1 := EXPR1 - EXPR2 :
*
khkkkhkhkkhkkhdhhhkhkhkhkhkhkkhkhkhhkhkhkhhkkdkdkkkdkkkkk

EXPR1 EPZ $80.1

EXPR2 EPZ $82.3

ORG $A800

A800: 38 SUB SEC
A801: A580 LDA EXPR1
A803: E582 SBC EXPR2
A805: 8580 STA EXPR1
A807: A581 LDA EXPR1+1
A809: E583 SBC EXPR2+1
A80B: 8581 STA EXPR1+1
A80D: 60 RTS

PHYSICAL ENDADDRESS: S$SA80E
% NO WARNINGS

EXPR1 $80 EXPR2 $82
SUB SA800 UNUSED

1-2-3 16-bit multiplication

The multiplication is much more
complicated than addition or subtraction.
Multiplication 1in the binary number system
is actually the same as in the decimal
system. Let's have a 1look at how we
multiply using the decimal system. For
example, how do we calculate 5678*203 ?

1152634

With each digit the previous number is
shifted to the right. If the digit 1is
different from zero the new interim
results are added. In the binary system it
works the same way. For example

1011
11061 =

1011
0000
1011
1011

10001111

As you can see it is simpler in the binary
system than in the decimal system. Since
the highest possible number for each digit
is 1 the highest interim results is equal
to the multiplicand.

The following program in principle does
the same as the procedure described above,
except that the interim result 1is shifted
to the right and the multiplicand is added,
if required. The results are the same.

Six memory locations are required. Two of
these (SCRATCH and SCRATCH+1) are used
only part of the time, while the other

11

12

four locations keep the two numbers to be
multiplied (EXPR1 and EXPR1+1l, EXPR2 and
EXPR2+1) . After the calculations the
result 1is in 1locations EXPR1 (LSB) and
EXPR1+1 (MSB).

kkkkhkkkhkkhkhkkkhkhkhhkhkhhkhkkhkhhkhkkhhkhhkkhkkhkhkx
*
*

* 16 BIT MULTIPLICATION :
*
* UNSIGNED INTEGER :
*
* EXPR1 := EXPR1 * EXPR2 :
*
khkkkkkkkhkhkhkkhkhkhkkhkkhkhkkhkhkhkhkhkkkhkhkkkkhkkkkkkk
EXPR1 EPZ $80.1
EXPR2 EPZ $82.3
SCRATCH EPZ $84.5
ORG $A800
A800: A200 MUL LDX #0
A802: 8684 STX SCRATCH
A804: 8685 STX SCRATCH+1
A806: A010 LDY #16
A808: DOOD BNE MUL2 ALWAYS !!
A80A: 18 MUL1 CLC
A80B: A584 LDA SCRATCH
A80D: 6582 ADC EXPR2
A8OF: 8584 STA SCRATCH
A811: A585 LDA SCRATCH+1
A813: 6583 ADC EXPR2+1
A815: 8585 STA SCRATCH+1
A817: 4685 MUL2 LSR SCRATCH+1
A819: 6684 ROR SCRATCH
A81B: 6681 ROR EXPR1+1
A81D: 6680 ROR EXPRI1
A81F: 88 DEY
A820: 3004 BMI MULRTS
A822: 90F3 BCC MUL2
A824: BOE4 BCS MUL1
A826: 60 MULRTS RTS

PHYSICAL ENDADDRESS: S$SA827

**%* NO WARNINGS

EXPR1 $80 EXPR2 $82

SCRATCH $84 MUL $A800 UNUSED
MUL1 $SA80A MUL2 $A817 -

MULRTS $A826

1-2-4 l1l6-bit division

The division of two numbers actually is
just the opposit of the multiplication.
Therefor, you can see in the program below,
that the divisor 1is subtracted and the
dividend is shifted to the left rather
than to the right. The memory locations
used are the same as with the
multiplication, except that locations
SCRATCH and SCRATCH+1 are named REMAIN and
REMAIN+1. This means the remainder of the
division is stored in those locations.

khkhkhhkkkhkhhhkhhhhhhkhhhhhkhhhhhhhhhhkk
16 BIT DIVISION

UNSIGNED INTEGER

EXPR1 := EXPR1 OVER EXPR2

*
*
*
*
*
*
*
* REMAIN := EXPR1 MOD EXPR2
*

*

*
*
*
*
*
*
*
*
*
*

khkkkkkkkhkkkhkhkkhkhkkhkhkhkkkkkhkkkkkkhkkkkkkk%x

EXPR1 EPzZ $80.1
EXPR2 EPZ $82.3

REMAIN EPZ $84.5
ORG $A800

AB0O: A200 DIV LDX #0
A802: 8684 STX REMAIN

13

14

A804: 8685 STX REMAIN+1

A806: A010 LDY #16
A808: 0680 DIV1 ASL EXPR1
AB0A: 2681 ROL EXPR1+1
A80C: 2684 ROL REMAIN
ABOE: 2685 ROL- REMAIN+1
A810: 38 SEC

A8l11: A584 LDA REMAIN
A813: E582 SBC EXPR2
A815: AA TAX

A8l16: A585 LDA REMAIN+1
A818: E583 SBC EXPR2+1
A81A: 9006 BCC DIV2
A81C: 8684 STX REMAIN
A8l1E: 8585 STA REMAIN+1
A820: E680 INC EXPRI1
A822: 88 DIV2 DEY

A823: DOE3 BNE DIV1
A825: 60 RTS

PHYSICAL ENDADDRESS: $A826

*** NO WARNINGS

EXPR1 $80 EXPR2 $82
REMAIN $84 DIV SA800
DIV1 SA808 DIV2 SA822

UNUSED

STRINGOUTPUT

CHAPTER 2

2-1 Output of text

With most programs it 1is necessary to
display text (menues etc.).

The following program allows you to
display strings of any length at any
location you desire. The output command
can be located at any place within your
program.

How does that program work ?

As you know the 6502 microprocessor uses
its stack to store the return address if a
JSR-command is to be executed. The number
that 1is stored on the stack actually is
the return—-address minus one. The trick
used 1in this program is, that the string
to be printed is stored immediately after

the JSR-command and the last character of
the string 1is incremented by 128. The

subroutine calculates the start address of
the string, using the number on the stack,
and reads the string byte by byte, until
it finds the byte which has been

incremented by 128. The address of this
byte now is stored on the stack and an RTS-
command 1s executed. By doing so, the

string is jumped and the command after it
is executed.

15

16

khkkkhkkkhkkkkhkhkkhkhkkhhkkkdhhhkhkhhkhhkhhhkkx

* *
* STRINGOUTPUT FOR *
* *
® VARIOUS LENGTH *
* *
* *

khkkhkkkhkhkkhkhkhhkhkrkkhkdkhkhkhhhkhkhkhkhkkkkhkhkikx
AUX EPZ $80

SCROUT EQU $F6A4

ORG $A800
* EXAMPLE
A800: 2016A8 EXAMPLE JSR PRINT
A803: 544849 ASC \THIS IS AN EXAMPLE\
A806: 532049
A809: 532041
A80C: 4E2045
A80F: 58414D
A812: 504CC5
A815: 60 RTS
* THE VERY PRINTROUTINE

A8l6: 68 PRINT PLA
A817: 8580 STA AUX
A819: 68 PLA
A81A: 8581 STA AUX+1
A81C: A200 LDX #0
A8lE: E680 PRINT1 INC AUX
A820: D002 BNE *+4
A822: E681 INC AUX+1
A824: Al180 LDA (AUX,X)
A826: 297F AND #S$7F
A828: 20A4F6 JSR SCROUT
A82B: A200 LDX #0
A82D: Al80 LDA (AUX,X)
A82F: 10ED BPL PRINT1
A831: A581 LDA AUX+1
A833: 48 PHA
A834: A580 LDA AUX
A836: 48 PHA
A837: 60 RTS

PHYSICAL ENDADDRESS: $A838

*** NO WARNINGS

AUX $80 SCROUT
EXAMPLE SA800 UNUSED PRINT
PRINT1 SA81E

SF6A4
$SA816

17

18

INTRODUCTION
TO CIO

CHAPTER 3
The CIO can handle up to 8 devices/files
at the same time. This happens via so

called 1I0-ControlBlocks (IOCB). This means
that there are 8 1IOCB'S starting from

$0340. Each of the IOCB's is 16 bytes long.

o +
1 IOCB #0 $0340
e +
1 IOCB #1 4 $0350
e ittt +
1 IOCB #2 § $0360
e +
9 IOCB #3 § S0370
R +
1 IOCB #4 § $0380
o +
1 IOCB #5 4 $0390
e - +
| IOCB #6 i SO03A0
o +
| IOCB #7 i SO03BO
Fom e +

A single IOCB has the following internal
scheme:

Fmm e +

9 ICHID §{ HANDLER ID
e T T —— +

1 ICDNO ¢ DEVICE NUMBER
T +

bl ICCMD §f COMMAND

T T +

9 ICSTA { STATUS

R +

9 ICBAL 1

+- -+ BUFFERADR
1 ICBAH i
R +

q ICPTL 1

+- -+ PUTADR

bl ICPTH 1
R +

q ICBLL il

+- -+ BUFFERLEN
1 ICBLH 1
o +

1 ICAX1 { AUX1

T +

bl ICAX2 i AUX2
e - +

| ICAX3 § Remaining 4 byte
e -+

il ICAX4 |
- +

9 ICAXS5 i
e +

1 ICAX6 1

e ettt +

There are just a few locations which are
important to the user:

- The commandbyte which contains the
command to be executed by the CIO.

- The bufferaddress which contains the
address of the actual databuffer.

- The bufferlength which contains the
number of bytes to be transferred (rounded
up to a variety of 128 bytes for the
cassette device)

= And there are two auxiliaries which
contain device-dependent information.

19

20

There are also locatidns
altered by CIO such as:

- The handler-ID 1is an
devicetable. This table
devicenames and pointers
specific handlertable.

e +
§ device name i
e +-
i handler table |
+ - -+
i address 1
e +
q other 9
* *
1 entries 9
T +
Y zero fill to
* *
§ end of table {
e +

e +
q OPEN-1 1
Fmm e +
1 CLOSE-1 q
R +
1 GETBYTE-1 I
Fmm e +
q PUTBYTE-1 1
R +
Y GETSTATUS-1 I
e +
1 SPECIAL-1 1
o s
il JMP INIT q
i & 00 hl
Fmm o+

which will be

offset to the
contains all
to the device-

-

1
1
+- one entry
|

1
-+t

The CIO is thus quite clear to the user.
It is easy to add new devices by adding
just 3 bytes to the devicetable and to
make a specific handlertable for this

device. You can also change the
handlerpointer of an existing device and
let point it to a new handler. Later we

will describe how to add or change devices.

- The devicenumber shows us which

subdevice 1is meant. (e.g. Disknumber or
RS232 Channel).

- After calling CIO the status will be
altered. A 1 means a successfull operation
while a value greater than 128 means an
error has occurred.

- PUTADR is used internally by the CIO

- ILf there have been less bytes
transferred than desired, because of an
EOL or an error, BUFLEN will contain the
actual number of transferred bytes.

The standard CIO commands:
- OPEN opens a file.

Before execution the following IOCB

locations have to be set:

COMMAND = $03

BUFFADR points to device/filename
specification (like C: or D: TEST. SRC)
terminated by an EOL ($9B)

AUX1 = OPEN-directionbits (read or write)
plus devicedependent information.

AUX2 = devicedependent information.

After execution:

HANDLER ID = Index to the devicetable.
DEVICE NUMBER = number taken from
device/filename specification

STATUS = result of OPEN-Operation.

21

22

- CLOSE closes an open IOCB

Before execution the following IOCB
location has to be set:
COMMAND = $0C

After execution:
HANDLER ID = SFF
STATUS = result of CLOSE-operation

- GET CHARACTERS read byte aligned. EOL
has no termination feature.

Before execution the following IOCB
locations have to be set:

COMMAND = $07

BUFFERADR = points to databuffer.

BUFFERLEN = contains number of characters
to be read. If BUFFERLEN is equal to zero
the 6502 A-register contains the data.

After execution:

STATUS = result of GET CHARACTER-operation
BUFFERLEN = number of bytes read to the
buffer. The value will always be equal

before execution, only if EOF or an error
occurred.

- PUT CHARACTERS write byte aligned

Before execution the following IOCB
locations have to be set:

COMMAND = $OB

BUFFERADR = points to the databuffer
BUFFERLEN = number of bytes to be put, if
equal to zero the 6502 A-register has to
contain the data.

After execution:
STATUS = result of PUT CHARACTER-operation

- GET RECORD characters are read to the
databuffer until the buffer is full, or an
EOL is read from the device/file.

Before execution the following IOCB
locations have to be set:

COMMAND = $05

BUFFERADR = points to the databuffer
BUFFERLEN = maximum of bytes to be read
(Including EOL character)

After execution:

STATUS = result of the GET RECORD-
operation
BUFFERLEN = number of bytes read to buffer

this may less then the maximum length.

- PUT RECORD characters are written to the
device/file from the databuffer until the
buffer is empty or an EOL is written. Lt
the buffer is empty CIO will automatically
send an EOL to the device/file.

Before execution the following IOCB
locations have to be set:

COMMAND = $09

BUFFERADR = points to databuffer

BUFFERLEN = maximum number of bytes in
databuffer.

After execution:
STATUS = result of PUT RECORD-operation.

In addition to the main-commands, there
is also a GET STATUS ($0D) command, which
obtains the status from the device/file-
controller and places these four bytes
from location SO02EA (DVSTAT). Commands
greater than $0D are so called SPECIALS
and devicehandler-dependent.

23

GET STATUS and SPECIALS have an implied
OPEN-option. Thus the file will be
automatically opened and closed if it
wasn't already opened.

How to link the CIO with machine language?

First we have to modify the IOCB before
calling CIO.

The offset to the IOCB (IOCB# times 16)
has to be 1in the X-register. The STATUS
will be 1loaded in the Y-register after
returning from CIO. It is not necessary to
explicitly check the Y-register (Comparing
with 128) because loading the status into
the Y-register was the last instruction
before leaving CIO with an RTS. We simply
jump on the signflag (BMI or BPL). The
signflag 1is set 1if an error occurred. In
the next section we will discuss it 1in
more detail with an example.

How to read or write data
in machine-language

To describe the writing of data to a
device/file we will take the cassette-
device as an example. We can also use any
other device because CIO is very clear-cut
(see introduction).

Before discussing the program, some
conventions must be discussed.

The user has to put the address of his
databuffer into the locations BUFFER ($80.

1) and the bufferlength into the locations
BUFLEN ($82.3). Then the program should be
called as a subroutine. The description of
this subroutine follows.

First we have to open the cassette, so
we load the IOCB-offset in the X-register,

24

store the OPEN-command in ICCMD, and let
the BUFADR (ICBAL and ICBAH) point to the
device/filename specification. We have to
store the write-direction in ICAX1l and the
tape-recordlength (128) in ICAX2, just
call CIO ($E456). The Signflag indicates
if an error occurred.

After a correct opening of the file for
writing data, bit 3 1is set because AUXl
contains a $08 (bit 2 is readbit).

o +
99 9 YWIRY § 9 AUX1
Fmm e +

76543210

ICCMD will be <changed 1into the PUT
CHARACTERS-command (SOB), BUFADR points
to the User-Databuffer (contents of
BUFFER) and BUFLEN (ICBLL and ICBLH) will
contain the number of bytes to write (the
user stores this value BUFLEN ($82. 3)).
Next CIO will be called, and after
successfull operation, the file will be
closed (ICCMD=S$0C).

If, during any of these three CIO-calls,
an error occurs, the file will be closed
and both the ACCUMULATOR and Y-register
will contain the STATUS (errorcode).

By changing the string at CFILE 1in for
instance 'D: TEST. TST' the program will
write the buffer to the specified diskfile.

The second 1listing shows you a program
that reads from a device, only two bytes
are different, so the program is self-
explaining.

