22067

i vanced ATARI
» BASIC Tutorial

i Robert A. Peck

Advanced
ATARI" BASIC
Tutorial

Bob Peck is a computer consultant, specializing in
hardware design, software design and documentation. He
has written manuals and diagnostic programs for ATARI
and National Semiconductor, among others, as well as ar-
ticles for various computer publications. He teaches micro-
processor assembly language programming. His hobby is
the study of computer languages. Among those he uses
are BASIC, FORTH, Assembler (for many different proces-
sors), Pascal, and C. He received his BSEE from Marquette
University and an MBA from Northwestern University.

Advanced
ATARI" BASIC

Tutorial

by

Robert A. Peck

Howard LU Soms & Co Inc.

4300 WEST 62ND ST NAPOLIS, INDIA 6268 USA

This book is dedicated to my wonderful wife Andrea, with-
out whose patience and understanding this work would not
have been possible. :

Copyright © 1984 by Howard W. Sams & Co., Inc.
Indianapolis, IN 46268

FIRST EDITION
FIRST PRINTING—1984

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the prepara-
tion of this book, the publisher assumes no responsi-
bility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22067-9
Library of Congress Catalog Card Number: 84-30061

Edited by Bernard Falkoff

Printed in the United States of America.

Preface

This book is called the Advanced ATARI"™* BASIC Tutorial. It is
designed as a follow-up to the first book in this series, the ATARI"
BASIC Tutorial. In that first book, you were introduced to many,
but not all, of the ATARI BASIC commands. This book will cover
the remainder of those commands, and introduce various tech-
niques for either speeding up programs, making them more use-
ful, or, in some cases, accessing certain special features in the
ATARI system. This includes making use of occasional machine
language patches to your programs for certain types of graphics
and other special functions.

Throughout the text, you will find that the techniques used in
the first book have been maintained wherever possible. These
include the use of short demonstration programs wherever pos-
sible to minimize your typing, and thorough program documen-
tation to promote your understanding of the basic concepts
covered.

It is hoped that you will find the programs both educational and
potentially useful in your own program development process.

ROBERT A. PECK

*ATARI® is a registered trademark of ATARI®, Inc., a Warner Communications
Company.

Contents

CHAPTER 1
MULTIPLE-WAY PROGRAMMINGo oottt e 9

Error Handling in Multi-Way Branches—Review of Chapter 1

CHAPTER 2
ADVANCED STRING HANDLINGo 22

How to Reserve Space for Strings—Truncating a String—How the
Length of a String Is Determined—How to Reference an Entire
String—How to Reference the Rightmost Characters—How to Refer-
ence the Leftmost Characters—How to Add Strings Together—Making
a String Shorter—Deleting from a String—Adding a Character to the
Middle of a String—Reversing the Order of Characters in a String—
Introducing the ADR Function—Review of Chapter 2

CHAPTER 3
USING THE Disk SYSTEMWITH ATARIBASIC 36

How to Save Programs—How to Save Data—Review of Chapter 3

CHAPTER 4
MORE SUGGESTIONS ABOUT DISK OPERATIONSo oo 63

Editor Program-Final Version—DATA Statement Program—Locking
and Unlocking Files—Rename Program—NQOTE and POINT—Possible
Use for an Indexed Data File—Review of Chapter 4

CHAPTER 5

AN INTRODUCTIONTO SORTING oo eeeee e e 102

The Bubble Sort—An Insertion Sort—Aiphabetic Sorting

CHAPTER 6
SORTING: THE NEXT LOGICAL STEPo 115

Review of Chapters 5 and 6

CHAPTER 7
GETTING DIRECTLY INTOTHE SCREEN DATA oo 133

How the ATAR! Screen Is Formed—How the Display Is Managed—
Building a Custom Display—Screen Builder Program—Summary of
the Program—How to Use the Program—Things to Watch Out For—
Review of Chapter 7

APPENDIX

CHAPTER

Multiple-Way Programming

In ATARI* BASIC Tutorial, there was a great deal of concentration
on the concept of menu selection for programming. This was
done as an attempt to show you how programs could be struc-
tured to be as friendly as possible to the person who might be
using them.

Menu selection, in that section of the book, was controlied by
a series of IF statements. Each of the statements compared the
menu selection letter to the possible selections, finally causing a
jump to the appropriate routine. This section introduces a faster
and more concise way of performing the same function. The
substitute function is the ATARI BASIC ON-GOTO statement.

Let’s look at the technique that was used in the previous book.
Assume there is a menu, with selection items A, B, C, and D.
Here is one way of deciding which program section would be
performed if any of the menu selections are chosen:

19 DIM As1@)

Z¢ REM INSERT MENU TO BE PRINTED HERE

190¢ PRINT "INPUT YOUR SELECTION {4: B«
cC. Ok D"

11@ PRINT "THEM FREEES RETURN.®

10 ADVANCED ATARI BASIC TUTORIAL

12@ INFUT A%

13¢ IF Af(l1)= "A" THEN 480
1@ IF A%il:1)= "B" THEN S52¢
17¢ IF aA%{1:11= "[" THEN Go@

180 IF A%${1.1)= "D" THEN
1990 GOTOD 1@@6:REM NO MATCH

~4
=
=

In this case, each of the routines for the processing of the menu
selections is assumed to have started at the line numbers indi-
cated in the program piece just shown.

Rather than go directly into the discussion of the ON-GOTO
statement, let’s first look at the preceding program piece. Since
the purpose of this book is not only to tell you about other ATARI
BASIC statements, but also to simplify the ways in which you can
write your programs, we will take this opportunity to show you
simpler forms of certain programs. You may, while you write your
own programs, recognize some of these simplifications and use
them. Here is a different form of the previous program:

1¢ DIM Asil}
290 REM INSERT HEMU TO BE PRINTED HERE
129 PRINT "INPUT vOUR SELECTION (A B

Cs OR Do
118 PRINT "THEMN FRESS RETURHN.®
128 INPUT A%
15@¢ IF A%= "a" THEN 4d@g
158 IF A$= "B" THEN S@@
172 IF A%= "C" THEWN EB@¢
182 IF a$= "D" THEN 709
19a GOTD 12@:REM NO MATCH

This is simplification 1. Notice what has been changed—line
10, and lines 150-180. What has happened here is that the orig-
inal menu program only cared about the first letter anyway. That
is, AB(1,1), starting at character number 1 and extending for 1
character. By changing the DIM statement to A$(1), the program
tells ATARI BASIC that regardless of the length of the string the
user enters, ignore the rest of the string and keep only the first
letter.

MULTIPLE-WAY PROGRAMMING 1

Since the length of A$ (pronounced “A-string”) is now always
limited to one character, the IF statements can be simplified to
the form shown. You will be comparing one-character strings to
a one-character string.

But even with this kind of construction, you are still limited. The
user must always press before you can regain control
of the machine. In this manner, the user could enter cursor-move
characters, and many other things which would make it difficult
to properly interpret his input, or which would cause the user to
mess up your display. This subject was discussed in the previous
book.

Here is a far better solution to the problem. It uses two new
concepts: (1) the OPEN statement and (2) the GET statement.
Each of these statements will be used further, later in the book,
especially in the section devoted to disk operations. However,
both statements come in very handy here in showing you how to
keep control of the program process.

Here is another version of the previous program which uses
the new statements. !t also uses the ON-GOTO statement in the
final simplification. The explanation of each of the statements
used here follows the demonstration program segment. A more
complete example is shown in this case because less overall
typing is required.

10 OPEN#1 4.0 ,"K:"

¢ REM INSERT MENU TO BE PRIMTED HERE

9% POSITION B.hu

199 PRINT "¥OUR SELECTION {4: B: O, OR
D7

110 GET#1 +¥

120 Y¥=¥-ASCI"A"1+1

13¢ OM ¥ GOTO 403500500700

14¢ GOTO 39
499 0=400:GOTO
= Q=5®@"GDTF

Ead

ERER!
1’7‘0(21 PFIHT "PROGRAM WENT TO LIME "30

12 ADVANCED ATARI BASIC TUTORIAL

The command in line 10, OPEN#1,4,0,"K:”, said to reserve an
Input/Output Control Block (called IOCB) for our use. There are
eight possible IOCBs in ATARI BASIC. Numbers 0, 6, and 7 are
normally in use by the system. Numbers 1-5 can be used for
other purposes such as this one.

An 10CB is a special area in memory which can be reserved
by this kind of statement to aid in performing certain kinds of
system-controlled commands. These include getting characters,
getting input “records,” writing out characters and records, and
certain special operations called device-dependent commands.
This means commands that only one kind of device can under-
stand and perform. Such examples are rename a file or erase a
file. These and others are covered in this book in the section on
disk-access operations.

The second part of the command, OPEN#1,4,0,"K:”, the 4, is
used to tell ATARI BASIC that this block is to be used for input
only. Other things the block can be used for are: output (as in
OPEN#1,8,0,"K:") or input and output (as in OPEN#1,12,0,"K:").
Since this is the keyboard, only input is allowed. Therefore, the
number 4 command has been placed in that position.

You can tell that this block is being reserved for the use of the
keyboard by the last part of the command, the “K:”, which de-
fines the ATARI keyboard.

The third part of the command, the 0, is in the position for what
is called the device-dependent code. For most of the ATARI de-
vices, this part of the command will always be zero, so we won't
worry about this part until a command is used requiring a nonzero
value.

The purpose of the command is to provide an alternative
means of getting data from the keyboard. Normally the keyboard
is firmly linked to the ATARI Screen Editor. The Editor, as you
know from experience using the INPUT statement, requires that
the user touch before its data is accepted. Once you
establish the keyboard as a separate entity, though, you can GET
keystrokes, one at a time, without pressing for any of
them.

The other advantage to this method is that the keystrokes do
not, as a result of the GET statement, appear on the screen. You

MULTIPLE-WAY PROGRAMMING 13

can translate them any way you wish, and specifically control
what is written to the screen as a result of a user-entered key.

The command in line 110, GET#1,X, means that now that the
Input/Output Control Block (IOCB) is OPEN, it can be used as a
pointer to the device. The GET statement tells the computer to
GET the next available input data byte and assign its value to the
variable called X. Then GET#1 means that IOCB number 1 is to
be used as the pointer to the device from which the data is to be
retrieved.

All ATARI-compatible devices are linked to the computer’s op-
erating system by a set of common command elements. There-
fore, once an IOCB has been tied to a specific device, there is
no need for the software to know any of the characteristics of the
device itself. All that needs to be known is that the GET statement
will retrieve, from the device, the next available data byte.

When the keyboard is read, the ATASCII key value will be
placed in the variable called X. Now this value can be treated
just as any other value. You may, if you wish, try the following
short program which demonstrates only the result of the GET
statement;

1¢ OPEN#1+4,0,"K"

99 POSITION 320

1020 GETHI #¥

200 PRINT " "3CHR$ ()
130@ GOTO g9

This program has the effect of placing the cursor at a fixed
position, then printing the character equivalent of the key
touched in the position to the immediate right of the cursor.

This is the reverse of normal where the cursor always trails the
character printed. What happens here is that the keyboard input
is never shown on the screen except by directly using the PRINT
statement. Therefore, if you wish, you could PRINT anything in
response to the various kinds of keys you can show as possible
inputs.

The next statement in the program is

120 ¥=X-ASC("A")+1

14 ADVANCED ATARI BASIC TUTORIAL

What happens here is that the character E is converted to its
ATASCII value, which is 69. The capital letters of the alphabet, in
ATASCII values, start at 65 and go for a total of 26 values in
ascending order. Therefore, for any letter to be converted to its
numerical position, 1-26 in the alphabet, it is necessary to sub-
tract the ATASCII value of the letter A from the letter value re-
ceived, then add 1 to it. This is what this program does.

If the possible selections are represented by the letters A-D,
then it gives us four possible “index numbers” as a result of these
four inputs. These are the numbers 1, 2, 3, and 4. They are put to
use in the following statement:

122 ON Y GOTO 488,500:600.700

When ATARI BASIC sees this kind of statement, it looks at the
value of Y and knows it is supposed to GOTO the line number at
the position number which matches Y. In other words, if Y is 1,
GOTO the line number that is in the first position. If Yis 2, GOTO
the line number in the second position, and so on. There are, in
this sample statement, four possible positions, so the values of
Y from 1 through 4, included, have a meaning. This is a more
compact way of expressing the iF-THEN construction shown at
the beginning of this section. Since it is more compact, it can
also be faster to operate.

Any value of Y that is not in the range from 1 to 4 will be ignored
by the program since there is no line number for those positions.
This allows you to maintain control because only single key-
strokes can be accepted at a time. If they are not acceptable
(not recognized as meaningful), the user is again prompted to
give one of the correct replies.

The last part of the sample program, lines 400—1000, simply
shows you that the sample transfer of control to the new line
number happened “as advertised.”

ATARI BASIC also offers the same kind of construction for sub-
routine calls. In that case, in place of the statement

12¢ ON Y GOTO 400500800 .7848
you might have the statement

MULTIPLE-WAY PROGRAMMING 15

where each of the routines to which the statement points is ter-
minated by a RETURN statement.

Note that in the ON-GOTO statement, the program control ac-
tually fully transfers control to the new line number. In the case of
the ON-GOSUB statement, control is only transferred temporarily
to the routine starting at the selected line number. On execution
of the RETURN statement, control will return to the next line fol-
lowing the line which called the subroutine. (NOTE: All subrou-
tines used with an ON-GOSUB statement must end with a
RETURN statement.)

As an exercise, you might consider what kind of program it
would take to simulate a simple calculator, using the GET state-
ment and the ON-GOSUB statement. (Hint: So-called reverse-
Polish calculators are probably easier to simulate than the oth-
ers.) An example program flow description follows:

1. Set variables A and B to 0 (use A as the running TOTAL, B
as the current input).

2. OPEN the keyboard.

3. GET a keystroke.

4. Is it a number (ATASCII “0” through “9")? If yes, multiply
current value of B by 10 and add the value of the input
(limited to integer values only for this not-so-complex ver-
sion), then go back to Step 3.

5. Isit a plus sign (ATASCII "+ ")? If yes, add the current value
of B to the current value of A and display the running total
= A, then go back to Step 3.

6. Isit a minus sign (ATASCII “ —")? If yes, subtract the current
value of B from the current value of A and store and display
the result as the running total = A, then go back to Step 3.

7. Is it a times sign (ATASCIH “*")? If yes, multiply the number
in B by the number in A, store in A, and display the result
as the running total = A, then go back to Step 3.

8. Is it a divide sign (ATASCII */")? If yes, then divide the num-
ber in A by the number entered in B, store the result in
A, and display it as the running total = A, then go back to
Step 3.

9. Isit a capital C (ATASCII “C")? If yes, this means "CLEAR."

16 ADVANCED ATARI BASIC TUTORIAL

Set both A and B to zero, display the value of A as the
running total = A, then go back to Step 3.

This little narrative example can be expanded, of course, to
include handling of decimal input numbers and other kinds of
calculations, such as squares, square-roots, and so forth. The
example is just placed here to tickle your imagination a bit.

Remember also that you should include some kind of error
trapping in a program wherever necessary. This lets you retain
some measure of control, even if the user finds a way to make a
mistake.

ERROR HANDLING IN MULTI-WAY BRANCHES

In the book, ATAR! BASIC Tutorial, you would have encoun-
tered a recommendation that programs be written as though they
are a set of functions. If each of the functions can be individually
tested in some way, then when they are put together, the resultant
program should be more easy to debug. (If all of the program
pieces work OK, then if a single program is made by a controlling
program that calls each piece, most everything should work to-
gether, providing there are no direct conflicts between the pro-
gram pieces in the first place.)

This technique is sometimes called structured programming.
In other programming languages, a more truly structured pro-
gramming can be attained, but in ATARI BASIC, this organization
as a set of subroutines comes close to a “structure,” so we will
reference it loosely this way.

When you develop structures like this, you will wind up with a
potential problem in controlling your error handling. Let's look at
an example:

12 REM CONTROLLING OUERALL PROGRAM
20 GOSUE 2000

39 GOSUR 7

40 GOSUB EB00¢

@ GOTO -@

20@@ REM PRETESTED ROUTINE THAT FORMS &
USER MENU

MULTIPLE-WAY PROGRAMMING 17

2999 RETURN

49009 REM PRETESTED ROUTINE THAT
PROCESSES DATA

4201 REM ENTERED BY THE MENU FART

4999 RETURN

GO@@ REM PRETESTED ROUTINE THAT WRITES
A REPORT

G@¢1 REM BASED OM THE PROCESSED DATA
FrROM da0a.

998 RETURN

Now, if you are trying to maintain control of the overall process,
you will want to TRAP errors that can occur. Where should you
put the TRAP statements? And where should you place the error-
handling routines?

For various kinds of data entry routines, when you want to give
the user another chance to get it right, you will normailly want to
put the TRAP statement and its error handling “locally” to the
subroutine that is actually being used to retrieve the data. In other
words, you might have the TRAP set before a user input in sub-
routine 4000, for example, while the error handling is somewhere
within the routine itself.

Likewise, for the printing of a report, a pretested subroutine
6000 would probably have a TRAP statement preceding the
PRINT statement. For example, if a program discovers an error
during printer communications, such as the printer is off, you
could handle user communications with a routine that asks, “Do
you really want to print this now? If so turn on the printer and
press IRIAIEIM. Otherwise, press S to save the report for later,
or Q to quit.”

There are, however, cases where the error happens some-
where that cannot be handled so easily. For example, if you open
a disk door while a file is being written, or if there is some other
kind of error somewhere in the middle of the program process,
the logical thing to do is to TRAP these errors into the main lines
of the program itself (in the example, lines 10-50 somewhere).

What the error reporting will say is, “Error in process number

. .7 or some other kind of message. it can then offer whatever
best alternate route is available, based on the error that occurred.

18 ADVANCED ATARI BASIC TUTORIAL

Maybe it would not be necessary for the user to re-enter all of the
data. Maybe the disk was full on the processing program and a
new disk with more room would solve the problem. Then the
program could proceed with the process again, calling which-
ever subroutine (using a GOSUB and RETURN) would be re-
quired to get things back on track.

MAIN PROGRAM (called level 1)

statement

statement

GOSUB 4000 Pe control to line 4000, but saves
"on a stack.’ the location of whatever
statement follows this GOSUB so that a
RETURN statement, when sensed, will
RETURN to this next location.

This case is a level-2 subroutine.
next-statement-A

GOSUB 6000

Performs same action as for routine
4000. W RETURN happened OK for
routine 4000, then only the RETURN ad-
dress for routine 6000 is on the stack.

This case is also a level-2 subroutine. if
this routine called another, it would be at -
level 3, and so forth.
next-statement-B
level-1 TRAP error handling
level-2 TRAP error handling
(These are the things we are interested in
at this time — how to handle those
TRAPs that return control to level 1

without issuing the RETURN.)

Fig. 1-1. Possible problems with TRAPSs in subroutines.

MULTIPLE-WAY PROGRAMMING 19

However, when you TRAP to a statement outside the range of
the subroutine itself, and do not execute a RETURN to get back
to the “caller,” there is a possible problem. This is illustrated by
the diagram in Fig. 1-1.

This is what happens to the system if TRAPs occur without
RETURN statements being recognized. Fig. 1-2 is a sample of a
stack appearance when the TRAP sends an error condition up to
a level-1 routine from a level-3 routine. (Example: If the menu
routine does another GOSUB, and an error occurs in that final
level of GOSUB and is trapped to a common error handler in the
main routine.)

Each time you perform another level of GOSUB without first
issuing a RETURN, another so-called RETURN address gets
added to the stack, and the stack pointer moves down one notch
to point to the next place it can use to save the next level of
RETURN address.

tf you handle the errors, then perform more and more GOSUBs
without RETURNSs, then eventually the stack runs out of room to
store these RETURN positions and the program will fail. Notice
that each time you issue a RETURN, the pointer moves up again
and reuses a previous position. Therefore, if the GOSUBs and
the RETURNSs are matched, you can perform an indefinite num-
ber of each without causing a problem.

How, then, can you handle errors at level 1, when necessary,
and yet prevent this probiem from causing program failure? Well,
this is where the ATARI BASIC statement called POP is used.

The purpose of POP is to move the pointer up one position
each time the POP is performed. This means that if all of the error

SYSTEM STACK Where the RETURN locations are kept.

START POINT

RETURN address from level 2 to level 1.
RETURN address from level 3 to level 2.

STACK POINTER

Next special memory area where another
level of GOSUB RETURN address can be
stored.

Fig. 1-2. Stack appearance when TRAP sends error condition from level-3 to
level-1 routine.

20 ADVANCED ATARI BASIC TUTORIAL

handling is TRAPped up into some part of the level-1 routine,
then you would perform as many POP statements as the subrou-
tine was “"deep” in levels at the time the error happened. An
example is shown here:

12 REM MAIN PROGRAM
2@ GOsSUB 4@00
Vet (level 1)
@ POP:POP:POP

L *

4900 I EEEER {at level 29
GOSUB go2oa

82@¢ ..., fat level 3)
GOSUB 10000

LR A A)

12000 .o tat level 4)
TRAP 5@

(Here somewhere is the condition causing the actual error.)

Line 50 brings the pointer from level 4 to level 3 with the first
POP, level 3 to level 2 with the second POP, and level 2 to level 1
with the last POP. Level 1 is the level at which there are no RE-
TURN addresses in the stack, so the stack is now cleared for
additional use, and the errors can be reported and handled as
you wish.

The rule is that if there is no RETURN performed from a subrou-
tine, then a POP should be done instead. It keeps the program
healthy and avoids unnecessary and difficult-to-find crashes.

REVIEW OF CHAPTER 1

1. Itis possible to make programs shorter and perhaps faster if
one uses the most efficient way of performing a task. This
includes an awareness of what the different kinds of ATARI
BASIC statements will do and how they can be used.

2. The ON-GOTO and ON-GOSUB statements can be used for

MULTIPLE-WAY PROGRAMMING 21

multi-way branching. Each will only perform its task if the con-
trol variable exactly matches one of the numerical positions
where a destination line number has been shown.

. The GET statement can be used to accept data from the user

without pressing IRIRANVIZIYE, offering a greater degree of con-
trol over what will appear on the screen.

. One must be careful when handling errors at various levels of

subroutines. Otherwise, the system may crash mysteriously.
The POP statement is used for this purpose.

CHAPTER

Advanced String Handling

In the ATARI BASIC Tutorial, a basic explanation of strings and
string handling was given. This chapter will cover the topic from
a somewhat different angle. In particular, this chapter will try to
emphasize how ATARI BASIC compares to other versions of
BASIC. If you have developed an interest in programming, it is
likely that you have seen programs in magazines written for and
about other variations of BASIC. This chapter will attempt to show
you how ATARI BASIC works in comparison to the others.

HOW TO RESERVE SPACE FOR STRINGS

In ATARI BASIC, it is necessary to save space for strings. Other
BASICs do not need this, and allow dynamic allocation of string
space. There are two advantages to the ATARI BASIC approach
to strings, one is that the string handling will not result in “gar-
bage collection” delays. (You may find various magazine articles
which deal with this problem.) ATARI BASIC, because of saving
space for strings directly, does not encounter this delay.

The other advantage is that once the program begins running,
the location of the string start in memory becomes fixed. There-
fore, you may, if you wish, use the string to contain machine

22

ADVANCED STRING HANDLING 23

language instructions. Examples of this will be found later in this
book.
Here is an example of specifying space for a string:

12 DIM As(1ae)

This line saves a space of a maximum of 100 memory locations
for the string named A$. No matter how many characters are
stored there (from 0 to 100), ATARI BASIC will always keep that
same space reserved for that string.

TRUNCATING A STRING

The term truncating means cutting off something at something
less than its maximum length. ATARI BASIC, on accepting data
for a string, will only accept the maximum number of characters
that are reserved in the string space. The rest of the characters
entered are lost. An example is shown here:

1¢ DIM A%{G)

2@ PRINT "ENTER & OR MORE CHARACTERSG®

3@ PRINT "ONLY THE FIRST G WILL BE
ACCEPTED™

49 INFUT A%

3¢ PRINT "I ONLY STORED: "iA$

HOW THE LENGTH OF A STRING IS DETERMINED

You may, at any time, find out the current length of a string by
executing the LEN command, as shown in the following example:

B@ PRINT "THE LEMNGTH WAS: "IiLEN(A$)

If, when a string item is requested, only the key is
pressed, the length of the string is called zero. Each character
entered advances the count by 1. If the backspace kev or an
editing key is pressed, the count is changed according to what
you have done to the screen. The minimum length will be 0, which
can also be caused by initializing a string by a statement, such
as:

24 ADVANCED ATARI BASIC TUTORIAL

7¢ A% = "":REM TWO SETS OF QUOTES :NO
SPACE BETWEEN

8@ PRINT "NOW THE STRING LENGTH IS:
"SLEN(AS%)

In some of the chapters that follow, you will see examples
where strings are formed individually by characters separately
entered. The main reason for this is to maintain control of the data
entry process (accept good characters, reject bad characters).
However, this formation can only build a string to the maximum
length provided for the string. Otherwise an error is generated.

HOW TO REFERENCE AN ENTIRE STRING

To reference the entire contents of a string in ATARI BASIC,
you simply use the name of the string. For example,

PRINT A%
prints the whole thing.

HOW TO REFERENCE THE RIGHTMOST CHARACTERS

In other versions of BASIC, there is a function called RIGHTS.
ATARI BASIC does not use this function; it can reference the
rightmost characters simply by specifying in parentheses the
starting character of the group to be referenced. The total num-
ber of characters used will start at this point and proceed to the
maximum number of characters currently in the string. An exam-
ple is:

12 DIM A%(B)

20 A% = "ABCDEF"
30 PRINT "THE RIGHTMOST 3 CHARACTERS
ARE: "3A%(4)

which prints DEF as the result when the program is RUN.

This is actually a short form of the string specification shown in
the next section. In other words, the starting character is speci-
fied, and the ending character is “understood.”

ADVANCED STRING HANDLING 25

HOW TO REFERENCE THE LEFTMOST CHARACTERS

In other BASICs, there is often a function called LEFT$ which
separates from the string a specific number of characters starting
from the first one. ATARI BASIC performs this function by accept-
ing, in parentheses, two parameters. These are the starting and
ending character for the string split. Note that this also allows the
selection of numbers of characters out of the middle of the string
as well. Here is an example:

19 DIM A%$(B)

20 A$ = "ABCDEF"

30 PRINT "LEFT 3 CHARACTERS ARE:
"iA%(1,3)

49 PRINT "CENTER 2 CHARACTERS ARE:
"5A%$(3.:4)

5@ PRINT "RIGHT 3 CHARACTERS ARE:
"SA$(LEN(A%)-2 LENC(AS))

The last line (line 50) illustrates that the values you give to the
string position function can either be numbers or functions. Line
50 says that whatever the length of the string, this line is to print
the last three characters (last —2, last — 1, and last). The other
way to write this line is to have it print AS(LEN(AS) — 2), since the
second variable will be understood.

HOW TO ADD STRINGS TOGETHER

This is the function of stringing things one onto another. ATARI
BASIC does not use the STRING + STRING kind of function.
Instead, you must specify where the strings are to be added
together. They can be added, one onto the end of another, by the
following program sample:

10 DIM A$(100) :R$(B)
20 A$ = "ABCDEF

30 B$ = "1234"

49 A$(LEN(A$)+1)=B%

where the length of A$ is 6. Therefore, B$ will be added onto and
stored in A$ starting at position 7 and going for the exact current

26 ADVANCED ATARI BASIC TUTORIAL

length of B$. This means that even though there are six positions
reserved for B$, only four are occupied, which makes the current
length of B$ equal to 4. Therefore, the result in A$ will have a
length of 10, and be composed of the characters ABCDEF1234.
It is not necessary to add onto the end of the string; you can
specify any starting position you wish, such as:

1¢ DIM A%(100 :B+(G)
20 A% "ABCDEF"

3¢ B% "1234"

a4¢ A$(3)=B%

H

This example simply replaces part of the previous part of A$
with the new contents of B$. The result in this case, if A$ is
printed, will be AB1234. You may use this function in forming
words or sentences in some future program. (See “Adding a
Character to the Middle of a String.")

MAKING A STRING SHORTER

This is a little trickier than adding to the string. There are two
possible approaches to shortening a string. One is more obvious,
the other takes advantage of one of the features of ATARI BASIC
to save some program space. Here they are:

Shortening a String (Version 1)

10 DIM As(1ad)
2@ DIM B$(G6):REM MAX LENGTH IS 6 TO USE

3¢ A% = "SHORT TEST 0OF STRING
SHORTENER"
4% B% = A%

30 A% = B%

In this first version, A$ is long. When B$ = A$ is executed in
line 40, only six characters can be held in B$, so its maximum
length will be 6. When line 50 is executed, each character of A$
is made equal to each character of B$, with the final length of A$
being equal to the length of B$. Thus, A$ has been made shorter,

ADVANCED STRING HANDLING 27

Shortening a String (Version 2)

1¢ DIM asclaa;

2@ DIM Bfi(6Y:REM MAX LENGTH IS & TO USE
3@ AE = YSHORT TEST OF STRING

SHORTENER"

49 PRINT "HOW MANY CHARACTERS FOR
LENGTH"

@ INPUT W

B? A%INI = AE{H.N}

7@ FPRINT A%

On the right side of the equals sign in line 60, it says A$(N,N).
In previous examples, the use of two variables in the parentheses
specified the starting and ending characters for a string piece
selected in this way. This form then specifies that a string piece
starts and ends on the same character. Therefore, this function
specifies a single-character string.

On the left side of the equals sign in line 60, it specifies that
the starting point for adding the string piece is to be character
number N. Therefore, the character at position N alone is placed
at position N in the string. Since this is the fast position that is to
be modified by ATARI BASIC, it assumes that this is the length of
the string. Therefore, the string has been shortened.

DELETING FROM A STRING

Taking a character out of a string is as easy as determining the
position of that character, then telling ATARI BASIC to write over
it, as:

CIM Ax{d
AE o= ok FRINT A%
PRINT “"WHICH ONE TO DELETE™
INPUT N

AT (N = AFIMN+1)

FRINT A=

K

]

3

[L) B S O I S

In this example, on the right side of the equals sign in line 50,
it is understood that the string specification A$(N+ 1) actually

28 ADVANCED ATARI BASIC TUTORIAL

means AS(N+ 1, LEN(AS)). This means that all characters to the
right of the character at position N will be moved one position to
the left, covering up location N, and making the string one posi-
tion shorter.

ADDING A CHARACTER TO THE MIDDLE OF A STRING

This is the reverse of the preceding section. It will move char-
acters one position to the right. The main difference is that it
requires another string, as long as the one being used, to accom-
plish the task. In other words, it needs a place to store the char-
acters from the one selected to the end of the string so they can
be put back again in the right place.

12 DIM A$(20) :B$(1),TEMP$(ZQ)

20 A% = "123456878B9":PRINT A%

30 PRINT "ADD AT WHICH POSITION"
4@ INPUT N

50 B$ = "X

6@ TEMP® = A%$(N}

B3 REM SAVES THE RIGHTMOST CHARACTERS
7@ AF(N) = B%

73 REM ADDS THE MEW CHARACTER

8¢ A%(N+1) = TEMP%

REVERSING THE ORDER OF CHARACTERS IN A STRING

This topic will be shown from two different approaches. The
first one will show the handling of the string data as a string itself.
The second approach will introduce a new function of ATARI
BASIC. First, let's set up the string to be used:

18 DIM A%${10)
2@ A% = "ABCDEFG"

Now create some space for other string items that will be
needed for the reversing operation. (The goal is to take
ABCDEFG and produce GFEDCBA.)

30 DIM B®(1):Cs(19)

ADVANCED STRING HANDLING 29

In line 30, B$, a single-character string, will be used to grab
one character at a time and place it into the output string called
Cs.

48 LA = LEN(A%$):J = LA
S@ FOR I = 1 TO LEN(A$)
6o Bs = A

Lines 40 through 60 tell the computer to accept a single char-
acter starting at position J, and throw the rest of the string away.

7@ C#(I1) = B%

Line 70 says to write one character, starting at position I, (Char-
acters to the left of position | are not touched in C$. All it does is
add one to the string length each time the process is repeated.)

B J = J -1
Line 80 sets the pointer to the next earlier character.
99 NEXT I

Line 90 says to repeat line 80 until all characters are moved
into the new string.

122 PRINT C#%

Finally, line 100 tells the computer to print the result.

