

ATARIa Microsoft BASIC Instructions

ABS
AFTER
ASC
AT
ATN
AUTO
CHR$
CLEAR
CLEAR STACK
CLOAD
CLOSE
CLS
COLOR
COMMON
CONT
COS
CSAVE
DATA
DEF
DEL
DIM
DOS
END
EOF
ERL
ERR
ERROR
EXP
FILL
FOR ... TO ... STEP
FRE (0)
GET
GOSUB
G O T 0
GRAPHICS
IF ... THEN
IF ... THEN ... ELSE
INKEY$
INPUT
INSTR
I NT
KILL
LE FT$
LEN
LET

LINE INPUT
LIST
LOAD
LOCK
LOG
MERGE
MID$
MOVE
NAME ... TO
NEW
NEXT
NOTE
O N ERROR
O N ... GOSUB
O N ... G O T 0
OPEN
OPTION BASE
OPTION CHR
OPTION PLM
OPTION RESERVE
PEEK
PLOT
POKE
PRINT
PRINT USING
PUTIGET
RANDOMIZE
READ
REM
RENUM
RESTORE
RESUME
RETURN
RIGHT$
RND
RUN
SAVE
SAVE ... LOCK
SCRNB
SETCOLOR
SGN
SIN
SOUND
S PC
SQR

STACK
STATUS
STOP
STR$
STRING$ (N,A$)
STRING$ (N,M)
TAB
TAN
TIME
TIME$
TROFF
TRON
UNLOCK
USR
VAL
VARPTR
VERIFY
WAIT
Jr (Concatenation)

ATARI MICROSOFT BASIC
INSTRUCTION MANUAL

ATARI" a A Warner Cornrnun~cations Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division.
However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A.
MANUAL @ 1981 ATARI, INC.

PROGRAM @ 1981 M ICROSOFT

PREFACE

In this manual you will find all the commands and statements used by A T A R P
Microsoft BASIC. The INSTRUCTION list on the inside front cover is in alphabetical
order with page numbers for your convenience.

BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz. I t
was designed to be an easy computer language to learn and use. Many additions in r e
cent years have made BASIC a complete and useful language for skilled programmers.

This reference manual does not teach BASIC. Those who wish to learn BASIC should
read an introductory book. Helpful books are: Computer Programming in BASIC for
Everyone by Dwyer and Kaufman, and Basic BASIC by James S. Coan.

Preface iii

CONTENTS

PREFACE ...
I l l

- -- - -

LOADING INSTRUCTIONS

I MICROSOFT OVERVIEW 1

What Is a Program?
Key words
Line Construction

Quotation Marks
The Comma
Use of Semicolon in PRINT Statement
The Colon

2 EDITING 5

Keyboard Operation
Special Function Keys
Cursor Control Keys

3 CONSTANTS, VARIABLES, AND NAMES 9

Single-Precision Real Constants
Single-Precision Real Variables
DEFSNC
Double-Precision Real Constants
Double-Precision Real Variables
DEFDBL
Integer Constants
Integer Variables
DEFINT
String Constants
String Variables
DEFSTR
Hexadecimal Constants

Contents v

4 NUMERIC AND STRING EXPRESSIONS 15

Numeric Expressions
Relational Operators
Relational and Logical Symbols
Arithmetic Symbols

String Expressions
Relational Operators in Strings

5 C O M M A N D S 19

NEW
RUN
DOS
LIST
AUTO
DE L
SAVE
SAVE ... LOCK
LOAD
CLOAD
CSAVE
VERIFY
MERGE
RENUM
LOCK
UNLOCK
KILL
NAME ... TO
TRON
TROFF

6 STATEMENTS 29

REM or ! or '
LET
MOVE
STOP
CONT
END
GOT0
IF ... THEN
IF ... TH EN ... ELSE
WAIT
FOR ... TO..STEP

Contents vi

NEXT
GOSUB
RETURN
ON ... COT0
ON ... GOSUB
ON ERROR
ERROR
E RL
ERR
AFTER
CLEAR STACK
STACK
RESUME
OPTION BASE
CLEAR
COMMON
RANDOMIZE
OPTION PLMI, OPTION PLM2, OPTION PLMO
OPTION CHRI, OPTION CHR2, OPTION CHRO
OPTION RESERVE
VARPTR

7 INPUT/OUTPUT STATEMENTS 41

PRINT
TAB
SPC
PRINT USING
INPUT
LINE INPUT
DATA
READ
RESTORE
AT
OPEN
CLOSE
NOTE
PUTICET
STATUS
EOF

8 ARRAYS 53

About Arrays
DIM

Contents vii

9 FUNCTION LIBRARY 55

ABS
I NT
SCN
SQR
RND
LOG
EXP
SIN
COS
ATN
TAN
PEEK
POKE
FRE (0)
USR
TIME

10 STRINGS 59

+ (Concatenation Operator)
MID$
LEFTS
RIGHTS
LEN
ASC
VAL
CHRS
INSTR
STRS
STRINGS (N,A$)
STRINGS (N,M)
INKEYS
TIMES
SCRNS

11 USER-DEFINED FUNCTION 63

DEF

Contents viii

12 GRAPHICS

Graphics Overview
GRAPHICS
COLOR
SETCOLOR
PLOT
FILL
CLS

Point-Plotting Modes

13 PLAYER-MISSILE GRAPHICS

Players and Missiles
Making a Player Out of Paper
How ATARI Microsoft BASIC Instructions Assist

Player-Missile Graphics
Color Control
Size Control
Position and Movement

Vertical
Horizontal
Diagonal

Priority Control
Priority Select
Enable Fifth Player

Collision Control
Clearing Collision Registers

Player-Missile Graphics Demonstration Program
Annotation

14 SOUND

15 CAME CONTROLLERS 89
- - - --

Paddle Controllers 89
Joystick Controllers 90
Console Keys 91

Contents i x

APPENDICES

SAMPLE PROGRAMS
GRAPHICS MODES PROGRAMS
ALTERNATE CHARACTER SETS
DERIVED FUNCTIONS
MEMORY LOCATIONS
PROGRAM CONVERSIONS
CONVERSION FROM COMMODORE (PET)

BASlC VERSION 4.0
CONVERTING RADIO SHACK TRS-80 PROGRAMS TO

ATARI MICROSOFT BASIC
CONVERTING APPLESOFT PROGRAMS TO

ATARI MICROSOFT BASlC
CONVERTING ATARI 8K BASlC

TO ATARI MICROSOFT BASlC
ATASCI I CHARACTER SET
ALPHABETICAL DIRECTORY

OF BASlC RESERVED WORDS
ERROR CODES
USE OF THE CIO CALLING USR ROUTINES
ACTIONS TAKEN WHEN PROGRAM ENDS

INDEX

ILLUSTRATIONS

Machine Representation of Single-Precision Real
Machine Representation of Double-Precision Variable
Machine Representation of Integer Variable
Player-Missile Graphics RAM Configuration
Mapping the Player
Joystick Controller Positions
Game Controllers
Joystick Triggers
Amount of Memory per Character
Redefining a Character

Contents x

TABLES

Decimal, Hexadecimal, and Binary Equivalents
List of Status Codes
The ATARl Hue (SETCOLOR Command)

Numbers and Colors
Craphics Modes and Screen Formats
Characters in Craphics Mode 1 and 2
Default Colors, Mode Setcolor, and Color
SETCOLOR Register Assignments
Registers Controlling Width of Player-Missiles
Player-Missile Horizontal Position Registers
Collision Control Registers for Player-Missiles
Frequency Chart o f Pitch Values
Useful OS Data Base Addresses
Hardware Addresses

Contents xi

LOADING INSTRUCTIONS

Important: The disk-based release of ATARIB Microsoft BASlC requires that all car-
tridges (ATARI BASIC, Assembler Editor, games, and the like) be removed from the
front cartridge slots of your computer. You will need a blank diskette in addition to the
ATARl Microsoft BASlC diskette on which to store programs.

Warning: The ATARI Microsoft BASlC diskette is writeprotected. Do not attempt to
punch a notch in the corner in order to write on it. Attempting to make a readlwrite
diskette out of your ATARl Microsoft BASlC diskette could destroy BASlC and void all
warranties.

Use the following setup procedure to load ATARl Microsoft BASIC, format a blank
diskette, write DOS files, create MEM.SAV, and transfer ClOUSR and DIR files (see
Quick-Reference Guide for a list of timesaving steps).

Connect the ATARl 800 Home Computer to a television set and to a wall
outlet as instructed in the operators manual.

Note: ATARl Microsoft BASlC requires a minimum of 32K of RAM.

Connect the ATARl 810TM Disk Drive to the ATARI 800 Home Computer and
to a wall outlet as instructed in the ATARl 810 Disk Drive Operators Manual.

Turn on your television set.

Turn the POWER (PWR) switch to ON for Disk Drivel. Disk drive numbers are
set by switches located in the back of your disk drive. Consult your ATARI 810
Disk Drive Operators Manual for drive numbers. Turn the POWER (PWR)
switch to ON for any other disk drives you wish to use. Two red lights (the
BUSY light and the PWR ON light) will come on.

When the BUSY light goes out on Disk Drive 1, open the drive door by press-
ing the door handle release lever.

Hold the ATARl Microsoft BASlC diskette with the label in the lower right cor-
ner and the arrow pointing towards the disk drive. Insert the diskette into the
disk drive and close the disk drive door.

Switch the computer console POWER (PWR) to ON. ATARl Microsoft BASIC
will load into the computer's memory automatically.

Type DOS . The Disk Operating System I1 version 2.0s will load into
your computer's memory.

Remove your ATARI Microsoft BASIC Diskette from the disk drive and insert
a blank diskette (CX8202).

Use the I DOS option to format the blank diskette.

Use the H DOS option to write DOS files onto the diskette.

Loading Instructions xiii

12. Use the N DOS option t o create MEM.SAVE. The MEM.SAV file is used to
save the ATARl Microsoft BASIC program in memory when you use the DOS
command. See the ATARl Disk Operating System 11 Reference Manual for
more information on MEM.SAVE.

13. I f you have two disk drives you can use the C DOS option t o copy files from

the ATARl Microsoft BASIC.diskette. I f you have one disk drive you must use
the 0 DOS option.

Copying files with two disk drives:

Put ATARI Microsoft BASIC in Drive 2

Put formatted diskette in Drive 1.

Type C

Respond to COPY- FROM, TO7 by typing D2:*.*,DI:*.*

Turn of f the computer and reload ATARl Microsoft BASIC. MEM.SAV is
now at work.

Copying files with one disk drive:

Put ATARl M~crosof t BASIC in d ~ s k drive

Type 0 F:iZ$;;&
Respond to NAME OF FII-E TO MOVE7

Press g:"",:i# slnce source d~sk 1s In place

Insert blank as DESTINATION DISK and press $733;
Repeat the 0 procedure w ~ t h the file DIR

Turn of f computer and reload ATARl M~crosof t BASIC M E M SAV 1s
now at work

14. Remove your newly created program storage diskette and insert the ATARl
Microsoft BASIC diskette. Turn your computer console off and then back on
again to reload and reinitialize BASIC. To activate the MEM.SAV file you
must remove BASlC and insert a program storage diskette. Put your program
storage diskette back into the disk drive and press . By pressing

with your program storage diskette in the disk drive, the
MEM.SAV diskette file wil l save the correct return locations for future returns
t o BASIC.

15. I f you wish to have duplicate program storage diskettes, now is the t ime to
make them since you have not yet stored any programs. Use DOS option I to
format the duplicate storage diskette. Then use the H option to write DOS
files. Now use the I option to duplicate the program storage diskette.

You should now remove the ATARl Microsoft BASIC diskette and hereafter use the
new program storage diskette(s) you have created. With a program diskette you can
save and load the programs you write, and return t o BASIC.

wi th a program storage diskette in the disk drive brings you back
mstart," which mean e variables and your program wil l be

just as you left it before you typed DOS

x iv Loading Instructions

QUICK-REFERENCE GUIDE

Boot* system with ATARl Microsoft BASIC Master Diskette.

Type DOS

Remove BASIC Master Diskette.

Format blank diskette. (DOS 2.05)

Write DOS files to the new diskette.

Create MEM.SAV on the diskette.

Copy from BASIC Master Diskette to your new diskette, ClOUSR and
DIR.

Turn of f your system and reboot* with ATARl Microsoft BASIC.

Insert newly created diskette into Drive 1 .

Type DOS

After DUP file is loaded, press

Use your newly created program storage diskette to make duplicate
program storage diskettes (DOS option J).

Note: Steps 10,11, and 12 write the correct Microsoft memory images into
the MEM.SAV files on your Microsoft BASIC program storage diskette.

*BASIC loads into RAM automatically (boots) when you turn o n the com-
puter.

Loading Instructions xv

MICROSOFT OVERVIEW

WHAT IS A
PROC RAM?

ATARIB Microsoft BASlC is a customized and enhanced BASlC programming
language. I t was developed by Microsoft for the ATARl 800TM Home Computer, which
uses the 6502 microprocessor and customized graphics and sound-integrated circuits.

In the development of ATARl Microsoft BASIC, the two primary considerations were
processing speed and compatibility with other microcomputer BASlC languages. The
fast ATARl 800 Computer clock rate of 1.8 MHz combines with the stateof-theart
~ i c i o s o f t design to give high microprocessor throughput speed. ATARl Microsoft
BASlC is a superset of the existing microcomputer languages. That is, ATARl Microsoft
BASlC combines the capabilities of other microcomputer BASlC languages with some
unique features. New graphics features have been added to take advantage of the
hardwaresupported player-missile graphics. Sound capabilities now include the ability
to set the length of time a sound is heard. You can renumber and merge programs easi-
ly with Microsoft BASIC. This is a powerful language with software tools to fit a variety
of needs.

A program is a list of steps (statements) that you wish the computer to perform. Every
statement stored in memory must have a line number. The lowest line number is 0 and
the highest allowable line number is 63999. Statements are performed in line number
order starting with the lowest numbered line. You can change the order in which the
statements are performed by branching or jumping to other line numbers.

Line numbers always precede statements that you want stored in memory. Because the
statements that have line numbers wait in memory until the command RUN is given,
they are written in what is called the deferred mode.

To be exact, execution of a program waits until you type the word RUN and press the
key. When ATARl Microsoft BASlC is first loaded, it is ready for you to write

programs (deferred mode) or execute statements immediately (direct mode).

When the computer is ready to accept input, a prompt >appears on your television
screen. When you see the >, you can enter statements with line numbers (deferred
mode) or statements without line numbers for immediate execution.

Let's write a BASlC program in the deferred mode:

>
100 PRINT 7 * 7

RUN
49

This singleline program does not execute immediately. The program waits to perform
the statement until you type RUN and press without a
line number, executes the program immediat key.

Microsoft Overview 1

KEYWORDS Keywords must be spelled out. Abbreviations are not legal syntax in ATARI Microsoft
BASIC.

Keywords are words the computer recognizes. Each keyword tells the computer what

you want done. The words IF, COSUB, INPUT, and COT0 are keywords. Keywords
can be thought of as the verbs in the vocabulary of your computer. If you write a state
ment that uses a keyword the computer does not recognize, BASIC will give you an
ERROR statement when you run the program. ATARl Microsoft BASIC does not allow
you to use keywords as variables, but does allow you to embed keywords in the
variable names. That is, IF and COSUB cannot be variables, but LIFE and RCOSUB are
allowed. A complete list of keywords is given in Appendix L.

LINE The form of the BASIC statement looks like this:
CONSTRUCTION

Line
Number Statement

100 IF A < > B THEN 630 ELSE 210

Just as there are punctuation marks in the English language, so there are quotes, com-
mas, semicolons, and colons in BASIC. The rules of punctuation are listed in this
manual with the keywords that require them or have them as options. Following is a
summary of punctuation use.

QUOTATION MARKS

The quotation marks are used to indicate where typed characters begin and end. Just
as we use quotes in English to mark the beginning and end of a speaker's words, so it is
with BASIC. The quote mark means that the material quoted constitutes a string
variable or string constant; strings will be covered later in the text. For now it is enough
to know that quotes tell the computer where to begin and end a string. The string in
this example program will be told when to start and stop printing on the screen by
quotes:

Example Program:

100 PRINT "START PRINTING ON SCREEN- - - ---NOW STOP"

RUN

START PRINTING ON SCREEN- - - - --NOW STOP

THE COMMA

The comma has three uses.
Use the comma to separate required items after a keyword. The keyword
SOUND has five different functions in ATARl Microsoft BASIC. Each parameter
is separated by commas. For example, SOUND 2,&79,10,8,60 means voice 2,
pitch hexadecimal 79 (middle C), noise 10, volume 8, and duration in jiffies (1160
of a second) 60. Another example of the comma is the statement SETCOLOR
4,4,10 which means register 4, pink, bright luminance. The comma tells where
one piece of information ends and the next begins. BASIC expects to find an ex-
act order separated by commas.

2 Microsoft Overview

Use the comma to separate optional values and variable names. You can input
any number of variable names on a single line with an INPUT statement. The
variable names are of your own invention. You can have as many of them as
you like as long as you separate them with a comma. For example, INPUT
A,B,C,D,E tells the computer to expect five values from the keyboard.

Use the comma to space advance to the next output field in a PRlNT statement.
When used in a PRlNT statement at the end of a quoted string or between ex-
pressions, the comma will advance printing to the next column which is a multi-
ple of 14. For example, if X is assigned the value of 25 then the statement 10
PRlNT "YOU ARE", X, "YEARS OLD" will have the following spacing when you

The semicolon is used for PRlNT statement output. The semicolon leaves one space
after variables and constants separated by semicolons. A positive number printed with
semicolons will have a leading blank space. Negative numbers will have a minus sign
and no preceding blank space. For example, if X is assigned the value of 25, then the
statement 10 PRINT "YOU ARE";X;"YEARS O L D will have the following spacing when
the program is run:

run it:

YOU ARE 25 YEARS OLD

t 1 4 columns-,

If X is assigned the value of -25, then the statement 10 PRINT "YOU AREU;X;"YEARS
OLD" will have the following spacing when the program is run.

4 1 4 columns+

YOU ARE-25 YEARS OLD

YOU ARE 2 5
YEARS OLD

USE OF SEMICOLON IN PRlNT STATEMENT

If you want more than one space left before and after the 25 you must leave the space
in the string within the quotes. Thus,

10 PRlNT "YOU ARE ";25;" YEARS O L D

will give the following spacing when the program is run:

YOU ARE 25 YEARS OLD

The semicolon can also be used to bring two PRlNT statements, string constants, or
variables together on the same line of the television screen. For example:

100 PRlNT "THE AMOUNT IS $";
120 AMOUNT=20
125 REM BOTH STRING CONSTANT AND VARIABLE
126 REM WILL PRlNT ON THE SAME LINE
130 PRlNT AMOUNT

Microsoit Overview 3

THE COLON

The colon is used to join more than one statement on a line with a single line number.
Thus, many statements can execute under the same line number. By joining more than
one statement on a single line, the program requires less memory.

For example:

Many times this also helps the programmer organize the program steps. The same p r e
gram with line numbers instead of colons uses more bytes of memory:

10 X=5
20 Y=3
30 Z=X+Y
40 PRINT Z
50 END

4 Microsoft Overview

EDITING

KEY BOARD The ATARI 800 Computer keyboard has features that differ from those of an ordinary
OPERATION typewriter. TO print lowercase letters on your television scre

key. The keyboard wil l now operate like a typewriter, with the
case letters. Since most BASIC programs are w n uppercase, you wil l normally
want to r uppercase mode. Press the key and hold it down while you
press the key to return to uppercase

SPECIAL
FUNCTION
KEYS

a Inverse (Reverse) Video Key or ATARl logo key. Press this key to
reverse the text on the screen (dark text on light background).
Press kev a second time to return to normal text.

Lowercase Key. Press this key to shift the screen characters
from uppercase (capitals) to I
characters to uppercase, press the
key simultaneously.

Escape Key. Press this key t o enter a command to be entered in-
to a program for later execution.

Example: To clear the screen, enter:

10 PRINT "

and press . Then, whenever line 10 is executed the screen
will be cleared.

is also used in conjunction with other keys to print special
graphics control characters. See the graphics in Appendix K for
specific keys and their screen-character representations.

Break Key. Press this key to stop your program. You may
resume execution by typing CON1 and pressing

System Reset Key. This key is similar to in that i t also
stops program execution. Use this key to return the screen
display to graphics mode 0, and to clear the screen.

Editing 5

Tab Key. Press and the keys simultaneously to
set a tab. To clear a tab, press th and keys
simultaneously. Used alone, dvan or to
the next tab ~osition. In deferred mode, set and clear tabs by
adding a line number, the command
mark, and pressing the

PRINT, and a quotation

Examples:

100 PRINT "
200 PRINT "

If tabs are not set, they default to columns 7,15, 23, 31, and 39.

Insert Key. Press the and
line. To insert le c
keys simultaneously.

CURSOR In addition to the special function keys, there are cursor control keys that allow im-

CONTROL KEYS mediate editing capabilities. These keys are used in conjunction with the or
keys. The keys that offer special editing features are described in the following
paragraphs.

Hold the control key down while pressing the arrow keys to
produce the cursor control functions that allow you to
move the cursor anywhere on the screen without changing
any characters already on the screen. Other key combina-
tions set and clear tabs, halt and restart program lists, and
control the graphics symbols. Striking a key while pressing
the key wi l l produce the upper left symbol on those
keys that have three functions.

Moves cursor up one line without changing the program or
display.

Moves cursor one space to the right without disturbing the
program or display.

Moves cursor down one line without changing the program
or display.

Moves cursor one space to the left without disturbing the
program or display.

Inserts one character space.

Deletes one character or space

Temporarily stops and restarts screen display. You can use
1 while listing a program or while running a program.

Rings buzzer.

6 Editrng

Hold the key down while pressing the numeric keys to display the symbols
shown on the upper half of those keys.

Inserts one line.

Deletes one line.

Returns screen display to uppercase alphabetic characters.

Stops program execution or program list, prints a > on the
screen, and displays the cursor (I) underneath.

Editing 7

CONSTANTS, VARIABLES,
AND NAMES

There are five types of constants in Microsoft BASIC: singleprecision real, doub le
precision real, integer, string, and hexadecimal.

FORMING A VARIABLE NAME

In ATARl Microsoft BASIC a variable name can be up t o 127 characters long. The
allowable characters include the alphabet ABCDEFCHIJKLMNOPQRSTUVWXYZ,
numbers 1234567890, and underscore (-). The underscore character (-) is a legal
character in ATARl Microsoft BASIC. Numbers are allowed in variable names as long
as the variable name starts with an alphabetic character. The variable name X9 is
allowed, while 9X is not allowed.

SPECIFYING PRECISION OF NUMERIC VARIABLES

After you create a variable name, you can specify the precision of the variable in one
o f two ways. The variable name itself can have a variabletype identifier (none, #, %, 6)
as the last character or you can predefine the starting letter as a variable type using
DEFSNC, DEFDBL, DEFINT, or DEFSTR.

PREDEFINING VARIABLE PRECISION

The advantage of predefining the variable type is that you can change all the variables
from one type to another without having t o go through your program changing all
variable names. Changing DEFINT A t o DEFDBL A, for example, changes all variables
beginning with the letter A from integer type to double-precision type. Your other o p
tion is t o use a type tag identifier: #(double precision), % (integer), and $ (string). Tag
identifiers are attached to the end of the variable name itself. If variables should have
both DEF identification of type and a tag identifier (#, %, $), the tag identifier has
precedence.

Although DEFSNC, DEFDBL, DEFINT, and DEFSTR can be placed anywhere in a p r o
gram, they are usually placed near the beginning. In all cases the DEF statement must
precede the variable whose type i t defines.

SINGLE-
PRECISION REAL
CONSTANTS

SINGLE-
PRECISION REAL
VARIABLES

Examples: 65E12, 333335, .45E8, .33E-6

If you do not otherwise specify a constant (and i t is outside the range-32768 to 32767),
i t is singleprecision real.

Examples: AMT, LENGTH, BUFFER

If you d o not declare the precision of a variable, i t becomes single-precision real by
default. Numbers stored as single precision have an accuracy of six significant figures.
The exponential range is -38 to + 38.

Constants, Variables
and Names 9

DEFSNG Format: DEFSNC letter, I beginnin~letter-ending_letter (
Examples: 100 DEFSNC K, S, A-F

120 DEFSNC Y

Variable names beginning with the first letters identified in DEFSNC will be single
precision real variables. In DEFSNC K, S, A-F, the letter range A-F means ABCDEF will
be single precision. Variable names starting with K and Swill also be single precision in
this example. Single letters and ranges of letters must be separated by commas.

Example Program:

10 DEFSNC A-F
20 COUNTER=COUNTER+l
30 PRINT COUNTER
40 COT0 20

In the DEFSNC example program, all variable names beginningwith the letter C will be
single precision. Thus, COUNTER is single precision in this example because it starts
with C. If counter were COUNTER# (# means double precision), it would have double
precision even though it is defined as single precision. Keep in mind that the tag iden-
tifier in a variable name takes precedence.

Figure 3-1 illustrates how singleprecision real numbers are represented in memory.

+EX -I* I MANTISSA I *
I I

I BYTE O I BYTE
BYTE 2 BYTE 3

mantissa sign bit

exponent sign bit implicit radix point

Figure 3-1 Machine Representation of Single-Precision Real

DOUBLE- Examples: 45D5, 23D6, 8888888D-11
PRECISION REAL
CONSTANTS You can specify doubleprecision real in the constant by putting the letter D before the

exponential part. Doubleprecision real numbers are stored in 8 bytes. Numbers are ac-
curate to 16 decimal digits.

Constants, Variables
10 and Names

DOUBLE- Examdes: DBL#, x#, LCNO#

PRECISION REAL
VARIABLES The pound sign (#) is the identifier for double-precision real variables. A double-

precision real variable has 8 bytes. The exponent and sign are stored in the first byte.
The range is the same as single precision -38 t o +38. The accuracy is 16 significant
figures in double-precision real. The pound sign (#) identifier is placed after the variable
name.

DEFDBL

INTEGER
CONSTANTS

INTEGER
VARIABLES

Format: DEFDBL letter,] beginningJetter-ending-letter(
Examples: 10 DEFDBL C-E, Z

20 DEFDBL R

Variable names starting with letters identified by the DEFDBL statement are double-
precision real. In the example above CDE, Z, and R are all declared as double-
precision. The variable name E l would be a double-precision variable because the
variable name begins with E.

Figure 3-2 illustrates how double-precision real numbers are represented in memory.

I I I I I I
M A N T I S S A *

1 BYTE 0 I BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

Figure 3-2 Machine Representation o f Double-Precision Variable

exponent

Examples: 23, -9999, 709, 32000

I
mantissa sign bit

All numbers in ATARl Microsoft BASIC within the range -32768 to 32767 are stored as
two bytes of binary. I f an integer constant is multiplied with a singleprecision real
number, the product of the multiplication will be a singleprecision real number. The
results of mathematical operations are always stored in the higher level precision type.

sign bit implicit radix point

Examples: SMALLNO%, J%, COUNT%

An integer can be identified by having a percent sign (%) as the last character in the
variable name. An example of an integer identified by name is NO%. The 16b i t integer
is stored as twos complement binary.

Constants, Variables
and Names 11

Format: DE FI NT letter, 1 beginnin~letterending-letter 1
Examples: 10 DEFINT N, 1, K-M

20 DEFINT I

The starting letters of variable names identified by the DEFINT statement are integers.
Integer variables increase the speed of processing but can only accurately hold values
between -32768 and f32767. Remember that tag identifiers have precedence. Even
though N is defined by DEFINT as being an integer type, the pound sign appearing
after the N identifies it as double precision. N#, N1#, NUMB# are all double precision.

Figure 3-3 illustrates how integers are represented in memory.

I BYTE O

BYTE 1

sign bit

O is positive

1 i s negative

Figure 3-3 Machine Representation of Integer Variable

Negative integers are stored as twos complement binary.

STRING Examples: "AMOUNTS", "FILL IN NAME
CONSTANTS

String constants are always enclosed in quotes. The string constant can be any length
up to the maximum line length (127). Strings are composed o f ANY keyboard
characters: "!#$%&&"())OOKJHGGFDS." A doublequote character ("") is also allowed.
The double quote ("") wil l give you a single quote when the string is printed.

Example of a string constant used in a print statement:

10 PRINT "Strings and %&'$ ""things"""
20 A$="STRING CONSTANTS ASSIGNED TO VARIABLE NAME"
30 PRINT A$

STRING Examples: A$, NINTB, ADDRESS$
VARIABLES

String-variable names end with a dollar sign $. A string variable can be assigned a string
up to 255 characters. The doublequote ("") character is a legal ATARl Microsoft
BASIC way of getting a single quote (") within a string.

Examples of strings assigned to A$:

10 A$ = "a string"
20 A$ = "another ""string"""

Constants, Variables
12 and Names

DEFSTR Format: DEFSTR letter,/ beginnineletter-endineletter)
Examples: 10 DEFSTR A, K-M, Z

20 DEFSTR F, J , I, 0

A variable name can be defined as a string by declaring its starting letter in the DEFSTR
statement. Strings can be up to the length of 255 characters. As in all variable name
declarations, the tag identifier has precedence. A# or A% are their tag types even if
their first letter is defined by DEFSTR.