25

kkkkkdhkkhhhhkdhhhhkkhhhkhkkkhhhhkhdhhkkhhrkk

*
*

*

*

WRITE BUFFER TO CASSETTE %*

*

khkkkkkkkkhkhkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

A800:
A802:
A804:
A807:
A809:
A80C:
A80OE:

26

A210
A903
9D4203
A908
9D4A03
A980
9D4B03

BUFFER
BUFLEN

ICCMD
ICBAL

ICBAH
ICBLL
ICBLH
ICAX1
ICAX2

OPEN
PUTCHR
CLOSE

WMODE
RECL

CIO
EOL

IOCBNUM

EPZ
EPZ

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU

EQU
EQU

EQU

ORG

$80.1
$82 .3-BUFLEN ROUNDED

UP TO 128 BYTES

$0342
$0344

$0345
$0348
$0349
$034A
$034B
3

11

12

8
128

SE456

S9B
1

SA800

OPEN FILE

LDX
LDA
STA
LDA
STA
LDA
STA

#IOCBNUM* 16
#OPEN
ICCMD,X
#WMODE
ICAX1,X
#RECL
ICAX2,X

A8l1:
A813:
A8l6:
A818:
A81B:
A8lE:

AB820:
A822:
A825:
A827:
A82A:
A82C:
A82F:
A831:
A834:
A836:
A839:
A83C:

A83E:
A840:
A843:
AB846:

A848:

A956
9D4403
A9AS
9D4503
2056 E4
3029

A90B
9D4203
A580
9D4403
A581
9D4503
A582
9D4803

A583
9D4903

2056 E4
300B

A90C

9D4203
2056 E4
3001

60

LDA #CFILE:L
STA ICBAL,X
LDA #CFILE:H
STA ICBAH,X
JSR CIO

BMI CERR

PUT BUFFER IN RECORDS
TO CASSETTE

LDA #PUTCHR
STA ICCMD,X
LDA BUFFER

STA ICBAL,X
LDA BUFFER+1
STA ICBAH,X
LDA BUFLEN

STA ICBLL,X

LDA BUFLEN+1
STA ICBLH,X

JSR CIO

BMI CERR
CLOSE CASSETTE FILE

LDA #CLOSE

STA ICCMD,X
JSR CIO

BMI CERR
RETURN TO SUPERVISOR
RTS

RETURN WITH ERRORCODE IN
ACCUMULATOR

27

A849: 98 CERR TYA

A84A: 48 PHA

A84B: A90C LDA #CLOSE
A84D: 9D4203 STA ICCMD,X
A850: 2056E4 JSR CIO
A853: 68 PLA

A854: A8 TAY

A855: 60 RTS

A856: 433A CFILE ASC "Ca™
A858: 9B DFB EOL

PHYSICAL ENDADDRESS: S$A859

*** NO WARNINGS

BUFFER $80 BUFLEN $82
ICCMD $0342 ICBAL $0344
ICBAH $0345 ICBLL $0348
ICBLH $0349 ICAX1 $034A
ICAX2 $034B OPEN $03
PUTCHR SO0B CLOSE $0C
WMODE $08 RECL $80
CIO SE456 EOL S9B
IOCBNUM $01 CERR SA849
CFILE $SA856
khkkkkkhkkkkkhkhkkhkkkkkhkkhkhkhkhkhkhhkhkhkkkkktrdtkkk
% *
* READ BUFFER FROM CASSETTE *
* *

khkkkkkkkhkhhkhkhkhkhkhkkhkkhkhkhkkhkhhkhhkhkkkhhkkk

BUFFER EPZ $80.1
BUFLEN EPZ $82.3 BUFLEN ROUNDED
UP TO 128 BYTES
ICCMD EQU $0342
ICBAL EQU $0344
ICBAH EQU $0345
ICBLL EQU $0348
ICBLH EQU $0349
ICAX1 EQU S$034A
ICAX2 EQU $034B

28

A800:
A802:
A804:
A807:
A809:
A80C:
A8OE:
A811:
A813:
A8l6:
A818:
A8l1B:
A81E:

A820:
A822:
AB825:
AB27:
AB2A:
A82C:
A82F:
A831:

A210
A903
9D4203
A904
9D4A03
A980
9D4B03
A956
9D4403
A9AS8
9D4503
2056 E4
3029

A907
9D4203
A580
9D4403
A581
9D4503
A582
9D4803

OPEN
GETCHR
CLOSE

RMODE
RECL

CIOo
EOL

IOCBNUM

EQU
EQU
EQU

EQU
EQU

EQU
EQU

EQU

ORG

3
T
12

4
128

SE456
$9B
)|

SA800

OPEN FILE

LDX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
BMI

GET

LDA
STA
LDA
STA
LDA
STA
LDA
STA

IOCBNUM* 16
#OPEN
ICCMD, X
#RMODE
ICAX1,X
#RECL
ICAX2,X
$CFILE:L
ICBAL, X
$CFILE:H
ICBAH, X
CIO

CERR

BUFFER IN RECORDS
FROM CASSETTE

#GETCHR
ICCMD,X
BUFFER
ICBAL,X
BUFFER+1
ICBAH,X
BUFLEN
ICBLL,X

29

A834: A583 LDA BUFLEN+1

A836: 9D4903 STA ICBLH,X
A839: 2056E4 JSR CIO
A83C: 300B BMI CERR
* CLOSE CASSETTE FILE
A83E: A90C LDA #CLOSE
A840: 9D4203 STA ICCMD,X
A843: 2056E4 JSR CIO
A846: 3001 BMI CERR
* RETURN TO SUPERVISOR
A848: 60 RTS
® RETURN WITH ERRORCODE IM
* ACCUMULATOR
A849: 98 CERR TYA
AB84A: 48 PHA
A84B: A90C LDA #CLOSE
A84D: 9D4203 STA ICCMD,X
A850: 2056E4 JSR CIO
A853: 68 PLA
A854: A8 TAY
A855: 60 RTS

A856: 433A CFILE asC "C:"
A858: 9B DFB EOL

PHYSICAL ENDADDRESS: $A859

*¥** NO WARNINGS

BUFFER $80 BUFLEN $82
ICCMD $0342 ICBAL $0344
ICBAH $0345 ICBLL $0348
ICBLH $0349 ICAX1 $034A
ICAX2 $034B OPEN $03
GETCHR $07 CLOSE $0C
RMODE $04 RECL $80
CIO SE456 EOL S9B
IOCBNUM $01 CERR SA849
CFILE $SA856

30

INTRODUCTION
TO THE DISK-
CONTROLLER

CHAPTER 4
We already know how to handle any
device/file via CIO, including handle a
diskfile. Included on a disk is also a
a sector-IO which allows you to address a
single sector for a read- or write-

handling. Sector-IO doesn't need any file
on the disk. The disk has only to be
formatted.

A floppy disk with the ATARI-drive has 720
sectors and each of them is fully
addressable.

How does the sector-IO function?

The disk-controller has a simplistic
design containing a single IOCB 1like
Data Control Block (DCB). This DCB is
described in the following scheme.

Fomm e —————————— +

9 DCBSBI i Serial bus ID
el +

1 DCBDRV §§ Disk drive #
e +

q DCBCMD 4 Command

o ————————————— +

q DCBSTA §f IO Status

o ————————————— +

§ DCBBUF LO |

+- -+ IO Buffer address
q DCBBUF HI ¢

e ————————————— +

| DCBTO LO

+ - -+ Time out count
| DCBTO HI

Fomm e ————————— +

31

32

1 DCBCNT LO ¢

+- -+ IO Buffer length
q DCBCNT HI ¢
o e o+
| DCBSEC LO ¢
+- -+ IO Sector number
q DCBSEC HI ¢
B +

- Instead of a handler-ID there is a BUS-
ID (DCBSBI) to address a particular
diskdrive via the Serial-Bus of the ATARI.
- Also a logical drivenumber (DCBDRV)

- A commandbyte (DCBCMD), which is similar
to an 1I0CB, and 5 commands for sector-IO,
which will be described later.

- The statusbyte for error detection after,
and data-direction previous to execution
of the command ($80 is write, $40 is read).
- The DCBBUF locations (L and H) to point
to the databuffer.

- DCBTO (L & H) 1is a special word
containing the maximum time for executing
a command, so called timeout.

- DCBCNT (L & H) is a device specific word
which contains the sector length (128 for
the 810-drive or 256 for the double
density drives).

- DCBSEC (L & H) contains the sector
number to do IO on.

The DCB-commands

Prior to executing any DCB-command, the
following DCB-entries must be set.

DCBSBI has to contain the bus-ID of the
drive:

DRIVE 1 = 831 = '1
DRIVE 2 = §32 = '2
DRIVE 3 = $33 = '3
DRIVE 4 $34 = '4

DCBDRV has to contain the 1logical drive
number (l..4).
DCBTO the timeout (normally 15 lowbyte=$0F
highbyte=$00).

- READ SECTOR reads one sector specified
by the user

DCBCMD = $52 = 'R

DCBBUF = points to databuffer
DCBCNT = contains sector length
DCBSEC = number of sector to read

After execution:
DCBSTAT = result of READ SECTOR-operation

- PUT SECTOR writes one sector specified
by the user without verify.

DCBCMD = $50 = 'p
DCBBUF = points to databuffer
DCBSEC = number of sector to write

After execution:
DCBSTAT = result of PUT SECTOR-operation

- WRITE SECTOR writes one sector specified
by the user with automatic verify.

DCBCMD = $57 = 'W
Further like PUT SECTOR.

- STATUS REQUEST obtains the status from
the specified drive.

DCBCMD = $53 = 'S

33

After execution:

DCBSTAT = result of STATUS REQUEST-
operation

The drive outputs four bytes and the
controller puts them to $02EA (DVSTAT).

- FORMAT formats the specified disk.

DCBCMD = $21 = '!

DCBTO = has to be larger than 15 due to
more time taken by the FORMAT-command. You
can ignore the error, but this will be
risky.

After execution:
DCBSTAT = result of the FORMAT-operation.

How is the disk controller invoked?

Because the disk controller is resident,
this is a simple process. You don't have
to load DOS, nor anything similar. You
just have to call the SIO (Serial 10O
$E459) 1instead of the CIO. Therefore, you
can see that it is quite easy to 1link the
Diskcontroller with machine language.

How to write a sector to disk

The first program writes a specified
sector from a buffer to diskdrive# 1.
There are a few conventions to call this
program as subroutine. The user has to put
the buffer address into the pointer
locations labelled BUFFER and the sector
number into the locations labelled SECTR.
The program also needs a RETRY-location,
to serve as a counter so the program is

able to determine how often it will retry
the IO.

34

The next paragraph describes the
subroutine.

At first we built the DCB, special we
move a $80 (BIT 3 the write bit is set) to
DCBSTA and we retry the IO 4 times. SIO0
does, as well as CIO, load the STATUS into
the Y-register so you only have to check
the signflag again. After an error
occurence we decrement the retry value and
set DCBSTA again, then try again.

By wusing this program, you only have to
look at the signflag after returning for
error detection (signflag TRUE means error,
otherwise success).

The second program reads a sector
instead of writing it. The only two bytes
which are different are the DCBCMD and the
DCBSTA ($40 for read).

khkkkkkhkhkhkhkkhkhkhdhkhhkhhhkhhhhhhhkhhdhdhihx

% *
* WRITE A SECTOR TO DISK *
% *

kkhkkkkkkkhkhkhkkhkhkhkhkkhkhkhkhhkhkhhkhkhkhkhhhhhxk

SECTR EQU $80.1
BUFFER EQU $82.3
RETRY EQU $84

DCBSBI EQU $0300
DCBDRV EQU $0301
DCBCMD EQU $0302
DCBSTA EQU $0303
DCBBUF EQU $0304
DCBTO EQU $0306
DCBCNT EQU $0308
DCBSEC EQU $030A

SIO EQU SE459

ORG $A800

35

A800: A582 WRITSECT LDA BUFFER

A802: 8D0403 STA DCBBUF

A805: A583 LDA BUFFER+1
A807: 8D0503 STA DCBBUF+1
AB0A: A580 LDA SECTR

A80C: 8DOAO03 STA DCBSEC

A80F: A581 LDA SECTR+1
A811: 8DOBO3 STA DCBSEC+1
A8l14: A957 LDA 'W REPLACE "W"
A8l16: 8D0203 STA DCBCMD BY A "P" IF
A819: A980 LDA #$80 YOU WANT IT
A81B: 8D0303 STA DCBSTA FAST
A8lE: A931 LDA 'l

A820: 8D0003 STA DCBSBI

A823: A901 LDA #1

A825: 8D0103 STA DCBDRV

A828: A90F LDA #15

A82A: 8D0603 STA DCBTO

A82D: A904 LDA #4

AB2F: 8584 STA RETRY

A831: A980 LDA #128

A833: 8D0803 STA DCBCNT

A836: A900 LDA #0

A838: 8D0903 STA DCBCNT+1
A83B: 2059E4 JMPSIO JSR SIO

A83E: 100C BPL WRITEND
A840: C684 DEC RETRY

A842: 3008 BMI WRITEND
A844: A280 LDX #$80

AB846: B8E0303 STX DCBSTA

A849: 4C3BAS JMP JMPSIO

A84C: AC0303 WRITEND LDY DCBSTA

A84F: 60 RTS

PHYSICAL ENDADDRESS: S$A850

*** NO WARNINGS

SECTR $80 BUFFER $82
RETRY $84 DCBSBI $0300
DCBDRV $0301 DCBCMD $0302

DCBSTA $0303 DCBBUF $0304

DCBTO

DCBSEC
WRITSECT
WRITEND

S0306
$030A

SA800

SA84C

UNUSED JMPSIO

DCBCNT

SIO

$S0308
SE459
SA83B

khkkkkhkkhkkhkkhkhkkhkhkkhkkkhkhkkhkkhhhkkhkkhhkkkk

*
*
*

READ A SECTOR FROM DISK

*

*
*

khkhkhhhkhkhhkhhhhkhhhhkhhhhkhhkhhhhhhkhkkk

A800:
A802:
A805:
A807 :
A80A:
A80C:
A8OF:
A8l11:
A814:
A816:
A819:
A81B:
ABlE:
AB820:

A582
8D0403
A583
8D0503
A580
8DOA03
A581
8DOBO03
A952
8D0203
A940
8D0303
A931
8D0003

SECTR
BUFFER
RETRY

DCBSBI
DCBDRV
DCBCMD
DCBSTA
DCBBUF
DCBTO

DCBCNT
DCBSEC

SIO

READSECT

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

ORG

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

$80.1
$82.3
$84

$0300
$0301
$0302
$0303
$0304
$0306
$0308
S030A

SE459

$A800

BUFFER
DCBBUF
BUFFER+1
DCBBUF+1
SECTR
DCBSEC
SECTR+1
DCBSEC+1
'R
DCBCMD
#5540
DCBSTA
e
DCBSBI

37

A823:
A825:
A828:
AB82A:
A82D:
A82F:
A831:
A833:
A836:
A838:
A83B:
A83E:
A840:
A842:
A844:
A846 :
AB849:
A84C:
AB84F:

PHYSICAL ENDADDRESS:

A901
8D0103
A9OF
8D0603
A904
8584
A980
8D0803
A900
8D0903
2059E4
100C
C684
3008
A240
8E0303
4C3BAS8

AC0303 READEND

60

JMPSIO

*** NO WARNINGS

SECTR $80
RETRY $84
DCBDRV $0301
DCBSTA $0303
DCBTO $0306
DCBSEC $030A
READSECT SA800
READEND SA84C

38

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
BPL
DEC
BMI
LDX
STX
JMP
LDY
RTS

$A850

BUFFER
DCBSBI

DCBCMD
DCBBUF

UNUSED

#1
DCBDRV
#15
DCBTO
#4
RETRY
#128
DCBCNT
#0
DCBCNT+1
SIO
READEND
RETRY
READEND
#540
DCBSTA
JMPSIO
DCBSTA

$82
$0300

$0302
$0304

DCBCNT
SIO
JMPSIO

$0308
SE459
SA83B

HOW TO MAKE
A BOOTABLE
PROGRAM

CHAPTER 5

What is a bootable program ?

A bootable program is a program which will
be automatically loaded at powering up the
ATARI, and directly after loading be
executed.

A bootable program needs a header with
specific information about the program,
such as the length and the start address.
The header of a bootable program looks
like the following scheme

T +
il unused § first byte
e +
1 # of 128 bytes ¢
e +
1 store q
+ = -+
9 address q
R +
§ initialization ¢
+- o
9 address §§f sixth byte
Fmm e +
9 boot i
1 continuation ¢
| code bl
- The first byte 1is unused, and should

equal zero.

- The second byte contains the length of
the program, in records (128 bytes),
(rounded up).

- The next word contains the store-

39

address of the program.

- The last word contains the
initialization-address of the program.
This vector will be transferred to the
CASINI-vector ($02.3).

After these 6 bytes there has to be the
boot continuation code. This 1is a short
program, the OS will Jjump to directly
after loading. This program can continue
the boot process (multistage boot) or stop
the cassette by the following sequence :

LDA #$3C
STA PACTL ;$D302

The program then allows the DOSVEC ($SO0A. B)
to point to the start address of the
program. It is also possible, to store in
MEMLO ($02E7. 8), the first unused memory
address. The continuation code must return
to the O0S with C=0 (Carry clear). Now OS
jumps via DOSVEC to the application-
program.

So far we know what a bootable cassette
looks like, but how do we create such a
bootable tape?

If there is a program, we only have to put

the header in front of it (including the
continuation code) and to save it as
normal data on the tape. We can wuse the

later described program to write the
contents of a buffer on the tape or the
boot generator.

If the program 1is saved, we can put the
tape in the recorder, press the yellow
START-key, power on the ATARI and press
RETURN. Now the program on the tape will
be booted.

The next listing shows us the general
outline of a bootable program.

40

LR R R e R R R AR R R R L]

GENERAL OUTLINE
OF AN

*
*
*
*
*
* BOOTABLE PROGRAM
*

*

*
*®
*
*
*
*
*
kA kAR KRR A AR AA AR AR R AR A AR Ak kk ok ok

* PROGRAM START

ORG $A800 (OR AN OTHER)
* THE BOOTHEADER

PST DFB 0 SHOULD BE 0
DFW PND-PST+127/128 # OF RECORDS
DFW PST STORE ADDRESS
DFW INIT INITALIZATION ADDRESS

* THE BOOT CONTINUATION CODE

LDA #$3C
STA PACTL STOP CASSETTE MOTOR

LDA #PND:L

STA MEMLO

LDA #PND:H

STA MEMLO+1 SET MEMLO TO END OF PROGRAM

LDA #RESTART:L

STA DOSVEC

LDA #RESTART:H

STA DOSVEC+1 SET RESTART VECTOR IN DOSVECTOR

CLC
RTS RETURN WITH C=0 (SUCCESSFULL BOOT)

* INITIALIZATION ADDRESS

INIT RTS RTS IS THE MINIMUM PROGRAM
* THE MAIN PROGRAM

RESTART EQU *

* THE MAIN PROGRAM ENDS HERE

PND EQU * NEXT FREE LOCATION

41

42

How to make a bootable disk

Making a bootable disk is in fact the same
as for the cassette. The only exceptions
are as follows.

