ArgoUML User Manual

A tutorial and reference description

Alejandro Ramirez
Philippe Vanpeperstraete
Andreas Rueckert
Kunle Odutola
Jeremy Bennett
Linus Tolke
Michiel van der Wulp

ArgoUML User Manual: A tutorial and reference description

by Algjandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola, Jeremy Bennett,
Linus Tolke, and Michiel van der Wulp

Copyright © 2004, 2005, 2006 Michiel van der Wulp

Copyright © 2003 Linus Tolke

Copyright © 2001, 2002 Jeremy Bennett

Copyright © 2001 Kunle Odutola

Copyright © 2000 Philippe Vanpeperstraete

Copyright © 2000 Algjandro Ramirez

Copyright © 2000 Andreas Rueckert

Abstract

This version of the manual is intended to describe the version 0.22 of ArgoUML.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later. A
copy of this license is included in the section Open Publication License. The latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/].

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Contents

O ot Xvii
O | g oo [T 1 o o PP 1
1.1. Origins and Overview of ArgOUMLcoouiiiiiiiii e 1
1.1.1. Object Oriented Analysisand DeSigNccuvvvniiiiiiiiii e, 1
1.1.2. The Development of ArgOUMLcvveiiiiiiiiii e e 1

1.1.3. Finding Out More About the ArgoUML Projectcoccovvviiviiiiievinennnnn, 2

1.2. Scope of ThiISUSEr ManUaluiiiiiiiiiiiiiii e 2
1.2.0. Target AUdIENCEoovuiieiiiiii et e 2

S ol o] o< PP 3

1.3. Overview of the User Manual ..o 3
1.3.1. Tutorial Manual SEUCTUNEcevuniiiiiiie e 3

1.3.2. Reference Manual SETUCLUIEuiiieieiiiiiiii e 3
1.3.3. User FEedbackooveeiii e 4

L4, ASSUMPLIONS ..ottt e ettt e e et e e e et e e e e e e eaans 4
O 1o g PP 5
2. Introduction (DEING WITEEN)o.iii e e 6
3. UML BaSed OOAEDuiiiiiieeee e 7
3.1 Background tO UMLiiiieiiiie e e 7

3.2. UML Based Processes for OOAEDoveuiiiiiieiiie e 7
321 TYPES O PrOCESSvueieeiiie ettt 8

3.2.2. A Development Processfor ThisManualcccoceiveiiiiiiiineeinnnes 11

3.3. Why ArgoUML isDifferentccooiiiiiiiiii e 12
3.3.1. Cognitive PSYChOIOGYuuevveeeiiiiiii e e e e 12

3.3.2. OpeN StANAArASuevveeeiiieeee e 13

3.3.3. 100% PUrE JAVA .. et 15

3.3.4. OPEN SOUICE ...uierieiiiie ittt ettt e e e e e 15

G AN o 0 U =T [t 15
341 Getting Startedcvveieiiiee e 15

3.4.2. The ArgoUML User Interfacecooovvveviiiiiiiiiiii e 18

G 30 T 111 0 26

3.4.4, Working With DeSign CritiCScceuuuiiiiiiiiiieiiii e 29

3.5. The Case Study (TODEWIITIEN)iiiiiiiceii e 32

4. ReqQUITEMENES CaPEUIEiieiiiei et et e e et e e e e ean e aeees 33
A2 INEFOAUCTION .ttt e e et e e e e ean e 33

4.2. The Requirements Capture PrOCESScvvueiiiieeiieeeieeeiiieeaeesaneeseeesanees 33
42,1, PrOCESS SIEDS ..ivuiiieii ettt et 34

4.3. Output of the Requirements Capture PrOCESSceeuuveeinieeeneriieeiiieaennas 34
4.3.1. ViSiON DOCUMENE ...eeuiiitiieeiie ettt e e e e e e ea e eees 34

4.3.2.Use Case Diagramcccuuiiiiieeieeei e 35

4.3.3. The Use Case SpeCificationccocevviiiiiiiiiiii e, 40

4.3.4. Supplementary Requirement Specificationccccoceevvviiiveennnenn, 43

4.4. Using Use CaseSiN ArgOUMLcouiiiiiiii e e 44
AA.D. ACKONS .ot 44

AA.2. USECASES ...ttt 44

A.4.3. ASSOCIALIONS ...eveeiii ettt et 46

4.4.4. Hierarchical USBCaSseSc..vvevuiiiiieiiiicii e 47

TS [(=011 0= 48

4.4.6. DOCUMENEALION ...evuiieiiiiiiee et 48

4.4.7. System Boundary BOXccouuviiiiiiiiiiiiiieeei e 49

A5, CASESHULY ..eeveeeieit ettt 49
4.5.2. ViSiON DOCUMENE ...ceuniitiiiii et e e e ee e eees 49

4.5.2. Identifying Actors and Use CaseSceuvveiiiiiiiieiieeeee e 51

4.5.3. Associations (ToObe Written)ccovvviiiieiii i, 51

iv

ArgoUML User Manual

4.5.4. Advanced Diagram Features (To bewritten)cccccevvvevveennnenn. 52
4.5.5. Use Case Specifications (To bewritten)ccooeveveviiiveiiveennnenn, 52
4.5.6. Supplementary Requirements Specification (To be written) 52

B ANBIYSIS et 53
5.1 The ANAlYSISPIOCESSiiiiiiiiiieii et 53
5.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 53
5.1.2. Concept Diagram (ToO be WIitten)coeevveiiiiiiiii e 54

5.1.3. System Sequence Diagram (To bewritten)cccoeeiviviiiiviiieennns 54
5.1.4. System Statechart Diagram (To bewritten)coooeeeiiiiiiiiinneennnn, 54
5.1.5. Realization Use Case Diagram (To bewritten)cccooovvveiiineeennnn. 54
5.1.6. Documents (TO be Written)oiiiiiiiiiii e 54

5.2. Class Diagrams (Tobewritten)coooviiiiiiii e, 54
5.2.1. The Class Diagram (TObe Written)ccoevviiiiiiieiiiieeii e eeeies 54

5.2.2. Advanced Class Diagrams (To be Written)ccccoevevivivinnennnnns 54

5.3. Creating Class Diagramsin ArgoUMLccooiiiiiiiiiiiiiiiiiii e, 55
B.3. L. ClASSES .uuiiiiiiiiee ittt ettt 55
5.3.2. Associations (TO be Written)coouiiiiiiiiiii e 55

5.3.3. Class Attributes and Operations (To bewritten)ccoooeviiiiinnnes 55

5.3.4. Advanced Class Features (To bewritten)ccooevviiiiiiiiiineeins 55

5.4. Sequence Diagrams (TO be WHLtEN)ccvvviiiiiiiieiii e 55
5.4.1. The Sequence Diagram (To be written)ccccoeviiviiiiniiiiiiinneeennn, 56
5.4.2. Identifying Actions (To be WHtten)ccoovvviiiiniiiiiiieiiiieeeeeen 56
5.4.3. Advanced Sequence Diagrams (To bewritten)c..ocooviiiiiiis 56

5.5. Creating Sequence Diagramsin ArgoUMLcoiiiiiiiiiiiiiiicceeee, 56
5.5.1. SEqUENCE DIagramScvveeeeieeeiieeei e e e e e e et e e e e e e e e aeaees 56
5.5.2. Actions (TODEWIIEEN)vvveieii i 56

5.5.3. Advanced Sequence Diagrams (To bewritten)cccooovvveiineeennnn. 56

5.6. Statechart Diagrams (TO DeWIItteNn)ocovvviiiiiiiii e 56
5.6.1. The Statechart Diagram (To bewritten)ccoiviiiiiiiiiiiiis 56

5.6.2. Advanced Statechart Diagrams (To bewritten)ccooeeevvieennnen. 56

5.7. Creating Statechart Diagramsin ArgoUMLcccoveviiiiiiiiccii e, 56
5.7.1. Statechart Diagrams (To bewritten)c.cccovviiiiiiiiiiiiee 56

5.7.2. States (TODeWIITEEN) .ooeveiiiiiii e 56

5.7.3. Transitions (TO e WItteN)uiiiiiiiiiiii e 57

5.7.4. Actions (TODEWIILEEN)oieeeiiiii e 57

5.7.5. Advanced Statechart Diagrams (To bewritten)ccoocevvieennnen. 57

5.8. Realization Use Cases (ToObeWritten)coovvviviiiiiiiii e, 57
5.9. Creating Realization Use Casesin ArgoUML (To bewritten)c........ 57
5.10. Case Study (TOBEWIILEEN)oovviiiiii e 57
I L0 B O 2 (O 0 o S 57
5.10.2. Concept Class Diagrams (To bewritten)coooveiiiiiiiiiiiinis 58
5.10.3. System Sequence Diagrams (To be Written)c..occeeveviiieeinnnnes 58
5.10.4. System Statechart Diagrams (To be written)cccevevivieennnnnns 58
5.10.5. Redlization Use Cases (To bewritten)cccooeeivviiiiiiicviiiees 58

L L= o o PSPPI 59
6.1. The Design Process (TO heWIItten)ocovvviiiiiiiiinieiii e 59
6.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 59
6.1.2. Package Diagram (TO be Written)ccoveviiiiiiiiciiie e 60
6.1.3. Redlization Class Diagrams (To bewritten)ccoovvviiviviiieeinns 60
6.1.4. Segquence Diagrams and Collaboration Diagrams (To be written) 60
6.1.5. Statechart Diagrams and Activity Diagrams (To be written) 60
6.1.6. Deployment Diagram (To bewritten)oocoiiiiiiiiiiniiiiineeene, 60
6.1.7. Documents (TO be WIitten) ... 60

6.2. Package Diagrams (TObeWIItten)ccveinieiiiiiei e 60
6.2.1. The Package Diagram (To bewritten)ccoooeviveiiiiiiiiiiiiees 60
6.2.2. Advanced Package Diagrams (To bewritten)cccooovieviviiennnnnns 60

6.3. Creating Package Diagramsin ArgoUMLcooiiiiiiiiiiiiiiicei e, 60
B.3.1. PaCKagESevvvieiiiiieee et 60

ArgoUML User Manual

6.3.2. Relationships between packages (To bewritten)cccoveviieennnnnns 61
6.3.3. Advanced Package Features (To be written)ccoovevvvevinieennnnnns 61

6.4. More on Class Diagrams (TO be Wrtten)oooveviiiiiiiiiiiiiiiii e, 61
6.4.1. The Class Diagram (To bewritten)cccoovvviiiiiiiiiiiiieeeee, 61

6.4.2. Advanced Class Diagrams (To be Written)cccoeveeiieiiinieennnnes 61

6.5. More on Class Diagrams in ArgoUML (To bewritten)ccooovviiiininnnnen. 61
6.5.1. Classes (TObeWIILtEN)coeviviiiiiii e e 61

6.5.2. Class Attributes and Operations (To bewritten)cccoeeviievenns 62

6.5.3. Advanced ClasS FEAtUIESoveuniiiiieeie e e e e e 62

6.6. Sequence and Collaboration Diagrams (To be written)cccooevvevvieeennn. 64
6.6.1. More on the Sequence Diagram (To bewritten)ccoovvviiiennnes 64

6.6.2. The Collaboration Diagram (To bewritten)ccoeeevviiviineennnen. 65

6.6.3. Advanced Collaboration Diagrams (To bewritten)ccoeeeeennees 65

6.7. Creating Collaboration Diagramsin ArgoUML (To bewritten) 65
6.7.1. Collaboration Diagrams (To bewritten)cccooovvviiiiiiiiiiinneennnn, 65
6.7.2. Messages (To beWritten)coooeiiiiiiiiii e, 65

6.7.3. Advanced Collaboration Diagrams (To be written)ccoeeeeunieee 65

6.8. Statechart Diagrams (To beWritten)ccoveeiiiiiii e, 65
6.8.1. The Statechart Diagram (To bewritten)cccoovviiiiiiiiiiiiees 65

6.8.2. Advanced Statechart Diagrams (To bewritten)cccoveviievnnnnns 65

6.9. Creating Statechart Diagramsin ArgoUML (To bewritten)ccccoeeeeen. 66
6.9.1. Statechart Diagrams (TO be WIitten)cooeeeevviiiiiiiiiieeiiiineeeene, 66

6.9.2. States (TObeWIIttEN)ceu e 66

6.9.3. Transitions (TOBeWTIItteN)ccoevviiiiii e 66

6.9.4. Actions (TODEWIIEEN)uivvvieii e e 66

6.9.5. Advanced Statechart Diagrams (To bewritten)cccovvviievinns 66

6.10. Activity Diagrams (TO be Written)cccoiiiiiiiiniiiii e, 67
6.10.1. The Activity Diagram (To be written)ccccooviiiiiiiniiiiiiinneeenn, 67

6.11. Creating Activity Diagramsin ArgoUML (To bewritten)cccoceeuieeennn. 67
6.11.1. Activity Diagrams (To bewritten)ccoovviiiieiiieiiici e, 67
6.11.2. Action States (TObeWIItten)cocevveiiii e 67

6.12. Deployment Diagrams (TO be WHtteN)ccvvvvveieiiiieei e 67
6.12.1. The Deployment Diagram (To bewritten)c.oooeeiiiiiiiinieennnn, 67

6.13. Creating Deployment Diagramsin ArgoUML (To bewritten) 67
6.13.1. Nodes (TobeWritten)o 67
6.13.2. Components (TO De WIILEEN)cccuuiiiiiiiiiiiiee e 68
6.13.3. Relationships between nodes and components (To be written) 68

6.14. System Architecture (Tobewritten)ccooeviiiiiii e, 68
6.15. Case Study (TOBEWIILEEN)oovveiie e 68
6.15.1. CRC Cards (TODeWIItten)coovviiiiiiiiiieiiiii e 68
6.15.2. Packages (TO e WHILteN)couiiiiiiiiieei e 68
6.15.3. Class Diagrams (TObeWritten)cocoveiiiiiiiieee e 68
6.15.4. Sequence Diagrams (ToO be Written)ccovvviviieiiiieiiii e, 69
6.15.5. Collaboration Diagrams (TO be Written)ccovvvvveviieviineeinns 69
6.15.6. Statechart Diagrams (TO be Written)ovvvviiiniiiiiiiiicei e, 69
6.15.7. Activity Diagrams (To bewritten)cccoooeeiiiiiiiiiniieeee, 69
6.15.8. The Deployment Diagram (To be written)ccoevevviiiineeennnnes 69
6.15.9. The System Architecture (To bewritten)ccocceveeiviiiiiiieennnen. 69

7. Code Generation, Reverse Engineering, and Round Trip Engineering 70
4% O 1 1o o [0 1o I PSP 70
AV @ e SY €= 4 1= - 1o o 70
7.2.1. Generating Code from the Static Structureocoevvevveveiineeennnn. 70
7.2.2. Generating code from interactions and state machines 71

7.3. Code Generation in ArgOUMLoouiiiiiii e 72
7.3. 1. SEAIC SEUCLUI ..ottt et e s 72
7.3.2. Interactions and statechart diagramscccooeeoivviiiiiiiineviiecs 72

7.4 REVEISE ENQINEEIING ...uieiiii et 72
7.5. ROUNG-TFIP ENGINEEIING .oevvuneiiiiiieeeiii ettt e 72

Vi

ArgoUML User Manual

2. User INterfaCe REFEIEINCEvuiiiiiii it e eaens 73
S 10 (U [o o R PP 74
8.1. Overview of the WINOWoouiiiiiiiii e, 74
8.2. General Mouse Behavior in ArgOUML ..o, 75
8.2.1. Mouse BUtton Terminologyoceeueeeuieeiiiieiieeeieeeiie e e 75
8.2.2. BULLON L ClICK ...evvvviieeiiii e 75
8.2.3. Button 1 Double Clickoovveiiiiiiiiiie e 76
8.2.4. BULLON L MOLION ..eevviiiiiiiiieiiii e 76
8.2.5. Shift and Ctrl modifierswithButton 1ccooiiiiiiiiiiiiieeen, 76
8.2.6. Alt with BULtON 1: PanNingccoevvuiiiieiiiieiiiiieeeeni e 77
8.2.7. Ctrl with Button 1: Constrained Dragcoeeeuueeiinieiiineiiieaeines 77
8.2.8. BULLON 2 ACHIONScevieiiii et 77
8.2.9. Button 2 Double ClicKvivveiiiiiiiiieecii e 77
8.2.10. BULEON 2 MOION ...uiiiiiiiieieiiis e 77
8.3. General Information AbBOUt Panesc.cccviiiiiiiiiiie e, 77
8.3.L. RE-SIZING PANESeuniiiiiii e 77
8.4, TRESAUS DAiveii e 78
9. TRETOOIDAN ... e e 79
S I =Y 0] o 1= - 1o 79
0.2, Edit OPEratioNSeevieeei e e 79
9.3, VIBW OPEIBLIONS ...ttt ettt et 79
9.4. Create OPEIALIONSuuieeeiii ettt ettt ettt eaaas 80
10. TREMENU DN ...t et et e e e e e 82
080 I g 0o (0o 1o o SRR 82
10.2. Mouse Behavior inthe Menu Barccoeeviiieiiiiinieiiiiiieeecneeeeeineeees 82
10.3. ThE FIEMENU ...uiiiiiieee e 83
10.3.1. D = ST 83

#
10.3.2. =7 OPEN PrOJECL... «.oieeiee e 83
10.3.3. SAVE PrOJECE ...viiiee e 84
10.34. IEI SAVE PIOJECE AS... oo 85
10.35. REVEIT O SAVEA ...ovviiiiii e 85
10.3.6. IMPOIt XML, oo 85
10.3.7. EXPOIt XM . oo e et eeaaa e e e 86
10.3.8. % IMPOIT SOUMCES... ...eeieieiie ittt et e e 87
10.3.9. & Page SEtUP... «iiieeie e 89
10.3.10. El . 0 PP 89
10.3.11. EXPOrt GraphiCs... ..c.ueeeneiiieei e 89
10.3.12. EXpOrt All GraphiCs...vcvvuiiiiiieiiiieeii e e e e e e e e 90
L0 S \\ Lo - 1o o USRS 90
10.3.14. E- Properties ... 91
10.3.15. Save ConfigUuIationcoeuuuieieeiinieeiiis e 93
10.3.16. Most Recent Used FilESuvieiiiiiieiiiii e 93
O B A | SRR 93
10.4. TRE EAIt MENU ..ot e e ees 94
L1041 SEIECE coeveieeie e 94
10.4.2. & Remove From Diagramcoovvviieiiiiiiiiieein e 95
10.4.3. ﬁi Delete From Modeloooovviiiiiiiiii e 95
10.4.4. E Configure Perspectives...couveviiieee e 95
10.4.5. E- SEINGS... weeneeiii e 95
10.5. TREVIEBW MENU ...oivniiii e 102
10.5.1. GOtO DIagram... oceevunieeieiiiiee e e et e e e e et e e e e e eae s 102

Vii

ArgoUML User Manual

10.5.2. H FING... e 103
F0.5.3. ZOOM ettt 105
O3 o = 1 o 106
10.5.5. AdJUSE GId SNED .evvueiiiiiiee i 106
10.5.6. PagE BreaKsSiiveiiieeiiie ettt 106

10.6. ThE Creafe@ MENU ...ccvvviieiieie e e e e e 107
10.6.1. New Use Case DIiagramc..oeveeueeeiniiiiiieeineeiine e 107
10.6.2. New Class Diagramcooeeviiiiieieeee e 107
10.6.3. @ New Sequence DIiagramooeeeiieeeiiiiieeineeeeeeee e 107
10.6.4. New Collaboration Diagramccoceveiiiiiiiiieii e, 107
10.6.5. @ New Statechart Diagramccoveeveiiieiiiii e, 108
10.6.6. @ New Activity Diagramcccoeeeieiiieiicee e, 108
10.6.7. New Deployment Diagramcceeeuiveiiieiiineiiiieeiieeeins 108

10.7. TREAITANGE IMENUueneitie e e e e e e e enas 108
FO.7.0 AN o 108
10.7.2. DISDULE .oeveieieei e 109

0 0 T o o 109
O N[o o= S SPP 110
10.7.5. SEt Preferred SIZEuuoiiiie e 110
10.7.6. TOQQIE AULO RESIZING ...vvuivieiiiei e e e e e e 110
O - Yo 11 | O 110

10.8. The Generation MENUoveeiiiiiieeiiiiie et 110
10.8.1. Generate SElected ClasseS ... wvuvvvvriiviiieeiiieee e 111
10.8.2. Generate All ClasSES... ovvvuiiiiieii et 112
10.8.3. Generate Code for Project... (To be Written)cccooveevviennnn. 112
10.8.4. Settings for Generate for Project... (To be Written) 112

10.9. ThE CritiQUEIMENU ...eve e e e e e e eaeees 112
10.9.1. TOQQIe AULO-CritiQUE ... eeveeeeeeei e ee e e e e e e e 112
10.9.2. DESIGN ISSUBS... ..ceieiiiieiieii ettt 113
10.9.3. DESIGN GOAIS... ..eieerinieiiiiieee ittt 114
10.9.4. BrOWSE CritiCS... tevvvunieeiiiiieeeiiiiieeeetineeeeetineeeeetiaeesetinaeeenenns 115
10.10. The TOOIS IMEBNUviiiiiiii e 117
10.11. The HEIP MENU .oiiiiiei e 117
10.11.1. System INfOrmationccoovevuniiiiiieeie e e 118
10.11.2. ABOUt ArQOUML ..uiiiiiiii e 118

11 TRE EXPIOIEr ..ttt 121
0 I g 1 0o [0 1o o U PTRPPRN 121
11.2. Mouse Behavior inthe EXplorer ..o 121
2 I 21U 11) o i A oSO 122
11.2.2. Button 1 Double Clickooeiiiiiiiiiiiieec e 122
220G T 210 11 (o ¢ 1Y ' o o 122
11.2.4. BULEON 2 ACHIONSeetiiiiee et e e 122
11.2.5. Button 2 Double CliCKuiiiiiiiiieeiiie e 122

11.3. Keyboard Behavior inthe EXplorercooooiiiiiiiiiiiee 123
11.4. Perspective SEIECHIONcvve e 123
11.5. Configuring PErsPECtIVEScvvviiiii e e e 124
11.5.1. The Configure Perspectives dialogcccuviveiiiiiiniiiiiiinneiiiinnnn, 124

11.6. Context SENSItIVE MENUoieuiiii e 126
11.6.1. Add tO DIagramuueeeiiiiieeeiie e 126
11.6.2. -m- Delete From Modelcoooiiiiiii 126
11.6.3. Set Source Path... (Tobewritten)cooevveiiiiiiiiieeeee, 127
11.6.4. Add PaCKAGEoieeeiieeeii et 127
11.6.5. Add All Classesin NameSPatec.uvevevveeinieeinieeiieeeieeeeneennns 127

viii

ArgoUML User Manual

o I T o] o 128
2 1 11 oo 01 o o PSP 128
12.2. Mouse Behavior inthe Editing Paneccooviiiiiiiiiiiii e, 128

12.2.1. BUttON L CHCK ovviieniiiicie e 129
12.2.2. Button 1 Double CliCKuiiiiiiiiieiiiiiieeccei e 129
12.2.3. BULEON L IMOLION ...uiiiiiiiieec e e 129
12.2.4. Shift and Ctrl modifierswith Button 1ccccoivieviiiinneiinnnnnn. 130
12.2.5. Alt with BULtON 1 MOLIONeeiiiieeiiiiie e 130
12.2.6. BULON 2 ACHIONS . .ceuiiiiiii e 130
12.2.7. Button 2 Double Clickooeviiiiiiiece e, 130
12.2.8. BULEON 2 MOLION ...t 130
12.3. THETOO! DA ...t 130
2 50 R I (Yo 1 | oo = 131
12.3.2. ANNOLALION TOOIS ..evvnieiiiiiee e 131
12.3.3. Drawing TOOIS .. .ccoeuuiieiiiii e 132
12.3.4. Use Case Diagram Specific TOOISveeviviiieiiiiiiieciiieeceii, 133
12.3.5. Class Diagram SpeCific TOOISvveuiiiiiiiiiicic e, 134
12.3.6. Sequence Diagram Specific TOOISc.vviiuiiiiiiiiiiiiiiiieeeiee, 136
12.3.7. Collaboration Diagram Specific TOOIScccovevvnieviiiiiiieeeieeen, 136
12.3.8. Statechart Diagram Specific TOOISccevvviiieiiiieeiii e, 137
12.3.9. Activity Diagram Specific TOOISoveeiiviiiiiiiiiiieccieeccii, 138
12.3.10. Deployment Diagram Specific TOOIScocvvnveeiiiiiiiiiiiieeceii, 139
12.4. TREBIOOIM ...ttt e e e e et e e e e eanaes 140
12.5. Selection ACtION BULLONSuiiieiiiicii e 142
12,6, ClarifierS cuuu i 142
A O Y B = V1T oo I o 143
12.8. The Diagram Talviiiiiiiiie e 143
12.9. POP-UPMENUSceviiiiiiieiei ettt et e e 143
12.9.1. CritIQUES .evvviieiiiie ettt e e et e e e e 143
12.9.2. Orderinguevneiie e 143
L1293 A0 . 144
1294, SNOW ..ovviiiiei e 144
12,95, MOAIFIErS c.oniiie e 145
12.9.6. MUIIPHCITY ovvvneeiiiie e 145
12.9.7. AQOIrEaION ...unieieeit e 146
12.9.8. NaVIgabilityoeeeeiiieeiiii e 146
2 L0 Lo - 1o o U SPPR 147
12.10.1. NOtation LanQUaBOESeeeeuieeineeeineeeiieeeieeeaaeeaneeeeaneeennaeeens 147
12.10.2. Notation Editing onthe diagramcccooeveiiiiiniiiiiiineecciinne, 147
12.10.3. NOtatiON ParSiNgcccevuueeieiiieeieiie e 148

13. ThEDEAISPANE .. .ciiiiii et e e e 149
132, INEFOAUCTION ..ttt e e e e e ea e 149
13.2. TODO HEM TaAD .uuieiiiii e 149

L1321 WIZAIUS .. 153

13.2.2. The HEIP BUION ..coovniiiiiiiccc e 153
13.3. PropeartieS TalDu i 154
13.4. DOCUMENLEEION Tab ...ccveiiiieii e 155
13.5. Presentation Tabooouuiiiiiiii e 156
13.6. SOUMCE TED «.ieiiii e 160
13.7. CONSIrAINIS T ..ueiiiiiiieeeei e 161

13.7.1. The Constraint EQItOrccooeeviiiieiiieiii e, 164
13.8. SEFEOLYPE T@AD ...neeiiiie et 166
13.9. Tagged ValUES Tah ..ovvuiiiiiii i 167
13.10. ChECKIISE T wuvueeiiiiie e 167

14. ThE TODO PANE ... 169
I T 1o o 01 o o PSP 169
14.2. Mouse Behavior inthe To-DOPanecooveiiviiiiiiii e 169

14.2.1. BUttON L CHCK ooviiiiiiicie e 169

ArgoUML User Manual

14.2.2. Button 1 Double ClicKvoviiiiiiieiiiieeec e 170
14.2.3. BULEON 2 ACHIONS ..oevvieiiiiieeeeei e 170
14.2.4. Button 2 Double ClCKovvviiiiieee e 170

14.3. Presentation SElECHONoiiiuiiiiiii e 170
T4.4. HEM COUNE ..ieiiieee e e e e e e e et e e e et e e e e aen s 171
15, TRE CHITICS ettt e aeas 172
ST I 1 11 oo 0o o o PSP 172
300 50 O = 1 1190 oo Y/ 172
15.1.2. DESIGN ISSUESiiiiiiieeeiii ettt 172

15.2. UNCAEGONIZE ... it 172
15.3. Class SEECHONcceiiiiieei et 172
15.3. 1. Wrap DataTYPE ...ccueenieeeeieiieeeee et 172
15.3.2. Reduce Classesin diagram <diagram>cccoeevvvviveineennnnnn, 173
15.3.3. Clean Up Diagramcccvveeiiieiiieiiie e e e e e e 173

I5.4. NAIMING cotini e et e e eeaaa s 173
15.4.1. Resolve Association Name Conflictoccoviiiiiiiiiiiiiiieie, 173
15.4.2. Revise Attribute Names to Avoid Conflictc.ccoviiiiiiiinnnn. 173
15.4.3. Change Names or Signaturesinan Artifactccoeeeeenn, 174
15.4.4. Duplicate End (Role) Names for an Associationccccevuneeee. 174
15.4.5. Role name conflictswith membercccoooviiiiiiii, 174
15.4.6. Choose a Name (Classes and Interfaces)cccveveeviiiineeiinnnnnn. 174
15.4.7. Choose a Unique Name for an Artifact (Classes and Interfaces) 174
15.4.8. Choose a Name (ALtribULES)oveeeiiiiiiiiiiee e 175
15.4.9. Choose a Name (OPerations)cceueeeeuieeunneeuineeiiieeeieeennaenn 175
15.4.10. Choose aName (StA€S)cevvevrrereiieeiii e v e e eaeeeee 175
15.4.11. Choose a Unique Name for a (State related) Artifact 175
15.4.12. Revise Nameto Avoid Confusionccevevineiiiieeineeeinen, 175
15.4.13. ChoosealLegal Nameccoovuieiiiiiiieeiiiie e 175
15.4.14. Change an Artifact to aNon-Reserved Wordccoeveeennnene. 175
15.4.15. Choose a Better Operation Namecovvvviiiiieiinieeieeeeeen 175
15.4.16. Choose a Better Attribute Nameoooveviviiiiiiiniiciiiineeccii, 176
15.4.17. Capitalize ClasS NaMEccvuiiviiieeie e 176
15.4.18. Revise Package Namecoouuiiiiiiiiiiieiiii e 176

155, SEOTAOE ... iveiiit e 176
15.5.1. Revise Attribute Names to Avoid Conflictccoviiiiiiennnn. 176
15.5.2. Add Instance Variablesto aClassc.coevevieiiiiiiniiiieccie, 176
15.5.3. Add aConstructor t0 @ Classceevvvvieeiiiiiieeieiie e 176
15.5.4. Reduce Attributeson aClassccccvviveeiiiiiieeiiiin e 177

15.6. Planned EXIENSIONSuiieiiiiiieee e e e e 177
15.6.1. Operationsin Interfacesmust be publiccccooevieiiiiiiieiinnnnnn. 177
15.6.2. Interfaces may only have operationscccoceeieiiiiiieiiieennneenn. 177
15.6.3. Remove Reference to Specific SUDCIESSoceviieiiiiiiiiiiiiie, 178

15.7. StAEMACIINES ... 178
15.7.1. Reduce Transitions ON <SEALE>ocvvvviieeiiiiiieecci e 178
15.7.2. Reduce States in machine <machine>cccoooviiiviiivienen, 178
15.7.3. Add TransitionS to <SEAE>vvvvviiiieiiiiecc e 178
15.7.4. Add Incoming Transitionsto <artifact>ccccoeeeeviiineeninnnnnn. 178
15.7.5. Add Outgoing Transitions from <artifact>cc.ceeviiennnen. 179
15.7.6. Remove Extralnitial Statesooovvvviieiiiiiiieeiiii e 179
15.7.7. Place an Initial Stateccooevviiiiiiiiiiiieei e 179
15.7.8. Add Trigger or Guard to TranSitionccoeveeveiiineeiiiineeeeiinnnn, 179
15.7.9. Change JoiN TranSitioNSoveeeerineeieiiiieeeeie e eeeie e 179
15.7.10. Change Fork TranSitionsooeeuiiiiiiiiiiecieei e 179
15.7.11. Add Choice/dunction TranSIitionsoceeuuveeiiieiiinnieieeeineenn 179
15.7.12. Add Guard to TranSitionoveeveiiiieeiiiiieeecee e 179
15.7.13. Clean Up Diagramceeeunieiiiieeii e e e e e e e e e e eees 179
15.7.14. Make Edge More Visiblecooooiiiiiiiiiiiiii e, 179
15.7.15. Composite Association End with Multiplicity > 1 180

ArgoUML User Manual

15.8. DESIGN PAEINS ...cvviiiiiieiie e e e e e e e e e e e e 180
15.8.1. Consider using Singleton Pattern for <class>cccoocevivvennnnnne. 180
15.8.2. Singleton Stereotype Violated in <Class>cccovvviiiviiiveinnnnne, 180
15.8.3. Nodes normally have no encloSersccoevviveeiiiiineeiiiiieeeeeiine, 181
15.8.4. Nodelnstances normally have no encloserscoceevvvevieinnne. 181
15.8.5. Components normally areinside nodesccceveeeiieevieinnnnn, 181
15.8.6. Componentlnstances normally areinsidenodes...............c..ccuuveeee. 181
15.8.7. Classes normally are inside COmponentscccoeevvevevevnveennnennn. 181
15.8.8. Interfaces normally are inside COMpONENtscoeeevevvneeeennnnnn. 181
15.8.9. Objects normally areinside COMPONENtSoevvueveiieeeinieeinne. 181
15.8.10. LinkEnds have not the same 10cationscccoeeeiiieiieennne. 181
15.8.11. Set classifier (Deployment Diagram)c.ccoeeeuveeeiniennneennnen. 182
15.8.12. MisSING FEtUrN-aCtIONSvvvieiiiieeieee e e e e e e e e e eeees 182
15.8.13. Missing call(send)-actionccoveviiiiiiiieeie e 182
15.8.14. No Stimuli onthese linksccooveiiviiiiii e, 182
15.8.15. Set Classifier (Sequence Diagram)cccvviveeviiineeiiiineeeeiinnnn, 182
15.8.16. Wrong position of these stimulicooooiiiiiiiiiii, 182

15.9. REAONSNIPS ..cvniieiie e 182
15.9.1. Circular ASSOCIBIION ...cccvvuneeiiiiie et 182
15.9.2. Make <association> Navigableccccovviiiiiiiiic e, 183
15.9.3. Remove Navigation from Interface via <association> 183
15.9.4. Add Associationsto <artifaCt>ccocoeoiiiiiiiiiiiii e, 183
15.9.5. Remove Reference to Specific SUDCIaSSoeevvieiiiiiiiiiiiiie, 183
15.9.6. Reduce Associations on <artifact™>ccoccevevieiiniiiiniiiiieeee, 183
15.9.7. Make Edge More Visiblecccoviviiiiiii e, 183

15.10. INSEANEIALTON .oevvueeiiiie e e 184

1511 MOAUIBITEY ..eeveeeeiii et 184
15.11.1. Classifier not in Namespace of itS ASSOCIationcceeevevvnnnn. 184
15.11.2. Add Elements to Package <package>cccoveviiiieinieennann. 184

15.12. EXPECLEd USBOEuueieeiiiieei ettt 184
15.12.1. Clean Up Diagramceveunieiiiieeiiieeiii e e e e e e e e e e e eens 184

1513 MEINOAS ... 184
15.13.1. Change Names or Signatures in <artifact>cccooeveiiinnnnnn. 185
15.13.2. Class Must be ADSLIaCtveevuiiiiieie e 185
15.13.3. Add Operationsto <ClasS™c..oeeeuiiiiiiiiiieeieeei e 185
15.13.4. Reduce Operations on <artifact>c.cccooviiiiiiiiiniiiii e, 185

15.14. COUE GENEIALONevuueeiiii e e e e e e 185
15.14.1. Change Multiple Inheritance to interfacescccoovvvviveennnnnn. 185

15.15. SEEIOLYIIES ..eevu et ettt ettt et e 185

15.16. INNEITTANCE ... 185
15.16.1. Revise Attribute Names to Avoid Conflictccooeveviiiennenn. 186
15.16.2. Remove <class>'s Circular Inheritancecccocccovvieiiiiennneen. 186
15.16.3. Class MUSt DE ADSIFECEoeveviieeciie e 186
15.16.4. Remove final keyword or remove subclassesc.ccceevevvnnnnne. 186
15.16.5. lllegal Generalizationooveeiiiiiieiiiiiiee e 186
15.16.6. Remove Unneeded Redlizes from <class>cccovvviviviennnnnn. 186
15.16.7. Define Concrete (SUD)CIESSccvvviveineeiiieiei e 186
15.16.8. Define Class to Implement <interface>cccooeiiiiiiiienee, 186
15.16.9. Change Multiple Inheritance to interfacescccovevvvveennnnnn. 187
15.16.10. Make Edge More Visiblecocoeveviiiiiii e, 187

15.27. CONAINMENTeeeiieeie e e e e e e e e e e e et e e e e e een e eeaneeeanaees 187
15.17.1. Remove Circular COmMPOSITIONuuveeieriiieeiiiiieeeeiie e 187
15.17.2. Duplicate Parameter Namecoeuieiiiiiiiiieiiiiecieeei e 187
15.17.3. Two Aggregate Ends (Roles) in Binary Association 187
15.17.4. Aggregate End (Role) in 3-way (or More) Association 188
15.17.5. Wrap DatalTYPe . oeuoeeeee e e e e 188

BV oo L= B = 1= = o 189
16. Top Level Artifact REFEIENCEccvvniiiiiii e 190

Xi

ArgoUML User Manual

G20 1 11 oo o1 o o O PR 190
16.2. ThEMOGEL ... 190
16.2.1. Model DetailS Tabsovvvnieiiiii e 190
16.2.2. Model Property ToOoIDarooveiiiiiiiiiiiiic e 191
16.2.3. Property Fields For The Modelcooooviiiiiiiiiiiiieee, 191

R R BT = 1 o L= S SPPT 193
16.3.1. Datatype DetailS Tahsocvvnieiiiiiiieeece e, 193
16.3.2. Datatype Property Toolbarcoovvuveviiiiiiiee e 194
16.3.3. Property Fields FOr Datatypeooevevenieeiiiiiieecii e 195

16.4. ENUMEIELION ...evnieeiieiii et e e e e e e et e e e e e eanaaes 197
16.4.1. Enumeration DetaillS Tabsovivviiiiieiiceee e 198
16.4.2. Enumeration Property Toolbarcccoiviiiiiiiii, 198
16.4.3. Property Fields For Enumerationcooevveveviieviieeeiieeeeeeenn 199

ST T S 1= =17/ 0= 201
16.5.1. Stereotype DetailS TahSevieviieeiiiie e 201
16.5.2. Stereotype Property TOOIDarccoevvieiiiiiiieeiiiieceeiee e 202
16.5.3. Property Fields FOr Stereotypecccueveeiiiiiiiiiieeiieceieeeeeen 202

GG T T o 203
16.6.1. Diagram DetailS Tabhscocevniiiiiiiiii e, 205
16.6.2. Diagram Property Toolbarccocvvviviiiiiii e, 205
16.6.3. Property Fields For Diagramcccooveeiiiiiniiiiiineecci e 205

17. Use Case Diagram Artifact REFEreNCeccoovviiiiiiiiiiici e 206
% I g 1 0o (0o 1o o RPN 206
17.1.1. ArgoUML Limitations Concerning Use Case Diagrams 206

L7.2. ACHOT ettt 207
17.2.1. Actor DEtalS TaDS ..vuiiiiiiiee e 207
17.2.2. Actor Property TOOIDArccccuuiiiiiiiiiieiiiii e 208
17.2.3. Property FieldSFOr ACLOrccovuniiiiiiiieeiei e 208

17,3 USB AL i eiiiiit ettt 209
17.3.1. Use Case DetallS Tahsccvvveeiiiie e 210
17.3.2. Use Case Property Toolbarcocoeveviiiiiiiiieiiiecn e, 211
17.3.3. Property FieldSFOr USE Caseoovvveviiiiiiii e 211

17.4. EXIENSION POINE ...oeeiiiiieis et e e e e 213
17.4.1. Extension Point DetailS Tabscoeuiviiiiiiiiiieiecece e 213
17.4.2. Extension Point Property Toolbarcooceiiiiiiiiiiiiiiiiieeeiee, 214
17.4.3. Property Fields For Extension Pointcccoceviiiiiniiiiieenneee, 214

17.5. ASSOCIAHON .eeviiiieiiiii e 215
17.6. ASSOCIAHON ENAoiiiiiiiii e 215
17.7. DEPENAEINCY ..ottt 215
17.8. GENErAlIZBHION ... 216
17.8.1. Generaization DetailS Tabsocevuiiiiiiiiiiii e, 216
17.8.2. Generalization Property Toolbarc.cooveeiiiiiiiiiiiiiiiiiieeeiee, 217
17.8.3. Property Fields For Generalizationccooeviveviiiiiiiieeeneenn, 217

L7.9. EXEENA .o 219
17.9.1. EXtend DetaillS TahS ...vuveveeieee e 220
17.9.2. Extend Property TOOIDErccuuuieiiiiiiieeiiiie e 220
17.9.3. Property Fields For EXtendcccoiveiiiiiiiieiiiin e 221
L1700 INCIUTE ... 222
17.10.1. Include DetailS Tabsuveiiiiiiieeiiiie e 223
17.10.2. Include Property Toolbarccoovvviviiiiiiie e, 223
17.10.3. Property Fields For Includecooveiiiiiiniiiiii e, 224

18. Class Diagram Artifact REFEreNCecoiiiiiiiiiiiiii e 226
18.2. INEFOAUCTION ..ttt e e e e e eaas 226
18.1.1. Limitations Concerning Class Diagramsin ArgoUML 227

18.2. PaCKAOE ..vvvniiii et 227
18.2.1. Package DetailS Tahsvvevniiiii i 227
18.2.2. Package Property TOOIDAroveeiiiiiieiiiiiiieciiii e 228
18.2.3. Property Fields For Packagecccooveiiiiiniiiiiieece, 229

Xii

ArgoUML User Manual

G TG T I T -] = 230
S S 1= = 1Y/ o= 230
18,5, ClBSS . iiiiiieeii et 230
18.5.1. Class DetallS TahScccvuuiuiiiieiiiiiiiii e 230
18.5.2. Class Property Toolbar ..o, 231
18.5.3. Property FieldSFOr Classcouuiiiiiieiiiicicccc e 232

18.6. AUMDULE ...veieie e 235
18.6.1. Attribute DetailS TabScvvveeiiiiieeciie e 235
18.6.2. Attribute Property TOOIDarcovvviiieiiiiiiieiiii e, 236
18.6.3. Property Fields For Attributecooveeiiiiiiiiii e, 236

18.7. OPEBIION L.ueiieiiie et e 238
18.7.1. Operation DetailS Tahsc.uviiviiiiiiii e 239
18.7.2. Operation Property TooIbarcocvvuveviiiiiiiiieeiieece e, 240
18.7.3. Property Fields For Operationccoceuvvviiiiieiiineeiii e, 241

18.8. ParamMELEr ... e 243
18.8.1. Parameter DetaillS TabhSuveviiiiii e 243
18.8.2. Parameter Property Toolbarcooiiiiiiiiiii e, 244
18.8.3. Property Fields For Parametercccooviiviiiiiiniiiiniiiiieeiee, 245

18.9. SIgNEAl ovvnciii i 246
18.9.1. Signal DetailS TabhSvuivev e e 246
18.9.2. Signal Property TOOIDAroveiiiiiiieeiiiieeeei e 247
18.9.3. Property FieldsFor Signaloooeiiiiiiiiiiii e 248
18.10. Reception (10 be WIILEEN)iieeiieii e 249
18.10. ASSOCIBLION ...ttt ettt ettt e e e e e et e et e e ea e 249
18.11.1. Three-way and Greater Associations and Association Classes 250
18.11.2. Association DetailS Tabsccuuuveiiiiiiieiiiiiieee e 250
18.11.3. Association Property TOOIDarccuuuveeiiiiiieiiiiin e, 251
18.11.4. Property Fields FOr ASSOCIatiONuveevevinieeiiiii e 251
18.12. ASSOCIAtION ENGovvviiiiii e e s 253
18.12.1. Association End DetailS Tabsc..oveeviiiiiiiiiiiiiiiiciceiee, 253
18.12.2. Association End Property Toolbarccoovevviiviiiiiiiieeeiee, 254
18.12.3. Property Fields For Association Endcoceeveviiiiiiiieennenn, 255
18.13. DEPENAENCY ..evvneeiiii ettt 258
18.13.1. Dependency DetailS Taldscccvvneeiiiiiieeiiiieece e 258
18.13.2. Dependency Property Toolbarocceuiiiiiiiiiiiiiiiceieeeiee, 259
18.13.3. Property Fields For Dependencyc.oovveviieeeineiiinnieieeeieeenn 259
18.14. GENErAlIZALION ...eeieii et 260
RS T | 1= o = o= ST PTT 260
18.15.1. Interface DetaillS TabhSuveviie e 260
18.15.2. Interface Property TooIbarcoovivieiiiiiiiii e, 261
18.15.3. Property Fields For Interfaceccoooeiiiiiiiiiiiiieee, 262
18.16. ADSLIACION ...cenieeiieiie e 263
18.16.1. Abstraction DetailS TabhScocvvnieeiiiiieeeci e 264
18.16.2. Abstraction Property Toolbarcccoovvviiiiiiiiiiie e, 265
18.16.3. Property Fields For AbStractionccccoiveiiiiiiniiiiiiineecciin, 265

19. Sequence Diagram Artifact Reference ... 267
S I g 0o (0o 1o o RO PTRPPRN 267
19.1.1. Limitations Concerning Sequence Diagramsin ArgoUML 268

19.2. OBJECL .ot 268
19.2.1. Object DetailS Tahsuvvvvnieeiiee e e 268
19.2.2. Object Property TOOIDarcccuuiiiiiiiiiieiiii e 269
19.2.3. Property FieldSFOr Objectooeeiiiiiieiiiiiieecc e 269

TO.3. SHMUIUS .t et e et e e e ea s 270
19.3.1. Simulus DetailS Tabsc.uieiiiiiii e 271
19.3.2. Stimulus Property Toolbarccoooviieiiiiiiiiicee e, 272
19.3.3. Property Fields For Stimuluscccoveveiiiiiiiccecee e, 273

19.4. SEMUIUS Call ..oeneiiie e e e e 274
195, SHMUIUS CrEALE ...cevi ettt e e 274

ArgoUML User Manual

19.6. SHMUIUS DESITOY ..ovuiiiiieiiiceie et e et e e e e e e e e e aaaees 274
19.7. SHMUIUS SENA ..t 275
19.8. SMUIUS RELUIN ...ceiiiie et e e e e e 275
ST T o 1S PT 275
19.9.1. Link DEtailS TabhS .ovvvueeiiiiieeiiie e 275
19.9.2. Link Property Toolbarcoooouiiiiii e, 276
19.9.3. Property FieldSFOr Linkcoovvviiiiieiiie e, 277

20. Statechart Diagram Artifact REFErencecooviviiiviii i, 278
220 I R 1 11 o [0 Tox o o 278
20.1.1. Limitations Concerning Statechart Diagramsin ArgoUML 279

20,2, SEBEE ettt ettt e e e aaat e aaa 279
20.2.1. State DetallS Tals ...oovvvveiiiiiii e 279
20.2.2. State Property TOOIbaroevvvviiiiiieiiieci e 280
20.2.3. Property FieldS FOr Stateccevvviiieiiiieii e 280

20.3. ACHION Lo aes 282
20.3.1. ActioN DetailS TahScvvunieeiieeii e 282
20.3.2. Action Property Toolbaroooiiiiiiiiii e, 283
20.3.3. Property FieldS FOr ACHONc..viiiiieiiiiiiiecece e 283

20.4. COMPOSITE SEALE ...vueeeieieii e e e e e e e e e e e e e e e e eees 284
20.5. CONCUITENE REGION ...evviiiii e e e e e e e e e e e e eeees 285
20.6. SUDMACNINGE SEAEE ...evvueeii e e e e et e e e e e e eeees 285
20.7. SEUD SEAE ..evvve et aa 285
20.8. TrANSILION ...iiieiiit ettt e e e e e e e ees 286
20.8.1. Transition DetaillS TabSccuuiiiiiiiiiei e 286
20.8.2. Transition Property Toolbarccooeeviiiiiiiiiiiieeeeee, 286
20.8.3. Property Fields For Transitionc.ccoveviiiiiiiiicenecce e, 287

20.9. EVENE ooitieiiii e 288
20.9.1. Event DetaillS TahS ..uviveiiiieeii e 288
20.9.2. Event Property Toolbar ..o 289
20.9.3. Property FieldS For EVENtcoooviiiiiiiiiiiiiieceecc e 289

220 O 1= o USRS 291
20.10.1. GUard DetailS TahS ...c.vvuieiieiiiieeiiii e e 291
20.10.2. Guard Property TOOIDEroveveiiiiieiiiiiiieeeii e 291
20.10.3. Property Fields FOr GUardoveveeiiieeiiiinieeeiiieeeeiieeees 291
20.10. PSEUAOSIAEE ...t eeeevieeeeeie et e e e e et e e e et e e e et e e e eaba e e eae 292
20.11.1. Pseudostate DetailS Tabscoevniiiiiieiiiii e 292
20.11.2. Pseudostate Property Toolbarccccuveviiiiiiiiiciice e, 293
20.11.3. Property Fields For Pseudostatecocvvvvvieineiiiniiiiiieeieeennnn, 293
20.12. INitial SEALE ..vvueeeeiieeeee e e e 294
20.13. FiNAl SEAE ..vvvieeiiiii et 294
20.13.1. Fina State DetailS Tabsuvveviiiiiiiiiiiiiieeee e 294
20.13.2. Final State Property Toolbarcoeeviiiiiiiiiiiiciiiceceeee 295
20.13.3. Property Fields For Final Statecccoveviiiviiiiceiecce e, 295
20.14. JUNCHION .iiitiee ettt et e et e e e et e e e e et e e e eeba e aaae 296
20 I 5 T O o o 296
0 0 T o PSP PN 296
220 I 2N o o PSPPSR 297
20.18. ShAlOW HISLOIY ..eevvieeiiiieee et e e eees 297
20.19. DEEP HISIONY ...veeieeiiie it et e e e e e 297
20.20. SYNCH SEALE ...t et e 298
20.20.1. Synch State DEtailS TahSvvueiiiiiiieeeiii e 298
20.20.2. Synch State Property Toolbarccooiiiiiiiiiiiiies 298
20.20.3. Property Fields For Synch Statecocooviiiiiiiiiiiiiieeeenn, 299

21. Collaboration Diagram Artifact Referenceccoooviiiiiiiiiii e 300
P24 50 I 1 o (8o [o o PSPPI 300
21.1.1. Limitations Concerning Collaboration Diagramsin ArgoUML 301

21.2. ClasSifier ROIE ...oeeeeeeieie e e 301
21.2.1. Classifier Role DetallsS Tabsovveviveiiiiiiieiieeeiece e 302

Xiv

ArgoUML User Manual

21.2.2. Classifier Role Property Toolbarcoevuiiiiiiiiiiiiiiiiccceeeeen, 303
21.2.3. Property Fields For Classifier Rolec.ccovviiiiiiiiiiiiicceeen, 303

21.3. ASSOCIALION ROIEieiiiei e e e e 306
21.3.1. Association Role DetailS Tahsovvveveieniiiiiieiiieeeeee e 306
21.3.2. Association Role Property Toolbarccoviiiiiiiiiiiiiiieeenn, 307
21.3.3. Property Fields For Association Roleccoiiiiiiiiiiniiineeann, 307

21.4. AssOCIatioNn ENAROIEcovvniiiiiiice e 308
21.4.1. Association End Role Details Tahsccccvvvveiiiinieiiiiiiieiiiineeee 309
21.4.2. Association End Role Property Toolbarcooovviiiiiiiiins 309
21.4.3. Property Fields For Association End Roleoccvvviiiiiiiinnenes 310

AR L2 o PP 311
21.5.1. Message DetailS Tabhscccvveniiiiiiicee e 311
21.5.2. Message Property Toolbarcoccoviveiiiiiiiiieiii e, 312
21.5.3. Property FieldS FOr MESSAEvvvvvvnieiiieii e 313

22. Activity Diagram Artifact REFEreNnCeoovviviiiiiii e 315
272 W L g1 oo [UTox o] [315
22.1.1. Limitations Concerning Activity Diagramsin ArgoUML 316

222, ACHON SEBEE ..ottt ae 316
22.2.1. Action State DetailS TalSccvvveiiiiiieicii e 317
22.2.2. Action State Property TOOIBarcoevveveviiiiiiiieceiecee e, 317
22.2.3. Property fieldsfor action Stateocoeeviiiiiiiiniiiiiieees 318

223 ACHON et aas 319
P I =01 L o] o PSP 319
P o [RSP 319
22.6. INITIAl SEAEE .evvveeeeii e 319
227 FINAl SEBLE ..oeeveieeeei e 319
22.8. JUNCLON (DECISION) ...ueeeetiee ettt e et et e et eeeeai e eees 319
P B o] USSP 319
22725 0 TN ' o PSPPSR 320
22.10. ObJECIFIOWSEAE . .vuieeieiieeeeeiie e et e e e e 320
23. Deployment Diagram Artifact REFErenCecoovvvviveiiiciiiiei e, 321
P22 50 110 o [F o [o o KOS UPPRTPPPN 321
23.1.1. Limitations Concerning Deployment Diagramsin ArgoUML 322

23.2. NOUE ...t a e 322
23.2.1. NOe DEAilS TADS ...cevvviieeiiii e 322
23.2.2. Node Property TOOIDEroeeeuiiiiiieiiei e 323
23.2.3. Property FieldsS FOr NOEcccvviviiiieiii e 324

23.3. NOUEINSEANCE .. .eeeviieiieie et 325
23.3.1. Node Instance DetailS Tahscc.vvvviveeiieiiieei e 325
23.3.2. Node Instance Property Toolbarcccccovieiiiiiiiiiiiiieeees 326
23.3.3. Property Fields For Node INStancecc.vevevieiiiiiiineiineeenn, 326

23,4, COMPONENLeteiteeee ettt et e ettt e et e e e e et e e e e aeeaeenns 327
23.4.1. Component DetaillS TabSevviiiiiiiieii e, 327
23.4.2. Component Property Toolbarccocevvviviiiiiiiiieiiece e, 328
23.4.3. Property Fields FOr Componentcceuvveieiiinieiiiiinneeeiiineeeens 328

23.5. COoMPONENE INSEANCEevvieirieeiriie et eees 329
23.5.1. Component Instance DetaillS Tabsocovuiiiiiiiiiiiiiiicceeeeeeen 330
23.5.2. Component Instance Property Toolbarccoooiiiiiiiiinnnnnnn. 330
23.5.3. Property Fields For Component INStanceccoeevvvvevvievinennnnn. 331

23.6. DEPENAENCY ..ovvueeeeneeeie et ettt e e e e e e e e e 332
P - SRR 332
238 INEEITACE oeniiit e 332
23.9. ASSOCIBIION vttt ettt et eees 332
P2 o 1= TSP 333
23100 LINK et 333
24. Built In DataTypes, Classes, Interfaces and Stereotypescoovvvvvvevivvviievinnennnnn. 334
25 T 1 oo [0 o o o 334
24.1.1. PaCKage SIIUCIUIceeevi et e 334

XV

ArgoUML User Manual

24.1.2. Exposureinthemodelc.cooviiiiiiii i, 336

24.2. BUIt IN DEALYPES .. uevvvneeeineeeeeeei e e e e e e e e e e e e s e e e e e e e e eanaeeees 336

24.3. BUIHE TN ClASSES ..oeuneiiieiii et et e e e e e e e eees 336

24.3.1. BuiltInClassesFromj ava. | angccccoooevveiiiieiiiiinieeiiineees 337

24.3.2. Built InClassesFromj ava. mat h ..., 337

24.3.3. Built InClassesFromj ava. Netccoociveiiiiiiiiiiiiiicceeeenn, 337

24.34. BuiltInClassesFromj ava. utilccoccooiiiiiiiiiiiinceeeeenn, 337

244, BUIlt IN INEEMTACES .ovviiiiii e 337

24.5. BUIlt 1N SEEMEOLYPES ... ettt ettt 338

GlOSSANY ..ttt ettt e e e e e 342
A. Supplementary Material for the Case StUYcoeuiiiiiiiiiiii e, 349
AL INETOOUCTION ..ttt e e e e e eaa e eees 349

A.2. Requirements Documents (TObe Written)cooevvviieiiiiiiii e 349
A.2.1. Vision Document (TObeWritten)ccooevviviiiiiiiiei e 349

A.2.2. Use Case Specifications (To bewritten)ccoooiiiiiiiiiiiiiiin, 349

A.2.3. Supplementary Reguirements Specification (To bewritten) 349

B. UML FBSOUITESieiitieite ettt ettt e e et et e et e et e et e et e e an e e e e et e et e eaaenns 350
B.1. The UML Specs (TODeWIItteN)c..uiieiiiiiie e 350

B.2. UML related papers (TObeWIitten)ccoevniiiiiiiiii e 350
B.2.1. UML action specifications (To be Written)cccoevevviveviiniiiiieennnns 350

B.3. UML related websites (TObBe WITTEN)iiiiiiieii e 350

C. UML Conforming CASE TOOISociiiiiieiiiiie et 351
C.1. Other Open Source Projects (TO be WItteNn)ooeeuiiiiiiiiiiiiceieee e, 351

C.2. Commercial ToolS(TODEeWTIITEN)c.eeriiie e 351

D. ThE CHH MOAUIE ... e 352
D.1. MOdeling fOr G e 352
D.1.1. G @SS tagged VAIUESuuiiiiiii e 352

D.1.2. Attribut etagged ValUEScooeiiiiiieiiiiii e 353

D.1.3. Par @mMBL @IS ..o 354

D.1.4. Preserved SECHIONSc..uiiiiiiiee ettt e ea s 34

E. Limitsand SNOMCOMINGScouuiiiiiiiiieiieee e e e e e e e e e e e e e et e e e e e aanaees 356
E.L Diagram CanVas SIZEceuuiiiii i et e et e e e e e e e e e e e an s 356

E.2. MiSSING FUNCLIONSoeviiiiiii e 356

F. Open PUBIICALION LICENSEcooviiiiiei et e 357
F.1. Requirements On Both Unmodified And Modified Versionsccccoeeeueeennn. 357

F.2. COPYIIGNL e 357

F.3. SCOPE Of LICENSE . ovviiiiii et e e e e e e e aaaas 357

F.4. Requirements On Modified WOrKSccooviiiiiiiiiiieie e 357

F.5. Good-Practice RecommeNdationsccuuveiiiiiiieeiie e e e 358

F.6. LICENSE OPLIONSeiieiiiee ettt ettt ettt e e e e e 358

F.7. Open Publication Policy APPendiX:ccuvieiiiiiiiiiiee e 359

G. The CRC Card MethOdolOgyccuiieniiiieiieie e e 360
L0 T I 0= O o USSP 360

L2 I =Y o o 361

TG T I ==\ o o 361

T B I oY 00 TP 361
g0 L PP 362

XVi

Preface

Software design is a cognitively challenging task. Designers must manually enter designs, but the
primary difficulty is decision-making rather than data-entry. If designers improved their decision-mak-
ing capabilities, it would result in better designs.

Current CASE tools provide automation and graphical user interfaces that reduce the manual work of
entering a design and transforming a design into code. They aid designers in decision-making mainly by
providing visualization of design diagrams and simple syntactic checks. Also many CASE tools provide
substantial benefits in the area of version control and concurrent design mechanisms. One area of design
support that has been not been well supported is analysis of design decisions.

Current CASE tools are usable in that they provide a GUI that allows designers to access all the features
provided by the tool. And they support the design process in that they allow the designer to enter dia-
grams in the style of popular design methodologies. But they typically do not provide process support to
guide the designer through the design task. Instead, designers typically start with a blank page and must
remember to cover every aspect of the design.

ArgoUML is a domain-oriented design environment that provides cognitive support of object-oriented
design. ArgoUML provides some of the same automation features of a commercial CASE tool, but it fo-
cuses on features that support the cognitive needs of designers. These cognitive needs are described by
three cognitive theories:

1

reflection-in-action;
2.

opportunistic design; and
3.

comprehension and problem solving.

ArgoUML is based directly on the UML 1.4 specification. The core model repository is an implementa-
tion of the Java Metadata Interface (JM1) which directly supports MOF and uses the machine readable
version of the UML 1.4 specification provided by the OMG.

Furthermore, it is our goal to provide comprehensive support for OCL (the Object Constraint Language)
and XMI (the XML Model Interchange format).

ArgoUML was originally developed by a small group of people as a research project. ArgoUML has
many features that make it special, but it does not implement all the features that commercial CASE
tools provide.

The current V0.20 release of ArgoUML implements all the diagram types of the UML 1.4 standard
[http://www.omg.org/cgi-bin/doc?ormal/01-09-67] (versions of ArgoUML prior to 0.20 implemented
the UML 1.3 standard [http://www.omg.org/cgi-bin/doc?formal/00-03-01]). It iswritten in Javaand runs
on every computer which provides a Java 2 platform of Java 1.4 or newer. It uses the open file formats
XMI [http://www.omg.org/cgi-bin/doc?formal/02-01-01] (XML Metadata Interchange format) (for
model information) and PGML [http://www.w3.0rg/TR/1998/NOTE-PGML] (Precision Graphics
Markup Language) (for graph information) for storage. When ArgoUML implements UML 2.0, PGML
will be replaced by the UML Diagram Interchange specification.

This manual isthe cumulative work of several people and has been evolving over several years. Connec-
ted to the release 0.10 of ArgoUML, Jeremy Bennett, wrote a lot of the new material that was added to
the earlier versions by Alejandro Ramirez, Philippe Vanpeperstraete and Andreas Rueckert. He also ad-

XVii

http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/00-03-01
http://www.omg.org/cgi-bin/doc?formal/02-01-01
http://www.w3.org/TR/1998/NOTE-PGML

Preface

ded things from some of the other documents namely the developers cookbook by Markus Klink and
Linus Tolke, the Quick Guide by Kunle Odutola, and the FAQ by Dennis Daniels. Connected to the re-
lease 0.14 changes were made by Linus Tolke, and by Michiel van der Wulp. These changes were
mostly to adopt the manual to the new functions and appearance of ArgoUML version 0.14, and intro-
duction of the index. The users and developers that have contributed by providing valuable input, such
as review comments or observations while reading and using this manual are too many to name.

ArgoUML is available for free and can be used in commercial settings. For terms of use, see the license
agreement presented when you download ArgoUML. We are providing the source code for ArgoUML
for you to review, customize to your needs, and improve. Over time, we hope that ArgoUML will
evolve into a powerful and useful tool for everyone to use.

This User Manual is aimed at the working designer, who wishes to make use of ArgoUML. The manual
is presently written assuming familiarity with UML, but eventually it will support those new to UML.

The manual iswritten in DocBook/XML and available as both HTML and PDF.

The ArgoUML project welcomes those who want to get more involved. Look at the project website
[http://argouml.tigris.org/] to find out more.

Tell us what you think about this User Manual! Y our comments will help us improve things. See Sec-
tion 1.3.3, “User Feedback” .

XViii

http://argouml.tigris.org/

Chapter 1. Introduction
1.1. Origins and Overview of ArgoUML

1.1.1.

1.1.2.

Object Oriented Analysis and Design

Over the past decade, Object Oriented Analysis and Design (OOA& D) has become the dominant soft-
ware development paradigm. With it has come a major shift in the thought processes of al involved in
the software development life cycle.

Programming language support for objects began with Simula 67, but it was the emergence in the 1980's
of hybrid languages, such as C++, Ada and Object Pascal that allowed OOA&D to take off. These lan-
guages provided support for both OO and procedural programming. Object Oriented programming be-
came mainstream.

An OO system is designed and implemented as a simulation of the real world using software artifacts.
This premiseis as powerful asit issimple. By using an OO approach to design a system can be designed
and tested (or more correctly simulated) without having to actually build the system first.

It is the development during the 1990's of tools to support Object Oriented analysis and design that
moved this approach into the mainstream. When coupled with the ability to design systems at a very
high level, a tool based OOA&D approach has enabled the implementation of more complex systems
than previously possible.

The final driver that has propelled OOA&D has been its suitability for modeling graphical user inter-
faces. The popularity of object based and object oriented graphical languages such as Visual Basic and
Javareflect the effectiveness of this approach.

The Development of ArgoUML

During the 1980's a number of OOA& D process methodol ogies and notations were developed by differ-
ent research teams. It became clear there were many common themes and, during the 1990's, a unified
approach for OOA&D notation was developed under the auspices of the Object Management Group
[http://www.omg.org]. This standard became known as the Unified Modeling Language (UML), and is
now the standard language for communicating OO concepts.

ArgoUML was conceived as atool and environment for use in the analysis and design of object-oriented
software systems. In this sense it is similar to many of the commercial CASE tools that are sold as tools
for modeling software systems. ArgoUML has a number of very important distinctions from many of
these toals.

1. ArgoUML draws on research in cognitive psychology to provide novel features that increase pro-
ductivity by supporting the cognitive needs of object-oriented software designers and architects.
2. ArgoUML supports open standards extensively—UML, XMI, SVG, OCL and others.

3. ArgoUML is a 100% pure Java application. This allows ArgoUML to run on al platforms for
which areliable port of the Java2 platform is available.

4. ArgoUML isan open source project. The availability of the source ensures that a new generation of
software designers and researchers now have a proven framework from which they can drive the
development and evolution of CASE tool technologies.

http://www.omg.org

Introduction

UML is the most prevalent OO modeling language and Javais one of the most productive OO devel op-
ment platforms. Jason Robbins and the rest of his research team at the University of California, Irvine
leveraged these benefits in creating ArgoUML. The result is a solid development tool and environment
for OO systems design. Further, it provides a test bed for the evolution of object oriented CASE tools
development and research.

A first release of ArgoUML was available in 1998 and more than 100,000 downloads by mid-2001 show
the impact that this project has made, being popular in educational and commercia fields.

1.1.3. Finding Out More About the ArgoUML Project
1.1.3.1. How ArgoUML is Developed

Jason Elliot Robbins founded the Argo Project and provided early project leadership. While Jason re-
mains active in the project, he has handed off project leadership. The project continues to move forward
strongly. There are more than 300 members on the developer mailing list (see ht-
tp:/fargouml.tigris.org/serviets/ProjectMailingListList

[http://argouml tigris.org/servlets/ProjectMailingListList]), with a couple of dozen of those forming the
core development group.

The developer mailing list is the place where all the discussion on the latest tasks takes place, and de-
velopers discuss the directions the project should take. Although controversial at times, these discus-
sions are aways kept nice and friendly (no flame-wars and such), so newbies should not hesitate and
participate in them. You'll ways get awarm welcome there.

If you want to learn how the project is run and how to contribute to it, go the the ArgpUML Web Site
Developer Zone [http://argouml .tigris.org/dev.html] and read through the documentation there. The De-
velopers' Cookbook was written specifically for this purpose.

1.1.3.2. More on Infrastructure

Besides the devel oper mailing list, there's also a mailing for users (see The ArgoUML Mailing List List
[http://argouml .tigris.org/servlets/ProjectMailingListList]), where we can discuss problems from a user
perspective. Developers also read thislist, so highly qualified help will generally be provided.

Before posting to this list, you should take a look a the wuser FAQ
[http://argouml tigris.org/fags/users.html] maintained by Ewan R. Grantham.

More information on ArgoUML and other UML related topics is also available on the ArgoUML web-
site [http://argouml tigris.org], maintained by Linus Tolke.

1.2. Scope of This User Manual
1.2.1. Target Audience

The current release of this document is aimed at experienced users of UML in OOA&D (perhaps with
other tools) who wish to transfer to ArgoUML.

Future releases will support designers who know OOA& D, and wish to adopt UML notation within their
development process.

A long term goal is to support i) those who are learning design and wish to start with an OOA&D pro-
cess that uses UML notation, and ii) people interested in modularized code design with a GUI.

http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
http://argouml.tigris.org

1.2.2.

Introduction

Scope

The intention is that this document will provide a comprehensive guide, enabling designers to use
ArgoUML toitsfull extent. Itisin two parts.

* A tutorial manual, showing how to work with ArgopUML

» A complete reference manual, recording everything you can do with ArgoUML.

Version 0.22 of the document achieved the second of these.

In this guide there are some things you will not find, because they are covered el sewhere.

e Descriptions of how ArgoUML works on the inside.
* How toimprove ArgoUML with new features and functions.
» A trouble shooting guide.

* A summary quick reference to using ArgoUML.

These are covered in the Developers Cookbook
[http://argouml-stats.tigris.org/documentati on/defaul thtml/cookbook/], the FAQ
[http://argouml.tigris.org/fags/users.html], and the Quick Guide

[http://argouml .tigris.org/documentati on/defaulthtml/quickguide/].

1.3. Overview of the User Manual

1.3.1.

1.3.2.

Tutorial Manual Structure

Chapter 2, Introduction (being written) provides an overview of UML based OOA&D, including aguide
to getting ArgoUML up and running.

Chapter 4, Requirements Capture through Chapter 7, Code Generation, Reverse Engineering, and
Round Trip Engineering then step through each part of the design process from initial requirements cap-
ture through to final project build and deployment.

As each UML concept is encountered, its use is explained. Its use within ArgoUML is then described.
Finally a case study is used to give examples of the conceptsin use.

Reference Manual Structure

Chapter 8, Introduction is an overview of the user interface and provides a summary of the support for
the various UML diagram typesin ArgoUML. Chapter 10, The Menu bar and Chapter 11, The Explorer
describe the menu bar, and each of the sub-windows of the user interface, known as Panes.

Chapter 15, The Critics gives details of all the cognitive critics within the system. Eventually ArgoUML
will link directly to this manua when giving advice on critics.

Chapter 16, Top Level Artifact Reference is an overview of the artifacts (i.e. the UML entities that can
be placed on diagrams) within ArgoUML. The following chapters (Chapter 17, Use Case Diagram Arti-
fact Reference through Chapter 24, Built In DataTypes, Classes, Interfaces and Stereotypes) describe,
the artifacts that can be created through each ArgoUML diagram, and their properties, as well as some

3

http://argouml-stats.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org/documentation/defaulthtml/quickguide/

1.3.3.

Introduction

standard artifacts provided with the system.

A complete Glossary is provided. Appendix A, Supplementary Material for the Case Study provides ma-
terial to supplement the case study used throughout the document. Appendix B, UML resources and Ap-
pendix C, UML Conforming CASE Tools identify background information on UML and UML CASE
tools. Appendix F, Open Publication License is a copy of the GNU Free Documentation License.

A future ambition is to provide a comprehensive index.

User Feedback

Please tell us what you think about this User Manual. Y our comments will help us make improvements.
Email your thoughts to the ArgoUML Users Mailing List [mailto:users@argouml.tigris.org]. In case you
would like to add to the missing chapters you should contact the ArgopUML Developer Mailing List
[mailto:dev@argouml.tigris.org] to check whether anyone else is working on this part. You can sub-
scribe to either of the mailing lists viathe ArgoUML web site [http://argouml.tigris.org].

1.4. Assumptions

This release of the manual assumes the reader is very familiar with UML already. Thisis reflected in the
sparseness of the description of UML conceptsin the tutorial.

The case study is described, but not yet fully realized throughout the tutorial. This will be achieved in
future releases of the manual.

mailto:users@argouml.tigris.org
mailto:dev@argouml.tigris.org
http://argouml.tigris.org

Part 1. Tutorial

Chapter 2. Introduction (being written)

Thistutorial will be taking you through a tour of the use of ArgoUML to model a system.

An ATM (automated teller machine) project has been chosen as a case study to demonstrate the various
aspects of modeling that ArgoUML offers. In subsegquent sections we are going to develop the ATM ex-
ample into a complete description in UML. The tutorial, however, will only walk you through part of it.

At this point you should create a directory to contain your project. Name the directory anything you feel
is consistent with the rest of your file system. You should name the contents and any subdirectories as
directed for reasons that will become apparent.

The state of the model at the end of key sections will be available in .zargo files. These are available so
that you can play with various alternatives and restore yourself back to the proper state of the model in
your work area. These .zargo files will be identified at the end of the sections whose work they repres-
ent.

The case study will be an ATM system. Y our company is FlyByNight Industries. Y ou are going to play
two roles. That of the Project Manager and that of the Designer Analyst.

We are not going to build aphysical ATM, of course.

First you will become familiar with the feel of the product and then we will go through an analysis and
development process for atest case.

How your company arranges its work into projectsis usually determined as much by politics as anything
else and is, therefore, out of the scope of this document. We will go into how you structure the project it-
self once one has been defined.

Chapter 3. UML Based OOA&D

In this chapter, we look at how UML as anotation is used within OOA&D.

3.1. Background to UML

Object orientation as a concept has been around since the 1960's, and as a design concept since 1972.
However it was in the 1980's that it started to develop as a credible alternative to a functional approach
in analysis and design. We can identify a number of drivers.

1. The emergence of mainstream OO programming languages like SmallTalk and particularly C++.
C++ was a pragmatic OO language derived from C, widely used because of its association with
Unix.

2. The development of powerful workstations, and with them the emergence into the mainstream of
windowing operating user environments. Graphical User Interfaces (GUI) have an inherent object
structure.

3. A number of very public major project failures, suggesting that current approaches were not satis-
factory.

A number of researchers proposed OOA&D processes, and with them notations. Those that achieved
some success include Coad-Y ourdon, Booch, Rumbaugh OMT, OOSE/Jacobson, Shlaer-Mellor, ROOM
(for real-time design) and the hybrid Jackson Structured Development.

During the early 1990's it became clear that these approaches had many good ideas, often very similar.
A major stumbling block was the diversity of notation, meaning engineers tended to be familiar with one
OOA& D methodology, rather than the approach in general.

UML was conceived as a common notation, that would be in the interests of al involved. The origina
standard was driven by Rational Software (www.rational.com [http://www.rational.com], in which three
of the key researchers in the field (Booch, Jacobson and Rumbaugh were involved). They produced doc-
uments describing UML v0.9 and v0.91 during 1996. The effort was taken industry wide through the
Object Management Group (OMG), already well known for the CORBA standard. A first proposal, 1.0
was published in early 1997, with an improved version 1.1 approved that autumn.

ArgoUML is based on UML v1.4, which was adopted by OMG in March 2000. The current official ver-
sionisUML v1.5 dated March 2003, soon to be replaced by a major revision, UML v2.0, which isin the
final stages of standardization and is expected to be complete in 2006.

3.2. UML Based Processes for OOA&D

It is important to understand that UML is a notation for OOA&D. It does not prescribe any particular
process. Whatever process is adopted, it must take the system being constructed through a number of
phases.

1. Requirements Capture. This is where we identify the requirements for the system, using the lan-
guage of the problem domain. In other words we describe the problem in the “customer's’ terms.

2. Andysis. We take the requirements and start to recast them in the language of a putative solu-
tion—the solution domain. At this stage, although thinking in terms of a solution, we ensure we
keep things at a high level, away from concrete details of a specific solution—what is known as ab-

http://www.rational.com

UML Based OOA&D

straction.

3. Design. We take the specification from the Analysis phase and construct the solution in full detail.
We are moving from abstraction of the problem to its realization in concrete terms.

4. Build Phase. We take the actual design and write it in areal programming language. This includes
not just the programming, but the testing that the program meets the requirements (verification),
testing that the program actually solves the customer's problem (validation) and writing all user
documentation.

3.2.1. Types of Process

In this section we look at the two main types of process in use for software engineering. There are oth-
ers, but they are less widely used.

In recent years there has also been a move to reduce the effort required in devel oping software. This has
led to the development of a number of lightweight variants of processes (often known as agile comput-
ing or extreme programming) that are suited to very small teams of engineers.

3.2.1.1. The Waterfall Process

In this process, each stage of the process—requirements, analysis, design and build (code and test) is
completed before the next one starts. Thisisillustrated in Figure 3.1, “ The Waterfall Process”.

Figure 3.1. The Waterfall Process

Keq 1

Aﬂal}rsiST

Design +

Code 1

Test

Thisis avery satisfactory process where requirements are well designed and not expected to change, for
example automating awell proven manual system.

The weaknesses of this approach show with less well defined problems. Invariably some of the uncer-
tainties in the requirements will not be clarified until well into the analysis and design, or even code

UML Based OOA&D

phases, requiring backtracking to redo work.

The worst aspect of this, is that working code does not become available until near the end of the
project, and very often it is only at this stage that problems with the original requirements (for example
with the user interface) become apparent.

This is exacerbated, by each successive stage requiring more effort, than the previous, so that the costs

of late problem discovery are hugely expensive. Thisisillustrated by the pyramid in Figure 3.2, “Effort
Involved in the Steps of the Waterfall Process’.

Figure 3.2. Effort Involved in the Steps of the Waterfall Process

Req
/ Analysis

Design

Code

Test

The waterfall processis still probably the dominant design process. However because of its limitations it
isincreasingly replaced by iterative processes, particularly for projects where the requirements are not
well defined.

3.2.1.2. Iterative Development Processes

In recent years a new approach has been used, which aimsto get at least part of the code up and running
as quickly as possible, to bring discovery of problems forward in the development cycle.

These processes use a series of “mini-waterfalls’, defining afew requirements (the most important) first,
taking them through analysis, design and build to get an early version of the product, with limited func-
tionality, related to the most important requirements. Feedback from this can then be used to refine the
requirements, spot problems etc before more work is done.

The process is then repeated for further requirements to construct a product with a step up in functional -
ity. Again further feedback can be applied to the requirements.

The process is repeated, until eventually al requirements have been implemented and the product is
complete. It is this iteration that gives these processes their name. Figure 3.3, “Effort Involved in the
Steps of an Iterative Process’ shows how this process compares to the pyramid structure of the Waterfall
Process.

UML Based OOA&D

Figure 3.3. Effort Involved in the Steps of an Iterative Process

S iCadet % %

A P Y

The growth in popularity of iterative processes is closely tied to the growth of OOA&D. It is the clean
encapsulation of objects that allows a part of a system to be built with stubs for the remaining code
clearly defined.

3.2.1.2.1. The Rational Unified Process

Perhaps the best known Iterative Process is the Rational Unified Process (RUP) from Rationa Software
(www.rational.com [http://www.rational .com]).

This process recognizes that our pyramid view of even dlices of the waterfall is not realistic. In practice
the early iterations tend to be heavy on the requirements end of things (you need to define a reasonable
amount even to get started), while the later iterations have more of their effort in the design and build
aress.

RUP recognizes that iterations can be grouped into a number of phases according to their stage in the
overall project. Each phase may have one or more iterations.
* Inthe inception phase iterations tend to be heavy on the requirements/analysis end, while any build

activity may be limited to emulation of the design within a CASE tool.

