\ghm l6s

PyTables User's Guide

Hierarchical datasets in Python - Release 2.1.2

Francesc Alted
Ivan Vilata
Scott Prater
Vicent Mas
Tom Hedley
Antonio Valentino
Jeffrey Whitaker

PyTabl es User's Guide: Hierarchical datasets in Python - Release

2.1.2
by Francesc Alted, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley, Antonio Valentino, and Jeffrey Whitaker

Published $L astChangedDate: 2009-09-12 18:34:40 +0200 (ds, 12 set 2009) $
Copyright © 2002, 2003, 2004 Francesc Alted

Copyright © 2005, 2006, 2007 Cérabos Coop. V.

Copyright © 2008, 2009 Francesc Alted

Copyright Notice and Statement for Py Tabl es User's Guide.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
a. Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

b. Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

c. Neither the name of Francesc Alted nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

[. The PyTables Core LIDIaryoooeiiiieeiii ettt ettt et e et e e ae e 1
O [L oo (0 1o o RSP PP PPPPPT 2
L1 MAIN FEAIUNES ...ttt ettt e et e et e e e 3
1.2, THE ODJECE THEE ...ttt ettt e e e et et eeenaa s 4
A N0 = 1 = o) o IO OPPPTPRTPPPPIN 8
2.1, INStallation frOM SOUICEuiiiiii ettt ettt e et e e e e e 8
2. 1.1 PrerQQUISITESeieeei ettt ettt 8

2.1.2. PyTables package installationcccoovieiiiiiiiiiiiiii e 9

2.2. Binary installation (WINAOWS)uieiiiuieiiii e 11
2.2.1. WindOWS PrerqUISITEScccvuneiiiiieeeeeie e 11

2.2.2. PyTables package installationcccooveiiiiiiiiiiinic e 11

I U (o) (- | TSSO TUPPPTRPPPIN 13
3L, GEING SEAMTE ... ceeeee et et 13
3.1.1. Importing tables OBJECtScoovveiiii 13

3.1.2. Declaring a Column DESCIIPLOLvceeuviieiiiiieeeei e 13

3.1.3. Creating a PyTables file from scratchc.ccoveviiiiiiiiiiiiincc, 14

3.1.4. Creating @ NEW GIOUD «....ceeeruneeeetieeeteiiaeeeeti e eeeri e eeeriaeeeerenas 14

3.1.5. Creating anew tableiiiiiiiiii e 15

3.1.6. Reading (and selecting) datain atable............ccooceviiiiiiiiiiiiiinnen, 16

3.1.7. Creating new array ODJECEScvevviieiiiiiiece e 17

3.1.8. Closing the file and looking at its contentcccceevevevineerennnnnn. 18

3.2. Browsing the ODJECE TrE8 ... ciiiii e 19
3.2.1. Traversing the ObJECt treeuviiieii e 19

3.2.2. Setting and getting user attributesSevveviiiiiiiiiiieei e, 21

3.2.3. Getting object metadatauueeiiiiieeiii e 24

3.2.4. Reading data from Array ODJECESuuieiiiiiiieiiiiieeeei e 26

3.3. Commiting data to tableS @Nd @rTaYSccuvuniiiii e 27
3.3.1. Appending data to an existing tableccooeeiiiiiiiiiiie 27

3.3.2. Modifying datain tablesocooviiiiiiiii 28

3.3.3. Modifying dat@ in arraysSuuveveeuiieieiiieeeei e e 30

3.3.4. And finaly... how to delete rowsfrom atable.............ccooveviieiins 30

3.4. Multidimensional table cells and automatic sanity checkscooevviviiiiiiiiiiiiiiineees 32
3.4.1. Shape CheCKINGuuiiiiiii e 33

3.4.2. Field name cheCkingoviiiiiiiiiii e 34

3.4.3. Data type CheCKIiNGcceuvuieiiiiie e 34

3.5. Exercising the Undo/Red0 fEALUIEoiiiiiiiiiiiii e 35
35.1 A DaSiC &XamMPIEcooveiii e 36

3.5.2. A more complete exampleovveiiiiiiei 38

3.6. USING ENUMETAEEA TYPESvvueiiiiii ettt ettt ettt ettt e et e e e ne e e enees 39
3.6.1. Enumerated COIUMNScoouuniiiiiii it 41

3.6.2. ENUMENELET @ITAYS .. .ceevvieeieiiieeeeii ettt 42

3.7. Dealing with nested StructuresS in tableSoiiiiiiiiii e 43
3.7.1. Nested table Creationc.uueieiiiiiieiiii e 43

3.7.2. Reading nested tablesooeiiiiiiiii 44

3.7.3. USING COlS CCESSON ... eeierieeetetiaeetetie e e et et e et e e et e e e 45

3.7.4. Accessing meta-information of nested tables...........coovviiviiiiiis 45

3.8. Other examplesin PyTables distribUtioncoooieiiiiiiiiii e 48
A, LiDrary REFEIENCE ...t ettt e e 49
4.1. tables variables and fFUNCLIONSooiiiiiiii e 49
4.1.1. Global variablesoiiiiiiiii 49

4.1.2. GlIobal TUNCLIONScieiii e 49

PyTables User's Guide

A.2. THE FIlE ClaSS ..ocvtieiie e e e e e 52
4.2.1. File instance variablesiviiiiiiiieiiiii e 52
4.2.2. File methods — filehandlingccocoiieiiiiiiii e 53
4.2.3. File methods — hierarchy manipulationcccoeeviviiiiineiinenn, 54
4.2.4. File methods — tree traversalcoovvvvviiiiiiiiiieie e 58
4.2.5. File methods — Undo/Redo SUPPOItevvvnieiiiieiiiieciiieeeeeeiiees 60
4.2.6. File methods — atttribute handlingccococoiviiiiiiiinin, 61
4.3, THE NOUE ClBSS ..ttt et e et e e e e e 62
4.3.1. Node instance variables — location dependentccceeeeennenen. 62
4.3.2. Node instance variables — location independentcccoeeeenneis 63
4.3.3. Node instance variables — attribute shorthands.................cc.ocoeevenn. 63
4.3.4. Node methods — hierarchy manipulationcccccovvevieeinnne. 63
4.3.5. Node methods — attribute handlingcccoooviiiiiiii e, 64
R N =Y € (o0 o ot P 64
4.4.1. Group instance variablescooevii i 65
4.4.2, Group MELNOOScovviiiieii e e 65
4.4.3. Group special MEthOdScveiiiiiiiiiei e 67
A5, The LEAF ClaSs .oovvviiiiiii e 69
45.1. Leaf instance variablescoevvviiiiiiiiee e 69
45.2. Leaf instance variables — aliaSeS........oovevviviiiiiiiiii e 70
45.3. Leaf MEhOOScovviiiiiiiieci e 70
A.6. The TADIE ClASS ...u it e et e e e e eeeate e aees 72
4.6.1. Table instance variableScooeviuiiiiiiii e 73
4.6.2. Table methods — readingccccciveviiiiiiin e 74
4.6.3. Table methods — WItINGovvviiiiiiciie e 77
4.6.4. Table methods — QUENYINGuevvviiiiiieii e 79
4.6.5. Table methods — othercoooviiiiiiii 81
4.6.6. The DESCription ClaSScc.uvveiiiiiiii e 82
4.6.7. TheE ROW ClaSS ...ccvvviiiiii i e 83
4.6.8. THE COIS ClaSS ...vuieiiiii e 85
4.6.9. The ColUMN ClESScoevviieiiiii e 87
N N ¢ =Y AN £ - Y = 90
4.7.1. Array instance variablescocouiiiiiii i 91
4.7.2. Array MELNOASoevniiiiici e 91
4.7.3. Array special Methodsooeviiieiiiiiii e, 92
T I 4T O AN 4 - (Y = 93
4.8.1. EXaMPIE OF USEiiviiiii i e 93
e N N 0N N g = VAo - 93
4.9.1. EArray MethodSoooviiiiiiiiii e 94
4.9.2. EXaMPIE OF USE ..u.iiiiiiiicci e e e 94
(O I o LY I N = YA - P 94
4.10.1. VLATrray instance variablesccoooeviiiiii i 95
4.10.2. VLATTay MEthOOScovviiiiiicii e 95
4.10.3. VLArray special methodsccooevviiiiiiiiiii e, 96
4.10.4. EXaMPIE OF USE ...cvviiiii i 97
4.11. The Unimplemented Classc.ueiiiniiiiii i e e e e e 98
4.12. The ARIDULESEL ClESS ... iiiiii et e s 98
4.12.1. Notes on native and pickled attributescccoccceveiiiiiiienns 98
4.12.2. AttributeSet instance variablescoveeiiiiiiiiii 99
4.12.3. AttributeSet MEthOaScccvviieiiiiieei e 99
A4.13. DEClAratiVe ClaSSES .. .ieevuieiiiii et 100
4.13.1. The Atom class and its descendants.cccoeviveeiiiiineeriiinnnnn. 100
4.13.2. The Col class and its descendantsSooevevviieeiiiiinneiiiinneeeiiennn, 107
4.13.3. The ISDEeSCription ClaSScccuueiiiiieiiie e e e 109

PyTables User's Guide

O T o= o PSSP 110
4.14.1. The FIErS ClasS ...oovvuiiiiii e 110
4.14.2. The INAEX ClaSS ...ccuuuiieiiii e 112
4.14.3. ThE ENUM ClESS ..ivvtiieiiiiii et 113
SR o111 40Tz 1o TR 1] 0P 116
5.1. Understanding ChUnKINgccuuoiiiiiiiieiie e e e e e e e e e e e e e e e eaens 116
5.1.1. Informing PyTables about expected number of rowsin tables or ar-
L= £ PP UPPPPRN 116
5.1.2. Fine-tuning the chunkKSIZEc.oiiiiiiii e 117
5.2. ACCElerating YOUr SEAICNESccuuiiiiiieiii et e e e e e et e e e e et e e aanaees 119
5.2.1. IN-Kernel SEarCheSoovvviiieiiiii e 120
5.2.2. Indexed SEArChESuiiiiiiiiecie e 122
5.2.3. Indexing and Solid State Disks (SSD)uevvvnieviiieiiiieviiieeeieeeennn, 125
5.2.4. Achieving ultimate speed: sorted tablesand beyond 126
5.3, COMPIESSION ISSUESevtuieeiieetteeateeeteest s e et eeetaeeat e e et e estn e eateesanaestnaeesnaeranaees 128
5.3.1. A study on supported compression libraries..........cccooceveveiieennnnn. 128
5.3.2. Shuffling (or how to make the compression process more effective)
... 133
N U L= T oo Yoo 135
5.5. Getting the most from the node LRU cachecocooiiiiiiiii i 137
5.6. Compacting your PyTablesS fil€Sccouuiiiiiiiiii e 138
[1. Complementary MOGUIESuiiiiieiii e e e e e e e e e e et e e et e et e e st e e st e eetn e eeneeaes 139
6. filenode - simulating a filesystem with PyTableSccooiiiiiiiiiii e, 140
6.1 What IS FIleN0UE? i er e e eaees 140
6.2. Finding a filenode NOEcouuiiiiiiii e e 140
6.3. filenode - simulating filesinside PyTableScc.ooeiiiiiiiiiiii e, 140
6.3.1. Creating anew filenodecccoovvviiiiiiiin e, 141
6.3.2.UsiNg afilenodecccouviiiiiiiii e 141
6.3.3. Opening an existing file nodecccoeeiiiiiiie e 142
6.3.4. Adding metadatato afilenode...........cccoeeviiiiiiii i, 142
6.4. COMPIEMENTANY NOESuuiiieiii e e e e e e e e e e e e e ean s 143
6.5, CUITent lIMItAHONSuuuiiiiiie e e et e e et e e e e 143
6.6. filenode MOdUIE FEfEIENCEuiiiiiii e 144
6.6.1. Global CONSLANESvvuieeiiiiieeeei e 144
6.6.2. Global FUNCLIONSuuiiiiiiiiceii e e 144
6.6.3. The FileNode abstract Classovveviviiiiiiiiiiiieiii e, 144
6.6.4. The ROFIIENOE ClaSSuviiiiiiiiiiiiii e 145
6.6.5. The RAFIIENOIE ClaSSviviiiiiiiiiiiee e 145
7. netcdf3 - a PyTables NetCDF3 emulation APloiiiiiii e 147
7.1 WhEt 1S NELCUI3? ..eeiiei e e e e e e e s 147
7.2. Using the tables.netCdf3 Packageovvvniiiiiiiiiie e 147
7.2.1. Creating/Opening/Closing a tables.netcdf3 file..............ccoeeevnnennnnn. 147
7.2.2. Dimensionsin atables.netcdf3 fileccoooeviiiiiiiiiiii e, 147
7.2.3. Variables in atables.netcdf3 fileocoeviiiiiiiiiiiic, 148
7.2.4. Attributes in atables.netcdf3 filevvvvviiiiiiiii 148
7.2.5. Writing data to and retrieving data from a tables.netcdf3 variable...... 149
7.2.6. Efficient compression of tables.netcdf3 variables.............cccccouven. 151
7.3. tables.netcdf3 package rEfErenCe i 151
7.3.1. Global CONSLANES ...evvveeeiii et e e 151
7.3.2. The NEtCDFFIIE Classuvveiiiiieeeie e 152
7.3.3. The NetCDFVariable classovveviiiiiiiiiiiieec e, 153
7.4. Converting between true netCDF files and tables.netcdf3 files.........ccoccveveiiiiiiinnnnnnn. 154
7.5. tables.netCdf3 file SLIUCIUMEvviiiii e 155
7.6. Sharing data in tables.netcdf3 files over the internet with OPeNDAPcccceevn. 155

PyTables User's Guide

7.7. Differences between the Scientific.|O.NetCDF APl and the tables.netcdf3 API 155

TN o= o 157
A. Supported data typesS in PYTableScouuiiiiiiiiii e e 158
B. CONAITION SYNMEAX .vtuiiiiiieii e e e e e e e e e e e e e e e e e et e e et e e et e e et e e et e eatn e e saneestn e eanneeannaees 160
C. PyTables parameter fillES.couiiiiiiii e e e r e 162
C.1. Tunable parameters in ParamMEtEIrS.PY. covuevvreeereeeiieeeie e e e e st e e ete e et e e e eaaeaeenaes 162

C.1.1. Recommended maxXimum VAlUESoveveeuiniereiiinnereiiinneeeninnns 162

C.1.2. CaChe lIMItS ... e e 162

C.1.3. Parameters for the I/O buffer in Table objects.cooevvveeinnnnnnn, 163

C.1LA. MISCEIBNEOUSeeieiiieeeeii et 163

C.2. Tunable parameters in _parameters Pro.PY. ..ueeeeeeeeeiererieeeueeeiiierseeesneeeirerreerennns 163

C.2.1. Parameters for the different internal caches............ccccoevveiiiinninis 163

C.2.2. Parameters for general cache behaviourcccccoeviviiiiiinnnnnnn. 164

D. USING NESLEA FECOTT @ITAYS ..evvuirrneiii ettt et e e et e e et e e et eeett e e et e e et e e st e ean e ett e estnaestneeetnaeeanaees 165
[200 [oo B 1o o T PP 165

D.2. NestedReCATITay MELNOGSccuuiiiiieiii e e e e e e 167

D.3. NestedReCOrd ODJECESovviiii e e e 168

T U] = PP 169
TN o) o L1 oo 169

o T U L= o = PP 169

E.1.2. A small tutorial on ptdumpccoooeviiieiiii e 169

I o= ¢ 7= o P 171

I T U L= o = PP 171

E.2.2. A small tutorial on ptrepackcoveveiiiiiiiiiiii e 172

TR N o o1 (0] L T PRSP 175

N T U L= o = PP 175

e VA o 1= L= o0 7= P 177
F.1. Mandatory attributes for aFileoovuiiiiiii e 177

F.2. Mandatory attributes fOr @ GrOUPcceuueiiiieii e e e e e 177

F.3. Optional attributeS fOr @ GrOUDeiviiiiii e e e 177

F.4. Mandatory attributes, storage layout and supported data types for Leaves..................... 178

FAL Table fOrmat ..ooovvnieiiiie e 178

F.A.2. Array fOrmMalooviiii e 180

F.4.3. CArray formatooeuiiiniiiie e 181

F.A4.4. EArray fTOrmMatoovviiiii e 181

F.A5. VLArray fOrmatcocoviiiiiiiiie e 182

F.5. Optional attributes fOr LEAVEScc.vuiiiiiiiiii e 183

[1] o] oo r="o] /R 184

Vi

List of Figures

1.1. An HDF5 example with 2 subgroups, 2 tables and L ara.coeuuuieieiiiieiii e 6
1.2. A PyTables ObJECt tree @XaMPIE.coeeiiieiiii ettt e e 7
3.1. Theinitial version of the data file for tutorial 1, with aview of the data objects.ccccoeiviiiviiniernnnnn, 19
3.2. The final version of the data file for tUtOrial L.oiiiiiiiii e 31
3.3. General properties of the /detector/readout table.ccooviiiiiiii 31
3.4. Table hierarchy fOr TULOMTEl 2.couuiieiiii et e e 35
5.1. Creation time per element for a 15 GB EArray and different chunksizes.oooiiiiiiiiin s 117
5.2. File sizes for a 15 GB EArray and different ChunKSIZES.oooiiiiiiiiiiiii e 118
5.3. Sequential access time per element for a 15 GB EArray and different chunksizes.cccoccoiviiiinnnin. 118
5.4. Random access time per element for a 15 GB EArray and different chunksizes.cooccoiiiiiiinen. 119
5.5. Times for non-indexed complex queriesin asmall table with 10 millions of rows: the data fitsin memory.
... 120
5.6. Times for non-indexed complex queriesin alarge table with 1 billion of rows: the data does not fit in

001 01010 PP 121
5.7. Times for indexing an INt32 and FIOat64 COIUMMN.ciiuiiiiiii e 123
5.8. Sizes for an index of a Float64 column with 1 billion of rOWS.ooviiiiiiiiii e 124

5.9. Times for complex queries with a cold cache (mean of 5 first random queries) for different optimization

levels. Benchmark made on a machine with Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk stor-

50| P PPTPRP 124
5.10. Times for complex queries with a cold cache (mean of 5 first random queries) for different compressors.

... 125
5.11. Times for complex queries with a cold cache (mean of 5 first random queries) for different disk storage

(SSD VS SPINNING QISKS). .vueiiitieee ettt ettt e e e ettt e e ettt e e et et e e et et e e et e b e e e era s 126
5.12. Times for complex queries with a cold cache (mean of 5 first random queries) for unsorted and sorted

1= o 1= TS UP PP 127
5.13. Comparison between different compression liDraries. ... 129
5.14. Comparison between different compression levelS of ZIiD.oooiiiiiiiiii 129
5.15. Writing tables with Several COMPIESSOIS.ciierieeiii ettt e e e e e e e et e e eees 130
5.16. Selecting values in tables with several compressors. Thefileisnotinthe OScache.cccoevveeiiiies 131
5.17. Selecting values in tables with several compressors. Thefileisinthe OScache. ..., 131
5.18. Writing in tables with different levels of COMPreSSION.viieiiiiiiiii e 132
5.19. Selecting values in tables with different levels of compression. Thefileisin the OS cache. 132
5.20. Comparison between different compression libraries with and without the shuffle filter. 133
5.21. Writing with different compression libraries with and without the shufflefilter.cccoooiiiinn, 134
5.22. Reading with different compression libraries with the shufflefilter. Thefileisnot in OS cache. 134
5.23. Reading with different compression libraries with and without the shuffle filter. The fileisin OS cache.
... 135
5.24. Writing tables With/WIthOUL PSYCO.cuuuiiiiiiiii et eeeas 136
5.25. Reading tables With/WIthOUL PSYCO.iiiiiii e 137

Vii

List of Tables

5.1. Retrieval speed and memory consumption depending on the number of nodesin LRU cache. 138
A.1. Datatypes supported for array elements and tables columns in PyTables.ccoovviiiiiiiiiiiniiiieeis 158

viii

Part I. The PyTables Core Library

Chapter 1. Introduction

La sabiduriano vale la penasi no es posible servirse de ella para
inventar una nueva manera de preparar |os garbanzos.

[Wisdom isn't worth anything if you can't use it to come up with a new
way to cook garbanzos.]

--Gabriel GarciaMarquez, A wise Catalan in " Cien afios de soledad"

The goal of PyTables is to enable the end user to manipulate easily data tables and array objects in a hierarchical
structure. The foundation of the underlying hierarchical data organization isthe excellent HDF5 library (see[1]).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only
to provide aflexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically bigger than available
memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have the same
structure and al values in each field have the same data type. The terms fixed-length and strict data types may seem
to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to
savevery large quantities of data (such asis generated by many data acquisition systems, Internet services or scientific
applications, for example) in an efficient manner that reduces demand on CPU time and 1/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special class so asto easily
define al itsfields and other properties. PyTables also provides a powerful interface to mine datain tables. Records
in tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with named fields and type infor-
mation, such asin the following example:

class Particle(lsDescription):

nane = StringCol (16) # 16-character String

i dnunber = I nt64Col () # signed 64-bit integer
ADCcount = Ul nt 16Col () # unsi gned short integer
TDCcount = Ul nt 8Col () # unsi gned byte

grid_i = I nt 32Col () # i nteger

grid_j = I nt 32Col () # i nteger

cl ass Properties(lsDescription): # A sub-structure (nested data-type)
pressure = Fl oat 32Col (shape=(2,3)) # 2-D fl oat array (single-
preci si on)
ener gy = Fl oat 64Col (shape=(2, 3,4)) # 3-D float array (doubl e-
preci si on)

Y ou then passthis classto the table constructor, fill its rowswith your values, and save (arbitrarily large) collections of
them to afilefor persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables
or even with another HDF5 application (in C, Fortran, Java or whatever language that provides alibrary to interface
with HDF5).

Other important entities in PyTables are array objects, which are analogous to tables with the difference that all of
their components are homogeneous. They come in different flavors, like generic (they provide a quick and fast way

Introduction

to deal with for numerical arrays), enlargeable (arrays can be extended along a single dimension) and variable length
(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

1.1. Main Features

PyTables takes advantage of the object orientation and introspection capabilities offered by Python, the powerful data
management features of HDF5, and NumPy's flexibility and high-performance manipulation of large sets of objects
organized in a grid-like fashion to provide these features:

Support for table entities: Y ou can tailor your dataadding or deleting recordsin your tables. Large numbers of rows
(up to 2**63, much more than will fit into memory) are supported as well.

Multidimensional and nested table cells: You can declare a column to consist of values having any number of
dimensions besides scalars, which is the only dimensionality allowed by the majority of relational databases. Y ou
can even declare columns that are made of other columns (of different types).

Indexing support for columns of tables: Very useful if you have large tables and you want to quickly look up for
values in columns satisfying some criteria.

A
& Note
Pro

Column indexing is only available in PyTables Pro.

Support for numerical arrays: NunPy (see[8]), Nurmer i ¢ (see[9]) and numar r ay (see[10]) arrays can be used
as a useful complement of tables to store homogeneous data.

Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want (but only
one). Besides, you are able to accessjust aslice of your datasets by using the powerful extended slicing mechanism,
without need to load all your complete dataset in memory.

Variable length arrays: The number of elements in these arrays can vary from row to row. This provides alot of
flexibility when dealing with complex data.

Supports a hierarchical data model: Allows the user to clearly structure all data. PyTables builds up an object tree
in memory that replicates the underlying file data structure. Access to objects in the file is achieved by walking
through and manipulating this object tree. Besides, this object treeisbuilt in alazy way, for efficency purposes.

User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape, flavor,
etc.) the user may specify arbitrary metadata (as for example, room temperature, or protocol for |P traffic that was
collected) that complement the meaning of actua data

Ability to read/modify generic HDF5 files: PyTables can access awide range of objectsin generic HDF5 files, like
compound type datasets (that can be mapped to Tabl e objects), homogeneous datasets (that can be mapped to
Ar r ay objects) or variable length record datasets (that can be mapped to VLAY r ay objects). Besides, if a dataset
is not supported, it will be mapped to a special Unl npl ement ed class (see Section 4.11), that will let the user
see that the data is there, although it will be unreachable (still, you will be able to access the attributes and some
metadata in the dataset). With that, PyTables probably can access and modify most of the HDF5 files out there.

Data compression: Supports data compression (using the Zlib, LZO and bzip2 compression libraries) out of the box.
This isimportant when you have repetitive data patterns and don't want to spend time searching for an optimized
way to store them (saving you time spent analyzing your data organization).

Introduction

» High performance 1/0: On modern systems storing large amounts of data, tables and array objects can be read
and written at a speed only limited by the performance of the underlying 1/0 subsystem. Moreover, if your datais
compressible, even that limit is surmountabl e!

» Support of filesbigger than 2 GB: PyTables automatically inherits this capability from the underlying HDF5 library
(assuming your platform supports the C long long integer, or, on Windows, __int64).

* Architecture-independent: PyTables has been carefully coded (as HDF5 itself) with little-endian/big-endian byte
ordering issuesin mind. So, you can write afile on abig-endian machine (like a Sparc or MIPS) and read it on other
little-endian machine (likean Intel or Alpha) without problems. In addition, it has been tested successfully with 64 bit
platforms (Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with 64 bit aware compilers.

1.2. The Object Tree

The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in a tree-like
structure. In order to achieve this, an object tree entity is dynamically created imitating the HDF5 structure on disk.
The HDF5 objects are read by walking through this object tree. Y ou can get a good picture of what kind of datais
kept in the object by examining the metadata nodes.

The different nodesin the object tree are instances of PyTables classes. There are several types of classes, but the most
important ones arethe Node, G- oup and Leaf classes. All nodesin aPyTablestree are instances of the Node class.
The Gr oup and Leaf classes are descendants of Node. G- oup instances (referred to as groups from now on) are
a grouping structure containing instances of zero or more groups or leaves, together with supplementary metadata.
Leaf instances (referred to asleaves) are containers for actual data and can not contain further groups or leaves. The
Tabl e, Array, CArray, EArray, VLAr r ay and Unl npl enent ed classes are descendants of Leaf , and inherit
all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem,
i.e. anode (file or directory) is always a child of one and only one group (directory), its parent group ! Inside of that
group, the node is accessed by its name. As is the case with Unix directories and files, objects in the object tree are
often referenced by giving their full (absolute) path names. In PyTables this full path can be specified either as string
(suchas' / subgroup?2/tabl e3', using/ asaparent/child separator) or as a complete object path written in a
format known as the natural name schema (such asfi | e. r oot . subgr oup2. t abl e3).

Support for natural naming is a key aspect of PyTables. It means that the names of instance variables of the node
objects are the same as the names of its chil dren?. Thisi svery Pythonic and intuitivein many cases. Check thetutorial
Section 3.1.6 for usage examples.

Y ou should also be aware that not all the data present in afileisloaded into the object tree. The metadata (i.e. special
datathat describesthe structure of the actual data) isloaded only when the user want to accesstoit (seelater). Moreover,
the actual datais not read until she request it (by calling a method on a particular node). Using the object tree (the
metadata) you can retrieve information about the objects on disk such as table names, titles, column names, data types
in columns, numbers of rows, or, in the case of arrays, their shapes, typecodes, etc. Y ou can also search through the
tree for specific kinds of data then read it and process it. In a certain sense, you can think of PyTables as atool that
applies the same introspection capabilities of Python objects to large amounts of data in persistent storage.

It is worth noting that PyTables sports a metadata cache system that loads nodes lazily (i.e. on-demand), and unloads
nodes that have not been used for some time (following a Least Recently Used schema). It is important to stress out
that the nodes enter the cache after they have been unreferenced (in the sense of Python reference counting), and
that they can be revived (by referencing them again) directly from the cache without performing the de-serialization
process from disk. This feature allows dealing with files with large hierarchies very quickly and with low memory
consumption, while retaining all the powerful browsing capabilities of the previous implementation of the object tree.
See [19] for more facts about the advantages introduced by this new metadata cache system.

1PyTabI&s does not support hard links —for the moment.
2 got this simple but powerful ideafrom the excellent Cbj ect i f y module by David Mertz (see[4])

Introduction

To better understand the dynamic nature of this object tree entity, let's start with a sample PyTables script (which you
canfindinexanpl es/ obj ecttree. py) to createan HDF5 file:

fromtables inmport *

class Particle(lsDescription):

identity = StringCol (itemnsize=22, dflt=" ", pos=0) # character String
i dnumber = Int16Col (dflt=1, pos = 1) # short integer
speed = Fl oat 32Col (df I t=1, pos = 1) # single-precision

Open a file in "wWrite node

fileh = openFil e("objecttree. h5", node = "w')
CGet the HDF5 root group

root = fileh.root

Create the groups:

groupl = fileh.createG oup(root, "groupl")

group2 = fileh.createG oup(root, "group2")

Now, create an array in root group

arrayl = fileh.createArray(root, "arrayl", ["string", "array"], "String
array")

Create 2 new tables in groupl

tablel = fil eh.createTabl e(groupl, "tablel”, Particle)
table2 = fil eh.createTabl e("/group2", "table2", Particle)
Create the |last table in group2

array2 = fileh.createArray("/groupl”, "array2", [1,2,3,4])

Now, fill the tables:

for table in (tablel, table2):
CGet the record object associated with the table:
row = table.row
Fill the table with 10 records

for i in xrange(10):
First, assign the values to the Particle record
row'identity'] = "'This is particle: %®d % (i)
row 'idnumber'] =i
row 'speed'] =1 * 2.
This injects the

2
Record val ues
row. append()

Flush the table buffers
tabl e. fl ush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

Thissmall program createsasimple HDF5 file called obj ect t r ee. h5 with the structure that appearsin Figure 1.1
3. When thefileis created, the metadatain the object tree is updated in memory while the actual datais saved to disk.
When you close the file the object tree is no longer available. However, when you reopen this file the object tree will
be reconstructed in memory from the metadata on disk (this is done in alazy way, in order to load only the objects
that are required by the user), allowing you to work with it in exactly the same way as when you originally created it.

3We have used ViTables (see[21]) in order to create this snapshot.

Introduction

' * ViTables 2.0 2 WIA O
File Node Query Windows Tools Help

1T EQHE B & 101 x Y &8

|Tree of databases | | tablel
=-fir objecttree.h5 identity [idnumber speed =
g arrayl e e
- 1:'This is particle: 0 0.0 L
[group2
table2 2|'This is particle: 1' 2.0
_E [groupl 3| 'This is particle: 2' 4.0
: -~ tablel
&8 array2 4|'This is particle: 3' 6.0
Query results 5|'This is particle: 8.0 @
T — T ™ |

EH arrayl St...
|1 |1

1| 'string’ 1|1
2|'array’ 2|2

OK!

All TIgnLs reserved.
Creating the Query results file... E

|objecttree.h5—>lgrouplr‘tablel

Figure 1.1. An HDF5 example with 2 subgroups, 2 tablesand 1 array.

In Figure 1.2 you can see an example of the object tree created when the above obj ect t r ee. h5 fileisread (in fact,
such an object tree is always created when reading any supported generic HDF5 file). It is worthwhile to take your
time to understand it % . It will hel p you understand the relationships of in-memory PyTables objects.

“Bear in mind, however, that this diagram is not a standard UML class diagram; it is rather meant to show the connections between the PyTables
objects and some of its most important attributes and methods.

Introduction

fileObject(File)

+nane:
+root:

string = "objecttree. h5"
Group = root G oupbj ect

+cr eat eG oup(wher e: Group, name: string): G oup
+cr eat eTabl e(wher e: G oup, nane: string, description:|sDescription): Table
+creat eArray(where: G oup, name: string, obj ect:array): Array
+cl ose()
rootGroupObject(Group)
+_v_name: string = "/"
+groupl: Group = groupObjectl
+group2: Group = groupObject?2
+arrayl: Array = arrayQbjectl
arrayObjectl1(Array)
+nane: string = "arrayl"
+read(): array
groupObject1l(Group) groupObject2(Group)
+_v_nane: string = "groupl” +_v_nane: string = "group2"
+tabl el: Table = tableObjectl +t abl e2: Table = tabl eObject?2

+array2: Array = arrayQObject?2

tableObjectl(Table)

+nane: string = "tablel"

+row. Row = rowObjectl

+read(): table
arrayObject2(Array)
+nane: string = "array2"

rowObjectl(Row) +read(): array

+["identity']: string

+["idnunber']: int16

+["'speed']: float32

+nrow. int64

+append()

Figure 1.2. A PyTables object tree example.

tableObject2(Table)

+nane: string = "table2"
+row. Row = row(bj ect 2

+read(): table
rowObject2(Row)
+["identity']: string
+['idnunber']: intl6
+[' speed']: int32
+nrow. int64
+append()

Chapter 2. Installation

Make things as simple as possible, but not any simpler.
--Albert Einstein

The Python Di st uti | s are used to build and install PyTables, so it is fairly ssimple to get the application up and
running. If you want to install the package from sources you can go on reading to the next section.

However, if you are running Windows and want to install precompiled binaries, you can jump straight to Section 2.2.
In addition, binary packages are available for many different Linux distributions, MacOSX and other Unices. Just
check the package repository for your preferred operating system.

2.1. Installation from source

These instructions are for both Unix/MacOS X and Windows systems. If you are using Windows, it is assumed that
you have arecent version of M5 Vi sual C++ compiler installed. A GCC compiler is assumed for Unix, but other
compilers should work as well.

Extensions in PyTables have been developed in Pyrex (see [5]) and the C language. Y ou can rebuild everything from
scratch if you have Pyrex installed, but thisis not necessary, as the Pyrex compiled source is included in the source
distribution.

To compile PyTables you will need arecent version of Python, the HDF5 (C flavor) library from http://hdfgroup.org/,
and the NunPy (see[8]) package. Although you won't need numar r ay (see[10]) or Nurner i ¢ (see[9]) in order to
compile PyTables, they are supported; you only need a reasonably recent version of them (>= 1.5.2 for numarray and
>=24.2 for Numeric) if you plan on using them in your applications. If you already have numar r ay and/or Nuner i ¢
installed, thetest driver module will detect them and will run thetestsfor numar r ay and/or Nurrer i ¢ automatically.

2.1.1. Prerequisites

First, make surethat you have at least Python 2.4, HDF5 1.6.5 and NumPy 1.2 or higher installed (for testing purposes,
we are using HDF5 1.6.9/1.8.3 and NumPy 1.3 currently). If you don't, fetch and install them before proceeding.

Compile and install these packages (but see Section 2.2.1 for instructions on how to install precompiled binariesif you
are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the ZI i b (see [12]), which is aso
required by HDF5 as well. Y ou may aso optionally install the excellent LZO compression library (see [13] and Sec-
tion 5.3). The high-performance bzip2 compression library can also be used with PyTables (see [14]).

Unix set up. py will detect HDF5, LZO, or bzi p2 librariesand includefilesunder / usr or/ usr /| ocal ;
thiswill cover most manual installationsaswell asinstallationsfrom packages. If set up. py cannot find
I'i bhdf 5 (orli bl zo,orl i bbz2 that you may wish to use) or if you have several versionsof alibrary
installed and want to use a particular one, then you can set the path to the resource in the environment, by
setting the values of theHDF5_DI R, LZO DI R, or BZI P2_DI Renvironment variablesto the path to the
particular resource. Y ou may also specify the locations of theresourceroot directoriesontheset up. py
command line. For example:

--hdf 5=/ stuff/hdf5-1.8.3
--1zo=/stuff/l zo-2.02

http://hdfgroup.org/

Installation

Windows

- - bzi p2=/ st uf f/ bzi p2- 1. 0. 4

If your HDF5 library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--1flags="-Xlinker -rpath -Xinker /stuff/hdf5-1.8.3/Iib"

Youmay alsowant totry settingthe LD _LIBRARY _PATH environment variableto point to the directory
where the shared libraries can be found. Check your compiler and linker documentation as well as the
Python Di st uti | s documentation for the correct syntax or environment variable names.

It isaso possible to link with specific libraries by setting the LI BS environment variable:

LI BS="hdf5-1.8.3 nsl "

Finally, you can give additional flags to your compiler by passing them to the - - cf | ags flag:
--cflags="-w - 3"

In the above case, agcc compiler is used and you instructed it to suppress al the warnings and set the
level 3 of optimization.

You can get ready-to-use Windows binaries and other development files for most of the following li-
braries from the GnuWin32 project (see [15]). Unfortunately, the LZO binaries have disappeared from
the Gnuwin32 repository lately. So, until they are eventually back there again, you can find them at http://
www.pytables.org/download/lzo-win.

Once you have installed the prerequisites, set up. py needs to know where the necessary library stub
(- I'i b) and header (. h) filesareinstalled. Y ou can set the pathtothei ncl ude anddl | directoriesfor
the HDF5 (mandatory) and LZO or BZIP2 (optional) librariesin the environment, by setting the val ues of
theHDF5_DI R,LZO DI R, or BZI P2_DI Renvironment variablesto the path to the particular resource.
For example:

set HDF5 DI R=c:\stuff\5-165-win
set LZO DI R=c:\ GhuW n32
set BZI P2_DI R=c: \ GhuW n32

You may also specify the locations of the resource root directories on the set up. py command line.
For example:

--hdf5=c:\stuff\5-165-wi n
--l zo=c:\ GhuW n32
--bzi p2=c: \ GhuW n32

2.1.2. PyTables package installation

Once you haveinstalled the HDF5 library and the NumPy package, you can proceed with the PyTables package itself:

1. Run this command from the main PyTables distribution directory, including any extra command line arguments
as discussed above:

pyt hon setup.py build ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many warnings.
Don't worry, amost all of them are caused by variables declared but never used. That's normal in Pyrex extensions.

2. Torun thetest suite, execute any of these commands:

http://www.pytables.org/download/lzo-win
http://www.pytables.org/download/lzo-win

Installation

Unix Inthe sh shell and its variants:

PYTHONPATH=. : $PYTHONPATH pyt hon tabl es/tests/test_all. py

or, if you prefer:

PYTHONPATH=. : $PYTHONPATH python -c "inport tables; tables.test()"
Windows Open the command prompt (crd. exe or command. con) and type:

set PYTHONPATH=. ; %°YTHONPATHY.
pyt hon tables\tests\test _all.py

or:

set PYTHONPATH=. ; %°YTHONPATHY.
python -c "inport tables; tables.test()"

Both commands do the same thing, but the latter still works on an already installed Py Tables (so, thereisno need to
set the PY THONPATH variable for this case). However, before installation, the former is recommended because
itis moreflexible, as you can see below.

If youwould like to see verbose output from the tests simply add the - v flag and/or theword ver bose to thefirst
of the command lines above. Y ou can aso run only the testsin a particular test module. For example, to execute
justthet est _t ypes test suite, you only have to specify it:

pyt hon tables/tests/test _types.py -v # change to backsl ashes for win

Y ou have other optionsto passtothet est _al | . py driver:

pyt hon tables/tests/test _all.py --heavy # change to backsl ashes for wn

The command above runs every test in the test unit. Beware, it can take alot of time, CPU and memory resources
to complete.

pyt hon tables/tests/test _all.py --show versions # change to backsl ashes for
win

The command above shows the versions for all the packages that PyTables relies on. Please be sure to include this
when reporting bugs.

pyt hon tables/tests/test _all.py --shownenory # only under Linux 2.6.X

The command above prints out the evolution of the memory consumption after each test module completion. It's
useful for locating memory leaks in PyTables (or packages behind it). Only valid for Linux 2.6.x kernels.

And last, but not least, in case atest fails, please run the failing test module again and enabl e the verbose outpuit:
pyt hon tabl es/tests/test <nodul e>. py -v verbose

and, very important, obtain your PyTablesversion information by using the- - show ver si ons flag (see above)
and send back both outputs to devel opers so that we may continue improving PyTables.

If you run into problems because Python can not load the HDF5 library or other shared libraries:

10

Installation

Unix Try setting the LD_LIBRARY _PATH or equivalent environment variable to point to the directory
where the missing libraries can be found.

Windows Put the DLL libraries (hdf 5dI | . dl | and, optionaly, | zol. dl | and bzi p2. dl |') in adirecto-
ry listed in your PATH environment variable. The set up. py installation program will print out a
warning to that effect if the libraries can not be found.

3. Toinstall the entire Py Tables Python package, change back to the root distribution directory and run the following
command (make sure you have sufficient permissions to write to the directories where the PyTables files will be
installed):

pyt hon setup. py install

Of course, you will need super-user privilegesif you want to install PyTables on a system-protected area. Y ou can
select, though, adifferent place to install the package using the - - pr ef i x flag:

pyt hon setup.py install --prefix="/home/nyuser/nystuff"

Have in mind, however, that if you usethe - - pr ef i x flag to install in a non-standard place, you should properly
setup your PYTHONPATH environment variable, so that the Python interpreter would be able to find your new
PyTables installation.

Y ou have more installation options available in the Distutils package. Issue a
pyt hon setup.py install --help
for more information on that subject.

That'sit! Now you can skip to the next chapter to learn how to use PyTables.

2.2. Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it useful for
instructions on how to install binary prerequisites even if you want to compile PyTablesitself on Windows.

2.2.1. Windows prerequisites

First, make sure that you have Python 2.4 or higher and NumPy 1.2 or higher installed (PyTables hinaries have been
built using NumPy 1.3). The binaries already include DLLsfor HDF5 (1.6.9), zlibl (1.2.3), szlib (2.0, uncompression
support only) and bzip2 (1.0.4). TheLZO DLL can't beincluded because of licenseissues (but read below for directives
toinstal it if you want so).

To enable compression with the optional LZO library (see the Section 5.3 for hints about how it may be used to
improve performance), fetch and install the LZO (choose v1.x, LZOv2.x is not supported in precompiled Windows
builds) from http://www.pytabl es.org/download/Izo-win. Normally, you will only need to fetch that package and copy
theincluded| zo1l. dI | fileinadirectory inthe PATH environment variable (for example C: \ W NDOAS\ SYSTEM)
or python_install ati on_pat h\Li b\site-packages\tabl es (thelast directory may not exist yet, so
if you want to install the DLL there, you should do so after installing the PyTables package), so that it can be found
by the PyTables extensions.

Please note that PyTables has internal machinery for dealing with uninstalled optional compression libraries, so, you
don't need to install the LZO dynamic library if you don't want to.

2.2.2. PyTables package installation

Download thet abl es- <ver si on>. wi n32- py<ver si on>. exe fileand executeit.

11

http://www.pytables.org/download/lzo-win

Installation

Y ou can (and you should) test your installation by running the next commands:

>>> jnport tables
>>> tabl es.test()

on your favorite python shell. If all the tests pass (possibly with afew warnings, related to the potential unavailability
of LZOlib) you aready have aworking, well-tested copy of PyTablesinstalled! If any test fails, please copy the output
of the error messages as well as the output of:

>>> tabl es. print_versions()
and mail them to the devel opers so that the problem can be fixed in future rel eases.

Y ou can proceed now to the next chapter to see how to use PyTables.

12

Chapter 3. Tutorials

Seras la clau que obre tots els panys,
seraslallum, lallum il.limitada,
seras confi on |'aurora comenca,
seras forment, escalail.luminadal

--Lyrics: Vicent Andrési Estellés. Music: Ovidi Montllor, Toti Soler, M'aclame a tu

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand PyTables
main features. If you would like moreinformation about some particular instance variable, global function, or method,
look at the doc strings or go to the library reference in Chapter 4. If you are reading thisin PDF or HTML formats,
follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the terms column and field will be used interchangeably, as will the terms
row and record.

3.1. Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. atable) into a
file. Then we will select some of the datain the table using Python cuts and create NumPy arraysto store this selection
as separate objectsin atree.

In examples/tutorial 1-1.py you will find the working version of al the code in this section. Nonetheless, this tutorial
series has been written to allow you reproduce it in a Python interactive console. | encourage you to do paralléel testing
and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

3.1.1. Importing t abl es objects

Before starting you need to import the public objectsin thet abl es package. Y ou normally do that by executing:
>>> jnport tables

This is the recommended way to import t abl es if you don't want to pollute your namespace. However, PyTables
has a contained set of first-level primitives, so you may consider using the alternative:

>>> fromtables inport *

If you are going to work with NunPy (or numar r ay or Nurrer i ¢) arrays (and normally, you will) you will also need
to import functions from them. So most Py Tables programs begin with:

>>> jnport tables # but in this tutorial we use "fromtables inport *"
>>> | nport nunpy # or "inmport numarray" or "inmport Numeric"

3.1.2. Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved
from it. You need first to define the table, the number of columns it has, what kind of object is contained in each
column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC
(Anaogical to Digital Converter) with arange of 16 hits. For these values, we will define 2 fieldsin our record object

13

Tutorials

called TDCcount and ADCcount . We also want to save the grid position in which the particle has been detected, so
wewill add two new fieldscalledgri d_i andgri d_j . Our instrumentation also can obtain the pressure and energy
of the particle. The resolution of the pressure-gauge alows us to use a simple-precision float to store pr essur e
readings, whilethe ener gy value will need adouble-precision float. Finally, to track the particle we want to assign it
anameto identify the kind of the particleit is and a unique numeric identifier. So we will add two morefields: nane
will be a string of up to 16 characters, and i dnunber will be an integer of 64 hits (to allow us to store records for
extremely large numbers of particles).

Having determined our columns and their types, we can now declare anew Parti cl e class that will contain all
thisinformation:

>>> fromtables inport *
>>> class Particle(lsDescription):

nanme = StringCol (16) # 16-character String

i dnunber = Int64Col () # Signed 64-bit integer
ADCcount = Ul nt 16Col () # Unsi gned short integer
TDCcount = Ul nt 8Col () # unsi gned byte

grid_i = I nt 32Col () # 32-bit integer

grid_j = I nt 32Col () # 32-bit integer

pressure = Float32Col () # float (single-precision)
ener gy = Fl oat 64Col () # doubl e (doubl e-preci sion)

>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. Asits value
you assign an instance of the appropriate Col subclass, according to the kind of column defined (the data type, the
length, the shape, etc). See the Section 4.13.2 for a compl ete description of these subclasses. See also Appendix A for
alist of datatypes supported by the Col constructor.

From now on, we can use Par t i ¢l e instances as a descriptor for our detector data table. We will see later on how
to pass this object to construct the table. But first, we must create afile where al the actual data pushed into our table
will be saved.

3.1.3. Creating a PyTables file from scratch

Usethefirst-level openFi | e function (see description) to create a PyTablesfile;
>>> h5file = openFile("tutorial 1. h5", node = "w', title = "Test file")

openFi | e() (seedescription) isone of the objectsimported by the"f rom t abl es i nport *" statement. Here,
we are saying that we want to create a new file in the current working directory called "t ut ori al 1. h5" in"w'rite
mode and with an descriptivetitle string ("Test fi | e"). Thisfunction attempts to open the file, and if successful,
returns the Fi | e (see Section 4.2) object instance h5f i | e. The root of the object tree is specified in the instance's
r oot attribute.

3.1.4. Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We will
save our particle datatablein this group.

>>> group = h5file.createGoup("/", 'detector', 'Detector information')

Here, wehavetakentheFi | e instanceh5f i | e andinvokeditscr eat eGr oup() method (see description) to create
a new group called detector branching from "/" (another way to refer to the h5fi | e. r oot object we mentioned
above). Thiswill create anew Gr oup (see Section 4.4) object instance that will be assigned to the variable gr oup.

14

Tutorials

3.1.5. Creating a new table

Let's now create a Tabl e (see Section 4.6) object as a branch off the newly-created group. We do that by calling the
cr eat eTabl e (seedescription) method of the h5f i | e object:

>>> table = h5file.createTabl e(group, 'readout', Particle, "Readout exanple")

We create the Tabl e instance under gr oup. We assign this table the node name "readout”. The Parti cl e class
declared before is the description parameter (to define the columns of the table) and finally we set "Readout example”
asthe Tabl e title. With al thisinformation, anew Tabl e instanceis created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply pri nt the Fi | e instance variable h5file, and
examine the output:

>>> print h5file

tutorial1.h5 (File) 'Test file'

Last nmodif.: 'Wed Mar 7 11:06: 12 2007

oj ect Tree:

/ (Root Group) 'Test file'

/detector (G oup) 'Detector information'

/det ect or/readout (Table(0,)) 'Readout exanple'

As you can see, a dump of the object tree is displayed. It's easy to see the G oup and Tabl e objects we have just
created. If you want more information, just type the variable containing the Fi | e instance:

>>> h5file
File(filename="tutoriall.h5, title="Test file', node="w , rootUEP='/",
filters=Filters(conpl evel =0, shuffl e=Fal se, fletcher32=Fal se))
/ (Root Group) 'Test file'
/detector (G oup) 'Detector information'
/det ect or/readout (Table(0,)) 'Readout exanple'

description := {

"ADCcount": Ul nt 16Col (shape=(), dflt=0, pos=0),

"TDCcount": Ul nt 8Col (shape=(), dflt=0, pos=1),

"“energy": Float64Col (shape=(), dflt=0.0, pos=2),

"grid_i": Int32Col (shape=(), dflt=0, pos=3),

"grid_ j": Int32Col (shape=(), dflt=0, pos=4),

"idnunber": Int64Col (shape=(), dflt=0, pos=5),

"name": StringCol (itemsize=16, shape=(), dflt="", pos=6),
"pressure": Float32Col (shape=(), dflt=0.0, pos=7)}
byteorder := 'little'

chunkshape : = (87,)

More detailed information is displayed about each object in thetree. Note how Par t i cl e, our table descriptor class,
isprinted as part of the readout table description information. In general, you can obtain much moreinformation about
the objects and their children by just printing them. That introspection capability isvery useful, and | recommend that
you use it extensively.

Thetime has cometo fill thistable with some values. First we will get a pointer to the Row (see Section 4.6.7) instance
of thist abl e instance:

>>> particle = table.row

Ther ow attribute of t abl e points to the Row instance that will be used to write data rows into the table. We write
data simply by assigning the Row instance the values for each row as if it were a dictionary (although it is actually
an extension class), using the column names as keys.

15

Tutorials

Below is an example of how to write rows:

>>> for i in xrange(10):
particle['name'] = 'Particle: 9%%d" % (i)
particl e[’ TDCcount"'] i % 256
particl e[’ ADCcount '] (i * 256) % (1 << 16)
particle['grid_i"]

i
10 - i
f

particle['grid j'] =

particle[' pressure'] float(i*i)

particle['energy'] = float(particle['pressure'] ** 4)
particle['idnunmber’] i * (2 ** 34)

Insert a new particle record
particl e. append()

>>>

This code should be easy to understand. The lines inside the loop just assign values to the different columns in the
Row instance par t i cl e (see Section 4.6.7). A cal toitsappend() method writes thisinformation to thet abl e
1/O buffer.

After we have processed all our data, we should flush the table's 1/0 buffer if we want to write all this data to disk.
We achieve that by calling thet abl e. f | ush() method.

>>> table.flush()

Remember, flushing atable is a very important step as it will not only help to maintain the integrity of your file, but
also will free valuable memory resources (i.e. internal buffers) that your program may need for other things.

3.1.6. Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are
interested in. See the example below:

>>> table = h5file.root. detector.readout
>>> pressure = [x['pressure'] for x in table.iterrows()
if x['TDCcount'] > 3 and 20 <= x['pressure'] < 50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut” to the readout table deeper on the object tree. As you can see, we use the natural
naming schemato accessit. We also could have used the h5f i | e. get Node() method, aswe will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as they are
provided by thet abl e. i t err ows() iterator (see description). Theiterator returns values until al the datain table
is exhausted. These rows are filtered using the expression:

X["' TDCcount'] > 3 and 20 <= x['pressure'] < 50

So, we are selecting the values of the pr essur e column from filtered records to create the final list and assign it
to pr essur e variable.

We could have used anormal f or loop to accomplish the same purpose, but | find comprehension syntax to be more
compact and elegant.