The program (including the header) must be
stored up from sector one. The boot cont-
inuation code doesn't need to switch off
anything such as the cassette motor.

How to create a bootable disk ?

This 1is only a bit more complicated than
the cassette version. We need our write-
sector program we described earlier. Then
we have to write, sector by sector, to
disk. You <can also make a bootable
cassette first and then copy it directly
to disk with the later discussed program.

HOW TO MAKE
A BOOTABLE
CARTRIDGE

CHAPTER 6
Preparing the program.

Most of the games and some other programs
written in machine language are stored in
a cartridge. Booting a program, the 0S
recognizes the cartridge and starts the
progran.

What do you have to do when you want to
make a bootable cartridge of your own
program ?

As~ an example we will make a cartridge
with a program for testing the memory. The
bit pattern

10101010 = $AA
01010101 = $55
00000000 = $00
11111111 = SFF

is written in every memory location
starting above the hardware stack at
address $200. First the content is saved,
then the bit pattern is written into and
read from the memory location. If there is
any difference in writing and reading the
program prints an error message : ERROR IN
<ADR> . Then the program waits in an
endless loop. If the -error message is
ERROR IN A000, the RAM is ok because $A000
is the first address of the ROM in the

left cartridge.

43

The address range for the 1left cartridge
ranges from S$A000 to $BFFF and $8000 to
S9FFF for the right cartridge. As starting
address for our memory test program we
choose $BF00. This is the last page of the
left cartridge. The software for the EPROM
burner is also stored in a cartridge.
Therefore the object code generated by the
assembler is stored at $9000.

Like a bootable program the cartridge has

a header. The following scheme shows the
outline of this cartridge header.

e e L DLt + $BFFA or
I cartridge | SOFFA

g -+

| start address |

Fmm +

| 00 |

Fom e +

| option byte [

o e +

| cartridge |

+_ -

| init address | SBFFF or
e + $OFFF

The header for the right cartridge starts
at $9FFA, for the left cartridge (the more
important for us) at S$BFFA.

- The first two bytes contain the start

address of the cartridge.
- The third byte is the cartridge-ID. It

shows the OS that a cartridge has been

inserted. It must be 00.
- The fourth byte is the option-byte. This

byte has the following options:

BIT-0 = 0 don't allow diskboot
1 allow diskboot
BIT 2 = 0 only initialize the

cartridge
1 initialize and start
the cartridge

44

BIT 7 = 0 Cartridge is not a diagnostic
cartridge
1 Cartridge is a diagnostic
cartridge
before 0S is initialized
the cartridge takes control

- The last two bytes contain the cartridge
initialization address.

The initialization address is the starting
address of a program part which is
executed in advance of the main program.
If there is no such a program this address
must be the address of an RTS instruction.
In our example the 1low byte of the
starting address $BFOO is stored in
location $BFFA, the high byte in location
SBFFB.

The option byte in location $BFFD is 04.

The program in the cartridge is

initialized and started, but there is no
disk boot. The initializing address is

SBF63, an RTS instruction within the
program.

After assembling and storing the object
code the burning of an EPROM can start.

45

SSHYAAV NOILVZITVILINI IDAI¥IYVD IHL LINI MJad

dLA9 NOILdJO HHL SNOILdO dad

0 39 ATINOHS dI dIDAIYILYVD HHL 0 d4d
- LIV LSHY MAd
ADAIYLLYVO IHOIY ¥OJ VId6S vddds Dd0

JIAVIH IDAINILYVYD JHL «
¥ N0 L¥VLSAY

WYED0¥d NIVW HHL »
NOILVZITVILINI LSHLIOHS HHIL SI SId SId LINTI

SSHYAAY NOILVZITVILINI HHL «
IDAIYINVYD LHODIY ¥OJ 00083 000¥s 930

(*¥I¥VYD I4d7T) ILYVYLIS IDAIYIYYD HFHL «
I I I XTI Y

5% B

* I9AIIIYYD ¥ J0 *

* ¥

* ANITLNO TYYANID M

¥ ¥

¥* ¥*

ERFFFRERERPRFR RPN FRRRRERXFERRRRRRR NN

46

Sample program for a cartridge: MEMORY TEST

BF00: A97D
BF02: 20A4F6
BF05: 2064BF
BF08: 4D454D
BFOB: 4F5259
BFOE: 205445
BF1l: 53D4
BF13: A000
BF15: 84F0
BF17: A902
BF19: 85F1
BF1B: B1F0
BF1D: 85F2
BF1F: A9AA
BF21: 2059BF
BF24: A955
BF26: 2059BF
BF29: A900
BF2B: 2059BF
BF2E: A9FF
BF30: 2059BF
BF33: ASF2
BF35: 91F0
BF37: E6F0
BF39: DOEO
BF3B: E6F1
BF3D: 18
BF3E: 90DB

BF40: 2064BF
BF43: 455252

AUXE
TEST
OUTCH

START

TEST1

FIN

MEMORY TEST
EPZ SFE

EPZ SFO
EQU SF6A4

ORG SBF00,$9000

LDA #$7D
JSR OUTCH

JSR MESS
ASC \MEMORY TEST\

LDY #00

STY TEST
LDA #02

STA TEST+1
LDA (TEST),Y
STA TEST+2
LDA #SAA
JSR TST

LDA #$55

JSR TST
LDA #00
JSR TST
LDA #SFF

JSR TST
LDA TEST+2

STA (TEST),Y
INC TEST
BNE TEST1

INC TEST+1

BCC TEST1

JSR MESS
ASC \ERROR IN \

47

48

BF46:
BF49:
BF4C:
BF4E:
BF51:
BF53:
BF56:

BF59:
BF5B:
BF5D:
BF5F:
BF61:
BF63:

BF64:
BF65:
BF67 :
BF68:
BF6A:
BF6C:
BF6E:
BF70:
BF72:
BF74:
BF76:
BF79:
BF7B:
BF7D:
BF7F:
BF81:
BF82:
BF84:
BF85:

BF86:
BF87:
BF88:
BF89:
BF8A:
BF8B:
BF8E:
BF8F':

4F5220
494 EAO
A5F1

2086BF
ASF0

2086BF
4C56BF

85F3
91F0
B1FO
C5F3
DODD
60

68
85FE
68
85FF
A200
E6FE
D002
E6FF
AlFE
297F
20A4F6
A200
AlFE
10ED
ASFF
48
ASFE
48
60

48

4

4

4

4A
2091BF
68
290F

FINI

TST

FRTS

MESS

MS1

PRTBYT

LDA
JSR
LDA
JSR
JMP

STA
STA
LDA
cMp
BNE
RTS

PLA
STA
PLA
STA
LDX
INC
BNE
INC
LDA
AND
JSR
LDX
LDA
BPL
LDA
PHA
LDA
PHA
RTS

PHA
LSR
LSR
LSR
LSR
JSR
PLA
AND

TEST+1
PRTBYT

TEST
PRTBYT

FINI

TEST+3
(TEST) ,Y
(TEST) ,Y
TEST+3
FIN

AUXE

AUXE+1
#0

AUXE
*44
AUXE+1
(AUXE,X)
#STF
OUTCH
#0
(AUXE,X)
MS1
AUXE+1

AUXE

HEX21

#SOF

BFOl:
BF93:
BF95:
BF97:
BF99:
BFOA:
BF9C:

BFFA:
BFFC:
BFFD:
BFFE:

PHYSICAL ENDADDRESS: $9100

Co0A HEX21
B004

0930

D003

18 BUCHST
6937

4CA4F6 HEXOUT

00BF
00
04
63BF

**% NO VIARNINGS

cMP
BCS
ORA
BNE
CLC
ADC
JMP

ORG
DFW
DFB
DFB
DFW

#9+1
BUCHST
'y
HEXOUT'

'A-10
OUTCH

SBIFA, S90FA
START

00

04

FRTS

49

EPROM-BURNER
FOR THE
ATARI 800/400°

With this epramburner you can burn your own EPROMS.It
is possible to burn four different types. ‘The four
types are the 2532(4k), the 2732(4k),the 2516(2k) and
the 2716(2k). The burner uses the game ports 1 ,2 and 3.

1) THE HARDWARE.

The circuit of the epramourner is shown in FIG. l.7he
data for the burner is exchanged via game port 1 and 2.
The control signals are provided by game port 3.The
addresses are deccded by two 7 bit counters 4024. The
physical addresses for the EPROMS are always in the
range of 0000 to 07FF for 2k and 0000 to OFFF for 4k.
This counter is reset by a signal, decoded fram PBO and
PBl via the 74LS139. PB2 is used to decide if a 2532,
or a 2716 has to be burned.

Not all signals for the different types of EPROMS are
switched by software.A three pole, double throw switch
is used to switch between the different types.The
software tells you when you have to set the switch into
the correct position. For burning, you need a burniny
voltage of 25 Volts.This voltage is converted fram the
5 Volts of the game port to 28 Volt by the DCDC
converter DCP 528. This voltage is limited to 25 Volts
by two Zener diocdes in serie (ZN 24 and 2N 1). Three
universal NPH transistors are used to switch Dbetween
low level voltages and the high level of the burning
voltage.

50

o
e
wn
& o £
8 R ©
0204 vee GND vee e 5 £
8 16 Qo ﬁmlnﬂld
" 1/6 4049 IC5 z .9:5 8 A ar o 21 @ Vop @ Al @ Vpp
— ¢ LN 11 7 -~ a2l 20 @ OEpGMe OFE/Nppg OF
2 5 G—/: 2| res ¥ Al o (G13]
r={ 1A ar 1> asfe 6lAaz T a3 E 1o @ A0 @ A0 @ AI0
PB1 8 8 aalé 5 S as s 18 @Al @CE @ CE
@ s s = el PORT A
= g B w 5 it m ﬂE
€1 a8 5 I - 17)
3 = Q7
iIC2 a7 A6 m G24) 5532
12 1 |\, SNOEPOM 2 N o 2732
Uwn 2 23 2716 | st
Q2 A8 o
2| Res o
asle A9 - b
[cirm S ~aa b 19 1 a0 Vep o—
Sas |5 18 1 an e
@ ¢
| All
PB2) vee
Ga3 GND
7114
PB3 3
(Gaa) ~ _
14
i e 2 ' oceszs 2| 3
4 3 3 X%
s3 L1]1a1C4, |2] 1 | @2
G38 GND 15 4 4 e 3
ol e i !
c1
.T.Il——|l 12co oc |9 A0k = 22
© wlx
6 |c e ofx
c2 €2 op .E.H &
r||.——|l 2x1/6 4049 IC5 = >m i L8 sl T2 z1
5 cB D 11

3x BC108A

51

2) ASSEMBLING 'THL BURKER.

¢ 110d aweb jo
Z uid suesw gzgo

apis ajely
6 8 & 9

O O O O
O 00O O0DO

g ¥ & ¢ U
10193UU02 3WeD) |YY 1Y

1noAe syied 1z "bi4

1 0 LDODAANDO € ¢ NDdg
00000000 © © o000 o_\,_mumo_
2 DY SR
+’=—6 “noooooooooooo ||“_>_Om o_
| | ddA u_r
e | LINJ0SWOHdT v °
_.IO g 20000000000 0¢ |
TN e e S e g T e S |
(e R (R [
30}
®

— e —— o —

®
8¢6doa

52

Figure 3

PGM
A11

PGM

21

20 Vpp

Fig. 4: Rear side of the 3P2T switch

53

FIG.2 shows the parts layout.It 1is recanended to use
sockets for the integrated circuits. Attention !.The
canponent side for the integrated circuits is the side
showing the text EPROMBURNER, but the socket for the
EPROM is mounted opposite to this canponent side. (see
FIG. 3) The picture of the burner is shown in FIG. 3.
After assaabling the board, the connections to the
ATARI are made. Use three female plugs and a flatband
cable. Last the three pole double throw switch is
assembled. The wiring of the switch and the connection
to the board is shown in FIG.4.

3) THE SOFIWARE

The software for the burner is completely written in
machine code: It canes on a bootable diskette. To load
the program, insert the disk and REMOVE ALL CARTIDGES.
Turn on the disk drive and the ATARI. After a short
moment, you will see the first menue:

You are asked what type of EPROM you want to burn. After

typing the appropriate character, you get the message
to set the switch to the correct position and insert
the EPROM. This is shown in the following example:

54

Then, pressing the space var, you see the main menue:

First we want to R)EAD an EPROM. Type R and then the
addresses FROM and TO. The physical addresses of the
EPROM are always in range between 0000 and OFFF. You
can read the whole EPROM or only a part of it. Next you
have to type the address INIO which the content of the
EPROM is read. All adresses which are not used by the

system or the burner software (A80U0 to AFFF) are
accessible. By typing Y after the question OK (Y/N),
the program 1is loaded. There is a very important key,
the X key. This key cancels the input and leads back
into the main menue. An example of reading an EPROM is
shown in the next figure:

55

ICMID

QQHﬂ1:Iw~

To verify that the content of the RAM is idetical to
the content of the EPROM, type V. After specifing the
adresses for the EPROM and the RAM and typing Y, the
contents are campared. If there are any differences,

you get an error message, such as the following:

U e ne v
MNAS

You may then make a memory dump. Type M for M)EMORY,
either R for R)AM or E for E)PROM, and the address
range. There is a slight difference in memory dumps.
With the memory dump of RAM, the bytes are printed, if
it is possible, as ASCII characters.

Burning an EPROM begins by testing as to whether or not
the EPROM 1is erased in the address range you want to
burn. Type E and the address range. You will get the
message EPROM ERASED when the assigned address range
has been erased, or the message EPROM NOT ERASED IN
CELL NNN.

For writing the EPROM, type W, the address range in RAM,
and the starting address in EPROM. After hitting Y, you
have to wait two minutes for burning 2k and four
minutes for burning 4k.Don't get angry, the program
will stop. After burning one cell the program does an
automatic verify. If there is a difference you recieve
the error message EPROM NOT PROGRAMMED IN CELL NNN and
the burning stops. Otherwise if all goes well the
rnessage EPROM PROGRAMMED is printed.

For changing the type of EPROM you want to burn, type S.
The first menue 1is shown and you can begin a new
burning procedure.

4) PARTS LIST.

ICl 74LS139

I1€2,IC3 4024

IC4 4016

IC5 4049

T1,T2,T3 UNIVERSAL NPN TRANSISTOR
30V,0.3W (2N 3390 % 2N3399)

Rl 470 K RESISTOR

R2,R3 100 K RESISTOR

R4,R5 33 K RESISTOR

z1l 1 V ZENER DIODE

22 24 V ZENER DIODE

M1 DCP528 DCDC CONVERTER

ELPAC POWER SYSTEMS
Cl.,C2 100 NF CAPACITOR

57

c3

wiN W

10 MF TANTAL CAPACITOR

3P2T SWITCH

24 PIN TEXTOOL SOCKET

14 PIN IC SOCKET

16 PIN IC SOCKET

FEMALE PLUGS, ATARI GAME CONNECTORS

5) STEP BY STEP ASSEMBLING.

l.
*

2.
3.
*
*

4.

5.
*

6.
7.
8.
*
*
9.
*
*

10.
1o

12.
*

58

Insert and solder sockets.

Canponent side shows the text EPROMBURNER.
Insert and solder resistors.

Insert and solder Zener diodes.

The anodeS are closest to the to the
transistors.

Insert and solder transistors.

Insert and solder capacitors.

The + pole of the tantal is marked.

Mount the DCLC converter module.

Turn the board to the soldering side.
Insert fran this side the TEXTOOL socket.
The knob should be in the

upper right corner. Solder the socket.
Make the connections on the switch. (FIG.4)
Connect switch and board via

a 7 lead flatband cable.

Connect the plugs to the board. (FIG.5)
Insert the integrated circuits.(FIG.2)
Turn off the ATARI. Insert the plugs.
Insert the diskette and turn on the ATARI.

