HDF Specification and

Developer’s Guide
Version 4.1r5 « November 2001

™

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Copyright Notice and Statement for NCSA Hierarchical Data Format
(HDF) Software Library and Utilities

Copyright 1988-2001 The Board of Trustees of the University of Illinois

All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner

Research, Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler
(gzip), and Digital Equipment Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (includ-
ing commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following dis-
claimer.

2. Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions, and thefollowing
disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that
the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software must acknowledge that it was
developed by the National Center for Supercomputing Applications at the University of Illinois, and credit the Contrib-
utors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products
derived from this software without specific prior written permission from the University or the Contributors.

Disclaimer

THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS"ASIS" WITH NO WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Contributors

be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility

of such damage.

Trademarks

Sunisaregistered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun MicrosystemsInc. /
UNIX isaregistered trademark of X/Open/ VAX and VMS are trademarks of Digital Equipment Corporation /Macin-
toshisatrademark of Apple Computer, Inc./ CRAY and UNICOS areregistered trademarks of Silicon Graphics, Inc./
IBM PCisaregistered trademark of | nternational Business Machines Corporation ./ MS-DOS isaregistered trademark
of Microsoft Corporation.

NCSA Contacts

Mail user feedback, bug reports, and questionsto:

NCSA Scientific Data Technologies
HDF Group
152 Computing Applications Bldg.
605 E. Springfield Ave.
Champaign, IL 61820-5518
Send electronic correspondence and bug reports to the following:

hdfhelp@ncsa.uiuc.edu

Internet access

HDF is available without charge from NCSA's anonymous FTP server:
ftp.ncsa.uiuc.edu/HDF/HDF/

Itis also accessible through the HDF Group’s World Wide Web home page:
http://hdf.ncsa.uiuc.edu/

1

Introduction
L L OV VIOV . . ottt ettt e e e 1
12 Wy HD R .o e e e e 1
13 What ISHD . . o e e 2
14 SOME HISIONY. . ot e 4
1.5 About This DOCUMENE.t e e e e e et e e e 5
1.6 DocUMENt CONLENES.ttt e et e e e 6
1.7 ConventionsUsed in ThiS DOCUMENt ottt e et et e et e 7
2
Basic Structure of HDF Files
2.1 Chapter OVEIVIEW . . o .ttt ettt e et e e e e e e e e e e e e e e e e e 9
2.2 FleHeader 9
2.3 DaAla O LS . . . oottt e e 9
2.4 Physical Organization of HDF Files. o e 12
25 Sample HDF File . .. 13
3
Software Overview
3L Chater OV Vi B . . . oottt ettt e e e e 15
3.2 HDF SOftWare LayerS. . . oottt e e e e e 15
3.3 SOftWare OrganiZationou ittt et e 16
3.3.1 Versonsand RElease NUMDErS it e e et 16
3.3.2 ANSI Cand Portability.o e 17
3.3.3 Modulesand INterfaces.ot e 17
334 Header FilES . ..o e 19
335 TheHDF TeSt SUITE . ..ottt e e e e e e e e 24
3.3.6 SamMPle HDF Programs.ottt et e e 24
3.4 SOMEHDF CoNVENtiONS. . ..o et et e 24
4
Low-level Interface
A1 Chapter OVEIVIEW . . . o ettt e e e e e e e e e e e e 27
4.2 INtrOAUCTION. . . et e e 27
4.3 New Low-level Routineswith Version3.2and Higher ... o i 28
4.4 Overview of theLow-level Interface e 29
5
Setsand Groups
DL Chater OV Vi B . . . oottt ettt e e e e 37
L BT - T (S 37
B2, TYPES Of SElS. . ot e e 37
5.2.2 Caling Interfaces for Sats.ot e 38
B 8 Gl OUPS. . . ottt e 38
5.3.1 General FeatureS Of GrOUPSo i vttt e e et et et e 39
54 Raster Image SEtS (RIS) o vt e e 40
54.1 Raster Image Groups (RIG)ottt e e et e e 40

November 7, 2001

TOC-Hiii

National Center for Supercomputing Applications

B 2 RIS T A0S, . o vttt ittt et e e e 40
5.4.3 Raster Image COMPIrESSIONttt et e et et e e e et e e 42
5.5 SOentific Dala SatS . . . oottt 42
5.5.1 Backward and Forward Compatibility. 43
552 Internal SITUCLUIES ot e e e 43
B.5.3 SDG SIUCIUIES oo ottt e e e e e e e et e e e et et e 44
B.5.4 NDG SUUCIUNES oot e e e e e et e e e e e e e 45
5.5.5 SDG-KENDG StIUCIUIES ottt ettt et e e e e et e 46
5.5.6 Compatibility with Future NDG StrUCtUFES.ot 47
5.6 Vsats, Vdatas, and VgroUPS. - . ..ottt ettt e e e e e e 48
5.7 The Raster-8 Set (ObSOIEtE)ot e e e 49
7.l RaSIE-8 SIS . .o ot 49
5.7.2 Compatibility Between Raster-8 and Raster Image SetS.o oo 49
5.8 Deleted information from "Vsets, Vdatas, and Vgroups:".t 50
6
Annotations
6.1 Chapter OVEIVIEWttt ettt e e e e e e e e e e e e e 51
6.2 General DeSCIiPliON . . . oottt e e e 51
6.3 File ANNOtatiONS. o 52
6.4 ODJECt ANNOLALIONS. o ot e e e e e e e e e e e e 52
7
Scientific Data Sets: The SD Model
7.1 Chapter OV VIOV . ..ottt e e e e e e e e 55
7.2 UML Notation and Object Symbolsin HDF DataModel Descriptions ... 55
7.3 Introductiontothe SD MOdel. o 57
7.4 The SD Users Model. e e ———— 58
7.5 The SD Developers Model et e 60
7.6 Mapping between SD Developer's Model and HDF File Structures
7.6.1 SD ColleCtion.o e ———— 62
T.6.2 AHIIDULE . . . oo e 62
7.6.3 Variable 63
7.6.4 DIMENSION . . .ottt e ——— e 63
7.6.5 Overall Correspondence of SDS Elements and the HDF File Structure
7.6.6 Accessing SD Objectsvianon-SD Interfaces i iiitmn. 65...
7.7 SDS Memory Structures and Storage Layout e 66
7.8 Library Implementation Details with Example Fileand SDS/ 68 ...
7.8.1 Creatingoropeningan HDFfile i imannnnn 68
7.8.2 Creatinganempty SDS i i i i e e immaaaa.. . B8
7.8.3 Writingdatato an SDS e 71
7.8.4 Adding global and local attributes. e 72
7.8.5 Settingadata stringttt e 78

7.8.6 Setting @a dimension NAME ittt e et ettt ittt e (8
7.8.7 Settingadimensionscale. 80
7.8.8 Setting a dimension StrNgottt e 80

7.8.9 Terminating access to the SD collectionandfile. 80..

TOC-iv November 7, 2001

8
General Raster Images. The GR Model

8.1 Chapter OV Vi B . . . oottt ettt e e e 81
82 ImagesinanHDF File 82
8.2 1 GRUBASES .. oottt ettt 83
822 RIGIMages(RISBand RIS24)t e e e e 84
8.2.3 RIBIMAgES . .. oottt e e 84
83 The GR DataModel ot e e e 85
8.3 L A CasUal ViBW . oot 85
8.3.2 TheFormal GR DataModel 87
8.4 Mapping between GR DataModel and HDF FileStructures. 88
8.5 Modifying an RIG or RI8 Imageviathe GR Interface. i 90
8.6 Backwards Compatibility when Creating New Imagesviathe GR Interface. 91
8.7 Main Data Structures and their Relationships. e e e 92
8.7.1 FileInformation Structure (gr_info_t) i 94
8.7.2 Raster Image Information Structure (ri_info t) 94
8.7.3 Attribute Information Structure (at_info t) 95
8.7.4 Dimension Information Structure (dim_info t) i 95
8.8 Relationshipsamong Main Dala StrUCIUIrESo ottt e e et e 95
8.9 The Evolution of anHDF Fileinthe GR Interface. e 99
8.9.1 Creatingor Openingan HDF File. i e e e 99
8.9.2 Creatingand WritingtoaRaster Image.t et e e 100
8.9.3 AddiNg At DULESot 102
8.9.4 Adding Palettes. e 104
8.9.5 Opening an EXiSting File oo e 104
9
Tag Specifications
0.1 Chapter OVEIVIBW . . . oottt et et e e e et e e e e e e e e 107
0.2 TheHDF Tag SPaCE - . . o ettt ettt e e e e e e e e e e e e e e e e e 107
9.3 Tag SPECIfiCaliONS.ot 107
0.3 L Uty TagS. - ottt et et e e e e 109
0.3.2 ANNOtAION TaGS .« « vttt e et et ettt e e e e e e 112
9.3.3 COMPIESSION TaAGS. « « v v vttt ettt e e e e e e e e e e 115
0.34 RaStE IMage TagS ot ittt ettt e e e e e e e e 118
9.3.5 ComMPOSItE IMBgE TAOS . -+« « v vttt et e ettt e e e e e e e e e 125
0.3.6 VECIOr IMage Tags . - . . oo ittt et et e et e e e e e e e e e e e e 126
0.3.7 SCIENtific Dala SEt TagS - -« v v vttt e et e e e e e 127
0.3.8 VS TagS . . ottt it 135
0.3.9 OBS0 e TagS .+« v v vttt e ettt et et e e 139
10
Extended Tags and Special Elements
10.1 Chapter OVEIVIEW . . o .ttt ettt et e e e e e e e e e e e e e e e e e 143
10.2 Extended Tags and Alternate Physical StorageMethods. 143
10.2.1 Extended Tag Implementation oottt e 143
10.3 Linked BIOCK Elements. e e 145
10.4 External Elements.o 146

November 7, 2001

TOC-v

National Center for Supercomputing Applications

10.5 Chunked Data StOrage oo ettt e et et e e e e 147
10.5.1 Chunked Element Description ReCOrd.o oot 147
1052 Chunk Table.o 149

10.6 Data COMPIESSIONttt ettt e e e e e et e e e e e e e e 150
10.6.1 Compression Header: The Common Elements of Compressed Element Description Records. . . 150
10.6.2 Compressed Element Description Record: NBIT Run-length Encoding. 152
10.6.3 Compressed Element Description Record: Skipping-Huffman. 153
10.6.4 Compressed Element Description Record: GNU ZIP (Deflate), 153

11

Portability I ssues

101 Chapter OV VI BW ..ottt et ettt et ettt e e e e e e 155

11.2 The HDF ENVIFONMENL.\ttt e e et e e e e et e e et e e 155
11.2.1 Supported Platforms. oo e 155
11.2.2 Language Standards. oot e 156
11.2.3 GUIAEIINES .« ..o e e e 156

11.3 Organization of SOUICE FIlESo o 156
11.3.1 Header Files. . oo e 157
11.3.2 Source Code Files. . ..o e 157
11.3.3 File Naming ConVENtiONS oottt e e e e e e 158

11.4 Passing Stringsbetween FORTRAN and C. ot i 158
11.4.1 Passing Stringsfrom FORTRAN 10 C. . ..ottt i e 158
11.4.2 Passing Stringsfrom Cto FORTRANot e e 160

11.5 Function Return Valuesbetween FORTRAN and C.ot 160

11.6 Differencesin ROUINENEIMESot 161
11.6.1 Case SENSIIVILY. . o oottt e e 161
11.6.2 Appended UNJErSCOIESottt ettt e e e et e e e e e 162
11.6.3 Short Namesvs. LONg NaIMES oottt e e e e e e 163

11.7 DifferencesBetween ANSI Cand Old C.ottt 163

11,8 TYPE DI ErENCES . . o oo 164
11.8.1 SIZedifferenCesot e 164
11.8.2 Number Representationottt e e 165
11.8.3 Byte-order and Structure REpresentationsS.ottt e 165

11.9 AccesstoLibrary FUNCHIONS.ot e e e e e 166

Appendix A

Tags and Extended Tag L abels

AL OV BV . . oottt et e et e e e e 167

0t 1o PP 167

A2 Extended Tag LabelS.ot 170

Appendix B

Library Calling Trees

BLA3 VO VIO . .ottt et e e 171

B.14 Library Calling Trees: SD APl o 171

TOC-vi November 7, 2001

Appendix C
Function Specifications

C.15
C.16
C.17
C.18
C.19
C.20
C21
C.22
C.23
cC24
C25

(0= = 185
Openingand Closing FileS.o i e e 185
Locating Elements for Accessand Getting Information, 187
Reading and Writing Entire Data Elements. i e e 192
Reading and Writing Part of aDataElement. i i 193
Manipulating Dala DeSCIiPLOrSot e e e 195
Managing Special DataElements. i e e 197
DataSet ChunKiNgo e e e e 200
Development ROULINES.ot e e e e e et e 208
ErrOr REDOMING. . . o oot 210
NN . o o 212

November 7, 2001

TOC-vii

National Center for Supercomputing Applications

TOC-viii November 7, 2001

| ntroduction

11

1.2

Overview

The Hierarchical Data Format (HDF) was designed to be an easy, straight-forward, and self-
describing means of sharing scientific data among people, projects, and types of computers. An
extensible header and carefully crafted internal layers provide a system that can grow as scientific
data-handling needs evolve.

This document, the NCSA HDF Specification and Developer’s Guide, fully describes the HDF

data models, the corresponding file format specifications, and library implementation, and dis-

cusses criteria employed in the library’s development. Where appropriate, this document provides
limited guidelines for developers working on HDF itself or building applications that employ
HDF.

This introduction provides a brief overview of HDF capabilities and design.

Why HDF?

A fundamental requirement of scientific data management is the ability to access as much infor-
mation in as many ways, as quickly and easily as possible. A data storage and retrieval system that
facilitates these capabilities must provide the following features:

Support for scientific data and metadata

Scientific data is characterized by a variety of data types and representations, data sets
(including images) that can be extremely large and complex, and the need to attach
accompanying attributes, parameters, notebooks, and other metadata. Metadata, supple-
mentary data that describes the basic data (sometimes referred to as the raw data),
includes information such as the dimensions of an array, the number type of the elements
of a record, or a color lookup table (LUT).

Support for arange of hardware platforms

Data can originate on one machine only to be used later on many different machines.
Scientists must be able to access data and metadata on as many hardware platforms as
possible.

Support for arange of softwaretools

Scientists need a variety of software tools and utilities for easily searching, analyzing,

archiving, and transporting the data and metadata. These tools range from a library of
routines for reading and writing data and metadata, to small utilities that simply display

an image on a console, to full-blown database retrieval systems that provide multiple
views of thousands of sets of data and metadata.

November 7, 2001 1

National Center for Supercomputing Applications

1.3

Rapid data transfer

Both the size and the dispersion of scientific data sets require that mechanisms exist to
get the data from place to place rapidly.

Extendibility

As new types of information are generated and new kinds of science are done, a means
must be provided to support them.

What isHDF?

The HDF Structure

HDF is a self-describing extensible file format using tagged objects that have standard meanings.
The idea is to store both a known format description and the data in the same file. HDF tags
describe the format of the data because each tag is assigned a specific meaning; for example, the
tag DFTAG LUT indicates a color palette, the tag DFTAG R indicates an 8-hit raster image, and so
on . A program that has been written to understand a certain set of tag types can scan the file for
those tags and process the data. This program also can ignore any data that is beyond its scope.

Consider a data set representing a raster image in an HDF file as illustrated in Figure 1a below.
The data set consists of three data objects with distinct tags representing the three types of data.
The raster image object contains the basic data (or raw data) and isidentified by the tag DFTAG R ;
the palette and dimension objects contain metadata and are identified by the tags DFTAG LUT tags
DFTAG | D.

FIGURE 1a

Raster Image Set in an HDF File.

palette
EANEIEE—— |
dimensions

DFTAG | D

raster image
DFTAG R >

—+—»| 400 x 600

The set of available data objects encompasses both basic data and metadata. Most HDF objects
are machine- and medium-independent, physical representations of data and metadata.

HDF Tags

The HDF design assumes that we cannot know a priori what types of data objects will be needed
in the future, nor can we know how scientists will want to view that data. As science progresses,
people will discover new types of information and new relationships among existing data. New
types of data objects and new tags will be created to meet these expanding needs. To avoid unnec-
essary proliferation of tags and to ensure that all tags are available to potential users who need to
share data, a portable public domain library is available that interprets al public tags. The library
contains user interfaces designed to provide views of the data that are most natural for users. As
we learn more about the way scientists need to view their data, we can add user interfaces that
reflect data models consistent with those views.

November 7, 2001

HDF Specification and Developer’s Guide

Types of Data and Structures

HDF currently supports the most common types of data and metadata that scientists use, including
multidimensional gridded data, 2-dimensional raster images, polygonal mesh data, multivariate
data sets, finite-element data, non-Cartesian coordinate data, and text.

In the future there will almost certainly be a need to incorporate new types of data, such as voice
and video, some of which might actually be stored on other media than the central file itself.
Under such circumstances, it may become desirable to employ the concept of avirtual file. A vir-
tual file functions like aregular file but does not fit our normal notion of amonolithic sequence of
bits stored entirely on a single disk or tape.

HDF also makes it possible for the user to include annotations, titles, and specific descriptions of
the datain the file. Thus, files can be archived with human-readable information about the data
and its origins.

One collection of HDF tags supports a hierarchical grouping structure called aVgroup that allows
scientists to organize data objects within HDF files to fit their views of how the objects go
together, much as a person in an office or laboratory organizes information in folders, drawers,
journal boxes, and on their desktops.

Backward and Forward Compatibility

An important goal of HDF is to maximize backward and forward compatibility among its inter-
faces, and storage and object types. This is not always achievable, because data formats must
sometimes change to enhance performance, to correct errors, or for other reasons. However,
whenever possible, HDF files should not become out of date. For example, suppose asite fallsfar
behind in the HDF standard so its users can only work with the portions of the specification that
are three years old. Users at this site might produce files with their old HDF software then read
them with newer software designed to work with more advanced data files. The newer software
should still be able to read the old files.

Conversely, if the site receives files that contain objects that its HDF software does not under-
stand, it should still be able to list the types of datain thefile. It should also be able to access all
of the older types of data objects that it understands, despite the fact that the older types of data
objects are mixed in with new kinds of data. In addition, if the more advanced site uses the text
annotation facilities of HDF effectively, the files will arrive with complete human-readable
descriptions of how to decipher the new tag types.

Calling Interfaces

To present a convenient user interface made up of something more usable than alist of tag types
with their associated data requirements, HDF supports multiple calling interfaces, utilities, and
applications.

Thelow-level calling interface is used to manipulate tags and raw data, to perform error handling,
and to control the physical storage of data. This interface is designed to be used by developers
who are providing the higher level interfaces for applications like raster image storage or scien-
tific data archiving. See Chapter 4, Low-level Interface, and in Chapter 3, Software Overview, see
Section 3.3, " Software Organization.”

The application interfaces, at the next level, include several modules specifically designed to sim-
plify the process of storing and accessing specific types of data. For example, the palette inter-
faces are designed to handle color palettes and lookup tables, the general raster (GR) interfaceis
designed to handle generalized raster images, and the scientific data (SD) interface is designed to
handle arrays of scientific data. If you are primarily interested in reading data from or writing

November 7, 2001 3

National Center for Supercomputing Applications

14

data to HDF files, you will spend most of your time working with the application interfaces. See
Section 3.3, "Software Organization,” for acomplete list of these APIs.

The HDF utilities and NCSA applications, at thetop level, are specia purpose programs designed
to handle specific tasks or solve specific problems. The utilities provide acommand line interface
for data management. The applications provide solutions for problems in specific application
areas and often include a graphic user interface. Several third party applications are also available
at thislevel.

M achine Independence

An important issue in data file design is that of machine independence or transportability. The
HDF design defines standard representations for storing al data types that it supports. When data
is written to afile, it is typically written in the standard HDF representation. The conversion is
handled by the HDF software and need not concern the user. Users may override this convention
and install their own conversion routines, or they may write datato afile in the native format of
the machine on which it was generated.

Some History

In 1987 a group of users and software developers at NCSA searched for a file format that would
satisfy NCSA'’s data needs. There were some interesting candidates, but none that were in the pub-
lic domain, were targeted to scientific data, and yet were sufficiently general and extensible. In the
course of several months, borrowing concepts from severa existing formats, the group designed
HDF.

Thefirst version of HDF was implemented in the spring and summer of 1988. It included a gen-
eral purpose interface and an 8-bit raster image interface. In the fall of 1988, a scientific data set
interface was designed and implemented, enabling HDF users to store multidimensional arrays
and related data. Soon thereafter interfaces were implemented for storing color palettes, 24-bit
raster images, and annotations.

In 1989, it became clear that there was a need to support ageneral grouping structure and unstruc-
tured data such as that used to represent polyhedra in graphical applications. This led to Vsets,
whose interface routines were implemented as a separate HDF library.

Also in 1989 it became clear that the existing general purpose layer was not sufficiently powerful
to meet anticipated future needs and that the coding could use a substantial overhaul. From this,
the long process of redesigning the lower layers of HDF began. The first version incorporating
extended tags and the new lower layers of HDF was released in the summer of 1992 as HDF Ver-
sion 3.2.

In 1993, in response to the needs of flexibility in data ranges and sizes, HDF Version 3.3 was
released. In this version of HDF, the new SD interface was introduced with multi-file access and
an unlimited dimension feature for arrays. HDF Version 3.3 provided alternative physical storage
methods (external and linked block data elements) through extended tags, JPEG data compres-
sion, changes to some Vset interface functions, access to netCDF files through a complete
netCDF interface,! hyperslab access routines for old-style SDS objects, and various performance
improvements.

1. NetCDF is anetwork-transparent derivative of the original CDF (Common Data Format)
developed by the National Aeronautics and Space Administration (NASA). Itisused widely in
atmospheric sciences and other disciplines requiring very large data structures. NetCDF isin the
public domain and was developed at the Unidata Program Center in Boulder, Colorado.

November 7, 2001

HDF Specification and Developer’s Guide

15

In 1994, as standard ANSI C became more commonly used, HDF shifted from K& R to ANSI C to
support portability. After several beta versions, HDF Version 4.0 was released in 1996 and pro-
vided features such as support for n-bit integers and SDS compression, limited support for reading
CDF files, aparalld 1/O interface for the CM5, auto configuration, multi-file versions of the AN
and GR interfaces, and significant improvement in 1/O performance and memory usage. In addi-
tion, more options were added to existing HDF utilities and two new programs were added to the
HDF utilities:

« hdp, to view the contents of HDF files
» hdfunpac, to unpack scientific datasets into external elements

HDF Version 4.1 was released in 1997. In this version, attributes were added to both the Vdata
and Vgroup APIs to provide more ways for meaningfully storing data, data chunking was intro-
duced in the SD API to improve I/O performance, and a new representation was used for storing
dimensions to improve storage efficiency.

In 1998, the second release of HDF Version 4.1, called Version 4.1r2, was announced. In this
release, data chunking was added for the GR API, the Java Products (the Java-based HDF Viewer,
JHV, and the Java HDF interface, JHI) were incorporated into the HDF release itself, ldDé the
Reference Manual andHDF User’s Guidewere extensively updated. In addition, the new repre-

sentation of dimensions that was introduced in the previous rel ease became the default representa-

tion.

HDF Version 4.1r3, released in May 1999, emphasized fixing problems in the SD and GR inter-
faces. The HDF User's Guideaccompanying the release was significantly improved and updated.
The term Vset became obsolete, being replaced with the more specific terms Vgroup and Vdata.

The current release, HDF Version 4.1r4, released in October 2000, completes the enabling of all
GR chunking capabilities. In addition, new options were added to the hdp utility. This document,
the HDF Specification and Developer’s Guideas largely rewritten for this release.

Seethe HDF website at htt p:// hdf . ncsa. ui uc. edu/ for releaseinformation, lists of supported
platforms, and the list of bugs fixed in the current release.

The HDF library is considered mature and complete at this time. Future work will focus on techni-
cal support, maintenance, and bug fixes; there are no plans to implement new features. All new
features and tools are being implemented in the HDF5 library, a new, next-generation product
from the same team that built and supports HDF. HDF5 is discussed in detail on the web at
htt p: // hdf . ncsa. ui uc. edu/ HDF5/.

About This Document

This document is designed for software developers who are designing applications or routines for
use with HDF files and for users who need detailed information about HDF. Users who are inter-
ested in using HDF to store or manipulate their datawill not normally need the kind of detail pre-
sented in this manual. They should instead consult one of the user-level documents:!

Versions 4.x

NCSA HDF User's Guide
NCSA HDF Reference Manual

1. Theuser-level documentsfor Versions 3.2 and earlier were NCSA HDF Calling Interfaces and
Utilitiesand NCSA HDF Vset; for Version 3.3, they were Getting Started with NCSA HDF, NCSA
HDF User’s Guide, and NCSA HDF Reference Manual. Library versions prior to Version 4.0 and
the corresponding doucuments are no longer supported or available.

November 7, 2001 5

National Center for Supercomputing Applications

16

A tutorial is available onlineat the following URL:
http://hdf. ncsa. ui uc. edu/ trai ni ng/ HOFt rai ni ng/ tutori al /i ndex. ht m

New material appears throughout this edition of The HDF Specification and Developer’s Guide
but the following chapters bear special mention. Chapters 7 and 8 and Appendix B are entirely
new. Chapter 10 contains new compression and chunking information and some material that pre-
viously appeared in Chapter 9.

Users of third-party software that uses HDF may also have to consult a manual for that software.

Document Contents

The NCSA HDF Specification and Developer's Guidatains the following chapters and appen-
dix:

Chapter 1. Introduction

Introduces the document and provides an overview.
Chapter 2. Basic Structure of HDF Files

Introduces and describes the components and organization of HDF files.
Chapter 3. Software Overview

Describes the organi zation of the software layers that make up the basic HDF library and
provides guidelines for writing HDF software.

Chapter 4. Low-level Interface

Describes the low-level HDF routines that make up the low-level interface (see also the
H routines section of the HDF Reference Manugl

Chapter 5: Setsand Groups

Explainsthe roles of setsand groupsin an HDF file, and describes raster image sets, sci-
entific data sets, and Vgroups.

Chapter 6: Annotations
Explains the use of annotationsin HDF files.
Chapter 7. Scientific Data Sets: The SD M odel
Explainstherole, structure, and usage of SDSsin HDF files.
Chapter 8. General Raster Images: The GR Model
Explains the role, structure, and usage of GRs in HDF files.
Chapter 9: Tag Specifications
Describes the tag identification space and the NCSA-supported basic tags.
Chapter 10: Extended Tags and Special Elements

Describes the extended tag structure and the NCSA-supported extended tags and special
elements.

Chapter 11: Portability Issues

Describes the measures taken to maximize HDF portability across platforms and to
ensure that HDF routines are available to both C and FORTRAN programs.

November 7, 2001

HDF Specification and Developer’s Guide

1.7

Appendix A: Tags and Extended Tag L abels

Presents alist of NCSA-supported HDF tags and alist of labels used with extended tags.
Appendix B: Library Calling Trees

Ilustrates the calling structure of HDF library functions.
Appendix C: Function Specifications

Provides detailed specifications for selected low-level interface functions.

Conventions Used in This Document

Most of the descriptive text in this guide is printed in 10 point Times. Other typefaces have spe-
cific meanings that will help the reader understand the functionality being described.

New concepts and newly defined terms are sometimes presented in bold italics on their first
occurrence to indicate that they are defined within the paragraph.

Cross references within the specification include the title of the referenced section in quotation
marks or the reference chapter initalics. (E.g., See Section 3.3, " Software Organization,” in Chap-
ter 3, Software Overview, for acompletelist of ...)

References to documents italicize the title of the document. (E.g., See the HDF User’s Guideto
familiarize yourself with the basic principles of using HDF.)

Literal expressions and variables often appear in the discussion. Literal expressions are pre-
sented in Couri er while variables are presentedinitalic Courier. A litera expression is any
expression that would be entered exactly as presented, e.g., commands, command options, literal
strings, and data. A variableis an expression that serves as a place holder for some other text that
would be entered. Consider the expressioncp filel file2.cpisacommand name and would
be entered exactly as it appears, so it is printed in Courier. But fil/el and file2 are variables,
place holders for the names of actual files, sothey are printedin i tal i ¢ Couri er; the user would
enter the actua filenames.

This guide frequently offers sample command lines. Sometimes these are examples of what
might be done; other times they are specific instructions to the user. Command lines may appear
within running text, as in the preceding paragraph, or on a separate line, asfollows:

cp filel file2

Command lines always include one or more literal expressions and may include one or more vari-
ables, sothey are printed in Couri er anditalic Couri er asdescribed above.

Keys that are labeled with more than one character, such asthe RETURN key, are identified with
all uppercase letters. Keys that are to be pressed simultaneously or in succession are linked with a
hyphen. For example, "press CONTROL-A" means to press the CONTROL key then, without
releasing the CONTROL key, pressthe A key. Similarly, "press CONTROL-SHIFT-A " means to
press the CONTROL and SHIFT keys then, without releasing either of those, pressthe A key.

November 7, 2001 7

National Center for Supercomputing Applications

Table 1A summarizes the use of typefaces as used in examples and illustrations of HDF code and
data, such asin literal strings and on sample command lines.

TABLE 1A M eaning of Entry Format Notations
Type Appearance Example Entry method
Literal expression (com- [Couri er do this Enter the expression exactly as it
mands, literal strings, data) appears.
Variables Italic Courier fil enane Enter the name of the file or the specific
data that this expression represents.
Special keys Uppercase RETURN Press the key indicated.
Key combinations Uppercase, with hyphens | CONTROL-A While holding down the first one or two
between key names keys, press the last key.
Program listings and screen listings are presented in Cour i er typeface, asin Figure 1a. When the
listing is intended as a sample that the reader will use for an exercise or model, variables that the
reader will change areprintedinitalic Courier.
FIGURE 1a Sample screen listing
nars_53%ls -F
M niaxer / net . sour ce
nars_54%cd M nhaxer
nars_55%ls -F
I'i st. M niaxer m nnaxer . v1. 04/
nars_56%cd n nnmaxer . v1. 04
nars_57%ls -F
CPYR GHT m nnaxer . bi n/ sour ce. ni nnaxer /
README sanpl e/ sour ce. triangul ati on/
nars_58%
8 November 7, 2001

Basic Structure of HDF Files

2.1

2.2

2.3

Chapter Overview

This chapter introduces and describes the components and organi zation of Hierarchical Data For-
mat (HDF) files. The components of an HDF file include a file header and a variety of data
objects.

File Header

The first component of an HDF file is the file header (FH), which takes up the first four bytesin
an HDFfile. Thefile header is asignature that indicates that the fileis an HDF file. Specificaly, it
is a4-byte block with the hexadecimal value OxOE 0x03 0x13 0x01.1

To maintain HDF file portability, the characters must be read and written in the exact order shown.

Data Objects

The basic building block of an HDF file is the data object, which contains both data and informa-
tion about the data. A data object has two parts: a 12-byte data descriptor (DD) and a data ele-
ment. Figure 2aillustrates two data objects.

FIGURE 2a

Two Data Objects

Data Descriptors Data Elements

|Rankanddimensions | _I—) 2; 90 by 100
|Data | —|—) 63.2, 54.5 12.3,

18.2, 103.6, -7.4,

As the names imply, the data descriptor provides information about the data; the data element is
the dataitself. In other words, all datain an HDF file has information about itself attached to it. In
this sense, HDF files are self-describing files.

1. OxOE 0x03 0x13 0xO01 isthe hexadecimal representation of the characters control-N, con-
trol-C, control-S, and control-A, or "N*C*S'A.

November 7, 2001 9

National Center for Supercomputing Applications

Data Descriptor (DD)

A datadescriptor (DD) hasfour fields: a 16-bit tag, a 16-bit reference number, a 32-bit data off set,
and a 32-bit data length. These are depicted in Figure 2b and are briefly described in Table 2a.
Explanations of each part appear in the paragraphs following Table 2a.

FIGURE 2b A Data Descriptor (DD)
Tag Reference Offset Length
number
16 bits 16 bits 32 bits 32 bits
Tag/ref
(data identifier)
TABLE 2a Parts of a Data Descriptor
Part Description
Tag/ref Unique identifier for each data element
(dataidentifier) Tag ‘ Type of datain adata element
Reference num- | Number distinguishing data element from others with the
ber same tag
Offset Byte offset of data element from beginning of file
Length Length of data element in bytes

Tag/ref (Dataldentifier)

A tag and its associated reference number, abbreviated astag/ref, uniquely identify a data element
in an HDF file. The tag/ref combination is also known as a data identifier.

‘ Note: Only the full tag/ref uniquely identifies a data element.

Tag

A tag is the part of a data descriptor that tells what kind of datais contained in the corresponding
data element. A tag is actually a 16-bit unsigned integer between 1 and 65535, but every tag is
aso given aname that programs can refer to instead of the number. If a DD has no corresponding
data element, itstag is DFTAG_NULL, indicating that no datais present. A tag may never be zero.

Tags are assigned by NCSA as part of the specification of HDF. The following ranges are to be
used to guide tag assignment:

00001 — 32767 Reserved for NCSA use
32768 — 64999 User-definable
65000 — 65535 Reserved for expansion of the format

Chapter 9, Tag Specifications,” provides full specifications for all currently supported HDF tags.
Appendix A, ‘Tags and Extended Tag Labels,” lists the current tag assignments. See Section 3.4,
"Some HDF Conventions," for more information on allocating tags.

10 November 7, 2001

HDF Specification and Developer’s Guide

Reference Number

Tags are not necessarily unique in an HDF file; there may be more than one data element of a
giventype. Therefore, the data descriptor includes a unique reference number.

Reference numbers are not necessarily assigned consecutively, so you cannot assume that the
actual value of areference number has any meaning beyond providing a means of distinguishing
among elements with the same tag. Furthermore, reference numbers are only unique for data ele-
ments with the same tag; two 8-bit raster images will never have the same reference number but
an 8-hit raster image and a 24-bit raster image might.

Reference numbers are 16-bit unsigned integers.

Data Offset and Length

The data offset states the byte position of the corresponding data element from the beginning of
thefile. The length states the number of bytes occupied by the data element.

Offset and length are both 32-bit signed integers. Thisresultsin afile-size limit of 2 gigabytes.

Note: All offsets are from the beginning of the file; they are not relative.

DD Blocks

Data descriptors are stored physically in alinked list of blocks called data descriptor blocks or
DD blocks. The individual components of a DD block are depicted in Figure 2c. All of the DDsin
aDD bhlock are assumed to contain significant data unless they have the tag DFTAG NULL (no data).

In addition to its DDs, each data descriptor block has a data descriptor header (DDH). The DDH
has two fields: a block size field and a next block field. The block size field is a 16-bit unsigned
integer that indicates the number of DDs in the DD block. The next block field is a 32-bit
unsigned integer giving the offset of the next DD block, if there is one. The DDH of the last DD
block in thelist containsa 0 in its next block field.

FIGURE 2¢

Model of a Data Descriptor Block

Next
Igilggk bmé(k-‘Tag Ref |Offset|Length| Tag| Ref |Offset Lengt!‘l Tag | Ref |Offset Length||""
< DDH > |< DD > |« DD >| < DD >|—]
B 3 DD Block >

Since the default number of DDs in a DD block is defined when the HDF library is compiled,
changing the default requires recompilation. (The default value, as distributed in the source code
and pre-compiled binaries for Version 4.1r4, is 16.)

Data Element

A data element is the raw data portion of a data object. Its data type can be determined by exam-
ining its tag, but other interpretive information may be required before it can be processed prop-
erly.

Each data element is stored as a set of contiguous bytes starting at the offset and with the length
specified in the corresponding DD. (See Figure 2d, "Physical Representation of Data Objects," on

page 131

November 7, 2001 11

National Center for Supercomputing Applications

2.4

Exceptionsand Special Cases

Note that there are afew exceptions and special cases to the above standards.

The data object identified by the taBF TAG M, for machine type, consists of the tag imme-
diately followed by four number types. Since there can be only@fi&G M tag in an

HDF file and the data can be stored in the DD with the tag, there is no need for a data ele-
ment. Consequently, the reference number, offset, and length are unnecessary.

Several tags, specificalFTAG NULL, DFTAG JPEG, and DFTAG GREYJPEG, serve as

binary flags and convey all the required information by the mere fact of their presence in an
HDF file. These tags therefore point to no data element and have offset and length values of
0. DFTAG_NULL indicates a data object containing no dadaTAG JPEG and

DFTAG_GREYJPEG indicate that an associated data object, indicated by a different tag but
the same reference number, contains JPEG data image. The descriptions of these tags
include asink pointer (—) in the diagrams in Chapter 9.

It is possible to create a tag/ref object then to end access to that object before writing any
data or specifying its size. In such cases, the offset and length in the DD block will be set to
theinvalid offset orinvalid length value ofox FFFFFFFF.

See the related entries in ChapteTay Specifications, for complete descriptions of these tags.

Physical Organization of HDF Files

The file header, DD blocks, and data elements appear in the following order in an HDF file:

File header

First DD block

Data elements

More DD blocks, more data elements, etc., as necessary

These relationships are summarized in Table 2b.

The only rule governing the distribution of DD blocks and data elements within a file is that the
first DD block must follow immediately after the file header. After that, the pointers in the DD
headers connect the DD blocks in a linked list and the offsets in the individual DDs connect the
DDs to the data elements.

TABLE 2b

Summary of the Relationships among Parts of an HDF File

Part Constituents
HDF file FH, DD block, data, DD block, data, DD block, data...
FH 0x0e031301 [32-bit HDF magic number]
DD block DDH, DD, DD, DD, ...
DDH Number of DDs[16 bits], offset to next DD block [32 bits]
DD Tag [16 bits], ref [16 bits], offset [32 bits], length [32 bits]
Data Data element, data element, data element ...

FH =file header, DD = datadescriptor, DDH =DD header

1. Some HDF software provides the capability of storing objects as a series of linked blocks or
externa elements, but this occurs at a higher level. At the lowest level, each object with atag/ref
is stored contiguously.

12

November 7, 2001

HDF Specification and Developer’s Guide

2.5 SampleHDF File

We are now ready to examine asamplefile. Consider an HDF file that contains two 400-by-600 8-

bit raster images as described in Table 2c.

TABLE 2¢ Sample Data Objectsin an HDF File
Tag Ref Data
DFTAGFID | 1 File identifier: user-assigned title for file
DFTAG FD 1 File descriptor: user-assigned block of text describing overall file contents
DFTAG LUT | 1 Image pal ette (768 bytes)
CFTAG I D 1 x- and y-dimensions of the 2-dimensional arrays that contain the raster images (4 bytes)
DFTAG R 1 First 2-dimensional array of raster image pixel data (x*y bytes)
CFTAG R 2 Second 2-dimensional array of pixel data (also x*y bytes)
Assuming that a DD block contains 10 DDs, the physical organization of the file could be
described by Figure 2d.
In thisinstance, the file contains two raster images. The images have the same dimensions and are
to be used with the same palette, so the same data objects for the palette (DFTAG_| P8) and dimen-
sion record (DFTAG_| D8) can be used with both images.
FIGURE 2d Physical Representation of Data Objects

Section Item Offset Contents
Header FH 0e031301 (HDF magic number, in hexadecimal)
DD block DDH 10 O
DD 10 DFTAGHD 1130 4
DD 22 DFTAGFD 1 134 41
DD 34 DFTAG LUT 1 175 768
DD 46 DFTAGID 1 943 4
DD 58 DFTAGR 1 947 240000
DD 70 DFTAG R 2 240947 240000
DD 82 DFTAG NULL (Empty)
DD 94 DFTAG NULL (Empty)
DD 106 DFTAG NULL (Empty)
DD 118 DFTAG NULL (Empty)
Data Data 130 sw3
Data 134 solar wnd sinulation: third try. 8/ 8/ 88
Data 175 (Data for the image palette)
Data 943 400 600 (Image dimensions)
Data 947 (Data for thefirst raster image)
Data 240947 (Data for the second raster image)

November 7, 2001

13

National Center for Supercomputing Applications

14 November 7, 2001

Softwar e Overview

31

3.2

Chapter Overview

This chapter describes the HDF software organization and provides guidelines for writing HDF
software.

HDF is an amalgam of code and functionality from many sources. For example, the netCDF code
came from the Unidata Program Center, and data compression and conversion software has been
acquired from a variety of third parties. NCSA staff wrote the code for the basic HDF functional -
ity and perfomed all of the integration work.

This document contains specifications for the NCSA-developed code and functionality. It does
not include specifications for code or functionality from non-NCSA sources, though it does some-
times refer to specifications provided by other sources. Only the HDF interface to such code is
specified in this document.

HDF Software Layers

There are three basic levels of HDF software:
» HDF low-level interface
« HDF application interfaces
» HDF applications and utilities

The lowest layer, thlow-level interface, includes general purpose routines that form the basis of
all higher-level HDF development. The low-level interface directly executes operations such as
file I/O, error handling, memory management, and physical storage.

Theapplication interfaces support higher level views of data and provide the interfaces for build-
ing user-level applications. Routines that handle raster images, palettes, annotations, scientific
data sets, vdatas, vgroups, and netCDF appear at this level.

The applications and utilities are implemented at the highest level. NCSA utilities, NCSA appli-
cations, and third party applications are all implemented at this level.