Example Program:

10 DEFSTR A, M, Z
20 A = "Employee Name AMOUNT
30 PRINT A

The example program will print the heading Employee Name AMOUNT.

HEXADECIMA
CONSTANTS

.L Examples: &76, &F3, &7B, &F3EB

I t is often easier to specify locations and machine language code in hexadecimal (base
16) rather than decimal notation. By preceding a number with &, you declare it to be
hexadecimal.

To jump to the machine language routine starting at hexadecimal location C305, you
specify A= USR(&C305,0). A= PEEK (&5A61) will assign the contents of memory loca-
tion 5A61 hex to the variable named A. Hexadecimal i s useful in representing screen
graphics- especially player-missile graphics.

Following is an equivalency table for decimal, hexadecimal, and binary numbers

TABLE 3-1
DECIMAL, HEXADECIMAL, AND BINARY EQUIVALENTS

Decimal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Hexadecimal
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Binary
0001
001 0
001 1
01 00
01 01
0110
0111
1 000
1 001
1010
1011
11 00
1101
1110
1111

Constants, Variables
and Names 13

NUMERIC
AND STRING
EXPRESSIONS

NUMERIC RELATIONAL OPERATORS
EXPRESSIONS

There is no real order of precedence for the relational operators =, < >, >, < =,
> = . They are evaluated from left to right.

RELATIONAL AND LOGICAL SYMBOLS

Because the relational symbols are evaluated from left to right, you could say that
their order of precedence is from left to right. The relational symbols =, < >, <, >,
< =, > = have precedence over the logical operators NOT, AND, OR, and XOR. NOT
has the highest precedence, AND ranks next, OR ranks next, and XOR ranks last.

The relational operators are combined to form expressions. For example: A >B AND
C < D is an expression. The greater than (>) and less than (<) symbols are considered
first, then the AND is evaluated. If the relationship is true, a nonzero number will
result. If the relationship is not true, then zero will be the result. Nonzero is true and
zero is false. In an IF statement this evaluation determines what happens next. The
ELSE or the next line number is taken when an the expression formed with operators is
false.

OPERATOR MEANING

Equals. This is a true use of the equal sign. It asks if
A= B. The B is not assigned to A.

Not Equal. Evaluates whether two expressions are
not equal.

< Is less than. A is less than B is represented by A < B.

Greater than. A is greater than B is represented by
A > B.

Greater than or equal to. A is greater than or equal
to B is represented by A> = B.

Less than or equal to. A is less than or equal to B is
represented by < =.

Numeric and
String Expressions 15

ARITHMETIC SYMBOLS

STRING
EXPRESSIONS

The arithmetic symbols are: (), =, -, A, *, 1, +, -(the first dash - means negation, the last
dash means subtraction). The arithmetic symbols can be mixed with the logical
operators in creating expressions. The expression A/C > D*A is legal. The arithmetic
expressions represent mathematical symbols. The " symbol represents multiplication.
The A is used in ATARl Microsoft BASIC to mean exponent. The order of precedence
is:

SYMBOL MEANING

(1 Arithmetic within parenthesis is evaluated first.

Equals sign

Negative number. This is not subtraction but a
negative sign in front of a number. Example: -3,
-A, -6.

Exponent.

Multiplication.

Division

Addition.

Subtraction.

RELATIONAL OPERATORS IN STRINGS

Relational operators in strings (=, < >, <, >, <=, > =) can accomplish useful
tasks. Alphabetical order can quickly be achieved by an algorithm using the expression
A$ < B$. A match between names can be found by asking that A$= B$. The string
variables are evaluated as numbers in ATASCll code and since the ATASCI I i s ordered
alphabetically, the evaluation of string expressions is useful.

SYMBOL MEANING

Sort Example:

100 INPUT A$,B$
120 IF A$<B$ THEN 160
130 C$=A$
140 A$= B$
150 B$=C$
160 PRINT A$, B$
170 END

True (nonzero) if A$ has a lower ATASCll code
number than BS.

Numeric a n d
16 a n d String Expressions

To experiment, type any two word combinations and separate them by commas. The
words will be sorted into alphabetical order using the example above. Thus, you will
see that BILL comes before BILLY, and CAT comes before DOC.

The logical operators have the following order of precedence:

OPERATOR MEANING

NOT

AND

OR

XOR

Not. The 8 bits of the number are complemented. If
it is a binary 1 it becomes a 0 after this logical
operation.

The bits of the number are logically ANDed. Exam-
ple: A AND B. If A is 1 and B is 1 the result is 1. If A
is 1 and B is 0 the result is 0. If A is 0 and B is 1 the
result is 0. If A is 0 and B is 0 the result is 0.

The bits of the number are logically ORed. Exam-
ple: A OR 6. If A is 1 and B is 1 the result is 1. If A is
1, and B is 0 the result is 1. If A is 0 and B is 1 the
result is 1. If A is 0 and B is 0 the result is 0.

The bits of the number are logically exclusive
ORed. Example: A XOR B. If A is 1 and B is I the
result is 0. If A is 1 and B is 0 the result is 1. If A is 0
and B is 1 then the result is 1. If A is 0 and B is 0 then
the result is 0.

The logical operators can be used with string (AS) variables. Read Section 10 on string
expressions.

Numeric and
String Expressions 17

COMMANDS

NEW

RUN

In ATARl Microsoft BASIC, statements are not evaluated for syntax errors until you
type RUN and press the key.

Format: NEW
Examples: NEW

100 IF CODE < >642 THEN NEW

NEW clears your program to allow you t o enter a new program. The NEW command
does not destroy TIME$. Al l variables are cleared t o zero and all strings are nulled
when NEW is executed.

Format: RUN I"device:program-namer'l Ioptional-startincline-number]
Examples: RUN

RUN 120
200 RUN "D:TEST.BASr'
110 RUN 200

RUN without a line number starts executing your program with the lowest line
numbered statement. RUN initializes all numeric variables t o zero and nulls string
variables before executing the first statement in the program.

RUN can be used in the deferred mode (with a line number). Refer to the program on
the next page. It can also be used t o enter a program from diskette or cassette.
However, when RUN is used t o run a program on diskette or cassette (i.e., RUN
"D:SHAPESU), i t cannot be used with Ioptional-startincline-number), which can
only be used to run programs that are already in memory.

Example: 200 RUN "D:TEST

When statement line number 200 is executed, i t wil l run the program called TEST.

RUN can be used t o run tokenized (saved with the SAVE instruction) programs only.

RUN can be used to start executing a program at a particular line number

Example: RUN 250

When RUN is executed in a program, as mentioned earlier, all numeric variables are
set t o zero and all strings are nulled.

Commands 19

Example Program:

DOS

LlST

100 X=55
110 Y=77
120 A$="A T E S T
130 PRINT X,Y,A$
14O'RUN 150
150 PRINT X,Y,A$,"Variables are 0 and String is null"
160 END

Format: DOS
Example: DOS

The DOS command lets you leave BASIC and enter the DOS Menu. This makes
available all of the DOS Menu items on programs and data stored on diskette. To
return to ATARl Microsoft BASIC, press the key. This method of exiting
DOS will keep your program exactly as it was before you entered DOS.

Format: LlST I"device:program-name"1 I m-n(
Examples: 100 LlST

150 LlST "C:
120 LlST "P:" 1@40
100 LlST "D:CRAFX.BAS
110 LlST 100.200
100 LlST -300

LlST writes program statements currently in memory onto the television screen or
another device. If "device:program-name" is present, the program statement current-
ly in memory is written onto the specified device.

Legal device names include: D: (for Disk), C: (for Cassette), P: (for Printer). If you do not
follow LlST with a device name, the screen (S:) is assumed.

When you list programs on the screen, it is often convenient to freeze the list while it is
scrolling. To freeze a listing, and 1 key at the same time. To con-
tinue the listing, again press

With the LlST command you can list just one statement or as many as you wish. A -
(hyphen) is used to specify the range of statements:

LlST

LlST n

LlST - m

LlST n-

LlST n-m

Lists the whole program from lowest line number to the
highest.

Lists only the statement n (where n is a statement
number).

Listing starts with the first statement in the program and
stops listing with statement m. Statement m is listed.

Listing starts with statement number n and continues to
the last statement number in the program.

Listing starts with n and ends with m. Both statements n
and m are included in the listing.

20 Commands

Example:

AUTO

100 REM Example of the list
110 REM Command
120 PRINT "SHOWS WHICH STATEMENTS"
130 PRlNT "OR GROUP OF STATEMENTS"
140 PRlNT "GET LISTED"

LlST 110430

110 REM Command
120 PRlNT "SHOWS WHICH STATEMENTS'
130 PRlNT "OR GROUP OF STATEMENTS"

Example of LlST used in deferred mode:

10 COUNT=I
20 COUNT=COUNT+l
30 PRlNT COUNT
40 IF COUNT < > 30 THEN 20
50 LlST

Use LlST to list a program on a printer. This is done in direct mode

Use LIST to list a program in untokenized ASCII form onto a diskette. To list to diskette
use:

Use LOAD when you are entering untokenized (listed) programs into your computer.
LOAD can be used to enter programs that have been listed or saved to cassette or
diskette.

Format: AUTO I n,i I
Examples: AUTO 200,20

AUTO

AUTO numbers your lines automatically. If you do not specify n,i (starting number, in-
crement) you will get line numbers starting at 100 with an increment of 10. Use AUTO
when you start writing a program. Type AUTO, then type a starting line number. (See
the example on the following page.) Then type the amount you want the numbers to in-
crease. After you start the AUTO numbering, you will automatically have a new line
number every time you type a statement and press . To stop AUTO, press

itself without typing a statement. AUTO can stopped by pressing the

Commands 21

Example Program:

DEL

AUTO 300,20 Starts numbering at 300 and increments by
20

300 PRlNT "THIS SHOWS HOW"
320 PRlNT "AUTO NUMBERING"
340 PRlNT "WORKS"

AUTO numbering ends when you press right after a line number. If there is an
existing line at that number, the line will be displayed on your television screen.

Format: DEL n-m
Examples: DEL 450 -

DEL 250 - 350
DEL - 250

DEL deletes program statements currently in memory. With the DEL command you
can delete lust one statement or as many as you wish. A - (hyphen) is used to specify
the range of statements:

DEL n

DEL -m

DEL n-

DEL n-m

Example Program:

Deletes only the statement n (where n is a statement
number).

Deletion starts with the first statement in the program and
stops with statement m. Statement m is deleted.

Deletion starts with statement number n and continues to
the last statement number in the program.

Deletion starts with n and ends with m. Both statements n
and m are deleted.

100 PRlNT "AN EXAMPLE O F
120 PRlNT "HOW THE DELETE"
130 PRlNT "COMMAND WORKS

DEL 120-

Only statement 100 is left in memory

LIST

100 PRlNT "AN EXAMPLE OF"

22 Commands

SAVE

SAVE ... LOCK

LOAD

If you want to delete a single statement from a program, simply type the statement
number and press

Example Program:

110 FOR X = l TO 5000:NEXT

110

Format: SAVE "device:program-name"
Example: SAVE "D:GAME. BAS"

SAVE copies the program in memory onto the file named by program-name. Legal
devices are D: (for disk), C: (for cassette). For example, the command SAVE
"D:TEMP.BASn will save the program currently in memory onto diskette. The program
is recorded in "tokenized" form onto tape or diskette.

Example:

SAVE "D:PROG RAM"

Saves PROGRAM on diskette.

SAVE "C:

Saves the program on cassette

Format: SAVE "device:program-name" LOCK
Example: SAVE "D:PROCRAM.EXAU LOCK

SAVE "device:program-name" LOCK saves a program onto tape or diskette and en-
codes it so that it cannot be edited, listed, merged, examined, or modified. LOCK is
used to prevent program tampering and theft.

Format: LOAD "device:program-name"
Examples: LOAD "D:EXAMPLEU

11 0 LOAD "C:"

LOAD "device:program-name" replaces the program in memory with the one
located on device:. Disk drive or cassette can be specified for device:. Use LOAD "C:"
to load data or listed cassette files. For programs that have been previously saved use
CLOAD to increase loading speed. For diskette files, use "D:program-name" for listed
programs or saved programs.

Commands 23

CLOAD Format: CLOAD
Examples: CLOAD

440 CLOAD

Use CLOAD to load a program from cassette tape Into RAM for execution When you
enter CLOAD and press :&i;;<d, the ~n-cab~net buzzer sounds Posltlon the tape t o the
beglnnlng of the program, using the tape counter as a gulde, and press PLAY on the
ATARl 410TM Program Recorder Then press the +rF:>';:$s key again Speclfrc lnstructlons
to CLOAD a program are contarned In the ATARl 410 Program Recorder Operators
Manual

CSAVE

VERIFY

MERGE

Format: CSAVE
Examples: CSAVE

330 CSAVE

CSAVE saves a RAM-resident program onto cassette tape. CSAVE saves the tokenized
(compacted) version of the program. As you enter CSAVE and press $$gAE$g the in-
cabinet buzzer sounds twice signaling you to press PLAY and RECORD on the Program
Recorder. Then press ;j;!;;$Qj again. D o not, however, press these buttons until the tape
has been positioned. Saving a program with this command is speedier than with
SAVEUC:" because short inter-record gaps are used. Use SAVE"C:" wi th LOADUC:" or
CSAVE with CLOAD but do not mix these paired statements - SAVE"C:" with CLOAD
wil l give you an error message.

Format: VERIFY "device:program-name"
Examples: VERIFY "D:BIO.BAS"

VERIFY "C:

VERIFY compares the program in memory with the one named by "device:pro
gram-name". If the two programs are not identical, you get a TYPE MISMATCH ER-
ROR.

Format: MERG E "device:program-name"
Examples: MERGE "D:STOCK.BAS"

MERGE "C:

Use MERGE t o merge the program stored at "device:program-name" with the p r o
gram in memory. Only programs that have been saved using the LIST instruction to put
them on diskette or cassette can be merged. I f duplicate line numbers are en-
countered, the line on "device:program-name" wil l replace the one in memory. O n
the following page, you can see an example of merging programs.

Example Program:

100 REM THIS IS A PROGRAM
120 REM STORED O N DISKETTE
130 PRINT "MERGE TEST

24 Commands

110 REM THlS PROGRAM IS
125 REM IN COMPUTER MEMORY
140 PRINT "RESULT

ME RGE "D:STOCK.BAS"

LIST

100 REM THIS I S A PROGRAM
110 REM THlS PROGRAM IS
120 REM STORED ON DISKETTE
125 REM IN COMPUTER MEMORY
130 PRINT "MERGE TEST"
140 PRlNT "RESULT

RENUM
Format: RENUM (m, n, i(
Example: RENUM 10,100,10

m = The line number to be applied to the first renumbered statement

n = The first line number to be renumbered

i = The increment between generated line numbers

RENUM gives new line numbers to specified lines of a program. The line number to
be applied to the first renumbered statement is the first parameter. The first line
number to be renumbered is the next parameter. The increment or amount of in-
crease between numbers is the last parameter.

The default of RENUM is 10, 0, 10.

Renumber changes ail references following COTO, GOSUB, THEN, ON ... GOTO,
ON ... GOSUB, and ERROR statements to reflect the new line numbers.

Note: RENUM cannot be used to change the order of program lines. For example,
RENUM 15, 30 would not be allowed when the program has three lines numbered
10, 20, and 30. Numbers cannot be created higher than 63999.

RENUM Renumbers the entire program. The first new line number
will be 10. Lines will increment by 10.

RENUM 10,100 The old program line number 100 will be renumbered 10.
Lines increment by 10 (the default is 10).

RENUM 800,900,20 Renumbers lines from 900 to the end of the program. Line
900 now is 800. The increment is 20.

Commands 25

LOCK

UNLOCK

KlLL

NAME ... T O

TRON

RENUM 300, 140, 20 gives number 300 to line 140 when i t is encountered . The incre-
ment is 20.

BEFORE
100
110
120
130
1 40
1 50
1 60
1 70

Format: LOCK "device:file-name"
Example: LOCK "D:CHECKBKU

AFTER
100
110
120
130
300
320
340
360

LOCK is the same LOCK that exists in the DOS Menu. LOCK ensures that you d o not
write over a program without first unlocking it. As a BASIC command, LOCK offers a
measure of protection against accidental erasure.

Format: UNLOCK "device:program-name"
Example: UNLOCK "DCAMEI .BASu

The UNLOCK statement restores a file so that you can write to, delete, or rename it.

Format: KlLL "device:program-name"
Example: Kl LL "D:PROCI .BAS"

KlLL deletes the named program from a device

Format: NAME "device:program-name-I" TO "program-name.2"
Example: NAME "D:BALANCEr' TO "CHECKBK"

NAME gives a new name t o "device:program-name-I." The device (D l : through
D8:) must be given for the old program, but the new program name enclosed in quotes
is the only thing following the word TO.

Format: TRON
Examples: TRON

550 TRON

This command turns on the trace mechanism. When TRON is on, the number of each
line encountered is displayed on your television screen before it is executed. Use
TRON in direct or deferred mode.

26 Commands

TROFF Format: TROFF
Example: 770 TROFF

This command turns off the trace mechanism. Use TROFF in direct or deferred mode.

Commands 27

STATEMENTS

REM or ! or ' Format: REM
Example: 10 REM THlS PROGRAM COMPUTES THE AREA OF A SPHERE

20 LET R=25 !Sets an initial value
30 COSUB 225 'GO TO COMPUTATION SUBROUTINE
65 PRINT R:REM PRINTS RADIUS

Format: ! and '
Example: 10 PRINT "EXAMPLE" !TAIL COMMENTS

20 G O T 0 1 0 ! USE ! and '

The exclamation point (!) and the accent (') are used after a statement for comments.
REM must start right after the line number or colon, while ! and ' d o not require a
preceding colon.

REM, !, and ' are used to make remarks and comments about a program. REM does not
actually execute. Although REM does use RAM memory, it is a valuable aid to reading
and documenting a program.

LET Formats: ILETI variable-name =]arithmetic-expression1 or Istring_expression(
variable-name =]arithmetic-expression1 or]string_expressionl

Example: 100 LET COUNTER = 55
120 D=598

LET assigns a number to a variable name. The equal sign in the LET statement means
"assign," not "equal to" in the mathematical sense. For example, LET V=9, assigns a
value of 9 to a variable named V. The number on the right side of the equal sign can be
an expression composed of many mathematical symbols and variable names. Thus,
LET V=(X+Y-9)/(W*Z) is a legal statement.

The word LET is optional in assignment. All that is necessary for assignment is the
equal sign. Thus,

100 LET THlS = NUMBER * 5

is the same as:

100 THlS = NUMBER * 5

Statements 29

IF ... THEN

Since this statement does not have a line number, it starts immediate execution of the
program in memory starting at line number 55.

100 PRINT "THIS IS A COMPUTER
120 GOT0 100

RUN

This program will cause endless branching to line number 100. Thus, the television
screen quickly fills up with THIS IS A COMPUTER.

Format: IF testcondi t ion THEN goto-line-number or a-statement
Examples: 10 l F A = B THEN 290

20 IF J >Y AND J <V THEN PRINT "OUT OF STATE T A X

If the result of an IF ... THEN test is true, the next statement executed is goto-line
-number. A test is made with the relational or mathematical operators. The test can
be made on numbers or strings. The words GOT0 after THEN are optional. If the state-
ment test, test-condition, is false, the execution goes to the next numbered line in the
program.

160 IF A N U M B E R > ANOTHER-NUMBER THEN 300
200 PRINT "ANOTHERNUMBER IS LARGER"
250 STOP
300 PRINT "ANUMBER I S LARGER
450 END

I F...TH EN ... ELSE Format: IF testcondit ion THEN goto-line-number or statement ELSE
goto-line-number or statement

Example: 250 IF R <Y THEN 450 ELSE 200

This is the same as IF ... THEN except that execution passes to the ELSE clause when the
relational or mathematical test is untrue.

WAIT Format: WAlT address, AND-mask-byte, compare-to-byte
Example: 330 &D40B,&FF,110 !WAIT FOR VBLANK

WAlT stops the program until certain conditions are met. Execution waits until the
compare-to-byte, when ANDed with the AND-mask-byte, equals the byte con-
tained in memory location address.

WAlT is ideal if you need to halt execution until VBLANK occurs. VBLANK occurs
every 1/60 of a second. I t consists of a number of lines below the visible scan area.You
can make sure that your screen will not be interrupted halfway through its scan lines
(causing the screen to blip) if you WAlT until a VBLANK occurs. This technique is used
to animate characters as shown in Appendix C, Alternate Character Sets. See Appendix
A for an example of the WAlT statement used to control the timing of vertical fine
scrolling.

Statements 31

FOR. .. TO ... STEP

NEXT

Format: FOR starting-variable = starting-value TO ending-value STEP 1 increment1
Examples: 10 FOR X= I TO 500 STEP 3

30 FOR Y=20 TO 12 STEP -2
20 FOR COUNTER=I TO 250

The FORINEXT statement starts incrementing numbers by increment until end-
ing-number is reached. When the ending number is counted, execution goes to the
statement number after the NEXT statement.

FORINEXT determines how many times statements between the line numbers of the
FOR ... TO ... STEP and the NEXT are executed repeatedly. If STEP is omitted, it is as-
sumed to be 1. STEP can be a negative number or decimal fraction.

Example Program:

100 FOR X = l TO 30
110 PRINT X, SQR(X)
120 NEXT

Format: NEXT]variable-name1
Examples: 30 NEXT J , I

40 NEXT VB
120 NEXT

NEXT transfers execution back to the FOR..TO line number until the TO count is up.
NEXT does not need to be followed by a variable name in Microsoft BASIC. When
NEXT is not followed by a variable name, the execution is transferred back to the
nearest FOR ... TO statement.

Example Program:

100 FOR X=10 TO 100 STEP 10
110 PRINT X
120 NEXT
130 END

RUN

Two or more starting-variables can be combined on the same NEXT line with commas.

32 Statements

Example Program:

COSUB

RETURN

ON ... COTO

100 FOR X = l TO 20
110 FOR Y = l TO 20
120 FOR Z = l TO 20
130 NEXT Z,Y,X

SUBROUTINES

A subroutine is a group of statements that you wish to use repeatedly in a program.
The COSUB statement gives execution to the group of statements. RETURN marks the
end of the subroutine and returns execution to the statement after the COSUB state
ment.

Format: COSUB line-number
Example: 330 COSU B 1 50

COSUB causes line-number to be executed next. The statement starting with
line-number is the start of a group of statements you wish to use a number of times in
a program.

Format: RETURN
Example: 550 RETURN

RETURN returns the program to the line number after the COSUB statement which
switched execution to this group of statements.

Example Program:

110 COSUB 140
120 PRlNT "THIS IS THE END"
130 STOP
140 PRlNT "THIS I S THE START"
150 PRlNT "OF CODE WHICH"
160 PRlNT "IS EASY TO CALL"
170 PRlNT "(EXECUTE) A NUMBER
180 PRlNT "OF TIMES IN A
190 PRlNT "PROC R A M
200 RETURN ! EXECUTION CONTROL GOES TO LINE NUMBER 120

Format: ON arithmetic-expression COTO l ine-numberl, line-number-2,
line-number-3

Example: 400 ON X COTO 550, 750, 990

ON ... COTO determines which line is executed next. I t does this by finding the number
represented by the arithmetic-expression and if the number is a I, control passes to
line-number-?. If the number is a 2, control passes to line-number2. I f the
number is a 3, control passes to line-number>, etc.

Statements 33

ON ... GOSUB Format: ON arithmetic-expression COSUB line-number1, line-number2,
line-number3

Example: 220 ON X COSUB 440, 500, 700

ON ... COSUB determines which line is executed next. It does this by finding the number
represented by the arithmetic-expression. If the number is a I then execution passes
to line-number-?. If the number is a 2, execution passes to line-number2, or If
the number is a 3, execution passes to line-number?, etc.

RETURN is used to transfer execution back to the statement directly after the COSUB.

Example Program:

110 ON X COSUB 333, 440, 512, 620

. . .
333 B=B+C
340 RETURN

ON ERROR Format: ON ERROR line-number
Example: ON ERROR 550

Program execution normally halts when an error is found and an error message prints
on the television screen. ON ERROR traps the error and forces execution of the p ro
gram to go to a specific line number.

The ON ERROR line-number statement must be placed before the error actually oc-
curs in order to transfer execution to the specified l inenumber.

To recover normal execution of the program, you must use the RESUME statement.
The RESUME statement transfers execution back into the program.

When RUN, STOP, or END is executed, the ON ERROR statement is terminated

Example Program:

10 ON ERROR 1000
20 PRINT #3, "LINE"
30 STOP
1000 PRINT "DEVICE NOT OPENED YET"
1010 STOP
1020 RESUME

The ON ERROR line-number statement can be disabled by the statement: ON ER-
ROR COT0 0. If you disable the effect of ON ERROR within the error-handling routine
itself, the current error will be processed in the normal way.

ERROR Format: ERROR error-code
Example: 640 ERROR 162

ERROR followed by an error-code forces BASIC to evaluate an error of the specified
error-code type. Forcing an error to occur is a technique used to test how the p ro
gram behaves when you make a mistake. A complete listing of error codes is given in
Appendix M. You can force both system errors and BASIC errors.

34 Statements

Format: ERL
Example: 100 PRlNT ERL

ERR

AFTER

ERL returns the line number of the last encountered error.

Format: ERR
Example: 120 PRlNT ERR

150 IF ERR = 135 THEN COTO 350

ERR returns the error number of the last encountered error.

Format: AFTER (tirne-in-I 160-ofa-sec) I COT01 l i n e ~ u m b e r
Example: 100 AFTER (266) COTO 220

When AFTER (...) is executed, a time count starts from 0 up to the number of 1/60 of a
second (called jiffies). When the time is up, program execution transfers to
line-number. AFTER can be placed anywhere in a program but it must be executed in
order to start its count. A time period up to 24 hours is allowed.

When RUN, STOP, or END is executed the AFTER statement jiffie count is reset.

CLEAR STACK Format: CLEAR STACK
Example: 100 CLEAR STACK

CLEAR STACK clears all current time entries. CLEAR STACK is a way to abort the
AFTER statement. If certain conditions are met in a program, you may wish to cancel
the AFTER statement.

Example Program:

100 AFTER (1333) COTO 900
150 IF A= B THEN CLEAR STACK
900 PRlNT "YOUR TURN IS OVER"
910 RESUME

STACK

RESUME

Format: STACK
Examples: 120 PRlNT STACK !Prints no. of stack entries available

310 IF STACK = 0 THEN PRlNT "STACK FULL"

The STACK function gives the number of entries available on the time stack. The time
stack can hold 20 jiffie entries. The STACK is used to hold the SOUND and AFTER jiffie
times. This is a random stack since when a jiffie is up, time expires regardless of when
the jiffies were put in the STACK.

Formats: RESUME lline-number1
RESUME /NEXT/
RESUME

Examples: 300 RESUME 55
440 RESUME NEXT
450 RESUME

Statements 35

OPTION BASE

CLEAR

COMMON

RESUME is the last statement of the O N ERROR line-number error-handling routine.
RESUME transfers control t o the line-number.

RESUME NEXT transfers execution to the statement following the occurrence o f the
error.

RESUME transfers execution back to the originating (error causing) line number if you
do not fol low RESUME with NEXT or line-number.

Formats: OPTION BASE 0
OPTION BASE 1

Example: 150 OPTION BASE 1
200 D I M Z [25,25,25)!array element subscripts no. 1-25

OPTION BASE 1 declares that l i s t and array subscript numbering wil l start with 1. The
OPTION BASE (011) statement should be the first executable statement in a program. I t
states that you want the subscripted variables t o begin with 0 or 1 . I f the OPTION
BASE statement is omitted, lists' and arrays' subscript numbering starts at 0.

Example Program:

100 REM DEMONSTRATES OPTION BASE 1 STATEMENT
110 OPTION BASE 1
120 D I M ARRAY (1 5,l5)
150 READ ARRAY (1,1), ARRAY (2,2), ARRAY (15,15)
165 DATA 32,33,34
180 PRINT ARRAY (1,1), ARRAY (2,2), ARRAY (1 5,15)
190 END

Format: CLEAR
Examples: CLEAR

550 CLEAR

CLEAR zeros all variables and arrays, and nulls all strings. I f an array is needed after a
CLEAR command, it must be redimensioned.

Formats: COMMON variable-name, (variable-name I
COMMON ALL

Examples: 110 COMMON I, J , A$, H%, DEC, F()
100 COMMON ALL

Use COMMON to keep variable values the same across program runs. COMMON
makes variables in two programs the same variable in fact as well as in name. If you
name a variable COUNT in one short program and join that program with another prc-
gram that has COUNT as a variable, the program wil l consider the COUNTs to be dif-
ferent variables. The COMMON statement says that you want both COUNTs t o be
considered the same variable. COMMON ALL keeps all previous variable values the
same across the new program run.

36 Statements

Example Program:

RANDOMIZE

OPTION PLMI,
OPTION PLM2,
OPTION PLMO

100 COMMON X
110 X=4
120 RUN "D:PROC2"

PRINT X

The value of X=4 after line 120 calls the new program is 4. If there is already a variable
named X in the second program, then X gets its value from the new program.

