
ArgoUML User Manual

A tutorial and reference description

Alejandro Ramirez
Philippe Vanpeperstraete

Andreas Rueckert
Kunle Odutola
Jeremy Bennett

Linus Tolke
Michiel van der Wulp

ArgoUML User Manual: A tutorial and reference description
by Alejandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola, Jeremy Bennett,
Linus Tolke, and Michiel van der Wulp
Copyright © 2004, 2005 Michiel van der Wulp
Copyright © 2003 Linus Tolke
Copyright © 2001, 2002 Jeremy Bennett
Copyright © 2001 Kunle Odutola
Copyright © 2000 Philippe Vanpeperstraete
Copyright © 2000 Alejandro Ramirez
Copyright © 2000 Andreas Rueckert

This version of the manual is intended to describe the version 0.18.1 of ArgoUML.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later. A
copy of this license is included in the section Open Publication License. The latest version is presently available at
http://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/].

http://www.opencontent.org/openpub/

Table of Contents
1.Preface ...17
1. Introduction ...1

1.1. Origins and Overview of ArgoUML ... 1
1.1.1. Object Oriented Analysis and Design ... 1
1.1.2. The Development of ArgoUML .. 1
1.1.3. Finding Out More About the ArgoUML Project ... 2

1.2. Scope of This User Manual .. 2
1.2.1. Target Audience ..2
1.2.2.Scope ..3

1.3. Overview of the User Manual ... 3
1.3.1. Tutorial Manual Structure .. 3
1.3.2. Reference Manual Structure ... 3
1.3.3. User Feedback ..4

1.4.Assumptions ...4
I. ArgoUML Tutorial Manual ... 5

2. UML Based OOA&D .. 6
2.1. Introduction ..6
2.2. Background to UML ... 6
2.3. UML Based Processes for OOA&D ... 6

2.3.1. Types of Process .. 7
2.3.2. A Development Process for This Manual .. 10

2.4. Why ArgoUML is Different ... 11
2.4.1. Cognitive Psychology ...11
2.4.2. Open Standards ...12
2.4.3. 100% Pure Java ... 13
2.4.4. Open Source ...14

2.5. ArgoUML Basics ...14
2.5.1. Getting Started ..14
2.5.2. The ArgoUML User Interface .. 16
2.5.3.Output ...26
2.5.4. Working With Design Critics ... 29

2.6. The Case Study (To be written) ... 32
3. Requirements Capture ...33

3.1. Introduction ..33
3.2. The Requirements Capture Process .. 33

3.2.1. Process Steps ..34
3.3. Output of the Requirements Capture Process ... 34

3.3.1. Vision Document ...34
3.3.2. Use Case Diagram ... 35
3.3.3. The Use Case Specification ... 40
3.3.4. Supplementary Requirement Specification .. 43

3.4. Using Use Cases in ArgoUML .. 44
3.4.1.Actors ...44
3.4.2. Use Cases ...44
3.4.3.Associations ...46
3.4.4. Hierarchical Use Cases ... 47
3.4.5.Stereotypes ...48
3.4.6.Documentation ..48
3.4.7. System Boundary Box .. 49

3.5. Case Study ..49
3.5.1. Vision Document ...49
3.5.2. Identifying Actors and Use Cases .. 51
3.5.3. Associations (To be written) .. 51

iv

3.5.4. Advanced Diagram Features (To be written) 52
3.5.5. Use Case Specifications (To be written) ... 52
3.5.6. Supplementary Requirements Specification (To be written) 52

4.Analysis ..53
4.1. Introduction ..53
4.2. The Analysis Process (To be written) ... 53

4.2.1. Output of the Analysis Process (To be written) 53
4.3. Class Diagrams (To be written) ... 53

4.3.1. The Class Diagram (To be written) .. 53
4.3.2. Advanced Class Diagrams (To be written) .. 53

4.4. Creating Class Diagrams in ArgoUML ... 54
4.4.1.Classes ..54
4.4.2. Associations (To be written) .. 54
4.4.3. Class Attributes and Operations (To be written) 54
4.4.4. Advanced Class Features (To be written) .. 54

4.5. Sequence Diagrams (To be written) ... 55
4.5.1. The Sequence Diagram (To be written) .. 55
4.5.2. Identifying Actions (To be written) ... 55
4.5.3. Advanced Sequence Diagrams (To be written) 55

4.6. Creating Sequence Diagrams in ArgoUML ... 55
4.6.1. Sequence Diagrams ..55
4.6.2. Actions (To be written) ... 55
4.6.3. Advanced Sequence Diagrams (To be written) 55

4.7. Statechart Diagrams (To be written) ... 55
4.7.1. The Statechart Diagram (To be written) ... 55
4.7.2. Advanced Statechart Diagrams (To be written) 55

4.8. Creating Statechart Diagrams in ArgoUML ... 55
4.8.1. Statechart Diagrams (To be written) .. 55
4.8.2. States (To be written) ... 56
4.8.3. Transitions (To be written) .. 56
4.8.4. Actions (To be written) ... 56
4.8.5. Advanced Statechart Diagrams (To be written) 56

4.9. Realization Use Cases (To be written) .. 56
4.10. Creating Realization Use Cases in ArgoUML (To be written) 56
4.11. Case Study (To be written) ... 56

4.11.1. Concept Class Diagrams (To be written) ... 56
4.11.2. System Sequence Diagrams (To be written) 56
4.11.3. System Statechart Diagrams (To be written) 57
4.11.4. Realization Use Cases (To be written) .. 57

5.Design ..58
5.1. Introduction ..58
5.2. The Design Process (To be written) ... 58

5.2.1. Output of the Design Process (To be written) 58
5.3. Package Diagrams (To be written) ... 58

5.3.1. The Package Diagram (To be written) .. 58
5.3.2. Advanced Package Diagrams (To be written) 58

5.4. Creating Package Diagrams in ArgoUML ... 59
5.4.1.Packages ..59
5.4.2. Relationships between packages (To be written) 59
5.4.3. Advanced Package Features (To be written) .. 59

5.5. More on Class Diagrams (To be written) ... 59
5.5.1. The Class Diagram (To be written) .. 59
5.5.2. Advanced Class Diagrams (To be written) .. 60

5.6. More on Class Diagrams in ArgoUML (To be written) 60
5.6.1. Classes (To be written) ... 60
5.6.2. Class Attributes and Operations (To be written) 60
5.6.3. Advanced Class Features ... 60

5.7. Sequence and Collaboration Diagrams (To be written) 62

ArgoUML User Manual

v

5.7.1. More on the Sequence Diagram (To be written) 63
5.7.2. The Collaboration Diagram (To be written) .. 63
5.7.3. Advanced Collaboration Diagrams (To be written) 63

5.8. Creating Collaboration Diagrams in ArgoUML (To be written) 63
5.8.1. Collaboration Diagrams (To be written) ... 63
5.8.2. Messages (To be written) .. 63
5.8.3. Advanced Collaboration Diagrams (To be written) 63

5.9. Statechart Diagrams (To be written) ... 63
5.9.1. The Statechart Diagram (To be written) ... 63
5.9.2. Advanced Statechart Diagrams (To be written) 63

5.10. Creating Statechart Diagrams in ArgoUML (To be written) 64
5.10.1. Statechart Diagrams (To be written) ... 64
5.10.2. States (To be written) .. 64
5.10.3. Transitions (To be written) ... 64
5.10.4. Actions (To be written) ... 64
5.10.5. Advanced Statechart Diagrams (To be written) 64

5.11. Activity Diagrams (To be written) ... 65
5.11.1. The Activity Diagram (To be written) .. 65

5.12. Creating Activity Diagrams in ArgoUML (To be written) 65
5.12.1. Activity Diagrams (To be written) ... 65
5.12.2. Action States (To be written) .. 65

5.13. Deployment Diagrams (To be written) .. 65
5.13.1. The Deployment Diagram (To be written) ... 65

5.14. Creating Deployment Diagrams in ArgoUML (To be written) 65
5.14.1. Nodes (To be written) ... 66
5.14.2. Components (To be written) ... 66
5.14.3. Relationships between nodes and components (To be written) 66

5.15. System Architecture (To be written) ... 66
5.16. Case Study (To be written) ... 66

5.16.1. Packages (To be written) ... 66
5.16.2. Class Diagrams (To be written) ... 66
5.16.3. Sequence Diagrams (To be written) ... 67
5.16.4. Collaboration Diagrams (To be written) .. 67
5.16.5. Statechart Diagrams (To be written) ... 67
5.16.6. Activity Diagrams (To be written) ... 67
5.16.7. The Deployment Diagram (To be written) ... 67
5.16.8. The System Architecture (To be written) .. 67

6. Code Generation, Reverse Engineering, and Round Trip Engineering 68
6.1. Introduction ..68
6.2. Code Generation ..68

6.2.1. Generating Code from the Static Structure .. 68
6.2.2. Generating code from interactions and state machines 69

6.3. Code Generation in ArgoUML .. 70
6.3.1. Static Structure ..70
6.3.2. Interactions and state diagrams ... 70

6.4. Reverse Engineering ...70
6.5. Round-Trip Engineering ..70

II. ArgoUML Reference Manual ... 71
7. User Interface Reference .. 72

7.1. Introduction ..72
7.2. Overview of the Window ... 72
7.3. General Mouse Behavior in ArgoUML ... 73

7.3.1. Mouse Button Terminology ... 73
7.3.2. Button 1 Click ... 74
7.3.3. Button 1 Double Click .. 75
7.3.4. Button 1 Motion .. 75
7.3.5. Shift and Control with Button 1 .. 75
7.3.6. Alt with Button 1: Panning .. 75

ArgoUML User Manual

vi

7.3.7. Button 2 Actions .. 75
7.3.8. Button 2 Double Click .. 76
7.3.9. Button 2 Motion .. 76

7.4. General Information About Panes .. 76
7.4.1. Re-sizing Panes ...76

7.5. The status bar .. 76
8. The Toolbar ...77

8.1. File operations ...77
8.2. Edit operations ...77
8.3. View operations ...77
8.4. Create operations ...79

9. The Menu bar .. 80
9.1. Introduction ..80
9.2. Mouse Behavior in the Menu Bar .. 80
9.3. The File Menu ... 81

9.3.1. New ..81

9.3.2. Open Project… ... 81

9.3.3. Save Project ... 82

9.3.4. Save Project As… .. 83

9.3.5. Revert to Saved ... 83
9.3.6. Import Sources… .. 83

9.3.7. Page Setup… .. 85

9.3.8. Print… ..85

9.3.9. Save Graphics… ..85
9.3.10. Save Configuration ...86
9.3.11. Most Recent Used Files ... 86
9.3.12.Exit ...86

9.4. The Edit Menu ... 87
9.4.1.Select ..87
9.4.2. Cut ...88

9.4.3. Copy ...88

9.4.4. Paste ...88

9.4.5. Remove From Diagram ... 88

9.4.6. Delete From Model .. 89

9.4.7. Settings… ..89

9.5. The View Menu ... 95
9.5.1. Goto Diagram… ..95
9.5.2. Find… ...95

9.5.3.Zoom ..97
9.5.4. Adjust Grid ...98
9.5.5. Adjust Grid Snap ... 98
9.5.6. Page Breaks ..99
9.5.7.Notation ...99

9.6. The Create Menu .. 100
9.6.1. New Use Case Diagram .. 100

9.6.2. New Class Diagram ... 100

9.6.3. New Sequence Diagram .. 100

ArgoUML User Manual

vii

New Collaboration Diagram ... 100

9.6.5. New Statechart Diagram ... 101

9.6.6. New Activity Diagram .. 101

9.6.7. New Deployment Diagram .. 101

9.7. The Arrange Menu ... 101
9.7.1.Align ...101
9.7.2.Distribute ...102
9.7.3.Reorder ..103
9.7.4.Nudge ...103
9.7.5. Set Preferred Size .. 103
9.7.6. Toggle Auto Resizing (to be written) ... 103
9.7.7.Layout ...103

9.8. The Generation Menu ... 103
9.8.1. Generate Selected Classes … ... 104
9.8.2. Generate All Classes… ... 105
9.8.3. Generate Code for Project… (To be Written) 105
9.8.4. Settings for Generate for Project… (To be Written) 105

9.9. The Critique Menu ... 105
9.9.1. Toggle Auto-Critique ...105
9.9.2. Design Issues… ...106
9.9.3. Design Goals… ...107
9.9.4. Browse Critics… ...108

9.10. The Tools Menu ... 110
9.10.1. Export as XMI… ... 111

9.11. The Help Menu .. 111
9.11.1. System Information ..111
9.11.2. About ArgoUML ...112

10. The Explorer ..115
10.1. Introduction ...115
10.2. Mouse Behavior in the Explorer .. 115

10.2.1. Button 1 Click ... 116
10.2.2. Button 1 Double Click .. 116
10.2.3. Button 2 Actions .. 116
10.2.4. Button 2 Double Click .. 116

10.3. Keyboard Behavior in the Explorer .. 116
10.4. Perspective Selection ...116
10.5. Configuring Perspectives ...117

10.5.1. The Configure Perspectives dialog .. 117
10.5.2. The Explorer Panes .. 119

10.6. Context Sensitive Menu ... 120
10.6.1. Add to Diagram ... 120
10.6.2. Delete From Model .. 120

10.6.3. Set Source Path… (To be written) ... 121
10.6.4. Add Package ...121
10.6.5. Add All Classes in Namespace ... 121

11. The Editing Pane ... 122
11.1. Introduction ...122
11.2. Mouse Behavior in the Editing Pane ... 122

11.2.1. Button 1 Click ... 123
11.2.2. Button 1 Double Click .. 123
11.2.3. Button 1 Motion .. 123
11.2.4. Shift and Control with Button 1 .. 124
11.2.5. Alt with Button 1 motion ... 124
11.2.6. Button 2 Actions .. 124
11.2.7. Button 2 Double Click .. 124

ArgoUML User Manual

viii

11.2.8. Button 2 Motion .. 124
11.3. The tool bar ... 125

11.3.1. Layout Tools ...125
11.3.2. Annotation Tools ...125
11.3.3. Drawing Tools ...126
11.3.4. Use Case Diagram Specific Tools ... 127
11.3.5. Class Diagram Specific Tools ... 128
11.3.6. Sequence Diagram Specific Tools ... 129
11.3.7. Collaboration Diagram Specific Tools .. 130
11.3.8. Statechart Diagram Specific Tools ... 130
11.3.9. Activity Diagram Specific Tools ... 132
11.3.10. Deployment Diagram Specific Tools .. 133

11.4. The Broom ..134
11.5. Selection Action Buttons .. 135
11.6.Clarifiers ...136
11.7. The Drawing Grid ... 137
11.8. The Diagram Tab ... 137
11.9. Pop-Up Menus ...137

11.9.1.Critiques ..137
11.9.2.Ordering ...137
11.9.3.Add ...137
11.9.4.Show ...138
11.9.5.Modifiers ..139
11.9.6.Multiplicity ...139
11.9.7.Aggregation ..139
11.9.8.Navigability ..140

12. The Details Pane ... 141
12.1. Introduction ...141
12.2. To Do Item Tab .. 141

12.2.1.Wizards ..145
12.2.2. The Help Button .. 145

12.3. Properties Tab ..146
12.4. Documentation Tab ...147
12.5. Presentation Tab ...148
12.6. Source tab ...151
12.7. Constraints Tab ..151

12.7.1. The Constraint Editor .. 155
12.8. Tagged Values Tab ... 156
12.9. Checklist Tab ...157

13. The To-Do Pane ... 159
13.1. Introduction ...159
13.2. Mouse Behavior in the To-Do Pane .. 159

13.2.1. Button 1 Click ... 160
13.2.2. Button 1 Double Click .. 160
13.2.3. Button 2 Actions .. 160
13.2.4. Button 2 Double Click .. 160

13.3. Presentation Selection ...160
13.4. Item Count ..161

14. The Critics ...162
14.1. Introduction ...162

14.1.1.Terminology ...162
14.1.2. Design Issues ..162

14.2.Uncategorized ..162
14.3. Class Selection ...162

14.3.1. Wrap DataType ...162
14.3.2. Reduce Classes in diagram <diagram> ... 163
14.3.3. Clean Up Diagram ... 163

14.4.Naming ..163

ArgoUML User Manual

ix

14.4.1. Resolve Association Name Conflict ... 163
14.4.2. Revise Attribute Names to Avoid Conflict .. 163
14.4.3. Change Names or Signatures in an Artifact 163
14.4.4. Duplicate End (Role) Names for an Association 164
14.4.5. Role name conflicts with member ... 164
14.4.6. Choose a Name (Classes and Interfaces) ... 164
14.4.7. Choose a Unique Name for an Artifact (Classes and Interfaces) 164
14.4.8. Choose a Name (Attributes) ... 164
14.4.9. Choose a Name (Operations) .. 164
14.4.10. Choose a Name (States) ... 165
14.4.11. Choose a Unique Name for a (State related) Artifact 165
14.4.12. Revise Name to Avoid Confusion .. 165
14.4.13. Choose a Legal Name ... 165
14.4.14. Change an Artifact to a Non-Reserved Word 165
14.4.15. Choose a Better Operation Name ... 165
14.4.16. Choose a Better Attribute Name .. 165
14.4.17. Capitalize Class Name ... 166
14.4.18. Revise Package Name ... 166

14.5.Storage ...166
14.5.1. Revise Attribute Names to Avoid Conflict .. 166
14.5.2. Add Instance Variables to a Class .. 166
14.5.3. Add a Constructor to a Class .. 166
14.5.4. Reduce Attributes on a Class .. 167

14.6. Planned Extensions ...167
14.6.1. Operations in Interfaces must be public .. 167
14.6.2. Interfaces may only have operations .. 167
14.6.3. Remove Reference to Specific Subclass .. 167

14.7. State Machines ...167
14.7.1. Reduce Transitions on <state> .. 167
14.7.2. Reduce States in machine <machine> .. 168
14.7.3. Add Transitions to <state> ... 168
14.7.4. Add Incoming Transitions to <artifact> .. 168
14.7.5. Add Outgoing Transitions from <artifact> .. 168
14.7.6. Remove Extra Initial States .. 168
14.7.7. Place an Initial State ... 168
14.7.8. Add Trigger or Guard to Transition ... 168
14.7.9. Change Join Transitions .. 168
14.7.10. Change Fork Transitions .. 168
14.7.11. Add Choice/Junction Transitions ... 168
14.7.12. Add Guard to Transition .. 168
14.7.13. Clean Up Diagram .. 169
14.7.14. Make Edge More Visible ... 169
14.7.15. Composite Association End with Multiplicity > 1 169

14.8. Design Patterns ..169
14.8.1. Consider using Singleton Pattern for <class> 169
14.8.2. Singleton Stereotype Violated in <class> .. 170
14.8.3. Nodes normally have no enclosers ... 170
14.8.4. NodeInstances normally have no enclosers .. 170
14.8.5. Components normally are inside nodes ... 170
14.8.6. ComponentInstances normally are inside nodes 170
14.8.7. Classes normally are inside components ... 170
14.8.8. Interfaces normally are inside components .. 170
14.8.9. Objects normally are inside components ... 171
14.8.10. LinkEnds have not the same locations .. 171
14.8.11. Set classifier (Deployment Diagram) .. 171
14.8.12. Missing return-actions ...171
14.8.13. Missing call(send)-action ...171
14.8.14. No Stimuli on these links ... 171

ArgoUML User Manual

x

14.8.15. Set Classifier (Sequence Diagram) ... 171
14.8.16. Wrong position of these stimuli ... 171

14.9.Relationships ...171
14.9.1. Circular Association ...172
14.9.2. Make <association> Navigable ... 172
14.9.3. Remove Navigation from Interface via <association> 172
14.9.4. Add Associations to <artifact> .. 172
14.9.5. Remove Reference to Specific Subclass .. 172
14.9.6. Reduce Associations on <artifact> ... 172
14.9.7. Make Edge More Visible ... 172

14.10. Instantiation ...173
14.11.Modularity ...173

14.11.1. Classifier not in Namespace of its Association 173
14.11.2. Add Elements to Package <package> ... 173

14.12. Expected Usage ..173
14.12.1. Clean Up Diagram .. 173

14.13.Methods ..174
14.13.1. Change Names or Signatures in <artifact> 174
14.13.2. Class Must be Abstract .. 174
14.13.3. Add Operations to <class> ... 174
14.13.4. Reduce Operations on <artifact> ... 174

14.14. Code Generation ...174
14.14.1. Change Multiple Inheritance to interfaces 174

14.15.Stereotypes ..174
14.16. Inheritance ...174

14.16.1. Revise Attribute Names to Avoid Conflict 174
14.16.2. Remove <class>'s Circular Inheritance ... 175
14.16.3. Class Must be Abstract .. 175
14.16.4. Remove final keyword or remove subclasses 175
14.16.5. Illegal Generalization ..175
14.16.6. Remove Unneeded Realizes from <class> 175
14.16.7. Define Concrete (Sub)Class .. 175
14.16.8. Define Class to Implement <interface> ... 175
14.16.9. Change Multiple Inheritance to interfaces 175
14.16.10. Make Edge More Visible .. 176

14.17.Containment ..176
14.17.1. Remove Circular Composition .. 176
14.17.2. Duplicate Parameter Name ... 176
14.17.3. Two Aggregate Ends (Roles) in Binary Association 176
14.17.4. Aggregate End (Role) in 3-way (or More) Association 176
14.17.5. Wrap DataType ..177
14.17.6. Import Parameter Type into Class .. 177

15. Top Level Artifact Reference .. 178
15.1. Introduction ...178
15.2. The Model ..178

15.2.1. Model Details Tabs .. 178
15.2.2. Model Property Toolbar .. 178
15.2.3. Property Fields For The Model ... 179

15.3.Datatype ...180
15.3.1. Datatype Details Tabs ... 181
15.3.2. Datatype Property Toolbar ... 182
15.3.3. Property Fields For Datatype .. 182

15.4.Stereotype ...185
15.4.1. Stereotype Details Tabs ... 185
15.4.2. Stereotype Property Toolbar ... 186
15.4.3. Property Fields For Stereotype .. 186

15.5.Diagram ..187
15.5.1. Diagram Details Tabs ... 189

ArgoUML User Manual

xi

15.5.2. Diagram Property Toolbar ... 189
15.5.3. Property Fields For Diagram .. 189

16. Use Case Diagram Artifact Reference ... 190
16.1. Introduction ...190

16.1.1. ArgoUML Limitations Concerning Use Case Diagrams 190
16.2.Actor ..191

16.2.1. Actor Details Tabs ... 191
16.2.2. Actor Property Toolbar ... 192
16.2.3. Property Fields For Actor .. 192

16.3. Use Case ...193
16.3.1. Use Case Details Tabs ... 194
16.3.2. Use Case Property Toolbar .. 195
16.3.3. Property Fields For Use Case ... 195

16.4. Extension Point ..197
16.4.1. Extension Point Details Tabs .. 197
16.4.2. Extension Point Property Toolbar .. 198
16.4.3. Property Fields For Extension Point ... 198

16.5.Association ...199
16.6. Association End ...199
16.7.Dependency ...199
16.8.Generalization ..199

16.8.1. Generalization Details Tabs ... 200
16.8.2. Generalization Property Toolbar ... 200
16.8.3. Property Fields For Generalization .. 201

16.9.Extend ..203
16.9.1. Extend Details Tabs .. 203
16.9.2. Extend Property Toolbar .. 204
16.9.3. Property Fields For Extend .. 205

16.10. Include ..206
16.10.1. Include Details Tabs ... 206
16.10.2. Include Property Toolbar ... 207
16.10.3. Property Fields For Include .. 207

17. Class Diagram Artifact Reference .. 209
17.1. Introduction ...209

17.1.1. Limitations Concerning Class Diagrams in ArgoUML 210
17.2.Package ..210

17.2.1. Package Details Tabs .. 210
17.2.2. Package Property Toolbar .. 211
17.2.3. Property Fields For Package ... 211

17.3.Datatype ...213
17.4.Stereotype ...213
17.5.Class ..213

17.5.1. Class Details Tabs .. 213
17.5.2. Class Property Toolbar .. 214
17.5.3. Property Fields For Class ... 215

17.6.Attribute ...217
17.6.1. Attribute Details Tabs ... 218
17.6.2. Attribute Property Toolbar ... 218
17.6.3. Property Fields For Attribute .. 219

17.7.Operation ..221
17.7.1. Operation Details Tabs .. 221
17.7.2. Operation Property Toolbar .. 222
17.7.3. Property Fields For Operation ... 223

17.8.Parameter ..225
17.8.1. Parameter Details Tabs .. 226
17.8.2. Parameter Property Toolbar ... 226
17.8.3. Property Fields For Parameter .. 227

17.9.Signal ...228

ArgoUML User Manual

xii

17.9.1. Signal Details Tabs ... 228
17.9.2. Signal Property Toolbar .. 229
17.9.3. Property Fields For Signal ... 230

17.10. Reception (to be written) .. 231
17.11.Association ..231

17.11.1. Three-way and Greater Associations and Association Classes 232
17.11.2. Association Details Tabs .. 232
17.11.3. Association Property Toolbar .. 233
17.11.4. Property Fields For Association ... 233

17.12. Association End ..234
17.12.1. Association End Details Tabs ... 235
17.12.2. Association End Property Toolbar ... 236
17.12.3. Property Fields For Association End .. 236

17.13.Dependency ...239
17.13.1. Dependency Details Tabs ... 239
17.13.2. Dependency Property Toolbar ... 240
17.13.3. Property Fields For Dependency .. 240

17.14.Generalization ..241
17.15. Interface ..241

17.15.1. Interface Details Tabs .. 241
17.15.2. Interface Property Toolbar ... 242
17.15.3. Property Fields For Interface .. 243

17.16.Abstraction ..244
17.16.1. Abstraction Details Tabs .. 245
17.16.2. Abstraction Property Toolbar .. 245
17.16.3. Property Fields For Abstraction ... 246

18. Sequence Diagram Artifact Reference ... 247
18.1. Introduction ...247

18.1.1. Limitations Concerning Sequence Diagrams in ArgoUML 248
18.2.Object ..248

18.2.1. Object Details Tabs .. 249
18.2.2. Object Property Toolbar .. 250
18.2.3. Property Fields For Object ... 250

18.3.Stimulus ...251
18.3.1. Stimulus Details Tabs ... 251
18.3.2. Stimulus Property Toolbar ... 253
18.3.3. Property Fields For Stimulus .. 253

18.4. Stimulus Call ...254
18.5. Stimulus Create ..254
18.6. Stimulus Destroy ..255
18.7. Stimulus Send ..255
18.8. Stimulus Return ...255
18.9.Link ...256

18.9.1. Link Details Tabs ... 256
18.9.2. Link Property Toolbar ... 257
18.9.3. Property Fields For Link .. 257

19. Statechart Diagram Artifact Reference .. 258
19.1. Introduction ...258

19.1.1. Limitations Concerning Statechart Diagrams in ArgoUML 259
19.2.State ...259

19.2.1. State Details Tabs .. 259
19.2.2. State Property Toolbar .. 260
19.2.3. Property Fields For State ... 260

19.3.Action ..262
19.3.1. Action Details Tabs .. 263
19.3.2. Action Property Toolbar .. 263
19.3.3. Property Fields For Action ... 264

19.4. Composite State ...264

ArgoUML User Manual

xiii

19.5. Concurrent Region ..265
19.6. Submachine State ...265
19.7. Stub State ..265
19.8.Transition ...266

19.8.1. Transition Details Tabs ... 266
19.8.2. Transition Property Toolbar ... 267
19.8.3. Property Fields For Transition .. 267

19.9.Event ...269
19.9.1. Event Details Tabs ... 269
19.9.2. Event Property Toolbar ... 270
19.9.3. Property Fields For Event .. 270

19.10.Guard ...271
19.10.1. Guard Details Tabs ... 271
19.10.2. Guard Property Toolbar ... 272
19.10.3. Property Fields For Guard .. 272

19.11.Pseudostate ..273
19.11.1. Pseudostate Details Tabs .. 273
19.11.2. Pseudostate Property Toolbar .. 274
19.11.3. Property Fields For Pseudostate ... 274

19.12. Initial State ..275
19.13. Final State ...275

19.13.1. Final State Details Tabs ... 275
19.13.2. Final State Property Toolbar ... 276
19.13.3. Property Fields For Final State .. 276

19.14. Junction ..277
19.15.Choice ..278
19.16.Fork ...278
19.17. Join ..278
19.18. Shallow History ..279
19.19. Deep History ..279
19.20. Synch State ..279

19.20.1. Synch State Details Tabs .. 279
19.20.2. Synch State Property Toolbar ... 280
19.20.3. Property Fields For Synch State .. 280

20. Collaboration Diagram Artifact Reference ... 282
20.1. Introduction ...282

20.1.1. Limitations Concerning Collaboration Diagrams in ArgoUML 283
20.2. Classifier Role ...283

20.2.1. Classifier Role Details Tabs ... 284
20.2.2. Classifier Role Property Toolbar ... 285
20.2.3. Property Fields For Classifier Role .. 285

20.3. Association Role ..288
20.3.1. Association Role Details Tabs .. 288
20.3.2. Association Role Property Toolbar .. 289
20.3.3. Property Fields For Association Role ... 289

20.4. Association End Role .. 290
20.4.1. Association End Role Details Tabs .. 291
20.4.2. Association End Role Property Toolbar .. 291
20.4.3. Property Fields For Association End Role ... 292

20.5.Message ..293
20.5.1. Message Details Tabs ... 293
20.5.2. Message Property Toolbar ... 294
20.5.3. Property Fields For Message .. 294

21. Activity Diagram Artifact Reference ... 297
21.1. Introduction ...297

21.1.1. Limitations Concerning Activity Diagrams in ArgoUML 298
21.2. Action State ...298

21.2.1. Action State Details Tabs ... 299

ArgoUML User Manual

xiv

21.2.2. Action State Property ToolBar .. 300
21.2.3. Property fields for action state .. 300

21.3.Action ..301
21.4.Transition ...301
21.5.Guard ...301
21.6. Initial State ..302
21.7. Final State ...302
21.8. Junction (Decision) ...302
21.9.Fork ...302
21.10. Join ..302
21.11.ObjectFlowState ...302

22. Deployment Diagram Artifact Reference ... 303
22.1. Introduction ...303

22.1.1. Limitations Concerning Deployment Diagrams in ArgoUML 304
22.2.Node ..304

22.2.1. Node Details Tabs .. 304
22.2.2. Node Property Toolbar .. 305
22.2.3. Property Fields For Node ... 306

22.3. Node Instance ..307
22.3.1. Node Instance Details Tabs .. 307
22.3.2. Node Instance Property Toolbar .. 308
22.3.3. Property Fields For Node Instance ... 308

22.4.Component ..309
22.4.1. Component Details Tabs .. 309
22.4.2. Component Property Toolbar ... 310
22.4.3. Property Fields For Component .. 310

22.5. Component Instance ..311
22.5.1. Component Instance Details Tabs .. 311
22.5.2. Component Instance Property Toolbar ... 312
22.5.3. Property Fields For Component Instance .. 312

22.6.Dependency ...313
22.7.Class ..313
22.8. Interface ...313
22.9.Association ...314
22.10.Object ...314
22.11.Link ...314

23. Built In DataTypes, Classes, Interfaces and Stereotypes .. 315
23.1. Introduction ...315

23.1.1. Package Structure ...315
23.1.2. Exposure in the model ... 317

23.2. Built In Datatypes ... 317
23.3. Built In Classes .. 317

23.3.1. Built In Classes From java.lang ... 318
23.3.2. Built In Classes From java.math ... 318
23.3.3. Built In Classes From java.net ... 318
23.3.4. Built In Classes From java.util ... 318

23.4. Built In Interfaces ... 318
23.5. Built In Stereotypes ... 319

Glossary ...322
A. Supplementary Material for the Case Study ... 329

A.1. Introduction ..329
A.2. Requirements Documents (To be written) ... 329

A.2.1. Vision Document (To be written) ... 329
A.2.2. Use Case Specifications (To be written) .. 329
A.2.3. Supplementary Requirements Specification (To be written) 329

B. UML resources ..330
B.1. The UML specs (To be written) .. 330
B.2. UML related papers (To be written) .. 330

ArgoUML User Manual

xv

B.2.1. UML action specifications (To be written) ... 330
B.3. UML related websites (To be written) .. 330

C. UML Conforming CASE Tools .. 331
C.1. Other Open Source Projects (To be written) .. 331
C.2. Commercial Tools (To be written) .. 331

D. Limits and Shortcomings ... 332
D.1. Diagram Canvas Size ... 332
D.2. Missing functions ..332

E. Open Publication Licence .. 333
E.I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS 333
E.II.COPYRIGHT ...333
E.III. SCOPE OF LICENSE ... 333
E.IV. REQUIREMENTS ON MODIFIED WORKS ... 333
E.V. GOOD-PRACTICE RECOMMENDATIONS ..334
E.VI. LICENSE OPTIONS ..334
E.. OPEN PUBLICATION POLICY APPENDIX: ... 335

Index ...336

ArgoUML User Manual

xvi

Preface
Software design is a cognitively challenging task. Designers must manually enter designs, but the pri-
mary difficulty is decision-making rather than data-entry. If designers improved their decision-making
capabilities, it would result in better designs.

Current CASE tools provide automation and graphical user interfaces that reduce the manual work of
entering a design and transforming a design into code. They aid designers in decision-making mainly by
providing visualization of design diagrams and simple syntactic checks. Also many CASE tools provide
substantial benefits in the area of version control and concurrent design mechanisms. One area of design
support that has been not been well supported is analysis of design decisions.

Current CASE tools are usable in that they provide a GUI that allows designers to access all the features
provided by the tool. And they support the design process in that they allow the designer to enter dia-
grams in the style of popular design methodologies. But they typically do not provide process support to
guide the designer through the design task. Instead, designers typically start with a blank page and must
remember to cover every aspect of the design.

ArgoUML is a domain-oriented design environment that provides cognitive support of object-oriented
design. ArgoUML provides some of the same automation features of a commercial CASE tool, but it fo-
cuses on features that support the cognitive needs of designers. These cognitive needs are described by
three cognitive theories:

1. reflection-in-action;

2. opportunistic design; and

3. comprehension and problem solving.

ArgoUML is based directly on the UML 1.3 specification. In fact, a large part of ArgoUML was gener-
ated automatically from the UML specification. ArgoUML is (to the best of our knowledge) the only
tool that implements the UML meta-model exactly as specified. In contrast, current commercial tools
use basically the same internal representation of the design that they used in previous versions.

Furthermore, it is our goal to provide comprehensive support for OCL (the Object Constraint Language)
and XMI (the XML Model Interchange format), which many other tools do not support.

ArgoUML was originally developed by a small group of people as a research project. ArgoUML has
many features that make it special, but it does not implement all the features that commercial CASE
tools provide.

The current developer release of ArgoUML implements all the diagram types of the UML 1.3 standard
[http://www.omg.org/cgi-bin/doc?ad/99-06-08]. It is written in Java and runs on every computer which
provides a Java 2 platform of Java 1.4 or newer. It uses the open file formats XMI
[http://www.omg.org/technology/documents/formal/xmi.htm] (XML Metadata Interchange format) (for
model information) and PGML [http://www.w3.org/TR/1998/NOTE-PGML] (Portable Graphics
Markup Language) (for graph information) for storage. A new file format with graphs embedded as
SVG [http://www.w3.org/TR/SVG/] (Scalable Vector Graphics) in the XMI is in discussion, but is post-
poned until a standard for such a file format is defined by the OMG [http://www.omg.org] (Object Man-
agement Group).

This manual is the cumulative work of several people and has been evolving over several years. Con-
nected to the release 0.10 of ArgoUML, Jeremy Bennett, wrote a lot of the new material that was added
to the earlier versions by Alejandro Ramirez, Philippe Vanpeperstraete and Andreas Rueckert. He also
added things from some of the other documents namely the developers cookbook by Markus Klink and

xvii

http://www.omg.org/cgi-bin/doc?ad/99-06-08
http://www.omg.org/cgi-bin/doc?ad/99-06-08
http://www.omg.org/cgi-bin/doc?ad/99-06-08
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/1998/NOTE-PGML
http://www.w3.org/TR/SVG/
http://www.omg.org

Linus Tolke, the Quick Guide by Kunle Odutola, and the FAQ by Dennis Daniels. Connected to the re-
lease 0.14 changes were made by Linus Tolke, and by Michiel van der Wulp. These changes were
mostly to adopt the manual to the new functions and appearance of ArgoUML version 0.14, and intro-
duction of the index. The users and developers that have contributed by providing valuable input, such
as review comments or observations while reading and using this manual are too many to name.

ArgoUML is available for free and can be used in commercial settings. For terms of use, see the license
agreement presented when you download ArgoUML. We are providing the source code for ArgoUML
for you to review, customize to your needs, and improve. Over time, we hope that ArgoUML will
evolve into a powerful and useful tool for everyone to use.

This User Manual is aimed at the working designer, who wishes to make use of ArgoUML. The manual
is presently written assuming familiarity with UML, but eventually it will support those new to UML.

The manual is written in DocBook/XML and available as both HTML and PDF.

The ArgoUML project welcomes those who want to get more involved. Look at the project website
[http://argouml.tigris.org/] to find out more.

Tell us what you think about this User Manual! Your comments will help us improve things. Email your
thoughts to the ArgoUML Users Mailing List [mailto:users@argouml.tigris.org] or if you have found er-
rors or omissions, enter a defect in Issuezilla [http://argouml.tigris.org/project_bugs.html] the bug track-
ing tool for the ArgoUML project.

Preface

xviii

http://argouml.tigris.org/
http://argouml.tigris.org/
mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
http://argouml.tigris.org/project_bugs.html

Chapter 1. Introduction

1.1. Origins and Overview of ArgoUML

1.1.1. Object Oriented Analysis and Design
Over the past decade, Object Oriented Analysis and Design (OOA&D) has become the dominant soft-
ware development paradigm. With it has come a major shift in the thought processes of all involved in
the software development life cycle.

Programming language support for objects began with Simula 67, but it was the emergence in the 1980's
of hybrid languages, such as C++, Ada and Object Pascal that allowed OOA&D to take off. These lan-
guages provided support for both OO and procedural programming. Object Oriented programming be-
came mainstream.

An OO system is designed and implemented as a simulation of the real world using software artifacts.
This premise is as powerful as it is simple. By using an OO approach to design a system can be designed
and tested (or more correctly simulated) without having to actually build the system first.

It is the development during the 1990's of tools to support Object Oriented analysis and design that
moved this approach into the mainstream. When coupled with the ability to design systems at a very
high level, a tool based OOA&D approach has enabled the implementation of more complex systems
than previously possible.

The final driver that has propelled OOA&D has been its suitability for modeling graphical user inter-
faces. The popularity of object based and object oriented graphical languages such as Visual Basic and
Java reflect the effectiveness of this approach.

1.1.2. The Development of ArgoUML
During the 1980's a number of OOA&D process methodologies and notations were developed by differ-
ent research teams. It became clear there were many common themes and, during the 1990's, a unified
approach for OOA&D notation was developed under the auspices of the Object Management Group
[http://www.omg.org]. This standard became known as the Unified Modeling Language (UML), and is
now the standard language for communicating OO concepts.

ArgoUML was conceived as a tool and environment for use in the analysis and design of object-oriented
software systems. In this sense it is similar to many of the commercial CASE tools that are sold as tools
for modeling software systems. ArgoUML has a number of very important distinctions from many of
these tools.

1. ArgoUML draws on research in cognitive psychology to provide novel features that increase pro-
ductivity by supporting the cognitive needs of object-oriented software designers and architects.

2. ArgoUML supports open standards extensively—UML, XMI, SVG, OCL and others. In this re-
spect, ArgoUML is still ahead of many commercial tools.

3. ArgoUML is a 100% pure Java application. This allows ArgoUML to run on all platforms for
which a reliable port of the Java2 platform is available.

4. ArgoUML is an open source project. The availability of the source ensures that a new generation of
software designers and researchers now have a proven framework from which they can drive the
development and evolution of CASE tool technologies.

1

http://www.omg.org
http://www.omg.org
http://www.omg.org

UML is the most prevalent OO modeling language and Java is one of the most productive OO develop-
ment platforms. Jason Robbins and the rest of his research team at the University of California, Irvine
leveraged these benefits in creating the ArgoUML. The result is a solid development tool and environ-
ment for OO systems design. Further, it provides a test bed for the evolution of object oriented CASE
tools development and research.

A first release of ArgoUML was available in 1998 and more than 100,000 downloads by mid-2001 show
the impact that this project has made, being popular in educational and commercial fields.

1.1.3. Finding Out More About the ArgoUML Project

1.1.3.1. How ArgoUML is Developed

Jason Elliot Robbins founded the Argo Project and provided early project leadership. While Jason re-
mains active in the project, he has handed off project leadership. The project continues to move forward
strongly. There are more than 300 members on the developer mailing list (see
http://argouml.tigris.org/servlets/ProjectMailingListList
[http://argouml.tigris.org/servlets/ProjectMailingListList]), with a couple of dozen of those forming the
core development group.

This is the place where all the discussion on the latest tasks takes place, and developers discuss the di-
rections the project should take. Although controversial at times, these discussions are always kept nice
and friendly (no flame-wars and such), so newbies should not hesitate and participate in them. You'll al-
ways get a warm welcome there.

If you want to learn some details about how the project is run and how you should go about to contribute
go the the ArgoUML Web Site Developer Zone [http://argouml.tigris.org/dev.html] and read through the
documentation there. The Cookbook is an important document.

1.1.3.2. More on Infrastructure

Besides the developer mailing list, there's also a mailing for users (see The ArgoUML Mailing List List
[http://argouml.tigris.org/servlets/ProjectMailingListList]), where we can discuss problems from a user
perspective. Developers also read this list, so there's a good chance to get qualified help.

Before posting to this list, you should take a look at the user FAQ
[http://argouml.tigris.org/faqs/users.html] maintained by Ewan R. Grantham.

More information on ArgoUML and other UML related topics is also available on the ArgoUML web-
site [http://argouml.tigris.org], maintained by Linus Tolke.

1.2. Scope of This User Manual

1.2.1. Target Audience
The current release of this document is aimed at experienced users of UML in OOA&D (perhaps with
other tools) who wish to transfer to ArgoUML.

Future releases will support designers who know OOA&D, and wish to adopt UML notation within their
development process.

A long term goal is to support i) those who are learning design and wish to start with an OOA&D pro-
cess that uses UML notation, and ii) people interested in modularized code design with a GUI.

Introduction

2

http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
http://argouml.tigris.org

1.2.2. Scope
The intention is that this document will provide a comprehensive guide, enabling designers to use Ar-
goUML to its full extent. It is in two parts.

• A tutorial manual, showing how to work with ArgoUML

• A complete reference manual, recording everything you can do with ArgoUML.

The current version of the document has achieved the second of these.

In this guide there are some things you will not find, because they are covered elsewhere.

• Descriptions of how ArgoUML works on the inside.

• How to improve ArgoUML with new features and functions.

• A trouble shooting guide.

• A summary quick reference to using ArgoUML.

These are covered in the Developers Cookbook
[http://argouml.tigris.org/documentation/defaulthtml/cookbook/], the FAQ
[http://argouml.tigris.org/faqs/users.html], and the Quick Guide
[http://argouml.tigris.org/documentation/defaulthtml/quickguide/].

1.3. Overview of the User Manual

1.3.1. Tutorial Manual Structure
Chapter 2, UML Based OOA&D provides an overview of UML based OOA&D, including a guide to
getting ArgoUML up and running.

Chapter 3, Requirements Capture through Chapter 6, Code Generation, Reverse Engineering, and Round
Trip Engineering then step through each part of the design process from initial requirements capture
through to final project build and deployment.

As each UML concept is encountered, its use is explained. Its use within ArgoUML is then described.
Finally the a study is used to give examples of the concepts in use.

1.3.2. Reference Manual Structure
Chapter 7, User Interface Reference is an overview of the user interface and provides a summary of the
support for the various UML diagram types in ArgoUML. Separate chapters Chapter 10, The Explorer
through Chapter 9, The Menu bar describe each of the sub-windows of the user interface, known as
Panes, and the menu bar.

Chapter 14, The Critics gives details of all the cognitive critics within the system. Eventually ArgoUML
will link directly to this manual when giving advice on critics.

Chapter 15, Top Level Artifact Reference is an overview of the artifacts (i.e. the UML entities that can
be placed on diagrams) within ArgoUML. The following chapters (Chapter 16, Use Case Diagram Arti-
fact Reference through Chapter 23, Built In DataTypes, Classes, Interfaces and Stereotypes) describe,

Introduction

3

http://argouml.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org/documentation/defaulthtml/quickguide/
http://argouml.tigris.org/documentation/defaulthtml/quickguide/
http://argouml.tigris.org/documentation/defaulthtml/quickguide/

the artifacts that can be created through each ArgoUML diagram, and their properties, as well as some
standard artifacts provided with the system.

A complete Glossary is provided. Appendix A, Supplementary Material for the Case Study provides ma-
terial to supplement the case study used throughout the document. Appendix B, UML resources and Ap-
pendix C, UML Conforming CASE Tools identify background information on UML and UML CASE
tools. Appendix E, Open Publication Licence is a copy of the GNU Free Documentation License.

A future ambition is to provide a comprehensive index

1.3.3. User Feedback
Please tell us what you think about this User Manual. Your comments will help us make improvements.
Email your thoughts to the ArgoUML Users Mailing List [mailto:users@argouml.tigris.org]. In case you
would like to add to the missing chapters you should contact the ArgoUML Developer Mailing List
[mailto:dev@argouml.tigris.org] to check whether noone else is working on this part. You can subscribe
to either of the mailinglists via the ArgoUML web site [http://argouml.tigris.org].

1.4. Assumptions
This release of the manual assumes the reader is very familiar with UML already. This is reflected in the
sparseness of the description of UML concepts in the tutorial.

The case study is described, but not yet fully realized throughout the tutorial. This will be achieved in
future releases of the manual.

Introduction

4

mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
mailto:users@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org

Part I. ArgoUML Tutorial Manual

Chapter 2. UML Based OOA&D

2.1. Introduction
In this chapter, we look at how UML as a notation is used within OOA&D.

2.2. Background to UML
Object orientation as a concept has been around since the 1960's, and as a design concept since 1972.
However it was in the 1980's that it started to develop as a credible alternative to a functional approach
in analysis and design. We can identify a number of drivers.

1. The emergence of mainstream OO programming languages like SmallTalk and particularly C++.
C++ was a pragmatic OO language derived from C, widely used because of its association with
Unix.

2. The development of powerful workstations, and with them the emergence into the mainstream of
windowing operating user environments. Graphical User Interfaces (GUI) have an inherent object
structure.

3. A number of very public major project failures, suggesting that current approaches were not satis-
factory.

A number of researchers proposed OOA&D processes, and with them notations. Those that achieved
some success include Coad-Yourdon, Booch, Rumbaugh OMT, OOSE/Jacobson, Shlaer-Mellor, ROOM
(for real-time design) and the hybrid Jackson Structured Development.

During the early 1990's it became clear that these approaches had many good ideas, often very similar.
A major stumbling block was the diversity of notation, meaning engineers tended to be familiar with one
OOA&D methodology, rather than the approach in general.

UML was conceived as a common notation, that would be in the interests of all involved. The original
standard was driven by Rational Software (www.rational.com [http://www.rational.com], in which three
of the key researchers in the field (Booch, Jacobson and Rumbaugh were involved). They produced doc-
uments describing v0.9 and v0.91 during 1996. The effort was taken industry wide through the Object
Management Group (OMG), already well known for the CORBA standard. A first proposal, 1.0 was
published in early 1997, with an improved version 1.1 approved that autumn.

ArgoUML is based on UML v1.3, which was adopted by OMG in November 1999. The current official
version is UML v1.5 dated March 2003. A major revision, UML v2.0, was adopted and posted in late
2003 and planned to be voted through in late 2004.

2.3. UML Based Processes for OOA&D
It is important to understand that UML is a notation for OOA&D. It does not prescribe any particular
process.

Whatever process is adopted, it must take the system being constructed through a number of phases.

1. Requirements Capture. This is where we identify the requirements for the system, using the lan-
guage of the problem domain. In other words we describe the problem in the “customer's# terms.

6

http://www.rational.com

2. Analysis. We take the requirements and start to recast them in the language of a putative solu-
tion—the solution domain. At this stage, although thinking in terms of a solution, we ensure we
keep things at a high level, away from concrete details of a specific solution—what is known as ab-
straction.

3. Design. We take the specification from the Analysis phase and construct the solution in full detail.
We are moving from abstraction of the problem to its realization in concrete terms.

4. Build Phase. We take the actual design and write it in a real programming language. This includes
not just the programming, but the testing that the program meets the requirements (verification),
testing that the program actually solves the customer's problem (validation) and writing all user
documentation.

2.3.1. Types of Process
In this section we look at the two main types of process in use for software engineering. There are oth-
ers, but they are less widely used.

In recent years there has also been a move to reduce the effort required in developing software. This has
led to the development of a number of lightweight variants of processes (often known as agile comput-
ing or extreme programming) that are suited to very small teams of engineers.

2.3.1.1. The Waterfall Process

In this process, each stage of the process—requirements, analysis, design and build (code and test) is
completed before the next one starts. This is illustrated in Figure 2.1, “The waterfall process#.

Figure 2.1. The waterfall process

This is a very satisfactory process where requirements are well designed and not expected to change, for
example automating a well proven manual system.

UML Based OOA&D

7

The weaknesses of this approach show with less well defined problems. Invariably some of the uncer-
tainties in the requirements will not be clarified until well into the analysis and design, or even code
phases, requiring backtracking to redo work.

The worst aspect of this, is that working code does not become available until near the end of the
project, and very often it is only at this stage that problems with the original requirements (for example
with the user interface) become apparent.

This is exacerbated, by each successive stage requiring more effort, than the previous, so that the costs
of late problem discovery are hugely expensive. This is illustrated by the pyramid in Figure 2.2, “Effort
involved in the steps of the waterfall process#.

Figure 2.2. Effort involved in the steps of the waterfall process

The waterfall process is still probably the dominant design process. However because of its limitations it
is increasingly replaced by iterative processes, particularly for projects where the requirements are not
well defined.

2.3.1.2. Iterative Development Processes

In recent years a new approach has been used, which aims to get at least part of the code up and running
as quickly as possible, to bring discovery of problems forward in the development cycle.

These processes use a series of “mini-waterfalls#, defining a few requirements (the most important) first,
taking them through analysis, design and build to get an early version of the product, with limited func-
tionality, related to the most important requirements. Feedback from this can then be used to refine the
requirements, spot problems etc before more work is done.

The process is then repeated for further requirements to construct a product with a step up in functional-
ity. Again further feedback can be applied to the requirements.

The process is repeated, until eventually all requirements have been implemented and the product is
complete. It is this iteration that gives these processes their name. Figure 2.3, “Effort involved in the

UML Based OOA&D

8

steps of an iterative process# shows how this process compares to the pyramid structure of the Waterfall
Process.

Figure 2.3. Effort involved in the steps of an iterative process

The growth in popularity of iterative processes is closely tied to the growth of OOA&D. It is the clean
encapsulation of objects that allows a part of a system to be built with stubs for the remaining code
clearly defined.

2.3.1.2.1. The Rational Unified Process

Perhaps the best known Iterative Process is the Rational Unified Process (RUP) from Rational Software
(www.rational.com [http://www.rational.com]).

This process recognizes that our pyramid view of even slices of the waterfall is not realistic. In practice
the early iterations tend to be heavy on the requirements end of things (you need to define a reasonable
amount even to get started), while the later iterations have more of their effort in the design and build ar-
eas.

RUP recognizes that iterations can be grouped into a number of phases according to their stage in the
overall project. Each phase may have one or more iterations.

• In the inception phase iterations tend to be heavy on the requirements/analysis end, while any build
activity may be limited to emulation of the design within a CASE tool.

• In the elaboration phase iterations tend to be completing the specification of the requirements, and
starting to focus on the analysis and design, and possibly the first real built code.

• In the construction phase iterations are more or less completed with the requirements and analysis,
and the effort is mostly in design and build.

• Finally, in the deployment phase iterations are largely about build activity, and in particular the test-
ing of the software.

UML Based OOA&D

9

http://www.rational.com

Note

It should be clear that testing is an integral part of all phases. Even in the early phases the
requirements and design should be tested, and this is facilitated by a good CASE tool.

We shall use an iterative process in this manual, that is loosely based on the RUP.

2.3.1.2.2. How Big is an Iteration?

A good rule of thumb is that an iteration should take between six and ten weeks for typical commercial
projects. Any longer and you have probably bitten off too many requirements to do in one go. You also
lose focus on getting the next working iteration completed. Any shorter and you probably haven't got
enough requirements to make a significant advance, and will struggle to get all the work done.

This then begs the question of how many iterations in total. This depends on the size of project. Take the
estimated time (and working out/guessing that is a whole subject on its own), and divided it into 8 week
chunks. Experience seems to suggest that the iterations will divide in the ratio of around 1:2:3:3 into
RUP style inception, elaboration, construction and deployment phases. A project that has great vague-
ness in its specification (some advanced research projects for example) will tend to be heavier on the
early phases.

When building a product to contract for a customer the end point is well defined. However when devel-
oping a new product for the market place, a strategy that can be used is to decide the product launch
date, and hence the end date for completion of engineering (some time before). The time is then divided
into iterations, and as much of the product as can be built in that time developed. The iterative process is
very effective where time to market is more important than the exact functionality.

2.3.1.3. Recursive Development Processes

Very few software systems are conceived as monolithic artifacts. They are broken down into subsys-
tems, modules etc.

Software processes are the same, with early parts of the process defining a top level structure, and the
process reapplying to parts of the structure in turn to define ever greater details.

For example the initial design of a telephone system might identify objects to i) handle the phone lines,
ii) process the calls, iii) manage the system and iv) bill the customer. The software process can then be
reapplied to each of these four components to identify their design.

OOA&D with its clean boundaries to objects, naturally supports this approach. Such OOA&D with re-
cursive development is sometimes abbreviated as OOA&D/RD.

Recursive development can be applied equally well to waterfall or iterative processes. It is not an alter-
native to them.

2.3.2. A Development Process for This Manual
For the purpose of this manual we will use a stripped down iterative process with recursive develop-
ment, loosely akin to RUP. The case study will take us through the first iteration, although at the end of
the tutorial section of the manual we will look at how the project will develop to completion.

Within that first iteration, we will tackle each of the requirements capture, analysis, design and build ac-
tivities in turn. Not all parts of the process are based on UML or ArgoUML. We will look at what other
material is needed outside.

Within this process we will have an opportunity to see the various UML diagrams in use. The full range
of UML diagrams and how they are supported is described in the reference manual (see Section 15.5,

UML Based OOA&D

10

“Diagram#).

2.3.2.1. Requirements Capture

Our requirements capture will use the UML concept of Use Cases. Starting with a Vision Document we
will see how Use Cases can be developed to describe all aspects of the system's behavior in the problem
domain.

2.3.2.2. Analysis

During the analysis stage, we will introduce the UML concept of classes to allow us to build a top level
view of the objects that will make up the solution—sometimes known as a concept diagram.

We will introduce the UML sequence diagram and statechart diagram to capture requirements for the
overall behavior of the system.

Finally we will take the Use Cases from the requirements capture stage, and recast them in the language
of the solution domain. This will illustrate the UML ideas of stereotyping and realization.

2.3.2.3. Design

We use the UML package diagram to organize the components of the project. We then revisit the class
diagram, sequence diagram and statechart diagram, to show how they can be used recursively to design
the complete solution.

During this part of the process, we need to develop our system architecture, to define how all the compo-
nents will fit together and operate.

Although not strictly part of our process, we'll look at how the UML collaboration diagram can be used
as an alternative to, or to complement the sequence diagram. Similarly we will look at the UML activity
diagram as an alternative or complement to the statechart diagram.

Finally we shall use the UML deployment diagram to specify how the system will actually be realized.

2.3.2.4. Build

UML is not really concerned with code writing. However at this stage we will show how ArgoUML can
be used for code generation.

We will also look at how the UML Use Case Diagram and Use Case Specification are invaluable tools
for a test program.

2.4. Why ArgoUML is Different
In the introduction, we listed the four key things that make ArgoUML different: i) it makes use of ideas
from cognitive psychology, ii) it is based on open standards; iii) it is 100% pure Java; and iv) it is an
open source project.

2.4.1. Cognitive Psychology

2.4.1.1. Theory

ArgoUML is particularly inspired by three theories within cognitive psychology: i) reflection-in-action,
ii) opportunistic design iii) and comprehension and problem solving.

2.4.1.1.1. Reflection-in-Action

UML Based OOA&D

11

This theory observes that designers of complex systems do not conceive a design fully-formed. Instead,
they must construct a partial design, evaluate, reflect on, and revise it, until they are ready to extend it
further.

As developers work hands-on with the design, their mental model of the problem situation improves,
hence improving their design.

2.4.1.1.2. Opportunistic Design

A theory within cognitive psychology suggesting that although designers plan and describe their work in
an ordered, hierarchical fashion, in reality, they choose successive tasks based on the criteria of cogni-
tive cost.

Simply stated, designers do not follow even their own plans in order, but choose steps that are mentally
least expensive among alternatives.

2.4.1.1.3. Comprehension and Problem Solving

A design visualization theory within cognitive psychology. The theory notes that designers must bridge
a gap between their mental model of the problem or situation and the formal model of a solution or sys-
tem.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposition, state transitions, control flow,
and data flow. These allow the programmer to better identify elements and relationships in the
problem and solution and thus more readily create a mapping between their situation models and
working system models.

2. Familiar aspects of a situation model, which improve designers' abilities to formulate solutions.

2.4.1.2. Practical Application in ArgoUML

The implementation of these theories within ArgoUML is through a number of techniques.

1. The design of a user interface which allows the user to view the design from a number of different
perspectives, and allows the user to achieve goals through a number of alternative routes.

2. The the use of processes running in parallel with the design tool, evaluating the current design
against models of how “best practice# design might work. These processes are known as design
critics.

3. The use of to-do lists to convey suggestions from the design critics to the user, as well as allowing
the user to record areas for future action.

4. The use of checklists, to guide the user through a complex process.

2.4.2. Open Standards
UML is itself an open standard. ArgoUML throughout has tried to use open standards for all its inter-
faces.

The key advantage of open standards is that it permits easy inter-working between applications, and the
ability to move from one application to another as necessary.

UML Based OOA&D

12

It is this very flexibility that means some commercial software is not built to use standards. In a monop-
olistic strategy, non-standard interfaces lock your customer to you.

This is a two-edged sword. Customers are not stupid, and are reluctant to buy non-standard software, be-
cause of the danger of lock-in.

The open source movement, is inherently about avoiding monopolistic control of software. Open stan-
dards are a natural direction for such software—including ArgoUML.

2.4.2.1. XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is the standard for saving the meta-data that make up a particular
UML model. In principle this will allow you to take the model you have created in ArgoUML and im-
port it into another tool.

This clearly has advantages in allowing UML to meet its goal of being a standard for communication be-
tween designers.

The reality is not quite this good. XMI is a recent standard, and ArgoUML is one of the few tools to im-
plement it. Furthermore it says nothing about the graphical representation of the models, so diagram lay-
out is lost. ArgoUML gets round this by saving graphical information with the model (see Sec-
tion 2.5.3.1, “Loading and Saving#).

2.4.2.2. Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is a recent standard proposed to the W3C Standardization body
(www.w3c.org [http://www.w3c.org]) by Adobe (www.adobe.com [http://www.adobe.com]). As yet it
is not widely adopted, but is likely to become the standard for graphical data that is based on vectors (i.e.
lines) rather than bitmaps.

For now ArgoUML saves diagrams using an earlier proposed standard, Portable Graphics Markup Lan-
guage (PGML). However it has the option to export graphical data as SVG for those who can make use
of it.

2.4.2.3. Object Constraint Language (OCL)

Object Constraint Language (OCL) is the UML standard for expressing constraints within diagrams that
express the dynamic behavior of a design.

At present OCL is quite new and not widely available. ArgoUML is one of the few CASE tools to pro-
vide comprehensive support.

2.4.3. 100% Pure Java
Java was conceived as an interpreted language. It doesn't have a compiler to produce code for any par-
ticular target machine. It compiles code for its own target, the Java Virtual Machine (JVM).

Writing an interpreter for a JVM is much easier than writing a compiler, and such machines are now in-
corporated into almost every Web Browser. As a result most machines can run Java, with no further
work.

(In case you wonder why all languages aren't like this, it is because interpreted languages tend to be
slower than compiled languages. However with the high performance of modern PCs, the trade-off for
portability is worthwhile for many applications. Furthermore modern multi-level caches can mean that
interpreted languages, which produce denser code, may actually not be that much slower anyway.)

By choosing to write ArgoUML in pure Java, it is immediately made available to the maximum number

UML Based OOA&D

13

http://www.w3c.org
http://www.adobe.com

of users with the minimum amount of effort.

2.4.4. Open Source
ArgoUML is an open source project. That means anyone can have a free copy of the source code,
change it, use it for new purposes and so on. The only (major) obligation is that you pass your code on
in the same way to others. The precise nature of what you can and can't do varies from project to project,
but the principle is the same.

The advantage is that a small project like ArgoUML suddenly is open to a lot of additional help from
those who can chip in their ideas for how the program might be improved. At any one time their may be
10, 15, 20 or more people making significant contributions to ArgoUML. To do that commercially
would cost $1m+ per year.

Its not just a spirit of pure altruism. Contributing is a way of learning “hands-on# about leading edge
software. Its a way of getting a lot of visibility (over 100,000 people had downloaded ArgoUML by the
spring of 2001). That's a lot of good experience on a resumé and a lot of potential employers seeing you!

And its great for the ego!

Open Source doesn't preclude making money. Gentleware www.gentleware.com
[http://www.gentleware.com] sell a commercial version of ArgoUML, Poseidon. Their value proposition
is not a piece of private code. Its the commercial polish and support that take risk out of using Ar-
goUML in a commercial development, allowing customers to take advantage of ArgoUML's leading
edge technology.

2.5. ArgoUML Basics
The aim of this section is to get you started with ArgoUML. It takes you through obtaining the code and
getting it running.

2.5.1. Getting Started

2.5.1.1. System requirements

Since ArgoUML is written in 100% pure Java, it should run on any machine with a Java Engine. Java2,
version 1.3 or later is needed. You may have this in place, but if not it can be downloaded free from Sun
MicroSystems (www.sun.com [http://www.sun.com]). Note that you only need the Java Runtime Envi-
ronment (JRE), there is no need to download the whole Java Development Kit (JDK).

ArgoUML needs a reasonable amount of computing resource. A PC with 200MHz processor, 64Mb
RAM and 10Mb of space available on a harddisk should be adequate. Download the code from Down-
load section of the project website argouml.tigris.org [http://argouml.tigris.org]. Choose the version that
suits your needs as described in the section below.

2.5.1.2. Downloading options

You have three options for obtaining ArgoUML.

1. Run ArgoUML directly from the Web Site using Java Web Start. This is the easiest option.

2. Download the binary executable code. This is the right option if you intend using ArgoUML regu-
larly and is not that difficult.

UML Based OOA&D

14

http://www.gentleware.com
http://www.sun.com
http://argouml.tigris.org

3. Download the source code using CVS and build your own version. Choose this option if you want
to look at the internal workings of ArgoUML, or want to join in as a developer.

All three options are freely available through the project web site, argouml.tigris.org
[http://argouml.tigris.org].

2.5.1.3. ArgoUML using Java Web Start

There are two steps to this.

1. Install Java Web Start on your machine. This is available from java.sun.com/products/javawebstart
[http://java.sun.com/products/javawebstart], or via the Java Web Start link on the ArgoUML
home page [http://argouml.tigris.org].