That was the first approach. It required an additional string, at
least as long as the first one. It also required | passes through
the program loop, where | is the total number of characters that
were in the string. You may, at times, wish to move characters
within a single string, not using an external string as large as the
first one. Here is one way you can do that:

1@ DIM A$(1@)
153 A% = "ABCDEFG"
20 DIM B$(1):C%(1)

Line 20 uses single-character strings for this part.

3@ K = INT(LEN{A$)/2)

30 ADVANCED ATARI BASIC TUTORIAL

Line 30 will provide an ending point that is only half the number
of cycles to work than the first approach. Since the goal is the
same, to change ABCDEFG into GFEDCBA, this program will,
instead of moving all seven characters into a new string, swap
them around within the old string. Two character moves will be
done during each loop, so only half the number of loops will be
required.

49 RTPOS = LEN(AS%)

Line 40 defines which character position is the rightmost in the
string that is to be shifted around.

=0 FOR I = 1 7O K
G B = &4%(I1.:10

Lines 50 and 60 tell the computer to grab one character from
the left side of the string. (The loop constant specifies which one
to use.)

7¢ A%(1:1) = A$(RTPOS+1-1}

Line 70 says to move a right-hand character into the left-hand
position.

B9 AS{RTRPOE+1-1Iy = B%

Line 80 says to move the left-hand character into the right-
hand position.

82 IF I = 1 THEN C$% = B%
Line 90 will be explained later.

1@ NEXKT I
Line 100 says do it until done.

118 As(RTFOED = [

A

Line 110 declares that the string is as long as it was before.
12@ PRINT A%

Line 120 tells the computer to print GFEDCBA.
You will notice that the order of swapping of the string pieces

ADVANCED STRING HANDLING 31

was: (1) grab a left character (line 60), (2) move a right character
(line 70@), and (3) put the left character where the right one was
(line 80). This is the required order because ATARI BASIC sets
the length of a string by means of which character was written
last. In other words, if you tried to grab a right character, move a
left character to the right character spot, then put the right char-
acter back where the left character was located, the loop will only
work one time. This is because after only one pass through the
loop, the last known length of the source string is one character,
since it is the last one written. The data will not be disturbed
within the string storage space, but ATARI BASIC will believe that
the length of the string stored there is only one character.

The drawback to using this approach is that each time the loop
is executed, the string gets one character smaller. It starts out by
swapping the outermost characters, then the next innermost, and
the next until the center of the string is reached. Once this hap-
pens, the string looks as though it is only half as long as it started
out. (Delete line 110 and RUN the program again to see what is
meant here.)

The reason for line 110 is to tell ATARI BASIC that the string
should actually be the same length as the original. ATARI BASIC,
as mentioned earlier in this chapter, will add characters to a
string starting at a specific location and proceeding for the length
of the string element being added. It does not disturb any of the
characters previously placed in the string from number 1 through
and including the one just prior to the position being added.

Line 90 saves the rightmost character for the swapped string.
If I = 1, then B$ contains the original lead-in character from the
source string, which becomes the last character in the string.
Line 100 will, when | = 1, store that character in the last position.
But then for each pass through the loop, it stores a single char-
acter in the preceding position. This makes the length of the
string, as seen by ATARI BASIC, to be one less than it was before.

Because B$ is only one character long, only one position is
filled and the other characters are undisturbed. This means that
the swapped string will be properly formed, but the effective
length will be wrong. Line 110, then, will not be changing the
value placed at the last position in this string because it will

32 ADVANCED ATARI BASIC TUTORIAL

replace an A with an A (found and placed on the first pass
through the loop). However, because the A will be written into the
last position in the string, it will tell ATARI BASIC that this is the
length of the string and complete the task.

Both of the preceding techniques may be thought of as “first
approach” techniques because they use ATARI BASIC string
handling directly and, therefore, must either loop more times than
may be necessary, or use more memory space, or need to fool
ATARI BASIC into thinking that some different string length is
being used.

The sample program that follows in the next section can swap
a string where it sits, without changing what the system sees as
the length of the string. It may also be used to selectively change
any one of the string variables without fooling around with re-
adjusting the length.

You can even use string storage spaces as direct storage
places if you wish. Note that you must be more careful in using
this technigue since the statements used here can put data any-
where in memory. This means that your program could “crash”
the system if it is not properly limited in its memory POKEs.

INTRODUCING THE ADR FUNCTION

When you use the DIM statement to assign a storage space for
a string, the system, on starting a RUN, will assign a space for
that string to be stored. During the RUN of the program, the place
reserved for that string will not be moved by ATARI BASIC. You
can find the location of the string by the following example state-
ment sequence:

10 DIM A$(2d)
20 A$ = "ABCDES4321"
30 X = ADR(A%)

I PRINF

Lines 30 and 35 will show you where in memory A$ has been
placed. (If you are only interested in where in memory a specific
character has been placed, use the function as: X = ADR(A$(N))

ADVANCED STRING HANDLING 33

where N will be that character position number in which you are
interested.)

49 FOR I = 1 TO LEN(A$)

3@ PRINT "FOUND A${("3I3i") IS:
"ICHR$(PEEK({I+X-11)
62 NEXT I

Lines 40 through 60 demonstrate that the character string data
can be located directly by performing a PEEK at the address
where the ADR function says the character string data starts.

Likewise, you can store a new set of character data by doing
a POKE into the address at which you wish to store the new
characters. If, for example, you wish to change characters 2 and
3 into question marks, you could add lines 70-100 to the sample
program and perform that task.

When you perform the last line of this part of the sample pro-
gram, notice that the entire size of the original string is printed.
This happens even though you have written into the string some-
where in the middle. You see, you did not use the string writing
function itself, so ATARI BASIC did not realize you had written a
string, and it did not change what it thought was the string length.
Here are the lines that will change characters 2 and 3:

79 OM = ASC("7?Y)

73 REM USE THE ASC FUNCTION TO GET THE
ATAGCII VALUE OF "=7"

8¢ FOR I = 2 TCQ 3

9¢ POKE (X+I-1}!.QM

1@@ NEXKT I

Z0@ PRINT A%

X is the actual machine location where the first character of A$
(which is A$(1)) is stored. Therefore, X+ | — 1 equals that location
plus 2 minus 1, which means one greater than the starting char-
acter, which means character number 2 of the string.

Now this technique can be used to rewrite the string reversing
function:

34 ADVANCED ATARI BASIC TUTORIAL

1@ DIM Asil1d:
1% A% = "ABCDEFG"
3@ K = IMTILEN{A®)/2:

As in the last example, line 30 provides the ending index point.
As in that example, instead of moving all seven characters into a
new string, swap them around within the old string. Two character
moves will be done during each loop, so only half of the number
of loops will be required.

4¢ RTFOE = LEN{A%)

Line 40 defines which character position is the rightmost in the
string that is to be shifted around.

4% HWHERE = ADR(AF) -1

Line 45 subtracts 1 from the starting point where the data is
stored so it is possible to reference the characters by calling
them “number 1" “number 2,” and so forth. Adding one to
WHERE points to number 1, etc.

=¢ FOR I = 1 TO K
B2 TEMF = PEEK(WHERE+I}

Lines 5@ and 60 are used to grab one character from the left
side of the string. (The loop constant specifies which one to use.)

7@ POKE WHERE+I,(PEEK{WHERE+RTFOS+1-111

Line 70 moves a right-hand character into the left-hand
position.

B@ POKE WHERE+RTPOS+1-1TEMP

Line 80 moves the left character into the right position.
189 NEXT 1

Line 100 says do it until done.
209 PRINT A%

Line 200 says PRINT the results.

ADVANCED STRING HANDLING 35

The right-hand character is grabbed by finding its address in
the memory and PEEKing the contents. The address is formed
by the location WHERE + RTPOS, which points to the rightmost
character. Next it adds 1 and subtracts 1, which moves left one
position each time the loop occurs.

When line 200 executes, you will see the same result as a
reversed string, but no actual string-type instructions have been
called in ATARI BASIC. Therefore, the length information will not
be affected.

REVIEW OF CHAPTER 2

1. The string functions available in ATARI BASIC require that you
assign space for strings before they can be used.

2. The string functions allow you to isolate characters from any
part of a string; left, right, or middle.

3. The length of a string in ATARI BASIC depends on which
character number is the last one written.

4. You can change the data within a string either by using the
string functions or by finding out where the string is stored in
the memory and using a set of PEEK and POKE statements to
change the data. This does not affect the length of the string
as far as ATARI BASIC is concerned.

CHAPTER

Using the Disk System with ATARI BASIC

In the ATARI BASIC Tutorial, the disk system was introduced
primarily as a place where your programs could be stored and
loaded. In that book, the commands LOAD and SAVE were the
only ones formally introduced. This book assumes that you have
access to a disk system and concentrates heavily on the use of
the disk within the program.

This chapter introduces the concept of ATAR! DOS, then pro-
ceeds to explain each of the ATARI BASIC commands which use
DOS. First, DOS is an abbreviation for Disk Operating System.
This is a program which is automatically loaded into the computer
when it is first turned on. In order to assure that the DOS will be
available for your use, always be sure that the following steps are
followed when you power up your system:

1. Be sure, if you have more than one disk unit, that one of
them is switched as unit 1, and that each of the others has
a separate, different number. Make sure the cables are con-
nected as indicated in your ATARI DOS manual.

2. Insert a diskette into drive 1 and close the door. This disk-
ette must contain a file called DOS.SYS if you are using
ATARI DOS-2 or, if you are using ATARI DOS-3, the disk
contains the files KCP.SYS and FMS.SYS.

36

USING THE DISK SYSTEM WITH ATARI BASIC 37

3. Turn on the disk unit before you turn on the computer. This
is because the ATARI disk unit is a “smart peripheral.” This
means that it is capable of responding to commands. When
the computer is turned on, it sends a command out to all
devices connected to it, saying “are you there?" If the de-
vice does not respond, the computer assumes that the
device is not connected. If a device does respond, the com-
puter will continue to communicate briefly with it to load
more information directly from the device. In the case of the
disk unit, the computer will try to load ATARI DOS from the
disk. This prepares the system for the ability to use the disk
commands. This means that if the disk unit is not turned on
first, the computer will assume it is not connected at all, and
will ignore it. Since you will want to use the disk commands,
be sure to foliow the correct sequence.

4. Now that each disk unit is on, turn on the computer. Assum-
ing that the ATARI BASIC cartridge is in place, the disk
operating system, or DOS, will be loaded and the DOS com-
mands can be used.

HOW TO SAVE PROGRAMS

After you have developed a program, you may want to save it
for future use. There are two different ways of saving a program.
One of them uses a command called SAVE. The other uses a
command called LIST.

With the SAVE command, the program will be written to the
disk in a form that only the BASIC cartridge can read. It is a form
called tokenized, and is kind of a shorthand. Once the program
has been brought back into the machine by the BASIC cartridge,
you can LIST it on the screen, printer, and so on. The token form
of the program takes up less space because each of the ATARI
BASIC keywords will have been replaced by a single character.
This character may be reinterpreted by the BASIC cartridge as
the keyword later, either for you to see, or simply be used directly,
during a RUN command, to perform the desired function.

An example program is shown here and may be used for
practice:

38 ADVANCED ATARI BASIC TUTORIAL

le PRINT "THIS IS A PRACTICE PROGRAM"
To SAVE this program, enter the following command:
SAVE "D1:TEST"
and press IGIRANEIN.

A program saved this way can be brought back into the ma-
chine using the LOAD command, such as:

LOAD "D1:7TEST®

assuming the test program is still present in the machine after
you SAVE it.

Type the following to test the save and load sequence:

1@ PRINT "PFRACTICE PROGRAM"
SAVE "D1:TEST®

NE M

LIST

Since you typed NEW, the screen should just show READY, say-
ing that no program is present.

LOAD "Dl:TEGT"

RN

This should print:
FRACTICE PROGRAM

There is another way in which a program may be saved on the
disk. This is done with the LIST command. Normally you would
use LIST just to see all or part of your program on the screen,
such as

LIST 1.,t19a

which would list the contents of lines 1 through 100 on the screen.
This LIST command may also be used with a printer, for example,
to list the program on the printer. In this case, the form of the list
command would be:

LIST "p:n

USING THE DISK SYSTEM WITH ATARI BASIC 39

This lists the entire program to the printer, or
LIST "Piv,yl 108
This lists just lines 1-100, where P stands for the printer device.

The ATARI operating system is very versatile because it allows
the data output or input to be directed to, or accepted from, many
different kinds of devices. All that is needed is that you specify,
with the command, enough information about where the data is
to go, or come from, and the operating system handles the rest.

For the LIST command, then, the structure will be as follows for
LISTing a program onto the disk. Note that in this command, the
data that is sent to the disk is exactly what appears normally on
the screen. In other words, the program is stored as a set of
strings, or sentences, if you prefer. Because it is this kind of data,
it may be processed in a special way if desired.

In the remainder of this chapter you will see examples which
use, as their data files, programs that have been LISTed to the
disk. These examples are in the section covering the OPEN and
INPUT statements.

You can LIST a program to the disk using the following
command:

LIST "Ll LONGTEST"
This will list the entire program onto the disk in unit 1. You could
also use the LIST command by typing:

LIST "C1:LONGTEST" 1,100
This will list only lines 1 through 100.

Programs which have been LISTed to the disk may be brought
back into the machine using the ENTER command. An example
is shown here, using the same program name used above. First
type NEW, then type:

EMTER "DI1:LOMGTEST"

fn addition to the uses you will see later, the LIST and ENTER
commands have a special property that you may find very useful.
The property is that the ENTER command, as far as programming

40 ADVANCED ATARI BASIC TUTORIAL

is concerned, treats the source device in exactly the same way
as it would treat the keyboard. In other words, ATARI BASIC stays
in the command input mode, and accepts from the source device
whatever is “out there,” just as though additional keystrokes were
being entered from the keyboard. Unlike the LOAD command,
which executes a NEW before it does the actual LOAD, the
ENTER command does not disturb any program piece that is
already present in the machine!

You may use this fact to build custom programs out of pieces
you have developed and LISTed separately to the disk. For ex-
ample, you may have developed a special title block routine
which you have numbered lines 28000 through 31000. You may
also have a special input routine which you have numbered lines
20000 through 24000. If these have been listed separately to the
disk by the commands:

LIST "D1:PART1",28020 37000
and
LIST “D1:PARTZ" 20000 24000

or by any other separate LIST command, then you can bring both
parts of the program back into the machine by the set of
commands:

ENTER "D1:PARTL™
and
ENTER "Di1s:sPARTZ™

NOTE: Since these are treated as though they are entries from
the keyboard, if there are any duplicate line numbers in the data,
the last-entered version of the line number is the one that will
appear in the final version of the program.

In this manner, you can develop separate subroutines for each
of the types of things you do in programs. Then you can build a
final program simply by ENTERing each of the subroutines you
want to have as part of a program, then write a small program
which calls them alll It may make your programming job some-
what easier.

USING THE DISK SYSTEM WITH ATARI BASIC 41

Here is a set of command lines you can type into the machine
to try the LIST/ENTER function if you wish:

1@ REM THIS IS FART 1

122 REM THIS LINE WILL GET REPLACED
LIST "D:PARTL"

NE W

Now nothing is in memory.

189 REM THIS IS5 PART 2
LIST "D:PARTZ"
NEW

Notice that this time the disk unit was specified only as “D:”
instead of “D1:". This is accepted by ATARI DOS as the default
drive number. If no number is specified, it believes you mean
disk unit number 1. If you are using ATARI DOS-2, you will have
to have a program called DUP.SYS on the diskette. Now type

Jul RETURN |
The system will load in the DOS menu controller.

To see the names of the files currently on the diskette you are
using, call up the file index function (also called the disk direc-
tory) by hitting the “A" key and pressing twice. Among
the files present on the disk should be files called

PARTI

and
PARTZ

which you have just written to the disk. This shows that the LIST
function has placed these programs on the disk.

Notice the rest of the names of the files on the disk. Some of
them have one or more letters or numbers shown in a separate
right-hand column, such as “SYS" or other symbols. Your ATARI
DOS manual will tell you that names of files are formed by a letter,
followed by up to seven additional letters or numbers, with an

42 ADVANCED ATARI BASIC TUTORIAL

“extension” of up to three letters or numbers. Such a title, when
specified from ATARI BASIC, might look like this;

LIST "D:FILE1Z34.BAB"

where the D: says that the file is to be listed onto drive 1, and its
name is to be FILE1234.BAS.

When you list the file index, the ".” which separates the name
from the extension does not show up. The purpose of the exten-
sion is simply to let you identify further the name of a file. For
example, the extension SYS is usually used by DOS to specify a
system file. You may use BAS to specify that it is a file to be used
with BASIC, or ASM to say it is to be used with the assembler,
and so on. If you are only working with BASIC, though, the DOS
is not fussy and does not care whether an extension is used or
not. The extension is allowed, however, for your convenience.
You might even wish to use the extension to keep track of which
version of your program you are working with as it is being de-
veloped and saved, such as:

NEW
1¢ PRIMT "THIS I8 FIRET TRY"
5a4VE "DeVERSION. LY

if you wanted to try this, you would have to select the run-
cartridge function of the DOS menu (B IRIRIYENE). If you are
following the text, and trying things as you go, select the car-
tridge function now. The text will enter the DOS at various points
to look at other functions as well.

The last command will produce a file in the disk directory
named VERSION 1, which you will be able to cali into the ma-
chine with the command:

LOAD "DeUERSION. L™

Or, if you wish to RUN the program directly, you may do so by
entering the command.

RUN "D:VERSION. 1™

Every time you tell ATARI DOS to write a file onto the disk, it will
first look to see if the disk has a write-protect tab in place (cov-

USING THE DISK SYSTEM WITH ATARI BASIC 43

ering the notch in the disk). If there is a piece of tape covering
the notch, DOS will refuse to write on the disk and will cause an

DOS will then read the directory to see if there is already a file
present by that name. It will also try to find out where there is
some space available on the disk to store the new data. A num-
ber of things can happen at this point;

1. DOS may find that it cannot read the data on the disk. If you

have installed a disk which has not yet been “formatted,”
DOS will find no data present. See your ATARI DOS manual
for data regarding how to format the disk.

. 1 DOS finds no file by that name, it creates a new directory

entry for the file. Along the way, DOS will keep track of which
sectors on the disk have been reserved for use by that file,
and finally write the directory entry for it so that your pro-
grams can find it later.

. If DOS finds a file with that name, it creates a new temporary

file as described in step 2. Then, on completion of the tem-
porary file, DOS will delete the old copy of the file with the
duplicate name. The reason DOS will do this is that when
you ask it again to read a file with this name, DOS must
have one and only one file with this name on the disk so it
will know which file you wish to use. Therefore, if you wish
to keep a “backup” copy of an old file while the new one is
being prepared, do not use the same name for the new file.
(It is usually a good practice either to use a new name, or
to use the DOS RENAME-FILE function (E IETEIVEIE) to
name a file as a backup).

NOTE: It is not the purpose of this book to repeat material
available in the ATARI DOS manual. The information presented
here is intended to help you use DOS functions in your programs.

Getting back to the earlier example, demonstrating the LIST
and ENTER functions, assuming that you have files called PART1
and PART2 on disk unit 1, type the following commands:

NEK
ENTER "D:FARTL®
LIST

44 ADVANCED ATARI BASIC TUTORIAL

ENTER "D:PARTZE™
LIST

Thus you can see that the ENTER command did not disturb the
program resident in memory, but, just as from the keyboard, a
line with a duplicate line number in the second file replaced the
original version of that same line number in the final version.

Now that some kinds of programs can be sent out to the disk
and brought back in, other kinds of disk commands can be
shown. The next program piece will be used for a number of
purposes. First it will be a demonstrator for some of the disk
commands. It will also be the program on which some disk work
will be done.

The commands to be discussed here are OPEN, INPUT, PRINT,
and CLOSE. The program will be used to read a file from the disk
(in this case the program itself), and write the file back some-
place else. In the first example, the file will be written to the
screen. In the second version, it will be written into a different
disk file.

You may recognize this as a primitive version of the DOS
COPY-FILE function. Because it is done in BASIC, it will be slower
than the same function performed directly by DOS. However, the
purpose of this program is to learn how BASIC can work with
DOS to perform certain functions. Notice that it will only function
with program files (or text files . . . we will show these later in this
book) which have been LISTed to the disk.

The second version of the program will function with any kind
of ATARI DOS file (unprotected, of course). As in other program
examples, these have been kept as short as possible, with com-
ments following the program to explain what is being done. Here
is the program:

12 DIM A$(120)

2@ OPEN#1,4,:0,"D:INFILE.LIS"
80 TRAP 10@@

1@ INPUTH1iA%

150 PRINT A%

18¢ GDTO 109

1002 CLOSE#1:END

USING THE DISK SYSTEM WITH ATARI BASIC 45

Put this program on the disk by the command:
LIST "D:INFILE.LIG"

Now issue the command:
RUN

The result of the program RUN is to perform the exact same
output as if you had issued the command LIST. (Issue the com-
mand LIST immediately to see the same result.)

What you have done here is to provide a program which can
LIST, to the screen, files that have been placed on the disk by the
LIST command. Here is how it was done:

Line 10 says:

DIM A%(12@)

This means to reserve a character string of a maximum of 120
characters to hold the input lines. ATARI BASIC can only accept
a maximum of 120 (actually about 114) characters in a standard
line. Therefore, 120 reserved spaces for the line are sufficient.
When a LIST command is performed, the data that is sent to the
output device (in this case the disk) is sent as a set of strings,
terminated by an end-of-line character. This, then, is what the
program expects to read and is also the reason it worked only
with LISTed programs or text files as mentioned earlier.

Line 20 says:

OPEN#1,44+2,"D:INFILE.LIS"

This means that an IOCB (see Chapter 1) is to be reserved for
receiving data from a disk file named INFILE.LIS on disk unit
number 1. The ATARI operating system will be managing the
input and ouput of data, and will know that any INPUT commands
issued to device #1 will be referencing the next available data in
the file named here.

Line 80 says:

TRAP 100@

This means that when an error occurs, the program is to go to
line 1000. There will definitely be an error when the input file runs

46 ADVANCED ATARI BASIC TUTORIAL

out of data. The program does not have any statements in it
which would look for a last program line or anything like that.
Therefore, the program, as you will see, keeps reading data until
it hits the end-of-file. The trap statement prevents any error from
being printed and provides a smooth way out of the program.

The statement in line 1000 is not really necessary (CLOSE#1)
because ATARI DOS automatically closes all open files when it
completes a program, whether by finding an error or any normal
end. However, it is good practice.

Line 100 says:

INPUT#1 4%

This takes the program lines (strings) one at a time as input
from the disk file.
Line 150 says:

FRINT A%

This prints the strings (program lines) to the screen.
Line 180 says:

GOTO 194

This simply forms an endless loop. When you want to run this
program again, you would type:

MNE W
ENTER "D:INFILE.LIZ®

Then type:
RUM

However, this program is not very versatile. You may wish to
make it more useful before deciding to save it for future use. How
about adding the capability to ask the user which file name he
wishes to have listed from the disk to the screen? The following
is a set of changes and additions to the preceding program. The
entire program has been modified and presented here, and the
changes are explained following the program.

USING THE DISK SYSTEM WITH ATARI BASIC 47

12 DIM As(1Z@)

12 DIM BS(20) sNAME$ (2@}
13 PRINT "WHICH FILE IS5 TO BE LISTEDR?"
168 INPUT B2

18 NAME$S = "D:*

19 NAME${(3) = B%

Z0 DPEN#1.4:2,NAMES

B¢ TRAP 1@¢@

109 INPUT#13A%

13¢ PRINT A%

180 GOTO 162

10¢@ CLOSE#1:END

Line 12 was added to save space for two new strings. The first
one is B$, which line 16 will pick up from the user.

Line 18 sets up the original value of NAME$ to be “D:”, and
line 19 adds the text provided by the user to the string.

Line 20 was changed from:

OPEN#1 4.2, "D:INFILE.LIG"
to:
OFEN#®1 4.2 NAME%

This makes a user-defined file-name string available to the
ATARI BASIC OPEN command.
if you RUN the modified version and enter:

INFILE.LIS

When the program asks which file, you will get the same result
as eariier.

Notice that this is the old version of the program that you are
listing. If you want to store the new version of the program for
future use, type:

LIST "D:INFILE.LIG"

Or, you can save it under any other name you wish to use.
The original program may undergo another slight modification
which may help you save some time in your program develop-

48 ADVANCED ATARI BASIC TUTORIAL

ment. If you recall earlier in this chapter, to list the directory of the
disk, you were told to enter DOS. Remember that it took some
time to load the DOS files, and you were left in the DOS system,
rather than BASIC.

It is possible to list the directory of a disk, without ever leaving
BASIC, by using the following program. Again, this program is a
small modification of the first version of the program you wrote
earlier.

10 DIM As(12@)

20 OPEN#1,G.,0,"D1loi*, %"
8@ TRAP 19000

100 INPUT®13A%

159 PRINT A%

18¢ GOTO 1¢e

1¢2@ CLOSE#1:END

The only change to this program is in line 20. The new version
replaces the 4 with a 6 in the OPEN statement and respecifies
the control string. The 6 says that the specified file is to be
opened for directory read operations only. The control string,
D1:*., is a "wildcard” specification, which means that the direc-
tory is to be searched for every file it has, and the names of the
files are to be available as character strings for input from a
program. This program then outputs the same information which
the file directory function of DOS will output, including the total
number of free sectors on the disk.

If you wish to save this program for future use, a name such as
DIRLIST might be appropriate, so SAVE the file as:

SAVE "D:DIRLIST®

Then, whenever you need to use this program from BASIC, you
can issue the command:

RUN "D:DIRLIST"

However, note that the RUN command will erase any program
you may be presently working on in memory. This is one of those
times when you might want to take advantage of the LIST and

USING THE DISK SYSTEM WITH ATARI BASIC 49

ENTER commands instead. Let's see how. Modify the program
line numbers to be:

32000 DIM A%${1Z0)

32001 OPEN#1,68+2,"D1lz%, %"
32002 TRAP 32006

320@3 INPUT#13A%

32¢04 PRINT A%

3Z0e5 GOTO 320@3

32026 CLOSE#1:END

Now, instead of SAVEing the file for future use, LIST the file to
the disk for future use:

LIST "D:DIRLIST.LIS"

If you are in the middle of working on a program, you might
want to list the directory on the screen 1o see if you have already
put a program by a particular name on this disk, or simply see if
the current disk has enough room on it to hold your program. By
issuing the following commands, you can call in this program
segment and use it without disturbing the program you are work-
ing on. (Of course, there must be no duplicate line numbers, or
the ENTERed program will replace them with its own.)

ENTER "D:DIRLIST.LIS™
GOTO 3zZe0@

This will list the directory of the disk in unit 1, and exit leaving
your program intact.

Although this technique has performed the selected function,
it does leave a little bit of a mess behind. In other words, the
piece of a program which produced the directory is now a part
of your program. If you should decide that your program file has
no room for this function, you would want to delete it. The ATARI
BASIC cartridge does not provide for any built-in block edit func-
tions, such as renumber, or delete, and so on. Therefore, using
the functions you just learned, you can add to the simple direc-
tory list program, a set of statements which will cause the seg-
ment to erase itself immediately after it executes! Here is the
program, with the modifications included:

50 ADVANCED ATARI BASIC TUTORIAL

DIM Asi12@)
ODPEN#1,6+@:"D1lzx, %"
TRAP 3Z8@G
INPUT#1i0%

PRINT A%

GOTO 3Zeeés

CLOBE=1
DOFEN#1,8:2:"D1:DELETE.ME™
FOR N=3z@82@ T0 32017
PRIMNT#1N

NEXT H

CLOSE#!

ENTER "“D1:DELETE.ME®

The added lines are 32007 through 32012. When you wish to
delete a fine in ATARI BASIC, you must enter the line number and
no-contents (a blank line with that line number).

This program piece performs an OPEN command on a file in
write mode (the number 8 in the position shown in line 32007).
Then it outputs to the file a set of blank lines each preceded by
the line numbers you want deleted from your program. This pro-
gram, then, as modified, will be ENTERed. You run the segment
by a GOTO 32000, and it will list the directory of the disk, and
then delete itself from your program. All of this is done without
entering DOS directly.

Note that the disk with the directory being listed must not be
write-protected, since the program piece needs to write to the
disk to generate the file named DELETE.ME. However, if you
wish, you can write the file called DELETE . ME separately, as well
as the file DIRLIST.LIS. In that case, only line 32012 would have
to be added to the original version of the program, and not the
lines which write DELETE.ME.

You now have two DOS tools, one for file listing of already
LISTed files, another for directory listing while still in BASIC. Now
you will see how the file listing program can be generalized to
handle file copying, even of files which have been produced by
other means than LIST. Here is a complete version of a program
which will ask the user the name of the file to copy from and the

USING THE DISK SYSTEM WITH ATARI BASIC 51

name of the file to copy to. Notice that the main difference be-
tween this and the original is in added user communication.

12 DIM NAMEA%(ZI?) -NAMEB${ZO»

14 PRINT "SFECIFY SOURCE DEVICE AND
FILEY

12 PRINT "SUCH AS D1:S50MENAME.BAG™

16 INPUT NAMEA%

17 PRINT "SPECIFY DESTIMATION DEY AND
FILE"

B PRINT "SUCH A5 Dl:NEWNAME.BAS"

8 INPUT NAMEBS$

29 OPEN#1 4.2 .NAMEAS

Z2Z OPEN#Z.B.8.NAMEB$

B@ TRAF 1¢@@

180 GET#1.M:PUT#Z2.M:G0TO 120

1¢0@ CLOSE#1:CLOSE#Z:END

In lines 20 and 22, one IOCB has been opened for reading the
source file, and another has been opened for writing the desti-
nation file. When end-of-file is reached on the source, both files
are closed. The second file should then be an exact copy of the
first. If the source file was stored on disk by a SAVE command,
then the copy of that file can be LOADed or RUN exactly like the
source.

In line 100, instead of INPUT and PRINT, the commands GET
and PUT are used. GET reads a single byte value from the input
file; PUT writes that single byte value into the destination file.
These commands are condensed onto a single line in an effort to
speed up the program operation a bit.

HOW TO SAVE DATA

So far in this chapter, you have seen program examples which
read and write disk files one line at a time, and programs which
read and write files one character at a time. Each of the programs
shown thus far has had no concern for the contents of those files
because their purpose has only been to copy the contents of the

52 ADVANCED ATARI BASIC TUTORIAL

file from one place to another. The program examples that follow
will show you how to use the disk as a data storage device for
use during your programs.

The exercise that will be used to demonstrate data storage is
a program for generating DATA statements. You will often find
programs given in magazines and books which you may wish to
try out on your machine. This program will help you in generating
any DATA statements that might be needed in the program.

When you are entering DATA statements, it is often critical that
each of the numbers or characters be entered exactly as de-
signed. Sometimes the items in the DATA statements turn out to
be machine instructions. If they are not entered precisely, the
computer may, as it is said, go off into “never-never land.” Thus,
this program will help you get things right the first time.

This program is actually a complete series of three individual
programs, each of which could be separated and used for other
purposes. The first part of the program accepts raw data from
you and builds a disk file containing essentially each of the data
entries on a separate line. This kind of data file may be useful to
you for certain kinds of programs.

The second part of the program is an editor. It will OPEN and
READ the raw data file, asking if each item is correct, or if you
wish to change, insert, or delete any item.

The third part of the program takes the corrected data file and
uses it to generate DATA statements (with many data items per
program line) for use in your BASIC program. You will be able to
process this final file using an ENTER command, or to LIST the
contents of any of the files used here using the file listing program
developed in the earlier part of this chapter.

The individual programs are themselves going to be made up
of small, possibly useful pieces. Each step in the building of the
programs will be explained as it is encountered.

This program accepts the data items from you one at a time.
You will be asked to enter each data item, then to press
IR When you are finished entering data, you then press
again, with nothing at all entered on the input line.
The program will consider this as the end of the data entry phase
and will close the data file.

USING THE DISK SYSTEM WITH ATARI BASIC 53

Entering Data

The first thing that must be arranged is a way to enter the data.
The keyboard will be the input device. The following program
piece will run all alone. It OPENs a control block (IOCB) for data
input from the keyboard, and outputs to the screen the number
that represents the key the user touches.

The purpose of this program piece is to let you decide which
key values are to be accepted for the program. You will see in
the large program that only certain ranges of key values will be
accepted. This program lets you see why the number range
shown was chosen.