Format: RANDOMIZE \seed1
Examples: 10 RANDOMIZE

10 RANDOMIZE 55 !Sets a certain repeatable sequence

RANDOMIZE assures that a different random sequence of numbers will occur each
time a program with the RND arithmetic function is run. RANDOMIZE gives a random
seed to the starting point of the RND sequence.

Example Program:

100 RANDOMIZE
110 PRINT RND
120 END

Each time you run the above program, a unique number prints on the television screen.

The RND arithmetic function will repeat the same pseudorandom number each time a
program is run without RANDOMIZE. In testing a program it is sometimes ideal to
have an RND sequence that you know will be the same each time. In this case, use the
RND function by itself without RANDOMIZE. Another way to produce a long se-
quence that will be the same each time, is to use RANDOMIZE \seed1 (where /seed(is
an arbitrary number). But if you wish to see a different set of cards each time you play
the game, just use RANDOMIZE by itself somewhere near the start of your program.

Example of RND without RANDOMIZE:

100 PRINT RND
110 END

Each time you run this program, it prints the same number on the television screen.

Format: OPTION PLMI
OPTION PLM2
OPTION PLMO

Example: 100 OPTION PLMI
100 OPTION PLM2
700 OPTION PLMO

Statements 37

OPTION PLMI reserves 1280 bytes in memory for player-missiles (singleline resolu-
tion). OPTION PLM2 reserves 640 bytes in memory for player-missiles (doubleline
resolution). OPTION PLMO releases all OPTION PLM reservations.

The GRAPHICS instruction (see Section 12) must always precede the OPTION PLMn
statement. This is because the computer must first know the graphics mode before you
reserve space.

Use OPTION PLMI or OPTION PLM2 to reserve player-missile memory, clear the
memory, and set PMBASE. You do not need to worry about the proper memory area to
place player-missiles when you use the OPTION PLM statements. To find the exact
memory location of the starting byte of your missiles, use VARPTR(PLM1) or
VARPTR(PLM2).

You must poke decimal location 53277 with decimal 3 in order to enable player-missile
graphics. You must also poke decimal location 559 with decimal 62 for singleline
resolution or decimal 46 for doubleline resolution. See Section 13 for an example of
player-missile graphics.

OPTION CHRI, Format: OPTION CHRI
OPTION CHR2, OPTION C H R ~
OPTION CHRO OPTION CHRO

Examples: 110 OPTION CHRI
120 OPTION CHR2
130 OPTION CHRO

OPTION CHRI reserves 1024 bytes in memory for character data. OPTION CHR2
reserves 512 bytes in memory for character data. OPTION CHRO releases all OPTION
CHR reservations.

Use OPTION CHRI or OPTION CHR2 to reserve memory for a RAM character set. You
can MOVE the ROM character set into the new RAM area you have reserved or you
can define a totally new character set. VARPTR(CHR1) orVARPTR(CHR2) will point to
the starting address of the zeroth character. It is necessary to POKE a new starting ad-
dress into CHBAS. This can be done by determining the page to which VARPTR(CHR1)
or VARPTR(CHR2) is pointing. One way to determine and POKE a new CHBAS is:

300 CHBAS=&2F4
310 ADDR% =VARPTR(CHRl)
320 POKE CHBAS,((ADDR%/256) AND &FF)

The GRAPHICS instruction (see Section 12) must always precede the OPTION CHRn
statement. This is because the computer must first know the graphics mode before you
reserve space.

This procedure will mask for the Most Significant Byte (MSB) of the VARPTR memory
address and POKE that MSB into CHBAS so you will switch to the new character set.
See Appendix C for an example of redefining the character set.

38 Statements

OPTION Format: OPTION RESERVE n
RESERVE Example: 300 OPTION RESERVE 24

In the OPTION RESERVE n statement, n is a number representing the number of bytes
reserved. For example, OPTION RESERVE 24 reserves 24 bytes. VARPTR(RESERVE1
can be used to tell you the starting address of the 24 bytes in OPTION RESERVE 24.
This statement allows you to reserve bytes for machine code or for another purpose.

VARPTR Formats: VARPTR(variab1e-name)
VARPTR(PLM1)
VARPTR(PLM2)
VARPTR(CHR1)
VARPTR(CH R2)
VARPTR(RESE RVE)

Examples: 110 A = VARPTR(A$)
100 PRINT VARPTR(AW1)
120 J = VARPTR(T0TAL)
120 T = VARPTR(CHR2)
155 POKE VARPTR(RESERVE),&FE

If the argument to this function is a variable name, the function returns the address of
the variable's symbol table entry. When the variable is arithmetic,VARPTR returns the
variable's 2-byte starting address (Most Significant Byte, Least Significant Byte) in
memory. When the variable is a string, VARPTR returns the number of bytes in the
string. Then the starting location of the string is given in VARPTR(A$)+l Least Signifi-
cant Byte and VARPTR(A$)+2 Most Significant Byte. Notice that only in the case of
strings is the address given in the 6502 notation of low-memory byte before the high
memory byte. Except in the case of strings the whole address in high byte; low-byte for-
mat is returned with VARPTR. The following keywords can be used with VARPTR.

VARPTR(PLMn) Returns the address (MSB, LSB) of the first byte allocated
for PLMn.

VARPTR(CHRn) Returns the address (MSB, LSB) of the first byte allocated
for CHRn.

VARPTR(RESERVE) Returns the address (MSB, LSB) of the first byte allocated
for assembly language programs.

Use OPTION PLM1, OPTION PLMZ, OPTION CHR1, OPTION CHR2, and OPTION
RESERVE n to allocate space. Once OPTION has been used to set aside space,
VARPTR can be used to point to the starting byte of that space.

Statements 39

INPUT/OUTPUT STATEMENTS

The keyboard, disk drive, program recorder, and modem are ways your computer gets
information - Input. The ATARl Home Computer also gives information by writing i t
on the television screen, cassette tape, printer, or diskette - Output.

ATARl input and output devices have identifying codes:

K: Keyboard. Input-only device. The keyboard allows the computer to get information
directly from the typewriter keys.

P: Line Printer. Output-only device. The line printer prints ATASCll characters, a line at
a time.

C: Program Recorder. lnput and output device. The.recorder is a readlwrite device that
can be used as either, but never as both simultaneously. The cassette has two tracks
for sound and program recording purposes. The audio track cannot be recorded from
the ATARI Computer system, but may be played back through the television speaker.

Dl:,D2:,D3:,D4: Disk Drives. lnput and output devices. I f 32K of RAM is installed, the
ATARl Computer can use four ATARl 810TM Disk Drives. The default is D l : if no drive is
designated.

E: Screen Editor. lnput and output device. This device uses the keyboard and television
screen (see S: TV Monitor) t o simulate a screen editing terminal. Writing t o this device
causes data t o appear on the display starting at the current cursor position. Reading
from this device activates the screen-editing process and allows the user t o enter and
edit data. Whenever the key is pressed, the entire line is selected as the current
record t o be transferred by Central Input/Output (CIO) to the user program.

S: TV Monitor. lnput and output device. This device allows the user t o read characters
from and write characters t o the display, using the cursor as the screen-addressing
mechanism. Both text and graphics operations are supported.

R: Interface, R5232. The ATARl 850TM Interface Module enables the ATARl Computer
system t o interface with RS-232 compatible devices such as printers, terminals, and
plotters.

PRINT Formats: PRINT "string_constantU
? "string_constantl', variable-name
PRINT variable-name-I, variable-name2, variable-name-etc
PRI NT#iocb, AT(s,b);X,Y
PRINT#6, AT(x,y);"string_constant";variable~name

Examples: 100 PRINT "SORTING PROGRAM;A$,X
500 ?#6, "ENTERING DUNGEON" !Print for GRAPHICS 1 and 2

InpuVOutput Statements 41

TAB

PRlNT puts string constants, string variables, or numeric variables on the television
screen when executed. The PRlNT statement wil l leave a blank line when executed
alone. The question mark symbol (?) means the same thing as the word PRINT.

Example Program:

100 PRlNT "SKIP A LINE"
120 PRlNT
125 REM NOTE USE OF "" TO PRlNT A QUOTE
130 ANOTHELLINE$="PRINT ""ANOTHER" LINE"
140 ? ANOTHERLINE$
150 END

Line 120 leaves a blank line when this program is run:

SKIP A LlNE

PRlNT "ANOTHER" LlNE

String constants, string variables, and numeric variables wi l l all print on the same line
when the line construction includes a comma or semicolon.

I t is not necessary to use a closing quote if you wish t o print a string-constant on your
television screen:

100 PRINT "NO CLOSING QUOTE HERE

RUN

N O CLOSING QUOTE HERE

PRINT#iocb wil l print at a particular sector and byte if the disk drive has been
opened as OUTPUT (see OPEN statement). The AT clause is quite versatile. I f the
device being addressed is a disk drive, AT(s,b) refers t o the sector, byte. However, if the
device being addressed is the screen, as in PRlNT or PRINT#6, then the AT(x,y) refers to
the x,y screen position.

An example o f printing t o a disk drive:

100 OPEN#3, "D:TEST.DAT" OUTPUT
110 X=5
120 PRI NT#3, AT(7,I);"TEST";X
130 CLOSE#3

An example of printing t o a screen location:

100 GRAPHICS 1
110 PRINT#6, AT(3,3);"PRINTS O N SCREEN"

Format: TAB(n)
Example: 120 PRlNT TAB(5);"PRINT STARTS 5 SPACES IN"

42 Input~Output Statements

SPC

PRINT USING

TAB moves the cursor over the number of positions specified within the parentheses.
This statement is used with PRINT to move characters over a number of tabbed
spaces.

Example Program:

100 PRINT TAB (5);"THIS LINE IS TABBED RIGHT FIVE"
120 END

Format: SPC(n)
Example: 10 PRINT TAB (5);"XYZ;SPC (7);"SEVEN SPACES RIGHT OF XYZ

SPC puts spaces between variables and constants in a line to be printed. The TAB
always sets tabs from the left-hand margin. SPC counts spaces from where the last
variable or constant ends.

PRlNT USING lets you format your output in many ways:

Numeric variable digits can be placed exactly where you want them.

You can insert a decimal point in dollar amounts.

You can place a dollar sign ($) immediately in front of the first digit of a dollar
amount.

You can print a dollar sign ahead of an amount.

Amounts can be padded to the left with asterisks (***$45.00) for check protec-
tion purposes.

Numbers can be forced into exponential (E) or doubleprecision (D) format.

A plus sign (+) causes output to print as a + for positive and a - for negative
numbers.

PRINT USING #

The pound sign # holds a position for each digit in a number. Digits can be specified to
the right or left of the decimal point with the pound sign #. Zeros are inserted to the
right of the decimal, if needed, in the case where the amount is in whole dollars.
Decimal points are automatically lined up when # is used. The# is convenient in finan-
cial programming.

Example Program:

10 X=246
20 PRINT USING "###;X

RUN
246

If a number has more digits than the number of pound signs, then a percent sign will
print in front of the number.

InputlOutput Statements 43

Example Program:

100 X=99999 110 PRlNT USING "###";X
120 END

RUN

%99999

PRlNT USlNG .

Place the period anywhere within the # decimal place holders. The decimal in the
amount will align with the decimal in the USlNG specification.

10 X= 2.468 20 PRlNT USlNG "##.##";X

RUN

Note that since only two digits were specified after the decimal point, the cents posi-
tion was rounded up.

PRlNT U S I N G ,

Place a comma in any PRlNT USlNG digit position. The comma symbol causes a com-
ma to print to the left of every third digit in the result. Extra decimal position holders (#)
must be used if more than one comma is expected in a result.

Example Program:

10 X# = 2933604.53 !Double precision needed this # tag
20 PRlNT USlNG "########,.##";X#
30 END

RUN

2,933,604.53

PRlNT USlNG * *

Two asterisks in the first two positions fill unused spaces in the result with asterisks.
The two asterisks count as two additional digit positions.

Example Program:

100 X=259
120 PRlNT USlNG "**#######.##";X

RUN

* * * * * * 259.00

44 InpuVOutput Statements

PRlNT USlNC $

A dollar sign at the starting digit position causes a dollar sign to print at the left digit
position in the result.

Example Program:

100 X= 3.59631
110 PRlNT USING "$###.##;X
120 END

RUN

$ 3.60

PRlNT USING $$

Two dollar signs ($$) in the first two positions give a floating dollar sign in the result.
That is, the dollar sign will be located immediately next to the first decimal digit that is
displayed.

Example Program:

100 X = 3.5961
110 PRlNT USING "$$###.##;X
120 END

RUN

$3.60

PRlNT USING **$

If **$ is used in the first three positions the result will have asterisks filling unused posi-
tions and a dollar sign will float to the position immediately in front of the first
displayed digit.

Example Program:

100 X = 53.29
110 PRlNT USING "**$########.##";X
120 END

RUN

* * * * * * * * $53.29

PRlNT USING AAAA

Four exponentiation symbols after the pound sign (#) decimal place holder will cause
the result to be in exponential (E or D) form.

InputlOutput Statements 45

Example Program:

100 X=500
110 PRINT USlNC "##AAAA";X
120 END

RUN

PRlNT USlNC +
The plus sign (+) prints a + for positive and a minus (-) for negative in front of a
number. The plus sign (+) can be used at the beginning or end of the PRlNT
USING string.

Example Program:

100 A= 999.55
110 PRlNT USING "+####;A
120 END

RUN

PRlNT USlNC -

The minus (-) sign following the PRlNT USING string makes a -appear following a
negative number. A trailing space will appear if the number is positive.

Example Program:

100 A=-998
I10 PRlNT USING "###-";A
120 END

RUN

PRlNT USING !

The exclamation sign (!) pulls the first character out of a string

Example Program:

100 A$="B MATHEMATICS 1A"
110 PRlNT USlNC "!";A$
120 END

RUN

46 InpuVOutput Statements

PRINT USING %bbbb%

INPUT

The percent signs (%) and blank spaces (b) will pull part of a string out of a longer str-
ing. The length of the string you pull out is 2 plus the number of spaces (b's) between
the percent signs.

Example Program:

100 A$="Smith Fred"
120 PRINT USING "%bbb%";A$
130 END

RUN

Smith

Format: INPUTJ#iocbl I"prompt_stringf'I, IAT(s,b)I; variable-name, Ivariable-name1
INPUT#6 I"prompt_string"(, IAT(x,y)l; variable-name

Examples: 120 INPUT "TYPE YOUR NAMEU;A$
350 INPUT "ACCOUNT NO., NAMEU;NUM,B$
300 INPUT#5, AT(9,7);X

INPUT lets you communicate with a program by typing on the computer keyboard.
You are also allowed to print character strings with the INPUT statement. This lets you
write prompts for the user such as TYPE YOUR NAME. The typed characters are as-
signed to the variable names when you press the key or type a comma. The IN-
PUT statement temporarily stops the the program until keyboard INPUT is complete.
The INPUT statement automatically puts a question mark on the television screen.

If a disk drive has been opened as INPUT and assigned an IOCB#, then it can be used
to input data. The input from the device is read AT(sector,byte) and assigned a variable
name. INPUT#6, AT(x,y);X can be used to read a specific screen
location.

LINE INPUT Format: LINE INPUTI#iocbl I"promptstringml string-variable-name$
Example: 190 LlNE INPUT ANS$

An entire line is input from the keyboard. Commas, colons, semicolons, and other
delimiters in the line input from the keyboard are ignored. Mark the end of the line by
pressing or its ASCII equivalent &9B for the End of Line (EOL).

Example Program:

100 LlNE INPUT "WHAT IS YOUR NAME?"; N$
120 PRINT N$
130 END

DATA Format: DATA ari thmetic~constant,~ar i thmetic~constant I
DATA string-constant, Istring-constant 1

Example: 140 DATA 55,793,666,94.7,55
150 DATA ACCOUNT,ACE,"""NAME""",SOCIAL SECURITY

Input/Output Statements 47

READ

RESTORE

The arithmetic-constants and string-constants in the DATA statement are assigned
t o variable names by the READ statement. Use a comma t o separate the entries that
you wish t o input w i th DATAIREAD. More than one DATA statement can be used. The
first DATA item is assigned the first variable name encountered in READ; the second
DATA item is assigned the second variable name, etc. When all the items are read and
the program tries to read data when none exists - an "out-of- data" error occurs. The
ERR statement can be used t o test for the out-of-data condition.

If a comma is included in a string item in a data statement, then the whole string item
must be enclosed in quotes. Otherwise, it could be mistaken as a comma used t o
separate items in the DATA statement. Quotes are not required if a string uses numeric
values as string data.

Format: READ variable-name-I ,)var iable-named,(I variable-name-etc. /
Example: 150 READ A,B

READ assigns numbers or strings in the DATA statement t o variable names in the
READ statement. Commas separate variable names in the READ statement and items
in the data statement. Hence, it is all right t o leave extra spaces between items because
the comma determines the end of items. READ A, B, C looks at the first three DATA
items. If READ A, B, C is executed again, the next three numbers o f the data statement
are assigned t o A, B, C respectively. The pairing o f variables and data continues unti l
all the data is read.

Example of DATAIREAD:

100 FOR J = 1 TO 3
120 READ A$,A
130 PRINT Af,A
140 NEXT J
150 DATA FRE D,50,JACK,20,JANE,200
900 PRlNT "END OF DATA"
910 END

Formati RESTORE) line-number)
Examples: 440 RESTORE 770

550 RESTORE

The RESTORE statement is used if data items are to be used again in a program. That
is, RESTORE allows use o f the same DATA repeated a number o f times. Without the
RESTORE statement an out-of-data error results from the attempt t o READ data a s e
cond time. The data can be restored starting with a particular line number using the o p
tional (line-number).

Formats: PRINT#6, AT(x,y);variable-name,"string_constant"
PRINT AT(x,y);variable~name,"strinconstant"
PRINT#iocb, AT(s,b);variable-name,"string_constant"
INPUT#iocb, AT(s,b);variable-name

AT can be added t o either PRINT or INPUT. The numbers fol lowing AT refer t o sector,
byte if the proper disk #iocb has been opened. (See OPEN statement below.) The televi-
sion screen is the output device when PRINT, or PRINT#6, are encountered. When the
screen is the device, AT(x,y) gives the coordinates for printing.

48 InputlOutput Statements

OPEN Format: OPEN #iocb, "device:program-name" file-access
Examples: 130 OPEN #4, "K:" INPUT

100 OPEN #3, "P:" OUTPUT
150 OPEN #4, "D:PROG.SAV INPUT
120 OPEN #2, "D:CRAPHl .BASf' UPDATE
110 OPEN #5, "D:PROC.BAS" APPEND

Mandatory character entered by user.

Input/output control block (ICOB). Choose a number
from 1 to 7 to identify a file and its file access. You must
have a pound sign (#) followed by an IOCB number (1-7)
and a comma.

"device:program-name" Specifies the device and the name of the program.
Devices are D: (disk), P: (printer), E: (screen editor), K:
(keyboard), C: (cassette), S: (television monitor), and R: (RS-
232-C). When you use D: your program name follows the
colon. The name of your program can be up to eight
characters long and have a threecharacter extension. Pro
gram names must begin with an alphabetic character. At
the beginning of this section you will find a complete
description of the device codes (K:, P:, C:, D:, E:, S:, R:).

file-access Tells the type of operation:

INPUT = input operation
OUTPUT = output operation
UPDATE = input and output operation
APPEND = allows you to add onto the end of a file.

The idea behind the OPEN statement is to identify a number (the IOCB#) with the file
access characteristics. After the OPEN#n statement is encountered in a program, you
can use PRINT#2, INPUT#3, NOTE#5, STATUS#2, CET#4, and PUT#4. That is, you can
use the IOCB# as an identifier.

The OPEN#n and PRINT#n statements now substitute for LPRINT (LINE PRINT1 NC):

100 OPEN#3, "P:" OUTPUT
110 PRINT#3, "THIS IS A PRINTER TEST"
120 CLOSE#3

The following IOCB# identifiers have preassigned uses:

#O is used for INPUT and OUTPUT to E:, the screen editor.

#6 is used for INPUT and OUTPUT to S:, the screen itself, in test modes
CRAPHICS 1 and GRAPHICS 2.

An example of the use of IOCB #6 is:

100 CRAPHICS 2
110 PRINT#6, AT(5,5); "SCREEN PRINT TEST"

InputlOutput Statements 49

CLOSE

NOTE

STATUS

lOCBs # I through #5 (and IOCB #7) can be used freely, but the preassigned lOCBs
should be avoided unless a program does not use them for one of the preassigned uses
mentioned above.

Format: CLOSE #iocb
Example: CLOSE #2

Use CLOSE after file operations are completed. The # sign is mandatory and the
number itself identifies the IOCB.

Mandatory symbol

icob The number of a previously opened IOCB

Format: NOTE#iocb,variable-name, Ivariable-name1
Example: 120 NOTE#4, I,J

Use NOTE to store the current diskette sector number in the first variable-name and
the current byte number within byte. This is the current read or write position in the
specified file where the next byte to be read or written is located.

Formats: PUT#iocb, IAT(sector,byte);I arithmetic-expression
GET#iocb, IAT(sector,byte);/ variable-name

Examples: 100 PUT#(;, ASC("A)
200 GET#I, X
330 GET#3, AT(8,2);J,K,L

PUT and GET are opposites. PUT outputs a single byte value from 0255 to the file
specified by #iocb (# is a mandatory character in both of these commands). GET reads
I-byte values from 0255 (using #iocb to designate the file, etc. on diskette or
elsewhere) and then stores the byte in the variable arithmetic-expression.

Formats: STATUS (iocb-number)
STATUS ("device:program-name")

Examples: 100 A = STATUS (6)
120 A= STATUS ("D:MICROBE.BASU)

STATUS returns the value of the fourth byte of the iocb block (status byte). The Most
Significant Bit (MSB) i s a I for error conditions. A zero in the MSB indicates nonerror
conditions. The remaining bits represent an error number.

50 InpuVOutput Statements

TABLE 7-1
LIST OF STATUS CODES

EOF

Hex
01
03
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8 E
8F
90
91
92
93
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A A
A B

Dec
001
003
I 2 8
129
130
131
132
133
134
135
I 3 6
137
I 3 8
139
1 40
141
142
143
144
145
1 46
147
I 6 0
I 6 1
I 6 2
I 6 3
I 6 4
I 6 5
166
I 6 7
168
I 6 9
170
171

Format: EOF(n)

Meaning
Operation complete (no errors)
End of file (EOF)

key abort
IOCB already in use (OPEN)
Nonexistent device
Opened for write only
Invalid command
Device or file not open
Invalid IOCB number (Y register only)
Opened for read only
End of file (EOF) encountered
Truncated record
Device timeout (doesn't respond)
Device NAK
Serial bus input framing error
Cursor out of range
Serial bus data frame overrun error
Serial bus data frame checksum error
Devicedone error
Bad screen mode
Function not supported by handler
Insufficient memory for screen mode
Disk drive number error
Too many open disk files
Disk full
Fatal disk I/O error
Internal file number mismatch
Filename error
Point data length error
File locked
Command invalid for disk
Directory full (64 files)
File not found
Point invalid

Example: 120 IF EOF(4)=0 THEN COT0 60

A value of true or false will be returned indicating the detection of an end-of-file condi-
tion on the last read of IOCB n.

Input/Output Statements 51

ARRAYS

ABOUT ARRAYS YOU are allowed up to 10 subscripted elements in a list or array without having to use
the dimension (DIM) statement.

For example:

I 00 ANARRAY(I)= 55
1 20 AN-ARRAY(2) = 77
130 AN_ARRAY(3)= 93
140 ANARRAY(4)= 61
150 FOR X = l TO 4
160 PRINT ANARRAY(X)
170 NEXT
180 END

An array with more than 10 elements must be dimensioned to reserve space for it in
RAM.

DIM Formats: DIM arithmetic-variable-name (number-of-elements), I list1
DIM string-variable-name$ (number-of-elements),]list/

Example: 10 DIM A$ (35), TOTAMT (50)

The DIM statement tells the computer the number of elements you plan to have in an
array. If you enter more data elements into an array than you have allowed for in a
dimension statement, you will get an error message.

The simplest array is the onedimensional array. Let's say a teacher has 26 students in a
class. He can record a numeric test score for each student by dimensioning:

10 OPTION BASE 1
20 DIM SCORE(26)
30 SCORE (1)- 55
40 SCORE (2)= 86
50 PRINT SCORE (I), SCORE (2)

RUN

Notice that the OPTION BASE statement begins the array subscripting with 1, thus
SCORE (1) stores the numeric score of the first student. OPTION BASE 0 will allow you
to begin subscripting with the number 0.

Arrays 53

ATARl Microsoft BASIC allows you to have up to 255 array dimensions. Three
dimensional arrays allow you to make complex calculations easily.

Example Program:

110 X=2O:Y=30:2=25
120 DIM BOXES(X,Y,Z)
130 !Without an OPTION (011) the OPTION BASE defaults to 0

54 Arrays

FUNCTION LIBRARY

ABS

SGN

RND

Format: ABS (expression)
Example: ABS (-7)

ABS returns the absolute value of a number. The sign of a number will always be
positive after this function is executed. If the number -7 (negative 7) is evaluated with
ABS, the result will be 7 (positive 7).

Format: INT (arithmeticexpression)
Examples: ? INT (5.3) prints 5 on your television screen

? INT (-7.6) prints -8 on your television screen

I N 1 returns an integer for the arithmetic-expression. INT always rounds to the
next lower integer.

Format: SCN (arithmetic-expression)
Example: ? SCN (-34) prints -1 on your television screen

SCN returns the sign of the arithmeticexpression enclosed in parentheses. The sign is
+ I if the number within the parentheses is positive, 0 if the number is 0, or -1 if the
number is negative.

Format: SQR (arithmetic-expression)
Example: ? SQR (25) prints 5 on your television screen

SQR returns the square root of a positive arithmetic-expression enclosed in paren-
theses. If the arithmetic-expression evaluated by SQR has a negative (-) sign, you will
get an ILLEGAL QUANTITY ERROR.

Formats: RND Returns a random single-precision value between 0 and 1.
RND (0) Same as RND above.
RND (integer) Returns an integer between 1 and the integer inclusive

Examples: ? RND Prints 6 random digits after decimal point.
RND (37) Prints a number between and including 1 through 37.

RND returns random numbers. RND and RND (0) return random numbers between but
not including 0 and 1. RND (integer) returns a positive integer between and including 1
and the (integer).

Function Library 55

LOG

EXP

SIN

COS

ATN

TAN

PEEK

Format: LOG (arithmetic-expression)
Example: 3 LOG (5) prints the natural logarithm 7.60944

LOG returns the natural logarithm (LOG,) of a nonnegative arithmetic-expression in
the parentheses. LOG (0) will give a FUNCTION CALL ERROR. LOG (1) is
1.61 385904E-I 0.

Format: EXP (arithmetic-expression)
Example: ? EXP (3) prints 20.0855

EXP returns the Euler's number (e) raised to the power of the arithmetic-expression
within the parentheses.

Format: SIN (arithmetic-expression)
Example: ? SIN (1) prints the sine of 7 as ,847477 radian

SIN returns the trigonometric sine of the arithmetic-expression.

Format: COS (arithmetic-expression)
Example: 3 COS (.95) prints cosine of .95 as ,587683 radian

COS returns the trigonometric cosine of the arithmetic-expression.

Format: ATN (arithmetic-expression)
Example: 7 ATN (.66) prints arctangent of .66 as ,583373 radian

ATN returns the arctangent of the arithmeticexpression.

Format: TAN (arithmetic-expression)
Example: 3 TAN (.22) prints the tangent of .22 as ,223679 radian

TAN returns the trigonometric tangent of the arithmetic-expression.

SPECIAL-PURPOSE FUNCTIONS

Format: PEEK (address)
Examples: 110 PRINT PEEK(1034)

135 PRINT PEEK(ADDR)

PEEK (&FFF) looks at the address enclosed in the parentheses, in this case FFF hex-
adecimal. PEEK is used to discover the contents of a particular memory byte. You can
examine ROM memory as well as RAM memory. All memory can be looked at with the
PEEK instruction.

56 Function Library

POKE

FRE (0)

Examples:

PRINT PEEK(888)

Prints the byte in decimal at decimal memory location 888.

PRINT PEEK (&FFFF)

Prints the byte in decimal at memory location FFFF hex.

Format: POKE address,byte
Examples: POKE 2598,255

110 POKE ADDR3,&FF
120 POKE PLACE,)

POKE inserts a byte into an address location. The address and byte can be expressed as
decimal or hexadecimal numbers. The address and byte can also be expressions. Thus,
if X*Y-2 evaluates to a valid memory location or byte, it can be used.

Example:

POKE &FFF,43

Puts decimal 43 into hexadecimal location FFF

POKE X,Y

Puts hexadecimal 8F into memory location 22 decimal.

Note that decimal and hexadecimal are just two ways of assigning a number to the
&bit byte. The highest number you are allowed to POKE, a byte, is FF in hexadecimal
and 255 in decimal.

Format: FRE (0)
Example: PRINT FRE(0)

This function gives you the number of RAM bytes that are free and available for your
use. Its primary use is in direct mode with a dummy variable (0) to inform the program-
mer how much memory space remains for completion of a program. Of course FRE
can also be used within a BASIC program in deferred mode. Using FRE (0) will release
string memory locations that are not in use. This use of FRE (0) to pick up the string
clutter is referred to as "garbage collection."