2. Click on the Launch latest stable release link on the ArgoUML home page
[http://argouml.tigris.org].

Java Web Start will download ArgoUML, cache it and start it the first time, then on subsequent starts,
check if ArgoUML is updated and only download any updated parts and then start it. The ArgoUML
home page [http://argouml.tigris.org] also provides details on starting ArgoUML from the Java Web
Start console.

2.5.1.4. Downloading the binary executable

If you choose to download the binary executable, you will have a choice of downloading the latest stable
version of the code (which will be more reliable, but not have all the latest features), or the current ver-
sion (which will be less reliable, but have more features). Choose according to your own situation.

ArgoUML comes in .zip or tar.gz flavors. Choose the former if you are a Microsoft Windows user,
and the latter if you are running some flavor of Unix. Unpacking is as follows.

• On Windows. Unzip the .zip file with WinZip, or on later versions of Windows (ME, XP) copy
the files out of the compressed folder and put them into a directory of your choosing.

• On Unix. Use GNU tar to unzip and break out the files to a directory of your choice
tar zxvf <file>.tar.gz. If you have an older version of tar, the z option may not be avail-
able, so use gunzip < file.tar.gz | tar xvf -.

You should have a directory containing the following files: antlrall.jar, gef.jar, nsuml.jar,
README.txt, argouml.jar, log4j.jar, ocl-argo.jar and xerces.jar.

2.5.1.5. Problems Downloading

If you get completely stuck and you have no local assistance, try the web site, particularly the FAQ
[http://argouml.tigris.org/faqs/users.html]. If this still doesn't solve the problem, try the ArgoUML users'
mailing list.

You can subscribe through the mailing lists section of the project web site argouml.tigris.org
[http://argouml.tigris.org], or send an empty message to users@argouml.org
[mailto:users@argouml.org] with the subject line subscribe.

You can then send your problem to users@argouml.org [mailto:users@argouml.org] and see how other
users are able to help.

UML Based OOA&D

15

http://argouml.tigris.org
http://java.sun.com/products/javawebstart
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
mailto:users@argouml.org
mailto:users@argouml.org

The users' mailing list is an excellent introduction to the live activity of the project. If you want to get
further involved there are additional mailing lists that cover the development of the product and issues in
the current and future releases.

2.5.1.6. Running ArgoUML

To run ArgoUML depends on whether you use Microsoft Windows or some flavor of Unix.

• On Windows. Start a MSDOS shell window by e.g. useing Start/Run with the default “command#.
In the window change to the directory holding your ArgoUML files and type
java -jar argouml.jar

The above method has the advantage that progress and debugging information is visible in the DOS
window. Alternative ways are creating a batchfile containing the above command, with a shortcut to
it on the desktop, or simply (double) clicking on the argouml.jar file works on modern systems.

• On Unix. Start a shell window and type java -jar argouml.jar

2.5.1.7. Problems Running ArgoUML

It's unusual to encounter problems if you have made a successful download. Most common issue is not
having a new enough Java Runtime Environment (it must be 1.3 or later).

If you can't solve the problem. Try the users' mailing list (see Section 2.5.1.5, “Problems
Downloading#).

• Wrong language. ArgoUML attempts to find the language from the environment of the operating
system and uses that. If this language is not desired, another language can be chosen at startup of Ar-
goUML. you will have to force ArgoUML to think that the environment is set to another language.
Normally ArgoUML is started with: java -jar argouml.jar

ArgoUML can be forced into thinking that the environment is set to another language as follows:

java -Duser.language=en -jar argouml.jar

Currently, the languages German (de), English (en), Spanish (es), French (fr) and Russian (ru) are
supported. Selecting any other language will lead to the default language English.

Additionally, the country may be set to the US as follows:

java -Duser.language=en -Duser.country=US -jar argouml.jar

2.5.2. The ArgoUML User Interface
Figure 2.4, “Overview of the ArgoUML window# shows the main ArgoUML window.

Figure 2.4. Overview of the ArgoUML window

UML Based OOA&D

16

At the top of screen is a menu bar. Under that there are Toolbars. Then the bulk of the window com-
prises four sub-windows or Panes. Clockwise from top left these are the Explorer, Editing Pane, Details
Pane and To-Do Pane. At the top of the Editing Pane is another toolbar called the Edit Pane Toolbar. Fi-
nally at the bottom of the window is a status bar.

2.5.2.1. The Explorer

Figure 2.5, “Overview of the Explorer# shows the Explorer.

Figure 2.5. Overview of the Explorer

UML Based OOA&D

17

This is the explorer, where we can navigate through our model. This pane list all the classes, interfaces
and data types of our model as a tree view.

2.5.2.2. The Editing Pane

Figure 2.6, “Overview of the Editing Pane# shows the Editing Pane.

Figure 2.6. Overview of the Editing Pane

UML Based OOA&D

18

This is the Editing Pane, where we can edit our diagram in a graphical way.

2.5.2.3. The Details Pane

Figure 2.7, “Overview of the Details Pane# shows the Details Pane.

Figure 2.7. Overview of the Details Pane

This is the Details Pane, that allows us to edit various details of our model.

2.5.2.4. The To-Do Pane

Figure 2.8, “Overview of the To-Do Pane# shows the To-Do Pane.

Figure 2.8. Overview of the To-Do Pane

UML Based OOA&D

19

The To-Do Pane displays the items on the models to-do list in a tree which sorts the list in a number of
different ways. A drop down selection box at the top of the pane determines the layout of the tree.

2.5.2.5. The Menu Bar and Toolbars

The menu bar and toolbars gives access to all the main features of ArgoUML. As is conventional, menu
options and toolbar options that are not available are grayed out and menu items that invoke a dialog box
are followed by an ellipsis (…).

•
File menu. This allows you to create a new project, save and open projects, import sources from
elsewhere, load and save the model to and from a database, print the model, save the graphics of the
model, save the configuration of the model and exit ArgoUML

•
Edit menu. This allows you to select one or more UML items on a diagram, undo and redo edits, re-
move items from diagrams or the whole model, empty the trash and change settings.

•
View menu. This allows you to switch between diagrams, find artifacts in the model, zoom in a dia-
gram, select a particular diagram representation (although at present there is only one), select a par-
ticular tab in the details menu, adjust the grid, view buttons on a selection, and switch between UML
and Java notation.

•
Create Diagram menu. This allows you to create any one of the seven UML diagram types (class,
use case, state, activity, collaboration, deployment and sequence) supported by ArgoUML.

State and activity diagrams can only be created when a class or actor is selected, even though the rel-
evant menu entries are not grayed out if this has not been done (nothing will happen under this cir-
cumstance).

•
Arrange menu. This allows you to align, distribute, reorder and nudge artifacts on a diagram and set
the layout strategy for the diagram.

•
Generation menu. This allows you to generate Java code for selected classes or all classes.

•
Critique menu. This allows you to toggle the auto-critique on and off, set the level of importance of

UML Based OOA&D

20

design issues and design goals and browse the critics available.

•
Tools menu. This menu is permanently grayed out unless there is some tool available in your version
of ArgoUML.

•
Help menu. This menu gives access to details of those who authored the system, and where addi-
tional help may be found.

•
File Toolbar. This toolbar contains some of the tools from the File menu.

•
Edit Toolbar. This toolbar contains some of the tools from the Edit menu.

•
View Toolbar. This toolbar contains some of the tools from the View menu.

•
Create Diagram Toolbar. This toolbar contains some of the tools from the Create Diagram menu.

2.5.2.6. The Mouse

The mouse and mouse buttons (or their equivalent with alternative tracking devices) are used in a wide
variety of ways. In this section we look at the common modes of use.

ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1# and “button 2#. But-
ton 1 is the leftmost button on a right-handed mouse, and sometimes referred to as the “select# button.
Button 2 is sometimes referred to as the “adjust# button.

1. Button 1 click. This action is generally used to select an item for subsequent operations. If the item
is an artifact in the explorer or the editing pane it will be highlighted.

In the case of the Edit Pane Toolbar, that artifact is selected as the next to be added to the diagram
(but only once—see double clicking for adding multiple artifacts). The adding to the diagram is
achieved by moving the mouse to the editing area and clicking again.

2. Button 1 double click. This action is identical to a single click except, when it is used with the edit
pane toolbar. Under these circumstances the selected artifact will be added multiple times to the
drawing area, once for each further button click, until the tool is again selected or another tool cho-
sen.

3. Button 2 click. When used over text items in the the explorer or details panes, or graphical artifacts
in the editing pane, this will display a context dependent drop-down menu.

If the item has not yet been selected it will also be selected.

4. Button 1 motion. Where button 1 click has been used to pull down a menu from the menu bar, but-
ton 1 motion is used to select items on that menu.

Button 1 motion also has an effect in the editing pane. Over graphical artifacts it will move the arti-
fact to a new position. Graphical artifacts that are selected show handles, and these can be used for
re-sizing.

Where the artifact is some form of connector between other items, button 1 motion other than at a
handle will cause a new handle to be created, allowing the connector to be articulated at that point.

UML Based OOA&D

21

Such new handles can be removed by moving them to the end of the connector.

5. Button 2 motion. This is used to select items in a context sensitive menu popped up by use of but-
ton 2 click.

There are other more specific behaviors that will be encountered under the specific cases where they are
used.

2.5.2.7. Drawing Diagrams

In general diagrams are drawn by using the edit pane toolbar to select the artifact desired and clicking in
the diagram at the position required as described in Section 2.5.2.6, “The Mouse#. That section also ex-
plains the use of the mouse for re-sizing artifacts.

Artifacts that are already in the model, but not on a diagram, may be added to a diagram by selecting the
artifact in the explorer, using Add to Diagram from the drop down menu (button 2) over that arti-
fact, and then clicking button 1 at the desired location on the diagram.

As well as UML artifacts, the Edit pane toolbar provides for general drawing artifacts (rectangles, cir-
cles, lines, polygons, curves, text) to provide supplementary information on diagrams.

2.5.2.7.1. Moving Diagram Elements

There are several ways to move diagram elements.

2.5.2.7.1.1. Using the Mouse Keys

Select the elements you want to move. By holding down the control key you can select several.

Now hit your arrow keys. Your elements move a little with every key stroke.

If you also hold down the shift key, they move a bit faster.

2.5.2.7.1.2. Using the Edit Pane Toolbar

Click on the broom button on the toolbar. Move your mouse to the diagram pane, right click and hold.
Now moving your mouse will align elements.

2.5.2.7.2. Arranging Elements

The menu item Arrange allows you to align, group, or nudge elements.

2.5.2.8. Working with Projects

2.5.2.8.1. The Start-up Window

Figure 2.9, “ArgoUML window at start-up# shows the ArgoUML main window as it appears as right af-
ter start-up

Figure 2.9. ArgoUML window at start-up

UML Based OOA&D

22

The main window's client area, below the menu and toolbar, is subdivided into four panes. Starting at
the leftmost top pane, and working around the clock, you can see the Explorer, showing a tree view of
your UML model, the Editing Pane with its toolbar, two scroll bars and gray drawing area, the Details
Pane with the ToDoItem tab selected, and the To-Do Pane with a tree view of the to do items, ranked in
various ways selected via the drop down list at the top of the pane.

Each time ArgoUML is started up without a project file as an argument, a new blank project is created.
This project contains a model called untitledModel. This model contains a blank Class Diagram,
called class diagram 1, and a blank Use Case Diagram called use case diagram 1.

The model and both empty diagrams can be seen in the explorer, which is the main tool for you to navi-
gate through your model.

Let's assume for a moment that this is the point where you want to start modeling a new purchasing sys-
tem. You want to give the name “purchasingmodel# to your model, and you want to store it in a file
called FirstProject.

2.5.2.8.2. Saving a project - The File Menu

First, let's save the model in it's current (empty and unnamed) state. On the menu bar, click on File,
then on Save Project As… as shown in Figure 2.10, “Invoking Save Project As…#.

Figure 2.10. Invoking Save Project As…

UML Based OOA&D

23

Please notice that the File menu contains the usual options for creating a new project, for opening an ex-
isting project, for saving a project under a new name, for printing the currently displayed diagram, for
saving the currently displayed diagram as a file, and for program Exit.

Some of these menu commands can be invoked by pressing key combinations, as indicated on the drop-
down menu. For instance, holding down the “Ctrl# key, and pressing “N#, will create a new project.

In the current version, ArgoUML can only contain one active project at a time. In addition, a project can
only contain one UML model. Since an UML model can contain an unlimited number of elements and
diagrams, this should not present any serious limitations, even for modeling quite large and complex
systems.

2.5.2.8.3. The File Chooser Dialog

But let's go back to saving our project. After clicking on the Save Project As… menu command,
we get the file chooser dialog to enter the file name we wish to use as shown in Figure 2.11, “File
chooser dialog#.

Figure 2.11. File chooser dialog

UML Based OOA&D

24

This is a standard Java FileChooser. Let's go over it in some detail.

The main, outstanding feature, is the scrollable folders list in the center of the dialog. By using the scroll
bar on the right, you can move up and down in the list of folders contained inside the currently selected
folder. If it is scrollable or not depends on the amount of files and folders shown and also how they are
shown. If everything fits the window is not scrollable as seen in the picture.

Double-clicking on one of the displayed folders navigates you into that folder, allowing you to quickly
navigate down into the folders hierarchy on your hard disk.

Notice that only folder names, and no file names are displayed in the scrollable area. Indeed, the dialog
is currently set up in order to show only ArgoUML project files with an extension of .zargo, as can be
seen on the lower drop-down control labeled Files of Type:.

Also notice that the currently selected folder's name is displayed in the upper drop-down control labeled
Look in:. A single click on a folder inside the scrollable area does select that folder on screen but
does not select the folder for saving.

At the top of the dialog, above the scrollable folder chooser area, there are a few more folder navigation
tools.

• The Folder drop-down control.

Clicking on the down-arrow displays a tree view of the folder hierarchy, allowing you to navigate
quickly up the hierarchy, and at the same time to quickly determine where in the hierarchy we are
currently positioned.

•

UML Based OOA&D

25

The Folder-Up icon. Clicking on this icon will bring us to the parent folder of the current

folder.

• The Home Folder icon. Clicking on this icon will bring us to our home directory.

• The New Folder icon. Clicking on this icon will create a new folder called "New Folder" un-

der the current folder. After the folder is created selecting it an clicking in the name allows us to se-
lect the name of our choice.

• The Folders Presentation Icon.

OK, now we navigate to the directory where we want to save our ArgoUML project, fill in the
File name: with an appropriate name, such as “FirstProject# and click on the Save button.

You have now an active project called FirstProject, connected to the file FirstPro-
ject.zargo.

2.5.3. Output

2.5.3.1. Loading and Saving

2.5.3.1.1. Saving XMI files in ArgoUML

ArgoUML saves the diagram information in a PGML file (with extension .pgml, the model informa-
tion in an XMI file (with extension .xmi and information about the project in a file with extension
.argo. See Section 2.5.3.2.2, “Precision Graphics Markup Language (PGML)# and Section 2.5.3.3,
“XMI# for more about PGML and XMI respectively.

All of these are then zipped to a file with extension .zargo. You can easily extract the .xmi file from
the .zargo file using any old generic ZIP application. Give it a try and look into the magic of Argo.

Warning

Be aware that double clicking will launch a ZIP utility, if one is installed, and NOT
Argo.

2.5.3.2. Graphics and Printing

2.5.3.2.1. The Graph Editing Framework (GEF)

GEF is the software package that is the foundation of the diagrams that appear in the Editing Pane. GEF
was an integral part of ArgoUML but has been separated. Like ArgoUML it is an open source project
available via Tigris [http://www.tigris.org].

2.5.3.2.2. Precision Graphics Markup Language (PGML)

PGML is the saving format for diagram information used in ArgoUML. Although this is outdated a lit-

UML Based OOA&D

26

http://www.tigris.org

tle, it shows why we chose PGML in the first place. In the future, PGML will be replaced by an ex-
tended XMI format which will include graphical representation.

In April 1998 Adobe Systems proposed a new Standard for Vector Graphics to the World Wide Web
Consortium (W3C), which should facilitate the creation and usage of image material in the World Wide
Web. It will be replaced by SVG. We will support SVG by generating it from the XMI in the future.

2.5.3.2.3. Applications Which Open PGML

PGML is a predecessor of SVG (see Section 2.5.3.2.5, “Scalable Vector Graphics (SVG)#. It was
dropped by the W3C Consortium.

Currently there are no other tools that we know of working on PGML.

2.5.3.2.4. Printing Diagrams

Select a diagram, then go to File#Export Diagrams. You can generate GIF, PostScript, Encapsu-
lated PostScript or SVG format.

2.5.3.2.5. Scalable Vector Graphics (SVG)

A super cool vector graphics format (like MM Flash) that is totally open and is gaining enormous
ground in the graphics world. Find out more at www.w3c.org [http://www.w3c.org].

As well visit adobe.com [http://www.adobe.com] for the plugin for Netscape Navigator and Internet Ex-
plorer.

2.5.3.2.6. Saving Diagrams as SVG

1. Select .svg as the file type.

2. Type the name of the file as you like with the .svg tag at the end. Example myumldia-
gram.svg

Et viola! SVG! Give it a try and zoom around a little… They are not pretty though, so if you know any-
thing about rendering beautiful SVG let us know!

Oh, and by the way, you'll need a browser that can read SVG. See adobe.com [http://www.adobe.com]
for the plugin for Netscape Navigator and Internet Explorer

There are a few browsers that read SVG natively: Amaya, X-Smiles, and a rudimentary version of
Mozilla.

Note

You will not have scroll bars for your SVG unless it is embedded into an HTML! Good
luck and let us know what you find!

2.5.3.3. XMI

There is now a tool available which supports various dialects of XMI and their interconversion. This
should make portability of different models in to ArgoUML considerably easier. Any work on using this
with ArgoUML would be much appreciated.

There is also a tool that converts XMI to HTML. For more information, see

UML Based OOA&D

27

http://www.w3c.org
http://www.adobe.com
http://www.adobe.com

http://www.objectsbydesign.com/projects/xmi_to_html_2.html
[http://www.objectsbydesign.com/projects/xmi_to_html_2.html].

2.5.3.3.1. Using XMI from Rational Rose

It is probably not possible to take a model generated by Rational Rose in XMI format and put it into Ar-
goUML directly.

The conversion tool identified above will probably solve the problem. If you can document how this is
done, you'd make a lot of friends in a hurry!

2.5.3.3.2. Using Models Created by Gentleware

Gentleware is a commercial development based on ArgoUML. It diverged a little while ago and the
XMI representations are no longer full compatible.

Eugenio Alvarez suggests the following procedure to convert a Gentleware project for use with Ar-
goUML. It works if there are no sequence diagrams in the project.

1. Make sure to backup your project first.

2. Unpackage the Gentleware project Project.zargo. For example unzip Project.zargo or
jar xvf Project.zargo.

3. Then try reading and then saving the project with UMLTool (Contact Eugenio Alvarez to get this
tool).

4. Repackage the project. For example zip NewProject.zargo *.xmi *.pgml *.argo or
jar cvf NewProject.zargo *.

5. Try reading the project with ArgoUML.

2.5.3.3.3. XMI Interchangeability between ArgoUML 0.8.1a and 0.10, 0.12, and 0.14

This depends on the version of NSUML (the UML engine underlying ArgoUML) you are using. Look in
the start-up messages on the console for the entry for Novosoft UML Library for the version number.
Using version 0.4.19 is OK, and the XMI files should be interchangeable.

2.5.3.3.4. Importing Other XMI Formats into ArgoUML

Because of the variety of XMI formats being generated you will encounter problems using XMI files
generated from other applications. ArgoUML's native storage format is another implementation of XMI
(Curt Arnold believes that it has been hacked so it can also read the Unisys variant). He recommends
that if you are comfortable with XSLT, you can typically transform one variant of UML and XMI to an-
other, plus MetaIntegrations www.metaintegrations.net [http://www.metaintegrations.net] makes a ver-
sion of their Bridge product available to transform between XMI flavors.

2.5.3.3.5. Generating XMI Format

Select the command Tools#Export as XMI and choose a filename.

2.5.3.4. Code Generation

2.5.3.4.1. Code Generated by ArgoUML

It is possible to compile your generated code with ArgoUML, you still need to implement method bod-

UML Based OOA&D

28

http://www.objectsbydesign.com/projects/xmi_to_html_2.html
http://www.metaintegrations.net

ies, though, to get usable results.

2.5.3.4.2. Generating Code for Methods

At the moment you cannot write code for methods (operations) within ArgoUML. The source pane is
editable, but the changes are ignored. ArgoUML is a pure design tool for now, no IDE functionality but
the desire is there. You might consider using Forte and ArgoUML together—it's a good work around!

You can help us out there if you'd like!

2.5.4. Working With Design Critics

2.5.4.1. The To-Do Pane—Messages From the Design Critics

Where do we stand now? A new project has been created, and is connected to the file FirstPro-
ject.argo. Figure 2.12, “ArgoUML window having saved FirstProject.argo# shows how
your ArgoUML window should look at this stage.

Figure 2.12. ArgoUML window having saved FirstProject.argo

The project contains a top-level package, called untitledModel, which contains a class diagram and
a use case diagram.

If we look carefully at the screen, we can see that the "Medium" folder in the To Do pane (the lower left
pane) must contain some items, since its activation icon is displayed.

UML Based OOA&D

29

Clicking on this icon will open the "Medium" folder. An open folder is indicated by the icon.

But what is this “To-Do# Pane anyway. You haven't recorded anything yet that has to be done, so where
do these to do items originate.

The answer is simple, and is at the same time one of the strong points of ArgoUML. While you are
working on your UML model, your work is monitored continuously and invisibly by a piece of code
called a design critic. This is like a personal mentor that watches over your shoulder and notifies you
each time he sees something questionable in your design.

Critics are quite unobtrusive. They give you a friendly warning, but they do not force you into design
principles that you don't want or like to follow. Let us take a look at what the critics are telling us. Click
on the icon next to the Medium folder, and click on the Re-

vise Package Name UntitledModel item.

Figure 2.13, “ArgoUML window showing the critic item Re-
vise Package Name UntitledModel # shows how your screen should now look.

Figure 2.13. ArgoUML window showing the critic item
Revise Package Name UntitledModel

Notice that your selection is highlighted in red in the To-Do Pane, and that a full explanation appears
now in the Details Pane (the lower right pane). You may have to re-size your Details Pane or to scroll
down in order to see the full message as displayed in our example.

What ArgoUML is trying to tell you is that usually, package names are written in lower cases. The de-

UML Based OOA&D

30

fault top level package created by ArgoUML is called untitledModel and therefore violates a sound
design principle. (Actually, this could be considered as a bug within ArgoUML, but it comes in handy to
demonstrate the working of critics).

At this point, you can choose to change the package name manually, to impose silence on the design
critic for some time or permanently, or to request a more comprehensive explanation by Email from an
expert.

We will do nothing of this (we'll come back to it when we talk about the design critics in more detail)
but we'll use another handy feature of ArgoUML—an auto-correct feature.

In order to do that, just click on the Next button on the Details Pane. This will cause a renaming wizard
to be displayed inside the properties panel, proposing to use the name untitledmodel (all in lower
case).

2.5.4.2. Design Critics at Work: The Rename Package Wizard

Replace the name untitledmodel with purchasingmodel, and click on the Finish button.
Figure 2.14, “ArgoUML window showing the critic wizard to rename the package# shows how the Ar-
goUML window will now look.

Figure 2.14. ArgoUML window showing the critic wizard to rename the package

Watch now how the design critic note in the To Do panel disappears, leaving only the
Add Elements to Package purchasingmodel note in the To-Do list.

If this doesn't happen at once, wait for a few seconds. ArgoUML makes heavy use of several threads of

UML Based OOA&D

31

execution that execute in parallel. This can cause delays of a few seconds before the information gets
updated on the screen.

The package name change should also be reflected in the explorer, in the top left corner of your Ar-
goUML window.

We are now ready to create our first UML diagram, a Use Case diagram, but first let's save what we've
done so far.

Click on the File menu item, and select Save Project. You can now safely exit ArgoUML with-
out losing your work so far, or go on creating your first diagram.

2.6. The Case Study (To be written)
To be written…

UML Based OOA&D

32

Chapter 3. Requirements Capture

3.1. Introduction
Requirements capture is the process of identifying what the “customer# wants from the proposed sys-
tem.

The key at this stage is that we are in the problem domain. At this stage we must describe everything
from the “customer# perspective and in the language of the “customer#.

The biggest risk we have in requirements capture is to start thinking in terms of possible solutions. That
must wait until the Analysis Phase (see Chapter 4, Analysis). One of the steps of the Analysis Phase will
be to take the output of the Requirements Phase and recast it in the language of a deemed solution.

Remember we are using both a incremental, and an iterative process.

We may well come back to the requirements process again as we break down the problem into smaller
chunks, each of which must have its requirements captured.

We will certainly come back through the requirements phase on each iteration as we seek to define the
requirements of more and more of the system

Note

The only part of the requirements notation specified by the UML standard is the use case
diagram. The remainder is process specific. The process described in this chapter draws
heavily on the Rational Unified Process.

3.2. The Requirements Capture Process
We start with a top-level view of the problem we are solving and the key areas of functionality that we
must address in any solution. This is our vision document, and should be just a few pages long.

For example the top-level view of an automated teller machine (ATM) might be that it should support
the following.

1. Cash deposit, cash withdrawal and account inquiries by customers.

2. Maintenance of the equipment by the bank's engineers, and unloading of deposits and loading of
cash by the local bank branch.

3. Audit trail for all activities sent to the bank's central computer.

From this top-level view we can extract the principle activities of the system, and the external agents
(people, equipment) that are involved in those activities. These activities are known as use cases and the
external agents are known as actors.

Actors may be people or machines. From a practical standpoint it is worth knowing the stakeholder be-
hind any machine, since only they will be able to engage with the requirements capture process.

Use cases should be significant activities for the system. For example customer use of the ATM machine
is a use case. Entering a PIN number is not.

33

There is a gray area between these two extremes. As we shall see it is often useful to break very large
use cases into smaller sub-use cases. For example we may have sub-use cases covering cash deposit,
cash withdrawal and account inquiry.

There is no hard and fast rule. Some architects will prefer a small number of relatively large use cases,
others will prefer a larger number of smaller use cases. A useful rule of thumb is that any practical
project ought to require no more than about 30 use cases (if it needs more, it should be broken into sepa-
rate projects).

We then show the relationship between use cases and actors on one or more use case diagrams. For a
large project more than one diagram will be needed. Usually groups of related use cases are shown on
one diagram.

We must then give a more detailed specification of each use case. This covers its normal behavior, alter-
native behaviors and any pre- and post-conditions. This is captured in a document variously known as a
use case specification or use case scenario.

Finally, since use cases are functional in nature, we need a document to capture the non-functional re-
quirements (capacity, performance, environmental needs etc). These requirements are captured in a doc-
ument known as a supplementary requirements specification.

3.2.1. Process Steps
The steps in the requirements capture process can be summarized as follows.

1.
Capture an overall view of the problem, and the desired characteristics of its solution in the vision
document.

2.
Identify the use case and actors from the vision document and show their relationships on one or
more use case diagrams.

3.
Give detailed use case specifications for each use case, covering normal and alternate behavior,
pre- and post-conditions.

4.
Capture all non-functional requirements in a supplementary requirements specification.

In any iterative development process, we will prioritize, and early iterations will focus on capturing the
key behavior of the most important use cases.

Most modern requirements capture processes agree that it is essential that the authoritative representa-
tive of the customer is fully involved throughout the process.

3.3. Output of the Requirements Capture Pro-
cess

Almost all the output of the requirements capture process is documentary. The only diagram is the use
case diagram, showing the relationships between use cases and actors.

3.3.1. Vision Document

Requirements Capture

34

Typical sections of this document would be as follows.

• Summary. A statement of the context, problem and solution goals.

•
Goals. What are we trying to achieve (and how do we wish to achieve it).

•
Market Context or Contractual Arrangements. For a market led development, this should indicate
target markets, competitive differentiators, compelling events and so forth. For a contractual devel-
opment this should explain the key contractual drivers.

•
Stakeholders. The users (in the widest sense) of the system. Many of these will map in to actors, or
control equipment that maps into actors.

•
Key Features. At the very highest level what are they key functional aspects of the problem/desired
solution. These will largely map down to the use cases. It is helpful to give some prioritization here.

•
Constraints. A high level view of the non-functional parameters of the system. These will be worked
out in detail in the supplementary requirements specification.

• Appendix. A listing of the actors and use cases that will be needed to meet this vision. It is useful to
link to these from the earlier sections to ensure comprehensive coverage.

3.3.2. Use Case Diagram
The vision document has identified the use cases and actors. The use case diagram captures how they in-
teract. In our ATM example we have identified “customer uses machine#, “maintain machine# and
“audit# as the three main use cases. We have identified “customer#, maintenance engineer“, #“local
branch official# and “central computer# as the actors.

Figure 3.1, “Basic use case diagram for an ATM system# shows how this could be displayed on a use
case diagram. The use cases are shown as ovals, the actors as stick people (even where they are ma-
chines), with lines (known as associations connecting use cases to the actors who are involved with
them. A box around the use cases emphasizes the boundary between the system (defined by the use
cases) and the actors who are external.

Note

Not all analysts like to use a box around the use cases. It is a matter of personal choice.

Figure 3.1. Basic use case diagram for an ATM system

Requirements Capture

35

The following sections show how the basic use case diagram can be extended to show additional infor-
mation about the system being designed.

3.3.2.1. Active and Passive Actors

Active actors initiate interaction with the system. This can be shown by placing an arrow on the associa-
tion from the actor pointing toward the use case. In the ATM example, the customer is an active actor.

Interaction with passive actors is initiated by the system. This can be shown by placing an arrow on the
association from the use case pointing toward the actor. In the ATM example, the central computer is a
passive actor.

This is a good example where the arrow helps, since it allows us to distinguish an event driven system
(the ATM initiates interaction with the central computer) from a polling system (the central computer in-
terrogates the ATM from time to time).

Where an actor may be either active or passive, depending on circumstances, the arrow may be omitted.
In the ATM example the bank engineer fits into this category. Normally he is active, turning up on a
regular cycle to service the machine. However if the ATM detects a fault, it may summon the engineer
to fix it.

The use of arrows on associations is referred to as the navigation of the association. We shall see this
used elsewhere in UML later on.

Figure 3.2, “Use case diagram for an ATM system showing navigation.# shows the ATM use case dia-
gram with navigation displayed.

Figure 3.2. Use case diagram for an ATM system showing navigation.

Requirements Capture

36

3.3.2.2. Multiplicity

It can be useful to show the multiplicity of associations between actors and use cases. By this we mean
how many instances of an actor interact with how many instances of the use case.

By default we assume one instance of an actor interacts with one instance of a use case. In other cases
we can label the multiplicity of one end of the association, either with a number to indicate how many
instances are involved, or with a range separated by two periods (..). An asterisk (*) is used to indicate
an arbitrary number.

In the ATM example, there is only one central computer, but it may be auditing any number of ATM
uses. So we place the label 0..* at the use case end. There is no need for a label at the other end, since
the default is one.

A local bank will have up to three officials authorized to unload and load ATM machines. So at the actor
end of the relationship with the use case Maintain ATM, we place the label 1..3. They may be deal-
ing with any number of ATM machines, so at the other end we place the label 0..*.

There may be any number of customers and there may be any number of ATM systems they could use.
So at each end of the association we place the label 0..*.

Figure 3.3, “Use case diagram for an ATM system showing multiplicity.# shows the ATM use case dia-
gram with multiplicity displayed.

Figure 3.3. Use case diagram for an ATM system showing multiplicity.

Requirements Capture

37

Multiplicity can clutter a diagram, and is often not shown, except where it is critical to understanding. In
the ATM example we would only choose to show 1..3 against the local bank official, since all others
are obvious from the context.

3.3.2.3. Hierarchies of Use Cases

In our ATM example so far we have just three use cases to describe all the behavior of the system.
While use cases should always describe a significant chunk of system behavior, if they are too general
they can be difficult to describe.

We could for example define the behavior of the use case “Use ATM# in terms of the behavior of three
simpler use cases, “Deposit Cash#, “Withdraw Cash# and “Query Account#. The main use case could be
specified by including the behavior of the subsidiary use cases where needed.

Similarly the “Maintain ATM# use case could be defined in terms of two use cases “Maintain Equip-
ment# and “Reload ATM#. In this case the two actors involved in the main use case are really only in-
volved in one or other of the two subsidiary use cases and this can be shown on the diagram.

The decomposition of a use case into simpler sub-use cases is shown in UML by using an include rela-
tionship, a dotted arrow from the main use case to the subsidiary, with the label «include».

Figure 3.4. Use case diagram for an ATM system showing include relationships.

Requirements Capture

38

Include relationships are fine for breaking down the use case behaviors in to hierarchies. However we
may also want to show a use case that is an extension to an existing use case to cater for a particular cir-
cumstance.

In the ATM example we have a use case covering routine maintenance of the ATM, “Maintain Equip-
ment#. We also want to cover the special case of an unscheduled repair caused by the ATM detecting an
internal fault.

This is shown in UML by the extend relationship. In the main use case, we specify a name for a location
in the description, where an extension to the behavior could be attached. The name and location are
shown in a separate compartment within the use case oval. The representation extend relationship is the
same as the include relationship, but with the label «extend». Alongside the extend relationship, we
specify the condition under which that behavior will be attached.

Figure 3.5, “Use case diagram for an ATM system showing an extend relationship.# shows the ATM use
case diagram with an extend relationship to a use case for unscheduled repairs. The diagram is now get-
ting rather complex, and so we have split it into two, one for the maintenance side of things, the other
for customer usage and audit.

The “Maintain Equipment# use case defines a name “Unsched#, at the start of its description. The ex-
tending use case “Unscheduled Repair# is attached there when the ATM detects an internal error.

Figure 3.5. Use case diagram for an ATM system showing an extend relationship.

Requirements Capture

39

Use cases may be linked together in one other way. One use case may be a generalization of a subsidiary
use case (or alternatively the subsidiary is a specialization of the main use case).

This is very like the extends relationship, but without the constraint of specific extension points at which
the main use case may be extended, and with no condition on when the subsidiary use case may be used.

Generalization is shown on a use case diagram by an arrow with solid line and solid white head from the
subsidiary to the main use case.

This may be useful when a subsidiary use case specializes the behavior of the main use case at a large
number of positions and under a wide range of circumstances.

However the lack of any restriction makes generalization very hard to specify precisely. In general use
an extend relationship instead.

3.3.3. The Use Case Specification
Each use case must be documented to explain in detail the behavior it is specifying. This document is
known by different names in different processes: use case specification, use case scenario or even
(confusingly) just use case.

A typical use case will include the following sections.

•
Name. The name of the use case to which this relates.

•
Goal. A one or two line summary of what this use case achieves for its actors.

• Actors. The actors involved in this use case, and any context regarding their involvement.

Note

This should not be a description of the actor. That should be associated with the actor
on the use case diagram.

Requirements Capture

40

•
Pre-condition. These would be better named “pre-assumptions#, but the term used everywhere is
pre-conditions. This is a statement of any simplifying assumptions we can make at the start of the
use case.

In the ATM example we might make the assumption for the“ Maintain Equipment# use case that an
engineer is always available, and we do not need to worry about the case where a routine mainte-
nance visit is missed.

Caution

Avoid pre-conditions wherever possible. You need to be absolutely certain that the pre-
condition holds under all possible circumstances. If not your system will be under
specified and hence will fail when the pre-condition is not true. Alternatively, when
you cannot be certain the pre-condition is always true, you will need to specify a sec-
ond use case to handle the pre-condition being false. In the first case, pre-conditions
are a source of problems, in the second a source of more work.

•
Basic Flow. The linear sequence of steps that describe the behavior of the use case in the “normal#
scenario. Where a use case has a number of scenarios that could be normal, one is arbitrarily se-
lected. Specifying the basic flow is described in more detail in Section 3.3.3.1, “Specifying the Basic
Flow# below.

•
Alternate Flows. A series of linear sequences describing each of the alternative behaviors to the ba-
sic flow. Specifying alternate flows is described in more detail in Section 3.3.3.2, “Specifying the
Alternate Flows#.

•
Post-conditions. These would be better named “post-assumptions#. This is a statement of any as-
sumptions that we can make at the end of the use case. Most useful where the use case is one of a se-
ries of subsidiary use cases that are included in a main use case, where they can form the pre-
conditions of the next use case to be included.

Caution

Like pre-conditions, post-conditions are best avoided. They place a burden on the spec-
ification of the use case flows, to ensure that the post-condition always holds. They
therefore are also a source of problems and extra work.

• Requirements. In an ideal world the vision document, use case diagrams, use case specifications and
supplementary requirements specification would form the requirements for a project.

For most market-led developments, where ownership of requirements is within the same business as
the team who will do the development, this is now usually the case. The marketing department can
learn use case based requirements capture and analysis to link to their customer facing activities.

However for external contract developments, customers may insist on a traditional “list of features#
as the basis of the contract. Where this is the case, this section of the use case specification should
link to the contract features that are covered by the use case.

This is often done through a third party tool that can link documents, providing automated checking
of coverage, in which case this section is not needed, or may be generated automatically.

Requirements Capture

41

The final size of the use case specification will depend on the complexity of the use case. As a rule of
thumb, most use cases take around 10-15 pages to specify, the bulk of which is alternate flows. If you
are much larger than this, consider breaking the use case down. If you are much smaller consider
whether the use case is addressing too small a chunk of behavior.

3.3.3.1. Specifying the Basic Flow

All flows in a use case specification are linear—that is there is no conditional branching. Any choices in
flows are handled by specifying another alternate flow that takes over at the choice point. It is important
to remember we are specifying behavior here, not programming it.

A flow is specified as a series of numbered steps. Each step must involve some interaction with an actor,
or at least generate a change that is observable externally by an actor. Requirements capture should not
be specifying hidden internal behavior of a system.

For example we might give the following sequence of steps for the basic flow of the use case "Withdraw
Cash" in our ATM example.

1. Customer indicates a receipt is required.

2. Customer enters amount of cash required.

3. ATM verifies with the central computer that the customer can make this withdrawal.

4. ATM dispenses cash to the customer.

5. ATM issues receipt to customer.

Remember this is a sub-use case included in the main “Use ATM# use case, which will presumably han-
dle checking of cards and PINs before invoking this included use case.

Note

The first step is not a condition. We take as our basic flow the case where the customer
does want a receipt. The case where the customer does not want a receipt will be an alter-
native flow.

3.3.3.2. Specifying the Alternate Flows

This captures the alternative scenarios, as linear flows, by reference to the basic flow. Initially we just
build a list of the alternate flows.

A.
A.1. Customer does not require a receipt.

A.2. Customer's account will not support the withdrawal.

A.3. Communication to the central computer is down.

A.4. The customer cancels the transaction.

A.5. The customer fails to take the dispensed cash.

Requirements Capture

42

Subsequently we flesh out each alternate flow, by reference to the basic flow. For example the first alter-
nate flow might look like.

A.
A.1. Customer does not require a receipt.

A.1.1.At step 1 of the basic flow the customer indicates they do not want a receipt.

A.1.2.The basic flow proceeds from step 2 to step 4, and step 5 is not used.

The convention is to number the various alternate flows as A.1, A.2, A.3, etc. The steps within an alter-
nate flow are then numbered from this. So the steps of the first alternate flow would be A.1.1, A.1.2,
A.1.3, etc.

3.3.3.3. Iterative Development of Use Case Specifications

Iterative development will prioritize the use cases, and the first iterations will address the most impor-
tant.

Early iterations will capture the basic flows of the most important use cases with only essential detail
and list the headings of the main alternate flows.

Later iterations will address the remaining use cases, flesh out the steps on individual alternate flows and
possibly provide more detail on individual steps.

3.3.4. Supplementary Requirement Specification
This captures the non-functional requirements or constraints placed on the system. Since use cases are
inherently functional in nature, they cannot capture this sort of information.

Note

Some analysts like to place non-functional requirements in a section at the end of each use
case specification, containing the non-functional requirements relevant to the use case.

I don't like this for two reasons. First key non-functional requirements (for example about
performance) may need to appear in many use cases and it is bad practice to replicate in-
formation. Secondly there are invariably some non-functional requirements that are system
wide and need a system wide document. Hence my preference for a single supplementary
requirements specification.

There should be a section for each of the main areas of non-functional requirements. The checklist pro-
vided by Ian Sommerville in his book Software Engineering (Third Edn, Addison-Wesley, 1989) is a
useful guide.

• Speed. Processor performance, user/event response times, screen refresh time.

• Size. Main memory (and possibly caches), disc capacity.

• Ease of use. Training time, style and detail of help system.

• Reliability. Mean time to failure, probability of unavailability, rate of failure, availability.

• Robustness. Time to restart after failure, percentage of events causing failure, probability of data

Requirements Capture

43

corruption on failure.

• Portability. Percentage of target-dependent code/classes, number of target systems.

To this we should add sections on environment (temperature, humidity, lightening protection status) and
standards compliance.

3.4. Using Use Cases in ArgoUML
ArgoUML allows you to draw use case diagrams. When you create a new project it has a use case dia-
gram created by default, named use case diagram 1. Select this by button 1 click on the diagram
name in the explorer (the upper left quadrant of the user screen).

New use case diagrams can be created as needed through Create Diagram on the main menu bar or
on the Create Diagram Toolbar. They are edited in the editing pane (the upper right quadrant of the user
screen).

3.4.1. Actors
To add an actor to the diagram use button 1 click on the actor icon on the editing pane toolbar () and

then button 1 click at the location where you wish to place it. The actor can be moved subsequently by
button 1 motion (i.e. button 1 down over the actor to select it, move to the new position and button 1 re-
lease to drop the actor in place.

Multiple actors can be added in one go, by using button 1 double click on the actor icon. Each subse-
quent button 1 click will drop an actor on the diagram. A button 1 click on the select icon () will

stop adding actors.

The actors name is set in its property panel. First select the actor (if not already selected) on the editing
pane using button 1 click. Then click on the Properties tab in the details pane. The name is entered
in the name field, and will appear on the screen.

As a shortcut, double button 1 click on the name of the actor in the editing pane (or just typing on the
keyboard when an actor is selected) will allow the name to be edited directly. This is a convenient way
to enter a name for a new actor.

Having created the actor, you will see it appear in the explorer (the upper left quadrant of the user
screen). This shows all the artifacts created within the UML design. A drop down at the top of the ex-
plorer controls the ordering of artifacts in the explorer. The most useful are the Package-centric
(default) and Diagram-centric. The latter shows artifacts grouped by the diagram on which they
appear.

3.4.2. Use Cases
The procedure for adding use cases is the same as that for adding actors, but using the use case icon on
the editing pane toolbar ().

By default use cases in ArgoUML do not display their extension points (for use in extend relationships).
You can show the extension point compartment in one of two ways.

1. Select the use case in the editing pane with button 1 click, then select the Style tab in the details
pane and button 1 click on the Display: Extension Points check box.

Requirements Capture

44

2. Use button 2 click over the use case in the editing pane to display a context-sensitive pop-up menu
and from that choose Show/Show Extension Point Compartment.

The same approaches can be used to hide the extension point compartment.

3.4.2.1. Adding an Extension Point to a Use Case

There are two ways to add an extension point to a use case.

1. Select the use case on the editing pane with button 1 click. Then click on the Add Extension
Point icon () on the toolbar, and a new extension point with default name and location will

be added after any existing extension points.

Note

The Add Extension Point icon is grayed out and unusable until a use case is
selected.

2. Select the use case on the editing pane with button 1 click and then select its property tab in the de-
tails pane. A button 2 click over the Extension Points: field will bring up a context-sensitive
pop-up menu. Select Add to add a new extension point.

If any extension points already exist, they will be shown in this field on the property tab. The new
extension point will be inserted immediately before the entry over which the pop-up menu was in-
voked. This ordering can be changed later by using the Move Up and Move Down entries on the
pop-up menu.

Whichever method is used, the new extension point is selected, and its property tab can be displayed in
the details pane. The name and location of the extension point are free text, set in the corresponding
fields of the property tab.

An existing extension point can be edited from its property tab. The property tab can be reached in two
ways.

1. If the extension point compartment for the use case is displayed on the diagram, select the use case
with button 1 click and then select the extension point with a further button 1 click. The property
tab can then be selected in the details pane.

2. Otherwise select the use case and its property tab in the details pane. A button 1 click on the desired
entry in the Extension Points field will bring up the property tab for the extension point in
the details pane.

The name and location fields of the extension point may then be edited.

As a shortcut, where the extension point compartment is displayed, double click on the extension point
allows text to be typed in directly. This is parsed to set name and location for the extension point.

Extension points may be deleted, or their ordering changed by using the button 2 pop-up menu over the
Extension Points field in the use case property tab.

Having created an extension point, it will appear in the explorer (upper left quadrant of the user screen).
Extension points are always shown in a sub-tree beneath their owning use case.

Requirements Capture

45

3.4.3. Associations
To join a use case to an actor on the diagram use button 1 click on the association icon on the editing
pane toolbar (). Hold button 1 down at the use case, move to the actor and release button 1 (or alter-

natively start at the actor and finish at the use case).

This will create a straight line between actor and use case. You can segment the line by holding down
button 1 down on the line and moving before releasing. A vertex will be added to the line, which you
can move by button 1 motion. A vertex can be removed by picking it up and sliding to one end of the
line.

Multiple associations can be added in one go, by using button 1 double click on the association icon.
Each subsequent button 1 down/motion/release sequence will join an actor to a use case. Use button 1 on
the select icon () to stop adding associations.

It is also possible to add associations using small “handles# that appear to the left and right of a use case
or actor when it is selected and the mouse is over it. Dragging the handle from a use case to an actor will
create an association to that actor (and similarly by dragging a handle from an actor to a use case).

Dragging a handle from a use case into empty space will create a new actor to go on the other end. Simi-
larly dragging a handle from an actor into empty space will create a new use case.

It is possible to give an association a name, describing the relationship of the actor to the use case, al-
though this is not usually necessary. This is done through the property tab of the association. Such a
name appears alongside the association near its center.

3.4.3.1. Setting Navigation

There are two ways of setting the navigation of an association.

1. Use button 2 click on the association to bring up a context-sensitive pop-up menu. The Naviga-
bility sub-menu has options for bi-directional navigation (the default, with no arrows) and for
navigability Actor#Use Case and Use Case#Actor.

2. Use button 1 to select the association and select its property tab in the details pane. This shows a
field named Association Ends:, with entries for each end labeled by the actor or use case
name and its multiplicity. Select the end that should be at the tail of the arrow with button 1 click.
This brings up the property tab for the association end. Use button 1 click to uncheck the Naviga-
bility box.

Note

This may seem counter-intuitive, but in fact associations by default are navigable in
both directions (when no arrows are shown). This process is turning off navigation at
one end, rather than turning it on at the other.

You will see it is possible to give an association end a name in its property tab. This name will appear at
that end of the association, and can be used to indicate the role being played by an actor or use case in an
association.

For example a time management system for a business may have use cases for completing time sheets
and for signing off time sheets. An employee actor may be involved in both, one as an employee, but the
other in a role as manager.

Requirements Capture

46

3.4.3.2. Setting Multiplicity

There are two ways of setting multiplicity at the end of an association.

1. Button 2 click over the end of an association will cause a context-sensitive pop-up menu to appear
with a sub-menu labeled Multiplicity. This allows you to select from 1 (the default), 0..1,
0..* and 1..*.

2. Bring up the property sheet for the association end as described for setting navigation (see the sec-
ond option in Section 3.4.3.1, “Setting Navigation#). A drop down menu gives a range of multiplic-
ity options that may be selected.

The second of these two approaches has a wider range of options, although ArgoUML does not cur-
rently allow the user to set an arbitrary multiplicity.

3.4.4. Hierarchical Use Cases

3.4.4.1. Includes

The procedure for adding an include relationship is the same as that for adding an association, but using
the include icon from the editing pane toolbar () to join two use cases.

Since include relationships are directional the order in which the two ends are selected is important. The
including (main) use case should be selected first (button 1 down) and the included (subsidiary) use case
second (button 1 release).

It is possible to name include relationships using the property tab, but this is rarely done, and will not be
displayed on the use case diagram.

3.4.4.2. Extends

The procedure for adding an extend relationship is the same as that for adding an include relationship,
but using the extend icon from the editing pane toolbar () to join two use cases.

As with include relationships, the order of selection matters. In this case, the extending (subsidiary) use
case should be selected first (button 1 down) and the extending (main) use case second (button 1 re-
lease).

Note

This is the reverse of the include relationship, but reflects the way that designer's tend to
think. The fact that the extend icon's arrow points upward (the opposite of the include icon)
should help remind you of this.

To set a condition for the extend relationship, select the extend relationship in the editing pane (button 1
click) and then bring up its property tab in the details pane ((button 1 click on the tab). The text of the
condition may be typed in the Condition field. Long conditions may be split over several lines if de-
sired. The condition is displayed under the «extend» label on the diagram.

It is possible to name extend relationships using the property tab, but this is rarely done, and will not be
displayed on the use case diagram.

Requirements Capture

47

3.4.4.3. Generalization

The procedure for adding generalizations, is the same as for adding extend relationships, but using the
generalization icon from the editing pane toolbar ().

Since generalization is a directed relationship, the order of selection matters. The specialized use case
should be selected first (button 1 down) and the generalized second (button 1 release).

It is also possible to add generalizations using small “handles# that appear to the top and bottom of a use
case when it is selected. Dragging the handle at the top to another use case will create a generalization.
The original use case is the specializing end, and the use case to which the handle was dragged will be
the generalizing end. Dragging into empty space will create a new use case to be the generalizing end.

Similarly dragging on the bottom handle will create a generalization in which the original use case is the
generalizing end.

Generalization is also permitted between actors, although its use is beyond the scope of this tutorial. Un-
like use cases there are no generalization handles on actors, so generalizations must be created using the
toolbar icon.

It is possible to name generalization relationships using the property tab, but this is rarely done. If a
name is provided, it will be displayed on the use case diagram.

3.4.5. Stereotypes
UML has the concept of stereotyping as a way of extending the basic notation. It may prove useful for
example to model a problem at both the business level and the engineering level. For both of these we
will need use cases, but the use cases at the business level hold a different sort of information to those at
the engineering level. Very likely they use different language and notation in their underlying use case
specifications.

Stereotypes are used to label UML artifacts such as use cases, to indicate that they belong to a certain
category. Such labels are shown in guillemots («») above the name of the artifact on the diagram. The
UML standard defines a number of standard stereotypes, and the user may define more stereotypes of
his own.

You will see that ArgoUML has a drop down selector, Stereotype on every property tab. This is
populated with the standard stereotypes, to which you may add your own user defined ones.

The details of stereotyping are beyond the scope of this tutorial. The reference manual (see Section 15.4,
“Stereotype#) documents the support provided in ArgoUML.

Warning

ArgoUML is missing a few of the standard UML stereotypes. In addition not all artifacts
will actually display the stereotype on the diagram. At present this includes use cases and
actors.

3.4.6. Documentation
ArgoUML has some simple documentation facilities associated with artifacts on a diagram. In general
these should be used only to record the location of material in documents that can be handled by a main-
stream editor or word processor, not the actual documentation itself.

Documentation for a particular artifact is recorded through the documentation tab in the details pane (the

Requirements Capture

48

quadrant of the user screen at the bottom right).

In addition annotation may be added to diagrams using the text icon on the editing pane toolbar ().

The recommendation is that a use case diagram should use the documentation tab of actors to record in-
formation about the actor, or if the actor is complex to refer to a separate document that holds informa-
tion about the actor.

The documentation tab of use cases should record the location of the use case specification. The infor-
mation in a use case specification (for all but the simplest use cases) is too complex to be placed directly
in the tab.

The project should also have a separate vision document and supplementary requirements specification.
A text annotation on diagrams may be used to refer to these if the user finds this helpful.

Warning

The documentation tab includes a Deprecated check box. The state of this flag is not
preserved over save and load in the current release of ArgoUML

3.4.7. System Boundary Box
ArgoUML provides a series of tools to provide arbitrary graphical annotation on diagrams (we have al-
ready mentioned the text tool). These are found at the right hand end of the editing pane toolbar and are
fully documented in the reference manual (see Chapter 11, The Editing Pane).

The rectangle tool can be used to draw the boundary box. Use the button 2 context-sensitive Ordering
pop-up menu to place it behind everything else. However there is no way to change its fill color from the
default white. You may therefore prefer to draw the boundary box as four lines. This is the method used
for the diagrams in this chapter.

Note

The editing pane in ArgoUML has a grid to which objects snap to aid in drawing. The size
of this grid and its effect may be altered through the View menu (using Adjust Grid
and Adjust Grid Snap). This is described fully in the reference manual (see Chap-
ter 9, The Menu bar).

3.5. Case Study

3.5.1. Vision Document
A vision document contains more than those things needed for the modeling effort. It also contains fi-
nancial and scheduling pertinent information. The following sections are those parts of the Vision Docu-
ment spelled out in Section 3.3.1, “Vision Document# above. In practice this format need not be fol-
lowed religiously, but is used here for consistency.

3.5.1.1. Summary

The company wishes to produce and market a line of ATM devices. The purpose of this project is to
produce the hardware and the software to drive it that are both maintainable and robust.

Requirements Capture

49

3.5.1.2. Goals

To produce better designed products based on newer technology. Follow the MDA philosophy of the
OMG by producing first a Platform Independent Model (PIM). As current modeling technology does not
admit of maintaining the integrity of the connection between the PIM and Platform Specific Models
(PSMs), the PIM will become comparatively stable before the first iteration of the PSM is produced. The
software platform will be Java technology. The system will use a simple userid (from ATM card) and
password (or PIN) mechanism.

3.5.1.3. Market Context

Equipment currently on the market is based on older technology for both hardware and software. This
technology has not reached the end of its useful life, making it unlikely that the vendors of that gear are
going to update it in the near future. On the other hand newer technology is available that would put us
at a competitive advantage if implemented now.

3.5.1.4. Stakeholders

Among the stakeholders for this system are the Engineering Department, the Maintenance Department,
and the Central Computer Facility. The full list of these stakeholders and the specific individuals repre-
senting them are.

• Engineering. Bunny, Bugs

• Maintenance. Hardy, Oliver

• Computer Facility. Laurel, Stanley

• Chief Executive Officer. Hun, Atilla The

• Marketing. Harry, Oil Can

3.5.1.5. Key Features

Cash deposit, cash withdrawal, and account inquiries by customers. Customers include people who have
accounts at the owning bank as well as people who wish to make withdrawals from accounts in other
banks or from credit card accounts.

Maintenance of the equipment by the bank's engineers. This action may be initiated by the engineer on a
routine basis. It may also be initiated by the equipment that can call the engineer when it detects an in-
ternal fault.

Unloading of deposits and loading of cash by officials of the local bank branch. These actions occur ei-
ther on a scheduled basis or when the central computer determines that the cash supply is low or the de-
posit receptacle is liable to be getting full.

An audit trail for all activities will be maintained and sent periodically to the bank's central computer. It
will be possible for the maintenance engineer to save a copy of the audit trail to a diskette for transport-
ing to the central computer.

Both dialup and leased line support will be provided. The ATM will continue to provide services to cus-
tomers when communications with the central computer is not available.

3.5.1.6. Constraints

Requirements Capture

50

The project must be completed within nine months. It must cost no more than 1,750,000 USD excluding
production costs. Components may be contracted out, but the basic architecture as well as the infrastruc-
ture will be designed in house. Close liaison must be maintained between the software development and
the design, development and production of the hardware. Neither the hardware nor the software shall be
considered the independent variable, but rather they shall be considered equal.

3.5.1.7. Appendix

The following are the actors that directly support this vision. Additional actors may be identified later
that are needed to support this or that technology. They should not be added to this list unless they are
deemed to directly support the vision as described in this document.

• Central Computer

• Customer

• Local Branch Official

• Maintenance Engineer

The following are the use cases that directly support this vision. Additional use cases may be identified
later that are needed to support this or that technology or to support the use cases listed here. They
should not be added to this list unless they are deemed to directly support the vision as described in this
document.

• Audit

• Customer Uses Machine

• Maintain Machine

3.5.2. Identifying Actors and Use Cases
For the ATM case study, we will elaborate on the examples in Section 3.3, “Output of the Requirements
Capture Process#, Figure 3.4, “Use case diagram for an ATM system showing include relationships.#
and Figure 3.5, “Use case diagram for an ATM system showing an extend relationship.#, and progress to
identify additional actors and use cases that comprise our model of the ATM system. Figure 3.4, “Use
case diagram for an ATM system showing include relationships.# and Figure 3.5, “Use case diagram for
an ATM system showing an extend relationship.# exemplified the essential concepts and components of
a use case diagram such as, use cases, actors, multiplicity, and include / extend relationships. They
showed the relationships between the actors and use cases, and demonstrated how these actors and use
cases interact.

In Figure 3.4, “Use case diagram for an ATM system showing include relationships.# we see a use case
diagram for an ATM system consisting of «include» relationships for the use cases, Maintain ATM and
Use ATM. Maintain ATM was further defined by two use cases, "Maintain Equipment" and "Reload
ATM". Use ATM was further defined in terms of the behavior of three simpler use cases: "Deposit
Cash", "Withdraw Cash" and "Query Account".
More to be written…

3.5.3. Associations (To be written)
To be written…

Requirements Capture

51

3.5.4. Advanced Diagram Features (To be written)
To be written…

3.5.5. Use Case Specifications (To be written)
To be written…

3.5.6. Supplementary Requirements Specification (To be
written)

To be written…

Requirements Capture

52

Chapter 4. Analysis

4.1. Introduction
Analysis is the process of taking the “customer# requirements and re-casting them in the language of,
and from the perspective of, a putative solution.

We are not actually trying the flesh out the detailed solution at this stage. That occurs in the Design
Phase (see Chapter 5, Design).

Unlike the boundary between Requirements and Analysis Phases, the boundary between Analysis and
Design Phases is inherently blurred. The key is that analysis should define the solution no further than is
necessary to specify the requirements in the language of the solution. The artifacts in Analysis generally
represent a high level of abstraction.

Once again the recursive, and iterative nature of our process means we will come back to the Analysis
phase many times in the future.

4.2. The Analysis Process (To be written)
Include CRC cards. To be written…

4.2.1. Output of the Analysis Process (To be written)
To be written…

4.2.1.1. Concept Diagram (To be written)
To be written…

4.2.1.2. System Sequence Diagram (To be written)
To be written…

4.2.1.3. System Statechart Diagram (To be written)
To be written…

4.2.1.4. Realization Use Case Diagram (To be written)
To be written…

4.2.1.5. Documents (To be written)
Use Case Specifications and Supplementary Requirements Specifications recast in solution language. To
be written…

4.3. Class Diagrams (To be written)
To be written…

4.3.1. The Class Diagram (To be written)
To be written…

4.3.2. Advanced Class Diagrams (To be written)
To be written…

53

4.3.2.1. Association Classes (To be written)
To be written…

4.4. Creating Class Diagrams in ArgoUML

4.4.1. Classes
Identifying class diagrams from existing materials (Vision, Use Cases etc). To be written…

4.4.1.1. Using the Note Icon in the Tool Bar

Click on your target class. Then click on the note icon. ArgoUML will generate the link automatically.

You can also right click to add a note as well! Be aware that you can add an undefined number of notes
to any one class!

Warning

Be aware that your note will not appear in the source code documentation tab.

4.4.2. Associations (To be written)
To be written…

4.4.2.1. Aggregation (To be written)
To be written…

4.4.3. Class Attributes and Operations (To be written)
To be written…

4.4.3.1. Entering Data Into Attributes and Methods Windows

Click directly in the class artifact and start typing. Do not use the properties window dialog fields—they
are not fully functional and liable to cause you a little frustration.

In fact, it would be interesting to see if you can type stereotypes write in the class attribute box for gen-
erating XML diagrams.

4.4.3.2. Class Attributes (To be written)
To be written…

4.4.3.3. Class Operations (To be written)
To be written…

4.4.4. Advanced Class Features (To be written)

4.4.4.1. Association Classes (To be written)
To be written…

4.4.4.2. Stereotypes (To be written)
To be written…

Analysis

54

4.5. Sequence Diagrams (To be written)
To be written…

4.5.1. The Sequence Diagram (To be written)
To be written…

4.5.2. Identifying Actions (To be written)
To be written…

4.5.3. Advanced Sequence Diagrams (To be written)
To be written…

4.6. Creating Sequence Diagrams in ArgoUML

4.6.1. Sequence Diagrams

4.6.1.1. Creating a Sequence Diagram

Warning

For versions 0.12, 0.14, 0.16, and 0.18, the sequence diagrams are not working.

Normally, you can just start a sequence diagram right away. On the Create Diagram menu choose
Sequence.

4.6.2. Actions (To be written)
To be written…

4.6.3. Advanced Sequence Diagrams (To be written)
To be written…

4.7. Statechart Diagrams (To be written)
To be written…

4.7.1. The Statechart Diagram (To be written)
Types of statechart diagram (Moore, Mealy); Hierarchical diagrams. To be written…

4.7.2. Advanced Statechart Diagrams (To be written)
To be written…

4.7.2.1. Hierarchical Statechart Diagrams (To be written)
To be written…

4.8. Creating Statechart Diagrams in ArgoUML

4.8.1. Statechart Diagrams (To be written)

Analysis

55

To be written…

4.8.1.1. Creating a Statechart Diagram

Select a class, then you can create a statechart diagram.

4.8.2. States (To be written)
To be written…

4.8.2.1. Editing a Composite State

When editing a composite state, how do you provide do and event for a composite state?

The answer is to select a class, then you can create a state diagram.

4.8.3. Transitions (To be written)
To be written…

4.8.4. Actions (To be written)
To be written…

4.8.5. Advanced Statechart Diagrams (To be written)
To be written…

4.8.5.1. Hierarchical Statechart Diagrams (To be written)
To be written…

4.9. Realization Use Cases (To be written)
To be written…

4.10. Creating Realization Use Cases in Ar-
goUML (To be written)

To be written…

4.11. Case Study (To be written)

4.11.1. Concept Class Diagrams (To be written)
To be written…

4.11.1.1. Identifying classes (To be written)
To be written…

4.11.1.2. Identifying associations (To be written)
To be written…

4.11.2. System Sequence Diagrams (To be written)
To be written…

Analysis

56

4.11.2.1. Identifying actions (To be written)
To be written…

4.11.3. System Statechart Diagrams (To be written)
To be written…

4.11.4. Realization Use Cases (To be written)
To be written…

Analysis

57

Chapter 5. Design

5.1. Introduction
We now have the problem we are trying to solve specified in the language of a putative solution. In the
Design Phase, we construct all the details of that solution.

The blurred boundary between Analysis and Design is reflected in their use of many of the same UML
tools. In this chapter we will mostly be reusing UML technology we have already met once. The big step
is casting everything into concrete terms. We move from the abstract concepts of analysis to their con-
crete realization.

Once again the recursive, and iterative nature of our process means we will come back to the Design
phase many times in the future.