Let's select the nane column for the same set of cuts:

>>> pames = [x['nanme'] for x in table
if x["TDCcount'] > 3 and 20 <= x['pressure'] < 50]

16

Tutorials

>>> nanes
["Particle: 5", 'Particle: 6', 'Particle: 7]

Note how we have omitted thei t er r ows () call inthelist comprehension. The Tabl e class has an implementation
of thespecial method i ter () that iteratesover al therowsinthetable. Infact,i t err ows() internally calls
thisspecial __i ter __ () method. Accessing al the rowsin atable using this method is very convenient, especially
when working with the data interactively.

PyTables do offer other, more powerful ways of performing selections which may be more suitable if you have very
large tables or if you need very high query speeds. They are called in-kernel and indexed queries, and you can use
them through Tabl e. wher e() (see description) and other related methods. See Appendix B and Section 5.2 for
more information on in-kernel and indexed selections.

That's enough about selections for now. The next section will show you how to save these selected resultsto afile.

3.1.7. Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group col urms branching
off the root group. Afterwards, under this group, we will create two arrays that will contain the selected data. First,
we create the group:

>>> gcol ums = h5file.createG oup(h5file.root, "columms", "Pressure and Nanme")

Note that this time we have specified the first parameter using natural naming (h5f i | e. r oot) instead of with an
absolute path string ("/").

Now, create the first of the two Ar r ay objects we've just mentioned:

>>> h5file.createArray(gcolumms, 'pressure', array(pressure),
"Pressure colum sel ection")
/colums/pressure (Array(3,)) 'Pressure colum selection'
atom : = Fl oat 64At om(shape=(), dflt=0.0)
maindim:= 0
flavor :="'nunpy'
byteorder := 'little'
chunkshape : = None

We aready know the first two parameters of the cr eat eAr r ay (see description) methods (these are the same as
the first two in cr eat eTabl e): they are the parent group where Ar r ay will be created and the Ar r ay instance
name. The third parameter is the object we want to saveto disk. In thiscase, it isaNunPy array that is built from the
selection list we created before. The fourth parameter is thetitle.

Now, we will save the second array. It contains the list of strings we selected before: we save this object as-is, with
no further conversion.

>>> h5file.createArray(gcolumms, 'nanme', nanes, "Nane col um sel ection")
/[col ums/nanme (Array(3,)) 'Nane colum sel ection'

atom:= StringAton(itensize=16, shape=(), dflt="")

mai ndim := 0

flavor :="'python'

byteorder := "irrel evant'

chunkshape := None

Asyou can see, cr eat eAr ray() accepts names (which isaregular Python list) as an object parameter. Actualy,
it accepts a variety of different regular objects (see description) as parameters. Thef | avor attribute (see the output
above) savesthe original kind of object that was saved. Based on this flavor, PyTables will be able to retrieve exactly
the same object from disk later on.

17

Tutorials

Notethat intheseexamples, thecr eat eAr r ay method returnsan Ar r ay instancethat isnot assigned to any variable.
Don't worry, thisisintentional to show the kind of object we have created by displaying itsrepresentation. The Ar r ay
objects have been attached to the object tree and saved to disk, as you can see if you print the complete object tree;

>>> print h5file

tutoriall.h5 (File) 'Test file'

Last nmodif.: 'Wed Mar 7 19:40: 44 2007

oj ect Tree:

/ (Root Group) 'Test file'

/colums (G oup) 'Pressure and Nane'

/col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'
/detector (G oup) 'Detector information'

/det ect or/readout (Tabl e(10,)) 'Readout exanpl €'

3.1.8. Closing the file and looking at its content

Tofinishthisfirst tutorial, we usethecl ose method of the h5file Fi | e object to close the file before exiting Python:

>>> h5file.close()
>>> AD

$

Y ou have now created your first PyTablesfile with atable and two arrays. Y ou can examine it with any generic HDF5
tool, such ash5dunp or h51 s. Hereiswhat thet ut ori al 1. h5 looks like when read with the h51 s program:

$ hSls -rd tutoriall. h5

/ col ums G oup
/ col ums/ nane Dat aset {3}
Dat a:
(0) "Particle: 5", "Particle: 6", "Particle: 7"
/ col ums/ pressure Dat aset {3}
Dat a:
(0) 25, 36, 49
/ det ect or G oup
/ det ect or / r eadout Dat aset {10/ nf}
Dat a:
(o) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 13},
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Parti cl e: 9", 81}

Here's the output as displayed by the "ptdump” PyTables utility (located inut i | s/ directory):

$ ptdunp tutoriall.h5

tutorial1.h5 (File) 'Test file'

Last nodif.: 'Wed Mar 7 19:50:57 2007
oj ect Tree:

/ (Root Group) 'Test file'

18

Tutorials

/colums (G oup) 'Pressure and Nane'

/col ums/nanme (Array(3,)) 'Name colum sel ection'

/ col ums/ pressure (Array(3,)) 'Pressure colum sel ection'
/detector (Goup) 'Detector information'

/ det ect or/ readout (Tabl e(10,)) 'Readout exanpl e’

You can passthe - v or - d optionsto pt dunp if you want more verbosity. Try them out!

Also, inFigure 3.1, you canadmirehow thet ut or i al 1. h5 lookslikeusing the ViTables [http://www.vitables.org]
graphical interface .

1 EdQHE® &4 H1lhx TV &N
|Tree of databases | B readout Readout example
=-fi tutoriall.hS ADCcount |TDCcount |energy grid_i grid_j [Z
2 [columns 1/0 0 0.0 0 10 t
8 pressure 5256 1 1.0 1 9
& & detector 3/512 2 256.0 2 8
[readout —
Query results 4|768 3 6561.0 3 7
511024 4 65536.0 4 6 @
< | [T+
|1 1
1/25.0 1 'Particle: 5’
2|36.0 >|'Particle: 6
3/49.0 3|'Particle: 7'
All TIgnLs reserved.
Creating the Query results file...
OK!
|;'h0meffalteUPyTabIesipytables}trunkiexamples}tutorial1.h5->ic0|umnsiname|

Figure 3.1. Theinitial version of the datafile for tutorial 1, with aview of the data objects.

3.2. Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and al so meta-information about the actual data.

In examples/tutorial 1-2.py you will find the working version of all the code in this section. As before, you are encour-
aged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1. Traversing the object tree
Let's start by opening the file we created in last tutorial section.
>>> h5file = openFile("tutorial 1. h5", "a")

Thistime, we have opened the filein "a'ppend mode. We use this mode to add more information to thefile.

19

http://www.vitables.org
http://www.vitables.org

Tutorials

PyTables, following the Python tradition, offers powerful introspection capahilities, i.e. you can easily ask information
about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing Fi | e instance:

>>> print h5file

tutoriall.h5 (File) 'Test file'

Last nmodif.: 'Wed Mar 7 19:50: 57 2007

oj ect Tree:

/ (Root Group) 'Test file'

/colums (G oup) 'Pressure and Nane'

/col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'
/detector (G oup) 'Detector information'

/ det ect or/readout (Tabl e(10,)) 'Readout exanpl e

It looks like all of our objects are there. Now let's make use of the Fi | e iterator to see how to list al the nodesin
the object tree:

>>> for node in h5file:
print node

/ (Root Group) 'Test file'

/colums (G oup) 'Pressure and Nanme'

/detector (G oup) 'Detector information'

/[col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum sel ection'
/ det ect or/readout (Tabl e(10,)) 'Readout exanpl €'

We can use thewal kG- oups method (see description) of the Fi | e classto list only the groups on tree:

>>> for group in h5file.wal kG oups():
print group

/ (Root Group) 'Test file'
/columms (G oup) 'Pressure and Nane'
[detector (Goup) 'Detector information'

Note that wal kGr oups() actualy returns an iterator, not a list of objects. Using this iterator with the | i st N-
odes() method isapowerful combination. Let's see an examplelisting of all the arraysin the tree:

>>> for group in h5file.wal kG oups("/"):
for array in h5file.listNodes(group, classnanme="Array'):
print array

/ col ums/ nanme (Array(3,)) 'Nane col um sel ection'
/ col ums/ pressure (Array(3,)) 'Pressure colunn sel ection’

i st Nodes() (seedescription) returnsalist containing all the nodes hanging off aspecific G oup. If the classname
keyword is specified, the method will filter out al instances which are not descendants of the class. We have asked
for only Ar r ay instances. There exist also an iterator counterpart calledi t er Nodes () (seedescription) that might
be handy is some situations, like for example when dealing with groups with alarge number of nodes behind it.

We can combine both calls by using thewal kNodes(wher e, cl assnane) specia method of the Fi | e object
(see description). For example:

>>> for array in h5file.wal kNodes("/", "Array"):

20

Tutorials

print array

[col ums/nanme (Array(3,)) 'Nane colum sel ection’
/col ums/pressure (Array(3,)) 'Pressure colum selection’

Thisis anice shortcut when working interactively.

Finally, wewill list al theLeaf ,i.e. Tabl e and Ar r ay instances (see Section 4.5 for detailed information on Leaf
class), inthe/ det ect or group. Note that only one instance of the Tabl e class (i.e. r eadout) will be selected
in this group (as should be the case):

>>> for leaf in h5file.root.detector. f_ wal kNodes(' Leaf'):
print | eaf

/ det ect or/ readout (Tabl e(10,)) ' Readout exanpl e

We have used a call to the Gr oup. _f _wal kNodes(cl assnane) method (see description), using the natural
naming path specification.

Of course you can do more sophisticated node sel ections using these powerful methods. But first, let's take alook at
some important PyTables object instance variables.

3.2.2. Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the
Attribut eSet class (see Section 4.12). Y ou can access this object through the standard attributeat t r s in Leaf
nodesand _v_attrs inG oup nodes.

For example, let's imagine that we want to save the date indicating when the datain / det ect or / r eadout table
has been acquired, as well as the temperature during the gathering process:

>>> table = h5file.root. detector.readout

>>> table.attrs.gath_date = "Wed, 06/12/2003 18: 33"
>>> table.attrs.tenperature = 18. 4

>>> table.attrs.tenp_scale = "Cel sius"

Now, let's set a somewhat more complex attribute in the/ det ect or group:

>>> detector = h5file.root. detector
>>> detector. v _attrs.stuff =[5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed withthe _v_at t r s attribute because detector isa Gr oup node. In
general, you can save any standard Python data structure as an attribute node. See Section 4.12 for a more detailed
explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date

'Wed, 06/12/2003 18: 33

>>> table.attrs.tenperature

18. 399999999999999

>>> table.attrs.tenp_scal e

' Cel si us'

>>> detector. v_attrs.stuff

[5, (2.2999999999999998, 4.5), 'Integer and tuple']

Y ou can probably guess how to delete attributes:

21

Tutorials

>>> del table.attrs.gath _date

If you want to examine the current user attribute set of / det ect or/ t abl e, you can print its representation (try
hitting the TAB key twiceif you are on a Unix Python console with ther | conpl et er module active):

>>> table.attrs
/detector/readout. v_attrs (AttributeSet), 23 attributes:

[CLASS : = ' TABLE',
FIELD O_FILL := 0,
FI ELD_O_NAME : = ' ADCcount ',
FIELD 1_FILL := 0,
FIELD 1_NAME : = ' TDCcount',
FIELD 2_FILL := 0.0,
FI ELD_2_NAME : = 'energy',
FIELD 3_FILL := 0,
FIELD 3_NAME := 'grid_i",
FIELD 4 FILL := 0,
FIELD 4 NAME := 'grid_j',
FIELD 5_FILL := 0,
FI ELD 5_NAME : = 'idnunber',
FIELD 6_FILL :="",
FI ELD 6_NAME : = 'nane',
FIELD 7_FILL := 0.0,
FI ELD_7_NAME : = 'pressure',
FLAVCR : = ' nunpy',
NROAS : = 10,
TI TLE : = ' Readout exanpl e',
VERSION : = '2.6',
tenp_scale : = 'Celsius',

tenperature := 18.399999999999999]

We've got al the attributes (including the system attributes). You can get alist of all attributes or only the user or
system attributeswiththe f |1 st () method.

>>> print table.attrs. f list("all")
["CLASS', "FIELD O_FILL', "FIELD O_NAME' , '"FIELD 1 FILL', 'FIELD 1 NAME ,
"FIELD 2_FILL', "FIELD 2 NAME', 'FIELD 3 _FILL', 'FIELD 3_NAME ,

"FIELD 4_FILL',
"FIELD 4 NAME', 'FIELD 5 FILL', "FIELD 5 NAME', 'FIELD 6_FILL',
"FI ELD_6_NAME ,
"FIELD 7_FILL', '"FIELD 7_NAME , 'FLAVOR , 'NROAS', 'TITLE, 'VERSION ,
"tenp_scale', 'tenperature']
>>> print table.attrs. f |ist("user")
['tenp_scale', 'tenperature']

>>> print table.attrs. f |ist("sys")
["CLASS', "FIELD O_FILL', "FIELD O_NAME' , '"FIELD 1 FILL', 'FIELD 1 NAME ,
"FIELD 2_FILL', "FIELD 2 NAME', 'FIELD 3 _FILL', 'FIELD 3_NAME ,
"FIELD 4_FILL',
"FIELD 4 NAME', 'FIELD 5 FILL', "FIELD 5 NAME', 'FIELD 6_FILL',
"FI ELD_6_NAME ,
"FIELD 7_FILL', '"FIELD 7_NAME , 'FLAVOR , 'NROAS', 'TITLE, 'VERSION]

Y ou can also rename attributes:

>>> table.attrs. f _renanme("tenp_scal e","tenpScal e")

22

Tutorials

>>> print table.attrs. f _list()
['tenpScal e', 'tenperature']

And, from PyTables 2.0 on, you are allowed al so to set, delete or rename system attributes:

>>> table.attrs. _f_renane("VERSION', "version")
>>> table.attrs. VERSI ON
Traceback (nmost recent call last):
File "<stdin>", line 1, in <npbdul e>
File "tables/attributeset.py", line 222, in _getattr_

(name, self._v__nodePat h)
AttributeError: Attribute 'VERSION does not exist in node: '/detector/
r eadout '
>>> table.attrs. version
'2.6'

Caveat emptor: you must be careful when modifying system attributes because you may end fooling PyTables and
ultimately getting unwanted behaviour. Use this only if you know what are you doing.

So, given the caveat above, we will proceed to restore the original name of VERSION attribute:

>>> table.attrs. f _rename("version",
>>> table.attrs. VERSI ON
'2.6'

" VERSI ON')

Ok. that's better. If you would terminate your session now, you would be able to use the h51 s command to read the
/ det ect or/ r eadout attributes from the file written to disk:

$ h5ls -vr tutorial 1. h5/ detector/readout
Opened “"tutorial 1. h5" with sec2 driver.
/ det ect or / r eadout Dat aset {10/ nf}

Attribute: CLASS scal ar
Type: 6-byte null-term nated ASCI| string
Data: "TABLE"

Attribute: VERSION scal ar
Type: 4-byte null-term nated ASCI| string
Data: "2.6"

Attribute: TITLE scal ar
Type: 16-byte null-term nated ASCI| string
Dat a: "Readout exanple”

Attribute: NRONS scal ar
Type: native | ong | ong
Data: 10

Attribute: FIELD O _NAME scal ar
Type: 9-byte null-term nated ASCI| string
Data: "ADCcount"

Attribute: FIELD 1 NAME scal ar
Type: 9-byte null-term nated ASCI| string
Data: "TDCcount"

Attribute: FIELD 2 NAME scal ar
Type: 7-byte null-term nated ASCII string
Data: "energy"

Attribute: FIELD 3 NAME scal ar
Type: 7-byte null-term nated ASCI| string
Data: "grid_i"

Attribute: FIELD 4 NAME scal ar

23

Tutorials

Type: 7-byte null-term nated ASCI| string
Data: "grid_j"
Attribute: FIELD 5 NAME scal ar

Type: 9-byte null-term nated ASCI| string
Data: "idnunber"”

Attribute: FIELD 6 NAME scal ar
Type: 5-byte null-term nated ASCI| string
Data: "nane"

Attribute: FIELD 7 NAME scal ar
Type: 9-byte null-term nated ASCI| string
Data: "pressure"

Attribute: FLAVOR scal ar
Type: 5-byte null-term nated ASCI| string

Data: "numpy"

Attribute: tenpScal e scal ar
Type: 7-byte null-term nated ASCII string
Data: "Cel sius"

Attribute: tenperature scal ar

Type: nati ve doubl e
Data: 18.4
Location: 0:1:0:1952
Li nks: 1
Modi fied: 2006-12-11 10:35:13 CET
Chunks: {85} 3995 bhytes
St or age: 470 | ogi cal bytes, 3995 allocated bytes, 11.76% utilization
Type: struct {
" ADCcount " +0 native unsi gned short
" TDCcount " +2 native unsi gned char
"ener gy" +3 nati ve doubl e
"grid_i" +11 native int
"grid_ j" +15 native int
"i dnunber " +19 native | ong | ong
"name" +27 16-byte null-term nated ASCl
string
"pressure” +43 native fl oat
} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3. Getting object metadata

Each object in PyTables has metadata information about the datain the file. Normally this meta-information is acces-
sible through the node instance variables. Let's take alook at some examples:

>>> print "Cbject:", table

nj ect: /detector/readout (Table(10,)) 'Readout exanple
>>> print "Table nanme:", table.nane

Tabl e nane: readout

>>> print "Table title:", table.title

Table title: Readout exanple

>>> print "Nunber of rows in table:", table.nrows

Nurmber of rows in table: 10
>>> print "Table variable nanes with their type and shape:
Tabl e variable nanes with their type and shape:

24

Tutorials

>>> for nanme in table.col nanes:
print name, ':= 9%, %' % (table.coldtypes[nane],
t abl e. col dt ypes[nane] . shape)

ADCcount : = uint16, ()
TDCcount := uint8, ()
energy := float64, ()
grid_i :=1int32, ()
grid_j :=1int32, ()

i dnumber := int64, ()
nane := | S16, ()
pressure := float32, ()

Here thename, tit| e, nrows, col names and col dt ypes attributes (see Section 4.6.1 for a compl ete attribute
list) of the Tabl e object gives us quite abit of information about the table data.

Y ou can interactively retrieve general information about the public objectsin PyTables by asking for help:

>>> hel p(tabl e)
Hel p on Table in nodul e tables.table:

cl ass Tabl e(t abl eExt ensi on. Tabl e, tables.|eaf.Leaf)
| This class represents heterogeneous datasets in an HDF5 file.

|

| Tables are | eaves (see the "Leaf ™ class) whose data consists of a
| unidinensional sequence of *rows*, where each row contains one or

| nore *fields*. Fields have an associ ated uni que *nane* and

| *position*, with the first field having position 0. All rows have
| the same fields, which are arranged in *col ums*.

[sni p]
|
| Instance variabl es
| __________________
|
| The follow ng i nstance variables are provided in addition to those
| in "Leaf’. Please note that there are several "““col* " dictionaries
| to ease retrieving informati on about a colum directly by its path
| nanme, avoiding the need to wal k through "Tabl e. description or
| ~Table.cols.
|
| autol ndex
| Aut omatical |y keep col utmm indexes up to date?
|
| Setting this val ue states whether existing indexes should be
| automatical ly updated after an append operation or reconputed
| after an index-invalidating operation (i.e. renoval and
| nodi fication of rows). The default is true.
[snip]
| rowsize
| The size in bytes of each rowin the table.
|
| Public nmethods -- reading

| * col (nane)

25

Tutorials

* iterrows([start][, stop][, step])
* | tersequence(sequence)
* jtersorted(sortby[, forceCSI]|[, start][, stop][, step])
| * read([start][, stop][, step][, field][, coords])
* readCoordi nat es(coords[, field])
* readSorted(sortby[, forceCSI]|[, field,][, start][, stop][, step])
| * __getitem (key)
| * _iter_ ()
|
| Public methods -- witing

|

| * append(rows)

| * nodifyColum([start][, stop][, step][, colum][, col nane])
[sni p]

Try getting help with other object docs by yourself:

>>> hel p(h5file)
>>> hel p(tabl e. r enrbveRows)

To examine metadata in the /columns/pressure Ar r ay object:

>>> pressurebj ect = h5file.get Node("/col utms", "pressure")

>>> print "Info on the object:", repr(pressurelbject)

Info on the object: /colums/pressure (Array(3,)) 'Pressure columm sel ection'
atom : = Fl oat 64At om(shape=(), dflt=0.0)
mai ndim := 0

flavor := "'nunpy'
byteorder := 'little'
chunkshape : = None

>>> print " shape: ==>", pressureject.shape
shape: ==> (3,)

>>> print " title: ==>", pressureject.title
title: ==> Pressure columm sel ection

>>> print " atom ==>", pressurebject.atom

atom ==> Fl oat 64At on{shape=(), dflt=0.0)

Observe that we have used the get Node() method of the Fi | e class to access a node in the tree, instead of the
natural naming method. Both are useful, and depending on the context you will prefer one or the other. get Node()
hasthe advantage that it can get anode from the pathname string (asin this example) and can also act asafilter to show
only nodesin aparticular location that are instances of class classname. In general, however, | consider natural naming
to be more elegant and easier to use, especialy if you are using the name completion capability present in interactive
console. Try thispowerful combination of natural naming and compl etion capabilities present in most Python consol es,
and see how pleasant it is to browse the object tree (well, as pleasant as such an activity can be).

If you look at the t ype attribute of the pr essur ehj ect object, you can verify that it is a "float64" array. By
looking at its shape attribute, you can deduce that the array on disk is unidimensional and has 3 elements. See
Section 4.7.1 or the internal doc strings for the complete Ar r ay attribute list.

3.2.4. Reading data from Arr ay objects

Once you have found the desired Ar r ay, usether ead() method of the Ar r ay object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray

26

Tutorials

array([25., 36., 49.])

>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <type 'nunpy.ndarray' >

>>> nameArray = h5file.root.col ums. nane. read()

>>> print "nameArray is an object of type:", type(nameArray)
naneArray is an object of type: <type 'list'>
>>>

>>> print "Data on arrays naneArray and pressureArray:"
Data on arrays nameArray and pressureArray:

>>> for i in range(pressureCbject.shape[0]):
print naneArray[i], "-->", pressureArray[i]

Particle: 5-->25.0

Particle: 6 --> 36.0

Particle: 7 -->49.0

Y ou can seethat ther ead() method (see description) returnsan authentic NunPy object for thepr essur eObj ect
instance by looking at the output of thet ype() cal. Aread() of thenaneAr r ay object instance returns a native
Python list (of strings). The type of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects
on disk. This attribute is then read as Ar r ay meta-information (accessiblethroughinthe Array. attrs. FLAVOR
variable), enabling the read array to be converted into the original object. This provides ameansto save alarge variety
of objects as arrayswith the guarantee that you will be ableto later recover them in their original form. See description
for acomplete list of supported objects for the Ar r ay object class.

3.3. Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and metadata in the object tree. Let's
examine more closely now one of the most powerful capabilities of PyTables, namely, how to modify already created
tablesand arraysl.

3.3.1. Appending data to an existing table

Now, let'shavealook at how we can add recordsto an existing table on disk. Let'suse our well-known readout Tabl e
object and append some new valuesto it:

>>> table = h5file.root. detector.readout

>>> particle = table.row

>>> for i in xrange(10, 15):
particle['name'] = 'Particle: %d" % (i)
particle[' TDCcount'] i % 256
particl e[' ADCcount'] (i * 256) % (1 << 16)
particle['grid_i']

[| T o R | I | |

particle['grid j'] = 10 - i

particle[' pressure'] float(i*i)

particle['energy'] = float(particle['pressure'] ** 4)
particle['idnunmber'] i * (2 ** 34)

particl e. append()

>>> tabl e. flush()

It's the same method we used to fill a new table. PyTables knows that this table is on disk, and when you add new
records, they are appended to the end of the tabl e

a ppending data to arraysis also supported, but you need to create specia objects called EAr r ay (see Section 4.9 for more info).
Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

27

Tutorials

If you look carefully at the code you will see that we have used the t abl e. r ow attribute to create a table row and
fill it with the new values. Each time that itsappend() method is called, the actual row is committed to the output
buffer and the row pointer is incremented to point to the next table record. When the buffer is full, the data is saved
on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the f | ush() method after a write operation, or else your tables will
not be updated!

Let's have alook at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
print "% 16s | %1.1f | %1.49 | %d | %6d | %8d |" %)\
(r['"nanme'], r['pressure'], r['energy'], r['grid.i'], r['gridj'],
r[*' TDCcount'])

Particl e: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particl e: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particl e: 2 | 4.0 | 256 | 2 | 8 | 2
Particle: 3| 9.0 | 6561 | 3| 7 | 3|
Particle: 4 | 16.0 | 6. 554e+04 | 4 | 6 | 4
Particle: 5 | 25.0 | 3. 906e+05 | 5 | 5 | 5
Particle: 6 | 36.0 | 1. 68e+06 | 6 | 4 | 6
Particle: 7 | 49.0 | 5. 765e+06 | 7 | 3 | 7
Particle: 8 | 64.0 | 1. 678e+07 | 8 | 2 | 8
Particle: 9 | 81.0 | 4. 305e+07 | 9 | 1] 9
Particle: 10 | 100. 0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2. 144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4. 3e+08 | 12 | -2 | 12
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.3.2. Modifying data in tables

Ok, until now, we've been only reading and writing (appending) values to our tables. But there are times that you need
to modify your data once you have saved it on disk (thisis specially true when you need to modify the real world data
to adapt your goals ;). Let's see how we can modify the values that were saved in our existing tables. We will start
modifying single cellsin the first row of thePar t i cl e table:

>>> print "Before nodif-->", table[O0]

Before nodif--> (0, 0, 0.0, 0, 10, OL, 'Particle: 0', 0.0)

>>> table.cols. TDCcount[0] = 1

>>> print "After nodifying first row of ADCcount-->", table[0]

After nodifying first row of ADCcount--> (0, 1, 0.0, 0, 10, OL, 'Particle:
0', 0.0)

>>> table.cols.energy[0] = 2

>>> print "After nodifying first row of energy-->", table[0]

After nodifying first row of energy--> (0, 1, 2.0, 0, 10, OL, 'Particle:
0', 0.0)

We can modify complete ranges of columns aswell:

>>> tabl e.cols. TDCcount[2:5] = [2,3,4]

>>> print "After nodifying slice [2:5] of TDCcount-->", table[0:5]
After nodifying slice [2:5] of TDCcount-->

[(O, 1, 2.0, O, 10, OL, 'Particle: 0', 0.0)

28

Tutorials

(256, 1, 1.0, 1, 9, 17179869184L, 'Particle: 1', 1.0)

(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2", 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0)
(1024, 4, 65536.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)]

>>> table.cols.energy[1:9:3] =[2,3,14]
>>> print "After nodifying slice [1:9:3] of energy-->", table[0:9]
After nodifying slice [1:9:3] of energy-->

[(0, 1, 2.0, 0, 10, OL, 'Particle: 0', 0.0)

(256, 1, 2.0, 1, 9, 17179869184L, 'Particle: 1, 1.0)

(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)

(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)

(1024, 4, 3.0, 4, 6, 68719476736L, 'Particle: 4", 16.0)

(1280, 5, 390625.0, 5, 5, 85899345920L, 'Particl e: 5', 25.0)
(1536, 6, 1679616.0, 6, 4, 103079215104L, 'Particle: 6', 36.0)
(1792, 7, 4.0, 7, 3, 120259084288L, 'Particle: 7', 49.0)

(2048, 8, 16777216.0, 8, 2, 137438953472L, 'Particle: 8, 64.0)]

Check that the values have been correctly modified! Hint: remember that column TDCcount is the second one, and
that ener gy isthethird. Look for more info on modifying columnsin Section .

PyTables aso lets you modify complete sets of rows at the same time. As a demonstration of these capability, see
the next example:

>>> tabl e. nodi f yRows(start=1, step=3,
rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
(2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)])
2
>>> print "After nodifying the conplete third row->", table[0:5]
After nodifying the conplete third row->

[(O0, 1, 2.0, O, 10, OL, 'Particle: 0', 0.0)
(1, 2, 3.0, 4, 5 6L, 'Particle: None', 8.0)
(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)

(2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)]

As you can see, the nodi f yRows () call has modified the rows second and fifth, and it returned the number of
modified rows.

Apart of modi f yRows () , there exists another method, called modi f yCol umm() to modify specific columns as
well. Please check sections description and description for a more in-depth description of them.

Finally, it exists another way of modifying tables that is generally more handy than the described above. This new
way uses the method updat e() (see description) of the Rowinstance that is attached to every table, so it is meant
to be used in table iterators. Look at the next example:

>>> for row in table.where(' TDCcount <= 2'):
row ' energy'] = row' TDCcount']*2
r ow. updat e()

>>> print "After nodifying energy columm (where TDCcount <=2)-->", tabl e[O0: 4]
After nodifying energy colum (where TDCcount <=2)-->

[(O0, 1, 2.0, O, 10, OL, 'Particle: 0', 0.0)
(1, 2, 4.0, 4, 5, 6L, 'Particle: None', 8.0)
(512, 2, 4.0, 2, 8, 34359738368L, 'Particle: 2', 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0)]

29

Tutorials

Note: The authors find this way of updating tables (i.e. using Row. updat e()) to be both convenient and efficient.
Please make sure to use it extensively.

3.3.3. Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
__setitem _ specia method (see description). Let's see at how modify dataon the pr essur eChj ect array:

>>> pressureObj ect = h5file.root.columms. pressure
>>> print "Before nodif-->", pressureCbject][:]
Before nmodif--> [25. 36. 49.]

>>> pressureoject[0] = 2

>>> print "First nodif-->", pressureQbject[:]
First nodif-->[2. 36. 49.]

>>> pressureCbject[1:3] =1[2.1, 3.5]

>>> print "Second nodif-->", pressureCbject][:]
Second nodi f--> [2. 2.1 3.5]

>>> pressure@oject[::2] =[1,2]

>>> print "Third nodif-->", pressureQbject[:]
Third nodi f--> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended dlici ng3 to refer to indexes that you want
to modify. See description for more examples on how to use extended dlicing in PyTables objects.

Similarly, with and array of strings:

>>> pameCbj ect = h5file.root. col ums. name
>>> print "Before nodif-->", nameQbject][:]

Before nodif--> ['Particl e: 5", 'Particle: 6', '"Particle: 7]
>>> pameCbject[0] = 'Particle: None'

>>> print "First nodif-->", naneCbject][:]

First modif--> ['Particle: None', 'Particle: 6', '"Particle: 7]
>>> pname(oject[1:3] = ['Particle: 0', '"Particle: 1']

>>> print "Second nodif-->", nameGbject][:]

Second nodi f--> ['Particle: None', 'Particle: 0', '"Particle: 1']
>>> pame(oject[::2] = ['Particle: -3', 'Particle: -5']

>>> print "Third nodif-->", naneCbject][:]

Third nodif--> ['Particle: -3, '"Particle: 0', '"Particle: -5']

3.3.4. And finally... how to delete rows from a table

WEell finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the the 5th
to 9th rows (inclusive):

>>> t abl e. r enbveRows(5, 10)
5

renoveRows(start, stop) (seedescription) deletes therows in the range (start, stop). It returns the number
of rows effectively removed.

We have reached the end of thisfirst tutorial. Don't forget to close the file when you finish:

>>> h5file.close()

Swith the sole exception that you cannot use negative valuesfor st ep.

30

Tutorials

>>> AD

$

In Figure 3.2 you can see a graphical view of the PyTables file with the datasets we have just created. In Figure 3.3
are displayed the general properties of thetable/ det ect or/ r eadout .

* ViTables 2.0 2

File Node Query Windows Tools Help
1 EEE &4 11 x FY &%

Tree of databases | B readout Readout example

E‘lﬁ? tqtoriall.hs ADCcount |TDCcount |energy grid_i grid_j =]
B % columns 110 1 50 0 10 :
L pressure 2(1 2 4.0 4 5

O [« detector 3/512 2 4.0 2

.
& Query results 4|768 3 6561.0 3 7 !

5(2 4 6.0 8 10 E

ffpressure ...

1/1.0 1|'Particle: -3'
2(2.1000000000000001 2 |'Particle: 0
3/2.0 3|'Particle: -5

All TIgnLs reserved.

Creating the Query results file...

OK!

|fhom e/faltet/PyTables/pytables/trunk/examples/tutoriall.h5->/detecto rfreadout| 4

Figure 3.2. Thefinal version of the datafile for tutorial 1.

> Table properties =& 00 0
General | System Attributes En »

~Databas

Name: readout
Path: /detector/readout
Type: table

~Dataspace————————
Dimensions: 1
Shape: (10,)
Data type: record

Compression: None

field name| Type Shape
ADCcount }uintl6 (0]

TDCcount uint8 ()
energy float64 ()
grid_i int32 ()
grid_j int32 0]

Figure 3.3. General properties of the/ det ect or/ r eadout table.

31

Tutorials

3.4. Multidimensional table cells and automatic sanity
checks

Now it'stime for amore real-life example (i.e. with errorsin the code). We will create two groups that branch directly
fromther oot node, Parti cl es and Event s. Then, we will put three tables in each group. In Par ti cl es we
will put tables based onthe Par t i ¢l e descriptor and in Event s, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table /
Event s/ TEvent 3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in exanpl es/ tut ori al 2. py). It appears to do al of the above, but it
contains some small bugs. Notethat thisPar t i cl e classisnot directly related to the one defined in last tutorial; this
classis simpler (note, however, the multidimensional columns called pr essur e andt enper at ur e).

We also introduce a new manner to describe a Tabl e as adictionary, as you can seein the Event description. See
description about the different kinds of descriptor objects that can be passed to thecr eat eTabl e() method.

fromtables inmport *
from nunpy i nmport *

Describe a particle record
class Particle(lsDescription):

nane = StringCol (itensize=16) # 16-character string
| ati = | nt 32Coal () # 1 nteger
| ongi = | nt 32Coal () # 1 nteger
pressure = Fl oat 32Col (shape=(2,3)) # array of floats (single-precision)
tenperature = Fl oat 64Col (shape=(2,3)) # array of doubl es (doubl e-
pr eci si on)

Anot her way to describe the colums of a table

Event = {
"name" : StringCol (itensize=16),
“TDCcount" : Ul nt8Col (),
“ADCcount” : Ul nt16Col (),
"xcoord" : Fl oat 32Col (),
"ycoord" : Fl oat 32Col (),
}

Open a file in "Write node

fileh = openFile("tutorial 2. h5", npode = "w'")
CGet the HDF5 root group

root = fileh.root

Create the groups:

for groupnane in ("Particles", "Events"):
group = fileh.createG oup(root, groupnamne)
Now, create and fill the tables in Particles group

gparticles = root. Particles
Create 3 new tables
for tablenane in ("TParticlel”, "TParticle2", "TParticle3"):
Create a table
table = fileh.createTabl e("/Particles", tablename, Particle,
"Particles: "+tabl enanme)
CGet the record object associated with the table:
particle = table.row

32

Tutorials

Fill the table with 257 particles
for i in xrange(257):
First, assign the values to the Particle record
particle['name'] = 'Particle: %%d % (i)
particle['lati'] =i
particle['longi'] = 10 - i
#H##H####H#E Detectable errors start here. Play with then
particle[' pressure'] = array(i*arange(2*3)).reshape((2,4)) #
I ncorrect
#particle[' pressure'] = array(i*arange(2*3)).reshape((2,3)) # Correct
#HH###HH##H End of errors
particle['tenperature'] = (i**2) # Broadcasti ng
This injects the Record val ues
particl e. append()
Flush the table buffers
tabl e. fl ush()

Now, go for Events:
for tablenane in ("TEventl1l", "TEvent2", "TEvent3"):
Create a table in Events group
table = fileh.createTabl e(root. Events, tablename, Event,
"Events: "+t abl enane)
CGet the record object associated with the table:
event = table.row
Fill the table with 257 events
for i in xrange(257):
First, assign the values to the Event record

event['nane'] = 'Event: 9%%d" % (i)

event[' TDCcount'] =i % (1<<8) # Correct range
#H##H####H#E Detectable errors start here. Play with then
event[' xcoor'] = float(i**2) # Wong spelling
#event [' xcoord'] = float(i**2) # Correct spelling
event[' ADCcount'] = "sss" # Wong type

#event[' ADCcount'] =i * 2 # Correct type

#HH###HH##H End of errors
event['ycoord'] = float(i)**4
This injects the Record val ues
event . append()

Flush the buffers

tabl e. fl ush()

Read the records fromtable "/Events/ TEvent3" and sel ect sone
tabl e = root. Events. TEvent 3
e = [p['TDCcount'] for p in table
if p['ADCcount'] < 20 and 4 <= p[' TDCcount'] < 15]
print "Last record ==>", p
print "Selected val ues ==>", e
print "Total selected records ==> ", len(e)
Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

3.4.1. Shape checking

If you look at the code carefully, you'll seethat it won't work. Y ou will get the following error:

33

Tutorials

$ python tutorial 2. py

Traceback (nost recent call |ast):
File "tutorial 2. py", line 51, in ?
particle[' pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
File ".../numarray/ numarraycore. py", line 400, in array
a. set shape(shape)
File ".../numarray/generic.py", line 702, in setshape

rai se Val ueError (" New shape is not consistent with the old shape")
Val ueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the
source, we see that we were trying to assign an array of shape (2, 4) to apr essur e element, which was defined
with the shape (2, 3) .

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar value to a
multidimensional column cell, al the cell elements are populated with the value of the scalar. For example:

particle['tenperature'] = (i**2) # Broadcasti ng

Thevauei ** 2 is assigned to all the elements of the t enper at ur e table cell. This capability is provided by the
NunPy package and is known as broadcasting.

3.4.2. Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

$ python tutorial 2. py

Traceback (nost recent call |ast):
File "tutorial 2.py", line 73, in ?
event[' xcoor'] = float(i**2) # Wong spelling
File "tabl eExt ensi on. pyx", line 1094, in tabl eExtension. Row. setitem _
File "tabl eExt ension. pyx", line 127, in tabl eExtension. get Nest edFi el dCache
File "util sExtension.pyx", line 331, in utilsExtension.getNestedField

KeyError: 'no such col um: xcoor'

Thiserror indicates that we are attempting to assign avalue to anon-existent field in the event table object. By looking
carefully at the Event class attributes, we see that we misspelled the xcoor d field (wewrote xcoor instead). This
isunusual behavior for Python, as normally when you assign avalue to anon-existent instance variabl e, Python creates
anew variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list
of field names. PyTables checks that the field exists and raisesaKeyEr r or if the check fails.

3.4.3. Data type checking

Finally, the last issue which we will find hereisaTypeEr r or exception:

$ python tutorial 2. py

Traceback (nobst recent call |ast):
File "tutorial2.py", line 75, in ?
event[' ADCcount'] = "sss" # Wong type
File "tabl eExt ensi on. pyx", line 1111, in tabl eExtension. Row. setitem _

TypeError: invalid type (<type 'str'>) for colum " ADCcount "
And, if we change the affected line to read:
event. ADCcount =i * 2 # Correct type

we will see that the script ends well.

Tutorials

You can see the structure created with this (corrected) script in Figure 3.4. In particular, note the multidimensional
column cellsintable/ Parti cl es/ TParti cl e2.

1T E Q@ @ = & Lhx v &8

|Tree of databases | B

=-fi tutorial2.h5 lati longi name pressure |temperatur
o % Events 0 e
= TEventl 1/0 10 Particle: ... [[0., 0., ... [[0. 0., ...
& TEvent2 2(1 9 'Particle: ... [[0., 1., ... mi., 1., ...

[TEvent3
£ & Particles
[TParticle3
- @ TParticle2

[0. 2. [
o, 3.,.. [9.9. ..
[l 0. 4.,.. [[16,16... [

m_n |~ mae ae

[TParticlel
Query results

ADCcount |TDCcount |name xcoord ycoord
1/0 0 'Event: ... 0.0 0.0 L
22 1 ‘Event: ... 1.0 1.0
3|4 2 ‘Event: ... 4.0 16.0
4|6 3 ‘Event: ... 9.0 81.0 L |
5|8 4 ‘Event: ... 16.0 256.0 E@
al 1 a
| iiih I’_@]
Al TIgnLs reserveda.
Creating the Query results file...
OK!

|;'h0m effaltet/PyTables/pytables/trunk/exam ples}tutorialz.h5->iParticIesﬂ'Particle2|

Figure 3.4. Table hierarchy for tutorial 2.

3.5. Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marksin specific
places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back (undo) to a specific
mark (for example for inspecting how your hierarchy looked at that point). Y ou can also go forward to a more recent
marker (redo). Y ou can even do jumps to the marker you want using just one instruction as we will see shortly.

You can undo/redo al the operations that are related to object tree management, like creating, deleting, moving or
renaming nodes (or complete sub-hierarchies) inside a given object tree. Y ou can aso undo/redo operations (i.e. cre-
ation, deletion or modification) of persistent node attributes. However, when actions include internal modifications
of datasets (that includes Tabl e. append, Tabl e. nodi f yRows or Tabl e. r emoveRows among others), they
cannot be undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple branches.
When you have to choose a path to follow in such a situation, you can put a mark there and, if the simulation is not
going well, you can go back to that mark and start another path. Other possible application is defining coarse-grained
operations which operate in atransactional-like way, i.e. which return the database to its previous state if the operation
finds some kind of problem while running. You can probably devise many other scenarios where the Undo/Redo
feature can be useful to you “.

4Y ou can even hide nodes temporarily. Will you be able to find out how?

35

Tutorials

3.5.1. A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. Y ou can find the code used in
thisexampleinexanpl es/ t ut ori al 3- 1. py. A somewhat more complex example will be explained in the next
section.

First, let's create afile:

>>> jnport tables
>>> fileh = tables.openFile("tutorial 3-1. h5", "w', title="Undo/ Redo denp 1")

And now, activate the Undo/Redo feature with the method enabl eUndo (see description) of Fi | e:
>>> fil eh. enabl eUndo()

From now on, all our actions will be logged internally by PyTables. Now, we are going to create a node (in this case
an Ar r ay object):

>>> one = fileh.createArray('/', 'anarray', [3,4], "An array")
Now, mark this point:

>>> fileh. mark()
1

We have marked the current point in the sequence of actions. In addition, the mar k() method has returned the iden-
tifier assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning of the action log).
In the next section we will see that you can also assign aname to amark (see description for more info on mar k()).
Now, we are going to create another array:

>>> anot her = fileh.createArray('/', 'anotherarray', [4,5], "Another array")

Right. Now, we can start doing funny things. Let's say that we want to pop back to the previous mark (that whose
valuewas 1, do you remember?). Let's introduce the undo() method (see description):

>>> fil eh.undo()
Fine, what do you think it happened? Well, let's have alook at the object tree:

>>> print fileh

tutorial 3-1. h5 (File) 'Undo/ Redo denp 1'
Last nmodif.: 'Tue Mar 13 11:43:55 2007
oj ect Tree:

/ (Root G oup) 'Undo/ Redo denp 1'
[anarray (Array(2,)) 'An array'

What happened with the/ anot her ar r ay node we've just created? Y ou guessit, it has disappeared because it was
created after the mark 1. If you are curious enough you may well ask where it has gone. Well, it has not been deleted
completely; it has been just moved into a special, hidden, group of PyTables that renders it invisible and waiting for
achance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fil eh.undo()

>>> print fileh

tutorial 3-1. h5 (File) 'Undo/ Redo denp 1'
Last nodif.: 'Tue Mar 13 11:43:55 2007

36

Tutorials

oj ect Tree:
/ (Root G oup) 'Undo/ Redo denp 1'

Oops,/ anar r ay hasdisappeared aswell!. Don't worry, it will revisit usvery shortly. So, you might be somewhat lost
right now; in which mark are we?. Let's ask the get Cur r ent Mar k() method (see description) in the file handler:

>>> print fileh.getCurrent Mark()
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of actions when
calingFi | e. enabl eUndo() . Fine, but you are missing your too-young-to-die arrays. What can we do about that?
Fil e.redo() (seedescription) to therescue:

>>> fileh.redo()

>>> print fileh

tutorial 3-1. h5 (File) 'Undo/ Redo denp 1'
Last modif.: 'Tue Mar 13 11:43:55 2007
oj ect Tree:

/ (Root G oup) 'Undo/ Redo denp 1'
[anarray (Array(2,)) 'An array'

Great! The/ anar r ay array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]

>>> fileh.root.anarray.title
"An array'

WEell, it looks pretty similar than inits previous life; what's more, it is exactly the same object!:

>>> fileh.root.anarray i s one
True

It just was moved to the the hidden group and back again, but that's all! That's kind of fun, so we are going to do the
samewith/ anot her arr ay:

>>> fileh.redo()

>>> print fileh

tutorial 3-1. h5 (File) 'Undo/ Redo denp 1'
Last modif.: 'Tue Mar 13 11:43:55 2007
oj ect Tree:

/ (Root G oup) 'Undo/ Redo deno 1'
[anarray (Array(2,)) 'An array'
[anotherarray (Array(2,)) 'Another array'

Welcome back, / anot her ar r ay! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4, 5]

>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another

True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your action log
when you don't need this feature anymore:

>>> fil eh. di sabl eUndo()

37

Tutorials

That will allow you to continue working with your data without actually requiring PyTables to keep track of all your
actions, and more importantly, allowing your objects to die completely if they have to, not requiring to keep them
anywhere, and hence saving process time and space in your database file.

3.5.2. A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks will be set
in different parts of the code flow and we will see how to jump between these marks with just one method call. Y ou
can find the code used in this examplein exanpl es/ t ut ori al 3- 2. py

Let'sintroduce the first part of the code:

i mport tables

Create an HDF5 file
fileh = tables.openFile('tutorial 3-2.h5", 'w, title=" Undo/ Redo denp 2')

H -xx_kx_*x_*x*x_**_*x*_ anapl e undo/redo Iog _kk_kk_kk_Khkhk_Kkk_Kkk_Kk_!'
fil eh. enabl eUndo()

Start undoabl e operations

fileh.createArray('/', 'otherarrayl', [3,4], 'Another array 1')
fileh.createGoup('/"', "agroup', 'Goup 1')

Create a 'first' mark

fileh.mark('first')

fileh.createArray('/agroup', 'otherarray2', [4,5], 'Another array 2')
fileh.createGoup('/agroup', 'agroup2', 'Goup 2')

Create a 'second' nmark

fileh. mark(' second')

fileh.createArray('/agroup/agroup?2', 'otherarray3', [5,6], 'Another array 3')
Create a "third mark

fileh.mark('third")

fileh.createArray('/', 'otherarray4', [6,7], 'Another array 4')
fileh.createArray('/agroup', 'otherarray5', [7,8], 'Another array 5')

Y ou can see how we have set several marksinterspersed in the code flow, representing different states of the database.
Also, note that we have assigned names to these marks, namely ' first',' second' and' third'.

Now, start doing some jumps back and forth in the states of the database:

Now go to mark 'first'’
fileh.goto('first"')

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2’ not in fileh
assert '/agroup/otherarray2' not in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh

assert '/agroup/otherarray5 not in fileh
Go to mark "third

fileh.goto('third")

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

38

Tutorials

assert '/agroup/agroup2/otherarray3 in fileh
assert '/otherarray4’ not in fileh

assert '/agroup/otherarray5 not in fileh

Now go to mark 'second'

fileh.goto('second')

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

assert ' /agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4’ not in fileh

assert '/agroup/otherarray5 not in fileh

WEell, the code above shows how easy isto jump to a certain mark in the database by using the got o() method (see
description).

There are also a couple of implicit marks for going to the beginning or the end of the saved states: 0 and -1. Going to
mark #0 means go to the beginning of the saved actions, that is, when method f i | eh. enabl eUndo() wascalled.
Going to mark #-1 means go to the last recorded action, that is the last action in the code flow.

Let's see what happens when going to the end of the action log:

Go to the end

fileh.goto(-1)

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

assert '/agroup/agroup2/otherarray3 in fileh

assert '/otherarray4' in fileh

assert '/agroup/otherarray5 in fileh

Check that objects have conme back to life in a sane state

assert fileh.root.otherarrayl.read() == [3, 4]

assert fileh.root.agroup.otherarray2.read() == [4,5]

assert fileh.root.agroup. agroup2.otherarray3.read() == [5, 6]
assert fileh.root.otherarray4.read() == [6, 7]

assert fileh.root.agroup.otherarray5.read() == [7, 8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of the object tree.
We have nearly finished this demonstration. As always, do not forget to close the action log as well as the database:

H KKKk _kk _kok_kk_kok disable undo/redo |Og _kk_Kkk_Khk_Kkkhk_Kkk_K*k_K**k_!
fil eh. di sabl eUndo()

Close the file
fileh.close()

Y ou might want to check other examples on Undo/Redo feature that appear in exanpl es/ undo- r edo. py.

3.6. Using enumerated types

PyTables includes support for handling enumerated types. Those types are defined by providing an exhaustive set or
list of possible, named values for avariable of that type. Enumerated variables of the same type are usually compared
between them for equality and sometimes for order, but are not usually operated upon.

39

Tutorials

Enumerated values have an associated name and concrete value. Every nameis unique and so are concrete values. An
enumerated variable always takes the concrete value, not its name. Usually, the concrete valueis not used directly, and
frequently it isentirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete
values out of its enumerated type. For that kind of use, standard variables and constants are more adequate.

PyTables provides the Enum (see Section 4.14.3) class to provide support for enumerated types. Each instance of
Enumis an enumerated type (or enumeration). For example, let us create an enumeration of col ors”:

>>> jnport tables
>>> colorList =['red', '"green', 'blue', "white', 'black']
>>> col ors = tabl es. Enun{col orLi st)

Here we used asimple list giving the names of enumerated values, but we left the choice of concrete values up to the
Enumclass. Let us see the enumerated pairs to check those values:

>>> print "Colors:", [v for v in col ors]
Colors: [('blue', 2), ('black', 4), ('white', 3), (‘green', 1), ('red, 0)]

Names have been given automatic integer concrete values. We can iterate over the values in an enumeration, but we
will usually be more interested in accessing single values. We can get the concrete value associated with a name by
accessing it as an attribute or as an item (the later can be useful for names not resembling Python identifiers):

>>> print "Value of 'red" and 'white':", (colors.red, colors.wite)
Val ue of 'red' and 'white': (0, 3)
>>> print "Value of 'yellow :", colors.yellow
Val ue of 'yellow :
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File ".../tabl es/m sc/enum py", line 230, in _getattr_

rai se Attribut eError(*ke. args)
AttributeError: no enunerated value with that nane: 'yellow
>>>

>>> print "Value of 'red" and 'white':", (colors['red'], colors['white'])
Val ue of 'red' and 'white': (0, 3)
>>> print "Value of 'yellow :", colors['yellow]
Val ue of 'yellow :
Traceback (nmost recent call last):
File "<stdin>", line 1, in ?
File ".../tables/m sc/enum py", line 189, in getitem _

rai se KeyError("no enunerated value with that nane: %" % (nane,))
KeyError: "no enunerated value with that nane: 'yellow "

See how accessing avalue that is not in the enumeration rai ses the appropriate exception. We can also do the opposite
action and get the name that matches a concrete value by usingthe __cal | __ () method of Enum

>>> print "Name of val ue %:
Nane of value 0: red

>>> print "Name of value 1234:", col ors(1234)
Nane of val ue 1234:

% col ors.red, col ors(colors.red)

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File ".../tabl es/m sc/enum py", line 320, in __call__

rai se Val ueError (
Val ueError: no enunerated value with that concrete val ue: 1234

SAll these examples can befound in exanpl es/ enum py.

40

Tutorials

Y ou can see what we made as using the enumerated type to convert a concrete value into a name in the enumeration.
Of course, values out of the enumeration can not be converted.