Function Library 57

USR

TlME

Format: USR (address,nl)
Example: 550 A = USR(898,O)

USR passes the result of a machine language subroutine to a variable name. The USR
function branches to a machine language routine address and can pass an optional
value, n l . The value of n l is usually the address of a data table used in the machine
language routine.

During the execution of a USR routine, the programmer may use page zero RAM from
&CD through &FF. The parameter passed will be stored in &E9 and &EA as data, and in
&E3 and &E4 as an address. The parameter is assumed to be an integer or VARPTR.

Example Program:

10 ! ROUTINE TO TEST USR FUNCTION
20 ! THE ASSEMBLY ROUTINE IS:
30 !
40 ! LDA #35
50 ! STA 71 0
60 ! RTS
70 !
80 !
90 !
100 A=O:l=O:COL=O:C=O
110 OPTION RESERVE 10
120 ADDR = VARPTR(RESERVE) !STARTING ADDRESS
130 FOR 1-0 TO 5
140 READ A
150 POKE ADDR+ I,A
160 NEXT I
170 DATA &A9,&23,&8D,&C6,&02,&60
180 A= USR(ADDR,VARPTR(I))
190 STOP

Format: TlME
Example: 200 PRINT TlME

TlME gives the Real-Time Clock (RTCLOK) locations' contents. The decimal locations
18,19, and 20 (RTCLOK) keep the system time in jiffies (1160 of a second). Six decimal
digits are returned by TIME. The difference between TIME$ and TlME is that TIME$
gives the time in standard hours, minutes, and seconds, while TlME gives the time as a
jiffie count.

58 Function Library

STRINGS

+ Format: string + string

(Concatenation Example: 110 C$ = A$ + B$

Operator)
Use the + symbol to bring two strings together.

Example Program:

11 0 A$ ="neveru
120 B$ = "more"
130 Z$=A$+ B$
140 PRINT Z$

RUN

nevermore

Format: MID$(string_expression-$,start,n)
Example: 100 A$="CETTHEMIDDLE"

110 PRINT MID(A$,4,3)

s t r ineexpress io~$ String that wil l have characters pulled from its middle

start The character you wish to start with - counting from the
left.

n Number of characters you want t o pull

The string is identified by the first parameter of the function. The second parameter
tells the starting character. The third parameter tells how many characters you want.

Example Program:

110 A$="AMOUNT OF INTEREST PAID"
120 B$= MID$(A$,11,8)! THIS CAUSES "INTEREST" TO BE PRINTED
130 PRINT B$

Format: LE FT$(string_expression-$,n)
Example: 100 A$ = "TOTALAMOUNT"

110 PRINT LEFT$(A$,5)

strineexpressiorc$ String variable name or string expression.

Number of characters you want returned from the left
side of the string.

Strings 59

LEN

ASC

VAL

Format: RICHT$(string_expression-$,n)
Example: A$="THERIGHT

110 PRINT RICHT$(A$,5)

string_expressio~$ String variable name or string expression.

Number of characters to be taken from right side of the
string.

Format: LEN (str in~expression-$)
Example: 100 A$ ="COUNT THE"

120 ? LEN (A$+" CMARACTERS")!prints total number of
130 ! characters as 20

LEN returns the total number of characters in a string-expression-$. LEN stands for
length. Spaces, numbers, and special symbols count as characters.

Format: ASC (strineexpression-$)
Example: ? ASC("Smith)!prints 83 ATASCII decimal code for letter S

ASC gives the ATASCll code in decimal for the first character of the string enclosed in
parentheses. See Appendix K for ATASCll Character Set.

Format: VAL (numeric-strineexpression-$)
Example: 100 B$ = "309"

120 ? VAL (B$)!prints the number 309
130 END

VAL converts strings to numeric values. VAL returns the numeric value of the numeric
constant associated with the numeric~tring-expression in the parentheses. Leading
and trailing spaces are ignored. Digits up to the first nonnumeric character wil l be con-
verted. For example, PRINT VAL("123ABC1') prints 123.lf the first character of the string
expression is nonnumeric, then the value returned will be 0 (zero).

Format: CHRB (ATASCI I-code-number)
Examples: 110 PRINT CHRB (123) !prints ATASCll club symbol

100PRINT CHR$(65) !PRINTS ATASCI I CHARACTER A

CHR$ converts ATASC4I values into onecharacter strings. CHRB is the opposite of the
ASC function. The ATASCll-code-number can be any number from 0 t o 255. Appen-
dix K gives a table of both the character set and the ATASCII-code-numbers.

60 Strings

INSTR Format: l NSTR (start,A$,B$)
Example: 110 HOLD = INSTR(5,C$,B$)

INSTR searches for a small string B$ within a larger string A$. The search can begin
(start) a number of characters into the larger string. This starting position is assumed to
be the first character if start is missing. The function returns the character position
within A$, where B$ starts, or returns a 0 if B$ is not found.

Format: STR$ (arithmetic-expression)
Example: 100 A = 999.02

110 PRINT STR$(A)

STR$ turns an arithmetic-expression into a string. String operations can be carried out
on arithmetic-expressions with the STR$ function. Note that when the following two
strings are brought together with the concatenation symbol, there is a space between
them which represents the sign of the number.

Example Program:

100 NUMI =-22.344
120 NMU2 =43.2
130 PRINT STRS (NUMI) + STR$ (NUM2)
140 END

Format: STRING$ (N,A$)
Example: 100 A$ = STRINC$(20,"*")

STRINC$(N,A$) returns a string composed of N repetitions of A$

Format: STRING$ (N,M)
Example: 110 PRINT STRINC$(20,123)!prints 20 clubs

STRINC$(N,M) returns a string composed for N repetitions of CHR$(M).

Format: INKEY$
Example: 110 A$= INKEY$

INKEY$ records the last key pressed. If no keys are currently being pressed on the
keyboard, a null string is recorded. Statement 110 tests for a null string by representing
it as two double quotes with no space between them. ATARl Microsoft BASIC does not
recognize the space bar since leading and trailing blanks are trimmed for INKEYS.

Example Program:

I00 A$= INKEY$
110 IF A$< >"" THEN PRINT "You typed a "; A$
1 20 COT0 100

Strings 61

TIME$ Format: TIME$
Example: 100 PRINT TIME$

Set the time with the deferred mode statement:

where HH = hours (up to 24)
M M = minutes
SS = seconds

Examples: 110 TIME$ ="22:55:05"
120 TIME$ = "05:30:09

Note: Use leading zeros to make hours, minutes, and seconds into 2-digit numbers

After TIMES is set, you can use it in a program. TIME$ is continually updated to the
current time, from your initial setting.

100 GRAPHICS 2
110 TIME$ = "11 :59:05"
120 PRINT#6, AT(3,3);"DIG ITAL CLOCK"
130 PRINT#6, AT(4,4);TIME$
140 GOT0 120

Format: SCRN$(x,y)
Example: 10 ? SCRN$(5,5)

The character at the X-coordinate and Y-coordinate is returned as the value of the func-
tion in character-graphics modes. In other graphics modes, SCRN$ returns the color
register number being used by the pixel at location x,y.

Example of SCRN$(x,y):

10 GRAPHICS 1
20 COLOR 1
30 PRI NT#6, AT(5,5);"A"
40 A$ = SCRN$(5,5)
50 PRINT TAB(9);AB
60 END

62 Strings

USER-DEFINED FUNCTION

DEF Format: DEF function-name (variable,variable) = function-definition
Example: 150 DEF MULT(J,K) = J*K

User-defined functions in the form DEF A(X) = XA2, where A(X) represents the value of
X, squared can be used throughout a program as if they were part of the BASIC
language itself. Normally a user-defined function will be placed at the beginning of a
program. The user-defined function can occupy no more than a single program line.
String-defined functions are allowed. If the defined function is a s t r i n~va r i ab l e -
name, then the defined expression must evaluate to a string result. One or more
parameters can be defined. Thus, DEF S$(A$,B$) = A$+ B$ is legal.

Example Program:

100 DEF AVC(X,Y) = (X + Y)/2
120 PRINT AVC(25,35)
130 END

RUN
30

DEF 63

GRAPHICS

GRAPHICS The GRAPHICS command selects one of nine graphics modes. Graphics modes are
OVERVIEW numbered 0 through 8. The arithmetic expression following GRAPHICS must evaluate

to a positive integer. Craphics mode 0 i s a full-screen text mode. ATARl Microsoft
BASIC defaults to GRAPHICS 0.

GRAPHICS 1 through 8 are split-screen modes. In the split-screen modes a 4-line text
window is at the bottom of the television screen. The text window is actually 4 lines of
GRAPHICS 0 mixed into the mode.

GRAPHICS 0, GRAPHICS 1, and GRAPHICS 2 display text and special characters of
gradually increasing size. GRAPHICS 0 is regular text with special characters.
GRAPHICS 1 is doublewide text and special characters. GRAPHICS 2 is doublewide,
doublehigh text, and special characters. Note the keyboard representation of the text
and special characters as an insert to this manual. The special characters that are not
printed on your keyboard are called control characters because you must press the

key to have them display on the television screen.

GRAPHICS 3 through GRAPHICS 8 are modes that plot points directly onto your
television screen. The graphics mode dictates the size of the plot points and the
number of playfield colors you can use. The maximum number of playfield colors in
the point-plotting modes is four. But it is possible to get four more colors on your
television screen by using players and missiles. For information on player-missile
graphics, see Section 13.

GRAPHICS Format: GRAPHICS arithmetic-expression
Examples: GRAPHICS 2

100 GRAPHICS 5+16
110 GRAPHICS 1 +32+16
120 GRAPHICS 8
130 GRAPHICS 0
140 GRAPHICS 18

Use GRAPHICS to select one of nine graphics modes (0 through 8). Table 12-2 sum-
marizes the nine modes and characteristics of each. GRAPHICS 0 is a full-screen text
display. Characters can be printed in GRAPHICS 0 by using the PRINT statement
without an IOCB# following the keyword PRINT. GRAPHICS 1 through GRAPHICS 8
are split-screen modes. These split-screen modes actually mix four lines of GRAPHICS
0 at the bottom of the television screen. This text window uses the PRINT statement.
To print in the large graphics window in GRAPHICS 1 and GRAPHICS 2, use PRINT#6, .

The following program will print in the graphics window in GRAPHICS 1 or GRAPHICS
2:

100 GRAPHICS 1
110 PRINT#6, AT(3,3);"GRAPHICS WINDOW TEST"
120 PRINT "TEXT WINDOW
130 END

Graphics 65

COLOR

Adding +16 to GRAPHICS 1 through GRAPHICS 8 will override the text window and
make a full screen graphics mode. If you run the following program without line 140,
the screen will return to graphics mode 0. The screen returns to graphics mode 0 when
STOP or END terminate the full screen graphics mode.

110 GRAPHICS 2 + 16
120 PRINT#6, AT(3,3);"WHOLE SCREEN IS"
130 PRINT#6, AT(4,4);"GRAPHICS 2"
140 GOT0 140

Normally the screen will be cleared of all previous graphics characters when a
GRAPHICS n statement is encountered. Adding + 32 prevents the graphics command
from clearing the screen.

Graphics modes 3 through 8 are point-plotting modes. To draw point graphics you
need to use the COLOR n and PLOT statements. Use of the SETCOLOR statement will
allow you to change the default colors to any one of 128 different color/luminance
combinations. Point-plotting modes are explored in the example at the end of this sec-
tion.

To return to GRAPHICS 0 in direct mode, type GRAPHICS 0 and press the key.

Format: COLOR n
Example: 100 COLOR 4

COLOR is paired with SETCOLOR to write up to four colors, called playfields, on the
television screen. You must have a COLOR statement in GRAPHICS 3, 4, 5, 6, 7, and 8
in order to plot a color. When you use the COLOR statement without a SETCOLOR
command you will get the default colors. For example, using Table 12-1, the default
colors for GRAPHICS 3 are: SETCOLOR 4 is orange, SETCOLOR 5 is light green, SET-
COLOR 6 is dark blue, and SETCOLOR 8 is black.

Shown below are the SETCOLOR - COLOR pairings by graphics mode:

GRAPHICS 3, 5 , 7
SETCOLOR 4,hue,lum goes with COLOR 1
SETCOLOR 5,hue,lum goes with COLOR 2
SETCOLOR 6,hue,lum goes with COLOR 3
SETCOLOR 8,hue,lum goes with COLOR 0

GRAPHICS 4, 6
SETCOLOR 4,hue,lum goes with COLOR 1
SETCOLOR 8,hue.lum goes with COLOR 0

GRAPHICS 8

SETCOLOR 5,hue,lum goes with COLOR 1
SETCOLOR 6,hue,lum goes with COLOR 2

Note: You must always have a COLOR statement to plot a playfield point, but SET-
COLOR is only necessary to make a color other than a default color.

66 Graphics

SETCOLOR Format: SETCOLOR register,hue,luminance

Example: 330 SETCOLOR 5,4,lO

The SETCOLOR statement associates a color and luminance with a register.

register Color registers 0,1,2,3 are for player-missiles 0,1,2,3
respectively. Color registers 4,5,6,7 are for playfield colors
assignments. Register 8 is always the background register.

hue Color hue number @I 5. (See table below.)

luminance Color luminance (must be an even number between 0 and
14; the higher the number, the brighter the display; 14 is
almost pure white).

TABLE 12-1
THE ATARl HUE (SETCOLOR COMMAND) NUMBERS AND COLORS

Colors SETCOLOR Hue SETCOLOR Hue
Number Decimal Number Hex

Gray

Light orange (gold)

Orange

Red-orange

Pink

Purple

Purpleblue

Azure blue

Sky blue

Light blue

Turquoise

Green-blue

Green

Yellow-green

Orangegreen

Light orange

Graphics 67

PLOT

FlLL

Formats: PLOT X,Y

PLOT X,Y TO PLOT X,Y
Examples: 100 PLOT 12,9

11 2 PLOT 6,9 TO 3,3

Use PLOT to draw singlepoint plots, lines, and outline objects on the television screen.
PLOT uses an X-Y coordinate system for specifying individual plot points. Give a
number from 0 to whatever the maximum is for the current mode, X first then Y.

You can "chain" the PLOT instruction. That is, one plot point can be made to draw to
the next plot point. The result of chaining two PLOT points is a straight line. I t is also
easy to outline an object using chained plots. To chain plots, use the word TO between
PLOT X,Y's.

Example: 90 COLOR 1 !You must use a COLOR instruction before PLOT
100 PLOT 5,5 TO 5,15 !Draws a straight line
120 PLOT 5,5 TO 12,12 TO 2,12 TO 5,5 !Draws triangle outline

Here is an example program which shows PLOT, COLOR, and SETCOLOR at work:

100 GRAPHICS 3 f 1 6 !THE 16 GETS RID OF TEXT WINDOW
110 SETCOLOR 5,4,8 !PINK
120 SETCOLOR 6,0,4 !GRAY
130 SETCOLOR 8,8,6 !BLUE
140 COLOR 1 !COLOR 1 GOES WITH DEFAULT ORANCE
150 PLOT 5,5 TO 10,5 TO 10,lO TO 5,10 TO 5,5 !IN ORANCE
160 COLOR 2 ! PINK
170 PLOT 7,7 TO 12,12 TO 2,12 TO 7,7
180 COLOR 3 !GRAY
190 PLOT 2,7 TO 12,7
200 GOTO 200

Format: FlLL x,y TO x,y
Example: 550 FlLL 10,lO TO 5,5

FlLL fills an area with the color specified by the COLOR and SETCOLOR statements.
The FlLL process sweeps across the television screen from left to right. FlLL stops paint-
ing and starts its next sweep when it bumps into a PLOT line or point. The line on the
left-hand side of a filled object is specified by the FlLL statement itself.

An example will show how FlLL operates. First the outline of three sides of a box are
specified. PLOT 5,s TO 20,5 TO 20,20 TO 5,20 makes the top, right side, and bottom of
the box. Make the left side and FlLL with the statement FlLL 5,5 TO 5,20.

68 Graphics

Example:

CLS

The top, right, and bottom of the box (dashed lines) is formed with PLOT 5,5 TO 20,5
TO 20,20 TO 5,20. The box is filled with the statement FlLL 5,5 TO 5,20.

10 GRAPHICS 5
20 SETCOLOR 4,12,8 !Register 4, green, medium brightness
30 COLOR 1 !COLOR 1 is paired with SETCOLOR 4 in GRAPHICS 5
40 PLOT 5,5 TO 20,5 TO 20,20 TO 5,20
50 FILL 5,5 TO 5,20
60 END

It is worthwhile to carefully review the FlLL process. Line 40 in the above example
makes three sides of a box. Then the FlLL statement, line 50 draws the left side and fills
the box. The FlLL process scans from the FlLL line to the right until it reaches the PLOT
lines.

Format: CLS I backgrou nd-register-option I
Example: CLS

110 CLS
220 GRAPHICS 3: CLS &C5
330 CLS 25

CLS clears screen text areas and sets the background color register to the indicated
value, if present. In GRAPHICS 0 and GRAPHICS 8 the optional number after CLS
determines the border color and luminance. In GRAPHICS I , 2, 3,4, 5,6, 7 the optional
number following CLS determines the background color and luminance.

TABLE 12-2
GRAPHICS MODES AND SCREEN FORMATS

ROWS- ROWS- Number RAM
Graphics Mode Split Full of Required
Mode Type Columns Screen Screen Colors (Bytes)

0 TEXT

1 TEXT

2 TEXT

3 GRAPHICS

4 GRAPHICS

5 GRAPHICS

6 GRAPHICS

7 GRAPHICS

8 GRAPHICS

992

674

424

434

694

1174

21 74

41 98

8112

Graphics 69

TABLE 12-3

CHARACTERS I N GRAPHICS MODE 1 A N D 2

POKE POKE SETCOLOR SETCOLOR SETCOLOR SETCOLOR
756,224 756,226 4 5 6 7

70 Graphics

SSZ

P S Z

E S Z

Z S Z

1SZ

0 s z
6P Z

8PZ

LPZ

9PZ

S P Z

PPZ

EPZ

Z P Z

1PZ

OPZ

6E Z

8EZ

LIZ

9EZ

S E Z

PEZ

E E Z

Z E Z

1EZ

O E Z

622

8ZZ

L Z Z

97.7.

szz
PZZ

E Z Z

z z z
17.7.

027.

6 12

8 LZ

L 12

9 12

S 12

P 12

E 12

z LZ

112

0 12

602

802

LOZ

90 Z

SO2

PO2

€07.

7.07.

102

002

66 1

86 1

L6 1

96 L

S6 1

LZ L

921

S Z 1

PZ 1

€7.1

z z L

12 1

07.1

6 11

811

L11

911

S 11

P 11

El l

511

L L L

011

60 1

80 1

LO 1

90 1

SO 1

PO 1

€0 1

20 1

10 1

00 L

66

86

L6

96

The following short program demonstrates and confirms Table 12-3. This program
prints the ATASCll code for a character in the text window and the character itself in

the graphics window. Every time you press the key, a new character appears.
The reason SETCOLOR 4,0,0 is the same as SETCOLOR 8,0,0 is to avoid a screen filled
with hearts. Another way to accomplish this is to lower the character set into RAM (us-

ing MOVE) and redefine the heart character as 8 by 8 zeros. See Appendix C, Alternate
Character Sets, for an example of lowering and redefining the character set. The
special character set is shown in the program as it is now written. To see the standard
character set, just delete line 20. The GRAPHICS 2 instruction automatically pokes
756.224.

10 GRAPHICS 2
20 POKE 756,226
30 SETCOLOR 8,0,0
40 SETCOLOR 4,0,0!AVOID SCREEN HEARTS
50 SETCOLOR 5,4,6!PINK
60 SETCOLOR 6,12,2!CREEN+TEXT WINDOW
70 SETCOLOR 7,9,6!LIGHT BLUE
80 A$= INKEY$
90 IF A$="" THEN 80
100 O N ERROR GOT0 150
110 PRlNT #6, AT(6,6);CHR$(X)
120 PRlNT X
130 X=X+l
140 GOT0 80
150 RUN !REPEATS WHEN 256 REACHED

POINT- GRAPHICS 3 through 8 plot individual points on your television screen. The number

PLOTTING following GRAPHICS determines the size of the points you plot. GRAPHICS 3 has the

MODES largest plot points. The following program can be used in GRAPHICS 3 through 8 by
changing line number 10 to the appropriate graphics number. Note that you must in-
clude line 20 since it indicates that you are using COLOR 1 as a default (see Table 12-4
for default colors).

10 GRAPHICS 3 !CAN BE GRAPHICS 3 THROUGH 8
20 COLOR 1 !YOU WANT DEFAULT COLOR - ORANGE
30 PRlNT "TYPE TWO NUMBERS - SEPARATE THE TWO"
40 PRlNT "NUMBERS WITH A COMMA"
50 PRlNT "PLOT X,Yf'
60 INPUT X,Y
70 PLOT X,Y
80 GOT0 30

If you enter and run the above program you will see plot point 5,5 by typing 5,5 and
pressing the key. The boundaries and middle of GRAPHICS 3 are as follows.

72 Graphics

39,19
four lines of text window. . . .

I f you insert a new statement - statement 15 - 15 SETCOLOR 4,4,8 you will get
large, pink dots instead of the default orange. This change to the original plotting p r e
gram gives you pink plot points because SETCOLOR 4,x,x aligns with COLOR 1 in
GRAPHICS 3. You can also make the text window at the bottom of the screen go away
by changing statement 10 to 10 GRAPHICS 3 + 16.

TABLE 124
DEFAULT COLORS, MODE, SETCOLOR, AND COLOR

Default Mode or Setcolor Color Description
Colors Condition Register n and Comments

GRAPHICS 0 4 Register
Light blue 5 holds Character luminance
Dark blue 6 character (same as background)

7 Character
Black Text Mode 8 Border

Orange 4 Character
Light green GRAPHICS 1,2 5 Character
Dark blue 6 Character
Red 7 Character
Black Text Modes 8 Character

Background, border

Orange 4
Light green GRAPHICS 3,5,7 5
Dark blue 6

7

1 Graphics point
2 Graphics point
3 Graphics point

Black Ccolor modes 8 0 Background, border

Orange G RAPH ICS 4 1 Graphics point
4 and 6 5 ---

6 - - -

/ ---

Black 2-color modes 8 0 Background, border

GRAPHICS 8 4 ---

Light blue 5 I - - -
Dark blue 6 2 ---

/ - - -
Black 1 coloa,2 lums. 8 Border

Graphics 73

Note: Player-missile graphics color is SETCOLOR register, color, luminance, where
register=0,1,2,3 and determines color of player-missile 0,1,2,3, respectively. Player-
missile graphics will work in all graphics modes.

The following programs will work in GRAPHICS 1 or GRAPHICS 2. The programs show
the alternate basic character set and special character set (POKE 756,226). To restart
these two programs, press the key and type RUN followed by

2 REM KEYBOARD TYPEWRITER
10 GRAPHICS 2
20 SETCOLOR 4,0,0!to avoid screen full of hearts in lowercase
30 PRINT "TYPE Green/Blue/Red (GIBIR)"
40 INPUT "AND PRESS RETURN? "; C$
50 IF C$="G" THEN K=32
60 IF C$="B THEN K=128
70 IF C$="RU THEN K=160
80 PRINT "TYPE UPPER/LOWER (U/L)"
90 INPUT "AND PRESS RETURN ? "; B$
100 IF B$="U1' THEN 120
110 POKE 756,226
120 PRINT "NOW TYPE - ALPHA + CTRL KEYS"
130 A$= INKEYS
140 IF A$="" THEN 130
150 A = ASC(A$) + K!32 is green, I28 is blue, I60 is red
160 PRINT A
170 PRINT#6, CHR$(A);
180 COTO 130

100 REM TWINKLE
110 GRAPHICS 16+2
1 20 X = RN D(36)
130 ON ERROR COTO 150
140 PRINT#6, TAB(X);"*"
150 GRAPHICS 32+16+2
160 RESUME

74 Graphics

PLAYER-MISSILE GRAPHICS

PLAYERS AND The following BASIC commands are tools to help you construct and move players and

MISSILES missiles:

MOVE instruction
OPTION (PLMI or PLM2)
VARPTR (PLMI or PLMZ)
SETCOLOR 0 or 1 or 2 or 3

MAKING A
PLAYER
OUT OF PAPER

Cut a strip of paper about 2 inches wide from an 8 x 10 inch sheet of paper. Now draw
an 8-bit-wide "byte" down the strip of paper.

Hex &08 drawn on 8-bit strip.
Hex & I 4 drawn on 8-bit strip.
Hex 8422 drawn on 8-bit strip.
Hex &41 drawn on 8-bit strip.

An upside down V is shown on the strip in binary and hex. This strip of paper is like a
player. If you take the player strip and lay it vertically down the middle of the televi-
sion screen, you have "positioned it with the horizontal position register." When you
move the strip right and left, you are "poking new locations into the horizontal position
register" to get that movement.

The MOVE instruction is used to move the player-missile object up and down the
player-missile strip. Your paper strip can serve to demonstrate how the MOVE instruc-
tion works. Let's say that you have put the upside down V on your paper strip with a
pencil that has an eraser. To move the object it is necessary for you to erase the whole
object and rewrite it elsewhere on the strip.

As you can imagine, vertical movement is slightly slower than horizontal movement. I t
is slower because it takes only a single poke to the horizontal position register for
horizontal movement, but many erasures and redrawings are necessary to move an o b
ject vertically.

In the actual MOVE instruction you state the lowest address of the object you want to
move; then state the lowest address of the new area to which you want to move the
object; and lastly, state how many bytes you want moved. Hence the format: MOVE
from-address, to-address, no.-of-bytes.

Player-Missile Graphics 75

H O W THE ATARl MICROSOFT BASIC INSTRUCTIONS ASSIST
PLAYER-MISSILE GRAPHICS

The OPTION (PLMI) zeros out and dedicates a singleline resolution player-missile

area in RAM. OPTION (PLM2) is for doubleline player-missile resolution.

VARPTR(PLM1 or PLM2) points to the beginning memory location of the player-missile
area in RAM. This is the point from which you must figure your offset or displacement
to poke your image into the correct area. For example, the starting address (top of
television screen) for player 0 in doubleline resolution is VARPTR(PLM2)+128. In
doubleline resolution each player is 128 bytes long. So if you wanted to poke a straight
line in the middle of player 0, the poke would be POKE VARPTR(PLM2)+192,&FF.

The SETCOLOR instruction gives the register, color, and luminance assignments. In
ATARl Microsoft BASIC the registers 0, 1, 2, and 3 are used for player-missiles 0, 1, 2,
and 3. It is only necessary to specify SETCOLOR 0,5,10 to set player-missile 0; the C O
LOR instruction is not used.

Remember that you must poke decimal location 559 with decimal 62 for singleline
resolution or with decimal 46 for doubleline resolution. You must also poke decimal
location 53277 with decimal 3 to enable player-missile display.

You can use player-missile graphics in all modes. Missiles consist of 2-bit-wide "strips."
Missiles 0, 1, 2, 3 are assigned the same colors as their associated player. Thus, when
SETCOLOR sets the color of player 1 to red, it also sets missile 1 to red.

The terms player and missile are derived from the animated graphics used in ATARl
video games. Player-missile binary tables reside in player-missile graphics RAM. This
RAM accommodates four &bit players and four 2-bit missiles (see Figure 13-1). Each
missile is associated with a player, unless you elect to combine all missiles to form a
fifth, independent player (see "Priority Control").

A player, like the spaceship shown in Figure 13-2, is displayed by mapping its binary
table directly onto the television screen, on top of the playfield. The first byte in the
table is mapped onto the top line of the screen, the second byte onto the second line,
and so forth. Wherever 1's appear in the table, the screen pixels turn on; wherever 0's
appear, the pixels remain off. The pattern of light and dark pixels creates the image.

You can display player-missile graphics with singleline resolution (use OPTION(PLM1))
or doubleline resolution (OPTION(PLM2)). If you select singleline resolution, each
byte of the player will be displayed on a single scan line. If you choose doubleline
resolution, each byte will occupy two scan lines and the player will appear larger than
in singleline resolution. Each player is 256 bytes long with singleline resolution, or 128
bytes long with doubleline resolution. Line resolution only needs to be programmed
once. The resolution you choose will apply to all player-missile graphics in your p r o
gram. The Player-Missile Craphics Demonstration Program included in this section is
an example of doubleline resolution programming

Player-missile graphics give you considerable flexibility in programming animated
video graphics. Registers are provided for player-missile color, size, horizontal position-
ing, player-playfield priority, and collision control.