© OPEN#1:d4,@s"K:"

3 REM PROVIDE A WAY TO GET DATA
WITHOUT RETURN KEY

6 REM IOCB =1 BECOMES IMPUT PATH FOR
THE KEYBOARD

700 GET#1 M

710 REM READ CHARACTER FROM KEYBOARD

720 PRINT M

73@¢ GOTO 7¢@0

FJ 3

3

RUN this program. Now touch the A key; it prints the value 65.
Touch the Z key; it prints the value 90. Touch the @ key; it prints
the value 48. Touch the 9 key; it prints the value 57.

The values between A and Z are within the range of 65 to 90;
the values for keys between 0 and 9 are within the range of 48 to
57. (You may touch other keys to confirm this.) You may decide
later to add other individual values of keys to the recognition
program. This program piece will help you select which other
values will be used. If you wish to save this program piece, call it
"KEYS.” Save it to disk by typing:

SAVE"D:KEYS"®

The next step is to add to this program the ability to tell the
user if an acceptable key has been touched. Any key in the two
selected ranges should be accepted directly. The user should be
able to use the backspace key to correct errors during data entry.

54 ADVANCED ATARI BASIC TUTORIAL

Finally, the kKey should be accepted to indicate the
end of the data entry. The other requirement is that the user
should be told whether or not the key was accepted by the
program.

Here is a modified version of the key-reading program which
will do what is needed. If the key is acceptable, the key will be
printed on the screen. If it is not either within the range men-
tioned, or not a key, it will be rejected and the buzzer
will sound. (Either the buzzer within an ATAR! 400/800 or the
speaker of the television for one of the other ATARI computers
will sound.)

In addition to the ability to accept the keystrokes and to say
whether they are acceptable, this modification adds the ability to
save the data in a string.

For this, as well as most of the other examples in this book, the
REM statements are contained on separate lines. You do not —
have to enter them if you wish to minimize the amount of typing
in the process of learning the program techniques.

10 DIM A$(1Z0)
15 REM SAVE SPACE FOR AN INFUT DATA
STRING
20 OPEN®L 4,¢,"K:" -
IS REM FROVIDE A WAY TO GET DATA
MITHOUT RETURN KEY
ZE REM IOCE BECOMES THE INPUT FATH FOR
THE KEYBOARD
& N=@:REM START COUNT OF CHARACTERS
B50 GR.@:N=0:A$="":REM CLEAR THE
SCREEN: NO DATA YET
BE@ FRINT:PRINT "ENTER A DATA
[TEM" : PRINT
700 GET#1 .M
701 REM READ A CHARACTER FROM THE
KEVBOARD
712 IF M=155 THEN &8
711 REM TEST FOR RE

Pl

IRt

TUREN KEY TO STOP LINE

USING THE DISK SYSTEM WITHATARIBASIC 55

720 IF M=1EG THEN 900:REM PROCESS THE
BACKGPACE KEY

739 IF M < 31 OR W™ 122 BR ((N+1) 128
THEN PRINT CHR%{(Z53)1:G0T0 70Q:REM
S50UND BEEFP

76@ PRINT CHR$(M):

783 N=N+1:REM COUNT INPUT CHARACTERS,
120 MAax

77% ARILEN(A$Y+1) = CHR$(M):GOTD 720

771 REM ADD TO CURRENT STRING LENGTH

B80¢@ FOR C=1 7O Z3@2:NEXT C:REM DELAY

830 GOTO 4¢

2@ N=N-1:IF N<=@ THEN G5¢

921 As(N) = AFININI::PRINT
CHR®(1Z6) +:G0TO 70¢@

This program piece then only performs the data entry and
checking. You may RUN this part if you wish just to see how it
handles key entries. The comments within the program segment
explain what it is doing.

Lines 900 and 901 process the key
(CHR$(126)) so that data can be corrected as it is entered. Line
900 moves the string pointer back by one count and returns the
program to line 650 if the count reaches zero. Line 901 shortens
the string, moves the display cursor back one position, then goes
back to line 700 to obtain another character.

The program must now be modified to actually put away the
data being entered into a file called RAW.DTA on the disk. This is
done by adding the following lines:

30 OPEN#3,8:2."D:RAW.DTA"

41 NR=@:A%="":;REM SET START VALUES

77¢ AF(LEN(A$)Y+1)=CHR$(M):G0TD 7Q¢

771 REM ADD TO THE CURRENT STRING
LENGTH

BA® PRINT#33A%:NMR=NR+1

B9l IF LEN{A%)=@ THEN 2005

@3 A$="":FEM LENGTH=@

Z20¢5 CLOSE#3

56 ADVANCED ATARI BASIC TUTORIAL

Line 30 sets up a place where the data can be stored. A new
or existing disk file named RAW.DTA is opened for output only.
Lines 41 and 805 each set the initial string length to zero. New
characters are added to the end of the string each time line 770
is performed. When the string is finished (when you press
KISV, the string is written to the output device, which is
the RAW.DTA file. If the string is empty, with a only,
the file is finished, and so is this program segment.

A file produced by this program can be listed to the screen
using the file listing program developed earlier in this chapter.
You may choose to try this program at this time. Be sure to SAVE
your work, just in case of any problems. A suggested way to save
this part of the program is:

LIST "D:MAKERAW.LST"

You can bring it into the machine again later with the
command:

ENTER "D:MAKERAW.LST®

The “.LST"” was chosen so that when you look at the disk direc-
tory, you will remember that this program was LISTed to disk.
Before you can RUN this kind of program, you must first ENTER
it into the machine.

Editing Data

The second part of the program allows you to check each of
the data items. The options are to accept the entry as it stands
(by just pressing IIRNYIEIME). Or you may change the data item
and press to accept the changed value. You may
insert a new data item above the one you are currently displaying
by using the key, or you may delete the data item you
are displaying by using the key.

This is not intended to be an advanced function line editor. Its
primary purpose is to show you how data items may be read or
written from or to a disk file. The lines of the program will be
explained individually, then the entire editor program will be gath-
ered together in a complete listing.

The program being developed here assumes that you have

USING THE DISK SYSTEM WITH ATARI BASIC 57

already created a file using the MAKERAW.LST program. If you
have not yet done so, you may wish to do it now.

First, type:
NEW
ENTER "D:MAKERAW.LST"
RUN
Then type:
Il RETURN

el RETURN
=l'J RETURN B RETURN

Now, you will have a file named RAW.DTA on your disk.

The editor program segment can stand alone if you wish. It
was written that way, but by using the ENTER command, the
editor program can be combined with the MAKERAW program to
form a complete package. This is done later in the chapter. For
now, however, here is the stand-alone editor. Before you start,
type NEW.

The program line

223 OPEN#Z :44+0,:"D:RAKW.DTA"

opens the RAW.DTA file for reading using IOCB #2. It assumes
that the file named RAW.DTA is already in existence, as it will be
if the MAKERAW program has already been run.

203 TRAP Z@@5

If this program is being run alone and there is a disk error, the
program assumes it couldn't find a file by that name (or maybe
the disk was not on, or the door was open).

20035 CLOSE#Z:CLOSE#3

These statements provide a way to gracefully end when the
input file reaches an end-of-file indicator. When there are no more
statements to process in the file called RAW.DTA, the program
will close both the input and the output files.

For the next part of the program, to edit the data, you must
present it to the user, then ask him to accept it by pressing

58 ADVANCED ATARI BASIC TUTORIAL

ZIIKVIZINE, or insert another entry above this one (INEE:IM), or
delete this entry (IDISNANN).
Some of the lines used in the earlier key-read part of this pro-

gram will be repeated here. You may, if you wish, coliect similar
lines into a subroutine.

19 DIM A${1Z@):B${120):REM SPACE FOR
SOURCE DATA

2@ OPEN#1:4+@"K:"

32 REM FIX FOR DIRECT KEY READ

4¢ N = @:REM COUNT CHARACTERS

41 NR = @:REM COUNT OUTPUT REGORDS

42 INSERT = @:REM NOT IN INSERT MODE

420 0OPEN#3,8,2"D:EDITED.DTA"

421 REM MAKE A PLACE FOR THE EDITED
DATA

432 R = 1:NR = @

433 REM START WITH FIRST SOURCE RECORD

443 GR.@:PRINT:PRINT "SIMPLE EDRITOR-
DUTFILE RECORDS:"3

446 PRINT NR:PRINT:PRINT:PRINT

456 PRINT "SOURCE RECORD # "3R:PRINT

437 IF INSERT = @ THEN INPUT #Z3iB%:R =
R+1:REM COUNT A NEW SOURCE RECORD

458 PRINT B#:PRINT:REM PRINT SOURCE
FILE AND BLANK LINE

439 INSERT = @

469 PRINT:PRINT "DELETE: INSERT:
RETURN?"

Line 460 presents the user with his possible key entries at this
point. Any other keystroke should be ignored. (You might also
want to add beep on bad key.)

465 GET#1 s¢
466 REM READ THE KEYBOARD
479 IF M=155 THEN Go@

USING THE DISK SYSTEM WITH ATARI BASIC 59

Line 470 processes the return key as an accept-source. This
means to move the data to the output file and return to read
another source record.

480 IF M=12Z6 THEN 445

In line 480, 126 is the value of the key. In
this mode, the key says to delete the source record.
Therefore, the process will be required to simply go back for the
next source.

48¢ IF M=137 THEN N=@:G0OT0 EB2

Line 490 processes the key. This means accept new
data to be inserted ahead of the currently displayed record. For
example if record #2 is being displayed, the insert will install the
new record just in front of record #2, and behind record #1. The
order will then be 1, new, 2, . . . last. If IINEI9:18 is used another
time, then the next record to be inserted will also be inserted
ahead of record #2 if it is still displayed as the current record.
Thus, the order of the EDITED.DTA file will be 1, new, new2,
2, ... last when many records are inserted.

GOTO 4E65

REM IF NOT INSERT: DELETE: OR

RETURM. THEMN IGNORE THE KEYBOARD

¢ PRINT#Z:BE$:NR=NR+1: GOTO 445

U REM BUILD CUTRUT RECORD FROM INFUT
S0URCE RECDORD

BE@ GR.@: FPRIMT "INSERT ABOUVE SOURCE

RECORD # "IR:PRINT
81 REM CLEAR SCREEN AND PRINT USER
INETRUCTIONS

This next part is similar to the input program given earlier. It
must accept a new record and put it away in the destination file.

H=@:fz="":REM NO CHARS., IN FEC. YET
GET#1 M
IF M=135 THEN Ba@:REM RETURN

60 ADVANCED ATARI BASIC TUTORIAL

720
73@

76@
763
770
771

gao
801

gze
B30
831

agd
9a1

gez

IF M=126 THEN 9@@:REM BACKSPACE

IF M<31 OR M:122 OR ((N+1)>128)
THEN PRINT CHR%(253)3i:G0T0 700:REM
BAD CHARACTER

PRINT CHR$(M) 3

N=N+1

AS(LEN(A$)+1) = CHR%(M):GOTD 700
REM ADD TO STRING AND GET ANOTHER
CHARACTER

PRINT#335A%:NR = NR+1

REM MOUVE NEW STRING INTO OUTPUT
FILE

A% = "":REM AFTER WRITING: SET
LENGTH OF A% TO ZERD

INSERT = 1

GOTO 445

REM REPRINT TITLE AND CURRENT

SOURCE RECORD AFTER INSERT

COMPLETED
N = N-1:IF N<=0 THEN GB8@
AF(N) = AS(NN):PRINT

CHR&(126)3:G0OTO 7¢@
REM PERFORM EDITOR BACKSPACE
FUNCTION

A stand-alone version of this program has been collected to-
gether here so that you can check your work if you have been
entering it as you read the text:

1

19
20
4@
41
42
20

2o
Ay

42
43

REM STAND-ALONE SIMPLE EDITOR

DIM A%(120),B$(120)
OPEN#1.,4,0,"K:"

N = 2

NR = @

INSERT = @

3 TRAP 20@5

2 OPEN#Z,4,@:,"D.RAWDTA"

? OPEN#3,8,2,"D,EDITED.DTA"
@ R = 1:NR = @

44%

446
458
457

465
47@
48¢@
49
Se0
Geo
680

toe
700
710
720
73

76@
763
770
goae
805
B2
830
S0
901

USING THE DISK SYSTEM WITH ATARI BASIC 61

GR+@:PRINT:PRINT "SIMPLE EDITOR-
OUTFILE RECORDS:";

PRINT NR:PRINT:PRINT:PRINT

PRINT "SOURCE RECORD # "SR:PRINT
IF INSERT = @ THEN INPUT #Z2iB$:R =
R+1

PRINT B%:PRINT

INSERT = @

PRINT:PRINT “DELETEs INSERT:
RETURN®®

GET#1 M

IF M = 135 THEN G@9

IF M = 126 THEN 445

IF M = 1537 THEN N = 0:G0TO GB@
GOTO 465

PRINT#33iB$:NR = NR+1:G0TO 445
GR.Q:PRINT:PRINT "INSERT ABOUVE
SOURCE RECORD #"3iR:PRINT

N = @d:A% = "*

GET#1 M

IF M = 135 THEN Ba@@

IF M = 1268 THEN 900

IF M < 31 OR M > 122 OR ((N+1):=128)
THEN PRINT CHR&{(253)3:G07T0 70¢
PRINT CHR#%(M) 3

N = N+1

AS(LEN(A$)+1) = CHR$(M):GOTO 700
PRINT #335A%$:NR = NR+1

Ag = o
INSERT = 1

GOTO 445

N = N-1:IF N < = @ THEN GS80

AS(N) = A$(N:N):PRINT
CHR$(126)3:G0T0 72@

Q@35 CLOSE#Z:CLOSE#3:END

LIST this program to disk as EDITRAW.LST. It will be referenced
later by this name.

62

ADVANCED ATARI BASIC TUTORIAL

REVIEW OF CHAPTER 3

1.

Programs can be saved to or loaded from the disk system. A
program that is SAVEd is stored in a special form. When that
program is LOADed or RUN, ATARI BASIC performs an auto-
matic NEW command, erasing any other program present in
memory.

Instead of SAVEIng a program, it may be LISTed to the disk
system, in pieces if desired. This allows the ENTER command
to be used to build up complete programs from the individual
pieces that you have already tested and used previously.

The DOS OPEN command can be used to prepare a disk file
for reading or writing, or can be used to access the directory
on the disk. Records or individual characters can be either
read or written to the disk file, thereby allowing you to create
or modify disk records. The BASIC commands GET and PUT
are used to retrieve or write individual characters. The com-
mands INPUT and PRINT are used to read or write complete
strings as disk records.

Using the disk commands directly, you can produce pro-
grams directly in ATARI BASIC that do the things which are
normally only done while DOS is active. This allows you to stay
exclusively in ATARI BASIC and make the program do some
of what you might do “by hand.” In addition, you can form
your own menu-driven routines for certain activities, with user
outputs suiting your own tastes.

CHAPTER

More Suggestions About Disk Operations

The last chapter explained most of the DOS commands which
can be directly called by name from ATARI BASIC. Specifically,
those for getting characters and getting records (GET, INPUT),
and those for placing characters and placing records (PUT,
PRINT).

It also showed that the OPEN command with an IOCB number
is needed before a disk file is used, to prepare the system to
communicate with that data file on the disk (or to create one if it
does not already exist).

Now that you have been introduced to an ability to list a direc-
tory directly from BASIC, and to copy a file directly from BASIC,
you may wish to be able to delete a file and rename a file also.

Before explaining how to do either of these, you might want to
know why. The example shown at the end of Chapter 3 shows a
very simple editor which takes one line of data at a time from a
source file called RAW.DTA and rewrites each line, or a modi-
fied version of that line, or a new line into a new file called
EDITED.DTA.

Since it is such a simple editor, there is certainly a chance that
you may want to repeat the process a number of times, checking

63

64 ADVANCED ATARI BASIC TUTORIAL

out the records and making sure they are in the right sequence,
or making additional changes.

If you wanted to use the editor more than one time on the data
file, you might have to go into DOS and perform the following
sequence:

1. Delete RAW.DTA.
2. Rename EDITED.DTA to RAW.DTA.
3. Go back to BASIC.

This sequence would be required because the program, as it
is written, always looks for the file named RAW.DTA, and always
produces its output called EDITED.DTA.

There are two possible solutions for this problem. In solution 1,
which you may try if you wish, you could have the program ask,
“What is the name of the input file?” This would require that you
add a DIM statement to define a new string to hold the input file
name, adding the statement which requested the name, then
change line 225 to read:

2253 OPEN#2.,4.04D%

In addition, you would have to add a statement to ask the user,
“What is the name of the output file?”, a DIM statement for a
string for the output file name, and a change in line 420 to read:

429 OPEN#3:8:0.:D%

Now these changes are quite acceptable, and do generalize
the program somewhat. But the program still does not allow you
to effectively ask the question, “Do you want to rerun the edit?”

But even if you assume that you have already added the state-
ments needed to make the program general regarding the file
name questions, you would want this sequence to edit the re-
vised data, and NOT the original data again.

You could, of course, make the program GOTO a position in
the program that would ask the user what file name to use as
input and which one to use as output. But this is really not desir-
able, since the edit process should be somewhat automatic. In
addition, if this kind of approach was used, you would have to
remind the user what names he or she used for input and for

MORE SUGGESTIONS ABOUT DISK OPERATIONS 65

output. Otherwise, the user might not remember, and might ask
for a name that did not exist, or by accident, wipe out the wrong
file. The necessary error traps might take up a lot more program
space than other alternate methods.

In the process of making the program automatic, let's assume
you have made changes to the program to use D$ to generate
and hold the input and output file names for the edit program. To
re-edit the data, you must do the sequence suggested earlier.
The names used here will match those string names that were
just chosen:

1. Delete the RAW.DTA file from the disk.
2. Rename the file now named EDITED.DTA to RAW.DTA.
3. Then go through the editor again.

First, the program piece will be listed. Then the process it uses
will be explained. All of these lines are to be added to the
EDITRAW.LST program.

12 BIM INNAMES TSOUTHNAMES (2@

15 BIM FILE#$(Z D328

Z¢@ CGR.O:PRINT:PRINT "OFEWN WHAT FILE
MAME ON D1%¢
PRIMNT:TRAPZZQ:POKELYS 2

DF = 'D1:n
INFUT FILES
DEidr = FILE%

THNAOMEE = FIL
OFEN®Z 4 .0 :0%
IF FEEK(12314:-9 THEN Zaas
FRIMT:RRINT

PRIMT "WHAT NAME FOR OUTFILE OM
Glee

8@ PRINT

9@ INFUT FILES

289 DE o= vDign

S80 DEOAdy = FILES

J@1 OUTHAMES = FILES%

47¢ OPEN®3,8.:0,D%

E%

66 ADVANCED ATARI BASIC TUTORIAL

432 R = 1:NR = @

E@@5 CLOSE®#Z:CLOSE #3

Z01@ D% = "D:"

2020 DF03) - INNAMES

2030 XI@ 33.%2,0.:0,D%:REM DELETE OLD
RAKW DATA

Z040 D = "Dt

DH(31 = OUTNAMES

DEOLEN(DEI+1) = ",

70 DEILEN{DF)+1) = INNAMES

EeE@ HI1@ 3T.#I,.2.0,D%:REM RENAME EDITED
» RAH

2090 GR.O:PRINT:PRINT "DO YOU WANT TO
RERUN THE EDIT?":PRINT

2100 GET#1 .0
ZIE@ IF CHRE(M) = "y THEN 2148
Z139 IF CHR$(MY = "N" THEN PRINT
"CLOSING FILES . DONE":END
148 TRAF Z30
@ 0% = Do
DEi3) = INNAMES

OFEN#Z .4 :0.:D%

O = "hgn

bDgi2y = OUTHAMES:
OFEM=2,:8:8:0%

GOTO 438

Lines 12 and 15 of this program provide the extra string names
which would be needed to generalize the edit program. Lines
200-430 ask you what to do at the program start. Line 2005
closes both the input and the output files. Lines 2090 through
2130 communicate with the user, asking if all is done, or if another
try is to be made. Lines 2010 through 2030 are used to build up
a string which may be used by the ATARI BASIC XIO statement.
This statement is used here since there is no statement called
“DELETE.”

The XIO statement is one that is used to perform certain special
functions in ATARI BASIC. The number that immediately follows
the XIO defines which command is to be performed. The 33 used

MORE SUGGESTIONS ABOUT DISK OPERATIONS 67

in line 2030 is the delete-file command number. Following the 33
is the IOCB definition (#2), specifying which IOCB to use during
this command. Sometimes the system needs a small amount of
workspace, and this defines what is needed. The next two posi-
tions in the XIO commands are what are called the AUX1 and
AUX2 locations. These, you will see, are most often specified as
a value of 0. Only certain of the commands, such as OPEN,
require further specification data. (For instance, how do you want
the file to be OPENed?) Neither the delete-file nor the rename
commands need anything but @ here.

The last item in the XIO command is the string which describes
where the file is located and its name. Lines 2010 through 2030
are used to build up the final contents of the string to be fed to
this command. The leftmost part of the string is “D:”, which, in
this case, assumes disk unit 1. The next part of the string is
INNAMES. If the name is RAW.DTA, then the resulting D$ will be
“"D:RAW.DTA”,

Finally, for the delete function, line 2030 is executed. This line
says (when the string is interpreted):

TOR@ IO 2T.#I 00D RAM.OTAY

but is really written as:

SEAD MIO 33 ¢#I.0.9:0%
which deletes the original file named RAW.DTA from the disk,
assumed to be disk 1. The reason this was described in this way
was to emphasize that these XIO commands (and sometimes
other commands) do not need to be written with the string con-
tents fixed within the command. It is only necessary to give ATARI
BASIC the equivalent string for its use and it will perform the
same activity in either case. This lets you change the contents of
the string, while being able to write certain general-purpose
statements, as demonstrated here.

The next set of lines (2040 through 2080) complete the rename
function. Specifically, the structure of the rename command, as
given in the DOS manual, is:

A0 32 %28 .2 ,," D 0LDMAME (HEWNAMEY

68 ADVANCED ATARI BASIC TUTORIAL

The statements in line numbers 2040 through 2080 build, then
execute, this rename sequence.
A further note about the sequence building:

1. Line 2050 says D$(3)=OUTNAMES. This is OK because
D$(1) is known to be “D” and D$(2) is known to be “:":
therefore, the string, starting at position 3 and onward, can
be filled with OUTNAMES for whatever length this name
might be.

2. Line 2060 says, however, that the new position where the
comma is to be added is at LEN(D$) + 1. This is one beyond
the current length of the string. You see, you don't know how
long the output name string is and must account for that
somehow when the new string is being built. The same goes
for the position at which the input file name starts.

3. Finally, line 2080 executes the rename function.

EDITOR PROGRAM—FINAL VERSION

The program that follows is a combination of the file creator
(MAKERAW) and the editor program (EDITRAW). You can pro-
duce this program by first reading in both of those old files, then
listing the combined program to the screen, a few lines at a time.
Most of the line numbers remain the same as used before.

This final version of the editor program has menus and instruc-
tions. It also lets you define the names of both the input file and
the output file. Both files must be on disk unit 1.

If you have followed the suggestions given earlier and have
kept a copy of MAKERAW and EDITRAW as LISTed files, then
you can begin to construct this program by typing:

NEW
EMTER "LD:MAKERAW.LBT"
ENTER "D:EDITRAMW.LST"

Then, start to edit and add the rest of the lines to complete the
program. Before you begin to add the other lines, delete line 30
from MAKERAW—a substitute for that line occurs later in the

MORE SUGGESTIONS ABOUT DISK OPERATIONS 69

program. When you have finished, SAVE this program to disk as

EDITOR.

BAS.

ERRBAVE = 185

REM DEFINE WHERE SYSTEM SAVES ERROR
DIM TEMP$(12@)

DIM A$(1EZ0)Bs112¢)

DIM FILE$(Z2@).,.Ds(Z2@)
OPEN=L 4,2 :"K:"

REM FIX FOR DIRECT KEY READ

N = 9: REM COUNT CHARACTERS

NR = @:REM COUNT OUTPUT RECORDS
REM PRINT THE MENU

180 GR.@:PRINT: PRINT "SIMPLE

EQITOR" :PRINT

11@ PRINT "1, EDIT OLD FILE":PRINT
12@ PRINT "2, CREATE NEW FILE":PRINT
13@ PRINMT "3, QuIiT"

149 PRINT: PRINT "PRESS 1 2+ OR 3 TO

EELECT FUMCTION":PRINT

159 GET#1.M

162 IF M 51 THEN 20@5:REM 3
3 IF M = 5@ THEN E5¢: REM Z NER

H
H

QUIT

FILE

17¢ IF M = 45 THEN Z@8@:REM 1 = 0OLD FILE
182 GOTO 15@

Z00 PRINT "WHAT FILE NAME ON D17

205 TRAP Z30:POKE ERRSAVE.Q

212 D% = "Dl

215 INPUT FILES$

220 D#%{4d) = FILE$:REM BUILD A SFECIFIER
223 OPEN#Z4.0,D%

238 IF PEER (ERRSAVE) = 136 THEN SOURCE

= @:G070 445

235 IF PEER (ERRSAVE) <> @ THEN 300¢
238 REM SHOW AND TELL ANY UNKNOWN ERROR
249 SOURCE = 1:REM YES: READING S0OURCE

243 GOTO zZ6@

70 ADVANCED ATARI BASIC TUTORIAL

250
260
270

280
290
295
30
42
43@
443

448
458
456
4357
458
462

463
466
470
480
49

Sa
Gag
6Eo@

B33

GG@
GBae

69
700

710
720

SOURCE = @:REM NG. NO SOURCE FILE
PRINT: PRINT

PRINT "WHAT NAME FOR OQUTPUT FILE ON
piT"

PRINT

INPUT FILE®#

D = "p1:"

De¢d)y = FILE®

OPEN#3.:8:0.D%

R =1

GR+2:PRINT:PRINT "SIMPLE EDITOR-
QUTFILE RECORDS:":

PRINT NR: PRINT: PRINT: PRINT

IF SOURCE = @ THEN 1B@@

PRINT "SOURCE RECORD # "iR:PRINT
INPUT #23iB$:R = R+1

PRINT B$:PRINT

PRINT:PRINT "Edits DELETE,» INSERT:
RETURN?"

GET#1 M

IF M = B2 THEN 100@: REM E FOR EDIT
IF M = 1353 THEM G@@: REM RETURN KEY
IF M = 125 THEN 44%5: REM DELETE KEY
IF M = 1537 THEMN N = 2: GOTO GEQ:REM
INSERT KEY

GOTO 4635

PRINT#33B%:NR = NR+1: GOTO 445

GR+@:PRINT:FPRINT "ADDING A& NEW
RECORD AS OUTREC: " 3iNR+1

N = 2:A% = "":REM NO CHARACTERS IN
RECORD YET

PRINT:GOTO 7a¢

GR«@:PRINT: PRINT "INSERT ABOUE
SOURCE RECORD # "JR:;PRINT

N = @:A% = "":REM NO CHARACTERS IN
RECORD YET

GET#1 M

IF M = 155 THEN 8@@

IF M = 126 THEN 3S¢2

MORE SUGGESTIONS ABOUT DISK OPERATIONS

732

768
763
778
gaa
ges
Ba7
B10

BZ0
g3@
Jea
g9¢1

1000
1010
1020

130

lede
1945
1958
10G@
1a7@
1igd
11109

112
1121

1i4e

IF M<31 OR M>122

OR CON+1)

12e)

THEN PRINT CHR$(Z53)4§:G0T0 700

PRINT CHR%(M) 3

N = N+1

AR (LENTA%$I+1) =
PRINT #33A%:NR =
AE = *°

IF SOURCE = @ TH
GR.@:PRINT: PRIN
OUTFILE RECORDS:
PRINT

PRINT "SOURCE RE
GOTO 4=8

N o= N-1:IF Ni =
AEIMN) = AFINNI:

CHR$(M): GOTO 700

NR+1

EN 4453

T "SIMPLE EDITOR-

PANRIPRINT:

PRINT:

CORD # "3R:PRINT

& THEN GB@
PRIMNT

CHR$(12E)3:G0T0 700
T THIS RECORD

A% = B$:REM EDI
GR.@

PRINT: PRINT "E
RECORD # "% R:F

DITING SOURCE

FINT

PRINT "WILL BECOME OUTPUT REC #

"INR+1PRINT
POSITION Z,7:PR
GOSUB 7540

INT A%

POSITION Z2:7:PRINT 6%{1s1)%

PRINT CHR$(3@)3

N = 1:REM OM FIRST CHARACTER NOM

GET#1 M
IF M = 185 THEN

B = A%£:G0

812:REM DONE ., GET HNEXT

IF M = 31 THEN

13ae@

TO

REM FWD ARROW (SEE IF CHARS IN
STRING, ELSE DON‘T MOVE)

IF M = 3@ THEN
REM BACK ARROW
BACK PAST 157 C
IF M= 137 OR M
1308 :REM INSERT
SHIFT + INS.)

142¢

(DON'T ALLOW MOVE

HARS
= 255 THEN
OME SPACE

(CTRL OR

71

72 ADVANCED ATARI BASIC TUTORIAL

1145

1146
115¢

1136
116@
117¢
118¢@
119a
i30@

1310
1320
1349

1420

141
142@

1436
1500
1510
1532@
123@
1540
160e

1625
1G1@

IF M = 254 THEN 1B@@:REM CTRL
BACKS

IF M = 126 THEN 1700:REM BACKSPACE
IF M<31 OR M:12Z THEN PRINT
CHR$(Z233)3:GOTO 1100

REM TRAP ANY OTHER KEY THAN THOSE
ALREADY USED

REM (ALLOW ALL PRINTABLE ITEMS.
THOUGH)

IF CIN+1)}:120) THEN PRINT
CHR®(253)35:G0T0O 1ieQ

REM LIMIT RECORD SIZE TO 120 MaY
FRINT CHRE(M):

AE(NNY = CHR$(M)

N = N+1

GOTO 11¢@

IF (N+1):LENCA$) THEN PRINT
CHR$(253)3:G0T7T0 1ieo

PRINT A®(M N} T:N = N+1

GOTO i1ie0

REM ADJUST FOR LINE BREAK IN PRINT
OF THE LINE

IF (N-1) = @ THEN PRINT
CHR$(253)3:G0T0 i{i¢e

N = N-1:PRINT CHR$(30);

IF N = 38 OR N = 78 THEN PRINT
CHR$(28) 3

GOTD 110¢

TEMPE = A$(N)

AE{N) = "

AS(N+1) = TEMP$

PRINT CHR&(Z55) ;3

GOTO 1100

IF N = LEN(A%) THEN A$(N,N) = "
:GOT0 11@@

PRINT CHR%(254)3

AF(NY = A%$(N+1):REM SHORTEN STRING
BY 1

MORE SUGGESTIONS ABOUT DISK OPERATIONS 73

1GEZ@
1792

171

171@

1800
1810
1820
1838
1840
2005
2500
2512

TEAR
2549
Z3E@

ZEED
3000

GOTO 1100

IF N<Z THEN PRINT CHR$(ZE53)::0G07T0
11¢@

REM DON‘T ALLOW BACKSFACE BEYOND
STRING START

N = N-1:PRINT CHR%{12G)1:A% (N HN) =
e GOTO 11g0

PRIMT "Add new record: Daone®:PRINT
GET#1 M

IF M = 65 THEN &5
IF M = GB THEN Z@
GOTO 1812
CLOSE#Z:CLOSE#3:END

POSITION Z:14

PRINT "TYPE QUER EHISTING TEXT.
oR®

PRIMT "USE LEFT OR RIGHT CURSOR
KEYE™Y

PRINT "OR CTRL + INSERT TO OFEN &
SFACE®

PRINT "OR CTRL + BACKSF TO CLOSE 4
SrACE™

FRINT "0OFr BACKEPACE 70O CORRECT.
THER"

PRINT "RETURN TO ACCEPT" :RETURN
GR.Q:PRIMT: PRINT Y"ERROR MNUMEBER =
"IPFEEK (ERREAVEI:END

in

@
2z

DATA-STATEMENT PROGRAM

Thus far, you have seen two parts of the program sequence
which was started at the beginning of Chapter 3. To remind you,
this was to accept from you various individual data items. Then a
second program was presented to allow you to view these items
separately, and to change them if a change was needed.

Now that both of these parts have been presented, we can get
to the part which puts them all together. This is to be the part that
READs the data file, and puts all of the items into DATA state-

74 ADVANCED ATARI BASIC TUTORIAL

ments which can be ENTERed into a BASIC program. Again,
these programs are not necessarily the only way of performing
an operation. However, they do provide a way in which some of
the ATARI BASIC statements may be combined to do useful work.

