Atari* System Reference Manual

Atari* System Reference Manual

*Atari is a registered trademark of Atari Corp.

Atari* System Reference nanual
(c) 1987 By Bob DuHanel
Bob Duhanel

6915 Cassel berry Wy
San Diego, CA 92119

Thi s manual contains highly technical
| nformation. Such information

| s provided for those who know how to use it.
To understand the

advanced informati on you are expected to know
6502 assenbly | anguage.

|f you are new to progranm ng, concentrate on
the parts which discuss

BASI C commands.

Addresses are usually given in both
hexadeci nal and deci mal nunbers.

The operating system equate nanes are given
In capital letters wth

the address followng in brackets. The

http://trident.mcs.kent.edu/~clisowsk/8bit/atrpref.nhtml (1 of 3) [8/26/2001 1:41:28 PM]

Atari* System Reference Manual

decimal address is in
parenthsis wwthin the brackets. For exanple:

DOSVEC [$000A, 2 (10)]
name hex dec

The ", 2" after the hexadeci mal nunber neans
that this address requires

two bytes to hold its' information. Any
address called a "vector™

uses two bytes whether noted or not.

Control registers and sone ot her bytes of
menory are shown in the
foll ow ng formt

Regi ster fornmat

/76543210

The nunbers on top are the bit nunbers. Bit
7 1s the Mdst Significant

Bit (MSB) and bit O is the Least Significant
bit (LSB). The nunbers

on the bottomare the bit weights. These are

http://trident.mcs.kent.edu/~clisowsk/8bit/atrpref.nhtml (2 of 3) [8/26/2001 1:41:28 PM]

Atari* System Reference Manual

useful when changi ng

menory W th deci mal nunbers, as you would in
BASI C. For exanple, to

set bit 4 of a register to 1, wthout
changi ng any other bits you

woul d add 16 to the decinmal nunber already in
the register. To reset

the same bit to O, you would subtract 16 from
t he nunmber in the

register. This is exactly what the command
GRAPHI CS 8+16 does. It

sets bits 3 and 4 of a graphics node control
regi ster.

M5B and LSB nay al so nean Most Significant
Byte or Least Significant
Byt e, dependi ng on cont ext.

P4

il i P e

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrpref.html (3 of 3) [8/26/2001 1:41:28 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 1 - CIO

CHAPTER 1
THE CENTRAL INPUT/OUTPUT UTILITY, (CIO)

The ATARI conputer uses a very easy-to-use input and out put
systemcalled the Central Input/Qutput utility, or CIO Nearly all
| nput or output passes through this utility.

Cl O uses eight "channels" as paths for 1/O There are not really
separate channels for I/O but the conputer acts as if there were.
Each channel is controlled by a 16 byte bl ock of nmenory called an

| nput/ Qut put Control Block or IOCB. The channels are used by putting
the proper nunbers in the proper | OCB bytes then junping to the ClO

routine. In BASIC, conplete I/O operations can be as easy as typing a
command such as LPRINT. In this case BASIC does all the work for
you.

THE Cl O CHANNELS

There are eight Cl O channels, nunbered fromO to 7. |In BASIC sone
channel s are reserved for BASIC s use.

BASI C Cl O channel assignnments

Channel 0 Permanent|ly assigned to the screen editor
6 Used for graphics conmands
7 Used for the Cassette, disk and printer

Channels 6 and 7 are free to use when they are not being used by
BASIC. Wth machi ne | anguage, all of the channels are available to
t he programer.

THE | OCB STRUCTURE

The I OCB for channel zero starts at address $0340 (decinmal 832). This
Is the only address you need to know. Indexing fromthis address is
used to find all of the other bytes. Below are the nanes and uses of
t he 1 OCB bytes.

| OCB bytes and uses:

http://trident.mcs.kent.edu/~clisowsk/8bit/atrl.html (1 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

ADDRESS NAME EXPLANATI ON

$0340 | CHI D handl er ldentifier

$0341 | CDNO devi ce nunber (disk)
$0342 | CCOM conmand

$0343 | CSTA st at us

$0344 | CBAL buf fer address (| ow byt e)
$0345 | CBAH buf f er address (high byte)
$0346 | CPTL address of put byte
$0347 | CPTH routi ne (used by BASI C
$0348 | CBLL buffer length (I ow byte)
$0349 | CBLH buffer length (high byte)
$034A | CAX1 auxi liary information
$034B | CAX2 -

$034C | CAX3 the remaining auxiliary
$034D | CAX4 bytes are rarely used
$034E | CAX5 -

$034F | CAX6 -

| CH D

When a channel is open, the handler |I.D. contains an index to the
handl er table. The handler table (to be discussed |ater) holds the
address of the device handling routines. Wen the channel is closed
| CHI D cont ai ns $FF.

| CDNO

The device nunmber is used to distinguish between nultiple devices with
t he same nane, such as disk drives.

| CCOM
The command byte tells Cl O what operation to perform

Cl O command codes

HEX DEC

+Qpen $03 3
+cl ose $0C 12
get $07 7
put $09 11
i nput $05 5

http://trident.mcs.kent.edu/~clisowsk/8bit/atrl.html (2 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

print $09 9
+st at us

request $0D 13
+*special >$0D >13

+ command nay be nade to a cl osed channel
* devi ce specific comands

| CSTA

The status byte contains an error code if sonething goes wong. |If
bit 7 is O there have been no errors.

| CBAL and | CBAH

Before a channel is opened, the buffer address bytes are set point to
t he bl ock of nmenory which contains the nane of the device the channel

Is to be opened to. Before actual input or output these bytes are set
to point to the block of nmenory where the I/O data is stored or is to
be stored.

| CPTL and | CPTH

The put routine pointer is set by CCOto point to the handlers’
put-byte routine. Wen the channel is closed the pointer points to
the 10OCB-closed routine. This pointer is only used by BASIC

| CBLL and | CBLH

The buffer | ength bytes show the nunber of bytes in the bl ock of
menory used to store the input or output data. (See |ICBAL and | CBAH.)
I f the anmount of data read during an input operation is |ess than the
| ength of the buffer, the nunber of bytes actually read will be put in
| CBLL and I CBLH by CI O

| CAX1 t hrough | CAX6

The auxiliary information bytes are used to give ClO or the device any
speci al infornmati on needed.

OPENNI NG A CI O CHANNEL

Before using a Cl O channel it nust be assigned to an I/O device. In
machi ne | anguage you start by putting the channel nunber in the four
high bits of the 6502 X register (X = $30 for channel three). Next

you pl ace the necessary codes (paraneters) into | OCB 0 i ndexed by X

http://trident.mcs.kent.edu/~clisowsk/8bit/atrl.html (3 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

The X register will cause the nunbers to be offset in nenory by 16
times the channel nunber. This puts the nunbers into the correct | OCB
i nstead of 10CB 0. Below are the paraneters used to open a channel.

Channel - open paraneters:

| CCOM open code

| CBAL address of devi ce nane
| CBAH I n menory

| CAX1 di rection code

| CAX2 zero

The direction code byte in | CAX1 takes on the follow ng fornat:
| CAX1 format for opening a channel

76543210

| CAX1 | W R |
8421
W 1 = open for output (wite)

R 1 open for input (read)

| CAX1 may have the foll ow ng data

ClO direction codes

HEX DEC operation

$04 4 input
$08 8 output
$0C 12 I nput and out put (cannot change the I ength

of a disk file)

| CBAL and | CBAH point to the device nanme stored in nenory. The device
and file nane nust be followed by 0 or $9B (deci mal 155).

Once the paraneters are set, junping (JSR) to the Cl O vector

(ClOV) at address $E456 (58454) will cause the channel to be opened.
In the follow ng exanple a basic know edge of assenbly | anguage is

assuned.

Routine to open channel 1 to the keyboard:

| CHI D = $0340

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (4 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

| CCOM = | CHI D+2

| CAX1 = | CHI D+10

| CAX2 = | CHI D+11

| OCB1 = $10 channel in four high bits
Cl OV = $E456

OPEN = 303

OREAD = $04 ; open for input

ERROR = (address of error handling routine)

START LDX | OCB1
LDA OPEN
STA | CCOM X
LDA NAME
STA | CBAH, X
LDA OREAD
STA | CAX1, X
LDA #0
STA | CAX2, X
JSR Cl OV
BPL OK
JMP ERROR

NAME .BYTE "K ", $9B
K (program conti nues here)

To open a Cl O channel in BASIC the OPEN command i s used.
BASI C OPEN command f or mat :

OPEN #channel , aux1, aux2, devi ce: fil e nane

di recti on code
speci al code

auxl
aux?2

To open channel 1 to the keyboard in BASIC Type:

OPEN #1,4,0,"K "

The third paranmeter, aux2, is a rarely used special paraneter. One
use is to keep the screen from erasi ng when changi ng graphi cs nodes.

The fourth paraneter is the device to open the channel to. It nmay be
either a string in quotes or a string vari abl e.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (5 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

Cl O devi ce nanes

C cassette recorder
*D di sk drive
E screen editor
K Keyboard
P printer

R RS 232 1/0 port
S screen handl er

* Uses a non-resident handl er | oaded by the device at
power - up.

The device nanme nust usually be followed by a colon. Wth the disk
drive a file nanme is expected after the device name. The screen
handl er is used for graphics. The screen editor uses both the
keyboard handl er and the screen handler to work between the keyboard
and screen.

USI NG AN OPEN CHANNEL
Once a channel is opened to a device you have several options:
I NPUT: (1 CCOM = $05)

The conmputer reads data fromthe device until a carriage-return is
read (deci mal nunber 155, hex $9B) or the end of the file (EOF) is
reached. A carriage return is also known as an End- O -Line or EQL.
The 1 OCB i nput paraneters are:

| OCB i nput paraneters:

| CCOM get record code
| CBAL address of buffer to

| CBAH store the data in
| CBLL | ength of the data
| CALH buf f er

The follow ng routine denonstrates the i nput command in assenbly
| anguage. Sone of the equates are in the channel openning exanple
above.

| nput routine:

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (6 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

GETREC
BUFF
BUFLEN

$05
(address to store data at)
(nunber of bytes avail able at storage address)

LDX | OCB1
LDA GETREC
STA | CCOM X
LDA < BUFF
STA | CBAL, X
LDA > BUFF
STA | CBAH, X
LDA < BUFLEN
STA | CBLL, X
LDA > BUFLEN
STA | CBLH, X
JSR Cl OV

BPL OK2

JMP ERROR

K2 (continues if no errors)

If the data retrieved is shorter than the prepared buffer, the nunber
of bytes actually read will be put into I CBLL and | CBLH.

In BASIC, the | NPUT command i s used.

BASI C | NPUT command f or mat :

| NPUT #channel , string variabl e
or
| NPUT #channel ,arithnetic vari abl e

For exanpl e:

| NPUT #1, | N$
The above commands will cause the data fromthe device to be put into
the specified buffer (IN$ in the BASIC exanple) until an EQL is
reached. [If the INPUT statenent is used again, w thout closing the

channel, the conputer will get nore data fromthe device until another
EOL is read or the end of the file is reached. The new data w ||
wite over the old data in the input string or buffer. If an
arithnmetic variable is used, only nunbers can be input.

http://trident.mcs.kent.edu/~clisowsk/8bit/atrl.html (7 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

PRINT: (I CCOM = $09)

I n assenbly | anguage the print conmand is identical to the input
command. The only difference is that the PUTREC code ($09) is stored
Iin ICCOM O course the buffer bytes of the I OCB then specify the

bl ock of nenory to be output fromrather than input to. Wth the
print command, ECLs within the string or buffer are ignored but an EQOL
Is placed at the end of the data when sent to the device.

In BASIC, the PRINT command is used |ike | NPUT except you want to use
a semcolon instead of a comma to separate paraneters. For exanpl e:

PRI NT #1; OUT$
or
PRI NT #1; " HELLO'

| f you use a conmma, ten space characters will be sent before the
string.

If the print command is used again, wthout closing the channel, the
new data will be appended to the end of the data previously sent. dd
data will not be witten over.

GET: (1 CCOM = $07)

In BASIC this conmand i nputs a single byte of data fromthe device.
ECQLs are ignored. In BASIC, GET is used lIike INPUT except an
arithnmetic variable nust be used. For exanple:

GET #1,IN

If the get command is used again the next byte fromthe device wll be
read. |If the end of a file is reached an error will occur.

There is no command in BASIC to input an entire file w thout stopping
at each EOL. If you wish to ignore EOLs while reading a file to a
string, you nust use the GET command. Each byte of data is then put
into the string by the program

EXAMPLE:

10 OPEN #1, 4, 0, "D: TEST"
20 TRAP 60: REM GOES TO LI NE 60 WHEN END OF FI LE ERROR OCCURS
30 GET #1,IN

40 1 N$(LEN(I N$) +1) =CHR$(| N)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (8 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

50 GOTO 30
60 CLOSE #1

I n assenbly | anguage, the get command can be used to get any nunber of
bytes fromthe device. It works just as | NPUT does except ECLs are
I gnor ed.

| OCB get - byt e paraneters:

| CCOM get-character (single byte) code

| CBAL \

| CBAH sane as in input
| CBLL

| CBAH /

O her than the | CCOM code (GETCHR = $07) this command is identical to
t he i nput comrand.

PUT: (I CCOM = $0B)

In BASIC, PUT is the opposite of GET. It outputs a single byte froma
variable to the device. PUT is used the sane as GET. For exanpl e:

PUT #1, OQUT

In assenbly | anguage, the command byte of the IOCB is |oaded with the
put - character code (PUTCHR = $0B). O herwi se the PUT conmand is
| dentical to GET.

CLCSI NG A CHANNEL

Closing a channel frees it for use by another device or for changing
paraneters. |In assenbly |anguage the close code is put into the
command byte of the 10CB then the CIOV call is nade.

| OCB cl ose command:
CLOCSE = $0C

LDX | OCB1
LDA CLCSE

STA | CCOM X
JSR Cl OV

In BASIC, use the CLOSE conmmand foll owed by the channel nunber.

CLCSE #1

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (9 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

Wth the disk drive, the file nanme is not put into the directory until
t he channel is closed.

THE DEVI CE TABLE

ClO uses a junp table | ocated at $031A (794). Wen a ClOcall is
made, Cl O searches the table for the one-byte device name. The two
bytes follow ng the device nane contain the address of the device
handl er's vector table. Cl O searches the device table fromthe end,
$033D (829) to the beginning. This way, if a custom handl er has ben
substituted for a resident handler, the customhandler will be found
first. (custom handlers cannot be inserted directly in the place of
resident handlers in the device table.)

Each handler has its' own vector table. This vector table is 16 bytes
|l ong. The two-byte vectors point to the various handl er routines.
The vectors are stored in the vector table in the follow ng order:

Handl er vector table order

open

cl ose

get byte

put byte

get stat

speci al

JMP init code (3 bytes)

The open routine should validate the | CAX paraneters and check for
i 11 egal commands.

The cl ose routine should send any remaining data in the buffer to the
device, mark the End-O-File and update any directories, etc.

The get byte routine should get a byte fromthe device or the handl er
buffer and put it in the 6502 Aregister. Handlers with long tinouts
must nonitor the break key flag and put a $80 in the 6502 Y register

I f the [BREAK] key is pressed.

The put byte routine should send the byte in the 6502 A register to

t he device or handler buffer. |If the buffer fills, it should be sent
to the device. BASIC can call the put byte routine w thout using
Cl O

The get status routine may get 4 bytes of status information fromthe
devi ce and put themin DVSTAT [$02EA] to DVSTAT+3.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (10 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

For special conmands the handl er nmust exam ne the command byte and
find the proper routine entry point.

In all cases the status (error code) of the operation should be put in
the 6502 Y register.

To be conpatible with all versions of the operating system the
handl er nust redirect DOSINI [$000C, 2 (12)] for initialization upon
reset. This initialization nmust restore the vectors in the handl er
vector table and junp to the origional DOSIN vector.

SPECI AL COMVANDS

Some devi ces have special Cl O commands. These are known as device
specific commands. | n assenbly | anguage these commands are executed
just as any other CIO command is. |In BASIC the XIO conmand is used.
An exanple of the XIO conmand i s:

XI O conmand code #channel , auxl, aux2, device: fil e nane

To open a channel with the XI O conmand instead of the OPEN comrand
use:

XIO 3 #1,4,0,"K:"

Note that the above command is identical to the OPEN command except
"XIO 3" is used instead of "OPEN'. Also note that $03 is the 1 OCB
open code for | CCOM

Usef ul dat abase vari ables and OS equates

DOSI NI $000C, 2 (12): initialization vector
BRKKEY $0011 (17): break key flag

| CH D $0340 (832): start of |QCBs

| CDNO $0341 (833):

| CCOM $0342 (834):

| CSTA $0343 (835):

| CBAL $0344 (836):

| CBAH $0345 (837):

| CPTL $0346 (838):

| CPTH $0347 (839):

| CBLL $0348 (840) :

| CBLH $0349 (841):

| CAXL $034A (842):

| CAX2 $034B (843):

HATABS $031A, 16 (794): device handler table

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (11 of 12) [8/26/2001 1:41:31 PM]

ATR: Chapter 1 - CIO

ClOv $E456 (58454): ClIO entry vector

EIEE

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr1.html (12 of 12) [8/26/2001 1:41:31 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 2 - (DOS D:)

CHAPTER 2
THE DISK OPERATING SYSTEM (D:)

The di sk operating system program (DOS) is also called the file
managenent system (FMS). DOS is not a permanent part of the conputer,
it is loaded in upon power-up if a disk drive is attached to the
conmput er .

When the conputer is turned on, one of the first things it does is
send a request to the disk drive to load DOS into the conputer. This
startup operation is called booting. The word boot is short for

boot strapping -- the start-up process of early conputers. The term
cones from"lifting one's self by one's boot straps”.

Anytinme the disk boots, the conputer tries to read a programstarting
at sector 1 and continuing in sequence. |f the disk has DOS on it,
the first three sectors, called the boot record, have a program which
| oads the DOS. SYS file. |If there is no DOS.SYS file on the disk the
conmputer will display:

]
"84

When a disk is formatted, the drive read/wite head passes over the
entire disk and puts nmagnetic marks on it. These marks divide the
disk into 32 concentric tracks. Wth DOS 2.0 each track is divided
Into 18 sectors, each holding 128 bytes of data. Wth DOS 2.5 there
are 32 sectors per track giving a total of 1,024 sectors.

Each sector on the disk is narked with a reference number from1l to
720. Unfortunately, the witers of DOS 2.0 didn't know this so they

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (1 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

wote the DOS to use sectors nunbered fromO to 719. As a result, DOS
2.0 cannot access sector 720. The designers of the disk drive were

the guilty party in this case. It is normal to nunber fromO in
conputers. Wth DOS 2.5, sectors 720 - 1,024 can be accessed
normal | y.

Sector 720 can be accessed using the conputer's resident disk handler.
Sonme software witers use sector 720 to hide special information to
make their prograns difficult to copy.

DCS 2 SECTOR ASSI GNMVENTS

Sectors 1 through 3 are called the boot record. They contain a
program whi ch | oads the DOS. SYS file into nenory.

Sector 360 is called the Volune Table of Contents or VIOC. The nmain
pur pose of the VIOC is to keep track of what sectors are occupi ed.
Bytes 3 and 4 of the VICC tell how many sectors are avail abl e.
Starting at byte 10 is the Volune Bit Map. Each byte in the VBMtells
the status of eight sectors. |If a bit is a 1 the sector is avail able.
If a bit is a O the sector is occupi ed.

Sectors 361 through 368 contain the disk directory. Each directory
sector holds eight file names. The first byte of a file nane is
called the flag byte. It tells the status of that file.

Directory flag byte.

76543210

| flag byte |
Bits: 7 1 =file deleted
6 1 =file in use
5 1 =file | ocked
0 1 = open for output

The next two bytes tell how many sectors are in the file. The two
bytes after themtell the starting sector of the file. The last 11
bytes contain the file nane.

Sector 720 cannot be accessed with DOS 2.0.

The boot record, VIOC, directory and sector 720 use 13 sectors. This

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (2 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

| eaves 707 sectors for storing files with DOS 2. 0.

Each file sector has 125 bytes of data. The last three bytes tell how
many bytes of the sector are used, what directory entry the sector
bel ongs to and which sector is next in the file.

File sector structure

76543210

| dat a | byte O

| byt es | byte 124

| Dr. No. |hi | byte 125

| forward pointer| byte 126

| S| byte count | byte 127

hi = high 2 bits of forward pointer
Short sector flag. 1 = short sector (End O File)

)]
1

If the directory nunber does not match the order of the file nane in
the directory, an error 167 (file nunber m smatch) will occur.

As a fileis witten to an enpty disk it is put in consecutive
sectors, 125 bytes at a tine. After the file is witten, the VIOC and
directory are updated. Wen new files are witten they al so use
consecutive sectors.

When a file is deleted the status bit of the directory is changed to
show that the file has been deleted. DOS then tracks the file, sector
by sector, to find what sectors are used. Finally the VIOC is updated
to show that the deleted file's sectors are available for new files.
The file is not erased fromthe disk; only the VIOC and directory are
changed.

When a file is deleted, an "island" of free sectors nmay be left on the
disk. Wien a newfile is then witten to the disk it will first use

t hese new free sectors. Wen the island is used up, DOS will skip
over the occupied sectors to the next free sector. This is the reason
for the sector link. A file can end up with it's sectors scattered
all over a disk. It can be conplicated but it's efficient.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (3 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

DI SK FI LE STRUCTURE

The first few bytes of a file may tell DOS or anot her program what
kind of file it is. These information bytes are called a header.

Atext file is any file which has no header. A |listed BASIC program
Is a type of text file. A letter froma word processor is another.

A binary load file is a file intended to load to a specific address in
menory. The first two bytes of a binary load file are deci mal 255.
The next two bytes hold the address at which the file is to load. The
| ast two header bytes tell the ending address for the file. |If the
fileis a programand is to run automatically, the initialization and
run address are appended to the end of the file.

binary |load file header

Deci mal Hexadeci ma

255 identifier FF

255 FF
0 start 00
7 07
15 end FF
8 08

The above file would | oad at address $0700 (1792 decinal) and end at
address $08FF (2063). |If a binary load file has initialization and
run address appended to it they take on the follow ng fornat:

Init and run tailer

CHR Deci nal Hexadeci nal

init address format

[b] 226 identifier E2
I 2 02
[c] 227 E3
| 2 02

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (4 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

n addr ess nn
n nn

run address format

[di anond] 224 identifier EO

| 2 02

[a] 225 El
| 2 02

n addr ess nn

n nn

[]=inverse video

A program whi ch doesn't need special initialization can be run at the
init address. Oherwise, an RTS instruction is expected at the end of

the initialization section. The conputer will then junp to the run
address if specified.

I NSI DE THE COVPUTER

DOS uses the conputer's ClO utility. Wen a DOS disk is booted a

non-resi dent handler is |oaded into nenory. A new handl er nane, D
then added to the handler table. Wen CIOis called with a device
nane of D. or Dn:, C1Owll search the handler table for that device
nane. |If the 'D is found, the next two bytes in the table point to
the DOS entry address.

DOS FI LE NAME CONVENTI ONS

DOS is unique anong CIO handlers in that it requires an eight

character file nanme to follow the device nanme. This file nanme may be

followed by a period and then a three character extender.

EXAMPLES: D: TEST, D2: FI REMAN, D: VENTURE. EXE, D: CHAPTER. 001

The D2: is used for drive nunber two if present.

The file name nust use upper-case letters or nunbers. The first
character nmust always be a letter.
W LD CARDS

The characters * and ? may be used as wld cards. * neans any

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (5 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

conbi nati on of characters and ? neans any single character.

EXAMPLES:. D. P* any file beginning with P and
wi t hout an extender
D *. EXE any file with the extender .EXE
D*.* any file.
D: F?REMAN one unknown char act er,

FI REMAN or FOREMAN wi | | match

WIld cards can only be used to |oad, delete, |ock and unlock files.

When | oading a file using wild cards, only the first matching file
wi |l be | oaded.

Wien renamng a file, both the new and ol d nanmes are expected after
t he devi ce nane.

EXAMPLE: D: OLDNAME. BAS, NEWNAME. BAS

To format a disk, only the device nane (D. or Dn:) is needed.

USI NG DOS

When a Cl O channel is opened to the disk drive it nust actually be
opened to a specific file on the disk. The device nane in the open
command nust be followed by a file nane.

When a channel is opened to the disk, two special paraneters may be
used in | CAXL.

| CAX1 for disk open:

76543210

| WR D A
D 1 =opentoread the directory instead of a file
A 1 = append data to the end of the file

This gives the follow ng extra | CAX1L opti ons.

Di sk specific | CAX1 options:

HEX DEC

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (6 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

$06 6 open to read directory
$09 9 out put, append to the end of an
existing file

READI NG THE DI RECTORY

Wien the directory is read, each file nane is treated as if it were
followed by an EOL. A loop nust be used to read all of the file names
in the directory. The last entry read is the free sector count.

After it is read, another read operation will result in an End-O-File
error.

The di sk drive has a nunber of device specific conmands other than the
regul ar Cl O conmmands. From BASIC the XIO conmand is used to access

t hese commands. The Xl O command allows you to directly |oad the | OCBs
fromBASIC. Each paraneter of the XI O command pl aces val ues in
certain bytes of an | OCB.

XI O command for mat :

XI O conmand channel , auxl1, aux2, devi ce:fil e nane

Note that the paraneters resenble the BASIC OPEN command. The BASIC
OPEN command is identical to it's equival ent Xl O command.

XI O conmands specific to the disk drive.

RENAVE XIO $20 (32)
DELETE X O $21 (33)

LOCK XIO $23 (35)
UNLOCK XIO $24 (36)
PO NT XIO $25 (37)
NOTE XIO $26 (38)

FORMAT XIO $FE (254)

EXAMPLES:

XIO 33 #1,0,0,"D: JUNK" = delete file nanmed D: JUNK
XIO 32 #1,0,0,"D:. LD, NEW = change nanme of D: OLD to D. NEW

NOTE and PO NT can al so be used directly from BASIC. NOTE finds the

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (7 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

current position of the read/wite head on the disk. PO NT noves the
read/ wite head to the desired position.

USI NG NOTE AND PO NT

The command fornat for NOTE and PONT is as foll ows:

NOTE \
channel , sector, byte
PO NT/

EXAMPLE:

NOTE #1, SECT, BYTE

BASI C requires the sector and byte paraneters in both conmands to be
vari abl es. Fixed nunbers cannot be used. If you try to do a PONT to
a sector outside the file the channel is open to, a point error wll
occur. Care may need to be taken to be sure the file being accessed
IS in contiguous sectors on the disk. If it is not, it wll be
difficult to know where to do points to.