* Inthe elaboration phase iterations tend to be completing the specification of the requirements, and
starting to focus on the analysis and design, and possibly the first real built code.

* In the construction phase iterations the requirements and analysis are more or less completed, and
the effort is mostly in design and build.

« Finally, in the deployment phase iterations are largely about build activity, and in particular the test-
ing of the software.

10

http://www.rational.com

UML Based OOA&D

Note

It should be clear that testing is an integral part of al phases. Even in the early phases the
requirements and design should be tested, and thisisfacilitated by a good CASE tool.

We shall use an iterative process in this manual, that is loosely based on the RUP.

3.2.1.2.2. lteration Size

A good rule of thumb is that an iteration should take between six and ten weeks for typical commercial
projects. Any longer and you have probably bitten off too many requirements to do in one go. You also
lose focus on getting the next working iteration completed. Any shorter and you probably haven't got
enough requirements to make a significant advance. In this case the additional overhead associated with
an interation will become a problem.

The total number of iterations depends on the size of project. Take the estimated time (working out/
guessing that is a whole subject on its own), and divide it into 8 week chunks. Experience seems to sug-
gest that the iterations will divide in the ratio of around 1:2:3:3 into RUP style inception, elaboration,
construction and deployment phases. A project that has great vagueness in its specification (some ad-
vanced research projects for example) will tend to be heavier on the early phases.

When building a product to contract for a customer the end point is well defined. However when devel-
oping a new product for the market place, a strategy that can be used is to decide the product launch
date, and hence the end date for completion of engineering (some time before). The time is then divided
into iterations, and as much of the product as can be built in that time developed. The iterative processis
very effective where time to market is more important than the exact functionality.

3.2.1.3. Recursive Development Processes

3.2.2.

Very few software systems are conceived as monolithic artifacts. They are broken down into subsys-
tems, modules etc.

Software processes are the same, with early parts of the process defining a top level structure, and the
process reapplying to parts of the structure in turn to define ever greater details.

For example the initial design of a telephone system might identify objects to i) handle the phone lines,
ii) process the calls, iii) manage the system and iv) bill the customer. The software process can then be
reapplied to each of these four components to identify their design.

OOA&D with its clean boundaries to objects, naturally supports this approach. Such OOA&D with re-
cursive devel opment is sometimes abbreviated as OOA& D/RD.

Recursive development can be applied equally well to waterfall or iterative processes. It is not an altern-
ative to them.

A Development Process for This Manual

For the purpose of this manua we will use a stripped down iterative process with recursive develop-
ment, loosely akin to RUP. The case study will take us through the first iteration, although at the end of
the tutorial section of the manual we will look at how the project will develop to completion.

Within that first iteration, we will tackle each of the requirements capture, analysis, design and build
activitiesin turn. Not all parts of the process are based on UML or ArgoUML. We will look at what oth-
er material is needed outside.

Within this process we will have an opportunity to see the various UML diagramsin use. The full range

11

UML Based OOA&D

of UML diagrams and how they are supported is described in the reference manual (see Section 16.6,
“Diagram”).

3.2.2.1. Requirements Capture
Our requirements capture will use the UML concept of Use Cases. Starting with a Vision Document we

will see how Use Cases can be developed to describe all aspects of the system's behavior in the problem
domain.

3.2.2.2. Analysis

During the analysis stage, we will introduce the UML concept of classesto alow us to build atop level
view of the objects that will make up the solution—sometimes known as a concept diagram.

We will introduce the UML sequence diagram and statechart diagram to capture requirements for the
overall behavior of the system.

Finally we will take the Use Cases from the requirements capture stage, and recast them in the language
of the solution domain. Thiswill illustrate the UML ideas of stereotyping and realization.

3.2.2.3. Design

We use the UML package diagram to organize the components of the project. We then revisit the class
diagram, sequence diagram and statechart diagram, to show how they can be used recursively to design
the complete solution.

During this part of the process, we need to develop our system architecture, to define how al the com-
ponents will fit together and operate.

Although not strictly part of our process, we'll look at how the UML collaboration diagram can be used
as an dternative to, or to complement the sequence diagram. Similarly we will look at the UML activity
diagram as an alternative or complement to the statechart diagram.

Finally we shall use the UML deployment diagram to specify how the system will actualy be realized.
3.2.2.4. Build

UML is not really concerned with code writing. However at this stage we will show how ArgoUML can
be used for code generation.

We will also look at how the UML Use Case Diagram and Use Case Specification are invaluable tools
for atest program.

3.3. Why ArgoUML is Different

In the introduction, we listed the four key things that make ArgoUML different: i) it makes use of ideas
from cognitive psychology, ii) it is based on open standards; iii) it is 100% pure Java; and iv) it is an
open source project.

3.3.1. Cognitive Psychology
3.3.1.1. Theory

ArgoUML is particularly inspired by three theories within cognitive psychology: i) reflection-in-action,
ii) opportunistic design iii) and comprehension and problem solving.

12

UML Based OOA&D

» Reflection-in-Action
This theory observes that designers of complex systems do not conceive a design fully-formed. In-
stead, they must construct a partial design, evaluate, reflect on, and revise it, until they are ready to
extend it further.

As developers work hands-on with the design, their mental model of the problem situation improves,
hence improving their design.

» Opportunistic Design
A theory within cognitive psychology suggesting that although designers plan and describe their
work in an ordered, hierarchical fashion, in reality, they choose successive tasks based on the criteria
of cognitive cost.

Simply stated, designers do not follow even their own plans in order, but choose steps that are men-
tally least expensive among alternatives.

» Comprehension and Problem Solving

A design visualization theory within cognitive psychology. The theory notes that designers must

bridge a gap between their mental model of the problem or situation and the formal model of a solu-

tion or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposition, state transitions, control
flow, and data flow. These allow the programmer to better identify elements and relationships
in the problem and solution and thus more readily create a mapping between their situation
models and working system models.

2. Familiar aspects of a situation model, which improve designers' abilities to formulate solutions.

3.3.1.2. Practical Application in ArgoUML

ArgoUML implements these theories using a number of techniques.

1. Thedesign of auser interface which allows the user to view the design from a number of different
perspectives, and allows the user to achieve goals through a number of alternative routes.

2. The the use of processes running in parallel with the design tool, evaluating the current design
against models of how “best practice” design might work. These processes are known as design

critics.

3. Theuse of to-do lists to convey suggestions from the design critics to the user, as well as alowing
the user to record areas for future action.

4. Theuse of checklists, to guide the user through a complex process.

3.3.2. Open Standards

UML is itself an open standard. ArgoUML throughout has tried to use open standards for all its inter-
faces.

The key advantage of adherence to open standards is that it permits easy inter-working between applica

13

UML Based OOA&D

tions, and the ability to move from one application to another as necessary.

3.3.2.1. XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is the standard for saving the meta-data that make up a particular
UML model. In principle this will allow you to take the model you have created in ArgpUML and im-
port it into another tool.

This clearly has advantages in allowing UML to meet its goal of being a standard for communication
between designers.

The redlity is not quite this good. Prior to UML 2.0 the XMI file includes no information about the
graphical representation of the models, so diagram layout is lost. ArgoUML gets round this by saving
graphical information separate from the model (see Section 3.4.3.1, “Loading and Saving”).

3.3.2.2. Graphics Formats - EPS, GIF, PGML, PNG, PS, SVG

» Encapsulated PostScript (EPS) [http://en.wikipedia.org/wiki/Encapsulated_PostScript] file is a Post-
Script file which satisfies additional restrictions. These restrictions are intended to make it easier for
software to embed an EPS file within another PostScript document.

e Graphics Interchange Format (GIF) [http://en.wikipedia.org/wiki/GIF] is a patent encumbered
format, athough the patents will run out in August of 2006.

* Precision Graphics Markup Language (PGML) [http://en.wikipedia.org/wiki/PGML] is an XML-
based language for representing vector graphics. It was a W3C draft, but was not adopted as a re-
commendation. PGML and VML, another XML -based vector graphics language, were later joined
and improved upon to create SVG.

» Portable Network Graphics (PNG) [http://en.wikipedia.org/wiki/PNG] is an ISO/IEC standard
(15948:2004) and is also a W3C recommendation. PNG is a bitmap image format that employs
lossless data compression. PNG was created to both improve upon and replace the GIF format with
an image file format that does not require a patent license to use. PNG is officialy pronounced
"ping" but it is often just spelled out — probably to avoid confusion with the network tool ping.
PNG is supported by the libpng reference library, a platform-independent library that contains C
functions for handling PNG images.

» PostScript (PS) [http://en.wikipedia.org/wiki/PostScript/] is a page description language and pro-
gramming language used primarily in the electronic and desktop publishing aress.

e Scalable Vector Graphics (SVG) [http://en.wikipedia.org/wiki/Scalable Vector _Graphics] is an
XML markup language for describing two-dimensional vector graphics, both static and animated,
and either declarative or scripted. It is an open standard created by the World Wide Web Consorti-
um. The use of SVG ontheweb isinitsinfancy. Thereis agreat deal of inertia due to the long-time
use of pure raster formats and other formats like Macromedia Flash or Java applets, but also browser
support is still uneven, with native support in Opera and Firefox, but Safari and Internet Explorer re-
quire aplugin. See PGML above.

3.3.2.3. Object Constraint Language (OCL)

Object Constraint Language (OCL) [[http://en.wikipedia.org/wiki/Object_Constraint_L anguage] is a de-
clarative language for describing rules that apply to UML models. It was developed at IBM and is now
part of the UML standard. Initially OCL was only a formal specification language extension to UML.
OCL may now be used with any Meta-Object Facility (MOF) compliant metamodel, including UML.
The Object Constraint Language is a precise text language that provides constraint and object query ex-

14

http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/PGML
http://en.wikipedia.org/wiki/PNG
http://en.wikipedia.org/wiki/PostScript/
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
[http://en.wikipedia.org/wiki/Object_Constraint_Language

UML Based OOA&D

pressions on any MOF model or metamodel that cannot otherwise be expressed by diagrammatic nota-
tion.

3.3.3. 100% Pure Java

Java was conceived as an interpreted language. It doesn't have a compiler to produce code for any par-
ticular target machine. It compiles code for its own target, the Java Virtual Machine (JVM).

Writing an interpreter for aJJVM is much easier than writing a compiler, and such machines are now in-
corporated into amost every Web Browser. As a result most machines can run Java, with no further
work.

(In case you wonder why all languages aren't like this, it is because interpreted languages tend to be
slower than compiled languages. However with the high performance of modern PCs, the trade-off for
portability is worthwhile for many applications. Furthermore modern multi-level caches can mean that
interpreted languages, which produce denser code, may actually not be that much slower anyway.)

By choosing to write ArgoUML in pure Java, it isimmediately made available to the maximum number
of users with the minimum amount of effort.

3.3.4. Open Source

ArgoUML is an open source project. That means anyone can have a free copy of the source code,
change it, use it for new purposes and so on. The only (major) obligation is that you pass your code on
in the same way to others. The precise nature of what you can and can't do varies from project to project,
but the principle is the same.

The advantage is that a small project like ArgoUML suddenly is open to a lot of additional help from
those who can chip in their ideas for how the program might be improved. At any one time their may be
10, 15, 20 or more people making significant contributions to ArgoUML. To do that commercially
would cost $1m+ per year.

Its not just a spirit of pure atruism. Contributing is a way of learning “hands-on” about leading edge
software. Its a way of getting alot of visibility (over 100,000 people had downloaded ArgoUML by the
spring of 2001). That's alot of good experience on aresumé and alot of potential employers seeing you!

And its great for the ego!

Open Source doesnt preclude making money. Gentleware www.gentleware.com
[http://Iwww.gentleware.com] sell acommercia version of ArgoUML, Poseidon. Their value proposition
is not a piece of private code. Its the commercial polish and support that take risk out of using

ArgoUML in acommercial development, allowing customers to take advantage of ArgoUML's leading
edge technology.

3.4. ArgoUML Basics

The aim of this section is to get you started with ArgoUML.. It takes you through obtaining the code and
getting it running.

3.4.1. Getting Started
3.4.1.1. System Requirements

Since ArgoUML is written in 100% pure Java, it should run on any machine with Java installed. Java,
version 1.4 or later is needed. You may have this in place, but if not it can be downloaded free from
www.java.com [http://www.java.com]. Note that you only need the Java Runtime Environment (JRE),

15

http://www.gentleware.com
http://www.java.com

UML Based OOA&D

there is no need to download the whole Java Development Kit (JDK).

ArgoUML needs a reasonable amount of computing resource. A PC with 200MHz processor, 64Mb
RAM and 10Mb of space available on a harddisk should be adequate. Download the code from Down-
load section of the project website argouml .tigris.org [http://argouml.tigris.org]. Choose the version that
suits your needs as described in the section below.

3.4.1.2. Downloading Options

Y ou have three options for obtaining ArgoUML.

1. RunArgoUML directly from the Web Site using Java Web Start. Thisisthe easiest option.

2. Download the binary executable code. Thisis the right option if you intend using ArgoUML regu-
larly and is not that difficult.

3. Download the source code using CV'S and build your own version. Choose this option if you want
to look at the internal workings of ArgoUML, or want to join in as a developer. This option does
require the whole JDK (see Section 3.4.1.1, “ System Requirements”).

All three options are freely avalable through the project web site, argouml.tigris.org
[http://argouml.tigris.org].

3.4.1.3. ArgoUML Using Java Web Start

There are two stepsto this.

1. Install Java Web Start on your machine. This is available from java.sun.com/products/javawebstart
[http://java.sun.com/products/javawebstart], or viathe Java Web St art link on the ArgopUML
home page [http://argouml.tigris.org].

2. Click on the Launch |atest stable release link on the ArgpML home page
[http://argouml tigris.org].

Java Web Start will download ArgoUML, cache it and start it the first time, then on subsequent starts,
check if ArgoUML is updated and only download any updated parts and then start it. The ArgoUML
home page [http://argouml.tigris.org] also provides details on starting ArgoUML from the Java Web
Start console.

3.4.1.4. Downloading the Binary Executable

If you choose to download the binary executable, you will have a choice of downloading the latest stable
version of the code (which will be more reliable, but not have al the latest features), or the current ver-
sion (which will be less reliable, but have more features). Choose according to your own situation.

ArgoUML comesin . zi p ort ar. gz flavors. Choose the former if you are a Microsoft Windows user,
and the latter if you are running some flavor of Unix. Unpacking is as follows.

* On Windows. Unzip the . zi p file with WinZip, or on later versions of Windows (ME, XP) copy
the files out of the compressed folder and put them into a directory of your choosing.

e On Unix. Use GNU tar to unzip and break out the files to a directory of your choice
tar zxvf <file>. tar.gz.If youhave an older version of tar, the z option may not be avail-
able, sousegunzip < file.tar.gz | tar xvf -.

16

http://argouml.tigris.org
http://argouml.tigris.org
http://java.sun.com/products/javawebstart
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org

UML Based OOA&D

Y ou should have a directory containing a number of . j ar filesand a README. t xt .

3.4.1.5. Problems Downloading

If you get completely stuck and you have no local assistance, try the web site, particularly the FAQ
[http://argouml tigris.org/fags/users.html]. If this still doesn't solve the problem, try the ArgoUML users
mailing list.

You can subscribe through the mailing lists section of the project web site argouml.tigris.org
[http://argouml.tigris.org], or send an empty message to users@argouml.org
[mailto:users@argouml.org] with the subject linesubscri be.

Y ou can then send your problem to users@argouml.org [mailto:users@argouml.org] and see how other
users are able to help.

The users mailing list is an excellent introduction to the live activity of the project. If you want to get
further involved there are additional mailing lists that cover the development of the product and issuesin
the current and future releases.

3.4.1.6. Running ArgoUML

To run ArgoUML depends on whether you use Microsoft Windows or some flavor of Unix.

* On Windows. Start an MSDOS shell window by e.g. using Start/Run with “command” in the text
window. In the window change to the directory holding your ArgoUML files and type
java -jar argouml . jar. Thismethod has the advantage that progress and debugging inform-
ation isvisible in the DOS window. Alternatively create a batch file (.bat) containing the above com-
mand, with a shortcut to it on the desktop. The batch file should end with a "pause" statement in case
any debugging information is created during a run. On some systems, simply (double) clicking on
thear goum . j ar file works. On others doing so initiates a zip utility. Refer to you operating sys-
tem instructions or help facility to determine how to configure this.

e OnUnix. Start ashell window andtypej ava -j ar argoun .j ar

3.4.1.7. Problems Running ArgoUML

It's unusual to encounter problems if you have made a successful download. If you can't solve the prob-
lem. Try the users mailing list (see Section 3.4.1.5, “Problems Downloading”).

e Wrong JRE. The most common issue is not having a new enough Java Runtime Environment (it
must be 1.4 or later).

» Wrong language. If the product came up in a language you can't read or just don't want, go to the
second leftmost menu item in the menu bar at the top of the screen. Select the bottom most menu
entry in the drop down. Figure 3.5, “ Setting Language in the Appearance Pane”’ show thisin Russi-
an. Then click on the second tab from the bottom in the column of tabs on the left. Drop down the
list as shown in Figure 3.5, “ Setting Language in the Appearance Pane”. and select alanguage. Note
that the languages are listed in themselves. The language shown as being selected is German in
which the word for “German” is “Deutsch”. You will have to exit ArgoUML and restart it for the
change to take effect. Use the X button at the upper right.

Figure 3.4. Finding the Settings Wizard

17

http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
mailto:users@argouml.org
mailto:users@argouml.org

UML Based OOA&D

i

Dakn | PeAakTHpoEaTE [MpocMoTp Co3AaTe AMarpamidy PAccTaEMTe [EHEpauMA KoAa HKpWTHKE WHCTPYMeHTEl Mool
[y Bofare - DB EEBREBERD

= ﬁ Hl} YaanHTE He AHanpaniel| Delete S
= ﬁl’ W AANHTE HE MO4E0H Chrl+Deleke j g =Y S (B9 = ? E i P g g = D O -

-

-

Order E

Tarpan ¥CTAHOBKH. ..

ﬂwarpama E3PHAHTOE WCMoeE 310

4 |

_1| | j Lz Diagran |
Mo nprHopHTeTy VI 2 NYHKTEI 1 Moo | [FRraHHYErHHA | 4 Stereotvoe & WMEHOBaHHEIE SHAYEHKHA |7 ikeespme
4 Caenats & CeoiicTea 4 JorymeHTalHA | Criie
9 Model A D o EDISDISLL[EHHF!Z T PMHE NS ALLIAE 3 AEMEHT L
st urtitedh odel

MNpocTpaHeTES HMEHZI - I

|' BugumocTe: | Cneuranmsaum

* my. omp. pa. =a.

MoagrerkaTope:

— — n.__ ..

Figure 3.5. Setting Language in the Appear ance Pane

x

Tpeanoureniin Brevarnerre W o ywyeHHe:; i
Eop— : |W|ndnws ll
_MNonesosarens [WwyeHMe MeTana; Istee| ;I
Horawe
EHewHocTE [T CraasWeaTs EpoMEH AHHHA QHarpa...
Modules
Asbik: es [espafiol) ll
en [Enalish)

fr [francaiz)
ez [ezpafiol)

de [Deutsch)
MNepesanycTHTe NpHAo#eH] nb [Monwegian Bakmal |
i [pyccini) =
zh D)
—|en_GE [Englizh United Kingdom) -

3.4.2. The ArgoUML User Interface

Before beginning the Case Study, you need to become familiar with the user interface. Start by reading
theintroduction to the User Interface Reference. See Chapter 8, Introduction.

18

UML Based OOA&D

As you go through this tutorial you will be told what to do, and when to do it but how to do it will often
be left to the User Interface Reference. It is not necessary at this point to read all of the Reference, but
you should leaf through enough of it to become familiar with how to find thingsin it. Every attempt will
be made to direct you to the appropriate part of the Reference at those points in the tutorial where they
apply.

Figure 3.6, “Initial ArgoUML window”, shows the main ArgoUML window as it appears when
ArgoUML isfirst entered.

Figure 3.6. Initial ArgoUML window
& ArgoUML M= B3

File Edit Yiew Create Diagram Arrange Generation Critigue Tools Help

aEs XBAaE<Y A BERNEEEBERE
| Package-certric v|E "t 1 B-EH—-73% %% H® BHE O

@ [untitlediadel
I_Ej Class Diagram 1
Uszecase Diagram 1
AKIEE
A= Diagram
X X B SRR AN AR NS N R RN NSNS SRS NS SENS SN AEN AR SRS S HN SRR N AR AN NS SN R NS AN SRR
| Ey Friority - |E Z tems ‘ & Style rj. SEnEE |/j Eanstraints: |/‘ Tagged Yaluss |
=3 High ‘ A ToDo tern |/ A Froperties |/ A& Doeimrentatien |
@ [Medium B t1a=s Diagram
3 Low W= |I:Iass Diagram 1 |
| |

Grab the vertica divider bars and move them back and forth. Grab the horizontal divider bar and move
it up and down. Play around a little with the little arrows at the left or top of the divider bars. See Sec-
tion 8.3, “General Information About Panes’;.

3.4.2.1. The Explorer Pane

At this time you should take the time to read Chapter 11, The Explorer. Thereis not alot that you can do
at this point with the Explorer Pane as there is nothing in it but the root of the tree (currently "untitled-
Model") and two empty diagrams. However, the Explorer Pane is fundamental to almost everything that
you do and we will be coming back to it again and again in what follows.

There is an expand or contract control in front of the package symbol for “untittedModel” in the Ex-
plorer Pand and the package symbol for “Medium” in the To-Do Pane. Click on these controls and ob-
serve that these panes are tree widgets that behave pretty much as you would expect them to. The ex-
pand or contract control is either plus (+)/minus (-) sign or knob with aright or bottom pointer depend-
ing upon the look and feel that you have chosen for an appearance.

At this point you should try the various choices available for alook and feel. Y ou used the editor that es-
tablishes the look and feel when you were selecting a language, however, you only saw it in Russian. It
you look at an English rendition Section 10.4.5.4, “Appearance Tab” you will see that the topmost com-
bobox is for selecting the look and feel. When the panel is first opened the box contains the current
value. Select another one, exit from ArgoUML and restart it.

19

UML Based OOA&D

Select aternately Class Diagram 1 and Use Case Diagram 1 observing that the detail pane changes to
track to the selected item in the Explorer. The detail pane is described in Chapter 12. It is not necessary
to read Chapter 12 at this point, but it couldn't hurt.

3.4.2.2. The Editing Pane

- Note

* Reading assignment.

» Walk through a couple of changes.
* Add some stuff.

» Delete some stuff.

* Resizethings.

e Select stuff with click and drag.

» Select stuff with click and ctrl click.
+ Edit namesinline.

* Remove "images/tutorial/editoverview.gif" from file system.

3.4.2.3. The Details Pane

- Note

* Reading assignment.

* To-Do Item. Discuss differences with other tabs about |ocations of items selected. Hold
particulars for discussion of To-Do Pane.

» Properties,

» Documentation,
* Presentation,

* Source,

» Constraints,

o Stereotype,

» Tagged Values,
¢ Checklist.

* Remove "images/tutorial/detail soverview.gif" from file system.

20

UML Based OOA&D

3.4.2.4. The To-Do Pane

- Note

* Reading assignment.

* Describe priorities.

* Resolving items.

» Relationto ToDo Item tab in details pane.

* Remove "images/tutorial/todooverview.gif" from file system.

3.4.2.5. The Menu Bar and Toolbars

The menu bar and toolbars gives access to all the main features of ArgoUML. Asis conventional, menu
options and toolbar options that are not available are grayed out and menu items that invoke a dialog box
are followed by an dlipsis (...).

File menu. This allows you to create a new project, save and open projects, import sources from
elsewhere, load and save the model to and from a database, print the model, save the graphics of the
model, save the configuration of the model and exit ArgopUML

Edit menu. This allows you to select one or more UML items on a diagram, undo and redo edits, re-
move items from diagrams or the whole model, empty the trash and change settings.

View menu. This allows you to switch between diagrams, find artifacts in the model, zoom in a dia-
gram, select a particular diagram representation (although at present there is only one), select a par-
ticular tab in the details menu, adjust the grid, view buttons on a selection, and switch between UML
and Java notation.

Create Diagram menu. This allows you to create any one of the seven UML diagram types (class,
use case, state, activity, collaboration, deployment and sequence) supported by ArgoUML.
State and activity diagrams can only be created when aclass or actor is selected, even though the rel-

evant menu entries are not grayed out if this has not been done (hothing will happen under this cir-
cumstance).

Arrange menu. This allows you to align, distribute, reorder and nudge artifacts on a diagram and set
the layout strategy for the diagram.

Generation menu. This alows you to generate Java code for selected classes or all classes.

Critigue menu. This alows you to toggle the auto-critique on and off, set the level of importance of
design issues and design goals and browse the critics available.

21

UML Based OOA&D

Tools menu. This menu is permanently grayed out unless there is some tool available in your version
of ArgoUML.

Help menu. This menu gives access to details of those who authored the system, and where addition-
a help may be found.

File Toolbar. Thistoolbar contains some of the tools from the File menu.
Edit Toolbar. Thistoolbar contains some of the tools from the Edit menu.
View Toolbar. This toolbar contains some of the tools from the View menu.

Create Diagram Toolbar. Thistoolbar contains some of the tools from the Create Diagram menu.

3.4.2.6. The Mouse

The mouse and mouse buttons (or their equivalent with alternative tracking devices) are used in awide
variety of ways. In this section we look at the common modes of use.

ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1” and “button 2”. But-
ton 1 is the leftmost button on a right-handed mouse, and sometimes referred to as the “select” button.
Button 2 is sometimes referred to as the “adjust” button.

1. Button 1 click. This action is generally used to select an item for subsequent operations. If the item
isan artifact in the explorer or the editing pane it will be highlighted.

In the case of the Edit Pane Toolbar, that artifact is selected as the next to be added to the diagram
(but only once—see double clicking for adding multiple artifacts). The adding to the diagram is
achieved by moving the mouse to the editing area and clicking again.

2. Button 1 double click. This action isidentical to asingle click except, when it is used with the edit
pane toolbar. Under these circumstances the selected artifact will be added multiple times to the
drawing area, once for each further button click, until the tool is again selected or another tool
chosen.

3. Button 2 click. When used over text items in the the explorer or details panes, or graphical artifacts
in the editing pane, this will display a context dependent drop-down menu.

If the item has not yet been selected it will also be selected.

4. Button 1 motion. Where button 1 click has been used to pull down a menu from the menu bar, but-
ton 1 motion is used to select items on that menu.

Button 1 motion also has an effect in the editing pane. Over graphical artifacts it will move the arti-
fact to a new position. Graphical artifacts that are selected show handles, and these can be used for
re-sizing.

Where the artifact is some form of connector between other items, button 1 motion other than at a
handle will cause a new handle to be created, allowing the connector to be articulated at that point.
Such new handles can be removed by moving them to the end of the connector.

22

UML Based OOA&D

5. Button 2 motion. Thisis used to select items in a context sensitive menu popped up by use of but-
ton 2 click.

There are other more specific behaviors that will be encountered under the specific cases where they are
used.

3.4.2.7. Drawing Diagrams
In general diagrams are drawn by using the edit pane toolbar to select the artifact desired and clicking in
the diagram at the position required as described in Section 3.4.2.6, “The Mouse’. That section also ex-
plains the use of the mouse for re-sizing artifacts.
Artifacts that are already in the model, but not on a diagram, may be added to a diagram by selecting the
artifact in the explorer, using Add t o Di agr amfrom the drop down menu (button 2) over that arti-
fact, and then clicking button 1 at the desired location on the diagram.

As well as UML artifacts, the Edit pane toolbar provides for general drawing artifacts (rectangles,
circles, lines, polygons, curves, text) to provide supplementary information on diagrams.

3.4.2.7.1. Moving Diagram Elements
There are several ways to move diagram elements.
3.4.2.7.1.1. Using the Mouse Keys

Select the elements you want to move. By holding down the Ctrl key while selecting you can select sev-
eral elementsto move at the sametime.

Now hit your arrow keys. Y our elements move alittle with every key stroke.
If you also hold down the Shift key, they move a bit faster.
3.4.2.7.1.2. Using the Edit Pane Toolbar

Click on the broom button on the toolbar. Move your mouse to the diagram pane, right click and hold.
Now moving your mouse will align elements.

3.4.2.7.2. Arranging Elements

The menu item Ar r ange alows you to align, group, or nudge elements.

3.4.2.8. Working with Projects
3.4.2.8.1. The Start-Up Window

Figure 3.6, “Initial ArgoUML window” shows the ArgoUML main window as it appears as right after
start-up

The main window's client area, below the menu and toolbar, is subdivided into four panes. Starting at
the leftmost top pane, and working around the clock, you can see the Explorer, showing a tree view of
your UML model, the Editing Pane with its toolbar, two scroll bars and gray drawing area, the Details
Pane with the ToDoltem tab selected, and the To-Do Pane with atree view of the to do items, ranked in
various ways selected viathe drop down list at the top of the pane.

Each time ArgoUML is started up without a project file as an argument, a new blank project is created.
This project contains a model called unti t | edMbdel . This model contains a blank Class Diagram,
caledcl ass di agram 1, and ablank Use Case Diagram called use case di agram 1.

23

UML Based OOA&D

The model and both empty diagrams can be seen in the explorer, which is the main tool for you to nav-
igate through your model.

Let's assume for amoment that thisis the point where you want to start modeling a new purchasing sys-
tem. You want to give the name “purchasingmodel” to your model, and you want to store it in a file
caledFi r st Proj ect .

3.4.2.8.2. Saving a Project - The File Menu

For now ArgoUML; saves diagrams using an earlier proposed standard, Precision Graphics Markup
Language (PGML). However it has the option to export graphical data as SVG for those who can make
use of it. When ArgoUML; supports UML 2.0, it will store diagrams using the UML 2.0 Diagram Inter-
change format.

First, let's save the model in it's current (empty and unnamed) state. On the menu bar, click on Fi | e,
thenon Save Project As... asshowninFigure3.7,“Invoking Save Project As...".

Figure3.7. Invoking Save Project As...

w2 ArgoUML M=] E3

EilelEdit “iew Creste Dizgram Arrange Senerstion Critigue Tools Help

& ERERDBEB
BE-—-4 444 8% 5B DO

[3 New Ctrl-H

= Open Project... Cil-0

Sawve Project Cir-S
Save Project As...

Irnpart sources. ..

L Frirt... Ctr-P

Fage Setup...

Sawve Sraphics..

Bave Configuration [
- ToDo tem r & Froperties r [Ecurmentaticn rStyie r SO EE rCDnslraints rTagged Walues. |

Ewxit Ht-Fa
|| High = Class Disgram
& [Medium Hame: |I3Iass Diagram 1 |
|j Loy :

Please notice that the File menu contains the usual options for creating a new project, for opening an ex-
isting project, for saving a project under a new name, for printing the currently displayed diagram, for
saving the currently displayed diagram as afile, and for program Exit.

Some of these menu commands can be invoked by pressing key combinations, as indicated on the drop-
down menu. For instance, holding down the “Ctrl” key, and pressing “N”, will create a new project.

In the current version, ArgoUML can only contain one active project at atime. In addition, a project can
only contain one UML model. Since an UML model can contain an unlimited number of elements and
diagrams, this should not present any serious limitations, even for modeling quite large and complex
systems.

3.4.2.8.3. The File Chooser Dialog

24

UML Based OOA&D

But let's go back to saving our project. After clicking on the Save Proj ect As... menucommand,
we get the file chooser dialog to enter the file name we wish to use as shown in Figure 3.8, “File
Chooser Dialog”.

Figure 3.8. File Chooser Dialog

ﬂ Save ProjectOldProjectd.zargo E3
. P 00| o—
Save In: |j inepxw e |:+j ‘ﬁ[— oo O—

|j Docurnentation
|j Manufacturing
|j Mar keting

|j Ficture=s

|j Flan=

|j Precurerernt

Ij Salas

Fila Narme: FirstF'r-:-je-:ﬂrzargcl

Files of Type: | Argo compressed project file [*.zarga] -

Sawe Cancel

Thisisastandard Java FileChooser. Let's go over it in some detail.

The main, outstanding feature, is the scrollable folderslist in the center of the dialog. By using the scroll
bar on the right, you can move up and down in the list of folders contained inside the currently selected
folder. If it is scrollable or not depends on the amount of files and folders shown and also how they are
shown. If everything fits the window is not scrollable as seen in the picture.

Double-clicking on one of the displayed folders navigates you into that folder, allowing you to quickly
navigate down into the folders hierarchy on your hard disk.

Notice that only folder names, and no file names are displayed in the scrollable area. Indeed, the dialog
iscurrently set up in order to show only ArgoUML project files with an extension of . zar go, as can be
seen on the lower drop-down control labeled Fi | es of Type: .

Also notice that the currently selected folder's name is displayed in the upper drop-down control labeled
Look in:. A single click on afolder inside the scrollable area does select that folder on screen but
does not select the folder for saving.

At the top of the dialog, above the scrollable folder chooser area, there are a few more folder navigation
tools.

25

UML Based OOA&D

The Folder drop-down control.

|j imEpxw -

Clicking on the down-arrow displays a tree view of the folder hierarchy, alowing you to navigate
quickly up the hierarchy, and at the same time to quickly determine where in the hierarchy we are
currently positioned.

. G.j The Folder-Up icon. Clicking on this icon will bring us to the parent folder of the current
folder.

. E The Home Folder icon. Clicking on thisicon will bring us to our home directory.

. - The New Folder icon. Clicking on thisicon will create a new folder called "New Folder" un-

der the current folder. After the folder is created selecting it an clicking in the name allows us to se-
lect the name of our choice.

. 5 The Folders Presentation Icon.

o-o-
o0 O—
OK, now we navigate to the directory where we want to save our ArgoUML project, fill in the

Fi | e nane: with an appropriate name, such as “FirstProject” and click on the Save button.

You have now an active project called FirstProject, connected to the file FirstPro-
j ect. zargo.

3.4.3. Output

3.4.3.1. Loading and Saving
3.4.3.1.1. Saving XMl files in ArgoUML

ArgoUML saves the diagram information in a PGML file (with extension . pgm , the model informa-
tion in an XMI file (with extension . xni and information about the project in a file with extension
. ar go. See Section 3.4.3.2.2, “Precision Graphics Markup Language (PGML)” and Section 3.4.3.3,
“XMI” for more about PGML and XMI respectively.

All of these are then zipped to a file with extension . zar go. You can easily extract the. xmi file from
the . zar go fileusing any old generic ZIP application. Give it atry and look into the magic of Argo.

. Warning

Be aware that double clicking will launcha zZl P utility, if oneisinstaled, and NOT
Argo.

3.4.3.2. Graphics and Printing
3.4.3.2.1. The Graph Editing Framework (GEF)

26

UML Based OOA&D

GEF is the software package that is the foundation of the diagrams that appear in the Editing Pane. GEF
was an integral part of ArgoUML but has been separated. Like ArgoUML it is an open source project
available via Tigris [http://www. tigris.org].

3.4.3.2.2. Precision Graphics Markup Language (PGML)

PGML is the current storage format for diagram information used in ArgoUML. In the future, PGML
will be replaced by the UML 2.0 Diagram Interchange format.

3.4.3.2.3. Applications Which Open PGML

PGML is a predecessor of SVG (see Section 3.4.3.2.5, “Scalable Vector Graphics (SVG)”. It was
dropped by the W3C Consortium.

Currently there are no other tools that we know of working on PGML.
3.4.3.2.4. Printing Diagrams

Select adiagram, then go to Fi | e#Export Di agr ans. You can generate GIF, PostScript, Encapsu-
lated PostScript or SVG format.

3.4.3.2.5. Scalable Vector Graphics (SVG)

A World Wide Web Consortium (W3C) standard vector graphics format (http://www.w3.org/TR/SVG/
[http:/Iwww.w3.0rg/ TR/ISV G]).

Support is built in to modern browsers, but you can also get a plugin for older browsers from adobe.com
[http://www.adobe.com].

3.4.3.2.6. Saving Diagrams as SVG

1. Select. svg asthefiletype.

2. Type the name of the file as you like with the . svg tag at the end. Example myum di a-
gram svg

Et violal SVG! Give it atry and zoom around alittle... They are not pretty though, so if you know any-

thing about rendering beautiful SV G let us know.

Most modern browsers support SVG. If yours doesn't try Firefox [http://www.mozilla.com/firefox/] or
get aplugin for your current browser from adobe.com [http://www.adobe.com]

Note
¥
You will not have scroll bars for your SVG unless it is embedded in HTML. Good luck
and let us know what you find!
3.4.3.3. XMI

ArgoUML supports XMI 1.0, 1.1, and 1.2 files which contain UML 1.3 and UML 1.4 models. For best
compatibility with ArgoUML, export your models using UML 1.4 and XMI 1.1 or 1.2. Be sure to turn
off any proprietary extensions (such as Poseidon's diagram data).

With UML versions earlier than UML 2.0, it isn't possible to save diagram information, so no diagrams
will be transferred.

27

http://www.tigris.org
http://www.w3.org/TR/SVG/
http://www.adobe.com
http://www.mozilla.com/firefox/
http://www.adobe.com

UML Based OOA&D

There is aso a tool that converts XMl to HTML. For more information, see ht-
tp://www.objectsbydesign.com/projects/xmi_to_html_2.html
[http://www.objectsbydesign.com/projects/’xmi_to_html_2.html].

3.4.3.3.1. Using XMI from Rational Rose

3.4.3.3.2. Using Models Created by Poseidon

Inthe Export project to XM dialog, but sureto clear the selection of Save wi t h di agram
dat aliteral>.

3.4.3.3.3. Using Models Created by MagicDraw

3.4.3.3.4. XMI Compatibility with other versions of ArgoUML

Versions of ArgoUML prior to 0.19.7 supported UML 1.3/XMI 1.0. After this time, the save format is
UML 1.4/XMI 1.2 which is not backward compatible. Newer versions of ArgoUML will read projects
written by older versions, but not vice versa. If you might need to return to an older version of
ArgoUML you should be careful to save a backup of your old projects.

Additionally, if you write XMI files which need to be read by other tools, you should take into account

the different versions. Most modern UML modelling tools should read UML 1.4, but you may have in-
house code generators or other tools which aretied to UML 1.3.

3.4.3.3.5. Importing Other XMI Formats into ArgoUML

XMI compatibility between UML modeling tools has improved over the years, but you may still occa
sionally runinto problems.

ArgoUML will not read XMI files which contain UML 1.5 or UML 2.0 models, but it should be able to

open most UML 1.4 and UML 1.3 files. If you find one that it can't open, please file a bug report so that
adeveloper can investigate.

3.4.3.3.6. Generating XMI Format

Select thecommand Fi | e# Export as XM and choose afilename.

3.4.3.4. Code Generation
3.4.3.4.1. Code Generated by ArgoUML

It is possible to compile your generated code with ArgoUML, you still need to implement method bod-
ies, though, to get usable results.

3.4.3.4.2. Generating Code for Methods
At the moment you cannot write code for methods (operations) within ArgoUML. The source pane is
editable, but the changes are ignored. ArgoUML is a pure design tool for now, no IDE functionality but
the desire isthere. Y ou might consider using Forte and ArgoUML together—it's a good work around!

You can help us out there if you'd like!

28

http://www.objectsbydesign.com/projects/xmi_to_html_2.html
http://www.objectsbydesign.com/projects/xmi_to_html_2.html

UML Based OOA&D

3.4.4. Working With Design Critics
3.4.4.1. The To-Do Pane—Messages From the Design Critics

Where do we stand now? A new project has been created, and is connected to the file Fi r st Pr o-

j ect . argo. Figure 3.9, “ ArgoUML Window Having Saved Fi r st Pr oj ect . zar go ” shows how
your ArgoUML window should look at this stage.

Figure 3.9. ArgoUML Window Having Saved Fi r st Proj ect . zar go
wif ArgoUML M=l E3

File Edit “iew Creste Diagram Arrange Senerstion Critiqgue Tools Help
Fackage-certric i E k 4 E| st E — - A AP AT.I Z|) E ¢ g

@ [untitiedmodal -
Class Diagram 1 =
Uzecaze Diagram 1 | P |;;;;;;;| | ..|_

A= Dimgram
T T L T L L
| By Pricrity - E 2 kems Shie |/ SEnEE rtnnstrairds rTagged Salles |
|j High ‘ -4 ToDo kem |/ Braperties |/ [eeurmertaticn
o= |j M dium o Mo ToDoltemn selected
|j Ly :

The project contains a top-level package, called unt i t | edMbdel , which contains a class diagram and
ause case diagram.

If we look carefully at the screen, we can see that the "Medium" folder in the To Do pane (the lower |eft
pane) must contain some items, since its activation icon o= is displayed.

Clicking on thisicon will open the "Medium” folder. An open folder isindicated by the .? icon.

But what isthis“To-Do” Pane anyway. Y ou haven't recorded anything yet that has to be done, so where
do these to do items originate.

The answer is simple, and is at the same time one of the strong points of ArgoUML. While you are
working on your UML model, your work is monitored continuously and invisibly by a piece of code
called a design critic. Thisis like a personal mentor that watches over your shoulder and notifies you
each time he sees something questionable in your design.

29

UML Based OOA&D

Critics are quite unobtrusive. They give you a friendly warning, but they do not force you into design
principles that you don't want or like to follow. Let us take alook at what the critics are telling us. Click
on the - icon next to the Medium folder, and click on the Re-

vi se Package Nane Untitl| edMbdel item.

Figure 3.10, “ArgoUML Window Showing the Critic Item Re-
vi se Package Name Untitl edMbdel " showshow your screen should now look.

Figure 3.10. ArgoUML Window Showing the Critic [tem
Revi se Package Nane Untitl edMbdel

» ArgoumL =] E3
File Edit “iew Creste Diagram Arrange Senerstion Critiqgue Tools Help
e EsS . X688 &< > 4 BHEBEEEBERE
5 i / i
Package-centric | = k 4 B B —- A AP AL zls = 4‘:. =
@ R untitiedmadel : -
Clazs Diagram 1 =
Uszecase Diagram 4 | P |5;5;5;5| ['¥]
A= Diagram
T e T P AR P AR AR R R AR A AR R AR AR AR R A A A AR R AR AR R AR A AR SRR AR R AR AR AR R AR AR ARAAR:
o = 1 :
| By Pricrity | = 2Hems ‘ Shie |/ SEnEE rtnnstramis rTagged Salles |
3 ToDo kem Frepentes [EEurertaticn
[Hign : [2 [
'? |j Medinm : .Nnr.rnally,r package names are written in all In:.-wer case wi.th periods us.ed to
3 indicate "nested" packages. The name 'untitleddodel’ iz unconventional
D Revize Package Name unti because itiz not all loweer case with periods.
[Add Elements to Fackage { P
Ij Loy . Following good naming conventions help to improve the understandability
3 = and maintainability of the design.
@ To fix this, use the "Mext=" button, or manually select untitledbodel and use
the Froperies tab to give it a different name.
: Mt Finish Hel
- o =

Notice that your selection is highlighted in red in the To-Do Pane, and that a full explanation appears
now in the Details Pane (the lower right pane). You may have to re-size your Details Pane or to scroll
down in order to see the full message as displayed in our example.

What ArgoUML is trying to tell you is that usually, package names are written in lower cases. The de-
fault top level package created by ArgoUML iscaled unti t | edMbdel and therefore violates a sound
design principle. (Actually, this could be considered as a bug within ArgoUML, but it comes in handy to
demonstrate the working of critics).

At this point, you can choose to change the package name manually, to impose silence on the design
critic for some time or permanently, or to request a more comprehensive explanation by Email from an
expert.

We will do nothing of this (we'll come back to it when we talk about the design critics in more detail)
but we'll use another handy feature of ArgoUML—an auto-correct feature.

30

UML Based OOA&D

In order to do that, just click on the Next button on the Details Pane. Thiswill cause a renaming wizard
to be displayed inside the properties panel, proposing to use the name unt i t | ednodel (&l in lower
case).

3.4.4.2. Design Critics at Work: The Rename Package Wizard

Replace the name unt i t | ednmodel with pur chasi ngnodel , and click on the Fi ni sh button.
Figure 3.11, “ArgoUML Window Showing the Critic Wizard to Rename the Package’ shows how the
ArgoUML window will now look.

Figure 3.11. ArgoUML Window Showing the Critic Wizard to Rename the

Package
& ArgoUML M=l E3
File Edit Wiew Create Dlagram Arrange Generztion Crlthue Taols Help
nebe X¥baE<> 4% BREREDGEMG
Package-certric i E k 4 E|T E — ¥ A AP AL £|> E & g
@ 3 untitledhodel ; -
; -
[Le |»
A= Diagram
T e T P AR P AR AR R R AR A AR R AR AR AR R A A A AR R AR AR R AR A AR SRR AR R AR AR AR R AR AR ARAAR:
|Byprigrity - E 2 kems ‘ She rSDurce rEDnstramis rTagged Salles |
Ij High : ‘ -« ToDo kem Eroperties |/ Weeurentaticn
|jru1edium 3 £
'P 3 Change the name of this package.
[Add Elements to Fackage |
H Revize Package Hame unti E
i Name: |purchasmgl‘nndel
T Low | =
=
T D Back (Firizh| | Help |
I |

Watch now how the design critic note in the To Do panel disappears, leaving only the
Add El emrents to Package purchasi ngnodel noteintheTo-Dolist.

If this doesn't happen at once, wait for a few seconds. ArgoUML makes heavy use of several threads of
execution that execute in parallel. This can cause delays of a few seconds before the information gets
updated on the screen.

The package name change should also be reflected in the explorer, in the top left corner of your
ArgoUML window.

We are now ready to create our first UML diagram, a Use Case diagram, but first let's save what we've
done sofar.

Click on the Fi | e menu item, and select Save Proj ect. You can now safely exit ArgoUML

31

UML Based OOA&D

without losing your work so far, or go on creating your first diagram.

3.5. The Case Study (To be written)

To be written...

32

Chapter 4. Requirements Capture
4.1. Introduction

Requirements capture is the process of identifying what the “customer” wants from the proposed sys-
tem.

The key at this stage is that we are in the problem domain. At this stage we must describe everything
from the “ customer” perspective and in the language of the “ customer”.

The biggest risk we have in requirements capture is to start thinking in terms of possible solutions. That
must wait until the Analysis Phase (see Chapter 5, Analysis). One of the steps of the Analysis Phase will
be to take the output of the Requirements Phase and recast it in the language of a deemed solution.

Remember we are using both aincremental, and an iterative process.

We may well come back to the requirements process again as we break down the problem into smaller
chunks, each of which must have its requirements captured.

We will certainly come back through the requirements phase on each iteration as we seek to define the
requirements of more and more of the system

- Note

The only part of the requirements notation specified by the UML standard is the use case
diagram. The remainder is process specific. The process described in this chapter draws
heavily on the Rational Unified Process.

4.2. The Requirements Capture Process

We start with a top-level view of the problem we are solving and the key areas of functionality that we
must address in any solution. Thisis our vision document, and should be just a few pageslong.

For example the top-level view of an automated teller machine (ATM) might be that it should support
the following.
1. Cash deposit, cash withdrawal and account inquiries by customers.

2. Maintenance of the equipment by the bank's engineers, and unloading of deposits and loading of
cash by the local bank branch.

3. Audit trail for all activities sent to the bank's central computer.
From this top-level view we can extract the principal activities of the system, and the external agents
(people, equipment) that are involved in those activities. These activities are known as use cases and the

external agents are known as actors.

Actors may be people or machines. From a practical standpoint it is worth knowing the stakeholder be-
hind any machine, since only they will be able to engage with the requirements capture process.

Use cases should be significant activities for the system. For example customer use of the ATM machine
isause case. Entering a PIN number is not.

33

Requirements Capture

There is a gray area between these two extremes. As we shall see it is often useful to break very large
use cases into smaller sub-use cases. For example we may have sub-use cases covering cash deposit,
cash withdrawal and account inquiry.

There is no hard and fast rule. Some architects will prefer a small number of relatively large use cases,
others will prefer a larger number of smaller use cases. A useful rule of thumb is that any practica
project ought to require no more than about 30 use cases (if it needs more, it should be broken into sep-
arate projects).

We then show the relationship between use cases and actors on one or more use case diagrams. For a
large project more than one diagram will be needed. Usually groups of related use cases are shown on
one diagram.

We must then give a more detailed specification of each use case. This covers its normal behavior, al-
ternative behaviors and any pre- and post-conditions. Thisis captured in a document variously known as
a use case specification or use case scenario.

Finally, since use cases are functional in nature, we need a document to capture the non-functional re-

quirements (capacity, performance, environmental needs etc). These requirements are captured in a doc-
ument known as a supplementary requirements specification.

4.2.1. Process Steps

The stepsin the requirements capture process can be summarized as follows.

1
Capture an overall view of the problem, and the desired characteristics of its solution in the vision
document.

2.
Identify the use case and actors from the vision document and show their relationships on one or
more use case diagrams.

3.
Give detailed use case specifications for each use case, covering normal and alternate behavior,
pre- and post-conditions.

4

Capture all non-functional requirementsin a supplementary requirements specification.

In any iterative development process, we will prioritize, and early iterations will focus on capturing the
key behavior of the most important use cases.

Most modern requirements capture processes agree that it is essential that the authoritative representat-
ive of the customer is fully involved throughout the process.

4.3. Output of the Requirements Capture Pro-
cess

Almost al the output of the requirements capture process is documentary. The only diagram is the use
case diagram, showing the relationships between use cases and actors.

4.3.1. Vision Document

4.3.2.

Requirements Capture

Typical sections of this document would be as follows.
e Summary. A statement of the context, problem and solution goals.
Goals. What are we trying to achieve (and how do we wish to achieveit).

Market Context or Contractual Arrangements. For a market led development, this should indicate
target markets, competitive differentiators, compelling events and so forth. For a contractual devel-
opment this should explain the key contractual drivers.

Sakeholders. The users (in the widest sense) of the system. Many of these will map in to actors, or
control equipment that maps into actors.

Key Features. At the very highest level what are they key functional aspects of the problem/desired
solution. These will largely map down to the use cases. It is helpful to give some prioritization here.

Congtraints. A high level view of the non-functional parameters of the system. These will be worked
out in detail in the supplementary requirements specification.

e Appendix. A listing of the actors and use cases that will be needed to meet this vision. It is useful to
link to these from the earlier sections to ensure comprehensive coverage.

Use Case Diagram

The vision document has identified the use cases and actors. The use case diagram captures how they in-
teract. In our ATM example we have identified “customer uses maching’, “maintain maching’ and
“audit” as the three main use cases. We have identified “customer”, maintenance engineer”,” “local

branch official” and “central computer” as the actors.

Figure 4.1, “Basic use case diagram for an ATM system” shows how this could be displayed on a use
case diagram. The use cases are shown as ovals, the actors as stick people (even where they are ma-
chines), with lines (known as associations connecting use cases to the actors who are involved with
them. A box around the use cases emphasizes the boundary between the system (defined by the use
cases) and the actors who are external.

- Note

Not all analysts like to use abox around the use cases. It is a matter of persona choice.

Figure4.1. Basic use case diagram for an ATM system

35

Requirements Capture

Maintain ATM .' '.

Bank Engineer

\
\
(o %

Central Computer

The following sections show how the basic use case diagram can be extended to show additional inform-
ation about the system being designed.

4.3.2.1. Active and Passive Actors

Active actors initiate interaction with the system. This can be shown by placing an arrow on the associ-
ation from the actor pointing toward the use case. In the ATM example, the customer is an active actor.

Interaction with passive actors is initiated by the system. This can be shown by placing an arrow on the
association from the use case pointing toward the actor. In the ATM example, the central computer is a
passive actor.

Thisis a good example where the arrow helps, since it allows us to distinguish an event driven system
(the ATM initiates interaction with the central computer) from a polling system (the central computer in-
terrogates the ATM from time to time).

Where an actor may be either active or passive, depending on circumstances, the arrow may be omitted.
In the ATM example the bank engineer fits into this category. Normally he is active, turning up on a
regular cycle to service the machine. However if the ATM detects a fault, it may summon the engineer
to fix it.

The use of arrows on associations is referred to as the navigation of the association. We shall see this
used elsewherein UML later on.

Figure 4.2, “Use case diagram for an ATM system showing navigation.” shows the ATM use case dia-
gram with navigation displayed.

Figure4.2. Use case diagram for an ATM system showing navigation.

36

Requirements Capture

Maintain ATM .' '.

Bank Engineer

\
\
(o %

Central Computer

4.3.2.2. Multiplicity

It can be useful to show the multiplicity of associations between actors and use cases. By this we mean
how many instances of an actor interact with how many instances of the use case.

By default we assume one instance of an actor interacts with one instance of a use case. In other cases
we can label the multiplicity of one end of the association, either with a number to indicate how many
instances are involved, or with arange separated by two periods (. .). An asterisk (*) isused to indicate
an arbitrary number.

In the ATM example, there is only one central computer, but it may be auditing any number of ATM
uses. So we place the label 0. . * at the use case end. There is no need for alabel at the other end, since
the default is one.

A loca bank will have up to three officials authorized to unload and load ATM machines. So at the actor
end of the relationship with the use case Mai nt ai n ATM we placethelabel 1. . 3. They may be deal-
ing with any number of ATM machines, so at the other end we place thelabel 0. . *.

There may be any number of customers and there may be any number of ATM systems they could use.
So at each end of the association we place thelabel 0. . *.

Figure 4.3, “Use case diagram for an ATM system showing multiplicity.” shows the ATM use case dia-
gram with multiplicity displayed.

Figure4.3. Use case diagram for an ATM system showing multiplicity.

37

Requirements Capture

Ed

\

Maintain AT Bank Engineer

1

/

o.F

Use AT 0.
Customer Local Bank Official

D“x

——

Audit

IV

Central Computer

Multiplicity can clutter adiagram, and is often not shown, except where it is critical to understanding. In
the ATM example we would only choose to show 1. . 3 against the local bank official, since al others
are obvious from the context.

4.3.2.3. Hierarchies of Use Cases

In our ATM example so far we have just three use cases to describe al the behavior of the system.
While use cases should always describe a significant chunk of system behavior, if they are too genera
they can be difficult to describe.

We could for example define the behavior of the use case “Use ATM” in terms of the behavior of three
simpler use cases, “Deposit Cash”, “Withdraw Cash” and “Query Account”. The main use case could be
specified by including the behavior of the subsidiary use cases where needed.

Similarly the “Maintain ATM” use case could be defined in terms of two use cases “Maintain Equip-
ment” and “Reload ATM”. In this case the two actors involved in the main use case are really only in-
volved in one or other of the two subsidiary use cases and this can be shown on the diagram.

The decomposition of a use case into simpler sub-use cases is shown in UML by using an include rela-
tionship, a dotted arrow from the main use case to the subsidiary, with the label «include».

Figure4.4. Use case diagram for an ATM system showing include relationships.

38

Requirements Capture

Maintain ATM

P digcludes
pificludes =4
i
/g\ _____%
- Maintain Equipmant Reload ATM 1.3
Bank Enginzer Local Bank Official
-
Customer T ! #includes
- ’ Ry I
/ :

Central Computer

~ginclud
L Fineiuces «i{n’clude»
: Query Account
De pozit Cazh

Include relationships are fine for breaking down the use case behaviors in to hierarchies. However we
may also want to show a use case that is an extension to an existing use case to cater for a particular cir-
cumstance.

In the ATM example we have a use case covering routine maintenance of the ATM, “Maintain Equip-
ment”. We also want to cover the special case of an unscheduled repair caused by the ATM detecting an
internal fault.

Thisis shown in UML by the extend relationship. In the main use case, we specify a name for alocation
in the description, where an extension to the behavior could be attached. The name and location are
shown in a separate compartment within the use case oval. The representation extend relationship is the
same as the include relationship, but with the label «extend». Alongside the extend relationship, we spe-
cify the condition under which that behavior will be attached.

Figure 4.5, “Use case diagram for an ATM system showing an extend relationship.” showsthe ATM use
case diagram with an extend relationship to a use case for unscheduled repairs. The diagram is now get-
ting rather complex, and so we have split it into two, one for the maintenance side of things, the other
for customer usage and audit.

The “Maintain Equipment” use case defines a name “Unsched”, at the start of its description. The ex-
tending use case “Unscheduled Repair” is attached there when the ATM detects an internal error.

Figure 4.5. Use case diagram for an ATM system showing an extend relationship.

39

4.3.3.

Requirements Capture

% Maintain ATM

i
I whaclude
=

g b
include
OCI.l x - 13
Maintain Equipme nt Aoh
R load ATM Local Bank Official
Unzched: Start of spac
¢

)
wextends ¢

when ATMFietects
inte rna} fault
£

Bank Enginzer

£

Unscheduled Re pair

Use cases may be linked together in one other way. One use case may be a generalization of a subsidi-
ary use case (or aternatively the subsidiary is a specialization of the main use case).

Thisisvery like the extends relationship, but without the constraint of specific extension points at which
the main use case may be extended, and with no condition on when the subsidiary use case may be used.

Generalization is shown on a use case diagram by an arrow with solid line and solid white head from the
subsidiary to the main use case.

This may be useful when a subsidiary use case specializes the behavior of the main use case at alarge
number of positions and under awide range of circumstances.

However the lack of any restriction makes generalization very hard to specify precisely. In general use
an extend relationship instead.

The Use Case Specification

Each use case must be documented to explain in detail the behavior it is specifying. This document is
known by different names in different processes. use case specification,use case scenario or even
(confusingly) just use case.

A typical use case will include the following sections.

Name. The name of the use case to which this relates.

Goal. A one or two line summary of what this use case achieves for its actors.

» Actors. The actorsinvolved in this use case, and any context regarding their involvement.

- Note

This should not be a description of the actor. That should be associated with the actor
on the use case diagram.

40

Requirements Capture

Pre-condition. These would be better named “pre-assumptions’, but the term used everywhere is
pre-conditions. This is a statement of any simplifying assumptions we can make at the start of the
use case.

In the ATM example we might make the assumption for the*Maintain Equipment” use case that an
engineer is aways available, and we do not need to worry about the case where a routine mainten-
ance visit is missed.

a Caution

Avoid pre-conditions wherever possible. Y ou need to be absolutely certain that the pre-
condition holds under al possible circumstances. If not your system will be under spe-
cified and hence will fail when the pre-condition is not true. Alternatively, when you
cannot be certain the pre-condition is always true, you will need to specify a second
use case to handle the pre-condition being false. In the first case, pre-conditions are a
source of problems, in the second a source of more work.

Basic Flow. The linear sequence of steps that describe the behavior of the use case in the “normal”
scenario. Where a use case has a number of scenarios that could be normal, one is arbitrarily selec-
ted. Specifying the basic flow is described in more detail in Section 4.3.3.1, “ Specifying the Basic
Flow” below.

Alternate Flows. A series of linear sequences describing each of the alternative behaviors to the ba-
sic flow. Specifying aternate flows is described in more detail in Section 4.3.3.2, “ Specifying the
Alternate Flows”.

Post-conditions. These would be better named “post-assumptions’. This is a statement of any as-
sumptions that we can make at the end of the use case. Most useful where the use case is one of a
series of subsidiary use cases that are included in a main use case, where they can form the pre-
conditions of the next use case to be included.

A Caution

Like pre-conditions, post-conditions are best avoided. They place a burden on the spe-
cification of the use case flows, to ensure that the post-condition always holds. They
therefore are also a source of problems and extrawork.

Requirements. In an ideal world the vision document, use case diagrams, use case specifications and
supplementary requirements specification would form the requirements for a project.

For most market-led developments, where ownership of regquirements is within the same business as
the team who will do the development, this is now usually the case. The marketing department can
learn use case based requirements capture and analysisto link to their customer facing activities.

However for external contract developments, customers may insist on a traditional “list of features’
as the basis of the contract. Where this is the case, this section of the use case specification should
link to the contract features that are covered by the use case.

This is often done through a third party tool that can link documents, providing automated checking
of coverage, in which case this section is not needed, or may be generated automatically.

41

Requirements Capture

The final size of the use case specification will depend on the complexity of the use case. As a rule of
thumb, most use cases take around 10-15 pages to specify, the bulk of which is alternate flows. If you
are much larger than this, consider breaking the use case down. If you are much smaller consider wheth-
er the use case is addressing too small a chunk of behavior.

4.3.3.1. Specifying the Basic Flow

All flowsin a use case specification are linear—that is there is no conditional branching. Any choicesin
flows are handled by specifying another alternate flow that takes over at the choice point. It isimportant
to remember we are specifying behavior here, not programming it.

A flow is specified as a series of numbered steps. Each step must involve some interaction with an actor,
or at least generate a change that is observable externally by an actor. Requirements capture should not
be specifying hidden internal behavior of a system.

For example we might give the following sequence of steps for the basic flow of the use case "Withdraw
Cash" inour ATM example.

1. Customer indicates areceipt isrequired.

2. Customer enters amount of cash required.

3. ATM verifieswith the central computer that the customer can make this withdrawal.

4. ATM dispenses cash to the customer.

5. ATM issuesreceipt to customer.

Remember this is a sub-use case included in the main “Use ATM” use case, which will presumably
handle checking of cards and PINs before invoking this included use case.

- Note

The first step is not a condition. We take as our basic flow the case where the customer
does want a receipt. The case where the customer does not want a receipt will be an altern-
ative flow.

4.3.3.2. Specifying the Alternate Flows
This captures the alternative scenarios, as linear flows, by reference to the basic flow. Initially we just
build alist of the alternate flows.
A.
A.l. Customer does not require areceipt.
A.2. Customer's account will not support the withdrawal.
A.3. Communication to the central computer is down.

A.4. The customer cancels the transaction.

A.5. The customer fails to take the dispensed cash.

42

Requirements Capture

Subsequently we flesh out each aternate flow, by reference to the basic flow. For example the first al-
ternate flow might look like.

A.
A.1. Customer does not require areceipt.
A.l. At step 1 of the basic flow the customer indicates they do not want areceipt.

1
A.1l. Thebasic flow proceeds from step 2 to step 4, and step 5 is not used.
2.

The convention isto number the various alternate flows as A.1, A.2, A.3, etc. The steps within an altern-
ate flow are then numbered from this. So the steps of the first alternate flow would be A.1.1, A.1.2,
A.1.3, etc.

4.3.3.3. lterative Development of Use Case Specifications

4.3.4.

Iterative development will prioritize the use cases, and the first iterations will address the most import-
ant.

Early iterations will capture the basic flows of the most important use cases with only essential detail
and list the headings of the main alternate flows.

Later iterations will address the remaining use cases, flesh out the steps on individua alternate flows and
possibly provide more detail on individual steps.

Supplementary Requirement Specification

This captures the non-functional requirements or constraints placed on the system. Since use cases are
inherently functional in nature, they cannot capture this sort of information.

Note

¥
Some analysts like to place non-functional requirements in a section at the end of each use
case specification, containing the non-functional requirements relevant to the use case.

| don't like this for two reasons. First key non-functional requirements (for example about
performance) may need to appear in many use cases and it is bad practice to replicate in-
formation. Secondly there are invariably some non-functional regquirements that are system
wide and need a system wide document. Hence my preference for a single supplementary
requirements specification.

There should be a section for each of the main areas of non-functional requirements. The checklist
provided by lan Sommerville in his book Software Engineering (Third Edn, Addison-Wesley, 1989) isa
useful guide.

* Speed. Processor performance, user/event response times, screen refresh time.

» Sze Main memory (and possibly caches), disc capacity.

» Easeof use. Training time, style and detail of help system.

* Reliability. Mean timeto failure, probability of unavailability, rate of failure, availability.

* Robustness. Timeto restart after failure, percentage of events causing failure, probability of data cor-

43

Requirements Capture

ruption on failure.

» Portability. Percentage of target-dependent code/classes, number of target systems.

To this we should add sections on environment (temperature, humidity, lightening protection status) and
standards compliance.

4.4. Using Use Cases in ArgoUML

4.4.1.

4.4.2.

ArgoUML alows you to draw use case diagrams. When you create a new project it has a use case dia-
gram created by default, named use case di agram 1. Select this by button 1 click on the diagram
name in the explorer (the upper left quadrant of the user screen).

New use case diagrams can be created as needed through Cr eat e Di agr amon the main menu bar or
on the Create Diagram Toolbar. They are edited in the editing pane (the upper right quadrant of the user
screen).

Actors

To add an actor to the diagram use button 1 click on the actor icon on the editing pane toolbar (;T:_)

and then button 1 click at the location where you wish to place it. The actor can be moved subsequently
by button 1 motion (i.e. button 1 down over the actor to select it, move to the new position and button 1
release to drop the actor in place.

Multiple actors can be added in one go, by using button 1 double click on the actor icon. Each sub-
sequent button 1 click will drop an actor on the diagram. A button 1 click on the select icon (h) will

stop adding actors.

The actors name is set in its property panel. First select the actor (if not already selected) on the editing
pane using button 1 click. Then click on the Pr opert i es tab in the details pane. The name is entered
in the name field, and will appear on the screen.

As a shortcut, double button 1 click on the name of the actor in the editing pane (or just typing on the
keyboard when an actor is selected) will allow the name to be edited directly. This is a convenient way
to enter aname for a new actor.

Having created the actor, you will see it appear in the explorer (the upper left quadrant of the user
screen). This shows all the artifacts created within the UML design. A drop down at the top of the ex-
plorer controls the ordering of artifacts in the explorer. The most useful are the Package-centric
(default) and Di agr am cent ri c. The latter shows artifacts grouped by the diagram on which they

appesr.

Use Cases

The procedure for adding use cases is the same as that for adding actors, but using the use case icon on
the editing pane toolbar (£).

By default use casesin ArgoUML do not display their extension points (for use in extend relationships).
Y ou can show the extension point compartment in one of two ways.

1. Select the use case in the editing pane with button 1 click, then select the St yl e tab in the details
pane and button 1 click onthe Di spl ay: Ext ensi on Poi nt s check box.

44

Requirements Capture

2. Usebutton 2 click over the use case in the editing pane to display a context-sensitive pop-up menu
and from that choose Show/ Show Ext ensi on Poi nt Conpart nent.

The same approaches can be used to hide the extension point compartment.

4.4.2.1. Adding an Extension Point to a Use Case

There are two ways to add an extension point to a use case.

1. Select the use case on the editing pane with button 1 click. Then click on the Add Ext ensi on
Poi nt icon (=) on the toolbar, and a new extension point with default name and location will

be added after any existing extension points.

- Note
The Add Ext ensi on Poi nt icon is grayed out and unusable until a use case is
selected.

2. Select the use case on the editing pane with button 1 click and then select its property tab in the de-
tails pane. A button 2 click over the Ext ensi on Poi nt s: field will bring up a context-sensitive
pop-up menu. Select Add to add a new extension point.

If any extension points already exist, they will be shown in this field on the property tab. The new
extension point will be inserted immediately before the entry over which the pop-up menu was in-
voked. This ordering can be changed later by using the Move Up and Move Down entries on the
pop-up menu.

Whichever method is used, the new extension point is selected, and its property tab can be displayed in
the details pane. The name and location of the extension point are free text, set in the corresponding
fields of the property tab.

An existing extension point can be edited from its property tab. The property tab can be reached in two
ways.

1. If the extension point compartment for the use case is displayed on the diagram, select the use case
with button 1 click and then select the extension point with a further button 1 click. The property
tab can then be selected in the details pane.

2. Otherwise select the use case and its property tab in the details pane. A button 1 click on the desired
entry in the Ext ensi on Poi nt s field will bring up the property tab for the extension point in
the details pane.

The name and location fields of the extension point may then be edited.

As a shortcut, where the extension point compartment is displayed, double click on the extension point
allowstext to be typed in directly. Thisis parsed to set name and location for the extension point.

Extension points may be deleted, or their ordering changed by using the button 2 pop-up menu over the
Ext ensi on Poi nt s field in the use case property tab.

Having created an extension point, it will appear in the explorer (upper left quadrant of the user screen).
Extension points are always shown in a sub-tree beneath their owning use case.

45

Requirements Capture

4.4.3. Associations

To join a use case to an actor on the diagram use button 1 click on the association icon on the editing
pane toolbar (P). Hold button 1 down at the use case, move to the actor and release button 1 (or al-

ternatively start at the actor and finish at the use case).

This will create a straight line between actor and use case. Y ou can segment the line by holding down
button 1 down on the line and moving before releasing. A vertex will be added to the line, which you
can move by button 1 motion. A vertex can be removed by picking it up and dliding to one end of the
line.

Multiple associations can be added in one go, by using button 1 double click on the association icon.
Each subsequent button 1 down/motion/rel ease sequence will join an actor to a use case. Use button 1 on
the select icon (h) to stop adding associations.

It is aso possible to add associations using small “handles’ that appear to the left and right of a use case
or actor when it is selected and the mouse is over it. Dragging the handle from a use case to an actor will
create an association to that actor (and similarly by dragging a handle from an actor to a use case).

Dragging a handle from a use case into empty space will create a new actor to go on the other end. Sim-
ilarly dragging a handle from an actor into empty space will create a new use case.

It is possible to give an association a name, describing the relationship of the actor to the use case, al-
though this is not usually necessary. This is done through the property tab of the association. Such a
name appears alongside the association near its center.

4.4.3.1. Setting Navigation

There are two ways of setting the navigation of an association.

1. Usebutton 2 click on the association to bring up a context-sensitive pop-up menu. The Navi gab-
i lity sub-menu has options for bi-directional navigation (the default, with no arrows) and for
navigability Actor#Use Case and Use CasetfActor.

2. Usebutton 1 to select the association and select its property tab in the details pane. This shows a
field named Associ ati on Ends: , with entries for each end labeled by the actor or use case
name and its multiplicity. Select the end that should be at the tail of the arrow with button 1 click.
This brings up the property tab for the association end. Use button 1 click to uncheck the Navi g-
abi i ty box.

Note

L EF
This may seem counter-intuitive, but in fact associations by default are navigable in
both directions (when no arrows are shown). This process is turning off navigation at
one end, rather than turning it on at the other.

You will seeit is possible to give an association end a name in its property tab. This name will appear at
that end of the association, and can be used to indicate the role being played by an actor or use case in
an association.

For example a time management system for a business may have use cases for completing time sheets
and for signing off time sheets. An employee actor may be involved in both, one as an employee, but the
other in arole as manager.

46

Requirements Capture

4.4.3.2. Setting Multiplicity

There are two ways of setting multiplicity at the end of an association.

1. Button 2 click over the end of an association will cause a context-sensitive pop-up menu to appear
with a sub-menu labeled Mul ti pli ci ty. This alows you to select from 1 (the default), 0. . 1,
0..*and1l..*.

2. Bring up the property sheet for the association end as described for setting navigation (see the
second option in Section 4.4.3.1, “ Setting Navigation”). A drop down menu gives arange of multi-
plicity options that may be selected.

The second of these two approaches has a wider range of options, although ArgoUML does not cur-
rently allow the user to set an arbitrary multiplicity.

4.4.4. Hierarchical Use Cases
4.4.4.1. Includes

The procedure for adding an include relationship is the same as that for adding an association, but using
the include icon from the editing pane toolbar (. i) tojointwo use cases.
3

Since include relationships are directional the order in which the two ends are selected is important. The
including (main) use case should be selected first (button 1 down) and the included (subsidiary) use case
second (button 1 release).

It is possible to name include rel ationships using the property tab, but thisis rarely done, and will not be
displayed on the use case diagram.

4.4.4.2. Extends

The procedure for adding an extend relationship is the same as that for adding an include relationship,
but using the extend icon from the editing pane toolbar (Efp) to join two use cases.

As with include relationships, the order of selection matters. In this case, the extending (subsidiary) use
case should be selected first (button 1 down) and the extending (main) use case second (button 1 re-
lease).

Note

L
This is the reverse of the include relationship, but reflects the way that designer's tend to
think. The fact that the extend icon's arrow points upward (the opposite of the include icon)
should help remind you of this.

To set acondition for the extend relationship, select the extend relationship in the editing pane (button 1
click) and then bring up its property tab in the details pane ((button 1 click on the tab). The text of the
condition may be typed in the Condi t i on field. Long conditions may be split over severa linesif de-
sired. The condition is displayed under the «ext end» label on the diagram.

It is possible to name extend relationships using the property tab, but thisis rarely done, and will not be
displayed on the use case diagram.

47

Requirements Capture

4.4.4.3. Generalization

4.4.5.

4.4.6.

The procedure for adding generalizations, is the same as for adding extend relationships, but using the
generalization icon from the editing pane toolbar (-ﬁl':-).

Since generalization is a directed relationship, the order of selection matters. The specialized use case
should be selected first (button 1 down) and the generalized second (button 1 release).

It is aso possible to add generalizations using small “handles’ that appear to the top and bottom of a use
case when it is selected. Dragging the handle at the top to another use case will create a generalization.
The original use case is the specializing end, and the use case to which the handle was dragged will be
the generalizing end. Dragging into empty space will create a new use case to be the generalizing end.

Similarly dragging on the bottom handle will create a generalization in which the original use caseisthe
generalizing end.

Generalization is aso permitted between actors, although its use is beyond the scope of this tutorial. Un-
like use cases there are no generalization handles on actors, so generalizations must be created using the
toolbar icon.

It is possible to name generalization relationships using the property tab, but this is rarely done. If a
name s provided, it will be displayed on the use case diagram.

Stereotypes

UML has the concept of stereotyping as a way of extending the basic notation. It may prove useful for
example to model a problem at both the business level and the engineering level. For both of these we
will need use cases, but the use cases at the business level hold a different sort of information to those at
the engineering level. Very likely they use different language and notation in their underlying use case
specifications.

Sereotypes are used to label UML artifacts such as use cases, to indicate that they belong to a certain
category. Such labels are shown in guillemots («») above the name of the artifact on the diagram. The
UML standard defines a number of standard stereotypes, and the user may define more stereotypes of
his own.

You will see that ArgoUML has a drop down selector, St er eot ype on every property tab. This is
populated with the standard stereotypes, to which you may add your own user defined ones.

The details of stereotyping are beyond the scope of this tutorial. The reference manual (see Section 16.5,
“ Stereotype”) documents the support provided in ArgoUML.

. Warning

ArgoUML is missing a few of the standard UML stereotypes. In addition not al artifacts
will actually display the stereotype on the diagram. At present this includes use cases and
actors.

Documentation

ArgoUML has some simple documentation facilities associated with artifacts on a diagram. In genera
these should be used only to record the location of material in documents that can be handled by a main-
stream editor or word processor, not the actual documentation itself.

Documentation for a particular artifact is recorded through the documentation tab in the details pane (the

48

4.4.7.

Requirements Capture

quadrant of the user screen at the bottom right).

In addition annotation may be added to diagrams using the text icon on the editing pane toolbar (A.).

The recommendation is that a use case diagram should use the documentation tab of actors to record in-
formation about the actor, or if the actor is complex to refer to a separate document that holds informa-
tion about the actor.

The documentation tab of use cases should record the location of the use case specification. The inform-
ation in a use case specification (for al but the simplest use cases) is too complex to be placed directly
in the tab.

The project should also have a separate vision document and supplementary requirements specification.
A text annotation on diagrams may be used to refer to these if the user finds this helpful.

Warning

The documentation tab includes a Depr ecat ed check box. The state of this flag is not
preserved over save and load in the current release of ArgoUML

System Boundary Box

ArgoUML provides a series of tools to provide arbitrary graphical annotation on diagrams (we have
already mentioned the text tool). These are found at the right hand end of the editing pane toolbar and
are fully documented in the reference manual (see Chapter 12, The Editing Pane).

The rectangle tool can be used to draw the boundary box. Use the button 2 context-sensitive Or der i ng
pop-up menu to place it behind everything else. However there is no way to changeitsfill color from the
default white. Y ou may therefore prefer to draw the boundary box as four lines. This is the method used
for the diagramsin this chapter.

Note

CEF
The editing pane in ArgoUML has a grid to which objects snap to aid in drawing. The size
of this grid and its effect may be altered through the Vi ew menu (using Adj ust Gri d
and Adjust Gid Snap). This is described fully in the reference manua (see
Chapter 10, The Menu bar).

4.5. Case Study

4.5.1.

Vision Document

A vision document contains more than those things needed for the modeling effort. It also contains fin-
ancial and scheduling pertinent information. The following sections are those parts of the Vision Docu-
ment spelled out in Section 4.3.1, “Vision Document” above. In practice this format need not be fol-
lowed religiously, but is used here for consistency.

4.5.1.1. Summary

The company wishes to produce and market a line of ATM devices. The purpose of this project is to
produce the hardware and the software to drive it that are both maintainable and robust.

49

Requirements Capture

45.1.2. Goals

To produce better designed products based on newer technology. Follow the MDA philosophy of the
OMG by producing first a Platform Independent Model (PIM). As current modeling technology does not
admit of maintaining the integrity of the connection between the PIM and Platform Specific Models
(PSMs), the PIM will become comparatively stable before the first iteration of the PSM is produced. The
software platform will be Java technology. The system will use a simple userid (from ATM card) and
password (or PIN) mechanism.

45.1.3. Market Context

Equipment currently on the market is based on older technology for both hardware and software. This
technology has not reached the end of its useful life, making it unlikely that the vendors of that gear are
going to update it in the near future. On the other hand newer technology is available that would put us
at acompetitive advantage if implemented now.

45.1.4. Stakeholders

Among the stakeholders for this system are the Engineering Department, the Maintenance Department,
and the Central Computer Facility. The full list of these stakeholders and the specific individuals repres-
enting them are.

» Engineering. Bunny, Bugs
e Maintenance. Hardy, Oliver
e Computer Facility. Laurel, Stanley

» Chief Executive Officer. Hun, AtillaThe

» Marketing. Harry, Oil Can

4.5.1.5. Key Features

Cash deposit, cash withdrawal, and account inquiries by customers. Customers include people who have
accounts at the owning bank as well as people who wish to make withdrawals from accounts in other
banks or from credit card accounts.

Maintenance of the equipment by the bank's engineers. This action may be initiated by the engineer on a
routine basis. It may also be initiated by the equipment that can call the engineer when it detects an in-
terna fault.

Unloading of deposits and loading of cash by officials of the local bank branch. These actions occur
either on a scheduled basis or when the central computer determines that the cash supply is low or the
deposit receptacle isliable to be getting full.

An audit trail for all activities will be maintained and sent periodically to the bank's central computer. It
will be possible for the maintenance engineer to save a copy of the audit trail to a diskette for transport-
ing to the central computer.