The utilities perform general functions, such as listing the contents of an HDF file, and more spe-
cialized functions, such as converting data from one HDF data type to another (e.g., raster images
to scientific data sets). In general, the utilities have simple command line interfaces and perform
data management tasks.

The applications usually perform data analysis tasks and have polished interactive user interfaces.
They include the NCSA Visualization Tool Suite, commercial software packages that use HDF,
and other packages created at NCSA and by various third party projects.

November 7, 2001 15

National Center for Supercomputing Applications

Figure 3aillustrates this layered implementation.

FIGURE 3a

HDF Software Layers?®

HDF Utilities | NCSA Applications Ij | 3rd Party Applications

I] |]
\J N J

1 1 1 A gl

HDF Application Interfaces

)

(-

U U U U

HDF Low Level Interfaces

gl 1

M

(-

A A
HDF File ﬁ

3.3

The low-level interface is described in detail in this document. The application interfaces and
command line utilities are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User’s Guideand HDF Reference Manudbr Ver-
sions 3.3 and 4.x. Other HDF-based software tools should have their own manuals.

Since the NCSA user community writes programs primarily in C and FORTRAN, all of the HDF
application interfaces developed at NCSA are callable from both C and FORTRAN programs.
The functions of the low-level interface, however, are provided only as C-callable routines.

Softwar e Organization

3.3.1 Versionsand Release Numbers

Since HDF is under continual development, new releases are periodically made available.
Releases are identified with a version number consisting of three elements:

< najorv > Magor version number, integer

< minorv > Minor version number, integer

<rn> Release number, integer
The version number is presented in the following format:

< nmajorv > < ninorv >< rn > (eg., Version 3.2rl)
These elements are interpreted as follows:

Major version number

A new major version number is assigned when there is some fundamental difference
between a new version of the library and the previous version. When a new major ver-
sion is released, HDF users and developers are strongly encouraged to obtain the new
source code and documentation. There will probably be added functionality in succes-

1. Thisisasimplified illustration of the HDF software layers. Though the basic principlesillus-
trated here continue to apply, the introduction of netCDF and multiple-file HDF data structures
renders the implementation considerably more complex.

16

November 7, 2001

HDF Specification and Developer’s Guide

sive mgjor versions of the library and some obsolete code may be deleted. Some user
code may have to be modified to use the new library.

Minor version number

A new minor version number indicates an intermediate rel ease between one major ver-
sion and the next. Changes will probably be significant. When a new minor version is
released, users and developers are strongly encouraged to obtain the new source code
and documentation. There may be minor interface changes.

Release number

A new release number is assigned when bug fixes or other small modifications have
been made. Using a new release of the same version of the library will not usualy
require modifying existing user code.

3.3.2 ANSI C and Portability

To ensure that HDF can be easily ported to new platforms, all versions of the HDF source code
from Version 3.2 on are written in ANSI standard C, with special provisions for non-ANS| com-
pilers. For more information about porting HDF and writing portable HDF-based code, refer to
Chapter 11, Portability Issues.

3.3.3 Modulesand Interfaces

The HDF distribution contains many source files or modules that can be grouped into families.
For example, df p.c, df pf.c,and df pff.f all sharetheroot name df p and, therefore, all
belong to the df p family. In general, each family of source modules represents one HDF applica-
tionsinterface; the df p family represents the HDF Palette Interface (DFP).

For each interface, there is necessarily one file that contains the C code that provides the basic
functionality of that interface. Some interfaces may have one or two additional code modules that
provide FORTRAN callahility for the interface, so afamily may have one, two, or threefiles:

1file Modules of this sort are generally not calling interfaces themselves; they provide
useful support functions for actual calling interfaces. Since they are not meant to
be called by any routine outside the HDF library, they do not need to be FOR-
TRAN-callable. Example: hbl ocks. ¢ is called only by internal HDF routines
and has only the C-callableinterface.

2 files Some interfaces need only one extra source module to provide FORTRAN com-
patibility. In such cases, there are only two source modules for the interface.
Example: nfan.c and nfanf.c make up the Multifile Annotation Interface.

3files Most current implementations of FORTRAN-callable HDF interfaces require
that character string arguments be passed to some of their functions. Due to dif-
ferences in the way C and FORTRAN represent strings, passing strings requires
that there be a small amount of special purpose FORTRAN code written for each
function that takes a string argument.

Therefore, most FORTRAN-calable HDF interfaces consist of three source
modules:

*The primary C module

*A FORTRAN-callable C module

*A FORTRAN module

November 7, 2001 17

National Center for Supercomputing Applications

Example: df sd.c, dfsdf.c,and dfsdff.f make up the Single-file Scien-
tific Data Interface. df sd. ¢ contains the basic functionality of the interface.
df sdf . ¢ provides the major part of FORTRAN callability. And df sdff. f
contains the specia purpose FORTRAN code that enables passing character
string arguments.

Table 3a, "HDF Version 4.x Source Code Modules," on page 20 lists the families of source code
modules and header files of HDF Version 4.x. The first column of the table lists the name of the
interface or the category of the modules, depending on their functionality. The modules are cate-
gorized asfollows:

« Low-level interface, or H-level interface, includes modules that facilitate portability and
provide physical storage management, error handling mechanisms, support for simultaneous
access to multiple objects within a single file, support for simultaneous access to multiple
files, and an interface for key lower-level modules. Low-level routines begin with an
(e.g.,Hopen/ Hcl ose or Hread/ Hari t e).

« Multifile Scientific Data interface (SD API) includes modules that provide the mechanisms
for managing scientific data sets in a multifile environment. These modules reside in the
directorynf hdf / , which is separate from that of the other interfaces. Library routines in this
interface begin witlsD. This interface replaces the Single-file Scientific Data interface
(DFSD API). (A subtantial number of local or internal routine names in this code are influ-
enced by netCDF.)

» Vdatainterface (VS API) includes modules that provide mechanisms for managing Vdatas.
Library routines in this interface begin wis.

« Vgroup interface (V API) includes modules that provide mechanisms for managing
Vgroups. Library routines in this interface begin witti Blote that in the Content Descrip-
tion column, the V and VS routines share some modules and header files.

» Multifile Annotation interface (AN API) includes modules that provide mechanisms for
managing annotations in a multifile environment. Library routines in this interface begin
with AN This interface replaces the Single-file Annotation interface (DFAN API).

» General Raster Image interface (GR API) includes modules that provide mechanisms for
managing general raster images in a multifile environment. Library routines in this interface
begin with@R This interface replaces the 8-bit Raster Image interface (DFR8 API) and the
24-bit Raster Image interface (DFR24 API), which operate in the single-file environment.

» Paletteinterface (DFP API) includes modules that provide mechanisms for managing the
palettes that are used by the raster image interfaces. Library routines in this interface begin
with DFP.

« Compression/Decompression includes modules that provide mechanisms for managing file
and image compresion and decompression.

» Conversion includes modules that provide mechanisms to support conversion to and from
the HDF format.

« Single-file Scientific Data interface (DF SD API) includes modules that provide mecha-
nisms for managing scientific data sets in a single-file environment. Library routines in this
interface begin witlFSD. This interface is replaced by the Multifile SD interface (SD API).

» Single-file General Raster Image interface (DFGR API) includes modules that provide
mechanisms for managing general raster images in the single-file environment. This inter-
face is an older version of the GR interface.

« 8-bit Raster Image interface (DFR8 API) includes modules that provide mechanisms for
managing 8-bit raster images. This interface is replaced by the Multifile GR interface.

18 November 7, 2001

HDF Specification and Developer’s Guide

» 24-bit Raster Imageinterface (DFR24 API) includes modules that provide mechanisms for
managing 24-bit raster images. This interface is replaced by the Multifile GR interface.

« Single-file Annotation interface (DFAN API) includes modules that provide mechanisms
for managing annotations in the single-file environment. This interface is replaced by the
Multifile AN interface.

» Developer-level interface includes modules that are at a lower level than the H-level mod-
ules, which heavily use the developer-level routines. These modules simplify the task of
writing HDF applications by providing low-level routines for internal I/O handling,
dynamic storage handling, memory management, and data descriptor handling.

¢ Mac Only interface includes modules that implement UNIX-like directory reading for the
Macintosh.

The second column of Table 3a divides the modules in the interface into three groups: header
files, C modules, and FORTRAN interface and support. The header files are discussed in the next
section. The C modules group contains the primary C modules. The FORTRAN interface and sup-
port group contains either or both the FORTRAN-callable C module and the FORTRAN module
of the interface.

3.3.4 Header Files

In addition to the source code modules discussed above, some interfaces also have C header files
associated with them that are meant to be included by C applications programmers with the
#i ncl ude preprocessor directive. They contain useful constants and data structures for interac-
tion with the interface from C programs. The header files can be identified by the same name as
the root name for the rest of the family with thie extension. For exampleif sd. h is the header

file for the Single-file Scientific Data Interface.

Of particular importance among the C header filesrdttaf . h, hdf . h and hdfi . h:

nfhdf. h Contains symbolic constants and public data structures for HDF's SD interface.
nf hdf . h must be included by any program that uses the SD API of the HDF
library.

hdf . h Contains all the symbolic constants and public data structures required by HDF.
hdf . h must be included by any program that uses the HDF library. (Note that this
file is automatically included by the inclusion of hdf. h and need not be
included separately.)

hdfi.h Contains specific portability information about each platform on which HDF is
supported. hdfi.h is automatically included in a program whemdf . h is
included, so programmers need not explicitly include it.

Refer to Chapter 1Rortability Issues, for more information onhdfi.h and other portability
issues. Refer to Table 3a for the listing of the header files provided in the current version of the
HDF library.

November 7, 2001 19

National Center for Supercomputing Applications

TABLE 3a HDF Version 4.x Source Code M odules
Category Module type Module name Content Description
Header files hehunks.h Definitions for chunked elements
hdf h) HDF y_ser-level defini_ti_ons, for applications using HDF routines
hdfi.h Def!n!t!ons for portability ' ' .
herr h Def!n! t! ons for HDF error handl _mg/reportl r?g routines
. Definitions for HDF low-level file I/O routines
hfile.h L . . .
hKit h Def!m ti or_15 for string mappl ng routines
hlimitsh Defined limits for thelibrary, reserved V data/V group names and
classes, and pre-attribute names. Definitions for most of the con-
stantsin the library.
hntdefs.h Number-type defi r):iti ons for HDF
hproto.h A)
Useful macros, potential for future functions
H-level htagsh HDF tag definitions
patchlevel.h -9
Definition of PATCHLEVEL
C modules hblocks.c Routines to implement linked-block elements
hchunks.c Routines to implement chunked elements
herr.c Routines for error handling/reporting
hextelt.c Routines for external elements
hfile.c Low-level file1/O routines
hkit.c Various string mapping routines
FORTRAN inter- herrf.c C stubs for FORTRAN error handling/reporting routines
face and support
Header files aloc.h Definitions for memory management
error.h Prototypes for error handling routines
hdf2netcdf.h HDF names of netCDF API functions
local_nc.h Definitions of structures for CDF and its components
mfhdf.h Definitions for applications using SD routines
win32cdf.h Definitions used for the Windows version of the library
C modules array.c Routines that operate the structure NC_array
attr.c Routines that operate the structure NC_attr
cdf.c Routines that operate the CDF structure NC its components
dim.c Routines that operate NC_dim and locally related routines
error.c Utility routines to implement consistent error logging mecha-
nisms for netCDF
filec Low-level "nc" routines and other routines that operate the struc-
. tures NC and XDR
Multifile globdef ¢ Initialization of global variables that allow the creation of
Sdentific Data SunOS sharable libraries
(SD API) hdfsds.c Routines that read old SDS objects out of HDF files
iarray.c Routines that operate NC_iarray
mfsd.c SD and SDI library routines that are local to this module
nssdc.c Routines that read CDF V2.x files created with the CDF library
putget.c Routines that read/write SD objects at the Vgroup and Vdata
level
putgetg.c Routines that perform /O on a generalized hyperdab
sharray.c Internal routines for short integers
string.c Routines that operate NC_string
var.c Routines that operate NC_var and locally related routines
xdrposix.c Routines that implement XDR on a POSIX file descriptor
xdrstdio.c Routines that implement XDR on a stdio stream
FORTRAN inter- mfsdf.c C stubs for SD library routines
face and support mfsdff.f FORTRAN stubs for SD library routines

20 November 7, 2001

HDF Specification and Developer’s Guide

Category Module type Module name Content Description
Header files vattr.h definitions for vgroup/vdata attribute interface
C modules vattr.c V and VSlibrary routines that handle VVgroup/V data attributes
vg.c Mostly Vdatalibrary routines, but also some Vgroups routines
vhi.c VH library routines for vdata high-level access
vio.c VS library routines that handle vdatas and locally used routines
Vdata (VSAPI) VIW.C VSlibrary routines that read and write vdatas
vsfld.c VF and VS ibrary routines that handle vdata fields
FORTRAN inter- vattrf.c C stubs for handling vgroup/vdata attributes
face and support vattrff.f FORTRAN stubs for handling vgroup/vdata attributes
vgf.c C stubs for vgroups and vdatas library routines
vgff.f FORTRAN stubs for vgroups and vdatas library routines
Header files dfgroup.h Definitions for dfgroup.c
vg.h Defined symbols and structures used in &l v*.c files
vgint.h Private defined symbols and structures used in al v*.c files
C modules veonv.c Routines that handle V group/V data compatibility and conver-
Vgroup (V API) sion
vgp.c V library routines that handle Vgroups and locally used routines
vparse.c Routines for parsing
FORTRAN inter- listed in Vdata AP
face and support
Header files mfan.h Definitions for multifile annotations
M ultm_l € C modules mfan.c AN library routines that read and write multifile annotations
Annotation
AN API i -
() FORTRAN inter mfanf.c C stubs for handling multifile annotations
face and support
Header files mfgr.h Definitions for multifile genera raster images
Multifile . . e :
General Raster C modules mfgr.c GR library routines that access multifile general raster images
Image (GR API) FORTRAN inter- mfgrf.c C stubs for accessing multifile general raster images
face and support mfgrff.f FORTRAN stubs for accessing multifile general raster images
Header files Thisinterface uses only the header file hdf.h
Palette C modules dfp.c DFP routines that read and write pal ettes
DFP API X
() FORTRAN inter- dfpf.c C stubs for palette routines
face and support dfpff.f FORTRAN stubs for palette routines
Header files cnbit.h Definitions for N-bit encoding
crleh Definitions for run-length encoding
hcomp.h Definitions for compression information and structures
hcompi.h Internal library header file for compression information
C modules alec Interna 1/O routines for HDF run-length encoding
dfcc;m c Routines that perform file compression
Compression/ dfi F:: Routines that perform JPEG image compression
Decompression dflr F:?: Routines that perform RLE image compression
dfun'. c Routines that perform JPEG image decompression
heo njw peg. 1/O routines for compressed data
hcomp.ri c Routines for reading and writing old-style compressed raster
pri. images, such as JPEG, (raster specific) RLE, and IMCOMP
FORTRAN inter-
none

face and support

November 7, 2001

21

National Center for Supercomputing Applications

Category Module type Module name Content Description
Header files dfconvrt.h The macro DFconvert to speed up the conversion process
dfufp2i.h Definitions for dfufp2i.c
hconv.h Definitions for data conversion
C modules Routines that support conversion to and from HDF format
dfconv.c . - .
Routines to support Convex-native conversion to/from HDF for-
dfkconv.c mat
dikerav.c Routines to support Cray conversion to/from HDF format
dfkfufily.c Routines to support Fujitsu-native (VP) conversion to/from HDF
Conversion ' format
dfknat.c Eca);m nes to support native-mode conversion to/from HDF for-
dfkswan.c Routines to support little-endian conversion to/from HDF format
dfkvma:)(; Routines to support Vax-native conversion to/from HDF format
dfufni.c Utility functions to convert floating point data to 8-bit raster
pa. image set (RIS8) format
FORTRAN inter-
none
face and support
Header files dfsd.h Definitions for single-file scientific data
Qngl gflle C modules dfsd.c DFSD routines that read and write Scientific Data Sets
Scientific Data
(DFSD API) FORTRAN inter- dfsdf.c C stubs for single-file scientific data routines
face and support dfsdff.f FORTRAN stubs for single-file Scientific Data routines
Header files dfgr.h Definitions for single-file general and 24-bit raster images
Single-file C modules dfgr.c DFGR routines that read and write general raster images (old)
General Rasters dfimcomp.c Routines that perform color image compression
(BFGRAP) ' FORTRAN inter-
none
face and support
Header files dfrig.h Definitions for 8-bit raster image groups
8-?;;5;:3 C modules dfr8.c DFR8 routines that read and write 8-bit raster image groups
(DFR8 API) FORTRAN inter- dfrsf.c C stubs for 8-bit raster image group routines
face and support dfr8ff.f FORTRAN stubs for 8-bit raster image group routines
Header files Thisinterface uses dfgr.h in the single-file General Raster inter-
. face
24-bit Raster
Images C modules df24.c Routines that read and write 24-bit raster images
(DFR24 AP1) FORTRAN inter- df24f.c C stubs for 24-bit raster image routines
face and support df24ff.f FORTRAN stubs for 24-bit raster image routines
Header files dfan.h Definitions for single-file annotations
Singl eﬁle C modules dfan.c Routines that read and write single-file annotations
Annotations
(DFAN API) FORTRAN inter- dfanf.c C stubs for annotation routines
face and support dfanff.f FORTRAN stubs for annotation routines

22

November 7, 2001

HDF Specification and Developer’s Guide

Category Module type Module name Content Description
Header files aIlom.h Definitions for atom code
bitvect.h N .
Definitions for bit vector code
cdeflate.n A)
cnbit h Definitions for deflate encoding
Definitions for N-bit encoding
cnone.h A)
cskphuff.h Def!n!t!onsfor nopegncodlng .
dih Definitions for Skipping Huffman encoding
dfih Defi n! tions for data doiﬁcri ptors
dfivmsh HDF !ntemal header f!le
distubs.h HDF internal header filefor VMS
Definitions for dfstubs.c HDF 3.1 emulation using new routines
. from hfile.c
%ﬂtgh Deﬁn? t? ons for low-level ytility routi ngs
dynarrayh Definitions for low-level implementation of groups
glisth Deﬁn? t? ons for dynamic_storage handling
hbitio.h Definitions for general list
Data structures and macros for hitfile access to HDF data
objects; mainly used for compression /0 and N-bit data objects
hqueueh Modified version of Berkley code for manipulating memory
pool
- Definition for generic linked lists
linklist.h - X .
Definitions for dynamic memory handling
maldebug.h Modified version of Berkley code for manipulating memory
mcache.h
pool
mstdio.h Deﬁn?t?onsfor stdi&like routines .
thbt h Definitions for using threaded, balanced, binary trees
Developer-level C modules atom.c Internal storage routines for handling atoms
bitvect.c Routines that operate ordered sets of hits, or bit vectors
cdeflate.c Internal 1/O routines for HDF gzip deflate encoding
cnbit.c Interna 1/O routines for HDF N-bit encoding
cnone.c Interna 1/O routines for HDF noencoding
cskphuff.c Interna 1/O routines for HDF Skipping Huffman encoding
dfstubs.c V3.x stubs for V4.0 H-level /O routines
dfgroup.c Low-level routines (DF*) for implementing groups
dfutil.c General-purpose utility routines
dynarray.c Interna routines that handle dynamic storage
glist.c Implementation of general list
hbitio.c HDF bit level I/O routines
hbuffer.c Routines that manage buffered elements
hdfalloc.c HDF routines for memory management
hfiledd.c Routines that manage DDs and DD blocks
linklist.c Internal storage routines for handling generic linked lists
maldebug.c Utility routines for memory management
mcache.c Modified version of Berkley code for manipulating memory
pool
mstdio.c HDF stdio-like routines
tbbt.c Routines for using threaded, balanced, binary trees
FORTRAN inter- dff.c C stubs for low-level 1/0 routines
face and support dfff.f FORTRAN stubs for low-level 1/0O routines
dfutilf.c C stubs for general-purpose utility routines
dfutilff.f FORTRAN stubs for general-purpose utility routines
hfilef.c C stubs for low-level routines
hfileff.f FORTRAN stubs for low-level routines
Header files dir_mac.h Definitions for dir_mac.c
sys dir_mac.h Additional definitions to beincluded in dir_mac.h
Mac only
C modules dir mac.c Implementation of UNIX-like directory reading for the Macin-

tosh

November 7, 2001

23

National Center for Supercomputing Applications

34

3.3.5 The HDF Test Suite

In addition to the source code for the HDF library, Versions 3.2 and higher include a test suite.
There are two test modules: one for C and one for FORTRAN. Each module tests al of the rou-
tinesin all of the application interfaces and in the low-level interface. The exact form of these test
modules may vary from one release to the next; consult the release code and online test documen-
tation for details.

Every effort has been made to ensure that the test programs provide a thorough and accurate
assessment of the health of the HDF library. Although the test suite will greatly improve the reli-
ability of HDF code, it is amost inevitable that some parts of the code will remain untested.
Therefore, no guarantees can be made on the basis of test suite performance.

3.3.6 Sample HDF Programs

Sample programs, illustrating some of the common techniques employed by HDF programmers,
are available on the HDF web site at hdf . ncsa. ui uc. edu/ hdf 4. ht i .

To help users become familiar with HDF, each release includes several sample programs illustrat-
ing common techniques employed by HDF programmers.

Some HDF Conventions

The HDF specification described in the previous chapter is not sufficient to guarantee its success.
It is also important that HDF programmers and users adhere to certain conventions. Some guide-
lines are implicit in the discussions in other sections of this document. Others are presented in the
document NCSA HDF Calling Interfaces and Utilities for Versions 3.2 and earlier or in the HDF
User’s Guideand the HDF Reference Manudbr Versions 3.3 and 4.x.

Guidelines not covered €l sewhere are introduced in this section.

Naming and Assigning Tags

Tags that are to be made available to a general population of HDF users should be assigned and
controlled by NCSA. Tags of this type are given numbersin the range 1 to 32,767. If you have an
application that fits this criterion, contact NCSA at the address listed in the front matter at the
beginning of this manual and specify the tags you would like. For each tag, your specifications
should include a suggested name, information about the type and structure of the data that the tag
will refer to, and information about how the tag will be used. Your specifications should be similar
to those contained in Chapter 9, Tag SpecificationgNCSA will assign a set of tags for your appli-
cation and will include your tag descriptions in the HDF documentation.

Tagsin the range 32,768 to 64,999 are user-definable. That is, you can assign them for any private
application. If you use tags in this range, be aware that they may conflict with other people’s pri-
vate tags.

Using Reference Numbersto Organize Data Objects

The HDF library itself uses reference numbers solely to distinguish among objects with the same
tag. While application programmers may find it convenient to impart some meaning to reference
numbers, they should be forewarned that the HDF library will be ignorant of any such meaning.

Note: Users are discouraged from assigning any meaning to reference numbers beyond that

imparted by the HDF library.

24

November 7, 2001

HDF Specification and Developer’s Guide

Multiple References

Multiple references to a single data element are quite common in HDF. The low-level routine
Hdupdd generates anew reference to datathat is already pointed to by another DD. If Hdupdd is
used several times, there may be several DDs that point to the same data element.

It isimportant to note that when a multiply-referenced data element is deleted or moved, the vari-
ous DDs that previously pointed to the data element are not automatically deleted or adjusted to
point to the data element in its new location. Consequently, each DD to be deleted or moved
should be checked for multiple references and handled appropriately.

November 7, 2001 25

National Center for Supercomputing Applications

26 November 7, 2001

L ow-level Interface

4.1

Chapter Overview

4.2

This chapter provides a detailed description of the routines that make up the HDF low-level inter-
face, sometimes referred to as the H-level interface.

I ntroduction

HDF supports severa interfaces which can be categorized as high-level and low-level interfaces:
» High-level interfaces support utilities and applications.
« Low-level interface functions perform basic operations on HDF files.

These levels are illustrated in Figure 4a.

FIGURE 4a

HDF Software Layers

HDF Utilities Ij | NCSA Applications Ij |3rd Party Applications |j

7 ~ h—d

HDF Application Interfaces
[[[A A

— U U U U

-

HDF Low Level Interfaces

a

(-
-

J
HDF File D

This chapter is concerned only with the low-level interface.

Using these routines of the low-level interface, you will be able to build and manipulate HDF
objects of any type, including those of your own design. All HDF applications developed at
NCSA use them as basic building blocks.

The low-level routines are all written in C.

November 7, 2001 27

National Center for Supercomputing Applications

4.3

New Low-level Routineswith Version 3.2 and Higher

The

low-level routines described in this chapter are new with HDF Version 3.2 and higher; they

replace the routines provided with earlier versions. The new routines provide better performance
and increased functionality and users are strongly advised to use them in new applications. The
old routines are supported through emulation, but may be eliminated from the HDF library in a
future release.

The new lower layer incorporates the following improvements:

The

(e.g.

More consistent data and function types

More meaningful and extensive error reporting
Simplification of key lower-level functions
Simplified techniques to facilitate portability

Support for alternate forms of physical storage, such as linked blocks storage and storage of
the data portion of an object in an external file

A version tag to indicate which version of the HDF library last changed a file
Support for simultaneous access to multiple files
Support for simultaneous access to multiple objects within a single file

previous lower layer was called tB& layer because all routines began with the let@Fs

, DFopen and DFcl ose). The new lower layer is called titlayer because all routines

begin with the letterH (e.g., Hopen, Hcl ose, and Hari t e). The source modules containing
these routines begin with the lettbr (see Table 3a, "HDF Version 4.x Source Code Modules"):

hfile.c Basic /0 routines
herr.c Error-handling routines
hkit.c General purpose routines

hbl ocks. ¢ Routines to support linked block storage
hextelt.c Routines to support external storage of HDF data elements

hchunks. ¢ Routines to support chunked elements

28

November 7, 2001

HDF Specification and Developer’s Guide

4.4 Overview of the Low-level Interface

This section provides the name and purpose of each public function and selected private routines
of the low-level interface. The private routines are intended only for internal use by the library.
Detailed specifications for many of these routines are provided in Appendix C, Function Specifi-
cations; detailed specifications for all of these routines are provided as comments in the distrib-
uted source code.

Summary of Prefixes

The low-level functions are named with the following prefixes.

TABLE 4-i L ow-level routine prefixes
H General and file-handling operations
HC Compression special element operations
HD DD block operations
HL Linked block special element operations

HMC Chunking special element operations

HR Raster image special element operations

HT Tag/ref operations

HX External file special element operations

*p Routine privateto thelibrary. No guarantee of stable external interface; may change without notice.

*| Saticroutine privateto thelibrary. No guar antee of stable exter nal interface; may change without notice.

Opening and Closing HDF Files

These functions are used to open and close HDF files:

Hopen Provides an access path to an HDF file and reads all of the DD blocks
in the file into memory

Hcl ose Closes the access path to afile

HDer r Closes afile and returns FAIL

Hset accesstype Setsthel/O accesstype (serid, pardld, ...)

L ocating Elementsfor Access and Getting Information

These routines locate elements or acquire other information about an HDF file or its data objects.
Except for Hendaccess, they initialize the element that they locate and return an access ID that
isused in later references to the data element. Calls can include wildcards so that one can search
for unknown tags and reference numbers (tag/refs).

Hstartread Locates an existing data element with matching tag/ref and returns an
access |D for reading it

Hnext r ead Continues the search with the same access ID

Hendaccess Disposes of access ID for atag/ref pair

H nquire Returns access information about a data element

November 7, 2001 29

National Center for Supercomputing Applications

Hi shdf Determines whether afileisan HDF file

Hnumber Returns the number of occurrences of a specified tag/ref pair in afile
Hexi st Determines whether an object existsin an HDF file

Hpset Sets pagesize and maximum number of pages to cache on the next

open/create operation
Hpget Gets last pagesi ze and max number of pages cached for open/create
Hget | i bver si on Returnsversion information for the current HDF library
Hget fi | ever si on Returnsversion information for an HDF file
HPget di skbl ock Getsthe offset of afree block in thefile

HPf r eedi skbl ock Releases ablock in afile to be re-used

Reading and Writing Entire Data Elements

There are two sets of routines for reading and writing data elements. The routines described here
are used to store and retrieve entire data elements.

Hput el ement Adds or replaces elementsin afile
Hget el ement Reads data elementsin afile

A second set of routines, described in the next section, may be used if you wish to access only part
of adata element.

Reading and Writing Part of a Data Element

The second set of routines for reading and writing data el ements makes it possible to read or write
all or part of adata element. One of the accessroutines Hst artread or Hstartwite mustbe
caled beforethese Hwi te, Hread, or Hseek:

Hstartwite Setsup writing to the object with the supplied tag/ref. If the object exists, it
will be modified; otherwise it will be created.

Harite Writes data to a data element where the last Har i t e or Hseek stopped. |If the
space reserved is less than the length to write, then only as data as can fit in
the allocated space is written.

Hr ead Reads a portion of a data element. It starts at the last position left by an
Hread or Hseek call and reads any data that remains in the element up to
a specified number of bytes.

Hseek Sets the access pointer to an offset within a data element. The next time
Hread or Hwite iscaled, the access occursfrom this new position. The
location to seek can be specified as an offset from the current location, from
the start of the element, or from the end of the element.

Ht runc Truncates a data set to a specified length.

30 November 7, 2001

HDF Specification and Developer’s Guide

Manipulating Data Descriptors (DDs)

The routines listed here perform operations on DDs without modifying the data to which the DDs
refer. Thefirst list indicates public routines that are available to users and applications; the second
list indicates private routines that are used internally by the library.

Public user routines

Hdupdd Generates new references to a data element that is aready referenced
from somewhere else
Hdel dd Deletes atag/ref pair from thelist of DDs

HDcheck_t agref Checksto see whether atag/ref pair isinthe DD list
HDr euse_t agref Reuses adata descriptor of atag/ref pair inaDD list of an HDF file

Hnewr ef Returns a reference number that is unique in thefile
H agnew ef Returns areference number that is unique in the file for agiven tag
Hind Locates the next object of asearchin an HDF file

Privatelibrary routines (internal)

HTPcr eat e Creates (and attaches to) atag/ref pair and insertsit into the DD list
HTPsel ect Attaches to an existing DD inthe DD list

HTPendaccess Ends accessto an attached DD inthe DD list

HTPdel et e Marks atag/ref pair as free and ends access to it

HTPupdat e Changes the offset and/or length of a data object

HTPi nqui re Getsthe DD information for aDD (i.e. tag/ref/offset/length)

HTPi s_speci al Checks whether a DD identifier is associated with a special tag

HTPst ar t Initializesthe DD list from disk, i.e., creates the DD list in memory
HTPi ni t Createsanew DD list in memory

HTPsync Flushesthe DD list to disk

HTPend Closesthe DD list to disk

Creating Special Data Elements

Prior to release 3.2, any data element had to be stored contiguously and all of the objectsin an
HDF file had to be in the same physical file. The contiguous requirement caused many problems,
especially with regard to appending to existing objects. If you wanted to append data to an object,
the entire data element had to be deleted and rewritten to the end of the file. Later HDF versions
introduced alternate methods of storing HDF objects: linked blocks and external elements at the
release of HDF Version 3.2 and chunking at HDF Version 4.1. These specia elements, plus com-
pression, are discussed in detail in Chapter 10, Extended Tags and Special Elements.

Linked blocks improve storage management by allowing elementsin asingle HDF file to be non-
contiguous. The routines listed here operate on linked blocks The first list indicates the public rou-
tines that are available to users and applications; the second list indicates the private routines that
are used internally by the library.

November 7, 2001 31

National Center for Supercomputing Applications

Public user routines

HLcreat e Creates a new linked-block special data element
H_convert Convertsan AID into alinked-block element
HD ngbl ocki nf o Returns information about linked blocks

Privatelibrary routines (internal)

H_Pr ead Reads some data out of alinked-block element
HPwite Writes out some data to alinked-block element
H_Pi nquire Returns information about a linked-block element

H_Pendacess Closes alinked-block AID

H_Pi nfo Returns information about a linked-block element
H_Pst r ead Opens an access record for reading

HPstwite Opens an access record for writing

H_Pseek Sets position for the next access

External elements allow a single HDF object to be stored in an external file. The following rou-
tines operate on external elements:

HXcr eat e Creates anew external file special data element
HXset cr eat edi r Sets the directory variable for creating external file
Hxsetdir Sets the directory variable for locating external file

It is not currently possible to store a single object (such as avery large data set) in multiple files.
Nor can multiple objects be stored in one external file.

Oncethey are created with the routinesHLcr eat e and HXcr eat e, these special data elements can
be accessed with the routines used for normal data elements. These routines have two modes of
operation. Calling HLcr eat e with atag/ref that does not exist in afilewill create anew element
with the given tag/ref pair which will be stored as linked blocks. On the other hand, if the tag/ref
pair already exists in the file, the referenced object will be promoted to linked block status. All
data which had been stored in the object before the promaotion will be retained. HXcreate
behaves similarly.

Chunking allows elements in large arrays to be stored as chunks in such a way that 1/0 perfor-
mance can be significantly improved. The routines listed here perform operations on chunking
elements. Thefirst list indicates the public routines that are available to users and applications; the
second list indicates the private routines that are used internally by the library.

Public user routines

HVCcr eat e Creates a chunked element.

HVOw i teChunk Writes out the specified chunk to a chunked element.
HVDr eadChunk Reads the specified chunk from a chunked element.
HVCset Maxcache Sets the maximum number of chunks to cache.

HVCPcl oseAl D Closes thefile but keeps AID active (for Hhext read()).
Privatelibrary routines (internal)

HVCPst r ead Opens an access record for reading.

32

November 7, 2001

HDF Specification and Developer’s Guide

HVOPstwrite Opens an access record for writing.

HVCPseek Sets the seek position.

HVOPchunkread Reads asingle chunk from a chunked element.

HVCPr ead Reads a more arbitrarily sized piece of datafrom a chunked element.

HVCPchunkwrite Writes out asingle chunk of datato a chunked element.

HVOPwrite Writes out amore arbitrarily sized piece of data to a chunked element.
HVOPi nqui re Implements H nqui r e for a chunked element.

HVOPendacess Closes a chunked element AID

HVCPi nf o Returns information about a chunked element.

Compression provides for the compression of data sets. The routines listed here perform those
compression operations. The first list indicates the public routines that are available to users and
applications; the second list indicates the private routines that are used internally by the library.

Public user routines

HCcr eat e

Create a compressed data element

Privatelibrary routines (internal)

HJ i ni t _coder
HJ i ni t _nodel

HO r ead_header
HO st access

HJ wri t e_header
HCPcl oseAl D
HCPdecode_header
HCPencode_header
HCPendaccess
HCPi nf o

HCPi nqui re

Set the coder function pointers

Set the model function pointers

Read the compression header info from afile

Start accessing a compressed data el ement.

Write the compression header info to afile

Get rid of the compressed data element data structures
Decode the compression header info from a memory buffer
Encode the compression header info to a memory buffer
Close the compressed data element and free the AID

return info about a compressed element

Inquire information about the access record and data element.

HCPnst di 0_endaccess

Close the compressed data element

HCPnst di o_i nqui re Inquire information about the access record and data element

HCPnst di 0_r ead
HCPnst di 0_seek

Read in a portion of datafrom a compressed data element
Seek to offset within the data element

HCPnst di o_stread start read access for compressed file

HCPnst dio_stwite start write access for compressed file

1. These are the general compression functions. Additional compression functions, specific to
each compression style, can be found in the compression style-specific modules in the source
code distribution. As of HDF Version 1.4r4, those modules included thefiles c*. ¢ (e.g., cde-
flate.c.,crle.c)inthedirectory ./ hdf/src/.

November 7, 2001 33

National Center for Supercomputing Applications

HCPnstdio_wite Writeout aportion of data from a compressed data element

HCPquer y_encode_header
Query the length of compression header for a memory buffer

HCPr ead Read in a portion of datafrom a compressed data element.
HCPseek Seek to offset within the data element

HCPst r ead Start read access on a compressed data element.
HCPstwiite Start write access on a compressed data el ement.

HCPwri te Write out a portion of data from a compressed data el ement.
HRPcl oseAl D Free memory but keep AID active

HRPconver t Wrap an existing raster image with the special element routines.
HRPendacess Free AID

HRPi nf o Return info about a compressed raster element

HRPi nqui re Retreive information about a compressed raster element
HRPr ead Read some data out of compressed raster el ement

HRPseek Set the seek posn

HRPst r ead Open an access record for reading

HRPstwiite Open an access record for reading

HRPwr i te Write data out to a compressed raster image

General special element routines: In addition to the routines specific to a particular type of spe-
cial element, the library provides general routines for use on any special element:

HDget _special _info Gets information about a special element

HDset _special _info Resets information about a special element

Development Routines

The HDF library provides the following developer-level routines that simplify the task of writing
HDF applications. Many of these routines mirror basic C library functions which are, unfortu-
nately, not always completely portablein their library form:

HDget t agname Returns a pointer to a text string describing a given tag

HDget space Allocates space

HDf r eespace Frees space

HDcl earspace Creates storage on the heap for a number of items of the given size

HDreget space Resizesto the new given size

HDst r cat Appends a string to the end of another string

HDst r cnp Compares two strings

HDst r ncnp Compares two strings up to a given number of characters
HDst r cpy Copies a string from one location to another

34 November 7, 2001

HDF Specification and Developer’s Guide

HDst r ncpy

Hbstrl en
HDst r chr
HDst rrchr
Hbstrtol
HDoc2f str

HDf 2cstring
HDpackFstri ng
HDf | ush
HDget t agnum
HDget NTdesc
HOf i dt oname
Hexi st

HDget ¢
HDput ¢

H ength
Hof f set

H runc
Hcache
HDval i dfi d

Error Reporting

Copies astring from one location to another up to a given number of char-
acters

Returns the length of astring

Returns the position of a character within a string

Returns the position of the last occurence of acharacter within a string
Convertstheinitial portion of astring to atype long int representation
Converts a C string into a Fortran string using the in place approach
Converts a Fortran string to a C string

Converts a C string to a Fortran string

Flushes the HDF file to disk

Returns the tag number for a text description of atag

Returns atext description of a number type

Returns the filename that the given file identifier correspondsto
Locates an object in an HDF file

Reads a byte from a data element

Writes a byte to a data element

Returns the length of adata element

Gets the offset of adataelement in afile

Truncates a dataset to the given length

Sets low-level caching for afile

Checks whether afileidentifier isvalid

The HDF library incorporates the notion of an error stack. This allows much of the context to be
known when trying to decipher an error message.

Error reporting is handled by the following routines:

HEpri nt
HEcl ear

HERROR

HEr epor t

Prints out all of the errors on the error stack to a specified file
Clearsthe error stack

Reports an error and pushes the following information onto the error stack.

» Error type
 Source file name
¢ Line number and the name of the function reporting the error

Adds a text string to the description of the most recently reported error

(Note: only one text string per error)

HEString
HEpush

Returns error description

Pushes an error onto the stack

November 7, 2001

35

National Center for Supercomputing Applications

HEval ue Returns an error off the error stack

Standard C does not enable the code inside a function to know the name of the function. There-
fore, to use the macro HERROR to report errors, there must exist a variable FUNC which pointsto a
string containing the name of the reporting function.

Other

The Hsync routine has been defined and implemented to synchronize a file with its image in
memory. Currently it is not very useful because the HDF software includes no buffering mecha-
nism and the two images are always identical. Hsync will become useful when buffering is
implemented:

Hsync Synchronizes the stored version of an HDF file with the image in memory

36

November 7, 2001

Setsand Groups

5.1

5.2

Chapter Overview

This chapter discusses the roles of the following sets and groups in organizing data stored in an
HDF file:

Raster imagesets(RIS) Raster image groups (RIG)
Scientific data sets (SDS) Scientific data groups (SDG)

Numeric data groups (NDG)
SDG-like NDGs
Vsets Vgroups and Vdatas
Raster-8 sets (obsolete)

This chapter introduces several tags used in support of sets and groups. All of these tags are fully
described in Chapter 9, Tag Specifications, and are listed in the table in Appendix A, Tags and
Extended Tag Labels.

Data Sets

HDF files frequently contain several closely related data objects. Taken together, these objects
form a data set which serves a particular user requirement. For example, five or six data objects
might be used to describe a raster image; eight or more data objects might be used to describe the
results of a scientific experiment.

The HDF mechanism for specifying and controlling data sets is the group. The data element of a
group consists of a single record listing the tag/refs for all the objects contained in the data set.
For example, the raster image groups described in the following sections each contain three tag/
refsthat point to three data objects that, taken as a set, fully describe an 8-bit raster image.

5.2.1 Typesof Sets
The current HDF implementati on supports three kinds of sets:

Raster image set A set containing a raster image and descriptive information such as
the image dimensions and an optional color lookup table

Scientificdataset A set containing a multidimensional array and information describing
the datain the array

Vset A genera grouping structure containing any kinds of HDF objects
that a user wishes to include

November 7, 2001 37

National Center for Supercomputing Applications

5.3

Each HDF set is defined with a minimum collection of data objects that will make sense when the
set is used. For example, every raster image set must contain at least the foll owing data objects:

Raster image group Thelist of the members of the set
Imagedimensionrecord The width, height, and pixel size of the raster image
Raster image data The pixel values that make up the image

In addition to the required objects, a set may include optional data objects. An 8-bit raster image
set, for instance, often contains a palette, or color lookup table, which defines the red, green, and
blue values associated with each pixel in the raster image.