3.6.1. Enumerated columns

Columns of an enumerated type can be declared by using the EnuntCol (see Section 4.13.2) class. To see how this
works, let us open anew PyTablesfile and create atable to collect the simulated results of a probabilistic experiment.
Init, we have abag full of colored balls; we take aball out and annotate the time of extraction and the color of the ball.

>>> h5f = tabl es.openFile('enumh5', 'w)
>>> cl ass Bal | Ext (tabl es. | sDescription):
bal | Ti me = tabl es. Ti ne32Col ()
bal | Col or = tabl es. EnunCol (col ors, 'black', base='uint8")

>>> tbl = h5f. createTabl ¢(
/', "extractions', BallExt, title="Random ball extractions")
>>>

Wedeclared thebal | Col or columnto be of the enumerated typecol or s, with adefault value of bl ack. Wealso
stated that we are going to store concrete values as unsigned 8-bit integer val ues®.

L et us use some random valuesto fill the table:

>>> jnport time

>>> jnport random

>>> now = tinme.tinme()

>>> row = thl.row

>>> for i in range(10):
row ' ball Time'] = now + i
row ' ball Color'] = col ors[random choi ce(colorList)] # notice this
row. append()

>>>

Notice how weusedthe _getitem () cdl of col or s to get the concrete value to storein bal | Col or . You
should know that this way of appending values to a table does automatically check for the validity on enumerated
values. For instance:

>>> row ' bal | Tine'] = now + 42
>>> rowf ' ball Color'] = 1234

Traceback (nost recent call |ast):
File "<stdin>", line 1, in <nodul e>
File "tabl eExt ensi on. pyx", line 1086, in tabl eExtension. Row. setitem _
File ".../tabl es/m sc/enum py", line 320, in __call__

"no enunerated value with that concrete value: %" % (val ue,))
Val ueError: no enunerated value with that concrete val ue: 1234

But take care that this check is only performed here and not in other methods such as t bl . append() or
t bl . modi f yRows () . Now, after flushing the table we can see the results of the insertions:

>>> tbl.flush()
>>> for r in thl:
bal I Time = r["bal |l Ti ne']
bal | Col or = colors(r['ballColor']) # notice this
print "Ball extracted on % is of color %." % (ballTinme, ball Color)

8in fact, only integer values are supported right now, but this may change in the future.

41

Tutorials

Bal |l extracted on 1173785568
Ball extracted on 1173785569
Bal |l extracted on 1173785570
Ball extracted on 1173785571
Ball extracted on 1173785572
Ball extracted on 1173785573
Bal |l extracted on 1173785574
Ball extracted on 1173785575
Ball extracted on 1173785576
Ball extracted on 1173785577

of col or green.
of col or bl ack.
of color white.
of col or bl ack.
of col or bl ack.
of col or red.

of col or green.
of col or red.

of color white.

i
i
i
i
i
i
i
i
i
is of color white.

n nnununnnnuonuon

Asalast note, you may be wondering how to have accessto the enumeration associated with bal | Col or oncethefile
isclosed and reopened. Youcancall t bl . get Enun{' bal | Col or') (seethesection called “getEnum(colname)”)
to get the enumeration back.

3.6.2. Enumerated arrays

EArray and VLAr r ay leaves can aso be declared to store enumerated values by means of the EnumAt om (see
Section 4.13.1) class, which works very much like EnuntCol for tables. Also, Ar r ay leaves can be used to open
native HDF enumerated arrays.

Let us create asample EAr r ay containing ranges of working days as bidimensional values:

>>> wor ki ngbays = {'Mon': 1, 'Tue': 2, "Wed': 3, '"Thu': 4, "Fri': 5}

>>> dayRange = tabl es. EnumAt om(wor ki ngDays, ' Mn', base='uint16')

>>> earr = hb5f.createEArray('/', 'days', dayRange, (0, 2), title="Wrking day
ranges")

>>> earr.flavor ="' python'

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to explicitly
set concrete values in the enumeration. In the second place, there is no explicit Enuminstance created! Instead, the
dictionary is passed as the first argument to the constructor of EnumAt om If the constructor getsalist or adictionary
instead of an enumeration, it automatically builds the enumeration from it.

Now let us feed some datato the array:

>>> wdays = earr. get Enun()
>>> earr. append([(wdays. Mon, wdays. Fri), (wdays.Wed, wdays.Fri)])
>>> earr. append([(wdays. Mon, 1234)])

Please note that, since we had no explicit Enuminstance, we were forced to use get Enun{) (see Section 4.9.1) to
get it from the array (we could also have used day Range. enum. Also note that we were able to append an invalid
value (1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

>>> for (d1, d2) in earr:
print "From% to % (% days)." % (wdays(dl), wdays(d2), d2-d1+1)

From Mon to Fri (5 days).
From Wed to Fri (3 days).

Traceback (nost recent call |ast):
File "<stdin>", line 2, in <nodul e>
File ".../tabl es/m sc/enum py", line 320, in __call__

"no enunerated value with that concrete value: %" % (val ue,))

42

Tutorials

Val ueError: no enunerated value with that concrete val ue: 1234

That was an example of operating on concrete values. It also showed how the value-to-name conversion failed because
of the value not belonging to the enumeration.

Now we will close the file, and this little tutorial on enumerated typesis done:

>>> hb5f. cl ose()

3.7. Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects, allowing you
to define arbitrarily nested columns.

An example will clarify what this means. Let's suppose that you want to group your datain pieces of information that
are more related than others piecesin your table, So you may want to tie them up together in order to have your table
better structured but also be able to retrieve and deal with these groups more easily.

Y ou can create such a nested substructures by just nesting subclasses of | sDescri pti on. Let's see one example
(okay, it'sabit silly, but will serve for demonstration purposes):

fromtables inport *

class Info(lsDescription):
"""A sub-structure of Test"""
_v_pos = 2 # The position in the whole structure
name = StringCol (10)
val ue = Fl oat 64Col (pos=0)

colors = Enun(['red', 'green', 'blue'])

cl ass NestedDescr (| sDescription):
"""A description that has several nested col ums
col or = Enuntol (colors, 'red', base='uint32")
infol = Info()
class info2(lsDescription):
_v_pos =1
name = StringCol (10)
val ue = Fl oat 64Col (pos=0)
class info3(lsDescription):
X Fl oat 64Col (df I t=1)
y = Ul nt8Col (dflt=1)

Theroot classis Nest edDescr and bothi nf 01 and i nf 02 are substructures of it. Note how i nf 01 is actually
an instance of the class | nf o that was defined prior to Nest edDescr . Also, there is a third substructure, namely
i nf 03 that hangs from the substructure i nf 02. You can aso define positions of substructures in the containing
object by declaring the special class attribute _v_pos.

3.7.1. Nested table creation

Now that we have defined our nested structure, let's create a nested table, that is a table with columns that contain
other subcolumns.

>>> fijleh
>>> tabl e

openFi |l e("nest ed-tut.h5", "w')
fileh.createTabl e(fileh.root, 'table', NestedDescr)

43

Tutorials

Done! Now, we have to feed the table with some values. The problem is how we are going to reference to the nested
fields. That'seasy, justusea' /' character to separate names in different nested levels. Look at this:

>>> row = table.row

>>> for i in range(10):
row'color'] = colors[['red', 'green', 'blue'][i%3]]
row 'infol/ name'] = "nanel-%" %i
row 'info2/name'] = "nane2-%" %i

row'info2/info3/y'] = i
Al the rest will be filled with defaults
row. append()

>>> table.flush()
>>> tabl e. nrows
10

You see?Inorder tofill thefieldslocated in the substructures, wejust need to specify itsfull pathin thetable hierarchy.

3.7.2. Reading nested tables
Now, what happensif we want to read the table? What kind of data container will we get? Well, it's worth trying it:

>>> nra = table[::4]

>>> nra

array([(((1.0, 0), 'nane2-0', 0.0), ('nanel-0', 0.0), OL),
(((1.0, 4), 'nane2-4', 0.0), ('nanel-4', 0.0), 1L),

(((1.0, 8), 'nane2-8', 0.0), ('nanel-8, 0.0), 2L)],

dtype=[('info2', [('info3", [('x", ">f8), ('y', "|ul)]),
('nane', '|S10'), ('value', '>f8)]),

("infol', [('nane', '|S10'), ('value', '>f8)]),

("color', '">u4')])

What we got is a NumPy array with a compound, nested datatype (its dt ype isalist of name-datatype tuples). We
read one row for each four in the table, giving aresult of three rows.

E Note
When using the numar r ay flavor, you will get an instance of the Nest edRecAr r ay classthat lives
inthet abl es. nr a package. Nest edRecAr r ay is actually a subclass of the RecAr r ay object of
the numarr ay. r ecor ds module. You can get more info about Nest edRecAr r ay object in Ap-
pendix D.

You can make use of the above object in many different ways. For example, you can use it to append new data to
the existing table object:

>>> tabl e. append(nra)
>>> tabl e. nrows
13

Or, to create new tables:

>>> table2 = fileh.createTable(fileh.root, 'table2', nra)

>>> tabl e2[:]

array([(((1.0, 0), 'nane2-0', 0.0), ('nanel-0', 0.0), OL),
(((1.0, 4), 'nane2-4', 0.0), ('nanel-4', 0.0), 1L),

Tutorials

(((1.0, 8), 'name2-8', 0.0), ('nanel-8', 0.0), 2L)]

dtype=[('info2', [('info3", [('x', "<f8), ('y', "|ul)]),
('nane', '|S10'), ('value', '<f8')]),

("infol', [('name’', '|S10'), ('value', '<f8)]),

(‘color', "<u4d')])

Finally, we can select nested values that fulfill some condition:

>>> names = [x['info2/nane'] for x in table if x['color'] == colors.red]
>>> nanes
['name2-0', 'nane2-3', 'nane2-6', 'nanme2-9', 'nanme2-0']

Note that the row accessor does not provide the natural naming feature, so you have to completely specify the path
of your desired columnsin order to reach them.

3.7.3. Using Cols accessor

We can use the col s attribute object (see Section 4.6.8) of the table so as to quickly access the info located in the
interesting substructures:

>>> tabl e. col s.info2[1:5]
array([((2.0, 1), 'name2-1', 0.0), ((1.0, 2), 'nanme2-2', 0.0),
((1.0, 3), 'nane2-3', 0.0), ((1.0, 4), 'name2-4', 0.0)],
dtype=[('info3, [('x', "<f8), ("y', '|Jul')]), ('name', '|S10'),
("value', '<f8)])

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation to get access
to the subset of data we were interested in; you probably have recognized the natural naming approach here. We can
continue and ask for datain info3 substructure:

>>> tabl e.cols.info2.info3[1:5]
array([(1.0, 1), (2.0, 2), (1.0, 3), (1.0, 4],
dtype=[('x', "<f8), ('y', "|ul")])
Youcanasousethe f col method to get a handler for a column:
>>> table.cols. _f_col ('info2'")
/table.cols.info2 (Cols), 3 colunmns
i nfo3 (Col s(), Description)

nane (Colum(), | S10)
val ue (Columm(), fl oat64)

Here, you've got another Col s aobject handler because info2 was a nested column. If you select a non-nested column,
you will get aregular Col unm instance:

>>> table.cols. f_col ("info2/info3/y")
/table.cols.info2.info3.y (Colum(), uint8, idx=None)

To sum up, thecol s accessor is avery handy and powerful way to access data in your nested tables. Don't be afraid
of using it, specially when doing interactive work.

3.7.4. Accessing meta-information of nested tables

Tables have an attribute called descri pt i on which points to an instance of the Descri pti on class (see Sec-
tion 4.6.6) and is useful to discover different meta-information about table data.

45

Tutorials

Let's see how it looks like:

>>> t abl e. descri ption
{
"info2": {
"info3": {
"x": Fl oat 64Col (shape=(), dflt=1.0, pos=0),
"y": U nt8Col (shape=(), dflt=1, pos=1)},

"name": StringCol (itensize=10, shape=(), dflt="", pos=1),
"val ue": Fl oat 64Col (shape=(), dflt=0.0, pos=2)},

"infol": {
"name": StringCol (itensize=10, shape=(), dflt="", pos=0),

"val ue": Fl oat 64Col (shape=(), dflt=0.0, pos=1)},
"col or": EnunCol (enumsEnun({' blue': 2, 'green': 1, 'red': 0}), dflt="red",
base=Ul nt 32At on(shape=(), dflt=0), shape=(), pos=2)}

Asyou can see, it provides very useful information on both the formats and the structure of the columnsin your table.
This object also provides a natural naming approach to access to subcolumns metadata:

>>> tabl e. description.infol

{
"nane": StringCol (itensize=10, shape=(), dflt=""', pos=0),
"val ue": Fl oat 64Col (shape=(), dflt=0.0, pos=1)}

>>> tabl e. description.info2.info3

{
"x": Fl oat 64Col (shape=(), dflt=1.0, pos=0),
"y": U nt8Col (shape=(), dflt=1, pos=1)}
There are other variables that can be interesting for you:

>>> tabl e. descri ption. _v_nest edNanes

[("info2', [("info3", ['X', '"y']), 'nane', 'value'l]),
("infol', ['nane', 'value']), 'color']

>>> tabl e. description.infol. v _nestedNanes

['nanme', 'value']

_v_nest edNanes provides the names of the columns as well as its structure. Y ou can see that there are the same
attributes for the different levels of the Descri pti on object, because the levels are also Descri pt i on objects
themselves.

Thereisa specia attribute, called _v_nest edDescr, that can be useful to create nested record arrays that imitate
the structure of the table (or a subtable thereof):

>>> | mport nunpy
>>> tabl e. descri ption. _v_nest edDescr

[("info2", [("info3", [("x", "()f8), ("y", "(Qul")]), ('nanme’, '()S10"),
(*value', "()f8)]), ("infol', [('name', '()S10'), ('value', '"()f8)]),
("color', "()ud')]
>>> nunpy. rec. array(None, shape=0,

dt ype=t abl e. descri pti on. _v_nest edDescr)
recarray([],

dtype=[("info2', [("info3", [('x', ">f8), ("y', "|ul)]),
('nane', '|S10'), ('value', '>f8)]),
("infol', [('nane', '|S10'), ('value', "'>f8)]),

46

Tutorials

("color', '">u4')])
>>> nunpy. rec. array(None, shape=0,
dt ype=t abl e. descri ption.info2. v_nestedDescr)
recarray([],
dtype=[("info3", [('x', ">f8), (‘"y', "|ul')]), ('name', '|S1l0"),
("value', '>f8")])
>>> fromtables inport nra
>>> nra.array(None, descr=table.description._v_nestedDescr)
array(
[1,
descr=[('info2', [("info3", [('x', "()f8), ('y', "(Oul')]),
("name', '()S10'), ('value', "()f8)]), ("infol', [('name', '()S10'),
("value', '()f8)]), (‘'color', "()ud')],
shape=0)

Y ou can see we have created two equivalent arrays. one with NumPy (the first) and one with the nr a package (the
last). The later implements nested record arrays for nunar r ay (see Appendix D).

Finally, thereis a specid iterator of theDescri pti on class, caled f _wal k that isableto return you the different
columns of thetable:

>>> for coldescr in table.description._f_wal k():
print "colum-->", col descr

colum--> Description([("info2', [("info3", [('x", "()f8), ("y', "(Hul')]),
("name', '()S10'), ('value', '()f8)]1),
("infol', [('nane', '()S10'), ('value', "()f8)]),
("color', "(Hud')])

col um--> EnunCol (enum=Enum({' blue': 2, 'green': 1, 'red': 0}), dflt="red
base=Ul nt 32At om(shape=(), dflt=0), shape=(),
pos=2)
colum--> Description([('info3", [('x', "()f8), ("y', "(Qul')]), ('name',
" ()Ss10'),
("value', '()f8)])
col um--> StringCol (itensize=10, shape=(), dflt=""', pos=1)
col um--> Fl oat 64Col (shape=(), dflt=0.0, pos=2)
col um--> Description([('name', '()S10'), ('value', '"()f8)])
col um--> StringCol (itensize=10, shape=(), dflt="", pos=0)
col um--> Fl oat 64Col (shape=(), dflt=0.0, pos=1)
colum--> Description([('"x", "()f8), ('y', "(Qul)])
col um--> Fl oat 64Col (shape=(), dflt=1.0, pos=0)
col um--> Ul nt 8Col (shape=(), dflt=1, pos=1)

See the Section 4.6.6 for the complete listing of attributes and methods of Descri pti on.
WEell, thisisthe end of thistutorial. As always, do not forget to close your files:

>>> fileh.close()

Finally, you may want to have alook at your resulting data file:

$ ptdunp -d nested-tut.h5
/ (Root Gr oup)
/table (Table(13,))

Dat a dunp:

47

Tutorials

[O]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9] .0, 9),
[10] 1.0, 0),
[11] (((1.0, 4),
[12] (((1.0, 8),

0),
1),
2),
3),
4),
5),
6) ,
7).,
8).,

AN AN AN AN AN AN S S
CO0OO0O0O0O0O00O0O0O0O

((1
((1
((1
((1
((1
((1.
((1
((1
((1
((1
(((

/tabl e2 (Table(3,))

Dat a dunp:
[0] (((1.0, 0),
[1] (((1.0, 4),
[2] (((1.0, 8),

'nanme2-0', 0.0),
'nanme2-1', 0.0),
'nanme2-2', 0.0),
'nanme2-3', 0.0),
'nanme2-4', 0.0),
'nanme2-5', 0.0),
'nanme2-6', 0.0),
'nanme2-7', 0.0),
'nanme2-8', 0.0),
'nanme2-9', 0.0),

'nanme2-0', 0.0),
'nanme2-4', 0.0),
'nanme2-8', 0.0),

'nanme2-0', 0.0),
'nanme2-4', 0.0),
'nane2-8', 0.0),

%
¢
¢
¢
¢
¢
¢
¢
¢
¢

(' nanel-0',
(' nanel-4',
(' nanel-8',

nanel- 0'
nanel- 1'
nanel- 2'
nanel- 3'
nanel- 4'
nanel- 5'
nanel- 6'
nanel- 7'
nanel- 8'
nanel- 9'
(' nanel-0',
(' nanel-4',
(' nanel-8',

OO OO0OO0OO0OO0OO0OO0OOo

-0),
-0),
-0),
-0),
-0),
-0),
-0),
-0),
-0),

0

0),

. 0),
0.0),
0.0),

0.0),
0.0),
0.0),

oL)
1L)
2L)
oL)
1L)
2L)
oL)
1L)
2L)
oL)
oL)
1L)
2L)

oL)
1L)
2L)

Most of the code in this section isaso availablein exanpl es/ nest ed-t ut . py.

All in all, PyTables provides a quite comprehensive toolset to cope with nested structures and address your classifi-
cation needs. However, caveat emptor, be sure to not nest your data too deeply or you will get inevitably messed

interpreting too intertwined lists, tuples and description objects.

3.8. Other examples in PyTables distribution

Feel free to examine the rest of examples in directory exanpl es/, and try to understand them. We have written
several practical sample scriptsto give you an idea of the PyTables capabilities, itsway of dealing with HDF5 objects,
and how it can be used in the real world.

48

Chapter 4. Library Reference

PyTablesimplements several classesto represent the different nodesin the object tree. They arenamed Fi | e, Gr oup,
Leaf ,Tabl e, Array, CArray, EArray, VLArr ay and Unl nmpl enent ed. Another one allows the user to com-
plement the information on these different objects; its name is At t ri but eSet . Finally, another important class
caledl sDescri pti onalowstohbuildaTabl e record description by declaring asubclass of it. Many other classes
are defined in PyTables, but they can be regarded as helpers whose goal is mainly to declare the data type properties
of the different first class objects and will be described at the end of this chapter as well.

An important function, called openFi | e is responsible to create, open or append to files. In addition, a few util-
ity functions are defined to guess if the user supplied file is a PyTables or HDF5 file. These are caled i sPyTa-
bl esFil e() and i sHDF5Fi | e(), respectively. There exists also a function called whi chLi bVer si on()
that informs about the versions of the underlying C libraries (for example, HDF5 or Z| i b) and another called
print_versions() that printsall the versions of the software that PyTablesrelieson. Finally, t est () letsyou
run the complete test suite from a Python console interactively.

Let's start discussing the first-level variables and functions available to the user, then the different classes defined in
PyTables.

4.1.t abl es variables and functions
4.1.1. Global variables

__version__ The PyTables version number.
hdf5Version The underlying HDF5 library version number.
is pro True for PyTables Professional edition, false otherwise.

4.1.2. Global functions

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)
An easy way of copying one PyTablesfile to another.

This function allows you to copy an existing PyTables file named sr cf i | enane to another filecalleddstfi | e-
nane. The source file must exist and be readable. The destination file can be overwritten in place if existing by as-
serting theover wr i t e argument.

This function is a shorthand for the Fi | e. copyFi | e() method, which acts on an already opened file. kwar gs
takes keyword arguments used to customize the copying process. See the documentation of Fi | e. copyFi | e()
(see description) for a description of those arguments.

isHDF5File(filename)
Determine whether afileisin the HDF5 format.

When successful, it returns atrue value if thefileis an HDF5 file, false otherwise. If there were problemsidentifying
thefile, an HDF5Ext Er r or israised.

isPyTablesFile(filename)

Determine whether afileisin the PyTables format.

49

Library Reference

When successful, it returns a true value if the file is a PyTables file, false otherwise. The true value is the format
version string of thefile. If there were problems identifying the file, an HDF5Ext Er r or israised.

Irange([start,]stop][, step])
Iterate over long ranges.

Thisissimilar toxr ange() , but it alows 64-bit arguments on all platforms. The results of the iteration are sequen-
tialy yielded in the form of nunpy. i nt 64 values, but getting random individual itemsis not supported.

Because of the Python 32-bit limitation on object lengths, the | engt h attribute (which is also a nunpy. i nt 64
value) should be used instead of thel en() syntax.

Default start and st ep arguments are supported in the same way as in xr ange() . When the standard
[x] range() Python objects support 64-bit arguments, thisiterator will be deprecated.

openFile(filename, mode="r'", title=", rootUEP="/", filters=None, **kwargs)
Open aPyTables (or generic HDF5) file and return aFi | e object.
Arguments:

filename

The name of the file (supports environment variable expansion). It is suggested that file names have any of the
. h5,. hdf or. hdf 5 extensions, although thisis not mandatory.

mode
The mode in whichto open the file. It can be one of the following:

e
Read-only; no data can be modified.

W
Write; anew fileis created (an existing file with the same name would be del eted).

a
Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

"
Itissimilarto' a' , but the file must already exist.

title
If thefileisto be created, a Tl TLE string attribute will be set on the root group with the given value. Otherwise,
thetitle will be read from disk, and thiswill not have any effect.

rootUEP
The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting point to
create the object tree. It can be whatever existing group in the file, named by itsHDF5 path. If it does not exist, an
HDF5Ext Er r or isissued. Usethisif you do not want to build the entire object tree, but rather only asubtree of it.

filters
Aninstance of the Fi | t er s (see Section 4.14.1) class that provides information about the desired 1/0O filters
applicableto the leavesthat hang directly from the root group, unless other filter properties are specified for these
leaves. Besides, if you do not specify filter properties for child groups, they will inherit these ones, which will
in turn propagate to child nodes.

50

Library Reference

In addition, it recognizes the names of parameters present int abl es/ par anet er s. py (and for PyTables Pro
users, those in t abl es/ _paranet ers_pr o. py too) as additional keyword arguments. See Appendix C for a
detailed info on the supported parameters.

@ Note
If you need to deal with alarge number of nodesin an efficient way, please see Section 5.5 for moreinfo
and advices about the integrated node cache engine.

print_versions()

Print all the versions of software that PyTablesrelies on.
restrict_flavors(keep=['python'])
Disable all flavors except those in keep.

Providing an empty keep sequenceimpliesdisabling all flavors (but theinternal one). If the sequenceis not specified,
only optional flavors are disabled.

2 Important
Once you disable aflavor, it can not be enabled again.

split_type(type)
SplitaPyTablest ype into aPyTableskind and an item size.

Returns atuple of (ki nd, itemnsize). If noitem sizeis present in thet ype (in the form of a precision), the
returned item sizeisNone.

>>> gplit_type('int32")

("int', 4)

>>> gplit_type('string')
('string', None)

>>> gplit_type('int20')

Traceback (nmost recent call last):

Val ueError: precision nmust be a nultiple of 8 20
>>> gsplit_type('foo bar')
Traceback (nmost recent call last):

Val ueError: mal forned type: 'foo bar'
test(verbose=False, heavy=False)

Run all the testsin the test suite.

If ver bose is set, the test suite will emit messages with full verbosity (not recommended unless you are looking
into a certain problem).

If heavy is set, the test suite will be run in heavy mode (you should be careful with this because it can take alot of
time and resources from your computer).

whichLibVersion(name)

Get version information about a C library.

51

Library Reference

If thelibrary indicated by nane isavailable, thisfunction returns a 3-tuple containing the major library version as an
integer, its full version as a string, and the version date as a string. If the library is not available, None isreturned.

The currently supported library namesare hdf 5, z1 i b,| zo and bzi p2. If another nameisgiven, aVal uekr r or
israised.

4.2. The Fi | e class

In-memory representation of a PyTablesfile.

Aninstance of thisclassisreturned when aPyTablesfileis opened with theopenFi | e() (seedescription) function.
It offers methods to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to
traversethe object tree. The user entry point to the object tree attached to the HDF5 fileisrepresented in ther oot UEP
attribute. Other attributes are available.

Fi | e objects support an Undo/Redo mechanism which can be enabled with the enabl eUndo() (see description)
method. Once the Undo/Redo mechanism is enabled, explicit marks (with an optional unique name) can be set on
the state of the database using the mar k() (see description) method. There are two implicit marks which are always
available: the initial mark (0) and the final mark (-1). Both the identifier of amark and its name can be used in undo
and redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling operations (setting
and deleting) made after a mark can be undone by using the undo() (see description) method, which returns the
database to the state of a past mark. If undo() isnot followed by operations that modify the hierarchy or attributes,
ther edo() (see description) method can be used to return the database to the state of a future mark. Else, future
states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation operations on
nodes that do not support the Undo/Redo mechanism issue an UndoRedoWar ni ng before changing the database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling thedi sabl eUndo()
(see description) method.

File objects can also act as context managers when using thewi t h statement introduced in Python 2.5. When exiting
a context, the file is automatically closed.

4.2.1. Fi |l einstance variables

filename The name of the opened file.

format_version The PyTables version number of thisfile.

isopen Trueif the underlying fileis open, false otherwise.

mode The mode in which the file was opened.

title Thetitle of the root group in thefile.

rootUEP The UEP (user entry point) group nameinthefile (seetheopenFi | e() function
in description).

filters Default filter properties for the root group (see Section 4.14.1).

root Theroot of the object tree hierarchy (aGr oup instance).

52

Library Reference

4.2.2. Fi | e methods — file handling

close()

Flush all the alive leavesin object tree and close the file.

copyFile(dstfilename, overwrite=False, **kwargs)
Copy the contents of thisfiletodst fi | enarne.

dst f i | enanme must be a path string indicating the name of the destination file. If it already exists, the copy will fail
withan | CEr r or , unlesstheover wr i t e argument is true, in which case the destination file will be overwritten in
place. In thislast case, the destination file should be closed or ugly errors will happen.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

Copying afile usually hasthe beneficial side effect of creating amore compact and cleaner version of the original file.

flush()

Flush all the alive leavesin the object tree.

fileno()
Return the underlying OS integer file descriptor.

Thisis needed for lower-level file interfaces, such asthef cnt | module.

__enter__()

Enter a context and return the same file.
__exit__([*exc_info])

Exit a context and close thefile.

str ()
Return a short string representation of the object tree.
Example of use:

>>> f = tabl es.openFile(' data/test.h5")

>>> print f

data/test.h5 (File) ' Table Benchmark'

Last nmodif.: 'Mon Sep 20 12:40: 47 2004

oj ect Tree:

/[(G oup) 'Table Benchmar k'

[tupl e0 (Tabl e(100,)) "'This is the table title'

/ group0 (G oup)

[group0/tupl el (Tabl e(100,)) "'This is the table title'
/ group0/ groupl (G oup)

/ group0/ groupl/tupl e2 (Table(100,)) 'This is the table title'

53

Library Reference

/ gr oup0/ gr oupl/ group2 (G oup)

__repr__()
Return a detailed string representation of the object tree.

4.2.3. Fi | e methods — hierarchy manipulation

copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of a group into another group.

This method copies the nodes hanging from the source group sr cgr oup into the destination group dst gr oup.
Existing destination nodes can be replaced by asserting the over wr i t e argument. If ther ecur si ve argument is
true, al descendant nodes of sr cnode are recursively copied. If cr eat epar ent s istrue, the needed groups for
the given destination parent group path to exist will be created.

kwar gs takes keyword arguments used to customize the copying process. See the documentation of
G oup. _f_copyChi |l dren() (seedescription) for a description of those arguments.

copyNode(where, newparent=None, newname=None, name=None,
overwrite=False, recursive=False, createparents=False, **kwargs)

Copy the node specified by wher e and nane to newpar ent / newnane.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

newparent
The destination group that the node will be copied into (a path name or a Gr oup instance). If not specified or
None, the current parent group is chosen as the new parent.

newname
The name to be assigned to the new copy in its destination (a string). If it is not specified or None, the current
name is chosen as the new name.

Additional keyword arguments may be passed to customize the copying process. The supported arguments depend on
the kind of node being copied. See G- oup. _f _copy() (description) and Leaf . copy() (description) for more
information on their allowed keyword arguments.

This method returns the newly created copy of the source node (i.e. the destination node). See Node. _f _copy()
(description) for further details on the semantics of copying nodes.

createArray(where, name, object, title=", byteorder=None, createparents=False)

Createanew array with thegiven nane inwher e location. Seethe Ar r ay class(in Section 4.7) for moreinformation
on arrays.

object
Thearray or scalar to be saved. Accepted typesare NumPy arraysand scalars, nunar r ay arraysand string arrays,
Numeric arrays and scalars, as well as native Python sequences and scalars, provided that values are regular (i.e.
they arenot like[[1, 2], 2]) and homogeneous (i.e. al the elements are of the same type).

Also, objects that have some of their dimensions equal to 0 are not supported (use an EAr r ay node (see Sec-
tion 4.9) if you want to store an array with one of its dimensions equal to 0).

Library Reference

byteorder
The byteorder of the data on disk, specifiedas' | ittle' or' bi g'. If thisis not specified, the byteorder is
that of the given obj ect .

SeeFi |l e. creat eTabl e() (description) for more information on the rest of parameters.

createCArray(where, name, atom, shape, title=", filters=None, chunkshape=None,
byteorder=None, createparents=False)

Create anew chunked array with the given name inwher e location. Seethe CAr r ay class (in Section 4.8) for more
information on chunked arrays.

atom
An At om(see Section 4.13.1) instance representing the type and shape of the atomic objects to be saved.

shape
The shape of the new array.

chunkshape
The shape of the data chunk to be read or written in a single HDF5 1/O operation. Filters are applied to those
chunks of data. The dimensionality of chunkshape must be the same as that of shape. If None, a sensible
valueis calculated (which is recommended).

SeeFi |l e. creat eTabl e() (description) for more information on the rest of parameters.

createEArray(where, name, atom, shape, title=", filters=None,
expectedrows=EXPECTED_ROWS_EARRAY, chunkshape=None,
byteorder=None, createparents=False)

Create a new enlargeable array with the given name in wher e location. See the EAr r ay (in Section 4.9) class for
more information on enlargeable arrays.

atom
An At om(see Section 4.13.1) instance representing the type and shape of the atomic objects to be saved.

shape
The shape of the new array. One (and only one) of the shape dimensions must be 0. The dimension being 0 means
that the resulting EAr r ay object can be extended along it. Multiple enlargeable dimensions are not supported
right now.

expectedr ows
A user estimate about the number of row elements that will be added to the growable dimension in the EAr r ay
node. If not provided, the default value is EXPECTED ROWS_EARRAY (seet abl es/ par anet er s. py). If
you plan to create either amuch smaller or amuch bigger array try providing aguess; thiswill optimizethe HDF5
B-Tree creation and management process time and the amount of memory used.

chunkshape
The shape of the data chunk to be read or written in a single HDF5 1/O operation. Filters are applied to those
chunks of data. The dimensionality of chunkshape must be the same as that of shape (beware: no dimension
should be 0 thistime!). If None, asensible value is calculated based on the expect edr ows parameter (which
is recommended).

byteorder
The byteorder of the data on disk, specifiedas' | ittle' or' bi g'. If thisisnot specified, the byteorder is
that of the platform.

55

Library Reference

SeeFi |l e. creat eTabl e() (description) for more information on the rest of parameters.

createGroup(where, name, title=", filters=None, createparents=False)

Createanew group withthegiven nane inwher e location. Seethe G- oup class(in Section 4.4) for moreinformation
on groups.

filters
An instance of the Fi | t er s class (see Section 4.14.1) that provides information about the desired 1/0O filters
applicableto theleavesthat hang directly from this new group (unless other filter properties are specified for these
leaves). Besides, if you do not specify filter properties for its child groups, they will inherit these ones.

SeeFi | e. creat eTabl e() (description) for more information on the rest of parameters.

createTable(where, name, description, title=", filters=None,
expectedrows=EXPECTED_ROWS_TABLE, chunkshape=None, byteorder=None,
createparents=False)

Create anew tablewith the given name inwher e location. Seethe Tabl e (in Section 4.6) classfor moreinformation
on tables.

where
The parent group where the new table will hang from. It can be apath string (for example' / | evel 1/ 1 eaf 5'),
or aG oup instance (see Section 4.4).

name
The name of the new table.

description

This is an object that describes the table, i.e. how many columns it has, their names, types, shapes, etc. It can
be any of the following:

A user-defined class
This should inherit fromthel sDescri pt i on class (see Section 4.13.3) where table fields are specified.

A dictionary
For example, when you do not know beforehand which structure your table will have).

See Section 3.4 for an example of using a dictionary to describe atable.

A Descri pti on instance
You canusethedescri pti on attribute of another table to create a new one with the same structure.

A NunPy (record) array instance
Y ou can use a NumPy array, whether nested or not, and itsfield structure will be reflected in the new Tabl e
object. Moreover, if the array has actual data it will be injected into the newly created table. If you are using
numar r ay instead of NumPy, you may use one of the objects below for the same purpose.

A RecArr ay instance
This object from the numar r ay package is also accepted, but it does not give you the possibility to create
anested table. Array dataisinjected into the new table.

A Nest edRecAr r ay instance
Finally, if you want to have nested columns in your table and you are using nunar r ay, you can use this
object. Array dataisinjected into the new table.

56

Library Reference

See Appendix D for a description of the Nest edRecAr r ay class.

title
A description for this node (it setsthe TI TLE HDF5 attribute on disk).

filters
Aninstance of theFi | t er s class (see Section 4.14.1) that provides information about the desired /O filters to
be applied during the life of this object.

expectedr ows
A user estimate of the number of records that will be in the table. If not provided, the default value is
EXPECTED_ROWNS5_TABLE (seet abl es/ par anet er s. py). If you plan to create abigger tabletry providing
aguess; thiswill optimize the HDF5 B-Tree creation and management process time and memory used.

See Section 5.1.1 for adiscussion on the issue of providing a number of expected rows.

chunkshape
The shape of the data chunk to be read or written in a single HDF5 1/O operation. Filters are applied to those
chunks of data. The rank of the chunkshape for tablesmust be 1. If None, asensible valueis calculated based
ontheexpect edr ows parameter (which is recommended).

byteorder
The byteorder of dataon disk, specifiedas' littl e' or' bi g' . If thisisnot specified, the byteorder is that of
the platform, unless you passed an array asthedescri pt i on, in which case its byteorder will be used.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

createVLArray(where, name, atom, title=", filters=None, expectedsizeinMB=1.0,
chunkshape=None, byteorder=None, createparents=False)

Create anew variable-length array with the given nare inwher e location. Seethe VLAr r ay (in Section 4.10) class
for more information on variable-length arrays.

atom
An At om(see Section 4.13.1) instance representing the type and shape of the atomic aobjects to be saved.

expectedsizeinM B
An user estimate about the size (in MB) in thefinal VLAr r ay node. If not provided, the default valueis 1 MB. If
you plan to create either amuch smaller or amuch bigger array try providing aguess; thiswill optimize the HDF5
B-Tree creation and management process time and the amount of memory used. If you want to specify your own
chunk size for 1/0 purposes, see also the chunkshape parameter below.

chunkshape
The shape of the data chunk to be read or written in a single HDF5 1/O operation. Filters are applied to those
chunks of data. The dimensionality of chunkshape must be 1. If None, a sensible value is calculated (which
is recommended).

SeeFi | e. creat eTabl e() (description) for moreinformation on the rest of parameters.

moveNode(where, newparent=None, newname=None, name=None,
overwrite=False, createparents=False)

Move the node specified by wher e and nane to newpar ent / newnane.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

57

Library Reference

newparent
The destination group the node will be moved into (a path name or a G- oup instance). If it is not specified or
None, the current parent group is chosen as the new parent.

newname
The new name to be assigned to the node in its destination (a string). If it is not specified or None, the current
name is chosen as the new name.

The other argumentswork asin Node. f _nove() (seedescription).
removeNode(where, name=None, recursive=False)

Remove the object node name under where location.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

recursive
If not supplied or false, the node will be removed only if it has no children; if it does, a NodeEr r or will be
raised. If supplied with atrue value, the node and all its descendants will be completely removed.

renameNode(where, newname, name=None, overwrite=False)
Change the name of the node specified by wher e and nane to newnane.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

newname
The new name to be assigned to the node (a string).

overwrite
Whether to recursively remove a node with the same newnane if it aready exists (not done by default).

4.2.4. Fil e methods — tree traversal

getNode(where, name=None, classname=None)
Get the node under wher e with the given nane.

wher e can be a Node instance (see Section 4.3) or a path string leading to a node. If no name is specified, that
node is returned.

If anane is specified, this must be a string with the name of anode under wher e. In this case the wher e argument
can only lead to aGr oup (see Section 4.4) instance (else a TypeEr r or israised). The node called nane under the
group wher e isreturned.

In both cases, if the node to be returned does not exist, aNoSuchNodeEr r or israised. Please note that hidden nodes
are al'so considered.

If thecl assnane argument is specified, it must be the name of a class derived from Node. If the node is found but
it isnot an instance of that class, aNoSuchNodeEr r or isalso raised.

isVisibleNode(path)
Isthe node under pat h visible?

If the node does not exist, aNoSuchNodeEr r or israised.

58

Library Reference

iterNodes(where, classname=None)
Iterate over children nodes hanging from wher e.

where
Thisargument worksasinFi | e. get Node() (seedescription), referencing the node to be acted upon.

classname
If the name of a class derived from Node (see Section 4.3) is supplied, only instances of that class (or subclasses
of it) will be returned.

The returned nodes are a phanumerically sorted by their name. Thisis an iterator version of Fi | e. | i st Nodes()
(see description).

listNodes(where, classname=None)
Return alist with children nodes hanging from wher e.

Thisisalist-returning version of Fi | e. i t er Nodes() (see description).

walkGroups(where="/")
Recursively iterate over groups (not leaves) hanging from wher e.

Thewher e group itself islisted first (preorder), then each of its child groups (following an alphanumerical order) is
also traversed, following the same procedure. If wher e is not supplied, the root group is used.

Thewher e argument can be a path string or aG oup instance (see Section 4.4).

walkNodes(where="/", classname="")
Recursively iterate over nodes hanging from wher e.

where
If supplied, the iteration starts from (and includes) this group. It can be a path string or a G- oup instance (see
Section 4.4).

classname
If the name of a class derived from Node (see Section 4.4) is supplied, only instances of that class (or subclasses
of it) will be returned.

Example of use:

Recursively print all the nodes hanging from'/detector'.

print "Nodes hanging fromgroup '/detector':"

for node in h5file.wal kNodes('/detector', classname='EArray'):
pri nt node

__contains__(path)

Isthere a node with that pat h?

Returns Tr ue if the file has anode with the given pat h (astring), Fal se otherwise.
__iter__()

Recursively iterate over the nodesin the tree.

Thisisequivaent to calling Fi | e. wal kNodes() (see description) with no arguments.

59

Library Reference

Example of use:

Recursively list all the nodes in the object tree.
h5file = tabl es.openFile('vlarrayl. h5')
print "All nodes in the object tree:"
for node in h5file:
print node

4.2.5. Fi | e methods — Undo/Redo support
disableUndo()

Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leavesthe database in the current state and forgets past and future database states.
Thismakes Fi | e. mar k() (see description), Fi | e. undo() (see description), Fi | e. redo() (see description)
and other methods fail with an UndoRedoEr r or .

Calling this method when the Undo/Redo mechanism is already disabled raises an UndoRedoEr r or .
enableUndo(filters=Filters(complevel=1))
Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This alows
Fil e. mark() (see description), Fi | e. undo() (see description), Fi | e. redo() (see description) and other
methods to be called.

Thefilt ers argument, when specified, must be an instance of classFi | t er s (see Section 4.14.1) and is meant
for setting the compression values for the action log. The default is having compression enabled, asthe gainsin terms
of space can be considerable. You may want to disable compression if you want maximum speed for Undo/Redo
operations.

Calling this method when the Undo/Redo mechanism is already enabled raises an UndoRedoEr r or .

getCurrentMark()
Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an application crash,
or to get theidentifier of the initial implicit mark after acall toFi | e. enabl eUndo() (see description).

This method can only be called when the Undo/Redo mechani sm has been enabled. Otherwise, an UndoRedoEr r or
israised.

goto(mark)

Go to aspecific mark of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

isUndoEnabled()

I's the Undo/Redo mechanism enabled?

60

Library Reference

Returns Tr ue if the Undo/Redo mechanism has been enabled for this file, Fal se otherwise. Please note that this
mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo support enabled.

mark(name=None)
Mark the state of the database.

Creates a mark for the current state of the database. A unique (and immutable) identifier for the mark is returned.
An optional nane (a string) can be assigned to the mark. Both the identifier of a mark and its name can be used in
Fi | e. undo() (seedescription)yandFi | e. redo() (seedescription) operations. When the nanme hasalready been
used for another mark, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

redo(mark=None)
Go to afuture state of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used. If the mar k is omitted, the next created mark is used. If there are no future marks, or the specified mar k is
not newer than the current one, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

undo(mark=None)
Go to apast state of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used. If the mar k is omitted, the last created mark is used. If there are no past marks, or the specified mar k isnot
older than the current one, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

4.2.6. Fi | e methods — atttribute handling
copyNodeAttrs(where, dstnode, name=None)

Copy PyTables attributes from one node to another.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

dstnode
The destination node where the attributes will be copied to. It can be a path string or a Node instance (see Sec-
tion 4.3).

delNodeAttr(where, attrname, name=None)
Delete a PyTables attribute from the given node.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

61

Library Reference

attrname
The name of the attribute to delete. If the named attribute does not exist, an At t r i but eEr r or israised.

getNodeAttr(where, attrname, name=None)
Get a PyTables attribute from the given node.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to retrieve. If the named attribute does not exist, an At t r i but eEr r or israised.

setNodeAttr(where, attrname, attrvalue, name=None)
Set a PyTables attribute for the given node.

where, name
These argumentswork asin Fi | e. get Node() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to set.

attrvalue
The value of the attribute to set. Any kind of Python object (like strings, ints, floats, lists, tuples, dicts, small
NumPy/Numeric/numarray objects...) can be stored as an attribute. However, if necessary, cPi ckl e isautomat-
ically used so asto serialize objects that you might want to save. Seethe At t r i but eSet class (in Section 4.12)
for details.

If the node already has alarge number of attributes, aPer f or manceWar ni ng isissued.

4.3. The Node class

Abstract base class for all PyTables nodes.

Thisisthebase classfor all nodesinaPyTableshierarchy. Itisan abstract class, i.e. it may not be directly instantiated;
however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTables file, under a parent group, at a certain depth in the node hierarchy.
A node knows its own name in the parent group and its own path name in the file.

All the previousinformation islocation-dependent, i.e. it may change when moving or renaming anode in the hierar-
chy. A node also has location-independent information, such as its HDF5 object identifier and its attribute set.

This class gathers the operations and attributes (both location-dependent and independent) which are common to all
PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the names of all of these
members start with areserved prefix (see the Gr oup classin Section 4.4).

Sub-classes with no children (i.e. leaf nodes) may define new methods, attributes and properties to avoid natural
naming restrictions. For instance, _v_attrs may be shortenedtoattrs and _f _r enane tor enane. However,
the original methods and attributes should still be available.

4.3.1. Node instance variables — location dependent

_v_depth The depth of this node in the tree (an non-negative integer value).

_v_file The hosting Fi | e instance (see Section 4.2).

62

Library Reference

_V_name The name of thisnode in its parent group (a string).
_V_parent The parent G oup instance (see Section 4.4).
_Vv_pathname The path of this node in the tree (a string).

4.3.2. Node instance variables — location independent

_V_attrs Theassociated At t ri but eSet instance (see Section 4.12).
_V_isopen Whether this node is open or not.
_Vv_objectID A node identifier (may change from run to run).

4.3.3. Node instance variables — attribute shorthands

_V_title A description of thisnode. A shorthand for TI TLE attribute.
4.3.4. Node methods — hierarchy manipulation

_f close()
Close thisnodein the tree.
Thisreleasesall resourcesheld by the node, soit should not be used again. On nodeswith data, it may beflushed to disk.

Y ou should not need to close nodes manually because they are automatically opened/closed when they areloaded/evict-
ed from the integrated L RU cache.

_f _copy(newparent=None, newname=None, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy. newpar ent can be a Gr oup
object (see Section 4.4) or a pathnamein string form. If it is not specified or None, the current parent group is chosen
as the new parent. newnamne must be a string with a new name. If it is not specified or None, the current name is
chosen as the new name. If r ecur si ve copy is stated, all descendants are copied aswell. If cr eat eparent s is
true, the needed groups for the given new parent group path to exist will be created.

Copying anode across databasesis supported but can not be undone. Copying anode over itself isnot allowed, nor itis
recursively copying anode into itself. Theseresult inaNodeEr r or . Copying over another existing nodeis similarly
not allowed, unlessthe optional over wr i t e argument istrue, in which case that node is recursively removed before
copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. See the
documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its name. Using
only the second argument is equivalent to making a copy of the node in the same group.

_f_isVisible()

Isthis node visible?

63

Library Reference

_f_move(newparent=None, newname=None, overwrite=False,
createparents=False)

Move or rename this node.

Moves a hode into a new parent group, or changes the name of the node. newpar ent can be a G- oup object (see
Section 4.4) or apathnamein string form. If it is not specified or None, the current parent group is chosen as the new
parent. newnane must be a string with anew name. If it is not specified or None, the current name is chosen as the
new name. If cr eat epar ent s istrue, the needed groupsfor the given new parent group path to exist will be created.

Moving a node across databases is not allowed, nor it is moving a node into itself. These result in a NodeEr r or .
However, moving anodeover itself isallowed and simply does nothing. Moving over another existing nodeissimilarly
not allowed, unlessthe optional over wr i t e argument istrue, in which case that node is recursively removed before
moving.

Usually, only thefirst argument will be used, effectively moving the node to anew location without changing its name.
Using only the second argument is equivalent to renaming the node in place.

_f remove(recursive=False)
Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by givingr ecur si ve atruevalue; otherwise, aNodeEr -
ror will beraised.

_f_rename(newname, overwrite=False)
Rename this node in place.

Changes the name of anode to newname (astring). If anode with the sasmenewnane already existsandoverw i te
istrue, recursively remove it before renaming.

4.3.5. Node methods — attribute handling

_f _delAttr(name)

Delete a PyTables attribute from this node.

If the named attribute does not exist, an At t r i but eEr r or israised.
_f_getAttr(name)

Get a PyTables attribute from this node.

If the named attribute does not exist, an At t r i but eEr r or israised.
_f_setAttr(name, value)

Set a PyTables attribute for this node.

If the node already has alarge number of attributes, aPer f or manceWar ni ng isissued.

4.4. The G oup class

Basic PyTables grouping structure.

Library Reference

Instances of this class are grouping structures containing child instances of zero or more groups or leaves, together
with supporting metadata. Each group has exactly one parent group.

Working with groups and leavesis similar in many ways to working with directories and files, respectively, in a Unix
filesystem. As with Unix directories and files, objects in the object tree are often described by giving their full (or
absolute) path names. Thisfull path can be specified either asastring (likein' / gr oupl/ gr oup?2') or asacomplete
object path written in natural naming schema (likeinf il e. root . groupl. gr oup2). See Section 1.2 for more
information on natural naming.

A collateral effect of the natural naming schema is that the names of membersin the G- oup class and its instances
must be carefully chosen to avoid colliding with existing children node names. For this reason and to avoid polluting
the children namespace all membersin a Gr oup start with some reserved prefix, like _f _ (for public methods), g
(for private ones), v_ (for instance variables) or _c_ (for class variables). Any attempt to create a new child node
whose name starts with one of these prefixeswill raiseaVal ueEr r or exception.

Another effect of natural naming is that children named after Python keywords or having names not valid as Python
identifiers (e.g. cl ass, $a or 44) can not be accessed using the node. chi | d syntax. You will be forced to use
node. f_get Chil d(chil d) toaccessthem (whichisrecommended for programmatic accesses).

You will also need to use _f _get Chi | d() to access an existing child node if you set a Python attribute in the
G oup with the same name as that node (you will get aNat ur al NaneWar ni ng when doing this).

4.4.1. G oup instance variables

The following instance variables are provided in addition to those in Node (see Section 4.3):
_v_nchildren The number of children hanging from this group.
_v_filters Default filter properties for child nodes.

Y ou can (and are encouraged to) use this property to get, set and deletethe FI L-
TERS HDFS5 attribute of the group, which storesaFi | t er s instance (see Sec-
tion 4.14.1). When the group has no such attribute, a default Fi | t er s instance

is used.
_v_groups Dictionary with all groups hanging from this group.
_v_hidden Dictionary with all hidden nodes hanging from this group.
_V_leaves Dictionary with al leaves hanging from this group.
_v_children Dictionary with all nodes hanging from this group.

4.4.2. G oup methods

Caveat: The following methods are documented for completeness, and they can be used without any problem. How-
ever, you should use the high-level counterpart methods in the Fi | e class (see Section 4.2, because they are most
used in documentation and examples, and are a bit more powerful than those exposed here.

The following methods are provided in addition to those in Node (see Section 4.3):
_f close()
Close this group and all its descendents.

This method has the behavior described in Node. _f _cl ose() (seedescription). It should be noted that this oper-
ation closes al the nodes descending from this group.

65

Library Reference

Y ou should not need to close nodes manually because they are automatically opened/closed when they areloaded/evict-
ed from the integrated LRU cache.

_f _copy(newparent, newname, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new one.

This method has the behavior described in Node. _f _copy() (see description). In addition, it recognizes the fol-
lowing keyword arguments:

title
The new title for the destination. If omitted or None, the original title is used. This only applies to the topmost
node in recursive copies.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Fi | t er s class (see Section 4.14.1). The default is to copy the filter properties from the source
node.

copyuser attrs
Y ou can prevent the user attributes from being copied by setting this parameter to Fal se. The default isto copy
them.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys' groups' ,' | eaves' and' byt es' havinganumeric value. Their valueswill be incremented to reflect
the number of groups, leaves and bytes, respectively, that have been copied during the operation.

_f _copyChildren(dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of this group into another group.

Children hanging directly from this group are copied into dst gr oup, which can beaGr oup (see Section 4.4) object
or its pathname in string form. If cr eat epar ent s is true, the needed groups for the given destination group path
to exist will be created.

The operation will fail with a NodeEr r or if there is a child node in the destination group with the same name as
one of the copied children from thisone, unlessover wr i t e istrue; in this case, the former child node isrecursively
removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If ther ecur si ve argument istrue,
all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, datamay be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

_f_getChild(childname)
Get the child called chi | dnamne of this group.