Both dialup and leased line support will be provided. The ATM will continue to provide services to cus-
tomers when communications with the central computer is not available.

45.1.6. Constraints

50

Requirements Capture

The project must be completed within nine months. It must cost no more than 1,750,000 USD excluding
production costs. Components may be contracted out, but the basic architecture as well as the infrastruc-
ture will be designed in house. Close liaison must be maintained between the software development and
the design, development and production of the hardware. Neither the hardware nor the software shall be
considered the independent variable, but rather they shall be considered equal.

4.5.1.7. Appendix

4.5.2.

4.5.3.

The following are the actors that directly support this vision. Additional actors may be identified later
that are needed to support this or that technology. They should not be added to this list unless they are
deemed to directly support the vision as described in this document.

» Centra Computer
e Customer
» Local Branch Official

e Maintenance Engineer

The following are the use cases that directly support this vision. Additional use cases may be identified
later that are needed to support this or that technology or to support the use cases listed here. They
should not be added to this list unless they are deemed to directly support the vision as described in this
document.

e Audit
e Customer Uses Machine

e Maintain Machine

ldentifying Actors and Use Cases

For the ATM case study, we will elaborate on the examples in Section 4.3, “Output of the Requirements
Capture Process’, Figure 4.4, “Use case diagram for an ATM system showing include relationships.”
and Figure 4.5, “Use case diagram for an ATM system showing an extend relationship.”, and progress to
identify additional actors and use cases that comprise our model of the ATM system. Figure 4.4, “Use
case diagram for an ATM system showing include relationships.” and Figure 4.5, “Use case diagram for
an ATM system showing an extend relationship.” exemplified the essential concepts and components of
a use case diagram such as, use cases, actors, multiplicity, and include / extend relationships. They
showed the relationships between the actors and use cases, and demonstrated how these actors and use
cases interact.

In Figure 4.4, “Use case diagram for an ATM system showing include relationships.” we see a use case
diagram for an ATM system consisting of «include» relationships for the use cases, Maintain ATM and
Use ATM. Maintain ATM was further defined by two use cases, "Maintain Equipment” and "Reload
ATM". Use ATM was further defined in terms of the behavior of three simpler use cases. "Deposit
Cash", "Withdraw Cash" and "Query Account”.

More to be written...

Associations (To be written)

To be written...

51

Requirements Capture

4.5.4. Advanced Diagram Features (To be written)

To be written...

4.5.5. Use Case Specifications (To be written)

To be written...

4.5.6. Supplementary Requirements Specification (To be
written)

To be written...

52

Chapter 5. Analysis

Analysis is the process of taking the “customer” requirements and re-casting them in the language of,
and from the perspective of, a putative solution.

We are not actualy trying the flesh out the detailed solution at this stage. That occurs in the Design
Phase (see Chapter 6, Design).

Unlike the boundary between Requirements and Analysis Phases, the boundary between Analysis and
Design Phases is inherently blurred. The key isthat analysis should define the solution no further than is
necessary to specify the requirements in the language of the solution. The artifacts in Analysis generally
represent a high level of abstraction.

Once again the recursive, and iterative nature of our process means we will come back to the Analysis
phase many times in the future.

5.1. The Analysis Process

There are three schools of thought on how Analysis should be approached. The ontologist defines the
data (actually the metadata) first and worries about processes later. The true ontologist would prefer not
to have to think about processes at al. The phenomenonologist reverses this and favors process over
data. The panparadigmist considers both process and data to be equally important and addresses both
from the start.

When it comes to being a purist the ontologist has the upper hand. It is possible to define and build a
database into which data can be entered and retrieved without concern for what happens to it or is done

with it. On the other hand implementing a process without having any data structures for it to operate on
is not very meaningful.

5.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

The CRC methodology favors the phenomenonologists preference for analysis. It is the equivalent of
starting with the use cases, the process aspects (operations) of the class diagrams, and scenarios from
which sequence diagrams can be initiated.

CRC cards and the associated methodology are described in detail in Appendix G, The CRC Card Meth-
odology. They are used again in the design phase and are further discussed in Chapter 6, Design.

The strength of CRC cards during analysis.

e Common Project Vocabulary -

» Spread Domain Knowledge -

e Making the Paradigm Shift -

* LivePrototyping -

e ldentifying Holesin Reguirements -

In this phase the group should consist of two or three domain experts, one object-oriented technology fa
cilitator, and the rest of the group made up of people who are responsible for delivering the system.

53

5.1.2.

5.1.3.

5.1.4.

5.1.5.

5.1.6.

Anaysis

The first time that the Analysis phase occurs a specia case of the CRC session happens as there are no
classes or scenarios to choose from to define a CRC session. At this point a special type of session
known as brainstorming is held. During this session you identify the initial set of classes in the problem
domain by using the problem statement or requirements document or whatever you know about the de-
sired result for a starting point. The nouns that are found in whatever you are starting from are a good
key to an initial set of classes in the system. In a brainstorming session there should be little or no dis-
cussion of the ideas. Record them and filter the results after the brainstorming. At this stage the distinc-
tion between class and object is blurred.

Once a reasonable set of classes has been defined by the group, responsibilities can be added. Add re-
sponsibilities that are obvious from the requirements or the name of the class. You don't need to find
them al (or any for that matter). The scenarios will make them more obvious. The advantage of finding
somein the beginning isthat it helps provide a starting place.

Select the initial scenarios from the requirements document by examining it's verbs in much the same
way that we scanned its nouns earlier. Then as many walk through sessions as necessary to complete the
analysis phase are performed.

When is enough of the analysis complete that design can begin? When all the different responsihilities
are in place and the system has become stable. After all the normal behavior has been covered, excep-
tional behavior needs to be simulated. When you natice that the responsibilities are al in place to sup-
port the new scenarios, and there is little change to the cards, this is a sign the you are ready to start
design.

Concept Diagram (To be written)

To be written...

System Sequence Diagram (To be written)

To be written...

System Statechart Diagram (To be written)

To be written...

Realization Use Case Diagram (To be written)

To be written...

Documents (To be written)

Use Case Specifications and Supplementary Requirements Specifications recast in solution language. To
be written...

5.2. Class Diagrams (To be written)

5.2.1.

5.2.2.

To be written...

The Class Diagram (To be written)

To be written...

Advanced Class Diagrams (To be written)

To be written...

5.2.2.1. Association Classes (To be written)

To be written...

Anaysis

5.3. Creating Class Diagrams in ArgoUML
5.3.1. Classes

Identifying class diagrams from existing materials (Vision, Use Cases etc). To be written...

5.3.1.1. Using the Note Icon in the Tool Bar

Click on your target class. Then click on the note icon. ArgoUML will generate the link automatically.

You can also right click to add a note as well! Be aware that you can add an undefined number of notes
to any one class!

. Warning

Be aware that your note will not appear in the source code documentation tab.

5.3.2. Associations (To be written)

To be written...

5.3.2.1. Aggregation (To be written)

To be written...

5.3.3. Class Attributes and Operations (To be written)

To be written...

5.3.3.1. Entering Data Into Attributes and Methods Windows

Click directly in the class artifact and start typing. Do not use the properties window dialog fields—they
are not fully functional and liable to cause you alittle frustration.

In fact, it would be interesting to see if you can type stereotypes write in the class attribute box for gen-
erating XML diagrams.

5.3.3.2. Class Attributes (To be written)

To be written...

5.3.3.3. Class Operations (To be written)

To be written...

5.3.4. Advanced Class Features (To be written)

5.3.4.1. Association Classes (To be written)
To bewritten...

5.3.4.2. Stereotypes (To be written)

To be written...

5.4. Sequence Diagrams (To be written)

To be written...

55

Anaysis

5.4.1. The Sequence Diagram (To be written)

To be written...

5.4.2. Identifying Actions (To be written)

To be written...

5.4.3. Advanced Sequence Diagrams (To be written)

To be written...

5.5. Creating Sequence Diagrams in ArgoUML

5.5.1. Sequence Diagrams

5.5.1.1. Creating a Sequence Diagram

Normally, you can just start a sequence diagram right away. On the Cr eat e Di agr ammenu choose
Sequence.

5.5.2. Actions (To be written)

To be written...

5.5.3. Advanced Sequence Diagrams (To be written)

To be written...

5.6. Statechart Diagrams (To be written)

To be written...

5.6.1. The Statechart Diagram (To be written)

Types of statechart diagram (Moore, Mealy); Hierarchical diagrams. To be written...

5.6.2. Advanced Statechart Diagrams (To be written)

To be written...

5.6.2.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.7. Creating Statechart Diagrams in ArgoUML
5.7.1. Statechart Diagrams (To be written)

To be written...

5.7.1.1. Creating a Statechart Diagram

Select a class, then you can create a statechart diagram.

5.7.2. States (To be written)

To be written...

56

Anaysis

5.7.2.1. Editing a Composite State

When editing a composite state, how do you provide do and event for a composite state?
The answer isto select a class, then you can create a statechart diagram.

5.7.3. Transitions (To be written)

To be written...

5.7.4. Actions (To be written)

To be written...

5.7.5. Advanced Statechart Diagrams (To be written)

To be written...

5.7.5.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.8. Realization Use Cases (To be written)

To be written...

5.9. Creating Realization Use Cases in
ArgoUML (To be written)

To be written...

5.10. Case Study (To be written)

Regardless of which methodology you use, at this time you are undoubtedly going to take the problem
statement from Section 4.5, “ Case Study” and extract the nouns from it. Thislist should be compacted to
contain only those nouns that are expected to result in aclass. This effort resultsin the following.

e Account
e Audit trail
« Bank

+ Cash

e Customer

5.10.1. CRC Cards

The project manager convenes a CRC session at which the initial set of classes are to be defined. The fa-
cilitator reminds the participants that we are in the analysis phase and are only interested in what needs
to be done (at the business level) and are to leave out anything that smacks of how to do it. As a general
rule of thumb this means a subset of the nouns from the problem statement (see above). The group starts
with acomplete list of al of the nounsin the statement, examines each one, and decides which are inap-
propriate crossing them off the list. Each class is then assigned to one of the participants.

57

Anaysis

to be continued...

5.10.2. Concept Class Diagrams (To be written)

To be written...

5.10.2.1. Identifying classes (To be written)

To be written...

5.10.2.2. Identifying associations (To be written)
To bewritten...

5.10.3. System Sequence Diagrams (To be written)

To be written...

5.10.3.1. Identifying actions (To be written)

To be written...

5.10.4. System Statechart Diagrams (To be written)

To be written...

5.10.5. Realization Use Cases (To be written)

To be written...

58

Chapter 6. Design

We now have the problem we are trying to solve specified in the language of a putative solution. In the
Design Phase, we construct all the details of that solution.

The blurred boundary between Analysis and Design is reflected in their use of many of the same UML
tools. In this chapter we will mostly be reusing UML technology we have already met once. The big step
is casting everything into concrete terms. We move from the abstract concepts of analysis to their con-
crete realization.

Once again the recursive, and iterative nature of our process means we will come back to the Design
phase many times in the future.

6.1. The Design Process (To be written)

To be written...

6.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

Strength of CRC cards during Design

» Spreading Objet-Oriented Design Expertise
» Design Reviews

e Framework for Implementation

* Informal Notation

» Choice of supporting software components

» Performance Requirements

In this phase devel opers replace some of the domain experts in the group, but there should always be at
least one domain expert in the group.

The focus of the group moves from what is to be done to how to do it. The classes from the solution do-
main are added to those defined in the analysis phase. Think about what classes are needed to make the
system work. Do you need a List class to hold objects? Do you need classes to handle exceptions? Do
you need wrapper classes for other subsystems? New classes that are looked for in this part, are classes
that support the implementation of the system.

During the design phase the distinction between class and object becomes important. Think about the
objects in your scenarios. Who creates the objects? What happens when it is created and destroyed?
What isthe lifetime of the object vs. the lifetime of the information held be the object?

Now is the time to look at what information the objects hold compared to what is requested from other
classes or computed on the fly. Use the back of the card to record the attributes found for the classes.
Break you responsibilities into subresponsibilities and list the subresponsibilities indented under the
main responsibilities. Move the collaborators next to the subresponsibilities that use them.

After the Collaborator class on your card list the responsibility of the used class that is used in the col-
laboration. After the collaborating responsibilities on your cards, list the data passed back by the collab-

59

Design

orating object in parenthesis.

Redo the scenarios you did in the analysis phase, but know take into consideration all of the design heur-
istics discussed. Make up your own scenarios and try them.

6.1.2. Package Diagram (To be written)

To be written...

6.1.3. Realization Class Diagrams (To be written)

To be written...
6.1.4. Sequence Diagrams and Collaboration Diagrams
(To be written)

To be written...
6.1.5. Statechart Diagrams and Activity Diagrams (To be
written)

To be written...

6.1.6. Deployment Diagram (To be written)

To be written...

6.1.7. Documents (To be written)
System Architecture. To be written...

6.2. Package Diagrams (To be written)

To be written...

6.2.1. The Package Diagram (To be written)

To be written...

6.2.2. Advanced Package Diagrams (To be written)

To be written...

6.2.2.1. Subpackages (To be written)

To be written...

6.2.2.2. Adding DataTypes (To be written)

To be written...

6.2.2.3. Adding Stereotypes (To be written)

To be written...

6.3. Creating Package Diagrams in ArgoUML
6.3.1. Packages

How to work out what goes in packages. To be written...

60

Design

6.3.1.1. Subpackages (To be written)

To be written...

6.3.2. Relationships between packages (To be written)

To be written...

6.3.2.1. Dependency (To be written)

To be written...

6.3.2.2. Generalization (To be written)
To be written...

6.3.2.3. Realization and Abstraction (To be written)
To be written...

6.3.3. Advanced Package Features (To be written)

To be written...

6.3.3.1. Creating New Datatypes (To be written)

To be written...

6.3.3.2. Creating New Stereotypes (To be written)

To be written...

6.4. More on Class Diagrams (To be written)

To be written...

6.4.1. The Class Diagram (To be written)

To be written...

6.4.1.1. Class Attributes (To be written)

To be written...

6.4.1.2. Class Operations (To be written)

To be written...

6.4.2. Advanced Class Diagrams (To be written)

To be written...

6.4.2.1. Realization and Abstraction (To be written)
To be written...

6.5. More on Class Diagrams in ArgoUML (To
be written)

6.5.1. Classes (To be written)

More on identifying classes from existing materials and use of stereotypes. To be written...

61

Design

6.5.2. Class Attributes and Operations (To be written)

To be written...

6.5.2.1. Class Attributes (To be written)

To be written...

6.5.2.2. Class Operations (To be written)

To be written...

6.5.3. Advanced Class Features

6.5.3.1. Operations on Interfaces

6.5.3.1.1. Interfaces that extend interfaces

Add a unnamed interface to the current classdiagram by single-clicking on the interface icon in the tool
bar and then clicking at the diagram pane (see Figure 6.1, “ Selecting the Interface tool”).

Figure6.1. Selecting the Interface tool

Then double click on the interfaces name field to change it's name as shown in Figure 6.2, “Interface ar-
tifact on the Class Diagram”.

Figure 6.2. Interface artifact on the Class Diagram

<<lntefaces >

62

Design

and type a name for it (like Test | nt er f ace in this case). Press “Enter” when the name is complete.
(Y ou could aso enter the name by going to the Properties Tab in the Details Pane after adding the inter-
face.)

Add another interface with a different by repeating the last 2 steps. Then single-click on the Generaliza-
tion icon in the tool bar as shown in Figure 6.3, “ Generalization on the Class Diagram tool bar”.

Figure 6.3. Generalization on the Class Diagram tool bar

=zInterface==

Testinteface

=zInterface==

move the mouse pointer to the subinterface, press the left mouse button and drag the generalization to
the superinterface, where you rel ease the mouse button. Figure Figure 6.4, “ Generalization between two
Interfaces.” shows how your diagram should look now.

Figure 6.4. Generalization between two I nterfaces.

Design

]

-5 —~ 1
ZZ|ntefaces=
Testinteface

Ao

<<|nteface==

Anotherinterface

public interface AnotherInterface extends TestInterface {1

By clicking on the subinterface and the source tab properties pane, and then selecting Java Notation for
the source tab, you can see that the interface actually extends it's superinterface.

6.5.3.2. Stereotypes (To be written)

To be written...

6.6. Sequence and Collaboration Diagrams (To
be written)

@ Note

Sequence diagrams does not work in ArgoUML version 0.14.

To be written...

6.6.1. More on the Sequence Diagram (To be written)

To be written...

Design

6.6.2. The Collaboration Diagram (To be written)

To be written...

6.6.2.1. Messages (To be written)

To be written...

6.6.2.2. Actions (To be written)

To be written...

6.6.3. Advanced Collaboration Diagrams (To be written)

To be written...

6.7. Creating Collaboration Diagrams in
ArgoUML (To be written)

6.7.1. Collaboration Diagrams (To be written)

To be written...

6.7.2. Messages (To be written)

To be written...

6.7.2.1. Actions (To be written)

To be written...

6.7.3. Advanced Collaboration Diagrams (To be written)

To be written...

6.8. Statechart Diagrams (To be written)

To be written...

6.8.1. The Statechart Diagram (To be written)

More on this. To be written...

6.8.2. Advanced Statechart Diagrams (To be written)

To be written...

6.8.2.1. Actions (To be written)

To be written...

6.8.2.2. Transitions (To be written)

To be written...

6.8.2.2.1. Triggers (To be written)
To be written...

6.8.2.2.2. Guards (To be written)
To bewritten...

65

Design

6.8.2.2.3. Effectss (To be written)
To be written...

6.8.2.3. Pseudo States (To be written)

To be written...

6.8.2.3.1. Junction and Choice (To be written)
To be written...

6.8.2.3.2. Fork and Join (To be written)
To be written...

6.8.2.4. Hierarchical State Machines (To be written)

To be written...

6.8.2.5. Models for State History (To be written)
Shallow v Deep. To be written...

6.9. Creating Statechart Diagrams in ArgoUML
(To be written)

6.9.1. Statechart Diagrams (To be written)

To be written...

6.9.2. States (To be written)

To be written...

6.9.3. Transitions (To be written)

To be written...

6.9.4. Actions (To be written)

To be written...

6.9.5. Advanced Statechart Diagrams (To be written)

To be written...

6.9.5.1. Transitions (To be written)

To be written...

6.9.5.1.1. Triggers (To be written)
To be written...

6.9.5.1.2. Guards (To be written)
To be written...

6.9.5.1.3. Effectss (To be written)
To bewritten...

6.9.5.2. Pseudo States (To be written)

66

Design

To be written...

6.9.5.2.1. Junction and Choice (To be written)
To be written...

6.9.5.2.2. Fork and Join (To be written)
To be written...

6.9.5.3. Hierarchical State Machines (To be written)
To be written...

6.9.5.4. History (To be written)
Shallow v Deep. To be written...

6.10. Activity Diagrams (To be written)

To be written...

6.10.1. The Activity Diagram (To be written)

More on this. To be written...

6.10.1.1. Action States (To be written)

To be written...

6.11. Creating Activity Diagrams in ArgoUML
(To be written)

6.11.1. Activity Diagrams (To be written)

To be written...

6.11.1.1. Creating an Activity Diagram

Select a use case or class, then you can create an activity diagram.

6.11.2. Action States (To be written)

To be written...

6.12. Deployment Diagrams (To be written)

To be written...

6.12.1. The Deployment Diagram (To be written)

To be written...

6.13. Creating Deployment Diagrams in
ArgoUML (To be written)

6.13.1. Nodes (To be written)

To be written...

67

Design

6.13.1.1. Node Instances (To be written)

To be written...

6.13.2. Components (To be written)

To be written...

6.13.2.1. Component Instances (To be written)
To be written...

6.13.3. Relationships between nodes and components
(To be written)

To be written...

6.13.3.1. Dependency (To be written)

To be written...

6.13.3.2. Associations (To be written)

To be written...

6.13.3.3. Links (To be written)

To be written...

6.14. System Architecture (To be written)

To be written...

6.15. Case Study (To be written)
6.15.1. CRC Cards (To be written)

To be written...

6.15.2. Packages (To be written)

To be written...

6.15.2.1. Identifying Packages (To be written)

To be written...

6.15.2.2. Datatypes and Stereotypes (To be written)

To be written...

6.15.3. Class Diagrams (To be written)

To be written...

6.15.3.1. Identifying classes (To be written)

To be written...

6.15.3.2. Identifying associations (To be written)
To bewritten...

68

Design

6.15.3.3. Specifying Attributes and Operations (To be written)

To be written...

6.15.4. Sequence Diagrams (To be written)

To be written...

6.15.4.1. Identifying actions (To be written)

To be written...

6.15.5. Collaboration Diagrams (To be written)

To be written...

6.15.5.1. Identifying Messages (To be written)

To be written...

6.15.6. Statechart Diagrams (To be written)

To be written...

6.15.7. Activity Diagrams (To be written)

To be written...

6.15.8. The Deployment Diagram (To be written)

To be written...

6.15.9. The System Architecture (To be written)

To be written...

69

Chapter 7. Code Generation, Reverse
Engineering, and Round Trip
Engineering

7.1. Introduction

We now have our design fully specified. With the right simulator we could actually execute the design
and see if it works. (ArgoUML does not provide such functionality, but this functionality has been
provided in alternative tools.)

ArgoUML does allow you to generate code from the design in severa different programming languages.
We, most likely, already in the design had a programming language in mind because some of the design
considerations are to care for a specific language.

The output of this processis the set of filesthat constitute the program that solves the problem.

Once again the recursive, and iterative nature of our process means we will come back to the Build
phase many times in the future.

There is also another side to this and that is the reverse engineering side. If we happen to have an old
program that we would like to examine then we could take the files and reverse engineer them to create
a design. This can be used when trying to understand some not so well documented program or as a
quick start for the design work.

The process of going back and forth between doing changes in the design followed by a code generation
and then doing changes in the code followed by a reverse engineering using for every change, the best
possible perspective, is called Round-trip Engineering.

7.2. Code Generation

7.2.1.

The output of the Code Generation is the completed program. Depending on the contents of the design,
we could also generate Unit test cases.

To do the work we need the design model, containing both static and dynamic descriptions of the pro-
gram.

Generating Code from the Static Structure

It is rather straightforward to do this generation, at least as long as we do it for an object-oriented lan-
guage. Thisissome of the basic rules:
» A classwill becomeaclass.
In some target languages (like java, c++) they also become files and compilation units.
* A generalization will become an inheritance.

If the target language does not support inheritance and we didn't address this during the design, some
special conversions are required to solve this.

70

Code Generation, Reverse Engineering, and
Round Trip Engineering

An attribute will become a member variable.
A navigable association will become a member variable.

Depending on the target language, target platform, and the association multiplicities this will be a
pointer, areference, a collection class, an entry in some table or map.

A non-abstract operation in a class will become a method.
An abstract operation in a class will become an abstract method.
Anin parameter in an operation will become a parameter in the method.

For simple types (int, boolean), this is the normal case. For C++, these will probably const classes.
For Java, this cannot be enforced for classes.

An out or infout parameter in an operation will become a referenced parameter in the method.

For C++, these will be referenced non-const parameters. For Java classes, this is the default. Simple
types (int, boolean) must, in java, be converted to an object of a corresponding class (Integer,
Boolean).

The visihilities of the attributes, associations, and operations will become visibilities on the member
variables or methods.

Packages will become directories, namespaces, or both.

7.2.2. Generating code from interactions and state ma-

chines

This conversion is not as straight-forward as the conversion of the static structure. It is much more de-
pending on the target language and target platform.

In genera it is only possible to say the following for interactions:

A messageis converted into afunction call.
The class of the recipient will have to have afunction with the correct name and signature.
The sender function in the class of the sender will have a call to the function in the recipient.

An asynchronous message is converted to either posting a message to be handled by some other
thread or afunction call to afunction that starts a new thread.

The following describes one possible way to generate state machines:

A State Machine is generated to a set of member variables that each method in this class refer to
when deciding behavior.

A Stateis generated to aclosed set of combination of values on these member variables.
An Event is generated as a call to amember method that can change the state.

These methods would then typically have one big switch statement splitting on the current state.

71

Code Generation, Reverse Engineering, and
Round Trip Engineering

* A Guard is generated to an if statement in the event member method in the branch for the correct
state.

e A Transition is generated as an assignment of some state variable.

* AnActionisgenerated asafunction call.

7.3. Code Generation in ArgoUML
7.3.1. Static Structure

Most of the generation can be done automatically by the provided language modules. Files are generated
in adirectory hierarchy that need to befilled in by the actual code.

7.3.2. Interactions and statechart diagrams

Thereis currently no support for thisin ArgoUML, not for any language.

7.4. Reverse Engineering

Reverse Engineering is used for two main purposes:

1. Toget previously developed classed into the model to build upon.

2. TogetaUML view of previously developed classes to understand how they work.

Essentially this does the opposite of Code Generation.

7.5. Round-Trip Engineering

Round-Trip Engineering makes it possible to switch perspective while doing the design. Create some
classes in a class diagram. Write some code for some of the operations or functions using your favorite
editor. Move the operations from one class to another in the class diagram...

ArgoUML currently does not support this for any language.

72

Part 2. User Interface Reference

Chapter 8. Introduction

This chapter describes the overall behavior of the user interface. Description of the various component
parts—the menu bar, panes and various diagrams— is in separate chapters.

8.1. Overview of the Window

Figure 8.1, “Overview of the ArgoUML window” shows the main ArgoUML window.

The titlebar of the window shows the following 4 parts of information, separated from each other by a
dash.

» The current filename. If no filename for the project is set yet, then the titlebar shows "Unititled".

» Thename of the currently active diagram.

* Thename*“ArgoUML".

* Anasterisk (*). Thisitemisonly present if the current project fileis“dirty”, i.e. it is atered, but not
yet saved. In other words, if the asterisk is absent, then the current file has not been altered.

Figure8.1. Overview of the ArgoUML window

¥ critic_model.zargo - org.argouml.cognitive.critics - ArgoUML *

File Edit Wiew Create Arrange Generation Critigue Tools Help
DeBEs ¥bDaE<C Y A RERREEBRERE
E |package-ceriric -l k4 BB —-~ ? B ‘5 "‘ ~-BEE D O~
Order By Type, Marme b SRR TR B Z e au 2
— = A newOper ation]) : void present
B croonstructarilesded
= B crsingletonviclsted
B craingletonticlsted
ﬁ predicate? ‘
I o
E GrumL Far critics built CompoundCritic CriniL For F:n‘tlcs
& E crite L. 5) @@ === relating to U1
from other critics. — .
7 B crticUtiis _ Beues.
E woid Mo known children predicate2() @ boolean Avound 76
D Examples which... a_t I”_ese'_‘t — el esource) children at pr
[Far critics...
[Far critice buit...
[Far general critics...
i CrConsider Singlet CrSingleto o lated CrionstructorMeed
/?\ tanon Dependency) Examples which CrConsider Singleton B G Singletonlio late d CrConstructorlee de
,i\ come fram __
i (anon Dependency) several other
/'\ {anon Deperdency) packages <<creater= CrionsiderSingletonf) [<<create=> CrSingleton\iolated]) |<<create== Croonstructorl
F— T . predicate2() : boolean | predicate2) : boolean predicated () : boolean b
) < >
? [anon Generalization) | [
< 4
= q
By Priority V| 14hems | o 700 ftem | & Properies | & Documentation | & Presentation | & Source A Tagoed values
g High 2| T Genersization & < [Parent: B critic
= Harme: Child: B compoundcritic
[Detine Concrete (Suk)Cls A "
ereotype: :
[T add Instance variables tr e | 4 fPowertype: b
[0 add Szsocistions to void Digcriminator:
[s Operations to void | ¥ | Namespace: (R erticmodel v
< >

74

Introduction

At the top of screen is a menu bar, which is described in Chapter 10, The Menu bar. Below that is the
toolbar, as described in Chapter 9, The Toolbar.

The bulk of the window comprises four sub-windows or panes. Clockwise from top |eft these are the ex-
plorer (see Chapter 11, The Explorer), editing pane (see Chapter 12, The Editing Pane), details pane
(see Chapter 13, The Details Pane) and to-do pane (see Chapter 14, The To-Do Pane). All 4 panes have
atool bar at the top (in the details pane it is located under the properties tab). An overview of the panes
is given in Section 8.3, “General Information About Panes’. Finally at the bottom of the window is a
status bar described in Section 8.4, “ The status bar”.

8.2. General Mouse Behavior in ArgoUML

8.2.1.

8.2.2.

Mouse behavior that is specific to the various panes of ArgoUML (see Section 8.3, “Genera Informa-
tion About Panes’) or the menu bar, is discussed in the chapters covering those panes and the menu bar.
In this section we cover behavior that is general across all of ArgoUML.

In a number of placesin ArgoUML text may be directly edited (for example the constraint editor—see
Section 13.7.1, “The Constraint Editor”). The behavior of the mouse when handling text is discussed in
the sections that follow.

Mouse Button Terminology

ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1” and “button 2”. But-
ton 1 istheleftmost button on aright-handed mouse, and sometimes referred to as the select button. But-
ton 2 isthe rightmost button on a right-handed mouse, and is sometimes referred to as the adjust button.

A single depress and release of a mouse button with the mouse is referred to as a click. Two clicks in
quick succession is referred to as a double click. Moving the mouse while holding a button down is re-
ferred to as button motion with the starting point being at button down and the end point at button up.

Button 1 Click

Clicking on an user-interface object or on a diagram artifact may establish many different things. Most
of the behaviour is experienced quite intuitive by the user, mainly because the high degree of standard-
isation, even spanning different computer platforms (Macintosh, PC, UNIX,...). ArgoUML follows the
Java Look and Fedl Design Guidelines by Sun. See http://java.sun.com/products/jIf/. Hence, behaviour
of common user-interface componentsis generally not discussed in this document.

On the other hand, mouse actions in a diagram may not seem so intuitive to the user, since it is specific
for ArgoUML. Hence they are explained here. In short, clicking selects or activates the object beneath
the mouse-pointer, and moves the focus (i.e. navigation).

Morein detail, the button 1 click may cause the following result:

8.2.2.1. Selection

Here button 1 is used to choose (select) an artifact (in alist or tree or on a diagram) on which subsequent
operations will take place. Multiple artifacts may be selected by using Shift and/or Ctrl in combination
with button 1, see Section 8.2.5, “ Shift and Ctrl modifiers with Button 1”. Selection is always clearly in-
dicated by a colored background.

On a diagram, the selected artifact is indicated with colored "blocks' at the corners/ends of the object.
Artifacts can be selected or deselected in different ways:

« Button 1 click. Deselects all artifacts, and selects the one clicked on.

75

http://java.sun.com/products/jlf/

Introduction

* Button 1 motion. Button motion (moving the mouse with the button down) in the diagram, not on
any artifact, allows to draw a rectangle around artifacts which will be selected when the button 1 is
released.

» Menu functions and shortcuts. Many menu operations change selection as side-effect, e.g. creating a

new diagram. Many keyboard shortcuts for menu operations change the selection, e.g. Ctrl-A, which
standsfor the Sel ect Al | function.

8.2.2.2. Activation

Here button 1 is used to activate the user interface component, e.g. a button. The object is usually high-
lighted when the mouse button is pressed and then activated when the mouse button is released. Activat-
ing an user-interface object means that its function is executed.

8.2.2.3. Navigation

Here button 1 is used to move the focus from one user interface component or diagram artifact to anoth-
er. It is better known under the term keyboard focus. This because keyboard commands usually work on
the artifact that has the focus. The focusisindicated by a (hardly visible) box around the artifact, or for a
text entry box, by aflashing cursor.

8.2.2.4. General Behavior When Editing Text

Here button 1 is used to select the point within the text at which operations (text entry and deletion) will
take place.

8.2.3. Button 1 Double Click

The behavior of button 1 double click varies betweens panes and is discussed in their chapters.

8.2.3.1. General Behavior When Editing Text

Here button 1 double click is used to select a complete word, or other syntactic unit within the text. Sub-
sequent operations (text entry and deletion) will replace the selected text.

8.2.4. Button 1 Motion
8.2.4.1. General Behavior When Editing Text

Here button 1 motion is used to select a range of text. Subsegquent operations (text entry and deletion)
will replace the selected text.

8.2.5. Shift and Ctrl modifiers with Button 1
8.2.5.1. Within Lists

This behavior applies where there is a list of things that may be selected. This includes various dialog
boxes, and the to-do pane, where thereisalist of to-do items to be selected.

Where selections are to be made, the SHIFT key is used to with button 1 to extend from the original but-
ton 1 selection to the current position.

Similarly the CTRL key with button 1 is used to add individual items to the current selection. Where

76

Introduction

Ctrl-button 1 is used on an item already selected, that item is removed from the selection.
A Caution
Users of Microsoft Windows might be familiar with the use of SHIFT-CTRL-Click (i.e.

holding both the Shift and Ctrl key down when clicking), to add sub-lists to an existing se-
lection. ArgoUML does not support this. SHIFT-CTRL-Click will behave as CTRL-Click.

8.2.5.2. General Behavior When Editing Text

8.2.6.

8.2.7.

8.2.8.

8.2.9.

In a number of places in ArgoUML text may be directly edited (for example when naming a mod-
el—element in the properties pane, or when typing a UML note / comment). Here SHIFT button 1 is
used to select a range of text from the previously selected point. Subsequent operations (text entry and
deletion) will replace the selected text.

Alt with Button 1: Panning

When holding down the Alt key during button 1 down on a diagram, movement of the mouse pans the
drawing area. The function isindicated by the mousepointer which turnsinto a crosshair with arrows.

Ctrl with Button 1: Constrained Drag

When holding down the Ctrl key while dragging with mouse button 1 down on a diagram, the movement
of the dragged element element will be constrained to one of eight cardinal directions : North, South,
East, West, NE, SE, SW, NW.

Button 2 Actions

Button 2 actions are al dependent on the pane or menu bar, and discussed in their various chapters.

Button 2 Double Click

Button 2 actions are al dependent on the pane or menu bar, and discussed in their various chapters.

8.2.10. Button 2 Motion

Button 2 actions are al dependent on the pane or menu bar, and discussed in their various chapters.

8.3. General Information About Panes

8.3.1.

The four sub-windows of the main ArgoUML window are called panes. Clockwise from top left these
are the explorer (see Chapter 11, The Explorer), editing pane (see Chapter 12, The Editing Pane), details
pane (see Chapter 13, The Details Pane) and to-do pane (see Chapter 14, The To-Do Pane). At the top
the editing paneisatool bar.

Re-sizing Panes

You can re-size panes by dragging on the divider bars between them. To indicate this possibility, the
mouse cursor changes shape when hovering over the divider bars.

In addition you will see there are two small left pointing arrows within the vertical divider bars, one at
the top of the vertical divider bar between explorer and editing pane and one at the top of the vertical di-

77

Introduction

vider bar between to-do pane and details pane. Button 1 click on the first of these will expand the editing
pane to the full width of the window, button 1 click on the second will expand the details pane to the full
width of the window.

There is aso a small downward pointing arrow within the horizontal divider bar at its leftmost end.
Clicking on thiswill expand the explorer and editing panes to the full depth of the window.

By using both the top arrow on the vertical divider and the arrow on the horizontal divider, it is possible
to expand the editing pane to use the entire window.

The original configuration can be restored by clicking again on these arrows, which are now located at
the edge of the window.

8.4. The status bar

The status bar is at the very bottom of the ArgoUML window and is used to display short advisory mes-
sages. In general such messages are self explanatory. It is e.g. used for displaying parsing error messages
in case atext entered on the diagram can not be interpreted.

78

Chapter 9. The Toolbar
9.1. File operations

These buttons have identical functions as their counterpartsin the Fi | e menu.

. E‘ New See for afull description Section 10.3.1, “ D New”.

#
* = Qpen Project... Seeforafull description Section 10.3.2, “ =7 Open Project...” .
. Save Proj ect Seefor afull description Section 10.3.3, “ Save Project”.

. EI Pri nt Seefor afull description Section 10.3.10, “ El Print...”.

9.2. Edit operations

These buttons have identical functions as their counterpartsin the Edi t menu.

- Remove From Di agr amSeefor afull description Section 10.4.2, “ = Remove From Dia-
gram”.

. {g Navi gat e Back Seefor afull description Section 10.4.1, “ Select”.

. g} Navi gat e For war d Seefor afull description Section 10.4.1, “ Select”.

9.3. View operations

The Fi nd. . . button has identical behaviour as its counterpart in the Vi ew menu. The Zoombutton is
amore luxurously version of the function in the Vi ew menu.

. H‘ Fi nd. .. Seefor afull description Section 10.5.2, “ Hl Find...".

. .;:% ZoomThisis a different version of the menu-item for zooming, as described in Section 10.5.3,

“Zoom” . Clicking with button 1 on the zoom-icon opens a panel asin the figure below.

Figure 9.1. The Zoom dlider on the Toolbar

79

The Toolbar

500

[0 100
150
200
280
200
340
400

S50

- 00

Once the panel is open, the following actions are possible;

Clicking with button 1 on the "knob" followed by button 1 movement will adjust the zoomfactor.

Clicking with button 1 on the shown percentage allows editing the given zoomfactor (in percent)
directly with the keyboard. Double clicking on the value shown selects the whole entry for easy
overtyping.

Clicking with button 1 below or above the knob increases or decreass the zoom factor with 1%.
Use this function to easily fine-adjust the percentage.

Clicking with button 1 or button 2 on the Zoomtool, or anywhere outside the dlider panel closes
the panel.

The keyboard can be used to operate the Zoom Slider as follows: When the Zoomicon in the
toolbar has the focus (indicated by the thin blue box around it), then pressing the spacebar opens
the zoon dlider panel. Use the arrow keys to increase and decrease the percentage 1 by 1. Use
Shift-Tab to set the focus to the percentage box, where you can edit the given value directly.
Pressing Enter activates the changed value. When the "knob" has the focus, pressing
PageUp/PageDown increases/decreases the percentage by 50. Pressing Home sets the percent-
age to 500%, and End setsit to 0%.

9.4. Create operations

These buttons have identical functions as their counterpartsin the Cr eat e menu.

80

The Toolbar

New Use Case Di agr amSee for afull description Section 10.6.1, New Use Case
Diagram” .

= New Cl ass Di agr amSeefor afull description Section 10.6.2, “ [y New Class Diagram” .
9 i -

@ New Sequence Di agr am See for afull description Section 10.6.3, “ E New Seguence
Diagram” .
New Col | abor ati on Di agr amSee for afull description Section 10.6.4, “ New Col-
|aboration Diagram” .
New St at echart Di agr amSeefor afull description Section 10.6.5, “ New Statechart
Diagram” .

New Activity D agramSeefor afull description Section 10.6.6, “ @ New Activity Dia
gram” .
New Depl oynment Di agr amSee for afull description Section 10.6.7, “ New Deploy-

ment Diagram” .

81

Chapter 10. The Menu bar

10.1.

10.2.

Introduction

An important principle behind ArgoUML is that actions should be able to be invoked in whatever way
the user finds convenient. As aresult many (but not all) actions that can be carried out on the menu can
be carried out in other ways as well under ArgoUML.

A number of the common menu entries are also available through keyboard shortcuts.

It is also be possible to navigate the menu from the keyboard. Each level of each menu isidentified by a
letter (shown underlined in the menu or entry name from the moment the ALT key is pressed). This se-
guence of letters while holding down the ALT key selects the entry.

The following is an explanation of why the menuitems are grouped as they are.

* The File menu contains operations that affect on the whole project/file. All the items in this menu
can be explained as such.

» The Edit menu is generally intended for editing the model or changing the content of a diagram. It
also contains functions to enable editing, like e.g. selecting. This menu is not intended for diagram
layout functions. Most functions here do something with the selected modelelement and diagram.
The items "Configure Perspectives..." and "Settings..." are a bit different, since they adjust the way
ArgoUML works - but they do not belong in the File menu, since their settings are not stored in the
project.

» The View menu is for functions that do never alter the model, nor the diagram layout, only the way
you view the diagram. A good example is "zoom". Also navigationa functions belong here, e.g.
"Find" and "Goto Diagram...". All changes of settingsin this menu apply to al diagrams (e.g. zoom).

» The Create menu contains all possible diagrams that can be created. These functions are context de-
pendend, since they work on the selected modelelement.

e The Arrange menu alows layout changes in the current diagram, which is not the same as the items
in the View menu. Functions here can not ater the UML model.

* The Generation menu is for Code Generation. The functions here work either on the selected
modelelements, or on the whol e project.

» The Critique menu is specific for settings related to critics, which apply for al projects.
» TheToolsmenuis currently empty. If plugins are installed, then their functions appear here.

» The Help menu contains the usua "information" and "about".

Mouse Behavior in the Menu Bar

Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Section 8.2, “General Mouse Behavior in ArgoUML”). Thereis no ArgoUML specif-
ic behaviour for the menu.

82

The Menu bar

10.3. The File Menu

These are actions concerned with input and output and the overall management of projects and the
ArgoUML system.

10.3.1. B New

Shortcut Ctrl-N.

This initializes a new project within ArgoUML. The project is created without a the name. It contains a

(top-level) Model named unti t | edModel and two empty diagrams: a class diagram and a use case

diagram.

A Caution

s
r

untitl edModel is not a conventional model name (most processes suggest models
should be build from lower case letters). ArgoUML permits you to use any case letters, but

acritic will trigger to warn that thisis not conventional. See Section 16.2, “The Model” for
adiscussion of this.

If the model has been altered (as indicated by the "*" in the titlebar of ArgoUML's window), then activ-
ating the "New" function is potentionally not the user'sintention, since it will erase the changes. Hence a
confirmation dialog appears to allow the user to save hiswork first, or cancel the operation completely.

Figure 10.1. The confirmation dialog for New.

Save changes to Untitled? (%]

@ Save changes to Untitled?

|_155 || MO ||Cann:e||

10.3.2. = Open Project...

Shortcut Ctrl-O.

This opens an existing project from a file. Selecting this menu option will open a file selection dialog
(see Figure 10.2, “Thefile selection dialog for Open Proj ect....”).

Figure 10.2. Thefile selection dialog for Cpen Proj ect. ...

83

The Menu bar

» Open Project
Lookin: | [models vl ¥ ’:|E| ==

i &)] test.zargo
L\ﬁ Cts-UseCase, Ul &)] The Shapes Project.zargo
My Recent &ﬂ Build-House, zargo
Documents [#7] classpackages.zargo
&)] critic_rmodel, zargo

&)] diagrams.zargo

&)] discrirminator_example.zargo
&)] requirerments_tutorial.zargo
&)] state-artifacts.zargo

My Documents
File name: test.zargo Open

ey

fl)lj Files of bypet | argolML file (*.zarga, *.uml, *.xmi, *.ml, *.zip) w

The main body of the dialog is atext areawith alisting of all directories and files in the currently selec-
ted directory which match the current filter (see below).

Navigating in the directory tree is possible by selecting a directory in the drop down selector at the top
of this dialog. Navigating deeper in the tree may be done by double clicking button 1 on the directory
shown in the main text area.

In the lower portion of the dialog is a text box labeled Fi | e nane: for the name of the file to be
opened. The file name may be typed directly in here, or selected from the directory listing above using
button 1 click.

Beneath this is a drop down selector labeled Fi | es of type: to specify a filter on the files to be
shown in the directory listing. Only files that match the filter are listed. The available filters are listed
below. The default filter isthe first one, which combines all available formats.

ArgoUML file (*.zargo, *.uml, *.xmi, *.xml, *.zip)
e ArgoUML compressed project file (*.zargo)

* ArgoUML project file (*.uml)

e XML Metadata Interchange (*.xmi)

* XML Metadata Interchange (*.xml)

e XMI compressed project file (*.zip)

10.3.3. Save Project

Shortcut Ctrl-S.

This saves the project using its current file name. Use Save Pr oj ect As. .. tosavetheprojecttoa
different file. If no filename is given yet (e.g. after New), then this function works exactly as Save
Project As....

The Menu bar

Note

In certain circumstances, there is nothing to save, and this menuitem is downlighted. E.g.
when the user did not yet alter a loaded project. The presence of a “*” in the titlebar of
ArgoUML's window indicates that the current project is “dirty” (has been altered), and can
be saved.

10.3.4. & Save Project As...

This opens a dialog alowing you to save the project under a different file name (or to specify a file
name for the first time if the project is a new project).

The dialog box is ailmost identical to that for Open Pr oj ect (see Figure 10.2, “The file selection dia
log for Open Proj ect....”). Theextension of the filename is automatically set.

10.3.5. Revert to Saved

This menu-item allows you to throw away all your recent changes, and reload the last saved version of
the current project. It works a bit like an Undo feature, but only restores changes done since the last
time the file was saved.

This menu-item is downlighted unless the currentproject has been saved or loaded before (i.e. it has a
name), and it has been altered.

When this menu-item is activated, a small confirmation dialog box opens, as shown in the figure below.
This warning that all recent changes will be discarded, is needed because the action can not be undone.
Selecting No cancels the whole action as if you did not select the menu-item in the first place. Selecting
Yes reloads the last saved file.

Figure 10.3. Thewarning dialog for Revert to Saved.

Revert to Saved (%]
@ Al unsaved changes wil be lost,
Revert to last saved version of Lntitled?

ji= | Mo |

10.3.6. Import XMI...

This menu-item allows to load an UML 1.3 or 1.4 model which was exported by e.g. another tool, as a
XMI file, according the XMI V1.0, V1.1 or V1.2 standard. The extension of such file should be . xni .

If the model has been altered (as indicated by the "*" in the titlebar of ArgoUML's window), then activ-
ating the "Import XMI..." function is potentionally not the user's intention, since it will erase the
changes. Hence a confirmation dialog appears to alow the user to save hiswork first, or cancel the oper-
ation compl etely.

85

The Menu bar

Figure 10.4. The confirmation dialog for | nport XM

Save changes to Untitled?

@ Save changes to Untitled?

|_ies || Mo ||Car'u:el|

When the menu is activated, the standard filechooser appears, see Figure 10.5, “The diaog for | m
port XM". Beware the fact that this file will only contain the model, not any diagram layout.

Hence, the new project will not contain any diagrams.

Figure 10.5. Thedialog for | nport XM

w2 Import XMl

Loak, in: ! My Compuker

Ty M 2% Floppy (8]
| é ce ocal Disk (C:
My Recent I.5) Shared Documents

Documents |) byD-RW Drive (D:)
< HD1S (F2)

File narne: kest, xmi

My Computer | Files of bype! | wmL Metadata Interchange (*.xmi)

10.3.7. Export XMI...

This menu-item allows to save the complete structure of the UML 1.4 model as a XMI file, according
the XMI V1.2 standard. Beware the fact that this file will only contain the model, not any diagram lay-
out. Hence, if the XMI file is reloaded withthe Fil e - Open Project... menu, then the dia

gramsarelost.

When the menu is activated, the standard filechooser appears, see Figure 10.6, “The dialog for Ex-

86

The Menu bar

port XM.....

Figure10.6. Thedialog for Export XM

» Export XMI...

-j My Cormputer

M 3% Floppy (4:)

2 Local Disk ()

My Recent I-7) Shared Documents
Documents | o), pyD-RW Drive (D:)

File name: kest [Save]

My Compuber | Files of bypet | wm) mMetadata Interchange (*.xmi) icancel |

10.3.8. & Import Sources...

A very powerful feature of ArgoUML is that it can “Reverse Engineer” Java code to yield a class dia
gram. This sub-menu entry specifies Java code to be imported for reverse engineering.

The dialog box is similar to that for Open Pr oj ect (see Figure 10.2, “The file selection dialog for
Open Project....”), butwithtwo extratabs placed alongside the directory listing, as shown in Fig-
ure 10.7, “Thefile selection dialog for | mport Sour ces. .. .").

Figure 10.7. Thefile selection dialog for | nport Sour ces. . ..

87

The Menu bar

& Import Sources... ®
Lookin: |5 argouml v > | m| = General | Java
y Select language For import:
\aﬁ (O3 cognitive (3 umnl Java v
My Recent 1) CWS i L
Documents) doc-fles] Descend directaries recursively.
= ICDi18n Changedfnew filas anly
3 I Images))
Desktop =) kerrel Create diagrams From imported code
(2 language Minimise Class icons in diagrams
X I miodel
'/‘ () moduleloader Perform Automatic Diagram Layout
My Documents | notation Level of impart detail;
1) ocl
-‘lg (05 pattern () Classfiers anly
J
b)
a ersistence
"-!‘J Dp () Classifiers plus Feature specifications
My Computer | |[5) resource
_ 1) swingext (&) Full impart
;3 File: name: argour Inpuk source File encoding:
Iy Metwork,
Places Files of type: | 3ava Source File (*.java) v Cplasz

Those fields that are the same as Open Pr oj ect behave in the same way (see Section 10.3.2, “ =7
Open Project...”).

Next to the "All Files' filefilter, there is the default filter "Java Source File (*.java)".

The first of the two tabs is labeled Gener al and is selected by button 1 click on its tab. It provides a
combo box for the language selection (in V0.18 of ArgoUML only Java can be chosen), and the follow-
ing selections:

* Descend directories recursively. If enabled (the default), reverse engineering will
track through sub-directories for any further Javafiles. If not it will restrict to the selected directory.

e Changed/ new files only.If enabled (the default), only changed and new files are imported.
If not al classes will be replaced.

e Create diagrams from inported code. If you unselect this, then no diagrams are cre-
ated, i.e. all datawill only be visible in the explorer.

* Mnimse Cass icons in diagrans. If enabled, then the attributes and operations com-
partiments will not be shown in the classes on the generated class diagrams. Note: This item is
checked by default, and is overseen by many users, which are then surprised by the result.

* Perform Automati c D agram Layout . If selected, then ArgoUML will do its best to layout
the generated diagrams automatically. If not, then all itemswill be placed at the top left corner of the
diagram.

e Level of inport detail: Cassifiers only / Classifiers plus feature
specifications / Full inport.Thelatteristhe default.

* Inport source file encoding:. Thevaue Cpl252 is often the default. This string rep-
resentsthecoded character set identifier (CCSID).

The second of the two tabsis labeled Java and is selected by button 1 click on its tab. It provides two
pairs of radio boxes.

88

The Menu bar

» The first radio box allows selection between modeling attributes of Java classes as UML attributes
(the default) or as UML associations to the class specified.

e The second radio box allows selection between modeling arrays as new datatypes in their own right
(the default) or as their base datatype with multiplicity.

10.3.9. & Page Setup...

This brings up the standard dialog box provided by the operating system to adjust printer paper size, ori-
entation, and other options.

10.3.10. & Print...

Shortcut Ctrl-P.

This brings up the standard dialog box provided by the operating system allowing the current diagram to
be printed out.

In some cases, when the printing is started, the dialog box of Figure 10.8, “The diagram exceeds page
size dialog.” appears. Selecting the "Fit to page” button does print the whole diagram fitted on one page
by scaling it down. Which might cause all text to be too small to read in case of big diagrams, but itisa
quick and easy way to get an usable printout. Selecting the "Multiple pages' option does print unscaled,
by dividing the diagram in pieces, on as many pages as needed. Pressing the close button of the dialog
does the former option.

Figure 10.8. The diagram exceeds page size dial og.

Printing Selection

@ The diagram exceeds the current page size, Select option?

| Fit to page | | Multiple Pages

. Warning

If the current diagram contains no selected artifacts, then the whole diagram is printed.
However, if one or more artifacts are selected, then only the area they cover is printed! If
scaling is selected (by the "Fit to page" choice in the dialog box descibed above), then the
scaling is done on basis of the selected artifacts only. If scaling is not chosen (or in case it
is not needed), then all pages containing a selected artifact are printed.

10.3.11. Export Graphics...

This menu entry brings up a dialog box alowing the currently selected diagram (in the editing pane) to
be saved in one of a number of graphic formats.

89

The Menu bar

The dialog box isidentical to that for Open Proj ect (see Figure 10.2, “The file selection dialog for
Open Project....”), exceptfortheFil es of type: . Thechosen filetype specifiesthe graphics
format used for saving. The filename is automatically extended with the corresponding ending (if not
entered already). A default filename is generated based on the diagram name.

The available graphics types are:

* GIFimage (*.gif)

» Encapsulated Postscript file (*.eps)

» PNG image (*.png)

» Postscript file (*.ps)

» Scaable Vector Graphicsfile (*.svg)

The graphics format that is selected by default is set in the dialog under the menu entry Edit - Settings...

10.3.12. Export All Graphics...

This menu entry brings up a dialog box to select adirectory. In thisdirectory, for al diagramsin the cur-
rent project, agraphicsfileis generated.

The names of the files are deducted from the diagram names. The graphics format that is produced is set
in the dialog under the Edit menu (see Section 10.4.5, “ %- Settings...”).

10.3.13. Notation

This sub-menu presents a radio button selection for notation, i.e. the language in which al textual adorn-
ments are shown on the diagrams.

This feature defines the project's notation language.

There are 2 ways to set the notation language:

* In the Edit menu, see Section 10.4.5.5, “Notation Tab” in the notation tab of the settings dialog,
which defines the default notation language for new projects. This choice is stored in the
argouml . properti es file

* Inthe File menu, item Notation. This determines how all textual adornments of figures on all dia-
grams of the current project are shown. This choiceis stored in the project file.

The following 2 notations are build in ArgoUML.:

. -i UML 1. 4. Uses UML notation as the default notation for every modelelement on any diagram.

. %\ Java. Uses Java notation as the default notation for every modelelement on any diagram.

The following choices are only available if the corresponding plugin languages are installed.

90

The Menu bar

+ Cpp.
e CSharp.
* PHP.

Besides UML, only Java is partly implemented in V0.22 of ArgoUML.

10.3.14. 3: Properties

This menu entry brings up a dialog box, which allows the user to set various options of the currently
loaded project.

All settings in this dialog are stored in the project-file together with the model.

Figure 10.9. Thedialog for Properties- Notation: The User tab.

» File Properties

| User Full Marme: | Michiel van der Wwulp
Motations

Email Address; | mwidkigris, org

Project Description: |

Last Saved with ArgolImL: | 0.22.betaz

[K H Cancel ” apply ” Reset To Default

In the User tab, you are able to set the following fields:

» The first field contains the name of the author or responsible for the current project. By default the
name and email of the creator are filled in, so probably you will never need to edit this, but it is pos-
sible.

» The Project Description field may contain any text that you need to describe the project. By default it
isempty.

e The"Last saved with ArgoUML" field indicates the version of ArgoUML that was used to save this
project (the last time it was saved). This may be usefull if multiple designers have different versions

91

The Menu bar

of ArgoUML, which may not be backwards compatible al the time.

Figure 10.10. The dialog for Properties- Notation: The Notations tab.
» File Properties

ser Motation Language: (LML 1.4
Mokations [] Use guillemots
Show wisibility
Showe rulkiplicity
Shiowy initial value
[] shows properties
Show types and parameters
Show sterentypes in explorer

Mo Shadaow

Default shadow width:

[K ” Zancel H apply H Reset To Defaul:

In the Notations tab, you are able to set the following fields:

» Thefirst field is a combobox that allows selection of the project's Notation language. By default, it
lists UML and Java, but other languages may be added by plugins. See the chapter on Notation for
more explanation: Section 12.10, “Notation”.

 Use guill enots («») for stereotypes (clear by default). By default ArgoUML uses pairs of less
than and greater than (<< >>) characters for stereotypes. If this box is checked stereotypes on dia-
grams are shown between true guillemots (« »).

This feature is presumably added to ArgoUML because guillemots are poorly supported by various
fonts, and if they are present, then they are quite small and poorly visible.

e Show visibility (clear by default). If thisis selected, then ArgoUML will show the visibility
indicators in front of e.g. attributes in the diagram. In UML the notation is "+" for public, "-" for
private, "#" for protected, and "~" for package. E.g. for an attribute, it may show: +newAttr
int.

e Show nultiplicity (clear by default). If thisis selected, then ArgoUML will show the multi-
plicity of e.g. attributes in the diagram. In UML notation, the multiplicity is shown between [], such
as.+tnewAttr [0..*] : int.Thissetting has no impact on showing multiplicity near associ-
ationends.

 Show initial val ue (clear by default). If thisis selected, then ArgoUML will show the initial

92

The Menu bar

value of eg. attributes in the diagram. In UML notation, the initial value is shown e.g. like this:
+newAttr : int = 1.

Show properti es (clear by default). If thisis selected, then ArgoUML will show various prop-
erties between braces{}. E.g. for an attribute, it may show: +newAttr : int { frozen }.

Show types and par anet er s (set by default). When this checkbox is unmarked, attributesin
classes are shown without type indication, and operations are shown without parameters. This fea-
ture may be usefull during the analysis phase of your project. If all checkmarks in the Notation Tab
are unchecked, then e.g. for an attribute, ArgoUML may show: newAt t r. And for an operation:

newQOper ati on() .

Show st ereotypes in explorer (clear by default). If thisis selected, then ArgoUML will
show stereotypes next to the icons of the modelelements in the Explorer, i.e. the tree structure at the
left hand side.

Def aul t shadow wi dt h (set to 1 by default). ArgoUML is able to draw all elements on adia-
gram with a shadow, for esthetical reasons. Use this setting to adjust the size of the shadow, used
when the modelelement is created. The details tab "Presentation™ allows to set the shadow per
modelelement, after they are created, but ArgoUML V0.22 does not retain this latter change after
save and load.

10.3.15. Save Configuration

ArgoUML has various user specific configurations that can be set, through the Set t i ngs. . . entry on
the Edi t menu (see Section 10.4.5, “ %- Settings...”) or directly on the various panes. Also the main

window size and location is such a setting. Activating this menu entry causes the information to be
saved inthefilear go. user . properti es. Thelocation of thisfileisin the "users home directory”,
which is defined as ${user. hone}, and can be determined as described in Section 10.4.5.2,
“Environment Tab".

Tip

Thisisatext file, which you can edit to configure ArgoUML.

10.3.16. Most Recent Used Files

ArgoUML remembers afew of the most recently saved files, and lists them here, to enable loading then
in the most simple way.

The maximum number of files that is listed here, can be adjusted inthe Edi t -> Setti ngs... menu.
Thelist of filesis stored inthear go. user . properti es filein the user's home directory.

10.3.17. Exit

Shortcut Alt-F4.

This closes down ArgoUML. A warning message will pop-up if you have a project open with unsaved
changes asking if you wish to saveit. See Figure 10.11, “The save changes dialog.” . The options are:

Yes (save the project and exit ArgoUML);

No (do not save the project, but still exit ArgpUML); and

93

The Menu bar

Cancel (do not save the project and do not exit ArgoUML).

The dialog box can also be closed by clicking in the close button in the window border. The effect is
the same as selecting "Cancel”.

Figure 10.11. The save changes dialog.

Save changes to Untitled?

@ Save changes to Untitled?

|_155 || MO ||Cann:e||

(]

10.4. The Edit Menu

This menu provides support for selecting artifacts on the editing pane; removal of artifacts from dia
grams and the model; and control of user settings.

10.4.1. Select

This sub-menu provides for selection of items on the editing menu. It has the following entries.

Sel ect Al'l (shortcut Ctrl-A). Selects all artifacts on the current pane or in the current field. The
exact behaviour depends on the current pane (i.e. the last one you clicked in): explorer pane,
editing pane, to-do pane, details pane. One rule applies in al cases though: the selection on the dia-
gram (editing pane) and in the explorer are always synchronised.

If the editing pane isthe current pane: First everything in the explorer and on the current dia-
gram is deselected, and then everything that is on the current diagram is selected (and if the same
items apear in the explorer, then they are also there indicated as selected, because they are always
synchronised).

If the explorer paneisthe current pane: All visible itemsin the explorer pane are selected, and
non-visible items are desel ected.

If the to-do paneisthe current pane: All visible items in the to-do pane are selected, and non-
visible items are deselected. In fact, this works the same as for the explorer pane, because both are
tree structures.

If the details pane is the cur r ent pane: The function only works when the cursor is in certain
fields, where selecting is possible, e.g. a Name field. In such a case, the Select All function extends
the current selection to the whole field contents.

{g Navi gat e Back. ArgoUML keeps a record of the artifacts that you have been selecting

while navigating the model. This button moves you back to the previous one selected. If there are no
more previous artifacts, the button is grayed out.

94

The Menu bar

. g} Navi gat e Forwar d. ArgoUML keeps arecord of the artifacts that you have been selecting

while navigating the model. This button moves you forward to the next one selected (after you have
used the Navigate Back button to move back). If there are no more next artifacts, the button is
grayed out.

« Invert Sel ection. Thisinverts the current selection on the current pane. More exact:
everything that was selected is de-selected and everything that was not selected within the current
paneis selected.

10.4.2. & Remove From Diagram
Shortcut Delete.

This removes the currently selected item(s) from the diagram, but not from the model.

The modelelement can be re-added to the diagram by button 2 click on the modelelement in the ex-
plorer, or by dragging it onto the diagram.

10.4.3. fi Delete From Model

Shortcut Ctrl-Delete.
This function deletes the selected item(s) from the model completely.

If the item to be deleted is also present on another diagram than the current one, the dialog box from fig-
ure X appears.

Figure 10.12. Thedialog for confirmation of Renove from Model .
Are you sure? (%]

® Are you sure you want to remove this element?
It will be rermoved fram all diagrams.

ji= | Mo |

10.4.4. E Configure Perspectives...

This menu-item invokes the same dialog as the button at the top of the explorer. See Section 11.5,
“Configuring Perspectives’. for a complete description.

10.4.5. 3= Settings...

This menu entry brings up a dialog box, which alows the user to set various options that control the be-
havior of ArgoUML (see Figure 10.13, “Thedidlog for Setti ngs - Preferences.”).

95

The Menu bar

Figure 10.13. Thedialogfor Setti ngs - Preferences.

Preferences Shaow Splash Panel

Environment
Uz Preload Common Classes

AHEE EER [] Reload last project on skartup

Matations
Madules [] Strip {non-standard) diagrams Fram %ML file during import

C++ Gaenerakor 1ML Profile File

forg) argouml froodelfmdr rof fdef aulk-urml1 4, xmi

[(0] 4 H Cancel H Apply]

The options that can be set up on the various tabs are described in the following sections. For each tab
there are three buttons at the bottom of the dialog box.

» OK Activating this button (button 1 click) applies the chosen settings and exits the dialog.

* Cancel . Selecting this button (button 1 click) exits the dialog without applying any settings
changed since the last Appl y (or since the dialog started if Appl y has not been used).

» Appl y. Sdecting this button (button 1 click) applies the chosen settings and remains in the dial og.

Closing the dialog (with the close button in the top corner in the border of the window) causes the same
effect asCancel .

These settings are saved persistently for use by subsequent ArgoUML sessions.

10.4.5.1. Preferences Tab

Selecting the Pr ef er ences tab (button 1 click on the tab) gives the following options as check boxes.

e Show Spl ash Panel (set by default). If enabled ArgoUML will show a small panel with a pic-
ture while starting up.

Tip

The splash pandl can be seen by using the Help menu (see Section 10.11.2, “About

96

The Menu bar

ArgoUML”).

* Preload Comobn Cl asses (set by default). If enabled ArgoUML creates class objects of a
number of classes internally during start up so that instantiation is quicker when they are needed.

* Reload |ast saved project on startup (clear by default). Check this item if you al-
ways work on the same project, and wish to load it automatically when you start up ArgoUML.

e Strip (non-standard) diagrams from XM file during inport (clear by de-
fault). Checking this item will tell ArgoUML to ignore the "Diagram™ elements when importing
XMl files.

Y ou only need to use this setting, if ArgoUML gives an error while importing your XM file saying
that it encountered unrecognized elements named "Diagram.” Some versions of Poseidon are known
to create this type of file by default although there's usually an export option to force them to create
standard XM files.

« UML Profile fil e (/org/largouml/model/mdr/mof/default-uml14.xmi by default).

Thisis a read-only field which shows the current profile being used by ArgoUML. If you specified
an aternate profile at startup time or a plugin-module installed a different profile, it will display
here.

In the future this will be a settable field that allows you to select different profiles to match different
modeling environments (Java, C++, AndroMDA, €tc).

10.4.5.2. Environment Tab

Selecting the Envi r onnent tab (button 1 click on the tab) lists several environmental items. Note that
none of the paths can be altered — these are just a matter of record.

Figure 10.14. Thedialog for Setti ngs - Environnent.

Default graphics Format: GIF image (*.qif)

W5ep . Graphics export resolukion: | Skandard

Mokations ${argo.root}

Appearance ${argn.home}

Modules
${argo.ext dir}
f{java.home}
${user.hame}
${user.dir}

Skartup Direckary

I a4 l[Cancel][apphy]

97

The Menu bar

« Default G aphics Fornmat. Here you can select the same graphics formats as in the menu
Section 10.3.11, “Export Graphics...”. The chosen format is selected by default in the Export Graph-
ics and Export All Graphics menu-items.

e Graphi cs Export Resol ution. Thisallowsyou to artificially increase the resolution of pro-
duced graphics. The advised setting is "Standard". To be able to use "High" or "Extra High", you
usually need to start the Java virtual machine with extra memory.

» ${argo. root}. Thefull path to the ArgpUML program, i.e. thear goun . j ar file.

» ${argo. homre}. The ArgoUML home directory which contains the "jar" files needed by
ArgoUML.

o ${argo.ext.dir}. The directory holding ArgoUML extensions—by default the ext sub-
directory of the ArgoUML build directory.

* ${j ava. honme}. The home directory of the Java Runtime Environment (JRE).

» ${user. home}. The user's home directory. Used for storing the ar go. user. properties
file.

* ${user. dir}. Thedirectory from which ArgopUML was started.

o Startup Directory. Thedirectory in which ArgoUML starts file searches etc.

10.4.5.3. User Tab

This tab allows the user to record additional information of use to the system. There are two text boxes
provided.

Figure 10.15. Thedialog for Setti ngs - User.

w2 Settings

Preferences Full Mame: Michigl
Environment

Email Address: | mvwitigris.org

Maotations
Appearance
Modules

I a4 l[Cancel][apphy]

e Full Name. Allowsthe user to record her full name.

98

The Menu bar

e Email Address. Allowsthe user to record his Email address.

Thisinformation is used when requesting to-do help by Email.

10.4.5.4. Appearance Tab

This tab alows the user to specify the LAF (Look And Feel) and theme, i.e. what the complete
ArgoUML Ul looks like. It comprises the following settings.

Figure 10.16. Thedialog for Setti ngs - Appear ance.

Preferences
- Look and Feel: | windaws
Environment

User

[] smaoath edges of diagram lines and text

Language: en (Endlish 3

Restart the application to see these changes.

I ok H Cancel H Apply l

 Look and Feel . The choice made here influences the complete User Interface. It only becomes
effective when ArgoUML is exited and restarted.

« Metal Thene. Thisitem isdownlighted if the Metal LAF is not chosen. The choice made here in-
fluences the complete User Interface. It only becomes effective when ArgoUML is exited and restar-
ted.

 Snooth edges of diagram|lines and text. Thisfeatureisknown as"“anti-aliasing” on

certain platforms. It causes diagonal lines to look much less jagged, by making use of several shades
of gray. Thisfeature only worksif the operating system supportsit.

10.4.5.5. Notation Tab

This tab allows the user to specify certain notation settings, i.e. how things are shown on diagrams. It
comprises the following check boxes.

All settings here, only define the defaults used for new projects. If you want to change the way the dia-
grams in your current project ook, then see the File - Properties menu.

Figure 10.17. Thedialogfor Setti ngs - Notati ons.

99

The Menu bar

Preferences Mokation Language: (LML 1.4+
ST it [] Use guillemots

Show visibility

=ser
Appearance
Mot ations Show rulkiplicity

Madules Show initial walue
Z++ Generatar
[] Show properties
Show bypes and parameters

Show stereotypes in explorer

Mo Shadow

Default shadow width:

[(8] H Zancel H apply]

Not ati on Language (UML 1.4 by default). This feature allows changing the default notation
(i.e. language: UML, Java,...) used on the diagrams for new projects. Suppose that a designer indic-
ates that the default notation of a project is Java. When he saves the project, the choice for Java is
stored inside the project file. If someone else is viewing the diagram, he will see the Java notation,
too. This person can select the UML notation in the File - Notation menu, and see al diagrams in
UML language. See Section 10.3.13, “Notation”).

Use guil |l enot s («») for stereotypes (clear by default). By default ArgoUML uses pairs of less
than and greater than (<< >>) characters for stereotypes. If this box is checked stereotypes on dia-
grams are shown between true guillemots (« »).

This feature is presumably added to ArgoUML because guillemots are poorly supported by various
fonts, and if they are present, then they are quite small and poorly visible.

Independent of the way they are shown, when entering stereotypes, you can always type real guille-
mots (if your keyboard supportsit) or their << >> equivalents.

Show vi si bi ity (clear by default). If thisis selected, then ArgoUML will show the visibility
indicators in front of e.g. attributes in the diagram. In UML the notation is "+" for public, "-" for
private, "#" for protected, and "~" for package. E.g. for an attribute, it may show: +newAttr
int.

Show nul tiplicity (clear by default). If this is selected, then ArgoUML will show the multi-
plicity of e.g. attributes in the diagram. In UML notation, the multiplicity is shown between [], such
as.+tnewAttr [0..*] : int.Thissetting has no impact on showing multiplicity near associ-
ationends.

Show initial val ue (clear by default). If thisis selected, then ArgoUML will show the initial
value of e.g. attributes in the diagram. In UML notation, the initial vaue is shown e.g. like this:

100

The Menu bar

10.4.5.6.

+newAttr : int = 1.

Show properti es (clear by default). If thisis selected, then ArgoUML will show various prop-
erties between braces{}. E.g. for an attribute, it may show: +newAttr : int { frozen }.

Show types and par anet er s (set by default). When this checkbox is unmarked, attributesin
classes are shown without type indication, and operations are shown without parameters. This fea
ture may be usefull during the analysis phase of your project. If all checkmarks in the Notation Tab
are unchecked, then e.g. for an attribute, ArgopUML may show: newAt t r. And for an operation:

newQper ation().

Show st ereotypes in explorer (clear by default). If thisis selected, then ArgoUML will
show stereotypes next to the icons of the modelelements in the Explorer, i.e. the tree structure at the
left hand side.

Def aul t shadow wi dt h (set to 1 by default). ArgoUML is able to draw al elements on adia-
gram with a shadow. Use this setting to adjust the size of the shadow, used when the model el ement
is created. The details tab "Presentation” allows to set the shadow per modelelement, after they are
created.

Modules Tab

Thistab shows alist of modules that are installed, which may be enabled or disabled. Since thisis a new
concept for ArgoUML, it currently contains a list of modules that can not be removed, and a button to
test the concept. Pressing this button adds a usel ess menu-item on the Tools menu, nothing else.

Notice also that thisis a"new" modules concept so the old Pluggable modules do not work this way, and
are not listed.

10.4.5.7.

Extra Tabs added by Plugins

A plug-in module has the possibility to add extra tabs. One example is C++; it adds the following tab.

Figure 10.18. Thedialogfor Setti ngs - Ct+.

101

The Menu bar

»? Settings

Preferences Indentation |

Environment [] ¥erbose comments
User

[] Mewline before curly brace
Appearance

Generate section comments to protect code;

Mokations
Modules
| 4+ Generatar

[QI ” Cancel ” apply]

10.5. The View Menu

Thismenu is used for actions that affect how the various panes are viewed.

10.5.1. Goto Diagram...

This menu entry brings up a dialog box, describing all the diagrams in the current project under
ArgoUML.

Figure 10.19. Thedialog for Got o Di agram . . .

» Goto Diagram...

Rezults: 6 tems

Type Dezcription

! 18] ‘clasz diagram 1 0 nodez and 0 edges
Lze Casze Diagram AT uze caze diagram basic |7 nodes and 5 edges
Uze Case Diagram ATM uze caze diagram navi... |7 hodes and 5 edges
Uze Caze Diagram ATh uze caze diagram inclu. .. |12 nodes and 10 edges
Uze Caze Diagram ATM uze caze diagram extend |6 nodes and 5 edges
Uze Case Diagram ATM use case diagram multi... |7 nodes and 5 edges

=0 to Selection H Close

102

The Menu bar

The dialog box contains a table with three columns and one row for each diagram in the current project.
A scroll bar gives accessif the table is too long for the box. Double button 1 click on any row will select
that diagram in the editing pane. The three columns are as follows.

* Type. Liststhe type of diagram.

e Nan®. Liststhe name given to the diagram.

e Descri pti on. Shows how many nodes and edges there are on the diagrams. A nodeisa“2-D” ar-

tifact and an edge is a connector artifact.

This dialog box is not modal, which allows it to remain open while editing the model for easy naviga
tion.

. Warning

The V0.22 implementation of ArgoUML does not inmediately update the dialog box with
changes made to diagrams: change of name, addition of diagrams, deletion of diagrams.

10.5.2. & Find...

This menu entry brings up a non-modal dialog box for the ArgoUML search engine.

Figure 10.20. Thedialog for Fi nd. . . .

103

The Menu bar

| Matme and Location

Element Marne; FUML* Elemert Type: \&ny Type

*

In Diagram;

Fird Ir; Ertire Project

I Clear Tabsz] I

Help | “UML*in* |

Results: 3 items

Type Matne In Diagratm Description

Cammerit For criticerelating to UbLissues. ... [org.argouml coghitive critics docs
Comment Faor general criticsrelating to Arg... [org.argouml cognhitive critics docs

Related Elements: 2 items

Type Matme In Diggr atm Description
Dperation predicate? [1L, docs
Operation zetResource I, docs

0 to Selection H Cloze]

At the top, the dialog box has four tabs labeled Nane and Location, Last Modifi ed,
Tagged Val ues and Const rai nt s. Of these al but the first are grayed out in the V0.22 version of
ArgoUML (because they are not imlemented yet), so thefirst tab is always selected.

TheName and Locat i on specifiesthe search to be made. It contains the following:

* A text box labeled El enent Nane: specifies the name of the element (or artifact) to search for.
Wild cards (*, ?) may be used here. A drop down gives access to find expressions previously used.

e A text box labeled | n Di agram specifies which diagrams are to be searched. Again wild cards
may be used. Both these two text boxes have adefault entry of *, i.e. match anything.

» Totheright of these two text boxes, a selector labeled El enent Type: allows you to specify the
UML metaclass for which you are searching.

» A sdector labeled Fi nd i n: alowsthe search to be made over the entire project (the default) or as
a sub-search over the results of a previous search. When opened, a list of al the search result tabs

appears.

» Beneath these boxes is the button Cl ear Tabs. This clears the display of tabs with the results
from previous searches (see below). This button is downlighted if there are no tabs but the Hel p tab.

104

The Menu bar

* Andfindly, thereisthe button Fi nd. This causes the search specified in the text boxes and selectors
above to be executed. The results are displayed in atab taking up the lower two thirds of the page.

The lower two thirds of the dialog comprises an initial tab (labeled Hel p) giving summary help, and
further tabs displaying the results of searches. These search tabs are labeled with a summary of the
search element i n diagram and are divided horizontally in two halves.

Button 1 double clicking on these tabs removes the tab, and spawns a new window that contains the tab
contents, i.e. the search results. This window can be moved and sized at will. This does not work for the
help tab.

Thetop half islabeled Sear ch Resul t's: followed by a count of the number of items found. It com-
prises a table with one row for each element (artifact) and four columns. The width of the columns can
be adjusted.

» Type. Liststhetype of element (artifact).
* Nane. Liststhe name given to the element (artifact).

| n D agram Where the artifact is visible on a diagram, this lists the name of the diagram, other-
wiseit shows N/ A.

» Descri ption. Contains a description of the element (artifact). In ArgoUML V0.18 this seems to
be restricted to the single entry docs.

Button 1 click on any row will give more information on that artifact by showing related artifacts in the
bottom half (see below). Double click on any row describing an artifact on a diagram and that item and
diagram will be selected.

The bottom half of the tab is a table labeled Rel at ed El enent s: and is a table with the same
columns as the top half. When an element (artifact) has been selected in the top half, this table shows the
details of any related elements.

Tip

Enlarging the dialog vertically shows that the "Related Items" part changes in size, but not
the Search results part. However, between them is a divider line and when hovering over
this line, the mouse pointer changes into a sizing icon, and the border between these 2
areas can be moved up or down to redistribute the space in the window.

. Warning

This dialog box is not modal, which alows it to remain open while editing the model for
easy navigation. But the V0.22 implementation of ArgoUML does not inmediately update
the dialog box with changes made to the found artifacts: change of artifact name, change of
diagram name. Deletion of adiagram does not stop the possibility to navigate to it.

10.5.3. Zoom

This entry brings up a sub-entry, which allows scaling the view of all diagrams to a factor of its normal
size. This setting is not saved persistently.

The sub-menu items that can be selected are:

105

The Menu bar

e Zoom Qut . Shortcut (Ctrl-Minus). Gives more overview over the drawing.
e Zoom Reset . Returnsto the default zoom ratio (i.e. 100%).

e Zoom | n. Shortcut (Ctrl-Equals). Makes the items on the drawings bigger.

10.5.4. Adjust Grid

This cycles the grid representation on the screen through the following sequence:

» dotsat 16 pixel spacing (the default);
e dotsat 32 pixel spacing;

* nogridof any form;

« full grid at 16 pixel spacing; and

» full grid at 8 pixel spacing.

10.5.5. Adjust Grid Snap

This cycles the spacing of grid snapping through the following sequence:

» snap at 8 pixel spacing (the default);
e snap at 16 pixel spacing;

» snap at 32 pixel spacing; and

e snap at 4 pixel spacing.

- Note
There is no option to turn off snap to grid altogether
A Caution

In the V0.22 version of ArgoUML thisis not actually atrue snap to grid. It just defines the
increments by which artifacts are moved around. Thus if an item has an X coordinate of 4
and Grid Snap is set to 8, moving will take it to X coordinates of 12, 20, 28 etc, not 8, 16,
24 etc

If you wish to align on true grid snap boundaries, you can use the Ar-
range > Align To Gid menu (seeSection 10.7.1, “Align”).

10.5.6. Page Breaks

This toggles whether page breaks are shown on the diagram (as white dotted lines).

106

The Menu bar

Warning

This menu item does not work in ArgpUML V0.22.

10.6. The Create Menu

This menu provides for creating the various types of UML diagrams supported by ArgoUML.

