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Foreword

So, you feel you've had enough of BASIC and want to learn more
about your machine.

Maybe you use your computer to run some professionally written
software, like word processing, accounting systems, educational
software or games.

You may have wondered what it is that makes these programs so
different from the ones you have written in BASIC. These
professional programs seem to be able to do many tasks at the
same time, including functions which you may have not realised
that your computer can do.

Apart from the size of the programs and the amount of time
spent in writing them, the one major difference between your
programs and most of the programs that you will buy in a store,
is that most professional programs are written wholly or partly
in machine language.

Machine language is a must for the really serious programmer.
Most games, useful utilities and interfaces are written in
machine language.

This book attempts to give you an introduction to the world of
machine language, the other side of your 13¢XE.

You will be led through the microprocessor's instruction set
slowly at first, practising each instuction learned using the
monitor/program entry program ALPA (Assembly Language
Programming Aid).

As we work through the instruction set you will meet the new
concepts and features of your computer, some of which you may
not have known it possessed.

You are encouraged throughout the book to check that the
computer's output is what you would logically expect it to be.
Keep a pen and paper close at hand to copy on paper what the
microprocessor is doing, to get its answers, and to see if your
answers agree.



Chapter 1
Introduction to Machine Language

One advantage of machine language (M.L.) is that it allows the
programmer to perform several functions not suited to BASIC.

The most remarkable advantage of machine language, however, 1is
its speed. On the 13@XE you can carry out approximately one
hundred thousand M.L instructions per second. BASIC commands

are several hundred times slower.

This is due to the fact that BASIC 1is written in machine
language and one single BASIC command may be a machine language
program of hundreds of instructions. This is reflected in the
capabilities of each of the languages.

Machine language instructions, as you will see as you work your
way through this book, are extremely limited in what they can
do. They perform only minute tasks and it takes many of them
to achieve any 'useful' function. They perform tasks related
to the actual machinery of the computer. They tell the
computer to remember some numbers and forget others, to see if
a key on the keyboard is pressed, to read and write data to the
cassette tape and to print a character on the screen.

Machine language programs can be thought of as subroutines -
like a subroutine in BASIC - a program within another program
that can be used anywhere in the program and returns to where
it was called from when finished. You use the commands GOSUB
and RETURN to execute and then return from a subroutine.

1é GOSUB 8¢¢¢

86¢¢ RETURN



This wouldn't be a very useful subroutine because it doesn't do
anything but it does show how a subroutine works!

Using a machine language program

To call a machine language subroutine from a BASIC program you
use the command 'A=USR (address)' where A is a dummy variable.
Just as with the GOSUB command you must tell the computer where
your routine starts. 'GOSUB 8@@@' calls the subroutine at line
number 8@@@. Similarly A=USR (8¢@@) calls the machine language
subroutine at memory address 8@@@.

NOTE here that memory address 8@@® is very different to line
number 8@@®. A memory address is not a program line number, it
is the 'address' of an actual piece of memory in the computer.

Memory addressing

Each piece of memory in the computer can be visualised as a box
which can contains one character, one piece of information.

With over 65,00 separate boxes, the computer must have a
filing system to keep track of them, so that it can find each
separate piece of information when it needs it. The filing
system it uses gives each box an 'address', which 1is 1like the
address of your house. You wuse addresses to find the one
particular house you are looking for anywhere within a busy
city. You use this address to visit a house, send it mail or
to pick up a parcel from it. The computer, like wus, sends
information and moves from one place (subroutine) to another
using its system of addresses.

The computer's system of addressing is simpler than ours - in
its terms, anyway - as it starts at one end of memory and calls
this address zero. It then counts through the memory 'boxes',
giving each of them a number as it goes — from zero at one end
to 65535 right at the other end of memory. TFor wus this would
be very difficult to remember, but for the computer it 1is the
logical way to do things. These numbered boxes can be thought
of as post office boxes. 1If you put something in the box at
address number one, it will stay there wuntil you replace it
with something else.

Each box can hold only one thing at a time. When you put
something in a box, what was originally there will be lost
forever.

The command 'A=USR (8@@¥@)' tells the BASIC to execute a machine
language subroutine whose first instruction is stored in the
box at address 8¢¢@.
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Using memory directly from BASIC

There are two other BASIC commands that you will find extremely
useful in this work.

They enable us to put things in and collect things from the
boxes in memory. These commands are 'PEEK' AND 'POKE'. PRINT
PEEK (5¢@) picks up the contents of the box at memory address

5¢@¢ and prints it. This can be used 1like any other function
within a BASIC program, e.g. A = PEEK (387) or C = T7*PEEK
1078)+14.

POKE 11¢®,27 puts the number after the comma, in this case 27,
into the box at memory address 110, e.g. POKE 2179,B or POKE
C,X. Try the following:

PRINT PEEK (8p@9)

POKE 800@, 200

PRINT PEEK (8¢¢9)
We will be using these BASIC commands a lot while experimenting
with machine language instructions so that we can find out the
result of the programs we write and use. BASIC will be a tool
by which we write, run and observe our machine language
programs.

Machine language as a subroutine

We have said that our machine language programs will be wused
like a subroutine in BASIC. 1In place of the 'GOSUB' we will
use the 'USR' command.

In BASIC, as you know, a subroutine must end with the command
RETURN.

1é GOSUB 8¢¢¢

.

8600 ...

804¢ RETURN



So too our machine language routines must end with a command to
RETURN to the main program but it will not be a BASIC command
it will be a machine language instruction.

The machine language instruction for RETURN is 96. That's it,
just 96. 96 1is what the microprocessor understands as a
command to RETURN from a subroutine. It would of course be

impossible for us to remember that 96 is return as well as the
list of hundreds of other instructions, so we have names for
each instruction. These names are meaningless to the computer

but, hopefully make some sense to us, the programmers. These
names are short simple and to the point, they are called
Mnemonics.

One important note here, the USR command allows the wuser to
pass to a machine language program information through
parameters. For our purposes we will be passing no parameters.
However the 13QXE always assumes that you are passing at least
one parameter and saves the number of parameters 1in a place
called the stack. 1In our case the number will be zero. This
number must be removed from the stack before your machine
language program tries to return to BASIC or it will <crash the
machine. To do this put at the start of your program a PLA,
it is 1¢4 in decimal. Lf this is impractical then
alternatively this instruction can be the second last
instruction executed (before the RTS). It is simplest however
to make it the first.

The mnemonic for 96 is RTS. RTS stands for RETURN from
Subroutine. The mnemonic for 104 is PLA which stands for Pull
accumulator. Where necessary throughout we will provide both
the machine code numbers and the mnemonics of an instruction,
as this makes it readable to you while at the same time
providing the information needed for the computer.

To demonstrate how this works we will create a very short
machine language program. Type in the following BASIC lines:

POKE 8192, 104

POKE 8193,96

This puts 104 (the value of PLA instruction) into the memory
address of location 8192 and 96 (the value of the RTS
instruction) into the box at memory address of location 8193.

Congratulations! You have just created your first machine
language program. It doesn't do much; it 1is just 1like the
empty BASIC subroutine:

4



19 GOSUB 8p@®
8¢@@ RETURN

Sitting in the box at memory address 8193 is the instruction 96
(RTS). We will now run (just to check that it works) our
program using the command 'USR'. Type in the following BASIC

line:
A=USR (8192)

The computer should respond with READY. It has just executed
your program.

Chapter 1 SUMMARY

1. Assembly code is fast. It allows access to the computer's
inbuilt hardware functions that are not convenient to wuse from
BASIC.

2. Instructions only perform very simple tasks and so it
requires a large number of them to do anything complicated.
However each instruction executes very quickly

3. Memory is addressed using numbers from @ to 65535.

4. A memory address can be thought of as a post office box,
which can only hold one piece of information at a time.

5. PEEK is used to examine the contents of a memory location
from BASIC.

6. POKE is used to put a number into a memory location from
BASIC.

7. USR is used to run a machine language from BASIC.

8. A machine language program called from BASIC must include
at least one PLA as the first executable instruction or the
second last executable instruction. Please note the difference
between the first instruction in a program and the first
instruction which is actually executed. They are not the same
thing.

9. The value 96 (RTS) must be placed at the end of every
machine language program to tell the computer to 'RETURN' from
subroutine.
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Chapter 2
Basics of Machine Language
Programming

Using memory from machine
language

So far we have discussed memory, discussed how you can look at
things in memory from BASIC, and how to put things 1in memory
from BASIC.

This of course has to be done within our machine language
programs as well. We need to be able to pick up some
information from one of the boxes in memory, perform operations
on it and then return it to the same, or to a different, box in
memory. To do this, the microprocessor has devices called
registers. These can be thought of as hands which the
microprocessor uses to get things done.

The registers

There are three of these hands (registers) called A,X and VY,
each of which is suited to a particular range of tasks in the
same way that a right handed person uses their right hand to
play tennis, their left hand to throw the ball in the air and
to serve, and when needed both hands, e.g. to tie their shoes.

These hands (registers) can pick up information from the memory
boxes. Like memory they can only hold one piece of information
at a time, but they are not themselves a part of the memory as
they have no address. They are an actual part of the
microprocessor and there are special machine language
instructions which deal with each of them seperately.

The accumulator

The first register we will talk about is the 'A' register (or

accumulator). As you will see in the following chapters, the
accumulator's functions are the most general of the computer's
hands. It is also the register which handles most of the

microprocessor's mathematical functions.
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In most cases, the microprocessor must be holding some
information in one of its hands (registers) before it can do

anything with it. To get the microprocessor to pick wup
something from one of the boxes in memory, using the
accumulator, you wuse the instruction 'LDA'. This mnemonic

stands for load accumulator. This loads the contents of one of
the boxes in memory into the microprocessor's accumulator hand,

e.g.

LDA 253

This command takes the contents of the box at memory address
253 and puts it in the microprocessor's ‘A hand
(accumulator). The machine code values of this instruction is
165 253.

NOTE here that the machine code is in two parts. Unlike the
command RTS which is in one part, - 96 —, the LDA 253 has one
part for the command LDA, - 165 -, and one part for the address
of the box in memory which contains the information being
picked up, - 253 -. These two parts of the instruction are put
in seperate memory boxes so the boxes containing the program;

LDA 38

RTS

Would look like:

165
38
96

Addressing modes

Most machine language instructions have several difrerent forms
or modes, which allow the programmer flexibility in how and
where in memory the data will be put for the program to operate
on. There are eight different forms for LDA alone, called
Addressing Modes.

In various different ways, these addressing modes alter the way
in which the address of the box in memory to be wused is
specified within the instruction.

For example, assume you had an instruction to take a letter out
of a certain post office box. Your instructions could tell you
to do this in several different ways:

8



1. You could be told to look for box number 17.

2. You could be told to look for the box third from the right
on the second bottom row.

3. You could be told to look for the box owned by Mr. Smith.

4, You could be told to look for the box whose address was
contained in a different box.

5. You could be simply handed the letter.

You will find out more about addressing modes later 1in the
book, but for now you will be introduced to three of the eight
different forms of the LDA command.

Mode 1 - 165 253 LDA 253

This is a short form of the LDA. For reasons which will be
explained later, it can only access memory over a short range
of possible addresses.

Mode 2 - 173 55 4 LDA 1979

This is a longer form of the LDA command; it can access a box
anywhere in memory. NOTE here that the machine code 1is in
three parts. The first part - 173 - is the command for LDA in
this three part form. The - 55 - and the - 4 - represent the
address of the box 1079 which contains the data to be put in
the A hand. The reasons for this apparently strange number
which makes 1979 into 55,4 will become clear in the following
chapter, for now accept it is so. This mode is called absolute
addresing.

Mode 3 - 169 71 LDA #71

This command is different from the previous two. Instead of
looking for the information to be put into the accumulator in
one of the boxes in memory, the information you want is given
to you as part of the instruction. In this case the number 71
will be put into the accumulator. It has nothing to do at all
with the box at address number 71. Note here that this
different type of addressing known as 'immediate' addressing is
shown in the mnemonic by a '#' symbol before the number.

We know how to get the microprocessor to pick something up from
memory, but before we can do anything useful we have to know
how to get the microprocessor to do something with it. To get

9



the microprocessor to place the contents of 1its A hand
(accumulator) in memory, we use the instruction STA which
stands for Store accumulator in a specified box in memory.

This instruction too has several addressing modes (seven in
fact) but only two of them will be discussed here.

Mode 1 - 133 41 STA 41

This instruction puts the contents of the accumulator in the
box at address 41. As in the LDA, the similar instruction in
two parts (zero page mode) can only reach a limited number of
addresses in memory boxes.

Mode 2 - 141 57 @3 STA 825

This is like Mode 1 except that it can put the contents of the
accumulator in a box anywhere in memory (absolute addressing).
The - 141 - specifies the instruction and the - 57 - and - 3 -
contain the address of box 825 (this 1is explained in Chapter
3).

QUESTION: Why is there no 'STA' immediate mode (see LDA #71)7?

ANSWER: The 'immediate' mode in 'LDA #71' puts the number in
the instruction — 71 - into the accumulator, somewhat like
being handed a letter, not just a post office box number of
where to find the letter. STA immediate mode would attempt to
put the contents of the accumulator in the STA dinstruction
itself. This is like being told to put a letter not into a
post office box but into the instructions you have been given.
Obviously this has no practical meaning!

Simple program input

We will now write a few machine language programs to examine
the instructions we have learned so far. To make it easier
enter the following BASIC program:
5 PRINT CHR$(125);"...."

1 REM THIS PROGRAM WILL MAKE IT EASIER TO ENTER MACHINE CODE
PROGRAMS

2¢) READ A

3¢ IF A=—1 THEN GOTO 7¢

4p POKE 1536+X,A

5¢ X=X+1
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6¢ GOTO 20
7¢ PRINT '""BEFORE.. —LOCATION 4@@@@ '';PEEK (4@@pp)
8¢ Q=USR(1536)
9¢ PRINT "AFTER...-LOCATION 4@@@p '';PEEK(4@0Q@)
1@ END
100¢ DATA 104
1¢1¢ DATA 169,33
1¢2¢ DATA 141,64,156
1¢3@ DATA 96
9999 DATA -1

LINES 10¢® - 1¢3@ contain our machine language program.

LINES 2@ — 6@ puts our program from data statements into memory
boxes starting from 1536 so it can be executed.

LINES 7¢ — 9¢ print 'BEFORE' and 'AFTER' tests on the memory we
are getting our machine language program to change.

When the BASIC program 1is finished, our machine language
program will be contained in memory boxes as follows:

Address Data
1536 104
1537 169
1538 33
1539 141
1540 64
1541 156
1542 96

For the programmer's benifit this is written out in mnemonic
form as follows:

1536 PLA

1537 LDA #33
1539 STA 40000
1542 RTS

Assembly language

A program written out in mnemonic form is called an ‘'assembly
language' program, because to transform this list of letters
which can be wunderstood by the programmer into a list of
numbers which can be understood by the microprocessor, you use

11



a program called an 'assembler'. Throughout this book we give
you programs in mnemonic form e.g. RTS:

address mnemonics
1536 PLA

1537 LDA #33
1539 STA 40pPP
1542 RTS

Our BASIC program, as well as placing our machine code in

memory, runs our program (see line 80).

You will see by our before and after analysis of memory address
4PPPP that it has been changed by our program as we intended.
The original value of location 4¢@@PP could have been anything.
The number you see may change each time you run the program.
It is impossible to know what will be in memory before you put
something in there yourself, just as you can't tell what might
be left over in a post office box you haven't looked in before.
The value in memory address 4@@@¢ after the program has been
run is: 33. This shows that your program did what was expected
it loaded the number 33 and then stored it into memory at

4PPP9.

Screen memory

There is one result from this program which you may not have
expected. Look at the top left hand corner of the screen. You
will see it contains an 'A'. Line 5 of the program clears the
screen, and nowhere in the BASIC program was the 'A' printed on
the screen, therefore it must have been put there by the
machine language program. We know the machine language program
puts the value 33 into location 4@@@P@. Could this print an 'A'
on the screen? Try if from BASIC and see what happens. First
clear the screen in the normal way and the type:

POKE 40@¢@, 33

You will see that the 'A' has reappeared on the top left hand
corner of the screen. This has happened because memory at
4PPP® has a dual purpose. It is used to display things on the
screen, as well as carrying out the remembering functions of
normal memory. The post office box description is still wvalid,
but now the boxes seem to have glass fronts so that you can see
on your screen what the boxes have inside them. If you look at

12



the table of screen display codes in Appendix 14, you will see
that for the value 33 that we placed in location 4@@@@ the
character should be displayed is an 'A'.

Let's try to display some of the other characters in the table

on the screen. Let's try to print an 'X' on the screen. First
we need to look up the table of screen display codes to find
the value corresponding to the letter 'X'. You will find that

this value is 56. To put this in memory at address 4@@00 we
will use the program we wrote earlier:

PLA
LDA #33

STA 4Q@0@
RTS

But this time we will change LDA #33 to an LDA #56. Using the

same BASIC program to put this into memory, we must now change
line 1¢1¢ which holds the data for the LDA command. This must

now read:

1¢1¢ DATA 169,56:REM LDA #56

Our machine language program will now (when the BASIC program
is run) read:

1536 104 PLA

1537 169 56 LDA #56
1539 141 64 156 STA 400pP
1542 96 RTS

When this is run you will now see an 'X' appear in the top left
hand corner of your screen.

At this stage you might well ask, how do I print something
somewhere else on the screen? The answer 1is simple. 'Screen
Memory' (these 'glassfronted' boxes) lives from 4@¢@pp all the
way through to 4¢959. It is set up in 24 rows of 4¢ columns as
you see on your screen. Memory at 4Q@@@ appears at the top
left corner; 4P@P1 appears next to that to the right, and 4@@@2
next to that. Similarly 40¢00¢ + 40, 4PP4p appears immediately
under 40PPP at the left edge at the second top row and 4@@4p +
4¢ (4PP8¢) under that, and so on.

Using the same BASIC routine to enter our program, we will now
try to print on the row second from the top of the screen. The

13



address of this place on the screen 1is given by 40000 + 4@
(screen base + 1 row) = 4P@4@.

Therefore we want our program to be:

PLA clear the stack of parameter information
LDA #56 Character 'X'

STA 40p4p First column second row

RTS

To do this we change the data we change the data for our
program on line 1¢2¢ to read:

1020 DATA 141,1¢4,156:REM STA 4p@40

You will also need to alter lines 7¢ and 99 from 4P@@PP to 4LBPLD
before running. The machine language program will now print an
'X' on the second line from the top of the screen.

Printing a message

We will now use our BASIC program to write a bigger machine
language program which will display a message on the screen.
Type the following lines:

10¢@% DATA 104

1010 DATA 169,40
1¢2¢ DATA 141,64,156
1¢3¢ DATA 169,37
1043 DATA 141,65,156
1¢5¢ DATA 169,44
1060 DATA 141,66,156
1¢7¢ DATA 141,67,156
1p8¢ DATA 169,47
1¢9¢ DATA 141,68,156
11¢@® DATA 96

Now run the program. You will see that it has printed 'HELLO'
at the top of the screen. The machine language program we
wrote to do this was:

14



Address MACHINE CODE ASSEMBLY CODE

1536 104 PLA SET UP STACK

1537 169 4@ LDA #4% SCREEN CODE FOR 'H'
1539 141 64 156 STA 4PPPD

1542 169 37 LDA #37 SCREEN CODE FOR 'E'
1544 141 65 156 STA 4¢pp1

1547 169 44 LDA #44 SCREEN CODE FOR 'L'
1549 141 66 156 STA 40P@2

1552 141 67 156 STA 40P@3

1555 169 47 LDA #47 SCREEN CODE FOR 'O'
1557 141 68 156 STA 40pp4

1560 96 RTS

Check the values used with those given in the table of screen
display codes.

It is interesting to note the way in which the two L's were
printed. There was no need to put the value 44 back 1into the
accumulator after it had been stored in memory once. When you
take something from memory, or when when you put something from
one of the registers (hands) into memory, a copy 1is taken and
the original remains where it started.

We can write the same programs we have just written using
different addressing modes. It is useful to be able to write
the same program in different ways for reasons of program
efficiency. Sometimes you want a program to be as fast as
possible, sometimes as short as possible, and at other times
you may want it to be understandable and easily debugged.

We will change the program to give us greater flexibility in
what we print. Type in the following lines:

15 PRINT "LETTER VALUE'";:INPUT B:POKE 2¢3,B

1019 DATA 165,203 :REM LDA 203
1169 DATA 169,55 :REM LDA #55
111¢ DATA 141,69,156 :REM STA 4B@@5
1120 DATA 96 :REM RTS

Our machine language program will now look like this:

Address MACHINE CODE ASSEMBLY CODE
1536 104 PLA

1537 165 203 LDA 2(3

1539 141 64 156 STA 4PPPD
1542 169 37 LDA #37

1544 141 65 156 STA 4@pP1
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1547 169 44 LDA #44

1549 141 66 156 STA 4@@p2
1552 141 67 156 STA 400@3
1555 169 47 LDA #47
1557 141 68 156 STA 40904
1560 169 55 LDA #55
1562 141 69 156 STA 49P@5
1565 96 RTS

NOTE that this finds its first letter from the box at memory
address 2¢3 using zero page addressing 1instead of immediate
addressing. Line 15 of our BASIC program sets this box in
memory to be any number we choose. Run this program several
times choosing the values, 57,34 and 45.

We have seen in this chapter how memory can have more than one
function by the example of the memory between 4@@@@ and 40959,

which doubles as screen memory. Similarly other parts of
memory can have special functions. Different areas of memory
are used to control screen colours, graphics, Player Missile

graphics, sound, the keyboard, games controllers (joysticks)
and many other I/0 (Input/Output) functions. These areas will
be referred to throughout the book on a purely introductory
level. We encourage you to find more detailed descriptions
from more advanced texts.

Chapter 2 SUMMARY

1. The microprocessor uses registers (like hands) to move data
about and work on memory.

2. It has three general purpose hands; the accumulator, the X
register and the Y register.

3. We use the LDA command to get the microprocessor to pick
something up in the accumulator (A hand).

4. We use the STA command to get the microprocessor to put the
contents of the accumulator in to a specified location.

5. These commands and many others have several different
addressing modes which allow us flexibility in the way we store
and use our data:

* immediate addressing holds the data within the
instruction.

* absolute addressing uses data stored anywhere in memory.
zero page addressing uses data stored within a limited
area of memory.
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6. A program written out in mnemonic form is called an
assembly language program.

7. Memory is used to display information on the screen.

8. Information is displayed according to a screen display code
which gives a numeric value to any printable character.

9. Memory 1is wused to control other 1/0 (Input/Output)
functions of the computer.
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Chapter 3
Introduction to Hexadecimal

Uses of hexadecimal

So far in this book we have talked about memory in several
different ways, but we have not been specific about what it can
and cannot hold. We have used memory to hold numbers which

represented characters, numeric values, machine code
instructions and memory addresses. We have merely put a number
in memory without thinking about how the computer stores it, in

all but one case.

It is the absolute addressing mode which has shown us that the
computer's numbering system is not as simple as we might of
first thought, e.g 141 64 156 is the machine code for STA 4@@pP
, leaving the numbers 64 and 156 signifying the address 4@@@@ .
There is obviously something going on which we have not
accounted for.

We have previously compared the microprocessor's registers and
memory to hands. How big a number can you hold in your hand?
Well that depends on what we mean by hold. You can use your
fingers to count to five, so you can use one hand to hold a
number from zero to five. Does that mean that the biggest
number that you can hold is five? You may be surprised to hear
that the answer is NO.

Counting from @ to 5 on your fingers like this

wreeey

is very wasteful of the resources of your hand, just as
counting like that on a computer would be very wasteful of its
resources.
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Binary

A computer's 'fingers' can either be up or down (on or off, in
the same way a light can be on or off) but, as with your

fingers, it can tell which of its fingers is on and which is
off. 1In other words, the value represented depends not only on
the number of fingers used but also on the position of those
fingers. Try this yourself give each finger one of the
following values (mark it with a pen if you like).

b2

Now try to count by adding the numbers represented by each
finger in the up (on) position:

YArAYARVAY.

;1*-[3-?5 4 +) =5

Try to represent the following numbers on your fingers:
7,16,1¢,21,29

Q. What is the biggest number you can represent on your
fingers?
A, 1+2+4+8+16=31

As you can see 31 is quite a significant improvement on 5. The
computer's 'hands' are different from ours in several ways.
Its fingers are electronic signals which can either be on or
off, as opposed to our fingers being up or down. For the
programmer's benefit the condition on is given the value 1 and
the condition off is given the value @.

The other major difference 1is that the computer has eight
'fingers' on each 'hand'. This may sound silly, but there 1is
no reason for it not to be that way. As it turns out it 1is a
fairly easy set up to handle. The computer's eight fingered
hand is called a 'byte' of memory. As with our own fingers, we
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give each of the computer's 'fingers' one of the following
values

1,2,4,8,16,32,64,128

Again we count by adding together the values of all those
fingers in the 'on' position.

Eight fingered Computer’s ‘hand’ Number
hand — byte

ololt 1 jololo]:] 8241641 = 49

% 1|1lofolo|1 |olo 128+64+4

Il
—
(o]
()}

Q0@ |02 (@1 16+1 = 17

What is the biggest number that can be represented by the
computer s 'eight fingered hand'?
A. 128+64+432+16+8+4+2+1=255

Without realising it, what we have done 1in this chapter is
introduce the binary numbering system (base two) . All
computers work in base two representing electrical on's and
off's an endless stream of 1's and @'s. This of course would
make the programmer's task of controlling what 1is going on
inside the computer even more confusing than it already is,
e.g.:

Assembly Code Machine code Binary

LDA #33 169 33 19101001 @P100PG1

STA 4PPPP 141 64 156 10901101 @LPPPPPP 1¢P11100
RTS 96 PLIPPPPP
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Why hexadecimal?

This of course would be impossible for a programmer to
remember, and difficult to type in correctly. We could of
course just use decimal as listed in the machine code column.
As it turns out, this is not the most convenient form to wuse.
What we do use is hexadecimal or base sixteen. This may sound
strange but it becomes very easy because it relates closely to
the actual binary representation stored by the computer.

To convert between binary and hexadecimal is easy. Each
hexadecimal digit can store a digit between ¢ and 15 (decimal)
just as each decimal digit must be between ¢ and 9. Therefore

one hexadecimal digit represents one half of a byte (eight
fingered hand).

Binary Hexadecimal
LLTTITTT] = [ N
\ - /N, / ./ \/
®-15 ®—-15 ®-15 ®—-15

The whole eight fingered hand can be shown by two hexadecimal
digits. You might at this point be wondering how one digit can
show a number between @ and 15. Well it is exactly the same as
decimal the numbers 1¢, 11, 12, 13, 14, 15 (decimal) are
represented by the letters A, B, C, D, E, F respectively.

BINARY DECIMAL HEXADECIMAL
PP [} )
Ppp1 1 1
PP10 2 2
pp11 3 3
PLPP 4 4
p1p1 5 5
L1 6 6
@111 7 7
1009 8 8
19¢1 9 9
191¢ 10 A
1911 11 B
11¢¢ 12 @
1191 13 D
111¢ 14 E
1111 15 F
10900 16 10
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This shows that converting from binary to hexadecimal is merely
dividing into easy-to-see segments of four (fingers).