If the child exists (be it visible or not), it isreturned. Else, aNoSuchNodeEr r or israised.

66

Library Reference

Using this method isrecommended over get at t r () when doing programmiatic accessesto childrenif chi | dnane
is unknown beforehand or when its name is not avalid Python identifier.

_f _iterNodes(classname=None)

Iterate over children nodes.

Child nodes are yielded aphanumerically sorted by node name. If the name of a class derived from Node (see Sec-
tion 4.3) issupplied in the cl assnane parameter, only instances of that class (or subclasses of it) will be returned.

Thisisaniterator versionof G oup. _f | i st Nodes() (seedescription).
_f _listNodes(classname=None)
Return alist with children nodes.

Thisisalist-returning version of Gr oup. _f it er Nodes() (seedescription).

_f walkGroups()
Recursively iterate over descendent groups (not leaves).

This method starts by yielding self, and then it goes on to recursively iterate over al child groups in aphanumerical
order, top to bottom (preorder), following the same procedure.

_f walkNodes(classname=None)
Iterate over descendent nodes.

This method recursively walks self top to bottom (preorder), iterating over child groups in aphanumerical order, and
yielding nodes. If cl assnan® issupplied, only instances of the named class are yielded.

If classnameis G- oup, it behaves like Group._f_walkGroups() (see the section called “_f_walkGroups()”), yielding
only groups. If you don't want a recursive behavior, use Group._f_iterNodes() (see description) instead.

Example of use:

Recursively print all the arrays hanging from'/'

print "Arrays in the object tree '/’

for array in h5file.root. f wal kNodes(' Array', recursive=True):
print array

4.4.3. G oup special methods

Following are described the methods that automatically trigger actionswhen aG- oup instanceis accessed in a special
way.

Thisclass definesthe _setattr , getattr__ and__del attr__ methods, and they set, get and delete
ordinary Python attributes as normally intended. In addition to that, getattr __ allows getting child nodes by
their name for the sake of easy interaction on the command line, as long as there is no Python attribute with the same
name. Groupsalso allow theinteractive completion (whenusingr eadl i ne) of thenamesof child nodes. For instance:

nchild = group. _v_nchildren # get a Python attribute

Add a Table child called "table' under 'group'.
h5fil e. creat eTabl e(group, 'table', myDescription)

67

Library Reference

table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute

(PyTabl es warns you here about using the nane of a child node.)
foo = group.table # get a Python attribute

del group.table # delete a Python attribute

table = group.table # get the table child instance again

__contains__(name)
Isthere achild with that nane?

Returns atrue value if the group has a child node (visible or hidden) with the given name (a string), false otherwise.

__delattr__(name)
Delete a Python attribute called narre.

This method deletes an ordinary Python attribute from the object. 1t does not remove children nodes from this group;
for that, use Fi | e. renbveNode() (see description) or Node. f renove() (seedescription). It does neither
delete a PyTables node attribute; for that, use Fi | e. del NodeAttr () (seedescription), Node. f del Attr ()
(seedescription) or Node. _v_attrs (see Section 4.3.2).

If thereis an attribute and a child node with the same nane, the child node will be made accessible again via natural
naming.

__getattr__(name)
Get a Python attribute or child node called narre.

If the object has a Python attribute called nane, its value is returned. Else, if the node has a child node called nane,
itisreturned. Else,an At t ri but eErr or israised.

__iter__()
Iterate over the child nodes hanging directly from the group.
Thisiterator is not recursive. Example of use:

Non-recursively list all the nodes hanging from'/detector'
print "Nodes in '/detector' group:"
for node in h5file.root.detector:

print node

__repr__()
Return a detailed string representation of the group.
Example of use:

>>> f = tabl es.openFile(' data/test.h5")
>>> f.root.group0
/group0 (G oup) 'First G oup'
children := ["tuplel" (Table), 'groupl’ (G oup)]

__setattr__(name, value)

Set a Python attribute called nane with the given val ue.

68

Library Reference

This method stores an ordinary Python attribute in the object. It does not store new children nodes under this group;
for that, usethe Fi | e. cr eat e* () methods (see the Fi | e classin Section 4.2). It does neither store a PyTables
node attribute; for that, use Fi | e. set NodeAt tr () (seedescription), Node. f set Attr () (seedescription)
or Node. v_attrs (seeSection 4.3.2).

If there is aready a child node with the same nane, a Nat ur al NaneWar ni ng will be issued and the child node
will not be accessible via natural naming nor get att r () . It will still be available viaFi | e. get Node() (see
description), Group. _f _get Chi | d() (seedescription) and children dictionaries in the group (if visible).

str ()
Return a short string representation of the group.
Example of use:

>>> f=tabl es. openFil e(' data/test.h5")
>>> print f.root.groupO
/group0 (Group) 'First Goup'

45. The Leaf class

Abstract base class for all PyTables leaves.

A leaf is anode (see the Node classin Section 4.3) which hangs from a group (see the Gr oup classin Section 4.4)
but, unlike a group, it can not have any further children below it (i.e. it is an end node).

This definition includes all nodes which contain actual data (datasets handled by the Tabl e —see Section 4.6—,
Ar r ay —see Section 4.7—, CAr r ay —see Section 4.8—, EAr r ay —see Section 4.9— and VLAr r ay —see Sec-
tion 4.10— classes) and unsupported nodes (the Unl npl enment ed class —Section 4.11) —these classes do in fact
inherit from Leaf .

4.5.1. Leaf instance variables

These instance variables are provided in addition to those in Node (see Section 4.3):

byteorder The byte ordering of the leaf data on disk.

chunkshape The HDF5 chunk size for chunked leaves (atuple).
This is read-only because you cannot change the chunk size of aleaf once it has
been created.

extdim Theindex of the enlargeable dimension (-1 if none).

filters Filter propertiesfor thisleaf —seeFi | t er s in Section 4.14.1.

flavor The type of data object read from this leaf.

Itcanbeany of ' nunpy',' nunmarray',' nuneric' or' python' (theset
of supported flavors depends on which packages you have installed on your sys-
tem).

Y ou can (and are encouraged to) use this property to get, set and delete the FLA-
VOR HDF5 attribute of the leaf. When the leaf has no such attribute, the default
flavor is used.

69

Library Reference

maindim The dimension along which iterators work.

Its value is O (i.e. the first dimension) when the dataset is not extendable, and
sel f. ext di m(where available) for extendable ones.

nrows The length of the main dimension of the leaf data.
nrowsinbuf The number of rows that fit in internal input buffers.

Y ou can change this to fine-tune the speed or memory requirements of your ap-
plication.

shape The shape of datain the leaf.
4.5.2. Leaf instance variables — aliases

The following are just easier-to-write aliases to their Node (see Section 4.3) counterparts (indicated between paren-
theses):

attrs The associated AttributeSet instance —see Section 4.12—
(Node. v_attrs).

name The name of thisnode in its parent group (Node. _v_narme).

objectI D A node identifier (may change from run to run). (Node. _v_obj ect | D).

title A description for thisnode (Node. _v_title).

45.3. Leaf methods

close(flush=True)
Closethisnodein the tree.

This method is completely equivalentto Leaf . _f _cl ose() (seedescription).

copy(newparent, newname, overwrite=False, createparents=False, **kwargs)
Copy this node and return the new one.

Thismethod hasthe behavior describedinNode. _f _copy() (seedescription). Please notethat thereisnor ecur -
si ve flag since leaves do not have child nodes. In addition, this method recogni zes the following keyword arguments:

title
The new title for the destination. If omitted or None, the original titleis used.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Fi | t er s class (see Section 4.14.1). The default is to copy the filter properties from the source
node.

copyuser attrs
Y ou can prevent the user attributes from being copied by setting this parameter to Fal se. The default isto copy
them.

start, stop, step
Specify the range of rows to be copied; the default isto copy al the rows.

70

Library Reference

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys' groups',' | eaves' and' byt es' havinganumeric value. Their valueswill be incremented to reflect

the number of groups, leaves and bytes, respectively, that have been copied during the operation.

chunkshape
The chunkshape of the new leaf. It supportsacouple of special values. A value of keep meansthat the chunkshape
will bethe samethan original leaf (thisisthe default). A value of aut 0 meansthat a new shape will be computed
automatically in order to ensure best performance when accessing the dataset through the main dimension. Any
other value should be an integer or a tuple matching the dimensions of the leaf.

O Warning
Note that unknown parameters passed to this method will be ignored, so may want to double check the
spell of these (i.e. if you write them incorrectly, they will most probably be ignored).

delAttr(name)

Delete a PyTables attribute from this node.

This method has the behavior described in Node. _f _del Attr () (seedescription).
flush()

Flush pending data to disk.

Saves whatever remaining buffered datato disk. It also releases |/O buffers, so if you are filling many datasetsin the
same PyTables session, please call f | ush() extensively so asto help PyTables to keep memory requirements low.

getAttr(name)

Get a PyTables attribute from this node.

This method has the behavior described in Node. f get Attr () (seedescription).
isVisible()

Isthis node visible?

This method has the behavior described in Node. f i sVi si bl e() (seedescription).
move(newparent=None, newname=None, overwrite=False, createparents=False)
Move or rename this node.

This method has the behavior described in Node. f nove() (seedescription).
rename(newname)

Rename this node in place.

This method has the behavior described in Node. _f _renane() (seedescription).
remove()

Remove this node from the hierarchy.

71

Library Reference

This method has the behavior described in Node. _f _renove() (seedescription). Please note that thereisnor e-
cur si ve flag since leaves do not have child nodes.

setAttr(name, value)
Set a PyTables attribute for this node.

This method has the behavior described in Node. f set Attr () (seedescription).

truncate(size)
Truncate the main dimension to be si ze rows.

If the main dimension previously was larger than this si ze, the extra dataislost. If the main dimension previously
was shorter, it is extended, and the extended part isfilled with the default values.

The truncation operation can only be applied to enlargeable datasets, else a Ty peEr r or will be raised.

O Warning
If you areusing the HDF5 1.6.x series, and dueto limitations of them, si ze must begreater than zero (i.e.
the dataset can not be completely emptied). A Val ueEr r or will beissued if you are using HDF5 1.6.x
and try to pass a zero size to this method. Also, HDF5 1.6.x has the problem that it cannot work against
CAr r ay objects (again, aVal ueEr r or will beissued). HDF5 1.8.x doesn't undergo these problems.

len ()

Return the length of the main dimension of the leaf data.

Please note that thismay raisean Over f | owEr r or on 32-bit platformsfor datasets having more than 2** 31-1 rows.
Thisisalimitation of Python that you can work around by using the nr ows or shape attributes.

_f _close(flush=True)
Close this node in the tree.

Thismethod hasthe behavior describedinNode. _f _cl ose() (seedescription). Besidesthat, the optional argument
f I ush tellswhether to flush pending data to disk or not before closing.

4.6. The Tabl e class

This class represents heterogeneous datasets in an HDF5 file.

Tablesareleaves (seethelLeaf classin Section 4.5) whose data consists of aunidimensional sequence of rows, where
each row contains one or more fields. Fields have an associated unique hame and position, with the first field having
position 0. All rows have the same fields, which are arranged in columns.

Fields can have any type supported by the Col class (see Section 4.13.2) and its descendants, which support multidi-
mensional data. Moreover, afield can be nested (to an arbitrary depth), meaning that it includes further fieldsinside.
A field named x inside a nested field a in atable can be accessed asthe field a/ x (its path name) from the table.

The structure of atableisdeclared by its description, whichismade availableinthe Tabl e. descri pti on attribute
(see Section 4.6.1).

Thisclass provides new methodsto read, write and search table data efficiently. It al so provides special Python methods
to allow accessing the table as a normal sequence or array (with extended dlicing supported).

72

Library Reference

PyTables supports in-kernel searches working simultaneously on several columns using complex conditions. These
are faster than selections using Python expressions. See the Tabl es. wher e() method —description— for more
information on in-kernel searches. See also Section 5.2.1 for a detailed review of the advantages and shortcomings
of in-kernel searches.

Non-nested columns can be indexed. Searching an indexed column can be several times faster than searching a non-
nested one. Search methods automatically take advantage of indexing where available.

A
& Note
Pro

Column indexing is only available in PyTables Pro.

When iterating a table, an object from the Row (see Section 4.6.7) classis used. This object allows to read and write
data one row at a time, as well as to perform queries which are not supported by in-kernel syntax (at a much lower
speed, of course). See the tutoria sectionsin Chapter 3 on how to use the Row interface.

Objects of this class support access to individual columns via natural naming through the Tabl e. col s accessor
(see Section 4.6.1). Nested columns are mapped to Col s instances, and non-nested ones to Col umm instances. See
the Col um classin Section 4.6.9 for examples of this feature.

4.6.1. Tabl e instance variables

The following instance variables are provided in addition to those in Leaf (see Section 4.5). Please note that there
are severa col * dictionaries to ease retrieving information about a column directly by its path name, avoiding the
need to walk through Tabl e. descri pti on or Tabl e. col s.

autol ndex Automatically keep column indexes up to date?

Setting this value states whether existing indexes should be automatically updated
after an append operation or recomputed after an index-invalidating operation (i.e.
removal and modification of rows). The default istrue.

This value gets into effect whenever a column is dtered. If you don't
have automatic indexing activated and you want to do an immedi-
ate update use Tabl e. fl ushRowsTol ndex() (see the section called
“flushRowsTolndex()"); for immediate reindexing of invalidated indexes, use
Tabl e. rel ndexDi rty() (seethe section called “relndexDirty()").

Thisvalueis persistent.

4 Note
P
10 Column indexing isonly availablein PyTables Pro.

coldescrs Maps the name of a column to its Col description (see Section 4.13.2).
coldflts Maps the name of a column to its default value.
coldtypes Maps the name of a column to its NumPy data type.
colindexed I's the column which name is used as a key indexed?

A Note

8-
PIo

Column indexing is only available in PyTables Pro.

73

Library Reference

colindexes A dictionary with the indexes of the indexed columns.

colinstances Maps the name of acolumn to its Col urm (see Section 4.6.9) or Col s (see Sec-
tion 4.6.8) instance.

colnames A list containing the names of top-level columnsin the table.
colpathnames A list containing the pathnames of bottom-level columnsin the table.

These are the leaf columns obtained when walking the table description left-to-
right, bottom-first. Columns inside a nested column have slashes (/) separating
name componentsin their pathname.

cols A Col s instance that provides natural naming access to non-nested (Col umm,
see Section 4.6.9) and nested (Col s, see Section 4.6.8) columns.

coltypes Maps the name of a column to its PyTables data type.

description A Descri pti oninstance (see Section 4.6.6) reflecting the structure of thetable.
extdim Theindex of the enlargeable dimension (always O for tables).

indexed Does this table have any indexed columns?

indexedcolpathnames List of the pathnames of indexed columns in the table.

nrows The current number of rowsin the table.

row The associated Row instance (see Section 4.6.7).

rowsize The sizein bytes of each row in the table.

4.6.2. Tabl e methods — reading

col(name)
Get acolumn from the table.

If a column called nane exists in the table, it is read and returned as a NumPy object, or as a nunar r ay object
(depending on the flavor of the table). If it does not exist, aKeyEr r or israised.

Example of use:

narray = table.col ('var2')

That statement is equivalent to:

narray = table.read(field=" var2')

Here you can see how this method can be used as a shorthand for the Tabl e. r ead() method (see description).
iterrows(start=None, stop=None, step=None)

Iterate over the table using a Row instance (see Section 4.6.7).

If arangeis not supplied, all the rows in the table are iterated upon —you can dso usethe Tabl e. __iter__ ()
specia method (see description) for that purpose. If you want to iterate over agiven range of rowsin thetable, you may
usethest art, st op and st ep parameters, which have the same meaning asin Tabl e. r ead() (seedescription).

74

Library Reference

Example of use:

result =] rowf'var2'] for rowin table.iterrows(step=5)
if row'varl'] <= 20]

@ Note

Thisiterator can be nested (see Tabl e. wher e() —description— for an example).

O Warning

When in the middle of a table row iterator, you should not use methods that can change the number
of rowsinthetable (like Tabl e. append() or Tabl e. renoveRows()) or unexpected errors will

happen.

itersequence(sequence)

Iterate over asequence of row coordinates.

@ Note

Thisiterator can be nested (see Tabl e. wher e() —description— for an example).

itersorted(sortby, forceCSI=False, start=None, stop=None, step=None)
Iterate over the table data sorted by the given sor t by column.

sort by column must have associated a completely sorted index (CSl) so as to ensure a fully sorted order. You can
usethef or ceCSl argument in order to force the creation of a CSl index in case that one does not exist yet.

Themeaning of thest art , st op and st ep argumentsisthesameasin Tabl e. r ead() (seedescription). Howev-
er, inthis case anegative value of st ep is supported, meaning that the resultswill be returned in reverse sorted order.

A
., Note
Pro

Column indexing isonly availablein PyTables Pro.

read(start=None, stop=None, step=None, field=None)
Get datain the table as a (record) array.

Thestart, st op and st ep parameters can be used to select only a range of rows in the table. Their meanings
are the same as in the built-in r ange() Python function, except that negative values of st ep are not alowed yet.
Moreover, if only st art isspecified, then st op will besetto st art +1. If you do not specify neither st art nor
st op, then all the rows in the table are selected.

If fieldissupplied only the named column will be selected. If the column is not nested, an array of the current
flavor will be returned; if it is, arecord array will be used instead. | nof i el d is specified, all the columns will be
returned in arecord array of the current flavor. More specifically, when theflavor is' numar r ay' and arecord array
isneeded, aNest edRecAr r ay (see Appendix D) will be returned.

Columns under a nested column can be specifiedinthef i el d parameter by using aslash character (/) as aseparator
(e.g.' position/x").

75

Library Reference

readCoordinates(coords, field=None)
Get a set of rows given their indexes as a (record) array.

This method works much likether ead() method (see description), but it uses a sequence (coor ds) of row indexes
to select the wanted columns, instead of a column range.

The selected rows are returned in an array or record array of the current flavor.

readSorted(sortby, forceCSl=False, field=None, start=None, stop=None,
step=None)

Read table data sorted by the given sor t by column.

sort by column must have associated a completely sorted index (CSl) so asto ensure afully sorted order. You can
usethef or ceCSl argument in order to force the creation of a CSl index in case that one does not exist yet.

If fieldissupplied only the named column will be selected. If the column is not nested, an array of the current
flavor will be returned; if it is, arecord array will be used instead. If no fi el d is specified, all the columns will be
returned in arecord array of the current flavor.

Themeaning of thest ar t , st op andst ep argumentsisthesameasin Tabl e. r ead() (seedescription). Howev-
er, inthiscase anegative value of st ep is supported, meaning that the resultswill be returned in reverse sorted order.

A
& Note

Pro

Column indexing isonly availablein PyTables Pro.

__getitem__ (key)
Get arow or arange of rows from the table.

If key argument is an integer, the corresponding table row is returned as a record of the current flavor. If key isa
dice, the range of rows determined by it is returned as arecord array of the current flavor.

Example of use:

record = tabl e[4]
recarray = tabl e[4:1000: 2]

Those statements are equivalent to:

record = tabl e.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)

Here you can see how indexing and dlicing can be used as shorthands for ther ead() (see description) method.
__iter__()
Iterate over the table using a Row instance (see Section 4.6.7).

Thisis equivalent to calling Tabl e. i t er r ows() (see description) with default arguments, i.e. it iterates over all
therowsin the table.

Example of use:

result = [row'var2'] for rowin table

76

Library Reference

if rowf'varl'] <= 20]
Which is equivalent to:

result = [row'var2'] for rowin table.iterrows()
if ron'varl'] <= 20]

@ Note
Thisiterator can be nested (see Tabl e. wher e() —description— for an example).

4.6.3. Tabl e methods — writing

append(rows)
Append a sequence of r ows to the end of the table.

Ther ows argument may be any object which can be converted to a record array compliant with the table structure
(otherwise, a Val ueEr r or israised). Thisincludes NumPy record arrays, RecAr r ay or Nest edRecAr r ay ob-
jectsif numar r ay isavailable, lists of tuples or array records, and a string or Python buffer.

Example of use:

fromtables inport *
class Particle(lsDescription):

nane = StringCol (16, pos=1) # 16-character String

I ati = I nt Col (pos=2) # i nteger

| ongi = I nt Col (pos=3) # i nteger

pressure = Fl oat 32Col (pos=4) # float (single-precision)

t enper at ur e Fl oat Col (pos=5) # doubl e (doubl e-preci sion)

fileh = openFil e('test4.h5', node='w)
table = fileh.createTabl e(fileh.root, 'table', Particle, "A table")
Append several rows in only one call
t abl e. append([("Particl e: 10", 10, O, 10*10, 10**2),
("Particle: 11", 11, -1, 11*11, 11**2),
("Particle: 12", 12, -2, 12*12, 12**2)])

fileh.close()

See Appendix D if you are using numar r ay and you want to append data to nested columns.

modifyColumn(start=None, stop=None, step=1, column=None, colname=None)
Modify one single column in therow slice[st art : st op: st ep] .

The col name argument specifies the name of the column in the table to be modified with the data given in col -
urmm. This method returns the number of rows modified. Should the modification exceed the length of the table, an
I ndexEr r or israised before changing data.

The col unm argument may be any object which can be converted to a (record) array compliant with the structure of
the column to be modified (otherwise, aVal ueEr r or israised). Thisincludes NumPy (record) arrays, NumAr r ay,
RecArray or Nest edRecAr r ay objectsif numar r ay is available, Numeric arrays if available, lists of scalars,
tuples or array records, and a string or Python buffer.

See Appendix D if you are using numar r ay and you want to modify datain a nested column.

7

Library Reference

modifyColumns(start=None, stop=None, step=1, columns=None, names=None)
Modify a series of columnsintherow slice[st art : st op: st ep] .

The names argument specifies the names of the columnsin the table to be modified with the datagivenincol ums.
This method returns the number of rows modified. Should the modification exceed the length of thetable, an| ndex-
Er r or israised before changing data.

The col unms argument may be any object which can be converted to arecord array compliant with the structure of
the columnsto be modified (otherwise, aVal uekEr r or israised). Thisincludes NumPy record arrays, RecAr r ay or
Nest edRecAr r ay objectsif numar r ay isavailable, lists of tuples or array records, and a string or Python buffer.

See Appendix D if you are using numar r ay and you want to modify datain nested columns.
modifyRows(start=None, stop=None, step=1, rows=None)
Modify aseries of rowsinthedlice[start: stop: step].

Thevaluesin the selected rowswill be modified with the datagiveninr ows. This method returns the number of rows
modified. Should the modification exceed the length of thetable, an | ndexEr r or israised before changing data.

The possible values for ther ows argument are the same asin Tabl e. append() (seedescription).
See Appendix D if you are using numar r ay and you want to modify datain nested columns.
removeRows(start, stop=None)

Remove arange of rowsin the table.

If only st art is supplied, only this row is to be deleted. If a range is supplied, i.e. both the st art and st op
parameters are passed, all therowsin therange areremoved. A st ep parameter isnot supported, and it is not foreseen
to be implemented anytime soon.

start
Setsthe starting row to be removed. It accepts negative values meaning that the count starts from the end. A value
of 0 means thefirst row.

stop
Sets the last row to be removed to st op- 1, i.e. the end point is omitted (in the Python r ange() tradition).
Negative values are also accepted. A specia value of None (the default) means removing just the row supplied
instart.

__setitem__ (key, value)

Set arow or arange of rowsin the table.

It takes different actions depending on the type of the key parameter: if it isan integer, the corresponding table row is
set to val ue (arecord or sequence capable of being converted to the table structure). If key isadlice, the row slice
determined by it is set to val ue (arecord array or sequence capable of being converted to the table structure).
Example of use:

Modi fy just one existing row

tabl e[2] = [456,"' db2', 1. 2]
Modi fy two existing rows

78

Library Reference

rows = nunpy.rec.array([[457,'db1l ,1.2],[6, de2',1.3]],
formats='i4,a3,f8")
table[1:3:2] = rows

Which is equivalent to:

t abl e. nodi f yRows(start=2, rows=[456,"' db2',1.2])

rows = nunpy.rec.array([[457,"'db1 ,1.2],[6, de2',1.3]],
formats='i4,a3,f8")

t abl e. nodi f yRows(start=1, stop=3, step=2, rows=rows)

See Appendix D if you are using numar r ay and you want to modify datain nested columns.
4.6.4. Tabl e methods — querying

getWhereList(condition, condvars=None, sort=False, start=None, stop=None,
step=None)

Get the row coordinates fulfilling the given condi t i on.

The coordinates are returned as a list of the current flavor. sort means that you want to retrieve the coordinates
ordered. The default is to not sort them.

The meaning of the other argumentsisthe same asin the Tabl e. wher e() method (see description).

readWhere(condition, condvars=None, field=None, start=None, stop=None,
step=None)

Read table data fulfilling the given condition.

This method is similar to Tabl e. r ead() (see description), having their common arguments and return values the
same meanings. However, only the rows fulfilling the condition are included in the result.

The meaning of the other argumentsisthe same asin the Tabl e. wher e() method (see description).
where(condition, condvars=None, start=None, stop=None, step=None)
Iterate over values fulfillingacondi ti on.

This method returns a Row iterator (see Section 4.6.7) which only selects rows in the table that satisfy the given
condi ti on (an expression-like string). For more information on condition syntax, see Appendix B.

Thecondvar s mapping may be used to definethe variable names appearinginthecondi t i on.condvar s should
consist of identifier-like strings pointing to Col urm (see Section 4.6.9) instances of this table, or to other values
(which will be converted to arrays). A default set of condition variablesis provided where each top-level, non-nested
column with an identifier-like name appears. Variablesin condvar s override the default ones.

When condvar s is not provided or None, the current local and global namespace is sought instead of condvar s.
The previous mechanism is mostly intended for interactive usage. To disableit, just specify a(maybe empty) mapping
ascondvars.

If arangeis supplied (by setting some of the st art , st op or st ep parameters), only the rows in that range and
fulfilling the condi t i on are used. The meaning of the st art, st op and st ep parameters is the same as in the
range() Python function, except that negative values of st ep arenot allowed. Moreover, if only st ar t is spec-
ified, then st op will besettost art +1.

79

Library Reference

When possible, indexed columns participating in the condition will be used to speed up the search. It is recommended
that you place the indexed columns as | ft and out in the condition as possible. Anyway, this method has always better
performance than regular Python selections on the table. Please check the Section 5.2 for more information about the
performance of the different searching modes.

A Note

“P[ll

Column indexing isonly availablein PyTables Pro.

Y ou can mix this method with regular Python selections in order to support even more complex queries. It is strongly
recommended that you pass the most restrictive condition as the parameter to this method if you want to achieve
maximum performance.

Example of use:

>>> passvalues = [row'col 3] for rowin

tabl e. where('(col1l > 0) & (col2 <= 20)', step=5)
i f your function(row 'col2'])]
>>> print "Values that pass the cuts:", passval ues

Note that, from PyTables 1.1 on, you can nest severa iterators over the same table. For example:

for pin rout.where(' pressure < 16'):
for g in rout.where('pressure < 9'):
for nin rout.where('energy < 10'):
print "pressure, energy:", p['pressure'], n['energy']

In this example, iterators returned by Tabl e. wher e() have been used, but you may as well use any of the other
reading iteratorsthat Tabl e objects offer. Seethefile exanpl es/ nest ed-i t er. py for the full code.

o Warning

When in the middle of a table row iterator, you should not use methods that can change the number
of rowsinthetable (like Tabl e. append() or Tabl e. renoveRows()) or unexpected errors will

happen.

whereAppend(dstTable, condition, condvars=None, start=None, stop=None,
step=None)

Append rows fulfilling thecondi t i on to thedst Tabl e table.

dst Tabl e must be capable of taking the rows resulting from the query, i.e. it must have columns with the expected
names and compatible types. The meaning of the other arguments is the same as in the Tabl e. wher e() method
(see description).

The number of rows appended to dst Tabl e isreturned as aresult.

willQueryUselndexing(condition, condvars=None)

Will aquery for thecondi ti on useindexing?

The meaning of the condi t i on and condvars arguments is the same as in the Tabl e. wher e() method (see

description). If condi ti on can use indexing, this method returns a frozenset with the path names of the columns
whose index is usable. Otherwise, it returns an empty list.

80

Library Reference

This method is mainly intended for testing. Keep in mind that changing the set of indexed columns or their dirtyness
may make this method return different values for the same arguments at different times.

A Note

Pm Column indexing is only availablein PyTables Pro.

4.6.5. Tabl e methods — other

copy(newparent=None, newname=None, overwrite=False, createparents=False,
**kwargs)

Copy thistable and return the new one.

This method has the behavior and keywords described in Leaf . copy() (see description. Moreover, it recognises
the next additional keyword arguments:

sortby
If specified, and sor t by corresponds to a column with a completely sorted index (CSl), then the copy will be
sorted by the values on this column. A reverse sorted copy can be achieved by specifying a negative value for the
st ep keyword. If omitted or None, the original table order is used.

forceCS
If true, and a CSl index does not exist for the sor t by column, one will be built prior to method execution. If
false, the CSl creation will not be forced (this may cause the raise of an error). In case a CSl index already exists
for thesor t by column, this parameter does nothing.

propindexes

If true, the existing indexes in the source table are propagated (created) to the new one. If false (the default), the
indexes are not propagated.

flushRowsTolndex()
Add remaining rows in buffers to non-dirty indexes.

This can be useful when you have chosen non-automatic indexing for thetable (seethe Tabl e. aut ol ndex property
in Section 4.6.1) and you want to update the indexes on it.

A Note

Pm Column indexing isonly availablein PyTables Pro.

getEnum(colname)
Get the enumerated type associated with the named column.

If the column named col nane (astring) exists and is of an enumerated type, the corresponding Enuminstance (see
Section 4.14.3) is returned. If it is not of an enumerated type, a TypeEr r or israised. If the column does not exist,
aKeyError israised.

relndex()

Recompute all the existing indexesin the table.

This can be useful when you suspect that, for any reason, the index information for columns is no longer valid and
want to rebuild the indexes on it.

81

Library Reference

A

Note

.‘P[ll

Column indexing isonly availablein PyTables Pro.

relndexDirty()

Recompute the existing indexes in table, if they are dirty.

This can be useful when you have set Tabl e. aut ol ndex (see Section 4.6.1) to false for the table and you want to
update the indexes after ainvalidating index operation (Tabl e. r emoveRows() , for example).

A

Note

"Pm

Column indexing isonly availablein PyTables Pro.

4.6.6. The Descri pti on class

This class represents descriptions of the structure of tables.

Aninstance of this classis automatically bound to Tabl e (see Section 4.6) objects when they are created. It provides
a browseable representation of the structure of the table, made of non-nested (Col —see Section 4.13.2) and nested
(Descri pti on) columns. It also contains information that will allow you to build Nest edRecAr r ay (see Ap-
pendix D) objects suited for the different columnsin atable (be they nested or not).

Column definitions under a description can be accessed as attributes of it (natural naming). For instance, if
tabl e. descri ptionisaDescri ption instance with a column named col 1 under it, the later can be ac-
cessed ast abl e. descri ption. col 1. If col 1 isnested and contains acol 2 column, this can be accessed as
tabl e. descri ption. col 1. col 2. Because of natural naming, the names of members start with special prefix-
es, likeinthe G oup class (see Section 4.4).

Descri pti on instance variables

_Vv_colObjects

_v_dflts

_Vv_dtype

_v_dtypes

_Vv_is nested

_V_itemsize
_V_name

_V_names

A dictionary mapping the names of the columns hanging directly from the as-
sociated table or nested column to their respective descriptions (Col —see Sec-
tion 4.13.2— or Descri pt i on —see Section 4.6.6— instances).

A dictionary mapping the names of non-nested columns hanging directly from the
associated table or nested column to their respective default values.

The NumPy type which reflects the structure of this table or nested column. Y ou
can use thisasthe dt ype argument of NumPy array factories.

A dictionary mapping the names of non-nested columns hanging directly from the
associated table or nested column to their respective NumPy types.

Whether the associated table or nested column contains further nested columns
or not.

The sizein bytes of an item in this table or nested column.
The name of this description group. The name of the root groupis' /' .

A list of the names of the columns hanging directly from the associated table
or nested column. The order of the names matches the order of their respective
columnsin the containing table.

82

Library Reference

_V_nestedDescr A nested list of pairsof (name, fornmat) tuplesfor all the columns under this
table or nested column. Y ou can use thisasthe dt ype and descr arguments of
NumPy array and Nest edRecAr r ay (see Appendix D) factories, respectively.

_V_nestedFormats A nested list of the NumPy string formats (and shapes) of all the columns under
thistable or nested column. Y ou can usethisasthef or mat s argument of NumPy
array and Nest edRecAr r ay (see Appendix D) factories.

_Vv_nestedivi The level of the associated table or nested column in the nested datatype.

_Vv_nestedNames A nested list of the names of all the columnsunder thistable or nested column. Y ou
can use this as the nanes argument of NumPy array and Nest edRecAr r ay
(see Appendix D) factories.

_Vv_pathnames A list of the pathnames of al the columns under this table or nested column (in
preorder). If it does not contain nested columns, this is exactly the same as the
Descri ption. _v_namnes attribute.

_V_types A dictionary mapping the names of non-nested columns hanging directly from the
associated table or nested column to their respective PyTables types.

Descri pti on methods
_f walk(type="All")
Iterate over nested columns.

Iftypeis' All" (the default), all column description objects (Col and Descri pti on instances) are yielded in
top-to-bottom order (preorder).

Iftypeis' Col' or' Description',only column descriptions of that type are yielded.

4.6.7. The Rowclass

Table row iterator and field accessor.

Instances of this classare used to fetch and set the values of individual tablefields. It worksvery much likeadictionary,
where keys are the pathnames or positions (extended dlicing is supported) of the fields in the associated table in a
specific row.

This class provides an iterator interface so that you can use the same Row instance to access successive table rows
one after the other. There are also some important methods that are useful for acessing, adding and modifying values
intables.

Rowinstance variables

nrow
The current row number.

This poperty is useful for knowing which row is being dealt with in the middle of aloop or iterator.

Row methods

append()

Add anew row of datato the end of the dataset.

83

Library Reference

Once you have filled the proper fields for the current row, calling this method actually appends the new data to the
output buffer (which will eventually be dumped to disk). If you have not set the value of afield, the default value of
the column will be used.

Example of use:

row = tabl e.row

for i in xrange(nrows):
rowf'coll'] =i-1
rowf'col2'] ="'a'
rowf'col3'] =-1.0

row. append()
tabl e. flush()

o Warning
After completion of theloop inwhich Row. append() hasbeen called, it isaways convenient to make
acaltoTabl e. fl1 ush() inordertoavoidlosing thelast rowsthat may still remainininternal buffers.

fetch_all_fields()
Retrieve all the fields in the current row.

Contrarily tor owf :] (seethe section called “Row special methods”), this returns row data as a NumPy void scalar.
For instance:

[row fetch_all _fields() for rowin table.where('coll < 3')]
will select al the rows that fullfill the given condition as alist of NumPy records.
update()

Change the data of the current row in the dataset.

This method allows you to modify values in a table when you are in the middle of a table iterator like
Tabl e.iterrows() (seedescription) or Tabl e. wher e() (see description).

Onceyou havefilled the proper fieldsfor the current row, calling this method actually changes datain the output buffer
(which will eventually be dumped to disk). If you have not set the value of afield, its original value will be used.

Examples of use:

for rowin table.iterrows(step=10):

row'col1'] = row nrow
rowf'col2'] ="'b'
row'col3'] = 0.0

r ow. updat e()
tabl e. flush()

which modifies every tenth row in table. Or:

for rowin table.where('coll > 3"):

row'col1'] = row. nrow
rowf'col2'] ="'b'
rowf'col3'] = 0.0

r ow. updat e()
tabl e. flush()

Library Reference

which just updates the rows with values bigger than 3 in the first column.

O Warning
After completion of theloop inwhich Row. updat e() hasbeen called, it isaways convenient to make
acaltoTabl e. f| ush() inordertoavoidlosing changed rowsthat may still remainininternal buffers.

Row special methods

__getitem___(key)
Get the row field specified by the key.

The key can be a string (the name of the field), an integer (the position of the field) or a dlice (the range of field
positions). When key isadlice, the returned value is a tuple containing the values of the specified fields.

Examples of use:

res = [row'var3'] for rowin table.where('var2 < 20')]

which selectsthe var 3 field for al the rowsthat fullfill the condition. Or:

res = [romf4] for rowin table if rowf1] < 20]

which selects the field in the 4th position for all the rows that fullfill the condition. Or:

res = [rom:] for rowin table if row'var2'] < 20]

which selects the all the fields (in the form of atuple) for all the rows that fullfill the condition. Or:
res = [romf1::2] for rowin table.iterrows(2, 3000, 3)]

which selects dl the fieldsin even positions (in the form of atuple) for al the rowsinthedlice[2: 3000: 3] .
__setitem__ (key, value)

Set the key row field to the specified val ue.

Differently fromits__getitem () counterpart, inthiscase key can only be astring (the name of the field). The
changesdonevia__setitem () will not take effect on the data on disk until any of the Row. append() (see
description) or Row. updat e() (see description) methods are called.

Example of use:

for rowin table.iterrows(step=10):

row'col1'] = row nrow
rom'col2'] ="'b'
rowf'col3'] = 0.0

r ow. updat e()
tabl e. flush()

which modifies every tenth row in the table.

4.6.8. The Col s class

Container for columnsin atable or nested column.

85

Library Reference

Thisclassisused as an accessor to the columnsin atable or nested column. It supports the natural naming convention,
so that you can access the different columns as attributes which lead to Col unm instances (for non-nested columns)
or other Col s instances (for nested columns).

For instance, if t abl e. col s is a Col s instance with a column named col 1 under it, the later can be ac-
cessed as tabl e. cols.col 1. If col 1 is nested and contains a col 2 column, this can be accessed as
t abl e. col s. col 1. col 2 and so on. Because of natural naming, the names of members start with special prefixes,
likeinthe Gr oup class (see Section 4.4).

Like the Col unm class (see Section 4.6.9), Col s supports item access to read and write ranges of valuesin the table
or nested column.

Col s instance variables

_v_colnames A list of the names of the columns hanging directly from the associated table
or nested column. The order of the names matches the order of their respective
columnsin the containing table.

_Vv_colpathnames A list of the pathnames of al the columns under the associated table or nested
column (in preorder). If it does not contain nested columns, thisis exactly the same
astheCol s. _v_col nanes attribute.

_v_desc The associated Descr i pt i on instance (see Section 4.6.6).
_V_table The parent Tabl e instance (see Section 4.6).

Col s methods

_f _col(colname)
Get an accessor to the column col nane.

Thismethod returnsa Col urmm instance (see Section 4.6.9) if the requested column is not nested, and aCol s instance
(see Section 4.6.8) if it is. You may use full column pathnamesin col nane.

Cdlingcols. f _col ('col 1/col 2") isequivalenttousingcol s. col 1. col 2. However, thefirst syntax is
more intended for programmatic use. It is also better if you want to access columns with names that are not valid
Python identifiers.

__getitem___(key)
Get arow or arange of rows from atable or nested column.

If key argument is an integer, the corresponding nested type row is returned as arecord of the current flavor. If key
isadlice, the range of rows determined by it is returned as arecord array of the current flavor.

Example of use:

record = table.cols[4] # equivalent to table[4]
recarray = table.cols.|nfo[4:1000: 2]

Those statements are equivalent to;

nrecord = table.read(start=4)[0]
nrecarray = table.read(start=4, stop=1000, step=2).field('Info')

Hereyou can see how amix of natural naming, indexing and slicing can be used asshorthandsfor the Tabl e. r ead()
(see description) method.

86

Library Reference

_len_J()

Get the number of elementsin the column.

This matches the length in rows of the parent table.
__setitem__ (key)

Set arow or arange of rowsin atable or nested column.

If key argument is an integer, the corresponding row isset to val ue. If key isadlice, the range of rows determined
by itissettoval ue.

Example of use:

tabl e.col s[4] = record
t abl e. col s. | nf o[4: 1000: 2] = recarray

Those statements are equivalent to;

t abl e. nodi f yRows(4, rows=record)
t abl e. nodi f yCol um(4, 1000, 2, col nane='Info', colum=recarray)

Here you can see how a mix of natural naming, indexing and dlicing can be used as shorthands for the
Tabl e. nodi f yRows() (seedescription) and Tabl e. nodi f yCol urm() (see description) methods.

4.6.9. The Col unn class

Accessor for anon-nested column in atable.

Each instance of this class is associated with one non-nested column of a table. These instances are mainly used to
read and write data from the table columns using item access (like the Col s class —see Section 4.6.8), but there are
afew other associated methods to deal with indexes.

A
R Note
Pro

Column indexing is only available in PyTables Pro.

Col um instance variables

descr TheDescri pti on (see Section 4.6.6) instance of the parent table or nested col-
umn.

dtype The NumPy dt ype that most closely matches this column.

index The | ndex instance (see Section 4.14.2) associated with this column (None if
the column is not indexed).

is indexed Trueif the column isindexed, false otherwise.

name The name of the associated column.

pathname The complete pathname of the associated column (the same as Col umm. nane if

the column is not inside a nested column).

table The parent Tabl e instance (see Section 4.6).

87

Library Reference

type The PyTables type of the column (a string).

Col utm methods

creat el ndex(optl evel =6, ki nd="nedi unf', filters=None, tnp_dir=None)
Create an index for this column.

Keyword arguments:

optlevel
The optimization level for building the index. The levels ranges from 0 (no optimization) up to 9 (maximum
optimization). Higher levels of optimization mean better chances for reducing the entropy of theindex at the price
of using more CPU, memory and 1/O resources for creating the index.

kind
The kind of theindex to be built. It cantakethe' ul tralight','light',' medium or'full' values.
Lighter kinds (" ul tral i ght' and' i ght') mean that the index takes less space on disk, but will perform
queries slower. Heavier kinds (' medi um and ' ful | ') mean better chances for reducing the entropy of the
index (increasing the query speed) at the price of using more disk space as well as more CPU, memory and |/O
resources for creating the index.

Note that selecting af ul | kind with an opt | evel of 9 (the maximum) guarantees the creation of an index
with zero entropy, that is, a completely sorted index (CSI) — provided that the number of rows in the table
does not exceed the 2**48 figure (that is more than 100 trillions of rows). See Col urm. cr eat eCSI ndex()
(description) method for amore direct way to create a CSl index.

filters
Specify the Fi | t er s instance used to compress the index. If None, default index filterswill be used (currently,
Zlib level 1 with shuffling).

tmp_dir
When ki nd isotherthan' ul tral i ght' , atemporary fileis created during the index build process. You can
usethet np_di r argument to specify the directory for this temporary file. The default isto createit in the same
directory asthe file containing the original table.

O Warning

In some situations it is useful to get acompletely sorted index (CSl). For those cases, it is best to use the
cr eat eCSl ndex() method instead (see description).

A
& Note

Pro

Column indexing isonly availablein PyTables Pro.

creat eCSl ndex(filters=None, tnp_dir=None)

Create a completely sorted index (CSl) for this column.

This method guarantees the creation of an index with zero entropy, that is, acompletely sorted index (CSl) -- provided
that the number of rows in the table does not exceed the 2**48 figure (that is more than 100 trillions of rows). A CS|
index is needed for some table methods (like Tabl e. i t ersorted() or Tabl e. readSort ed()) in order to
ensure completely sorted results.

For themeaningof fi | t ers andt np_di r arguments see Col umm. cr eat el ndex() (description).

88

Library Reference

This method is equivalent to ~" Column.createl ndex(kind="full’, optlevel=9, ...).

rel ndex()
Recompute the index associated with this column.

This can be useful when you suspect that, for any reason, the index information is no longer valid and you want to
rebuild it.

This method does nothing if the column is not indexed.

A
& Note
Pro

Column indexing isonly availablein PyTables Pro.

rel ndexDirty()
Recompute the associated index only if it is dirty.

This can be useful when you have set Tabl e. aut ol ndex (see Section 4.6.1) to false for the table and you want to
update the column's index after an invalidating index operation (like. Tabl e. r enbveRows () —see description).

This method does nothing if the column is not indexed.

A
« Note
Pro

Column indexing is only available in PyTables Pro.

removel ndex()
Remove the index associated with this column.

This method does nothing if the column is not indexed. The removed index can be created again by calling the
Col um. cr eat el ndex() method (see description).

A
P Note
Pro

Column indexing isonly availablein PyTables Pro.

Col umm special methods

__getitem (key)
Get arow or arange of rows from a column.

If key argument is an integer, the corresponding element in the column is returned as an object of the current flavor.
If key isasdlice, the range of elements determined by it is returned as an array of the current flavor.

Example of use:

print "Colum handlers:"
for name in table.col nanes:
print table.cols. f col (nane)

89

Library Reference

print "Select table.cols.nanme[1l]-->", table.cols. nanme[1]

print "Select table.cols.nanme[1l:2]-->", table.cols.nane[1:2]

print "Select table.cols.nanme[:]-->", table.cols.nanme[:]

print "Select table.cols. f col('nanme')[:]-->", table.cols. f col ('nanme')[:]

The output of thisfor a certain arbitrary tableis:

Col um handl ers:

/tabl e.cols.name (Colum(), string, idx=None)
/table.cols.lati (Colum(), int32, idx=None)
/table.cols.longi (Colum(), int32, idx=None)
/table.cols.vector (Colum(2,), int32, idx=None)
/table.cols.matrix2D (Col um(2, 2), float64, idx=None)

Sel ect table.cols.name[1]--> Particle: 11

Sel ect table.cols.name[1:2]--> ['Particle: 11']

Select table.cols.nane[:]--> ['Particle: 10
"Particle: 11' " Particle: 12
"Particle: 13" 'Particle: 14']

Select table.cols. f col('nane')[:]--> ['Particle: 10
"Particle: 11' " Particle: 12
"Particle: 13" 'Particle: 14']

Seetheexanpl es/ t abl e2. py file for amore complete example.
_len_J()

Get the number of elementsin the column.

This matches the length in rows of the parent table.

__setitem__ (key, value)

Set arow or arange of rowsin a column.

If key argument is an integer, the corresponding element is set to val ue. If key is adlice, the range of elements
determined by itissettoval ue.

Example of use:

Modify row 1
table.cols.col 1[1] = -1

Modify rows 1 and 3
table.cols.col 1[1::2] = [2, 3]

Which is equivalent to;

Modify row 1

t abl e. nodi f yCol ums(start=1, colums=[[-1]], nanmes=['col 1'])

Modify rows 1 and 3

colums = nunpy.rec.fromarrays([[2,3]], formats="i4")

t abl e. nodi f yCol ums(start=1, step=2, colums=col utms, nanes=['col1'])

4.7. The Arr ay class

This class represents homogeneous datasets in an HDF5 file.

90

Library Reference

This class provides methods to write or read data to or from array objects in the file. This class does not allow you
neither to enlarge nor compress the datasets on disk; use the EAr r ay class (see Section 4.9) if you want enlargeable
dataset support or compression features, or CAr r ay (see Section 4.8) if you just want compression.

An interesting property of the Ar r ay classisthat it remembers the flavor of the object that has been saved so that if
you saved, for example, al i st, you will get al i st during readings afterwards; if you saved a NumPy array, you
will get a NumPy object, and so forth.

Notethat thisclassinheritsall the public attributesand methodsthat Leaf (see Section 4.5) already provides. However,
as Ar r ay instances have no internal 1/0 buffers, it is not necessary to use the f | ush() method they inherit from
Leaf inorder to savetheir internal state to disk. When awriting method call returns, al the datais aready on disk.

4.7.1. Arr ay instance variables

atom An At om (see Section 4.13.1) instance representing the type and shape of the
atomic objects to be saved.

rowsize The size of the rows in dimensions orthogonal to maindim.

nrow On iterators, thisis the index of the current row.

4.7.2. Array methods

getEnum|()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enuminstance (see Section 4.14.3) is returned. If it is not
of an enumerated type, a TypeEr r or israised.

iterrows(start=None, stop=None, step=None)
Iterate over the rows of the array.

This method returns an iterator yielding an object of the current flavor for each selected row in the array. The returned
rows are taken from the main dimension.

If arange is not supplied, all the rows in the array are iterated upon —you can dlso usethe Array. __iter_ ()

specia method (see description) for that purpose. If you only want to iterate over a given range of rows in the array,
you may usethestart, st op and st ep parameters, which have the same meaning asin Array. read() (see
description).

Example of use:

result = [row for row in arraylnstance.iterrows(step=4)]

next()

Get the next element of the array during an iteration.

The element is returned as an object of the current flavor.

read(start=None, stop=None, step=None)

Get dataiin the array as an object of the current flavor.

91

Library Reference

Thestart, st op and st ep parameters can be used to select only a range of rows in the array. Their meanings
are the same as in the built-in r ange() Python function, except that negative values of st ep are not allowed yet.
Moreover, if only st art isspecified, then st op will besetto st art +1. If you do not specify neither st art nor
st op, then all therows in the array are selected.

4.7.3. Arr ay special methods

The following methods automatically trigger actionswhen an Ar r ay instance is accessed in a special way (e.g. ar -
ray[2:3,...,::2] will beequivalenttoacal toarray. getitem ((slice(2, 3, None), El-
lipsis, slice(None, None, 2)))).

__getitem__ (key)
Get arow, arange of rows or adice from the array.

The set of tokens alowed for the key is the same as that for extended slicing in Python (including the El | i psi s
or ... token). The result is an object of the current flavor; its shape depends on the kind of dlice used as key and
the shape of the array itself.

Example of use:

arrayl = array[4] # arrayl.shape == array. shape[1:]

array2 = array[4:1000:2] # len(array2.shape) == | en(array. shape)
array3 = array[::2, 1:4, :]

array4 = array[1l, ..., ::2, 1:4, 4:] # general slice selection
__iter__ ()

Iterate over the rows of the array.

Thisis equivalent to calling Array. i t errows() (seedescription) with default arguments, i.e. it iterates over all
therowsin the array.

Example of use:
result = [row 2] for rowin array]
Which is equivalent to:

result = [rowf2] for rowin array.iterrows()]

__setitem__ (key, value)
Set arow, arange of rows or aslicein the array.

It takes different actions depending on the type of the key parameter: if it isan integer, the corresponding array row is
settoval ue (thevalueisbroadcast when needed). If key isadlice, therow dicedetermined by itissettoval ue (as
usual, if the sliceto be updated exceedsthe actual shape of the array, only the valuesin the existing range are updated).

If val ue isamultidimensional object, thenits shape must be compatiblewith the shape determined by key, otherwise,
aVal ueEr r or will be raised.

Example of use:

al[0]

333 # assign an integer to a Integer Array row
a2[0] '

b’ # assign a string to a string Array row

92

Library Reference

a3[1:4] =5 # broadcast 5 to slice 1:4

a4[1:4:2] = 'xXx' # broadcast 'xXx' to slice 1:4:2

Ceneral slice update (a5.shape = (4,3, 2,8,5,10).

ab[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))

4.8. The CArray class

This class represents homogeneous datasets in an HDF5 file.

The difference between a CAr r ay and anormal Arr ay (see Section 4.7), from which it inherits, isthat a CAr r ay
has a chunked layout and, as a consequence, it supports compression. Y ou can use datasets of this classto easily save
or load arraysto or from disk, with compression support included.