10.6.1. New Use Case Diagram

This menu entry creates a blank use case diagram, and selects that diagram in the editing pane. If a pack-
age is currently selected, then the use case diagram will be created within that package. This means that
it will be shown within the package on the explorer hierarchy (under Package-centric view) and artifacts
created on the diagram will be created within the namespace of the package. This does not only apply to
apackage, but also to a class, interface, use case, etc.

Tip
This does not prevent artifacts from other namespaces/packages appearing on the diagram.

They can be added from the explorer using Add t o Di agr amfrom the button 2 pop-up
menul.

10.6.2. New Class Diagram

This menu entry creates a blank class diagram, and selects that diagram in the editing pane. If a package
is currently selected, the class diagram will be created within that package. This means that it will be
shown within the package on the explorer hierarchy (under Package-centric view) and artifacts created
on the diagram will be created within the namespace of the package. This does not only apply to a pack-
age, but also to aclass, interface, use case, etc.

. Ti

i P
This does not prevent artifacts from other namespaces/packages appearing on the diagram.
They can be added from the explorer using Add t o Di agr amfrom the button 2 pop-up
menul.

10.6.3. [kg New Sequence Diagram

This menu entry creates a blank sequence diagram, and selects that diagram in the editing pane. It also
createsaCol | abor ati on UML element, which is a container for the elements shown on the new dia-
gram. If aclassis currently selected, a sequence diagram and a collaboration will be created that repres-
ent the behaviour of that class. This means that the created elements will be shown within the class in
the explorer hierarchy (under Package-centric view) and artifacts created on the diagram will be created
within the namespace of the collaboration. A sequence diagram may not only represent the behavior of a
class, but also of any other classifier, such asinterface, use case, etc. It isaso possible to make sequence
diagrams for an operation.

10.6.4. New Collaboration Diagram

This menu entry creates a blank collaboration diagram, and selects that diagram. It also creates a Col -
| abor ati on UML element, which is a container for the elements shown on the new diagram. If a

107

The Menu bar

package is selected when this menu item is activated, the collaboration diagram will be created within a
collaboration within that package. This means that it will be shown within the collaboration within the
package on the explorer hierarchy (under Package-centric view) and artifacts created on the diagram will
be created within the namespace of the collaboration within the package.

Tip
This does not prevent artifacts from other namespaces/packages appearing on the diagram.

They can added from the explorer by dragging or by using Add t o Di agr amfrom the
button 2 pop-up menu.

10.6.5. [New Statechart Diagram

This menu entry creates a blank statechart diagram associated with the currently selected class, and se-
lects that diagram in the editing pane. It also creates a St at emachi ne UML element, which is a con-
tainer for the elements shown on the new diagram.

Statechart diagrams are associated with amodel element capable of dynamic behavior, such as a classifi-
er or a behavioral feature, which provides the context for the state machine it represents. Suitable model
elements are e.g. aclass, an operation, and a use case. If such element is not selected at the time the New
St at echart Di agr ammenu is activated, then an unattached statemachine is created. To obtain a
well-formed UML model, you have to set the context of the statemachine on its details pane.

10.6.6. %4 New Activity Diagram

This menu entry creates a blank activity diagram associated with the currently selected class, and selects
that diagram in the editing pane. It also createsaAct i vi t yGr aph UML element, which is a container
for the elements shown on the new diagram.

Activity diagrams are associated with a model element capable of dynamic behavior, such as packages,
classifiers (including use cases) and behavioral features. Suitable model elements are e.g. a class, a use
case, an operation, and a package. If such element is not selected at the time the New Activity
Di agr am menu is activated, then an unattached ActivityGraph is created. To obtain a well-formed
UML model, you have to set the context of the ActivityGraph on its details pane.

10.6.7. New Deployment Diagram

This menu entry creates a blank deployment diagram, and selects that diagram in the editing pane.

i Tip

Artifacts from other namespaces/packages can be added from the explorer by dragging or
by using Add t o Di agr amfrom the button 2 pop-up menu.

10.7. The Arrange Menu

This menu provides arange of functionsto help in the alignment of artifacts on diagrams within the edit-
ing pane. In general the menu function invoked is applied to any artifact or artifacts currently selected in
the editing pane.

10.7.1. Align

This sub-menu aligns the selected items. There are seven alignment options provided.

108

The Menu bar

. D'|:|AI i gn Tops. Alignsthe selected artifacts by their top edges.

. DJ:lAI i gn Bot t onms. Alignsthe selected artifacts by their bottom edges.

. Ig Al'i gn Ri ghts (Shortcut Ctrl-R). Aligns the selected artifacts by their right edges.
. EIAI i gn Left s (Shortcut Ctrl-L). Aligns the selected artifacts by their left edges.

. % Align Horizontal Centers.Alignsthe selected artifacts so their horizontal centers are

inavertica line.

. E‘E Align Vertical Centers. Alignsthe selected artifacts so their vertical centers arein a

horizontal line.

. 'IE Align To Gi d. Alignsthe selected artifacts so their top and right edges are on the grid snap
boundary (see Section 10.5.5, “Adjust Grid Snap”) edge.

Tip

The alignment is to the current grid snap setting, which may be smaller, larger or the
same as the displayed grid. Since items are aligned to the grid snap boundary any way
when you place them, this menu entry has no effect unless you have either changed the
grid snap to a larger value or used one of the other Ar r ange menu entries to push
items off their initial positions.

10.7.2. Distribute

This sub-menu distributes the selected items. There are four distribution options provided.

. I]H|]H" Di stribute Horizontal Spacing. The leftmost and rightmost selected artifacts are
not moved. The others are adjusted horizontaly until the horizontal space (i.e. from the right edge of
the left artifact to the left edge of the right artifact) isthe same for all of the selected items

. I']-l']—l'] Distribute Horizontal Centers. The leftmost and rightmost selected artifacts are
not moved. The others are adjusted horizontally until the distance between the horizontal centers of
al the selected itemsis the same.

. ;i Distribute Vertical Spacing. Thetop and bottom selected artifacts are not moved.

T=he others are adjusted vertically until the vertical space (i.e. from the bottom edge of the top artifact
to the top edge of the bottom artifact) is the same for all of the selected items

. ;} Distribute Vertical Centers. Thetop and bottom selected artifacts are not moved.

The others are adjusted vertically until the distance between the vertical centers of all the selected
itemsisthe same.

10.7.3. Reorder

109

The Menu bar

This sub-menu adjusts the ordering of overlapping items. There are four reorder options provided.

. ﬂ For war d. The selected artifacts are moved one step forward in the ordering hierarchy with re-

spect to other artifacts they overlap.

. EI Backwar d. The selected artifacts are moved one step back in the ordering hierarchy with re-
spect to other artifacts they overlap.

. ﬂ To Front. The selected artifacts are moved to the front of any other artifacts they overlap.

. H To Back. The selected artifacts are moved to the back of any other artifacts they overlap.

10.7.4. Nudge

This sub-menu provides fine adjustment to the positioning of selected artifacts. There are four nudge op-
tions provided.

- Nudge Left. The selected artifacts are moved one pixel to the | eft.
‘o Nudge Ri ght . The selected artifacts are moved one pixel to the right.

Nudge Up. The selected artifacts are moved up one pixel.

Cle

‘O Nudge Down. The selected artifacts are moved up one pixel.

10.7.5. Set Preferred Size

This menu-item acts on all selected items on the current diagram. It resets all sizes of all artifacts to its
“preferred” size, i.e. the minimum size for which al text fitsinside.

10.7.6. Toggle Auto Resizing

This menu-item is a checkbox that currently does not do anything.

10.7.7. Layout

This menu-item provides an automatic diagram layout function, i.e. when activating this menu-item, all
items on the current class diagram are rearranged according a certain layout algorithm.

This function currently only works for classdiagrams. For all other types of diagrams, the menu-item is
downlighted.

10.8. The Generation Menu

This menu provides support for code generation from UML diagrams. The functionality is built around
the structural information of class diagrams.

110

The Menu bar

Note

Without any plugin modules installed, ArgoUML supports only code generation of Java.
ArgoUML V0.20 supports the following languages by plugin: C#, C++, php4, php5.

. Warning

Code generation is still very much a work in progress. The current version of ArgoUML
will generate a structural template for your code, but is not able to handle behavioral spe-
cifications to generate code for the dynamic behavior of the model.

e
Ler)
L

10.8.1. Generate Selected Classes ...

This menu entry brings up a dialog box for the ArgoUML code generator (see Figure 10.21, “The dialog
for Generate Sel ected Cl asses....”).

Figure 10.21. Thedialog for Gener at e Sel ect ed Cl asses. . ..

w3 Generate Classes

Available Clazzes:
Charp | Java Cpp PHP 4.x x| Clazz Mame

L] L]
L]
F

|:| Shape
] Poirt
i

FPaolygon

Select &l | | Select None

Output Directory:

CoTermpn, | Browse... |

| izenerate || izancel |

Below alabel Avai | abl e O asses the diaog box lists each of the selected classes by name with a
check box to the left, for each language installed. All the checkboxes are initially unchecked. Checking
any of these boxes will cause code generation for that class. Checking multiple languages for a class

causesit to be generated in all these languages.

111

The Menu bar

The buttons Sel ect Al l and Sel ect None may help when alot of items have to be selected or
desel ected.

In the lower portion of the dialog box is an editable combo box labeled Qut put Di rect ory to spe-
cify the directory in which code is generated. Within this directory, atop level directory will be created
with the name of the model. Further sub-directories will be created to reflect the package/namespace
hierarchy of the model. A drop down selector gives access to previoudly selected output directories.

Finally, at the bottom of the dialog box are two buttons, labeled Gener at e and Cancel . Button 1
click on the former will cause the code to be generated, button 1 click on the latter will cancel code gen-
eration.

10.8.2. Generate All Classes...

Shortcut F7.

This function behaves as Gener at e Sel ect ed C asses. .. (see Section 10.8.1, “Generate Se-
lected Classes ...”) would with all classesin the current diagram selected.

10.8.3. Generate Code for Project... (To be Written)

10.8.4. Settings for Generate for Project... (To be Written)

10.9. The Critique Menu

This menu controls one of ArgoUML's unique features—the use of critics to guide the designer. The
theory behind this is well described in Jason Robbins PhD dissertation ht-
tp:/fargouml .tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

- Note

A word about terminology: The critics are background processes, which evaluate the cur-
rent model according to various “good” design criteria. Thereis one critic for every design
criterion.

The output of a critic is a critigue—a statement about some aspect of the model that does
not appear to follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be
rectified, by raising ato-do item.
Note

The critics run as asynchronous processes in paralel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

10.9.1. Toggle Auto-Critique

Thisis a check box, controlling whether the critics are running. By default it is checked. If unchecked,
then all critics are disabled, and any to-do items generated by critics (the only others being those the de-

112

http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/

The Menu bar

signer has added by hand) are hidden in the to-do pane.

10.9.2. Design Issues...

This menu entry brings up a dialog box controlling how critics associated with a particular design area
are to be handled (see Figure 10.22, “The dialog for Desi gn | ssues. .. .").

Figure 10.22. Thedialog for Desi gn | ssues. . ..

»¥ Design Issues

Decizion Priority
Off Loww Medium High

Uncstegorized 1

Class Selection

Behawior

Maming

=torage

Plahned Extensions

=tate Machines

Dezign Fatterns

Relationships

4

Ih=tantistion

< <1 <

d

ArgoUML categorizes critics according the the design issue they address. There are 16 such categories.
The critics in each category are discussed in detail in the chapter on critics (Chapter 15, The Critics).

113

The Menu bar

The dliders may be set for each category to control the critics that trigger for that category. Setting a
dider to OF f will disable al criticsin that category, and remove all associated to-do items from the to-
do pane.

Setting a dider to a higher priority value will enable al critics at or above that priority level within the
design issue category (Of f being the lowest priority).

-[EE;'.' Note

The diders are set by default to Hi gh for all design categories.

10.9.3. Design Goals...

This menu entry brings up a dialog box controlling how design goals are to be handled (see Fig-
ure 10.23, “Thedialog for Desi gn Goal s....").

Figure 10.23. Thedialog for Desi gn CGoal s. . ..

» Design Goals

Unspecified 1 ' J

ArgoUML has the concept that the designer will have a humber of design goals to be achieved (for ex-
ample good structural representation, detailed behavioral representation etc). Critics are associated with
one or more goals.

This dialog allows the user to specify the priority of each design goal.

The dliders may be set for each design goal to control the critics that trigger for that goal. Setting a dlider

114

The Menu bar

to zero will disable al criticsin that goal, and remove all associated to-do items from the to-do pane.

Setting a dlider to a higher value will enable all critics at or above that priority level within the design is-
sue category (1 being the highest priority and 5 the lowest).

J|| Tip

e

It may be useful to think of this function as very similar to Desi gn | ssues. .. (see
Section 10.9.2, “Design Issues...”), but with grouping of critics according to the outcomes
of OOA& D rather than grouping according to the structure of UML.

. Warning

The V0.20 version of ArgoUML provides a single design goal, Unspeci fi ed, with its
dider set by default to priority 1. However it contains no critics and so has no effect.

10.9.4. Browse Critics...

This menu entry brings up a dialog box controlling the individua critics (see Figure 10.24, “The dialog
forBrowse Critics....).

Figure 10.24. Thedialog for Browse Critics.. ..

Critics Critic Details
Active Headline Snoozed Critic Class: org.argouml.uml cognitive critics CrioTriggerOrGuard
v i M
= Add ASS_DCH'D”S_W <0c:|=s.|?lf=:.l'0c:l= no Headling: | Sdd Trigger of Guard to Transtion
¥ Add Choice/lunction Transitions no
1¥| Add Constructor to =ocl=self=focl= no Priority: Medium A
Z Add Elements to Package socl=self=focl= no - .
V] Add Guard to Transttion no bore Info; | amanual html#critics . CrioTriagerCr Guard
z Add Incaming Transtions to <ocl=self<facl= na Description: The highlighted Transition is -~
l¥| Add Instance Yariables to =ocl=self=/ocl= no . lete b it
Z Add Operations to <ocl=self=faclk= na :;ngomp e EC&ESE ld_ :j ne
l¥| Add Outgoing Transttions from =ocl=self=focl= no Llgger o guars consition.
] Triggers are ewvents that cause a
transition to be taken. Guard
[¥] aggregate End (Role) in 34wy (of more) A5, no conditions must be true for the hs
|¥| Capitalize Class Name =ocl=zelf=/ock= no Usze Clarifier: |[Llaays
[¥] Change =ocl=self<iocl= to a Non-Reserved Wa ... no
Z Change Fork Transitions no
Z Change Join Transtions na w

This dialog controls the behavior of individual critics. To theleftisalist of all the critics, to enable them
to be switched on or off individually. For each critic there are three columns, labeled Act i ve, Head-
I i ne and Snoozed. The first of these is a check box, which may be toggled with button 1 click. The
second is the headline name of the critic, the third indicates if the critic has been snoozed from the to-do
pane (see Chapter 14, The To-Do Pane. A critic is only really active if the box in the first column is
checked and the critic has not been snoozed.

Any critic for which the box in the first column is unchecked is inactive and will not trigger. In addition
any to-do items associated with that critic will be removed from the to-do pane.

115

The Menu bar

The V0.20 version of ArgoUML has atotal of 90 critics, a few of which are incompletely implemented.
They are described in detail by design issue category in the chapter on critics (see Chapter 15, The Crit-
ics).

Totheright of thelist are aseries of fields, titled Cri ti ¢ Det ai | s, giving detailed control over indi-
vidual critics. Selecting acritic in the list on the left will populate the fields for that critic.

Thefirst field on theright istitled Cri ti ¢ C ass: and then the full name of the classin ArgpUML
that implements the critic. This name can be used as unique identifier of the critique, e.g. in conversa-
tions about the critic.

Thefirst field below thistitle is atext box labeled Headl i ne: giving the complete headline of the crit-
ic (which may be truncated in the list on the left).

Note

¥
In the headline you may see the text <ocl >sel f </ ocl >, which will be replaced by the
name of the artifact in question when the critic is triggered.

The next field is a drop-down selector, labeled Pri ori ty: . The three options available are Hi gh,
Medi umand Low and specify the priority category of any to-do item generated by this critic. This does
not alter the priority of the already existing todo items, only the newly generated ones. Changing the pri-
ority of acritic is not saved persistently.

The next field is labeled Mor el nf o: and contains a URL pointing to further information with a button
to the right labeled Go to navigate to that URL .

Warning

In the V0.20 release of ArgoUML there is no further information available, and the Go
button is always grayed out and disabled.

The next field is labeled Descri pti on: and is a text area with a detailed explanation of what this
critic means. If the text istoo large for the area a scroll bar is provided to the right.

Note

¥
In this text area you may see the text <ocl >sel f </ ocl >, which will be replaced by the
name of the artifact in question when the critic is triggered.

The last field is a drop-down selector labeled Use C arifi er, with three options, Al ways,
I[f Only OneandNever.

Clarifiers are the icons and wavy red underlines drawn on the actual diagrams to indicate the artefact to
which the critic refers. The original intention was to make the mapping from critics to clarifiers some-
what customizable.

For example one user might make a M ssi ng Nane critic show a red underline, another user might

turn off the clarifier, or have it draw a wavy green underline or a blue questionmark. Critics with their
clarifier's disabled would still produce feedback that is listed in the to-do pane.

A Caution

In the V0.20 release of ArgoUML this selector has no function whatsoever. It is for future
development.

116

The Menu bar

Underneath the fields are three buttons in a horizontal row.

» \Wake. Itispossible to snooze a critic from the to-do pane (see Chapter 14, The To-Do Pane), which
makes the critic inactive for a period. If the critic has been snoozed, this button is enabled and will
wake the critic back up again. Otherwise it is grayed out.

i Tip

You can tell a snoozed critic, because in the list on the left it will be indicated in the
third column.

e Confi gure. Thisbutton isfor configuring the critic.
q Caution
In the V0.20 version of ArgoUML this function is not implemented, and this button is
aways grayed out. It isfor future development.
e Edit Networ k. Right now critics are implemented in java code. That means end-users cannot add
new critics.
The idea of a critic network is that they would be a state machine like diagram with several steps.
Each step would express a condition which, collectively with the other steps associated with that
critic, articulates the “rule” that the critic is providing. If the rule fires, then remaining steps would
define the steps of the wizard to help the user fix the problem.
The ideas behind this are discussed in Chapter 4 of Jason Robbins PhD disseration (ht-
tp://argouml.tigris.org/docs/robbins_dissertation/diss4.html. In particular look at Figure 1-6 in this
chapter and the related discussion.
A suggested implementation is that the conditions could be written in OCL against the UML meta-

model. A library of predefined conditions and steps would allow end-users to build new critics by
combining those in novel ways.

A Caution

In the V0.20 version of ArgoUML this function is not implemented, and this button is
always grayed out. It isfor future development.

Finally the bottom right of the dialog contains a button labeled OK. Button 1 click here dismisses the
diaog.

10.10. The Tools Menu

This menu provides a generic menu attachment point for any plug-ins provided with ArgoUML. The
standard system has no plug-in, and this menu entry is empty by default.

10.11. The Help Menu

This menu provides help on the use of ArgoUML. It has two entries.

117

http://argouml.tigris.org/docs/robbins_dissertation/diss4.html
http://argouml.tigris.org/docs/robbins_dissertation/diss4.html

The Menu bar

10.11.1. System Information

This menu entry brings up the system information dialog, see Figure 10.25, “The dialog for Sys-
tem | nformation.”

Figure 10.25. Thedialog for Syst em | nf or mat i on.

»? System Information

Java Version : 1.5.0_0z2

Java Vendor : 2un Microsystems Inc.

Java Vendor TRL : http://Jjsva.sun.com’

Java Home Directory : C:h\Program Files' Javaljrel.S5.0 D2

Java Classpath 1 C:hDocuments and J3ettingshtMichieli\ My Doco
Operation System : Windows XP, Version 5.1

Architecture HE 4=1:1

User Name : Michiel

Uzer Home Directory : CihwDocuments and S3ettingsyMichiel
Current Directory : CihvDoocuments and ZJettings\yMichiel'\ My Doc
JVHM Total Memory T 22810624

JVM Free Memory : 10514952

>

Run Garbage Colleckar H Copy ko Clipboard H Close l

Use this menu to describe the system that runs ArgoUML to the system manager or developer. Pressing
the button Run Gar bage Col | ect or not only runs the Java gargage collector, but also refreshes
the information shown. To facilitate copy and paste into (e.g.) an email, the button Copy | nf or ma-
tion to System i pboar disforeseen. The Cancel button dismissesthe dialog box.

10.11.2. About ArgoUML

This menu entry brings up the help window for ArgoUML (see Figure 10.26, “The help window for
ArgoUML").

Figure 10.26. The help window for ArgoUML

118

The Menu bar

»? About ArgoUML

wPRE-0.20.betal

Argo

EHE &

The window has six tabs, which are selected by button 1 click. By default the first tab (Spl ash) is
shown.

e Spl ash. This displays the picture shown when ArgoUML starts up, and the current version num-
ber.

» Ver si on. This provides version information on the various packages that make up ArgoUML, and
some operating system and environment information.

* Credits. Thisdetails al those who have created ArgoUML, including contact details for the vari-
ous module owners.

e Contact I nfo. Thisgivesthe mgor contact points for the ArgoUML project—the web site, and
the developers mailing list.

* Report bugs. This gives information about how to deal with bugs in ArgoUML. It is important
that all bugs are reported, and all cooperation is appreciated.

* Legal . A statement of the FreeBSD license which covers all the ArgopUML software.

A Caution
4 | | . N
The various documentation of the project are not all covered by FreeBSD (which is
really meant for software). In particular this manual is covered by the OpenPub license

119

The Menu bar

(see Appendix F, Open Publication License).

120

Chapter 11. The Explorer

11.1.

11.2.

The Explorer was previoudly called Navigation Pane/Tree or sometimes Navigator Pane/Tree.

Introduction

Figure 11.1, “Overview of the explorer” shows the ArgoUML window, with the explorer highlighted.

Figure 11.1. Overview of the explorer

E Package-centric

B crconstructorieeded
= B crsingletonivicksted
B cringletonviolsted
=] predicate?
= TN
= B critic
= B criticltis
E woic
[Examples which...
[For critics...
[Far critics buit...
[Far general critics...
A (anon Dependency’)
A (anon Dependency’)
A (anon Dependency’)

(anon Generalization)

? (anon Generalization)

The explorer alows the user to view the structure of the model from a number of predefined perspect-
ives. It also allows the user to define their own perspetives for custom exploring of the model.

An important feature, related to the cognitive psychology ideas behind ArgoUML is that not al artifacts
are necessarily shown in all perspectives. Rather, the perspectives are used to implement hiding of unin-
teresting parts of the model.

Mouse Behavior in the Explorer

Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

121

The Explorer

11.2.1. Button 1 Click

Within the hierarchical display, elements which have sub-hierarchies are indicated by -, when the

hierarchy is hidden and when the hierarchy is open.

Button 1 click over the name of any diagram artifact will cause the diagram to be selected and displayed
in the editing pane. Its details will also be displayed in the details pane.

Button 1 click over the name of any artifact other than a diagram in the main area of the explorer will

cause it to be selected, and its details shown in the details pane. If the artifact is part of a diagram cur-
rently displayed in the editing pane, it will be highlighted there.

- Note

If the artifact is part of a diagram other than that currently displayed in the Editing Pane,
there will be no change of diagram in the Editing Pane.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. button 1 click outside the menu areawill remove it.

11.2.2. Button 1 Double Click

This has the effect of a button 1 single click, and if the tree item was not a leaf, it will toggle the hier-
archy open or close.

11.2.3. Button 1 Motion

Button 1 motion means that you pick up one or more modelelements, and drag them to a new location.
Dropping the modelelement somewhere causes ArgoUML to execute some function that depends on
where you drop the modelelements.

11.2.3.1. From Explorer to Explorer

Releasing the mouse button above a namespace, makes the modelelement owned by the namespace. In
the Package-centric explorer perspective, this means a straigh-forward drag-and-drop function.

Use this drap and drop feature to easily move e.g. classes from one package into another.

11.2.3.2. From Explorer to Diagram

Dropping a modelelement on the diagram is the equivalent of the "Add to Diagram" function. Hence, if
the diagram did not yet show this modelelement, it is added.

Use this drap and drop feature e.g. to easily create a diagram from imported XMI files. This because
XMl files contain al the modelelements, but not any diagram information.

11.2.4. Button 2 Actions

When used in the the explorer, this will display a selection dependent pop-up menu. Menu entries are
highlighted (but not selected) and sub-menus exposed by subsequent mouse motion (without any but-
tons). Menu entry selection is with button 1 or button 2.

11.2.5. Button 2 Double Click

122

11.3.

11.4

The Explorer

This has no effect other than that of button 2 single click.

Keyboard Behavior in the Explorer

All keys active in atree widget have their normal behaviour.

When a diagram is selected, pressing Ctrl-C will copy the diagram in GIF format to the system clip-
board.

Perspective Selection

The artifacts in the ArgpUML model may be configured for displaying in the tree by a number of per-
spectives. To this end, adrop-down at the top allows selection of the explorer perspective.

Below that, there is a drop-down to select the ordering of the atifacts within the hierarchy. The two pos-
sibilities are "Order by Type, Name" and "Order by Name". The former groups all items per type, and
sorts them per group al phabetically on the name. The lattter simply sorts on name only.

The following explorer perspectives may be selected in the drop-down at the top:

» Package-centri c (the default). The exploring hierarchy is organized by package hierarchy. The
top level shows the model. Under this are al the top level packages in the model and al the artifacts
that are directly in the namespace of the model.

Beneath each package are all the artifacts that sit within the namespace of that package, including
any further sub-packages (which in turn have their own sub-hierarchies).

e Class-centric. Shows classesin their package hierarchy as well as datatypes and use case dia-
gram elements. Similar to the Package-centric view but it doesn’'t show connecting or associating
elements.

e Diagramcentri c. Inthisview the top level comprises al the diagrams in the model. Beneath
each diagram is aflat listing of al the artifacts on the diagram. Artifacts that have sub-artifacts that
do not appear on the diagram have their own hierarchy (for example attributes and operations of
classes).

e Inheritance-centric.Inthisview thetop level showsthe model. Beneath this are al artifacts
that have no generalization in the model. Those artifacts that have specidizations have a sub-
hierarchy showing the specializations.

» (Cass Associ ati ons. Inthisview the top level shows the model. Beneath this are all diagrams
and al classes. All classes that have associations have a hierarchy tracking through the associated
classes.

* Residence-centric. In this view the model is shown at the top-level, with below it only
Nodes, and below these only components that reside on the nodes, and below these components all
elements that reside on the components.

 State-centric. Inthisview the top level shows all the state machines and all activity graphics
associated with classes.

Beneath each state machine is a hierarchy showing the statechart diagram and all of the states. Be-
neath each stateisalist of the transitionsin and out of the state.

Beneath each activity graph is a hierarchy showing the activity diagram and al of the action states.
Beneath each action state is alist of the transitionsin and out of the action state.

123

The Explorer

» Transitions-centric. Thisisvery similar to St at e- centri ¢ view, but under each state
machine is listed the diagrams and all transitions on the diagram, with states being shown as sub-
hierarchies under their connected transitions.

Similarly under each activity graph is listed the diagrams and all transitions on the diagram, with ac-
tion states being shown as sub-hierarchies under their connected transitions.

* Conposition-centric.Inthisview, all modelelements are shown according their composition
in the UML metamodel.

This perspective shows far more modelelements then al others - it does not hide anything. Hence,
this view is not so user-friendly, but very suited for the UML specialist.

11.5. Configuring Perspectives

The explorer is designed to be user configurable, to alow the designer to view in his or her preferred
way.

11.5.1. The Configure Perspectives dialog

button 1 click on the "Configure Perspectives' icon (E) at the top left of the explorer brings up the
explorer perspectives dialog (see Figure 11.2, “ The Configure Perspectives dialog box”).

Figure 11.2. The Configure Per spectives dialog box

124

The Explorer

! Configure Perspectives

Perspectives (5]

Package-centric

(=4

Fackage-centric
Clazz-centric
Diagram-centric
Inhetitance-centric
Clazs Associations
Residence-centric
State-centric

Tranztionz-centric

Remove

Duplicate

[e Dawer

[Restore Defaults]

Rules Library [35)

AzzocigtionRole-=Meszages
Clazs-=Azzociated Class
Class-=MNavigable Class
Clazz-=State Machine
Class-=Summary

Clazzifier -= Specialized Clazsifier
Clazsifier-=Statemachine
Collaboration-=Diagrarm

Selected Rules (28)

Behavioral Festure-=Statechart diagrarm
Eehaviaral Feature-=Statemachine
Clazs-=Attribute
Clazsifier-=BehaviaralFeature
Clazsifier-=Callabaration
Clazsifier-=Collaboration
Classifier-=Sequence diagram

Collaboration-=Interaction 7

[8] H Cancel

The top half of the dialog contains a list of all the currently defined perspectives and to the right a series
of buttons stacked vertically. Button 1 click can be used to select a perspective. You can select only one
perspective at atime.

Selecting a perspective reveals a text field above the list, where the name of the perspective can be ed-
ited.

The lower half of the dialog contains two list areas. The one on the left, labeled Rul es Li brary,
contains the list of available rules that may be used to create the perspective. The one on the right,
labeled Sel ect ed Rul es contains the actual rules chosen for the perspective that has been selected
inthe list of perspectives at the top. In both lists, you can select only onerule at atime.

Separating the two areas in the lower half of the dialog are buttons labeled >> and <<. The first of these
transfers the rule selected in the library on the left to the list of rules on the right—i.e. it adds a rule to
the perspective. The second one transfers the rule selected on the right to the library list on the left—i.e.
it removes arule from the perspective.

If you hover the mouse over the horizontal line that separates the two halves of the dialog, then you see
it change shape, to indicate that you can grab thisline and drag it up or down.

All three titles of the lists show the number of itemsin the list. ArgoUML V0.20 has 8 default perspect-
ives, and 68 rulesin the library to build perspectives from.

The buttons at the top right are explained as follows:

125

The Explorer

* New. This creates a new perspective from scratch with no rules selected, with an automatically gen-
erated name.

* Renove. Thisremoves the selected perspective.

» Dupli cat e. This creates a copy the selected perspective so it can be used as the basis of a new
perspective. The new oneis named "Copy of" followed by the original name.

« Move Up. This moves the selected perspective one place up in the list. This button is downlighted
for the topmost perspective.

 Move Down. This moves the selected perspective one place down in the list. This button is down-
lighted for the last perspective.

* Restore Defaults. Thisrestoresall perspectives and their selected rules to the build-in defaults
of ArgoUML.

At the very bottom right is a button labeled OK to be used when all changes are complete. button 1 click
on this button will close the dialog window. The changes are saved when you exit ArgoUML (or inme-
diately by activating the menuitem File->Save Configuration) inthear go. user . properti es file.

Then there is the Cancel button, which cancels all changes made in the dialog. Pressing the dialog
closeicon (usually at the top right corner) has the same effect as pressing the cancel button.

Context Sensitive Menu

Button 2 Click over any selected artifact in the main area of the explorer will cause a pop-up menu to
appear.

11.6.1. Add to Diagram

This entry on the pop-up menu appears for any artifact that could be added to the diagram in the editing
pane.

11.6

The item can be placed in a diagram by moving the cursor to the editing pane or a spawned editing pane
window (where it will appear as a cross) and clicking button 1.

q Caution
This menu entry only appears as not grayed out, if the diagram in the editor pane allows to

contain the artifact, and the artifact is not present yet in the diagram. ArgoUML will not let
you place more than one copy of any particular artifact on a diagram.

11.6.2. i Delete From Model

This entry on the pop-up menu appears for any artifact that could be deleted from the model.

. Warning

This deletes the artifact from the model completely, not just from the diagram. To remove
the artifact just from the diagram, use the edit menu (see Section 10.4.2, “ e Remove

From Diagram™).

126

The Explorer

A Caution

You can delete a diagram from the model. Depending on the type of diagram, that might
delete all artifacts shown on the diagram. To illustrate the differences, consider the follow-
ing examples:

» Deleting a class diagram does not delete any artifact drawn on it. All artifacts that were
shown on the diagram remain present in the model. This because a class diagram does
not "map" on any artifact according the UML standard VV1.4.

» Deleting a statechart diagram al so deletes the statemachine it represents, and hence also

al the artifacts owned by the statemachine. This because a statechart diagram does
"map" into a StateM achine according the UML standard V1.4.

11.6.3. Set Source Path... (To be written)

This entry on the pop-up menu ...

11.6.4. Add Package

This entry on the pop-up menu is available whenever an artifact is selected that may contain a package,
e.g. apackage. After activating this menu the artifact will own a new package.

11.6.5. Add All Classes in Namespace

This entry on the pop-up menu is available for Class Diagrams only. Activating this menu-item will add
al classes in the current namespace to the diagram. They will be located at the top left
corner—obviously a perfect occasion to use the “Arrange->Layout” function in the menu.

127

Chapter 12. The Editing Pane
12.1. Introduction

Figure 12.1, “Overview of the editing pane” shows the ArgoUML window with the editing pane high-
lighted.

Figure 12.1. Overview of the editing pane

8 critic_model.zargo - org.argouml.cognitive.critics - ArgoUML *
File Edit Wiew Create Arrange Generation Critigue Tools Help

BeB&s ¥b0E< > A0 REREEER

E|Package—centric v|‘ k4 BB —-~ ? H: T~ EHEBE D O~
|Order By Type, Marme w | SRR TR B Z e au 2
newOper ation]) : void present
B crconstructorieeded i)
= B crSingletonticlated
B craingletonticlated
ﬁ predicate? ‘
= E Gtk Far critics built CompoundCritic CriniL For F:ri‘tics
[E3) E Critic f ... R - —————— relating to UI
tom other critics. — -
& B criticitis . :
E o Mo known children predicate2() : boolean Avound 76
D Examples which... = a_t I”_ese'_‘t — el esource) children at pr
[Far critics...
[Far critice buit...
[Far general critics...
i CrConsider Singlet CrSingleto o lated CrionstructorMeed
/?\ (anon Dependencyj || Exan]l;]es which Crlonsid eraingleton L.loll\g anyiolated CrConstru Neede
,i\ come fram __
i (anon Dependency) several other
/'\ {anon Deperdency) packages <<creater> CroonsiderSingletonf] |<<create== CrSingletonyfiolated]) |=<create=> CiConstructor]
(anon Generalization) < ———— predicate?) : boolean predicate2() : hoolean predicated () : boolean > b
? (anon Generalization)] B8
< i] -l
id P —
By Priotity . | 14 tems | - ToDo ftern | & Properties | A Documentation || & Presentation || & Source || Constrairts || A Tagoed values || Checklist
[T High L ? Generalization & «» [Parert: E= critic
== e
- = | Name: Fh”d- B compoundcritic
[Define Concrete (Sub)Cle A
—| Sterectype: :
[&dd Instance Variables t ot "| 4 feeihe W’
[&dd Associstions to void Discriminator:
[Add Operations ta void | % | Nemespace: B criticrmodel v
< | >

Thisiswhere al the diagrams are drawn. In earlier versions of ArgoUML this pane went under a variety

of names. You may encounter “drawing pane’,

mentation that is still being updated.

“diagram pane’ or “multi-editor pane’ in other docu-

The pane has a tool bar at the top, and a single tab labeled As Di agr amat the bottom, which has no
function in the 0.20 version of ArgoUML. The main area shows the currently selected diagram, of which
the name is shown in the window title bar.

12.2. Mouse Behavior in the Editing Pane

Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

128

The Editing Pane

12.2.1. Button 1 Click

In the tool bar of the editing pane, button 1 click is used to select a tool for creating a new artifact and
adding it to the diagram (see double clicking for creating multiple artifacts). For most tools, adding a
new artifact to the diagram is achieved by moving the mouse into the editing area and clicking again.

In the main editing area button 1 click is used to select an individual artifact.

Many artifacts (e.g. actor, class) show special handles when selected and the mouse hovers over them.
These are called “ Selection Action Buttons’, see Section 12.5, “ Selection Action Buttons’. They appear
at the sides, top and bottom, and indicate a relationship type. Clicking on a Selection Action Button cre-
ates a new related artifact, with the relation of the type that was indicated. If the shift key is pressed
when hovering the mouse over a selected artifact, sometimes different handles are shown, which stand
for different relation types.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. The pop-up menu will be removed by any button 1 click
outside of the menu area.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 12.3, “The tool bar™).

12.2.2. Button 1 Double Click

When used on the tool bar with atool to add an artifact, the selected artifact will be added multiple times
to the drawing area, once for each further button click, until the tool is again selected or another tool
chosen.

When used within the drawing area on an artifact that has sub-components, double click will select the
sub-component for editing (creating it if necessary).

For example double clicking over an operation compartment of a class will select the operation. Or cre-
ate oneif thereis none yet.

A specia use is with package artifacts on the class diagram. A double click on a package will navigate
to the class diagram associated with a package (the first created if there is more than one), or will offer
to create one for you if thereis none. See Figure 12.2, “The dialog for adding a new class diagram”

Figure 12.2. Thedialog for adding a new class diagram

Add new class diagram? (%]

@ Add new class diagram to abc?

Yes | Mo |

12.2.3. Button 1 Motion

Where the artifact being added is some form of connector its termination point is shown with button 1
up over the terminating artifact. button 1 click may be used in the space between artifacts to create artic-

129

The Editing Pane

ulation points in the connector. This is particularly useful where connectors must loopback on them-
selves.

Over graphical artifacts button 1 motion will move the artifact to a new position.

Graphical artifacts that are selected show handles at the corners or ends, and these can be used for re-
sizing.

Some artifacts (e.g. actor, class) show specia handles (called “Selection Action Buttons’, see Sec-
tion 12.5, “Selection Action Buttons’) at the sides, top and bottom, which can be dragged to form types
of relationship with other artifacts.

Where the artifact is some form of connector between other items, button 1 motion other than at a
handle will cause a new handle to be created, allowing the connector to be articulated at that point. This
only works when the connecting line is not straight angled. Such new handles can be removed by mov-
ing them to the end of the connector.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 12.3, “The tool bar”).

12.2.4. Shift and Ctrl modifiers with Button 1

Where multiple selections are to be made, the CTRL key is used with button 1 to add unselected arti-
facts to the current selection. Where an artifact is already selected, it is removed from the current selec-
tion.

Clicking Button 1 while the SHIFT key is pressed, invokes the broom tool, which causes the selected ar-

tifacts (and any others swept up with them) to be moved with the broom tool (see Section 12.3.1,
“Layout Tools").

12.2.5. Alt with Button 1 motion

Button 1 down anywhere in the diagram while the ALT key is pressed, allows to scroll the canvasin all
directions with button 1 mation.

12.2.6. Button 2 Actions

When used over artifacts in the the editing pane, this will display a context dependent pop-up menu.
Menu entries are highlighted (but not selected) and sub-menus exposed by subsequent mouse motion
(without any buttons). Menu entry selection is with button 1 or button 2. See Section 12.9, “Pop-Up
Menus’ for details of the specific pop-up menus.

In case multiple elements are selected, the pop-up menu only appears if al the items are of the same
kind. In this case, the functions apply to all selected elements.

12.2.7. Button 2 Double Click

This has no effect other than that of button 2 single click.

12.2.8. Button 2 Motion

Thisis used to select itemsin a context sensitive menu popped up by use of button 2 click.

12.3. The tool bar

130

The Editing Pane

The toolbar at the top of the editing pane provides the main functions of the pane. The default tool is the
Sel ect tool (h). In general button 1 click on any tool selects atool for one use, before reverting to

the default tool, and button 1 double click selects atool for repeated use.

Thetoolsfall into four categories.

Layout tools. Provide assistance in laying out artifacts on the diagram.

e Annotation tools. Used to annotate artifacts on the diagram.

» Drawing tools. Used to add general graphic artifacts to diagrams.

» Diagram specific tools. Used to add UML artifacts specific to a particular diagram type to the dia-

gram.

Some of the tools that are generally not all used so often, are combined in a dropdown, to take less space
on the toolbar. See e.g. Figure 12.3, “The drawing tools selector.”. Press the symbol at the right of the
tool to pop it open. These drop-down tools remember their last used tool persistently. This means that
when ArgoUML starts, they show the last tool that was activated the previous time ArgoUML was run.

12.3.1. Layout Tools

The following two tools are provided in all diagramsin this category.

. Sel ect . This tool provides for general selection of artifacts on the diagram. Button 1 click

will select an artifact. CTRL with button 1 can be used to select (or deselect) multiple artifacts. But-
ton 1 motion will move selected 2D items or add and move a new control point on a link. Button 1
motion on a selected component's control point will stretch that component's shape.

. _I Broom. Button 1 motion with this tool provide a“broom™ which will sweep all artifacts along.
Thisisavery shortcut way of lining things up.

The Broom can also be invoked by using SHIFT with button 1 motion when the Sel ect tool isin
use.

The Broom is discussed at length in its own chapter, see Section 12.4, “The Broom”

Tip

Additional control of artifact layout is provided through the Ar r ange menu (see Sec-
tion 10.7, “The Arrange Menu”).

12.3.2. Annotation Tools

The annotation tool Conmrent (I__EI) is used to add a comment to a selected UML artifact.

A Caution

Unlike most other tools you use the Sel ect tool to select an artifact, and then button 1

131

The Editing Pane

click on Conmrent to create the comment. If no element is selected when the comment
tool is clicked, then the comment is created and put at the left top corner.

The comment is created alongside the selected artifact, empty by default. The text can be selected with
button 1 double-click and edited from the keyboard.
The UML standard allows comments to be attached to any artifact.

You can link any comment to aditional elements using the Conmrent Li nk (____) tool.

12.3.3. Drawing Tools

These are a series of tools for providing graphical additions to diagrams. Although they are not UML ar-
tifacts, the UML standard provides for such decoration to improve the readability of diagrams.

Tip

These drawing tools provide a useful way to partialy support some of the UML features
(such as genera purpose notes) that are missing from the current release of ArgoUML.

Eight tools are provided, all grouped into one drop-down widget. See Figure 12.3, “The drawing tools
selector.”. Button 1 click on the diagram will place an instance of the graphical item of the same size as
the last one placed. The size can be controlled by button 1 motion during placement. One side or end of
the element will be at button 1 down, the other side or end at button 1 up. In general after they are placed
on the diagram, graphical elements can be dragged with the Sel ect tool and button 1 and re-sized by
button 1 motion on the handles after they have been selected.

Figure 12.3. The drawing tools selector.

0|~
O O
O~
A D
=3

.] Rect angl e. Provides arectangle.

. 0 Rounded Rect angl e. Provides a rectangle with rounded corners. There is no control over
the degree of rounding.

. ':::' Circl e. Providesacircle.

132

The Editing Pane

. \'\ Li ne. Providesaline.

. A Text . Provides atext box. The text is entered by selecting the box and typing. Text is centered

horizontally and after typing, the box will shrink to the size of the text. However it can be re-sized
by dragging on the corners.

. ﬂ Pol ygon. Provides a polygon. The points of the polygon are selected by button 1 click and the
polygon closed with button 1 double click (which will link the final point to the first point).

. 5 Spl i ne. Provide an open spline. The control points of the spline are selected with button 1
and the last point selected with button 1 double click.

. E’ I nk. Provide a polyline. The points are provided by button 1 motion.

12.3.4. Use Case Diagram Specific Tools

Several tools are provided specific to UML artifacts on use case diagrams. The detailed properties of
these artifacts are described in the section on use case diagram artifacts (see Chapter 17, Use Case Dia-
gram Artifact Reference).

. ;T: Act or . Add an actor to the diagram. For convenience, when the mouse is over a selected actor
it displays two handlesto left and right which may be dragged to form association relationships.

. - Use Case. Add ause case to the diagram. For convenience, when the mouse is over a selec-
ted use case it displays two handles to left and right which may be dragged to form association rela-
tionships and two handles top and bottom which may be dragged to form generalization and special-
ization relationships respectively.

* ___ Association. Add an association between two artifacts selected using button 1 motion
(from the first artifact to the second). There are 6 types of association offered here, see Figure 12.4,

“The association tool selector.”: associ ati on, aggregati on and conposi tion, and al
these three can be bi di rect i onal oruni directional.

Figure 12.4. The association tool selector.

G A

*—

133

The Editing Pane

. f‘% Dependency. Add a dependency between two artifacts selected using button 1 motion (from
th:e dependent artifact).

. Gener al i zat i on. Add a generalization between two artifacts selected using button 1 mo-
tion (from the child to the parent).

. Ef‘% Ext end. Add an extend relationship between two artifacts selected using button 1 motion
(f;om the extended to the extending use case).

. 1 I ncl ude. Add an include relationship between two artifacts selected using button 1 motion
(#:)m the including to the included use case).

. e Add Ext ensi on Poi nt.Add an extension point to a selected use case. The extension point
is given the default name newEP and location | oc. Where the extension point compartment is dis-
played, the extension point may be edited by button 1 double click and using the keyboard, or by se-
lecting with button 1 click (after the use case has been selected) and using the property tab. Other-

wise it may be edited through its property tab, selected through the property tab of the owning use
case.

- Note

Thistool is grayed out except when a use case is selected.

12.3.5. Class Diagram Specific Tools

Severa tools are provided specific to UML artifacts on class diagrams. The detailed properties of these
artifacts are described in the section on class diagram artifacts (see Chapter 18, Class Diagram Artifact
Reference).

. E| Package. Add a package to the diagram.

. E Cl ass. Add aclassto the diagram. For convenience, when the mouse is over a selected class it

displays two handles to left and right which may be clicked or dragged to form association relation-
ships (or composition in case SHIFT has been pressed) and two handles top and bottom which may
be dragged or clicked to form generalization and specialization relationships respectively.

* __ Association. Add an association between two artifacts selected using button 1 motion

(from the first artifact to the second). There are 2 types of association offered here, bi di rec-
tional orunidirectional.

* 4 Conposition. Add an composition between two artifacts selected using button 1 motion

(from the first artifact to the second). There are 2 types of composition offered here, bi di rec-
tional orunidirectional.

* o— Aggregation. Add an aggregation between two artifacts selected using button 1 motion
(from the first artifact to the second). There are 2 types of aggregation offered here, bi di rec-

134

The Editing Pane

tional orunidirectional.

Gener al i zat i on. Add a generalization between two artifacts selected using button 1 (from
the child to the parent).
E I nt er f ace. Add an interface to the diagram. For convenience, when the mouse is over a se-

lected interface it displays a handle at the bottom which may be dragged to form a realization rela-
tionship (the target being the realizing class).

£. Real i zat i on. Add aredlization between a class and an interface selected using button 1 mo-

tion (from therealizing class to the realized interface).
< Dependency. Add a dependency between two artifacts selected using button 1 motion (from

the dependent artifact). There are also 2 special types of dependency offered here, Per mi ssi on (
f‘,‘;) and Usage (f‘:ﬂu). A Per m ssi on is created by default with stereotype | mport, and is

used to import elements from one package into another.

g At tri but e. Add a new attribute to the currently selected class. The attribute is given the de-

fault name newAt t r of type i nt and may be edited by button 1 double click and using the key-
board, or by selecting with button 1 click (after the class has been selected) and using the property
tab.

- Note

Thistool is grayed out except when a classis selected.

g Oper at i on. Add a new operation to the currently selected class or interface. The operation is

given the default name newOper at i on with no arguments and return type voi d and may be ed-
ited by button 1 double click and using the keyboard, or by selecting with button 1 click (after the
class has been selected) and using the property tab.

- Note

Thistool is grayed out except when a class or interface is selected.

E3Associ ati on (O ass. Add anew association class between two artifacts selected using but-

fon 1 motion (from thefirst artifact to the second).

o Datatype. Add adatatype to the diagram. For convenience, when the mouse is over a selected

datatype it displays handles at the top and at the bottom which may be clicked or dragged to form a
generalization relationship (the target being another datatype). There are 2 other elements available
here, E Enuner at i on and o St er eot ype. These two have similar handles, except the one

at the top of a stereotype: when clicked, it creates a metaclass, connected by a dependency marked
with «stereotype». This eases the creation of "stereotype declaration" diagrams - see the literature on
the subject.

135

The Editing Pane

12.3.6. Sequence Diagram Specific Tools

Seven tools are provided specific to UML artifacts on sequence diagrams. The detailed properties of
these artifacts are described in the section on sequence diagram artifacts (see Chapter 19, Sequence Dia-
gram Artifact Reference).

. Cl assi fi er Rol e. Add aclassifierrole to the diagram.

. [Message with Call Action. Add acal message between two classifierroles selected
Esi ng button 1 motion (from the originating classifierrole to the receiving classifierrole).

* .1 Message with Return Action. Add areturn message between two classifierroles se-
Iicted using button 1 motion (from the originating classifierrole to the receiving classifierrole).

. i) Message with Create Action. Add a create message between two classifierroles se-
lected using button 1 motion (from the originating classifierrole to the receiving classifierrole).

. a.l. Message with Destroy Action. Add a destroy message between two classifierroles

selected using button 1 motion (from the originating classifierrole to the receiving classifierrole).

. EAdd Vertical Space to Di agram Add vertical spaceto adiagram by moving al mes-

sages below this down. Click the mouse at the point where you want the space to be added and drag
down the screen vertically the distance which matches the height of the space you'd like to have ad-
ded.

. E Renove Vertical Space in Di agram Remove vertical space from diagram and move

al elements below up vertically. Click and drag the mouse vertically over the space that you want
deleted.

12.3.7. Collaboration Diagram Specific Tools

Three tools are provided specific to UML artifacts on collaboration diagrams. The detailed properties of
these artifacts are described in the section on collaboration diagram artifacts (see Chapter 21, Collabora-
tion Diagram Artifact Reference).

.] Cl assifier Rol e.Addaclassfier roleto the diagram.

* __ Association Role. Add an association role between two classifier roles selected using
button 1 motion (from the originating classifier role to the receiving classifier role). There are 6
types of association roles offered here, see Figure 12.4, “The association tool selector.”: associ -
ation, aggregati on and conposi tion, and al these three can be bi di recti onal or
uni di rectional .

. Gener al i zat i on. Add a generalization between two artifacts selected using button 1 (from

the child to the parent).

136

The Editing Pane

1 Dependency. Add a dependency between two artifacts selected using button 1 motion (from
the dependent artifact).

. :Add Message. Add a message to the selected association role.

- Note

Thistool is grayed out except when an association role is selected.

12.3.8. Statechart Diagram Specific Tools

Eleven tools are provided specific to UML artifacts on statechart diagrams. The detailed properties of
these artifacts are described in the section on statechart diagram artifacts (see Chapter 20, Satechart
Diagram Artifact Reference).

. = Si npl e St at e. Add asimple state to the diagram.

e - - Conposite State.Addacomposite state to the diagram. All artifacts that are subsequently
placed on the diagram on top of the composite state will form part of that composite state.

* Transi ti on. Add atransition between two states selected using button 1 motion (from the

originating state to the receiving state).

. Synch St at e. Add a synchstate to the diagram.

. %-ﬁ Subrmachi ne St at e. Add a submachinestate to the diagram.
. % St ub St at e. Add a stubstate to the diagram.

. . Initial.Addaninitial pseudostate to the diagram.

q Caution

There is nothing to stop you adding more than one initial state to a diagram or compos-
ite state. However to do so is meaningless, and one of the critics will complain.

. @ Fi nal State.Addafina state to the diagram.
. Junct i on. Add ajunction pseudostate to the diagram.

A Caution

A well formed junction should have at least one incoming transition and exactly one
outgoing. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any junction that does not follow thisrule.

137

The Editing Pane

. ':::' Choi ce. Add a choice pseudostate to the diagram.

q Caution
A well formed choice should have at least one incoming transition and exactly one out-

going. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any choice that does not follow thisrule.

. * For k. Add afork pseudostate to the diagram.

A Caution
A well formed fork should have one incoming transition and two or more outgoing.

ArgoUML does not enforce this, but an ArgoUML critic will complain about any fork
that does not follow thisrule.

. + Joi n. Add ajoin pseudostate to the diagram.

A Caution

A well formed join should have one outgoing transition and two or more incoming.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any join
that does not follow thisrule.

® Shal | ow Hi st ory. Add ashallow history pseudostate to the diagram.

. @ Deep Hi st ory. Add adeep history pseudostate to the diagram.

12.3.9. Activity Diagram Specific Tools

Seven tools are provided specific to UML artifacts on activity diagrams. The detailed properties of these
artifacts are described in the section on activity diagram artifacts (see Chapter 22, Activity Diagram Arti-
fact Reference).

. l:,Acti on St at e. Add an action state to the diagram.

N Transi tion. Add a transition between two action states selected using button 1 motion
(from the originating action state to the receiving action state).

. . I ni tial.Addaninitial pseudostate to the diagram.

A Caution

There is nothing to stop you adding more than one initial state to a diagram. However
to do so is meaningless, and one of the critics will complain.

138

The Editing Pane

. @ Fi nal State.Addafina state to the diagram.
. Juncti on. Add ajunction (decision) pseudostate to the diagram.

A Caution

A well formed junction should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any junc-
tion that does not follow thisrule.

. * For k. Add afork pseudostate to the diagram.

q Caution

A well formed fork should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any fork
that does not follow thisrule.

. * Joi n. Add ajoin pseudostate to the diagram.

A Caution

A well formed join should have one outgoing transition and two or more incoming.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any join
that does not follow thisrule.

* Cal | St at e. Add acallstate to the diagram. A call state is an action state that calls a single op-

eration. Hence, the name of the operation being called is put in the symbol, aong with the name of
the classifier that hosts the operation in parentheses under it.

O oj ect Fl owst at e. Add a objectflowstate to the diagram. An objectflowstate is an object

that isinput to or output from an action.

12.3.10. Deployment Diagram Specific Tools

Ten tools are provided specific to UML artifacts on deployment diagrams. The detailed properties of
these artifacts are described in the section on deployment diagram artifacts (see Chapter 23, Deployment
Diagram Artifact Reference).

- Note

Remember that ArgoUML's deployment diagrams are also used for component diagrams.

. @ Node. Add a node to the diagram. For convenience, when the mouse is over a selected node it

displays four handles to left, right, top and bottom which may be dragged to form association rela
tionships.

139

12.4.

The Editing Pane

ﬁj Node | nst ance. Add a node instance to the diagram. For convenience, when the mouse is

over a selected node instance it displays four handles to left, right, top and bottom which may be
dragged to form link relationships.

gl Conponent . Add a component to the diagram. For convenience, when the mouse is over a se-

lected component it displays four handles to left, right, top and bottom which may be dragged to
form dependency relationships.

gl Conmponent | nst ance. Add a component instance to the diagram. For convenience, when

the mouse is over a selected component instance it displays four handles to |eft, right, top and bot-
tom which may be dragged to form dependency relationships.

General i zat i on. Add a generalization between two artifacts selected using button 1 (from

the child to the parent).

-:?:. Real i zat i on. Add arealization between a class and an interface selected using button 1 mo-
tic:)n (from the realizing class to the realized interface).

f‘% Dependency. Add a dependency between two artifacts selected using button 1 motion (from
th:e dependent artifact).

____Associ ati on. Add an association between two artifacts (node, component, class or inter-
face) selected using button 1 motion (from the first artifact to the second artifact). There are 6 types
of association offered here, see Figure 12.4, “The association tool selector.”: associ ati on, ag-

gregati on and conposi ti on, and al these three can be bi di recti onal or uni direc-
tional.

A Caution
The constraint that associations between classes and interfaces must not be navigable

fromthe interface still applies on deployment diagrams.

] hj ect . Add an object to the diagram. For convenience, when the mouse is over a selected ob-

ject it displays four handles to left, right, top and bottom, which may be dragged to form link rela
tionships.

\\H Li nk. Add alink between two artifacts (node instance, component instance or object) selected

using button 1 motion.

The Broom

ArgoUML's broom alignment tool is specialized to support the needs of designers in achieving the kind
of alignment used in UML diagrams. It is common for designers to roughly align objects as they are cre-
ated or by using simple movement commands. The broom is an easy way to precisely align objects that
are aready roughly aligned. Furthermore, the broom's distribution options are suited to the needs of
UML designers: making related objects appear evenly spaced, packing objects to save diagram space,
and spreading objects out to make room for new objects. The broom also makes it easy to change from
horizontal to vertical alignment or from left-alignment to right-alignment.

140

The Editing Pane

The T-shaped icon in ArgoUML's diagram toolbar invokes the broom alignment tool. When the mouse
button 1 is pressed while in broom-mode, the designer's initial mouse movement orients the broom to
face in one of four directions: north, south, east, or west. After that, mouse drag events cause the broom
to advance in the chosen direction, withdraw, or grow in a lateral direction. Like a rea-world push
broom, the broom tool pushes diagram elements that come in contact with it. This has the effect of align-
ing objects along the face of the broom and provides immediate visual feedback (see the figure below).
Unlike a real-world broom, moving backwards allows diagram elements to return to their original posi-
tion. Growing the broom makes it possible to align objects that are not near each other. When the mouse
button is released, the broom disappears and the moved objects are selected to make it easy to manipu-
late them further.

Figure 12.5. The Broom.

If the designer presses the space bar while using the broom, objects on the face of the broom are distrib-
uted (i.e., spaced evenly). ArgoUML's broom supports three distribution modes. objects can be spaced
evenly across the space that they use, objects can be packed together with only a small gap between
them, or objects can be distributed evenly over the entire length of the broom's face. Repeatedly pressing
the space bar cycles among these three distribution modes and displays a brief message indicating the

141

The Editing Pane

operation just performed: Space evenly, Pack tightly, Spread out and Original.

12.5. Selection Action Buttons

When the user selects an artifact in a UML diagram, several handles are drawn on it to indicate that it is
selected and to provide user interface affordances to resize the node. ArgoUML aso displays some
“selection-action buttons’ around the selected artifact. See the figure below for some examples of the
handles and “sel ection-action buttons’. The two figures for a class differ because for creating the second
one, the shift key has been depressed.

Figure 12.6. Some examples of “ Selection Action Buttons’.

L 21, i
Class Class

Z4nterface ==

u
Component |
)

Selection-action buttons offer common operations on the selected object. For example, a class node has
a button at 12-o'clock for adding a superclass, one at 6-o0'clock for adding a subclass, and buttons at
3-o'clock and 9-o'clock for adding associations. These buttons support a "click or drag" interaction: a
single click creates a new related class at a default position relative to the original class and creates a
generalization or association; a drag from the button to an existing class creates only the generalization
or association; and, a drag to an empty space in the diagram creates a new class at the mouse position
and the generalization or association. ArgoUML provides some automated layout support so that click-
ing the subclass button will position the new classes so that they do not overlap.

Selection-action buttons are transparent. They have a visibly recognizable rectangular shape and size
and they contain an icon that is the same as the icon used for the corresponding type of design element
on the standard toolbar. However, these icons are unfilled line drawings with many transparent pixels.
This allows selection-action buttons to be overlaid onto the drawing area without overly obscuring the
diagram itself. Also, the buttons are only drawn when the mouse is over the selected artifact; if any part
of the diagram is obscured, the mouse can simply be moved away to get a clearer view of the diagram.

12.6. Clarifiers

142

The Editing Pane

A key feature of ArgoUML are the critics, which run in parallel with the main ArgoUML tool. When
they find a problem, they typically raise ato-do item, and also highlight the problem on the editing pane.
The graphical techniques used for highlighting are called Clarifiers

* Noteicon (|—_|:~.I). Displayed at the top left of an artifact indicates a critic of that artifact. Moving the

mouse over the icon will pop up the critic headline.

e Colored wavy line (). Used for critics specific to sub-components of graphical arti-

facts. For example to underline attributes with a problem within a class.

» Solid colored line (

highlighted from the to-do pane (see Chapter 14, The To-Do Pane) by button 1 double click. The
solid lineis used to show all the artifacts affected by the critic, for example all stimuli that are out of
order.

). Not seen in ordinary editing, but used when a to-do item is

12.7. The Drawing Grid

The editing pane is provided with a background grid which can be set in various styles or turned off al-
together through the menu (see Section 10.5.4, “Adjust Grid”).

Whatever grid is actually displayed, placement of items on the diagram is always controlled by the set-
ting for grid snap, which ranges from 4 to 32 pixels (see Section 10.5.5, “Adjust Grid Snap”).

12.8. The Diagram Tab

At the bottom of the editing pane is a small tab labeled as As Di agr am The concept is that a UML
diagram can be displayed in a number of ways, for example as a graphical diagram or as atable. Each
representation would have its own tab and be selected by button 1 click on the tab.

Earlier versions of ArgoUML did implement a tabular representation, but the current release only sup-
ports a diagram representation, so this tab does not have any function.

12.9. Pop-Up Menus

Within the editing pane, button 2 click over an artifact will bring up a pop-up menu with a variable num-
ber of main entries, many with a sub-menu.

12.9.1. Critiques

This sub-menu gives list of al the critics that have triggered for this artifact. Selection of a menu entry
causes that entry to be highlighted in the to-do pane and its detailed explanation to be placed in the To-
Dol t emtab of the details pane. A solid colored line indicates the offending element.

12.9.2. Ordering

This menu controls the ordering of overlapping artifacts on the diagram. It is equivalent to the Re-
or der sub-menu of the Ar r ange menu (see Section 10.7.3, “Reorder”). There are four entries.

. ﬂ For war d. The selected artifacts are moved one step forward in the ordering hierarchy with re-

143

The Editing Pane

spect to other artifacts they overlap.

. EI Backwar d. The selected artifacts are moved one step back in the ordering hierarchy with re-
spect to other artifacts they overlap.

. H To Front. The selected artifacts are moved to the front of any other artifacts they overlap.

. H To Back. The selected artifacts are moved to the back of any other artifacts they overlap.

12.9.3. Add

This sub-menu only appears for artifacts that can have notes attached (class, interface, object, state,
pseudostate) or have operations or attributes added (class, interface). There are at most three entries.

. g New Attri but e. Only appears where the selected artifact is a class. Creates a new attribute
on the artifact

. g New Oper ati on. Only appears where the selected artifact is a class or interface. Creates a

new operation on the artifact

. I—_h.l New Comment . Attaches a new comment to the selected artifact.

e Add Al Rel ations. Only appears where the selected artifact is a class or interface. Makes all
relations visible that exist in the model and that are connected to the selected artifact.

* Renpve all Rel ations. Only appears where the selected artifact is a class or interface. Re-
moves all connected relations from the diagram (without removing them from the model).

12.9.4. Show

This sub-menu only appears with certain artifacts. It is completely context dependent. There are many
possible entries, depending on the selected artifact and its state.

e Hi de Extension Point Conpartnent. Only appears when the extension point compart-
ment of ause caseis displayed. Hides the compartment.

 Show Extension Point Conpartmnent. Only appears when the extension point compart-
ment of a use caseis hidden. Displays the compartment.

e Hide Al Conpartmnents. Only appears when both attribute and operation compartments are
displayed on a class or object. Hides both compartments.

e Show All Conpartnents. Only appears when both attribute and operation compartments are
hidden on a class or object. Displays both compartments.

e Hide Attribute Conpartment. Only appears when the attribute compartment of a class or
object is displayed. Hides the compartment.

e« Show Attribute Conpartnent. Only appears when the attribute compartment of a class or
object is hidden. Displays the compartment.

144

The Editing Pane

« Hi de Operation Conpartnent. Only appears when the operation compartment of a class or
object is displayed. Hides the compartment.

e« Show Operation Conpartnent. Only appears when the operation compartment of a class or
object is hidden. Displays the compartment.

e Hi de Enuneration Literal Conpartment. Only appears when the enumeration literal
compartment of an enumeration is displayed. Hides the compartment.

 Show Enuneration Literal Conpartnent. Only appears when the enumeration literal
compartment of an enumeration is hidden. Displays the compartment.

e Show Al'l Edges. Only appears on aclass. Displays all associations (to shown artifacts) that are
not shown yet. This is the same function as the "add to Diagram" on the asociation in the explorer
context menu. currently.

« Hde Al Edges. Only appears on a class. Hides all associations. This is the same function as
“Remove from Diagram” on all the associations of this class.

 Hide Stereotype. Only appears when the Stereotype of a package is displayed. Hides the ste-
reotype.

 Show St ereot ype. Only appears when the Stereotype of a package is hidden. Displays the ste-
reotype.

 Hide Visibility.Only appearswhen the visibility of a package is displayed. Hides the visibil-
ity.

* Show Vi si bility. Only appears when the visibility of a package is hidden. Displays the visibil-
ity.

12.9.5. Modifiers

This sub-menu only appears with class, interface, package and use case artifacts. It is used to set or clear
the values of the various modifiers available.

» Abstract. Setfor an abstract artifact.

» Leaf. Setfor afina artifact, i.e. one with no subartifacts.

* Root . Set for aroot artifact, i.e. one with no superartifacts.

* Active. Setfor aartifact with dynamic behavior.
N
- ote

This really ought to be set automatically for artifacts with state machines or activity
diagrams.

12.9.6. Multiplicity

This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the multiplicity at the end of the association nearest the mouse click point. There are only
four entries, a sub-set of the range of multiplicities that are available through the property sheet of aas-

145

The Editing Pane

sociation end (see Section 17.6, “Association End”).

e 1

« 0..1
e 1.7
e 0..7%

12.9.7. Aggregation

This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the aggregation at the end of the association nearest the mouse click point. There are
three entries.

* none. Remove any aggregation.

* aggr egat e. Makethis end a shared aggregation (loosely known as an “aggregation”).

e conposit e. Makethis end a composite aggregation (loosely known as a “composition”).

A Caution

UML requires that an end with a composition relationship must have a multiplicity of 1
(the default).

12.9.8. Navigability

This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the navigability of the association. There are three entries.

» bidirectional . Make the association navigable in both directions.

e <classl> to <cl ass2>. Make the association navigable only from <classl> to <class2>. In
other words <class1> can reference <class2> but not the other way round.

» <class2> to <cl ass1>. Make the association navigable only from <class?> to <class1>. In
other words <class2> can reference <class1> but not the other way round.

Note

UML does permit an association to be non-navigable in both directions. ArgoUML will al-
low this, but you will have to set each of the association ends navigation property, reached
from the property tab of the association - and the diagram does not show any arrows in this
case.

This is considered bad design practice (it will trigger a critic in ArgoUML), so is only of
theoretical interest.

146

The Editing Pane

Note

UML does not permit navigability from an interface to a class. ArgoUML does not prevent
this.

12.10. Notation

Notation is the textual representation on the diagram of a modelelement or its properties.

12.10.1. Notation Languages

ArgoUML supports showing notation in different languages. By default, all text is shown in UML nota-
tion, but the menus contain an item to select between Java and UML. With plugin modules, it is even
possible to select other languages, such as C++ and PHP, but the current (0.22) version of ArgoUML
does not show any difference.

Figure 12.7, “A class in UML notation” shows a classin UML notation, while Figure 12.8, “A classin
Java notation” shows the same classin Java notation.

Figure 12.7. A classin UML notation

Claszsh

+rewm ity int

+newdperations ; woid

Figure 12.8. A classin Java notation

Classh,

public int newattr

public woid newOperation)

12.10.2. Notation Editing on the diagram

Most text shown on a diagram may be edited by double-clicking button 1 on the text. This causes a edit
box to be shown, with the previous text selected, ready for amending.

Also, the status bar of ArgoUML (i.e. the small area at the bottom of the ArgoUML window), shows an
help text that indicates the syntax of the text to be entered. Text entry can be concluded by pressing F2,
or for single-line fields, by pressing the enter key. Additionaly, editing can be concluded by clicking
somewhere in the diagram outside the edit area.

Editing notation on the diagram is a very powerful way to enter a lot of model-information in a very
compact way. It is e.g. possible to create an operation, its stereotype, al parameters and their types, and

147

The Editing Pane

operation properties (visibility, concurrency), all at once by typing:

+Order(custoner| D :

int,itens :

Li st)

voi d {sequenti al }

An association (e.g. between two classes) is showing many texts close to its middle and ends, so its de-
serves some extra explanation. Figure 12.9, “A couple of associations with adornments’ shows two as-

sociations to clarify the following:

Figure 12.9. A couple of associations with ador nments

Class A

0.

ab

0.

ClassB

1

— L

Class C

+b

—

—. 1 |

The association on the right shows that invisible fields where text can be entered become visible once
the modelelement is selected. The fields are indicated by blue rectangles - double-click on them with

mouse button 1 to start editing.

The visihility (the +, -, # or ~) is shown together with the association-end name, but it is not shown for

an unnamed association end.

Likewise, the multiplicity is not shown if itis 1.

The example figure does not demonstrate this, but stereotypes of an association are shown on the dia-
gram, but are not editable. And stereotypes of association-ends are shown together with the association-

end name.

12.10.3. Notation Parsing

(to be written)

148

Chapter 13. The Details Pane
13.1. Introduction

Figure 13.1, “Overview of the details pane” shows the ArgoUML window, with the details pane high-
lighted.

Figure 13.1. Overview of the details pane

8 critic_model.zargo - org.argouml.cognitive.critics - ArgoUML *
File Edit Wiew Create Arrange Generation Critigue Tools Help

FEE

‘BEBES ¥DAFEC > AA- RERRERE

E|Package—centric v|‘ k4 BB —-~ ? H+: +t~BB2 - O~
|Order By Type, Marme w | S==rmms g ZGIILTE N 2
newD peration]) : void present L
& creonstructariesded i =
= B crSingletonticlated
B craingletonticlated
ﬁ predicate?
= CrHML Far ritics built CompoundCritic Griiil Far .cmi“
® B critic . N — e R relating to U1
tam other critics. . .
B oriticLtiis : SUes.
E woic Mo known children — Ol 2 bl Around 76
1R
[Examples which... = B[R ES RN S children at pr
3 e
[Far critics...
[Far critice buit...
[Far general critics... . .
i CrC idler Sing let: 1 5in gletonifio late d CrConstructorleed
/? fien D) | Exalnsles which rConsiderSingleton I 15in gletonio late I rConstructorieede
A come fram _
A (anon Dependency) several other — - -
{anon Deperdency) s <<creater= t:r(:r.lnsu:lerSlngIetr.lriI <<pre ate== chmgIetun\flula‘te\i! =<greate=> Gk onstructorl
(anon Generalization) |predicate2() : hoolean |predicate2() : hoolean |predicated2() : boolean %
? anon Generalization v £ i] .l
< 1] » |_ [AS Diagram J
=
P 1 .
By Pricity . | 14Htems °| o 700 ftem | & Properies | & Documentation | & Presentation | & Source A Tagoed values
[T High - | ? Generalization g «» [Parert: = critic
= = = | Name: Child: B compoundcritic
[Define Concrete (Sub)Cle A
— | Stereotype: :
[&dd Instance Variables t ot | ¢ [Fowertype: h’
[&dd Associstions to void Discriminator:
[Add Operations tawoid |8 | Nemespace: | B crticmode! v
< i} >

For any artifact within the system, this pane iswhere all its associated datais viewed and entered.

The Pane has a series of tabs at the top, which are selected by button 1 click The body of atab isamenu
of itemsto be checked, selected or entered specific to the particular tab selected.

Of these, the Pr operti es Tab is by far the most complex, with a different presentation for each arti-
fact within the system. The detailed descriptions of the properties tab for each artifact are the subject of
separate chapters covering the artifacts that may appear on the various diagrams (see Chapter 16, Top
Level Artifact Reference through Chapter 23, Deployment Diagram Artifact Reference).

13.2. To Do Item Tab

This tab provides control over the various to-do items created by the user, or raised automatically by the
ArgoUML critics (discussed in more detail in the section on the Cri t i que menu—see Section 10.9,

149

The Details Pane

“The Critique Menu”). Figure 13.2, “Example of the To Do |t emtab on the properties pane” shows a
typical pane. The to-do item is selected with button 1 in the to-do pane (see Chapter 14, The To-Do
Pane) or by usingthe Cri t i ques context sensitive pop-up menu on the editing pane.

Figure 13.2. Exampleof theTo Do |t emtab on the propertiespane

b -4 ToDa tetn

Eg_ﬂurmally classes begin with a capital letter. The name 'test' iz
Er_uncunventiunal because it does not begin with a capital.

E$-Fulluwing good naming conventions help to improve the understandability and
E} maintainability of the deszign.

To address this, use the "Next>" button, or manually select test and use the
Properties tab to give it a different name.

ezt | Finizh| [Help |

]

Customization of the critics behaviour is possible through the Br owse critics... menu (see Sec-
tion 10.9.4, “Browse Critics...”).

The body of the tab describes the problem found by the critic and outlines how it can be fixed. To the
left are four buttons.

. Eg New To Do Item .. This launches a dialog box (see Figure 13.3, “Dialog box for

New To Do Item?”), which alows you to create your own to-do item, with its own headline
(which appears in the to-do pane), priority for the to-do pane, reference URL and detailed descrip-
tion for further information.

Figure 13.3. Dialog box for New To Do |Item

150

The Details Pane

¥ New To Do Item

Headline:

Priority: | High

Mare Info URL: |

Offenders: K test

<Enter TODO ITtem herex

. Eﬁ' Resol ve Item .. This pops up a dialog allowing the user to resolve the selected to-do

item (see Figure 13.4, “Dialog box for Resol ve |tem”). Thisis an important dialog, because it
alows you to deal with to-do items in ways other than the recommendation of the to-do item (which
isthe whole point of their being advisory).

This dialog box is intended to be used for the following reasons: deleting todo items that were manu-
ally created, preventing a single critic to trigger on a single object, and dismissing categories of todo
items by lowering design concerns or design goals.

Figure 13.4. Dialog box for Resol ve Item

151

The Details Pane

w# Dismiss To Do Item

Thiz item should be removed bhecause

() ttis not of cohcern at the momert

() Reason given below

<Enter Hationale Herel

|_QH || Cancel

At the top are three radio-buttons, of which by default the last is selected, labeled 1) It is not
relevant to ny goals,2)It is not of concern at the nonent, and3) Reas-
on gi ven bel ow. If you choose the third of these you should enter areason in the main text box.

f;i."] Tip

If you wish to resolve a to-do item (that is generated by a critic) by following its re-
commendations, just make the recommended changes and the to-do item will disappear
of its own accord. Thereis no need to use this dialog.

. Warning

The VV0.20 version of ArgoUML implementation isincomplete: The reason given is not
stored when the project is saved. And there is no way to retrieve todo items that were
resolved. So, it is not usefull to give areason at all.

When a todo item generated by a critic is resolved, then there is no way to undo this
(unless by re-creating the object that triggered the critic).

|__-;",;'~.~ Send Enmmil To Expert... Activating this tool allows the user to send an Email to an

expert asking for advice. Thisworks like clicking a " mailto:users@argouml.tigris.org?subject=[critic
header]" link in your webbrowser.

I:%.: Snooze Criti c Thissuspendsthe activity of the critic that generated the current to-do item.
Theto-do item (and all others generated by the critic) will disappear from the to-do pane.

152

The Details Pane

The critic will wake up after a period of time. Initially this period is 10 minutes, but it doubles on
each successive application of the Snooze button. The critic can be awakened explicitly through the
Critique > Browse Critics... menu(seeSection 10.9.4, “Browse Critics...”).

. Tip

Some common critics can fire the whole time as you build a big diagram. Some users
find it useful to snooze these critics until the diagram has been compl eted.

13.2.1. Wizards

Some of the more common critics have a “wizard” available to help in fixing the problem. The wizard
comprises a series of pages (one or more) in the ToDo |t emtab that step you through the changes.
Start the wizard by clicking the Next > button.

Figure 13.5. Exampleof aW zar d

=

4

By Priarity “ |G ltems | -f ToDo Item
[High T2)
IjMedlum & Change the elass name to start with an uppercase letter.
[T Add Instance Yariables to test E\ﬁ
Mame: | Test
[Add &ssociations ko kest [
[T &dd Operations ko kesk Ce

The wizard is driven through the first three buttons at the bottom of the ToDo | t emtab.

» <Back. Thiswill take you back to the previous step in the wizard. Grayed out if thisisthefirst step.
* Next >. Thiswill take you back to the next step in the wizard. Grayed out if thisisthe last step.

* Fi ni sh. Thiswill commit the changes you have made through the wizard in previous steps, and/or
use the defaults for all next steps.

Note

Not all to-do items have wizards. If there is no wizard all three buttons will remain grayed
out.

The ArgoUML wizards are non-modal, i.e. once started, you may select other todo items, or do some
other actions, and all the while the wizard will remeber where it was, so if you return to the todo item,
the wizard will indicate the same step it was on when you left it.

13.2.2. The Help Button

There is one remaining button at the bottom of the To Do |t emtab, labeled Hel p. Thiswill fireup a

153

The Details Pane

browser to a URL with further help.

. Warning

In the V0.20 release of ArgoUML the URLSs are generally invalid. The few that are valid

have no information.

13.3

Properties Tab

Through this tab, the properties of artifacts selected in the explorer or editing pane may be set. The prop-

erties of an artifact may be displayed in one of the following ways:

1. Selection of the artifact in the explorer or editing panes, followed by selection of the properties tab

in the details pane; or

2. Navigation buttons cause different artifacts to be selected. |.e. the Go Up button on 't
tab, the Navi gat e Back and Navi gat e For war d buttons in the main tool bar,
ous menu-itemsunder Edit - Sel ect .

he properties
and the vari-

Figure 13.6, “A typical Pr operti es tab on the details pane” shows atypical properties tab for an arti-

fact in ArgoUML (in this case aclass).

Figure 13.6. A typical Pr operti es tab on the details pane

1 ;
- ToDo ftern | & Properies | & Documertstion | & Presertation | & Source | & Constrairts | & Tagged Yalues | & Checklist

g Class a4, g g G E g . ﬁl Cliert Dependencies: Attributes: B instance
Matre: SingletonClass
Stereotype: |, singleton w ESupplier Dependencies: issociation Ends: +— singletonag
Marmespace: |75 ortiomactel v
Modifiers: Generalizations: T (anon Generalization) Prerations: B singietonClass
Clabstr.. [Jleat [rRoot [Active
“igihility: Specializations: Crwvned Elemerts:
(®) public O private O protecter

I

At the top left is the icon and name of the type of artifact (i.e. the UML metaclass, not the actual name

of this particular artifact). In this example the property tab isfor aclass.

To the right of thisis atoolbar of icons relevant to this property tab. The first one is always navigation
Go up. Thelast is dways Del et e to delete the selected artifact from the model. The ones in between

depend on the artifact.

The remainder of the tab comprises fields, laid out in two or three columns. Each field has

alabdl toits

left. The fields may be text boxes, text areas, drop down selectors, radio boxes and check boxes. In most
(but not all cases) the values can be changed. In the case of text boxes this is sometimes by just typing

the required value.