Oreleii11al LT el [elo[1]ole(1] 1] 1]
NN L S N~ ~——
9 E F D 2 7

Hex and Binary mathematically

Mathematically any base, 1@, 2, 16 or 179 follows a simple
format. Each digit takes the value Ax (BASE) Position -1

In other words in decimal 98617 is

7x10°+1x10' +6x10*°+8x 10" +9x 10* = 98617
7x1+1x10+6x100 +8x 1000 + 9x 10000 = 98617
7+ 10 + 600 + 8000 + 90000 98617

Il

Il

In binary 1011101 is

IXx2"4+0x2' +1x22+ 1x2 +1x2'+QOx2° +1x2"+ Ox27 =93
1x14+0x2+1x4+1x8+1x16+0x32+ 1x64+Qx128 =93
1+0+4+8+16+0+64+0 =93

In hexadecimal A7C4E is

14 x 16°+4x16' + 12 x 162+ 7 x 16" + 10 x 16* = 687182
14 x1+4x16+ 12 x 256 + 7 x 4096 + 10 x 65536 = 687182
14 + 64 + 3072 + 28672 + 655360 = 687182

Several points should be noted here. Firstly, any number which
can be stored in one memory box, (a number from ¢ to 255) can
be stored in 8 binary digits (bits), or as we have been calling
them till now 'fingers'. Any number from @ to 255 can also fit
in two hexadecimal digits (FF = 15 x 16 + 15 x 1 = 255).

This, however, is where our problem with absolute addressing

occurs. If we can't put a number bigger than 255 into memory,
how do we specify an address which may be between @ and 65535
(64K)? The solution is to use two boxes, not added together

but as part of the same number. When dealing with addresses we
are dealing with 16 finger (16 bit) (2 byte) binary numbers.
This is the same as saying four digit hexadecimal numbers. The
largest number we can hold in a four digit hexadecimal number
is:
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FFFF = 15 x 1 + 15 x 16 + 15 x 256 + 15 x 4§96
15 + 240 + 3840 + 61440
= 65535 = 64K

I

which is large enough to address all of memory, e.g., the 2
byte (16 bit) hex number 13A9 equals:

1 3 A 9
P91 P11 1919 1991

(((1 x 16) +3) *256) + (10 x 16 + 9)
= 4864+169
= 5¢33

For example, the two byte hex number (405
4 x 256 + 5

1024 + 5
= 1929

1}

1l

Absolute addressing

If you look back at the beginning of this chapter you will see
that this is the problem associated with absolute addressing
which we have been able to solve. One other thing to remember
with absolute addressing is that the bytes of the address are
always backwards, e.g.,

STA 40000
141 64 156

The most significant byte (high byte) - 156 is placed last, and
the least significant byte (low byte) - 64 is placed first.
NOTE that this is the reverse of normal storage, e.g., normally
17 where 1 is the most significant digit (1 x 1¢) is stored
first. The 7 (7 x 1) 1is the least significant and comes
second. The bytes of an absolute address are always stored low
byte, high byte.

This chapter also explains zero page addressing. Two byte
instructions leave only one byte to specify the address, e.g.,
LDA 38 - 165 38. We have said before that when using 1 byte we
can only count from ¢ to 255. Therefore =zero page addressing
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can only address the first 256 bytes of memory. A block of 256
bytes is called a 'page'.

To specify the fact that we are using hexadecimal this book
follows the standard practice of placing a $ sign before a
hexadecimal number.

LDA 400pp is the same as LDA $9C40Q
LDA 65535 is the same as LDA $FFFF
LDA @ is the same as LDA $0

From now on all machine code listings will also be shown in
hexadecimal;

address code mnemonics
1536 68 PLA

153 A9 21 LDA #$21
1539 8D 4@ 9C STA $9C40
1542 60 RTS

irrespective of the format used in the assembly code, which
will vary depending on the application.

Converting hexadecimal to decimal

We have provided a table in appendix 3 for quick hexadecimal to
decimal conversions. To wuse this chart for single byte
numbers, look up the vertical columns for the first hexadecimal
(hex) digit and the horizontal rows for the second digit e.g.;

$2A - 3rd row down
11th column from left
Printed there is LO HI
42 19752

Look at the number under LO (low byte). 42 is decimal for $2A
hex. For 2 byte hex numbers divide into 2 single bytes. For
the left byte (or high byte) look up under HI and add to the
low byte e.g.;

$7156 divide HI = $71 LO = $56
HI - 71 - 8th row down
2nd column left
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LO HI
113 28928

LO — 56 — 6th row down
7th column from left

LO HI
86 22916

Add high and low 28928 + 86 = 29014
$7156 = 29¢14

NOTE: in all cases LO HI

Y =236 = X

The high byte is 256 times value of the same low byte.

Chapter 3 SUMMARY

1 In counting on a computer's 'fingers', position (which
fingers), as well as the number of fingers, is important.

2. Each of the computer's hands and each piece of memory has
8 'fingers', and the biggest number they can hold in each is
255

3is An eight 'fingered' piece of memory is called a byte.

4. Each finger has a value which depends on 1its position.
The fingers are numbered from zero to seven and their possible
values are 1,2,4,8,16,32,64 and 128.

Jis Hexadecimal (base sixteen) is the grouping together of
binary. 1 Hex digit = &4 binary digits. Hex 1is easier to
handle than binary or decimal.

6. DECIMAL ¢ 1 2 3 ¢ 11 12 13 14 15 16 17 18
HEX $ 123

4567891

456789A B C D E F 1¢ 11 12

7 Zero page addressing can access the first 256 bytes, the
maximum addressable by one byte.
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8. Absolute addressing can access 65536 (64K) bytes of memory
(all), which is the maximum addressable by 2 bytes.

9. Absolute addresses are always stored low byte first then
high byte, e.g., 8D 98 17 LDA $1798.

1. Hexadecimal numbers are specified by prefixing them with a
$ sign.

11. Remember the quick conversion table for hex to decimal in
Appendix 3.
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Chapter 4
Introduction to ALPA +
Disassembler

We have provided you with two BASIC programs to help you put

your machine language programs into memory. The first program
is called ALPA which is an acronym for 'Assembly Language
Programming Aid'. A listing of this program appears in

Appendix 11. We have also provided a disassembler program to
examine the ROMs and your programs. A listing of this can be
found in Appendix 11 as well. 1In Chapter 2 we wused a small
BASIC program to put our machine language programs into memory,
but as you can imagine, it would very soon become a tiresome
process if we had to use this method every time when we wanted
to enter our programs. Throughout the rest of the book we have
given all our examples of machine language programs in ALPA
format. The features of ALPA are:

1. Programs are stored as text and can be edited with commands
like INSERT, DELETE and APPEND. Text is converted into machine
language by giving the ASM command. This command assembles
your program and put the resulting code into an array called
MEM. Thus assembling your program will not crash the machine.

2. The programs you write with the editor can be saved or
loaded to disk or tape. So you can work on a program, save it
to tape, go away and reload it later.

8. To help in inserting, deleting and editing, each
instruction is put on a seperate line with a line number which
you can use to reference it. The linenumber 1is generated

automatically by the line editor.

4. The program can be listed wusing the LIST command and
stopped with the CTRL and '1l' keys.

5. A line is divided into three fields. Field one contains
the label, field two the operation code and field three the
operand. Each of the fields are reached by pressing the TAB
key - except in the case of field one, where the cursor is
placed at the required position by the computer. After a line
is typed and RETURN is pressed a new line number will appear
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automatically. Pressing RETURN at the start of a blank line
will take you back to the command mode.

6. Your program can be stored anywhere in memory by wusing the
ORG instruction at the beginning of the program. The ORG
instruction uses four digit hexadecimal characters only.

7. Instead of referencing a memory location with an absolute
address it is possible to specify a label. So instead of wusing
$4567 it's possible to define $4567 as a label and just use the
label. An exception to this rule is the branch instruction.
The destination specified in branch instructions must have an
ampersand before the label name or before the absolute address
specification.

e.g. TABLE NOP
NOP
JMP TABLE
LDA TABLE, X
BNE &LABEL
BNE &$0p28

8. There are four assembler directives available in ALPA.
These are not actually 65@2 instructions but commands to the
assembler which are imbedded in the listing. They are ORG,
EQU, DFB and DFW.

ORG - used to set the point in memory where programs are
to be assembled (it sets the program counter). An  ORG
statement expects a four digit hexadecimal number following ORG
and any thing else will cause an 1illegal hexadecimal number
error. Only one ORG statement is permitted in a program. ORG
also defines the execution address of a program for the RUN
command.

e.g. ORG $0@¢5

EQU - assigns a value to a label. It is possible to assign
a zero page value or absolute value to a label.

e.g. LABEL EQU  $0¢@5
ONE EQU  $12

DFB -generates a byte of data from a hexadecimal wvalue ($¢¢
— $FF) supplied and puts it in the program at the current
program counter location. There can only be one hexadecimal
byte per DFB instruction.

e.g. DFB $12

DFW -generates a word of data from a hexadecimal value,
splits it into two bytes and puts the two bytes into the
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current program counter location and the next one. Its also
automatically reverses the order of the bytes. Therefore if
you give the assembler the value $FF11, then the bytes
generated will not be put in memory in the order $FF and $11

but $11 and $FF.
e.g. DFW  $FA9¢

To get ALPA running

A Listing of ALPA appears in Appendix 11.

1. Type in the program exactly as it has been listed in
Appendix 171.

2. When you have finished typing it in, save ALPA immediately
(for cassette save type: SAVE '"C:ALPA" for disk save type:
SAVE"D:ALPA'")

NOTE:
1. If you have made an error while typing in a 1line then the
ATARI will reject it and print an error message. The error

message will be inserted in the actual program line, so it will
be necessary to retype the entire 1line or wuse the cursor
editing keys to remove it.

2. Even though a line may be accepted when it was entered, it
is still possible for it to contain errors. For example, the
ATARI cannot tell if a variable name is wrong, because the
names of variables are chosen by the programmer (e.g. VAR$="A"
instead of VAS$="A" would not be detected as an error by the
computer, but would result in an error report when the program
was RUN). So if ALPA does not work, carefully compare what you
have typed in with the ALPA listing in the book.

Using ALPA

All numbers used in ALPA are to be entered in hexadecimal.
Zero page hex numbers are distinguished from absolute hex
numbers by their length. Zero page numbers are expected to be
two digits long and absolute numbers four digits long.

When ALPA is first initialised it is, by default, in Command
mode. An asterisk and cursor will appear and ALPA will be

waiting for a command. To enter the text editor wuse the
command 'APPEND'. This will put you in the editor at the next
line number, this will be '1' if there 1is no text. At this

stage you are ready to type in your program. The programs you
will write will be in the following format:
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linenumber Label Operation-Code Operand. (seperated
into fields with the TAB key).

- operation code 1is the mnemonic instruction of the
command you want to type. Followed by the operand (e.g.
address or data), as in the following:

1 LABEL LDA #$05

or

1 STA $9C49

ALPA commands

The following commands are available in ALPA:

1. LIST

This command will display a range of linenumbers. Type LIST
and press RETURN. It will ask for the starting linenumber and
the ending linenumber.

2. ASM

This command assembles your source program into an array and
all references are resolved according to the value of the PC.
NOTE you must ASM a program before you can RUN it.

3. RUN

This command executes your program in memory starting from the
first address specified by the ORG statement. It does this by
copying the machine code in the array MEM into memory and then
calling the program with USR. The ASM command must be wused
prior to the RUN command.

4. WATCH
This command asks you which address you want to 'WATCH' and
invokes the WATCH function. The contents of the address

specified will be printed before and after the program in
memory is executed by RUN. This is used to observe the results
of a program on memory.

5. NWATCH
This command turns off the WATCH feature.

6. LOAD

This command loads an ALPA program saved using the SAVE command
in ALPA from cassette or disk. Type LOAD and press RETURN, a
prompt will appear and you must enter the device to load the
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program from and the filename. No quotes are necessary round
the filename.

7. SAVE

This command saves the current ALPA program to cassette or disk
for LOADing in the future to work on without having to type it
in again. It works in the same fashion as LOAD.

8. DELETE
This command deletes a line from the program. Type DELETE and
press RETURN, then input the linenumber you want deleted.

9. INSERT
This command allows you to insert lines into the text. Lines
are inserted after the line number specified. The command

takes the form:

INSERT (Press RETURN)
:linenumber (Press RETURN)

Then enter the text as usual. This mode is exited by pressing
RETURN at the start of a new line.

1¢. QUIT
This command exits ALPA and returns you to BASIC. It 1is
possible to restart ALPA with GOTO 12.

11. NEW
Removes your program from the text buffer (Deletes all of the
text).

Memory usage in ALPA

You will notice that we have, consistently throughout the book,
used only a few areas of memory for our programs and our data.
We have not done this because they are the only ones that will
work, but because we tried to use memory that we are sure that
nobody else (BASIC, the Operating Sytem and ALPA itself) will
be using.

The programs that run within the computer all the time, BASIC
and the Operating System, use specific areas of memory to store
their own data in. It is good programming practice to know and
avoid these areas to ensure that your program does not stop the
Operating Sytem or BASIC from functioning properly. (Remember
ALPA is written in BASIC). By checking through the memory maps
and memory usage charts provided in Appendices 6 and 8, you
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will be able to find other areas to wuse, but throughout the
book we have mainly used memory at:

$0609 - $P6FF
$CB - $CF zero page

The best areas to use in zero page memory, when it is very
full, are areas set as aside as buffers etc.

If a program written in machine code looks as if it is never
going to stop, it may well not. One way to stop these programs
is to press RESET. You will be put back into BASIC with the
usual screen display. If this does not work then the machine
is well and truly 'hung' and nothing short of switching off and
on will reset the machine.

To continue in ALPA with your program intact, type GOTO 12
(unless you switched off). This is also the procedure to
follow if you accidentally leave ALPA. 1If this does not work
type RUN. This should get ALPA working again, but your program
will be lost.

We will now repeat some of the programs we used earlier, to
demonstrate the use of ALPA, e.g.,

PLA

LDA #$21
STA $9C40
RTS

This is the program we used at the beginning of chapter 2. To
use ALPA, testing location $9C40 (40PPP) before and after the
program, type the instructions on the right hand side of the
program above, e.g.,

ORG $060¢
PLA

LDA #$21
STA $9C40
RTS

(G U S

The computer will print the mnext line number and wait for
input. After you have typed in the program, assemble it with
the ASM command. To watch the change in location $9C4( type:

WATCH

To which the computer will reply:

(what address )? $9C4¢
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Now execute the program with the RUN command and study the
output before and after the program was executed. Type NEW to
remove the program and try out some of the other programs in
chapter 2 using ALPA. Remember that ALPA uses only hex numbers
and that Chapter 2 uses decimal, so it will be necessary to
convert from decimal to hex.

Further use of ALPA will be discussed as it becomes relevant to
the commands being discussed.

There is a disassembler to accompany ALPA. It is listed in
Appendix 11 along with the listing ALPA. After the
disassembler has been successfully typed in and saved, it can

be used to disassemble memory and examine various parts of the
13@XE. It can also be used to disassemble your programs. To
do this the object code must be in an area that will not be
overwritten by the disassembler, if this is so you can load and
run the disassembler. The Disassembler supports the following
commands.

1. MEM

This command asks you the question 'DISASSEMBLE FROM WHAT
ADDRESS:?' It will then disassemble (produce assembly code)
using the contents of memory from the address specified for one
screen. Any key except E will produce another screen of

disassembly. Press the E key to exit to normal command mode.

2. DUM
This command asks you the question 'DUMP MEMORY FROM WHAT

ADDRESS:?' It will then produce a 'hex dump' of memory from
that address as a series of hex bytes.

3. EXI
Using this command will exit the dissasembler and pass control

back to BASIC.

4. ASC
Displays an area of memory in ASCII character format.

5. CMD
Displays a list of the disassemblers commands.

Chapter 4 SUMMARY

1. We will use ALPA to enter all of our machine language
programs after this Chapter.
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2. ALPA's commands are as follows:

APPEND
LIST
RUN
WATCH
NWATCH
LOAD
SAVE
DELETE
INSERT
QUIT
NEW

3. Although we will list programs in the form:
line ### Instructions in Assembly Language, you need
only type the instructions and leave the rest up to ALPA.

4. The Disassembler has the following commands:

MEM
DUM
CMD
EXI
ASC
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Chapter 5
Microprocessor Equipment

In the previous four chapters we have covered a lot of the
groundwork needed to understand the intricacies of machine code
programming. More of the basics will be introduced as we go
along. We have covered enough at this stage to move on to such
things as using machine language to do some arithmetic.

Storing numbers

We know from Chapter 3 that the largest number we can store in
a single byte (memory location) is 255. We have also seen that
for addresses bigger than 255 we could use 2 bytes to represent
them in low byte/high byte format so that Address = low byte +
256 x high byte.

Surely then we could use the same method to represent any sort
of number greater than 255 and less than 65536 (65535 = 255 +
256 x 255), and in fact if necessary this can be taken even
further to represent even higher numbers.

Numb = 1st byte + 256 x 2nd byte + 65536 x 3rd byte +
.etc

The carry flag

Now, when we add two 1 byte numbers together it 1is possible
that the result is going to be larger than 255. What then can
we do with the result of the addition? If we put the result in
one byte it could be no bigger than 255, so:

207 + 194 = 401 mod 256 = 145

but also

58 + 87 = 145
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Surely there is something wrong here. We must somehow be able
to store the extra information lost when a result is larger
than 255. There 1is provision for this within the 6502

microprocessor in the form of a single bit (single finger)
'flag' called the carry flag. The carry flag is ‘'set' (turned
on) if a result is geater than 255, e.g.,

|
—_

207 + 194 = 145; carry =
58 + 87 = 145; carry =

|
=

NOTE: a single bit is large enough to cover all possible cases
of carry.

11111111 255
+ 11111111 + 255
1 1111111¢ + carry 254 + carry
Therefore to add 2 byte numbers together, you add the low bytes

first and store the result, and then and the high bytes
including the carry bit from the addition of the 1low bytes,

e.g.,

3PA7 + 2CC4 = 5D6B

is done in the following manner:

low bytes
A7
+ C4
6B carry set
high bytes
39
+ 2C
+ 1 carry bit

5D

Answer = 5D6B
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Adding numbers

To handle this, the machine language instruction to add two 1
byte numbers together is ADC (add with carry). This adds the
specified number (or memory) plus carry flag to the accumulator
and leaves the result in the accumulator.

The instruction automatically adds in the carry bit to its

calculation. Therefore since the carry could be set before you
put anything in it (like memory - see chapter 1), it is
necessary to set the carry to zero before an addition if that
addition does mnot want to add the carry of a previous
calculation. To set the <carry flag to =zero we wuse the
instruction CLC (Clear Carry Flag) before such ADC's.

Type in the following program, using ALPA:

NEW

APPEND

1 ORG $P60@
2 PLA

3 LDA #$@3

4 CLC

5 ADC #$05

6 STA $@3FD
7 RTS

WATCH

(watch address )? @3FD

ASM

RUN

The program will print:

'address @3FD before' = @@ 3
'address @3FD after' = (8 25
8

We will now change lines 3 and 5 to alter the sum we are
performing. NEW the old program and replace it with:

1 ORG $060@
PLA

LDA #$27

CLE

ADC #$F4

STA $@3FD
RTS

~NOoO UL WwWN
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ASM and RUN the program and the computer will respond with:

address @3FD before = (8
address @3FD after = 1B

27

+ F4

carry is set 1 1B

NOTE: we cannot tell the carry has been set from our results.

We will now change the program again. This time we will
deliberately set the carry using SEC (Set Carry Flag) command
before doing our addition. Remove the last program with NEW
and type the following lines:
1 ORG $p60Q
PLA
LDA #$03
SEC
ADC #$05
STA $@3FD
RTS

~N o BN

ASM and RUN the program, and the computer will respond with:
address @3FD before = 1B
address @3FD after = (9

(carry bit)

+
O = LW

Type in the following lines:

ORG $060¢
PLA

LDA #$27

eLe

ADC #$F4

LDA #$%3 -
ADC #$14

STA $@3FD
RTS

NelioBEN Be NNV I N

ASM and RUN the program.

address @3FD before = @9
address @3FD after 18

1l
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The carry is set by the addition on line 5 and carries through
to the second addition on line 7, hence:

27 3
+ F4 + 14
Carry = 1 1B + 1 (carry)
=18

Now change line 5 and repeat

ORG $@60@
PLA

LDA #$27

CLC

ADC #$2¢

LDA #$03

ADC #$14

STA $(G3FD
RTS

Nelio < BEN e U, N GU RN I

address (@3FD before = 18
address (@3FD after = 17

27 3
+ 20 + 14

carry 9§ = 47 + @ (carry)
= 17

From these we see how the carry bit is carried along with the
result of one addition to another.

We will now use this to do an addition of 2 byte numbers using
the method we described previously.

Two Byte addition

Suppose we want to add the numbers 6C67 and 49B2.

6C67
+ 49B2

= 27727
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To do this we must separate the problem into two single byte
additions:

low bytes 67 high bytes 6C
+ B2 + 49
carry + 1

carry = 1 19
B6

Clear the previous program using the NEW command and then type
the following:

ORG $069¢

PLA

LDA #$67

CLC

ADC #$B2

STA $B3FD

LDA #$6C

ADC #$49

STA $(B3FE
[} RTS

= O OO WL LN =

This will store the low byte of the result in @3FD and the high
byte of the result in @3FE. To check our answer we will wuse
the WATCH command on both bytes (by running twice).

ASM and RUN the program
address @3FD before = ?7
address @3FD after = 19

Now type:
WATCH
(watch address )? (3FE
RUN
address before = 7?7
address after = B6

Now join the high byte and the low byte of the result to give
the answer:

6C67
+ 49B2

B619
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This procedure can be extended to add numbers of any length of
bytes.

Subtracting numbers

The microprocessor, as well as having an add command has a
subtract command. Similar to the ADC command the SBC (Subtract
with Carry) uses the carry flag in its calculations. Because
of the way in which the microprocessor does the subtraction,

the carry bit is inverted (1 becomes @ and @ becomes 1) in the
calculation, therefore

8 8
-5 -5
-1 — CARRY (CARRY = 1)
=2 :3
Consequently, to do a subtraction without carry, the carry flag
must be set to 1 before the SBC command is wused. Remove the
previous program and type the following:
1 ORG $060¢
2 PLA
3 LDA #$08
4 CLC
5 SBC #$05
6 STA $@3FD
7 RTS
WATCH

(watch address )? @3FD
ASM and RUN this program.

You will see from the results that by clearing the carry
instead of setting it has given us the wrong answer. We will
now correct our mistake by setting the carry to 1 before the
subtract. Replace the previous program with this one:

ORG $060¢
PLA
LDA #$0¢8
SEC
SBC #$05
STA $@3FD
RTS

NOoO s WN e

ASM and RUN
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You will now see that we have the correct answer:

8 8
-5 -5
(CARRY @) -1 - @ (CARRY = 1)
= 2 = 3
You may have wondered  how the microprocesso: handles
subtractions where the result is 1less than zero. Try for
example 8 — E = - 6. Change line 5 of the program, ASM and RUN
it
1 ORG $06p¢
2 PLA
3 LDA #$08
4 SEC
5 SBC #$0E
6 STA $@3FD
7 RTS
address (3FD before = ?7
address @3FD after = FA
8 or BORROW = 1(8 carry cleared to zero
= B - E
= FA
= FA

NOTE: that - 6 = @ -
6

This clearing of the carry to signify a borrow can be
multibyte subtraction in the same way as it can for
addition. Try to write a program to do the
subtraction:

$E615 - $7198

Here is an example

1 ORG $@6¢9
2 PLA
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LDA #$15
SEC
SBC #$98
STA $@3FD
LDA #$E6
SBC #$71
STA $(P3FE
) RTS

= O 0N WL N~ W

ASM and RUN this, noting the results. Use WATCH to observe
$3FE - the high byte of the result and RUN again. Combine the
high and low bytes of the result to get the answer $747D.

These instructions ADC and SBC can be used in many addressing
modes, like most other instructions. In this chapter we have
only used immediate addressing.

NOTE: SEC and CLC have only one addressing mode - implied.
They perform a set/reset on a specific bit of the status
register and there are no alternative addressing modes. Their

method of addressing is 'implied' within the instruction.

An exercise

Write a program to add the value $37 to the contents of memory
location $@3FD using ADC in the 'absolute' addressing mode, and
put the result back there. Use WATCH to observe the results.

NOTE here:

LDA #$FF
GLE
ADC #$01

leaves the value #$0@ in A with the carry set, and

LDA #$0¢
SEC
SBC #$¢1

leaves the value #$FF in A with the carry clear (borrow).

Therefore we have what is called ‘'wrap-around'. Counting up
past 255 will start again from ¢, and counting down past zero
will count from 255 down.
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Chapter 5 SUMMARY

1. Any size number may be represented by using more than 1
byte. Numb = 1st byte + 2nd byte x 256 + 3rd byte x 65536
...etc.

2. The 6502 microprocessor has a carry flag which 1is set to
signify the carry of data into the high byte of a two byte
addition.

3. ADC adds two bytes plus the contents of the carry flag. A
CLC should be used if the carry is irrelevant to the addition.

4. ADGC sets the carry flag if the result is greater than 255,
and clears it if it is not. The answer left in the accumulator
is always less than 256. (A = Result Mod 256).

G SBC subtracts memory from the accumulator and then
subtracts the inverse of the carry flag. So as not to have the
carry interfere with the calculations, a SEC should be wused
before SBC.

6. SBC sets the carry flag if the result does not require a
borrow (A - M > @¢). The carry flag is cleared if (A - M < @)
and the result left in A is 256 — (A - M).

7. Two byte addition:

CLEAR CARRY

XX = ADD LOW BYTES + (CARRY = @)
YY = ADD HIGH BYTES + (CARRY = ?7)
Result is $YYXX

8. Two byte subtraction:

SET CARRY

XX SUBTRACT LOW BYTES - INVERSE (CARRY = 1)

YY = SUBTRACT HIGH BYTES - INVERSE CARRY (CARRY = ?7)
Result is $YYXX
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Chapter 6
Program Control

Player-Missile Graphics

Back in Chapter 2 we saw how we could display information on
the screen by placing that data in 'screen memory'. There is a
special 'chip' in the Atari 13@XE which handles screen oriented
tasks. It is called the Antic-chip. (A brief guide appears in
Appendix 5). Using the techniques of addition and subtraction
that we learned in the previous chapter, we will look at some
of the following features available on the ANTIC chip.

Type in the following program using ALPA:

NEW
NWATCH

APPEND

1 ORG $p60¢
2 PLA

3 LDA #$03
4 STA $D@1D
5 LDA #$3E
6 STA $022F
7 LDA #$¢1
8 STA $DP@8
9 LDA #$32
1¢ STA $DPPD
11 LDA #$58
12 STA $02CQ
13 LDA #$9¢
14 STA $6A
15 STA $D4@7
16 LDA #$¢2
17 STA $9432
18 LDA #$E2
19 STA $9433
29 LDA #$42
21 STA $9434
22 STA $9435
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23 LDA #$FF
24 STA $9436
25 RTS

ASM and RUN.

This should produce a small space ship near the top left of the
screen. This square is known as a 'Player Missile Graphics'.
It is the size of eight double sized pixels but can be moved
about the screen quite easily and over other characters. It 1is
controlled by the registers (hands) of the ANTIC chip. These
registers are similar to the registers of the microprocessor
but in order to use them directly they have been 'mapped' onto
memory from D&4@P to DSFF.

The term 'mapped' means that these registers have been put over
the memory. When you access the memory you are in fact dealing
with the registers of the ANTIC chip or whatever else may be
mapped over that memory. To use the description of the post
office boxes we were using before, you could imagine this sort
of mapped memory as post office boxes with false bottoms, and
chutes that connect the box to some sort of machine somewhere
else in the post office.

Moving Player-Missile Graphics

What we are going to do is write a program to move our Player
around the screen.The horizontal position of the four players
is controlled by registers at locations 53248 to 53251. We are
going to move player zero across the screen by incrementing his
horizontal position register (53248).

Looping using JMP

There is an instruction for this - it 1is the JMP (JUMP)
instruction. Like BASIC's 'GOTO' you have to tell the 'JMP'
where to jump to in the form JMP address (JMP low Low Byte,
High Byte) (ABSOLUTE ADDRESSING).