First, the program planning part. It is usually easiest to write
the program correctly if you know ahead of time all of the steps
that must be done to complete the job. Here are some of those
steps:

l. Open the EDITED.DTA file for reading, and open a file for
writing the final DATA statements.

It. Set up an output string of characters. This will be used to
hold the completed DATA statement.

. Set up an input string of characters (whatever maximum
you have allowed for in the program EDITOR.BAS). This
will be used to read the input records, one at a time.

IV. Ask the user what will be the starting line number for the
DATA statements, and the size of the line number steps.

V. Now begin a loop:

A. Calculate a line number.
B. Convert the line number to a string value using the

STR$ function, and put it into the output string.

C. Write the word "DATA" following the line number.
D. Now go into another loop:

1. Read an item from EDITED.DTA.

2. See if the item length is less than the difference be-
tween the current position in the output string, and
the end of available space in this string. If so, add it
to the output string and go get another. if not, then
write the output string to the disk and start a new
output string. |f the line you found still doesn't fit in
the space of a new string, it must be too long and is,
therefore, an error.

3. Continue with the next data item; if end of file, stop.

Let’s see how this would look in finished form:

1 REM DATAMAKR.EAS PROGRAM
1@ DIM ASI1160) «BE(113) ,C%2(5)

MORE SUGGESTIONS ABOUT DISK OPERATIONS

13

16

18

20
21
25
26
3@
ae

o0
517
70
72
73
8o
B1

123

128

128

130

REM DUTPUT STRING: INPUT STRING
NUMBER

REM STRING AFTER LINE NUMBER
CONVERTED,

BMAX=38:REM HOMW MANY CHAR PDSS IN
OUTs

OPEN#1.,4,@:"D:EDITED.DTA"

REM OPEN THE INPUT FILE
OPEN®#Z:84,0,"D:DATASTMT.LIS"

REM OPEN FINAL OUTPUT FILE
GR.@2:REM CLEAR SCREEN
PRINT:PRINT"WHAT IS START LINE FOR
DATA" S

INPUT STRT

PRINT:PRINT"WHAT IS5 INCREMENT":
INPUT INCR

PRINT:PRINT

75

PASEFLAG = 1:REM SET VALUE TO START

FOR N=5TRT TO 32787 STEP INCR
REM CONTINUOUS LOOP: BUT DONT LET
NUMBER
REM GET ANY BIGGER THAN 3JZ27G7.
CE=5TR$ (N}
REM CONVERT A NUMBER TO A STRING
YALUE.
Be{1l)=C% :REM FILL IN UP TO 5
CHARACTERS
Be(LEN(B$)+1)=" DATA ":REM PUT IN
THE WORD.
REM ONE BLAMK SPACE BEFORE AND
AFTER THE WORD DATAs INSIDE THE
QULTES
ITEM=1:REM IF FIRST ITEM, THEN NO
ComMMa
IF PASSFLAG=Z THEN GOTO 14@:REM
DONT READ

TRAP 3@@:REM END OF FILE ON SOURCE

INPUT=1 A%:REM GET A DATA ITEM

76

ADVANCED ATARI BASIC TUTORIAL

135 PASSFLAG=1:REM WORKING ON FIRST TRY

T0

136 REM INGERT THIS ITEM INTO A DATA
STATEMENT

140 XK=LEN(B$)+2

15¢ IF LEN(A%)> (BMAX-X-13) THEN Z00

151 REM SEE IF THE NEW ITEM WILL FIT

132 REM IF GETS HERE, IT FITS
{INCLUDING

133 REM A PRECEDING COMMA) .,

156 IF ITEM=1 THEN X¥=X-1:G0T0 1B@:REM
SKIP """

157 Bsi{X-1)y=","

16¢ Bs(¥)=A%:REM FUTS IT AWAY

17¢ ITEM=ITEM+1:GOTO 130

Z0@ IF ITEM=1 THEN Z0@@:REM TOO LONG,
ERROR
PASSFLAG=Z
REM SECOND TRY TO FILE THIS ITEM:

DO NOT

212 REM DO A DATA READ UNTIL SUCCESSFUL
AT

213 REM FILING THIS ONME AWAY.

220 PRINT®2.,B%

ZZZ2 PRINT B$:FOR W=1 TO 3@@:NEXT U

223 REM DEBUG AID = PRINT TO SCREEN,
THEN DELAY.

232 NEXT N:REM NEXT DATA LINE

2530 PRINT:PRINT"ERROR-TOO MUCH DATA.

NOT ENOUGH LINE NUMBERS TO HOLD IT
ALL":GOTO 31
30@ IF LEN(B$):>1@ THEN PRINT B%
31¢ CLOSE#1:CLOSE#Z:END
ZQ0@ PRINT:PRINT"RECORD TOO LONG TO FIT
INTO DATA"
2210 PRINT:PRINT"STATEMENT-PROGRAM
HALTED"
2029 GOTO 310

MORE SUGGESTIONS ABOUT DISK OPERATIONS 77

Save this program as DATAMAKR.BAS. If you use this program
with your edited-data program, it will take, for example, the sep-
arate inputs which you might have generated as:

tan
15

]

241

and so on and turn them into a set of DATA statements, which
would begin:

Z12e8 0ATA 129.:4.18.53,241

and so on, if you specified 31000 as the beginning line number
and 15 as the increment.

The program will squeeze as many data items onto a line as
will fit in the width you specify in line 18. Try a value of 38, for
example. The data statements will then be no wider than the
normal screen display.

The file you would produce would be suitable for ATARI BASIC
to accept using an ENTER statement. This would add whichever
lines you produce here to your program.

Instead of this approach to the final editing, you may decide to
enter entire program lines, including the line numbers, into the
RAW.DTA file and later, of course, the EDITED.DTA file. You may
change your EDITOR.BAS program to accept a wider range of
input characters to allow this. For example, instead of simply
accepting the numbers 0-9, and the letters A-Z, you could ex-
pand the range of ATASCII values to include all characters from
ATASCII value 32 (a blank space), through and including the
value 122, which is a “z.” This would allow you to accept normal
program input lines into the RAW.DTA file. Then this raw data
would be suitable to try to ENTER into the machine when com-
pleted. If you also revise the editor program segment to include
these characters, then the EDITED.DTA file will also be in a posi-
tion to be ENTERed directly. Thus, with these kinds of changes,
you will be typing the program statements and DATA statements

78 ADVANCED ATARI BASIC TUTORIAL

directly, and will not need to final-process the items into DATA
statements after all.

However, this program does provide a reasonable exercise in
file handling and string handling, which was its main purpose.

LOCKING AND UNLOCKING FILES

While on the topic of functions that can be done directly from
ATARI| BASIC, there are two others you might find useful: LOCK
and UNLOCK. LOCK, when applied to a disk file, prevents the
DOS from erasing that file. When a directory list is done, the
LOCKed files are those that appear in the listing with an asterisk
(*) ahead of the name. UNLOCK reverses the process, removing
the asterisk and letting you delete the file when desired, without
issuing an error message.

To perform the LOCK function, you will issue the ATARI BASIC
command line:

ALD 35 +#2:9:0 "0 FILENAME . EXTY

where FILENAME.EXT stands for any file name and extension
which you may wish to LOCK. The #2 can, of course, be any
currently unused IOCB, from 1 to 5.

To UNLOCK a file, you will issue the command:

. o~ - - '

MIO GE+#2,0.8: DiFILENAME . EXT"

Again, in place of the quoted string, you may substitute the name
of a string you have designated. As demonstrated previously, you
may build the strings one piece at a time.

RENAME PROGRAM

As a further example of the building of strings, the program
that follows is an example of a stand-alone RENAME program.
You may wish to add onto this program the ability to DELETE
files, to LOCK files, to UNLOCK files, etc. This is just an example
on which you can build larger programs if you wish,

P

REM STAND-ALOME REMAME PROGRAM.
3005 GR.Q:REM CLEAR SCREEN

L,

MORE SUGGESTIONS ABOUT DISK OPERATIONS 79

3219 PRINMT "RENAME PROGRAM":PRINT:PRINT

@15 DIM Z¢(1),0LDNAME$ (12},
NEUNAMES$ (127 +RNAMES$ (4®)

3029 PRIWT "SPECIFY DRIVE NUMBER AND
FILE NAME:"

3032 POSITION Z:B

340 PRINT "DRIVE NUMBER (1 QR 23¢

3@5@ INPUT DRV

3@55 IF DRVY:>Z2 OR DRVU<1 THEN PRINT
CHR+(2533):G07T0 3@3¢

3¢50 POSITION Z,8:PRINT "OLDNAME:"

I0EZ RNAMEE: = "D

@64 RMAME#£(Z) = CHR&(ASC("@")+DRWY)

3DBEE RNAME#¢3) = "o

3@¢E8 REM FORM THE EQUIVALENT OF D1: OR
DZs

3872 INFUT OLDNAMES

3075 IF LEM(OLDMAMES$) = @ THEN PRINT

CHR$(Z233):G07T0 3060

RNAME$(dy = OLDNAMES$

POSITION Z:1@:PRINT "NEWMAME:"

INPUT NEUNAMES$

ITF LEM{MNEUMAMES$) = @& THEN PRINT

CHR&(Z253y:GOTD 3060

%]

=
..‘_.j
a]

PR

VM % W% B 9%
LR

SR AR A
]

.._L
]
]

3118 ND = LEM(RNAME#)+1:REM SAUE SOME
WRITING LATER
3120 RMAME$(MD) = " " :RNAME$(ND+1) =

NEUMAMES$
3125 REM FINISHED FORMING THE
INSTRUCTION STRING, DO IT
3138 XKIO 32+8#Z,0.:0:RNAMES

Notice in this program that the NEWNAME is spelled NEU-
NAME. This prevents ATARI BASIC from accidentally erasing
your program, which would happen if it recognized the keyword
NEW embedded in a word. The only exception to this rule is when
the keyword is used inside quote marks (* ") as part of a PRINT
statement (Line 3080). Save this program by typing: LIST
“D:RENAME.LST".

80 ADVANCED ATARI BASIC TUTORIAL

Something to Watch For:

ATARI DOS will not issue an error if you try to give the same
name to more than one file on the disk. This means that if you ask
DOS to do this, it will. This is not the immediate problem, though.
When you ask ATARI DOS to RENAME that file again, or DELETE
that file, or LOCK or UNLOCK, it will not be able to tell which one
of those file names is the one you want it to operate on. In other
words, whatever command you give, files with the same name
will have the same action performed on all of them.

ATAR!I DOS has what is called a wildcard feature which allows
multiple file names to be specified for a single command type.
Those commands performed directly by DOS use this wildcard
feature to perform the same function on any file name which
matches the file specification the user provides. Therefore, if you
specify exactly the equivalent of a file specification, and there
are two on a disk of exactly the same name, ATARI DOS will
perform the function on both.

If this should happen, there is a way to easily save the file
whose name occurs first, starting from the top of the directory list.
That is to enter DOS and perform the COPY file function specify-
ing that file name. Only the first file with this name will be copied
to a new, separate name you specify.

The second occurrence of this other file name is not as easy to
retrieve. It will require the use of one of the available disk-editor
programs, to go directly into the directory track and change the
name on the disk itself. That effort is somewhat beyond the in-
tended scope of this book and will, therefore, not be covered
here.

How then can the user prevent this accidental duplicate name
from happening in the first place? Well, most of the time when
you look at a situation, then make a decision based on the things
you see, it is often possible to somehow direct the machine to
perform those same steps.

In particular, if you are to avoid making this mistake, you would
probably go into DOS and list the directory of the disk. You would
remember which names are there and could, therefore, pick a
name that is not now being used. Then you would rename your
current file to that new name.

MORE SUGGESTIONS ABOUT DISK OPERATIONS 81

You can add to the program such things as:

1. The steps required for the machine to look at the disk direc-
tory for you.

2. If any of the items already match the new name you have
chosen.

3. Tell you that it can't perform the name change because that
name is already taken.

This will not be performed here, but the required steps will be
outlined, to give you a challenge of your own.

1. OPEN #2 for reading the directory of the target disk.

2. Set up two strings, one for the read of the directory itself,
the other for holding a shifted version of the NEUNAMES.
This is necessary because the first character of the direc-
tory list has at least 2 blank spaces preceding the first char-
acter of the file name.

3. Reformat the NEUNAMES$ so that it can be compared di-
rectly to the directory entries.

4. Examine all directory entries to see if the name chosen is
already there (don't allow user to choose a duplicate name).

Here is a program piece that will check the name for you.
Before you begin to type this program, type NEW. This program
is compatible with RENAME.LST, but can stand alone as a name-
checking demo if you wish to try it that way first.

Z2 RFEM FPATCH FOR CHECKIMNG BEFORE
FREMAMING A& FILE IF NEUNAME ALREADY

THERE!

2 REM Z ROUTIMES - OME TO SQUEEZE AN
INPUT STRING

d REW OTHER TO LUOOF THRU THE DIRELTORY
TO ZEE IF THAT MWAME 1% THERE

T OCGRAFPHICE @:PRINT "SPFECIFY & FILEMAME
STRINGT

82

ADVANCED ATARI BASIC TUTORIAL

3869
311@
3200
4a@9

4e10
4@29
403@

4a31

4@35

de4a
4950
4@G6@

407
49080
4999
4109

4302

431
4311

S0
o210
SOZe
3021
S@3e

END

END

FRINT "ERROR MUMBER "iIPEEK(1895)
REM REFORMAT USER STRING TO
EXACTLY MATCH THE DIRECTORY ENTRY,

SQ¢=" “:REM 11 BLANKS
FOR I=1 TC LEN{INS%)
IF IN$(I+I)="," OR IN${I,I)=" *

THEN GOTO 406

REM FORM THE FILENAME STRING PART
+ TERMINATE IF BLANK OR PERIODD
FOUND

IF I»8 THEN GOTO 4@B®:REM MAX B
CHARACTERS TO FILENAME,
FILE$(I I =INS(I+I)

MEXT I

REM NOMW SEE IF THERE 15 AN
EXTENSION PART (SOMETHING AFTER A
PERIOD)

FOR I=1 TO LEN{INS$)

IF IN$(IsI)="," THEN 4700
NEXT I
EXT$=" ":GOTO 43@2:REM IF NO

PERIOD THEN NO EXTENSION ON NAME
IF (I+1)>LEN(IN$) THEN GOTO 43¢0
AT$=IN&{(I+1):REM LAST PART OF
USER NAME MUST BE EXTENSION PART
S0%(3)=FILE$:REM FORM FIRST PART

OF NaME

S0 (11)=EXMT$:REM ADD EXTENSION
REM NOW USER NAME MATCHES
DIRECTORY ENTRY FORM: 50 CAN SEE
IF IT IS5 ALREADY THERE!

OPEN #2,B:0+"Dy®,*"

TRAFP GO@@:REM TRAP END OF FILE
INPUT #2,DIRS%

REM SHORTEM DIR$ TO 11 CHARACTERS
DIR$(1I3)=DIR$(13,13}

MORE SUGGESTIONS ABOUT DISK OPERATIONS 83

@31 REM SHORTEN DIR$ TO 13 CHARRACTERS

S¢4e IF S504%=DIR% THEN SS0@:REM TELL
USER FILENAME IS ALREADY THERE!

SS9 GOTO S5@Z2@:REM KEEP TRYING TILL END
OF FILE ON DIRECTORY

350@ PRINT "MNAME IS5 ALREADY THERE
CHOOSE ANOTHER!":GOTD 3Z0E2

B@eo PRINT "NAME YOU CHOSE IS OkK®

B@s@ TRAP 3202

Biog GOTO 3ti¢

If you RUN this program, you wili see that if you choose a name
such as:

FILE.EXT

it will search the directory of disk #1 to see if it is already there.
If the name you choose is not there, it says that this name is OK
to use for renaming an existing file.

(As a side note, this program can be used on its own, just to
question the computer "does this disk contain a file by this
name?")

To combine both programs, type:

ENTER "D.RENAME.LST" EISNVEIVE
ze
<l RETURN |
2105 IN$ = NEUNAMEZ:G0TO 4000

then
SAUE "D:REHMAMEIT™
As a test, type:
ME W
then

12 GR.@
2@ PRINT "I WAS REMAMED!"

then

84 ADVANCED ATARI BASIC TUTORIAL

S5AVE "D.BADNAME®"
then

RUN "D:RENAMEIT"
Answer the questions:

1
BADNAME
GOODNAME

then
RUN "D:GO0ODNAME™"

to see the results.
Here is a completed listing of the combined program so that
you can check your work if there were any problems.

1 REM STAND-ALONE RENAME PROGRAM
2 REM PATCH FOR CHECKING BEFORE
RENAMING A FILE IF NEUNAME ALREADY
THERE ! _
3 REM Z ROUTINES - ONE TO SQUEEZE AN
INPUT STRING
4 REM OTHER TO LOOP THRU THE DIRECTORY
TO SEE IF THAT NAME IS THERE
5 GRAPHICS @:PRINT “SPECIFY A FILENAME
STRING"
19 DIM IN$(2@),FILE$(8) EXT$(3) .
DIRE(Z2Q) +S0%(2@)
3005 GRAPHICS @:REM CLEAR SCREEN
3010 PRINT "RENAME PROGRAM":PRINT
:PRINT
3015 DIM Z$(1):0LDNAME$(12) ,
NEUNAME$ (12) ,RNAMES (40)
302@ PRINT “"SPECIFY DRIVE NUMBER AND
FILENAME™"
3030 POSITION 2.6
304¢ PRINT "DRIVE NUMBER (1 OR 2)"
305@ INPUT DRY

MORE SUGGESTIONS ABOUT DISK OPERATIONS

3255

3060
3062
3064
3866
3268
3270
3875

3878
308@
309@
3100

3185
3Ji1@

31:Z@
3i2s
313e
314e
3200
4a0@
4210
4020
4@30

4931

4@33

q04@
4050

IF DRY:Z OR DRV<1 THEN PRINT
CHR&(253):GOT0 3030

POSITION Z2+8:PRINT "OLDNAME:"
RNAME$="D"

RNAME® (Z2)=CHR$ (ASC("@")+DRWV)

RMAME#(3)="z"

REM FORM THE EQUIY OF D1: OR D2:

INPUT OLDNAMES

IF LEN(DLDNAME$)=@ THEN PRINT
CHR%(253):GO0TC 306¢

RNAME$ (4)=0LDNAMES$

POSITION Z+1@:PRINT "NEWNAME:"
INPUT NEUNAME®$

IF LEN(NEUNAME$)=@ THEN PRINT
CHR#(253):G0T0 306e@
IN$=NEUNAME$:GOTO 4@09
ND=LEN(RNAME$)+1:REM SAVE SOME
WRITING LATER

RNAME$ (ND)Y=" " :RNAME$ (ND+1) =
NEUNAMES$

REM FINISHED, FORMING THE
INSTRUCTION STRING: DO IT

IO 3287 :9,0 RNAMES

END

PRINT "ERROR NUMBER "SPEEK{195)
REM REFORMAT USER STRING TO

85

EXACTLY MATCH THE DIRECTORY ENTRY.

50%=" ":REM 11 BLANKS
FOR I=1 TO LENCINS)
IF IN$(I,I)="," OR IN$(I,I)=" "

THEN GOTO 406¢@

REM FORM THE FILENAME STRING PART

+ TERMINATE IF BLANK OR PERIOD
FOUND

IF I:8 THEN GOTO 40B0:REM MAX 8
CHARACTERS TO FILEMAME.
FILES(I»I)=IN$(I,I)

NEXT I

86 ADVANCED ATARI BASIC TUTORIAL

4069

4079
4980
429@
4100

azee
4z10

4300

REM NOW SEE IF THERE I8 AN
EXTENSION PART (SOMETHING &FTER A
PERIOD:

FOR I=1 TO LEN{INS)

IF IN$(I.:I)="," THEN 4200
NEXT I
EXTs=" ":GOTO 4300:REM IF NOD

PERIOD s THEN NO EXTENSION 0ON NAME
IF (I+1):LENCIN$} THEN GOTO 4300
EAT$=IN®(I+1):REM LAST PART OF
USER NAME MUST BE EXTENSION PART
S0%(3)=FILE$:REM FORM FIRST PART
OF NAME

431¢@ SO%{11)=EXT$:REM ADD EXTENSION

4311 REM NOW USER NAME MATCHES
DIRECTORY ENTRY FORM, S0 CAN SEE
IF IT IS8 ALREADY THERE!

S0Q@ OPEN #Z2,G+@ "D, %"

S@¢1@ TRAP G@@@:REM TRAP END 0OF FILE

SR2¢ INPUT #2,DIR%

@21 REM SHORTEN DIR$ 7O 11 CHARACTERS

3030 DIR$(13)=DIRE(13,13)

5231 REM SHORTEN DIR$ TO 13 CHARACTERS

S@ede IF SO%=DIR$ THEN SS@Q:REM TELL
USER FILEMAME IS ALREADY THERE!

5050 GOTO SQZ0:REM KEEP TRYING TILL END
OF FILE ON DIRECTORY

500@ PRINT "NAME IS ALREADY THERE,
CHOOSE ANOTHER!“:GOTO 208

Goe® PRINT "NAME Y0OU CHODSE IS5 OK®

E25@ TRAP 3Z¢¢

Bled GOTO 31i¢

NOTE AND POINT

There are two other functions which are associated with the
disk system. These are named NOTE and POINT. They are as-
sociated with what are called random access files.

MORE SUGGESTIONS ABOUT DISK OPERATIONS 87

Only sequential access files have been discussed thus far in
this book. A sequential access file is one in which the data is
organized sequentially, one data item after the other. This is much
like a film strip, where it is not possible to view any single frame
until all preceding frames have been pulled through the slide
viewer ahead of the one you wish to see.

instead of a sequential organization, a random access file lets
you go directly to any one data record without ever making a
specific effort to bypass all the rest. This may be compared to an
LP record, where all of the tracks on the record are visible. Once
you have determined which “cut” you want to hear, you can move
the needle directly to that cut without moving it through the others
one at a time.

The examples just shown are very much the same as the data
access used in the ATARI system.

Imagine all of the data on the cassette tape as a connected set
of data strings attached to each other end to end. It is literally
impossible to read these items in a random access mode, since
each must pass across the playback head one record at a time
before the next one can be reached. Therefore, accessing data
records at random might mean reading many of them, then re-
winding to get ready for the next read, and so forth. This would
be very time consuming.

The ATARI disk system, on the other hand, has a moving head
much like the needle on a record player. It can be moved directly
to a particular spot on the disk and may be told to begin reading
a particular item directly.

When a file is written, it is often written initially in a sequential
manner. In other words, data items or groups of items form “rec-
ords” within the disk file. In order to examine an individual record,
you would like to have a choice of whether to read each record
to see if it is the one you really want, or to have some way to
speed up the data access by the random access method, in-
stead. In the second case, you could go directly to the item in
which you are interested.

ATARI DOS, as it writes the disk files, keeps a set of pointers
internally which keeps track of where the next data item should
be placed within the file. This pointer is accessible to the ATARI
BASIC user with the NOTE command. Essentially, the NOTE com-

88 ADVANCED ATARI BASIC TUTORIAL

mand allows you to “make a NOTE of where the data item was
placed.” A complete set of NOTES about a file could serve as an
index to the file. By looking up a data item in this index, one might
POINT directly to the data item which is desired and therefore
retrieve the data directly.

The NOTE command allows you to save the current location
data pointers, and the POINT command takes whatever values
you provide and replaces them in the current pointer, just the
reverse of the NOTE command.

Using this kind of operation is one of the ways in which the
programs called Data Base Managers can speed up their data
access.

Take, for example, a file consisting of 300 lines of 120 charac-
ters each. If you would ask ATARI BASIC to read line 280, and
you used the following approach, it would really take a long time:

4209 DIM Ax(120)

40ez M = Zge¢

4205 OPEN#1+4.,2:"D:RAW.DTA"

421¢ FOR N = 1 TO M-1

420 INPUT#1IRECHNBR

4223 PRINT RECNBR

4038 NEWT N

4ed4@ PRINT "FINALLY FOUND RECORD # "M

4259 IMPUT#=13iRECNBRIAS

4251 REM START THE STATEMENT WHICH WILL
PROCESE THAT RECORD.

4852 REM REST OF LOOP MAS A& SEQUENTIAL
SEARCH

4853 REM UNTIL IT COUNTED OFF ENOUGH
RECORDS,

4@ CLOSE =1

4¢7¢ IF M = Z8@ THEN M = Z@@:50T0 4685

4@38¢ END

4294 RFEM SE 5 FOR ONLY TWO RECORDS

S MTIAL MAMNER.

You will notice that even the do-nothing loop of
FOR C = 1 70 30@:MEXT O

MORE SUGGESTIONS ABOUT DISK OPERATIONS 89

takes some time to execute. Therefore, something that includes
disk access on top of this must really take some time. If you had
some way to go directly to the record number you wanted to get,
though, the speed improvement would be simply dramatic. Here
is how it can be done.

The plan of action here will be to create another file to go along
with the data file, as it is created. Then, any time fast access to
individual parts of the file is needed, this companion index file
can be used to provide the data needed by DOS to get directly
to the desired record.

To prevent a lot of retyping, you may use a program which was
developed for Chapter 3 (MAKERAW.LST) as a basis for this
demonstration. Or, you may simply use the parts here as a stand-
alone demonstration of the power of the NOTE and POINT com-
mands. The line numbers have been arranged to be compatible
with either approach.

If you want to use this program separately, type NEW, then
type in all of the lines shown in the next listing.

If you want to make it into the more useful program, then simply
add lines 32, 205, and 215 to your MAKERAW.LST program from
Chapter 3. This will build an index file, which you can use to
rapidly go to any one of the data records in your file using a
technique similar to that in the data readback program shown
later in this section.

You can add these lines to a version of MAKERAW.LST which
you have LISTed to the disk. If you have the program and have
SAVEd it instead, then LOAD the program before you add the
program lines mentioned previously. If it was LISTed to the disk,
you may ENTER it before or after you type these other lines.

Here is the stand-alone program. The lines which can be
added to MAKERAW.LST are shown first, for your convenience:

00 3 L)

The following lines, if used exclusively with lines 32, 205, and
215, make this a 10@-line program which can demonstrate the
difference between sequential and random access:

90 ADVANCED ATARI BASIC TUTORIAL

3@ OPEN#2,:8:0."D:RAW.DTA"

49 FOR N = 1 TO 300

5@ RECND = N

25 PRINT N

B@ PRINT#ZIRECNO:", IN THIS SEQ FILE,
THIS IS5 RECORD # "3RECNO

220 NEXT N

Z3@ CLOSE#1:CLOSE#Z:CLOSE#3:END

Once this program has been RUN (assuming you have done it
as a stand-alone version), you will have created a file called
RAW.DTA which you can use for the search demonstrations. First,
type in and RUN the program shown above.

Next, if you have not previously entered the sequential search
program sample shown earlier (lines 4000-4090 on page 88),
add it now to the RAW.DTA program you have just RUN. You can
then RUN the sequential search sample by typing GOTO 4000.
Do this now and notice how long it takes to RUN.

Now type NEW, then type in the following search version, in-
stead. RUN it and see how long it takes to find and retrieve
records for comparison. This version randomly retrieves 10 rec-
ords, whereas the original version sequentially searches for only
two:

3 REM FASTSRCH.DMD
» REM NEW VERSION OF RECORD SEARCH

15 REM USES THE INDEX FILE

2@ DIM SS(3@@)DD(3Q2)A%(120) :RENM
ALLOW FOR 2@¢ RECORDS

3@ OPEN#1,4.@,:"D:INDEXFIL.DTA"

49 OPENM#Z 4 ,8,"D:RAKW.DTA"

o@ TRAP 1@@:REM ASSUME ONLY END OF FILE

ERROR

o2 GR.2:PRINT:PFRINT “READING INDEX
FILE®

E@ FOR M = 1 70O 3¢@

79 INPUT#1.,8,D

B@ SE(N) = S:DD(N) = D:NEHT N

29¢ FOR PASS = 1 TO 10

MORE SUGGESTIONS ABOUT DISK OPERATIONS 91

8% REM READ 1¢ WIDELY SEPARATED RECORDS
1@ TIMES EACH

leg FOR M = 1 7O 1@

112 READ REL

12¢ POINT#Z,SS{(REC) :ODD(RED)

128 INPUT®Z :RECNO A%

14¢ PRINT A%

132 MNEXT M

152 RESTORE

178 NEXT PASS

212 CLOZBE#1:CLOSE#Z:END

S0 DATA Z78,132,3412¢ .45 108,295,

221876

As you can see if you tried this, there is a wide difference in
the speed. It may have taken some time to read in the index file
in the first place. But, once that data is in place, the disk system
can be told exactly where each file is located.

POSSIBLE USE FOR AN INDEXED DATA FILE

You may have seen various programs on the market called
Data Base Managers. These programs simply provide some
easy way to save and recall data which the user has typed in or
entered some other way.

Now that you know how quickly an indexed data segment can
be found, let's try to imagine how this can be applied to the
saving and finding of data.

A complete program will not be generated here; however, you
will see various pieces that you might find helpful along the way
to developing your own program. Notice that this is not neces-
sarily the most efficient way of doing things, but it does demon-
strate data retrieval.

To begin this project, you will have to decide what kind of
information you want to save and retrieve. ATARI BASIC allows
records to be up to 255 characters long, so you should choose
something less than this as your maximum-data-per-record. if
you discover that you need more space than this for any single

92 ADVANCED ATARI BASIC TUTORIAL

“set” of information, you should reserve more than one record for
the data for each set.

Let's look at a possible application. How about a student list,
to be maintained by a school? Each record may contain some of
the following kinds of data:

Student Last Name: 16 characters max.

Student First Name: 12 characters

Address: 30 characters max.

Phone Number: 10 numbers (area code-3, number-7)
Student ID: 10 characters

Parent's Name: 30 characters

and so forth.

By writing a list of all of the information you will need to work
with, you will be able to plan how much space will be needed to
save it.

The most important thing to consider, however, is that there
must be some way to retrieve the data quickly and properly. Here
is one way this might be done. Look again at the list of the data
items. If they are somehow all composed of characters, you can
imagine taking each one of them and putting it together with
others into one long string, as:

« last (16) — « first (12) - < addr (30) — etc.

After the data has been placed into a long string, that string
can be written to the disk as a single record. This is just like the
sentence which was used as the record in the example just
shown.

There are many different ways that the data could be installed
into the string. This section will first deal with the most obvious
way of storing the data, then will look at other ways which might
save some space on the disk and some time as well.

Notice in the list of items which you might want to store, that
each item shows a maximum number of characters which will be
in a particular field. (A field is one of the possible entries in the
string being built.)

If you enter less than the maximum number of characters,
something must be done to the output file to assure that the

MORE SUGGESTIONS ABOUT DISK OPERATIONS 93

computer will be able to recognize the address, the file ID, or any
other field. To allow the computer to separate the data later, you
must place the data in the precise place each time.

The following diagram iltustrates this:

User enters:
Last name—dJohnston
First name—Dick
Address—unknown (so user just entered a key)
Other fields (unknown),

When trying to place this data into an output record, you will want
to put it in the correct order and correct position so that the
computer can read it later.

First, let's assume that before each data record is entered, the
output record is started, using a full line of blank spaces, and
assume that the maximum size of an output record will be 100
characters:

Again, please note that a complete program is NOT being
developed here, but you will be able to use these pieces to
develop your own data tracker.

1@ DIM OUTREC#(10B) ,BLANKS$(9)

11 BLANKS$ = =* ":REM 8 BLANKS

3002 FOR N = 1 TO 89 STEF 9:REM 108
BLANKS

321Q@ OQUTRECS(N) = BLANK$:NEXT N

3029 REM FILL DUTPUT STRING WITH BLANKS

Now, assuming that the data was entered as mentioned, here
is one way it can be put into that output string:

29000 DATA 16:12.:3@+10,10,3¢0

Line 29000 is a data string representing the number of char-
acters in each of the data fields (last name, first name), limited to
only the data fields mentioned in the student list suggestion
previously.

12 DIM START(GE}: +LONG(B) ;CHLAST(B)

saves space for an array of numbers, shown in the start position
of each of the output characters. The array also shows the posi-

94 ADVANCED ATARI BASIC TUTORIAL

tions from which the input data will be taken when the records
are read back again. Line 12 holds the starting character, length
of the string, and ending character.