4.8.1. Example of use

See below asmall example of the use of the CAr r ay class. The codeisavailablein exanpl es/ carrayl. py:

i mport nunpy
i mport tables

fileNane = 'carrayl. h5'

shape = (200, 300)

atom = t abl es. Ul nt 8At on()

filters = tables.Filters(conpl evel =5, conplib="zlib")

h5f = tabl es. openFil e(fil eNane, 'w)

ca = hbf.createCArray(h5f.root, 'carray', atom shape, filters=filters)
Fill a hyperslab in ““ca .

ca[10: 60, 20: 70] = nunpy.ones((50, 50))

h5f . cl ose()

Re-open and read anot her hyperslab
h5f = tabl es. openFil e(fil eNane)

print h5f

print h5f.root.carray[8:12, 18:22]
h5f . cl ose()

The output for the previous script is something like:

carrayl. h5 (File)

Last nodif.: 'Thu Apr 12 10:15: 38 2007

oj ect Tree:

/ (Root Gr oup)

/[carray (CArray(200, 300), shuffle, zlib(5))

[

cooco
cooo
kP oo
5588

]
4.9. The EArr ay class

This class represents extendible, homogeneous datasets in an HDF5 file.

93

Library Reference

The main difference between an EAr r ay and a CAr r ay (see Section 4.8), from which it inherits, is that the former
can be enlarged along one of its dimensions, the enlargeable dimension. That meansthat the Leaf . ext di mattribute
(see Section 4.5.1) of any EAr r ay instance will always be non-negative. Multiple enlargeable dimensions might be
supported in the future.

New rows can be added to the end of an enlargeable array by using the EAr r ay. append() method (see the section
called “append(sequence)”).

4.9.1. EArr ay methods

append(sequence)
Add asequence of datato the end of the dataset.

The sequence must havethe sametypeasthearray; otherwiseaTypeEr r or israised. Inthe sameway, thedimensions
of thesequence must conform to the shape of the array, that is, all dimensions must match, with the exception of the
enlargeabl e dimension, which can be of any length (even 0!). If the shape of thesequence isinvalid, aVal ueEr r or
israised.

4.9.2. Example of use

See below a small example of the use of the EAr r ay class. The codeisavailablein exanpl es/ earrayl. py:

i mport tables
i mport nunpy

fileh = tabl es. openFil e(' earrayl. h5', node='w)

a = tables. StringAton(itensize=8)

Use "“a ~ as the object type for the enl argeabl e array.

array ¢ = fileh.createEArray(fileh.root, '"array c', a, (0,), "Chars")
array_c. append(nunpy.array(['a'*2, 'b'*4], dtype='S8'))

array_c. append(nunpy.array(['a' *6, 'b'*8, 'c'*10], dtype='S8'))

Read the string ~ EArray ~ we have created on disk.
for s in array_c:
print "array c[%] => %' % (array_c.nrow, s)
Close the file.
fileh.close()

The output for the previous script is something like:

array_c[0] => 'aa'
array_c[1] => 'bbbb’
array _c[2] => 'aaaaaa'
array_c[3] => 'bbbbbbbb'
array _c[4] => 'cccccccec’

4.10. The VLArr ay class

This class represents variable length (ragged) arraysin an HDF5 file.

Instances of this class represent array objects in the object tree with the property that their rows can have a variable
number of homogeneous elements, called atoms. Like Tabl e datasets (see Section 4.6), variable length arrays can
have only one dimension, and the elements (atoms) of their rows can be fully multidimensional. VLAr r ay objects
do also support compression.

94

Library Reference

When reading a range of rows from a VLAr r ay, you will always get a Python list of objects of the current flavor
(each of them for arow), which may have different lengths.

This class provides methods to write or read data to or from variable length array objectsin the file. Note that it also
inherits all the public attributes and methods that Leaf (see Section 4.5) already provides.

4.10.1. VLAr r ay instance variables

atom An At om (see Section 4.13.1) instance representing the type and shape of the
atomic objects to be saved. You may use a pseudo-atom for storing a serialized
object or variable length string per row.

flavor The type of data object read from this leaf.

Please note that when reading several rows of VLAr r ay data, the flavor only
applies to the components of the returned Python list, not to the list itself.

nrow On iterators, thisisthe index of the current row.

4.10.2. VLAr r ay methods

append(sequence)
Add asequence of datato the end of the dataset.
This method appends the objects in the sequence to a single row in this array. The type and shape of individual

objects must be compliant with the atomsin the array. In the case of serialized objects and variable length strings, the
object or string to append isitself thesequence.

getEnum()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enuminstance (see Section 4.14.3) is returned. If it is not
of an enumerated type, a TypeEr r or israised.

iterrows(start=None, stop=None, step=None)

Iterate over the rows of the array.

This method returns an iterator yielding an object of the current flavor for each selected row in the array.

If arangeisnot supplied, all therowsin the array are iterated upon —you can alsousethe VLArray. __iter_ ()

(see description) special method for that purpose. If you only want to iterate over a given range of rows in the array,
you may usethest art, st op and st ep parameters, which have the same meaning asin VLArr ay. read() (see
description).

Example of use:

for rowin vliarray.iterrows(step=4):
print '"9%[%]--> %' % (vlarray.nane, vlarray.nrow, row)

next()

Get the next element of the array during an iteration.

95

Library Reference

The element isreturned as a list of objects of the current flavor.
read(start=None, stop=None, step=1)
Get datain the array as alist of objects of the current flavor.

Please note that, as the lengths of the different rows are variable, the returned value is a Python list (not an array of
the current flavor), with as many entries as specified rows in the range parameters.

Thestart, st op and st ep parameters can be used to select only a range of rows in the array. Their meanings
are the same as in the built-in r ange() Python function, except that negative values of st ep are not allowed yet.
Moreover, if only st art isspecified, then st op will besetto st art +1. If you do not specify neither st art nor
st op, then all therows in the array are selected.

4.10.3. VLAr r ay special methods

The following methods automatically trigger actions when a VLAr r ay instance is accessed in a specia way (e.g.,
vl array[2: 5] will beequivalenttoacal tovl array. getitem (slice(2, 5, None)).

__getitem__ (key)
Get arow or arange of rows from the array.

If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key isa
dice, the range of rows determined by it is returned asalist of objects of the current flavor.

Example of use:

a_row = vlarray[4]
a_list = vlarray[4:1000: 2]

__iter__ ()
Iterate over the rows of the array.

Thisis equivalent to calling VLArray. i t err ows() (see description) with default arguments, i.e. it iterates over
all therowsin the array.

Example of use:
result = [row for row in vlarray]
Which is equivalent to:

result = [row for rowin vliarray.iterrows()]

__setitem__ (keys, value)

Set arow inthe array.

It takes different actions depending on the type of the key parameter: if it is an integer, the corresponding array row
issettoval ue. If thekey isatuple, thefirst element refersto the row to be modified, and the second element to the

range within the row to be updated with the val ue (so it can be aninteger or adlice).

The type and shape of the val ue must be compatible with the type and shape determined by the key, otherwise, a
TypeError oraVal uekEr r or will beraised.

96

Library Reference

@ Note
When updating the rows of a VLAr r ay object which uses a pseudo-atom, there is a problem: you can
only update values with exactly the same size in bytesthan the original row. Thisisvery difficult to meet
with obj ect pseudo-atoms, because cPi ckl e applied on a Python object does not guarantee to return
the same number of bytes than over another object, even if they are of the same class. This effectively
limits the kinds of objects than can be updated in variable-length arrays.

Example of use:

vlarray[0] = vlarray[0] * 2 + 3

vlarray[99, 3:] = arange(96) * 2 + 3

Negative values for start and stop (but not step) are supported.
vliarray[99, -99:-89:2] = vlarray[5] * 2 + 3

4.10.4. Example of use

See below asmall example of the use of the VLAr r ay class. The codeis availablein exanpl es/ vl arrayl. py:

i mport tables
from nunpy i nport *

Create a VLArray:

fileh = tabl es.openFile('vlarrayl. h5' , node='"w)

vliarray = fileh.createVLArray(fileh.root, 'vlarrayl',
t abl es. | nt 32At om(shape=()),
"ragged array of ints",
filters=tables.Filters(1))

Append sone (variable |ength) rows:

vl array. append(array([5, 6]))

vl array. append(array([5, 6, 7]))

vl array. append([5, 6, 9, 8])

Now, read it through an iterator:
print '-->'", vliarray.title
for x in vlarray:
print '9%[%l]--> %' % (vlarray.nanme, vlarray.nrow, X)

Now, do the sane with native Python strings.

vlarray2 = fileh.createVLArray(fileh.root, 'vlarray2',
tabl es. StringAton(itensi ze=2),
"ragged array of strings",
filters=tables.Filters(1))

vl array2.flavor = 'python'

Append sone (variable |ength) rows:

print '-->'", vlarray2.title

vl array2. append(['5"', '66'])

vl array2. append(['5', "6, '77'])

vl array2. append(['5', "6', '9", '88'])

Now, read it through an iterator:
for x in vlarray2:
print '9%[%l]--> %' % (vlarray2.nanme, vlarray2.nrow, Xx)

97

Library Reference

Close the file.
fileh.close()

The output for the previous script is something like:

--> ragged array of ints
vlarrayl[0]--> [5 6]

vliarrayl[1]--> [5 6 7]
vliarrayl[2]--> [5 6 9 8]

--> ragged array of strings
vlarray2[0]--> ['5", '66']
vlarray2[1]-->['5", '6', "77']
vlarray?2[2]-->['5'", '6', '9", '88"]

4.11. The Unl npl enent ed class

This class represents datasets not supported by PyTablesin an HDF5 file.

When reading ageneric HDF5 file (i.e. onethat has not been created with Py Tables, but with some other HDF5 library
based tool), chances are that the specific combination of datatypes or dataspacesin some dataset might not be supported
by PyTables yet. In such a case, this dataset will be mapped into an Unl npl enent ed instance and the user will
still be able to access the complete object tree of the generic HDF5 file. The user will also be able to read and write
the attributes of the dataset, access some of its metadata, and perform certain hierarchy manipulation operations like
deleting or moving (but not copying) the node. Of course, the user will not be able to read the actual data onit.

Thisis an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets are
not supported by PyTables. However, if you are really interested in having full access to an unimplemented dataset,
please get in contact with the devel oper team.

This class does not have any public instance variables or methods, except those inherited from the Leaf class (see
Section 4.5).

4.12. The Attri but eSet class

Container for the HDF5 attributes of aNode (see Section 4.3).
This class provides methods to create new HDF5 node attributes, and to get, rename or delete existing ones.

Likein Gr oup instances (see Section 4.4), At t r i but eSet instances make use of the natural naming convention,
i.e. you can access the attributes on disk asif they were normal Python attributes of the At t r i but eSet instance.

This offersthe user avery convenient way to access HDF5 node attributes. However, for thisreason and in order not to
pollute the object namespace, one can not assign normal attributesto At t r i but eSet instances, and their members
use names which start by specia prefixes as happens with Gr oup objects.

4.12.1. Notes on native and pickled attributes

The values of most basic types are saved as HDF5 native data in the HDFS5 file. This includes Python bool , i nt,
fl oat, conpl ex and st r (but not | ong nor uni code) values, as well as their NumPy scalar versions and ho-
mogeneous NumPy arrays of them. When read, these values are always loaded as NumPy scalar or array objects, as
needed.

For that reason, attributes in native HDF5 files will be always mapped into NumPy objects. Specifically, a multidi-
mensional attribute will be mapped into a multidimensional ndar r ay and a scalar will be mapped into a NumPy
scalar object (for example, ascalar H5T_NATI VE_LLONGwill beread and returned asanunpy. i nt 64 scaar).

98

Library Reference

However, other kinds of values are serialized using cPi ckl e, so you only will be able to correctly retrieve them
using a Python-aware HDF5 library. Thus, if you want to save Python scalar values and make sure you are able to read
them with generic HDF5 tools, you should make use of scalar or homogeneous array NumPy objects (for example,
nunpy.int64(1) ornunpy.array([1, 2, 3], dtype="intl1l6')).

Onemore piece of advice: because of the various potential difficultiesin restoring a Python object stored in an attribute,
you may end up getting acPi ckl e string where a Python object is expected. If thisis the case, you may wish to run
cPi ckl e. | oads() onthat string to get an idea of where things went wrong, as shown in this example:

>>> jnport os, tenpfile

>>> jnport tables

>>>

>>> cl ass MyC ass(object):
foo = 'bar'

>>> nyCbhj ect = MyCl ass() # save object of customclass in HDF5 attr
>>> h5fnane = tenpfile. nktenmp(suffix=".h5")

>>> h5f = tabl es. openFil e(h5f nane, 'w)

>>> hb5f.root. v _attrs.obj = nyCbject # store the object

>>> print hb5f.root. v _attrs.obj.foo # retrieve it

bar

>>> hb5f . cl ose()

>>>

>>> del MyCl ass, nyCbject # delete class of object and reopen file
>>> h5f = tabl es. openFil e(h5fnane, 'r')

>>> print repr(h5f.root. v _attrs. obj)

' ccopy_reg\n_reconstructor..

>>> jnmport cPickle # let's unpickle that to see what went w ong
>>> cPi ckl e. | oads(h5f.root. v_attrs. obj)

Traceback (nobst recent call |ast):

AttributeError: 'nodul e’ object has no attribute ' Md ass'
>>> # So the problemwas not in the stored object,

but in the *environnent* where it was restored.

h5f . cl ose()
>>> 0s. renove(h5f nane)

4.12.2. Attri but eSet instance variables

_Vv_attrnames A list with all attribute names.

_V_attrnamessys A list with system attribute names.

_V_attrnamesuser A list with user attribute names.

_Vv_node The Node instance (see Section 4.3) this attribute set is associated with.
_Vv_unimplemented A list of attribute names with unimplemented native HDF5 types.

4.12.3. Attri but eSet methods

Note that this class overridesthe __getattr__ (),__setattr_ () and__delattr__ () specia methods.
This allows you to read, assign or delete attributes on disk by just using the next constructs:

| eaf .attrs. myattr = '"str attr' # set a string (native support)

99

Library Reference

| eaf .attrs. myattr2 = 3 # set an integer (native support)
leaf .attrs.myattr3 = [3, (1, 2)] # a generic object (Pickled)
attrib = leaf.attrs. myattr # get the attribute ~"nmyattr
del leaf.attrs.nyattr # delete the attribute “~“nyattr

Inaddition, thedictionary-like__getitem (), setitem () and__delitem () methodsareavailable,
S0 you may write things like this:

for name in node. v_attrs. f_list():
print "name: %, value: %" % (nane, node. v_attrs[nane])

Use whatever idiom you prefer to access the attributes.

If an attribute is set on a target node that already has a large number of attributes, a Per f or manceWar ni ng will
be issued.

_f _copy(where)
Copy attributes to the wher e node.

Copies all user and certain system attributes to the given wher e node (aNode instance —see Section 4.3), replacing
the existing ones.

_f list(attrset="user")
Get alist of attribute names.

The at t r set string selects the attribute set to be used. A ' user' value returns only user attributes (this is the
default). A" sys' vauereturnsonly system attributes. Finally, ' al | ' returns both system and user attributes.

_f rename(oldattrname, newattrname)
Rename an attribute from ol dat t r nanme tonewat t r nane.
__contains__(name)

Is there an attribute with that name?

A truevalueisreturned if the attribute set has an attribute with the given name, fal se otherwise.

4.13. Declarative classes

In this section a series of classes that are meant to declare datatypes that are required for creating primary PyTables
datasets are described.

4.13.1. The At omclass and its descendants.

Defines the type of atomic cells stored in a dataset.

The meaning of atomic is that individual elements of a cell can not be extracted directly by indexing (i.e.
__getitem ())thedataset; e.g. if adataset has shape (2, 2) and its atoms have shape (3,), to get the third element
of the cell at (1, 0) one should usedat aset [1, 0] [2] instead of dat aset[1, 0, 2] .

The At omclass is meant to declare the different properties of the base element (also known as atom) of CArr ay,
EAr r ay and VLAr r ay datasets, although they are also used to describe the base elements of Ar r ay datasets. Atoms
have the property that their length is always the same. However, you can grow datasets along the extensible dimension

100

Library Reference

in the case of EArr ay or put a variable number of them on a VLAr r ay row. Moreover, they are not restricted to
scalar values, and they can be fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier. Y ou should
use a particular At omdescendant class whenever you know the exact type you will need when writing your code.
Otherwise, you may use one of the At om f r om * () factory Methods.

At ominstance variables

dflt

dtype

itemsize

kind

recarrtype
shape
size

type

The default value of the atom.

If the user does not supply avaluefor an element whilefilling adataset, thisdefault
value will be written to disk. If the user supplies a scalar value for a multidimen-
sional atom, thisvalueis automatically broadcast to al theitemsin the atom cell.
If df | t isnot supplied, an appropriate zero value (or null string) will be chosen
by default. Please note that default values are kept internally as NumPy objects.

The NumPy dt ype that most closely matches this atom.
Sizein bytes of asigleitem in the atom.
Specialy useful for atoms of the st ri ng kind.

The PyTableskind of the atom (astring). For arelation of the datakinds supported
by PyTables and more information about them, see Appendix A.

String typeto beusedinnunpy. rec. array() .
The shape of the atom (atuple, () for scalar atoms).
Total sizein bytes of the atom.

The PyTablestype of the atom (astring). For arelation of the data types supported
by PyTables and more information about them, see Appendix A.

Atoms can be compared with atoms and other objects for strict (in)equality without having to compare individual

attributes:

>>> at oml
>>> at onR
>>> at onB
>>> at oml
Fal se

>>> at oml
True

>>> aton? !

Fal se
>>> at oml
Fal se

>>> atonB !

True

StringAton(itensi ze=10) # sane as = aton?
Atom fromkind('string', 10) # sane as "~ atoml

I nt At om()

'foo'

at on®

at oml

at onB3

at on®

At ommethods

copy(**override)

Get a copy of the atom, possibly overriding some arguments.

101

Library Reference

Constructor arguments to be overridden must be passed as keyword arguments.

>>> atonl = StringAtom(itensize=12)

>>> atonR = at onil. copy()

>>> print atoml

StringAton(itensize=12, shape=(), dflt="")

>>> print aton®

StringAton(itensize=12, shape=(), dflt="")

>>> atonl is aton®

Fal se

>>> atonB = at onil. copy(itensi ze=100, shape=(2, 2))
>>> print atonB

StringAton(itensi ze=100, shape=(2, 2), dflt="")
>>> at onil. copy(f oobar =42)

Traceback (nost recent call |ast):

Tybéérror: _init__() got an unexpected keyword argunent 'foobar'’
At omfactory methods

from_dtype(dtype, dflt=None)

Create an At omfrom aNumPy dt ype.

An optional default value may be specified asthe df | t argument. Information in the dt ype not represented in an
At omisignored.

>>> | mport nunpy
>>> At om from dt ype(nunpy. dt ype((nunpy.int16, (2, 2))))

I nt 16At on{ shape=(2, 2), dflt=0)

>>> At om from dt ype(nunpy. dtype(' S5'), dflt="hello")
StringAton(itensize=5, shape=(), dflt="hello")

>>> At om from dt ype(nunpy. dt ype(' Fl oat 64'))

Fl oat 64At on{ shape=(), dflt=0.0)

from_kind(kind, itemsize=None, shape=(), dflt=None)
Create an At omfrom aPyTableski nd.

Optional item size, shape and default value may be specified asthei t ensi ze, shape and df | t arguments, re-
spectively. Bear in mind that not all atoms support a default item size.

>>> Atom fromkind('int', itemsize=2, shape=(2, 2))

I nt 16At on{ shape=(2, 2), dflt=0)

>>> Atom fromKkind('int', shape=(2, 2))

I nt 32At on{ shape=(2, 2), dflt=0)

>>> Atom fromKkind('int', shape=1)

I nt 32At on{ shape=(1,), dflt=0)

>>> Atom fromKkind('string', itemsize=5, dflt="hello")
StringAton(itensize=5, shape=(), dflt="hello")

>>> Atom fromkind('string', dflt="hello")

Traceback (nost recent call |ast):

Val ueError: no default itemsize for kind ““string
>>> At om from ki nd(' Fl oat ")

102

Library Reference

Traceback (nost recent call |ast):

Val ueError: unknown kind: 'Float'
Moreover, some kinds with atypical constructor signatures are not supported; you need to use the proper constructor:

>>> At om from ki nd(' enumn)
Traceback (nost recent call |ast):

Val ueError: the " “enum kind is not supported...
from_sctype(sctype, shape=(), dflt=None)
Create an At omfrom aNumPy scalar type sct ype.

Optional shape and default value may be specified asthe shape and df | t arguments, respectively. Information in
thesct ype not represented in an At omisignored.

>>> j nport nunpy

>>> Atom from sctype(nunpy.intl6, shape=(2, 2))
I nt 16At on(shape=(2, 2), dflt=0)

>>> Atom from sctype(' S5, dflt="hello")
Traceback (nmost recent call last):

Val ueError: unknown NunPy scal ar type: 'S5
>>> Atom from sctype(' Fl oat 64')
Fl oat 64At on(shape=(), dflt=0.0)

from_type(type, shape=(), dflt=None)
Create an At omfrom aPyTablest ype.
Optional shape and default value may be specified asthe shape and df | t arguments, respectively.

>>> Atom from type(' bool ")

Bool At on{shape=(), dflt=Fal se)

>>> Atom fromtype('intl1l6', shape=(2, 2))

I nt 16At on{ shape=(2, 2), dflt=0)

>>> Atom fromtype('string40', dflt="hello")
Traceback (nmost recent call last):

Val ueError: unknown type: 'string40'
>>> Atom fromtype(' Fl oat64')
Traceback (nmost recent call last):

Val ueError: unknown type: 'Fl oat 64’
At omconstructors

There are some common arguments for most At omderived constructors:
itemsize
For types with a non-fixed size, this setsthe size in bytes of individua itemsin the atom.

shape
Sets the shape of the atom. An integer shape of Nisequivalent to thetuple (N,) .

103

Library Reference

dflt
Sets the default value for the atom.

A relation of the different constructors with their parameters follows.
StringAtom(itemsize, shape=(), dflt=")
Defines an atom of typest ri ng.

Theitem size is the maximum length in characters of strings.
BoolAtom(shape=(), dflt=False)

Defines an atom of type bool .

IntAtom(itemsize=4, shape=(), dflt=0)
Defines an atom of asigned integral type (i nt kind).
Int8Atom(shape=(), dflt=0)

Defines an atom of typei nt 8.

Int16Atom(shape=(), dflt=0)

Defines an atom of typei nt 16.
Int32Atom(shape=(), dflt=0)

Defines an atom of typei nt 32.
Int64Atom(shape=(), dflt=0)

Defines an atom of typei nt 64.
UlntAtom(itemsize=4, shape=(), dflt=0)
Defines an atom of an unsigned integral type (ui nt kind).
Uint8Atom(shape=(), dflt=0)

Defines an atom of typeui nt 8.
Ulntl6Atom(shape=(), dflt=0)

Defines an atom of type ui nt 16.
UIint32Atom(shape=(), dflt=0)

Defines an atom of type ui nt 32.
Uint64Atom(shape=(), dflt=0)

Defines an atom of type ui nt 64.
Float32Atom(shape=(), dflt=0.0)

Defines an atom of typef | oat 32.

104

Library Reference

Float64Atom(shape=(), dflt=0.0)

Defines an atom of typef | oat 64.
ComplexAtom(itemsize, shape=(), dflt=0j)
Defines an atom of kind conpl ex.

Allowed item sizes are 8 (single precision) and 16 (double precision). This class must be used instead of more concrete
ones to avoid confusions with numar r ay-like precision specifications used in PyTables 1.X.

TimeAtom(itemsize=4, shape=(), dflt=0)
Defines an atom of time type (t i me kind).

There are two distinct supported types of time: a 32 bit integer value and a 64 bit floating point value. Both of them
reflect the number of seconds since the Unix epoch. This atom has the property of being stored using the HDF5 time
datatypes.

Time32Atom(shape=(), dflt=0)
Defines an atom of typet i me32.
Time64Atom(shape=(), dflt=0.0)
Defines an atom of typet i ne64.
EnumAtom(enum, dflt, base, shape=())
Description of an atom of an enumerated type.

Instances of this class describe the atom type used to store enumerated values. Those values belong to an enumerated
type, defined by the first argument (enum) in the constructor of the atom, which accepts the same kinds of arguments
as the Enumclass (see Section 4.14.3). The enumerated type is stored in the enumattribute of the atom.

A default value must be specified as the second argument (df | t) in the constructor; it must be the name (a string) of
one of the enumerated values in the enumerated type. When the atom is created, the corresponding concrete value is
broadcast and stored inthedf | t attribute (setting different default values for itemsin amultidimensional atomis not
supported yet). If the name does not match any value in the enumerated type, aKeyEr r or israised.

Another atom must be specified asthe base argument in order to determine the base type used for storing the values
of enumerated values in memory and disk. This storage atom is kept in the base attribute of the created atom. Asa
shorthand, you may specify a PyTables type instead of the storage atom, implying that this has a scalar shape.

The storage atom should be able to represent each and every concrete value in the enumeration. If itisnot, aType-
Er r or israised. The default value of the storage atom is ignored.

Thet ype attribute of enumerated atomsis alwaysenum
Enumerated atoms al so support comparisons with other objects:

>>> enum = ['TO', 'T1', 'T2']

>>> atonl = EnumAton{enum 'TO', 'int8') # sane as " “atonR °
>>> atonR = EnumAton{enum 'TO', Int8Atom()) # sane as " “atoml °
>>> atonB = EnumAt om{enum ' TO', 'intl6')

>>> atond = | nt 8At om()

>>> atonml == enum

105

Library Reference

Fal se

>>> atoml == at on?
True

>>> atonR ! = atonl
Fal se

>>> at onl
Fal se

>>> atoml == at on#
Fal se

>>> atomd ! = at onl
True

= atonB

Examples
The next C enumconstruction:

enum myEnum {
TO,
T1,
T2
3
would correspond to the following Py Tables declaration:
>>> myEnumAt om = EnumAton([' TO', 'T1', 'T2'], 'TO', 'int32")

Pleasenotethedf | t argumentwithavalueof ' TO' . Sincethe concrete value matching TO isunknown right now (we
have not used explicit concrete values), using the nameisthe only option left for defining a default value for the atom.

The chosen representation of valuesfor this enumerated atom uses unsigned 32-hit integers, which surely wastes quite
alot of memory. Another size could be selected by using thebas e argument (thistimewith afull-blown storage atom):

>>> nyEnumAt om = EnunAtom([' TO', 'T1', 'T2'], 'TO', U nt8Atom())
Y ou can aso define multidimensional arrays for data elements:

>>> nyEnumAt om = EnunmAt on(
[*TO', 'T1', 'T2'], 'TO', base='uint32', shape=(3,2))

for 3x2 arrays of ui nt 32.
Pseudo atoms

Now, there come three special classes, Cbj ect At om VLSt ri ngAt omand VLUni codeAt om that actualy do
not descend from At om but which goal is so similar that they should be described here. Pseudo-atoms can only be
used with VLAr r ay datasets (see Section 4.10), and they do not support multidimensional values, nor multiple values
per row.

They can be recognised because they also have ki nd, t ype and shape attributes, but no si ze, i t ensi ze or
df I t ones. Instead, they have abase atom which defines the elements used for storage.

Seeexanpl es/ vl arrayl. py and exanpl es/ vl array2. py for further examples on VLAr r ay datasets, in-
cluding object serialization and string management.

ObjectAtom()

Defines an atom of type obj ect .

106

Library Reference

This class is meant to fit any kind of Python object in arow of a VLAr r ay dataset by using cPi ckl e behind the
scenes. Due to the fact that you can not foresee how long will be the output of the cPi ckl e seriaization (i.e. the
atom already has a variable length), you can only fit one object per row. However, you can still group several objects
inasingletuple or list and passit tothe VLAr r ay. append() method (see description).

Object atoms do not accept parameters and they cause the reads of rows to always return Python objects. You can
regard obj ect atoms as an easy way to save an arbitrary number of generic Python objectsin aVLAr r ay dataset.

VLStringAtom()
Defines an atom of typevl st ri ng.

This class describes arow of the VLAY r ay class, rather than an atom. It differs from the St r i ngAt omclassin that
you can only add one instance of it to one specific row, i.e. the VLAr r ay. append() method (see description) only
accepts one object when the base atom is of thistype.

Like St r i ngAt om this class does not make assumptions on the encoding of the string, and raw bytes are stored as
is. Unicode strings are supported as long as no character is out of the ASCII set; otherwise, you will need to explicitly
convert them to strings before you can save them. For full Unicode support, using VLUni codeAt om(see description)
is recommended.

Variable-length string atoms do not accept parameters and they cause the reads of rowsto always return Python strings.
You canregard vl st ri ng atoms as an easy way to save generic variable length strings.

VLUnicodeAtom()
Defines an atom of type vl uni code.

This class describes a row of the VLAr r ay class, rather than an atom. It is very similar to VLSt r i ngAt om (see
description), but it stores Unicode strings (using 32-bit characters ala UCS-4, so al strings of the same length also
take up the same space).

This class does not make assumptions on the encoding of plain input strings. Plain strings are supported as long as
no character is out of the ASCII set; otherwise, you will need to explicitly convert them to Unicode before you can
save them.

Variable-length Unicode atoms do not accept parameters and they cause the reads of rows to always return Python
Unicode strings. You can regard vl uni code atoms as an easy way to save variable length Unicode strings.

4.13.2. The Col class and its descendants

Defines a non-nested column.

Col instances are used as a means to declare the different properties of a non-nested column in a table or nested
column. Col classes are descendants of their equivalent At omclasses (see Section 4.13.1), but their instances have an
additional _v_pos attribute that is used to decide the position of the column inside its parent table or nested column
(seethel sDescri pti on classin Section 4.13.3 for more information on column positions).

In the same fashion as At om you should use a particular Col descendant class whenever you know the exact type
you will need when writing your code. Otherwise, you may use one of the Col . f rom * () factory methods.

Col instance variables
In addition to the variables that they inherit from the At omclass, Col instances have the following attributes:

_V_pos Therelative position of this column with regard to its column siblings.

107

Library Reference

Col factory methods

Each factory method inherited from the At omclass is available with the same signature, plus an additional pos
parameter (placed in last position) which defaults to None and that may take an integer value. This parameter might
be used to specify the position of the column in the table.

Besides, there are the next additional factory methods, available only for Col objects:

from_atom(atom, pos=None)

Create aCol definition from aPyTablesat om

An optional position may be specified asthe pos argument.

Col constructors

There are some common arguments for most Col -derived constructors:

itemsize
For types with a non-fixed size, this sets the size in bytes of individual itemsin the column.

shape
Sets the shape of the column. An integer shape of Nis equivalent to thetuple (N,) .

dflt
Sets the default value for the column.

pos
Sets the position of column in table. If unspecified, the position will be randomly selected.

A relation of the different constructors with their parameters follows. For more information about them, seeits At om
ancestors documentation in the section called “ Atom constructors”.

StringCol(itemsize, shape=(), dflt=", pos=None)
Defines an column of type st ri ng.
BoolCol(shape=(), dflt=False, pos=None)
Defines an column of type bool .

IntCol(itemsize=4, shape=(), dflt=0, pos=None)
Defines an column of asigned integral type (i nt kind).
Int8Col(shape=(), dflt=0, pos=None)

Defines an column of typei nt 8.

Int16Col(shape=(), dflt=0, pos=None)

Defines an column of typei nt 16.

Int32Col(shape=(), dflt=0, pos=None)

Defines an column of typei nt 32.

108

Library Reference

Int64Col(shape=(), dflt=0, pos=None)

Defines an column of typei nt 64.

UlntCol(itemsize=4, shape=(), dflt=0, pos=None)
Defines an column of an unsigned integral type (ui nt kind).
UInt8Col(shape=(), dflt=0, pos=None)

Defines an column of type ui nt 8.

Uint16Col(shape=(), dflt=0, pos=None)

Defines an column of type ui nt 16.
UInt32Col(shape=(), dflt=0, pos=None)

Defines an column of type ui nt 32.
Uint64Col(shape=(), dflt=0, pos=None)

Defines an column of type ui nt 64.
Float32Col(shape=(), dflt=0.0, pos=None)
Defines an column of typef | oat 32.
Float64Col(shape=(), dflt=0.0, pos=None)
Defines an column of typef | oat 64.
ComplexCol(itemsize, shape=(), dflt=0j, pos=None)
Defines an column of kind conpl ex.
TimeCol(itemsize=4, shape=(), dflt=0, pos=None)
Defines an column of timetype (t i me kind).
Time32Col(shape=(), dflt=0, pos=None)
Defines an column of typet i ne32.
Time64Col(shape=(), dflt=0.0, pos=None)
Defines an column of typet i ne64.

EnumcCol(enum, dflt, base, shape=(), pos=None)

Description of an column of an enumerated type.

4.13.3. The | sDescri pti on class

Description of the structure of atable or nested column.

This class is designed to be used as an easy, yet meaningful way to describe the structure of new Tabl e (see Sec-
tion 4.6) datasets or nested columns through the definition of derived classes. In order to define such a class, you must

109

Library Reference

declareit as descendant of | sDescr i pt i on, with as many attributes as columns you want in your table. The name
of each attribute will become the name of a column, and its value will hold a description of it.

Ordinary columns can be described using instances of the Col class (see Section 4.13.2). Nested columns can be
described by using classesderived from | sDescr i pt i on, instancesof it, or name-description dictionaries. Derived
classes can be declared in place (in which case the column takes the name of the class) or referenced by name.

Nested columns can have a_v_pos specia attribute which sets the relative position of the column among sibling
columns also having explicit positions. The pos constructor argument of Col intancesis used for the same purpose.
Columns with no explicit position will be placed afterwardsin a phanumeric order.

Once you have created a description object, you can pass it to the Tabl e constructor, where all the information it
contains will be used to define the table structure. See the Section 3.4 for an example on how that works.

| sDescri pti on special attributes

These arethe specia attributesthat the user can specify when declaringan| sDescr i pt i on subclassto complement
its metadata.

_V_pos Sets the position of a possible nested column description among its sibling
columns.

| sDescri ption class variables

The following attributes are automatically created when an | sDescr i pti on subclassis declared. Please note that
declared columns can no longer be accessed as normal class variables after its creation.

columns Maps the name of each column in the description to its own descriptive object.

4.14. Helper classes

This section describes some classes that do not fit in any other section and that mainly serve for ancillary purposes.

4.14.1. The Fi |l ters class

Container for filter properties.

Thisclassismeant to serve asacontainer that keepsinformation about thefilter properti es associated with the chunked
leaves, that isTabl e, CArray, EArray and VLAr r ay.

Instances of this class can be directly compared for equality.

Fi | t er s instance variables

fletcher 32 Whether the Fletcher32 filter is active or not.

complevel The compression level (0 disables compression).

complib The compression filter used (irrelevant when compression is not enabled).
shuffle Whether the Shuffle filter is active or not.

Example of use

Thisisasmall exampleonusingtheFi | t er s class:

i mport nunpy

110

Library Reference

fromtables inport *

fileh = openFile('test5. h5, node='"w)
atom = Fl oat 32At on()
filters = Filters(conpl evel =1, conplib="1z0", fletcher32=True)
arr = fileh.createEArray(fileh.root, 'earray', atom (O, 2),
"A growabl e array”, filters=filters)

Append several rows in only one call
arr.append(nunmpy.array([[1., 2.],

[2., 3.],
[3., 4.]], dtype=nunpy.fl oat 32))

Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of the LZO library, a compression level of 1 and a Fletcher32 checksum filter as well. See the
output of this example:

Result Array:
/earray (EArray(3, 2), fletcher32, shuffle, 1zo(1l)) 'A growable array'
type = float 32
shape = (3, 2)
itensize = 4
nrows = 3
extdim= 0
flavor = ' nunpy'
byteorder = '"little'

Filters(conpl evel =0, conplib="zlib"', shuffle=True,
fl et cher 32=Fal se)

Createanew Fi | t er s instance.

complevel
Specifies acompression level for data. The allowed rangeis 0-9. A value of O (the default) disables compression.

complib
Specifies the compression library to be used. Right now, 'zlib' (the default), 'lzo' and 'bzip2' are supported. Speci-
fying a compression library which is not available in the systemissuesaFi | t er sWar ni ng and setsthelibrary
to the default one.

See Section 5.3 for some advice on which library is better suited to your needs.

shuffle
Whether or not to use the Shuffle filter in the HDF5 library. Thisis normally used to improve the compression
ratio. A false value disables shuffling and atrue one enablesit. The default val ue depends on whether compression
is enabled or not; if compression is enabled, shuffling defaults to be enabled, else shuffling is disabled. Shuffling
can only be used when compression is enabled.

fletcher32
Whether or not to use the Fletcher32 filter in the HDF5 library. This is used to add a checksum on each data
chunk. A false value (the default) disables the checksum.

111

Library Reference

copy(override)
Get a copy of thefilters, possibly overriding some arguments.
Constructor arguments to be overridden must be passed as keyword arguments.

Using this method is recommended over replacing the attributes of an instance, since instances of this class may
become immutable in the future.

>>> filtersl
>>> filters2

Filters()
filtersl. copy()

>>> filtersl == filters2

True

>>> filtersl is filters2

Fal se

>>> filters3 = filtersl. copy(conpl evel =1)

Traceback (nmost recent call last):

Val ueError: conpression library ~~"None ~ is not supported..

>>> filters3 = filtersl. copy(conpl evel =1, conplib="zlib")

>>> print filtersl

Filters(conpl evel =0, shuffl e=Fal se, fl etcher32=Fal se)

>>> print filters3

Filters(conpl evel =1, conplib="zlib', shuffle=Fal se, fletcher32=Fal se)
>>> filtersl. copy(foobar=42)

Traceback (nmost recent call last):

TypeError: __init__ () got an unexpected keyword argunent 'foobar'

4.14.2. The | ndex class

Represents the index of acolumnin atable.

This class is used to keep the indexing information for columnsin a Tabl e dataset (see Section 4.6). It is actually
a descendant of the G- oup class (see Section 4.4), with some added functionality. An | ndex is always associated
with one and only one column in the table.

@ Note
This class is mainly intended for internal use, but some of its documented attributes and methods may
be interesting for the programmer.

A
& Note

Pro

Column indexing isonly availablein PyTables Pro.

| ndex instance variables
column The Col umm (see Section 4.6.9) instance for the indexed column.
dirty Whether the index is dirty or not.

Dirty indexes are out of sync with column data, so they exist but they are not
usable.

112

Library Reference

filters Filter propertiesfor thisindex —see Fi | t er s in Section 4.14.1.
nelements The number of currently indexed row for this column.
is CSl Whether the index is completely sorted or not.

| ndex methods

readSorted(start=None, stop=None, step=None)

Return the sorted values of index in the specified range.

Themeaning of thest art , st op and st ep argumentsisthesameasinTabl e. r eadSor t ed() (seedescription).
readIndices(start=None, stop=None, step=None)

Return the indices values of index in the specified range.

Themeaning of thest art , st op and st ep argumentsisthesameasinTabl e. r eadSor t ed() (seedescription).
| ndex special methods

__getitem__ (key)
Return the indices values of index in the specified range.

If key argument isan integer, the corresponding index isreturned. If key isadlice, the range of indices determined by
itisreturned. A negative value of st ep in diceis supported, meaning that the resultswill be returned in reverse order.

Thismethod is equivalent to | ndex. r eadl ndi ces() (seedescription).

4.14.3. The Enumclass

Enumerated type.

Each instance of this class represents an enumerated type. The values of the type must be declared exhaustively and
named with strings, and they might be given explicit concrete values, though this is not compulsory. Once the type
is defined, it can not be modified.

There are three ways of defining an enumerated type. Each one of them corresponds to the type of the only argument
in the constructor of Enum

* Sequence of names: each enumerated value is named using a string, and its order is determined by its position in
the sequence; the concrete value is assigned automatically:

>>> bool Enum = Enum([' True', 'False'])

» Mapping of names: each enumerated value is named by a string and given an explicit concrete value. All of the
concrete values must be different, or aVal ueEr r or will be raised.

>>> priority = Enun({'red': 20, 'orange': 10, 'green': 0})
>>> colors = Enunm({'red': 1, 'blue': 1})
Traceback (nost recent call |ast):

Val ueError: enunerated val ues contain duplicate concrete values: 1

113

Library Reference

» Enumerated type: in that case, a copy of the original enumerated type is created. Both enumerated types are con-
sidered equal.

>>> prio2 = Enunm(priority)
>>> priority == prio2
True

Please note that names starting with _ are not allowed, since they are reserved for internal usage:

>>> prio2 = Enunm([' _xx'])
Traceback (nobst recent call |ast):

Val ueError: name of enunerated value can not start with ~° XX

The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enuminstance (see
__getattr__())orasanitem(see__getitem_ ()). Thisallowscomparisons between enumerated values and
assigning them to ordinary Python variables:

>>> redv = priority.red

>>> redv == priority['red']

True

>>> redv > priority.green

True

>>> priority.red == priority.orange

Fal se

The name of the enumerated value corresponding to a concrete value can also be obtained by usingthe __cal | __ ()

method of the enumerated type. In thisway you get the symbolic nameto useit later with__getitem_ ():
>>> priority(redv)

"red'

>>> priority.red == priority[priority(priority.red)]

True

(If youask,the__getitem_ () methodisnot used for this purpose to avoid ambiguity in the case of using strings
as concrete values.)

Enumspecial methods
__call__(value, *default)
Get the name of the enumerated value with that concrete val ue.

If there is no value with that concrete value in the enumeration and a second argument is given asadef aul t , this
isreturned. Else, aVal ueEr r or israised.

Thismethod can be used for checking that a concrete val ue belongsto the set of concrete valuesin an enumerated type.
__contains__(name)
Isthere an enumerated value with that nane in the type?

If the enumerated type has an enumerated value with that nane, Tr ue is returned. Otherwise, Fal se is returned.
The name must be a string.

This method does not check for concrete values matching a value in an enumerated type. For that, please use the
Enum __cal | _ () method (see description).

114

Library Reference

__eqg__(other)
Isthe ot her enumerated type equivalent to this one?

Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the same names and
concrete values).

__getattr__(name)
Get the concrete value of the enumerated value with that nane.

The nane of the enumerated value must be a string. If there is no value with that nane in the enumeration, an
AttributeError israised.

__getitem__ (hame)
Get the concrete value of the enumerated value with that nane.

The nane of the enumerated value must be a string. If there is no value with that name in the enumeration, a Key -
Error israised.

__iter__()

Iterate over the enumerated values.

Enumerated values are returned as (nanme, val ue) pairsinno particular order.
_len__ 0

Return the number of enumerated values in the enumerated type.

_repr__()

Return the canonical string representation of the enumeration. The output of this method can be evaluated to give a
new enumeration object that will compare equal to this one.

115

Chapter 5. Optimization tips

... durch planméssiges Tattonieren.
[... through systematic, pal pable experimentation.]

--Johann Karl Friedrich Gauss [asked how he came upon his theorems]

On this chapter, you will get deeper knowledge of PyTables internals. PyTables has many tunable features so that you
can improve the performance of your application. If you are planning to deal with really large data, you should read
carefully this section in order to learn how to get an important efficiency boost for your code. But if your datasets are
small (say, up to 10 MB) or your number of nodesis contained (up to 1000), you should not worry about that as the
default parametersin PyTables are already tuned for those sizes (although you may want to tune it anyway). At any
rate, reading this chapter will help you in your life with PyTables.

5.1. Understanding chunking

The underlying HDF5 library that is used by PyTables allows for certain datasets (the so-called chunked datasets) to
take the data in bunches of a certain length, named chunks, and write them on disk as awhole, i.e. the HDF5 library
treats chunks as atomic objects and disk 1/0 is always made in terms of complete chunks. This allows datafiltersto be
defined by the application to perform tasks such as compression, encryption, check-summing, etc. on entire chunks.

HDF5 keeps a B-treein memory that is used to map chunk structures on disk. The more chunksthat are allocated for a
dataset the larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk 1/0 and
higher contention for the metadata cache. Conseguently, it's important to balance between memory and 1/0O overhead
(small B-trees) and time to access data (big B-trees).

In the next couple of sections, you will discover how to inform PyTables about the expected size of your datasets for
allowing a sensible computation of the chunk sizes. Also, you will be presented some experiments so that you can get
a feeling on the conseguences of manually specifying the chunk size. Although doing this latter is only reserved to
experienced people, these benchmarks may allow you to understand more deeply the chunk size implications and let
you quickly start with the fine-tuning of thisimportant parameter.

5.1.1. Informing PyTables about expected number of rows in ta-
bles or arrays

PyTables can determine a sensible chunk size to your dataset size if you helpsit by providing an estimation of the
final number of rows for an extensible leaf. Y ou should provide thisinformation at leaf creation time by passing this
valueto the expect edr ows argument of thecr eat eTabl e() method (see description) or cr eat eEArr ay()
method (see Section). For VLAr r ay leaves, you must pass the expected size in MBytes by using the argument
expect edsi zei nMBof cr eat eVLArray() (see Section) instead.

When your leaf size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing this guess
you will be optimizing the accessto your data. When thetable or array sizeislarger than, say 100MB, you are strongly
suggested to provide such a guess; failing to do that may cause your application to do very slow 1/O operations and
to demand huge amounts of memory. Y ou have been warned!

carr ay nodes, though not extensible, are chunked and have their optimum chunk size automatically computed at creation time, since their final
shape is known.

116

Optimization tips

5.1.2. Fine-tuning the chunksize

o Warning
This section is mostly meant for experts. If you are abeginner, you must know that setting manually the
chunksize is a potentially dangerous action.

Most of the time, informing PyTables about the extent of your dataset is enough. However, for more sophisticated
applications, when one has special requirementsfor doing the I/0 or when dealing with really large datasets, you should
really understand the implications of the chunk size in order to be able to find the best value for your own application.

You can specify the chunksize for every chunked dataset in PyTables by passing the chunkshape argument to
the corresponding constructors. It is important to point out that chunkshape is not exactly the same thing than a
chunksize; infact, the chunksize of adataset can be computed multiplying all the dimensions of the chunkshape among
them and multiplying the outcome by the size of the atom.

We are going to describe a series of experiments where an EArray of 15 GB is written with different chunksizes,
and then it is accessed in both sequential (i.e. first element 0, then element 1 and so on and so forth until the data
is exhausted) and random mode (i.e. single elements are read randomly all through the dataset). These benchmarks
have been carried out with PyTables 2.1 on a machine with an Intel Core2 processor @ 3 GHz and a RAID-0 made
of four SATA disks spinning at 7200 RPM, and using GNU/Linux with an XFS filesystem. The script used for the
benchmarksisavailablein bench/ opt i mal - chunksi ze. py. Before each measurement, the OS cache has been
emptied in order to remove its effects.

Infigures 5.1, 5.2, 5.3 and 5.4, you can see how the chunksize affects different aspects, like creation time, file sizes,
sequential read time and random read time. Asyou can seeg, if you properly inform PyTables about the extent of your
datasets, you will get an automatic chunksize value (128 KB in this case) that is pretty optimal for most of uses.
However, if what you want is, for example, optimize the creation time when using the Zlib compressor, you may want
to reduce the chunksize to 32 KB (see Figure 5.1). On the contrary, if your goal is to optimize the random access time
for an uncompressed dataset, you may want to increase the chunksize up to 1 MB (see Figure 5.4).

Creation mean time per element

4.5 T T T
m—8 nocompr
4.0\ ,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,, —@ 7libl J
: : ¥ |z0l
3.5\ e N .
- Automatic ‘ :

. chunksize

3.0

Time (us)

I I
10° 10 10° 10° 10’
Chunksize (bytes)

Figure 5.1. Creation time per element for a 15 GB EArray and different chunksizes.

117

Optimization tips

File size
20 T T
B—8 nocompr
—e@ zlibl

—v |zo0l

15— ; T EEEECEE f

Automatic
: chunksize

=
o

Size (GB)

0 Il
10° 10* 10° 10° 10’
Chunksize (bytes)

Figure5.2. Filesizesfor a 15 GB EArray and different chunksizes.

Sequential read mean time per element

: : m—8 nocompr
| | e—e zlibl
LOp N e 2 ¥ |zo01
- Automatic ‘ 1

Time (us)
o
()]

0.0 i

;
10° 10* 10° 10° 10’
Chunksize (bytes)

Figure 5.3. Sequential accesstime per element for a15 GB EArray and different chunksizes.

118

Optimization tips

Random read mean time per element

10 T T
B—8 nocompr
@ zlibl
g\ ¥V lzol |]
iAutomatic
e B Bl RE IRTEETTEPPTPRPTPPPRPR RS ERREY (ERTITPRPEPRPERS
@ . chunksize
E :
(]
£
=

o ‘
10° 10* 10° 10° 10’
Chunksize (bytes)

Figure 5.4. Random access time per element for a 15 GB EArray and different chunksizes.

Asyou see, by manually specifying the chunksize of aleave you will not normally bring adrastic increase in perfor-
mance, but at least, you will have the opportunity to fine-tune such an important parameter for your application.

Finally, it isworth to not that adjusting the chunksize can be specially important if you decide that you want to access
your dataset by blocks of certain dimensions. In this case, you may want to set your chunkshape to be the same
than these dimensions. In this case, you only have to be careful to not end with atoo small or too large chunksize. As
always, experimenting prior to pass your application into production phase is your best ally.

5.2. Accelerating your searches

Searching in tablesis one of the most common and time consuming operations that atypical user facesin the process
of mining through his data. Being able to perform queries asfast as possible will allow more opportunities for finding
the desired information quicker and also allows to deal with larger datasets.

PyTables offers many sort of techniques so as to speed-up the search process as much as possible and, in order to give
you hintsto use them based, a series of benchmarks have been designed and carried out. All the results presented in this
section have been obtained with synthetic, random data and using PyTables 2.1. Also, the tests have been conducted
on amachine with an Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk storage (made of four spinning disks
@ 7200 RPM), using GNU/Linux with an XFSfilesystem. The script used for the benchmarksisavailableinbench/

i ndexed_sear ch. py. Asyour data, queries and platform may be totally different for your case, take thisjust as
a guide because your mileage may vary (and will vary).

In order to be able to play with tables with a number of rows as large as possible, the record size has been chosen to
be rather small (24 bytes). Here it isits definition:

cl ass Record(tabl es.|sDescription):

coll = tables.Int32Col ()
col 2 = tabl es. I nt32Col ()
col 3 = tabl es. Fl oat 64Col ()

119

Optimization tips

col 4 = tabl es. Fl oat 64Col ()
In the next sections, we will be optimizing the times for arelatively complex query like this:

result = [rowf'col2'] for rowin table
if (((rowf'col4'] >=1inl and row'col4'] < IlinmR) or
((rowf'col2'] >1inB and row'col2'] <Ilim])) and
((row'col1']+3.1*row 'col 2']+rowf 'col 3"]*row 'col 4']) > linb))]

(for future reference, we will call this sort of queries regular queries). So, if you want to see how to greatly improve
the time taken to run queries like this, keep reading.

5.2.1. In-kernel searches

PyTablesprovidesaway to accel erate data selectionsinside of asingletable, through theuse of the Tabl e. wher e()
iterator and related query methods (see Section 4.6.4). This mode of selecting data is called in-kernel. Let's see an
example of an in-kernel query based on the regular one mentioned above:

r esul

t
" (

= [row'col2'] for row in table.where(
((col4 >=1im) & (col4 < 1linR)) |
((col2 >1inB) & (col2 <1ind)) &
((col 1+3. 1*col 2+col 3*col 4) > linb))')]

This simple change of mode selection can improve search times quite alot and actually make PyTables very compet-
itive when compared against typical relational databases as you can seein Figure 5.5 and Figure 5.6.

Query time for complex query and 10 Mrow (not indexed)

102 1 ‘ ‘ ‘
B8 PyTables 2.1 inkernel nocompr
@—@ PyTables 2.1 inkernel zlibl
¥—¥ PyTables 2.1 inkernel Izol
A&—A PyTables 2.1 regular nocompr
0t L PostgresQ.831 | 0
0
Q
£
'_
10

1 ; ; ; ; ; ;
10° 10* 102 10° 10* 10° 10° 10’
Number of hits

Figure 5.5. Times for non-indexed complex queriesin a
small table with 10 millions of rows: the data fits in memory.