We will use this instruction to create a program equivalent to
the following BASIC program.

INITIALISE
10@ POKE 53248,X:X=X+4

11¢ GOTO 1¢¢
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Delete the RTS from the end of the 1last program and add the
following lines with APPEND:

26 LOOP LDX COUNT
27 INX

28 INX

29 INX

30 INX

31 STX $DP@P
32 STX COUNT
33 JMP LOOP
34 COUNT DFB $¢¢

ALPA label name addressing

The addressing mode used in line 33 1is absolute addressing.
One of ALPA's features is that it will calculate addresses for
you. Normally, when using JMP in absolute addressing mode, you
would have to work out the address you want the JMP command to
go to — which can be a nuisance as shown 1in the following
samples:

1. ¢60@: 4C @8 96 JMP $0608

p6@3: A9 @2 LDA #$¢2
p6p5: 8D FD @3 STA $3FD
p6@¢8: 6@ RTS

2. @3FF: 4C FD @3 JMP $@3FD

P4p2: A9 @2 LDA #$02
@4@4: 8D FD @3 STA $@3FD
P4p7: 69 RTS

3. 96@p: 4C @B 06 JMP $06¢B

P6@¢3: A9 @2 LDA #$02
P6@¢5: 18 GLE
P606: 69 B4 ADC #$04
@6¢8: 8D FD @3  STA $3FD
P6@B: 60 RTS

To create program 2. from program 1.

In other words to move the same program to a different part of
memory, you would have to go through the whole program, each
time changing all the JMP instructions that JMP to an address
within the program, and change them (and only them) to point to
a new address.
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To create program 3. from program 1.

This is done by the addition of a few short commands, something

you might often do while debugging. You would also have to
change any JMP commands to a new address. This would of course
be extremely frustrating, time consuming and error prone.

Therefore ALPA has a facility for specifying the address of the
JMP as a label. When the program is entered into memory with
ASM, ALPA converts the reference from a 1label to an absolute
address which the microprocessor can understand and execute.You
can see these addresses being generated when the ASM command 1is
given.

You will notice that the PMG (Player missile Graphic) is moving
across the screen at speeds that make it blur completely. This
is only a small indication of the speed of a machine code
program.

Infinite loops

You will also notice that the program is still going. Just
like the program

10@ POKE 53248,X:X=X+4
11¢ GOTO 1¢¢

Our program will go forever around the 1loop we have created.
This is called being stuck in an 'infinite loop'.

The 'BREAK' key will not get us out of this loop. There 1is a
machine code program which is part of BASIC that tests to see
if the BREAK key was pressed, but our program does not look at
the keyboard. There are only two ways to escape from an
infinite loop. One is to press the 'SYSTEM RESET key, which
creates an NMI (Non Maskable Interrupt) which will stop the
computer and return it to BASIC. The other way to stop the
program is to turn the computer off. Press the SYSTEM RESET
key and you will be returned to BASIC, to continue in ALPA with
your program intact type:

GOTO 12
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There is no other way to exit a machine language routine unless
it returns by itself wusing an RTS. Type LIST. NOTE that
because of the JMP the program would never gets as far as an
RTS, as in the following BASIC program:

10 X=4

2¢ PRINT "HELLO";X
30 X=X+4

4@ GOTO 20

5@ END

Obviously the END statement is never reached here, because of
the GOTO in line 4.

To get this program to print HELLO &4 to HELLO 1¢9 we would
write:

10 X=4

2¢ PRINT "HELLO";X
30 X=X+4

4p IF X=1¢4 GOTO 6@
5¢ GOTO 2¢

6¢ END

Here line 4@ will GOTO line 6@ only if X=1¢4 and the program
will GOTO the END statement and stop. If X is mnot equal to
1¢4, the program will GOTO 1line 5¢ and- continue around the
loop to line 2@. To do this in machine language we need one
instruction to compare two numbers (X and 1@4) and another
instruction to JMP depending on the result of the comparison
(IF .... GOTO 69@).

Comparing numbers

We have previously (see Chapter 5) met the idea of a flag. It
is a single bit (single finger) value held inside the

microprocessor. In chapter 5 we met the carry flag which was
set to signify the need for a carry in a multibyte addition
(reset or cleared for a borrow in multibyte subtraction). The

microprocessor has seven flags for different purposes which it
keeps in a special purpose register called the Processor Status
Code Register (or Status Byte).

These seven flags (and one blank) are each represented by their
own bit (finger) within this byte and have special
microprocessor commands dealing with them. These flags are set
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or reset by most machine code commands. (More will be said
about them in Chapter 1¢). For example, ADC sets or resets the
carry flag depending on the result of the addition. Similarly
'"CMP' (Compare), which compares the contents of the accumulator
with the contents of a memory location (depending on the
addressing mode), signifies its result by setting or resetting
flags in the status byte.

Branch instructions

The other instructions we said we would need to write our
program is one which would jump dependant on the values of the
processor status flags. This form of instruction 1is called a
'branch' instruction. It is different from the JMP instruction
not only in the fact that it is conditional (dependant on the
conditions of the status flags), but it is unique in that it
uses the relative addressing mode.

Relative addressing means that the address wused 1is calculated
relative to the branch instruction. More will be said about
relative addressing and the way the branch instructions work at
the end of this chapter. Meanwhile we will wuse ALPA to

calculate the address for wus as we did with the JMP
instruction.

Zero Flag

To test if the result of a CMP instruction on two numbers 1is
equal we use the BEQ (Branch on Equal) command.

To add this to our previous machine language program DELETE the
last nine lines of the previous program and replace them with
these, using APPEND:

25 LOOP LDA COUNT
26 CMP #$78
27 BEQ EXIT
28 GLE

29 ADC #$p1
30 STA $DP@P
31 STA COUNT
32 JMP LOOP
33 EXIT RTS

34 COUNT DFB $09
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Line 30 has been changed so that the Player does not move as
far in each jump, hence the the player will be slowed down.
Also a different method of incrementing the horizontal position
has been used. Despite incrementing the horizontal position
register by only one pixel, it will still be moving too fast
to be seen. ASM and RUN this program.

NOTE: ALPA has calculated and 'OK'ed both addresses wusing the
label references.

You will see this time that the player moved about halfway

across the screen and stopped as the program ended normally
with an RTS.

Program summary

Lines 1 =24 Initialisation

Lines 25-32 Player movement loop
Line 27 Test for end condition
Line 33 end

We have managed to find a way to use a loop that tests for a
condition on which to exit a loop. We could however make this
more efficient by creating a program that looped wuntil a
certain condition was met. This difference is subtle but it is
shown by this BASIC program in comparision to the previous one.

19 X=4

2¢ PRINT "HELLO'";X
30 X=X+4&

4§ IF X<>194 THEN 29
5¢ END

By creating a loop until a condition is reached we have saved
ourselves one line of the program. If speed or space were
important to the program, this would be a wuseful alteration.
Overall it is good programming practice to write code with
these considerations in mind. It produces neater, less tangled
programs that are easier to read and debug.

This programming method translates well into machine language
using the BNE (Branch on Not Equal) command.

Delete the last ten lines of the previous program and add these
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to the end of it with APPEND:

25 LOOP LDA COUNT
26 GLG

27 ADC #$0p1
28 STA $DO@BQ
29 CMP #3$80
30 BNE &LOOP
31 RTS

32 COUNT DFB $¢¢

LIST the program as it currently stands.

Program summary

Lines 1 -24 Initialisation
Lines 25-3¢ Player movement loop
Lines 31 end

You will see that by changing the loop we have untangled the
flow of the program. ASM and RUN the program to verify that it

still functions the same with the changes. As you can see,
there are many ways to write the same program. The notion of
right and wrong ways of machine language programming are
absurd, to quote a well used phrase, 'Don't knock it if it
works'. It may be that programs that are structured well are
better for you as they are more legible and easier to
understand.

There is a lot we can learn by knowing how an instruction
works. The CMP instruction for example compares two numbers by
doing a subtraction (accumulator - memory) without storing the
result in the accumulator. Only the status flags are set or
reset. They in fact test the status register 'zero' flag and
stand for:

BEQ - Branch on Equal to zero
BNE - Branch on Not Equal to zero

It is the condition of the zero flag which is set by the result
of the subtraction done by the CMP command (accumulator -
memory = ¢ which sets the zero flag = 1). This flag is then
tested by the BEQ or BNE command. This may seem a meaningless
point until you realise that, since the CMP command is done by
subtraction, the carry flag will also be set by the result. In
other words, if the subtraction perfomed by the CMP needs a
'borrow' (A - Mem < @, A less than memory), then the carry will
be cleared (CARRY = @). If the subtraction does not need a
'borrow' (A - Mem > @, A greater than or equal to memory), then
the carry will be set (CARRY =1)
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Therefore the CMP command tests not only A = Mem but also A <
Mem and A < Mem and therefore (if A > Mem but A ¢ ) Mem) then A
> Mem. We can now write our BASIC program:

19 X=4
2¢ PRINT "HELLO";X
30 X=X+4
4p IF X<1¢1 GOTO 2¢
5¢ END
This makes the program even more self explanatory. It shows

clearly that values of X bigger than the cutoff 1¢@ will not be
printed. To test for the accumulator less than memory, you use
the CMP followed by BCC (Branch on Carry Clear) because a
borrow will have occurred. To test for the accumulator greater
than or equal to memory use CMP followed by BCS (branch on
Carry Set).

Write a machine language program to move a player across the
screen and test for A ¢ memory (as in previous BASIC programs).

Relative addressing

All branch instructions using an address mode called relative
addressing (JMP is not a branch instruction). In relative
addressing the address (the destination of the branch) is
calculated relative to the branch instruction. All branch
instructions are two bytes long - one byte specifies the
instruction the other byte specifies the address. This works
by the second byte specifying an offset to the address of the
first byte after the instruction according to the Tables in
Appendix 4. From @ - 7F means and equivalent branch forward
and from 8p — FF means a branch backward of 256 — the value.

Therefore:

F@ @3 BEQ dest

8D FD ¢3 STA $3FD
dest 6@ RTS

will be the same no matter where in memory it is placed.

The value 3 as part of the branch instruction is the number of
bytes to the beginning of the next instruction (8D).

1st next byte (@)
2nd next byte (¢6)
3rd next byte (6@)
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With the following programs, check that the destination address
of the branch is in fact the address of instruction after the
branch plus the offset, e.g,

P6@d: FO 03 BEQ $4605
@6¢2: 8D FD ¢3 STA $3FD
PoPS: 6¢ RTS

and
@3FD: FQ @3 BEQ $04¢2
@3FF: 8D @@ @6 STA $600
Pup2: 60 RTS

The machine code remains the same but the disassembled version
differs. The program will work exactly the same at either
address. This is completely opposite to the case of the JMP
which wuses absolute addressing and cannot be relocated.
Fortunately we do not have to calculate offsets wusing the
tables, because these offsets would have to be recalculated
every time we added an instruction between the branch command
and its destination address. When we use the branch command we
can get ALPA to calculate the offset for us using branch label
name.

Use ALPA to write some programs with branch instructions in
them, using the label feature, and check ALPA's output by
disassembling the ASMed code, then verify that the branch takes
the correct path using the relative branch table in Appendix 4.

Chapter 6 SUMMARY

1. A Player-Missile is a character eight pixels wide ,256
pixels high and the size of 32 normal characters, which can be

moved over the screen on top or behind other characters.

2. The command JMP address is the equivalent to BASIC's GOTO
command. It makes the program jump to the address specified.

3. ALPA can handle addresses as either absolute addresses
($5619) or as labels, e.g, JMP WORD (Jump to the value of the
label WORD).

4. To break out of an infinite loop, press system RESET and to
start ALPA without losing your current program enter: GOTO 12
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5. The microprocessor's STATUS CODE Register has seven flags
(and one blank) which are set by some machine code
instructions.

6. Branch instructions jump conditional on the state of the
flag referred to by the instruction, e.g.,

BEQ Branch on Equal Z
BNE Branch on Not Equal Z
BCS Branch on Carry Set G =
BCC Branch on Carry Clear C

|
RS S

7. The CMP compares two bytes (by doing a subtraction without
storing the results). Only the flags are set by the outcome.

Flags CARRY ZERO Signifies
() () A < Mem
Value 1 1 A = Mem
1 [} A > Mem
1 ? A >= Mem
8. Relative addressing  mode, used only for branch

instructions, specifies an address relative to the instruction
which uses it, e.g. BNE ®#3 means branch three memory addresses
forward (see table Appendix 4). The destination of a branch
instruction is preceeded by an ampersand which tells the
assembler that the addressing mode is relative.

9. ALPA handles this addressing for you if you specify branch
labels.
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Chapter 7
Counting, Looping and Pointing

Counting to control a loop

Suppose we want to multiply two numbers together. There 1is no
single machine language instruction which can do this, so we
would have to write a program to do it. We could for example,
add one number to a total as many times as the other number is
large. e.g,

1¢ A=7

20 T=T+A:REM add three times
3¢ T=T+A

4B T=T+A

5@ PRINT "7%3=";T

It would be much easier and more practical (especially for
large numbers) to do this in a loop. e.g.,

I

10 A 3
20 T
3¢ B
4@ IF B<>@ THEN GOTO 2¢

5¢ PRINT "7#3=';T

T5B=
T+A
B-1

NOTE: this is by no means the best way to multiply two numbers,
but we are only interested in the instructions here. A
preferred method is described in chapter 10.

Counting using the accumulator

In this short program, unlike any other program we have dealt
with previously, there are two variables. A, which we are
adding to the total, and B which controls the 1loop. In this
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case we couldn't stop our loop as we have done in the past by
testing the total, because we would have to know the answer
before we could write the program. Our machine language
program would look, along the 1lines of what we have done
previously, like this:

ORG $06p¢
PLA
LDA #$0¢
STA A
LDA #$¢3
STA B
LOOP LDA A
LG
ADC #$07
STA A
LDA B
SEC
SBC #$@1
STA B
BNE &LOOP
RTS
17 A DFB $¢¢
18 B DFB $¢¢

NolNe - BENIN NNE IS

e e e
[« NG, I S CURN S S

Counting using memory

Most of this program consists of loading and storing between
the accumulator and memory. Since we so often seem to be
adding or subtracting the number one from a value as a counter,
or for other reasons, there are special commands to do this for
us. INC (Increment Memory) increments the contents of the
address specified by one and puts the result back in memory at
the same address. The same goes for DEC (Decrement Memory),
except that it subtracts 1 from memory.

NOTE: INC and DEC do not set the carry flag - they do set the
zero flag.

We will now write the program thus:

NEW

APPEND

1 ORG $p60¢
2 PLA
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3 LDA #$03
4 STA $@3FD
5 LDA #$0@
6 LOOP CLC
7 ADC #$07
8 DEC $@3FD
9 BNE &LOOP
19 STA $@3FE
11 RTS
Program summary
Line 2 Balance stack
Line 3 - 5 Initialise
Line 6 - Loop until result of DEC = @
Line 1¢-11 end

Using INC or DEC we can use any memory location as a counter,
leaving the accumulator free to do other things.

An exercise

Rewrite the previous progam using INC and CMP to test for the
end of the loop.

The X and Y registers

There are however even easier ways to create counters than
using INC and DEC. Looking back to Chapter 2, we mentioned
that the 65¢2 microprocessor had three general purpose
registers — A, X and Y. Then for the last few chapters we have
been talking solely of the most general purpose register, the
accumulator. So, you may now ask, what are the other ‘'hands'
of the microprocessor, the X and Y registers for?

and what does 'general purpose' mean? Well, so far we have met

one non-general-purpose register, the microprocessor status
register (there are another two which we will meet 1in future
chapters). The status byte can only be used to contain status

flags and nothing else, as compared to the accumulator which
can hold any number between @ and 255 representing anything.

The X and Y can, like the accumulator, hold any number between
@ and 255, but there are many functions of the accumulator they
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cannot do, e.g., Addition or Subtraction. The X and X
registers are extremely useful as counters.

They can perform the following operations (compared to those we
have already discussed for the accumulator and for memory).

LDA Load Accumulator with memory

LDX Load X with memory

LDY Load Y with memory

STA Store Accumulator in memory

STX Store X in memory

STY Store Y in memory

INC Increment memory

INX Increment X (Implied addressing mode)
INY Increment Y

DEC Decrement memory

DEX Decrement X (Implied adressing mode)
DEY Decrement Y

CMP Compare Accumulator with memory

CPX Compare X with memory

CPY Compare Y with memory

Using the X register as a counter

We will now write our multiplication program wusing the X
register as the counter. Type in the following:

NEW

WATCH

(WHAT ADDRESS )? @3FD

APPEND

1 ORG $P60@
2 PLA

3 LDX #$@3

4 LDA #$00

5 LOOP CLC

6 ADC #$07

7 DEX

8 BNE &LOOP
9 STA $@3FD
10 RTS
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This routine is slightly shorter and considerably faster than

the orginal but otherwise not all that different. Rewrite all
the commands using the X register and replace them with the
equivalent Y register commands. Practise using the X and Y

register in place of or with the accumulator in some of our
previous programs.

Moving blocks of memory

How would you write a program to move a block of memory from
one place to another? For instance to move the memory from
8¢pPp — $805¢ to the memory at $7¢¢@ — $7¢5¢. The following is
how not to do it:

LDA $8009
STA $700
LDA $8¢@1
STA $7¢@1
LDA $8¢@2

etc.

This is a ridiculous way to even think of moving blocks of
memory, because of the size of the program we would have to
create (However it is the absolute fastest method of moving
blocks of memory).

One possible way of writing the program would be:

LDA $8p@9
STA $7¢0®

followed by some code which did a two byte increment to the
address part of the instruction and then a loop to go through
the whole block to be moved. This is an extremley interesting
concept to think about. Tt is a program which changes itself
as it functions, it is called 'self modifying code'.

But because it changes itself it is very hard to use correctly.
It is also considered very poor programming practice to use
because it is prone to errors ( one mistake in writing or
calculations will send your computer crazy and you will
probably have to switch off and back on to recover). Self
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modifying code is also extremely hard to debug. However, there
can be some advantages, it would be very hard for anyone to
understand this kind of coding (protection) and it may be safe
to use if carefully written and well documented.

Self modifying code is therefore obviously not the answer to
our problem. The answer in fact, lies 1in addressing modes.

Originally we called addressing modes ways of accessing data
and memory in different formats. We have so far seen:

Implied addressing

The data is specified as part of the instruction, e.g., SEC,
DEY.

Relative addressing

Addressing relative to the instruction - used only in branches.

Absolute addressing

The data is specified by a two byte address in 1low byte, high
byte format.

Indexed addressing

Our new method of addressing is «called 'indexed addressing'.
It finds the data to be used by adding a byte index to the
absolute address specified in the instruction. The 1indexing

byte is taken from the X or Y register (depending on the
instruction used). The X and Y registers are called 'Index
registers’'.

To use our post office analogy, it is like being given two
pieces of paper, one with a two byte address on it and one with
a one byte index (@ - 255). To find the correct box you must
add the two numbers together to obtain the correct result. The
number on the indexing paper may have been changed, the next
time you are asked to do this.

Using the X register as an Index

With this addressing mode, our program to move a block of data
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becomes quite simple. Type the following:

NEW
APPEND

ORG $060¢

PLA

LDX #$09
LOOP LDA $9C4¢,X

STA $9C68,X

INX

CPX #$28

BNE &LOOP

RTS

Nelie BN U, NS

NOTE here that the mnemonic form of indexed addressing has its
address field made up by the absolute address, a comma and the
register used as the index, even though the following is true:

BD4®9C LDA $9C49,X
B94@9C LDA $9C40,Y

It is the instruction, not the address field, which changes in
the actual machine code. RUN the program. As you can see, we
have used the screen memory again to show that we have in fact
duplicated a block of memory. One line on the screen will be
copied into the line below (the first line onto the second
line). Be sure to have some text on the first line to see the
effect!

Non-symmetry of commands

If, as was suggested when we introduced the X and Y registers,
you have substituted the X or Y for the accumulator in some of
the early programs, you may be wondering if we could do that
here. The answer is no. Not all the commands can use all the
addressing modes. Neither Y or X (obviously not X) can use the
index, X addressing mode being used here with the store (STA).
It is possible to do a LDY ADDR,X but not a STY ADDR,X. For a
list of addressing modes possible for each instruction, don't
forget Appendix 1.

Searching through memory

We can use the knowledge we have gained up to this point to
achieve some interesting tasks quite simply. For example, if
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asked to find the fourth occurrence of a certain

A9 within 255 bytes of given address, how do we do it?

The best way is to start simply and work your way up.
the first occurrence of A9 we could write:

NEW
APPEND

LOOP

Nelie RN N WG, BN U SIS

F@FF)
1¢ FOUND

ORG
PLA
LDY
LDA
CMP
BEQ
INY
BNE
RTS

RTS

$0609

#5900
#$A9
$FOP0, Y
&FOUND

&LOOP
(not having found A9 from

(having found an A9)

We would put a counter program around this routine:

LDX #$0¢
countloop FIND

INX

CPX #$04

BNE countloop

We can combine these into a single program:

LOOP1

LOOP2

12 LOOP3

ORG
PLA
LDX
LDY
LDA
CMP
BEQ
INY
BNE
STX
RTS
INX
CPX
BNE
STX
RTS

$060p

#$09
#$00
#$49
$FOP0, Y
&LOOP3

&LPPP1
$G3FD

#ep4
&LOOP2
$@3FD
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In this program, when finished, if X = 4, then the fourth
occurence of A9 was at $F@P@@,Y (through RTS at line 16).

If X € 4, there were not four occurrences of A9 from $FPPP to
$FPFF (through RTS at line 11)

Line 14 continues the find routine from the 'INY'. If it
started from the 'CMP' it would still be looking at the A9
found before. Type:

WATCH
(What address )? @3FD

ASM and RUN this program. The results will tell you whether
four A9's were found. Change the program to tell you where the
fourth A9 was located (STY $@3FD). ASM and RUN it again to see
the result. We will now change a few things to make this

program clearer (as in the earlier chapter). Type the
following:
NEW
APPEND
1 ORG $0600
2 PLA
3 LDX #$0¢
4 LDY #$49
5 LDA #$A9
6 LOOP INY
7 BEQ &EXIT
8 CMP $EFFF,Y
9 BNE &LOOP
10 INX
11 CPX #$04
12 BNE &LOOP
13 STX $433D
14 EXIT RTS

As shown before this program should now be easier to follow.
Type:

Program Summary

Lines 1 - 5 Initialisation

Lines 6 — 9 Find 'A9' loop

Lines 1¢-12 Counter

Lines 13-14 End

(Since Y is incremented before it is used, its initial index
value is 1. Therefore the compare instruction address field

has been set back by 1.)
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ASM and RUN the program. The WATCH function will show you the
results the contents of $@3FD = contents of X = number of
'A9's' found. (The maximum is still 4 - you can change this in
line 11 if you wish).

Using more than one Index

We will now write a program using both index registers to index
different data at the same time. Our program will create a
list of all the numbers lower than $38 from $F@@@ to $FPFF.
Type the following:

NEW

APPEND

1 ORG $06p¢

2 PLA

3 LDX #$26¢

4 LDY #$FF

5 LOOP INY

6 LDA $FQ@@,Y
7 CMP #$38

8 BCS &LOOP2
9 STA $9C40,X
10 INX

11 LOOP2 CPY #$FF

12 BNE &LOOP
13 STX $@3FD
14 RTS

WATCH

(what address )? @3FD

X here is used as a pointer (index) to where we are storing our
results. Y is used as a pointer to where we are reading our
data from. NOTE here that Y starts at $FF, and is incremented
so at the first $A9 the Y register contains zero.

To test for numbers less than $38 we have used CMP and BCS (A
>= Mem see Chapter 6) to skip the store and increment the
storage pointer instructions. ASM and RUN the program.

Zero page indexed addressing

All the indexing instructions we have wused so far have been
indexed from an absolute address (absolute indexed addressing).
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It is also possible to index from a zero page address (see
chapter 2). To rewrite the previous program to look through
the first 256 bytes of memory (@ - 255), all we need to do is
change line 4% to LDA $@@,Y. But if you check with the list of

instructions in Appendix 1, there is no 'LDA =zero page,Y' -
only 'LDA zero page,X'. We have two choices of what to do
here. In practice we would probably continue wusing the

absolute indexed instruction.

BD @¢@p@ LDA $0000,Y

For the purposes of this exercise, however, we will swap all
the usages of X and Y and use the LDA zero page,X. Type:

NEW
APPEND

il ORG $0600

2 PLA

3 LDY #$¢9

4 LDX #$FF

5 LOOP INX

6 LDA $00,X

7 CMP #$38

8 BCS &LOOP1
9 STA $9C4¢,Y
19 INY

11 LOOP1 CPX #$FF

12 BNE &LOOP
13 STY $¢334
14 RTS

LIST

ASM and RUN

This shows that you must be careful with your choice of
registers. Although they can do many of the same things, there
are some commands which cannot be done by some registers in
some addressing modes. It is wise to constantly refer to the
list of instructions in Appendix 1 while writing programs.

Chapter 7 SUMMARY

1. INC - adds one to the contents of memory at the specified
address.
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2. DEC - subtracts one from the contents of memory at the
address specified.

3. The zero flag (but not the carry) is set by the INC and DEC
instructions.

4, These are mostly wused as loop counters to keep the
accumulator free for other things.

5. X and Y the microprocessor's other two general purpose
registers (the first being the accumulator), can be used as
counters or as index registers.

6. Indexed addressing adds the value of the register specified
to the absolute (or zero page) address used to calculate the
final address of the data to be used.

7. Many of the instructions are similar if used on A, X or Y,
but there are certain instructions and addressing modes which
are not available for each register. When writing programs,
make sure the instructions you are trying to use exist in the
format you wish to use them in!
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Chapter 8
Using Information Stored in Tables

One of the major uses of index registers is the looking wup of
tables. Tables may be used for many reasons - to hold data, to
hold addresses of various subroutines, or perhaps to aid in the
complex conversion of data from one form to another.

Displaying characters as graphics

One such conversion, for which there is no formula that can be
used, is the conversion from screen code to the shape of the
character displayed on the screen. Normally this done by the

computer's hardware and we do not have to worry about it. When
we are in graphics mode, however, this part of the computer's
hardware is turned off. 1In normal character screen mode, our

post office boxes within screen memory display through their
'glass' fronts the character which corresponds to the number
stored in that box.

That is, we are seeing what is in the box through some sort of
'"filter' which converts each number into a different shape to
display on the screen. In graphics mode, this 'filter' is
taken away and what we see is each bit (finger) of each number
stored throughout screen memory. For each bit in each byte
that is turned on, there is a dot (pixel) on the screen.

In other words the byte $11 which looks like '@@@10¢@1' would
be displayed on the screen as eight dots, three black dots
followed by one white dot, followed by three black dots,
followed by one white dot. Depending on your television, you
may be able to see the dots making up the characters on your
screen. Each character is made up by a grid of eight dots wide
and eight dots high. Since we have just determined that we can
display eight dots on the screen wusing one byte, it follows
that to display one character eight dots wide by eight dots
high, we would need to use eight bytes one on top of the next.
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For example a character would look like:

8 x 8 pixel grid binary byte hexadecimal byte
equivalent equivalent
1234567
0 I 00011000 18
1 00100100 24
2 01000010 42
3 01111110 7E
4 01000010 42
5 01000010 42
6 01000010 42
7 | | P0000000 )

Graphics memory

The memory as displayed in graphics mode 8 runs straight across
the screen. Each byte represents eight pixels horizontally and
there is 4@ bytes to a row. In the character mode we saw that
the screen memory started at $9C4@, $9C41 next to that, $9C42

next to that and so on to the end of the first row. In
graphics mode 8 the characters are displayed as follows; the
top left hand corner of the screen 1is at $815¢, $8151 is
directly opposite and $8177 is at the end of the line. The

next row of pixels down start at $8178 ($815¢+$28), the next
row down at $81A¢ ($8150+$5@) and so on down to the end of
graphic memory at $9F4F.