5.2.2 Calling Interfacesfor Sets

NCSA provides calling interfaces for al the HDF sets that it supports. These interfaces provide
routines for reading and writing the data associated with each set. The libraries currently sup-
ported by NCSA are callable from either C or FORTRAN programs.

In addition to the libraries, a growing number of command-line utilities are available to manipu-
late sets. For example, a utility called r 8t ohdf converts one or more raw raster imagesto HDF 8-
bit raster image set format.

The calling interfaces are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual for Ver-
sions 3.3 and 4.x.

Groups

As discussed above, HDF data objects are frequently associated as sets. But without some
explicit identifying mechanism, there is often no way to tie them together. To address this prob-
lem, HDF provides agrouping mechanism called agroup. A group is a data object that explicitly
identifies al of the data objectsin a set.

Since agroup isjust another type of data object, its structureislike that of any other data object; it
includes a DD and a data element. But instead of containing the pixel values for a raster image or
the dimensions of an array, a group data element contains alist of tag/refs for the data objects that
make up the corresponding set.

A group tag can be defined for any set. For instance, the raster image group tag (DFTAG R G is
used to identify members of raster image sets; the RIG data element lists the tag/refs for a particu-
lar raster image set.

An Example

Suppose that the two images shown in Figure 2d, "Physical Representation of Data Objects,” are
organized into two sets with group tags. Since they are raster images, they may be stored as RIGs.
Figure 5a, "Physical Organization of Sample RIG Groupings,” illustrates the use of RIGs with
these images.

38

November 7, 2001

HDF Specification and Developer’s Guide

FIGURE 5a

Physical Organization of Sample RIG Groupings

Offset Item Contents
0 FH 0e031301 (HDF magic number)
4 DDH 10 OL
10 DD DFTAG FI D 1 130 4
22 DD DFTAG _FD 1 134 41
34 DD DFTAG LUT 1 175 768
46 DD DFTAG I D 1 943 4
58 DD DFTAG R 1 947 240000
70 DD DFTAG I D 2 240947 4
82 DD DFTAG R 2 240951 240000
94 DD DFTAG R G 1 480951 12
106 DD DFTAG R G 2 480963 12
118 DD DFTAG NULL (Empty)
130 Data sw3
134 Data solar wnd simulation: third try. 8/8/88
175 Data . (Data for image palette)
943 Data 400, 600 ... (Data for 1st image dimension record)
947 Data . (Data for 1st raster image)
240947 Data 400, 600 ... (Data for 2nd image dimension record)
240951 Data . (Data for 2nd raster image)
480951 | Data DFTAG I P8/ 1, DFTAGID 1, DFTAGR /1

(Tag/refs for 1st RIG)

480963 | Data DFTAG | P8/ 1, DFTAG ID 2, DFTAGR /2

(Tag/refs for 2nd RIG)

The file depicted in this figure contains the same raster image information as the file in Figure 2d,
"Physical Representation of Data Objects," but the information is organized into two sets. Note
that there is only one palette (OFTAG | P8/ 1) and that it is included in both groups.

5.3.1 General Featuresof Groups

Figure 5a, "Physical Organization of Sample RIG Groupings,” also illustrates a number of impor-
tant general features of groups:
« The contents of a group must be consistent with one another. Since the paiattel P8)
is designed for use with 8-bit images, the image must be an 8-bit image.

» An application program can easily process all of the images in the file by accessing the
groups in the file. The non-RIG information in the example can be used or ignored, depend-

ing on the needs and capabilities of the application program.

e There is usually more than one way to group sets. For example, an extra copy of the image
palette DFTAG | P8) could have been stored in the file so that each grouping would have its
own image palette. That is not necessary in this instance because the same palette is to be
used with both images. On the other hand, there are two image dimension records in this
example, even though one would suffice.

November 7, 2001

39

National Center for Supercomputing Applications

5.4

» Group status does not alter the fundamental role of an HDF object; it is still accessible as an
individual data object despite the fact that it also belongs to a larger set.

« A group provides an index of the members of a set. There is nothing to prevent the imposi-
tion of other groupings (indexes) that provide a different view of the same collection of data
objects. In fact, HDF is designed to encourage the addition of alternate views.

The following sections formally describe raster image sets (RIS), scientific data sets (SDS), Vsets,
and several related groups. The last section of this chapter discusses an obsolete structure known
as the raster-8 set.

Raster Image Sets (RIS)

The raster image set (RIS) provides a framework for storing images and any number of optional
image descriptors. An RIS always contains a description of the image data layout and the image
data. It may also contain color look-up tables, aspect ratio information, color correction informa-
tion, associated matte or other overlay information, and any other data related to the display of the
image.

5.4.1 Raster Image Groups (RIG)

Tying everything together is the raster image group (RIG, see Figure 5a, "Physical Organization
of Sample RIG Groupings," and the related discussion for an example). An RIG contains a list of
tag/refs that point in turn to the data objects that make up and describe the image.

The number of entries in an RIG is variable and most of the descriptive information is optional.
Complex applications may include references to image-modifying data, such as the color table
and aspect ratio, along with the reference to the image data itself. Simple applications may use
simple application-level calls and ignore specialized video production or film color correction
parameters.

NCSA currently supports two RIG calling interfac&d:S8 and RIS24. These interfaces are
described in the documeNCSA HDF Calling Interfaces and Utilities for Versions 3.2 and earlier
and in theHDF User’s Guide andHDF Reference Manual for Versions 3.3 and 4.

542 RISTags

RIS implementations must fully support all of the tags presented in Table 5a.

TABLE 5a

RIS Tags
Tag Contents of Data Element
DFTAG R G Raster image group
DFTAG I D Image dimension record
DFTAG R Raster image data

With these tags, images can be stored and read from HDF files at any bit depth, with several dif-
ferent component ordering schemes. As illustrated in Figure 5b, the RIG tag points to the collec-
tion of tag/refs that fully describe the RIS. The data element attached to tiET#®E I D

specifies the dimensions of the image, the number type of the elements that make up its pixels, the
number of elements per pixel, the interlace scheme used, and the compression scheme used, if
any. The data element attached to theDEIG R contains the actual raster image data.

40

November 7, 2001

HDF Specification and Developer’s Guide

FIGURE 5b RIS Tags

DD List (tag/ref): [Rg1 | 1D1 | R/1

"Data:"

[200 x 300, etc.

|D/1| R/1| 1P/ 1

The tags listed in Table 5b identify optional RIS information such as color properties and aspect
ratio. Note that the RI interface supports only DFTAG LUT at this time; the other tags in Table 5b
are defined but the interfaces have not been implemented.

TABLE 5b Optional RIS Tags
Tag Contents of Data Element

DFTAG XYP XY position of image
CFTAG LD L ook-up table dimension record
DFTAG LUT Color look-up table for non true-color images
CFTAG MD Matte channel dimension record
DFTAG VA Matte channel data
DFTAG GON Color correction factors
DFTAG CGFM Color format designation
OFTAG AR Aspect ratio
DFTAG MO Machine-type override

Figure 5c illustrates the structure of an RIS that contains an image pal ette (DFTAG | P8).

November 7, 2001 41

National Center for Supercomputing Applications

FIGURE 5c

5.5

RIS Tagsfor Sets Containing a Palette

DD List (tag/ref): [Rg1 [1ol | R/1 [iPs/1

"Data:"

[200 x 300, etc.

ID/1|RI/1|IP8/1 =

5.4.3 Raster Image Compression

HDF currently supports the following raster image compression tags:
DFTAG REE Run-length encoding
DFTAG | MoOWP Aerial averaging
DFTAG JPEG JPEG compression

RIG support does not require support for all compression tags. Be sure to provide a suitable error
message to the user when an unknown compression tag is encountered.

Since new forms of data compression can be added to HDF raster images, incompatibilities can
arise between old libraries and files created by newer libraries. For example, HDF Versions 3.3
and later include JPEG compression for images. A JPEG-compressed raster image in a file cre-
ated by an HDF Version 4.1 library cannot be read by an HDF Version 3.2 library.

Scientific Data Sets

The scientific data set (SDS) provides a framework for storing multidimensional arrays of data
with descriptive information that enhances the data. Current specifications support the following
types of numbersin SDS arrays.

« 8-bit, 16-bit, and 32-bit signed and unsigned integers
» 32-bit and 64-bit floating point numbers
Data in an SDS can be stored either as two's complement big endian integers, as IEEE Standard

floating point numbers, or inative mode, the format used by the machine from which they were
written.

The user interface for storing and retrieving SDSs is fully described in the docN@®hHDF
Calling Interfaces and Utilities for Versions 3.2 and earlier and in tH®F User’s Guide and
HDF Reference Manual for Versions 3.3 and #.

42

November 7, 2001

HDF Specification and Developer’s Guide

5.5.1 Backward and Forward Compatibility

One of NCSA's concerns in HDF development is aways to maximize backward and forward
compatibility; as much as possible, any application written to use HDF should be able to read data
files written with an older or a newer version of the libraries. To maximize this compatibility,
NCSA had to consider the following factors in upgrading the SDS capabilities:

« Support for future variations (e.g., new number types, data compression, and new physical
arrangements for SDS storage)

« Older versions of the library should be able to read new data files if the data itself can be
interpreted by the older version. To do so, the older version must be able to determine
whether the data in a given data object will be comprehensible to it. For example, if a newly
created file contains 32-bit IEEE floating point or Cray floating point data objects, older
versions of the library should be able determine that fact then read and interpret the data.

* New libraries must be able to read and interpret files created by older versions.

Unfortunately, such compatibility concerns yield an SDS structure somewhat more complex than
would otherwise be the case. Two examples illustrate the problem:

« HDF 3.2 development had to accommodate the fact that HDF Version 3.1 and previous ver-
sions only supported 32-bit IEEE floating-point numbers and Cray floating point numbers in
SDSs. SDSs in HDF versions since Version 3.2 support 8-bit, 16-bit, and 32-bit signed and
unsigned integers, 32-bit and 64-bit floating-point numbers, and the local machine format
(native mode) for all supported architectures.

» HDF 3.3 includes support for the netCDF data model, which involved the creation of an
entire new structure for supporting netCDF objects, based on Vgroups and Vdatas. At the
same time, a goal of HDF 3.3 was to harmonize the SDS and the netCDF data model, which
was best accomplished by storing SDS objects in the same way that netCDF objects are
stored. In order to maintain backward compatibility, two structures had to be created for
every SDS or netCDF object: one that could be recognized by older HDF libraries, and the
new structure.

In the following sections we describe how the first problem was solved. A later issue of this man-
ual will describe how the second problem was addressed.

5.5.2 Internal Structures

The SDS capability was substantially enhanced for HDF Version 3.2. Previous versions
employed a structure known asaentific data group (SDG); Version 3.2 and subsequent ver-
sions use thaumeric data group (NDG). To accommodate the enhanced structure and to remain
compatible with previous releases, the current HDF library supports the following scientific and
numerical data groups:

SDGs Created by old libraries and containing 32-bit IEEE and Cray floating-point data.

NDGs Created by the newer libraries (Version 3.2 and later) and containing any acceptable
floating-point or non-floating-point data. This data group will not be recognized by
old libraries.

The NDG structure supports 8-bit, 16-bit, and 32-bit signed and unsigned integers,
and 32-bit and 64-bit floating-point numbers. It also supports native mode, data sets
written to HDF files in the local machine format.

SDG-like NDGs

Created by the new library and containing IEEE 32-bit floating-point data only. The
old libraries will recognize and interpret these numerical data groups correctly.

November 7, 2001 43

National Center for Supercomputing Applications

The following sections describe the SDG, NDG, and SDG-like NDG structures.

5.5.3 SDG Structures
SDGs must contain at least the data objects listed in Table 5c¢.

TABLE 5¢ Required SDG Tags

Tag Contents of Data Element

DFTAG SDG Scientific data group.

DFTAG SCD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number type of the array data and of each
dimension.

All SDG number types are 32-bit | EEE floating-point.

DFTAG SD Scientific data.

In addition to the required data objects listed above, SDGs may contain any of the objectslisted in
Table 5d. Notethat the optional data objects are the same for SDGs, NDGs, and SDG-like NDGs;
the only differences are the number types that may be used.

TABLE 5d Optional SDG, NDG, and SDG-like NDG Tags

Tag Contents of Data Element

DFTAG SDS Scales of the different dimensions. To be used when interpreting or displaying the data (32-bit

floating point numbers only for SDGs and SDG-like NDGs).

DFTAG SO Labelsfor al dimensions and for the data. Each of the dimension labels can be interpreted as

an independent variable; the datalabel is the dependent variable.

DFTAG SDU Units for all dimensions and for the data.

DFTAG SDF Format specifications to be used when displaying values of the data.

DFTAG SDM Maximum and minimum values of the data. (32-bit floating point numbers only for SDGs and

SDG-like NDGs.)

DFTAG SDC Coordinate system to be used when interpreting or displaying the data.

Asillustrated in Figure 5d, the SDG tag points to the collection of tag/refs that define the SDG.
44 November 7, 2001

HDF Specification and Developer’s Guide

FIGURE 5d SDG Structure

DD list (tag/ref)

[sbe1 | soo: | sort SDM 1

Data

/ = //, ////Z /%,///

///A%

///%//// . ”’ //% //// / _ /

_

5.5.4 NDG Structures
NDGs must contain at least the data objects listed in Table 5e

TABLE 5e Required NDG Tags

Tag Contents of Data Element
DFTAG NDG Numerical data group.

DFTAG SCD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number types of the data and of each dimension.
In HDF 3.2, the number types of dimension scales must be the same as that of the array-stored
data. Later implementations allow dimension scales to be typed separately.

DFTAG SD Scientific data.

DFTAG NT Number type of the data set. Default isthe most recent DFSDset NT() setting. If DFSD-
set NT() hasnot been called, the default will be 32-bit | EEE floating-point.

In addition to these required data objects, an NDG may contain any of the data objects listed in
Table 5d, "Optional SDG, NDG, and SDG-like NDG Tags," on page 44.

Asiillustrated in Figure 5e, the basic NDG and SDG structures are identical. The first clue to the
difference is that the NDG tag replaces the SDG tag. Thisis aflag to prevent older libraries from
stumbling over the more important difference; the NDG data element can accommodate data that
pre-Version 3.2 libraries cannot interpret. The new tag ensures that older libraries will not recog-
nize the data object and thus will not try to interpret the new data types. For example, NDG data
can include number types or a data compression scheme that apre-Version 3.2 library will not rec-
ognize.

November 7, 2001 45

National Center for Supercomputing Applications

FIGURE 5e NDG Structure
DD list (tag/ref)
[noe1 | soo1 | soit SDM 1
Data
Vg F o
/
_
_
5.5.5 SDG-like NDG Structures
Aswe have said earlier,
« SDGs, the SDS grouping structure available prior to HDF Version 3.2, could include only
32-bit floating point and Cray floating point numbers.
* NDGs, available since Version 3.2, can include 8-bit, 16-bit, and 32-bit signed and unsigned
integers, and 32-bit and 64-bit floating point numbers.
« SDG-like NDGs, also available since Version 3.2, distinguish SDSs that can still be read by
the older versions of the library.
This backward compatibility is achieved by examining every SDS that is written to an HDF file. If
the SDS is compatible with older libraries, it is written to the file with both SDG and NDG struc-
tures. If it is not compatible with older libraries, only the NDG structure is used.
Table 5f lists the objects that SDG-like NDGs must contain.
TABLE 5f Required SDG-like NDG Tags
Tag Contents of Data Element
DFTAG NDG Numerical data group.
DFTAG SDG Scientific data group.
DFTAG SDLNK The NDG and SDG linked to the scientific data set in this group.
DFTAG SCD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number types of the data and of each dimen-
sion.
In an SDG-like NDG, the number types are all 32-bit | EEE floating-point.
DFTAG SD Scientific data.
SDG-like NDGs can include the same optional data objects as described for SDGs and NDGs in
Table 5d, "Optional SDG, NDG, and SDG-like NDG Tags," on page 44.
Figure 5f illustrates the SDG-like NDG structure.
46 November 7, 2001

HDF Specification and Developer’s Guide

FIGURE 5f

SDG-like NDG Structure

DD List (tag/ref)
| SDG 1 | NDG 1 | SDLNK/ 1 SDD/1| SD/[SDM 1

Data

2

U 0 0
7

45
» .

5.5.6 Compatibility with Future NDG Structures

Future HDF releases will probably support additional optional SDS features. These features will
fall into the following categories:

\\\:\

_

Optional and compatible features

Optional features that are compatible with older HDF versions even though they may
not be supported in the older libraries.

For example, a new time stamp attribute might be added. The time stamp would not be
understood by older libraries, but it would not render them unable to read the SDS data
either

Optional and incompatible features
Optional new features that may render the data unreadable by older HDF libraries.

For example, a compression attribute could be added. Older HDF libraries that contain
no compression routines would not be able to read the compressed data.

A tag numbering convention has been developed to address this problem:
Required tags

Thesetags are listed in Table 5c¢, "Required SDG Tags," on page 44; Table 5e, "Required
NDG Tags," on page 45; and Table 5f, "Required SDG-like NDG Tags," on page 46. All
SDSsmust contain al of thetagsin at least one of these sets. (See Chapter 9, "Tag Spec-
ifications,” for the assigned tag numbers.)

Optional-incompatible tags

Tags for new SDS features that might render the data set unreadable by older libraries
are each assigned anumber t that fallsin a specia range determined by the constants
DFTAG EREQand DFTAG BREQ That is, t must have a value such that DFTAG EREQ< t

November 7, 2001 47

National Center for Supercomputing Applications

5.6

< DFTAG BREQ When old software encounters a tag in this range that it is not able to
interpret, it should not process the group.

Optional-compatible tags

These tags can have any valid tag number not allocated to one of the other two catego-
ries.

Vsets, Vdatas, and Vgroups

Vsets, Vdatas, and Vgroups enable users to create their own grouping structures. Unlike RIGs,
SDGs, and NDGs, HDF imposes no required structure; they are implemented almost entirely at
the user level and are not specified in detail in HDF or in this document. The only specifications
define DFTAG VG DFTAG VH, and DFTAG VS and the formats of their respective data elements. A
detailed discussion similar to that for the other grouping structures is, therefore, inappropriate
here. Detailed information regarding the DFTAG VG DFTAG VH, and DFTAG VS tags can be found
in Chapter 9, "Tag Specifications." Conceptual and usage information can be found in the docu-
ment NCSA HDF Vset Version 2.0 for HDF Versions 3.2 and earlier and in the HDF User’s
Guide and the HDF Reference Manual for HDF Versions 3.3 and 4.x.

FIGURE 5g

text

Illustration of a Vset

vgroup

March 15,

with k=10.0, beta=1.22e3.
Cal cul ate the magni tude ...

1990. Sinul ation

palette

raster images 3D mesh

An HDF Vset can contain any logical grouping of HDF data objects within an HDF file. Vsets
resemble the UNIX file system in that they impose abasically hierarchical structure but also allow
cross-linked data objects. Unlike SDSs and RISs, V sets have no prespecified content or structure;

1. Specidlistsin various fields are developing application program interfaces (APIs) that are
becoming accepted standard interfaces within their fields. Since these APIsareimplemented with
high level HDF functionality and using the standard HDF user interface, they are user-level appli-
cations from the HDF devel opment team’s point of view. From the final enduser’s point of view,
however, these APIs create anew level of user interface. When necessary, technical specifica-
tions for these APIs and the associated interfaces will be presented by the specialized devel opers.

November 7, 2001

HDF Specification and Developer’s Guide

users can use them to create structural relationships among HDF objects according to their needs.
Figure 5gillustrates a V set.

A Vsetisidentified by a Vgroup, an HDF object that contains information about the members of
the Vset. The tag DFTAG VGidentifies the Vgroup which contains the tag/refs of its members, an
optional user-specified name, an optional user-specified class, and fields that enable the Vgroup to
be extended to contain more information.

The only required Vgroup tag is the tag that defines the Vgroup itself.

TABLE 59

S.7

TheVgroup Tag

Tag Contents of Data Element
DFTAG VG Vgroup

Vgroups are fully described in the document NCSA HDF Vset, Version 2.0 for Versions 3.2 and
earlier and in the HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x.

The Raster-8 Set (Obsolete)

Current HDF versions use the raster image set (RIS) to manage raster images. But before the RIS
was implemented, a simpler, less flexible set called the raster-8 set was used for storing 8-bit ras-
ter images. This set is no longer supported in the HDF software, although it may turn up in some
older HDF files.t

5.7.1 Raster-8 Sets

The raster-8 set is defined by a set of tags that provide the basic information necessary to store 8-
bit raster images and display them accurately without requiring the user to supply dimensions or
color information. The raster-8 set tags are listed in Table 5h.

TABLE 5h

Raster-8 Set Tags

Tag Contents of Data Element

DFTAGR 8 8-hit raster image data
DFTAG A 8 8-bit raster image data compressed with run-length encoding

DFTAG 118 IMCOMP compressed image data
DFTAG | 08 Image dimension record
DFTAG | P8 Image palette data

Software that does not support DFTAG A 8 or DFTAG | | 8 must provide appropriate error indica-
tors to higher layers that might expect to find these tags.

5.7.2 Compatibility Between Raster-8 and Raster Image Sets

To maintain backward compatibility with raster-8 sets, the RIS interface stores tag/refs for both
types of sets. For example, if an image is stored as part of a raster image set, there is one copy
each of the image dimension data, the image data, and the palette data. But there were two sets of

1. Infact, during the first three years that RIS was used, the HDF software stored raster imagesin
both RIS and raster-8 sets.

November 7, 2001 49

National Center for Supercomputing Applications

5.8

tag/refs pointing to each data element: one for the RIS and one for the raster-8 set. Theimage data,

for example, is associated with the tags DFTAG R 8 and DFTAG R .

Note: Raster-8 set support will not be maintained in future HDF releases.

Note that future HDF releases will phase out support for the raster-8 set. Therefore, new software
should not expect to find both raster-8 and RIS structures supporting 8-bit raster images. Eventu-

aly, only RIS structures will be supported.

Deleted information from " Vsets, Vdatas, and Vgroups:”

A table structure known as a Vdata is often used as a data object in connection with Vsets. The
datain aVdatais organized into fields. Each field isidentified by a unique fieldname. The type of
each field may be any of the data types supported by the SDS interface: 8-, 16-, and 32-bit inte-
gers (signed or unsigned), and 32- and 64-bit floating point numbers. Severa fields of different

types may exist within aVdata

The use of Vdatas requires two tags, DFTAG VS and DFTAG VH, listed in Table 5i. The flexibility of

the Vgroup structure allows the use of any HDF tag.

TABLE5i

Optional Vgroup Tags

Tag Contents of Data Element

CFTAG VS Vdata.

DFTAG VH Vdata description.

Any HDF tag Theflexibility of the Vgroup structure allows the optional use of any HDF tag.

November 7, 2001

Annotations

6.1 Chapter Overview

This chapter introduces annotations, HDF data objects used to annotate HDF files and objects.

The tags introduced in this chapter are fully described in Chapter 9, "Tag Specifications," and are
listed in the tablein Appendix A, "Tags and Extended Tag Labels."

6.2 General Description

It is often useful to attach atext annotation to an HDF file or its contents and to store that annota-
tion in the same HDF file. HDF provides this capability in two ways: through the annotation data
object and by the assignment of attributes. This chapter discusses annotations.

The data element of an annotation is a sequence of ASCII characters that can be associated with
any of three types of objects:

* The file itself
¢ An individual HDF data object in the file
» A tag that identifies a data element

The current annotation interface supports only the first two.
Annotations come in two forms:

L abel A short, NULL-terminated string. Labels may include no embedded
NULLSs.

Description A longer and more complex body of text of a pre-defined length. Descrip-
tions may contain embedded NULLs.

Annotations are never required; they are used strictly at the discretion of the creator or user of an
HDF file.

Table 6a shows the currently defined annotation types and their assigned tags.

TABLE 6a Annotation Tags
Label Types Description Types
File annotations DFTAG FI D CFTAG FD
Object annotations DFTAG D L DFTAG D A
Tag annotations DFTAG TID CFTAG TD

November 7, 2001 51

National Center for Supercomputing Applications

6.3

6.4

The annotation interface is fully described in the document NCSA HDF Calling Interfaces and
Utilities for Versions 3.2 and earlier and in the HDF User’s Guideand HDF Reference Manual
for Versions 3.3 and 4.x.

File Annotations

Any HDF file can include label annotations (DFTAG FI D) and/or description annotations
(DFTAG_FD). The file annotation interface routines provided in the HDF software read and write
file labels and file descriptions.

Object Annotations

HDF data object annotation is complicated by the fact that you must uniquely identify the object
being annotated. Since a tag/ref uniquely identifies a data object, the data object that a particular
annotation refers to can be identified by storing the object’s tag and reference number with the
annotation.

Note that an HDF annotation isitself adata object, so it hasits own DD. This DD has atag/ref that
pointsto the data element containing the annotation. The annotation data el ement contains the fol-
lowing information:

« The tag of the annotated object
« The reference number of the annotated object
* The annotation itself
For example, suppose you have an HDF file that contains three scientific data sets (SDSs). Each

SDS has its own DD consisting of the SDS ®@gTAG NDG and a unique reference number, as
illustrated in Figure 6a.

FIGURE 6a Three SDS Tag/refs
Tag . Ref
DFTAG_NDG 2 —_—
o
DFTAG_NDG 4 S EE———
DFTAG_NDG 9 -
°
Suppose you wish to attach the following annotation to the second SDS:
Data frombl ack hol e experi nent 8/ 18/ 87.
This text will be stored in a description annotation data object. The data element will include the
tag/ref, DFTAG NDG 4, and the annotation itself. Figure 6b illustrates the annotation data object.
52 November 7, 2001

HDF Specification and Developer’s Guide

FIGURE 6b Sample Annotation Data Object

Annotation DD

DFTAG_DI A 2

DFTAG_NDG 4 Data from bl ack hol e experiment 8/18/87

Tag Ref Description

Getting Reference Numbersfor Object Annotations

To use annotation routines, you need to know the tags and reference numbers of the objects you
wish to annotate.

The following routines return the most recent reference number used in either reading or writing
the specified type of data object:

DFSD astref SDS data objects
DFR8l astref RIS data objects
DFF astref Palettes

DFAN astref Annotations

Reference numbers for other objects can be obtained with the routine Hf i ndnextref, a low
level HDF routine that searches an HDF file sequentially for reference numbers associated with a

given tag.
These routines are described in the document NCSA HDF Calling Interfaces and Utilities for

Versions 3.2 and earlier and in the HDF User’s Guideand HDF Reference Manudbr Versions
3.3and 4.x

November 7, 2001 53

National Center for Supercomputing Applications

54 November 7, 2001

Scientific Data Sets:
The SD M odd

7.1 Chapter Overview

This chapter provides functional descriptions of the SD User’s Model, the SD Developer’s Model,
and the HDF file structures used to represent these models.

« Standard UML notation is used extensively in the formal data model descriptions.

Section 7.2, "UML Notation and Object Symbols in HDF Data Model Descriptions,”
describes the relevant UML elements.

» Section 7.3, "Introduction to the SD Model," introduces the HDF SD model.

« Section 7.4, "The SD User’s Model," and Section 7.5, "The SD Developer’s Model," pro-
vide more details, introducing the SD User’s Model as an intermediate step, and presenting
the formal data model required to implement the SD Developer’s Model.

« Section 7.6, "Mapping between SD Developer's Model and HDF File Structures,” and
Section 7.7, "SDS Memory Structures and Storage Layout,” map the elements of the SD
Developer’s Model to HDF file structures and provide a detailed description of those mem-
ory structures and the storage layout in the file.

« Section 7.8, "Library Implementation Details with Example File and SDS," illustrates the
HDF library implementation of the SD model.

7.2 UML Notation! and Object Symbolsin HDF Data M odel
Descriptions

Many of the figures in this chapter and in ChapteG&peral Raster Images: The GR Model,

employ UML notation (Unified Modeling Language notation) to show object relationships. The
symbols and the relationships they describe are illustrated in Figure 7a. Note that UML can repre-
sent other objects and relationships as well; this discussion, Figure 7a, and Figure 7b present only
what is required for this chapter.

FIGURE 7a UML symbols and interpretations as used in formal HDF data model descriptions
An HDF object is represented as arectangle.
A
Associations or relationships among object instances are indicated by arrows.

A diamond indicates the aggregation association, i.e., the a part of relationship. .

1. For acondensed description of UML, see UML Distilled: Applying the Standard Object
Modeling Language, Martin Fowler with Kendall Scott, Addison-Wesley, 1997.

October 27, 2000 55

National Center for Supercomputing Applications

An HDF object is represented as arectangle.
A

Object D is part of object B.

The numbers at either end of the arrow indicate the multiplicity of associations.

N exactly N o _’* N
0..N zeroupto N
0..* Zero or more

Object A includes exactly one of objects B or C.
A=

For example, the following statements describe the dia-
gram at theright: A —s B

» Object A is composed of exactly one object B.
« Object B is associated with exactly N objects of type A.

The figures that make up the formal definition of the data model, such as Figure 7f, "SD User’s
Model -- The SD Model from the User’s Point of View," or Figure 7h, "SD Developer’'s Model --
The SD Model from the Developer’s Point of View," use the above UML notation rigorously.

Figures that are intended to informally illustrate points of discussion, such as Figure 7e, "A sam-
ple user’s view of the SD model,” or that illustrate the file layout, such as Figure 70, "SDS View
of the HDF File Structure,” often use only a subset of the UML notation and treat the relationships

less rigorously.

The formal data model discussions also include formal object descriptions clearly delineating the
types of HDF objects and their attributes. The layout of these object descriptions is illustrated in

Figure 7b.

FIGURE 7b

Formal object descriptions

attribute Object name

name

type Object attributes: characteristics specified
data at creation time by the user or the library

In object description figures, e.g.Figure 7i, "SD Developer’s Model Objects,” the top line speci-
fies the name of the object. The entries immediately below the first horizontal bar list object

attributes that are specified by either the user or the library when the object is created.

56

October 27, 2000

HDF Specification and Developer’s Guide

7.3 Introduction tothe SD Model

An HDF file may contain many elements, including scientific data sets (SDSs, the subject of this
chapter), general raster images (GRs), groups of HDF objects, images, palettes, annotations, etc.
Figure 7c provides a high-level illustration of one potential HDF file.

FIGURE 7c An HDF file may contain several objects and object collections

HDF4 file

. 1 1 1 S
0..* "0,.' 0..*
image other objects

0...* 0..*

A scientific data set, or SDS, is an HDF data structure used to store a multidimensional array of
scientific data and the supporting metadata. An SDS is stored in a group of HDF objects collec-

tively known as an SD collection. A file may contain only one SD collection; an SD collection

may contain several SDSs. Chapter 3, “Scientific Data Sets (SD API),” HORdJser’s Guide
describes the SD model, in terms of required and optional components that comprise a scientific
data set, and theD interface routines provided by the HDF library to create and access SDSs in
the file.

When a file is opened with the SD interface, also calledSEhé\PI, only the SD collection is
available A file opened with the SD interface should therefore be thought of in terms of Figure 7d.
Other objects in the file are unavailable through the SD interface; they can, however, be accessed
through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 7d An HDF file opened with the SD interface

HDF4file

/ 0..*
SD collection (othuer ?bj ects
invisibleto the application)

« When afile is opened with the SD interface, only the SD collection is available (cir-
cled above in blue; grey if medium is black-and-white). Other objects in the file are
unavailable to the application.

* An SD collection may contain zero or more SDSs.

This chapter introduces two formal data models. The first version of the model, called the SD
User's Model and illustrated in Figure 7f, formally describes the concepts introduced in Chapter 3
of theHDF User’s Guide. The second model, called the SD Developer's Model or the Internal SD
Model and illustrated in Figure 7h, is a generalization of the SD User's Model that reflects the
technical implementation and the integration of the NetCDF data model into HDF. These models
are described in Section 7.4, "The SD User’s Model," and Section 7.5, "The SD Developer’s
Model."

October 27, 2000 57

National Center for Supercomputing Applications

Following the discussion of the data models, the mapping of the SD Developer's Model to HDF
file structures is presented in Section 7.6, "Mapping between SD Developer's Model and HDF
File Structures." Memory structures and storage layout are discussed in Section 7.7, "SDS Mem-
ory Structures and Storage Layout."

The last section, Section 7.8, "Library Implementation Details with Example File and SDS,"
offers an example of an HDF file containing an SD collection and describes the evolution of the
file as different components of the SD collection and the SDS it contains are written to thefile.

7.4 The SD User’s Model

This section provides alogica description of an HDF file containing an SD collection. An exam-
ple of a user’s view of the data model is presented in Figure 7e; a formal graphical representation
is presented in Figure 7f, "SD User’s Model -- The SD Model from the User’s Point of View."

From a user’s point of view, an HDF file containing SDSs is structured as follows and as illus-
trated in Figure 7e:

» The file contains SDSs and possibly global attributes, which apply to all SDSs in the file.
« Each SDS may have associated attribute(s), dimension scale(s), and data.

An SDS is a multidimensional array of elements designed to store scientific data. Elements of the
array may have one of the HDF predefined datatypes (see Section 5.5, "Scientific Data Sets," in
this HDF Specification and Developer’s Gujdespatial information (rank=N and dimension
sizes) describes the shape and the size of the array and is specified by the user. Each SDSisiden-
tified by a user-defined name. (If the user does not define a name, the HDF library will assign a
default name at creation time.) An SDS always has a storage layout associated with it which is
defined at creation time and describes how the SDS raw data is stored. Raw data storage options
are contiguous (the default), external, chunked, compressed, chunked and compressed, and
extendible. Name, spatial information, datatype, and storage layout are required components of an
SDS. An SDS may optionally include raw data, denoted as dat a in the UML diagram (Figure 7f).

FIGURE 7e A sample user’s view of the SD model

HDF4file global attribute(s)

value="ConSi"

._ sDs1 SDS? SDS3 SDSn

name = “sds1” name = “sds2" name = “sds3" name = “sds”
spatial information spatial information spatial information spatial informatior|
rank = 2 rank= 2 —— rank = 2 D rank = 2
dim sizes = 100 x 2! dim sizes = 10 x dim sizes =4 x 3 dim sizes = 10
type = floating point type = integer type = floating point type = integer

o

(Note: No data)

i g rked &
A \ 4 ¥ not Gompre

data

dimension
scale

external file
data

The Formal SD User’s Model

The formal SD User’s Model includes one type of object the user does not actually @@, the
collection. An HDF file may contain zero or one SD collection which may, in turn, contain zero or
more SDSs. Thelobal attributes, of which there may be zero or more, are actually associated

58 October 27, 2000

HDF Specification and Developer’s Guide

with the SD collection. Global attributes are optional, are defined by the user, and usually describe
the intended usage of the SDSsin the file. The SDSs and the associated objects (see Figure 7f) are
generaly intended to be accessed only through the SD interface. When possible, however, the
data sets are created to be readable viathe older DFSD APIs.

An SDS may have zero or more associated attributes. These attributes are distinct from global
attributes, which apply to all SDSsin thefile.

The HDF library creates N dimensions associated with an SDS where Nis the rank of the SDS.

The library will assign a name to each dimension; if desired, these may be overwritten with user-

defined names. Each dimension can be associated with more than one SDS. The size of the
dimension is set up by the library, based on the SDS'’s spatial information. When a dimension is
associated with more than with one SDS, it is callgdaaed dimension. Shared dimensions are
created by the user.

Each dimension may have zero or mdiraension attributes. Each dimension may also have data
associated with it, in which case the data is callddngnsion scale or dimension variable, as in
netCDF.

FIGURE 7f SD User’s Model -- The SD Model from the User’s Point of View
gIObaI attribute 0..* 1 SD collection Shading indicates
B (file opened with SD interface) objects or associations
1 created by library
vo.*
dimension & Lol SDS o %3 attribute
The formal model is based on relationships among user-specified objects of the SD User’s Model
and the associated object attributes, as described in Figure 7g.
FIGURE 7g SD User’s Model Objects

file attribute SDS
name name name
type rank
data dimension sizes
type
storagetype
data

The SD interface provides routines to access the objects depicted in Figure 7e, "A sample user’s
view of the SD model." If an object is part of another object, it cannot be accessed by the SD inter-
face without first accessing the enclosing object. E.g., dimension information can be accessed
only after accessing the associated SDS.

October 27, 2000 59

National Center for Supercomputing Applications

7.5 The SD Developer’'s Model

SD User’'s Model focuses on aspects of data and relationships among objects that facilitate the
user’s scientific work. Since the library must translate that data into something that can be stored
to and retrieved from the file in an efficient, universally-accessible manner, the SD Developer’s
Model presents a slightly modified set of objects and relationships.

While the SD collection is a virtual object in the user’s model and the user never sees it or has any
practical means of perceiving it, the SD collection is a very real object in the developer’'s model.
Different kinds of objects from the user’'s model are generalized as a simple type of object in the
developer’s model and some object relationships become more generalized.

As one can see in the UML diagram in Figure 7f,dheensi on-dat a-at t ri but e association is

very similar to thesDS-dat a-at t ri but e association. This leads to the generalized UML diagram

in Figure 7h, called the SD Developer's Model or the Internal SD Model. In this digp&and
dimension scales are replaced byasiable. The dimension object associated with the variable
describes the spatial information of the corresponding variable (i.e., the corresponding SDS or
dimension scale) and is independently a part of the SD collection.

Less formally expressed, when an attribute is assigned to the dimension, or data is associated with
the dimension, the HDF library creates internal structures in which to store this information.
These structures are the same as for an SDS. See Section 7.6, "Mapping between SD Developer's
Model and HDF File Structures,"” for further discussion. The HDF library uses the termifalogy
dimension is promoted to an SD&1id that promotion is transparent to the user. The user still

accesses a dimension’s data and dimension attributes via the SD interface routines and the SDS to

which that dimension belongs.

Since adimension scaleis stored in the same type of HDF object as an SDS, there is no difference

between them from the HDF library’s (and hence the developer’s) point of view. A dimension is
simply a special case of the more general SDS and both objects are viewed by the library and the
developer avariables. In the user’s view, an SDS can have associated attribute(s), data, and
dimension(s) and a dimension can have associated attribute(s) and data. Therefore, in the devel-
oper’s view, a variable can have associated attribute(s), data, and dimension(s)

FIGURE 7h

SD Developer’s Model -- The SD Model from the Developer’s Point of View

. 0... 1 . Shading indicates
a.tt”bUte < + SD CO“eCUOn objects or associations
o 1 created by library.
vo..*
dimension |« “te variable [——=» attribute
1
v 0.1
data

* variable can be either an SDS or a dimension scale.
N is arank of the variable.
[islifvariabl e is a dimension scale.

* Neither the link fromSD col I ecti on to di nensi on nor the link from
variable to dimension is available through the SD interface, though they are
available via other HDF interfaces.

October 27, 2000

HDF Specification and Developer’s Guide

Each object in Figure 7h is represented by a set of HDF objects in the file as defined in
Section 7.6, "Mapping between SD Developer’'s Model and HDF File Structures.”

The SD collection is created automatically by the HDF library. The attributes, variables, and data
are created by the user viathe SD interface.

Figure 7i summarizes the data and metadata associated with each SD model object.

FIGURE 7i SD Developer’s Model Objects
file attribute dimension variable data
name name name name raw data
type size rank
data dimension sizes
type
storagetype

A vari abl e isan array structure that has aname, spatial information (rank and dimension sizes),
datatype, and storage layout type and represents either an SDS or a dimension variable. The dif-
ference between two objects isin their rank and storage layout. The rank of a dimensional vari-
ableisalways 1 and its storage layout type can be contiguous or extendible (unlimited). See Table
7afor alist of storage layout options.

A variabl e alwayshas N associated di mensi ons withit. If vari abl e isadimension variable,
then the multiplicity factor N is 1. A variabl e may have zero or more attribute objects
associated with it.

TABLE 7a SDS Storage layouts
variable
SDS dimension variable
special storage
chunked and
contiguous chunked compressed compressed external default extendible

» Contiguous storage is the default layout and requires no special storage tag.

7.6 Mapping between SD Developer’s Model and HDF File
Structures

This section describes the mapping between the objects represented in the UML diagram in Figure
7h, "SD Developer’s Model -- The SD Model from the Developer’s Point of View," and the HDF
objects in the file.

The illustrations in this section employ the symbols in Figure 7j to identify the indicated file struc-
tures.

October 27, 2000 61

National Center for Supercomputing Applications

FIGURE 7]

File structure symbols

Vgroup HDF element identified with
tag/ref pair C|

Vdata ’ﬁ Abstract SD model object \:l

7.6.1 SD Callection

SD col I ect i on, which is the view of the file as revealed by the SD interface, is mapped to an

HDF Vgroup with name=f i | e_nane and cl ass=CDF0. 0. For purposes of this discussion only and

to distinguish this Vgroup from other Vgroups in the discussion, this is referred to as the top
Vgroup in the file. All objects shown in Figure 7h, "SD Developer’s Model -- The SD Model
from the Developer’s Point of View," are mapped to the HDF objects which are members of this
top Vgroup, as illustrated in Figure 7k through Figure 7p.