HEXDUMP of the EPROM BURNER software

A800
A808
A810
A818
A820
A828
A830
A838
A840
AB48
A850
AB858
A860
A868
A870
A878
A880
AB888
A890
A898
A8A0
A8AS8
A8BO
A8B8
A8CO
A8CS8
A8DO
A8D8
A8EO
A8ES8
A8FO0
ABF8
A900
A908
AS10
A918
A920
A928
A930
A938
A940

2076A9204CA82078
A8006885EE6885EF
A200E6EEDOO2E6EF
AlEE297F20A4F6A2
O0OAlEE10EDA5SEF48
AS5EE4860A5FD2940
FOO6A5FE0901D004
AS5FE290E8D01D348
68AD00D348A5FE8D
01D36860A90085F0
85F185F8A9308D03
D3A90F8D01D385F5
A9348D0O3D3AIFF85
F4A9B085F9A9028D
01D360A99B4CAAF6
A97D20A4F6A90585
54A90A8555A90085
56200AA852294541
44204550524FCD20
73A8A90A8555200A
A857295249544520
4550524FCD2073A8
A90A8555200AA845
2950524F4D204552
415345C42073A8A9
0A8555200AA85629
4552494659205052
4F475241CD2073A8
A90A8555200AA84D
29454D4F52592044
554DD02073A8A90D
8555200AA8522941

CD2073A8A90D8555
200AA8452950524F

CD2073A8A90A8555
200AA85329455420
4550524F4D205459
50C52073A82073A8

A90AB8555200AA857
484154BA20F0AE48

20A4F668C952D003

v) L(x
(@hEnhEo
"@fnPBfo
in) Sv"
@!nPm%oH
$nH %)@
pF% IAPD
$) NMASH
h-@SH% M
ASh') @Ep
EqEx) OMC
S) OMASEu
) 4MCS) E
t) 0Ey) BM
AS') [LSv
) SVv)EE
T) JEU) GE
V J(R)EA
D EPROM
s()JEU J
(W)RITE
EPROM s (
YJEU J(E
) PROM ER
ASED s()
JEU J (V)
ERIFY PR
OGRAM s (
YJEU J(M
) EMORY D
UMP s()M
EU J(R)A
M s()MEU

J(E) PRO
M s()JEU

J(S)ET
EPROM TY
PE s(s(
YJEU J(W
HAT: p.H

SvhIRPC

59

60

A948
A950
A958
A960
A968
A970
A978
A980
A988
A990
A998
A9A0D
A9AS8
A9BO
A9BS8
A9CO
A9C8
A9DO
A9D8
A9EO
A9ES
A9FO0
A9F8
AA00
AAO8
AAlO
AAl8
AA20
AA28
AA30
AA38
AR4O
AA48
AA50
AA58
AAG60
AAG68
AA70
AA78
AA80
AA88
AA90
AAO8

4C30ACC957D0034C
10ADC945D0034C8B
ACC956D0034C2DAF
C953D0034C76A9C9
4DD0034CFBADA9FD
20A4F66COAO0A97D
20A4F62073A8200A
A857484943482045
50524F4D20444F20
594F552057414E54
20544F204255524E
20BFA9088554A90A

8555200AA8412920
323533B22073A8A9

0A8555200AA84229
20323733B22073A8
A90A8555200AA843
2920323731362C32
3531B62073A82073
ABA90A8555200AA8
57484154BA20F0AE
4820A4F66885FCC9
41D006A90085FDFO0
12C942D006A98085
FD3008C943D078A9
CO85FD2073A82073
A8200AA853455420
5357495443482054
4F20504F53495449
4F4EAOA5FCC941D0

OA200AA8323533B2
18901EC942D00A20

0AA8323733B21890
10C943D032200AA8
323731362C323531
B62073A82073A8A9
OA8555200AA84EAF
5720494E53455254
204550524FCD20D7
AB208FAA4CO3AB8A9
FD20A4F64CEDA920
73A8A90A8555200A
A850524553532053

L0, IWPCL
P-IEPCLK

, IVPCL-/
ISPCLv) I
MPCL {-)
Sv1Ja@)
Sv s(J
(WHICH E
PROM DO
YOU WANT
TO BURN
?)HET)J
EU J(A)
2532 s|()
JEU J(B)
2732 s(
YaBED J(c
) 2716,2
516 s(s
()JEU J(
WHAT: p.
H SvhE|I
APF)@E p
RIBPF) @E
OHICPX)
@E s(s
(J(SET
SWITCH T
O POSITI
ON %|IAP

J J(2532
XP IBPJ

J(2732XP
PICP2 J(
2716;251
6 s(s()
JEU J(NO
W INSERT
EPROM W
+ O*LC()
SvLm)

s()JEU J
(PRESS S

AAAO
AAA8
AABO
AABS
AACO
AAC8
AADO
AADS8
AAEQ
AAES
AAFO0
AAF8
AB0O
ABO8
AB10
AB18
AB20
AB28
AB30
AB38
AB40
AB48
AB50
AB58
AB60
AB68
AB70
AB78
AB80
ABSS
AB90
AB98
ABAO
ABAS8
ABBO
ABBS8
ABCO
ABCS8
ABDO
ABDS8
ABEO
ABES
ABFO

50414345204241D2
20FOAE602073A8A9
0A8555200AA84F4B
2028592F4EA920F0
AE4820A4F668C94E
FOO03A90060A90160
484A4A4A4A20DBAA
68290FC90AB00409
30D0031869374CA4
F6A90085F285F385
FEA90485FC20F0AE
48C99BF00320A4F6
68C9303025C94710
21C93A3007C94130

191869090A0A0A0A
AO0042A26F226F388

DOF8A98085FEC6FC
DOCB60A9308D02D3
A9FF8D0O0D3A9348D
02D360A9308D02D3
A9008D00D3A9348D
02D3602073A820FD
AEA90A8555200AA8
46524F4DBA20E9AA
A5FE300DA5F120D0
AAA5F020D0AA4C79
ABASF285F0A5F385
F12073A8A90A8555
200AA8544F2020BA
20E9AAASFE300DAS
F520D0AAA5F420D0
AA4ACA4ABASF285F4
AS5F385F5A5FB302E
2073A82015AFA90A
8555200AA8494E54
4FBA20E9AAASFE30
ODAS5F920D0AAASFS8
20D0AA4CD6ABASF2
85F8A5F385F960A9
0185FEA90385FCA9
0985FFA5FD1021A9
041865FE85FEA904
1865FC85FCA90418

PACE BAR
p." s()
JEU J(OK
(Y/N) p
«H $VhIN
pC)@*)A’
HJJJIJ [*
h) OIJODI
OPCXi7L$
v) @ErEsE
)DE| p.
HI[pC Sv
hI00%IGP
1T:0GIAQ
YXiIJJddJd
D*&r&sH
Px) @E F|
PK ‘) OMBS
) M@S)4M
BS')OMBS
) @M@s) 4M
BS' s(
«)JEU J(
FROM: i*
% 0OM%g P
*$p P*Ly
+%rEp%sE
q s()JEU
J(TO :
i*y OM%
u P*3t P
*,S+3rEt
$sEu%{0.
s{ U/)J
EU J(INT
O: i*% 0
M%y P*%x
P*LV+%r
Ex%sEy")
AE)CE]|)
IE % P!)
DXe E)D
Xe|E|)DX

61

62

ABF8
ACO00
ACO8
AC10
ACl18
AC20
AC28
AC30
AC38
AC40
AC48
AC50
AC58
AC60
AC68
AC70
AC78
AC80
AC88
AC90
AC98
ACAO
ACAS8
ACBO
ACB8
ACCO
ACCS8
ACDO
ACDS8
ACEO
ACES8
ACFO
ACF8
ADOO
ADO8
AD10
AD18
AD20
AD28
AD30
AD38
AD40
AD48

65FF85FFAS5FD2940
FOO6AS5FE290F85FE
60ASFO085F2A5F185
F3A5F2D002A5F3F0
16A5SFC8DO1D3A5FE
8D01D3C6F2A5F2C9
FFDOE6C6F310E260
A98085FAA90085FB
203BAB204BAB20AC
AADOF820D7AB2009
ACA000202CA891F8
A5F1C5F59004A5F0
C5F4F019E6F0D002
E6F1E6F8D002E6F9
ASFC8D01D3A5FESD
01D31890D42073A8
A90A8555200AA84C
4F414445C4208FAA
4C03A8A98085FB85
FA203BAB204BAB20
ACAADOF820D7AB20
09ACA000202CABCH
FFDO39A5F1C5F590
04A5F0C5F4F013E6
FODOO2E6F1A5FC8D
01D3A5FE8D01D318
90D82073A8A90A85
55200AA845524153
45C4208FAAA90085
FB4C03A82073A8A9
0A8555200AA84EAF

5420455241534544
20494EAOA5F120D0

AAASF020DOAA208F
AAA90085FB4CO3A8
A90085FB85FA202B
AB204BAB20ACAADO
F820D7ABA5F885F2
A5F985F32011ACA0
00B1F08D0OOD320A9
ADASF1C5F59004A5
FOC5F4F013E6FO0DO
02E6F1A5FC8D01D3

e E %)@
pF%) OE
SPEr%¥qE
s%rPB%sp
V% | MAS%
MASFr%rlI
PfFsPb"
) @Ez) QE{
vt K4+ 5
*Px W+ I
r @ ,(0x
%¥gEuPD%p
EtpYfpPB
fqfxPBfy
%?MAS% M
ASXPT s(

YJEU J(L
OADED O*

LC() @E{E
z 3+ K+
s *Px W+
I, @ ' (I
P9%qEuP
D%pEtpSt
pPBfg% M
AS% MASX
PX s()JE
U J(ERAS
ED O*)GE
{rc(s()
JEU J(NO
T ERASED
IN %q P
$p P O
*) QE{LC(
)@E{Ez +
+ K+ ,*P
X W+%xEr
3yEs Q,
@lpm@s)
= ounPD%
pEtpSfpP
Bfq% | MAS

AD50
AD58
AD60
AD68
AD70
AD78
ADS8O
AD88
AD90
AD98
ADAO
ADAS
ADBO
ADBS8
ADCO
ADC8
ADDO
ADDS8
ADEO
ADES8
ADFO
ADF8
AEOO
AEOQ8
AElO
AE18
AE20
AE28
AE30
AE38
AE40
AE48
AE50
AE58
AE60
AE68
AE70
AE78
AE80
AES88
AE90
AE98
AEAOQ

AS5FE8D01D31890D7
2073A8A90A855520

O0AA850524F475241

4D4D45C4208FAA4C
03A82073A8A90A85

55200AA843454C4C
AOASF120DOAAASFO
20DOAA200AAB204E
4F542050524F4752
414D4D45C4208FAA
4CO3A8A0FF88DOFD
60A5FF8D01D320A3

AD290E8D01D34820
DDAD6809018D01D3

AS5FE8D01D320A3AD

203BAB202CA8A000
D1FOF00568684C72
AD202BAB60A9FF85
F6A90B85F7A5F6D0
02A5F7FO00DC6F6AS5
F6COFFDOFOC6F718
90EB6020FO0AE4820
A4F668C952D006A9
0085FAF012C945D0
06A98085FA3008A9
FD20A4F64CFBAD20
3BABA98085FB204B
AB20ACAADOF820D7
AB2037AE4C03A8A5
FA10032009ACA97D
20A4F6A90085F620
73A8A90085F7A5F1
85F320D0AAA5F085
F220D0AA20DBAEAS
FA100620EOAE1890
04A000B1F020DOAA

E6F7A5F7C908F00B
20DBAEE6FO0DO02E6

F1DODCA90085F720

DBAEASFA3021A000
B1F2C9209004C97A

9002A92E20A4F6Eb6
F7AS5F7C908F008E6

% MASXPW
s()JEU
J (PROGRA
MMED O*L
C(s()JE
U J(CELL
$q P*%p
P* J(N
OT PROGR
AMMED O¥*
LC(HP
‘% MAS #
-) NMASH
]-hIAMAS
% MAS #-
i+ .0 @
QppEhhLr
- ++') E
v) KEwgvP
B3wpMFv$%
vI PpFwX
Pk* p.H
SVhIRPF)
@EzZpRIEP
F) QEzOH)
SvL{-
:+)@E{ K
+ ,*Px W
+ 7.LC(%
zPC I,)
$v) @Ev
s() @Ewsq
Es P*$pE
r P* [.%
ZPP . XP
D @lp P*
fwwIHpK
[.fpPBE
gP\) @Ew
[.3z0! @
eIl PDIZ
PB) . Svf
wswIHpHE

63

AEAS

F2D002E6F3D0ODBAS rPBfsP[$%
AEBO F1C5F59004A5F0C5 qEuPD%pE
AEBS F49006208FAA4CO3 tPF O*EC
AECO ASBE6FOD002E6F1E6 (fpPBfqf
AECS8 F6AS5F6C914F0034C vsvITpCL
AEDO 47AE208FAA20D7AB G. O* W+
AEDS 4C3EAEA9204CA4F6 L>.) LSv
AEEQ 202CA848A5FC8D01 , (H% |MA
AEES D3AS5FE8D01D36860 S% MASh®
AEF0 20E2F6C958D00568 bvIXPEh
AEF8 684C03A860A90485 hLC (') DE
AF00 55A5FA1009200AA8 U%zPI J(
AF08 4550524FCD60200A EPROM® J
AF10 A85241CD60A90485 (RAM") DE
AF18 55A5FA1007200AA8 U%zPG J(
AF20 5241CD60200AA845 RAM' J(E
AF28 50524FCD60A98085 PROM") GE
AF30 FAA90085FB203BAB z) @E{ ;+
AF38 204BAB20ACAADOF8 K+ ,*Px
AF40 20D7AB2009ACA000 W+ I, @
AF48 202CA848D1F8DO3E , (HOxP>
AF50 68A5F1C5F59004A5 h$qEuPD%
AF58 FOC5F4F019E6F0DO PEtpYfpP
AF60 02E6F1E6F8D002E6 BfgqfxPBf
AF68 FO9ASFC8D01D3ASFE yv% [MASS
AF70 8D01D31890D02073 MASXPP s
AF78 A8A90A8555200AA8 () JEU J(
AF80 56455259464945C4 VERYFIED
AF88 208FAA4C03A82073 O*LC(s
AF90 A8200AAB844494646 (J(DIFF
AF98 4552454E54204259 ERENT BY
AFAQ 544553A06820D0AA TES h P*
AFAS8 20DBAEAOOOBLF820 [. @1x
AFBO DOAA200AA820494E P* J(IN
AFBS8 AOA5F920D0OAAASF8 $y P*%x
AFCO 20D0AA208FAA4CO3 P* O*LC
AFC8 A800000000000000 (eereEQ@

This hexdump has to be keyed in starting at address A800. This means
you need a 48K RAM ATARI and a machine language monitor (ATMONA-1,
Editor/Assembler cartridge from ATARI or ATMAS-1). The program starts
at address A800 hex.

64

Using the EPROM board Kit from HOFACKER

After you burned an EPROM you certainly want to plug it into your ATARI.
For this you need a pc-board. You can buy those boards from various vendors
(APEX, ELCOMP PUBLISHING).

The following description shows how to use the EPROM board from
ELCOMP PUBLISHING, INC.

With this versatile ROM module you can use
2716
2732
and 2532 type EPROMs.
To set the board for the specific EPROM, just solder their jumpers according
to the list shown below. Without any soldering you can use the module for
the 2532 right away.

If you use only one EPROM,
insert it into the right socket. 3
If you use two EPROMs, put the
one with the higher address into
the right socket.

The modul must be plugged
into the left slot of your ATARI
computer with the parts directed
to the back of the computer.

65

I 2716 1 2732 1 2516 1 2532 1

B el G B B G

EPROM

I
)
I

I
1
I

I

1
I
I

I
I
I

v

%

I
I

0
) Tt G St Sttt

v

1

I
I
I

I
I
I

1
1
I

et L C T B O

)
I
1

I
I
I

0

0

\%

0

2

I
I
I

I
I
I

1

I
I
I

I
I

I
] St CETES EEERES SR

0

%

1
1

v

v

3

I
)
I

I
I
I

I
I
1

I
1
I

I
I
I

v

5

v

0

0

0

4

|
| 0
n
| ST RNCIRN SR

0

] e e e .

0

|
[
I e St

\
0

means connected (jumper)
means open

area

(Pleigleiele

AT

!

66

HOW TO ADD OR
CHANGE A DEVICE

CHAPTER 7

If you want to add your own device, you
first have to write a handler/controller
(interface). You have to submit the
handler on the following design decisions.

- There has to be an OPEN routine, which
opens the device/file and returns with the
status of these operations stored in the Y-
register of your 6502.

- You also need a CLOSE routine, which
unlinks the device and returns the status
as the OPEN-routine does.

- Further needed 1is a GETBYTE routine,
which receives the data from your device
and returns the data in the A-register and
the status 1in the Y-register. If your
device is a write only device (such as a
printer) you have to return with errorcode
146 (not implemented function) in the Y-
register.

- A PUTBYTE routine, sends a byte (which
will be in the A-register) to your device,
and returns, as the other routines do, the
status. If your device is read only, then
return the 146 errorcode.

67

68

- A GET STATUS routine stores the status
of your device (max. 4 bytes) at DVSTAT
(SO2EA. D). If the GET STATUS function is
not necessary, you have to leave the dummy
routine with 146 in your Y-register
(error).

- A SPECIAL COMMAND routine is required,

if you need more commands than previous.
If not, return with Y=146.

0S will load the X-register with the IOCB
number times 16 so you are able to get
specific file information out of the user
IOCB.

These 6 entries have to be placed in a so
called handlertable. The vectors of these
have to be one less than the real address,
due to OS requirements.

Fomm +
Y OPEN vector-1
Fom——————————————— +
4 CLOSE vector-1 ¢
Fmm—————————————— +
§§GETBYTE vector-14
o —————————— 4
{PUTBYTE vector-14
Fm——————————————— +
{GETSTAT vector-14
T +
Y§SPECIAL vector-14
o +

Now you have to add the device to the
device table. A device entry needs 3 bytes.
The device name, which is usually a
character that indicates the device (first
character of the full devicename) is first.

Second, a vector that points to the
devicehandler.

Fmm e +
§f handler table ¢
+- -+
9 address q
e +

If you only want to change the handler of
a device to your own handler, you only
have to scan the devicetable (started from
$031A) and let the vector point to your
handler table.

If it is a totally new device, you have to
add it, at the next free position of the
device table (filled with zero).

The first listing shows you a handler for
a new printer device. Calling INITHAN will
install the new handler table. Now you can

connect a printer with centronics
interface at gameport 3 & 4 (see
connection scheme) . After each SYSTEM
RESET you have to initialize the device
again. For program description see program
listing.