In this way the screen memory is defined one line block at a
time (forty bytes horizontally) across the screen. This is the

same for all 192 rows positions down the screen. This means
there can be forty bytes by eight bits (4 x 8 = 320 pixels)
across the screen.

$8150 | $8151 $8176  [$8177

$8178 $8179 $819E $819F

$81A0 $81A1 $81C7

$81C8 $81EF

$81FO $8217

$8218 AR $823F

$8240 $8267

$8268 192 $828F

[sorap  [sorae  [sorar |
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The entire screen in graphics mode 8 is 320 x 192 pixels and
takes up 320 x 192 / 8 = 768p bytes of memory (this is for a
full graphics mode not a mixed text and graphics). The
starting point of the screen in both graphics and character
mode can be changed to suit the programmer (see Appendix 6).
It is possible to see the BASIC program ALPA on the screen as a
series of dots. It is wvitally important that we do not
overwrite ALPA while drawing on the screen.

We have shown that the shape of the character A can be
represented by a string of eight bytes. We have also shown
that the first eight bytes of screen memory make wup one
character position. Therefore by putting those eight values
into those eight bytes, we could make an A appear on the screen
in the top left hand corner.

Copying the character sets
from ROM

Type in the following program. It will copy some of the
character sets down from character memory to where they can be
more easily used. Don't worry about the instructions here not
yet covered. Executing this program as it presently stands
won't change anything.

NEW

APPEND

1 ORG $060¢

2 PLA

3 LDA #3500

4 STA $CB

5 STA $CD

6 LDA #$9¢

7 STA $CC

8 LDA #$EQ

9 STA $CD

1¢ LOOP1 LDY #$09

11 LOOP2 LDA ($CD),Y

12 STA ($CB),Y

L3 INY

14 BNE &LOOP2

15 INC $CC

16 INC $CE

17 LDA $CE

18 CMP #$E3

19 BNE &LOOP1

2¢ RTS

NWATCH

ASM and RUN this program.
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You now have a copy of the ROM character set starting at RAM
memory location $9¢@@. Only the first 128 characters have been
copied by this routine.

We will now add to the end of the last program to define our
own characters. At the moment there 1is a copy of the
characters in RAM but the video chip is still fetching it's
character definitions from ROM. We must tell the video chip to
start getting it's definitions from RAM. To do this we load
memory location 756 decimal with the page of the character set.
A page in 65@2 is defined as 256 bytes. The definitions in RAM
can then be changed to suit us. Add these lines to the end of
your last program. Delete the last line from your program and

Type:

APPEND
2¢ LDA #$9¢
21 STA #$02F4
k) LDA #$FF
23 STA $90¢0
24 : STA $9¢¢1
25 STA $9¢9¢2
26 STA $9¢@3
27 STA $90¢4
28 STA $90¢5
29 STA $9006
3¢ STA $99¢7
31 RTS

ASM and RUN this program.

We now have our character set starting at $9¢@¢® and our space
has been redefined as a solid block of pixels. To put back the
orginal character set press RESET and GOTO 12. The RESET
routine replaces the pointer to the ROM routine.

Indirect indexed addressing

There will be some cases where you may be wunsure as to which
table you want to find your data in. In other words, imagine a
program which lets you decide whether you wanted to print the
message in upper or lower case letters after the program had
run. You will want to use one of the two tables decided on
midway through the program. This could be done by two nearly
identical programs, each accessing a different table in memory
and have the beginning of the program decide which one to use.
Of course, this would be wasteful of memory.
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To access data using this method, there is an addressing mode
called indirect 1indexed addressing, which allows you even
greater flexibility as to where you place your data. Indirect
indexed addressing is similar to absolute indexed addressing
except that the absolute address is not part of the instruction
but is held in two successive zero page locations pointed to by
the indirect indexed instruction. In other words, the contents
of the zero page address pointed to by the indirect indexed
instruction, is the low byte (of a low byte — high byte pair)
that contains an address which is indexed by the index register
Y to obtain the final address. (Indirect indexed addressing is
always indexed using the 'Y' register).

Imagine the following situation wusing our post office box
analogy. You are handed an instruction to look in a box (zero
page). The number you find in that box and the box next to it,
go together to make an absolute address (low byte - high byte
format). You are then told to add an index (Y) to this address
to find the address you are looking for.

The mnemonic for this instruction is QQQ (ZP),Y where QQQ is an
instruction of the form, LDA. ZP is a one byte =zero page
address and the Y is outside the bracket to signify that the
indirection is taken first, and the index added later. Type in
the following example program:

NEW
APPEND

1 ORG $060@

2 PLA

3 LDA #$09

4 STA $CB

5 LDA #$EQ

6 STA $CC

bl LDA #$40

8 STA $CD

9 LDA #$9C

19 STA $CE

11 JSR COPY

12 LDA #$00

13 STA $CB

14 LDA #$E1

i5 STA $CC

16 JSR WAIT

17 JSR COPY

18 RTS

19 CcoPY LDY #$00@

20 LDX #$FF

21 COPYA LDA ($CB),Y
22 STA ($CD),Y
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23 INY

24 DEX

25 BNE &COPYA
26 RTS

27  WAIT LDY #$FF
28 WAITA LDX #$FF
29 WAITB DEX

30 NOP

31 NOP

39 BNE &WAITB
33 DEY

34 BNE &WAITA
35 RTS

This program will copy part of the ROM data to the screen, wait
for a second and then copy some other ROM data to the screen.
The subroutine COPY will move any page to any other page. It
is only necessary to change the pointer to the souce in $CB-$CC
and the pointer to the destination in $CD-$CE and call the
routine. The beauty of indirect Y is that it can make a

subroutine totally generalized. By just changing some zero
page locations, pointers are changed and a subroutine can use
totally different data. The instruction NOP doesn't do

anything, it just takes a certain amount of time to execute
and is used as a time delay.

To change the data that is being displayed change the source
pointers on lines 3,5,12 and 14. Needless to say the indirect
Y instruction is incredibly useful, however it must be used
with discretion . There are only 256 zero page memory
locations.

Register transfer instructions

In the last program we used an instruction that you haven't
previously met - TAY (Transfer A into Y). This is only one of
a group of quite simple instructions to transfer the contents
of one register to another.

The available instructions are:

TAX (Transfer A into X)
TAY (Transfer A into Y
TXA (Transfer X into A)
TYA (Transfer Y into A)
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These instructions are wused mainly when the operations
performed on a counter or index require mathematical
manipulations that must be done in the accumulator and then
returned to the index register.

NOTE:there is no instruction to transfer between X and Y. LE
necessary this must be done through A.

There are two addressing modes that we have not vet covered
which we will briefly touch on here. The first is called
Indexed Indirect addressing. No, it is not the one we have
just covered, that was the Indirect Indexed addressing. The
order of the words explains the order of the operations.
Previously we saw indirect indexed in the form, QQQ (ZP),Y,
where the indirection was performed first followed by the
indexing.

In indexed indirect QQQ (ZP,X), the indexing is done first to
calculate the zero page address which contains the first byte
of a two byte address (low byte - high byte format), this is
the eventual destination of the instruction.

Imagine that you had a table of addresses in zero page. These
addresses point to data or seperate tables in memory. To find
the first byte of these tables you would wuse this instruction
to index through the =zero page table and wuse the correct
address to find the data from the table you were 1looking for.
In terms of post office boxes, we are saying here is the number
of a post office box (zero page). Add to that address the
value of the indexing byte (X register). From that calculated
address, and from the box next to it (low byte — high byte), we
create the address which we will use to locate the data we want
to work on.

Indirect addressing

The last addressing mode we will cover is called Indirect
absolute addressing. There is only one instruction which uses
indirect addressing and that is the JMP command.

The JMP using absolute addressing 'Jumps' the program to the
address specified in the instruction (like GOTO in BASIC).

In indirect addressing, 'JMP (address)', the two byte
(absolute) address within the brackets is used to point to an
address anywhere in memory that holds the low byte of a two
byte address, which is the destination of the instruction. In
other words, the instruction points to an address that, with
the next address in memory, specifies the destination of the
Jump. In post office box terms, this means that you are handed
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the number of a box. You look at the box and the one next to
it to piece together (low byte - high byte format) the address
that the JMP instruction will use.

The major use of this instruction is known as vectored input or
output. For example if you write a program that jumps directly
to the ROM output character address to print a character, and
then you wish output to be directed to disk, you would have to

change the JMP instruction. Using the vectored output, the
program does a JMP indirect on a RAM memory location. 1f the
disk operating system is told to take control of output, it
sets up the vector locations so a JMP indirect will go to its
programs. If output is directed to the screen those locations

will hold the address of the ROM printing routines, and your
program will output through there.

Below is a list of the addressing modes available on the 65@2
microprocessor.

Implied QQQ
Absolute QQQ addr
Zero Page QQQ zZP
Immediate QQQ #byte
Relative BQQ Byte - (L# from ALPA)
Absolute,X QQQ addr,X
Absolute,Y QQQ addr,Y
Indexed
Zero Page,X QQQ ZP,X
Zero Page,Y QQQ zZrP,Y
Indirect Indexed QQQ (zZP),Y
Indexed Indirect QQQ (ZP,X)
Indirect JMP (addr)
also
Accumulator QQQ A

(An operation performed on the accumulator, see Chapter 1¢).

Chapter 8 SUMMARY

1. In graphics mode () the screen is organized as 24 lines of
4@ characcers. Each line is organized as a sequential portion
of memory.

2. Characters are defined within an 8 x 8 pixel grid.
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3. Screen memory in graphics mode 8 runs across the screen in
lines of bytes and then down the screen row by row.

4. The normal character set is stored in ROM at $E@@PP, but can
be copied to RAM and altered.

5. Index registers are used to look wup tables (among other
things), using several indexed addressing modes.

6. In normal indexed addressing, the index register 1is added
to an absolute (or =zero page) address to calculate the
destination address.

7. 1In indirect indexed addressing, the destination address 1is
calculated by adding the contents of the Y register to to the 2
byte address stored in zero page locations pointed to by the
one byte address in the instruction.

8. In indexed indirect addressing, the eventual address is
calculated by adding the X register to the =zero page address
which forms part of the instruction.

9. TAX, TAY, TXA and TYA are used to transfer data between the
index registers and the accumulator.

1¢. Indirect absolute addressing is for JMP only and wuses the

contents of two bytes (next to each other), anywhere in memory,
as the destination address for the jump.
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Chapter 9
Processor Status Codes

We mentioned in Chapters 5 and 6 the concept of flags within
the microprocessor. We talked about the carry flag and the
zero flag, and we discussed the branch instructions and other
instructions associated with them, e.g., SEC, CLC, BCS, BCS,
BEQ and BCC. We said that these flags along with several
others, were stored in a special purpose register within the
microprocessor called the processor status code register or,
simply the status register. This register is set out like any
other register or byte in memory, with eight bits (fingers).
Each bit represents a flag for a different purpose:

7 6 5 4 3 2 1 0
INT v -] BID[1T2Z]C]

{ y 1 N
OVERFLOW| BREAK| INTERRUPT CARRY

NEGATIVE BLANK DECIMAL ZERO
(UNUSED)

A list of which instructions set which flags can be seen in the
table in Appendix 1.

1. The carry (C) flag, as we have already seen, is set or
cleared to indicate a 'carry' or 'borrow' from the eighth bit
of the byte into the 'ninth' bit. Since there is no ninth bit,
it goes into the carry to be included in future calculations or
ignored. The carry can be set or cleared using SEC and CLC
respectively. A program can test for carry set or cleared
using BCS or BCC respectively.

2. The zero (Z) flag, as we have already seen is set or
cleared depending on the result of some operations, comparisons
or transfers of data (Load or Store). A program can test for
zero set or cleared by using BEQ or BNE respectively.

3. Setting the break (B) flag, using the BRK command causes
what is known as an interrupt. More will be said about
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interrupts in Chapter 11. Using a BRK will cause your machine
language program to stop and the computer to jump indirect on
the contents of $FFFE and $FFFF. These ROM addresses hold the
ac’dress of a break routine which will return you to BASIC.
Using the BRK command is a very effective way of debugging a
program.

By inserting this command into your program at specific points,
you will be able to trace (by whether the program stops or
hangs) how far a program is getting before it does the wrong
thing. The BRK command gives you the chance to stop a program
and test the variables in memory to see if they hold the wvalues
you would expect at this point in the program. Use the BRK
command with one of the programs from this book to practise
using it as a debugging tool.

4., The interrupt (I) flag, may be set or cleared use SEI or
CLI respectively. When set, the interrupt flag will disable
certain types of interrupts from occurring (see Chapter 11).

5. The decimal (D) flag, may be set or cleared using the SED
and CLD commands respectively. When the decimal flag 1is set
the microproccesor goes into decimal or BCD mode. BCD stands
for Binary Coded Decimal and is a method of representing
decimal numbers within the computer's memory. In the BCD
representation, hexadecimal digits § - 9 are read as their
decimal equivalents and the digits A - F have no meaning. In
other words:

BCD REPRESENTATION

Binary Hex Decimal value of BCD
POPBPPPD (010 ()
POPPPPP1 P1 1
POPOPP1P @2 2
PPPPPP11 ?3 3
POPPP1LPP Pb 4
POPPP1P1 @5 5
POPPP1L1 ?6 6
PPPPP111 @7 7
PPPPLPPP ?8 8
POPP1PP1 ?9 9
POPLPPPP 19 19
PPPLAGAH1 11 11
PR1LPPP1LD 22 22
P10pPP11 43 43
10011000 98 98
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This shows that there are six possible codes between the

of 9 and 19 which are wasted.

In decimal mode the

subtracts BCD numbers, e.g.

Decimal Flag = @
17
+26

3D

The problems with decimal mode
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Using this representation, you will see that any byte whose
value is greater than 127 (with its high bit, bit 7 turned on)
represents a negative number, and any value less that 128 (high
bit turned off) represents a positive number.

1 XX XX XXX - NEGATIVE
p X XXX XXX - POSITIVE

The negative flag in the status register is automatically set
(like the zero flag) if any number used as the result of an
operation, a comparison or transfer, 1is negative. Since the
microprocessor cannot tell if the wvalue it 1is dealing with
represents a number, character or anything else, it always sets
the negative flag, if the high bit of the byte being used is
set. In other words, the negative flag is always a copy of bit
7 (high bit) of the result of an operation.

Since the high bit of a byte is a sign bit (representing the
sign of the number) we are left with only seven bits to store
the actual number. With seven bits you can represent any
number between ¢ and 127 but, since ¢ = —-@ on the negative side
we add one. So two's complement numbers can represent any
number from -128 to +127 using one byte.

Let's try some mathematics using our new numbering system.

Two's Complement Binary Decimal value
Positive + Positive (no different no normal)
00000111 + 7
+00001001 ++ 9
00010000 16 C=0V=0N=0
Positive + Negative (negative result)
00000111 + 7
+11110100 +-12
11111011 -5 C=0V=0N=1
Positive + Negative (positive result)
00000111 + 7
+11111101 +— 3
(1)00000100 +4 C=1V=0N=0
Positive + Positive (answer greater than 127)
01110011 145
+00110001 + 49
10100100 -92 C=0V=1N=1

NOTE: this answer is wrong!
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Two's complement numbering system seems to handle positive and
negative numbers well, except in our last example. We said
previously that two's complement could only hold numbers from
-128 to +127. The answer to our question should have been 164.
As in Chapter 3, to hold a number greater than 255 we need two
bytes, here also we must use two bytes. In normal binary a
carry from bit 7 (high bit) into the high byte was done through
the carry. 1In two'scomplement we have seen seven bits and a
sign bit so the high bit is bit 6. The microprocessor, not
knowing we are using two's complement arithmetic, has as usual
'carried' bit 6 into bit 7. To enable us to correct this, it
has set the overflow flag to tell us this has happened.

7. The overflow flag. This flag is set by a carry from bit 6
into bit 7.

765432190

eqg. [o[1[A[[+[1]1]] + I’orolwlwlolwlwlﬂ (1] o]e[o[o[0[0]0]
127 - 128

The major wuse of the overflow flag is 1in signalling the
accidental change of sign caused by an 'overflow' wusing two's
complement arithmetic. To correct for this accidental change
of signs, the sign bit (bit 7) must be be complemented
(inverted) and a one carried on to the high bit if necessary.

This would make our previously wrong result of -92 (101031¢¢)
become 1 x 128 (high byte) + 36 (¢@1031¢¢). 128 + 36 = 164
which is the correct answer.

A program can test for the negative flag being set or cleared
using BMI (Branch on Minus) or BPL (Branch on Plus)
respectively.

A program can test for the overflow flag being set or cleared
using BVS (Branch on Overflow Set) or BVC (Branch on Overflow
Clear) respectively. The overflow flag can be <cleared using
the CLV command.

Chapter 9 SUMMARY

1. The microprocessor contains a special purpose register, the
processor status code register.

7 6543210
NNEEGINE Icﬂ
N
OVERFLCiW BREAK INIERRUPT CARRY

NEGATIVE  Blank DECIMAL\ZERO
(UNUSED)
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2. CARRY - SEC, CLC
BCS, BCC

3. ZERO - BEQ, BNE
Set if a result or transfer = @.

4. BRK is an instruction which sets the break flag and halts
the microprocessor (useful for debugging purposes).

5. INTERRUPT - SEI, CLI
See Chapters 11, 12.

6. DECIMAL - SED, CLD
Sets decimal mode. Addition and subtraction are done using BCD
(Binary Coded Decimal).

7. Two's Complement numbering represents numbers from -128 to
+127.
negative X = (complement (X)) + 1

8. NEGATIVE - flag set if bit 7 of result is turned on (=1)
BMI, BPL

9. OVERFLOW - set on two's complement carry

CLV
BVS, BVC
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Chapter 10
Logical Operators and Bit
Manipulators

Changing bits within memory

In this Chapter we will be looking at a group of instructions
unlike any we have looked at previously, yet they are
absolutely fundamental to the workings of a computer. They are
the 'logical' or 'Boolean' operations. They are the commands
AND (Logical AND), ORA (Logical OR), and EOR (Logical Exclusive
OR).

These functions can be built up using fairly simple circuitry,
and almost all functions of the computer are built up by series
of these circuits. The logical operations of these circuits
are available to us through these instructions and it is this,
and not the hardware, with which we will concern ourselves in
this chapter.

We know that bytes of memory and the registers are made up of
groups of eight bits:

To explain the functions of these instructions, we look at
their operation on one bit and then assume that this operation
is done on all eight bits at once. A logical operator is like
a mathematical function in that it takes two pieces of data and
outputs the result as a single piece of data, e.g.,

1]
Nel

4 2 5

In this case however the data coming in is going to be single
bit values, either 1's or ¢'s. To define a logical function we
draw up a truth table showing all possible 1inputs and the
associated outputs.
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INPUT 1
0 1
INPUT 2
OUTPUT | OUTPUT
0 FOR FOR
0.0 0.1
OUTPUT | OUTPUT
1 FOR FOR
1,0 1,1

The logical AND

The first instruction we will deal with is the AND instruction.
This performs a logical AND with the accumulator and the
specified memory, leaving the result in A. The result of a
logical AND is 1 if input one is a 1 and input two is a 1. The
truth table for this function looks like:

AND
MEMORY
ACCUMULATOR i :
) ) )
1 ? 1

When extended to an eight bit byte this means that:

le[1 [1Tef1To 1]+]
AND  [AJe[i[1]1]e] ] 0]
= [o[o[1To[1 e 1 0]

The zero flag is set if the result = ¢, i.e. if there are no
coincident ones in the bits of the two bytes used.

The AND instruction is useful in creating a 'mask' to turn off
certain bits within a byte. Suppose, within a byte of any
value, we wish to turn off the 3rd, 5th and 6th bits. We would
create a 'mask' with only the 3rd, 5th and 6th bits turned off
and AND this with the byte in question.
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654321
Mask=|1l(blwl1lwl1l1l1l = $97
AND #$97

would turn off the 3rd, 5th and 6th bits of whatever was in the
accumulator.

The logical OR

The second instruction we will look at is the ORA 1instruction.
This does a logical OR of the accumulator with the specified
memory leaving the result in the accumulator. The OR function
outputs a 1 if input one is a 1 or input two is a 1. The truth
table for this function looks like:

OR MEMORY | ;
ACCUMULATOR

0 0 1

1 1 1

When extended to an eight bit byte this means that:
o[1]o[1]o[0[1]0]

ORA [o]o[1][1]1]0]1]0

= [o[1[1[1]1]0]1]0

The zero flag is set if both bytes are equal to zero and hence
the result is zero.

The ORA instruction 1is wuseful for turning on certain bits
within a byte using the masking technique.

Supposing we want to turn on the 2nd, 3rd and 7th bits within a
byte. We would use a mask with only the 2nd, 3rd and 7th bits
turned on.

76543210
Mask = |[1]o[oe[1][1]o]0o] = s8C
ORA  #88C

would turn on the 2nd, 3rd and 7th bits of whatever was in the
accumulator.
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The logical Exclusive OR

The last of the logical operations is the EOR. This performs a
logical exclusive OR of the accumulator and memory leaving the
result in A. The exclusive OR function outputs a 1 if input
one is a 1 or input two is a 1 but mnot if both are 1. The
truth table for this function looks like:

MEMORY
EOR [0} 1
ACCUMULATOR
1) 1) 1
1 i ]

When extended to an eight bit byte the exclusive OR produces:

Teli[e[1Jefo]1]
eor[1]e[1[e[o]1]e]1]
= [ofolo[1]1]1]e]o]

The exclusive OR is used to complement (invert) bits within a
byte using masking.

To invert the 1st, 2nd and 4th bits of a byte we would use a
mask with those bits turned on

76543210
Mask = [ o[efel1]o[1]1[0] = $16
EOR #$16

would invert those bits of the accumulator.

Type the following program into ALPA to test these
instructions:

NEW

APPEND

1 ORG $p60@
2 PLA

3 LDA #$CA
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AND #$9F
STA $(G3FD
LDA #$A2
ORA #$84
EOR $@3FD
STA $@3FD

) RTS

= O 0o ~NOouUw s

WATCH
(What address )? (3FD

Program summary

Line 3 LDA #$CA A = $CA  11¢p101¢
Line 4 AND #$9F A = $8A  190p101¢
Line 5 STA $@3FD A = $@3FD 10@@1¢01¢0
Line 6 LDA #$A2 A = $A2 10100010
Line 7 ORA #$84 A = $A6  1010¢11¢
Line 8 EOR $@3FD A = $2C  0@1¢411¢¢

ASM and RUN this program

and verify the results with those we have reached.

The bit instruction

There is a useful instruction in the 65¢2 instruction set which
performs an interesting set of tests and comparisions. We
discussed in Chapter 6 how a CMP command did a subtraction
setting the status flags but not storing the result. Similarly
BIT (compare memory bits with the accumulator) performs a
logical AND of A with memory setting only the Z flag as a
result. The bit instruction also copies bit 7 into the
negative flag and bit 6 into the overflow flag.

Rotating bits within a byte

We will now discuss four other bit manipulation instructions
and some of their consequences. The first instruction we will
look at is ASL (Arithmetic Shift Left). This instruction
shifts all the bits in the specified byte 1left by one bit,
introducing a zero at the low end and moving the high bit into
the carry flag.
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CARRY 765432190

[ 1 «dddd9dddddo

hence

C=? [o[1]o]1]o]1 0] 1]
becomes

C=0 [1]o[1]e]1]o[1]0]
and

C=7? Ofe[1 1 e[ 1]1]e]
becomes

C=1 [o[1]1]o[1]1]0]0]

Back in Chapter 3 when we explained hex and binary we mentioned

that each bit had a value of 2 to the power of position -1

ie. [128]64]32]16]8]4[2[1]

You will notice that the value of each box 1is two times

value of the box to the right of it, hence:

PPPPPPPL x 2 = PPPPPPLP  and
POPPLEPY x 2 = PPPLIPPP

and furthermore
PP111001 x 2 = P111001¢
The operation required to multiply any byte by two 1is

operation performed by the ASL instruction.

To use our examples from before:

(@]
1}

? P1P10161 ($55) x 2 =>C = @ 10101014 ($AA)

(%)
1l

? 19119110 ($B6) x 2 ->C
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Type in the following program:

NEW

APPEND

1 ORG $060¢
2 PLA

3 LDA #$0A
& ASL

5 STA $(P3FD
6 RTS

WATCH

(What address )? ®3FD

ASM and RUN

Line 4 uses the 'accumulator' addressing mode. It wuses the
contents of the accumulator as data and returns the data there.

NOTE: this is different to implied addressing because ASL may
be used on data from memory.

We can use this instruction to multiply a number by any power
of 2 (1,2,4,8...). To use the previous program to multiply by
eight instead of two, insert the following two lines:

ORG $p609
PLA
LDA #$0A
ASL
ASL
ASL
STA $@3FD
RTS

oO~NOWL W N

ASM and RUN the program with these alterations:

$PA x 8 = $5¢

Rotation with carry

As with our addition routines, we may find we want to multiply
numbers greater than 255 (two or more byte numbers). To do
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this there is a shift command which uses the carry on the input
end of the shift as well as the output end:

76543210

~1dddd9d 499
CARRY

The instruction to do this is ROL (Rotate One bit Left). To do
a two byte multiply by four, type in the following lines:

ORG $060¢
PLA

LDA #$17

STA $@3FE
LDA #$0A

ASL

ROL $@3FE
ASL

ROL $@3FE
STA $@¢3FD
RTS

2, OO0 UL HsWN -

Ll SN

LIST

NOTE:
1. To avoid swapping registers we have used ROL absolute which
stores its result back in memory.

2. We have rotated both bytes once and then rotated both
again. Rotating the low byte twice and then the high byte
twice would not work, because the high bit from the low byte
would be lost when the carry was used in the second ASL.

ASM

WATCH

(What Address )? @3FE

RUN
Put together the high and low bytes of the answer and check
that it equals four times the original number.

Rotating to the right

LSR and ROR are the equivalent instructions to ASL and ROR,
except that they shift the bits in the opposite direction.
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LSR 76543210 CARRY

o—F FEPERRRR [

ROR 76543210

[ LTI P

CARRY T

Just as their opposites can be thought of as multiplication by
two, so these can be thought of as division by two, and can be
similarly extended to multi-byte arithmetic. After division
the number left in the byte is the integer part of the result
and the bits that have been shifted out represent the
remainder, e.g.,

$1D+3%08 = 3 remainder 5

20011101 = 29 remainder
LSR <2

00001110 = 14 - 1=1
LSR =4

00000111 = 7 01 =1
LSR =8

00000011 = 3 — 101 =5

NOTE: Just because the shift and rotate instructions can be
used for arithmetic do not forget their use for shifting bits,
e.g., shifting into carry for testing.

Clever multiplication

We have said that by shifting bits we can multiply by any power
of 2 €1;2,4585:0w; 128V These are the same values that
represent each bit within a byte. We have shown 1in Chapter 3
that by adding these values we can produce any number between @
and 255.

If we then multiply by each of these wvalues and add the
results, this process is then equivalent to multiplying by any
value from ¢ to 255, e.g.,

$16 x $59 = @@P1911¢ x $59
+ POP1P90P x $59
+ PPPPLPP x $59
+ PPPPPP1P x $59

=16 x $59 + 4 x $59 + 2 x $59
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which we know how to work out from our previous multiplication.

This is the algorithm we will use in our generalised

multiplication routine. We will rotate (multiply by two)
number, and add it to total, for each bit turned on in
other byte, e.g.,

10110 x $59

rotate  $59 101 1[0
rotate  $59 addtototal 1 Q1O
rotate  $59 add to total 1010
rotate  $59 1110
rotate  $59 addtototal [0 110

one
the

For simplicity's sake our generalised multiplication routine

will only handle results less than 255.