76 Player-Missile Graphics

PMBASE

Register

VARPTR (PLM2)

Missiles + 128

+ 256

+ 384

+ 512

+ 640

Double-Line Single-Line
Resolution Resolution

1 Unavailable I
Unavailable

Player 1

Player 2

I Player 0

Player 1

Figure 13-1 Pla yer-Missile Craphics RAM Configuration

PMBASE

VARPTR (PLM1)

Missiles

+ 256

+ 512

+ 768

+ 1024

+ 1280

GRAPHIC BINARY HEXADECIMAL DECIMAL
REPRESENTATION REPRESENTATION REPRESENTATION REPRESENTATION

Figure 13-2 Mapping the Player

Player-Missile Graphics 77

COLOR The ATARl 400 and ATARI 800 Computers have nine registers for user control of

CONTROL player-missile, playfield, and background color:

TABLE 1 3-1
SETCOLOR REGISTER ASSIGNMENTS

SETCOLOR Register,Color,Luminance Function

SETCOLOR O,color,luminance
SETCOLOR I ,color,luminance
SETCOLOR 2,color,luminance
SETCOLOR 3,color,luminance
SETCOLOR 4,color,luminance
SETCOLOR 5,color,luminance
SETCOLOR 6,color,luminance
SETCOLOR 7,color,luminance
SETCOLOR 8,color,luminance

Color-luminance of Player-Missile 0
Color-luminance of Player-Missile 1
Color-luminance of Player-Missile 2
Color-luminance of Player-Missile 3
Color-luminance of Playfield 0
Color-luminance o f Playfield 1
Color-luminance of Playfield 2
Color-luminance of Playfield 3
Color-luminance of background

Players are completely independent of the playfield and o f each other. Missiles share
color registers with their players and hence are the same color as their players. I f you
combine missiles t o form a fifth player, they assume the color of playfield color-
luminance register 3 (COLPF3).

To program color, specify the register, the hue, and the luminance. Use the SETCOLOR
command. See lines 20 and 100 of the Player-Missile Graphics Demonstration Program
for examples. See also "Graphics," Section 12.

Each color-luminance register is independent. Therefore, you could use as many as
nine different colors in a program, depending upon the graphics mode selected. All
registers cannot be used in all graphics modes (see "Graphics," Section 12).

SIZE CONTROL Five sizecontrol registers are provided-four for the players and one for all four
missiles:

TABLE 13-2
REGISTERS CONTROLLING W I D T H OF PLAYER-MISSILES

Size Address
Register Hex Dec Function

SIZEPO DO08 53256 Controls size o f Player 0
SlZEPl DO09 53257 Controls size o f Player 1
SIZEP2 DOOA 53258 Controls size of Player 2
SIZEP3 DO0 B 53259 Controls size of Player 3
SlZEM DOOC 53260 Controls size o f missiles

Sizecontrol registers allow you to double or quadruple the width of a player or missile
without altering its bi t resolution. To double the width, poke a I into the size register;
t o quadruple the width, poke a 3; and t o return a player or missile t o normal size, poke
a 0 or 2. An example is given in line 80 of the Player-Missile Graphics Demonstration
Program.

78 Pla yer-Missile Graphics

POSITION AND VERTICAL
MOVEMENT

Vertical position is set when you specify the location of the player-missile in player-
missile graphics RAM. The lower you place the player-missile in RAM, the higher the
image will be on the television screen. A positioning technique is illustrated by lines
120 and 200 of the Player-Missile Craphics Demonstration Program at the end of this
section.

To program vertical motion, use the MOVE command (see lines 350 and 390 of the
Player-Missile Graphics Demonstration Program). Since the MOVE command does not
zero the old location after the move, an extra zero at each end of the player is used to
"cleanup" as the player is being moved. Give the current position of the player in
RAM, the direction of the move through RAM (forward = +, backward = -), and the
number of player bytes to be moved. Each byte of the player must be moved. Follow-
ing the MOVE command, increment or decrement the vertical position counter (see
lines 360 and 400 of the Player-Missile Graphics Demonstration Program).

HORIZONTAL

Each player and missile has its own horizontal position register, so players can move in-
dependently of each other, and missiles can move independently of their players.

TABLE 13-3
PLAYER-MISSILE HORIZONTAL POSITION REGISTERS

Position Address
Register Hex Dec Function

H POSPO
H POSPl
HPOSP2
HPOSP3
H POSMO
H POSMI
H POSM2
H POSM3

DOOO
DO01
DO02
DO03
DO04
DO05
DO06
DO07

Horizontal position of Player 0
Horizontal position of Player 1
Horizontal position of Player 2
Horizontal position of Player 3
Horizontal position of Missile 0
Horizontal position of Missile 1
Horizontal position of Missile 2
Horizontal position of Missile 3

To set the position of a player or missile, poke its horizontal position register with the
number of the position. To program horizontal movement, simply change the number
stored in the register. See lines 100 and 180 of the Player-Missile Graphics Demonstra-
tion Program for examples.

A horizontal position register can hold 256 positions, but some of these are off the left
or right margin of the television screen. A conservative estimate of the range of player
visibility is horizontal positions 60 through 200. The actual range will depend upon the
television set.

DIAGONAL

Horizontal and vertical moves can be combined to move the player diagonally. Set the
horizontal position first, then the vertical position. See lines 270 through 390 of the
Player-Missile Craphics Demonstration Program.

Player-Missile Craphics 79

PRIORITY The Priority Control Register (PRIOR,&DOl B; OS shadow CPRIOR,&26F) enables you

CONTROL to select player or playfield color register priority and to combine missiles to form a
fifth player.

PRIORITY SELECT

You have the option to specify which image will have priority in the event player and
playfield images overlap. This feature enables you to make players disappear behind
the playfield and vice versa. To set the priority, poke one of the following numbers into
the Priority Control Register:

1 = All players have priority over all playfields.
2 = Players 0 and 1 have priority over all playfields, and all playfields have

priority over players 2 and 3.
4 = All playfields have priority over all players.
8 = Playfields 0 and 1 have priority over all players, and all players have priority

over playfields 2 and 3.

ENABLE FIFTH PLAYER

Setting bit D4 of the Priority Control Register causes all missiles to assume the color of
Playfield Register 3 (&2C7, dec. 711). You can then combine the missiles to form a fifth
player. If enabled, the fifth player must still be moved horizontally by changing all
missile registers (&DO04 through &D007) together.

COLLISION
CONTROL

Collision control enables you to tell when a player or missile has collided with another
graphics object. There are 16 collision control registers.

TABLE 134
COLLlSlON CONTROL REGISTERS FOR PLAYER-MISSILES

Collision Address
Register Hex Dec Function

MOPF
M I PF
M2PF
M3PF
POPF
PI PF
P2 PF
P3PF
MOPL
M I PL
M2 PL
M3PL
POPL
PI PL
P2 PL
P3PL

DO00
DO01
DO02
DO03
DO04
DO05
Do06
DO07
DO08
DO09
DO0 A
DO0 B
DOOC
DOOD
DO0 E
DOOF

Missile 0 to playfield
Missile 1 to playfield
Missile 2 to playfield
Missile 3 to playfield
Player 0 to playfield
Player I to playfield
Player 2 to playfield
Player 3 to playfield
Missile 0 to player
Missile 1 to player
Missile 2 to player
Missile 3 to player
Player 0 to player
Player I to player
Player 2 to player
Player 3 to player

80 Player-Missile Graphics

PLAYER-MISSILE
GRAPHICS
DEMONSTRA-
T I O N PROGRAM

In each case, only the rightmost 4 bits of each register are used. They are numbered 0,
1, 2, and 3 from the right and designate, by position, which playfield or player the re le
vant player or missile has collided with. A one in any bit position indicates collision
since the last HITCLR.

CLEARING COLLISION REGISTERS

Al l collision registers are cleared at once by writing a zero to the HITCLR register
(&DO1 E, dec. 53278).

The following ATARl Microsoft BASIC program creates a player (spaceship) that
shoots missiles and can be moved in all directions with the joystick. Connect a joystick
controller to CONNECTOR JACK 1 on the front of your ATARl Home Computer.

05 !DOUBLE-LINE RESOLUTION PLAYER AND MISSILE
10 GRAPHICS 8
20 SETCOLOR 6,0,0
30 X = 130
40 Y = 70
50 STICK0 = &278
60 OPTION PLM2
70 POKE 559,46
80 POKE &DOOC,l
90 POKE &DO1 D,3
100 POKE &DOOO,X
110 SETCOLOR 0,3,10
120 FOR J = VARPTR(PLM2)+128+ Y TO VARPTR(PLM2)+135+ Y:READ A:POKE
J,A
125 NEXT J
130 DATA 0,129,153,189,255,189,153,0
140 IF PEEK(&DOIO) = 1 THEN 220
150 SOUND 0,220,12,15,1NT(X/30)
160 ZAP = X
170 POKE VARPTR(PLM2)+ 4+ Y,3
180 POKE &D004,ZAP
190 ZAP = ZAP-I2
200 IF ZAP < I 2 THEN POKE VARPTR(PLM2)+4+ Y,O:GOTO 220 ELSE 180
210 !JOYSTICK MOVES
220 A = PEEK(STICK0): IF A = 15 THEN G O T 0 140
230 IF A = 11 THEN X = X-I
240 IF A = 7 THEN X = X + l
250 POKE &DOOO,X
260 IF A = 1 4 THEN G O T 0 350 !MOVE UP
270 IF A = 13 THEN G O T 0 390 !MOVE DOWN
280 !MOVE DIAGONALLY
290 IF A = I 0 THEN X = X-1:POKE &DOOO,X:GOTO 350
300 IF A = 6 THEN X = X+I:POKE &DOOO,X:GOTO 350
310 IF A = 9 THEN X = X-1:POKE &DOOO,X:GOTO 390
320 IF A = 5 THEN X = X+I:POKE &DOOO,X:GOTO 390
330 G O T 0 140
340 !MOVE UP
350 MOVE VARPTR(PLM2) + 128 + Y,VARPTR(PLM2)+ 128 + (Y-1),8

Player-Missile Graphics 81

360 Y = Y-I
370 COTO 140
380 !MOVE DOWN

390 MOVE VARPTR(PLM2)t I 2 8 t (Y-l),VARPTR(PLM2] t I 2 8 t Y,8
400Y = Y + l
410 COTO 140
420 STOP
430 END

ANNOTATION Line

10 Sets a highresolution graphics mode with no text window. You can pro
gram player-missile graphics in any graphics mode. See Section 12,
"Graphics" and Table 12-4.

Sets the background color to black, as follows:

6 = Background Color-Luminance Register (COLBK, &DOIA);
0 = Black (see Color Table 12-1);
0 = Zero luminance. The luminance value is an even number b e

tween 0 and 14. The higher the number, the greater the
luminance and the brighter the color.

Initializes player position variables X (horizontal) and Y (vertical).

Assigns the label STICK0 to joystick register 278.

Specifies doubleline resolution RAM for the player-missile graphics (see
Figure IS I) . PLMI would specify singleline resolution.

Sets the Direct Memory Access Control Register (DMACTL, 559) for
doubleline resolution (46). A 62 would specify singleline resolution.

Note When DMACTL is enabled, the player-missile graphics registers
(CRAFPOGRAFP3 and CRAFM) are automatically loaded with data
from the player-missile RAM.

Doubles the width of the missile by poking the Size Control Register
(SIZEM, &DOOC) with 1. Poking the register with a 3 would quadruple
the width.

Enables the Craphics Control Register (GRACTL, &DO1 D) to display
player-missile graphics (3 enables, 0 disables).

Pokes the horizontal position of the player (X = 130 from line 30) into
the player 0 Horizontal Position Register (HPOSPO, &D000).
Colors the player and missile bright red-orange as follows:

0 = Player-missile 0 Color-Luminance Register (COLPMO,
& DO1 2);

3 = Red-orange (see Color Table 12-1);
10 = Luminance or brightness (see annotation of line 20).

82 Player-Missile Craphics

120-1 25 Sets variable pointer VARPTR(PLM2) to the player-missile starting ad-
dress in player-missile graphics RAM (see Figure 13-I), Pokes data
from line 130 into the player area, VARPTR(PLM2)+128+ Y to

VARPTR(PLM2) t 1 3 5 t Y. The computer uses the data in line 130 to
map the spaceship onto the screen (see Figure 13-2).

Tells the computer to read the joystick 0 trigger register (TRIGO,
&D010). If the trigger button is not activated (&DO10 = I) , the com-
puter will go to line 220 and read the joystick position; if the button is
activated (&DO10 = O), the computer will execute lines 150 through
200.

Generates sound each time the joystick button is pressed. Sound is
programmed as follows:

(1) Select voice. As many as four voices (0 to 3) can be used, but
each voice requires a separate SOUND statement.

(2) Choose pitch from Table 14-1. The larger the number, the lower
the pitch.

(3) Set distortion or noise level, using an even number between 0
and 14. A 10 gives a pure tone; 12 gives a buzzer effect.

(4) Set volume, an odd number between 1 and 15. The larger the
number, the louder the sound.

(5) Set duration of sound per second (20 = 20160 or K second).

Sets the horizontal position of the missile (ZAP) equal to the horizon-
tal position of the player (X).

Turns on the screen pixels corresponding to the missile 0 RAM area
[VARPTR(PLM2)+4+Y] to display the missile (3 = ON; 0 = OFF).

Pokes the horizontal position of the missile (ZAP = X from line 160)
into the missile 0 horizontal position register (HPOSMO, &D004).

Decrements the missile 0 horizontal position counter by 12 to create
a horizontal "line of fire" from the player.

If the missile's horizontal position is less than 12 (off the left side of
the screen), the computer pokes 0's into the missile RAM area to clear
it and goes to line 220. If the missile's horizontal position is 12 or
greater, the computer pokes the new hrizontal position into HPOSMO
(register &DO04 in line 180) and decrements the horizontal position
counter by 12 (line 190).

220 Tells the computer to read the STICK0 register and find the position
of the joystick (see Figure 13-3). If the position is 15 (neutral), the com-
puter goes to line 140 and reads the joystick trigger register (&Dolo).

2 3012 50 If the joystick is moved left (I I) , the computer decrements the
horizontal position counter and pokes the spaceship's new horizontal
position into the HPOSPO register (&D000).

Player-Missile Graphics 83

2401250 If the joystick is moved right (7), the computer increments the
horizontal position counter and pokes the spaceship's new horizontal
position into HPOSPO.

If the joystick is moved up (14), the computer moves the spaceship

back one byte in player-missile RAM (line 350). Each of the 8 bytes
that comprise the spaceship must be moved back. When the move is
completed, the computer decrements the vertical position counter
(line 360).

270 If the joystick is moved down (13), the computer advances the
spaceship one byte in player-missile RAM (line 390) and increments
the vertical position counter (line 400).

290 - 320 If the joystick is moved diagonally (10, 6, 9, or 5), the computer ex-
ecutes a horizontal move (after resetting the horizontal position
register), makes a vertical move (line 350 or 390), and resets the ver-
tical position counter (line 360 or 400).

Figure 13-3 loystick Controller Positions

84 Player-Missile Graphics

SOUND

SOUND Format: SOUND voice, frequency, distortion, volume, duration
Examples: 120 SOUND 2,204,10,12,244

100 SOUND O,l22,8,lO

Voice. There can be up to four voices specified by the numbers 0 through 3

Frequency. From 0255 (see Frequency Chart, Table 14-1)

Distortion. The default is a pure tone. Even numbers between 0 and 14 define the
distortion. A 10 is used to create a "pure" tone. A 12 gives a buzzer sound.

Volume. A number between 0 and 15. Use a I to create a sound that is barely audible.
Use a 15 to make a loud sound. A value of 8 is considered normal. If more than one
sound statement is being used, the total volume should not exceed 32. This will create
an unpleasant "clipped" tone.

Duration. Duration is given in 1/60 of a second. The duration indicates how long a tone
or noise will last. If you do not specify a number for the duration parameter, the tone
will continue until the program reaches an END statement, another RUN statement, or
until you type a second SOUND statement using the same voice number followed by
0,0,0. You can also stop the tone by pressing the key.

Example: SOUND 2,204,10,12
SOUND 2,0,0,0

Sound 85

TAB LE 14-1
FREQUENCY CHART OF PITCH VALUES

Notes Hex Decimal

HIGH NOTES C
B
A# or ~b
A
G# or ~b
C
F#or Cb
F
E
D# or E
D
C# or DL
C
B
A# or B
A
G# or ~b
G
F# or C b
F
E
D#or E b
D
C# or DL

MIDDLE C C
B
A# or Bb
A
C# or Ab
G
F# or Cb
F

LOW NOTES E
D# or E L
D
C# or ~b
C

86 Sound

Example Program:

NIGHT LAUNCH

10 GRAPHICS 2 t 1 6
20 SETCOLOR 4,8,4
30 PRINT#6, AT(3,3);"NIGHT LAUNCH"
40 FOR DELAY=I T O 1000:NEXT
50 GRAPHICS 2 f 1 6
60 PRI NT#6, AT(3,3);I1AT THE CAPE"
70 FOR DELAY =I T O 1000:NEXT
80 GRAPHICS 0
90 POKE 752,l
100 SETCOLOR 6,0,0
110 FOR T = l T O 24:PRINT "":NEXT
120 PRINT TAB(lI);CHR$(8);CHR$(lO)
130 PRINT TAB(1 I);CHR$(22);CHR$(2)
140 PRINT TAB(Il);CHR$(22);CHR$(2)
I 5 0 PRINT TAB(II);CHR$(I 3);CHR$(13)
160 PRINT TAB(lI);CHR$(6);CHR$(7)
170 FOR VOL=15 T O 0 STEP -1
180 SOUND 2,77,8,VOL
190 PRINT CHR$(155)!MOVES ROCKET UP
200 FOR R = l TO 200:NEXT R
21 0 NEXT VOL
220 END

The above program is a demonstration o f the SOUND statement. I t decreases (by a
loop) the volume o f a distorted sound. The sound effect resembles a rocket taking o f f
into outer space.

Sound 87

GAME CONTROLLERS

In ATARl Microsoft BASIC, the game controllers are sensed with the PEEK instruction.
The controllers are attached directly to the four controller jacks in the front of the
ATARl Home Computer. The PEEK locations can be given the same names listed
below or you can give them short variable names. A complete list of PEEK locations is
given in Appendix E.

OYSTICK CONTROLLERS

CONTROLLERS

PADDLE CONTROLLERS

Figure 15-1 Came Controllers

PADDLE The following example program senses and prints the status of paddle controller O (first

CONTROLLERS paddle in leftmost port). This PEEK can be used with other functions or commands to
"cause" further actions like sound, graphics controls, etc. An example is the statement
I F PADDLE(0)>14 THEN COTO 440. Peeking the paddle address returns a number b e
tween 1 and 228, with the number increasing in size as the knob on the controller is
rotated counterclockwise (turned to the left).

Example of initializing and using PEEK for PADDLE(0):

10 PADDLE(O)= 624
20 PRINT PE EK(PADDLE(0))
30 COTO 20

PADDLE number and PEEK locations (decimal addresses):

Came Controllers 89

KEY BOARD Peeking the following addresses returns a status of 0 if you press the trigger button of
CONTROLLERS the designated controller. Otherwise, it returns a value of 1.

Example of using paddle trigger (0):

10 PTRIC(O)=&27C
20 PRINT PEEK(PTRIC(0))
30 COTO 20

PTRlC (paddle trigger) number and PEEK locations (decimal):

PTRI C(0) = 636
PTRIC(l)= 637
PTR IC(2) = 638
PTR IC(3) = 649
PTRIC(4)= 640
PTRIC(5)= 641
PTRIC(6)= 642
PTRIC(7)= 643

JoYsTlCK Peeking the joystick locations (addresses) works in the same way as for the paddle con-
CONTROLLERS trollers, but can be used with the joystick controller. The joystick controllers are

numbered 0-3 from left to right.

Example of using joystick (0):

10 STICK(O)=632
20 PRINT PEEK(STICK(0))
30 COTO 20

STICK (joystick) number and PEEK (decimal) locations:

Figure 15-2 shows the PEEK number that will be returned for the various joystick posi-
tions:

14

Figure 15-2 lo ystick Triggers

90 Came Contro//ers

Sensing the joystick triggers works the same way as for the paddle trigger buttons. I t
can be used with both the joystick and keyboard controllers.

Using joystick trigger (0):

10 STRIC(O)= 644
20 PRINT PEEK(STRIG(0))
30 GOT0 20

STRIG (joystick) number and PEEK (decimal) locations:

5 REM THIS PROGRAM WILL SAY "BANG!" WHEN JOYSTICK RED BUTTON IS
6 REM PRESSED
10 IF PEEK(644)=0 THEN 7 "Bang!"
20 IF PEEK(644)=1 THEN CLS
30 GOT0 10

CONSOLE KEYS The following program reads the console keys on the right-hand side of the ATARl
Comwter:

10 POKE 53279,O
20 PRINT PEEK(53279)
30 GOT0 20

Peeking location 53279 (decimal) will return a number that indicates which key was
pressed.

7= No key pressed
6=
5=
3=

Came Controiiers 91

APPENDIX A
SAMPLE PROGRAMS

DlSK DIRECTORY PROGRAM

Features used:
User-callable CIO routines (CIOUSR) (See Appendix N.)
Integers
VARPTR function
ON ERROR
On-line comments

10 !
20 !
30 !
40 ON ERROR 350
50 OPTION RESERVE(200)
60 OPEN#I,"D:CIOUSR" INPUT
80 ADDR= VARPTR(RESERVE)
90 FOR 1=0 TO 159
I00 GET#I,D:POKE ADDR+ I,D
110 NEXT I
120 CLOSE #I
130 PUTIOCB=ADDR
140 CALLClO=ADDR+61
150 GETIOCB=ADDR+81
160 DIM IOCB%(10)
170 IOCB%(O)=l
180 IOCB%(1)=3
190 IOCB%(2)=6
200 FSPEC$ = "D:*.*"
210 !
220 Z= VARPTR(FSPEC$)
230 Y = VARPTR(IOCB%(3))
240 POKE Y,PEEK(Z+2)
250 POKE Y+l,PEEK(Z+I)
260 !
270 Z= USR(PUTIOCB,VARPTR(IOCB%(O)))
280 !
290 Z= USR(CALLCIO,VARPTR(IOCB%(O)))
300 !
310 !
320 INPUT #1,S$
330 PRINT S$
340 GOTO 320
350 CLOSE #I
360 END

ROUTINE TO READ
DlSK DIRECTORY

!GET SPACE FOR CIOUSR ROUTINES
!OPEN FlLE
!GET STARTING ADDRESS OF RESERVED AREA
!POKE IN CIOUSR ROUTINES

!THESE ARE THE PROPER STARTING POINTS
!FOR EACH OF THE
!ROUTINES
!DATA FOR ROUTINES TAKES 10 BYTES
!USE IOCB #I
!DO A CIO "OPEN" CALL
!FOR DIRECTORY INPUT
!DIR FlLE SPEC
!PUT ADDRESS OF FSPEC INTO BUFFER
!ADDRESS OF THE STRING FILESPEC
!ADDRESS OF THE PROPER ARRAY POSITION
!HIGH ADDRESS BYTE
!LOW ADDRESS BYTE
PUTDATA INTO IOCB

THEN CALL CIO

IOCB IS SETUP AND DlSK
IS OPEN ... READ DIRECTORY

Appendix A 93

EXPLOSION SUBROUTINE

Feature used: Sound

10 !TWO-LINE MAlN PROGRAM
20 !AND SUBROUTINE TO PRODUCE
30 !AN EXPLOSION
40 !
50 COSU B 8000
60 STOP

!
! EXPLOSION SUBROUTINE
!
SOUND 2,75,8,14
ICR=0.79
V1=15:V2=15:V3=15
SOUND O,NTE,8,V1
SOUND 1 ,NTE + 20,8,V2
SOUND 2,NTE + 50,8,V3
V1 = V1 * ICR
V2 = V2 * (ICR+ .05)
V3 = V3 * (ICR + .08)
IF V3 > 1 THEN 8060
SOUND 0,0,0,0,0
SOUND 1,0,0,0,0
SOUND 2,0,0,0,0
RETURN

FANFARE MUSIC EXAMPLE

Feature used: Sound with duration

10 !ROUTINE TO GENERATE FANFARE MUSIC
20 !TWO-LINE MAlN PROGRAM
30 !
40 COSUB 8000
50 STOP
8000 !
8010 !FANFARE MUSIC
8020 !
8030 DUR= 20:VO=181:V1=144:V2=121:COSUB 8200
8040 DUR= 7:COSUB 8200
8050 COSUB 8200
8060 DUR = 9:VO = l62:Vl = 1 28:V2 = 108:COSU B 8200
8070 DUR=15:VO=181:VI =144:V2=121:COSUB 8200
8080 VO= l62:Vl =I 28:V2 =108:COSUB 8200
8090 VO =I 53:V1= 1 28:V2 = 96:V3 = 193
8100 For 1-2 TO 14
8110 SOUND 3,V0,10,1

94 Appendix A

8120 SOUND l,VI,lO,I
81 30 SOUND 2,V2,10,1
8140 SOUND O,V3,10,1
8150 FOR] -1 TO 100;NEXT 1
8160 NEXT I
81 70 FOR J = 1 TO 200:N EXT J
81 80 SOUND 0,0,0,0,0
81 85 SOUND 1,0,0,0,0
81 90 SOUND 2,0,0,0,0
81 95 SOUND 3,0,0,0,0
8197 RETURN
8200 !SOUND GENERATOR
8210 SOUND O,V0,10,8,DUR
8220 SOUND 1 ,V1,10,8,DUR
8230 SOUND 2,V2,1 O,8, DU R
8240 !
8250 !NOW STOP THE SOUND
8260 !
8270 SOUND 0,0,0,0,0
8280 SOUND 1,0,0,0,0
8290 SOUND 2,0,0,0,0
8295 FOR J =I TO 250:NEXT J
8300 RETURN

EXAMPLE OF ATARl PIANO

Features used:
OPEN statement
String array
INKEY$
SOUND
On-line comments

10 ! EXAMPLE PROGRAM TO
20 ! CONVERT YOUR ATARl
30 ! COMPUTER INTO A PIANO!
40 !
50 !
60 ! FIRST, SET UP A 2-OCTAVE
70 ! SCALE OF KEYS TO PRESS
80 ! AND NOTES TO PLAY
90 DIM SCALEs(15)
100 DIM PITCH(15)
110 ! NOW READ THESE INTO
120 ! THEIR RESPECTIVE TABLES
130 OPEN #I, "D:NOTES.DATU INPUT
140 FOR 1-1 TO 15
150 INPUT #l,S$,P
I60 SCALE$(I)= S$:PITCH(I)= P

Appendix A 95

NEXT I

CLOSE #I
PRINT "PLAY, BURT, PLAY!"
!
! BEGIN TESTING FOR KEYS
! BEING PRESSED
!
N$ = INKEY$
IF N$= "" THEN COTO 240 ELSE COTO 320
!
! WHEN A KEY IS PRESSED,
! SEE IF ITS ONE O N OUR
! PIANO KEYBOARD!
!
!
FOR1 = 1 T O 1 5
IF N$ = SCALE$(I) G O T 0 380
NEXT I
COTO 240 !NOT A C O O D KEY, TRY AGAIN
! FOUND A C O O D KEY, PROCESS IT
!
VOLUME = 8
SOUND l,PITCH(1),1O,VOLUME,I 5
COTO 240
END

Sample NOTES.DAT FlLE
First i tem is the key t o be pressed.
Second item is the frequency t o play

NOTE.DAT CREATION PROGRAM

10 !PROGRAM TO CREATE NOTES.DAT FlLE
20 !
30 D I M NOTES$(I5),PITCH(I 5)
40 FOR 1-1 TO 15
50 INPUT "ENTER KEY, FREQ. FOR KEY :";NOTES$(I),PITCH(I)
60 NEXT I
70 OPEN B1,"D:T" OUTPUT
80 FOR 1-1, T O 15
90 PRINT $1 ,NOTES$(I);",";PITCH(I)
100 NEXT I
110 CLOSE $1
120 END

Enter the fol lowing values t o get a 2-octave scale.