The second 1listing 1is a 1listing of an
inexpensive (write only) RS232 interface
for your ATARI. Just call INITHAN and the
new device will be added to the device
table. It is now possible to wuse it 1like
any other device. The RS232 output is on
gameport 3 (see connection scheme). It 1is
not our intention to describe detail the
working of the RS232 interface. The
comments in the program should help a bit
though.

69

70

0600:
0602:
0604:
0606 :
0608:
060A:

060C:
060F:

0610:
0612:
0615:
0617:
061A:
061C:
061F:
0621:
0624:
0626:

0627 :
0629:

0F06
2306
2606
2906
2606
2606

000000
00

A930
8D03D3
A9FF
8D01D3
A934
8D03D3
A980
8D01D3
A001
60

A092
60

khkkhkkhkkkhkhkhkkkkkhkhhhkhhkkkhhhhkhhhkkhkkkkk

*
*

*

CENTRONICS PARALLEL INTERFACE :

Fkkkkkhhkhkkhhhkkhhhhhkkhkhhkhhhkkhhhkkkkkk

PRTENTRY
TRIG3
PACTL
PORTA
EOL

CR
LF

HANDLTAB

OPEN
INIT

SUCCES

*
*

CLOSE

NOTIMPL

%*
*
*

GETBYTE
STATUS
SPECIAL

*

EQU

EQU
EQU
EQU

EQU
EQU
EQU

ORG

THE

DFW
DFW
DFW
DFW
DFW
DFW

DFB

THE

EQU
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
RTS

THE

$031A STANDARD ENTRY BY SYSTEM

$D013
$D303
$D301

$9B
$0D
$0A

$0600,$A800
HANDLERTABLE

OPEN-1
CLOSE-1
GETBYTE-1
PUTBYTE-1
STATUS-1
SPECIAL-1

0,0,0,0 FILL REST WITH ZERO

OPEN ROUTINE

%*

#$30
PACTL
#S$FF
PORTA
#$34
PACTL
#$80
$D301
#1

CLOSE DUMMY ROUTINE

ONLY RETURN SUCCESS IN Y (1)

EQU

LDY
RTS

THE
NOT

SUCCES

#146

FOLLOWING COMMANDS ARE
IMPLEMENTED SO GET ERROR

CODE 146

EQU
EQU
EQU

THE

NOTIMPL
NOTIMPL
NOTIMPL

PUTBYTE ROUTINE

062A: C99B PUTBYTE CMP #EOL

062C: D007 BNE NOEOL

* IF EOL THEN CRLF TO PRINTER
062E: A90D LDA #CR
0630: 203B06 JSR PARAOUT
0633: A90A LDA #LF
0635: 203B06 NOEOL JSR PARAOUT
0638: A001 LDY #1
063A: 60 RTS

* THE PARALLEL OUT
063B: AC13D0 PARAOUT LDY TRIG3
063E: DOFB BNE PARAOUT WAIT IF BUSY
0640: A080 LDY #%10000000
0642: 0980 ORA #%10000000
0644: 8D01D3 STA PORTA STROBE ON AND PUT DATA ON
0647: 297F AND #%01111111 BUS
0649: 8D01D3 STA PORTA STROBE OFF
064C: 8C01D3 STY PORTA CLEAR BUS
064F: 60 RTS

* PUT NEW ADDRESS IN HANDLERVECTOR
0650: A900 INITHAN LDA #HANDLTAB:L
0652: 8D1B03 STA PRTENTRY+1
0655: A906 LDA #HANDLTAB:H
0657: 8D1CO3 STA PRTENTRY+2
065A: 4C1006 JMP OPEN

PHYSICAL ENDADDRESS: $A85D

**% NO WARNINGS

PRTENTRY $031A TRIG3 $D013

PACTL $D303 PORTA $D301

EOL $9B CR $0D

LF $O0A HANDLTAB $0600

OPEN $0610 INIT $0610 UNUSED
SUCCES $0624 CLOSE $0624

NOTIMPL $0627 GETBYTE $0627

STATUS $0627 SPECIAL $0627

PUTBYTE $062A NOEOL $0635

PARAOUT $063B INITHAN $0650 UNUSED

For more information about the parallel interface refer to
page 106.

0600:
0602:
0604:
0606 :
0608:
060A:
060C:
060F:

0610:
0612:
0615:
0617 :
061A:
061C:
061F:
0621:
0624:
0627:
062A:
062C:

062D:
062F:

12

0F06
2906
2C06
2F06
2C06
2C06
000000
00

A930
8D03D3
A901
8D01D3
A934
8D03D3
A900
8D01D3
208506
208506
A001
60

A092
60

khkhkkkkkkkhkhkhhhkhhhkhkhhhhhhhhhhhhhhk ki

*

*

RS232 SERIAL INTERFACE :

NEXT FREE POSITION IN DEVICE
TABLE

150 110 AND 300 BAUD

JUST FILL WITH ZERO

CLOSE ROUTINE IS A DUMMY
Y=1 (SUCCESSFULL CLOSE)

RETURN WITH Y=146

FOLLOWING COMMANDS ARE

*
*
kkkkkhkkhkkkkhkhkkhk Ak kkkhhhhkkkkkkhk*
COUNT EPZ S$1F
RSENTRY EQU $032C
PACTL EQU $D303
PORTA EQU $D301
NMIEN EQU S$D40E
DMACTL EQU $D400
EOL EQU $9B
CR EQU $0D
LF EQU $0A
K EQU
L EQU 6 300 BAUD
*L EQU 18 110 BAUD
ORG $0600,$A800
HANDLTAB DFW OPEN-1
DFW CLOSE-1
DFW GETBYTE-1
DFW PUTBYTE-1
DFW STATUS-1
DFW SPECIAL-1
DFB 0,0,0,0
* THE OPEN ROUTINE
OPEN EQU *
INIT LDA #$30
STA PACTL
LDA #%00000001
STA PORTA
LDA #$34
STA PACTL
LDA #$00
STA PORTA
JSR BITWAIT
JSR BITWAIT
SUCCES LDY #1
RTS
¥ THE
* BUT
CLOSE EQU SUCCES
NOTIMPL LDY #146
RTS
* THE
* NOT IMPLEMENTED

0630:
0631:
0633:

0635:
0637:
063A:
063C:
063F:
0640:
0642:

0643:
0645:

0648:
0649:
064B:
064E:

0651:
0653:
0656 :

0659:
065B:

065D:
0660:
0663:
0664:
0667:
066A:
066C:

066E:
0670:
0673:
0676:

48
C99B
D007

A90D
204306
A90A
204306
68

A001
60

49FF
8DA206

78
A900
8DOED4
8D00D4

A901
8D01D3
208506

A008
841F

ADA206
8D01D3
6A
8DA206
208506
C61F
DOEF

A900

8D01D3
208506
208506

GETBYTE
STATUS
SPECIAL
*

*
*

PUTBYTE

NOEOL

*

SEROUT

SENDBYTE

EQU NOTIMPL
EQU NOTIMPL

EQU NOTIMPL

THE PUTBYTE COMMAND
DATA IN ACCU

STATUS IN Y (=1)

PHA
CMP #EOL
BNE NOEOL

IF EOL GIVE CRLF TO DEVICE

LDA #CR
JSR SEROUT
LDA #LF
JSR SEROUT
PLA

LDY #1

RTS

SERIALOUT FIRST REVERSE BYTE

EOR #%11111111
STA BUFFER

DISABLE INTERRUPTS

SEI

LDA #0

STA NMIEN
STA DMACTL

SEND STARTBIT

LDA #%00000001
STA PORTA
JSR BITWAIT

SEND BYTE

LDY #8
STY COUNT

LDA BUFFER
STA PORTA
ROR

STA BUFFER
JSR BITWAIT
DEC COUNT
BNE SENDBYTE

SEND TWO STOPBITS
LDA #%00000000
STA PORTA

JSR BITWAIT

JSR BITWAIT

ENABLE INTERRUPTS

73

0679: A922
067B: 8DO0D4

067E: A9FF
0680: 8DOED4
0683: 58
0684: 60

*

*

LDA
STA
LDA
STA
CLI
RTS

#$22

DMACTL

#SFF
NMIEN

THE BITTIME ROUTINE FOR

AN EXACT BAUDRATE

0685: A296 BITWAIT LDX
0687: A006 LOOPK LDY

0689: 88 LOOPL DEY
068A: DOFD BNE
068C: CA DEX
068D: DOF8 BNE
068F: 60 RTS

#K
#L

LOOPL

LOOPK

ROUTINE FOR INSTALLING THE
RS232 HANDLER

0690: A952 INITHAN LDA

0692: 8D2CO03
0695: A900
0697: 8D2D03
069A: A906
069C: 8D2E03
069F: 4C1006

STA
LDA
STA
LDA
STA
JMP

BUFFER EQU

PHYSICAL ENDADDRESS: $A8A2

**%* NO WARNINGS

COUNT
PACTL
NMIEN
EOL

LF

L

OPEN
SUCCES
NOTIMPL
STATUS
PUTBYTE
SEROUT
BITWAIT
LOOPL
BUFFER

74

S1F

$D303
SD40E
$9B

$0A

$06

$0610
$062A
$062D
$062D
$0630
$0643
$0685
$0689
$06A2

"R

RSENTRY
#HANDLTAB: L
RSENTRY+1
#HANDLTAB: H
RSENTRY+2
OPEN

*

RSENTRY
PORTA
DMACTL
CR

K
HANDLTAB
INIT
CLOSE
GETBYTE
SPECIAL
NOEOL
SENDBYTE
LOOPK
INITHAN

DEVICE NAME

ONE BYTE BUFFER

$032C
$D301
$D400
$0D

$96

$0600
$0610
$062A
$062D
$062D
$063C
$065D
$0687
$0690

UNUSED

UNUSED

A BOOTABLE
TAPE GENERATOR
PROGRAM

CHAPTER 8

The following program allows you to
generate a bootable program on tape. This
generator must be in memory at the same
time as the program.

After you have jumped to the generator, a
dialogue will be started. First, the boot
generator asks for the address where your
program is stored (physical address).
After you have entered start- and end-
address (physical), you will be asked to
enter the address where the program has to
be -stored during boot (logical address).
The generator further asks for the restart
address (where O0OS must jump to, to start
your program).

There is no feature to define your own
initialization address. This address will
be generated automatically and points to a
single RTS.

Also given 1is the boot continuation code,
which will stop the cassette motor, and
store the restart address into DOSVEC ($O0A.
B) .

So, you just have to put a cassette in
your recorder, start the generator, and
the dialogue will be started.

The generator puts the boot information
header in front of your program, so there
have to be at least 31 free bytes in front
of the start address (physical & logical).

75

76

The generator program will not be
explained here, but after reading the
previous chapters you should have the
knowledge to understand it. There are also
some helpfull comments in the program.

khkkhhhkkkhhkhhkkhkhhhhhkhkhkhhhkdhkhhhkhkhhkdhk

* *
* BOOT-GENERATOR :
*

khkkkhhkhkhhhhhhhhhhhhhhhhhhkhhhkhkhkkkkkkk

STOREADR EPZ S$FO0.1
ENDADR EPZ S$F2.3
PROGLEN EPZ S$F4.5
JMPADR EPZ S$F6.7
EXPR EPZ SF8.9
LOGSTORE EPZ SFA.B
HEXCOUNT EPZ SFC

DOSVEC EPZ S$SO0A
MEMLO EPZ S$02E7

ICCOM EQU $0342
ICBAL EQU $0344
ICBAH EQU $0345
ICBLL EQU $0348
ICBLH EQU $0349
ICAX1 EQU S034A
ICAX2 EQU $034B

OPEN EQU $03
PUTCHR EQU $0B
CLOSE EQU $0C

OPNOT EQU 8

SCROUT EQU S$F6A4
GETCHR EQU $F6DD
BELL EQU SF90A
CIOV EQU SE456

A800:
A802:

A805:
A808:
A80A:
A80D:
A810:
A813:
A8l16:
A819:
A81C:
A81F:
A822:

A825:
A828:
A82A:
A82D:
A830:
A833:
A836:
A839:
A83C:
A83E:

A97D
20A4F6

2000AA
0DOD

424F4F
544745
4E4552
41544F
522046
524F4D
20484F
464143
4B45D2

2000AA
0DOD

53544F
524541
444452
455353
203AA4
2028AA
84F0

85F1

PACTL
CLS
EOL
BST
CR

IOCBNUM

START

EQU
EQU
EQU
EQU
EQU

EQU

ORG

LDA
JSR

$D302

$7D
$9B
S1E
S0D

SA800

#CLS
SCROUT

PRINT MESSAGE

JSR
DFB
ASC

GET

JSR
DFB
ASC

JSR
STY
STA

GET

PRINT

CR,CR

\BOOTGENERATOR FROM
HOFACKER\

STOREADDRESS

PRINT

CR,CR

\STOREADDRESS :S$\

HEXIN
STOREADR

STOREADR+1

ENDADDRESS

77

AB40:
AB843:
A846:
A849:
A84C:
AB4F:
A852:
A855:
A858:
A85A:

A85C:
AB85F:
A862:
A865:
A868:
AB6B:
A86E:
A871:
A874:
A877:
A879:
A87C:
AB87E:

A880:
A883:
AB86 :
A889:
A88C:
AB88F:
AB892:
A895;
A897:
A89A:
A89C:

78

2000AA
0DODOD
454E44
414444
524553
532020
203AA4

2028AA
84F2

85F3

2000AA
0DODOD
4CAF47
494341
4C2053
544F52
454144
445245

535320
3AA4

2028AA
84FA
85FB

2000AA
0DODOD
4A554D
504144
445245
535320
202020
3AA4

2028AA
84F6
85F7

JSR
DFB
ASC

JSR
STY

STA

GET

JSR
DFB
ASC

JSR
STY
STA

GET

JSR
DFB
ASC

JSR
STY
STA

PRINT
CR,CR,CR
\ENDADDRESS : S\

HEXIN
ENDADR

ENDADR+1

LOGICAL STORE

PRINT
CR,CR,CR
\LOGICAL STOREADDRESS

HEXIN

LOGSTORE
LOGSTORE+1

JUMP

PRINT
CR,CR,CR
\JUMPADDRESS : S\

HEXIN
JMPADR

JMPADR+1

: S\

AB9E:
ABAO:

ABAl:
ABA3:
A8BA5:
ABA7:

A8A9:
ABAB:
ABAC:
ABAE:
A8BO:
A8B2:

A8B4:

A8B7:
AB8B9:
A8BA:
AB8BC:
AB8BE:
ABCO:
ABC2:
ABC4:
ABC6:

A8C9:
A8CB:

A5F0
38

E920

85F0
B002

C6F1

AS5FA
38

E920
85FA

B002
C6FB

20F5A9

A5F2
38
E5F0
85F4
A5F3
E5F1
85F5
B003
4CDAA9

A5F4
18

CALCULATE NEW STORE

LDA
SEC

SBC
STA
BCS
DEC

STOREADR

(HEADEND-HEAD) +1
STOREADR

*44

STOREADR+1

CALCULATE LOGICAL STORE

LDA
SEC

SBC
STA

BCS
DEC

LOGSTORE

(HEADEND-HEAD) +1
LOGSTORE

*+4

LOGSTORE+1

MOVE HEADER IN FRONT OF

JSR

PROGRAM

MOVEHEAD

CALCULATE LENGTHE OF PROGR.

LDA
SEC
SBC
STA
LDA
SBC
STA
BCS
JMP

ENDADR

STOREADR
PROGLEN
ENDADR+1
STOREADR+1
PROGLEN+1
*45

ADRERR

ROUND UP TO 128 RECORDS

LDA PROGLEN

CLC

79

A8CC:.