5.2. The Design Process (To be written)
To be written…

5.2.1. Output of the Design Process (To be written)
To be written…

5.2.1.1. Package Diagram (To be written)
To be written…

5.2.1.2. Realization Class Diagrams (To be written)
To be written…

5.2.1.3. Sequence Diagrams and Collaboration Diagrams (To be
written)

To be written…

5.2.1.4. Statechart Diagrams and Activity Diagrams (To be written)
To be written…

5.2.1.5. Deployment Diagram (To be written)
To be written…

5.2.1.6. Documents (To be written)
System Architecture. To be written…

5.3. Package Diagrams (To be written)
To be written…

5.3.1. The Package Diagram (To be written)
To be written…

5.3.2. Advanced Package Diagrams (To be written)
To be written…

58

5.3.2.1. Subpackages (To be written)
To be written…

5.3.2.2. Adding DataTypes (To be written)
To be written…

5.3.2.3. Adding Stereotypes (To be written)
To be written…

5.4. Creating Package Diagrams in ArgoUML

5.4.1. Packages
How to work out what goes in packages. To be written…

5.4.1.1. Subpackages (To be written)
To be written…

5.4.2. Relationships between packages (To be written)
To be written…

5.4.2.1. Dependency (To be written)
To be written…

5.4.2.2. Generalization (To be written)
To be written…

5.4.2.3. Realization and Abstraction (To be written)
To be written…

5.4.3. Advanced Package Features (To be written)
To be written…

5.4.3.1. Creating New Datatypes (To be written)
To be written…

5.4.3.2. Creating New Stereotypes (To be written)
To be written…

5.5. More on Class Diagrams (To be written)
To be written…

5.5.1. The Class Diagram (To be written)
To be written…

5.5.1.1. Class Attributes (To be written)
To be written…

5.5.1.2. Class Operations (To be written)

Design

59

To be written…

5.5.2. Advanced Class Diagrams (To be written)
To be written…

5.5.2.1. Realization and Abstraction (To be written)
To be written…

5.6. More on Class Diagrams in ArgoUML (To
be written)

5.6.1. Classes (To be written)
More on identifying classes from existing materials and use of stereotypes. To be written…

5.6.2. Class Attributes and Operations (To be written)
To be written…

5.6.2.1. Class Attributes (To be written)
To be written…

5.6.2.2. Class Operations (To be written)
To be written…

5.6.3. Advanced Class Features

5.6.3.1. Operations on Interfaces

5.6.3.1.1. Interfaces that extend interfaces

Add a unnamed interface to the current classdiagram by single-clicking on the interface icon in the tool
bar and then clicking at the diagram pane (see Figure 5.1, “Selecting the Interface tool#).

Figure 5.1. Selecting the Interface tool

Then double click on the interfaces name field to change it's name as shown in Figure 5.2, “Interface ar-
tifact on the Class Diagram#.

Design

60

Figure 5.2. Interface artifact on the Class Diagram

and type a name for it (like TestInterface in this case). Press “Enter# when the name is complete.
(You could also enter the name by going to the Properties Tab in the Details Pane after adding the inter-
face.)

Add another interface with a different by repeating the last 2 steps. Then single-click on the Generaliza-
tion icon in the tool bar as shown in Figure 5.3, “Generalization on the Class Diagram tool bar#.

Figure 5.3. Generalization on the Class Diagram tool bar

move the mouse pointer to the subinterface, press the left mouse button and drag the generalization to
the superinterface, where you release the mouse button. Figure Figure 5.4, “Generalization between two
Interfaces.# shows how your diagram should look now.

Design

61

Figure 5.4. Generalization between two Interfaces.

By clicking on the subinterface and the source tab properties pane, and then selecting Java Notation for
the source tab, you can see that the interface actually extends it's superinterface.

5.6.3.2. Stereotypes (To be written)
To be written…

5.7. Sequence and Collaboration Diagrams (To
be written)

Note

Sequence diagrams does not work in ArgoUML version 0.14.

To be written…

Design

62

5.7.1. More on the Sequence Diagram (To be written)
To be written…

5.7.2. The Collaboration Diagram (To be written)
To be written…

5.7.2.1. Messages (To be written)
To be written…

5.7.2.2. Actions (To be written)
To be written…

5.7.3. Advanced Collaboration Diagrams (To be written)
To be written…

5.8. Creating Collaboration Diagrams in Ar-
goUML (To be written)

5.8.1. Collaboration Diagrams (To be written)
To be written…

5.8.2. Messages (To be written)
To be written…

5.8.2.1. Actions (To be written)
To be written…

5.8.3. Advanced Collaboration Diagrams (To be written)
To be written…

5.9. Statechart Diagrams (To be written)
To be written…

5.9.1. The Statechart Diagram (To be written)
More on this. To be written…

5.9.2. Advanced Statechart Diagrams (To be written)
To be written…

5.9.2.1. Actions (To be written)
To be written…

5.9.2.2. Transitions (To be written)
To be written…

5.9.2.2.1. Triggers (To be written)
To be written…

Design

63

5.9.2.2.2. Guards (To be written)
To be written…

5.9.2.2.3. Effectss (To be written)
To be written…

5.9.2.3. Pseudo States (To be written)
To be written…

5.9.2.3.1. Junction and Choice (To be written)
To be written…

5.9.2.3.2. Fork and Join (To be written)
To be written…

5.9.2.4. Hierarchical State Machines (To be written)
To be written…

5.9.2.5. Models for State History (To be written)
Shallow v Deep. To be written…

5.10. Creating Statechart Diagrams in ArgoUML
(To be written)

5.10.1. Statechart Diagrams (To be written)
To be written…

5.10.2. States (To be written)
To be written…

5.10.3. Transitions (To be written)
To be written…

5.10.4. Actions (To be written)
To be written…

5.10.5. Advanced Statechart Diagrams (To be written)
To be written…

5.10.5.1. Transitions (To be written)
To be written…

5.10.5.1.1. Triggers (To be written)
To be written…

5.10.5.1.2. Guards (To be written)
To be written…

5.10.5.1.3. Effectss (To be written)

Design

64

To be written…

5.10.5.2. Pseudo States (To be written)
To be written…

5.10.5.2.1. Junction and Choice (To be written)
To be written…

5.10.5.2.2. Fork and Join (To be written)
To be written…

5.10.5.3. Hierarchical State Machines (To be written)
To be written…

5.10.5.4. History (To be written)
Shallow v Deep. To be written…

5.11. Activity Diagrams (To be written)
To be written…

5.11.1. The Activity Diagram (To be written)
More on this. To be written…

5.11.1.1. Action States (To be written)
To be written…

5.12. Creating Activity Diagrams in ArgoUML
(To be written)

5.12.1. Activity Diagrams (To be written)
To be written…

5.12.1.1. Creating an Activity Diagram

Select a use case or class, then you can create an activity diagram.

5.12.2. Action States (To be written)
To be written…

5.13. Deployment Diagrams (To be written)
To be written…

5.13.1. The Deployment Diagram (To be written)
To be written…

5.14. Creating Deployment Diagrams in Ar-
goUML (To be written)

Design

65

5.14.1. Nodes (To be written)
To be written…

5.14.1.1. Node Instances (To be written)
To be written…

5.14.2. Components (To be written)
To be written…

5.14.2.1. Component Instances (To be written)
To be written…

5.14.3. Relationships between nodes and components
(To be written)

To be written…

5.14.3.1. Dependency (To be written)
To be written…

5.14.3.2. Associations (To be written)
To be written…

5.14.3.3. Links (To be written)
To be written…

5.15. System Architecture (To be written)
To be written…

5.16. Case Study (To be written)

5.16.1. Packages (To be written)
To be written…

5.16.1.1. Identifying Packages (To be written)
To be written…

5.16.1.2. Datatypes and Stereotypes (To be written)
To be written…

5.16.2. Class Diagrams (To be written)
To be written…

5.16.2.1. Identifying classes (To be written)
To be written…

5.16.2.2. Identifying associations (To be written)
To be written…

Design

66

5.16.2.3. Specifying Attributes and Operations (To be written)
To be written…

5.16.3. Sequence Diagrams (To be written)
To be written…

5.16.3.1. Identifying actions (To be written)
To be written…

5.16.4. Collaboration Diagrams (To be written)
To be written…

5.16.4.1. Identifying Messages (To be written)
To be written…

5.16.5. Statechart Diagrams (To be written)
To be written…

5.16.6. Activity Diagrams (To be written)
To be written…

5.16.7. The Deployment Diagram (To be written)
To be written…

5.16.8. The System Architecture (To be written)
To be written…

Design

67

Chapter 6. Code Generation, Reverse
Engineering, and Round Trip Engineering

6.1. Introduction
We now have our design fully specified. With the right simulator we could actually execute the design
and see if it works. (ArgoUML does not provide such functionality, but this functionality has been pro-
vided in alternative tools.)

ArgoUML does allow you to generate code from the design in several different programming languages.
We, most likely, already in the design had a programming language in mind because some of the design
considerations are to care for a specific language.

The output of this process is the set of files that constitute the program that solves the problem.

Once again the recursive, and iterative nature of our process means we will come back to the Build
phase many times in the future.

There is also another side to this and that is the reverse engineering side. If we happen to have an old
program that we would like to examine then we could take the files and reverse engineer them to create
a design. This can be used when trying to understand some not so well documented program or as a
quick start for the design work.

The process of going back and forth between doing changes in the design followed by a code generation
and then doing changes in the code followed by a reverse engineering using for every change, the best
possible perspective, is called Round-trip Engineering.

6.2. Code Generation
The output of the Code Generation is the completed program. Depending on the contents of the design,
we could also generate Unit test cases.

To do the work we need the design model, containing both static and dynamic descriptions of the pro-
gram.

6.2.1. Generating Code from the Static Structure
It is rather straightforward to do this generation, at least as long as we do it for an object-oriented lan-
guage. This is some of the basic rules:

• A class will become a class.

In some target languages (like java, c++) they also become files and compilation units.

• A generalization will become an inheritance.

If the target language does not support inheritance and we didn't address this during the design, some
special conversions are required to solve this.

• An attribute will become a member variable.

• A navigable association will become a member variable.

68

Depending on the target language, target platform, and the association multiplicities this will be a
pointer, a reference, a collection class, an entry in some table or map.

• A non-abstract operation in a class will become a method.

• An abstract operation in a class will become an abstract method.

• An in parameter in an operation will become a parameter in the method.

For simple types (int, boolean), this is the normal case. For C++, these will probably const classes.
For Java, this cannot be enforced for classes.

• An out or in/out parameter in an operation will become a referenced parameter in the method.

For C++, these will be referenced non-const parameters. For Java classes, this is the default. Simple
types (int, boolean) must, in java, be converted to an object of a corresponding class (Integer,
Boolean).

• The visibilities of the attributes, associations, and operations will become visibilities on the member
variables or methods.

• Packages will become directories, namespaces, or both.

6.2.2. Generating code from interactions and state ma-
chines

This conversion is not as straight-forward as the conversion of the static structure. It is much more de-
pending on the target language and target platform.

In general it is only possible to say the following for interactions:

• A message is converted into a function call.

The class of the recipient will have to have a function with the correct name and signature.

The sender function in the class of the sender will have a call to the function in the recipient.

• An asynchronous message is converted to either posting a message to be handled by some other
thread or a function call to a function that starts a new thread.

The following describes one possible way to generate state machines:

• A State Machine is generated to a set of member variables that each method in this class refer to
when deciding behavior.

• A State is generated to a closed set of combination of values on these member variables.

• An Event is generated as a call to a member method that can change the state.

These methods would then typically have one big switch statement splitting on the current state.

• A Guard is generated to an if statement in the event member method in the branch for the correct
state.

Code Generation, Reverse Engineering, and
Round Trip Engineering

69

• A Transition is generated as an assignment of some state variable.

• An Action is generated as a function call.

6.3. Code Generation in ArgoUML

6.3.1. Static Structure
Most of the generation can be done automatically by the provided language modules. Files are generated
in a directory hierarchy that need to be filled in by the actual code.

6.3.2. Interactions and state diagrams
There is currently no support for this in ArgoUML, not for any language.

6.4. Reverse Engineering
Reverse Engineering is used for two main purposes:

1. To get previously developed classed into the model to build upon.

2. To get a UML view of previously developed classes to understand how they work.

Essentially this does the opposite of Code Generation.

6.5. Round-Trip Engineering
Round-Trip Engineering makes it possible to switch perspective while doing the design. Create some
classes in a class diagram. Write some code for some of the operations or functions using your favorite
editor. Move the operations from one class to another in the class diagram...

ArgoUML currently does not support this for any language.

Code Generation, Reverse Engineering, and
Round Trip Engineering

70

Part II. ArgoUML Reference Manual

Chapter 7. User Interface Reference

7.1. Introduction
This chapter describes the overall behavior of the user interface. Description of the various component
parts—the menu bar, panes and various diagrams— is in separate chapters.

7.2. Overview of the Window
Figure 7.1, “Overview of the ArgoUML window# shows the main ArgoUML window.

The titlebar of the window shows the following 4 parts of information, seperated from each other by a
dash.

• The current filename. If no filename for the project is set yet, then the titlebar shows "Unititled".

• The name of the currently active diagram.

• The name “ArgoUML#.

• An asterisk (*). This item is only present if the current project file is “dirty#, i.e. it is altered, but not
yet saved. In other words, if the asterisk is absent, then the current file has not been altered.

Figure 7.1. Overview of the ArgoUML window

72

At the top of screen is a menu bar, which is described in Chapter 9, The Menu bar. Below that is the
toolbar, as described in Chapter 8, The Toolbar.

The bulk of the window comprises four sub-windows or panes. Clockwise from top left these are the ex-
plorer (see Chapter 10, The Explorer), editing pane (see Chapter 11, The Editing Pane), details pane (see
Chapter 12, The Details Pane) and to-do pane (see Chapter 13, The To-Do Pane). All 4 panes have a tool
bar at the top (in the details pane it is located under the properties tab). An overview of the panes is
given in Section 7.4, “General Information About Panes#. Finally at the bottom of the window is a status
bar described in Section 7.5, “The status bar#.

7.3. General Mouse Behavior in ArgoUML
Mouse behavior that is specific to the various panes of ArgoUML (see Section 7.4, “General Informa-
tion About Panes#) or the menu bar, is discussed in the chapters covering those panes and the menu bar.
In this section we cover behavior that is general across all of ArgoUML.

In a number of places in ArgoUML text may be directly edited (for example the constraint editor—see
Section 12.7.1, “The Constraint Editor#). The behavior of the mouse when handling text is discussed in
the sections that follow.

7.3.1. Mouse Button Terminology
ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1# and “button 2#. But-
ton 1 is the leftmost button on a right-handed mouse, and sometimes referred to as the select button. But-
ton 2 is the rightmost button on a right-handed mouse, and is sometimes referred to as the adjust button.

User Interface Reference

73

A single depress and release of a mouse button with the mouse is referred to as a click. Two clicks in
quick succession is referred to as a double click. Moving the mouse while holding a button down is re-
ferred to as button motion with the starting point being at button down and the end point at button up.

7.3.2. Button 1 Click
Clicking on an user-interface object or on a diagram artifact may establish many different things. Most
of the behaviour is experienced quite intuitive by the user, mainly because the high degree of standardis-
ation, even spanning different computer platforms (Macintosh, PC, UNIX,...). ArgoUML follows the
Java Look and Feel Design Guidelines by Sun. See http://java.sun.com/products/jlf/. Hence, behaviour
of common user-interface components is generally not discussed in this document.

On the other hand, mouse actions in a diagram may not seem so intuitive to the user, since it is specific
for ArgoUML. Hence they are explained here. In short, clicking selects or activates the object beneath
the mouse-pointer, and moves the focus (i.e. navigation).

More in detail, the button 1 click may cause the following result:

7.3.2.1. Selection

Here button 1 is used to choose (select) an artifact (in a list or tree or on a diagram) on which subsequent
operations will take place. Multiple artifacts may be selected by using Shift and/or Control in combina-
tion with button 1, see Section 7.3.5, “Shift and Control with Button 1#. Selection is always clearly indi-
cated by a colored background.

On a diagram, the selected artifact is indicated with colored "blocks" at the corners/ends of the object.
Artifacts can be selected or deselected in different ways:

• Button 1 click. Deselects all artifacts, and selects the one clicked on.

• Button 1 motion. Button motion (moving the mouse with the button down) in the diagram, not on
any artifact, allows to draw a rectangle around artifacts which will be selected when the button 1 is
released.

• Menu functions and shortcuts. Many menu operations change selection as side-effect, e.g. creating a
new diagram. Many keyboard shortcuts for menu operations change the selection, e.g. Ctrl-A, which
stands for the Select All function.

7.3.2.2. Activation

Here button 1 is used to activate the user interface component, e.g. a button. The object is usually high-
lighted when the mouse button is pressed and then activated when the mouse button is released. Activat-
ing an user-interface object means that its function is executed.

7.3.2.3. Navigation

Here button 1 is used to move the focus from one user interface component or diagram artifact to an-
other. It is better known under the term keyboard focus. This because keyboard commands usually work
on the artifact that has the focus. The focus is indicated by a (hardly visible) box around the artifact, or
for a text entry box, by a flashing cursor.

7.3.2.4. General Behavior When Editing Text

Here button 1 is used to select the point within the text at which operations (text entry and deletion) will

User Interface Reference

74

http://java.sun.com/products/jlf/

take place.

7.3.3. Button 1 Double Click
The behavior of button 1 double click varies betweens panes and is discussed in their chapters.

7.3.3.1. General Behavior When Editing Text

Here button 1 double click is used to select a complete word, or other syntactic unit within the text. Sub-
sequent operations (text entry and deletion) will replace the selected text.

7.3.4. Button 1 Motion

7.3.4.1. General Behavior When Editing Text

Here button 1 motion is used to select a range of text. Subsequent operations (text entry and deletion)
will replace the selected text.

7.3.5. Shift and Control with Button 1

7.3.5.1. Within Lists

This behavior applies where there is a list of things that may be selected. This includes various dialog
boxes, and the to-do pane, where there is a list of to-do items to be selected.

Where selections are to be made, the SHIFT key is used to with button 1 to extend from the original but-
ton 1 selection to the current position.

Similarly the CONTROL key with button 1 is used to add individual items to the current selection.
Where Ctrl-button 1 is used on an item already selected, that item is removed from the selection.

Caution

Users of Microsoft Windows might be familiar with the use of SHIFT-CONTROL-Click
(i.e. holding both the Shift and Control key down when clicking), to add sub-lists to an ex-
isting selection. ArgoUML does not support this. SHIFT-CONTROL-Click will behave as
CONTROL-Click.

7.3.5.2. General Behavior When Editing Text

In a number of places in ArgoUML text may be directly edited (for example when naming a
model—element in the properties pane, or when typing a UML note / comment). Here SHIFT button 1
is used to select a range of text from the previously selected point. Subsequent operations (text entry and
deletion) will replace the selected text.

7.3.6. Alt with Button 1: Panning
When holding down the Alt key during button 1 down on a diagram, movement of the mouse pans the
drawing area. The function is indicated by the mousepointer which turns into a crosshair with arrows.

7.3.7. Button 2 Actions

User Interface Reference

75

Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

7.3.8. Button 2 Double Click
Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

7.3.9. Button 2 Motion
Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

7.4. General Information About Panes
The four sub-windows of the main ArgoUML window are called panes. Clockwise from top left these
are the explorer (see Chapter 10, The Explorer), editing pane (see Chapter 11, The Editing Pane), details
pane (see Chapter 12, The Details Pane) and to-do pane (see Chapter 13, The To-Do Pane). At the top
the editing pane is a tool bar.

7.4.1. Re-sizing Panes
You can re-size panes by dragging on the divider bars between them. To indicate this possibility, the
mouse cursor changes shape when hovering over the divider bars.

In addition you will see there are two small left pointing arrows within the vertical divider bars, one at
the top of the vertical divider bar between explorer and editing pane and one at the top of the vertical di-
vider bar between to-do pane and details pane. Button 1 click on the first of these will expand the editing
pane to the full width of the window, button 1 click on the second will expand the details pane to the full
width of the window.

There is also a small downward pointing arrow within the horizontal divider bar at its leftmost end.
Clicking on this will expand the explorer and editing panes to the full depth of the window.

By using both the top arrow on the vertical divider and the arrow on the horizontal divider, it is possible
to expand the editing pane to use the entire window.

The original configuration can be restored by clicking again on these arrows, which are now located at
the edge of the window.

7.5. The status bar
The status bar is at the very bottom of the ArgoUML window and is used to display short advisory mes-
sages. In general such messages are self explanatory. It is e.g. used for displaying parsing error messages
in case a text entered on the diagram can not be interpreted.

User Interface Reference

76

Chapter 8. The Toolbar

8.1. File operations
These buttons have identical functions as their counterparts in the File menu.

• New See for a full description Section 9.3.1, “ New#.

• Open Project... See for a full description Section 9.3.2, “ Open Project…#.

• Save Project See for a full description Section 9.3.3, “ Save Project#.

• Print See for a full description Section 9.3.8, “ Print…#.

8.2. Edit operations
These buttons have identical functions as their counterparts in the Edit menu.

• Cut See for a full description Section 9.4.2, “ Cut#.

• Copy See for a full description Section 9.4.3, “ Copy#.

• Paste See for a full description Section 9.4.4, “ Paste#.

• Remove From Diagram See for a full description Section 9.4.5, “ Remove From Dia-

gram#.

• Navigate Back See for a full description Section 9.4.1, “Select#.

• Navigate Forward See for a full description Section 9.4.1, “Select#.

8.3. View operations
The Find... button has identical behaviour as its counterpart in the View menu. The Zoom button is
a more luxurously version of the function in the View menu.

• Find... See for a full description Section 9.5.2, “ Find…#.

• Zoom This is a different version of the menu-item for zooming, as described in Section 9.5.3,

“Zoom#. Clicking with button 1 on the zoom-icon opens a panel as in the figure below.

77

Figure 8.1. The Zoom slider on the Toolbar

Once the panel is open, the following actions are possible:

• Clicking with button 1 on the "knob" followed by button 1 movement will adjust the zoomfactor.

• Clicking with button 1 on the shown percentage allows editing the given zoomfactor (in percent)
directly with the keyboard. Double clicking on the value shown selects the whole entry for easy
overtyping.

• Clicking with button 1 below or above the knob increases or decreass the zoom factor with 1%.
Use this function to easily fine-adjust the percentage.

• Clicking with button 1 or button 2 on the Zoom tool, or anywhere outside the slider panel closes
the panel.

• The keyboard can be used to operate the Zoom Slider as follows: When the Zoom icon in the
toolbar has the focus (indicated by the thin blue box around it), then pressing the spacebar opens
the zoon slider panel. Use the arrow keys to increase and decrease the percentage 1 by 1. Use
Shift-Tab to set the focus to the percentage box, where you can edit the given value directly.
Pressing Enter activates the changed value. When the "knob" has the focus, pressing
PageUp/PageDown increases/decreases the percentage by 50. Pressing Home sets the percentage
to 500%, and End sets it to 0%.

The Toolbar

78

8.4. Create operations
These buttons have identical functions as their counterparts in the Create menu.

• New Use Case Diagram See for a full description Section 9.6.1, “ New Use Case Dia-

gram#.

• New Class Diagram See for a full description Section 9.6.2, “ New Class Diagram#.

• New Sequence Diagram See for a full description Section 9.6.3, “ New Sequence Dia-

gram#.

• New Collaboration Diagram See for a full description Section 9.6.4, “ New Collab-

oration Diagram#.

• New Statechart Diagram See for a full description Section 9.6.5, “ New Statechart

Diagram#.

• New Activity Diagram See for a full description Section 9.6.6, “ New Activity Dia-

gram#.

• New Deployment Diagram See for a full description Section 9.6.7, “ New Deploy-

ment Diagram#.

The Toolbar

79

Chapter 9. The Menu bar

9.1. Introduction
An important principle behind ArgoUML is that actions should be able to be invoked in whatever way
the user finds convenient. As a result many (but not all) actions that can be carried out on the menu can
be carried out in other ways as well under ArgoUML.

A number of the common menu entries are also available through keyboard shortcuts.

It is also be possible to navigate the menu from the keyboard. Each level of each menu is identified by a
letter (shown underlined in the menu or entry name from the moment the ALT key is pressed). This se-
quence of letters while holding down the ALT key selects the entry. In the version V0.14 of ArgoUML
this functionality is only available when running under Microsoft Windows.

The following is an explanation of why the menuitems are grouped as they are.

• The File menu contains operations that affect on the whole project/file. All the items in this menu
can be explained as such.

• The Edit menu is generally intended for editing the model or changing the content of a diagram. It
also contains functions to enable editing, like e.g. selecting. This menu is not intended for diagram
layout functions. Most functions here do something with the selected modelelement and diagram.
The item "Settings..." is an exception here, logically it might belong better under the File menu, but
people are used to find it here.

• The View menu is for functions that do never alter the model, nor the diagram layout, only the way
you view the diagram. Good examples are "zoom" and "notation". Also navigational functions be-
long here, e.g. "Find" and "Goto Diagram...". All changes of settings in this menu apply to all dia-
grams (e.g. zoom).

• The Create menu contains all possible diagrams that can be created. Downlighting is context depen-
dend, since these functions work on the selected modelelement.

• The Arrange menu allows layout changes in the current diagram, which is not the same as the items
in the View menu. Functions here can not alter the UML model.

• The Generation menu is for Code Generation. The functions here work either on the selected mod-
elelements, or on the whole project.

• The Critique menu is specific for settings related to critics, which apply for all projects.

• The Tools menu currently contains the "Export as XMI" item. Also, if plugins are installed, then
their functions appear here.

• The Help menu contains the usual "information" and "about".

9.2. Mouse Behavior in the Menu Bar
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Section 7.3, “General Mouse Behavior in ArgoUML#). There is no ArgoUML spe-
cific behaviour for the menu.

80

9.3. The File Menu
These are actions concerned with input and output and the overall management of projects and the Ar-
goUML system.

9.3.1. New
Shortcut Ctrl-N.

This initializes a new project within ArgoUML. The project is created without a the name. It contains a
(top-level) Model named untitledModel and two empty diagrams: a class diagram and a use case
diagram.

Caution

untitledModel is not a conventional model name (most processes suggest models
should be build from lower case letters). ArgoUML permits you to use any case letters, but
a critic will trigger to warn that this is not conventional. See Section 15.2, “The Model# for
a discussion of this.

If the model has been altered (as indicated by the "*" in the titlebar of ArgoUML's window), then acti-
vating the "New" function is potentionally not the user's intention, since it will erase the changes. Hence
a confirmation dialog appears to allow the user to save his work first, or cancel the operation com-
pletely.

Figure 9.1. The confirmation dialog for New.

9.3.2. Open Project…
Shortcut Ctrl-O.

This opens an existing project from a file. Selecting this menu option will open a file selection dialog
(see Figure 9.2, “The file selection dialog for Open Project….#).

Figure 9.2. The file selection dialog for Open Project….

The Menu bar

81

The main body of the dialog is a text area with a listing of all directories and files in the currently se-
lected directory which match the current filter (see below).

Navigating in the directory tree is possible by selecting a directory in the drop down selector at the top
of this dialog. Navigating deeper in the tree may be done by double clicking button 1 on the directory
shown in the main text area.

In the lower portion of the dialog is a text box labeled File name: for the name of the file to be
opened. The file name may be typed directly in here, or selected from the directory listing above using
button 1 click.

Beneath this is a drop down selector labeled Files of type: to specify a filter on the files to be
shown in the directory listing. Only files that match the filter are listed. The available filters are listed
below. The default filter is the first one (.zargo).

• ArgoUML compressed project file (*.zargo)

• ArgoUML project file (*.uml)

9.3.3. Save Project
Shortcut Ctrl-S.

This saves the project using its current file name. Use Save Project As… to save the project to a
different file. If no filename is given yet (e.g. after New), then this function works exactly as Save
Project As….

The Menu bar

82

Note

In certain circumstances, there is nothing to save, and this menuitem is downlighted. E.g.
when the user did not yet alter a loaded project. The presence of a "*" in the titlebar of Ar-
goUML's window indicates that the current project is “dirty# (has been altered), and can be
saved.

9.3.4. Save Project As…
This opens a dialog allowing you to save the project under a different file name (or to specify a file
name for the first time if the project is a new project).

The dialog box is almost identical to that for Open Project (see Figure 9.2, “The file selection dia-
log for Open Project….#). The extension of the filename is automatically set.

9.3.5. Revert to Saved
This menu-item allows you to throw away all your recent changes, and reload the last saved version of
the current project. It works a bit like an Undo feature, but only restores changes done since the last
time the file was saved.

This menu-item is downlighted unless the currentproject has been saved or loaded before (i.e. it has a
name), and it has been altered.

When this menu-item is activated, a small confirmation dialog box opens, as shown in the figure below.
This warning that all recent changes will be discarded, is needed because the action can not be undone.
Selecting No cancels the whole action as if you did not select the menu-item in the first place. Selecting
Yes reloads the last saved file.

Figure 9.3. The warning dialog for Revert to Saved.

9.3.6. Import Sources…
A very powerful feature of ArgoUML is that it can “Reverse Engineer# Java code to yield a class dia-
gram. This sub-menu entry specifies Java code to be imported for reverse engineering.

The dialog box is similar to that for Open Project (see Figure 9.2, “The file selection dialog for
Open Project….#), but with two extra tabs placed alongside the directory listing, as shown in Fig-
ure 9.4, “The file selection dialog for Import Sources….#).

Figure 9.4. The file selection dialog for Import Sources….

The Menu bar

83

Those fields that are the same as Open Project behave in the same way (see Section 9.3.2, “

Open Project…#).

Next to the "All Files" file filter, there is the default filter "Java Source File (*.java)".

The first of the two tabs is labeled General and is selected by button 1 click on its tab. It provides a
combo box for the language selection (in V0.18 of ArgoUML only Java can be chosen), and the follow-
ing selections:

• Descend directories recursively. If enabled (the default), reverse engineering will
track through sub-directories for any further Java files. If not it will restrict to the selected directory.

• Create diagrams from imported code. If you unselect this, then no diagrams are cre-
ated, i.e. all data will only be visible in the explorer.

• Minimise Class icons in diagrams. If enabled, then the attributes and operations com-
partiments will not be shown in the classes on the generated class diagrams. Note: This item is
checked by default, and is overseen by many users, which are then surprised by the result.

• Perform Automatic Diagram Layout. If selected, then ArgoUML will do its best to layout
the generated diagrams automatically. If not, then all items will be placed at the top left corner of the
diagram.

• Level of import detail: Classifiers only / Classifiers plus feature
specifications / Full import. The latter is the default.

• Import source file encoding: . The value Cp1252 is often the default. This string rep-
resents the coded character set identifier (CCSID).

The second of the two tabs is labeled Java and is selected by button 1 click on its tab. It provides two
pairs of radio boxes.

• The first radio box allows selection between modeling attributes of Java classes as UML attributes

The Menu bar

84

(the default) or as UML associations to the class specified.

• The second radio box allows selection between modeling arrays as new datatypes in their own right
(the default) or as their base datatype with multiplicity.

9.3.7. Page Setup…
This brings up the standard dialog box provided by the operating system to adjust printer paper size, ori-
entation, and other options.

9.3.8. Print…
Shortcut Ctrl-P.

This brings up the standard dialog box provided by the operating system allowing the current diagram to
be printed out.

In some cases, when the printing is started, the dialog box of Figure 9.5, “The diagram exceeds page size
dialog. # appears. Selecting the "Fit to page" button does print the whole diagram fitted on one page by
scaling it down. Which might cause all text to be too small to read in case of big diagrams, but it is a
quick and easy way to get an usable printout. Selecting the "Multiple pages" option does print unscaled,
by dividing the diagram in pieces, on as many pages as needed. Pressing the close button of the dialog
does the former option.

Figure 9.5. The diagram exceeds page size dialog.

Warning

If the current diagram contains no selected artifacts, then the whole diagram is printed.
However, if one or more artifacts are selected, then only the area they cover is printed! If
scaling is selected (by the "Fit to page" choice in the dialog box descibed above), then the
scaling is done on basis of the selected artifacts only. If scaling is not chosen (or in case it
is not needed), then all pages containing a selected artifact are printed.

9.3.9. Save Graphics…
This menu entry brings up a dialog box allowing the currently selected diagram (in the editing pane) to
be saved in one of a number of graphic formats.

The dialog box is identical to that for Open Project (see Figure 9.2, “The file selection dialog for

The Menu bar

85

Open Project….#), except for the Files of type:. The chosen filetype specifies the graphics
format used for saving. The filename is automatically extended with the corresponding ending (if not en-
tered already). A default filename is generated based on the diagram name.

The available graphics types are:

• PNG image (*.png)

• GIF image (*.gif)

• Postscript file (*.ps)

• Encapsulated Postscript file (*.eps)

• Scalable Vector Graphics file (*.svg)

The PNG format is the default.

Caution

The PNG graphics does not support shadows very well, so maybe it is better to either save
in GIF format, or switch shadows off before saving in PNG format.

9.3.10. Save Configuration
ArgoUML has various user specific configurations that can be set, through the Settings… entry on
the Edit menu (see Section 9.4.7, “ Settings…#) or directly on the various panes. Also the main

window size and location is such a setting. Activating this menu entry causes the information to be
saved in the file argo.user.properties. The location of this file is in the "users home directory",
which is defined as ${user.home}, and can be determined as described in Section 9.4.7.2,
“Environment Tab#.

Tip

This is a text file, which you can edit to configure ArgoUML.

9.3.11. Most Recent Used Files
ArgoUML remembers a few of the most recently saved files, and lists them here, to enable loading then
in the most simple way.

The maximum number of files that is listed here, can be adjusted in the Edit -> Settings… menu.
The list of files is stored in the argo.user.properties file in the user's home directory.

9.3.12. Exit
Shortcut Alt-F4.

This closes down ArgoUML. A warning message will pop-up if you have a project open with unsaved
changes asking if you wish to save it. See Figure 9.6, “The save changes dialog. #. The options are:

• Yes (save the project and exit ArgoUML);

The Menu bar

86

• No (do not save the project, but still exit ArgoUML); and

• Cancel (do not save the project and do not exit ArgoUML).

• The dialog box can also be closed by clicking in the close button in the window border. The effect is
the same as selecting "Cancel".

Figure 9.6. The save changes dialog.

9.4. The Edit Menu
This menu provides support for selecting artifacts on the editing pane; cut, copy and paste functions; re-
moval of artifacts from diagrams and the model; and control of user settings.

9.4.1. Select
This sub-menu provides for selection of items on the editing menu. It has the following entries.

• Select All (shortcut Ctrl-A). Selects all artifacts on the current pane or in the current field. The
exact behaviour depends on the current pane (i.e. the last one you clicked in): explorer pane,
editing pane, to-do pane, details pane. One rule applies in all cases though: the selection on the dia-
gram (editing pane) and in the explorer are always synchronised.

If the editing pane is the current pane: First everything in the explorer and on the current dia-
gram is deselected, and then everything that is on the current diagram is selected (and if the same
items apear in the explorer, then they are also there indicated as selected, because they are always
synchronised).

If the explorer pane is the current pane: All visible items in the explorer pane are selected, and
non-visible items are deselected.

If the to-do pane is the current pane: All visible items in the to-do pane are selected, and non-
visible items are deselected. In fact, this works the same as for the explorer pane, because both are
tree structures.

If the details pane is the current pane: The function only works when the cursor is in certain
fields, where selecting is possible, e.g. a Name field. In such a case, the Select All function extends
the current selection to the whole field contents.

• Navigate Back. ArgoUML keeps a record of the artifacts that you have been selecting

while navigating the model. This button moves you back to the previous one selected. If there are no

The Menu bar

87

more previous artifacts, the button is grayed out.

• Navigate Forward. ArgoUML keeps a record of the artifacts that you have been selecting

while navigating the model. This button moves you forward to the next one selected (after you have
used the Navigate Back button to move back). If there are no more next artifacts, the button is
grayed out.

• Invert Selection. This inverts the current selection on the current pane. More exact: ev-
erything that was selected is de-selected and everything that was not selected within the current pane
is selected.

9.4.2. Cut
Shortcut Ctrl-X.

This takes the currently selected items, remove them from the diagram, and place them on the clipboard
for subsequent pasting.

Warning

In the V0.18 implementation of ArgoUML there are some difficulties with clipboard based
functions. This menu option is best avoided.

9.4.3. Copy
Shortcut Ctrl-C.

This takes the currently selected items and make a copy of them on the clipboard for subsequent pasting.

Warning

In the V0.18 implementation of ArgoUML there are some difficulties with clipboard based
functions. This menu option is best avoided.

9.4.4. Paste
Shortcut Ctrl-V.

This pastes the item(s) last cut or copied to the clipboard on to the current diagram in the drawing pane.

Warning

In the V0.18 implementation of ArgoUML there are some difficulties with clipboard based
functions. This menu option is best avoided.

9.4.5. Remove From Diagram
Shortcut Delete.

This removes the currently selected item(s) from the diagram, but not from the model.

The Menu bar

88

The modelelement can be re-added to the diagram by button 2 click on the modelelement in the ex-
plorer.

9.4.6. Delete From Model
Shortcut Ctrl-Delete.

This function deletes the selected item(s) from the model completely.

If the item to be deleted is also present on another diagram than the current one, the dialog box from fig-
ure x appears.

Figure 9.7. The dialog for confirmation of Remove from Model.

9.4.7. Settings…
This menu entry brings up a dialog box, which allows the user to set various options that control the be-
havior of ArgoUML (see Figure 9.8, “The dialog for Settings - Preferences.#).

Figure 9.8. The dialog for Settings - Preferences.

The Menu bar

89

The options that can be set up on the various tabs are described in the following sections. For each tab
there are three buttons at the bottom of the dialog box.

• OK. Activating this button (button 1 click) applies the chosen settings and exits the dialog.

• Cancel. Selecting this button (button 1 click) exits the dialog without applying any settings
changed since the last Apply (or since the dialog started if Apply has not been used).

• Apply. Selecting this button (button 1 click) applies the chosen settings and remains in the dialog.

Closing the dialog (with the close button in the top corner in the border of the window) causes the same
effect as Cancel.

These settings can be saved for use by subsequent ArgoUML sessions (see Section 9.3.10, “Save Con-
figuration#).

9.4.7.1. Preferences Tab

Selecting the Preferences tab (button 1 click on the tab) gives the following options as check boxes.

• Show Splash Panel (set by default). If enabled ArgoUML will show a small panel with a pic-
ture while starting up.

Tip

The splash panel can be seen by using the Help menu (see Section 9.11.2, “About Ar-
goUML#).

The Menu bar

90

• Preload Common Classes (set by default). If enabled ArgoUML creates class objects of a
number of classes internally during start up so that instantiation is quicker when they are needed.

• Report Usage Statistics (set by default). This setting has no effect in V0.18 of ArgoUML.

• Report on Load Times (clear by default). If enabled, load times at start up for the various
phases of initialization are reported when the "info" level of logging is switched on — something a
user is not able to do. These times are only visible for and of use to developers — they have no
meaning to the ordinary user.

• Reload last saved project on startup (clear by default). Check this item if you al-
ways work on the same project, and wish to load it automatically when you start up ArgoUML.

9.4.7.2. Environment Tab

Selecting the Environment tab (button 1 click on the tab) lists seven environmental items. Note that
none of these can be set — this tab is just a matter of record.

Figure 9.9. The dialog for Settings - Environment.

• ${argo.root}. The full path to the ArgoUML program, i.e. the argouml.jar file.

• ${argo.home}. The ArgoUML home directory which contains the "jar" files needed by Ar-
goUML.

• ${argo.ext.dir}. The directory holding ArgoUML extensions—by default the ext sub-
directory of the ArgoUML build directory.

• ${java.home}. The home directory of the Java Runtime Environment (JRE).

The Menu bar

91

• ${user.home}. The user's home directory. Used for storing the argo.user.properties
file.

• ${user.dir}. The directory from which ArgoUML was started.

• Startup Directory. The directory in which ArgoUML starts file searches etc.

9.4.7.3. User Tab

This tab allows the user to record additional information of use to the system. There are two text boxes
provided.

Figure 9.10. The dialog for Settings - User.

• Full Name:. Allows the user to record her full name.

• Email Address:. Allows the user to record his Email address.

This information is used when requesting to-do help by Email.

9.4.7.4. Notation Tab

This tab allows the user to specify certain notation settings, i.e. how things are shown on diagrams. It
comprises the following check boxes.

Figure 9.11. The dialog for Settings - Notations.

The Menu bar

92

• Use only UML notation (clear by default). This feature allows changing the notation (i.e. lan-
guage: UML, Java,...) used on the diagrams and in the source tab of the details pane. Suppose that a
designer creates a diagram and indicates that the notation of the diagram is Java. Someone viewing
the diagram with "Use only UML notation" checked will only see UML notation in the classes and
source tab no matter what notation the designer has used. See also Section 9.5.7, “Notation#).

Warning

If this setting is checkmarked, then the language selector combobox on the source tab
of the details pane does not appear. On the other hand, the menuitem View->Notation
remains available, but changing it has no effect.

• Use guillemots (« ») for stereotypes (clear by default). By default ArgoUML uses pairs of less
than and greater than (<< >>) characters for stereotypes. If this box is checked stereotypes on dia-
grams are shown between true guillemots (« »).

This feature is presumably added to ArgoUML because guillemots are poorly supported by various
fonts, and if they are present, then they are quite small and poorly visible.

• Show visibility (clear by default) (To be written)

• Show multiplicity (clear by default) (To be written)

• Show initial value (clear by default) (To be written)

• Show properties (clear by default) (To be written)

• Show stereotypes in explorer (clear by default) (To be written)

• Default shadow width (set to 1 by default) (To be written)

The Menu bar

93

9.4.7.5. Appearance Tab

This tab allows the user to specify the LAF (Look And Feel) and theme, i.e. what the complete Ar-
goUML UI looks like. It comprises the following settings.

Figure 9.12. The dialog for Settings - Appearance.

• Look and Feel. The choice made here influences the complete User Interface. It only becomes
effective when ArgoUML is exited and restarted.

• Metal Theme. This item is downlighted if the Metal LAF is not chosen. The choice made here in-
fluences the complete User Interface. It only becomes effective when ArgoUML is exited and
restarted.

• Smooth edges of diagram lines and text. This feature is known as “anti-aliasing# on
certain platforms. It causes diagonal lines to look much less jagged, by making use of several shades
of gray. This feature only works if the operating system supports it.

9.4.7.6. Modules Tab

This tab shows a list of modules that are installed, which may be enabled or disabled. Since this is a new
concept for ArgoUML, it currently contains either nothing, or a module named ArgoTestLoadableMod-
ules, which is just a module that allows to test the concept. It adds a useless button on the Tools menu,
nothing else.

Notice also that this is a "new" modules concept so the old Pluggable modules do not work this way, and
are not listed.

The Menu bar

94

9.5. The View Menu
This menu is used for actions that affect how the various panes are viewed.

9.5.1. Goto Diagram…
This menu entry brings up a dialog box, describing all the diagrams in the current project under Ar-
goUML.

Figure 9.13. The dialog for Goto Diagram….

The dialog box contains a table with three columns and one row for each diagram in the current project.
A scroll bar gives access if the table is too long for the box. Double button 1 click on any row will select
that diagram in the editing pane. The three columns are as follows.

• Type. Lists the type of diagram.

• Name. Lists the name given to the diagram.

• Description. Shows how many nodes and edges there are on the diagrams. A node is a “2-D#
artifact and an edge is a connector artifact.

This dialog box is not modal, which allows it to remain open while editing the model for easy naviga-
tion.

Warning

The V0.18 imlementation of ArgoUML does not inmediately update the dialog box with
changes made to diagrams: change of name, addition of diagrams, deletion of diagrams.

9.5.2. Find…
This menu entry brings up a non-modal dialog box for the ArgoUML search engine.

The Menu bar

95

Figure 9.14. The dialog for Find….

At the top, the dialog box has four tabs labeled Name and Location, Last Modified,
Tagged Values and Constraints. Of these all but the first are grayed out in the V0.18 version of
ArgoUML (because they are not imlemented yet), so the first tab is always selected.

The Name and Location specifies the search to be made. It contains the following:

• A text box labeled Element Name: specifies the name of the element (or artifact) to search for.
Wild cards (*, ?) may be used here. A drop down gives access to find expressions previously used.

• A text box labeled In Diagram: specifies which diagrams are to be searched. Again wild cards
may be used. Both these two text boxes have a default entry of *, i.e. match anything.

• To the right of these two text boxes, a selector labeled Element Type: allows you to specify the
UML metaclass for which you are searching.

• A selector labeled Find in: allows the search to be made over the entire project (the default) or as
a sub-search over the results of a previous search. When opened, a list of all the search result tabs

The Menu bar

96

appears.

• Beneath these boxes is the button Clear Tabs. This clears the display of tabs with the results
from previous searches (see below). This button is downlighted if there are no tabs but the Help tab.

• And finally, there is the button Find. This causes the search specified in the text boxes and selectors
above to be executed. The results are displayed in a tab taking up the lower two thirds of the page.

The lower two thirds of the dialog comprises an initial tab (labeled Help) giving summary help, and
further tabs displaying the results of searches. These search tabs are labeled with a summary of the
search element in diagram and are divided horizontally in two halves.

Button 1 double clicking on these tabs removes the tab, and spawns a new window that contains the tab
contents, i.e. the search results. This window can be moved and sized at will. This does not work for the
help tab.

The top half is labeled Search Results: followed by a count of the number of items found. It com-
prises a table with one row for each element (artifact) and four columns. The width of the columns can
be adjusted.

• Type. Lists the type of element (artifact).

• Name. Lists the name given to the element (artifact).

• In Diagram. Where the artifact is visible on a diagram, this lists the name of the diagram, other-
wise it shows N/A.

• Description. Contains a description of the element (artifact). In ArgoUML V0.18 this seems to
be restricted to the single entry docs.

Button 1 click on any row will give more information on that artifact by showing related artifacts in the
bottom half (see below). Double click on any row describing an artifact on a diagram and that item and
diagram will be selected.

The bottom half of the tab is a table labeled Related Elements: and is a table with the same
columns as the top half. When an element (artifact) has been selected in the top half, this table shows the
details of any related elements.

Tip

Enlarging the dialog vertically shows that the "Related Items" part changes in size, but not
the Search results part. However, between them is a divider line and when hovering over
this line, the mouse pointer changes into a sizing icon, and the border between these 2 ar-
eas can be moved up or down to redistribute the space in the window.

Warning

This dialog box is not modal, which allows it to remain open while editing the model for
easy navigation. But the V0.18 imlementation of ArgoUML does not inmediately update
the dialog box with changes made to the found artifacts: change of artifact name, change of
diagram name. Deletion of a diagram does not stop the possibility to navigate to it.

9.5.3. Zoom

The Menu bar

97

This entry brings up a sub-entry, which allows scaling the view of all diagrams to a factor of its normal
size. This setting is not saved persistently.

The sub-menu items that can be selected are:

• Zoom Out. Shortcut (Ctrl-Minus). Gives more overview over the drawing.

• Zoom Reset. Returns to the default zoom ratio (i.e. 100%).

• Zoom In. Shortcut (Ctrl-=). Makes the items on the drawings bigger.

9.5.4. Adjust Grid
This cycles the grid representation on the screen through the following sequence:

• dots at 16 pixel spacing (the default);

• dots at 32 pixel spacing;

• no grid of any form;

• full grid at 16 pixel spacing; and

• full grid at 8 pixel spacing.

9.5.5. Adjust Grid Snap
This cycles the spacing of grid snapping through the following sequence:

• snap at 8 pixel spacing (the default);

• snap at 16 pixel spacing;

• snap at 32 pixel spacing; and

• snap at 4 pixel spacing.

Note

There is no option to turn off snap to grid altogether

Caution

In the V0.18 version of ArgoUML this is not actually a true snap to grid. It just defines the
increments by which artifacts are moved around. Thus if an item has an X coordinate of 4
and Grid Snap is set to 8, moving will take it to X coordinates of 12, 20, 28 etc, not 8, 16,
24 etc

If you wish to align on true grid snap boundaries, you can use the
Arrange > Align To Grid menu (see Section 9.7.1, “Align#).

The Menu bar

98

9.5.6. Page Breaks
This toggles whether page breaks are shown on the diagram (as white dotted lines).

Warning

This menu-item is incorrectly implemented in the V0.18 version of ArgoUML, since it
should be a tick box toggle.

9.5.7. Notation
This sub-menu presents a radio button selection for notation, i.e. the language in which all textual adorn-
ments are shown on the diagrams. See also Section 9.4.7.4, “Notation Tab#).

This feature defines the user's default notation. ArgoUML allows defining a class in a diagram as being
represented using a specific notation.

There are 3 ways to set the notation for a figure on a diagram:

• In the settings dialog, by choosing "Use only UML notation" which overrides the other 2 for all fig-
ures.

• In the View menu, item Notation. This overrides the settings made for all figures on all diagrams!
So, changing this radio button is really an action, which resets all individually made choices, as de-
scribed in the next method:

• In the details pane, in the source tab, by directly selecting the language for the selected figure in the
combobox for the language. This setting is not saved persistently.

For example a class Able which is represented in Java, and class Baker which is represented in C++,
with class Able using class Baker and a class Charlie which references Able, but does not have a
specific notation defined for the diagram element.

In this situation, Charlie would be represented in the default notation, while Able and Baker would
be represented as defined in the diagram element. Changing the default notation would cause
CharlieAble or Baker.

• UML 1.3. Uses UML notation as the default notation for classes.

• Java. Uses Java notation as the default notation for classes.

The following choices are only available if the corresponding plugin languages are installed.

• Cpp.

• CSharp.

• PHP.

The Menu bar

99

9.6. The Create Menu
This menu provides for creating the various types of UML diagrams supported by ArgoUML.

9.6.1. New Use Case Diagram
This menu entry creates a blank use case diagram, and selects that diagram in the editing pane. If a pack-
age is currently selected, the use case diagram will be created within that package, it will be shown
within the package on the explorer hierarchy (under Package-centric view) and artifacts created on the
diagram will be created within the namespace of the package. This does not only apply to a package, but
also to a class, interface, use case, etc.

Tip

This does not prevent artifacts from other namespaces/packages appearing on the diagram.
They can be added from the explorer using Add to Diagram from the button 2 pop-up
menu.

9.6.2. New Class Diagram
This menu entry creates a blank class diagram, and selects that diagram in the editing pane. If a package
is currently selected, the class diagram will be created within that package, it will be shown within the
package on the explorer hierarchy (under Package-centric view) and artifacts created on the diagram will
be created within the namespace of the package. This does not only apply to a package, but also to a
class, interface, use case, etc.

Tip

This does not prevent artifacts from other namespaces/packages appearing on the diagram.
They can be added from the explorer using Add to Diagram from the button 2 pop-up
menu.

9.6.3. New Sequence Diagram

Warning

Sequence diagrams are not supported in ArgoUML V0.18. hence this menuitem is down-
lighted all the time.

9.6.4. New Collaboration Diagram
This menu entry creates a blank collaboration diagram, and selects that. Within the package hierarchy,
collaboration diagrams are always created within a Collaboration, within the package or model,
rather than within the package or model directly itself. If a package is currently selected, the collabora-
tion diagram will be created within a collaboration within that package, it will be shown within the col-
laboration within the package on the explorer hierarchy (under Package-centric view) and artifacts cre-
ated on the diagram will be created within the namespace of the collaboration within the package.

Tip

This does not prevent artifacts from other namespaces/packages appearing on the diagram.

The Menu bar

100

They can added from the explorer using Add to Diagram from the button 2 pop-up
menu.

9.6.5. New Statechart Diagram
This menu entry creates a blank statechart diagram associated with the currently selected class, and se-
lects that diagram in the editing pane. Artifacts created on the diagram will be created within the names-
pace of the owning class.

Tip

Statechart diagrams must be associated with a model element capable of dynamic behav-
ior, such as classifier or a behavioral feature, which provides the context for the state ma-
chine it represents. Suitable model elements are e.g. a class, an operation, and a use case.
The New Statechart Diagram menu entry is grayed out if such element is not se-
lected.

9.6.6. New Activity Diagram
This menu entry creates a blank activity diagram associated with the currently selected class, and selects
that diagram in the editing pane. Artifacts created on the diagram will be created within the namespace
of the owning class.

Tip

Activity diagrams must be associated to packages, classifiers (including use cases) and be-
havioral features. Suitable model elements are e.g. a class, a use case, an operation, and a
package. The Activity Diagram menu entry is grayed out if such element is not se-
lected.

9.6.7. New Deployment Diagram
This menu entry creates a blank deployment diagram, and selects that diagram in the editing pane. If a
package is currently selected, the deployment diagram will be created within that package, it will be
shown within the package on the explorer hierarchy (under Package-centric view) and artifacts created
on the diagram will be created within the namespace of the package.

Tip

This does not prevent artifacts from other namespaces/packages appearing on the diagram.
They can added from the explorer using Add to Diagram from the button 2 pop-up
menu.

9.7. The Arrange Menu
This menu provides a range of functions to help in the alignment of artifacts on diagrams within the edit-
ing pane. In general the menu function invoked is applied to any artifact or artifacts currently selected in
the editing pane.

9.7.1. Align

The Menu bar

101

This sub-menu aligns the selected items. There are seven alignment options provided.

• Align Tops. Aligns the selected artifacts by their top edges.

• Align Bottoms. Aligns the selected artifacts by their bottom edges.

• Align Rights (Shortcut Ctrl-R). Aligns the selected artifacts by their right edges.

• Align Lefts (Shortcut Ctrl-L). Aligns the selected artifacts by their left edges.

• Align Horizontal Centers. Aligns the selected artifacts so their horizontal centers are

in a vertical line.

• Align Vertical Centers. Aligns the selected artifacts so their vertical centers are in a

horizontal line.

• Align To Grid. Aligns the selected artifacts so their top and right edges are on the grid snap

boundary (see Section 9.5.5, “Adjust Grid Snap#) edge.

Tip

The alignment is to the current grid snap setting, which may be smaller, larger or the
same as the displayed grid. Since items are aligned to the grid snap boundary any way
when you place them, this menu entry has no effect unless you have either changed the
grid snap to a larger value or used one of the other Arrange menu entries to push
items off their initial positions.

9.7.2. Distribute
This sub-menu distributes the selected items. There are four distribution options provided.

• Distribute Horizontal Spacing. The leftmost and rightmost selected artifacts are

not moved. The others are adjusted horizontally until the horizontal space (i.e. from the right edge of
the left artifact to the left edge of the right artifact) is the same for all of the selected items

• Distribute Horizontal Centers. The leftmost and rightmost selected artifacts are

not moved. The others are adjusted horizontally until the distance between the horizontal centers of
all the selected items is the same.

• Distribute Vertical Spacing. The top and bottom selected artifacts are not moved.

The others are adjusted vertically until the vertical space (i.e. from the bottom edge of the top artifact
to the top edge of the bottom artifact) is the same for all of the selected items

• Distribute Vertical Centers. The top and bottom selected artifacts are not moved.

The others are adjusted vertically until the distance between the vertical centers of all the selected
items is the same.

The Menu bar

102

9.7.3. Reorder
This sub-menu adjusts the ordering of overlapping items. There are four reorder options provided.

• Forward. The selected artifacts are moved one step forward in the ordering hierarchy with re-

spect to other artifacts they overlap.

• Backward. The selected artifacts are moved one step back in the ordering hierarchy with re-

spect to other artifacts they overlap.

• To Front. The selected artifacts are moved to the front of any other artifacts they overlap.

• To Back. The selected artifacts are moved to the back of any other artifacts they overlap.

9.7.4. Nudge
This sub-menu provides fine adjustment to the positioning of selected artifacts. There are four nudge op-
tions provided.

• Nudge Left. The selected artifacts are moved one pixel to the left.

• Nudge Right. The selected artifacts are moved one pixel to the right.

• Nudge Up. The selected artifacts are moved up one pixel.

• Nudge Down. The selected artifacts are moved up one pixel.

9.7.5. Set Preferred Size
This menu-item acts on all selected items on the current diagram. It resets all sizes of all artifacts to its
“preferred# size, i.e. the minimum size for which all text fits inside.

9.7.6. Toggle Auto Resizing (to be written)
This menu-item is a checkbox ...

9.7.7. Layout
This menu-item provides an automatic diagram layout function, i.e. when activating this menu-item, all
items on the current class diagram are rearranged according a certain layout algorithm.

This function currently only works for classdiagrams. For all other types of diagrams, the menu-item is
downlighted.

9.8. The Generation Menu

The Menu bar

103

This menu provides support for code generation from UML diagrams. The functionality is built around
the structural information of class diagrams.

Note

Without any plugin modules installed, ArgoUML supports only code generation of Java.
ArgoUML V0.18 supports the following languages by plugin: C#, C++, php4, php5.

Warning

Code generation is still very much a work in progress. The current version of ArgoUML
will generate a structural template for your code, but is not able to handle behavioral speci-
fications to generate code for the dynamic behavior of the model.

9.8.1. Generate Selected Classes …
This menu entry brings up a dialog box for the ArgoUML code generator (see Figure 9.15, “The dialog
for Generate Selected Classes….#).

Figure 9.15. The dialog for Generate Selected Classes….

Below a label Available Classes the dialog box lists each of the selected classes by name with a
check box to the left, for each language installed. All the checkboxes are initially unchecked. Checking

The Menu bar

104

any of these boxes will cause code generation for that class. Checking multiple languages for a class
causes it to be generated in all these languages.

The buttons Select All and Select None may help when a lot of items have to be selected or de-
selected.

In the lower portion of the dialog box is an editable combo box labeled Output Directory to spec-
ify the directory in which code is generated. Within this directory, a top level directory will be created
with the name of the model. Further sub-directories will be created to reflect the package/namespace hi-
erarchy of the model. A drop down selector gives access to previously selected output directories.

Finally, at the bottom of the dialog box are two buttons, labeled Generate and Cancel. Button 1
click on the former will cause the code to be generated, button 1 click on the latter will cancel code gen-
eration.

9.8.2. Generate All Classes…
Shortcut F7.

This function behaves as Generate Selected Classes… (see Section 9.8.1, “Generate Selected
Classes …#) would with all classes in the current diagram selected.

9.8.3. Generate Code for Project… (To be Written)

9.8.4. Settings for Generate for Project… (To be Written)

9.9. The Critique Menu
This menu controls one of ArgoUML's unique features—the use of critics to guide the designer. The
theory behind this is well described in Jason Robbins' PhD dissertation
http://argouml.tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

Note

A word about terminology: The critics are background processes, which evaluate the cur-
rent model according to various “good# design criteria. There is one critic for every design
criterion.

The output of a critic is a critique—a statement about some aspect of the model that does
not appear to follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be
rectified, by raising a to-do item.

Note

The critics run as asynchronous processes in parallel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

9.9.1. Toggle Auto-Critique

The Menu bar

105

http://argouml.tigris.org/docs/robbins_dissertation/

This is a check box, controlling whether the critics are running. By default it is checked. If unchecked,
then all critics are disabled, and any to-do items generated by critics (the only others being those the de-
signer has added by hand) are hidden in the to-do pane.

9.9.2. Design Issues…
This menu entry brings up a dialog box controlling how critics associated with a particular design area
are to be handled (see Figure 9.16, “The dialog for Design Issues….#).

Figure 9.16. The dialog for Design Issues….

The Menu bar

106

ArgoUML categorizes critics according the the design issue they address. There are 16 such categories.
The critics in each category are discussed in detail in the chapter on critics (Chapter 14, The Critics).

The sliders may be set for each category to control the critics that trigger for that category. Setting a
slider to Off will disable all critics in that category, and remove all associated to-do items from the to-
do pane.

Setting a slider to a higher priority value will enable all critics at or above that priority level within the
design issue category (Off being the lowest priority).

Note

The sliders are set by default to High for all design categories.

9.9.3. Design Goals…
This menu entry brings up a dialog box controlling how design goals are to be handled (see Figure 9.17,
“The dialog for Design Goals….#).

Figure 9.17. The dialog for Design Goals….

ArgoUML has the concept that the designer will have a number of design goals to be achieved (for ex-
ample good structural representation, detailed behavioral representation etc). Critics are associated with
one or more goals.

The Menu bar

107

This dialog allows the user to specify the priority of each design goal.

The sliders may be set for each design goal to control the critics that trigger for that goal. Setting a slider
to zero will disable all critics in that goal, and remove all associated to-do items from the to-do pane.

Setting a slider to a higher value will enable all critics at or above that priority level within the design is-
sue category (1 being the highest priority and 5 the lowest).

Tip

It may be useful to think of this function as very similar to Design Issues… (see Sec-
tion 9.9.2, “Design Issues…#), but with grouping of critics according to the outcomes of
OOA&D rather than grouping according to the structure of UML.

Warning

The V0.18 version of ArgoUML provides a single design goal, Unspecified, with its
slider set by default to priority 1. However it contains no critics and so has no effect.

9.9.4. Browse Critics…
This menu entry brings up a dialog box controlling the individual critics (see Figure 9.18, “The dialog
for Browse Critics….#).

Figure 9.18. The dialog for Browse Critics….

This dialog controls the behavior of individual critics. To the left is a list of all the critics, to enable them
to be switched on or off individually. For each critic there are three columns, labeled Active, Head-
line and Snoozed. The first of these is a check box, which may be toggled with button 1 click. The
second is the headline name of the critic, the third indicates if the critic has been snoozed from the to-do
pane (see Chapter 13, The To-Do Pane. A critic is only really active if the box in the first column is
checked and the critic has not been snoozed.

The Menu bar

108

Any critic for which the box in the first column is unchecked is inactive and will not trigger. In addition
any to-do items associated with that critic will be removed from the to-do pane.

The V0.18 version of ArgoUML has a total of 90 critics, a few of which are incompletely implemented.
They are described in detail by design issue category in the chapter on critics (see Chapter 14, The Crit-
ics).

To the right of the list are a series of fields, titled Critic Details, giving detailed control over indi-
vidual critics. Selecting a critic in the list on the left will populate the fields for that critic.

The first field on the right is titled Critic Class: and then the full name of the class in ArgoUML
that implements the critic. This name can be used as unique identifier of the critique, e.g. in conversa-
tions about the critic.

The first field below this title is a text box labeled Headline: giving the complete headline of the
critic (which may be truncated in the list on the left).

Note

In the headline you may see the text <ocl>self</ocl>, which will be replaced by the
name of the artifact in question when the critic is triggered.

The next field is a drop-down selector, labeled Priority:. The three options available are High,
Medium and Low and specify the priority category of any to-do item generated by this critic. This does
not alter the priority of the already existing todo items, only the newly generated ones. Changing the pri-
ority of a critic is not saved persistently.

The next field is labeled MoreInfo: and contains a URL pointing to further information with a button
to the right labeled Go to navigate to that URL.

Warning

In the V0.18 release of ArgoUML there is no further information available, and the Go
button is always grayed out and disabled.

The next field is labeled Description: and is a text area with a detailed explanation of what this
critic means. If the text is too large for the area a scroll bar is provided to the right.

Note

In this text area you may see the text <ocl>self</ocl>, which will be replaced by the
name of the artifact in question when the critic is triggered.

The last field is a drop-down selector labeled Use Clarifier, with three options, Always,
If Only One and Never.

Clarifiers are the icons and wavy red underlines drawn on the actual diagrams to indicate the artefact to
which the critic refers. The original intention was to make the mapping from critics to clarifiers some-
what customizable.

For example one user might make a Missing Name critic show a red underline, another user might
turn off the clarifier, or have it draw a wavy green underline or a blue questionmark. Critics with their
clarifier's disabled would still produce feedback that is listed in the to-do pane.

The Menu bar

109

Caution

In the V0.18 release of ArgoUML this selector has no function whatsoever. It is for future
development.

Underneath the fields are three buttons in a horizontal row.

• Wake. It is possible to snooze a critic from the to-do pane (see Chapter 13, The To-Do Pane), which
makes the critic inactive for a period. If the critic has been snoozed, this button is enabled and will
wake the critic back up again. Otherwise it is grayed out.

Tip

You can tell a snoozed critic, because in the list on the left it will be indicated in the
third column.

• Configure. This button is for configuring the critic.

Caution

In the V0.18 version of ArgoUML this function is not implemented, and this button is
always grayed out. It is for future development.

• Edit Network. Right now critics are implemented in java code. That means end-users cannot add
new critics.

The idea of a critic network is that they would be a state machine like diagram with several steps.
Each step would express a condition which, collectively with the other steps associated with that
critic, articulates the “rule# that the critic is providing. If the rule fires, then remaining steps would
define the steps of the wizard to help the user fix the problem.

The ideas behind this are discussed in Chapter 4 of Jason Robbins PhD disseration (
http://argouml.tigris.org/docs/robbins_dissertation/diss4.html
[http://argouml.tigris.org/docs/robbins_dissertation/diss4.html]. In particular look at Figure 1-6 in
this chapter and the related discussion.

A suggested implementation is that the conditions could be written in OCL against the UML meta-
model. A library of predefined conditions and steps would allow end-users to build new critics by
combining those in novel ways.