12 CHPOS = 1:5TART OW FIRST CHARACTER
Z¢ FOR N = 1 TO B

2% STARTI(NY = CHPOS:REM START POSITION
FOR FIELD

26 READ X:REM GET FIELD SIFE

27 LONGON) = X:REM SAVE IM THE LENGTH
ARRAY

28 CHFOS = N+X:REM NEXT POSITION IS
START+LENGTH

29 CHLAST{(N) = CHPOS-1:REM LAST
CHARACTER AT ONE LEES THAM FIRST OF
NEXT FIELD

3@ NEXT N:REM SET UP ALL POINTERES

With this kind of loop, you will have taken the original data list,
showing the number of characters in each kind of data field, and
converted it to a set of pointers, stored away conveniently in an
array. In the example you are working with currently, it converts
the numbers:

16 (first field)
12 (second field)
30 (third field)

and so on, into a list of:

START(1) = 1, LONG(1) = 16, CHLAST(1) = 16
START(2) = 17, LONG(2) = 12, CHLAST(2) = 28
START(3) = 29, LONG(3) = 30, CHLAST(3) = 58

and so on.

Why is this needed? Well, if you want to put data away in a long
string, you will need to know for sure where in that string a partic-
ular piece of data starts, and where it ends. This is the only way
you can be sure that you are getting back what you put there in
the first place.

Let's say that you want to read the address part of the record,

MORE SUGGESTIONS ABOUT DISK OPERATIONS 95

which is now part of a string called INREC$. Assume that both
INREC$ and OUTRECS are the same length. Assume, also, that
you have always been using OUTRECS to build up a string for
output as a record, then use INREC$ as the place into which
OUTRECS is read later.

Here, then, is a possible definition for INREC$:
5 DIM INREC®(128)

Now, to read the address portion of the record, you will want to
be sure it can always be found in the same place in the incoming
data record. This allows the computer to recognize it as an
address.

To read that address, you would want to say:

E@@@ IMPUT#1,INRECS
E40@ ADDRESS$ = INREC$(29,58)

Because you have defined that the first 28 characters of the
record take up the last and first name, the address here is tak-
ing up characters 29 through 58. (This example assumes that
you have used a DIiM statement to reserve 30 spaces for
ADDRESSS).

But, what if you really wanted to generalize the program, and
instead of ADDRESSS, you just wanted to call whatever you were
reading as FIELD$?

Example:
Gda@ FIELD$ = INREC$(Z9.58)

This does not do too much as far as generalizing things. A more
general-purpose routine would allow many different kinds of
fields to be processed, using the same series of statements. The
preceding example is only good for the address field, since it
points only to that part of the incoming record!

Here is a more general-purpose statement, based on the array
of START, CHLAST. It lets us define a set of processing state-
ments just once. Then if you want to define other kinds of data
handler programs, you will only have to put in a new DATA state-

96 ADVANCED ATARI BASIC TUTORIAL

ment, and change the number of fields and the size of the output
record. Many of the other routines can remain the same since
they will use the calculated data positions rather than ones which
might have been hard-encoded (in other words, embedded
throughout the program).

Better Example:

Gd9e FIELD% = INREC$(START(FIELDNUM) .
CHLAST(FIELDNUM)}

This line can now be used with any number of different fields,
as long as the DIM statement for FIELDS is at least as large as
the largest field which it will expect to read.

Assuming that the variable FIELDNUM contains a value of 3,
then the results of the evaluation of START(3) and CHLAST(3) are
29 and 58, respectively. This gives the same result and accesses
the address section of the input string.

Now that you have seen that retrieving the data when it is input
again requires that the user be sure where it is in the input field,
let's look at how to assure it will go to the correct field as the
output file is being built.

Here is a possible sequence which assumes that you have
already grabbed the data from the user. This is written as a sub-
routine which assumes that the variable INNUM contains the
number of the input variable, and that INDATAS$ contains the data
itself.

Example:
1Zedd IF LENMIINDATA®) = & THEH RETURHN
1Z2@@1 REM DON'T TRY 70O PUT GHAY
CTHMOTHING®
1Z2e92 REM JUST LEAVE THE BLARNES IN THE
OUTRECE® IN THAT POSITION
1212 IF LEMOINDATA®:Y J= LOMGOIMMUM:

THEM 1Z223&

12811 FEM SEE IF INPUT STRIMG WILL FIT
INTO THE SPACE PROVIDED

L2@15 CUT = LONGOTIHRNUM?

MORE SUGGESTIONS ABOUT DISK OPERATIONS 97

12@2¢ INDATAS(CUT .CUT) =
INDATAEICUT »CUT)

12¢21 REM IF WO CUT THE IMPUT STRING
DOWN TO THE MAX SIZE

12030 OQUTREC$(STARTOINMUMY Y =
INDATA$:RETURN

12821 REM PUT INCOMING SINGLE DATA ITEM
INTO OUTFUT STRING

12822 REM IN THE RIGHT FOSITION

12033 REM RETURNS CONTROL TO THE
CALLING ROUTINE.

Notice that CUT was only applied to any input data string which
was greater in length than can fit into the field space which was
saved for that field.

Why? If you use the string INDATAS each time you call this
subroutine, then the whole area reserved for INDATAS will contain
pieces of the previous string as well as the current contents, as
the following example shows:

first time—INDATAS$ = 114 COMPUTER ROAD
next time—INDATA$ = 1024 PERSONALITY CIRCLE
this time—INDATA$ = P.O. Box 62

where, the last time, the LEN(INDATAS$) = 12. Since this is much
less than the total size of the field {(30) which is to hold the data,
you must NOT stretch the size of the incoming data out, which
means you should skip line 12020. This is because the area
which has been reserved for INDATAS, unless you have specifi-
cally cleared it to blanks before you put the data there, will stil
contain leftovers (garbage) from the prior times that this string
area has been used.
It will, from the example, actually contain:

P.O. BOX 62 ROADCIRCLE (maybe more characters)

Therefore, if you do execute the CUT line, it will extend the size
of the input line, rather than to cut it down! This results in the
garbage, which you don't want to put away.

For any data item which is shorter than the space reserved for

98 ADVANCED ATARI BASIC TUTORIAL

it, the blanks which you have placed into OUTRECS will stay put.
They only get written over when part of a line you wish to save
replaces them.

Notice also that this technique left-justifies the input data. That
is, it puts it with its first (leftmost) character as the leftmost char-
acter in the data field. This is very important when you are trying
to compare two different pieces of string data to see if they are
equal or different. This will be shown in the next chapter, “An
Introduction to Sorting.”

Thus far, this chapter has covered ways of putting away data
strings, building an index file which shows where each of the
strings starts, and retrieving the data using the index file. As a
final note to this chapter, you might like to see some ways you
can present your data requests to the user.

Note that the techniques and sample programs for this pur-
pose have already been covered in the ATARI BASIC Tutorial, in
the chapter titled “Menu Please.” However, here I'll try to suggest
a couple of the ways you might go about asking the user for the
data.

One of the things you will want to do is show the user how
many characters will be accepted into a particular space. This is
used if it is your input processing routine which will limit the user’s
ability to enter more than you are asking for. As an example, you
might produce the following line, either as part of a menu, or as
part of a single data entry line, written each time this item is to be
input:

LAST NAME:

o e m e e .

This illustration assumes that you are presenting the data ques-
tion on one line, and accepting the answer on the next line. The
hyphens in the second line tell the user what is the maximum
number of characters which will be accepted as a reply. The “?”
is just a representation to show you where you would POSITION
your cursor in the line to show the user that this is where the input
data must fit.

There are two reasons that a programmer might want to put the
question (LAST NAME:) and the response line (---) on separate

MORE SUGGESTIONS ABOUT DISK OPERATIONS 99

lines. One reason is that the programmer might want to use the
capabilities of the ATARI Screen Editor for the input. This does
give control of the machine to the user until the key is
pressed, but it also builds in the capability to use the backspace
and tab functions in the data entry.

The second reason is related to the first. If you do use the
Screen Editor, and put the question and the response line on one
common line, then when the user hits return, he will enter as a
string everything on that logical line, not just the response. You
will then have to get rid of not only the extra hyphens, but also
the question part, before you have the real string which repre-
sents the data item you want to save.

Example string returned, if question formed as:

LAST NAME: Peeme e

by the set of statements:

299 POSITION Z+19:PRINT:PRINT:
PRINT:PRINT

293 POSITION Z2.18

30¢ PRINT "LAST MNAME: ---c-emeeeoo o "

312 POSITION 13:+132:INPUT INMNDATAZ

If the user inputs JOHNSTON, then INDATAS$ will contain:
LAST MAME: JOHNSTON--------

and you will have to strip off the first 10 characters and the last
8, more or less . . . You will have to search and compare to see
which of the letters is NOT a hyphen and keep all that are
acceptable.

A better way is to really keep control over how the user enters
data. In the preceding examples, the user could enter all kinds
of control characters (cursor moves), or graphics characters, and
so on, before pressing ITANGIME The cursor might be on some
line of real junk somewhere on the screen, and your program,
using the Screen Editor for its input (using the INPUT statement
directly) would accept whatever string it was thus presented.

You can keep control by using the GET function for each of the
characters you input from the keyboard, such as:

100 ADVANCED ATARI BASIC TUTORIAL

1¢ OFPEM®1,4.@,"K"

11 REM OPEN AN IOCB JUST FOR THE
KEYBOARD

2@ GET#1:KEYM

21 REM READ A SINGLE KEYSTROKE.

An example program showing how you can keep control of
the keyboard during user input is shown on pages 173-175 of
the ATARI BASIC Tutorial. Basically, by reading each keystroke
individually and interpreting its meaning, you can count each
legitimate key, adding to the string. Or you can interpret the
key as a deletion/backspace within the out-
put string, and thus never have to lose control or throw away any
of the string after the user finally hits IIRINVGIM. This program is
essentially adaptable to a menu kind of a data gathering ap-
proach, because of the control it offers.

One final remark about this kind of data gathering. If you do
choose to produce a menu for the data input, you will be able to
use the same menu for later presentation of the data to the user,
since he or she will already be familiar with the form which was
used to input the data in the first place. When the user looks at
the form, searching for a particular item, he or she will already
know in which position on the screen this information should
appear.

You will see more about searching for items in the next chapter.

REVIEW OF CHAPTER 4

1. All of the ATARI DOS commands work either with a string
variable in the command or with the string spelled out.
As an example, you may say:

OPEN®Z,4.,8,"D: SOMENAME . BAG"
or you can say

OPEN#Z 4,0 +M%
where

ME="D:50MENAME . BAS"

MORE SUGGESTIONS ABOUT DISK OPERATIONS 101

This allows you to write a general-purpose program, and build
the strings as needed to work correctly with the disk system.

. To delete a file from ATARI BASIC, use the command:

AI0 33:#Z,0:0:FILENAMES

where #2 can be any of the IOCB numbers from 1 to 5, and
FILENAMES is the string description of the file name you wish
to delete.

. To rename a file from ATARI BASIC, use the command:

IO 3Z:8#7:0:0 :MAMESETS
where
NAMESET$ = "[D1:0LOMAMES sNEUNAMES"

Remember: Keywords can’t be used except in quotes as
part of a PRINT statement.

. To LOCK a file (prevent DOS from erasing it) or UNLOCK a

file (allow DOS to erase it), use the XIO commands 35 and 36,
respectively. They will have the form shown in item 2 above.

. Using the NOTE command, you can make note of where, in a

file, the current data will be placed. Then later, using the NOTE
information, you can use POINT to move the file pointer di-
rectly to this position, saving a lot of time which would be
required if only sequential searches were possible.

. You can use the DOS functions to build relatively short pro-

grams which can help you keep track of large amounts of
data, and present the data items in an easily understood man-
ner. This is often associated with what is called a "Data Base
Manager” program.

CHAPTER

An Introduction to Sorting

This chapter will show you how some of the data handling tech-
nigues you have learned here and in the first book can be made
more useful.

Chapter 4 introduced the idea of creating a data file out of
pieces of information which were obtained from the user, and
showed how an index file would be built using the NOTE com-
mand, and then used for fast data retrieval with the POINT com-
mand. This section will suggest ways in which large amounts of
data can be effectively searched or sorted to make that data
more useful to you.

To get to that point, the technigue of sorting must first be dis-
cussed. The sorting technique which will be used here is not the
most efficient one, but it is rather easy to understand. The goal of
the sorting will be to produce an index file which will aliow. you to
access rapidly the data in a much larger file. Therefore, | felt that
the speed of the sort routine itself was secondary to the goal of
speeding up the data access to a larger file.

You may find other books which will explain and implement
some of the more efficient sorting methods. Hopefully, you will
gather enough information from these ATARI BASIC tutorials to
be able to understand and use these other, more sophisticated,
programming techniques for your future programs.

102

AN INTRODUCTION TO SORTING 103

When considering sorting, it is usually best to start with a small
example. Then, the small example can be expanded to perform
a more useful function without increasing its complexity.

An example of something which you may wish to put into nu-
mericat order might be the following set of numbers:

19 3 24 6 12 9 1 15

You will see two different kinds of sort functions performed
here. One of them, called the bubble-sort, can be used when
there is very little memory which can be dedicated to the sorting
process. This kind of sort lets the smallest (or largest, if you wish)
item rise (similar to an air bubble in water) to the top of those
“heavier” (larger) items, with each next larger item below the
smaller one.

The second type of sort takes items one at a time out of a
group and builds a new list of all the items. If you time both, it is
possible that one may be faster than the other. It depends on the
initial order of the data, as you will see next.

THE BUBBLE SORT
Again, look at the list of numbers proposed earlier:
19 3 24 G 12 9 1 135

If they are to be put into ascending numerical order, one way is
to start at the head of the list and compare the first one to the
second one. If the first is larger than the second one, then you
would know that they are in the wrong position and should be
swapped.

Doing this the very first time results in the new list of numbers
(from here on I'll call it an ARRAY), in this form:

3 i9 24 & 12 g 1 13

The underlined sections of the preceding example and the next
will tell you which items were compared for that particular array
examination. Each shows the result of the comparison, so it will
be obvious whether or not a swap has taken place since the
preceding line, which shows the “old” array data.

104 ADVANCED ATARI BASIC TUTORIAL

Now, if you continue on down the array of numbers, making the
same comparison for each sequential pair, you will form the fol-
lowing set of entries as the count proceeds to the end of the
array:

319 Z4 B 12 9 1 1=
3 19 24 6 12 g 1 15
3 1% & z4 1F g 1 15
2 19 B 12 24 8 1 1=
3 19 B 12 g 24 1 5
3 13 B 1z 3 1 24 1S
3 19 B 1z 9 1 15 Zz4

As you can see, when all adjacent pairs of data items have
been compared one time, the highest numbered item has bub-
bled itself to the back of the list. At least one of the items is now
in the correct position.

However, before ending a sort, you must be sure that ALL of
the data items are where they belong. Let's see how this might
be done.

First, since the highest numbered item has already gone to the
bottom of the list, you will not have to look at it or handle it any
more. This means that there will be one item fewer to look at than
there was when you started. Also, it means that the second
“pass” through the array will be one step faster.

Let's look at a program piece which will perform that same
comparison and data swap which was shown previously:

NEW

19 DIM ARRAY (B)

2@ AREBIZE = B:REM DEFINE ARRAY ESIZFE

3@ FOR N = 1 TO ARSIZE

43 READ Q:ARRAYI(N) = D:NEXT N

41 REM READ THE DATA FROM THE DATA
STATEMENT

J22e@ DATA 18:3:2446:124+8:1 415

o0 FOR N = ARSIZE TO 2 STER -1

7@ FOR P = 1 TG HMN-1

80 IF ARRAY (P+1) = ARRAY(PF) THEN 120

B1 REM COMPARE TWO SEQUENTIAL NUMBERS
IMN THE ARRAY

AN INTRODUCTION TO SORTING 105

B2 REM IF GREATER NUMBER IS IN HIGHER

SPOT s EXIT
2¢ TEMP = ARRAY(P+1):REM USE TEMF a3 A
PLACE TO
91 REM HOLD ONE YALUE S0 CAN DO S5WAR 0K
1@¢ ARRAY(P+1} = ARRAY(P):REM FIRST

PART OF SHAP
11¢ ARRAY(P) = TEMP:REM COMPLETE THE

SWAP

111 REM OWLY USED ONE EXTRA SPACE
(TEMP}

1Z2¢ NEXT P:REM DO THE NEXT SEGQUENTIAL
PAIR

14¢ NEXT N:REM DO THE NEXT PASS FROM
THE START

Because there is an inner loop which gets smaller each pass,
it ignores the largest item which gets bubbled forward to the
current end each pass. When it has made all of its passes, it will
stop, with all items in the proper order. Here is the end of the
example, which prints the values in the correct order:

15@ GOSUB 1G@:END

16@¢ FOR 2 = 1 70 ARSIZE
17¢ PRINT ARRAY (233" "3
188 NEXT 2

8¢ PRINT:PRINT
200 RETURN

NOTE: Z is used to show that you can have multiple variables
within a program, but each variable must be part of its own
unigue loop.

Try the program if you wish. It will do all of the things you saw
in the “done-by-hand” set of listings which were shown earlier.

In fact, if you wish to see a progression showing how the pro-
gram did the operations, you may change line 120 to read:

12¢ GOSUB 1BQ:NEXT P:REM PRINT INTER-
STEP TOO

It will list the intermediate steps, as well as the final printout.

106 ADVANCED ATARI BASIC TUTORIAL

Now imagine a situation where you have 998 different numbers
in the array, and you add two numbers to the back of the array.
Also, let's say that when you added these two numbers to an
already numerically sorted array that they are higher than any
number previously in the array. Therefore, when you add them to
the array, at worst, it will require one pass to get them into the
proper order.

Well, in its present form, the program simply does not know
any better, and will assume that it must make 999 passes through
the array. That will take a lot of time when only one pass (or at
most 2) will be enough.

Therefore, you will have to make a small modification to the
program to assure that this waste of time does not happen.

Add the following lines to the program:

43 YES = 1:NO = 2

G@ ANYSWAP = NO

85 ANYSWAP = YES

132 IF ANYSWAP = NO THEN GOTO 135@

Line 45 defines the words YES and NO, so that the program
can internally document itself. Notice that this gives lines 60, 85,
and 130 some real meaning.

Line 60 is at the top of the full-pass loop (starts where the
compare of a complete array begins). This says ANYSWAP =
NO. This indicates that, at the top of the loop, no data items have
yet been swapped during this pass.

Line 85 says ANYSWAP = YES. Each time it goes through this
set of lines, it will repeat YES. It is an extra step, added to the
swap, but it does give us a way to test at the end of a loop
whether anything happened or not.

This way, when the program gets to line 130, if no swap takes
place during the first pass at 999 number pair combinations, then
it means that all of the numbers are already in order!

If there has been one or more swaps, then ANYSWAP will be
YES, and it will go back and scan the list again and again, until it
is really done with the reordering of the data.

This allows the bubble sort to exit when it knows it is finished,
rather than complete the loops and simply waste time.

AN INTRODUCTION TO SORTING 107

AN INSERTION SORT

The next form of sorting which will be shown here is a form of
an insertion sort. This indicates that you will be trying to do a
program which will take each data item and insert it into its proper
place in the array.

Let's continue to use the same data set as was used for the
bubble-sort:

3 1a 24 B 12] 1 1z

An insertion sort consists of looking at each item, one at a time,
and comparing its current position to that of all of the items pre-
vious to it in the array.

When you find a spot in which it will fit perfectly, with an item
less than this one to its left, and one item greater than this one to
its right, it will be in the right place and can be inserted.

Imagine a hand of playing cards. Fan the cards, such as the
preceding set, out in front of you. Now start with card number 2
(in this example, the number 19) and compare it to all of the
cards previous to it, one at a time. In this case, it is the number 3.
Three is less than this number, and among the numbers being
compared (3 and 19), it is currently in the correct sequence
(ascending).

Now look at the third card (24). Comparing it to the others that
came before it in the array, one at a time, it is greater than the last
item (19), so it should not be moved either.

Now look at the fourth card (6 in this case). Examine those in
the current sequence from the beginning. The new number is
greater than 3, so it does not belong ahead of it. It is less than
the next number (19). So, since we found a slot into which it can
fit (between 3 and 19), this is where it must be moved.

Now the array reads:

19 F4 19 1 1s

i)

)
I
I
o
I

The next item to be inserted is the fifth item (the 12). it too is
checked against the array of previous items;
12

108 ADVANCED ATARI BASIC TUTORIAL

It now shows where the insertion would occur in this sequence.

Each of the items in the array is “picked up” and inserted into
the array. Once the final item has been inserted, the sort is done.

At first glance, this would appear to require fewer data moves
than the bubble sort. However, if the memory space is somewhat
tight (not much space available), you may need to sort the data
where it sits, as in the bubble sort. The following example shows
how this may require quite a few data moves anyway.

Let's look at the insert of the fourth item (the 6) into the array,
just to see the sequence which is needed for this one item:

3 18 24 G
L the 6 belongs here.

So, if we don't have much memory to work with, we can
move the 6 into a temporary location

TEMP = ARRAY (43
This makes the array look like this:
3 19 24 {emPrty s5lot) 2 9 ete,

We have identified that the 6 belongs in slot number 2, so
now we have 1o move some data to make room for it.

3 18 eEmetLy =24 12 9 etec,
Move the 24 into the empty slot.

3 empPL Y 18 24 12 9 eto.
Move the 19 into the slot vacated by the 24,

3 & 18 284y eto.,

Move the 6 from TEMP into the slot where it belongs.

Essentially, as each item is being examined, if it is not in the
slot where it belongs, then move it out of that slot, making some
room in the array to use for shifting everything else around. This
seems to make an empty slot which is continuously shifted down

AN INTRODUCTION TO SORTING 109

the array until it is in the right spot to make room for the item
which belongs there.

Let's see how this translates into a BASIC program. Some of
the same program lines from the BUBBLESORT program will
be repeated here, to save you some typing. These lines are
identical:

1¢ DIM ARRAY(B)
2@ ARBIZE = B:REM DEFINE ARRAY SIZE
3@ FOR W = 1 TO ARSIZE

42 READ W:ARRAY(N) = Q:NEXT N
41 READ THE DATA FROM THE DATA
STATEMENT

15@ GOSUB 1B@:END

16@ FOR 2 = 1 TO ARSIZE

170 PRINT ARRAY (Z)i" "3

188 NEXT Z

199 PRINT:PRINT

2@0 RETURN

30022 DATA 19:332446+12:8+1 415

And these lines comprise the INSERTION SORT:

3@ FOR N = E TO ARSIZE STEP |

79 FOR P 1 7O N-1

82 IF ARRAY(N) > ARRAY(P) THEN 120

Bl REM COMPARE CURRENT ITEM TO ALL
ITEMS AHEAD OF

BZ REM IT WITHIN THE CURRENT ARRAY., IF

IT IS

83 REM GREATER THAN ALL OF THEM., IT IS
ALREADY

84 REM IM THE RIGHT SPOT AND NOTHING
MOVES

80 TEMP = ARRAY(N):REM USE TEMP A5 A
PLACE TO

91 REM HOLD ONE YALUE S0 CAN OPEN A
S5LOT FOR

892 REM MOWING THE REST OF THE ARRAY.

110 ADVANCED ATARI BASIC TUTORIAL

1¢¢ FOR R = N 70O P+1 STEP -1

125 ARRAY(R) = ARRAYI{R-1)INEXT R

186 REM MOUE ALL DATA FORWARD ONE STEP:

1@7 REM S5TOFP WHEN "EMPTY SLOT" WINDS UFP
IN

128 REM THE RIGHT PLACE.

11¢ ARRAY(P) = TEMP:REM AND INSERT THE
DATA

112 GOSUB 16@:REM PRINT INTERMEDIATE
RESULTS.

115 GOTO 14¢:REM GO FOR NEXT ITEM

12¢ NERT P:REM LOOK AT THE HMEXT
CHARACTER

148 NEXT M:REM DO THE NEXT ITEM

You may try either type of sort and see for yourself which one
would be more efficient in your own application.

ALPHABETIC SORTING

The previous sorting examples will work equally well for alpha-
betic as for numeric sorting. All that must be done is to change
the references to numbers into references to strings.

if you refer to the BUBBLESORT program, you can make the
following changes and do alphabetic sorts instead. To convert
the BUBBLESORT program so that it will handle strings instead
of numbers, the first step is to change the name of the ARRAY
into ARRAYS.

The second step is to make sure that the correct number of
spaces is reserved in the string as the string must hold totally
(number of characters per word times number of words). If you
want to sort 16 character strings, then the example needs a string
of 16 x 8 or 128 characters.

The next thing to be done is to provide additional arrays for the
start and end characters of each word. (Since all of the words
will be in a single long string, the program must have a way to
know where one ends and another begins.) For this purpose you
may use the number arrays START(8), and CHLAST(8) which
were introduced in the last chapter.

AN INTRODUCTION TO SORTING 111

The next listing is a rewrite of the BUBBLESORT program

adapted

for strings. The parts which are similar have been given

the same line numbers as used in the BUBBLESORT, so that you
can compare the new program to the old one.

The sections which are new are specifically made a separate
section so that they may be explained individually.

=

&

10
20

21

30
35
36
4@

41

az
45
5
GO
70
80

g1

DIM START(B) ;CHLAST(B):REM SAVE SPACE
FOR POINTERS

PINTER = 1:REM AY0ID KEYWORD POINT
SPELLING
FOR MM = 1 TO B
START{(MM) = RPINTER:CHLAST(MM) =
PINTER+15

PINTER = PINTER+1B:NEXT MM:REM SET
POINTERS FOR STRING STORE & COMPARE
DIM ARRAYS$(1ZB),0%(12),TEMP$(12)
ARSIZE = B:REM DEFINE ARRAY$ SIZE
REM SAME AS NUMBER EXAMPLE BUT
ADAPTED TO ARRAY AS A STRING

FOR N = 1 TO ARSIZE
ARRAYS(START(N)) = " "
REM START WITH ALL BLANKS (18)

READ U$:ARRAY$(START(N) sCHLAST(N)) =
Qs :NEXT N

REM READ THE DATA FROM THE DATA
STATEMENT

KEM LEFT-JUSTIFY THE DATA.

YES = 1:NO = @

FOR N = ARSIZE TO 2 STEP -1

ANYSWAP = NO

FOR P = 1 TO N-1

IF ARRAYS(START(P+1),,CHLAST(P+1))
ARRAYS(START(F) »CHLAST(P)) THEN 120
REM COMPARE TWO SEQUENTIAL STRINGS
IN THE ARRAY

REM IF GREATER STRING IS IN HIGHER
SPOT . EXIT

112

ADVANCED ATARI! BASIC TUTORIAL

3 ANYEWAP = YES

29¢ TEMP$ = ARRAY${STARTI(P+1):CHLAST
{(P+1)):REM USE TEMP$ AS A FLACE TO

891 REM HOLD ONE UALUE 50 CAN DO SWAP
0K

100 ARRAYS(STARTI(P+1)sCHLASTI(P+1)) =
ARRAYE(START(P)Y sCHLASTIF !

1¢1 REM FIRST PART OF SWAP

118 ARRAYS(START(P)Y .CHLAST(P}) = TEMP%

111 REM COMPLETE THE SHWAP

120 NEXT P

138 IF ANYSHWAP = NO THEM GOTO 135¢

142 NEXT N:REM DO THE NEXT PASS FROM
THE START

139 GOSUB 1G@:END

160 FOR N = 1 TO0 ARSIZE

170 PRINT ARRAYS(START(N) sCHLAST(N)?

180 NEXT N

19@ PRINT:PRINT

202 RETURN

302000 DATA UALUEIS.UALUES.,

VALUEZ4 »VALUEG
3010@ DATA VALUELIZ »WALUES . .VALUEL
YALUELS

The same number sequence which was used in all previous
examples is shown here. If you RUN this program, you will get
the following results:

VALUEL
VALUELZ
VALUELS
VALUELSD
VALUEZ4
VALUES
VALUER
YALUES

These VALUES are not at all what you might have expected,
are they? Well, take a closer look at these VALUES and you will

AN INTRODUCTION TO SORTING 113

see that the program really did put them in order the way it was
designed to do.

You see, when ATARI BASIC makes a comparison between
two strings, it looks at each character in the strings, including the
blank spaces. For example, the strings:

YALUEZd and WALUES

are actually composed of the following strings of ATASCII
characters:

VALUE24 is: ¢ A L u E Z
BE G5 76 BS 7@ S@
s

I

1]

VALUE3is: v A L U

86 B3 76 g% 70 351 Zg z¢ 2@ 2@

The values of 20 in the list represent the blank spaces which are
stored as a part of the string.

ATARI BASIC treats each character like a number in a specific
position when it is trying to compare if one string is larger than
another. It begins with the leftmost character and keeps going to
the right until it gets either to a point where the greater-than or
less-than status can be assured, or to the end of the string, if an
equal-to status is found. So, if you just look at the characters from
the “E” onwards, you can see that

VALUES 1s sreater than YALUEZ4
(7@ Tt 2@ F@ OS¢ Za)

so it must belong later in the alphabetic listing.

You can fix the problem of putting the value figures in numerical
order by specifying them with leading zeros. Notice that you will
need to use enough zeros to “fill” in the smallest number possi-
ble, either with blanks or the leading zeros (either one or the other
but not both) to assure that the rightmost digit of the number
parts are at the same character position. Such as:

VALUER@GRS
VALUETZ34E

instead of VALUE9 and VALUE12345, since this second kind
would not alphabetize in the way we want it to.

114 ADVANCED ATARI BASIC TUTORIAL

This is the reason you saw the caution note elsewhere in this
book about aligning the data words if you wish to do a sort. You
see, if you do the same kind of thing with purely alphabetic infor-
mation, and do not align them (left-justify the data), you will have
the same problem. An example is:

A B C

W T
A i i

| «<—— common start position in two different strings (that
is, XY Z has a leading blank space).

If you had accepted these two strings from the user and
wanted to alphabetize them, ATARI BASIC, literally, would find:

290 88 B9 9@ for XYZ
and
65 BB 67 Z@ for ABC

Since the value of 20 88 89 90 is less than the value of 65 66 67
20, ATARI BASIC would place the XYZ string ahead of ABC in an
alphabetic listing.

This is not desired, and can be corrected if you always keep
the string beginnings correctly aligned. You can imagine the dif-
ficulty in producing an index to a book from a list of titles. If an
alphabetic sort program is used and the writer of the list doesn'’t
keep the fields properly justified (or make other special provi-
sions), how will anyone ever be able to use the index properly?

CHAPTER

Sorting: the Next Logical Step

A goal of this book is to teach you all you would need to know to
build a simple, but useful data base manager program.
Looking back at the topics covered so far, you have seen:

* How to build and edit a sequential data file.

* How to read a sequential data file.

» How to build an index file to allow quick positioning of the file
to a selected record.

¢ How to sort data in numerical/alphabetical order.

The next logical step is to give you one more tool which will let
you combine the index file and the sort capability. This will let you
retrieve your original data in various different ways.

For example, let's use the student lisling data file, which was
the subject of earlier examples. If you build a sequential file using
this format, you may someday want to retrieve the data:

1. In alphabetical order by student last name.

2. In numerical order by zip code.

3. In numerical order, by first 3 digits of the phone number.
4. Any other form of data grouping specification.

When you are trying to retrieve data using only certain pieces
of a record, those pieces of the record are called keys. Once the

115

116 ADVANCED ATARI BASIC TUTORIAL

keys have been separately identified, they can be used with
the record pointers, to provide a quick way to re-order the data
access method without changing the order of the data in the disk
file itself.

In other words, once the sequential file is written, the data may
be taken from anywhere within the file by using the index and key
information. An example makes this clear:

Let’s say that there are many records in the student list file, and
assume that the file is to be displayed by the student name,
in alphabetical order. You will want to make up an index file
such as:

LASTNAME STARTS STARTB

JOHNSTON 141 3
SCHMICT 93 18
FLORBUSH 83 121
ABRAMSE 217 a
RENKD 52 84

In this case, the LASTNAMEs are exactly the names which
come out of the first part of each of the student list records on the
disk. The STARTS and STARTB columns stand for the starting
sector and byte position on the disk for that record from which
the name has been taken. Note that the values in STARTS and
STARTB are of no concern to you, other than the fact that you
must associate each with the record itself. Thus, if you want to
quickly read that record, those values will be used with a POINT
command on a file which has already been OPENed for a read.

We now come to a point where some time can be saved simply
by considering carefully the way in which data comparisons and
moves will be made.

For example, if you were going to compare 100 strings each
with 100 letters, it would probably take guite a long time if each
of the “swaps” were made using TEMPS$ as shown previously,
then moving the rest of the string pairs around.