96 Appendix A

DECIMAL-TO-HEX CONVERSION ROUTINE

Features used:
String array
Integers
On-line comments

20 !
3 0 ! D E C H E X
40 !
50 !
60 !
70 !PROGRAM T O CONVERT A N INPUT
80 !DECIMAL NUMBER T O ITS
90 !HEXADECIMAL EQUIVALENT
100 !
110 !
130 D I M HEXB(15):DIM HEXBASE(4)
140 FOR I=0 T O 15
150 READ HEX$(I)
160 NEXT I
170 FOR I = 0 T O 4
180 READ HEXBASE(1)
190 NEXT I
200 DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
21 0 DATA 0,4096,256,16,1
220 !
230 !GET THE DECIMAL NO.
240 !
250 INPUT "ENTER THE DECIMAL NO. :";DEC
260 IF DEC = 0 THEN 500 !STOP
270 !
280 !PROCESS EACH HEX DIGIT
290 !
300 FOR) = 1 TO 4
305 IF) - 4 THEN ANS% = DEC:COTO 350
310 ANS% = (DEC/HEXBASE(J)) - .5
320 IF ANS% < 1 THEN ANS% = 0
330 DEC = DEC - (ANS% * HEXBASE()))
340 !
350 ! FIND THE HEX DIGIT FOR FIRST POSITION

Appendix A 97

360 FOR 1% = 0 TO I 5
370 IF ANS% = I% THEN COTO 420
380 NEXT I%
390 !IF WE GOT HERE ITS AN ERROR!
400 PRINT " DECIMAL INPUT CAN'T BE COMPUTED"
410 PRlNT "PLEASE TRY AGAIN": GOT0 250
420 HEXNO$ = HEXNO$ + HEX$(I%)
430 NEXT J
440 !
450 !PRINT THE HEX NO. AND G O FOR ANOTHER
460 !
470 PRINT "HEX NO. = ";HEXNO$
480 HEXNO$ = ""
490 COTO 250
500 END

VERTICAL FINE SCROLLING

Features used:
Fine scrolling
VARPTR
OPTION RESERVE and CHR
User-defined display list

1 0 DEFINT A-Z
20 OPTION RESERVE(3000) !AREA FOR SCREEN RAM
30 OPTION CHRI !AREA FOR DISPLAY LlST
40 ADDR = VARPTR(CHR1)
50 CADDR = VARPTR(RESERVE)
60 VSCROL = & D M 5 !VERTICAL SCROLL REGISTER
70 LCADDR = 0
80 HCADDR = ((CADDR A N D &FF00)/256) A N D &FF
90 FOR l = 0 TO 99 !ZERO THE DISPLAY LlST AREA (IST 100 BYTES)
100 POKE ADDR+ I,O:NEXT I
110 LADDR = ADDR A N D &FF
120 HADDR = ((ADDR AND &FF00)/256) A N D &FF
130 LMSLO = A D D R S 4 !ADDRESS OF LOAD
140 LMSHl = A D D R S 5 !MEMORY SCAN BYTES (LMS)
150 FOR 1-0 TO 1 8 !POKE IN NEW DISPLAY LlST
160 READ D !FROM DATA STMTS. 19G210
170 POKE ADDR+ I,D
180 NEXT I
190 DATA &70,&70,&70,&67,&00,&00,&27,&27
200 DATA &27,&27,&27,&27,&27,&27,&27,&27
21 0 DATA &27,&07,&41
220 POKE ADDRS19,LADDR !LAST 2 BYTES POINT BACK
230 POKE ADDRS20,HADDR !TO TOP OF DISPLAY LlST
240 POKE LMSL0,LCADDR:POKE LMSHI,HCADDR !TELLS SCREEN RAM START
250 K = - I !250 - 320 LOAD DATA INTO
260 FOR l =I TO 300 !SCREEN RAM AREA, A PACE FULL
270 K = K+l :POKE CADDR+ K,33 !OF A's A N D THEN THE ALPHABET

98 Appendix A

280 NEXT I
290 FOR I = 34 TO 58
300 FOR) = 1 TO 20
310 K=KtI:POKE CADDRt K,I
320 NEXT) , I
330 POKE &22F,O !TURN OFF ANTIC
340 POKE &230,LADDR !TELL IT WHERE M Y DISPLAY
350 POKE &231,HADDR !LIST IS, A N D ...
360 POKE &22F,&22 !TURN ANTIC BACK O N
370 REM HERE IS THE REAL PROGRAM
380 FOR I=1 T O 15 !380 - 410 D O THE VERTICAL
390 POKE VSCROL,I !FINE SCROLL
400 FOR W = l T O 30:NEXT W
410 NEXT I
420 CADDR=CADDR+20 !CALCULATE WHERE NEXT LlNE OF
430 LCADDR=CADDR A N D &FF !SCREEN R A M STARTS
440 HCADDR = ((CADDR A N D &FF00)/256) A N D &FF !FOR THE COARSE SCROLL
450 WAIT &D40B,&FF,96 !WAIT UNTIL TV VERTICAL LlNE COUNTER HITS 96
460 POKE VSCROL,O !THEN SET CHARACTERS BACK T O ORIGINAL POSITION
470 POKE LMSL0,LCADDR !AND COARSE
480 POKE LMSH1,HCADDR !SCROLL BY CHANGING LMS BYTE I N DISPLAY LIST
490 G O T 0 380

Appendix A 99

APPENDIX B
- -

GRAPHICS MODES PROGRAMS

MICROBE INVASION EXAMPLE

10 REM MICROBE INVASION
15 REM SPIRAL CREATURES TAKE OVER SCREEN
16 REM 10 PERCENT CHANCE SCREEN CHANCES MODE
17 REM WHEN CREATURE GOES OUT OF BOUNDS
30 RANDOMIZE
40 MODE = RND(8)
50 GRAPHICS MODE + I 6
60 PIX= RND(15)
70 SETCOLOR O,PIX,6
80 COLOR 1
90 BAK= RND(255)
100 POKE 712,BAK
110 X= RND(150):Y= RND(100)
120 IF X>140 THEN 40
130 Z=2
140 NUM=NUM+I
150 FOR DOTS =I TO Z
160 IF NUM=5 THEN NUM=I
170 ON ERROR COTO 230
180 PLOT X,Y
190 ON NUM COSUB 250,270,290,310
200 NEXT
210 Z = Z + l
220 COTO 140
230 GRAPHICS MODE + 32 +l6!NO TEXT WINDOW, NO SCREEN CLEAR
240 RESUME 60
250 X=X+l:Y=Y+l
260 RETURN
270 X=X+l:Y=Y-I
280 RETURN
290 X=X-I :Y =Y-I
300 RETURN
310 X=X-l:Y=Y+ I
320 RETURN

Appendix B 101

The following short program makes use of RANDOMIZE and RND to print threeletter
words and threeletter abbreviations of government agencies.

10 RANDOMIZE !Seeds the RND function
20 GRAPHICS 2 + I 6
30 X= RND(26) t 96 !Make first letter
40 Y = RND(5) !Make a vowel for middle letter
50 IF Y = l THEN Y=97 !Make an A
60 IF Y=2 THEN Y=101 !Make an E
70 IF Y=3 THEN Y=105 !Make an I
80 IF Y=4 THEN Y = l l l !Make an 0
90 IF Y=5 THEN Y=117 !Make a U
100 Z = RND(26) + 96 !Make last letter
I 10 PRINT#6, AT(9,3);CHR$(X);CHR$(Y);CHR$(Z)
120 FOR DELAY=I TO 2000:NEXT
180 COT0 30

102 Appendix B

APPENDIX C

ALTERNATE CHARACTER SETS

ATARl Home Computers support several standard character sets that are stored as
part of the Operating System (0s) ROM. These include all the upper- and lowercase
alphabet, numbers, special characters, and a special graphics character set. At times,
however, it is very useful to be able to define your own character set. Applications for
this capability that immediately come to mind include character-driven animation,
foreign language word processing, and background graphics for games (for instance, a
map or special playfield).

ATARl Computers and ATARl Microsoft BASIC readily support this ability. This is easy
for the ATARl Home Computer because the OS data base contains a pointer (CHBAS)
at hex location 2F4 (decimal location 756) which points to the character set to be used.
Normally this points at the standard character set in the OS ROM. But in BASIC, you
can POKE your own character set into a free area of RAM (set aside with the OPTION
CHRI or OPTION CHR2 statement) and then reset the OS pointer, CHBAS, to point to
your new character set. The computer will instantly begin using the new characters.

There are several important things to keep in mind when redefining the character set:

Graphics mode 0 needs 128 characters defined (OPTION CHRI). Graphics
modes 1 and 2 allow only 64 characters (OPTION CHR2).

All 64 or 128 characters need to be defined even though you may only wish to
change and use one character; this is easily accomplished by transferrip the
ROM characters into your RAM area and then changing the desired character to
its new configuration.

The 64character set requires 512 bytes of memory (8 bytes per character) and
must start on a lh K boundary. The 128-character set requires 1024 bytes of
memory and must start on a l K boundary. The programmer need not worry
about these restrictions when using the CHRI and CHR2 options; the area is
allocated to begin on the proper boundary.

The value that is poked into CHBAS after the character set is defined is the page
number in memory where the character set begins. This value can be computed
with the following statement:

CHBAS% = (VARPTR(CHRn)/256) AND &FF

Where "n" is either 1 or 2. This value is then poked into location &2F4
(decimal 756).

Appendix C 103

The most timeconsuming process in using an alternate character set is creating the

characters. Each character consists of 8 bytes of memory, stacked one on top of the

other (see Figure C-I). Visualize each character as an 8x8 square of graph paper.
Darken the necessary square on the graph paper to create a character (see Figure C-2).
Then, each row of the 8x8 square is converted from this binary representation (where

each darkened square is a I and each blank square is a zero) to a hex or decimal
number (see Figure C-2). These numbers are then poked into the appropriate bytes of
the RAM area, from top to bottom in these figures, to define the character in RAM. The
first 8 bytes of the reserved (OPTION CHRI or CHR2) area define the zeroth character;
the next 8 bytes define the first character, and so on. After transferring the standard
character set from its ROM location to the reserved CHRI or CHR2 area, any character
can be redefined by finding its starting position in the area, then poking the new bytes
into the starting byte and the next 7 bytes. After all necessary characters are redefined,
poke the new page number intoCHBAS and the new character will immediately be ac-
tive. Use BASIC PRINT statements to display the new characters; for instance, if you
have redefined the " A to be a solid block and use the statement,

PRINT " A ,

the new character will be printed

A little experimentation with this process will quickly show you how powerful this
capability can be. The program on the following page is an example of character set
redefinition

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Figure C-7 Amount of Memory per Character

Byte
No. Binary Hex Decimal

Figure C-2 Redefining a Character

104 Appendix C

SAMPLE PROGRAM

10 !
20 !PROGRAM TO DEMONSTRATE
30 !ALTERNATE CHARACTER SET
40 !DEFINITION
50 !
60 !THE PROGRAM REDEFINES THE
70 !CHARACTERS A,B,C,D,E,F,C,H
80 !
90 CHBAS = &2F4 !CHR. SET POINTER

OPTION CHRI !ALLOCATE CHARACTER SET AREA
ADDR%=VARPTR(CHRI) !FIND STARTING ADDRESS
PACENO% = (ADDR%/256) A N D &FF !CALCULATE PACE
!
MOVE 57344,ADDR%,1024 !MOVE CHR. SET D O W N INTO R A M
!
OFFSET=33*8 !OFFSET T O "A"
FOR l =O T O 63 !GET NEW CHARACTERS
READ C
POKE ADDR%+OFFSET+ I,C !AND INSERT
NEXT I
!
!DATA STATEMENTS ARE BY CHARACTER
!
DATA &07,&OF,&I F,&3F,&7F,&FF,&FF,&FF
DATA &EO,&FO,&F8,&FC,&FE,&FF,&FF,&FF
DATA &FF,&FF,&FF,&7F,&3F,&1 F,&OF,&07
DATA &FF,&FF,&FF,&FE,&FC,&F8,&FO,&EO
DATA &00,&00,&00,&3F,&7F,&FF,&FF,&FF
DATA &00,&00,&00,&FC,& FE,&FF,&FF,&FF
DATA &FF,&FF,&FF,&7F,&3F,&00,&00,&00
DATA &FF,&FF,&FF,&FE,&FC,&00,&00,&00
!
POKE CHBAS.PACENO% !SWITCH TO NEW CHARACTER SET!
!
POKE &2F0,1 !TURN OFF CURSOR
SETCOLOR 6,2,6 370 X=20
FOR Y=10 TO 20
WAIT &D40B.&FF.110

400 CLS: PRINT h... '

410 PRINT AT(X,Y+l):"CD
420 FOR W = l TO 30:NEXT W
430 NEXT Y
440 CLS: PRINT AT ...
450 PRINT AT(X,22);"CHU
460 SOUND 0,79,10,8,4
470 FOR W = l TO 80:NEXT W
480 FOR Y =20 T O 1 0 STEP -1
490 WAIT &D40B,&FF,I 10
500 CLS: PRINT AT ...
510 PRINT AT(X,Y +l);"CDU
520 FOR W = l T O 30:NEXT W
530 NEXT Y
540 C O T 0 380

Appendix C 105

APPENDIX D

DERIVED FUNCTIONS

The following trigonometric functions can be derived by the calculations shown.

Derived Functions Derived Functions in Terms of Microsoft

Secant

Cosecant

Inverse sine

l nverse cosine

l nverse secant

l nverse cosecant

lnverse contangent

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Hyperbolic secant

Hyperbolic cosecant

Hyperbolic cotangent

lnverse hyperbolic sine

lnverse hyperbolic cosine

lnverse hyperbolic tangent

lnverse hyperbolic secant

lnverse hyperbolic cosecant

lnverse hyperbolic cotangent

SEC(X) = l/COS(X)

CSC(X)= l/SlN(X)

ARCSIN(X)= ATN(X/SQR(-X*X + 1))

ARCCOS(X)=-ATN(X/SQR(-X*X+ 1) +CONSTANT))

ARSEC(X)= ATN(SQR(X*X-I)) + (SCN(X-l)*CON-
STANT)

ARCCSC(X)= ATN(l/SQR(X*X-1))
+ (SCN(X-l)*CONSTANT)

ARCCOT(X)= ATN(X)+ CONSTANT

Sl NH(X)=(EXP(X>EXP(-X))/2

COSH(X)= (EXP(X)+ EXP(-X))/2

TANH(X)=-EXP(-X)/(EXP(X)+ EXP(-X))*2 + 1

SECH(X)=2/(EXP(X)+ EXP(-X))

CSCH(X)= 2/(EXP(X>EXP(-X))

COTH(X)= EXP(-X)/(EXP(X>EXP(-X))*2 + 1

ARCSINH(X)= LOC(X+ SQR(X*X+ 1))

ARCCOSH(X) + LOC(X+ SQR(X*X-1))

ARCTANH(X)= LOC((1 + X)/(l-X))/2

ARCSECH(X)= LOC((SQR(-X*X+l)+l)/X)

ARCCSCH(X)= LOC((SCN(X)*SQR(X*X + I) + I)/X)

ARCCOTH(X) = LOC((X + 1)/(X-1))I2

Appendix D 107

APPENDIX E

MEMORY LOCATIONS

Memory locations are expressed in hexadecimal, with decimal equivalents in paren-
theses. For additional information, see the ATARI Personal Computer System Technical
Users Notes (part num ber COl6555).

MEMORY MAP The 6502 Microprocessor is divided into four basic memory regions: RAM, cartridge
area, I/O chip region, and resident OS ROM. Memory regions and their address boun-
daries are listed below:

RAM (minimum required for operation):
RAM expansion area:
Cartridge B (left cartridge) or 8K RAM:
Cartridge A (right cartridge) or 8K RAM:
Unused:
I/O chips:
OS floating point package:
Resident Operating System ROM:

OOO@l FFF (08191)
2000-7FFF (81 92-32767)
8000-9FFF (32768-40959)
A000-BFFF (4096G-49151)
COO-CFFF (491 52-53247)
DOO@D7FF (53248-55295)
D8WDFFF (5529657343)
E r n F F F F (5734445535)

RAM REGION The RAM region, shared by the OS and the program in control, is divided into the
following subregions:

6502 Microprocessor Page 0 Address Mode Region: 0000 through OOFF (0-255)
allocated as follows:

0000 through 007F (0-1 27): OS
0080 through OOFF (I 28-255): User applications
00D4 through OOFF (212-255): Floating point package, if used.

Page 1, 6502 Hardware Stack Region: 0100 through 01 FF (256511).

Note: At power up or the stack location points to address 01 FF (511) and
the stack then pushes downward toward 0100 (256). The stack wraps around from 0100
to 01 FF if a stack overflow occurs.

Pages 2-4, OS Data Base (working variables, tables, data buffers): 0200 through
047 F (51 2-1 1 51),

Pages 7-XX, User Boot Area: 0700 (1 792) to start of free RAM area, where XX is a
function of the screen graphics mode and the amount of RAM installed.

Note: When initial diskette startup is completed, the data base variable points to the
next available location above software loaded. When no software is entered by the the
initial diskette startup, the data base variable points to location 0700.

Screen Display List and Data: Page XX to top of RAM. Data base pointer con-
tains address of last available location below the screen area.

Appendix E 109

CARTRIDGE
AREA

I/O CHIPS

RESIDENT
OS ROM

Address
Hex Dec

Cartridge B is the RIGHT CARTRIDGE on the ATARl800 Home Computer. Cartridge A
is the LEFT CARTRIDGE on the ATARl 800 Home Computer and the only cartridge on
the ATARl 400 Home Computer.

Cartridge B: 8000 through 9FFF (32768-40959)
Cartridge A: A000 through BFFF (4096@49151) for 8K cartridges; 8000 through
BFFF (32768-491 51) for 16K cartridges (optional)

Note: On the ATARI 800 Home Computer, if a RAM module plugged into the last slot
overlaps any of these cartridge addresses, the installed cartridge will disable the con-
flicting RAM module in 8K increments.

The 6502 Microprocessor performs input/output operations by addressing the follow-
ing external support chips as memory:

CTlA DO00 through DO1 F (53248-53279)
POKEY D200 through D21 F (5376G53791)
PIA D300 through D31 F (5401 654047)
ANTIC D400 through D41 F (54272-543030)

Some of the chip registers are readlwrite; others are read only or write only. Table E-2
lists the registers and their addresses by chip. For additional information, see the
ATARl Personal Computer System Technical Users Notes.

The region from D800 through FFFF (5529665535) permanently contains the OS and
the floating point package:

Floating point package: D800 through DFFF (5529657343)
Operating System ROM: EOOO through FFFF (57344-65535)

The OS contains many vectored entry points, all fixed, at the end of the ROM and in
RAM. The floating point package is not vectored, but all documented entry points will
be fixed. See the Appendix of the ATARI Personal Computer System OS Users Manual
(part of the ATARl Personal Computer System Technical Users Notes) for listings of the
fixed ROM vectors and entry points.

TABLE E-1
USEFUL OS DATA BASE ADDRESSES

Byte
Name Size Function

MEMORY CONFIGURATION (See Sections 4 and 7, ATARI Personal Computer System OS Users Manual, part of
ATARl Personal Computer System Technical Users Notes.)

000 E 14 APPMHI 2 User-free memory screen lower limit

006A 106 RAMTOP 1 Display handler top of RAM address (MSB)

02 E4 740 RAMSIZ 1 Top of RAM address (MSB)

02E5 741 MEMTOP 2 User-free memory high address

02 E7 743 MEMLO 2 User-free memory low address

TEXTlCRAPHlCS SCREEN (See Section 5, OS Users Manual.)

Screen Margins (text modes; text window)

0052 82 LMARC N 1

0053 83 RMARC N 1

Cursor Control

0054 84 ROWSCRS

0055 85 COLCRS

005A 90 OLDROW

005 B 91 OLDCOL

0290 656 TXTROW

0291 657 TXTCOL

02 FO 752 CRSINH

Color Control

PCOLRO

PCOLRI

PCOLR2

PCOLR3

COLOR0

COLOR1

COLOR2

COLOR3

CO LO R4

Attract Mode

004D 77 ATRACT

Tabbing

02A3 675 TABMAP

Screen Memory

0058 88 SAVMSC

Split-Screen Memory

0294 660 TXTMSC

Left screen margin (&39; default 2)

Right screen margin (&39; default 39)

Current cursor row

Current cursor column

Prior cursor row

Prior cursor column

Current cursor row in text window

Current cursor column in text window

Cursor display inhibit flag
(0 = cursor on, 1 = cursor off)

Color-luminance Player-Missile 0

Color-luminance of Player-Missile 1

Color-luminance of Player-Missile 2

Color-luminance of Player-Missile 3

Color-luminance of Playfield 0

Color-luminance of Playfield 1

Color-luminance of Playfield 2

Color-luminance of Playfield 3

Color-luminance of background

Attract mode timer and flag
(Value 128 = on; turns on every 9 minutes)

Tab stop bit map (default: 7, 15, 23,
etc. to 11 9)

Upper left corner of screen

Upper left corner of text window

Appendix E 111

DRAWIFILL Function

0060 96 NEWROW 1
0061 97 NEWCOL 2

02FD 765 FILDAT 1

Internal Character Code Conversion

02 FA 762 ATACHR 1

Display Control Characters

02 FE 766 DSPFLC 1

KEYBOARD (See Section 5, OS Users Manual.)

Key Reading

02 FC 764

Special Functions

BRKKEY 1

INVFLC 1

SHFLOK 1

SSFLAC 1

Destination point; initialized to value in ROWCRS
Destination point; initialized to value in COLCRS.
Fill data for graphics FILL command.

Contains last ATASCll character or plot point.

Display control character flag.
(1 = display control characters)

Contains value of last keyboard character in FlFO or
$FF if FlFO is empty.

key flag (normally nonzero; set to 0 by

nverse video flag (norm = 0; set by @ key)

Shift/control lock control flag ($00 = no lock (norm);

CENTRAL 110 (CIO) ROUTINE (See Section 5, OS Users Manual.)

I10 Control Block

0340034F (832-847) IOCB

0350035F (848-863) IOCB

036@036F (864-879) IOC B

037@037F (88@895) IOC B

O38@O38 F (89691 1) l OC B

0390039F (91 2-927) IOCB

03A@03AF (928-943) IOCB

03B003BF (944-959) IOCB

I/O Control Block 0

I/O Control Block 1

I10 Control Block 2

I/O Control Block 3

I/O Control Block 4

I/O Control Block 5

I10 Control Block 6

I/O Control Block 7

112 Appendix E

Zero Page IOCB

DEVICE STATUS

02EA 746 DVSTAT 4

Handler I.D. (See Section 5; Initialized to BFF at power
up and .)

Device number

Command byte

Status
Buffer address

PUT BYTE vector (Points to ClO's "IOCB not OPEN" at
power up and .I
Buffer lengthlbyte count

Auxiliary information

Spare bytes for handler use

Zero page IOCB (Only the first 12 bytes (IOCBs) are
moved by the CIO utility.)

Handler index number (set to $FF on CLOSE)

Device drive number

Command byte

Status byte

Buffer address

PUT BYTE vector (Points to ClO's "IOCB not OPEN"
on CLOSE.)

Buffer lengthlbyte count

Auxiliary information
CIO working variables

ClDNO = ICSPRZS2; ICOCHR = ICSPRZS3 (See
Sections 5 and 9 of the OS Users Manual.)

Device status

DEVICE TABLE (See Section 9, OS Users Manual.)

031 A 749 HATABS 38 Device handler table

SERIAL 110 (SIO) ROUTINE (See Section 9, OS Manual.)

Device Control Block

D C B 12 Device control block

DDEVIC 1 Device bus I.D.

DUNlT 1 Device unit number

Appendix E 113

0302 770 DCOMND 1 Device command

0303 7 71 DSTATS 1 Device status

0304 772 DBUFL0,DBUFHI 2 Handler buffer address
0306 774 DTIMLO 1 Device timeout (See Section 9, OS Users Manual.)

0308 776 DBYTL0,DBYTHI 2 Buffer length/byte count (See Section 9, 0s Users
Manual.)

030A 778 DAUXI ,DAUX2 2 Auxiliary information

BUS SOUND CONTROL

0041 65 SOUNDR 1 Quiednoisy 110 flag (0 = quiet)

ATARl CONTROLLERS (See Appendix L, OS Users Manual.)

Joysticks

0278 632 STICK(ISTICK3 4 Joystick position port

0284 644 STRIC(ISTRIC3 4 Joystick trigger port

Paddles

Paddle position port

Paddle trigger port

Light Pen

0234 564 LPENH 1 Light pen horizontal position code

0235 565 LPE NV 1 Light pen vertical position code

0278 632 STICK(ISTICK3 4 Light pen button port

FLOATING POINT PACKAGE (See Section 8, OS Users Manual.)

00 D4 21 2 FRO 6 Floating point register 0

OOEO 224 F R1 6 Floating point register 1

00 F2 242 CIX 1 Character index

00 F3 243 INBUFF 1 Input text buffer pointer

OOFB 251 DECFLCIRADFLG 1 Degreeslradians flag (0 = DECFLC; 6 = degrees;
DECFLC = 0)

00 FC 252 FLPTR 2 Pointer to floating point number

0580 1408 LBUFF 96 Text buffer

114 Appendix E

POWER UP AND (See Section 7, OS Users Manual.)

Diskette/Cassette Boot

0002 2 CASlNl 2

OOOC 12 DOSlNl 2

Environment Control

0008 8 WARMST 1
OOOA 1 0 DOSVEC 2

INTERRUPTS (See Secton 6, OS Users Manual.)

Real Time Clock

System VBLANK Timers

N M I Interrupt Vectors

POKMSK

CRITIC

RTCLOK

CDTMVI

CDTMV2

CDTMV3

CDTMV4

CDTMV5

CDTMAI

CDTMA2

CDTMF3

CDTMF4

CDTMF5

VDSLST

VVBLKI

VVBLKD

Cassette boot initialization vector

Diskette boot initialization vector

Warmstart flag (= 0 on power up; $FF on
Noncartridge control vector
(See Section 10, OS Users Manual.)

POKEY interrupt mask

Critical code section flag
(nonzero = executing code is critical)

Real time frame counter (1160 sec)
(+0 = MSB; +I = NSB; +2 = LSB)

System timer 1 value

System timer 2 value

System timer 3 value

System timer 4 value

System timer 5 value

System timer 1 jump address

System timer 2 jump address

System timer 3 flag

System timer 4 flag

System timer 5 flag

Display list interrupt vector
(not used by the 0 s)

Immediate VBLANK vector

Deferred VBLANK vector

Appendix E 115

IRQ Interrupt Vectors

Hardware Register Updates

VPRCED 2
VINTER 2

VBREAK 2
VKEYBD 2

VUSERIN 2

VSEROR 2

VS E ROC 2

VTlMRl 2

VTIMR2 2

VTIMR4 2

VIMIRQ 2

0230 560 SDLSTL 1

0231 561 SDLSTH 1

02CO 704 PCOLRx 4

02C4 708 PCOLORx 5

02 F3 755 CHACT 1

02 F4 756 CHBAS 1

Serial I/O bus proceed signal

Serial I/O bus interrupt signal

BREAK instruction vector

Keyboard interrupt vector

Serial 110 bus receive data ready

Serial I/O bus transmit ready

Serial I/O bus transmit complete

POKEY timer vector (not used by 0 s)

POKEY timer vector (not used by 0 s)

POKEY timer vector (not used by 0 s)

General IRQ vector

Screen display list address

Screen display list address

Color register

Color register

Character control

Character address base register
($EO= uppercase, number set; $E2= lowercase, special
graphics set; default= $E0)

USER AREAS (See Section 4, 05 Users Manual.)

Note: The following areas are available to the user in a nonnested environment.

116 Appendix E

Note: For additional information refer to the A TAR1 Personal Computer System Hardware Manual(part of the ATARl
Personal Computer System Technical Notes).

TABLE E-2
HARDWARE ADDRESSES

Address Register
Hex Dec Name Function

OS Shadow
Hex Dec Name

ANTIC CHlP

D400 54272

D401 54273

D402 54274

D403 54275

D404 54276

D405 54277

D407 54279

D409 54281

D40A 54282

D40B 54283

D40E 54286

D40F 54287

D40F 54287

DMACTL

CHACTL

DLISTL

DLISTH

HSCROL

VSCROL

PMBASE

CHBASE

WSYNC

VCOUNT

NMlEN

NMIRES

NM l ST

Direct memory access (DMA) 22 F
control (WRITE)
Character control (WRITE) 2 F3

Display list pointer 2 30
low byte (WRITE)

Display list pointer 231
high byte (WRITE)

Horizontal scroll (WRITE)

Vertical scroll (WRITE)

Player-missile base address
(WRITE)

Character base address
(WRITE)

Wait for horizontal sync
(WRITE)

Vertical line counter (READ)

Nonmaskable interrupt (NMI)
enable (WRITE)

Reset NMlST (WRITE)

NMI status (READ)

559 SDMCTL

755 CHART

560 SDLSTL

561 SDLSTH

2F4 756 CHBAS

D41GD4FF (54288-54527) Repeat ANTIC addresses D400 through D40F.