However for many text boxes and text areas, data entry is via a context sensitive pop-up

menu (using

button 2 click), which offers options to add a new entry, delete an entry or move entries up and down (in

text areas with multiple entries).

Thefirst field is almost always a text field Nane, where the name of the specific artifact can be entered.

154

The Details Pane

The remaining fields vary depending on the artifact selected.

The detailed property sheets for all ArgoUML artifacts are discussed in separate chapters for each of the
diagram types (use case diagram (Chapter 17, Use Case Diagram Artifact Reference, class diagram
(Chapter 18, Class Diagram Artifact Reference, sequence diagram (Chapter 19, Sequence Diagram Arti-
fact Reference, statechart diagram (Chapter 20, Satechart Diagram Artifact Reference, collaboration
diagram (Chapter 21, Collaboration Diagram Artifact Reference, activity diagram (Chapter 22, Activity
Diagram Artifact Reference, deployment diagram (Chapter 23, Deployment Diagram Artifact
Reference). Property sheets for artifacts that are common to all diagram types have their own chapter
(Chapter 16, Top Level Artifact Reference).

A Caution

ArgoUML will always try to squeeze all fields on to the property sheet. If the size of the
property tab is too small, it may become unusable. The solution is to either enlarge the
property tab by enlarging the main window, or by moving the dividers to left and top.

13.4. Documentation Tab

Within the UML 1.4 standard, al artifacts are children of the El ement metaclass. The El enent
metaclass defines a tagged value docunent at i on for comment, description or explanation of the ele-
ment to which it is attached. Since this tagged value applies to every artifact, it is given its own tab in
the details pane, rather than being part of the Tagged Val ues tab.

Figure 13.7, “A typical Docunent at i on tab on the details pane” shows a typical documentation tab
for an artifact in ArgoUML.

Figure 13.7. A typical Docunent at i on tab on the details pane

1 N
4 ToDo ke | & Properties | & Documentstion | & Presertation | & Source | & Constraints | & Tagged Yalues | & Checklist

H pocumentstion Documentation:
Author:

Wergion:
Since:
Deprecated: D

See

I

As you can see, many more fields have been added to the Documentation field alone. The other fields
similarly store their information under tagged values: aut hor, ver si on, si nce, depr ecat ed,
see.

Thefields on this tab are the same for all artifacts.

Since UML comments are a kind of documentation, they are also shown on this tab, with name and
body.

* Aut hor: A text box for the author of the documentation.

e Version: A text box for the version of the documentation.

155

13.5

The Details Pane

* Since: A text box to show how long the documentation has been valid.

» Deprecat ed: A check box to indicate whether this artifact is deprecated (i.e. planned for removal
in future versions of the design model).

* See: Pointersto documentation outside the system.
e Docunent ati on: Literal text of any documentation.
 Conmment Nane: The names of all comments attached to the model element.

e Body: Thebodies of all comments attached to this modelelement.

Tip

ArgoUML is not primarily a documentation system. For artifacts that require heavy docu-
mentation, notably use cases, the use of the See: field to point to external documents is
more practical .

Presentation Tab

This tab provides some limited control over the graphical representation of artifactsin the diagram in the
editing pane.

Artifacts that do not have any specific direct graphical representation on the screen (beyond their textual
description) do not have style tabs of their own. For example the style sheet of an operation on a class
will be downlighted.

Style sheets vary alittle from artifact to artifact, but Figure 13.8, “A typical Pr esent at i on tab onthe
details pane” shows atypical styletab for an artifact in ArgoUML (in this case a class).

Figure 13.8. A typical Pr esent at i on tab on the details pane

4 .
f ToDo Item | & Properties | & Documentation | & Presentation | 4 Source | & Constraints | & Stereotype | & Tagged Yalues | & Checklist

Display:
g [JPath [¥] Attributes [#] Operations

Bounds: | 58,64,60,65]

Fill: v
tre: | v

There may be further fields in some cases, e.g. for a package, but most fields are common to many arti-
facts.

» Pat h This checkbox allow to display or hide the path in front of the name of the modelelement. It is
shown in UML notation with : : seperators. E.g. the ArgpUML Main class would be shown as:
org::argoum ::application::Min.

e Attributes Thischeckbox allowsto hide or show the attributes compartment of a class.

e (Operati on This checkbox allows to hide or show the operations compartment of a class or inter-

156

The Details Pane

face.

St er eot ype This checkbox allowsto reveal or hide the stereotypes of a package, shown above the
name.

Vi si bi l'ity This checkbox alows to hide the visibility of a package. The visibility is shown in
UML notation as +, -, # or ~.

Ext ensi on Poi nt's This checkbox allows to reveal or hide the extensions points compartment
of ausecase.

Bounds: This defines the corners of the bounding box for a 2D artifact. It comprises four numbers
separated by commas. These four numbers are respectively: i) the X coordinate of the upper left
corner of the box; ii) the Y coordinate of the upper left corner of the box; iii) the width of the box;
and iv) the height of the box. All units are pixels on the editing pane.

This field has no effect on 1D artifacts that link other artifacts (associations, generalizations etc),
since their position is constrained by their connectedness. In this case the field is downlighted.

Fi 11 : Thisdrop-down selector specifies the fill color for 2D artifacts. It is not present for line arti-
facts. Selecting No Fi | | makes the artifact transparant. Selecting Cust omallows to create other
colors then the ones listed. It causes the color selector dialog box to appear, see Figure 13.9, “The
Custom Fi |l I/ Li ne Col or diaog box”.

Li ne: Thisdrop-down selector specifies the line color for artifacts. Selecting No Fi | | makes the
artifact transparant. Selecting Cust omallows to create other colors then the ones listed. It causes
the color selector dialog box to appear, see Figure 13.9, “The Cust om Fi | | / Li ne Col or dia
log box”.

Shadow. This drop-down selector specifies the width of the shadow (if any) for 2D artifacts. It is
not present for line artifacts.

Figure13.9. TheCust om Fi | | / Li ne Col or dialog box

157

The Details Pane

w# Custom Line Color

T [o
) A o o
| N v v o

Prewiewy

n - . Sample Text Sample Text
H= N

Zample Text Sample Text

| Ok, || Cancel || Reset |

Figure13.10. TheCust om Fi I | / Li ne Col or dialog box

158

The Details Pane

w# Custom Line Color

=

=

=

LR B A

Prewiewy

n - . Sample Text Sample Text
H= N

Zample Text Sample Text

| Ok, || Cancel || Reset |

Figure13.11. TheCustom Fi | | / Li ne Col or dialog box

159

The Details Pane

Prewiewy

n - . Sample Text Sample Text
H= N

Zample Text Sample Text

| Ok, || Cancel || Reset |

13.6. Source Tab

This tab shows the source code that will be generated for this artifact, in the selected language.
ArgoUML generates the code e.g. for classes and interfaces. The code shown here, may be saved in the
indicated files with the aid of the functions in the Generation menu.

Figure 13.12. The Source Tab of a class.

160

The Details Pane

13

Test

+newwttlr @ int

+newperation]) :waid

L |
M | . ToDo ke | & Properties | & Docurnentation | & Presentation | & SOURCS | 4 Constrainks | & Sterectype | & Tagged Yalues | & Checklist

EJava w | | Test.java w
J,n’?f?f
* This class tests it all...
*;
public class Test |
A% fauthor=Michiel, wversion=V1.0, since=Jan 2006, deprecated=truel}®/

public int newdttr:
public woid newOperation() {

}
*

L]

Any code you add will be lost - that is not the intention of ArgoUML - use an IDE instead.
The dropdown at the right allows selection of the output file. This function is not very useful for lan-

guages that generate all code for a class within one file, but serves its purpose for e.g. C++, where a .h
and .cpp file are generated. See the figure below.

Figure 13.13. A C++ example.

4
‘M | o ToDo Ikem | & Properties | & Documentation | & Presentation | & SOUrCE | g Constraints | & Sterectype | & Tagged Yalues | & Checklist

Clce+ | | Testh v

#ifndet Tes_
#define Testlest.cop

13.7. Constraints Tab

Constraints are one of the extension mechanisms provided for UML. ArgoUML is equipped with a
powerful constraint editor based on the Object Constraint Language (OCL) defined in the UML 1.4
standard.

A Caution
- The OCL editor implementation for ArgoUML V0.20 doesn't support OCL constraints for
elements other than Classes and Features.

This is something of a genera restriction of OCL. Although the UML specification claims
that there may be a constraint for every model element, the OCL specification only defines
classes/interfaces and operations as allowable contexts.

It is not before OCL 2.0 that a more general definition of allowable contexts is introduced.
The key issue is that for each context definition you need to define what is the contextual-

161

The Details Pane

Classifier, i.e., the classifier that will be associated with the self keyword. The creators of
the OCL specification claim that this is not an issue for the OCL specification, but rather
for UML or some integration task force. Conversely, it seems that the UML specification
people seem to expect this to be defined in the OCL specification (which is why we did a
first step in that directionin OCL 2.0).

So, to cut along story short, it appeared that the simplest solution for ArgoUML at the mo-
ment would be to enable the OCL property panel only for those model elements for which

there actually exists a definition of the contextualClassifier in OCL 1.4. These are (s.
above) ClassyInterface and Feature.

The standard pre-defines a small number of constraints (for example the xor constraint over a set of as-

sociations indicating that only one may be manifest for any particular instance).

;I'rlle standard also envisages a number of circumstances where general purpose constraints may be use-
ul:

» To specify invariants on classes and types in the class model;

» To specify typeinvariants for stereotypes;

» To describe pre-conditions and post-conditions on operations and methods;

» Todescribe guards;

» Asanavigation language; and

» To specify constraints on operations.

Figure 13.14, “A typical Const r ai nt s tab on the details pane”’ shows atypical constraint tab for a ar-
tifact in ArgoUML (in this case a class).

Figure 13.14. A typical Const r ai nt s tab on the details pane
L —n

ClassA

class AAtt - int

I —

L |)
Z | o ToDo tem | & Properties | & Documentstion | & Presentation | & Source | & Constraivts | & Tagged Yalue:

079 &

Constraint Mame | 4

newConstraint context Classd, iny constrairtOne : self | clagsAttr = 0

Previesn

162

The Details Pane

Along the top of the tab are a series of icons.

. D New Constrai nt. This creates a new constraint and launches the constraint editor in the

Constraints tab for that new constraint (see Section 13.7.1, “The Constraint Editor”). The
new constraint is created with a context declaration for the currently selected artifact.

. Warning

It seems logical, that when a new constraint is created, it needs to be edited. But
ArgoUML V0.20 fails to start the OCL editor upon creation; you have to do this by
primo selecting the new constraint first, secundo rename it, and tertio press the Edi t
Const rai nt button. It is essental for successfully creating a constraint to follow
these 4 steps accurately: create, select, rename, edit. The step to rename is necessary,
because the validity check will refuse the constraint if its name differs from the name
mentioned in the constraint text. For the same reason, renaming a constraint afterwards
isimpossible.

. Del et e Constrai nt. The constraint currently selected in the Constrai nt Nanme box

(see below) is deleted.
A Caution

In V0.20 of ArgoUML this button is not downlighted when it is not functional, i.e.
when no constraint is sel ected.

. ﬁ Edit Constrai nt. Thislaunches the constraint editor in the Const r ai nt s tab (see Sec-

tion 13.7.1, “The Constraint Editor”). The editor is invoked on the constraint currently selected in
theConst r ai nt Name box.

A Caution
In V0.18 of ArgoUML this button is not downlighted when it is not functiona, i.e.
when no constraint is sel ected.
. E Configure Constraint Editor. Thisadiaog to configure options in the constraint

editor (see Figure 13.15, “Dialog box for configuring constraints”).

Figure 13.15. Dialog box for configuring constraints

163

The Details Pane

i QCL Editor Preferences

Options

Check type conformance of OCL constraints

[K H Cancel

The dialog box has a check box for the following option.

e Check type conformance of OCL constraints.OCL isstrictly typed. At the early
stages of design it may be helpful to disable type checking, rather than follow through all the de-
tailed specification needed to get type consistency.

At the bottom are two buttons, labeled OK (to accept the option changes) and Cancel (to discard
the changes).

The main body of the constraints tab comprises two boxes, a smaller to the left and a larger one to the
right. The two are separated by two small arrow buttons which control the size of the boxes.

* g Shrink Left. Button 1 click on thisicon shrinks the box on the left. Its effect may be reversed
by use of the Shri nk Ri ght button (see below).

b Shrink Ri ght. Button 1 click on this icon shrinks the box on the right. Its effect may be re-
versed by use of the Shri nk Lef t button (see above).

Finer control can be achieved by using button 1 motion to drag the dividing bar to left and right.

The box on the left istitled Const rai nt Nane and lists al the constraints (if any) so far defined for
the selected artifact. A constraint may be selected by button 1 click.

The box on the right is labeled Pr evi ew and contains the text of the constraint. This box only shows
some contents if a constraint is selected. Where a constraint is too large for the box, a scroll bar is
provided to theright.

13.7.1. The Constraint Editor

This is invoked through the use of the Edi t Const r ai nt button on the main Const r ai nt s tab.
The constraint editor takes up the whole tab (see Figure 13.16, “Dialog box for configuring
constraints’).

Figure 13.16. Dialog box for configuring constraints

164

The Details Pane

- ToDo ftem | & Properties | & Documertstion | & Presentstion | & Source | & Constrairts | & Tagged Values | & Checklist
® v & Syhtax: Assistant

General w |Basic Operatars w Murmbers W |Strings * |Booleans |Collections hd
Edlit constraint

context Classs iny constraintCne | gelf | classsattr = 0

Along the top of the tab are a series of icons.

. “ Cancel Edit Constraint. This exits the constraint editor without saving any changes

and returnsto the main Const r ai nt s tab.

. 'Qf Check OCL Synt ax. Thisbutton invokes afull syntax check of the OCL written in the edit-

or. If the syntax is valid, the constraint is saved, and control returns to the main Const r ai nt s tab.
If the syntax is not valid, adialog box explains the problem.

. Warning

Whether type checking is included should be configurable with the Confi g-
ure Constraint Editor button (see below). But ArgopUML V0.20 does always
check, and refuses to accept any constraint with the slightest error.

. & Configure Constraint Editor. Thisadiaog to configure options in the constraint

editor. It is also available in the main Const r ai nt s tab and is discussed in detail there (see Sec-
tion 13.7, “Constraints Tab”).

To the right of the toolbar is a check box labeled Synt ax Assi st ant (unchecked by default), which
will enable the syntax assistant in the constraint editor.

If the syntax assistant is enabled, six drop down menus are provided in a row immediately below the
toolbar. These provide standard templates for OCL that, when selected, will be inserted into the con-
straint being edited.

The syntax assistant can be made floating in a separate window by button 1 motion on the small divider
areato the | eft of the row of drop-down menus.

e General . Genera OCL constructors. Entries: i nv (inserts an invariant); pre (inserts a pre-
condition); post (inserts a post-condition); sel f (inserts a self-reference); @r e (inserts a refer-
enceto avalue at the start of an operation); and r esul t (inserts areference to a previous result).

» Basic Operat ors. Relational operators and parentheses. Entries; =; <>; <; >; <=; >=; and () .

» Nunbers. Arithmetic operators and functions. Entries: +; -; *; /; nod; di v; abs; max; ni n;
round; andfl oor.

e Strings. String functions. Entries: concat ; si ze;t oLower ; t oUpper ; and substri ng.

165

The Details Pane

* Bool eans. Logical functions. Entries: or ; and; xor ; not ;i npl i es;andi f then el se.

* Col | ecti ons. Operators and functions on collections—bags, sets and sequences. The large num-
ber of functions are organized into sub-groups.

e General . Functions that apply to all types of collection. Entries: Col | ecti on {} (insert a
new collection); Set {} (insert a a new set); Bag {} (insert a new bag); Sequence {}
(insert a new sequence); si ze; count ;i SEnpty; not Enpty; i ncl udes;i ncl udesAl | ;
iterate; exists; forAll; collect; select; reject; union; intersection;
i ncl udi ng; excl udi ng; andsum

e Set s. Operators and functions that apply only to sets. Entries: - (set difference); and symet -
richifference.

e Sequences. Functions that apply to sequences. Entries: fi rst; | ast; at; append; pre-
pend; and subSequence.

The remainder of the tab comprises a writable text area containing the text to be edited. The mouse but-
tons have their standard behavior within an editable text area (see Section 8.2, “ General Mouse Behavior
in ArgoUML").

In addition, cut, copy and paste operations may be invoked through the keyboard shortcuts Ct r | - X,
Crl-CandCtrl - Vrespectively.

13.8. Stereotype Tab

This tab shows the available and applied stereotypes for the currently selected modelelement. It consists
of 2 panels and 2 buttons. The buttons allow to move the stereotypes from one list to the other.

Figure 13.17. An example of a stereotypetab for a class.

PR I T
<utilitys =
Test

+newdtt |int

+newdperation) @ waid
—_——— w

-4 ToDo Item | & Properties | & Documentation | & Presentation | & Source | & Conskrainks

A Tagoed Yalues | & Checklist

Available Sterectypes Applied Sterectvpes
«z implementationClass [Class] we utility [Classifier]

«» metaclass [Classifier]
«» powertype [Classifier]
«» process [Classifier]
«» thread [Classifier]

«z bype [Class]

1

Inthelists, between [] the baseclass of the stereotypes is shown. E.g. in the figure above, the t hr ead
[O assifier] stereotype may be applied to all types of classifiers, such as Class, UseCase, ...

166

The Details Pane

13.9. Tagged Values Tab

Tagged values are another extension mechanism provided by UML. The user can define name-value
pairs to be associated with artifacts which define properties of that artifact. The names are known as
tags. UML pre-defines a number of tags that are useful for many of its artifacts.

Note

i
The tag docunent at i on is defined for the top UML metaclass, El ement and is so
available to al artifacts. In ArgpUML documentation values are provided through the
Docurent at i on tab, rather than by using the Tagged Val ues tab.

The Tagged Val ues tabin ArgoUML comprises atwo column table, with a combo-box on the left to
select the tagdefinition and an editable box on the right for the associated value. There is always at |east
one empty row available for any new tag.

The button at the top of this tab allows creation of a new tagdefinition. After clicking this button, go to
the properties tab first to set the name of the new tagdefinition.

The mouse buttons have their standard behavior within the editable value area (see Section 8.2, “ General
Mouse Behavior in ArgoUML"). In addition, when in the value field, cut, copy and paste operations
may be invoked through the keyboard shortcuts Ct r1 - X, Ctrl - Cand Ct r | - V respectively.

13.10. Checklist Tab

Conducting design reviews and inspections is one of the most effective ways of detecting errors during
software development. A design review typically consists of a small number of designers, implementers,
or other project stakeholders holding a meeting to review a software development artifact. Many devel-
opment organizations have developed checklists of common design problems for use in design review
meetings. Recent research indicated that reviewers inspecting code without meeting, makeing use of
these checklists, are just as effective as design review meetings.

Hence, a checklist feature has been added to ArgoUML, that is much in the spirit of design review
checklists. However, ArgoUML's checklists are integrated into the design tool user interface and the
design task.

A software designer using ArgoUML can see areview checklist for any design element. The “ Checklist”
tab presents alist of check-off items that is appropriate to the currently selected design element. For ex-
ample, when a class is selected in a design diagram, the checklist tab shows items that prompt critical
thinking about classes. See the figure below. Designers may check off items as they consider them.
Checked items are kept in the list to show what has aready been considered, while unchecked items
prompt the designer to consider new design issues. ArgoUML supplies many different checklists with
many possibleitems.

Figure 13.18. An example of a checklist for a class.

167

The Details Pane

L.

ClassABC

g

e

|£

¢ -4 ToCo ftem | & Properties | & Documentstion | & Presentation || & Source || & Constraints | & Tagged Yalues | & Checklist
Wiarning! What tems vou check is not saved.

X Dezcription

[] Does the nate 'ClassaBc clearly describe the clazs? -~

Iz 'ClagsABC! & noun or noun phrase?

Could the name 'ClassABC! be misinterpreted to mean zomething elze?

Should ClassABC be ts own class or a simple attribute of another class?

Does ClaszABC do exactly ohe thing and da it well?

Could ClazzABC be hraken dowen into twwo or more clagses? -

Do all attributes of ClassABEC start with meaningful values?

Could you werite an invariant for this class?

Do all constructors establish the class invariant?

Co all operations maintain the class invariant? s’

O EEE =

N Caution
L

In the V0.20 release of ArgoUML, thistab is not completely implemented. E.g. the checks
are not saved.

168

Chapter 14. The To-Do Pane
14.1. Introduction

Figure 14.1, “Overview of the to-do pane” shows the ArgoUML window with the to-do pane high-
lighted.

Figure 14.1. Overview of the to-do pane

[&dd Instance Variables t
[&dd Associstions to void

[&dd Operstions ta vaid
7] —T— >

This pane provides access to the advice that comes from the critics processes running within ArgoUML.

A selector box at the top alows a choice of how the data is presented, a button allows the display of the
hierarchy to be changed, and there is an indicator of the number of to-do items identified.

More information on critics can be found in the discussion of the Cri t i que menu (see Section 10.9,
“The Critique Menu”).

14.2. Mouse Behavior in the To-Do Pane

Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

169

The To-Do Pane

14.2.1. Button 1 Click

Thisaction is generally used to select an item for subsequent operations.

Within the hierarchical display, elements which have sub-hierarchies may be indicated by -, when the

hierarchy is hidden and when the hierarchy is open.

When these icons are displayed, the display of the hierarchy istoggled by button 1 click on these icons.

Button 1 click over the headline of any to-do item will cause its details to be shown in the
To Do |t emtab of the details pane. That tab is automatically selected if it is not currently visible.

14.2.2. Button 1 Double Click

When applied to the folder icon alongside a hierarchy category, this will cause the display of that hier-
archy to be toggled.

When applied to a headline, button 1 double click will show the diagram for the artifact to which the to-
do item applies in the editing pane and select the artifact on the diagram using an appropriate clarifier
(the artifact may be highlighted, underlined with a wavy line or surrounded by a colored box as appro-
priate).

14.2.3. Button 2 Actions

There are no button 2 functionsin the to-do pane.

14.2.4. Button 2 Double Click

There are no button 2 functions in the to-do pane.

14.3. Presentation Selection

At the top of the pane is a drop-down selector controlling how the to-do items are presented. The to-do
items may be presented in six different ways. This setting is not stored persistently, i.e. it ison its default
vallue when ArgoUML is started.

* By Priority. Thisisthe default setting. The to-do items are organized into three hierarchies by
priority: Hi gh, Medi umand Low. The priority associated with the to-do items generated by a par-
ticular critic may be atered through the Criti que > Browse Critics... menu (See Sec-
tion 10.9.4, “Browse Critics...”).

By Deci si on. The to-do items are organized into 17 hierarchies by design issue: Uncat egor -
i zed, Cl ass Sel ecti on, Behavi or, Nami ng, St or age, | nheri t ance, Cont ai nnent ,
Pl anned Extensions, State ©Machi nes, Desi gn Patterns, Rel ati onshi ps, I n-
stantiation, Modul arity, Expected Usage, Met hods, Code GCeneration and
St er eot ypes. The details of the critics in each category are discussed in Section 10.9.2, “Design
Issues...”.

By Goal . ArgoUML has a concept that critics may be grouped according to the user goals they af-
fect. This presentation groups the to-do items into hierarchies by goal.

A Caution

170

The To-Do Pane

In the current release of ArgoUML there is only one goal, Unspeci fi ed and al to-
do items will appear under this heading.

e By O fender. Theto-do items are organized into a hierarchy according to the artifact that caused
the problem. Todo items that were manually created with the "New ToDo item" button (i.e. not by a
critic), are not listed here.

By Post er. Theto-do items are organized into a hierarchy according to which critic generated the
to-do item. The class name of the critic is listed instead of just its headline name since the former is
guaranteed to be a unique name.

« By Know edge Type. ArgoUML has the concept that a critic reflects a deficiency in a category
of knowledge. This presentation option groups the critics according to their knowledge category:
Desi gner' s, Correct ness, Conpl et eness, Consi st ency, Synt ax, Senanti cs, Op-
timzation, Presentational, O ganizational, Experiencial and Tool. The
former category (Designer's) contains the manually entered todo items.

14.4. Item Count

To theright of the flat/hierarchical button isa count of the number of to-do items currently found. It will
be highlighted in yellow when the number of to-do items grows above 50 todo items, and red when
above 100.

171

Chapter 15. The Critics
15.1. Introduction

The key feature that distinguishes ArgoUML from other UML CASE toolsis its use of concepts from
cognitive psychology. The theory behind this is well described in Jason Robbins' PhD dissertation ht-
tp://argouml .tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

Critics are one of the main ways in which these ideas are implemented. Running in the background they

offer advice to the designer which may be accepted or ignored. A key point is that they do not impose a
decision on the designer.

- Note

The critics are asynchronous processes that run in parallel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

15.1.1. Terminology

The critics are background processes, which evaluate the current model according to various “good’
design criteria. Thereis one critic for every design criterion.

The output of acritic is a critigue—a statement about some aspect of the model that does not appear to
follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be rectified, by
raising ato-do item.

15.1.2. Design Issues

ArgoUML categorizes critics according the the design issue they address (some critics may be in more
than one category). At present there are 16 such categories.

Within this manual the descriptions of critics are grouped in sections by design issue.

15.2. Uncategorized

These are critics that do not fit into any other category.

ArgoUML has no criticsin this category. Maybe some will be added in later versions.

15.3. Class Selection

These are critics concerning how classes are chosen and used.

ArgoUML hasthe following criticsin this category.

15.3.1. Wrap DataType

DataTypes are not full classes within UML 1.4. They can only have enumeration literals as values, and
only support quer y operations (that is operations that do not change the DataType's state).

172

http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/

The Critics

DataTypes cannot be associated with classes, unless the DataType is part of a composite (black dia-
mond) aggregation. Such an association relects the tight binding of a collection of DataType instances to
aclassinstance. In effect such a DataTypeis an attribute of the class with multiplicity.

Good OOA& D depends on careful choices about which entities to represent as full objects and which to
represent as attributes of objects.

There are two options to fix this problem.

* Replace the DataType with afull class.

» or change the association aggregation to composite relationship at the DataType end.

15.3.2. Reduce Classes in diagram <diagram>

Suggestion to improve readability by having fewer classes on a diagram. If one class diagram has too
many classes it may become very difficult for humans to understand. Defining an understandable set of
class diagramsis an important part of your design.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of classes allowed be-
fore thiscritic fires.

A Caution
This number is not stored persistently, and there is no way to reduce it after it has been set

higher, except by creating more classes until the critic fires again. Restarting ArgoUML re-
sets this number to its default: 20.

15.3.3. Clean Up Diagram

Suggestion that the diagram could be improved by moving artifacts that are overlapping.

15.4. Naming

These are critics concerning the naming of artifacts. The current version of ArgoUML has 18 critics in
this category.

15.4.1. Resolve Association Name Conflict

Suggestion that two association names in the same namespace have the same name. This is not permit-
tedin UML.

15.4.2. Revise Attribute Names to Avoid Conflict

Suggestion that two attribute names of a class have the same name. Thisis not permitted in UML.
Note
L

The problem may be caused by inheritance of an attribute through a generalization rela
tionship.

173

The Critics

15.4.3. Change Names or Signatures in an Artifact

Two operations in <artifact> have the same signature. This means their name is the same, and the list of
parameters has the same type.

Where there are conflicting signatures, correct code cannot be generated for mainstream OO languages.
It also leads to very unclear semantics of the design.

In comparing signatures, this critic considers:

1. thename;

2. thelist of in, out and in-out parameter typesin order; and

Only if these all match in both type and order, will the signatures be considered as the same.

This follows the line of Java/C++ in ignoring the return parameters for the signature. This may be unsat-
isfactory for some functional OO languages.

- Note

Some purists would argue that the comparison should redly differentiate between in, out
and in-out parameters. However no practical programming language can do this when
resolving an overloaded method invocation, so this critics lumps them all together.

15.4.4. Duplicate End (Role) Names for an Association

The specified association has two (or more) ends (roles) with the same name. One of the well-
formedness rulesin UML 1.4 for associations, is that al end (role) names must be unique.

This ensures that there can be unambiguous reference to the ends of the association.

To fix this, manually select the association and change the names of one or more of the offending ends
(roles) using the button 2 pop-up menu or the property sheet.

15.4.5. Role name conflicts with member

A suggestions that good design avoids role names for associations that clash with attributes or opera-
tions of the source class. Roles may be realized in the code as attributes or operations, causing code gen-
eration problems.

15.4.6. Choose a Name (Classes and Interfaces)

The class or interface concerned has been given no name (it will appear in the model as anon). Sugges
tion that good design requiresthat all interfaces and classes are named.

15.4.7. Choose a Unique Name for an Artifact (Classes
and Interfaces)

Suggestion that the class or interface specified has the same name as another (in the namespace), which
is bad design and will prevent valid code generation.

174

The Critics

15.4.8. Choose a Name (Attributes)

The attribute concerned has been given no name (it will appear in themodel as(anon Attri bute)).
Suggestion that good design requires that all attributes are named.

15.4.9. Choose a Name (Operations)

The operation concerned has been given no name (it will appear in the model as (anon
Oper at i on)). Suggestion that good design requires that all operations are named.

15.4.10. Choose a Name (States)

The state concerned has been given no name (it will appear in the model as (anon St at e)). Sugges
tion that good design requiresthat all states are named.

15.4.11. Choose a Unique Name for a (State related) Arti-
fact

Suggestion that the state specified has the same name as another (in the current statechart diagram),
which is bad design and will prevent valid code generation.

15.4.12. Revise Name to Avoid Confusion

Two names in the same namespace have very similar names (differing only by one character). Sugges
tion this could potentially lead to confusion.

e Caution

This critic can be particularly annoying, since at timesiit is useful and good design to have
aseries of artifactsvar 1, var 2 etc.

It is important to remember that critics offer guidance, and are not always correct.
ArgoUML lets you dismiss the resulting to-do items through the to-do pane (see
Chapter 14, The To-Do Pane).

15.4.13. Choose a Legal Name

All artifact namesin ArgoUML must use only letters, digits and underscore characters. This critic sug-
gests an entity has not met this requirement.

15.4.14. Change an Artifact to a Non-Reserved Word

Suggestion that this artifact's name is the same as a reserved word in UML (or within one character of
one), which is not permitted.

15.4.15. Choose a Better Operation Name

Suggestion that an operation has not followed the naming convention that operation names begin with
lower case letters.

e Caution

175

The Critics

Following the Java and C++ convention most designers give their constructors the same
name as the class, which begins with an upper case character. In ArgoUML, this will trig-
ger this critic, unless the constructor is stereotyped «cr eat e».

It is important to remember that critics offer guidance, and are not always correct.

ArgoUML lets you dismiss the resulting to-do items through the to-do pane (see
Chapter 14, The To-Do Pane).

15.4.16. Choose a Better Attribute Name

Suggestion that an attribute has not followed the naming convention that attribute names begin with
lower case |etters.

15.4.17. Capitalize Class Name

Suggestion that a class has not followed the naming convention that classes begin with upper case let-
ters.

- Note

Although not triggering this critic, the same convention should apply to interfaces.

15.4.18. Revise Package Name

Suggestion that a package has not followed the naming convention of using lower case letters with peri-
ods used to indicated sub-packages.

15.5. Storage

Critics concerning attributes of classes.

The current version of ArgoUML has the following criticsin this category.

15.5.1. Revise Attribute Names to Avoid Conflict

This critic is discussed under an earlier design issues category (see Section 15.4.2, “Revise Attribute
Names to Avoid Conflict”).

15.5.2. Add Instance Variables to a Class

Suggestion that no instance variables have been specified for the given class. Such classes may be cre-
ated to specify static attributes and methods, but by convention should then be given the stereotype
«utility».

15.5.3. Add a Constructor to a Class

You have not yet defined a constructor for class class. Constructors initialize new instances such that
their attributes have valid values. This class probably needs a constructor because not all of its attributes
haveinitia values.

176

The Critics

Defining good constructorsis key to establishing class invariants, and class invariants are a powerful aid
inwriting solid code.

To fix this, add a constructor manually by clicking on class in the explorer and adding an operation us-
ing the context sensitive pop-up menu in the property tab, or select class where it appearson aclass dia-
gram and usethe Add Oper at i on tool.

In the UML 1.4 standard, a constructor is an operation with the stereotype «create». Although not
strictly standard, ArgoUML will also accept «Create» as a stereotype for constructors.

By convention in Java and C++ a constructor has the same name as the class, is not static, and returns no

value. ArgoUML will also accept any operation that follows these conventions as a constructor even if it
is not stereotyped «create».

A Caution

Operators are created in ArgoUML with a default return parameter (named r et ur n). You
will need to remove this parameter to meet the Java/C++ convention.

15.5.4. Reduce Attributes on a Class

Suggestion that the class has too many attributes for a good design, and is at risk of becoming a design
bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of attributes allowed
before this critic fires.

A Caution
This number is not stored persistently, and there is no way to reduce it after it has been set

higher, except by creating more attributes until the critic fires again. Restarting ArgoUML
resets this number to its default: 7.

15.6. Planned Extensions

Critics concerning interfaces and subclasses.
Note
¥
It is not clear why this category has the name “Planned Extensions”.

The current version of ArgoUML has three critics in this category.

15.6.1. Operations in Interfaces must be public

Suggestion that there is no point in having non-public operationsin Interfaces, since they must be visible
to be realized by a class.

15.6.2. Interfaces may only have operations

Suggestion that an interfaces has attributes defined. The UML standard defines interfaces to have opera-
tions.

177

The Critics

A Caution

ArgoUML does not allow you to add attributes to interfaces, so this should never occur in
the ArgoUML model. It might trigger if a project has been loaded with XMI created by an-
other tool.

15.6.3. Remove Reference to Specific Subclass

15.7.

Suggestion that in a good design, a class should not reference its subclasses directly through attributes,
operations or associations.

State Machines

Critics concerning state machines.

ArgoUML has the following criticsin this category.

15.7.1. Reduce Transitions on <state>

Suggestion given stateisinvolved in so many transitionsit may be a maintenance bottleneck.

The Wizard of this critic alows setting of the treshold, i.e. the maximum number of transitions allowed
before this critic fires.

A Caution
This number is not stored persistently, and there is no way to reduce it after it has been set

higher, except by creating more transition until the critic fires again. Restarting ArgoUML
resets this number to its default: 10.

15.7.2. Reduce States in machine <machine>

Suggestion that the given state machine has so many states as to be confusing and should be simplified
(perhaps by breaking into several machines, or using a hierarchy).

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of states allowed be-
forethis critic fires.

" Caution
This number is not stored persistently, and there is no way to reduce it after it has been set

higher, except by creating more states until the critic fires again. Restarting ArgoUML re-
sets this number to its default: 20.

15.7.3. Add Transitions to <state>

Suggestion that the given state requires both incoming and outgoing transitions.

15.7.4. Add Incoming Transitions to <artifact>

178

The Critics

Suggestion that the given state requires incoming transitions.

15.7.5. Add Outgoing Transitions from <artifact>

Suggestion that the given state requires outgoing transitions.

15.7.6. Remove Extra Initial States

Suggestion that there is more than one initial state in the state machine or composite state, which is not
permitted in UML.

15.7.7. Place an Initial State

Suggestion that thereis no initial state in the state machine or composite state.

15.7.8. Add Trigger or Guard to Transition

Suggestion that a transition is missing either atrigger or guard, one at least of which is required for it to
be taken.

15.7.9. Change Join Transitions

Suggestion that the join pseudostate has an invalid number of transitions. Normally there should be one
outgoing and two or more incoming.

15.7.10. Change Fork Transitions

Suggestion that the fork pseudostate has an invalid number of transitions. Normally there should be one
incoming and two or more outgoing.

15.7.11. Add Choice/Junction Transitions

Suggestion that the branch (choice or junction) pseudostate has an invalid number of transitions. Nor-
mally there should be at |east one incoming transition and at least one outgoing transition.

15.7.12. Add Guard to Transition
Suggestion that the transition requires a guard.
A Caution

It isnot clear that thisisavalid critic. It is perfectly acceptable to have a transition without
a guard—the transition is always taken when the trigger is invoked.

15.7.13. Clean Up Diagram

This critic is discussed under an earlier design issues category (see Section 15.3.3, “Clean Up Diagram”

).
15.7.14. Make Edge More Visible

179

The Critics

Suggestion that an edge artifact such as an association or abstraction is so short it may be missed. Move
the connected artifacts apart to make the edge more visible.

15.7.15. Composite Association End with Multiplicity > 1

15.8.

An instance may not belong by composition to more than one composite instance. Y ou must change the
multiplicity at the composite end of the association to either 0..1 or 1..1 (1) for your model to make
sense.

Remember that composition is the stronger aggregation kind and aggregation is the weaker. The prob-
lem can be compared to a model where afinger can be an integral part of several hands at the same time.

Thisisthe second well-formedness rule on AssociationEnd in UML 1.4.

Design Patterns

Critics concerning design pattern usage in ArgoUML.

These relate to the use of patterns as described by the so called “ Gang of Four”. ArgoUML also usesthis
category for critics associated with deployment and sequence diagrams. The current version of
ArgoUML has the following criticsin this category.

15.8.1. Consider using Singleton Pattern for <class>

The class has no non-static attributes nor any associations that are navigable away from instances of this
class. This means that every instance of this class will be identical to every other instance, since there
will be nothing about the instances that can differentiate them.

Under these circumstances you should consider making explicit that you have exactly one instance of
this class, by using the singleton Pattern. Using the singleton pattern can save time and memory space.
Within ArgoUML this can be done by using the «singleton» stereotype on this class.

If it is not your intent to have a single instance, you should define instance variables (i.e. non-static at-
tributes) and/or outgoing associations that will represent differences bewteen instances.

Having specified class as a singleton, you need to define the class so there can only be a single instance.
Thiswill complete the information representation part of your design. To achieve this you need to do the
following.

1. You must define a static attribute (a class variable) holding the instance. This must therefore have
classasitstype.

2. You must have only private constructors so that new instances cannot be made by other code. The
creation of the single instance could be through a suitable helper operation, which invokes this
private constructor just once.

3. You must have at least one constructor to override the default constructor, so that the default con-
structor is not used to create multiple instances.

For the definition of a constructor under the UML 1.4 standard, and extensions to that definition accep-
ted by ArgoUML see Section 15.5.3, “Add a Constructor to aClass’ .

15.8.2. Singleton Stereotype Violated in <class>

180

The Critics

This class is marked with the «singleton» stereotype, but it does not satisfy the constraints imposed on
singletons (ArgoUML will also accept «Singleton» stereotype as defining a singleton). A singleton class
can have at most one instance. This means that the class must meet the design criteria for a singleton
(see Section 15.8.1, “Consider using Singleton Pattern for <class>").

Whenever you mark a class with a stereotype, the class should satisfy al constraints of the stereotype.

This is an important part of making a self-consistent and understangle design. Using the singleton pat-
tern can save time and memory space.

If you no longer want this class to be a singleton, remove the «singleton» stereotype by clicking on the
class and selecting the blank selection on the stereotype drop-down within the properties tab.

To apply the singleton pattern you should follow the directions in Section 15.8.1, “Consider using
Singleton Pattern for <class>" .

15.8.3. Nodes normally have no enclosers

A suggestion that nodes should not be drawn inside other artifacts on the deployment diagram, since
they represent an autonomous physical object.

15.8.4. Nodelnstances normally have no enclosers

A suggestion that node instances should not be drawn inside other artifacts on the deployment diagram,
since they represent an autonomous physical object.

15.8.5. Components normally are inside nodes

A suggestion that components represent the logical entities within physical nodes, and so should be
drawn within a node, where nodes are shown on the deployment diagram.

15.8.6. Componentinstances normally are inside nodes

A suggestion that component instances represent the logical entities within physical nodes, and so
should be drawn within a node instance, where node instances are shown on the deployment diagram.

15.8.7. Classes normally are inside components

A suggestion that classes, as artifacts making up components, should be drawn within components on
the deployment diagram.

15.8.8. Interfaces normally are inside components

A suggestion that interfaces, as artifacts making up components, should be drawn within components on
the deployment diagram.

15.8.9. Objects normally are inside components

A suggestion that objects, as instances of artifacts making up components, should be drawn within com-
ponents or component instances on the deployment diagram.

15.8.10. LinkEnds have not the same locations

A suggestion that alink (e.g. association) connecting objects on a deployment diagram has one end in a

181

The Critics

component and the other in a component instance (since objects can be in either). This makes no sense.

15.8.11. Set classifier (Deployment Diagram)

Suggestion that there is an instance (object) without an associated classifier (class, datatype) on a de-
ployment diagram.

15.8.12. Missing return-actions

Suggestion that a sequence diagram has a send or call action without a corresponding return action.

15.8.13. Missing call(send)-action

Suggestion that a sequence diagram has a return action, but no preceding call or send action.

15.8.14. No Stimuli on these links

Suggestion that a sequence diagram has a link connecting objects without an associated stimulus
(without which the link is meaningless).

. Warning

Triggering this critic indicates a serious problem, since ArgoUML provides no mechanism
for creating alink without a stimulus. It probably indicates that the diagram was created by
loading a corrupt project, with an XM file describing a link without a stimulus, possibly
created by atool other than ArgoUML.

15.8.15. Set Classifier (Sequence Diagram)

Suggestion that there is an object without an associated classifier (class, datatype) on a sequence dia-
gram.

15.8.16. Wrong position of these stimuli

Suggestion that the initiation of send/call-return message exchanges in a sequence diagram does not
properly initiate from left to right.

15.9. Relationships

Critics concerning associations in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.9.1. Circular Association
Suggestion that an association class has arole that refers back directly to itself, which is not permitted.
Warning

This critic is meaningless in the V0.14 version of ArgoUML which does not support asso-
ciation classes.

182

The Critics

15.9.2. Make <association> Navigable

Suggestion that the association referred to is not navigable in either direction. This is permitted in the
UML standard, but has no obvious meaning in any practical design.

15.9.3. Remove Navigation from Interface via
<association>

Associations involving an interface can be not be navigable in the direction from the interface. Thisis
because interfaces contain only operation declarations and cannot hold pointers to other objects.

This part of the design should be changed before you can generate code from this design. If you do gen-
erate code before fixing this problem, the code will not match the design.

To fix this, select the association and use the Pr operti es tab to select in turn each association end
that is not connected to the interface. Uncheck Navi gabl e for each of these ends.

The association should then appear with a stick arrowhead pointed towards the interface
When an association between a class and interface is created in ArgoUML, it is by default navigable

only from the class to the interface. However, ArgoUML does not prevent to change the navigability af-
terwards into awrong situation. Which will cause this critic to be triggered.

15.9.4. Add Associations to <artifact>

Suggestion that the specified artifact (actor, use case or class) has no associations connecting it to other
artifacts. Thisisrequired for the artifact to be useful in adesign.

15.9.5. Remove Reference to Specific Subclass

This critic is discussed under an earlier design issues category (see Section 15.6.3, “Remove Reference
to Specific Subclass’).

15.9.6. Reduce Associations on <artifact>

Suggestion that the given artifact (actor, use case, class or interface) has so many associations it may be
a maintenance bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of associations al-
lowed before this critic fires.

A Caution
This number is not stored persistently, and there is no way to reduce it after it has been set

higher, except by creating more associations until the critic fires again. Restarting
ArgoUML resets this number to its default: 7.

15.9.7. Make Edge More Visible

This critic is discussed under an earlier design issues category (see Section 15.7.14, “Make Edge More
Visible").

183

The Critics

15.10. Instantiation

Critics concerning instantiation of classifiersin ArgoUML.

The current version of ArgoUML has no criticsin this category.

15.11. Modularity

Critics concerning modular development in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.11.1. Classifier not in Namespace of its Association

One of the well-formedness rules in UML 1.4 for associations, is that all the classifiers attached to the
ends of the association should belong to the same namespace as the association.

If this were not the case, there would be no naming, by which each end could refer to al the others.

This critic is triggered when an association does not meet this criterion. The solution is to delete the as-
sociation, and recreate it on a diagram, whose namespace includes those of al the attached classifiers.

q Caution
In the current implementation of ArgoUML this critic does not handle hierarchical
namespaces. As a consequence it will trigger for associations where the immediate

namespaces of the attached classifiers is different, even though they are part of the same
namespace hierarchy.

15.11.2. Add Elements to Package <package>

Suggestion that the specified package has no content. Good design suggests packages are created to put
thingsin.

- Note

This will always trigger when you first create a package, since you cannot create one that
is not empty!

15.12. Expected Usage

Critics concerning generally accepted good practice in ArgoUML.

The current version of ArgoUML has one critic in this category.

15.12.1. Clean Up Diagram

This critic is discussed under an earlier design issues category (see Section 15.3.3, “Clean Up Diagram”

).
15.13. Methods

184

The Critics

Critics concerning operations in ArgoUML.

The current version of ArgoUML has the following criticsin this category.

15.13.1. Change Names or Signatures in <artifact>

This critic is discussed under an earlier design issues category (see Section 15.4.3, “Change Names or
Signaturesin an Artifact”).

15.13.2. Class Must be Abstract

Suggestion that a class that inherits or defines abstract operations must be marked abstract.

15.13.3. Add Operations to <class>

Suggestion that the specified class has no operations defined. This is required for the class to be useful
in adesign.

15.13.4. Reduce Operations on <artifact>

Suggestion that the artifact (class or interface) has too many operations for a good design, and is at risk
of becoming a design bottleneck.

The Wizard of this critic alows setting of the treshold, i.e. the maximum number of operations allowed
before this critic fires.

A Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more operations until the critic fires again. Restarting ArgoUML
resets this number to its default: 20.

15.14. Code Generation

Critics concerning code generation in ArgoUML.

The current version of ArgoUML has one critic in this category.

15.14.1. Change Multiple Inheritance to interfaces

Suggestion that a class has multiple generalizations, which is permitted by UML, but cannot be gener-
ated into Java code, because Java does not support multiple inheritance.

15.15. Stereotypes

Critics concerning stereotypesin ArgoUML.

The current version of ArgoUML has no criticsin this category.

15.16. Inheritance

185

The Critics

Critics concerning generalization and specialization in ArgoUML.

The current version of ArgoUML has the following criticsin this category.

15.16.1. Revise Attribute Names to Avoid Conflict

This critic is discussed under an earlier design issues category (see Section 15.4.2, “Revise Attribute
Namesto Avoid Conflict”).

15.16.2. Remove <class>'s Circular Inheritance
Suggestion that a class inherits from itself, through a chain of generalizations, which is not permitted.
A Caution

This critic is marked inactive by default in the current release of ArgoUML (the only one
so marked). It will not trigger unless made active.

15.16.3. Class Must be Abstract

This critic is discussed under an earlier design issues category (see Section 15.13.2, “Class Must be Ab-
stract”).

15.16.4. Remove final keyword or remove subclasses

Suggestion that a class that isfinal has specializations, which is not permitted in UML.

15.16.5. lllegal Generalization

Suggestion that there is a generalization between artifacts of different UML metaclasses, which is not
permitted.

A Caution
Itisnot clear that such a generalization can be created within ArgoUML. It probably indic-

ates that the diagram was created by loading a corrupt project, with an XM file describing
such ageneralization, possibly created by atool other than ArgoUML.

15.16.6. Remove Unneeded Realizes from <class>
Suggestion that the specified class has a realization relationship both directly and indirectly to the same

interface (by realization from two interfaces, one of which is a generaization of the other for example).
Good design deprecates such duplication.

15.16.7. Define Concrete (Sub)Class

Suggestion that a classis abstract with no concrete subclasses, and so can never be realized.

15.16.8. Define Class to Implement <interface>

Suggestion that the interface referred to has no influence on the running system, since it is never imple-

186

The Critics

mented by a class.

15.16.9. Change Multiple Inheritance to interfaces

This critic is discussed under an earlier design issues category (see Section 15.14.1, “Change Multiple
Inheritance to interfaces’).

15.16.10. Make Edge More Visible

This critic is discussed under an earlier design issues category (see Section 15.7.14, “Make Edge More
Visible").

15.17. Containment

Critics concerning containment in ArgoUML, that is where one artifact forms a component part of an-
other.

The current version of ArgoUML has the following critics in this category.

15.17.1. Remove Circular Composition

Suggestion that there is a series of composition relationships (associations with black diamonds) that
form acycle, which is not permitted.

15.17.2. Duplicate Parameter Name

Suggestion that a parameter list to an operation or event has two or more parameters with the same
name, which is not permitted.

15.17.3. Two Aggregate Ends (Roles) in Binary Associ-
ation

Only one end (role) of a binary association can be aggregate or composite. This a well-formedness rule
of the UML 1.4 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition, the “part”
end cannot be aggregate.

To fix this, identify the “part” end of the association, and use the critic wizard (the Next > button, or
manually set its aggregation to none using the button 2 pop-up menu or the property sheet.

Composition (more correctly called composite aggregation) is used where there is a whole-part relation-
ship that is one-to-one or one-to-many, and the lifetime of the part is inextricably tied to the lifetime of
the whole. Instances of the whole will have responsibility for creating and destroying instances of the as-
sociated part. This also means that a class can only be a part in one composite aggregation.

An example of a composite aggregation might be a database of cars and their wheels. This is a one-
to-four relationship, and the database entry for awheel is associated with its car. When the car ceases to
exist in the database, so do its wheels.

Aggregation (more correctly called shared aggregation) is used where there is a whole-part relationship,
that does not meet the criteria for a composite aggregation. An example might be a database of uni-
versity courses and the students that attend them. There is awhole-part relationship between courses and

187

The Critics

students. However there is no lifetime relationship between students and course (a student continues to
exist even after a course is finished) and the relationship is many-to-many.

15.17.4. Aggregate End (Role) in 3-way (or More) Associ-
ation

Three-way (or more) associations can not have aggregate ends (roles). This a well-formedness rule of
the UML 1.4 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition can only
apply to binary associations between artifacts.

To fix this, manually select the association, and set the aggregation of each of its ends (roles) to none
using the button 2 pop-up menu or the property sheet.

15.17.5. Wrap DataType

Thiscritic is discussed under an earlier design issues category (see Section 15.3.1, “Wrap DataType”).

188

Part 3. Model Reference

Chapter 16. Top Level Artifact
Reference

16.1. Introduction

This chapter describes each artifact that can be created within ArgoUML. The chapter covers top-level
“generd” artifacts. The following chapters (see Chapter 17, Use Case Diagram Artifact Reference
through Chapter 23, Deployment Diagram Artifact Reference) cover each of the ArgoUML diagrams.

There is a close relationship between this material and the properties tab of the details pane (see Sec-

tion 13.3, “Properties Tab”). That section covers properties in general, in this chapter they are linked to
specific artifacts.

16.2. The Model

The model is the top level artifact within ArgoUML. In the UML meta-model it is a sub-class of pack-
age. In many respects within ArgoUML it behaves similarly to a package (see Section 18.2, “ Package”).

Note

ArgoUML isrestricted to one model within the tool.

¥

Standard data types, classes and packages are loaded (the default, see Chapter 24, Built In DataTypes,
Classes, Interfaces and Sereotypes) as sub-packages of the model. These sub-packages are not initially
present in the model but are added to the model when used.

16.2.1. Model Details Tabs

The details tabs that are active for the model are as follows.

ToDoltem
Standard tab.

Properties
See Section 16.2.2, “Model Property Toolbar” and Section 16.2.3, “Property Fields For The Model”
below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

St ereot ype
Standard tab. This contains a a list of the stereotypes applied to this model, and a list of available
stereotypes that may be applied to the model.

Tagged Val ues
Standard tab. In the UML meta-model, Model has the following standard tagged values defined.

» deri ved (from the superclass, Model El enent).

Vauest r ue, meaning the class is redundant — it can be formally derived from other elements,
or f al se meaning it cannot.

190

Top Level Artifact Reference

Derived models have their value in analysis to introduce useful names or concepts, and in
design to avoid re-computation.

16.2.2. Model Property Toolbar

- Go up
Navigate up through the composition structure of the model.

Since the model is the top package nothing can happen, and this button is always downlighted.

El New Package

This creates a new Package (see Section 18.2, “Package”) within the model (which appears on no
diagram), navigating immediately to the properties tab for that package.

i Tip

While it can make sense to create Packages of the model this way, it is usually a lot
clearer to create them within diagrams where you want them.

n New DataType

This creates a new DataType (see Section 16.3, “ Datatype”) within the model (which appears on no
diagram), navigating immediately to the propertiestab for that DataType.

E New Enuner ati on

This creates a new Enumeration (see Section 16.4, “Enumeration”) within the model (which appears
on no diagram), navigating immediately to the properties tab for that Enumeration.

- New St er eotype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) within the model, navigating imme-
diately to the properties tab for that stereotype.

-m- Del et e

Thistool is aways downlighted, since it is meaningless to delete the model!

16.2.3. Property Fields For The Model

Nanme
Text box. The name of the model. The name of a model, like all packages, is by convention all
lower case.
Note
¥

191

Top Level Artifact Reference

The default name supplied to a new model by ArgoUML, unti t | edMbdel , isthus
erroneous and guarantees that ArgoUML aways starts up with at least one problem
being reported by the design critics.

St ereot ype

Drop down selector. Model is provided by default with the UML standard stereotypes for model (
syst emivbdel and et anodel) and package (f acade, f r amewor k, st ub).

Stereotyping models is a useful thing, although it is of limited value in ArgoUML where you have
only asingle model.

Navi gat e Stereotype
B icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Namespace

Text box. Records the namespace for the model. This is the package hierarchy. However since the
model is at the top of the hierarchy in ArgoUML, this box is always empty.

Visibility
Radio box, with entriespubl i c, pri vat e, pr ot ect ed, and package.

Records the visibility for the model. Since ArgoUML only permits one model, this has no meaning-
ful use.

Modi fiers
Check box, with entries Abst r act , Leaf and Root .

» abstract isusedto declare that thismodel cannot be instantiated, but must always be special-
ized.

The meaning of abst r act applied to a model is not that clear. It might mean that the model
contains interfaces or abstract classes without realizations. Since ArgoUML only permits one
model, thisis not a meaningful box to check.

» Leaf indicates that this model can have no further subpackages, whiler oot indicatesit isthe
top level model.

Within ArgoUML r oot only meaningfully applies to the Model, since all packages sit within
the model. In the absence of thet opLevel stereotype, this could be used to emphasize that the
Model is at the top level.

CGeneral i zati ons
Text area. Lists any model that generalizes this model.

- Note

Since there is only one model in ArgoUML there is no sensible specialization or gen-
eralization that could be created.

Speci al i zat i ons

192

Top Level Artifact Reference

Text box. Lists any specialized model (i.e. for which this model is a generalization.

- Note

Since there is only one model in ArgoUML there is no sensible specialization or gen-
eralization that could be created.

Omed El enents

Text area. A listing of the top level packages, classes, interfaces, datatypes, actors, use cases, asso-
ciations, generalizations, and stereotypes within the model.

Button 1 double click on any of the artifacts yields navigating to that artifact.

16.3. Datatype

Datatypes can be thought of as simple classes. They have no attributes, and any operations on them must
have no side-effects. A useful analogy is primitive datatypes in a language like Java. The integer “3”
stands on its own—it has no inner structure. There are operations (for example addition) on the integers,
but when | perform 3 + 4 theresult isanew number, “3” and “4” are unchanged by the exercise.

Within UML 1.3, Dat aType isasub-class of the Cl assi fi er metaclass. It embraces the predefined
primitive types (byt e, char , doubl e, f| oat ,i nt,| ong and shor t), the predefined enumeration,
bool ean and user defined enumeration types.

- Note

Alsovoi d isimplemented as a datatype within ArgoUML

Within ArgoUML new datatypes may be created using the New dat at ype button on the property tabs
of the model and packages (in which case the new datatype is restricted in scope to the package), as well
as the properties tab for datatype.

- Note

UML 1.3 alows user defined datatypes to be placed on class diagrams. Thisis not permit-
ted in ArgoUML.

16.3.1. Datatype Details Tabs

The details tabs that are active for datatypes are as follows.
ToDol t em

Standard tab.
Properties

See Section 16.3.2, “Datatype Property Toolbar” and Section 16.3.3, “Property Fields For Data-
type” below.

Docunent at i on
Standard tab. See Section 13.4, “Documentation Tab”.

193

Top Level Artifact Reference

Sour ce
Standard tab. Unused. One would expect a class declaration for the new datatype to support code
generation.

Tagged Val ues

Standard tab. In the UML metamodel, Dat at ype has the following standard tagged values
defined.

» persistence (from the superclass, Cl assi fi er). Vauest ransi t ory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

Tip

Since user defined datatypes are enumerations, they have no state to preserve, and
the value of thistagged valueisirrelevant.

 semantics (from the superclass, Cl assi fi er). The vaue is a specification of the se-
mantics of the datatype.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the class is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

Tip

While formally available, a derived datatype does not have an obvious value, and
so datatypes should always be marked with der i ved=f al se.

16.3.2. Datatype Property Toolbar

o Go up
Navigate up through the package structure.
o New datatype
;I'his creates a new datatype (see Section 18.5, “Class") within the same package as the current data-
ype.

. Ti

i P
While it can make sense to create datatypes this way, it can be clearer to create them
within the package or model where you want them.

New enuneration literal
(=
This creates a new enumeration literal within the datatype, navigating immediately to the properties

tab for that literal.
e Caution

ArgoUML does not actually have a separate concept of a literal. The navigation will

194

Top Level Artifact Reference

navigate to the property sheet for an attribute of a class (see Section 18.6, “Attribute”).
When defining a literal, all that matters is its name. Other parts of the attribute prop-
erty sheet should be ignored. Also the name of the literal must obey the rules for an
Attribute or a critic will fire.

g New QOper ation

This creates a new operation within the datatype, navigating immediately to the properties tab for
that operation.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) within the same package as the data
type, navigating immediately to the properties tab for that stereotype.

ﬁi Del et e
This del etes the datatype from the model.

16.3.3. Property Fields For Datatype

Narme

Text box. The name of the datatype. The primitive datatypes all have lower case names, but thereis
no formal convention.

- Note

The default name supplied for a newly created datatype is the empty string “”. Data
types with empty string names will appear with the name (anon Dat at ype) inthe
explorer.

St er eot ype

Drop down selector. Stereotype is provided by default with the UML standard stereotypes for clas-
sifier (met acl ass, powertype, process,threadandutility).

. Ti
i P
The stereotype enuner at i on should always be used for any created enumeration
datatypes.
A Caution

In ArgoUML version 0.18 the stereotype enuner at i on must be created before it
can be used. However, by creating an Enumeration Literal, the stereotype enuner a-
ti on iscreated automatically.

Navi gat e Stereotype

195

Top Level Artifact Reference

B icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace
Drop down selector. Allows changeing the namespace for the datatype. This is the package hier-
archy.

Modi fiers
Check box, with entries Abst r act , Leaf and Root .

e Abstract isusedto declare that this datatype cannot be instantiated, but must always be spe-
cialized.

- Note

ArgoUML provides no mechanism for specializing datatypes, so this check box is
of little use.

e Leaf indicatesthat this datatype can have no further sub-types, while Root indicatesit isatop

level datatype.
. Ti
i P

In the absence of specialization of datatypes within ArgoUML these have little
value. In effect all datatypes are both Root and Fi nal

Visibility
Radio box, with entriespubl i c, pri vat e, pr ot ect ed, and package.
Records the visibility for the Datatype.

C i ent Dependencies
Text area. Lists any elements that depend on this datatype.

e Caution

It isnot clear that dependencies between datatypes makes much sense.

Suppl i er Dependenci es
Text area. Lists any elements that this datatype depends on.

A Caution

It is not clear that dependencies between datatypes makes much sense.

General i zati ons
Text area. Lists any datatype that generalizes this datatype.

" Caution

It is not clear that generalizing datatypes makes much sense.

196

Top Level Artifact Reference

Speci al i zati ons
Text box. Lists any specialized datatype (i.e. for which this datatype is a generalization.

e Caution
It isnot clear that specializing datatypes makes much sense.
Qper ations
Text area. Lists al the operations defined on this datatype. Button 1 double click navigates to the
selected operation. button 2 click brings up a pop up menu with two entries.

e« Move Up. Only available where there are two or more operations, and the operation selected is
not at the top. It is moved up one.

 Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It is moved down one.

See Section 18.7, “Operation” for details of operations.
A Caution

ArgoUML treats all operations as equivalent. Any operations created here will use the
same mechanism as operations for classes. Remember that operations on datatypes
must have no side effects (they are read-only). This means the quer y modifier must
be checked for al operations.

Literals

Text area. Lists al the enumeration literals defined for this datatype. Button 1 double click navig-
ates to the selected literal, button 2 click brings up a pop up menu with two entries.

* Mve Up. Only available where there are two or more literals, and the literal selected is not at
the top. It ismoved up one.

* Mve Down. Only available where there are two or more literals listed, and the literal selected
isnot at the bottom. It is moved down one.

A Caution

ArgoUML does not actually have a separate concept of aliteral. The navigations listed
above will all navigate to a property sheet equal to an attribute of a class (see Sec-
tion 18.6, “Attribute”). When defining aliteral, al that mattersisits name. Other parts
of the attribute property sheet should be ignored.

16.4. Enumeration

Enumeration can be thought of as simple classes. They have no attributes, and any operations on them
must have no side-effects. A useful analogy is primitive datatypes in a language like Java. The boolean
“true” stands on its own—it has no inner structure. There are operations (for example logical xor) on the
booleans, but when | perform true xor true the result is a new boolean, and the original 2
booleans “true”’ are unchanged by the exercise.

Within UML 1.4, Enuner at i on isasub-class of the Dat aType metaclass.

197

Top Level Artifact Reference

The big difference with other DataTypes, is that an Enumeration has Enuner at i onLi t er al s. E.g.
the Enumeration “boolean” is defined as having 2 EnumerationLiterals, “true” and “false”.

Within ArgoUML new enumerations may be created using the New Enurmer at i on button on the

property tabs of the model and packages (in which case the new enumeration is restricted in scope to the
package), as well as the properties tab for datatype and enumeration.

- Note

UML 1.4 alows user defined datatypes to be placed on class diagrams. Thisis not yet pos-
siblein ArgoUML.

16.4.1. Enumeration Details Tabs

The details tabs that are active for enumerations are as follows.
ToDoltem

Standard tab.
Properties

See Section 16.4.2, “Enumeration Property Toolbar” and Section 16.4.3, “Property Fields For Enu-
meration” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Sour ce
Standard tab.

St er eot ype
Standard tab. The UML metamodel has the following stereotypes defined by default for a Classifier,
which also apply to an Enumeration:
» et acl ass (from the superclass, Cl assi fi er).
* powertype (from the superclass, Cl assi fi er).
» process (fromthe superclass, Cl assi fi er).
» thread (fromthe superclass, C assi fi er).
e utility (fromthesuperclass, Cl assi fi er).

Tagged Val ues

Standard tab. In the UML metamodel, Enurrer at i on has no standard tagged values defined.

16.4.2. Enumeration Property Toolbar

i Go up
Navigate up through the composition structure.

198

Top Level Artifact Reference

- New datatype

This creates a new datatype (see Section 18.5, “ Class”) within the same package as the current enu-
meration.

New enuneration literal
| o |

This creates a new enumeration literal within the enumeration, navigating immediately to the prop-
ertiestab for that literal.

g New COper ation

This creates a new operation within the enumeration, navigating immediately to the properties tab
for that operation.

- New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) within the same package as the enu-
meration, navigating immediately to the properties tab for that stereotype.

-m- Del ete from Model
This del etes the datatype from the model.

16.4.3. Property Fields For Enumeration

Name

Text box. The name of the enumeration. The primitive enumerations all have lower case names, but
thereis no formal convention.

Note
¥
The default name supplied for a newly created datatype is the empty string “”. Enu-
merations with empty string names will appear with the name (anon Enuner a-
t i on) inthe explorer.
Namespace
Drop down selector. Allows changeing the namespace for the enumeration. This is the composition
hierarchy.
Modi fiers

Check box, with entries Abst r act , Leaf and Root .

* Abstract isused to declare that this enumeration cannot be instantiated, but must always be
specialized.

- Note

ArgoUML provides no mechanism for specializing enumerations, so this check
box is of little use.

» Leaf indicatesthat this enumeration can have no further sub-types, while Root indicatesitisa

199

Top Level Artifact Reference

top level enumeration.
Tip

In the absence of speciaization of enumerations within ArgoUML these have little
value. In effect al enumerations are both Root and Fi nal

Visibility
Radio box, with entriespubl i c, pri vat e, pr ot ect ed, and package.
Records the visibility for the Enumeration.

C i ent Dependencies
Text area. Lists any elements that depend on this enumeration.

A Caution
Itis not clear that defining dependencies between enumerations makes much sense.

Suppl i er Dependenci es
Text area. Lists any elements that this enumeration depends on.

e Caution
It is not clear that defining dependencies between enumeration makes much sense.
General i zati ons

Text area. Lists any enumeration that generalizes this enumeration.

Speci al i zat i ons
Text box. Lists any specialized enumerations (i.e. for which this enumeration is a generalization.

Qper ations
Text area. Lists all the operations defined on this enumeration. Button 1 double click navigates to
the selected operation. button 2 click brings up a pop up menu with two entries.

* Mve Up. Only available where there are two or more operations, and the operation selected is
not at the top. It is moved up one.

e« Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It is moved down one.

See Section 18.7, “Operation” for details of operations.

e Caution
ArgoUML treats all operations as equivalent. Any operations created here will use the
same mechanism as operations for classes. Remember that operations on enumerations

must have no side effects (they are read-only). This means the quer y modifier must
be checked for all operations.

Literals

200

Top Level Artifact Reference

Text area. Lists al the enumeration literals defined for this enumeration. Button 1 double click nav-
igatesto the selected literal, button 2 click brings up a pop up menu with two entries.

« Move Up. Only available where there are two or more literals, and the literal selected is not at
the top. It ismoved up one.

» Move Down. Only available where there are two or more literals listed, and the literal selected
isnot at the bottom. It is moved down one.

16.5. Stereotype

Stereotypes are the main extension mechanism of UML, providing away to derive specializations of the
standard metaclasses. St er eot ype is a sub-class of General i zabl eEl enent in the UML
metamodel. Stereotypes are supplemented by constraints and tagged val ues.

New stereotypes are added from the property tab of almost any artifact. Properties of existing stereo-
types can be reached by selecting the property tab for any artifact with that stereotype and using the
navstereo button (E]) within the property tab.

16.5.1. Stereotype Details Tabs

The details tabs that are active for stereotypes are as follows.

ToDoltem
Standard tab.

Properties
See Section 16.5.2, “ Stereotype Property Toolbar” and Section 16.5.3, “Property Fields For Stereo-
type’ below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Sour ce
Standard tab. This contains the representation of the stereotype on diagrams (its name between «
and »).

. Warning

You can edit this entry, but it has no effect and when you return to the entry it will be
restored to its original value.

Tagged Val ues
Standard tab. In the UML metamodel, St er eot ype has the following standard tagged values
defined.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the class is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

This indicates any element with this stereotype has the der i ved tag set accord-

201

Top Level Artifact Reference

ingly.

" Caution

Tagged values for a stereotype are rather different to those for elements in the UML
core architecture, in that they apply to all artifacts to which the stereotype is applied,
not just the stereotype itself.

16.5.2. Stereotype Property Toolbar

o Go up
Navigate up through the package structure of the model.

o Add stereotype

This creates a new stereotype (see Section 16.5, “ Stereotype”) within the model (which appears on
no diagram), navigating immediately to the properties tab for that stereotype.

-m- Del et e

This del etes the stereotype from the model.

16.5.3. Property Fields For Stereotype

Name

Text box. The name of the stereotype. There is no convention for naming stereotypes, beyond start-
ing them with a lower case letter. Even the standard UML stereotypes vary between all lower case
(e.g. netanodel), bumpy caps (eg. systenmivbdel) and space separated (e.g. obj ect

nodel).

- Note

ArgoUML does not enforce any naming convention for stereotypes

Base d ass

Drop down selector. Any stereotype must be derived from one of the metaclasses in the UML
metamodel Abst racti on, Act or, Associ ati on, Associ ati onEnd, Attri but e, Beha-
vi or al Feature, Cal | Event, Cl ass, d assifier, Col | aborati on, Corment, Com
ponent, Constrai nt, Dat aType, Excepti on, Fl ow, General i zati on, I nterface,
Li nk, Model , Model El enent , Node, Nodel nst ance, Obj ect Fl owSt at e, Oper ati on,
Package, Per m ssi on, Si gnal , Subsyst emand Usage) or the artifact classes that derive
from them. The stereotype will then be available to artifacts that derive from that same metaclass or
that artifact.

Namespace

Drop down selector. Records the namespace for the stereotype. Thisis the package hierarchy.

202

Top Level Artifact Reference

Modi fiers
Check box, with entries Abst r act , Leaf and Root .

» Abstract isused to declare that artifacts that use this stereotype cannot be instantiated, but
must always be specialized.

e Leaf indicates that artifacts that use this stereotype can have no further sub-types, while Root
indicatesit isatop level artifact.

Caution

Remember that these modifiers apply to the artifacts using the stereotype, not just the
stereotype.

. Warning

ArgoUML neither imposes, nor checks that artifacts using a stereotype adopt the ste-
reotype's modifiers.

Ceneral i zations
Text area. Lists any stereotype that generalizes this stereotype.

A Caution
It isnot clear that generalizing stereotypes makes much sense.

Speci al i zati ons
Text box. Lists any specialized stereotype (i.e. for which this stereotype is a generalization.

Caution

It is not clear that specializing stereotypes makes much sense.

16.6. Diagram

The UML standard specifies eight principal diagrams, all of which are supported by ArgoUML.

e Use case diagram. Used to capture and analyse the requirements for any OOA&D project. See
Chapter 17, Use Case Diagram Artifact Reference for details of the ArgoUML use case diagram and
the artifacts it supports.

e Classdiagram. This diagram captures the static structure of the system being designed, showing the
classes, interfaces and datatypes and how they are related. Variants of this diagram are used to show
package structures within a system (the package diagram) and the relationships between particular
instances (the object diagram).

The ArgoUML class diagram provides support for class and package diagrams. See Chapter 18,
Class Diagram Artifact Reference for details of the artifactsit supports. The object diagram is supor-
ted on the Deployment diagram.

203

Top Level Artifact Reference

Behavior diagrams. There are four such diagrams (or strictly speaking, five, since the use case dia-
gram is atype of behavior diagram), which show the dynamic behavior of the system at all levels.

e Satechart diagram. Used to show the dynamic behavior of a single object (class instance). This
diagram is of particular use in systems using complex communication protocols, such asin tele-
communications. See Chapter 20, Statechart Diagram Artifact Reference for details of the
ArgoUML statechart diagram and the artifacts it supports.

e Activity diagram. Used to show the dynamic behavior of groups of objects (class instance). This
diagram is an alternative to the statechart diagram, and is better suited to systems with a great
deal of user interaction. See Chapter 22, Activity Diagram Artifact Reference for details of the
ArgoUML activity diagram and the artifactsit supports.

e Interaction diagrams. There are two diagrams in this category, used to show the dynamic inter-
action between objects (classinstances) in the system.

* Sequence diagram. Shows the interactions (typically messages or procedure calls) between
instances of classes (objects) and actors against atimeline. Particularly useful where the tim-
ing relationships between interactions are important. See Chapter 19, Sequence Diagram Ar-
tifact Reference for details of the ArgoUML sequence diagram and the artifacts it supports.

» Collaboration diagram. Shows the interactions (typically messages or procedure cals)
between instances of classes (objects) and actors against the structural relationships between
those instances. Particularly suitable where it is useful to relate interactions to the static struc-
ture of the system. See Chapter 21, Collaboration Diagram Artifact Reference for details of
the ArgoUML collaboration diagram and the artifacts it supports.

Implementation diagrams. UML defines two implementation diagrams to show the relationship
between the software components that make up a system (the component diagram) and the relation-
ship between the software and the hardware on which it is deployed at run-time (the deployment dia-
gram.

The ArgoUML deployment diagram provides support for both component and deployment diagrams,
and additionally for object diagrams. See Chapter 23, Deployment Diagram Artifact Reference for
details of the diagram and the artifacts it supports.

Diagrams are created using the Cr eat e drop down menu (see Section 10.6, “The Create Menu”), or
with the tools on the toolbar (see Section 9.4, “Create operations’).

B

Note

ArgoUML uses its deployment diagram to create the UML 1.4 component, deployment
and object diagrams.

Caution

Statechart and activity diagrams are associated with a particular class or operation (or the

latter also with a package), and can only be created when this modelelement has been se-
lected.

. Warning

In ArgoUML version 0.20, the UML 1.4 object diagram as a variant of the class diagram is
not directly supported. However, it is possible to create simple object diagrams within the
ArgoUML deployment diagram.

204

Top Level Artifact Reference

16.6.1. Diagram Details Tabs

The details tabs that are active for diagrams are as follows.
ToDol t em
Standard tab.

Properties
See Section 16.6.3, “Property Fields For Diagram™ below.

16.6.2. Diagram Property Toolbar

N Go up
Navigate up through the package structure of the model.

Im-Delete

This deletes the diagram from the model. As a consequence, in case of a statechart diagram or an
activity diagram, all contained elements are del eted, too.

16.6.3. Property Fields For Diagram

Narme

The name of the diagram. There are no conventions for naming diagrams. By default, ArgoUML
uses the (space separated) diagram name and a sequence number, thus Use Case Di agram 1.

. Ti

i P
This name is used to generate a filename when activating the “Save Graphics...”
menu-item.

205

Chapter 17. Use Case Diagram Artifact
Reference

17.1. Introduction

This chapter describes each artifact that can be created within a use case diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 13.3, “Properties Tab”). That section covers properties in general, in this chapter they are linked to
specific artifacts.

Figure 17.1, “Possible artifacts on a use case diagram.” shows a use case diagram with all possible arti-
facts displayed.

Figure 17.1. Possible artifacts on a use case diagram.

UseCasefssociation —
GeneralisadUszeCase
actorEnd uzeCazeEnd \
Actar
_-——“__'d___'________‘—h —
Specifichctor </ SpecificllseCase x.}

-—

—_— e ..______\?_ J—
=" 7 zdincludess - v
SubsidiangseCaseOne }/J eewtends s
- N
____F__FF-“’ Einclude=> 3

-

e i
L —
@ianﬂsetase Two> <5PecializedUseCase
—
__,_:—'—"'-F'_

17.1.1. ArgoUML Limitations Concerning Use Case Dia-
grams

Use case diagrams are now well supported within ArgoUML. There still are some minor limitations
though. One is that extension points may be shown in a separate compartment on the use case, but thisis
not retained after saving and reloading.

Note

Earlier versions of ArgoUML (0.9 and earlier) implemented extend and include relation-
ships by using a stereotyped dependency relationship. Although such diagrams will show
correctly on the diagram, they will not link correctly to the use cases, and should be re-
placed by proper extend and include relationships using the current system.

= L1: Add functionality: loc ‘”';1{\
]

L&

206

Use Case Diagram Artifact Reference

17.2. Actor

An actor represents any external entity (human or machine) that interacts with the system, providing in-
put, receiving output, or both.

Within the UML metamodel, actor isasub-class of cl assi fi er.

The actor is represented by a“stick man” figure on the diagram (see Figure 17.1, “Possible artifacts on a
use case diagram.”).

17.2.1. Actor Details Tabs

The details tabs that are active for actors are as follows.

ToDoltem
Standard tab.

Properties
See Section 17.2.2, “Actor Property Toolbar” and Section 17.2.3, “Property Fields For Actor” be-
low.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab. Thefill color is used for the stick man's head.

Sour ce
Standard tab. Usually, no code is provided for an actor, sinceit is external to the system.
- Note

The source tab content can be changed, but the changes are not retained.

Constraints
Standard tab. ArgoUML only supports constraints on Classes and Features (Attributes, Operations,
Receptions, and Methods), so thistab is grayed out.

Tagged Val ues
Standard tab. In the UML metamodel, Act or has the following standard tagged values defined.

» persi stence (from the superclass, Cl assi fi er). Vauest ransi t ory, indicating state

is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

. Tip
Actors sit outside the system, and so their internal behavior is of little concern, and
this tagged valueis best ignored.
» senmantics (from the superclass, Cl assi fi er). The vaue is a specification of the se-
mantics of the actor.

» deri ved (from the superclass, Model El enent). Vauest r ue, meaning the actor is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

207

Use Case Diagram Artifact Reference

- Note
Derived actors have limited value, since they sit outside the system being de-
signed. They may have their value in analysis to introduce useful names or con-
cepts.
Checkl i st

Standard tab for a Classifier.

17.2.2. Actor Property Toolbar

i Go up
Navigate up through the package structure of the model.

;?{ Add Actor

This creates a new actor within the model, (but not within the diagram), navigating immediately to
the properties tab for that actor.

Tip

This method of creating a new actor may be confusing. It is much better to create an
actor on the diagram.

ﬁ Del et e
This del etes the sel ected actor from the model.

. Warning

Thisis adeletion from the model not just the diagram. To delete an actor from the dia-
gram, but keep it within the model, use the main menu Renbve From Di agr am
(or press the Delete key).

17.2.3. Property Fields For Actor

Name

Text box. The name of the actor. The diagram shows this name below the stick man figure. Since an
actor is a classifier, it would be conventional to Capitalize the first letter (and initial letters of any
component words), e.g. Renot eSensor .

- Note

ArgoUML does not enforce any haming convention for actors

St ereot ype

208

Use Case Diagram Artifact Reference

Drop down selector. Actor is provided by default with the UML standard stereotypes (net a-
cl ass, powertype, process, thread, utility) for classifiers. Stereotypes are of limited
value with actors. The stereotypes machi ne, or gani zat i on, per son and si ngl et on are
probably of most use. However, they are not provided by default with ArgoUML.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Namespace

Text box. Records the namespace for the actor. This is the package hierarchy.
Modi fiers

Check box, with entries Abst r act , Leaf and Root .

» Abstract isusedto declare that this actor cannot be instantiated, but must always be special-
ized.

a Caution

While actors can be specialized and generalized, it is not clear that an abstract act-
or has any meaning. Perhaps it might be used to indicate an actor that does not it-
self interact with a use case, but whose children do.