A8CE:
A8DO:
A8D2:
A8D4 :

A8DG6 ¢
A8D7:
A8D9:
A8DA:
A8DC:

A8DE:
A8EQ:
A8E2:
A8E4:
ABEG6
A8E7:

A8E9:
A8EB:
A8EC:
A8EE:

A8FO0:
A8F2:
A8F3:
A8F5:
A8F7:

80

A8F9:
A8FB:
A8FD:
A8FE:
A900:
A902:
A904:
A906 ¢
A908:

697F
2980
85F4
9002
E6F5

0A
A5SF5
2A
A001
91F0

A002
A5FA
91F0
A5FB
C8

91F0

A004
18

AS5FA
691F

91F0
C8

A5FB
6900
91F0

A0OC

AS5FA
18

65F4
91F0
A01l1l
A5FB

65F5
91F0

ADC
AND
STA
BCC
INC

#127

#128
PROGLEN
*+4
PROGLEN+1

CALCULATE NUMBER OF

ASL
LDA
ROL
LDY
STA

LDY
LDA
STA
LDA
INY
STA

LDY
CLC

LDA
ADC

STA
INY
LDA
ADC
STA

LDY
LDA
CLC
ADC
STA
LDY
LDA
ADC
STA

RECORDS

PROGLEN+1

#RECN-HEAD
(STOREADR) ,Y

#PST-HEAD
LOGSTORE
(STOREADR) ,Y
LOGSTORE+1

(STOREADR) ,Y
#PINITADR-HEAD

LOGSTORE
#PINIT-HEAD

(STOREADR) ,Y

LOGSTORE+1
#0
(STOREADR) ,Y

#PNDLO-HEAD
LOGSTORE

PROGLEN
(STOREADR) ,Y
#PNDHI-HEAD
LOGSTORE+1

PROGLEN+1
(STOREADR) ,Y

A90A:
A90C:
A90E:
A910:
A912:
A914:

A9%16:
A919:
A91B:
A91E:
A921:
A924:
A927:
A92A:
A92D:
A92E:
A930:
A933:
A936:
A939:
A93C:
A93F:
A942:
A945:;

A948:
A94A:
A94C:
A94F:
A951:
A954:
A956 ¢
A959:

A0l6
A5F6
91F0
AO1A
AS5F7
91F0

2000AA
0DOD

505245
535320
504C41
592026

205245
434F52

44
0DOD
414654
455220

544845
204245

455053

202752
455455
524ERA7

A210
A903
9D4203
A908
9D4A03
A980
9D4B03
A9F2

LDY
LDA
STA
LDY
LDA
STA

#JUMPADRL-HEAD
JMPADR
(STOREADR) ,Y
#JUMPADRH-HEAD
JMPADR+1
(STOREADR) ,Y

* BOOTTAPE GENERATION PART

* GIVE INSTRUCTIONS

JSR
DFB
ASC

DFB
ASC

*

OPENIOCB

PRINT

CR,CR

"PRESS PLAY & RECORD"
CR,CR

\AFTER THE BEEPS

'RETURN'\

OPEN CASSETTE FOR WRITE

LDX #IOCBNUM*16
LDA #OPEN

STA ICCOM,X
LDA #OPNOT

STA ICAX1,X

LDA #128
STA ICAX2,X
LDA #CFILE:L

81

A95B:
A95E:
A960:
A963:
A966 :

A968:
A96A:
A96D:
A96F:
A972:
A974:
A977:
A979:
A97C:
A97E:
A981:
A984:

A986:
A988:
A98B:
A98E:

A990:
A991:
A992:
A9%94:
A996 :
A999:
A99C:
A99F:
A9Al:
A9A4:
A9A7:
A9AS8:

82

9D4403
A9A9
9D4503
2056 E4
3028

A90B
904203
ASFO0
9D4403
A5F1
9D4503
A5F4
9D4803
A5F5
9D4903
2056 E4
300A

A90C
9D4203
2056 E4
1024

98

48
A210
A90C
9D4203
2056 E4
2000AA
0DOD
455252
4F522D
A0

68

*

PUTPROG

*

CLOSIOCB

CERR

STA
LDA
STA

JSR
BMI

PUT

LDA
STA
LDA
STA
LDA
STA
LDA

STA
LDA

STA

JSR
BMI

ICBAL, X
#CFILE:H
ICBAH, X

CIOoVv
CERR

PROGRAM ON TAPE

#PUTCHR
ICCOM,X
STOREADR
ICBAL,X
STOREADR+1
ICBAH,X
PROGLEN
ICBLL,X
PROGLEN+1
ICBLH,X
CIOV
CERR

CLOSE IOCB

LDA

STA
JSR
BPL

#CLOSE
ICCOM, X
CIOV

SUCCES

IF ERROR OCCURS
SHOW THE ERRORNUMBER

TYA
PHA
LDX
LDA
STA
JSR
JSR
DFB
ASC

PLA

#IOCBNUM*16
#CLOSE
ICCOM,X
CIOoV

PRINT
CR,CR
\ERROR- \

A9A9: AA
A9AA: 2088AA
A9AD: 2000AA
A9BO: 8D
A9Bl: 4CA2AA

A9B4: 2000AA
A9B7: 0DOD

A9B9: 535543
A9BC: 434553
A9BF: 46554C
A9C2: 4C2042
A9C5: 4F4F54
A9C8: 544150
A9CB: 452047
A9CE: 454EAS
A9D1: 524154
A9D4: 494F4E
A9D7: 0D8D

A9D9: 00

A9DA: 2000AA
A9DD: 0DOD
A9DF: 414444
A9E2: 524553
A9E5: 53494E
A9E8: 472045
A9EB: 52524F
A9EE: D2
A9EF: 4CA2AA

A9F2: 433A
A9F4: 9B

SUCCES

* % ¥ * F * % *

ADRERR

CFILE

TAX

JSR PUTINT
JSR PRINT
DFB CR+128
JMP WAIT

IF NO ERROR OCCURS
TELL IT THE USER

JSR PRINT
DFB CR,CR

ASC "SUCCESFULL BOOTTAPE GENERATION"

DFB CR,CR+128

BRK-INSTRUCTION TO TERMINATE
THE PROGRAM. MOSTLY A JUMP
INTO THE MONITOR-PROGRAM

FROM WHERE YOU STARTED THE
PROGRAM. INSTEAD OF THE 'BRK'

YOU ALSO CAN USE THE 'RTS'
THE RTS-INSTRUCTION, IF THIS
PROGRAM WAS CALLED AS A SUB-

ROUTINE.
BRK

IF ERROR IN THE ADDRESSES
TELL IT THE USER

JSR PRINT

DFB CR,CR
ASC \ADDRESSING ERROR\

JMP WAIT

THESE 3 CHARACTERS ARE NEEDED
TO OPEN A CASSETTE IOCB.

ASC ™C:"
DFB EOL

ROUTINE FOR MOVING THE HEADER
IN FRONT OF THE USER-PROGRAM

83

A9F5:

84

AOF7:
A9FA:
A9FC:
A9FD:
A9FF:

AAQO:
AAQ1:
AA03:
AAO4:
AAQ6 :
AA08:
AAOA:
AAOC:
AAQE:
AAlOQ:
AAl2:
AAl4:
AAl6:
AAl1S8:
AAlB:
AAlD:
AAlF:
AA21:
AA23:
AA24:
AA26:
AA27 :

AA28:
AA2A:
AA2C:
AA2E:
AA30:
AA32:
AA34:
AA37:
AA38:
AA3B:

AO1lF
B9ASAA
91F0
88

10F8
60

68
85F8
68
85F9
A200
E6F8
D002
E6F9
AlF8
297F
C90D
D002
A99B
20A4F6
A200
AlF8
10E7
A5F9
48
AS5F8
48
60

A900
85F8
85F9
A903
85FC
3031
20DDF6
48
20A4F6
68

MOVEHEAD LDY #HEADEND-HEAD
MOVELOOP LDA HEAD,Y
STA (STOREADR) ,Y
DEY

BPL MOVELOOP
RTS

THIS ROUTINE PRINTS A CHARACTERS
WHICH ARE BE POINTED BY THE
STACKPOINTER (USING THE 'JSR'

TO CALL THIS ROUTINE).

THE STRING HAS TO BE TERMINATED
BY A CHARACTER WHOSE SIGNBIT

IS ON.

* % F ¥ H F X

PRINT PLA
STA EXPR
PLA
STA EXPR+1
LDX #0
PRINT1 INC EXPR
BNE *+4
INC EXPR+1
LDA (EXPR,X)
AND #%01111111
CMP #CR
BNE NOCR
LDA #EOL
NOCR JSR SCROUT
LDX #0
LDA (EXPR,X)
BPL PRINT1
LDA EXPR+1
PHA

LDA EXPR
PHA

RTS

* HEX INPUT ROUTINE

* WAITS FOR CORRECT FOUR DIGITS
% OR 'RETURN'

HEXIN LDA #0
STA EXPR
STA EXPR+1
LDA #3
STA HEXCOUNT
HEXIN1 BMI HEXRTS
JSR GETCHR
PHA
JSR SCROUT
PLA

AA3C:
AA3E:
AA4Q:
AR42:
AA44
AA46 :
AA48:
AA4A:
AAAC:
AA4E:
AA51:

AA54:
AA56 ¢
AA58:
AASA:
AAS5C:
AA5D:
AASF:
AA62:

AA65:
AA67 :
AA69:

AAGA:
AA6D:
AAGF:
AA72:

AA75:
AA77:
AA78:
AA7A:
AA7B:
AA7C:
AA7D:
AA7TE:

C99B
F025
C958
F096
C930
9022
C93A
B008
290F
2075AA
4C32AA

C941 ALFA
9012

C947

BOOE

38

E937

2075AA
4C32AA

AAF8 HEXRTS
A5F9
60

200AF9 HEXERR
A91E

20A4F6

4C32AA

C6FC HEXROT
08

A204

0A

0A

0A

0A

0A HEXROT1

CMP #EOL
BEQ HEXRTS
CMP 'X

BEQ ADRERR
CMP '0

BCC HEXERR
CMP '9+1
BCS ALFA
AND #%00001111
JSR HEXROT
JMP HEXIN1

CMP 'A

BCC HEXERR
CMP 'F+1
BCS HEXERR
SEC

SBC 'A-10
JSR HEXROT
JMP HEXIN1

LDY EXPR
LDA EXPR+1
RTS

IF WRONG DIGIT
RINGS THE BUZZER
AND PRINT BACKSTEP

JSR BELL
LDA #BST

JSR SCROUT
JMP HEXINI1

DEC HEXCOUNT
PHP

LDX #4

ASL

ASL

ASL

ASL

ASL

85

ROL EXPR
ROL EXPR+1
DEX

BNE HEXROT1

PLP
RTS

THE RECURSIVE PUTINT
FOR PRINTING ONE BYTE

IN DECIMAL FORM

PHA

TXA

CMP #10

BCC PUTDIG—IF A<10 THEN STOP RECURSION
LDX #-1

OPERAND OVERFLOW

AATF: 26F8
AA8l1: 26F9
AA83: CA
AA84: DOFS8
AAB86: 28
AA87: 60
*
*
*
AAB88: 48 PUTINT
AAB9: 8A
AABA: C90A
AA8C: 900D
AABE: A2FF
% WARNING:
AA90: E90A DIV
AA92: ES8
AA93: BOFB
AA95: 690A
AA97: 2088AA
AA9A: 18
AA9B: 6930 PUTDIG
AA9D: 20A4F6
AAAO: 68
AAAl: 60
*
AAA2: 20DDF6 WAIT
AAAS5: 4C00A8
*
*
*
DUMMY
AAA8: 00 HEAD
AAA9: 00 RECN
AAAA: 0000 PST
AAAC: 0000 PINITADR
*
AAAE: A93C
AABO: 8D02D3

SBC #10
INX

BCS DIV
ADC #10

JSR PUTINT— THE RECURSION STEP
CLC

ADC '0

JSR SCROUT
PLA

RTS

WAIT FOR ANY KEY

JSR GETCHR
JMP START

THE BARE CODE FOR THE HEADER
TO PUT IN FRONT OF PROGRAM

THE DUMMY HEADER
EQU 0

DFB 0

DFB DUMMY

DFW DUMMY
DFW DUMMY

THE BOOT CONTINUATION CODE

LDA #$3C
STA PACTL

AAB3: A900

AAB5:
AAB8: A900
AABA:
AABD: A900

AABF:
AAC1:

850A
A900
AAC3: 850B

AAC5:
AACG6 :

18
60

AAC7: 60

8DE702

8DE802

PNDLO

PNDHI

JUMPADRL

JUMPADRH

HEADEND
PINIT

DA
EQU
STA
LDA
EQU
STA

LDA
EQU
STA
LDA
EQU
STA

CLC
RTS

EQU
RTS

#DUMMY
*-1
MEMLO
#DUMMY
*-1
MEMLO+1

#DUMMY
*-]
DOSVEC
#DUMMY
*-1
DOSVEC+1

*

PHYSICAL ENDADDRESS: SAACS

STOREADR
PROGLEN

EXPR
HEXCOUNT
MEMLO
ICBAL
ICBLL
ICAX1
OPEN
CLOSE
SCROUT
BELL
PACTL
EOL

CR

START
PUTPROG
CERR
ADRERR
MOVEHEAD

SFO
$F4

SF8
SFC
S02E7
$0344
$0348
$034A
$03
$0C
SF6A4
SFO90A
$D302
S9B
$0D
SA800
SA968
$A990
SA9DA
SA9F5

ENDADR
JMPADR

S$F2
SF6

UNUSED

87

88

PRINT
NOCR
HEXIN1
HEXRTS
HEXROT
PUTINT
PUTDIG
DUMMY
RECN
PINITADR
PNDHI
JUMPADRH
PINIT
LOGSTORE
DOSVEC
ICCOM
ICBAH
ICBLH
ICAX2
PUTCHR
OPNOT
GETCHR
CIOV

CLS

BST
IOCBNUM
OPENIOCB
CLOSIOCB
SUCCES
CFILE
MOVELOOP
PRINT1
HEXIN
ALFA
HEXERR
HEXROT1
DIV
WAIT
HEAD

PST
PNDLO
JUMPADRL
HEADEND

SAA00
SAAl8
SAA32
SAA65
SAA7S5
SAA88
SAA9B
$00

SAAA9
SAAAC
SAAB9
SAAC2
SAAC7
SFA

SOA

$0342
$0345
$0349
S034B
SOB

$08

SF6DD
SE456
$7D

S1E

$01

SA948
SA986
SA9B4
SAOF2
SA9F7
SAA08
SAA28
SAA5 4
SAA6A
SAATE
SAA90
SAAA2
SAAAS
SAAAA
SAAB4
SAABE
SAAC7

UNUSED
UNUSED

A DIRECT
CASSETTE TO
DISK COPY

PROGRAM

CHAPTER 9

If you have a bootable program on cassette,
and you want to have it on a bootable disk,
the following program will help you.

This program 1is easy to understand if you
have read the previous chapters. It allows
you to copy direct from tape to disk,
using a buffer.

When you start your program from your
machine language monitor, you must put the
cassette 1into the recorder and the
formatted disk into the drive (#1). After

the beep, press return, and the cassette
will be read. After a succesful read the
program will be written on the disk. Tty

during one of these IO's an error occurrs,
the program stops and shows you the error
code.

Now, power up the ATARI again and the disk
will be booted. Sometimes: the program
doesn't work correctly. Just press SYSTEM
RESET and most of the time the program
will work.

The copy program will not be described,
but it has helpful comments, and you
possess the knowledge of the IO.

It 1is important that the buffer (BUFADR)
is large enough for the program.

89

¥ ¥ 3 ¥ ¥

SRR

Stk ook skestteoksiekskesiksiekekskskeskskskekek

DIRECT CASSETTE TO DISK

COPY PROGRAM

AesiokorsRsksksioksksioksloloksielokskokskslok skl skok sk skskokskolkok

SECTR
DBUFFER
BUFFER
BUFLEN
RETRY
XSAVE

DCBSBI
DCBDRV
DCBCMD
DCBSTA
DCBBUF
DCBTO

DCBCNT
DCBSEC

ICCMD
ICBAL
TCBAH
ICBLL
ICBLH
ICAX1
ICAX2

OPEN
GETCHR
CLOSE

RMODE
RECL

CIO
SIO
EOUTCH

EPZ $80.1
EPZ $82.3
EPZ $84.5
EPZ $86.7
EPZ $88
EPZ $89

EQU $0300
EQU $0301
EQU $0302
EQU $0303
EQU $0304
EQU $0306
EQU $0308
EQU $030A

EQU $0342
EQU $0344
EQU $0345
EQU $0348
EQU $0349
EQU $034A
EQU $034B

EQU 3
EQU 7
EQU 12

EQU 4
FQU 128

EQU $E456
EQU $E459
EQU $F6A4

A800:
A803:

A805:
A807:
A809:
A80B:
A80D:
A80F:
A811:
A813:

A815:
A818:

A81A:
A81C:
A81D:
A81F:
A821:
A823:
A825:
A827:

A82A:
A82C:
A82E:
A831:

20A7A8
3063

A956
8584
A9A9
8585
A980
8586
A900
8587

20C8A8
3010

A584
18
6980
8584
A585
6900
8585
4C15A8

C088
DO3A
20E9A8
3035

EOL EQU $9B
EOF EQU $88

IOCBNUM EQU 1

ORG $A800
* OPEN CASSETTE FOR READ

MAIN JSR OPENCASS
BMI IOERR

* INITIALIZE BUFFERLENGTH &
* BUFFER POINTER

LDA #BUFADR:L
STA BUFFER
LDA #BUFADR:H
STA BUFFER+1
LDA #128

STA BUFLEN
LDA #0

STA BUFLEN+1

* READ RECORD BY RECORD
* TO BUFFER UNTILL EOF REACHED

READLOOP JSR READCASS
BMI QEOF

* IF NO ERROR OR EOF INCREASE
* THE BUFFERPOINTER

LDA BUFFER
CLC

ADC #128

STA BUFFER
LDA BUFFER+1
ADC #0

STA BUFFER+1
JMP READLOOP

* IF EOF REACHED THEN WRITE
BUFFER TO DISK
* ELSE ERROR

*

QEOF CPY #EOF
BNE IOERR
JSR CLOSCASS
BMI IOERR

91

% INIT POINTERS FOR

* SECTOR WRITE

A833: A901 LDA #1

A835: 8580 STA SECTR

A837: A900 LDA #0

A839: 8581 STA SECTR+1

A83B: A956 LDA #BUFADR:L

A83D: 8582 STA DBUFFER

A83F: A9A9 LDA #BUFADR:H

A841: 8583 STA DBUFFER+1
* WRITE SECTOR BY SECTOR
* BUFFER TO DISK

A843: 2006A9 WRITLOOP JSR WRITSECT

A846: 3020 BMI IOERR
* IF BUFFER IS WRITTEN THEN
* STOP PROGRAM

A848: A582 LDA DBUFFER

A84A: C584 CMP BUFFER

A84C: A583 LDA DBUFFER+1

AB4E: E585 SBC BUFFER+1

A850: BO15 BCS READY
* INCREASE BUFFER AND SECTOR
* POINTERS

A852: A582 LDA DBUFFER

A854: 18 CLC

A855: 6980 ADC #128

A857: 8582 STA DBUFFER

A859: A583 LDA DBUFFER+1

A85B: 6900 ADC #0

A85D: 8583 STA DBUFFER+1

A85F: E680 INC SECTR

A861: D002 BNE *+4

A863: E681 INC SECTR+1

A865: DODC BNE WRITLOOP JUMP ALWAYS!!!
* THE BREAK FOR RETURNING
% TO THE CALLING MONITOR

A867: 00 READY BRK

A868: 98 IOERR TYA

AB69: 48 PHA

A86A: A208 LDX #LENGTH

A86C: 8689 ERRLOOP STX XSAVE

AB6E: BD84AS LDA ERROR,X

A871: 20A4F6 JSR EOUTCH

AB74:
A876:
A877:
A879:
AB7A:
A87B:
A87E:
A880:

A883:

A884:
A887:
A88A:
A88B:

A88D:
A88E:
A88F:
A891:
A893:

A689
CA
10F3
68

AA
208DA8
A99B
20A4F6

00

202D52
4F5252
45
9B9B

48
8A
C90A
900D
A2FF

%% WARNING:

A895:
A897:
A898:
A89A:
A89C:
A89F:
A8AOQ:
A8BA2:
ABAS:
A8A6:

E90A
E8
BOFB
690A
208DA8
18
6930
20A4F6
68

60

¥*

ERROR

LENGTH

PUTINT

LDX XSAVE
DEX

BPL ERRLOOP
PLA

TAX

JSR PUTINT
LDA #EOL
JSR EOUTCH

THE BREAK FOR RETURNING
TO THE CALLING MONITOR

BRK

TEXT FOR ERROR MESSAGE

ASC " -RORRE"

DFB $9B, $9B

EQU (*-1)-ERROR

RECURSIVE PUTINT FOR
DECIMAL ERRORCODE

PHA

TXA

CMP #10
BCC PUTDIG
LDX #-1

OPERAND OVERFLOW

DIV

PUTDIG

¥*

SBC #10

INX

BCS DIV

ADC #10

JSR PUTINT RECURSION STEP
CLC

ADC '0

JSR EOUTCH

PLA

RTS

THE WELL KNOWN CASSETTE
READ SECTION JUST A LITTLE
MODIFIED

93

94

ABA7:
A8A9:
ABAB:
A8AE:
A8BO:
A8B3:
A8B5:
A8B8:
A8BA:
A8BD:
A8BF':
A8C2:
A8BC5:
A8C7:

A8CS8:
A8CA:
A8CC:
A8CF:
A8D1:
A8D4 :
A8D6:
A8D9:
A8DB:
A8DE:
A8EO:
A8E3:
ABEG6:
ABES8:

A8EQ:
A8EB:
A8ED:
A8FO:
A8F3:

A210
A903
9D4203
A904
9D4A03
A980
9D4B03
A903
9D4403
A9A9
9D4503
2056E4
302F
60

A210
A907
9D4203
A584
9D4403
A585
9D4503
A586
9D4803
A587
9D4903
2056E4
300E
60

A210
A90C
9D4203
2056E4
3001

* OPEN FILE

OPENCASS LDX #IOCBNUM*16
LDA #OPEN
STA ICCMD,X
LDA #RMODE
STA ICAX1,X
LDA #RECL
STA ICAX2,X
LDA #CFILE:L
STA ICBAL,X
LDA #CFILE:H
STA ICBAH,X
JSR CIO
BMI CERR
RTS

GET BUFFER IN RECORDS
FROM CASSETTE

READCASS LDX #IOCBNUM*16
LDA #GETCHR
STA ICCMD,X
LDA BUFFER
STA ICBAL,X
LDA BUFFER+1
STA ICBAH,X
LDA BUFLEN
STA ICBLL,X
LDA BUFLEN+1
STA ICBLH,X
JSR CIO
BMI CERR
RTS

CLOSE CASSETTE FILE

CLOSCASS LDX #IOCBNUM*16
LDA #CLOSE
STA ICCMD,X
JSR CIO
BMI CERR

A8F5:

A8F6:
A8F7:
A8F8:
A8FA:
A8FD:
A900:
A901:
A902:

A903:
A905:

A906:
A908:
A90B:
A90D:
A910:
A912:
A915:
A917:
A91A:
A91C:
A91F:
A921:
A924:
A926:
A929:
A92B:
A92E:
A930:
A933:
A935:
A937:

60

98

48
A90C
9D4203
2056E4
68

A8

60

433A
9B

A582
8D0403
A583
8D0503
A580
8D0AO3
A581
8DOBO3
A957
8D0203
A980
8D0303
A931
8D0003
A901
8D0103
A9QF
8D0603
A904
8588
A980

CERR

CFILE

WRITSECT

RETURN TO SUPERVISOR

RTS

RETURN WITH ERRORCODE IN
ACCUMULATOR

TYA
PHA
LDA
STA
JSR
PLA
TAY
RTS

ASC
DFB

THE

#CLOSE
ICCMD, X
CIO

”C:”
EOL

WELL KNOWN WRITE SECTOR

ROUTINE

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA

DBUFFER
DCBBUF
DBUFFER+1
DCBBUF+1
SECTR
DCBSEC
SECTR+1
DCBSEC+1

"W Replace “w* by a “‘P* if you want it fast

DCBCMD
#$80
DCBSTA
"1
DCBSBI
#1
DCBDRV
#15
DCBTO
#4
RETRY
#128

95

96

A939: 8D0803
A93C: A900
A93E: 8D0903
A941: 2059E4
A944: 100C
A946: C688
A948: 3008
A94A: A280
A94C: 8E0303
A94F: 4C41A9
A952: ACO303
A955: 60

JMPSIO

WRITEND

BUFADR

STA
LDA
STA
JSR
BPL

DEC
BMI

LDX
STX
JMP
LDY
RTS

EQU

DCBCNT
#0
DCBCNT+1
SIO
WRITEND
RETRY
WRITEND
#$80
DCBSTA
JMPSIO
DCBSTA

¥*

PHYSICAL ENDADDRESS: $A956

SECTR
BUFFER
RETRY
DCBSBI
DCBCMD
DCBBUF
DCBCNT
ICCMD
ICBAH
ICBLH
ICAX2
GETCHR
RMODE
CIO
EOUTCH
EOF
MAIN
QEOF
READY
ERRLOOP
LENGTH
DIV
OPENCASS
CLOSCASS
CFILE

$80

$84

$88

$0300
$0302
$0304
$0308
$0342
$0345
$0349
$034B
$07

$04

$E456
$F6AL
$88

$A800
$A82A
$A867
$A86C
$08

$A895
$ABA7
$A8E9
$A903

UNUSED

JMPSIO
BUFADR
DBUFFER
BUFLEN
XSAVE
DCBDRV
DCBSTA
DCBTO
DCBSEC
ICBAL
ICBLL
ICAX1
OPEN
CLOSE
RECL

SIO

EOL
TOCBNUM
READLOOP
WRITLOOP
IOERR
ERROR
PUTINT
PUTDIG
READCASS
CERR
WRITSECT
WRITEND

$A941
$A956

$82
$86
$89
$0301
$0303
$0306
$030A
$0344
$0348
$034A
$03
$0C
$80
$E459
$9B
$01
$A815
$A843
$A868
$A884
$A88D
$A8A0
$A8BCS8
$A8F6
$A906
$A952

97

HOW TO
CONNECT YOUR
ATARI WITH
ANOTHER
COMPUTER

CHAPTER 10

The following programs make it possible to
communicate between an ATARI and a PET/CBM.
The output ports are referenced as PORTA
and DATABUS between the two computers. Bit
0 on the ATARI PORTB is the 'hand' of the
ATARI and bit 7 on the same port 1is the
'hand' of the CBM. Now a handshake
communication between both can be started.
The routines PUT and GET are, in this case,
dummies. Further, you need a stop
criterium to stop the transfer. See these
routines merely as a general outlines and

not as complete transfer programs.

(Send information from ATARI| to PET/CBM)
|IEEE Port
PET/CBM

TOP PET/CBM USER PORT

1 12 1

TLTEFHJKLMN AB]DFFHJK M N

|

12

GND

@ ©) ® O)

1 5 1 5 1 5 1 5

=il

b6 ® 06O dhdLuto 000000 e e 60

s1404 onsAop

0
®e O0O@®o .010 ® O®O ® O ®O0

6 9 6 9 6 9 6 9

008/00¥ I1HVYLV ¥

The ATARI -- CBM / PET connection-wiring diagram

98

kkkkkhkhkkhhkkhhkkkhkkkhhkkkhkkhhkhhhkhkhhkkhhkhkkhkdkkikik

*

*

* RECEIVE FOR ATARI :
*
IR R R R R R R E R R R E R R R R SRR R R R R R RS & & & & F
PORTRB EQU $D301
PBCTL EQU $D303
PORTA EQU $D300
PACTL EQU $D302
PUT EQU $3309
ORG $A800
* SET BIT 0 ON PORTB
* AS OUTPUT
A800: A930 LDA #$30
A802: 8D03D3 STA PBCTL
A805: A901 LDA #%00000001
A807: 8D01D3 STA PORTB
A80A: A934 LDA #S34
A80C: 8D03D3 STA PBCTL

A80F: A901
A811: 8D01D3

A814: 2C01D3
A817: 30FB

A819: ADOOD3
AB1C: 200933

WAITDAV

GIVE YOUR 'HAND' TO THE
PET

LDA #1
STA PORTB

WAIT UNTIL PET TAKES
YOUR 'HAND'

BIT PORTB
BMI WAITDAV

GET DATA FROM BUS
& PUT THEM SOMEWHERE

LDA PORTA
JSR PUT

TAKE YOUR 'HAND' BACK

99

A81F: A900 LDA #0

A821: 8D01D3 STA PORTB
* WAIT UNTIL 'PETS HAND'
* IS IN HIS POCKET
A824: 2C01D3 WAITDAVN BIT PORTB
AB27: 1OFB BPL WAITDAVN
* START AGAIN
A829: 4COFAS8 JMP RFD

PHYSICAL ENDADDRESS: $A82C

*** NO WARNINGS

PORTB $D301
PORTA $D300
PUT $3309
WAITDAV SA814
PBCTL $D303
PACTL SD302 UNUSED
RFD SAB0F
WAITDAVN SA824

kkhkkkkkhhkkhkhhkhhhhhkhhhdhhhhdhhhhkhhhrhdhhxx
* *

* SEND FOR PET CBM ®
* *
kkkhkkhhhhhhhkhhkhhkhhhkhkhhkhhkhhhhkkk
PORTB EQU SEB84F

PBCTL EQU SE843
PORTA EQU $A822

GET EQU SFFCF USER GET BYTE
* ROUTINE

ORG $033A,SA800

100

033A:
033C:

033F:
0342:

0345:
0347:

034A:
034D:
034F:

0351:
0353:

03563

0359:
035B:

035D:

A980
8D43ES8

20CFFF
8D22A8

A900
8D4FES8

AD4FES
2901
DOF9

A980
8D4FES8

AD4FES
2901
FOF9

4C3F03

GETDATA

DAV

WAITNRFD

DANV

WAITRFD

SET BIT 7 ON PET
TO OUTPUT

LDA #%10000000
STA PBCTL

GET DATA FROM USER
PUT IT ON BUS

JSR GET
STA PORTA

TELL ATARI DATA VALID

LDA #0
STA PORTB

WAIT UNTIL ATARI
GIVES HIS 'HAND'

LDA PORTB

AND #%00000001

BNE WAITNRFD

SHAKE 'HANDS' WITH ATARI

LDA #%10000000
STA PORTB

WAIT UNTIL ATARI RELEASE
HIS 'HAND'

LDA PORTB
AND #%00000001
BEQ WAITRFD

START AGAIN WITH DATA

JMP GETDATA

101

PHYSICAL ENDADDRESS: S$A826

% NO WARNINGS

PORTB SE84F
PORTA SAB822
GETDATA S033F
WAITNRFD S034A
WAITRFD $0356
PBCTL SE843
GET SFFCF
DAV $0345 UNUSED
DANV $0351 UNUSED

102

500 BAUD SERIAL
INTERFACE VIA
THE ATARI
JOYSTICK PORTS

Chapter 11

The following construction article allows you to build your own
RS232 interface for the ATARI computer. The interface only
works with 300 Baud and just in one direction (output).

The interface consists of:

a) RS232 serial interface driver on a bootable cassette or
asa SYS file on disk.
b) Two wires hooked up to game port 3 on your ATARI.

4’

TRANSMIT
DATA

GND

GAME PORT 3

We used this interface with a DEC-writer, a NEC spinwriter, and
a Brother HR-15. The DEC-writer worked with just the two wires
connected (Transmit DATA and GND).

The Spinwriter and the Brother needed some jumper wires as
shown below:

103

Receive data on DEC-writer

o 3
1
13 1
© 0 0o 0 0 ©© O 0 0 © ©O0 O
QO © 0 0o 0 0 0 0 0 © O)
25 14

Receive data on Brother HR-15

3 3
8 16]5]4
7
13 1
©O 0 0o 0o 0o O © 0 ©6 6 © o0 o
Qoo © 0 0 0 0 0 o oo)
25 14

Receive DATA on NEC Spinwriter

— 3
1
6 54
13 811 1M 1
© 0 0006 00 85 8 & o o
Q° © © ofp 0 0 00 o J
25 JZO 14

Depending on the printer you use you will have to make the
appropriate wiring according to the instructions in the manual.

The source code for the RS232 driver is listed on a previous page
in this book.

104

This is a sample printout in BASIC:

10 OPEN #1,8,0,"R:"

20 FOR X=1 TO 10

30 PRINT #1,"ELCOMP-RS232",X
40 NEXT X

50 CLOSE #1

will generate the following printout:

ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232
ELCOMP-RS232

N~

~LLooNSUL S

The source code for the RS-232 Interface you will find on
page 72.

105

Printer Interface

Chapter 12

Screen to Printer Interface for the ATARI 400/800

Many ATARI users would like to connect a parallel interface to
the computer. For many people buying an interface is too ex-
pensive. On the other hand, they may not have the experience to
build one by their own. Also a lot of software is needed.

The following instructions make it easy to hook up an EPSON
or Centronics printer to the ATARI.

Only seven of the eight DATA bits are used for a printout.

DATA 8 is grounded. BUSY and STROBE are used for handshake.
There is an automatic formfeed every 66 lines. Thus it is necessary
to adjust the paper before starting to print. You may need to
make several trials to find the best position of the paper. For a
different form-length you may POKE 1768, ... (number of lines).
After system reset the line counter is set to zero, so you have to
provide your own formfeed for a correct paper position.

You can control the length of a line by a POKE 1770, xxx. After
doing so, press system reset and enter LPRINT.

The program SCREENPRINT is called by BASIC thru an USR
(1670) and by the assembler with a GOTO $0687.

You may install pnp transistors between the game output and the
printer, as it is shown in this little figure and in the schematic on
page 112.

M X80

ATARI PNP-TRANSISTOR

2N722 or similar

106

The next figure shows the connection of the ATARI game outlets
and the connector for the MX-80 printer. This is a so-called
Centronics interface and the program can be used with each
printer and this interface.

EPSON MX80 — ATARI 400/800
Interconnection-Scheme

MX80-Connector ATARI-Connectors
Port3 Port 4

Pin# Pin# Pin#

1(19) STROBE 4

2 (20) DATA 1 1

3(21) DATA 2 2

4 (22) DATA 3 3

5(23) DATA 4 4

6 (24) DATA 5 1

7 (25) DATA 6 2

8 (26) DATA 7 3

9 (27) DATA 8 8

11 (29) BUSY 6
(GND) 8 8

(19)—(29) = Ground (GND)

Plugs seen from the rear view.
Front view of the computer outlets. !

PORT 3 PORT 4

107

The next figure shows the program.

LR E 222288 2333233233333 22

¥ UNMIVERSAL FRINT FOR ATARI

¥

0 400/800 VERSION ELCOMF

e
#
¥ RY
¥

&0
DG
&0
O
NGRS
D&
D& s
& L0
RICW e
DE LS
&1z
0&H19:
D&H1R:
0&H1D:
N&E1E:
Oé s
DGR

0&02S

Q62d:

O&2R

108

AR O ROK OR R KRRk ok R Rkl ok ok ok ok

HANS-CHRISTOFH WAGNER

E

BAG TS EF7 458
BT EFZ $FE
F&T EQU $600

QRE FET

00 DFE O

0 DFlx 2

D00E DFW F&T
ElEié DFW INMIT
AR LDA H#HEE0
BDOZDE 5TA D302
AYER LDA #FMND
BRETOE STey $0O2E7
A90E LDA #HFEND/25E
anEgns STE $02E8
AP GE LDA #IMIT
B0 5TA HOA
B0 LDA #IMIT/2858
BE0E STA H0OR

183 ClE

i FTS

FRO&LAT
0.
4%
0&3F
WRITE

RTS1-1

01 DUMMY DFEC 1

HEMDLLTAR DFW DUMMY .,
1, RT81=1, WRITE~=1;RTE1=14

D6EIH:
O&aED
&40
D&HA0
&4
D&HA4S
0647
O&d s
D&4D s
D650
DEEE
0654
D67
O&HGA:
0650
O&EF

D66

D éad

D&LGT
Dhédes
DN&H6C:
D&l s
&7
G675
0675
D&H7Es
D&ET
O& 7D
06RO

D&aEI

D&EBé:

STUPAY o B
Q687

D6HBY
D& R
D&HE0:

068

G ED
SDOEDE
I
aDOIDE
9354
BDOIEDE
R0
anoin:
0L
&0
Co9R
DOLD :
ADEADE CARR
SBDERO&
CEEB8DE
100D
ASOC
2064086
EEE®DE
A4l
BDE8ODE
EEESO4
A90D
20D10&
CEESDE&
FODR
DoDE
ARLF
BDIROE
A0
anicos:
A941
8DESDE
ADEADE
BDEYO&
4CR2CO0A

OFEN

RTS1

WRITE

MOFF

FRINT

INIT

BASIC
MORMEL.