CTlA CHlP

PLAYER-MISSILE GRAPHICS CONTROL

Horizontal Position Control (WRITE)

HPOSPO

HPOSPI

HPOSP2

HPOSP3

H POSMO

HPOSMI

HPOSM2

HPOSM3

Horizontal position Player 0

Horizontal position Player 1

Horizontal position Player 2

Horizontal position Player 3

Horizontal position Missile 0

Horizontal position Missile 1

Horizontal position Missile 2

Horizontal position Missile 3

Appendix E 117

Collision Control (READ)

DO00 53248

DOOl 53249
D002 53250
DOO3 53251

DOO4 53252

DOO5 53253

DOO6 53254

DOO7 53255

DO08 53256

DO09 53257

DOOA 53258

DOOB 53259

DOOC 53260

DOOD 53261

DOOE 53262

DOOF 53263

MOPF

M I PF

M2PF
M3PF

POPF

PI PF

P2 PF

P3PF

MOPL

MI PL

M2PL

M3PL

POPL

PI PL

P2PL

P3 PL

Collision Clear (WRITE)

Missile 0 to playfield

Missile 1 to playfield

Missile 2 to playfield
Missile 3 t o playfield

Player 0 t o playfield

Player 1 to playfield

Player 2 to playfield

Player 3 to playfield

Missile 0 to player

Missile 1 to player

Missile 2 to player

Missile 3 t o player

Player 0 to player

Player I to player

Player 2 t o player

Player 3 t o player

Collision clear

Size Control (WRITE)

Note: 0 = normal, 1 = double, 3 = quadruple size

DO08 53256 SIZEPO Size o f Player 0

DO09 53257 SIZEPI Size o f Player 1

DOOA 53258 SIZEP2 Size o f Player 2

DOOB 53259 SIZEP3 Size o f Player 3

DOOC 53260 SlZEM Sizes o f all missiles

Graphics Registers (WRITE)

DOOD 53261 GRAFPO

DOOE 53262 GRAFPI

DOOF 53263 GRAFP2

DO10 53264 GRAFP3

DO11 53265 GRAFM

Graphics for Player 0

Graphics for Player 1

Graphics for Player 2

Graphics for Player 3

Graphics for all missiles

118 Appendix E

joystick Controller Triggers (READ)

DO10 53264 TRlCO Read Joystick 0 trigger

DO11 53265 TRIG1 Read Joystick 1 trigger

DO12 53266 TRIG2 Read Joystick 2 trigger

DO13 53267 TRIG3 Read joystick 3 trigger

Color-Luminance Control (WRITE)

COLPMO

COLPMI

COLPM2

COLPM3

COLPFO

COLPFI

COLPF2

COLPF3

COLBK

Priority Control (WRITE)

DO1 B 53275 PRIOR

Graphics Control (WRITE)

DOID 53277 GRACTL

Color-lurn. Player-Missile 0

Color-lurn. Player-Missile 1

Color-lurn. Player-Missile 2

Color-lurn. Player-Missile 3

Color-lurn. Playfield 0

Color-lurn. Playfield 1

Color-lurn. Playfield 2

Color-lurn. Playfield 3

Color-lurn. background

Priority selection

Graphics control

MISCELLANEOUS 110 FUNCTIONS

PALINTSC Systems

DO14 53268 PAL Read PALINTSC bits

Console Switches (set to 8 during VBLANK)

COLRO

PCOLRI

PCOLR2

PCOLR3

COLOR0

COLOR1

COLOR2

COLOR3

COLOR4

DOIF 53279 CONSOL Write console switch port
DOIF 53279 CONSOL Read console switch port

Appendix E 119

POKEY CHIP

Audio (WRITE)

AUDFI

AUDCI

AUDF2

AUDC2

AUDF3

AUDC3

AUDF4

AUDC4

AUDCTL

Audio Channel 1 frequency

Audio Channel 1 control

Audio Channel 2 frequency

Audio Channel 2 control

Audio Channel 3 frequency

Audio Channel 3 control

Audio Channel 4 frequency

Audio Channel 4 control

Audio control

Start Timer (WRITE)

D209 53769 STIMER Resets audiofrequency
dividers to AUDF values

Pot Scan (Paddle Controllers)

POT 0

POT I

POT 2

POT 3

POT 4

POT 5

POT 6

POT 7

ALLPOT

POTGO

Keyboard Scan and Control (READ)

Read Pot 0

Read Pot 1

Read Pot 2

Read Pot 3

Read Pot 4

Read Pot 5

Read Pot 6

Read Pot 7

Read 8-line pot-port state

Start pot scan sequence
(written during VBLANK)

D209 53769 KBCODE Keyboard code

Random Number Generator (READ)

PADDLO

PADDLI

PADDL2

PADDL3

PADDL4

PADDL5

PADDL6

PADDL7

D20A 53770 RANDOM Random number generator

120 Appendix E

Serial Port

D20A 53770 SKRES

D20D 53773 SERIN

D20D 53773 SEROUT
D20F 53775 SKCTLS

D20F 53775 SKSTAT

IRQ Interrupt

SKSTAT reset (WRITE)

Serial port input (READ)

Serial port output (WRITE)
Serial Port Ckeyboard
control (WRITE)

Serial Port Ckeyboard
status register (READ)

D20E 532774 IRQEN IRQ interrupt enable (WRITE)

D20E 532775 IRQST IRQ interrupt status (READ)

232 562 SSKCTL

10 16 POKMSK

D21 (TD2FF (537765401 5) Repeat D2WD20F (5376G53775)

PIA CHIP

Joystick ReadIWrite Registers

D300 54016 PORTA Writes or reads data from 278 632 STICK0
Controller Jacks 1 and 2 279 633 STICK1
if bit 2 of PACTL = 1.
Writes to direction control register if
bit 2 of PACTL = 0.

D301 54017 PORTB Writes or reads data from 27A 634 STICK2
Controller Jacks 3 and 4 27B 635 STICK3
if bit 2 of PBCTL = 1.
Writes to direction
control register if
bit 2 of PBCTL = 0.

D302 54018 PACTL Port A control (set to $3C
by IRQ code).

D303 54019 PBCTL Port B control (set to $3C
by IRQ code).

D30CD3FF (5402b54271) Repeat D3WD303 (540165401 9)

Appendix E 121

APPENDIX F

PROGRAM CONVERSIONS

COPYRIGHT NOTICE

Computer programs are protected in general by the Copyright Law. While the
Copyright Law expressly permits the owner of the copyright for a computer program to
adapt the program as necessary for utilization on a machine, such adaptation or
translation is otherwise generally prohibited. ATARl recommends that you only con-
vert programs purchased from the copyright owner or in accordance with a software
license.

CONVERTING The COMMODORE PET*@ BASIC, APPLE**@ APPLESOFT**@ BASIC, and RADIO
PROG RAMS TO SHACK***@ LEVEL II BASlC were all written by Microsoft. The overall approach and

ATARI syntax of these BASIC languages has been kept compatible whenever possible to allow

MICROSOFT both programs and programmers to easily move from machine to machine. This a p

BASlC
pendix reviews the differences and indicates how to work around them when convert-
ing to ATARl Microsoft BASIC.

Microsoft divided its original BASIC into several different levels: 4K, 8K, Extended, and
Full. Each successive level was a superset of the previous level and required more
memory. When a manufacturer requested BASIC, the specific level to start from was
determined by the memory constraints of the target machine. One source of incom-
patibility is due to starting at different levels. PET BASlC and APPLE APPLESOFT
BASlC are based on the 8K level. RADIO SHACK LEVEL II and ATARl Microsoft
BASlC are based on the full language level. Fortunately, this makes conversion into
ATARl Microsoft BASlC easy. The key language differences between 8K and Full
BASlC are the following:

DATA TYPES: In 8K BASIC, double precision is not supported. Only 9 digits of
accuracy are available. Integers can be used but they are converted to single
precision before any arithmetic is done, so their only advantage is small storage
requirements - not speed.

PRINT USING is not available, so the user has to format his own numbers.

The advanced statements: IF ... THEN ... ELSE, DEFINT, DEFSNC, DEFDBL,
DEFSTR, TRON, TROFF, RESUME, and LINE INPUT are not supported.

The functions, INSTR and STRINGS, are not supported.

Arrays can only be single dimensioned.

User-defined functions can only have one argument.

By far the most difficult areas for conversion are machinedependent features such as
graphics and machine language use. In all programming i t is important to isolate the
uses of the features and document the assumption made about the machine.

*PET is a registered trademark o f Commodore Business Machines, Inc.
**APPLE and APPLESOFT are registered trademarks o f APPLE COMPUTER
* * *RADIO SHACK is a registered trademark o f TANDY CORPORATION.

Appendix F 123

APPENDIX G

CONVERSION FROM COMMODORE (PET)
BASIC VERSION 4.0

Most of the difficulty in converting from Commodore (PET) BASlC (used on Com-
modore PET computers) comes from specific hardware features rather than the BASlC
language since i t is a strict implementation of the 8K level. Some o f the conversion
problems are:

The Commodore PET character set has been extended t o 256 characters. These
characters are block graphics characters. In order to emulate this feature of the
Commodore PET, an ATARI Computer user should set u p a RAM-based
character set.

Commodore PET BASlC has built-in constants as follows: TI$ (TIME$ for ATARI
Computers) and TI (TIME for ATARI Computers), ST for the STATUS of the last
I/O operation and a pi symbol for the constant pi.

Commodore PET I/O is done with special statements that control its IEEE bus.
The arguments to OPEN are completely different from other machines and
must be completely changed. The exact format o f sending the characters is
done by specifying a channel number with PRINT and INPUT statements, which
is the same as ATARI Microsoft BASIC, so only the OPEN and control
statements need t o be reprogrammed.

The display size of the Commodore PET is 40 by 25. I f menus are designed for
this layout, they wil l need t o be reprogrammed.

PEEKS and POKES are always very machine dependent. Commodore PET p r e
grams often use PEEK and POKE to control cursor positioning because there is
no direct way to change the cursor position. Each PEEK and POKE must be ex-
amined and reprogrammed.

Commodore PET programs often embed cursor control characters in literal text
strings. The ATARI Microsoft BASIC also supports this feature but the character
codes are different and must be changed.

The Commodore PET calls CLEAR, CLR.

Any use of machine language through the Commodore PET EXEC statement wil l
have to be carefully examined because although the microprocessor is the
same, the layout of memory and the way of passing arguments to BASlC and
receiving them from BASlC are quite different.

Since the Commodore PET does not support sound or true graphics there is no
conversion problem in these areas.

RND is different. RND with a positive argument (generally 1) returns a number
between 0 and 1 .

Overall, i f a special character set is set up identical t o the Commodore PET'S, i t should
be quite easy t o convert programs that do not make heavy use of machine language or
PEEK and POKE.

Appendix C 125

CONVERSION TO ATARl MICROSOFT BASlC

Use the followins table to convert a software program developed under Commodore
(PET) BASIC 4.0.

Note: For simplicity, those universal BASIC commands such as RUN, CONT, and POKE
have been omitted. In those cases, no conversion is necessary.

The following table can also be used to perform diskettebased functions. Commodore
(PET) BASIC 4.0 is a diskettebased language that must be supported by the ATARl
ComputerDOS options.

(Also see Appendix A.)

COMMODORE (PET) Equivalent ATARl Computer ATARl
COMMAND DOS OPTION Microsoft

BASlC

DIRECTORY

COPY

RENAME

SCRATCH

HEADER

BACKUP DO TO D l

A
DIRECTORY- SEARCH SPEC, LIST FILE?

C
COPY- FROM,TO?

E NAME
RENAME,GIVE OLD NAME,NEW
D2:old fn, new in

D
DELETE FILESPEC
D2:in
TYPE "Y" TO DELETE fn

I
WHICH DRIVE TO FORMAT?

1
TYPE "Y" TO FORMAT DRIVE 1

J
DUP DISK-SOURCE,DEST DRIVES?
1 ,I
TYPE "Y" IF OK TO USE PROGRAM AREA?
Y
INSERT SOURCE DISK,TYPE RETURN

INSERT DESTINATION DISK,TYPE RETURN

KILL

126 Appendix C

Keep in mind that the Commodore (PET) BASIC 4.0 is a diskettesupported language.
Therefore, when converting to run the Commodore (PET) program on your ATARl
Computer, you must be aware of the peripherals involved.

D LOA D LOAD "Dn:filenameU
LOAD CLOAD

DCLOSE CLOSE filenumber

DOPEN OPEN filenumber

DSAVE SAVE filename
SAVE CSAVE

Some of the Commodore (PET) BASIC 4.0 commands cannot be easily supported. As
an example, use the following conversion:

APPEND# OPEN #I, "filespec" INPUT
OPEN #2, "filespec" OUTPUT
LlNE INPUT#I, A$
PRINT #2, A$
CLOSE # I
K l LL "filename"
INPUT "filename";N$
LINE INPUT " ";A$
LINE INPUT " "; B$
PRINT#2, N$
PRINT#2, A$
PRINT#2, B$
CLOSE
NAME "filename2" AS "filename"

Check the logical flow of the software that you wish to convert to determine the direc-
tion of these commands. You will have to program around their use, depending upon
the results you wish to accomplish with your software application.

Appendix C 127

APPENDIX H

CONVERTING RADIO SHACK
TRS-80 PROGRAMS TO

ATARl MICROSOFT BASIC

Radio Shack BASlC is based on Full Microsoft BASIC, so converted programs will
make much better use of the features of ATARl Microsoft BASlC than APPLE or Com-
modore PET programs. ATARl Microsoft BASlC does have some additional features,
such as COMMON, because it was written later and because the memory limitation
for storing BASlC itself is not as restrictive on the ATARl Computer as it is on the Radio
Shack Computer. The term Radio Shack BASlC refers to the BASlC built into the
Model I and Model I l l computers, and called "1-eve1 II" BASIC. The BASlC on the
Model II is very similar, but i t is not specifically covered here.

The Radio Shack display size poses the greatest problem in converting TRSSO
BASIC programs, because it is 16 by 64. Programs that use the full 64 characters
for tables or menus will need to be changed.

Radio Shack supports a form of graphics that allow black and white displays of
128 by 48 pixels intermixed with characters. The only statements for manipula-
tion of the graphics are: CLS (clear screen), SET (turn a point on), RESET (turn a
point off), and POINT (test the value of a point on the screen).

Radio Shack does not store the uparrow character in the standard ASCII posi-
tion, so it has to be translated when moving programs onto the ATARl Com-
puter.

Radio Shack PRINTER I/O is done with LPRINT and LLlST without opening a
device. Radio Shack cassette 110 is done with PRINT or INPUT to channels 1
and 2 (two drives can be supported). The format of files on cassette is complete
ly different.

Calls to machine language are done with USR. Because Radio Shack Computers
use the 2-80 processor instead of the 6502, machine language routines will have
to be completely rewritten.

PEEKS and POKES cannot be directly converted. PEEK and POKE are not heavi-
ly used on the Radio Shack Computers.

The cursor positioning syntax is an @ after PRINT in Radio Shack BASlC and
"AT" in ATARl Microsoft BASIC.

The error codes returned by ERR are completely different.

Appendix H 129

TRSBO ATARl DEFINITION

AUTO mm-nn

CLOAD

CLOAD?

EDIT In

LlST mm-nn

MEM

POINT (x,y)

PRINT @ n, list

PRINT

RANDOM

SYSTEM

AUTO mm,nn Generates line numbers automati-
cally.

Returns doubleprecision represen-
tation of expression.

Returns largest integer not greater
than the expression.

CLOAD Loads a BASIC program from
LOADC:" tape.

VERI FY"C:filespec" Verifies BASIC program on tape to
one in memory.

Automatically truncates Returns singleprecision representa-
tion of the expression.

AUTO line number Lets you edit specified line number.
Use cursor control keys.

SCN(X)*INT(ABS(X)) Truncates all digits to the right of
the decimal point.

OPEN#5, "C:" INPUT INPUT reads data from cassette
IN PUT#5 tape.

LIST mm-nn Lists the program in memory onto
the printer.

LIST "P:" mm-nn Lists program to printer.

OPEN#4, "P:" OUTPUT Prints a line on printer.
PRINT#4, "TEST"

PRINT FRE (0)

OPEN#5, "D:" INPUT or CET#iocb, AT(s,b)
INPUT#5, AT(sector, byte) or PUT#iocb, AT(s,b)

CLOAD Writes data to cassette

RANDOMIZE

DOS

130 Appendix H

APPENDIX I

CONVERT1 NG APPLESOFT PROGRAMS
TO ATARl MICROSOFT BASIC

Applesoft started from exactly the same BASIC source as PET BASIC, so once again
there are very few pure language issues in converting programs to ATARl Microsoft
BASIC.

Apple added two language features to Applesoft to enhance compatibility with
their integer BASIC. They are: ONERR for error trapping and POP for eliminating
COSUB entries. ONERR can be easily converted to O N ERROR in ATARl
Microsoft BASIC. POP has no equivalent since i t allows a very unstructured
form of programming where subroutines aren't really subroutines. To convert,
add a flag, change the POP to set the flag, RETURN, and then have a statement
at the RETURN point check the flag and clear it and branch if i t is set.

The Apple default display size is different from the ATARl display (actual screen
size is the same). Menus and tables laid out to use the full display will have to be
edited.

The Apple disk and peripheral I/O scheme is unique. Prints to specific channels
are used to activate plug-in peripheral cards. The prints for the cards all have to
be reprogrammed.

The most difficult conversion task is changing the graphics and sound
statements. The overall Apple highresolution display size is 280 by 192. The c o
lor control is fairly unusual because each pixel cannot independently take on all
color values. The sound port is a single bit.

A variety of CALL statements are used in Applesoft to trigger machine-specific
features. Use of PEEK and POKE is much rarer but also must be changed.

Use of machine language generally will depend on the exact memory layout of
the Apple Computer. Since the microprocessor is the same, machine language
can be converted when the source is available except for references to the A p
ple Operating System.

RND is different. Apple RND with a positive argument (generally 1) returns a
number between 0 and 1.

Appendix 1 131

The following l i s t of commands, statements, and functions illustrates how to convert
Applesoft programs to ATARl Microsoft.

APPLESOFT ATARl

CALL
ctrl C
DEF FN name(x)=
HLlN
HOME
H PLOT
HTAB
INVERSE
NORMAL
LOAD
NOTRACE
ONERR COTO n
PDL
POP

RECALL
SAVE
TEXT
TRACE
VLlN
VTAB

USR (addr.)

DEF narne(x)=
PLOT x,y To x,y
C LS
PLOT
PRINT AT(x,y)

LOAD "D."
TROFF
ON ERROR COTO
PEE K(address)
add flag
check flag
OPEN#n, "C." OUTPUT
SAVE "D."
GRAPHICS 0
TRON
PLOT x,y TO x,y
PRl NT AT(x,y)

132 Appendix l

APPENDIX J

CONVERTING ATARl8K BASIC
TO ATARl MICROSOFT BASlC

ATARl Microsoft BASIC has improved graphics capabilities. You should consider
rewriting graphics sections to take advantage of player-missile graphics. The SET-
COLOR registers have been changed so that registers 0, 1, 2, and 3 now refer to player-
missiles. What was SETCOLOR O,cc, and 11 is now SETCOLOR 4,cc, and 11. SET-
COLOR numbers have changed so that what was 0,1,2, 3, and 4 for the register assign-
ment is now 4, 5, 6, 7, and 8. Other graphics changes include a FILL instruction and a
"chained" PLOT that replaces DRAWTO.

Microsoft has improved string-handling capabilities. If your initial program occupies
too much RAM you might consider compacting i t by rewriting it in Microsoft.

The are minor differences in the RND() and other instructions when converting to
ATARl Microsoft BASIC. The RND() can be made to work identically to the 8K BASIC's
if you include a RANDOMIZE statement as part of your program. Programs that you
have listed in 8K BASIC onto diskette can be loaded with ATARl Microsoft BASIC, and
with a few changes should run.

ATARl 8K ATARl MICROSOFT
BASIC BASIC COMMENTS

AD R(s$)

CLR

DEC

DRAWTO

LlST mm,nn

LOCATE x,y,var

OPEN#iocb,
aexpl ,aexp2,
filespec
filespec
filespec

POI NT#iocb
sector, byte

CLEAR

PLOT x,y TO x,y

LlST mm-nn

var = SCRN$(x,y)

OPEN#7, "P:" OUTPUT
PRINT#7,

OPE N#iocb,
filespec INPUT

INPUT#iocb,
AT (sector, byte)

Appendix 1 133

ATARl 8K ATARl MICROSOFT
BASIC BASIC COMMENTS

POP - - -- Use the USR function to call a machine
language routine. POP stack in 6502
code.

POSITION x,y

SOUND voice,
pitch,noise,vol.

TRAP exp

USR(addr,list)

SOUND voice, The duration is a new option. Dura-
pitch,noise,vol., tion is given in 1/60 of a second called
duration jiffies. Thus, SOUND will work the same

as when converting programs to
Microsoft BASIC.

ON ERROR exp

USR(addr,pointer) You pass only one argument to the
ATARl Microsoft BASIC rather than an
argument list.

FILL x,y TO x,y Microsoft's FILL plots points from x,y
TO x,y. I t scans to the right as it fills the
area from x,y TO x,y. The sweep
rightward stops and a new filling scan
begins when a solid plotted line is met.

For other XI0 commands, see Appendix N.

PADDLE, PTRIC, STICK, STRlC are done with PEEKS and POKES in ATARl Microsoft.
See the Section 15, "Came Controllers," for detailed description.

134 Appendix \

APPENDIX K

ATASCII CHARACTER SET

DECIMAL CODE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

CODE CHARACTER

Appendix K 135

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

2 7 1 B

28 1 C

0
I

29 1 D

30 1 E

31 1 F

13

32

El
20

33 21

34 22 la
35 23 CI
36 24 rn
37 25 Ili
38 26

39 2 7 0
40 28

41 29

42 2A

43 2 B

44 2C 0
45 2 D

46 2E

47 2F

48 30 a
49 31

50 32 rn
51 33 EI
52 34 0
53 35

54 36 b
55 37 b
56 38 b
57 39 a
58 3A

59 3B
E

60 3C

136 Appendix K

DECIMAL CODE

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

8 8

89

90

91

92

93

94

HEXADECIMAL CODE CODE CHARACTER

3D I
3E rn
3F

40

41

I
a

42

43

44

45

46 L3
47

48 IP
49

4A

0

4B El
4C

4 D 13
4E

4 F rn
50 H
51

5 2

53 El
54 0
55 El
56 PI
5 7

58

59

5A PI
5 B

5C 0
5D

5 E

Appendix K 137

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

95 5F

60

I
96 0
97 61

98 62

99 63

loo 64 a
101 65 En
102 66

103 67 m
1 04 68

105 69

106 6A

107 6 B El
108 6C

6D 109 El
11 0 6 E

111 6 F
bl

112 70

113 71 Ba
11 4 72

115 73

bl

116 74

PI

11 7 75

118

rn
76

119 77

120 78 E l
121 79

122 7A

E

123 7B L3
124 7C

125 7 D

126 7E

127 7 F
111

138 Appendix K

0 9 1

6 s 1

8 s 1

LS 1

9 s 1

SS 1

PS 1

ES 1

ZS 1

1s 1

0s 1

6P 1

8P 1

LP 1

9P 1

SP 1

PP 1

EP 1

ZP 1

LP 1

ObL

6E 1

8E 1

LE L

9E 1

SE 1

PEL

EEL

ZE L

l€ l

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

161 A1 El
162 A2 FI
163 A3 El
1 64 A4

165 A5 rn
166 A6 El
167 A7 El
168 A8 El
169 A9 El
170 A A I3
171 AB I3
172 AC I3
173 AD I3
174 AE 0
175 A F El
176 BO

177 B1

178 B2 I3
179 B3 I3
180 B4 El
1 81 B5 El
182 B6 El
183 B 7 El
184 B8 El
185 B9

186 B A 0
187 B B I3
188 BC El
189 BD El
190 BE El
1 91 BF El
192 CO

193 C1

194 C2 El

140 Appendix K

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

195 C3

196 C4
El
El

197 C5

198 C6

199 C7

El
200 C8

201 C9 El
202 C A El
203 C B

204 CC El
205 CD I3
206 CE

207 C F El
208 DO El
209 D l El
21 0 D2

21 1 D3 I3
21 2 D4 I3
21 3 D5

21 4 D6 I3
21 5 D7 Ed
21 6 D8

21 7 D9 I3
21 8 D A I3
21 9 D B

220 DC I3
221 D D El
222 DE El
223 DF I2
224 EO a
225 El El
226 E2 I3
2 27 E 3

228
El

E4 I3

Appendix K 141

, DECIMAL CODE

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

2 50

251

2 52

253

254

255

HEXADECIMAL CODE

E 5

E 6

E7

E8

E9

E A

E B

E C

ED

E E

E F

FO

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

F B

FC

FD

FE

FF

142 Appendix K

APPENDIX L

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

RESERVED
WORD

ABS

AFTER

AND

ASC

AT

ATN

AUTO

BASE

CHR

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns absolute value (unsigned) of the variable
or expression.
Example: Y = ABS(A + B)

Causes the placement of an entry on a timeinterrupt list.
The elapsed time to be associated with time interrupt is
specified by the numeric expression in units of jiffies (1160
of a second).
Example: AFTER (180) COT0 1000

Logical operator: Expression is true only if both subex-
pressions joined by AND are true.
Example: IF A=10 AND B=30 THEN END

String function returns the numeric ATASCll value of a
single string character.
Example: PRl NT ASC(A$)

Use to position disk or screen output via PRINT state
ment.
Example: PRl NT AT(S,B);"START HE RE"

Function returns the arctangent of a number or expression
in radians.
Example: PRl NT ATN(A)

A command generating line numbers automatically.
Example: AUTO 100,50

Use with OPTION statement to set minimum value for ar-
ray subscripts.
Example: OPTION BASE 1

Use with OPTION statement to allocate RAM for alter-
nate character sets, where: CHRI = 1024 bytes are
allocated (128 characters), CHR2 = 512 bytes are
allocated (64 characters), CHRO = free the allocated
RAM
Example: OPTION CHRI

String function returns a single string character equivalent
to a numeric value between 0 and 255 in ATASCll code.
Example: PRl NT CHR$(48)

Appendix L 143

CLEAR Use t o set all strings t o null and set all variables t o zero.

Example: CLEAR

CLEAR STACK Resets all entries on the t ime stack t o zero.
Example: CLEAR STACK

CLOAD

CLOSE

COLOR

COMMON

CONT

COS

CSAVE

DATA

DEF

DEL

D I M

Use to put programs on cassette tape into computer
memory.
Example: CLOAD

I/O statement used t o close a file at the conclusion o f 110
operations.
Example: CLOSE #6

Erases the text portion o f the screen and sets the
background color register t o the indicated value, if p r e
sent.
Example: CLS 35

Establishes the color register or character t o be produced
by subsequent PLOT and FILL statements.
Example: COLOR 2

A program statement passing variables t o a chained pro-
gram.
Example: COMMON A,B,C$

Continues program execution after a or STOP
Example: CONT

Function returns the cosine o f the variable or expression
(degrees or radians).
Example: A = COS(2.3)

Used t o put programs that are in computer memory onto
cassette tape.
Example: CSAVE

I/O statement lists data t o be used in a READ statement.
Example: DATA 2.3,"PLUS",4

Statement having two applications:
1) Define an arithmetic or string function.

Example: DEF SQUARE (X,Y)= SQR(X*X+ Y*Y)

2) Define default variable o f type INT, SNC, DBL, or
STR.

Example: DEFINT I-N

Delete program lines
Example: DE L 2G25

Reserves the specified amount o f memory for matrix, ar-
ray, or string array.
Example: D I M A(3), B$(10,2,3)

144 Appendix L

END

EOF

ERL

ERR

ERROR

EXP

FlLL

FOR ... TO ... STEP

FRE(0)

GET

GOSUB

GOT0

GRAPHICS

IF ... THEN

IF ... THEN ... ELSE

Stop program, close all files, and return to BASIC com-
mand level.
Example: END

Returns true (-1) if file is positioned at its end.
Example: IF EOF(1)COTO 300

Error line number.
Example: PRINT ERL

Error code number.
Example: IF ERR= 62 THEN END

Generate error of code (see table). May call user O N ER-
ROR routine or force BASIC to handle error.
Example: ERROR 17

Function raises the constant e to the power of expression.
Example: B= EXP(3)

Fills in area between two plotted points with a color.
Example: FlLL 10,lO TO 20,20

Use with NEXT statement to repeat a sequence of p r o
gram lines. The variable is incremented by the value of
STEP.
Example: FOR DAY =I TO 5 STEP 2

Gives memory free space available to programmer.
Example: PRINT FRE(0)

Reads a byte from an input device.
Example: GET#1 ,D

Branch to a subroutine beginning at the specified line
number.
Example: GOSUB 210

Branch to a specified line number.
Example: GOT0 90

Establishes which of the display lists and graphics modes,
contained in the operating system are to be used to p r o
duce the screen display.
Example: GRAPHICS 5

If exp is true, the THEN clause is executed. Otherwise, the
next statement is executed.
Example: IF ENDVAL >0 THEN GOT0 200

If exp is true, the THEN clause is executed. Otherwise, the
ELSE clause or next statement is executed.
Example: IF X<Y THEN Y=X ELSE Y=A

Appendix L 145

INPUT

INT

LEN

LET

LlNE INPUT

LIST

LOAD

LOCK

LOG

MERGE

Returns either a onecharacter string read from terminal
or null string if no character pending at terminal.
Example: A$= INKEY$

Read data from a device.
Example: IN PUT #I ,A, B

Read data from the keyboard. Semicolon after INPUT
suppresses echo of carriage return/line feed. If a prompt is
given, it will appear as written; if not, a question mark will
appear in its place.
Example: INPUT "VALUES";A,B

Returns the numeric position of the first occurrence of
string2 in string1 scanning from position exp.
Example: I NSTR(3,X$,Y$)

Evaluates the expression for the largest integer less than
expression.
Example: C = I NT(X + 3)

Delete a disk file.
Example: KILL "D:INVEN.BASf'

Returns leftmost length characters of the string expres-
sion.
Example: B$ = LE FT$(X$,8)

String function returns the length of the specified string in
bytes or characters (I byte contains 1 character).
Example: PRINT LEN(B$)

Assigns a value to a specific variable name.
Example: LET X = 1 + 5

Read an entire line from the keyboard. Semicolon after
LlNE l NPUT suppresses echo of carriage returnlline feed.
See INPUT.
Example: LlNE INPUT "NAME1';N$

Display or otherwise output the program list,
Example: Ll ST 100-1 000

Load a program file.
Example: LOAD "D:INVENU

Sets the file locked condition for the file named in the
string expression.
Example: LOCK "Dl :TEST.BASU

Function returns the natural logarithm of a number.
Example: D = LOG (Y-2)

Merge program on disk with program in memory by line
number.
Example: MERGE "D:SUBlu

146 Appendix L

MOVE

NAME

NEW

NEXT

NOT

NOTE

ON ERROR

ON ... COSUB

ON ... COTO

OPEN

OPTION BASE

OPTION CHR

OPTION PLM

Returns characters from the middle of the string starting

at the position specified to the end of the string or for
length characters.
Example: A$ = M I D$(X$,5,lO)

Moves bytes of memory from one area to another so that
the block is not changed.
Example: MOVE 45000,50000,6

Change the name of a disk file.
Example: NAME "D:SUBI" AS "SUB2"

Delete current program and variables
Example: NEW

Causes a FOR/NEXT loop to terminate or continue
depending on the particular variables or expressions.
Example: NEXT I

Unary operator used in logical comparisons evaluates to
0 if expression is non-zero; evaluates t o 1 if expression is 0.
Example: IF A = NOT B

Causes the current disk sector number to be stored into
the first variable and the byte number into the second
variable for the file associated with the IOCB#.
Example: NOTE # I ,S,B

Enables error trap subroutine beginning at specified line.
If line=O, disables error trapping. If line=O inside error
trap routine, forces BASIC to handle error.
Example: O N ERROR COTO 1000

COSUB to statement specified by expression. (If exp=l,
to 20; if exp= 2, to 20; if exp= 3, to 40; otherwise, error.)
Example: ON DATE% +I COSUB 20,20,40

Branch to statement specified by exp. (If exp=I, to 20; if
exp=2, to 30; if exp= 2, to 40; otherwise, error.)
Example: O N INDEX COTO 20,30,40

Open a device. Mode must be one of:INPUT, OUTPUT,
UPDATE, and APPEND.
Example: OPEN # I , "D:INVEN.DAT", OUTPUT

Declare the minimum value for array subscripts; n is 0
or 1.
Example: OPTION BASE 1

Allocates space for alternate character sets
Example: OPTION CHRI

Allocates space for player-missile graphics
Example: OPTION PLMI

Appendix L 147

OPTION RESERVE Allocates free space for programmer's use in assembly
language program.