By looking at Figure 5.5 you can see how in the case that table data fits easily in memory, in-kernel searches on
uncompressed tables are generally much faster (10x) than standard queries as well as PostgreSQL (5x). Regarding

120

Optimization tips

compression, we can see how Zlib compressor actually slows down the performance of in-kernel queries by afactor
3.5x; however, it remainsfaster than PostgreSQL (40%). On hishand, LZO compressor only decreasesthe performance
by a 75% with respect to uncompressed in-kernel queries and is still alot faster than PostgreSQL (3x). Finaly, one
can observe that, for low selectivity queries (large number of hits), PostgreSQL performance degrades quite steadily,
whilein PyTablesthis slow down rate is significantly smaller. The reason of this behaviour is not entirely clear to the
authors, but the fact is clearly reproducible in our benchmarks.

But, why in-kernel queries are so fast when compared with regular ones?. The answer isthat in regular selection mode
the data for all the rows in table has to be brought into Python space so as to evaluate the condition and decide if
the corresponding field should be added to ther esul t list. On the contrary, in the in-kernel mode, the condition is
passed to the PyTables kernel (hence the name), written in C, and evaluated there at full C speed (with the help of
the integrated Numexpr package, see [11]), so that the only values that are brought to Python space are the rows that
fulfilled the condition. Hence, for selections that only have arelatively small number of hits (compared with the total
amount of rows), the savings are very large. It is also interesting to note the fact that, although for queries with alarge
number of hits the speed-up isnot as high, it is still very important.

Onthe other hand, when thetableistoo largeto fit in memory (see Figure 5.6), the difference in speed between regular
and in-kernel is not so important, but still significant (2x). Also, and curiously enough, large tables compressed with
Zlib offers dlightly better performance (around 20%) than uncompressed ones; this is because the additional CPU
spent by the uncompressor is compensated by the savings in terms of net 1/O (one has to read less actual data from
disk). However, when using the extremely fast L ZO compressor, it gives aclear advantage over Zlib, and isup to 2.5x
faster than not using compression at all. The reason is that LZO decompression speed is much faster than Zlib, and
that allows PyTables to read the data at full disk speed (i.e. the bottleneck isin the 1/O subsystem, not in the CPU).
In this case the compression rate is around 2.5x, and thisis why the data can be read 2.5x faster. So, in general, using
the LZO compressor isthe best way to ensure best reading/querying performance for out-of-core datasets (more about
how compression affects performance in Section 5.3, “Compression issues’).

Query time for complex query and 1 Grow (not indexed)

PyTables 2.1 inkernel nocompr ‘ ‘
PyTables 2.1 inkernel zlibl
PyTables 2.1 inkernel Izol
PyTables 2.1 regular nocompr
PostgreSQL 8.3.1

1111

103 L

Time (s)

10! 0 i1 i2 i3 i4 i5 i6 i7 8
10 10 10 10 10 10 10 10 10
Number of hits

Figure 5.6. Times for non-indexed complex queriesin alarge
table with 1 billion of rows: the data does not fit in memory.

Furthermore, you can mix the in-kernel and regular selection modes for evaluating arbitrarily complex conditions
making use of external functions. Look at this example:

121

Optimization tips

result = row'var2']
for rowin table.where('(var3 == "foo") & (varl <= 20)')
i f your_ function(row 'var2'])]

Here, we use an in-kernel selection to choose rows according to the values of the var 3 and var 1 fields. Then, we
apply aregular selection to complete the query. Of course, when you mix the in-kernel and regular selection modes
you should pass the most restrictive condition to the in-kernel part, i.e. to thewher e() iterator. In situations where
it is not clear which is the most restrictive condition, you might want to experiment a bit in order to find the best
combination.

However, since in-kernel condition strings alow rich expressions allowing the coexistence of multiple columns, vari-
ables, arithmetic operations and many typical functions, it is unlikely that you will be forced to use external regular
selections in conditions of small to medium complexity. See Appendix B for more information on in-kernel condition
syntax.

5.2.2. Indexed searches

A
o Note
Pro

Indexing isonly availablein PyTables Pro.

When you need more speed than in-kernel selections can offer you, PyTables offers a third selection method, the so-
called indexed mode (based on the highly efficient OPSI indexing engine[20]). In thismode, you have to decide which
column(s) you are going to apply your selections over, and index them. Indexing is just a kind of sorting operation
over acolumn, so that searches al ong such a column (or columns) will look at this sorted information by using abinary
search which is much faster than the sequential search described in the previous section.

You can index the columns you want by calling the Col urm. cr eat el ndex() method (see description) on an
already created table. For example:

i ndexrows = tabl e.col s.varl.createl ndex()
i ndexrows = tabl e.col s.var2. creat el ndex()
i ndexrows = tabl e.col s.var3. creat el ndex()

will create indexesfor al var 1, var 2 and var 3 columns.

After you haveindexed aseries of columns, the Py Tables query optimizer will try hard to discover the usableindexesin
apotentially complex expression. However, there are still places where it cannot determine that an index can be used.
See below for examples where the optimizer can safely determine if an index, or series of indexes, can be used or not.
Example conditions where an index can be used:

e varl >= "fo0" (varlisused)

e varl >= nystr (varlisused)

e (varl >= "foo") & (var4 > 0.0) (varlisused)

e ("bar" <= varl) & (varl < "fo0") (varlisused)

e (("bar" <= varl) & (varl < "foo0")) & (vard4 > 0.0) (varlisused)

e (varl >= "foo") & (var3 > 10) (varlandvar3 are used)

e (varl >= "foo") | (var3 > 10) (varlandvar3are used)

122

Optimization tips

e ~(varl >= "foo") | ~(var3 > 10) (varland var3 are used)
Example conditions where an index can not be used:

e var4 > 0.0 (vard isnot indexed)

e« varl != 0. 0 (range has two pieces)

e ~(("bar" <=varl) &(varl <"foo")) & (var4 > 0. 0) (negation of acomplex boolean expression)

3 Note

From PyTables Pro 2.1 on, several indexes can be used in asingle query.

3 Note

If you want to know for sure whether a particular query will useindexing or not (without actually running
it), you are advised to usethe Tabl e. wi | | Quer yUsel ndexi ng() method (see description).

One important aspect of indexing in PyTables Pro is that it has been designed from the ground up with the goal of
being capable to effectively manage very large tables. To thisgodl, it sports awide spectrum of different quality levels
(also called optimization levels) for its indexes so that the user can choose the best one that suits her needs (more or
less size, more or less performance).

In Figure 5.7, you can see that the times to index columnsin tables can be really short. In particular, the time to index
acolumn with 1 billion rows (1 Gigarow) with the lowest optimization level isless than 4 minutes while indexing the
same column with full optimization (so as to get a completely sorted index or CSl) requires around 1 hour. These are
rather competitive figures compared with a relational database (in this case, PostgreSQL 8.3.1, which takes around
1.5 hoursfor getting the index done). Thisis because PyTablesis geared towards read-only or append-only tables and
takes advantage of thisfact to optimize theindexes properly. On the contrary, most relational databases haveto deliver
decent performance in other scenarios as well (specially updates and deletions), and this fact leads not only to slower
index creation times, but aso to indexes taking much more space on disk, as you can seein Figure 5.8.

Time to index a column with 1 Grow for different optimizations
(PyTables Pro 2.1 vs PostgreSQL 8.3.1)

Il Int32
Il Float64

6000

>000¢ 25x faster

4000 21x faster

3000}

Time (s)

2.1x
faster

2000

1000

ultralight/O3 light/0O6 medium/06 full/O9 PostgreSQL
(CSI)

Figure5.7. Timesfor indexing an | nt 32 and Fl oat 64 column.

123

Optimization tips

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 vs PostgreSQL 8.3.1)

10

Il Optlevel 0

I Optlevel 3 23.4 MB
sl I Optlevel 6

[Optlevel 9

15x lighter

Disk Size (MB)

1.49 MB

\

0
Original UltraLight Light Medium Full PostgreSQL
column

Figure 5.8. Sizesfor anindex of aFl oat 64 column with 1 billion of rows.

Theuser can select theindex quality by passing thedesired opt | evel andki nd argumentstothecr eat el ndex()
method (see description). We can see in figures 5.7 and 5.8 how the different optimization levels affects index time

creation and index sizes. So, which is the effect of the different optimization levelsin terms of query times? You can
seethat in Figure 5.9.

. Query time for complex query and 1 Grow (indexed)
10 T T T T T T T
.
107 fo
A 75~ —.a s SRR B
°© ‘]]] :
g R i <
RTINS Snd ¥ o RRE PyTables 2.1 09 full Izol ;
[g PyTables 2.1 06 medium Izo1l
w4 S S PyTables 2.1 06 light I1zol]
7 1 PyTables 2.1 O3 ultralight Izol
5 PostgreSQL 8.3.1
10 R Py PyTables 2.1 inkernel Izol
‘ PostgreSQL 8.3.1 not indexed
1073 I

-, \ Il Il Il Il Il
10° 10! 102 10° 10* 10° 10° 10’ 108
Number of hits

Figure 5.9. Times for complex queries with a cold cache (mean of 5 first random queries) for different optimization
levels. Benchmark made on a machine with Intel Core2 (64-bit) @ 3 GHz processor with RAID-0 disk storage.

Of course, compression also has an effect when doing indexed queries, although not very noticeable, as can be seen
in Figure 5.10. As you can see, the difference between using no compression and using Zlib or LZO is very little,
although LZO achievesrelatively better performance generally speaking.

124

Optimization tips

Query time for complex query and 1 Grow (indexed)

10* ;
]-03 ,,
102 T S S B D P QP T
G LOb o g N
°
£
F g0 b A i SO D D R
| == PyTables 2.1 CSI nocompr
il | e PyTables 2.1 CSI zlibl]
| ¥=¥ PyTables 2.1 CSl Izol
, PostgreSQL 8.3.1
ECE Y A PyTables 2.1 inkernel I1zol
PostgreSQL 8.3.1 not indexed
107

i \ \ Il Il Il Il
10° 10* 102 10° 10* 10° 10° 107 108
Number of hits

Figure 5.10. Times for complex queries with a cold cache
(mean of 5 first random queries) for different compressors.

Y ou can find a more compl ete description and benchmarks about OPSI, the indexing system of PyTables Proin [20].

5.2.3. Indexing and Solid State Disks (SSD)

Lately, the long promised Solid State Disks (SSD for brevity) with decent capacities and affordable prices have finally
hit the market and will probably stay in coexistence with the traditional spinning disksfor the foreseeable future (sepa-
rately or forming hybrid systems). SSD have many advantages over spinning disks, like much less power consumption
and better throughput. But of paramount importance, specially in the context of accel erating indexed queries, isitsvery
reduced latency during disk seeks, whichistypically 100x better than traditional disks. Such ahugeimprovement hasto
have aclear impact in reducing the query times, specially when the selectivity ishigh (i.e. the number of hitsissmall).

In order to offer an estimate on the performance improvement we can expect when using alow-latency SSD instead of
traditional spinning disks, the benchmark in the previous section has been repeated, but this time using a single SSD
disk instead of the four spinning disks in RAID-0. The result can be seen in Figure 5.11. There one can see how a
query in atable of 1 billion of rows with 100 hits took just 1 tenth of second when using a SSD, instead of 1 second
that needed the RAID made of spinning disks. This factor of 10x of speed-up for high-selectivity queriesis nothing
to sneeze at, and should be kept in mind when really high performance in queriesis needed. It is aso interesting that
using compression with LZO does have a clear advantage over when no compression is done.

125

Optimization tips

Query time for complex query and 1 Grow (indexed)
Solid State Disk versus RAID-0 of SATA disks

10°

Time (s)

: B—8 PyTables 2.1 CSI nocompr SSD
02 F Y T ®—e PyTables 2.1 CSI Izo1 SSD

‘ ‘ vV—v PyTables 2.1 CSl 1zol RAIDO
PyTables 2.1 inkernel 1zol

102 0 i1 iz ‘3 ‘4 ‘5 ‘s ‘7 8
10 10 10 10 10 10 10 10 10
Number of hits

Figure 5.11. Times for complex queries with a cold cache (mean of 5
first random queries) for different disk storage (SSD vs spinning disks).

Finally, we should remark that SSD can't compete with traditional spinning disksin terms of capacity asthey can only
provide, for asimilar cost, between 1/10th and 1/50th of the size of traditional disks. It is here where the compression
capabilities of PyTables can be very helpful because both tables and indexes can be compressed and the fina space
can be reduced by typically 2x to 5x (4x to 10x when compared with traditional relational databases). Best of al,
as already mentioned, performance is not degraded when compression is used, but actually improved. So, by using
PyTables Pro and SSD you can query larger datasets that otherwise would require spinning disks when using other
databases 2, while allowing improvementsin the speed of indexed queries between 2x (for medium to low selectivity
gueries) and 10x (for high selectivity queries).

5.2.4. Achieving ultimate speed: sorted tables and beyond

O Warning

Sorting a large table is a costly operation. The next procedure should only be performed when your
dataset is mainly read-only and meant to be queried many times.

When querying large tables, most of the query time is spent in locating the interesting rows to be read from disk. In
some occasions, you may have queries whose result depends mainly of one single column (a query with only one
single condition isthe trivial example), so we can guess that sorting the table by this column would lead to locate the
interesting rows in a much more efficient way (because they would be mostly contiguous). We are going to confirm
this guess.

For the case of the query that we have been using in the previous sections:

result = [row'col2'] for row in table.where(
"(((col4 >=1inl) & (col4 < 1linR)) |

2In fact, we were unable to run the PostgreSQL benchmark in this case because the space needed exceeded the capacity of our SSD.

126

Optimization tips

((col2 >1im3) & (col2 <1imd)) &
((col 1+3. 1*col 2+col 3*col 4) > linb))"')]

it is possible to determine, by analysing the data distribution and the query limits, that col 4 is such a main col-
umn. So, by ordering the table by the col 4 column (for example, by setting the sort by parameter to true in
the Tabl e. copy() method, see the section called “copy(newparent=None, newname=None, overwrite=False,
createparents=False, **kwargs)”), and re-indexing col 2 and col 4 afterwards, we should get much faster perfor-
mance for our query. This is effectively demonstrated in Figure 5.12, where one can see how queries with alow to
medium (up to 10000) number of hits can be done in around 1 tenth of second for a RAID-0 setup and in around 1
hundredth of second for a SSD disk. This represents up to more that 100x improvement in speed with respect to the
times with unsorted tables. On the other hand, when the number of hitsis large (< 1 million), the query times grow
almost linearly, showing a near-perfect scalability for both RAID-0 and SSD setups (the sequential access to disk
becomes the bottleneck in this case).

Query time for complex query and 1 Grow (indexed)

10° Unsorted versus sorted tables
=& PyTables 2.1 CSl Izol unsorted RAIDO |

10° L @—® PyTables 2.1 CSl Izol unsortedSSD || |
¥—¥ PyTables 2.1 CSl Izol sorted RAIDO
oA

Time (s)

03 ; ; ; ; ; ; ;
10° 10* 102 10° 10* 10° 10° 107 108
Number of hits

Figure 5.12. Times for complex queries with a cold cache
(mean of 5 first random queries) for unsorted and sorted tables.

Another thing worth to be noted in Figure 5.12, isthat, for very large number of hits, and more exactly in the 500,000
hits point, the time to query in the case of a sorted table, can be more than 2x times faster, which may sound a bit
suspicious provided that we already stated that the speed for the case of the unsorted table was only limited by the I/
O speed of the disk, so how sorting a table can actually improve 1/0 times?. Well, the answer is that, as the table is
sorted by a column, and due to the data distribution chosen, the entropy of the resulting table is reduced quite alot,
so alowing the compressor (LZO in this case) to do a much better job and producing datasets more than 2x smaller
(and hence, requiring lesstimeto beread). So, in the end, the thereis no contradiction in having improved query times
in the low selectivity scenario.

Even though we have shown many ways to improve query times that should fulfill the needs of most of people, for
those needing more, you can for sure discover new optimization opportunities. For example, querying against sorted
tablesislimited mainly by sequential accessto data on disk and data compression capability, so you may want to read
Section 5.1.2, for ways on improving this aspect. Reading the other sections of this chapter will help in finding new
roads for increasing the performance as well. Y ou know, the limit for stopping the optimization process is basically
your imagination (but, most plausibly, your availabletime ;-).

127

Optimization tips

5.3. Compression issues

One of the beauties of PyTablesisthat it supports compression on tables and arrayss, athoughit isnot used by default.
Compression of big amounts of data might be a bit controversial feature, because it has alegend of being avery big
consumer of CPU time resources. However, if you are willing to check if compression can help not only by reducing
your dataset file size but also by improving 1/0O efficiency, specially when dealing with very large datasets, keep
reading.

5.3.1. A study on supported compression libraries

The compression library used by default isthe Zlib (see [12]). Since HDF5 requiresit, you can safely useit and expect
that your HDF5 files will be readable on any other platform that has HDF5 libraries installed. Zlib provides good
compression ratio, although somewhat slow, and reasonably fast decompression. Because of that, it isagood candidate
to be used for compressing you data.

However, in some situationsit is critical to have avery good decompression speed (at the expense of lower compres-
sion ratios or more CPU wasted on compression, as we will see soon). In others, the emphasis is put in achieving
the maximum compression ratios, no matter which reading speed will result. Thisis why support for two additional
compressors has been added to PyTables: LZO (see [13]) and bzip2 (see [14]). Following the author of LZO (and
checked by the author of this section, as you will see soon), LZO offers pretty fast compression and extremely fast
decompression. In fact, LZO is so fast when compressing/decompressing that it may well happen (that depends on
your data, of course) that writing or reading a compressed dataset is sometimes faster than if it is not compressed at all
(specialy when dealing with extremely large datasets). This fact is very important, specialy if you have to deal with
very large amounts of data. Regarding bzip2, it has a reputation of achieving excellent compression ratios, but at the
price of spending much more CPU time, which resultsin very low compression/decompression speeds.

Beawarethat the LZO and bzip2 support in PyTablesisnot standard on HDF5, so if you are going to use your Py Tables
filesin other contexts different from PyTables you will not be able to read them. Still, see the Section E.2 (where the
pt r epack utility is described) to find a way to free your files from LZO or bzip2 dependencies, so that you can
use these compressors locally with the warranty that you can replace them with Zlib (or even remove compression
completely) if you want to use these files with other HDF5 tools or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved, and how this affects performance, a
series of experiments has been carried out. All the results presented in this section (and in the next one) have been
obtained with synthetic data and using PyTables 1.3. Also, the tests have been conducted on a IBM OpenPower 720
(e-series) with a PowerPC G5 at 1.65 GHz and a hard disk spinning at 15K RPM. As your data and platform may
be totally different for your case, take this just as a guide because your mileage may vary. Finally, and to be able to
play with tables with a number of rows as large as possible, the record size has been chosen to be small (16 bytes).
Hereisits definition:

cl ass Bench(1sDescription):

varl = StringCol (I engt h=4)
var2 = IntCol ()
var3 = Fl oat Col ()

With this setup, you can look at the compression ratios that can be achieved in Figure 5.13. As you can see, LZO
is the compressor that performs worse in this sense, but, curiosly enough, there is not much difference between Zlib
and bzip2.

3Except for Arr ay objects.

128

Optimization tips

o Disk space taken by a record (original record size: 16 bytes)
T T T T

=== NO compression
m—7lib IvI1
m— |70 lvI1

1 = bzip2 Ivi1

Bytes/row

i i i i
10° 10* 10° 10° 107 108
Number of rows

Figure 5.13. Comparison between different compression libraries.

Also, PyTablesletsyou select different compression levelsfor Zlib and bzip2, although you may get a bit disappointed
by the small improvement that these compressors show when dealing with a combination of numbers and strings as
in our example. As a reference, see plot 5.14 for a comparison of the compression achieved by selecting different
levelsof Zlib. Very oddly, the best compression ratio correspondsto level 1 (). Seelater for an explanation and more
figures on this subject.

0 Disk space taken by a record (original record size: 16 bytes)

=== NO compression
m—7lib IvI1
m—7lib IvI3
= 7lib IvI6
m— 7lib IvI9

25

N
o

Bytes/row

i
4]

10

i i i i
?103 104 10° 108 107 108
Number of rows

Figure 5.14. Comparison between different compression levels of Zlib.

Have also alook at Figure 5.15. It shows how the speed of writing rows evolves as the size (number of rows) of the
table grows. Even though in these graphs the size of one single row is 16 bytes, you can most probably extrapolate
these figures to other row sizes.

129

Optimization tips

a0 Writing with small (16 bytes) record size
. T T T T

=== NO compression
m—zlib IvI1

2.5k == zo IvI1

=== bzip2 Ivi1

MRows/s
=
o1
T

1.0

05/' NG

T 1 I n
10° 10* 10° 10° 107 108
Number of rows

Figure 5.15. Writing tables with several compressors.

In Figure 5.16 you can see how compression affects the reading performance. In fact, what you see in the plot is an
in-kernel selection speed, but provided that this operation is very fast (see Section 5.2.1), we can accept it as an actual
read test. Compared with the reference line without compression, the general trend here is that LZO does not affect
too much the reading performance (and in some points it is actually better), Zlib makes speed drop to a half, while
bzip2 is performing very slow (up to 8x slower).

Also, in the same Figure 5.16 you can notice some strange peaks in the speed that we might be tempted to attribute
to libraries on which PyTables relies (HDF5, compressors...), or to PyTables itself. However, Figure 5.17 reveals
that, if we put the file in the filesystem cache (by reading it several times before, for example), the evolution of the
performance is much smoother. So, the most probable explanation would be that such peaks are a consequence of the
underlying OSfilesystem, rather than aflaw in PyTables (or any other library behind it). Another consequence that can
be derived from the aforementioned plot is that LZO decompression performance is much better than Zlib, allowing
an improvement in overall speed of more than 2x, and perhaps more important, the read performance for really large
datasets (i.e. when they do not fit in the OS filesystem cache) can be actually better than not using compression at all.
Finally, one can see that reading performance is very badly affected when bzip2 is used (it is 10x slower than LZO
and 4x than Zlib), but this was somewhat expected anyway.

130

Optimization tips

o Selecting with small (16 bytes) record size (file not in cache)
T T T T

=== NO compression
m—zlib IvI1
m— |70 lvI1

=== bzip2 Ivi1

w
1

MRows/s
N N w
o al o
T

[N
(&

i i i i
10° 10* 10° 10° 107 108
Number of rows

Figure 5.16. Selecting valuesin tables with several compressors. Thefileis not in the OS cache.

16 Selecting with small (16 bytes) record size (file in cache)
T T T

=== NO compression
14| = zlib IvI1
m— |70 lvI1

=== bzip2 Ivi1

12

10

MRows/s

n L 1 !
b2 10* 10° 10° 107 108
Number of rows

Figure 5.17. Selecting valuesin tables with several compressors. Thefileisin the OS cache.

So, generally speaking and looking at the experiments above, you can expect that LZO will be the fastest in both
compressing and decompressing, but the one that achieves the worse compression ratio (although that may be just
OK for many situations, specially when used with shuffling —see Section 5.3.2). bzip2 is the dlowest, by large, in
both compressing and decompressing, and besides, it does not achieve any better compression ratio than Zlib. Zlib
represents a balance between them: it's somewhat slow compressing (2x) and decompressing (3x) than LZO, but it
normally achieves better compression ratios.

Finally, by looking at the plots5.18, 5.19, and the af orementioned 5.14 you can see why the recommended compression
level to usefor all compression librariesis 1. Thisisthe lowest level of compression, but as the size of the underlying
HDF5 chunk size is normally rather small compared with the size of compression buffers, there is not much point
in increasing the latter (i.e. increasing the compression level). Nonetheless, in some situations (like for example, in
extremely large tables or arrays, where the computed chunk size can be rather large) you may want to check, on your
own, how the different compression levels do actually affect your application.

131

Optimization tips

Y ou can select the compression library and level by settingtheconpl i b andconpl evel keywordsintheFi | ters
class (see Section 4.14.1). A compression level of 0 will completely disable compression (the default), 1 is the less
memory and CPU time demanding level, while 9 is the maximum level and the most memory demanding and CPU
intensive. Finally, havein mind that LZO is not accepting acompression level right now, so, whenusing LZO, 0 means
that compression is not active, and any other value meansthat LZO is active.

So, in conclusion, if your ultimate goal is writing and reading as fast as possible, choose LZO. If you want to reduce
as much as possible your data, while retaining acceptable read speed, choose Zlib. Finaly, if portability isimportant
for you, Zlibisyour best bet. So, when you want to use bzip2? Well, looking at the results, it is difficult to recommend
its use in general, but you may want to experiment with it in those cases where you know that it iswell suited for your
data pattern (for example, for dealing with repetitive string datasets).

Writing with small (16 bytes) record size

3.0

=== No compression
m—zlib IvI1
2.5 == zlib IvI3
= 7lib IvI16
m—zlib IvI9

2.0

MRows/s
=
ul

1.0

0.5

n n i
0'9.03 104 10° 108 107 108
Number of rows

Figure 5.18. Writing in tables with different levels of compression.

Selecting with small (16 bytes) record size (file in cache)

16

=== NO compression
141 m— 7lib IvI1
m—7zlib IvI3
= 7lib IvI6
12| = z|ib IVI9

MRows/s
e]
T

i i i i
10° 10* 10° 10° 107 108
Number of rows

Figure 5.19. Selecting values in tables with different levels of compression. Thefileisin the OS cache.

132

Optimization tips

5.3.2. Shuffling (or how to make the compression process more
effective)

The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its name
is shuffle, and because it can greatly benefit compression and it does not take many CPU resources (see below for
ajustification), it is active by default in PyTables whenever compression is activated (independently of the chosen
compressor). It is deactivated when compression is off (which is the default, as you already should know). Of course,
you can deactivate it if you want, but this is not recommended.

So, how does this mysterious filter exactly work? From the HDF5 reference manual: “The shuffle filter de-interlaces
ablock of databy reordering the bytes. All the bytes from one consistent byte position of each data element are placed
together in one block; all bytes from a second consistent byte position of each data element are placed together a
second block; etc. For example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will
re-order dataas 000111222333. This can be avaluable step in an effective compression a gorithm because the bytesin
each byte position are often closely related to each other and putting them together can increase the compression ratio.”

In Figure 5.20 you can see a benchmark that shows how the shuffle filter can help the different librariesin compress-
ing data. In this experiment, shuffle has made LZO compress almost 3x more (!), while Zlib and bzip2 are seeing
improvements of 2x. Once again, the data for this experiment is synthetic, and shuffle seemsto do a great work with
it, but in general, the results will vary in each case®.

o Disk space taken by a record (original record size: 16 bytes)

=== NO compression

m—zlib IvI1

=== zIlib Ivl1 (Shuffle)

m—|z0 IVI1

=== |z0 IvI1 (Shuffle)
bzip2 Ivil

=== bzip2 Ivl1l (Shuffle)

25

N
o

Bytes/row
[
al

10

i i i
10° 108 107 108
Number of rows

QLO3 1 ‘0“

Figure 5.20. Comparison between different compression libraries with and without the shuffle filter.

At any rate, the most remarkabl e fact about the shufflefilter istherelatively high level of compression that compressor
filters can achieve when used in combination with it. A curious thing to note is that the Bzip2 compression rate does
not seem very much improved (less than a 40%), and what is more striking, Bzip2+shuffle does compress quite less
than Zlib+shuffle or LZO+shuffle combinations, which iskind of unexpected. The thing that seems clear isthat Bzip2
is not very good at compressing patterns that result of shuffle application. As always, you may want to experiment
with your own data before widely applying the Bzip2+shuffle combination in order to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots 5.21, 5.22 and 5.23, you will get a somewhat
unexpected (but pleasant) surprise. Roughly, shuffle makes the writing process (shuffling+compressing) faster (aprox-
imately a 15% for LZO, 30% for Bzip2 and a80% for Zlib), which is an interesting result by itself. But perhaps more

4Some users reported that the typical improvement with real datais between afactor 1.5x and 2.5x over the already compressed datasets.

133

Optimization tips

exciting isthefact that the reading process (unshuffling+decompressing) is also accelerated by asimilar extent (a20%
for LZO, 60% for Zlib and a 75% for Bzip2, roughly).

50 Writing with small (16 bytes) record size

=== NoO compression
m—zlib IvI1

2.5[| === lib lvI1 (Shuffle)
m—|z0 IVI1

=== |zo IvI1 (Shuffle)
2.01 bzip2 Ivil
= hzip2 IvIi1 (Shuffle)

12

B

2 1.5F

o

s

1.0F

o. ; . . :

i@ 10* 10° 10° 107 108

Number of rows

Figure 5.21. Writing with different compression libraries with and without the shuffle filter.

Selecting with small (16 bytes) record size (file not in cache)

=== NO compression
=== zIlib IvI1 (Shuffle)
=== |zo IvI1 (Shuffle)
=== bzip2 IvI1 (Shuffle)

MRows/ s

i i i i
9.03 104 10° 108 107 108
Number of rows

Figure 5.22. Reading with different compression libraries with the shufflefilter. The fileis not in OS cache.

134

Optimization tips

16 Selecting with small (16 bytes) record size (file in cache)
T T T

=== NO compression
14| == z]ib lvI1

=== zlib IvI1 (Shuffle)
m—|z0 IvI1

=== |zo Ivl1 (Shuffle)
bzip2 Ivll
=== bzip2 IvIi1 (Shuffle)

12

101

MRows/s

| | | |
10° 10* 10° 10° 107 108
Number of rows

Figure 5.23. Reading with different compression libraries with and without the shufflefilter. Thefileisin OS cache.

Y ou may wonder why introducing another filter in the write/read pipelines does effectively accel erate the throughput.
Well, maybe data elements are more similar or related column-wise than row-wise, i.e. contiguous elements in the
same column are more alike, so shuffling makes the job of the compressor easier (faster) and more effective (greater
ratios). Asaside effect, compressed chunks do fit better in the CPU cache (at |east, the chunks are smaller!) so that the
process of unshuffle/decompress can make a better use of the cache (i.e. reducing the number of CPU cache faults).

So, given the potential gains (faster writing and reading, but specially much improved compression level), it isagood
thing to have such a filter enabled by default in the battle for discovering redundancy when you want to compress
your data, just as PyTables does.

5.4. Using Psyco

Psyco (see [16]) is akind of specialized compiler for Python that typically accelerates Python applications with no
changein source code. Y ou can think of Psyco asakind of just-in-time (JIT) compiler, alittle bit like Java's, that emits
machine code on the fly instead of interpreting your Python program step by step. The result is that your unmodified
Python programs run faster.

Psycoisvery easy toinstall and use, so in most scenariosit isworth to giveit atry. However, it only runson Intel 386
architectures, soif you are using other architectures, you are out of luck (and, moreover, it seemsthat there are no plans
to support other platforms). Besides, with the addition of flexible (and very fast) in-kernel queries (by the way, they
cannot be optimized at al by Psyco), the use of Psyco will only help in rather few scenarios. In fact, the only important
situation that you might benefit right now from using Psyco (I mean, in Py Tables contexts) isfor speeding-up the write
speed in tables when using the Row interface (see Section 4.6.7, “ The Row class’). But again, thislatter case can also
be accelerated by using the Table.append() (see description) method and building your own buffers.

As an example, imagine that you have a small script that reads and selects data over a series of datasets, like this:

def readFile(filenane):
"Select data fromall the tables in fil enane”

fileh = openFile(filename, node = "r")
result =[]
for table in fileh("/", 'Table'):

135

Optimization tips

result = [p['var3'] for pintable if p['var2'] <= 20]

fileh.close()
return result

if _nanme_ ==" min__":
print readFile("nmyfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if _nane__ ==" main
i mport psyco
psyco. bi nd(readFi | e)

print readFile("nmyfile.h5")

That'sall! From now on, each time that you execute your Python script, Psyco will deploy its sophisticated algorithms
so asto accelerate your calculations.

Y ou can seein the graphs 5.24 and 5.25 how much 1/0O speed improvement you can get by using Psyco. By looking at
thisfiguresyou can get an ideaif these improvements are of your interest or not. In general, if you are not going to use
compression you will take advantage of Psyco if your tables are medium sized (from a thousand to a million rows),
and this advantage will disappear progressively when the number of rows grows well over one million. However if
you use compression, you will probably see improvements even beyond this limit (see Section 5.3). As dways, there
is no substitute for experimentation with your own dataset.

Writing with medium record size (56 bytes)

250 ; ;
a NaPsyco gk
a, o @PSy CO L
o na P v
"
200 a e —
L 8,
a,
s (1
- $ B
2 1s0f PO B Y L
% E P e
H S et . ")
< # .‘.“‘ "‘ Wi,
3 " n, % an
L R "
24 LI
& 100 P E
S
>
0 . . .
1000 10000 100000 1le+06 1e+07

Number of rows

Figure 5.24. Writing tables with/without Psyco.

136

Optimization tips

Selecting with medium record size (56 bytes)
1200

NO Psyco r+#
PSyCO

1000+ e g

®
1S}
S
T
L]
I

Speed (Krow/s)
o
o
1)
T

0 I I I
1000 10000 100000 le+06 1le+07
Number of rows

Figure 5.25. Reading tables with/without Psyco.

5.5. Getting the most from the node LRU cache

One limitation of the initial versions of PyTables was that they needed to load all nodes in a file completely before
being ready to deal with them, making the opening times for files with alot of nodes very high and unacceptable in
many Cases.

Starting from PyTables 1.2 on, a new lazy node loading schema was setup that avoids loading all the nodes of the
object treein memory. In addition, anew LRU cache wasintroduced in order to accel erate the accessto already visited
nodes. This cache (one per file) is responsible for keeping up the most recently visited nodes in memory and discard
the least recent used ones. This represents a big advantage over the old schema, not only in terms of memory usage (as
thereisno need to load every nodein memory), but it al so adds very convenient optimizationsfor working interactively
like, for example, speeding-up the opening times of files with lots of nodes, allowing to open aimost any kind of file
in typically less than one tenth of second (compare this with the more than 10 seconds for files with more than 10000
nodes in PyTables pre-1.2 era) as well as optimizing the access to frequely visited nodes. See [19] for more info on
the advantages (and also drawbacks) of this approach.

One thing that deserves some discussion is the el ection of the parameter that sets the maximum amount of nodesto be
kept in memory at any time. As PyTables is meant to be deployed in machines that can have potentially low memory,
the default for it is quite conservative (you can look at its actual value in the NODE_CACHE_SLOTS parameter in
modulet abl es/ par anet er s. py). However, if you usually need to deal with files that have many more nodes
than the maximum default, and you have a lot of free memory in your system, then you may want to experiment in
order to see which is the appropriate value of NODE_CACHE_SLOTS that fits better your needs.

As an example, look at the next code:

def browse_tabl es(fil enane):

fileh openFil e(filenane,'a')

group = fil eh.root.newgroup

for j in range(10):

for tt in fileh.wal kNodes(group, "Table"):
title = tt.attrs. TI TLE
for rowin tt:
pass
fileh.close()

137

Optimization tips

We will be running the code above against a couple of files having a/ newgr oup containing 100 tables and 1000
tablesrespectively. In addition, thisbenchmark isrun twice for two different values of the LRU cache size, specifically
256 and 1024. Y ou can seetheresultsin Table 5.1.

100 nodes 1000 nodes
Memory (M B) Time (Mms) Memory (M B) Time (Mms)
Nodeis |Cache 256 1024 256 1024 256 1024 256 1024
coming |size
from...
Disk 14 14 1.24 1.24 51 66 133 131
Cache 14 14 0.53 0.52 65 73 1.35 0.68

Table 5.1. Retrieval speed and memory consumption depending on the number of nodesin LRU cache.

From the datain Table 5.1, one can see that when the number of objectsthat you are dealing with doesfit in cache, you
will get better access times to them. Also, incrementing the node cache size effectively consumes more memory only
if the total nodes exceeds the slots in cache; otherwise the memory consumption remains the same. It is also worth
noting that incrementing the node cache size in the case you want to fit all your nodes in cache does not take much
more memory than being too conservative. On the other hand, it might happen that the speed-up that you can achieve
by allocating more slotsin your cache is not worth the amount of memory used.

Also worth noting isthat if you have alot of memory available and performance is absolutely critical, you may want
to try out a negative value for NODE_CACHE_SLOTS. This will cause that al the touched nodes will be kept in an
internal dictionary and this is the faster way to load/retrieve nodes. However, and in order to avoid a large memory
comsumption, the user will be warned when the number of |oaded nodeswill reachthe- NODE_CACHE_SLOTSvalue.

Finally, avalue of zero in NODE_CACHE_SLOTS means that any cache mechanism is disabled.

At any rate, if you feel that thisissue isimportant for you, there is no replacement for setting your own experiments
up in order to proceed to fine-tune the NODE_CACHE_SLOTS parameter.

A Note

P"] PyTables Pro sports an optimized LRU cache node written in C, so you should expect significantly faster
LRU cache operations when working with it.

5.6. Compacting your PyTables files

Let's suppose that you have afile where you have made alot of row deletions on one or more tables, or deleted many
leaves or even entire subtrees. These operations might leave holes (i.e. spacethat is not used anymore) in your filesthat
may potentially affect not only the size of the files but, moreimportantly, the performance of I/O. Thisis because when
you delete alot of rows in atable, the space is not automatically recovered on the fly. In addition, if you add many
more rows to atable than specified in the expect edr ows keyword at creation time this may affect performance as
well, asexplained in Section 5.1.1.

In order to cope with these issues, you should be aware that Py Tablesincludes ahandy utility called pt r epack which
can be very useful not only to compact fragmented files, but also to adjust some internal parametersin order to use
better buffer and chunk sizes for optimum /O speed. Please check the Section E.2 for a brief tutorial on its use.

Another thing that you might want to use pt r epack for is changing the compression filters or compression levelson
your existing datafor different goals, like checking how this can affect both final size and 1/O performance, or getting
rid of the optional compressors like LZOor bzi p2 in your existing files, in case you want to use them with generic
HDF5 tools that do not have support for these filters.

138

Part Il. Complementary modules

Chapter 6. filenode - simulating a
fillesystem with PyTables

6.1. Whatisfi | enode?

fil enode is amodule which enables you to create a PyTables database of nodes which can be used like regular
opened filesin Python. In other words, you can store afile in a PyTables database, and read and write it as you would
do with any other file in Python. Used in conjunction with PyTables hierarchical database organization, you can have
your database turned into an open, extensible, efficient, high capacity, portable and metadata-rich filesystem for data
exchange with other systems (including backup purposes).

Between the main features of f i | enode, one can list:

* Open: Sinceit relieson PyTables, which in turn, sits over HDF5 (see[1]), astandard hierarchical dataformat from
NCSA.

» Extensible: You can define new types of nodes, and their instances will be safely preserved (as are normal groups,
leafs and attributes) by PyTables applications having no knowledge of their types. Moreover, the set of possible
attributes for anode is not fixed, so you can define your own node attributes.

« Efficient: Thanksto PyTables proven extreme efficiency on handling huge amounts of data. f i | enode can make
use of PyTables on-the-fly compression and decompression of data.

» High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit addressing even
where the platform does not support it natively).

» Portable: Sincethe HDF5 format has an architecture-neutral design, and the HDF5 librariesand Py Tablesare known
to run under avariety of platforms. Besides that, a PyTables database fits into a single file, which poses no trouble
for transportation.

» Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every database node.

Metadata may include authorship, keywords, MIME types and encodings, ownership information, access control
lists (ACL), decoding functions and anything you can imagine!

6.2. Finding afi | enode node

fil enode nodes can be recognized because they have a NODE_TYPE system attribute with a*' fi |l e' vaue. It
is recommended that you use the get NodeAt t r () method (see description) of t abl es. Fi | e class to get the
NCDE_TYPE attribute independently of the nature (group or leaf) of the node, so you do not need to care about.

6.3.f1 |l enode - simulating files inside PyTables

Thefi | enode moduleispart of thenodes sub-package of PyTables. The recommended way to import the module
is.

>>> fromtabl es. nodes inport fil enode

However, fi | enode exports very few symbols, so you can import * for interactive usage. In fact, you will most
probably only use the NodeType constant and the newNode() and openNode() cadls.

140

filenode - simulating afilesystem with PyTables

TheNodeTy pe constant containsthe value that the NODE_ TYPE system attribute of anodefileis expected to contain
(file',aswehaveseen). Although thisisnot expected to change, you shouldusef i | enode. NodeType instead
of theliteral ' fi | e when possible.

newNode() and openNode() are the equivaent to the Pythonfi | e() cal (aliasopen()) for ordinary files.
Their arguments differ from that of fi | e(), but thisis the only point where you will note the difference between
working with anode file and working with an ordinary file.

For thislittle tutorial, we will assume that we have a Py Tables database opened for writing. Also, if you are somewhat
lazy at typing sentences, the code that we are going to explainisincluded intheexanpl es/ fi | enodes1. py file.

Y ou can create a brand new file with these sentences:

>>> jnmport tables
>>> h5file = tabl es.openFil e(' fnode. h5", "w)

6.3.1. Creating a new file node

Creation of anew file node is achieved with the newNode() call. You must tell it in which PyTablesfile you want to
create it, where in the Py Tables hierarchy you want to create the node and which will beitsname. The PyTablesfileis
the first argument to newNode() ; it will bealso called the' host PyTabl es fil e' . The other two arguments
must be given as keyword argumentswher e and nane, respectively. Asaresult of the call, abrand new appendable
and readabl e file node object is returned.

So let us create anew nodefilein the previously opened h5f i | e PyTablesfile, named' f node_t est' and placed
right under the root of the database hierarchy. Thisisthat command:

>>> fnode = fil enode. newNode(h5file, where='/', name=' fnode_test')

That is basically all you need to create a file node. Simple, isn't it? From that point on, you can use f node as any
opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. Y ou can give atitleto your filewiththet i t | e argument. You
can use PyTables compression featureswith thef i | t er s argument. If you know beforehand the size that your file
will have, you can giveitsfinal filesizein bytestotheexpect edsi ze argument so that the PyTables library would
be able to optimize the data access.

newNode() creates a PyTables node where it is told to. To prove it, we will try to get the NODE_TYPE attribute
from the newly created node.

>>> print h5file.get NodeAttr('/fnode test', 'NODE TYPE)
file

6.3.2. Using a file node

As stated above, you can use the new node file as any other opened file. Let ustry to write sometext in and read it.

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.wite("OF course, file nethods can al so be used.")
>>>
>>> fnode. seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
print repr(line)

141

filenode - simulating afilesystem with PyTables

"This is a test text line.\n'

"And this is another one.\n'

A\

'"Of course, file nethods can al so be used.'

Thiswas run on a Unix system, so hewlines are expressed as' \ n' . In fact, you can override the line separator for a
file by settingits| i neSepar at or property to any string you want.

While using afile node, you should take care of closing it before you close the PyTables host file. Because of the way
PyTables works, your data it will not be at arisk, but every operation you execute after closing the host file will fail
withaVal ueEr r or . To close afile node, simply deleteit or call itscl ose() method.

>>> fnode. cl ose()
>>> print fnode. cl osed
True

6.3.3. Opening an existing file node

If you have afile node that you created using newNode() , you can open it later by calling openNode() . Its argu-
ments are similar tothat of fi | e() or open() : the first argument is the PyTables node that you want to open (i.e.
anode with a NODE_TYPE attribute havinga' fi |l e' vaue), and the second argument is a mode string indicating
how to open thefile. Contrary tof i | e(), openNode() can not be used to create a new file node.

File nodes can be opened in read-only mode (' r ') or in read-and-append mode (" a+'). Reading from afile nodeis
allowed in both modes, but appending is only allowed in the second one. Just like Python files do, writing data to an
appendable file places it after the file pointer if it is on or beyond the end of the file, or otherwise after the existing
data. Let us see an example:

>>> node = h5file.root.fnode test

>>> fnode = fil enode. openNode(node, 'a+')
>>> print repr(fnode.readline())

"This is a test text line.\n'

>>> print fnode.tell ()

26

>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())

Of course, the data append process places the pointer at the end of thefile, sothelastr eadl i ne() call hit EOF. Let
us seek to the beginning of the file to see the whole contents of our file.

>>> fnode. seek(0)

>>> for |line in fnode:

. print repr(line)

'"This is a test text line.\n'

"And this is another one.\n'

A\ n'

'O course, file nmethods can al so be used. This is a new line.\n'

As you can check, the last string we wrote was correctly appended at the end of the file, instead of overwriting the
second line, where the file pointer was positioned by the time of the appending.

6.3.4. Adding metadata to a file node

Y ou can associate arbitrary metadata to any open node file, regardless of its mode, as long asthe host PyTablesfileis
writable. Of course, you could use the set NodeAt t r () method of t abl es. Fi | e to do it directly on the proper

142

filenode - simulating afilesystem with PyTables

node, but f i | enode offers a much more comfortable way to do it. fi | enode objects have an att r s property
which gives you direct accessto their corresponding At t r i but eSet object.

For instance, let us see how to associate MIME type metadata to our file node:
>>> fnode. attrs.content _type = 'text/plain; charset=us-ascii'

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship, keywords,
permissions and more. Moreover, there is not afixed list of attributes. However, you should avoid namesin all caps

or starting with' ' , since PyTablesand f i | enode may use them internally. Some valid examples:
>>> fnode.attrs.author = "lvan Vilata i Bal aguer”

>>> fnode.attrs.creation_date = ' 2004- 10- 20T13: 25: 25+0200'

>>> fnode. attrs. keywords_en = ["Fil eNode", "test", "nmetadata"]

>>> fnode. attrs. keywords_ca = ["Fil eNode", "prova", "nmetadades"]

>>> fnode. attrs. owner = 'ivan'

>>> fnode.attrs.acl = {"ivan': '"rw, '@sers': 'r'}

Y ou can check that these attributes get stored by running the pt dunp command on the host PyTablesfile:

$ ptdunp -a fnode. h5:/fnode_t est
/fnode_test (EArray(113,)) "'
/fnode_test.attrs (AttributeSet), 14 attributes:

[CLASS : = ' EARRAY',

EXTDI M : = 0,

FLAVCOR : = ' nunpy',

NODE_TYPE := '"file',

NODE_TYPE_VERSI ON : = 2,

TITLE :="",

VERSION := "1.2'",

acl := {"ivan': 'rw, '@sers': 'r'},

author := '"lvan Vilata i Bal aguer',

content _type := 'text/plain; charset=us-ascii',
creation_date := '2004-10-20T13: 25: 25+0200' ,
keywords ca := ['Fil eNode', 'prova', 'metadades'],
keywords_en := ['FileNode', 'test', 'netadata'],
owner := 'ivan']

Note that f i | enode makes no assumptions about the meaning of your metadata, so its handling is entirely left to
your needs and imagination.

6.4. Complementary notes

You can use file nodes and PyTables groups to mimic a filesystem with files and directories. Since you can store
nearly anything you want as file metadata, this enables you to use a PyTables file as a portable compressed backup,
even between radically different platforms. Take thiswith agrain of salt, since node files are restricted in their naming
(only valid Python identifiers are valid); however, remember that you can use node titles and metadata to overcome
thislimitation. Also, you may need to devise some strategy to represent special files such as devices, sockets and such
(not necessarily using f i | enode).

We are eager to hear your opinion about f i | enode and its potential uses. Suggestionsto improvef i | enode and
create other node types are also welcome. Do not hesitate to contact us!

6.5. Current limitations

fil enode isstill ayoung piece of software, so it lacks some functionality. Thisisalist of known current limitations:

143

filenode - simulating afilesystem with PyTables

1. Nodefiles can only be opened for read-only or read and append mode. This should be enhanced in the future.
2. Thereisno universal newline support yet. Thisislikely to be implemented in a near future.

3. Sparsefiles (files with lots of zeros) are not treated specialy; if you want them to take less space, you should be
better off using compression.

These limitations still makef i | enode entirely adequate to work with most binary and text files. Of course, sugges-
tions and patches are welcome.

6.6.fi | enode module reference

6.6.1. Global constants

NodeType Vaue for NODE_TYPE node system attribute.

NodeTypeVersions Supported values for NODE_TYPE_VERSI ON node system attribute.
6.6.2. Global functions

newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates a new file node abject in the specified PyTables file object. Additional named arguments wher e and namne
must be passed to specify where the file node isto be created. Other named argumentssuchasti tl eandfilters
may also be passed. The special named argument expect edsi ze, indicating an estimate of the file size in bytes,
may also be passed. It returns the file node object.

openNode(node, mode ="'r")
Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is not

specified oritis' r' , thefile can only beread, and the pointer is positioned at the beginning of the file. If modeis' a
+' , the file can be read and appended, and the pointer is positioned at the end of thefile.

6.6.3. The Fi | eNode abstract class

This is the ancestor of ROFi | eNode and RAFi | eNode (see below). Instances of these classes are returned when
newNode() or openNode() arecaled. It represents a new file node associated with a PyTables node, providing
a standard Python file interfaceto it.

This abstract class provides only an implementation of the reading methods needed to implement a file-like object
over aPyTables node. The attribute set of the node becomes availableviatheat t r s property. You can add attributes
there, but try to avoid attribute namesin al caps or starting with' ", since they may clash with internal attributes.

The node used as storage is also made available viathe read-only attribute node. Please do not tamper with this object
unless unavoidably, since you may break the operation of the file node object.

Thel i neSepar at or property contains the string used as aline separator, and defaultsto os. | i nesep. It can be
set to any reasonably-sized string you want.

The constructor setsthe cl osed, sof t space and _| i neSepar at or attributes to their initial values, as well as
the node attribute to None. Sub-classes should set the node, node and of f set attributes.

Version 1 implements the file storage asa Ul nt 8 uni-dimensional EAr r ay.

144

filenode - simulating afilesystem with PyTables

Fi | eNode methods

getLineSeparator()

Returns the line separator string.

setLineSeparator()

Sets the line separator string.

getAttrs()

Returns the attribute set of the file node.

close()

Flushesthefileand closesit. Thenode attribute becomesNone andtheat t r s property becomesno longer available.
next()

Returns the next line of text. Raises St opl t er at i on when lines are exhausted. Seefi |l e. next. _doc__ for
more information.

read(size=None)

Reads at most si ze bytes. Seefil e. read. __doc__ for moreinformation
readline(size=-1)

Readsthe next text line. Seefi | e. readl i ne. __doc__ for more information
readlines(sizehint=-1)

Readsthetext lines. Seefi | e. readl i nes. __doc__ for moreinformation.
seek(offset, whence=0)

Movesto anew file position. Seefi | e. seek. __doc__ for more information.
tell()

Getsthe current file position. Seefil e.tel | . __doc__ for moreinformation.
xreadlines()

For backward compatibility. Seefi | e. xr eadl i nes. __doc__ for moreinformation.

6.6.4. The ROFi | eNode class

Instances of this class are returned when openNode() is called in read-only mode (* r'). This is a descendant
of Fi | eNode class, so it inherits al its methods. Moreover, it does not define any other useful method, just some
protections against users intents to write on file.

6.6.5. The RAFi | eNode class

Instances of this class are returned when either newNode() is called or when openNode() is called in append
mode (' a+'). Thisisadescendant of Fi | eNode class, so it inheritsal its methods. It provides additional methods
that allow to write on file nodes.

145

filenode - simulating afilesystem with PyTables

flush()
Flushesthefile node. Seefil e. f ush. __doc__ for more information.
truncate(size=None)

Truncates the file node to at most si ze bytes. Currently, this method only makes sense to grow the file node, since
data can not be rewritten nor deleted. Seefi |l e. truncate. __doc__ for more information.

write(string)

Writes the string to the file. Writing an empty string does nothing, but requires the file to be open. See
file.wite. doc__ for moreinformation.

writelines(sequence)

Writes the sequence of stringstothefile. Seefile.witelines. doc__ for moreinformation.