One use of NOTE is to use the command i medi ately after opening a
channel to a disk file. After the NOTE conmand, the paraneter

vari abl es contain the coordinates of the first byte of the file. They
can then be used as a reference for the PO NT command.

I n assenbly | anguage, |1 CAX3 and | CAX4 are used for the sector nunber
(Isb,meb). [1CAX5 is used for the byte nunber

STATUS REQUEST

If the status request command is used, one of the foll ow ng val ues
will be found in | CSTA and the 6502 Y register.

HEX DEC

$01 1 XK

$A7 167 file | ocked
$AA 170 file not found

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (8 of 9) [8/26/2001 1:41:36 PM]

ATR: Chapter 2 - (DOS D:)

EIEE

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr2.html (9 of 9) [8/26/2001 1:41:36 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 3- (DOS 2 DUP.SYS)

CHAPTER 3
USING THE DOS 2 UTILITIES (DUP.SYS)

I f you boot a DOS disk with no cartridge in the slot or wwth BASIC
di sabl ed (by holding the OPTION key), DOS will try to load the file
nanmed DUP. SYS. This is the disk utility file. Wen using BASIC,
typing DOS [RETURN] will load the DUP.SYS file. When the utilities
are | oaded the menu will appear on the screen.

THE DOS UTI LI TI ES MENU

DI SK OPERATI NG SYSTEM Il VERSI ON 2. 0S
COPYRI GHT 1980 ATARI

A. DI SK DI RECTORY |I. FORVAT DI SK

B. RUN CARTRI DGE J. DUPLI CATE DI SK
C. COPY FILE K. Bl NARY SAVE

D. DELETE FILE(S) L. BINARY LQAD

E. RENAME FI LE M RUN AT ADDRESS
F. LOCK FI LE N. CREATE MEM SAV
G UNLOCK FI LE O DUPLI CATE DI SK
H WRITE DOS FI LES

SELECT | TEM OR [RETURN] FOR MENU

[A] DI RECTORY
After pressing [A] [RETURN] you will get the pronpt:

DI RECTORY- - SEARCH SPEC, LI ST FI LE?

If you want to see the entire directory just press [RETURN] again. |If
you wi sh, you may type in a specific file name (D. is optional) or
wld cards to search for. |[|f you specify a search spec only matching
files will be displayed.

| f you want, you can have the directory sent to another device. To do
this type a comma and the device nanme. For exanple, if you type ,P:
the directory will be sent to the printer.

[B] RUN CARTRI DGE

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (1 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

If a cartridge was inserted or BASIC was not di sabl ed when the
conputer was turned on, [B] [RETURN] wll run that cartridge or
BASI C.

[C] COPY FILE

This option will copy a file to another part of the sanme disk (with a
different file nanme) or copy fromone disk drive to another. Wen you
press [C] [RETURN] you will be given the pronpt:

COPY- - FROM TO

Type the devices and file nanmes separated by a conma.

EXAMPLES:
FOREMAN, FI REMAN
or
D1: TEST, D2: TEST
The first exanple will copy to the sane disk. The second exanple w ||
copy fromdisk drive one to disk drive two.
If you want to have the first file appended to the end of the second
file type /A after the file nanes.
EXAMPLE:
RUNMENU. EXE, AUTORUN. SYS/ A
If the files are binary load files, this will cause both files to be

saved as one file. Wen the |load command is used they will both be
| oaded and run.

[D] DELETE FI LE(S)
After pressing [D] [RETURN] you will get the pronpt:
DELETE FI LE SPEC

After typing the file name you will be asked to confirmthe file to
del et e.

DELETE FI LE SPEC

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (2 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

DELETE-D1: JUNK ARE YOU SURE?

Press [Y] if the correct file is displayed. |If you use wild cards you
will be asked to confirmeach matching file.
[E] RENAME

Upon typing [E] [RETURN] you will be given the pronpt:
RENAME- G VE OLD NAME, NEW

Type the file nane you want to change and the new nane separated by a
commma.

EXAVPLE:

COLT, HORSE

WARNING Do not renane a file to a nane which already exists on the

disk. You wll end up with a duplicate file nanme and will not be able
to access one of them Attenpting to renane or delete one of them
will renane or delete both. The only way to fix a duplicate file nane

Is wwth a sector editor or other special utility.
[F] LOCK FILE

A | ocked file cannot be witten to, renamed or deleted. To lock a
file type [F] [RETURN]. You wll get the pronpt:

WHAT FI LE TO LOCK?

Type the file nane you want to lock. WId cards will cause all
matching files to be | ocked.

[G UNLOCK FI LE
Used the sane as | ock.
[H WRITE DOS FI LES

This option will wite the DOS. SYS and DUP. SYS files to a formatted
di sk. When you type [H [RETURN] you will receive the pronpt:

DRI VE TO WRI TE DCS FI LES TO?

Type the nunber of the drive. |If the drive contains a formatted di sk
the dos files will be witten to it.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (3 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

[1] FORMAT DI SK

This option formats a new di sk or erases a disk wwth files on it.
Typing [I] [RETURN] will get you the pronpt:

VWH CH DRI VE TO FORNAT

Be sure you have the correct disk in the proper drive then type the
drive nunber. It is inpossible to recover files on a disk formatted
by acci dent.

While the disk is being formatted the drive will check to be sure the
disk is formatted correctly. |If not, the drive attenpt to format the
disk again. |If the disk is defective the drive will not finish the

formatti ng process.
[J] DUPLI CATE DI SK

This option will copy an entire di sk except for sectors listed as free
in the VIOC. Sone prograns are copy-proofed by changing the VIOC to
show t hat sone occupi ed sectors are enpty. For such disks, a program
whi ch copies the entire disk is needed.

When you press [J] [RETURN] you will be given the pronpt:
DUP DI SK- - SOURCE, DEST DRI VES?

If you are using only one disk drive, type 1,1. If you have only one
drive you will be told when to swap di sks.

[K] BI NARY SAVE

This option saves a block of nenory as a binary load file. Wen you
type [K] [RETURN] you will be given the pronpt:

SAVE- G VE FI LE, START, END(, | NI T, RUN)

Type the desired file nanme and a comma. Now type the start and end
addresses of the nenory bl ock to be saved, in hexadeci mal nunbers,
separated by commas. |If the file is a programwhich is to
automatically run when | oaded, give the initialization address, if
needed, then the run address.

EXAVPLE:

CHASE. EXE, 0700, 09FF, , 0700

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (4 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

This will save the block of nmenory from address 0700 to O9FF. The
programis not initialized before running so there is no address typed
after the third conma. Wen the programis | oaded the conputer wl |l
junp to address 0700, as specified in the |last paraneter, to run the
program

[L] BI NARY LOAD
To load a binary file type [L] [RETURN]. You will get the Pronpt:
LOAD FROM WHAT FI LE?

Type the file nane and the file will be loaded. If wld cards are
used, only the first matching file will be | oaded.

[M RUN AT ADDRESS
Typing [M [RETURN] will get the pronpt:
RUN FROM WHAT ADDRESS?
Type the hexadeci mal address of the programyou want to run.
[N] CREATE MEM SAV

A MEM SAV file is used by BASIC and sone other prograns to save the
part of nmenory which the DUP.SYS file loads into. |If there is no

MEM SAV file on the disk when you go to the DOS utilities, you wll
| oose that part of nenory. Wth BASIC you will | oose your program

When you type [N] [RETURN] you will get the pronpt:
TYPE Y TO CREATE MEM SAV

Typing [Y] [RETURN] will create a MEM SAV file on the disk in drive
one.

[0 DUPLI CATE FILE

This option is used to copy a file fromone disk to another, using
only one disk drive. Wen you type [Q [RETURN] you will get the

pronpt :
NAME OF FI LE TO MOVE?

If you use wild cards you will be asked to swap disks for each
matching file.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (5 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

DOS 2.5 al so has option
[Pl FORMAT SI NGLE

DOS 2.5 normally formats disks to use "enhanced" density. This option
will format a disk in single density for use with the 810 drive.

DOS 2.5 al so has sone special utilities on the master disk. Use the
binary | oad option to run them

RAMDI SK. SYS
This programw || cause the extra bank of nenory in the 130XE to act
like a disk drive (called D8:). If this programis on the disk it

wll automatically run. It need not be renaned to AUTORUN. SYS.
COPY32. COM

Copies DOS 3 files to DOS 2.

DI SKFI X. COM

Can nake certain "repairs" to a disk, such as restoring del eted
files.

SETUP. COM
Used to change the default configuration of DOCS.
AUTORUN. SYS (DGCS 2.0 and 2.5)

This programis needed to operate the RS-232 ports on the 850
interface. |If you don't want this programto autonmatically | oad when
you boot with the master disk, renanme the file to RS232.

SPECI AL DOS | NFORMATI ON

When DOS is in nenory, changes can be nmade to the DOS program These
changes can be nmade by poking the changes into nenory. |f you want to
make the changes pernmanent, you can type DOS [RETURN] to | oad the
utilities. Fromthe utilities nmenu you can use the wite DOS files
option to save the changes on disk. Sone of the useful changes you
can make foll ow

POKE 1913, 80

This turns off the wite verify and speeds up disk witing.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (6 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

PCKE 1913, 87

This turns wite verify on

POKE 5903, 42
POKE 5904, 46
POKE 5905, 82
POKE 5906, 85
POKE 5907, 78
POKE 5908, 155

This causes any binary file wwth the extender .RUN to be | oaded
automatically when the conputer is turned on

POKE 5903, 65
POKE 5904, 85
POKE 5905, 84
POKE 5906, 79
POKE 5907, 82
POKE 5908, 85
This returns the DOS to normal, Automatically |oading files naned
AUTORUN. SYS.
DCS 2.0 DCS 2.5
POKE 3772, 255
POKE 3818, 64 POKE 3774, 64
PCOKE 3822, 123 POKE 3778, 123
This will cause DOS to accept |ower-case as well as upper-case letters
in file nanes. It wll also now accept @[,\,],” and _ .
POKE 3772, 223
POKE 3818, 65 POKE 3774, 65
PCKE 3822, 91 POKE 3778, 91

This will change DOS back to normal, accepting only upper-case letters

and nunbers.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (7 of 8) [8/26/2001 1:41:39 PM]

ATR: Chapter 3- (DOS 2 DUP.SYS)

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr3.html (8 of 8) [8/26/2001 1:41:39 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 4 - (C:)

CHAPTER 4
THE CASSETTE HANDLER (C:)

The cassette handl er sends data to the cassette recorder in bl ocks of
128 bytes each. The blocks are sent in the follow ng format:

Cassette record fornmat

|01 010101 speed neasurenent bytes

| checksum | handled by SIO
The control byte may have one of the follow ng val ues.
$FC (252) record is full
$FA (250) partly full, next record is EOCF.

$FE (254) ECF record, data section is all zeroes.

The cassette handl er has two nodes of operation. The first node uses

only a short gap between records. It is called the no IRG
(interrecord gaps) node. The second node uses | onger gaps between
records and is called the IRG nbde. In the | RG node the conputer nmay

stop the cassette recorder between records for processing data.

When a channel is opened to the cassette recorder, bit 7 of | CAUX2 nmay
be set to 1 (I1CAX2 = $80 (128)). This will cause the cassette to use
t he no | RG node.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr4.html (1 of 2) [8/26/2001 1:41:40 PM]

ATR: Chapter 4 - (C:)

A cassette file starts with a 20 second nark tone. This tone is
followed by the file records with 128 data bytes each. The final
record is an End-O-File record.

The cassette is a straight-forward read/ wite device. There are no
speci al functions other than those common to other Cl O devi ces.

The cassette notor is controlled by one of the controller port control
registers. |If bit 3 of PACTL [$D302 (54018)] is O then the cassette

notor is on. The follow ng BASIC commands will turn the cassette
notor on and off.

Cassette notor control

POKE 54018, PEEK(54018) - 8 not or on
PCOKE 54018, PEEK(54018) +8 not or of f

Useful data base variables and OS equates

PACTL $D302 (54018): port A control register, bit 4
controls cassette notor

]]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr4.html (2 of 2) [8/26/2001 1:41:40 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 5 - (K:)

CHAPTER 5
THE KEYBOARD HANDLER (K:)

The keyboard is a read only device and therefore the keyboard handl er
has no out put functions.

The keyboard handl er reads the keys as ATASCI| codes. Each key is
represented by one byte of data. Therefore, each tine a key is
pressed the data is treated as a byte of data just as data from any
other device is. The only difference is that the conputer nust wait
for the operator to press the keys as it reads the data.

Whenever a key is pressed an IRQ interrupt is generated by the
keyboard readi ng hardware. The internal code (not ATASCII) for the
key just pressed is then stored in CH [$02FC (764)]. The code is then
conmpared with the prior key code in CHL [$02F2 (754)]. |If the code in
CHL is different fromthe code in CH the key is accepted. The code
is then converted to ATASCII, and placed in the database variable
ATACHR [$02FB (763)]. On XL and XE nodel s, KEYDEF [$0079,2 (121)]
points to the key-code-to-ATASCI| conversion table. (This address is
used by the the screen handler in 400/ 800 nodels).

If the code in CHL is the sane as the code in CH the new key code
will not be accepted unless the key debounce tinmer, KEYDEL [$02F1
(753)] is O.

Wien CIOis told to do an input operation fromthe keyboard, CH is
checked to see if a key has been pressed. If CIOfinds $FF (255) in
CH, it waits until a key is pressed. |If CHis not $FF, a key has been
pressed and the ATASCI| code for that key is taken from ATACHR. CH is
then set to $FF.

The data in CHis in the follow ng format.

Key code fornmat:

76543210

http://trident.mcs.kent.edu/~clisowsk/8bit/atr5.html (1 of 4) [8/26/2001 1:41:40 PM]

ATR: Chapter 5 - (K:)

cC 1
S 1

[CTRL] key is pressed
[SH FT] key is pressed

Anytinme a key is pressed, CHis |oaded with the key code. CH w]|
hol d the code until the conputer is commanded to read the keyboard.
Sonetines the conputer will read a key which was pressed |ong ago. |If
you want to prevent this, load CH with $FF before reading the
keyboard. (In BASIC use POKE 764,255.) This will clear out any old
key pressings.

Speci al function keys

[CTRL] [1] screen output start/stop

[CTRL] [2] BELL

[CTRL] [3] Generates End-O-File status
[/1\]

or

[/] I nverse video toggle

[CAPS LOVER] sets | ower case
[CTRL] [CAPS] sets CTRL | ock
[SH FT] [CAPS] sets caps | ock

KEYBOARD REPEAT DELAY AND RATE CONTROL

On the XL and XE, KRPDEL [$02D9 (729)] determ nes the delay before the
key repeat begins. The value of this byte is the nunber of verti cal

bl anks (1/60th second each) to delay. KEYREP [$02DA (730)] determ nes
the repeat rate in vertical bl anks.

KEYBOARD CLI CK

The keyboard click of the XL/ XE is heard through the TV speaker. The
click may be turned off by putting $FF in NOCLIK [$02DB (731)].

NON- HANDLER, NON-Cl O KEYS

The [OPTIQON], [SELECT] and [START] keys are read fromthe consol e
switch register, CONSCL [$DO1F (53279)].

The consol e switch register

7 6 5 4 3 2 1 0

CONSOL |0 |0 |0 | O | SP| OP| SE| ST

http://trident.mcs.kent.edu/~clisowsk/8bit/atr5.html (2 of 4) [8/26/2001 1:41:40 PM]

ATR: Chapter 5 - (K:)

ST 0 = [START]
SE 0 = [SELECT]
oP 0 = [OPTION
SP Consol e speaker. set to 1 during vertical blank.

toggleing this bit operates the speaker (which
I's heard through the TV on XL/ XE nodel s).
This bit always reads 0O

The [HELP] key on XL and XE nodels is read from HELPFG [$02DC (732)].
This address is |atched and nust be reset to zero after being read.
The [HELP] key register

76543210

HELPFG |CSOHOOOH
16318421
2426
8
H 1 =[HELP] (bits 0 and 4)
S 1 = [SHFT]
C 1 = [CONTRO]
Usef ul database vari abl es and OS equates
KEYDEF $0079, 2 (121): key code coversion table vector (XL/ XE)
KRPDEL $02D9 (729): del ay before key repeat (XL/XE)
KEYREP $02DA (730): key repeat rate (XL/XE)
NOCLI K $02DB (731): $FF turns off key click (XL/ XE)
HELPFG $02DC (732): [HELP] key (XL/XE)
ATACHR $02FB (763): ATASCI| Code for |ast key
CH $02FC (764): keycode, $FF if no key has been pressed
BRKKEY $0011 (17): break key flag, 0 = break key pressed
SRTI MR $022B (555): Key delay and repeat tiner
SHFLOK $02BE (702): SH FT/CTRL | ock flag
$00 = | ower case
$40 (64) = upper case |ock
$80 (128) = CTRL |l ock
| N\VFLG $02B6 (694): inverse video flag, non-zero = inverse

http://trident.mcs.kent.edu/~clisowsk/8bit/atr5.html (3 of 4) [8/26/2001 1:41:40 PM]

ATR: Chapter 5 - (K:)

CONSCL $DO1F (53279): start, select and option keys
| REEN $D20E (53774): IRQ interrupt enable

bit 7 enabl es [BREAK]

bit 6 enabl es ot her keys

shadow regi sters

POKMSK $0010 (16): | RQEN shadow

([[4]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr5.html (4 of 4) [8/26/2001 1:41:40 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 6 - (P:)

CHAPTER 6
THE PRINTER HANDLER (P:)

The printer is a wite only device so the printer handler has no input
functions. The printer handl er has no special functions other than
the Cl O functions common to all other devices.

Al t hough many printers have special functions, the printer handl er has
no control over them See your printer manual for information on
speci al functions.

(][4

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr6.html [8/26/2001 1:41:41 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 7 - (E2)

CHAPTER 7
THE SCREEN EDITOR (E:)

The screen editor uses both the keyboard handl er and the screen

handl er to provide interactive control of the conputer.

In fact, the

keyboard handl er, the screen handler and the screen editor are
contained in a single section of code and are therefore very closely

r el at ed.

The editor works with one |line of characters at a tine.

The lines it

works with are called logical lines and are up to three screen lines

| ong.

The screen editor inputs data fromthe keyboard and then prints the

data on the screen

When the [RETURN] key is pressed,

t he editor

inputs all of the data on the present logical |ine for processing by

Cl O

| f characters are typed on the screen, and then the cursor is noved
off the line, then back on the line, and new characters are typed,
only the characters to the right of the reentry point of the cursor

are input when [RETURN] is pressed.

However, if the cursor is noved

off the line again, then noved back on, all characters on that | ogical

line are input.

If bit O of ICAX1 is 1, the editor wll act as if the [RETURN] key is

bei ng hel d down.

Edi tor control codes

This bit may be changed at any tine.

The screen editor treats certain ATASCI| codes as special control

Screen editor control codes

codes.

KEY HEX DEC
[RETURN] $9B 155
[CLEAR] $7D 125
[UP ARRON $1C 28
[DOMN] $1D 29
[LEFT] $1E 30
[RI GHT] $1F 31

FUNCTI ON

carriage return or ECL

Cl ear screen, put cursor in upper left
Move cursor up one screen line

down one |ine

| eft one character

ri ght one character

http://trident.mcs.kent.edu/~clisowsk/8bit/atr7.html (1 of 2) [8/26/2001 1:41:42 PM]

ATR: Chapter 7 - (E2)

di spl ayed as an ATASCI

[BACK S] $7E

[SET TAB] $9F

[CLEAR

TAB] $9E

[TAB] $7F

[SHI FT]

[1 NSERT] $9D

[SHI FT]

[DELETE] $9C

[CTRL]

[1 NSERT] $FF

[CTRL]

[DELETE] $FE

[ESCAPE] $1B
control code

[CTRL] [1]

[CTRL] $FD

126
159

158
127

157

156

255

254
27

Back- space operation
sets tab stop at cursor

Clear tab stop at cursor
nove to next tab stop

Make space for a new |line

del et e

the logical line at the cursor

make room for a character

del et e
causes

char act er,

Screen

character at cursor
next non- ECL code to be
even if It is an editor

print start/stop

]]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr7.html (2 of 2) [8/26/2001 1:41:42 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 8 - (S))

CHAPTER 8
THE DISPLAY HANDLER (S:)

The di splay handl er manages the conputer's video display. Al though no
data ever |eaves the conmputer through it, the display is treated |ike
any other ClO device. Data sent to the screen nmay be di splayed as

ei ther characters or point by point graphics. Although it is only
visible in the 40 colum text node, node O, there is a cursor on the
screen in all of the text or graphics nodes. Wenever a character or
graphics point is put on the screen, the cursor noves just as in node
0.

The display is capable of both input and output. Information can be
put on the screen with any of the Cl O output conmands. An i nput
command will find whatever is on the screen at the position of the
cursor.

When text or graphics is sent to the screen it is actually stored in
an area of nenory called the display buffer. What you see on the
screen is the conputer's interpretation of the data stored there.
This will be explained further as each node is covered.

DI SPLAY HANDLER SPECI AL FUNCTI ONS:

DRAW
FI LL

SPECI AL ERROR STATUSES:

$84 (132) Invalid special conmand.

$8D (141) Cursor out of range.

$91 (145) Nonexi stant screen node.

$93 (147) Insufficient ramfor screen node.

TEXT MODE 0O

I n graphics node 0, data passes through CIO, and is stored in the
di splay buffer in the follow ng fornat.

76543210

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (1 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

| 1 = displays character in inverse video.

Bits O through 6 select one of the 128 characters in the ATASCI | set.

If bit seven = 1, the character is displayed in inverse video.
Converting the above byte to decimal will give the BASI C ASC(x)
equi val ent .

The characters displayed in the text nodes are determ ned by tHE
ATASCI | character set. This is a bit by bit representation of how the
characters appear on the screen. The character set starts $E000
(57344) in the operating systemROM Fromthere, for 1K of nenory,
each eight bytes holds a "bit map" of a particular character. Bel ow
is howthe letter Ais stored in the character set.

Letter A as represented in the C set

0001100 0] * o
00111100 £ oxox o
01100110 ** ==
01100110 ** o+
01111110 ***x=>
01100110 ** o+

$E20F |00 000 0 0 O

XL and XE nodel s have an international character set starting at $CC00
(55224). In this character set the graphics characters are replaced
by international characters.

Custom characters sets may be | oaded at any free address which is a

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (2 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

multiple of 1,024 ($0400, or 1K). The database variabl e CHBAS [$02F4
(756)] stores the nost significant byte (MSB) of the address of the
active CGset. Since the LSB of the Cset address is always $00, no
LSB is needed to find it.

The data stored in the display buffer does not use the ATASCI| code.
A speci al code needed by the ANTIC chip is used.

DI SPLAY CODE / ATASCI | CODE CONVERSI ON:
ATASCI | di spl ay
$00 - $1F (0 - 31)

$20 - $5F (32 - 95)
$60 - $7F (96 - 127)

$40 - $5F (64 - 95)
$00 - $3F (0 - 63)
unchanged

The codes for inverse video (the above codes with bit 7 set (= 1) or
t he above codes + 128 in decimal) are treated |ikew se.

When you first turn on the conputer, BASIC opens channel 0 to the
screen editor (E:). The screen editor uses both the keyboard handl er
and the screen handler, in node 0, to display characters when they are
typed in.

TEXT MODES 1 AND 2

Graphics nodes 1 and 2 offer a split screen configuration if desired.
The split screen has four lines of node O at the bottom of the
screen.

In node 1 the screen holds 20 characters horizontally and 24
characters vertically. In node 2 the characters are twice as tall so
the screen holds 12 vertically.

In BASIC, characters are sent to the screen with the PRI NT comrand.
Si nce BASI C uses channel 6 for graphics you nust specify channel 6 in
the command. For exanpl e:

? #6; "HELLO'

If you use a comma in place of the semi colon, ten spaces will print
before the "HELLO

You can al so use the PLOT and DRAWIO commands. In this case the COLOR
command determ nes the character, as well as the color to be

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (3 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))
di spl ayed.

Dat a passes through C1Oin the followng form

76543210

C determ nes the col or

C Def aul t Col or Shadow
Col or Regi ster Register
0 green COLPF1 COLOR1
1 gold CCOLPFO COLORO
2 gold CCLPFO COLORO
3 green COLPF1 COLOR1
4 red COLPF3 COLOR3
5 bl ue COLPF2 COLOR2
6 bl ue COLPF2 COLOR2
7 red COLPF3 COLOR3

Dis ab bit ATASCII code which selects the character to be displ ayed.
The dat abase vari abl e CHBAS sel ects between upper case (CHBAS=$EO
(224)) and | ower case (CHBAS=$E2 (226)).

GRAPHI CS MODES 3 THROUGH 11

Modes 3 through 8 offer a split screen node. In nodes 9 through 11
special programming is required for split screens.

These nodes use dot by dot (pixel by pixel) graphics instead of
character sets. Before explaining how graphics are sent to the screen
through C1IO, | wll describe howthe data in the display buffer is

i nterpreted by the ANTIC chip.

Mode 8 is the sinplest of the graphics nodes. Each byte of the
di spl ay buffer controls eight pixels horizontally. The first 40 bytes

of the display buffer control the first horizontal |ine of graphics.
This makes a total of 320 pixels horizontally. |If one of the eight
bits of a byte is a 1 then the pixel it controls is on. |If a bit is a

Othenit's pixel is off. For exanple, if a particular byte is equal
to $9B (binary 10011011) then its' part of the screen would | ook
li ke. ..

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (4 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

* %k k%

(10011011)

In reality the pixels are assigned to different color registers. A
color register is a byte of nenory which controls the color of all

pi xel s assigned to it. In node 8, if a bit is =0 it's pixel is
assigned to the register called COLBK. If a bit is one, it's pixel is
assigned to COLPFO. See COLORS below for nore information on the

col or registers.

You may notice a close simlarity between node 0 and node 8. The
maj or difference between these nodes is where the dot by dot

I nformation cones from |In node 8 this information cones fromthe
di splay buffer. In node O the display buffer contains codes telling
what characters to display. The actual dot by dot infornmation cones
for the character set at $EO00O.

In node 7 each pixel is controlled by two bits. Therefore each byte
only controls four pixels. There are also only 1/4 as many pi xels on
the screen as in node 8. See node 3 bel ow for an expl anati on of how
the each byte affects the pixels.

In a graphics node, when Cl O sends a byte of data to the screen

handl er, that byte has information for only one pixel. Do not confuse
a byte which CIO sends to the screen handler with the bytes in the

di spl ay buffer.

ClO sends data to or retrieves data fromthe screen in the foll ow ng

f orns.