Py
L0

ASEE
BQEFE
F:“l: 0y

DA H
aTh ¢

L.DaA
5TA
L.DA
aTA
LDA
aTA
DY
RTS
EME
BhNE
1-DA
S5TA
DEC
ERL
L.DA
JBF
INC
L.DA
aTA
IMC
L.DA
JGR
DEC
RER
BNE
L.DA
a8Ta
L.DA
8T/
LDA
85TA
DA
5TA
JMF

FLof
D&
8T
DA
T A
booo I8 o |

L.DA

He-F
HOE0L
HE54
$DIO3
HHR0
®D3E01
#1

HHEPE
FRINT
LIMLEM
LCOUNT
COUNT
MOFF
#1322
FRINT
LCOUNT
HoHD
COUNT
LCOUNT
#1735
QUTCHAR
LCOUNT
CARK
RTS1
HHAMDL. TAR
HOIIHE
HHAMDL TAR/ 25
HOI10
#HoHD
COUNT

L IMLEN
L.COUNT
OFEN

BASIS
BT
BASTIS+1
FT+1
#2T

109

0691 s
DEHF4
DHF A
0G99
DAYE:
O&H9D
D6IF s
OAHAL s
DAATE
DEAT
D6AB:
DEHAA:
D&M
O6HAE s
D61
O&HBE:
D6RS:
DERE:
O6ERB:
D6ED:

N6ERE:
0&6CT:
QO6C4:
D6ECT
06CH:
O&HCD:
06D

0601
0604
0aEDE:
D6DR:
06DA:
0&DD s
DHDF
D6ED:
DGED:

D6ESH:
O6E7 .
D&6ESR:
0&HES s

110

BDE&LDS
ARRT7
BDE70&
AROD
AIFE
297F
&0
BHOOR
G20
Z20D10&E
E6FE
DOOR
E&FF
CEE70&
10ES
A20D
20D106
CEE&DG
10D7
G0

4B414E
SI2057
41474E
455220
Z2I72E

IT7ZESS

A1 AUTHOR

ACLEDO
DOFR
[ATRI=in
0580
BDOLIDXE
297F
aDO1DA
BCOIDE
&I

17
27

41
FF

ROWLOOF

LOOF

LLOOF1

AR

QUTCHAR

ROW
COLUMM
COUNMT
L.COUNT

8TA
DA
8TA
L.DX
L.DA
AND
CHMF
BCS
~ADC
JER
IMC
BME
INC
DEC
BFL
L.DA
JER
DEC
BFL
RTH

ROW

#A9

COL UMM
#10
(FT, %)
HE7F
HESHO
LOOF1
#$H20
OUTCHAR
FT

¥+4
PT+1
COLUMN
L.QOF
#1173
OUTCHAR
ROW
ROWL.OQOF

"HAMS WAGMNER

LDY
BMNE
L.DY
QOFA
8TA
AMD
5TA
STy
RTS

DFR
DFR
DFE
DF K

SDOLE
QUTCHAR
HHE0
HEHEEOD
HDE0OL
HETF
HDI0L
HDE0]

oy
£t

)
&S

Law 1 —d
255

D6EM: FF LIMLEN DER 2355

D ECU ¥

BAGIH HEE
FT HFE
ET HOEDO
HEMDLTAR HOE L
DUIMMY EOHDH
O EN HEDT
ETS1 HO G0
WF T TE BEHLT
TN HOEHAT
MOFF HOEEF
FRIMT HOGHES
IMIT HOEAE
RS IO HOEEE LNUSED
FORMALL HOEEB7 UMUSED
FOWLOOF HOEYS
L.OCF HOHTR
LOOF1 BOEHAD
ASUTHCOR HOLEBE UNMUSED
OUTCHAR HOHD T
P HOAEA
COLUMN HOAHET
CQUNT HOLER
LOOUNT HOGET
LIMNLEN HOEEN

HOEHEHR

D

Program description:

Address

0600 — 06IE end of the booting part

0610 — 062B HANTAB for the ATARI OS

062C — 0642 opens the ports for output

0643 — 066D printer driver

066E — 0685 initialize. Now LPRINT and PRINT “P‘* use the printer

driver
0686 — 06BD label BASIC starting address for a call by BASIC
Label NORMAL starting address for a call by assembler.

111

TO PRINTER

printer

connector STROBE “.m.xrlL_ connections on pc-board
1
7o EHLE SN
30— DATA 1 _ 1 01
50| DATA2 — o s
T DATA3
9 DATA 4 203
1 DATAS 4
130 DATA 6 o
150 DATA 7 port 3
BUSY
8 general - S
purpose o4
210 _ pnp
190@ Sho = transistors o1
02
—0 3
8 7 6 5 4 3 2 1 08
connect , —o6
ground & e > >
also to hd ® . II._.‘ll
23, 21, =
33,31,
30

Schematic of the parallel printer interface for the EPSON MX-80 or MX100. (Centronics like)

The numbers on the printer connector may vary with the different parallel printer used.
In this case go by the name of signal rather than by the numbers.

joystick port 3

joystick port 4

112

06BE — 06DO0O Copyright notice

06DL — 06ES Subroutine, brings one ASCII character from
the accumulator to the printer

0O6E6 — O6EA values for the various counters
ROW sets the number of horizontal lines to
23.

COLUMN sets the number of characters of
one line to 39.

COUNT sets the number of lines between
two formfeeds to 65

LCOUNT, LINLEN contains the actual para-
meters for the number of characters and

lines.

Boot-Routine
FST EQU $0600
FND EQU s0O700
FLEN EGU PND-FST+127/128%128

ORG %6000
GO0 H210 ROOTE DX #4610
HOOZy AFDE LDA #3
&HO04 s 9D4R0OE STA %0342, X
ANy /Y0R8 DA #8
GO0 PFDAAOTE S5TA 40347, X
HOOCs TR0 LDA #4680
AOOEs DARODTE 5TA $034E, X
GOLLy AY44 LDA #CFILE
G013y PD440E STA 40344, X
Giléay AYED LDA #CFILE/254
GDL8: FD4EHOT S5TA 0345, X
GHO1LR: Z0E6E4 JER $E4546
GOTE: 2029 BEMI CERFR
GOZ0E AFOR LDA #$OR
GOEZ2y PDAD0OE STA #0342, X
&iD 4500 LDA #FST
SOZTr FD44073 S5TA 60344, X
HOPN AF0& LDA #FST/ 256
G20 PDA4AE0OTE 8TA 40345, X
GOEF Y AR00 LDA #HFILEM

113

&GOS 2FDAGOE 8Ta #0348, X

HOE4s 501 LDA H#FLEM/ 256
GOSE: PD4Q0E STA #0349, X
HOXRF: 20OHLE4L JER HE454
GOEC: JIO0OR EMI CERF
GOXEY ARDC LDA #4500
GO0y FDAR0DE T $0242, X
G047y 2OHAED JER SE45E
GOdE: Z001 BMI CERF
HO48: 0D B
GOS0 CERF [3Fk

HO44y 4EEL CETLE B8C "Ce
HOG0: PR DFE 49
F&T

FRD HOT O

B0 D
g HHOOD LNUSED
CERF HoHO4Y
G Lk H &0

If you want to use this program, it has to be bootable. Therefore
you must enter both programs and start the boot routine at
address % 6000. This will create a bootable cassette, you can use
afterwards in the following manner, to enter the SCREENPRINT
in your computer.

— turn off the computer

— press the start key

— turn on the computer

— release the start key

— press PLAY on the recorder and
— press RETURN

BASIC or assembler-editor cartridge must be in the left slot of
your ATARI computer.

How to wire the board:

s
S 9
°
to. - ° o %ooo goog
printer o °Coo oo o] Go o o o o]
to port 4 to port 3

114

Differences between the
ATARI Editor/Assemblier
Cartrigde and ATAS-1
and ATMAS-1

The programs in this book are developed using the ATMAS (ATAS)
syntax. In the following | would like to explain the difference
of some mnemonics of the ATARI Editor/Assembler cartridge and
the Editor/Assembler and ATMAS-1 from Elcomp Publishing.
Instead of the asterisk the ATAS uses the pseudo op-codes ORG.
Another difference is that the ATAS is screen oriented (no line
numbers needed). Instead of the equal sign ATAS uses EQU.
Additionally ATAS allows you the pseudo op-codes EPZ: Equal
Page Zero.

There is also a difference in using the mnemonics regarding storage
of strings within the program.

ATARI ELCOMP
—BYTE “STRING"” ASC “STRING"

Il

—BYTE §

DFB % (Insertion of a byte)

— WORD = DFW (Insertion of a word
Lower byte, higher byte)

The end of string marker of the ATARI 800/400 output routine
is hex 9B.
In the listing you can see, how this command is used in the two
assemblers:

ATARI Assembler: —.BYTE 9B

ATMAS from ELCOMP — DFB $9B

Depending on what Editor/Assembler from ELCOMP you use,
the stringoutput is handled as follows:

115

1. ATAS 32K and ATAS 48K cassette version

LDX # TEXT
LDY # TEXT/256
TEXT ASC “STRING"
DFB3%9B

2. ATMAS 48K
LDX # TEXT:L
LDY # TEXT:H
TEXT ASC “STRING"
DFB $9B

There is also a difference between other assemblers and the
ATAS-1 or ATMAS-1 in the mnemonic code for shift and relocate
commands for the accumulator.

(ASL A =ASL) =0A

(LSR A = LSR) =4A

ROL A=ROL =2A

ROR A = ROR =6A

The ATMAS/ATAS also allows you to comment consecutive bytes
as follows:
JUMP EQU §F5.7
8F5 = Label Jump
5F6 and 8F7 are empty locations.
This is a comment and not an instruction.

116

VISA
R
ELCOMP PUBLISHING, INC., 53 Redrock Lane, Pomona, CA 91766 (Phone: (714) 623-8314)
Please make chacks out to ELCOMP PUBLISHING,INC.
Please bill to my Master Card or Visa account #
NBMES s o oo s o smins o o e o i o s CArd & wwmwin » wsupn s & woion § 5 Haems & deomms o
Aeldowss: o v vows s 5 simows s ssen s 8 s § e ExplrationDate syem s somin & & #wes i somes o
Master Charge Bank Code
City/State / Zip: .o ov e iiie e i
SIGNBLUTE! e 5 v wmsinen & & i s 5 o it s ¥ demas s
Qty Qe Description Price § Qty. or:::r Description Price 8
..... 29 MICROC. HARDWARE HANDB. 14,95 | «....| 4889 | EXPANDING YOUR VIC 14.95
..... 156 CARE AND FEEDING... 9.95 | »+--+[4894 | RUNFILL 9.93
..... 151 8K MICROSOFT BASIC 9.95 [=----[4896 | MINTASSEMBLER 19.95
swweu| 192 EXF.HANDB. 6562 AND 6Bf2 999 | eness 6153 LEARN-FORTH 19.95
weewn| 193 HICROC. APPLICATION NOTES D095 | aeens 6155 POUER FORTH (APFLE) 39.95
oo | 154 CONFLEX SOUND 695 | wvenn 76822 ATHONA-1, CASS. 19.95
..... 156 SMALL BUSINESS PROGR. 14.98 | -....[7823 | ATHONA-1, DISK 24,95
sonve]| 198 SECOND BOOK OF OHIO 295 | wwaen 7824 ATMONA-1, CARTRIDGE 39.00
cenes| 159 THE THIRD BOOK OF OHID 7.95 | «eeen
..... 148 THE FOURTH BOOK OF OHIO 9.95 | «o...| 7042 EPROM BURNER FOR ATARI 179.60
cenaf 161 THE FIFTH BOOK OF OHIO 7295 | ssswn 7843 EPROM BOARD (CARTRIDGE) 29495
..... 162 GAMES FOR THE ATARI 7.95 | «....| 7649 | ATHONA-2, CASS. 49,95
..... 164 ATARI LEARNING BY USING 7.95 | «v...| 7050 | ATMONA-2, DISK 54.00
swene| 168 PROGR. I1.6582 MACH.LANG. 19.95 | evoes 7853 LEARN-FORTH 19.95
..... 149 | HOW TO FROGR.IN MACH.L. 9,95 | ~++-+| 7055 | POUER FORTH 39.95
«veeu| 176 | FORTH ON THE ATARI 7.95 | seeee 7098 | ATAS 49.93
...[171 | A LOOK INTO THE FUTURE 9.95 | <neee 7899 | ATHAS 89.909
_____ 173 PROGRAM DESCRIFTIONS 4,95 | +----| 718@ | FROGRAKS FROM BOOK H 144 292.95
_____ 174 2X-81/TINEX 9.95 | «vee-[7200 INVOICE WRITING,DISK 19.98
_____ 176 TRICKS FOR VICS 9,95 | =++++| 7287 | GUNFIGHT FOR ATARI 19.95
_____ 082 JANA/1 MONITOR 29,95 | «««s«| 7216 | WORDPROCESSOR, CASS. 29.95
_____ 664 PROTOTYPING CARD 2988 | «oeeef 7211 HOW TO COMNECT... 19.95
_____ 665 | 6522 V1A 1/0 EXP. CARD 39,99 | eeee| 7212 | MAILING LIST, CASS. 19.95
saeies| 486 SLOT REFEATER 49,80 | ----- 7213 | MAILING LIST, DISK 24.95
_____ 687 2716 EPROM PROGRAMMER 49.08 | «.--¢| 7214 INVENTORY CONTR., CASS. 192,99
..... 408 SOUND WITH THE GI 4Y3-8912 39.0@ | ---.+[7215 | INVENTORY CONTR., DISK 24.95
—) BK EPFROM CARD (2716) 20.0F | siisen 72146 | WORDPROCESSOR, DISK 34.95
ceeea b18 12 BIT A/D CONVERTER BOAR 74.06 | oooes 7217 | WORDPROCESSOR, CARTRIDGE 69.08
teeeel 615 14K RAMROM-BOARD 59.95 | «eeen 7221 PROGRAKS FROM BODK # 142 29.95
weaes| 686 | THE CUSTOM APPLE BOOK 24.95 | weees 7222 | KNAUS OGINO 29.95
..... 2398 | MAILING LIST FOR ZX-81 19.95 | =+«-+| 7223 | ASTROLOGY PROGRAM 29.95
Lol 2399 MACHINE LANG. MONITOR 9,95 | seees 7224 EFROM BOARD KIT 14.94
_____ 2408 | ADAPTER BOARD FOR ZX-81 14.80 v.e.o[723@ | FLOATING POINT PACKAGE 299.95
..... 3276 | EDITOR/ASS. FOR CBA 39.09 | -----[7291 | RS232-INTERFACE 19.95
_____ 3475 ASSEMBLER FOR CBM 39.95 | +o000] 7292 EFROM BURNER KIT 49.60
..... 4826 | GUNFIGHT FOR PET/CBH 9.95 7367 | ATCASH 49.95
..... 4844 | UNIVERSAL EXP. BOARD 18.95 +[7309 | HOON PHASES 19.95
...| 4848 | ADAPTER BOARD 3.95 <[7310 | ATAKEHD 29.95
«....| 4878 | PROFI WORDPROC. F. VIC 19.95 +|7312 [SUPERHAIL 49 .06
..... 4880 | TIC TAC VIC 9.95 +|7313 [BUSIPACK 1 78.09
..... 4881 | GAMEPACK FOR VIC 14.95 +|7314 | BIORHYTHH FOR ATARI .93
..... 4883 | HAIL-VIC LI) (e e T e—
Payment: Check, Money OvﬂnnWTs:Masxe.ch-rw, Access, ard and C1P are of Ohio Scientific Co.

Interbank, Eurocheck
Propaid orders add $3.50 for shipping (USA)

£$5.00 handling fee for C.0.D.

ALL ORDERS OUTSIDE USA: Add 15 % shipping.
California residents add 6.5% sales tax.

ATARI is a trademark of ATARI Warner Communications
PET. CBM and VIC-20 are trademarks of Commodore Business
Machines.
TRS-80 isa trademark of TANDY Radio Shack.

APPLE Il Is a trademark of APPLE Computer Inc.

BITFIRE
BITFIRE
BITFIRE
BITFIRE
BITFIRE
BITFIRE
BITFIRE

	Cover

	Contents

	Arithmetic

	Hexedecimal Input
	Hexidecimal Output

	Decimal Input

	Decimal Output

	16-bit Addition

	16-bit Subtraction

	16-bit Multiply

	16-bit Division

	String Output

	Introduction to CIO
	Introduction to the Disk Controller

	How to make a Bootable Program

	How to make a Bootable Cartridge

	EPROM Burner for the Atari 400/800

	How to add to change a Device

	A Bootable Tape Generator Program

	A Direct Cassette to Disk Copy Program

	How to COnnect your Atari to another Computer

	200 Baud Serial Interface using the Joystick Ports

	Printer Interface

	Differences between Atari Editor/Assembler, ATAS-1, and ATMAS-1