146

Chapter 7. netcdf3 - a PyTables
NetCDF3 emulation API

7.1. What is net cdf 37

The netCDF format is a popular format for binary files. It is portable between machines and self-describing, i.e. it
containsthe information necessary to interpret its contents. A freelibrary provides convenient accessto thesefiles (see
[6]). A very nice python interface to that library is available in the Sci enti fi ¢ Pyt hon Net CDF module (see
[17]). Although it is somewhat |ess efficient and flexible than HDF5, netCDF is geared for storing gridded dataand is
quite easy to use. It has become a de facto standard for gridded data, especially in meteorology and oceanography. The
next version of netCDF (netCDF 4) will actually be asoftwarelayer ontop of HDF5 (see[7]). Thet abl es. net cdf 3
package does not create HDF5 files that are compatible with netCDF 4 (although thisis along-term goal).

7.2. Using the t abl es. net cdf 3 package

The package t abl es. net cdf 3 emulates the Sci enti fi c. 1 O Net CDF APl using PyTables. It presents the
data in the form of objects that behave very much like arrays. A t abl es. net cdf 3 file contains any number of
dimensions and variables, both of which have unique names. Each variable has a shape defined by a set of dimensions,
and optionally attributes whose values can be numbers, number sequences, or strings. One dimension of a file can
be defined as unlimited, meaning that the file can grow along that direction. In the sections that follow, a step-by-
step tutorial shows how to create and modify at abl es. net cdf 3 file. All of the code snippets presented here are
includedinexanpl es/ net CDF_exanpl e. py.Thet abl es. net cdf 3 packageisdesigned to be used asadrop-
in replacement for Sci enti fi c. 1 O Net CDF, with only minor modifications to existing code. The differences
betweent abl es. net cdf 3 and Sci enti fi c. | O Net CDF are summarized in the last section of this chapter.

7.2.1. Creating/Opening/Closing at abl es. net cdf 3 file

To create at abl es. net cdf 3 file from python, you simply call the Net CDFFi | e constructor. This is also the
method used to open an existing t abl es. net cdf 3 file. The object returned is an instance of the Net CDFFi | e
class and all future access must be done through this object. If the file is open for write access (' W or ' a'), you
may write any type of new dataincluding new dimensions, variables and attributes. The optional hi st or y keyword
argument can be used to set the hi st or y Net CDFFi | e global file attribute. Closing thet abl es. net cdf 3 file
isaccomplished viathe cl ose method of Net CDFFi | e object.

Here's an example:

>>> jnport tabl es.netcdf3 as Net CDF

>>> jnport tine

>>> history = 'Created ' + tinme.ctinme(tinme.time())

>>> file = Net CDF. Net CDFFi |l e('test.h5", 'w , history=history)
>>> file.close()

7.2.2. Dimensions in at abl es. net cdf 3 file

NetCDF definesthe sizes of al variablesin terms of dimensions, so before any variables can be created the dimensions
they use must be created first. A dimension is created using the cr eat eDi nensi on method of the Net CDFFi | e
object. A Python string is used to set the name of the dimension, and an integer value is used to set the size. To create
an unlimited dimension (a dimension that can be appended to), the size value is set to None.

>>> jnport tabl es.netcdf3 as Net CDF

147

netcdf3 - a PyTables NetCDF3 emulation AP

>>> file = Net CDF. Net CDFFil e('test.h5 , '"a')

>>> file. Net COFFi | e. createD nension('level', 12)
>>> file. Net COFFi | e. createD nension('tinme', None)
>>> file. Net COFFi | e. createD nension('lat', 90)

All of the dimension names and their associated sizes are stored in a Python dictionary.

>>> print file.dimensions
{*lat': 90, "tinme': None, 'level': 12}

7.2.3. Variables in at abl es. net cdf 3 file

Most of thedatainat abl es. net cdf 3 fileisstored in anetCDF variable (except for global attributes). To create a
netCDF variable, usethecr eat eVar i abl e method of theNet CDFFi | e object. Thecr eat eVar i abl e method
has three mandatory arguments, the variable name (a Python string), the variable datatype described by a single char-
acter Numeric typecode string which can be one of f (Float32), d (Float64),i (Int32),1 (Int32), s (Int16), ¢ (Char-
Type - length 1), F (Complex32), D (Complex64) or 1 (Int8), and a tuple containing the variable's dimension names
(defined previously with cr eat eDi nensi on). The dimensions themselves are usually defined as variables, called
coordinate variables. The cr eat eVar i abl e method returns an instance of the Net CDFVar i abl e class whose
methods can be used later to access and set variable data and attributes.

>>> times = file.createVariable('tine',"d ,('tinme',))

>>> | evels = file.createVariable('level',"i',('level',))

>>> | atitudes = file.createVariable('latitude',"'f',('lat',))

>>> tenp = file.createVariable('tenmp','f',('tine', ' level','lat',))
>>> pressure = file.createVariabl e(' pressure','i',('level',"'lat',))

All of the variables in the file are stored in a Python dictionary, in the same way as the dimensions;

>>> print file.variables

{'latitude': <tabl es.netcdf3.NetCDFVariabl e i nstance at 0x244f 350>,
'pressure': <tables.netcdf3. Net CDFVari abl e i nstance at 0x244f 508>,
"l evel ': <tabl es. netcdf 3. Net CDFVari abl e i nstance at 0x244f 0d0>,
"tenp': <tabl es. netcdf3. Net CDOFVari abl e i nstance at 0x244f 3a0>,
"time': <tabl es. netcdf3. Net CDOFVari abl e i nstance at 0x2564c88>}

7.2.4. Attributes in at abl es. net cdf 3 file

There are two types of attributesin at abl es. net cdf 3 file, global (or file) and variable. Global attributes provide
information about the dataset, or file, asawhole. Variable attributes provide information about one of the variablesin
thefile. Global attributes are set by assigning values to Net CDFFi | e instance variables. Variable attributes are set
by assigning valuesto Net CDFVar i abl e instance variables.

Attributes can be strings, numbers or sequences. Returning to our example,

>>> file.description = 'bogus exanple to illustrate the use of tables. netcdf3'
>>> file.source = 'PyTabl es Users Cuide'

>>> | atitudes.units = 'degrees north'

>>> pressure.units = 'hPa'

>>> tenp.units = 'K

>>> times.units = 'days since January 1, 2005

>>> times.scale factor = 1

Thencat t r s method of the Net CDFFi | e object can be used to retrieve the names of al the global attributes. This
method is provided as a convenience, since using the built-in di r Python function will return a bunch of private

148

netcdf3 - a PyTables NetCDF3 emulation AP

methods and attributes that cannot (or should not) be modified by the user. Similarly, the ncat t r s method of a
Net CDFVar i abl e object returns all of the netCDF variable attribute names. These functions can be used to easily
print all of the attributes currently defined, like this

>>> for name in file.ncattrs():

>>> print 'dobal attr', nane, '=', getattr(file, nanme)

A obal attr description = bogus exanple to illustrate the use of
t abl es. net cdf 3

A obal attr history = Created Mon Nov 7 10:30:56 2005

A obal attr source = PyTabl es Users Guide

Note that thencat t r s function isnot part of the Sci enti fi c. | O Net CDF interface.

7.2.5. Writing data to and retrieving data from at abl es. net cdf 3
variable

Now that you have a netCDF variable object, how do you put datainto it? If the variable has no unlimited dimension,
you just treat it like aNumeric array object and assign datato aslice.

>>> | nmport nunpy

>>> | evel s[:] = nunpy. arange(12) +1

>>> | atitudes[:] = nunpy.arange(-89, 90, 2)

>>> for lev in levels[:]:

>>> pressure[:,:] = 1000.-100. *| ev

>>> print 'levels ="', levels[:]

levels = [1 2 3 4 5 6 7 8 9 10 11 12]

>>> print 'latitudes =\n',latitudes[:]

latitudes =

[-89. -87. -85. -83. -81. -79. -77. -75. -73. -71. -69. -67. -65. -63
-61. -59. -57. -55. -53. -51. -49. -47. -45. -43. -41. -39. -37. -35
-33. -31. -29. -27. -25. -23. -21. -19. -17. -15. -13. -11. -9. -T7.
-5, -3. -1 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21
23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49,
51. 53. 55. 57. 59. 61. 63. 65. 67. 69. 71. 73. 75. 77.
79. 81. 83. 85. 87. 89.]

Note that retrieving data from the netCDF variable object works just like a Numeric array too. If the netCDF variable
has an unlimited dimension, and there is not yet an entry for the data along that dimension, the append method must
be used.

>>> for n in range(10):

>>> ti nmes. append(n)

>>> print "times = ', tines[:]

times = [0. 1. 2. 3. 4. 5 6. 7. 8. 9.]

The data you append must have either the same number of dimensions as the Net CDFVar i abl e, or oneless. The
shape of the data you append must be the same as the Net CDFVar i abl e for all of the dimensions except the un-
limited dimension. The length of the data long the unlimited dimension controls how may entries along the unlimited
dimension are appended. If the data you append has one fewer number of dimensionsthan the Net CDFVar i abl e, it
is assumed that you are appending one entry along the unlimited dimension. For example, if the Net CDFVar i abl e
has shape (10, 50, 100) (where the dimension length of length 10 is the unlimited dimension), and you append
an array of shape (50, 100) , the Net CDFVar i abl e will subsequently have a shape of (11, 50, 100) . If you
append an array with shape (5, 50, 100) , the Net CDFVar i abl e will have anew shape of (15, 50, 100) . Ap-
pending an array whose last two dimensions do not have a shape (50, 100) will raise an exception. Thisappend

149

netcdf3 - a PyTables NetCDF3 emulation AP

method does not existinthe Sci enti fi c. | O. Net CDF interface, instead entries are appended al ong the unlimited
dimension one at atime by assigning to a slice. Thisis the biggest difference between thet abl es. net cdf 3 and
Scientific.l O Net CDF interfaces.

Once datahas been appended to any variablewith an unlimited dimension, thesync method can be used to synchronize
the sizes of all the other variables with an unlimited dimension. Thisis done by filling in missing values (given by the
default netCDF _Fi | | Val ue, which isintended to indicate that the data was never defined). The sync method is
automatically invoked with aNet CDFFi | e object is closed. Once the sync method has been invoked, the filled-in
values can be assigned real datawith dlices.

>>> print 'tenp.shape before sync = ', tenp. shape

tenp. shape before sync = (0, 12, 90)

>>> file.sync()

>>> print 'tenp.shape after sync = ', tenp. shape

tenp. shape after sync = (10, 12, 90)

>>> from numarray inmport random array

>>> for n in range(10):

>>> temp[n] = 10.*random array. randon{ pr essur e. shape)

>>> print "time, mn/max tenp, tenmp[n,0,0] = "',\

times[n],mn(tenp[n].flat), max(tenp[n].flat),tenp[n, O, 0]

time, mn/max tenp, tenmp[n,0,0] = 0.0 0.0122650898993 9. 99259281158
6. 13053750992

time, mn/max tenp, tenmp[n,0,0] = 1.0 0.00115821603686 9. 9915933609
6. 68516159058

time, min/max tenp, tenmp[n,0,0] = 2.0 0.0152112031356 9. 98737239838
3. 60537290573

time, min/max tenp, tenmp[n,0,0] = 3.0 0.0112022599205 9. 99535560608
6. 24249696732

time, mn/max tenp, tenp[n,0,0] = 4.0 0.00519315246493 9. 99831295013
0. 225010097027

time, min/max tenp, tenp[n,0,0] = 5.0 0.00978941563517 9. 9843454361
4.56814193726

time, min/max tenp, tenmp[n,0,0] = 6.0 0.0159023851156 9. 99160385132
6. 36837291718

time, min/max tenp, tenmp[n,0,0] = 7.0 0.0019518379122 9. 99939727783
1. 42762875557

time, mn/max tenp, tenmp[n,0,0] = 8.0 0.00390585977584 9.9909954071
2. 79601073265

time, min/max tenp, tenmp[n,0,0] = 9.0 0.0106026884168 9. 99195957184
8. 18835449219

Notethat appending dataal ong an unlimited dimension alwaysincreasesthe length of thevariableal ong that dimension.
Assigning data to a variable with an unlimited dimension with a slice operation does not change its shape. Finaly,
before closing thefilewe can get asummary of its contentssimply by printing the Net CDFFi | e object. Thisproduces
output very similar to running 'ncdump -h' on anetCDF file.

>>> print file
test.h5 {
di nensi ons:
lat = 90 ;
time = UNLIMTED ; // (10 currently)
level = 12 ;
vari abl es:
float latitude('lat',) ;
| atitude:units = 'degrees north'

150

netcdf3 - a PyTables NetCDF3 emulation AP

int pressure('level', "lat")
pressure:units = 'hPa’

int level ('level',)

float tenp('time', "level', "lat")

temp:units = 'K
double tine('tine',)
tinme:scale factor = 1 ;

time:units = 'days since January 1, 2005
/1 gl obal attributes:
:description = 'bogus exanple to illustrate the use of tables. netcdf3'

:history = 'Created Wed Nov 9 12:29:13 2005
:source = 'PyTabl es Users Cuil de'

}
7.2.6. Efficient compression of t abl es. net cdf 3 variables

Data stored in Net CDFVar i abl e objects is compressed on disk by default. The parameters for the default
compression are determined from a Fi | t er s class instance (see section Section 4.14.1) with conpl evel =6,

conplib="zlib'" and shuffl e=True. To change the default compression, simply passaFi | t er s instance
tocreat eVari abl e withthefi | t er s keyword. If your dataonly has a certain number of digits of precision (say
for example, it istemperature data that was measured with aprecision of 0. 1 degrees), you can dramatically improve
compression by quantizing (or truncating) the datausingthel east _si gni fi cant _di gi t keyword argument to
creat eVari abl e. Theleast significant digit is the power of ten of the smallest decimal place in the datathat isa
reliable value. For example if the data has aprecision of 0. 1, then setting | east _si gni fi cant _di gi t =1 will
cause data the data to be quantized using nunpy. ar ound(scal e*dat a) / scal e,wherescal e = 2**hi ts,
and hits is determined so that aprecision of 0. 1 isretained (inthiscase bi t s=4).

In our example, try replacing the line

>>> tenp = file.createVariable('tenmp', ' f',('tine', level', ' lat',))
with
>>> tenp = file.createVariable('temp', ' f',("tine',"level’,"lat',),

| east _significant_digit=1)
and see how much smaller the resulting fileis.

The | east _significant _digit keyword argument is not allowed in Sci enti fic.| QO Net CDF, since
netCDF version 3 does not support compression. The flexible, fast and efficient compression availablein HDF5 isthe
main reason | wrotethet abl es. net cdf 3 package - my netCDF files were just getting too big.

Thecr eat eVar i abl e method has one other keyword argument not found in Sci enti fi c. | O. Net CDF - ex-

pect edsi ze. Theexpect edsi ze keyword can be used to set the expected number of entries al ong the unlimited
dimension (default 10000). If you expect that your data with have an order of magnitude more or less than 10000
entries along the unlimited dimension, you may consider setting this keyword to improve efficiency (see Section 5.1.1
for details).

7.3.t abl es. net cdf 3 package reference

7.3.1. Global constants

_fillvalue dict Dictionary whose keys are Net CDFVar i abl e single character typecodes and
whose values are the netCDF _FillValue for that typecode.

151

netcdf3 - a PyTables NetCDF3 emulation AP

Scientificl ONetCDF _imported True if Sci enti fi c. | O Net CDF isinstalled and can be imported.

7.3.2. The Net CDFFi | e class

NetCDFFile(filename, mode="r", history=None)

Opensanexistingt abl es. net cdf 3file(mode="r" or' a') or createsanew one(mode="w). Thehi st ory
keyword can be used to set the Net CDFFi | e. hi st ory global attribute (if mode="a' or' w).

A Net CDFFi | e object has two standard attributes: di mensi ons and vari abl es. The values of both are dic-
tionaries, mapping dimension names to their associated lengths and variable names to variables. All other attributes
correspond to global attributes defined in a netCDF file. Global file attributes are created by assigning to an attribute
of the Net CDFFi | e object.

Net CDFFi | e methods

close()

Closes the file (after invoking the sync method).

sync()

Synchronizes the size of variables along the unlimited dimension, by filling in data with default netCDF _FillValue.
Returns the length of the unlimited dimension. Invoked automatically when the Net CDFFi | e object is closed.

ncattrs()
Returns alist with the names of all currently defined netCDF global file attributes.
createDimension(name, length)

Creates a netCDF dimension with a name given by the Python string nanme and a size given by the integer si ze. If
si ze = None,thedimensionisunlimited (i.e. it can grow dynamically). There can be only one unlimited dimension
inafile.

createVariable(name, type, dimensions, least_significant_digit= None, expected-
size=10000, filters=None)

Creates a new variable with the given nane, type, and di nmensi ons. The type is a one-letter Numeric
typecode string which can be one of f (Float32), d (Float64), i (Int32), | (Int32), s (Int16), ¢ (CharType - length
1), F (Complex32), D (Complex64) or 1 (Int8); the predefined type constants from Numeric can also be used. The
F and D types are not supported in netCDF or Scientific.|O.NetCDF, if they are used in at abl es. net cdf 3 file,
that file cannot be converted to atrue netCDF file nor can it be shared over the internet with OPeNDAP. Dimensions
must be a tuple containing dimension names (strings) that have been defined previously by cr eat eDi nensi ons.
Thel east _si gni ficant _di git isthe power of ten of the smallest decimal place in the variable's data that is
areliable value. If this keyword is specified, the variable's data truncated to this precision to improve compression.
The expect edsi ze keyword can be used to set the expected number of entries along the unlimited dimension
(default 10000). If you expect that your data with have an order of magnitude more or less than 10000 entries along
the unlimited dimension, you may consider setting this keyword to improve efficiency (see Section 5.1.1 for details).
Thefilters keywordisaPyTablesFi | t er s instance that describes how to store the data on disk. The default
correspondsto conpl evel =6, conpl i b="zl i b' ,shuf fl e=True andf | et cher 32=Fal se.

nctoh5(filename, unpackshort=True, filters=None)

Imports the data in a netCDF verson 3 file (fil enane) into a Net CDFFil e object using
Scientific.l O NetCDF (Sci entificlONet CODF_i nmported must be Tr ue). If unpackshort =Tr ue,

152

netcdf3 - a PyTables NetCDF3 emulation AP

data packed as short integers (type s) in the netCDF file will be unpacked to typef using thescal e_f act or and
add_of f set netCDF variable attributes. Thefi | t er s keyword can be set to aPyTables Fi | t er s instance to
change the default parameters used to compress the datain thet abl es. net cdf 3 file. The default corresponds to
conpl evel =6, conpl i b="zlib',shuffl e=True andfl et cher 32=Fal se.

h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

Exportsthedatainat abl es. net cdf 3 filedefined by theNet CDFFi | e instanceinto anetCDF version 3fileusing
Scientific.lO NetCDF(ScientificlONet CDF_i nmportedmustbeTrue).If packshort =True> the
dictionariesscal e_f act or and add_of f set are used to pack data of typef as short integers (of type s) inthe
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integersisacommonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netedf standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale factors and
offsetsto use in the packing. The data are packed so that the original Float32 values can be reconstructed by multiply-
ingthescal e_fact or and addingadd_of f set . The resulting netCDF file will havethescal e_f act or and
add_of f set variable attributes set appropriately.

7.3.3. The Net CDFVar i abl e class

The Net CDFVar i abl e constructor is not called explicitly, rather an Net CDFVar i bl e instance is returned by
an invocation of Net CDFFi | e. cr eat eVari abl e. Net CDFVar i abl e objects behave like arrays, and have the
standard attributes of arrays (such as shape). Data can be assigned or extracted from Net CDFVar i abl e objects
viadglices.

Net CDFVar i abl e methods

typecode()

Returns a single character typecode describing the type of the variable, one of f (Float32), d (Float64), i (Int32), |
(Int32), s (Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1 (Int8).

append(data)

Append data to a variable along its unlimited dimension. The data you append must have either the same number
of dimensions as the Net CDFVar i abl e, or one less. The shape of the data you append must be the same as the
Net CDFVar i abl e for al of the dimensions except the unlimited dimension. Thelength of thedatalong the unlimited
dimension controls how may entries along the unlimited dimension are appended. If the data you append has one
fewer number of dimensions than the Net CDFVar i abl e, it is assumed that you are appending one entry along the
unlimited dimension. For variables without an unlimited dimension, data can simply be assigned to a slice without
using the append method.

ncattrs()
Returns alist with al the names of the currently defined netCDF variable attributes.
assignValue(data)

Provided for compatiblity with Sci entific. | O Net CDF. Assigns data to the variable. If the variable has an
unlimited dimension, it is equivalent to append(dat a) . If the variable has no unlimited dimension, it is equivalent
to assigning data to the variable with the dlice[:] .

getValue()

Provided for compatiblity with Sci enti fi c. | O. Net CDF. Returns al the data in the variable. Equivalent to ex-
tracting thedlice[:] from the variable.

153

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

netcdf3 - a PyTables NetCDF3 emulation AP

7.4. Converting between true netCDF files and
t abl es. net cdf 3 files

If Scientific.lO NetCDF is instaled, tabl es. net cdf 3 provides facilities for converting between
true netCDF version 3 files and t abl es. net cdf 3 hdf5 files via the Net CDFFi |l e. h5t onc() and
Net CDFFi | e. nct oh5() class methods. Also, the nct oh5 command-line utility (see Section E.3) uses the
Net CDFFi | e. nct oh5() class method.

Asan example, look how to convert at abl es. net cdf 3 hdf5fileto atrue netCDF version 3file (namedt est . nc)

>>> scale factor = {"tenp': 1.75e-4}
>>> add_offset = {"tenp': 5.}
>>> file.h5tonc('test.nc', packshort=True, \
scal e_factor=scal e_factor, add_of f set =add_of f set)
packi ng tenp as short integers ...
>>> file.close()

The dictionaries scal e_f act or and add_of f set are used to optionally pack the data as short integers in the
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integersisacommonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netedf standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale factors and
offsets to use in the packing. The resulting netCDF file will havethescal e_f act or and add_of f set variable
attributes set appropriately.

To convert the netCDF file back to at abl es. net cdf 3 hdf5file:

>>> history = 'Convert fromnetCDF ' + tine.ctime(tinme.tinme())

>>> file = Net CDF. Net CDFFi |l e('test2.h5', "w , history=history)

>>> nobj ects, nbytes = file.nctoh5('test.nc', unpackshort=Tr ue)

>>> print nobjects,' objects converted fromnet COF, totaling', nbytes,' bytes

5 objects converted fromnet CDF, totaling 48008 bytes

>>> tenp = file.variables['tenp']

>>> times = file.variables['tinme']

>>> print 'tenp.shape after h5 --> netCDF --> h5 conversion = ', tenp. shape

tenp. shape after h5 --> net CDF --> h5 conversion = (10, 12, 90)

>>> for n in range(10):

>>> print "time, mn/max tenp, tenmp[n,0,0] = "',\

times[n],mn(tenp[n].flat), max(tenp[n].flat),tenp[n, O, 0]

time, min/max tenp, tenmp[n,0,0] = 0.0 0.0123250000179 9. 99257469177
6. 13049983978

time, mn/max tenp, tenp[n,0,0] = 1.0 0.00130000000354 9.99152469635
6. 68507480621

time, min/max tenp, tenp[n,0,0] = 2.0 0.0153000000864 9.98732471466
3. 60542488098

time, min/max tenp, tenmp[n,0,0] = 3.0 0.0112749999389 9. 99520015717
6. 2423248291

time, mn/max tenp, tenp[n,0,0] = 4.0 0.00532499980181 9. 99817466736
0. 225124999881

time, mn/max tenp, tenp[n,0,0] = 5.0 0.00987500045449 9.98417472839
4.56827497482

time, mn/max tenp, tenmp[n,0,0] = 6.0 0.01600000076 9.99152469635

6. 36832523346

time, mn/max tenp, tenp[n,0,0] = 7.0 0.00200000009499 9. 99922466278
1. 42772495747

154

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

netcdf3 - a PyTables NetCDF3 emulation AP

time, min/max tenp, tenmp[n,0,0] = 8.0 0.00392499985173 9. 9908246994
2. 79605007172

time, mn/max tenp, tenp[n,O0, 0]
8.18832492828

>>> file.close()

9.0 0.0107500003651 9.99187469482

Setting unpackshor t =Tr ue tells nct oh5 to unpack all of the variables which have the scal e_f act or and
add_of f set attributesback to floating point arrays. Notethatt abl es. net cdf 3 fileshave somefeaturesnot sup-
ported in netCDF (such as Complex datatypes and the ability to make any dimension unlimited). t abl es. net cdf 3
fileswhich utilize these features cannot be converted to netCDF using Net CDFFi | e. h5t onc.

7.5.t abl es. net cdf 3 file structure

At abl es. net cdf 3 file consists of array objects (either EArrays or CAr r ays) located in the root group of a
pytables hdf5 file. Each of the array objects must have adi mensi ons attribute, consisting of a tuple of dimension
names (the length of this tuple should be the same as the rank of the array object). Any array objects with one of the
supported datatypesin a pytables file that conformsto this simple structure can be read with thet abl es. net cdf 3
package.

7.6. Sharing data in t abl es. net cdf 3 files over the in-
ternet with OPeNDAP

t abl es. net cdf 3 datasets can be shared over the internet with the OPeNDAP protocol (http://opendap.org), via
the python opendap module (http://opendap.oceanografia.org). A plugin for the python opendap server is included
with the pytablesdistribution (cont ri b/ h5_dap_pl ugi n. py). Simply copy that fileintothepl ugi ns directory
of the opendap python module source distribution, run pyt hon set up. py i nstal |, point the opendap server
to the directory containing your t abl es. net cdf 3 files, and away you go. Any OPeNDAP aware client (such as
Matlab or IDL) will now be able to access your data over http as if it were a local disk file. The only restriction
isthat your t abl es. net cdf 3 files must have the extension . h5 or . hdf 5. Unfortunately, t abl es. net cdf 3
itself cannot act as an OPeNDAP client, although there is a client included in the opendap python module, and
Scientific.l O Net CDF canact asan OPeNDAP client if it islinked with the OPeENDAP netCDF client library.
Either of these python modules can be used to remotely acesst abl es. net cdf 3 datasets with OPeNDAP.

7.7. Differences between the Sci enti fic. | O Net CDF
APl and the t abl es. net cdf 3 API

1. t abl es. net cdf 3 datais stored in an HDF5 file instead of anetCDF file.

2. Although each variable can have only one unlimited dimension in at abl es. net cdf 3 file, it need not be
the first as in a true NetCDF file. Complex data types F (Complex32) and D (Complex64) are supported in
t abl es. net cdf 3, but are not supported in netCDF (or Sci enti fi c. | O Net CDF). Fileswith variablesthat
have these datatypes, or an unlimited dimension other than thefirst, cannot be converted to netCDF using h5t onc.

3. Variablesin at abl es. net cdf 3 file are compressed on disk by default using HDF5 zlib compression with
the shuffle filter. If the least significant_digit keyword is used when a variable is created with the cre-
ateVariabl e nethod, data will be truncated (quantized) before being written to the file. This can
significantly improve compression. For example, if | east _si gni fi cant _di gi t =1, data will be quan-
tized using nunpy. around(scal e*dat a)/ scal e, where scale = 2**bits, and bits is deter-
mined so that a precision of 0.1 is retained (in this case bi t s=4). From http://www.cdc.noaa.gov/cdc/conven-
tiong/cdc_netcdf _standard.shtml: “least_significant_digit -- power of ten of the smallest decimal place in unpacked
data that is a reliable value.” Automatic data compression is not available in netCDF version 3, and hence is not
avallableinthe Sci enti fi c. | O. Net CDF module.

155

http://opendap.org
http://opendap.oceanografia.org
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

netcdf3 - a PyTables NetCDF3 emulation AP

. Int abl es. net cdf 3, data must be appended to a variable with an unlimited dimension using the append
method of the net CDF variable object. In Sci enti fi c. | O Net CDF, data can be added along an unlimited
dimension by assigning it to a dice (there is no append method). The sync method of at abl es. net cdf 3
Net CDFVar i abl e object synchronizes the size of al variables with an unlimited dimension by filling in data
using thedefault netCDF_Fi | | Val ue. Thesync method isautomatically invoked with aNet CDFFi | e object
isclosed. InSci enti fic. | O Net CDF, thesync() method flushes the data to disk.

. Thet abl es. net cdf 3 creat eVari abl e() method has three extra optional keyword arguments not found
intheSci enti fic. |l O Net CDFinterface, least_significant_digit (seeitem (2) above), expectedsize and filters.
The expectedsize keyword applies only to variables with an unlimited dimension, and is an estimate of the number
of entriesthat will be added along that dimension (default 1000). This estimateis used to optimize HDF5 file access
and memory usage. The filters keyword is a PyTables filters instance that describes how to store the data on disk.
Thedefault correspondstoconpl evel =6,conpl i b="zl i b' ,shuf fl e=True andf | et cher 32=Fal se.

. t abl es. net cdf 3 data can be saved to a true netCDF file using the Net CDFFi | e class method h5t onc (if
Scientific.l QO NetCDFisinstaled). The unlimited dimension must be the first (for all variablesin the file)
in order to use the h5t onc method. Data can also be imported from a true netCDF file and saved in an HDF5
t abl es. net cdf 3 fileusing thenct oh5 class method.

. Intabl es. net cdf 3 alist of attributes corresponding to global netCDF attributes defined in the file can be
obtained with the Net CDFFi | e ncattrs method. Similarly, netCDF variable attributes can be obtained with
theNet CDFVari abl e ncat t r s method. Thesefunctionsarenot availableinthe Sci enti fi c. | O. Net CDF
API.

. You should not definet abl es. net cdf 3 global or variable attributes that start with _Net CDF_. Those names
arereserved for internal use.

. Output similar to 'ncdump -h' can be obtained by simply printing at abl es. net cdf 3 Net CDFFi | e instance.

156

Part Ill. Appendixes

Appendix A. Supported data types in
PyTables

All PyTables datasets can handle the complete set of data types supported by the NumPy (see [8]), numar r ay (see
[10]) and Numeric (see [9]) packages in Python. The data types for table fields can be set via instances of the Col
class and its descendants (see Section 4.13.2), while the data type of array elements can be set through the use of the
At omclass and its descendants (see Section 4.13.1).

PyTables uses ordinary strings to represent its types, with most of them matching the names of NumPy scalar types.
Usually, a PyTables type consists of two parts: akind and a precision in bits. The precision may be omitted in types
with just one supported precision (like bool) or with anon-fixed size (likest r i ng).

There are eight kinds of types supported by PyTables:

» bool : Boolean (true/false) types. Supported precisions. 8 (default) bits.

* i nt: Signed integer types. Supported precisions: 8, 16, 32 (default) and 64 hits.

* ui nt : Unsigned integer types. Supported precisions. 8, 16, 32 (default) and 64 bits.

f | oat : Floating point types. Supported precisions: 32 and 64 (default) bits.

conpl ex: Complex number types. Supported precisions. 64 (32+32) and 128 (64+64, default) bits.

st ri ng: Raw string types. Supported precisions: 8-bit positive multiples.

t i me: Dataltime types. Supported precisions. 32 and 64 (default) bits.
» enum Enumerated types. Precision depends on base type.

Theti me and enumkinds are a little bit special, since they represent HDF5 types which have no direct Python
counterpart, though atoms of these kinds have a more-or-less equivalent NumPy data type.

There aretwo typesof t i me: 4-byte signed integer (t i ne32) and 8-byte double precision floating point (t i me64).
Both of them reflect the number of seconds since the Unix epoch, i.e. Jan 1 00:00:00 UTC 1970. They are stored in
memory as NumPy'si nt 32 and f | oat 64, respectively, and in the HDF5 file using the H5T_TI ME class. Integer
times are stored on disk as such, whilefloating point times are split into two signed integer val ues representing seconds
and microseconds (beware: smaller decimals will be lost!).

PyTables also supports HDF5 H5T_ ENUMenumerations (restricted sets of unique name and unique value pairs). The
NumPy representation of an enumerated value (an Enum see Section 4.14.3) depends on the concrete base type used to
store the enumeration in the HDF5 file. Currently, only scalar integer values (both signed and unsigned) are supported
in enumerations. This restriction may be lifted when HDF5 supports other kinds on enumerated values.

Here you have a quick reference to the complete set of supported data types:

Type Code Description C Type Size (in bytes) Python Counterpart
bool boolean unsigned char 1 bool

int8 8-bit integer signed char 1 int

uint8 8-hit unsigned integer |unsigned char 1 int

int16 16-bit integer short 2 int

158

Supported datatypesin PyTables

Type Code Description C Type Size (in bytes) Python Counterpart
uint16 16-bit unsigned inte- | unsigned short 2 int
ger
int32 integer int 4 int
uint32 unsigned integer unsigned int 4 long
int64 64-hit integer long long 8 long
uint64 unsigned 64-bit inte- |unsigned long long 8 long
ger
float32 single-precision float |float float
float64 double-precision float | double float
complex64 single-precision com- |struct {float r, i;} 8 complex
plex
complex128 double-precision struct {doubler, i;} 16 complex
complex
string arbitrary length string | char] * str
time32 integer time POSIX'stime_t int
time64 floating point time POSIX's struct 8 float
timeval
enum enumerated value enum - -

Table A.1. Datatypes supported for array elements and tables columnsin PyTables.

159

Appendix B. Condition syntax

Conditions in PyTables are used in methods related with in-kernel and indexed searches such as Tabl e. wher e()
(see description) or Tabl e. r eadWher e() (see description). They are interpreted using a customized version of
Numexpr, a powerful package for C-speed computation of array operations (see[11]).

A condition on atableisjust astring containing a Python expression involving at least one column, and maybe some
constants and external variables, all combined with algebraic operators and functions. The result of avalid condition
is always a boolean array of the same length as the table, where the i-th element is true if the value of the expression
on thei-th row of the table evaluates to true . Usual ly, amethod using a condition will only consider the rows where
the boolean result istrue.

For instance, the condition ' sqrt (x*x + y*y) < 1' applied on atable with x and y columns consisting of
floating point numbers results in a boolean array where the i-th element is true if (unsurprisingly) the value of the
square root of the sum of squaresof x andy islessthan 1. Thesqrt () function works element-wise, the 1 constant
is adequately broadcast to an array of ones of the length of the table for evaluation, and the less than operator makes
the result a valid boolean array. A condition like' mycol umrm' alone will not usually be valid, unless mycol um
isitself acolumn of scalar, boolean values.

Inthepreviousconditions, mycol unn, x andy are examplesof variableswhich are associated with columns. Methods
supporting conditions do usually provide their own ways of binding variable names to columns and other values. You
can read the documentation of Tabl e. wher e() (see description) for more information on that. Also, please note
that the names None, Tr ue and Fal se, besides the names of functions (see below) can not be overridden, but you
can always define other new names for the objects you intend to use.

Values in a condition may have the following types:

8-bit boolean (bool).

32-bit signed integer (i nt).

64-bit signed integer (I ong).

64-bit, double-precision floating point number (f | oat).

2x64-hit, double-precision complex number (conpl ex).

» Raw string of bytes(str).

The typesin PyTables conditions are somewhat stricter than those of Python. For instance, the only valid constantsfor
booleansare Tr ue and Fal se, and they are never automatically cast to integers. The type strengthening also affects
the availability of operators and functions. Beyond that, the usual type inference rules apply.

Conditions support the set of operators listed below:

* Logica operators: &, |, ~.

» Comparison operators. <, <=, ==, I=, >=, >,

» Unary arithmetic operators: -.

» Binary arithmetic operators: +, -, *, /, **, %.

That is the reason why multidimensional fieldsin atable are not supported in conditions, since the truth value of each resulting multidimensional
boolean value is not obvious.

160

Condition syntax

Types do not support all operators. Boolean values only support logical and strict (in)equality comparison operators,
while strings only support comparisons, numbers do not work with logical operators, and complex comparisons can
only check for strict (in)equality. Unsupported operations (including invalid castings) raise Not | npl enment edEr -
ror exceptions.

You may have noticed the special meaning of the usually bitwise operators &, | and ~. Because of the way Python
handles the short-circuiting of logical operators and the truth values of their operands, conditions must use the bitwise
operator equivalentsinstead. Thisisnot difficult to remember, but you must be careful because bitwise operators have
ahigher precedence than logical operators. For instance,' a and b == c¢' (aistrue AND b isequal to c) isnot
equivdentto'a & b == c¢' (a AND b isequal to c). The safest way to avoid confusions is to use parentheses
around logical operators, likethis:' a & (b == c¢)' . Another effect of short-circuiting isthat expressionslike' 0
< x < 1" will not work as expected; you shoulduse’ (0 < x) & (x < 1)' ?

Y ou can a'so use the following functions in conditions:

e where(bool, nunberl, nunber2): nunmber — nunber 1 if the bool condition is true, nunber 2
otherwise.

» {sin,cos,tan}(float]|conpl ex): float]|conpl ex — trigonometric sine, cosine or tangent.

» {arcsin,arccos, arctan}(fl oat| conpl ex): fl oat| conpl ex —trigonometricinversesine, cosine
or tangent.

e arctan2(floatl, float2): float — trigonometricinversetangentof f| oat 1/ f | oat 2.
» {sinh,cosh,tanh}(fl oat]| conpl ex): fl oat|conpl ex — hyperbolic sine, cosine or tangent.

» {arcsinh, arccosh, arctanh} (fl oat| conpl ex): fl oat|conpl ex — hyperbolic inverse sine, co-
sine or tangent.

* {log, 0910, | oglp}(float|complex): float|conmplex — natural, base-10 and | og(1+x) loga-
rithms.

o {exp, expml} (fl oat| conplex): float|conpl ex — exponentia and exponential minus one.
e sgrt(float|conplex): float|conpl ex — squareroot.
e {real,img}(conplex): float —red orimaginary part of complex.

o compl ex(float, float): conplex — complexfrom real and imaginary parts.

2All of this may be solved if Python supported overloadable bool ean operators (see PEP 335) or some kind of non-shortcircuiting bool ean operators
(likeC's&&, || and!).

161

Appendix C. PyTables' parameter files.

PyTables issues warnings when certain limits are exceeded. Those limits are not intrinsic limitations of the underlying
software, but rather are proactive measures to avoid large resource consumptions. The default limits should be enough
for most of cases, and users should try to respect them. However, in some situations, it can be convenient to increase
(or decrease) these limits.

Also, and in order to get maximum performance, PyTables implements a series of sophisticated features, like I/O
buffersor different kind of caches (for nodes, chunks and other internal metadata). These features comeswith adefault
set of parameters that ensures a decent performance in most of situations. But, asthereisalways aneed for every case,
it is handy to have the possibility to fine-tune some of these parameters.

Because of these reasons, PyTables implements a couple of ways to change the values of these parameters. All the
tunable parametersliveinthet abl es/ par anet er s. py (andt abl es/ _par aneters_pro. py, for PyTables
Pro users). The user can choose to change them in the parameter files themselves for a global and persistent change.
Moreover, if he wants afiner control, he can pass any of these parameters directly to the openFi | e() function (see
description), and the new parameters will only take effect in the corresponding file (the defaults will continue to be
in the parameter files).

A description of all of the tunable parameters follows. Asthe defaults stated here may change from release to release,
please check with your actual parameter files so as to know your actual default values.

O Warning

Changing the next parameters may have avery bad effect in the resource consumption and performance
of your PyTables scripts. Please be careful when touching these!

C.1. Tunable parameters in par anet er s. py.

C.1.1. Recommended maximum values

MAX_COLUMNS
Maximum number of columnsin Tabl e objectsbeforeaPer f or manceWar ni ng isissued. Thislimitissome-
what arbitrary and can be increased.

MAX_NODE_ATTRS
Maximum allowed number of attributesin anode

MAX_GROUP_W DTH
Maximum depth in object tree allowed.

MAX_UNDO_PATH_LENGTH
Maximum length of paths allowed in undo/redo operations.

C.1.2. Cache limits

METADATA_CACHE_SI ZE
Size (in bytes) of the HDF5 metadata cache. This only takes effect if using HDF5 1.8.x series.

NODE_CACHE_SLOTS
Maximum number of unreferenced nodes to be kept in memory.

162

PyTables parameter files.

If positive, thisis the number of unreferenced nodes to be kept in the metadata cache. Least recently used nodes
are unloaded from memory when this number of loaded nodes is reached. To load a node again, simply access it
as usual. Nodes referenced by user variables are not taken into account nor unloaded.

Negative value means that all the touched nodes will be kept in an internal dictionary. This is the faster way to
load/retrieve nodes. However, and in order to avoid alarge memory comsumption, the user will be warned when
the number of loaded nodes will reach the - NODE_CACHE_SLOTS value.

Finally, avalue of zero means that any cache mechanism is disabled.

COND_CACHE_SLOTS
Maximum number of conditions for table queries to be kept in memory.

C.1.3. Parameters for the I/O buffer in Tabl e objects.

CHUNKTI MES
The buffersize/chunksize ratio.

BUFFERTI MES
The maximum buffersize/rowsize ratio before issuing aPer f or manceWar ni ng.

C.1.4. Miscellaneous

EXPECTED_ROWS_EARRAY
Default expected number of rows for EAr r ay objects.

EXPECTED _ROWS_TABLE
Default expected number of rowsfor Tabl e objects.

PYTABLES_SYS _ATTRS
Set thisto Fal se if you don't want to create PyTables system attributes in datasets. Also, if set to Fal se the
possible existing system attributes are not considered for guessing the class of the node during its loading from
disk (thiswork is delegated to the PyTables' class discoverer function for general HDF5 files).

C.2. Tunable parameters in _par aneters_pro. py.

A
R Note
Pro

These parameters are only available in PyTables Pro.

C.2.1. Parameters for the different internal caches

BOUNDS_MAX_SI ZE
The maximum size for bounds values cached during index [ookups.

BOUNDS MAX SLOTS
The maximum number of slots for the BOUNDS cache.

| TERSEQ MAX_ELEMENTS
The maximum number of iterator elements cached in data lookups.

| TERSEQ MAX_SI ZE
The maximum space that will take | TERSEQ cache (in bytes).

163

PyTables parameter files.

| TERSEQ MAX_SLOTS
The maximum number of slotsin | TERSEQ cache.

LI MBOUNDS_MAX_SI ZE
The maximum size for the query limits (for example, (1i niL, |i nR) inconditionslikeliml # col <
I i n2) cached during index lookups (in bytes).

LI MBOUNDS MAX SLOTS
The maximum number of slotsfor LI MBOUNDS cache.

TABLE_MAX_SI ZE
The maximum size for table chunks cached during index queries.

SORTED_MAX_SI ZE
The maximum size for sorted values cached during index lookups.

SORTEDLR_MAX_SI ZE
The maximum size for chunksin last row cached in index lookups (in bytes).

SORTEDLR MAX SLOTS
The maximum number of chunks for SORTEDLR cache.

C.2.2. Parameters for general cache behaviour

o Warning
The next parameters will not take any effect if passed to the openFi | e() function, so they can only
be changed in aglobal way. Y ou can change them in thefile, but thisis strongly discouraged unless you
know well what you are doing.

Dl SABLE_EVERY_CYCLES
The number of cycles in which a cache will be forced to be disabled if the hit ratio is lower than the
LOAEST_HI T_RATI O(see below). Thisvalue should provide time enough to check whether the cache is being
efficient or not.

ENABLE_EVERY_CYCLES
The number of cyclesin which a cache will be forced to be (re-)enabled, irregardingly of the hit ratio. Thiswill
provide a chance for checking if we are in abetter scenario for doing caching again.

LOVEST_HI T_RATI O
The minimum acceptable hit ratio for a cache to avoid disabling (and freeing) it.

164

Appendix D. Using nested record
arrays

D.1. Introduction

Nested record arrays are ageneralization of therecord array concept asit appearsinthenunar r ay package. Basically,
a nested record array is a record array that supports nested datatypes. It means that columns can contain not only
regular datatypes but also nested datatypes.

O Warning
PyTables nested record arrays were implemented to overcome a limitation of the record arrays in the
numar r ay package. However, as this functionality is already present in NunPy, current users should
not need the packaget abl es. nr a anymore and it will be deprecated soon.

Each nested record array is a Nest edRecAr r ay object in the t abl es. nr a package. Nested record arrays are
intended to be as compatible as possible with ordinary record arrays (in fact the Nest edRecAr r ay class inherits
from RecAr r ay). Asaconseguence, the user can deal with nested record arrays nearly in the same way that he does
with ordinary record arrays.

The easiest way to create a nested record array isto usethear ray() functioninthet abl es. nr a package. The
only difference between this function and its non-nested capable analogous is that now, we must provide an structure
for the buffer being stored. For instance;

>>> fromtables.nra inmport array

>>> nral = array(
[(1, (0.5, 1.0), ("al1', 1j)), (2, (0, 0), ("a2', 1+.1j))],
formats=['Int64', '(2,)Float32', ['a2', 'Conplex64']])

will create atwo rows nested record array with two regular fields (columns), and one nested field with two sub-fields.

The field structure of the nested record array is specified by the keyword argument f or mat s. This argument only
supports sequences of strings and other sequences. Each string defines the shape and type of a non-nested field. Each
seguence contains the formats of the sub-fields of a nested field. Optionally, we can aso pass an additional nanes
keyword argument containing the names of fields and sub-fields:

>>> nra2 = array(
[(1, (0.5, 1.0), ("al', 1j)), (2, (0, 0), ("a2', 1+.1j))],
nanes=['id, 'pos', ('info', ['nane', 'value'])],
formats=['Int64', '(2,)Float32', ['a2', 'Conplex64']])

The names argument only supports lists of strings and 2-tuples. Each string defines the name of a non-nested field.
Each 2-tuple containsthe name of anested field and alist describing the names of itssub-fields. If thenames argument
is not passed then all fields are automatically named (c1, c2 etc. on each nested field) so, in our first example, the
fieldswill benamedas[' c1', 'c2', ('c3'", ['cl", 'c2'])].
Another way to specify the nested record array structureisto usethedescr keyword argument:
>>> nra3 = array(

[(1, (0.5 1.0), ("al", 1j)), (2, (0, 0), ("az", 1+.1j))],

descr=[('id', '"Int64"), ('pos', '(2,)Float32"),
("info', [('nane', 'a2'), ('value', 'Conplex64')])])

165

Using nested record arrays

>>>

>>> nra3

array(

[(1L, array([0.5, 1.], type=Float32), ('al', 1j)),

(2L, array([0., O0.], type=Float32), ('a2', (1+0.10000000000000001j)))],

descr=[('id", '"Int64'), ('pos', '(2,)Float32"), ('info', [('nane’', 'a2'),
("value', 'Conplex64')])],

shape=2)

>>>

Thedescr argumentisalist of 2-tuples, each of them describing afield. Thefirst value in atuple isthe name of the
field, while the second oneis a description of its structure. If the second value is a string, it defines the format (shape
and type) of anon-nested field. Elsg, it isalist of 2-tuples describing the sub-fields of a nested field.

Asyou can see, thedescr listisamix of thenanes and f or mat s arguments. In fact, thisargument is intended to
replacef or mat s and nanes, so they cannot be used at the same time.

Of course the structure of al three keyword arguments must match that of the elements (rows) in the buf f er being
stored.

Sometimes it is convenient to create nested arrays by processing a set of columns. In these cases the function f r o-
mar r ays comes handy. This function works in a very similar way to the array function, but the passed buffer is a
list of columns. For instance:

>>> fromtables.nra i nport fronarrays

>>> nra = fromarrays([[1, 2], [4, 5]], descr=[('x', "f8),('y', '"f4')])
>>>

>>> nra

array(

[(1.0, 4.0),

(2.0, 5.0)],

descr=[('x", '"f8), ('y', 'f4')],

shape=2)

Columns can be passed as nested arrays, what makes really straightforward to combine different nested arrays to get
anew one, as you can see in the following examples:

>>> nral = fromarrays([nra, [7, 8]], descr=[('2D, [('x', "f8), ('y',
f4)1),

>>> .. ('z', 'f4')])

>>>

>>> nral

array(

[((1.0, 4.0), 7.0),

((2.0, 5.0), 8.0)1,

descr=[('2D, [('x', 'f8), ('y', 'f4)]), ('z', 'f4')],

shape=2)

>>>

>>> nra2 = fromarrays([nral.field('2D/x"), nral.field('z')], descr=[('x",
18",

("z', "f4)])
>>>

>>> nra2
array(
[(1.0, 7.0),

166

Using nested record arrays

(2.0, 8.0)],
descr=[('x', 'f8), ('z', 'f4')],
shape=2)

Finally it's worth to mention a small group of utility functions in the t abl es. nr a. nest edr ecor ds module,
makeFor mat s, makeNanes andmakeDescr , that can be useful to obtain the structure specification to be used with
thearray andf r omar r ays functions. Given adescription list, makeFor nat s getsthe corresponding f or mat s
list. In the same way nakeNanes gets the nanes list. On the other hand the descr list can be obtained from
f or mat s and names lists using the makeDescr function. For example:

>>> from tabl es. nra. nest edrecords i nport nmakeDescr, makeFornmats, makeNanes
>>> descr =[('2D, [('x", '"f8), ('y', 'f4)]),(z', 'f4)]

>>>

>>> formats = makeFor mat s(descr)

>>> formats

[["f8, 'f4'], 'f4']

>>> names = nakeNanmes(descr)

>>> nanes

(20, ["x', "y']), "2']

>>> d1 = nakeDescr (formats, nanes)

>>> dil

[(C20, [('x, "f8), ('y', "f4)]), ("z', 'f4)]

>>> # | f no names are passed then they are automatically generated
>>> d2 = nmakeDescr (formats)

>>> d2

[("c2, [('c21, "f8), (‘'c2', "f4')]),('c2", "f4')]

D.2. Nest edRecArray methods

To access the fields in the nested record array usethef i el d() method:

>>> print nra2.field('id)
[1, 2]
>>>

Thefi el d() method accepts also names of sub-fields. It will consist of several field name components separated
by thestring" /' %, for instance:

>>> print nra2.field('info/nane')
["al', 'a2']
>>>

Finally, thetoplevel fieldsof the nested recarray can be accessed passing an integer argument tothef i el d() method:

>>> print nra2.field(1)
[[0.51.] [0. 0.]]
>>>

An alternativetothef i el d() methodistheuseof thef i el ds attribute. It isintended mainly for interactive usage
in the Python console. For example;

>>> nra2.fields.id

This way of specifying the names of sub-fields is very specific to the implementation of nunmar r ay nested arrays of PyTables. Particularly, if
you are using NumPy arrays, keep in mind that sub-fields in such arrays must be accessed one at a time, like this: nunpy_array['info']
[" nane'], and not likethis: nunpy_array[' info/ nane'].

167

Using nested record arrays

[1, 2]

>>> nra2.fields.info.fields. nane
["al', 'a2']

>>>

Rows of nested recarrays can be read using the typical index syntax. The rows are retrieved as Nest edRecor d
objects:

>>> print nra2[0]

(1L, array([0.5, 1.], type=Float32), ('al', 1j))

>>>

>>> nra2[0].__class__

<cl ass tabl es. nra. nest edrecor ds. Nest edRecord at 0x413cbb9c>

Slicing is also supported in the usual way:

>>> print nra2[0:2]

Nest edRecArr ay|

(1L, array([0.5, 1.], type=Float32), ('al', 1j)),

(2L, array([0., 0.], type=Float32), ('a2', (1+0.10000000000000001j)))
]

>>>
Another useful method isasRecAr r ay() . It converts a nested array to a non-nested equivalent array.