76543210

|]O O 0OO0O0O|] D| Modes 3,5,7 -- D = color
|]O0OO0O0O0 0 O]D Modes 4,6,8 -- D = Col or
|0 0 0 O] D | Modes 9,10,11 -- D = data

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (5 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

Mode 3 uses a screen which is 40 pixels horizontally and 24
vertically. Each pixel is a square the size of a node O character

It requires 273 bytes of RAM where each byte controls 4 pixels. Each

pair of bits controls which of the four color registers their pixel
assi gned to.

di spl ay buffer byte for node 3

76543210

PL P2 P3 P4

Pi xel / col or register assignnents:

D=00 COBK (COLOR4)
01 COLPFO (COLORO)
10 COLPF1 (COLOR1)
11 COLPF2 (COLORR)

Mode 4 uses a screen of 80 columms by 48 rows. Each pixel is half the
size of those in node 3. Mde 4 requires 537 bytes of RAM where each

byte controls 8 pixels. This node is very simlar to node 8 except
there are fewer but [arger pixels.

Mode 5 uses a screen of 80 columms by 48 rows. The pixels are the

sane size as in node 4. Mde 5 requires 1,017 bytes of RAM where each

byte controls 4 pixels in the sane manner as in node 3.

Mode 6 uses a screen of 160 colums by 96 rows. It requires 2,025
bytes of RAM where each byte controls 8 pixels as in node 4.

Mode 7 uses a screen of 160 colums by 96 rows. It requires 3,945
bytes of RAM where each byte controls 4 pixels as in nodes 3 and 5.

Modes 8 through 11 (and 15 on XL and XE nodel s) each require 7,900
bytes of RAM and are very simlar in display set up. The main

di fferences between these nodes is the interpretation of data in the
di splay buffer.

Mode 15 (sonetines called node 7.5) uses a screen of 160 col unms by
192 rows. Each byte controls 4 pixels as in node 7. The main

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (6 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

di fference between node 15 and its related nodes is bit 0 of each

I nstruction byte in the display list (the programwhich the ANTIC chip
uses). If this bit is O the screen is interpreted as node 15. |If the
bit is 1 the screen is interpreted as nodes 8 through 11.

Modes 8 through 11 are set up identically in nmenory, including the
display list. The only difference is the data in the PRI OR register
of the GIlIA chip. The shadow register for PRIOR is GPRI OR [$026F
(623)].

Mde 8 (PRIOR = $00 - $3F (0 - 63)), uses a screen of 320 col umms by
192 rows. Each byte controls 8 pixels as in nodes 4 and 6.

Mode 9 (PRIOR = $40 - $7F (64 - 127)) uses a screen of 80 columms by
192 rows. Each byte controls 2 pixels. The pixels are all of the
same color, controlled by COLBK. Each half of a byte in the display
buffer controls the |um nance of the assigned pixel. The format of
each byte is as follows.

76543210

pi xel 1| pi xel 2

Mode 10 (PRIOR = $80 - $BF (128 - 191), is the sane as node 9 except 9
col or |um nance conbi nations are available. The data in each half
byt e chooses one of the 9 color registers for the assigned pixel.

Mode 11 (PRIOR = $C0 - FF (192 - 255), is the sane as node 9 except
there is one brightness but 16 colors. The pixel data chooses one of
the 16 available colors. The lum nance is that of the background

(COLBK) .

USI NG THE SCREEN HANDLER

OPENI NG A CHANNEL TO THE SCREEN HANDLER

When a channel is opened to the screen handler the follow ng actions
t ake pl ace:

The area of nenory to be used for the screen data is cleared.

A display list (programfor the ANTIC chip) is set up for the proper

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (7 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

gr aphi cs node.

The top-of-free-nmenory pointer, MEMIOP [$02E5,2 (741)], is set to
point to the last free byte before the display |ist.

Bef ore opening a channel to the screen handler, the pointer to the
hi ghest nmenory address needed by the program APPVH [$000E, 2 (14)],
shoul d be properly set. This will prevent the screen handler from
erasing part of the programwhen it sets-up the screen data region.

When the channel is opened, two special options can be sent with the
direction paraneter (1 CAX1).

| CAX1 for screen open

76543210

| CSWR |
16318421

2426

8
C 1 = don't clear the screen
S 1 =split screen
R 1 = input
W 1 = output

Bef ore the open command, the graphics node nunber is placed into
| CAX2.

| CAX2 for screen open

76543210

mode = $00 t hrough $0B (0 - 11 (0 - 15 on XL/ XE))

To open a channel to the screen in BASIC use the GRAPHH CS conmand.

BASI C screen open format

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (8 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

GRAPHI CS node

For Exanpl e:
GRAPHI CS 8
This will set up a node 8 graphics screen and open channel 6 to it.
|f the graphics node is 1 - 8, a split screen will be set up. For

exanple, GRAPHICS 8 will set up a node 8 screen with a four |ine text
wi ndow at the bottom

If 16 is added to the node nunmber, a full screen wll be set-up. For
exanpl e, GRAPHI CS 8+16 or GRAPHICS 24 will set up a node 8 screen,
with no text wwndow, a full 192 pixels high. If the nunber 32 is

added to the node nunber, the screen will not clear when the channel
opens.

If you want to use a channel other than #6, you will have to use the
open command. It is used in the follow ng format.

screen open w thout GRAPHI CS command
OPEN #channel , directi on/ speci al , node, S:
For exanpl e:
OPEN #1,8,7, S:

This will open channel 1 to a node 7 screen for output only. For use
of special paraneters, see | CAX1 above.

USI NG AN OPEN CHANNEL TO THE SCREEN

Once a channel is opened to the screen it is used |like any other input
or output device. |In other words, data is placed on the screen by the
PRI NT and PUT commands. Data is retrieved fromthe screen with the

| NPUT and GET conmands. The part of the screen which the data will be
put in or taken fromis determned by the X Y coordinants in the

dat abase vari abl es COLCRS [$0055,2 (85)] and ROACRS [$0054 (84)].

What appears on the screen depends on what graphics node the conputer
s in.

Bef ore sending data to the screen in BASIC, a color register nust be
assigned to the data. Once a point is plotted on the screen, it's
color will be determ ned by the color register it was assignhed to.

To assign a color to a ploted point, the COLOR conmand us used as

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (9 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

foll ows.

COLOR conmmand f or nat

COLOR regqister

For exanpl e,

COLCR 1
After using the above command, all points plotted will be controlled
by color register 1. To change color registers, use the COLOR comrmand
agai n.

In assenbly | anguage, the color is determ ned by the data sent to the
screen. See the above section on graphics nodes for col or
i nf ormati on.

In BASIC the PLOT command is used to put data on the screen. The PLOT
command is used as foll ows.

The BASI C PLOT conmmand

PLOT X,y
x and y are the horizontal and vertical coordinates for the plotted
poi nt .

In nodes 3 through 11 a single point wll be plotted. In nodes 1 and
2 a text character will be printed on the screen by the PLOT command.

The PRI NT and PUT commands can al so be used in basic. Wat appears on
the screen depends on the graphics node.

In nodes 1 and 2 the ATASCI| characters sent to the screen will be
printed just as in node 0. See the paragraph on nodes 1 and 2 above
for nore information. |In the other nodes what appears depends on how
the ANTIC chip interprets the data bytes sent to the screen. For
exanple, in node 8, even nunbered characters will be single pixels in
color 1. Qdd nunbered characters will be in color 0 (background).

There are two special commands for the screen handl er, DRAWand FI LL
DRAW (1 CCOM = $11 (17))

The draw command wor ks exactly |like the plot command except a straight
line is drawn fromthe previous pixel to the newone. |In BASICit is

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (10 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

used in the follow ng formt.
t he BASI C DRAW comrand

DRAWIO x, y

FILL (1 COOM = $12 (18))

Fill works |ike draw except the area to the right of the drawn |ine
will be filled with the color in FILDAT [$02FD (765)]. The fill
command expects to find a boundary to the right. |If no boundary is
found, the entire horizontal screen between the ends of the line is
filled.

To use the fill comand in BASIC the Xl O conmand nust be used in the

followi ng format.

POSI TI ON X, y
XIO 18 #6,0,0,"E: "

Note that the cursor is first noved by the POSITION conmand. Below is

an exanple of howto prepare for and use the fill command.
using the fill commuand
2nd DRAWO . . DRAWO here
| |
I |
I |
fill to here ! ' PLOT here
This will draw and fill a box on the screen.

THE COLOR REQ STERS

There are nine bytes of nmenory which control the colors on the screen.
These bytes are called color registers. The color registers have the
foll owi ng names and rel ati onshi ps.

Col or registers and rel ati onshi ps

Regi ster Regi ster nodes
name addr ess

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (11 of 15) [8/26/2001 1:41:47 PM]

ATR: Chapter 8 - (S))

0 &8 1 &2 357 4 & 6 9 & 11

10
HEX deci mal COLOR nunbers
PCOLRO $02C0 704
gCCLRl $02C1 705
;CCLRZ $02C2 706
iCCLR3 $02C3 707
gCLCRO $02C4 708 0 - 63 1 1
éCLCRl $02C5 709 1 - 255 64 -127 2
gCLCRZ $02C6 710 0 128- 191 3
gCLCR3 $02C7 711 192- 255
ZILCFM $02C8 712 bor der backgnd 0 backgnd backgnd
8
The col or nunbers are in decinmal. These are actually shadow
registers. See the O S. equates below for relationships. |In nodes O

- 3 the COLOR nunber actually determ nes the character printed

The register to which a pixel/character is assigned to is determ ned
by the data byte sent to the screen through C O

The data in the color registers inin the follow ng fornmat.

Col or register data format

76543210

one of 16 possible colors
one of 8 possible brightnesses
(even nunbers, 0 - E)

In basic, the COLOR command is used to assign color registers. The

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (12 of 15) [8/26/2001 1:41:48 PM]

ATR: Chapter 8 - (S))

correspondi ng regi sters depends on the graphics node. For exanpl e,
COLOR 0O is COLOR2 in node 8. In nost other nbdes COLOR 0 is COLOR4.
See the above chart for the register relationships.

To change the contents of the color registers in BASIC, the SETCOLOR
command is used. In all nodes except node 10, the SETCOLOR conmand
refers to the registers COLOR0O to COLOR4.

SETCOLOR/ regi ster rel ationshi ps

SETCOLOR 0 COLPFO (COLORO)
SETCOLOR 1 COLPF1 (COLOR1)
SETCOLOR 2 COLPF2 (COLORR)
SETCOLOR 3 COLPF3 (COLOR3)
SETCOLOR 4 COLBK (COLOR4)

The format for the SETCOLOR command i s. ..

SETCOLOR command f or mat

SETCOLOR regi ster, hue, bri ght ness

regi ster =0-4(0- 8 in node 10)
hue =0 - 15 (16 colors)
brightness = 0 - 16 (even nunbers only (8 brightnesses)

The follow ng chart gives the colors represented by the hue nunber.

colors represented by hue nunbers

0 grey 8 bl ue

1 gol d 9 cyan

2 gol d- or ange 10 bl ue- green

3 r ed- or ange 11 bl ue- green

4 or ange 12 green

5 magent a 13 yel | ow green
6 pur pl e- bl ue 14 yel | ow

7 bl ue 15 yel | owred

The attract node

If a key is not pressed for nore than 9 minutes the conputer wll
enter the attract node. This node is used to prevent burning of the
TV phosphors by |lowering the brightness and constantly changing the

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (13 of 15) [8/26/2001 1:41:48 PM]

ATR: Chapter 8 - (S))

colors. The attract node tinmer, ATRACT [$004D (77)], is set to 254
($FE) when the the attract node is entered. To force the conputer out
of the attract node, poke a nunber |ess than 127 into ATRACT.

Usef ul dat abase vari ables and OS equates

APPVHI $000E, 2 (14): lower limt for screen region

ATRACT $004D (77): attract node tinmer and flag

LMARGN $0052 (82): left margin

RMARGN $0053 (83): right margin

RONCRS $0054 (84): horizontal cursor position

COLCRS $0055, 2 (85): vertical cursor position

DI NDEX $0057 (87): current graphics node

SAVMSC $0058, 2 (88): starting address of display buffer

OLDROW $005A (90): previous cursor position

OLDCOL $0058B, 2 (91): " " "

OLDCHR $005D (93): character currently at the text cursor

OLDADR $005E, 2 (94): nenory address of cursor

RAMIOP $006A (106): end-of -RAM + 1 (MSB only)

SDLSTL $0230, 2 (560): shadow register of display |ist address

TXTROW $0290 (656): text wi ndow cursor position

TXTCOL $0291, 2 (657): " " " "

TXTMSC $0294, 2 (660): starting address of text w ndow data buffer

RAMSI Z $02E4 (740): permanent end-of-RAM + 1 (MSB only)

CRSI NH $02F0 (752): cursor inhibit, 1 = no cursor

FI LDAT $02FD (765): color data for fill

DSPFLG $02FE (766): 1if >0 screen control codes are displayed as
ATASCI | characters (EOQOL is uneffected)

SSFLAG $02FF (767): > 0 = stop screen print

COLPM) $D012 (53266): actual color registers

COLPML $D013 (53267): | oaded from shadow

COLPM2 $D014 (53268): registers during

COLPM3 $D015 (53269): vertical blank

COLPFO $D016 (53270):

COLPF1 $D017 (53271): see above

COLPF2 $D018 (53272): for use

COLPF3 $D019 (53273):

COLBK $D020 (53274) :

OS shadow regi sters

PCOLRO $02C0 (704): COLPMD

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (14 of 15) [8/26/2001 1:41:48 PM]

ATR: Chapter 8 - (S))

PCOLRL $02C1 (705): COLPML
PCOLR2 $02C2 (706): COLPM2
PCOLR3 $02C3 (707): COLPMB
COLORO $02C4 (708): COLPFO
COLORL $02C5 (709): COLPF1
COLOR2 $02C6 (710): COLPF2
COLOR3 $02C7 (711): COLPF3
COLOR4 $02C8 (712): COLBK

([[4]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr8.html (15 of 15) [8/26/2001 1:41:48 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 9 - (SIO)

CHAPTER 9
THE RESIDENT DISK HANDLER

The resident disk handler is separate from DOS and is part of the
per manent operating system ROM The di sk handl er does not use Cl O

The resident disk handler works with one sector at a tine. It is used
by setting the drive nunber, sector nunber, and operation code in the

device control block. The programthen junps (JSR) to the handler
entry vector, DSKINV [$E453 (58451)].

Device control block (for resident disk handler)

DDEVI C [$0300 (768)]
Serial bus |I.D. Set by handler
DUNI T [$0301 (769)]
Drive nunber
DCOVND [$0302 (770)]
Command byte
DSTATS [$0303 (771)]
status byte

DBUFLO [$0304 (772)]
DBUFHI [$0305 (773)]

Pointer to 128 byte nenory bl ock for data storage.
DTI MLO [$0306 (774)]
Ti meout value (response tine limt) in seconds

DBYTLO [$0308 (776)]
DBYTHI [$0309 (777)]

nunber of bytes transferred, set by handler

http://trident.mcs.kent.edu/~clisowsk/8bit/atr9.html (1 of 4) [8/26/2001 1:41:49 PM]

ATR: Chapter 9 - (SIO)

DAUX1 [$030A (778)]
DAUX2 [$030B (779)]

sect or nunber
DI SK HANDLER COMVANDS
CET SECTOR
Before the JSR to DSKINV is made the followi ng paraneters are set.

CET SECTOR paraneters

DCOVND = $52 (82)
DUNIT = (1 - 4)
DBUFHI
and
DBUFLO = address of 128 byte buffer
DAUX1
and
DAUX2 = Sector nunber (LSB, VSB)
This operation will read the specified sector and put the data into

the specified buffer.
PUT SECTOR
PUT SECTOR i s used the sane as GET SECTOR except for DCOMND.
PUT SECTOR paraneters
DCOVND = $50 (80)

This operation sends the data in the specified buffer to the specified
di sk sector.

PUT SECTOR W TH VERI FY

PUT SECTOR WTH VERIFY is used the sane as PUT SECTOR except for
DCOMND.

PUT SECTOR W TH VERI FY par anet er s
DCOMND = $57 (87)

This operation sends the data in the specified buffer to the specified
di sk sector then checks for errors.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr9.html (2 of 4) [8/26/2001 1:41:49 PM]

ATR: Chapter 9 - (SIO)

GET STATUS
Only the DUNIT and DCOVND need to be set
CET STATUS paraneters

DCOVND
DUNI T

$53 (83)
(1- 4)

The status information will be put in three bytes starting at DVSTAT
[$02EA (746)].
Stat us fornmat

76543210

DVSTAT + O | command st at |
+ 1 | hardware stat |
+ 2 | timeout val ue |

The command status byte gives the follow ng information.

Bi t

invalid conmand franme received
invalid data frame received
unsuccessful PUT operation
disk is wite protected

acti vel/ st andby

A WDNPEFO
PR R PR
1 T I O B

The hardware status byte contains the status register of the | SN1771-1
di sk controller chip.

The timeout byte contains the maxi num al |l owabl e response tine for the
drive in seconds.

FORVAT DI SK

The handler will format then verify the the disk. The nunbers of al

http://trident.mcs.kent.edu/~clisowsk/8bit/atr9.html (3 of 4) [8/26/2001 1:41:49 PM]

ATR: Chapter 9 - (SIO)

bad sectors (up to 63) will be put into the specified buffer foll owed
by two bytes of $FF.

The follow ng paraneters are set before the call.

FORMAT par aneters

DCOVND = $21 (33)
DUNIT = (1 - 4)
DBUFLO

and

DBUFHI = address of bad sector list (buffer)

After the operation the status byte is set. Al so, DBYTLO and DBYTHI
w Il contain the nunber of bytes of bad sector information (not
i ncluding the two $FF bytes).

Useful data base variables and OS equates

DVSTAT $02EA 3 (746): device status bl ock, 3 bytes
DDEVI C $0300 (768): serial bus I.D

DUNIT $0301 (769): device nunber

DCOWND $0302 (770): conmmand byte

DSTATS $0303 (771): status byte

DBUFLO $0304 (772): data buffer

DBUFHI $0305 (773): pointer

DTI MLO $0306 (774): timeout val ue

DBYTLO $0308 (776): nunber of bytes transfered
DBYTHI $0309 (777):

DAUX1 $030A (778): sector

DAUX2 $030B (779): nunber

DSKI NV $E453 (58451): disk handler entry vector

([[4]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr9.html (4 of 4) [8/26/2001 1:41:49 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 10 - System Interrupts

CHAPTER 10
SYSTEM INTERRUPTS

There are four types of interrupts which can occur with the 6502
m Cr opr ocessor:

6502 interrupts

1. chip reset

2. | RQ interrupt request (maskabl e)

3. MNI (non- maskabl e i nterrupt)

4. software interrupt (BRK instruction)
CH P RESET

On the 400/800 the chip reset occurs only upon power-up and causes the
computer to do a cold start. On later nodels, pressing [SYSTEM RESET]
wi |l cause a chip reset but the conputer then does a warmstart. On

t he 400/ 800, the [SYSTEM RESET] key generates a NM interrupt.

COLD START
This is a synopsis of the cold start routine.

1
The warm start flag [$0008] is set to O (false)

2
If a cartridge slot contains a diagnostic cartridge, control is handed
to the cartridge.

3
The end of RAMis determned by trying to conplenent the first byte of
each 4K bl ock of nenory.

4
Har dwar e registers at $D000 - $DAFF (except $D100 - $D1FF) are
cl ear ed.

5
RAM is cleared from $0008 to the top of ram

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (1 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

6
The user program junp vector, DOSVEC [$000A] is set to point to the
bl ack board node (Atari |ogo display node in XL/ XE nodel s).

7
The screen margins are set to 2 and 39

8
Interrupt vectors are initialized.

9
Bottom of free RAM pointer, MEM.O [$02E7], is set to point to $0700.

10
Resident ClO handlers are initialized.

11
I f the [START] key is pressed the cassette boot request flag, CKEY
[$004A], is set.

12
The Cl O device table is initialized.

13
If a cartridge is present it is initialized.

14

Channel O is opened to the screen editor. The top-of-free-RAM

poi nter, MEMIOP [$02E5], is set to point below the screen region. The
conmputer then waits for the screen to be established before
conti nui ng.

15
If the cassette boot flag is set the cassette is booted.

16
If there is no cartridge present or a cartridge doesn't prevent it,
the di sk is booted.

17
The cold start flag is reset.

18
If there is a cartridge present, the conputer junps to the cartridge's
run vector.

19
If there is no cartridge present the conputer junps through the vector

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (2 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

DOSVEC [$000A (10)]. DOSVEC will point to either a booted program
the nmeno pad routine (400/800) or the | ogo display routine (XL/XE).

WARM START

1
The warm start flag is set to $7F (true).

2
cold start steps 2 - 4 are executed.

3
RAMis cleared from $0010 - $007F and $0200 - $03FF.

4
Cold start steps 7 - 14 are executed.

5
| f cassette booted software is present the conputer JSRs through
CASI NI [$0002].

6
I f disk booted software is present the conmputer JSRs through DOCSI NI
[$000C (12)].

The di fference between cold start and warm start is the condition of
the warmstart flag, WARMST, [$0008]. |If this flag is O a conplete

cold start is executed. |If the flag is anything other than O then
only the warm start part of the warmstart/cold start code is
execut ed.

NON- MASKABLE | NTERRUPTS (NM)

NM interrupts are generated by the foll ow ng conditions:

=

Display list interrupt, generated by the ANTIC chip.

2. TV vertical blank interrupt, generated by the ANTIC
chi p.

3. [SYSTEM RESET] key (400/800).

When an NM interrupt occurs, the hardware register NM ST [$D40F] is
exam ned to determ ne what type of interrupt occurred. The conputer
Is then directed through the proper ramvector to service the

I nterrupt.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (3 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

DI SPLAY LI ST | NTERRUPTS (DLI s)

The conputer makes no use of DLIs. The ramvector points to an RTI
I nstruction.

VERTI CAL BLANK | NTERRUPTS (VBI s)
There are two stages to the VBI service routine. The second stage is
only done if a critical function was not interrupted.

Stage 1 (VvBIl)

The real tinme clock, RTCLOK [$0012 - $0014], is increnented.
The attract node vari abl es are processed.

Systemtinmer 1 is decrenented. If it goes to zero the conputer JSRs
t hrough systemti nme-out vector 1.

Stage 2 (VvBIl)
The hardware registers are |loaded with the data in their shadow
regi sters.

Systemtinmer 2 is decrenented. If it goes to zero the conputer JSRs
t hrough the systemtine-out vector 2.

Systemtiners 3, 4, and 5 are decrenented. If a tinmer goes to zero
the conputer sets systemtinmer flags 3, 4, and/or 5.

If auto-repeat is active, the auto-repeat process is done.

The keyboard debounce tinmer is decrenented if not O.

I nformation at the controller port registers is read, processed and
pl aced in the proper shadow registers.

[SYSTEM RESET] | NTERRUPT

| f a [SYSTEM RESET] interrupt is generated on the 400/ 800 the conputer
junps to the warmstart routine.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (4 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

| NTERRUPT REQUESTS (nmaskable interrupts (1 RQs))

When an IRQ interrupt occurs the hardware register | RQST [$D20E], the
Pl A status registers, PACTL [$D302] and PBCTL [$D303] are exam ned to
determ ne what caused the interrupt.

For each interrupt, the 6502 accunul ator is pushed to the stack. The
conmputer is then directed to the proper ramvector to service the
i nterrupt.

SOFTWARE | NTERRUPT (BRK instruction)

The operating system doesn't use software interrupts. The software
I nterrupt vector points to a PLA followed by an RTI

| nterrupt vectors
Label address type function

VDSLST $0200 NM DLI Points to an RT

VVBLKI $0222 NM stage 1 VBI

VVBLKD $0224 NM return-frominterrupt routine
CDTVMAL $0226 NM tine-out 1 (used by SIO
CDTVMA2 $0228 NM tine-out 2 (not used by OS)
VPRCED $0202 | RQ not used (points to PLA RTI)
VI NTER $0204 I RQ not used (PLA RTI)

VKEYBD $0208 | RQ keyboard interrupt

VSERI N $020A |1 RQ wused by Serial 1/0O routine
VSERCOR $020C | RQ wused by SIO

VSEROCC $020E I RQ wused by SIO

VTI MR1 $0210 | RQ not used by OS (PLA RTI)
VTIMR2 $0212 | RQ not used by OGS (PLA RTI)

VTI VR4 $0214 IRQ ?

VIMRQ $0216 I RQ nmain | RQ code

VBREAK $0206 BRK unused by OGS (PLA, RTI)

SYSTEM Tl MERS

The following tiners are updated during vertical blank (VBI) as noted
above. If atimer is decrenmented to O the conputer junps through it's
associ ated vector or sets it's associated flag.

Label address flag/vector

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (5 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

RTCLOK $0012 3 byte clock ($0012 = NMSB)

CDTW1 $0218 CDTMAL1 $0226 vector (SIO tinme-out)
CDTW2 $021A CDTMA2 $0228 vector

CDTW3 $021C CDTMF3 $022A fl ag

CDTW4 $021E CDTMF4 $022C fl ag

CDTW5 $0220 CDTMF5 $022E fl ag

HARDWARE | NTERRUPT CONTROL

There are two registers on the antic chip which control interrupts.
These registers can be used to disable interrupts if necessary. There
are also two associated interrupt status registers.

The 1 RQ enabl e and status registers use the sane address. The result
Is that reading the register does not reveal the enabled interrupts
but the interrupts pending. |IRQ interrupt enable data should usually
be witten to the OS shadow first. Reading the OS shadow tells which
I nterrupts are enabl ed.

Non maskabl e interrupt enable

NM EN $D40E

76543210

| | | not used |
bit 7 1 = DLI enabl ed
6 1 = VBl enabl ed

Non maskabl e i nterrupt status

NM ST $D40F

76543210

| | | | not used|
bit 7 1 = DLI pending
6 1 = VBl pending
5 1 = [SYSTEM RESET] key pendi ng

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (6 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

I nterrupt request enable

| REN $D20E

76543210

bi t [BREAK] key interrupt enable

keyboard i nterrupt enable

serial input interrupt enable

serial output interrupt enable

serial output-finished interrupt enable
timer 4 interrupt enable

timer 2 interrupt enable

timer 1 interrupt enable

ORLrNWMUO O
PRRPRRPRRPRRPRE

| REN has a shadow register, POKMBK [$0010 (A)].

| nterrupt request status

| RQST $D20E

76543210

bi t [BREAK] key interrupt pending

keyboard i nterrupt pending

serial input interrupt pending

serial output interrupt pending

serial output-finished interrupt pending
timer 4 interrupt pending

timer 2 interrupt pending

timer 1 interrupt pending

ORLrNWMUUO O
RPRRPRRPRRPRPRE

VWAI' T FOR HORI ZONTAL SYNC

Witing any nunmber to WSYNC [$D40A (54282)] will cause the conputer to

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (7 of 8) [8/26/2001 1:41:50 PM]

ATR: Chapter 10 - System Interrupts

stop and wait for the next TV horizontal sync.

