
SZIP V2.0 Release Notes

V2.0 of SZIP includes configuration changes and new API functions.

1. Configuration

The Unix configuration and make now builds shared libraries by default. To build only
static libraries, use --disable-shared option for configure.

The SZIP library may be used with some license restrictions. The decoder
(decompression) is free for any use. The encoder is free for non-commercial use, but
may require a license for commercial use.

Please see: http://hdf.ncsa.uiuc.edu/doc_resource/SZIP/Commercial_szip.html

The SZIP library may be compiled with or without the encoder enabled. By default, the
library is built with the encoder enabled. The resulting library has the same entry points,
with the encoder code included or excluded. When compiled with the encoder disabled,
the resulting binary library can be used without license.

The --disable-encoding option for configure builds SZIP omitting the encoder.

The SZIP library (libsz.a, etc.) includes a variable, szip_encoder_status, which is set
to the value “SZIP ENCODER ENABLED” or “SZIP ENCODER DISABLED”. Also,
the function SZ_encoder_enabled() returns 1 if the encoder is available and 0 if not.
These mechanisms should be used by applications to determine if SZIP encoding is
available.

1. API and Programming

The SZIP library API has been simplified. The following three functions are used to
compress and decompress with SZIP.

Note that users of HDF4 or HDF5 must use the HDF API to use SZIP compression.

 - 1 -

Name: SZ_BufftoBuffCompress
Signature:

 #include "szlib.h"

int SZ_BufftoBuffCompress(void * dest, size_t * destLen, const void * source, size_t
sourceLen, SZ_com_t *param)

Purpose:
Compress the data in the source buffer into the destination buffer.

Description:
SZ_BufftoBuffCompress attempts to compress the data in source buffer into dest
buffer. If destination buffer is big enough, *destLen is set to the size of the
compressed data, and SZ_OK is returned. Otherwise, *destLen is unchanged and
SZ_OUTBUFF_FULL is returned. If the SZIP encoder is disabled,
SZ_NO_ENCODER_ERROR is returned.

The resulting compressed data is a complete SZIP format data stream.

param is a structure of type SZ_com_t with parameters that may control
compression.

typedef struct SZ_com_t_s
 {
 int options_mask;
 int bits_per_pixel;
 int pixels_per_block;
 int pixels_per_scanline;
 } SZ_com_t;

The options mask defines the following values (defined in ricehdf.h):

 SZ_ALLOW_K13_OPTION_MASK 1
 SZ_CHIP_OPTION_MASK 2
 SZ_EC_OPTION_MASK 4
 SZ_LSB_OPTION_MASK 8
 SZ_MSB_OPTION_MASK 16
 SZ_NN_OPTION_MASK 32
 SZ_RAW_OPTION_MASK 128

 Reserved 0x10000-ff0000

The pixels_per_block must be an even number from 2-32.

 - 2 -

When used with HDF, the bits_per_pixel should be the number of bits in
the HDF data type and pixels_per_scanline will be set according to
heuristics based on the SZIP specification.

Parameters:
void * dest

OUT: Destination buffer
size_t * destLen

IN/OUT: Size of the destination buffer; on return is a length of compressed data if
successful

const void * source
IN: Source buffer

size_t sourceLen
IN: Length of the source buffer in bytes

SZ_com_t * param
IN: Structure with parameters to control compression; NULL may be passed for
default values.

Returns:
SZ_OK if successful
SZ_NO_ENCODER_ERROR if the encoder is not enabled.
SZ_CONFIG_ERROR if the library has been mis-compiled
SZ_PARAM_ERROR if there is an error in parameters list
SZ_MEM_ERROR if insufficient memory is available
SZ_OUTBUF_FULL if size of compressed data bigger than *destLen

Name: SZ_BufftoBuffDecompress
Signature:

#include "szlib.h"

int SZ_BufftoBuffDecompress(void * dest, size_t * destLen, const void * source,
size_t sourceLen, SZ_decom_t *param)

Purpose:
Decompress the data in the source buffer into the destination buffer.

Description:
SZ_BufftoBuffdecompress attempts to decompress the data in source buffer into dest
buffer. If destination buffer is big enough, *destLen is set to the size of the
uncompressed data, and SZ_OK is returned. Otherwise, *destLen is unchanged and
SZ_OUTBUFF_FULL is returned. It is assumed that source holds complete
compressed SZIP data stream.

 - 3 -

param is a structure of type SZ_decom_t with parameters that may control
decompression. This should be set to the same values used to compress the data.
See SZ_BufftoBuffCompress.

Parameters:
void * dest

OUT: Destination buffer
size_t * destLen

IN/OUT: Size of the destination buffer; on return is a length of uncompressed
data if successful

const void * source
IN: Source buffer

size_t sourceLen
IN: Length of the source buffer in bytes

SZ_decom_t * param
IN: Structure with parameters to control decompression; NULL may be passed for
default values.

Returns:
SZ_OK if successful
SZ_PARAM_ERROR if there is an error in parameters list
SZ_MEM_ERROR if unsufficient memory is available
SZ_OUTBUF_FULL if size of uncompressed data bigger than *destLen

Name: SZ_encoder_enabled
Signature:

int SZ_encoder_enabled(void)
Purpose:

Report whether the encoder is enabled.
Description:

SZ_encoder_enabled determines whether the SZIP encoder is enabled.
Returns:

1 if encoding is allowed, 0 otherwise.

 - 4 -

	1. Configuration
	1. API and Programming