To multiply $1B by $09 type:

NEW

APPEND

1 ORG $p60@
2 PLA

3 LDA #$1B
4 STA $@3FD
5 LDA #$09
6 STA $P3FE
7 LDA #$0¢
8 ROR $@3FE
9 LOOP ROL $@3FE
10 LSR $@3FD
11 BCC &LOOP1
12 CLC

13 ADC $(P3FE
14 LOOP1 BNE &LOOP
il STA $@3FF
16 RTS

Program summary

Lines 1 - 8 Initialise values to be multiplied and set
total to ®. The ROR followed by the ROL has no effect
first time through but only the ROL is within the loop.
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Line 9 Except for the first time through this multiplies
one of the numbers (2) by each time round the loop.

Lines 1¢-11 Rotates the other number (1) bit by bit into the
carry, and then tests the carry to see if the other number (2)
should be added this time around the loop. If the carry is
clear, the possibility that the number (1) has been shifted
completely through (=@ - multiplication is completed) is tested
line 12¢

Lines 12-13  Add to the total (in A) the number (2) which is
being multiplied by two each time around the loop.

Line 14 If the branch on line 9¢ was taken, this will
test for the end of multiplication (number (1) = @ shifted
completely through). If the branch on line 9¢ was not taken,
this branch on not equal will always be true because we are
adding a number (2) greater than zero to a total which will not
be greater than 255.

Lines 15-16 end

NOTE: this multiplication routine is much more efficient than
the one given in Chapter 7. By that method we would have had
to loop at least nine times, whereas in this, had we swapped
and used 9 as number (1) and $1B as number (2), we would have
only looped four times (number of bits needed to make 9 -

6/p1).

WATCH

(What address )? @3FE
ASM

RUN

and verify the results.
Now change the numbers in lines 3 and 5 with DELETE and INSERT,

used to perform a different calculation (make sure the answer
is >256), e.g.,

3 LDA #$06
5 LDA #$25

ASM and RUN

with these values and again verify the results for yourself.
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Chapter 10 SUMMARY

1. AND 01

0100

110 |1 | mostoften used to mask off bits.
2. ORA 01

0101

111 most often used to mask on bits.

3. EOR (exclusive or)

01
0101
1 1]®| most often used to mask invert bits.

4. BIT performs AND without storing the result.

Z is set or cleared
N becomes bit 7
V becomes bit 6

5. ASL 7 6 54321090 Arithmetic Shift Left
|l o] g—et
CARRY
most often used to multiply by 2.
6. ROL 76543210 Rotate One Bit Left
r‘ G
7 7
CARRY
7. LSR Logical Shift Right
76 543 210
o £FFFRRFR-]
CARRY
8. ROR 765 4 3210 Rotate One Bit Right
I—FP PEEEEF
F— &1
-1

CARRY
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Chapter 11
Details of Program Counter

The program counter

We have talked a lot about the different operations that the
microprocessor can perform, but we have said very little about
how it goes about those tasks. This is perfectly alright,
because in most cases we don't need to know. In one case,
however, knowing how the microprocessor is operating leads us
to a whole new category of commands and a powerful area of the
microprocessor's capabilities.

The microprocessor contains a special purpose two byte register
called the program counter (PC), whose sole job it is to keep
track of where the next instruction is coming from in memory.
In other words the program counter contains the address of the
next byte to be loaded into the microprocessor and wused as an
instruction.

If we again turn to our post office boxes, each holding either
an instruction (opcode) or the data/address it operates on
(operand), this is what our program looks like:

(A9
5
80
35| b sTA0335
03
60| } RATS

LDA #8§57

To 'run' our post office box program, we would go through each
box in turn and act on the data in the box. Now imagine there
was a large clock type counter showing a box address which we

looked at to know which box to find. Normally this counter
would go wup one by one, taking the mnext byte in order.
However, if it wanted us to move to a new area of the boxes, it
would just flash up the address of the next instruction it
wanted us to find. This 1is exactly how the JMP command
operates.
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Storing into the program counter

The instruction JMP $address only loads the two byte address
into the program counter, the next instruction is then loaded
from memory at that address, and a JMP has been executed.

NOTE: the branch instructions add or subtract from the program
counter in a similar way, thereby creating a 'relative' jump.

However branch instructions may only be in the range +129 to
-126.

The program counter and
subroutines

If it were possible to store the program counter just before
doing a JMP and changing it to a new address, we would later be
able to return to the same place in memory by reloading that
stored piece of memory back into the program counter. In other
words, if we had noticed that the post office box counter was
about to change, and we noted down the address it showed (our
current address) before it changed, we would at some future
stage place that back on the program counter and return to
where we had left off.

This of course, is a subroutine structure, e.g.,

1¢ PRINT "HELLO THERE"

2¢ GOSUB 199

3¢ PRINT "I'M FINE"

4¢ END

L@@ PRINT '"HOW ARE YOU TODAY ?"
11¢ RETURN

would print:

HELLO THERE
HOW ARE YOU TODAY ?
I'M FINE

We said at the beginning of the book that a machine language
program can be thought of as a subroutine called from BASIC
using the USR command.

You can also create subroutines from within a machine language

program. They are called using the JSR (Jump to SubRoutine)
command. As when called from BASIC, to return from a machine
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language subroutine you use the RTS (ReTurn from Subroutine)
command.

Type in the following program:

1 ORG $0600

2  BACK EQU $p2C8

3 PLA

4  LOOP INC BACK

5 JSR WAIT

6 JMP LOOP

7  WAIT LDX #$FF

8 DELAY DEX

9 BNE &DELAY

19 RTS

ASM

RUN
This program will increment the border color register ($p2cC8)
and the border will become a mass of different colored
horizontal bars. The vertical height of the color bars depends
on the delay loop in the routine. The bigger the delay the
greater the bars height. Remember that these programs go

extremely fast. This program uses an infinite loop so to get
back to ASM it will be nessary to press RESET and GOTO 12.

It is good programming style to use subroutines for two major
reasons. First, it is easy to locate and fix errors within
subroutines. Secondly, by using subroutines it is possible to
build up a 'libary' of useful subroutines for regular use.

We have said that the return address of the routine is stored
away but we have not said anything about how it is stored. We
want some sort of filing system to store this address which
will give us a number of necessary features.

The stack control structure

Firstly it must be flexible and easy to wuse. Secondly, we
would like to be able to provide for the possibility that a
subroutine will be called from within a subroutine (called from
within a subroutine, called from...... ). In this case we have
to use a system that will not only remember a return address
for each of the subroutines called, but will also have to

remember which 1is the <correct return address for each
subroutine. The system which we use to store the addresses on
a data structure is called a 'stack'. A stack 1is a LIFO
structure (Last In First Out). When an RTS is reached, we want

the last address put on the stack to be wused as a return
address for the subroutine.
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Imagine the stack to be one of those spikes that people
sometimes keep messages on.

Every time you see a JSR instruction, you copied down the
return address onto a piece of paper from the post office box
counter. As soon as you had done this, you spiked the piece of
paper on the stack. If you came across another piece of paper
you merely repeated the process. Now when you come across an
RTS, the only piece of paper you can take of the spike (stack)
is the top one. The others are all blocked by those on top of
them. This top piece of paper will always contain the correct
address for the subroutine that you are returning from (the one
most recently called).

Subroutines and the stack

The JSR and RTS commands do this automatically using the system
stack. The stack sits in memory from $1¢#® to $1FF (Page 1) and
grows downwards. Imagine the spike turned upside down. This
makes no difference to its operation. The top of the stack
(actually the bottom) is marked by a special purpose register
within the microprocessor called the Stack Pointer (S). When a
JSR is performed the two byte program counter is placed on the
stack and the stack pointer (SP) is decremented by two (a two
byte address is placed on the stack).

BEFORE
Program Counter
STACK

Address
SP=XX $IK $100+ XX

Program Counter $PQ | $MN

STACK

AFTER (JSR $PQMN)

Address
$JK $100+ XX
$AB $100+XX-1
SP=XX-2| $CD 100+ XX -2

An RTS takes the top two bytes off the stack and returns them
to the program counter. The stack pointer 1is incremented by
two.
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BEFORE

AFTER (RTS)

Program Counter

STACK

Address
$JK $100+YY+2
$AB $100+YY+1
SP=YY $CD $100+YY

Program Counter

The following program is an

NEW
APPEND

BACK

LOOP

WAIT
DELAY

O 0~ O W

RN
L S

MWAIT
MORE

e
v~

ASM and RUN the program.

ORG
EQU
PLA
INC
JSR
JMP
LDX
JSR
DEX
BNE
RTS
LDY
DEY
BNE
RTS

STACK
Address
SP=YY+2| $JK $100+YY+2

example of <calling a subroutine
from within a subroutine.This is the previous program with
extra delay being called in WAIT named MWAIT. As a result
vertical bars will get higher.

$0609
$p2c8

BACK
WALT
LOOP
#$FF
MWALT
&DELAY
#$1¢

&MORE

One major advantage of the stack is that it can also be used
store data by using the instructions PHA (Push Accumulator
Accumulator off stack) respectively
place the contents of the accumulator on and off the stack.

stack) and PLA (Pull
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WARNING: make sure you put things on and off the stack in the
correct order or your machine will not speak to you wuntil you
have reset it!

If you use an RTS while there 1is extra data on top of the

stack, the RTS will return an address made up of the two top
bytes of the stack, whatever they are.

Let's use these instructions to test the operation of the
stack. Type:

NEW
WATCH (address? ($3FD)

ORG $0609®
BACK EQU $¢2C8
PLA
JSR SAVE
INC BACK (border)
RTS
SAVE PLA
TAX
PLA
STX $@3FD
STA $P3FE
PHA
TXA
PHA
RTS

O 0~ O W N

e
U~ LWNES

Program summary

Lines 1- 3 Set the ORG, the value of background register and
balance the stack

Line 4 JSR - return address (address of next instruction
is placed on stack). Actually it points to the byte before the
next instruction because the PC is incremented each time before

a byte is 'fetched' from memory.

Line 5 Increments screen border colour (see Appendix 6)
just to show that the program has returned satisfactorily.

Line 6 end.

Lines 7- 9 Take the top two bytes of the stack
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Lines 1¢-11 Store them low byte - high byte at $3FD, $3FE.
Lines 12-14 Return bytes to stack in correct order

Line 15 End of subroutine.

ASM and RUN this program. Change WATCH to test address $@3FE,
and RUN again. Put the results together and compare them with
the expected address.

The two instructions TSX (Transfer SP into X) and TXS (Transfer
X into SP) are available to do direct manipualations on the SP.
Write a progam with a subroutine within a subroutine, both of
which save the SP in memory via X to see the change in SP when
a subroutine is called and when an RTS is executed.

The stack and interrupts

We mentioned in Chapter 9 the BRK command and its wuse in
debugging programs by halting them and allowing you to examine
variables in 'mid-flight'. What the BRK command actually does
is something like the operation of a JSR. The BRK command
performs a JSR indirect to $FFFE, $FFFF. In other words the
contents of these bytes are placed in the PC and the program
continues there (at a ROM break handling routine). The BRK
command also pushes the value of the processor status code (P)
onto the stack.

This can be done outside the BRK command using the PHP (Push
Processor Status byte) instruction. This all leads up to a
fairly major area of machine language programming on the ATARI
13@XE - Interrupts. However we will not cover these as they
are too advanced for this book but we will attempt to tell you
how, where and why they work.

In general an interrupt is sent to the microprocessor by the
computer's hardware to alert it to something going on 1in the
outside world which requires its attention, e.g, a key being
pressed, a real time clock, or graphics alerts (see Chapter 12
and Appendix 6 respectively).

These interrupts are hardware signals and their effect 1is to
stop the microprocessor, no matter what it's doing, and jump to

an interrupt service routine (via vectors at $FFFE and $FFFF).

In a similar way to the BRK command an interrupt stores the PC
on the stack (with the address of the instruction it was in the
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micddle of doing - not the next instruction). It then stores
the status register (P) on the stack and does an indirect jump
on the contents of $FFFE, $FFFF which take it to a ROM
interrupt routine.

You can control the interrupt service routines to handle
interrupts from clock timers or other sources in your own way,
to do things such as move objects at a constant predetermined
speed and increment time of day clocks as well as many other
uses. Some of the methods for doing this are described in the
next chapter.

Press RESET to return the screen to normal and type GOTO 12.

Chapter 11 SUMMARY

1. Program counter (PC) points to the mnext byte in memory
minus one to be used as an instruction.

2. JMP loads an address into the PC.
3. Branches add or subtract from the PC.

4, JSR stores the PC on stack and loads the mnew address into
the PC (subroutine).

5. RTS takes the top two bytes off the stack and 1loads them
into PC (return address).

6. The stack can only have things put on at one end. They can
only be taken off from the same end and in the same order they
were put on.

7. The Stack Pointer keeps track of the top of the stack.

RIS = > SP = SP + 2
JSR = D> 8P = SP = 2

8. PHA, PLA store and retrieve the accumulator from the stack.
Be sure to take things off the stack in the same order they
went on.

9. TXS, TSX transfer data betweem the stack register (S) and
the X register.

1¢. BRK PC —-> Stack (2 bytes)
Status byte - > Stack
Contents of
(FFFE, FFFF) - > PC
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11. PHP, PLP push and pull a processor status word onto the
stack.

12. Interrupts come from chips external to the microprocessor.
PC — > Stack (2 bytes)
Status byte - »Stack
(FFFE, FFFF) PC

These are processed by the ROM handling routines.
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Chapter 12
Dealing with the Operating System

The Kernal

This chapter will tell you something about dealing with the
operating system of the Atari 13@¢XE. It sits in memory from
$E4PP to $FFFF and deals with the hardware side of the computer
(the other ROM deals with BASIC). The kernal ROM actually
starts at $E@PPP but the first one kilobyte is taken wup by the
character set. There are routines in the kernal for opening
and closing files, printing characters to the screen, getting
characters from the keyboard, moving the cursor around the
screen, loading and saving files and other such mundane but
necessary tasks.

In this chapter we will give examples of how to wuse a few of
these routines (the Appendices will give clues to more but the
rest 1is up to you). Armed with these methods and the
information given in the Appendices (and any other literature
you have handy), you will be able to create programs that can
easily and efficiently communicate with the outside world.

One of the major wuses of the kernal is 1in dealing with
interrupts. Interrupts can be caused by peripherals, the sound
chip, the clock and many other places. The clock sends out an
interrupt every 1/5¢ a second (1/6¢ in the U.S.A.). This
interrupt is used by the kernal to update the time of day clock
and to check the keyboard for a keypress.

We said in the previous chapter that an interrupt, as well as
putting a return address and the status byte on the stack,
performed an indirect JMP on the contents of memory locations
$FFFE and $FFFF. We said that this was directed to the
operating system's interrupt handling routine in ROM. This ROM
routine does its work and then gives the programmer access to
the interrupt process by doing a jump through interrupt vectors
placed in RAM at locations $(¢222, $¢223 (low byte - high byte
format). Since these vectors are placed in RAM they can be
changed to point to our program.
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Our interrupt routine must do one of two things. It must
either return via the operating system when it is finished (via
the address that was in the interrupt vector before we changed
it) or we must 'clean' up the system and return properly from
an interrupt. In practice it is generally easier to take the
first choice. 1If we do it on our own the program must finish
by:

1. Taking the registers off the stack. When the ROM interrupt
routine is called it saves all the registers on the stack.
These must be returned to the registers in the same order.

2. We must re-enable interrupts. The ROM routine as well as
doing a SEI which sets the interrupt flag 1in the status
register turns off the interrupts from their source.

3. Do an RTI (ReTurn from Interrupt).

NOTE: SEI (Set Interrupt Flag) will make the microprocessor
ignore any interrupts but will not stop any devices from
issuing interrupts. This instruction 1is executed at the
beginning of the interrupt routine by the 652 automatically to
make sure that the interrupt is not interrupted by another
interrupt. Any time-critical code should have this at the
start of it to stop interrupts from interfering with it's
timing.

CLI (Clear Interrupt Flag)

Re—enables interrupts to the 65@2 processor. This instruction
is used at the end of some interrupt routines, or if the
interrupt is non time-critical.

RTI (Return From Interrupt)

Somewhat like the RTS, this instruction removes those things
placed on the stack by the interrupt (status byte, program
counter), thereby returning to where the program left off (with
status byte undisturbed). This, by restoring the status byte
will clear the interrupt flag (it could not have been set when
the interrupt was received!)

Our sample interrupt program which follows is in two parts.
The first part sets up the vertical blank interrupt vector at
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$0222, $¢223; it is called once when the program is RUN and
then returns. The SEI instruction disables interrupts while
the interrupt vector is being changed. Otherwise an interrupt
could occur while the routine had only half changed the vector
and the machine would crash. After the vector 1is changed,
interrupts are re-enabled and control is passed back to BASIC.

The second part which is pointed to by the altered interrupt
vectors, is called 5¢ times a second (when an vertical blank
interrupt occurs). All this the routine does 1is invert the
first 255 characters on the screen every time a vertical
interrupt happens. So the top of the screen will flicker
between spaces and CHR$(255) very quickly.

NEW

APPEND

1 ORG $060¢

2 PLA

3 SEI

4 LDA #$QE

5 STA $9222

6 LDA #$06

7 STA $p223

8 CLI

9 RTS

1¢ WRITE STA ACCUM

11 STX XREG

12 LDX #$FF

13 LOOP LDA $9C49,X

14 EOR #$FF

15 STA $9C40,X

16 DEX

17 BNE &LOOP

18 LDX XREG

19 LDA ACCUM

20 JMP $C28A

21 ACCUM DFB $0¢

22 XREG DFB $0¢
Program summary
Line 2 Balance the system stack
Lines 3 Disable system interrupts
Lines 4- 7 Point at the new interrupt vector
Line 8 Re-enable the interrupts
Line 9 Return from the routine
Lines 1¢-11 Save the accumulator and X register
Lines 12-17 Invert the first 255 characters on the screen
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Lines 18-19 Restore accumulator and X register to their
orginal value

Line 20 Jump to the normal vertical blank interrupt
routine
Line 21-22 Area to store accumulator and the X register

If you add your own interrupt routine to the machine and you
want BASIC to continue functioning, then you must at the end of
your routine jump to the mnormal interrupt routine. This 1is
what the JMP $C28A does. Use the disassembler to study the
operating system and BASIC

THE BEST OF BRITISH TO YOU!

Oh! There is one 65@2 instruction which has only been
vaguely mentioned. That is NOP (No Operation) instruction.
Although it does nothing it takes a certain amount of time to
do (two machine cycles). It is used surprisingly often within
a time delay loop, or to fill a patch within a program where
you have decided to remove instructions (bad programming!).
The value for the instruction NOP is $EA.

Chapter 12 SUMMARY

1. The Kernal, which is in ROM, handles the computer's contact
with the outside world.

2. Kernal resides in memory from $E4@P to $FFFF.

3. SEI - sets the interrupt flag to false and makes the 6502
ignore any further interrupts.

4. CLI - clears the interrupt flag, re-enables interrupts.

5. REI -> return from interrupt.
STACK -3 Status byte
STACK ->» PC (2 bytes)

6. NOP - > no operation.
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Appendix 1
6502 Instruction Codes

These tables should be a constant reference while writing
machine language or assembly language programs. There is a
list of every instruction with a description, avialable
addressing modes, instruction format, number of bytes used, the
hex code for the instruction and a 1list of the status flags
changed as a result of the operation.

6502 MICROPROCESSOR INSTRUCTIONS IN ALPHABETICAL ORDER

ADC  Add Memory to Accumulator with ~ JSR Jump to New Location Saving

Carry Return Address
AND  “AND"Memory with Accumulator ~ LDA  Load Accumulator with
ASL Shift Left One Bit (Memory or Memory
Accumulator) LDX Load Index X with Memory
BCC  Branchon Carry Clear LDY  Load Index Y with Memory
BCS  Branchon Carry Set LSR  Shift Right one Bit (Memory or
BEQ  Branch on Result Zero Accumulator)
BIT Test Bits in Memory with NOP  No Operation
Accumulator ORA  "OR" Memory with Accumulatar
BMI Branch on Result Minus PHA  Push Accumulator on Stack
BNE  Branch on Result not Zero PHP  Push Processor Status on Stack
BPL Branch on Result Plus PLA Pull Accumulator from Stack
BRK  Force Break RLP Pull Processor Status from Stack
BvC Branch on Overflow Clear ROL  Rotate One Bit Left (Memory or
BVS Branch on Overflow Set Accumulator)
CLC  Clear Carry Flag ROR  Rotate One Bit Right (Memory or
CLD  Clear Decimal Mode Accumulator)
CLI Clear Interrupt Disable Bit RTI Return from Interrupt
CLV  Clear Overflow flag RTS  Return from Subroutine
CMP  Compare Memory and SBC  Subtract Memory from
Accumulator Accumulator with Borrow
CPX Compare Memory and Index X SEC  SetCarry Flag
CPY Compare Memory and Index Y SED  Set Decimal Mode
DEC  Decrement Memory by One SEI Set Interrupt Disable Status
DEX Decrement Index X by One STA  Store Accumulator in Memory
DEY  Decrement Index ¥ by One STX  Store Index X in Memory
EOR  “Exclusive-Or" Memary with STY  Store Index Y in Memory
Accumulator TAX Transter Accumulator to Index X
INC Increment Memory by One TAY  Transfer Accumulator to Index Y
INX Increment Index X by One TSX Transfer Stack Pointer to Index X
INY Increment Index Y by One TXA Transter Index X to Accumulator
JMP Jump to New Location TXS Transfer Index X to Stack Pointer

TYA Transfer Index Y to Accumulator
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6502 INSTRUCTION CODES

Assembly HEX
Name Addressing Language No orP Status
Description Mode Form Bytes | Code Register
ADC NV-BDI ZC
Add memory to Immediate ADC #Oper 2 69 oo o0
accumulator with carry Zero Page ADC Oper 2 65
Zero Page.X ADC Oper.X 2 75
Absolute ADC Oper 3 60
Absolute.X ADC Oper.X 3 70
Absolute.Y ADC Oper.Y a8 79
(Indirect.X) AND (Oper.X) 2 61
(Indirect).Y ADC (Oper).Y 2 Al
AND NV -BDIZC
“AND" memory with Immediate AND #Oper 2 29 | e °
accumulator Zero Page AND Oper 2 25
Zero Page.X AND Oper.X 2 35
Absolute AND Oper 3 2D
Absolute. X AND Oper.X 3 3D
Absolute.Y AND Oper.Y 3 39
(Indirect.X) AND (Oper.X) 2 31
(Indirect).Y AND (Oper.)Y 2 31
ASL NV-BDIZC
Shift left one bit Accumulator ASLA 1 0A | e o
(Memory or Accumulatar) Zero Page ASL Oper 2 06
Zero Page.X ASL Oper.X 2 16
(7Ie[5[4[3][2[ 1[0 0] Absolute ASL Oper 3 0E
Absolute. X ASL Oper.X 3 1E
BCC NvV-BD12ZC
Branch on carry clear Relative BCC Oper 2 90
BCS NV-BDI1ZC
Branch on carry set Relatve BCS Oper 2 B8O
BEQ NV-BDI1ZC
Branch on result zero Relative BEQ Oper 2 FO
BIT NV-BDIZC
Test bits in memory Zero Page BIT Oper 1 24 |MM .
with accumulator Absolute BIT Oper 3 2C .
BMI NV -BDIZC
Branch on result minus Relative BMI Oper 2 30
BNE NV -BDIZC
Branch on result not zero Relative BNE Oper 2 [n]]
BPL NV -BDIZC
Branch on result plus Relative BPL oper 2 10
BRK NV -BDI1ZC
Force Break Implied BRK 1 00 t 1
BVC NV -BDiZC
Branch on overflow clear Relative BVC Oper 2 50
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Assembly HEX

Name Addressing Language No opP Status
Description Mode Form Bytes | Code Register
BVS NV -BDIZC
Branch on overflow set Relative BVS Oper 2 70
CLC NV -BDIZC
Clear carry flag Implied CcLC 1 18 0
CLD NV-BDIZC
Clear decimal mode Implied CLD 1 D8 0
cu NV-BDIZC
Clear interrupt flag Implied Cul 1 58 0
CLv NV -BDIZC
Clear overflow flag Implied CLv 1 B8 0
CMP NV -BDIZC
Compare memory and Immediate CMP #Qper 2 C9 |e L]
accumulator Zero Page CMP Oper 2 C5

Zero Page.X CMP Oper.X 2 Ds

Absolute CMP Oper 3 CD

Absolute.X CMP Oper.X 3 bOD

Absolute.Y CMP Oper.Y 3 D9

(Indirect.X) CMP (Oper.X) 2 C1

(Indirect).Y CMP (Oper).Y 2 D1
cPX NV -BDIZC
Compare memory and Immediate CPX #Oper 2 EQ |e e
index X Zero Page CPX Oper 2 E4

Absolute CPX Oper 3 EC
cpy NV-BDIZC
Compare memory and Immediate CPY #QOper 2 Co |e oo
index Y Zero Page CPY Oper 2 Ca

Absolute CPY Oper 3 ccC
DEC NV-BDIZC
Decrement memory Zero Page DEC Oper 2 C6 |e °
by one Zero Page X DEC Oper.X 2 D6

Absolute DEC Oper 3 CE

Absolute. X DEC Oper.X 3 DE
DEX NV -BDIZC
Decrement index X Implied DEX 1 DA |e °
by one
DEY NV-BDIZC
Decrement index Y Implied DEY 1 88 |e .

by one
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Assembly HEX
Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
EOR NV-BD1I1ZC
"Exclusive Or" memory Immediate EOR #Oper 2 49 | e °
with accumulator Zero Page EOR Oper 2 45

Zero Page X EOR Oper.X 2 55

Absolute EOR Oper 3 4D

Absolute. X EOR Oper.X 3 5D

Absolute.Y EOR Oper.Y 3 59

(Indirect.X) EOR (Oper.X) 2 41

(Indirect).Y EOR (Oper).Y 2 51
INC NV -BDIZC
Increment memory Zero Page INC. Oper 2 E6 | e °
by one Zero Page.X INC Oper.X 2 F6

Absolute INC Oper 3 EE

Absolute. X INC Oper.X 3 FE
INX NV-BDI1ZC
Increment index X by one Implied INX 1 E8 | e °
INY Nv-BDI12ZC
Increment index Y by one Implied INY 1 C8 | e °
JMP NV -B8D12ZC
Jump to new location Absolute JMP Oper 3 4C

Indirect JMP (Oper) 3 6C
JSR Nv-BDIZC
Jump to new location Absolute JSR Oper 3 20
saving return address
LDA NV-BDIZC
Load accumulator Immediate LDA #Oper 2 A9 | e °
with memory Zero Page LDA Oper 2 AS

Zero Page X LDA Oper.X 2 BS

Absolute LDA Oper 3 AD

Absolute X LDA Oper X 3 8D

Absolute Y LDA OperY 3 B89

(Indirect X) LDA (Oper.X) 2 Al

(Indirect) Y LDA (Oper).Y 2 B1
LDX NvV-BDIZC
Load index X Immediate LDX #Oper 2 A2 | e °
with memory Zero Page LDX Oper 2 A6

Zero Page.Y LDX Oper.Y 2 B6

Absolute LDX Oper 3 AE

Absolute. Y LDX OperY 3 BE
LDY NV -BD!I ZC
Load index Y Immediate LDY #Oper 2 AQ | e .
with memory Zero Page LDY Oper 2 A4

Zero Page. X LDY Oper X 2 B4

Absolute LDY Oper 3 AC

Absolute X LOY Oper.X 3 BC
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Assembly HEX
Name Addressing Language No oP Status
Description Mode Form Bytes | Code Register
LSR NV-BDIZC
Shift right one bit Accumulator LSRA 1 4A |0 LI
(memory or accumulator) Zero Page LSR Oper 2 46
Zero Page.X LSR Oper.X 2 56
@ ﬂﬂﬂm Absolute LSR Oper 3 4E
Absolute.X LSR Oper.X 3 SE
NOP NV-BDIZC
No operation Implied NOP 1 EA
ORA NV -BDIZC
"OR" memory with Immediate ORA #Oper 2 09 |e °
accumulator Zero Page ORA Oper 2 05
Zero Page.X ORA Oper.X 2 15
Absolute ORA Oper 3 oD
Absolute.X ORA Oper.X 3 1D
Absolute.Y ORA Oper.Y 3 19
(Indirect.X) ORA (Oper.X) 2 01
(Indirect).Y ORA (Oper).Y 2 1
PHA NV -BDIZC
Push accumulator Implied PHA 1 48
on stack
PHP NV -BDIZC
Push processor status Implied PHP 1 08
on stack
PLA NV -BDIZC
Pull accumulator Implied PLA 1 68 |e °
from stack
PLP NV -BDI ZC
Pull processor status Implied PLP 1 28 |eeeevvosoe
from stack
ROL NV-BDIZC
Rotate one bit left Accumulator ROLA 1 2A |e L
(memory or accumulator) Zero Page ROL Oper 2 26
Zero Page.X ROL Oper.X 2 36
Absolute ROL Oper 3 2E
Absolute.X ROL Oper.X 3 3E
ROR NV -BDIZC
Rotate one bit right Accumulator RORA 1 6A |e o
(memory or accumulator) Zero Page ROR Oper 2 66
Zero Page.X ROR Oper.X 2 76
e Absolute ROR Oper 3 6E
Absolute. X ROR Oper.X 3 7E
RTI NV-BDI ZC
Return from interrupt Implied RTI 1 40 |eeecscee
RTS NV-BDIZC
Return from subroutine Implied RTS i 60
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Assembly HEX

Name Addressing Language No orP Status
Description Mode Form Bytes | Code Register
sSBC NV-BD1ZC
Subtract memory from Immediate SBC #Oper 2 E9 |e e o0
accumulator with borrow Zero Page SBC Oper 2 E5

Zero Page.X SBC Oper.X 2 F5

Absolute SBC Oper 3 ED

Absolute: X SBC Oper.X 3 FD

Absolute.Y SBC Oper.Y 3 F9

(Indirect.X) SBC (Oper.X) 2 E1,

(Indirect).Y SBC (Oper).Y 2 F1
SEC NV-BDI1ZC
Set carry flag Implied SEC 1 38 1
SED NV -BDIZC
Set decimal mode Implied SED 1 F8 1
SEI NV -BDI ZC
Set interrupt disable Implied SEI 1 78 1
status
STA NV-BDIZC
Store accumulator Zero Page STA Oper 2 85
in memory Zero Page.X STA Oper.X 2 95

Absolute STA Oper 3 8D

Absolute. X STA Oper.X 3 9D

Absoalute.Y STA Oper.Y 3 99

(Indirect.X) STA (Oper.X) 2 81

(Indirect).Y STA (Oper).Y 2 91
STX NV-BDIZC
Store index X in memory Zero Page STX Oper 2 86

Zero Page.Y STX Oper.Y 2 96

Absolute STX Oper 3 8E
STY NvV-BDIZC
Store index Y in memory Zero Page STY Oper 2 84

Zero Page.X STY Oper.X 2 94

Absolute STY Oper 3 8C
TAX NV-BDI2ZC
Transfer accumulator Implied TAX 1 AA | e °
toindex X
TAY NV-BDI ZC
Transfer accumulator Implied TAY 1 AB | e °
toindex Y
TSX NV -BDIZC
Transfer stack pointer Implied TSX 1 BA |e °
to index X
TXA NV-BDIZC
Transfer jndex X Implied TXA 1 BA | e °
to accumulator
TXS NV-BDIZC
Transfer index X to Implied TXS 1 9A
stack pointer
TYA Nv-BDI ZC
Transfer index Y Implied TVA 1 98 | e °

to accumulator
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6502 MICROPROCESSOR OPERATION CODES

IN NUMERICAL VALUE ORDER

00— BRK

01 — ORA — (Indirect.X)
02 --77?