There is an alternative to this, and this alternative is what will
be shown for developing index files for fast data access in such

SORTING: THE NEXT LOGICAL STEP 117

things as the student file. The alternative is to assign a WHERE
array for each one of the strings, as:

KEY-COMPONENT WHERE

JOHNETON 1
SCHMIDT 2
FLORBUSH 3
ABRAMS 4
RENKO 5

| have called it the WHERE array because initially it tells us
where, in a sequential list of the keys, the record is located. As
you will also soon see, it will tell us where the keys should be
found for each of the comparisons we will do.

In particular, when comparing strings, the WHERE array will be
examined to determine which of the string pieces within the KEY$
array will be compared. You will next see exactly how this will be
done.

Assume that you have already set up a long string called KEY$.
It must be long enough to hold all of the keys which you wish to
use for the sort. If, for example, you had 300 records, assume
that you want to sort the records based on the student's last
name.

First you must figure out how many characters of the last name
are the minimum you can get away with but still be assured that
a sort will result in a unique alphabetic list. Let's assume that this
minimum is 8 characters. (If you can get by on iess, use less . . .
the more characters used, the more time the program must take
for comparisons.)

If you need 8 characters, then the KEY$ array must be at least
2400 characters long. In addition, you will need two other arrays:
one for STARTS and one for STARTB. Each of these arrays will
be 300 numbers long, and will be used to hold the data found in
the index file (the data from the NOTE command). For purposes
of memory planning, each of the 600 locations reserved for
STARTB(N) and STARTS(N) uses 6 memory locations, so these
arrays use 3600 locations in all.

118 ADVANCED ATARI BASIC TUTORIAL

Therefore, it will take at least 8000 memory locations just to
hold the data which you want to sort. You should take this into
account when you plan your program.

There 15 at least one more set of memory locations which will
be needed to complete the setup for this key-sort technique. This
is the WHERE array. It will need 300 number array locations
(times 6 per number), or 1800 memory locations. Thus about
10,000 locations may be needed to allow a sort of 300 records,
using a single 8-character key.

But enough of the planning angle. Most of you have 48K sys-
tems. Even a 16K system, such as the ATAR! 400, will be able to
run a 30@-record sort and have some room to spare. Let's see
exactly how the sort will occur.

Using the previous example, with simply the names which are
already in the list, here is how they would be strung out end to
end in a single string. (Coincidentally, the names are all 8 char-
acters or less, so none will be shortened.)

JOHNSTONSCHMIDT FLORBUSHABRAMS RENKD

1 g i7 Z3 33 (contents of —
array START)

8 iG zd 3z 40(contents
of array
CHLAST)

The array called START is, of course, the one you have seen
before that always points to the starting character of a string
embedded into a larger string array. CHLAST always points to
the last character.

As you recall, any word number in the large array can be lo-
cated by looking up the position of the start letter in the START
array, and the last letter in CHLAST.

You may have wondered why there is not just one array, called
START, used for both purposes. After all, CHLAST array contents
are always just START(N) +WORDSIZE and this seems to be an
easy item to calculate each time. Such a word access might be:

GET WORD 4 (ABRAMS) ...
ANSWERS® = KEY$ (START (4) .,
START{(4)+HWORDSIZE)

SORTING: THE NEXT LOGICAL STEP 119

The reason that the separate CHLAST array is set up is that
any interpretive BASIC is somewhat slow, and it is faster to simply
look up CHLAST(4) than to calculate it as START(4) + WORDSIZE
each and every time. Since there will be many such references,
any amount of calculation time that may be saved will cut time
out of the whole process.

Once you have the pointer arrays START and CHLAST set up,
and the data read into the KEY$ array, you can begin to sort.

First, initialize the WHERE array, using a sequence like this one:

3@ FOR N = 1 TO 300:WHERE(N) = N:NEXT N

Line 300 makes WHERE(1) = 1, WHERE(2) = 2 .
WHERE(300) = 300.
Now here is the meat of the sorting technique. You will:

1. Take items sequentially, two at a time from the WHERE array.
These items are position numbers.

2. Compare the KEY$ pieces ***AT THOSE TWO POSITION
NUMBERS*** t0 each other.

3. Ifthe KEY$ item at the higher of the “selection numbers” is
greater, then do nothing. If the KEY$ item at the higher of
the two selection numbers is lower, then swap the numbers
"IN THE WHERE ARRAY*** (not in the KEY$ array)!!!

4. Treat the passes through these arrays-in-combination just
like a bubble sort, continuing the passes until no swap takes
place.

Before going on, two definitions are needed:

SELECTION NUMBER means the position within the WHERE array
from which the pointer data is being taken.

POSITION NUMBERS are the actual contents of the WHERE array
itself, which are the pointers to the records within the KEY$
array.

A complete alphabetization example will be shown later. Just
the names seen so far have been used, so that these items can
be clarified further.

Here, again, is the array. The left column shows the individually
isolated names which are embedded in KEY$, along with a col-
umn which shows how they are isolated.

120 ADVANCED ATARI BASIC TUTORIAL

Table 6-1. Complete Alphabetization Example

Current Content
P How Name Found Name of WHERE(N)
1 KEY$(ST(1),CL(1)) JOHNSTON 1
2 KEY$(ST(2),CL(2)) SCHMIDT 2
3 KEY$(ST(3),CL(3)) FLORBUSH 3
4 KEY$(ST(4),CL(4)) ABRAMS 4
5 KEY$(ST(5),CL(5)) RENKO 5

In Table 6-1, | have abbreviated START to ST, and CHLAST to
CL, just to make some room. In the program which shows the
complete technique, they are abbreviated in this same way. (It
could save you some typing.)

Now that you can see how the string data is accessed from the
long string, only columns 1, 3, and 4 will be shown for the rest of
the examples.

P, in Table 6-1, represents the normal sequence of positions
which will be searched, from beginning to end in each pass, until
it is known that the sort is completed.

In other words, when a pass of this sort is to take place, it
begins with the item at P = 1 being compared to the item now at
P = 2. Then the second step of a pass takes the item currently
at P = 2 and compares it to the item at P = 3, and so on. There
will, of course, be an ANYSWAP flag to tell us whether and when
we are done. In this case, the “item” to which we are referring is
the value at that location in the WHERE array, as you will see.

Table 6-2 shows the results of the sort after one complete pass
through the source data. The numbers in the rightmost column
represent the current ranking of the data keys after this first pass.

In the columns titled for first compare, second compare, and
so on, the chart shows which KEY$ original entry numbers are
being compared, and what is in those positions in the columns
shows the results of the comparisons.

All four comparisons will be explained here, just to be sure that
you will be able to follow what is happening.

For the first comparison, the contents of WHERE(1) and
WHERE(2) are retrieved. Each is a pointer to one of the keys in

SORTING: THE NEXT LOGICAL STEP

Table 6-2. Sort Results After One Complete Pass

121

Current After After After After |Ranking

Pl Name Value First | Second | Third Fourth Jfor Next
WHERE(N){Compare|Compare|Compare|Compare| Pass

1JJOHNSTON 1 1 1
2ISCHMIDT 2 2 3 3
3|FLORBUSH 3 2 4 4
4|ABRAMS 4 2 5 5
5|RENKO 5 2 2

the KEYS$. In this case, WHERE(1) points to JOHNSTON,
WHERE(2) points to SCHMIDT.

SCHMIDT is greater than JOHNSTON. Since the pointer to
SCHMIDT is at a higher “P-VALUE” (at WHERE(2)), than JOHN-
STON (pointer at WHERE(1)), nothing has to be done. This is
equivalent, in the bubble sort, to finding two items already in the
right place.

For the second comparison, the contents of WHERE(2) and
WHERE(3) are used. WHERE(2) now contains a 2, which points
to SCHMIDT. WHERE(3) currently contains a 3, which points to
FLORBUSH. Since SCHMIDT > FLORBUSH, swap the contents
of WHERE(2) with the contents of WHERE(3), as seen in the table
as the result.

The third compare takes the current contents of WHERE(3)
which is now 2 (points to SCHMIDT), and the current contents
of WHERE(4) which is 4 (points to ABRAMS). SCHMIDT >
ABRAMS, so swap the contents of WHERE(3) and WHERE(4).

The fourth comparison uses items 4 and 5 of the WHERE array.
The contents of WHERE(4) is 2 (from the above comparison and
swap), the contents of WHERE(5) is 5, points to RENKO.
SCHMIDT > RENKO, so swap the contents of WHERE(4) and
WHERE(5).

Ranking of the data going into the next complete pass is now:
13452

Notice that no string data has been moved at all, just numerical
data. Let's take a quick look at this present alphabetic ranking to
see how it is going:

122 ADVANCED ATARI BASIC TUTORIAL

JOHNSTON FLORBUSH ABRAMS RENKO SCHMIDT
1 3 4 5 2

If you refer to the BUBBLESORT routine, you will see that after

the first complete pass, the highest of the values will have been
pushed to the end of the number group.

Well, that is exactly what has happened here. The name
SCHMIDT has been pushed to the last position if you use the
WHERE array as the index into the original data sequence.

This technique of indexed referencing will be shown again after
the full sort has been completed.

Only two more full passes are required before the data will be
fully in order. These will be written horizontally, as in the first
sorting example, rather than vertically, to save room. Follow along
with the chart just presented so that you can see what names are
being compared, and why the results are as they are shown.

PASS 2
start position 1 3 4 5 2
3 1 4 5 2
3 4 1 5 2

PASS 3
start position 3 4 1 5 2
4 3 1 5 2

The lines below the numbers show the positions where both a
compare and a swap HAVE taken place. All of the steps with the
intermediate compare/no swap have been left out (example—
compare table entry 2 to entry 5 SCHMIDT > RENKO . . . already
in the right place in the table).

Now that the sort is complete, you will have built a new table
called WHERE. And each item in the array becomes the pointer
to the record number which you want to get from the file, as
though the records themselves had been swapped.

So the final ordering of the WHERE array says that to retrieve
the information for the first name (get info from pointer in
WHERE(1) points to record number 4, which contains ABRAMS).
All of the other record pointers are also in the correct order.

Now that the plans for the program have been shown, it is time

SORTING: THE NEXT LOGICAL STEP 123

to do the program itself. At the end of the program will be a set
of DATA statements which will simulate the sort. You may want to
try this using your own data file later.
As usual, a lot of commentary will be inserted between the
lines. Because of the comments, the REM statements will be
minimized within the program itself.

S DIM ETARTI(Z00) sCHLASTI(30a)

- Set up the arrays for the start and end characters.
1 DIM KEYV$(Z24@@) :WMHERE (30¢:

_ Set up the KEY string, and the WHERE string.
20 DIM STARTB{(300),,STARTS(30a)

Set up the arrays for holding the values from the NOTE com-
mand when the file was first built.

3¢ DImM CUT$(8»

Set up a string to cut the input length down to the maximum
number of characters expected by the sort.

10@ OPEN®#Z.,8,0,"D:DUMMY.DaATH
Set up a dummy file as an example.
11@ OPEN#3.,8,:@8,"D:DUMINDEX.DAT"

Open a dummy index file for the NOTE information about the
dummy data file.

128 DIM DUM$(108)

Use a dummy string for holding the data itself.
130 FOR N = 1 TO 10

This program only concerned with 10 records.
14@ NOTE®#Z:+5B

Find out where the data output file is now pointing. Make a note
of it for the dummy index file.

124 ADVANCED ATARI BASIC TUTORIAL

153¢ PRINT#3:S53","iB
Put away the dummy index entry.

135 READ DUM$
169 PRINT#33iDUMS$

Put away the dummy data entry also.
178 NEXT N
Do'the next entry.
180 CLOSE#Z2:CLOSE=3
Close both files on completion.

Z@oe® DATA JOHNSTON HAROLD MORE DATA ABOUT
Z0@1@ DATA SCHMIDT RALPH MORE DATA ABOUT
Z0Q20 DATA FLORBUSH TINA MORE DATA ABOUT

20030 DATA ABRAMS NIGEL MORE DATA ABOUT
20040 DATA RENKO DIANE MORE DATA ABOUT
20850 DATA ELLIS KENT MORE DATA ABOUT

20060 DATA UVINTON JULIE MORE DATA ABOUT
Z027¢ DATA STANLEY MYRON MORE DATA ABOUT
20082 DATA SWENSON HELGA MORE DATA ABOUT
20090 DATA JOHNSTON ALBERT MORE DATA ABOUT

The preceding portion takes care of both the data definitions
and the production of a dummy file which can be used to test the
program. You will be producing your own data files for the future
uses of the sort portions of this program.

329 FOR N = 1 T0 30Q:WHERE(N) = N:NEXT N

Set up the original values for the WHERE array. Now read the
source file. Make it an endless loop for reading and putting away,
stopping only if:

a. Exceed 300 data items, or
b. Hit end of file on source.

This time provide a separate error trap so that you can distin-
guish between an end-of-file and another error condition. After a

HIM
HIM
HER
HIM
HER
HIM
HER
HIM
HER
HIM

SORTING: THE NEXT LOGICAL STEP 125

TRAP is “sprung,” the error code will be put into location 195.
You can get at it by doing a PEEK(195). If the value there is a
136, it means end of file. Other errors are explained in your ATARI
BASIC Reference Manual. You may wish to treat other errors in
different ways.

Here is the set of lines for reading the data file and the index
file. Notice that the dummy file names are used. You will substi-
tute your own file names later.

400 OPEN#2,:4,0,"D:DUMMY.DATY
410 OPEN#3,4,3,"D:DUMINDEX.DAT"

Open both data and index files for reading.
450 COUNT = @:KEYPLACE = 1
Where in the input string should the data be placed?

46¢ TRAP Go0
47¢ PRINT "READING: KEYS FROM SDURCE /
INDEX "

Show the user what is happening now.
482 INPUT#Z2,DUMS$

Get the whole record into memory. If the key is buried some-
where in the record rather than as the first X characters, then this
will provide an easy way to get it out.

499 CUT$ = DUM%
Cut it down to 8 characters max. Saves time.
SP0 KEY$(KEYPLACE)Y = ¢ "

Blank fill this section of KEY$ if it is possible that CUT$ is not
already filled with blanks to the right of its actual data.

S10 KEY$(KEYPLACE) = CUT#
Put away this piece of the string array.

330 COUNT = COUNT+1
4@ KEYFLACE = KEYPLACE+S

126 ADVANCED ATARI BASIC TUTORIAL

Point to the next available entry in the KEY$ table.
5@ IF KEYPLACE + Z4@@ THEN GOTO 487

Get the next record. The only possible exit is end-of-file or
running out of room in the KEY$ data area (more than 300 records
as currently set up). It can be increased if user has enough
memory.

SE@ PRINT "TOO MANY RECORDS":END
S7@ PRINT "UNKMNOWN ERROR":END

Now comes the error trap where we make sure that end-of-file
has been reached:

Geo IF PEEK(195) <> 136 THEN 570
61@ PRINT "END OF ES0URCE FILE"
B11 PRINT:PRINT "STARTING Z0ORT"
B1Z PRINT

613 CLOSE#Z2:CLO0OSE#3

The files get closed because you are finished getting the input
for a while.

Next, set up the arrays which will be used to reference the key
information. The program segment used here will be identical to
that first presented as the sample of a string bubble sort, but it
has been adapted to the key sort (also called a tag sort) function
which was just discussed.

The line numbers and variable names have been kept the
same, with the exception that most of the line numbers are ex-
actly 1000 greater than in the original example.

1986 PINTER = 1

NOTE: The spelling here is PINTER instead of POINTER. This
example emphasizes that you cannot use any form of ATARI
BASIC keyword (in this example “POINT") unless it is used as a
keyword, even if embedded within a variable name. The only time
any keyword can be used otherwise is in a quoted statement
(such as the subject of a PRINT or a string assignment), a REM
statement, or a DATA statement.

SORTING: THE NEXT LOGICAL STEP 127

1@@7 FOR MM = 1 TO COUNT

To save time, only initialize the number of items in these arrays
which are actually going to be used during the sort.

1228 START(MM) = PINTER:CHLAST(MM) =
PINTER+8B

The maximum length of the key in this example is 8 characters
as compared to 16 in the original example.

1229 PINTER = PINTER+B
18190 WHERE(MM) = MM
1211 NEXT MM

Now comes the part that is very similar to the string bubble sort
example:

1045 YES = 1:NO = @

1958 FOR N = COUNT TO 2 STEP -1
1062 ANYSWAP = NO

1e7@ FOR P = 1 TO N-1

1275 S§1 = START{(WHERE(P+1))
1876 C1 = CHLAST(WHERE{(P+1))
1077 S2 = START(WHERE(P))
1078 C2 = CHLAST(WHERE(P))

Use lines 1075-1078 to establish the character positions in the
string which are currently pointed to by the WHERE array.

1282 IF ARRAY${(S1:C1) >= ARRAY$(SZ,C2)
THEN 112@

If they are either greater than, or equal to, then no swap should
take place.

@81 REM STRING COMPARE REMAINS THE
SAME .,

1285 AMYSWARP = VYES

109¢ TEMP = WHERE(P+1):WHERE(P+1) =
WHERE(P) :WHERE(P) = TEMP

128 ADVANCED ATARI BASIC TUTORIAL

1891 REM SWAP THE TAGS (POINTERS TO THE
KEYS)

11Z@ MNEXT P

1138 IF ANYSWAP = NO THEN GOTO Zeg@

114¢ NEXT N:REM DD NEXT FASS

Here is where the differences will begin. It is now necessary to
somehow present the results of the sort to the user, and to save
the results for future use.

The plan is to save the array called WHERE under the name
WHERE.NDX on disk unit 1. If you wish, you might want to use
some of the techniques shown earlier in this book to ask the user
for the name of a file into which this index should be placed, then
build a string name including “D1:", and so on, for putting the
data away.

First it will be put away, then you will see how the data is used.

2220 OPEN#2,8.0,"D:WHERE.NDX"

Reuse IOCB number 2 because the file it used before was
closed.

2010 PRINT#®#Z.COUNT

Save data in the file to show how many records are expected.
This way you won't have to worry about hitting end-of-file when it
is read back in again.

202¢ FOR N = 1 TO COUNT:PRINT#Z.
WHERE (N) :NEXT N

Put the pointer array onto the disk.
20322 CLOSE#Z

Close the file.
The following lines can be used to demonstrate to the user that
the file has been sorted after all.

2000 OPEN#Z 4.3 +"D1 :WHERE .NDH"
3012 OPEN#32.4.:2.:."D1:DUMINDEX.,DAT™
S@15 INFUT#=ZNUMBEROFENTRIES

SORTING: THE NEXT LOGICAL STEP 129

Keep the user informed.

3018 GR.2:POSITION Z:3:PRINT "READING
RECORD & *3

Find out how many have to be read.
30289 FOR RECHCD = 1 TO MUMBEROFENTRIES
Go after all of them.

3030 INFUT#3,5.5
3040 STARTS(RECNO) = S : STARTB(RECND)
= B

For this kind of work, where the disk or some other device will
be very busy, you will want to assure the user that things are
really happening. Therefore, add lines such as 3018 and 3050 to
keep the user informed.

305¢ POSITION Z@:32:PRINT RECHO

Get the WHERE array back in here as though reading it for the
first time.

3062 INPUT#Z WH:MHERE(RECNDY = WH
3073 NEXT RECNDO

You may want to put in some error traps for end-of-file, but in
this case, the number of records is known, so it might not be
needed.

3080 CLOSE#Z:CLOSE#3

You will not need source data any more, now that the index
data is in memory.

Now you have both the revised pointer list (WHERE) and the
pointers to the start of each record (STARTB, STARTS). Refer to
the program in Chapter 4 called FASTSRCH.DMO. You will see
in the next program segment that the POINT command is used in
the same way to go directly to the record number which is
requested.

The records are printed to the screen in alphabetical order . . .
with one exception (JOHNSTON), which will be discussed.

130 ADVANCED ATARI BASIC TUTORIAL

3500 OPEN®Z 4,2 ,"DUMMY.DAT"
Open the original data file to read the complete record.

3518 FOR N = 1 TO NUMBEROFENTRIES
33Z2¢ POINT STARTS(WHERE(N)) :STARTB
{WHERE (N))

Point the source file to the correct starting position.

3532 INPUT#1,DUMS

Get the record you want (random access into a sequential file,
access by alphabetical order).

3535 PRINT DUMS$
Print it.

3540 NEAT N
Get them all.
360 END

You will notice above that there is still one item out of alphabet-
ical order. That is the two JOHNSTON records. This is because
you have only provided, in this sample program, the sort of the
first 8 characters of the whole file.

Occasionally, you might want to do what is called a multiple
key sort. This means that you fully expect that within the first set
of keys, one or more will be identical (JOHNSTON in our case),
and you want them all in the absolute correct order.

To do this, once the first key sort has been completed, you
already have a large head start on the secondary (and third level,
fourth level, etc.) sort. Here is why.

During the first level sort, you always swapped items only if the
second one was /ess than the first one. Now that the first level is
done, you would only need to refer to the completed WHERE
array and to look at any items in the first key which are identical.
It is only for those that the second key must be used.

In the example used, WHERE(4) points to record 1, one of the

SORTING: THE NEXT LOGICAL STEP 131

JOHNSTON's, and WHERE(5) points to the other one at record
number 10.

So if you found these two source strings to be identical, you
might consider reading a second key (user directed, of course),
which would help to break the tie. The technique itself won't be
discussed here, since the other parts of the program can be
adapted to include this process if you wish.

You will probably want to do the printing of the records as part
of a data entry/editor program, where once the record has been
presented, the user can modify selected fields, then put the mod-
ified record back where it came from. For this kind of activity, you
can still use the same record-pointing approach, but you should
probably use two IOCBs for the source file. One of them would
be opened for reading the source file and the other would be
opened for writing a revised version of the file (as demonstrated
for RAW.DTA and EDITED.DTA).

Or, as an alternative, a single IOCB may be opened for both
reading and writing. This, however, is more tricky, since you must
be sure the pointers to the file position are in exactly the right
place, or you can destroy your incoming data file.

REVIEW OF CHAPTERS 5 AND 6

1. A bubble sort is a sort in which items adjacent to each other
are compared (next sequential item in the list). If the second
is less than or equal to the first item in any given sequence,
the items are swapped. This continues pass after pass with
one less item at the end of the list per pass until all items are
in order.

2. An insert sort takes each item in a list, one at a time, and

compares each to all previously examined items in the list, to
see where it should be inserted into the list. In this form of sort,
there is one more, rather than one less, items to compare on
each pass.

3. Either the bubble sort or the insert sort can be shortened by

examining certain swap criteria before starting over at the
beginning of the list for another pass.

132 ADVANCED ATARI BASIC TUTORIAL

4. These sorts can be applied to keys of a long set of records,
where the pointers to the records, called tags, are swapped
rather than the keys themselves. This provides revised tag file
which can be used to quickly reference the original data file.

5. A combination of a data file creator program and the sort
program can give you the ability to create, then quickly refer-
ence, any data record, without rewriting the original records in
the new sequence.

CHAPTER

Getting Directly Into the Screen Data

Up to this point, all of the programs have somehow used the
Screen Editor to put data onto the screen. This chapter will con-
centrate, instead, on going directly into the ATARI memory sys-
tem either to place or retrieve data. The primary goal of this
chapter is to show you how each of the graphics screens is
produced, and provide you with enough information to build your
own custom displays.

To this end, this chapter will show you, step by step, how to
build a primitive but useful graphics-screen creator. You will be
able to put away the screens which you create and call them up
as part of the other programs which you write.

HOW THE ATARI SCREEN IS FORMED

The television screen, although it may look like a continuous
picture, is actually composed of a large number of dots horizon-
tally and vertically. Normally they are so close together that they
do appear to form a continuous picture.

The horizontal dots are actually each one subdivision of a tele-
vision scan line. It is the brightness of the scan line (and/or the
color) which is changed as the television beam sweeps across

133

134 ADVANCED ATARI BASIC TUTORIAL

the screen. This is what separates each horizontal line into the
series of dots.

There are a total of 525 horizontal lines on the U.S. television
screen, counting from top to bottom for each single frame ina TV
picture. However, each frame of 525 lines is actually made from
two fields, and each field uses 262.5 lines. This is called video
interlace because one field supplies the odd lines while the other
has the even numbered lines. This is very important to normal TV
pictures. However, the static display of a computer essentially
repeats the same 262.5 lines on both fields that interlace to make
the single frame of a video picture. Because of the repetition of
field information, the ATARI system typically uses the center
group of 192 (really 384) of the horizontal lines out of the total of
262.5 (really 525). This guarantees that the display which the
computer produces will be somewhere in the visible central part
of the screen. This accounts for the vertical part of the display.

For the horizontal part of the display, the maximum number of
light-dots which the ATARI computer can show is 384 (this is
called wide playfield mode). But of this total number of possible
positions, only about 320 will be within a viewable central screen
area. (This is called a normal-width playfield.)

Therefore you will normally see, in your ATARI BASIC Refer-
ence Manual, that the maximum graphics resolution, the number
of individually addressable dots across and down, is 320 by 192.

In order to form a display, the special hardware within the
ATARI computers subdivides the screen into a number of hori-
zontal stripes, stacked on top of each other. There may be as few
as 12 of these stripes (for example, when GRAPHICS mode
2+16is used . .. 12 lines of 20 characters each), or there may
be as many as 192 stripes (when GRAPHICS mode 8 + 16 is used
... 192 lines from top to bottom, each with 32¢ addressable
graphics points in a single color).

ATARI BASIC provides the user with the capability of forming
various kinds of display screens, simply by using one of the
GRAPHICS commands. For example, GRAPHICS @, or GR.0Q,
forms a clear new screen composed of 24 lines of text material.
GRAPHICS 2 forms a clear new screen using 10 lines of 20
characters each, with a text area of 4 lines below that section,
and so forth.

GETTING DIRECTLY INTO THE SCREEN DATA 135

What you will find in common among all of these various BASIC
callable modes is that a total of 192 lines will be used for the
display, from top to bottom.

This number, 192, is very important. If more than 192 lines are
defined, there may be some difficulty in allowing the central
processor enough time to finish some of its jobs. These jobs are
only done once it appears that the display time is finished and
before a new display is to begin. This could cause /oss of sync,
which in turn will cause the picture to roll or jump.

Let's look at how these available graphics modes add up to
192:

* GR.0 is 24 lines of text. Each line of text is 8 horizontal lines
high (24 x 8 = 192).

* GR.1 is 24 lines of wider text. Each line is 8 horizontal lines
high, as the above.

* GR.2 is 10 lines of wider and higher text, plus 4 lines of
normal text.
Each of the 10 big text lines is 16 horizontal lines high (160
lines total), plus the 4 text x 8 lines (another 32) for a total
of 192.
all the way down to

* GR.8+ 16 (which you can also call GR.24 if you wish), which
has 192 lines.

Hopetfully, by these examples, you can see that the screen is
really composed of a sequence of horizontal stripes of various
widths, stacked on top of each other to form the complete
display.

This part of the screen will be called the playfie/d. This playfield
part is relatively stationary.

There are also other objects which can be moved across the
screen, but this chapter covers only the playfield portion of the
display.

HOW THE DISPLAY IS MANAGED

There is a separate display processor within the ATARI com-
puters. Its job is to produce the playfield and the movable objects
on the screen.

136 ADVANCED ATARI BASIC TUTORIAL

Since there are many different kinds of displays which are pos-
sible on this system, this processor must be told exactly how the
screen is to be formed. It will then do the job it has been given in

a continuous loop until othar instructions are received.

The display processor is called ANTIC. it operates at the same
time as the central processor, and slows the processor down,
when necessary, to do its own job. You see, the job of the display
processor is more important than the job of the central processor.
This is because you want to see a stable picture, with no jumping
or tearing. Therefore, the display processor must always be al-
lowed to do its job so that the display will remain stable.

The display processor receives its instructions in the same way
the central processor receives them; that is, they are stored in
memory.

The central processor has many different kinds of instructions,
but the display processor has only a few. The major kinds of
instructions which it executes are:

1. Define a set of lines in a specific graphics mode.

2. Jump to another part of the memory for new instructions.

3. Jump to the start of the instruction group to wait for the start
of a new screen display time.

There are other bits within the instruction which affect what will
happen on the screen; however, these other things do not affect
the fact that the primary instruction is still one of the three just
mentioned.

In the section which follows, you will see a small program in
ATARI BASIC that is supposed to represent what the display
processor is doing. The technigues used in this BASIC program
will be used as the basis for the program which creates and edits
the screen.

Here is a representation of how the display processor
operates:

=" RETURN |

10 DIM A$(38) ,BE(100a)

11 REM SAVE SOME SPACE FOR THE DATA

15 A% = "THIS DEFINES THE DATA FOR
LINE:ssvunss®

GETTING DIRECTLY INTO THE SCREEN DATA 137

18 REM 38 TOTAL CHARACTERS BETWEEN THE
QUGTES

180 FOR N = 1 TO 189

11¢ PRINT CHR$(1235):REM CLEAR SCREEN

128 LNG = |

130 B$ = "":REM S5ET INITIAL LENGTH TO
JERDC FOR DEMO

14¢ FOR M = 1 TO N

15¢ B&(LNG) = A%

155 REM BUILD A SCREEN QUT OF
PREDEFINED DATA

162 B$(LNG+3Z,LNG+33) = STR$(M):REM
CONVERT LINE NUMBER INTO A STRING
VALUE AMD STORE IT.

178 BE{LNG+37 = " .":REM RESTORE PROPER
LENGTH

175 LNG = LNG+3B:REM POINT TO DATA AREA
FOR NEXT LINE.

180 NEXT M

1892 PRINT B#%:REM SHOW THE SCREEN THAT

WAS BUILT
200 FOR O = 1 TO 3@2:MEXT O:REM DELAY A
LITTLE

210 MEXT N

If you run this program, you will see the screen being made
longer, one line at a time. This is the same technique, slightly
modified, that will be used in the screen-builder program.

When you wish to tell the ANTIC to assign one segment of the
screen to be one of the 14 possible graphics modes, it will need
two pieces of information:

1. Which one of the modes to use.
2. Where is the data which is to be shown on the screen for
this mode.

There are two kinds of instructions which define the kind of
display lines to use:

1. Use this mode, and find the data in the memory after the
data defined for the previously defined line.

138 ADVANCED ATARI BASIC TUTORIAL

2. Use this mode, and look for the display data at the location
which is specified with this instruction itself.

In the first simulation example, the first method was used. In
other words, the data for the second line was found in the B$
immediately following the data for the first line of the display.
B$ is an array of many (here 1000) memory locations, all in a row.
This, then, makes the situation similar to the first method.

The only thing that you must remember when using this form of
the instruction is that somewhere preceding this instruction, there
must have been an instruction “type 2" which actually initializes
the memory pointer. Actually, in the preceding example, there is
one instruction of “type 2" already present. That is, the print state-
ment for the first line which said PRINT B$. When you told it about
BS, it knew where the data for the first fine would be taken from,
and in the continued printing, knew where all of the data for
subsequent lines would be located (after line 1).

Just to clarify this principle a bit further, let's look at a modified
example of the earlier program in which all of the display instruc-
tions are of “type 2.” That is, the system will be told explicitly, for
each kind of display mode grouping (here for each display line
in graphics mode 0), and exactly where to find the data for that
line.

1¢ DIM TEMP$(3Z2):REM DEFINE AN INPUT
STRING

15 DIM ANS$(1)

20 DIM A%$(3Z) B#{(32),C#{32) :D%(32)

30 TEMP® = »,":TEMPH(3B) =
"VUrTEMPS(2H,LEN(TEMPS$)) = TEMPS$

31 REM A NEAT WAY TO FILL AN ENTIRE
STRING WITH THE SAME CHARACTER

4¢ A% = TEMP4$:B$ = TEMP%:C% = TEMP%:
D = TEMP%

41 REM INITIALIZE THE "SCREEN DISPLAY
MEMORY"

5@ PRINT CHR%(1ZE5):REM CLEAR THE SCREEN

B¢ PRINT "A —"iA%

7@ PRINT "B —"iB%

GETTING DIRECTLY INTO THE SCREEN DATA 139

88 PRINT "C —"iC%

8@ PRINT "D —"iD$%

12@ PRINT:PRINT "USER INPUTS A LINE OF
DATA BELOW"

110 PRINT:PRINT " —®*3INPUT TEMPS

128 POSITION 2.3

13¢ PRINT "PUT INTO SCREEN LINE
(A/B/C/DY" S

149 INPUT ANS$

145 IF LEN{ANS$) = @ THEN 120
1532 WHICH = ASC{ANS%$)-ASC{"A")+1
131 REM A-A = @:B-A = 1.,C-8 = Z;

D-A = 3, 80 IF ADD 1. OK VALUE
135 IF WHICH<1 THEN 128
1690 ON WHICH GOTOD Z1@.:220.23Q.,240
17¢ GOTO 1Z2@:REM IF ND ACCEPTABLE

ANGHER
210 A% = TEMP$:G0TC S0
220 B% = TEMF$:G0TO 50
23@¢ C% = TEMP%:G0TO S0
249 D% = TEMP$:G0TO S¢

This program demonstrates a manner in which each of the
lines of data defined for the display processor can have its own
data area reserved. If you change what is located in that data
area, you change what appears on the display itself.