» | eaf indicates that this actor can have no further children, while Root indicates it is a top
level actor with no parent.
General i zati ons
Text area. Lists any actor that generalizes this actor.
Button 1 double click navigates to the generalization and opens its property tab.
Speci al i zati ons

Text box. Lists any specialized actor (i.e. for which this actor is a generalization. The specialized
actors can communicate with the same use case instances as this actor.

Button 1 double click navigates to the generalization and opens its property tab.
Associ ati on Ends
Text area. Lists any association ends of associations connected to this actor.

Button 1 double click navigates to the selected entry.

17.3. Use Case

A use case represents a complete meaningful “chunk” of activity by the system in relation to its external
users (actors), human or machine. It represents the primary route through which requirements are cap-
tured for the system under construction

Within the UML metamodel, use caseis a sub-classof cl assi fi er.

209

Use Case Diagram Artifact Reference

The use caseicon is an oval (see Figure 17.1, “Possible artifacts on a use case diagram.”). It may be split
in two, with the lower compartment showing extension points

e Caution

By default ArgoUML does not show the extension point compartment. It may be revealed
by the context sensitive Show menu (using button 2 click), or from the Presentation tab.

17.3.1. Use Case Details Tabs

The details tabs that are active for use cases are as follows.

ToDol tem
Standard tab.

Properties
See Section 17.3.2, “Use Case Property Toolbar” and Section 17.3.3, “Property Fields For Use
Case” below.

Docunent at i on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab. The Fill color is used for the use case oval.

The Di spl ay: Extension Poi nts check box is used to control whether an extension point
compartment is displayed.

Sour ce
Standard tab. It would not be usual to provide any code for a use case, since it is primarily avehicle
for capturing requirements about the system under construction, not creating the solution.

Tagged Val ues
Standard tab. In the UML metamodel, UseCase has the following standard tagged values defined.

» persistence (from the superclass, Cl assi fi er). Vauest ransi tory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

Tip
In general the instantiation of use casesis hot a major aspect of any design method

(they are mostly concerned with requirements capture. For most OOA& D method-
ologies, thistag can safely be ignored.

 semantics (from the superclass, Cl assifi er). The value is a specification of the se-
mantics of the use case.

» derived (from the superclass, Model El errent). Vauest r ue, meaning the use case is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived use cases till have their value in analysis to introduce useful names or

210

Use Case Diagram Artifact Reference

concepts.

Checkl i st
Standard tab for a Classifier.

17.3.2. Use Case Property Toolbar

N Go up
Navigate up through the package structure of the model.

.::j. New use case

This creates a new use case within the model, (but not within the diagram), and shows immediately
the properties tab for that use case.

i Tip

This method of creating a new use case can be confusing. It is much better to create a
new use case on the diagram of your choice.

= New ext ensi on poi nt

This creates a new use extension point within the namespace of the current use case, with the cur-
rent use case as its associated use case, navigating immediately to the properties tab for that exten-
sion point.

ﬁ Del et e
This deletes the selected use case from the model.

. Warning

Thisis a deletion from the model not just the diagram. To delete a use case from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

17.3.3. Property Fields For Use Case

Name

Text box. The name of the use case. Since a use case is a classifier, it would be conventional to
Capitalize the first letter (and initial letters of any component words), e.g. Renot eSensor . The
name is shown inside the oval representation of the use case on the diagram.

- Note

211

Use Case Diagram Artifact Reference

ArgoUML does not enforce any naming convention for use cases

St ereot ype

Drop down selector. Use case is provided by default with the UML standard stereotypes (net a-
cl ass, powertype, process, thread, utility) for classifiers. Stereotyping can be useful
when creating use cases in the problem domain (requirements capture) and solution domain
(analysis), but none of the predefined stereotypes are well suited to this.
Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see
Section 16.5, “ Stereotype”).

Namespace

Text box. Records the namespace for the use case. Thisis the package hierarchy.

Modi fiers

Check box, with entries Abst r act Leaf and Root .

Abst ract isused to declare that this actor cannot be instantiated, but must always be special-
ized. .

Leaf indicates that this use case can have no further children, while Root indicatesit is atop
level use case with no parent.

Ext ensi on Points

Text box. If thisuse caseis, or can be extended, thisfield lists the extension points for the use case.

- Note

Extension points are listed by their location point rather than their name.

Where an extension point has been created (see below), button 1 Double Click will navigate to that
relationship. Button 2 gives a pop up menu with one entry.

New. Add a new extension point and navigate to it, making this use case the owning use case of
the extension point.

Ceneral i zati ons

Text area. Lists use cases which are generalizations of this one. Will be set whenever a generaliza-

tion is created on the from this Use Case. Button 1 Double Click on a generalization will navigate to
that generalization.

Speci al i zati ons

Text box. Lists any specialized use case (i.e. for which this use case is a generalization.

Button 1 double click navigates to the generalization and opens its property tab.

Ext ends

212

Use Case Diagram Artifact Reference

Text box. Lists any class that is extended by this use case.

Where an extends relationship has been created, button 1 double click will navigate to that relation-
ship.

I ncl udes
Text box. Lists any use case that this use case includes.

Where an include relationship has been created, button 1 Double Click will navigate to that relation-
ship.

Associ ation Ends
Text box. Lists any association ends (see Section 18.11, “Association™) of associations connected to
this use case.

Button 1 double click navigates to the selected entry.

17.4. Extension Point

An extension point describes a point in a use case where an extending use case may provide additional
behavior.

Examples for atravel agent sales system might be the use case for paying for aticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Ext ensi on Poi nt isasub-class of Model El emrent . A use case may
display an extension point compartment (see Section 17.3, “Use Case” for details), in which extension
points are shown with the following syntax.

name: location.

17.4.1. Extension Point Details Tabs

The details tabs that are active for extension points are as follows.

ToDol t em
Standard tab.

Properties

See Section 17.4.2, “Extension Point Property Toolbar” and Section 17.4.3, “Property Fields For
Extension Point” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Sour ce
Standard tab. It would not be usual to provide any code for an extension point, sinceit is external to
the system.
Note
¥

The source tab content can be changed, but this has no effect.

213

Use Case Diagram Artifact Reference

Tagged Val ues

Standard tab. In the UML metamodel, Ext ensi onPoi nt has the following standard tagged val-
ues defined.

« deri ved (from the superclass, Model El enent). Valuest r ue, meaning the extension point
is redundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

It isnot clear how derived extension points could have any value in analysis.

17.4.2. Extension Point Property Toolbar

o Go up
Navigate up to the use case which owns this extension point.
New Ext ensi on Poi nt
=
This creates a new Extension Point below the selected extension point, navigating immediately to
the properties tab of the newly created extension point.

% New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected extension point, nav-
igating immediately to the properties tab for that stereotype.

ﬁ Del ete
This deletes the selected extension point from the model.

17.4.3. Property Fields For Extension Point

Name

Text box. The name of the extension point.

. Ti
i P
It is quite common to leave extension points unnamed in use case analysis, since they
are always listed (within use cases and extend relationships) by their location.
Note
CEF

ArgoUML does not enforce any naming convention for extension points.

St er eot ype

Drop down selector. ArgoUML does not provide any stereotypes for extension points.

214

Use Case Diagram Artifact Reference

Tip

Stereotyping does not have great value on an extension point.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Locati on

Text box. A description of the location of this extension point within the owning use case.
Tip

Extension points are always listed (within use cases and extend relationships) by their
location. Typically thiswill be the number/name of the paragraph in the specification.

Base Use Case

Text box. Shows the base use case within which this extension point is defined. Button 1 Double
Click will navigate to the use case.

Ext end
Text box. Lists all use cases which extend the base use case through this extension point.

Where an extending use case exists, button 1 double click will navigate to that relationship.

17.5. Association

An association on a use case diagram represents a relationship between an actor and a use case showing
that actor's involvement in the use case. The invocation of the use case will involve some (significant)
change perceived by the actor.

Associations are described fully under class diagrams (see Section 18.11, “Association™).

17.6. Association End

Association ends are described under class diagrams (see Section 18.12, “ Association End”).

17.7. Dependency
Dependencies are described under class diagrams (see Section 18.13, “ Dependency”).
A Caution

Dependency has little use in use case diagrams. It is provided, because earlier versions of
ArgoUML used it (incorrectly) to implement include and extends relationships.

215

Use Case Diagram Artifact Reference

17.8. Generalization

Generalization is arelationship between two use cases or two actors. Where A isageneraization of B, it
means A describes more general behavior and B a more specific version of that behavior.

Examples for atravel agent sales system might be the use case for making a booking as a generalization
of the use case for making a flight booking and a salesman actor being a generalization of a supervisor
actor (since supervisors can aso act as salesmen, but not vice versa).

Generalization is analogous to class inheritance within OO programming.
Note
i

It is easy to confuse extends relationships between use cases with generalization. However
extends is about augmenting a use case's behavior at a specific point. Generalization is
about specializing the behavior throughout the use case.

Within the UML metamodel, Gener al i zat i on isasub-classof Rel at i onshi p.

Generalization is represented as an arrow with white filled head from the specialized use case or actor to
the generalized use case or actor (see Figure 17.1, “Possible artifacts on a use case diagram.”).

17.8.1. Generalization Details Tabs

The details tabs that are active for associations are as follows.

ToDoltem
Standard tab.

Properties
See Section 17.8.2, “Generalization Property Toolbar” and Section 17.8.3, “Property Fields For
Generalization” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab

- Note
The values for the bounds of the generalization are downlighted, since they have no
meaning, given that the generalization istied to a particular actor and use case.

Sour ce
Standard tab. Y ou would not expect to generate any code for a generalization end so thisis empty.

Tagged Val ues
Standard tab. In the UML metamodel, Gener al i zat i on has the following standard tagged val-
ues defined.

* derived (from the superclass, Mbdel El enent). Valuest r ue, meaning the generalization
is redundant—it can be formally derived from other elements, or f al se meaning it cannot.

216

Use Case Diagram Artifact Reference

Note

Derived generalizations still have their value in analysis to introduce useful names
or concepts, and in design to avoid re-computation.

17.8.2. Generalization Property Toolbar

{;:__}GOUP

Navigate up through the package structure of the model. For a generalization this will be the pack-
age containing the generalization.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected generalization, nav-
igating immediately to the properties tab for that generalization.

ﬁ Del et e
This del etes the selected generalization from the model.

. Warning

Thisis a deletion from the model not just the diagram. To delete a generalization from
the diagram, but keep it within the model, use the main menu Renove From Di a-
gr am(or pressthe Delete key).

17.8.3. Property Fields For Generalization

Name

Text box. The name of the generalization.

. Ti
i P
It is quite common to leave generalizations unnamed in use case analysis.
Note
CEF
ArgoUML does not enforce any haming convention for associations.
Note
CEF

There is no representation of the name of a generalization on the diagram.

St ereot ype

217

Use Case Diagram Artifact Reference

Drop down selector. Generalization is provided by default with the UML standard stereotype i nt
pl ement at i on. The stereotype is shown between « and » above or across the generalization.

. Tip

Stereotyping generalization does not have great value on a use case diagram. The
standard stereotype is about implementation, and suited to the use of generalization on
class diagrams.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Di scri m nat or

Text box. The name of a discriminator for the specialization. UML 1.3 alows grouping of specializ-
ationsinto a number of sets, on the basis of thisvalue.

Tip

The empty string “” isavalid entry (and the default) for thisfield. The discriminator is
only of practical use in cases of multiple inheritance. A (class diagram) example is
shown in Figure 17.2, “Example use of a discriminator with generalization”. Here
each type of user should inherit from two sorts of user. One distinguishing between
local or remote user (which can be identified by one discriminator) and one indicating
their function as a user (identified by a different discriminator).

Thereislittle point in using this within a use case diagram.

Namespace
Text box. Records the namespace for the generalization. This is the package hierarchy.
Par ent

Text box. Shows the use case or actor that is the parent in this relationship, i.e. the more general end
of the relationship. Button 1 Double Click on this entry will navigate to that use case or actor. But-
ton 2 click will give a pop up menu, with a single entry, Open which will also navigate to that use
case or actor.

Child
Text box. Shows the use case or actor that is the child in this relationship, i.e. the more specific end
of the relationship. Button 1 Double Click on this entry will navigate to that use case or actor. But-
ton 2 click will give a pop up menu, with a single entry, Open which will also navigate to that use
case or actor.

Power t ype

Drop down selector providing access to all standard UML types provided by ArgoUML and all new
classes created within the current model.

Thisisthe type of the child entity of the generalization.

218

Use Case Diagram Artifact Reference

Tip

This can be ignored for use case analysis. The only sensible value to put in would be
the child use case type (as a classifier, this appears in the drop down list.

Figure 17.2. Example use of a discriminator with generalization

Liger
T T rights rights rights rights
location lgcation
Looa! Femobe Administztor | [FPowes! Lser Flainlser i sitor
X 7k
SysAdmin Crummy - Zuest
Stupid

1 1
s . [~ . . L Walid inheritance
“alid inheritance Incomplete inheritance. Thizis a real nonsence.

It does not realize 'rights' Howw could a Visitor be Administrator

pseudo- attribute. at the same time"?

17.9. Extend

Extend is a relationship between two use cases. Where A extends B, it means A describes more specific
behavior and B the general version of that behavior.

In many respects extend is like generalization. However the key difference is that the extended use case
defines extension points (see Section 17.4, “Extension Point”), which are the only places where its beha-
vior may be extended. The extending use case must define at which of these extension points it adds be-
havior.

This makes the use of extend more tightly controlled than general extension, and it is thus preferred
wherever possible.

Examples for atravel agent sales system might be the use case for paying for aticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Ext end isasub-class of Rel at i onshi p.

219

Use Case Diagram Artifact Reference

An extend relationship is represented as a dotted link with an open arrow head and a label «ext end».
If acondition is defined, it is shown under the «ext end» label (see Figure 17.1, “Possible artifacts on
ause case diagram.”).

17.9.1. Extend Details Tabs

The details tabs that are active for extend relationships are as follows.
Note
i

There is no source tab, since there is no source code that could be generated for an extend
relationship.

ToDol tem
Standard tab.

Properties
See Section 17.9.2, “Extend Property Toolbar” and Section 17.9.3, “Property Fields For Extend”
below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab

- Note

The values for the bounds are downlighted, since the extend is tied to a particular pair
of use cases.

Sour ce
Standard tab. Y ou would not expect to generate any code for an extend relationship so thisis empty.

Tagged Val ues
Standard tab. In the UML metamodel, Ext end has the following standard tagged values defined.

» deri ved (from the superclass, Model El enent). Vauest r ue, meaning the extend relation-
ship is redundant—it can be formally derived from other elements, or f al se meaning it can-
not.

- Note

Derived extend relationships could have their value in analysis to introduce useful
names or concepts.

17.9.2. Extend Property Toolbar

o Go up
Navigate up through the package structure of the model. For a extend this will be the package con-

220

Use Case Diagram Artifact Reference

taining the extend.

= New ext ensi on poi nt

This creates a new use case extension point within the namespace of the current extend relationship,
with the current extend relationship asits first extending relationship.

. Ti
i P
While it is perfectly valid to create extension points from an extend relationship, the

created extension point will have no associated use case (it can subsequently be set
up).

It would be more usual to instead create the extension point within a use case and sub-

sequently link to it from an extend relationship (see Section 17.9.3, “Property Fields
For Extend” below).

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “Stereotype”) for the selected extent relationship,
navigating immediately to the properties tab for that stereotype.

-m- Del et e
This del etes the selected extend rel ationship from the model.

. Warning

This is a deletion from the model not just the diagram. To delete a extend from the

diagram, but keep it within the model, use the main menu Renove From Di agr am
(or press the Delete key).

17.9.3. Property Fields For Extend

Narme

Text box. The name of the extend relationship.

. Ti
i P
It is quite common to leave extends unnamed in use case analysis.
N
- ote

ArgoUML does not enforce any haming convention for extend relationships.

St ereot ype

Drop down selector. ArgoUML does not provide any stereotypes by default.

221

Use Case Diagram Artifact Reference

. Ti
i P
Stereotyping does not have great value on an extend relationship.
Note
¥

There is no representation of the stereotype of an extend relationship on the diagram.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Nanmespace
Text box. Records the namespace for the extend relationship. Thisis the package hierarchy.

Button 1 Double Click on the entry will navigate to the package defining this namespace (or the
model for the top level namespace).

Base Use Case

Drop down selector. Shows the use case that is being extended by this extend relationship. Button 1
click on this entry will give a drop down menu of all available use cases (and an empty entry) which
may be selected by button 1 click.

Ext ensi on

Drop down selector. Show the use case that is doing the extending through this extend relationship.
Button 1 click on this entry will give a drop down menu of all available use cases (and an empty
entry) which may be selected by button 1 click.

Ext ensi on Poi nts

Text box. If thisuse caseis, or can be extended, thisfield lists the extension points for the use case.

- Note

Extension points are listed by their location point rather than their name.

Where an extension point has been created, button 1 double click will navigate to that relationship.
Button 2 gives a pop up menu with two entries.

e Add. The “Ad/Remove ExtensionPoints’ window opens. In this window it is possible to build a
list of extension points.

* New. Add a new extension point in the list and navigate to it. The current extend relationship is
added asthefirst in list of extending relationships of the new extension point.

Condi tion
Text area. Multi-line textual description of any condition attached to the extend relationship.

17.10. Include

222

Use Case Diagram Artifact Reference

Include is a relationship between two use cases. Where A includes B, it means B described behavior that
isto beincluded in the description of the behavior of A at some point (defined internally by A).

Examples for a travel agent sales system might be the use case for booking travel, which includes use
cases for booking flights and taking payment.

Within the UML metamodel, | ncl ude isasub-class of Rel ati onshi p.

Aninclude relationship is represented as a dotted link with an open arrow head and alabel «i ncl ude»
(see Figure 17.1, “ Possible artifacts on a use case diagram.”).

17.10.1. Include Details Tabs

The details tabs that are active for include relationships are as follows.

- Note
There is no source tab, since there is no source code that could be generated for an include
relationship.

ToDol t em
Standard tab.

Properties
See Section 17.10.2, “Include Property Toolbar” and Section 17.10.3, “Property Fields For Include”
below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab

- Note

The values for the bounds of the include relationships are downlighted, since the in-
clude relationship is represented by aline between a particular pair of use cases.

Tagged Val ues
Standard tab. In the UML metamodel, | ncl ude has the following standard tagged values defined.

e derived (from the superclass, Model El enent). Values t r ue, meaning the include rela
tionship is redundant—it can be formally derived from other elements, or f al se meaning it
cannot.

- Note

Derived include relationships could have their value in analysis to introduce useful
names or concepts.

17.10.2. Include Property Toolbar

223

Use Case Diagram Artifact Reference

{‘%Goup

Navigate up through the package structure of the model. For a include this will be the package con-
taining the include.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected include relationship,
navigating immediately to the properties tab for that stereotype.

-m-Delete

This del etes the selected include relationship from the model.

. Warning

This is a deletion from the model not just the diagram. To delete a include from the

diagram, but keep it within the model, use the main menu Renove From Di agr am
(or press the Delete key).

17.10.3. Property Fields For Include

Name

Text box. The name of the include relationship.

. Ti
i P
It is quite common to leave include relationships unnamed in use case analysis.
N
- ote

ArgoUML does not enforce any naming convention for include relationships.

St ereot ype

Drop down selector. ArgoUML does not provide any stereotypes for include relationships.

. Ti
i P
Stereotyping does not have great value on an include relationship.
N
- ote

Thereis no representation of the stereotype of an include relationship on the diagram.

Navi gat e Stereotype
B icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

224

Use Case Diagram Artifact Reference

Section 16.5, “ Stereotype”).
Nanmespace
Text box. Records the namespace for the include. This is the package hierarchy.

Button 1 click on the entry will navigate to the package defining this namespace (or the model for
the top level namespace).

Base Use Case

Drop down selector. Records the use case that is doing the including in this include relationship.
Button 1 click on this entry will give adrop down menu of all available use cases which may be se-
lected by button 1 click.

I ncl uded Use Case

Drop down selector. Records the use case that is being included by this include relationship. But-
ton 1 click on this entry will give a drop down menu of all available use cases (and an empty entry)
which may be selected by button 1 click.

225

Chapter 18. Class Diagram Artifact

Reference

18.1. Introduction

This chapter describes each artifact that can be created within a class diagram. Note that some sub-

artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

Class diagrams are used for only one of the UML static structure diagrams, the class diagram itself. Ob-

ject diagrams are represented on the ArgoUML deployment diagram.

In addition, ArgoUML uses the class diagram to show model structure through the use of packages.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “Properties Tab”). That section covers Properties in general, in this chapter they are linked to

specific artifacts.

Figure 18.1, “Possible artifacts on a class diagram.” shows a class diagram with all possible artifacts dis-

played.

Figure 18.1. Possible artifacts on a class diagram.

= =Intarface = =

Example Inte rface

+interfaceQpiinte face Arg: Intege n: BigDecimal

= <5ingleton: =

SingletonGlass

+static instanceVariable: SingletonClass

-3ingletonClassd

AbstractFarertClzss

+static classAttribute : int

~+ope mtioniclzssAny: De peadedOnClass): void

RealizationClazs

+publicAttribute: byte = 42
#protactedAttribute : De moType
-privateAttribute : BigDecimal

innerClass

+operationiclassArg: De pendedOnClass): void
+interfaceOpd: BigDecimal

W

De pe ndedOnClazs

COmpositeAssociation

ThirdClass

aggregate Association

+instancevariable: int

SecondClass

g

+De pe nde ndOnC lass(id: Integen

P 0.
association -

FourthClass

dependedRole fourthRole

Figure 18.2, “Possible artifacts on a package diagram.” shows a package diagram with all possible arti-
facts displayed.

226

Class Diagram Artifact Reference

Figure 18.2. Possible artifacts on a package diagram.

rmain package |
sub package 1 library package

|
sub kage 2 éu‘
Facrag =ub library package

18.1.1. Limitations Concerning Class Diagrams in
ArgoUML

18.2.

The current implementation does not allow datatypes to be shown on class diagrams.

A variant of the class diagram within the UML standard is the object diagram. Thereis currently no sup-
port for objects or links within ArgoUML Class diagrams;. Instead the ArgoUML deployment diagram
does have both objects and links, and can be used to draw object diagrams.

Package

The package is the main organizationa artifact within ArgpUML. In the UML metamodel it is a sub-
class of both Nanmespace and Gener al i zabl eEl enent .

Note

¥
ArgoUML also implements the UML Mbdel artifact as a sub-class of package, but not the
Subsyst emartifact.

ArgoUML also implements some less common aspects of UML model management. In particular the re-
lationship UML 1.4 defines as Gener al i zat i on and the sub-class dependency Per mi ssi on for
use between packages.

18.2.1. Package Details Tabs

227

Class Diagram Artifact Reference

The details tabs that are active for packages are as follows.
ToDol tem
Standard tab.

Properties

See Section 18.2.2, “Package Property Toolbar” and Section 18.2.3, “Property Fields For Package”
below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Presentati on
Standard tab. The Bounds: field defines the bounding box for the package on the diagram.

Sour ce
Standard tab. This contains a template package declaration appropriate to the entire package. In the
future thiswould be part of the code generation activity.

Tagged Val ues
Standard tab. In the UML metamodel, Package has the following standard tagged values defined.

» derived (from the superclass, Model El enent). Valuest r ue, meaning the package is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived packages till have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

18.2.2. Package Property Toolbar

o Go up
Navigate up through the package structure.

EI New Package

This creates a new package within the package (which appears on no diagram), navigating immedi-
ately to the properties tab for that package.

m New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype”) for the selected package, navigating im-
mediately to the properties tab for that datatype.

- New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected package, navigating
immediately to the properties tab for that stereotype.

-m- Del et e Package

228

Class Diagram Artifact Reference

Deletes the package from the model.

. Warning

This is a deletion from the model not just the diagram. To delete a package from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

18.2.3. Property Fields For Package

Name

Text box. The name of the package. The name of a package, like all packages, is by convention all
lower case, not containing any periods.

- Note

By default a new package has no name defined. The package will appear with the
name (anon Package) intheexplorer.
St ereot ype

Drop down selector. Package is provided by default with the UML standard stereotypes for package
(facade, f ranewor k, net anodel , st ub,t opLevel , syst emvbdel).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).
Namespace
Drop down selector. Records the namespace for the package. This is the package hierarchy.
Visibility
Radio box, with four entries publ i c, pri vat e, pr ot ect ed, and package. Indicates whether
the package is visible outside the package.
Modi fiers

Check box, with entriesabst ract, | eaf andr oot .

» Abstract isused to declare that this package cannot be instantiated, but must always be spe-
cialized.
. Tip

The meaning of abst ract applied to a package if not that clear. It might mean
that the package contains interfaces or abstract classes without realizations. Thisis
probably better handled through stereotyping of the package (for example
«f acade»).

» Leaf indicatesthat this package can have no further subpackages.

229

Class Diagram Artifact Reference

* Root indicatesthat it isthe top level package.
Tip
Within ArgoUML Root only meaningfully applies to the Model, since all pack-

ages sit within the model. This could be used to emphasize that the Model is at the
top level.

General i zati ons
Text area. Lists any package that generalizes this package.
Button 1 double click navigates to the generalization and opens its property tab.
Speci al i zat i ons
Text box. Lists any specialized package (i.e. for which this package is a generalization.
button 1 double click navigates to the generalization and opens its property tab.
Omed El ements

Text area. A listing of all the packages, classes, interfaces, datatypes, actors, use cases, associations,
generalizations and stereotypes within the package.

Button 1 double click on any item listed here navigatesto that artifact.

18.3. Datatype

Datatypes are not specific to packages or class diagrams, and are discussed within the chapter on top
level artifacts (see Section 16.3, “ Datatype”).

18.4. Stereotype

Stereotypes are not specific to packages or class diagrams, and are discussed within the chapter on top
level artifacts (see Section 16.5, “ Stereotype”).

18.5. Class

The class is the dominant artifact on a class diagram. In the UML metamodel it is a sub-class of Cl as-
sifier andCGeneral i zabl eEl emrent .

A class is represented on a class diagram as a rectangle with three horizontal compartments. The top

compartment displays the class name (and stereotype), the second compartment any attributes and the
third any operations. The last two compartments may optionally be hidden.

18.5.1. Class Details Tabs

The details tabs that are active for classes are as follows.

ToDol tem
Standard tab.

230

Class Diagram Artifact Reference

Properties
See Section 18.5.2, “Class Property Toolbar” and Section 18.5.3, “Property Fields For Class’ be-
low.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Presentati on
Standard tab. The tick boxes, At t ri but es and Oper at i ons allow the attributes and operations
compartments to be shown (the default) or hidden. This is a setting valid for only the current dia-
gram that shows the class. The Bounds: field defines the bounding box for the package on the dia-
gram.

Sour ce
Standard tab. This contains a template for the class declaration and declarations of associated
classes.

Constraints
Standard tab. There are no standard constraints defined for Cl ass within the UML metamode!.

Tagged Val ues
Standard tab. In the UML metamodel, Cl ass has the following standard tagged values defined.
» persistence (from the superclass, Cl assi fi er). Vauest ransitory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when

an instance is destroyed.

 senmantics (from the superclass, Cl assi fi er). The vaue is a specification of the se-
mantics of the class.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the class is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

Note
L
Derived classes still have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.
Note
L
The UML El enment metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML
Checkl i st

Standard tab for a Classifier.

18.5.2. Class Property Toolbar

o Go up
Navigate up through the package structure.

231

Class Diagram Artifact Reference

gl\lew attribute

This creates a new attribute (see Section 18.6, “ Attribute”) within the class, navigating immediately
to the properties tab for that attribute.

g New oper ation

This creates a new operation (see Section 18.7, “Operation”) within the class, navigating immedi-
ately to the properties tab for that operation.

o New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

This creates a new inner class (which appears on no diagram) within the class. This belongs to the
class and is restricted to the namespace of the class. It exactly models the Java concept of inner
class. Asan inner class it needs no attributes or operations, since it shares those of its owner.

Note
i
Inner classis not a separate concept in UML. Thisis a convenient shorthand for creat-
ing a classthat is restricted to the namespace of its owning class.
E New cl ass

This creates a new class (which appears on no diagram) within the same namespace as the current
class.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected class, navigating im-
mediately to the properties tab for that stereotype.

Im-DeIete

This deletes the class from the model

. Warning

Thisis a deletion from the model not just the diagram. To delete a class from the dia-
gram, but keep it within the model, use the main menu Renobve From Di agr am
(or press the Delete key).

18.5.3. Property Fields For Class

Name

Text box. The name of the class. The name of a class has a leading capital |etter, with words separ-
ated by “bumpy caps’.

- Note

232

Class Diagram Artifact Reference

The ArgoUML critics will complain about class names that do not have an initial cap-
ital.

St ereot ype

Drop down selector. Class is provided by default with the UML standard stereotypes for Cl ass
(i npl erent ati onCl ass and type) and for C assifier (metaclass, powertype,
process,threadandutility).

Tip

One dstereotype that is not part of the UML standard, but is widely used is
Si ngl et on, used to distinguish classes which have a single static instance, and no
public constructor. Although not part of ArgpUML by default, this stereotype is un-
derstood by the critics. You may find it useful to create this stereotype for yourself
(see Section 16.5, “ Stereotype”).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).

Namespace
Drop down selector. Records and allows setting of the namespace for the class. This is the package
hierarchy.

Button 1 click on the entry will move the class to the selected namespace.
Modi fiers
Check box, with entries Abst r act , Leaf , Root ,and Act i ve.

» Abstract isused to declare that this class cannot be instantiated, but must aways be sub-
classed. The name of an abstract classis displayed initalics on the diagram.

A Caution

If a class has any abstract operations, then it should be declared abstract.
ArgoUML will not enforce this.

» Leaf indicatesthat this class cannot be further subclassed, while Root indicates it can have no
superclass. It is possible for a class to be both Abstract and Leaf, since its static operations may
still be referenced.

» Acti ve indicates that this class exhibits dynamic behavior (and is thus associated with a state
or activity diagram).

Visibility
Radio box, with four entries publ i c, pri vat e, pr ot ect ed, and package. Indicates whether
the classis visible outside the namespace.

C i ent Dependencies
Text area. Lists the “depending” ends of the relationship, i.e. the end that makes use of the other
end.

233

Class Diagram Artifact Reference

Button 1 double click navigates to the dependency and opens its property tab.

Suppl i er Dependenci es
Text area. Lists the “supplying” ends of the relationship, i.e. the end supplying what is needed by
the other end.

Button 1 double click navigates to the dependency and opens its property tab.

General i zati ons
Text area. Lists any class that generalizes this class.

Button 1 double click navigates to the generalization and opens its property tab.

Speci al i zati ons
Text box. Listsany specialized class (i.e. for which this class is a generalization).

Button 1 double click navigates to the generalization and opens its property tab.

Attributes
Text area. Lists al the attributes (see Section 18.6, “Attribute”) defined for this class. Button 1
double click navigates to the selected attribute. Button 2 gives a pop up menu with two entries,
which allow reordering the attributes.

* Myve Up. Only available where there are two or more attributes listed, and the attribute selec-
ted isnot at the top. It moves the attribute up one position.

 Move Down. Only available where there are two or more attributes listed, and the attribute se-
lected is not at the bottom. It moves the attribute down one position.

Associ ati on Ends
Text box. Lists any association ends (see Section 18.11, “Association™) of associations connected to
this class.

Button 1 double click navigates to the selected entry.

Qper ations
Text area. Lists al the operations (see Section 18.7, “Operation”) defined on this class. Button 1
click navigates to the selected operation. Button 2 gives a pop up menu with two entries, which al-
low reordering the operations.

 Move Up. Only available where there are two or more operations listed, and the operation se-
lected is not at the top. It moves the operation up one position.

 Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It moves the operation down one position.

Omned El erments
Text area. A listing of artifacts contained within the classes namespace. This is where any inner
class (see Section 18.5.2, “Class Property Toolbar™) will appear

Button 1 double click on any of the artifacts navigates to that artifact.
Tip

Most namespace hierarchies should be managed through the package mechanism.
Namespace hierarchies through classes are best restricted to inner classes. Conceivable
datatypes, signals and interfaces could also appear here, but actors and use cases
would seem of no value.

234

Class Diagram Artifact Reference

18.6. Attribute

Attribute is a named dlot within a class (or other O assi fi er) describing arange of values that may
be held by instances of the class. In the UML metamodel it is a sub-class of St r uct ur al Feat ur e
whichisitself asub-class of Feat ur e.

An attribute is represented in the diagram on a single line within the attribute compartment of the class.
Its syntax is as follows:

visibility attributeName : type [= initial Value]
visibility is+, #, - or ~ corresponding to publ i c, pr ot ect ed, pri vat e, or package visibility re-
spectively.
attributeName is the actual name of the attribute being declared.
typeisthe type (UML datatype, class or interface) declared for the attribute.

initialValue is any initial value to be given to the attribute when an instance of the class is created. This
may be overridden by any constructor operation.

In addition any attribute declared static will have its whole entry underlined on the diagram.

18.6.1. Attribute Details Tabs

The details tabs that are active for attributes are as follows.

ToDol t em
Standard tab.

Properties
See Section 18.6.2, “Attribute Property Toolbar” and Section 18.6.3, “Property Fields For Attrib-
ute” below.

Docunent at i on
Standard tab. See Section 13.4, “Documentation Tab”.

Sour ce
Standard tab. This contains a declaration for the attribute.

Constraints
Standard tab. There are no standard constraints defined for At t ri but e within the UML metamod-
d.

Tagged Val ues

Standard tab. In the UML metamodel, Attri but e has the following standard tagged values
defined.

e transient.

» volatile. Thisisan ArgoUML extension to the UML 1.4 standard to indicate that this attrib-
uteisrealized in some volatile form (for example it will be a memory mapped control register).

- Note

235

Class Diagram Artifact Reference

The UML El enment metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

Checkl i st
Standard tab for a Attribute.

18.6.2. Attribute Property Toolbar

o Go up
Navigate up through the package structure.

gl\lew attribute

This creates a new attribute within the owning class of the current attribute, navigating immediately
to the properties tab for that attribute.

Tip

Thisis a very convenient way to add a number of attributes, one after the other, to a
class.

o New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype”) for the selected attribute, navigating im-
mediately to the properties tab for that datatype.

% New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected attribute, navigating
immediately to the properties tab for that stereotype.

ﬁ Del et e
This deletes the attribute from the model

. Warning

This is a deletion from the model not just the diagram. If desired the whole attribute
compartment can be hidden on the diagram using the style tab (see Section 18.6.2,
“Attribute Property Toolbar”) or the button 2 pop up menu for the class on the dia-
gram.

18.6.3. Property Fields For Attribute

Nane

Text box. The name of the attribute. The name of a attribute has a leading lower case letter, with

236

Class Diagram Artifact Reference

words separated by “bumpy caps’.

- Note

The ArgoUML critics will complain about attribute names that do not have an initial
lower case |etter.

St er eot ype
Drop down selector. There are no UML standard stereotypesfor At t ri but e.

Navi gat e Stereotype
B icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Omner
Text box. Records the class which contains this attribute.

Button 1 double click on the entry will navigate to the class.
Mul tiplicity

Editable drop down selector. The default value (1) is that there is one instance of this attribute for
each instance of the class, i.e. it is a scalar. The drop down provides a number of commonly used
specifications for non-scalar attributes.

- Note

ArgoUML presents a number of predefined ranges for multiplicity for easy access.
The user may also enter any user defined range that follows the UML syntax, such as
“1..3,7,10".

Thevaue 1. . 1 is equivaent to the default (exactly one scalar instance). The selec-
tion 0. . 1 indicates an optional scalar attribute.

Type

Drop down selector. The type of this attribute. This can be any UML Cl assi fi er, athough in
practiceonly Cl ass, Dat aType, or | nt er f ace make any sense.

- Note

A type must be declared (it can be voi d). By default ArgoUML suppliesi nt asthe
type.

Navi gate Type
B icon. Thiswill navigate to the property panel for the currently selected type. (see Section 18.5,

“Class’, Section 18.3, “Datatype” and Section 18.15, “Interface”).
Initial Value

Text box with drop down. This allows you to set an initial value for the attribute if desired (thisis
optional). The drop down menu provides access to the common values 0, 1, 2, and nul | .

237

Class Diagram Artifact Reference

A Caution

Any constructor operation may ignorethisinitial value.
Visibility
Radio box, with entriespubl i ¢, pri vat e, pr ot ect ed and package.
* publi c. Theattributeis available to any artifact that can see the owning class.
e private. Theattributeis available only to the owning class (and any inner classes).

» protected. The attribute is available only to the owning class, or artifacts that are subclasses
of the owning class.

» package. Theattribute is available only to artifacts contained in the same package.
Changeability
Radio box, with entriesaddOnl y, changeabl e, andf r ozen.

e addOnl y. Meaningful only if the multiplicity is not fixed to a single value. Additional values
may be added to the set of values, but once created a value may not be removed or altered.

» changeabl e. There are no restrictions of modification.

» frozen. Also named “immutable’. The value of the attribute may not change during the life-
time of the owner class. The value must be set at object creation, and may never change after
that. This implies that there is usually an argument for this value in a constructor and that there
is no operation that updates this value.

Static
Check box for stati c. If unchecked (the defaults) then the attribute has “instance scope’. If

checked, then the attribute is static, i.e. it has “class scope”. Static attributes are indicated on the
diagram by underlining.

18.7. Operation

An operation is a service that can be requested from an object to effect behavior. In the UML metamodel
itisasub-class of Behavi or al Feat ur e whichisitself asub-class of Feat ur e.

In the diagram, an operation is represented on a single line within the operation compartment of the
class. Its syntax is asfollows:

visibility name (parameter list) : return-type-expression { property-string}
You can edit this line directly in the diagram, by double-clicking on it. All elements are optional and, if
left unspecified, the old values will be preserved.
A stereotype can be given between any two elementsin the line in the format: <<st er eot ype>>.

The following properties are recognized to have special meaning: abstract, concurrency, concurrent,
guarded, leaf, query, root and sequential.

The visibility is +, #, - or ~ corresponding to publ i ¢, pr ot ect ed, pri vat e visihility, or pack-

238

Class Diagram Artifact Reference

age visihility respectively.

static and final optionally appear if the operation has those modifiers. Any operation declared
static will have its whole entry underlined on the diagram.

There may be zero or more entries in the parameter list separated by commas. Every entry is a pair of
the form:

name: type

The return-type-expression is the type (UML datatype, class or interface) of the result returned.

Finally the whole entry is shown initalicsif the operation is declared abstract.

18.7.1. Operation Details Tabs

The details tabs that are active for operations are as follows.

ToDol t em
Standard tab.

Properties
See Section 18.7.2, “Operation Property Toolbar” and Section 18.7.3, “Property Fields For Opera-
tion” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Presentation
Standard tab. The Bounds: field does alow editing, but the changes have no effect.

Sour ce
Standard tab. This contains a declaration for the operation.

Constraints
Standard tab. There are no standard constraints defined for Oper at i on within the UML metamod-
el.

Tagged Val ues

Standard tab. In the UML metamodel, Oper ati on has the following standard tagged values
defined.

* semanti cs. Thevalueisaspecification of the semantics of the operation.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the operation is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived operations till have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML El enent metaclass from which all other artifacts are derived includes the

239

Class Diagram Artifact Reference

tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

Checkl i st
Standard tab for an Operation.

18.7.2. Operation Property Toolbar

o Go up
Navigate up through the package structure.
g New oper ati on

This creates a new operation within the owning class of the current operation, navigating immedi-
ately to the properties tab for that operation.

. Ti

i P

Thisis avery convenient way to add a number of operations, one after the other, to a
class.

D- New par amet er

This creates a new parameter for the operation, navigating immediately to the properties tab for that
parameter.

D New rai sed si gnal

This creates a new raised signal for the operation, navigating immediately to the properties tab for
that raised signal.

o New Dat at ype

This creates a new Datatype (see Section 16.3, “Datatype’) in the namespace of the owner of the
operation, navigating immediately to the propertiestab for that datatype.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the sel ected operation, navigating
immediately to the properties tab for that stereotype.

ﬁ Del et e
This deletes the operation from the model

. Warning

Thisis a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab (see Sec-
tion 18.7.2, “Operation Property Toolbar”) or the button 2 pop up menu for the class
on the diagram.

240

Class Diagram Artifact Reference

18.7.3. Property Fields For Operation

Narme

Text box. The name of the operation. The name of an operation has aleading lower case |etter, with
words separated by “bumpy caps’.

Note
L
The ArgoUML critics will complain about operation names that do not have an initial
lower case letter.
. Ti
i P

If you wish to follow the Java convention of constructors having the same name as the
class, you will violate thisrule. Silence the critic by setting the stereotypecr eat e for
the constructor operation.

St ereot ype

Drop down selector. There are two UML standard stereotypes for Oper at i on (from the parent
metaclass, Behavi or al Feat ur e), cr eat e anddest r oy.

Tip

You should use cr eat e as the stereotype for constructors, and dest r oy for de-
structors (which are called “finalize” methods under Java).

Navi gat e Stereotype
icon. If a stereotype has been selected, clicking button 1 will navigate to the stereotype prop-

erty panel (see Section 18.4, “ Stereotype”).

Owner
Text box. Records the class which contains this operation.

Button 1 double click on the entry will navigate to the class.
Visibility
Radio box, with entriespubl i ¢, pri vat e, pr ot ect ed and package.
* publi c. Theoperation is available to any artifact that can see the owning class.
e privat e. Theoperation isavailable only to the owning class (and any inner classes).

* protected. Theoperation is available only to the owning class, or artifacts that are subclasses
of the owning class.

» package. The operation is available only artifacts contained in the same package.
Modi fiers

Check box, with entriesabst ract, | eaf ,r oot,query,andstati c.

241

Class Diagram Artifact Reference

abst r act . This operation has no implementation with this class. The implementation must be
provided by a subclass.

1 | mportant

Any class with an abstract operation must itself be declared abstract.

| eaf . Theimplementation of this operation must not be overridden by any subclass.

r oot . The declaration of this operation must not override a declaration of the operation from a
superclass.

query. Thisindicates that the operation must have no side effects (i.e. it must not change the
state of the system). It can only return avalue.

A Caution
Operations for user defined datatypes must always check this modifier.
stati c. Thereis only one instance of this operation associated with the class (as opposed to

one for each instance of the class). Thisisthe Oamner Scope attribute of a Feat ur e metaclass
within UML. Any operation declared static is shown underlined on the class diagram.

Concurrency

Radio box, with entriesguar ded, sequent i al ,andconcurrent.

guar ded. Multiple calls from concurrent threads may occur simultaneously to one instance (on
any guarded operation), but only one is alowed to commence. The others are blocked until the
performance of the first operation is complete.

q Caution

It is up to the system designer to ensure that deadlock cannot occur. It is the re-
sponsibility of the operation to implement the blocking behavior (as opposed to the
system).

sequent i al . Only one call to an instance (of the class with the operation) may be outstanding
at any one time. There is no protection, and no guarantee of behavior if the system violates this
rule.

concur r ent . Multiple callsto one instance may execute at the same time. The operationisre-
sponsible for ensuring correct behavior. This must be managed even if there are other sequential
or synchronized (guarded) operations executing at the time.

Par amet er

Text area, with entries for all the parameters of the operation (see Section 18.8, “Parameter”). A
new operation is always created with one new parameter, r et ur n to define the return type of the
operation.

Button 1 double click on any of the parameters navigates to that parameter. Button 2 click brings up
apop up menu with two entries.

Move Up. Only available where there are two or more parameters, and the parameter selected

242

Class Diagram Artifact Reference

isnot at the top. It is moved up one position.

 Move Down. Only available where there are two or more parameters listed, and the parameter
selected is not at the bottom. It is moved down one position.

Rai sed Signal s

Text area, with entries for al the signals (see Section 18.9, “Signal”) that can be raised by the oper-
ation.

A Caution
ArgoUML at present (V0.18) has limited support for signals. In particular they are not

linked to signal eventsthat could drive state machines.

Button 1 double click on any of the signals navigates to that parameter.

18.8. Parameter

A parameter is a variable that can be passed. In the UML metamodel it is a sub-class of Model El e-
ment .

A parameter is represented within the operation declaration in the operation compartment of a class as
follows.

name: type

name is the name of the parameter.
typeisthe type (UML datatype, class or interface) of the parameter.

The exception is any parameter representing a return value, whose type only is shown at the end of the
operation declaration.

18.8.1. Parameter Details Tabs

The details tabs that are active for parameters are as follows.
ToDol t em
Standard tab.

Properties
See Section 18.8.2, “Parameter Property Toolbar” and Section 18.8.3, “Property Fields For Para-
meter” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Sour ce
Standard tab. This contains a declaration for the parameter.

Tagged Val ues

243

Class Diagram Artifact Reference

Standard tab. In the UML metamodel, Par anet er has the following standard tagged values
defined.

« deri ved (from the superclass, Model El enent). Vauest r ue, meaning the parameter isre-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

q Caution

A derived parameter is a meaningless concept.

Note

The UML El enment metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

18.8.2. Parameter Property Toolbar

o Go up
Navigate up through the package structure.

D- New par amet er

This creates a new parameter for the for the same operation as the current parameter, navigating im-
mediately to the properties tab for that parameter.

i Tip

Thisisaconvenient way to add a series of parameters for the same operation.

m New Datatype

This creates a new Datatype (see Section 16.3, “Datatype’) in the namespace of the owner of the
operation of the parameter, navigating immediately to the properties tab for that datatype.

% New St ereotype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected parameter, navigat-
ing immediately to the propertiestab for that stereotype.

ﬁ Del ete
This deletes the parameter from the model

. Warning

Thisis a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab or the button 2
pop up menu for the class on the diagram.

244

Class Diagram Artifact Reference

18.8.3. Property Fields For Parameter

Narme

Text box. The name of the parameter. By convention, the name of a parameter has a leading lower
case letter, with words separated by “bumpy caps”’.

Note

The ArgoUML critics do not complain about parameter names that do not have an ini-
tial lower case letter.

T,

St er eot ype
Drop down selector. There are no UML standard stereotypes for Par anet er .

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Onner
Text box. Records the operation which contains this parameter.

Button 1 double click on the entry will navigate to the operation.

Type

Drop down selector. The type of this parameter. This can be any UML O assi fi er, athough in
practiceonly Cl ass, Dat aType, or | nt er f ace make any sense.

Note

A type must be declared (it can be voi d, but this only makes sense for a return para-
meter). By default ArgoUML suppliesi nt as the type the first time a parameter is
created, and thereafter the type of the most recently created parameter.

B

Defaul t Val ue

Text box with drop down. This allows you to set an initial value for the parameter if desired (thisis
optional). The drop down menu provides access to the common values 0, 1, 2, and nul | .

A Caution

Thisonly makes sense for out or r et ur n parameters.

Ki nd
Radio box, with entriesout , i n/ out ,ret urn,andi n.
» out . The parameter is used only to pass values back from the operation.

e in/out.The parameter is used both to pass values in and to pass results back out of the opera-
tion.

245

Class Diagram Artifact Reference

Note

Thisisthe default for any new parameter.

* return. The parameter isareturn result from the call.

Not
= ote
There is nothing to stop you declaring more than one return parameter (some pro-
gramming languages support this concept).
. Ti
i Y

The name of the return parameter does not appear on the diagram, but it is con-
venient to give it an appropriate name (such as the default r et ur n to identify itin
the list of parameters on the operation property tab.

e i n. The parameter is used only to pass valuesin to the operation.

18.9. Signal

A signal is a specification of an asynchronous stimulus communicated between instances. In the UML
metamodel it isasub-classof Cl assi fi er.

Within ArgoUML signals are not fully handled. Their value is when they are received as signal events
driving the asynchronous behavior of state machines and when associated with send actions in state ma-
chines and messages for collaboration diagrams.

. Ti

i P
In general there is limited value at present in defining signals within ArgoUML. It may
prove more useful to define signals as classes, with a (user defined) stereotype of
«si gnal » as suggested in the UML 1.4 standard. This allows any dependency relation-
ships between signals to be shown.

18.9.1. Signal Details Tabs

The details tabs that are active for signals are as follows.

ToDol t em
Standard tab.

Properties
See Section 18.9.2, “Signal Property Toolbar” and Section 18.9.3, “Property Fields For Signa” be-
low.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

246

Class Diagram Artifact Reference

Sour ce
Standard tab. Thereis nothing generated for asignal.

Tagged Val ues
Standard tab. In the UML metamodel, Si gnal has the following standard tagged val ues defined.

e persi stence (from the superclass, Cl assi fi er). Vauest ransi tory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

» semantics (from the superclass, Cl assi fi er). The value is a specification of the se-
mantics of the signal.

e derived (from the superclass, Model El enent). Values t r ue, meaning the signal is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

Note

Derived signals still have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.

LET

Note
The UML El enent metaclass from which all other artifacts are derived includes the

tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

18.9.2. Signal Property Toolbar

o Go up
Navigate up through the package structure.

New si gnal
[’

This creates a new signal, navigating immediately to the properties tab for that signal.
A Caution

The signal is not associated with the same operation as the original signal, so this will
have to be done afterwards.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected signal, navigating
immediately to the propertiestab for that stereotype.

Im-DeIete

This deletes the signal from the model

247

Class Diagram Artifact Reference

Warning

Thisis adeletion from the model.

18.9.3. Property Fields For Signal

Nane

Text box. The name of the signal. From their similarity to classes, by convention, the name of asig-
nal has aleading upper case letter, with words separated by “bumpy caps’.

- Note

The ArgoUML critics do not complain about signal names that do not have an initial
upper case letter.
St ereot ype
Drop down selector. Signa is provided by default with the UML standard stereotypes for its parent
in the UML meta-model, Cl assi fi er (nmet acl ass, power Type, process, t hread, and
utility).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Nanmespace
Drop down selector. Records and allows changing the namespace for the signal. Thisis the package
hierarchy of the signal.

Cont ext s

Text area. Lists all the contexts defined for this signal. Button 1 double click navigates to the selec-
ted context, button 2 click brings up a pop up menu with one entry.

* Add. Add a new context. This opens the Add/Remove Contexts dialog box (see figure below),
which allows choosing between all possible operations, and adding them to the selected list.

Figure 18.3. The“add/remove context” dialog box

248

Class Diagram Artifact Reference

Wi Add/Remove Contexts

Choices; ~elected:
B addListener =] neswDperation
ﬁ removelistener

18.10. Reception (to be written)

A reception is ...

18.11. Association

An association on a class diagram represents a relationship between classes, or between a class and an
interface. On a usecase diagram, an association binds an actor to a usecase.

Within the UML metamodel, Associ at i on isasub-class of both Rel ati onshi p and Gener al -
i zabl eEl ement .

The association is represented as a solid line connecting actor and usecase or class or interface (see Fig-
ure 18.1, “Possible artifacts on a class diagram.”). The name of the association and any stereotype ap-

249

Class Diagram Artifact Reference

pear abovetheline.

ArgoUML is not restricted to binary associations. See Section 18.11.1, “Three-way and Greater Associ-
ations and Association Classes’ for more on this.

Associations are permitted between interfaces and classes, but UML 1.3 specifies they must only be
navigable toward the interface—in other words the interface cannot see the class. ArgoUML will draw
such associations with the appropriate navigation.

Associations are often not named, when their meaning is obvious from the context.

Note

ArgoUML provides no specific way of showing the direction of the association as de-
scribed in the UML 1.4 standard. The naming should attempt to make this clear.

T

The association contains at least two ends, which may be navigated to via the association property sheet.
See Section 18.12, “ Association End” for more information.

18.11.1. Three-way and Greater Associations and Asso-
ciation Classes

UML 1.3 provides for N-ary associations and associations that are governed by a third associative class.
Both are supported by ArgoUML.

N-ary associations are created by drawing with the association tool from an existing association to a
third class. The current implementation of ArgoUML does not allow the inverse: drawing from a 3rd
class towards an existing association is not possible.

Association Classes are drawn exactly like anormal association, i.e. between two classes, but with a dif-
ferent dedicated tool from the diagram toolbar.

18.11.2. Association Details Tabs

The details tabs that are active for associations are as follows.

ToDoltem
Standard tab.

Properties
See Section 18.11.3, “Association Property Toolbar” and Section 18.11.4, “Property Fields For As-

sociation” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab.

Note

The values for the bounds of the Association have no meaning, since they are determ-
ined by the location of the connected items. Changing them has no effect on the dia
gram.

¥

250

Class Diagram Artifact Reference

Sour ce
Standard tab. Y ou would not expect to generate any code for an association, and any code entered
hereisignored (it will have disappeared when you come back to the association.

Tagged Val ues

Standard tab. In the UML metamodel, Associ at i on has the following standard tagged values
defined.

e persistence. Vauestransitory, indicating state is destroyed when an instance is des-
troyed or per si st ent , marking state is preserved when an instance is destroyed.

e derived (from the superclass, Model El enent). Vaues t r ue, meaning the association is
redundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived associations still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

18.11.3. Association Property Toolbar

ﬁGoup

Navigate up through the package structure of the model. For an association this will be the package
containing the association.

- New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected association, navigat-
ing immediately to the propertiestab for that stereotype.

ﬁi Del et e
This del etes the sel ected association from the model.

. Warning

This is a deletion from the model not just the diagram. To delete an association from
the diagram, but keep it within the model, use the main menu Renove From Di a-
gr am(or pressthe Delete key).

18.11.4. Property Fields For Association

251

Class Diagram Artifact Reference

Narme

Text box. The name of the association. By convention association names start with a lower case let-
ter, with “bumpy caps’ used to indicate words within the name, thus: sal esHandl i ng.

N
- ote
ArgoUML does not enforce any haming convention for associations.
. Ti
i P

Although the design critics will advise otherwise, it is perfectly norma not to name
associations on a class diagram, since the relationship is often obvious from the
classes (or class and interface) name.

St er eot ype

Drop down selector. Association is provided by default with the UML standard stereotype for Asso-
ciation(inplicit).

Stereotyping can be useful when creating associations in the problem domain (requirements cap-
ture) and solution domain (analysis), aswell as for processes based on patterns.

The stereotype is shown between « and » below the name of the association on the diagram.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Nanmespace
Drop down selector. Records and allows changing the namespace for the association. This is the
package hierarchy.

Connecti ons

Text area. Lists the ends of this association. An association can have two or more ends. For more on
association ends see Section 18.12, “ Association End”.

The names of the association ends are listed, unless the association end has no name (the case when
it isfirst created), in which case (anon Associ ati onEnd) isshown.

- Note

The only representation of association ends on a diagram is that their name appears at
the relevant end of the corresponding association.
Button 1 double click on an association end will navigate to that end.

Associ ati on Rol es
Text area. (To be written)

Li nks
Text area. (To be written)

252

Class Diagram Artifact Reference

18.12. Association End

Two or more association ends are associated with each association (see Section 17.5, “Association”).
Within the UML metamodel, Associ at i onEnd isasub-class of Model El enent .

The association end has no direct access on any diagram for binary associations. The ends of an N-ary
association may be selected by clicking on the line in the diagram. The stereotype, name and multiplicity
are shown at the relevant end of the parent association (see Figure 17.1, “Possible artifacts on a use case
diagram.”). Where shared or composite aggregation is selected for one association end, the opposite end
is shown as a solid diamond (composite aggregation) or hollow diamond (shared aggregation).

Tip

i
Although you can change attributes of association ends when creating a use case model,
this is often not necessary. Many of the properties of an association end relate to its use in
class diagrams, and are of limited relevance to use cases. The most useful attributes to con-
sider atering are the name (used as the role name) and the multiplicity.
Note
i

ArgoUML does not currently support showing qualifiers on the diagram, as described in
the UML 1.3 standard.

18.12.1. Association End Details Tabs

The details tabs that are active for associations are as follows.

ToDol t em
Standard tab.

Properties
See Section 18.12.2, “ Association End Property Toolbar” and Section 18.12.3, “Property Fields For
Association End” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab.

Sour ce
Standard tab. This tab contains a declaration for the association end as an instance of the artifact to
which it is connected.

Tagged Val ues

Standard tab. In the UML metamodel, Associ at i onEnd has the following standard tagged val-
ues defined.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the association end
is redundant—it can be formally derived from other elements, or f al se meaning it cannot.

253

Class Diagram Artifact Reference

Tip

Derived association ends till have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation. However the tag only
makes sense for an association end if it isaso applied to the parent association.

Note

The UML El ement metaclass from which al other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

18.12.2. Association End Property Toolbar

o Go up
Navigate up to the association to which this end belongs.
— Go Opposite

This navigates to the other end of the association.

gl\lerJalifier

This creates a new Qualifier for the selected association-end, navigating immediately to the proper-
tiestab for that qualifier.

. Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button
creates a qualifier in the model, which is not shown on the diagram. Also, the proper-
ties panel for aqualifier equals that of aregular attribute.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected association-end, nav-
igating immediately to the properties tab for that stereotype.

Im-DeIete

This del etes the sel ected association-end from the model.

Note

CEF
This button is downlighted for binary associations, since an association needs at least
two ends. Only for N-ary associations, this button is accessable, and deletes just one
end from the association.

254

Class Diagram Artifact Reference

18.12.3. Property Fields For Association End

Name
Text box. The name of the association end, which provides a role name for this end of the associ-

ation. This role name can be used for navigation, and in an implementation context, provides a
name by which the source end of an association can reference the target end.

Note

ArgoUML does not enforce any naming convention for association ends.

¥

St er eot ype

Drop down selector. Association end is provided by default with the UML standard stereotypes for
AssociationEnd (associ at i on, gl obal ,| ocal , paramet er, sel f).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Associ ati on
Text box. Records the parent association for this association end. Button 1 double click on this entry
will navigate to that association.

Type

Drop down selector providing access to all standard UML types provided by ArgoUML and all new
classes created within the current model.

Thisisthe type of the entity attached to this end of the association.

. Ti
i P
By default ArgoUML will select the class of the artifact to which the linkend is con-
nected. However, an association can be moved to another class by selecting another
entry here.
Ml tiplicity

Drop down menu with edit box. The value can be chosen from the drop down box, or a new one can
be edited in the text box. Records the multiplicity of this association end (with respect to the other
end), i.e. how many instances of this end may be associated with an instance of the other end. The
multiplicity is shown on the diagram at that end of the association.

Modi fiers
There are 3 modifiers: navi gabl e, or der ed and st at i c. All 3 are checkboxes.

e navi gabl e. Indicates that this end can be navigated to from the other end.

- Note

The UML 1.4 standard provides a number of options for how navigation is dis-

255

Class Diagram Artifact Reference

played on an association end. ArgoUML uses option 3, which means that arrow
heads are shown at the end of an association, when navigation is enabled at only
one end, to indicate the direction in which navigation is possible. This means that
the default, with both ends navigable has no arrows.

» order ed When placed on one end, specifies whether the set of links from the other instance to
this instance is ordered. The ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the objects or links themselves.
Possibilities for the checkbox are: Unchecked - The links form a set with no inherent ordering.
Checked - A set of ordered links can be scanned in order.

* Static (Tobewritten)

Speci fication
List. Designates zero or more Classifiers that specify the Operations that may be applied to an In-
stance accessed by the AssociationEnd across the Association. These determine the minimum inter-
face that must be realized by the actual Classifier attached to the end to support the intent of the As-
sociation. May be an Interface or another Classifier. The type of classifier isindicated by anicon.

Button 1 double click navigates to the selected classifier, button 2 click brings a pop up menu with
one entry.

* Add. Add a new specification classifier. This opens the Add/Remove Specifications dialog box
(see figure below), which allows choosing between all possible classifiers, and adding or remov-
ing them to the selected list.

Figure 18.4. The* Add/Remove Specifications’ dialog box

256

Class Diagram Artifact Reference

w¥ Add/Remove Specifications [X]

Choices; Selected:
@ Clazszn, @ ClazsC

@ ClazzB

Qualifiers
Text box. Records the qualifiers for this association end. Button 1 double click on this entry will
navigate to that qualifier. Button 2 click will show a popup menu containing two items: Move Up
and Move Down, which allow reordering the qualifiers.

Aggr egati on

Radio box, with three entriesconposi t e, none and aggr egat e. Indicates whether the relation-
ship with the far end represents some type of loose whole-part relationship (aggr egat i on) or
tight whole-part relationship (conposi t e).

Shared aggregation is shown by a hollow diamond at the “whole” end of the association. Composite
aggregation is shown by a solid diamond.

-[.\:f..":;'ﬂ'.' Note

Y ou may not have aggregation at both ends of an association. ArgoUML does not en-

257

Class Diagram Artifact Reference

force this constraint.
The “whole” end of a composite aggregation should have a multiplicity of one.
ArgoUML does not enforce this constraint.
Changeability
Radio box, with threeentriesadd onl y, changeabl e and f r ozen. Indicates whether instances
of this end of the association-end may be: i) created but not deleted after the target instance is cre-

ated; ii) created and deleted by the source after the target instance is created; or iii) not created or
deleted by the source after the target instance is created.

Visibility
Radio box, with four entries publ i c, pri vat e, pr ot ect ed, and package. Indicates whether

navigation to this end may be by: i) any classifier; ii) only by the source classifier; or iii) only the
source classifier and its children.

18.13. Dependency

Dependency is a relationship between two artifacts showing that one depends on the other.
Within the UML metamodel, Dependency isasub-classof Rel at i onshi p.

Dependency is represented as a dashed line with an open arrow head from the depending artifact to that
which it is dependent upon.

18.13.1. Dependency Details Tabs

The details tabs that are active for dependencies are as follows.

ToDol t em
Standard tab.

Properties
See Section 18.13.2, “Dependency Property Toolbar” and Section 18.13.3, “Property Fields For De-
pendency” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab

Note

The values for the bounds of the dependency are downlighted, given the dependency
istied to a particular modelelement.

T,

Tagged Val ues
Standard tab. In the UML metamodel, Dependency has no tagged values of its own, but through
superclasses has the following standard tagged values defined.

258

Class Diagram Artifact Reference

» deri ved (from the superclass, Model El enent). Vauest r ue, meaning the dependency re-
lationship is redundant—it can be formally derived from other elements, or f al se meaning it
cannot.

- Note

Derived dependencies till have their value in analysis to introduce useful names
or concepts.

18.13.2. Dependency Property Toolbar

ﬁGoup

Navigate up through the package structure of the model. For a dependency this will be the package
containing the dependency.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected dependency, navig-
ating immediately to the propertiestab for that stereotype.

-m- Del et e

This del etes the selected dependency from the model.

. Warning

This is a deletion from the model not just the diagram. To delete a dependency from
the diagram, but keep it within the model, use the main menu Renove From Di a-
gr am(or pressthe Delete key).

18.13.3. Property Fields For Dependency

Nane

Text box. The name of the dependency.

. Ti
i P
It is quite common to leave dependencies unnamed.
Note
L
ArgoUML does not enforce any naming convention for associations.
Note
L

There is no representation of the name of a dependency on the diagram.

259

Class Diagram Artifact Reference

St er eot ype
Drop down selector. Dependency has no standard stereotypes of its own under UML 1.3. and so
ArgoUML does not provide any. The stereotype is shown between « and » above or across the gen-
eralization.

Navi gat e Stereotype
B icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).
Nanmespace
Text box. Records the namespace for the dependency. This is the package hierarchy.
Suppliers
Text area. Lists the end of the relationship that is supplying what is needed by the other end.
Button 1 double click on a supplier will navigate to that element.
Cients

Text area. Lists the “depending” ends of the relationship, i.e. the end that makes use of the other
end.

Button 1 double click on aclient will navigate to that element.

18.14. Generalization

Generalization is described under use case diagrams (see Section 17.8, “ Generalization”).

- Note

Within the context of classes, generalization and specialization are the UML terms describ-
ing class inheritance.

18.15. Interface

An interface is a set of operations characterizing the behavior of an element. It can be usefully thought
of as an abstract class with no attributes and no non-abstract operations. In the UML metamode! it is a
sub-classof O assi fi er and through that Gener al i zabl eEl enent .

An interface is represented on a class diagram as a rectangle with two horizontal compartments. The top

compartment displays the interface name (and above it «i nt er f ace») and the second any operations.
Just like a class, the operations compartment can be hidden.

18.15.1. Interface Details Tabs

The details tabs that are active for interfaces are as follows.

ToDol tem
Standard tab.

260

Class Diagram Artifact Reference

Properties
See Section 18.15.2, “Interface Property Toolbar” and Section 18.15.3, “Property Fields For Inter-
face” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Presentati on
Standard tab. The tick box Di spl ay Oper ati ons alows the operation compartment to be
shown (the default) or hidden. This is a setting valid for only the current diagram. The Bounds:
field defines the bounding box for the package on the diagram.

Sour ce
Standard tab. This contains a template for the interface declaration and declarations of associated in-
terfaces.

Tagged Val ues
Standard tab. In the UML metamodel, | nt er f ace has the following standard tagged values
defined.

» persistence (from the superclass, Cl assi fi er). Vauest ransi tory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

. Warning

Since interfaces are by definition abstract, they can have no instance, and so this
tagged value must refer to the properties of the realizing class.

 semantics (from the superclass, Cl assi fi er). The value is a specification of the se-
mantics of the interface.

» derived (from the superclass, Model El enent). Vauest r ue, meaning the interface is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

Note
L e
Derived interfaces still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.
Note
CEF
The UML El enment metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML
Checkl i st

Standard tab for an Interface.

18.15.2. Interface Property Toolbar

{ﬁ}Goup

261

Class Diagram Artifact Reference

Navigate up through the package structure.

g New oper ation

This creates a new operation (see Section 18.7, “Operation”) within the interface, navigating imme-
diately to the properties tab for that operation.

o New reception

This creates a new reception, navigating immediately to the propertiestab for that reception.
E New i nterface

This creates a new interface in the same namespace as the selected interface, navigating immedi-
ately to the properties tab for the new interface.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected interface, navigating
immediately to the properties tab for that stereotype.

-m-Delete

This deletes the interface from the model

. Warning

This is a deletion from the model not just the diagram. To delete an interface from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or press the Delete key).

18.15.3. Property Fields For Interface

Name

Text box. The name of the interface. The name of an interface has a leading capital letter, with
words separated by “bumpy caps’.

- Note

Unlike classes, the ArgoUML critics will not complain about interface names that do
not have aninitial capital.

St ereot ype
Drop down selector. Interface is provided by default with the UML standard stereotypes for the par-
ent meta-class, Cl assi fi er (netacl ass, powertype,process,threadandutility).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Nanmespace
Drop down selector. Records and allows changing the namespace for the interface. Thisis the pack-
age hierarchy.

262

Class Diagram Artifact Reference

Modi fiers
Check box, with entries Abst r act , Leaf and Root .

e Abstract isusedto declare that this interface cannot be instantiated, but must always be spe-
cialized. The name of an abstract interface is displayed in italics on the diagram.

q Caution

This is meaningless, since by definition an interface is an abstract entity. The
UML 1.3 standard offers no clarification.

e Leaf indicates that this interface cannot be further specialized, while Root indicates it can
have no generalizations.

Visibility
Radio box, with three entries publ i c, pr ot ect ed, pri vat e and package. Indicates whether
navigation to this end may be by: i) any classifier; ii) only the source classifier and its children; or
iii) only by the source classifier.

CGeneral i zations
Text area. Lists any interface that generalizes thisinterface.

Button 1 double click navigates to the generalization and opens its property tab.

Speci al i zat i ons
Text box. Lists any specialized interface (i.e. for which thisinterface is a generalization.

Button 1 double click navigates to the generalization and opens its property tab.

Associ at i onEnds
Text box. Lists any AssociationEnds (see Section 18.12, “Association End”) connected to thisinter-
face.

- Note

Associations between classes and interfaces must be navigable only from the class to
the interface. ArgoUML will create associations between classes and interfaces with
the correct navigability, but does not prevent the user from altering this.

Button 1 double click navigates to the selected entry.
Oper ati ons
Text area. Lists all the operations (see Section 18.7, “Operation”) defined on this interface. Button 1

double click navigates to the selected operation. Button 2 click will show a popup menu with two
items: Move Up and Move Down, which alow reordering the operations.

A Caution

All operations on an interface must be public. The ArgoUML critics will complain if
thisis not the case.

18.16. Abstraction

263

Class Diagram Artifact Reference

An abstraction is a dependency relationship joining two artifacts within the model at different levels of
abstraction. Within ArgoUML it is principally used through its specific stereotyper eal i ze to define
realization dependencies, which link artifacts that specify behavior to the corresponding artifacts that im-
plement the behavior.

In the UML metamodel Abst ract i on isasub-class of Dependency and through that Rel at i on-
shi p.

An abstraction with stereotyper eal i ze is represented on a class diagram as a dotted line with a solid
white head at the specifying end.

A Caution

All other stereotypes of abstraction should be represented using an open arrow head, but
thisis not supported by ArgoUML.

18.16.1. Abstraction Details Tabs

The details tabs that are active for abstractions are as follows.

ToDoltem
Standard tab.

Properties
See Section 18.16.2, “Abstraction Property Toolbar” and Section 18.16.3, “Property Fields For Ab-
straction” below.

Docunent ati on
Standard tab. See Section 13.4, “Documentation Tab”.

Present ati on
Standard tab.

Note

L
The values for the bounds of the abstraction are downlighted, since the association is
tied to particular artifacts.

Sour ce
Standard tab. This contains the single downlighted text N/ A.

Tagged Val ues
Standard tab. In the UML metamodel, Abst ract i on has the following standard tagged values
defined.

» derived (from the superclass, Model El enent). Values t r ue, meaning the abstraction is
redundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived abstractions still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

264

Class Diagram Artifact Reference

Note

The UML El enent metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

18.16.2. Abstraction Property Toolbar

i Go up
Navigate up through the package structure.

ﬁ Del et e
This del etes the abstraction from the model

. Warning

Thisis a deletion from the model not just the diagram. To delete an abstraction from
the diagram, but keep it within the model, use the main menu Renove From Di a-
gr am(or pressthe Delete key).

18.16.3. Property Fields For Abstraction

Name
Text box. The name of the abstraction. There are no constraints on the name of an abstraction,
which is not shown on any diagram.

St er eot ype
Drop down selector. Abstraction is provided by default with the UML standard stereotypes de-
rive,realize,refineandtrace.

A Caution

ArgoUML automatically selects the stereotype realize when an abstraction is created.
The user is free to change the stereotype to use the abstraction to indicate for example
at r ace relationship. However ArgoUML will not alter the representation on the dia-
gram accordingly.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Nanmespace
Drop down selector. Records and allows changing the namespace for the abstraction. This is the
package hierarchy.

Suppliers
Text area. Liststhe artifact that isthe supplier end of this abstraction (for aredlization thisisthe end

265

Class Diagram Artifact Reference

providing the implementation).

- Note

Although thisis atext areathere is no mechanism for adding more than one supplier.

Button 1 double click navigates to the selected entry.

Cients
Text area. Lists the artifact that is the client end of this abstraction (for a realization this is the end
providing the specification).

Note
i
Although thisis atext areathereis no mechanism for adding more than one client.

Button 1 double click navigates to the selected entry.

266

Chapter 19. Sequence Diagram Artifact
Reference

19.1. Introduction

This chapter describes each artifact that can be created within a sequence diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Pr operti es tab of the details pane (see

Section 13.3, “Properties Tab"). That section covers propertiesin general, in this chapter they are linked
to specific artifacts.

e Caution

Sequence diagrams are not fully developed yet in ArgoUML. Many aspects are not fully
implemented, or may not behave as expected.

Figure 19.1, “Possible artifacts on a sequence diagram.” shows a sequence diagram with all possible ar-
tifacts displayed.

Figure 19.1. Possible artifacts on a sequence diagram.

D ACtor : De pendedQnC lass

Dinvoke O

>

... : ThirdC lass

: signal Start

: signal End

>

267

Sequence Diagram Artifact Reference

19.1.1. Limitations Concerning Sequence Diagrams in
ArgoUML

19.2.

The sequence diagram is still rather under-developed in ArgoUML.

The biggest difficulties are with the actions behind the stimuli. These are purely textual in implementa-
tion, and there is no way to link them back to their associated operations or signals.

Object

An object is an instance of aclass. Inthe UML metamodel Cbj ect isasub-classof | nst ance. With-
in a sequence diagram objects may be used to represent a specific instance of a class. Unlike collabora-
tion diagrams (see Chapter 21, Collaboration Diagram Artifact Reference), sequence diagrams cannot
show generic behavior between classifier roles.

An object is represented on a sequence diagram in ArgoUML as a plain box labeled with the object
name (if any) and class name, separated by a colon (:). As links with stimuli to and from other objects
are added, atime line grows down from the object. This is thin where the object does not have control
and thick where it does.

" Caution

The current release of ArgoUML shows interactions between objects, although the UML
standard for sequence diagramsis for interaction between instances of any classifier).

However the actual implementation in ArgoUML permits any classifier to be used with the
object, and so the diagram can successfully represent instances of actors for example as
well as classes.

19.2.1. Object Details Tabs

The details tabs that are active for objects are as follows.

ToDoltem
Standard tab.

Properties
See Section 19.2.2, “Object Property Toolbar” and Section 19.2.3, “Property Fields For Object” be-
low.

Docunent ati on
Standard tab.

Presentation
Standard tab. The values for the bounds of the object notionally define the bounding box of the ob-
ject and itstime line. However if you change them it will have no effect, and the original values will
be reset when you next revisit the tab.

Sour ce
Standard tab, but with no contents.

A Caution

An object should not generate any code, so having this tab active is probably a mis-

268

Sequence Diagram Artifact Reference

take.

Tagged Val ues
Standard tab. In the UML metamodel, Obj ect hasthe following standard tagged values defined.

» persistence (from the superclass, | nst ance. Showing the permanence of the state in-
formation associated with the object. Valuest r ansi t or y (state is destroyed when the object
isdestroyed) and per si st ent (stateis preserved when the object is destroyed).

» derived (from the superclass, Model El enent). Vaues t r ue, meaning the object is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

Note
L
Derived objects till have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.
Note
L
The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML
Checkl i st

Standard tab for a Classifier.

19.2.2. Object Property Toolbar

o Go up
Navigate up through the package structure.

o New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected object, navigating
immediately to the propertiestab for that stereotype.

ﬁ Del et e
This del etes the abject from the model

. Warning

This is a deletion from the model not just the diagram. To delete an object from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or press the Delete key).

19.2.3. Property Fields For Object

269

Sequence Diagram Artifact Reference

Name
Text box. The name of the object. By convention object names start with alower case letter and use
bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

St ereot ype
Drop down selector. Object has no stereotypes by default in the UML standard.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).

Namespace
Text box. Records the namespace for the object. Thisis the package hierarchy.

Stinmuli Sent
Text area. Lists the stimuli sent to this object.

Stinmuli Received
Text area. Liststhe stimuli received by this object.

Cl assifier
Drop down selector. The name of the classifier of which thisis an object.

A Caution

In the current release of ArgoUML the drop down selector will include all classifiers
(i.e. interfaces, actors, use cases and datatypes as well), which is what is wanted on the
diagram, although it should properly be caled an instance, rather than an object. In
practice only instances of classes and actors make much sense.

Note

In the current release of ArgoUML the same graphical presentation is used, even if the
object is actually representing an instance of an actor (when a stick-man would be
more usual).

19.3. Stimulus

A stimulus is a communication between two instances and is generated by an action. On a sequence dia-
gram a stimulus is associated with a link—an instance of an association linking two object instances. In
the UML metamodel St i mul us isasub-class of Model El enent .

The link (see Section 19.9, “Link™) associated with a stimulus is represented on a sequence diagram in
ArgoUML as an arrow between the time lines of the object instances (or the object head in the case of
stimulus create, described below) labeled with the name of the action (if any), and the action, separated
by acolon (;). The type of line and arrowhead depends on the type of action that generated the stimulus:

270

Sequence Diagram Artifact Reference

o Stimulus Call.Generated by acall action, itself the result of an operation of a class. Shown as
asolid line with a solid arrowhead to the time line of the object instance receiving the stimulus.

e« Stinmulus Create. Generated by a create action for the class for which an instance is to be cre-
ated Shown as a solid line with a solid arrowhead to the object head of the object instance being cre-
ated.

« Stimulus Destroy. Generated by a destroy action of the originating object. Shown as a solid
line with an open arrowhead terminating in a diagonal cross at the end of the time line of the receiv-
ing (destroyed) object instance.

 Stimulus Send. Generated by a send action, the result of a signal raised by an operation of the
sending object instance and handled by the receiving object instance. Shown as a solid line with half
an open arrowhead.

e Stimulus Return. Generated by an object instance that has received an earlier call stimulus and
isreturning aresult to the calling object instance. Shown as a dotted line with an open arrowhead.

Note

L
ArgoUML does not allow you to create stimuli directly, but instead provides toolsto create
stimuli of each of the five types above.

A Caution

In the current release of ArgoUML there is no way to show a terminate action where an
object instance destroys itself. One way is to draw a destroy action that loops back to the
object itself, give it an action with no name and use the style tab to set an invisible line, but
this till leaves the arrow head showing, which is unsightly. It is also semantically incor-
rect anyway to use a destroy action to represent a terminate action.

19.3.1. Stimulus Details Tabs

The details tabs that are active for stimuli are as follows.

ToDol tem
Standard tab.

Properties
See Section 19.3.2, “ Stimulus Property Toolbar” and Section 19.3.3, “Property Fields For Stimulus”
below.

Docunent ati on
Standard tab.

Style
Standard tab. The values for the bounds of the stimulus notionally define the bounding box of the
stimulus and its time line. However if you change them it will have no effect, and the original val-
ues will be reset when you next revisit the tab.

Altering the Fi | | and Shadow entries has no effect. Rather bizarrely you can set the Li ne entry
and it will draw aline around the signal, which is not a standard UML representation.

271

Sequence Diagram Artifact Reference

. Ti

i P
To change the color of the line, you should select the associated link (click on it alittle
way from the stimulus) and use its style tab (see Section 19.9, “Link”).

" Caution
In the current release of ArgoUML changing the values of the Bounds field is pos-
sible, but will make only atemporary change to the position of the stimulus. Selecting
any artifact on the screen causes the stimulus to return to its origina position and the
original values to be restored.
Sour ce

Standard tab, but with no contents.
A Caution
A stimulus should not generate any code, so having this tab active is probably a mis-

take.