FIGURE 7k

M odel-to-File Mapping -- SD col | ecti on

SD collection | , .

e < S
name = file_name

Vgroup
name = file_name
class= CDF0.0

(file opened with SD interface)

Note that at the user level, the SD collection is a virtual entity; it has no real existence for the user.
At the developer level and in the file, however, the SD collection is a real object corresponding to
the top Vgroup. All of the HDF file structures that make up the SD collection are gathered
together into this Vgroup.

7.6.2 Attribute

An attribut e is mapped to the Vdata as follows:
» The Vdata has theane=at t ri but e_name and thecl ass=Attr0. 0.
» The Vdata has only one field with the napval ues] .
« For numerical attributes:
« The order of the field is 1 for a numerical attribute
« The data type of the field is the same as that of i but e.
e The Vdata ha#! records, where/ is the number of attribute values.
» For character attributes:
« The order of the field i8] whereN is the number of characters.
« The data type of the field is the same as thait of i but e.
» The Vdata has exactly one record.

e If attribute is attached to the file, then the corresponding Vdata will be a member of the
top Vgroup. Ifat tri but e is attached to the variable (an SDS or a dimensional scale), then
the Vdata is a member of the variable Vgroup. (See Section 7.6.3, "Variable.")

FIGURE 7|

M odel-to-File Mapping -- att ri but e

a-ttr | bUte P ! ?1/33?- attribute_name
name = attribute_name class =_AIIr0.0 -

62

October 27, 2000

HDF Specification and Developer’s Guide

7.6.3 Variable

A vari abl e is mapped to avariable Vgroup with nane=vari abl e_nane and cl ass=Var 0. 0. All
variable Vgroups are members of the top Vgroup. A Vgroup that represents a vari abl e has as
members N V groups which represent di nensi ons, and where N istherank of vari abl e.

FIGURE 7m

M odel-to-File Mapping -- vari abl e, dat a,and at t ri but e

variable

Vgroup
name = variable_name
class=Var0.0

name = variable_name
rank

type

storagetype

1 1

0...1,

data

0..*

attribute

Vdata
name = attribute_name
class = Attr0.0

name = attribute_name

In Figure 7m, note that NT, SD, SDD, and NDG are discrete and identifiable objectsin an HDF file
and are accessible viathe H interface. In this figure, the variable’s rank is storedin, the stor-
age type inV7, the data irsD, and the attribute in the Vdat®DG exists to enable backward com-
patibility with the DFSD interface.

For a more complete discussion of 8D, NT, SD andNDG structures, see ChapterTag Spec-
ifications. DFTAG SDD, DFTAG SD, andDFTAG NDG are discussed in Section 9.3.7, "Scientific Data
Set Tags.'DFTAG NT is discussed in Section 9.3.1, "Utility Tags."

7.6.4 Dimension

A di nensi on is mapped to the following group of HDF objects:

e The Vgroup with the name af nensi on_nanme and class of U D n0. 0. The U indicates
that this is an unlimited dimension; otherwise the order of the dimension would be fixed.

» A Vdata within this Vgroup with the nant# nensi on_nane and clas® nval 0. 0 or
D nval 0. 1. (See Figure 7n).

* Note the two possible classes. This is a versioning mechanism sometimes used within
the HDF library to identify internal technical changes. In this das#/al 0. 0 identi-
fies a dimension created under the original approach whidal 0. 1 identifies a
dimension created under a subsequent revision.

« Ifthe class i€ nval 0. 1, the default behavior is that the Vdata has one integer field
(int32) of order 1 and contains only one record with the size of the dimension. If the
user has explicitly created/stored dimension information, then the Vdata will be of
sizek, as described in the followiriy nval 0. 0 bullet.

« Ifthe class i€ nval 0. 0, the Vdata will have k records, whereis the size of the
dimension and the default value of each record equals the record’s position in the
Vdata.

October 27, 2000 63

National Center for Supercomputing Applications

» Thedimension Vgroup representingii nensi on is a member of theariable VVgroup repre-
sentingvari abl e (see Figure 70).

« If di nensi onis shared, then the dimension Vgroup can be a member of more than one vari-

able Vgroup.
FIGURE 7n M odel-to-File mapping - di nensi on
dl mms on 1 1 Vagroup
name= dimension name > name = dimension_name
size - class=(U)Dim0.0
Vdata
name = dimension_name
class= Dimva0.0(1)
As illustrated in Figure 7n, the dimension value is stored in the Vdata with
nane=di mensi on_nane, which is itself a member of the Vgroup withme=di nensi on_narre.
7.6.5 Overall Correspondence of SDS Elements and the HDF File Structure
The aggregation of the preceding elements and relationships, at the HDF file structure level, is
summarized in Figure 7o0.
FIGURE 70 SDS View of the HDF File Structure

Vgroup
name = file_name
class= CDF0.0

Vdata 0..% 1
name = attribute_name
class = Attr0.0

Vgroup
name = dimension_name
class = (U)Dim0.0

Vgroup
name = variable_name
class=Var0.0

Vdata
name = attribute_name
class= Attr0.0

Vdata
name = dimension_name
class=DimVal0.0(1)

Note the correspondence between the elements of the SDS view of the HDF file structure, as illus-
trated in Figure 70, and the SD Developer’s Model, as illustrated in Figure 7h. This correspon-
dence is illustrated in Figure 7p.
» The SD collection is represented by a VVgroup, the top Vgroup.
« Each variable, which can be either an SDS or a dimension scale, is represented by a variable
Vgroup which is a member of the top Vgroup.

« Dimensions and attributes are represented by Vgroups and Vdatas, respectively, which are
members of the SDS’s variable Vgroup.

October 27, 2000

HDF Specification and Developer’s Guide

« The raw data, data types, storage layout, and specialized information used by the library are
represented by low-level tag/ref elements which are members of the variable Vgroup.

« A dimension attribute is represented by a Vdata which is a member of a dimension scale’s
variable Vgroup.

The HDF SDS file structures are illustrated by the background elements (black) of Figure 7p. The
foreground elements (blue or gray, depending on whether this is viewed in color or black-and-
white) show the relationship between the SD Developer’s Model and the HDF SDS file structures.
Note that Vgroups and Vdatas play several different roles in this scheme; the roles of individual
Vgroups and Vdatas are indicated by their class.

FIGURE 7p

Developer’s view of the SD model (Figure 7h) and
the corresponding elements of the HDF file structure (Figure 70)

Vgroup
name = file_name
class= CDF0.0

Vdata 0..* 1
name = attribute_name
class= Attr0.0

Vgroup
name = variable_name

Vgroup
name = dimension_name
class= (U)Dim0.0

Vdata
name = attribute_name
class= Attr0.0

Vdata
name = dimension_name
class= DimVal0.0(1)

7.6.6 Accessing SD Objectsvia non-SD I nterfaces

The SD interface isthe only HDF interface that carefully maintains objects, file structures, and the
relationships among them to ensure the integrity of scientific data sets. While all elements of an
SD collection are individually accessible and manipulatable via the more general HDF interfaces,
such as the H interface, to do so introduces a significant risk of corrupting relationships and/or
data within the SD collection and is not recommended.

October 27, 2000 65

National Center for Supercomputing Applications

7.7 SDSMemory Structuresand Storage L ayout

The preceding sections of this chapter have focused on SD model objects and HDF file structures.
With this section and the next, the focus shifts to the HDF library implementation of the SD mod-
els, including an extensive discussion of the memory structures employed.

Thefile data structures in which the objects of the SD models are stored are mapped by the library
to data structures in memory either when an HDF file is opened with the SD interface or as the
objects are created during execution. The UML diagram in Figure 7q illustrates this mapping.

FIGURE 7q File Structuresto Memory Structures Mapping

File objects Memory objects

Vgroup
name = file_name
class= CDF0.0

Vdata 0..*

name = attribute_name 1; NC_ARRAY Of NC_ATTR

class = Attr0.0

Vgroup
name = dimension_name
class = (U)Dim0.0

> NC_ARRAY of NC_dim

Vgroup
name = variable_name
class=Var0.0

\ A

NC_ARRAY of NC var

These memory structures, NG, NC ATTR NC ARRAY, NC var and NC di m are described in detail in
Section 7.8, "Library Implementation Details with Example File and SDS." The HDF file struc-
tures are mapped to the memory structures as follows:

» The top Vgroup, the Vgroup containing all elements of the SD collection, is mapped to the
NC memory structure.

« Vdatas, containing data array attributes or dimension attributes, are mapped to the
NC ARRAY of NC_ATTR memory structure.

» Dimension Vgroups, each containing the elements of a dimension, are mapped to the
NC_ARRAY of NC_di m memory structure.

« Variable Vgroups, each containing the elements of an SDS, are mappedcodReay of
NC var memory structure.

66 October 27, 2000

HDF Specification and Developer’s Guide

FIGURE 7r

Data structures for HDF file contents

NC NC_var
char path[FILENAME_MAX + 1] NC_string *name
unsigned flags NC_iarray *assoc - user definition
XDR *xdrs unsigned long * shape - compiled info?

long begin_rec - postion of thefirst 'record’
unsigned long recsize - length of 'record’
int redefid ;

* below gets xdr'd */

unsigned long numrecs - # of 'records’ allocated
NC_array *dims

NC_array *attrs

NC_array *vars

int32 hdf_file;

int file_type;

int32 vgid;

int hdf_mode - mode attached for
hdf_file_t cdf_fp - file ptr for CDF files

NC_array

nc_typetype

size t len - total length originally allocated
size t szof - size of each value

unsigned count - length of the array

Void *values - the actual data

NC_dim

NC_string *name

long size

int32 dim00_compat - compatible w/ Dim0.0
int32 vgid - vg of thisdim

int32 count - # of pointersto thisdim

NC_attr
NC_string *name
NC_array *data
int32 HDFtype

unsigned long *dsizes - compiled info?

NC_array *attrs

nc_type type - the discriminant?

unsigned long len - total length originally alloc?

size t szof - sizeof each value

long begin - seek index, often an off_t

NC *cdf - the file which this var belongs to

int32 vgid - id of the variable’s vgroup

uint16 data ref - ref of var's data storage (if
exists, 0 otherwise)

uint16 data tag - tag of var's data storage (if
exists)

uint16 ndg_ref - ref of ndg for this dataset

intn data_offset - non-traditional data may not
beginat 0

int32 block_size - size of the blocks for
unlimited dim. datasets

int numrecs - # of records this has been filled

int32 aid - aid for DFTAG_SD data

int32 HDFtype - type of this var as HDF thinks

int32 HDFsize - size of this var as HDF thinks

int32 is ragged - thisisaragged array

int32 * rag_list - size of ragged array lines

int32 rag_fill - last linein rag_list to be set

Vix_t * vixHead - list of VXR records for
CDF data storage

NC iarray
(counted array of ints for assoc list)
unsigned count
int *values

NC_string
unsigned count
unsigned len
uint32 hash
char *values

October 27, 2000

67

National Center for Supercomputing Applications

7.8 Library Implementation Details with Example Fileand SDS

This section describes the interface routines that are used to create, open, and modify an SDS and
its componentsin the file. In particular, the following evolutionary stages of accessing and manip-
ulating the SDS are discussed:

e The file is created or open.

e An SDS is created.

« Data is written to the SDS.

» Global attributes are set for the file.

« Local attributes are set for the SDS (data string and attribute name) and the dimension
(dimension scale and dimension string).

» Access to the file is terminated.

At each stage, the correspondence between storing the contents in memory and representing the
data in the file is discussed.

Illustrations in this section adhere to the conventions used previously in this chapter, with the fol-
lowing additional elements:

* New items introduced for the next step are lightly shaded.

« Items being removed are heavily shaded and/or labeled in white text.

7.8.1 Creating or opening an HDF file

The routineSDstart creates a new HDF file or opens an existing one.

« WhenSDstart creates a file, a structune is created with the pointeté ns, at trs, and
vars set toNULL.

* WhenSDstart opens a file, a structune is created and the structums arr ay, NC var,
NC di mandNC attr are created and attached to the pointers, dins, and attrs cor-
responding to the contents of the file.

The objects are stored in these internal data structures (except for writing values) until the com-
pletion of SDend, which writes the contents in these data structures to the file in the form of
Vgroups, Vdatas, and other objects, as described below in each stage of the file evolution.

7.8.2 Creating an empty SDS

The routineSDcreate creates an SDS by the following steps:

» Creates amC di m for each dimension then inserts it ilNG ar r ay pointed to bydi ns. If
dins is NULL, a structure oNC array is created for it.

» For each\C di m creates a structure 6€ st ri ng to hold the name of the dimension.

» Creates amC var then inserts it int?C array pointed to byars. If vars is NULL, a
structure of\C array is created for it.

» Creates a structure 6€ st ring to hold the name of the SDS.
» Creates a structure o€ j array to hold the indices of the SDS dimensions.

Figure 7s illustrates the contents of the SD collection in the HDF file in memory at this point,
when the collection contains an empty two-dimensional SDS.

68 October 27, 2000

HDF Specification and Developer’s Guide

FIGURE 7s SD collection contentsin memory after a 2-dimensional SDSis created

—dims» NC_array

t | _—wi NC._dim —name—» NC_string
valuesh —]

“[» NC_dim —name— NC_string

NC

o

—assoc¥ NC_iarray ——Vvalues——

A

—vars-» NC_array |

NC_var —name¥» NC_string list of dim indices
|

SDS

LvaI uesh >

October 27, 2000 69

National Center for Supercomputing Applications

Figure 7t illustrates the corresponding representation in the file of the contents of the SD collec-
tion after the access to the file is terminated, i.e., SDend is called. Refer to Section 7.8.9, "Termi-
nating access to the SD collection and file," for the description of the termination process carried
out by this routine. In Figure 7t, a Vgroup at the top level represents the SD collection and con-
tain three other Vgroups. The first two second-level Vgroups represent the two dimensions of the
SDS. Each of these dimension V groupsincludes aone-field Vdata that has one record storing the
size of the dimension. The third second-level Vgroup represents the SDS. This VVgroup includes
several low-level objects, which have been described earlier in the chapter (see Section 7.6.3,
"Variable"):
* NT, SDD, NDG, and SD (introduced in Figure 7u) are tag/ref objects.

* NT, the number type of the SDS, is identified by theDRIAG NT.

« SDD, the scientific data dimension, is identified by theDREAG SDD.

* NDG, the numeric data group, is identified by thedamrG NDG

» SD, the scientific data, is identified by the &JAG SD. SD is present only after data
has been written to the SDS.

* NT contains a number type definition which can be used by different data objects.

* NDG contains two pointers, one to the NT and one to the SDD. The NDG is included solely
to enable backward compatibility with earlier versions of HDF.

FIGURE 7t SD collection contentsin the filewith a 2-dimensional empty SDS

Vgroup - Top level

name: <filename>
class: "CDF0.0"

Vgroup - SDSinfo

name: name of SDS
class: "Var0.0"

4
Vgroup - Dimension Info

Vgroup - Dimension Info

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

Scientific data dimension

Number type
(NT) record (SDD)

Vdata - Dimension Vdata - Dimension

name: name of dimension
class: "DimVal0.0"
or "DimVva0.1"

name: name of dimension
class: "DimVal0.0"
or "DimVva0.1"

Numeric Data Group
(NDG)

70 October 27, 2000

HDF Specification and Developer’s Guide

7.8.3 Writing datato an SDS

The routine SDwritedata writes datato an SDS. Since the writes are directly to the file, no new
internal data structures are introduced. The writing process includes searching the Vgroup that
holds the SDS information for the SD object (tag DFTAG SD.). If this object is not found among
the elements of the SDS information Vgroup, i.e., data has never been written to this SDS, a new
reference number is assigned for the SD object. This new object is then added to the SDS. The
reference number of this new object isstored in (NC var)->data_ref.

Figure 7u shows the change in the contents of the SD collection in the file after the SDSis written
with data. A new object is added to the SDS Vgroup.

FIGURE 7u

Vgroup - Dimension Info

class: "Dim0.0"
or "UDim0.0"

Vdata - Dimension

name: name of dimension

SD collection contentsin the file after a 2-dimensional SDSiswritten

Vgroup - Top level

name: <filename>
class: "CDF0.0"

Vgroup - SDSinfo Multidimensional

array - SDS data
name: name of SDS Scientific data
class: "Var0.0" (SD)

Vgroup - Dimension Info

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

class: "DimVal0.0"
or "Dimval0.1"

Number type Scientific data dimension
(NT) (SDD)
Vdata - Dimension
name: name of dimension name: name of dimension
class: "DimvVal0.0" Numeric Data Group
or "DimVal0.1" (NDG)

When more than one SDS is created, the process of writing to the file is the same as when only
one SDSis created. The dimensions, variable record, and attributes of the succeeding SDSs are
added to the pointer (NO) - >di s, (NC) - >var s, and (NC) - >at t r s and are written to thefilein the
same manner as for the first SDS.

If astorage layout is specified for the SDS (e.g., compression, chunking, or external storage), then
the SD tag is promoted to a special tag, as described in Chapter 10, Extended Tags and Special
Elements.

October 27, 2000 71

National Center for Supercomputing Applications

7.8.4 Adding global and local attributes

The routine SDsetattr adds an attribute to
A: the SD collection by the following steps:
Createsan NC at tr for the attribute.
Attaches the new attribute record to the pointer values of NC array pointed to by
attrs. If attrs iSNULL, astructure of NC array iscreated for it first.
B: an SDS by the following steps:

Createsan NC at tr for the attribute.

If this object has not yet had any attribute created, i.e., attrs is NULL, starts the
attribute list by creating a structure of NC ar r ay, then attaches the new attribute record
to the pointer values of NC arr ay.

If this object already has an attribute list, searches the attribute list for an attribute with
the same name as the one to be added.

» If one is found, replaces the found attribute structure with the new one.

* If none is found, adds the new attribute structure to the attribute list. Note: the
number of attributes must not exceed the maximum number of attributes allowed
(MAX_NC ATTRS.)
C: adimension by the following steps:
» Creates amC attr for the attribute

« If the SD collection contains no variable record (from thg N§) - >var s) that repre-
sents this dimension, promotes the dimension to a variable record, i.e. creates an
NC var for this dimension and attaches it to the variable list of the SD collection,
(NO ->vars. At this point, the dimension has a variable record and, therefore, the
rest of the attribute-setting process is identical to the process for an SDS.

72 October 27, 2000

HDF Specification and Developer’s Guide

Figure 7v, below, Figure 7w on page 74, and Figure 7x on page 75 illustrate the changes in the
data structures as a global SDS attribute, an SDS attribute, and a dimension attribute are added,
respectively.

FIGURE 7v SD collection contentsin memory after adding a global attribute

—attrs—» NC_array

- 2
data=] NC_ array —vaues¥» 7

L .
vauesp NC_attr

name g
~& NC string

—dims» NC_array

Lvalues+ __Lw NC_dim —name—» NC_string

NC T NC_dim —name—¥ NC_string
e
—assoc-» NC_iarray ——values—
vars»{ NC_array T T T
NC_var —name—» NC_string list of dim indices
L SDS - T T T N
values—

October 27, 2000 73

National Center for Supercomputing Applications

FIGURE 7w

SD collection contentsin memory after adding an SDS attribute

—attrs—» NC_array
_wi NC array —vauesp| ?
L | data
valuesﬁ NC_attr
name f
~& NC string
—dims» NC_array
L NC_dim —name—» NC_string
values
NC NC_dim —name—» NC_string
o o
—assoc-» NC_iarray ——values——
—vars»{ NC_array T T T
NC_var —name—» NC_string list of dim indices
L SDS - I R B B | f
values—
s values
—» NC_ array
NC_arr.
L data” | bt
values; ——» NC attr
name.,| NC_string
74 October 27, 2000

HDF Specification and Developer’s Guide

FIGURE 7x SD collection contentsin memory after adding a dimension attribute

—attrs—» NC_array

NC_array —vaues» ?

—w|
L | data
values®» ——p NC attr

name
~A NC_string

—dims» NC_array

Lvalues+ L w NC_dim —name-®» NC_string

T NC_dim [—name-» NC_string

NC

| _assoc®» NC_iarray ——values

/—\Cdf T T T 7T
NC var list of dim indices

— — e» NC strin I N T N |)

DS nam = g .

— values
attrs\‘ N C_arr ay

——vars—» NC_array _w NC_array
L data
values—p

——» NC_attr

tval uesp

" name
-

NC_string

e

\ | _assoc® NC iarray ——— vaues
list of dimindices

cdf NCwvar | e NC_string e RS Ty T f ?

\' dimension

[values
Eﬁtl’s\b N C_a”.ay

NC_arr
L daia/v kil
values—p NC_attr

~
namej‘

NC_string

October 27, 2000 75

National Center for Supercomputing Applications

It is worthwhile to pause at this point and review Figure 7y which highlights the relationship of
the memory structures that have been built up by the library to the elements of the SD model dis-
cussed earlier in this chapter.

FIGURE 7y Example of HDF memory structures describing an SD collection
—ettrs— NC_array NC array —
, array (—valuesp
det”|
LvaJu&;* —» NC_ attr [~
NaMme-al NC_string
—idims-» NC_array
NC dim —name—»{ NC_string
Lvalu&;$ —7 -
TT—» NC_dim |—name-®» NC_string
NC
| —assoc»| NC_iarray ——values
— cdf \ [T T
A NC var list of dim indices
— — NC_strini I IR
DS name-»; _string f
— values
atrs_y, NC_array
—vars—» NC_array _w| NC_aray
L data
t values— NC_attr
valuesp —
name-a| NC_string
\ | _assoc® NC iarray 7Vdues—+
P]
list of dim indices
odf NC__VFir |_name» NC_string (e e e
\ dimension f
n L values
attrs—y,| NC_ array
NC_arr
L data/v Sibes
valuesﬁ NC_attr
name_, NC_string

76

October 27, 2000

HDF Specification and Developer’s Guide

If SDend is called after adding the preceding elements, Figure 7z illustrates the representation of
the SD collection in the closed and written file. Thetop level VVgroup, the SDS V group, and one of
the dimension Vgroups now each has another element, a Vdata, that holds its newly added
attribute. Each attribute is stored in a one-field VVdata that has one record containing the attribute
values. The Vdata's order isthe number of valuesin the attribute.

FIGURE 7z SD collection contentsin thefile after adding a global attribute, an SDS attribute, and a

dimension attribute

Vdata- "globd" attribute ¢—————

name: name of attribute
class: "Attr0.0"

Vdata - Dimension Attribute

also "local" attribute

4
Vgroup - Dimension Info

class: "Dim0.0"
or "UDim0.0"

name: name of attribute
class: "Attr0.0"

Vdata - Dimension

name: name of dimension

Vgroup - Top level

name: <filename>
class: "CDFO0.0"

Vgroup - Dimension Info

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

Vdata - Dimension

name: name of dimension
class: "DimVal0.0"
or "DimVal0.1"

name: name of dimension
class: "DimVal0.0"
or "DimVal0.1"

Vgroup - SDSinfo

name: name of SDS
class: "Var0.0"

Vdata- "Local" attribute

name: name of attribute
class: "Attr0.0"

Multidimensional
array - SDS data

Scientific data
(SD)

Number type
(NT)

Scientific data
dimension (SDD)

Numeric Data Group
(NDG)

October 27, 2000

7

National Center for Supercomputing Applications

7.8.5 Setting adata string

The routine SDsetdatastr s sets values for the pre-defined attributes label, unit, format, and coor-
dinate system. The process of setting each of these attributes is similar to that of setting a user-
defined attribute, as described in Section 7.8.4, "Adding global and local attributes," except that
the names of these attributes are pre-defined rather than being set by the user.

7.8.6 Setting a dimension name

Figure 7aa shows the dimension list attached to the SD collection structure in a simplified dia-
gram so that the following illustrations will be easy to describe and understand. In this figure,
there are four dimensions named as f akeD rm by default, where n is the index of the dimensions
asthey are created.

FIGURE 7aa

Structures of the dimension list (example)

NC —dims» NC_array

Lvalu&s$ -
) NC_string
NC_dim ——name—) fakeDimo
NC_dim ——name— '?Iaiégmg
) NC_string
NC_dim ——name—) fakeDim2
) NC_string
NC_dim ——name—) fakeDim3

The routine SDsetdimname sets the name for a given dimension according to the following crite-
ria

« If a dimension already exists having the same name as the name being set but having a size
different from that of the given dimensidgDsetdimname fails.

* If no dimension with the given name exists, a new name structure is created and the dimen-
sion is set to the new name. The structure holding the dimension's old name, which can be a
default name or one that was previously set, will be removed. Figure 7ab on page 79 shows
the dimensiorf akeD n2 renamed ta@i rmane.

« If a dimension already exists having the same name as the name being set and having the
same size as the dimension being set, the found dimension striaturienf will be used
for the dimension being set as well. Figure 7ac on page 79 illustrates this event. Let's say
that we are settingane for the dimensiohakeD n8 to a namegi m nane, that is the same
as that of the third dimension. When the matched dimension is found, all pointers to the
dimension being named are reset to point to the dimedsiomane. The old structure and
its elements are then removed.

78

October 27, 2000

HDF Specification and Developer’s Guide

At this point, the SD collection illustrated in Figure 7s on page 69 and Figure 7t is considered

completely evolved. The dimension settings are described in detail in Figure 7aa, Figure 7ab, and
Figure 7ac.

FIGURE 7ab Setting a dimension name to a new name

NC —dims¥» NC_array

L NC_string
values» name—|__fakedimo
NC dim —
NC_string ne\{v
NC_dim |——name— faedim1
NC_string
[dim name
\dim name NC S
L - FString
NC_dim name- faaditn
“old._
) NC_string A
NC_dim ——name—» fakedim3
FIGURE 7ac Setting a dimension nameto an existing name
NC —dims¥» NC_array
Lvalu&c» -
) NC_string
NC_dim ——name—» fakedimo
) NC_string
NC_dim ——name—) fakediml
NC_dim ——name—) N‘C_strlng
dim name
dp
-
: N NCsting
A g con SRR
/ap /dlm

October 27, 2000 79

National Center for Supercomputing Applications

7.8.7 Setting a dimension scale

The routine SDsetdimscal e sets values to a given dimension as follows.

« If the SD collection contains no variable record (from thg N§) - >var s) that represents
this dimension, promote the dimension to a variable record as described in the case of set-
ting dimension attribute in Section 7.6.4, "Dimension." and illustrated in Figure 7x, "SD
collection contents in memory after adding a dimension attribute.” At this point, the dimen-
sion has a variable record and the scale values are written to the variable record.

« If this dimension already has a variable record, the record is updated with the scale values.

In both cases, the number type of the dimension is set via a &alktbdimscale.

7.8.8 Setting adimension string

The routineSDsetdimstr s sets values to the pre-defined attributesel , uni t, andf or nat for a
dimension. The process of setting each of these attributes is similar to that of setting a user-
defined attribute described in Section 7.6.4, "Dimension," except that the names of these
attributes are pre-defined rather than being set by the user. Before setting values for any of these
attributes, a variable record is created for this dimension if the record does not already exist. The
creation of the variable record for a dimension is illustrated in Figure 7.6.4, "Dimension."

If SDsetdimstrs is called befor&SDsetdimscale, then the number type of this dimension will be
set toDFNT_FLQAT32 (5).

7.8.9 Terminating accessto the SD collection and file

The routineSDend terminates access to the SD collection and the HDF file and, if the contents of
the structures have changed, writes all the structures to the file. The following steps will be car-
ried out:

» For each dimension
* aVdata is created containing the size of the corresponding dimension.

< a Vgroup for this dimension is created. Its reference number is stored in
(NC_di m) - >vgi d, a Vgroup containing the above Vdata.

» For each SDS
« the record SD that stores the SDS data is written if data has been written to this SDS.
« the record NT that stores the number type is written.
¢ the record SDD that stores the dimension values is written.
» the NDG record that is formed by the records SD, NT, and SDD is written.

< a Vgroup for this variable is created. Its reference number is stored in
(NC_var) - >vgi d, a Vgroup containing all of the dimensions' Vgroups, the attributes'
Vgroups if there are any, and the SD, NT, SDD and NDG records.

* For the SD collection and the HDF file
« global attributes are written.

» aVgroup for the top level is created. Its reference number is stofad)in>vgi d, a
Vgroup containing all of thglobal attributes' Vgroups, the dimensions' Vgroups, and
the SDS Vgroups.

80

October 27, 2000

General Raster | mages:

The GR M odel

8.1 Chapter Overview

This chapter provides functional descriptions of the GR Data Model, the GR implementation in
the HDF library, and the HDF file structures employed.

Section 8.2, "Images in an HDF File," describes the types of images that may be found in an
HDF file.

Section 8.3, "The GR Data Model,” and Section 8.4, "Mapping between GR Data Model
and HDF File Structures," describe the GR data model, including a rigorous UML represen-
tation, and the mapping of the model's elements to HDF data structures.

Section 8.5, "Modifying an RIG or RI8 Image via the GR Interface," discusses the interac-
tion of the GR interface with older-style RIG and RI8 images.

Section 8.6, "Backwards Compatibility when Creating New Images via the GR Interface,”
through Section 8.8, "Relationships among Main Data Structures," describe the GR imple-
mentation in the HDF library and the data structures employed.

Section 8.9, "The Evolution of an HDF File in the GR Interface," then illustrates several
steps in the evolution of the contents in an HDF file under the GR interface. At each step,
the correspondence between the information as stored in memory and as represented in the
file is described.

Many of the figures in this chapter employ UML notation (Unified Modeling Language notation)
to show object relationships. See Section 7.2, "UML Notation and Object Symbols in HDF Data
Model Descriptions."

October 27, 2000 81

National Center for Supercomputing Applications

8.2

Imagesin an HDF File

An HDF file may contain many elements, including general raster images (GR data sets, the sub-
ject of this chapter) and older-style images, palettes, scientific data sets (SDSs), groups of HDF
objects, annotations, etc. Figure 8a provides a high-level illustration of the elements of an HDF
file

FIGURE 8a

An HDF file may contain several objects and object collections
HDF4file

1 1
/ T \
0..* 0..* 0..*

0.1y

0..*

o

** older styleimage: RI8, RIS, or RIS24

When afileis opened with the GR interface, all of the raster imagesin thefile, including the ol der
RI8, RIS8, and RIS24 images, become visible to the application, asillustrated in Figure 8b below.
Other objects in the file are unavailable through the GR interface; they can, however, be accessed
through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 8b

An HDF file opened with the GR interface
HDF4file

(opened with GR interface)

0..* / O*J 0..*

GR data set | |older image** other objects

(invisible to the application)

** older-styleimage: RI8, RIS8, or RIS24

As indicated in these figures, an HDF file may contain any of several styles of raster images; this

is due to the history of HDF development and the need to maintain backwards compatibility. The
older-style raster images, RIG and RI8, will occur in HDF files created with older versions of the

HDF library. (See also Section 8.6, "Backwards Compatibility when Creating New Images viathe

GR Interface" regarding the current library’s ability to create these older-style images.) Figure 8c
lists the properties of the three types of images, GR, RIG, and RI8, providing a tabulated compar-
ison. The three following subsections describe these images in more detail.

82

October 27, 2000

HDF Specification and Developer’s Guide

FIGURE 8c

Threetypes of raster image

raster image

GR data set K RIG RI8

n-component RIS8 (1-component) RI8 (1-component)
compression types compression types compression types
RLE RLE RLE
) SKPHUFF IMCOMP IMCOMP
£ DEFLATE JPEG
g JPEG RIS24 (3-component)
& special storage compression type
compressed PEG

chunked
chunked & compressed
external storage

attributes

8.2.1 GR data sets

The newest form of raster image in HDF isthe general raster image. These images are represented
by GR data sets and are referred to as such throughout this and other HDF documents. GR data
sets were introduced at HDF Release 4.0.

GR data sets provide an extended color capability, global and local attributes, and specia storage
capabilities. The elements of a GR data set include the following HDF objects:

» Raster image data
« compressed image data (RLE or run length encoding, SKPHUFF or Skipping-Huff-
man, DEFLATE, and JPEG)

» special storage layout (compressed, chunked, compressed and chunked, or external)

* Image dimension

* Image attribute

» Palette

» Palette dimension
In the file, a GR data set consists of a Vgroup and several elements, as discussed in Section 8.4,
"Mapping between GR Data Model and HDF File Structures," and illustrated in Figure 8j on
page 89.

The GR data sets in a file constitute a GR collection, described in Section 8.3, "The GR Data
Model."

GR data sets are created and manipulated via the GR interface (the GR API); see Section 8.9,
"The Evolution of an HDF File in the GR Interface.". The GR interface also reads, and can manip-
ulate, older-style raster images; see Section 8.5, "Modifying an RIG or RI8 Image via the GR
Interface."

October 27, 2000 83

National Center for Supercomputing Applications

8.2.2 RIG images (RIS8 and RIS24)

Raster image groups (RIGs), including RIS8 and RIS24 images, were the first HDF images to
employ a grouping structure and provided the first 24-hit color image capability in HDF, while
also providing extended compression capabilities. RIGs were the immediate predecessors to the
GR approach and were introduced at HDF Release 2.0.

RIG images are represented by a raster image group (RIG) that contains pointers to other HDF
objects. This type of raster image does not have attributes but does have al the other elementsin
the GR list above. Characteristics particular to RIGs are as follows:

« All RIG images are made up of 8-bit components.

* An RIS8 image is a 1-component, or 8-bit, RIG; an RIS24 image is a 3-component, or 24-
bit, RIG.

* RIG compression modes are RLE (run-length encoding), IMCOMP, and JPEG.

Figure 8d presents the file elements that make up an RIG image with a palette, which is optional.

FIGURE 8d RIG with raster image and palette

RIG
tag: DFTAG_RIG

0..1

{de{)"_@r?é d'gtla image dimension i [palete palette dimension
or compression tag tag: DFTAG_ID : tag: DFTAG_LUT tag: DFTAG_LD

An RIG is a tag/ref object and is fully described in Section 9.3.4, "Raster Image Tags," in Chapter
9, Tag Specifications. The DFTAG_RI, DFTAG_ID, DFTAG_LUT, and DFTAG_LD objects are
fully described in the same chapter.

8.2.3 RI8images
The RI8 image is the original HDF 8-bit raster image and provides basic compression capabilities.
RI8 images are characterized as follows:
* RI8 images employ no grouping structure.
e There are three compression modes for RI8 images:
« uncompressed images identified by the tag DFTAG_RI8
* RLE-compressed images identified by the tag DFTAG_CI8
* IMCOMP-compressed images identified by the tag DFTAG_118
« Image dimensions are identified by the tag DFTAG_ID8.
» Palette dimensions are identified by the tag DFTAG_IPS.

An RI8 image is a tag/ref object and is fully described in Section 9.3.9, "Obsolete Tags," in Chap-
ter 9,Tag Specifications.

84 October 27, 2000

HDF Specification and Developer’s Guide

8.3

The ability of the current library to process RIG and RI8 imagesis intended only to support back-
ward compatibility. The RIG and RI8 interfaces are both obsolete APIs and it is highly recom-
mended that only the GR interface be used in new applications.

The GR Data M odel

This section provides alogical description of an HDF file containing GR images. A user’s view of

the data model is presented in Section 8.3.1, "A Casual View," and Figure 8e, "A sample user’s
view of the GR model." The formal data model and a graphical representation are presented in
Section 8.3.2, "The Formal GR Data Model," and Figure 8f, "GR data model."

8.3.1 A Casual View
From a user’s point of view, an HDF file containing GR data sets is structured as follows and as
illustrated in Figure 8e on page 86:
» The file contains GR data sets and optional global attributes.
« Every GR data set includes the following information:
* Name
¢ Number of components
» Dimension sizes (2 dimensions only)
« Pixel data type
* Image interlace mode (by pixel, line, or plane)
« Each GR data set may have the following associated elements and properties

 Attribute(s) e Data
e A palette « Storage layout

A palette is described by the following characteristics:

» Data type

* Number of entries

* Number of components

¢ Interlace mode
Global attributes, when present, are defined by the user, apply to all raster images in the file, and
usually describe the intended usage of the GR data sets in the file. GR d#tralsres, some-

times known agocal attributes, are also optional, defined by the user, and describe only that data
set.

GR data sets can have one of several storage layouts, as listed in Table 8a.

TABLE 8a

GR storage layouts

GR data set
special storage
chunked and
contiguous chunked compressed compressed external

» Contiguous storage is the default layout and requires no special storage tag.

October 27, 2000 85

National Center for Supercomputing Applications

A sample user’s view of the GR model

FIGURE 8e

9|l feusaixe
ejep abew!

8l1d 109y “be

(s)ebewl
akis-pio

Jabajul = adAy
G X QT = S9zIs wip
T = sjusuodwod
uoprew.ojul [eneds
Aul, = aweu

uabew i ¥o

(sabew Yo 01 Ajuo sa1|dde)
Jsuo),=anjea

(S)eingrme reqo|f

oW, =anfea

seingLye

passaldwod Jou
® payunyo jou
erep abew|

A

(erep oN ©I0N)

passaidwod Jou
® payuny jou
ejep abew|

ouwn,=an[ea
sang e
A
anered
passaidwod w
® paxyunyd
elep abew|

Jabaul = adfy

X G X 0T = S9zIs wip

€ = sjusuodwod

uolrewlojul [eneds
b, = aweu

7 abew! Yo

™

juiod Buireoyy = adAy
€ X ¥ = SazIs wip
T = sjusuodwod
uopewloul [eneds
£, = aweu

g afew ¥o

Jabaul = adfy
G X QT = S9zIs wip
T = sjusuodwod
uolrewlojul [eneds
.24, = aweu

Z abewi ¥4o

juiod Buireoy = adAy
0C X 00T = S82ZIs wip
1 = sjusuodwod
uonew.oul [ereds
.Tu, = aweu

T abewi 4o

=

o} ¥4AH

October 27, 2000

86

HDF Specification and Developer’s Guide

For descriptions and definitions of the required and optional components that make up a general
raster image, and of the GR interface routines provided by the HDF library to create and access
GR data sets in the file, see Chapter 8, “General Raster Images (GR API),’HDRhdser's
Guide For a complete description of palettes, see Chapter 9, “Palettes,HBEhEgser's Guide

8.3.2 TheFormal GR Data M oded

The formal GR Data Model includes one type of object the user does not actually see, the GR col-
lection. An HDF file may contain zero or one GR collection which may, in turn, contain zero or
more GR data sets. The optional global attributes are actually associated with the GR collection.

A GR data set is an HDF data structure used to store ageneralized raster image and the supporting
metadata. Each GR data set may have zero or more associated attributes, sometimes referred to as
local attributes.

The GR data sets and the associated objects (see Figure 8f) can be accessed only through the GR
interface.

FIGURE 8f GR data model
File
1
Vv o0..1
attribute ‘0*—# f‘C;R C|O|”| Eg-thn cs)gjaeiitggoli’nadsisc;c[ieastioms
(file opened wi 11 interface) created by library,
G
v 0.*
GR data set
1 > 1
0...1 Jy 0.1 0..*
palette image data attribute
The formal model is based on relationships among user-specified objects of the GR Data Model
and the associated object attributes, as described in Figure 8g.
FIGURE 8g GR Data model objects

file attribute GR data set palette
name name name data type
type dimension sizes (ui nt 8 only)
data # of components # of entries
data type # of components
interlace mode interlace mode
data

October 27, 2000 87

National Center for Supercomputing Applications

8.4

The GR interface provides routines to access the objects depicted in Section FIGURE 8e, "A sam-

ple user’s view of the GR model," and Section FIGURE 8¢, "GR Data model objects." If an object

is part of another object, it cannot be accessed by the GR interface without first accessing that
other object; e.g., palette or attribute information can be accessed only after accessing the associ-
ated raster image.

M apping between GR Data Model and HDF File Structures

This section describes the mapping between the objects represented in the UML diagram in Figure
8f, "GR data model," and the HDF obijects in the file.

The illustrations in this section employ the symbols in Figure 8h to identify file structures.

FIGURE 8h

File structure symbols

Vgroup Other low-level HDF objects,
usually identified by atag/ref pair C|

Vdata i Abstract GR model object I:I

Elements of the GR data model map to HDF file objects as illustrated in Figure 8i

FIGURE 8i

M odel-to-file mapping -- GR col I ecti on

Vgroup
name = RIG0.0
class=RIG0.0

GR collection |1 1

(file opened with GR interface),

. v
Attribute ! ! narif: RIATTRO.ON

class= RIATTR0.0C

A

Vgroup
name = image_name
class=RI0.0

1 1 palette palette dimension
Palette > tag: DFTAG_LUT | o tag: DFTAG_LD

Two tag/ref elements added to GR data set Vgrou

1 1 image data image dimension
Imagedata «——— tag: DFTAG_RI -
g or extendod + tag: DFTAG_ID

Two tag/ref elements added to GR data set Vgroups

GR data set

A GR attribute is represented by a Vdata with or - Vs

field. The field name is the name of the attribute name = RIATTROON
The field contains the value of the attribute; the ﬁﬁ?j;'nfj ﬁ;&?ﬁ,ute_namen
number of records in the field corresponds to th
number of attribute values. For example, the fig
ure to the right represents an attribute named

attri but e_name with the valueabcd.