It is wwse to use DLIs one TV |line before needed then witing to
WEYNC. This will keep other interrupts fromcausing DLIs to be
serviced late. This can cause a DLI to change sonething in the mddle
of a scan line.

Usef ul database vari abl es and OS equates

POKVBSK $0010 (16): | RQEN shadow

| REEN $D20E (53774): enables IR when witten to

| RQST $D20E (53774); gives I RQ waiting when read

PACTL $D302 (54018): bit 7 (read) peripheral A interrupt status
bit O (wite) peripheral A interrupt enable

PBCTL $D303 (54019): bit 7 (read) peripheral B interrupt status
bit O (wite) peripheral B interrupt enable

WSYNC $D40A (54282): wait for horizontal sync

NM EN $D40E (54286): NM enabl e

NM ST $D40F (54287): NM status

([[4]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr10.html (8 of 8) [8/26/2001 1:41:50 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 11 - Floating Point Math

CHAPTER 11

THE FLOATING POINT ARITHMETIC PACKAGE

The routines which do floating point arithnetic are a part of the
operating system ROM The Atari conputer uses the 6502's decinal math
node. This nbde uses nunbers represented in packed Binary Coded
Decimal (BCD). This nmeans that each byte of a floating point nunber
hol ds two decimal digits. The actual nmethod of representing a full
nunber is conplicated and probably not very inportant to a programmer.
However, for those with the knowl edge to use it, the format is given
bel ow.

Fl oati ng poi nt nunber representation

byte 0O XX excess 64 exponent + sign
XX\
xx \
XX > 10 BCD digits
xx

byte 7 XX /

The decimal point is shifted to left of the MSD and the exponent is
adj usted accordingly. Therefore, the decimal point doesn't need to be
repr esent ed.

For programm ng purposes, floating point nunbers can be in ASCI | code.
It takes up to 14 bytes to store a floating point nunber in this
manner. The floating point package has a routine to convert nunbers
bet ween ASCI| and fl oating point.

USE OF THE FLOATI NG PO NT PACKAGE
The fl oating point package has several routines to convert between
ASCI I and FP and to do the arithnetic functions. These are the
| nportant data base vari abl es.

FI oati ng point data base vari abl es
FRO $00D4, 6 (212): 6 byte buffer for floating point nunber
FR1 $00EO0, 6 (224): 6 byte buffer for floating point nunber

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (1 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

Cl X $00F2 (242): index for | NBUFF address

| NBUFF $00F3, 2 (243): 2 byte pointer to ASCII floating point nunber

FLPTR $00FC, 2 (252): 2 byte pointer to user buffer for floating
poi nt nunber

LBUFF $0580, ? (1408): result buffer for FASC routine

MAKI NG THE CALL

To do a floating point function, first set the proper pointers and JSR
to the operation entry point. Belowis alist of the entry points and
par amet er s.

ASCI| to floating point

Converts ASCI| representation pointed to by INBUFF to FP in FRO.

AFP = $D800

| NBUFF = address of ASCI| nunber
Cl X = buffer offset if any
JSR AFP

FLOATI NG PO NT TO ASCI |

Converts floating Point nunber in FRO to ASCII. The result will be
in LBUFF. [|INBUFF will point to the ASCII nunber which will have the
bit 7 of the |ast byte set to 1.

FASC = $D8E6
JSR FASC
| NTEGER TO FLOATI NG PO NT CONVERSI ON.

Converts a 2 byte unsigned integer (0 to 65535) in FRO to floating

poi nt in FRO.
| FP = $D9AA
JSR I FP

FLOATI NG PO NT TO | NTEGER CONVERSI ON.
Converts floating point nunber in FRO to 2 byte integer in FRO.

FPI = $DOD2

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (2 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

JSR FPI
BCS overfl ow

ADDI Tl ON

Adds floating point nunbers in FRO and FR1 with result
FADD = $DA66

JSR FADD

BCS out of range

SUBTRACTI ON

subtracts FRL fromFRO wth the result in FRO.

FSUB = $DA60

JSR FSUB
BCS out of range

MULTI PLI CATI ON
Multiplies FRO by FRL with the result in FRO.
FMUL = $DADB

JSR FMUL
BCS out of range

DI VI SI ON
Divides FRO by FRL with result in FRO.
FDI V = $DB28

JSR FDI V
BCS out of range or divisor is O

LOGARI THVB
Puts logarithmof FRO in FRO

LOG
LOG10

$DECD
$DED1

JSR LOG ;for natural | og.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (3 of 8) [8/26/2001 1:41:52 PM]

i n FRO.

ATR: Chapter 11 - Floating Point Math

or
JSR LOG10 ; for base 10 | og.
BCS negative nunber or overfl ow
EXPONENTI ATI ON
Put exponentiation of FRO in FRO
EXP = $DDCO

EXP10

$DDCC
JSR EXP :for e ** Z
or

JSR EXP10 ;for 10 ** Z

POLYNOM AL EVALUATI ON
Puts the result of an n degree polynom al evaluation of FRO in FRO.
PLYEVL = $DMO0

LDX LSB of pointer to list of floating point
coefficients, ordered high to | ow

LDY MSB of above

LDA nunber of coefficients in |ist

JSR PLYEVL
BCS overfl ow

CLEAR FRO

Sets FRO to all zeroes

ZFRO = $DA44

JSR ZFRO

CLEAR ZERO PAGE FLOATI NG PO NT NUMBER

Cl ears user floating point nunber in page zero.
ZF1 = $DA46

LDX address of zero page FP buffer

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (4 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

JSR ZF1
LOAD FRO W TH FLOATI NG PO NT NUMBER

Loads FRO with user FP nunber in buffer pointed to by 6502 X and Y
registers or by FLPTR. After either operation below, FLPTR will point
to the user FP buffer.

FLDOR = $DD89

LDX | sb of pointer

LDY nsb

JSR FLDOR
or

FLDOP = $DD8D

FLPTR = address of FP nunber
JSR FLDOP

LOAD FR1 W TH FLOATI NG PO NT NUMBER

Loads FRL with user FP nunber in buffer pointed to by 6502 X and Y
registers or by FLPTR After either operation below, FLPTR will point
to the user FP buffer.

FLD1R = $DD98

LDX | sb of pointer

LDY nsb

JSR FLDI1R
or

FLD1P = $DDOC

FLPTR = address of FP nunber
JSR FLD1P

STORE FRO I N USER BUFFER

stores the contents of FRO in user FP buffer pointed to by 6502 X and
Y registers or by FLPTR After either operation below, FLPTR will

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (5 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

point to the user FP buffer.

FSTOR = $DDA7

LDX | sb of pointer

LDY nsb

JSR FSTOR
or

FSTOP = $DDAB

FLPTR = address of FP nunber
JSR FSTOP

MOVE FRO TO FR1

Moves the contents of FRO to FR1

FMOVE = $DDB6

JSR FMOVE

The usual use sequence of the floating point package m ght be to:
| oad FRO and FRL with FP nunbes from user specified buffers

do the math

then store FRO in a user buffer.

An alternative m ght be to:

convert an ASCII| representation to FP (the result is automatically in
FRO) .

move FRO to FR1.
Convert the second ASCI| nunber.
Do t he nmat h.

Convert FRO back to ASCII.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (6 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

Store the nunber back into a user buffer.

The floating point package uses the foll ow ng bl ocks of RAM

RAM used by floating point package

$00D4 -
$057E -

$00FF
$O5FF

If the floating point package is not used the above ramis free.

Usef ul data base vari ables and OS equates
FRO $00D4, 6 (212): system FP buffer
FR1 $00EO, 6 (224): system FP buffer
Cl X $00F2 (242): 1 NBUFF i ndex
| NBUFF $00F3, 2 (243): pointer to ASCII FP buffer
FLPTR $00FC, 2 (252): pointer to user FP buffer
LBUFF $0580 (1408): result buffer for FP to ASCII
AFP $D800 (55296): ASCI| to FP
FASC $DBE6 (55526): FP to ASC |
| FP $DOAA (55722): integer to FP
FPI $DOD2 (55762): FP to integer
ZFRO $DA44 (55876): clear FRO
ZF1 $DA46 (55878): clear zero page FP buffer
FSUB $DA60 (55904): FRO - FR1
FADD $DA66 (55910): FRO + FR1
FMUL $DADB (56027): FRO * FR1
FDIV $DB28 (56104): FRO / FR1
FLDOR $DD89 (56713): load FRO by X, Y pointer
FLDOP $DD8D (56717): load FRO by FLPTR poi nter
FLD1IR $DD98 (56728): load FRL by X, Y pointer
FLD1P $DDOC (56732): load FR1 by FLPTR pointer
FSTOR $DDA7 (56743): store FRO at buffer by X, Y pointer
FST1P $DDAB (56747): store FRO at buffer by FLPTR pointer
FMOVE $DDB6 (56758): move FRO to FR1
EXP $DDCO (56768): e exponentiation
EXP10 $DDCC (56780): base 10 exponentiation
PLYEVL $DD40 (56640): pol ynom al eval uation
LOG $DECD (57037): natural log of FRO
LOGLO0 $DED1 (57041): base 10 log of FRO

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (7 of 8) [8/26/2001 1:41:52 PM]

ATR: Chapter 11 - Floating Point Math

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr11.html (8 of 8) [8/26/2001 1:41:52 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 12 - Boot Formats

CHAPTER 12

Boot Software Formats

There are three ways which prograns nay be booted (| oaded
automatically upon power-up):

Fromthe disk drive
From the cassette recorder

From a ROM cartridge

DI SK BOOTED SOFTWARE

The disk drive is the primary source for prograns (other than the
BASIC interpreter in the conputer ROM. A program booted from di sk
must be a machi ne | anguage program Secondly, the programis arranged
on disk in a different manner fromthe DOS fil es.

When the conmputer is first turned on, it will attenpt to read a
program starting at sector one in disk drive one. The exceptions are,
If a cartridge prevents the disk boot process or the [START] key is
pressed. The programis expected to use all 128 bytes of each

sector.

FORVAT OF A DI SK BOOTED PROGRAM

A di sk booted program begins at sector one on the disk and conti nues
i n sequence. The first six bytes of the first sector contain program
information. The rest of the bytes contain the programitself.

Di sk boot program header

1st byte $00 flags, stored i n DFLAGS [$0240]
$xx nunber of sectors used by program
$xx address to start | oad
$xXX
$xx initialization address

6th byte $xx

7th byte $xx start of program

The flags byte is usually unused and shoul d be zero.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr12.html (1 of 5) [8/26/2001 1:41:53 PM]

ATR: Chapter 12 - Boot Formats

The | oad address is stored in BOOTAD [$0242,2 (578)].
The initialization address is stored in DOSIN [$000C 2 (12)].

After the programis conpletely | oaded the conputer will JSR to the
address stored in DOSINI for initialization. It will then junp to the
address stored in DOSVEC to run the program

The initialization part of the program should set the

bot t om of - f ree- RAM poi nter, MEM.O [$02E7,2 (743)], to point to the end
of the program+ 1. This will protect the programfromthe conputer
and ot her prograns. The top-of-user-RAM pointer, APPVH [$000E, 2
(14)], is also usually set to point to the sane address. This wll
protect the programfromthe video hardware. It nust also set DOSVEC
[$000A, 2 (10)] to actually point to the run address of the program
The initialization should of course end with and RTS. Wth DOSI NI and
DOSVEC properly set, the programw |l restart up pressing the [SYSTEM
RESET] key.

Rmenber that the | oad address of the program should be six bytes
bef ore where you want the programto reside in nenory. The six byte
header will load at the specified start address foll owed by the
program

CASSETTE BOOTED SOFTWARE

The cassette boot process is nearly identical to the disk boot

process. The processes are so simlar that cassette boot prograns can
usual ly be transferred directly to disk and vice-versa. The two

di fferences are:

The cassette is booted instead of the disk if the [START] key is
pressed when the power is turned on.

A bug in early operating systens requires the booted programto turn
off the cassette notor with the foll ow ng command.

LDA #$3C
STA PACTL [$D302]

CARTRI DGE BOOTED SOFTWARE

The Atari 800 has two cartridge slots. Al other nodels have only
one. The second cartridge slot, slot B on the 800, resides from $8000
to $9FFF. The first slot, slot A resides from$A000 to BFFF. If a
cartridge is inserted in a slot it wll disable any RAMin the sane

ar ea.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr12.html (2 of 5) [8/26/2001 1:41:53 PM]

ATR: Chapter 12 - Boot Formats

Slot A which is present in all nodels, can reside at the entire 16K
used by both cartridges in the 800 ($8000 to $BFFF).

Cartridges use the last six bytes for boot information. |In cartridge
A these bytes are from $BFFA to $BFFF. I n cartridge B they are from
$9FFA to 9FFF.

| ast six bytes of a cartridge

$9FFA or $BFFA xx start address

XX
00

XX flag byte

XX init address

$9FFF or $BFFF XX

Fl ag byte
bit O 1 = all ow di sk boot
bit 2 O = do not start cartridge after init
bit 7 1 = cartridge takes control before OSis

initialized

The initialization process for the cartridge should be simlar to that
for disk and cassette. A mninmumof an RTS instruction is required.

The third byte of the cartridge tailer is used by the OS to check for
the presence of a cartridge. This byte nmust be zero.

A 16K cartridge will use both cartridge areas and the cartridge B
tailer area can be used for program code.

THE CARTRI DGE HARDWARE

Most cartridges consist of two ROM chips on a single circuit board.

Mor eover, both chip sockets have identical pin assignnents. |n other
words, the chips can be swtched to opposite sockets and the
cartridge wll still work. The difference is in the chips thensel ves.

On one chip, the Al2 pin acts as an active-low chip select. On the
other the Al2 pin acts as an active-high chip select. Therefore the
state of the Al2 pin selects between the two chi ps.

Cartridge slot pin assignnents

BACK

http://trident.mcs.kent.edu/~clisowsk/8bit/atr12.html (3 of 5) [8/26/2001 1:41:53 PM]

ATR: Chapter 12 - Boot Formats

111111
543210987654321
SRPNMLKJHFEDCBA
FRONT
1 1 = 16K A Al3 (16K only)
2 A3 B GND
3 A2 C A4
4 Al D A5
5 A0 E A6
6 D4 F A7
7 D5 H A8
8 D8 J A9 L
9 D1 K Al2 (CS)/(CS)
10 DO L D3
11 D6 M D7
12 (CS) N All
13 +Vcce P Al10
14 +Vcc R NC
15 NC S NC

The BASIC interpreter resides in the nmenory used by cartridge A. In
400, 800 and 1200XL nodels, a BASIC cartridge is required to run BASIC
prograns. On other XL and XE nodels, inserting a cartridge into the
slot or pressing the [OPTION key upon power-up will disable the
internal BASIC ROM |If BASIC is disabled without inserting another
cartridge, the area from $A000 to $BFFF will contai n RAM

Usef ul data base vari ables and OS equates

APPVHI $000E, 2 (14): lowlimt of screen region
DOSVEC $000A, 2 (10): run and programreset vector
DCSI NI $000C, 2 (12): init and reset init

CARTB $8000 (32768): start of cartridge B

CARTA $A000 (40960): start of cartridge A

PACTL $D302 (54018): port A control register Bit 3

controls the cassette notor

http://trident.mcs.kent.edu/~clisowsk/8bit/atr12.html (4 of 5) [8/26/2001 1:41:53 PM]

ATR: Chapter 12 - Boot Formats

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr12.html (5 of 5) [8/26/2001 1:41:53 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 13 - (SIO)

CHAPTER 13
THE SERIAL INPUT/OUTPUT INTERFACE (SIO)

Most i nput and output with the Atari conputer passes through the

serial 1/Obus. The SIOinterface is rather conplicated but you are
unlikely to need to use it directly. ClOusually handles SIO for you.
However, if you want to design your own |I/O device and it's associ ated

handl er, you need to know how to use the SIQO

SIOtransfers data at a rate of 19,200 baud on separate input and

output lines. The data is sent one byte at a tine, LSB first, in an

asynchronous format. There are also clock-in and cl ock-out |ines.
There is a signal on the clock-out line but it is not used by any
present devices. The clock-in line is available for synchronous

transfer but is not used by the OS. The signal on the clock-out |ine
goes high at the | eading edge of each bit and goes lowin the nmiddle

of each bit.

One byte of SIO data

+-+ +-4+ +-4 -+ -+ -+ -+ -+
N T Y Y Y I (O cl ock
------------- + -+ +-+ -+ +-+ -+ -+ F-+ A------
--------- + +---+ e e e
| O] 12| 0] 1 11 0 0] 1 dat a
Fom oo - + +- - -+ Fomm oo - +
| I
start bit stop bit
The SIOinterface is used much |like the resident di sk handl er. I n

fact, it uses the sane device control block as the resident disk

handl er. After the control block paraneters are set, a JSRis nmade to

the SIO entry vector, SIOV, at $E459 (58457).

Devi ce control block (for SIO

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (1 of 6) [8/26/2001 1:41:54 PM]

ATR: Chapter 13 - (SIO)

DDEVI C [$0300 (768)]

Serial bus I.D. Set by handler or program

DUNI T [$0301 (769)]
Devi ce nunber if nore than one.
DCOVND [$0302 (770)]

Devi ce command byt e.
DSTATS [$0303 (771)]

Before the SIOcall, this byte tells whether the operation is read,
wite or that there is no data transfer associated with the command.
After the call this byte will hold the status (error/no error code) of
t he operation.

DSTATS format before command

76543210

| WR]

|f both Wand

DBUFLO [$0304
DBUFHI [$0305

Points to the
DTI MLO [$0306

Ti nmeout val ue
by handl er or

DBYTLO [$0308
DBYTHI [$0309

Number of bytes to be transferred,

not used |

R are 0, there is no data transfer.

(772)]
(773)]

data buffer for either input or output.

(774)]

(response tinme limt) in 64/60ths of a second to be set

program

(776)]
(777)]
Thi s

set by handl er or program

paraneter is not required if the DSTATS specifies no data transfer.
DAUX1 [$030A (778)]
DAUX2 [$030B (779)]

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (2 of 6) [8/26/2001 1:41:54 PM]

ATR: Chapter 13 - (SIO)

These paraneters are sent to the device as part of the command frane.

USI NG THE SI O | NTERFACE

Al'l commands on the serial bus nust originate fromthe conmputer. The
peri pherals will present data on the bus only when commanded to do
SoO.

Any operation on the serial bus begins with a five byte conmand frane.

Wil e the command frame is being sent, the command |line of the serial
connector is O.

Conmand franme fornmat

$xx DDEVIC
$xx DCOVND
$xx DAUX1
$xx DAUX2

$xx checksum

The first four bytes of the command frane conme fromthe device control
bl ock. the checksumis the sumof the other four bytes with the carry
added back after each addition.

If both R and Wof the DSTATS are 0, no data is sent to, or expected
fromthe peripheral, after a command frame is sent. However, the
device is usually expected to send an ACK byte ($41) after the comrand
frame is sent. |If the command frame is invalid, an NAK byte ($4E)
shoul d be sent.

If the operation is output (W= 1) the conputer will send a data frane
after it receives the ACK of the command frame. [t then expects an
ACK after the data frane is sent.

If the operation is an input (R = 1) the conputer expects a data frane
fromthe peripheral after the ACKL. Wth either input or output, a
"conpl ete" code ($43) should be sent to the conputer when the
operation is finished. The "conplete" code would follow the ACK of
the data frame with an out put operation.

If the operation is not conpleted for sone reason, the peripheral
shoul d send an error code ($45) instead of "conplete".

SI O data frane

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (3 of 6) [8/26/2001 1:41:54 PM]

ATR: Chapter 13 - (SIO)

byte 1 $xx\

> data bytes
byte n $xx/
byte nt+l $xx checksum

SI O conmands

READ $52
VWRI TE $57
STATUS $53
PUT $50

FORVAT $21
DOMNLOAD $20
READADDR $54
READ SPI N $51
MOTOR ON $55

VERI FY
SECTOR $56
Present SI O device |.D.s
DI SK $31 - $34 (D1 - D4)

PRINTER $40
RS-232-C $50 - $53 (Rl - R4)

THE SERI AL CONNECTOR

The serial connectors on the conputer and all peripherials are
identical. Nearly all peripherials have two serial connectors.
Ei t her connector may be used for any connection. The serial bus is
desi gned so that peripherials can be dai sy-chained together. The
followng is a diagram of the serial connector.

The serial connector pin-out

/o o o o o o\
/o oo o o0 o o\

1357911

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (4 of 6) [8/26/2001 1:41:54 PM]

ATR: Chapter 13 - (SIO)

command (active | ow)
cassette notor contro
proceed (active | ow)
10 +5V/ready

11 audio in

12 +12V (400/ 800)

13 interrupt (active | ow)

13
1 clock in (to conputer)
2 clock out
3 data in
4 GN\D
5 data out
6 G\D
7
8
9

Proceed goes to pin 40 (CAl) of the PIA. It is not used by present
peri pherial s.

Interrupt goes to pin 18 (CBl1) of the PIA. It is not used by present
peri pheri al s.

Pin 10 doubles as a 50mA +5V peri pharal power supply and a conputer
ready signal .

Usef ul dat abase vari abl es and OS equates

SIOV $E459 (58457): serial port handler entry
DDEVI C $0300 (768): device ID

DUNI T $0301 (769): device nunber

DCOWND $0302 (770): conmmand byte

DSTATS $0303 (771): status byte

DBUFLO $0304 (772): data buffer pointer

DBUFHI $0305 (773):

DTl MLO $0306 (774): tinmout val ue

DBYTLO $0308 (776): nunber of bytes to transfer
DBYTHI $0309 (777):

DAUX1 $030A (778): sent to device

DAUX2 $030B (779): sent to device

A

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (5 of 6) [8/26/2001 1:41:54 PM]

ATR: Chapter 13 - (SIO)

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr13.html (6 of 6) [8/26/2001 1:41:54 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 14 - Hardware Chips

CHAPTER 14
THE HARDWARE CHIPS

The previous chapters described the operating system of the conputer.
The followi ng chapters will exam ne the hardware which supports the
6502 and the hardware's associ ated software.

THE GIT A CH P

The GII A (CGeorge's Television Interface Adapter) is the main video
circuit in the conputer. It controls the follow ng functions.

GIl A functions
Priority of overl apping objects
Col or and brightness, including information fromthe antic chip.
Pl ayer/ m ssile control.
consol e switches and gane control triggers.
THE ANTIC CH P

The main job of the ANTIC chip is interpreting the display buffer for
the GIIT A chip. The ANTIC chip is sonewhat of a processor in it's own
right. The programwhich runs it is called the display |ist and
usually resides just before the display buffer in nmenory.

The ANTIC chi p operates independent of the 6502. It operates by
direct nenory access (DMA). The ANTIC chip gives a HALT signal the
6502, causing the 6502 to give up control of the address bus. The
ANTI C chip can then read any data it needs to from nenory.

ANTI C chi p functions
DVA (Direct Menory Access) control.
NM (Non- Maskabl e Interrupt) control.
LI GHT PEN READI NG

WEYNC (wait for horizontal sync)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr14.html (1 of 3) [8/26/2001 1:41:54 PM]

ATR: Chapter 14 - Hardware Chips

THE PCKEY CHI P

The nost inportant jobs of the POKEY chip are reading the keyboard and
operating the serial port. It also has the follow ng functions.

POKEY chi p functions
Keyboard readi ng.
Serial port.
Pot (gane paddl es) reading.
Sound generati on.
Systemtiners.
| RQ (maskabl e interrupt) control.

Random nunber generator.

THE PIA CH P

The PIA (Parallel Interface Adapter) is a comonly used I/O chip. It
consists of two 8 bit parallel ports wth hand shaking lines. 1In the
Atari, it has the follow ng functions.

Gane controller port control (bi-directional).

Peri pheral control and interrupt |ines.

Registers in the hardware chips are treated as nenory addresses. Many
of the registers are wite only. These registers cannot be read from
after they are witten to. QOher registers control one function when
witten to and give the status of an entirely different function when

read from Still other registers are strobes. Any command whi ch
causes the address of one of these registers to appear on the address
bus will cause their functions to be perforned.

The wite only registers have shadow registers in RAM Data to be put
in the registers is usually put into the shadow registers. The data

I n the shadow registers is automatically noved to the operating

regi sters during vertical blank.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr14.html (2 of 3) [8/26/2001 1:41:54 PM]

ATR: Chapter 14 - Hardware Chips

For register use and address, see the previous chaptes on the
associ ated functi ons.

EEE

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr14.html (3 of 3) [8/26/2001 1:41:54 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 15 - Display Lists

CHAPTER 15
DISPLAY LISTS

[sonme of this file was lost...]

chip also has a nenory scan counter. This register scans the display
buffer for data to be interpreted and di splayed. Once |oaded, the
nmenory scan counter's 4 nost significant bits are fixed. The result
Is that the nmenory scan counter cannot cross a 4K nenory boundary
(i.e. $AFFF to $B000) without being rel oaded.

DI SPLAY LI ST | NSTRUCTI ONS

There are three basic instructions in the display list. The type of
Instruction is determned by bits 0,1,2 and 3 of an instruction byte.
The other four bits give auxilliary paraneters for the instruction.
Bit 7 always enables a display list interrupts (DLIS).

Di splay list instruction format

76543210

|
0 = display blank Iines

o——— 1
1
~
1

nunber of blank lines (1-8)

76543210

| HIW | 10]0[0]1]

|
1 = junmp (3 byte instruction)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (1 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

|
O = junp and display one blank |ine
1 = junp and wait for vertical blank

|

|

| |

| 2-F = display one |ine of graphics in
| ANTI C node 2-F

1 = horizontal scroll enabled

= vertical scroll enabled
1 = reload nenory scan counter with next two bytes

1 = display list interrupt, all instructions

In the display instruction, the ANTIC node is different fromthe C O
graphi cs node. However, each Cl O graphics node uses a particul ar
ANTI C node. Below are descriptions of the ANTIC nodes with their
associ ated graphics (Cl O nodes.

ANTI C MODE 2 (Graphics 0)

Uses 8 pixel by 8 pixel characters, 40 characters horizontal, 8 TV
scan lines vertical. Only one color can be displayed at a tine.

ANTI C MODE 3

8 X 10 pixel, Gaphics 0 type characters. This node requires a custom
character set. The advantage is that it allows true decenders. The
custom C-set is still 8 X 8 pixels. Lower-case letters with decenders
have the bottom row of pixels put on the top row

Lower - case "y" for ANTIC node 3

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (2 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

I		
I		
XX XX		XX XX
XX XX		XX XX
XX XX		XX XX
XXX		XXX
XX		XX
---------- IXXXXXI

ANTI C MODE 4 (graphics 12 on XL and XE)

Thi s node has characters the sane size as graphics 0. However, the
characters are only 4 X 8 pixels. This gives only half the horizontal
resolution of graphics 0. The advantage is that up to four colors of
"graphics 0" characters can be di splayed at once. This node al so
requires a customCset. Belowis a conparison of the normal C set to
one which works with the ANTIC 4 node.