Thismethod createsanew vanillaRec Ar r ay instance equivalent to this one by flattening itsfields. Only bottom-lev-
e fields included in the array. Sub-fields are named by pre-pending the names of their parent fields up to the top-
level fields, using ' /' as a separator. The data area of the array is copied into the new one. For example, calling
nra3. asRecArray() would return the same array as calling:

>>> ra = numarray.records. array(
[(1, (0.5, 1.0), "al', 1j), (2, (0, 0), 'a2', 1+.1j)],
nanes=['id', 'pos', 'info/nane', 'info/value'],
formats=['Int64', '(2,)Float32', '"a2', 'Conplex64'])

Note that the shape of multidimensional fieldsis kept.

D.3. Nest edRecor d objects

Each element of the nested record array isaNest edRecor d, i.e. aRecor d with support for nested datatypes. As
said before, we can do indexing as usual:

>>> print nralf0]
(1, (0.5, 1.0), ('al', 1j))
>>>

Using Nest edRecor d objects is quite similar to using Recor d objects. To get the data of a field we use the
fiel d() method. As an argument to this method we pass a field name. Sub-field names can be passed in the way
described for Nest edRecArray. fi el d().Thefi el ds attributeisalso present and works asit doesin Nest -
edRecArray.

Field data can be set with the set Fi el d() method. It takes two arguments, the field name and its value. Sub-field
names can be passed asusual. Finally, theasRecor d() method convertsanested record into anon-nested equivalent
record.

168

Appendix E. Utilities

PyTables comes with a couple of utilities that make the life easier to the user. Oneis called pt dunp and lets you see
the contents of a PyTables file (or generic HDF5 file, if supported). The other one is named pt r epack that allows
to (recursively) copy sub-hierarchies of objects present in a file into another one, changing, if desired, some of the
filters applied to the leaves during the copy process.

Normally, these utilities will beinstalled somewhere in your PATH during the process of installation of the PyTables
package, so that you can invoke them from any placein your file system after the installation has successfully finished.

E.1. ptdump

As has been said before, pt dunp utility allows you look into the contents of your PyTables files. It lets you see not
only the data but also the metadata (that is, the structure and additional information in the form of attributes).

E.1.1. Usage

For instructions on how to useit, just passthe - h flag to the command:
$ ptdunp -h
to see the message usage:

usage: ptdunp [-d] [-v] [-a] [-c] [-i] [-R start,stop, step] [-h]
file[:nodepat h]

-d -- Dunp data information on | eaves

-V -- Dunp nore netainfornmati on on nodes

-a -- Show attributes in nodes (only useful when -v or -d are active)

-c -- Show info of colums in tables (only useful when -v or -d are
active)

-i -- Show info of indexed columms (only useful when -v or -d are active)
-R RANGE -- Select a RANGE of rows in the form"start, stop, step"
-h -- Print help on usage

Read on for abrief introduction to this utility.

E.1.2. A small tutorial on pt dunp

Let's suppose that we want to know only the structure of afile. In order to do that, just don't pass any flag, just the
file as parameter:

$ ptdunp vlarrayl. h5

vlarrayl. h5 (File)

Last nmodif.: 'Mon Jan 8 16:21:25 2007

bj ect Tree:

/ (Root G oup)

/vlarrayl (VLArray(3,), shuffle, zlib(1l)) 'ragged array of ints'
/vlarray2 (VLArray(3,), shuffle, zlib(1l)) 'ragged array of strings'

we can seethat the file containsjust aleaf object called vl ar r ay1, that isan instance of VLAr r ay, has 4 rows, and
two filters has been used in order to createit: shuf f | e and zI i b (with acompression level of 1).

Let's say we want more meta-information. Just add the - v (verbose) flag:

169

Utilities

$ ptdunmp -v vlarrayl. h5

/ (Root G oup) "'

/vlarrayl (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
atom = | nt 32At on(shape=(), dflt=0)

byteorder = "little'
nrows = 3
flavor = 'nuneric'

[vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
atom = StringAton(itensize=2, shape=(), dflt="")

byteorder = 'irrel evant'
nrows = 3
flavor = ' python'

S0 we can see more info about the atoms that are the components of the vl ar r ay1 dataset, i.e. they are scalars of
typel nt 32 and with Nurrer i ¢ flavor.

If we want information about the attributes on the nodes, we must add the - a flag:

$ ptdunmp -va vlarrayl. h5
/ (Root G oup) "'
[. v _attrs (AttributeSet), 5 attributes:

[CLASS : = ' GROUP',

PYTABLES _FORVAT_VERSION : = '2.0',
TITLE : = '",

VERSION := '1.0']

/vlarrayl (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
atom = | nt 32At on(shape=(), dflt=0)

byteorder = "little'
nrows = 3
flavor = 'nuneric'
/vlarrayl. v_attrs (AttributeSet), 4 attributes:
[CLASS : = ' VLARRAY' ,
FLAVOR : = 'nuneric',
TITLE : = 'ragged array of ints',
VERSION := "1.2']

[vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
atom = StringAton(itensize=2, shape=(), dflt="")

byteorder = 'irrel evant'
nrows = 3
flavor = ' python'
/vlarray2. v_attrs (AttributeSet), 4 attributes:
[CLASS : = ' VLARRAY' ,
FLAVOR : = ' pyt hon',
TITLE : = 'ragged array of strings',
VERSION := "1.2']

Let's have alook at the rea data:

$ ptdunmp -d vlarrayl. h5

/ (Root G oup) "'

/vlarrayl (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
Dat a dunp:

[0] [5 6]

[1] [5 6 7]

[2] [5 6 9 8]

170

Utilities

[vlarray2 (VLArray(3,), shuffle, zlib(1)) 'ragged array of strings'
Dat a dunp:

[O] ["5", "66"]

[1] ['5', '"6'", '77"]

[2] ['5', "6', "9, '88']

we see here a data dump of the 4 rowsin vl ar r ay1 object, in the form of alist. Because the object isaVLA, we
see adifferent number of integers on each row.

Say that we are interested only on a specific row range of the/ vl ar r ay 1 object:

ptdunp -R2,3 -d vlarrayl. h5:/vlarrayl

[vlarrayl (VLArray(3,), shuffle, zlib(1)) 'ragged array of ints'
Dat a dunp:

[2] [5 6 9 8]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usua in Python). See how
we have selected only the/ vI ar r ay 1 object for doing thedump (vl arrayl1. h5: /vl arrayl).

Finally, you can mix several information at once:

$ ptdump -R2,3 -vad vlarrayl. h5:/vlarrayl
/vlarrayl (VLArray(3,), shuffle, zlib(1l)) 'ragged array of ints'
atom = | nt 32At om(shape=(), dflt=0)

byteorder = "little'
nrows = 3
flavor = 'nuneric'
/vlarrayl. v _attrs (AttributeSet), 4 attributes:
[CLASS : = ' VLARRAY' ,
FLAVOR : = 'nuneric',
TITLE : = 'ragged array of ints',
VERSION : = '1.2"]
Dat a dunp:

[2] [56 9 8]

E.2. ptrepack

This utility isavery powerful one and lets you copy any leaf, group or complete subtree into another file. During the
copy process you are allowed to change thefilter propertiesif you want so. Also, in the case of duplicated pathnames,
you can decideif you want to overwrite already existing nodes on the destination file. Generally speaking, pt r epack
can be useful in may situations, like replicating a subtree in another file, change the filters in objects and see how
affect thisto the compression degree or 1/0 performance, consolidating specific datain repositories or even importing
generic HDF5 files and create true PyTables counterparts.

E.2.1. Usage

For instructions on how to useit, just passthe - h flag to the command:
$ ptrepack -h
to see the message usage:

usage: ptrepack [-h] [-v] [-0] [-R start,stop,step] [--non-recursive] [--dest-
title=title] [--dont-copyuser-attrs] [--overwite-nodes] [--conplevel =(0-9)]
[--conplib=lib] [--shuffle=(0]|1)] [--fletcher32=(0|1)] [--keep-source-

171

Utilities

filters] [--chunkshape=val ue] [--upgrade-flavors] [--dont-regenerate-old-
i ndexes] [--sortby=colum] [--forceCSI] [--propindexes] sourcefile:sourcegroup
destfil e: destgroup

-h -- Print usage nessage.
-v -- Show nore information
-0 -- Overwite destination file.

-R RANGE -- Select a RANGE of rows (in the form"start, stop, step")
during the copy of *all* the |leaves. Default values are
"None, None, 1", which nmeans a copy of all the rows.

--non-recursive -- Do not do a recursive copy. Default is to do it.
--dest-title=title -- Title for the newfile (if not specified,
t he source is copied).
--dont -copy-userattrs -- Do not copy the user attrs (default is to do it)
--overwite-nodes -- Overwite destination nodes if they exist. Default is
to not overwite them
--conpl evel =(0-9) -- Set a conpression level (0 for no conpression, which

is the default).
--conplib=lib -- Set the conpression library to be used during the copy.

lib can be set to "zlib", "lzo" or "bzip2". Defaults to "zlib".

--shuffle=(0]1) -- Activate or not the shuffling filter (default is active
i f conpl evel >0).

--fletcher32=(0|1) -- Wether to activate or not the fletcher32 filter

(not active by default).

--keep-source-filters -- Use the original filters in source files. The
default is not doing that if any of --conplevel, --conplib, --shuffle
or --fletcher32 option is specified.

- - chunkshape=("keep"|"auto"|int|tuple) -- Set a chunkshape. A value

of "auto" conputes a sensible value for the chunkshape of the

| eaves copied. The default is to "keep" the original val ue.
--upgrade-flavors -- Wen repacking PyTables 1.x files, the flavor of

| eaves will be unset. Wth this, such a I eaves will be serialized

as objects with the internal flavor ('nunpy' for 2.x series).

--dont -regener at e-ol d-i ndexes -- Disable regenerating old i ndexes. The
default is to regenerate old i ndexes as they are found.
--sortby=colum -- Do a table copy sorted by the val ues of "colum"”.
This requires an existing index in "colum". For reversing the order

use a negative value in the "step” part of "RANGE' (see "-R' flag).
Only applies to table objects.

--forceCSl -- Force the creation of a CSI index in case one is not
avai l able for the --sortby colum (this inplies the nodification of
the *source* file). The default is to not create it.

- - propi ndexes -- Propagate the indexes existing in original tables. The
default is to not propagate them Only applies to table objects.

Read on for a brief introduction to this utility.

E.2.2. A small tutorial on pt r epack

Imagine that we have ended the tutorial 1 (seethe output of exanpl es/ t ut ori al 1- 1. py), and we want to copy
our reduced data (i.e. those datasets that hangs from the / col urm group) to another file. First, let's remember the
content of theexanpl es/ tutori al 1. h5:

$ ptdunp tutoriall.h5

172

Utilities

tutorial1.h5 (File) 'Test file'

Last nmodif.: 'Mn Jan 8 16:30: 30 2007

oj ect Tree:

/ (Root Group) 'Test file'

/colums (G oup) 'Pressure and Nane'

[col ums/nanme (Array(3,)) 'Nane colum sel ection’

/col ums/pressure (Array(3,)) 'Pressure colum selection’
/[detector (G oup) 'Detector information'

/ det ect or/ readout (Tabl e(10,)) ' Readout exanpl e

Now, copy the/ col umms to other non-existing file. That's easy:
$ ptrepack tutorial 1. h5:/col ums reduced. h5
That's all. Let's see the contents of the newly created r educed. h5 file:

$ ptdunp reduced. h5

reduced. h5 (File) "'

Last nmodif.: 'Mn Jan 8 16:31:31 2007

oj ect Tree:

/ (Root G oup) "'

/name (Array(3,)) 'Nane colum sel ection’
[pressure (Array(3,)) 'Pressure colum selection'

S0, you have copied the children of / col umms group into the root of ther educed. h5 file.

Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group / col ums itself
included. Y ou can do that by just specifying the destination group:

$ ptrepack tutorial 1. h5:/col ums reduced. h5:/col ums
$ ptdunp reduced. h5

reduced. h5 (File) "'

Last nmodif.: 'Mn Jan 8 16:32:25 2007

oj ect Tree:

/ (Root G oup) "'

/name (Array(3,)) 'Nane colum sel ection’

[pressure (Array(3,)) 'Pressure colum sel ection’
/[colums (G oup) "'

[col ums/nanme (Array(3,)) 'Nane colum sel ection’
/col ums/pressure (Array(3,)) 'Pressure colum sel ection’

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding the
-o flag:

$ ptrepack -o tutorial 1. h5:/col umms reduced. h5:/col ums
$ ptdunp reduced. h5

reduced. h5 (File) "'

Last nmodif.: 'Mon Jan 8 16:33:08 2007

oj ect Tree:

/ (Root G oup) "'
[col ums (G oup)
[col ums/nanme (Array(3,)) 'Nane colum sel ection’

/col ums/pressure (Array(3,)) 'Pressure colum sel ection’

where you can see how the old contents of ther educed. h5 file has been overwritten.

173

Utilities

Y ou can copy just one single node in the repacking operation and change its name in destination:;

$ ptrepack tutorial 1. h5:/detector/readout reduced. h5:/rawdat a
$ ptdunp reduced. h5

reduced. h5 (File) "'

Last nmodif.: 'Mon Jan 8 16:33:59 2007

oj ect Tree:

/ (Root Group) "'

/rawdata (Tabl e(10,)) 'Readout exanple'

/[colums (G oup) "'

/col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'

wherethe/ det ect or / r eadout hasbeen copiedto/ r awdat a in destination.
We can change the filter properties as well:

$ ptrepack --conpl evel =1 tutorial 1. h5:/detector/readout reduced. h5:/rawdata

Probl ens doing the copy from'tutoriall. h5:/detector/readout’ to 'reduced. h5:/

rawdat a'

The error was --> tabl es. exceptions. NodeError: destination group ~°/ ° already
has a node naned " "rawdata "; you nay want to use the " “overwite ~ argunent

The destination file | ooks Iike:

reduced. h5 (File) "'

Last nmodif.: 'Mon Jan 8 16:33:59 2007

oj ect Tree:

/ (Root Group) "'

/rawdata (Tabl e(10,)) 'Readout exanple'

/colums (G oup) "'

/col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'

Traceback (nobst recent call |ast):
File "utils/ptrepack”, line 3, in ?
mai n()
File ".../tabl es/scripts/ptrepack.py", line 349, in nmain
stats = stats, start = start, stop = stop, step = step)
File ".../tabl es/scripts/ptrepack.py", line 107, in copylLeaf

rai se RuntineError, "Please check that the node names are not
duplicated in destination, and if so, add the --overwite-nodes flag
if desired."
Runti neError: Pl ease check that the node names are not duplicated in
destination, and if so, add the --overwite-nodes flag if desired.

Ooops! We ran into problems: we forgot that the / r awdat a pathname aready existed in destination file. Let's add
the- - over wi t e- nodes, asthe verbose error suggested:

$ ptrepack --overwite-nodes --conplevel =1 tutorial 1. h5:/detector/readout
reduced. h5: /r awdat a

$ ptdunp reduced. h5

reduced. h5 (File) "'

Last nmodif.: 'Mn Jan 8 16:36:54 2007

oj ect Tree:

/ (Root G oup) "'

/rawdat a (Tabl e(10,), shuffle, zlib(1l)) 'Readout exanple’

174

Utilities

[col ums (G oup)
[col ums/nanme (Array(3,)) 'Nane colum sel ection’
/col ums/pressure (Array(3,)) 'Pressure colum selection’

you can check how thefilter properties has been changed for the/ r awdat a table. Check asthe other nodes till exists.

Finally, let's copy adlice of ther eadout tablein origin to destination, under anew group called/ sl i ces and with
the name, for example, asl i ce:

$ ptrepack -R1,8,3 tutorial 1. h5:/detector/readout reduced. h5:/slices/aslice
$ ptdunp reduced. h5

reduced. h5 (File)

Last nodif.: 'Mon Jan 8 16:38:13 2007’

oj ect Tree:

/ (Root Gr oup)

/rawdata (Tabl e(10,), shuffle, zlib(1l)) 'Readout exanple'
[/ col ums (G oup)

[col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/pressure (Array(3,)) 'Pressure colum selection'
/slices (G oup)

/slices/aslice (Table(3,)) 'Readout exanple'

note how only 3 rows of the original r eadout table has been copied to the new asl i ce destination. Note as well
how the previously inexistent sl i ces group has been created in the same operation.

E.3. nctohb5

Thistool isableto convert afilein Net CDF [http://www.unidata.ucar.edu/packages/netcdf/] format to aPyTablesfile
(and hence, to a HDF5 file). However, for this to work, you will need the NetCDF interface for Python that comes
withtheexcellent Sci enti fi c Pyt hon (see[17]) package. This script wasinitially contributed by Jeff Whitaker.
It has been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be converted to PyTables, have alook at the Sci Py (see [18]) project (subpack-
agei 0), and look for different methods to import them into NunPy/ Nuner i ¢/ numar r ay objects. Following the
Sci Py documentation, you can read, among other formats, ASCII files (r ead_ar r ay), binary filesin C or Fortran
(f open) and MATLAB (version 4, 5 or 6) files (I oadmat). Once you have the content of your files as NunPy/

Nuner i ¢/ numar r ay objects, you can save them asregular (E) Ar r ays in PyTablesfiles. Remember, if you end
with a nice conversor, do not forget to contribute it back to the community. Thanks!

E.3.1. Usage

For instructions on how to useit, just passthe - h flag to the command:
$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-0] [--conplevel =(0-9)] [--conplib=lib] [--
shuffle=(0|1)] [--fletcher32=(0|1)] netcdffil enane hdf5fil enane

-h -- Print usage nessage.

-v -- Show nore information.

-0 -- Overwite destination file.

--conpl evel =(0-9) -- Set a conpression level (0 for no conpression, which

is the default).
--conplib=lib -- Set the conpression library to be used during the copy.

175

http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/packages/netcdf/

Utilities

lib can be set to "zlib", "lzo" or "ucl". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active
i f conpl evel >0).
--fletcher32=(0| 1) -- Whether to activate or not the fletcher32 filter (not

active by default).

176

Appendix F. PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However, there are
situations were you may want to create truly native PyTables files with those tools while retaining fully compatibility
with PyTables format. That is perfectly possible, and in this appendix is presented the format that you should endow
to your own-generated files in order to get afully PyTables compatiblefile.

We are going to describe the 2.0 version of PyTables file format (introduced in PyTables version 2.0). As time goes
by, some changes might be introduced (and documented here) in order to cope with new necessities. However, the
changes will be carefully pondered so as to ensure backward compatibility whenever is possible.

A PyTablesfileis composed with arbitrarily large amounts of HDF5 groups (G- oups in PyTables naming scheme)
and datasets (Leaves in PyTables naming scheme). For groups, the only requirements are that they must have some
system attributes available. By convention, system attributesin PyTables are written in upper case, and user attributes
in lower case but thisis not enforced by the software. In the case of datasets, besides the mandatory system attributes,
some conditions are further needed in their storage layout, as well as in the datatypes used in there, as we will see
shortly.

As afina remark, you can use any filter as you want to create a PyTables file, provided that the filter is a standard
onein HDF5, like Zib, shuffle or szip (although the last one can not be used from within PyTablesto create a new file,
datasets compressed with szip can be read, becauseit isthe HDF5 library which do the decompression transparently).

F.1. Mandatory attributes foraFil e

TheFi | e abject is, in fact, an special HDF5 group structure that is root for the rest of the objects on the object tree.
The next attributes are mandatory for the HDF5 root group structure in PyTablesfiles:

CLASS
This attribute should always be set to' GROUP' for group structures.

PYTABLES FORMAT_VERSION
It represents the internal format version, and currently should be set to the' 2. 0' string.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should containsthe string* 1. 0" .

F.2. Mandatory attributes for a G oup

The next attributes are mandatory for group structures:

CLASS
This attribute should always be set to' GROUP' for group structures.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should containsthe string* 1. 0" .

F.3. Optional attributes for a G oup

The next attributes are optional for group structures:

177

PyTables File Format

FILTERS
When present, this attribute contains the filter properties (aFi | t er s instance, see section Section 4.14.1) that
may be inherited by |eaves or groups created immediately under this group. Thisis a packed 64-bit integer struc-
ture, where

» byteO (the least-significant byte) is the compression level (conpl evel).
» byte 1listhe compression library used (conpl i b): O when irrelevant, 1 for Zlib, 2 for LZO and 3 for Bzip2.

» byte 2 indicates which parameterless filters are enabled (shuf f | e and f | et cher 32): bit 0 is for Shuffle
while bit 1isfor Fletcher32.

« other bytes are reserved for future use.

F.4. Mandatory attributes, storage layout and support-
ed data types for Leaves

This depends on the kind of Leaf . The format for each type follows.

F.4.1. Tabl e format

Mandatory attributes
The next attributes are mandatory for table structures:

CLASS
Must besetto' TABLE' .

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string ' 2. 6 .

FIELD_X_NAME
It contains the names of the different fields. The X means the number of the field, zero-based (beware, order do
matter). Y ou should add as many attributes of this kind as fields you have in your records.

FIELD_X_FILL
It contains the default values of the different fields. All the datatypes are suported natively, except for complex
types that are currently serialized using Pickle. The X means the number of the field, zero-based (beware, order
do matter). Y ou should add as many attributes of this kind as fields you have in your records. These fields are
meant for saving the default values persistently and their existence is optional.

NROWS
This should contain the number of compound data type entries in the dataset. It must be an int data type.

Storage Layout
A Tabl e has adataspace with a 1-dimensional chunked layout.
Datatypes supported

The datatype of the elements (rows) of Tabl e must bethe H5T _COMPOUND compound datatype, and each of these
compound components must be built with only the next HDF5 data types classes:

178

PyTables File Format

H5T_BITFIELD
This class is used to represent the Bool type. Such a type must be build using a H5T_NATIVE_B8 datatype,
followed by aHDF5 H5Tset _pr eci si on call to set its precision to be just 1 hit.

H5T_INTEGER
Thisincludes the next data types:

H5T_NATIVE_SCHAR
This represents asigned char C type, but it is effectively used to represent an | nt 8 type.

H5T_NATIVE_UCHAR
This represents an unsigned char C type, but it is effectively used to represent an Ul nt 8 type.

H5T_NATIVE_SHORT
Thisrepresents ashort C type, and it is effectively used to represent an | nt 16 type.

H5T_NATIVE_USHORT
This represents an unsigned short C type, and it is effectively used to represent an Ul nt 16 type.

H5T_NATIVE_INT
Thisrepresentsan int C type, and it is effectively used to represent an | nt 32 type.

H5T_NATIVE_UINT
This represents an unsigned int C type, and it is effectively used to represent an Ul nt 32 type.

H5T_NATIVE_LONG
This represents along C type, and it is effectively used to represent an | nt 32 or an | nt 64, depending on
whether you are running a 32-hit or 64-bit architecture.

H5T_NATIVE_ULONG
This represents an unsigned long C type, and it is effectively used to represent an Ul nt 32 or an Ul nt 64,
depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_LLONG
Thisrepresentsalong long C type (__i nt 64, if you are using a Windows system) and it is effectively used
to represent an | nt 64 type.

H5T_NATIVE_ULLONG
Thisrepresents an unsigned long long C type (beware: thistype does not have a correspondence on Windows
systems) and it is effectively used to represent an Ul nt 64 type.

H5T_FLOAT
Thisincludes the next datatypes:

H5T_NATIVE_FLOAT
Thisrepresents afloat C type and it is effectively used to represent an Fl oat 32 type.

H5T_NATIVE_DOUBLE
This represents adouble C type and it is effectively used to represent an FI oat 64 type.

H5T_TIME
Thisincludes the next datatypes:

H5T_UNIX_D32
This represents a POSIX time t C type and it is effectively used to represent a' Ti me32' aliasing type,
which correspondsto an | nt 32 type.

179

PyTables File Format

H5T_UNIX_D64
This represents a POSI X struct timeval C type and it is effectively used to represent a' Ti me64' aliasing
type, which correspondsto aFl oat 64 type.

H5T_STRING
The datatype used to describe stringsin PyTablesisH5T_C Sl (i.e. astring C type) followed with a call to the
HDF5 H5Tset _si ze() function to set their length.

H5T_ARRAY
This alows the construction of homogeneous, multidimensional arrays, so that you can include such objectsin
compound records. The types supported as elements of H5T_ARRAY data types are the ones described above.
Currently, PyTables does not support nested H5T_ARRAY types.

H5T_COMPOUND
This allows the support for datatypes that are compounds of compounds (thisis also known as nested types along
this manual).

This support can also be used for defining complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the HST_FLOAT atom-
ic datatype class. The name of the first member should be "r" and represents the real part. The name of
the second member should be "i" and represents the imaginary part. The precision property of both of the
H5T_FLOAT members must be either 32 significant bits(e.g. HST_NATIVE_FLOAT) or 64 significant bits (e.g.
H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types respectively.

F.4.2. Array format

Mandatory attributes
The next attributes are mandatory for array structures:

CLASS
Must beset to' ARRAY" .

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string ' 2. 3" .

Storage Layout

An Arr ay has a dataspace with a N-dimensional contiguous layout (if you prefer a chunked layout see EAr r ay
below).

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes. H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME classis also supported for reading existing Ar -

ray objects, but not for creating them. See the Tabl e format description in Section F.4.1 for more info about these

types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the HST_COMPOUND
data type class. Seethe Tabl e format description in Section F.4.1 for more info about this special type.

180

PyTables File Format

Y ou should note that HST_ARRAY class datatypes are not allowed in Ar r ay objects.
F.4.3. CArray format

Mandatory attributes
The next attributes are mandatory for CArray structures:

CLASS
Must be set to' CARRAY" .

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string* 1. 0" .

Storage Layout

An CAr r ay has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of CAr r ay must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes. H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. TheH5T_TIME classisalso supported for reading existing CAr -

ray objects, but not for creating them. See the Tabl e format description in Section F.4.1 for more info about these

types.

In addition to the HDF5 atomic data types, the CArray format supports complex numberswith the HST_COMPOUND
data type class. Seethe Tabl e format description in Section F.4.1 for more info about this special type.

Y ou should note that HST_ARRAY class datatypes are not allowed yet in Ar r ay objects.

F.4.4. EAr r ay format

Mandatory attributes
The next attributes are mandatory for earray structures:

CLASS
Must be set to' EARRAY" .

EXTDIM
(Integer) Must be set to the extendable dimension. Only one extendable dimension is supported right now.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string* 1. 3" .

Storage Layout

An EAr r ay has a dataspace with a N-dimensional chunked layout.

181

PyTables File Format

Datatypes supported

The elements of EAr r ay are alowed to have the same data types as for the elements in the Array format. They
can be one of the HDF5 atomic data type classes. HST_BITFIELD, H5T INTEGER, H5T _FLOAT, H5T_TIME or
H5T_STRING, seethe Tabl e format description in Section F.4.1 for more info about these types. They can also be
aH5T_COMPOUND datatype representing a complex number, see the Tabl e format description in Section F.4.1.

Y ou should note that HST_ARRAY class data types are not allowed in EAr r ay objects.
F.4.5. VLAr r ay format

Mandatory attributes
The next attributes are mandatory for viarray structures:

CLASS
Must be set to' VLARRAY' .

PSEUDOATOM
Thisisused so as to specify the kind of pseudo-atom (see Section F.4.5) for the VLAr r ay. It can take the values
"vlstring','vlunicode' or' object’.Ifyouratomisnotapseudo-atom then you should not specify it.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string*' 1. 3" .

Storage Layout

AnVLAr r ay has adataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLAr r ay objects must bethe H5T_VLEN variable-length (or VL for short)
datatype, and the base datatype specified for the VL datatype can be of any atomic HDF5 datatype that islisted in the
Tabl e format description Section F.4.1. That includes the classes:

« H5T_BITFIELD
« H5T_INTEGER
« H5T_FLOAT

« H5T_TIME

« H5T_STRING
« H5T_ARRAY

They can also be aH5T_COMPOUND data type representing a complex number, see the Tabl e format description
in Section F.4.1 for adetailed description.

Y ou should notethat this does not include another VL datatype, or acompound datatype that does not fit the description
of acomplex number. Note as well that, for obj ect and vl st ri ng pseudo-atoms, the base for the VL datatypeis
alwaysaH5T_NATI VE_UCHAR (H5T_NATI VE_UI NT for vl uni code). That means that the complete row entry
in the dataset has to be used in order to fully serialize the object or the variable length string.

182

PyTables File Format

F.5. Optional attributes for Leaves

The next attributes are optional for leaves:

FLAVOR
Thisis meant to provide the information about the kind of object kept in the Leaf , i.e. when the dataset is read,
it will be converted to the indicated flavor. It can take one the next string values:

" numpy"
Read data (record arrays, arrays, records, scalars) will be returned as NunPy objects.

"numarray"”
Read datawill be returned as numnar r ay objects.

"numeric"
Read datawill be returned as Numrer i ¢ objects.

" python"
Read datawill be returned as Python lists, tuples or scalars.

183

Bibliography

[1] The HDF Group. What is HDF5?. Concise description about HDF5 capabilities and its differences from earlier
versions (HDF4). http://hdfgroup.org/whatishdf5.html .

[2] The HDF Group. Introduction to HDF5. Introduction to the HDF5 data model and programming model. http://
hdfgroup.org/HDF5/doc/H5.intro.html .

[3] The HDF Group. The HDF5 table programming model. Examples on using HDF5 tables with the C API. http://
hdfgroup.org/HDF5/Tutor/h5table.html .

[4] David Mertz. Objectify. On the 'Pythonic’ treatment of XML documents as objects(I1). Article describing XML
Objectify, a Python module that allows working with XML documents as Python objects. Some of the
ideas presented here are used in PyTables. http://www-106.ibm.com/devel operworks/xml/library/xml-mat-
ters2/index.html .

[5] Greg Ewing. Pyrex. A Language for Writing Python Extension Modules. http://www.cosc.canterbury.ac.nz/~greg/
python/Pyrex .

[6] Glenn Davis, Russ Rew, Steve Emmerson, John Caron, and Harvey Davies. NetCDF. Network Common Data
Form. Aninterface for array-oriented data access and alibrary that provides an implementation of the inter-
face. http://www.unidata.ucar.edu/packages/netcdf/ .

[7] Russ Rew, Mike Folk, and et al. NetCDF-4. Network Common Data Form version 4. Merging the NetCDF and
HDF5 Libraries. http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ .

[8] Travis Oliphant and et al. NumPy. Scientific Computing with Numerical Python. The latest and most powerful re-
implementation of Numericto date. It implementsall the featuresthat can befound in Numeric and numarray,
plus abunch of new others. In general, it is more efficient aswell. http://numeric.scipy.org/ .

[9] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, and Travis Oliphant. Numerical Python. Package to
speed-up arithmetic operations on arrays of numbers. http://sourceforge.net/projects/numpy/ .

[10] Perry Greenfield, Todd Miller, Richard L White, J. C. Hsu, Paul Barrett, Jochen Kipper, and Peter J Verveer.
Numarray. Reimplementation of Numeric which adds the ability to efficiently manipulate large numeric
arrays in ways similar to Matlab and IDL. Among others, Numarray provides the record array extension.
http://stsdas.stsci.edu/numarray/ .

[11] David Cooke and Timothy Hochberg. Numexpr. Fast evaluation of array expressions by using a vector-based
virtual machine. It is an enhaced computing kernel that is generally faster (between 1x and 10x, depending
on the kind of operations) than NumPy at evaluating complex array expressions. http://code.google.com/p/
numexpr .

[12] JeanLoup Gailly and Mark Adler. Zib. A Massively Spiffy Yet Delicately Unobtrusive Compression Library. A
standard library for compression purposes. http://www.gzip.org/zlib/ .

[13] Markus F Oberhumer. LZO. A data compression library which is suitable for data de-/compression in real-time.
It offers pretty fast compression and extremly fast decompression with reasonable compression ratio. http://
www.oberhumer.com/opensource/ .

[14] Julian Seward. bzip2. A high performance lossless compressor. It offers very high compression ratios within
reasonable times. http://www.bzip.org/ .

[15] Alexis Wilke, Jerry S., Kees Zeelenberg, and Mathias Michaglis. GhnuwWin32. GNU (and other) tools ported to
Win32. GnuwWin32 provides native Win32-versions of GNU tools, or toolswith asimilar open source licence.
http://gnuwin32.sourceforge.net/ .

184

http://hdfgroup.org/whatishdf5.html
http://hdfgroup.org/HDF5/doc/H5.intro.html
http://hdfgroup.org/HDF5/doc/H5.intro.html
http://hdfgroup.org/HDF5/Tutor/h5table.html
http://hdfgroup.org/HDF5/Tutor/h5table.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://numeric.scipy.org/
http://sourceforge.net/projects/numpy/
http://stsdas.stsci.edu/numarray/
http://code.google.com/p/numexpr
http://code.google.com/p/numexpr
http://www.gzip.org/zlib/
http://www.oberhumer.com/opensource/
http://www.oberhumer.com/opensource/
http://www.bzip.org/
http://gnuwin32.sourceforge.net/

Bibliography

[16] Armin Rigo. Psyco. A Python specializing compiler. Run existing Python software faster, with no change in your
source. http://psyco.sourceforge.net .

[17] Konrad Hinsen. Scientific Python. Collection of Python modules useful for scientific computing. http://
starship.python.net/~hinsen/ScientificPython/ .

[18] Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy. Scientific tools for Python. SciPy supplements the
popular Numeric module, gathering a variety of high level science and engineering modules together as a
single package. http://www.scipy.org .

[19] Francesc Alted and Ivan Vilata. Optimization of file openings in PyTables. This document explores the savings
of the opening process in terms of both CPU time and memory, due to the adoption of a LRU cache for the
nodes in the object tree. http://www.pytables.org/docs/NewObjectTreeCache.pdf .

[20] Francesc Alted and Ivan Vilata. OPS: The indexing system of PyTables 2 Professional Edition. Exhaustive de-
scription and benchmarks about the indexing engine that comeswith PyTables Pro. http://www.pytables.org/
docs/OPSl-indexes.pdf .

[21] Vicent Mas. ViTables. AGUI for PyTablessHDF5files. It isagraphical tool for browsing and editing filesin both
PyTables and HDF5 formats. http://www.vitables.org .

185

http://psyco.sourceforge.net
http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://www.pytables.org/docs/NewObjectTreeCache.pdf
http://www.pytables.org/docs/OPSI-indexes.pdf
http://www.pytables.org/docs/OPSI-indexes.pdf
http://www.vitables.org

	PyTables User's Guide
	Table of Contents
	Part I. The PyTables Core Library
	Chapter 1. Introduction
	1.1. Main Features
	1.2. The Object Tree

	Chapter 2. Installation
	2.1. Installation from source
	2.1.1. Prerequisites
	2.1.2. PyTables package installation

	2.2. Binary installation (Windows)
	2.2.1. Windows prerequisites
	2.2.2. PyTables package installation

	Chapter 3. Tutorials
	3.1. Getting started
	3.1.1. Importing tables objects
	3.1.2. Declaring a Column Descriptor
	3.1.3. Creating a PyTables file from scratch
	3.1.4. Creating a new group
	3.1.5. Creating a new table
	3.1.6. Reading (and selecting) data in a table
	3.1.7. Creating new array objects
	3.1.8. Closing the file and looking at its content

	3.2. Browsing the object tree
	3.2.1. Traversing the object tree
	3.2.2. Setting and getting user attributes
	3.2.3. Getting object metadata
	3.2.4. Reading data from Array objects

	3.3. Commiting data to tables and arrays
	3.3.1. Appending data to an existing table
	3.3.2. Modifying data in tables
	3.3.3. Modifying data in arrays
	3.3.4. And finally... how to delete rows from a table

	3.4. Multidimensional table cells and automatic sanity checks
	3.4.1. Shape checking
	3.4.2. Field name checking
	3.4.3. Data type checking

	3.5. Exercising the Undo/Redo feature
	3.5.1. A basic example
	3.5.2. A more complete example

	3.6. Using enumerated types
	3.6.1. Enumerated columns
	3.6.2. Enumerated arrays

	3.7. Dealing with nested structures in tables
	3.7.1. Nested table creation
	3.7.2. Reading nested tables
	3.7.3. Using Cols accessor
	3.7.4. Accessing meta-information of nested tables

	3.8. Other examples in PyTables distribution

	Chapter 4. Library Reference
	4.1. tables variables and functions
	4.1.1. Global variables
	4.1.2. Global functions
	copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)
	isHDF5File(filename)
	isPyTablesFile(filename)
	lrange([start,]stop[, step])
	openFile(filename, mode='r', title='', rootUEP="/", filters=None, **kwargs)
	print_versions()
	restrict_flavors(keep=['python'])
	split_type(type)
	test(verbose=False, heavy=False)
	whichLibVersion(name)

	4.2. The File class
	4.2.1. File instance variables
	4.2.2. File methods — file handling
	close()
	copyFile(dstfilename, overwrite=False, **kwargs)
	flush()
	fileno()
	__enter__()
	__exit__([*exc_info])
	__str__()
	__repr__()

	4.2.3. File methods — hierarchy manipulation
	copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)
	copyNode(where, newparent=None, newname=None, name=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	createArray(where, name, object, title='', byteorder=None, createparents=False)
	createCArray(where, name, atom, shape, title='', filters=None, chunkshape=None, byteorder=None, createparents=False)
	createEArray(where, name, atom, shape, title='', filters=None, expectedrows=EXPECTED_ROWS_EARRAY, chunkshape=None, byteorder=None, createparents=False)
	createGroup(where, name, title='', filters=None, createparents=False)
	createTable(where, name, description, title='', filters=None, expectedrows=EXPECTED_ROWS_TABLE, chunkshape=None, byteorder=None, createparents=False)
	createVLArray(where, name, atom, title='', filters=None, expectedsizeinMB=1.0, chunkshape=None, byteorder=None, createparents=False)
	moveNode(where, newparent=None, newname=None, name=None, overwrite=False, createparents=False)
	removeNode(where, name=None, recursive=False)
	renameNode(where, newname, name=None, overwrite=False)

	4.2.4. File methods — tree traversal
	getNode(where, name=None, classname=None)
	isVisibleNode(path)
	iterNodes(where, classname=None)
	listNodes(where, classname=None)
	walkGroups(where='/')
	walkNodes(where="/", classname="")
	__contains__(path)
	__iter__()

	4.2.5. File methods — Undo/Redo support
	disableUndo()
	enableUndo(filters=Filters(complevel=1))
	getCurrentMark()
	goto(mark)
	isUndoEnabled()
	mark(name=None)
	redo(mark=None)
	undo(mark=None)

	4.2.6. File methods — atttribute handling
	copyNodeAttrs(where, dstnode, name=None)
	delNodeAttr(where, attrname, name=None)
	getNodeAttr(where, attrname, name=None)
	setNodeAttr(where, attrname, attrvalue, name=None)

	4.3. The Node class
	4.3.1. Node instance variables — location dependent
	4.3.2. Node instance variables — location independent
	4.3.3. Node instance variables — attribute shorthands
	4.3.4. Node methods — hierarchy manipulation
	_f_close()
	_f_copy(newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_isVisible()
	_f_move(newparent=None, newname=None, overwrite=False, createparents=False)
	_f_remove(recursive=False)
	_f_rename(newname, overwrite=False)

	4.3.5. Node methods — attribute handling
	_f_delAttr(name)
	_f_getAttr(name)
	_f_setAttr(name, value)

	4.4. The Group class
	4.4.1. Group instance variables
	4.4.2. Group methods
	_f_close()
	_f_copy(newparent, newname, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_copyChildren(dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_getChild(childname)
	_f_iterNodes(classname=None)
	_f_listNodes(classname=None)
	_f_walkGroups()
	_f_walkNodes(classname=None)

	4.4.3. Group special methods
	__contains__(name)
	__delattr__(name)
	__getattr__(name)
	__iter__()
	__repr__()
	__setattr__(name, value)
	__str__()

	4.5. The Leaf class
	4.5.1. Leaf instance variables
	4.5.2. Leaf instance variables — aliases
	4.5.3. Leaf methods
	close(flush=True)
	copy(newparent, newname, overwrite=False, createparents=False, **kwargs)
	delAttr(name)
	flush()
	getAttr(name)
	isVisible()
	move(newparent=None, newname=None, overwrite=False, createparents=False)
	rename(newname)
	remove()
	setAttr(name, value)
	truncate(size)
	__len__()
	_f_close(flush=True)

	4.6. The Table class
	4.6.1. Table instance variables
	4.6.2. Table methods — reading
	col(name)
	iterrows(start=None, stop=None, step=None)
	itersequence(sequence)
	itersorted(sortby, forceCSI=False, start=None, stop=None, step=None)
	read(start=None, stop=None, step=None, field=None)
	readCoordinates(coords, field=None)
	readSorted(sortby, forceCSI=False, field=None, start=None, stop=None, step=None)
	__getitem__(key)
	__iter__()

	4.6.3. Table methods — writing
	append(rows)
	modifyColumn(start=None, stop=None, step=1, column=None, colname=None)
	modifyColumns(start=None, stop=None, step=1, columns=None, names=None)
	modifyRows(start=None, stop=None, step=1, rows=None)
	removeRows(start, stop=None)
	__setitem__(key, value)

	4.6.4. Table methods — querying
	getWhereList(condition, condvars=None, sort=False, start=None, stop=None, step=None)
	readWhere(condition, condvars=None, field=None, start=None, stop=None, step=None)
	where(condition, condvars=None, start=None, stop=None, step=None)
	whereAppend(dstTable, condition, condvars=None, start=None, stop=None, step=None)
	willQueryUseIndexing(condition, condvars=None)

	4.6.5. Table methods — other
	copy(newparent=None, newname=None, overwrite=False, createparents=False, **kwargs)
	flushRowsToIndex()
	getEnum(colname)
	reIndex()
	reIndexDirty()

	4.6.6. The Description class
	Description instance variables
	Description methods
	_f_walk(type='All')

	4.6.7. The Row class
	Row instance variables
	Row methods
	append()
	fetch_all_fields()
	update()

	Row special methods
	__getitem__(key)
	__setitem__(key, value)

	4.6.8. The Cols class
	Cols instance variables
	Cols methods
	_f_col(colname)
	__getitem__(key)
	__len__()
	__setitem__(key)

	4.6.9. The Column class
	Column instance variables
	Column methods
	createIndex(optlevel=6, kind="medium", filters=None, tmp_dir=None)
	createCSIndex(filters=None, tmp_dir=None)
	reIndex()
	reIndexDirty()
	removeIndex()

	Column special methods
	__getitem__(key)
	__len__()
	__setitem__(key, value)

	4.7. The Array class
	4.7.1. Array instance variables
	4.7.2. Array methods
	getEnum()
	iterrows(start=None, stop=None, step=None)
	next()
	read(start=None, stop=None, step=None)

	4.7.3. Array special methods
	__getitem__(key)
	__iter__()
	__setitem__(key, value)

	4.8. The CArray class
	4.8.1. Example of use

	4.9. The EArray class
	4.9.1. EArray methods
	append(sequence)

	4.9.2. Example of use

	4.10. The VLArray class
	4.10.1. VLArray instance variables
	4.10.2. VLArray methods
	append(sequence)
	getEnum()
	iterrows(start=None, stop=None, step=None)
	next()
	read(start=None, stop=None, step=1)

	4.10.3. VLArray special methods
	__getitem__(key)
	__iter__()
	__setitem__(keys, value)

	4.10.4. Example of use

	4.11. The UnImplemented class
	4.12. The AttributeSet class
	4.12.1. Notes on native and pickled attributes
	4.12.2. AttributeSet instance variables
	4.12.3. AttributeSet methods
	_f_copy(where)
	_f_list(attrset='user')
	_f_rename(oldattrname, newattrname)
	__contains__(name)

	4.13. Declarative classes
	4.13.1. The Atom class and its descendants.
	Atom instance variables
	Atom methods
	copy(**override)

	Atom factory methods
	from_dtype(dtype, dflt=None)
	from_kind(kind, itemsize=None, shape=(), dflt=None)
	from_sctype(sctype, shape=(), dflt=None)
	from_type(type, shape=(), dflt=None)

	Atom constructors
	StringAtom(itemsize, shape=(), dflt='')
	BoolAtom(shape=(), dflt=False)
	IntAtom(itemsize=4, shape=(), dflt=0)
	Int8Atom(shape=(), dflt=0)
	Int16Atom(shape=(), dflt=0)
	Int32Atom(shape=(), dflt=0)
	Int64Atom(shape=(), dflt=0)
	UIntAtom(itemsize=4, shape=(), dflt=0)
	UInt8Atom(shape=(), dflt=0)
	UInt16Atom(shape=(), dflt=0)
	UInt32Atom(shape=(), dflt=0)
	UInt64Atom(shape=(), dflt=0)
	Float32Atom(shape=(), dflt=0.0)
	Float64Atom(shape=(), dflt=0.0)
	ComplexAtom(itemsize, shape=(), dflt=0j)
	TimeAtom(itemsize=4, shape=(), dflt=0)
	Time32Atom(shape=(), dflt=0)
	Time64Atom(shape=(), dflt=0.0)
	EnumAtom(enum, dflt, base, shape=())
	Examples

	Pseudo atoms
	ObjectAtom()
	VLStringAtom()
	VLUnicodeAtom()

	4.13.2. The Col class and its descendants
	Col instance variables
	Col factory methods
	from_atom(atom, pos=None)

	Col constructors
	StringCol(itemsize, shape=(), dflt='', pos=None)
	BoolCol(shape=(), dflt=False, pos=None)
	IntCol(itemsize=4, shape=(), dflt=0, pos=None)
	Int8Col(shape=(), dflt=0, pos=None)
	Int16Col(shape=(), dflt=0, pos=None)
	Int32Col(shape=(), dflt=0, pos=None)
	Int64Col(shape=(), dflt=0, pos=None)
	UIntCol(itemsize=4, shape=(), dflt=0, pos=None)
	UInt8Col(shape=(), dflt=0, pos=None)
	UInt16Col(shape=(), dflt=0, pos=None)
	UInt32Col(shape=(), dflt=0, pos=None)
	UInt64Col(shape=(), dflt=0, pos=None)
	Float32Col(shape=(), dflt=0.0, pos=None)
	Float64Col(shape=(), dflt=0.0, pos=None)
	ComplexCol(itemsize, shape=(), dflt=0j, pos=None)
	TimeCol(itemsize=4, shape=(), dflt=0, pos=None)
	Time32Col(shape=(), dflt=0, pos=None)
	Time64Col(shape=(), dflt=0.0, pos=None)
	EnumCol(enum, dflt, base, shape=(), pos=None)

	4.13.3. The IsDescription class
	IsDescription special attributes
	IsDescription class variables

	4.14. Helper classes
	4.14.1. The Filters class
	Filters instance variables
	Example of use
	Filters(complevel=0, complib='zlib', shuffle=True, fletcher32=False)
	copy(override)

	4.14.2. The Index class
	Index instance variables
	Index methods
	readSorted(start=None, stop=None, step=None)
	readIndices(start=None, stop=None, step=None)

	Index special methods
	__getitem__(key)

	4.14.3. The Enum class
	Enum special methods
	__call__(value, *default)
	__contains__(name)
	__eq__(other)
	__getattr__(name)
	__getitem__(name)
	__iter__()
	__len__()
	__repr__()

	Chapter 5. Optimization tips
	5.1. Understanding chunking
	5.1.1. Informing PyTables about expected number of rows in tables or arrays
	5.1.2. Fine-tuning the chunksize

	5.2. Accelerating your searches
	5.2.1. In-kernel searches
	5.2.2. Indexed searches
	5.2.3. Indexing and Solid State Disks (SSD)
	5.2.4. Achieving ultimate speed: sorted tables and beyond

	5.3. Compression issues
	5.3.1. A study on supported compression libraries
	5.3.2. Shuffling (or how to make the compression process more effective)

	5.4. Using Psyco
	5.5. Getting the most from the node LRU cache
	5.6. Compacting your PyTables files

	Part II. Complementary modules
	Chapter 6. filenode - simulating a filesystem with PyTables
	6.1. What is filenode?
	6.2. Finding a filenode node
	6.3. filenode - simulating files inside PyTables
	6.3.1. Creating a new file node
	6.3.2. Using a file node
	6.3.3. Opening an existing file node
	6.3.4. Adding metadata to a file node

	6.4. Complementary notes
	6.5. Current limitations
	6.6. filenode module reference
	6.6.1. Global constants
	6.6.2. Global functions
	newNode(h5file, where, name, title="", filters=None, expectedsize=1000)
	openNode(node, mode = 'r')

	6.6.3. The FileNode abstract class
	FileNode methods
	getLineSeparator()
	setLineSeparator()
	getAttrs()
	close()
	next()
	read(size=None)
	readline(size=-1)
	readlines(sizehint=-1)
	seek(offset, whence=0)
	tell()
	xreadlines()

	6.6.4. The ROFileNode class
	6.6.5. The RAFileNode class
	flush()
	truncate(size=None)
	write(string)
	writelines(sequence)

	Chapter 7. netcdf3 - a PyTables NetCDF3 emulation API
	7.1. What is netcdf3?
	7.2. Using the tables.netcdf3 package
	7.2.1. Creating/Opening/Closing a tables.netcdf3 file
	7.2.2. Dimensions in a tables.netcdf3 file
	7.2.3. Variables in a tables.netcdf3 file
	7.2.4. Attributes in a tables.netcdf3 file
	7.2.5. Writing data to and retrieving data from a tables.netcdf3 variable
	7.2.6. Efficient compression of tables.netcdf3 variables

	7.3. tables.netcdf3 package reference
	7.3.1. Global constants
	7.3.2. The NetCDFFile class
	NetCDFFile methods
	close()
	sync()
	ncattrs()
	createDimension(name, length)
	createVariable(name, type, dimensions, least_significant_digit= None, expectedsize=10000, filters=None)
	nctoh5(filename, unpackshort=True, filters=None)
	h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

	7.3.3. The NetCDFVariable class
	NetCDFVariable methods
	typecode()
	append(data)
	ncattrs()
	assignValue(data)
	getValue()

	7.4. Converting between true netCDF files and tables.netcdf3 files
	7.5. tables.netcdf3 file structure
	7.6. Sharing data in tables.netcdf3 files over the internet with OPeNDAP
	7.7. Differences between the Scientific.IO.NetCDF API and the tables.netcdf3 API

	Part III. Appendixes
	Appendix A. Supported data types in PyTables
	Appendix B. Condition syntax
	Appendix C. PyTables' parameter files.
	C.1. Tunable parameters in parameters.py.
	C.1.1. Recommended maximum values
	C.1.2. Cache limits
	C.1.3. Parameters for the I/O buffer in Table objects.
	C.1.4. Miscellaneous

	C.2. Tunable parameters in _parameters_pro.py.
	C.2.1. Parameters for the different internal caches
	C.2.2. Parameters for general cache behaviour

	Appendix D. Using nested record arrays
	D.1. Introduction
	D.2. NestedRecArray methods
	D.3. NestedRecord objects

	Appendix E. Utilities
	E.1. ptdump
	E.1.1. Usage
	E.1.2. A small tutorial on ptdump

	E.2. ptrepack
	E.2.1. Usage
	E.2.2. A small tutorial on ptrepack

	E.3. nctoh5
	E.3.1. Usage

	Appendix F. PyTables File Format
	F.1. Mandatory attributes for a File
	F.2. Mandatory attributes for a Group
	F.3. Optional attributes for a Group
	F.4. Mandatory attributes, storage layout and supported data types for Leaves
	F.4.1. Table format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	F.4.2. Array format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	F.4.3. CArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	F.4.4. EArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	F.4.5. VLArray format
	Mandatory attributes
	Storage Layout
	Data types supported

	F.5. Optional attributes for Leaves

	Bibliography