Record
content

Records

A W N P
a |o |o |

October 27, 2000

HDF Specification and Developer’s Guide

Figure 8j presents the file elements that make up an image, or GR data set, and the relationships

among them as created by the GR interface.

FIGURE § Filestructuresrepresenting a GR data set
Vgroup
name = image_name
1 class=RI0.0 1
0..* local attribute
Vdata
name = attribute_name
class = Attr0.0
1 :’
image d - ; .
Grpme| Gmwes| (| (e
» For any given image, the Vgroup may contain either
« raster image data, DFTAG_RI or
« raster image data in a special storage format, indicated by an extended tag. Extended
tags are described in Chapter E®tended Tags and Special Elements.

« The image dimension object, DFTAG_ID, includes image dimension, interlace mode and
compression information. Image compression may be RLE (run length encoding),
SKPHUFF (Skipping-Huffman), DEFLATE, or JPEG.

« The GR data set Vgroup must have a class narrRe0od. Should changes in the GR data
structures ever become necessary, the class mechanism will enable the HDF library to man-
age evolving versions.

Figure 8k graphically presents the relationships among the elements of the formal GR data model.
The GR collection is represented by a Vgroup whose members are the global attribute Vdata and
the GR data set Vgroups. Each GR data set is represented by a VVgroup whose members are the
image data and dimension objects, the palette objects, and the local attribute Vdata.

FIGURE 8k File structuresrepresenting a GR collection

global attribute

Vdata
name = RIATTRO.ON
class=RIATTRO0.0C

raster image data
tag: DFTAG_RI
or extended tag

image dimension
tag: DFTAG_ID

Vgroup

Vgroup

name = name_of_image

class=RI0.0

name = RIG0.0
class=RIG0.0

local attribute

—»| Vdata
" ||[name= RIATTRO.0N
class= RIATTR0.0C

i (paette palette dimension
| tag DFTAG_LUT tag: DFTAG_LD

October 27, 2000

89

National Center for Supercomputing Applications

8.5

Modifying an RIG or RI8 Image viathe GR Interface

This section discusses the consegquences of using the GR API to access and modify older-style
RIG and RI8 images. This situation is likely to arise only when using the current version of the
HDF library to edit afile that was created with an on older version.

Consider the fileillustrated in Figure 8I. This file contains one GR data set, one local attribute on
that GR data set, one global attribute, one RIG image, and one palette on that RIG image.

FIGURE 8l

GR global attribute

Filewith one GR data set and one RIG image

\

Vdata
name = RIATTRO.ON
class=RIATTR0.0C

Vgroup RIG
name = RIG0.0 name: name of image
class = RIG0.0 tag: DFTAG_RIG

class: RI0.0

Vgroup

class=RI0.0

-

name = name_of_image

local attribute

— | Vdata
name = RIATTRO.ON
class= RIATTR0.0C

raster image data
tag: DFTAG_RI
or extended tag

palette dimension
tag: DFTAG_LD

i

image dimension
tag: DFTAG_ID

aster image data
tag: DFTAG_RI

E

palette
tag: DFTAG_LUT

image dimension
tag: DFTAG_ID

Now consider the use of the GR API to modify the RIG image.

First note that if the GR API modifies just the data of the RIG, e.g., the image or palette values or
dimensions, but does not add an attribute, GR makes no changes to the file structure.

If an attribute is added, however, GR creates aV group for anew GR data set, links the elements of
the image (DFTAG_RI or extended tag in the case of special storage, DFTAG_ID, DFTAG_LUT,
and DFTAG_LD) into that Vgroup, and adds the attribute V data.

The RIG group element (DFTAG_RIG) is not linked into the GR data set Vgroup. The RIG image
remains available via the older interfaces, though those interfaces will not show the attribute. Fig-
ure 8m illustrates the structure of the file after an attribute has been added to the RIG image by
means of the GR interface.

An RI8 image is incorporated into the GR collection under the same circumstances and in the
same manner as the elements of an RIG image. The only difference is that there is not RIG object
(DFTAG_RIG) to consider.

When the GR interface is initiated, the information about the HDF file and its contents are
mapped into memory and stored in the GR interface’s main data structures, as discussed in
Section 8.7, "Main Data Structures and their Relationships." These structures then maintain and
update the information during processing of the application, and they are described in more details

90

October 27, 2000

HDF Specification and Developer’s Guide

in the next section. When all processing is done, if the file contents have changed, the physical
file will be updated with the information stored in the data structures.

FIGURE 8m File of Figure 8l after GR API hasbeen used to add an attribute to the RIG image

=

name: name of image
tag: DFTAG_RIG
class: RI0.0

N

GR globa attribute

Vgroup
name = RIG0.0
class=RIG0.0

Vdata
name = RIATTRO.ON
class= RIATTR0.0C

local attribute

Vgroup
name = name_of_image
class=RI0.0

Vgroup
name = name_of_image |——®| Vdata

class=RI0.0 name = RIATTRO0.ON
class= RIATTR0.0C
image dimension raster image data
tag: DFTAG_ID tag: DFTAG_RI

local attribute

Vdata
name = RIATTRO.ON
class= RIATTR0.0C

raster image data

image dimension
tag: DFTAG_ID

palette dimension
tag: DFTAG_LD

palette
tag: DFTAG_LUT

8.6 Backwards Compatibility when Creating New Imagesviathe GR
| nterface

The HDF library makes extensive efforts to maintain backwards compatibility. When anew image
is created viathe GR interface, the library creates as many as possible of the following versions of
the image:

* A GR data set is always created.

* An RIG is created for every image that meets the RIG criteria. For example, an RIG can be
created for 1-component or 3-component images if the components are 8-bit integers and
the compression mode is available for an RIG image. The images would be RIS8 or RIS24,
respectively. If the image includes an attribute, that attribute will appear in the GR version
of the image but will not be accessible in the RIG version.

* An RI8 image is created if the image meets the RI8 criteria. For example, an RI8 can be cre-
ated for a 1-component, 8-bit image that uses a compression mode available for an RI8
image.

October 27, 2000 91

National Center for Supercomputing Applications

8.7 Main Data Structuresand their Relationships

This section provides the description of the main data structures used in the GR interface to store
aGR data set’s contents in memory. Figure 8n lists these data structures and all their elements.

gr_info_t File information structure storing information about the HDF file.
ri_info_t Raster image information structure storing information about a raster image.
at_info_t Attribute information structure storing local and global attribute information.

diminfo_t Dimension information structure storing both image and palette dimension
information.

These structures are somewhat self-described in Figure 8n, except for some details too complex to
present in the figure. The following subsections provide additional details about these structures.
The last subsection in this section describes the relationships among the data structures.

92 October 27, 2000

HDF Specification and Developer’s Guide

FIGURE 8n Main data structuresin GR interface

gr_info_t: this structure holds the file information

int32 hdf_file_id - the corresponding HDF file ID

uint16 gr_ref - ref # of the Vgroup of the GRin thefile

int32 gr_count - # of image entriesin grtree so far

TBBT_TREE *grtree - root of image B-Tree

uintn gr_modified - whether any images have been modified

int32 gattr_count - # of global attr entries in gattree so far
TBBT_TREE *gattree - root of global attribute B-Tree

uintn gattr_modified - whether any global attributes have been modified
intn access - the number of active pointersto thisfile

uint32 attr_cache - the threshhold for the attribute sizes to cache

ri_info_t: this structure holds the raster image information

int32 index - index of thisimage

uint16 ri_ref - ref # of the Rl Vgroup

uint16 rig_ref - ref # of the RIG group

gr_info_t *gr_ptr - ptr to the GR info that thisri_info appliesto
dim_info_timg_dim - image dimension information

dim_info_t lut_dim - palette dimension information

uint16 img_tag, img_ref - tag & ref of theimage data

int32 img_aid - AID for the image data

intn acc_perm - Access permission (read/write) for image AID

uintl6 lut_tag,lut_ref - tag & ref of the palette data

gr_interlace tim_il - interlace of image when next read (default PIXEL)
gr_interlace t lut_il - interlace of LUT when next read

uintn data_modified - whether the image or palette data has been modified

uintn meta_modified - whether the image or pal ette meta-info has been modified
uintn attr_modified - whether the attributes have been modified

char *name - name of theimage

int32 lattr_count - # of local attr entriesinri_info so far

TBBT_TREE *lattree - Root of thelocal attribute B-Tree

intn access - the number of times this image has been selected

uintn use_buf_drvr - access to image needs to be through the buffered special element driver
uintn use_cr_drvr - access to image needs to be through the compressed raster special element driver
uintn comp_img - whether to compress image data

int32 comp_type - compression type

comp_info cinfo - compression information

uintn ext_img - whether to make image data external

char *ext_name - name of the externd file

int32 ext_offset - offset in the externd file

uintn acc_img - whether to make image data a different access type

uintn acc_type - type of access-mode to get image data with

uintn fill_img - whether to fill image, or just store fill value

void * fill_value - pointer to the fill value (NULL means use default fill value of 0)
uintn store_fill - whether to add fill value attribute or not

dim_info_t: this structure holds the image and palette

at_info_t: this structure holds the attribute information) .= .
— = dimension information

int32 index - index of the attribute uint16 dim_ref - reference # of the Dim record

int32 nt - number type of the attribute int32 xdim, ydim - dimensions of the image or palette

int32 len - length/order of the attribute int32 ncomps - number of comps of each pixel inimage
uint16 ref - ref of the attribute (stored in VData) int32 nt - number type of the components

uintn data_modified - whether the attribute data has been modified int32 file_nt_subclass - number type subclass of data on disk
uintn new_at - whether the attribute was added to the Vgroup gr_interlace til - interlace of the comps (stored on disk)

char *name - name of the attribute uint16 nt_tag, nt_ref - tag & ref of the number-type info

void * data - data for the attribute uint16 comp_tag, comp_ref - tag & ref of the compression info

October 27, 2000 93

National Center for Supercomputing Applications

8.7.1 Filelnformation Structure(gr _i nfo_t)

The gr_info_t structure contains the information describing the HDF file whose identifier is
stored inhdf _file_id (refer to Figure 8n).

Additional details are asfollows:
« gr_ref is the reference number of the top level Vgroup in Figure 8Kk.

e grtree points to the tree whose nodes link to the raster image information structure describ-
ing an image in the file (see Figure 8q). Note that the images stored in this tree may include
images read in from an existing file and images created in the application.

e gr_count indicates the number of nodes in the tyeer ee, i.e., the number of images cur-
rently stored in the file information structure.

e gr_nodified andgattr_nodi fi ed ensure that the file will be updated duri@&end pro-
cessing.

» gattree points to the tree whose nodes link to the attribute information structure which
describes a global attribute in the file (see Figure 8q). Note that the attributes stored in this
tree may include attributes read in from an existing file and attributes created in the applica-
tion.

e gattr_count indicates the number of nodes in the global attributegtieter ee, i.e., the
number of global attributes currently stored in the file information structure.

8.7.2 Raster Image Information Structure(ri _i nfo_t)
Theri _info_t structure contains information describing a raster image.

When an existing file is opened, its contents are retrieved and stored in the data structures. The
contents may include raster images, which may be of any type described in Section 8.2, "Images
in an HDF File." The following table illustrates how different reference numbers in this structure
are used to store the in-file representation of the three types of raster images. Natice tleat

in the table belongs to the dimension information structure; however, because the dimension
information structure is used by this image for both the image dimension and the image's palette
dimension, it makes more sense to describe the dimensions' reference number here.

TABLE 8b Reference numbers and the in-file representation of raster images
GR data set RIG raster image Non-group raster image
ri_ref Ref# of GR data set Vgroup DFREF_W LDCARD DFREF_W LDCARD
rig_ref aux_ref? or DFREF_W LDCARD Ref# of RIG group DFREF_W LDCARD
i mg_ref Ref# of either the raster image data Ref# of either therasterimage | Ref# of one of the following:
or the compressed image data data or the compressed image « 8-bit raster image
data * RLE compressed 8-bit raster image

* IMCOMP compressed 8-bit raster image

lut_ref

Ref# of the palette Ref# of the palette Ref# of one of the following:

« 8-bit palette

* RLE compressed 8-bit palette

* IMCOMP compressed 8-bit palette

ing_di mdimref

Ref# of the image dimension Ref# of the image dimensign DFREF_W LDCARD

lut_dimdimref

Ref# of the palette dimension Ref# of the palette dimensiprDFREF_W LDCARD

94

October 27, 2000

HDF Specification and Developer’s Guide

8.8

Additional details are asfollows:
« ing_di mis a structure describing the image dimension, as in Figure 8j and Figure 8k.
| ut _di mis a structure describing the palette dimension in Figure 8j and Figure 8k.

e data nodified, neta nodified, andattr_nodifi ed ensure that the file will be updated
as necessary during t&Rend processing.

« lattree points to the tree whose nodes link to the attribute information structure which
describes an attribute of the image (see Figure 8r). Note that the attributes stored in this tree
may include attributes read in from an existing file and attributes created in the application.

* lattr_count indicates the number of nodes in the local attributel tieer ee, i.e., the
number of image attributes currently stored in the file information structure.

8.7.3 Attribute Information Structure (at _i nfo_t)
Theat _i nfo_t structure is used to store the information describing a local or global attribute.

Additional details are as follows:

» ref is the reference number of the Vdata representing a global or local attribute in Figure
8k.

e new at ensures that an attribute that is newly created in an application is permanently
recorded in the file before the file is closed. If this flag isGBend will add the tag/refer-
ence number pair of the Vdata that represents a local or global attribute to its RI VVgroup or
the GR Vgroup, accordingly.

8.7.4 Dimension Information Structure (di minfo_t)

Thedi minfo_t structure is used to store the information describing an image or palette dimen-
sion.

Relationships among Main Data Structures

Figure 8o provides a high-level illustration of the relationships among these data structures while
Figure 8p, Figure 8q, and Figure 8r depict the relationships in more detail. As illustrated, the data
structuresTBBT_TREE and TBBT_NCDE are widely used in the GR interfacelBBT TREE is a
threaded, balanced, binary tree that is used to store different lists of objects and their information.
Part of the definition of the tree can be found in Figure 8p. Basically, the tree is a structure that
has a pointer, calledbot , pointing to another structur@€BBT_NCDE, which is a node of the tree.

The main elements @GBBT_NCLE include twovoi d pointersdat a andkey, and an array of three
pointers that point to the parent, the left child, and the right child of the current node. The pointer
dat a points to the data structure that is stored in this tree. The pkégteoints to the value that

is used to search for the data in the tree.

October 27, 2000 95

National Center for Supercomputing Applications

High-level description of therelationships among the main data structures

FIGURE 8o

TBBT_TREE gr_tree

H

TBBT_NODE

data

gr_info_t

TBBT_TREE

TBBT_TREE_|

\ .

—rooty|

VOIDP

grtree

gattree

TBBT_NODE |

TBBT_NODE+

data

ri_info_t

dim_info_t
img_dim

dim_info_t
lut_dim

TBBT_TREE

— root—p

VOIDP

at_info_t

— root—p

VOIDP

a _info_t

data

._.mm._.lzoomxiﬂooﬁlv VOIDP| ..

lattree -

October 27, 2000

96

HDF Specification and Developer’s Guide

Figure 8p shows a global tree gr _t r ee that holds the GR file structure gr _i nf o_t , which is used
to store the file contents that are read into memory for processing or that are newly created and
will be written to the file. The global tree gr _t ree is alocated when GRstart isfirst invoked in
an application. A new structure of gr _i nf o_t isalso created and inserted into the tree at thistime
(routine New_grfile). If GRstart isinvoked more than once for afile in an application, then the
global tree gr_tree already exists and the current structure gr_i nfo_t will be used (routine
Get_grfile). The key value used for searching in thistree isthe HDF file identifier.

FIGURE 8p

Theglobal GR tree

gr_info_t hdf_file_id
TBBT_TREE* gr_tree data Key
- global, static \
TBBT_NODE
root—1 VOIPP | VOIDP | o) [link[1] | link[2]
TBBT_NODE
Parent Lchild Rehild
count / / \‘
. NULL NULL NULL

Figure 8q describes the elements of the GR file structure gr _i nf o_t. This structure contains two
TBBT_TREE trees, grtree and gattree. The tree grtree contains the information for al the
imagesin thefile; thus, the pointer dat a in its nodes points to araster image information structure,
ri_info_t. Similarly, thetreegat t r ee contains the information for all the global attributesin the
file and its nodes point to the attribute information structure, at_info_t. If the file, which
gr _i nfo_t represents, has not been accessed in the current application, GRstart fillsin theinitial
information of the GR file structure, which includes the creation of the two trees, grtree and
gattree. GRstart then invokes GRIget_image list to read in the file contents and store in the
global treegr _tree asfollows:

» For each of the global attributes, an attribute structtire,nf o_t, is created and inserted

into the attribute tregat t r ee, branching out frongr _t r ee.

« For each of the raster images, a raster image structuieyf o_t, is created and inserted
into thegrtree. Figure 8r illustrates the raster image structure and its main elements.
These elements include two dimension information structdresi nf o_t , describing the

image dimension and the image's palette dimension; a compression information structure,

conp_i nf o, describing the image's compression; and a T3, TREE, holding all the
attributes of the image.

» For each attribute of a raster image, an attribute strueturenf o_t , is created and
inserted into the attribute tréat t r ee branching out from the raster image's structure.

October 27, 2000 97

National Center for Supercomputing Applications

FIGURE 8q Illustration of data structuregr i nfo_t
ri_info_t index
data key
gr_info_t or_ptr TBBT_NODE
o= VOIDP | VOIDP | o] [link[] [link[2] | ===
TBBT_NODE +—
Parent Lchild Rehild
/V count / / \‘
gr_info_t . NULL NULL NULL
grtree
TBBT_TREE/
a_info_t index
TBBT_TREE\ 3 A
data key
gattree TBBT_NODE
: oot VOIPP | VOIDP L \to | ink[1] [link[2] | ===
TBBT_NODE +—
Parent Lchild Rchild
count o ¥ N
. NULL NULL NULL
FIGURE 8r Illustration of data structureri _i nfo_t
ri_info_t
a_info_t index
dim_info_timg_dim ® A
data key
- . TBBT_NODE
dim_info_tlut_dim root—] VOIDP | VOIDP | 101 [link[2] link[2] | ==+
TBBT_NODE +—
| lattr Parent Lchild Rchild
TBBT_TREE count e X e
. NULL NULL NULL
comp_info cinfo

98

October 27, 2000

HDF Specification and Developer’s Guide

8.9

The Evolution of an HDF Filein the GR Interface

This section illustrates several stepsin the evolution of the contents in an HDF file under the GR
interface. At each step, the correspondence between the information as stored in memory and as
represented in the file is described.

» The file is created for access from the GR interface.

» Two raster images are created and written with data.

« Attributes are added to the file and to one of the raster images.
* A palette is added for one of the raster images.

The section also illustrates how the main GR structures represent the file elements in memory.
The routines involved in constructing the file are described as necessary.

8.9.1 Creating or Opening an HDF File

A typical HDF5 application calls the routilkéopen to create a new HDF file or to open an exist-
ing file.

Next, the routinégSRstart is called to initiate the GR interfad8Rstart does the following:

 Allocates the file information tregr _tree. (Note that ifGRstart is called more than once
for the same HDF file, this tree will not be allocated again.)

« Initializes the atom groups for GR data sets (and older-style raster images).
* Retrieves the information of all contents in the file into the tree by invoking

GRIget_image list, which fills ingr _t r ee with structures such &s_info_t,ri _info_t,
at_info_ t,anddiminfo_t.

At the end ofGRstart, a newly created HDF file is represented in memory as shown in Figure 8s.
Since there are neither images nor global attributes in the file, the roots of the imagerteee
and global attribute tregat t r ee point toNULL.

October 27, 2000 99

National Center for Supercomputing Applications

FIGURE 8s

Data structures of a newly created HDF filein memory

gr_info_t
TBBT_NODE

g e root

DFREF_WILDCARD count ~a NULL
grtree .
TBBT_TREE

TBBT_TREE NULL

gattree root

\ TBBT_NODE
count
\ hdf_file id
data /4
TBBT_TREE* gr_tree K
- ey
- global, static \
TBBT_NODE
root—"] VOIDP | VOIDP | jii0] [link[1] | link[2]
TBBT_NODET
Parent Lchild Rchild
count - X e

: ™ NULL NULL

Note that the reference number gr _ref ingr_info_t is DFREF_WLDCARD at thistime. That indi-
cates that there is not yet a corresponding GR Vgroup in the file. This Vgroup is created during
the GRend processing and gr _r ef will then have a valid reference number, which is that of the
GR Vgroup and which will then be written into thefile.

8.9.2 Creating and Writing to a Raster Image

The routine GRcreate creates a raster image in the following steps:

» Creates ani _i nfo_t structure and fills it with initial information.

» Creates a VVgroup for this raster image, i.e., for this GR data set.

« Inserts the structure into the image tfge _info t)grtree.
Figure 8t illustrates the data structures after two raster images are created. The dashed boxes indi-
cate the new data structures for the two new GR data sets. Notice that the local attribute trees
| attree point toNULL indicating that the raster images have no attributes at this time. For the

similar reason, the global trgat t r ee points toNULL. WhenGRend is invoked, the contents of
the file are updated, causing these new images to be written to the file.

The file being assembled in these sections is illustrated in Figure 8v, "File with two GR data sets,
global attribute, local attribute, and image palette.”

100

October 27, 2000

HDF Specification and Developer’s Guide

Data structures storing two raster images

FIGURE 8t

gr_info_t

TBBT_TREE—]

.:w_w.ﬂl.:u_mﬁ/

| grtree

gattree

_

gr_info_t* gr_ptr

ri_info_t, stores second raster image'sinfo

gr_info_t* gr_ptr dim_info_t img_dim w NULL
root
dim_info_t lut_dim TBBT_NODE]
ri_info_t, storesfirst raster image'sinfo
TBBT_TREE—_| count
_mEmm/V A
dim_info_t img_dim v NULL comp_info cinfo .
root -
dim_info_t lut_dim TBBT_NODE]| .
._umm._||._|_Nmm |attree count ,
. . A . data index NULL
comp_info cinfo . v s
. key Lchild
i — .
y link[0] | link[1] | link[2]
® VOIDP| VOIDP TBBT NODE / et
index -
data P Lchild moﬂ_a
ki
=4 Parent
NULL
link[Q] | link[1] | link[2| A\
\4 VOIDP| VOIDP TBBT NODE \ s
root Rchild
TBBT_NODE]| Parent \
< NULL
count
TBBT_NODE]
count root
: T NULL

101

October 27, 2000

National Center for Supercomputing Applications

8.9.3 Adding Attributes

The routine GRsetattr creates an attribute for afile or for araster image in the following steps:

« If the attribute already exists in the file, then simply updates it, although, the number type
cannot be changed

« If the attribute's data is small enough to be cached, keeps the data in memory where
specified by at _i nfo_t) dat a.

« Otherwise, writes the data to the attribute Vdata on disk.

« If the attribute is new, the following actions are performed:

« Creates the attribute structutie i nf o_t and stores the attribute information.

« If the attribute's data is small enough to be cached, keeps the data in memory where
specified by(at_info_t)data.

« Otherwise, writes the data to the attribute Vdata on disk.

« Adds the attribute structure to the attribute tree, which can be either the global
attribute tred gr _i nfo_t)gat tree or the local attribute trefgi _info t)lattree.

Figure 8u shows the memory data structures with two raster images, one file attribute, and one
local attribute. Amat _i nfo_t structure is also added to the global attribute tree for the new file
attribute. WherGRend is invoked, the contents of the file are updated, causing these attributes
be written to the file.

102 October 27, 2000

HDF Specification and Developer’s Guide

Data structures after adding two attributes

FIGURE 8u

gr_info_t* gr_ptr

gr_info_t
TBBT TREE—+ I'Tr€®
qmmﬁqmmm/

. gattree

at_info_t index
ri_info_t, storesfirst raster image'sinfo deta key
dim_info_timg_dim TBBT_NODE
-rotimd. | VOIDP [VOIDP | ito] | link[1] [link[2] | ==
dim_info_tlut_dim root
TBBT_NODE" Parent Lchild Rehild
TBBT_TREE gmm¢ ot b\ V\ /A
comp_info cinfo . NULL NULL NULL
3
ri_info_t, stores second raster image'sinfo
..‘./ dim_info_t img_dim AZC_._.W
i * | [dim_info_t lut_di |
data index gr_info_t* gr_ptr ! ;_wmf _ﬂxmm — twee jmmﬁzoomtooﬁ
i [comp_info cinfo a B count |
\4 4 :
key) :
Lchild data
link[O] | link[1] | link[2])
\ VOIDP | VOIDP TBBT NODE index NULL
v e
root key Lchild
TBBT_NODE Parent i i i
- P VOIDP | VOIDP __:_A@m_mﬁzzuo__u_mzm_
count -
: Rchild
NULL
at_info_t index
.ﬂmw.ﬂIZOD_n/ \
data key
count 89/?
. TBBT_NODE
. VOIDP | VOIDP |y, o] [link[1] | link[2] | ==+
Parent Lchild Rchild
NULL NULL NULL

103

October 27, 2000

National Center for Supercomputing Applications

8.9.4 Adding Palettes

The routine GRwr itelut writes the palette of araster image in the following steps:
» Makes certain that only standard palettes are written.
« If the palette object already exists for the image, simply writes the palette data to the file.
» Otherwise, creates the palette dimension, initializes it, then creates the palette object and
writes the palette data to the file.

There are no structural changes in the data structures. The palette dimension is filled with initial
information and the palette object's tag and reference number are stored in the raster image infor-
mation structure. Figure 8v shows the representation of the file with the new palette object.

FIGURE 8v

Filewith two GR data sets, global attribute, local attribute, and image palette

global attribute

Vgroup
name = RIG0.0
class= RIG0.0

Vdata
name = RIATTRO.ON
class= RIATTR0.0C

local attribute

Vgroup
name = name_of_image |—————®| Vdata

class=RI0.0 name = RIATTRO.ON
class= RIATTR0.0C

Vgroup
name = name_of_image
class=RI0.0

image dimension raster image data image palette

raster image data

image dimension

8.9.5 Opening an Existing File

When the HDF file already exists and is opened for processing, the data stguciureo_t,
which includes the part enclosed in the dotted box in Figure 8s, is filled with the file contents. For
example, Figure 8t shows the in-memory storage of the file that is represented in Figure 8v. The
routine GRIget_image list is responsible for retrieving the file contents and storing them in
memory. The retrieval process is carried out as follows:
« Collect all the raster images in the file, including all three types.
» Collect all the global attributes and, for each attribute, creade_amf o_t structure and
store it on the global attribute trgat t r ee, branched out from thgr _i nf o_t structure.
« Eliminate any duplications among the raster images found.
» For each raster image, the following actions are performed:
e Create ami _i nfo_t structure and fill it with information about the raster image.
» If any raster image has attributes, for each attribute, creatte anf o_t structure
and store it on the local attribute ttex t r ee, branched out from the _i nfo_t
structure.
« Store image dimension information in the struciurg di mof theri _i nfo_t struc-
ture.

104

October 27, 2000

HDF Specification and Developer’s Guide

» Store palette dimension information in the structwte di mof theri _i nfo_t struc-
ture.

« Finally, store thei _i nfo_t structure for this raster image on the image ¢greeee,
branched out from thgr i nfo_t structure.

October 27, 2000 105

National Center for Supercomputing Applications

106 October 27, 2000

Tag Specifications

9.1

9.2

9.3

Chapter Overview

This chapter and the next address issues related to HDF tags and the data they represent. The first
section of this chapter provides general information about tags and their interpretation. The
remainder of the chapter contains a complete list of the HDF basic tags supported by NCSA HDF
Version 4.1r3 and detailed tag specifications. The next chapter, Extended Tags and Special Ele-
ments, provides detailed information regarding NCSA-supported HDF extended tags and the spe-
cia elementsthey define.

The HDF Tag Space

As discussed in Chapter 2, "Basic Sructure of HDF Files," 16 hits are alotted for an HDF tag
number. This providesfor 65535 possible tags, ranging from 1 to 65535; zero (0) is not used. This
tag spaceis divided into three ranges:

1-32767 Reserved for NCSA-supported tags
32768 — 64999 Set aside as user-definable tags
65000 — 65535 Reserved for expansion of the format

No restrictions are placed on the user-definable tags. Note that tags from this range are not
expected to be unique across user-developed HDF applications.

The rest of this chapter is devoted to the NCSA-supported basic tags in the range 1 (0x0001) to
16383 (0x3FFF). The next chaptéxtended Tags and Special Elements, is devoted to NCSA-
supported extended tags in the range 16384 (0x4000) to 32767 (Ox7FFF).

Tag Specifications

The following pages contain the specifications of the NCSA-supported basic tags in HDF Version
4.1r3. Each entry contains the following information:

« The tag (in capital letters in the left margin)
» The full name of the tag (on the first line to the right)

« The type and, where possible, the amount of data in the corresponding data element (on the
second line to the right)

When the data element is a variable-sized data structure—such as text, a string, or a vari-
able-sized array—the amount of data cannot be specified exactly. Where possible, a formula
is provided to estimate the amount of data. The stfingyt es appears when neither the

size nor the structure of the data element can be specified.

October 27, 2000 107

National Center for Supercomputing Applications

The tag number in decimal/(hexadecimal) (on the third line to the right)
A diagram illustrating the structure of the tag and its associated data

Since all DDs that point to a data element contain data length and data offset fields, these
fields are not included in the illustrations.

A full specification of the tag, including a description of the data element and a discussion
of its intended use.

Tags are roughly grouped according to the roles they play:

Utility tags

Annotation tags

Compression tags

Raster Image tags

Composite image tags

Vector image tags

Scientific data set tags

Vset tags

Obsolete tags

Extended tags (see Chapter IBxtended Tags and Special Elements)

These groupings imply a general context for the use of each tag; they are not meant to restrict their

use.

Please note Section 9.3.9, "Obsolete Tags." These tags have fallen out of use with the continuing
development of HDF. They are still recognized by the HDF library, but users should not write new
objects using them; they may eventually be dropped from the HDF specification.

In the following discussion, the ground symbol indicates that the DD for this tag includes no
pointer to a data element. l.e., there is never a data element associated with the tag.

< This symbol indicates that there is
ill no data element associated with the tag.

108

October 27, 2000

HDF Specification and Developer’s Guide

9.3.1 Utility Tags

DFTAG_NULL No data
0 bytes
1 (0x0001)
DFTAG_NULL ref_no —1
ref_no Reference number (16-bit integer; always 0)

This tag is used for place holding and to fill empty portions of the data description block. The
length and offset fields (not shown) of a DFTAG NULL DD must be zero (0).

DFTAG_VERSION Library version number
12 bytes plus the length of a string
30 (0Ox001E)
DFTAG_VERS| ON ref_no
naj orv m norv rel ease string
ref_no Reference number (16-bit integer)
maj orv Major version number (32-bit integer)
m norv Minor version number (32-bit integer)
rel ease Rel ease number (32-hit integer)
string Non-null terminated ASCI| string (any length)

The data portion of this tag contains the complete version number and a descriptive string for the
latest version of the HDF library to write to thefile.

October 27, 2000 109

National Center for Supercomputing Applications

DFTAG_NT Number type
4 bytes
106 (Ox006A)
DFTAG NT ref_no
versi on type wi dth cl ass
ref_no Reference number (16-bit integer)
version Version number of NT information (8-bit integer)
type Unsigned integer, signed integer, unsigned character, character, floating
point, double precision floating point (8-bit code)
width Number of bits, al of which are assumed to be significant (8-bit code)
cl ass A generic value, with different interpretations depending on type: floating

point, integer, or character (8-bit code)
Several values that may be used for each of the three typesin the field CLASS are listed in Table

9a. Thisis not an exhaustive list.

TABLE 9a

Number Type Values

Type

Mnemonic

Value

Floating point

DFNTF_NONE
DFNTF_| EEE
DFNTF_VAX
DFNTF_CRAY
DFNTF_PC
DFNTF_GONVEX

o

Integer

DFNTI_MBO
DFNTI_| BO
DFNTI_VBO

Character

DFNTC AST | 1
DFNTC EBCDOC
DFNTC BYTE

O N RPN PO B WODNPR

The number type flag is used by any other element in the file to indicate specifically what a
numeric value looks like. Other tag types should contain a reference number pointer to an
DFTAG_NT instead of containing their own number type definitions.

The version field allows expansion of the number type information, in case some future number
types cannot be described using the fields currently defined. Successive versions of the DFTAG_NT

110

October 27, 2000

HDF Specification and Developer’s Guide

may be substantially different from the current definition, but backward compatibility will be
maintained. The current DFTAG_NT version number is 1.

DFTAG_MT Machine type
0 bytes
107 (0x006B)

DFTAG_MI doubl e | fl oat int char —j
doubl e Specifies method of encoding double precision floating point (4-bit code)
fl oat Specifies method of encoding single precision floating point (4-bit code)
int Specifies method of encoding integers (4-bit code)
char Specifies method of encoding characters (4-bit code)

DFTAG_MT specifies that al unconstrained or partially constrained values in this HDF file are of
the default type for that hardware. When DFTAG_MT is set to VAX, for example, all integers will be
assumed to be in VAX byte order unless specifically defined otherwise with a DFTAG NT tag.
Note that all of the headers and many tags, the whole raster image set for example, are defined
with bit-wise precision and will not be overridden by the DFTAG_MT setting.

For DFTAG_M, the reference field itself is the encoding of the DFTAG M information. The refer-
ence field is 16 bits, taken as four groups of four bits, specifying the types for double-precision
floating point, floating point, integer, and character respectively. This allows 16 generic specifica
tions for each type.

To the user, these will be defined constants in the header file hdf.h, specifying the proper descrip-
tive numbers for Sun, VAX, Cray, Convex, and other computer systems. If there isno DFTAG_Mr
in afile, the application may assume that the datain the file has been written on the local machine;
any portability problems must be addressed by the user. For this reason, we recommend that all
HDF files contain aDFTAG_MT for maximum portability.

Currently available data encodings are listed in Table 9b.

TABLE 9b

Available Machine Types

Type Available Encodings

Double precision floating point |EEE64
VAX64
CRAY 128

Floating point |IEEE32
VAX32
CRAY 64

October 27, 2000 1

National Center for Supercomputing Applications

Type Available Encodings

Integers VAX32
Intel 16
Intel 32
Motorola32
CRAY 64

Characters ASCII
EBCDIC

New encodings can be added for each data type as the need arises.

9.3.2 Annoctation Tags

DFTAG_FID File identifier
String
100 (0x0064)

DFTAG FI D ref_no

character_string

ref_no Reference number (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

Thistag pointsto a string which the user wants to associate with thisfile. The string is not null ter-
minated. The string is intended to be a user-supplied title for thefile.

DFTAG_FD File description
Text
101 (0x0065)

DFTAG FD ref_no

text_bl ock

ref_no Reference number (16-bit integer)
text_bl ock Non-null terminated ASCII text (any length)

This tag points to a block of text describing the overal file contents. The text can be any length.
Theblock is not null terminated. The text isintended to be user-supplied comments about the file.

112 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_TID Tag identifier
String
102 (0x0066)

DFTAG TI D tag

character_string

tag Tag number to which this tag refers (16-hbit integer)

character_string
Non-null terminated ASCI| text (any length)

The data for this tag is a string that identifies the functionality of the tag indicated in the space
normally used for the reference number. For example, the tag identifier for DFTAG_TI D might
point to data that reads "tag identifier."

Many tags are identified in the HDF specification, so it is usually unnecessary to include their
identifiers in the HDF file. But with user-defined tags or specia-purpose tags, the only way for a
human reader to diagnose what kind of data is stored in afileis to read tag identifiers. Use tag
descriptions to define even more detail about your user-defined tags.

Note that with this tag you may make use of the user-defined tags to check for consistency.
Although two persons may use the same user-defined tag, they probably will not use the same tag
identifier.

DFTAG_TD Tag description
Text
103 (0x0067)

DFTAG TD tag

text_bl ock

tag Tag number to which this tag refers (16-bit integer)
text_bl ock Non-null terminated ASCII text (any length)

The data for this tag is a text block which describes in relative detail the functionality and format
of the tag which is indicated in the space normally occupied by the reference number. Thistag is
intended to be used with user-defined tags and provides a medium for users to exchange files that
include human-readable descriptions of the data.

It isimportant to provide everything that a programmer might need to know to read the data from
your user-defined tag. At the minimum, you should specify everything you would need to know in
order to retrieve your data at alater dateif the original program were lost.

October 27, 2000 113

National Center for Supercomputing Applications

DFTAG_DIL Dataidentifier label
String
104 (0x0068)

DFTAG D L ref_no

obj _tag obj _ref_no character_string

ref_no Reference number (16-bit integer)
obj tag Tag number of the data to which this label applies (16-bit integer)

obj _ref_no Reference number of the data object to which this label applies (16-bit inte-
ger)

character_string
Non-null terminated ASCI| text (any length)

The DFTAG DI L dataobject consists of atag/ref followed by a string. The string serves as alabel
for the dataidentified by the tag/ref.

By including DFTAG DI L tags, you can give a data object a label for future reference. For exam-
ple, DFTAG DI L can be used to assign titles to images.

DFTAG_DIA Dataidentifier annotation
Text
105 (0x0069)

DFTAG D A ref_no
obj _tag obj _ref_no text_bl ock
ref_no Reference number (16-bit integer)

obj tag Tag number of the data to which this annotation applies (16-bit integer)

obj _ref_no Reference number of the data object to which this annotation applies (16-bit
integer)
text_bl ock Non-null terminated ASCII text (any length)

The DFTAG DI A data object consists of atag/ref followed by atext block. The text block serves
as an annotation of the dataidentified by the tag/ref.

With a DFTAG DI A tag, any data object can have alengthy, user-written description. This can be
used to include comments about images, data sets, source code, and so forth.

114

October 27, 2000

HDF Specification and Developer’s Guide

9.3.3 Compression Tags

DFTAG_RLE Run length encoded data
0 bytes
11 (0x000B)

DFTAG RLE ref_no —1

ref_no Reference number (16-bit integer)

Thistag is used in the DFTAG_| D compression field and in other places to indicate that an image
or section of data is encoded with a run-length encoding scheme. The RLE method used is byte-
wise. Each run is preceded by a count byte. The low seven bits of the count byte indicate the num-
ber of bytes (n). The high bit of the count byte indicates whether the next byte should be replicated
n times (high bit = 1), or whether the next n bytes should be included asis (high bit = 0).

See also: DFTAG | Din “Raster Image Tags”
DFTAG_NDGIin “Scientific Data Set Tags”
DFTAG_IMC IMCOMP compressed data

0 bytes
12 (0x000C)

DFTAG | MC ref_no —1

ref_no Reference number (16-bit integer)

This tag is used in thBFTAG | D compression field and in other places to indicate that an image

or section of data is encoded with an IMCOMP encoding scheme. This scheme is a 4:1 aerial
averaging method which is easy to decompress. It counts color frequencies in 4x4 squares to opti-
mize color sampling.

See also: DFTAG | Din “Raster Image Tags”
DFTAG_NDGIin “Scientific Data Set Tags”

October 27, 2000 115

National Center for Supercomputing Applications

DFTAG_JPEG 24-bit IPEG compression information
? bytes
13 (0x000D)
DFTAG _JPEG ref_no —1
ref_no Reference number (16-bit integer)

Thistag is aflag indicating that the corresponding compressed object is a 24-bit JPEG image. The
DFTAG JPEGflag and the corresponding DFTAG A object will share the same reference number.

DFTAG_GREY JPEG 8-bit JPEG compression information
? bytes
14 (OxOO0OE)

DFTAG GREYJPEG ref_no —1

ref_no Reference number (16-bit integer)

Thistag isaflag indicating that the corresponding compressed object is an 8-bit JPEG image. The
DFTAG GREYJPEGflag and the corresponding DFTAG O object will share the same reference num-
ber.

116 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_CI Compressed raster image
? bytes
303 (0x012F

DFTAG A ref_no ~

ref_no Reference number (16-bit integer)

This tag points to a stream of bytes that make up a compressed image. The type of compression,
together with any necessary parameters, are stored as a separate data object. For example, if
DFTAG_JPEGis contained in the same raster image group, the stream of bytes contains the JFIF
header and al further data for the JPEG image. Other parameters are stored in the DFTAG_JPEG
object.

The JFIF header isthe header data stored in a JFIF (JPEG File Interchange Format) file up to the
start-of-frame parameter. See the document JPEG File Interchange Format! for a detailed
description of the file format.

1. The document JPEG File Interchange Format has not been published in a regular
periodical. An electronic copy is available as a Postscript file from NCSA's FTP
server ftp.ncsa. ui uc. edu in the same directory as this document, NCSA HDF
Specification and Developer’s Guide. Printed copies are available from C-Cube
Microsystems, 1778 McCarthy Boulevard, Milpitas, CA 95035 (phone: 408-944-
6300. Fax: 408-944-6314. Current email contact: eri c@3. pl a. ca. us).

October 27, 2000 117

National Center for Supercomputing Applications

9.3.4 Raster Image Tags

DFTAG_RIG Raster image group
n*4 bytes (where n is the number of data objects in the group)
306 (0x0132)

DFTAG R G ref_no
tag 1 ref_1 tag 2 ref_2 §
ref_no Reference number (16-bit integer)
tag n Tag number for n" member of the group (16-bit integer)
ref_n Reference number for nt" member of the group (16-bit integer)

The RIG data element contains the tag/refs of al the data objects required to display a raster
image correctly. Application programs that deal with RIGs should read all the elements of a RIG
and process those identifiers which it can display correctly. Even if the application cannot process
all of the objects, the objects that it can process will be usable.