Constraints
Standard tab. ArgoUML only supports constraints on Classes and Features (Attributes, Operations,
Receptions, and Methods), so thistab is grayed out.

Tagged Val ues
Standard tab. In the UML metamodel, Sti nul us has the following standard tagged values
defined.

» derived (from the superclass, Model El enent). Valuest r ue, meaning the stimulus is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

Note

Derived stimuli still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

LET

Note
The UML El enent metaclass from which all other artifacts are derived includes the

tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

19.3.2. Stimulus Property Toolbar

o Go up
Navigate up through the package structure.

-m- Del et e
This del etes the stimulus from the model

272

Sequence Diagram Artifact Reference

. Warning

This is a deletion from the model not just the diagram. To delete an stimulus from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or press the Delete key).

19.3.3. Property Fields For Stimulus

Name
Text box. There is no convention for naming stimuli, and it is quite normal to leave them unnamed.
The action is sufficient identification.

Tip

It is sometimes useful to give simple names to stimuli, so they can be referred to in at-
tached notes giving timing constraints.

Action
Text box. Thisis used to identify the action that generated the stimulus.

" Caution
The current release of ArgoUML only implements actions as textual descriptions.
Asapractical convention it is suggested that call actions are shown as the name of the
operation generating the action with any arguments in parentheses and that send ac-
tions are shown as the name of the signal generating the action with any arguments in
parentheses. Return actions should be shown as the expression for the value they re-

turn, or empty otherwise. Create and destroy actions should be left empty, since they
areimplied by their representation.

St ereot ype
Drop down selector. Stimulus has no stereotypes by default in the UML standard, but ArgoUML
provides the stereotypes, machi ne, or gani zat i on and per son.

A Caution

ArgoUML aso provides the stereotype r eal i ze for stimuli. This appears to be an
error, since this stereotype properly belongsto the Abst r act i on metaclass.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).

Sender
Text box. |dentifies the instance which sent this stimulus.

Button 1 click navigates to the sender instance, button 2 gives a pop up menu with one entry.

» Open. Navigate to the selected sender instance.

273

Sequence Diagram Artifact Reference

Recei ver
Text box. ldentifies the instance which receives this stimulus.

Button 1 click navigates to the receiver instance, button 2 gives a pop up menu with one entry.

* Open. Navigate to the selected receiver instance.
Warning

In the current release of ArgoUML this field is broken. It always shows the entry
none and the pop-up menu is grayed out.

Namespace
Text box. Records the namespace for the stimulus. Thisis the package hierarchy.

Button 1 click on the entry will navigate to the package defining this namespace (or the model for
the top level namespace).

Stimulus Call

This tool creates a stimulus associated with a call action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3,
“Stimulus’). Its graphical representation on the diagram is that of a stimulus associated with a call ac-
tion, i.e. asolid line with a solid arrow head.

- Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a call action.

Stimulus Create

Thistool creates a stimulus associated with a create action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3,
“Stimulus’). Its graphical representation on the diagram is that of a stimulus associated with a create ac-
tion, i.e. asolid line with a solid arrow head terminating at the head of the created instance.

- Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a create action.

19.6. Stimulus Destroy

This tool creates a stimulus associated with a destroy action on the diagram, creating at the same time
the associated link between sender and receiving instances.

274

Sequence Diagram Artifact Reference

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3,
“Stimulus’). Its graphical representation on the diagram is that of a stimulus associated with a destroy
action, i.e. asolid line with an open arrow head terminating at a cross at the bottom of the destroyed in-
stance'stime line.

- Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a destroy action.

Stimulus Send

This tool creates a stimulus associated with a send action on the diagram, creating at the same time the
associated link between sender and receiving instances.

19.7

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3,
“Stimulus’). Its graphical representation on the diagram is that of a stimulus associated with a send ac-
tion, i.e. asolid line with half an open arrow head.

- Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a send action.

Stimulus Return

This tool creates a stimulus associated with a return action on the diagram, creating at the same time the
associated link between sender and receiving instances.

19.8

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3,
“Stimulus”). Its graphical representation on the diagram is that of a stimulus associated with a return ac-
tion, i.e. adotted line with an open arrow head.

- Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to areturn action.

19.9. Link

A link is an instance of an association. In the UML metamodel Li nk is a sub-class of | nst ance.
Within a sequence diagram links are created indirectly when an associated stimulusiis created.

Anlink is represented on a sequence diagram in ArgoUML as a line connecting the instances concerned.

However on a sequence diagram the representation is modified to reflect the type of action associated
with the stimulus carried on the link (see Section 19.3, “ Stimulus”).

19.9.1. Link Details Tabs

The details tabs that are active for links are as follows.

275

Sequence Diagram Artifact Reference

ToDol tem
Standard tab.

Properties
See Section 19.9.2, “Link Property Toolbar” and Section 19.9.3, “Property Fields For Link” below.

Docunent at i on
Standard tab.

Presentati on
Standard tab. The values for the bounds of the link are downlighted, since they are determined by
the objects connected.

Sour ce
Standard tab, but with no contents.

A Caution
A link should not generate any code, so having this tab active is probably a mistake.
Tagged Val ues
Standard tab. In the UML metamodel, Li nk has the following standard tagged values defined.
e persistence (from the superclass, | nst ance. Showing the permanence of the state in-
formation associated with the link. Vauest ransi t ory (state is destroyed when the link is
destroyed) and per si st ent (stateis preserved when the link is destroyed).

» derived (from the superclass, Mbdel El enent). Valuest r ue, meaning the link is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

Note

Derived links still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

LET

Note

The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

Checkl i st
Standard tab for a Classifier.

19.9.2. Link Property Toolbar

i Go up
Navigate up through the package structure.

- New St er eot ype

276

Sequence Diagram Artifact Reference

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected link, navigating im-
mediately to the propertiestab for that stereotype.

ﬁ Del et e
This deletes the link from the model

. Warning

This is a deletion from the model not just the diagram. To delete an link from the dia-

gram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

19.9.3. Property Fields For Link

Name

Text box. The name of the link. By convention link names start with a lower case letter and use
bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.
St ereot ype

Drop down selector. Link has no stereotypes by default in the UML standard.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).

Namespace
Text box. Records the namespace for the link. Thisisthe package hierarchy.

Connecti ons
List box. Lists the connections of thelink, i.e. the link-ends.

Button 1 double click on the entry will navigate to the link-end.

277

Chapter 20. Statechart Diagram Artifact
Reference

20.1. Introduction

This chapter describes each artifact that can be created within a statechart diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “Properties Tab”). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Figure 20.1, “Statechart diagram artifacts 1.” and Figure 20.2, “ Statechart diagram artifacts 2.” show
statechart diagrams with most possible artifacts displayed.

Figure 20.1. Statechart diagram artifacts 1.

Ilnterupt

interrupt entry fsuspend activity
dao fhandling
exit fresume activity

[
See statecha
diagram "sub".

A

resume

whenfeondition)

aften’2 minttes in state A1)

allEvent(in param @ int= 4] [quard] 1 \1

ub machine state
include fsub
alze]
do fzomething
[not ready] £ reinitialize a
—_—
@ [=l=e]

Figure 20.2. Statechart diagram artifacts 2.

278

Statechart Diagram Artifact Reference

20.1.1. Limitations Concerning Statechart Diagrams in
ArgoUML

20.2.

The statechart diagrams support the 7 action types defined (CallAtion, CreateAction, DestroyAction,
ReturnAction, SendAction, TerminateAction and UninterpretedAction), but there is no way to use the
same action more than once. Also, in afew cases, it is not possible to set or select the related elements;
e.g.thereis no way to select asignal for a SendAction.

Code generation from statechart diagrams is not developed yet.

State

A state models a situation during which some (usually implicit) invariant condition holds for the parent
class. Thisinvariant may be a static situation such as an object waiting for some external event to occur,
or some dynamic activity “in progress’.

A state is represented on a statechart diagram in ArgoUML as a rectangle with rounded corners, with a
horizontal line separating the name at the top from the description of the behavior below. The descrip-
tion of the behavior includes the entry and exit actions and any internal transitions.

20.2.1. State Details Tabs

The details tabs that are active for states are as follows.
ToDol tem
Standard tab.

Properties
See Section 20.2.2, “ State Property Toolbar” and Section 20.2.3, “Property Fields For State” below.

Docunent ati on
Standard tab.

Presentation
Standard tab. The values for the bounds of the state define the bounding box of the state.

279

Statechart Diagram Artifact Reference

St er eot ype
Standard tab.

Tagged Val ues
Standard tab.

20.2.2. State Property Toolbar

o Go up
Navigate up through the package structure.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected state, navigating im-
mediately to the properties tab for that stereotype.

-m- Del et e
This del etes the state from the model
Note
L EF

This is a deletion from the model, not just the diagram. You can not just remove a
state from the diagram, and keep it within the model, asis possible in other diagrams.

20.2.3. Property Fields For State

Nane

Text box. The name of the state. By convention state names start with a lower case letter and use
bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

Cont ai ner
Text box. Shows the container of the state. Thisis the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state. All

states are at |east contained by the otherwise hidden top-level state (named “top”) that is the root of
the state containment hierarchy.

Entry-Action
Text box. Shows the name of the action (if any) to be executed on entry to this state.

- Note

This field shows the name of the action, while on the diagram the expression of the ac-
tion is shown.

280

Statechart Diagram Artifact Reference

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries:

New. Add a new Entry action of a certain kind. This menu has the following submenus to select
the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

Del et e From Model . Delete the Entry-Action.

Exi t-Action
Text box. Shows the action (if any) to be executed on exit from this state.

Button 1 click navigates to the selected action, button 2 gives a pop up menu with two entries.

New. Add a new Exit action of a certain kind. This menu has the following submenus to select
the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

Del et e From Model . Delete the Exit-Action.

Do- Activity
Text box. Shows the action (if any) to be executed while being in this state.

Button 1 click navigates to the selected action, button 2 gives a pop up menu with two entries.

New. Add a new Do-Activity (action) of a certain kind. This menu has the following submenus
to select the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send
Action, Terminate Action, Uninterpreted Action.

Del et e From Model . Delete the Do-Activity.

Def errabl e Events
Text box. Shows a list of events that are candidates to be retained by the state machine if they trig-
ger no transitions out of the state (not consumed).

Button 1 click navigates to the selected event, button 2 on an event gives a pop up menu with the
following entries.

Sel ect . Allowsto add already existing eventsto thelist of deferred ones.

New. Add a new event of a certain kind. This menu has the following submenus to select the
kind of event: Call Event, Change Event, Signa Event, Time Event.

Del et e From Model . Delete the event.

| ncomi ng
Text area. Lists all the transitions that enter this state.

Button 1 double click navigates to the selected entry.

Qut goi ng
Text area. Lists all the transitions that |eave this state.

Button 1 double click navigates to the selected action.

Internal Transitions
Text area. Lists al the internal transitions of the state. Such transitions neither exit nor enter the
state, so they do not cause a state change. Which means that the Entry and Exit actions are not in-
voked.

281

Statechart Diagram Artifact Reference

Note

This field shows the name of the transition, while on the diagram the name of the trig-
ger is shown, separated with a/ from the effect script.

Button 1 double-click navigates to the selected transition, button 2 gives a pop up menu with one
entry.

* New. Add anew internal transition.

20.3. Action

An action specifies an executable statement and is an abstraction of a computational procedure that can
change the state of the model. In the UML metamodel it is a child of Model El errent . Since in the
metamodel an ActionSequence is itself an Action that is an aggregation of other actions (i.e. the "com-
posite" pattern), an ActionSequence may be used anywhere an action may be.

There are anumber of different types of action that are children of Action within the UML metamodel.

* CreateAction. Associated with a classifier, this action creates an instance of that classifier.
» Cal | Acti on. Associated with an operation, this action calls the given operation.

* ReturnActi on. Anaction used to return aresult to an earlier caller.

» SendAct i on. Associated with asignal, this action causes the signal to be raised.

e Term nat eAct i on. Causestheinvoking object to self-destruct.

* Uni nterpretedAction. Anaction used to specify language-specific actions that do not classify
under the other types of actions.

» DestroyActi on. Destroys the specified target object.

An action is represented on the diagram by the text of its expression.
" Caution

The V0.20 release of ArgoUML only partially implements actions. As a practical conven-
tion it is suggested that call actions are shown as the name of the operation generating the
action with any arguments in parentheses and that send actions are shown as the name of
the signal generating the action with any arguments in parentheses. Return actions should
be shown as the expression for the value they return, or empty otherwise. Create and des-
troy actions should shown as cr eat e(<t ar get >) and destr oy(<t arget >). Ter-
minate action should be shown ast er ni nat e.

20.3.1. Action Details Tabs

The details tabs that are active for actions are as follows.

ToDol tem

282

Statechart Diagram Artifact Reference

Standard tab.

Properties

See Section 20.3.2, “Action Property Toolbar” and Section 20.3.3, “Property Fields For Action” be-
low.

Docunent ati on
Standard tab.

St er eot ype
Standard tab. In the UML metamodel, Act i on has no standard stereotypes defined.

Tagged Val ues
Standard tab. In the UML metamodel, Act i on has no standard tagged value defined.

20.3.2. Action Property Toolbar

o Go up
Navigate up through the hierarchical structure.

% New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected action, navigating
immediately to the properties tab for that stereotype.

ﬁ Del et e
This deletes the Action from the model

20.3.3. Property Fields For Action

Name

Text box. The name of the action. By convention action names start with alower case letter and use
bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

Asynchr onous
Check box. Indicates if adispatched Stimulusis asynchronous or not.

Scri pt
Double text box with the expression that defines the action. This field consists of two parts, the first

one contains the body (script) of the expression, and the second one contains the particular pro-
gramming language used to write the expression.

Recurrence

Double Text box. An expression stating how many times the Action should be performed. The field
consists of two parts: the first one for the expression, the second one for the language it iswritten in.

Argunent s

283

Statechart Diagram Artifact Reference

Text box. Thisisan ordered list with the arguments of the action.

Button 1 double-click on any of the arguments navigates to that argument, button 2 click brings up a
pop up menu with two entries.

» New. Create anew argument and navigate to it.
* Renpve. Deletes the argument from the model.

Instantiation (only for CreateAction)
Text box. This shows the classifier that getsinstantiated by the create-action.

Button 1 double-click on the classifier navigates to that argument, button 2 click brings up a pop up
menu with one entry.

* Add. ... Thisbrings up adialog box that allows selecting the one classifier that gets created.

20.4. Composite State

A composite state is a state that contains other states (known as sub-states), allowing hierarchical state
machines to be constructed.

A composite state is represented on a statechart diagram in ArgoUML as a large rectangle with rounded
corners, with a horizontal line separating the name at the top from the description of the behavior and
the model of the sub-state machine below. The description of the behavior includes the entry, exit and
do actions and any internal transitions.

Sub-states are placed within a composite machine by placing them entirely within the composite state.
This can be done at creation time, i.e. when creating the state for the first time in the editing pane. Al-
ternatively, an existing state can be dragged onto a composite state.

The description of a composite state is almost identical to that of a state (see Section 20.2, “ State” and so
is not duplicated here. The only differences is one additional tool, one missing field, and one additional
field, which are described as follows.

E] New Concurrent Region

Adds a new concurrent region to the selected composite state.

Def errabl e Events
Thisfield is missing from V0.20 of ArgoUML.

Subverti ces
Text area. Lists al the sub-states contained within this composite state.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries.

» New. A submenu pops up, with a selection of 7 kinds of states, which can be added to the mod-
el. The 7 kinds of states supported are: Pseudo State, Synch State, Stub State, Composite State,
Simple State, Final State, Submachine State.

. Warning

Using this way of adding states to the model is not a good idea, since you will
have to add the state to the diagram later. This can be done by selecting it in the
explorer, and activating the pop-up menu, and selecting “Add to Diagram”. It is

284

Statechart Diagram Artifact Reference

advisable to use the toolbar of the diagram instead.

« Del ete From Mddel Deletethe selected state from the model.

20.5. Concurrent Region

20.6.

20.7

A Concurrent Region is an “orthogonal conjunctive” component of a composite state, allowing concur-
rency to be constructed.

A concurrent region is represented on the diagram by atile of a composite state, separated from other re-
gions by a dashed line.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is identical to that of a composite state (see
Section 20.4, “ Composite State” and so is not duplicated here.

Submachine State

A submachine state is a syntactical convenience that facilitates reuse and modularity. It is a shorthand
that implies a macro-like expansion by another state machine and is semantically equivalent to a com-
posite state. The state machine that is inserted is called the referenced state machine while the state ma-
chine that contains the submachine state is called the containing state machine. The same state machine
may be referenced more than once in the context of a single containing state machine. In effect, a sub-
machine state represents a call to a state machine subroutine with one or more entry and exit points. The
entry and exit points are specified by stub states. SubmachineState is a child of State.

The submachine state is depicted as a normal state with the additional include declaration above (and
separated by a line from) its internal transitions compartment. The expression following the i ncl ude
reserved word is the name of the invoked submachine.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is almost identical to that of a composite
state (see Section 20.4, “Composite State” and so is not duplicated here. The only difference is one addi-
tional field:

Submachi ne
Drop-down selector. Allows selecting the submachine included within this composite state.

Stub State

A stub state only appears on a submachine state.

A submachine state represents the invocation of a state machine defined elsaewhere. In the general case,
an invoked state machine can be entered at any of its substates or through its default (initial)
pseudostate. Similarly, it can be exited from any substate or as a result of the invoked state machine
reaching its final state. The non-default entry and exits are specified through stub states. In the UML
metamodel, StubState is a child of State.

285

Statechart Diagram Artifact Reference

Every Stub State has a label on the diagram, which corresponds to the pathname represented by the
“Reference State” attribute of the stub state.

The description of the details panels of a stub state is amost identical to that of a pseudo state (see Sec-
tion 20.11, “ Pseudostate” and so is not duplicated here. The only differenceis one additiona field:

Ref erence State
Drop-down selector. Allows entering the path name of the reference state.

20.8. Transition

A transition is a directed relation between a source state (any kind, e.g. composite state) and a destina-
tion state (any kind, e.g. composite state). Within the UML metamodel, Tr ansi ti on is a sub-class of
Model El enent .

A transition is represented on a statechart diagram in ArgoUML as a line with arrow connecting the
source to the destination state. Next to this line is a string containing the following three parts: The trig-
ger event (e.g. aCall Event), which may have parameters between brackets () . Next follows (if any) the
guard in square brackets ([]). Findly, if there is an effect (e.g. Call Action) defined, a slash (/) fol-
lowed by the expression of the action.

20.8.1. Transition Details Tabs

The details tabs that are active for transitions are as follows.

ToDol t em
Standard tab.

Properties
See Section 20.8.2, “Transition Property Toolbar” and Section 20.8.3, “Property Fields For Trans-
ition” below.

Docunent ati on
Standard tab.

Presentation
Standard tab. The values for the bounds of the transition are downlighted, since the position of the
transition is defined by its end points.

St ereot ype
Standard tab. In the UML metamodel, Tr ansi t i on has no stereotypes defined by defaullt.

Tagged Val ues
Standard tab. In the UML metamodel, Tr ansi t i on has no standard tagged val ues defined.

Checkl i st
Standard tab for atransition.

20.8.2. Transition Property Toolbar

{ﬁ}Goup

286

Statechart Diagram Artifact Reference

Navigate up in the hierarchy to the parent state machine.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected transition, navigating
immediately to the propertiestab for that stereotype.

Im-Delete

This deletes the transition from the model.

. Warning

Thisis a deletion from the model not just the diagram. To delete a transition from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

20.8.3. Property Fields For Transition

Name

Text box. The name of the transition. By convention transition names start with a lower case letter
and use bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.
St at eMachi ne
Text box. Shows the name of the parent StateMachine for the transition.
Button 1 double-click navigates to the StateM achine shown.

State
Text box. Shows the name of the parent State in case of an internal transition.

Button 1 double-click navigates to the State shown.

Sour ce
Text box. Shows the source state for the transition.

Button 1 double-click navigates to the selected entry.

Tar get
Text box. Shows the target state for the transition.

Button 1 double-click navigates to the selected entry.

Tri gger
Text box. Shows the trigger event (if any) which invokes this transition.
Note
¥

UML does not require there to be a trigger, e.g. when a guard is defined. In this case,
the transition is taken immediately if the guard istrue.

287

Statechart Diagram Artifact Reference

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with three
entries.

e Select - Add....ThisAdd an existing trigger event. A sub-menu opens with 4 choices:
Call Event, Change Event, Signal Event, Time Event.

* New. Add a new trigger event. A sub-menu opens with 4 choices: Call Event, Change Event,
Signal Event, Time Event.

» Del ete From Model . Delete the trigger event from the model. This feature is always down-
lighted in the current version of ArgoUML.

Guard
Text box. Shows the name of a guard (if any). The expression of a guard must be true before this
transition can be taken.
Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with one entry.
* New. Add anew guard.

Ef f ect
Text box. Shows the action (if any) to be invoked as this transition is taken.

Button 1 double-click navigates to the selected action, button 2 gives a pop up menu with two
entries.

» New. Add a new Effect (action) of a certain kind. This menu has the following submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

« Del ete From Model . Delete the selected action from the model.

20.9. Event

An event is an observable occurrence. In the UML metamodel it isachild of Model El enment .

There are a number of different types of eventsthat are children of event within the UML metamodel.

» Cal | Event . Associated with an operation of a class, this event is caused by a call to the given op-
eration. The expected effect is that the steps of the operation will be executed.

e Signal Event . Associated with asignal, this event is caused by the signal being raised.

* Ti meEvent . Anevent cause by expiration of atiming deadline.

e ChangeEvent . An event caused by a particular expression (of attributes and associations) becom-

ing true.

An event is represented by its name.

20.9.1. Event Details Tabs

The details tabs that are active for events are as follows.

288

Statechart Diagram Artifact Reference

ToDol tem
Standard tab.

Properties
See Section 20.9.2, “Event Property Toolbar” and Section 20.9.3, “Property Fields For Event” be-
low.

Docunent ati on
Standard tab.

St ereot ype
Standard tab. In the UML metamodel, an Event has the following standard stereotypes defined.

» create (foraCal | Event only). Create is a stereotyped call event denoting that the instance
receiving that event has just been created. For state machines, it triggers the initial transition at
the topmost level of the state machine (and is the only kind of trigger that may be applied to an
initial transition).

» destroy (for aCal | Event only). Destroy is a stereotyped call event denoting that the in-
stance receiving the event is being destroyed.

Tagged Val ues
Standard tab. In the UML metamodel, an Event has no standard tagged values defined.

20.9.2. Event Property Toolbar

o Go up
Navigate up through the composition structure.

- New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected event, navigating im-
mediately to the properties tab for that stereotype.

D- New par anet er

This creates a new parameter for the event operation as the current parameter, navigating immedi-
ately to the properties tab for that parameter (see Section 18.8, “Parameter”).

ﬁ Del et e
This del etes the event from the model.

20.9.3. Property Fields For Event

Nanme
Text box. The name of the event. By convention event names start with a lower case letter and use
bumpy capsto divide words within the name in the same way as operations.

- Note

289

Statechart Diagram Artifact Reference

ArgoUML does not enforce this naming convention.

. Ti
i P
For call events it makes sense to use the name of the associated operation. For signal
events it make sense to use the name of the signal, prefixed by [si g] . For time
events use the time expression, prefixed by [t i me] and for change events the change
expression, prefixed by [change] .
Namespace

Text field. Shows the namespace for the event. Thisis the composition hierarchy.

Par anmet er s
Text area, with entries for al the actual parameter values of the event (see Section 18.8,
“Parameter”).

Button 1 double-click on any of the parameters navigates to that parameter, button 2 click brings up
a pop up menu with one entry.

* New Par anet er . Create anew parameter and navigate to it.

Transition
This shows the transition caused by the event.

Button 1 double-click on the transition navigates to that transition.

Qper ations
Drop-down selector. Only present for a Call Event. This allows specifying the operation that causes
the event when called.

Si gnal
Text field. Only present for a Signal Event. This allows specifying the signal that causes the event
when called.

Button 1 double-click navigates to the selected signal, button 2 gives a pop up menu with two
entries.

* Add. ... Thisopensadiaog box that allows selecting an already existing signal.
* New Si gnal . Createsanew Signal, and navigatesto it.
When
Double text field. Only present for a Time Event. This allows expressing the time that the event is
called.

The first of the two fields is for the body of the expression, and the second one for the language in
which it iswritten.

Warning

In ArgoUML V0.20, the properties panel of a change event lacks a field to enter the
change expression.

290

Statechart Diagram Artifact Reference

20.10. Guard

A guard is associated with a transition. At the time an event is dispatched, the guard is evaluated, and if
fase, itstransition is disabled. In the UML metamodel, Guar d isachild of Model El errent .

A guard is shown on the diagram by the text of its expression in square brackets ([]).

20.10.1. Guard Details Tabs

The details tabs that are active for guards are as follows.

ToDol tem
Standard tab.

Properties
See Section 20.10.2, “Guard Property Toolbar” and Section 20.10.3, “Property Fields For Guard”
below.

Docunent at i on
Standard tab.

St ereot ype
Standard tab, containing the stereotypes for the guard. In the UML metamodel, Guar d has no
standard stereotypes defined.

Tagged Val ues
Standard tab. In the UML metamodel, Guar d has no standard tagged values defined.

20.10.2. Guard Property Toolbar

o Go up
Navigate up through the package structure.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected guard, navigating
immediately to the properties tab for that stereotype.

ﬁ Del ete from Model
This deletes the guard from the model

. Warning

Thisis adeletion from the model, not just the diagram.

20.10.3. Property Fields For Guard

Name
Text box. The name of the guard. By convention guard names start with alower case letter and use

2901

Statechart Diagram Artifact Reference

bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

Transition
Text box, showing the transition that owns this guard.

Button 1 double-click on the transition navigates to that transition.

Expr essi on
Text box. The expression that defines the guard.

Language
Text box. This indicates that the expression is written in a particular interpretation language with
which to evaluate the text.

20.11. Pseudostate

A pseudostate encompasses a number of different transient vertices on a state machine diagram. They
are used, typically, to connect multiple transitions into more complex state transitions paths. For ex-
ample, by combining a transition entering a fork pseudostate with a set of transitions exiting the fork
pseudostate, we get a compound transition that leads to a set of concurrent target states. Pseudostates do
not have the properties of a full state and serve only as a connection point for transactions (but with
some semantic value). Within the UML metamodel, Pseudost at e isasub-classof St at eVert ex.

The representation of a pseudostate on a statechart diagram in ArgoUML depends on the particular kind
of pseudostate: initial, deepHistory, shallowHistory, join, fork, junction and choice. ArgoUML lets you
place any pseudostate directly by tools for the specific types of pseudostate. These are described in sep-
arate sections below (see Section 20.12, “Initial State”, Section 20.14, “Junction”, Section 20.15,
“Choice”, Section 20.16, “Fork”, Section 20.17, “Join”, Section 20.18, “Shallow History” and Sec-
tion 20.19, “Deep History”).

20.11.1. Pseudostate Details Tabs

The details tabs that are active for pseudostates are as follows.

ToDol tem
Standard tab.

Properties
See Section 20.11.2, “Pseudostate Property Toolbar” and Section 20.11.3, “Property Fields For
Pseudostate” below.

Docunent ati on
Standard tab.

Present ati on
Standard tab.

St er eot ype
Standard tab, containing the stereotypes of the pseudostate. In the UML metamodel,
PseudoSt at e hasthe no standard stereotypes defined.

292

Statechart Diagram Artifact Reference

Tagged Val ues
Standard tab. In the UML metamodel, Pseudost at e has no standard tagged values defined.

20.11.2. Pseudostate Property Toolbar

o Go up
Navigate up through the package structure.

o New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected pseudostate, navigat-
ing immediately to the propertiestab for that stereotype.

ﬁ Del ete from Model
This del etes the pseudostate from the model

Warning

Thisis adeletion from the model not just the diagram.

20.11.3. Property Fields For Pseudostate

Narme

Text box. The name of the pseudostate. By convention pseudostate names start with a lower case
letter and use bumpy caps to divide words within the name.

Note
CEF

ArgoUML does not enforce this naming convention.

. Ti

i P
Pseudostate names are not shown on the diagram and it is not usualy necessary to
give them aname.

Cont ai ner

Text box. Shows the container of the pseudostate. Thisis the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that is the root of the state containment hierarchy).

I ncom ng
Text area. Lists any incoming transitions for the pseudostate.

Button 1 double-click navigates to the selected transition.

Qut goi ng
Text area. Lists any outgoing transitions for the pseudostate.

293

Statechart Diagram Artifact Reference

Button 1 double-click navigates to the selected transition.

20.12. Initial State

The initial state is a pseudostate (see Section 20.11, “Pseudostate”) representing a source for a single
transition to the default state of a composite state. It is the state from which any initia transition is made.

As a consequence it is not permissible to have incoming transitions. ArgoUML will not let you create
such transitions, and if you import amodel that has such transitions, a critic will complain.

There can be at most one initial pseudostate in a composite state, which must have (at most) one outgo-
ing transition.

Aninitial stateis represented on the diagram as a solid disc.

20.13. Final State

If atransition reaches a fina state, it implies completion of the activity associated with that composite
state, or at the top level, of the complete state machine. In the UML metamodel Fi nal St at e isachild
of State.

Note

A final state is atrue state (with all its attributes), not a pseudostate.

B

Completion at the top level implies termination (i.e. destruction) of the owning object instance.

The representation of afinal state on the diagram isacircle with asmall disc at its center.

20.13.1. Final State Details Tabs

The details tabs that are active for final states are as follows.

ToDoltem
Standard tab.

Properties
See Section 20.13.2, “Final State Property Toolbar” and Section 20.13.3, “Property Fields For Final
State” below.

Docunent ati on
Standard tab.

Present ati on
Standard tab.

St ereot ype
Standard tab, containing the stereotypes of the fina state. In the UML metamodel, a Fi nal
St at e hasthe no standard tagged values defined.

Tagged Val ues
Standard tab. In the UML metamodel, Fi nal St at e has no standard tagged values defined.

294

Statechart Diagram Artifact Reference

20.13.2. Final State Property Toolbar

o Go up
Navigate up through the package structure.

- New St er eot ype
This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected state, navigating im-
mediately to the properties tab for that stereotype.

-m- Del ete from Model
This deletes the final state from the model

. Warning

Thisis adeletion from the model not just the diagram.

20.13.3. Property Fields For Final State

Name
Text box. The name of the final state. By convention final state names start with a lower case letter
and use bumpy caps to divide words within the name.

Note
L

ArgoUML does not enforce this naming convention.

. Ti

i P
Final state names are shown on the diagram but it is not usually necessary to give
them aname.

Cont ai ner

Text box. Shows the container of the final state. Thisis the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that isthe root of the state containment hierarchy).

Entry-Action
Text box. Shows the name of the action (if any) to be executed on entry to thisfinal state.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries:

» New. Add a new Entry action of a certain kind. This menu has the following 7 submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

e Del ete From Mdel . Delete the Entry-Action.

295

Statechart Diagram Artifact Reference

| ncomi ng
Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Internal Transitions
Text area. Lists al the internal transitions of the state. Such transitions neither exit nor enter the
state, so they do not cause a state change. Which means that the Entry and Exit actions are not in-
voked.

Button 1 double-click navigates to the selected transition

20.14. Junction

Junction is a pseudostate (see Section 20.11, “Pseudostate”) which is used to split an incoming transition
into multiple outgoing transition segments with different guard conditions. A Junction is also called a
Merge or Static conditional branch. The chosen transition is that whose guard is true at the time of the
transition.

A predefined guard denoted el se may be defined for at most one outgoing transition. This transition is
enabled if all the guards |labeling the other transitions are fal se.

According the UML standard, its symbol is a small black circle. Alternatively, it may be represented by
adiamond shape (in case of "Decision" for Activity diagrams). ArgoUML only represents a junction on
the diagram as a solid (white by default) diamond, and does not support the black circle symbol for a
junction.

20.15. Choice

Choice is a pseudostate (see Section 20.11, “Pseudostate”) which is used to split an incoming transition
into multiple outgoing transition segments with different guard conditions. Hence, a Choice allows a dy-
namic choice of outgoing transitions. The chosen transition is that whose guard is true at the time of the
transition (if more than oneistrue, one is selected at random).

A predefined guard denoted el se may be defined for at most one outgoing transition. This transition is
enabled if all the guards |abeling the other transitions are fal se.

- Note

This sort of pseudostate was formerly called aBr anch by ArgoUML.

A choice is represented on the diagram as a small solid (white by default) circle (reminiscent of a small
state icon).

20.16. Fork

Fork is a pseudostate (see Section 20.11, “Pseudostate”) which splits a transition into two or more con-
current transitions.

" Caution

The outgoing transitions should not have guards. However ArgoUML will not enforce this.

296

Statechart Diagram Artifact Reference

A fork is represented on the diagram as a solid (black by default) horizontal bar.
Tip

This bar can be made vertical by selecting the fork, and dragging with button 1 one of its
corners.

20.17. Join

Join is a pseudostate (see Section 20.11, “Pseudostate”) which joins two or more concurrent transitions
into asingle transition.

A Caution

The incoming transitions should not have guards. However ArgoUML will not enforce
this.

A joinisrepresented on the diagram as a solid (black by default) horizontal bar.
. Tip

This bar can be made vertical by selecting the join, and dragging with button 1 one of its
corners.

20.18. Shallow History

Shallow History is a pseudostate (see Section 20.11, “Pseudostate”) that can remember the last state of
its container that was active. The history pseudostate points to its default state with a transition arrow
just like the initial pseudostate does. This transition points to the substate that will become active when
there is no history. When the container composite state has been active before (i.e., when there is his-
tory), the substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the shallow history only remembers the
history for states that have the same container as the history pseudostate. It does not restore substates
deeper in the hierarchy then the history pseudostate itself.

A shallow history is represented on the diagram as a circle containing the letter H.

20.19. Deep History

Deep History is a pseudostate (see Section 20.11, “Pseudostate”) that can remember the last state of its
container that was active. The history pseudostate points to its default state with a transition arrow just
like the initial pseudostate does. This transition points to the substate that will become active when there
is no history. When the container composite state has been active before (i.e., when there is history), the
substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the deep history remembers the history
for al states recursively which are contained in the history pseudostate container. It does restore any
substates no matter how deep in the hierarchy.

A deep history is represented on the diagram as a circle containing the symbols H .

297

Statechart Diagram Artifact Reference

20.20. Synch State

A synch state is for synchronizing concurrent regions of a state machine. It is used in conjunction with
forks and joins to insure that one region leaves a particular state or states before another region can enter
a particular state or states. The firing of outgoing transitions from a synch state can be limited by spe-
cifying a bound on the difference between the number of times outgoing and incoming transitions have
fired. In the UML metamodel Synch isachild of St at eVert ex.

A synch state is shown as a small circle with the upper bound inside it. The bound is either a positive in-

teger or a star (*') for unlimited. Synch states are drawn on the boundary between two regions when
possible.

20.20.1. Synch State Details Tabs

The details tabs that are active for Synch states are as follows.

ToDol t em
Standard tab.

Properties
See Section 20.20.2, “Synch State Property Toolbar” and Section 20.20.3, “Property Fields For
Synch State” below.

Docunent ati on
Standard tab.

Present ati on
Standard tab.

St er eot ype
Standard tab, containing the stereotypes of the Synch state. In the UML metamodel, Synch
St at e has no standard stereotypes defined.

Tagged Val ues
Standard tab. In the UML metamodel, Synch St at e has no standard tagged values defined.

20.20.2. Synch State Property Toolbar

o Go up
Navigate up through the package structure.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected synch state, navigat-
ing immediately to the propertiestab for that stereotype.
-m- Del ete from Mbdel
This deletes the synch state from the model
Warning

Thisis adeletion from the model not just the diagram.

298

Statechart Diagram Artifact Reference

20.20.3. Property Fields For Synch State

Name
Text box. The name of the Synch state. By convention Synch state names start with a lower case
letter and use bumpy caps to divide words within the name.

Note

¥
ArgoUML does not enforce this naming convention.
. Ti
i P
Synch state names are not shown on the diagram and it is not usually necessary to give
them aname.
Cont ai ner

Text box. Shows the container of the Synch state. Thisis the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that is the root of the state containment hierarchy).

Bound
Editable text box. Shows the Bound of the Synch state. Which is a positive integer or the value un-
limited (represented by a"*") specifying the maximal count of the SynchState. The count is the dif-
ference between the number of times the incoming and outgoing transitions of the synch state are
fired.

| ncomi ng
Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Qut goi ng Transitions
Text area. Lists any outgoing transitions for the final state.

Button 1 double-click navigates to the selected transition.

299

Chapter 21. Collaboration Diagram
Artifact Reference

21.1. Introduction

This chapter describes each artifact that can be created within a collaboration diagram. Note that some
sub-artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 13.3, “Properties Tab”). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

e Caution
Collaboration diagrams are not fully developed yet in ArgoUML. Many aspects are not

fully implemented, or may not behave as expected. In particular there are some serious
problems with layout of the collaboration roles and messages.

Figure 21.1, “Possible artifacts on a collaboration diagram.” shows a collaboration diagram with all pos-
sible artifacts displayed.

Figure 21.1. Possible artifacts on a collabor ation diagram.

300

Collaboration Diagram Artifact Reference

D ACtor

1:invakeq *-

3 :return *

: Do pendedOnC lass

2 create *-
4 : [sig] Start *

5 : [sig] End *

E: destroy *

:ThirdC lass

21.1.1. Limitations Concerning Collaboration Diagrams
in ArgoUML

The collaboration diagram is still rather under-developed in ArgoUML. In particular there is no way to
show instance collaborations (based on objects and links) rather than specification collaborations.

The biggest difficulties are with the messages. There are problems with the sequencing of the messages

and their display on the diagram. The actions behind them are purely textual in implementation and
there is no way to link them back to their associated operations or signals.

21.2. Classifier Role

A classifier roleis a specialization of a classifier, used to show its behavior in a particular context. In the
UML metamodel Cl assi fier Rol e isasub-class of G assi fi er. Within a collaboration dia-
gram classifier roles may be used in one of two ways:

» Torepresent the classifier in a particular behavioral context (the specification level); or

» to specify aparticular instance of the classifier (the instance level).

In this latter form, classifier roles are identical to the instances used in sequence diagrams (see

301

Collaboration Diagram Artifact Reference

Chapter 19, Sequence Diagram Artifact Reference) and a collaboration diagram shows the same inform-
ation as the sequence diagram, but in a different presentation.

Caution

A collaboration diagram should not mix classifier roles used as the specifier level and the
instance level.

A classifier role is represented on a sequence diagram in ArgoUML as a plain box labeled with the clas-
sifier role name (if any) and classifier, separated by a colon (:).

Caution

A classifier role should properly also show object name (if any) preceding the classifier
role name and separated from it by a slash (/). This allows classifier roles in a specifica
tion level diagram to be distinguished from instancesin an instance level diagram.

ArgoUML does show the slash, but there is no way to define the instances.

21.2.1. Classifier Role Details Tabs

The details tabs that are active for classifier roles are as follows.

ToDol tem
Standard tab.

Properties
See Section 21.2.2, “Classifier Role Property Toolbar” and Section 21.2.3, “Property Fields For

Classifier Role” below.

Docunent ati on
Standard tab.

Present ati on
Standard tab.

Sour ce
Standard tab, but with no contents.

A Caution

A classifier role should not generate any code, so having this tab active is probably a
mistake.

Tagged Val ues
Standard tab. In the UML metamodel, Cl assi fi er Rol e hasthe following standard tagged val-

ues defined.

» persi st ence (from the superclass, Cl assi f i er . Showing the permanence of the state in-
formation associated with the classifier role. Valuest r ansi t or y (state is destroyed when the
classifier roleis destroyed) and per si st ent (stateis preserved when the classifier roleis des-
troyed).

 senmantics (from the superclass, Cl assi fi er). The vaue is a specification of the se-

302

Collaboration Diagram Artifact Reference

mantics of the classifier role.

» deri ved (from the superclass, Mbdel El enent). Valuest r ue, meaning the classifier roleis
redundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived classifier roles still have their value in analysis and design to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML El enment metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

21.2.2. Classifier Role Property Toolbar

o Go up
Navigate up through the package structure.

o New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected classifier role, navig-
ating immediately to the propertiestab for that stereotype.

Im-Delete

This deletes the classifier role from the model

. Warning

This is a deletion from the modé not just the diagram. To delete an classifier role
from the diagram, but keep it within the model, use the main menu Renove From
Di agr am(or pressthe Delete key).

21.2.3. Property Fields For Classifier Role

Name

Text box. The name of the classifier role. By convention classifier role names start with a lower
case letter and use bumpy caps to divide words within the name.

- Note

303

Collaboration Diagram Artifact Reference

ArgoUML does not enforce this naming convention.

St ereot ype
Drop down selector. Classifier Role is provided by default with the UML standard stereotypes for a
classifier (met acl ass, powertype, process,threadandutility).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace
Text box. Records the namespace for the classifier role, which is always the containing Collabora-
tion.

Button 1 double click on the entry will navigate to the collaboration.

Multiplicity
Editable drop down selector. The default value is * , which means that there are any number of in-
stances of this classifierrole that play arole in the collaboration. The drop down provides some dif-
ferent multiplicities. E.g. 1. . 1 would mean that only one instance plays arolein this collaboration.

ArgoUML does not restrict you to the predefined ranges for multiplicity. You can edit this field
fregly.

Base
List. The names of the classifiers of which thisis a classifierrole. Button 1 double click navigates to
the classifier. Button 2 click gives a pop up menu with the following entries.

* Add. Allows adding or removeing classifiers to the list. To this end, a dialog box pops up, as
shown in the figure below.

Figure 21.2. The"add context” dialog box

304

Collaboration Diagram Artifact Reference

!} Add/Remove Bases

Chioices; Selected:

@ Claz=zB @ Actor

@ ClazsC

* Renove. Allows removeing classifiersto the list, without making use of the dialog box.

Ceneral i zati ons
Text area. Lists any classifierrole that generalizes this classifierrole.

Button 1 double click navigates to the generalization and opens its property tab.

Speci al i zat i ons
Text box. Lists any specialized classifierrole (i.e. for which this classifierrole is a generalization).

button 1 double click navigates to the generalization and opens its property tab.

Associ ati on End Rol e
Text area. Lists the association-end roles that are linked to this classifier role.

Button 1 double click navigates to the selected entry.

Avai |l abl e Contents

305

Collaboration Diagram Artifact Reference

Text area. Lists the subset of modelelements contained in the base classifier which is used in the
collaboration.

Button 1 double click navigates to the model element and opens its property tab.

Avai | abl e Feat ures
Text box. Lists the subset of features of the base classifier which is used in the collaboration.

button 1 double click navigates to the feature and opens its property tab.

21.3. Association Role

An association role is a specialization of an association, used to describe an associations behavior in a
particular context. In the UML metamodel Associ ati on Rol e isasub-classof Associ ati on.

An association role is represented on a collaboration diagram in ArgoUML as a line connecting the in-
stances concerned. However on a sequence diagram the representation is modified to reflect the type of
action associated with the stimulus carried on the link (see Section 19.3, “ Stimulus”).
The association role is labeled with the association role name (if any).
An association role shows its name and the association name according the following syntax:

|/ AssociationRoleName : AssociationName
in the same manner as a classifier role. The more generic syntax is:

I/R:C

which stands for an Instance named | originating from the Classifier C playing therole R.

21.3.1. Association Role Details Tabs

The details tabs that are active for association roles are as follows.

ToDol t em
Standard tab.

Properties
See Section 21.3.2, “Association Role Property Toolbar” and Section 21.3.3, “Property Fields For
Association Role” below.

Docunent at i on
Standard tab.

Presentation
Standard tab. The values for the bounds of the association role are downlighted, since they are de-
termined by what they connect.

Sour ce
Standard tab, but with no contents.

e Caution

An association role should not generate any code, so having this tab active is probably
amistake.

306

Collaboration Diagram Artifact Reference

Tagged Val ues
Standard tab. In the UML metamodel, Associ at i onRol e has the following standard tagged val-
ues defined.

» persi stence (from the superclass, Associ at i on). Vauest r ansi t ory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

e derived (from the superclass, Model El enent). Vaues t r ue, meaning the association is
redundant—it can be formally derived from other elements, or f al se meaning it cannot.

Note
L
Derived association roles still have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation.
Note
L
The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML
Checkl i st

Standard tab for an Association Role.

21.3.2. Association Role Property Toolbar

o Go up
Navigate up through the package structure.
ﬁi Del et e

This del etes the association role from the model

. Warning

This is a deletion from the model not just the diagram. To delete an association role
from the diagram, but keep it within the model, use the main menu Renove From
Di agr am(or pressthe Delete key).

21.3.3. Property Fields For Association Role

Name
Text box. The name of the association role, which is shown on the diagram. By convention associ-
ation role names start with alower case letter and use bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

307

Collaboration Diagram Artifact Reference

St er eot ype
Drop down selector. Association roleis provided by default with the UML standard stereotype from
the superclass Association: i nplicit.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.4, “ Stereotype”).

Nanmespace
Text box. Records the namespace for the association role. Thisis the package hierarchy.

Button 1 double click on the entry will navigate to the item showm.

Base
Drop down selector. Records the association that is the base for the association role.

The drop down selector shows all associations that exist between the classifiers that correspond
with the connected classifier roles.

Associ ation End Rol es
Text area. Lists the ends of this association role. An association role can have any number of ends,
but two is generally the only useful number (link objects can led to athird end on instance level dia-
grams, but thisis not supported by ArgoUML). For more on association end roles see Section 21.4,
“Association End Role”.

The names are listed, unless the association end role has no name, then it is shown as (anon As-
soci ati onEndRol e) .

Button 1 double click on an association end role will navigate to that end.

Messages
Text area. Lists the messages that are associated with this association role.

Button 1 double click navigates to the selected entry

21.4. Association End Role

An association end role is a speciaization of an association end, used to describe an association end's
behavior in a particular context. In the UML metamodel Associ ati onEndRol e is a sub-class of
Associ ati onEnd.

Two or more association end roles are associated with each association role (see Section 21.3,
“Association Role"), although for ArgoUML, the number of ends can only be two.

The association end role has no direct access on any diagram, although its stereotype, name and multi-
plicity is shown at the relevant end of the parent association role (see Figure 21.1, “Possible artifacts on
a collaboration diagram.”), and some of its properties can be directly adjusted with button 2 click.
Where shared or composite aggregation is selected for one association end role, the opposite end is
shown as a solid diamond (composite aggregation) or hollow diamond (shared aggregation).

- Note

ArgoUML does not currently (V0.18) support showing qualifiers on the diagram, as de-
scribed in the UML 1.4 standard.

308

Collaboration Diagram Artifact Reference

A Caution

An association end role should have the same, or “stricter” attribute values than its base as-
sociation end. In particular its navigability should be no more general. There is as yet no
criticin ArgoUML to offer advice on thisrule.

21.4.1. Association End Role Details Tabs

The details tabs that are active for association end roles are as follows.

ToDoltem
Standard tab.

Properties
See Section 21.4.2, “ Association End Role Property Toolbar” and Section 21.4.3, “Property Fields
For Association End Role” below.

Docunent ati on
Standard tab.

Sour ce
Standard tab. There is no code generated for an association end role.

Tagged Val ues
Standard tab. In the UML metamodel, Associ at i onEndRol e has the following standard tagged
values defined.

» derived (from the superclass, Mbdel El enent). Valuest r ue, meaning the association end
role is redundant—it can be formally derived from other elements, or f al se meaning it cannot.

Tip

Derived association end roles still have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation. However the tag only
makes sense for an association end role if it is also applied to the parent associ-
aionrole.

Note
The UML El enent metaclass from which al other artifacts are derived includes the

tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

21.4.2. Association End Role Property Toolbar

o Go up
Navigate up to the association role to which this end role belongs.

|_Go Opposi te

309

Collaboration Diagram Artifact Reference

This navigates to the other end of the association role.

gNeWQJalifier

This creates a new Qualifier for the selected association-end role, navigating immediately to the
properties tab for that qualifier.

. Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button
creates a qualifier in the model, which is not shown on the diagram. Also, the proper-
ties pandl for aqualifier equalsthat of aregular attribute.

% New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected association-end role,
navigating immediately to the properties tab for that stereotype.

ﬁ Del et e
This del etes the sel ected association-end from the model.

Note

L
This button is downlighted for binary association roles, since an association needs at
least two ends. Only for N-ary associations, this button is accessable, and deletes just
one end from the association.

21.4.3. Property Fields For Association End Role

Name

Text box. The name of the association end role, which provides arole name for this end of the asso-
ciation role. This role name can be used for navigation, and in an implementation context, provides
aname by which the source end of an association role can reference the target end.

- Note

ArgoUML does not enforce any haming convention for association end roles.

St ereot ype

Drop down selector. Association end role is provided by default with the UML standard stereotypes
for AssociationEndRole (associ at i on, gl obal , | ocal , paranet er,sel f).

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Base

Text field that shows the name of the corresponding association end. Button 1 double click navig-
ates to the association end.

310

Collaboration Diagram Artifact Reference

Associ ati onRol e
Text box. Records the parent association role for this association end role. Button 1 double click
navigates to the association role.

Type
Drop down selector providing accessto all standard UML types provided by ArgoUML and all new
classes created within the current model.

Thisisthe type of the entity attached to this end of the association role.

Mul tiplicity
Editable drop down text entry. Allows to alter the multiplicity of this association end role (with re-
spect to the other end), i.e. how many instances of this end may be associated with an instance of
the other end. The multiplicity is shown on the diagram at that end of the association role.

Al'l remaining properties
See Section 18.12.3, “Property Fields For Association End” . Since these are completely equal to
the fields of an association end, they are not repeated here.

21.5. Message

A message is a communication between two instances of an association role on a specification level col-
laboration diagram. It describes an action which will generate the stimulus associated with the message.
On a collaboration diagram a message is associated with an association role. In the UML metamodel
Message isasub-class of Mbdel El enent .

The message is represented on a collaboration diagram in ArgoUML by its sequence number separated
by a colon from the expression defining the associated action. It is accompagnied by an arrow pointing
in the direction of the communication, i.e. the direction of the AssociationRole. By convention the name
of a message is not shown on the diagram. Instead the diagram displays the message sequence number,
either as an integer or as a decimal number to show hierarchy.

Warning

The current release of ArgoUML does not retaining message positioning after reloading
the project, i.e. asif the positions were not stored in the project file.

21.5.1. Message Details Tabs

The details tabs that are active for messages are as follows.

ToDol tem
Standard tab.

Properties
See Section 21.5.2, “Message Property Toolbar” and Section 21.5.3, “Property Fields For Message”
below.

Docunent at i on
Standard tab.

Present ati on
Standard tab. The values for the bounds of the message define the bounding box of the message.
The Li ne field defines the arrow color. Increasing the Shadow size has an esthetically question-

311

Collaboration Diagram Artifact Reference

able effect.
" Caution
In the V0.18 release of ArgoUML changing the position of the message by editing the
values of the Bounds field is possible, but will make only a temporary change to the
position of the message, as described above.
Sour ce

Standard tab, showing the message number and action expression separated by a colon (when UML
1.4 is selected in the drop-down).
A Caution

A message probably should not generated any code of itself. That should be l€ft to the
action and possibly stimulus associated with it. In any case changes to this tab are ig-
nored.

Tagged Val ues
Standard tab. In the UML metamodel, Message has the following standard tagged values defined.

e derived (from the superclass, Model El errent). Vauest r ue, meaning the message is re-
dundant—it can be formally derived from other elements, or f al se meaning it cannot.

- Note

Derived messages still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

21.5.2. Message Property Toolbar

o Go up
Navigate up through the package structure.

[New Acti on
4

This creates a new Action (see Section 20.3, “Action”) for the selected object, navigating immedi-
ately to the properties tab for that action.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected message, navigating
immediately to the properties tab for that stereotype.

312

Collaboration Diagram Artifact Reference

ﬁ Del ete
This del etes the message from the model

. Warning

This is a deletion from the model not just the diagram. To delete an message from the
diagram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

21.5.3. Property Fields For Message

Nanme
Text box. The name of a message is usually its sequence number, either an integer, or a decimal
(allowing alternative message hierarchies to be clearly described). ArgoUML will supply an integer
seguence number by default.

St er eot ype
Drop down selector. Message has no stereotypes by default in the UML standard.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

I nteraction
Text box. Records the Interaction of which the messageis a part.

Button 1 double click on the entry will navigate to the interaction.

Sender
Text box. Identifies the classifier role which sent this message.

Button 1 double click navigates to the sender classifier role.

Recei ver
Text box. ldentifies the classifier role which receives this message.

Button 1 double click navigates to the receiver classifier role.

Act i vat or
Drop down selector. Identifies the message which invokes the behavior that causes the sending of

this message.
Button 1 click allows selecting the message.

Action
Text box. Liststhe action (see Section 20.3, “Action”) this message invokes to raise a stimulus.

Button 1 double click navigates to the selected action, button 2 gives a pop up menu with the fol-
lowing entry.

* New. Add anew action.

Thisitemis downlighted if an action aready exists.

313

Collaboration Diagram Artifact Reference

Predecessors
Text area. |dentifies the messages, the completion of whose execution enabl es this message.

Button 1 double click navigates to the selected message, button 2 gives a pop up menu with one
entry.

* Add. Opensadialog box that allows to select any number of messages. See figure below.

Thisentry is grayed out when no messages exist.

Figure 21.3. The*add predecessors’ dialog box

w¥ Add Predecessors (%]

Choices: ~elected:

= wier = EER

= i

8], || Cancel

314

Chapter 22. Activity Diagram Artifact
Reference

22.1. Introduction

This chapter describes each artifact that can be created within an Activity diagram. Note that some sub-
artifacts of artifacts may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “Properties Tab”). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Figure 22.1, “Possible artifacts on an activity diagram.” shows an Activity Diagram with all possible ar-
tifacts displayed.

Figure 22.1. Possible artifacts on an activity diagram.

315

Activity Diagram Artifact Reference

stateTrans

i firststate

stateTrans [loopluard)] f doltf'Transitioning”)

: secondstate

stateTrans

v

state Trans [logpl uardd]

i third5tate : i fourth5tate :

state Trans

state Trans

=lze]

22.1.1. Limitations Concerning Activity Diagrams in
ArgoUML

Activity diagrams are not fully developed yet in ArgoUML. Some aspects are not fully implemented, or
may not behave as expected. In particular lacking are call states, swim lanes, control icons (signals),
sub-activities, synch states. I nteractions with other classifiers are provided by an object-flow-state which

isonly partly implemented.

22.2. Action State

An action state represents execution of an atomic action, usually the invocation of an action. Within the
UML metamodel, Act i onSt at e isasub-classof Si npl eSt at e. It is a specialized simple state that

316

Activity Diagram Artifact Reference

only has an entry action, and with an implicit trigger as soon as that action is compl eted.

Caution

As a consegquence any outgoing transitions from an action state should not have explicit
triggers defined (ArgoUML will not currently check for this). They may have guards to
provide a choice where there is more than one transition.

Note

Unlike an ordinary state, an internal transition, an exit action and a Do activity are not per-
mitted for action states.

An action state is represented on an activity diagram in ArgoUML as a rectangle with rounded corners
containing the name of the action state.

Caution

The UML standard specifies that the text shown in the action state on the activity diagram
should contain the expression associated with the entry action - which is implemented as
such since ArgoUML V0.18. In past versions of ArgoUML (0.16.1 and before), the dia-
gram used to show the action state name. Loading a project created by one of the older ver-
sions, causes the project file to be converted to the correct format to conform to the UML
standard. This process is designed to be transparent for the user, and the only drawback is,
that the activity diagram in the project will not show correctly when reloaded in an old ver-
sion of ArgoUML again.

22.2.1. Action State Details Tabs

The details tabs that are active for action states are as follows.

ToDol t em

Standard tab.

Properties
See Section 22.2.2, “Action State Property ToolBar” and Section 22.2.3, “Property fields for action
state” below.

Docunent ati on
Standard tab.

Presentati on
Standard tab. The values for the bounds of the action state define the bounding box of the action

state.

St er eot ype
Standard tab that shows the stereotypes of the action state. In the UML metamodel, there are no ste-
reotypes defined by default for a action state.

Tagged Val ues
Standard tab. In the UML metamodel, Act i onSt at e has no standard tagged values defined.

22.2.2. Action State Property ToolBar

317

Activity Diagram Artifact Reference

{‘%Goup

Navigate up through the containment structure. Action states are contained by the (otherwise invis-
ible) top state.

- New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected action state, navigat-
ing immediately to the propertiestab for that stereotype.

-m- Del ete from Model
This deletes the action state from the model

. Warning

This is a deletion from the model not just the diagram. It is not possible to delete an
action state from the diagram, since that concept does not fit the UML standard.

Hence ArgoUML does also not show the Add t o Di agr ampop-up menu for action
states.

22.2.3. Property fields for action state

Name
Text box. The name of the action state. By convention action state names start with alower case let-
ter and use bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

Cont ai ner
Text box. The container of the action state. This shows the otherwise invisible composite state at the
top of the containment hierarchy.

Entry-Action
Text box. Shows the name of the action to be invoked on entry to this action state. According the
UML standard, an Action State is obliged to have an Entry-Action.

Button 1 double-click navigates to the shown entry, button 2 gives a pop up menu with two entries.

* New. Add a new Entry action of a certain kind. This menu has the following 7 submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

* Del ete From Mdel . Delete the Entry-Action.

Def errabl e events
Text box. The deferrable events of the action state.

| ncomi ng
Text area. Lists the transitions that enter this action state.

318

Activity Diagram Artifact Reference

Button 1 double-click navigates to the selected entry.

CQut goi ng
Text area. Lists the transitions that |eave this action state.

Button 1 double-click navigates to the selected entry.

22.3. Action

This artifact is described in the context of statechart diagrams (see Section 20.3, “Action”).

22.4. Transition

This artifact is described in the context of statechart diagrams (see Section 20.8, “Transition”).
" Caution

Remember that action states do not have explicit triggers. The transition is implicitly
triggered as soon as the entry event of the action state is complete. An explicit trigger
should not therefore be set.

The current release of ArgoUML will not check that this constraint is met.

Note

Transitions to and from an ObjectFlowState are dashed, to distinguish object flow from
control flow.

22.5. Guard

This artifact is described in the context of statechart diagrams (see Section 20.10, “ Guard”).

22.6. Initial State

This artifact is described in the context of statechart diagrams (see Section 20.12, “Initial State”).

22.7. Final State

This artifact is described in the context of statechart diagrams (see Section 20.13, “Final State”).

22.8. Junction (Decision)

This artifact is described in the context of statechart diagrams (see Section 20.14, “ Junction”).

22.9. Fork

This artifact is described in the context of statechart diagrams (see Section 20.16, “Fork”).

319

Activity Diagram Artifact Reference

22.10. Join

This artifact is described in the context of statechart diagrams (see Section 20.17, “Join”).

22.11. ObjectFlowState

(To Be Written)

320

Chapter 23. Deployment Diagram

Artifact Reference
23.1. Introduction

This chapter describes each artifact that can be created within a Deployment Diagram. Note that some

sub-artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “Properties Tab”). That section covers Properties in general, in this chapter they are linked to

specific artifacts.

Within ArgoUML, the deployment diagram is used for both component diagrams (i.e. without instances,
showing static dependencies of components) and deployment diagrams (showing how instances of com-

ponents are handled by instances of nodes at run-time).

Figure 23.1, “Possible artifacts on a component diagram.” shows a component diagram with al possible

Caution

Deployment diagrams are not fully developed yet in ArgoUML. Some aspects are not fully
implemented or may not behave as expected. Notable omissions are the possibility to draw

new interfaces and proper stereotyping of the various dependency relationships.

artifacts displayed.

Figure 23.1. Possible artifacts on a component diagram.

L =ze rPC

Se rve rProgram

BackEndSe rver

Example Library

Figure 23.2, “Possible artifacts on a deployment diagram.” shows a deployment diagram with all pos-

sible artifacts displayed.

=< Interface = =

Example Inte rface

321

Deployment Diagram Artifact Reference

Figure 23.2. Possible artifacts on a deployment diagram.

joe :Use rPC

joe Main:C lie nt Program :

- |- =] === = - e ntral:BackEndSe rver :

centrallib:Example Library :

fred:UserPC :

|
fredMain:C lie ntProgram : |
|

23.1.1. Limitations Concerning Deployment Diagrams in
ArgoUML

The deployment diagram is generally well drawn, but there are only a subset of the relationships that
should be shown available, which restricts the ability to show dynamic behavior of deployed code.

It is not possible to create new interfaces directly on this diagram; they can only be added if they arefirst
created in the model (by drawing them on a class diagram).

It is an inconvenience that the alternative representation of an interface (as a small circle) is not suppor-
ted.

23.2. Node

A node is a run-time physical object on which components may be deployed. In the UML metamodel it
isasub-classof Cl assi fi er.

A node is represented on a class diagram as a three dimensional box, labeled with its name.

23.2.1. Node Details Tabs

The details tabs that are active for nodes are as follows.

ToDol t em
Standard tab.

Properties
See Section 23.2.2, “Node Property Toolbar” and Section 23.2.3, “Property Fields For Node” be-

322

Deployment Diagram Artifact Reference

low.

Docunent ati on
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the node on the diagram.

. Warning

Beware that in the 0.18 release of ArgoUML, the bounding box just refers to the front
face of the cube. This means that the three dimensional top and side may be ignored,
for example when determining the limits of a diagram for saving graphics.

Sour ce
Standard tab, but with no contents.

A Caution
A node should not generate any code, so having thistab active is probably a mistake.
Tagged Val ues
Standard tab. In the UML metamodel, Node has the following standard tagged values defined.

» persistence (from the superclass, Cl assi fi er). Valuest ransi t ory, indicating state
is destroyed when an instance is destroyed or per si st ent , marking state is preserved when
an instance is destroyed.

* semantics (from the superclass, Cl assi fi er). The vaue is a specification of the se-
mantics of the node.

» deri ved (from the superclass, Model El enent). Valuest r ue, meaning the node is redund-
ant—it can be formally derived from other elements, or f al se meaning it cannot.

N
- ote
Derived nodes till have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.
N
- ote

The UML El ement metaclass from which al other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

23.2.2. Node Property Toolbar

o Go up
Navigate up through the package structure.

o New reception

323

Deployment Diagram Artifact Reference

This creates a new reception, navigating immediately to the properties tab for that reception.

o New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected node, navigating im-
mediately to the propertiestab for that stereotype.

Im-Delete

This deletes the node from the model

. Warning

Thisis a deletion from the model not just the diagram. To delete a node from the dia-
gram, but keep it within the model, use the main menu Renove From Di agr am
(or pressthe Delete key).

23.2.3. Property Fields For Node

Name

Text box. The name of the node. The name of a node has a leading capital |etter, with words separ-
ated by “bumpy caps’.

- Note

ArgoUML does not enforce this naming convention.

St ereot ype

Drop down selector. Node is a type of classifier, and so it has the default stereotypes of a classifier
as defined in the UML standard. ArgoUML provides the standard stereotypes for a classifier:
net acl ass, powertype, process,threadandutility.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace
Drop down selector. Allows altering the namespace for the node. Thisis the package hierarchy.

Modi fiers
Check box, with entriesabst ract, | eaf andr oot .

» abstract isusedto declare that this node cannot be instantiated, but must always be special-
ized. The name of an abstract node is displayed in italics on the diagram.

» | eaf indicatesthat this node cannot be further specialized.
» root indicatesthe node can have no generalization.

Ceneral i zations
Text area. Lists any node that generalizes this node.

Button 1 double click navigates to the generalization and opens its property tab.

324

Deployment Diagram Artifact Reference

Speci al i zati ons
Text box. Lists any specialized node (i.e. for which this node is a generalization.

Button 1 double click navigates to the specialization and opensits property tab.

Resi dent s
Text box. Lists any residents (see Section 23.4, “Component”) designed to be deployed on this type
of node.

Button 1 double click navigates to the selected entry.

23.3. Node Instance

A node instance is an instance of a node where component instances (see Section 23.5, “Component In-
stance”) may reside. In the UML metamodel Nodel nst ance isasub-class of | nst ance and is spe-
cifically an instance that is derived from a node.

A node instance is represented on a deployment diagram in ArgoUML as a three dimensional box
labeled with the node instance name (if any) and node type, separated by acolon (:).

Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a node instance from a node.

23.3.1. Node Instance Details Tabs

The details tabs that are active for node instances are as follows.

ToDol t em
Standard tab.

Properties
See Section 23.3.2, “Node Instance Property Toolbar” and Section 23.3.3, “Property Fields For
Node Instance” below.

Docunent ati on
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the node instance on the diagram.

. Warning

Beware that in the current release of ArgoUML, the bounding box just refers to the
front face of the cube. This means that the three dimensional top and side may be ig-
nored, for example when determining the limits of a diagram for saving graphics.

Sour ce
Standard tab, containing just the name of the node instance.

A Caution

325

Deployment Diagram Artifact Reference

A node instance should not generate any code, so having this tab active is probably a
mistake.

Tagged Val ues
Standard tab.

- Note

The UML El enent metaclass from which all other artifacts are derived includes the

tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

Checkl i st
Standard tab for an Instance.

23.3.2. Node Instance Property Toolbar

o Go up
Navigate up through the package structure.

% New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected node instance, navig-
ating immediately to the propertiestab for that stereotype.

Im-Delete

This deletes the node instance from the model

. Warning

This is a deletion from the model not just the diagram. To delete an node instance
from the diagram, but keep it within the model, use the main menu Renove From
Di agr am(or pressthe Delete key).

23.3.3. Property Fields For Node Instance

Name

Text box. The name of the node instance. By convention node instance names start with a lower
case letter and use bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

St er eot ype
Drop down selector. Node instance has no stereotypes by default in the UML standard.

326

Deployment Diagram Artifact Reference

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace
Drop down selector. Records the namespace for the node instance. Thisis the package hierarchy.

Stinuli sent
(To Be Written).

Stimuli Received
(To Be Written).

Resi dent s
Text box. Lists any residents (see Section 23.4, “Component™) designed to be deployed on this type
of node.
Button 1 double click navigates to the selected entry.

Classifiers
Text field. A Node instance type can be selected here.

A Caution

ArgoUML V0.18 lists many more items in the dropdown list then solely Nodes. Be-
ware to select Nodes only.

23.4. Component

A component type represents a distributable piece of implementation of a system, including software
code (source, binary, or executable) but also including business documents, etc., in a human system.
Components may be used to show dependencies, such as compiler and run-time dependencies or inform-
ation dependencies in a human organization. In the UML metamodel it isasub-classof Cl assi fi er.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, 1abeled with its name.

23.4.1. Component Details Tabs

The details tabs that are active for components are as follows.

ToDol t em
Standard tab.

Properties

See Section 23.4.2, “Component Property Toolbar” and Section 23.4.3, “Property Fields For Com-
ponent” below.

Docunent ati on
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the component on the diagram.

327

Deployment Diagram Artifact Reference

Sour ce
Standard tab, but with no contents.

e Caution
A component should not generate any code, so having this tab active is probably a

mistake.

Tagged Val ues
Standard tab.

Note

The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

¥

23.4.2. Component Property Toolbar

o Go up
Navigate up through the package structure.

o New reception

This creates a new reception, navigating immediately to the properties tab for that reception.
% New St er eot ype

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected component, navigat-
ing immediately to the propertiestab for that stereotype.

Im-Delete

This del etes the component from the model

. Warning

This is a deletion from the model not just the diagram. To delete a component from
the diagram, but keep it within the model, use the main menu Renove From Di a-
gr am(or pressthe Delete key).

23.4.3. Property Fields For Component

Nanme
Text box. The name of the component. The name of a component has a leading capital letter, with

words separated by “bumpy caps’.

- Note

328

23.5.

Deployment Diagram Artifact Reference

ArgoUML does not enforce this naming convention.

St ereot ype
Drop down selector. Component is provided by default with the UML standard stereotypes docu-
nment , execut abl e,file,library andtabl e. ArgpUML aso provides the standard Classi-
fier stereotypes, met acl ass, powert ype, process,threadandutility.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace
Drop down selector. Records and allows altering the namespace for the component. This is the
package hierarchy.

Modi fiers
Check box, with entriesabst r act, | eaf andr oot .

» Abstract isused to declare that this component cannot be instantiated, but must always be
specialized.

» Leaf indicatesthat this component cannot be further specialized.
* Root indicatesthe node can have no generalization.

General i zati ons
Text box. Lists any component that generalizes this component.

Speci al i zat i ons
Text area. Lists any derived components, i.e those for which this component is a generalization.

C i ent Dependencies
Text area. Lists outgoing dependencies. Button 1 double click navigates to the dependency.

Suppl i er Dependenci es
Text area. Listsincoming dependencies. Button 1 double click navigates to the dependency.

Resi dent s
Text box. Lists any residents (see Section 23.4, “Component™) designed to be deployed on this type
of node.

Button 1 double click navigates to the selected entry.

Component Instance

A component instance is an instance of a component (see Section 23.4, “Component”) which may reside
on a node instance (see Section 23.3, “Node Instance”). In the UML metamodel Conponent | n-
st ance isasub-classof | nst ance and is specifically an instance that is derived from a component.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, 1abeled with its name.

A component instance is represented on a sequence diagram in ArgoUML as a box with two small rect-
angles protruding from its left side labeled with the component instance name (if any) and component

329

Deployment Diagram Artifact Reference

type, separated by acolon (:).
Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a component instance from a component.

23.5.1. Component Instance Details Tabs

The details tabs that are active for component instances are as follows.

ToDol t em
Standard tab.

Properties
See Section 23.5.2, “Component Instance Property Toolbar” and Section 23.5.3, “Property Fields
For Component Instance” below.

Docunent ati on
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the component on the diagram.

Sour ce
Standard tab, containing just the name of the component instance.

Caution
A component instance should not generate any code, so having this tab active is prob-
ably amistake.

Tagged Val ues
Standard tab.

Note

The UML El ement metaclass from which all other artifacts are derived includes the
tagged element docunent at i on which is handled by the documentation tab under
ArgoUML

B

Checkl i st
Standard tab for an Instance.

23.5.2. Component Instance Property Toolbar

o Go up
Navigate up through the package structure.

- New St er eot ype

330

Deployment Diagram Artifact Reference

This creates a new Stereotype (see Section 16.5, “ Stereotype”) for the selected component instance,
navigating immediately to the properties tab for that stereotype.

Im-Delete

This del etes the component instance from the model

. Warning

Thisis a deletion from the model not just the diagram. To delete a component instance

from the diagram, but keep it within the model, use the main menu Renove From
Di agr am(or pressthe Delete key).

23.5.3. Property Fields For Component Instance

Name

Text box. The name of the component instance. By convention component instance names start
with alower case letter and use bumpy caps to divide words within the name.

- Note

ArgoUML does not enforce this naming convention.

St ereot ype
Drop down selector. Component instance has no stereotypes by default in the UML standard.

Navi gat e Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.5, “ Stereotype”).

Namespace

Drop down selector. Records and allows to change the namespace for the component instance. This
is the package hierarchy.

Stimuli sent
(To Be Written).

Stimuli Received
(To Be Written).

Resi dent s
Text box. Lists any residents (see Section 23.4, “Component”) designed to be deployed on this
component.

Button 1 double click navigates to the selected entry.

Classifiers
Drop down selector. A Component instance type can be selected here.

e Caution

ArgoUML V0.18 lists many more items in the dropdown list then solely Components.

331

Deployment Diagram Artifact Reference

Beware to select Components only.

23.6. Dependency

A key part of any component or deployment diagram is to show dependencies. For details see Sec-
tion 18.13, “Dependency”.

Caution

UML relies on stereotyping of dependencies on component and deployment diagrams to
characterize the types of relationship. In the current release of ArgoUML there are limita-
tions in the implementation of dependencies which limit this functionality.

23.7. Class

A component diagram may show the key internal structure of components, including classes within the
component. For details see Section 18.5, “Class”.

Caution

Classes can only be added to a component diagram if they already exist in the model (by
selecting them in the explorer and executing the "Add to diagram” button 2 command).
Thereis no way to create a new class on a component diagram.

23.8. Interface

A component or deployment diagram may show components or component instances which implement
interfaces. For details see Section 18.15, “Interface”.

Caution

The V0.18 release of ArgoUML uses the same representation of an interface as a class dia-
gram. The UML standard suggests that an interface on a component or deployment dia-
gram should just be shown as a small open circle, connected to the component which real-
izes that interface.

Warning

There is no way to show the linking of an interface to a component or component instance
inthe V0.18 release of ArgoUML.

23.9. Association

Components may be associated to each other. For details about associations, see Section 18.11,
“Association”.

Where classes or interfaces are shown within components on component diagrams, they may be shown

332

Deployment Diagram Artifact Reference

linked by associations.

23.10. Object

Just as components may show the classifiers that make up their internal structure, component instances
on deployment diagrams may show the classifier instances that make up their internal structure. In prac-
tice the only instance that is of use is an object (an instance of a class). For details see Section 19.2,
“Object”.

23.11. Link

Where objects (Node Instances or Class Instances) are shown within component instances on deploy-
ment diagrams, their inter-relationships may be shown as links (instances of an association). See Sec-
tion 19.9, “Link” for details.

333

Chapter 24. Built In DataTypes,
Classes, Interfaces and Stereotypes

24.1. Introduction

This chapter describes the datatypes, classes, interfaces and stereotypes, which by default, are built in to
ArgoUML.

Datatypes, classes and interfaces are generally available for use anywhere a class may be selected in the
properties tab. The most common useis for return type and parameter types in method signatures.

24.1.1. Package Structure

ArgoUML datatypes, classes and interfaces are effectively organized as a hierarchy beneath the overall
model itself. They are grouped in four packages, | ang, mat h, net and uti | , themselves subpackages
of j ava, which is a subpackage of the model itself. Figure 24.1, “Hierarchy of datatypes, classes and
interfaces within ArgoUML” shows this structure.

Figure 24.1. Hierarchy of datatypes, classes and interfaces within ArgoUM L

334

Built In DataTypes, Classes, Interfaces and
Stereotypes

= EI default
= Eljava

2 o @ @ T @ @ @ @D

EI larg
g Boolean
H eyte
% Char
% Double
= Float
@ Integer
@ Long
H ohject
E short
g =tring
3 tmath
% EigDecimal
% Eiglnteger
1 net
E urL
3 wtil
H pate
g Titre
g Yectar
H coliection
E| terator
H List
H set
H sortedset
haalesn
bvte
char
double
float
it
[uTyTe!
short
wioic]

335

Built In DataTypes, Classes, Interfaces and
Stereotypes

24.1.2. Exposure in the model

24.2.

24.3

You will not find build-in DataTypes, Classes, and Interfaces exposed within the model by default (i.e.
they are not present in the explorer). However, once you select one of the built-in DataTypes, Classes, or
Interfaces (in the "Type" combo-box on the property sheet of a parameter of an operation of a class),
then it becomes visible: you will find that the DataType, Class, or Interface has appeared in the model,
in its correct package stucture for the latter 2.

Built In Datatypes

These are the built in atomic types. Y ou can change them if you wish. However thisis not good practice.
All these can befound inthej ava. | ang subpackage of the main model.
" Caution
;oudshguld be aware that these are Java datatypes. They are not mandated by the UML
andard.

These are the standard datatypes. For their definition refer to the Java standard.

* bool ean
* byte

* char

+ double
* float

e int

* long

* short

e void

Note

voi d isnot strictly speaking atype, but the absence of type. ArgoUML knows about void
and allows it as an option where a datatype may be selected.

Built In Classes

These are the common classes, corresponding to classes defined within the standard Java environment. It
isup to you if you wish to change them.

These are found in al four subpackages of thej ava subpackage.

For a definition of these classes see the Java language and library definitions.

336

Built In DataTypes, Classes, Interfaces and
Stereotypes

24.3.1. Built In Classes From j ava. | ang

These are the classes within thej ava. | ang package.

Bool ean

* Byte
Char

* Doubl e
Fl oat

* Integer
Long

« (nject
Shor t

e String
24.3.2. Built In Classes From j ava. nat h
These are the classes within thej ava. mat h package.

 Big Decinal

Bi g | nteger
24.3.3. Built In Classes From j ava. net
These are the classes within thej ava. net package.

URL

24.3.4. Built In Classes From j ava. uti |

These are the classes within thej ava. ut i | package.

Vect or
e Date

Ti e

24.4. Built In Interfaces

337

24.5.

Built In DataTypes, Classes, Interfaces and
Stereotypes

These are some useful interfaces, corresponding to classes defined within the standard Java environ-
ment. Interfaces have many of the properties of classes (like all types) and you can change them if you
wish.

All these can befound inthej ava. ut i | subpackage of the main model.

These are the interfaces defined within the j ava. ut i | package. For their definition consult the Java
language and library references.

e Collection

e |terator

e List

* Set

e Sorted Set

Built In Stereotypes

UML 1.4 defines alarge number of stereotypes of which most are supported by ArgoUML.
e Caution

Not all stereotypes defined by UML 1.4 appear in ArgoUML V0.20 due to the fact that
they were not yet updated from previous versions of ArgoUML that only supported UML
1.3. Also, there are limitations in the current implementation of some base elements. The
table below lists all stereotypes defined in UML 1.4 and if they are supported in ArgoUML
or not.

A Caution

The UML 1.4 standard also specifies many stereotypes in the chapters “ Example Profiles’:
one for “ Software Development” and one for “Business Modeling”. Due to the specialized
nature of these profiles, implementation in ArgoUML is postponed until a yet undeter-
mined moment.