Upper-case "A" for ANTIC nodes 2 and 4

nmode 2 node 4
| I | I
I XX | vy I
| XXX | | yy I
| XX XX | | xx zz
| XX XX | | xx zz |
| XXXXXX | | xxyyzz
| XX XX | | xx zz |
I I | I

XX, Yyy and zz represent two bit binary nunbers, controlling one pixel
each. These nunbers determ ne which color register a pixel is
assigned to: (COLORO, COLOR1, COLOR2 or COLOR3).

ANTI C node 5

Antic node five is identical to ANTIC node 4 except the characters are
di splayed twice as tall. This nmakes only 12 lines on the screen.

ANTI C MODE 6 (Graphics 1)

This node uses 8 X 8 pixel characters except they are displayed tw ce

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (3 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

as wde as in ANTIC node 2. There are 3 colors avail able at once but
only one case (upper or lower) can be displayed at a tine. The data
base vari abl e CHBAS [$02F4 (756)] controls the character, [$EO0 (224) =
upper - case, $E2 (226) = | ower-case]

The col or/character is controlled by either the color statenent or the
ATASCI | nunber of the character printed. Control characters are
controll ed by COLORO, upper-case characters by COLORL and | ower-case
characters by COLOR2. Renenber that all characters print as
upper - case al pha characters, but of different colors.

ANTI C MODE 7 (G aphics 2)

This node is identical to node 6 except the characters are displ ayed
twce as tall. This results in only 12 |lines possible on the screen.

ANTI C MODE 8 (Graphics 3)

This is the first graphics (non-character) node. This node, as other
non- char act er graphics nodes do, uses data in the display buffer as a
bit map to be di spl ayed.

A command to display in node 8 will cause the ANTIC chip to read the
next 10 bytes in the display buffer. Each pair of bits will control
one pixel as in node 4. However, the pixels are blocks the sane size
as a Gaphics 0 (ANTIC 2) characters.

ANTI C MODE 9 (G aphics 4)

This is simlar to ANTIC node 8 except each byte controls 8 pixels
(instead of 4) and only one color can be displayed at a tinme. The
pi xel s are also half the size of those in ANTIC node 8.

ANTI C MODE A (G aphics 5)

Thi s node uses 20 bytes per line/command. As in ANTIC node 8, each

pair of bits controls one pixel. The result is that the pixels are
the sane size as in ANTIC node 9 but four colors can be displayed at
once.

ANTI C MODE B (Graphics 6)

As in node A, there are 8 pixels per byte and only one color. The
pi xels are half the size as in node A

ANTI C MODE C

Li ke node B except the pixels are half as tall (only one T.V. line).

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (4 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

ANTI C MODE D (Graphics 7)

40 Bytes per line, each byte controls 4 pixels. The pixels are 1/4 as
| arge as in ANTIC node 8 (G aphics 3).

ANTI C MODE E (Graphics 15 on XL and XE)

Li ke node D except the pixels are half as tall (one T.V. line). Antic
node E is sonetinmes called Gaphics 7.5

ANTI C node F (G aphics 8, 9, 10 and 11)

This is the highest resolution node. Pixels are 1/8 the size of ANTIC
node 8 or node 2 characters. It uses 40 bytes per |line, each byte
controlling 8 pixels, unless the GIIA chip intervenes. Only one color
can be displayed at a tine.

DI SPLAY LI ST EXAMPLES

When Cl O opens a channel to the screen, it sets up the proper display
list for the ANTIC chip. The followng are the things Cl O nust handl e
when setting up the display list.

Display list duties as used by CO

di splay a certain nunber of blank lines at the top of the screen.

Load the menory scan counter with the address of the display data
buffer.

Di splay the required nunber of lines in the required ANTIC node.

Set up a junp instruction if the display list crosses a 1K nenory
boundary.

Set up a rel oad-nenory-scan-counter instruction if the display data
buf fer crosses a 4K nenory boundary.

Cl O assunes that the display data buffer will butt against an 8K
menory boundary. |f a program causes the display buffer to cross a 4K
boundary (by changi ng RAMIOP [$006A (106)] to point to an address
which is not at an 8K boundary) the screen will be scranbled. This is
not usually a problemif the graphics node doesn't require a | arge

bl ock of nenory.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (5 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

SAMPLE DI SPLAY LI ST

Bel ow is an exanple of a G aphics O display list as C O wuld set it

up.
Display list for Graphics O
assum ng BASIC starts at $A000
address instruction expl anati on
Dec. Hex.
$9C20 112 $70 \
112 $70 >---- 24 blank Iines (8 each comrand)
112 $70 /
66 $42 ----- | oad nmenory scan counter with
$9C24 64 $40 \ __ next two bytes and display one |ine
156 $9C/ \ of ANTIC 2 characters
2 $02 -\ |
2 $02 | \- address of display data buffer
2 $02 |
2 $02 \--- 2nd ANTIC 2 instruction
2 $02 ----- 24t h ANTIC 2 instruction
65 $41 \
32 $20 >---- junp back to start of I|ist
156 $9C /
$9C40 ?2?7? ?? first byte of display data buffer
$9FFF ??7? ?2? | ast byte of buffer
$A000 start of ROM

A display list for a higher resolution graphics node would require
nore instructions and m ght cross a 1K boundary. It would then
include a junp instruction to cross the boundary.

MULTI PLE DI SPLAYS

It is possible to set up multiple displays and use one at a tinme. The
t echni que of changing fromone display to another is called page
flipping. Belowis the sinplest way to set up two displ ays.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (6 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists
setting up two displays

Call a graphics node through Cl O or by using a BASI C GRAPHI CS
command.

Store the display |list pointers, SDLSTL and SDLSTH, and the CI O screen
poi nter, SAVMSC [$0058,2 (88)].

Move the start-of-ROM pointer, RAMIOP [$006A (106)] to bel ow the
current display list. RAMIOP is a one byte pointer so it changes in
I ncrements of one page (256 bytes).

make another graphics call as in the first step.
store the new display |list pointer and Cl O screen pointer.

This will set up two displays, each with it's own display list. |If
the displays are in the sane graphics node, or you will not nake any
changes in the displays with Cl O conmands, (PLOT, PRINT, etc.) you can
flip between the two sinply by changing the display list pointer.

If the screens are in the same graphics node and you want to change
whi ch one to do Cl O commands to, Change the Cl O screen pointer, SAVMSC
[$0058,2 (88)]. This way, you can display one screen while draw ng on
t he ot her.

If you want to do Cl O commands to screens of different graphics nodes,
you wi || have the nove RAMIOP and do a graphics call to change
Screens.

| f your manipul ati on of RAMIOP causes the display data buffer to cross
a 4K boundary, the screen may be scranbl ed.

DI SPLAY LI ST | NTERRUPTS

DLIs are not used by the operating system However, other prograns
can initiate and use them Use the follow ng steps to set up display
list interrupts.

Setting up DLIs

Set bit 7 of the display list instruction for the Iine before you want
the interrupt to occur. (The interrupt routine should set WSYNC and
wait for the next line to execute.)

Set bit 7 of NMEN [$D40E (54286)] to enable DLIs.

Set the DLI routine vector, VDSLST [$0200,2 (512)] to point to your

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (7 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists
machi ne | anguage DLI routine.

Your DLI routine should set WESYNC [$D40A (54282)]. STA WSYNC wi I | do.

THi s will cause the 6502 to wait for the next horizontal sync. This
will keep the DLI routine from changing sonething in the mddle of a
T.V. line.

The DLI routine nmust end with an RTlI instruction.
SCROLLI NG

Scrolling is controlled by a conbination of scroll position registers,
and changing the nenory scan counter. Basically, course scrolling is
done by rel oading the nmenory scan counter and fine scrolling is done
by changing the scroll registers.

VERTI CAL SCROLLI NG

Vertical scrolling is very sinple. Follow the steps below to set up
vertical scrolling of graphics.

Steps to use vertical scrolling

Set bit 4 of the first byte of the display list instruction for each
line to be scrolled.

Put the nunber of T.V. lines to offset the graphics vertically in the
vertical scroll register, VSCROL [$D405 (54277)]

The vertical scroll register can offset the graphics upward by 0 - 7
T.V. lines in the 24 line graphics nodes (ANTIC nodes 2 and 4). 1In 12
| i ne graphics nodes (ANTIC nodes 5 and 7) it can vertically offset the
graphics by 0 - 15 T.V. lines. To offset the graphics an 8th (or
16th) line, the scroll register is reset to 0 and the nenory scan
counter is reloaded with the address of the next line of graphics in
the display data buffer. |If the entire screen is being scrolled, the
| oad- menor y-scan-counter conmand (near the beginning of the display
list) is changed to point to the address of the second |line of

gr aphi cs.

HORI ZONTAL SCROLLI NG

Hori zontal scrolling works nmuch |ike vertical scrolling. It is
enabl ed by setting bit 5 of the instruction for each line to be
scrolled. The horizontal scroll register, HSCROL [$D404 (54276)],
sets the offset. The small difference is that graphics are noved

tw ce as far per change (two graphics 8 pixels instead of one). Al so,

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (8 of 9) [8/26/2001 1:41:55 PM]

ATR: Chapter 15 - Display Lists

when HSCROL = 0 the graphics are offset beyond the |left edge of the
screen by 16 col or clocks (32 G aphics 8 pixels). Wen HSCROL = 15,
the graphics line is shifted one color clock (2 Gaphics 8 pixels) to
the left of the screen.

The big difference is that the nenory scan counter gets nessed up.
This nmeans that you nmust use a rel oad- nenory-scan-counter conmand for
each line of graphics. This is a major nodification of the display
list. It wll require you to nove and build the |ist yourself.

The advantage of this is that you can have a scrolling windowin a

| arge graphics map. The technique is to nove the w ndow by rel oadi ng
the nmenory scan counter, then fine scrolling to the invisible bytes
beyond t he edges of the screen.

useful data base variables and OS equates

SAVMSC $0058, 2 (88): pointer to current screen for Cl O conmands
RAMTOP $006A (106): start-of-ROM pointer (NMSB only)
VDSLST $0200, 2 (512): DLI vector
RAMSI Z $02E4 (740): permanent start-of-ROM pointer (NMSB only)
DLI STL $D402 (54274): display list pointer |ow byte
DLI STH $D403 (54275): " hi gh byte
HSCROL $D404 (54276): horizontal scroll register
VSCROL $D405 (54277): vertical scroll register
NM EN $D40E (54286): NM enable (DLIS)
Shadow regi sters
SDLSTL $0230 (560): DLI STL
SDLSTH $0231 (561): DLI STH

A

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr15.html (9 of 9) [8/26/2001 1:41:55 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 16 - PM Graphics

CHAPTER 16
PLAYER AND MISSILE GRAPHICS (PMG)

Pl ayers and mssiles (called sprites on sone conputers) are novabl e
obj ects which are independent of the normal graphics.

Pl ayer and m ssile graphics are fairly straight forward. Once the
conputer is set-up for PM graphics, five 8-pixel-w de colums can be
di spl ayed on the screen. The horizontal resolution (w dth of each

pi xel) and the vertical resolution (nunber of scan |ines per pixel)
are variable. The horizontal position of each colum is determ ned by
it's horizontal position register. Each colum is sinply a
representation of a bit map in a certain block of nenory. |f you want
to draw an object on the screen, you sinply put a bit map representing
it in the proper nenory block. The vertical position of an object is
determined by the location of it's bit map in nenory. For exanple, if
you want to draw a happy face in the mddle of the screen, you put a
happy face bit map in the mddle of one of the nenory bl ocks
controlling one of the col ums.

One colum (player) displayed on the screen

---------- first byte of a block

++++ vi sible
+ + |
+
+ +| area
++ ++|
+ ++++ +| --o0bj ect
+ + | bit map
++++ |

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (1 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

Hori zontal positions

$00 $30 $CE $FF
(0) (48) (206) (255)
| | I
| Left edge ri ght edge
| |
Far |eft far right

To nove the happy face vertically you would nove the entire bit map in
nmenory. To nove the happy face horizontally you change the nunber in
the horizontal position register for the proper player.

One of the players can be (and often is) split into four colums of
two pi xels wi de each. These colums are then called mssiles. In
this case, each mssile has it's own horizontal position register.

SETTI NG UP PM GRAPHI CS

PM graphics are enabled by the direct nenory access control register,
DVMACTL [$D400 (54272)]. The program using PM graphics will usually
use the shadow regi ster, SDMCTL [$022F (559)].

DVACTL (SDMCTL)

76543210

bits

5 1 = enable display list reading

4 O = one line player resolution

1 =two line player resolution

3 1 = enable four players

2 1 = enable fifth player or mssiles
1 &0 00 = no background

01 = narrow background (128 col or cl ocks,

1 color clock equals 2 GRAPHI CS 8 pi xel s)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (2 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

10
11

nor mal background (160 col or cl ocks)
wi de background (192 col or cl ocks)

Normally, bits 5 and 1 are set to 1. Bits 4, 3 and 2 are used to
enabl e players and/or missiles accordingly.

Once DVMACTL is set up for the type of PM graphics to enable, the
graphics control register, GRACTL [$D01D (53277)], is used to actually
enabl e the PM graphi cs.

GRACTL

76543210

| not used | | | |
Bits
2 1 = latch paddle triggers
1 1 = enable four players

enable fifth player or mssiles

If only DVMACTL is set up, the ANTIC chip wll access nenory for PM
graphics but will not display them

Next, the menory area used for the PMbit nmaps nmust be set. This
bl ock nmust start on a 2K (8 page) boundary if single |line resolution
is used and a 1K (4 page) boundary for two |ine resol ution.

The page nunber where the bit map starts is stored in the PM base

regi ster, PMBASE [$D407 (54279)]. For one line resolution this nunber
will be amnmltiple of 8 For two line resolution it wll be a

mul tiple of 4. PMBASE holds the MSB of the address of the PMbit map.
The LSB will always be 0 so it need not be specified.

The PM bit maps

2 line resolution
128 bytes (1/2 page)

per player

----------------- start + 0O
| I
R + 1-1/ 2 page
| | (384 bytes)
f Pl ———r unused

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (3 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

P + +$180 (384)
M3 |[M2 |ML |MD | fifth player or missiles
[it —j—— +$200 (512)
| player 0 map |
S + +%$280 (640)
| player 1 map |

[e pp—— +$300 (768)
| player 2 map |

e e e + +$380 (896)
| player 3 map |

[} et ——— +$4OO (1024)

1 line resolution
256 bytes (1 page)
per player

----------------- start + 0O

I |\

+ +

| |

i gl ety

| | 768 bytes

+ +

| | (3 pages)

+:::::::::::::::|

| | unused

+ +

| |/

+===============+ +$300 (768)
| fifth player

or mssiles

I
I
Rt fensfeefe el eefef ety +$4OO (1024)
I
Rt fensfeefe el eefef ety +$500 (1280)
I
Rt fensfeefe el eefef ety +$600 (1536)
et fensfeefel el eefef ety +$7OO (1792)

+ player 3 map +

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (4 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

+===============+ +$800 (2048)

Exanpl e of using P/ M graphics in BASIC

0 REM ---LABEL REQ STERS ETC
10 LI NES=2

20 VERT=120

22 | F LI NES=2 THEN VERT=VERT/ 2
30 PM)=1024

32 | F LI NES=2 THEN PMD=PM)/ 2
40 HORI Z=120

50 PCOLRO=704

60 SDMCTL=559

70 Sl ZEP0=53256

80 HPOSP0=53248

90 SDMCTL=559

100 PVRAM=PEEK(106) - 16

110 PMBASE=54279

120 GRACTL=53277

130 PMSTART=PMRAM 256+PM)
200 REM ---SET REGQ STERS

210 PCKE SDMCTL, 62

212 | F LI NES=2 THEN POKE SDMCTL, 46
220 POKE SI ZEPO, 1

230 POKE HPOSPO, HORI Z

240 POKE PCOLRO, 88

250 PCKE PMBASE, PMRAM

260 POKE GRACTL, 3

300 REM - - - DRAW PLAYER

310 POKE PMSTART+VERT, 60

320 POKE PMSTART+VERT+1, 66
330 POKE PMSTART+VERT+2, 165
340 POKE PMSTART+VERT+3, 129
350 POKE PMSTART+VERT+4, 195
360 POKE PMSTART+VERT+5, 189
370 POKE PMSTART+VERT+6, 66
380 POKE PMSTART+VERT+7, 60

The above programw || draw a happy face in about the mddle of the
screen using player 0. To nove the player horizontally, poke a

di fferent nunber into HPOSPO. To draw the player in a different
vertical position, change VERT. To use a different player or mssile,
use the nenory maps above to find the starting address of the player

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (5 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

you want to use. For exanple, to use player 1 change line 40 to
PML=1280. Then change line 130 to PMSTART=PMRAM 256+PML. The

vari able "LINES' determ nes the vertical resolution. The nunber poked
into SIZEPO determ nes the w dth.

P/IM PRI ORI TY

The priorities of players, mssiles and non-P/ M graphics can be
controlled by the PRIOR regi ster [$D10B (53275)] and its shadow
register, GPRIOR [$26F (623)]. Objects with higher priority wll
appear to nove in front of lower priority objects. The format of
PRIOR is as foll ows:

PRI OR bit assi gnnment

76543210

Bits

7-6 Control the GIlA graphics nodes.

00 = nornal
01 = node 9
10 = node 10
11 = node 11
5 1 =mltiple color player enable. Permts
over| appi ng of players 0 and 1 or
2 and 3 with a third color in the
over | apped regi on.
4 1 =fifth player enable. Al mssiles
wi ||l assunme the color controlled by
COLOR3 [$2C7 (711)]. nmnissiles are
positioned together to nake the fifth
pl ayer .
3-0 Controls the priorities of players, mssiles

and ot her graphics. Objects with higher priority will appear to nove
in front of those with lower priority.

The follow ng chart may need sone clarification. 1In the chart:

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (6 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

PMD = player O and mssile O

CO = COLORO, plotted graphics controlled
by color register 0 in the SETCOLCOR
command.

P5 = all four mssiles when conbi ned
i nto one player.

BAK

t he background, known as COLOR4 or col or
register 4 in the SETCOLOR conmand.

Etc.

Bits 0-3 of PRROR and P/ Mpriorities

Bit 3=1 2=1 1=1 0=1

Co Co PMD PMD hi ghest
C1 C1 PML PML priority
PMD c2 Co PM2

PML C3+P5 C1 PM3

PMR2 PMD c2 CO

PMB PML C3+P5 C1

c2 PMR PMVR C2

C3+P5 PM3 PMV3 C3+P5 | owest
BAK BAK BAK BAK priority

Only one priority bit can be set at atinme. |f nore than one priority
bit is 1, overlapping areas of conflicting priorities wll turn

bl ack.

COLLI SI ONS

Each player or mssile has a register show ng overlap (collisions)
with other objects. Each player has two registers assigned to it; one
to detect collisions with other players and one to detect collisions
with plotted objects. Likew se each mssile has two registers; one to
detect collisions with players and one to detect collisions with

pl otted objects. Careful use of these 16 registers can detect any
type of collision.

Each register uses only the lower 4 bits. The bits which equal 1 tell
what the associ ated object has collided with. For exanple, to detect
collisions of player 1 to other players examnmine PLPL [$D00D (53261)].

P1PL, player 1 to player collisions

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (7 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

76543210

collision with player 3
collision wth player 2
invalid

collision with player 0O

OFRr N W
I mnn
N S S =

Etc.

When | ooking for collisions with plotted objects, the bit nunber tells
what color register is assigned to the object the collision was w th.
For exanple, to detect collisions between player 1 and plotted objects
(officially called the play field), P1PF [$D005 (53253)] is used.

P1PF, player 1 to ploted object collisions

76543210

8421
3 =1 collision wwth COLOR3
2 =1 " COLOR2
1 =1 " COLOR1
0=1 " COLORO
Et c.

Once a collision occurs it remains indicated in its collision
register. To clear out all collision registers, wite anything to
H TCLR [$DO1E (53278)]. STA H TCLR or POKE 53278,0 will do.

Usef ul dat abase variabl es and OS equates

HPOSPO $D000 (53248): write: horizontal position of player O
MOPF " " . read: mssile O to plotted graphics collisions
HPOSP1 $D001 (53249): write: horizontal position of player 1
MLPF " " . read: mssile 1 to plotted graphics collisions
HPOSP2 $D002 (53250): write: horizontal position of player 2
M2 PF " ! . read: mssile 2 to plotted graphics collisions
HPOSP3 $D003 (53251): write: horizontal position of player 3
MBPF " " . read: mssile 3 to plotted graphics collisions

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (8 of 10) [8/26/2001 1:41:56 PM]

HPOSMD
POPF
HPOSML
P1PF
HPOSM2
P2PF
HPOSMB
P3PF
SI ZEPO
MOPL
SI ZEP1
MLPL
SI ZEP2
M2 PL
SI ZEP3
MBPL
SI ZEM
POPL
GRAFPO
P1PL
GRAPF1
P2PL
GRAFP2
P3PL
GRAPF3
GRAFM
COLPM)
COLPML
coLPM2
COLPM3
COLPFO
COLPF1
COLPF2
COLPF3
COLBK
PRI OR
GRACTL
H TCLR
DVACTL
PMBASE

SDMCTL
GPRI OR
PCOLRO
PCOLR1

ATR: Chapter 16 - PM Graphics

$D004
$D005

$D006

$D007

$D008

$D009

$DO0A

$D00B

$D00C

$D00D

$DO0E

$DOOF

$D010
$D011
$D012
$D013
$D014
$D015
$D016
$D017
$D018
$D019
$DO01A
$D01B
$D01D
$DO1E
$D400
$D407

$022F
$026F
$02C0
$02C1

(53252):
(53353)?
(53354)?
(53?55)5
(53?56)?
(53?57)2
(53?58)?
(53?59)2
(53?60)?
(53?61)?
(53?62)?
(53?63)?

(53264)
(53265)
(53266)
(53267)
(53268)
(53269)
(53270)
(53271)
(53272)
(53273)
(53274)
(53275)
(53277)
(53278) :
(54272)
(54279)

(559):
(623):
(704):
(705):

wite:
read:
wite:
r ead:
wite:
read:
wite:
r ead:
wite:
read:
wite:
r ead:
wite:
r ead:
wite:
read:
wite:
read:
wite:
r ead:
wite:
read:
wite:
r ead:
wite:
wite:
col or
col or
col or
col or
col or
col or
col or
col or
backgr
priori
gr aphi
witin
di rect
start

hori zont al
Player 0 to
hori zont al
Player 1 to
hori zont al
Player 2 to

position of mssile O
pl otted graphics collisions
position of mssile 1
pl otted graphics collisions
position of mssile 2
pl otted graphics collisions
hori zontal position of mssile 3
Player 3 to plotted graphics collisions
size of player O
mssile O to player collisions

size of player 1
mssile 1 to player collisions

si ze of player 2
mssile 2 to player collisions

size of player 3
mssile 3 to player collisions

widths for all mssiles
pl ayer 0 to other player collisions

pl ayer 0 graphics (used by OS)

pl ayer 1 to other player collisions
pl ayer 1 graphics

pl ayer 2 to other player collisions

pl ayer 2 graphics
pl ayer 3 to other
pl ayer 3 graphics
m ssil e graphics (used by OS)

for player/mssile O

for player/mssile 1

for player/mssile 2

for player/mssile 3

register 0

register 1

register 2

regi ster 3

ound col or (register 4)

ty select, GIlA nodes

Cs contro

g anything clears all collision bits
nmenory access (DMA) control

of P/ M nmenory

pl ayer collisions

Shadow regi sters

DVACTL
PRI OR
COLPM)
COLPML

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (9 of 10) [8/26/2001 1:41:56 PM]

ATR: Chapter 16 - PM Graphics

PCOLR2 $02C2 (706): COLPM2
PCOLR3 $02C3 (707): COLPMB
COLORO $02C4 (708): COLPFO
COLORL $02C5 (709): COLPF1
COLOR2 $02C6 (710): COLPF2
COLOR3 $02C7 (711): COLPF3
COLOR4 $02C8 (712): COLBK

A

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr16.html (10 of 10) [8/26/2001 1:41:56 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 17 - Sound

CHAPTER 17
SOUND

Generating sound can be very sinple. For sinple sounds there are four
audi o channel s, each controlled by two control registers.

GENERATI NG SOUNDS

To generate a sound in channel 1, put the frequency and vol une codes
into the frequency and control registers. The frequency register for
channel 1, AUDF1 [$D200 (53760)] can have any nunber fromO to $FF
(255). O causes the highest frequency; 255 causes the |lowest. The
vol une/ noi se (control) register for channel 1, AUDCl [$D201 (53761)]
IS nore conplicated.

Audi o channel control (vol unme/noise) register

76543210

AUDCx | noise | vol une|

The noi se bits can have various values. The best way to learn to use
themis by experinentation. The technical details of the pol ynom al
counters which generate the noise has little bearing on what is heard.
The two special values of interest are: $1 (volunme+16 in decimal),

whi ch causes a DC voltage proportional to the volune bits and; $A

(vol une+160), which causes a pure tone (square wave). The volunme bits
select the relative volunme, O=off. Therefore, the nunber, $A8 (168

[8+160]) in AUDCL, wll cause the frequency selected by AUDF1 to be a
pure tone of nedi um vol une.

In BASIC the dirty work is done fore you. The SOUND command will do
all the calculations for you. The Sound command format is shown
bel ow.

The BASI C sound command f or nat

SOUND channel , f requency, noi se, vol une

http://trident.mcs.kent.edu/~clisowsk/8bit/atr17.html (1 of 4) [8/26/2001 1:41:59 PM]

ATR: Chapter 17 - Sound

The channel nunbers is 0 to 3 instead of 1 to 4. The frequency, 0 to
255, is put into the frequency register. The noise is put into the
hi gh bits of the channel control register with volune in the |low bits.
Therefore. ..

SOUND 0, 125, 10, 8

wi || produce a pure tone of nedium frequency and volume in channel O
(called channel 1 in assenbly | anguage).

ADVANCED SOUND

The Audi o Control register, AUDCTL [$D208 (53768)], (not to be
confused with the four audio channel control registers), adds nore
control for assenbly |anguage programers. Again, to go into
technical details will be | ess productive than experinentation.