Caution

In the V0.18 version of ArgoUML this function is not implemented, and this button is
always grayed out. It is for future development.

Finally the bottom right of the dialog contains a button labeled OK. Button 1 click here dismisses the di-
alog.

9.10. The Tools Menu
This menu provides a generic menu attachment point for any plug-ins provided with ArgoUML. The
standard system has one plug-in, and this menu entry contains one submenu by default.

The Menu bar

110

http://argouml.tigris.org/docs/robbins_dissertation/diss4.html
http://argouml.tigris.org/docs/robbins_dissertation/diss4.html

9.10.1. Export as XMI…
This menu-item allows to save the complete structure of the UML model as a XMI file, according the
XMI V1.0 standard. Beware the fact that this file will only contain the model, not any diagram layout.
Hence, if the xmi file is reloaded with the File - Open Project… menu, then the diagrams are
lost.

When the menu is activated, the standard filechooser appears, see Figure 9.19, “The dialog for Ex-
port XMI….#.

Figure 9.19. The dialog for Export XMI….

9.11. The Help Menu
This menu provides help on the use of ArgoUML. It has two entries.

9.11.1. System Information
This menu entry brings up the system information dialog, see Figure 9.20, “The dialog for Sys-
tem Information.#

Figure 9.20. The dialog for System Information.

The Menu bar

111

Use this menu to describe the system that runs ArgoUML to the system manager or developer. Pressing
the button Run Garbage Collector not only runs the Java gargage collector, but also refreshes
the information shown. To facilitate copy and paste into (e.g.) an email, the button Copy Informa-
tion to System Clipboard is foreseen. The Cancel button dismisses the dialog box.

9.11.2. About ArgoUML
This menu entry brings up the help window for ArgoUML (see Figure 9.21, “The help window for Ar-
goUML#).

Figure 9.21. The help window for ArgoUML

The Menu bar

112

The window has six tabs, which are selected by button 1 click. By default the first tab (Splash) is
shown.

• Splash. This displays the picture shown when ArgoUML starts up, and the current version num-
ber.

• Version. This provides version information on the various packages that make up ArgoUML, and
some operating system and environment information.

• Credits. This details all those who have created ArgoUML, including contact details for the vari-
ous module owners.

• Contact Info. This gives the major contact points for the ArgoUML project—the web site, and
the developers mailing list.

• Report bugs. This gives information about how to deal with bugs in ArgoUML. It is important
that all bugs are reported, and all cooperation is appreciated.

• Legal. A statement of the FreeBSD license which covers all the ArgoUML software.

Caution

The various documentation of the project are not all covered by FreeBSD (which is re-
ally meant for software). In particular this manual is covered by the OpenPub license

The Menu bar

113

(see Appendix E, Open Publication Licence).

The Menu bar

114

Chapter 10. The Explorer
The Explorer was previously called Navigation Pane/Tree or sometimes Navigator Pane/Tree.

10.1. Introduction
Figure 10.1, “Overview of the explorer# shows the ArgoUML window, with the explorer highlighted.

Figure 10.1. Overview of the explorer

The explorer allows the user to view the structure of the model from a number of predefined perspec-
tives. It also allows the user to define their own perspetives for custom exploring of the model.

An important feature, related to the cognitive psychology ideas behind ArgoUML is that not all artifacts
are necessarily shown in all perspectives. Rather, the perspectives are used to implement hiding of unin-
teresting parts of the model.

10.2. Mouse Behavior in the Explorer
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 7, User Interface Reference).

115

10.2.1. Button 1 Click
Within the hierarchical display, elements which have sub-hierarchies are indicated by when the hi-

erarchy is hidden and when the hierarchy is open.

Button 1 click over the name of any diagram artifact will cause the diagram to be selected and displayed
in the editing pane. Its details will also be displayed in the details pane.

Button 1 click over the name of any artifact other than a diagram in the main area of the explorer will
cause it to be selected, and its details shown in the details pane. If the artifact is part of a diagram cur-
rently displayed in the editing pane, it will be highlighted there.

Note

If the artifact is part of a diagram other than that currently displayed in the Editing Pane,
there will be no change of diagram in the Editing Pane.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. button 1 click outside the menu area will remove it.

10.2.2. Button 1 Double Click
This has the effect of a button 1 single click, and if the tree item was not a leaf, it will toggle the hierar-
chy open or close.

10.2.3. Button 2 Actions
When used in the the explorer, this will display a selection dependent pop-up menu. Menu entries are
highlighted (but not selected) and sub-menus exposed by subsequent mouse motion (without any but-
tons). Menu entry selection is with button 1 or button 2.

10.2.4. Button 2 Double Click
This has no effect other than that of button 2 single click.

10.3. Keyboard Behavior in the Explorer
All keys active in a tree widget have their normal behaviour.

When a diagram is selected, pressing Ctrl-C will copy the diagram in GIF format to the system clip-
board.

10.4. Perspective Selection
The artifacts in the ArgoUML model may be configured for displaying in the tree by a number of per-
spectives. To this end, a drop-down at the top allows selection of the explorer perspective.

Below that, there is a drop-down to select the ordering of the atifacts within the hierarchy. The two pos-
sibilities are "Order by Type, Name" and "Order by Name". The former groups all items per type, and
sorts them per group alphabetically on the name. The lattter simply sorts on name only.

The following explorer perspectives may be selected in the drop-down at the top:

The Explorer

116

• Package-centric (the default). The exploring hierarchy is organized by package hierarchy. The
top level shows the model. Under this are all the top level packages in the model and all the artifacts
that are directly in the namespace of the model.

Beneath each package are all the artifacts that sit within the namespace of that package, including
any further sub-packages (which in turn have their own sub-hierarchies).

• Class-centric. (To be written)

• Diagram-centric. In this view the top level comprises all the diagrams in the model. Beneath
each diagram is a flat listing of all the artifacts on the diagram. Artifacts that have sub-artifacts that
do not appear on the diagram have their own hierarchy (for example attributes and operations of
classes).

• Inheritance-centric. In this view the top level shows the model. Beneath this are all artifacts
that have no generalization in the model. Those artifacts that have specializations have a sub-
hierarchy showing the specializations.

• Class Associations. In this view the top level shows the model. Beneath this are all diagrams
and all classes. All classes that have associations have a hierarchy tracking through the associated
classes.

• Residence-centric. In this view the model is shown at the top-level, with below it only
Nodes, and below these only components that reside on the nodes, and below these components all
elements that reside on the components.

• State-centric. In this view the top level shows all the state machines and all activity graphics
associated with classes.

Beneath each state machine is a hierarchy showing the state diagram and all of the states. Beneath
each state is a list of the transitions in and out of the state.

Beneath each activity graph is a hierarchy showing the activity diagram and all of the action states.
Beneath each action state is a list of the transitions in and out of the action state.

• Transitions-centric. This is very similar to State-centric view, but under each state
machine is listed the diagrams and all transitions on the diagram, with states being shown as sub-
hierarchies under their connected transitions.

Similarly under each activity graph is listed the diagrams and all transitions on the diagram, with ac-
tion states being shown as sub-hierarchies under their connected transitions.

10.5. Configuring Perspectives
The explorer is designed to be user configurable, to allow the designer to view in his or her preferred
way.

10.5.1. The Configure Perspectives dialog
button 1 click on the "Configure Perspectives" icon () at the top left of the explorer brings up the ex-

plorer perspectives dialog (see Figure 10.2, “The Configure Perspectives dialog box#).

Figure 10.2. The Configure Perspectives dialog box

The Explorer

117

The top half of the dialog contains a list of all the currently defined perspectives and to the right a series
of buttons stacked vertically. Button 1 click can be used to select a perspective. You can select only one
perspective at a time.

Selecting a perspective reveals a text field above the list, where the name of the perspective can be
edited.

The lower half of the dialog contains two list areas. The one on the left, labeled Rules Library,
contains the list of available rules that may be used to create the perspective. The one on the right, la-
beled Selected Rules contains the actual rules chosen for the perspective that has been selected in
the list of perspectives at the top. In both lists, you can select only one rule at a time.

Separating the two areas in the lower half of the dialog are buttons labeled >> and <<. The first of these
transfers the rule selected in the library on the left to the list of rules on the right—i.e. it adds a rule to
the perspective. The second one transfers the rule selected on the right to the library list on the left—i.e.
it removes a rule from the perspective.

If you hover the mouse over the horizontal line that seperates the two halves of the dialog, then you see
it change shape, to indicate that you can grab this line and drag it up or down.

All three titles of the lists do show the numer of items in the list. ArgoUML V0.18 has 8 default perspec-
tives, and 60 rules in the library to build perspectives from.

The buttons at the top right are explained as follows:

The Explorer

118

• New. This creates a new perspective from scratch with no rules selected, with an automatically gen-
erated name.

• Remove. This removes the selected perspective.

• Duplicate. This creates a copy the selected perspective so it can be used as the basis of a new
perspective. The new one is named "Copy of" followed by the original name.

• Move Up. This moves the selected perspective one place up in the list. This button is downlighted
for the topmost perspective.

• Move Down. This moves the selected perspective one place down in the list. This button is down-
lighted for the last perspective.

• Restore Defaults. This restores all perspectives and their selected rules to the build-in defaults
of ArgoUML.

At the very bottom right is a button labeled OK to be used when all changes are complete. button 1 click
on this button will close the dialog window. The changes are saved when you exit ArgoUML (or in-
mediately by activating the menuitem File->Save Configuration) in the argo.user.properties
file.

Then there is the Cancel button, which cancels all changes made in the dialog. Pressing the dialog
close icon (usually at the top right corner) has the same effect as pressing the cancel button.

10.5.2. The Explorer Panes
The explorer was conceived as being able to offer multiple views simultaneously, with up to three pan-
els of hierarchy. A dialog offers control of these panels, with an option to show or not show each panel,
and the option of the second and third panels to be rooted at the selection on the previous panel, or to
show the previously used hierarchy.

Caution

This functionality is not yet implemented in ArgoUML. The dialog is never shown.

When using the explorer, it is worth bearing in mind that this is a useful visualization of the model, it is
not solely for navigation and selection. It is also useful for users to easily (meaning a few mouse clicks
without having to arrange a diagram) visualize the model structured according to some perspective. For
example, show me the state nesting, or show me the class inheritance tree, or show me the package nest-
ing, or show me the list of actors.

The idea with the second and third explorer tree panes, is that sometimes it is easier to explore the tree to
a certain level in one tree and then continue expanding in a second tree. Since each tree will not be so
deep, it will look more like a list.

For example, look at the way javadocs are viewed with frames: the packages are selected from one list,
and interfaces, classes, and exceptions in that package are shown in a second pane. In the case of
javadocs, the second pane has a tree with three roots that are always expanded, but it is visually pre-
sented as three lists with three headers.

The other suggested use of a second or third nav panel is to list recently visited model elements. This is
simliar to the recently visited files listed on the File menu of most applications, but for model ele-
ments rather than files.

The motivtion is the fact that designers frequently “interrupt# themselves: they are thinking of working

The Explorer

119

on one part of the design, and then they make a decision that needs a change in some other part, and then
that has an implication on some other part, and… and… and… the designer forgets what it was they
were originally trying to accomplish. They need to “pop their mental stack# to come back to finish what
the started. If they fail to do that, they leave half-finished fragments all over the design which always
seem to come out as soon as it is presented to someone else.

A recently visited list should be LIFO (stack) ordered, or FIFO (queue) ordered. The goal would be to
help designers come back to finish what they were doing, or simply to help them switch between two or
three related parts of the design. The Navigate Back and Navigate Forward buttons in the
toolbar serve the same basic purpose and use a lot less screen space.

Tear-off tabs would also help with alternating between views, but sometimes users don't want to work
with so many separate windows.

This is the theory that motivates the idea of multiple nav panes. For more information see Jason Rob-
bins' PhD dissertation http://argouml.tigris.org/docs/robbins_dissertation/
[http://argouml.tigris.org/docs/robbins_dissertation/]. One practical usability concern is available screen
space and another is visual complexity. For this reason the multiple panes have yet to be implemented in
ArgoUML while more pressing issues are addressed.

10.6. Context Sensitive Menu
Button 2 Click over any selected artifact in the main area of the explorer will cause a pop-up menu to
appear.

10.6.1. Add to Diagram
This entry on the pop-up menu appears for any artifact that could be added to the diagram in the editing
pane.

The item can be placed in a diagram by moving the cursor to the editing pane or a spawned editing pane
window (where it will appear as a cross) and clicking button 1.

Caution

This menu entry only appears as not grayed out, if the diagram in the editor pane allows to
contain the artifact, and the artifact is not present yet in the diagram. ArgoUML will not let
you place more than one copy of any particular artifact on a diagram.

10.6.2. Delete From Model
This entry on the pop-up menu appears for any artifact that could be deleted from the model.

Warning

This deletes the artifact from the model completely, not just from the diagram. To remove
the artifact just from the diagram, use the edit menu (see Section 9.4.5, “ Remove

From Diagram#).

Caution

You can delete a diagram from the model. Depending on the type of diagram, that might
delete all artifacts shown on the diagram. To illustrate the differences, consider the follow-

The Explorer

120

http://argouml.tigris.org/docs/robbins_dissertation/

ing examples:

• Deleting a class diagram does not delete any artifact drawn on it. All artifacts that were
shown on the diagram remain present in the model. This because a class diagram does
not "map" on any artifact according the UML standard V1.3.

• Deleting a statechart diagram also deletes the statemachine it represents, and hence also
all the artifacts owned by the statemachine. This because a statechart diagram does
"map" into a StateMachine according the UML standard V1.3.

10.6.3. Set Source Path… (To be written)
This entry on the pop-up menu ...

10.6.4. Add Package
This entry on the pop-up menu is available whenever an artifact is selected that may contain a package,
e.g. a package. After activating this menu the artifact will own a new package.

10.6.5. Add All Classes in Namespace
This entry on the pop-up menu is available for Class Diagrams only. Activating this menu-item will add
all classes in the current namespace to the diagram. They will be located at the top left cor-
ner—obviously a perfect occasion to use the “Arrange->Layout# function in the menu.

The Explorer

121

Chapter 11. The Editing Pane

11.1. Introduction
Figure 11.1, “Overview of the editing pane# shows the ArgoUML window with the editing pane high-
lighted.

Figure 11.1. Overview of the editing pane

This is where all the diagrams are drawn. In earlier versions of ArgoUML this pane went under a variety
of names. You may encounter “drawing pane#, “diagram pane# or “multi-editor pane# in other docu-
mentation that is still being updated.

The pane has a tool bar at the top, and a single tab labeled As Diagram at the bottom, which has no
function in the 0.18 version of ArgoUML. The main area shows the currently selected diagram, of which
the name is shown in the window title bar.

11.2. Mouse Behavior in the Editing Pane
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 7, User Interface Reference).

122

11.2.1. Button 1 Click
In the tool bar of the editing pane, button 1 click is used to select a tool for creating a new artifact and
adding it to the diagram (see double clicking for creating multiple artifacts). For most tools, adding a
new artifact to the diagram is achieved by moving the mouse into the editing area and clicking again.

In the main editing area button 1 click is used to select an individual artifact.

Many artifacts (e.g. actor, class) show special handles when selected and the mouse hovers over them.
These are called “Selection Action Buttons#, see Section 11.5, “Selection Action Buttons#. They appear
at the sides, top and bottom, and indicate a relationship type. Clicking on a Selection Action Button cre-
ates a new related artifact, with the relation of the type that was indicated. If the shift key is pressed
when hovering the mouse over a selected artifact, sometimes different handles are shown, which stand
for different relation types.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. The pop-up menu will be removed by any button 1 click
outside of the menu area.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 11.3, “The tool bar#).

11.2.2. Button 1 Double Click
When used on the tool bar with a tool to add an artifact, the selected artifact will be added multiple times
to the drawing area, once for each further button click, until the tool is again selected or another tool
chosen.

When used within the drawing area on an artifact that has sub-components, double click will select the
sub-component for editing (creating it if necessary).

For example double clicking over an operation compartment of a class will select the operation. Or cre-
ate one if there is none yet.

A special use is with package artifacts on the class diagram. A double click on a package will navigate
to the class diagram associated with a package (the first created if there is more than one), or will offer
to create one for you if there is none. See Figure 11.2, “The dialog for adding a new class diagram #

Figure 11.2. The dialog for adding a new class diagram

11.2.3. Button 1 Motion
When adding an artifact using the toolbar, button 1 motion can generally be used to define the size of the
new artifact. Its dimensions (line ends, diagonal corners of a rectangular artifact etc) are defined by but-

The Editing Pane

123

ton 1 down and button 1 up.

Where the artifact being added is some form of connector its termination point is shown with button 1
up over the terminating artifact. button 1 click may be used in the space between artifacts to create artic-
ulation points in the connector. This is particularly useful where connectors must loopback on them-
selves.

Over graphical artifacts button 1 motion will move the artifact to a new position.

Graphical artifacts that are selected show handles at the corners or ends, and these can be used for re-
sizing.

Some artifacts (e.g. actor, class) show special handles (called “Selection Action Buttons#, see Sec-
tion 11.5, “Selection Action Buttons#) at the sides, top and bottom, which can be dragged to form types
of relationship with other artifacts.

Where the artifact is some form of connector between other items, button 1 motion other than at a han-
dle will cause a new handle to be created, allowing the connector to be articulated at that point. This
only works when the connecting line is not straight angled. Such new handles can be removed by mov-
ing them to the end of the connector.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 11.3, “The tool bar#).

11.2.4. Shift and Control with Button 1
Where multiple selections are to be made, the CTRL key is used with button 1 to add unselected arti-
facts to the current selection. Where an artifact is already selected, it is removed from the current selec-
tion.

Clicking Button 1 while the SHIFT key is pressed, invokes the broom tool, which causes the selected ar-
tifacts (and any others swept up with them) to be moved with the broom tool (see Section 11.3.1,
“Layout Tools#).

11.2.5. Alt with Button 1 motion
Button 1 down anywhere in the diagram while the ALT key is pressed, allows to scroll the canvas in all
directions with button 1 motion.

11.2.6. Button 2 Actions
When used over artifacts in the the editing pane, this will display a context dependent pop-up menu.
Menu entries are highlighted (but not selected) and sub-menus exposed by subsequent mouse motion
(without any buttons). Menu entry selection is with button 1 or button 2. See Section 11.9, “Pop-Up
Menus# for details of the specific pop-up menus.

In case multiple elements are selected, the pop-up menu only appears if all the items are of the same
kind. The functions apply to all selected elements, but in the V0.18 implementation of ArgoUML, many
work only on one element, or even misbehave.

11.2.7. Button 2 Double Click
This has no effect other than that of button 2 single click.

11.2.8. Button 2 Motion

The Editing Pane

124

This is used to select items in a context sensitive menu popped up by use of button 2 click.

11.3. The tool bar
The toolbar at the top of the editing pane provides the main functions of the pane. The default tool is the
Select tool (). In general button 1 click on any tool selects a tool for one use, before reverting to

the default tool, and button 1 double click selects a tool for repeated use.

The tools fall into four categories.

• Layout tools. Provide assistance in laying out artifacts on the diagram.

• Annotation tools. Used to annotate artifacts on the diagram.

• Drawing tools. Used to add general graphic artifacts to diagrams.

• Diagram specific tools. Used to add UML artifacts specific to a particular diagram type to the dia-
gram.

11.3.1. Layout Tools
The following two tools are provided in all diagrams in this category.

• Select. This tool provides for general selection of artifacts on the diagram. Button 1 click

will select an artifact. CTRL with button 1 can be used to select (or deselect) multiple artifacts. But-
ton 1 motion will move selected 2D items or add and move a new control point on a link. Button 1
motion on a selected component's control point will stretch that component's shape.

• Broom. Button 1 motion with this tool provide a “broom# which will sweep all artifacts along.

This is a very shortcut way of lining things up.

The Broom can also be invoked by using SHIFT with button 1 motion when the Select tool is in
use.

The Broom is discussed at length in its own chapter, see Section 11.4, “The Broom#

Tip

Additional control of artifact layout is provided through the Arrange menu (see Sec-
tion 9.7, “The Arrange Menu#).

11.3.2. Annotation Tools
The annotation tool Comment () is used to add a comment to a selected UML artifact.

Caution

Unlike most other tools you use the Select tool to select an artifact, and then button 1

The Editing Pane

125

click on Comment to create the comment. If no element is selected when the comment
tool is clicked, then the comment is created and put at the left top corner.

The comment is created alongside the selected artifact, empty by default. The text can be selected with
button 1 double-click and edited from the keyboard.

The UML standard allows comments to be attached to any artifact.

You can link any comment to aditional elements using the CommentLink () tool.

11.3.3. Drawing Tools
These are a series of tools for providing graphical additions to diagrams. Although they are not UML ar-
tifacts, the UML standard provides for such decoration to improve the readability of diagrams.

Tip

These drawing tools provide a useful way to partially support some of the UML features
(such as general purpose notes) that are missing from the current release of ArgoUML.

Eight tools are provided, all grouped into one drop-down widget. See Figure 11.3, “The drawing tools
selector.#. Button 1 click on the diagram will place an instance of the graphical item of the same size as
the last one placed. The size can be controlled by button 1 motion during placement. One side or end of
the element will be at button 1 down, the other side or end at button 1 up. In general after they are placed
on the diagram, graphical elements can be dragged with the Select tool and button 1 and re-sized by
button 1 motion on the handles after they have been selected.

Figure 11.3. The drawing tools selector.

• Rectangle. Provides a rectangle.

• Rounded Rectangle. Provides a rectangle with rounded corners. There is no control over

the degree of rounding.

• Circle. Provides a circle.

The Editing Pane

126

• Line. Provides a line.

• Text. Provides a text box. The text is entered by selecting the box and typing. Text is centered

horizontally and after typing, the box will shrink to the size of the text. However it can be re-sized
by dragging on the corners.

• Polygon. Provides a polygon. The points of the polygon are selected by button 1 click and the

polygon closed with button 1 double click (which will link the final point to the first point).

• Spline. Provide an open spline. The control points of the spline are selected with button 1

and the last point selected with button 1 double click.

• Ink. Provide a polyline. The points are provided by button 1 motion.

11.3.4. Use Case Diagram Specific Tools
Several tools are provided specific to UML artifacts on use case diagrams. The detailed properties of
these artifacts are described in the section on use case diagram artifacts (see Chapter 16, Use Case Dia-
gram Artifact Reference).

• Actor. Add an actor to the diagram. For convenience, when the mouse is over a selected actor

it displays two handles to left and right which may be dragged to form association relationships.

• Use Case. Add a use case to the diagram. For convenience, when the mouse is over a se-

lected use case it displays two handles to left and right which may be dragged to form association re-
lationships and two handles top and bottom which may be dragged to form generalization and spe-
cialization relationships respectively.

• Association. Add an association between two artifacts selected using button 1 motion

(from the first artifact to the second). There are 6 types of association offered here, see Figure 11.4,
“The association tool selector.#: association, aggregation and composition, and all
these three can be bidirectional or unidirectional.

Figure 11.4. The association tool selector.

The Editing Pane

127

• Dependency. Add a dependency between two artifacts selected using button 1 motion (from

the dependent artifact).

• Generalization. Add a generalization between two artifacts selected using button 1 mo-

tion (from the child to the parent).

• Extend. Add an extend relationship between two artifacts selected using button 1 motion

(from the extended to the extending use case).

• Include. Add an include relationship between two artifacts selected using button 1 motion

(from the including to the included use case).

• Add Extension Point. Add an extension point to a selected use case. The extension point

is given the default name newEP and location loc. Where the extension point compartment is dis-
played, the extension point may be edited by button 1 double click and using the keyboard, or by se-
lecting with button 1 click (after the use case has been selected) and using the property tab. Other-
wise it may be edited through its property tab, selected through the property tab of the owning use
case.

Note

This tool is grayed out except when a use case is selected.

11.3.5. Class Diagram Specific Tools
Several tools are provided specific to UML artifacts on class diagrams. The detailed properties of these
artifacts are described in the section on class diagram artifacts (see Chapter 17, Class Diagram Artifact
Reference).

• Package. Add a package to the diagram.

• Class. Add a class to the diagram. For convenience, when the mouse is over a selected class it

displays two handles to left and right which may be dragged to form association relationships (or
composition in case SHIFT has been pressed) and two handles top and bottom which may be
dragged to form generalization and specialization relationships respectively.

• Association. Add an association between two artifacts selected using button 1 motion

(from the first artifact to the second). There are 6 types of association offered here, see Figure 11.4,
“The association tool selector.#: association, aggregation and composition, and all
these three can be bidirectional or unidirectional.

• Generalization. Add a generalization between two artifacts selected using button 1 (from

the child to the parent).

• Interface. Add an interface to the diagram. For convenience, when the mouse is over a se-

lected interface it displays a handle at the bottom which may be dragged to form a realization rela-

The Editing Pane

128

tionship (the target being the realizing class).

• Realization. Add a realization between a class and an interface selected using button 1 mo-

tion (from the realizing class to the realized interface).

• Dependency. Add a dependency between two artifacts selected using button 1 motion (from

the dependent artifact). There are also 2 special types of dependency offered here, Permission (
) and Usage ().

• Add Attribute. Add an attribute to the currently selected class. The attribute is given the

default name newAttr of type int and may be edited by button 1 double click and using the key-
board, or by selecting with button 1 click (after the class has been selected) and using the property
tab.

Note

This tool is grayed out except when a class is selected.

• Add Operation. Add an operation to the currently selected class or interface. The operation

is given the default name newOperation with no arguments and return type void and may be
edited by button 1 double click and using the keyboard, or by selecting with button 1 click (after the
class has been selected) and using the property tab.

Note

This tool is grayed out except when a class or interface is selected.

11.3.6. Sequence Diagram Specific Tools

Warning

Sequence diagrams are not implemented in V0.18 of ArgoUML. Hence the description be-
low will (might) only become correct in future versions of ArgoUML.

Six tools are provided specific to UML artifacts on sequence diagrams. The detailed properties of these
artifacts are described in the section on sequence diagram artifacts (see Chapter 18, Sequence Diagram
Artifact Reference).

• Object. Add an object to the diagram.

• Stimulus Call. Add a call stimulus between two objects selected using button 1 motion

(from the originating object to the receiving object).

• Stimulus Create. Add a create stimulus between two objects selected using button 1 mo-

tion (from the originating object to the receiving object).

The Editing Pane

129

• Stimulus Destroy. Add a destroy stimulus between two objects selected using button 1

motion (from the originating object to the receiving object).

• Stimulus Send. Add a send stimulus between two objects selected using button 1 motion

(from the originating object to the receiving object).

• Stimulus Return. Add a return stimulus between two objects selected using button 1 mo-

tion (from the originating object to the receiving object).

11.3.7. Collaboration Diagram Specific Tools
Three tools are provided specific to UML artifacts on collaboration diagrams. The detailed properties of
these artifacts are described in the section on collaboration diagram artifacts (see Chapter 20, Collabora-
tion Diagram Artifact Reference).

• Classifier Role. Add a classifier role to the diagram.

• Association Role. Add an association role between two classifier roles selected using

button 1 motion (from the originating classifier role to the receiving classifier role). There are 6
types of association roles offered here, see Figure 11.4, “The association tool selector.#: associa-
tion, aggregation and composition, and all these three can be bidirectional or uni-
directional.

• Generalization. Add a generalization between two artifacts selected using button 1 (from

the child to the parent).

• Dependency. Add a dependency between two artifacts selected using button 1 motion (from

the dependent artifact).

• Add Message. Add a message to the selected association role.

Note

This tool is grayed out except when an association role is selected.

11.3.8. Statechart Diagram Specific Tools
Eleven tools are provided specific to UML artifacts on state diagrams. The detailed properties of these
artifacts are described in the section on statechart diagram artifacts (see Chapter 19, Statechart Diagram
Artifact Reference).

• State. Add a state to the diagram.

•

The Editing Pane

130

Composite State. Add a composite state to the diagram. All artifacts that are subsequently

placed on the diagram on top of the composite state will form part of that composite state.

• Transition. Add a transition between two states selected using button 1 motion (from the

originating state to the receiving state).

• State. Add a synchstate to the diagram.

• State. Add a submachinestate to the diagram.

• State. Add a stubstate to the diagram.

• Initial. Add an initial pseudostate to the diagram.

Caution

There is nothing to stop you adding more than one initial state to a diagram or compos-
ite state. However to do so is meaningless, and one of the critics will complain.

• Final State. Add a final state to the diagram.

• Junction. Add a junction pseudostate to the diagram.

• Branch. Add a branch pseudostate to the diagram.

Caution

A well formed branch should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any
branch that does not follow this rule.

• Fork. Add a fork pseudostate to the diagram.

Caution

A well formed fork should have one incoming transition and two or more outgoing. Ar-
goUML does not enforce this, but an ArgoUML critic will complain about any fork
that does not follow this rule.

• Join. Add a join pseudostate to the diagram.

Caution

A well formed join should have one outgoing transition and two or more incoming. Ar-
goUML does not enforce this, but an ArgoUML critic will complain about any join that
does not follow this rule.

The Editing Pane

131

• Shallow History. Add a shallow history pseudostate to the diagram.

• Deep History. Add a deep history pseudostate to the diagram.

11.3.9. Activity Diagram Specific Tools
Seven tools are provided specific to UML artifacts on activity diagrams. The detailed properties of these
artifacts are described in the section on activity diagram artifacts (see Chapter 21, Activity Diagram Ar-
tifact Reference).

• Action State. Add an action state to the diagram.

• Transition. Add a transition between two action states selected using button 1 motion

(from the originating action state to the receiving action state).

• Initial. Add an initial pseudostate to the diagram.

Caution

There is nothing to stop you adding more than one initial state to a diagram. However
to do so is meaningless, and one of the critics will complain.

• Final State. Add a final state to the diagram.

• Junction. Add a junction (decision) pseudostate to the diagram.

Caution

A well formed junction should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any junc-
tion that does not follow this rule.

• Fork. Add a fork pseudostate to the diagram.

Caution

A well formed fork should have one incoming transition and two or more outgoing. Ar-
goUML does not enforce this, but an ArgoUML critic will complain about any fork
that does not follow this rule.

• Join. Add a join pseudostate to the diagram.

Caution

The Editing Pane

132

A well formed join should have one outgoing transition and two or more incoming. Ar-
goUML does not enforce this, but an ArgoUML critic will complain about any join that
does not follow this rule.

• Join. Add a objectflowstate to the diagram.

11.3.10. Deployment Diagram Specific Tools
Ten tools are provided specific to UML artifacts on deployment diagrams. The detailed properties of
these artifacts are described in the section on deployment diagram artifacts (see Chapter 22, Deployment
Diagram Artifact Reference).

Note

Remember that ArgoUML's deployment diagrams are also used for component diagrams.

• Node. Add a node to the diagram. For convenience, when the mouse is over a selected node it

displays four handles to left, right, top and bottom which may be dragged to form association rela-
tionships.

• Node Instance. Add a node instance to the diagram. For convenience, when the mouse is

over a selected node instance it displays four handles to left, right, top and bottom which may be
dragged to form link relationships.

• Component. Add a component to the diagram. For convenience, when the mouse is over a se-

lected component it displays four handles to left, right, top and bottom which may be dragged to
form dependency relationships.

• Component Instance. Add a component instance to the diagram. For convenience, when

the mouse is over a selected component instance it displays four handles to left, right, top and bot-
tom which may be dragged to form dependency relationships.

• Generalization. Add a generalization between two artifacts selected using button 1 (from

the child to the parent).

• Realization. Add a realization between a class and an interface selected using button 1 mo-

tion (from the realizing class to the realized interface).

• Dependency. Add a dependency between two artifacts selected using button 1 motion (from

the dependent artifact).

• Association. Add an association between two artifacts (node, component, class or inter-

face) selected using button 1 motion (from the first artifact to the second artifact). There are 6 types
of association offered here, see Figure 11.4, “The association tool selector.#: association, ag-
gregation and composition, and all these three can be bidirectional or unidirec-

The Editing Pane

133

tional.

Caution

The constraint that associations between classes and interfaces must not be navigable
from the interface still applies on deployment diagrams.

• Object. Add an object to the diagram. For convenience, when the mouse is over a selected ob-

ject it displays four handles to left, right, top and bottom, which may be dragged to form link rela-
tionships.

• Link. Add a link between two artifacts (node instance, component instance or object) selected

using button 1 motion.

11.4. The Broom
ArgoUML's broom alignment tool is specialized to support the needs of designers in achieving the kind
of alignment used in UML diagrams. It is common for designers to roughly align objects as they are cre-
ated or by using simple movement commands. The broom is an easy way to precisely align objects that
are already roughly aligned. Furthermore, the broom's distribution options are suited to the needs of
UML designers: making related objects appear evenly spaced, packing objects to save diagram space,
and spreading objects out to make room for new objects. The broom also makes it easy to change from
horizontal to vertical alignment or from left-alignment to right-alignment.

The T-shaped icon in ArgoUML's diagram toolbar invokes the broom alignment tool. When the mouse
button 1 is pressed while in broom-mode, the designer's initial mouse movement orients the broom to
face in one of four directions: north, south, east, or west. After that, mouse drag events cause the broom
to advance in the chosen direction, withdraw, or grow in a lateral direction. Like a real-world push
broom, the broom tool pushes diagram elements that come in contact with it. This has the effect of align-
ing objects along the face of the broom and provides immediate visual feedback (see the figure below).
Unlike a real-world broom, moving backwards allows diagram elements to return to their original posi-
tion. Growing the broom makes it possible to align objects that are not near each other. When the mouse
button is released, the broom disappears and the moved objects are selected to make it easy to manipu-
late them further.

Figure 11.5. The Broom.

The Editing Pane

134

If the designer presses the space bar while using the broom, objects on the face of the broom are dis-
tributed (i.e., spaced evenly). ArgoUML's broom supports three distribution modes: objects can be
spaced evenly across the space that they use, objects can be packed together with only a small gap be-
tween them, or objects can be distributed evenly over the entire length of the broom's face. Repeatedly
pressing the space bar cycles among these three distribution modes and displays a brief message indicat-
ing the operation just performed: Space evenly, Pack tightly, Spread out and Original.

11.5. Selection Action Buttons
When the user selects an artifact in a UML diagram, several handles are drawn on it to indicate that it is
selected and to provide user interface affordances to resize the node. ArgoUML also displays some
“selection-action buttons# around the selected artifact. See the figure below for some examples of the
handles and “selection-action buttons#. The two figures for a class differ because for creating the second
one, the shift key has been depressed.

Figure 11.6. Some examples of “Selection Action Buttons#.

The Editing Pane

135

Selection-action buttons offer common operations on the selected object. For example, a class node has
a button at 12-o'clock for adding a superclass, one at 6-o'clock for adding a subclass, and buttons at
3-o'clock and 9-o'clock for adding associations. These buttons support a "click or drag" interaction: a
single click creates a new related class at a default position relative to the original class and creates a
generalization or association; a drag from the button to an existing class creates only the generalization
or association; and, a drag to an empty space in the diagram creates a new class at the mouse position
and the generalization or association. ArgoUML provides some automated layout support so that click-
ing the subclass button will position the new classes so that they do not overlap.

Selection-action buttons are transparent. They have a visibly recognizable rectangular shape and size
and they contain an icon that is the same as the icon used for the corresponding type of design element
on the standard toolbar. However, these icons are unfilled line drawings with many transparent pixels.
This allows selection-action buttons to be overlaid onto the drawing area without overly obscuring the
diagram itself. Also, the buttons are only drawn when the mouse is over the selected artifact; if any part
of the diagram is obscured, the mouse can simply be moved away to get a clearer view of the diagram.

11.6. Clarifiers
A key feature of ArgoUML are the critics, which run in parallel with the main ArgoUML tool. When
they find a problem, they typically raise a to-do item, and also highlight the problem on the editing pane.
The graphical techniques used for highlighting are called Clarifiers

• Note icon (). Displayed at the top left of an artifact indicates a critic of that artifact. Moving the

mouse over the icon will pop up the critic headline.

• Colored wavy line (). Used for critics specific to sub-components of graphical arti-

facts. For example to underline attributes with a problem within a class.

• Solid colored line (). Not seen in ordinary editing, but used when a to-do item is

highlighted from the to-do pane (see Chapter 13, The To-Do Pane) by button 1 double click. The

The Editing Pane

136

solid line is used to show all the artifacts affected by the critic, for example all stimuli that are out of
order.

11.7. The Drawing Grid
The editing pane is provided with a background grid which can be set in various styles or turned off al-
together through the menu (see Section 9.5.4, “Adjust Grid#).

Whatever grid is actually displayed, placement of items on the diagram is always controlled by the set-
ting for grid snap, which ranges from 4 to 32 pixels (see Section 9.5.5, “Adjust Grid Snap#).

11.8. The Diagram Tab
At the bottom of the editing pane is a small tab labeled as As Diagram. The concept is that a UML di-
agram can be displayed in a number of ways, for example as a graphical diagram or as a table. Each rep-
resentation would have its own tab and be selected by button 1 click on the tab.

Earlier versions of ArgoUML did implement a tabular representation, but the current release only sup-
ports a diagram representation, so this tab does not have any function.

11.9. Pop-Up Menus
Within the editing pane, button 2 click over an artifact will bring up a pop-up menu with a variable num-
ber of main entries, many with a sub-menu.

11.9.1. Critiques
This sub-menu gives list of all the critics that have triggered for this artifact. Selection of a menu entry
causes that entry to be highlighted in the to-do pane and its detailed explanation to be placed in the
ToDoItem tab of the details pane. A solid colored line indicates the offending element.

11.9.2. Ordering
This menu controls the ordering of overlapping artifacts on the diagram. It is equivalent to the Re-
order sub-menu of the Arrange menu (see Section 9.7.3, “Reorder#). There are four entries.

• Forward. The selected artifacts are moved one step forward in the ordering hierarchy with re-

spect to other artifacts they overlap.

• Backward. The selected artifacts are moved one step back in the ordering hierarchy with re-

spect to other artifacts they overlap.

• To Front. The selected artifacts are moved to the front of any other artifacts they overlap.

• To Back. The selected artifacts are moved to the back of any other artifacts they overlap.

11.9.3. Add

The Editing Pane

137

This sub-menu only appears for artifacts that can have notes attached (class, interface, object, state,
pseudostate) or have operations or attributes added (class, interface). There are at most three entries.

• New Attribute. Only appears where the selected artifact is a class. Creates a new attribute

on the artifact

• New Operation. Only appears where the selected artifact is a class or interface. Creates a

new operation on the artifact

• New Comment. Attaches a new comment to the selected artifact.

11.9.4. Show
This sub-menu only appears with certain artifacts. It is completely context dependent. There are many
possible entries, depending on the selected artifact and its state.

• Hide Extension Point Compartment. Only appears when the extension point compart-
ment of a use case is displayed. Hides the compartment.

• Show Extension Point Compartment. Only appears when the extension point compart-
ment of a use case is hidden. Displays the compartment.

• Hide All Compartments. Only appears when both attribute and operation compartments are
displayed on a class or object. Hides both compartments.

• Show All Compartments. Only appears when both attribute and operation compartments are
hidden on a class or object. Displays both compartments.

• Hide Attribute Compartment. Only appears when the attribute compartment of a class or
object is displayed. Hides the compartment.

• Show Attribute Compartment. Only appears when the attribute compartment of a class or
object is hidden. Displays the compartment.

• Hide Operation Compartment. Only appears when the operation compartment of a class or
object is displayed. Hides the compartment.

• Show Operation Compartment. Only appears when the operation compartment of a class or
object is hidden. Displays the compartment.

• Show All Edges. Only appears on a class. Displays all associations (to shown artifacts) that are
not shown yet. This is the same function as the "add to Diagram" on the asociation in the explorer
context menu. currently.

• Hide All Edges. Only appears on a class. Hides all associations. This is the same function as
“Remove from Diagram# on all the associations of this class.

• Hide Stereotype. Only appears when the Stereotype of a package is displayed. Hides the
stereotype.

• Show Stereotype. Only appears when the Stereotype of a package is hidden. Displays the
stereotype.

The Editing Pane

138

11.9.5. Modifiers
This sub-menu only appears with class, interface, package and use case artifacts. It is used to set or clear
the values of the various modifiers available.

• Abstract. Set for an abstract artifact.

• Leaf. Set for a final artifact, i.e. one with no subartifacts.

• Root. Set for a root artifact, i.e. one with no superartifacts.

• Active. Set for a artifact with dynamic behavior.

Note

This really ought to be set automatically for artifacts with state machines or activity di-
agrams.

11.9.6. Multiplicity
This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the multiplicity at the end of the association nearest the mouse click point. There are only
four entries, a sub-set of the range of multiplicities that are available through the property sheet of a as-
sociation end (see Section 16.6, “Association End#).

• 1

• 0..1

• 1..*

• 0..*

11.9.7. Aggregation
This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the aggregation at the end of the association nearest the mouse click point. There are
three entries.

• none. Remove any aggregation.

• aggregate. Make this end a shared aggregation (loosely known as an “aggregation#).

• composite. Make this end a composite aggregation (loosely known as a “composition#).

Caution

UML requires that an end with a composition relationship must have a multiplicity of 1
(the default).

The Editing Pane

139

11.9.8. Navigability
This sub-menu only appears with association artifacts, when clicking at one end of the association. It is
used to control the navigability of the association. There are three entries.

• bidirectional. Make the association navigable in both directions.

• <class1> to <class2>. Make the association navigable only from <class1> to <class2>. In
other words <class1> can reference <class2> but not the other way round.

• <class2> to <class1>. Make the association navigable only from <class2> to <class1>. In
other words <class2> can reference <class1> but not the other way round.

Note

UML does permit an association to be non-navigable in both directions. ArgoUML will al-
low this, but you will have to set each of the association ends navigation property, reached
from the property tab of the association - and the diagram does not show any arrows in this
case.

This is considered bad design practice (it will trigger a critic in ArgoUML), so is only of
theoretical interest.

Note

UML does not permit navigability from an interface to a class. ArgoUML does not prevent
this.

The Editing Pane

140

Chapter 12. The Details Pane

12.1. Introduction
Figure 12.1, “Overview of the details pane# shows the ArgoUML window, with the details pane high-
lighted.

Figure 12.1. Overview of the details pane

For any artifact within the system, this pane is where all its associated data is viewed and entered.

The Pane has a series of tabs at the top, which are selected by button 1 click The body of a tab is a menu
of items to be checked, selected or entered specific to the particular tab selected.

Of these, the Properties Tab is by far the most complex, with a different presentation for each arti-
fact within the system. The detailed descriptions of the properties tab for each artifact are the subject of
separate chapters covering the artifacts that may appear on the various diagrams (see Chapter 15, Top
Level Artifact Reference through Chapter 22, Deployment Diagram Artifact Reference).

12.2. To Do Item Tab
This tab provides control over the various to-do items created by the user, or raised automatically by the
ArgoUML critics (discussed in more detail in the section on the Critique menu—see Section 9.9,

141

“The Critique Menu#). Figure 12.2, “Example of the To Do Item tab on the properties pane# shows a
typical pane. The to-do item is selected with button 1 in the to-do pane (see Chapter 13, The To-Do
Pane) or by using the Critiques context sensitive pop-up menu on the editing pane.

Figure 12.2. Example of the To Do Item tab on the properties pane

Customization of the critics behaviour is possible through the Browse critics… menu (see Sec-
tion 9.9.4, “Browse Critics…#).

The body of the tab describes the problem found by the critic and outlines how it can be fixed. To the
left are four buttons.

• New To Do Item… This launches a dialog box (see Figure 12.3, “Dialog box for

New To Do Item#), which allows you to create your own to-do item, with its own headline
(which appears in the to-do pane), priority for the to-do pane, reference URL and detailed descrip-
tion for further information.

Figure 12.3. Dialog box for New To Do Item

The Details Pane

142

• Resolve Item… This pops up a dialog allowing the user to resolve the selected to-do item

(see Figure 12.4, “Dialog box for Resolve Item#). This is an important dialog, because it allows
you to deal with to-do items in ways other than the recommendation of the to-do item (which is the
whole point of their being advisory).

This dialog box is intended to be used for the following reasons: deleting todo items that were manu-
ally created, preventing a single critic to trigger on a single object, and dismissing categories of todo
items by lowering design concerns or design goals.

Figure 12.4. Dialog box for Resolve Item

The Details Pane

143

At the top are three radio-buttons, of which by default the last is selected, labeled 1) It is not
relevant to my goals, 2) It is not of concern at the moment, and 3) Rea-
son given below. If you choose the third of these you should enter a reason in the main text
box.

Tip

If you wish to resolve a to-do item (that is generated by a critic) by following its rec-
ommendations, just make the recommended changes and the to-do item will disappear
of its own accord. There is no need to use this dialog.

Warning

The V0.18 version of ArgoUML implementation is incomplete: The reason given is not
stored when the project is saved. And there is no way to retrieve todo items that were
resolved. So, it is not usefull to give a reason at all.

When a todo item generated by a critic is resolved, then there is no way to undo this
(unless by re-crating the object that triggered the critic).

• Send Email To Expert… Activating this tool allows the user to send an Email to an ex-

pert asking for advice. This works like clicking a "mailto:users@argouml.tigris.org?subject=[critic
header]" link in your webbrowser.

• Snooze Critic This suspends the activity of the critic that generated the current to-do item.

The Details Pane

144

The to-do item (and all others generated by the critic) will disappear from the to-do pane.

The critic will wake up after a period of time. Initially this period is 10 minutes, but it doubles on
each successive application of the Snooze button. The critic can be awakened explicitly through the
Critique > Browse Critics… menu (see Section 9.9.4, “Browse Critics…#).

Tip

Some common critics can fire the whole time as you build a big diagram. Some users
find it useful to snooze these critics until the diagram has been completed.

12.2.1. Wizards
Some of the more common critics have a “wizard# available to help in fixing the problem. The wizard
comprises a series of pages (one or more) in the ToDo Item tab that step you through the changes.

Figure 12.5. Example of a Wizard

The wizard is driven through the first three buttons at the bottom of the ToDo Item tab.

• Back. This will take you back to the previous step in the wizard. Grayed out if this is the first step.

• Next. This will take you back to the next step in the wizard. Grayed out if this is the last step.

• Finish. This will commit the changes you have made through the wizard in previous steps, and/or
use the defaults for all next steps.

Note

Not all to-do items have wizards. If there is no wizard all three buttons will remain grayed
out.

12.2.2. The Help Button
There is one remaining button at the bottom of the To Do Item tab, labeled Help. This will fire up a
browser to a URL with further help.

Warning

The Details Pane

145

In the V0.18 release of ArgoUML the URLs are generally invalid. The few that are valid
have no information.

12.3. Properties Tab
Through this tab, the properties of artifacts selected in the explorer or editing pane may be set. The prop-
erties of an artifact may be displayed in one of the following ways:

1. Selection of the artifact in the explorer or editing panes, followed by selection of the properties tab
in the details pane; or

2. Context sensitive pop-up menu Properties (using button 2 click) on an artifact in the editing
area, which will select the item andselect the Properties tab in the details pane.

3. Navigation buttons cause different artifacts to be selected. I.e. the Go Up button on the properties
tab, the Navigate Back and Navigate Forward buttons in the main tool bar, and the vari-
ous menu-items under Edit - Select.

Figure 12.6, “A typical Properties tab on the details pane# shows a typical properties tab for an arti-
fact in ArgoUML (in this case a class).

Figure 12.6. A typical Properties tab on the details pane

At the top left is the icon and name of the type of artifact (i.e. the UML metaclass, not the actual name
of this particular artifact). In this example the property tab is for a class.

To the right of this is a toolbar of icons relevant to this property tab. The first one is always navigation
Go up. The last is always Delete to delete the selected artifact from the model. The ones in between
depend on the artifact.

The remainder of the tab comprises fields, laid out in two or three columns. Each field has a label to its
left. The fields may be text boxes, text areas, drop down selectors, radio boxes and check boxes. In most
(but not all cases) the values can be changed. In the case of text boxes this is sometimes by just typing
the required value.

However for many text boxes and text areas, data entry is via a context sensitive pop-up menu (using
button 2 click), which offers options to add a new entry, delete an entry or move entries up and down (in
text areas with multiple entries).

The first field is almost always a text field Name, where the name of the specific artifact can be entered.

The Details Pane

146

The remaining fields vary depending on the artifact selected.

The detailed property sheets for all ArgoUML artifacts are discussed in separate chapters for each of the
diagram types (use case diagram (Chapter 16, Use Case Diagram Artifact Reference, class diagram
(Chapter 17, Class Diagram Artifact Reference, sequence diagram (Chapter 18, Sequence Diagram Arti-
fact Reference, statechart diagram (Chapter 19, Statechart Diagram Artifact Reference, collaboration di-
agram (Chapter 20, Collaboration Diagram Artifact Reference, activity diagram (Chapter 21, Activity
Diagram Artifact Reference, deployment diagram (Chapter 22, Deployment Diagram Artifact
Reference). Property sheets for artifacts that are common to all diagram types have their own chapter
(Chapter 15, Top Level Artifact Reference).

Caution

ArgoUML will always try to squeeze all fields on to the property sheet. If the size of the
property tab is too small, it may become unusable. The solution is to either enlarge the
property tab by enlarging the main window, or by moving the dividers to left and top.

12.4. Documentation Tab
Within the UML 1.3 standard, all artifacts are children of the Element metaclass. The Element
metaclass defines a tagged value documentation for comment, description or explanation of the ele-
ment to which it is attached. Since this tagged value applies to every artifact, it is given its own tab in
the details pane, rather than being part of the Tagged Values tab.

Figure 12.7, “A typical Documentation tab on the details pane# shows a typical documentation tab
for an artifact in ArgoUML.

Figure 12.7. A typical Documentation tab on the details pane

The fields on this tab are the same for all artifacts.

• Author: A text box for the author of the documentation.

• Version: A text box for the version of the documentation.

• Since: A text box to show how long the documentation has been valid.

• Deprecated: A check box to indicate whether this artifact is deprecated (i.e. planned for removal
in future versions of the design model).

• See: Pointers to documentation outside the system.

The Details Pane

147

• Documentation: Literal text of any documentation.

Tip

ArgoUML is not primarily a documentation system. For artifacts that require heavy docu-
mentation, notably use cases, the use of the See: field to point to external documents is
more practical.

12.5. Presentation Tab
This tab provides some limited control over the graphical representation of artifacts in the diagram in the
editing pane.

Artifacts that do not have any specific direct graphical representation on the screen (beyond their textual
description) do not have style tabs of their own. For example the style sheet of an operation on a class
will be downlighted.

Style sheets vary a little from artifact to artifact, but Figure 12.8, “A typical Presentation tab on the
details pane# shows a typical style tab for an artifact in ArgoUML (in this case a package).

Figure 12.8. A typical Presentation tab on the details pane

There may be further fields in some cases, e.g. for a class, but the fields shown are common to many ar-
tifacts.

• Bounds: This defines the corners of the bounding box for a 2D artifact. It comprises four numbers
separated by commas. These four numbers are respectively: i) the X coordinate of the upper left cor-
ner of the box; ii) the Y coordinate of the upper left corner of the box; iii) the width of the box; and
iv) the height of the box. All units are pixels on the editing pane.

This field has no effect on 1D artifacts that link other artifacts (associations, generalizations etc),
since their position is constrained by their connectedness. In this case the field is downlighted.

• Fill: This drop-down selector specifies the fill color for 2D artifacts. It is not present for line arti-
facts. Selecting No Fill makes the artifact transparant. Selecting Custom allows to create other
colors then the ones listed. It causes the color selector dialog box to appear, see Figure 12.9, “The
Custom Fill/Line Color dialog box#.

• Line: This drop-down selector specifies the line color for artifacts. Selecting No Fill makes the
artifact transparant. Selecting Custom allows to create other colors then the ones listed. It causes
the color selector dialog box to appear, see Figure 12.9, “The Custom Fill/Line Color dia-
log box#.

The Details Pane

148

• Shadow: This drop-down selector specifies the width of the shadow (if any) for 2D artifacts. It is
not present for line artifacts.

Figure 12.9. The Custom Fill/Line Color dialog box

Figure 12.10. The Custom Fill/Line Color dialog box

The Details Pane

149

Figure 12.11. The Custom Fill/Line Color dialog box

The Details Pane

150

12.6. Source tab
This tab is a single box, containing the source code that will be generated for this artifact. ArgoUML
generates a template of the code required (most specifically for classes). The intention is that you will
add artifact specific code here, and it will be incorporated.

Warning

This part of ArgoUML is under development. At this stage any code you add will be lost.

12.7. Constraints Tab
Constraints are one of the extension mechanisms provided for UML. ArgoUML is equipped with a pow-
erful constraint editor based on the Object Constraint Language (OCL) defined in the UML 1.3 standard.

Caution

The OCL editor implementation for ArgoUML V0.18 doesn't support OCL constraints for

The Details Pane

151

elements other than Classes and Features.

This is something of a general restriction of OCL. Although the UML specification claims
that there may be a constraint for every model element, the OCL specification only defines
classes/interfaces and operations as allowable contexts.

It is not before OCL 2.0 that a more general definition of allowable contexts is introduced.
The key issue is that for each context definition you need to define what is the contextual-
Classifier, i.e., the classifier that will be associated with the self keyword. The creators of
the OCL specification claim that this is not an issue for the OCL specification, but rather
for UML or some integration task force. Conversely, it seems that the UML specification
people seem to expect this to be defined in the OCL specification (which is why we did a
first step in that direction in OCL 2.0).

So, to cut a long story short, it appeared that the simplest solution for ArgoUML at the mo-
ment would be to enable the OCL property panel only for those model elements for which
there actually exists a definition of the contextualClassifier in OCL 1.4. These are (s.
above) Class/Interface and Feature.

The standard pre-defines a small number of constraints (for example the xor constraint over a set of as-
sociations indicating that only one may be manifest for any particular instance).

The standard also envisages a number of circumstances where general purpose constraints may be use-
ful:

• To specify invariants on classes and types in the class model;

• To specify type invariants for stereotypes;

• To describe pre- and post-conditions on operations and methods;

• To describe guards;

• As a navigation language; and

• To specify constraints on operations.

Figure 12.12, “A typical Constraints tab on the details pane# shows a typical constraint tab for a ar-
tifact in ArgoUML (in this case a class).

Figure 12.12. A typical Constraints tab on the details pane

The Details Pane

152

Along the top of the tab are a series of icons.

• New Constraint. This creates a new constraint and launches the constraint editor in the

Constraints tab for that new constraint (see Section 12.7.1, “The Constraint Editor#). The
new constraint is created with a context declaration for the currently selected artifact.

Warning

It seems logical, that when a new constraint is created, it needs to be edited. But Ar-
goUML V0.18 fails to start the OCL editor upon creation; you have to do this by primo
selecting the new constraint first, secundo rename it, and tertio press the Edit Con-
straint button. It is essental for successfully creating a constraint to follow these 4
steps accurately: create, select, rename, edit. The step to rename is necessary, because
the validity check will refuse the constraint if its name differs from the name men-
tioned in the constraint text. For the same reason, renaming a constraint afterwards is
impossible.

• Delete Constraint. The constraint currently selected in the Constraint Name box

(see below) is deleted.

Caution

In V0.18 of ArgoUML this button is not downlighted when it is not functional, i.e.
when no constraint is selected.

• Edit Constraint. This launches the constraint editor in the Constraints tab (see Sec-

tion 12.7.1, “The Constraint Editor#). The editor is invoked on the constraint currently selected in
the Constraint Name box.

Caution

The Details Pane

153

In V0.18 of ArgoUML this button is not downlighted when it is not functional, i.e.
when no constraint is selected.

• Configure Constraint Editor. This a dialog to configure options in the constraint

editor (see Figure 12.13, “Dialog box for configuring constraints#).

Figure 12.13. Dialog box for configuring constraints

The dialog box has a check box for the following option.

• Check type conformance of OCL constraints. OCL is strictly typed. At the early
stages of design it may be helpful to disable type checking, rather than follow through all the de-
tailed specification needed to get type consistency.

At the bottom are two buttons, labeled OK (to accept the option changes) and Cancel (to discard
the changes).

The main body of the constraints tab comprises two boxes, a smaller to the left and a larger one to the
right. The two are separated by two small arrow buttons which control the size of the boxes.

• Shrink Left. Button 1 click on this icon shrinks the box on the left. Its effect may be reversed

by use of the Shrink Right button (see below).

• Shrink Right. Button 1 click on this icon shrinks the box on the right. Its effect may be re-

versed by use of the Shrink Left button (see above).

Finer control can be achieved by using button 1 motion to drag the dividing bar to left and right.

The box on the left is titled Constraint Name and lists all the constraints (if any) so far defined for
the selected artifact. A constraint may be selected by button 1 click.

The box on the right is labeled Preview and contains the text of the constraint. This box only shows
some contents if a constraint is selected. Where a constraint is too large for the box, a scroll bar is pro-
vided to the right.

The Details Pane

154

12.7.1. The Constraint Editor
This is invoked through the use of the Edit Constraint button on the main Constraints tab.
The constraint editor takes up the whole tab (see Figure 12.14, “Dialog box for configuring
constraints#).

Figure 12.14. Dialog box for configuring constraints

Along the top of the tab are a series of icons.

• Cancel Edit Constraint. This exits the constraint editor without saving any changes

and returns to the main Constraints tab.

• Check OCL Syntax. This button invokes a full syntax check of the OCL written in the edi-

tor. If the syntax is valid, the constraint is saved, and control returns to the main Constraints
tab. If the syntax is not valid, a dialog box explains the problem.

Warning

Whether type checking is included should be configurable with the Config-
ure Constraint Editor button (see below). But ArgoUML V0.18 does always
check, and refuses to accept any constraint with the slightest error.

• Configure Constraint Editor. This a dialog to configure options in the constraint

editor. It is also available in the main Constraints tab and is discussed in detail there (see Sec-
tion 12.7, “Constraints Tab#).

To the right of the toolbar is a check box labeled Syntax Assistant (unchecked by default), which
will enable the syntax assistant in the constraint editor.

If the syntax assistant is enabled, six drop down menus are provided in a row immediately below the
toolbar. These provide standard templates for OCL that, when selected, will be inserted into the con-
straint being edited.

The syntax assistant can be made floating in a seperate window by button 1 motion on the small divider
area to the left of the row of drop-down menus.

• General. General OCL constructors. Entries: inv (inserts an invariant); pre (inserts a pre-

The Details Pane

155

condition); post (inserts a post-condition); self (inserts a self-reference); @pre (inserts a refer-
ence to a value at the start of an operation); and result (inserts a reference to a previous result).

• Basic Operators. Relational operators and parentheses. Entries: =; <>; <; >; <=; >=; and ().

• Numbers. Arithmetic operators and functions. Entries: +; -; *; /; mod; div; abs; max; min;
round; and floor.

• Strings. String functions. Entries: concat; size; toLower; toUpper; and substring.

• Booleans. Logical functions. Entries: or; and; xor; not; implies; and if then else.

• Collections. Operators and functions on collections—bags, sets and sequences. The large num-
ber of functions are organized into sub-groups.

• General. Functions that apply to all types of collection. Entries: Collection {} (insert a
new collection); Set {} (insert a a new set); Bag {} (insert a new bag); Sequence {}
(insert a new sequence); size; count; isEmpty; notEmpty; includes; includesAll;
iterate; exists; forAll; collect; select; reject; union; intersection;
including; excluding; and sum.

• Sets. Operators and functions that apply only to sets. Entries: - (set difference); and symmet-
ricDifference.

• Sequences. Functions that apply to sequences. Entries: first; last; at; append;
prepend; and subSequence.

The remainder of the tab comprises a writable text area containing the text to be edited. The mouse but-
tons have their standard behavior within an editable text area (see Section 7.3, “General Mouse Behavior
in ArgoUML#).

In addition, cut, copy and paste operations may be invoked through the keyboard shortcuts Ctrl-X,
Ctrl-C and Ctrl-V respectively.

Warning

There is a known problem with the V0.18 release of ArgoUML. The Cut, Copy and
Paste functions on the Edit menu cannot be used within the constraint editor. If used
they will work on the currently selected artifact in the editing pane.

12.8. Tagged Values Tab
Tagged values are another extension mechanism provided by UML. The user can define name-value
pairs to be associated with artifacts which define properties of that artifact. The names are known as
tags. UML pre-defines a number of tags that are useful for many of its artifacts.

Note

The tag documentation is defined for the top UML metaclass, Element and is so
available to all artifacts. In ArgoUML documentation values are provided through the
Documentation tab, rather than by using the Tagged Values tab.

The Tagged Values tab in ArgoUML comprises a simple two column table, with an editable box on
the left for the tag name and an editable box on the right for the associated value. There is always at least

The Details Pane

156

one empty row available for any new tag. The mouse buttons have their standard behavior within an ed-
itable text area (see Section 7.3, “General Mouse Behavior in ArgoUML#).

In addition, cut, copy and paste operations may be invoked through the keyboard shortcuts Ctrl-X,
Ctrl-C and Ctrl-V respectively.

Warning

There is a known problem with the V0.18 release of ArgoUML. The Cut, Copy and
Paste functions on the Edit menu cannot be used within the constraint editor. If used
they will work on the currently selected artifact in the editing pane.

12.9. Checklist Tab
Conducting design reviews and inspections is one of the most effective ways of detecting errors during
software development. A design review typically consists of a small number of designers, implementers,
or other project stakeholders holding a meeting to review a software development artifact. Many devel-
opment organizations have developed checklists of common design problems for use in design review
meetings. Recent research indicated that reviewers inspecting code without meeting, makeing use of
these checklists, are just as effective as design review meetings.

Hence, a checklist feature has been added to ArgoUML, that is much in the spirit of design review
checklists. However, ArgoUML's checklists are integrated into the design tool user interface and the de-
sign task.

A software designer using ArgoUML can see a review checklist for any design element. The
“Checklist# tab presents a list of check-off items that is appropriate to the currently selected design ele-
ment. For example, when a class is selected in a design diagram, the checklist tab shows items that
prompt critical thinking about classes. See the figure below. Designers may check off items as they con-
sider them. Checked items are kept in the list to show what has already been considered, while
unchecked items prompt the designer to consider new design issues. ArgoUML supplies many different
checklists with many possible items.

Figure 12.15. An example of a checklist for a class.

The Details Pane

157

Caution

In the V0.18 release of ArgoUML, this tab is not completely implemented. E.g. the checks
are not saved.

The Details Pane

158

Chapter 13. The To-Do Pane

13.1. Introduction
Figure 13.1, “Overview of the to-do pane# shows the ArgoUML window with the to-do pane high-
lighted.

Figure 13.1. Overview of the to-do pane

This pane provides access to the advice that comes from the critics processes running within ArgoUML.

A selector box at the top allows a choice of how the data is presented, a button allows the display of the
hierarchy to be changed, and there is an indicator of the number of to-do items identified.

More information on critics can be found in the discussion of the Critique menu (see Section 9.9,
“The Critique Menu#).

13.2. Mouse Behavior in the To-Do Pane
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 7, User Interface Reference).

159

13.2.1. Button 1 Click
This action is generally used to select an item for subsequent operations.

Within the hierarchical display, elements which have sub-hierarchies may be indicated by when the

hierarchy is hidden and when the hierarchy is open.

When these icons are displayed, the display of the hierarchy is toggled by button 1 click on these icons.

Button 1 click over the headline of any to-do item will cause its details to be shown in the
To Do Item tab of the details pane. That tab is automatically selected if it is not currently visible.

13.2.2. Button 1 Double Click
When applied to the folder icon alongside a hierarchy category, this will cause the display of that hierar-
chy to be toggled.

When applied to a headline, button 1 double click will show the diagram for the artifact to which the to-
do item applies in the editing pane and select the artifact on the diagram using an appropriate clarifier
(the artifact may be highlighted, underlined with a wavy line or surrounded by a colored box as appro-
priate).