03 —77?

04 — 2777

05 — ORA — Zero Page
06 — ASL — Zero Page
07 —?7?

08 — PHP

09 — ORA — Immediate
O0A — ASL — Accumulator
08 — ??7?

0C — 77?7

0D — ORA — Absolute
OE — ASL — Absolute

OF — 77?7
10— BPL
11 — ORA — (Indirect).Y
12—
13—7?7?
14— 777

15 — ORA — Zero Page.X
16 — ASL — Zero Page.X
17 =27

18 —CLC

19 — ORA — Absolute.Y
1A — 77?7

18 —77?

1C—7?7?

1D — ORA — Absolute.X
1E — ASL — Absolute.X
1F—77?

20— JSR

21 — AND — (Indirect.X)
22—

23—-77?

24 — BIT — Zero Page
25 — AND — Zero Page
26 — ROL — Zero Page
27 -7

28 —PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B —77?

2C — BIT — Absolute

2D — AND — Absolute
2E — ROL — Absolute

F—m

30— BMI

31 — AND — (Indirect).Y
32—

3377

34 —77?

35 — AND — Zero Page.X
36 — ROL —Zero Page.X
37—

38— SEC

39 — AND — Absolute.Y
3A =77

3B —77?

3C -7

3D — AND — Absolute.X
3E — ROL — Absolute.X
3F — NOP

40 — RTI

41 — EOR — (Indirect.X)
42 -7

43—

44 — 777

45 — EOR — Zero Page
46 - LSR - Zero Page
47 =777

48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
48 — 77

4C — JMP — Absolute
4D — EOR — Absolute
4E — LSR — Absolute
4F -7

50— BVC
51 — EOR (Indirect).Y
52 — 7
53—
54 — 27

55 — EOR — Zero Page X
56 — LSR — Zero Page X
57 =77

58 — CLI

59 — EOR — Absolute.Y
5A — ?7?

58 — 772

5C — 7?7

50 — EOR — Absolute.X
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5E — LSR — Sbsolute.X
S5F —7?

60 — RTS

61 — ADC — (Indirect.X)
62 — 77?7

63 — 77?7

64 —77?

65 — ACD — Zero Page
66 — ROR — Zero Page
67 — 777

68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
68 — 77?7

6C — JMP — Indirect
60 — ADC — Absolute
6E — ROR — Absolute
6F — 77?7

70— BVS

71 — ADC — (Indirect).Y
72—

73—77?

74 -7

75 — ADC — Zero Page.X
76 — ROR — Zero Page.X
77—

78 — SEI

79 — ADC — Absolute.Y
TA —77?

8-

7C -7

7D — ADC — Absolute.X
7E — ROR — Absolute.X
7F -7

80— 77?

81 — STA — (Indirect.X)
82 — 777

83 —77?

84 — STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 —77?

88 — DEY

89 — 777

8A — TXA

88 — ?7?

8C — STY — Absolute



8D — STA — Absolute
8E — STX — Absolute

8F — 777

90— BCC

91 — STA — (Indirect).Y
92 -7

93 — 77?

94 — STY — Zero Page.X
95 — STA — Zero Page.X
96 — STX — Zero Page.Y
97 — 77?7

98 — TYA

99 — STA — Absolute.Y
9A — TXS

98 — 77?

9C — 77?

9D — STA — Absolute.X
9E — ?7?

9F — 77?7

A0 — LDY — Immediate
A1 — LDA — (Indirect.X)
A2 — LDX — Immediate
A3 —7?7?

A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 —77?

A8 — TAY

A9 — LDA — Immediate
AA — TAX

AB —77?

AC — LDY — Absolute
AD — LDA — Absolute
AE — LDX — Absolute
AF —2?7?

B0 —BCS

B1 — LDA — (Indirect).Y
B2

B3 — ?7?

???Undefined Operation

B4 — LDY — Zero Page.X
B5 — LDA — Zero Page.X
B6 — LDX — Zero Page. Y
B7 — 777

B8 —CLV

B9 — LDA — Absolute.Y
BA — TSX

BB — 77?7

BC — LDY — Absolute.X
BD — LDA — Absolute. X
BE — LDX — Absolute.Y
BF — 777

C0O — CPY — Immediate
C1 — CMP — (Indirect.X)
c2—-77?

C3—77?

C4 — CPY — Zero Page
C5 — CMP — Zero Page
C6 — DEC — Zero Page
Cr—m7

C8 — INY

C9 — CMP — Immediate
CA — DEX

cB—77?

CC — CPY — Absolute
CD — CMP — Absolute
CE — DEC — Absolute
CF—77?

D0 — BNE

C1 — CMP — (Indirect).Y
02 — 7

D3.— 777

D4 — 277

D5 — CMP — Zero Page X
D6 — DEC — Zero Page X
D7 — 77

D8 — CLD

D9 — CMP — Absolute. Y
DA — 772
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DB — 77?7

DC—77?

DD — CMP — Absolute.X
DE — DEC — Absolute.X
DF —

E0 - - CPX — Immediate
E1 — SBC — (Indirect.X)
E2 —77?

E3—77?

E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC — Zero Page
E7 —77?

E8 — INX

E9 — SBC — Immediate
EA — NOP

EB—77?

EC — CPX — Absolute
ED — SBC — Absolute
EE — INC — Absolute
EF — 7?72

FO— BEQ

F1 — SBC — (Indirect).Y
F2—7

F3—77?

F4 — 772

F5 — SBC — Zero Page.X
F6 — INC — Zero Page.X
F7—27?

F8 — SED

F9 — SBC — Absolute.Y
FA—77?

FB — 77?

FC—77?

FD — SBC — Absolute.X
FE — INC — Absolute.X
FF — 772



Appendix 2
Hexadecimal to Decimal Conversion
Table

This table can be used to convert up to four digit hex numbers to
decimal.
How to use the table:

1. Divide the number into groups of two digits,
e.g.$F17B—-F1 7B
$2A —2A

2. Take the low byte of the number (from above 7B or 2A) and look it up
in the chart. Find the most significant digit (7) in the column on the
left, find the least significant digit (8) in the row along the top, and find
the box in which the row (7) and the column (B) cross. In that box you
will find 2 numbers, . These are the values of 7B in the
low byte and the high byte. Since we are looking up the low byte, take
the value 123. Now find the location of the high byte of our number
(F1) on the chart. The box here contains m . Since we
are now dealing with the high byte, take the value 61696 from that
box and add it to the value we found earlier for the low byte 123.

61696
+ 123

61819 which is the decimal value of $F17B

NOTE: to find the decimal value of a two digit number, e.g. 2A, look it
up inthe chart taking the low byte value (42). For a one digit number, e.g.
E, create a two digit number by adding a leading zero (QE), and similarly
make three digit numbers four digits with a leading zero.
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Appendix 3
Relative Branch and Two’s
Complement Numbering Tables

To calculate relative branches, locate the address immediately
after the location of the branch instruction. Count the number
of bytes from there to where you want the branch to end up. If
the destination is before the first byte, wuse the backward
branch table and if not, use the forward branch table. Look up
the displacement(the number you counted) in the body of the
appropriate chart and read off the high and low digits of the
branch from the sides. This can also be wused 1in reverse, by
looking up a branch on the sides to find the displacement taken
in the body of the chart.

To convert from a signed decimal number between -128 and 127 to
a hex two's complement number, find your decimal number in the
body of the appropriate chart(positives and negatives) and read
off the hex two's complement number from the sides(high digit,
low digit). The reverse process (two's complement hex to
signed decimal) is simply a matter of finding the high digit on
the column on the left, the low digit on the top row, reading
off the number where the row and column meet, and if 1in the
negative chart make the number negative.

FORWARD RELATIVE BRANCH POSITIVE NUMBERS

lowN ] 1 2 3 4 5 6 7 8 9 A B (o] o] E F

0 of 1+ |2 3| 4| s|e| 7| 8| o|rofn |12]w]|]|1s
1 1617 |18 | 19| 20| 21 |22 |23 |24 [25 [26 |27 |28 |29 |30 | 3
2 32 33 34 35 36 a7 38 39 40 41 42 43 44 45 46 47
3 48| 49 |50 [ 51| 52|53 |s4 |55 (56|57 s8[s9 |60 |61 [62]| 63
4 64 | 65 |66 |67 |68 |69 |70 |71 |72 |73 |74 |75 |76 |77 |78 | 79
5 80 | 8 (82 (83| 84| 8 |86 |87 |88 |89 |90 |91 [e2 [93 |94 | 95
6 96 97 98 99 | 100 | 101 (102 |103 |104 (105 |106 (107 [|108 (109 |110 | 111
7 112 (113 114 (115 | 116 | 117 [118 [119 [120 [121 122 [123 [124 |125 (126 | 127
BACKWARD RELATIVE BRANCH NEGATIVE NUMBERS

8 128 [ 127 [126 |125 [124 [123 [122 [121 (120 [119 [118 [117 [116 [115 |14 113
9 112 (111 [110 |109 [ 108 [ 107 [106 105 [104 |103 (102 [101 (100 | 99 | 98 97
A 96 95 94 93 92 91 90 | 89 | 88 | 87 | 86 | 85 84 83 | 82 81
B 80 79 78 rid 76 75 74 73 2 ' 70 | 69 68 | 67 | 66 65
C 64 63 62 61 60 | 59 [ S8 | 57 [ 56 | 55 | 54 [ 53 52 | 51 S0 49
o] 48 47 46 45 | 44 43 | 42 | @1 40 | 39 | 38 | 37 (36 |35 (34 33
E 32 31 30 29| 28| 27 | 26 | 25 | 24 | 23 22 21 20 19 18 17
F 16 1§ 14 13 12 " 10 9 8 4 6 5 4 3 2 1

123



Appendix 4

Atari 130XE Memory Map

$0000

$0100

$0200

$0600

$0700

SO7EC

$9C20

$9C40

SA000

$C000

SOOFF

SO1FF

SOSFF

SO06FF

SO07FF

S9C1F

S9C3F

SOFFE

SBFFF

SCFFF

ZERO PAGE

STACK

VARIABLES USED BY
BASIC AND O.S.

SPARE MEMORY

USER BOOT AREA

BASIC PROGRAM
AREA

TEXT ZERO
DISPLAY LIST

SCREEN MEMORY
IN MODE ZERO

ATARI BASIC
INTERPRETER

UNUSED MEMORY
SPACE

SD000

SD100

SD200

SD400

SD600

$D800

SE0C0

SE400

SE44F

124

SDOFF

SDFFF

SD2FF

SD5FF

SD7FF

SDFFF

SE3FF

SE44F

SFFFF

GTIA CHIP

SHADOW MEMORY

POKEY CHIP

ANTIC CHIP

SHADOW MEMORY

FLOATING POINT
ROM PACKAGE

ATARI CHARACTER
SET

DEVICE VECTOR
TABLE

OPERATING SYSTEM
ROM

END OF
MEMORY




Appendix 5
The Screen Chip

The ATARI's screen is controlled by two very powerful chips,
the GTIA and the ANTIC chip. These chips generate background,
foreground, color information, process shape data, missiles,
and players. The Antic chip is really a simple programmable
microprocessor with it's own individual 1instruction set. The
GTIA chip handles the generation and movement of players and
missiles. This chip is controllecd primarly by the ANTIC chip.
It extends in memory from $D@PPP to $D@FF. GTIA stands for
George's television interface adapter. Here is a list of the
memory locations associated with the GTIA chip and the
functions they perform.

GTIA Chip

$DPPP-$DPP3

These registers perform a dual function, they control the
horizontal position of players ¢ to 3 and also 1indicate with
what playfield a player has collided. Writing to these

registers invokes the first function and reading from them the
second. Poking data into these registers will move a player in
the horizontal position across the screen. It 1is possible to
put any value between @ and 255 into a register however for the
player to be visible it must in the range 48 to 2@8. Otherwise
it will be under the screen border rendering it invisible.
These values will alter from television to television.The
register at $D@@P@ is for player @ and so on upwards.

$DPP4—-$DPP7

These registers perform an identical task to the ones above
except that they act on the missiles instead of the players.
As above, the register at $D@@4 is for missile zero and so on
upward.

$DPP8-$DPPB

A player can be set to one of three sizes by placing a value in
these registers. The sizes available are normal, double and
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quadruple. These size increases are achieved by doubling and
quadrupling the width of the pixels in the player. Putting a
zero will set the player to normal size, a one will double his
size and a three will quadruple it. Reading these registers
indicates whether a missile to player collision has occurred.

$Dp@C

This register sets the size of all four missiles. A missile is
two pixels wide and like players can be either normal, double
or quadruple size. This register contains eight bits and two
bits are assigned to each missile to set the size. Here 1is a
table which explains how to set the wvarious bits 1in the
register to expand the missile.

Missile bits-to-set x1 x2 x4
) ® &1 2 1 3
1 2 &3 8 4 12
2 4 & 5 32 16 48
3 6 & 7 128 64 192

Reading this register will 1indicate whether a Player @ to
player collision has occurred.

$DPPD-$DP1

Writing to these registers enables the ANTIC chip to be
effectively bypassed. Normally when a player is displayed on
the screen the shape data to be displayed is fetched from an
area of RAM automatically by a process called DMA. This
process can be switched off and the data fetched from this
register instead. The limitation 1is that only one byte of
shape data can be displayed down the whole length of the
player. Writing to these registers will control players @ to
3. Reading from $D@@D to $DPPF will determine whether there
has been a collision between players 1-3 and another player.
Reading from $D@1¢ will signal whether joystick trigger @ has
been pressed. Normally PEEKing from this register will return
a one but when joystick zero is pressed the location will go to
zero.

$D@P11

This location works the same as the one above except that it
works with missiles and only one register is needed to control
four missiles. Only bit pairs are assigned to each missile
because a missile is two bits wide. The bit pairs that go with
the missiles can be found in the following table:
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Missile number bit pairs

1) ¢ & 1
1 2 & 3
2 4 &5
3 6 & 7

Reading this location will give the input at joystick one. As
with joystick zero normally this location will output a one and
holding down joystick one will cause it to go to zero.

$DP12-$DP15

These locations control the color and luminances of players @
and 1. Normally a missile will be the same <color as it's
associate player. However 1if the four missiles are merged
together to form a fifth player they take on their own
individual color. Reading from location $D@14 will determine
what kind of television system is implemented, PAL or NTSC. Lf
the bits 1-3 equal zero then the system is PAL otherwise if the
bits are 1 then the system is running NTSC.

$DP16-$DP19

These registers set the color and luminace of of playfields
zero to three.

$D@1A

This register sets the color and luminance of the background.

$DP1D

Used to select players, missiles and latch trigger input. Bit
@ is used to turn on missiles, bit 1 is for players and bit 2
latches the trigger inputs. By setting this location to =zero
all players and missiles are switched off.

$D@P1E

Writing to this register will clear all collision registers of
players and missiles.

$D@P1F

Reading from this location will indicate which of the three
keys OPTION, SELECT and START are being pressed. Normally when
this location is read a seven is returned but pressing one of
these keys will switch off a bit. START is bit @, SELECT is
bit 1 and OPTION is bit 2.
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The ANTIC chip

The screen display is generated by the ANTIC chip which wunlike
conventional video processors is programmable. ANTIC has it's
own instruction set and it is only necessary to put the program
in memory and point ANTIC at it. The 1list of instructions
which controls the ANTIC chip are called the display list.
Unlike a full microprocessor however the instruction set is

extremely simple. The different options are selected by
setting the right bits in the instruction. There are four
basic options in the instructions. They are Display list

Interupts, load memory scan, the vertical and horizontal scroll
registers.

A display list interrupt is invoked by setting bit 7 of an

instruction. When ANTIC comes to execute one of these
instructions it will cause an 1interrupt to occur. A load
memory scan tells ANTIC that the next two bytes following are
where the text screen memory is positioned. Normally these two
bytes will hold 4@@@@ in LSB/MSB format. This mode is invoked
by setting bit 6 of the 1instruction. Setting bit 5 of an
instruction will enable fine vertical scrolling and setting bit
4 will enable fine horizontal scrolling. Setting these two
bits only enables fine scrolling it doesn't actually cause it.
Bits @ to 3 are used to specify the graphics mode wanted. The

ANTIC modes are functionally identical to BASIC graphics modes
but just numbered differently.

Here is the display list that is normally found in BASIC text
mode @.

DECIMAL HEX DECIMAL HEX
112 70 2 @2
112 70 2 @2
112 7¢ 2 @2
66 42 2 @2
64 4p 2 ?2
156 9C 2 @2
2 @2 2 2
2 @2 2 $2
2 @2 2 ?2
2 @2 2 @2
2 @2 2 @2
2 ¢2 2 ?2
2 @2 2 ?2
2 @2 65 41
2 @p2 32 20
2 @2 156 9C
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The three 112's at the start of the display list put a border
at the top of the screen otherwise the screen would be jittery
or would roll. The 66 tells ANTIC that the two bytes following
are the address of the screen memory. Normally in graphic mode
@ the screen is located at 4@P@@¢ decimal (4PPPP=156%256+64),
though in actually fact the screen can live any where. Notice
the bits which are set in the instruction, bit 6 to signify a
load memory instruction and bit 1 to indicate ANTIC mode 2 or
BASIC's graphic mode zero. The 23 bytes that follow are all
twos and indicate that each line is to be in ANTIC mode two,
which corrosponds to BASIC mode @. It was not necessary to set
load memory because this had already been done. The 65 told
ANTIC to jump back to the start of the display list and to use
the following two bytes as an address.

There are two kinds of JMP instructions in ANTIC: JMP straight
to the address specified in the following two bytes and JMP
when a vertical blank is occurring. A pointer to the display
list can be found by:

PRINT PEEK(56@)+PEEK(561)%256
Here is a list of the modes available with ANTIC:

ANTIC MODE No-COLORS BYTES /SCREEN

2 2 960

3 2 769

4 4 960

5 4 489

6 5 489

7 5 249

8 4 249

9 2 480

19 4 960

11 2 1920

12 2 3840

13 4 3840

14 4 7680

15 2 7680
0 GRAY 4 PINK 8 BLUE 12 GREEN
1 GOLD 5 PURPLE 9 LIGHT BLUE 13 YELLOW-GREEN
2 ORANGE 6 RED-ORANGE 10 TURQUOISE 14 ORANGE-GREEN
3 RED-ORANGE 7 BLUE 11 GREEN-BLUE 15 LIGHT-ORANGE

TABLE OF COLOR VALUES
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Appendix 6
The Sound Chip

Sound on the ATARI is generated by a chip called POKEY. This
chip serves a multitude of other purposes including scanning
the keyboard, random number seed, communication with serial
devices and the interrupt source. The POKEY chip lives at
addresses $D2¢)¢ to $D2FF. 1In actual fact only locations $D20@
to $D2@F are used, the rest of this page is a set of duplicates
of the first sixteen bytes. Because the POKEY chip controls
the disk drive and tape recorder (and all serial bus activity),
it will need to be initialized after any of these devices are
used.

The sound chip has four independant voices. It is possible to
set the frequency of a note, the volume and the amount of
noise. The sound chip is selected in machine language by
storing zero at $D2¢8 and 3 at $D2QF.

There is a frequency register for each of the four wvoices. It
is not a frequency register in the conventional sense. Instead
of loading a frequency into this register, you load a value
that you want the sound chips input clock frequency divided by.
So the greater the number, the lower the frequency of the
voice. So if a four is loaded in one of these registers, then
for every four ticks of the sound clock a pulse will be output.
The four frequency registers are located at $D2¢@, $D2¢2, $D2¢4
and $D2¢6.

Again for each of the voices there is special control register
for volume and distortion (noise). These registers can be
found at locations $D2¢1, $D2¢3, $D2@5 and $D2@7. Bits zero to
four control the volume level of a voice and bits five to seven
the distortion level. A zero volume 1is achieved by putting
zero in the bottom four bits and the loudest volume by putting
in 15. Adding together the volumes of all the voices must not
result in a number greater than 32 or there will be buzzing.

The ATARI does not have distortion 1in the real sense.
Distortion in the proper sense is generated by tugging at the
waveforms in a controlled manner. On the ATARI it's achieved
by simply removing pulses from the square waveform according to
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which distortion is chosen. This is really noise. Distortion
is generated from three special counters called poly-counters.
Setting the upper three bits in the control registers selects
the poly-counter to be used. The three poly-counters are four,
five and seventeen bits long.

Here is a table of bit values to put in the control registers
and the poly-counters combinations they will select. An X in
any of the bit positions means that it is irrelevant what wvalue
that position takes on.

BITS

765

® @ @ -divide input clock by frequency, use 5 bit and 17 bit
poly-counters and divide by two.

® X 1 —-divide input clock by frequency, wuse 5 bit poly-counter
and divide by two.

® 1 ¢ —divide input clock by frequency, use 5 and &4 bit
poly-counters and divide by two.

1 @ @ -divide input clock by frequency, wuse 17 bit
poly-counter and divide by two.

1 X 1 -divide input clock by frequency and divide by two.

1 1 @ -divide input clock by frequency, wuse 4 bit poly-counter
and divide by two.

At $D2(@8 there is a control register that works on on all four
voices. Each of the bits in this location perform a particular
task. Here is a list of the tasks that each of the bits
perform:

Bit ¢ -switches the clock input between 64 KHz and 15 KHz.

Bit 1 -places a filter into channel two and clock it with voice
four.

Bit 2 -places a filter into channel one and clock it with voice
three.

Bit 3 -fuse frequency registers of voices four and three and
use as sixteen bit frequency register.

Bit 4 -fuse frequency registers of voices two and one and use
as sixteen bit frequency register.

Bit 5 —use the 1.79 MHz system clock as an input to the sound
chip on voice three.
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Bit 6 —use the 1.79 MHz system clock as an input to the sound
chip on voice one.

Bit 7 -set the 17 bitpoly-counter to a 9 bit poly-counter.

This location is very important for «controlling the input
frequencies of the wvoices. It is possible to set the
frequencies to 1.79 Mhz (the system clock), 64 KHz and 15 KHz.
Do this using by changing bits ¢, 5 and 6. This greatly
expands the range of achievable notes. Another method of
expanding frequency range is to increase the size of the number
that you divide into the main input frequency. Normally the
number divided into the frequency is in the range @-255 but
this can be expanded to 65535 by changing bits 3 and 4.
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Appendix 7

Memory Usage Directory

PAGE ZERO
ADDRESS
(HEX)

o000 PPl
P002 PPP3
POP4 PPPS
PeP6
PPp7
PPp8
PoP9
POPA PPPB
PPPC PPPD
POPE PPPF
PP1P
pp11
P12 @P14
PP15 GP16
Pp17
PP18 Gp19
PP1A GP1B
pp1c
PP1D
PPLE
PP1F
PP2¢
P21
P22
Pp23
PP24 @P25
Pp26 Pp27
PP28 PP29
PP2A
Pp2B
PP2C PP2D
PP2E
PP2F
PB3P
PP31
Pp32 ¢p33

DECIMAL DESCRIPTION

Nelie o BENENe N S S I ST

19-11
12-13
14-15
16
17
18-2¢
21-292
23
24-25
26-27
28
29
3¢
31
32
33
34
35
36-37
38-39
441
42
43
44—t
46
47
48
49
5¢-51

Vblank timer value

Cassette jump vector

Pointer to aisk boot address
Temporary size of RAM

Cartridge B insert flag

Warmstart flag

Good boot flag

Disk boot vector

Init pointer for disk boot
Pointer to top of memory

Shadow for POKEY enable

Break key pressed ()=pressed
Realtime clock

Pointer to disk buffer

CIO command

Pointer to disk manager

Pointer to disk utilities

Printer timeout value

Points to position in printer buff
Size of printer line

Character being output.