The audi o control register. (AUDCTL)

76543210

ACTL | | | [[[||
16318421
2426
8
7 O = 17 bit pol ynom al noise
1 = 9 bit below pol ynom al noi se
6 O = clock channel 1 with 64 KHz
1 = clock channel 1 with 1.79 Mz
5 O = clock channel 3 with 64 KHz
1 = clock channel 3 with 1.79 Miz
4 O = clock channel 2 with 64 KHz
1 = clock channel 2 with channel 1
3 O = clock channel 4 with 64 KHz
1 = clock channel 4 with channel 3
2 1 = insert logical high-pass filter in
channel 1, clocked by channel 3
1 1 = insert logical high-pass filter in
channel 2, clocked by channel 4
0 O = 64 KHz main cl ock
1 = 16 KHz main cl ock

Al bits of AUDCTL are normally zero. The BASIC sound conmand causes
it to be reset to zero.

http://trident.mcs.kent.edu/~clisowsk/8bit/atr17.html (2 of 4) [8/26/2001 1:41:59 PM]

ATR: Chapter 17 - Sound

By cl ocking one channel with another, the range can be increased.
This essentially allows two channels wth twice the range as each of
the four normal channels. This is called 16 bit sound.

To cal cul ate exact frequencies, use the followng fornulas. The exact

clock frequencies are also given if nore accuracy is needed. The
cl ock frequencies are acquired by dividing the signal fromthe TV
color-burst crystal. This crystal has a frequency of 3.579545 MHz.

Cl ock frequencies:
1.7897725 VHz (col or-burst/2)
63. 920446 Khz (col or-burst/56)

15. 699759 KHz (col or-burst/228)

For nul as:
For 1.79 VHz
cl ock cl ock
f = - - - f = cceeee oo
2(AUDFn + 7) 2(AUDFn + 4)
16 bit 8 bit

AUDFn is the nunber in the audi o frequency register.

For 16 KHz and 64 KHz

2(AUDFn + 1)

AUDI O TI MER | NTERRUPTS

When the audio tiners count down to zero they generate IRQ interrupts
(if enabled). The tinmers can be reset by witing any nunber to STI MER

[D209 (53769)].

THE CONSOLE SPEAKER

http://trident.mcs.kent.edu/~clisowsk/8bit/atr17.html (3 of 4) [8/26/2001 1:41:59 PM]

ATR: Chapter 17 - Sound

The consol e speaker is where key clicks and the cassette signals cone
from On XL and XE nodels this speaker is heard through the TV
speaker. It is operated by toggling bit 3 of CONSOL [$DO1F (53279).
This bit always reads O but it is actually set to 1 during verti cal

bl ank.
Useful data base variables and OS equates
CONSCL $DO1F (53279): bit 3 controls consol e speaker
AUDF1 $D200 (53760): Audio frequency 1
AUDC1 $D201 (53761): audio control 1
AUDF2 $D202 (53762): Audio frequency 2
AUDC2 $D203 (53763): audio control 2
AUDF3 $D204 (53764): Audio frequency 3
AUDC3 $D205 (53765): audio control 3
AUDF4 $D206 (53766): Audi o frequency 4
AUDCA $D207 (53767): audio control 4
AUDCTL $D208 (53768): general audio control
STI MER $D209 (53769): audio tiner reset

[l

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr17.html (4 of 4) [8/26/2001 1:41:59 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 18 - Joystick Ports

CHAPTER 18
THE JOYSTICK PORTS

The joystick ports are the I/O ports of the PIA chip. This neans that
they are bidirectional, capable of output as well as input. The
joystick ports are usually set up for input. To read them sinply
read the port registers. PORTA [$D300 (53016)] will read joystick
ports 1 and 2. PORTB [$D301 (54017)] will read joystick ports 3 and
4. Joystick ports 3 and 4 are used for nenory control on the XL/ XE
nodel s and don't have external connectors.

Each bit of each port can be configured i ndependently for input or
output. To reconfigure a port, the port control registers, PACTL and
PBCTL [$D302 (54018) and $D303 (54019)], are used. The port control
regi sters also control sone lines on the serial 1/0O connector.

The port control registers

76543210

PACTL -----mmmmmmm - - -
or [n 01 1nn 0 nj
PBCTL -------ccccean---
16318421
2426
8
bits
PACTL

7 Peri pheral A interrupt status. Set by peripheral
interrupt; reset by readi ng PORTA

Cassette nmotor control (0O = on: 1 = off).

O = PORTA is now port A direction control.
Witing to PORTA will now set bits for input
or out put.
O sets bit for input; 1 sets bit for output.
1 = PORTA operati onal

1 1 = peripheral A interrupt enabl ed.

N W

PBCTL

http://trident.mcs.kent.edu/~clisowsk/8bit/atr18.html (1 of 5) [8/26/2001 1:41:59 PM]

ATR: Chapter 18 - Joystick Ports

7 Peri pheral B interrupt status. Set by peripheral
interrupt; reset by readi ng PORTB.

3 Serial connector command |ine.

2 O = PORTB is now port B direction control.
Witing to PORTB will now set bits for input
or out put.
O sets bit for input; 1 sets bit for output.
1 = PORTB operati onal

1 1 = peripheral B interrupt enabl ed.

The el ectronic configuration of the controller ports is as foll ows.

\012 3K \4 56 7R
\'t + - L/ \'t + - L/

O through 7 are the binary data bits for port A or port B.
+ and - are +5 volts and ground respectively.

R and L are the left and right gane paddl es.

t is the joystick trigger |ine.

The data bits in the joystick ports are used as follows for the
j oysti cks and gane paddl es.

The joysticks and the port registers

76543210

PORTA |U DL RUYDLIRK
16318421
2426
8
paddl e | | |]
triggers 3 2 10
PORTB @ -----mmmmmmmmmo o
(400/800 |UDLIRUDLIR
only) meeeeeeee o
paddl e | | | |
triggers 7 6 5 4

http://trident.mcs.kent.edu/~clisowsk/8bit/atr18.html (2 of 5) [8/26/2001 1:41:59 PM]

ATR: Chapter 18 - Joystick Ports

U= up

D = down
L = 1left
R = right

The joysticks may be read either directly fromthe port registers or
fromthe joystick shadow registers. During vertical blank, the data
in the port registers is separated and put into the shadow registers.
These registers are, STICKO [$0278 (632)], STICK1l [$0279 (633)],

STI CK2 [$027A (634)] and STICK3 [$027B (635)]. The triggers nmay be
read fromthe joystick trigger registers, TRAQ - TRIG3 [$D010 - $D013
(53264 - 53267)]. These register have shadow registers, STRIQ -
STRIG3 [$0284 - 0287 (644 -647)]. |If these registers read zero the
associ ated triggers are pressed. The paddle triggers may be read from
their shadow registers also. They are, PTRRQ - PTRIG 7, [$027C -
$0283 (236 - 643)].

THE GAME PADDLE REGQ STERS

Al t hough the gane paddl es are plugged into the joystick ports, they
are not read fromthe port registers. The gane paddl es are read by
first witing any nunber to the start-pot-scan register, POTGO [$D20B
(53771)]]. This turns off the capacitor dunp transistors and all ows
t he pot reading

capacitors to begin charging. It also sets the TV scan |line counter
to zero. As each capacitor crosses a certain trigger voltage, the
nunber of TV lines scanned is put in the respective pot val ue

regi ster. Wien the scan counter reaches 228, the capacitor dunp
transi stors are turned on and the nunber 228 is put into any pot val ue
regi sters which are still enpty.

Bef ore readi ng the pot value registers, ALLPOT [$D208 (53768)] should
be checked. In this register, each bit corresponds to the validity of
a pot value register. |If a bit is zero, its' associated pot val ue
register is valid. |If bit 2 of SKCTL, [$D20F (53775)], is 1, the pots
go into the fast scan node. |In this node the paddles are read in only
2 TV scan lines. They can also be read without regard to POTGO or
ALLPOT.

The pot value registers contain the nunber of TV scan lines it |ast
took for the paddl e reading capacitors to charge (up to 228). These
registers are POTO - POT7 [$D200 - $D207 (53760 -53767)]. Their
shadow regi sters are PADDLO - PADDL7 [$0270 - $0277 (624 - 631)].

THE LI GHT PEN REGQ STERS

http://trident.mcs.kent.edu/~clisowsk/8bit/atr18.html (3 of 5) [8/26/2001 1:41:59 PM]

ATR: Chapter 18 - Joystick Ports

Whenever a joystick trigger is pressed, the |light pen registers, PENH
and PENV are updated. PENH [$D40C (54284)] takes a val ue based on a
color clock counter. The value can be fromO to 227. PENV [$D40D

[54285)] takes the 8 highest bits of the vertical |ine counter. A
light pen is sinply a photo transistor connected to a joystick trigger
| ine and focused on the TV screen. Wen the electron beamstrikes the
part of the screen the light pen is focused on, the transistor turns
on pulling the trigger line low. The light pen registers then contain
nunbers relative to where the |light pen was pointing. The shadow

regi ster for PENH and PENV are LPENH [$0234 (564)] and LPENV [$0235

(566)).
Usef ul operating system equates
TRIGO $D010 (53264): joystick triggers
|
TRIG3 $D013 (53268):
POTO $D200 (53760): paddl e val ue
|
POT7 $D207 (53767):
ALLPOT $D208 (53768): reads validity of pot val ues
POTGO $D20B (53771): starts paddle read
SKCTL $D20F (53775): bit 2 enables fast pot scan
PORTA $D300 (53016): port A data
PORTB $D301 (53017): port B data
PACTL $D302 (54018): port A control
PBCTL $D303 (54019): port B control
PENH $D40C (54284): 1ight pen horizontal value
PENV $D40D (54285): light pen vertical value
Shadow regi sters
LPENH $0234 (564): light pen horizontal val ue
LPENV $0235 (566): light pen vertical value
PADDLO $0270 (624): gane paddl e val ues
|
PADDL7 $0277 (631)
STI CKO $0278 (632): joystick registers
|
STI CKO $027B (635):
PRTI G $027C (636): paddle triggers

http://trident.mcs.kent.edu/~clisowsk/8bit/atr18.html (4 of 5) [8/26/2001 1:41:59 PM]

ATR: Chapter 18 - Joystick Ports

PTRI G7 $0283 (643):

STRI 0 $0284 (644): joystick triggers
|

STRI G3 $0287 (647):

B[

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr18.html (5 of 5) [8/26/2001 1:41:59 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 19 - Misc

CHAPTER 19
MISC HARDWARE REGISTERS AND IFORMATION

VERTI CAL LI NE COUNTER

The ANTIC chip has a vertical line counter at $0D4B (54283). This
counter shows the high 8 bits of a 9 bit counter. This gives two |ine
resolution. The value of this counter is placed into PENV [$D40D
(54285)] when a joystick trigger is pressed.

SERI AL PORT REQ STERS
The POKEY chip has sone registers which control the serial port.

The serial port control register, SKCTL [$D20F (53775)], controls the
serial port configuration and the gane paddl e scan node. and sone
keyboard circuitry.

The serial port control register

76543210

SKCTL .
16318421
2426
8
bits
0 1 = enabl e keyboard debounce
1 1 = enabl e keyboard scan
both O = set initialization node.
2 1 = fast pot scan
3 1 = serial output is two tone (for cassette)
i nstead of |ogical true/false
4\
5 >- serial port node contro
6/
7 1 = forced | ogical 0 on out put

|f the serial port control register is read fromit gives the serial

http://trident.mcs.kent.edu/~clisowsk/8bit/atr19.html (1 of 3) [8/26/2001 1:42:01 PM]

ATR: Chapter 19 - Misc

port status. The register is then called SKSTAT
Serial port status register

76543210

bits

not used, reads 1

serial input shift register busy
| ast key is still pressed

shift key pressed

direct fromserial input port
keyboard over-run

serial data input over-run
serial data input frame error

~No ok~ WwWDNEFEO
P OOOOOOo

The serial port status is |atched and nust be reset by witing any
nunber to its' reset register, SKRES [$D20A (53770)].

SERI AL PORT | NPUT AND OUTPUT DATA

When a full byte of serial input data has been received, it is read
fromthe serial input data register, SERI N [$D20D (53773). Seri al

output data is witten to the same register, which is then called the
serial output data register, SEROUT. This register is usually witten

to in response to a serial output data interrupt (bit 4 of |RQST).

HARDWARE CHI P MEMORY ALLOCATI ON

The addresses for the hardware chips are not conpletely decoded. For

exanpl e, the PIA needs only four bytes of nenory but is active from
$D300 - D3FF. Enough roomfor 64 PIA chips. A second pair of

paral l el ports could be added by accessing the address bus and further

decodi ng the address for a second PIA. (This would also require a
smal |l nodification of the conputer's circuit board to disable the
original PIA when the new one is active.) Simlarly, there is room
for 15 nore POKEY or ANTIC chips and 7 gtia chips, should you ever
need them (GTlIA uses $D000 - DOFF, POKEY uses $D200 - $D2FF and
ANTI C uses $D400 - $DAFF.)

Usef ul data base vari ables and OS equates

http://trident.mcs.kent.edu/~clisowsk/8bit/atr19.html (2 of 3) [8/26/2001 1:42:01 PM]

ATR: Chapter 19 - Misc

SKRES $D20A
SERQUT $D20D
SERIN $D20D
SKCTL $D20F
SKSTAT $D20F
VCOUNT $D40B

SSKCTL $0232

(53770):
(53773) :
(53773) :
(53775) :
(53775) :
(54283) :

(562):

seri al
seri al
seri al
seri al
seri al

port status reset
out put data

I nput data

port control

port status

vertical |ine counter

Gs shadow regi sters

SKCTL

[e][a]

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr19.html (3 of 3) [8/26/2001 1:42:01 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Chapter 20 - XL/XE Models

CHAPTER 20
THE XL AND XE MODELS

BASI C B BUGS

Most of the Atari 600XL and 800XL nodels were supplied with the
"debugged" version B of Atari BASIC. This new BASIC got rid of the
m nor bugs of BASIC A and introduced sone new ngj or bugs of it's own.

Each tine a programis saved, 16 extra bytes are tagged onto the end
of the program After many saves and rel oads, as when devel oping a
| ong program the program becones too |large for the nenory.

The conputer may | ock up unpredictably.

Program line |links may get nessed up, |eaving garbage in the |isting
and the program unrunabl e.

Large LI STed prograns may not run unl ess SAVed and reLOADed.

If the length of a |isted programis a nultiple of a certain nunber of
bytes, it will not run unless the length is sonehow changed.

BASI C version B has been replaced by version C. Al of the XE nodels
have this truly debugged version of BASIC

NEW OPERATI NG SYSTEM PROBLEMS

| have heard of only one bug in the operating systemin XL and XE
nodels. This is a mshandling of the printer tineout. The conputer
cannot tell if there is a printer attached or not. This may have been
fixed in the XE nodels. However, many prograns, some even fornerly
sold by Atari, do not junp through published junp vectors when using
the operating system These prograns will not run on XL/ XE nodel s.
(Some of these prograns are Atari Wrd Processor (not Atariwiter) and
LJKs Letter Perfect and Data Perfect.) Since the operating system ROM
can be switched to RAM a "translator" can be used to | oad the 800
operating systeminto an XL or XE nodel.

130XE MEMORY MANAGEMENT

The 130XE has an extra 64K bank of nmenory. It is divided into four
bl ocks of 16K each. Each bl ock can be switched to replace part of the

http://trident.mcs.kent.edu/~clisowsk/8bit/atr20.html (1 of 4) [8/26/2001 1:42:02 PM]

ATR: Chapter 20 - XL/XE Models

mai n bank of RAM from $4000 (16384) to $7FFF (32767). Furthernore, it
can be switched in such a way that only the 6502, or the ANTIC chip
can see the extra nenory.

Port B (fornerly the two extra joystick ports of the 400/800) is used
to manage the nenory.

Port B and nenory managenent

76543210
PORTB | TTUACS S| B R

1 = OS replaced by RAM

0 = BASI C enabl ed

bank sel ect bits

0 = CPU sees switched RAM at $4000
O = ANTI C sees switched RAM
unused

0O = self test

4 C>0O00nmxDo

Bits 2 and 3 of PORTB sel ect which block of the extra bank of nenory
Is switched in.

Bank sel ect bits

bits bl ock

2 3 addr ess

00 $0000 - $3FFF

01 $4000 - $7FFF

10 $8000 - $BFFF

11 $C000 - S$FFFF
Bits 4 and 5 select which chip sees the switched in RAM at $4000 -
$7FFF

Chip select bits
bits ANTI C 6502

http://trident.mcs.kent.edu/~clisowsk/8bit/atr20.html (2 of 4) [8/26/2001 1:42:02 PM]

ATR: Chapter 20 - XL/XE Models

4 5

00 Ext . Ext .
01 Ext . Mai n
10 Mai n Ext .
11 Mai n Mai n

THE XL PARALLEL PORT

Pin out of the parallel port

top fromrear

111112222233333444445
2468024680246802468024680

11111222223333344444
1357913579135791357913579

1 2 G\D
3 Al 4 A0
5 A3 6 A2
7 A5 8 A
9 G\D 10 A6
11 A8 12 A7
13 A10 14 A9
15 Al12 16 All
17 Al4 18 A13
19 Al5 20 G\D
21 D1 22 DO
23 D3 24 D2
25 D5 26 D4
27 D7 28 D6
29 G\D 30 G\D
31 G\D 32 phase 2 cl ock
33 RESET 34
35 RDY 36 | RQ
37 37
39 40
41 G\D 42
43 RAS 44
45 R'W 46 G\D

http://trident.mcs.kent.edu/~clisowsk/8bit/atr20.html (3 of 4) [8/26/2001 1:42:02 PM]

ATR: Chapter 20 - XL/XE Models

47 +5V 48 +5V
49 G\D 50

The phase 2 clock runs at 1.8 MHz. Wen the clock is high, the
address and RRWIlines are valid. The clock goes fromhigh to | ow,
when the data lines are also valid. Al lines then becone invalid.

The 130XE doesn't have the parallel port. However, it has a cartridge
sl ot expansion. This is a small cartridge-slot-1like connector with
t he necessary connector to use parall el expansion.

FI NE SCROLLI NG

| f address $026E (622) is $FF, graphics O will be in the fine scrol
node.

OTHER ADDRESSES
DSCTLN [$0D25,2 (725)] is the disk sector size. should be $80 (128).

DMASAV [$02DD (735)] is a copy of the DVA control register, SDMCTL

[$022F (559)]. It is set up when a channel is opened to the screen.
The value is noved to SDMCTL whenever a key is pressed. It is used to
restore the display if DVA is disabled.

PUPBT [$033D, 3 (829-831)] is used to test nenory integrity when
[RESET] is pressed. |f these bytes are not $5C, $93 and $25, the
conputer will do a cold start when [RESET] is pressed.

The self-test ROMis from $D000 to $D7FF, the sane addresses as the
hardware registers. This part of the operating system ROMis disabl ed
when not used. Wen The conputer is put into the self-test node, This
part of ROMis copied to $5000 to $57FF and run fromthere.

G NTLK [$03FA (1018)] is a logical 1 if a cartridge is installed
(built-in BASIC is considered a cartridge). BASIC can be disabl ed by
poki ng 1018 with a non-zero nunber. |If [RESET] is then pressed, the
conputer will attenpt to |load the DUP.SYS file and basic wll be
conpl etely di sabl ed.

=@

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atr20.html (4 of 4) [8/26/2001 1:42:02 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Appendix A - Hardware Registers

APPENDIX A
HARDWARE REGISTERS

Regi st er

Descri ption

Addr ess

Shadow

Nane Addr ess

ALLPOT

AUDC1

AUDC2

AUDC3

AUDCA

AUDCTL

AUDF1

AUDF2

AUDF3

AUDF4

CHACTL

CHBASE

COLBK

COLPFO

COLPF1

COLPF2

COLPF3

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (1 of 13) [8/26/2001 1:42:07 PM]

gane paddl e ready indicators
Audi o channel 1 control

Audi o channel 2 control

Audi o channel 3 control

Audi o channel 1 contro

general audi o control

Audi o frequency 1 control
Audi o frequency 2 control
Audi o frequency 3 control
Audi o frequency 4 control
character contro

Address of character set / 256
color/ brightness of setcolor 4
Col or/ bri ght ness of setcolor O
col or/brightness of setcolor 1
col or/ brightness of setcolor 2

col or/ brightness of setcolor 3

$D208
$D201
$D203
$D205
$D207
$D208
$D200
$D202
$D204
$D206
$D401
$D409
$DO1A
$D016
$D017
$DO18

$DO19

53768

53761

53763

53765

53767

53768

53760

53762

53764

53766

54273

54281

53274

53270

53271

53272

53273

CHART $02F3
CHBAS $QO2F4
COLOR4 $02C8
COLORO $02C4
COLCR1L $02C5
COLOR2 $02C6

COLOR3 $02C7

755

756

712

708

709

710

711

ATR: Appendix A - Hardware Registers

COLPMD
COLPML
COLPM2
COLPMB
CONSCL
DLI STH
DLI STL
DVACTL
GRACTL
GRAFM
GRAFPO
GRAFP1
GRAFP2
GRAFP3
H TCLR
HPOSM)
HPOSML
HPOSM2
HOPSM3
HPOSPO
HPOSP1
HPOSP2
HPOSP3

HSCROL

| RQEN

col or/ bri ght ness,
col or/ bri ght ness,
col or/ bri ght ness,
col or/ bri ght ness,

[START], [SELECT]

di splay |ist pointer

di splay |ist pointer

pl ayer/ mssile O

player/mssile 1

pl ayer/ mssile 2

pl ayer/ mssile 3

[OPT.],

speaker

hi gh byte

| ow byte

Direct Menory access control

gr aphi cs control

m ssi |l e graphics

pl ayer O graphics
pl ayer 1 graphics
pl ayer 2 graphics
pl ayer 3 graphics
cl ear collisions

hori zontal positi
hori zontal positi
hori zontal positi
hori zontal positi
hori zontal positi
hori zontal positi
hori zontal positi
hori zontal positi

hori zontal scrol

on

on

on

on

on

on

on

on

of
of
of
of
of
of
of

of

m ssi |
m ssi |
m ssi |
m ssi |
pl ayer
pl ayer
pl ayer

pl ayer

(DV

e 0
el
e 2
e 3

0

interrupt request enable (I RQ

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (2 of 13) [8/26/2001 1:42:07 PM]

$D012
$DOL3
$DO14
$DO15
$DO1F
$D403
$D402
$D400
$D01D
$D011
$D00D
$DOOE
$DOOF
$D010
$DO1E
$D004
$D005
$D006
$D007
$D000
$D001
$D002
$D003
$D404

$D20E

53266

53267

53268

53269

53279

94275

54274

54272

53277

53265

53261

53262

53263

53264

54278

53252

53253

53254

53255

53248

53249

53250

53251

54276

PCOLRO $02CO0
PCOLR1 $02C1
PCOLR2 $02C2

PCOLR3 $02C3

SDLSTH $0231
SDLSTL $0230

SDMCTL $022F

704

705

706

707

561

560

559

53774 POKMSK $0010 16

ATR: Appendix A - Hardware Registers

| RQST

| RQ st at us

KBCODE keyboard code

NDPF

MOPL

MLPF

MLPL

MR PF

M2 PL

NBPF

MBPL

NM EN

NM RES

NM ST

POPF

POPL

P1PF

P1PL

P2PF

P2PL

P3PF

P3PL

PACTL

PAL

PBCLT

PENH

m

m

m

m

ssile O to graphics collisions

ssile 0 to

ssile
ssile
ssile
ssile
ssile

ssile

1

3

3

to

to

to

to

to

to

non- naskabl e

NM

reset

NM st at us

p
p
p
p
p
p
pl
pl

ayer
ayer
ayer
ayer
ayer
ayer
ayer

ayer

0

3

3

to

to

to

to

to

to

to

to

pl ayer collisions
graphi cs col lisions
pl ayer collisions
graphics collisions
pl ayer collisions
graphi cs col lisions

pl ayer collisions

$D20E
$D209
$D000
$D008
$D001
$D009
$D002
$DO0A
$D003

$D00B

interrupt enable (NM)$D40E

graphics collisions
pl ayer collisions
graphi cs col lisions
pl ayer collisions
graphics collisions
pl ayer collisions
graphics collisions

pl ayer collisions

port A control

Eur ope/ North America TV indicator

port B control

i ght pen horizontal position

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (3 of 13) [8/26/2001 1:42:07 PM]

$D4A0F
$D4A0F
$D004
$D00C
$D005
$D00D
$D006
$DOOE
$DOO7
$DO0F
$D302
$D014
$D303

$D40C

53774
53769 CH $RFC 764
53248
53256
53249
53257
53250
53258
53251
53259
54286
54287
54287
53252
53260
53253
53261
53254
53262
53255
53263
54018
53268
54019

54284 LPENH $0234 564

ATR: Appendix A - Hardware Registers

PENV

PVBASE

PORTA

PORTB

POTO

POT1

POT2

POT3

POT4

POTS

POT6

POT7

POTGO

PRI OR

RANDOM

SERI' N

SERQUT

S| ZEM

SI ZEPO

SI ZEP1

Sl ZEP2

S| ZEP3

SKCTL

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (4 of 13) [8/26/2001 1:42:07 PM]

i ght pen verti cal

pl ayer/ m ssile address / 256

port A

port B

gane paddle O

gane paddle 1

gane paddle 2

gane paddle 3

gane paddle 4

gane paddle 5

gane paddle 6

gane paddle 7

start pot scan sequence
p/ mpriority and GIl A node
random nunber gener at or
serial port

serial port output

m ssile size

pl ayer 0O
pl ayer 1
pl ayer 2

pl ayer 3

serial port control

si ze
si ze
Si ze

si ze

position

I nput

$D40D
$D407

$D300

$D301

$D200
$D201
$D202
$D203
$D204
$D205
$D206
$D207
$D20B
$D21B
$D20A
$D20D
$D20D
$D00C
$D008
$D009
$DO0A
$D00B

$D20F

54285

54279

54016

54017

53760

53761

53762

53763

53764

53765

53766

53767

53771

53275

53770

53774

53773

53260

53256

53257

53258

53259

53775

LPENV

STI CKO

STl CK1

STI CK2

STI CK3

PADDLO

PADDL 1

PADDL 2

PADDL 3

PADDL4

PADDL5

PADDL 6

PADDL 7

$0235

$0278
$0279
$027A
$027B
$0270
$0271
$0272
$0273
$0274
$0275
$0276

$0277

GPRI CR $026F

565

632

634

634

635

624

625

626

627

628

629

630

631

623

SSKCTL $0232 563

ATR: Appendix A - Hardware Registers

SKREST reset serial port status
SKSTAT serial port status

STI MER start timer

TRIG joystick trigger O

TRIGL joystick trigger 1

TRIG joystick trigger 2

TRIG3 joystick trigger 3
VCOUNT vertical |ine counter
VDELAY vertical delay

VSCRCL vertical scroll

WEYNC wait for horizontal sync

$D20A
$D20F
$D209
$D010
$D011
$D012
$D013
$D40B
$D01C
$D405

$D40A

NUMERI CAL ORDER

53770
53775
53769
53264 STRI G0 $0284 644
53265 STRI Gl $0285 645
53266 STRI &2 $0286 646
53267 STRI G3 $0287 647
54283
54276
54277