Table 9c lists the tags that may appear in an RIG.

TABLE 9c Available RIG Tags
Tag Description
DFTAG_ID I rage di nensi on record
DFTAG_RI Rast er image
DFTAG_XYP XY position
DFTAG_LD LUT di nensi on
DFTAG_LUT ol or | ookup tabl e
DFTAG_MD Matt e channel di nensi on
DFTAG_MA Matt e channel
DFTAG_CCN Qol or correction
DFTAG_CFM Col or format
DFTAG_AR Aspect ratio
Example

DFTAG | D, DFTAG Rl , DFTAG LD, DFTAG LUT

Assume that an image dimension record, a raster image, an LUT dimension record, and an LUT
are all required to display a particular raster image correctly. These data objects can be associated
in an RIG so that an application can read the image dimensions then the image. It will then read
the lookup table and display the image.

118 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_ID Image dimension
20 bytes
300 (0x012C)
DFTAG LD LUT dimension
20 bytes
307 (0x0133)
DFTAG_MD Matte dimension
20 bytes
308 (0x0134)
DFTAG I D ref_no
x_dim y dm DFTAG_NT NT_ref
§ el enent s interlace conp_tag conp_ref
ref_no Reference number (16-hit integer)
x_dim Length of x (horizontal) dimension (32-bit integer)
y dim Length of y (vertical) dimension (32-hit integer)
NT ref Reference number for number type information
el ement s Number of elements that make up one entry (16-bit integer)
interlace Typeof interlacing used (16-bit integer)
0 The components of each pixel are together.
1 Color elements are grouped by scan lines.
2 Color elements are grouped by planes.
conp_tag Tag which tells the type of compression used and any associated parameters
(16-hit integer)
conp_ref Reference number of compression tag (16-bit integer)

These three dimension records have exactly the same format; they specify the dimensions of the
2-dimensional arrays after which they are named and provide information regarding other
attributes of the datain the array:

» DFTAG | D specifies the dimensions 0D&TAG RI .
» DFTAG LD specifies the dimensions 0D&TAG_LUT.
» DFTAG_MD specifies the dimensions 0DaTAG_MA.

Other attributes described in the image dimension record include the number type of the elements,
the number of elements per pixel, the interlace scheme used, and the compression scheme used (if

any).

October 27, 2000 119

National Center for Supercomputing Applications

For example, a 512x256 row-wise 24-bit raster image with each pixel stored as RGB bytes would
have the following values:

x_dim 512
y dim 256
NT_r ef UINTS8

el enent s 3 (3 elements per pixel: e.g., R, G, and B)
interlace 0 (RGB valuesnot separated)
conp_tag 0 (no compression is used)

The diagram above illustrates the tag DFTAG | D. The DFTAG LD and DFTAG MD diagrams
would be identical except for the tag name in the fist cell, whch would be DFTAG LD and
DFTAG_ND, respectively.

DFTAG_RI Raster image
xdim* ydim* elements* N'Tsi ze bytes (xdim, ydim, elements,
and NTsize are specified in the corresponding DFTAG_| D)
302 (0x012E)

DFTAG R ref_no

ref_no Reference number (16-bit integer)

This tag points to raster image data. It is stored in row-major order and must be interpreted as
specified by interl ace intherelated DFTAG I D.

120 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_LUT L ookup table
xdim* ydim* elements* NTsize bytes (xdim, ydim, el ements,
and NTsize are specified in the corresponding DFTAG_| D)
301 (0x012D)

DFTAG LUT ref_no
PO_0 PO_1 PO_m
P1_0 P1_1 P1_m
OR

Pn_0 Pn_1 Pn_m
PO_0 P1_0 Pn_o
PO_1 P1_1 Pn_1
PO_m P1_m Pn_m

ref_no Reference number (16-bit integer)

Pn_m mt value of parameter n (size is specified by the DFTAG_NT in the corre-

sponding DFTAG_LD)

The DFTAG_LUT, sometimes called a palette, is used to assign colors to data values. When araster
image consists of data values which are going to be interpreted through an LUT capability, the
DFTAG_LUT should be loaded along with the image.

The most common lookup table is the RGB lookup table which will have X dimension = 256 and
Y dimension = 1 with three elements per entry, one each for red, green, and blue. The interlace
will be either O, wherethe LUT values are given RGB, RGB, RGB, ..., or 1, wherethe LUT values
are given as 256 reds, 256 greens, 256 blues.

October 27, 2000 121

National Center for Supercomputing Applications

DFTAG_MA Matte channel
xdim* ydim* elements* NTsize bytes (xdim, ydim, elements,
and NTsize are specified in the corresponding DFTAG_| D)
309 (0x0135)

DFTAG MA ref_no

T

ref_no Reference number (16-bit integer)

The DFTAG_MA data object contains transparency data which can be used to facilitate the overlay-
ing of images. The data consists of a 2-dimensional array of unsigned 8-bit integers ranging from
0 to 255. Each point in aDFTAG_MA indicates the transparency of the corresponding point in aras-
ter image of the same dimensions. A value of 0 indicates that the data at that point is to be consid-
ered totally transparent, while a value of 255 indicates that the data at that point is totally opaque.
It is assumed that a linear scale applies to the transparency values, but users may opt to interpret
the datain any way they wish.

122 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_CCN Color correction
52 bytes (usually)
310 (0x0136)

DFTAG CCN ref_no
ganna red_x red_y red z
§ green_x green_y green_z §
§ bl ue_x bl ue_y blue z §
§ wite x | whitey white z
ref_no Reference number (16-bit integer)
ganma Gamma parameter (32-bit |EEE floating point)

red x, red y,and red z
Red x, y, and z correction factors (32-bit | EEE floating point)

green_x, green_y, and green_z
Green X, y, and z correction factors (32-bit | EEE floating point)

bl ue_x, blue_y, and bl ue_z

Blue x, y, and z correction factors (32-bit | EEE floating point)
white x, white y, and white z

White x, y, and z correction factors (32-bit | EEE floating point)

Color correction specifies the Gamma correction for the image and color primaries for the genera-
tion of the image.

October 27, 2000 123

National Center for Supercomputing Applications

DFTAG_CFM Color format
String
311 (0x0137)

DFTAG CFM ref_no

character_string

ref_no Reference number (16-bit integer)
char act er _st ri ngNon-null terminated ASCI| string (any length)

The color format data element contains a string of uppercase characters that indicates how each
element of each pixel in araster image is to be interpreted. Table 9d lists the available color for-

mat strings.
TABLE od Color Format String Values
String Description
VALUE Pseudo-color, or just a value associated with the pixel
RGB Red, green, blue model
XYz Color-space model
HSV Hue, saturation, value model
HSI Hue, saturation, intensity
SPECTRAL Spectral sampling method
DFTAG_AR Aspect ratio
4 bytes
312 (0x0138)
DFTAG AR ref_no
ratio
ref_no Reference number (16-bit integer)
ratio Ratio of width to height (32-bit |EEE float)

The datafor thistag isthe visual aspect ratio for thisimage. The image should be visualy correct
if displayed on a screen with this aspect ratio. The data consists of one floating-point number
which represents width divided by height. An aspect ratio of 1.0 indicates a display with perfectly
square pixels; 1.33 is astandard aspect ratio used by many monitors.

124 October 27, 2000

HDF Specification and Developer’s Guide

9.3.5 Composite Image Tags

DFTAG_DRAW Draw
n*4 bytes (where n is the number of data objects that make up
the composite image)
400 (0x0190)

DFTAG DRAW ref_no
tag 1 ref_1 tag 2 ref_2 C §
ref_no Reference number (16-bit integer)
tag n Tag number of the n" member of the draw list (16-bit integer)
ref_n Reference number of the nt" member of the draw list (16-bit integer)

The DFTAG_DRAW data element consists of alist of tag/refs that define a composite image. The
data objects indicated should be displayed in order. This can include several RIGs which areto be
displayed simultaneously. It can aso include vector overlays, like DFTAG T14, which are to be
placed on top of an RIG.

Some of the elements in a DFTAG_DRAW list may be instructions about how images are to be
composited (XOR, source put, anti-aliasing, etc.). These are defined asindividua tags.

DFTAG_XYP XY position
8 bytes
500 (0x01F4)

DFTAG XYP ref_no ~
X y
ref_no Reference number (16-hit integer)
X X-coordinate (32-bit integer)
y Y-coordinate (32-hit integer)

DFTAG_XYP is used in composites and other groups to indicate an XY position on the screen. For
this, (0,0) isthe lower |eft corner of the print area. X is the number of pixelsto the right along the
horizontal axisand Y isthe number of pixels up on the vertical axis. The X and Y coordinates are
two 32-bit integers.

For example, if DFTAG_XYP is present in a DFTAG_RI G, the DFTAG_XYP specifies the position of
the lower left corner of the raster image on the screen.

October 27, 2000 125

National Center for Supercomputing Applications

See also: DFTAG_DRAWiIN this section

9.3.6 Vector Image Tags

DFTAG _T14 Tektronix 4014
? bytes
602 (0x25A)

DFTAG T14 ref_no \

AN

ref_no Reference number (16-bit integer)

Thistag pointsto a Tektronix 4014 data stream. The bytesin the data field, when read and sent to
a Tektronix 4014 terminal, will display a vector image. Only the lower seven hits of each byte are
significant. There are no record markings or non-Tektronix codesin the data.

DFTAG_T105 Tektronix 4105
? bytes
603 (0x25B)

DFTAG T105 ref_no \

D

ref_no Reference number (16-bit integer)

Thistag pointsto a Tektronix 4105 data stream. The bytesin the data field, when read and sent to
a Tektronix 4105 terminal, will be displayed as a vector image. Only the lower seven bits of each
byte are significant. Some terminal emulators will not correctly interpret every feature of the Tek-
tronix 4105 terminal, so you may wish to use only a subset of the available Tektronix 4105 vector
commands.

126

October 27, 2000

HDF Specification and Developer’s Guide

9.3.7 Scientific Data Set Tags

DFTAG_NDG Numeric data group
n*4 bytes (where n is the number of data objects in the group.)
720 (0x02DO0)

DFTAG_NDG ref_no
tag 1 ref_1 tag 2 ref_2
ref_no Reference number (16-bit integer)
tag n Tag number of N member of the group (16-bit integer)
ref_n Reference number of n" member of the group

(16-hit integer)

The NDG data contains alist of tag/refs that define a scientific data set. DFTAG_NDG supersedes
the old DFTAG_SDG, which became obsol ete upon the release on HDF Version 3.2. A more com-
plete explanation of the relationship between DFTAG NDG and DFTAG_SDG can be found in Chap-
ter 5, “Sets and Groups.”

All of the members of an NDG provide information for correctly interpreting and displaying the
data. Application programs that deal with NDGs should read all of the elements of a NDG and
process those data objects which it can use. Even if an application cannot process all of the
objects, the objects that it can understand will be usable.

Table 9e lists the tags that may appear in an NDG.

TABLE 9e

Available NDG Tags

Tag Description
DFTAG _SDD Scientific data dimension record (rank and dimensions)
DFTAG SD Scientific data
DFTAG SDS Scales
DFTAG SDL Labels
DFTAG _SDU Units
DFTAG_SDF Formats
DFTAG SDM Maximum and minimum values
DFTAG SDC Coordinate system
DFTAG CAL Calibration information
DFTAG FV Fill value
DFTAG LUT Color lookup table
DFTAG LD L ookup table dimension record
DFTAG_SDLNK Link to old-styleDFTAG_SDG

October 27, 2000 127

National Center for Supercomputing Applications

Example
DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Suppose that an NDG contains a dimension record, scientific data, and the maximum and mini-
mum values of the data. These data objects can be associated in an NDG so that an application can
read the rank and dimensions from the dimension record and then read the data array. If the appli-
cation needs maximum and minimum values, it will read them as well.

See also: Chapter 5, " Sets and Groups”
DFTAG_SDD Scientific data dimension record

6 + 8*rank bytes
701 (0x02BD)

DFTAG_SDD ref_no

rank diml1 dim2 Coee dmn §

§ DFTAG NT dat a_NT ref §

§ DFTAG_NT scale NT ref_1

§ DFTAGNT | scale NT ref_2

DFTAG NT scal e NT_ref_n
ref_no Reference number (16-bit integer)
rank Number of dimensions (16-bit integer)
dimn Number of values along thé dimension (32-bit integer)

dat a_NT_ref Reference number @FTAG _NT for data
(16-bit integer)

scale NT ref_n
Reference number f@FTAG_NT for the scale for the™mdimension (16-bit
integer)

This record defines the rank and dimensions of the array in the scientific data set. For example, a

DFTAG_SDD for a 500x600x3 array of floating-point numbers would have the following values
and components.

« Rank: 3

« Dimensions: 500, 600, and 3.
e Onedata NT

e Three scale NTs

128 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_SD Scientific data
NTsize* x*y* z* ... bytes (where NTsize is the size of the
dataNT specified in the corresponding DFTAG_SDD and
X, Y, Z, etc. are the dimension sizes)
702 (0x02BE)

DFTAG_SD ref_no \
\ NN o
I A 1 Lal I o_Q L .
1.2 .6 8.4 9.1
2.4 2.8 6.3 7.5
1.7 2.0 5.3 8.2
43 3.6 7.1 6.2 |
ref_no Reference number (16-bit integer)

This tag points to an array of scientific data. The type of the data may be specified by an
DFTAG_NT included with the SDG. If there is no DFTAG_NT, the type of the datais floating-point
in standard | EEE 32-hit format. The rank and dimensions must be stored as specified in the corre-
sponding DFTAG_SDD. The diagram above shows a 3-dimensional data array.

October 27, 2000 129

National Center for Supercomputing Applications

DFTAG_SDS Scientific data scales
rank + NTsizeO*x + NTsizel*y +NTsize2* z +... bytes (where rank
is the number of dimensions, X, v, z, etc. are the dimension
sizes, and NTsize# are the sizes of each scale NT from the
corresponding DFTAG_SDD)
703 (0x02BF)
DFTAG_SDS ref_no
is_1 is 2 is 3 is_n
§ scale 1 scale 2 scale 3 scale_n
ref_no Reference number (16-bit integer)
is_n A flag indicating whether a scale exists for the n®" dimension (8-bit integer;
0 or 1)
scale_n List of scale values for the n™ dimension (type specified in corresponding

DFTAG_SDD)

This tag points to the scales for the data set. The first n bytes indicate whether there is a scale for
the corresponding dimension (1 =yes, 0 =no). Thisis followed by the scale values for each
dimension. The scale consists of a simple series of values where the number of values and their
types are specified in the corresponding DFTAG_SDD.

DFTAG_SDL Scientific data labels
? bytes
704 (0x02C0)
DFTAG SDL ref_no
| abel _1 | abel _2 | abel _3 I abel _n
ref_no Reference number (16-bit integer)
| abel _n Null terminated ASCII string (any length)

This tag points to a list of labels for the data in each dimension of the data set. Each label is a
string terminated by anull byte (0).

130 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_SDU Scientific data units
? bytes
705 (0x02C1)

DFTAG_SDU ref_no
unit_1 unit_2 unit_3 .o unit_n
ref_no Reference number (16-bit integer)
unit_n Null terminated ASCII string (any length)

Thistag pointsto alist of strings specifying the units for the data and each dimension of the data
set. Each unit's string is terminated by anull byte (0).

DFTAG_SDF Scientific data format
? bytes
706 (0x02C2)

DFTAG_SDF ref_no
fornat_1 format_2 | fornat_3 .o format_n
ref_no Reference number (16-bit integer)

format_n Null terminated ASCII string (any length)

This tag points to alist of strings specifying an output format for the data and each dimension of
the data set. Each format string is terminated by anull byte (0).

October 27, 2000 131

National Center for Supercomputing Applications

DFTAG_SDM Scientific data max/min
8 bytes
707 (0x02C3)

DFTAG SDM ref_no
nax mn
ref_no Reference number (16-bit integer)
max Maximum value (type is specified by the data NT in the corresponding
DFTAG_SDD)
mn Minimum value (type is specified by the data NT in the corresponding
DFTAG_SDD)

This record contains the maximum and minimum data values in the data set. The type of mrax and
m n are specified by the data NT of the corresponding DFTAG_SDD.

DFTAG_SDC Scientific data coordinates
? bytes
708 (0x02C4)

DFTAG SDC ref_no
string
ref_no Reference number (16-bit integer)
string Null terminated ASCII string (any length)

This tag points to a string specifying the coordinate system for the data set. The string is termi-
nated by anull byte.

132 October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_SDLNK Scientific data set link
8 bytes
710 (0x02C6)

DFTAG SDLI NK ref_no
DFTAG_NDG NDG r ef DFTAG_SDG SDG r ef
ref_no Reference number (16-bit integer)

DFTAG NDG NDG tag (16-bit integer)
NDG r ef NDG reference number (16-bit integer)
DFTAG SDG SDG tag (16-hit integer)
SDG r ef SDG reference number (16-hit integer)

The purpose of this tag is to link together an old-style DFTAG_SDG and a DFTAG_NDG in cases
where the NDG contains 32-hit floating point data and is, therefore, equivalent to an old SDG.

See also: Chapter 5, " Sets and Groups”
DFTAG_CAL Calibration information
36 bytes

731 (0x02DB)

DFTAG CAL ref_no
cal cal _err of f off_err dat a_t ype
ref_no Reference number (16-bit integer)
cal Calibration factor (64-bit IEEE float)
cal _err Error in calibration factor (64-bit IEEE float)
of f Calibration offset (64-bit IEEE float)
off_err Error in calibration offset (64-bit IEEE float)

data type Constant representing the effective data type of the calibrated data (32-bit
integer)

This tag points to a calibration record for the associaf@dG _SD. The data can be calibrated by

first multiplying by thecal factor, then adding thef f value. Also included in the record are
errors for the calibration factor and offset and a constant indicating the effective data type of the
calibrated data. Table 9f lists the availatite a_t ype values.

October 27, 2000 133

National Center for Supercomputing Applications

TABLE of Available Calibrated Data Types

Data Type Description
DFTNT_I NT8 Signed 8-bit integer
DFTNT_U NT8 Unsigned 8-bit integer
DFTNT_I NT16 Signed 16-bit integer
DFTNT_U NT16 Unsigned 16-bit integer
DFTNT_| NT32 Signed 32-bit integer
DFTNT_U NT32 Unsigned 32-bit integer
DFTNT_FLCQAT32 32-hit floating point
DFTNT_FLCAT64 64-bit floating point

DFTAG_FV Fill value
? bytes (size determined by size of dataNT in corresponding
DFTAG_SDD)

732 (0x02DC)

DFTAG FV ref_no ~

fill_val ue

ref_no Reference number (16-bit integer)

fill_val ue Vaue representing unset data in the corresponding DFTAG_SD (size deter-
mined by size of dataNT in corresponding DFTAG_SDD)

This tag points to a value which has been used to indicate unset values in the associated
DFTAG_SD. The number type of the value (and, therefore, its size) is given in the corresponding
DFTAG_SDD.

134 October 27, 2000

HDF Specification and Developer’s Guide

9.3.8 Vset Tags
DFTAG_VG Vgroup
14 + 4*nelt + namelen + classlen bytes
1965 (0x07AD)
DFTAG VG ref_no
nel t tag 1 tag 2 B tag n
ref_1 ref_2 . ref_n §
nanel en nane cl assl en cl ass
§ extag exref versi on nore
ref_no Reference number (16-bit integer)

nel t
tag n
ref_n
nanel en
nane

cl assl en
cl ass
ext ag
exr ef
version

nore

Number of elementsin the Vgroup (16-bit integer)

Tag of the nt" member of the VVgroup (16-bit integer)
Reference number of the nt" member of the Vgroup (16-bit integer)
Length of the name field (16-bit integer)

Non-null terminated ASCII string (Iength given by nanel en)
Length of the classfield (16-bit integer)

Non-null terminated ASCII string (Ilength given by ¢/ ass! en)
Extension tag (16-bit integer)

Extension reference number (16-bit integer)

Version number of DFTAG_VGinformation (16-bit integer)
Unused (2 zero bytes)

DFTAG_VG provides a general-purpose grouping structure which can be used to impose a hierar-
chical structure on the tagsin the group. Any HDF tag may be incorporated into aVgroup, includ-
ing other DFTAG_VGtags.

See also:

“Vsets, Vdatas, and Vgroups” in Chapter Sgt$ and Groups’
NCSA HDF Vsets, \ersion 2.0 for HDF Versions 3.2 and earlier
HDF User’s Guideand HDF Reference Manudbr Versions 3.3 and 4.x

October 27, 2000

135

National Center for Supercomputing Applications

DFTAG_VH V data description
22 + 10*nfields + S‘Idnmlen n + namelen + classlen bytes
1962 (0xQ7AA)

DFTAG_VH ref_no
interlace nvert ivsi ze nfiel ds
§ type_1 type 2 Ce type n §
§ isize 1 isize 2 Coe isize_n §
g offset_1 offset 2 . offset_n
§ order_1 order_2 . order_n

fldnmen_1 fldnm1 fldnnmien 2 fldnm2 §

§ Ce fldnmien_n fldnmn §
§ narel en name cl assl en cl ass §
§ ext ag exref versi on nore

ref_no Reference number (16-bit integer)

interlace Constant indicating interlace scheme used (16-bit integer)

nvert Number of entriesin VVdata (32-bit integer)

ivsize Size of one Vdata entry (16-bit integer)

nfiel ds Number of fields per entry in the VVdata (16-bit integer)

type_n Constant indicating the data type of the n* field of the Vdata (16-bit integer)

136 October 27, 2000

HDF Specification and Developer’s Guide

isize_n
offset_n
order_n
fldnmen_n

fldnmn

nanel en
nane
cl assl en
cl ass
ext ag
exr ef
version

nore

Size in bytes of the n* field of the VVdata (16-bit integer)
Offset of the n™ field within the V data (16-bit integer)
Order of the n field of the V data (16-bit integer)
Length of the n* field name string (16-bit integer)

Non-null terminated ASCII string (length given by corresponding
f 1 dnni en_n)

Length of the name field (16-bit integer)

Non-null terminated ASCII string (Iength given by nanel en)
Length of the class field (16-bit integer)

Non-null terminated ASCI| string (Ilength given by ¢/ ass/ en)
Extension tag (16-bit integer)

Extension reference number (16-bit integer)

Version number of DFTAG_VH information (16-bit integer)
Unused (2 zero bytes)

DFTAG_VH provides all the information necessary to process a DFTAG _VS.

See also:

DFTAG VS (this section)

“Vsets, Vdatas, and Vgroups” in Chapter Sgt$ and Groups’

NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier

HDF User’s Guideand HDF Reference Manudbr Versions 3.3 and 4.x

October 27, 2000

137

National Center for Supercomputing Applications

DFTAG VS Vdata
nfiel ds

nvert * -Sj (isize_n * order_n) bytes where

nvert, isize_n,and order_n arespecifiedinthe
corresponding DFTAG_VH
1963 (0xO7AB)

DFTAG VS ref_no
vdat a
ref_no Reference number (16-bit integer)
vdat a Data block interpreted according to the corresponding DFTAG VH

(value of the summation above, where nvert, i si ze_n, and order_n are
specified in the correspondingDFTAG_VH)

DFTAG VS contains a block of data which is to be interpreted according to the information in the
corresponding DFTAG_VH.

See also: DFTAG_VH (this section)
“Vsets, Vdatas, and Vgroups” in Chapter Sgt$ and Groups’
NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier
HDF User’s Guideand HDF Reference Manudbr Versions 3.3 and 4.x

138

October 27, 2000

HDF Specification and Developer’s Guide

9.3.9 Obsolete Tags

DFTAG_ID8 Image dimension-8
4 bytes
200 (0x00C8)

DFTAG | D8 ref_no
x _dim y dim
ref_no Reference number (16-bit integer)
x_dim Length of x dimension (16-bit integer)
y dim Length of y dimension (16-bit integer)

The data for this tag consists of two 16-bit integers representing the width and height of an 8-bit
raster imagein bytes.

This tag has been superseded by DFTAG | D.
DFTAG_IP8 Image palette-8

768 bytes
201 (0x00C9)

DFTAG | P8 ref_no \
Red Green Blue
RO €Y BO
R1 €] B1
R255 G255 B255
ref_no Reference number (16-bit integer)

Tableentries 256 triples of 8-bit integers

The data for this tag can be thought of as atable of 256 entries, each containing one value for red,
green, and blue. Thefirst triple is palette entry 0 and the last is palette entry 255.

This tag has been superseded by DFTAG_LUT.

October 27, 2000 139

National Center for Supercomputing Applications

DFTAG_RI8 Raster image-8
xdim*ydim bytes (where xdim and ydim are the dimensions
specified in the corresponding DFTAG _| D8)
202 (0x00CA)

DFTAG R 8 ref_no ~

\

N\
\

A

ref_no Reference number (16-bit integer)
Imagedata 2-dimensiona array of 8-bit integers

The data for this tag is a row-wise representation of the elementary 8-bit image data. The datais
stored width-first (i.e., row-wise) and is 8 hits per pixel. The first byte of data represents the pixel
in the upper-left hand corner of the image.

This tag has been superseded by DFTAG RI .
DFTAG_CI8 Compressed image-8

? bytes
203 (0x00CB)

DFTAG A 8 ref_no

conpressed_i nage

ref_no Reference number (16-bit integer)
conpressed_i mageSeries of run-length encoded bytes

The data for this tag is a row-wise representation of the elementary 8-bit image data. Each row is
compressed using the following run-length encoding where n is the lower seven bhits of the byte.
The high bit indicates whether the following n bytes will be reproduced exactly (high bit = 0) or
whether the following byte will be reproduced n times (high bit = 1). Since DFTAG Cl 8 and
DFTAG RI 8 are basically interchangeable, it is suggested that you not have a DFTAG CI 8 and a
DFTAG _RI 8 with the same reference number.

This tag has been superseded by DFTAG_RLE.

140

October 27, 2000

HDF Specification and Developer’s Guide

DFTAG_II8 IMCOMP image-8
? bytes
204 (0x00CC)

DFTAG 118 ref_no

conpressed_i nage

ref_no Reference number (16-bit integer)

conpressed_i mage
Compressed image data

The datafor thistag isa4:1 compressed 8-bit image, using the IMCOMP compression scheme.
This tag has been superseded by DFTAG_| MC.

DFTAG_SDG Scientific data group

n* 4 bytes (where n is the number of data objects in the group)
700 (0x02BC)

DFTAG_SDG ref_no
tag 1 ref_1 tag 2 ref_2 Ce §
§ tag n ref_n
ref_no Reference number (16-bit integer)
tag_n Tag number of n" member of the group (16-bit integer)
ref_n Reference number of n™ member of the group (16-bit integer)

The SDG data element contains a list of tag/refs that define a scientific data set. All of the mem-
bers of the group provide information required to correctly interpret and display the data. Applica-
tion programs that deal with SDGs should read all of the elements of an SDG and process those
which it can use. Even if an application cannot process al of the objects, the objects that it can
understand will be usable.

Table 9qg lists the tags that may appear in an SDG.

October 27, 2000 141

National Center for Supercomputing Applications

TABLE 99 Available SDG Tags
Tag Description
DFTAG SDD Scientific data dimension record (rank and dimensions)
DFTAG SD Scientific data
DFTAG SDS Scales
DFTAG SDL Labels
DFTAG _SDU Units
DFTAG_SDF Formats
DFTAG SDM Maximum and minimum values
DFTAG SDC Coordinate system
DFTAG SDT Transposition (obsolete)
DFTAG_SDLNK Link to newDFTAG_NDG
Example

DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Assume that a dimension record, scientific data, and the maximum and minimum values of the
data are required to read and interpret a particular data set. These data objects can be associated in
an SDG so that an application can read the rank and dimensions from the dimension record and
then read the data array. If the application needs the maximum and minimum values, it will read

them aswell.
This tag has been superseded by DFTAG_NDG.
See also: Chapter 5, " Sets and Groups”
DFTAG_SDT Scientific data transpose
0 bytes
709 (0x02C5)
DFTAG SDT ref_no —1
ref_no Reference number (16-bit integer)

The presence of this tag in a group indicates that the data pointed to by the corresponding
DFTAG _SDis in column-major order, instead of the default row-major order. No data is associated
with this tag.

This tag is no longer written by the HDF library. When it is encountered in an old file, it is inter-
preted as originally intended.

142 October 27, 2000

10

Extended Tags and Special Elements

10.1 Chapter Overview

10.2

This chapter provides detailed information regarding NCSA-supported HDF extended tags and
the special elements they define. General information about tags and detailed specifications of
basic tags are presented in Chapte8g ‘Spoecifications.”

Extended Tags and Alternate Physical Storage M ethods

Prior to HDF Version 3.2, each data element had to be stored in one contiguous block in the basic
HDF file. Version 3.2 introduceextended tags, a mechanism supporting alternate physical data
element storage structures. All NCSA-supported tags with variable-sized data elements can take
advantage of the extended tag features.

10.2.1Extended Tag I mplementation

Extended tags are automatically recognized by current versions of the HDF library and interpreted
according to a description record. The description record, a complete data element, identifies the
type of extended element and provides the relevant parameters for data retrieval.

Extended tags currently support four styles of alternate physical storage:

» Linked block elements are stored in several non-contiguous blocks within the basic HDF
file.

« External elements are stored in a separate file, external to the basic HDF file.
» Chunked elements are stored in blocks within the basic HDF file to facilitate selective 1/O.

« Compressed elements are stored in a configurable compressed mode within the basic HDF
file to save storage space and to speed I/O and data transfer.

Every NCSA-supported tag is represented in HDF libraries and files by a tag number. NCSA-sup-
ported tags that take advantage of alternative physical storage features have an alternative tag
number, called aextended tag number, that appears instead of the original tag number when an
alternative physical storage method is in use.

When NCSA determines that an extended tag should be defined for a given tag, the extended tag
number is determined by performing an arithmetic OR with the original tag number and the hexa-
decimal number 0x4000. Since all basic tags are numbered 0x0001 through Ox3FFF, this arith-
metic OR effectively adds 0x4000, or a decimal value of 16384, to derive the extended tag value.

For example, the tagpFTAG Rl points to a data element containing a raster image. If the data
element is stored contiguously in the same HDF file, the DD contains the tag naathef the

November 5, 2001 143

National Center for Supercomputing Applications

data element is stored either in linked blocks or in an external file, the DD contains the extended
tag number 16686.

If adata object uses a regular tag number, its storage structure will be exactly as described in the
"Section 9.3, "Tag Specifications." Figure 10aillustrates this general structure with the DD point-
ing directly to a single, contiguous data block.

FIGURE 10a Regular Data Object
regul ar_tag ref_no
dat a_el enent
regul ar_t ag Tag number
ref_no Reference number
dat a_el enent The data el ement
If a data object uses an extended tag, the storage structure will appear generally as illustrated in
Figure 10b. The DD will point to an extended tag description record which in turn will point to
the data.
FIGURE 10b Data Object with Extended Tag
ext ended_t ag ref_no
ext_tag desc data | ocation_i nfornation
y's
dat a (inlinked blocks or external file)
ext ended_t ag Extended tag number
ref_no Reference number
ext_tag_desc A 32-bit constant definedin Hdfi . h that identifies the type of aternative
storage involved. Current definitions include EXT_LI NKED for linked
block elements or EXT_EXTERN for external elements.
dat a_l ocati on_i nformation
Information identifying and describing the linked blocks or external file
dat a The data, stored either in linked blocks or in an externa file
Since the HDF tools were modified for HDF Version 3.2 to handle extended tags automatically,
the only thing the user ever has to do is specify the use of either the linked blocks mechanism or
an external file. Once that has been specified, the user can forget about extended tags entirely; the
HDF library will manage everything correctly.
144 November 5, 2001

HDF Specification and Developer’s Guide

10.3

There is only one circumstance under which an HDF user will need to be concerned with the dif-
ference between regular tag numbers and extended tag numbers. If a user bypasses the regular
HDF interface to examine araw HDF file, that user will have to know the extended tag numbers,
their significance, and the alternative storage structures.

Linked Block Elements

As mentioned above, data elements had to be stored as single contiguous blocks within the basic
HDF file prior to HDF Version 3.2. This meant that if a data element grew larger than the allotted
space, the file had to be erased from its current location and rewritten at the end of thefile.

Linked blocks provide a convenient means of addressing this problem by linking new data blocks
to a pre-existing data element. Linked block elements consist of a series of data blocks chained
together in alinked list (similar to the DD list). The data blocks must be of uniform size, except
for the first block, which is considered a specia case.

The linked block data element is a description record beginning with the constant EXT_LI NKED,
which identifies the linked block storage method. The rest of the record describes the organization
of the data element stored as linked blocks. Figure 10c illustrates a linked block description
record.

FIGURE 10c

Linked Block Description Record

ext ended_t ag ref_no
EXT_LI NKED length first_len
§ bl k Ien num bl k Iink_ref

ext ended_t ag The extended tag counterpart of any NCSA standard tag (16-bit integer)

ref_no Reference number (16-bit integer)

EXT_LINKED Constant identifying this as alinked block description record (32-bit inte-
ger)

I ength Length of entire element (32-bit integer)

first_len Length of the first data block (32-bit integer)

bl k_I en Length of successive data blocks (32-bit integer)

num bl k Number of blocks per block table (32-bit integer)

I'i nk_ref Reference number of first block table (16-bit integer)

The /ink_ref field of the description record gives the reference number of the first linked
block table for the element. Thistableisidentified by the tag/ref DFTAG_LI NKED// i nk_ref and
contains num bl k entries. There may be any number of linked block tables chained together to
describe alinked block element. Figure 10d illustrates alinked block table.

November 5, 2001 145

National Center for Supercomputing Applications

FIGURE 10d A Linked Block Table
DFTAG LI NKED l'i nk_ref
next_ref blk refl bl k_ref2
l'ink_ref Reference number for this table (16-bit integer)
next_ref Reference number for next table (16-bit integer)
bl k_ref_n Reference number for data block (16-bit integer)
The next _r ef field contains the reference number of the next linked block table. A value of zero
(0) in this field indicates that there are no additional linked block tables associated with this ele-
ment.
The bl k_ref_n fields of each linked block table contain reference numbers for the individual
data blocks that make up the data portion of the linked block element. These data blocks are iden-
tified by the tag/ref DFTAG LI NKED/b/ k_ref_n as illustrated in Figure 10e. Although it may
seem ambiguous to use the same tag to refer to two different objects, this ambiguity isresolved by
the context in which the tags appear.
FIGURE 10e A Data Block
DFTAG LI NKED bl k_ref_n N

10.4

dat a_bl ock

bl k_ref_n Reference number for this data block (16-bit integer)

dat a_bl ock Block of actual data (size specified by first_Ilen or bl k_Ien inthe
description record)

Linked block elements can be created using the function HLcr eat e() , which is discussed in
Chapter 4, Low-level Interface.” |

External Elements

External elements allow the data portion of an HDF element to reside in a separate file. The poten-
tial of external data elements is largely unexplored in the HDF context, although other file formats
(most notably the Common Data Format, CDF, from NASA) have used external data elements to
great advantage.

Because there has been little discussion of external elements within the HDF user community, the
structure of these elements is still not completely defined. Figure 10f shows a diagram of the sug-
gested structure for an external element.

146

November 5, 2001

HDF Specification and Developer’s Guide

FIGURE 10f

10.5

External Element Description Record

ext ended_t ag ref_no

—

SPEQ AL_EXT length of fset fil enane

ext ended_t ag The extended tag counterpart of any NCSA standard tag (16-bit integer)

ref_no Reference number (16-bit integer)

SPECQI AL_EXT Constant identifying this as an external element description record (16-bit
integer)

I ength Length in bytes of the datain the external file (32-bit integer)

of fset Location of the data within the external file (32-bit integer)

fil enane Non-null terminated ASCI| string naming the external file (any length)

An external element description record begins with the constant SPEQ AL_EXT, which identifies
the data object as having an externally stored data element. The rest of the description record con-
sists of the specific information required to retrieve the data.

External elements can be created using the function HXcreat e(), which is discussed in
Chapter 4, Low-level Interface.” |

Chunked Data Storage

10.5.1Chunked Element Description Record

The file format, or layout, of a chunked data element is specified in a chunked element descrip-
tion record. Figure 10g, "DD for a chunked element (12 bytes) pointing to a chunked elememt
description record (>52 bytes)," provides a complete description, viaillustration, of this record.

Thefieldsthat define a chunked element, asillustrated in Figure 10g, are as follows:

sp_tag_desc SPEQ AL_CHUNKED (a 16-bit constant) identifies this as a chunked element
description record.

sp_t ag_head_| enLength of this special element header only (4 bytes). Does not include
length of header with additional specialness headers. Note: Thisis
done to make this header layout similar to the multiple specialness

layout.
ver si on Version information (8-bit field).
flag Bit field to set additional specialness (32-bit field). Only the bottom 8 bits

are currently used.

elemtot_|en Valid logica length of the entire element (4 bytes). The logical physical
length is this value multiplied by nt _si ze. The actual physica
length used for storage can be greater than the dataset size due to
the presence of ghost areas in chunks. Partial chunks are not distin-
guished from regular chunks.

chunk_si ze Logical size of data chunks (4 bytes).

November 5, 2001 147

National Center for Supercomputing Applications

nt_si ze

Number type size, i.e the size of the data type (4 bytes).

chk_tbl _tag Tag for the chunk table, i.e. the Vdata (2 bytes).
Reference number for the chunk table, i.e. the Vdata (2 bytes).

chk_t bl _ref

sp_tag
sp_r ef

ndi ns

For future use. Special table for 'ghost’ chunks (2 bytes).

For future use (2 bytes).

Number of dimensions of the chunked element.(4 bytes).

fil e_val _num byt esNumber of bytesin fill value (4 bytes).

fill value

Fill value (variable bytes).

DD for a chunked element (12 bytes) pointing to a chunked elememt description record

FIGURE 10g
(>52 bytes)
<+— 2bytes —> <— 2bytes —> < 4 bytes > <t 4 bytes > (12 bytes)
Extendedtag | Reference# Offset Length
<— 2bytes —> < 4 bytes > (6 bytes)
sp_tag_desc sp_tag_head_l en 0000
<1 byter < 4 bytes > <t dbytes — 5 (9bytes)
Chunkin
verusiolng Flag elmtot_length cooo
<—— 4bytes > <t 4 bytes > <— 2bytes —> <«— 2bytes —> (12 bytes)
chunk_si ze nt _si ze chk_tbl _tag | chk_tbl _ref [oooo
<+— 2bytes—> <+— 2bytes—»> <« 4 bytes > (8bytes)
sp_tag sp_ref ndi s 0000
<——— 4bytes > <t 4 bytes > <t 4 bytes > (12 x ndi ns bytes)
flag dimlength chunk_l ength 0000
- times the number of
dimensions
<— 4bytes > <t varidblebytes — . (4 + variable bytes)
fill_val _numtypes fill value...... coo0o
<— 2bytes—»> <« 4 bytes <t variablebytes 5 (6 + variable bytes)
sp_tag_desc sp_tag_header _| en sp_t ag_header 0000 _
variable number of these, depending

on specialnessset inf | ag field

148

November 5, 2001

DD

10231 uondiosaq

HDF Specification and Developer’s Guide

In addition to the above fields, each chunked element dimension requires a set of the following
fields:
flag (32-bit field) Thisfield isdivided asfollows:
| High, 8 bits | Medium High, 8 bits | Medium Low, 8 bits | Low, 8 bits |
edi strib_type (Low 8 bits, bits 0-7)
Type of data distribution along this dimension
0x00 -> None
0x01 -> Block

Currently only block distribution is supported but this is not currently
checked or verified.

*Other (Medium Low 8 bits, bits 7-15)
0x00 -> Regular dimension
0x01 -> UNLIMITED dimension

dimlength Current length of this dimension (4 bytes).
chunk_| engt h Length of the chunk along this dimension (4 bytes).

Further, additionapecialnesses may be used. Each additiorspkcialness requires a set of the
following fields:

sp_tag_desc SPEQ AL_xxx (16-bit constant) identifies this as mxx element description
record (16-bit field).

sp_t ag_header _| enLength of special element header (4 bytes).

sp_t ag_header Special header (variable bytes).

10.5.2Chunk Table

Information regarding a chunked data set is stored in the chunk table, described in Figure 10h on
page 150.