Handler index

The current device number

Command byte

Result of last 1/0 operation
Pointer to data buffer

Pointer to put byte routine

Count for buffer count

Type of file access flag

Used by serial bus routines

Used by NOTE and POINT

Byte being accessed in sector
Temporary storage for char in PUT
Status of current serial operation
Checksum for serial bus operation
Pointer to serial data buffer
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@P34
Pp36
PP37
PP38
@P3D
PP3E
PP3F
PPLP
dpL1
dpL2
P43
PPLA
PPLB
ppLc
@PLD
PP5P
PP52
P¢53
P54
PP55
PP57
P58
PB5A
PP5B
P@SD
PP5SE
PP6d
P61
0063
PP64
PB6A
PP6B
PP6C
PP6E
PP6F
PB7%
P74
P78
@@7C
@@p7D
PPTE
PP8e
P82
P84
Pp86
?p88
PP8A
PP8C
PP8E
PP90

@@35

@pa9

#9951

P56
#0959
Bp5C
PP5F
P62

P69
pp6B

@@6D

$973
BP7A

PPTF
Pp81
P83
P85
P87
Pp89
$p8B
P@8D
PP8F
#0991

52-53
54

55

56

61

62

63

64

65

66
67-73
74

75

76

77
8p-81
82

83

84
85-86
87
88-89
9¢
91-92
93
94-95
96
97-98
99
100195
106

17
1¢8-1¢9
11¢

111
112-115
116-122
123

124

125
126-127
128-129
13¢-131
132-133
134-135
136-137
138-139
140141
142-143
144-145

Pointer past previous buffer

Number of times to retry 1/0 operation
Number of device present retries
Indicates buffer is full, 255=full
Pointer to cassette pointer

Type of gap between records

Flag to indicate end of cass file

Beep count

Noise flag, used to switch off I/0 noise
Flag to indicate Time critical I/0
File manager zero page variables.

Boot flag for cassette

Flag to indicate disk and cassette boot
Break abort status

Color attract flag

Temporary register

Left margin of display

Right margin of display

Current row number

Current column number

Display mode

Pointer to start of screen memory

0ld cursor row

0ld cursor column

Value of character under cursor
Pointer to current cursor position
Row pointer to DRAWTO point

Column pointer to DRAWTO point
Position of cursor in logical line
Temporary information

Page number of RAM top

Character count in screen line

Pointer to editor getchar routine
Temporary storage

Justification counter

Tempory registers for plotting
Registers for line drawing

Split screen flag

Storage for character from keyboard
Temporary storage

Number of points to draw line

Pointer to start of Basic low memory
Pointer to variable name list

Pointer to end of variable name list
Pointer to variable data values
Pointer to start of BASIC program
Pointer to currently executing statement
Pointer to end of BASIC program
Pointer to GOSUB/FOR/NEXT stack
Pointer to top of memory used by BASIC
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$p92
PPBA
@pC3
PPCo
@BCB
P@D2
PPD4
PPED
PPE6
PPF2
PPF3
PPFS5

PAGE
P109

PPBY
P@BB

p@D1
@¢D3
@PD9
PPES
Por1

PPF4L
PPFF

ONE
P1FF

146-202
186-187
195

291

203-2¢9
21¢-211
212-217
224-229
23¢-241
242

243-244
245-255

256-511

Used by BASIC ROM

Linenumber where program stopped
Error number of last error

Number of spaces between TAB columns
Spare bytes in zero page

Temporary location for calculations
Zero page,floating point accumulator @
Second floating point accumulator
More floating point information
Index to character input buffer
Pointer line input buffer

Temporary floating point registers

System stack
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Appendix 8
Table of Screen Codes

NORMAL VIDEO

TYPE
THIS
\J

CTRL
CTRL
CTRL

CTRL

CTRL
CTRL

CTRL

AN EEEDEE<

CTRL

CTRL ,

CTRL E

[ (1) (=] (o) (B ) (0 (9] [l (P <2

TYPE
THIS
Y

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

CTRL

FOR TYPE
THIS TH'IS

[é CTRL T
E] CTRL U
[D CTRL V
E-] CTRL W
[E CTRL X
[jj QTRL ¥
[E] CTRL Z
E;] ESC ESC

FOR TYPE
THIS THIS
Y

[‘, CTRL ;

l SHIFT =

[:] ESC
SHIFT
CLEAR

@ ESC DELETE
[E ESC TAB
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INVERSE VIDEO
FOR TYPE FOR TYPE FOR TYPE
THIS THIS THIS  THIS THIS THIS
\ \J \ ] Y \J \J
B comx, u A CTRL O ESC
SHIFT
I3 cmea B3 icmee INSERT
B o ﬂ A CTRL Q ﬂ ESC
CTRL
Bl cmeuc B ActRLR TAB
E}  icmreop A CTRL S &= ESC
SHIFT
n ACTRL E D A CTRL T TAB
ACTRL F M ActrLu 0 icme.
ACTRL G [ ~cmrev E3 Aot
!] A CTRL H ﬂ ACTRL W [l N SHIFT =
B oo u el 3 esccome 2
B ACTRL Y ESC
ACTRL J 8 | :] L
n ACTRL K n A GTRL 2 RELETE
ESC
u AGInL L ESC D CTRL
= SHIFT
AGIRL B DELETE
M o
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Appendix 9
Current Key Pressed

Location 754 stores the last key pressed. Only one key may be
pressed at a time and if two are pressed then the first one hit
will register. This location holds the value of the hardware
register read and not the actual ASCII wvalue of the key
pressed. This memory location is a shadow location. The value
of the last key pressed will remain at this location wuntil it
is cleared by a POKE or another key 1is pressed. Here 1is a
table of the values returned by PEEKing this location.

Key Value Key Value Key Value Key Value

ESC 28 TAB 44 CTRL NOTHING SHIFT NOTHING
1 31 Q 47 A 63 z 23
2 39 W 46 s 62 X 22
3 26 E 42 D 58 c 18
4 24 R 4 F 56 v 16
5 29 T 45 G 61 B 21
6 27 Y 43 H 57 N 35
7 51 U 11 g 1 M 37
8 53 I 13 K 5 ’ 32
9 48 0 8 L ¢ . 34
¢ 50 P 19 ; 2 / 38
( 54 - 14 + 6 INVERS 39
) 55 = 15 7 SPACE 33
Bk sp 52 RETURN 12 CAPS 60
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Appendix 10
ALPA + Disassembler

ALFA

1690

1699
1700
1705
1710
1999

CLR :GOSUR 1000

GOSUR 12000

G0SUR 170@: IF NL=1 THEN RETURN

FAS=1:FOR Z1=1 TO NL-1:G0S8UE Z000:GOs5UR 2500:G05UR Z000: GO
SUE 4000

IF TYFE=1 THEN GOSUR S000

1F TYFE=2 THEN GOSUER 2500

GOSUR 700Q@: GOSUR 7500: NEXT Z1

REM FASS 2

NC
FAS=2:FOR Z1=1 TO NL-1:G08UR 2000:GOSUR 2500:GOSUE 4000
IF TYF THEN GOSUR SO0

IF TYF THEN GOSUER 3500

GOSUR 70Q@: NEXT Z1

GOSUER 7600: RETURN

REM INIT SYSTEM

DIM LINE#(8@),CODE# (X)) ,INFOS# (20) ,OFER$(135) ,CHAR% (1) (HE(LSE
) yHZ#(4) ,EN1(10@) ,5T1 (10>

DIM TEXT#(1000) ,FU¥(4@) ,MAND# (18) ;MOR¥ (18) ,AF(3) ,O0TARLE$ (B
45) ,YAE(F) (HXE(Z) ,CHECL) ,MEME(6) ,DIREF (12)
0SIZE=15:NDIR=4:FG=100

DIM HEX#(2) ,8YS#(10) ,SYMBOL# (220) ,LARELF (10) ,LVALUE* (4) ,ME
MIFG)

H#="012Z456789ARCDEF"
NL=1:EFOIN=1:8YMROL£(1,1)=CHR¥(@)
DIRE#="DFEDFWEQUORG"

FOIN=1:8T=1

NMODE=11:FR=1

INFOSF=" | 4 s s s s s daamsasssscssasn
DATA 104,104,137 g 2
DATA 104,37 ,2 215,104 ,37,212,133,212,96

FOR I=1 TO 1 EAD Az MANDF (1, 1) =CHR* (A) : NEXT I

MOR#F=MAND#*: MOR%$ (9 ,9) =CHR# (5) : MOR#¥ (14, 14) =CHR#% (&)

OTARLEE=" [ ": OTABLE* (840) =" .": 0TAEBLE# (2,840)=0TABLE# (1 ,840—
L

READ NOFS

FOR I=1 TO 840 STEF 0SIZE

READ A% ,ADDR,N:M1=INT (ADDR/Z256) : L1=ADDR— (M1*254)

OTABLE® (I, I+2)=Af: 0TARLE® (I+3,1+3) =CHRF (L.1) : OTABLE® (I+4, 1+
4) =CHR#% (M1)

FOR J=1 TO N:READ A:OTABLE® (I+4+J,I+4+J)=CHR#$ (A) : NEXT J:NE
XTI

RETURN

FEM INIT ASSEMHELER
ST=1:FC=0:EFO0IN=1: SYMROL# (1,1)=CHR¥ (@) : V=0: NC=1:SY5L.=0

FOR 1I=0 TO FG:MEM(L)=0@Q:NEXT 1

RETURN
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REM INTIALIZE

VARTABLES IN LINE
@

=y MEME= L L
" OFER

TYFE=0: CHARF

MODE=1:CODE*=" , .":tHX$=" L ."

FUE(L QD) =" ok ko h s ikt & h h ok h kb A hbh bk h i hh b dohosa
.L.i..‘.;b"

RETURN

REM
ST1=8T1 (Z1) :ENI=ENL (Z1) : JJ=1

R J=5TL TO ENL:LINE#(JJ,JJ)=TEXT£(J,J)+JI=JJ+1:NEXT
UNT= (ENL-ST1) +2: RETURN

RETUR
REM FROCESS AN LABEL
CC=1:5YSL=1:LE=LEN (L INE#)

LINE

J:CO

F

GOSUR 650@: IF CHE< =" ." THEN SYS#(SYSL,S8YSL) =CH#: SYSL=6YSL+
1:60T0O 2010

SYSL=8YSL—1: IF SYSL< @ THEN FLAG=1

RETURN

REM ASSEMELER DIRECTIVES

OFERE=LINEF (16 ,LEN (LINES$) ) : OF=LEN (OFER¥)
IF CODE#$="DFR" THEN 3550:RETURN

1IF CODE#="DFW" THEN 363@0:RETURN

IF COD "EQU" THEN Z700:RETURN

IF CODE#f="0RGE" THEN 3750:RETURN

REM DEFINE EYTE

GOSUE 5300
IF LEN(MEM#) < »2 THEN GOSUR 6010: RETURN
F 1 GOSUR 9000@: M1=DEC
7)=MEM# (1,2) : MEM(NC) =DEC
FIO0: RETURN

SUR 9100:FU% (6,
FU=FCHLENC=NC+1 1 GOSUR
REM DEFINE WORD
GOSUR 7200 GOSUER 2100
FUS (6, 7)=MEMF (3,4) 1 FU$(9,10) =MEM* (1,2
HXE=MEM# (3,4) : GOSUR 9000: MEM(NC) =DEC
MEMFE (1,2) : GOSUR 9200: MEM (NC) =DEC: NC=NC+1: FC=FC
¢ @: RETURN
OCESS EQU

THEN RETURN
@ THEN FRIMT
S300: GOSUE 9700

YLAREL LWITHOUT LEQU": ERR=1: RETURN

GOSUR
IF COUNT=2 THEN V=1:HX#=MEM#(1,2):60SUE 000:FG=DEC: GOSUR
66HD0: RETURN
IF COUNT=4

THEN V=2:HX$=MEM# (3,4) : GOSUR 2000: LE=DEC: HX#=ME
ME(1,2) : GOSUR 900Q: MZ=DEC: FG= (MI*256) +L7: GOSUR 6600: RETURN
GOSUR &6@01@: RETURN

REM ORG

GOSUR S5Z00: GOSUR 900

IF LEN(MEM$) < *4 THEN GOSUR 6010: RETURN

HX$:MEN$(1,2):GDSUB 000: M1=DEC

bU%UH
S5 UFFHQIIUN CODE
3 -LINh$(8,1@)

FOR 1I=1 TO (NOFS*0S1ZE)
IF CODE#=0TARLE® (I,I+2)
45 s RETURN

9¢B®:HETURN

STEFP 0514k
THEN INFOS#=0TABLE#* (I,

I+08TZE-1):T

I=1 TO (NDIR%*3) STEF =
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4045
4047
4050
5000
005
5010
S015
5020

025

IF CODE#=DIRE#(I,I1+2) THEN TYFE=2:RETURN

NEXT I

FRINT "UNMENOWN (OFERATION .CODE": ERR=1: RETURN

REM FROCESS OFERAND

IF FLAG=1 THEN V=2:FG=FC:G0OSUR &,&00

IF LEN(LINE#)<16 THEN MODE=1:RETURN

OFER#F=LINE# (16,LEN(LINE#)) : OF=LEN (OFER#)

CHARE=0FPER$ (1,1)

IF CHAR#=" (" THEN GOSUER 5100:RETURN

IF CHAR#="#" THEN GOSUB S5200:RETURN

IF CHAR#="#" THEN GOSUER SZ00:RETURN

IF CHARE="%" THEN GOSUE S400:RETURN

A=ASC (CHAR#) : IF A>=65 AND A<=90 THEN GOSUE S500:RETURN
GOSUER 60Z0:RETURN

REM FROCESS INDIRECTION

CC=2:GUSUR 5700

IF CH#="#" THEN GOSUER 5150:RETURN

A=ASC (CH#$) : IF Ax=65 AND A<=90 THEN GOSUR S5600:RETURN
GOSUR 600@: RETURN

REM FROCESS HEX INDIRECTION

COUNT=1

GOSUE S700@: IF TR=1 THEMN MEM#F (COUNT,COUNT) =CH#: COUNT=COUNT+
1:60TO 5152

COUNT=COUNT-1

IF CH#="," THEN GOSUR S160:RETURN

IF CH#=")" THEN GOSUE S170@0:RETURN

GOSUER 6000: RETURN

REM FROCESS INDIRECTION X

IF COUNT#>2 THEN GOSUE 6000:RETURN

GOSUER 5700@: IF CH#<:"X" THEN GOSUE 6000:RETURN

GOSUER S70@: IF CH#<:")" THEN GOSUER 600@: RETURN
MODE=512: RETURN

REM INDIRECT,Y OR (INDIRECT)

IF COUNT=4 THEN GOSUR 5180:RETURN

IF COUNT=2 THEN GOSUER S519@0:RETURN

GOSUEB 601@: RETURN

REM FROCESS ABSOLUTE INDIRECTION

GOSUR S700: IF CH#="" THEN MODE=1024:RETURN

GOSUER 6000: RETURN
FREM FROCESS INDIRECT.Y
GOSUR S57@0@: IF CH#« =" ," THEN GOSUE 6000:RETURN

GOSUR S570@: IF CH#F<x"Y" THEN GOSUE 6000: RETURN

GOSUER S700: IF CHf<>"" THEM GOSUR 6000:RETURN
MODE=256: RETURN

REM FROCESS IMMEDIATE DATA

MODE=2

CHAR¥=0FER# (2,2)

IF CHAR#="%" THEN GOSUE S5250:RETURN

GOSUR 4010: RETURN

REM FROCESS IMMEDIATE HEX DATA

HX$E=0FERF (3, LEN (OFER¥) )

IF LEN(HX#) THEN GOSUE 46010@0:RETURN

IF LEM(HX#) 22 THEN HX#(2,2)=HX$(1, 1) :HX¥(1,1)="0Q": GOSUE 90
@@: IMM=DEC: RETURN

GOSUR 900@: IMM=DEC: RETURN

REM GENERATE HEX MEMORY OBRJECT

CC=2:COUNT=1

GOSUE S7@0: IF TR=1 THEN MEM# (COUNT,COUNT) =CH¥: COUNT=COUNT+
1:60TO SZ10

COUNT=COUNT-1

IF CH , " THEN GOSUR S57350: RETURN

IF CH#="" THEN GOSUE 5800@0:RETURN
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5321  PRINT "1LLEGAL .CHARACTER . IN  OFERAND": ERR=1: RETURN

5400 REM RELATIVE ERANCH

5401 CHAR#=0FER¥ (2,2)

5402  IF CHAR#="%£" THEN GOSUR 5410: RETURN

5404 IF CHAR#>="A" AND CHAR#F:<="Z" THEN GOSUE S450:RETURN

5406 GOSUR 6@07A: RETURN

5410 REM FROCESS HEX LABEL

5412 CC=3:COUNT=1

5414 GOSUR S70@: IF TR=1 THEN MEM# (COUNT,COUNT)=CH#%: COUNT=COUNT+
1:60TO 5414

5415 COUNT=COUNT-1

S416  IF CH#E<="" THEN GOSUER 6010:RETURN

S419 MODE 48: RETURN

5450 REM RELATIVE LAREL

5451 LABEL#(1,1)=CHAR#:LSIZE=2:CC=3

S45%  GOSUR 6800: IF TR=1 THEMN LAREL#(LSIZE,LSIZE)=CH¥:L.SIZE=L.SIZ
E+1:60T0 S453

G455 LEBIZE=LSIZE-1:G0BUE 6700

5457 IF FOUND=1 THEN MEM#=LVALUE#:GOSUE S5416:RETURN

5459 IF FAS=2 THEN GOSUER 6085:RETURN

S460 FEM#F="0000":COUNT=4:G0OSUE S5416: RETURN

5499 RETURN

900 REM FROCESS LAREL IN OFERAND

S9@1  LAREL#(1,1)=CHAR#: LSIZE=2:CC=2

S90F GOSUR 680@0: IF TR=1 THEN LAEEL#(LSIZE,LSIZE)=CH#:LSIZE=LSIZ
E+1:60T0 5503

S505 LSIZE=LSIZE-1:G0SUR 6700

5515  IF FOUND=1 THEN MEM#=LVALUE#:GO0SUR S5Z17:RETURN

5519 1IF FAS=2 THEN GUOSUR 608%5:RETURN

552 MEM#="Q0000" : COUNT=4: GOSUR 5317:RETURN

5600 REM LABEL INDIRECTIONM

5601 LAREL®(1,1)=CH$#:LESIZE=2:CC=3

5603 GOSUE 6800: IF TR=1 THEN LAREL# (LSIZE,LSIZE)=CH#:LS512E=L5I11Z

E+1:6G0TO 5603

LSIZE=I.SIZE-1:GOSUER 6700@

IF FOUND=1 THEN MEM#E=LVALUE¥:GOSUR 5154:RETURN

IF FAS=2 THEN GOSUE 6085:RETURN

MEM#="00": COUNT=2: GOSUR 5154:RETURN

REM GET CHAR FROM OFERAND

TR=Q: CH$=""

IF CCxOF THEN RETURN

CH#=0FER® (CC,CC) : CC=CC+1: A=ASC (CH#)

=& AND AT=70 THEN TR=1:RETURN

48 AND 57 THEN TR=1:RETURM

RETURN

5750 REM FROCESS AN INDEX REGISTER

5765 GOSUR G700

5760  IF CH#="X" THEN GOSUER 5780:RETURN

5765  IF CHE="Y" THEN GOSUR 5790:RETURN

5770 FRINT "ILLEGAL LINDEX .REGISTER LFOLLOWING .VALUE":ERR=1:RETUR
N

S$780 REM DETERMINE IF ZERO/ARSOLUTE X

5783 1IF COUNT=2 -THEN MODE=8:RETURN

5787 IF COUNT=4 THEN MODE=64:RETURN

5789 GOSUR 4@10: RETURN

G790 REM DETERMINE IF ZEROQ/ABSOLUTE Y

G795 IF COUNT=2 THEN MODE=1&:RETURN

5797 IF COUNT=4 THEN MODE=1Z28:RETURN

5799 GOSUR 6010:RETURN

5800 REM DO ARSOLUTE OR ZERO FAGL HEX

5805 IF -COUNT=2 THEN MODE=4:RETURN
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G810
815
L0000
6005
6010
602

6030

670
HQ80
6085
6418
6500
6505
6510
6515
6600
6601

6605
6610
6615
6617
6618
b6Z

LHbR2Z
66224
bb2b6

L5700
6701
6705
6710
6713
6720
6725

6730
675
6740
6745
6750
6770

6775

6780

6800
6805
6810
6815
6820
6B25
7000
7001
7002
7005
7010

IF COUNT=4 THEN MODE=Z2:RETURN

GOSUR 601@: RETURN

REM FRINT ERROR MESSAGES

FRINT "ILLEGAL LINDIRECT LINSTRUCTION":ERR=1:RETURN
FRINT "ILLEGAL .HEXIDECIMAL .VALUE":ERR=1:RETURN
FRINT "BRANCH .OUT LOF LRANGE": ERR=1: RETURN

FRINT "ILLEGAL .ADDRESSING .MODE .WITH LINSTRUCTION":ERR=1:RET
URN

FRINT "ILLEGAL .OFERAND":ERR=1:RETURN

FRINT "MULTIFLY LDEFINED JLAREL":ERR=1:RETURN

: i OWN LSYMEBOL " : ERR=1: RETURN

THEN GOSUR 6010:RETURN

CH#=""

IF CC:*LE THEN RETURN

CH#=LINE# (CC,CC) : CC=CC+1: RETURN

REM CHECK IF LAEBREL IN SYMROL TARLE AND IF NOT ADD TO IT
LSIZE=8YSL: LAREL #=5Y5¥: GOSUR 6700: IF FOUND=1 THEN GOSUER 60
8@: RE TURN

SYMEBOL#* (EFOIN,EFOIN) =CHR# (SYSL) : EFOIN=EFOIN+1

COUNT=1

FOR I=EFOIN TO EFOIN+SYSL-1

SYMRBOLE (L, 1) =5YS5% (COUNT , COUNT)

COUNT=COUNT+1:NEXT I
EFOIN=EFOIN+SYSL: SYMEOL# (EFOIN,EFOIN) =CHR* (V) : EFOIN=EFOIN+
1

MSE=INT (FG/256) : LSE=FG~ (MSE*254)

SYMBOL# (EPOIN,EFOIN) =CHR¥ (LSE) : EFOIN=EFDIN-+1

SYMEROL# (EFOIN,EFOIN) =CHR# (MSR) : EFOIN=EFOIN+1: SYMBOLF (EFOIN
SEFOIN) =CHR¥ (@) : RETURN

REM SEARCH SYMEBOL TABLE

SFOIN=1:FOUND=@

AF=GYMROL# (SFOIN,SFOIN) : A=ASC (A%) : IF A=0 THEN RETURN

IF AC:LSIZE THEN SFOIN=S5FOIN+A+4:GOTO 6705

SA=8SFOIN: SFOIN=SFOIN+1: COUNT=1

FOR 1I=5F0OIN TO SFOIN+A-1

IF LAREL# (COUNT,COUNT) < *SYMBOL#(I,I) THEN SFOIN=SA+A+4:60T
Q 6705

COUNT=COUNT+1:NEXT I
SFOIN=8A+A4+1: FOUND=1: L5T=A8C(SYMRBOL ¥ (SFOIN,SFOIN))

IF LSI=2 THEN GOSUE &677@:COUNT=4:RETURN

IF LS8I=1 THEN GOSUE 6780:COUNT=2:RETURN

RETURN

SFOIN=SFOIN+1: BYTE=ASC (SYMEBOL# (SFOIN,SFOIN)) :FM=RYTE: GOSUE
FE0A: LVALUES (2, 4) =HX¥$

SFOIN=SFOIN+1: RYTE=ASC (SYMEOL¥ (SFOIN,SFOIN)) : FM=FM+ (BYTE*2
G6) : GOSUR 9200 LVALUEF (1,2) =HX#: RETURN

SFOIN=SFOIN+1: BYTE=ASC (SYMBOL# (SFOIN,SFOIN)) :FM=RYTE: GOSUE
9200: LVALUE$ (1,2) =HX#: RETURN

REM GET CHAR FROM OFERAND

TR=@: CH¥=""

IF C F THEN RETURN

CH#=0FER$ (CC,CC) : CC=CC+1: A=ASC (CH#)

IF AX=65 AND A«+=90 THEN TR=1:RETURN

FRETURN

REM GENERATE OBJECT CODE

IF ERF THEN RETURN

IF TYFE=2 THEN RETURN

ADDR=ASC (INFOS# (4,4)) + (ASC (INFOS# (5,5) ) *#256)

A=USRK (ADR (MAND#) .ADDR ,MODE) : IF A=0 THEN GOSUE 60Z0:RETURN
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7015 COUNT=@

7020 FOR I=0 TO NMODE

7025 A=USK (ADR (MAND#) ,ADDR ,2"1) : IF A<x0 THEN COUNT=COUNT+1
7030  A=USR (ADR (MAND#) ,MODE,2~1): IF A<>0 THEN GOTO 7040
705 NEXT I

7040 OBJECT=ASC (INFOS# (S+COUNT ,S5+COUNT))

7043 1 THEN GOSUR B05A: RETURN
7050 THEN GOSUR 8100: RETURN
7055 4 THEN GOSUR B150: RETURN
7060 8 THEN GOSUR B8150:RETURN
7065 14 THEN GOSUR 8 : RETURN
7070 2 THEN GOSUR 8700:RETURN
7@Q75 64 THEN GOSUR @: RETURN
7080 128 THEN GOSUR BIOO: RETURN
7083 Y6 THEN GOSUER 8500: RETURN
7090 512 THEN GOSUER 8S00:RETURN
A 1024 THEN GOSUR 8300 RETURN
7099 2048 THEN GOSUER 8600:RETURN

7499  RETURN

7500 FREM FRINT OUT THE LINE

75@1  IF ERR=1 THEN RETURN

7505 FRINT FUF:RETURN

7600 REM FRINT OUT SYMREOL TARLE

7602 FRINT :FRINT "SYMEROL .TABLE"

7605 SFOIN=1

7610 AF=SYMEOL* (SFOIN,SFOIN) : A=ASC(A¥): IF A=0 THEN RETURN
7615 SFOIN=SFOTN+1:LARELF=" . 4o aasaaaa'tCO=1
7620 FOR I=SFOIN TO SFOIN+A-1

7625  LAREL#¥(CO,C0)=8YMEOL#(I,I):C0=C0O+1

76ED NEXT 1

7635  SFOIN=SFOIN+A+1

7640 L1=ASC(SYMBOL#(SFOIN,SFOINM)) :SFOIN=SFOIN+1
7645 M1=ASC(SYMBOLF (SFPOIN,SFOINY ) : SFOIN=SFOIN+1
7650 FRINT LARELF:;" . "3

7655 BYTE=M1:GOSUR 9200: FRINT HX#j

7660 EBYTE=L1:BUOSUR 9200: FRINT HX#:GOTO 7610
8RS0 REM GENERATE IMPLIED ORBJECT

8055 GUSUR 9100:FEMNC)=0BJECT

8060 NC=NC+1:FC=FC+1
8065 BYTE=0RJECT:GOSUER 9200

8070 FUE(&6,7)=HX$£: GOSUR 9200: RETURN

8100 REM GENERATE IMMEDIATE OEJ CODE

8105 GOBUR 91@@: MEM(NC) =0RJECT

8110 NC=NC+1:MEMNC)=IMM:NC=NC+1

8115 BYTE=QORJECT:GOSUR 9200: FC=FC+2

8120 FU%F(6,7)=HXF: RYTE=IMM: GOSUR 2200

8125 PFUF(9,10)=HX#:GOSUR 9I00: RETURN

8150 REM GENERATE ORJECT FROM ZERO

8155 GOSUER 910@: MEMNC) =0RJECT : NC=NC+1

8160 EBYTE=ORJECT:GOSUR 9200

8165 FUF(6,7)=HXF:FU$(9,10)=MEM#:NC=NC+1:G0SUER 9Z00:FC=FC+2:RET
URN

REM FROCESS ARSOLUTE

GOSUR 921@0: MEM (NC) =0BJECT

NC=NC+1: RYTE=0RJECT: GOSUR 9200: FUF (6,7) =HX#*

HXF=MEM# (Z,4) : FUE (9, 10) =HX%: GOSUE 9000: MEM (NC) =DEC: NC=NC+1
HX#F=MEM* (1,2) : FU£ (12, 13) =HX$: GOSUE 9000:MEM(NC)=DEC: NC=NC+
1:FC=FC+3