This is the alternate method to that of defining a large memory
area, and simply telling the processor to continue using the mem-
ory where the previous line left off. In the sections which follow,
you will begin to get away from the display simulation and into
the actual building of a custom display on the screen.

BUILDING A CUSTOM DISPLAY

The next program segment will simply build one custom dis-
play. It will consist of 4 lines of 40-character text, and 10 lines of
12-character (very large) text. The custom version which is to be
built will be the reversed version of normal GRAPHICS MODE 2.

140 ADVANCED ATARI BASIC TUTORIAL

In fact, if you are only marginally familiar with this particular
mode, try the following program first. It will demonstrate MODE
2. Then the custom build program will take the text area and put
it on the top with the graphics area on the bottom.

1¢ REM GRAPHICE Z DEMO

2@ GR.E

39 PRIMT#E"THIS IE GR,ZV

4@ 0OPEN®1.4,0:"K:":REM FATH FOR
NO-RETURN KEY

5@ PRINT "PRESS AMY KEY FOR NORMAL

DISPLAY "3

@ GET#1.M:FEM HWAIT FOR ANY USER
KEYFRESE

7@ GR.2:END:REM RESTORE SCREEN TO
NORMAL

If you run that program, you will see how the normal GRAPHICS
2 display appears. Now the program below will reverse the rela-
tive positions of the two kinds of displays. You will see that some
POKE statements have been used instead of PRINT statements.
This is to introduce you to the direct access to the screen data,
rather than using the Screen Editor to do it.

The custom display will be built by the following instruction
sequence:

1. Use small text (40 char/line). (Data for this first line is lo-
cated at a specific memory location.)

2. Use small text for next 3 lines. (Data for these lines follows
the data for the first of these lines.)

3. Use largest text for the next line. (Data for this large text
should start at some specific memory location.)

4. Use largest text for the next 9 lines. (Data for these lines
follows the data for the first of these lines.)

5. End the screen display here by jumping to the beginning of
this list and waiting for the next time a screen is to begin so
we can do it again.

What you have just seen is called a display list. It is the se-
guence of instructions which the display processor is to perform.

GETTING DIRECTLY INTO THE SCREEN DATA 141

It is this sequence that you will now see translated into machine
code instructions for the display processor.

1@ HMEM=PEEK ({188}

This will set the value of X to the current top of memory. Since
the display shares the memory with the central processor, it will
be necessary to set aside some space for exclusive use by the
display processor.

2@ LOWH=XMEM-1B:POKE 106 :LOWX
25 LOWHEPNT = LOWY # 258

This saves about 4096 memory locations for use by the display.
29 GR.3

The next line is used to move the current normal display list
into the area of free memory. You see, when BASIC wants to form
a display area, some of the memory at the top section gets re-
served for the display processor to use. Then BASIC knows that
it will be free to use any of the rest of the memory from its low
limits (just above the DOS) to its highest limits (just below the
display area). It uses the contents of location 106 to tell it what is
the highest possible memory area into which it can write.

Location 106 is written by the power-on routine, which figures
out how much memory is active long before BASIC starts up in
the system. ATARI BASIC normally only reads location 106, and
this tells how much memory it can work with. If you change the
value, as has been done above, you have reserved this memory
for your own personal use and BASIC won't bother it even after a
program ends.

NOTE: restores this to its original value.

Now what will be done is to reserve some space for the display
list in the same way that ATARI BASIC does it. In particular, ATARI
BASIC combines the area for the display list and the data into
one single space. The following diagram is called a memory
map, and it shows in a very simplified form how the memory
space is divided:

142 ADVANCED ATARI BASIC TUTORIAL

oo mmt—m—enn + Top of memory area
(address = 65535)
Operating
System
S — + RAMTOP where location 106
normally points
Display Data
e eGEORE R +
Display List
oo + Top of BASIC random access
memory {RAM) area (includes
BASIC RAM user program)
S ALCEE TR +
DOS
and Operating
System RAM
IR + Bottom of memory

(address = 0)

Let's reserve 300 spaces for the display list. This will be more
than enough for most applications.

42 DS = LOMHEPNT+I0@:RFEM DS MEANES DATA
AREA ETART

Now begin assigning the different pieces of the display list.
The values will be generated by a subroutine so that the routines
can be easily transported into other programs.

To do this, it will be necessary to establish a certain set of
values or tables which will be useful throughout these routines.
The first pointer will be the pointer to the area where the display
list is being built. Call it DLPNT. It starts at the beginning of the
area called LOWX.

=@ DLPNT = LOWH:REM NEW DISFLAY LIST
FOINTER

A set of values will also be mentioned here for the first time, but
not discussed until later. These are the values for horizontal
scrolling and vertical scrolling.

GETTING DIRECTLY INTO THE SCREEN DATA 143

6@ HWSCROLL = @:VYSCROLL = 9

Now, before any form of display list routine may be formed, you
will need a set of tables which will contain definitions for each of
the different kinds of graphics modes. Here it is:

6 DIM MEMPERLINE(13):LINESPERMODE(15)

These lines save space for an array showing how much mem-
ory is needed (minimum) for each one of the ANTIC modes which
you can define, and how many scan lines each of the modes will
take up.

The first of the arrays contains numbers indicating, for exam-
ple, how many characters there can be in a single line, or how
many memory locations it takes per line to represent a certain
kind of graphics mode.

The second array is related to that magic 192 number men-
tioned earlier. You will notice next that, for example, ANTIC MODE
2, which corresponds to ATARI BASIC GRAPHICS MODE 0,
takes up 8 lines each time it is placed on the screen. Therefore,
24 lines of text times 8 video lines per text line gives the 192
figure mentioned earlier. As a display list is built, this value will
be used to keep track of how far toward the 192 you may be.

30009 DATA 4@,4@.,40,:40.20,20,40.80,80
30212 DATA 160160162 :1GR 32

This is the data for the minimum number of characters per line
(in a "normal playfield width” mode).

30@Z2@ DATA 8,10:8:16:84+16:8:4 .4,

2+1 3241 41

This is the data for the number of lines that each of the modes
uses. In the initialization loop shown next, you will see that these
data items represent the data for ANTIC MODES 2 through 15.
There is no ANTIC MODE 1.

B0 FOR N = Z TO 15

82 READ M:MEMPERLINE(N: = M:MEMT N
84 FOR N = 2 TO 15

BE READ M:LINESPERMODE(N) = M:NEXT N

144 ADVANCED ATARI BASIC TUTORIAL

A final set of initialization items:

ae
91
9z
as
agG

TRUE = 1:FALBE = @

BADMODE = 1:TOOMANY = Z:0UTOFMEM = 3
REM DEFINE POSSIBLE FAIL CODES
NORMALWIDE = TRUE

REM DOING A& NORMAL SIZE SCREEN AT
FIRST

And now, the subroutine that will place an item into the display
list and update the pointers to the area where both the list and
the data are being stored will be reviewed. This routine assumes
that there is already a dummy display list formed in the area
which is being written so that the display being formed this way
can be immediately shown.

20002 REM ENTRY VARIABLES: MODE = THE

MODE TO USE

Z5@1¢ REM NORMALWIDE = TRUE IF VALUES

FROM MEMPERLIMNE ARRAY ARE TO BE
USED

23215 REM MEMPERLINE(1: = HOW MUCH

MEMORY TO USE IF NORMALMWIDE =
FALSE

220 REM HSCROLL AND VSCROLL ARE FALSE

IF NO HORIZONTAL OR YERTICAL
SCROLLING IS NEEDED

Z303¢ REM ROUTINE STARTS BELOMW
2600¢ IF MODE < 2 OR MODE » 15 THEN

OK = FALSE:REASON = BADMODE:
RETURN

Z26@1@ DINSTRUCT = (MODE+G4) +

{HSCROLL*18) + (USCROLL*32)

26022 CTEMP = COUNT+LINESPERMODE (MODE)
2B@30 IF CTEMP > 192 THEN 0OK =

FALSE:REASON = TOOMANY:RETURN

26049 IF NORMALWIDE = FALSE THEN ZG@G@
Z6@5® DSTEMF = DS+MEMPERLINE(MODE):GOTO

26070

GETTING DIRECTLY INTO THE SCREEN DATA 145

L6962 DSTEMP = DS+MEMPERLINE(1)

26070 1r DotEmp o tamemeaae L
FALSE:REASON = QUTOFMEM: RETURN

26@82 POKE DLPNTDINSTRUCT

260281 REM PUT AWAY THE INSTRUCTION

Z5Q92 DHIGH = INT{(DS/25G):DLO =
DS-DHIGH*Z5G

Z6@91 REM SEPARATE UALUE OF DATA
POINTER INTO A LOW PART AND A
HIGH PART

270Q0¢ POKE DLPNT+1!,DLD:POKE
DLPNT+Z +DHIGH

27@@1 REM STORE THE ADDRESS 0OF THE
START OF DATA AREA FOR THIS
DISPLAY LINE

27010 DLPNT = DLPNT+3:REM NEXT
AYAILABLE AREA

27213 GOSUB ZBOO0:REM INITIALIZE THIS
AREA

27029 COUNT = CTEMP:DS = DSTEMP:0K =
TRUE:RETURN

Line 26000 looks to see if the display mode you want to use is
between 2 and 15, since these are the only modes that the ANTIC
can use.

Line 26010 calculates the instruction word. It is composed of
the horizontal scroll value, the vertical scroll value (these will be
used later in the chapter), and the mode. The reason for the value
of 64 here is that there are two ways to represent an ANTIC
instruction.

One is to say “use this mode for the next set of display lines.”
This kind of instruction does not require the address information
showing where to find the data for this set of lines. In other words,
the ANTIC is told by this kind of instruction (mode number only)
that it should simply use the continuation of the previously de-
fined data area to find the data for the mode it is now trying to
display.

The other way, which is being used here, is to ask the ANTIC

146 ADVANCED ATARI BASIC TUTORIAL

to “use this mode and find the data in a specific area of memory.”
The 64 adds this extra requirement to the instruction. It is called
the Load Memory Scan bit. This means that the next two memory
locations in the display list must contain the pointer to where the
data, for this display piece, is stored. The pointer is stored with
its low part first, then its high part as shown previously.

Line 26010 does not include one extra mode which is possible.
This is the Display-List Interrupt bit. If it is on, the display proces-
sor (ANTIC) will interrupt the main processor and force it to do a
defined extra task before it can go back to doing what it was
doing before. This interrupt happens each time the ANTIC en-
counters this instruction. 1t is this feature that enables the “rolling
rainbow” effect you sometimes see in ATARI games.

This concept is more advanced than was intended for this
book and will not be covered here. However, if you wish to pursue
it further, you can generalize line 26020 1o include it by adding
the term:

vesss + (DLIEBIT*128)

where the variable DLIBIT will either be a 1 or a 0 (TRUE OR
FALSE).

Lines 26030 and 26040 check to see that the video lines which
are currently being added to the display list don't make it longer
than 192 lines. If it is acceptable, it updates the line count.

Lines 2604026070, and thereafter, adjust the data area point-
ers. This basically says that this memory area has been allocated
and the pointer must now point to the next available memory
space. In this area, it also checks to see if there was enough
memory to define this mode in the first place.

Line 26080 puts away the instruction value and updates the
value of the display list pointer since we just added three items
(instruction, low address, high address) to the display list.

Line 27015 is placed in this routine so that there will be some
kind of value put into the memory space for each of the graphics
modes. You see, if you have just applied the power, the ATARI
computer will either place @s into this upper memory area which
you are now using, or perhaps scme other pattern, depending
on whatever previous use was made of this area for display, and

GETTING DIRECTLY INTO THE SCREEN DATA 147

so forth. Line 27015 calls another subroutine which puts what is
called a default value into each of the memory locations just
assigned to this latest display mode so that when you view
the new screen, there will be something predictable for you to
look at.

Finally, line 27020 adjusts all of the pointers because every-
thing else looked OK and allowed the writing of a new item into
the display list. This completes the display list updating
subroutine.

Now for the initialization routine, very short and easy:

7 DIM DFAULT (1S
88 FOR N = Z TO 15: READ M: DFAULTI(N) =
MiNEXKT N
30232 DATA 45,45.59,689.,85,:8%.,85%,85,
85 .+85+85+85;:85,:858
289220 M = DFAULT(MODE)
28210 FOR N = D5 TO DSTEMP-1
ZB@ZQ POKE N M
ZEA2@ MNEXT M
ZEP40 RETURN

which fills the new data area with the default data.

In the 28000 subroutine, it said that this routine assumed that
there was a dummy display list built up, and that it was this
dummy whose pieces were being replaced. Let’s look at what
the dummy display list must contain to fulfill this requirement.

First, think back to the first example given in this chapter. You
may recall that the display there was built one line at a time,
taking up space on the screen starting at the top, then proceed-
ing down the screen to the point where it stopped.

You might imagine this sequence of instructions, instead of
being constructed as they were originally, being constructed as:

TOF PRINT & LINE
PRINT A LINE
PRINT A& LINE
GOTO TOP
GOTO TOP

148 ADVANCED ATARI BASIC TUTORIAL

GOTO TOF
GOTO TOF
GOTO TOF

If it is executing instructions from the top down, then once it
has printed all of the lines, it encounters the first GOTO TOP
instruction. All of the other GOTO instructions would never get
executed, since the first one it finds sends it up to the top of the
program again. In this example, then, the rest of the GOTO TOP
instructions are dummies. That is, they are simply there to take
up space.

It is quite convenient, in the case of the display processor
instructions, that the "jump and wait for vertical blank” (the next
start of the display time) instruction takes up exactly the same
amount of space as the “use this mode from this new address
area” instruction (LMS bit is on). This means that for each of the
cases where we simply want to extend the length of the current
display list, it is only necessary to replace one of the JUMP in-
struction groups. An example is shown next.

TOP DISPLAY 8 BLANK LINES
DISPLAY 8 BLANK LINES
DISPLAY 8 BLANK LINES
JUMP TO TOP <« REPLACE WITH: DISPLAY MODE 2
USING DATA AT
“Dg”
JUMP TO TOP
JUMP TO TOP
JUMP TO TOP (Last 2 and any others beyond here
are dummies and can never get ex-
ecuted until prior jumps are replaced
by display-type of instructions.)

As you can see, if the instructions for either JUMP or DISPLAY
take up the same amount of space, then the display list can
always be made to end with a JUMP instruction.

Now, here is the section of the program which will set up this
dummy display list, which you will modify.

Actually this program will not do exactly what you have seen

GETTING DIRECTLY INTO THE SCREEN DATA 149

earlier. Instead, it will perform one extra instruction before it
jumps to the top of the display list.

This extra instruction will provide a status line on the screen.
As each of the display list lines is added, the status line will be
moved one step toward the bottom of the screen.

Here is the program. The explanation for this program follows
the listing:

423 DIM A%(38)

42¢ GPOS = LOWXPNT+Z2:REM START POINT
FOR DLIST

439 FOR N = 1 TO 3:POKE GPDOS:117:GPOS =
CPOS+1sNEXT N

431 REM EACH 11Z IS A& "DISPLAY 2 BLANK
LINES®

440 JMPAD = GPOS+585:REM PUT JUMP
ADDRESS NEAR END OF ALLOCATED
DISPLAY LIST AREA (IS5 G@® MAX LONG)

443 JMPHI = INT(JMPAD/Z5B):REM SEPARATE
INTD HI AND LO ADDRESSES

430 IMPLO = JMPAD - JUMPHI*Z5E

d47¢ FOR N = 1 TO 192:REM NOW DEFINE 1872
SETS OF JUMP TQ SHOMW STATUS LINE,

482 POKE GPDOS,1 :REM THIS SAYS JUMP

499 POKE GPOS+1.,4MPLO

20@ POKE GPOS+Z +JdMPHI

S1@ GPOS = GPOS+3:NEXT N

511 REM EACH OF THE 192 BECOMES A "JUMF
TO STATUS™

53¢ GPOS = JUMPAD: NOW FORM THE STATUS
LINE DISPLAY

>4¢ POKE GPOS5,6B:REM MODE Z (40 CHAR
LINE)

53¢ DLST = LOWXPNT+G@@:REM DATA AREA
BEGINS G@@ LOCATIONS PAST START OF
RESERVED AREA

6@ HIAD = INT{DLST/25B):LOWAD =

DLET-25B*HIAD

150 ADVANCED ATARI BASIC TUTORIAL

295

ced
6@l

REM CALCULATE LGW AND HI PART OF
JUMP ADDRESS

POKE GPOS+1:L0WAD:POKE GPOS+ZsHIAD
GPOG = GPOS+3

POKE GPOSG5:REM JUMP AND WAIT
VERTICAL BLANK

POKE GPOS+1.:2:REM WHERE DISPLAY
LIST STARTS

POKE GPOS+Z.LOMX:REM HI PART OF
WHERE DLIST S5TARTS

POKE Z6@,Z:POKE S5B1 +LOWH

REM B2@ TELLS ANTIC WHERE TO FIND
THE NEW LIST

This program segment builds a display list which consists of:

DISPLAY B BLANK LINES
DISPLAY B BLANK LINES
DISPLAY 8 BLANK LINES
JUMP TO STATUS LINE
AUMP TG STATUS LINE

v++lots more of those,
(describing max of 1892 lin

13
i

DISPLAY ONE LINE DF 4¢-CHARACTER TEXT
WHOSE DATA STARTS AT & FIXED LOCATION
JUME AND WAIT FOR VERTICAL BLANK

This type of program, then, will produce a display list which
has, as it begins, an entirely blank screen with the status line as
the only line showing at the top of the display.

As each new line definition is added, the new definition re-
places one jump to the status line display instruction. This forces
the status line to move down on the screen, one step at a time.
You can also move the status line up one segment on the screen
simply by replacing the last-added text or graphics line definition
with a jJump to the status line.

As an example, you might be building a display list consist-

ing of:

GETTING DIRECTLY INTO THE SCREEN DATA 151

DISPLAY B BLANK LINES

DISPLAY 8 BLANK LINES

DISPLAY B8 BLANK LINES

DISPLAY ONE LINE OF 20 COLUMN (LARGE)
TEXT

DISPLAY ONE LINE OF 2¢ COLUMN TEXT

DISPLAY ONE LINE OF HIGH-DENSITY
GRAPHICS (GR.8)
JUMP TO STATUS LINE
JUMP TO STATUS LINE

++ o MORE. .

You may decide that it is not yet time to start the display of the
high-density graphics. To restore the list to its original condition,
you will only need to replace that high-density graphics descrip-
tion with a jump to the status line. The status line will then move
up one on the screen, thereby erasing the graphics line you did
not want.

Let's look at what the status line will contain, and how you will
go about building the screen. Here is the status line:

Add Delete Edit eXit MODE=__

where the A, D, E, and X will be presented in reverse video (dark
letters against a white background).
Here is what the different modes will mean:

Add— Add a new graphics mode area in the position now
occupied by the status line. Push the status line
down one position. Put some data there so that the
user can see that this new line has been added.
Data can be changed during edit mode.

Delete—Delete the graphics line just added and currently
located above the status line. Move the status line
up to the next position.

Edit— This mode now allows you to modify the sections of
the screen which you have already defined. Nor-
mally you will define the whole screen, then go into
edit to do something with the data.

eXit— Give the user the chance to save this display list
somewhere.

154 ADVANCED ATARI BASIC TUTORIAL

understandable, nothing has been done to condense it or to
make it fast. If you find it useful, then you may wish to find ways
to speed up its operation. Following the program explanation, you
will find other suggested improvements which you may decide to
add to the program. Here is the combined listing:

& DIM MEMPERLINE(15) LINESPERMODE(15)

7 DIM DFAULT(13):CUR(192)

10 XMEM=PEEK (1@G)

20 LOWX=XMEM-1G:POKE 106 LOWX

23 LOWAPNT=LOWKX*Z56

3@ GRAPHICS @:PRINT "WORKING.,.."

4@ DS=45+L0OWKAPNT+G20Q

5@ DLPNT=LOWXPNT+5:REM NEW DISPLAY LIST
PNTR

53 LINPNT=1:LINCNT=0:EDPNT=DLPNT

6@ HSCROLL=0:YSCROLL=0@

7@ GOSUB 23000

8¢ FOR N=Z TO 15

82 READ M:MEMPERLINE(N)=M:NEXT N

84 FORrR N=Z TO 15

B6 READ M:LINESPERMODE(N)=M:NEXT N

88 FOR N=Z TO 15:READ M:DFAULT(N)=M:
NEXT N

90 TRUE=1:FALSE=0

91 BADMODE=1:TOOMANY=2:0UTOFMEM=3

92 REM DEFINE FAIL CODES

95 NORMALWIDE=TRUE

396 REM DOING A NORMAL SCREEN AT FIRST

87 COUNT=@:MEMPERLINE(1)=40:REM DEFALT

30 DPEN #1.,4,@+"K:"

310 TRAP GGQ

483 DIM A%$(38)

420 GPOS=LOWXPNT+2

43¢ FOR N=1 TO 3:POKE GP0OS,112:
GPOS=GPOS+1:NEXT N

449 JMPAD=GPOS+583

443 JUMPHI=INT(JMPAD/25B)

GETTING DIRECTLY INTO THE SCREEN DATA

43¢
47@
48@
489
S0@
31
S3@
sS4
S00
SGe

70
S8e
9@
395
e
E1e17)

BG1
BG2
6G63
67
710
715
720
723

)
Ll oon

g owd
LT oL o oon
0 ~Jd 01 e

R BN
Loon

|
oo
[~

JMPLO=JMPAD- JMPHI*Z256
FOR N=1 7O 18Z

POKE GPOS.1

POKE GPOS+1 +JMPLO
POKE GPOS+2+JMPHI
GPOS=GPOS+3:NEXT N
GPOS=JMPAD

POKE GPOS.:GE
DLET=LOWXPNT+G20
HIAD=INT(DLST/25B):L0WAD=
DLST-256%HIAD

155

POKE GPOS+1sLOWAD:POKE GPOS+Z,HIAD

GPOS=GPOS+3

FOKE GPOS,65:POKE GPOS+1 .2
POKE GPOS+2,L0OWX

FOKE 36@+2:POKE 561 :LOWX
A=" Add Delete Edit

eXit "
AF(36)=5TR${192-COUNT)

IF COUNT:>8Z2 THEN A%$(3Bi=" =
IF COUNT>182 THEN A${(37)=" ¢
GOSUB 24000

GET #1 M

IF M=GS THEN 730:RFEM ADD

IF M=G68 THEN 8@2:REM DELETE
IF M=B9 THEN 990:REM EDIT
IF M=88 THEN 3@002:REM EXIT
GCoTo 710

Ag=" Add Delete Edit eXit
MODE=___ "

A (36)=5TRE(192-COUNT)
GOSUB 24@0¢

GET #1,M:IF M43 OR M:>57 THEN

736
IF M:>43 THEN MODE=M-4B:GOTO 767

POKE DLST+30,17:REM PUT A 1 THERE

GET #1M

MODE=M-48+12:FOKE DLST+321 MODE+G

TRAP GG@#:REM TRAP ERROR TO REDRAM

156 ADVANCED ATARI BASIC TUTORIAL

765
770
771
773
780

Bea

Bei
gaez
8@3
ge4d
ges
81
B15
818
g2@

830
aga

a9es

a1a
815
20
825
93@
935
g4@
9435

959
255
a57
560
87
8975

IF MODE<Z OR MODE:>15 THEN GG
GOSUB 26009

LINCNT=LINCNT+1:REM ADDED A LINE
IF DOK=TRUE THEN BG®@

GRAPHICS @:PRINT “FAILCODE =
"IREASON

IF LINCNT=0@ THEN BB@:REM DONT BACK
UpP TOO FAR

DLPNT=DLPNT-3

CLAIM=PEEK (DLPNT)
COUNT=COUNT-LINESPERMODE(CLAIM-GB4)
AE(3B) =" "

POKE DLPNT 1

POKE DLPNT+1,JMPLD

POKE DLPNT+Z,JMPHI

LINCNT=LINCNT~1
D5=DS-MEMPERMODE(CLAIM-G4) :REM
RECLAIM DATA MEMORY ALSO

GOTD GGe

IF LINCNT=@ THEN GBQ:REM CANT EDIT
IF NO LINES THERE!

Ag=" M= L= C= U= Newl,
Quit"

GOSUB Z4@¢00

DLP=EDPNT+{LINPNT-1)%*3
MODE=PEEK{(DLP)-B4

C=CUR(LINPNT)+1

L=l INPNT

DU=25G#PEEK (DLP+Z)+PEEK(DLP+1)+(C-1
V=PEEK (DY}

Af=" M= L= L= Y= — — 1]
NewWl, Quit®

A (3)=8TR$(MODE) :A$(9)=STR$(LINPNT)
A% (14)=STR$(C)Y A (19)=STR$ ()
As(3BY=" ¢

GOSUB 24000

GET #1 .M

IF M=43 THEN 10@@

GETTING DIRECTLY INTO THE SCREEN DATA 157

3B@ IF M=42 THEN l1lo@
883 IF M=45 THEN 1200
8999 IF M=61 THEN 1309
9895 IF M=78 THEN 1409
998 IF M=81 THEN GGQ
993 GOTO 970
1282 IF CURCLINPNT)=@ THEN 94¢
192> CUR{LINPNT)=CUR{(LINPNT)-1:G0TO 815
1109 IF CUR(LINPNT)={(MEMPERLINE
(MODE) -1} THEN 970
1185 CUR(CLINPNT)Y=CUR{(LINPNT)+1:G0T0 915
1200 IF LINPNT<Z THEN 970
121¢ LINPNT=LINPNT-1:G0TO 915
130@ IF LINPNT=LINCNT THEN 970
131@ LINPNT=LINPNT+1:GOTO 915
140@ TRAP BB@
1405 A$(=23)="NEW UALUE= "
14906 GOSUB z24¢00
141@ GET #14+M
1411 X=@:REM START WITH NO-HUNDREDS
1412 IF M<48 OR M>57 THEN BRO:REM TRAP
OUT ON BAD ENTRY
1414 POKE DLST+33:M-3Z2
14168 ¥=M-48B
1500 GET #14M
1531@ IF M=155 THEN POKE DV »¥:GOTO 915
152@ IF M<48 OR M>37 THEN BGEQ:REM TRAP
15332 Y=1@*X+M-48
1342 POKE DLST+34:M-32
155@ GET #1:M
156@ IF M=15% THEN POKE DV.Y:G0OTO
1378 IF M<48 OR M>»37 THEN GG@
1575 POKE DLST+35:M-32
1380 Z=1¢*Y+M-48
1390 IF Z:255 THEN GGO
169 POKE DV,Z2:GDOTO 915
3000 GRAPHICS @:PRINT "DONE™"
23020 FOR N=1 TO 192

s]
et
£h

158

ADVANCED ATARI BASIC TUTORIAL

23e1e
23020
24000
249019
24029

24036

24049
24052
24060
2407
25000
2501

20020

2@

2621

26020
26030

26ad4@
26@se

26262
26072

262753
2Gage
26281
ZG@9g

27020

CURCNIY=@:NEXT N

RETURN

FOR N=1 TO LEN(A%)

LTR=AGC(AS (NN}

IF LTR:*87 AND LTR<1Z23 THEN
AX=LTR-@:G07T0 24050

IF LTR>27 AND LTR<32Z THEN
KA=LTR+1892:G0T0 24050

AX=LTR-32

POKE -1+N+DLST :H¥

NEAXT N

RETURN

REM ENTRY YARIABLES MODE=MODE
REM NORMALWIDE=TRUE IF VALUES
FrROM MEMPERLINE ARE TO BE USED:
ELSE ARRAY SIZE IS IN
MEMPERLINE(1)

REM HSECROLL WVSCROLL FALSE IF HNO
HS OR WS 15 SPECIFIED

IF MODE<Z OR MODE>»1S5 THEN
OK=FALSE:REASON=BADMDODE : RETURN
DINSTRUCT=MODE+B4+HSCROLL*16+
USCROLL*3E
CTEMP=COUNT+LINESPERMODE {MODE)
IF CTEMP:>182 THEN OK=FALSE:
REASON=TOOMANY :RETURN

IF NORMALWIDE=FALSE THEN Z2G@EQ
DETEMP=DS+MEMPERLINE{(MODE) :GOTO
26a7a

DSTEMP=DS+MEMPERLINE (1)

IF DSTEMP>{XMEM#256) THEN
OK=FALSE:REASON=0UTOFMEM:RETURN
GOSUR ZBgoe

POKE DLPNT:DINSTRUCT

REM PUT AWAY THE INSTRUCTION
DHIGH=INT(DE/Z561:DL0O=D5-
DHIGH*Z5E

FOKE DLPNT+1:DLO

GETTING DIRECTLY INTO THE SCREEN DATA 159

27205 POKE DLPNT+2,DHIGH

27010 DLPNT=DLFNT+3

27022 COUNT=CTEMP:DS=DSTEMP:0K=
TRUE:RETURN

28000 M=DFAULT(MODE)

28212 FOR N=DS TO DSTEMP-1

ZB@20 POKE NisM

2803@ NEXT N

28049 RETURN

3200 DATA 40+40,40,40,20,20,40,80,8¢

30212 DATA 1G2,+1G0,1GR0:160 320

30022 DATA B+»10+8:16:8,:16+8.:4:4
21429141

3¢23@ DATA 45,45,69,+69.85.:85+85,85:85,
85:85:85,85+85

Here is an explanation of the Edit mode. When you have de-
fined one or more lines on the screen, each line will have some
kind of data on it, just so that you can see the line there (if the
data were zeros, the line would have been blank). The Edit mode
allows you to move the cursor around on the screen through the
data you defined, and change it to a new value if you wish.

Line 660 shows A$ as: Add Delete Edit eXit . The A, D, E,
and X should be entered as reverse video. When you enter this
program line, press the key once just before you press
each of the letters A, D, E, or X, then press it again before you
continue to enter the rest of the word. This way only the selected
letter will be in reverse video.

Because these characters are the only ones appearing in re-
verse, it can graphically show the user exactly which are his
possible choices. The program is built to ignore any keystrokes
except those shown in this way.

Line 661 says A$(36) = STR$(192 - COUNT). This means that
this line should include the string equivalent of the number of
lines which are still left to be defined. The user, in this case, can
define up to 192 lines on the screen. As each mode is defined, it
takes up one or more of the lines which are left. This adds to
COUNT and subtracts from the number left (192~ COUNT). If

160 ADVANCED ATARI BASIC TUTORIAL

you try to define a screen with more than 192 lines, the program
will end with an error.

Lines 662 and 663 handle any case when the count of leftover
lines has fewer digits than the count just presented. It prevents a
transition from, for example, 102 to 94 from being presented as
"942." This is needed because the STR$ function begins with the
leftmost character and fills in only as many as needed to present
the whole number.

Line 670 calls subroutine 24000, which writes the data into the
status line area of the memory. No matter where the status line
appears on the screen, the same data will be used because that
is what you have specified in the display list.

Line 710 reads the keyboard. It accepts a single character
directly from the keyboard, rather than wait for the user to press
EIEEY This was arranged by line 300, which OPENed
IOCB#1 for keyboard reading.

Lines 715 through 730 give the various choices for routines to
perform for various keyboard values. Notice that, if none of the
possible choices are chosen, line 735 returns control to line 710;
that is, wait for a key again and check again if it is one of those
which are acceptable.

Line 750 is almost a duplicate of line 660. In fact, to enter it,
you may type

LIST GGe@

then edit the line number into 750, and change the rest of the line
as described here.

In line 750, the A, D, E, and X are normal video (not reversed),
and the word "MODE =" is reversed video. In this way, when this
line is printed into the status line area, the user is presented with
a very specific, single choice of what kinds of keys will work. No
keys other than the number keys, with values from 2 through 15,
will be accepted.

If you are entering a mode from 10 through 15, then the first
digit you enter will be a 1. That 1 is added to the status line and
line 759 walits for the second key entry to define the mode.

Line 770 calls the routine which writes the default data into
memory so that you will be able to see the new line you have
defined.