The chunk table fields are defined as follows:

origin Specifies the coordinates of the chunk in the overall chunk array. This is a
variable-size field, depending on the number of dimensions of the chunked
element.

chunk_t ag Currently DFTAG_ CHINK. Could be another chunked element to allow recur-
sive chunked elementBHTAG CHUNKED). (16-bit field)

chunk_r ef Reference number of the chunk itself. (16-bit field)

November 5, 2001 149

National Center for Supercomputing Applications

FIGURE 10h Chunk table

<— variablebytess—————> <— 2bytes —> <«— 2bytes —>

N = number of chunk records
origin chunk_tag |chunk_ref_1 in Vdata

Number of bytes per record will

o o] o . . .
o o o vary with the sizeof or i gi n
o o o
(o) (o) [e]
origin chunk_tag |chunk_ref_N
<+— 2bytes —> <— 2bytes —> <«———————— 4 bytes > <t 4bytes — 5>
DFTAG CHUNK | chunk_ref N Offset Length
Length hereis specified as
l chk_size x nt_size.
Data chunk

10.6 Data Compression

The HDF library supprts the following compression formats for scientific data sets.
 Skipping-Huffman
* GNU ZIP deflation (Lempel/Ziv-77 dictionary coder)
* N-bit run-length encoding

The compression format of a data set is specified in an extended tag description knecam-as a
pressed element description record. Figure 10i, "Compression header extended tag description,"
describes the common elements of this record. Subsequent figures describe the remainder of the
record, which varies for each type of compression.

10.6.1Compression Header: The Common Elements of Compressed Element
Description Records

The compression header comprises the common elements of all compressed element description
records and is contained in the first ten fields of the record. As illustrated in Figure 10i, the com-
presion header is made up of the following fileds.

150 November 5, 2001

HDF Specification and Developer’s Guide

Thefirst four fileds of the compression header are common among all specia element headers:

Ext ended tag

Reference # Thesetwo fields contain the tag/ref pair that identifies any HDF object.

Ofset This is the offset, in bytes, to the location of the fifth field, or the
sp_tag desc field, of the compression header. This field always contains
the value SPEQ AL_COWP in a compressed element description record.

Length This field specifies the space requirement, in bytes, of the fifth through last
fields of the compressed element description record.

The fifth through tenth fields are particular to the compression header:

Ssp_tag desc SPEQ AL_COW (a 16-bit constant) identifies this as a compressed element

description record.

Versi on Version information (16-bit field).

Lengt h of unconpressed data

Length, in bytes of the uncompressed data.

Ref # of conpressed data

As illustrated in Figure 10j, "Compressed element reference number,” this
field contains a pointer to a DFTAG_ OOMPRESSED structure which, in turn, pro-
vides the offset location and size, both in bytes, of the actual compressed

data.

Mdel type Currently only streaming I/O.

Conpressi on type

A string identifying the type of compression in use.

The remainder of the compressed element description record is different for each type of compres-
sion. The following sections discuss each of those types of recordsin turn.

FIGURE 10i

Compression header extended tag description

<— 2bytes —><t— 2bytes > <«——— 4bytes— > <«——— 4bytes—>

Extended tag Reference # Offset

Length

<— 2bytes —><t— 2bytes > <«—— 4bytes— > <«—— 2bytes— >

Compression Length of
SPEGI AL_COMP veupsj on uncomp?et:ssed data

Ref # of
compressed data

0000 —P

<— 2bytes —><— 2 bytes —>

— Model type Comt?/rp on 0000 —

(Remainder variesin
length and content by
compression format.)

November 5, 2001

151

National Center for Supercomputing Applications

FIGURE 10j Compressed element reference number
Ref # of compressad data
DFTAG OOVPRESSED
|
Ref # Offset | Length
> Data
10.6.2Compressed Element Description Record: NBIT Run-length Encoding
FIGURE 10k Extended tag description for NBIT run-length encoding compression
2 bytes 2 bytes 4 bytes 4 bytes
Extended tag | Reference# Offset Length (30 bytes)
L 2 bytes 2 bytes 4 bytes 2 bytes
Length of
SPECIAL_COMP| Version uncome[r)]rggssé)d. data com?g:ge?jfdata coo—>
2 bytes 2 bytes 4 bytes
- Model type | coMP_CODE_NBIT| Number type (NT) coo—>
2 bytes 2 bytes 4 bytes
>|Sign extent flag Fill value Start bit ©00—>
4 bytes

ﬂ Bit length ‘

152 November 5, 2001

HDF Specification and Developer’s Guide

10.6.3Compressed Element Description Record: Skipping-Huffman

FIGURE 10l Extended tag description for Skipping-Huffman compression
2 bytes 2 bytes 4 bytes 4 bytes
Extended tag | Reference# Offset Length (22 bytes)
2 bytes 2 bytes 4 bytes 2 bytes
] Length of Ref # of
SPECIAL_COMP| Version uncompressed. data | compressed data coo—>
2 bytes 2 bytes
— Model type COMP_CODE_SKPHUFF| © 0 0 —»
4 bytes 4 bytes
—> Skipping unit size Number of bytes compressed (not used)

10.6.4Compressed Element Description Record: GNU ZIP (Deflate)

FIGURE 10m Extended tag description for GNU ZIP (deflate) compression
2 bytes 2 bytes 4 bytes 4 bytes
Extendedtag | Reference# Offset Length (16 bytes)
2 bytes 2 bytes 4 bytes 2 bytes
. Length of Ref # of >
SPECIAL_COMP| Version uncompressed. data | compressed data °eo°
2 bytes 2 bytes 2 bytes
> Model type COMP_CODE_DEFLATE | Deflatelevel (0-9)

November 5, 2001 153

National Center for Supercomputing Applications

154 November 5, 2001

11

Portability I ssues

111

11.2

Chapter Overview

The NCSA implementation of HDF is accessible to both C and FORTRAN programs and is
implemented on many different machines and several operating systems. There are important dif-
ferences between C and FORTRAN, and among implementations of each language, especialy
FORTRAN. There are also important differences among the machines and operating systems that
HDF supports.

If HDF is to be a portable tool, these differences must be constructively addressed. This chapter
describes many of these differences, discusses the problems and issues associated with them, and
presents the methods employed in the HDF implementation to reduce their impact.

The HDF Environment

The list of machines and operating systems on which HDF is implemented is steadily growing.
For reasons that this chapter will make clear, the number of NCSA-supported HDF platforms is
growing slowly. Every time a platform is added, additional code must be written to address con-
cerns of memory management, operating system and file system differences, number representa-
tions, and differencesin FORTRAN and C implementations on that system.

11.2.1Supported Platforms
As of thiswriting, NCSA supports the platforms listed in Table 11a.

TABLE 11a

NCSA-supported HDF Platforms

Hardware Platform Operating System
Convex Concentrix
Cray X-MP, Y-MP, Cray 2 UNICOS
DEC Alpha Ultrix
DECStation Ultrix
HP 9000 HPUX
IBM PC MS DOS, Windows 3.1
IBM RS/6000 AlX
IBM RT UNIX
Macintosh MPW Shell
NeXT NeXTStep
Silicon Graphics UNIX

October 27, 2000 155

National Center for Supercomputing Applications

11.3

Hardware Platform Operating System

Sun Sparc UNIX
Vax VMS

HDF has also been ported to severa platforms that NCSA does not currently support. These
include Alliant, Apollo (Domain), HP 3000, Stellar, Amiga, Symbolics, Fujitsu, and IBM 3090
(MVS).

11.2.2L anguage Standards

Unfortunately, not all compilers are the same. FORTRAN compilers often differ in the ways they
pass parameters, in the identifier naming conventions they employ, and in the number types that
they support. Similarly, though generally not as drastically, C compilers differ in the number
types that they support and in their adherence to the ANSI C standard.

To minimize the difficulties caused by these differences, the HDF source code is written primarily
in the following dialects:

e FORTRAN 77

« ANSIC

+ The original C defined by Kernighan and Ritchieereafter referred to as old C

Almost all platforms have C and FORTRAN compilers that adhere to at least one of these stan-
dards.

When time and resources permit, NCSA attempts to support features or variations in other dialects
of C and FORTRAN, particularly on platforms that are important to NCSA users. Much of the
remainder of this chapter addresses these efforts.

11.2.3Guid€lines

One cannot over stress the importance of following the guidelines outlined in this chapter. It may
take longer to write code and it may be difficult to adapt your coding style, but the long-term ben-
efits, in terms of portability and maintenance costs, will be well worth the effort.

Organization of Source Files

Three types of files appear in the HDF source code directory:

» Header files

» Source code files

* A makefile
Header files and source code files are organized by application area. All of the functions that
apply to a particular application area are stored in three source files, and all the definitions and
declarations that apply to that application are stored in a corresponding header file. The makefile

describes the dependencies among the source and header files and provides the commands
required to compile the corresponding libraries and utilities.

1. Theversion of C described in the first edition of The C Programming Language, by Brian
Kernighan and Dennis Ritchie, published by Prentice-Hall.

156

October 27, 2000

HDF Specification and Developer’s Guide

11.3.1Header Files

Certain application modules require header files. The header file df an. h, for example, contains
definitions and declarations that are unique to the annotation interface.

There are also several general header files that are used in compiling the libraries for all applica-
tion areas:

hdf. h and hdfi.h?
hdf . h contains declarations and definitions for the common data structures
used throughout HDF, definitions of the HDF tags, definitions of error num-
bers, and definitions and declarations specific to the low level interface.
Since hdf. h dependson hdfi . h,itincludes hdfi.h via #i ncl ude.

hdfi . h contains information specific to the various NCSA-supported HDF
computing environments, environmental parameters that need to be set to
particular values when compiling the HDF libraries, and machine dependent
definitions of such things as number types and macros for reading and writ-
ing numbers.

When porting HDF to a new system, only hdfi . h and the makefile should
need to be modified, though there may be exceptions.

It is normally a good idea to include hdf.h (and therefore indirectly
hdfi . h) in user programs, though users usually need not be aware of its con-
tents.

hproto. h This file contains ANSI C prototypes for all HDF C routines. It must be
included in ANSI C programs that call HDF routines.

constants.i Thisfileisfor usein FORTRAN programs. It containsimportant constants,
such astag values, that are defined in hdf . h. Systemswith FORTRAN pre-
processors might be able to include this file via #i ncl ude statements or
their equivalent.

df func. i This fileis for use in FORTRAN programs. It contains declarations of all
HDF FORTRAN-callable functions. Systems with FORTRAN preproces-
sors might be able to include this file via #i ncl ude statements or their
equivalent.

11.3.2Source Code Files

All HDF operations are performed by routines written in C. Hence, even FORTRAN calls to
HDF result in callsto the corresponding C routines. Because of the problems described below the
relationships between the C routines and the corresponding FORTRAN routines can be confusing.
This section discusses the C and FORTRAN source file organization. It is followed by discus-
sions of problems users will face in the FORTRAN-C interface.

HDF interfaces typically have three or four associated files. For example, the scientific data set
(SDS) interface is associated with the following fildfssd. h, df sd. ¢, df sdf . ¢, anddf sdf f . f.

These files fill the following roles:

1. Prior to Version 3.2 of HDF, these fileswere called df . h and dfi . h. At thetime of HDF
Version 3.2, the low level interfaces, the general purpose layer of HDF, was completely rewritten
and all routine names were changed from df * to hdf *.

October 27, 2000 157

National Center for Supercomputing Applications

11.4

Header files
The *. h files are header files.

Normal C routines
These routines do the actual HDF work. The others are used to transfer control and
datafrom a FORTRAN environment to a C environment.

Theseroutinesareinthe *. ¢ files, asin df sd. c. Every call to HDF, whether from
C or FORTRAN, ultimately resultsin acall to one of these routines.

C routines that are directly callable from FORTRAN
These routines provide recognizable function namesto the linker. They may also per-
form operations on data they receive from the FORTRAN routines that call them,
such astransferring a FORTRAN string to alocal C dataarea. Examples are provided
below.

Theseroutines areinthe *f.c files, such as df sdf.c. The f means that the rou-
tines can be called from FORTRAN; the . ¢ means that they are C source code.

FORTRAN routines that perform some operation on the parameters that C would be unable
to perform, before and/or after calling the corresponding C routine
These routines are required, for example, when one of the parametersis a string. The
corresponding C routine has no way of knowing the length of the string unless it is
explicitly given the length by the FORTRAN routine.

These routines areinthe *ff. f files, such asdfsdff.f. Theff means that the rou-
tines perform some FORTRAN operation that C cannot perform and that they are to
be called from FORTRAN; the . f means that they are FORTRAN source code.

The roles of these different types of source file types will become clearer as we look at some of
the problems that arise in interfacing C and many different implementations of FORTRAN.

11.3.3File Naming Conventions

The naming conventions for HDF library source code files are complicated by several factors.
Because HDF must accommodate a wide variety of platforms, all files that will compile to object
modules must have names that are unique in the first 8 characters, ignoring case. The difficulties
involved in maintaining a FORTRAN-callable interface to a library that is primarily writtenin C
further complicate the naming of source code files.

Passing Strings between FORTRAN and C

One of the most important differences between FORTRAN and C compilersisin the way strings
are represented. Different compilers use different data structures for strings, and supply string
length information in different ways.

11.4.1Passing Stringsfrom FORTRAN to C

When strings are passed between FORTRAN and C routines, they may need to be converted from
one representation to the other. C compilers store strings in an array of type char, terminated by
anull byte (\ 0). The name of astring variable is equivalent to a pointer the first character in the
string. FORTRAN compilers are not consistent in the ways that they store strings.
Two pieces of information must be acquired before FORTRAN can pass a string to C:

e The string’s length

» The string’s address

158

October 27, 2000

HDF Specification and Developer’s Guide

The string’s length is determined by invoking the standard FORTRAN fundtesrg), which
returns the length of a string. Since C expects a null byte at the end of a string, care must be taken
that this null byte does not overwrite useful information in the FORTRAN string.

Determining the string’s address is more difficult because of the different ways that different
FORTRAN implementations store strings. The macfodt ocp (FORTRAN character descrip-

tor to C pointer) is used to acquire this informationf cdt ocp is one of the elements that must

be customized for each platform. The following paragraphs discuss several existing customized
implementations:

« UNICOS FORTRAN stores strings in a structure callédd (FORTRAN character
descriptor). _fcdtocp is a built-in UNICOS function that returns the string’s address.
(Since UNICOS provides this function, HDF omits the corresponding macro definition on
UNICOS systems.

* VMS FORTRAN uses a string descriptor structure that provides the string’s address and
length. When compiled under VMSf cdt ocp extracts the string's address from that
structure.

» Most other FORTRAN compilers supported by HDF store strings just as C does, in charac-
ter arrays with the array name identifying the array's address. In such situations, nothing
special needs to be done to pass a string from FORTRAN to C, except tbleidd byte.

An HDF FORTRAN call that involves passing a string results in the following sequence of
actions:

1 A FORTRAN filter routine determines the length and address in memory of the string.
Since this filter is a FORTRAN routine, it can be found in the approprigtef file.

2 The FORTRAN filter then calls a C routine, to which it passes all parameters from the initial
call the string's length.

3 The C routine converts the FORTRAN string to a C string by copying it to a C array of type
char and appending a null byte. Since this C routine serves as a link between a FORTRAN
filter and the corresponding C interface call, it can be found in the appropfiatefile.

4 This C routine then calls the HDF C routine that performs the actual work.

This process is illustrated in Figure 11a, "Sequence of Events when a FORTRAN Call Includes a
String as a Parameter.”

October 27, 2000 159

National Center for Supercomputing Applications

FIGURE 11a Sequence of Eventswhen a FORTRAN Call Includes a String as a Par ameter

User’s program

s)) User's FORTRAN program calls
ret = dsgdinm(’nyfile’, rank, ...) dsgdi ns. The parameter nyfile

)

is a string.

i bdf.a (the HDF library)

df sdFf . f
. The FORTRAN function dsgdi m
dsgdi
gdi) calls the C function dsi gdi m
dsi gdi m(fi | ename ,rank, . . ., | en(filenane)) adding an extra parameter--the
/ length of the filenane parameter
7
df sdF. c

)] dsi gdi m converts the

dsi gdi n() FORTRAN string stored in
fil enane toaC string, then
calls DFSDget di ns.

DFSDget di ns(fn, prank,...)

7
df sd. c
. DFSDget di ms performs the
DFSDget di ms() actual HDF function, getting the
rank and dimension of the next
scientific data set in the file.

11.4.2Passing Strings from C to FORTRAN

When strings are passed from C to FORTRAN, the reverse procedure is followed. First, a string
pointer is allocated within the FORTRAN routine'sdataarea. (It isassumed that the space pointed
to has already been allocated, and is sufficiently large to hold the string.) The string is then cop-
ied from the C data area to the FORTRAN data area. Finaly, the FORTRAN string's data areais
padded with blanks, if necessary.

11.5 Function Return Values between FORTRAN and C

When a FORTRAN routine calls a C function, it always expects areturn value from that function.
Unfortunately, C functions do not always return arguments in a FORTRAN-compatible format.

To solve this problem, some FORTRAN compilers offer the option of controlling the form of the
return value from a function. For example, Language Systems FORTRAN for the Macintosh

160 October 27, 2000

HDF Specification and Developer’s Guide

11.6

requires that all C function declarations be prepended by the word pascal so that the return
value can be recognized by a FORTRAN routine that callsit, asin:

pascal int dsgrang(void *pnax, void *pnin)
Since C aways expects return values to be passed by value rather than, say, by reference, it is
important to coerce FORTRAN functions to do the same. This is accomplished by defining a

macro FRETVAL that is prepended to the declaration of every FORTRAN-callable C function. For
example:
FRETVAL(i nt)
dsgrang(voi d *prnax, voi d *pmnin)

If Language Systems FORTRAN isto be used, FRETVAL isdefinedin hdfi.h asfollows:

f defi ned(MO /* with LS FCRTRAN */
define FRETVAL(X) pascal X
#endi f

Differencesin Routine Names

HDF generally employs standard C conventions in naming routines. But many FORTRAN com-
pilers impose varying restrictions on the length, character set, and form of identifiers, some of
which are considerable more restrictive than the C conventions. Therefore, an extraeffort must be
made to accommodate those FORTRAN compilers.

To address this issue, HDF defines a set of preprocessor flagsin hdfi . h. Then conditional com-
pilation, with #i f def statementsin the source code, produces routine names that the target sys-
tem’s FORTRAN will understand.

11.6.1Case Sensitivity

C compilers arease sensitive; uppercase and lowercase letters are recognized as different charac-
ters. Many FORTRAN compilers are not case sensitive; they allow users to use uppercase and
lowercase letters while naming routines in the source code, but the names are converted to all
uppercase or all lowercase in the object module symbol tables. Routine nhame recognition prob-
lems are common when routines compiled by a case sensitive compiler are to be linked with rou-
tines compiled by a non-case sensitive compiler.

For example, the UNICOS FORTRAN compiler allows you to name routines without regard to
case, but produces object module symbol tables with the routine names in all uppercase. UNI-
COS C, on the other hand, performs no such conversion.

Consider the HDF routinébpen. Hopen is written in C, so the HDF library symbol table con-
tains the name-open. Suppose you make the following call in your UNICOS FORTRAN pro-
gram:

file_id = Hopen(’ nyfile', ...)

The FORTRAN compiler will create an object module symbol table with the routine Hapas
When you link it to the HDF library, it will findHopen but not HOPEN, and will generate an unsat-
isfied external reference error.
HDF supports the following non-case sensitive compilers:

¢ VMS FORTRAN

* UNICOS FORTRAN

¢ Language Systems FORTRAN.

October 27, 2000 161

National Center for Supercomputing Applications

All of these compilers convert identifiers to al uppercase when building an object module symbol
table. Inthefollowing discussion, they are referred to asall-uppercase compilers.

The HDF Solution

HDF addresses the all-uppercase compiler problem in the platform-specific section of hdfi . h
where the DF_CAPFNAMES flag is defined. With conditional compilation, HDF generates all-
uppercase routine names and symbol table entries.

Once again, consider UNICOS. The UNICOS section of hdfi . h contains the following line:
#def i ne DF_CAPFNAMES

The *f.c files contain corresponding conditional sections that produce all-uppercase routine
names. For example, the function name Fun can be redefined as FUN.

fdef DF CAPFNAMES
define Fun RN
#endi f /* DF CAPFNAMES */

11.6.2 Appended Under scores

Differing compiler conventions create a similar problem in their use of the underscore (_) char-
acter. Many compilers, including most C compilers, prepend an underscore to all external sym-
bals in the object module symbol table. The linker then looks for external symbols in other
symbol tables with the prefixed underscore.

Many FORTRAN compilers aso append an underscore to identify external symbols. Since C
compilers do not generally do this, external references in FORTRAN-generated object modules
will not recognize externals with the same names in C-generated modules.

For example, the FORTRAN compiler on the CONVEX system places an underscore both at the
beginning and at the end of routine names, while the C compiler places an underscore only at the
beginning.

Since FWN isaC function, it appears under the name _FUN in the object module containing it.
Now suppose you make the following call in a FORTRAN program:

x = RNY)

The FORTRAN compiler will create an object module symbol table with the routine name _FUN .
When you link it to the C module, the linker will be unabletolink _FUN and _FUN_ and will gen-
erate an unsatisfied external reference error.

The HDF Solution

Like the all-uppercase compiler problem, thisissue is resolved in the platform-specific sections of
hdfi . h and with conditional sections of code that append an underscore to C routine names on
platforms where the FORTRAN compiler expectsit.

This is implemented as follows: The FNAME POST UNDERSCCRE flag is defined in the platform-
specific section of hdfi.h for every platform whose FORTRAN compiler requires appended
underscores. Similarly, the FNAME PRE UNDERSCCRE flag is defined on platforms where the
FORTRAN compiler expects prepended underscores. The macro FNAME is then defined to
append and/or prepend underscores as required.

The FNAME macro is then applied to each routine in the module in which it is actually defined
(including in hptrot o. h), adding the appropriate underscores.

162

October 27, 2000

HDF Specification and Developer’s Guide

11.7

Consider the above example in which Fun was renamed FUN. The actual definition appears as
follows:

fdef DF CAPANAMES

define Fun FNAME FUN
#endi f /* DF CAPFNAMES */

11.6.3Short Namesvs. Long Names

In the C implementations supported by HDF, identifiers may be any length with at least the first
31 characters being significant. FORTRAN compilers differ in the maximum lengths of identifi-
ersthat they allow, but all of those supported by HDF allow identifiers to be at least seven charac-
terslong.

To deal with the discrepancies between identifier lengths allowed by C and those allowed by the
various FORTRAN compilers, a set of equivalent short names has been created for use when pro-
gramming in FORTRAN. For every HDF routine with a name more than seven characters long,
thereis an identical routine whose name is seven or fewer characters long.

For example, the routines DFSDget di ns (in df sd. ¢) and dsgdi ns (in df sdff.f) are function-
aly identical.

Differences Between ANSI C and Old C

The current HDF release supports both ANSI C and old C compilers. ANS| C is preferred
because it has many features that help ensure portability; unfortunately, many important platforms
do not support full ANSI C. The HDF code determines whether ANSI Cis available from the flag
__STDC_. If ANSI Cisavailable onaplatform, then _ STDC s defined by the compiler.

The most noticeable difference between ANSI C and old C is in the way functions are declared.
For example, in ANSI C the function DFSDset di ns() isdeclared with asingleline:

int OFSDsetdi ns(intn rank, int32 dinsizes[])

In old C the same function is declared as follows:

int DFSDset di ns(rank, dinsi zes)
intn rank;
int32 dinsizes[];

HDF accommodates these differences by defining the flag PROTOTYPE in hdfi.h. PROTOTYPE
is used for every function declaration in a manner similar to the following example:

fdef PROTOTYPE

int OFSDsetdi ns(intn rank, int32 dinsizes[])
#el se

int DFSDset di ns(rank, dinsi zes)

intn rank;

int32 dinsizes[];

#endi f /* PROTOTYPE */

Note that prototypes are supported by some C compilers that are not otherwise ANSI-conformant.
In such situations, PROTOTYPE is defined eventhough _ STDC isnot.

1. STD __ isgenerally defined by ANSI-conforming C compilers. Some C compilers
are not entirely ANSI-conforming, yet they conform well enough that the HDF
implementation can treat them as if they were. In such cases, it is permissible to
define __ STDC _ by adding the option -D_STDC _ to the cc line in the makefile.

October 27, 2000 163

National Center for Supercomputing Applications

11.8

Another difference between old C and ANSI C isthat ANSI C supports function prototypes with
arguments. (Old C also supports function prototypes, but without the argument list.) This feature
helps in detecting errors in the number and types of arguments. This difference is handled by
means of amacro PROTQ, which is defined as follows:

fdef PROTOTYPE

#def i ne PROTQ(x) X
#el se
#defi ne PROIA x) ()
#endi f

This macro is applied as in the following exampl e;

extern int32 Hopen
PROIQ (char *path, intn access, int16 ndds));

When PROTOTYPE isdefined, PROTO causes the argument list to stay asitis. When PROTOTYPE
is not defined, PROTO causes the argument list to disappear.

Type Differences

Platforms and compilers also differ in the sizes of numbers that they assign to different data types,
in their representations of different number types, and in the way they organize aggregates of
numbers (especialy structures).

11.8.1Size differences

The same number type can be different sizes on different platforms. Thetype i nt, for example,
is 16 bits to many IBM PC compilers, 48 bits to some supercomputer compilers, and 32 bits on
most others. This can cause problems that are difficult to diagnose in code like the HDF code,
which depends in many places on numbers being the right size.

HDF handles this problem by fully defining al variable types and function data types via t ype-
def , including the number of bits occupied. All parameters, members of structures, and static,
automatic, and external variables are so defined .

The HDF data types include the following (types with the prefix u are unsigned).
int8
uint8
int16
ui nt 16
int32
ui nt 32
fl oat 32
fl oat 64
intn
ui ntn

For each machine, typedefs are declared that map all of the data types used into the best available
types. For example, i nt 32 isdefined as follows for Sun's C compiler:

typedef long int int32

164

October 27, 2000

HDF Specification and Developer’s Guide

Unfortunately, the HDF data types do not always map exactly to one of the native data types. For
example, the Cray UNICOS C compiler does not support a 16-bit data type. In such instances,
HDF uses the best available match and care is taken to minimize potential problems.

The datatypes i ntn and uintn arefor situations where it can be determined that number type
size is unimportant and that a 16-bit integer is large enough to hold any value the number can
have. In such cases, the native integer type (or unsigned integer type) of the host machine is used.
Experience indicates that substantial performance gains can be achieved by using intn or uintn
in certain circumstances.

11.8.2Number Representation

One of the keys to producing a portable file format is to ensure that numbers that are represented
differently on different machines are converted correctly when moved from machine to machine.
HDF provides conversion routines to convert between native representations and a standard repre-
sentation that is actually used in the HDF file. This ensures that HDF data will always be inter-
preted correctly, regardless of the platform on which it is read or written. Details of this process
will beincluded in alater edition of this manual.

11.8.3Byte-order and Structure Representations

Even when the basic bit-representation of constants or aggregates like structures is the same
across platforms, the ways that the bits are packed into a word and the order in which the bits are
laid out can differ. For example, DEC and Intel-based machines generally order bytes differently
from most others. And the C compiler on a Cray, with a 64-bit word, packs structures differently
from those on 32-bit word machines.

Differencesin byte order among machines are handled in either of two ways. When the datato be

written (or read) includes non-integer data and/or a large array of any type of data, conversion
routines mentioned in the previous section, “Number Representation,” are invoked. When an
individual integer is to be written (or read), &NOCDE or DECCDE macro is used.

The following ENCCDE and DECCDE macros are available for 16-bit and 32-bit integers:

| NT16ENCCDE
U NI'16ENCE
| NT32BNCCDE
U NI32ENCE
| NT16CEQCDE
U NI16DECTE
| NT32CEQCDE
U NI320ECE

The ENCCDE macros write integers to an HDF file in a standard format regardless of the word-size
and byte order of the host machine.

Likewise, the DECCDE macros read integers from a standard format in an HDF file and provide
the integers in the required byte order and word size to the host machine.

Since the ENOCCDE and DECCDE macros deal with both byte order and word size, they are also
used in reading and writing record-like structures. For example, an HDF data descriptor consists
of two 16-bit fields followed by two 32-bit fields, as implied by the following C declaration:

struct {
ui nt 16 tag;
uint 16 ref;
uint 32 of fset;

October 27, 2000 165

National Center for Supercomputing Applications

uint32 | ength;
}

Even though this structure might occupy 12 bytes on one platform or 32 bytes on another (e.g., a
Cray), it must occupy exactly 12 bytesin an HDF file. Furthermore, some machines represent the
numbers internally in different byte orders than others, but the byte order must aways be big-
endianin an HDFfile. The ENOCDE and DECCDE macros ensure that these values are always rep-
resented correctly in HDF files and as presented to any host machine.

11.9 Accessto Library Functions

Despite standardization efforts, function libraries often differ in significant ways. At least three
types of functions require special treatment in the HDF implementation;

Filel/O
Some platforms use 16-bit values for the element size and the number of elements to
write or read, while others use 32-bit values. This must be considered when working
with either stream or system level 1/0 functions (i.e., the functions associated with the

fopen() and open() cals).

Memory allocation and release
First, 16-bit machines use a 16-bit value to indicate the number of bytesto allocate or
release at one time. Second, certain operating systems (notably MS Windows and
MAC/OS) don't have nalloc() and free() cals. These operating systems use
handles for allocating memory and require different function calls.

Memory and string manipulation
These functions (e.g., nencpy(), nencnp(), strcpy(), and strlen()) require
dightly different function names under different memory models in MS DOS and
under M'S Windows than on most other systems.

HDF accommodates these special situations by defining appropriate macros in the machine-spe-
cific sectionsof hdfi . h.

166 October 27, 2000

Tags and Extended Tag L abels

A.10 Overview
Thetablesin this appendix lists al of the NCSA-supported HDF tags and the labels used to iden-
tify extended tags.z
A.11 Tags
Table Aalists all the NCSA-supported HDF tags with the following information:
Tag Thetag itself

Tagnumber The regular tag number in decimal (top) and hexadecimal (bottom)

Extended tag number
The extended tag number used with linked blocks and external data elements
in decimal and (hexadecimal)

Full name

Section

The tag name, a descriptive English phrase
The section of Chapter 9Tdg Specifications,” in which the tag is discussed

The tags are listed in alphabetical order. Not all tags have extended tag numbers.

TABLE Aa NCSA-supported HDF Tags
Tag Number %&?ggj Full Name Section

DFTAG AR 312 Aspect ratio Raster Image Tags
0x0138

DFTAG CAL 731 Calibration information Scientific Data Set Tags
0x020B

DFTAG CON 310 Color correction Raster Image Tags
0x0136

DFTAG CFM 311 Color format Raster Image Tags
0x0137

DFTAG A 8 203 Compressed image-8 Obsolete Tags
0x00CB

DFTAG D A 105 Data identifier annotation Annotation Tags
0x0069

November 7, 2001

167

National Center for Supercomputing Applications

Tag Number Iilxlfnng;d Full Name Section

DFTAG D L 104 Dataidentifier |abel Annotation Tags
0x0068

DFTAG DRAW 400 Draw Composite Image Tags
0x0190

DFTAG FD 101 File description Annotation Tags
0x0065

DFTAG FI D 100 File identifier Annotation Tags
0x0064

DFTAG FV 732 Fill value Scientific Data Set Tags
0x02DC

DFTAG CREYJPE | 14 8-hit JPEG compression infor- | Compression Tags

G 0x000E mation

DFTAG I D 300 Image dimension Raster Image Tags
0x012C

DFTAG | 08 200 Image dimension-8 Obsolete Tags
0x00C8

DFTAG 118 204 IMCOMP image-8 Obsolete Tags
0x00CC

DFTAG | MC 12 IMCOMP compressed data Compression Tags
0x000C

DFTAG | P8 201 Image palette-8 Obsolete Tags
0x00C9

DFTAG JPEG 13 24-bit JPEG compression Compression Tags
0x000D information

DFTAG LD 307 LUT dimension Raster Image Tags
0x0133

DFTAG LUT 301 Lookup table Raster Image Tags
0x012D

DFTAG MA 309 Matte channel Raster Image Tags
0x0135

DFTAG MD 308 Matte channel dimension Raster Image Tags
0x0134

DFTAG M 107 Machine type Utility Tags
0x006B

DFTAG NDG 720 Numeric data group Scientific Data Set Tags
0x02D0

DFTAG NT 106 Number type Utility Tags
0x006A

DFTAG NULL 1 No data Utility Tags
0x0001

DFTAG R 302 16686 Raster image Raster Image Tags
Ox012E | Ox412E

DFTAGR 8 202 Raster image-8 Obsolete Tags
0x00CA

168

November 7, 2001

HDF Specification and Developer’s Guide

Tag Number I;:\lezfnng:rd Full Name Section

DFTAGR G 306 Raster image group Raster Image Tags
0x0132

DFTAG RLE 11 Run length encoded data Compression Tags
0x000B

DFTAG SD 702 17086 Scientific data Scientific Data Set Tags
0x02BE 0x42BE

DFTAG SDC 708 Scientific data coordinates Scientific Data Set Tags
ox02¢4

DFTAG SCD 701 Scientific data dimension Scientific Data Set Tags
0x02BD record

DFTAG SDF 706 Scientific data format Scientific Data Set Tags
0x02C2

DFTAG SDG 700 Scientific data group Obsolete Tags
0x02BC

DFTAG SOL 704 Scientific data labels Scientific Data Set Tags
0x02Q0

DFTAG SDLNK 710 Scientific data set link Scientific Data Set Tags
0x02G6

DFTAG SDM 707 Scientific data max/min Scientific Data Set Tags
0x02C3

DFTAG SIS 703 Scientific data scales Scientific Data Set Tags
0x02BF

DFTAG SDT 709 Scientific data transpose Obsolete Tags
0x02C5

DFTAG SDU 705 Scientific data units Scientific Data Set Tags
0x02C1

DFTAG T105 603 Tektronix 4105 Vector Image Tags
0x25B

DFTAG T14 602 Tektronix 4014 Vector Image Tags
Ox25A

DFTAG TD 103 Tag description Annotation Tags
0x0067

DFTAG TID 102 Tag identifier Annotation Tags
0x0066

DFTAGVERS N | 30 Library version number Utility Tags
0x001E

DFTAG VG 1965 Vgroup Vset Tags
0x07AD

DFTAG VH 1962 Vdata description Vset Tags
Ox07AA

DFTAG VS 1963 18347 Vdata Vset Tags
0x07AB 0x47AB

DFTAG XYP 500 X-Y position Composite Image Tags
Ox01F4

November 7, 2001

169

National Center for Supercomputing Applications

A.12 Extended Tag L abels

Table Ab lists labels used to identify HDF extended tags. The table includes the following infor-
mation:

Extended tag label The label, which appears as the first element of the extended tag descrip-
tion record

Physical storage methodThe alternative storage method indicated by the label

TABLE Ab Extended Tag Labels
Extended Tag L abel Physical Storage Method
EXT_EXTERN External file element
EXT_LI NKED Linked block element
SPEA AL_COWP Compressed element
SPEA AL CHINKED | Chunked element

170 November 7, 2001

Library Calling Trees

B.13 Overview

This appendix illustrated the calling trees employed in the HDF library.

B.14 Library Calling Trees: SD API

int ref# of the vdata
or FAIL

[hdf_create_compat_dim_vdata |—» - creates a vdata for the compatible dimension; its classis DIM_VALS

allocates dimension size—| HDmalloc int32 *

prepares value for the compatible dimension

creates ydata f"‘nd, . VHstoredata int32 vdata's ref#
stores dimension’s size

November 5, 2001 171

National Center for Supercomputing Applications

71v4/@3320NS ‘zew!

peywiuns)
uu dunisaH uoSUBWIP }1 0840

11v4/a3300NS ‘zewl [yoeepA —BAsy) wouyseyderep —

[yoerpsA | BIRPA8Y] WO.JSayJeep ——

RIRPASY) WOJJ
! [peassA | sneaspel |
eRpASYI Ul
ujul D EESY —
! L OPSSA WP 18114 088 P} UN S| UoSUBWIP
wl dwoussaH JI0TOSTVA NI —
©esisse 4
RRPAY] WO ZIS
uul [WnooABNOSA [| ocimupauspb]
SIVA WIQe
i dwoussaH Sissep §1
71v4/@3320NS ‘Uil [ssepwbSA | ssejos)Ispb
T1v4 o p1BA ‘zgwl UJelesA BJePA 8] 0] SayJeye

WP ON «—f SSIA |— BEPABS]I JISSUILIBIRP |

xWIP ON «—] peUBBA — juewep 1eU J0 #9116

9zIs uosuBW Ip 16
01STVYA WIQ Jo/pue
TOSTVA WIAssep jo
eRpA® J0}J ybnoiyy doo|

ujul alinbuin

W «—{ dwonsgH |—— uosUBWIPES)I JISHBYD —
T1V4/Q3300NS ‘Ul «—ssepPebA F———— ssepsyispb —
TIv41opiBA‘zeul «— yoeleA F——— bBasyloyseydene ——|
WP ON «—— BSIN ——— Baes)jissulwpeiep —

xAWIP ON «— peurbA —— 1ewep peu Jo#p1 16 —
«WIPON <[90]BWQH [—5!| WIpSakea0|e——

2IN10NJIS JpO B W) SUOISUBLLIP BY) Ul Speal -

BAsIy) Joojuispeh —

suosuaWwIp
Bunussaidaisba (e
Jojybnouyy doo|

11v4/@3300Ns uul

Swip peaJ Jpy

November 5, 2001

172

HDF Specification and Developer’s Guide

hdf_read_vars |— intn SUCCEED/FAIL

——for each dement——

loop through for all
vgs representing a
variable - class
_HDF_VARIABLE

—— for each sub-element

———allocates var list HDmalloc NC_var**

———allocates dim list HDmalloc NC_dim**

| getsnumber of int32
elements £

if this element is avgroup, do the following process,

otherwise, go to the next element

- readsin the variables and variable records from a cdf structure

Note: Vntagrefs should be called before the allocations so
they can use its result too; variable used wrong type: int

getsits tag and ref# intn, SUCCEED/FAIL

————— attachestothevg int32, vgid or FAIL
. gesitsclass intn, SUCCEED/FAIL
- checksif itsavariable int

—— getsinfo of thisvg intn

sub diagramis on

looks for dimensions, data storage, and

or-1if error

deallocate

T temp. storage D¢ int

compute number of records written

next page number type definition of this variable
—————— creates new var record NC_var *
———————— gets#of aftr records —— hdf_num_attrs F— intn
————— readsin attr records hdf_read_attrs NC_array *
if this var has been written w/data and is a record
variable (i.e, adimension), process the following
returns var->assoc->count NC var_shape int

deallocate shape info int <«—— twicefor shape and dsizes

detaches from the vg int32, SUCCEED/FAIL
creates var list NC_array *

<«—— twice for temporary variablelist and dimension list

November 5, 2001

173

National Center for Supercomputing Applications

—for each sub-element—— getsitstag and ref# Vgettagref intn, SUCCEED/FAIL
— case DFTAG_VG
attaches to the — [Vatach i ;
 abvgrowp int32, vgid or FAIL
loop through to — getsitsclass
obtain dimensions, if class isa
data storage, and _HDF_DIMENSION or int twice for _HDF_DIMENSION

number type
definition

“HDF_UDIMENSION and _HDF_UDIMENSION

I~ get sub vgroup info
get dimension id l
from its name NC_dimid

— detach from sub vgroup int32, SUCCEED/FAIL

— case DFTAG_VH —— vdata, do nothing

| ___ NDGtag for HDF3.2,
case DFTAG_NDG set ndg_ref to sub vgroup id
Data storage,

— ca=eDFTAG_SD set data_ref to sub vgroup id

o g;:;gggth of the Hlength int32

Ragged array index,

[CcaeDFTAG_SDRAG — o rag_ref to sub vgroup id

— case DFTAG_NT —— Number type

—— get sub vgroup info

get dimension id isring |

from its name

—— DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type

checks for native mode using several
comparisons, one of which is the routine below

DFKgetPNSC ints declared as int8, but casted to

uint8 when used here

174 November 5, 2001

HDF Specification and Developer’s Guide

[hdf_read_xdr_cdf — intn SUCCEED/FAIL - readsin acdf structure from thefile

73[;?3&5/:?8/8':—{ Vfindclass F—» int32, vg ref
—attachestotop level vg— Vattach ~ |— int32, vgid or FAIL
readsin dim records——/{ hdf_read_dims | intn, SUCCEED/FAIL
reads in var records— hdf_read vars |— intn, SUCCEED/FAIL
——gets # of attr records——| hdf_num_attrs F— intn

reads in attr records hdf_read_attrs NC_array *
——detaches from the vg int32, SUCCEED/FAIL

hdf_write attr Int refff of thevdata writes a vdata representing an attribute
or FAIL

data for this vdata:
name = (NC_attr *)->name->values, values = (NC_attr *)->data->values
size= (NC_attr *)->data->count, type = (NC_attr *)->HDFtype

creates a vdata and .)
~ storestheattribute INt32 vdatals ref#

hdf_write dim |—» L)r:tiZU\/LgLroup ref# of thisvar - _ writes out the vgroup representing a dimension and its elements

this vdata has one field, "Values', and one record, the

creates vdata to store - .
hdf_create dim_vdata Int32 ref# dimension’s size; its name is the dimension’s name

dimension's size

—Zir?aissi%%mpanble—{ hdf_create_compat_dim_vdata |—» int32ref# <«—— storestheref#in therefslist

if data has been written for this dataset, stores the data storage's ref# in refslist also

crestes aref for the returns aref that is unique
—— number type object —— .)) q Htagnewref uint16
L . inthefilefor agiven tag
using either routine
L returnsaref that isunique Hnewref Lint16
inthefile

—— setsdimension’s classto _HDF_DIMENSION or _HDF_DIMENSION using the dimension's size