54282

Regi sters sharing addresses are listed first when witen to, then when

read from

Regi st er

Nane Descri ption

Shadow

Address Nane Addr ess

HPOSPO hori zontal position of player O
MO PF mssile O to graphics collisions
HPOSP1 horizontal position of player 1
MLPF mssile 1 to graphics collisions
HPOSP2 hori zontal position of player 2

M2 PF mssile 2 to graphics collisions

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (5 of 13) [8/26/2001 1:42:07 PM]

$D000
$D000
$D001
$D001
$D002

$D002

53248

53248

53249

53249

53250

53250

ATR: Appendix A - Hardware Registers

HPOSP3

MBPF

HPOSM)

POPF

HPOSML

P1PF

HPOSM2

P2PF

HOPSMB

P3PF

SI ZEPO

MOPL

Sl ZEP1

MLPL

SI ZEP2

M2 PL

Sl ZEP3

MBPL

S| ZEM

POPL

GRAFPO

P1PL

GRAFP1

P2PL

GRAFP2

hori zontal position of player 3
mssile 3 to graphics collisions
hori zontal position of mssile O
pl ayer O to graphics collisions
hori zontal position of mssile 1
pl ayer 1 to graphics collisions
hori zontal position of mssile 2
pl ayer 2 to graphics collisions
hori zontal position of mssile 3
pl ayer 3 to graphics collisions
pl ayer 0 size

mssile O to player collisions
pl ayer 1 size

mssile 1 to player collisions
pl ayer 2 size

mssile 2 to player collisions
pl ayer 3 size

mssile 3 to player collisions
m ssile size

pl ayer 0 to player collisions

pl ayer O graphics

player 1 to player collisions

pl ayer 1 graphics

pl ayer 2 to player collisions

pl ayer 2 graphics

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (6 of 13) [8/26/2001 1:42:07 PM]

$D003
$D003
$D004
$D004
$D005
$D005
$D006
$D006
$D007
$D007
$D008
$D008
$D009
$D009
$DO0A
$DO0A
$D00B
$D00B
$D00C
$D00C
$D00D
$D00D
$DOOE
$DOOE

$DOOF

53251

53251

53252

53252

53253

53253

53254

53254

53255

53255

53256

53256

53257

53257

53258

53258

53259

53259

53260

53260

53261

53261

53262

53262

53263

ATR: Appendix A - Hardware Registers

P3PL pl ayer 3 to player collisions $DO0F 53263
GRAFP3 pl ayer 3 graphics $D010 53264
TRIG joystick trigger O $D010 53264 STRI 0 $0284 644
GRAFM mi ssil e graphics $D011 53265
TRIGL joystick trigger 1 $D011 53265 STRI GL $0285 645

COLPMD col or/ brightness, player/nmissile 0 $D012 53266 PCOLR0O $02C0 704
TRIG joystick trigger 2 $D012 53266 STRI &R $0286 646
COLPML col or/brightness, player/mssile 1 $D013 53267 PCOLR1 $02C1 705
TRIG3 joystick trigger 3 $D013 53267 STRI G3 $0287 647
COLPM2 col or/brightness, player/mssile 2 $D014 53268 PCOLR2 $02C2 706
PAL Europe/ North America TV indicator $D014 53268

COLPMB col or/ brightness, player/mssile 3 $D015 53269 PCOLR3 $02C3 707

COLPFO Col or/ bri ghtness of setcolor O $D016 53270 COLORO $02C4 708
COLPF1 col or/brightness of setcolor 1 $D017 53271 COLORL $02C5 709
COLPF2 col or/bri ghtness of setcolor 2 $D018 53272 COLOR2 $02C6 710
COLPF3 col or/ bri ghtness of setcolor 3 $D019 53273 COLOR3 $02C7 711
COLBK col or/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712
VDELAY vertical delay $D01C 54276
GRACTL graphi cs control $D01D 53277
H TCLR cl ear collisions $DO1E 54278

CONSCL [START], [SELECT], [OPT.], speaker $DO1F 53279

AUDF1 Audio frequency 1 control $D200 53760
POTO gane paddle O $D200 53760 PADDLO $0270 624
AUDC1 Audi o channel 1 control $D201 53761
POT1 gane paddle 1 $D201 53761 PADDL1 $0271 625

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (7 of 13) [8/26/2001 1:42:07 PM]

ATR: Appendix A - Hardware Registers

AUDF2
POT2
AUDC2
POT3
AUDF3
POT4
AUDC3
POT5
AUDF4
POT6
AUDCA
POT7
ALLPOT
AUDCTL
KBCODE
STI MER
RANDOM
SKREST
POTGO
SEROUT
SERI N
| RQEN
| RQST
SKCTL

SKSTAT

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (8 of 13) [8/26/2001 1:42:07 PM]

Audi o frequency 2 control
gane paddle 2

Audi o channel 2 control
gane paddle 3

Audi o frequency 3 control
gane paddle 4

Audi o channel 3 control
gane paddle 5

Audi o frequency 4 control
gane paddle 6

Audi o channel 1 contro
gane paddle 7

gane paddl e ready indicators
general audi o contr ol
keyboard code

start timer

random nunber gener at or
reset serial port status
start pot scan sequence
serial port output

serial port input

i nterrupt request enable (1 RQ

| RQ status
serial port control

serial port status

$D202
$D202
$D203
$D203
$D204
$D204
$D205
$D205
$D206
$D206
$D207
$D207
$D208
$D208
$D209
$D209
$D20A
$D20A
$D20B
$D20D
$D20D
$D20E
$D20E
$D20F

$D20F

53762

53762

53763

53763

53764

53764

53765

53765

53766

53766

53767

53767

53768

53768

53769

53769

53770

53770

53771

53773

53774

53774

53774

53775

53775

PADDL 2

PADDL 3

PADDL4

PADDL5

PADDL 6

PADDL 7

$0272

$0273

$0274

$0275

$0276

$0277

$O2FC

626

627

628

629

630

631

764

POKMBSK $0010 16

SSKCTL $0232 563

PRI OR

PORTA

PORTB

PACTL

PBCTL

DVACTL

CHACTL

DLI STL

DLI STH

HSCROL

VSCRCL

PVBASE

CHBASE

WEYNC

VCOUNT

PENH

PENV

NM EN

NM RES

NM ST

ATR: Appendix A - Hardware Registers

p/ mpriority and GIl A node

port A

port B

port A control

port B control

Direct Menory access control
character control

display list pointer |ow byte
di splay |ist pointer high byte
hori zontal scroll

vertical scroll

pl ayer/ m ssile address / 256

Address of character set / 256

wait for horizontal sync

vertical |ine counter
| i ght pen horizontal position

light pen vertical position

(DV

$D21B

$D300

$D301

$D302
$D303
$D400
$D401
$D402
$D403
$D404
$D405
$D407
$D409
$D40A
$D40B
$D40C

$D40D

non- maskabl e i nterrupt enable (NM) $D40E

NM reset

NM st at us

$D40F

$D40F

SHADOW REG STER ORDER

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (9 of 13) [8/26/2001 1:42:07 PM]

53275

54016

54017

54018

54019

54272

54273

54274

54275

54276

54277

54279

54281

54282

54283

54284

54285

54286

54287

54287

GPRI CR $026F
STI CKO $0278
STI CK1 $0279
STI CK2 $027A

STI CK3 $027B

SDMCTL $022F
CHART $02F3
SDLSTL $0230

SDLSTH $0231

CHBAS $O2F4

LPENH $0234

LPENV $0235

623

632

633

634

635

559

755

560

561

756

564

565

ATR: Appendix A - Hardware Registers

ALPHEBETI CAL CORDER

Regi st er

Descri ption

Shadow

$ORFC 764

CHACTL

keyboard code

character contro

CHBASE Address of character set / 256

COLBK

COLPFO

COLPF1

COLPF2

COLPF3

PRI OR

PENH

PENV

POTO

POT1

POT2

POT3

POT4

POTS

POT6

POT 7

COLPMD

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (10 of 13) [8/26/2001 1:42:07 PM]

color/ brightness of setcolor 4
Col or/ brightness of setcolor O
col or/ brightness of setcolor 1
col or/ bright ness of setcolor 2
col or/ brightness of setcolor 3
p/mpriority and GIl A node

i ght pen horizontal position
i ght pen vertical position
gane paddle O

gane paddle 1

gane paddle 2

gane paddle 3

gane paddle 4

gane paddle 5

gane paddle 6

gane paddle 7

col or/ brightness, player/nissile 0 $D012

53274

53270

53271

53272

53273

53275

54284

54285

53760

53761

53762

53763

53764

53765

53766

53767

53266

CHART

CHBAS

COLCR4

COLORO

COLOR1

COLOR2

COLOR3

GPRI OR

LPENH

LPENV

PADDLO

PADDL 1

PADDL 2

PADDL 3

PADDL4

PADDL5

PADDL 6

PADDL 7

PCOLRO

$02F3
$O2F4
$02C8
$02C4
$02C5
$02C6
$02C7
$026F
$0234
$0235
$0270
$0271
$0272
$0273
$0274
$0275
$0276
$0277

$0200

755

756

712

708

709

710

711

623

564

565

624

625

626

627

628

629

630

631

704

ATR: Appendix A - Hardware Registers

COLPML
COLPM2
COLPMB
| RQEN

DLI STH
DLI STL
DVACTL
SKCTL

PORTA

PORTB

TRI QO
TRI GL
TRI &

TRI G3

| RQEN
DVACTL
DLI STL
DLI STH
SKCTL
PENH

PENV

col or/ brightness, player/nissile 1 $D013

col or/ brightness, player/nissile 2 $D014

col or/ brightness, player/nissile 3 $D015

i nterrupt request enable (IRQ

di splay |ist pointer high byte

di splay |ist pointer |ow byte
Direct Menory access control (DVA)
serial port control

port A

port B

joystick trigger O
joystick trigger 1
joystick trigger 2

joystick trigger 3

$D20E
$D403
$D402
$D400
$D20F

$D300

$D301

$D010
$D011
$D012

$D013

NUMERI CAL ORDER

i nterrupt request enable (I RQ
Direct Menory access control (DVA)
di splay |ist pointer |ow byte

di splay |ist pointer high byte
serial port control

| i ght pen horizontal position

i ght pen vertical position

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (11 of 13) [8/26/2001 1:42:07 PM]

$D20E
$D400
$D402
$D403
$D20F
$D40C

$D40D

53267

53268

53269

53774

54275

54274

54272

53775

54016

54017

53264

53265

53266

53267

53774

54272

54274

54275

53775

54284

54285

PCOLR1

PCOLR2

PCOLR3

POKMSK

SDLSTH

SDLSTL

SDMCTL

SSKCTL

STI CKO

STI CK1

STI CK2

STI CK3

STRI 0

STRI G1

STRI &2

STRI G3

POKMSK

SDMCTL

SDLSTL

SDLSTH

SSKCTL

LPENH

LPENV

$02C1
$02C2
$02C3
$0010
$0231
$0230
$022F
$0232
$0278
$0279
$027A
$027B
$0284
$0285
$0286

$0287

$0010
$022F
$0230
$0231
$0232
$0234

$0235

705

706

707

16

561

560

559

563

632

633

634

635

644

645

646

647

16

559

560

561

563

564

565

ATR: Appendix A - Hardware Registers

PRIOR p/mpriority and GIl A node

POTO

POT1

POT2

POT3

POT4

POT5

POT6

POT7

PORTA

PORTB

TRI QO

TRI G1

TRI &

TRI G3

COLPMD

COLPML

COLPMR

COLPMB

COLPFO

COLPF1

COLPF2

COLPF3

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (12 of 13) [8/26/2001 1:42:07 PM]

ganme paddle O
gane paddle 1
gane paddle 2
gane paddle 3
gane paddle 4
gane paddle 5
gane paddle 6
gane paddle 7

port A

port B

joystick trigger
joystick trigger
joystick trigger
joystick trigger
col or/ bri ght ness,
col or/ bri ght ness,
col or/ bri ght ness,
col or/ bri ght ness,
Col or/ bri ght ness
col or/ bri ght ness
col or/ bri ght ness

col or/ bri ght ness

0

1

2

3

pl ayer/ mssile O
pl ayer/mssile 1
pl ayer/ mssile 2

pl ayer/ mssile 3

of
of
of

of

setcolor O
setcolor 1
setcolor 2

setcolor 3

$D21B
$D200
$D201
$D202
$D203
$D204
$D205
$D206
$D207

$D300

$D301

$D010
$D011
$D012
$D013
$D012
$D013
$D014
$D015
$D016
$D017
$D018

$D019

53275

53760

53761

53762

53763

53764

53765

53766

53767

54016

54017

53264

53265

53266

53267

53266

53267

53268

53269

53270

53271

53272

53273

GPRI CR $026F

PADDLO

PADDL 1

PADDL 2

PADDL 3

PADDL4

PADDL5

PADDL 6

PADDL 7

STI CKO

STl CK1

STI CK2

STI CK3

STRI 0

STRI G1

STRI &2

STRI G3

PCOLRO

PCOLR1

PCOLR2

PCOLR3

COLORO

COLOR1

COLOR2

COLOR3

$0270
$0271
$0272
$0273
$0274
$0275
$0276
$0277
$0278
$0279
$027A
$027B
$0284
$0285
$0286
$0287
$0200
$02C1
$02C2
$02C3
$02C4
$02C5
$02C6

$02C7

623

624

625

626

627

628

629

630

631

632

633

634

635

644

645

646

647

704

705

706

707

708

709

710

711

ATR: Appendix A - Hardware Registers

COLBK col or/brightness of setcolor 4 $D01A 53274 COLOR4 $02C8 712
CHACTL character control $D401 54273 CHART $02F3 755
CHBASE Address of character set / 256 $D409 54281 CHBAS $O2F4 756
KBCODE keyboard code $D209 53769 CH $O2FC 764

A

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atra.html (13 of 13) [8/26/2001 1:42:07 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Appendix B - OS Equates

APPENDIX B
OPERATING SYSTEM EQUATES

0100
0101
0102
0103

0104 ;
;This listing is based on the original

0105
0106
0107
0108

0109 ;
; Most of the equate nanes given below are the official
They are in common use but are not mandatory.

0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122

0123 ;
0124 ;

0125
0126

0127 ;

ATARI

800 EQUATE LI STI NG

rel ease of Qperating System
The vectors shown here were not changed in version B.

; New equates for XL and XE nodels are included and noted. Changes
cfromversion B to XL/ XE are al so not ed.

0128 ;

0129
0130
0131
0132
0133
0134
0135
0136
0137
0138

DEVI CE NAMES

;version A

; nanes.

: SCREDT = "E"
: KBD = "K"
;DISPLY = "S"
: PRINTR = "P"
; CASSET = "C'
:DISK = "D"
X STATUS
SUCCES = $01
BRKABT = $80
PRVOPN = $82
NONDEV = $82
VWRONLY = $83
NVALI D = $84
NOTOPN = $85
BADI OC = $86
RDONLY = $87
EOFERR = $88

SCREEN EDI TOR
KEYBOARD

DI SPLAY

PRI NTER
CASSETTE

DI SK DRI VE

CODES

1
128
130
130
131
132
133
134
135
136

BREAK KEY ABCRT

| OCB ALREADY OPEN
NONEXI STANT DEVI CE
OPENED FOR WRI TE ONLY

I NVALI D COMVAND

DEVI CE OR FI LE NOT OPEN
I NVALI D | OCB NUMBER
OPENED FOR READ ONLY
END OF FI LE

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (1 of 14) [8/26/2001 1:42:09 PM]

At ari

ATR: Appendix B - OS Equates

0139 TRNRCD
0140 TI MOUT
0141 DNACK
0142 FRVERR
0143 CRSROR
0144 OVRRUN
0145 CHKERR
0146 DERROCR
0147 BADMOD
0148 FNCNOT
0149 SCRVEM
0150 ;

0151 ;

0152 ;

0153 ;

$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93

137
138
139
140
141
142
143
144
145
146
147

TRUNCATED RECCRD

PERI PHERAL TI ME OUT

DEVI CE DOES NOT ACKNOWLEDGE
SERI AL BUS FRAM NG ERROR
CURSOR QUT OF RANGE

SERI AL BUS DATA OVERRUN
SERI AL BUS CHECKSUM ERROR
PERI PHERAL DEVI CE ERROR
NON EXI STANT SCREEN MODE
FUNCTI ON NOT | MPLEMENTED
NOT ENOUGH MEMORY FOR SCREEN MODE

0154 ; COVWAND CCDES FOR ClI O

0155 ;

0156 ;

0157 OPEN
0158 OPREAD
0159 GETREC
0160 OPDI R
0161 GETCHR
0162 ONRI TE
0163 PUTREC
0164 APPEND
0165 MXDMOD
0166 PUTCHR
0167 CLOSE
0168 QUPDAT
0169 STATUS
0170 SPECI L
0171 DRAWLN
0172 FILLIN
0173 RENAME
0174 | NSCLR
0175 DELETE
0176 DFRVAT
0177 LOCK
0178 UNLOCK
0179 PO NT
0180 NOTE
0181 PTSECT
0182 GISECT
0183 DSTAT
0184 PSECTV
0185 NA RG

$03
$04
$05
$06
$07
$08
$09
$09
$10
$0B
$0C
$0C
$0D
$O0E
$11
$12
$20
$20
$21
$21
$23
$24
$25
$26
$50
$52
$53
$57
$80

87
128

OPEN FOR | NPUT

GET RECORD

OPEN TO DI SK DI RECTORY

GET BYTE

OPEN FOR QUTPUT

VIRl TE RECORD

OPEN TO APPEND TO END OF DI SK FI LE
OPEN TO SPLIT SCREEN (M XED MCDE)
PUT- BYTE

OPEN FOR | NPUT AND QUTPUT AT THE SAVE TI ME

BEG NNI NG OF SPECI AL COMVANDS
SCREEN DRAW
SCREEN FI LL

OPEN TO SCREEN BUT DON T ERASE

FORMAT DI SK (RESI DENT DI SK HANDLER (RDH))

RDH PUT SECTOR

RDH GET SECTOR

RDH GET STATUS

RDH PUT SECTOR AND VERI FY
NO GAP CASSETTE MODE

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (2 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0186

CR

0187 ;

0188
0189
0190
0191
0192
0193
0194

0195 ;
0196 ;
0197 ;

| OCBSZ
MAXI OC
| OCBF

LEDGE
REDGE

)
7
7

0198 ;

0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232

LI NZBS

NGFLAG
CASI NI

RAMLO

TRAMSZ
TSTDAT
WARMST
BOOT?

DCOSVEC
DCSI NI

APPVH

POKMSK
BRKKEY
RTCLOK
BUFADR
| CCOMI
DSKFM5
DSKUTL
PTI MOT
ABUFPT
PBPNT

PBUFSZ
PTEMP

ZI OCB

| CH DZ
| CDNOZ
| CCOVZ
| CSTAZ
| CBALZ
| CBAHZ

= $9B 155
= $10 16
= $80 128
= $FF 255
= $02 2
= $27 39

CS VARI ABLES

PAGE O

= $00 0

$00 0
= $01 1
= $02 2
= $04 4
= $06 6
= $07 7
= $08 8
= $09 9
= $0A 10
= $0C 12
= $0E 14
= $10 16
= $11 17
= $12 18
= $15 21
= $17 23
= $18 24
= $1A 26
= $1C 28
= $1C 28
= $1D 29

$1D 29
= $1E 30

$1E 30
= $1F 31

$1F 31
= $20 32
= $20 32
= $21 33
= $22 34
= $23 35
= $24 36
= $25 37

CARRI AGE RETURN (EQL)

| OCB SI ZE
MAX | CCB BLOCK SI ZE
| OCB FREE

DEFAULT LEFT MARG N
DEFAULT Rl GAT MARG N

(800) FOR ORI Gl NAL DEBUGGER
(XL) RESERVED
(XL) FOR POWER- UP SELF TEST

PO NTER FOR SELF TEST
TEMPORARY RAM SI ZE
TEST DATA

SUCCESSFUL BOOT FLAG
PROGRAM RUN VECTOR

PROGRAM | NI TI ALI ZATI ON

DI SPLAY LONLIM T

| RQ ENABLE FLAGS

FLAG

3 BYTES, MSB FI RST

| NDI RECT BUFFER ADDRESS
COVMMAND FOR VECTOR

DI SK FI LE MANAGER POl NTER

DI SK UTI LI TY PO NTER (DUP. SYS)
(800) PRINTER TI ME OUT REG STER
(XL) RESERVED

(800) PRI NTER BUFFER PO NTER
(XL) RESERVED

(800) PRI NTER BUFFER Sl ZE
(XL) RESERVED

(800) TEMPORARY REG STER

(XL) RESERVED

ZERO PAGE | OCB

HANDLER | NDEX NUMBER (| D)

DEVI CE NUMBER

COMVAND

STATUS

BUFFER POl NTER LOW BYTE
BUFFER POl NTER HI GH BYTE

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (3 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272

| CPTLZ
| CPTHZ
| CBLLZ
| CBLHZ
| CAX1Z
| CAX2Z
| CSPRZ
| CI DNO
Cl OCHR

STATUS
CHKSUM
BUFRLO
BUFRH
BFENLO
BFENHI
CRETRY
LTEMP
DRETRY
BUFRFL
RECVDN
XMTDON
CHKSNT
NOCKSM
BPTR
FTYPE
FEOF
FREQ

SOUNDR
CRITIC
FMSZPG
CKEY
ZCHAI'N
CASSBT
DSTAT

ATRACT
DRKIVSK
COLRSH

GRAPHI CS)

0273
0274
0275
0276
0277
0278

TMPCHR
HOLD1
LMARGN

RVARGN
ROWNCRS

$26
$27
$28
$29
$2A
$2B
$2C
$2E
$2F

$30
$31
$32
$33
$34
$35
$36
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F
$40

$41
$42
$43
$4A
$4A
$4B
$4C

$4D
$4E
$4F

$50
$51
$52
$53
$54

38
39
40
41
42
43
44
46
47

48
49
50
51
52
53
54
54
55
56
57
58
59
60
61
62
63
64

65
66
67
74
74
75
76

77
78
79

80
81
82
83
84

PUT ROUTI NE PO NTER LOW
PUT ROUTI NE PO NTER HI GH
BUFFER LENGITH LOW

AUXI LI ARY | NFORVATI ON BYTE 1

TWO SPARE BYTES (Cl O USE)
| OCB NUMBER X 16
CHARACTER BYTE FOR CURRENT OPERATI ON

STATUS STORACGE
SUM W TH CARRY ADDED BACK
DATA BUFFER LOW BYTE

ADDRESS OF LAST BUFFER BYTE +1 (LOW

(800) NUVBER OF COVMMAND FRAME RETRI ES
(XL) LOADER TEMPORARY STORAGE, 2 BYTES
(800) DEVI CE RETRI ES

BUFFER FULL FLAG

RECEI VE DONE FLAG

TRANSM SSI ON DONE FLAG

CHECKSUM SENT FLAG
CHECKSUM DOES- NOT- FOLLOW DATA FLAG

0=QU ET 1/0

CRI TI CAL FUNCTI ON FLAG NO DEFFERED VB
DOS ZERO PAGE, 7 BYTES

(800) START KEY FLAG

(XL) HANDLER LOADER TEMP, 2 BYTES
(800) CASSETTE BOOT FLAG

DI SPLAY STATUS

ATTRACT MASK
ATTRACT COLOR SHI FTER (EORed W TH

SCREEN LEFT MARG N REG STER
SCREEN RI GHT MARG N
CURSOR ROW

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (4 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
ONLY
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324

COLCRS
DI NDEX
SAVMSC
OLDROW
OLDCOL
OLDCHR
OLDADR
NEWROW
FKDEF

NEWCOL
PALNTS
LOGCOL
M. TTMP
OPNTWP
SAVADR
RAMIOP

BUFCNT
BUFSTR
Bl TMSK
SHFAMT
ROMNAC
COLAC
ENDPT
DELTAR
DELTAC
ROW NC
KEYDEF
COLI NC
SWPFLG
HOL DCH
I NSDAT
COUNTR
ZROFRE
FPZRO
FRO
FRE
FR1
FR2
FRX
EEXP
NSI GN
ESI GN
FCHFLG
DI GRT
a X

$55
$57
$58
$5A
$5B
$5D
$5E
$60
$60
$61
$62
$63
$66
$66
$68
$6A

$6B
$6C
$6E
$6F
$70
$72
$74
$76
$77
$79
$79
$7A
$7B
$7C
$7D
$7E

$80
$D4
$D4
$DA
$EO
$E6
$EC
$ED
$ED
$EF
$FO
$F1
$F2

85
87
88
90
91
93
94
96
96
97
98
99
102
102
104
106

107
108
110
111
112
114
116
118
119
121
121
122
123
124
125
126

128
212
212
218
224
230
236
237
237
239
240
241
242

CURSOR COLUMN, 2 BYTES

DI SPLAY MODE

SCREEN ADDRESS

CURSOR BEFORE DRAW OR FI LL

DATA UNDER CURSOR

CURSOR ADDRESS

(800) DRAWIO DESTI NATI ON

(XL) FUNCTI ON KEY DEFI NATI ON PO NTER
(800) DRAWO DESTI NATI ON, 2 BYTES
(XL) EUROPE/ NORTH AMERI CA TV FLAG
LOG CAL LI NE COLUWN PO NTER

TEMPORARY STORAGE FOR CHANNEL OPEN
START OF ROM (END OF RAM + 1), HI GH BYTE

BUFFER COUNT
PO NTER USED BY EDI TOR
PO NTER USED BY EDI TOR

(800)

(XL) KEY DEFI NATI ON PO NTER, 2 BYTES
(800)

NON O | F TEXT AND REGULAR RAM | S SWAPPED
CH MOVED HERE BEFORE CTRL AND SHI FT

FREE ZERO PACE, 84 BYTES
FLOATI NG PO NT RAM 43 BYTES
FP REG STER O

FP REG STER 1

FP REG STER 2

SPARE

VALUE OF E

SI GN OF FP NUMBER

SI GN OF FP EXPONENT

FI RST CHARACTER FLAG

NUMBER OF DIA TS RI GHT OF DECI MAL PO NT
| NPUT | NDEX

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (5 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0325 | NBUFF = $F3 243 PO NTER TO ASCI | FP NUMBER
0326 ZTEMP1 = $F5 245

0327 ZTEMP4 = $F7 247

0328 ZTEMP3 = $F9 249

0329 DEGFLG = $FB 251

0330 RADFLG = $FB 251 O0=RADI ANS, 6=DEGREES
0331 FLPTR = $FC 252 PO NTER TO BCD FP NUMBER
0332 FPTR2 = $FE 254

0333 ;