13.2.3. Button 2 Actions
There are no button 2 functions in the to-do pane.

13.2.4. Button 2 Double Click
There are no button 2 functions in the to-do pane.

13.3. Presentation Selection
At the top of the pane is a drop-down selector controlling how the to-do items are presented. The to-do
items may be presented in six different ways. This setting is not stored persistently, i.e. it is on its default
vallue when ArgoUML is started.

• By Priority. This is the default setting. The to-do items are organized into three hierarchies by
priority: High, Medium and Low. The priority associated with the to-do items generated by a par-
ticular critic may be altered through the Critique > Browse Critics… menu (see Sec-
tion 9.9.4, “Browse Critics…#).

• By Decision. The to-do items are organized into 17 hierarchies by design issue: Uncatego-
rized, Class Selection, Behavior, Naming, Storage, Inheritance, Contain-
ment, Planned Extensions, State Machines, Design Patterns,
Relationships, Instantiation, Modularity, Expected Usage, Methods,
Code Generation and Stereotypes. The details of the critics in each category are discussed
in Section 9.9.2, “Design Issues…#.

• By Goal. ArgoUML has a concept that critics may be grouped according to the user goals they af-
fect. This presentation groups the to-do items into hierarchies by goal.

Caution

The To-Do Pane

160

In the current release of ArgoUML there is only one goal, Unspecified and all to-
do items will appear under this heading.

• By Offender. The to-do items are organized into a hierarchy according to the artifact that caused
the problem. Todo items that were manually created with the "New ToDo item" button (i.e. not by a
critic), are not listed here.

• By Poster. The to-do items are organized into a hierarchy according to which critic generated the
to-do item. The class name of the critic is listed instead of just its headline name since the former is
guaranteed to be a unique name.

• By Knowledge Type. ArgoUML has the concept that a critic reflects a deficiency in a category
of knowledge. This presentation option groups the critics according to their knowledge category:
Designer's, Correctness, Completeness, Consistency, Syntax, Semantics, Op-
timization, Presentational, Organizational, Experiencial and Tool. The for-
mer category (Designer's) contains the manually entered todo items.

13.4. Item Count
To the right of the flat/hierarchical button is a count of the number of to-do items currently found. It will
be highlighted in yellow when the number of to-do items grows above 50 todo items, and red when
above 100.

The To-Do Pane

161

Chapter 14. The Critics

14.1. Introduction
The key feature that distinguishes ArgoUML from other UML CASE tools is its use of concepts from
cognitive psychology. The theory behind this is well described in Jason Robbins' PhD dissertation
http://argouml.tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

Critics are one of the main ways in which these ideas are implemented. Running in the background they
offer advice to the designer which may be accepted or ignored. A key point is that they do not impose a
decision on the designer.

Note

The critics are asynchronous processes that run in parallel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

14.1.1. Terminology
The critics are background processes, which evaluate the current model according to various “good# de-
sign criteria. There is one critic for every design criterion.

The output of a critic is a critique—a statement about some aspect of the model that does not appear to
follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be rectified, by
raising a to-do item.

14.1.2. Design Issues
ArgoUML categorizes critics according the the design issue they address (some critics may be in more
than one category). At present there are 16 such categories.

Within this manual the descriptions of critics are grouped in sections by design issue.

14.2. Uncategorized
These are critics that do not fit into any other category.

ArgoUML has no critics in this category. Maybe some will be added in later versions.

14.3. Class Selection
These are critics concerning how classes are chosen and used.

ArgoUML has the following critics in this category.

14.3.1. Wrap DataType
DataTypes are not full classes within UML 1.3. They can only have enumeration literals as values, and
only support query operations (that is operations that do not change the DataType's state).

162

http://argouml.tigris.org/docs/robbins_dissertation/

DataTypes cannot be associated with classes, unless the DataType is part of a composite (black dia-
mond) aggregation. Such an association relects the tight binding of a collection of DataType instances to
a class instance. In effect such a DataType is an attribute of the class with multiplicity.

Good OOA&D depends on careful choices about which entities to represent as full objects and which to
represent as attributes of objects.

There are two options to fix this problem.

• Replace the DataType with a full class.

• or change the association aggregation to composite relationship at the DataType end.

14.3.2. Reduce Classes in diagram <diagram>
Suggestion to improve readability by having fewer classes on a diagram. If one class diagram has too
many classes it may become very difficult for humans to understand. Defining an understandable set of
class diagrams is an important part of your design.

14.3.3. Clean Up Diagram
Suggestion that the diagram could be improved by moving artifacts that are overlapping.

14.4. Naming
These are critics concerning the naming of artifacts. The current version of ArgoUML has 18 critics in
this category.

14.4.1. Resolve Association Name Conflict
Suggestion that two association names in the same namespace have the same name. This is not permit-
ted in UML.

14.4.2. Revise Attribute Names to Avoid Conflict
Suggestion that two attribute names of a class have the same name. This is not permitted in UML.

Note

The problem may be caused by inheritance of an attribute through a generalization rela-
tionship.

14.4.3. Change Names or Signatures in an Artifact
Two operations in <artifact> have the same signature. This means their name is the same, and the list of
parameters has the same type.

Where there are conflicting signatures, correct code cannot be generated for mainstream OO languages.
It also leads to very unclear semantics of the design.

In comparing signatures, this critic considers:

The Critics

163

1. the name;

2. the list of in, out and in-out parameter types in order; and

Only if these all match in both type and order, will the signatures be considered as the same.

This follows the line of Java/C++ in ignoring the return parameters for the signature. This may be unsat-
isfactory for some functional OO languages.

Note

Some purists would argue that the comparison should really differentiate between in, out
and in-out parameters. However no practical programming language can do this when re-
solving an overloaded method invocation, so this critics lumps them all together.

14.4.4. Duplicate End (Role) Names for an Association
The specified association has two (or more) ends (roles) with the same name. One of the well-
formedness rules in UML 1.3 for associations, is that all end (role) names must be unique.

This ensures that there can be unambiguous reference to the ends of the association.

To fix this, manually select the association and change the names of one or more of the offending ends
(roles) using the button 2 pop-up menu or the property sheet.

14.4.5. Role name conflicts with member
A suggestions that good design avoids role names for associations that clash with attributes or opera-
tions of the source class. Roles may be realized in the code as attributes or operations, causing code gen-
eration problems.

14.4.6. Choose a Name (Classes and Interfaces)
The class or interface concerned has been given no name (it will appear in the model as anon). Sugges-
tion that good design requires that all interfaces and classes are named.

14.4.7. Choose a Unique Name for an Artifact (Classes
and Interfaces)

Suggestion that the class or interface specified has the same name as another (in the namespace), which
is bad design and will prevent valid code generation.

14.4.8. Choose a Name (Attributes)
The attribute concerned has been given no name (it will appear in the model as (anon Attribute)).
Suggestion that good design requires that all attributes are named.

14.4.9. Choose a Name (Operations)
The operation concerned has been given no name (it will appear in the model as (anon
Operation)). Suggestion that good design requires that all operations are named.

The Critics

164

14.4.10. Choose a Name (States)
The state concerned has been given no name (it will appear in the model as (anon State)). Sugges-
tion that good design requires that all states are named.

14.4.11. Choose a Unique Name for a (State related) Arti-
fact

Suggestion that the state specified has the same name as another (in the current statechart diagram),
which is bad design and will prevent valid code generation.

14.4.12. Revise Name to Avoid Confusion
Two names in the same namespace have very similar names (differing only by one character). Sugges-
tion this could potentially lead to confusion.

Caution

This critic can be particularly annoying, since at times it is useful and good design to have
a series of artifacts var1, var2 etc.

It is important to remember that critics offer guidance, and are not always correct. Ar-
goUML lets you dismiss the resulting to-do items through the to-do pane (see Chapter 13,
The To-Do Pane).

14.4.13. Choose a Legal Name
All artifact names in ArgoUML must use only letters, digits and underscore characters. This critic sug-
gests an entity has not met this requirement.

14.4.14. Change an Artifact to a Non-Reserved Word
Suggestion that this artifact's name is the same as a reserved word in UML (or within one character of
one), which is not permitted.

14.4.15. Choose a Better Operation Name
Suggestion that an operation has not followed the naming convention that operation names begin with
lower case letters.

Caution

Following the Java and C++ convention most designers give their constructors the same
name as the class, which begins with an upper case character. In ArgoUML, this will trig-
ger this critic, unless the constructor is stereotyped «create».

It is important to remember that critics offer guidance, and are not always correct. Ar-
goUML lets you dismiss the resulting to-do items through the to-do pane (see Chapter 13,
The To-Do Pane).

14.4.16. Choose a Better Attribute Name

The Critics

165

Suggestion that an attribute has not followed the naming convention that attribute names begin with
lower case letters.

14.4.17. Capitalize Class Name
Suggestion that a class has not followed the naming convention that classes begin with upper case let-
ters.

Note

Although not triggering this critic, the same convention should apply to interfaces.

14.4.18. Revise Package Name
Suggestion that a package has not followed the naming convention of using lower case letters with peri-
ods used to indicated sub-packages.

14.5. Storage
Critics concerning attributes of classes.

The current version of ArgoUML has the following critics in this category.

14.5.1. Revise Attribute Names to Avoid Conflict
This critic is discussed under an earlier design issues category (see Section 14.4.2, “Revise Attribute
Names to Avoid Conflict#).

14.5.2. Add Instance Variables to a Class
Suggestion that no instance variables have been specified for the given class. Such classes may be cre-
ated to specify static attributes and methods, but by convention should then be given the stereotype
«utility».

14.5.3. Add a Constructor to a Class
You have not yet defined a constructor for class class. Constructors initialize new instances such that
their attributes have valid values. This class probably needs a constructor because not all of its attributes
have initial values.

Defining good constructors is key to establishing class invariants, and class invariants are a powerful aid
in writing solid code.

To fix this, add a constructor manually by clicking on class in the explorer and adding an operation us-
ing the context sensitive pop-up menu in the property tab, or select class where it appears on a class dia-
gram and use the Add Operation tool.

In the UML 1.3 standard, a constructor is an operation with the stereotype «create». Although not
strictly standard, ArgoUML will also accept «Create» as a stereotype for constructors.

By convention in Java and C++ a constructor has the same name as the class, is not static, and returns no
value. ArgoUML will also accept any operation that follows these conventions as a constructor even if it
is not stereotyped «create».

The Critics

166

Caution

Operators are created in ArgoUML with a default return parameter (named return). You
will need to remove this parameter to meet the Java/C++ convention.

14.5.4. Reduce Attributes on a Class
Suggestion that the class has too many attributes for a good design, and is at risk of becoming a design
bottleneck.

14.6. Planned Extensions
Critics concerning interfaces and subclasses.

Note

It is not clear why this category has the name “Planned Extensions#.

The current version of ArgoUML has three critics in this category.

14.6.1. Operations in Interfaces must be public
Suggestion that there is no point in having non-public operations in Interfaces, since they must be visible
to be realized by a class.

14.6.2. Interfaces may only have operations
Suggestion that an interfaces has attributes defined. The UML standard defines interfaces to have opera-
tions.

Caution

ArgoUML does not allow you to add attributes to interfaces, so this should never occur in
the ArgoUML model. It might trigger if a project has been loaded with XMI created by an-
other tool.

14.6.3. Remove Reference to Specific Subclass
Suggestion that in a good design, a class should not reference its subclasses directly through attributes,
operations or associations.

14.7. State Machines
Critics concerning state machines.

ArgoUML has the following critics in this category.

14.7.1. Reduce Transitions on <state>
Suggestion given state is involved in so many transitions it may be a maintenance bottleneck.

The Critics

167

14.7.2. Reduce States in machine <machine>
Suggestion that the given state machine has so many states as to be confusing and should be simplified
(perhaps by breaking into several machines, or using a hierarchy).

14.7.3. Add Transitions to <state>
Suggestion that the given state requires both incoming and outgoing transitions.

14.7.4. Add Incoming Transitions to <artifact>
Suggestion that the given state requires incoming transitions.

14.7.5. Add Outgoing Transitions from <artifact>
Suggestion that the given state requires outgoing transitions.

14.7.6. Remove Extra Initial States
Suggestion that there is more than one initial state in the state machine or composite state, which is not
permitted in UML.

14.7.7. Place an Initial State
Suggestion that there is no initial state in the state machine or composite state.

14.7.8. Add Trigger or Guard to Transition
Suggestion that a transition is missing either a trigger or guard, one at least of which is required for it to
be taken.

14.7.9. Change Join Transitions
Suggestion that the join pseudostate has an invalid number of transitions. Normally there should be one
outgoing and two or more incoming.

14.7.10. Change Fork Transitions
Suggestion that the fork pseudostate has an invalid number of transitions. Normally there should be one
incoming and two or more outgoing.

14.7.11. Add Choice/Junction Transitions
Suggestion that the branch (choice or junction) pseudostate has an invalid number of transitions. Nor-
mally there should be at least one incoming transition and at least one outgoing transition.

14.7.12. Add Guard to Transition
Suggestion that the transition requires a guard.

Caution

The Critics

168

It is not clear that this is a valid critic. It is perfectly acceptable to have a transition without
a guard—the transition is always taken when the trigger is invoked.

14.7.13. Clean Up Diagram
This critic is discussed under an earlier design issues category (see Section 14.3.3, “Clean Up
Diagram#).

14.7.14. Make Edge More Visible
Suggestion that an edge artifact such as an association or abstraction is so short it may be missed. Move
the connected artifacts apart to make the edge more visible.

14.7.15. Composite Association End with Multiplicity > 1
An instance may not belong by composition to more than one composite instance. You must change the
multiplicity at the composite end of the association to either 0..1 or 1..1 (1) for your model to make
sense.

Remember that composition is the stronger aggregation kind and aggregation is the weaker. The prob-
lem can be compared to a model where a finger can be an integral part of several hands at the same time.

This is the second well-formedness rule on AssociationEnd in UML 1.3.

14.8. Design Patterns
Critics concerning design pattern usage in ArgoUML.

These relate to the use of patterns as described by the so called “Gang of Four#. ArgoUML also uses this
category for critics associated with deployment and sequence diagrams. The current version of Ar-
goUML has the following critics in this category.

14.8.1. Consider using Singleton Pattern for <class>
The class has no non-static attributes nor any associations that are navigable away from instances of this
class. This means that every instance of this class will be identical to every other instance, since there
will be nothing about the instances that can differentiate them.

Under these circumstances you should consider making explicit that you have exactly one instance of
this class, by using the singleton Pattern. Using the singleton pattern can save time and memory space.
Within ArgoUML this can be done by using the «singleton» stereotype on this class.

If it is not your intent to have a single instance, you should define instance variables (i.e. non-static at-
tributes) and/or outgoing associations that will represent differences bewteen instances.

Having specified class as a singleton, you need to define the class so there can only be a single instance.
This will complete the information representation part of your design. To achieve this you need to do the
following.

1. You must define a static attribute (a class variable) holding the instance. This must therefore have
class as its type.

2. You must have only private constructors so that new instances cannot be made by other code. The

The Critics

169

creation of the single instance could be through a suitable helper operation, which invokes this pri-
vate constructor just once.

3. You must have at least one constructor to override the default constructor, so that the default con-
structor is not used to create multiple instances.

For the definition of a constructor under the UML 1.3 standard, and extensions to that definition ac-
cepted by ArgoUML see Section 14.5.3, “Add a Constructor to a Class#.

14.8.2. Singleton Stereotype Violated in <class>
This class is marked with the «singleton» stereotype, but it does not satisfy the constraints imposed on
singletons (ArgoUML will also accept «Singleton» stereotype as defining a singleton). A singleton class
can have at most one instance. This means that the class must meet the design criteria for a singleton
(see Section 14.8.1, “Consider using Singleton Pattern for <class>#).

Whenever you mark a class with a stereotype, the class should satisfy all constraints of the stereotype.
This is an important part of making a self-consistent and understangle design. Using the singleton pat-
tern can save time and memory space.

If you no longer want this class to be a singleton, remove the «singleton» stereotype by clicking on the
class and selecting the blank selection on the stereotype drop-down within the properties tab.

To apply the singleton pattern you should follow the directions in Section 14.8.1, “Consider using Sin-
gleton Pattern for <class>#.

14.8.3. Nodes normally have no enclosers
A suggestion that nodes should not be drawn inside other artifacts on the deployment diagram, since
they represent an autonomous physical object.

14.8.4. NodeInstances normally have no enclosers
A suggestion that node instances should not be drawn inside other artifacts on the deployment diagram,
since they represent an autonomous physical object.

14.8.5. Components normally are inside nodes
A suggestion that components represent the logical entities within physical nodes, and so should be
drawn within a node, where nodes are shown on the deployment diagram.

14.8.6. ComponentInstances normally are inside nodes
A suggestion that component instances represent the logical entities within physical nodes, and so
should be drawn within a node instance, where node instances are shown on the deployment diagram.

14.8.7. Classes normally are inside components
A suggestion that classes, as artifacts making up components, should be drawn within components on
the deployment diagram.

14.8.8. Interfaces normally are inside components

The Critics

170

A suggestion that interfaces, as artifacts making up components, should be drawn within components on
the deployment diagram.

14.8.9. Objects normally are inside components
A suggestion that objects, as instances of artifacts making up components, should be drawn within com-
ponents or component instances on the deployment diagram.

14.8.10. LinkEnds have not the same locations
A suggestion that a link (e.g. association) connecting objects on a deployment diagram has one end in a
component and the other in a component instance (since objects can be in either). This makes no sense.

14.8.11. Set classifier (Deployment Diagram)
Suggestion that there is an instance (object) without an associated classifier (class, datatype) on a de-
ployment diagram.

14.8.12. Missing return-actions
Suggestion that a sequence diagram has a send or call action without a corresponding return action.

14.8.13. Missing call(send)-action
Suggestion that a sequence diagram has a return action, but no preceding call or send action.

14.8.14. No Stimuli on these links
Suggestion that a sequence diagram has a link connecting objects without an associated stimulus
(without which the link is meaningless).

Warning

Triggering this critic indicates a serious problem, since ArgoUML provides no mechanism
for creating a link without a stimulus. It probably indicates that the diagram was created by
loading a corrupt project, with an XMI file describing a link without a stimulus, possibly
created by a tool other than ArgoUML.

14.8.15. Set Classifier (Sequence Diagram)
Suggestion that there is an object without an associated classifier (class, datatype) on a sequence dia-
gram.

14.8.16. Wrong position of these stimuli
Suggestion that the initiation of send/call-return message exchanges in a sequence diagram does not
properly initiate from left to right.

14.9. Relationships
Critics concerning associations in ArgoUML.

The Critics

171

The current version of ArgoUML has the following critics in this category.

14.9.1. Circular Association
Suggestion that an association class has a role that refers back directly to itself, which is not permitted.

Warning

This critic is meaningless in the V0.14 version of ArgoUML which does not support asso-
ciation classes.

14.9.2. Make <association> Navigable
Suggestion that the association referred to is not navigable in either direction. This is permitted in the
UML standard, but has no obvious meaning in any practical design.

14.9.3. Remove Navigation from Interface via associa-
<tion>

Associations involving an interface can be not be navigable in the direction from the interface. This is
because interfaces contain only operation declarations and cannot hold pointers to other objects.

This part of the design should be changed before you can generate code from this design. If you do gen-
erate code before fixing this problem, the code will not match the design.

To fix this, select the association and use the Properties tab to select in turn each association end
that is not connected to the interface. Uncheck Navigable for each of these ends.

The association should then appear with a stick arrowhead pointed towards the interface

When an association between a class and interface is created in ArgoUML, it is by default navigable
only from the class to the interface. However, ArgoUML does not prevent to change the navigability af-
terwards into a wrong situation. Which will cause this critic to be triggered.

14.9.4. Add Associations to <artifact>
Suggestion that the specified artifact (actor, use case or class) has no associations connecting it to other
artifacts. This is required for the artifact to be useful in a design.

14.9.5. Remove Reference to Specific Subclass
This critic is discussed under an earlier design issues category (see Section 14.6.3, “Remove Reference
to Specific Subclass#).

14.9.6. Reduce Associations on <artifact>
Suggestion that the given artifact (actor, use case, class or interface) has so many associations it may be
a maintenance bottleneck.

14.9.7. Make Edge More Visible
This critic is discussed under an earlier design issues category (see Section 14.7.14, “Make Edge More

The Critics

172

Visible#).

14.10. Instantiation
Critics concerning instantiation of classifiers in ArgoUML.

The current version of ArgoUML has no critics in this category.

14.11. Modularity
Critics concerning modular development in ArgoUML.

The current version of ArgoUML has the following critics in this category.

14.11.1. Classifier not in Namespace of its Association
One of the well-formedness rules in UML 1.3 for associations, is that all the classifiers attached to the
ends of the association should belong to the same namespace as the association.

If this were not the case, there would be no naming, by which each end could refer to all the others.

This critic is triggered when an association does not meet this criterion. The solution is to delete the as-
sociation, and recreate it on a diagram, whose namespace includes those of all the attached classifiers.

Caution

In the current implementation of ArgoUML this critic does not handle hierarchical names-
paces. As a consequence it will trigger for associations where the immediate namespaces
of the attached classifiers is different, even though they are part of the same namespace hi-
erarchy.

14.11.2. Add Elements to Package <package>
Suggestion that the specified package has no content. Good design suggests packages are created to put
things in.

Note

This will always trigger when you first create a package, since you cannot create one that
is not empty!

14.12. Expected Usage
Critics concerning generally accepted good practice in ArgoUML.

The current version of ArgoUML has one critic in this category.

14.12.1. Clean Up Diagram
This critic is discussed under an earlier design issues category (see Section 14.3.3, “Clean Up
Diagram#).

The Critics

173

14.13. Methods
Critics concerning operations in ArgoUML.

The current version of ArgoUML has the following critics in this category.

14.13.1. Change Names or Signatures in <artifact>
This critic is discussed under an earlier design issues category (see Section 14.4.3, “Change Names or
Signatures in an Artifact#).

14.13.2. Class Must be Abstract
Suggestion that a class that inherits or defines abstract operations must be marked abstract.

14.13.3. Add Operations to <class>
Suggestion that the specified class has no operations defined. This is required for the class to be useful
in a design.

14.13.4. Reduce Operations on <artifact>
Suggestion that the artifact (class or interface) has too many operations for a good design, and is at risk
of becoming a design bottleneck.

14.14. Code Generation
Critics concerning code generation in ArgoUML.

The current version of ArgoUML has one critic in this category.

14.14.1. Change Multiple Inheritance to interfaces
Suggestion that a class has multiple generalizations, which is permitted by UML, but cannot be gener-
ated into Java code, because Java does not support multiple inheritance.

14.15. Stereotypes
Critics concerning stereotypes in ArgoUML.

The current version of ArgoUML has no critics in this category.

14.16. Inheritance
Critics concerning generalization and specialization in ArgoUML.

The current version of ArgoUML has the following critics in this category.

14.16.1. Revise Attribute Names to Avoid Conflict
This critic is discussed under an earlier design issues category (see Section 14.4.2, “Revise Attribute

The Critics

174

Names to Avoid Conflict#).

14.16.2. Remove <class>'s Circular Inheritance
Suggestion that a class inherits from itself, through a chain of generalizations, which is not permitted.

Caution

This critic is marked inactive by default in the current release of ArgoUML (the only one
so marked). It will not trigger unless made active.

14.16.3. Class Must be Abstract
This critic is discussed under an earlier design issues category (see Section 14.13.2, “Class Must be Ab-
stract#).

14.16.4. Remove final keyword or remove subclasses
Suggestion that a class that is final has specializations, which is not permitted in UML.

14.16.5. Illegal Generalization
Suggestion that there is a generalization between artifacts of different UML metaclasses, which is not
permitted.

Caution

It is not clear that such a generalization can be created within ArgoUML. It probably indi-
cates that the diagram was created by loading a corrupt project, with an XMI file describ-
ing such a generalization, possibly created by a tool other than ArgoUML.

14.16.6. Remove Unneeded Realizes from <class>
Suggestion that the specified class has a realization relationship both directly and indirectly to the same
interface (by realization from two interfaces, one of which is a generalization of the other for example).
Good design deprecates such duplication.

14.16.7. Define Concrete (Sub)Class
Suggestion that a class is abstract with no concrete subclasses, and so can never be realized.

14.16.8. Define Class to Implement <interface>
Suggestion that the interface referred to has no influence on the running system, since it is never imple-
mented by a class.

14.16.9. Change Multiple Inheritance to interfaces
This critic is discussed under an earlier design issues category (see Section 14.14.1, “Change Multiple
Inheritance to interfaces#).

The Critics

175

14.16.10. Make Edge More Visible
This critic is discussed under an earlier design issues category (see Section 14.7.14, “Make Edge More
Visible#).

14.17. Containment
Critics concerning containment in ArgoUML, that is where one artifact forms a component part of an-
other.

The current version of ArgoUML has the following critics in this category.

14.17.1. Remove Circular Composition
Suggestion that there is a series of composition relationships (associations with black diamonds) that
form a cycle, which is not permitted.

14.17.2. Duplicate Parameter Name
Suggestion that a parameter list to an operation or event has two or more parameters with the same
name, which is not permitted.

14.17.3. Two Aggregate Ends (Roles) in Binary Associa-
tion

Only one end (role) of a binary association can be aggregate or composite. This a well-formedness rule
of the UML 1.3 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition, the “part#
end cannot be aggregate.

To fix this, identify the “part# end of the association, and use the critic wizard (the Next> button, or
manually set its aggregation to none using the button 2 pop-up menu or the property sheet.

Composition (more correctly called composite aggregation) is used where there is a whole-part relation-
ship that is one-to-one or one-to-many, and the lifetime of the part is inextricably tied to the lifetime of
the whole. Instances of the whole will have responsibility for creating and destroying instances of the as-
sociated part. This also means that a class can only be a part in one composite aggregation.

An example of a composite aggregation might be a database of cars and their wheels. This is a one-
to-four relationship, and the database entry for a wheel is associated with its car. When the car ceases to
exist in the database, so do its wheels.

Aggregation (more correctly called shared aggregation) is used where there is a whole-part relationship,
that does not meet the criteria for a composite aggregation. An example might be a database of univer-
sity courses and the students that attend them. There is a whole-part relationship between courses and
students. However there is no lifetime relationship between students and course (a student continues to
exist even after a course is finished) and the relationship is many-to-many.

14.17.4. Aggregate End (Role) in 3-way (or More) Associ-
ation

Three-way (or more) associations can not have aggregate ends (roles). This a well-formedness rule of

The Critics

176

the UML 1.3 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition can only
apply to binary associations between artifacts.

To fix this, manually select the association, and set the aggregation of each of its ends (roles) to none
using the button 2 pop-up menu or the property sheet.

14.17.5. Wrap DataType
This critic is discussed under an earlier design issues category (see Section 14.3.1, “Wrap DataType#).

14.17.6. Import Parameter Type into Class
Suggestion that the type of a parameter used within an operation of a class is not visible.

Warning

It is not clear how this can ever be caused within ArgoUML. In any case this critic can
never trigger in the current implementation of ArgoUML.

The Critics

177

Chapter 15. Top Level Artifact Reference

15.1. Introduction
This chapter describes each artifact that can be created within ArgoUML. The chapter covers top-level
“general# artifacts. The following chapters (see Chapter 16, Use Case Diagram Artifact Reference
through Chapter 22, Deployment Diagram Artifact Reference) cover each of the ArgoUML diagrams.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 12.3, “Properties Tab#). That section covers properties in general, in this chapter they are linked to
specific artifacts.

15.2. The Model
The model is the top level artifact within ArgoUML. In the UML meta-model it is a sub-class of pack-
age. In many respects within ArgoUML it behaves similarly to a package (see Section 17.2, “Package#).

Note

ArgoUML is restricted to one model within the tool.

Standard data types, classes and packages are loaded (the default, see Chapter 23, Built In DataTypes,
Classes, Interfaces and Stereotypes) as sub-packages of the model. These sub-packages are not initially
present in the model but are added to the model when used.

15.2.1. Model Details Tabs
The details tabs that are active for the model are as follows.

ToDoItem Standard tab.

Properties See Section 15.2.2, “Model Property Toolbar# and Section 15.2.3, “Property
Fields For The Model# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. This contains a template package declaration appropriate to the en-
tire model. In the future this would be part of the code generation activity.

Tagged Values Standard tab. In the UML meta-model, Model has the following standard tagged
values defined.

• derived (from the superclass, ModelElement).

Values true, meaning the class is redundant — it can be formally derived
from other elements, or false meaning it cannot.

Derived models have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.

15.2.2. Model Property Toolbar

178

Go upNavigate up through the package structure of the model.

Since the model is the top package nothing will happen.

New Package
This creates a new Package (see Section 17.2, “Package#) within the model (which appears on no dia-
gram), navigating immediately to the properties tab for that package.

Tip

While it can make sense to create Packages of the model this way, it is usually a lot
clearer to create them within diagrams where you want them.

New DataType
This creates a new DataType (see Section 15.3, “Datatype#) within the model (which appears on no
diagram), navigating immediately to the properties tab for that DataType.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) within the model, navigating immedi-
ately to the properties tab for that stereotype.

DeleteThis tool is always downlighted, since it is meaningless to delete the model!

15.2.3. Property Fields For The Model

Name
Text box. The name of the model. The name of a model, like all
packages, is by convention all lower case.

Note

The default name supplied to a new model by Ar-
goUML, untitledModel, is thus erroneous and
guarantees that ArgoUML always starts up with at
least one problem being reported by the design crit-
ics.

Stereotype
Drop down selector. Model is provided by default with the UML
standard stereotypes for model (systemModel and meta-
model) and package (facade, framework, stub).

Stereotyping models is a useful thing, although it is of limited
value in ArgoUML where you have only a single model.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to

the stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the model. This is the pack-
age hierarchy. However since the model is at the top of the hierar-
chy in ArgoUML, this box is always empty.

Top Level Artifact Reference

179

Visibility
Radio box, with entries public, private, and protected.

Records the visibility for the model. Since ArgoUML only per-
mits one model, this has no meaningful use.

Modifiers
Check box, with entries Abstract, Leaf and Root.

• abstract is used to declare that this model cannot be in-
stantiated, but must always be specialized.

The meaning of abstract applied to a model is not that
clear. It might mean that the model contains interfaces or ab-
stract classes without realizations. Since ArgoUML only per-
mits one model, this is not a meaningful box to check.

• Leaf indicates that this model can have no further subpack-
ages, while root indicates it is the top level model.

Within ArgoUML root only meaningfully applies to the
Model, since all packages sit within the model. In the absence
of the topLevel stereotype, this could be used to emphasize
that the Model is at the top level.

Generalizations Text area. Lists any model that generalizes this model.

Note

Since there is only one model in ArgoUML there is
no sensible specialization or generalization that
could be created.

Specializations Text box. Lists any specialized model (i.e. for which this model is
a generalization.

Note

Since there is only one model in ArgoUML there is
no sensible specialization or generalization that
could be created.

Owned Elements
Text area. A listing of the top level packages, classes, interfaces,
datatypes, actors, use cases, associations, generalizations, and
stereotypes within the model.

Button 1 double click on any of the artifacts yields navigating to
that artifact.

15.3. Datatype
Datatypes can be thought of as simple classes. They have no attributes, and any operations on them must
have no side-effects. A useful analogy is primitive datatypes in a language like Java. The integer “3#

Top Level Artifact Reference

180

stands on its own—it has no inner structure. There are operations (for example addition) on the integers,
but when I perform 3 + 4 the result is a new number, “3# and “4# are unchanged by the exercise.

Within UML 1.3, DataType is a sub-class of the Classifier metaclass. It embraces the predefined
primitive types (byte, char, double, float, int, long and short), the predefined enumeration,
boolean and user defined enumeration types.

Note

Also void is implemented as a datatype within ArgoUML

Within ArgoUML new datatypes may be created using the New datatype button on the property tabs
of the model and packages (in which case the new datatype is restricted in scope to the package), as well
as the properties tab for datatype.

Note

UML 1.3 allows user defined datatypes to be placed on class diagrams. This is not permit-
ted in ArgoUML.

15.3.1. Datatype Details Tabs
The details tabs that are active for datatypes are as follows.

ToDoItem Standard tab.

Properties
See Section 15.3.2, “Datatype Property Toolbar# and Section 15.3.3, “Property
Fields For Datatype# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. Unused. One would expect a class declaration for the new datatype
to support code generation.

Tagged Values
Standard tab. In the UML metamodel, Datatype has the following standard
tagged values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

Tip

Since user defined datatypes are enumerations, they have no state
to preserve, and the value of this tagged value is irrelevant.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the datatype.

• derived (from the superclass, ModelElement). Values true, meaning
the class is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Top Level Artifact Reference

181

Tip

While formally available, a derived datatype does not have an
obvious value, and so datatypes should always be marked with
derived=false.

15.3.2. Datatype Property Toolbar

Go upNavigate up through the package structure.

New datatypeThis creates a new datatype (see Section 17.5, “Class#) within the same package as the current
datatype.

Tip

While it can make sense to create datatypes this way, it can be clearer to create them
within the package or model where you want them.

New enumeration literalThis creates a new enumeration literal within the datatype, navigating immediately to the properties
tab for that literal.

Caution

ArgoUML does not actually have a separate concept of a literal. The navigation will
navigate to the property sheet for an attribute of a class (see Section 17.6, “Attribute#).
When defining a literal, all that matters is its name. Other parts of the attribute property
sheet should be ignored. Also the name of the literal must obey the rules for an Attribute
or a critic will fire.

New OperationThis creates a new operation within the datatype, navigating immediately to the properties tab for that
operation.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) within the same package as the
datatype, navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the datatype from the model.

15.3.3. Property Fields For Datatype

Name
Text box. The name of the datatype. The primitive datatypes all have
lower case names, but there is no formal convention.

Note

The default name supplied for a newly created datatype
is the empty string “#. Datatypes with empty string
names will appear with the name (anon Datatype)

Top Level Artifact Reference

182

in the explorer.

Stereotype
Drop down selector. Stereotype is provided by default with the UML
standard stereotypes for classifier (metaclass, powertype, pro-
cess, thread and utility).

Tip

The stereotype enumeration should always be used
for any created enumeration datatypes.

Caution

In ArgoUML version 0.18 the stereotype enumera-
tion must be created before it can be used. However,
by creating an Enumeration Literal, the stereotype enu-
meration is created automatically.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Allows changeing the namespace for the
datatype. This is the package hierarchy.

Modifiers
Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this datatype cannot be instanti-
ated, but must always be specialized.

Note

ArgoUML provides no mechanism for specializing
datatypes, so this check box is of little use.

• Leaf indicates that this datatype can have no further sub-types,
while Root indicates it is a top level datatype.

Tip

In the absence of specialization of datatypes within
ArgoUML these have little value. In effect all
datatypes are both Root and Final

Visibility
Radio box, with entries public, private, and protected.

Records the visibility for the Datatype.

Client Dependencies Text area. Lists any elements that depend on this datatype.

Top Level Artifact Reference

183

Caution

It is not clear that dependencies between datatypes
makes much sense.

Supplier Dependencies Text area. Lists any elements that this datatype depends on.

Caution

It is not clear that dependencies between datatypes
makes much sense.

Generalizations Text area. Lists any datatype that generalizes this datatype.

Caution

It is not clear that generalizing datatypes makes much
sense.

Specializations Text box. Lists any specialized datatype (i.e. for which this datatype is
a generalization.

Caution

It is not clear that specializing datatypes makes much
sense.

Operations Text area. Lists all the operations defined on this datatype. Button 1
double click navigates to the selected operation. button 2 click brings
up a pop up menu with two entries.

• Move Up. Only available where there are two or more operations,
and the operation selected is not at the top. It is moved up one.

• Move Down. Only available where there are two or more opera-
tions listed, and the operation selected is not at the bottom. It is
moved down one.

See Section 17.7, “Operation# for details of operations.

Caution

ArgoUML treats all operations as equivalent. Any opera-
tions created here will use the same mechanism as opera-
tions for classes. Remember that operations on datatypes
must have no side effects (they are read-only). This
means the query modifier must be checked for all oper-
ations.

Literals
Text area. Lists all the enumeration literals defined for this datatype.
Button 1 double click navigates to the selected literal, button 2 click
brings up a pop up menu with two entries.

Top Level Artifact Reference

184

• Move Up. Only available where there are two or more literals,
and the literal selected is not at the top. It is moved up one.

• Move Down. Only available where there are two or more literals
listed, and the literal selected is not at the bottom. It is moved
down one.

Caution

ArgoUML does not actually have a separate concept of a
literal. The navigations listed above will all navigate to a
property sheet equal to an attribute of a class (see Sec-
tion 17.6, “Attribute#). When defining a literal, all that
matters is its name. Other parts of the attribute property
sheet should be ignored.

15.4. Stereotype
Stereotypes are the main extension mechanism of UML, providing a way to derive specializations of the
standard metaclasses. Stereotype is a sub-class of GeneralizableElement in the UML meta-
model. Stereotypes are supplemented by constraints and tagged values.

New stereotypes are added from the property tab of almost any artifact. Properties of existing stereo-
types can be reached by selecting the property tab for any artifact with that stereotype and using the
navstereo button () within the property tab.

15.4.1. Stereotype Details Tabs
The details tabs that are active for stereotypes are as follows.

ToDoItem Standard tab.

Properties See Section 15.4.2, “Stereotype Property Toolbar# and Section 15.4.3, “Property
Fields For Stereotype# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. This contains the representation of the stereotype on diagrams (its
name between « and »).

Warning

You can edit this entry, but it has no effect and when you return to
the entry it will be restored to its original value.

Tagged Values Standard tab. In the UML metamodel, Stereotype has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the class is redundant—it can be formally derived from other elements, or

Top Level Artifact Reference

185

false meaning it cannot.

Note

This indicates any element with this stereotype has the derived
tag set accordingly.

Caution

Tagged values for a stereotype are rather different to those for ele-
ments in the UML core architecture, in that they apply to all artifacts
to which the stereotype is applied, not just the stereotype itself.

15.4.2. Stereotype Property Toolbar

Go upNavigate up through the package structure of the model.

Add stereotypeThis creates a new stereotype (see Section 15.4, “Stereotype#) within the model (which appears on no
diagram), navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the stereotype from the model.

15.4.3. Property Fields For Stereotype

Name
Text box. The name of the stereotype. There is no convention for naming
stereotypes, beyond starting them with a lower case letter. Even the standard
UML stereotypes vary between all lower case (e.g. metamodel), bumpy caps
(e.g. systemModel) and space separated (e.g. object model).

Note

ArgoUML does not enforce any naming convention for stereo-
types

Base Class
Drop down selector. Any stereotype must be derived from one of the meta-
classes in the UML metamodel Abstraction, Actor, Association,
AssociationEnd, Attribute, BehavioralFeature, CallEvent,
Class, Classifier, Collaboration, Comment, Component, Con-
straint, DataType, Exception, Flow, Generalization, Inter-
face, Link, Model, ModelElement, Node, NodeInstance, Object-
FlowState, Operation, Package, Permission, Signal, Subsys-
tem and Usage) or the artifact classes that derive from them. The stereotype
will then be available to artifacts that derive from that same metaclass or that
artifact.

Namespace
Drop down selector. Records the namespace for the stereotype. This is the

Top Level Artifact Reference

186

package hierarchy.

Modifiers
Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that artifacts that use this stereotype cannot
be instantiated, but must always be specialized.

• Leaf indicates that artifacts that use this stereotype can have no further
sub-types, while Root indicates it is a top level artifact.

Caution

Remember that these modifiers apply to the artifacts using the
stereotype, not just the stereotype.

Warning

ArgoUML neither imposes, nor checks that artifacts using a
stereotype adopt the stereotype's modifiers.

Generalizations Text area. Lists any stereotype that generalizes this stereotype.

Caution

It is not clear that generalizing stereotypes makes much sense.

Specializations Text box. Lists any specialized stereotype (i.e. for which this stereotype is a
generalization.

Caution

It is not clear that specializing stereotypes makes much sense.

15.5. Diagram
The UML standard specifies eight principle diagrams, all of which are supported by ArgoUML (except
currently in V0.18 the sequence diagram).

• Use case diagram. Used to capture and analyse the requirements for any OOA&D project. See Chap-
ter 16, Use Case Diagram Artifact Reference for details of the ArgoUML use case diagram and the
artifacts it supports.

• Class diagram. This diagram captures the static structure of the system being designed, showing the
classes, interfaces and datatypes and how they are related. Variants of this diagram are used to show
package structures within a system (the package diagram) and the relationships between particular
instances (the object diagram).

The ArgoUML class diagram provides support for class and package diagrams. See Chapter 17,
Class Diagram Artifact Reference for details of the artifacts it supports. The object diagram is su-

Top Level Artifact Reference

187

ported on the Deployment diagram.

• Behavior diagrams. There are four such diagrams (or strictly speaking, five, since the use case dia-
gram is a type of behavior diagram), which show the dynamic behavior of the system at all levels.

• Statechart diagram. Used to show the dynamic behavior of a single object (class instance). This
diagram is of particular use in systems using complex communication protocols, such as in
telecommunications. See Chapter 19, Statechart Diagram Artifact Reference for details of the
ArgoUML statechart diagram and the artifacts it supports.

• Activity diagram. Used to show the dynamic behavior of groups of objects (class instance). This
diagram is an alternative to the statechart diagram, and is better suited to systems with a great
deal of user interaction. See Chapter 21, Activity Diagram Artifact Reference for details of the
ArgoUML activity diagram and the artifacts it supports.

• Interaction diagrams. There are two diagrams in this category, used to show the dynamic interac-
tion between objects (class instances) in the system.

• Sequence diagram. Shows the interactions (typically messages or procedure calls) between
instances of classes (objects) and actors against a timeline. Particularly useful where the tim-
ing relationships between interactions are important. See Chapter 18, Sequence Diagram Ar-
tifact Reference for details of the ArgoUML sequence diagram and the artifacts it supports.

• Collaboration diagram. Shows the interactions (typically messages or procedure calls) be-
tween instances of classes (objects) and actors against the structural relationships between
those instances. Particularly suitable where it is useful to relate interactions to the static struc-
ture of the system. See Chapter 20, Collaboration Diagram Artifact Reference for details of
the ArgoUML collaboration diagram and the artifacts it supports.

• Implementation diagrams. UML defines two implementation diagrams to show the relationship be-
tween the software components that make up a system (the component diagram) and the relationship
between the software and the hardware on which it is deployed at run-time (the deployment diagram.

The ArgoUML deployment diagram provides support for both component and deployment diagrams,
and additionally for object diagrams. See Chapter 22, Deployment Diagram Artifact Reference for
details of the diagram and the artifacts it supports.

Diagrams are created using the Create drop down menu (see Section 9.6, “The Create Menu#), or
with the tools on the toolbar (see Section 8.4, “Create operations#).

Note

ArgoUML uses its deployment diagram to create the UML 1.3 component, deployment
and object diagrams.

Caution

Statechart and activity diagrams are associated with a particular class or operation (or the
latter also with a package), and can only be created when this modelelement has been se-
lected.

Warning

In ArgoUML version 0.18, the UML 1.3 object diagram as a variant of the class diagram is
not directly supported. However, it is possible to create simple object diagrams within the

Top Level Artifact Reference

188

ArgoUML deployment diagram.

Caution

Up until the ArgoUML version 0.14 the sequence diagrams were implemented incorrectly
w.r.t. the UML model. For this reason it is in 0.18 no longer possible to create sequence di-
agrams. In an upcoming release correctly implemented sequence diagrams will be avail-
able.

15.5.1. Diagram Details Tabs
The details tabs that are active for diagrams are as follows.

ToDoItem Standard tab.

Properties See Section 15.5.3, “Property Fields For Diagram# below.

15.5.2. Diagram Property Toolbar

Go upNavigate up through the package structure of the model.

DeleteThis deletes the diagram from the model. As a consequence, in case of a statechart diagram or an ac-
tivity diagram, all contained elements are deleted, too.

15.5.3. Property Fields For Diagram

Name
The name of the diagram. There are no conventions for naming diagrams. By default, Ar-
goUML uses the (space separated) diagram name and a sequence number, thus
Use Case Diagram 1.

Tip

This name is used to generate a filename when activating the “Save Graphics...#
menu-item.

Top Level Artifact Reference

189

Chapter 16. Use Case Diagram Artifact
Reference

16.1. Introduction
This chapter describes each artifact that can be created within a use case diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 12.3, “Properties Tab#). That section covers properties in general, in this chapter they are linked to
specific artifacts.

Figure 16.1, “Possible artifacts on a use case diagram.# shows a use case diagram with all possible arti-
facts displayed.

Figure 16.1. Possible artifacts on a use case diagram.

16.1.1. ArgoUML Limitations Concerning Use Case Dia-
grams

Use case diagrams are now well supported within ArgoUML. There still are some minor limitations
though. One is that extension points may be shown in a separate compartment on the use case, but this is
not retained after saving and reloading.

Note

Earlier versions of ArgoUML (0.9 and earlier) implemented extend and include relation-
ships by using a stereotyped dependency relationship. Although such diagrams will show
correctly on the diagram, they will not link correctly to the use cases, and should be re-
placed by proper extend and include relationships using the current system.

190

16.2. Actor
An actor represents any external entity (human or machine) that interacts with the system, providing in-
put, receiving output, or both.

Within the UML metamodel, actor is a sub-class of classifier.

The actor is represented by a “stick man# figure on the diagram (see Figure 16.1, “Possible artifacts on a
use case diagram.#).

16.2.1. Actor Details Tabs
The details tabs that are active for actors are as follows.

ToDoItem Standard tab.

Properties See Section 16.2.2, “Actor Property Toolbar# and Section 16.2.3, “Property Fields
For Actor# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The fill color is used for the stick man's head.

Source Standard tab. Usually, no code is provided for an actor, since it is external to the
system.

Note

The source tab content can be changed, but the changes are not re-
tained.

Constraints Standard tab. ArgoUML only supports constraints on Classes and Features
(Attributes, Operations, Receptions, and Methods), so this tab is grayed out.

Tagged Values Standard tab. In the UML metamodel, Actor has the following standard tagged
values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

Tip

Actors sit outside the system, and so their internal behavior is of
little concern, and this tagged value is best ignored.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the actor.

• derived (from the superclass, ModelElement). Values true, meaning
the actor is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Use Case Diagram Artifact Reference

191

Derived actors have limited value, since they sit outside the sys-
tem being designed. They may have their value in analysis to in-
troduce useful names or concepts.

Checklist Standard tab for a Classifier.

16.2.2. Actor Property Toolbar

Go upNavigate up through the package structure of the model.

Add Actor
This creates a new actor within the model, (but not within the diagram), navigating immediately to
the properties tab for that actor.

Tip

This method of creating a new actor may be confusing. It is much better to create an
actor on the diagram.

DeleteThis deletes the selected actor from the model.

Warning

This is a deletion from the model not just the diagram. To delete an actor from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

16.2.3. Property Fields For Actor

Name
Text box. The name of the actor. The diagram shows this name below the
stick man figure. Since an actor is a classifier, it would be conventional to
Capitalize the first letter (and initial letters of any component words), e.g.
RemoteSensor.

Note

ArgoUML does not enforce any naming convention for ac-
tors

Stereotype
Drop down selector. Actor is provided by default with the UML standard
stereotypes (metaclass, powertype, process, thread, util-
ity) for classifiers. Stereotypes are of limited value with actors. The
stereotypes machine, organization, person and singleton are
probably of most use. However, they are not provided by default with Ar-
goUML.

Use Case Diagram Artifact Reference

192

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the actor. This is the package hier-
archy.

Modifiers
Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this actor cannot be instantiated,
but must always be specialized.

Caution

While actors can be specialized and generalized, it is not
clear that an abstract actor has any meaning. Perhaps it
might be used to indicate an actor that does not itself in-
teract with a use case, but whose children do.

• leaf indicates that this actor can have no further children, while
Root indicates it is a top level actor with no parent.

Generalizations
Text area. Lists any actor that generalizes this actor.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

Specializations
Text box. Lists any specialized actor (i.e. for which this actor is a gener-
alization. The specialized actors can communicate with the same use case
instances as this actor.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

Association Ends
Text area. Lists any association ends of associations connected to this ac-
tor.

Button 1 double click navigates to the selected entry.

16.3. Use Case
A use case represents a complete meaningful “chunk# of activity by the system in relation to its external
users (actors), human or machine. It represents the primary route through which requirements are cap-
tured for the system under construction

Within the UML metamodel, use case is a sub-class of classifier.

The use case icon is an oval (see Figure 16.1, “Possible artifacts on a use case diagram.#). It may be split
in two, with the lower compartment showing extension points

Use Case Diagram Artifact Reference

193

Caution

By default ArgoUML does not show the extension point compartment. It may be revealed
by the context sensitive Show menu (using button 2 click), or from the Presentation tab.

Warning

The current release of ArgoUML (V0.18) does not preserve information about whether the
extension point compartment is showing on save. On reload, no compartments will be visi-
ble.

16.3.1. Use Case Details Tabs
The details tabs that are active for use cases are as follows.

ToDoItem Standard tab.

Properties See Section 16.3.2, “Use Case Property Toolbar# and Section 16.3.3, “Property
Fields For Use Case# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The Fill color is used for the use case oval.

The Display: Extension Points check box is used to control whether an
extension point compartment is displayed.

Source Standard tab. It would not be usual to provide any code for a use case, since it is
primarily a vehicle for capturing requirements about the system under construc-
tion, not creating the solution.

Tagged Values Standard tab. In the UML metamodel, UseCase has the following standard
tagged values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

Tip

In general the instantiation of use cases is not a major aspect of
any design method (they are mostly concerned with requirements
capture. For most OOA&D methodologies, this tag can safely be
ignored.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the use case.

• derived (from the superclass, ModelElement). Values true, meaning
the use case is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Use Case Diagram Artifact Reference

194

Derived use cases still have their value in analysis to introduce
useful names or concepts.

Checklist Standard tab for a Classifier.

16.3.2. Use Case Property Toolbar

Go upNavigate up through the package structure of the model.

New use case
This creates a new use case within the model, (but not within the diagram), and shows immediately
the properties tab for that use case.

Tip

This method of creating a new use case can be confusing. It is much better to create a
new use case on the diagram of your choice.

New extension point
This creates a new use extension point within the namespace of the current use case, with the current
use case as its associated use case, navigating immediately to the properties tab for that extension
point.

DeleteThis deletes the selected use case from the model.

Warning

This is a deletion from the model not just the diagram. To delete a use case from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

16.3.3. Property Fields For Use Case

Name
Text box. The name of the use case. Since a use case is a classi-
fier, it would be conventional to Capitalize the first letter (and ini-
tial letters of any component words), e.g. RemoteSensor. The
name is shown inside the oval representation of the use case on
the diagram.

Note

ArgoUML does not enforce any naming convention
for use cases

Stereotype
Drop down selector. Use case is provided by default with the

Use Case Diagram Artifact Reference

195

UML standard stereotypes (metaclass, powertype, pro-
cess, thread, utility) for classifiers. Stereotyping can be
useful when creating use cases in the problem domain
(requirements capture) and solution domain (analysis), but none
of the predefined stereotypes are well suited to this.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to

the stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the use case. This is the
package hierarchy.

Modifiers
Check box, with entries Abstract Leaf and Root.

• Abstract is used to declare that this actor cannot be instan-
tiated, but must always be specialized. .

• Leaf indicates that this use case can have no further children,
while Root indicates it is a top level use case with no parent.

Extension Points
Text box. If this use case is, or can be extended, this field lists the
extension points for the use case.

Note

Extension points are listed by their location point
rather than their name.

Where an extension point has been created (see below), button 1
Double Click will navigate to that relationship. Button 2 gives a
pop up menu with one entry.

• New. Add a new extension point and navigate to it, making
this use case the owning use case of the extension point.

Generalizations
Text area. Lists use cases which are generalizations of this one.
Will be set whenever a generalization is created on the from this
Use Case. Button 1 Double Click on a generalization will navi-
gate to that generalization.

Specializations
Text box. Lists any specialized use case (i.e. for which this use
case is a generalization.

Button 1 double click navigates to the generalization and opens its
property tab.

Extends
Text box. Lists any class that is extended by this use case.

Where an extends relationship has been created, button 1 double
click will navigate to that relationship.

Use Case Diagram Artifact Reference

196

Includes
Text box. Lists any use case that this use case includes.

Where an include relationship has been created, button 1 Double
Click will navigate to that relationship.

Association Ends Text box. Lists any association ends (see Section 17.11,
“Association#) of associations connected to this use case.

Button 1 double click navigates to the selected entry.

16.4. Extension Point
An extension point describes a point in a use case where an extending use case may provide additional
behavior.

Examples for a travel agent sales system might be the use case for paying for a ticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Extension Point is a sub-class of ModelElement. A use case may
display an extension point compartment (see Section 16.3, “Use Case# for details), in which extension
points are shown with the following syntax.

name:location.

16.4.1. Extension Point Details Tabs
The details tabs that are active for extension points are as follows.

ToDoItem Standard tab.

Properties See Section 16.4.2, “Extension Point Property Toolbar# and Section 16.4.3,
“Property Fields For Extension Point# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. It would not be usual to provide any code for an extension point,
since it is external to the system.

Note

The source tab content can be changed, but this has no effect.

Tagged Values Standard tab. In the UML metamodel, ExtensionPoint has the following
standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the extension point is redundant—it can be formally derived from other ele-
ments, or false meaning it cannot.

Note

Use Case Diagram Artifact Reference

197

It is not clear how derived extension points could have any value
in analysis.

16.4.2. Extension Point Property Toolbar

Go upNavigate up to the use case which owns this extension point.

New Extension Point
This creates a new Extension Point below the selected extension point, navigating immediately to the
properties tab of the newly created extension point.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected extension point, navi-
gating immediately to the properties tab for that stereotype.

DeleteThis deletes the selected extension point from the model.

16.4.3. Property Fields For Extension Point

Name
Text box. The name of the extension point.

Tip

It is quite common to leave extension points unnamed in
use case analysis, since they are always listed (within use
cases and extend relationships) by their location.

Note

ArgoUML does not enforce any naming convention for ex-
tension points.

Stereotype
Drop down selector. ArgoUML does not provide any stereotypes for ex-
tension points.

Tip

Stereotyping does not have great value on an extension
point.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Location

Use Case Diagram Artifact Reference

198

Text box. A description of the location of this extension point within the
owning use case.

Tip

Extension points are always listed (within use cases and ex-
tend relationships) by their location. Typically this will be
the number/name of the paragraph in the specification.

Base Use Case
Text box. Shows the base use case within which this extension point is
defined. Button 1 Double Click will navigate to the use case.

Extend
Text box. Lists all use cases which extend the base use case through this
extension point.

Where an extending use case exists, button 1 double click will navigate to
that relationship.

16.5. Association
An association on a use case diagram represents a relationship between an actor and a use case showing
that actor's involvement in the use case. The invocation of the use case will involve some (significant)
change perceived by the actor.

Associations are described fully under class diagrams (see Section 17.11, “Association#).

16.6. Association End
Association ends are described under class diagrams (see Section 17.12, “Association End#).

16.7. Dependency
Dependencies are described under class diagrams (see Section 17.13, “Dependency#).

Caution

Dependency has little use in use case diagrams. It is provided, because earlier versions of
ArgoUML used it (incorrectly) to implement include and extends relationships.

16.8. Generalization
Generalization is a relationship between two use cases or two actors. Where A is a generalization of B, it
means A describes more general behavior and B a more specific version of that behavior.

Examples for a travel agent sales system might be the use case for making a booking as a generalization
of the use case for making a flight booking and a salesman actor being a generalization of a supervisor
actor (since supervisors can also act as salesmen, but not vice versa).

Use Case Diagram Artifact Reference

199

Generalization is analogous to class inheritance within OO programming.

Note

It is easy to confuse extends relationships between use cases with generalization. However
extends is about augmenting a use case's behavior at a specific point. Generalization is
about specializing the behavior throughout the use case.

Within the UML metamodel, Generalization is a sub-class of Relationship.

Generalization is represented as an arrow with white filled head from the specialized use case or actor to
the generalized use case or actor (see Figure 16.1, “Possible artifacts on a use case diagram.#).

16.8.1. Generalization Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem Standard tab.

Properties See Section 16.8.2, “Generalization Property Toolbar# and Section 16.8.3,
“Property Fields For Generalization# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab

Note

The values for the bounds of the generalization are downlighted,
since they have no meaning, given that the generalization is tied to a
particular actor and use case.

Source Standard tab. You would not expect to generate any code for a generalization end
so this is empty.

Tagged Values Standard tab. In the UML metamodel, Generalization has the following
standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the generalization is redundant—it can be formally derived from other ele-
ments, or false meaning it cannot.

Note

Derived generalizations still have their value in analysis to intro-
duce useful names or concepts, and in design to avoid re-
computation.

16.8.2. Generalization Property Toolbar

Go upNavigate up through the package structure of the model. For a generalization this will be the package

Use Case Diagram Artifact Reference

200

containing the generalization.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected generalization, navi-
gating immediately to the properties tab for that generalization.

DeleteThis deletes the selected generalization from the model.

Warning

This is a deletion from the model not just the diagram. To delete a generalization from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

16.8.3. Property Fields For Generalization

Name
Text box. The name of the generalization.

Tip

It is quite common to leave generalizations unnamed in use
case analysis.

Note

ArgoUML does not enforce any naming convention for as-
sociations.

Note

There is no representation of the name of a generalization
on the diagram.

Stereotype
Drop down selector. Generalization is provided by default with the UML
standard stereotype implementation. The stereotype is shown be-
tween « and » above or across the generalization.

Tip

Stereotyping generalization does not have great value on a
use case diagram. The standard stereotype is about imple-
mentation, and suited to the use of generalization on class
diagrams.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Use Case Diagram Artifact Reference

201

Discriminator
Text box. The name of a discriminator for the specialization. UML 1.3 al-
lows grouping of specializations into a number of sets, on the basis of
this value.

Tip

The empty string “# is a valid entry (and the default) for this
field. The discriminator is only of practical use in cases of
multiple inheritance. A (class diagram) example is shown in
Figure 16.2, “Example use of a discriminator with general-
ization#. Here each type of user should inherit from two
sorts of user. One distinguishing between local or remote
user (which can be identified by one discriminator) and one
indicating their function as a user (identified by a different
discriminator).

There is little point in using this within a use case diagram.

Namespace
Text box. Records the namespace for the generalization. This is the pack-
age hierarchy.

Parent
Text box. Shows the use case or actor that is the parent in this relation-
ship, i.e. the more general end of the relationship. Button 1 Double Click
on this entry will navigate to that use case or actor. Button 2 click will
give a pop up menu, with a single entry, Open which will also navigate
to that use case or actor.

Child
Text box. Shows the use case or actor that is the child in this relationship,
i.e. the more specific end of the relationship. Button 1 Double Click on
this entry will navigate to that use case or actor. Button 2 click will give a
pop up menu, with a single entry, Open which will also navigate to that
use case or actor.

Powertype
Drop down selector providing access to all standard UML types provided
by ArgoUML and all new classes created within the current model.

This is the type of the child entity of the generalization.

Tip

This can be ignored for use case analysis. The only sensible
value to put in would be the child use case type (as a classi-
fier, this appears in the drop down list.

Figure 16.2. Example use of a discriminator with generalization

Use Case Diagram Artifact Reference

202

16.9. Extend
Extend is a relationship between two use cases. Where A extends B, it means A describes more specific
behavior and B the general version of that behavior.

In many respects extend is like generalization. However the key difference is that the extended use case
defines extension points (see Section 16.4, “Extension Point#), which are the only places where its be-
havior may be extended. The extending use case must define at which of these extension points it adds
behavior.

This makes the use of extend more tightly controlled than general extension, and it is thus preferred
wherever possible.

Examples for a travel agent sales system might be the use case for paying for a ticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Extend is a sub-class of Relationship.

An extend relationship is represented as a dotted link with an open arrow head and a label «extend».
If a condition is defined, it is shown under the «extend» label (see Figure 16.1, “Possible artifacts on
a use case diagram.#).

16.9.1. Extend Details Tabs
The details tabs that are active for extend relationships are as follows.

Note

There is no source tab, since there is no source code that could be generated for an extend
relationship.

Use Case Diagram Artifact Reference

203

ToDoItem Standard tab.

Properties See Section 16.9.2, “Extend Property Toolbar# and Section 16.9.3, “Property
Fields For Extend# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab

Note

The values for the bounds are downlighted, since the extend is tied to
a particular pair of use cases.

Source Standard tab. You would not expect to generate any code for an extend relation-
ship so this is empty.

Tagged Values Standard tab. In the UML metamodel, Extend has the following standard tagged
values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the extend relationship is redundant—it can be formally derived from other el-
ements, or false meaning it cannot.

Note

Derived extend relationships could have their value in analysis to
introduce useful names or concepts.

16.9.2. Extend Property Toolbar

Go upNavigate up through the package structure of the model. For a extend this will be the package contain-
ing the extend.

New extension point
This creates a new use case extension point within the namespace of the current extend relationship,
with the current extend relationship as its first extending relationship.

Tip

While it is perfectly valid to create extension points from an extend relationship, the cre-
ated extension point will have no associated use case (it can subsequently be set up).

It would be more usual to instead create the extension point within a use case and subse-
quently link to it from an extend relationship (see Section 16.9.3, “Property Fields For
Extend# below).

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected extent relationship,
navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the selected extend relationship from the model.

Use Case Diagram Artifact Reference

204

Warning

This is a deletion from the model not just the diagram. To delete a extend from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

16.9.3. Property Fields For Extend

Name
Text box. The name of the extend relationship.

Tip

It is quite common to leave extends unnamed in use case
analysis.

Note

ArgoUML does not enforce any naming convention for ex-
tend relationships.

Stereotype
Drop down selector. ArgoUML does not provide any stereotypes by de-
fault.

Tip

Stereotyping does not have great value on an extend rela-
tionship.

Note

There is no representation of the stereotype of an extend re-
lationship on the diagram.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the extend relationship. This is the
package hierarchy.

Button 1 Double Click on the entry will navigate to the package defining
this namespace (or the model for the top level namespace).

Base Use Case
Drop down selector. Shows the use case that is being extended by this ex-
tend relationship. Button 1 click on this entry will give a drop down
menu of all available use cases (and an empty entry) which may be se-

Use Case Diagram Artifact Reference

205

lected by button 1 click.

Extension
Drop down selector. Show the use case that is doing the extending
through this extend relationship. Button 1 click on this entry will give a
drop down menu of all available use cases (and an empty entry) which
may be selected by button 1 click.

Extension Points
Text box. If this use case is, or can be extended, this field lists the exten-
sion points for the use case.

Note

Extension points are listed by their location point rather
than their name.

Where an extension point has been created, button 1 double click will
navigate to that relationship. Button 2 gives a pop up menu with two en-
tries.

• Add. The “Ad/Remove ExtensionPoints# window opens. In this win-
dow it is possible to build a list of extension points.

• New. Add a new extension point in the list and navigate to it. The cur-
rent extend relationship is added as the first in list of extending rela-
tionships of the new extension point.

Condition Text area. Multi-line textual description of any condition attached to the
extend relationship.

16.10. Include
Include is a relationship between two use cases. Where A includes B, it means B described behavior that
is to be included in the description of the behavior of A at some point (defined internally by A).

Examples for a travel agent sales system might be the use case for booking travel, which includes use
cases for booking flights and taking payment.

Within the UML metamodel, Include is a sub-class of Relationship.

An include relationship is represented as a dotted link with an open arrow head and a label «include»
(see Figure 16.1, “Possible artifacts on a use case diagram.#).

16.10.1. Include Details Tabs
The details tabs that are active for include relationships are as follows.

Note

There is no source tab, since there is no source code that could be generated for an include
relationship.

Use Case Diagram Artifact Reference

206

ToDoItem Standard tab.

Properties See Section 16.10.2, “Include Property Toolbar# and Section 16.10.3, “Property
Fields For Include# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab

Note

The values for the bounds of the include relationships are down-
lighted, since the include relationship is represented by a line be-
tween a particular pair of use cases.

Tagged Values Standard tab. In the UML metamodel, Include has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the include relationship is redundant—it can be formally derived from other el-
ements, or false meaning it cannot.