GETTING DIRECTLY INTO THE SCREEN DATA 161

The line-writing routine has several error codes which it can
output. Such errors are:

1. Too many mode lines being used (more than 192).

2. Not enough memory to hold the display data. (Line 20 only
reserves 4096 spaces, and a typical GRAPHICS 8 screen
needs twice as many memory locations to produce the full
screen. Additional data about this is contained in the sug-
gestions section of this chapter.)

Line 771 adds one to the line counter. This assures that the
editor will be able to get at all of the lines which have been
defined so far.

Line 800 starts the BASIC program part for the Delete function.
If the line counter is zero, then no lines can be deleted, so the
command is ignored.

Line 801 moves the display list position pointer up one position.
It subtracts 3 because each instruction in the display list takes
up three spaces (command, low address, high address).

Lines 802 and 803 calculate, from the command information,
how many lines are going to be reclaimed (made available again)
when this last line is deleted. This data is being taken directly
from the display list which is being constructed.

Lines 810 through 818 replace the mode definition and its ad-
dress with an instruction to jump to show the status line. This
eliminates the most recently defined line from the display list and
moves the status line up one position on the screen.

Even though the video lines have been reclaimed in count,
there is still one more task associated with the Delete function.
That is to reclaim the memory which has been used for this most
recently defined mode. Line 820 performs this function. The next
line which will be added will therefore reuse the data memory
area that has been vacated by the previously deleted mode.

Line 900 begins the Edit function. As a start, it will refuse to
enter the Edit mode if there is nothing defined on the screen for it
to edit.

Line 905 defines the new status line contents, showing M (for
Mode number) for the L (for Line) number on which the edit
cursor is sitting. C (for Cursor position) shows the horizontal
count position within the line it is on, and V (for Value) shows what

162 ADVANCED ATARI BASIC TUTORIAL

the value of the data at that location actually is. On the screen, a
graphic representation of the actual data appears in each of the
defined screen positions.

Lines 915 through 957 calculate the values which are shown in
the status line, then turn them into string constants so that a string
handling subroutine (24000) can put them into the right position
to appear in the status line.

Lines 970 through 999 get a user input without a
keypress, then direct the program to the section which processes
the key selected. Possible inputs are right cursor, left cursor, up
cursor, down cursor, or N (for New value).

Each of the cursor moves used in fines 1000 through 1310
check if the cursor is already at the limits of its possible move. If
it is possible to move the cursor in the desired direction, it will be
done. Then the program cycles back through line 915 to report
what happened on the status line.

It N is pressed, lines 1400 through 1600 change the mode line
to show only in reversed video, and accepts a
positive number from @ to 255. The character at the current cur-
sor position receives this new data value. It will show on the
screen, as well as being reported in the status line.

SUMMARY OF THE PROGRAM

1. The purpose of the program is to show graphically how a
display list is produced, and provides a tool which can be
used to build a display list and manipulate its data.

2. It produces a specialized form of display list in which each
line specifies the starting point of the memory where its data
may be found.

3. The program includes the ability to enable the horizontal and
vertical scrolling capability of the display processor; however,
the status line prompts do not currently provide a selection for
this mode. In addition, both the default data and the size of
the memory per line is fixed in the DATA statements. A full
display list builder would allow the size of the memory per line
to be individually defined, to allow for the use of special ef-

GETTING DIRECTLY INTO THE SCREEN DATA 163

fects. This was, however, beyond the scope of this book, and
is left as a challenge to the user.

4. Once the user understands display lists, he or she may de-
cide to modify this program to make it more useful or, per-
haps, faster, or add commands to save or load a display list
to or from the disk.

HOW TO USE THE PROGRAM

Type itin and SAVE it on disk or tape. Be sure you have entered
the program correctly. This is especially necessary with any pro-
gram which does POKEs directly to memory.

Type RUN. The screen will go blank and the program will type
"WORKING . . .” at the top of the screen. At this time, it will be
initializing some of its workspaces and reserving memory space
for you to work with.

NOTE: If you decide, at any point, to stop this program and
start it again, you MUST press before you try
to restart. This program changes location 106 to a number 16
lower than it was previously. Unless INRIIRNEIEEISE s
pressed, each time you IEIRIFXM, then RUN again, the contents
of location 106 will keep getting lower and lower. You will run out
of memory for your program. restores this
location to its original value for a new RUN.

When the status line comes up offering you Add, Delete, Edit,
eXit—press A (Add).

When it asks ITIeIsJIEN —press 7. You will see the status line
move down—a line of GRAPHICS 2 characters (5s) will appear
on this line you have just defined. The status line returns to nor-
mal, but the number on the right side says 176. This indicates
that you can define 176 more screen lines. The data shown in
Table 7-1 shows you exactly how many video lines each of the
modes will use, and how much of the data area each will use
also.

This program does not account for data area on the status line.
You have 3496 data positions available. Line 20 of the program,
in combination with line 550, defines this total (each number
value in location 106 defines 256 possible positions, so 16 * 256

164 ADVANCED ATARI BASIC TUTORIAL

= 4096, 4096 — 600 = 3496). If line 20 specified XMEM — 32,
you would have 3496 + 4096 positions available, or 7592. This
would be just about enough for a whole screen of GRAPHICS
MODE 8+ 16.

Now Add a mode line 2. The sequence is:

A
2

Then the status line moves down again, this time putting in a
whole line of capital Ms on a normal GRAPHICS MODE 0 line of
40 characters. This demonstrates that the mode lines which the
display processor uses are actually different numbers than are
normally referenced by BASIC. Table 7-1 indicates how the dis-
play processor modes relate to the GRAPHICS modes.

Now try to Delete a line (press D). The status line pops up one
position and in a couple of seconds the count of available video
lines is adjusted to reflect how many mode lines became avail-
able when it was deleted.

Add some more lines. Note that modes 8-15 take up very little
space on the vertical screen part. Be patient when the program
is adding these modes . . . there is more data to write, so it takes
longer before the status line is back to its first state.

Now that there is some data there to edit, go into Edit mode
(press E). If you still have mode 7 as the top line (the large 5s),
vou will see the status line read:

M=7 L=1 C=1 V=238 |Eil Il L

where, M = 7 says thisis mode 7on L = 1 (line 1) at C = 1
(cursor position points to leftmost character on this line), and
V = 85 shows its current value.

Push the right cursor arrow key (no control key, just that cursor-
labeled key directly). Each push of that key moves the C value
one higher.

Push the down cursor key. Notice that this increases the L
value by 1, but changes the C value to 1, from whatever value
you had it before this keypress. You see, each horizontal line has
its own edit cursor position. If you press the up cursor key, you
will see the C value jump back to where it was to start with.

GETTING DIRECTLY INTO THE SCREEN DATA

Push the N (New value) key. The status line changes to ask for
the new value before going on. When you enter a value from 0 to
255, inclusive, if the value is 99 or less, press the key.
Otherwise, just enter three digits (leading zeros such as 042, are
all right to use). The graphics character at the position you have
selected immediately changes to match the new value you have
entered for it.

Try to change other characters on the screen the same way.
Again, remember to be patient. This program is, after all, written
in BASIC and has not been optimized.

When you are finished with this experimenting, press Q (Quit).
It takes you back to the original status line. Press X (eXit).

Table 7-1. Display List Modes

Display Basic Kind Video | Memory No. of
Process | Graphics of Lines Per Colors
Mode Mode Display Used | Modeline | Possible
2 i characters 8 40 2.5
3 - " 10 40 2.5
4 12 8 40 5
5 13 16 40 5
6 1 8 20 5
7 2 ” 16 20 5
8 3 graphics 8 10 4
9 4 graphics 4 10 2
10 5 graphics 4 20 4
11 6 graphics 2 20 2
12 14 graphics 1 20 2
13 7 graphics 2 40 4
14 15 graphics 1 40 4
15 8 graphics 1 40 2.5
NOTES:

1. GRAPHICS MODES 12, 13, 14, and 15 (corresponding to
display processor modes 4, 5, 12, and 14) are not present
in the ATARI 400 and 800 computers. However, they are

present in all of the XL series.

2. The colors which you may display on the screen are shown
in your ATARI BASIC Reference Manual. These refer to the
possible selection of the colors from COLOR REGISTERS 0
through 4.

165

166

3.

ADVANCED ATARI BASIC TUTORIAL

When you see a designation “2.5" in the table, it means that
slightly more than two different colors can be made to ap-
pear onscreen within a mode line such as this. In particular,
the background color will appear as a border at the left and
right edge of this display line. The color of the basic line will
be selected from COLOR REGISTER 2, and the brightness
of the characters or dots within this mode line will still
have the color from COLOR REGISTER 2, but will have the
brightness value from COLOR REGISTER 1. Thus, BACK-
GROUND (1) plus COLOR2 (1) plus BRIGHTNESS1/
COLOR2 (0.5) makes the possible color selections on this
line “2.5.”

Table 7-2. Display List Instructions

Instruction

Value Kind of Action Taken by Display Processor

——Special Instruction Modes——

0 DISPLAY 1 blank line.

0 + 16n DISPLAY n+ 1 blank lines.

(Maximum instruction value 112, means
display 8 biank lines.)

1 JUMP to a new location, no other action (just
like a BASIC GOTO).

65 JUMP to a new location and wait for vertical
blank (wait for the start of display of a new
screen, happens once each e of a second).

——Display Instruction Modes——

2-15 DISPLAY a new line using this display
processor mode, assume that the data for this
mode is stored in memory immediately
following the data for the mode which was
previously defined.

1

MODIFIERS FOR INSTRUCTIONS 2-15:

. Add 64 if the memory-scan counter is to be loaded (define,

in the instruction, where the data for this mode line is to
start). Means that the instruction takes up 3 locations in the
display list instead of just 1. This is the method used in the
example program.

GETTING DIRECTLY INTO THE SCREEN DATA 167

2. Add 32 to the instruction to enable vertical scrolling.
POKEing a number from @ to 15 into location 54277 will
cause a vertical movement on any line which has this verti-
cal scrolling enabled.

3. Add 16 to the instruction to enable horizontal scrolling of a
line. POKEing a number from @ to 15 into location 54276
causes a line with horizontal scrolling enabled to move left
or right by a small amount.

4. Add 128 to the instruction to enable the “Display List Inter-
rupt.” This causes the display processor to interrupt the
main processor to do something special, such as change
the colors or perhaps change the movable object positions.
This topic is more advanced and requires the use of ma-
chine language. Again see the list of suggested reading for
more information on display lists.

THINGS TO WATCH OUT FOR

1. The display list cannot cross a 1024 location boundary in the
memory. You can test for this condition by:

Xo= GPOS - (INT (GPDS/1i@24) 1 +
iez4 - 3

If the value X reaches 0 as you are defining your display list, it
means that the next place you wish to put a display list instruc-
tion will go across a 1024-byte boundary. The “ —3” is there to
assure that you will have room in the display list to insert a
JUMP instruction into the list, in place of a regular display
instruction. Table 7-2 shows that a JUMP instruction is a “1,”
and is followed by the address to which the jump should take
place—low value, then high value of the address (see the
sample program, lines 445, 450). Once you have performed
the jump, it reloads a memory counter inside of the display
processor, and makes it ready to continue reading the display
list at the new location.

2. The display data cannot cross a 4096-byte boundary. You can
check this by:

¥ = DS - (INT (DS/409B8)) * 4996 -
MEMPERL INE (MODE)

168 ADVANCED ATARI BASIC TUTORIAL

It X is less than @, it means that the data will not fit into the
memory space you might expect that it will be in. You must
adjust DS this way:

DS = D8 - X

Since X is a minus value, subtracting a minus value actually
adds something to DS. Now you may proceed normally, since
this correctly adjusts DS for the memory boundary crossing.
(This is not in the demo program.)

REVIEW OF CHAPTER 7

This chapter has provided a tool, written in BASIC, which al-
lows you to produce and experiment with display lists. A display
list is a set of instructions which directs the actions of a separate
display processor inside of your ATARI computer. You tell it HOW
to display each video line or group of video lines on the screen,
and WHERE to find the data. After writing all of the instructions,
the list ends with a JUMP to the top of the list again. This tells the
display processor to get ready for the next time the screen is to
be produced.

If you define a standard sized screen, you may make the dis-
play list shorter by writing the list as:

DISPLAY 8 BLANK LINES

DISPLAY 8 BLANK LINES

DISPLAY 8 BLANK LINES

START A MODE X DISPLAY AT MEMORY LOCATION M
DO ANOTHER MODE X (don't add 64 to the mode #)
DO ANOTHER MODE X . . ., etc,,

for as many of those mode lines you may want.
JUMP AND WAIT VERTICAL BLANK (instruction type 65)

specifying low and high value part of address where the display
list starts.

APPENDIX

Suggestions for Further Reading

Here are listed some of the reference materials which have
been useful during the preparation of the ATARI BASIC tutorials.
You may wish to obtain them for your own use.

Mapping the ATARI. lan Chadwick, Compute! Books, 1983.

This is a very comprehensive listing of the memory locations
which have an effect on the way the ATARI 400 and 800 com-
puters work. It also includes brief, but effective, sample programs
which allow you to exercise certain functions. It can keep the
curious function-browser busy for many hours.

DE RE ATARI. Chris Crawford, ATARI, Inc., 1982.

This book, published by ATARI, contains additional information
about display lists, as well as an insight into some of the internal
workings of ATARI BASIC. It also includes a quick reference card
which has proved very useful in the writing of test programs for
the 400 and 800.

The ATARI BASIC Source Book. Bill Wilkinson, Compute! Books,
1983.

This was written by the programmer of ATARI BASIC, and con-
tains the complete source listing for the program itself. It is written

169

170 ADVANCED ATARI BASIC TUTORIAL

in machine code, but contains a full explanation showing how all
of the individual routines work. Those of you who really want to
get inside of ATARI BASIC might find this very useful.

ATARI Technical Reference Notes. ATARI, Inc., 1983.

This is the definitive reference to the operating inner function.
It may not be as “friendly” as the other references, but it contains
information which is difficult to find from any other source.

Index

A

Add, 151-153, 155, 159, 163

ADR (keyword), 32, 34

ANTIC, 136, 137, 143, 145, 146

Array, 93, 94, 103-112, 117-119, 122-
124, 126, 129, 138, 143

ASC (keyword), 11, 13, 33, 79, 85,
139, 158

ATARI (Key), 159

ATASCII value, 13, 14, 77, 113

BREAK (Key), 163
Byte, 116, 167

C

Central processor, 135, 136

CHRS$ (keyword), 33, 55, 60, 61, 71-
73,79, 85,137,138

CLOSE (keyword), 44, 46-51, 55, 57,
61,66, 73, 76, 88, 90, 91,
124, 126, 128, 129

COLOR REGISTERS, 165, 166

Copy file, DOS, 44, 80

CTRL (Key), 153

Cursor, 152, 153, 161

CURSOR, Arrow (Keys), 152, 153,
164
D

DATA (keyword), 52, 73, 74, 77, 78,
91, 93, 95, 104, 109, 112,
123, 124, 126, 143, 147,
159, 162

Data base manager, 88, 91, 101, 115

Data on cassette tape, 87

Data tracker, 93

Default value, 147

Delete, 50, 67, 78, 80, 151, 153, 155,
159, 161, 163, 164

DELETE (Key), 58, 59

DELETE/BACK S (Key), 53, 55, 56,
59, 99, 100

Device dependent, 12

DIM (keyword), 9, 10, 23-29, 32, 34,
44, 45, 47-51, 54, 58, 60,
64, 65, 69, 74, 79, 81, 84,
88, 90, 93, 95, 96, 104, 109,
111,123, 136, 138, 143,
147,149, 154

Disk operations, 11, 63

Display, 148, 150, 151, 166, 168

Display processor, 135, 136, 140,
141, 146, 162, 167

171

172 INDEX

Do-nothing loop, 88

DOS, 36, 37, 41-44, 48, 50, 62-64,
67,78, 80, 87, 88, 100, 101,
141,142

DOS. SYS, 36

DUP. SYS, 41

E

Edit, 151, 152, 155, 159, 161, 163,
164

Editor, 52, 60, 61, 63, 68, 69

Embedded keywords, 79, 101, 126

END (keyword), 44, 47, 48, 49, 61,
66, 73, 82, 85, 88, 91, 105,
109, 126, 130

ENTER (keyword), 39, 40, 43, 44, 46,
49, 50, 52, 56, 57, 62, 68,
74,77, 83, 89

Erase file, 12, 78

Error handling, 16-20, 45, 46, 78,
124,125, 129, 160, 161

eXit, 151, 155, 159, 163, 165

F

Fields, 134

File, backup, 43

File index, 42

FMS.SYS, 36

Format, disk, 43

FOR (keyword), 29, 30, 33, 34, 50,
82, 85, 88, 149

FOR-TO-NEXT (keyword), 30, 33, 34,
50, 55, 76, 82, 85, 86, 88,
90, 94,104, 109, 111, 119,
123, 124, 127-130, 137,
143, 147, 149, 154, 155,
157-159

FOR-TO-STEP (keyword), 75, 93,
104, 109, 110

Frame, 134

G

Garbage (characters), 97
Garbage collection, 22

GET (keyword), 11-13, 15, 21, 51, 63,

71,99, 118

GET# (keyword), 51, 53, 54, 58, 59,
61, 62, 66, 68, 70, 71, 73,
100, 140, 155, 156, 157

GOSUB (keyword), 16, 18, 19, 20,
71,110, 144, 145, 154-158

GOTO (keyword), 10, 11, 13, 14, 16,
44, 46-51, 53-55, 57, 58, 60,
62-73, 75,76, 79, 81, 82,
86, 88-90, 100, 116, 123,
125, 128, 139, 144,147,
148, 155-158, 166

GR.0 (keyword), 54, 58, 59, 61, 65,
66, 69-71, 73, 75, 78, 81,
83, 84, 90, 129, 134, 135,
138, 140, 143, 154, 156,
157, 164

GRAPHICS.1-24 (keyword), see
GR.0 and graphics mode

Graphics mode, 134-137, 139, 140,
143, 146, 161, 163, 164, 165

Graphics screen creator, 133

IF (keyword), 9, 10, 11, 168

IF-THEN (keyword), 14, 30, 54, 55,
58-61, 65, 69-73, 75, 76, 79,
82, 83, 85, 88, 96, 104, 106,
109, 111, 112, 126, 127,
128, 139, 144, 145, 155-157

IF-THEN-GOTO (keyword), 75

Indexed data segment, 89, 90, 91

Index file, 89, 98, 102, 115, 123

INPUT (keyword), 10, 12, 23, 27, 28,
39, 44-49, 51, 58, 63, 65,
69, 70, 75, 79, 81, 82, 84,
85, 96, 99, 139

INPUT# (keyword), 46-50, 75, 86,
88, 90, 91, 95, 125, 128-130

INSERT (Key), 56, 58, 59

INT (keyword), 29, 34, 149, 154, 158,
167

Interlace, 134

Interrupt bit, 146

IOCB (Input/Output Control Block),
12,13, 45, 51, 53, 54, 57,
63, 67, 78, 100, 101, 128,
131, 160

J

Jump instruction, 148, 150, 151, 161,
166-168

K
KCP.SYS, 36

L

Leftmost characters, 25, 67, 98, 113,
152

LEN (keyword), 23-25, 28-30, 33, 34,
55, 60, 61, 66, 68, 71, 72,
75,76, 79, 82, 85, 86, 96,
97,139

Line number, 14, 152, 161

LIST (keyword), 37-45, 47-50, 52, 56,
61, 62, 79, 89, 160

LOAD (keyword), 36, 38, 40, 42, 62,
89, 163

Load Memory Scan (LMS) bit, 146,
148, 166

LOCK (keyword), 78, 80, 101

Machine language, 22, 23, 141,170
Maximum-data-per-record, 91
Memory map, 141

Menu selection, 9

Mode number, 152, 161

Multiple key sort, 130

N

NEW (keyword), 38, 40-43, 46, 57,
62, 68, 79, 81, 83, 89, 90,
104, 136

New Value, 153, 156, 157, 161, 162,
165

NEXT (keyword), 29, 30, 33, 34, 50,
76, 82, 85, 88, 93, 105, 110,
112,124,128, 137, 147, 158

Normal-width piayfield, 134, 135,
141

NOTE (keyword), 86-89, 101, 102,
117,123

(o]

ON-GOSUB (keyword), 14, 15, 20,
105, 109, 110, 112
ON-GOTO (keyword), 9, 11, 14, 15,
20, 139

OPEN (keyword), 11-13, 15, 39, 44,
45, 47-51, 53-55, 57, 58, 60,
62-67, 69, 70, 74, 75, 81,
82, 86, 88-90, 100, 116,
123, 125, 128, 130, 140,
154, 160

INDEX 173

P

PEEK (keyword), 33-35, 69, 73, 82,
85, 125, 126, 141, 154, 156

POINT (keyword), 86, 88, 89, 91,
101,102, 116, 129, 130

POKE (keyword), 32, 33-35, 65, 69,
140, 141, 145, 147, 149,
150, 154-159, 163, 167

POP (keyword), 19-21

POSITION (keyword), 11,13, 71, 73,
79, 84, 85, 98, 99, 129, 139

Position numbers, 119

PRINT (keyword), 9, 10, 13, 23-25,
27-30, 32-34, 38, 42, 44, 46-
48, 50, 51, 53-55, 57-63, 65,
69-73, 75, 76, 79, 82-84, 88-
91, 99, 105, 109, 112, 124-
126, 129, 137-140, 147,
154, 156

PUT (keyword), 51, 62, 63

Q
Quit, 153, 156, 165

Random files, 86, 87, 89

READ (keyword), 52, 73, 74, 91, 104,
109, 111, 124, 143, 147, 154

Record keys, 115, 118, 132

REM (keyword), 9-11, 16, 17, 20, 27,
28, 33, 41, 53-55, 58-60, 66,
69, 70, 72-76, 78-86, 88, 90,
91, 93, 94, 96, 97, 100, 104,
105, 109-112, 123, 126-128,
136-138, 140, 142, 144,
145, 149, 150, 154-158

RENAME file, 12, 43, 78, 80

Resolution, 134

RESTORE (keyword), 91

RETURN (Key), 11, 12,17, 21, 23,
38, 41-43, 52, 54, 56-58, 83,
93, 99, 100, 104, 136, 153,
160, 162, 165

RETURN (keyword), 15, 17-20, 73,
97,105, 109, 112, 144, 145,

147,158, 159
Reverse video, 151, 153, 159, 160,
162

Rightmost characters, 24, 31, 35,
113

174 INDEX

RUN (keyword), 24, 30, 32, 37, 42,
45-48, 53, 55-57, 62, 83, 84,
90, 112, 137, 140, 163

S

SAVE (keyword), 36-38, 42, 48, 49,
53, 56, 62, 77, 83, 84, 89,
163

Scan line, 133, 143

Screen, 133, 134

Screen editor, 12, 99, 133, 140

Scrolling, 142, 144, 145, 154, 158,
162, 167

Search, 102

Search the directory, 83

Sector, 116

Selection number, 119

Sequential files, 87, 89, 115, 116,
131

Sort, 98, 102-104, 106-108, 110,
114-120, 122-124, 127, 130,
132

Sort, alphabetic, 110, 113, 114

Sort, bubble, 103, 106-111, 119,
121,122,126, 127, 131

Sort, insertion, 107, 108, 109, 131

Stack, 19

Stack pointer, 19

STEP (keyword), 75, 93

String, 10, 11, 22-35, 45-48, 54, 56,
67,74,75,77,87,92-94,
98, 101, 110, 111, 113, 117,
121,123, 162

Structured programming, 16

STRS (keyword), 74, 75, 155, 1586,
159, 160

Student list, 92, 115, 116

Sync, loss of, 135

SYSTEM RESET (Key), 141, 163

T

TAB (keyword}, 99

Tokenized, 37

TRAP (keyword), 17, 19, 20, 44, 45,
47-51, 57, 60, 66, 69, 75,
82, 83, 86, 90, 125, 154,
1565, 157

Truncating, 23

u
UNLOCK (keyword), 78, 80, 101

w

Wide playfield mode, 134
Wildcard, 48, 80
Write protect, 42, 50

X

X10 (keyword), 66, 67, 78, 79, 85,
101

w—

More Books
for
ATARI' Owners!

PROGRAMMER’S REFERENCE GUIDE FOR THE ATARI' 400™/800™
COMPUTERS

Just the two big chapters on graphics programming make this a real gold mine for ATARI * 400 ™/800™ owners
and programmers, but there’s also coverage of ATARI BASIC notation,rules,and limitations: math operations;
1/0; sound; screen display; the memory map; the 6502 instruction set, and more. Eight appendixes include
number base conversions, ATARI BASIC reserved words and tokens,character and keyboard codes, screen
RAM address ranges, error and status codes, and hardware details for the 400 and 800.

David L. Heiserman.

496 pages, 52 x 8%, comb-bound. ISBN 0-672-22277-9. <1984.

NO. 22277, e e $21.95

ATARI* FOR KIDS FROM 8 TO 80

You'll think you're at Computer Camp as these enjoyable and easy to follow, beginner-level BASIC program-
ming instructions help you quickly begin writing your own ATARI ®-compatible programs. You and other new
ATAR! Programmers of any age, especially youngsters, are encouraged to try many new things—and no
special background is needed.

Michael P. Zabinski and Eugene Scheck

224 pages, 812 x 11, softbound. ISBN 0-672-22294-9. <1984,

NO. 22204, e $15.95

BASIC ON THE ATARI' FOR KIDS

Usable by parents, teachers, children in kindergarten thru 3rd grade, and older but slower students as an
answer to the question, “What can we do with the home or classroom computer?” Contains a specific program
of computer instruction in short lessons that feature large print, simple vocabulary, and many practice activities.
Can be used for groups or independent study with any ATARI * computer having a BASIC cartridge.

Wyner and Wyner.

224 pages, 8'2 x 11, softbound. ISBN 0-672-22257-4. <1984.

NO. 2227, . .. e $12.95

ATARI’ BASIC TUTORIAL

Leads you through the practical ins and outs of BASIC programming, including color graphics and sound, on
all ATARI® home computer systems. Introduces the simple concepts first, then progresses to more advanced
items, often using a short, workable program element that becomes more complex as your knowledge in-
creases. Contains many debugged, self-documenting programs.

Robert A. Peck.

224 pages, 6 x 9, comb-bound. ISBN 0-672-22066-0. *1983.

NO. 22066, e $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR ATARI', Book 1

Thirty-eight fascinating and useful BASIC programs, including 4 real-time application programs; a reading
pacer, memory challenger, and 8 more educational; a bar-chart generator, IRAplanner, and 5 more on business
and investment; a message taker, medical expense recorder, and 4 more for the home: a joystick tester, stick
message writer, and 4 more using graphics and sound; a Tarot card reader: and 4 utilities for the programmer.
Howard Berenbon.

184 pages, 812 x 11, comb-bound. ISBN 0-672-22075-X. <1983.

NO. 22076, .. e $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR ATARLI', Book 2

More ready-to-run BASIC programs you can use! Includes 3 dungeons; 9 educational programs; a monthly
budget, food analysis, and weekly calendar plus 8 more home applications; a series on Money and investment;
and 2 programs on ESP.

Howard Berenbon.

224 pages, 82 x 11, comb-bound. ISBN 0-672-22092-X. <1983.

NO. 22002, ... e e $15.95

THE KIDS’ COMPUTER 1Q BOOK

Easily understood introduction to computers, written primarity for 8-to-1 2-year-olds but equally usable by the
whole family as a booster in computer literacy. Covers the hows and whys of today’s computers, forms a good
introduction to problem-solving and programming, and offers a basic foundation in computer science.
Buckholtz and Settel.

152 pages, 52 x 8%, softbound. ISBN 0-672-22082-2. <1983.

No.22082

WHAT DO YOU DO AFTER YOU PLUG IT IN?

Complete tutorial covering use of microcomputer hardware, software, languages, operating systems, data
communications, and more, followed by a second tutorial on workable solutions to the practical problems you'll
meet while using them. Also has good advice on choosing a system and the software to run it.

William Barden, Jr.

200 pages, 52 x 812, softbound. ISBN 0-672-22008-3. ©1983.

NO.22008. e $10.95

USER’S GUIDE TO MICROCOMPUTER BUZZWORDS

Ahandy quick-reference for those people who don't care what happens inside a microcomputer yet who must
know enough to be able to communicate with others who do. Provides an understanding of the basic terminol-
ogy you need to become “computer literate.” Contains many illustrations.

David H. Dasenbrock.

110 pages, 52 x 8%, softbound. ISBN 0-672-22049-0. 1983.

NO. 22040, e e e $9.95

HOW TO MAINTAIN AND SERVICE YOUR SMALL COMPUTER

Shows you easy maintenance and operating procedures to sharply reduce possible problems with any small
personal computer. in case of failure, it shows you how to diagnose what's wrong, identity the faulty part, and
make many simple, money-saving repairs yourself. A basic knowledge of electronics is needed for most
repairs.

Stephenson and Cabhilt,

224 pages, 8'2 x 11, softbound. ISBN 0-672-22016-4. = 1983,

NO. 22016, ... e e e i e s $17.95

MEGABUCKS FROM YOUR MICROCOMPUTER

Shows you how to make money using your microcomputer for creative writing, reviewing, and programming.
You'll learn about some dangers, get some tips on choosing the right microcomputer, and more.

Tim Knight.

80 pages, 8'2 x 11, softbound. ISBN 0-672-22083-0. <1983.

NO. 22083, ... e e e e e $3.95

HOWARD W. SAMS CRASH COURSE IN MICROCOMPUTERS (2nd Edition)

An outstanding single-book, self-study course for those who need to know a lot in a hurry about microcomput-
ers and programming. New chapters cover 8- and 16-bit microcomputing and BASIC programming, and an
expanded applications chapter covers new software. Helps you in computer classes, too. No previous com-
puter knowledge needed.

Louis E. Frenzel, Jr. -
320 pages, 82 x 11, comb-bound. ISBN 0-672-21985-9. © 1983,
NO. 2108, e e e $21.95

ELECTRONICALLY SPEAKING: COMPUTER SPEECH GENERATION

Teaches you the basics of generating synthetic speech with an Apple I, TRS-80¢, or other popular microcom-
puter. Includes technigues, a synthesizer overview, advice on what you can do about possible problem areas,
and a history of synthetic speech research since the 1800s.

John P. Cater

232 pages, 52 x 8%, softbound. ISBN 0-672-21947-6. <1982,

NO. 21047, L e e e e $14.95

ELECTRONICALLY HEARING: COMPUTER SPEECH RECOGNITION

Brings you up to date on voice command over computers and makes it possible for you to construct a voice
recognition system of your own from what you learn here. Clearly and understandably covers the practical
aspects of computer speech analysis and recognition for beginners in the field, including necessary math and
speech concepts. Also concentrates on software and hardware sysems and reviews what's available
commercially.

John P. Cater.

272 pages, 52 x 8%, softbound. ISBN 0-672-22173-X. <1984.

NO. 22173, L e e e e e $13.95

USING COMPUTER INFORMATION SERVICES

Shows you how to use your microcomputer to communicate with the national computer networks and their
wide range of services. Clearly explains what's available, how you can retrieve it, how to use your computer
as a powerful communications tool, and more.

Sturtz and Williams.

240 pages, 5'2 x 8Y2, softbound. ISBN 0-672-21997-2. ¢1983.

NO. 21997, L e $12.95

These and other Sams Books and Software products are available from better
retailers worldwide, or directly from Sams. Call 800-428-SAMS or 317-298-5566 to
order, or to get the name of a Sams retailer near you. Ask for your free Sams Books
and Software Catalog!

Prices good in USA only. Prices and page counts subject to change without notice.

Apple is a registered trademark of Apple Computer, Inc. ATARI is a registered trademark of ATARI, Inc. TRS-
80 is a registered trademark of Radio Shack, a Tandy Corporation.

Advanced ATARI
BASIC Tutorial

® Is written specifically for owners and users of ATARI computer systems

® Guides the reader step by step through advanced programming
techniques via practical examples

® Picks up where ATARI® BASIC Tutorial leaves off, following a progressive
format—each chapter builds on knowledge gained in previous chapters

* Concentrates on the use of the ATARI Disk Operating System (DOS) and
the commands necessary for efficient advanced programming techniques

. ® Helps users develop a working knowledge of the elements that make up

typical data base management programs, as well as how to modify and
apply these routines to the user’s own programming needs

* Contains numerous examples of debugged, self-documenting programs,

including a variety of sort techniques, how to use arrays, and graphics
applications of the ATARI computer systems

Howard W. Sams & Co., Inc.
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

$11.95/22067 ISBN: 0-672-22067-9