0334 ;

0335 ; PAGE 1

0336 ;

0337 ; 6502 STACK

0338 ;

0339 ;

0340 ;

0341 ;

0342 ; PAGE 2

0343 ;

0344

0345 | NTABS = $0200 512 | NTERRUPT RAM

0346 VDSLST = $0200 512 NM VECTOR

0347 VPRCED = $0202 514 PROCEED LI NE | RQ VECTOR
0348 VI NTER = $0204 516 | NTERRUPT LI NE | RQ VECTOR
0349 VBREAK = $0206 518

0350 VKEYBD = $0208 520

0351 VSERI N = $020A 522 SERI AL | NPUT READY | RQ
0352 VSEROR = $020C 524 SERI AL OQUTPUT READY | RQ
0353 VSERCC = $020E 526 SERI AL OQUTPUT COMPLETE | RQ
0354 VTIMRL = $0210 528 TIMER 1 | RQ

0355 VTI MR2 = $0212 530 TIMER 2 | RQ

0356 VTI M4 = $0214 532 TIMER 4 | RQ

0357 VIM RQ = $0216 534 | RQ VECTOR

0358 CDTW1 = $0218 536 DOWN Tl MER 1

0359 CDTW2 = $021A 538 DOWN Tl MER 2

0360 CDTMW3 = $021C 540 DOWN Tl MER 3

0361 CDTMW4 = $021E 542 DOWN Tl MER 4

0362 CDTMWV5 = $0220 544 DOWN Tl MER 5

0363 VVBLKI = $0222 546

0364 VVBLKD = $0224 548

0365 CDTMVAL = $0226 550 DOWN Tl MER 1 JSR ADDRESS
0366 CDTMA2 = $0228 552 DOWN Tl MER 2 JSR ADDRESS
0367 CDTMF3 = $022A 554 DOWN Tl MER 3 FLAG

0368 SRTI MR = $022B 555 REPEAT Tl MER

0369 CDTMF4 = $022C 556 DOWN Tl MER 4 FLAG

0370 | NTEMP = $022D 557 |AN' S TEMP

0371 CDTMF5 = $022E 558 DOWN Tl MER FLAG 5

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (6 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0372
0373
0374
0375
0376
0377
0378
0379

SDMCTL
SDLSTL
SSKCTL

LCOUNT
LPENH
LPENV

0380 ;

0381
0382
0383
0384
0385
0386
0387
0388
0389
0390

RELADR
CDEVI C
CAUX1

CAUX2

TEMP

ERRFLG
DFLAGS
DBSECT
BOOTAD
COLDST

PROGRESS

0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417

RECLEN
DSKTI M

L1 NBUF
CHSALT
VSFLAG
KEYDI S
FI NE
GPRI OR
GIl A
PADDLO
STI CKO
PTRI G0
STRI GO
CSTAT
WMODE
BLI M

NEWADR
TXTROW
TXTCCOL
T1 NDEX
TXTMSC
TXTOLD

TMPX1

$022F
$0230
$0232
$0233
$0233
$0234
$0235
$0236
$0238
$0238
$023A
$023C
$023D
$023E
$023F
$0240
$0241
$0242
$0244

$0245
$0245
$0246
$0246
$0247
$026B
$026C
$026D
$026E
$026F
$026F
$0270
$0278
$027C
$0284
$0288
$0289
$028A
$028B
$028E
$0290
$0291
$0293
$0294
$0296
$0298
$029C

559
560
562
563
563
564
565
566
568
568
570
572
573
574
575
576
577
578
580

581
581
582
582
583
619
620
621
622
623
623
624
632
636
644
648
649
650
651
654
656
657
659
660
662
664
668

DVACTL SHADOW

DI SPLAY LI ST PO NTER

SKCTL SHADOW

(800) UNLI STED

(XL) LOADER TEMP

LI GHT PEN HORI ZONTAL

LI GHT PEN VERTI CAL

2 SPARE BYTES

(800) SPARE, 2 BYTES

(XL) LOADER

DEVI CE COWAND FRAMVE BUFFER

DEVI CE COMMAND AUX 1

DEVI CE COMMAND AUX 2

TEMPORARY STORAGE

DEVI CE ERROR FLAG (EXCEPT TI MEOUT)
FLAGS FROM DI SK SECTCR 1

NUVBER OF BOOT DI SK SECTORS

BOOT LOAD ADDRESS PO NTER

COLD START FLAG 1 = COLD START IN

(800) SPARE

(XL) LOADER

(800) DI SK TIME OUT REG STER

(XL) RESERVED, 39 BYTES

(800) CHARACTER LI NE BUFFER, 40 BYTES
(XL) CHARACTER SET PO NTER

(XL) FI NE SCROLL TEMPORARY

(XL) KEYBOARD DI SABLE

(XL) FINE SCROLL FLAG

P/ M PRI ORI TY AND GTI A MODES

(XL) 3 MORE PADDLES, (800) 6 MORE PADDLES
(XL) 1 MORE STICK, (800) 3 MORE STI CKS
(XL) 3 MORE PADDLE TRI GGERS, (800) 6 MORE
(XL) 1 MORE STICK TRIGGER, (800) 3 MORE
(800)

5 SPARE BYTES
(XL) LOADER RAM

TEXT | NDEX
OLD ROW AND OLD COL FOR TEXT, 2 BYTES

4 SPARE BYTES
(800)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (7 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0418 CRETRY = $029C 668 (XL) NUVBER OF COVMAND FRAME RETRI ES
0419 SUBTMP = $029E 670

0420 HOLD2 = $029F 671

0421 DMASK = $02A0 672

0422 TMPLBT = $02A1 673

0423 ESCFLG = $02A2 674

0424 TABMAP = $02A3 675 15 BYTE BI T MAP FOR TAB SETTI NGS
0425 LOGVAP = $02B2 690 4 BYTE LOG CAL LINE START BI T MAP
0426 | NVFLG = $02B6 694

0427 FILFLG = $02B7 695 FILL DI RI NG DRAW FLAG

0428 TMPROW = $02B8 696

0429 TMPCOL = $02B9 697

0430 SCRFLG = $02BB 699 SCROLL FLAG

0431 HOLD4 = $02BC 700

0432 HOLD5 = $02BD 701 (800)

0433 DRETRY = $02BD 701 (XL) NUVBER OF DEVI CE RETRI ES
0434 SHFLOC = $02BE 702

0435 BOTSCR = $02BF 703 24 NORM 4 SPLIT

0436 PCOLRO = $02C0 704 3 MORE PLAYER COLOR REG STERS
0437 COLORO = $02C4 708 4 MORE GRAPHI CS COLOR REG STERS
0438 ; $02C9 713 (800) 23 SPARE BYTES

0439 RUNADR = $02C9 713 (XL) LOADER VECTOR

0440 HI USED = $02CB 715 (XL) LOADER VECTOR

0441 ZH USE = $02CD 717 (XL) LOADER VECTOR

0442 GBYTEA = $02CF 719 (XL) LOADER VECTOR

0443 LOADAD = $02D1 721 (XL) LOADER VECTOR

0444 ZLOADA = $02D3 723 (XL) LOADER VECTOR

0445 DSCTLN = $02D5 725 (XL) DI SK SECTOR Sl Z

0446 ACM SR = $02D7 727 (XL) RESERVED

0447 KRPDER = $02D9 729 (XL) KEY AUTO REPEAT DELAY

0448 KEYREP = $02DA 730 (XL) KEY AUTO REPEAT RATE

0449 NOCLIK = $02DB 731 (XL) KEY CLI CK DI SABLE

0450 HELPFG = $02DC 732 (XL) HELP KEY FLAG

0451 DMASAV = $02DD 733 (XL) SDVCTL (DMA) SAVE

0452 PBPNT = $02DE 734 (XL) PRI NTER BUFFER PO NTER
0453 PBUFSZ = $02DF 735 (XL) PRI NTER BUFFER Sl ZE

0454 GLBABS = $02E0 736 GLOBAL VARI ABLES, 4 SPARE BYTES
0455 RAVSI Z = $02E4 740 PERVANENT START OF ROM PO NTER
0456 MEMIOP = $02E5 741 END OF FREE RAM

0457 MEMLO = $02E7 743

0458 ; $02E9 745 (800) SPARE

0459 HNDLOD = $02E9 745 (XL) HANDLER LOADER FLAG

0460 DVSTAT = $02EA 746 DEVI CE STATUS BUFFER 4 BYTES
0461 CBAUDL = $02EE 750 CASSETTE BAUD RATE, 2 BYTES
0462 CRSINH = $02F0 752 1 = I NHI BI T CURSCR

0463 KEYDEL = $02F1 753 KEY DELAY AND RATE

0464 CH1 = $02F2 754

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (8 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0465 CHACT = $02F3 755

0466 CHBAS = $02F4 756 CHARACTER SET PO NTER
0467 NEWROW = $02F5 757 (XL) DRAW DESTI NATI ON
0468 NEWCOL = $02F6 758 (XL) DRAW DESTI NATI ON
0469 ROW NC = $02F8 760 (XL)

0470 COLI NC = $02F9 761 (XL)

0471 CHAR = $02FA 762

0472 ATACHR = $02FB 763 ATASCI | CHARACTER FOR CI O
0473 CH = $02FC 764

0474 FI LDAT = $02FC 764 COLOR FOR SCREEN FI LL
0475 DSPFLG = $02FE 766 DI SPLAY CONTROL CHARACTERS FLAG
0476 SSFLAG = $02FF 767 DI SPLAY START/ STOP FLAFG
0477 ;

0478 ;

0479 ; PAGE 3

0480 ;

0481 ;

0482 ; RESI DENT DI SK HANDLER/ SI O | NTERFACE

0483 ;

0484 DCB = $0300 768 DEVI CE CONTROL BLOCK

0485 DDEVI C = $0300 768

0486 DUNIT = $0301 769

0487 DCOVND = $0302 770

0488 DSTATS = $0303 771

0489 DBUFLO = $0304 772

0490 DBUFHI = $0305 773

0491 DTI MLO = $0306 774

0492 DBYTLO = $0308 776

0493 DBYTH = $0309 777

0494 DAUX1 = $030A 778

0495 DAUX2 = $030B 779

0496 TIMERL = $030C 780 I NI TIAL TI MER VALUE

0497 ADDCOR = $030E 782 (800) ADDI TI ON CORRECTI ON
0498 JMPERS = $030E 782 (XL) OPTI ON JUVPERS

0499 CASFLG = $030F 783 CASSETTE MODE WHEN SET
0500 TI MER2 = $0310 784 FI NAL VALUE, TIMERS 1 & 2 DETERM NE BAUD
RATE

0501 TEMP1 = $0312 786

0502 TEMP2 = $0313 787 (XL)

0503 TEMP2 = $0314 788 (800)

0504 PTI MOT = $0314 788 (XL) PRINTER TIME OUT
0505 TEMP3 = $0315 789

0506 SAVIO = $0316 790 SAVE SERI AL | N DATA PORT
0507 TI MFLG = $0317 791 TI ME OQUT FLAG FOR BAUD RATE CORRECTI ON
0508 STACKP = $0318 792 SI O STACK PO NTER SAVE
0509 TSTAT = $0319 793 TEMPORARY STATUS HOLDER
0510 HATABS = $031A 794 HANDLER ADDRESS TABLE, 38 BYTES

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (9 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557

MAXDEV
PUPBT1
PUPBT?2
PUPBT3

;1 OCB' s
| OCB

| CH D
| CDNO
| CCOM
| CSTA
| CBAL
| CBAH
| CPTL
| CPTH
| CBLL
| CBLH
| CAX1
| CAX2
| CAX3
| CAX4
| CAX5
| CAX6

PRNBUF

SUPERF
CKEY

CASSBT
CARTCK
ACWAR
M NTLK
G NTLK
CHLI NK
CASBUF

-
2
i
I

; SEE APPENDI X C FOR

801 MAXI MUM HANDLER ADDRESS | NDEX
829 (XL) POWER- UP/ RESET
830 (XL) POWER- UP/ RESET
831 (XL) POWER- UP/ RESET

$0321

$033D

$033E

$033F

$0340 832
$0340 832
$0341 833
$0342 834
$0343 835
$0344 836
$0345 837
$0346 838
$0347 839
$0348 840
$0349 841
$034A 842
$034B 843
$034C 844
$034D 845
$034E 846
$034F 847
$03C0 960
$03E8 1000
$03E8 1000
$03E9 1001
$03EA 1002
$03EB 1003
$03ED 1005
$03F9 1017
$03FA 1018
$03FB 1019
$03FD 1021

PACGE 4

$0480 1152

OTHER 1 OCB's, 112 BYTES
PRI NTER BUFFER, 40 BYTES
(800) 21 SPARE BYTES

(XL)
(XL)
(XL)
(XL)
(XL)
(XL)
(XL)
(XL)

SCREEN EDI TOR

START KEY FLAG
CASSETTE BOOT FLAG
CARTRI DGE CHECKSUM
RESERVED, 6 BYTES
RESERVED

CARTRI DGE | NTERLOCK
HANDLER CHAIN, 2 BYTES

CASSETTE BUFFER, 131 BYTES TO $047F

128 SPARE BYTES

PAGES 4 AND 5 USAGE

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (10 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0558 ;

0559 ; PAGE 5

0560 ;

0561 PAGE5 = $0500 1280 127 FREE BYTES

0562 ; $057E 1406 129 FREE BYTES | F FLOATI NG PO NT ROUTI NES
NOT USED

0563 ;

0564 ; FLOATI NG PO NT NON- ZERO PAGE RAM NEEDED ONLY | F FP IS USED

0565 ;

0566 LBPR1 = $057E 1406 LBUFF PREFI X 1

0567 LBPR2 = $05FE 1534 LBUFF PREFI X 2

0568 LBUFF = $0580 1408 LI NE BUFFER

0569 PLYARG = $05EO0 1504 PCLYNOM AL ARGUMENTS

0570 FPSCR = $05E6 1510 PLYARG+FPREC

0571 FPSCR1 = $05EC 1516 FPSCR+FPREC

0572 FSCR = $05E6 1510 =FPSCR

0573 FSCR1 = $05EC 1516 =FPSCR1

0574 LBFEND = $05FF 1535 END CF LBUFF

0575 ;

0576 ;

0577 ; PAGE 6

0578 ;

0579 ;

0580 PAGE6 = $0600 1536 256 FREE BYTES

0581 ;

0582 ;

0583 ; PAGE 7

0584 ;

0585

0586 BOOTRG = $0700 1792 PROGRAM AREA

0587 ;

0588 ;

0589 ; UPPER ADDRESSES

0590 ;

0591 ;

0592 RI TCAR = $8000 32768 RAM | F NO CARTRI DGE

0593 LFTCAR = $A000 40960 RAM I F NO CARTRI DGE

0594 COPAGE = $C000 49152 (800) EMPTY, 4K BYTES

0595 COPAGE = $C000 49152 (XL) 2K FREE RAM | F NO CARTRI DGE

0596 ; $C800 51200 (XL) START OF OS ROM
0597 CHOR&2
0598 ;

0599 ;

0600 ; HARDWARE REQ STERS

0601 ;

0602 ;

0603 ; SEE REGQ STER LI ST FOR MORE | NFORVATI ON

$CCO0 52224 (XL) | NTERNATI ONAL CHARACTER SET

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (11 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0604 ;

0605 ;

0606 HPOSPO = $D000 53248
0607 MPF = $D000 53248
0608 SI ZEPO = $D008 53256
0609 MIPL = $D008 53256
0610 SIZEM = $DO0C 53260
0611 GRAFPO = $DOOD 53261
0612 GRAFM = $D011 53265
0613 COLPMD = $D012 53266
0614 COLPFO = $D016 53270
0615 PRIOR = $D01B 53275
0616 GIl AR = $D01B 53275
0617 VDELAY = $D01C 53276
0618 GRACTL = $D01D 53277
0619 H TCLR = $DO1E 53278
0620 CONSOL = $DO1F 53279
0621 AUDF1 = $D200 53760
0622 AUDC1 = $D201 53761
0623 AUDCTL = $D208 53768
0624 RANDOM = $D20A 53770
0625 | RQEN = $D20E 53774
0626 SKCTL = $D20F 53775
0627 PORTA = $D300 54016
0628 PORTB = $D301 54017
0629 PACTL = $D302 54018
0630 PBCTL = $D303 54019
0631 DVACLT = $D400 54272
0632 DLI STL = $D402 54274
0633 HSCROL = $D404 54276
0634 VSCROL = $D405 54277
0635 CHBASE = $D409 54281
0636 WSYNC = $D40A 54282
0637 VCOUNT = $D40B 54283
0638 NM EN = $D40E 54286
0639 ;

0640 ; FLOATI NG PO NT MATH ROUTI NES
0641 ;

0642 AFP = $D800 55296
0643 FASC = $DB8E6 55526
0644 | FP = $DOAA 55722
0645 FPI = $DOD2 55762
0646 ZFRO = $DA44 55876
0647 ZF1 = $DA46 55878
0648 FSUB = $DA60 55904
0649 FADD = $DA66 55910
0650 FMJUL = $DADB 56027

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (12 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682

0683 ;

0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697

56104
56640
56713
56717
56728
56732
56743
56747
56758
56768
56780
57037
57041

OPERATI NG SYSTEM

; MODULE ORI G N TABLE

57344
58368
58496
58534
59093
59716
60906
61048
61048
61667
62436

CHARACTER SET, 1K
VECTOR TABLE

RAM VECTOR | NI TI AL VALUE TABLE
Cl O HANDLER

| NTERRUPT HANDLER

SI O DRI VER

DI SK HANDLER

PRI NTER HANDLER

CASSETTE HANDLER

MONI TOR/ POAER UP MODULE
KEYBOARD/ DI SPLAY HANDLER

; VECTOR TABLE, CONTAINS ADDRESSES OF Cl O ROUTINES I N THE
; FOLLOW NG ORDER. THE ADDRESSES |IN THE TABLE ARE TRUE ADDRESSES- 1

FDIV = $DB28
PLYEVL = $DD40
FLDOR = $DD89
FLDOP = $DD8D
FLD1IR = $DD98
FLDIP = $DD9C
FSTOR = $DDA7
FSTOP = $DDAB
FMOVE = $DDB6
EXP = $DDCO
EXP10 = $DDCC
LOG = $DECD
LOGIO = $DED1
CHORG = $E000
VECTBL = $E400
VCTABL = $E480
Cl OORG = $E4A6
| NTORG = $E6D5
S| OORG = $E944
DSKORT = $EDEA
PRNORG = $EE78
CASORG = $EE78
MONORG = $FOE3
KBDORG = $F3E4
- ADDRESS + 0
; + 2
: + 4
; + 6
; + 8
; + A
; + C
; + F

OPEN

CLCSE

GET
PUT

STATUS

SPECI AL

JMP TO I NI TI ALI ZATI ON
NOT USED

EDI TRV = $E400 58368 EDI TOR

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (13 of 14) [8/26/2001 1:42:09 PM]

ATR: Appendix B - OS Equates

0698
0699
0700
0701
0702

0703 ;

SCRENV
KEYBDV
PRI NTV
CASETV

)

7

0704 ;

0705
0706
0707
0708
0709
0710
0711
0712
0713
0714

DSKI NV
Cl ov

SI OV

SYSVBV
VBI VAL
Xl TVvBV
VBI XVL
BLKBDV
WARMSV
COLDSV

$E410
$E420
$E430
$E440

58384
58400
58416
58432

ROM VECTORS

$EA53
$EA56
$E459
$EASF
$E460
$E462
$E463
$E471
$E4AT4
SEATT

58451
58454
58457
58463
58464
58466
58467
58481
58484
58487

SCREEN

KEYBOARD
PRI NTER
CASSETTE

ADR AT VVBLKI
EXIT VBI

ADR AT WWBLKD
VEMO PAD MCDE

BE

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrb.html (14 of 14) [8/26/2001 1:42:09 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

ATR: Appendix C - Memory Use

APPENDIX C
MEMORY USE

Page O
$00- $7F

Qperating system zero-page. The entire first half of page zero is
reserved for the operating system

$80- $FF

Free zero-page. The top half of page zero is free if BASICis

di sabl ed. BASIC uses all but $CB-$D1. The floating point math

routi nes use $D4-$FF. If the floating point arithnetic package is not
used this nmenory is free.

Page 1
$100- 1FF

This is the 6502 stack. The stack pointer initialized to $1FF and
noves downward as the stack is filled.

Pages 2-5
$200- $47F

This area is used for operating system database variables. Parts
whi ch are not used in sone particul ar progranms, such as the cassette
buffer or printer buffer, may then be used for other purposes. See
the O S. equate listing for these |ocations.

$480- $57D ($480-$6FF if no floating point)

This is called the user work space. It is free to be used by
prograns. |f the floating point arithnetic package is not used the
user work space extends to $6FF. This area is used by BASIC.

$57E- $5FF

This area is used by the floating point arithnetic package. It is
free if the package is not used.

http://trident.mcs.kent.edu/~clisowsk/8bit/atrc.html (1 of 3) [8/26/2001 1:42:10 PM]

ATR: Appendix C - Memory Use

Page 6
$600- 6FF
Atari has solemly sworn never to put anything in this page of
menory.
Page 7-the screen region
$700

This is called the boot region. Mst machi ne | anguage prograns which
don't use DOS | oad at this address. DOS extends from $700- $1CFB

MVEM_O

The address pointed to by the O S. database variable MEM.O [$02E7, 2
(743)] is the first byte of free nenory. This pointer is usually
changed by any programis initialization routine. For exanple, upon
power -up, MEM.O points to $700. Wen DOS | oads in, DOS changes MEMLO
to point to $2A80. If an AUTORUN. SYS programthen |l oads in just above
DOS, such as DISKIO, it will usually change MEM.O to poi nt above
itself. One inportant reason for this is to protect the program from
BASI C. BASIC uses nenory starting at MEM.O.

VEMIOP

MEMIOP [$2E5,2 (741)] is set by the O S. whenever a graphics node is
entered. The graphics region is at the very top of ram and extends
downward. The address MEMIOP points to depends on how nuch nenory the
screen regi on uses.

APPVHI

APPVHI [$0E, 2 (14)] should be set by any programto point to the

hi ghest address required by the program |If the O S. cannot set up a
screen W thout going below APPVMH it wll return a

not - enough- nenory-for-screen-node error.

The cartridge slots
$8000 (32768)

This is the beginning of the 8K bytes used by the right cartridge sl ot
of the 800. This is also where 16K cartridges begin. |If there is no
cartridge here it is ram

$A000 (40960)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrc.html (2 of 3) [8/26/2001 1:42:10 PM]

ATR: Appendix C - Memory Use

This is the beginning of the |eft cartridge of the 800 or the only
cartridge slot on all other nodels. This is where the BASI C ROM
resides in the XL/ XE nodels. This area is RAMis there is no
cartridge or BASIC is disabled on XL/ XE nodel s.

above the cartridges
$C000- $CFFF (49152-53247)

This area is enpty on the 800. Sonetines special ROM chips, such as
Ominon are wired in here. On the XL/ XE nodel s $C000-C/7/FF is free ram
If there are no cartridges. On XL/ XE nodels, the OS. ROMstarts at
$C800

$D000- $D7FF (53248- 57373)

This area is taken up by the hardware chips. The chips actually take
only a fraction of this space. |If these addresses are further decoded
there is space for many, many nore hardware chips. For exanple, The
Pl A chip uses 256 bytes of nenory but needs only 4 bytes. There is
roomfor 64 PIA chips in this reserved nenory.

$E000- E3FF (57344-58367)

This is the | ocation of the ATASCI|I character set.
$E400- FFF7 (58368- 65527)

This is the operating system ROM

$FFF8- $FFFF (65528- 65535)

These | ast 8 bytes contain the addresses of the interrupt vectors.
Upon power up the 6502 gets a reset pulse and | ooks up the reset
routi ne here.

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrc.html (3 of 3) [8/26/2001 1:42:10 PM]

http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

Table of Contents

Table of Contents

[00] Introduction and Preface.

[01] CENTRAL INPUT/OUTPUT UTILITY, (CIO)

[02] THE DISK OPERATING SYSTEM (D:)

[03] USING THE DOS 2 UTILITIES (DUP.SY S)

[04] THE CASSETTE HANDLER (C:)

[05] THE KEYBOARD HANDLER (K:)

[06] PRINTER HANDLER (P:)

[07] SCREEN EDITOR (E:)

[08] THE DISPLAY HANDLER (S)

[09] THE RESIDENT DISK HANDLER

[10] SYSTEM INTERRUPTS

[11] THE FLOATING POINT ARITHMETIC PACKAGE

[12] BOOT SOFTWARE FORMATS

[13] THE SERIAL INPUT/OUTPUT INTERFACE (SIO)

[14] THE HARDWARE CHIPS

[15] DISPLAY LISTS

[16] PLAYER AND MISSILE (PM) GRAPHICS

[17] SOUND

http://trident.mcs.kent.edu/~clisowsk/8bit/atrtblc.html (1 of 2) [8/26/2001 1:42:10 PM]

Table of Contents

[18] THE JOYSTICK PORTS

[19] MISC

[20] THE XL AND XE MODELS

[A.] Appendix A

[B.] Appendix B

[C.] Appendix C

Craig Lisowski (clisowsk@mcs.kent.edu)

http://trident.mcs.kent.edu/~clisowsk/8bit/atrtblc.html (2 of 2) [8/26/2001 1:42:10 PM]

http://trident.mcs.kent.edu/~clisowsk/8bit.html
http://trident.mcs.kent.edu/~clisowsk/info.html
mailto:clisowsk@mcs.kent.edu

	kent.edu
	Atari* System Reference Manual
	ATR: Chapter 1 - CIO
	ATR: Chapter 2 - (DOS D:)
	ATR: Chapter 3 - (DOS 2 DUP.SYS)
	ATR: Chapter 4 - (C:)
	ATR: Chapter 5 - (K:)
	ATR: Chapter 6 - (P:)
	ATR: Chapter 7 - (E:)
	ATR: Chapter 8 - (S:)
	ATR: Chapter 9 - (SIO)
	ATR: Chapter 10 - System Interrupts
	ATR: Chapter 11 - Floating Point Math
	ATR: Chapter 12 - Boot Formats
	ATR: Chapter 13 - (SIO)
	ATR: Chapter 14 - Hardware Chips
	ATR: Chapter 15 - Display Lists
	ATR: Chapter 16 - PM Graphics
	ATR: Chapter 17 - Sound
	ATR: Chapter 18 - Joystick Ports
	ATR: Chapter 19 - Misc
	ATR: Chapter 20 - XL/XE Models
	ATR: Appendix A - Hardware Registers
	ATR: Appendix B - OS Equates
	ATR: Appendix C - Memory Use
	Table of Contents