Note

Derived include relationships could have their value in analysis
to introduce useful names or concepts.

16.10.2. Include Property Toolbar

Go upNavigate up through the package structure of the model. For a include this will be the package con-
taining the include.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected include relationship,
navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the selected include relationship from the model.

Warning

This is a deletion from the model not just the diagram. To delete a include from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

16.10.3. Property Fields For Include

Name
Text box. The name of the include relationship.

Use Case Diagram Artifact Reference

207

Tip

It is quite common to leave include relationships unnamed
in use case analysis.

Note

ArgoUML does not enforce any naming convention for in-
clude relationships.

Stereotype
Drop down selector. ArgoUML does not provide any stereotypes for in-
clude relationships.

Tip

Stereotyping does not have great value on an include rela-
tionship.

Note

There is no representation of the stereotype of an include re-
lationship on the diagram.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the include. This is the package hi-
erarchy.

Button 1 click on the entry will navigate to the package defining this
namespace (or the model for the top level namespace).

Base Use Case
Drop down selector. Records the use case that is doing the including in
this include relationship. Button 1 click on this entry will give a drop
down menu of all available use cases which may be selected by button 1
click.

Included Use Case
Drop down selector. Records the use case that is being included by this
include relationship. Button 1 click on this entry will give a drop down
menu of all available use cases (and an empty entry) which may be se-
lected by button 1 click.

Use Case Diagram Artifact Reference

208

Chapter 17. Class Diagram Artifact Reference

17.1. Introduction
This chapter describes each artifact that can be created within a class diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

Class diagrams are used for only one of the UML static structure diagrams, the class diagram itself. Ob-
ject diagrams are represented on the ArgoUML deployment diagram.

In addition, ArgoUML uses the class diagram to show model structure through the use of packages.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 12.3, “Properties Tab#). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Figure 17.1, “Possible artifacts on a class diagram.# shows a class diagram with all possible artifacts dis-
played.

Figure 17.1. Possible artifacts on a class diagram.

Figure 17.2, “Possible artifacts on a package diagram.# shows a package diagram with all possible arti-
facts displayed.

Figure 17.2. Possible artifacts on a package diagram.

209

17.1.1. Limitations Concerning Class Diagrams in Ar-
goUML

The current implementation does not allow datatypes to be shown on class diagrams.

A variant of the class diagram within the UML standard is the object diagram. There is currently no sup-
port for objects or links within ArgoUML Class diagrams;. Instead the ArgoUML deployment diagram
does have both objects and links, and can be used to draw object diagrams.

17.2. Package
The package is the main organizational artifact within ArgoUML. In the UML metamodel it is a sub-
class of both Namespace and GeneralizableElement.

Note

ArgoUML also implements the UML Model artifact as a sub-class of package, but not the
Subsystem artifact.

ArgoUML also implements some less common aspects of UML model management. In particular the re-
lationship UML 1.3 defines as Generalization and the sub-class dependency Permission for
use between packages.

17.2.1. Package Details Tabs
The details tabs that are active for packages are as follows.

ToDoItem Standard tab.

Class Diagram Artifact Reference

210

Properties See Section 17.2.2, “Package Property Toolbar# and Section 17.2.3, “Property
Fields For Package# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The Bounds: field defines the bounding box for the package on the
diagram.

Source Standard tab. This contains a template package declaration appropriate to the en-
tire package. In the future this would be part of the code generation activity.

Tagged Values Standard tab. In the UML metamodel, Package has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the package is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived packages still have their value in analysis to introduce
useful names or concepts, and in design to avoid re-computation.

17.2.2. Package Property Toolbar

Go upNavigate up through the package structure.

New PackageThis creates a new package within the package (which appears on no diagram), navigating imme-
diately to the properties tab for that package.

New Datatype
This creates a new Datatype (see Section 15.3, “Datatype#) for the selected package, navigating
immediately to the properties tab for that datatype.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected package, navigat-
ing immediately to the properties tab for that stereotype.

Delete PackageDeletes the package from the model.

Warning

This is a deletion from the model not just the diagram. To delete a package from the
diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

17.2.3. Property Fields For Package

Name
Text box. The name of the package. The name of a package, like
all packages, is by convention all lower case, not containing any

Class Diagram Artifact Reference

211

periods.

Note

By default a new package has no name defined. The
package will appear with the name (anon Pack-
age) in the explorer.

Stereotype
Drop down selector. Package is provided by default with the
UML standard stereotypes for package (facade, framework,
metamodel, stub, topLevel, systemModel).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to

the stereotype property panel (see Section 17.4, “Stereotype#).

Namespace
Drop down selector. Records the namespace for the package. This
is the package hierarchy.

Visibility Radio box, with three entries public, private and pro-
tected. Indicates whether the package is visible outside the
package.

Modifiers
Check box, with entries abstract, leaf and root.

• Abstract is used to declare that this package cannot be in-
stantiated, but must always be specialized.

Tip

The meaning of abstract applied to a pack-
age if not that clear. It might mean that the pack-
age contains interfaces or abstract classes with-
out realizations. This is probably better handled
through stereotyping of the package (for exam-
ple «facade»).

• Leaf indicates that this package can have no further subpack-
ages.

• Root indicates that it is the top level package.

Tip

Within ArgoUML Root only meaningfully ap-
plies to the Model, since all packages sit within
the model. This could be used to emphasize that
the Model is at the top level.

Generalizations
Text area. Lists any package that generalizes this package.

Class Diagram Artifact Reference

212

Button 1 double click navigates to the generalization and opens its
property tab.

Specializations
Text box. Lists any specialized package (i.e. for which this pack-
age is a generalization.

button 1 double click navigates to the generalization and opens its
property tab.

Owned Elements
Text area. A listing of all the packages, classes, interfaces,
datatypes, actors, use cases, associations, generalizations and
stereotypes within the package.

Button 1 double click on any item listed here navigates to that ar-
tifact.

17.3. Datatype
Datatypes are not specific to packages or class diagrams, and are discussed within the chapter on top
level artifacts (see Section 15.3, “Datatype#).

17.4. Stereotype
Stereotypes are not specific to packages or class diagrams, and are discussed within the chapter on top
level artifacts (see Section 15.4, “Stereotype#).

17.5. Class
The class is the dominant artifact on a class diagram. In the UML metamodel it is a sub-class of Clas-
sifier and GeneralizableElement.

A class is represented on a class diagram as a rectangle with three horizontal compartments. The top
compartment displays the class name (and stereotype), the second compartment any attributes and the
third any operations. The last two compartments may optionally be hidden.

17.5.1. Class Details Tabs
The details tabs that are active for classes are as follows.

ToDoItem Standard tab.

Properties See Section 17.5.2, “Class Property Toolbar# and Section 17.5.3, “Property Fields
For Class# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The tick boxes, Attributes and Operations allow the at-
tributes and operations compartments to be shown (the default) or hidden. This is
a setting valid for only the current diagram that shows the class. The Bounds:
field defines the bounding box for the package on the diagram.

Class Diagram Artifact Reference

213

Source Standard tab. This contains a template for the class declaration and declarations of
associated classes.

Constraints Standard tab. There are no standard constraints defined for Class within the
UML metamodel.

Tagged Values
Standard tab. In the UML metamodel, Class has the following standard tagged
values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the class.

• derived (from the superclass, ModelElement). Values true, meaning
the class is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived classes still have their value in analysis to introduce use-
ful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a Classifier.

17.5.2. Class Property Toolbar

Go up Navigate up through the package structure.

New attributeThis creates a new attribute (see Section 17.6, “Attribute#) within the class, navi-
gating immediately to the properties tab for that attribute.

New operationThis creates a new operation (see Section 17.7, “Operation#) within the class, nav-
igating immediately to the properties tab for that operation.

New receptionThis creates a new reception, navigating immediately to the properties tab for that
reception.

New inner classThis creates a new inner class (which appears on no diagram) within the class.
This belongs to the class and is restricted to the namespace of the class. It exactly
models the Java concept of inner class. As an inner class it needs no attributes or
operations, since it shares those of its owner.

Note

Class Diagram Artifact Reference

214

Inner class is not a separate concept in UML. This is a convenient
shorthand for creating a class that is restricted to the namespace of its
owning class.

New class This creates a new class (which appears on no diagram) within the same names-
pace as the current class.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected
class, navigating immediately to the properties tab for that stereotype.

Delete This deletes the class from the model

Warning

This is a deletion from the model not just the diagram. To delete a
class from the diagram, but keep it within the model, use the main
menu Remove From Diagram (or press the Delete key).

17.5.3. Property Fields For Class

Name
Text box. The name of the class. The name of a class has a lead-
ing capital letter, with words separated by “bumpy caps#.

Note

The ArgoUML critics will complain about class
names that do not have an initial capital.

Stereotype
Drop down selector. Class is provided by default with the UML
standard stereotypes for Class (implementationClass and
type) and for Classifier (metaclass, powertype,
process, thread and utility).

Tip

One stereotype that is not part of the UML standard,
but is widely used is Singleton, used to distin-
guish classes which have a single static instance, and
no public constructor. Although not part of Ar-
goUML by default, this stereotype is understood by
the critics. You may find it useful to create this
stereotype for yourself (see Section 15.4,
“Stereotype#).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to

the stereotype property panel (see Section 17.4, “Stereotype#).

Class Diagram Artifact Reference

215

Namespace Drop down selector. Records and allows setting of the namespace
for the class. This is the package hierarchy.

Button 1 click on the entry will move the class to the selected
namespace.

Modifiers
Check box, with entries Abstract, Leaf, Root, and Active.

• Abstract is used to declare that this class cannot be instan-
tiated, but must always be subclassed. The name of an abstract
class is displayed in italics on the diagram.

Caution

If a class has any abstract operations, then it
should be declared abstract. ArgoUML will not
enforce this.

• Leaf indicates that this class cannot be further subclassed,
while Root indicates it can have no superclass. It is possible
for a class to be both Abstract and Leaf, since its static opera-
tions may still be referenced.

• Active indicates that this class exhibits dynamic behavior
(and is thus associated with a state or activity diagram).

Visibility Radio box, with three entries public, private and pro-
tected. Indicates whether the class is visible outside the names-
pace.

Client Dependencies Text area. Lists the “depending# ends of the relationship, i.e. the
end that makes use of the other end.

Button 1 double click navigates to the dependency and opens its
property tab.

Supplier Dependencies Text area. Lists the “supplying# ends of the relationship, i.e. the
end supplying what is needed by the other end.

Button 1 double click navigates to the dependency and opens its
property tab.

Generalizations Text area. Lists any class that generalizes this class.

Button 1 double click navigates to the generalization and opens its
property tab.

Specializations Text box. Lists any specialized class (i.e. for which this class is a
generalization).

Button 1 double click navigates to the generalization and opens its
property tab.

Attributes Text area. Lists all the attributes (see Section 17.6, “Attribute#)
defined for this class. Button 1 double click navigates to the se-
lected attribute. Button 2 gives a pop up menu with two entries,
which allow reordering the attributes.

Class Diagram Artifact Reference

216

• Move Up. Only available where there are two or more at-
tributes listed, and the attribute selected is not at the top. It
moves the attribute up one position.

• Move Down. Only available where there are two or more at-
tributes listed, and the attribute selected is not at the bottom. It
moves the attribute down one position.

Association Ends Text box. Lists any association ends (see Section 17.11,
“Association#) of associations connected to this class.

Button 1 double click navigates to the selected entry.

Operations Text area. Lists all the operations (see Section 17.7, “Operation#)
defined on this class. Button 1 click navigates to the selected op-
eration. Button 2 gives a pop up menu with two entries, which al-
low reordering the operations.

• Move Up. Only available where there are two or more opera-
tions listed, and the operation selected is not at the top. It
moves the operation up one position.

• Move Down. Only available where there are two or more op-
erations listed, and the operation selected is not at the bottom.
It moves the operation down one position.

Owned Elements Text area. A listing of artifacts contained within the classes'
namespace. This is where any inner class (see Section 17.5.2,
“Class Property Toolbar#) will appear

Button 1 double click on any of the artifacts navigates to that arti-
fact.

Tip

Most namespace hierarchies should be managed
through the package mechanism. Namespace hierar-
chies through classes are best restricted to inner
classes. Conceivable datatypes, signals and inter-
faces could also appear here, but actors and use
cases would seem of no value.

17.6. Attribute
Attribute is a named slot within a class (or other Classifier) describing a range of values that may
be held by instances of the class. In the UML metamodel it is a sub-class of StructuralFeature
which is itself a sub-class of Feature.

An attribute is represented in the diagram on a single line within the attribute compartment of the class.
Its syntax is as follows:

visibility attributeName : type [= initialValue]

visibility is +, # or - corresponding to public, protected or private visibility respectively.

Class Diagram Artifact Reference

217

attributeName is the actual name of the attribute being declared.

type is the type (UML datatype, class or interface) declared for the attribute.

initialValue is any initial value to be given to the attribute when an instance of the class is created. This
may be overridden by any constructor operation.

In addition any attribute declared static will have its whole entry underlined on the diagram.

17.6.1. Attribute Details Tabs
The details tabs that are active for attributes are as follows.

ToDoItem Standard tab.

Properties See Section 17.6.2, “Attribute Property Toolbar# and Section 17.6.3, “Property
Fields For Attribute# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. This contains a declaration for the attribute.

Constraints Standard tab. There are no standard constraints defined for Attribute within
the UML metamodel.

Tagged Values
Standard tab. In the UML metamodel, Attribute has the following standard
tagged values defined.

• transient.

• volatile. This is an ArgoUML extension to the UML 1.3 standard to indi-
cate that this attribute is realized in some volatile form (for example it will be a
memory mapped control register).

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a Attribute.

17.6.2. Attribute Property Toolbar

Go upNavigate up through the package structure.

New attributeThis creates a new attribute within the owning class of the current attribute, navigating immediately to
the properties tab for that attribute.

Tip

This is a very convenient way to add a number of attributes, one after the other, to a

Class Diagram Artifact Reference

218

class.

New Datatype
This creates a new Datatype (see Section 15.3, “Datatype#) for the selected attribute, navigating im-
mediately to the properties tab for that datatype.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected attribute, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the attribute from the model

Warning

This is a deletion from the model not just the diagram. If desired the whole attribute
compartment can be hidden on the diagram using the style tab (see Section 17.6.2,
“Attribute Property Toolbar#) or the button 2 pop up menu for the class on the diagram.

17.6.3. Property Fields For Attribute

Name
Text box. The name of the attribute. The name of a attribute has a leading
lower case letter, with words separated by “bumpy caps#.

Note

The ArgoUML critics will complain about attribute names
that do not have an initial lower case letter.

Stereotype Drop down selector. There are no UML standard stereotypes for At-
tribute.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Owner Text box. Records the class which contains this attribute.

Button 1 double click on the entry will navigate to the class.

Multiplicity
Editable drop down selector. The default value (1) is that there is one in-
stance of this attribute for each instance of the class, i.e. it is a scalar. The
drop down provides a number of commonly used specifications for non-
scalar attributes.

Note

ArgoUML presents a number of predefined ranges for mul-
tiplicity for easy access. The user may also enter any user
defined range that follows the UML syntax, such as

Class Diagram Artifact Reference

219

“1..3,7,10#.

The value 1..1 is equivalent to the default (exactly one
scalar instance). The selection 0..1 indicates an optional
scalar attribute.

Type
Drop down selector. The type of this attribute. This can be any UML
Classifier, although in practice only Class, DataType, or In-
terface make any sense.

Note

A type must be declared (it can be void). By default Ar-
goUML supplies int as the type.

Navigate Type icon. This will navigate to the property panel for the currently se-

lected type. (see Section 17.5, “Class#, Section 17.3, “Datatype# and
Section 17.15, “Interface#).

Initial Value
Text box with drop down. This allows you to set an initial value for the
attribute if desired (this is optional). The drop down menu provides ac-
cess to the common values 0, 1, 2, and null.

Caution

Any constructor operation may ignore this initial value.

Visibility
Radio box, with entries public, private, and protected.

• public. The attribute is available to any artifact that can see the
owning class.

• private. The attribute is available only to the owning class (and
any inner classes).

• protected. The attribute is available only to the owning class, or
artifacts that are subclasses of the owning class.

Changeability
Radio box, with entries addOnly, changeable, and frozen.

• addOnly. Meaningful only if the multiplicity is not fixed to a single
value. Additional values may be added to the set of values, but once
created a value may not be removed or altered.

• changeable. There are no restrictions of modification.

• frozen. Also named “immutable#. The value of the attribute may
not change during the lifetime of the owner class. The value must be
set at object creation, and may never change after that. This implies

Class Diagram Artifact Reference

220

that there is usually an argument for this value in a constructor and
that there is no operation that updates this value.

Static Check box for static. If unchecked (the defaults) then the attribute has
“instance scope#. If checked, then the attribute is static, i.e. it has “class
scope#. Static attributes are indicated on the diagram by underlining.

17.7. Operation
An operation is a service that can be requested from an object to effect behavior. In the UML metamodel
it is a sub-class of BehavioralFeature which is itself a sub-class of Feature.

In the diagram, an operation is represented on a single line within the operation compartment of the
class. Its syntax is as follows:

visibility name (parameter list) : return-type-expression {property-string}

You can edit this line directly in the diagram, by double-clicking on it. All elements are optional and, if
left unspecified, the old values will be preserved.

A stereotype can be given between any two elements in the line in the format: <<stereotype>>.

The following properties are recognized to have special meaning: abstract, concurrency, concurrent,
guarded, leaf, query, root and sequential.

The visibility is +, # or - corresponding to public, protected or private visibility respectively.

static and final optionally appear if the operation has those modifiers. Any operation declared
static will have its whole entry underlined on the diagram.

There may be zero or more entries in the parameter list separated by commas. Every entry is a pair of
the form:

name : type

The return-type-expression is the type (UML datatype, class or interface) of the result returned.

Finally the whole entry is shown in italics if the operation is declared abstract.

17.7.1. Operation Details Tabs
The details tabs that are active for operations are as follows.

ToDoItem Standard tab.

Properties See Section 17.7.2, “Operation Property Toolbar# and Section 17.7.3, “Property
Fields For Operation# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The Bounds: field does allow editing, but the changes have no ef-
fect.

Class Diagram Artifact Reference

221

Source Standard tab. This contains a declaration for the operation.

Constraints Standard tab. There are no standard constraints defined for Operation within
the UML metamodel.

Tagged Values
Standard tab. In the UML metamodel, Operation has the following standard
tagged values defined.

• semantics. The value is a specification of the semantics of the operation.

• derived (from the superclass, ModelElement). Values true, meaning
the operation is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived operations still have their value in analysis to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for an Operation.

17.7.2. Operation Property Toolbar

Go upNavigate up through the package structure.

New operationThis creates a new operation within the owning class of the current operation, navigating immediately
to the properties tab for that operation.

Tip

This is a very convenient way to add a number of operations, one after the other, to a
class.

New parameterThis creates a new parameter for the operation, navigating immediately to the properties tab for that
parameter.

New raised signalThis creates a new raised signal for the operation, navigating immediately to the properties tab for that
raised signal.

New Datatype
This creates a new Datatype (see Section 15.3, “Datatype#) in the namespace of the owner of the op-
eration, navigating immediately to the properties tab for that datatype.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected operation, navigating
immediately to the properties tab for that stereotype.

Class Diagram Artifact Reference

222

DeleteThis deletes the operation from the model

Warning

This is a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab (see Sec-
tion 17.7.2, “Operation Property Toolbar#) or the button 2 pop up menu for the class on
the diagram.

17.7.3. Property Fields For Operation

Name
Text box. The name of the operation. The name of an operation has a
leading lower case letter, with words separated by “bumpy caps#.

Note

The ArgoUML critics will complain about operation names
that do not have an initial lower case letter.

Tip

If you wish to follow the Java convention of constructors
having the same name as the class, you will violate this rule.
Silence the critic by setting the stereotype create for the
constructor operation.

Stereotype
Drop down selector. There are two UML standard stereotypes for Oper-
ation (from the parent metaclass, BehavioralFeature), create
and destroy.

Tip

You should use create as the stereotype for constructors,
and destroy for destructors (which are called “finalize#
methods under Java).

Navigate Stereotype icon. If a stereotype has been selected, clicking button 1 will navi-

gate to the stereotype property panel (see Section 17.4, “Stereotype#).

Owner Text box. Records the class which contains this operation.

Button 1 double click on the entry will navigate to the class.

Visibility
Radio box, with entries public, private, and protected.

• public. The operation is available to any artifact that can see the
owning class.

Class Diagram Artifact Reference

223

• private. The operation is available only to the owning class (and
any inner classes).

• protected. The operation is available only to the owning class, or
artifacts that are subclasses of the owning class.

Modifiers
Check box, with entries abstract, leaf, root, query, and
static.

• abstract. This operation has no implementation with this class.
The implementation must be provided by a subclass.

Important

Any class with an abstract operation must itself be de-
clared abstract.

• leaf. The implementation of this operation must not be overridden
by any subclass.

• root. The declaration of this operation must not override a declara-
tion of the operation from a superclass.

• query. This indicates that the operation must have no side effects
(i.e. it must not change the state of the system). It can only return a
value.

Caution

Operations for user defined datatypes must always
check this modifier.

• static. There is only one instance of this operation associated with
the class (as opposed to one for each instance of the class). This is the
OwnerScope attribute of a Feature metaclass within UML. Any
operation declared static is shown underlined on the class diagram.

Concurrency
Radio box, with entries guarded, sequential, and concurrent.

• guarded. Multiple calls from concurrent threads may occur simulta-
neously to one instance (on any guarded operation), but only one is
allowed to commence. The others are blocked until the performance
of the first operation is complete.

Caution

It is up to the system designer to ensure that deadlock
cannot occur. It is the responsibility of the operation to
implement the blocking behavior (as opposed to the sys-
tem).

• sequential. Only one call to an instance (of the class with the op-

Class Diagram Artifact Reference

224

eration) may be outstanding at any one time. There is no protection,
and no guarantee of behavior if the system violates this rule.

• concurrent. Multiple calls to one instance may execute at the
same time. The operation is responsible for ensuring correct behavior.
This must be managed even if there are other sequential or synchro-
nized (guarded) operations executing at the time.

Parameter
Text area, with entries for all the parameters of the operation (see Sec-
tion 17.8, “Parameter#). A new operation is always created with one new
parameter, return to define the return type of the operation.

Button 1 double click on any of the parameters navigates to that parame-
ter. Button 2 click brings up a pop up menu with two entries.

• Move Up. Only available where there are two or more parameters,
and the parameter selected is not at the top. It is moved up one posi-
tion.

• Move Down. Only available where there are two or more parameters
listed, and the parameter selected is not at the bottom. It is moved
down one position.

Raised Signals
Text area, with entries for all the signals (see Section 17.9, “Signal#) that
can be raised by the operation.

Caution

ArgoUML at present (V0.18) has limited support for sig-
nals. In particular they are not linked to signal events that
could drive state machines.

Button 1 double click on any of the signals navigates to that parameter.

17.8. Parameter
A parameter is a variable that can be passed. In the UML metamodel it is a sub-class of ModelEle-
ment.

A parameter is represented within the operation declaration in the operation compartment of a class as
follows.

name : type

name is the name of the parameter.

type is the type (UML datatype, class or interface) of the parameter.

The exception is any parameter representing a return value, whose type only is shown at the end of the
operation declaration.

Class Diagram Artifact Reference

225

17.8.1. Parameter Details Tabs
The details tabs that are active for parameters are as follows.

ToDoItem Standard tab.

Properties See Section 17.8.2, “Parameter Property Toolbar# and Section 17.8.3, “Property
Fields For Parameter# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. This contains a declaration for the parameter.

Tagged Values
Standard tab. In the UML metamodel, Parameter has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the parameter is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Caution

A derived parameter is a meaningless concept.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

17.8.2. Parameter Property Toolbar

Go upNavigate up through the package structure.

New parameterThis creates a new parameter for the for the same operation as the current parameter, navigating im-
mediately to the properties tab for that parameter.

Tip

This is a convenient way to add a series of parameters for the same operation.

New Datatype
This creates a new Datatype (see Section 15.3, “Datatype#) in the namespace of the owner of the op-
eration of the parameter, navigating immediately to the properties tab for that datatype.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected parameter, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the parameter from the model

Class Diagram Artifact Reference

226

Warning

This is a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab or the button 2
pop up menu for the class on the diagram.

17.8.3. Property Fields For Parameter

Name
Text box. The name of the parameter. By convention, the name of a pa-
rameter has a leading lower case letter, with words separated by “bumpy
caps#.

Note

The ArgoUML critics do not complain about parameter
names that do not have an initial lower case letter.

Stereotype
Drop down selector. There are no UML standard stereotypes for Param-
eter.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Owner Text box. Records the operation which contains this parameter.

Button 1 double click on the entry will navigate to the operation.

Type
Drop down selector. The type of this parameter. This can be any UML
Classifier, although in practice only Class, DataType, or In-
terface make any sense.

Note

A type must be declared (it can be void, but this only
makes sense for a return parameter). By default ArgoUML
supplies int as the type the first time a parameter is cre-
ated, and thereafter the type of the most recently created pa-
rameter.

Default Value
Text box with drop down. This allows you to set an initial value for the
parameter if desired (this is optional). The drop down menu provides ac-
cess to the common values 0, 1, 2, and null.

Caution

This only makes sense for out or return parameters.

Class Diagram Artifact Reference

227

Kind
Radio box, with entries out, in/out, return, and in.

• out. The parameter is used only to pass values back from the opera-
tion.

• in/out. The parameter is used both to pass values in and to pass re-
sults back out of the operation.

Note

This is the default for any new parameter.

• return. The parameter is a return result from the call.

Note

There is nothing to stop you declaring more than one re-
turn parameter (some programming languages support
this concept).

Tip

The name of the return parameter does not appear on the
diagram, but it is convenient to give it an appropriate
name (such as the default return to identify it in the
list of parameters on the operation property tab.

• in. The parameter is used only to pass values in to the operation.

17.9. Signal
A signal is a specification of an asynchronous stimulus communicated between instances. In the UML
metamodel it is a sub-class of Classifier.

Within ArgoUML signals are not fully handled. Their value is when they are received as signal events
driving the asynchronous behavior of state machines and when associated with send actions in state ma-
chines and messages for collaboration diagrams.

Tip

In general there is limited value at present in defining signals within ArgoUML. It may
prove more useful to define signals as classes, with a (user defined) stereotype of
«signal» as suggested in the UML 1.3 standard. This allows any dependency relation-
ships between signals to be shown.

17.9.1. Signal Details Tabs
The details tabs that are active for signals are as follows.

Class Diagram Artifact Reference

228

ToDoItem Standard tab.

Properties See Section 17.9.2, “Signal Property Toolbar# and Section 17.9.3, “Property
Fields For Signal# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Source Standard tab. There is nothing generated for a signal.

Tagged Values
Standard tab. In the UML metamodel, Signal has the following standard tagged
values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the signal.

• derived (from the superclass, ModelElement). Values true, meaning
the signal is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived signals still have their value in analysis to introduce use-
ful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

17.9.2. Signal Property Toolbar

Go upNavigate up through the package structure.

New signalThis creates a new signal, navigating immediately to the properties tab for that signal.

Caution

The signal is not associated with the same operation as the original signal, so this will
have to be done afterwards.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected signal, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the signal from the model

Class Diagram Artifact Reference

229

Warning

This is a deletion from the model.

17.9.3. Property Fields For Signal

Name
Text box. The name of the signal. From their similarity to classes, by
convention, the name of a signal has a leading upper case letter, with
words separated by “bumpy caps#.

Note

The ArgoUML critics do not complain about signal names
that do not have an initial upper case letter.

Stereotype
Drop down selector. Signal is provided by default with the UML standard
stereotypes for its parent in the UML meta-model, Classifier
(metaclass, powerType, process, thread, and utility).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows changing the namespace for the
signal. This is the package hierarchy of the signal.

Contexts
Text area. Lists all the contexts defined for this signal. Button 1 double
click navigates to the selected context, button 2 click brings up a pop up
menu with one entry.

• Add. Add a new context. This opens the Add/Remove Contexts dia-
log box (see figure below), which allows choosing between all possi-
ble operations, and adding them to the selected list.

Figure 17.3. The “add/remove context# dialog box

Class Diagram Artifact Reference

230

17.10. Reception (to be written)
A reception is ...

17.11. Association
An association on a class diagram represents a relationship between classes, or between a class and an
interface. On a usecase diagram, an association binds an actor to a usecase.

Within the UML metamodel, Association is a sub-class of both Relationship and General-
izableElement.

The association is represented as a solid line connecting actor and usecase or class or interface (see Fig-
ure 17.1, “Possible artifacts on a class diagram.#). The name of the association and any stereotype ap-
pear above the line.

ArgoUML is not restricted to binary associations. See Section 17.11.1, “Three-way and Greater Associ-

Class Diagram Artifact Reference

231

ations and Association Classes# for more on this.

Associations are permitted between interfaces and classes, but UML 1.3 specifies they must only be
navigable toward the interface—in other words the interface cannot see the class. ArgoUML will draw
such associations with the appropriate navigation.

Associations are often not named, when their meaning is obvious from the context.

Note

ArgoUML provides no specific way of showing the direction of the association as de-
scribed in the UML 1.3 standard. The naming should attempt to make this clear.

The association contains at least two ends, which may be navigated to via the association property sheet.
See Section 17.12, “Association End# for more information.

17.11.1. Three-way and Greater Associations and Asso-
ciation Classes

UML 1.3 provides for N-ary associations and associations that are governed by a third associative class.
Both are supported by ArgoUML.

N-ary associations are created by drawing with the association tool from an existing association to a
third class. The current implementation of ArgoUML does not allow the inverse: drawing from a 3rd
class towards an existing association is not possible.

Association Classes are drawn exactly like a normal association, i.e. between two classes, but with a dif-
ferent dedicated tool from the diagram toolbar.

17.11.2. Association Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem Standard tab.

Properties See Section 17.11.3, “Association Property Toolbar# and Section 17.11.4,
“Property Fields For Association# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab.

Note

The values for the bounds of the Association have no meaning, since
they are determined by the location of the connected items. Chang-
ing them has no effect on the diagram.

Source Standard tab. You would not expect to generate any code for an association, and
any code entered here is ignored (it will have disappeared when you come back to
the association.

Tagged Values
Standard tab. In the UML metamodel, Association has the following standard

Class Diagram Artifact Reference

232

tagged values defined.

• persistence. Values transitory, indicating state is destroyed when an
instance is destroyed or persistent, marking state is preserved when an in-
stance is destroyed.

• derived (from the superclass, ModelElement). Values true, meaning
the association is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

Derived associations still have their value in analysis to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

17.11.3. Association Property Toolbar

Go upNavigate up through the package structure of the model. For an association this will be the package
containing the association.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected association, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the selected association from the model.

Warning

This is a deletion from the model not just the diagram. To delete an association from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.11.4. Property Fields For Association

Name
Text box. The name of the association. By convention association names
start with a lower case letter, with “bumpy caps# used to indicate words
within the name, thus: salesHandling.

Note

ArgoUML does not enforce any naming convention for as-
sociations.

Class Diagram Artifact Reference

233

Tip

Although the design critics will advise otherwise, it is per-
fectly normal not to name associations on a class diagram,
since the relationship is often obvious from the classes (or
class and interface) name.

Stereotype
Drop down selector. Association is provided by default with the UML
standard stereotype for Association (implicit) .

Stereotyping can be useful when creating associations in the problem do-
main (requirements capture) and solution domain (analysis), as well as
for processes based on patterns.

The stereotype is shown between « and » below the name of the associa-
tion on the diagram.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows changing the namespace for the
association. This is the package hierarchy.

Connections
Text area. Lists the ends of this association. An association can have two
or more ends. For more on association ends see Section 17.12,
“Association End#.

The names of the association ends are listed, unless the association end
has no name (the case when it is first created), in which case (anon
AssociationEnd) is shown.

Note

The only representation of association ends on a diagram is
that their name appears at the relevant end of the corre-
sponding association.

Button 1 double click on an association end will navigate to that end.

Association Roles Text area. (To be written)

Links Text area. (To be written)

17.12. Association End
Two or more association ends are associated with each association (see Section 16.5, “Association#).

Within the UML metamodel, AssociationEnd is a sub-class of ModelElement.

The association end has no direct access on any diagram for binary associations. The ends of an N-ary
association may be selected by clicking on the line in the diagram. The stereotype, name and multiplicity

Class Diagram Artifact Reference

234

are shown at the relevant end of the parent association (see Figure 16.1, “Possible artifacts on a use case
diagram.#). Where shared or composite aggregation is selected for one association end, the opposite end
is shown as a solid diamond (composite aggregation) or hollow diamond (shared aggregation).

Tip

Although you can change attributes of association ends when creating a use case model,
this is often not necessary. Many of the properties of an association end relate to its use in
class diagrams, and are of limited relevance to use cases. The most useful attributes to con-
sider altering are the name (used as the role name) and the multiplicity.

Note

ArgoUML does not currently support showing qualifiers on the diagram, as described in
the UML 1.3 standard.

17.12.1. Association End Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem Standard tab.

Properties See Section 17.12.2, “Association End Property Toolbar# and Section 17.12.3,
“Property Fields For Association End# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab.

Source Standard tab. This tab contains a declaration for the association end as an instance
of the artifact to which it is connected.

Tagged Values
Standard tab. In the UML metamodel, AssociationEnd has the following
standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the association end is redundant—it can be formally derived from other ele-
ments, or false meaning it cannot.

Tip

Derived association ends still have their value in analysis to in-
troduce useful names or concepts, and in design to avoid re-
computation. However the tag only makes sense for an associa-
tion end if it is also applied to the parent association.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Class Diagram Artifact Reference

235

17.12.2. Association End Property Toolbar

Go upNavigate up to the association to which this end belongs.

Go OppositeThis navigates to the other end of the association.

New Qualifier
This creates a new Qualifier for the selected association-end, navigating immediately to the properties
tab for that qualifier.

Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button
creates a qualifier in the model, which is not shown on the diagram. Also, the properties
panel for a qualifier equals that of a regular attribute.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected association-end, navi-
gating immediately to the properties tab for that stereotype.

DeleteThis deletes the selected association-end from the model.

Note

This button is downlighted for binary associations, since an association needs at least
two ends. Only for N-ary associations, this button is accessable, and deletes just one end
from the association.

17.12.3. Property Fields For Association End

Name
Text box. The name of the association end, which provides a role name
for this end of the association. This role name can be used for navigation,
and in an implementation context, provides a name by which the source
end of an association can reference the target end.

Note

ArgoUML does not enforce any naming convention for as-
sociation ends.

Stereotype
Drop down selector. Association end is provided by default with the
UML standard stereotypes for AssociationEnd (association,
global, local, parameter, self).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Association Text box. Records the parent association for this association end. But-
ton 1 double click on this entry will navigate to that association.

Class Diagram Artifact Reference

236

Type
Drop down selector providing access to all standard UML types provided
by ArgoUML and all new classes created within the current model.

This is the type of the entity attached to this end of the association.

Tip

By default ArgoUML will select the class of the artifact to
which the linkend is connected. However, an association
can be moved to another class by selecting another entry
here.

Multiplicity
Drop down menu with edit box. The value can be chosen from the drop
down box, or a new one can be edited in the text box. Records the multi-
plicity of this association end (with respect to the other end), i.e. how
many instances of this end may be associated with an instance of the
other end. The multiplicity is shown on the diagram at that end of the as-
sociation.

Modifiers
There are 3 modifiers: navigable, ordered and static. All 3 are
checkboxes.

• navigable. Indicates that this end can be navigated to from the
other end.

Note

The UML 1.3 standard provides a number of options for
how navigation is displayed on an association end. Ar-
goUML uses option 3, which means that arrow heads
are shown at the end of an association, when navigation
is enabled at only one end, to indicate the direction in
which navigation is possible. This means that the de-
fault, with both ends navigable has no arrows.

• ordered When placed on one end, specifies whether the set of links
from the other instance to this instance is ordered. The ordering must
be determined and maintained by Operations that add links. It repre-
sents additional information not inherent in the objects or links them-
selves. Possibilities for the checkbox are: Unchecked - The links form
a set with no inherent ordering. Checked - A set of ordered links can
be scanned in order.

• Static (To be written)

Specification List. Designates zero or more Classifiers that specify the Operations that
may be applied to an Instance accessed by the AssociationEnd across the
Association. These determine the minimum interface that must be real-
ized by the actual Classifier attached to the end to support the intent of
the Association. May be an Interface or another Classifier. The type of
classifier is indicated by an icon.

Button 1 double click navigates to the selected classifier, button 2 click

Class Diagram Artifact Reference

237

brings a pop up menu with one entry.

• Add. Add a new specification classifier. This opens the Add/Remove
Specifications dialog box (see figure below), which allows choosing
between all possible classifiers, and adding or removing them to the
selected list.

Figure 17.4. The “Add/Remove Specifications# dialog
box

Qualifiers Text box. Records the qualifiers for this association end. Button 1 double
click on this entry will navigate to that qualifier. Button 2 click will show
a popup menu containing two items: Move Up and Move Down, which
allow reordering the qualifiers.

Class Diagram Artifact Reference

238

Aggregation
Radio box, with three entries composite, none and aggregate. In-
dicates whether the relationship with the far end represents some type of
loose whole-part relationship (aggregation) or tight whole-part rela-
tionship (composite).

Shared aggregation is shown by a hollow diamond at the “whole# end of
the association. Composite aggregation is shown by a solid diamond.

Note

You may not have aggregation at both ends of an associa-
tion. ArgoUML does not enforce this constraint.

The “whole# end of a composite aggregation should have a
multiplicity of one. ArgoUML does not enforce this con-
straint.

Changeability
Radio box, with three entries add only, changeable and frozen.
Indicates whether instances of this end of the association-end may be: i)
created but not deleted after the target instance is created; ii) created and
deleted by the source after the target instance is created; or iii) not created
or deleted by the source after the target instance is created.

Visibility
Radio box, with three entries public, private and protected. In-
dicates whether navigation to this end may be by: i) any classifier; ii)
only by the source classifier; or iii) only the source classifier and its chil-
dren.

17.13. Dependency
Dependency is a relationship between two artifacts showing that one depends on the other.

Within the UML metamodel, Dependency is a sub-class of Relationship.

Dependency is represented as a dashed line with an open arrow head from the depending artifact to that
which it is dependent upon.

17.13.1. Dependency Details Tabs
The details tabs that are active for dependencies are as follows.

ToDoItem Standard tab.

Properties See Section 17.13.2, “Dependency Property Toolbar# and Section 17.13.3,
“Property Fields For Dependency# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab

Class Diagram Artifact Reference

239

Note

The values for the bounds of the dependency are downlighted, given
the dependency is tied to a particular modelelement.

Tagged Values Standard tab. In the UML metamodel, Dependency has no tagged values of its
own, but through superclasses has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the dependency relationship is redundant—it can be formally derived from
other elements, or false meaning it cannot.

Note

Derived dependencies still have their value in analysis to intro-
duce useful names or concepts.

17.13.2. Dependency Property Toolbar

Go upNavigate up through the package structure of the model. For a dependency this will be the package
containing the dependency.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected dependency, navigat-
ing immediately to the properties tab for that stereotype.

DeleteThis deletes the selected dependency from the model.

Warning

This is a deletion from the model not just the diagram. To delete a dependency from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.13.3. Property Fields For Dependency

Name
Text box. The name of the dependency.

Tip

It is quite common to leave dependencies unnamed.

Note

ArgoUML does not enforce any naming convention for as-
sociations.

Class Diagram Artifact Reference

240

Note

There is no representation of the name of a dependency on
the diagram.

Stereotype
Drop down selector. Dependency has no standard stereotypes of its own
under UML 1.3. and so ArgoUML does not provide any. The stereotype
is shown between « and » above or across the generalization.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace
Text box. Records the namespace for the dependency. This is the package
hierarchy.

Suppliers
Text area. Lists the end of the relationship that is supplying what is
needed by the other end.

Button 1 double click on a supplier will navigate to that element.

Clients
Text area. Lists the “depending# ends of the relationship, i.e. the end that
makes use of the other end.

Button 1 double click on a client will navigate to that element.

17.14. Generalization
Generalization is described under use case diagrams (see Section 16.8, “Generalization#).

Note

Within the context of classes, generalization and specialization are the UML terms describ-
ing class inheritance.

17.15. Interface
An interface is a set of operations characterizing the behavior of an element. It can be usefully thought
of as an abstract class with no attributes and no non-abstract operations. In the UML metamodel it is a
sub-class of Classifier and through that GeneralizableElement.

An interface is represented on a class diagram as a rectangle with two horizontal compartments. The top
compartment displays the interface name (and above it «interface») and the second any operations.
Just like a class, the operations compartment can be hidden.

17.15.1. Interface Details Tabs
The details tabs that are active for interfaces are as follows.

Class Diagram Artifact Reference

241

ToDoItem Standard tab.

Properties See Section 17.15.2, “Interface Property Toolbar# and Section 17.15.3, “Property
Fields For Interface# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab. The tick box Display Operations allows the operation com-
partment to be shown (the default) or hidden. This is a setting valid for only the
current diagram. The Bounds: field defines the bounding box for the package on
the diagram.

Source Standard tab. This contains a template for the interface declaration and declara-
tions of associated interfaces.

Tagged Values Standard tab. In the UML metamodel, Interface has the following standard
tagged values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

Warning

Since interfaces are by definition abstract, they can have no in-
stance, and so this tagged value must refer to the properties of the
realizing class.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the interface.

• derived (from the superclass, ModelElement). Values true, meaning
the interface is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived interfaces still have their value in analysis to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for an Interface.

17.15.2. Interface Property Toolbar

Go up Navigate up through the package structure.

Class Diagram Artifact Reference

242

New operationThis creates a new operation (see Section 17.7, “Operation#) within the interface,
navigating immediately to the properties tab for that operation.

New receptionThis creates a new reception, navigating immediately to the properties tab for that
reception.

New interfaceThis creates a new interface in the same namespace as the selected interface, navi-
gating immediately to the properties tab for the new interface.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected in-
terface, navigating immediately to the properties tab for that stereotype.

Delete This deletes the interface from the model

Warning

This is a deletion from the model not just the diagram. To delete an
interface from the diagram, but keep it within the model, use the
main menu Remove From Diagram (or press the Delete key).

17.15.3. Property Fields For Interface

Name Text box. The name of the interface. The name of an interface has a lead-
ing capital letter, with words separated by “bumpy caps#.

Note

Unlike classes, the ArgoUML critics will not complain
about interface names that do not have an initial capital.

Stereotype Drop down selector. Interface is provided by default with the UML stan-
dard stereotypes for the parent meta-class, Classifier (metaclass,
powertype, process, thread and utility).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows changing the namespace for the
interface. This is the package hierarchy.

Modifiers Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this interface cannot be instanti-
ated, but must always be specialized. The name of an abstract inter-
face is displayed in italics on the diagram.

Caution

This is meaningless, since by definition an interface is
an abstract entity. The UML 1.3 standard offers no clari-
fication.

Class Diagram Artifact Reference

243

• Leaf indicates that this interface cannot be further specialized, while
Root indicates it can have no generalizations.

Visibility Radio box, with three entries public, protected and private. In-
dicates whether navigation to this end may be by: i) any classifier; ii)
only the source classifier and its children; or iii) only by the source classi-
fier.

Generalizations Text area. Lists any interface that generalizes this interface.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

Specializations Text box. Lists any specialized interface (i.e. for which this interface is a
generalization.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

AssociationEnds Text box. Lists any AssociationEnds (see Section 17.12, “Association
End#) connected to this interface.

Note

Associations between classes and interfaces must be naviga-
ble only from the class to the interface. ArgoUML will cre-
ate associations between classes and interfaces with the cor-
rect navigability, but does not prevent the user from altering
this.

Button 1 double click navigates to the selected entry.

Operations Text area. Lists all the operations (see Section 17.7, “Operation#) defined
on this interface. Button 1 double click navigates to the selected opera-
tion. Button 2 click will show a popup menu with two items: Move Up
and Move Down, which allow reordering the operations.

Caution

All operations on an interface must be public. The Ar-
goUML critics will complain if this is not the case.

17.16. Abstraction
An abstraction is a dependency relationship joining two artifacts within the model at different levels of
abstraction. Within ArgoUML it is principally used through its specific stereotype realize to define
realization dependencies, which link artifacts that specify behavior to the corresponding artifacts that
implement the behavior.

In the UML metamodel Abstraction is a sub-class of Dependency and through that Relation-
ship.

An abstraction with stereotype realize is represented on a class diagram as a dotted line with a solid

Class Diagram Artifact Reference

244

white head at the specifying end.

Caution

All other stereotypes of abstraction should be represented using an open arrow head, but
this is not supported by ArgoUML.

17.16.1. Abstraction Details Tabs
The details tabs that are active for abstractions are as follows.

ToDoItem Standard tab.

Properties See Section 17.16.2, “Abstraction Property Toolbar# and Section 17.16.3,
“Property Fields For Abstraction# below.

Documentation Standard tab. See Section 12.4, “Documentation Tab#.

Presentation Standard tab.

Note

The values for the bounds of the abstraction are downlighted, since
the association is tied to particular artifacts.

Source Standard tab. This contains the single downlighted text N/A.

Tagged Values Standard tab. In the UML metamodel, Abstraction has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the abstraction is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

Derived abstractions still have their value in analysis to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

17.16.2. Abstraction Property Toolbar

Go upNavigate up through the package structure.

DeleteThis deletes the abstraction from the model

Class Diagram Artifact Reference

245

Warning

This is a deletion from the model not just the diagram. To delete an abstraction from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.16.3. Property Fields For Abstraction

Name Text box. The name of the abstraction. There are no constraints on the
name of an abstraction, which is not shown on any diagram.

Stereotype Drop down selector. Abstraction is provided by default with the UML
standard stereotypes derive, realize, refine and trace.

Caution

ArgoUML automatically selects the stereotype realize when
an abstraction is created. The user is free to change the
stereotype to use the abstraction to indicate for example a
trace relationship. However ArgoUML will not alter the
representation on the diagram accordingly.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows changing the namespace for the
abstraction. This is the package hierarchy.

Suppliers Text area. Lists the artifact that is the supplier end of this abstraction (for
a realization this is the end providing the implementation).

Note

Although this is a text area there is no mechanism for
adding more than one supplier.

Button 1 double click navigates to the selected entry.

Clients Text area. Lists the artifact that is the client end of this abstraction (for a
realization this is the end providing the specification).

Note

Although this is a text area there is no mechanism for
adding more than one client.

Button 1 double click navigates to the selected entry.

Class Diagram Artifact Reference

246

Chapter 18. Sequence Diagram Artifact
Reference

Caution

In ArgoUML 0.18 the sequence diagrams are not available. They will be replaced by a new
and improved version in the upcoming release. In the 0.12, 0.14 and 0.16 releases they
were not working and in the 0.10 release that is described here they did not follow the
UML specification correctly.

This chapter is left in the manual for those that might need it because they are still working
with ArgoUML 0.10.1.

18.1. Introduction
This chapter describes each artifact that can be created within a sequence diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties tab of the details pane (see
Section 12.3, “Properties Tab#). That section covers properties in general, in this chapter they are linked
to specific artifacts.

Caution

Sequence diagrams are not fully developed yet in ArgoUML. Many aspects are not fully
implemented, or may not behave as expected.

Figure 18.1, “Possible artifacts on a sequence diagram.# shows a sequence diagram with all possible ar-
tifacts displayed.

Figure 18.1. Possible artifacts on a sequence diagram.

247

18.1.1. Limitations Concerning Sequence Diagrams in
ArgoUML

The sequence diagram is still rather under-developed in ArgoUML.

The biggest difficulties are with the actions behind the stimuli. These are purely textual in implementa-
tion, and there is no way to link them back to their associated operations or signals.

18.2. Object
An object is an instance of a class. In the UML metamodel Object is a sub-class of Instance.
Within a sequence diagram objects may be used to represent a specific instance of a class. Unlike collab-
oration diagrams (see Chapter 20, Collaboration Diagram Artifact Reference), sequence diagrams can-
not show generic behavior between classifier roles.

An object is represented on a sequence diagram in ArgoUML as a plain box labeled with the object
name (if any) and class name, separated by a colon (:). As links with stimuli to and from other objects
are added, a time line grows down from the object. This is thin where the object does not have control
and thick where it does.

Caution

The current release of ArgoUML shows interactions between objects, although the UML
standard for sequence diagrams is for interaction between instances of any classifier).

However the actual implementation in ArgoUML permits any classifier to be used with the

Sequence Diagram Artifact Reference

248

object, and so the diagram can successfully represent instances of actors for example as
well as classes.

18.2.1. Object Details Tabs
The details tabs that are active for objects are as follows.

ToDoItem Standard tab.

Properties See Section 18.2.2, “Object Property Toolbar# and Section 18.2.3, “Property
Fields For Object# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the object notionally define the bound-
ing box of the object and its time line. However if you change them it will have no
effect, and the original values will be reset when you next revisit the tab.

Source Standard tab, but with no contents.

Caution

An object should not generate any code, so having this tab active is
probably a mistake.

Tagged Values Standard tab. In the UML metamodel, Object has the following standard tagged
values defined.

• persistence (from the superclass, Instance. Showing the permanence
of the state information associated with the object. Values transitory
(state is destroyed when the object is destroyed) and persistent (state is
preserved when the object is destroyed).

• derived (from the superclass, ModelElement). Values true, meaning
the object is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived objects still have their value in analysis and design to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a Classifier.

Sequence Diagram Artifact Reference

249

18.2.2. Object Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected object, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the object from the model

Warning

This is a deletion from the model not just the diagram. To delete an object from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

18.2.3. Property Fields For Object

Name Text box. The name of the object. By convention object names start with
a lower case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Object has no stereotypes by default in the UML
standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 17.4, “Stereotype#).

Namespace Text box. Records the namespace for the object. This is the package hier-
archy.

Stimuli Sent Text area. Lists the stimuli sent to this object.

Stimuli Received Text area. Lists the stimuli received by this object.

Classifier Drop down selector. The name of the classifier of which this is an object.

Caution

In the current release of ArgoUML the drop down selector
will include all classifiers (i.e. interfaces, actors, use cases
and datatypes as well), which is what is wanted on the dia-
gram, although it should properly be called an instance,
rather than an object. In practice only instances of classes
and actors make much sense.

Sequence Diagram Artifact Reference

250

Note

In the current release of ArgoUML the same graphical pre-
sentation is used, even if the object is actually representing
an instance of an actor (when a stick-man would be more
usual).

18.3. Stimulus
A stimulus is a communication between two instances and is generated by an action. On a sequence dia-
gram a stimulus is associated with a link—an instance of an association linking two object instances. In
the UML metamodel Stimulus is a sub-class of ModelElement.

The link (see Section 18.9, “Link#) associated with a stimulus is represented on a sequence diagram in
ArgoUML as an arrow between the time lines of the object instances (or the object head in the case of
stimulus create, described below) labeled with the name of the action (if any), and the action, separated
by a colon (:). The type of line and arrowhead depends on the type of action that generated the stimulus:

• Stimulus Call. Generated by a call action, itself the result of an operation of a class. Shown as
a solid line with a solid arrowhead to the time line of the object instance receiving the stimulus.

• Stimulus Create. Generated by a create action for the class for which an instance is to be cre-
ated Shown as a solid line with a solid arrowhead to the object head of the object instance being cre-
ated.

• Stimulus Destroy. Generated by a destroy action of the originating object. Shown as a solid
line with an open arrowhead terminating in a diagonal cross at the end of the time line of the receiv-
ing (destroyed) object instance.

• Stimulus Send. Generated by a send action, the result of a signal raised by an operation of the
sending object instance and handled by the receiving object instance. Shown as a solid line with half
an open arrowhead.

• Stimulus Return. Generated by an object instance that has received an earlier call stimulus and
is returning a result to the calling object instance. Shown as a dotted line with an open arrowhead.

Note

ArgoUML does not allow you to create stimuli directly, but instead provides tools to create
stimuli of each of the five types above.

Caution

In the current release of ArgoUML there is no way to show a terminate action where an
object instance destroys itself. One way is to draw a destroy action that loops back to the
object itself, give it an action with no name and use the style tab to set an invisible line, but
this still leaves the arrow head showing, which is unsightly. It is also semantically incor-
rect anyway to use a destroy action to represent a terminate action.

18.3.1. Stimulus Details Tabs

Sequence Diagram Artifact Reference

251

The details tabs that are active for stimuli are as follows.

ToDoItem Standard tab.

Properties See Section 18.3.2, “Stimulus Property Toolbar# and Section 18.3.3, “Property
Fields For Stimulus# below.

Documentation Standard tab.

Style Standard tab. The values for the bounds of the stimulus notionally define the
bounding box of the stimulus and its time line. However if you change them it will
have no effect, and the original values will be reset when you next revisit the tab.

Altering the Fill and Shadow entries has no effect. Rather bizarrely you can set
the Line entry and it will draw a line around the signal, which is not a standard
UML representation.

Tip

To change the color of the line, you should select the associated link
(click on it a little way from the stimulus) and use its style tab (see
Section 18.9, “Link#).

Caution

In the current release of ArgoUML changing the values of the
Bounds field is possible, but will make only a temporary change to
the position of the stimulus. Selecting any artifact on the screen
causes the stimulus to return to its original position and the original
values to be restored.

Source Standard tab, but with no contents.

Caution

A stimulus should not generate any code, so having this tab active is
probably a mistake.

Constraints Standard tab. ArgoUML only supports constraints on Classes and Features
(Attributes, Operations, Receptions, and Methods), so this tab is grayed out.

Tagged Values Standard tab. In the UML metamodel, Stimulus has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the stimulus is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived stimuli still have their value in analysis and design to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Sequence Diagram Artifact Reference

252

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

18.3.2. Stimulus Property Toolbar

Go upNavigate up through the package structure.

DeleteThis deletes the stimulus from the model

Warning

This is a deletion from the model not just the diagram. To delete an stimulus from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

18.3.3. Property Fields For Stimulus

Name Text box. There is no convention for naming stimuli, and it is quite nor-
mal to leave them unnamed. The action is sufficient identification.

Tip

It is sometimes useful to give simple names to stimuli, so
they can be referred to in attached notes giving timing con-
straints.

Action Text box. This is used to identify the action that generated the stimulus.

Caution

The current release of ArgoUML only implements actions
as textual descriptions.

As a practical convention it is suggested that call actions are
shown as the name of the operation generating the action
with any arguments in parentheses and that send actions are
shown as the name of the signal generating the action with
any arguments in parentheses. Return actions should be
shown as the expression for the value they return, or empty
otherwise. Create and destroy actions should be left empty,
since they are implied by their representation.

Stereotype Drop down selector. Stimulus has no stereotypes by default in the UML
standard, but ArgoUML provides the stereotypes, machine, organi-
zation and person.

Sequence Diagram Artifact Reference

253

Caution

ArgoUML also provides the stereotype realize for stim-
uli. This appears to be an error, since this stereotype prop-
erly belongs to the Abstraction metaclass.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 17.4, “Stereotype#).

Sender Text box. Identifies the instance which sent this stimulus.

Button 1 click navigates to the sender instance, button 2 gives a pop up
menu with one entry.

• Open. Navigate to the selected sender instance.

Receiver Text box. Identifies the instance which receives this stimulus.

Button 1 click navigates to the receiver instance, button 2 gives a pop up
menu with one entry.

• Open. Navigate to the selected receiver instance.

Warning

In the current release of ArgoUML this field is broken. It al-
ways shows the entry none and the pop-up menu is grayed
out.

Namespace Text box. Records the namespace for the stimulus. This is the package hi-
erarchy.

Button 1 click on the entry will navigate to the package defining this
namespace (or the model for the top level namespace).

18.4. Stimulus Call
This tool creates a stimulus associated with a call action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 18.3,
“Stimulus#). Its graphical representation on the diagram is that of a stimulus associated with a call ac-
tion, i.e. a solid line with a solid arrow head.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a call action.

18.5. Stimulus Create

Sequence Diagram Artifact Reference

254

This tool creates a stimulus associated with a create action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 18.3,
“Stimulus#). Its graphical representation on the diagram is that of a stimulus associated with a create ac-
tion, i.e. a solid line with a solid arrow head terminating at the head of the created instance.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a create action.

18.6. Stimulus Destroy
This tool creates a stimulus associated with a destroy action on the diagram, creating at the same time
the associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 18.3,
“Stimulus#). Its graphical representation on the diagram is that of a stimulus associated with a destroy
action, i.e. a solid line with an open arrow head terminating at a cross at the bottom of the destroyed in-
stance's time line.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a destroy action.

18.7. Stimulus Send
This tool creates a stimulus associated with a send action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 18.3,
“Stimulus#). Its graphical representation on the diagram is that of a stimulus associated with a send ac-
tion, i.e. a solid line with half an open arrow head.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a send action.

18.8. Stimulus Return
This tool creates a stimulus associated with a return action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 18.3,
“Stimulus#). Its graphical representation on the diagram is that of a stimulus associated with a return ac-
tion, i.e. a dotted line with an open arrow head.

Note

Sequence Diagram Artifact Reference

255

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a return action.

18.9. Link
A link is an instance of an association. In the UML metamodel Link is a sub-class of Instance.
Within a sequence diagram links are created indirectly when an associated stimulus is created.

An link is represented on a sequence diagram in ArgoUML as a line connecting the instances concerned.
However on a sequence diagram the representation is modified to reflect the type of action associated
with the stimulus carried on the link (see Section 18.3, “Stimulus#).

18.9.1. Link Details Tabs
The details tabs that are active for links are as follows.

ToDoItem Standard tab.

Properties See Section 18.9.2, “Link Property Toolbar# and Section 18.9.3, “Property Fields
For Link# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the link are downlighted, since they are
determined by the objects connected.

Source Standard tab, but with no contents.

Caution

A link should not generate any code, so having this tab active is
probably a mistake.

Tagged Values Standard tab. In the UML metamodel, Link has the following standard tagged
values defined.

• persistence (from the superclass, Instance. Showing the permanence
of the state information associated with the link. Values transitory (state
is destroyed when the link is destroyed) and persistent (state is preserved
when the link is destroyed).

• derived (from the superclass, ModelElement). Values true, meaning
the link is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived links still have their value in analysis and design to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Note

Sequence Diagram Artifact Reference

256

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a Classifier.

18.9.2. Link Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected link, navigating imme-
diately to the properties tab for that stereotype.

DeleteThis deletes the link from the model

Warning

This is a deletion from the model not just the diagram. To delete an link from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

18.9.3. Property Fields For Link

Name Text box. The name of the link. By convention link names start with a
lower case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Link has no stereotypes by default in the UML stan-
dard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 17.4, “Stereotype#).

Namespace Text box. Records the namespace for the link. This is the package hierar-
chy.

Connections List box. Lists the connections of the link, i.e. the link-ends.

Button 1 double click on the entry will navigate to the link-end.

Sequence Diagram Artifact Reference

257

Chapter 19. Statechart Diagram Artifact
Reference

19.1. Introduction
This chapter describes each artifact that can be created within a statechart diagram. Note that some sub-
artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 12.3, “Properties Tab#). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Figure 19.1, “Statechart diagram artifacts 1.# and Figure 19.2, “Statechart diagram artifacts 2.# show
statechart diagrams with most possible artifacts displayed.

Figure 19.1. Statechart diagram artifacts 1.

Figure 19.2. Statechart diagram artifacts 2.

258

19.1.1. Limitations Concerning Statechart Diagrams in
ArgoUML

The statechart diagrams support the 4 event types defined (CallEvent, SignalEvent, ChangeEvent and
TimeEvent), but the SignalEvent is purely textual, with no way to link it back to its associated Signal.
Also the various kinds of Actions are only supported in the same way.

Code generation from statechart diagrams is not developed yet.

19.2. State
A state models a situation during which some (usually implicit) invariant condition holds for the parent
class. This invariant may be a static situation such as an object waiting for some external event to occur,
or some dynamic activity “in progress#.

A state is represented on a statechart diagram in ArgoUML as a rectangle with rounded corners, with a
horizontal line separating the name at the top from the description of the behavior below. The descrip-
tion of the behavior includes the entry and exit actions and any internal transitions.

19.2.1. State Details Tabs
The details tabs that are active for states are as follows.

ToDoItem Standard tab.

Properties See Section 19.2.2, “State Property Toolbar# and Section 19.2.3, “Property Fields
For State# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the state define the bounding box of the
state.

Source Standard tab, containing just the name of the state.

Statechart Diagram Artifact Reference

259

Note

In the fullness of time this tab will contain code to implement the
state (code for actions will be associated with the particular actions).
This is not implemented in the current release of ArgoUML.

Tagged Values Standard tab. In the UML metamodel, State has the following standard tagged
values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the state is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived states still have their value in analysis to introduce use-
ful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are
derived includes the tagged element documentation which is
handled by the documentation tab under ArgoUML

Checklist Standard tab for a State.

19.2.2. State Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected state, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the state from the model

Warning

This is a deletion from the model, not just the diagram. To delete a state from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

19.2.3. Property Fields For State

Name Text box. The name of the state. By convention state names start with a
lower case letter and use bumpy caps to divide words within the name.

Note

Statechart Diagram Artifact Reference

260

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. State has no stereotypes by default in the UML
standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Container Text box. Shows the container of the state. This is the state hierarchy.

Button 1 double click on the entry will navigate to the composite state
that contains this state. All states are at least contained by the otherwise
hidden top-level state (named “top#) that is the root of the state contain-
ment hierarchy.

Entry-Action Text box. Shows the name of the action (if any) to be executed on entry
to this state.

Note

This field shows the name of the action, while on the dia-
gram the expression of the action is shown.

Button 1 double-click navigates to the selected entry, button 2 gives a
pop up menu with two entries:

• New. Add a new Entry action of a certain kind. This menu has the
following submenus to select the kind of action: Call Action, Create
Action, Destroy Action, Return Action, Send Action, Terminate Ac-
tion, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Exit-Action Text box. Shows the action (if any) to be executed on exit from this
state.

Button 1 click navigates to the selected action, button 2 gives a pop up
menu with two entries.

• New. Add a new Exit action of a certain kind. This menu has the
following submenus to select the kind of action: Call Action, Create
Action, Destroy Action, Return Action, Send Action, Terminate Ac-
tion, Uninterpreted Action.

• Delete From Model. Delete the Exit-Action.

Do-Activity Text box. Shows the action (if any) to be executed while being in this
state.

Button 1 click navigates to the selected action, button 2 gives a pop up
menu with two entries.

• New. Add a new Do-Activity (action) of a certain kind. This menu
has the following submenus to select the kind of action: Call Action,

Statechart Diagram Artifact Reference

261

Create Action, Destroy Action, Return Action, Send Action, Termi-
nate Action, Uninterpreted Action.

• Delete From Model. Delete the Do-Activity.

Incoming Text area. Lists all the transitions that enter this state, including any in-
ternal transitions within the state (described below).

Button 1 double click navigates to the selected entry.

Outgoing Text area. Lists all the transitions that leave this state, including any in-
ternal transitions within the state (described below).

Button 1 double click navigates to the selected action.

Internal Transitions Text area. Lists all the internal transitions of the state. Such transitions
neither exit nor enter the state, so they do not cause a state change.
Which means that the Entry and Exit actions are not invoked.

Note

This field shows the name of the transition, while on the
diagram the name of the trigger is shown.

Button 1 double-click navigates to the selected transition, button 2 gives
a pop up menu with one entry.

• New. Add a new internal transition.

19.3. Action
An action specifies an executable statement and is an abstraction of a computational procedure that can
change the state of the model. In the UML metamodel it is a child of Model. Since in the metamodel an
ActionSequence is itself an Action that is an aggregation of other actions (i.e. the "composite" pattern),
an ActionSequence may be used anywhere an action may be.

There are a number of different types of action that are children of Action within the UML metamodel.