Table 24.1. Stereotypesdefined in UML 1.4 and ArgoUML

StereoType Base Element ArgoUML support
access Permission yes

appliedProfile Package no

association AssociationEnd yes

auxiliary Class no

338

Built In DataTypes, Classes, Interfaces and

Stereotypes

StereoType Base Element ArgoUML support
become Flow no
call Usage yes
copy Flow no
create Behavioral Feature yes
create CallEvent yes
create Usage yes
derive Abstraction yes
destroy Behaviora Feature yes
destroy CdlEvent yes
document Abstraction no
executable Abstraction no
facade Package yes
file Abstraction no
focus Class no
framework Package yes
friend Permission yes
global AssociationEnd yes
implementation Class no
implementation Generalization yes
implicit Association yes
import Permission yes
instantiate Usage yes
invariant Constraint no
library Abstraction no

339

Built In DataTypes, Classes, Interfaces and

Stereotypes

StereoType Base Element ArgoUML support
local AssociationEnd yes
metaclass Class no
metamodel Package yes
modelLibrary Package no
parameter AssociationEnd yes
postcondition Constraint no
powertype Class no
precondition Constraint no
process Classifier yes
profile Package no
realize Abstraction yes
refine Abstraction yes
reguirement Comment yes
responsibility Comment yes
self AssociationEnd yes
send Usage yes
signalflow ObjectFlowState yes
source Abstraction no
statel nvariant Constraint no
stub Package yes
systemModel Package yes
table Abstraction no
thread Classifier yes
topLevel Package yes

Built In DataTypes, Classes, Interfaces and

Stereotypes
StereoType Base Element ArgoUML support
trace Abstraction yes
type Class yes

341

Glossary

A

Activity Diagram

Action

Actor

Analysis

Association Class

Association

Attribute (of a Class or Object)

CASE

Class

Class Diagram

A UML diagram capturing the dynamic behavior of a system or sub-
system. See Section 6.10, “Activity Diagrams (To be written)” for
more information.

Behavior associated with Sates or Transitions in Sate Diagram.
These actions are invocations of Methods and appear on Sequence
and Collaboration Diagrams.

A representation of an agent (animate or inanimate) on a Use Case
Diagram external to the system being designed.

Analysis is the process of taking the “customer” requirements and
re-casting them in the language of, and from the perspective of, a
putative solution.

A class that characterizes the association between two other classes.

A relationship between two classes in a Class Diagram or between
Use Cases or Use Cases and Actorsin a Use Case Diagram.

An attribute of a class or object is a specification of a data element
encapsulated by that object.

Computer Aided Software Engineering.

The encapsulation of the data associated with an artifact (its attrib-
utes) and the actions associated with the artifact (its methods).

A class specifies the characteristics of an artifact. An object repres-
ents an instance of the artifact.

Classes and abjects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

A UML Diagram showing the structural relationship between
classes. See Section 5.2, “Class Diagrams (To be written)” for more
information.

342

Glossary

Collaboration

Collaboration Diagram

Collaborator

Comprehension and Problem
Solving

Concept Class Diagram

Critic

Extend Relationship

Generalization Relationship

The process whereby several objects cooperate to provide some
higher level behavior that is greater than the sum of the behaviors of
the objects.

A UML Diagram showing the dynamic behavior as messages are
passed between objects. Equivalent to a Sequence Diagram. Which
representation is appropriate depends on the problem under consid-
eration.

An object that participates in a Collaboration.

A design visualization theory within cognitive psychology. The the-
ory notes that designers must bridge a gap between their mental
model of the problem or situation and the formal model of a solution
or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposi-
tion, state transitions, control flow, and data flow. These allow
the programmer to better identify elements and relationshipsin
the problem and solution and thus more readily create a map-
ping between their situation models and working system mod-
es.

2. Familiar aspects of a situation model, which improve designers
abilities to formulate solutions.

A Class Diagram constructed during the Analysis Phase to show the
main structural components of the problem identified in the Require-
ments Phase. See Chapter 5, Analysis for more information.

A process within ArgoUML that provides suggestions as to how the
design might be improved. Suggestions are based on principles
within three theories of cognitive psychology, reflection-in action,
opportunistic design and comprehension and problem solving.

A relationship between two Use Cases, where the extended Use
Case describes a special variant of the extending Use Case.

A relationship between one generalizing Use Cases and one or more

343

Glossary

GUI

Hierarchical Statechart Dia-

gram

Include Relationship

Iterative Design Process

Mealy Machine

Method (of a Class or Object)

Moore Machine

generalized Use Cases, where the generalized Use Cases are partic-
ular examples of the generalizing Use Case.

Graphical User Interface.

A Satechart Diagram that contains subsidiary statechart diagrams
within individual Sates.

A relationship between two Use Cases, where the included Use Case
describes part of the functionality of the including Use Case.

A design process where each al phases (requirements, analysis,
design, build, test) are tackled partialy in a series of iterations. See
Section 3.2.1, “Types of Process’ for more information.

A fully object oriented programming language introduced by Sun
Microsystems. More strongly typed than C++, it compiles to an in-
terpreted code, the Java Virtual Machine (VM). The VM means
that Java code should run on any machine that has implemented the
VM.

The most significant component of Java was integration of the VM
into web browsers, allowing code (Applets) to be download and run
over the web.

ArgoUML iswritten in Java.

A Satechart Diagram where actions are associated with Sates.

A method of a class or object is a specification of behavior encapsu-
lated by that object.

A Satechart Diagram where actions are associated with
Transitions.

Glossary

Object

OCL

OMG

OOA&D

Opportunistic Design

Pane

Readlization Use Case

Reflection-in-Action

An instance of aClass.

Classes and abjects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

Object Constraint Language. A language for describing constraints
within UML.

The Object Management Group. An international industry standard-
ization body. Best known for CORBA and UML.

Object Oriented Analysis and Design. An approach to software
problem analysis and design based on objects, which encapsulate
both data and code. See See Section 1.1.1, “Object Oriented Analys-
isand Design” or any standard textbook on Software Engineering.

UML isanotation to support OOA&D.

A theory within cognitive psychology suggesting that although de-
signers plan and describe their work in an ordered, hierarchical fash-
ion, in actuality, they choose successive tasks based on the criteria
of cognitive cost. Simply stated, designers do not follow even their
own plans in order, but choose steps that are mentally least expens-
ive among alternatives.

A sub-window within the main window of the ArgoUML user inter-
face.

A Use Case where the Use Case Diagram and Use Case Specifica-
tion are in the language of the solution domain, rather than the prob-
lem domain.

A theory within cognitive psychology which observes that designers
of complex systems do not conceive a design fully-formed. Instead,
they must construct a partial design, evaluate, reflect on, and revise
it, until they are ready to extend it further. As developers work
hands-on with the design, their mental model of the problem situ-
ation improves, hence improving their design.

345

Glossary

Requirement Capturing

Responsibility

Scenario

Sequence Diagram

SGML

Simula 67

State

Statechart Diagram

Stereotypes and Stereotyping

Supplementary Requirement
Specification

SVG

Requirement capturing is the process of identifying what the
“customer” wants from the proposed system. See Chapter 4, Re-
quirements Capture for afuller description.

S ome behavior for which an object is held accountable. A respons-
ibility denotes the obligation of an object to provide a certain beha
vior.

A specific sequence of actionsthat illustrates behavior.

A UML Diagram showing the dynamic behavior as messages are
passed between objects. Equivalent to a Collaboration Diagram.
Which representation is appropriate depends on the problem under
consideration. See Section 5.4, “Sequence Diagrams (To be writ-
ten)” for more information.

Standard Graphical Markup Language. Defined by 1SO 8879:1986.

A procedural programming language intended for simulation. Noted
for itsintroduction of objects and coroutines.

Within a Statechart Diagram a one of the possible configurations of
the machine.

A UML Diagram showing the dynamic behavior of an active Object.
See Section 5.6, “ Statechart Diagrams (To be written)” for more in-
formation.

Any artifact within UML can be given a stereotype to indicate its as-
sociation with a particular role in the design. A stereotype spqr is
generaly indicated with the notation <<spqr >>.

A stereotype defines a Namespace within the design. Examples of
stereotypes are <<busi ness>> and <<r eal i zat i on>> for Use
Cases, used to distinguish between Use Cases at the requirements
phase defined in terms of the problem domain, and Use Cases at the
analysis phase defined in terms of the solution domain.

The document capturing non-functional requirements that cannot be
associated with Use Cases.

Scalable Vector Graphics format. A standard representation of
graphics diagrams that use vectors. ArgoUML can export diagrams
inSVG.

346

Glossary

System Sequence Diagram

System Statechart Diagram

To-DoList

Transition

UML

Use Case

Use Case Diagram

Use Case Specification

Vision Document

W3C

A Sequence Diagram used in the Analysis Phase showing the dy-
namic behavior of the overall system. See Chapter 5, Analysis for
more information.

A Statechart Diagram used in the Analysis Phase showing the dy-
namic behavior of an active top level system objects. See Chapter 5,
Analysis for more information.

A feature of ArgoUML allowing the user to record activities that are
yet to be compl eted.

The change between Sates in a Satechart Diagram..

Universal Modeling Language. A graphical notation for OOA&D
processes, standardized by the OMG. ArgoUML supports UML 1.4.
UML 2.0isinthefina stages of standardization and should be com-
plete during 2006.

A UML notation for capturing requirements of a system or sub-
system. See Section 4.3, “Output of the Requirements Capture Pro-
cess’ for more information.

A UML diagram showing the relationships between Actors and Use
Cases. See Section 4.3, “Output of the Requirements Capture Pro-
cess’ for more information.

The document capturing the detailed requirements behind a Use
Case.

The top level document describing what the system being developed
isto achieve.

The World Wide Web Consortium, www.w3c.org

347

http://www.w3c.org

Glossary

Waterfall Design Process

XMI

XML

[http://mwww.w3c.org]. An international standardization body for all
things to do with the World Wide Web.

A design process where each phase (requirements, analysis, design,
build, test) is completed before the next starts. See Section 3.2.1,
“Types of Process’ for more information.

XML Model Interchange format. A format for file storage of UML
models. Currently incomplete, since it does not carry all graphical
layout information, so must be supplemented by files carrying that
information.

eXtensible Markup Language. A simplified derivative of SGML
defined by W3C

Appendix A. Supplementary Material
for the Case Study

A.l. Introduction

The case study requires various material (mostly documents) that live alongside the design diagram

A.2. Requirements Documents (To be written)

To be written...

A.2.1. Vision Document (To be written)

To be written...

A.2.2. Use Case Specifications (To be written)

To be written...

A.2.2.1. UC Specification 1 (To be written)

To be written...
A.2.3. Supplementary Requirements Specification (To be
written)

To be written...

349

Appendix B. UML resources
B.1. The UML specs (To be written)

To be written...

B.2. UML related papers (To be written)

To be written...

B.2.1. UML action specifications (To be written)

To be written...

B.3. UML related websites (To be written)

To bewritten...

350

Appendix C. UML Conforming CASE
Tools

C.1. Other Open Source Projects (To be writ-
ten)

To be written...

C.2. Commercial Tools (To be written)

To be written...

351

Appendix D. The C++ Module

The ArgoUML C++ Module (C++ Mod.) provides C++ code generation functionalities and C++ nota
tion within ArgoUML. It works the same way as the other languages modules.

D.1. Modeling for C++

D.1.1.

The C++ programming language has constructs that aren't contained by default in UML. Examples are
pointers, global functions and variables, references and operator overloading. To enable us to apply
these constructs in our models and be capable of taking advantage of it for code generation and C++
notation in UML diagrams, the C++ module uses conventions in the use of the extension features of
UML, tagged values and stereotypes.

Since UML and C++ are object oriented, there is an obvious correspondence between the UML model
elements and C++ structural constructs, e.g, the UML O ass isrelated to the C++ ¢l ass. These obvi-
ous relations will not be described here, since it is assumed that an ArgoUML user that wants to model
for C++ has basic knowledge of both C++ and UML.

Tagged values are one of the main means by which we can define code generation behavior. They have
aname —the tag — and avalue, and are applied to model elements.

The tagged valuesin use for the C++ module have two categories:

» freeformat values—any St ri ng isvalid, except theempty St ri ng

» formated values — the value must obey some restrictions, e.g., be one of true or fal se
(abbreviatedtotrue || fal se)

For Bool ean tagged values, only the values "t rue" or " f al se" are applicable. If a Bool ean
tagged value does not exist or isinvalid for one model element, a default value is assumed by the code
generator. In the bellow documentation the default value is marked.

Free format tagged values are only significant if present and if the value isn't an empty St ri ng. When
the value must follow some sort of format, that is explicitly stated. In this case, there is the chance that
thevaueisinvalid. If the valueisinvalid, no assumptions are made; the generator will trace the problem
and ignore the tagged value.

Cl ass tagged values

constructor
t r ue — generates a default constructor for thecl ass.

f al se (default) — no default constructor is generated, unless it is explicitly modeled with the
«Cr eat e» stereotype.

header _i ncl
Name of thefile to include in the header.

- Note

If we desire to have multiple headers included this way, just use multiple tagged val-
ueswith header _i ncl asthetag.

352

The C++ Module

Other tagged values used for C++ modeling may also be used this way. This note
won't be repeated in those cases.

sour ce_i ncl
Name of thefileto include in the source (. cpp file).

t ypedef public
<source type> <type_nane> —createst ypedef linein the public area of the cl ass with
typedef <source type> <type nane>.

t ypedef protected
Sameast ypedef publi c, but,inpr ot ect ed area

typedef _private
Sameast ypedef publi c, but,inthepri vat e area

t ypedef gl obal _header
Sameast ypedef _publ i c, but, in the global area of the header.

t ypedef gl obal _source
Sameast ypedef gl obal _sour ce, but, in the sourcefile.

Tenpl at ePat h
Di rect ory — will search in the specified directory for the template files "header template" and
"cpp_template" which are placed in top of the corresponding file. The following tagsin the template
file are replaced by model values: [FILENAME|, IDATE]|, [YEAR|, JAUTHOR|, EMAIL]|. If no such
tag is specified, the templates are searched in the subdirectory of the root directory for the code gen-
eration.

emai |
name@onai n. count ry —replacesthe tag [EMAIL| of the templatefile.

aut hor
name — replaces the tag JAUTHOR| of the template file.
-~ Note

Y ou may simply use the Author property in the documentation property panel.

D.1.2. Attri but e tagged values

UML Attri but es aremappedtocl ass nenber vari abl es.
poi nt er
t r ue —the type of the member variable will be a pointer to the attribute type.

For example, if you have the UML Attri bute: nane: std::string, with the poi nter
tagged value set to true, the generated member variable would be: st d: : st ri ng* nane;

f al se (default) — no pointer modifier is applied.

ref erence
t r ue —the type of the member variable will be a reference to the attribute type.

353

The C++ Module

f al se (default) — no reference modifier is applied.

usage
header —will lead for class types to a pre-declaration in the header, and the include of the remote
class header in the header of the generated class.

Mul tiplicityType
list || slist || vector || map || stack || stringmap —will defineamulti-
plicity asthe corresponding STL container, if theMul ti pl i ci ty range of the attribute is variable
(for fixed size ranges this setting isignored).

set
private || protected || public — creates a simple function to set the attribute by a
function (call by reference is used for class-types, else cal by value); place the function in the given
visibility area.

get
private || protected || public—asforset.

D.1.3. Par aneters

D.1.3.1. Variable passing semantics

If aPar anet er for an Oper ati on ismarked asout or i nout the variable will be passed by refer-
ence (default) or pointer (needs tagged value poi nt er — see above), otherwise by value.

Return valuesin UML are simply Par anet er s marked asr et ur n, therefore everything here applies
to them, except where explicitly noted.

. Warning

Note that UML allows multiple return values. This is possible to support in C++ as out
parameters, but, currently the generator doesn't supportsit.

This problem is being handled in issue #3553 — handle multiple return parameters
[http://argouml.tigris.org/issues/show_bug.cgi7id=3553].

D.1.3.2. Par anet er tagged values

poi nt er
true || false (default)—sameasfor Attri butes.

ref erence
ditto

D.1.4. Preserved sections

With each code generation, special comments around the member function definitions will be generated
like this:

function Testcl ass:: Testcl ass()
/1 section -64--88-0-40-76f2e8: ec37965ae0: - 7fff begin

354

http://argouml.tigris.org/issues/show_bug.cgi?id=3553

The C++ Module

{
/|l section -64--88-0-40-76f2e8: ec37965ae0:-7fff end

All code you put within the "begin” and "end" lines will be preserved when you generate the code again.
Please do not change anything within these lines because the sections are recognized by this comment

syntax. As the curly braces are placed within the preserved area, attribute initializers are preserved on
constructors.

This also works if you change Method Names after the generation.

voi d newOperation(std::string test = "fddsaffa")
/1 section 603522:ec4c7ff768:-7ffc begin

/1 section 603522:ec4c7ff768:-7ffc end

If you delete an Operation in the model. The next time the class is generated, the lost code — i.e., the
whole member function definition —will be added as comment to the end of thefile.

355

Appendix E. Limits and Shortcomings

As all products, ArgoUML has some limits. Those important to the user are listed in this section.

E.1. Diagram Canvas Size

Due to the underlying diagram editing software, the canvas size for diagrams is limited to 6000 units in
height and width.

E.2. Missing functions

356

Appendix F. Open Publication License

F.1. Requirements On Both Unmodified And
Modified Versions

The Open Publication works may be reproduced and distributed in whole or in part, in any medium
physical or electronic, provided that the terms of this license are adhered to, and that this license or an
incorporation of it by reference (with any options elected by the author(s) and/or publisher) is displayed
in the reproduction.

Proper form for an incorporation by referenceis as follows:
Copyright (c) <year> by <author's name or designee>. This material may be distrib-
uted only subject to the terms and conditions set forth in the Open Publication Li-

cense, vX.Y or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

The reference must be immediately followed with any options elected by the author(s) and/or publisher
of the document (see section V1).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the origina publisher and au-
thor. The publisher and author's names shall appear on all outer surfaces of the book. On all outer sur-

faces of the book the origina publisher's name shall be as large as the title of the work and cited as pos-
sessive with respect to thetitle.

F.2. Copyright

The copyright to each Open Publication is owned by its author(s) or designee.

F.3. Scope Of License

The following license terms apply to all Open Publication works, unless otherwise explicitly stated in
the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate
work shall contain a notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

SEVERABILITY. If any part of thislicenseisfound to be unenforceable in any jurisdiction, the remain-
ing portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided “as is’ without warranty of any

kind, express or implied, including, but not limited to, the implied warranties of merchantability and fit-
ness for a particular purpose or awarranty of non-infringement.

F.4. Requirements On Modified Works

All modified versions of documents covered by this license, including trandations, anthologies, compil-

357

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Open Publication License

ations and partial documents, must meet the following requirements:

1. Themodified version must be labeled as such.
2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to
normal academic citation practices.

4. Thelocation of the original unmodified document must be identified.

5. The origina author's (or authors) name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors) permission.

F.5. Good-Practice Recommendations

In addition to the requirements of this license, it is requested from and strongly recommended of redis-
tributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email noti-
fication to the authors of your intent to redistribute at least thirty days before your manuscript or
media freeze, to give the authors time to provide updated documents. This notification should de-
scribe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
€else described in an attachment to the document.

3. Finaly, whileit is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

F.6. License Options

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by
appending language to the reference to or copy of the license. These options are considered part of the
license instance and must be included with the license (or its incorporation by reference) in derived
works.

A. To prohibit distribution of substantively modified versions without the explicit permission of the au-
thor(s). “ Substantive modification” is defined as a change to the semantic content of the document, and
excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase “ Distribution of substantively modified versions of this document is
prohibited without the explicit permission of the copyright holder.” to the license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or in part in standard (paper)
book form for commercial purposes is prohibited unless prior permission is obtained from the copyright
holder.

To accomplish this, add the phrase “Distribution of the work or derivative of the work in any standard
(paper) book form is prohibited unless prior permission is obtained from the copyright holder.” to the li-
cense reference or copy.

358

Open Publication License

F.7. Open Publication Policy Appendix:

(Thisisnot considered part of the license.)

Open Publication works are available in source format via the Open Publication home page at ht-
tp://works.opencontent.org/ [http://works.opencontent.org/].

Open Publication authors who want to include their own license on Open Publication works may do so,
aslong astheir terms are not more restrictive than the Open Publication license.

If you have questions about the Open Publication License, please contact David Wiley
[mailto:dw2@opencontent.org], and/or the Open Publication Authors List at opa @opencontent.org
[mailto:opal @opencontent.org], viaemail.

To subscribe to the Open Publication Authors List: Send E-mail to opal-request@opencontent.org with
the word “subscribe” in the body.

To post to the Open Publication Authors' List: Send E-mail to opal @opencontent.org or simply reply to
aprevious post.

To unsubscribe from the Open Publication Authors' List: Send E-mail to opal-request@opencontent.org
with the word “unsubscribe” in the body.

359

http://works.opencontent.org/
http://works.opencontent.org/
mailto:dw2@opencontent.org
mailto:opal@opencontent.org

Appendix G. The CRC Card
Methodology

A CRC card is ostensibly an index card that is used to represent classes, their responsihilities, and the in-
teractions between them. The term CRC card is aso used to refer to a methodology for object oriented
modeling based on their use.

Kent Beck and Ward Cunningham introduced CRC cardsin a paper "A Laboratory for Teaching Object-
Oriented Thinking" that was presented at the OOPSLA (Object-Oriented Programming, Systems, Lan-
guages & Applications) conference in 1989. A tutorial on the subject can be found at ht-
tp://www.csc.cal poly.edu/~dbutler/tutorial s'winter96/crc_b/. The CRC card methodology was originally
designed as ateaching tool but has proved useful as a modeling tool as well.

The three parts of the CRC acronym were felt by the authors of the paper to represent the essential di-
mensions of object oriented modeling. The term Responsibilities refers to the contract that the class un-
der discussion offers to the rest of the world (Interface and Contract are similar concepts). Responsibilit-
ies model the things that a class can do. Services, Methods, or Operations will result from these. The
term Collaborators refers to the classes whose services the class under discussion will use. Kent Beck
tried unsuccessfully to use ther term Helpers instead of Collaborators to indicate classes that were sup-
porting the class under discussion. It is widely believed that the terminology was chosen because CRC
aretheinitials of Ward Cunningham's son.

Why use CRC cards?

e They are portable. No computers are required so they can be used anywhere. Even away from the of-
fice.

* They alow the participants to experience first hand how the system will work. No computer tool can
replace the interaction that happens by physically picking up the cards and playing the role of that
object.

» They are auseful tool for teaching people the object-oriented paradigm.

e They can be used as a methodology themselves or as a front end to a more formal methodology such
as Booch, Wirfs-Brock, Jacobson, etc. Although CRC cards were created for teaching, they have
proven useful for much more.

» They have become an accepted method for analysis and design. The biggest contributing factor to
their success is the fact that they provide an informal and non threatening environment that is pro-
ductive to working and learning.

G.1. The Card

The exact format of the card can be customized to the preferences of the group, but the minimal required
information is the name of the class, it's subclasses and superclasses, it's responsibilities and the collab-
orators for each of those responsibilities. The back of the card can be used for a description of the class.
During the design phase attributes of the class can be recorded on the back as well. One way to think of
the card is that the front contains the public information, and the back contains the encapsulated, imple-
mentation details. As aclassis defined a card is made for that class with its name entered. When a class
is assigned to an individua that has only a class name on it, the individual (or the group) selects an ini-
tial set of responsihilities for the class. This initial set should be whatever (if anything) is immediately
obvious.

360

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/

The CRC Card Methodol ogy

G.2. The Group

Whether they are implicitly or explicitly defined the requirements for the system need to be familiar to
the people participating in the group.

Theideal group size for a CRC card session is five or six people. This size generally allows everyone to
productively participate. In groups of larger size productivity is cut by more disagreements and the
amount of participation by each is lower. If there are more than six people, one solution is to have the
extra people be present strictly as observers.

The group five or six people in the core group should be composed of developers, domain experts, and
an object-oriented technology facilitator.

G.3. The Session

Before starting a session a part of the problem needs to be selected for the session to focus on. Essen-
tially, this means picking the set of classesthat are to be used.

Pick the scenarios that are to be walked through that use the classes picked above. Start with scenarios
that are part of the systems normal operation first, and then exceptional scenarios, like error recover,
later.

Assign each class to a member of the group. Each person should be responsible for at least one class.
They are the owner of that class for the session. Each person records the name of their class on a card.
One class per card.

Walk-throughs are the heart of the CRC card session. To walk through a scenario address each action in
it one at a time. First decide which class is responsible for this function. The owner of the class then
picks up his card and holdsit up in the air. When acard isup in the air it is an object and can do things.
The owner announces that he needs to fulfill his responsibility. The responsibility is refined into smaller
tasks if possible. These smaller tasks can be fulfilled by the object is appropriate or they can be fulfilled
by interacting with other objects (collaborators). If no other appropriate class exists, you may need to
make one and assign it to someone. This is the fundamental procedure of the scenario execution.

G.4. The Process

CRC Cards are used in the Analysis and Design phases. The process for these phases differ primarily in
how the classes and scenarios are chosen.

In the Analysis phase the classes and scenarios are in the problem space and generally derive from the
requirements. In the Design phase solution space classes and scenarios are added. Additionally in the
Analysis phase the very first session starts with no classes or scenarios to select from so a special session
creates them.

361

Index

The use of the index in the document is done a little at
random and cannot be trusted. Please help in suggesting
new index entries!

A

Action, 342
Active Actor, 36
Activity Diagram, 342
Actor, 33, 44, 207, 342
Actor Association Ends, 209
Actor Details Tabs, 207
Actor Generalizations, 209
Actor Modifiers, 209
Actor Name, 208
Actor Namespace, 209
Actor Specializations, 209
Actor Stereotype, 208
Add Action, 312
Add Actor, 208
Add DataType, 191
Add Datatype, 228, 236, 240, 244
Add Enumeration, 191
Add Extend Relationship, 221
Add Extension Point, 211, 214
Add Package, 191
Add Qualifier, 254, 310
Add Stereotype, 191, 195, 199, 214, 217, 221, 224, 228,
232, 236, 240, 244, 247, 251, 254, 259, 262, 269, 276,
280, 283, 287, 289, 291, 293, 295, 298, 303, 310, 312,
318, 324, 326, 328, 330
Add Use Case, 211
Aggregation

of Association End, 257
Alternate Flows

of Use Casg, 41, 42
Alternative scenarios, 42
Analysis, 1,7, 12, 342

Object Oriented, 345
Arrange Menu, 21
Association, 249, 342

in aUse Case Diagram, 46
Association Class, 342
Association Details Tabs, 250
Association End, 253
Association End Aggregation, 257
Association End Changeability, 258
Association End Details Tabs, 253
Association End Modifiers, 255
Association End Multiplicity, 255
Association End Name, 255
Association End Property Fields, 255
Association End Property Toolbar, 254
Association End Stereotype, 255

Association End Tagged Values, 253
Association End Type, 255
Association End Visibility, 258
Association Ends

of Actor, 209

of Association, 252
Association Name, 252
Association Property Fields, 251
Association Property Toolbar, 251
Association Stereotype, 252
Association Tagged Values, 251
Attribute, 235

of aClass, 342

of an Object, 342
Attribute Changeability, 238
Attribute Details Tabs, 235
Attribute Initial Value, 237
Attribute Multiplicity, 237
Attribute Name, 236
Attribute Property Fields, 236
Attribute Property Toolbar, 236
Attribute Tagged Values, 235
Attribute Type, 237
Attribute Visibility, 238

B
Base
of Include Relationship, 225
Base Class
of Stereotype, 202
Base Use Case
of Extend Relationship, 222
of Extension Point, 215
Basic Flow
of Use Case, 41, 42
Build, 12, 16

C

CASE, 342
Changeability
of Association End, 258
of Attribute, 238
Child
of Generalization, 218
Class, 230, 342
Class Details Tabs, 230
Class Diagram, 226, 342
Class Method, 344
Class Modifiers, 233
Class Name, 232
Class Property Fields, 232
Class Property Toolbar, 231
Class Stereotype, 233
Class Tagged Values, 231
Clients
of Dependency, 260
Code Generation, 70

362

ndex

Collaboration, 343
Collaboration Diagram, 343
Collaborator, 343
Comprehension, xvii, 13, 343
Concept Class Diagram, 343
Concurrency
of Operation, 242
Connections
of Association, 252
Constraints
in the Vision document, 35
Contexts
of Signal, 248
Contributing
to ArgoUML, 2
to the User Manuadl, 4
Cookbook, 2
Create Diagram Menu, 21
Create Diagram Toolbar, 22
Create New
Action, 312
Actor, 44, 208
Association in a Use Case Diagram, 46
DataType, 191
Datatype, 228, 236, 240, 244
Enumeration, 191
Extend Relationship, 221
Extend Relationship in a Use Case Diagram, 47
Extension Point, 45, 211, 214
Generalization relationship in a Use Case Diagram
48
Include Relationship in a Use Case Diagram, 47
Package, 191
Qualifier, 254, 310
Stereotype, 191, 195, 199, 214, 217, 221, 224, 228
232, 236, 240, 244, 247, 251, 254, 259, 262, 269
276, 280, 283, 287, 289, 291, 293, 295, 298, 303
310, 312, 318, 324, 326, 328, 330
Use Case, 44, 211
Critic, 343
Critique Menu, 21

D

Datatype, 193
Datatype Details Tabs, 193
Datatype Literals, 197
Datatype Modifiers, 196
Datatype Name, 195
Datatype Properties, 193
Datatype Property Fields, 195
Datatype Property Toolbar, 194
Datatype Stereotype, 195
Datatype Tagged Values, 194
Datatype Visibility, 196
Default Value

of Parameter, 245
Delete From Model, 95
Dependency, 258

Dependency Clients, 260
Dependency Details Tabs, 258
Dependency Name, 259
Dependency Namespace, 260
Dependency Stereotype, 260
Dependency Suppliers, 260
Design, xvii, 1, 7, 12
Object Oriented, 345
Opportunistic, 345
Design Process
Iterative, 344
Waterfall, 348
Details Tabs
for Actor, 207
for Association, 250
for Association End, 253
for Attribute, 235
for Class, 230
for Datatype, 193
for Dependency, 258
for Diagrams, 205
for Enumeration, 198
for Extend Relationship, 220
for Extension Point, 213
for Generalization, 216
for Include Relationship, 223
for Model, 190
for Operation, 239
for Package, 227
. for Parameter, 243
for Signal, 246
for Stereotype, 201
for Use Case, 210
Developer Zone, 2
, Developers Cookbook, The, 2
, Diagram, 203
, Activity, 342
Class, 342
Collaboration, 343
Sequence, 346
State, 346
System Sequence, 347
System State, 347
Use Casg, 35, 347
Diagram Details Tabs, 205
Diagram Name, 205
Diagram Property Fields, 205
Discriminator
of Generalization, 218

Documentation in Use Case Diagrams, 48

E

Edit Menu, 21

Edit Toolbar, 22

Enumeration, 197
Enumeration Details Tabs, 198
Enumeration Literals, 200
Enumeration Modifiers, 199

363

Index

Enumeration Name, 199 Generalize aUse Case, 40
Enumeration Properties, 198 Generate All Classes, 112
Enumeration Property Fields, 199 Generating Code
Enumeration Property Toolbar, 198 from Collaboration Diagrams, 71
Enumeration Tagged Values, 198 from Interactions, 71
Enumeration Visibility, 200 from Sequence Diagrams, 71
EPS, 14 from Statechart Diagrams, 71
Exit, 93 from the Static Structure, 70
Explorer, 121 Generation Menu, 21
Mouse Behavior, 121 GIF, 14
Extend Relationship, 39, 219, 343 Goal
in aUse Case Diagram, 47 of Use Casg, 40
of Use Case, 212 Goals
Extend Relationship Base Use Case, 222 in the Vision document, 35
Extend Relationship Details Tabs, 220 GUI, 344
Extend Relationship Extension, 222
Extend Relationship Extension Point, 222 H
Extend Relationship Name, 221 Help Menu. 22
Extend Relationship Namespace, 222 €p o lél tetechart Di 34
Extend Relationship Stereotype, 221 Hierarchical Statechart Diagram,
Extending Use Cases H!erarchlcal Use Cases, 47
of Extension Point, 215 Hierarchy of Use Cases, 38
Extension
of Extend Relationship, 222 I
Extension Point, 45, 213 Include Relationship, 38, 222, 344
of Extend Relationship, 222 in aUse Case Diagram, 47
of Use Casg, 212 of Use Case, 213
Extension Point Base Use Case, 215 Include Relationship Base, 225
Extension Point Details Tabs, 213 Include Relationship Details Tabs, 223
Extension Point Extending Use Cases, 215 Include Relationship Included Use Case, 225
Extension Point Location, 215 Include Relationship Name, 224
Extension Point Name, 214 Include Relationship Namespace, 225
Extension Point Stereotype, 214 Include Relationship Stereotype, 224
External entity, 207 Included Use Case
of Include Relationship, 225
F Initial Value
of Attribute, 237
'E;(gbg‘:k’ 4 Iter(z;\ftizﬁragqeter, o
E”gyoegléfzz Iterat@ve Design Process, 344
Iterative Processes, 9
G J
Generalization, 216 .
Generalization Child, 218 Jason Robbins, 2
Generalization Details Tabs, 216 Java, 344
Generalization Discriminator, 218
Generalization Name, 217 K
Generalization Namespace, 218 Key features
Generalization Parent, 218 in the Vision document, 35
Generalization Powertype, 218 Kind
Generalization Relationship, 343 of Parameter, 245
in aUse Case Diagram, 48
Generalization Stereotype, 217 L
Generalizations)
of Actor, 209 Literals
of Package, 230 of Datatype,_197
of Use Case, 212 of Enumeration, 200
Location

364

Index

of Extension Point, 215

M
Mailing lists, 2, 2
Market Context

in the Vision document, 35
Mealy Machine, 344
Menu Bar, 21
Method

of aClass, 344

of an Object, 344
Model Details Tabs, 190
Model Modifiers, 192
Model Name, 191
Model Namespace, 192
Model Owned Elements, 193
Model Stereotype, 192
Model Visihility, 192
Model, The, 190
Modifiers

of Actor, 209

of Association End, 255

of Class, 233

of Datatype, 196

of Enumeration, 199

of Model, 192

of Operation, 241

of Package, 229

of Stereotype, 203

of Use Case, 212
Moore Machine, 344
Mouse Behavior

in the Explorer, 121
Multiplicity

in aUse Case Diagram, 37

of Association End, 255

of Attribute, 237

Setting, 47

N

Name
of Actor, 208
of Association, 252
of Association End, 255
of Attribute, 236
of Class, 232
of Datatype, 195
of Dependency, 259
of Diagrams, 205
of Enumeration, 199
of Extend Relationship, 221
of Extension Point, 214
of Generalization, 217
of Include Relationship, 224
of Model, 191
of Operation, 241
of Package, 229

of Parameter, 245

of Signal, 248

of Stereotype, 202

of Use Case, 40, 211
Namespace

of Actor, 209

of Dependency, 260

of Extend Relationship, 222

of Generalization, 218

of Include Relationship, 225

of Model, 192

of Package, 229

of Stereotype, 202

of Use Case, 212
Navigation

Pane, 121

Setting, 46

Tree, 121
Navigator

Pane, 121

Tree, 121
New, 83
New Action, 312
New Actor, 208
New DataType, 191
New Datatype, 228, 236, 240, 244
New Enumeration, 191
New Extend Relationship, 221
New Extension Point, 211, 214
New Package, 191
New Qualifier, 254, 310
New Stereotype, 191, 195, 199, 214, 217, 221, 224, 228,
232, 236, 240, 244, 247, 251, 254, 259, 262, 269, 276,
280, 283, 287, 289, 291, 293, 295, 298, 303, 310, 312,
318, 324, 326, 328, 330
New Use Casg, 211
Non-functional constraints, 43
Non-functional parameters

in the Vision document, 35
Non-functional requirements, 34, 43

O

Object, 345

Object Constraint Language, 345
Object Diagrams, 226

Object Management Group, 345
Object Method, 344

OCL, 345

OMG, 345

OOA&D, 345

Open Project..., 83

Operation, 238

Operation Concurrency, 242
Operation Details Tabs, 239
Operation Modifiers, 241
Operation Name, 241

Operation Parameter, 242
Operation Property Fields, 241

365

Index

Operation Property Toolbar, 240 for Attribute, 236
Operation Raised Signals, 243 for Class, 232
Operation Stereotype, 241 for Datatype, 195
Operation Tagged Values, 239 for Diagrams, 205
Operation Visibility, 241 for Enumeration, 199
Opportunistic Design, xvii, 13, 345 for Operation, 241
Owned Elements for Parameter, 245
of Model, 193 for Signal, 248
of Package, 230 for Stereotype, 202
Property Toolbar
P for Association, 251

for Association End, 254

Package, 227 i
Package Details Tabs, 227 ;8? ég\gs u2t§’1236
Package Diagrams, 226 for Datat;/pe, 194

Package Generalizations, 230
Package Modifiers, 229
Package Name, 229

for Enumeration, 198
for Operation, 240
for Parameter, 244

Package Namespace, 229 ;
Package Owned Elements, 230 ;8? ggrn:(l)tf;g 202
Package Specializations, 230 PS 14 '
Package Stereotype, 229 '
Page Setup ..., 89
Pane, 345 R
Parameter, 243 Raised Signals

of Operation, 242 of Operation, 243
Parameter Default Value, 245 Realization Use Case, 345
Parameter Details Tabs, 243 Reflection-in-Action, xvii, 13, 345
Parameter Initial Value, 245 Relationship
Parameter Kind, 245 Extend, 39, 47, 343
Parameter Name, 245 Generalization, 48, 343
Parameter Property Fields, 245 Include, 38, 47, 344
Parameter Property Toolbar, 244 Remove From Diagram, 95
Parameter Stereotype, 245 Requirement
Parameter Tagged Values, 243 Capturing, 33
Parameter Type, 245 Requirement Capturing, 346
Parent Responsibility, 346

of Generalization, 218 Reverse Engineering, 72
Passive Actor, 36 Robbins, Jason, 2
PGML, 14 Round-Trip Engineering, 72
PNG, 14
Post-assumptions S
Post.conditions Save Project, 84

Scenario, 41, 346

of Use Case, 41

Powertype Select All, 94

Sequence Diagram, 346

of Generalization, 218 Setting Multiplicity

Pre-assumptions

of Use Case, 41 toan assgcia_tion in aUse Case Diagram, 47
- Setting Navigation
Pre-condition R .
to an association in a Use Case Diagram, 46
of Use Case, 41
. SGML, 346
Print ..., 89 Shorteut k
Problem Solving, xvii, 13, 343 orteut key
Properties Alt-F4., 93
Ctrl-A, 94

of Datatype, 193

of Enumeration, 198 gr:-ﬁel 8e:tge, 95
Property Fiel_ds_ Ct:I:O, -
for Association, 251 CtrI-P,,89

for Association End, 255

366

Index

Ctrl-S, 84

Delete, 95

F7,112
Signal, 246
Signal Contexts, 248
Signal Details Tabs, 246
Signal Name, 248
Signal Property Fields, 248
Signal Property Toolbar, 247
Signal Stereotype, 248
Signal Tagged Values, 247
Simula 67, 346
Specializations

of Actor, 209

of Package, 230

of Use Case, 40, 212
Specification

of Use Case, 34, 40
Stakeholders

in the Vision document, 35
Standard Graphical Markup Language, 346
State, 346
State Diagram, 346
Statechart Diagram, 346
Statechart Diagram, Hierarchical, 344
Stereotype, 201, 346

in Use Case Diagrams, 48

of Actor, 208

of Association, 252

of Association End, 255

of Class, 233

of Datatype, 195

of Dependency, 260

of Extend Relationship, 221

of Extension Point, 214

of Generalization, 217

of Include Relationship, 224

of Model, 192

of Operation, 241

of Package, 229

of Parameter, 245

of Signal, 248

of Use Case, 212
Stereotype Base Class, 202
Stereotype Details Tabs, 201
Stereotype Modifiers, 203
Stereotype Name, 202
Stereotype Namespace, 202
Stereotype Property Fields, 202
Stereotype Property Toolbar, 202
Stereotyping, 346

System Statechart Diagram, 347

T

Tagged Values
of Association, 251
of Association End, 253
of Attribute, 235
of Class, 231
of Datatype, 194
of Enumeration, 198
of Operation, 239
of Parameter, 243
of Signal, 247
To-Do List, 347
Toolbars, 21
ToolsMenu, 21
Transition, 347
Type
of Association End, 255
of Attribute, 237
of Parameter, 245

U

UML, 347
Use Casg, 33, 34, 44, 209, 347
Alternate Flows, 41, 42
Basic Flow, 41, 42
Hierarchy, 38
Use Case Details Tabs, 210
Use Case Diagram, 35, 206, 347
Use Case Extend Relationships, 212
Use Case Extension Points, 212
Use Case Generdlization, 40, 212
Use Case Godl, 40
Use Case Include Relationships, 213
Use Case Modifiers, 212
Use Case Name, 40, 211
Use Case Namespace, 212
Use Case Post-conditions, 41
Use Case Pre-condition, 41
Use Case Redlization, 345
Use Case Scenario, 40
Use Case Specialization, 40, 212
Use Case Specification, 34, 40, 347
Use Case Stereotype, 212
Use Case, Hierarchical, 47
User Feedback, 4

V

View Toolbar, 22

Supplementary Requirement Specification, 34, 34, 43, View Menu, 21
346

Suppliers
of Dependency, 260
SVG, 14, 346

System Boundary Box in Use Case Diagram, 49

System Sequence Diagram, 347

Visibility
of Association End, 258
of Attribute, 238
of Datatype, 196
of Enumeration, 200
of Model, 192

367

Index

of Operation, 241
Vision Document, 33, 34, 34, 347
Case Study, 49

W

W3C, 347
Waterfall Design Process, 348

X
XMI, xvii, 14, 26, 27, 28, 348
XML, xvii, xviii, 348

368

	ArgoUML User Manual
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Origins and Overview of ArgoUML
	1.1.1. Object Oriented Analysis and Design
	1.1.2. The Development of ArgoUML
	1.1.3. Finding Out More About the ArgoUML Project
	1.1.3.1. How ArgoUML is Developed
	1.1.3.2. More on Infrastructure

	1.2. Scope of This User Manual
	1.2.1. Target Audience
	1.2.2. Scope

	1.3. Overview of the User Manual
	1.3.1. Tutorial Manual Structure
	1.3.2. Reference Manual Structure
	1.3.3. User Feedback

	1.4. Assumptions

	Part 1. Tutorial
	Chapter 2. Introduction (being written)
	Chapter 3. UML Based OOA&D
	3.1. Background to UML
	3.2. UML Based Processes for OOA&D
	3.2.1. Types of Process
	3.2.1.1. The Waterfall Process
	3.2.1.2. Iterative Development Processes
	3.2.1.2.1. The Rational Unified Process
	3.2.1.2.2. Iteration Size

	3.2.1.3. Recursive Development Processes

	3.2.2. A Development Process for This Manual
	3.2.2.1. Requirements Capture
	3.2.2.2. Analysis
	3.2.2.3. Design
	3.2.2.4. Build

	3.3. Why ArgoUML is Different
	3.3.1. Cognitive Psychology
	3.3.1.1. Theory
	3.3.1.2. Practical Application in ArgoUML

	3.3.2. Open Standards
	3.3.2.1. XML Metadata Interchange (XMI)
	3.3.2.2. Graphics Formats - EPS, GIF, PGML, PNG, PS, SVG
	3.3.2.3. Object Constraint Language (OCL)

	3.3.3. 100% Pure Java
	3.3.4. Open Source

	3.4. ArgoUML Basics
	3.4.1. Getting Started
	3.4.1.1. System Requirements
	3.4.1.2. Downloading Options
	3.4.1.3. ArgoUML Using Java Web Start
	3.4.1.4. Downloading the Binary Executable
	3.4.1.5. Problems Downloading
	3.4.1.6. Running ArgoUML
	3.4.1.7. Problems Running ArgoUML

	3.4.2. The ArgoUML User Interface
	3.4.2.1. The Explorer Pane
	3.4.2.2. The Editing Pane
	3.4.2.3. The Details Pane
	3.4.2.4. The To-Do Pane
	3.4.2.5. The Menu Bar and Toolbars
	3.4.2.6. The Mouse
	3.4.2.7. Drawing Diagrams
	3.4.2.7.1. Moving Diagram Elements
	3.4.2.7.1.1. Using the Mouse Keys
	3.4.2.7.1.2. Using the Edit Pane Toolbar

	3.4.2.7.2. Arranging Elements

	3.4.2.8. Working with Projects
	3.4.2.8.1. The Start-Up Window
	3.4.2.8.2. Saving a Project - The File Menu
	3.4.2.8.3. The File Chooser Dialog

	3.4.3. Output
	3.4.3.1. Loading and Saving
	3.4.3.1.1. Saving XMI files in ArgoUML

	3.4.3.2. Graphics and Printing
	3.4.3.2.1. The Graph Editing Framework (GEF)
	3.4.3.2.2. Precision Graphics Markup Language (PGML)
	3.4.3.2.3. Applications Which Open PGML
	3.4.3.2.4. Printing Diagrams
	3.4.3.2.5. Scalable Vector Graphics (SVG)
	3.4.3.2.6. Saving Diagrams as SVG

	3.4.3.3. XMI
	3.4.3.3.1. Using XMI from Rational Rose
	3.4.3.3.2. Using Models Created by Poseidon
	3.4.3.3.3. Using Models Created by MagicDraw
	3.4.3.3.4. XMI Compatibility with other versions of ArgoUML
	3.4.3.3.5. Importing Other XMI Formats into ArgoUML
	3.4.3.3.6. Generating XMI Format

	3.4.3.4. Code Generation
	3.4.3.4.1. Code Generated by ArgoUML
	3.4.3.4.2. Generating Code for Methods

	3.4.4. Working With Design Critics
	3.4.4.1. The To-Do Pane—Messages From the Design Critics
	3.4.4.2. Design Critics at Work: The Rename Package Wizard

	3.5. The Case Study (To be written)

	Chapter 4. Requirements Capture
	4.1. Introduction
	4.2. The Requirements Capture Process
	4.2.1. Process Steps

	4.3. Output of the Requirements Capture Process
	4.3.1. Vision Document
	4.3.2. Use Case Diagram
	4.3.2.1. Active and Passive Actors
	4.3.2.2. Multiplicity
	4.3.2.3. Hierarchies of Use Cases

	4.3.3. The Use Case Specification
	4.3.3.1. Specifying the Basic Flow
	4.3.3.2. Specifying the Alternate Flows
	4.3.3.3. Iterative Development of Use Case Specifications

	4.3.4. Supplementary Requirement Specification

	4.4. Using Use Cases in ArgoUML
	4.4.1. Actors
	4.4.2. Use Cases
	4.4.2.1. Adding an Extension Point to a Use Case

	4.4.3. Associations
	4.4.3.1. Setting Navigation
	4.4.3.2. Setting Multiplicity

	4.4.4. Hierarchical Use Cases
	4.4.4.1. Includes
	4.4.4.2. Extends
	4.4.4.3. Generalization

	4.4.5. Stereotypes
	4.4.6. Documentation
	4.4.7. System Boundary Box

	4.5. Case Study
	4.5.1. Vision Document
	4.5.1.1. Summary
	4.5.1.2. Goals
	4.5.1.3. Market Context
	4.5.1.4. Stakeholders
	4.5.1.5. Key Features
	4.5.1.6. Constraints
	4.5.1.7. Appendix

	4.5.2. Identifying Actors and Use Cases
	4.5.3. Associations (To be written)
	4.5.4. Advanced Diagram Features (To be written)
	4.5.5. Use Case Specifications (To be written)
	4.5.6. Supplementary Requirements Specification (To be written)

	Chapter 5. Analysis
	5.1. The Analysis Process
	5.1.1. Class, Responsibilities, and Collaborators (CRC) Cards
	5.1.2. Concept Diagram (To be written)
	5.1.3. System Sequence Diagram (To be written)
	5.1.4. System Statechart Diagram (To be written)
	5.1.5. Realization Use Case Diagram (To be written)
	5.1.6. Documents (To be written)

	5.2. Class Diagrams (To be written)
	5.2.1. The Class Diagram (To be written)
	5.2.2. Advanced Class Diagrams (To be written)
	5.2.2.1. Association Classes (To be written)

	5.3. Creating Class Diagrams in ArgoUML
	5.3.1. Classes
	5.3.1.1. Using the Note Icon in the Tool Bar

	5.3.2. Associations (To be written)
	5.3.2.1. Aggregation (To be written)

	5.3.3. Class Attributes and Operations (To be written)
	5.3.3.1. Entering Data Into Attributes and Methods Windows
	5.3.3.2. Class Attributes (To be written)
	5.3.3.3. Class Operations (To be written)

	5.3.4. Advanced Class Features (To be written)
	5.3.4.1. Association Classes (To be written)
	5.3.4.2. Stereotypes (To be written)

	5.4. Sequence Diagrams (To be written)
	5.4.1. The Sequence Diagram (To be written)
	5.4.2. Identifying Actions (To be written)
	5.4.3. Advanced Sequence Diagrams (To be written)

	5.5. Creating Sequence Diagrams in ArgoUML
	5.5.1. Sequence Diagrams
	5.5.1.1. Creating a Sequence Diagram

	5.5.2. Actions (To be written)
	5.5.3. Advanced Sequence Diagrams (To be written)

	5.6. Statechart Diagrams (To be written)
	5.6.1. The Statechart Diagram (To be written)
	5.6.2. Advanced Statechart Diagrams (To be written)
	5.6.2.1. Hierarchical Statechart Diagrams (To be written)

	5.7. Creating Statechart Diagrams in ArgoUML
	5.7.1. Statechart Diagrams (To be written)
	5.7.1.1. Creating a Statechart Diagram

	5.7.2. States (To be written)
	5.7.2.1. Editing a Composite State

	5.7.3. Transitions (To be written)
	5.7.4. Actions (To be written)
	5.7.5. Advanced Statechart Diagrams (To be written)
	5.7.5.1. Hierarchical Statechart Diagrams (To be written)

	5.8. Realization Use Cases (To be written)
	5.9. Creating Realization Use Cases in ArgoUML (To be written)
	5.10. Case Study (To be written)
	5.10.1. CRC Cards
	5.10.2. Concept Class Diagrams (To be written)
	5.10.2.1. Identifying classes (To be written)
	5.10.2.2. Identifying associations (To be written)

	5.10.3. System Sequence Diagrams (To be written)
	5.10.3.1. Identifying actions (To be written)

	5.10.4. System Statechart Diagrams (To be written)
	5.10.5. Realization Use Cases (To be written)

	Chapter 6. Design
	6.1. The Design Process (To be written)
	6.1.1. Class, Responsibilities, and Collaborators (CRC) Cards
	6.1.2. Package Diagram (To be written)
	6.1.3. Realization Class Diagrams (To be written)
	6.1.4. Sequence Diagrams and Collaboration Diagrams (To be written)
	6.1.5. Statechart Diagrams and Activity Diagrams (To be written)
	6.1.6. Deployment Diagram (To be written)
	6.1.7. Documents (To be written)

	6.2. Package Diagrams (To be written)
	6.2.1. The Package Diagram (To be written)
	6.2.2. Advanced Package Diagrams (To be written)
	6.2.2.1. Subpackages (To be written)
	6.2.2.2. Adding DataTypes (To be written)
	6.2.2.3. Adding Stereotypes (To be written)

	6.3. Creating Package Diagrams in ArgoUML
	6.3.1. Packages
	6.3.1.1. Subpackages (To be written)

	6.3.2. Relationships between packages (To be written)
	6.3.2.1. Dependency (To be written)
	6.3.2.2. Generalization (To be written)
	6.3.2.3. Realization and Abstraction (To be written)

	6.3.3. Advanced Package Features (To be written)
	6.3.3.1. Creating New Datatypes (To be written)
	6.3.3.2. Creating New Stereotypes (To be written)

	6.4. More on Class Diagrams (To be written)
	6.4.1. The Class Diagram (To be written)
	6.4.1.1. Class Attributes (To be written)
	6.4.1.2. Class Operations (To be written)

	6.4.2. Advanced Class Diagrams (To be written)
	6.4.2.1. Realization and Abstraction (To be written)

	6.5. More on Class Diagrams in ArgoUML (To be written)
	6.5.1. Classes (To be written)
	6.5.2. Class Attributes and Operations (To be written)
	6.5.2.1. Class Attributes (To be written)
	6.5.2.2. Class Operations (To be written)

	6.5.3. Advanced Class Features
	6.5.3.1. Operations on Interfaces
	6.5.3.1.1. Interfaces that extend interfaces

	6.5.3.2. Stereotypes (To be written)

	6.6. Sequence and Collaboration Diagrams (To be written)
	6.6.1. More on the Sequence Diagram (To be written)
	6.6.2. The Collaboration Diagram (To be written)
	6.6.2.1. Messages (To be written)
	6.6.2.2. Actions (To be written)

	6.6.3. Advanced Collaboration Diagrams (To be written)

	6.7. Creating Collaboration Diagrams in ArgoUML (To be written)
	6.7.1. Collaboration Diagrams (To be written)
	6.7.2. Messages (To be written)
	6.7.2.1. Actions (To be written)

	6.7.3. Advanced Collaboration Diagrams (To be written)

	6.8. Statechart Diagrams (To be written)
	6.8.1. The Statechart Diagram (To be written)
	6.8.2. Advanced Statechart Diagrams (To be written)
	6.8.2.1. Actions (To be written)
	6.8.2.2. Transitions (To be written)
	6.8.2.2.1. Triggers (To be written)
	6.8.2.2.2. Guards (To be written)
	6.8.2.2.3. Effectss (To be written)

	6.8.2.3. Pseudo States (To be written)
	6.8.2.3.1. Junction and Choice (To be written)
	6.8.2.3.2. Fork and Join (To be written)

	6.8.2.4. Hierarchical State Machines (To be written)
	6.8.2.5. Models for State History (To be written)

	6.9. Creating Statechart Diagrams in ArgoUML (To be written)
	6.9.1. Statechart Diagrams (To be written)
	6.9.2. States (To be written)
	6.9.3. Transitions (To be written)
	6.9.4. Actions (To be written)
	6.9.5. Advanced Statechart Diagrams (To be written)
	6.9.5.1. Transitions (To be written)
	6.9.5.1.1. Triggers (To be written)
	6.9.5.1.2. Guards (To be written)
	6.9.5.1.3. Effectss (To be written)

	6.9.5.2. Pseudo States (To be written)
	6.9.5.2.1. Junction and Choice (To be written)
	6.9.5.2.2. Fork and Join (To be written)

	6.9.5.3. Hierarchical State Machines (To be written)
	6.9.5.4. History (To be written)

	6.10. Activity Diagrams (To be written)
	6.10.1. The Activity Diagram (To be written)
	6.10.1.1. Action States (To be written)

	6.11. Creating Activity Diagrams in ArgoUML (To be written)
	6.11.1. Activity Diagrams (To be written)
	6.11.1.1. Creating an Activity Diagram

	6.11.2. Action States (To be written)

	6.12. Deployment Diagrams (To be written)
	6.12.1. The Deployment Diagram (To be written)

	6.13. Creating Deployment Diagrams in ArgoUML (To be written)
	6.13.1. Nodes (To be written)
	6.13.1.1. Node Instances (To be written)

	6.13.2. Components (To be written)
	6.13.2.1. Component Instances (To be written)

	6.13.3. Relationships between nodes and components (To be written)
	6.13.3.1. Dependency (To be written)
	6.13.3.2. Associations (To be written)
	6.13.3.3. Links (To be written)

	6.14. System Architecture (To be written)
	6.15. Case Study (To be written)
	6.15.1. CRC Cards (To be written)
	6.15.2. Packages (To be written)
	6.15.2.1. Identifying Packages (To be written)
	6.15.2.2. Datatypes and Stereotypes (To be written)

	6.15.3. Class Diagrams (To be written)
	6.15.3.1. Identifying classes (To be written)
	6.15.3.2. Identifying associations (To be written)
	6.15.3.3. Specifying Attributes and Operations (To be written)

	6.15.4. Sequence Diagrams (To be written)
	6.15.4.1. Identifying actions (To be written)

	6.15.5. Collaboration Diagrams (To be written)
	6.15.5.1. Identifying Messages (To be written)

	6.15.6. Statechart Diagrams (To be written)
	6.15.7. Activity Diagrams (To be written)
	6.15.8. The Deployment Diagram (To be written)
	6.15.9. The System Architecture (To be written)

	Chapter 7. Code Generation, Reverse Engineering, and Round Trip Engineering
	7.1. Introduction
	7.2. Code Generation
	7.2.1. Generating Code from the Static Structure
	7.2.2. Generating code from interactions and state machines

	7.3. Code Generation in ArgoUML
	7.3.1. Static Structure
	7.3.2. Interactions and statechart diagrams

	7.4. Reverse Engineering
	7.5. Round-Trip Engineering

	Part 2. User Interface Reference
	Chapter 8. Introduction
	8.1. Overview of the Window
	8.2. General Mouse Behavior in ArgoUML
	8.2.1. Mouse Button Terminology
	8.2.2. Button 1 Click
	8.2.2.1. Selection
	8.2.2.2. Activation
	8.2.2.3. Navigation
	8.2.2.4. General Behavior When Editing Text

	8.2.3. Button 1 Double Click
	8.2.3.1. General Behavior When Editing Text

	8.2.4. Button 1 Motion
	8.2.4.1. General Behavior When Editing Text

	8.2.5. Shift and Ctrl modifiers with Button 1
	8.2.5.1. Within Lists
	8.2.5.2. General Behavior When Editing Text

	8.2.6. Alt with Button 1: Panning
	8.2.7. Ctrl with Button 1: Constrained Drag
	8.2.8. Button 2 Actions
	8.2.9. Button 2 Double Click
	8.2.10. Button 2 Motion

	8.3. General Information About Panes
	8.3.1. Re-sizing Panes

	8.4. The status bar

	Chapter 9. The Toolbar
	9.1. File operations
	9.2. Edit operations
	9.3. View operations
	9.4. Create operations

	Chapter 10. The Menu bar
	10.1. Introduction
	10.2. Mouse Behavior in the Menu Bar
	10.3. The File Menu
	10.3.1. New
	10.3.2. Open Project...
	10.3.3. Save Project
	10.3.4. Save Project As...
	10.3.5. Revert to Saved
	10.3.6. Import XMI...
	10.3.7. Export XMI...
	10.3.8. Import Sources...
	10.3.9. Page Setup...
	10.3.10. Print...
	10.3.11. Export Graphics...
	10.3.12. Export All Graphics...
	10.3.13. Notation
	10.3.14. Properties
	10.3.15. Save Configuration
	10.3.16. Most Recent Used Files
	10.3.17. Exit

	10.4. The Edit Menu
	10.4.1. Select
	10.4.2. Remove From Diagram
	10.4.3. Delete From Model
	10.4.4. Configure Perspectives...
	10.4.5. Settings...
	10.4.5.1. Preferences Tab
	10.4.5.2. Environment Tab
	10.4.5.3. User Tab
	10.4.5.4. Appearance Tab
	10.4.5.5. Notation Tab
	10.4.5.6. Modules Tab
	10.4.5.7. Extra Tabs added by Plugins

	10.5. The View Menu
	10.5.1. Goto Diagram...
	10.5.2. Find...
	10.5.3. Zoom
	10.5.4. Adjust Grid
	10.5.5. Adjust Grid Snap
	10.5.6. Page Breaks

	10.6. The Create Menu
	10.6.1. New Use Case Diagram
	10.6.2. New Class Diagram
	10.6.3. New Sequence Diagram
	10.6.4. New Collaboration Diagram
	10.6.5. New Statechart Diagram
	10.6.6. New Activity Diagram
	10.6.7. New Deployment Diagram

	10.7. The Arrange Menu
	10.7.1. Align
	10.7.2. Distribute
	10.7.3. Reorder
	10.7.4. Nudge
	10.7.5. Set Preferred Size
	10.7.6. Toggle Auto Resizing
	10.7.7. Layout

	10.8. The Generation Menu
	10.8.1. Generate Selected Classes ...
	10.8.2. Generate All Classes...
	10.8.3. Generate Code for Project... (To be Written)
	10.8.4. Settings for Generate for Project... (To be Written)

	10.9. The Critique Menu
	10.9.1. Toggle Auto-Critique
	10.9.2. Design Issues...
	10.9.3. Design Goals...
	10.9.4. Browse Critics...

	10.10. The Tools Menu
	10.11. The Help Menu
	10.11.1. System Information
	10.11.2. About ArgoUML

	Chapter 11. The Explorer
	11.1. Introduction
	11.2. Mouse Behavior in the Explorer
	11.2.1. Button 1 Click
	11.2.2. Button 1 Double Click
	11.2.3. Button 1 Motion
	11.2.3.1. From Explorer to Explorer
	11.2.3.2. From Explorer to Diagram

	11.2.4. Button 2 Actions
	11.2.5. Button 2 Double Click

	11.3. Keyboard Behavior in the Explorer
	11.4. Perspective Selection
	11.5. Configuring Perspectives
	11.5.1. The Configure Perspectives dialog

	11.6. Context Sensitive Menu
	11.6.1. Add to Diagram
	11.6.2. Delete From Model
	11.6.3. Set Source Path... (To be written)
	11.6.4. Add Package
	11.6.5. Add All Classes in Namespace

	Chapter 12. The Editing Pane
	12.1. Introduction
	12.2. Mouse Behavior in the Editing Pane
	12.2.1. Button 1 Click
	12.2.2. Button 1 Double Click
	12.2.3. Button 1 Motion
	12.2.4. Shift and Ctrl modifiers with Button 1
	12.2.5. Alt with Button 1 motion
	12.2.6. Button 2 Actions
	12.2.7. Button 2 Double Click
	12.2.8. Button 2 Motion

	12.3. The tool bar
	12.3.1. Layout Tools
	12.3.2. Annotation Tools
	12.3.3. Drawing Tools
	12.3.4. Use Case Diagram Specific Tools
	12.3.5. Class Diagram Specific Tools
	12.3.6. Sequence Diagram Specific Tools
	12.3.7. Collaboration Diagram Specific Tools
	12.3.8. Statechart Diagram Specific Tools
	12.3.9. Activity Diagram Specific Tools
	12.3.10. Deployment Diagram Specific Tools

	12.4. The Broom
	12.5. Selection Action Buttons
	12.6. Clarifiers
	12.7. The Drawing Grid
	12.8. The Diagram Tab
	12.9. Pop-Up Menus
	12.9.1. Critiques
	12.9.2. Ordering
	12.9.3. Add
	12.9.4. Show
	12.9.5. Modifiers
	12.9.6. Multiplicity
	12.9.7. Aggregation
	12.9.8. Navigability

	12.10. Notation
	12.10.1. Notation Languages
	12.10.2. Notation Editing on the diagram
	12.10.3. Notation Parsing

	Chapter 13. The Details Pane
	13.1. Introduction
	13.2. To Do Item Tab
	13.2.1. Wizards
	13.2.2. The Help Button

	13.3. Properties Tab
	13.4. Documentation Tab
	13.5. Presentation Tab
	13.6. Source Tab
	13.7. Constraints Tab
	13.7.1. The Constraint Editor

	13.8. Stereotype Tab
	13.9. Tagged Values Tab
	13.10. Checklist Tab

	Chapter 14. The To-Do Pane
	14.1. Introduction
	14.2. Mouse Behavior in the To-Do Pane
	14.2.1. Button 1 Click
	14.2.2. Button 1 Double Click
	14.2.3. Button 2 Actions
	14.2.4. Button 2 Double Click

	14.3. Presentation Selection
	14.4. Item Count

	Chapter 15. The Critics
	15.1. Introduction
	15.1.1. Terminology
	15.1.2. Design Issues

	15.2. Uncategorized
	15.3. Class Selection
	15.3.1. Wrap DataType
	15.3.2. Reduce Classes in diagram <diagram>
	15.3.3. Clean Up Diagram

	15.4. Naming
	15.4.1. Resolve Association Name Conflict
	15.4.2. Revise Attribute Names to Avoid Conflict
	15.4.3. Change Names or Signatures in an Artifact
	15.4.4. Duplicate End (Role) Names for an Association
	15.4.5. Role name conflicts with member
	15.4.6. Choose a Name (Classes and Interfaces)
	15.4.7. Choose a Unique Name for an Artifact (Classes and Interfaces)
	15.4.8. Choose a Name (Attributes)
	15.4.9. Choose a Name (Operations)
	15.4.10. Choose a Name (States)
	15.4.11. Choose a Unique Name for a (State related) Artifact
	15.4.12. Revise Name to Avoid Confusion
	15.4.13. Choose a Legal Name
	15.4.14. Change an Artifact to a Non-Reserved Word
	15.4.15. Choose a Better Operation Name
	15.4.16. Choose a Better Attribute Name
	15.4.17. Capitalize Class Name
	15.4.18. Revise Package Name

	15.5. Storage
	15.5.1. Revise Attribute Names to Avoid Conflict
	15.5.2. Add Instance Variables to a Class
	15.5.3. Add a Constructor to a Class
	15.5.4. Reduce Attributes on a Class

	15.6. Planned Extensions
	15.6.1. Operations in Interfaces must be public
	15.6.2. Interfaces may only have operations
	15.6.3. Remove Reference to Specific Subclass

	15.7. State Machines
	15.7.1. Reduce Transitions on <state>
	15.7.2. Reduce States in machine <machine>
	15.7.3. Add Transitions to <state>
	15.7.4. Add Incoming Transitions to <artifact>
	15.7.5. Add Outgoing Transitions from <artifact>
	15.7.6. Remove Extra Initial States
	15.7.7. Place an Initial State
	15.7.8. Add Trigger or Guard to Transition
	15.7.9. Change Join Transitions
	15.7.10. Change Fork Transitions
	15.7.11. Add Choice/Junction Transitions
	15.7.12. Add Guard to Transition
	15.7.13. Clean Up Diagram
	15.7.14. Make Edge More Visible
	15.7.15. Composite Association End with Multiplicity > 1

	15.8. Design Patterns
	15.8.1. Consider using Singleton Pattern for <class>
	15.8.2. Singleton Stereotype Violated in <class>
	15.8.3. Nodes normally have no enclosers
	15.8.4. NodeInstances normally have no enclosers
	15.8.5. Components normally are inside nodes
	15.8.6. ComponentInstances normally are inside nodes
	15.8.7. Classes normally are inside components
	15.8.8. Interfaces normally are inside components
	15.8.9. Objects normally are inside components
	15.8.10. LinkEnds have not the same locations
	15.8.11. Set classifier (Deployment Diagram)
	15.8.12. Missing return-actions
	15.8.13. Missing call(send)-action
	15.8.14. No Stimuli on these links
	15.8.15. Set Classifier (Sequence Diagram)
	15.8.16. Wrong position of these stimuli

	15.9. Relationships
	15.9.1. Circular Association
	15.9.2. Make <association> Navigable
	15.9.3. Remove Navigation from Interface via <association>
	15.9.4. Add Associations to <artifact>
	15.9.5. Remove Reference to Specific Subclass
	15.9.6. Reduce Associations on <artifact>
	15.9.7. Make Edge More Visible

	15.10. Instantiation
	15.11. Modularity
	15.11.1. Classifier not in Namespace of its Association
	15.11.2. Add Elements to Package <package>

	15.12. Expected Usage
	15.12.1. Clean Up Diagram

	15.13. Methods
	15.13.1. Change Names or Signatures in <artifact>
	15.13.2. Class Must be Abstract
	15.13.3. Add Operations to <class>
	15.13.4. Reduce Operations on <artifact>

	15.14. Code Generation
	15.14.1. Change Multiple Inheritance to interfaces

	15.15. Stereotypes
	15.16. Inheritance
	15.16.1. Revise Attribute Names to Avoid Conflict
	15.16.2. Remove <class>'s Circular Inheritance
	15.16.3. Class Must be Abstract
	15.16.4. Remove final keyword or remove subclasses
	15.16.5. Illegal Generalization
	15.16.6. Remove Unneeded Realizes from <class>
	15.16.7. Define Concrete (Sub)Class
	15.16.8. Define Class to Implement <interface>
	15.16.9. Change Multiple Inheritance to interfaces
	15.16.10. Make Edge More Visible

	15.17. Containment
	15.17.1. Remove Circular Composition
	15.17.2. Duplicate Parameter Name
	15.17.3. Two Aggregate Ends (Roles) in Binary Association
	15.17.4. Aggregate End (Role) in 3-way (or More) Association
	15.17.5. Wrap DataType

	Part 3. Model Reference
	Chapter 16. Top Level Artifact Reference
	16.1. Introduction
	16.2. The Model
	16.2.1. Model Details Tabs
	16.2.2. Model Property Toolbar
	16.2.3. Property Fields For The Model

	16.3. Datatype
	16.3.1. Datatype Details Tabs
	16.3.2. Datatype Property Toolbar
	16.3.3. Property Fields For Datatype

	16.4. Enumeration
	16.4.1. Enumeration Details Tabs
	16.4.2. Enumeration Property Toolbar
	16.4.3. Property Fields For Enumeration

	16.5. Stereotype
	16.5.1. Stereotype Details Tabs
	16.5.2. Stereotype Property Toolbar
	16.5.3. Property Fields For Stereotype

	16.6. Diagram
	16.6.1. Diagram Details Tabs
	16.6.2. Diagram Property Toolbar
	16.6.3. Property Fields For Diagram

	Chapter 17. Use Case Diagram Artifact Reference
	17.1. Introduction
	17.1.1. ArgoUML Limitations Concerning Use Case Diagrams

	17.2. Actor
	17.2.1. Actor Details Tabs
	17.2.2. Actor Property Toolbar
	17.2.3. Property Fields For Actor

	17.3. Use Case
	17.3.1. Use Case Details Tabs
	17.3.2. Use Case Property Toolbar
	17.3.3. Property Fields For Use Case

	17.4. Extension Point
	17.4.1. Extension Point Details Tabs
	17.4.2. Extension Point Property Toolbar
	17.4.3. Property Fields For Extension Point

	17.5. Association
	17.6. Association End
	17.7. Dependency
	17.8. Generalization
	17.8.1. Generalization Details Tabs
	17.8.2. Generalization Property Toolbar
	17.8.3. Property Fields For Generalization

	17.9. Extend
	17.9.1. Extend Details Tabs
	17.9.2. Extend Property Toolbar
	17.9.3. Property Fields For Extend

	17.10. Include
	17.10.1. Include Details Tabs
	17.10.2. Include Property Toolbar
	17.10.3. Property Fields For Include

	Chapter 18. Class Diagram Artifact Reference
	18.1. Introduction
	18.1.1. Limitations Concerning Class Diagrams in ArgoUML

	18.2. Package
	18.2.1. Package Details Tabs
	18.2.2. Package Property Toolbar
	18.2.3. Property Fields For Package

	18.3. Datatype
	18.4. Stereotype
	18.5. Class
	18.5.1. Class Details Tabs
	18.5.2. Class Property Toolbar
	18.5.3. Property Fields For Class

	18.6. Attribute
	18.6.1. Attribute Details Tabs
	18.6.2. Attribute Property Toolbar
	18.6.3. Property Fields For Attribute

	18.7. Operation
	18.7.1. Operation Details Tabs
	18.7.2. Operation Property Toolbar
	18.7.3. Property Fields For Operation

	18.8. Parameter
	18.8.1. Parameter Details Tabs
	18.8.2. Parameter Property Toolbar
	18.8.3. Property Fields For Parameter

	18.9. Signal
	18.9.1. Signal Details Tabs
	18.9.2. Signal Property Toolbar
	18.9.3. Property Fields For Signal

	18.10. Reception (to be written)
	18.11. Association
	18.11.1. Three-way and Greater Associations and Association Classes
	18.11.2. Association Details Tabs
	18.11.3. Association Property Toolbar
	18.11.4. Property Fields For Association

	18.12. Association End
	18.12.1. Association End Details Tabs
	18.12.2. Association End Property Toolbar
	18.12.3. Property Fields For Association End

	18.13. Dependency
	18.13.1. Dependency Details Tabs
	18.13.2. Dependency Property Toolbar
	18.13.3. Property Fields For Dependency

	18.14. Generalization
	18.15. Interface
	18.15.1. Interface Details Tabs
	18.15.2. Interface Property Toolbar
	18.15.3. Property Fields For Interface

	18.16. Abstraction
	18.16.1. Abstraction Details Tabs
	18.16.2. Abstraction Property Toolbar
	18.16.3. Property Fields For Abstraction

	Chapter 19. Sequence Diagram Artifact Reference
	19.1. Introduction
	19.1.1. Limitations Concerning Sequence Diagrams in ArgoUML

	19.2. Object
	19.2.1. Object Details Tabs
	19.2.2. Object Property Toolbar
	19.2.3. Property Fields For Object

	19.3. Stimulus
	19.3.1. Stimulus Details Tabs
	19.3.2. Stimulus Property Toolbar
	19.3.3. Property Fields For Stimulus

	19.4. Stimulus Call
	19.5. Stimulus Create
	19.6. Stimulus Destroy
	19.7. Stimulus Send
	19.8. Stimulus Return
	19.9. Link
	19.9.1. Link Details Tabs
	19.9.2. Link Property Toolbar
	19.9.3. Property Fields For Link

	Chapter 20. Statechart Diagram Artifact Reference
	20.1. Introduction
	20.1.1. Limitations Concerning Statechart Diagrams in ArgoUML

	20.2. State
	20.2.1. State Details Tabs
	20.2.2. State Property Toolbar
	20.2.3. Property Fields For State

	20.3. Action
	20.3.1. Action Details Tabs
	20.3.2. Action Property Toolbar
	20.3.3. Property Fields For Action

	20.4. Composite State
	20.5. Concurrent Region
	20.6. Submachine State
	20.7. Stub State
	20.8. Transition
	20.8.1. Transition Details Tabs
	20.8.2. Transition Property Toolbar
	20.8.3. Property Fields For Transition

	20.9. Event
	20.9.1. Event Details Tabs
	20.9.2. Event Property Toolbar
	20.9.3. Property Fields For Event

	20.10. Guard
	20.10.1. Guard Details Tabs
	20.10.2. Guard Property Toolbar
	20.10.3. Property Fields For Guard

	20.11. Pseudostate
	20.11.1. Pseudostate Details Tabs
	20.11.2. Pseudostate Property Toolbar
	20.11.3. Property Fields For Pseudostate

	20.12. Initial State
	20.13. Final State
	20.13.1. Final State Details Tabs
	20.13.2. Final State Property Toolbar
	20.13.3. Property Fields For Final State

	20.14. Junction
	20.15. Choice
	20.16. Fork
	20.17. Join
	20.18. Shallow History
	20.19. Deep History
	20.20. Synch State
	20.20.1. Synch State Details Tabs
	20.20.2. Synch State Property Toolbar
	20.20.3. Property Fields For Synch State

	Chapter 21. Collaboration Diagram Artifact Reference
	21.1. Introduction
	21.1.1. Limitations Concerning Collaboration Diagrams in ArgoUML

	21.2. Classifier Role
	21.2.1. Classifier Role Details Tabs
	21.2.2. Classifier Role Property Toolbar
	21.2.3. Property Fields For Classifier Role

	21.3. Association Role
	21.3.1. Association Role Details Tabs
	21.3.2. Association Role Property Toolbar
	21.3.3. Property Fields For Association Role

	21.4. Association End Role
	21.4.1. Association End Role Details Tabs
	21.4.2. Association End Role Property Toolbar
	21.4.3. Property Fields For Association End Role

	21.5. Message
	21.5.1. Message Details Tabs
	21.5.2. Message Property Toolbar
	21.5.3. Property Fields For Message

	Chapter 22. Activity Diagram Artifact Reference
	22.1. Introduction
	22.1.1. Limitations Concerning Activity Diagrams in ArgoUML

	22.2. Action State
	22.2.1. Action State Details Tabs
	22.2.2. Action State Property ToolBar
	22.2.3. Property fields for action state

	22.3. Action
	22.4. Transition
	22.5. Guard
	22.6. Initial State
	22.7. Final State
	22.8. Junction (Decision)
	22.9. Fork
	22.10. Join
	22.11. ObjectFlowState

	Chapter 23. Deployment Diagram Artifact Reference
	23.1. Introduction
	23.1.1. Limitations Concerning Deployment Diagrams in ArgoUML

	23.2. Node
	23.2.1. Node Details Tabs
	23.2.2. Node Property Toolbar
	23.2.3. Property Fields For Node

	23.3. Node Instance
	23.3.1. Node Instance Details Tabs
	23.3.2. Node Instance Property Toolbar
	23.3.3. Property Fields For Node Instance

	23.4. Component
	23.4.1. Component Details Tabs
	23.4.2. Component Property Toolbar
	23.4.3. Property Fields For Component

	23.5. Component Instance
	23.5.1. Component Instance Details Tabs
	23.5.2. Component Instance Property Toolbar
	23.5.3. Property Fields For Component Instance

	23.6. Dependency
	23.7. Class
	23.8. Interface
	23.9. Association
	23.10. Object
	23.11. Link

	Chapter 24. Built In DataTypes, Classes, Interfaces and Stereotypes
	24.1. Introduction
	24.1.1. Package Structure
	24.1.2. Exposure in the model

	24.2. Built In Datatypes
	24.3. Built In Classes
	24.3.1. Built In Classes From java.lang
	24.3.2. Built In Classes From java.math
	24.3.3. Built In Classes From java.net
	24.3.4. Built In Classes From java.util

	24.4. Built In Interfaces
	24.5. Built In Stereotypes

	Glossary
	Appendix A. Supplementary Material for the Case Study
	A.1. Introduction
	A.2. Requirements Documents (To be written)
	A.2.1. Vision Document (To be written)
	A.2.2. Use Case Specifications (To be written)
	A.2.2.1. UC Specification 1 (To be written)

	A.2.3. Supplementary Requirements Specification (To be written)

	Appendix B. UML resources
	B.1. The UML specs (To be written)
	B.2. UML related papers (To be written)
	B.2.1. UML action specifications (To be written)

	B.3. UML related websites (To be written)

	Appendix C. UML Conforming CASE Tools
	C.1. Other Open Source Projects (To be written)
	C.2. Commercial Tools (To be written)

	Appendix D. The C++ Module
	D.1. Modeling for C++
	D.1.1. Class tagged values
	D.1.2. Attribute tagged values
	D.1.3. Parameters
	D.1.3.1. Variable passing semantics
	D.1.3.2. Parameter tagged values

	D.1.4. Preserved sections

	Appendix E. Limits and Shortcomings
	E.1. Diagram Canvas Size
	E.2. Missing functions

	Appendix F. Open Publication License
	F.1. Requirements On Both Unmodified And Modified Versions
	F.2. Copyright
	F.3. Scope Of License
	F.4. Requirements On Modified Works
	F.5. Good-Practice Recommendations
	F.6. License Options
	F.7. Open Publication Policy Appendix:

	Appendix G. The CRC Card Methodology
	G.1. The Card
	G.2. The Group
	G.3. The Session
	G.4. The Process

	Index