8319 GOSUER 9Z00: RETURN

8500 REM INDIRECT.Y

8505 GOSUR 91@0:MEM(NC)=0RJECT: NC=NC+1
8510 HXE=MEM#(1,2) : GOSUER 2000: MEM (NC) =DEC
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8515
B520
8L2T
8520
8600
8602
8605
8610
83615
8620
8625
8627
8670
B6EE
B&I7
84640
8645
000
005
7010
1S
9020

9515
9517
9519

NC=NC+1: FC=FC+2

BYTE=0RJECT: GOSUR 920Q@:FU% (&6,7) =HX¥
FU£(9,10) =MEM¥

GOSUR 9700 : RETURN

REM RELATIVE ERARNCH

IF FAS=1 THEN 8630
HXF=MEM% (1,2) : GOSUE S000: MSE=DEC

HXE=MEME (Z,4) : GOSUR 2000: LLSE=DEC
LA=(MSE*256) +LSE: DI=LA-FC~-2
IF DL*129 THEN GOSUR 6020 RETURN

IF DI<—1726 THEN GOSUE 6020:RETURN
IF DI<@ THEN DI=DI+256

GOSUE 9100: MEM (NC) =DEJECT : NC=NC+1

MEM (NC) =D1 : NC=NC+1 : FC=PC+2

BYTE=DI:GOSUE S200:FU%(9,10) =HX+

BYTE=ORJECT: GOSUR 9200: PU$ (6,7) =HX#

GOSUE 9300 : RETURN

REM CONVERT VALUE IN HX$ TO DEC

Af=HX# (1,1) : GOSUR 9020

DEC=RYTE*1b: A¥=HX% (2,2) : GOSUE 9020

DEC=DEC+EYTE: RETURN

BYTE=0: IF A% >=CHR$(48) AND A$<=CHR$(57) THEN EYTE=ASC(A%)-
48: RETURN

IF A$»=CHR$(65) AND A$:=CHR#(70) THEN EYTE=ASC (A%)-55:RETU
RN

GOSUE 6010: RETURN

REM CONVERT PC TO HEX

M1=INT (FC/256) : BYTE=M1: GOSUE 9200:FU% (1 ,2)=HX#$:L1=FC— (M1%2
56) t BYTE=L1: GOSUR 9200:FU$ (3,4) =HX#$: RETURN

REM CONVERT EBYTE TO HX#

MSE=INT (BYTE/16) : LSB=RYTE- (MSE*16)

HX#E (1, 1) =H# (MSE+1 ,MSE+1) t HX$ (2,2) =H# (LSE+1,LSE+1) : RETURN
REM FUT OFERATION

IF SYSL<»@ THEN FU$(15,15+SYSL-1)=SYS#%
FU$ (23 ,25) =CODE#

FU$ (28, 28+LEN (OFER$) ) =OFER$

RETURN

REM DATA FOR ASSEMELER

DATA Sé

DATA ADC.1006,8,105,101,117,109,125, 12
DATA AND, 1006,8,41,37,53,45,61,57,49
DATA ASL.,109,5,10,06,22,14,3%0

DATA ECC,2048,1,144
DATA BCS,2048,1,176
DATA BER,2048,1,240
DATA EIT,36,2,36,44
DATA EMI,2048,1,48

DATA ENE,2048,1,208
DATA EFL,2048,1,16

DATA ERK,1,1,00

DATA BVC,2048,1,80

DATA BVS,2048,1,112
DATA CLC,1,1,24

DATA CLD,1,1,216

DATA CLI,1,1,88

DATA CLV,1,1,184

DATA CMF, 1006,8,201,197
DATA CFX,38,3,224,228,2:
DATA CFY,38,3,192,196,204
DATA DEC,108,4,198,214,206,2
DATA DEX,1,1,202

W113,97

213,205,221 ,217 ,209,193
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+du1 DATA DEY,1,1,136
9553 DATA EOR,1006,8,73%,69,85,77,9%,89,81,65
9555 DATA ING,108,4,230,246 ,238,254
9557 DATA INX,1,1,232
9559  DATA INY,1,1,200
9561 DATA JMF,1056,2,76,108
9567 DATA JSR,32,1,32
9565 DATA LDA,1006,8,169,165,181,173,189,185,177,161
9567 DATA LDX,lBZ,S.léQ,166,182,]74.J9D
9569 DATA LDY,110,5,160,164,180,172,29
9571 DATA LSR,4%5,4,74,70,86,78
9573 DATA NOF,1,1,274
9575  DATA ORA, 1006,8,9,5,21,13,29,25,17,1
9577 DATA FHA,1,1,72
9579  DATA FHF,1,1,8
9581  DATA FLA,1,1,104
9583 DATA FLE,1,1,40
9585 DATA ROL,109,5,42,38,54,46,62
9587 DATA ROR, 109,5,106,102,118,110,126
9589 DATA RTI,1,1,64
9591 DATA RTS,1,1,96
9593  DATA SEC, 1006,8,:
9595 DATA SEC,1,1,56
9597 DATA SED,1,1,248
9599 DATA SEI,1,1,120
9600 DATA STA.1004,7,
96@2 DATA STX,S52,3
9604 DATA STY,44,3,132,148,140
9606 DATA TAX,1,1,170
9608 DATA TAY,1,1,168
9610 DATA TSX,1,1,186
9612 DATA TXA,1,1,138
9614 DATA TXS,1,1,154
9616 DATA TYA,1,1,152
9801  INFUT #1,LINE$: COUNT=LEN(LINE®)+1: RETURN
11000 REM AFFERND
1100% PRINT NL;" »";:GOSUE 9801
11010 IF COUNT=1 THEN RETURM
11915 JJ=1:COUNT=COUNT-1
11020 ST1(NL)=FR:JJ=1
11025 FOR I=FR TO FR+COUNT—1:TEXT#(I,I)=LINE#(JJ,JJd):JJ=JJ+1:NEX
T I
11070 EN1(NL)=FR+COUNT—1:FR=FR+COUNT:NL=NL+1:G0TO 11005
11100 REM LIST
11101 IF NL=1 THEN RETURN
11105 INFUT F1,F2

M
()
w

1,249,241, 2

+1574153,145,129

11106 NL. THEN F2=NL-1
11112
11115 I==F2 THEN GOSUE 11125

11120 NFX[ I: RETURN

11125 ST1=8T1 (1) :ENI=ENI1(I)

L1130 FRINT 13" . ";:FOR J=ST1 TO ENL:FRINT TEXT#(J,J);:NEXT J:FRI
NT :RETURN

11160 GOTO 11520

11200 REM DELETE

11205 INFUT F1

11210 IF F1:NL-1-0R F1<1 THEN RETURN

11215 IF Fl=NL-1 THEN NL=NL-1:RETURN

11220 JJ=F1:Fi=F1+1

11225 FOR I=F1 TO NL

11270 EN1=EN1(I):ST1=ST1(I):EN1(JJ)=EN1:ST1(JJ)=5T1:JI=JJ+1:NEXT

T:NL=NL-1:RETURN
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REM INSERT

INFUT F1

IF:-F1>=NL THEN RETURN

Fl=F1+1

FRINT Fi:;" »";:608UR 9801

IF COUNT=1 THEN RETURN

COUNT=COUNT-1:8T1=FR:JJ=1

FOR I=FR T0 FR+COUNT-1:TEXT#(I,I)=LINE¥(JJ,JJ):JI=JI+1:NEX
T I

EN1=FR+COUNT-1

S J=NL-F1:50=NL-1:LINK=NL

11555

11560
1157@
12000
120035
12006

12007
12010
12020
120720
12040
12050
12058
12060
12065
12070
12079

FOR I=1 TO J

i A=ST1(S0) : ST1(LINE) =A: A=EN1 (S0) : EN1 (LINK)=A: S0=50—-1:LINE=L

INE-1:NEXT I
ENL1(F1)=EN1:8T1(F1)=5ST1:FR=FR+COUNT:NL=NL+1:60T0 11310
REM SAVE

IF NL=1 THEN RETURN

OFER$="": INFUT OFER#:IF OFER$="" THEN RETURN

OFEN #2.8,0,0FER%:Af=" _"

FOR I=1 TO NL-1

ENI=EN1(I):8T1=5T1(I)

FOR J=8T1 TO EM1:Af=TEXT#$(J,J)

FRINT #23:A%: FRINT A%y

NEXT J

FRINT #2:;" F":FRINT

NEXT I:CLOSE #2:RETURN

KEM LOAD

OFERF="": INFUT OFER#*:IF OFER#="" THEN RETURN

OFEN #2,4,0,0FER¥

TRAF 11570

FR=1:8Tl=FRz21I=1

ST1=FR: COUNT=18 LINEES" ik w a i mm d ok i ek i e oo ke b, e
AF=" " INFUT #2;A%: IF AF=" k" THEN FRINT :G0TO 11540
LINEF (COUNT,COUNT) =A%:FRINT A%;

COUNT=COUNT-+1:60TO 11525

COUNT=COUNT-1

» EN1=FR+COUNT-1

JJ=1:FOR J=FR TO FR+COUNT—1:TEXT#(J,J)=LINE$(JJ,JJ):II=IJ+
1:NEXT J

ST1(I)=ST1:ENIL (I)=EN1:I=I+1:FR=FR+COUNT

GOTO 11520

NL=I:CLOSE #Z:RETURN

REM COMMAND MODE

CLOSE #1:0FEN #1,12,0,"E:"

SETCOLOR 1;@,15:SETCOLOR 4,0,0:SETCOLOR 2,0,0:FOKE 82,0:FR
INT

FOKE 676,16:FOKE &75,8:FOKE 677,16

LINES=" ,":FRINT "% .";:G0OSUE 9801

IF LINE#="ASM" THEN GOSUE 20:G0T0O 12010

IF LINE#="AFFEND" THEN GOSUE 11000:G0T0 1201Q
IF LI ="LIST" THEN GOSUR 11100: 6GOTO 12010
IF LINE 'WATCH" THEN GOSUER 1Z000:G60TD 12010
IF - LLIN 'NWATCH" THEM WA=0:G0TO 12010

IF LINE 'QUIT" THEN FRINT CHR#(123)3::END

IF LINE 'NEW" THEN FR=1:NL=1:G0T0 12010

IF LINE#="DELETE" THEN GOSUE 11200:G0T0 12010
IF LINE#="INSERT" THEM GOSUR 11300:G0T0 12010

="RUN" THEN GOSUE 13Z500:G0T0 12010
IF LINE#="SAVE" THEN GOSUR 11400:G0T0 12010
IF LINE#="LOAD" THEN GOSUER 11500:G0T0O 12010
GOTO 1201@
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REM WATCH

FRINT " (WHAT LADDRESS .) "3

INFUT HZ#

IF LEN(HZ#) <34 THEN FRINT "ADDRESS LMUST LHE LFOUR LDIGITS LLON
G": RETURN

HX#$=HZ#(1,2) : GOSUR 900@:M1=DEC

i HX#=HZ#(3,4) : GOSUR 9000: 1 1=DEC

WAT=(M1%256) +L1: WA=1: RETURN

REM RUN

JI=FC1 ,

FOR I=1 TO NC-1:EYTE=MEM(I):FOKE JJ,RBYTE:JJ=JJ+1:NEXT I

IF WA=1 THEN EYTE=PEEK (WAT):GUSUE 9200:FRINT "ADDRESS .":H2
#3" (BEFORE=";HX$

A=USR (FC1)

IF WA=1 THEN EYTE=FEEK (WAT):GOSUE 9200:FRINT "ADDRESS . ":iHZ
#3" JAFTER =" ; HX%

17550 RETURN
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HEXFERT

P CHR#F(125):7 ¢ 17 17 "ENTER LCHMD LFOR LCOMMAND (SUMMARY":7? =

DIM CHDF (50)

DIM WHATE

DIF TEST# ()

DIM HEX#(16) :HEX#="0Q123456789ARCDEF"
DIM TEMFE
DIM T#
DIM 0

DIM FIELD*(10@)
LLOCATION=1
? 1? CHR#(20) :: INFUT CHMD#

IF LEN(CMD#) <3 THEN GOSUER S000:GOTO 2000
WHAT#=CMD# (1 ,3)

RESTORE 3000

READ TEST#,WHERE

IF TEST#H="XXX" THEM CMD#="":60T0 201@

IF TEST#=WHAT# THEN GOTO WHERE

GOT0 2040
BRI G O MM AN DS o i € L
RESTORE Z000

READ TEST# . WHERE

IF TESTH="XXX" THEN ? 7 :607T0 2000

? TEST#

GOTO 2120

DATA EXI,Z100

DATA DUM,ZZ00

DATA MEM, 6200

DATA AGC, 2400

DATA CMD,2100

DATA XXX,2000

2 &2 37 "T0 LRESTART" 57 "TYPFE & da &00T0..2000 . CRETURNI"s? &7

?OVSTART JDUME LAT L" 32 INFUT TEMP#: GOSUR 4500: IF ERRORFLA
G THEN GOSUER S0@1:7? :60T0 2000

DUMF=TEMF

FOR Y=1 TO 22: TEMF=DUMF:GUSUR 4000@:7 "%"sTEMFH:" [ ."3

FOR XX=1 TO 1@0: TEMF=FEEE (DUMF) : GOSUER ZI250: GOSUR 4000:7 TEM
PE(344) 5" A" 32 NEXT XX:? tNEXT Ys? s
INFUT TEMF#: IF TEMFE="E" THEN 2000
GOTO 2710

DUMF UMF+1: IF DUMF *65535 THEN DUMF=DUMF-65526

RETURN

7 "START LADDRESS LFOR LASCII LDUMP (%" 3 : INFUT. TEMF#: GOSUER 4500
: IF ERRORFLAG THEN GOSUR S0@1:7 :60T0O 2000

DUMF=TEMF

FOR Y=1 TO 22: TEMF=DUMF:GOSUER 4000@:7 "#";TEMFP#z" . ."3

FOR XX=1 TO Z@: TEMF=FEEE (DUMF) : DUMF=DUMP+1: IF TEMF >
TEMF- THEN TEMF=ASC(".")

?CHR# (TEMF) 3 2 IF DUMF 655325 THEN DUMF=DUMF-63535
NEXT XX27 $tNEXT Y

BonRt s INPUT TEMFE: IF TEMF$="E" THEN Z000

GOTO T420

TEMF% aaan"tX=INT(TEMF/4096)

TEMF#E (1, 1) =HEX* (X+1,X+1)
TEMF=TEMF-X*40%2&: X=INT (TEMF/256)

TEMPH (2,2) =HEXE (X411 ,X+1)

TEMF=TEMF-X*256: X=INT(TEMF/16)

149



ADED
4060
407@
4500
4510
4520

4530
540
460
S0va
5001
=Ynlvl]
H50@Q1
L0072
HOOE
6004
LHO0S
6006
6Q07
1Al
609
6010
011
6012
6@Q1 5
L4
HO1S
6D16
617
6018
=Y

640
6041
6042
HAAT
6N44
&R4s
6V46
a7
6248
6049

TEMFE (5, 3) =HEXE (X+1,X+1)
TEMF=TEMF—-X*1&: X=TEMF
TEMFE£(4,4) =HEX# (X+1,X+1) : RETURN
ERRORFLAG=0: IF LEN(TEMF#) =4 THEN ERRORFLAG=1:RETURN
TEMP=0: MUL.T=1:FOR X=LEN(TEMF#%) TO 1 STEF -1
TH#=TEMF$ (X, X) : IF T#:="0" AND T#<="9" THEN TEMF=TEMF+VAL (T¥
Y ¥MULT: GOTO 4600

k A" OR T#:"F" THEN ERRORFLAG=1
TMF 4+ ((ASC (T#) =55) *MULT)
MULT=MULT*16:NEXT X:RETURN
? "Svntay .error";:RETURNM
? "Not ,valid .hex"3; :RETURN

DATAH BRE, 1T,0 6N50 DATA X,10,@
DATA ORA,8, 1 6051 DATA X,10,0
PATA X,10,0 6052 DATA X,10,0
DATA X,10,0 6053 DATA AND, 4,1
DATA X,10.0 6054  DATA ROL,4,1
DATA ORA, 1,1 40SS  DATA %X,10,0
DATA AGL., 1,1 LAS6  DATA SEC, 10,0
DATA X.10.0 6057 DATA AND, 12,2
DATA FHF, 10,0 6058 DATA X,10,0
DATA ORAL 7,1 6059 DATA X,10,0
DATA ASL, 13,0 6060 DATA X,10,0
DATA X,10,@ 6061 DATA AND,11,2
DATA X,10,0 6062 DATA ROL,11,2
DATA Uhﬁ B2 606%  DATA X,10,0
DATA ASL 2,2 6064 DATA RT1,1w,m
DATA X,1@,0 6065  DATA EOR,B8,1
DATA EFL,5 1 6066 DATA X,10,0
DATA ORAL9, L 4067  DATA X,10,0
DATA X ,10,@ 6068 DATA X,10,@
DATA X.,10,0 6069 DATA EOR,1,1
DATA X,1@0,0 607@ DATA LSR,1,1
DATA DRAL4,1 6071  DATA X,10,0
DATA ABL., 4,1 6072 DATA FHA,10,0
DATA X,10,@ 6073 DATA EOR,7,1
DATA CLC,L10,0 6074 DATA LSR,1%5,0
DATA ORA, LD ,2 6075 DATA X,10,0
DATA X,10,0 6076 DATA JMF,Q,2
DATA % ,10,0 6077  DATA EOR,2,2
DATA X ,10,0 6078 DATA LSK,2,2
DATA 6079 DATA X,10,0
DATH 6080 DATA BYC,3, 1
DATA 65081 DATA EOR,9,1L
DATA 6082 DATA X,10,@
DATA AND .8, 1 HDBE  DATA X.10,0
DATA X,10,0 6084 DATA X,10,0
DATA X,10,0 6085  DATA EDR, 4,1
DATA BIT, 1,1 6086 DATA LSRR, 4,1
DATA AMD . 1,1 6087 DATA X,10,0
DATA ROL., 1,1 6088 DATA CLL1,10,0
DATA X,10,0 6089 DATA EOR,12,2
DATA FILF, 10,0 6090 DATA X,10,0
DATA AND 7,1 6091 DATA X,10,0
DATA ROL, 12,0 6092 DATA X,10,0
DATA X,10,0 6093 DATA EOR ,11,2
DATA BIT,2,2 6094 DATA ISR, 11,2
DATA gNDv‘s‘ 6095 DATA X,10,0
DATA ROL 2,2 6096 DATA RTS, 10,0
DATA X,10.@ 6097 DATA ADC,8,1
DATA EBMI Z,1 6098 DATA X,10,0
DATA AND,9,1 4099  DATA X,10,0
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DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

X,10,0
ADC, 1,1
ROR, 1,1
X,10,0
FlLA,10.0
Aanc, 7,1
ROR, 13,0
X,10,@

ROR , 4,1
X,10,0
SE1,10,0
anec, 1242
X,10,0
X,10,0
X,10,0
ADC, 11,2
ROR, 11,2
X,10,0
X,10,0
sTA,8,1
%,10,0
%, 10,0
sSTY, 11
STA¢ 1,1
STX, 1,1
X,10,0
DEY, 10,0
X,10,0
TXA, 10,0
X,10,0
STY 242
STA,2,2
STX 2,2
X,10,0
BOE, Sy d
STA,9,1
%,10,0
X,10,0
STY, 4,1
STA,4, 1
STX,S5,1
X,10,0
TYA,10,0
STA, 12,2
TXS,10,0
X,10,0
X,10,0
STA,11,2
%,10,0
X,10,0
LDY,7,1

1561

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
NATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LDA,8, 1
LDX,7,1
X,10,0
LDY, 1,1
LDA, 1,1
LDX, 1,1
X,10,0
TAY, 10,0
LDA, 7,1
TAX, 10,0
X,10,0
LDY, 2,2
LDA,2,2
LDX, 2,2
X,10,0
BCS, 3,1
LDA, 9, L
X,10,0
X,10,0
LDY, 4,1
LDA,4,1
DX, 5,1
X,10,0
CLV, 10,0
LDA, 12,2
TEX, 10,0
X,10,0
LDY, 11,2
LDA,11,2
LDY%y 12,2
%,10,0
CRY 741
CMF, 8,1
X,10,0
X, 10,0
CPY,1,1
CHF, 1,1
DEC, 1,1
X,10,0
INY, 10,0
CHF, 7,1
DEX,10,0
X,10,0
CPY ,Z
CMF,2,2
DEC,2,2
X,10,0
BNE, T, 1
CMF ., 9,1
X,10.0
X,10,0
%,1@,0
CME, 4,1
DEC, 4,1
X,10,0
CLD, 10,0
CMP, 12,2
X,10,0
X,10,0
X,12,0
CMF, 11,2




6457

&44@
6450
6460
6470
6480
6490
6500

8005
s8ans6

DATA INC,2,2

DEC,11,2

X,10,0 DATA BEQ,D, 1
CFX,7 41 DATA SEC,9,1
SHC,8,1 DATA ¥,1@,0
X,10,0 DATA X,10,0
X,10,0 DATA X,10,0
CEX,1,1 DATA SEC,4,1
SHEC, 1 o1 DATA INC,4,1
ING, 1,1 DATA X,10,0
X,10,@ DATA SED, 10,0
INX,10,@ DATA SEC,12,2
SEC,7,1 DATA X,10,0
NOF, 10,0 DATA X,1@,0
X,10,0 DATA %,10,0
CRX, 2,2 DATA SEC,11,2
SEC,Z,2 DATA INC, 11,2

DATA X,10,0

? :? "START .ADDRESS .#"3: INFUT TEMF#

GOSUR 4500@: IF ERRORFLAG THEN GUSUR S001:7 :GO0TO 2000
FC=TEMF

FOR Y=1 TO 22

WHERE=FEEK (FC) +6000: RESTORE WHERE

READ OF#$,FIELD,BYTES

TEMF=FC: GOSUR 4000:7 "#"3;TEMFH;" ."}

IF BYTES=0 THEN TEMF=FEEK (FC):GOSUE 4000:7? TEMFE(I,4)31" L 44
aa"3:60TO 6440

IF BRYTES=1 THEMN TEMF=2S56%*FEEK (FC)+FEEKE (FC+1—((FC+1>65575) #
5) ) :GOSUR 4000:7 TEMFE;" L L L."1:6G0TO 6440

EEE (FC) : GOSUR 4000:7 TEMP$(X,4) 3 : TEMP=PEEK (FC+1-((FC
) ¥69536) ) s GOSUR 4000:7? TEMFF(Z,4) 3

ERE (PC+2—- ((FC+2:65535) #655736) ) : GOSUR 4000

? TEMPE(T,4) 5" "3

FC=FPC+1: IF FC:»65535 THEN FC=FC-655%6

"X THEN 7 "?77 ":60TO 6800

"o,
PO |

I'\ES TORE 8000+FIELD

READ FIELD#,START,REF:IF REF THEN FIELD# (REF,REF)=","

IF START=0 THEN ? FIELD#:G0OTO 6800

IF BYTES=1 THEN TEMF=FEEK (FC):FC=FC+1:1IF FC:65535 THEN FC=
FC-6959755

IF BYTES=2 THEN TEMF=FEEE (FC)+256%FEEK (FC+1) : FC=PC+2: IF FC
*6SHID THEM PC=PC~65435

IF FIELD<>3 THEN 63

IF TEMP 1“7 THEN TFHF—(TEMF 256)

THEN TEMFE=TEMF® (Z,4)
TEMF#

PP INFUT TEMF#: IF TEMF#="E" THEN GOTO 2000
GOTO 6400

DATA # ,2,0 8007  DATA #E 3,0
DATA & ,2,0 B8O@8 DATA (£ *X),3
DATA # V2,0 8009 DATA (£ )»Y,3,6
DATA # ,2,@ 8010 DATA ,0,0

DATA + #X,2,4 8011 DATA * *X,2,6
DATA $ *Y,2,4 8012 DATA #* *Y,2,6
DATA (¥ ) 53,0 BOLI DATA A,0,0
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Index

Absolute addressing ... 9, 19, 24

Accumulator ... 7,8

Addition ... 34

Addition two byte ... 41

Addresses ... 2

Addressing modes

ALPA ... 29

ALPA commands ... 32

APLA continuing with program intact
... 50

ALPA label name addressing ... 49

ALPA memory usage ... 33

ALPA starting ... 29

ALPA working with ... 31

AND ... 87,88

waw 8y 68; TT

ASL ... 91

Assembler ... 11

Assembly language ... 11

BCC ... 55, 81

BCD ... 83

BCS ... 55, 81

BEQ ... 52

Binary ... 20

Bits ... 23, 87

BMI ... 85,86

BNE ... 54

Boolean operations ... 87

Borrow ... 44

BPL ... 85, 86

Branches ... 51, 52, 54

Break ... 81

BRK ... 81

BVC ... 86

BVS ... 86

Byte ... 20

Calling a program ... 3

Carry Flag ... 37

CLE ... 81

CLD ... 82

CLl ... 82

CLV ... 86

CMP ... 52,54

Comparisons ... 51

Converting binary to hexadecimal
sy 22

Converting hexadecimal to decimal
v w 2B

Counters ... 62

Counting ... 54

Debugging ... 82
DEC ... 61
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Decimal flag ... 82
Division ... 95

Entering a program ... 10
EOR ... 87

Flags: ... 52

Goto ... 48

Hexadecimal ... 19
Immediate addressing ... 9
INC ... 60

Index register ... 61
Indexed addressing ... 64
Indexed indirect addressing ... 75
Indirect addressing ... 76
Infinite loops ... 50
Instruction set ... 113

Interrupt ... 104
Interrupt flag ... 82
Inverting bits ... 80

JMP ... 99
JSR ... 100
Jump ... 48
Jump conditional ... 51

LDA ... 8

Less than ... 55

Logical operations ... 87
Looping ... 59, 60

LSR ... 95

Machine code ... 11
Machine language ... 3
Masks ... 88

Memory ... 3

Memory contents ... 3
Memory map ... 131
Machine code instructions ... 8
Mnemonics ... 4
Moving memory ... 7
Multiplication ... 59
Multiply two byte ... 93

Negative flag ... 84

Negative numbers ... 84
NOP ;.. 112

ORA ... 87

Overflow ... 86

Peek ... 3

PLA ... 104

Poke ... 4

Printing ... 14

Printing a message ... 14



Processor status code register ... 51
Program counter ... 99

Registers ... 7

Register to register transfers ... 76

Relative addressing ... 52, 54
Return ... 3

ROL ... 94

Rotating bits ... 91

ROR ... 94

RTI ... 110

RTS ... B

SBC ... 44

Searching memory ... 65
SEC ... 40

SED ... 81

SEl ... 81

Shifting bits ... 91

STA ... 10

Stack ... 101, 102, 103, 104
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Stack pointer ... 102, 104
Status byte ... 52, 81
Subroutines ... 1,100, 102

Subtraction ... 43

Tables ... 71,74
Tables — zero pages ... 77
TSX ... 106

Turning bits off ... 88

Turning bits on ... 89

Two's complement arithmetic . . .
83,129

TXS ... 106
Vectoring ... 78
X-registers ... 61, 64
Y-registers ... 61, 64

Zero flag ... 52, 54, 81
Zero page addressing ... 9, 24
Zero page indexed addressing ... 68
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