• CreateAction. Associated with a classifier, this action creates an instance of that classifier.

• CallAction. Associated with an operation of a class, this action calls the given operation.

• ReturnAction. An action used to return a result to an earlier caller.

• SendAction. Associated with a signal, this action causes the signal to be raised.

• TerminateAction. Causes the invoking object to self-destruct.

• UninterpretedAction. An action used to specify language-specific actions that do not classify
under the other types of actions.

• DestroyAction. Destroys the specified target object.

Statechart Diagram Artifact Reference

262

An action is represented on the diagram by the text of its expression.

19.3.1. Action Details Tabs
The details tabs that are active for actions are as follows.

ToDoItem Standard tab.

Properties See Section 19.3.2, “Action Property Toolbar# and Section 19.3.3, “Property
Fields For Action# below.

Documentation Standard tab.

Source Standard tab, containing the expression for the action.

Note

In the fullness of time this tab will contain code to implement the ac-
tion. This is not implemented in the current release of ArgoUML.

Tagged Values Standard tab. In the UML metamodel, Action has the following standard tagged
value defined.

• derived (from the superclass, ModelElement). Values true, meaning
the action is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived actions still have their value in analysis and design to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are
derived includes the tagged element documentation which is
handled by the documentation tab under ArgoUML

19.3.2. Action Property Toolbar

Go upNavigate up through the hierarchical structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected action, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the Action from the model

Statechart Diagram Artifact Reference

263

19.3.3. Property Fields For Action

Name Text box. The name of the action. By convention action names start with a lower case
letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Expression Text box. The expression that defines the action.

Caution

The V0.18 release of ArgoUML only partially implements actions. As a
practical convention it is suggested that call actions are shown as the
name of the operation generating the action with any arguments in paren-
theses and that send actions are shown as the name of the signal generat-
ing the action with any arguments in parentheses. Return actions should
be shown as the expression for the value they return, or empty otherwise.
Create and destroy actions should shown as create(<target>) and
destroy(<target>). Terminate action should be shown as termi-
nate.

Language Text box. This is to indicate that the expression is written in a particular programming
language.

19.4. Composite State
A composite state is a state that contains other states (known as sub-states), allowing hierarchical state
machines to be constructed.

A composite state is represented on a statechart diagram in ArgoUML as a large rectangle with rounded
corners, with a horizontal line separating the name at the top from the description of the behavior and
the model of the sub-state machine below. The description of the behavior includes the entry, exit and
do actions and any internal transitions.

Sub-states are placed within a composite machine by placing them entirely within the composite state.
This can be done at creation time, i.e. when creating the state for the first time in the editing pane. Alter-
natively, an existing state can be dragged onto a composite state.

The description of a composite state is almost identical to that of a state (see Section 19.2, “State# and
so is not duplicated here. The only differences is one additional tool, and one additional field, which are
described as follows.

New Concurrent RegionAdds a new concurrent region to the selected composite state.

Subvertices Text area. Lists all the sub-states contained within this composite state.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu
with two entries.

• New. A submenu pops up, with a selection of 7 kinds of states, which can be
added to the model. The 7 kinds of states supported are: Pseudo State, Synch

Statechart Diagram Artifact Reference

264

State, Stub State, Composite State, Simple State, Final State, Submachine State.

Warning

Using this way of adding states to the model is not a good idea,
since you will have to add the state to the diagram later. This can be
done by selecting it in the explorer, and activating the pop-up menu,
and selecting “Add to Diagram#. It is advisable to use the toolbar of
the diagram instead.

• Delete From Model Delete the selected state from the model.

19.5. Concurrent Region
A Concurrent Region is an “orthogonal conjunctive# component of a composite state, allowing concur-
rency to be constructed.

A concurrent region is represented on the diagram by a tile of a composite state, seperated from other re-
gions by a dashed line.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is identical to that of a composite state (see
Section 19.4, “Composite State# and so is not duplicated here.

19.6. Submachine State
A submachine state is a syntactical convenience that facilitates reuse and modularity. It is a shorthand
that implies a macro-like expansion by another state machine and is semantically equivalent to a com-
posite state. The state machine that is inserted is called the referenced state machine while the state ma-
chine that contains the submachine state is called the containing state machine. The same state machine
may be referenced more than once in the context of a single containing state machine. In effect, a sub-
machine state represents a ?call? to a state machine ?subroutine? with one or more entry and exit points.
The entry and exit points are specified by stub states. SubmachineState is a child of State.

The submachine state is depicted as a normal state with the additional ?include? declaration above (and
seperated by a line from) its internal transitions compartment. The expression following the include
reserved word is the name of the invoked submachine.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is almost identical to that of a composite
state (see Section 19.4, “Composite State# and so is not duplicated here. The only difference is one addi-
tional field:

Submachine Drop-down selector. Allows selecting the submachine included within this composite
state.

19.7. Stub State
A stub state only appears on a submachine state.

Statechart Diagram Artifact Reference

265

A submachine state represents the invocation of a state machine defined elsewhere. In the general case,
an invoked state machine can be entered at any of its substates or through its default (initial) pseu-
dostate. Similarly, it can be exited from any substate or as a result of the invoked state machine reaching
its final state. The non-default entry and exits are specified through stub states. In the UML metamodel,
StubState is a child of State.

Every Stub State has a label on the diagram, which corresponds to the pathname represented by the
“Reference State# attribute of the stub state.

The description of the details panels of a stub state is almost identical to that of a pseudo state (see Sec-
tion 19.11, “Pseudostate# and so is not duplicated here. The only difference is one additional field:

Reference State Drop-down selector. Allows entering the path name of the reference state.

19.8. Transition
A transition is a directed relation between a source state (any kind, e.g. composite state) and a destina-
tion state (any kind, e.g. composite state). Within the UML metamodel, Transition is a sub-class of
ModelElement.

A transition is represented on a statechart diagram in ArgoUML as a line with arrow connecting the
source to the destination state. Next to this line is a string containing the following three parts: The trig-
ger action (e.g. a Call Event), which may have parameters between brackets (). Next follows (if any)
the guard in square brackets ([]). Finally, if there is an effect (e.g. Call Action) defined, a slash (/) fol-
lowed by the expression of the action.

19.8.1. Transition Details Tabs
The details tabs that are active for transitions are as follows.

ToDoItem Standard tab.

Properties See Section 19.8.2, “Transition Property Toolbar# and Section 19.8.3, “Property
Fields For Transition# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the transition are downlighted, since
the position of the transition is defined by its end points.

Source Standard tab, containing just the name of the transition, any guard and any effect
in the same format as the diagram.

Note

In the fullness of time this tab will contain any code to implement
the transition (code for the effect and guard will be associated with
their artifacts). This is not implemented in the current release of Ar-
goUML.

Tagged Values Standard tab. In the UML metamodel, Transition has the following standard
tagged values defined.

Statechart Diagram Artifact Reference

266

• derived (from the superclass, ModelElement). Values true, meaning
the transition is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived transitions still have their value in analysis and design to
introduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are
derived includes the tagged element documentation which is
handled by the documentation tab under ArgoUML

Checklist Standard tab for a transition.

19.8.2. Transition Property Toolbar

Go upNavigate up in the hierarchy to the parent state machine.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected transition, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the transition from the model.

Warning

This is a deletion from the model not just the diagram. To delete a transition from the di-
agram, but keep it within the model, use the main menu Remove From Diagram (or
press the Delete key).

19.8.3. Property Fields For Transition

Name Text box. The name of the transition. By convention transition names
start with a lower case letter and use bumpy caps to divide words within
the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Transition has no stereotypes by default in the UML
standard.

Navigate Stereotype

Statechart Diagram Artifact Reference

267

icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

StateMachine Text box. Shows the name of the parent StateMachine for the transition.

Button 1 double-click navigates to the StateMachine shown.

State Text box. Shows the name of the parent State in case of an internal transi-
tion.

Button 1 double-click navigates to the State shown.

Source Text box. Shows the source state for the transition.

Button 1 double-click navigates to the selected entry.

Target Text box. Shows the target state for the transition.

Button 1 double-click navigates to the selected entry.

Trigger Text box. Shows the trigger event (if any) which invokes this transition.

Note

UML does not require there to be a trigger, e.g. when a
guard is defined. The transition is taken immediately if the
guard is true.

Button 1 double-click navigates to the selected entry, button 2 gives a
pop up menu with two entries.

• New. Add a new trigger event. A sub-menu opens with 4 choices:
Call Event, Change Event, Signal Event, Time Event.

• Delete From Model. Delete the trigger event from the model.
This feature is always downlighted in the current version of Ar-
goUML.

Guard Text box. Shows the name of a guard (if any). The expression of a guard
must be true before this transition can be taken.

Button 1 double-click navigates to the selected entry, button 2 gives a
pop up menu with one entry.

• New. Add a new guard.

Effect Text box. Shows the action (if any) to be invoked as this transition is
taken.

Button 1 double-click navigates to the selected action, button 2 gives a
pop up menu with two entries.

• New. Add a new Effect (action) of a certain kind. This menu has the
following submenus to select the kind of action: Call Action, Create
Action, Destroy Action, Return Action, Send Action, Terminate Ac-
tion, Uninterpreted Action.

Statechart Diagram Artifact Reference

268

• Delete From Model. Delete the selected action from the model.
This feature is always downlighted in the current version of Ar-
goUML.

19.9. Event
An event is an observable occurrence. In the UML metamodel it is a child of ModelElement.

There are a number of different types of events that are children of event within the UML metamodel.

• CallEvent. Associated with an operation of a class, this event is caused by a call to the given op-
eration. The expected effect is that the steps of the operation will be executed.

• SignalEvent. Associated with a signal, this event is caused by the signal being raised.

• TimeEvent. An event cause by expiration of a timing deadline.

• ChangeEvent. An event caused by a particular expression (of attributes and associations) becom-
ing true.

An event is represented by its name.

19.9.1. Event Details Tabs
The details tabs that are active for events are as follows.

ToDoItem Standard tab.

Properties See Section 19.9.2, “Event Property Toolbar# and Section 19.9.3, “Property Fields
For Event# below.

Documentation Standard tab.

Source Standard tab.

Note

In the fullness of time this tab will contain code to implement the
event. This is not implemented in the V0.18 release of ArgoUML.

Tagged Values Standard tab. In the UML metamodel, an Event has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the call event is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived call events still have their value in analysis and design to
introduce useful names or concepts, and in design to avoid re-

Statechart Diagram Artifact Reference

269

computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

19.9.2. Event Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected event, navigating im-
mediately to the properties tab for that stereotype.

New parameterThis creates a new parameter for the event operation as the current parameter, navigating immediately
to the properties tab for that parameter (see Section 17.8, “Parameter#).

Warning

This feature is currently broken within ArgoUML and there is no way to enter parame-
ters.

DeleteThis deletes the event from the model.

19.9.3. Property Fields For Event

Name Text box. The name of the event. By convention event names start with a
lower case letter and use bumpy caps to divide words within the name in
the same way as operations.

Note

ArgoUML does not enforce this naming convention.

Tip

For call events it makes sense to use the name of the associ-
ated operation. For signal events it make sense to use the
name of the signal, prefixed by [sig]. For time events use
the time expression, prefixed by [time] and for change
events the change expression, prefixed by [change].

Stereotype Drop down selector. An Event has no stereotypes by default in the UML
standard, except when the Event is a Call Event. For a Call Event, the fol-

Statechart Diagram Artifact Reference

270

lowing stereotypes are defined: create and destroy.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Text field. Shows the namespace for the event. This is the package hier-
archy.

Parameters Text area, with entries for all the actual parameter values of the event
(see Section 17.8, “Parameter#).

Button 1 double-click on any of the parameters navigates to that parame-
ter, button 2 click brings up a pop up menu with one entry.

• New Parameter. Create a new parameter and navigate to it.

Transition This shows the transition caused by the event.

Button 1 double-click on the transition navigates to that transition.

Operations Drop-down selector. Only present for a Call Event. This allows specify-
ing the operation that causes the event when called.

19.10. Guard
A guard is associated with a transition. At the time an event is dispatched, the guard is evaluated, and if
false, its transition is disabled. In the UML metamodel, Guard is a child of ModelElement.

A guard is shown on the diagram by the text of its expression in square brackets ([]).

19.10.1. Guard Details Tabs
The details tabs that are active for guards are as follows.

ToDoItem Standard tab.

Properties See Section 19.10.2, “Guard Property Toolbar# and Section 19.10.3, “Property
Fields For Guard# below.

Documentation Standard tab.

Source Standard tab, containing the expression for the guard.

Note

In the fullness of time this tab will contain code to implement the
guard. This is not implemented in the current release of ArgoUML.

Tagged Values Standard tab. In the UML metamodel, Guard has the following standard tagged
values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the guard is redundant—it can be formally derived from other elements, or

Statechart Diagram Artifact Reference

271

false meaning it cannot.

Note

Derived guards still have their value in analysis and design to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

19.10.2. Guard Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected guard, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the guard from the model

Warning

This is a deletion from the model, not just the diagram.

19.10.3. Property Fields For Guard

Name Text box. The name of the guard. By convention guard names start with a
lower case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Guard has no stereotypes by default in the UML
standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Text box. The namespace in which the guard is defined.

Transition Text box, showing the transition that owns this guard.

Statechart Diagram Artifact Reference

272

Button 1 double-click on the transition navigates to that transition.

Expression Text box. The expression that defines the guard.

Language Text box. This indicates that the expression is written in a particular in-
terpretation language with which to evaluate the text.

19.11. Pseudostate
A pseudostate encompasses a number of different transient vertices on a state machine diagram. They
are used, typically, to connect multiple transitions into more complex state transitions paths. For exam-
ple, by combining a transition entering a fork pseudostate with a set of transitions exiting the fork pseu-
dostate, we get a compound transition that leads to a set of concurrent target states. Pseudostates do not
have the properties of a full state and serve only as a connection point for transactions (but with some
semantic value). Within the UML metamodel, Pseudostate is a sub-class of StateVertex.

The representation of a pseudostate on a statechart diagram in ArgoUML depends on the particular kind
of pseudostate: initial, deepHistory, shallowHistory, join, fork, junction and choice. ArgoUML lets you
place any pseudostate directly by tools for the specific types of pseudostate. These are described in sepa-
rate sections below (see Section 19.12, “Initial State#, Section 19.14, “Junction#, Section 19.15,
“Choice#, Section 19.16, “Fork#, Section 19.17, “Join#, Section 19.18, “Shallow History# and Sec-
tion 19.19, “Deep History#).

19.11.1. Pseudostate Details Tabs
The details tabs that are active for pseudostates are as follows.

ToDoItem Standard tab.

Properties See Section 19.11.2, “Pseudostate Property Toolbar# and Section 19.11.3,
“Property Fields For Pseudostate# below.

Documentation Standard tab.

Presentation Standard tab.

Source Standard tab, containing just the name of the pseudostate.

Note

In the fullness of time this tab will contain any code to implement
the pseudostate. This is not implemented in the V0.14 release of Ar-
goUML.

Tagged Values Standard tab. In the UML metamodel, Pseudostate has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the pseudostate is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

Statechart Diagram Artifact Reference

273

Derived pseudostates still have their value in analysis and design
to introduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

19.11.2. Pseudostate Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected pseudostate, navigat-
ing immediately to the properties tab for that stereotype.

DeleteThis deletes the pseudostate from the model

Warning

This is a deletion from the model not just the diagram.

19.11.3. Property Fields For Pseudostate

Name Text box. The name of the pseudostate. By convention pseudostate
names start with a lower case letter and use bumpy caps to divide words
within the name.

Note

ArgoUML does not enforce this naming convention.

Tip

Pseudostate names are not shown on the diagram and it is
not usually necessary to give them a name.

Stereotype Drop down selector. A Pseudostate has no stereotypes by default in the
UML standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Statechart Diagram Artifact Reference

274

Container Text box. Shows the container of the pseudostate. This is the state hierar-
chy.

Button 1 double click on the entry will navigate to the composite state
that contains this state (or the top-level state that is the root of the state
containment hierarchy).

Incoming Text area. Lists any incoming transitions for the pseudostate.

Button 1 double-click navigates to the selected transition.

Outgoing Text area. Lists any outgoing transitions for the pseudostate.

Button 1 double-click navigates to the selected transition.

19.12. Initial State
The initial state is a pseudostate (see Section 19.11, “Pseudostate#) representing a source for a single
transition to the default state of a composite state. It is the state from which any initial transition is made.

As a consequence it is not permissible to have incoming transitions. ArgoUML will not let you create
such transitions, and if you import a model that has such transitions, a critic will complain.

There can be at most one initial pseudostate in a composite state, which must have (at most) one outgo-
ing transition.

An initial state is represented on the diagram as a solid disc.

19.13. Final State
If a transition reaches a final state, it implies completion of the activity associated with that composite
state, or at the top level, of the complete state machine. In the UML metamodel FinalState is a child
of State.

Note

A final state is a true state (with all its attributes), not a pseudostate.

Completion at the top level implies termination (i.e. destruction) of the owning object instance.

The representation of a final state on the diagram is a circle with a small disc at its center.

19.13.1. Final State Details Tabs
The details tabs that are active for final states are as follows.

ToDoItem Standard tab.

Properties See Section 19.13.2, “Final State Property Toolbar# and Section 19.13.3,
“Property Fields For Final State# below.

Documentation Standard tab.

Statechart Diagram Artifact Reference

275

Presentation Standard tab.

Source Standard tab, containing just the name of the final state.

Note

In the fullness of time this tab will contain any code to implement
the final state. This is not implemented in the V0.18 release of Ar-
goUML.

Tagged Values Standard tab. In the UML metamodel, Final State has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the final state is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived final states still have their value in analysis and design to
introduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a State.

19.13.2. Final State Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected state, navigating im-
mediately to the properties tab for that stereotype.

DeleteThis deletes the final state from the model

Warning

This is a deletion from the model not just the diagram.

19.13.3. Property Fields For Final State

Name Text box. The name of the final state. By convention final state names
start with a lower case letter and use bumpy caps to divide words within

Statechart Diagram Artifact Reference

276

the name.

Note

ArgoUML does not enforce this naming convention.

Tip

Final state names are shown on the diagram but it is not
usually necessary to give them a name.

Stereotype Drop down selector. Final State has no stereotypes by default in the
UML standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Container Text box. Shows the container of the final state. This is the state hierar-
chy.

Button 1 double click on the entry will navigate to the composite state
that contains this state (or the top-level state that is the root of the state
containment hierarchy).

Entry-Action Text box. Shows the name of the action (if any) to be executed on entry
to this final state.

Button 1 double-click navigates to the selected entry, button 2 gives a
pop up menu with two entries:

• New. Add a new Entry action of a certain kind. This menu has the
following 7 submenus to select the kind of action: Call Action, Cre-
ate Action, Destroy Action, Return Action, Send Action, Terminate
Action, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Incoming Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Internal Transitions Text area. Lists all the internal transitions of the state. Such transitions
neither exit nor enter the state, so they do not cause a state change.
Which means that the Entry and Exit actions are not invoked.

Button 1 double-click navigates to the selected transition

19.14. Junction
Junction is a pseudostate (see Section 19.11, “Pseudostate#) which is used to split an incoming transition
into multiple outgoing transition segments with different guard conditions. A Junction is also called a
Merge or Static conditional branch. The chosen transition is that whose guard is true at the time of the
transition.

Statechart Diagram Artifact Reference

277

A predefined guard denoted else may be defined for at most one outgoing transition. This transition is
enabled if all the guards labeling the other transitions are false.

According the UML standard, its symbol is a small black circle. Alternatively, it may be represented by
a diamond shape (in case of "Decision" for Activity diagrams). ArgoUML only represents a junction on
the diagram as a solid (white by default) diamond, and does not support the black cicrle symbol for a
junction.

19.15. Choice
Choice is a pseudostate (see Section 19.11, “Pseudostate#) which is used to split an incoming transition
into multiple outgoing transition segments with different guard conditions. Hence, a Choice allows a dy-
namic choice of outgoing transitions. The chosen transition is that whose guard is true at the time of the
transition (if more than one is true, one is selected at random).

A predefined guard denoted else may be defined for at most one outgoing transition. This transition is
enabled if all the guards labeling the other transitions are false.

Note

This sort of pseudostate was formerly called a Branch by ArgoUML.

A choice is represented on the diagram as a small solid (white by default) circle (reminiscent of a small
state icon).

19.16. Fork
Fork is a pseudostate (see Section 19.11, “Pseudostate#) which splits a transition into two or more con-
current transitions.

Caution

The outgoing transitions should not have guards. However ArgoUML will not enforce this.

A fork is represented on the diagram as a solid (black by default) horizontal bar.

Tip

This bar can be made vertical by selecting the fork, and dragging with button 1 one of its
corners.

19.17. Join
Join is a pseudostate (see Section 19.11, “Pseudostate#) which joins two or more concurrent transitions
into a single transition.

Caution

The incoming transitions should not have guards. However ArgoUML will not enforce
this.

Statechart Diagram Artifact Reference

278

A join is represented on the diagram as a solid (black by default) horizontal bar.

Tip

This bar can be made vertical by selecting the join, and dragging with button 1 one of its
corners.

19.18. Shallow History
Shallow History is a pseudostate (see Section 19.11, “Pseudostate#) that can remember the last state of
its container that was active. The history pseudostate points to its default state with a transition arrow
just like the initial pseudostate does. This transition points to the substate that will become active when
there is no history. When the container composite state has been active before (i.e., when there is his-
tory), the substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the shallow history only remembers the
history for states that have the same container as the history pseudostate. It does not restore substates
deeper in the hierarchy then the history pseudostate itself.

A shallow history is represented on the diagram as a circle containing the letter H.

19.19. Deep History
Deep History is a pseudostate (see Section 19.11, “Pseudostate#) that can remember the last state of its
container that was active. The history pseudostate points to its default state with a transition arrow just
like the initial pseudostate does. This transition points to the substate that will become active when there
is no history. When the container composite state has been active before (i.e., when there is history), the
substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the deep history remembers the history
for all states recursively which are contained in the history pseudostate container. It does restore any
substates no matter how deep in the hierarchy.

A deep history is represented on the diagram as a circle containing the symbols H*.

19.20. Synch State
A synch state is for synchronizing concurrent regions of a state machine. It is used in conjunction with
forks and joins to insure that one region leaves a particular state or states before another region can enter
a particular state or states. The firing of outgoing transitions from a synch state can be limited by speci-
fying a bound on the difference between the number of times outgoing and incoming transitions have
fired. In the UML metamodel Synch is a child of StateVertex.

A synch state is shown as a small circle with the upper bound inside it. The bound is either a positive in-
teger or a star ('*') for unlimited. Synch states are drawn on the boundary between two regions when
possible.

19.20.1. Synch State Details Tabs
The details tabs that are active for Synch states are as follows.

ToDoItem Standard tab.

Statechart Diagram Artifact Reference

279

Properties See Section 19.20.2, “Synch State Property Toolbar# and Section 19.20.3,
“Property Fields For Synch State# below.

Documentation Standard tab.

Presentation Standard tab.

Source Standard tab, containing just the name of the Synch state.

Tagged Values Standard tab. In the UML metamodel, Synch State has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the synch state is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

19.20.2. Synch State Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected synch state, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the synch state from the model

Warning

This is a deletion from the model not just the diagram.

19.20.3. Property Fields For Synch State

Name Text box. The name of the Synch state. By convention Synch state
names start with a lower case letter and use bumpy caps to divide words
within the name.

Note

ArgoUML does not enforce this naming convention.

Tip

Synch state names are not shown on the diagram and it is
not usually necessary to give them a name.

Statechart Diagram Artifact Reference

280

Stereotype Drop down selector. A Synch State has no stereotypes by default in the
UML standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Container Text box. Shows the container of the Synch state. This is the state hier-
archy.

Button 1 double click on the entry will navigate to the composite state
that contains this state (or the top-level state that is the root of the state
containment hierarchy).

Bound Editable text box. Shows the Bound of the Synch state. Which is a posi-
tive integer or the value ?unlimited? (represented by a "*") specifying
the maximal count of the SynchState. The count is the difference be-
tween the number of times the incoming and outgoing transitions of the
synch state are fired.

Incoming Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Outgoing Transitions Text area. Lists any outgoing transitions for the final state.

Button 1 double-click navigates to the selected transition.

Statechart Diagram Artifact Reference

281

Chapter 20. Collaboration Diagram Artifact
Reference

20.1. Introduction
This chapter describes each artifact that can be created within a collaboration diagram. Note that some
sub-artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 12.3, “Properties Tab#). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Caution

Collaboration diagrams are not fully developed yet in ArgoUML. Many aspects are not
fully implemented, or may not behave as expected. In particular there are some serious
problems with layout of the collaboration roles and messages.

Figure 20.1, “Possible artifacts on a collaboration diagram.# shows a collaboration diagram with all pos-
sible artifacts displayed.

Figure 20.1. Possible artifacts on a collaboration diagram.

282

20.1.1. Limitations Concerning Collaboration Diagrams
in ArgoUML

The collaboration diagram is still rather under-developed in ArgoUML. In particular there is no way to
show instance collaborations (based on objects and links) rather than specification collaborations.

The biggest difficulties are with the messages. There are problems with the sequencing of the messages
and their display on the diagram. The actions behind them are purely textual in implementation and
there is no way to link them back to their associated operations or signals.

20.2. Classifier Role
A classifier role is a specialization of a classifier, used to show its behavior in a particular context. In the
UML metamodel Classifier Role is a sub-class of Classifier. Within a collaboration dia-
gram classifier roles may be used in one of two ways:

• To represent the classifier in a particular behavioral context (the specification level); or

• to specify a particular instance of the classifier (the instance level).

In this latter form, classifier roles are identical to the instances used in sequence diagrams (see Chap-

Collaboration Diagram Artifact Reference

283

ter 18, Sequence Diagram Artifact Reference) and a collaboration diagram shows the same information
as the sequence diagram, but in a different presentation.

Caution

A collaboration diagram should not mix classifier roles used as the specifier level and the
instance level.

A classifier role is represented on a sequence diagram in ArgoUML as a plain box labeled with the clas-
sifier role name (if any) and classifier, separated by a colon (:).

Caution

A classifier role should properly also show object name (if any) preceding the classifier
role name and separated from it by a slash (/). This allows classifier roles in a specifica-
tion level diagram to be distinguished from instances in an instance level diagram.

ArgoUML does show the slash, but there is no way to define the instances.

20.2.1. Classifier Role Details Tabs
The details tabs that are active for classifier roles are as follows.

ToDoItem Standard tab.

Properties See Section 20.2.2, “Classifier Role Property Toolbar# and Section 20.2.3,
“Property Fields For Classifier Role# below.

Documentation Standard tab.

Presentation Standard tab.

Source Standard tab, but with no contents.

Caution

A classifier role should not generate any code, so having this tab ac-
tive is probably a mistake.

Tagged Values Standard tab. In the UML metamodel, Classifier Role has the following
standard tagged values defined.

• persistence (from the superclass, Classifier. Showing the perma-
nence of the state information associated with the classifier role. Values
transitory (state is destroyed when the classifier role is destroyed) and
persistent (state is preserved when the classifier role is destroyed).

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the classifier role.

• derived (from the superclass, ModelElement). Values true, meaning
the classifier role is redundant—it can be formally derived from other ele-
ments, or false meaning it cannot.

Collaboration Diagram Artifact Reference

284

Note

Derived classifier roles still have their value in analysis and de-
sign to introduce useful names or concepts, and in design to
avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

20.2.2. Classifier Role Property Toolbar

Go up Navigate up through the package structure.

New receptionThis creates a new reception, navigating immediately to the properties tab for that
reception.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected
classifier role, navigating immediately to the properties tab for that stereotype.

Delete This deletes the classifier role from the model

Warning

This is a deletion from the model not just the diagram. To delete an
classifier role from the diagram, but keep it within the model, use the
main menu Remove From Diagram (or press the Delete key).

20.2.3. Property Fields For Classifier Role

Name Text box. The name of the classifier role. By convention classifier role
names start with a lower case letter and use bumpy caps to divide words
within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Classifier Role is provided by default with the
UML standard stereotypes for a classifier (metaclass, powertype,
process, thread and utility).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

Collaboration Diagram Artifact Reference

285

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Text box. Records the namespace for the classifier role, which is always
the containing Collaboration.

Button 1 double click on the entry will navigate to the collaboration.

Multiplicity Editable drop down selector. The default value is *, which means that
there are any number of instances of this classifierrole that play a role in
the collaboration. The drop down provides some different multiplicities.
E.g. 1..1 would mean that only one instance plays a role in this col-
laboration.

ArgoUML does not restrict you to the predefined ranges for multiplic-
ity. You can edit this field freely.

Base List. The names of the classifiers of which this is a classifierrole. But-
ton 1 double click navigates to the classifier. Button 2 click gives a pop
up menu with the following entries.

• Add. Allows adding or removeing classifiers to the list. To this end,
a dialog box pops up, as shown in the figure below.

Figure 20.2. The “add context# dialog box

Collaboration Diagram Artifact Reference

286

• Remove. Allows removeing classifiers to the list, without making
use of the dialog box.

Generalizations Text area. Lists any classifierrole that generalizes this classifierrole.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

Specializations Text box. Lists any specialized classifierrole (i.e. for which this classi-
fierrole is a generalization).

button 1 double click navigates to the generalization and opens its prop-
erty tab.

Association End Role Text area. Lists the association-end roles that are linked to this classifier
role.

Collaboration Diagram Artifact Reference

287

Button 1 double click navigates to the selected entry.

Available Contents Text area. Lists the subset of modelelements contained in the base clas-
sifier which is used in the collaboration.

Button 1 double click navigates to the modelelement and opens its prop-
erty tab.

Available Features Text box. Lists the subset of features of the base classifier which is used
in the collaboration.

button 1 double click navigates to the feature and opens its property tab.

20.3. Association Role
An association role is a specialization of an association, used to describe an associations behavior in a
particular context. In the UML metamodel Association Role is a sub-class of Association.

An association role is represented on a collaboration diagram in ArgoUML as a line connecting the in-
stances concerned. However on a sequence diagram the representation is modified to reflect the type of
action associated with the stimulus carried on the link (see Section 18.3, “Stimulus#).

The association role is labeled with the association role name (if any).

An association role shows its name and the association name according the following syntax:

/ AssociationRoleName : AssociationName

in the same manner as a classifier role. The more generic syntax is:

I / R : C

which stands for an Instance named I originating from the Classifier C playing the role R.

20.3.1. Association Role Details Tabs
The details tabs that are active for association roles are as follows.

ToDoItem Standard tab.

Properties See Section 20.3.2, “Association Role Property Toolbar# and Section 20.3.3,
“Property Fields For Association Role# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the association role are downlighted,
since they are determined by what they connect.

Source Standard tab, but with no contents.

Caution

An association role should not generate any code, so having this tab
active is probably a mistake.

Collaboration Diagram Artifact Reference

288

Tagged Values Standard tab. In the UML metamodel, AssociationRole has the following
standard tagged values defined.

• persistence (from the superclass, Association). Values transi-
tory, indicating state is destroyed when an instance is destroyed or per-
sistent, marking state is preserved when an instance is destroyed.

• derived (from the superclass, ModelElement). Values true, meaning
the association is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

Derived association roles still have their value in analysis to in-
troduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for an Association Role.

20.3.2. Association Role Property Toolbar

Go upNavigate up through the package structure.

DeleteThis deletes the association role from the model

Warning

This is a deletion from the model not just the diagram. To delete an association role
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

20.3.3. Property Fields For Association Role

Name Text box. The name of the association role, which is shown on the dia-
gram. By convention association role names start with a lower case
letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Association role is provided by default with the
UML standard stereotype from the superclass Association: im-

Collaboration Diagram Artifact Reference

289

plicit.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 17.4, “Stereotype#).

Namespace Text box. Records the namespace for the association role. This is the
package hierarchy.

Button 1 double click on the entry will navigate to the item showm.

Base Drop down selector. Records the association that is the base for the as-
sociation role.

The drop down selector shows all associations that exist between the
classifiers that correspond with the connected classifier roles.

Association End Roles Text area. Lists the ends of this association role. An association role
can have any number of ends, but two is generally the only useful
number (link objects can led to a third end on instance level diagrams,
but this is not supported by ArgoUML). For more on association end
roles see Section 20.4, “Association End Role#.

The names are listed, unless the association end role has no name, then
it is shown as (anon AssociationEndRole).

Button 1 double click on an association end role will navigate to that
end.

Messages Text area. Lists the messages that are associated with this association
role.

Button 1 double click navigates to the selected entry

20.4. Association End Role
An association end role is a specialization of an association end, used to describe an association end's
behavior in a particular context. In the UML metamodel AssociationEndRole is a sub-class of
AssociationEnd.

Two or more association end roles are associated with each association role (see Section 20.3,
“Association Role#), although for ArgoUML, the number of ends can only be two.

The association end role has no direct access on any diagram, although its stereotype, name and multi-
plicity is shown at the relevant end of the parent association role (see Figure 20.1, “Possible artifacts on
a collaboration diagram.#), and some of its properties can be directly adjusted with button 2 click.
Where shared or composite aggregation is selected for one association end role, the opposite end is
shown as a solid diamond (composite aggregation) or hollow diamond (shared aggregation).

Note

ArgoUML does not currently (V0.18) support showing qualifiers on the diagram, as de-
scribed in the UML 1.3 standard.

Collaboration Diagram Artifact Reference

290

Caution

An association end role should have the same, or “stricter# attribute values than its base as-
sociation end. In particular its navigability should be no more general. There is as yet no
critic in ArgoUML to offer advice on this rule.

20.4.1. Association End Role Details Tabs
The details tabs that are active for association end roles are as follows.

ToDoItem Standard tab.

Properties See Section 20.4.2, “Association End Role Property Toolbar# and Section 20.4.3,
“Property Fields For Association End Role# below.

Documentation Standard tab.

Source Standard tab. There is no code generated for an association end role.

Tagged Values Standard tab. In the UML metamodel, AssociationEndRole has the follow-
ing standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the association end role is redundant—it can be formally derived from other
elements, or false meaning it cannot.

Tip

Derived association end roles still have their value in analysis to
introduce useful names or concepts, and in design to avoid re-
computation. However the tag only makes sense for an associa-
tion end role if it is also applied to the parent association role.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

20.4.2. Association End Role Property Toolbar

Go upNavigate up to the association role to which this end role belongs.

Go OppositeThis navigates to the other end of the association role.

New Qualifier
This creates a new Qualifier for the selected association-end role, navigating immediately to the prop-
erties tab for that qualifier.

Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button

Collaboration Diagram Artifact Reference

291

creates a qualifier in the model, which is not shown on the diagram. Also, the properties
panel for a qualifier equals that of a regular attribute.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected association-end role,
navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the selected association-end from the model.

Note

This button is downlighted for binary association roles, since an association needs at
least two ends. Only for N-ary associations, this button is accessable, and deletes just
one end from the association.

20.4.3. Property Fields For Association End Role

Name Text box. The name of the association end role, which provides a
role name for this end of the association role. This role name can
be used for navigation, and in an implementation context, pro-
vides a name by which the source end of an association role can
reference the target end.

Note

ArgoUML does not enforce any naming convention
for association end roles.

Stereotype Drop down selector. Association end role is provided by default
with the UML standard stereotypes for AssociationEndRole as-
(sociation, global, local, parameter, self).

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to

the stereotype property panel (see Section 15.4, “Stereotype#).

Base Text field that shows the name of the corresponding association
end. Button 1 double click navigates to the association end.

AssociationRole Text box. Records the parent association role for this association
end role. Button 1 double click navigates to the association role.

Type Drop down selector providing access to all standard UML types
provided by ArgoUML and all new classes created within the cur-
rent model.

This is the type of the entity attached to this end of the association
role.

Multiplicity Editable drop down text entry. Allows to alter the multiplicity of
this association end role (with respect to the other end), i.e. how

Collaboration Diagram Artifact Reference

292

many instances of this end may be associated with an instance of
the other end. The multiplicity is shown on the diagram at that
end of the association role.

All remaining properties See Section 17.12.3, “Property Fields For Association End#.
Since these are completely equal to the fields of an association
end, they are not repeated here.

20.5. Message
A message is a communication between two instances of an association role on a specification level col-
laboration diagram. It describes an action which will generate the stimulus associated with the message.
On a collaboration diagram a message is associated with an association role. In the UML metamodel
Message is a sub-class of ModelElement.

The message is represented on a collaboration diagram in ArgoUML by its sequence number separated
by a colon from the expression defining the associated action. It is accompagnied by an arrow pointing
in the direction of the communication, i.e. the direction of the AssociationRole. By convention the name
of a message is not shown on the diagram. Instead the diagram displays the message sequence number,
either as an integer or as a decimal number to show hierarchy.

Warning

The current release of ArgoUML does not retaining message positioning after reloading
the project, i.e. as if the positions were not stored in the project file.

20.5.1. Message Details Tabs
The details tabs that are active for messages are as follows.

ToDoItem Standard tab.

Properties See Section 20.5.2, “Message Property Toolbar# and Section 20.5.3, “Property
Fields For Message# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the message define the bounding box of
the message. The Line field defines the arrow color. Increasing the Shadow size
has an esthetically questionable effect.

Caution

In the V0.18 release of ArgoUML changing the position of the mes-
sage by editing the values of the Bounds field is possible, but will
make only a temporary change to the position of the message, as de-
scribed above.

Source Standard tab, showing the message number and action expression separated by a
colon (when UML 1.3 is selected in the drop-down).

Collaboration Diagram Artifact Reference

293

Caution

A message probably should not generated any code of itself. That
should be left to the action and possibly stimulus associated with it.
In any case changes to this tab are ignored.

Tagged Values Standard tab. In the UML metamodel, Message has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning
the message is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived messages still have their value in analysis and design to
introduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

20.5.2. Message Property Toolbar

Go upNavigate up through the package structure.

New Action
This creates a new Action (see Section 19.3, “Action#) for the selected object, navigating immedi-
ately to the properties tab for that action.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected message, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the message from the model

Warning

This is a deletion from the model not just the diagram. To delete an message from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

20.5.3. Property Fields For Message

Name Text box. The name of a message is usually its sequence number, either
an integer, or a decimal (allowing alternative message hierarchies to be

Collaboration Diagram Artifact Reference

294

clearly described). ArgoUML will supply an integer sequence number by
default.

Stereotype Drop down selector. Message has no stereotypes by default in the UML
standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Interaction Text box. Records the Interaction of which the message is a part.

Button 1 double click on the entry will navigate to the interaction.

Sender Text box. Identifies the classifier role which sent this message.

Button 1 double click navigates to the sender classifier role.

Receiver Text box. Identifies the classifier role which receives this message.

Button 1 double click navigates to the receiver classifier role.

Activator Drop down selector. Identifies the message which invokes the behavior
that causes the sending of this message.

Button 1 click allows selecting the message.

Action Text box. Lists the action (see Section 19.3, “Action#) this message in-
vokes to raise a stimulus.

Button 1 double click navigates to the selected action, button 2 gives a
pop up menu with the following entry.

• New. Add a new action.

This item is downlighted if an action already exists.

Predecessors Text area. Identifies the messages, the completion of whose execution en-
ables this message.

Button 1 double click navigates to the selected message, button 2 gives a
pop up menu with one entry.

• Add. Opens a dialog box that allows to select any number of mes-
sages. See figure below.

This entry is grayed out when no messages exist.

Figure 20.3. The “add predecessors# dialog box

Collaboration Diagram Artifact Reference

295

Collaboration Diagram Artifact Reference

296

Chapter 21. Activity Diagram Artifact
Reference

21.1. Introduction
This chapter describes each artifact that can be created within an Activity diagram. Note that some sub-
artifacts of artifacts may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 12.3, “Properties Tab#). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Figure 21.1, “Possible artifacts on an activity diagram.# shows an Activity Diagram with all possible ar-
tifacts displayed.

Figure 21.1. Possible artifacts on an activity diagram.

297

21.1.1. Limitations Concerning Activity Diagrams in Ar-
goUML

Activity diagrams are not fully developed yet in ArgoUML. Some aspects are not fully implemented, or
may not behave as expected. In particular lacking are call states, swim lanes, control icons (signals),
sub-activities, synch states. Interactions with other classifiers are provided by an object-flow-state which
is only partly implemented.

21.2. Action State
An action state represents execution of an atomic action, usually the invocation of an action. Within the
UML metamodel, ActionState is a sub-class of SimpleState. It is a specialized simple state that

Activity Diagram Artifact Reference

298

only has an entry action, and with an implicit trigger as soon as that action is completed.

Caution

As a consequence any outgoing transitions from an action state should not have explicit
triggers defined (ArgoUML will not currently check for this). They may have guards to
provide a choice where there is more than one transition.

Note

Unlike an ordinary state, an internal transition, an exit action and a Do activity are not per-
mitted for action states.

An action state is represented on an activity diagram in ArgoUML as a rectangle with rounded corners
containing the name of the action state.

Caution

The UML standard specifies that the text shown in the action state on the activity diagram
should contain the expression associated with the entry action - which is implemented as
such in ArgoUML V0.18. In past versions of ArgoUML (0.16.1 and before), the diagram
used to show the action state name. Loading a project created by one of the older versions,
causes the project file to be converted to the correct format conform the UML standard.
This process is designed to be transparant for the user, and the only drawback is, that the
activity diagram in the project will not show correctly when reloaded in an old version of
ArgoUML again.

21.2.1. Action State Details Tabs
The details tabs that are active for action states are as follows.

ToDoItem Standard tab.

Properties See Section 21.2.2, “Action State Property ToolBar# and Section 21.2.3,
“Property fields for action state# below.

Documentation Standard tab.

Presentation Standard tab. The values for the bounds of the action state define the bounding
box of the action state.

Source Standard tab that shows the name of the action state.

Note

In the fullness of time this tab will contain code to implement the ac-
tion state (code for actions will be associated with the particular ac-
tions). This is not implemented in the current release of ArgoUML.

Tagged Values Standard tab. In the UML metamodel, ActionState has the following standard
tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning

Activity Diagram Artifact Reference

299

the action state is redundant—it can be formally derived from other elements,
or false meaning it cannot.

Note

Derived action states still have their value in analysis and design
to introduce useful names or concepts, and in design to avoid re-
computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for a state.

21.2.2. Action State Property ToolBar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected action state, navigating
immediately to the properties tab for that stereotype.

DeleteThis deletes the action state from the model

Warning

This is a deletion from the model not just the diagram. It is not possible to delete an ac-
tion state from the diagram, since that concept does not fit the UML standard.

Hence ArgoUML does also not show the Add to Diagram pop-up menu for action
states.

21.2.3. Property fields for action state

Name Text box. The name of the action state. By convention action state names
start with a lower case letter and use bumpy caps to divide words within
the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Action state has no stereotypes by default in the
UML standard.

Activity Diagram Artifact Reference

300

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Entry-Action Text box. Shows the name of the action to be invoked on entry to this ac-
tion state. According the UML standard, an Action State is obliged to
have an Entry-Action.

Button 1 double-click navigates to the shown entry, button 2 gives a pop
up menu with two entries.

• New. Add a new Entry action of a certain kind. This menu has the fol-
lowing 7 submenus to select the kind of action: Call Action, Create
Action, Destroy Action, Return Action, Send Action, Terminate Ac-
tion, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Incoming Text area. Lists the transitions that enter this action state.

Button 1 double-click navigates to the selected entry.

Outgoing Text area. Lists the transitions that leave this action state.

Button 1 double-click navigates to the selected entry.

21.3. Action
This artifact is described in the context of statechart diagrams (see Section 19.3, “Action#).

21.4. Transition
This artifact is described in the context of statechart diagrams (see Section 19.8, “Transition#).

Caution

Remember that action states do not have explicit triggers. The transition is implicitly trig-
gered as soon as the entry event of the action state is complete. An explicit trigger should
not therefore be set.

The current release of ArgoUML will not check that this constraint is met.

Note

Transitions to and from an ObjectFlowState are dashed, to distinguish object flow from
control flow.

21.5. Guard
This artifact is described in the context of statechart diagrams (see Section 19.10, “Guard#).

Activity Diagram Artifact Reference

301

21.6. Initial State
This artifact is described in the context of statechart diagrams (see Section 19.12, “Initial State#).

21.7. Final State
This artifact is described in the context of statechart diagrams (see Section 19.13, “Final State#).

21.8. Junction (Decision)
This artifact is described in the context of statechart diagrams (see Section 19.14, “Junction#).

21.9. Fork
This artifact is described in the context of statechart diagrams (see Section 19.16, “Fork#).

21.10. Join
This artifact is described in the context of statechart diagrams (see Section 19.17, “Join#).

21.11. ObjectFlowState
(To Be Written)

Activity Diagram Artifact Reference

302

Chapter 22. Deployment Diagram Artifact
Reference

22.1. Introduction
This chapter describes each artifact that can be created within a Deployment Diagram. Note that some
sub-artifacts of artifacts on the diagram may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 12.3, “Properties Tab#). That section covers Properties in general, in this chapter they are linked to
specific artifacts.

Within ArgoUML, the deployment diagram is used for both component diagrams (i.e. without instances,
showing static dependencies of components) and deployment diagrams (showing how instances of com-
ponents are handled by instances of nodes at run-time).

Caution

Deployment diagrams are not fully developed yet in ArgoUML. Some aspects are not fully
implemented or may not behave as expected. Notable omissions are the possibility to draw
new interfaces and proper stereotyping of the various dependency relationships.

Figure 22.1, “Possible artifacts on a component diagram.# shows a component diagram with all possible
artifacts displayed.

Figure 22.1. Possible artifacts on a component diagram.

Figure 22.2, “Possible artifacts on a deployment diagram.# shows a deployment diagram with all possi-
ble artifacts displayed.

303

Figure 22.2. Possible artifacts on a deployment diagram.

22.1.1. Limitations Concerning Deployment Diagrams in
ArgoUML

The deployment diagram is generally well drawn, but there are only a subset of the relationships that
should be shown available, which restricts the ability to show dynamic behavior of deployed code.

It is not possible to create new interfaces directly on this diagram; they can only be added if they are first
created in the model (by drawing them on a class diagram).

It is an inconvenience that the alternative representation of an interface (as a small circle) is not sup-
ported.

22.2. Node
A node is a run-time physical object on which components may be deployed. In the UML metamodel it
is a sub-class of Classifier.

A node is represented on a class diagram as a three dimensional box, labeled with its name.

22.2.1. Node Details Tabs
The details tabs that are active for nodes are as follows.

ToDoItem Standard tab.

Properties See Section 22.2.2, “Node Property Toolbar# and Section 22.2.3, “Property Fields
For Node# below.

Deployment Diagram Artifact Reference

304

Documentation Standard tab.

Presentation Standard tab. The Bounds: field defines the bounding box for the node on the di-
agram.

Warning

Beware that in the 0.18 release of ArgoUML, the bounding box just
refers to the front face of the cube. This means that the three dimen-
sional top and side may be ignored, for example when determining
the limits of a diagram for saving graphics.

Source Standard tab, but with no contents.

Caution

A node should not generate any code, so having this tab active is
probably a mistake.

Tagged Values Standard tab. In the UML metamodel, Node has the following standard tagged
values defined.

• persistence (from the superclass, Classifier). Values transitory,
indicating state is destroyed when an instance is destroyed or persistent,
marking state is preserved when an instance is destroyed.

• semantics (from the superclass, Classifier). The value is a specifica-
tion of the semantics of the node.

• derived (from the superclass, ModelElement). Values true, meaning
the node is redundant—it can be formally derived from other elements, or
false meaning it cannot.

Note

Derived nodes still have their value in analysis to introduce use-
ful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

22.2.2. Node Property Toolbar

Go up Navigate up through the package structure.

New receptionThis creates a new reception, navigating immediately to the properties tab for that
reception.

Deployment Diagram Artifact Reference

305

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected
node, navigating immediately to the properties tab for that stereotype.

Delete This deletes the node from the model

Warning

This is a deletion from the model not just the diagram. To delete a
node from the diagram, but keep it within the model, use the main
menu Remove From Diagram (or press the Delete key).

22.2.3. Property Fields For Node

Name Text box. The name of the node. The name of a node has a leading capi-
tal letter, with words separated by “bumpy caps#.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Node is a type of classifier, and so it has the default
stereotypes of a classifier as defined in the UML standard. ArgoUML
provides the standard stereotypes for a classifier: metaclass, power-
type, process, thread and utility.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Allows altering the namespace for the node. This is
the package hierarchy.

Modifiers Check box, with entries abstract, leaf and root.

• abstract is used to declare that this node cannot be instantiated,
but must always be specialized. The name of an abstract node is dis-
played in italics on the diagram.

• leaf indicates that this node cannot be further specialized.

• root indicates the node can have no generalization.

Generalizations Text area. Lists any node that generalizes this node.

Button 1 double click navigates to the generalization and opens its prop-
erty tab.

Specializations Text box. Lists any specialized node (i.e. for which this node is a general-
ization.

Button 1 double click navigates to the specialization and opens its prop-
erty tab.

Deployment Diagram Artifact Reference

306

Residents Text box. Lists any residents (see Section 22.4, “Component#) designed
to be deployed on this type of node.

Button 1 double click navigates to the selected entry.

22.3. Node Instance
A node instance is an instance of a node where component instances (see Section 22.5, “Component In-
stance#) may reside. In the UML metamodel NodeInstance is a sub-class of Instance and is
specifically an instance that is derived from a node.

A node instance is represented on a deployment diagram in ArgoUML as a three dimensional box la-
beled with the node instance name (if any) and node type, separated by a colon (:).

Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a node instance from a node.

22.3.1. Node Instance Details Tabs
The details tabs that are active for node instances are as follows.

ToDoItem Standard tab.

Properties See Section 22.3.2, “Node Instance Property Toolbar# and Section 22.3.3,
“Property Fields For Node Instance# below.

Documentation Standard tab.

Presentation Standard tab. The Bounds: field defines the bounding box for the node instance
on the diagram.

Warning

Beware that in the current release of ArgoUML, the bounding box
just refers to the front face of the cube. This means that the three di-
mensional top and side may be ignored, for example when determin-
ing the limits of a diagram for saving graphics.

Source Standard tab, containing just the name of the node instance.

Caution

A node instance should not generate any code, so having this tab ac-
tive is probably a mistake.

Tagged Values Standard tab.

Note

Deployment Diagram Artifact Reference

307

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for an Instance.

22.3.2. Node Instance Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected node instance, navigat-
ing immediately to the properties tab for that stereotype.

DeleteThis deletes the node instance from the model

Warning

This is a deletion from the model not just the diagram. To delete an node instance from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

22.3.3. Property Fields For Node Instance

Name Text box. The name of the node instance. By convention node instance
names start with a lower case letter and use bumpy caps to divide words
within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Node instance has no stereotypes by default in the
UML standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records the namespace for the node instance. This is
the package hierarchy.

Stimuli sent (To Be Written).

Stimuli Received (To Be Written).

Residents Text box. Lists any residents (see Section 22.4, “Component#) designed
to be deployed on this type of node.

Deployment Diagram Artifact Reference

308

Button 1 double click navigates to the selected entry.

Classifiers Text field. A Node instance type can be selected here.

Caution

ArgoUML V0.18 lists many more items in the dropdown
list then solely Nodes. Beware to select Nodes only.

22.4. Component
A component type represents a distributable piece of implementation of a system, including software
code (source, binary, or executable) but also including business documents, etc., in a human system.
Components may be used to show dependencies, such as compiler and run-time dependencies or infor-
mation dependencies in a human organization. In the UML metamodel it is a sub-class of
Classifier.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, labeled with its name.

22.4.1. Component Details Tabs
The details tabs that are active for components are as follows.

ToDoItem Standard tab.

Properties See Section 22.4.2, “Component Property Toolbar# and Section 22.4.3, “Property
Fields For Component# below.

Documentation Standard tab.

Presentation Standard tab. The Bounds: field defines the bounding box for the component on
the diagram.

Source Standard tab, but with no contents.

Caution

A component should not generate any code, so having this tab active
is probably a mistake.

Tagged Values Standard tab.

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Deployment Diagram Artifact Reference

309

22.4.2. Component Property Toolbar

Go up Navigate up through the package structure.

New receptionThis creates a new reception, navigating immediately to the properties tab for that
reception.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected
component, navigating immediately to the properties tab for that stereotype.

Delete This deletes the component from the model

Warning

This is a deletion from the model not just the diagram. To delete a
component from the diagram, but keep it within the model, use the
main menu Remove From Diagram (or press the Delete key).

22.4.3. Property Fields For Component

Name Text box. The name of the component. The name of a component has
a leading capital letter, with words separated by “bumpy caps#.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Component is provided by default with the UML
standard stereotypes document, executable, file, library
and table. ArgoUML also provides the standard Classifier stereo-
types, metaclass, powertype, process, thread and util-
ity.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows altering the namespace for
the component. This is the package hierarchy.

Modifiers Check box, with entries abstract, leaf and root.

• Abstract is used to declare that this component cannot be in-
stantiated, but must always be specialized.

• Leaf indicates that this component cannot be further specialized.

• Root indicates the node can have no generalization.

Generalizations Text box. Lists any component that generalizes this component.

Specializations Text area. Lists any derived components, i.e those for which this com-

Deployment Diagram Artifact Reference

310

ponent is a generalization.

Client Dependencies Text area. Lists outgoing dependencies. Button 1 double click navi-
gates to the dependency.

Supplier Dependencies Text area. Lists incoming dependencies. Button 1 double click navi-
gates to the dependency.

Residents Text box. Lists any residents (see Section 22.4, “Component#) de-
signed to be deployed on this type of node.

Button 1 double click navigates to the selected entry.

22.5. Component Instance
A component instance is an instance of a component (see Section 22.4, “Component#) which may reside
on a node instance (see Section 22.3, “Node Instance#). In the UML metamodel ComponentIn-
stance is a sub-class of Instance and is specifically an instance that is derived from a component.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, labeled with its name.

A component instance is represented on a sequence diagram in ArgoUML as a box with two small rect-
angles protruding from its left side labeled with the component instance name (if any) and component
type, separated by a colon (:).

Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a component instance from a component.

22.5.1. Component Instance Details Tabs
The details tabs that are active for component instances are as follows.

ToDoItem Standard tab.

Properties See Section 22.5.2, “Component Instance Property Toolbar# and Section 22.5.3,
“Property Fields For Component Instance# below.

Documentation Standard tab.

Presentation Standard tab. The Bounds: field defines the bounding box for the component on
the diagram.

Source Standard tab, containing just the name of the component instance.

Caution

A component instance should not generate any code, so having this
tab active is probably a mistake.

Tagged Values Standard tab.

Deployment Diagram Artifact Reference

311

Note

The UML Element metaclass from which all other artifacts are de-
rived includes the tagged element documentation which is han-
dled by the documentation tab under ArgoUML

Checklist Standard tab for an Instance.

22.5.2. Component Instance Property Toolbar

Go upNavigate up through the package structure.

New Stereotype
This creates a new Stereotype (see Section 15.4, “Stereotype#) for the selected component instance,
navigating immediately to the properties tab for that stereotype.

DeleteThis deletes the component instance from the model

Warning

This is a deletion from the model not just the diagram. To delete a component instance
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

22.5.3. Property Fields For Component Instance

Name Text box. The name of the component instance. By convention compo-
nent instance names start with a lower case letter and use bumpy caps to
divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype Drop down selector. Component instance has no stereotypes by default in
the UML standard.

Navigate Stereotype icon. If a stereotype has been selected, this will navigate to the

stereotype property panel (see Section 15.4, “Stereotype#).

Namespace Drop down selector. Records and allows to change the namespace for the
component instance. This is the package hierarchy.

Stimuli sent (To Be Written).

Stimuli Received (To Be Written).

Residents Text box. Lists any residents (see Section 22.4, “Component#) designed
to be deployed on this component.

Deployment Diagram Artifact Reference

312

Button 1 double click navigates to the selected entry.

Classifiers Drop down selector. A Component instance type can be selected here.

Caution

ArgoUML V0.18 lists many more items in the dropdown
list then solely Components. Beware to select Components
only.

22.6. Dependency
A key part of any component or deployment diagram is to show dependencies. For details see Sec-
tion 17.13, “Dependency#.

Caution

UML relies on stereotyping of dependencies on component and deployment diagrams to
characterize the types of relationship. In the current release of ArgoUML there are limita-
tions in the implementation of dependencies which limit this functionality.

22.7. Class
A component diagram may show the key internal structure of components, including classes within the
component. For details see Section 17.5, “Class#.

Caution

Classes can only be added to a component diagram if they already exist in the model (by
selecting them in the explorer and executing the "Add to diagram" button 2 command).
There is no way to create a new class on a component diagram.

22.8. Interface
A component or deployment diagram may show components or component instances which implement
interfaces. For details see Section 17.15, “Interface#.

Caution

The V0.18 release of ArgoUML uses the same representation of an interface as a class dia-
gram. The UML standard suggests that an interface on a component or deployment dia-
gram should just be shown as a small open circle, connected to the component which real-
izes that interface.

Warning

There is no way to show the linking of an interface to a component or component instance
in the V0.18 release of ArgoUML.

Deployment Diagram Artifact Reference

313

22.9. Association
Components may be associated to each other. For details about associations, see Section 17.11,
“Association#.

Where classes or interfaces are shown within components on component diagrams, they may be shown
linked by associations.

22.10. Object
Just as components may show the classifiers that make up their internal structure, component instances
on deployment diagrams may show the classifier instances that make up their internal structure. In prac-
tice the only instance that is of use is an object (an instance of a class). For details see Section 18.2,
“Object#.

22.11. Link
Where objects (Node Instances or Class Instances) are shown within component instances on deploy-
ment diagrams, their inter-relationships may be shown as links (instances of an association). See Sec-
tion 18.9, “Link# for details.

Deployment Diagram Artifact Reference

314

Chapter 23. Built In DataTypes, Classes,
Interfaces and Stereotypes

23.1. Introduction
This chapter describes the datatypes, classes, interfaces and stereotypes, which by default, are built in to
ArgoUML.

Datatypes, classes and interfaces are generally available for use anywhere a class may be selected in the
properties tab. The most common use is for return type and parameter types in method signatures.

23.1.1. Package Structure
ArgoUML datatypes, classes and interfaces are effectively organized as a hierarchy beneath the overall
model itself. They are grouped in four packages, lang, math, net and util, themselves subpackages
of java, which is a subpackage of the model itself. Figure 23.1, “Hierarchy of datatypes, classes and
interfaces within ArgoUML# shows this structure.

Figure 23.1. Hierarchy of datatypes, classes and interfaces within ArgoUML

315

Built In DataTypes, Classes, Interfaces and
Stereotypes

316

23.1.2. Exposure in the model
You will not find build-in DataTypes, Classes, and Interfaces exposed within the model by default (i.e.
they are not present in the explorer). However, once you select one of the built-in DataTypes, Classes, or
Interfaces (in the "Type" combo-box on the property sheet of a parameter of an operation of a class),
then it becomes visible: you will find that the DataType, Class, or Interface has appeared in the model,
in its correct package stucture for the latter 2.

23.2. Built In Datatypes
These are the built in atomic types. You can change them if you wish. However this is not good practice.

All these can be found in the java.lang subpackage of the main model.

Caution

You should be aware that these are Java datatypes. They are not mandated by the UML
standard.

These are the standard datatypes. For their definition refer to the Java standard.

• boolean

• byte

• char

• double

• float

• int

• long

• short

• void

Note

void is not strictly speaking a type, but the absence of type. ArgoUML knows about void
and allows it as an option where a datatype may be selected.

23.3. Built In Classes
These are the common classes, corresponding to classes defined within the standard Java environment. It
is up to you if you wish to change them.

These are found in all four subpackages of the java subpackage.

For a definition of these classes see the Java language and library definitions.

Built In DataTypes, Classes, Interfaces and
Stereotypes

317

23.3.1. Built In Classes From java.lang

These are the classes within the java.lang package.

• Boolean

• Byte

• Char

• Double

• Float

• Integer

• Long

• Object

• Short

• String

23.3.2. Built In Classes From java.math

These are the classes within the java.math package.

• Big Decimal

• Big Integer

23.3.3. Built In Classes From java.net

These are the classes within the java.net package.

• URL

23.3.4. Built In Classes From java.util

These are the classes within the java.util package.

• Vector

• Date

• Time

23.4. Built In Interfaces

Built In DataTypes, Classes, Interfaces and
Stereotypes

318

These are some useful interfaces, corresponding to classes defined within the standard Java environ-
ment. Interfaces have many of the properties of classes (like all types) and you can change them if you
wish.

All these can be found in the java.util subpackage of the main model.

These are the interfaces defined within the java.util package. For their definition consult the Java
language and library references.

• Collection

• Iterator

• List

• Set

• Sorted Set

23.5. Built In Stereotypes
UML 1.3 defines a large number of stereotypes which are all supported by ArgoUML.

Caution

Not all stereotypes defined by UML 1.3 appear in ArgoUML due to limitations in the cur-
rent implementation of some artifacts. The table below lists all stereotypes defined in UML
1.3 and if their base elements are supported in ArgoUML or not.

Caution

The UML 1.3 standard also specifies many stereotypes in the chapters “Standard Profiles#:
one for “Software Development# and one for “Business Modeling#. Due to the specialized
nature of these profiles, implementation in ArgoUML is postponed until a yet undeter-
mined moment.

Table 23.1. Stereotypes defined in UML 1.3 and ArgoUML

StereoType Base Element ArgoUML support

access Permission yes

association AssociationEnd yes

become Flow no

call Usage yes

copy Flow no

Built In DataTypes, Classes, Interfaces and
Stereotypes

319

StereoType Base Element ArgoUML support

create BehavioralFeature yes

create CallEvent yes

create Usage yes

derive Abstraction yes

destroy BehavioralFeature yes

destroy CallEvent yes

document Component yes

executable Component yes

facade Package yes

file Component yes

framework Package yes

friend Permission yes

global AssociationEnd yes

implementation Generalization yes

implementationClass Class yes

implicit Association yes

import Permission yes

instantiate Usage yes

invariant Constraint no

library Component yes

local AssociationEnd yes

metaclass Classifier yes

metamodel Package yes

parameter AssociationEnd yes

Built In DataTypes, Classes, Interfaces and
Stereotypes

320

StereoType Base Element ArgoUML support

postcondition Constraint no

powertype Classifier yes

precondition Constraint no

process Classifier yes

realize Abstraction yes

refine Abstraction yes

requirement Comment yes

responsibility Comment yes

self AssociationEnd yes

send Usage yes

signalflow ObjectFlowState yes

stub Package yes

systemModel Package yes

table Component yes

thread Classifier yes

topLevel Package yes

trace Abstraction yes

type Class yes

utility Classifier yes

Built In DataTypes, Classes, Interfaces and
Stereotypes

321

Glossary

A

Activity Diagram
A UML diagram capturing the dynamic behavior of a system or sub-
system. See Section 5.11, “Activity Diagrams (To be written)# for
more information.

Action
Behavior associated with States or Transitions in State Diagram.
These actions are invocations of Methods and appear on Sequence
and Collaboration Diagrams.

Actor
A representation of an agent (animate or inanimate) on a Use Case
Diagram external to the system being designed.

Analysis
Analysis is the process of taking the “customer# requirements and
re-casting them in the language of, and from the perspective of, a
putative solution.

Association Class
A class that characterizes the association between two other classes.

Association
A relationship between two classes in a Class Diagram or between
Use Cases or Use Cases and Actors in a Use Case Diagram.

Attribute (of a Class or Object)
An attribute of a class or object is a specification of a data element
encapsulated by that object.

C

CASE
Computer Aided Software Engineering.

Class
The encapsulation of the data associated with an artifact (its at-
tributes) and the actions associated with the artifact (its methods).

A class specifies the characteristics of an artifact. An object repre-
sents an instance of the artifact.

Classes and objects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

Class Diagram
A UML Diagram showing the structural relationship between
classes. See Section 4.3, “Class Diagrams (To be written)# for more
information.