Example: OPTION KESEKVE(50)

PEEK

P LM

PLOT

POKE

PRINT

PUT

RANDOMIZE

READ

REM

RENUM

RESERVE

Logical operator used between two expressions. If either
one is true, a "1" is evaluated. A " 0 results only if both
are false.
Example: IF A=10 OR B=30 THEN END

Function returns decimal form of contents of specified
memory location.
Example: PRINT PEEK (&2000)

Used with OPTION statement to allocate RAM for
player-missile graphics, where:
PLMI = single-line resolution
PLM2 = double-line resolution
PLMO= free the allocated RAM
Example: OPTION PLM2

Plots a single point on the screen or draws from one point
to another.
Example: PLOT 10,lO TO 20,20

Insert the specified byte into the specified memory loca-
tion.
Example: POKE &2310,255

I/O command causes output from the computer to the
specified output device.
Example: PRlNT USING "!";A$,B$

Write byteoriented data to a data file
Example: PUT #3,4

Reseed the random number generator.
Example: RANDOMIZE

Read the next items in the DATA list and assign to
specified variables.
Example: READ I,X,A$

Remarks. Allows comments to be inserted in the program
without being executed by the computer on that program
line. Alternate forms are exclamation point (!) and
apostrophe (').
Example: REM DAILY FINANCES

Renumber program lines.
Example: RENUM 100,,100

Used with OPTION statement to reserve a specified
number of bytes for the programmer's use.
Example: OPTION RESERVE (512)

148 Appendix L

RESTORE

RESUME

RETURN

RIGHT$

RND

RUN

SAVE

SETCOLOR

SG N

SIN

SOUND

Resets DATA pointer to allow DATA to be read more
than once.
Example: RESTORE

Returns from O N ERROR or timeinterrupt routine to
statement that caused error. RESUME NEXT returns to
the statement after error causing statement and RESUME
line number returns to statement at line number.
Example: RESUME

Return from subroutine to the statement immediately
following the one in which COSUB appeared.
Example: RETURN

Returns rightmost length characters of the string expres-
sion.
Example: C$ = RICHT$(X$,8)

Generates a random number. If parameter = 0, returns
random between 0 and 1. If parameter >O, returns ran-
dom number between 0 and parameter.
Example: E = RND(10)

Executes a program starting with the lowest line number.
Example: RUN

Save the program in memory with name "filename." ,A
saves program in ASCII. ,P protects file. Also, SAVE
"filename" LOCK encrypts the program as it writes to
disk.
Example: SAVE"D:PROC"

The character or color number of the pixel at an
x-coordinate and a y-coordinate is returned as the value
of the function.
Example: A= SCRNS (23,5)

Associates a color and luminance with a color register
Example: SETCOLOR 0,5,5

1 if expression > 0
0 if expression = 0
-1 if expression < 0
Example: B = SC N(X + Y)

Function returns trigonometric sine of given value in
degrees.
Example: B = SI N(A)

Statement initiates one of the sound generators.
Example: SOUND 1 ,I 21,8,1 0,60

Appendix L 149

SPC

SQ R

STACK

STATUS

STOP

STR$

TAB

TAN

TlME

TROFF

TRON

UNLOCK

USING

Use in PRINT statements to print spaces.

Example: PRlNT SPC(5),A$

Function returns the square root of the specified value.

Example: C = SQR(D)

Returns the number of entries available on time stack.
Example: A = STACK

Function accepts a single argument as either a numeric or
string then returns status of logical unit number or file.
Example: ST = STATUS(2)

Causes execution to stop, but does not close files.
Example: STOP

Function returns a character string equal to numeric
value given.
Example: PRlNT STR$(35)

Returns a string composed of a specified number of
replications of A$.
Example: X$ = STRI NC$(lOO,"A")

Returns a string 100 units long containing CHR$(65).
Example: Y$ = STRI NC$(1 OO,65)

Use in PRlNT statements to tab carriage to specified posi-
tion.
Example: PRl NT TAB(20),A$

Tangent of the expression (in radians).
Example: D = TAN(3.14)

Returns numeric representation of time from the real time
clock.
Example: ATM = TlME

The time of day in a 24-hour notation is returned in the
string. The format is HH:MM:SS.
Example: TIME$ = "08:55:05"

PRlNT TIME$

Turn trace off.
Example: TROFF

Turn trace on.
Example: TRON

Statement terminates the LOCK condition.
Example: UNLOCK "D l :DATA.OUTU

Provides string format for printed output.
Examples: PRlNT USING "###.##";PDOLLARS

150 Appendix L

USR

VAL

VARPTR

VERIFY

WAlT

XOR

Function returns results of a machinelanguage sub

routine.
Example: X= USR(SVBV, VARPTR(ARR(0)))

Function returns the equivalent numeric value of a string.
Example: PRINT VAL("3.1")

Returns address of variable or graphics area in memory,
or zero if variable has not been assigned a value.

Example: I = VARPTR(X)

Compares the program in memory with the one on
filename. If the two programs are not found to be iden-
tical, it returns an error.
Example: VERIFY "Dl :DATA.OUT"

Equality comparison, pauses execution until result equals
third parameter.
Example: WAlT &E456,&FF,30

Bitwise exclusive OR (integer).
Example: IF A XOR B=O THEN END

Appendix L 151

APPENDIX M

ERROR CODES

CODE ERROR

NEXT without FOR. NEXT was used without a matching
FOR statement. This error may also happen if NEXT
variable statements are reversed in a nested loop.

Syntax. l ncorrect punctuation, open parenthesis, illegal
characters, and misspelled keywords will cause syntax
errors.

RETURN without COSUB. A RETURN statement was
placed before the matching COSUB.

Out of data. A READ or INPUT # statement was not given
enough data. DATA statement may have been left out or
all data read from a device (diskette, cassette).

Function call error. Attempted to execute an operation
using an illegal parameter. Examples: square root of a
negative number, or negative LOG.

Overflow. A number that is too large or small has resulted
from a mathematical operation or keybord input.

Out of memory. All available memory has been used or
reserved. This may occur with very large matrix dimen-
sions, nested branches such as COTO, COSUB, and FOR-
NEXT loops.

Undefined line. An attempt was made to refer or branch
to a nonexistent line.

Subscript out of range. A matrix element was assigned
beyond the dimensioned range.

Redefinition error. Attempt to dimension a matrix that
had already been dimensioned using the DIM statement
or defaults.

Division by zero. Using zero in the denominator is illegal.

Illegal direct. The use of INPUT, GET or DEF in the direct
mode.

Type mismatch. I t is illegal to assign a string variable to a
numeric variable and viceversa.

Appendix M 153

Quantity too big. String variable exceeds 255 characters
in length.

Formula too complex. A mathematical or string operation
was too complex. Break into shorter steps.

Can't continue. A CONT command in the direct mode
cannot be done because program encountered an END
statement.

Undefined user function. The USR function cannot be
carried out. User code has an error in logic or USR start
points to wrong memory address.

No RESUME. End of program reached in error-trapping
mode.

RESUME without error. RESUME encountered before O N
ERROR C O T 0 statement.

FOR without NEXT. NEXT statement encountered before
a FOR statement.

For an explanation of the following error codes, see ATARl Disk Operating System I1
Manual.

BREAK abort

IOCB

Nonexistent device

IOCB write only

Invalid command

Device or file not open

Bad IOCB number

IOCB read-only error

EOF

Truncated record

Device timeou t

Device NAK

Serial bus

154 Appendix M

Cursor out of range

Serial bus data frame overrun error

Serial bus data frame checksum error

Device-done error

Read after write-compare error

Function not implemented

Insufficient RAM

Drive number error

Too many OPEN files

Disk full

Unrecoverable system data 110 error

File number mismatch

File name error

POINT data length error

File locked

Command invalid

Directory ful l

File not found

POINT invalid

Appendix M 155

APPENDIX N

USE OF THE CIO
CALLING USR ROUTINES

There are three, prewritten USR routines provided on the ATARI Microsoft BASlC
diskette for your use. These routines provide a flexible way to interact with the Central
Input/Output (C10) facilities of your ATARI Home Computer. These routines (or similar
routines if you prefer to write your own) allow the BASlC program to send or retrieve
data directly to or from an Input/Output Control Block (IOCB). The IOCB's are discuss-
ed in detail in the A TARl Operating System Users Manual (part of A TARl Personal Com-
puter System Technical Users Notes). Refer t o that document for a complete descrip
tion of CIO capabilities.

These routines allow the BASlC programmer t o perform such tasks as retrieving a disk
directory, formatting a diskette, or conditioning a specific IOCB and its associated
logical unit number to interface with RS-232 devices. Following is a brief description o f
how to read these routines into your own program and how to use them.

STEP 1. Inserting the Routines Into a BASlC Program.

Al l three routines are contained in the file ClOUSR on the ATARI Microsoft BASlC
diskette. They are in a machinereadable format, ready t o be poked directly into RAM.
To allocate RAM for this purpose, use the OPTION RESERVE n statement where n
should be at least 160. Get the starting address of the reserved area with the statement
ADDR=VARPTR(RESERVE). Then, the following code can be used to put the routines
into the BASlC program:

OPEN #I, "D:CIOUSR
INPUT FOR I = 0 TO 159
GET #I,
POKE A D D R f [,:NEXT I
CLOSE #I

STEP 2. Setting Up the Data Array

The routines are now in the reserved area of the BASlC program. There are three
routines called PUTIOCB, CALLCIO, and CETIOCB. PUTIOCB starts at RAM location
ADDR. CALLCIO starts at A D D R f 61. CETIOCB starts at A D D R f 81.

The CETIOCB routine retrieves the user-alterable bytes from a specified IOCB and
puts them into an integer array of length 10. The programmer may alter any of these
parameters and then put the new values back into the IOCB with the PUTIOCB
routine. When the proper parameters have been set, the use of CALLCIO wil l cause the

Appendix N 157

IOCB values to be executed by the CIO facility. The next step is to dimension an in-

teger array t o use for retrieval and storage of the IOCB parameters. This array should
be dimensioned to 10 using a BASE option of zero. Following is a list of the elements of

the arrav and what each is used for:

- --

Element Number IQCB Parameter

0 This element is the number of the IOCB to be
used (1 t o 8).

1 COMMAND CODE

2 STATUS - returned

3 BUFFER ADDRESS

4 BUFFER LENGTH

5-1 0 AUX bvte 1 - 6

Each element of an integer array has two bytes of data storage, so the buffer address in
element 3 wil l f i t into a single integer element.

STEP 3. Calling the USR Routines

A USR call is used to execute the ClOUSR routines. The CETIOCB routine wil l return
to the program the current values of the specified IOCB's parameters. After changing
these parameters in the array, to effect some CIO function (i.e., setting the baud rate
on an RS-232 port), the PUTIOCB routine is called to put the desired values into the
specified IOCB. Then the CALLCIO routine is called t o execute the CIO facility.
Following is the syntax necessary to call each of the routines:

nvar = USR(addr,VARPTR(arra\XO)))

where:

nvar - a numeric variable which wil l receive the status of the CIO function in the
case of a CALLCIO call, otherwise i t will not be specifically affected by these
routines.

addr - the starting address of the proper ClOUSR routine, in our current example
these would be ADDR for PUTIOCB,ADDR+61 for CALLCIO and ADDRS81 for
CETIOCB.

array(0) - the array wil l be the integer array the program uses for data retrieval and
storage for the routines. Passing the VARPTR of element zero of this array to the
routines tells them where to begin retrieving the data from, starting with the IOCB
number.

158 Appendix N

Following is an example program to set up and use an RS-232 port for telecommunica-
tions. Also see the "Disk Directory Program" in Appendix A for another example of the
use of these routines.

10 !
20 !ROUTINE T O DEMONSTRATE
30 !CIOUSR ROUTINES ...
40 !
50 !PROVIDES TELECOMMUNICATIONS
60 !WITH RS-232 DEVICES
70 !
80 D I M C10%(10),S%(10)
90 ClO%(O) = 2
100 S%(0)=5:S%(I)=&OD
110 OPTION RESERVE 200
120 ADDR=VARPTR(RESERVE)
130 PUTlOCB= ADDR
140 CALLClO=ADDR+61
150 CETIOCB= ADDR+ 81
160 OPEN #I,"D:CIOUSR INPUT
170 FOR 1-9 TO 159
180 GET #I,D:POKE ADDR+ I,D
190 NEXT I
200 CLOSE # I
210 OPEN #I,"K:" INPUT
220 ClO%(O)= 2
230 CIO%(l)= 3
240 FSPEC$="R:"
250 Z = VARPTR(FSPEC$)
260 Y = VARPTR(C1 O%(3))
270 POKE Y,PEEK(Z+2)
280 POKE Y+I,PEEK(Z+I)
290 Y = VARPTR(S%(3))
300 POKE Y,PEEK(Z+2)
310 POKE Y+I,PEEK(Z+I)
320 C10%(5)=13
330 A = USR(PUTIOCB,VARPTR(CIO%(O)))
340 A = USR(CALLCIO,VARPTR(CIO%(O)))
350 A = USR(CETlOCB,VARPTR(CIO%(O)))
360 C10%(1)=40
370 C10%(5)=0:C10(6)=0
380 A = USR(PUTIOCB,VARPTR(CIO%(O)))
390 A = USR(CALLCIO,VARPTR(CIO%(O)))
400 X= USR(PUTIOCB,VARPTR(S%(O)))
410 !
420 !SHOULD BE READY T O G O N O W
430 PRINT "STARTING L O O P
440 !
450 GET # I ,A:PUT #2,A:POKE 764,255
460 X= USR(CALLCIO,VARPTR(S%(O))):lF PEEK(747)=O THEN 480
470 GET #2,D:IF D < > I 0 THEN PRINT CHR%(D);
480 IF PEEK(764)< > 255 THEN 450
490 GOTO 460

Appendix N 159

APPENDIX 0
ACTIONS TAKEN

WHEN PROGRAM ENDS

ACTIONS TAKEN

Key Pressed
or Statement Run Out
Executed Close All Files the Stack Clear Sound

STOP

NO NO YES

Running off the last
statement or "END

After a direct mode
statement

RUN

YES YES YES

NO YES NO

YES NO YES

Appendix 0 161

INDEX

ABS 55, 143
AFTER 35,143
Alternate character set 103-105
AND 16,143
Apple 123, 131-132
Arithmetic symbols 16
Array 53
ASC 60, 143
Asterisk 44-45
ATASCI l 135-142
AT 48, 143
ATN 56,143
Audio track of cassette 41
AUTO 21, 143

BASE 143
BASIC 1
Blanks (see Spaces)
Brightness (see Luminance)

Central lnput/Output 157-159
Character

assigning color to 78
ATASCll 135-142
set, internal 103-105, 135-142

Sizes in text modes 65
CHR 143
CHR$ 60, 143
CIO (See Central Input/Output)
CLEAR 36, 144
Clear screen

deferred mode 5
direct mode 5

CLEAR STACK 35, 144
CLOAD 24, 144
CLOSE 50,144
CLS 69,144
Colon 4
COLOR

assigning 78
changing 78
default 66, 73
registers 78, 144

Comma 2-3, 44
Commands

AUTO 21, 143
CLOAD 24,144
CSAVE 24, 144

DEL 22, 144
DOS 20
KILL 26, 146
LIST 20, 146
LOAD 23, 146
LOCK 26, 146
MERGE 24, 146
NAME ... TO 26, 147
NEW 19,147
RENUM 25, 148
RUN 19,149
SAVE 23, 149
SAVE ... LOCK 23, 149
TROFF 27, 150
TRON 26, 150
UNLOCK 26,150
VERIFY 24,151

Commodore PET 123,125-127
COMMON 36, 144
Concatenation operator 59
Constants 9
CONT 30, 144
Controllers,

game 89-91
joystick 84
keyboard 89
paddle 89-90

COS 56,144
CSAVE 24, 144
Cursor control keys 6

DATA 48, 144
Decimal-tehex example 97-98
DEF 63,144
Default

colors 66
disk drive 41
tab settings 42-43

Deferred mode 1
DEFDBL 11
DEFSNG 10
DEFSTR 13
DEL 22, 144
Derived functions 107
Devices 41
Delete line 7
D IM 53, 144
Direct mode 1
Disk directory program 93
Disk drive

default number 41
Disk drives (D:) 41
Display, split-screen override 65

Index 163

Distortion 85
Dollar sign 45
Doubleline resolution 77
Double Precision

doubleprecision real constants 10
doubleprecision real variables 11
DEFDBL 11

DOS 20

Editing 5
Editing, screen 6-7
END 30, 145
End of program

actions taken 161
EOF 51,145
ERL 35, 145
ERR 35, 145
ERROR 34, 145
Error messages 153-1 55
Escape key 5
Exclamation sign 46
EXP 56, 145
Explosion example 94
Exponential symbol 16, 45
Expressions

logical 15
numeric 15
string 15

Fanfare music example 94-95
FlLL 68, 145
FOR ... TO ... STEP 32, 145
FRE (0) 57, 145
Function

arithmetic
ABS 55, 143
EXP 56, 145
INT 55, 146
LOC 56, 146
RND 55, 149
SGN 55, 149
SQR 55, 150

derived 107
special purpose

FRE (0) 57,145
PEEK 56,148
POKE 57,148
USR 58, 151
TIME 58, 150

string
ASC 60, 143
CHR$ 60, 143
INKEY$ 61, 146
INSTR 61, 146
LEFT$ 59, 146
LEN 60,146
RIGHT$ 60, 149
SCRN$ 62, 149
STR$ 61,150
STRING$ (N,A$) 61, 150
STRING$ (N,M) 61, 150
TIME$ 62, 150
VAL 60, 151

trigonometric
ATN 56, 143
COS 56, 144
SIN 56, 149
TAN 56,150

Game controllers
keyboard 89
joystick 84, 9091
paddle 89-90

GET 50,145
GOSUB 33, 145
GOT0 30, 145
GRAPHICS 65, 145
Graphics

modes 65, 69-71
statements

CLS 69
COLOR 66
FlLL 68
GRAPHICS 65,145
PLOT 68
SETCOLOR 67

Hexadecimal constants 13

IF ... THEN 31, 145
IF ... THEN ... ELSE 31, 145
INKEY$ 61, 146
INPUT 47, 146
Input/output statements

AT 48
CLOAD 24, 144
CLOSE 50, 144
CSAVE 24,144
DATA 48, 144
DOS 20
EOF 51,145
GET 50,145
INPUT 47, 146
LINE INPUT 47
LOAD 23, 146
NOTE 50, 147
OPEN 49, 147
PRINT 41,148
PRINT USING 43
PUT 50, 148
READ 48, 148
RESTORE 48
SAVE 23,149
SPC 43
STATUS 50,150
TAB 42, 150

lnputioutput Control Block 11 2, 157-158
Inputloutput devices

disk drives (D:) 41
keyboard (K:) 41
printer [P:) 41
program recorder (C:) 41
RS-232 interface (R:) 41

164 Index

screen editor (E:) 41
TV monitor (S:) 41

INSTR 61,146

INT 55,146
Integers

integer constants 11
integer variables 11-12
DEFINT 12

Inverse key 5
IOCB (see lnput/Output Control Block)

Joystick controller 84

Keyboard (K:) 41
Keyboard controllers 89
Keyboard operation 5
Keys

special function
ATARl 5
BACKSPACE 6
BREAK 5, 7
CAPSILOWER 5
CLEAR 6
DELETE 6-7
ESCAPE 5
INSERT 6
RETURN 5, 41
SYSTEM RESET 5
TAB 6

editing
CONTROL 6
SHIFT 5, 7

cursor control
down arrow 6
left arrow 6
right arrow 6
up arrow 6

Keywords 2
KILL 26, 146

LEFT$ 59, 146
LEN 60,146
LET 29, 146
Letters

capital (uppercase) 5
lowercase 5

LINE INPUT 47, 146
LIST 20, 146
LOAD 23, 146
LOCK 26, 146
LOG 56, 146
Logical operators 1 6
Luminance 78

Mandatory # symbol 43
MERGE 24, 146
Memory locations 109

Microbe Invasion example 101
Microsoft

conversion from Apple Applesoft 123,

131-132
conversion from ATARl 8K BASIC 133-134
conversion from Commodore PET
BASIC 123, 125-127
conversion from Radio Shack Level II
BASIC 123, 129-130

MID$ 59,147
Minus sign 46
Missiles 76-77
Modes, graphics 65, 69-71
Modes, operating

deferred 1
direct 5

Modes, text
Override split-screen 65

MOVE 30, 75, 147
Music example 94

NAME ... TO 26, 147
NEW 19,147
NEXT 32, 147
NOT 16,147
NOTE 50, 147
NOTE.DAT creation program 96
Numeric expressions 15

O N ERROR 34,147
ON ... GOSUB 34, 147
O N ... GOTO 33, 147
OPEN 48, 147
Operators

arithmetic 16
binary 16
logical 16
relational 15

OPTION BASE 36, 147
OPTION CHR 38,147
OPTION PLM 38, 76, 147
OPTION RESERVE 39, 148
Output devices 41
OR 16. 148

Paddle controllers 89-90
Parentheses 16
PEEK 56, 89, 148
Percent sign 47
Period 44
Peripheral devices (see lnput/output devices)
Piano example 95-96
Pitch

definition 83, 86
values 86

Player-missile example 75, 81
Player-missile graphics

annotation 82-84
collision control 80-81
color control 78

Index 165

diagonal movement 79
horizontal movement 79
mapping 77

priority control 80
RAM configuration 77
size control 78
vertical movement 79

PLOT 68, 148
Plus sign 46
Point-plotting modes 72
POKE 57, 148
Pound sign 43
Precision

of numeric variables 9
Precedence of operators 15-1 6
PRINT41, 148
Printer (P:) 41
Printer listing 21, 41
PRINT USING 43
Program Recorder (C:) 41
PUT 50, 148

Question mark as prompt 42
Quotation marks 2

Radio Shack 123.129-1 30
RANDOMIZE 37, 102, 148
READ 48, 148
Relational and logical symbols 15
Relational operators 15-16
REM 29, 148
RENUM 25, 148
RESERVE 148
Reserved Words 143-1 51
RESTORE 48,149
RESUME 36, 149
RETURN 33, 149
RIGHT$ 60,149
RND 55, 102, 149
RS-232 (R:) 41, 159
RUN 19.149

SAVE 23, 149
SAVE ... LOCK 23, 149
Screen editor (E:) 41
SCRN5 62, 149
Semicolon 3
SETCOLOR 67, 76, 78, 149
SCN 55, 149
Singleline resolution 77
Single precision

singleprecision real constants 9
singleprecision real variables 9
DEFSNG 10

SIN 56, 149
SOUND

rocket example 87
terminating 85

Spaces 47
SPC 43, 150
Special function keys 5

5QR 55,150
STACK 35,150
Statements

AFTER 35,143
CLEAR 36,144
CLEAR STACK 35,144
COMMON 36, 144
CONT 30, 144
END 30,145
ERL 35,145
ERR 35, 145
ERROR 34, 145
FOR ... TO ... STEP 32, 145
COSUB 33,145
GOT0 30, 145
IF ... THEN 31, 145
IF ... THEN ... ELSE 31, 145
LET 29, 146
MOVE 30, 147
NEXT 32, 147
ON ERROR 34,147
ON ... GOSUB 34, 147
ON ... G O T 0 33, 147
OPTION BASE 36, 147
OPTION CHR 38, 147
OPTION PLM 38, 147
OPTION RESERVE 39, 148
RANDOMIZE 37, 148
REM 29, 148
RESUME 36,149
RETURN 33, 149
STACK 35, 150
STOP 30, 150
SUBROUTINES 33
VARPTR 39, 151
WAIT 31, 151

STATUS 50, 150
STOP 30, 150
STRB 61, 150
Strings

concatenation operator 59
DEFSTR 13
string constants 12
string expressions 16
string functions

ASC 60, 143
CHR$ 60, 143
INKEY$ 61, 146
INSTR 61,146
LEFT$ 59, 146
LEN 60, 146
MID$ 59,147
RIGHT$ 60,149
SCRN$ 62, 149
STR$ 61, 150
STRING$ (N,A5) 61, 150
STRINGS (N,M) 61, 150
TIME$ 62, 150
VAL 60, 151

string variables 12
STRINGS (N,A$) 61, 150
STRINGS (N,M) 61, 150

Subroutine
definition 33
COSUB 33, 145

TAB 43,150
TAN 56,150
Text modes 65
TIMES 62, 150
TIME 58,150
TROFF 27, 150
TRON 26, 150
TV monitor (5:) 41
Typewriter graphics example 74

UNLOCK 26, 150
User-defined function

DEF 63,144
USING 150
USR 58, 151

VAL 60, 151
Variables

naming 9
VARPTR 39, 76-77, 151
VERIFY 24, 151
Vertical fine scrolling example 98-99
Voice 85

WAIT31, 151
Window

graphics 65
text 65

X-coordinate 68
XOR 16,151

Zero
as dummv variable 57

Index 167

IMPORTANT WARRANTY IN FORMATION

LIMITED 90-DAY WARRANTY
ON ATARIB COMPUTER CASSETTES,

CARTRIDGES, O R DISKETTES

ATARI, INC ("ATARI") warrants to the original consumer purchaser that this ATARl Computer Cassette, Cartridge, or Diskette ("Computer
Media"), not including computer programs, shall be free from any defects in material or workmanship for a period of 90 days from the date
of purchase. If any such defect is discovered within the warranty period, ATARI, at its option, wjll repair or replace the defective Computer
Media. Computer Media returned for in-warranty repairireplacement must have the ATARl label still intact, must be accompanied by proof
of date of purchase satisfactory to ATARI, and must be delivered or mailed, postage prepaid, to:

ATARI, INC.
Customer Service Department
590 Brennan Street
San lose, CA 951 31

This warranty shall not apply if the Computer Media (i) has been misused or shows signs of excessive wear, (ii) has been damaged by being
used with any products not supplied by ATARI, or (iii) has been damaged by being serviced or modified by anyone other than the ATARl
Customer Service De~artment.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FORA PARTICULAR PUR-
POSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED.

The provisions of the foregoing warranty are valid in the United States only and are subject to the laws of the State in which the Computer
Media is purchased. Such laws may broaden the warranty protection available to the consumer purchaser of the Computer Media.

REPAIR SERVICE: If your ATARl Computer Media requires repair other than under the 90-day Limited Warranty, please contact the ATARl
Customer Service Department for repairireplacement information. From California call (800) 662-6297, outside California (800) 538-7037 or
(800) 538-7602 in Hawaii or Alaska.

IMPORTANT: If you ship your ATARl Computer Media, package it securely and ship, charges prepaid and insured, by parcel post or
United Parcel Service. ATARl assumes no liability for losses incurred during shipment.

DISCLAIMER O F WARRANTY O N ATARl COMPUTER PROGRAMS:

All ATARl computer programs are distributed on an "as is" basis without warranty of any kind. The entire risk as to the quality and perfor-
mance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARl shall have no liability or responsibility to a purchaser, customer, or any other person directly or indirectly, by computer programs
sold by ATARI. This includes, but is not limited to any interruption of service, loss of business or anticipatory profits, or consequential
damages resulting from the use or operation of such computer programs.