—— setsdimension’s name to the defined one or to thefakeone «——— Note: any skipped index of the fake name is adjusted here

writes the vgroup for VHmakegroup int32, vg ref

thisdimension

November 5, 2001 175

National Center for Supercomputing Applications

int32 vgroup ref# of thisvar
R group

or NULL - writes out the vgroup representing a variable and its elements

[hdf_write var

gets ref# of each dim haf qet ref int32 ref# uses the association list of this var: var->assoc->valued[i]; the ref# is then
of the passed in var 9 stored in therefslist (which will contain all ref#sin the file) for later writing

| writes each attribute hdf_write_attr int32ref# «—— storestheref#in therefslist

of thisvariable

if data has been written for this dataset, stores the data storage’s ref# in refs list also

creates aref for the

| e returns aref that is unique uint16
nu_mbq type ongct inthefilefor agiven tag X
using either routine
returns_a ref that is unique uint16
inthefile
writes number type int32 # of byteswritten or FAIL
—— stores the number type'sref# inrefslist
—sets up to writethe NDG DFdisetup int32 group id or FAIL <«—— actually, sets up spacefor alist of DIs
writes metadata DFdiput intn SUCCEED/FAIL « ctually, addstag/ref to DI list;
twice for SD’s and number type's
writes SDD record int32 # of byteswritten or FAIL
writes metadata DFdiput intn SUCCEED/FAIL «— 2ctudly, addstag/ref to DI list;
twice for SD’s and number type's

——— storesthe SDD'sref# inrefslist

writes out the NDG DFdiwrite intn SUCCEED/FAIL «—— actually, writes DI list to file

—— storesthe NDG'sref#inrefslist

| writesthe vgroup for)
thisvariable — VHmakegroup |——> int32, vg ref

176 November 5, 2001

HDF Specification and Developer’s Guide

[hdf_write xdr_cdf |—» intn SUCCEED/FAIL - writes out acdf structureto thefile

| convetsscalevalues oo intn SUCCEED/FAIL
into coord var values

allocates tag list HDmalloc int32 **

allocates ref list HDmalloc int32 **

- if there are any dimension, loop through the dim
list (NC*)->dims->values

+—for each dimension—

—— check for duplication ——{ NC_compare string —— int32, vgid or FAIL
use tsizeptr and thashptr to suplement the comparison of dim records

—— if thisdimension is not duplicated

Lwrites dimension out hdf_write dim int32

- if there are any variable, loop through the var list
(NC*)->vars->values

writes variable out hdf_write var int32

+——for each variable—

- if there are any file attributes, loop through the

—foreach attribute— ih e list (NC*)->attrs->values

wites atribute out inta2
| writesout thetop)
level vgroup CDF [VHmakegroup |—— int32, vg ref

November 5, 2001 177

National Center for Supercomputing Applications

SDcr eate)—» int32 SDSid or FAIL - creates anew dataset

733%%?;%"' ® [SDihandie from id | » NC*
creates new dim record— NC_new_dim — NC_dim *
- creates var lis——{ NC_new_array |—» NC_array *
—adds the new var to varsliss—{ NC_incr_array |— Void *
— DFNT_TYPE -> NC_TYPE—{ hdf_unmap_type —» nc_type
creates new var record— NC_new_var |—» NC_var *

determines size from - int sizeor
— DFKNTsize FAIL

given number type

_ createsnew NDG ref returns a ref that_is unique Hiagnewrel Uintl6
using either routine in thefilefor agiven tag
_returns.a ref that isunique uint16
inthefile
retums var->assoc->count NC var_shape int
or -1if error —
SDend intn SUCCEED/FAIL - closes an HDFfile

getsfile handle - N
I usingdimid —— SDIhandle from_id - NC
L if meta-data needs Update,
updates data xdr_cdf bool_t
| ése, if numrecsinfo needs bool t
update, updates data = -

L closesthefile———{ ncclose ~ |—» int

a— . gets info about an opened file, info includes number
SDfileinfo intn SUCCEED/FAIL of datasets and number attributesin the file

78:%';32?3(1'(34{ SDlhandle from id — NC*

retrieves (NC *)->vars->count and
(NC *)->attrs->count

178 November 5, 2001

HDF Specification and Developer’s Guide

SDgetinfo intn SUCCEED/FAIL gets information about a dataset

—getsfile handle using sdsid—{ SDIhandle_from_id — NC*

———getsvar recood——{ SDIget var |—» NC_var*
. . from (NC_var*)->name-
[HDmemcpy | -
copies dataset's name HDmemcpy svalues
gets number type hdf_map_type or just (NC_var*)-

>HDFtype
if there are any attributes, gets number of attributes from (NC_var*)->attrs-

>count

gets size of ith dimension from (NC_var*)-
>shape]i]
if thefirst dimension is unlimited, getsits size from (NC_var*)->numrecs or (NC*)-

>NuUmrecs

SDgetrange intn SUCCEED/FAIL gets max and min values of data

—getsfile handle using sdsid—{ SDIhandle from_id |—» NC*

———gets var record NC_var *
finds an attr named NC_findattr NC_attr ** — for attribute named _HDF_VaidRange

if found

computes and gets twice for min and
B HDmemcpy —
min/max values max

otherwise,

fl_nds an attr NC findattr NC_attr ** tW|_cef0(attnbute;s named
given its name valid_min and valid_max
checksif attributes’ typeis
different from that of var, if

not
NC_copy_aravas tr:qN;)(zefor min and

November 5, 2001 179

National Center for Supercomputing Applications

SDnametoindex —» int32 dataset index or FAIL - maps a dataset name'to its index

—?ﬁésﬁf;;gandleugng—{ SDlhandle from_id —» NC*

——for each variable - if there are any variable, loop through the var list (NC*)->vars->values

searches for a var that has the

i | HDstrncmp_| i
name as the passed in name —{Hbstrnemp_|-—» int
the loop counter will be the found dataset
index
SDreaddata)—» intn SUCCEED/FAIL - reads a hyperslab of data

—?&Slg' ;esga;‘gl';‘;igg—{ SDihandle from id |—» NC*

if theid is not that of a dataset, try
dimension

getsfile handle using - *
theid asadimensionid Lo2nendle from id |— NC

————getsdim record SDIget_dim NC_dim*

| if dimensionisfound, gets intn otherwise, calculates index
index of the coord var 9 of the var using sdsid

if type size conversion is needed due to platform

differences,
\—gets var record NC var* <+—
reads the hyperslab reads without int. 0or-1
using either routine strides '
reads with strides int, 0or -1
SDsetattr
| getsattr list of afile, SDS, - .
or dimension, return S'F —*| SDlapfromid > intn
et intn

just to get (NC_var*)->assoc-
>count

180 November 5, 2001

HDF Specification and Developer’s Guide

SDsetdatastrs

78§§g§2?gdle4ﬂ SDlhandle from_id — NC*

- desvarreod e var > .
using sdsiid SDlget_var NC_var
sets attribute, . repeated 4 times for label, unit, format, and
returns S/F ntn coordinate system

SDsetdimname

78::;;:;;%(“64# SDlhandle from_id — NC*

————gets dim record SDIget_dim NC_dim*
frees old dimension NC free dim
creates a new name - .
for thisdimension —*[NC_new_string | NC_string
frees old name -
T retumns SE NC_free string

SDsetdimscale

7g§§;”d?:ﬁ;d'e—w SDihandle from id > NC*

———gets dim record SDIget_dim NC_dim*
———gets var index SDIgetcoordvar intn

stores data to this

T var, returns SF int32
frees handle->var->aid '
o | SDIfreevarAID |
returns S'E SDIfreevarAID int32

SDsetdimstrs

getsfile handle - .
 usngdimid ——»{ SDIhandle from_id —» NC
————gets dim record SDIget_dim NC_dim*
———gets var index SDIgetcoordvar intn
— ger var re_cord NC_hlookupvar NC_var *

using var index

sets attribute, . - -
returns SF SDIputattr intn «—| repeated 3 times for label, unit, and format |

November 5, 2001 181

National Center for Supercomputing Applications

SDsetfillvalue
getsfile handle - .
T usingsdsid ——»{ SDIhandle_from_id |-—» NC

gets var record

> SDige v | NC_var

sets fill value attribute, .
T retumns SIF SDIputattr intn

SDselect int32 sdsid or FAIL getsadataset id, i.e., initiates access to a dataset

733352?3(1@% SDlhandle from_id - NC*

creates sdsid using the fileid and sds index

[SDstart |—— int32filelD of FAIL - opensan HDF file

——initializes the interface—»{ SDIstart > NC*
uses either routine
depending on the ——»,

access mode —— creates an HDF file intn

opens an existent

L opens ¢ intn

L validates andTeUmS /NG _check id] NC*

SDlapfromid)—» inth SUCCEED/FAIL - getsthe attribute list of an object givenitsid

getsfile handle

- . repeated 3 times for the SDS, thefile, and the
using sdsid SDihandle from id |— NC dimension depending on the previous result

————gets var record SDIget_var NC_var *

gets dim record SDIget_dim NC_dim*

— Coodnovr | SDlggoorcha nin

— ge'ts var re_cord NC_hlookupvar NC_var *
using var index = -

182 November 5, 2001

HDF Specification and Developer’s Guide

SDIgetcoordvar |—» int32 varindex - getsthe index of a coordinate variable

compares given name with

| looksfor var of names from handle->vars intn?
agiven name
DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type
determines size of a data type NC_typelen size t
returr_]s var->assoc->count NC var_shape int
or -1if error

DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type

creates new var record NC_new_var)—» NC_var *
| createsnew NDGref returns aref that is unique Htagnewref uint16
using either routine in thefilefor a given tag
returns aref that is unique uint16
inthefile
—————————returns var->assoc->count or -1 if error NC_var_shape int
adds the new var to vars list Void *
\ SDIget_dim F——» NC_dim* - gets the dimension record

ap = (NC_array **) handle->dims->values,
where handleisNC *

getsdimliss——»

gets dim record using

" calculated dimindex > (NC-dim*) *ap

\ SDIget_var F——» NC_var* - getsthe variable record

ap = (NC_array **) handle->vars->values,
where handleisNC *

getsvar liss——»

gets var record using

" calculated var index > (NCV&) *ap

[SDihandle from id }—— NC* handle - getsthefile handle of an object givenitsid and type

validates and returns - .
cdf handle —{ NC_check_id F» NC

November 5, 2001 183

National Center for Supercomputing Applications

184 November 5, 2001

Function Specifications

C.15 Overview

This appendix presents the detailed specifications of selected individual routines of the HDF low
level interface. Several low level routines are documented in the HDF Reference Manual and all
are documented in the distributed source code.

The terms IN: and OUT: indicate whether parameters are input or output parameters; in some
cases, a parameter may be both. In the following specifications, these terms should be interpreted

asfollows:
IN: Value as input parameter
OuUT: Value as output parameter

C.16 Opening and Closing Files

Hopen
i nt 32 Hopen(char *path, int access, intl1l6 ndds)

pat h IN: Complete path and name of the file to be opened

access IN: DFACC READ, DFACC CREATE, or DFACC VR TE

ndds IN: Number of DDsin ablock if this file needs to be created

Purpose Provides an access path to an HDF file and reads all of the DD blocks in the

file into primary memory.

Returnvalue Returnsfile ID if successful and FAIL (- 1) otherwise.

Description Opens an HDF file.

The following events occur on successful exit:

* Fi | e_rec members are filled inF{ | e_r ec is an internal HDF structure
containing information about the opened file.)

» The requested file is opened with the relevant permission.
* Information about DDs is set up in memory.
« The file headers and initial information are set up for new files.

November 7, 2001 185

National Center for Supercomputing Applications

Access privilege codes
HDF provides several constants for use as access privilege codes as listed
below. Note that these constants are not bit-flags and should not be ORed
together to combine access modes. Doing so may cause odd behavior and, in
some cases, loss of data:

Recommended tags:
DFACC_READ Open for read only. If file does not exist, error.
DFACC_WRI TE Open for read/write. If file does not exist, create it.

DFACC_CREATE Force creation. If file exists, deleteit, then open anew file
for read/write (in the spirit of the UNIX system command
cl obber).

Obsolete tags:
DFACC_ALL Same as DFACC_WRI TE (obsol ete but still supported).
DFACC RDWR Sameas DFACC WRI TE (obsolete but still supported).

Hclose

intn Hcl ose(int32 id)
id IN: Theidentifier of the file to be closed
Purpose Closes the access path to thefile.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description i disfirst validated. If valid, the function closes the access path to thefile.

If there are still access elements attached to thefile, the error DFE_OPENAI D
is pushed onto the error stack and the fileis not closed. Thisis afairly com-
mon error when developing new interfaces. See the discussion of Hendac-

cess below for debugging hints.

186 November 7, 2001

HDF Specification and Developer’s Guide

C.17 Locating Elementsfor Access and Getting I nformation

Hstartread

int32 Hstartread(int32file_id, uintl6tag, uintl6ref)

file id
tag

ref

Purpose

Return value

Description

Hnextread

IN: ID of fileto attach access e ement to
IN: Tag to search for

IN: Reference number to search for

L ocates an existing data element with matching tag/ref and returns an access
ID for reading it.

Returns access element 1D if successful and FAIL (- 1) otherwise.

Searches the DDs for a particular tag/ref combination. If the search is suc-
cessful, an access element is created, attached to the file, and positioned at
the start of that data element; otherwise an error is returned. Searching on
wildcards begins from the beginning of the DD list. Wildcards can be used
for the tag or reference number (DFTAG_W LDCARD and DFREF_W LDCARD)
and they match any values.

intn Hhextread(int32 access id, uintl6 tag, uintl6 ref, int origin)

access_id
tag

ref
origin
Purpose

Return value

Description

IN: 1D of aREAD access element
IN: Tag to search for
IN: Reference number to search for

IN: Position at which to start searching

Locates and positions aread access | D on next occurrence of tag/ref.

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Searches for the next DD that fits the tag/ref. Wildcards apply. If ori gi n is
DF_START, searches from start of DD list; if origin is DF_CURRENT,
searches from current position. Searching from the end of the file via
DF_END is not yet implemented.

If the search is successful, then the access element is positioned at the start of
that tag/ref; otherwise, the access ID is not modified.

November 7, 2001

187

National Center for Supercomputing Applications

Hstartwrite

int32 Hstartwite(int32 file id, uintl6é tag, uintl6 ref, int32 /ength)

file_ id
tag

ref

I ength
Purpose

Return value

Description

Hstartaccess

IN: 1D of fileto writeto

IN: Tagto writeto

IN: Reference number to write to
IN: Length of the data element

Creates or replaces data element with matching tag/ref.

Returns access element ID if successful and FAIL (- 1) otherwise.

Sets up an access element to write a data element. The DD list of thefileis
searched first; if the tag/ref is found, the data element can be modified. If an
object with the corresponding tag/ref is not found, a new oneis created.

int32 Hstartaccess(int32 file id, intl6 tag, intl6 ref, int32 flags)

file_ id
tag

ref

fl ags
Purpose

Return value

Description

IN: ID of fileto read/write to
IN: Tagto read/writeto
IN: Reference number to read/write to

IN: Accessflagsfor the data element

Sets up an access element for either reading or writing.

Returns an access element identifier if successful and FAIL (- 1) otherwise.

Starts up an access element for either read or write access. The data descrip-
tor list for the file is searched first. If the tag/ref is found, it is not replaced;
the seek position is presumed to be at zero (0). If thetag/ref is not found, itis
created.

Only afinite number of access elements can be active at agiventime, soitis
important to call Hendaccess whenever you are done using an element.

188

November 7, 2001

HDF Specification and Developer’s Guide

Hendaccess

i nt 32 Hendaccess(int access_id)

access_id

Purpose

Return value

Description

Hinquire

IN: 1D of access element to dispose of

Disposes of access element for tag/ref.

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Disposes of an access element. Only a finite number of access elements can
be active at agiven time, so it isimportant to call Hendaccess whenever
you are done using an element.

When developing new interfaces, a common mistake is to fail to call Hen-
daccess for al of the elements accessed. When this happens, Hcl ose
will return FAIL and the dump of the error stack (see HEpri nt below) will
tell how many access elements are still active.

This can be difficult problem to debug, as the low levels of the HDF library
have no idea who or what opened an access element and forgot to release it.
A tedious but effective means of debugging this problem is to annotate with
comments the locations where the attached count of afile record is changed.
Thisoccursin thefiles hfil e. c, hbl ocks. c,and hextelt.c.

intn Hnquire(int32 access id, int32 *pfile_id, uintl6 *ptag, uintl6 *pref,
int32 *plength, int32 *poffset, int32 *pposn, int *paccess,
int16 *pspecial)

access _id
pfile id
ptag

pref

pl engt h
pof fset
pposn
paccess

pspeci al

Purpose

Return value

IN:Access element ID

OUT:FileID

OUT:Tag of the element pointed to
OUT:Reference number of the element pointed to
OUT:Length of the element pointed to
OUT:Offset of element in thefile

OUT:Position pointed to within the data element
OUT:Access type of this access element
OUT:Special code

Returns access information for a data element.

Returns SUCCEED (0) if the access element points to some data element
and FAIL (-1) otherwise.

November 7, 2001

189

National Center for Supercomputing Applications

Description

Hishdf

Inquires for the statistics of the data element pointed to by the access ele-
ment. If a piece of information is not needed, a NULL can be sent in for that
value. Convenience macros for calls to Hi nquire (HQuerypositon,
HQuer yl engt h, etc.) are definedin hdf . h.

i nt 32 H shdf (char *pat h)

pat h

Purpose

Return value

Description

IN: Complete path and name of file

Determines whether afileis an HDF file.

Returns TRUE (non-zero) if fileis an HDF file and FAL SE (0) otherwise.

The decision as to whether afile isan HDF fileis based solely on the magic
number stored in the first four bytes of an HDF file. Hi shdf may some-
times identify afile as an HDF filethat Hopen is unable to open (e.g., an
HDF file with a corrupted DD list).

readable.

Note: Hi shdf only determineswhether afileisan HDFfile. It does not verify that thefileis

Hnumber

int Hhunber (int32 file_id, uintl6 fag)

file id
tag

Purpose

IN: FilelD
IN: Tag to be counted

Counts the number of occurrences of atagin afile.

Return value The number of occurrences of atag in afile.

190 November 7, 2001

HDF Specification and Developer’s Guide

Hgetlibversion

Hgetlibversion(uint32 *najorv, uint32 *mnorv, uint32 *rel ease, char string[])

maj orv
m norv
rel ease

string
Purpose

Return value

Description

Hgetfileversion

OUT:Major version number
OUT:Minor version number
OUT:Release number
OUT:Informational text string

Gets version information for current HDF library.
Returns SUCCEED (0).

Returnsthe version of the HDF library. The version information is compiled
into the HDF library, so it is not necessary to have any open files for this
function to execute.

Hyetfil eversion(uint32 file_ id, uint32 *najorv, uint32 *ninorv,
uint 32 *rel ease, char *string)

file id
maj orv
m norv
rel ease

string

Purpose
Return value

Description

IN: FilelD

OUT:Major version number
OUT:Minor version number
OUT:Release number
OUT:Informational text string

Gets version information for an HDF file.
Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Returns the HDF version information stored in the given file.

November 7, 2001

191

National Center for Supercomputing Applications

C.18 Reading and Writing Entire Data Elements

Hputelement

int Houtelenment(int32 file id, uintl6 tag, uintl6 ref, uint8 *data,
int32 [ength)

file_id IN: FilelD

tag IN: Tag of data element to put

ref IN: Reference number of data element to put
dat a IN: Pointer to buffer

I engt h IN: Length of data

Purpose Adds or replaces an element in afile.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Writes anew data element or replaces an existing dataelement in aHDF file.
Uses Hwrite anditsassociated routines.

Hgetelement
int Hgetelenent(int32 file id, uintl6 tag, uintl6 ref, uint8 *data)
file id IN: 1D of thefileto read from

tag IN: Tag of data element to read

ref IN: Reference number of data element to read
dat a OUT:Buffer to read into

Purpose Obtains the data referred to by the passed tag/ref.

Returnvalue Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Reads a data element from an HDF file and puts it into the buffer pointed to
by dat a. The space allocated for the buffer is assumed to be large enough.

Note: Hget el enent assumesthat the buffer islarge enough to hold the data being read. Itis
the user’s responsibility to prevent data loss by ensuring that this is the case.

192

November 7, 2001

HDF Specification and Developer’s Guide

C.19 Reading and Writing Part of a Data Element

Hread
int32 Head(int32 access id, int32 length, uint8 *data)

access_id IN: Read accesselement ID

I ength IN: Length of segment to read in
dat a OUT:Pointer to data array to read to
Purpose Reads a portion of adata element.

Returnvalue Returns length of segment actually read if successful and FAIL (-1) other-
wise.

Description Reads in the next segment in the data element pointed to by the access ele-
ment. Hread starts at the last position left by an Hread or Hseek call
and reads any data that remains in the element up to / engt h bytes. If the
dataelement istoo short (lessthan / engt h byteslong), Hread readsto the
end of the data element.

Hwrite
int32 Hwite(int32 access id, int32 length, uint8 *data)

access_id IN: Write access element ID

I engt h IN: Length of segment to write
dat a IN: Pointer to datato write
Purpose Writes next data segment to data element.

Returnvalue Returnslength of segment successfully written and FAIL (- 1) otherwise.

Description Writes the data to the data element where the last Hwite or Hseek
stopped.

Hwrite startsat thelast positionleftby an Hwite or Hseek call, writes
up to a specified number of bytes, and |eaves the write pointer at the end of
the data written. If the space reserved is less than the length to write, then
only as much as can fit iswritten.

It is the user’s responsibility to ensure that no two access elements are writ-
ing to the same data element. Note that a user can interlace writes to multiple
data elements in the same file.

November 7, 2001 193

National Center for Supercomputing Applications

Hseek

intn Hseek(int32 access id, int32 offset, int origin)

access_id
of fset

origin

Purpose

Return value

Description

IN: Access element ID
IN: Offset to seek to
IN: Position to seek from:

DF_START (0) of fset from beginning of data element
DF_CURRENT (1) of fset from current position
DF_END (2) of fset fromend of data element

Sets the access pointer to an offset within a data element. The next time
Hread or Hwrite iscalled, theread or write occurs from the new position.

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Sets the position of an access element in a data element so that the next
Hread or Hwite will start from that position. origin determines the
position from which of f set should be counted.

Thisroutine fails if the access element is not associated with a data e ement
or if the position sought is outside of the data element.

Seeking from the end of adata element is not currently supported.

194

November 7, 2001

HDF Specification and Developer’s Guide

C.20 Manipulating Data Descriptors

Hdupdd

int Hdupdd(int32 file id, uintl6 tag, uintl6 ref, uintl6 ol d tag,
uint16 ol d_ref)

file_ id
tag
ref
old tag
ol d ref

Purpose

Return value

Description

Hdeldd

i nt Hdel dd(i nt 32

file id

tag

ref

Purpose

Return value

Description

IN: FilelD

IN: Tag of new data descriptor

IN: Reference number of new data descriptor
IN: Tag of data descriptor to duplicate

IN: Reference number of data descriptor to duplicate

Generates new references to data that is already referenced from somewhere
else

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.
Duplicates a data descriptor so that the new tag/ref points to the same data

element pointed to by the old tag/ref.

file_id, uintl6 tag, uintl6 ref)

IN: FilelD

IN: Tag of data descriptor to delete

IN: Reference number of data descriptor to delete

Deletes atag/ref from the list of DDs.

Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Deletes the data descriptor of tag/ref from the DD list of thefile. Thisroutine
is unsafe and may leave afile in a condition that is not usable by some rou-
tines. Use with care.

November 7, 2001

195

National Center for Supercomputing Applications

Hnewr ef
uint16 Hhewef(int32 file id)
file id IN: FilelD

Purpose Returns the next available reference number.

Returnvalue Returns the reference number if successful and 0 otherwise.

Description Returns a reference number that can be used with any tag to produce a
unique tag/ref. Successive callsto Hnewr ef will generate astrictly increas-
ing sequence until the highest possible reference number has been returned;
then Hnewr ef will return unused reference numbers starting from 1.

196 November 7, 2001

HDF Specification and Developer’s Guide

C.21 Managing Special Data Elements

HL create

int32 Hcreate(int32 file id, uintl6 tag, uintl6 ref, int32 block | ength,
i nt 32 nunber_bl ocks)

file id
tag

ref

IN: FilelD
IN: Tag of new data element (or object)

IN: Reference number of new data element (or object)

bl ock_I ength

IN: Length of blocks to be used

number bl ocks

Purpose:

IN: Number of blocksto use per linked block record

Creates anew linked block special data element.

Return value Returns access ID for special dataelement if successful and FAIL (-1) other-

Description

wise.

Appending to existing HDF elements was a problem prior to HDF Version
3.2 because HDF objects had to be stored contiguously. When appending,
the HDF library forced the user to delete the existing element and rewrite it
at the end of the file. HDF Version 3.2 introduced the concept of linked
blocks, which allow unlimited appending to existing elements without copy-
ing over existing data.

Thisroutine can be used to create an object with the given tag/ref as alinked
block element or to promote an existing element to be stored in linked
blocks.

Initially, atable is set up to accommodate nunber_bl ocks linked blocks
for the specified data object. Each block has bl ock_I engt h bytes. If an
existing object is being promoted, b/ ock_I engt h does not have to be the
same size asthe original element.

HLcreat e returns an active access ID with write permission to the linked
block element.

November 7, 2001

197

National Center for Supercomputing Applications

HL setblockinfo

i ntn H.set bl ocki nf o(int32 access_id, uint32 block size, uint32 num bl ocks)

access_id IN: Access record identifier

bl ock_si ze IN: Block sizein bytes

num bl ocks IN: Number of linked blocks

Purpose Sets block size and number of blocks for alinked block element.

Return value Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Sets the block size and the number of linked blocks for a linked block data
element. Unless reset by this function, bl ock_si ze and num bl ocks will
have the default values defined in HDF_APPENDABLE BLOCK LEN and
HDF_APPENDABLE_BLOCK_NUM respectively.

Passing in the value -1 for either parameter indicates that the respective
field is not to be changed.

An error will occur if the value of either parameter isset to 0 or any negative
value other than - 1.

Thisroutineis used by V Ssetblocksize and V Ssetnumblocks.

HL getblockinfo

i ntn H.get bl ocki nfo(int32 access_id, uint32 *block_size, uint32 *num bl ocks)

access _id IN: Access record identifier
bl ock_si ze OUT: Block sizein bytes
num bl ocks OUT: Number of linked blocks

Purpose Retrieves block size and number of blocks for alinked block element.

Returnvalue Returns SUCCEED (0) if successful and FAIL (- 1) otherwise.

Description Retrieves the block size and the number of linked blocks for a linked block
data element.

If no response is desired for either value, bl ock_si ze or num bl ocks may
be set to NULL.

Thisroutine is used by V Sgetblockinfo.

198

November 7, 2001

HDF Specification and Developer’s Guide

HXcreate

int32 HXcreate(int32 file id, uintl6 tag, uintl6 ref, char *extern file_nane)
file id IN: filerecord ID
tag IN: Tag of the special data element to create or promote
ref IN: Reference number of the special data element to create/promote

extern_file_nane
IN:name of the external file to use for the data element

Purpose Creates anew external file special data element.

Return value Returns access ID for specia data element if successful and FAIL (- 1) oth-
erwise.

Description Creates a new element in an externa file or promotes an existing element to
be stored in an external file. If an existing element is to be promoted, it is
deleted (using Hdeldd) from the original file and copied into the new exter-
nal file.

Distributing a single object over multiple external files is not currently sup-
ported. In addition, one cannot place multiple objects in the same externa
file.

This routine returns an active access I D with write permission to the external
element.

November 7, 2001 199

National Center for Supercomputing Applications

C.22 Data Set Chunking

HM Ccreate

int32 HMCcreate(int32 file id, uintl6 tag, uintl6 ref,
uint8 nlevels, int32 fill_val_len, void *fill_val,
HCHUNK_DEF * chk_ar r ay)

Purpose
Creates a chunked element.
Description
HM Ccreate promotes an HDF element to a chunked element.

The HDF element specified by HM Ccreate becomes a chunked element allowing datato be
easily appended to the element. Chunk records are stored in a Vdata.

All of the pieces of the chunked element are the same size from the stand point of the ele-
ment. If compression is used then each chunk is compressed and the compression layer takes
care of it asthe chunk layer sees each chunks as a seperate HDF object (DFTAG_CHUNK).
The proper compression special header needs to be passed to the compression layer.

The Vdata (chunk table) is made appendable with alinked-block table size of 128.

This routine also creates the chunk cache for the chunked element. The cache is initialized
with the physical size of each chunk, the number of chunks in the object, i.e. the object size
divided by the chunk size, and the maximum number of chunksto cache in memory. Chunks
in the cache are dealt with by their number, i.e. by translating the ori gi n of the chunk to a
unique number. The default maximum number of chunksin the cacheis set to the number of
chunks along the last dimension.

NOTE: The cacheitself could be used to cache any object into a number of fixed size chunks
so long as the read/write(page-in/page-out) routines know how to deal with getting the cor-
rect chunk based on a number. These routines can be found in ntache. c.

Parameters
file id IN: Fileto put chunked element in
tag IN: Tag of element
ref IN: Reference numberof element
nl evel s IN: Number of levels of chunks

fill_val _Ien IN:Fill valuelengthin bytes

fill_val IN: Fill value
chk_array IN: Structure describing chunk distribution
Return Values

If the chunked element already exists, HM Ccreate returns FAl L. Otherwise a new element
is created and HM Ccreate returns the AID of the newly-created chunked element.

200 November 7, 2001

HDF Specification and Developer’s Guide

HM CwriteChunk
int32 HVOwri t eChunk(int32 access id, int32 *origin, const void *datap)
Purpose
Writes out exactly one chunk.
Description
HM CwriteChunk writes out exactly one chunk of datato a chunked element.

This function is used to complete whole chunks to the file based on the chunk origin, the
position of the chunk in the overall chunk array.

Parameters

access_id IN: Access AID of the specified chunk.

origin IN: Origin of the chunk to be written.
dat ap IN: Buffer for the data to be written.
Return Values

Returns the number of byteswritten if successful; otherwise returns FAI L.

HM CreadChunk
i nt 32 HMCr eadChunk(int32 access id, int32 *origin, void *datap)
Purpose
Reads exactly one chunk.
Description
HM CreadChunk reads exactly one chunk from a chunked element.

This function is used to read complete chunks from the file based on the chunk origin, the
postion of the chunk in the overall chunk array.

Parameters

access_id IN: Access AID for the specified chunk.

origin IN: Origin of chunk to be read.
dat ap IN: Buffer for the datato be read.
Return Values

Returns the number of bytesread if successful; otherwise FAI L.

November 7, 2001 201

National Center for Supercomputing Applications

HM CsetM axcache
i nt 32 HMCset Maxcache(int32 access id, int32 naxcache, int32 flags)

Purpose
Sets themaximum number of chunks to cache.

Description
HM CsetM axcache sets the maximum number of chunks to cache.
The values set here affects the current object’s caching behaviour.

If the chunk cache is full and naxcache is greater then the current naxcache value, then the
chunk cache is reset to the new naxcache value, € se the chunk cache remains at the current
nmaxcache value.

If the chunk cache is not full, then the chunk cacheis set to the new naxcache value only if
the new naxcache value is greater than the current number of chunks in the cache.

Use flags arguement of HMC PAGEALL if the whole object is to be cached in memory; other-
wise passin zero.

NOTES: This function calls the routine mcache _set_maxcache(). The value of naxcache
must be greater than 1.

Parameters

access_id IN: Access AID for the specified chunked element.

naxcache IN: Maximum number of chunks to cache.
flags IN: Valid flags are 0 (zero) and HVC_PAGEALL.
Returns

Returns the new value of naxcache if successful; otherwise returns FAI L.

HM CPstwrite

int32 HMCPstwrite(accrec_t *access_rec)
Purpose
Opens an access record of a chunked elemnent for writing.
Description
HM CPstwrite calls HM Cl staccess() to fill in the access record for writing.
Parameter
access_rec IN: Accessrecord tofill in.
Return Values

Returns the AID of the access record if successful; otherwise returns FA! L.

202

November 7, 2001

HDF Specification and Developer’s Guide

HM CPseek
i nt 32 HMCPseek(accrec_t *access rec, int32 offset, int origin)
Purpose

Sets the seek position in the chunked element.
Description

HMCPseek sets the seek position in the specified chunked element.
Parameters

access_rec IN: Accessrecord for the specified chunk.

of fset IN: Seek offset.
origin IN: Location from which the offset should be cal culated.
Return Values

Returns a positive value if successful; otherwise returns FAI L.

HM CPchunkread
i nt 32 HMCPchunkr ead(void *cookie, int32 chunk_ num void *datap)
Purpose
Reads a chunk.
Description

Given the chunk number, HM CPchunkread reads in a complete chunk from a chunked ele-
ment.

Thisisused as the page-in-chunk routine for the cache.

Only the cache should call this routine.

Parameters
cooki e IN: Access record for the desired chunk.
chunk_num IN: Chunk to be read.
dat ap OUT: Buffer for datato be read.

Return Values

Returns the number of bytesread if successful; otherwise returns FAI L.

November 7, 2001 203

National Center for Supercomputing Applications

HMCPread
i nt 32 HMCPread(accrec_t *access rec, int32 length, void *datap)
Purpose
Reads data from a chunked element.
Description
HM CPread reads in data from a chunked element.

Data is obtained from the cache, which takes care of reading in the proper chunks to satisfy
the request.

Parameters

access_rec IN: Accessrecord for the desired chunk.

length IN: Number of bytesto read.
dat ap OUT: Buffer for datato be read.
Return Values

Returns the number of bytesread if successful; otherwise returns FAI L.

HM CPchunkwrite
i nt 32 HMCPchunkwrite(void *cookie, int32 chunk_ num const void *datap)
Purpose
Writes out exactly one chunk.
Description

Given the chunk number, HM CPchunkwrite writes a complete chunk to a chunked ele-
ment.

Thisis used as the page-out-chunk routine for the cache.
Only the cache should call thisroutine.

Parameters
cooki e IN: Access record for the chunk to be written.
chunk_num IN: Chunk number.
dat ap IN: Buffer for the datato be written.

Return Values

Returns the number of byteswritten if successful; otherwise returns FAI L.

204 November 7, 2001

HDF Specification and Developer’s Guide

HM CPwrite

int32 HMCPwrite(accrec_t *access rec, int32 length, const void *datap)
Purpose

Writes data to a chunked element.
Description

HM CPwrite writes data to a chunked element.

Data is obtained from the cache, which takes care of obtaining the proper chunks to write to
satisfy the request.

The chunks are marked as dirty before being returned to the cache.
Parameters

access_rec IN: Accessrecord for the chunked element.

l'ength IN: Number of bytesto be written.
dat ap IN: Buffer for the data to be written.
Return Values

Returns the number of byteswritten if successful; otherwise returns FAI L.

HM CPcloseAl D

i nt 32 HMCPcl oseAl D(accrec_t *access_rec)

Purpose
Closesfile but keeps AID active.

Description
HM CPcloseAl D closes the file currently pointed to by this AID but does not free the AID.
Thiswill flush the chunk cache and free up the special information struct.

This function is called by Hnextread(), which reuses an AID to point to the next object, as
requested. If the current object was a chunked object, the chunked information needs to be
closed before al referencetoitislost.

NOTE: Direct use of Hnextread() is not recommened since it relies on previous state infor-
mation.

Parameter
access_rec IN: Accessrecord of fileto close.
Return Values

Returns a positive value if successful; otherwise returns FAI L.

November 7, 2001 205

National Center for Supercomputing Applications

HM CPendaccess
i nt n HMCPendaccess(accrec_t *access rec)
Purpose
Closes achunk element AID.
Description

HM CPendaccess closes the specied AID, freeing up all of the space used to store informa-
tion about a chunked element and updating the proper records, access_rec, fil e_rec, €tc.
All relevant information is flushed.

Parameter
access_rec IN: Accessrecord to close.
Return Values

Returns a positive value if successful; otherwise returns FAI L.

HM CPinfo
i nt 32 HMCPi nf o(accrec_t *access_rec, sp_info_block_t *info_chunk)
Purpose
Returns information about a chunked element.
Description
HM CPinfo returns information about the given chunked element.
i nfo_chunk is assumed to be non-NULL.
Parameters
access_rec IN: access record of access elemement
info_chunk OUT: Information about the special element.
Return Values

Returns a positive value if successful; otherwise returns FAI L.

206 November 7, 2001

HDF Specification and Developer’s Guide

HM CPinquire

i nt 32 HMCPi nquire(accrec_t *access rec, int32 *pfile id, uintl6 *ptag,
uint16 *pref, int32 *plength, int32 *poffset,
i nt32 *pposn, intl6 *paccess, intl6 *pspecial)

Purpose
Inquires for chunked elements.
Description
HM CPinquire returns interesting information about a chunked element.
NULL can be passed for any OUT parameter if the value is not needed.
Parameters
access_rec IN: Accessrecord of the chunked element for which information is sought.
pfile id OUT: Fileidentifier.

pt ag OUT: Tag of information record.
pref OUT: Reference number of information record.
pl engt h OUT: Length of element.
pof f set OUT: Offset of element -- meaningless.
pposn OUT: Current position in element.
paccess OUT: Access mode.
pspeci al OUT: Special code.
Return Values

Returns a positive value if successful; otherwise returns FAI L.

November 7, 2001 207

National Center for Supercomputing Applications

C.23 Development Routines

HDgettagname
char *HDget t agnane(ui nt 16 tag)
tag IN: Tagtolook up
Purpose Gets a meaningful description of atag.

Returnvalue Returns a pointer to a string describing this tag or NULL if the tag is
unknown.

Description To reduce the amount of duplicated code, this routine can be used to map a
tag to a character string containing the name of the tag.

The string returned by this routine is guaranteed to be 30 characters or less.

HDgetspace

voi d *HDget space(ui nt 32 qty)
qty IN: Number of bytesto allocate
Purpose Allocates space.

Returnvalue If successful, returns a pointer to space that was allocated; otherwise returns
NULL .

Description Uses an appropriate allocation routine on the local machine to get space.

HDfreespace

voi d *HDf reespace(voi d *ptr)
ptr IN: Pointer to previously-allocated space that is to be freed
Purpose Frees space.

Returnvalue Returns NULL.

Description Uses an appropriate routine on the local machine to free space. This routine
is platform dependent.

208 November 7, 2001

HDF Specification and Developer’s Guide

HDstrncpy

char *HDstrncpy(register char *dest, register char *source, int32 [|ength)

dest

source
I ength
Purpose

Return value

Description

OUT:Pointer to area to copy string to
IN: Pointer to areato copy string from

IN: Maximum number of bytes to copy

Copies a string with maximum length / engt h.

Returns address of dest .

Createsastringin dest thatisat most / engt h characterslong. The num-
ber of characters must include the NULL terminator for historical reasons.
Hence, if you are working with the string Foo, you must call this copy
function with the value 4 (three characters plus the NULL terminator) in
I engt h.

November 7, 2001

209

National Center for Supercomputing Applications

C.24 Error Reporting

HEprint

void Heprint (FILE *stream int32 [evel)
Sstream IN: Stream to print error messages on
I evel IN: Level of the error stack to print
Purpose Prints information on the error stack.

Return value Has no return value.

Description Printsinformation on reported errors. If / evel iszero, al of the errors cur-
rently on the error stack are printed. Output from this function is sent to the
filepointedtoby stream

The following information is printed:

«An ASCII description of the error

*The reporting routine

*The reporting routine’s source file name
*The line at which the error was reported

If the programmer has supplied extra information by meansi®feport ,
this information is printed as well.

HEclear
voi d Hecl ear (voi d)

Purpose Clears all information on reported errors off of the error stack.

Return value Has no return value.

Description Clears all of the information off of the error stack.

210 November 7, 2001

HDF Specification and Developer’s Guide

HERROR

voi d HERRCR(i nt 16 nunber)
nunber IN: Error number
Purpose Reports an error.

Return value Has no return value.

Description Reports an error. Any function calling HERROR must have avariable FUNC
which points to a string containing the name of the function.

HERROR is implemented as a macro.

HEreport
voi d Hereport (char *fornat,)
for mat IN: printf-styleformat and arguments
Purpose Provides extrainformation to the error reporting routines.

Returnvalue Has no return value.

Description Provides further annotation to an error report. Only one such annotation is
remembered for each error report. The arguments to this routine follow the
styleof printf.

Consider the following example from hfil e. c:

char *FUNC = "Hl ose";

if (file_rec->attach > 0) {
fil e_rec->ref count ++
HERROR DFE_ (PENAI D)
Hereport (" There are still %l active aids attached", file_rec->attach);
return FAIL;

November 7, 2001 211

National Center for Supercomputing Applications

C.25 Other

Hsync
int Hsync(int32 file_id)
file_ id IN: ID of thefile to synchronize

Purpose Synchronizes on-disk HDF file with image in memory.

Return value Returns SUCCEED.

Description Hsync is not included in the current HDF library release because the on-
disk representation of an HDF file is always the same as its in-memory rep-
resentation. Hsync will be provided when future rel eases implement buffer-
ing schemes.

212 November 7, 2001