322

Collaboration Diagram
A UML Diagram showing the dynamic behavior as messages are
passed between objects. Equivalent to a Sequence Diagram. Which
representation is appropriate depends on the problem under consid-
eration.

Comprehension and Problem Solving
A design visualization theory within cognitive psychology. The the-
ory notes that designers must bridge a gap between their mental
model of the problem or situation and the formal model of a solution
or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposi-
tion, state transitions, control flow, and data flow. These allow
the programmer to better identify elements and relationships in
the problem and solution and thus more readily create a map-
ping between their situation models and working system mod-
els.

2. Familiar aspects of a situation model, which improve designers'
abilities to formulate solutions.

Concept Class Diagram
A Class Diagram constructed during the Analysis Phase to show the
main structural components of the problem identified in the Require-
ments Phase. See Chapter 4, Analysis for more information.

Critic
A process within ArgoUML that provides suggestions as to how the
design might be improved. Suggestions are based on principles
within three theories of cognitive psychology, reflection-in action,
opportunistic design and comprehension and problem solving.

E

Extend Relationship
A relationship between two Use Cases, where the extended Use
Case describes a special variant of the extending Use Case.

G

Generalization Relationship
A relationship between one generalizing Use Cases and one or more
generalized Use Cases, where the generalized Use Cases are particu-
lar examples of the generalizing Use Case.

GUI
Graphical User Interface.

H

Glossary

323

Hierarchical Statechart Diagram
A Statechart Diagram that contains subsidiary statechart diagrams
within individual States.

I

Include Relationship
A relationship between two Use Cases, where the included Use Case
describes part of the functionality of the including Use Case.

Iterative Design Process
A design process where each all phases (requirements, analysis, de-
sign, build, test) are tackled partially in a series of iterations. See
Section 2.3.1, “Types of Process# for more information.

J

Java
A fully object oriented programming language introduced by Sun
Microsystems. More strongly typed than C++, it compiles to an in-
terpreted code, the Java Virtual Machine (JVM). The JVM means
that Java code should run on any machine that has implemented the
JVM.

The most significant component of Java was integration of the JVM
into web browsers, allowing code (Applets) to be download and run
over the web.

ArgoUML is written in Java.

M

Mealy Machine
A Statechart Diagram where actions are associated with States.

Method (of a Class or Object)
A method of a class or object is a specification of behavior encapsu-
lated by that object.

Moore Machine
A Statechart Diagram where actions are associated with Transitions.

O

Object
An instance of a Class.

Classes and objects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

OCL
Object Constraint Language. A language for describing constraints

Glossary

324

within UML.

OMG
The Object Management Group. An international industry standard-
ization body. Best known for CORBA and UML.

OOA&D
Object Oriented Analysis and Design. An approach to software
problem analysis and design based on objects, which encapsulate
both data and code. See See Section 1.1.1, “Object Oriented Analy-
sis and Design# or any standard textbook on Software Engineering.

UML is a notation to support OOA&D.

Opportunistic Design
A theory within cognitive psychology suggesting that although de-
signers plan and describe their work in an ordered, hierarchical fash-
ion, in actuality, they choose successive tasks based on the criteria
of cognitive cost. Simply stated, designers do not follow even their
own plans in order, but choose steps that are mentally least expen-
sive among alternatives.

P

Pane
A sub-window within the main window of the ArgoUML user inter-
face.

R

Realization Use Case
A Use Case where the Use Case Diagram and Use Case Specifica-
tion are in the language of the solution domain, rather than the prob-
lem domain.

Reflection-in-Action
A theory within cognitive psychology which observes that designers
of complex systems do not conceive a design fully-formed. Instead,
they must construct a partial design, evaluate, reflect on, and revise
it, until they are ready to extend it further. As developers work
hands-on with the design, their mental model of the problem situa-
tion improves, hence improving their design.

Requirement Capturing
Requirement capturing is the process of identifying what the
“customer# wants from the proposed system. See Chapter 3, Re-
quirements Capture for a fuller description.

S

Sequence Diagram
A UML Diagram showing the dynamic behavior as messages are

Glossary

325

passed between objects. Equivalent to a Collaboration Diagram.
Which representation is appropriate depends on the problem under
consideration. See Section 4.5, “Sequence Diagrams (To be writ-
ten)# for more information.

SGML
Standard Graphical Markup Language. Defined by ISO 8879:1986.

Simula 67
A procedural programming language intended for simulation. Noted
for its introduction of objects and coroutines.

State
Within a Statechart Diagram a one of the possible configurations of
the machine.

Statechart Diagram
A UML Diagram showing the dynamic behavior of an active Object.
See Section 4.7, “Statechart Diagrams (To be written)# for more in-
formation.

Stereotypes and Stereotyping
Any artifact within UML can be given a stereotype to indicate its as-
sociation with a particular role in the design. A stereotype spqr is
generally indicated with the notation <<spqr>>.

A stereotype defines a Namespace within the design. Examples of
stereotypes are <<business>> and <<realization>> for Use
Cases, used to distinguish between Use Cases at the requirements
phase defined in terms of the problem domain, and Use Cases at the
analysis phase defined in terms of the solution domain.

Supplementary Requirement Specification
The document capturing non-functional requirements that cannot be
associated with Use Cases.

SVG
Scalable Vector Graphics format. A standard representation of
graphics diagrams that use vectors. ArgoUML can export diagrams
in SVG.

System Sequence Diagram
A Sequence Diagram used in the Analysis Phase showing the dy-
namic behavior of the overall system. See Chapter 4, Analysis for
more information.

System Statechart Diagram
A Statechart Diagram used in the Analysis Phase showing the dy-
namic behavior of an active top level system objects. See Chapter 4,
Analysis for more information.

T

To-Do List
A feature of ArgoUML allowing the user to record activities that are
yet to be completed.

Glossary

326

Transition
The change between States in a Statechart Diagram..

U

UML
Universal Modeling Language. A graphical notation for OOA&D
processes, standardized by the OMG. ArgoUML follows UML v1.3.
Version 1.4 was released during 2001, with v2.0 planned for 2002.

Use Case
A UML notation for capturing requirements of a system or sub-
system. See Section 3.3, “Output of the Requirements Capture Pro-
cess# for more information.

Use Case Diagram
A UML diagram showing the relationships between Actors and Use
Cases. See Section 3.3, “Output of the Requirements Capture Pro-
cess# for more information.

Use Case Specification
The document capturing the detailed requirements behind a Use
Case.

V

Vision Document
The top level document describing what the system being developed
is to achieve.

W

W3C
The World Wide Web Consortium, www.w3c.org
[http://www.w3c.org]. An international standardization body for all
things to do with the World Wide Web.

Waterfall Design Process
A design process where each phase (requirements, analysis, design,
build, test) is completed before the next starts. See Section 2.3.1,
“Types of Process# for more information.

X

XMI
XML Model Interchange format. A format for file storage of UML
models. Currently incomplete, since it does not carry all graphical
layout information, so must be supplemented by files carrying that
information.

XML
eXtensible Markup Language. A simplified derivative of SGML de-

Glossary

327

http://www.w3c.org

fined by W3C

Glossary

328

Appendix A. Supplementary Material for the
Case Study

A.1. Introduction
The case study requires various material (mostly documents) that live alongside the design diagram

A.2. Requirements Documents (To be written)
To be written…

A.2.1. Vision Document (To be written)
To be written…

A.2.2. Use Case Specifications (To be written)
To be written…

A.2.2.1. UC Specification 1 (To be written)
To be written…

A.2.3. Supplementary Requirements Specification (To be
written)

To be written…

329

Appendix B. UML resources

B.1. The UML specs (To be written)
To be written…

B.2. UML related papers (To be written)
To be written…

B.2.1. UML action specifications (To be written)
To be written…

B.3. UML related websites (To be written)
To be written…

330

Appendix C. UML Conforming CASE Tools

C.1. Other Open Source Projects (To be writ-
ten)

To be written…

C.2. Commercial Tools (To be written)
To be written…

331

Appendix D. Limits and Shortcomings
As all products, ArgoUML has some limits. Those important to the user are listed in this section.

D.1. Diagram Canvas Size
Due to the underlying diagram editing software, the canvas size for diagrams is limited to 6000 units in
height and width.

D.2. Missing functions
For the releases 0.14, 0.16 and 0.18 of ArgoUML the sequence diagrams are disabled. Its implementa-
tion will be replaces by a new and improved one in the upcoming release. In the 0.12 release they were
not working and in the 0.10 release they did not follow the UML specification correctly.

332

Appendix E. Open Publication Licence

E.I. REQUIREMENTS ON BOTH UNMODIFIED
AND MODIFIED VERSIONS

The Open Publication works may be reproduced and distributed in whole or in part, in any medium
physical or electronic, provided that the terms of this license are adhered to, and that this license or an
incorporation of it by reference (with any options elected by the author(s) and/or publisher) is displayed
in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author's name or designee>. This material may be dis-
tributed only subject to the terms and conditions set forth in the Open Publication Li-
cense, vX.Y or later (the latest version is presently available at
http://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

The reference must be immediately followed with any options elected by the author(s) and/or publisher
of the document (see section VI).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and au-
thor. The publisher and author's names shall appear on all outer surfaces of the book. On all outer sur-
faces of the book the original publisher's name shall be as large as the title of the work and cited as pos-
sessive with respect to the title.

E.II. COPYRIGHT
The copyright to each Open Publication is owned by its author(s) or designee.

E.III. SCOPE OF LICENSE
The following license terms apply to all Open Publication works, unless otherwise explicitly stated in
the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate
work shall contain a notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remain-
ing portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided “as is# without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and fit-
ness for a particular purpose or a warranty of non-infringement.

E.IV. REQUIREMENTS ON MODIFIED WORKS
All modified versions of documents covered by this license, including translations, anthologies, compi-

333

http://www.opencontent.org/openpub/

lations and partial documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to
normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author's (or authors') name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors') permission.

E.V. GOOD-PRACTICE RECOMMENDATIONS
In addition to the requirements of this license, it is requested from and strongly recommended of redis-
tributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notifi-
cation to the authors of your intent to redistribute at least thirty days before your manuscript or me-
dia freeze, to give the authors time to provide updated documents. This notification should describe
modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

E.VI. LICENSE OPTIONS
The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by
appending language to the reference to or copy of the license. These options are considered part of the
license instance and must be included with the license (or its incorporation by reference) in derived
works.

A. To prohibit distribution of substantively modified versions without the explicit permission of the au-
thor(s). “Substantive modification# is defined as a change to the semantic content of the document, and
excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase “Distribution of substantively modified versions of this document is
prohibited without the explicit permission of the copyright holder.# to the license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or in part in standard (paper)
book form for commercial purposes is prohibited unless prior permission is obtained from the copyright
holder.

To accomplish this, add the phrase “Distribution of the work or derivative of the work in any standard
(paper) book form is prohibited unless prior permission is obtained from the copyright holder.# to the li-
cense reference or copy.

Open Publication Licence

334

E.. OPEN PUBLICATION POLICY APPENDIX:
(This is not considered part of the license.)

Open Publication works are available in source format via the Open Publication home page at
http://works.opencontent.org/ [http://works.opencontent.org/].

Open Publication authors who want to include their own license on Open Publication works may do so,
as long as their terms are not more restrictive than the Open Publication license.

If you have questions about the Open Publication License, please contact David Wiley
[mailto:dw2@opencontent.org], and/or the Open Publication Authors' List at opal@opencontent.org
[mailto:opal@opencontent.org], via email.

To subscribe to the Open Publication Authors' List: Send E-mail to opal-request@opencontent.org with
the word “subscribe# in the body.

To post to the Open Publication Authors' List: Send E-mail to opal@opencontent.org or simply reply to
a previous post.

To unsubscribe from the Open Publication Authors' List: Send E-mail to opal-request@opencontent.org
with the word “unsubscribe# in the body.

Open Publication Licence

335

http://works.opencontent.org/
mailto:dw2@opencontent.org
mailto:dw2@opencontent.org
mailto:opal@opencontent.org

Index
The use of the index in the document is done a little at
random and cannot be trusted. Please help in suggesting
new index entries!

A
Action, 322
Active Actor, 36
Activity Diagram, 322
Actor, 33, 44, 191, 322
Actor Association Ends, 193
Actor Details Tabs, 191
Actor Generalizations, 193
Actor Modifiers, 193
Actor Name, 192
Actor Namespace, 193
Actor Specializations, 193
Actor Stereotype, 192
Add Action, 294
Add Actor, 192
Add DataType, 179
Add Datatype, 211, 219, 222, 226
Add Extend Relationship, 204
Add Extension Point, 195, 198
Add Package, 179
Add Qualifier, 236, 291
Add Stereotype, 179, 182, 198, 201, 204, 207, 211, 215,
219, 222, 226, 229, 233, 236, 240, 243, 250, 257, 260,
263, 267, 270, 272, 274, 276, 280, 285, 292, 294, 300,
306, 308, 310, 312
Add Use Case, 195
Aggregation

of Association End, 239
Alternate Flows

of Use Case, 41, 42
Alternative scenarios, 42
Analysis, 322

Object Oriented, 325
Arrange Menu, 20
Association, 231, 322

in a Use Case Diagram, 46
Association Class, 322
Association Details Tabs, 232
Association End, 234
Association End Aggregation, 239
Association End Changeability, 239
Association End Details Tabs, 235
Association End Modifiers, 237
Association End Multiplicity, 237
Association End Name, 236
Association End Property Fields, 236
Association End Property Toolbar, 236
Association End Stereotype, 236
Association End Tagged Values, 235
Association End Type, 237

Association End Visibility, 239
Association Ends

of Actor, 193
of Association, 234

Association Name, 233
Association Property Fields, 233
Association Property Toolbar, 233
Association Stereotype, 234
Association Tagged Values, 232
Attribute, 217

of a Class, 322
of an Object, 322

Attribute Changeability, 220
Attribute Details Tabs, 218
Attribute Initial Value, 220
Attribute Multiplicity, 219
Attribute Name, 219
Attribute Property Fields, 219
Attribute Property Toolbar, 218
Attribute Tagged Values, 218
Attribute Type, 220
Attribute Visibility, 220

B
Base

of Include Relationship, 208
Base Class

of Stereotype, 186
Base Use Case

of Extend Relationship, 205
of Extension Point, 199

Basic Flow
of Use Case, 41, 42

C
CASE, 322
Changeability

of Association End, 239
of Attribute, 220

Child
of Generalization, 202

Class, 213, 322
Class Details Tabs, 213
Class Diagram, 209, 322
Class Method, 324
Class Modifiers, 216
Class Name, 215
Class Property Fields, 215
Class Property Toolbar, 214
Class Stereotype, 215
Class Tagged Values, 214
Clients

of Dependency, 241
Code Generation, 68
Collaboration Diagram, 323
Comprehension, 323
Concept Class Diagram, 323
Concurrency

336

of Operation, 224
Connections

of Association, 234
Constraints

in the Vision document, 35
Contexts

of Signal, 230
Contributing

to ArgoUML, 2
to the User Manual, 4

Cookbook, 2
Copy, 88
Create Diagram Menu, 20
Create Diagram Toolbar, 21
Create New

Action, 294
Actor, 44, 192
Association in a Use Case Diagram, 46
DataType, 179
Datatype, 211, 219, 222, 226
Extend Relationship, 204
Extend Relationship in a Use Case Diagram, 47
Extension Point, 45, 195, 198
Generalization relationship in a Use Case Diagram ,
48
Include Relationship in a Use Case Diagram, 47
Package, 179
Qualifier, 236, 291
Stereotype, 179, 182, 198, 201, 204, 207, 211, 215,
219, 222, 226, 229, 233, 236, 240, 243, 250, 257,
260, 263, 267, 270, 272, 274, 276, 280, 285, 292,
294, 300, 306, 308, 310, 312
Use Case, 44, 195

Critic, 323
Critique Menu, 20
Cut, 88

D
Datatype, 180
Datatype Details Tabs, 181
Datatype Literals, 184
Datatype Modifiers, 183
Datatype Name, 182
Datatype Properties, 181
Datatype Property Fields, 182
Datatype Property Toolbar, 182
Datatype Stereotype, 183
Datatype Tagged Values, 181
Datatype Visibility, 183
Default Value

of Parameter, 227
Delete From Model, 89
Dependency, 239
Dependency Clients, 241
Dependency Details Tabs, 239
Dependency Name, 240
Dependency Namespace, 241
Dependency Stereotype, 241

Dependency Suppliers, 241
Design

Object Oriented, 325
Opportunistic, 325

Design Process
Iterative, 324
Waterfall, 327

Details Tabs
for Actor, 191
for Association, 232
for Association End, 235
for Attribute, 218
for Class, 213
for Datatype, 181
for Dependency, 239
for Diagrams, 189
for Extend Relationship, 203
for Extension Point, 197
for Generalization, 200
for Include Relationship, 206
for Model, 178
for Operation, 221
for Package, 210
for Parameter, 226
for Signal, 228
for Stereotype, 185
for Use Case, 194

Developer Zone, 2
Developers' Cookbook, The, 2
Diagram, 187

Activity, 322
Class, 322
Collaboration, 323
Sequence, 325
State, 326
System Sequence, 326
System State, 326
Use Case, 35, 327

Diagram Details Tabs, 189
Diagram Name, 189
Diagram Property Fields, 189
Discriminator

of Generalization, 202
Documentation in Use Case Diagrams, 48

E
Edit Menu, 20
Edit Toolbar, 21
Exit, 86
Explorer, 115

Mouse Behavior, 115
Extend Relationship, 39, 203, 323

in a Use Case Diagram, 47
of Use Case, 196

Extend Relationship Base Use Case, 205
Extend Relationship Details Tabs, 203
Extend Relationship Extension, 206
Extend Relationship Extension Point, 206

Index

337

Extend Relationship Name, 205
Extend Relationship Namespace, 205
Extend Relationship Stereotype, 205
Extending Use Cases

of Extension Point, 199
Extension

of Extend Relationship, 206
Extension Point, 45, 197

of Extend Relationship, 206
of Use Case, 196

Extension Point Base Use Case, 199
Extension Point Details Tabs, 197
Extension Point Extending Use Cases, 199
Extension Point Location, 198
Extension Point Name, 198
Extension Point Stereotype, 198
External entity, 191

F
FAQ, 2
Feedback, 4
File Menu, 20
File Toolbar, 21

G
Generalization, 199
Generalization Child, 202
Generalization Details Tabs, 200
Generalization Discriminator, 202
Generalization Name, 201
Generalization Namespace, 202
Generalization Parent, 202
Generalization Powertype, 202
Generalization Relationship, 323

in a Use Case Diagram, 48
Generalization Stereotype, 201
Generalizations

of Actor, 193
of Package, 212
of Use Case, 196

Generalize a Use Case, 40
Generate All Classes, 105
Generating Code

from Collaboration Diagrams, 69
from Interactions, 69
from Sequence Diagrams, 69
from Statechart Diagrams, 69
from the Static Structure, 68

Generation Menu, 20
Goal

of Use Case, 40
Goals

in the Vision document, 35
GUI, 323

H
Help Menu, 21

Hierarchical Statechart Diagram, 324
Hierarchical Use Cases, 47
Hierarchy of Use Cases, 38

I
Include Relationship, 38, 206, 324

in a Use Case Diagram, 47
of Use Case, 197

Include Relationship Base, 208
Include Relationship Details Tabs, 206
Include Relationship Included Use Case, 208
Include Relationship Name, 207
Include Relationship Namespace, 208
Include Relationship Stereotype, 208
Included Use Case

of Include Relationship, 208
Initial Value

of Attribute, 220
of Parameter, 227

Iterative Design Process, 324

J
Jason Robbins, 2
Java, 324

K
Key features

in the Vision document, 35
Kind

of Parameter, 228

L
Literals

of Datatype, 184
Location

of Extension Point, 198

M
Mailing lists, 2, 2
Market Context

in the Vision document, 35
Mealy Machine, 324
Menu Bar, 20
Method

of a Class, 324
of an Object, 324

Model Details Tabs, 178
Model Modifiers, 180
Model Name, 179
Model Namespace, 179
Model Owned Elements, 180
Model Stereotype, 179
Model Visibility, 180
Model, The, 178
Modifiers

of Actor, 193
of Association End, 237

Index

338

of Class, 216
of Datatype, 183
of Model, 180
of Operation, 224
of Package, 212
of Stereotype, 187
of Use Case, 196

Moore Machine, 324
Mouse Behavior

in the Explorer, 115
Multiplicity

in a Use Case Diagram, 37
of Association End, 237
of Attribute, 219
Setting, 47

N
Name

of Actor, 192
of Association, 233
of Association End, 236
of Attribute, 219
of Class, 215
of Datatype, 182
of Dependency, 240
of Diagrams, 189
of Extend Relationship, 205
of Extension Point, 198
of Generalization, 201
of Include Relationship, 207
of Model, 179
of Operation, 223
of Package, 211
of Parameter, 227
of Signal, 230
of Stereotype, 186
of Use Case, 40, 195

Namespace
of Actor, 193
of Dependency, 241
of Extend Relationship, 205
of Generalization, 202
of Include Relationship, 208
of Model, 179
of Package, 212
of Stereotype, 186
of Use Case, 196

Navigation
Pane, 115
Setting, 46
Tree, 115

Navigator
Pane, 115
Tree, 115

New, 81
New Action, 294
New Actor, 192
New DataType, 179

New Datatype, 211, 219, 222, 226
New Extend Relationship, 204
New Extension Point, 195, 198
New Package, 179
New Qualifier, 236, 291
New Stereotype, 179, 182, 198, 201, 204, 207, 211, 215,
219, 222, 226, 229, 233, 236, 240, 243, 250, 257, 260,
263, 267, 270, 272, 274, 276, 280, 285, 292, 294, 300,
306, 308, 310, 312
New Use Case, 195
Non-functional constraints, 43
Non-functional parameters

in the Vision document, 35
Non-functional requirements, 34, 43

O
Object, 324
Object Constraint Language, 324
Object Diagrams, 209
Object Management Group, 325
Object Method, 324
OCL, 324
OMG, 325
OOA&D, 325
Open Project…, 81
Operation, 221
Operation Concurrency, 224
Operation Details Tabs, 221
Operation Modifiers, 224
Operation Name, 223
Operation Parameter, 225
Operation Property Fields, 223
Operation Property Toolbar, 222
Operation Raised Signals, 225
Operation Stereotype, 223
Operation Tagged Values, 222
Operation Visibility, 223
Opportunistic Design, 325
Owned Elements

of Model, 180
of Package, 213

P
Package, 210
Package Details Tabs, 210
Package Diagrams, 209
Package Generalizations, 212
Package Modifiers, 212
Package Name, 211
Package Namespace, 212
Package Owned Elements, 213
Package Specializations, 213
Package Stereotype, 212
Page Setup …, 85
Pane, 325
Parameter, 225

of Operation, 225
Parameter Default Value, 227

Index

339

Parameter Details Tabs, 226
Parameter Initial Value, 227
Parameter Kind, 228
Parameter Name, 227
Parameter Property Fields, 227
Parameter Property Toolbar, 226
Parameter Stereotype, 227
Parameter Tagged Values, 226
Parameter Type, 227
Parent

of Generalization, 202
Passive Actor, 36
Paste, 88
Post-assumptions

of Use Case, 41
Post-conditions

of Use Case, 41
Powertype

of Generalization, 202
Pre-assumptions

of Use Case, 41
Pre-condition

of Use Case, 41
Print …, 85
Problem Solving, 323
Properties

of Datatype, 181
Property Fields

for Association, 233
for Association End, 236
for Attribute, 219
for Class, 215
for Datatype, 182
for Diagrams, 189
for Operation, 223
for Parameter, 227
for Signal, 230
for Stereotype, 186

Property Toolbar
for Association, 233
for Association End, 236
for Attribute, 218
for Class, 214
for Datatype, 182
for Operation, 222
for Parameter, 226
for Signal, 229
for Stereotype, 186

R
Raised Signals

of Operation, 225
Realization Use Case, 325
Reflection-in-Action, 325
Relationship

Extend, 39, 47, 323
Generalization, 48, 323
Include, 38, 47, 324

Remove From Diagram, 88
Requirement

Capturing, 33
Requirement Capturing, 325
Reverse Engineering, 70
Robbins, Jason, 2
Round-Trip Engineering, 70

S
Save Project, 82
Scenario, 41
Select All, 87
Sequence Diagram, 325
Setting Multiplicity

to an association in a Use Case Diagram, 47
Setting Navigation

to an association in a Use Case Diagram, 46
SGML, 326
Shortcut key

Alt-F4., 86
Ctrl-A, 87
Ctrl-C, 88
Ctrl-Delete, 89
Ctrl-N, 81
Ctrl-O, 81
Ctrl-P, 85
Ctrl-S, 82
Ctrl-V, 88
Ctrl-X, 88
Delete, 88
F7, 105

Signal, 228
Signal Contexts, 230
Signal Details Tabs, 228
Signal Name, 230
Signal Property Fields, 230
Signal Property Toolbar, 229
Signal Stereotype, 230
Signal Tagged Values, 229
Simula 67, 326
Specializations

of Actor, 193
of Package, 213
of Use Case, 40, 196

Specification
of Use Case, 34, 40

Stakeholders
in the Vision document, 35

Standard Graphical Markup Language, 326
State, 326
State Diagram, 326
Statechart Diagram, 326
Statechart Diagram, Hierarchical, 324
Stereotype, 185, 326

in Use Case Diagrams, 48
of Actor, 192
of Association, 234
of Association End, 236

Index

340

of Class, 215
of Datatype, 183
of Dependency, 241
of Extend Relationship, 205
of Extension Point, 198
of Generalization, 201
of Include Relationship, 208
of Model, 179
of Operation, 223
of Package, 212
of Parameter, 227
of Signal, 230
of Use Case, 195

Stereotype Base Class, 186
Stereotype Details Tabs, 185
Stereotype Modifiers, 187
Stereotype Name, 186
Stereotype Namespace, 186
Stereotype Property Fields, 186
Stereotype Property Toolbar, 186
Stereotyping, 326
Supplementary Requirement Specification, 34, 34, 43,
326
Suppliers

of Dependency, 241
SVG, 326
System Boundary Box in Use Case Diagram, 49
System Sequence Diagram, 326
System Statechart Diagram, 326

T
Tagged Values

of Association, 232
of Association End, 235
of Attribute, 218
of Class, 214
of Datatype, 181
of Operation, 222
of Parameter, 226
of Signal, 229

To-Do List, 326
Toolbars, 20
Tools Menu, 21
Transition, 327
Type

of Association End, 237
of Attribute, 220
of Parameter, 227

U
UML, 327
Use Case, 33, 34, 44, 193, 327

Alternate Flows, 41, 42
Basic Flow, 41, 42
Hierarchy, 38

Use Case Details Tabs, 194
Use Case Diagram, 35, 190, 327
Use Case Extend Relationships, 196

Use Case Extension Points, 196
Use Case Generalization, 40, 196
Use Case Goal, 40
Use Case Include Relationships, 197
Use Case Modifiers, 196
Use Case Name, 40, 195
Use Case Namespace, 196
Use Case Post-conditions, 41
Use Case Pre-condition, 41
Use Case Realization, 325
Use Case Scenario, 40
Use Case Specialization, 40, 196
Use Case Specification, 34, 40, 327
Use Case Stereotype, 195
Use Case, Hierarchical, 47
User Feedback, 4

V
View Menu, 20
View Toolbar, 21
Visibility

of Association End, 239
of Attribute, 220
of Datatype, 183
of Model, 180
of Operation, 223

Vision Document, 33, 34, 34, 327
Case Study, 49

W
W3C, 327
Waterfall Design Process, 327

X
XMI, 327
XML, 327

Index

341

	Preface
	Chapter 1. Introduction
	1.1. Origins and Overview of ArgoUML
	1.1.1. Object Oriented Analysis and Design
	1.1.2. The Development of ArgoUML
	1.1.3. Finding Out More About the ArgoUML Project
	1.1.3.1. How ArgoUML is Developed
	1.1.3.2. More on Infrastructure

	1.2. Scope of This User Manual
	1.2.1. Target Audience
	1.2.2. Scope

	1.3. Overview of the User Manual
	1.3.1. Tutorial Manual Structure
	1.3.2. Reference Manual Structure
	1.3.3. User Feedback

	1.4. Assumptions

	Part I. ArgoUML Tutorial Manual
	Chapter 2. UML Based OOA&D
	2.1. Introduction
	2.2. Background to UML
	2.3. UML Based Processes for OOA&D
	2.3.1. Types of Process
	2.3.1.1. The Waterfall Process
	2.3.1.2. Iterative Development Processes
	2.3.1.2.1. The Rational Unified Process
	2.3.1.2.2. How Big is an Iteration?

	2.3.1.3. Recursive Development Processes

	2.3.2. A Development Process for This Manual
	2.3.2.1. Requirements Capture
	2.3.2.2. Analysis
	2.3.2.3. Design
	2.3.2.4. Build

	2.4. Why ArgoUML is Different
	2.4.1. Cognitive Psychology
	2.4.1.1. Theory
	2.4.1.1.1. Reflection-in-Action
	2.4.1.1.2. Opportunistic Design
	2.4.1.1.3. Comprehension and Problem Solving

	2.4.1.2. Practical Application in ArgoUML

	2.4.2. Open Standards
	2.4.2.1. XML Metadata Interchange (XMI)
	2.4.2.2. Scalable Vector Graphics (SVG)
	2.4.2.3. Object Constraint Language (OCL)

	2.4.3. 100% Pure Java
	2.4.4. Open Source

	2.5. ArgoUML Basics
	2.5.1. Getting Started
	2.5.1.1. System requirements
	2.5.1.2. Downloading options
	2.5.1.3. ArgoUML using Java Web Start
	2.5.1.4. Downloading the binary executable
	2.5.1.5. Problems Downloading
	2.5.1.6. Running ArgoUML
	2.5.1.7. Problems Running ArgoUML

	2.5.2. The ArgoUML User Interface
	2.5.2.1. The Explorer
	2.5.2.2. The Editing Pane
	2.5.2.3. The Details Pane
	2.5.2.4. The To-Do Pane
	2.5.2.5. The Menu Bar and Toolbars
	2.5.2.6. The Mouse
	2.5.2.7. Drawing Diagrams
	2.5.2.7.1. Moving Diagram Elements
	2.5.2.7.1.1. Using the Mouse Keys
	2.5.2.7.1.2. Using the Edit Pane Toolbar

	2.5.2.7.2. Arranging Elements

	2.5.2.8. Working with Projects
	2.5.2.8.1. The Start-up Window
	2.5.2.8.2. Saving a project - The File Menu
	2.5.2.8.3. The File Chooser Dialog

	2.5.3. Output
	2.5.3.1. Loading and Saving
	2.5.3.1.1. Saving XMI files in ArgoUML

	2.5.3.2. Graphics and Printing
	2.5.3.2.1. The Graph Editing Framework (GEF)
	2.5.3.2.2. Precision Graphics Markup Language (PGML)
	2.5.3.2.3. Applications Which Open PGML
	2.5.3.2.4. Printing Diagrams
	2.5.3.2.5. Scalable Vector Graphics (SVG)
	2.5.3.2.6. Saving Diagrams as SVG

	2.5.3.3. XMI
	2.5.3.3.1. Using XMI from Rational Rose
	2.5.3.3.2. Using Models Created by Gentleware
	2.5.3.3.3. XMI Interchangeability between ArgoUML 0.8.1a and 0.10, 0.12, and 0.14
	2.5.3.3.4. Importing Other XMI Formats into ArgoUML
	2.5.3.3.5. Generating XMI Format

	2.5.3.4. Code Generation
	2.5.3.4.1. Code Generated by ArgoUML
	2.5.3.4.2. Generating Code for Methods

	2.5.4. Working With Design Critics
	2.5.4.1. The To-Do Pane—Messages From the Design Critics
	2.5.4.2. Design Critics at Work: The Rename Package Wizard

	2.6. The Case Study (To be written)

	Chapter 3. Requirements Capture
	3.1. Introduction
	3.2. The Requirements Capture Process
	3.2.1. Process Steps

	3.3. Output of the Requirements Capture Process
	3.3.1. Vision Document
	3.3.2. Use Case Diagram
	3.3.2.1. Active and Passive Actors
	3.3.2.2. Multiplicity
	3.3.2.3. Hierarchies of Use Cases

	3.3.3. The Use Case Specification
	3.3.3.1. Specifying the Basic Flow
	3.3.3.2. Specifying the Alternate Flows
	3.3.3.3. Iterative Development of Use Case Specifications

	3.3.4. Supplementary Requirement Specification

	3.4. Using Use Cases in ArgoUML
	3.4.1. Actors
	3.4.2. Use Cases
	3.4.2.1. Adding an Extension Point to a Use Case

	3.4.3. Associations
	3.4.3.1. Setting Navigation
	3.4.3.2. Setting Multiplicity

	3.4.4. Hierarchical Use Cases
	3.4.4.1. Includes
	3.4.4.2. Extends
	3.4.4.3. Generalization

	3.4.5. Stereotypes
	3.4.6. Documentation
	3.4.7. System Boundary Box

	3.5. Case Study
	3.5.1. Vision Document
	3.5.1.1. Summary
	3.5.1.2. Goals
	3.5.1.3. Market Context
	3.5.1.4. Stakeholders
	3.5.1.5. Key Features
	3.5.1.6. Constraints
	3.5.1.7. Appendix

	3.5.2. Identifying Actors and Use Cases
	3.5.3. Associations (To be written)
	3.5.4. Advanced Diagram Features (To be written)
	3.5.5. Use Case Specifications (To be written)
	3.5.6. Supplementary Requirements Specification (To be written)

	Chapter 4. Analysis
	4.1. Introduction
	4.2. The Analysis Process (To be written)
	4.2.1. Output of the Analysis Process (To be written)
	4.2.1.1. Concept Diagram (To be written)
	4.2.1.2. System Sequence Diagram (To be written)
	4.2.1.3. System Statechart Diagram (To be written)
	4.2.1.4. Realization Use Case Diagram (To be written)
	4.2.1.5. Documents (To be written)

	4.3. Class Diagrams (To be written)
	4.3.1. The Class Diagram (To be written)
	4.3.2. Advanced Class Diagrams (To be written)
	4.3.2.1. Association Classes (To be written)

	4.4. Creating Class Diagrams in ArgoUML
	4.4.1. Classes
	4.4.1.1. Using the Note Icon in the Tool Bar

	4.4.2. Associations (To be written)
	4.4.2.1. Aggregation (To be written)

	4.4.3. Class Attributes and Operations (To be written)
	4.4.3.1. Entering Data Into Attributes and Methods Windows
	4.4.3.2. Class Attributes (To be written)
	4.4.3.3. Class Operations (To be written)

	4.4.4. Advanced Class Features (To be written)
	4.4.4.1. Association Classes (To be written)
	4.4.4.2. Stereotypes (To be written)

	4.5. Sequence Diagrams (To be written)
	4.5.1. The Sequence Diagram (To be written)
	4.5.2. Identifying Actions (To be written)
	4.5.3. Advanced Sequence Diagrams (To be written)

	4.6. Creating Sequence Diagrams in ArgoUML
	4.6.1. Sequence Diagrams
	4.6.1.1. Creating a Sequence Diagram

	4.6.2. Actions (To be written)
	4.6.3. Advanced Sequence Diagrams (To be written)

	4.7. Statechart Diagrams (To be written)
	4.7.1. The Statechart Diagram (To be written)
	4.7.2. Advanced Statechart Diagrams (To be written)
	4.7.2.1. Hierarchical Statechart Diagrams (To be written)

	4.8. Creating Statechart Diagrams in ArgoUML
	4.8.1. Statechart Diagrams (To be written)
	4.8.1.1. Creating a Statechart Diagram

	4.8.2. States (To be written)
	4.8.2.1. Editing a Composite State

	4.8.3. Transitions (To be written)
	4.8.4. Actions (To be written)
	4.8.5. Advanced Statechart Diagrams (To be written)
	4.8.5.1. Hierarchical Statechart Diagrams (To be written)

	4.9. Realization Use Cases (To be written)
	4.10. Creating Realization Use Cases in ArgoUML (To be written)
	4.11. Case Study (To be written)
	4.11.1. Concept Class Diagrams (To be written)
	4.11.1.1. Identifying classes (To be written)
	4.11.1.2. Identifying associations (To be written)

	4.11.2. System Sequence Diagrams (To be written)
	4.11.2.1. Identifying actions (To be written)

	4.11.3. System Statechart Diagrams (To be written)
	4.11.4. Realization Use Cases (To be written)

	Chapter 5. Design
	5.1. Introduction
	5.2. The Design Process (To be written)
	5.2.1. Output of the Design Process (To be written)
	5.2.1.1. Package Diagram (To be written)
	5.2.1.2. Realization Class Diagrams (To be written)
	5.2.1.3. Sequence Diagrams and Collaboration Diagrams (To be written)
	5.2.1.4. Statechart Diagrams and Activity Diagrams (To be written)
	5.2.1.5. Deployment Diagram (To be written)
	5.2.1.6. Documents (To be written)

	5.3. Package Diagrams (To be written)
	5.3.1. The Package Diagram (To be written)
	5.3.2. Advanced Package Diagrams (To be written)
	5.3.2.1. Subpackages (To be written)
	5.3.2.2. Adding DataTypes (To be written)
	5.3.2.3. Adding Stereotypes (To be written)

	5.4. Creating Package Diagrams in ArgoUML
	5.4.1. Packages
	5.4.1.1. Subpackages (To be written)

	5.4.2. Relationships between packages (To be written)
	5.4.2.1. Dependency (To be written)
	5.4.2.2. Generalization (To be written)
	5.4.2.3. Realization and Abstraction (To be written)

	5.4.3. Advanced Package Features (To be written)
	5.4.3.1. Creating New Datatypes (To be written)
	5.4.3.2. Creating New Stereotypes (To be written)

	5.5. More on Class Diagrams (To be written)
	5.5.1. The Class Diagram (To be written)
	5.5.1.1. Class Attributes (To be written)
	5.5.1.2. Class Operations (To be written)

	5.5.2. Advanced Class Diagrams (To be written)
	5.5.2.1. Realization and Abstraction (To be written)

	5.6. More on Class Diagrams in ArgoUML (To be written)
	5.6.1. Classes (To be written)
	5.6.2. Class Attributes and Operations (To be written)
	5.6.2.1. Class Attributes (To be written)
	5.6.2.2. Class Operations (To be written)

	5.6.3. Advanced Class Features
	5.6.3.1. Operations on Interfaces
	5.6.3.1.1. Interfaces that extend interfaces

	5.6.3.2. Stereotypes (To be written)

	5.7. Sequence and Collaboration Diagrams (To be written)
	5.7.1. More on the Sequence Diagram (To be written)
	5.7.2. The Collaboration Diagram (To be written)
	5.7.2.1. Messages (To be written)
	5.7.2.2. Actions (To be written)

	5.7.3. Advanced Collaboration Diagrams (To be written)

	5.8. Creating Collaboration Diagrams in ArgoUML (To be written)
	5.8.1. Collaboration Diagrams (To be written)
	5.8.2. Messages (To be written)
	5.8.2.1. Actions (To be written)

	5.8.3. Advanced Collaboration Diagrams (To be written)

	5.9. Statechart Diagrams (To be written)
	5.9.1. The Statechart Diagram (To be written)
	5.9.2. Advanced Statechart Diagrams (To be written)
	5.9.2.1. Actions (To be written)
	5.9.2.2. Transitions (To be written)
	5.9.2.2.1. Triggers (To be written)
	5.9.2.2.2. Guards (To be written)
	5.9.2.2.3. Effectss (To be written)

	5.9.2.3. Pseudo States (To be written)
	5.9.2.3.1. Junction and Choice (To be written)
	5.9.2.3.2. Fork and Join (To be written)

	5.9.2.4. Hierarchical State Machines (To be written)
	5.9.2.5. Models for State History (To be written)

	5.10. Creating Statechart Diagrams in ArgoUML (To be written)
	5.10.1. Statechart Diagrams (To be written)
	5.10.2. States (To be written)
	5.10.3. Transitions (To be written)
	5.10.4. Actions (To be written)
	5.10.5. Advanced Statechart Diagrams (To be written)
	5.10.5.1. Transitions (To be written)
	5.10.5.1.1. Triggers (To be written)
	5.10.5.1.2. Guards (To be written)
	5.10.5.1.3. Effectss (To be written)

	5.10.5.2. Pseudo States (To be written)
	5.10.5.2.1. Junction and Choice (To be written)
	5.10.5.2.2. Fork and Join (To be written)

	5.10.5.3. Hierarchical State Machines (To be written)
	5.10.5.4. History (To be written)

	5.11. Activity Diagrams (To be written)
	5.11.1. The Activity Diagram (To be written)
	5.11.1.1. Action States (To be written)

	5.12. Creating Activity Diagrams in ArgoUML (To be written)
	5.12.1. Activity Diagrams (To be written)
	5.12.1.1. Creating an Activity Diagram

	5.12.2. Action States (To be written)

	5.13. Deployment Diagrams (To be written)
	5.13.1. The Deployment Diagram (To be written)

	5.14. Creating Deployment Diagrams in ArgoUML (To be written)
	5.14.1. Nodes (To be written)
	5.14.1.1. Node Instances (To be written)

	5.14.2. Components (To be written)
	5.14.2.1. Component Instances (To be written)

	5.14.3. Relationships between nodes and components (To be written)
	5.14.3.1. Dependency (To be written)
	5.14.3.2. Associations (To be written)
	5.14.3.3. Links (To be written)

	5.15. System Architecture (To be written)
	5.16. Case Study (To be written)
	5.16.1. Packages (To be written)
	5.16.1.1. Identifying Packages (To be written)
	5.16.1.2. Datatypes and Stereotypes (To be written)

	5.16.2. Class Diagrams (To be written)
	5.16.2.1. Identifying classes (To be written)
	5.16.2.2. Identifying associations (To be written)
	5.16.2.3. Specifying Attributes and Operations (To be written)

	5.16.3. Sequence Diagrams (To be written)
	5.16.3.1. Identifying actions (To be written)

	5.16.4. Collaboration Diagrams (To be written)
	5.16.4.1. Identifying Messages (To be written)

	5.16.5. Statechart Diagrams (To be written)
	5.16.6. Activity Diagrams (To be written)
	5.16.7. The Deployment Diagram (To be written)
	5.16.8. The System Architecture (To be written)

	Chapter 6. Code Generation, Reverse Engineering, and Round Trip Engineering
	6.1. Introduction
	6.2. Code Generation
	6.2.1. Generating Code from the Static Structure
	6.2.2. Generating code from interactions and state machines

	6.3. Code Generation in ArgoUML
	6.3.1. Static Structure
	6.3.2. Interactions and state diagrams

	6.4. Reverse Engineering
	6.5. Round-Trip Engineering

	Part II. ArgoUML Reference Manual
	Chapter 7. User Interface Reference
	7.1. Introduction
	7.2. Overview of the Window
	7.3. General Mouse Behavior in ArgoUML
	7.3.1. Mouse Button Terminology
	7.3.2. Button 1 Click
	7.3.2.1. Selection
	7.3.2.2. Activation
	7.3.2.3. Navigation
	7.3.2.4. General Behavior When Editing Text

	7.3.3. Button 1 Double Click
	7.3.3.1. General Behavior When Editing Text

	7.3.4. Button 1 Motion
	7.3.4.1. General Behavior When Editing Text

	7.3.5. Shift and Control with Button 1
	7.3.5.1. Within Lists
	7.3.5.2. General Behavior When Editing Text

	7.3.6. Alt with Button 1: Panning
	7.3.7. Button 2 Actions
	7.3.8. Button 2 Double Click
	7.3.9. Button 2 Motion

	7.4. General Information About Panes
	7.4.1. Re-sizing Panes

	7.5. The status bar

	Chapter 8. The Toolbar
	8.1. File operations
	8.2. Edit operations
	8.3. View operations
	8.4. Create operations

	Chapter 9. The Menu bar
	9.1. Introduction
	9.2. Mouse Behavior in the Menu Bar
	9.3. The File Menu
	9.3.1. New
	9.3.2. Open Project…
	9.3.3. Save Project
	9.3.4. Save Project As…
	9.3.5. Revert to Saved
	9.3.6. Import Sources…
	9.3.7. Page Setup…
	9.3.8. Print…
	9.3.9. Save Graphics…
	9.3.10. Save Configuration
	9.3.11. Most Recent Used Files
	9.3.12. Exit

	9.4. The Edit Menu
	9.4.1. Select
	9.4.2. Cut
	9.4.3. Copy
	9.4.4. Paste
	9.4.5. Remove From Diagram
	9.4.6. Delete From Model
	9.4.7. Settings…
	9.4.7.1. Preferences Tab
	9.4.7.2. Environment Tab
	9.4.7.3. User Tab
	9.4.7.4. Notation Tab
	9.4.7.5. Appearance Tab
	9.4.7.6. Modules Tab

	9.5. The View Menu
	9.5.1. Goto Diagram…
	9.5.2. Find…
	9.5.3. Zoom
	9.5.4. Adjust Grid
	9.5.5. Adjust Grid Snap
	9.5.6. Page Breaks
	9.5.7. Notation

	9.6. The Create Menu
	9.6.1. New Use Case Diagram
	9.6.2. New Class Diagram
	9.6.3. New Sequence Diagram
	9.6.4. New Collaboration Diagram
	9.6.5. New Statechart Diagram
	9.6.6. New Activity Diagram
	9.6.7. New Deployment Diagram

	9.7. The Arrange Menu
	9.7.1. Align
	9.7.2. Distribute
	9.7.3. Reorder
	9.7.4. Nudge
	9.7.5. Set Preferred Size
	9.7.6. Toggle Auto Resizing (to be written)
	9.7.7. Layout

	9.8. The Generation Menu
	9.8.1. Generate Selected Classes …
	9.8.2. Generate All Classes…
	9.8.3. Generate Code for Project… (To be Written)
	9.8.4. Settings for Generate for Project… (To be Written)

	9.9. The Critique Menu
	9.9.1. Toggle Auto-Critique
	9.9.2. Design Issues…
	9.9.3. Design Goals…
	9.9.4. Browse Critics…

	9.10. The Tools Menu
	9.10.1. Export as XMI…

	9.11. The Help Menu
	9.11.1. System Information
	9.11.2. About ArgoUML

	Chapter 10. The Explorer
	10.1. Introduction
	10.2. Mouse Behavior in the Explorer
	10.2.1. Button 1 Click
	10.2.2. Button 1 Double Click
	10.2.3. Button 2 Actions
	10.2.4. Button 2 Double Click

	10.3. Keyboard Behavior in the Explorer
	10.4. Perspective Selection
	10.5. Configuring Perspectives
	10.5.1. The Configure Perspectives dialog
	10.5.2. The Explorer Panes

	10.6. Context Sensitive Menu
	10.6.1. Add to Diagram
	10.6.2. Delete From Model
	10.6.3. Set Source Path… (To be written)
	10.6.4. Add Package
	10.6.5. Add All Classes in Namespace

	Chapter 11. The Editing Pane
	11.1. Introduction
	11.2. Mouse Behavior in the Editing Pane
	11.2.1. Button 1 Click
	11.2.2. Button 1 Double Click
	11.2.3. Button 1 Motion
	11.2.4. Shift and Control with Button 1
	11.2.5. Alt with Button 1 motion
	11.2.6. Button 2 Actions
	11.2.7. Button 2 Double Click
	11.2.8. Button 2 Motion

	11.3. The tool bar
	11.3.1. Layout Tools
	11.3.2. Annotation Tools
	11.3.3. Drawing Tools
	11.3.4. Use Case Diagram Specific Tools
	11.3.5. Class Diagram Specific Tools
	11.3.6. Sequence Diagram Specific Tools
	11.3.7. Collaboration Diagram Specific Tools
	11.3.8. Statechart Diagram Specific Tools
	11.3.9. Activity Diagram Specific Tools
	11.3.10. Deployment Diagram Specific Tools

	11.4. The Broom
	11.5. Selection Action Buttons
	11.6. Clarifiers
	11.7. The Drawing Grid
	11.8. The Diagram Tab
	11.9. Pop-Up Menus
	11.9.1. Critiques
	11.9.2. Ordering
	11.9.3. Add
	11.9.4. Show
	11.9.5. Modifiers
	11.9.6. Multiplicity
	11.9.7. Aggregation
	11.9.8. Navigability

	Chapter 12. The Details Pane
	12.1. Introduction
	12.2. To Do Item Tab
	12.2.1. Wizards
	12.2.2. The Help Button

	12.3. Properties Tab
	12.4. Documentation Tab
	12.5. Presentation Tab
	12.6. Source tab
	12.7. Constraints Tab
	12.7.1. The Constraint Editor

	12.8. Tagged Values Tab
	12.9. Checklist Tab

	Chapter 13. The To-Do Pane
	13.1. Introduction
	13.2. Mouse Behavior in the To-Do Pane
	13.2.1. Button 1 Click
	13.2.2. Button 1 Double Click
	13.2.3. Button 2 Actions
	13.2.4. Button 2 Double Click

	13.3. Presentation Selection
	13.4. Item Count

	Chapter 14. The Critics
	14.1. Introduction
	14.1.1. Terminology
	14.1.2. Design Issues

	14.2. Uncategorized
	14.3. Class Selection
	14.3.1. Wrap DataType
	14.3.2. Reduce Classes in diagram <diagram>
	14.3.3. Clean Up Diagram

	14.4. Naming
	14.4.1. Resolve Association Name Conflict
	14.4.2. Revise Attribute Names to Avoid Conflict
	14.4.3. Change Names or Signatures in an Artifact
	14.4.4. Duplicate End (Role) Names for an Association
	14.4.5. Role name conflicts with member
	14.4.6. Choose a Name (Classes and Interfaces)
	14.4.7. Choose a Unique Name for an Artifact (Classes and Interfaces)
	14.4.8. Choose a Name (Attributes)
	14.4.9. Choose a Name (Operations)
	14.4.10. Choose a Name (States)
	14.4.11. Choose a Unique Name for a (State related) Artifact
	14.4.12. Revise Name to Avoid Confusion
	14.4.13. Choose a Legal Name
	14.4.14. Change an Artifact to a Non-Reserved Word
	14.4.15. Choose a Better Operation Name
	14.4.16. Choose a Better Attribute Name
	14.4.17. Capitalize Class Name
	14.4.18. Revise Package Name

	14.5. Storage
	14.5.1. Revise Attribute Names to Avoid Conflict
	14.5.2. Add Instance Variables to a Class
	14.5.3. Add a Constructor to a Class
	14.5.4. Reduce Attributes on a Class

	14.6. Planned Extensions
	14.6.1. Operations in Interfaces must be public
	14.6.2. Interfaces may only have operations
	14.6.3. Remove Reference to Specific Subclass

	14.7. State Machines
	14.7.1. Reduce Transitions on <state>
	14.7.2. Reduce States in machine <machine>
	14.7.3. Add Transitions to <state>
	14.7.4. Add Incoming Transitions to <artifact>
	14.7.5. Add Outgoing Transitions from <artifact>
	14.7.6. Remove Extra Initial States
	14.7.7. Place an Initial State
	14.7.8. Add Trigger or Guard to Transition
	14.7.9. Change Join Transitions
	14.7.10. Change Fork Transitions
	14.7.11. Add Choice/Junction Transitions
	14.7.12. Add Guard to Transition
	14.7.13. Clean Up Diagram
	14.7.14. Make Edge More Visible
	14.7.15. Composite Association End with Multiplicity > 1

	14.8. Design Patterns
	14.8.1. Consider using Singleton Pattern for <class>
	14.8.2. Singleton Stereotype Violated in <class>
	14.8.3. Nodes normally have no enclosers
	14.8.4. NodeInstances normally have no enclosers
	14.8.5. Components normally are inside nodes
	14.8.6. ComponentInstances normally are inside nodes
	14.8.7. Classes normally are inside components
	14.8.8. Interfaces normally are inside components
	14.8.9. Objects normally are inside components
	14.8.10. LinkEnds have not the same locations
	14.8.11. Set classifier (Deployment Diagram)
	14.8.12. Missing return-actions
	14.8.13. Missing call(send)-action
	14.8.14. No Stimuli on these links
	14.8.15. Set Classifier (Sequence Diagram)
	14.8.16. Wrong position of these stimuli

	14.9. Relationships
	14.9.1. Circular Association
	14.9.2. Make <association> Navigable
	14.9.3. Remove Navigation from Interface via <association>
	14.9.4. Add Associations to <artifact>
	14.9.5. Remove Reference to Specific Subclass
	14.9.6. Reduce Associations on <artifact>
	14.9.7. Make Edge More Visible

	14.10. Instantiation
	14.11. Modularity
	14.11.1. Classifier not in Namespace of its Association
	14.11.2. Add Elements to Package <package>

	14.12. Expected Usage
	14.12.1. Clean Up Diagram

	14.13. Methods
	14.13.1. Change Names or Signatures in <artifact>
	14.13.2. Class Must be Abstract
	14.13.3. Add Operations to <class>
	14.13.4. Reduce Operations on <artifact>

	14.14. Code Generation
	14.14.1. Change Multiple Inheritance to interfaces

	14.15. Stereotypes
	14.16. Inheritance
	14.16.1. Revise Attribute Names to Avoid Conflict
	14.16.2. Remove <class>'s Circular Inheritance
	14.16.3. Class Must be Abstract
	14.16.4. Remove final keyword or remove subclasses
	14.16.5. Illegal Generalization
	14.16.6. Remove Unneeded Realizes from <class>
	14.16.7. Define Concrete (Sub)Class
	14.16.8. Define Class to Implement <interface>
	14.16.9. Change Multiple Inheritance to interfaces
	14.16.10. Make Edge More Visible

	14.17. Containment
	14.17.1. Remove Circular Composition
	14.17.2. Duplicate Parameter Name
	14.17.3. Two Aggregate Ends (Roles) in Binary Association
	14.17.4. Aggregate End (Role) in 3-way (or More) Association
	14.17.5. Wrap DataType
	14.17.6. Import Parameter Type into Class

	Chapter 15. Top Level Artifact Reference
	15.1. Introduction
	15.2. The Model
	15.2.1. Model Details Tabs
	15.2.2. Model Property Toolbar
	15.2.3. Property Fields For The Model

	15.3. Datatype
	15.3.1. Datatype Details Tabs
	15.3.2. Datatype Property Toolbar
	15.3.3. Property Fields For Datatype

	15.4. Stereotype
	15.4.1. Stereotype Details Tabs
	15.4.2. Stereotype Property Toolbar
	15.4.3. Property Fields For Stereotype

	15.5. Diagram
	15.5.1. Diagram Details Tabs
	15.5.2. Diagram Property Toolbar
	15.5.3. Property Fields For Diagram

	Chapter 16. Use Case Diagram Artifact Reference
	16.1. Introduction
	16.1.1. ArgoUML Limitations Concerning Use Case Diagrams

	16.2. Actor
	16.2.1. Actor Details Tabs
	16.2.2. Actor Property Toolbar
	16.2.3. Property Fields For Actor

	16.3. Use Case
	16.3.1. Use Case Details Tabs
	16.3.2. Use Case Property Toolbar
	16.3.3. Property Fields For Use Case

	16.4. Extension Point
	16.4.1. Extension Point Details Tabs
	16.4.2. Extension Point Property Toolbar
	16.4.3. Property Fields For Extension Point

	16.5. Association
	16.6. Association End
	16.7. Dependency
	16.8. Generalization
	16.8.1. Generalization Details Tabs
	16.8.2. Generalization Property Toolbar
	16.8.3. Property Fields For Generalization

	16.9. Extend
	16.9.1. Extend Details Tabs
	16.9.2. Extend Property Toolbar
	16.9.3. Property Fields For Extend

	16.10. Include
	16.10.1. Include Details Tabs
	16.10.2. Include Property Toolbar
	16.10.3. Property Fields For Include

	Chapter 17. Class Diagram Artifact Reference
	17.1. Introduction
	17.1.1. Limitations Concerning Class Diagrams in ArgoUML

	17.2. Package
	17.2.1. Package Details Tabs
	17.2.2. Package Property Toolbar
	17.2.3. Property Fields For Package

	17.3. Datatype
	17.4. Stereotype
	17.5. Class
	17.5.1. Class Details Tabs
	17.5.2. Class Property Toolbar
	17.5.3. Property Fields For Class

	17.6. Attribute
	17.6.1. Attribute Details Tabs
	17.6.2. Attribute Property Toolbar
	17.6.3. Property Fields For Attribute

	17.7. Operation
	17.7.1. Operation Details Tabs
	17.7.2. Operation Property Toolbar
	17.7.3. Property Fields For Operation

	17.8. Parameter
	17.8.1. Parameter Details Tabs
	17.8.2. Parameter Property Toolbar
	17.8.3. Property Fields For Parameter

	17.9. Signal
	17.9.1. Signal Details Tabs
	17.9.2. Signal Property Toolbar
	17.9.3. Property Fields For Signal

	17.10. Reception (to be written)
	17.11. Association
	17.11.1. Three-way and Greater Associations and Association Classes
	17.11.2. Association Details Tabs
	17.11.3. Association Property Toolbar
	17.11.4. Property Fields For Association

	17.12. Association End
	17.12.1. Association End Details Tabs
	17.12.2. Association End Property Toolbar
	17.12.3. Property Fields For Association End

	17.13. Dependency
	17.13.1. Dependency Details Tabs
	17.13.2. Dependency Property Toolbar
	17.13.3. Property Fields For Dependency

	17.14. Generalization
	17.15. Interface
	17.15.1. Interface Details Tabs
	17.15.2. Interface Property Toolbar
	17.15.3. Property Fields For Interface

	17.16. Abstraction
	17.16.1. Abstraction Details Tabs
	17.16.2. Abstraction Property Toolbar
	17.16.3. Property Fields For Abstraction

	Chapter 18. Sequence Diagram Artifact Reference
	18.1. Introduction
	18.1.1. Limitations Concerning Sequence Diagrams in ArgoUML

	18.2. Object
	18.2.1. Object Details Tabs
	18.2.2. Object Property Toolbar
	18.2.3. Property Fields For Object

	18.3. Stimulus
	18.3.1. Stimulus Details Tabs
	18.3.2. Stimulus Property Toolbar
	18.3.3. Property Fields For Stimulus

	18.4. Stimulus Call
	18.5. Stimulus Create
	18.6. Stimulus Destroy
	18.7. Stimulus Send
	18.8. Stimulus Return
	18.9. Link
	18.9.1. Link Details Tabs
	18.9.2. Link Property Toolbar
	18.9.3. Property Fields For Link

	Chapter 19. Statechart Diagram Artifact Reference
	19.1. Introduction
	19.1.1. Limitations Concerning Statechart Diagrams in ArgoUML

	19.2. State
	19.2.1. State Details Tabs
	19.2.2. State Property Toolbar
	19.2.3. Property Fields For State

	19.3. Action
	19.3.1. Action Details Tabs
	19.3.2. Action Property Toolbar
	19.3.3. Property Fields For Action

	19.4. Composite State
	19.5. Concurrent Region
	19.6. Submachine State
	19.7. Stub State
	19.8. Transition
	19.8.1. Transition Details Tabs
	19.8.2. Transition Property Toolbar
	19.8.3. Property Fields For Transition

	19.9. Event
	19.9.1. Event Details Tabs
	19.9.2. Event Property Toolbar
	19.9.3. Property Fields For Event

	19.10. Guard
	19.10.1. Guard Details Tabs
	19.10.2. Guard Property Toolbar
	19.10.3. Property Fields For Guard

	19.11. Pseudostate
	19.11.1. Pseudostate Details Tabs
	19.11.2. Pseudostate Property Toolbar
	19.11.3. Property Fields For Pseudostate

	19.12. Initial State
	19.13. Final State
	19.13.1. Final State Details Tabs
	19.13.2. Final State Property Toolbar
	19.13.3. Property Fields For Final State

	19.14. Junction
	19.15. Choice
	19.16. Fork
	19.17. Join
	19.18. Shallow History
	19.19. Deep History
	19.20. Synch State
	19.20.1. Synch State Details Tabs
	19.20.2. Synch State Property Toolbar
	19.20.3. Property Fields For Synch State

	Chapter 20. Collaboration Diagram Artifact Reference
	20.1. Introduction
	20.1.1. Limitations Concerning Collaboration Diagrams in ArgoUML

	20.2. Classifier Role
	20.2.1. Classifier Role Details Tabs
	20.2.2. Classifier Role Property Toolbar
	20.2.3. Property Fields For Classifier Role

	20.3. Association Role
	20.3.1. Association Role Details Tabs
	20.3.2. Association Role Property Toolbar
	20.3.3. Property Fields For Association Role

	20.4. Association End Role
	20.4.1. Association End Role Details Tabs
	20.4.2. Association End Role Property Toolbar
	20.4.3. Property Fields For Association End Role

	20.5. Message
	20.5.1. Message Details Tabs
	20.5.2. Message Property Toolbar
	20.5.3. Property Fields For Message

	Chapter 21. Activity Diagram Artifact Reference
	21.1. Introduction
	21.1.1. Limitations Concerning Activity Diagrams in ArgoUML

	21.2. Action State
	21.2.1. Action State Details Tabs
	21.2.2. Action State Property ToolBar
	21.2.3. Property fields for action state

	21.3. Action
	21.4. Transition
	21.5. Guard
	21.6. Initial State
	21.7. Final State
	21.8. Junction (Decision)
	21.9. Fork
	21.10. Join
	21.11. ObjectFlowState

	Chapter 22. Deployment Diagram Artifact Reference
	22.1. Introduction
	22.1.1. Limitations Concerning Deployment Diagrams in ArgoUML

	22.2. Node
	22.2.1. Node Details Tabs
	22.2.2. Node Property Toolbar
	22.2.3. Property Fields For Node

	22.3. Node Instance
	22.3.1. Node Instance Details Tabs
	22.3.2. Node Instance Property Toolbar
	22.3.3. Property Fields For Node Instance

	22.4. Component
	22.4.1. Component Details Tabs
	22.4.2. Component Property Toolbar
	22.4.3. Property Fields For Component

	22.5. Component Instance
	22.5.1. Component Instance Details Tabs
	22.5.2. Component Instance Property Toolbar
	22.5.3. Property Fields For Component Instance

	22.6. Dependency
	22.7. Class
	22.8. Interface
	22.9. Association
	22.10. Object
	22.11. Link

	Chapter 23. Built In DataTypes, Classes, Interfaces and Stereotypes
	23.1. Introduction
	23.1.1. Package Structure
	23.1.2. Exposure in the model

	23.2. Built In Datatypes
	23.3. Built In Classes
	23.3.1. Built In Classes From java.lang
	23.3.2. Built In Classes From java.math
	23.3.3. Built In Classes From java.net
	23.3.4. Built In Classes From java.util

	23.4. Built In Interfaces
	23.5. Built In Stereotypes

	Glossary
	Appendix A. Supplementary Material for the Case Study
	A.1. Introduction
	A.2. Requirements Documents (To be written)
	A.2.1. Vision Document (To be written)
	A.2.2. Use Case Specifications (To be written)
	A.2.2.1. UC Specification 1 (To be written)

	A.2.3. Supplementary Requirements Specification (To be written)

	Appendix B. UML resources
	B.1. The UML specs (To be written)
	B.2. UML related papers (To be written)
	B.2.1. UML action specifications (To be written)

	B.3. UML related websites (To be written)

	Appendix C. UML Conforming CASE Tools
	C.1. Other Open Source Projects (To be written)
	C.2. Commercial Tools (To be written)

	Appendix D. Limits and Shortcomings
	D.1. Diagram Canvas Size
	D.2. Missing functions

	Appendix E. Open Publication Licence
	E.I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS
	E.II. COPYRIGHT
	E.III. SCOPE OF LICENSE
	E.IV. REQUIREMENTS ON MODIFIED WORKS
	E.V. GOOD-PRACTICE RECOMMENDATIONS
	E.VI. LICENSE OPTIONS
	E.. OPEN PUBLICATION POLICY APPENDIX:

	Index

